1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <asm/uaccess.h> 65 66 #include "cxgb4.h" 67 #include "t4_regs.h" 68 #include "t4_msg.h" 69 #include "t4fw_api.h" 70 #include "l2t.h" 71 72 #include <../drivers/net/bonding/bonding.h> 73 74 #ifdef DRV_VERSION 75 #undef DRV_VERSION 76 #endif 77 #define DRV_VERSION "2.0.0-ko" 78 #define DRV_DESC "Chelsio T4/T5 Network Driver" 79 80 /* 81 * Max interrupt hold-off timer value in us. Queues fall back to this value 82 * under extreme memory pressure so it's largish to give the system time to 83 * recover. 84 */ 85 #define MAX_SGE_TIMERVAL 200U 86 87 enum { 88 /* 89 * Physical Function provisioning constants. 90 */ 91 PFRES_NVI = 4, /* # of Virtual Interfaces */ 92 PFRES_NETHCTRL = 128, /* # of EQs used for ETH or CTRL Qs */ 93 PFRES_NIQFLINT = 128, /* # of ingress Qs/w Free List(s)/intr 94 */ 95 PFRES_NEQ = 256, /* # of egress queues */ 96 PFRES_NIQ = 0, /* # of ingress queues */ 97 PFRES_TC = 0, /* PCI-E traffic class */ 98 PFRES_NEXACTF = 128, /* # of exact MPS filters */ 99 100 PFRES_R_CAPS = FW_CMD_CAP_PF, 101 PFRES_WX_CAPS = FW_CMD_CAP_PF, 102 103 #ifdef CONFIG_PCI_IOV 104 /* 105 * Virtual Function provisioning constants. We need two extra Ingress 106 * Queues with Interrupt capability to serve as the VF's Firmware 107 * Event Queue and Forwarded Interrupt Queue (when using MSI mode) -- 108 * neither will have Free Lists associated with them). For each 109 * Ethernet/Control Egress Queue and for each Free List, we need an 110 * Egress Context. 111 */ 112 VFRES_NPORTS = 1, /* # of "ports" per VF */ 113 VFRES_NQSETS = 2, /* # of "Queue Sets" per VF */ 114 115 VFRES_NVI = VFRES_NPORTS, /* # of Virtual Interfaces */ 116 VFRES_NETHCTRL = VFRES_NQSETS, /* # of EQs used for ETH or CTRL Qs */ 117 VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */ 118 VFRES_NEQ = VFRES_NQSETS*2, /* # of egress queues */ 119 VFRES_NIQ = 0, /* # of non-fl/int ingress queues */ 120 VFRES_TC = 0, /* PCI-E traffic class */ 121 VFRES_NEXACTF = 16, /* # of exact MPS filters */ 122 123 VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT, 124 VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF, 125 #endif 126 }; 127 128 /* 129 * Provide a Port Access Rights Mask for the specified PF/VF. This is very 130 * static and likely not to be useful in the long run. We really need to 131 * implement some form of persistent configuration which the firmware 132 * controls. 133 */ 134 static unsigned int pfvfres_pmask(struct adapter *adapter, 135 unsigned int pf, unsigned int vf) 136 { 137 unsigned int portn, portvec; 138 139 /* 140 * Give PF's access to all of the ports. 141 */ 142 if (vf == 0) 143 return FW_PFVF_CMD_PMASK_MASK; 144 145 /* 146 * For VFs, we'll assign them access to the ports based purely on the 147 * PF. We assign active ports in order, wrapping around if there are 148 * fewer active ports than PFs: e.g. active port[pf % nports]. 149 * Unfortunately the adapter's port_info structs haven't been 150 * initialized yet so we have to compute this. 151 */ 152 if (adapter->params.nports == 0) 153 return 0; 154 155 portn = pf % adapter->params.nports; 156 portvec = adapter->params.portvec; 157 for (;;) { 158 /* 159 * Isolate the lowest set bit in the port vector. If we're at 160 * the port number that we want, return that as the pmask. 161 * otherwise mask that bit out of the port vector and 162 * decrement our port number ... 163 */ 164 unsigned int pmask = portvec ^ (portvec & (portvec-1)); 165 if (portn == 0) 166 return pmask; 167 portn--; 168 portvec &= ~pmask; 169 } 170 /*NOTREACHED*/ 171 } 172 173 enum { 174 MAX_TXQ_ENTRIES = 16384, 175 MAX_CTRL_TXQ_ENTRIES = 1024, 176 MAX_RSPQ_ENTRIES = 16384, 177 MAX_RX_BUFFERS = 16384, 178 MIN_TXQ_ENTRIES = 32, 179 MIN_CTRL_TXQ_ENTRIES = 32, 180 MIN_RSPQ_ENTRIES = 128, 181 MIN_FL_ENTRIES = 16 182 }; 183 184 /* Host shadow copy of ingress filter entry. This is in host native format 185 * and doesn't match the ordering or bit order, etc. of the hardware of the 186 * firmware command. The use of bit-field structure elements is purely to 187 * remind ourselves of the field size limitations and save memory in the case 188 * where the filter table is large. 189 */ 190 struct filter_entry { 191 /* Administrative fields for filter. 192 */ 193 u32 valid:1; /* filter allocated and valid */ 194 u32 locked:1; /* filter is administratively locked */ 195 196 u32 pending:1; /* filter action is pending firmware reply */ 197 u32 smtidx:8; /* Source MAC Table index for smac */ 198 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */ 199 200 /* The filter itself. Most of this is a straight copy of information 201 * provided by the extended ioctl(). Some fields are translated to 202 * internal forms -- for instance the Ingress Queue ID passed in from 203 * the ioctl() is translated into the Absolute Ingress Queue ID. 204 */ 205 struct ch_filter_specification fs; 206 }; 207 208 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 209 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 210 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 211 212 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) } 213 214 static DEFINE_PCI_DEVICE_TABLE(cxgb4_pci_tbl) = { 215 CH_DEVICE(0xa000, 0), /* PE10K */ 216 CH_DEVICE(0x4001, -1), 217 CH_DEVICE(0x4002, -1), 218 CH_DEVICE(0x4003, -1), 219 CH_DEVICE(0x4004, -1), 220 CH_DEVICE(0x4005, -1), 221 CH_DEVICE(0x4006, -1), 222 CH_DEVICE(0x4007, -1), 223 CH_DEVICE(0x4008, -1), 224 CH_DEVICE(0x4009, -1), 225 CH_DEVICE(0x400a, -1), 226 CH_DEVICE(0x4401, 4), 227 CH_DEVICE(0x4402, 4), 228 CH_DEVICE(0x4403, 4), 229 CH_DEVICE(0x4404, 4), 230 CH_DEVICE(0x4405, 4), 231 CH_DEVICE(0x4406, 4), 232 CH_DEVICE(0x4407, 4), 233 CH_DEVICE(0x4408, 4), 234 CH_DEVICE(0x4409, 4), 235 CH_DEVICE(0x440a, 4), 236 CH_DEVICE(0x440d, 4), 237 CH_DEVICE(0x440e, 4), 238 CH_DEVICE(0x5001, 4), 239 CH_DEVICE(0x5002, 4), 240 CH_DEVICE(0x5003, 4), 241 CH_DEVICE(0x5004, 4), 242 CH_DEVICE(0x5005, 4), 243 CH_DEVICE(0x5006, 4), 244 CH_DEVICE(0x5007, 4), 245 CH_DEVICE(0x5008, 4), 246 CH_DEVICE(0x5009, 4), 247 CH_DEVICE(0x500A, 4), 248 CH_DEVICE(0x500B, 4), 249 CH_DEVICE(0x500C, 4), 250 CH_DEVICE(0x500D, 4), 251 CH_DEVICE(0x500E, 4), 252 CH_DEVICE(0x500F, 4), 253 CH_DEVICE(0x5010, 4), 254 CH_DEVICE(0x5011, 4), 255 CH_DEVICE(0x5012, 4), 256 CH_DEVICE(0x5013, 4), 257 CH_DEVICE(0x5401, 4), 258 CH_DEVICE(0x5402, 4), 259 CH_DEVICE(0x5403, 4), 260 CH_DEVICE(0x5404, 4), 261 CH_DEVICE(0x5405, 4), 262 CH_DEVICE(0x5406, 4), 263 CH_DEVICE(0x5407, 4), 264 CH_DEVICE(0x5408, 4), 265 CH_DEVICE(0x5409, 4), 266 CH_DEVICE(0x540A, 4), 267 CH_DEVICE(0x540B, 4), 268 CH_DEVICE(0x540C, 4), 269 CH_DEVICE(0x540D, 4), 270 CH_DEVICE(0x540E, 4), 271 CH_DEVICE(0x540F, 4), 272 CH_DEVICE(0x5410, 4), 273 CH_DEVICE(0x5411, 4), 274 CH_DEVICE(0x5412, 4), 275 CH_DEVICE(0x5413, 4), 276 { 0, } 277 }; 278 279 #define FW4_FNAME "cxgb4/t4fw.bin" 280 #define FW5_FNAME "cxgb4/t5fw.bin" 281 #define FW4_CFNAME "cxgb4/t4-config.txt" 282 #define FW5_CFNAME "cxgb4/t5-config.txt" 283 284 MODULE_DESCRIPTION(DRV_DESC); 285 MODULE_AUTHOR("Chelsio Communications"); 286 MODULE_LICENSE("Dual BSD/GPL"); 287 MODULE_VERSION(DRV_VERSION); 288 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 289 MODULE_FIRMWARE(FW4_FNAME); 290 MODULE_FIRMWARE(FW5_FNAME); 291 292 /* 293 * Normally we're willing to become the firmware's Master PF but will be happy 294 * if another PF has already become the Master and initialized the adapter. 295 * Setting "force_init" will cause this driver to forcibly establish itself as 296 * the Master PF and initialize the adapter. 297 */ 298 static uint force_init; 299 300 module_param(force_init, uint, 0644); 301 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter"); 302 303 /* 304 * Normally if the firmware we connect to has Configuration File support, we 305 * use that and only fall back to the old Driver-based initialization if the 306 * Configuration File fails for some reason. If force_old_init is set, then 307 * we'll always use the old Driver-based initialization sequence. 308 */ 309 static uint force_old_init; 310 311 module_param(force_old_init, uint, 0644); 312 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence"); 313 314 static int dflt_msg_enable = DFLT_MSG_ENABLE; 315 316 module_param(dflt_msg_enable, int, 0644); 317 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap"); 318 319 /* 320 * The driver uses the best interrupt scheme available on a platform in the 321 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 322 * of these schemes the driver may consider as follows: 323 * 324 * msi = 2: choose from among all three options 325 * msi = 1: only consider MSI and INTx interrupts 326 * msi = 0: force INTx interrupts 327 */ 328 static int msi = 2; 329 330 module_param(msi, int, 0644); 331 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 332 333 /* 334 * Queue interrupt hold-off timer values. Queues default to the first of these 335 * upon creation. 336 */ 337 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 }; 338 339 module_param_array(intr_holdoff, uint, NULL, 0644); 340 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers " 341 "0..4 in microseconds"); 342 343 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 }; 344 345 module_param_array(intr_cnt, uint, NULL, 0644); 346 MODULE_PARM_DESC(intr_cnt, 347 "thresholds 1..3 for queue interrupt packet counters"); 348 349 /* 350 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 351 * offset by 2 bytes in order to have the IP headers line up on 4-byte 352 * boundaries. This is a requirement for many architectures which will throw 353 * a machine check fault if an attempt is made to access one of the 4-byte IP 354 * header fields on a non-4-byte boundary. And it's a major performance issue 355 * even on some architectures which allow it like some implementations of the 356 * x86 ISA. However, some architectures don't mind this and for some very 357 * edge-case performance sensitive applications (like forwarding large volumes 358 * of small packets), setting this DMA offset to 0 will decrease the number of 359 * PCI-E Bus transfers enough to measurably affect performance. 360 */ 361 static int rx_dma_offset = 2; 362 363 static bool vf_acls; 364 365 #ifdef CONFIG_PCI_IOV 366 module_param(vf_acls, bool, 0644); 367 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement"); 368 369 /* Configure the number of PCI-E Virtual Function which are to be instantiated 370 * on SR-IOV Capable Physical Functions. 371 */ 372 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV]; 373 374 module_param_array(num_vf, uint, NULL, 0644); 375 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3"); 376 #endif 377 378 /* 379 * The filter TCAM has a fixed portion and a variable portion. The fixed 380 * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP 381 * ports. The variable portion is 36 bits which can include things like Exact 382 * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits), 383 * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would 384 * far exceed the 36-bit budget for this "compressed" header portion of the 385 * filter. Thus, we have a scarce resource which must be carefully managed. 386 * 387 * By default we set this up to mostly match the set of filter matching 388 * capabilities of T3 but with accommodations for some of T4's more 389 * interesting features: 390 * 391 * { IP Fragment (1), MPS Match Type (3), IP Protocol (8), 392 * [Inner] VLAN (17), Port (3), FCoE (1) } 393 */ 394 enum { 395 TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC, 396 TP_VLAN_PRI_MAP_FIRST = FCOE_SHIFT, 397 TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_SHIFT, 398 }; 399 400 static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT; 401 402 module_param(tp_vlan_pri_map, uint, 0644); 403 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration"); 404 405 static struct dentry *cxgb4_debugfs_root; 406 407 static LIST_HEAD(adapter_list); 408 static DEFINE_MUTEX(uld_mutex); 409 /* Adapter list to be accessed from atomic context */ 410 static LIST_HEAD(adap_rcu_list); 411 static DEFINE_SPINLOCK(adap_rcu_lock); 412 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX]; 413 static const char *uld_str[] = { "RDMA", "iSCSI" }; 414 415 static void link_report(struct net_device *dev) 416 { 417 if (!netif_carrier_ok(dev)) 418 netdev_info(dev, "link down\n"); 419 else { 420 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 421 422 const char *s = "10Mbps"; 423 const struct port_info *p = netdev_priv(dev); 424 425 switch (p->link_cfg.speed) { 426 case SPEED_10000: 427 s = "10Gbps"; 428 break; 429 case SPEED_1000: 430 s = "1000Mbps"; 431 break; 432 case SPEED_100: 433 s = "100Mbps"; 434 break; 435 } 436 437 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 438 fc[p->link_cfg.fc]); 439 } 440 } 441 442 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 443 { 444 struct net_device *dev = adapter->port[port_id]; 445 446 /* Skip changes from disabled ports. */ 447 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 448 if (link_stat) 449 netif_carrier_on(dev); 450 else 451 netif_carrier_off(dev); 452 453 link_report(dev); 454 } 455 } 456 457 void t4_os_portmod_changed(const struct adapter *adap, int port_id) 458 { 459 static const char *mod_str[] = { 460 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 461 }; 462 463 const struct net_device *dev = adap->port[port_id]; 464 const struct port_info *pi = netdev_priv(dev); 465 466 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 467 netdev_info(dev, "port module unplugged\n"); 468 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 469 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 470 } 471 472 /* 473 * Configure the exact and hash address filters to handle a port's multicast 474 * and secondary unicast MAC addresses. 475 */ 476 static int set_addr_filters(const struct net_device *dev, bool sleep) 477 { 478 u64 mhash = 0; 479 u64 uhash = 0; 480 bool free = true; 481 u16 filt_idx[7]; 482 const u8 *addr[7]; 483 int ret, naddr = 0; 484 const struct netdev_hw_addr *ha; 485 int uc_cnt = netdev_uc_count(dev); 486 int mc_cnt = netdev_mc_count(dev); 487 const struct port_info *pi = netdev_priv(dev); 488 unsigned int mb = pi->adapter->fn; 489 490 /* first do the secondary unicast addresses */ 491 netdev_for_each_uc_addr(ha, dev) { 492 addr[naddr++] = ha->addr; 493 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) { 494 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free, 495 naddr, addr, filt_idx, &uhash, sleep); 496 if (ret < 0) 497 return ret; 498 499 free = false; 500 naddr = 0; 501 } 502 } 503 504 /* next set up the multicast addresses */ 505 netdev_for_each_mc_addr(ha, dev) { 506 addr[naddr++] = ha->addr; 507 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) { 508 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free, 509 naddr, addr, filt_idx, &mhash, sleep); 510 if (ret < 0) 511 return ret; 512 513 free = false; 514 naddr = 0; 515 } 516 } 517 518 return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0, 519 uhash | mhash, sleep); 520 } 521 522 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 523 module_param(dbfifo_int_thresh, int, 0644); 524 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 525 526 /* 527 * usecs to sleep while draining the dbfifo 528 */ 529 static int dbfifo_drain_delay = 1000; 530 module_param(dbfifo_drain_delay, int, 0644); 531 MODULE_PARM_DESC(dbfifo_drain_delay, 532 "usecs to sleep while draining the dbfifo"); 533 534 /* 535 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 536 * If @mtu is -1 it is left unchanged. 537 */ 538 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 539 { 540 int ret; 541 struct port_info *pi = netdev_priv(dev); 542 543 ret = set_addr_filters(dev, sleep_ok); 544 if (ret == 0) 545 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu, 546 (dev->flags & IFF_PROMISC) ? 1 : 0, 547 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 548 sleep_ok); 549 return ret; 550 } 551 552 static struct workqueue_struct *workq; 553 554 /** 555 * link_start - enable a port 556 * @dev: the port to enable 557 * 558 * Performs the MAC and PHY actions needed to enable a port. 559 */ 560 static int link_start(struct net_device *dev) 561 { 562 int ret; 563 struct port_info *pi = netdev_priv(dev); 564 unsigned int mb = pi->adapter->fn; 565 566 /* 567 * We do not set address filters and promiscuity here, the stack does 568 * that step explicitly. 569 */ 570 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 571 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 572 if (ret == 0) { 573 ret = t4_change_mac(pi->adapter, mb, pi->viid, 574 pi->xact_addr_filt, dev->dev_addr, true, 575 true); 576 if (ret >= 0) { 577 pi->xact_addr_filt = ret; 578 ret = 0; 579 } 580 } 581 if (ret == 0) 582 ret = t4_link_start(pi->adapter, mb, pi->tx_chan, 583 &pi->link_cfg); 584 if (ret == 0) 585 ret = t4_enable_vi(pi->adapter, mb, pi->viid, true, true); 586 return ret; 587 } 588 589 /* Clear a filter and release any of its resources that we own. This also 590 * clears the filter's "pending" status. 591 */ 592 static void clear_filter(struct adapter *adap, struct filter_entry *f) 593 { 594 /* If the new or old filter have loopback rewriteing rules then we'll 595 * need to free any existing Layer Two Table (L2T) entries of the old 596 * filter rule. The firmware will handle freeing up any Source MAC 597 * Table (SMT) entries used for rewriting Source MAC Addresses in 598 * loopback rules. 599 */ 600 if (f->l2t) 601 cxgb4_l2t_release(f->l2t); 602 603 /* The zeroing of the filter rule below clears the filter valid, 604 * pending, locked flags, l2t pointer, etc. so it's all we need for 605 * this operation. 606 */ 607 memset(f, 0, sizeof(*f)); 608 } 609 610 /* Handle a filter write/deletion reply. 611 */ 612 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl) 613 { 614 unsigned int idx = GET_TID(rpl); 615 unsigned int nidx = idx - adap->tids.ftid_base; 616 unsigned int ret; 617 struct filter_entry *f; 618 619 if (idx >= adap->tids.ftid_base && nidx < 620 (adap->tids.nftids + adap->tids.nsftids)) { 621 idx = nidx; 622 ret = GET_TCB_COOKIE(rpl->cookie); 623 f = &adap->tids.ftid_tab[idx]; 624 625 if (ret == FW_FILTER_WR_FLT_DELETED) { 626 /* Clear the filter when we get confirmation from the 627 * hardware that the filter has been deleted. 628 */ 629 clear_filter(adap, f); 630 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) { 631 dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n", 632 idx); 633 clear_filter(adap, f); 634 } else if (ret == FW_FILTER_WR_FLT_ADDED) { 635 f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff; 636 f->pending = 0; /* asynchronous setup completed */ 637 f->valid = 1; 638 } else { 639 /* Something went wrong. Issue a warning about the 640 * problem and clear everything out. 641 */ 642 dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n", 643 idx, ret); 644 clear_filter(adap, f); 645 } 646 } 647 } 648 649 /* Response queue handler for the FW event queue. 650 */ 651 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 652 const struct pkt_gl *gl) 653 { 654 u8 opcode = ((const struct rss_header *)rsp)->opcode; 655 656 rsp++; /* skip RSS header */ 657 658 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 659 */ 660 if (unlikely(opcode == CPL_FW4_MSG && 661 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 662 rsp++; 663 opcode = ((const struct rss_header *)rsp)->opcode; 664 rsp++; 665 if (opcode != CPL_SGE_EGR_UPDATE) { 666 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 667 , opcode); 668 goto out; 669 } 670 } 671 672 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 673 const struct cpl_sge_egr_update *p = (void *)rsp; 674 unsigned int qid = EGR_QID(ntohl(p->opcode_qid)); 675 struct sge_txq *txq; 676 677 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 678 txq->restarts++; 679 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) { 680 struct sge_eth_txq *eq; 681 682 eq = container_of(txq, struct sge_eth_txq, q); 683 netif_tx_wake_queue(eq->txq); 684 } else { 685 struct sge_ofld_txq *oq; 686 687 oq = container_of(txq, struct sge_ofld_txq, q); 688 tasklet_schedule(&oq->qresume_tsk); 689 } 690 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 691 const struct cpl_fw6_msg *p = (void *)rsp; 692 693 if (p->type == 0) 694 t4_handle_fw_rpl(q->adap, p->data); 695 } else if (opcode == CPL_L2T_WRITE_RPL) { 696 const struct cpl_l2t_write_rpl *p = (void *)rsp; 697 698 do_l2t_write_rpl(q->adap, p); 699 } else if (opcode == CPL_SET_TCB_RPL) { 700 const struct cpl_set_tcb_rpl *p = (void *)rsp; 701 702 filter_rpl(q->adap, p); 703 } else 704 dev_err(q->adap->pdev_dev, 705 "unexpected CPL %#x on FW event queue\n", opcode); 706 out: 707 return 0; 708 } 709 710 /** 711 * uldrx_handler - response queue handler for ULD queues 712 * @q: the response queue that received the packet 713 * @rsp: the response queue descriptor holding the offload message 714 * @gl: the gather list of packet fragments 715 * 716 * Deliver an ingress offload packet to a ULD. All processing is done by 717 * the ULD, we just maintain statistics. 718 */ 719 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp, 720 const struct pkt_gl *gl) 721 { 722 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq); 723 724 /* FW can send CPLs encapsulated in a CPL_FW4_MSG. 725 */ 726 if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG && 727 ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL) 728 rsp += 2; 729 730 if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) { 731 rxq->stats.nomem++; 732 return -1; 733 } 734 if (gl == NULL) 735 rxq->stats.imm++; 736 else if (gl == CXGB4_MSG_AN) 737 rxq->stats.an++; 738 else 739 rxq->stats.pkts++; 740 return 0; 741 } 742 743 static void disable_msi(struct adapter *adapter) 744 { 745 if (adapter->flags & USING_MSIX) { 746 pci_disable_msix(adapter->pdev); 747 adapter->flags &= ~USING_MSIX; 748 } else if (adapter->flags & USING_MSI) { 749 pci_disable_msi(adapter->pdev); 750 adapter->flags &= ~USING_MSI; 751 } 752 } 753 754 /* 755 * Interrupt handler for non-data events used with MSI-X. 756 */ 757 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 758 { 759 struct adapter *adap = cookie; 760 761 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE)); 762 if (v & PFSW) { 763 adap->swintr = 1; 764 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v); 765 } 766 t4_slow_intr_handler(adap); 767 return IRQ_HANDLED; 768 } 769 770 /* 771 * Name the MSI-X interrupts. 772 */ 773 static void name_msix_vecs(struct adapter *adap) 774 { 775 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); 776 777 /* non-data interrupts */ 778 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); 779 780 /* FW events */ 781 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", 782 adap->port[0]->name); 783 784 /* Ethernet queues */ 785 for_each_port(adap, j) { 786 struct net_device *d = adap->port[j]; 787 const struct port_info *pi = netdev_priv(d); 788 789 for (i = 0; i < pi->nqsets; i++, msi_idx++) 790 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", 791 d->name, i); 792 } 793 794 /* offload queues */ 795 for_each_ofldrxq(&adap->sge, i) 796 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d", 797 adap->port[0]->name, i); 798 799 for_each_rdmarxq(&adap->sge, i) 800 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d", 801 adap->port[0]->name, i); 802 } 803 804 static int request_msix_queue_irqs(struct adapter *adap) 805 { 806 struct sge *s = &adap->sge; 807 int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, msi_index = 2; 808 809 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, 810 adap->msix_info[1].desc, &s->fw_evtq); 811 if (err) 812 return err; 813 814 for_each_ethrxq(s, ethqidx) { 815 err = request_irq(adap->msix_info[msi_index].vec, 816 t4_sge_intr_msix, 0, 817 adap->msix_info[msi_index].desc, 818 &s->ethrxq[ethqidx].rspq); 819 if (err) 820 goto unwind; 821 msi_index++; 822 } 823 for_each_ofldrxq(s, ofldqidx) { 824 err = request_irq(adap->msix_info[msi_index].vec, 825 t4_sge_intr_msix, 0, 826 adap->msix_info[msi_index].desc, 827 &s->ofldrxq[ofldqidx].rspq); 828 if (err) 829 goto unwind; 830 msi_index++; 831 } 832 for_each_rdmarxq(s, rdmaqidx) { 833 err = request_irq(adap->msix_info[msi_index].vec, 834 t4_sge_intr_msix, 0, 835 adap->msix_info[msi_index].desc, 836 &s->rdmarxq[rdmaqidx].rspq); 837 if (err) 838 goto unwind; 839 msi_index++; 840 } 841 return 0; 842 843 unwind: 844 while (--rdmaqidx >= 0) 845 free_irq(adap->msix_info[--msi_index].vec, 846 &s->rdmarxq[rdmaqidx].rspq); 847 while (--ofldqidx >= 0) 848 free_irq(adap->msix_info[--msi_index].vec, 849 &s->ofldrxq[ofldqidx].rspq); 850 while (--ethqidx >= 0) 851 free_irq(adap->msix_info[--msi_index].vec, 852 &s->ethrxq[ethqidx].rspq); 853 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 854 return err; 855 } 856 857 static void free_msix_queue_irqs(struct adapter *adap) 858 { 859 int i, msi_index = 2; 860 struct sge *s = &adap->sge; 861 862 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 863 for_each_ethrxq(s, i) 864 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq); 865 for_each_ofldrxq(s, i) 866 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq); 867 for_each_rdmarxq(s, i) 868 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq); 869 } 870 871 /** 872 * write_rss - write the RSS table for a given port 873 * @pi: the port 874 * @queues: array of queue indices for RSS 875 * 876 * Sets up the portion of the HW RSS table for the port's VI to distribute 877 * packets to the Rx queues in @queues. 878 */ 879 static int write_rss(const struct port_info *pi, const u16 *queues) 880 { 881 u16 *rss; 882 int i, err; 883 const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset]; 884 885 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL); 886 if (!rss) 887 return -ENOMEM; 888 889 /* map the queue indices to queue ids */ 890 for (i = 0; i < pi->rss_size; i++, queues++) 891 rss[i] = q[*queues].rspq.abs_id; 892 893 err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0, 894 pi->rss_size, rss, pi->rss_size); 895 kfree(rss); 896 return err; 897 } 898 899 /** 900 * setup_rss - configure RSS 901 * @adap: the adapter 902 * 903 * Sets up RSS for each port. 904 */ 905 static int setup_rss(struct adapter *adap) 906 { 907 int i, err; 908 909 for_each_port(adap, i) { 910 const struct port_info *pi = adap2pinfo(adap, i); 911 912 err = write_rss(pi, pi->rss); 913 if (err) 914 return err; 915 } 916 return 0; 917 } 918 919 /* 920 * Return the channel of the ingress queue with the given qid. 921 */ 922 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 923 { 924 qid -= p->ingr_start; 925 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 926 } 927 928 /* 929 * Wait until all NAPI handlers are descheduled. 930 */ 931 static void quiesce_rx(struct adapter *adap) 932 { 933 int i; 934 935 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) { 936 struct sge_rspq *q = adap->sge.ingr_map[i]; 937 938 if (q && q->handler) 939 napi_disable(&q->napi); 940 } 941 } 942 943 /* 944 * Enable NAPI scheduling and interrupt generation for all Rx queues. 945 */ 946 static void enable_rx(struct adapter *adap) 947 { 948 int i; 949 950 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) { 951 struct sge_rspq *q = adap->sge.ingr_map[i]; 952 953 if (!q) 954 continue; 955 if (q->handler) 956 napi_enable(&q->napi); 957 /* 0-increment GTS to start the timer and enable interrupts */ 958 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS), 959 SEINTARM(q->intr_params) | 960 INGRESSQID(q->cntxt_id)); 961 } 962 } 963 964 /** 965 * setup_sge_queues - configure SGE Tx/Rx/response queues 966 * @adap: the adapter 967 * 968 * Determines how many sets of SGE queues to use and initializes them. 969 * We support multiple queue sets per port if we have MSI-X, otherwise 970 * just one queue set per port. 971 */ 972 static int setup_sge_queues(struct adapter *adap) 973 { 974 int err, msi_idx, i, j; 975 struct sge *s = &adap->sge; 976 977 bitmap_zero(s->starving_fl, MAX_EGRQ); 978 bitmap_zero(s->txq_maperr, MAX_EGRQ); 979 980 if (adap->flags & USING_MSIX) 981 msi_idx = 1; /* vector 0 is for non-queue interrupts */ 982 else { 983 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 984 NULL, NULL); 985 if (err) 986 return err; 987 msi_idx = -((int)s->intrq.abs_id + 1); 988 } 989 990 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 991 msi_idx, NULL, fwevtq_handler); 992 if (err) { 993 freeout: t4_free_sge_resources(adap); 994 return err; 995 } 996 997 for_each_port(adap, i) { 998 struct net_device *dev = adap->port[i]; 999 struct port_info *pi = netdev_priv(dev); 1000 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 1001 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 1002 1003 for (j = 0; j < pi->nqsets; j++, q++) { 1004 if (msi_idx > 0) 1005 msi_idx++; 1006 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 1007 msi_idx, &q->fl, 1008 t4_ethrx_handler); 1009 if (err) 1010 goto freeout; 1011 q->rspq.idx = j; 1012 memset(&q->stats, 0, sizeof(q->stats)); 1013 } 1014 for (j = 0; j < pi->nqsets; j++, t++) { 1015 err = t4_sge_alloc_eth_txq(adap, t, dev, 1016 netdev_get_tx_queue(dev, j), 1017 s->fw_evtq.cntxt_id); 1018 if (err) 1019 goto freeout; 1020 } 1021 } 1022 1023 j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */ 1024 for_each_ofldrxq(s, i) { 1025 struct sge_ofld_rxq *q = &s->ofldrxq[i]; 1026 struct net_device *dev = adap->port[i / j]; 1027 1028 if (msi_idx > 0) 1029 msi_idx++; 1030 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx, 1031 &q->fl, uldrx_handler); 1032 if (err) 1033 goto freeout; 1034 memset(&q->stats, 0, sizeof(q->stats)); 1035 s->ofld_rxq[i] = q->rspq.abs_id; 1036 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev, 1037 s->fw_evtq.cntxt_id); 1038 if (err) 1039 goto freeout; 1040 } 1041 1042 for_each_rdmarxq(s, i) { 1043 struct sge_ofld_rxq *q = &s->rdmarxq[i]; 1044 1045 if (msi_idx > 0) 1046 msi_idx++; 1047 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i], 1048 msi_idx, &q->fl, uldrx_handler); 1049 if (err) 1050 goto freeout; 1051 memset(&q->stats, 0, sizeof(q->stats)); 1052 s->rdma_rxq[i] = q->rspq.abs_id; 1053 } 1054 1055 for_each_port(adap, i) { 1056 /* 1057 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't 1058 * have RDMA queues, and that's the right value. 1059 */ 1060 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 1061 s->fw_evtq.cntxt_id, 1062 s->rdmarxq[i].rspq.cntxt_id); 1063 if (err) 1064 goto freeout; 1065 } 1066 1067 t4_write_reg(adap, MPS_TRC_RSS_CONTROL, 1068 RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) | 1069 QUEUENUMBER(s->ethrxq[0].rspq.abs_id)); 1070 return 0; 1071 } 1072 1073 /* 1074 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc. 1075 * The allocated memory is cleared. 1076 */ 1077 void *t4_alloc_mem(size_t size) 1078 { 1079 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 1080 1081 if (!p) 1082 p = vzalloc(size); 1083 return p; 1084 } 1085 1086 /* 1087 * Free memory allocated through alloc_mem(). 1088 */ 1089 static void t4_free_mem(void *addr) 1090 { 1091 if (is_vmalloc_addr(addr)) 1092 vfree(addr); 1093 else 1094 kfree(addr); 1095 } 1096 1097 /* Send a Work Request to write the filter at a specified index. We construct 1098 * a Firmware Filter Work Request to have the work done and put the indicated 1099 * filter into "pending" mode which will prevent any further actions against 1100 * it till we get a reply from the firmware on the completion status of the 1101 * request. 1102 */ 1103 static int set_filter_wr(struct adapter *adapter, int fidx) 1104 { 1105 struct filter_entry *f = &adapter->tids.ftid_tab[fidx]; 1106 struct sk_buff *skb; 1107 struct fw_filter_wr *fwr; 1108 unsigned int ftid; 1109 1110 /* If the new filter requires loopback Destination MAC and/or VLAN 1111 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for 1112 * the filter. 1113 */ 1114 if (f->fs.newdmac || f->fs.newvlan) { 1115 /* allocate L2T entry for new filter */ 1116 f->l2t = t4_l2t_alloc_switching(adapter->l2t); 1117 if (f->l2t == NULL) 1118 return -EAGAIN; 1119 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan, 1120 f->fs.eport, f->fs.dmac)) { 1121 cxgb4_l2t_release(f->l2t); 1122 f->l2t = NULL; 1123 return -ENOMEM; 1124 } 1125 } 1126 1127 ftid = adapter->tids.ftid_base + fidx; 1128 1129 skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL); 1130 fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr)); 1131 memset(fwr, 0, sizeof(*fwr)); 1132 1133 /* It would be nice to put most of the following in t4_hw.c but most 1134 * of the work is translating the cxgbtool ch_filter_specification 1135 * into the Work Request and the definition of that structure is 1136 * currently in cxgbtool.h which isn't appropriate to pull into the 1137 * common code. We may eventually try to come up with a more neutral 1138 * filter specification structure but for now it's easiest to simply 1139 * put this fairly direct code in line ... 1140 */ 1141 fwr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR)); 1142 fwr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*fwr)/16)); 1143 fwr->tid_to_iq = 1144 htonl(V_FW_FILTER_WR_TID(ftid) | 1145 V_FW_FILTER_WR_RQTYPE(f->fs.type) | 1146 V_FW_FILTER_WR_NOREPLY(0) | 1147 V_FW_FILTER_WR_IQ(f->fs.iq)); 1148 fwr->del_filter_to_l2tix = 1149 htonl(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) | 1150 V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) | 1151 V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) | 1152 V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) | 1153 V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) | 1154 V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) | 1155 V_FW_FILTER_WR_DMAC(f->fs.newdmac) | 1156 V_FW_FILTER_WR_SMAC(f->fs.newsmac) | 1157 V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT || 1158 f->fs.newvlan == VLAN_REWRITE) | 1159 V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE || 1160 f->fs.newvlan == VLAN_REWRITE) | 1161 V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) | 1162 V_FW_FILTER_WR_TXCHAN(f->fs.eport) | 1163 V_FW_FILTER_WR_PRIO(f->fs.prio) | 1164 V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0)); 1165 fwr->ethtype = htons(f->fs.val.ethtype); 1166 fwr->ethtypem = htons(f->fs.mask.ethtype); 1167 fwr->frag_to_ovlan_vldm = 1168 (V_FW_FILTER_WR_FRAG(f->fs.val.frag) | 1169 V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) | 1170 V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.ivlan_vld) | 1171 V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.ovlan_vld) | 1172 V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.ivlan_vld) | 1173 V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.ovlan_vld)); 1174 fwr->smac_sel = 0; 1175 fwr->rx_chan_rx_rpl_iq = 1176 htons(V_FW_FILTER_WR_RX_CHAN(0) | 1177 V_FW_FILTER_WR_RX_RPL_IQ(adapter->sge.fw_evtq.abs_id)); 1178 fwr->maci_to_matchtypem = 1179 htonl(V_FW_FILTER_WR_MACI(f->fs.val.macidx) | 1180 V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) | 1181 V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) | 1182 V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) | 1183 V_FW_FILTER_WR_PORT(f->fs.val.iport) | 1184 V_FW_FILTER_WR_PORTM(f->fs.mask.iport) | 1185 V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) | 1186 V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype)); 1187 fwr->ptcl = f->fs.val.proto; 1188 fwr->ptclm = f->fs.mask.proto; 1189 fwr->ttyp = f->fs.val.tos; 1190 fwr->ttypm = f->fs.mask.tos; 1191 fwr->ivlan = htons(f->fs.val.ivlan); 1192 fwr->ivlanm = htons(f->fs.mask.ivlan); 1193 fwr->ovlan = htons(f->fs.val.ovlan); 1194 fwr->ovlanm = htons(f->fs.mask.ovlan); 1195 memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip)); 1196 memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm)); 1197 memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip)); 1198 memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm)); 1199 fwr->lp = htons(f->fs.val.lport); 1200 fwr->lpm = htons(f->fs.mask.lport); 1201 fwr->fp = htons(f->fs.val.fport); 1202 fwr->fpm = htons(f->fs.mask.fport); 1203 if (f->fs.newsmac) 1204 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma)); 1205 1206 /* Mark the filter as "pending" and ship off the Filter Work Request. 1207 * When we get the Work Request Reply we'll clear the pending status. 1208 */ 1209 f->pending = 1; 1210 set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3); 1211 t4_ofld_send(adapter, skb); 1212 return 0; 1213 } 1214 1215 /* Delete the filter at a specified index. 1216 */ 1217 static int del_filter_wr(struct adapter *adapter, int fidx) 1218 { 1219 struct filter_entry *f = &adapter->tids.ftid_tab[fidx]; 1220 struct sk_buff *skb; 1221 struct fw_filter_wr *fwr; 1222 unsigned int len, ftid; 1223 1224 len = sizeof(*fwr); 1225 ftid = adapter->tids.ftid_base + fidx; 1226 1227 skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL); 1228 fwr = (struct fw_filter_wr *)__skb_put(skb, len); 1229 t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id); 1230 1231 /* Mark the filter as "pending" and ship off the Filter Work Request. 1232 * When we get the Work Request Reply we'll clear the pending status. 1233 */ 1234 f->pending = 1; 1235 t4_mgmt_tx(adapter, skb); 1236 return 0; 1237 } 1238 1239 static inline int is_offload(const struct adapter *adap) 1240 { 1241 return adap->params.offload; 1242 } 1243 1244 /* 1245 * Implementation of ethtool operations. 1246 */ 1247 1248 static u32 get_msglevel(struct net_device *dev) 1249 { 1250 return netdev2adap(dev)->msg_enable; 1251 } 1252 1253 static void set_msglevel(struct net_device *dev, u32 val) 1254 { 1255 netdev2adap(dev)->msg_enable = val; 1256 } 1257 1258 static char stats_strings[][ETH_GSTRING_LEN] = { 1259 "TxOctetsOK ", 1260 "TxFramesOK ", 1261 "TxBroadcastFrames ", 1262 "TxMulticastFrames ", 1263 "TxUnicastFrames ", 1264 "TxErrorFrames ", 1265 1266 "TxFrames64 ", 1267 "TxFrames65To127 ", 1268 "TxFrames128To255 ", 1269 "TxFrames256To511 ", 1270 "TxFrames512To1023 ", 1271 "TxFrames1024To1518 ", 1272 "TxFrames1519ToMax ", 1273 1274 "TxFramesDropped ", 1275 "TxPauseFrames ", 1276 "TxPPP0Frames ", 1277 "TxPPP1Frames ", 1278 "TxPPP2Frames ", 1279 "TxPPP3Frames ", 1280 "TxPPP4Frames ", 1281 "TxPPP5Frames ", 1282 "TxPPP6Frames ", 1283 "TxPPP7Frames ", 1284 1285 "RxOctetsOK ", 1286 "RxFramesOK ", 1287 "RxBroadcastFrames ", 1288 "RxMulticastFrames ", 1289 "RxUnicastFrames ", 1290 1291 "RxFramesTooLong ", 1292 "RxJabberErrors ", 1293 "RxFCSErrors ", 1294 "RxLengthErrors ", 1295 "RxSymbolErrors ", 1296 "RxRuntFrames ", 1297 1298 "RxFrames64 ", 1299 "RxFrames65To127 ", 1300 "RxFrames128To255 ", 1301 "RxFrames256To511 ", 1302 "RxFrames512To1023 ", 1303 "RxFrames1024To1518 ", 1304 "RxFrames1519ToMax ", 1305 1306 "RxPauseFrames ", 1307 "RxPPP0Frames ", 1308 "RxPPP1Frames ", 1309 "RxPPP2Frames ", 1310 "RxPPP3Frames ", 1311 "RxPPP4Frames ", 1312 "RxPPP5Frames ", 1313 "RxPPP6Frames ", 1314 "RxPPP7Frames ", 1315 1316 "RxBG0FramesDropped ", 1317 "RxBG1FramesDropped ", 1318 "RxBG2FramesDropped ", 1319 "RxBG3FramesDropped ", 1320 "RxBG0FramesTrunc ", 1321 "RxBG1FramesTrunc ", 1322 "RxBG2FramesTrunc ", 1323 "RxBG3FramesTrunc ", 1324 1325 "TSO ", 1326 "TxCsumOffload ", 1327 "RxCsumGood ", 1328 "VLANextractions ", 1329 "VLANinsertions ", 1330 "GROpackets ", 1331 "GROmerged ", 1332 "WriteCoalSuccess ", 1333 "WriteCoalFail ", 1334 }; 1335 1336 static int get_sset_count(struct net_device *dev, int sset) 1337 { 1338 switch (sset) { 1339 case ETH_SS_STATS: 1340 return ARRAY_SIZE(stats_strings); 1341 default: 1342 return -EOPNOTSUPP; 1343 } 1344 } 1345 1346 #define T4_REGMAP_SIZE (160 * 1024) 1347 #define T5_REGMAP_SIZE (332 * 1024) 1348 1349 static int get_regs_len(struct net_device *dev) 1350 { 1351 struct adapter *adap = netdev2adap(dev); 1352 if (is_t4(adap->params.chip)) 1353 return T4_REGMAP_SIZE; 1354 else 1355 return T5_REGMAP_SIZE; 1356 } 1357 1358 static int get_eeprom_len(struct net_device *dev) 1359 { 1360 return EEPROMSIZE; 1361 } 1362 1363 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1364 { 1365 struct adapter *adapter = netdev2adap(dev); 1366 1367 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 1368 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1369 strlcpy(info->bus_info, pci_name(adapter->pdev), 1370 sizeof(info->bus_info)); 1371 1372 if (adapter->params.fw_vers) 1373 snprintf(info->fw_version, sizeof(info->fw_version), 1374 "%u.%u.%u.%u, TP %u.%u.%u.%u", 1375 FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers), 1376 FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers), 1377 FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers), 1378 FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers), 1379 FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers), 1380 FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers), 1381 FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers), 1382 FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers)); 1383 } 1384 1385 static void get_strings(struct net_device *dev, u32 stringset, u8 *data) 1386 { 1387 if (stringset == ETH_SS_STATS) 1388 memcpy(data, stats_strings, sizeof(stats_strings)); 1389 } 1390 1391 /* 1392 * port stats maintained per queue of the port. They should be in the same 1393 * order as in stats_strings above. 1394 */ 1395 struct queue_port_stats { 1396 u64 tso; 1397 u64 tx_csum; 1398 u64 rx_csum; 1399 u64 vlan_ex; 1400 u64 vlan_ins; 1401 u64 gro_pkts; 1402 u64 gro_merged; 1403 }; 1404 1405 static void collect_sge_port_stats(const struct adapter *adap, 1406 const struct port_info *p, struct queue_port_stats *s) 1407 { 1408 int i; 1409 const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset]; 1410 const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset]; 1411 1412 memset(s, 0, sizeof(*s)); 1413 for (i = 0; i < p->nqsets; i++, rx++, tx++) { 1414 s->tso += tx->tso; 1415 s->tx_csum += tx->tx_cso; 1416 s->rx_csum += rx->stats.rx_cso; 1417 s->vlan_ex += rx->stats.vlan_ex; 1418 s->vlan_ins += tx->vlan_ins; 1419 s->gro_pkts += rx->stats.lro_pkts; 1420 s->gro_merged += rx->stats.lro_merged; 1421 } 1422 } 1423 1424 static void get_stats(struct net_device *dev, struct ethtool_stats *stats, 1425 u64 *data) 1426 { 1427 struct port_info *pi = netdev_priv(dev); 1428 struct adapter *adapter = pi->adapter; 1429 u32 val1, val2; 1430 1431 t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data); 1432 1433 data += sizeof(struct port_stats) / sizeof(u64); 1434 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data); 1435 data += sizeof(struct queue_port_stats) / sizeof(u64); 1436 if (!is_t4(adapter->params.chip)) { 1437 t4_write_reg(adapter, SGE_STAT_CFG, STATSOURCE_T5(7)); 1438 val1 = t4_read_reg(adapter, SGE_STAT_TOTAL); 1439 val2 = t4_read_reg(adapter, SGE_STAT_MATCH); 1440 *data = val1 - val2; 1441 data++; 1442 *data = val2; 1443 data++; 1444 } else { 1445 memset(data, 0, 2 * sizeof(u64)); 1446 *data += 2; 1447 } 1448 } 1449 1450 /* 1451 * Return a version number to identify the type of adapter. The scheme is: 1452 * - bits 0..9: chip version 1453 * - bits 10..15: chip revision 1454 * - bits 16..23: register dump version 1455 */ 1456 static inline unsigned int mk_adap_vers(const struct adapter *ap) 1457 { 1458 return CHELSIO_CHIP_VERSION(ap->params.chip) | 1459 (CHELSIO_CHIP_RELEASE(ap->params.chip) << 10) | (1 << 16); 1460 } 1461 1462 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start, 1463 unsigned int end) 1464 { 1465 u32 *p = buf + start; 1466 1467 for ( ; start <= end; start += sizeof(u32)) 1468 *p++ = t4_read_reg(ap, start); 1469 } 1470 1471 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, 1472 void *buf) 1473 { 1474 static const unsigned int t4_reg_ranges[] = { 1475 0x1008, 0x1108, 1476 0x1180, 0x11b4, 1477 0x11fc, 0x123c, 1478 0x1300, 0x173c, 1479 0x1800, 0x18fc, 1480 0x3000, 0x30d8, 1481 0x30e0, 0x5924, 1482 0x5960, 0x59d4, 1483 0x5a00, 0x5af8, 1484 0x6000, 0x6098, 1485 0x6100, 0x6150, 1486 0x6200, 0x6208, 1487 0x6240, 0x6248, 1488 0x6280, 0x6338, 1489 0x6370, 0x638c, 1490 0x6400, 0x643c, 1491 0x6500, 0x6524, 1492 0x6a00, 0x6a38, 1493 0x6a60, 0x6a78, 1494 0x6b00, 0x6b84, 1495 0x6bf0, 0x6c84, 1496 0x6cf0, 0x6d84, 1497 0x6df0, 0x6e84, 1498 0x6ef0, 0x6f84, 1499 0x6ff0, 0x7084, 1500 0x70f0, 0x7184, 1501 0x71f0, 0x7284, 1502 0x72f0, 0x7384, 1503 0x73f0, 0x7450, 1504 0x7500, 0x7530, 1505 0x7600, 0x761c, 1506 0x7680, 0x76cc, 1507 0x7700, 0x7798, 1508 0x77c0, 0x77fc, 1509 0x7900, 0x79fc, 1510 0x7b00, 0x7c38, 1511 0x7d00, 0x7efc, 1512 0x8dc0, 0x8e1c, 1513 0x8e30, 0x8e78, 1514 0x8ea0, 0x8f6c, 1515 0x8fc0, 0x9074, 1516 0x90fc, 0x90fc, 1517 0x9400, 0x9458, 1518 0x9600, 0x96bc, 1519 0x9800, 0x9808, 1520 0x9820, 0x983c, 1521 0x9850, 0x9864, 1522 0x9c00, 0x9c6c, 1523 0x9c80, 0x9cec, 1524 0x9d00, 0x9d6c, 1525 0x9d80, 0x9dec, 1526 0x9e00, 0x9e6c, 1527 0x9e80, 0x9eec, 1528 0x9f00, 0x9f6c, 1529 0x9f80, 0x9fec, 1530 0xd004, 0xd03c, 1531 0xdfc0, 0xdfe0, 1532 0xe000, 0xea7c, 1533 0xf000, 0x11190, 1534 0x19040, 0x1906c, 1535 0x19078, 0x19080, 1536 0x1908c, 0x19124, 1537 0x19150, 0x191b0, 1538 0x191d0, 0x191e8, 1539 0x19238, 0x1924c, 1540 0x193f8, 0x19474, 1541 0x19490, 0x194f8, 1542 0x19800, 0x19f30, 1543 0x1a000, 0x1a06c, 1544 0x1a0b0, 0x1a120, 1545 0x1a128, 0x1a138, 1546 0x1a190, 0x1a1c4, 1547 0x1a1fc, 0x1a1fc, 1548 0x1e040, 0x1e04c, 1549 0x1e284, 0x1e28c, 1550 0x1e2c0, 0x1e2c0, 1551 0x1e2e0, 0x1e2e0, 1552 0x1e300, 0x1e384, 1553 0x1e3c0, 0x1e3c8, 1554 0x1e440, 0x1e44c, 1555 0x1e684, 0x1e68c, 1556 0x1e6c0, 0x1e6c0, 1557 0x1e6e0, 0x1e6e0, 1558 0x1e700, 0x1e784, 1559 0x1e7c0, 0x1e7c8, 1560 0x1e840, 0x1e84c, 1561 0x1ea84, 0x1ea8c, 1562 0x1eac0, 0x1eac0, 1563 0x1eae0, 0x1eae0, 1564 0x1eb00, 0x1eb84, 1565 0x1ebc0, 0x1ebc8, 1566 0x1ec40, 0x1ec4c, 1567 0x1ee84, 0x1ee8c, 1568 0x1eec0, 0x1eec0, 1569 0x1eee0, 0x1eee0, 1570 0x1ef00, 0x1ef84, 1571 0x1efc0, 0x1efc8, 1572 0x1f040, 0x1f04c, 1573 0x1f284, 0x1f28c, 1574 0x1f2c0, 0x1f2c0, 1575 0x1f2e0, 0x1f2e0, 1576 0x1f300, 0x1f384, 1577 0x1f3c0, 0x1f3c8, 1578 0x1f440, 0x1f44c, 1579 0x1f684, 0x1f68c, 1580 0x1f6c0, 0x1f6c0, 1581 0x1f6e0, 0x1f6e0, 1582 0x1f700, 0x1f784, 1583 0x1f7c0, 0x1f7c8, 1584 0x1f840, 0x1f84c, 1585 0x1fa84, 0x1fa8c, 1586 0x1fac0, 0x1fac0, 1587 0x1fae0, 0x1fae0, 1588 0x1fb00, 0x1fb84, 1589 0x1fbc0, 0x1fbc8, 1590 0x1fc40, 0x1fc4c, 1591 0x1fe84, 0x1fe8c, 1592 0x1fec0, 0x1fec0, 1593 0x1fee0, 0x1fee0, 1594 0x1ff00, 0x1ff84, 1595 0x1ffc0, 0x1ffc8, 1596 0x20000, 0x2002c, 1597 0x20100, 0x2013c, 1598 0x20190, 0x201c8, 1599 0x20200, 0x20318, 1600 0x20400, 0x20528, 1601 0x20540, 0x20614, 1602 0x21000, 0x21040, 1603 0x2104c, 0x21060, 1604 0x210c0, 0x210ec, 1605 0x21200, 0x21268, 1606 0x21270, 0x21284, 1607 0x212fc, 0x21388, 1608 0x21400, 0x21404, 1609 0x21500, 0x21518, 1610 0x2152c, 0x2153c, 1611 0x21550, 0x21554, 1612 0x21600, 0x21600, 1613 0x21608, 0x21628, 1614 0x21630, 0x2163c, 1615 0x21700, 0x2171c, 1616 0x21780, 0x2178c, 1617 0x21800, 0x21c38, 1618 0x21c80, 0x21d7c, 1619 0x21e00, 0x21e04, 1620 0x22000, 0x2202c, 1621 0x22100, 0x2213c, 1622 0x22190, 0x221c8, 1623 0x22200, 0x22318, 1624 0x22400, 0x22528, 1625 0x22540, 0x22614, 1626 0x23000, 0x23040, 1627 0x2304c, 0x23060, 1628 0x230c0, 0x230ec, 1629 0x23200, 0x23268, 1630 0x23270, 0x23284, 1631 0x232fc, 0x23388, 1632 0x23400, 0x23404, 1633 0x23500, 0x23518, 1634 0x2352c, 0x2353c, 1635 0x23550, 0x23554, 1636 0x23600, 0x23600, 1637 0x23608, 0x23628, 1638 0x23630, 0x2363c, 1639 0x23700, 0x2371c, 1640 0x23780, 0x2378c, 1641 0x23800, 0x23c38, 1642 0x23c80, 0x23d7c, 1643 0x23e00, 0x23e04, 1644 0x24000, 0x2402c, 1645 0x24100, 0x2413c, 1646 0x24190, 0x241c8, 1647 0x24200, 0x24318, 1648 0x24400, 0x24528, 1649 0x24540, 0x24614, 1650 0x25000, 0x25040, 1651 0x2504c, 0x25060, 1652 0x250c0, 0x250ec, 1653 0x25200, 0x25268, 1654 0x25270, 0x25284, 1655 0x252fc, 0x25388, 1656 0x25400, 0x25404, 1657 0x25500, 0x25518, 1658 0x2552c, 0x2553c, 1659 0x25550, 0x25554, 1660 0x25600, 0x25600, 1661 0x25608, 0x25628, 1662 0x25630, 0x2563c, 1663 0x25700, 0x2571c, 1664 0x25780, 0x2578c, 1665 0x25800, 0x25c38, 1666 0x25c80, 0x25d7c, 1667 0x25e00, 0x25e04, 1668 0x26000, 0x2602c, 1669 0x26100, 0x2613c, 1670 0x26190, 0x261c8, 1671 0x26200, 0x26318, 1672 0x26400, 0x26528, 1673 0x26540, 0x26614, 1674 0x27000, 0x27040, 1675 0x2704c, 0x27060, 1676 0x270c0, 0x270ec, 1677 0x27200, 0x27268, 1678 0x27270, 0x27284, 1679 0x272fc, 0x27388, 1680 0x27400, 0x27404, 1681 0x27500, 0x27518, 1682 0x2752c, 0x2753c, 1683 0x27550, 0x27554, 1684 0x27600, 0x27600, 1685 0x27608, 0x27628, 1686 0x27630, 0x2763c, 1687 0x27700, 0x2771c, 1688 0x27780, 0x2778c, 1689 0x27800, 0x27c38, 1690 0x27c80, 0x27d7c, 1691 0x27e00, 0x27e04 1692 }; 1693 1694 static const unsigned int t5_reg_ranges[] = { 1695 0x1008, 0x1148, 1696 0x1180, 0x11b4, 1697 0x11fc, 0x123c, 1698 0x1280, 0x173c, 1699 0x1800, 0x18fc, 1700 0x3000, 0x3028, 1701 0x3060, 0x30d8, 1702 0x30e0, 0x30fc, 1703 0x3140, 0x357c, 1704 0x35a8, 0x35cc, 1705 0x35ec, 0x35ec, 1706 0x3600, 0x5624, 1707 0x56cc, 0x575c, 1708 0x580c, 0x5814, 1709 0x5890, 0x58bc, 1710 0x5940, 0x59dc, 1711 0x59fc, 0x5a18, 1712 0x5a60, 0x5a9c, 1713 0x5b9c, 0x5bfc, 1714 0x6000, 0x6040, 1715 0x6058, 0x614c, 1716 0x7700, 0x7798, 1717 0x77c0, 0x78fc, 1718 0x7b00, 0x7c54, 1719 0x7d00, 0x7efc, 1720 0x8dc0, 0x8de0, 1721 0x8df8, 0x8e84, 1722 0x8ea0, 0x8f84, 1723 0x8fc0, 0x90f8, 1724 0x9400, 0x9470, 1725 0x9600, 0x96f4, 1726 0x9800, 0x9808, 1727 0x9820, 0x983c, 1728 0x9850, 0x9864, 1729 0x9c00, 0x9c6c, 1730 0x9c80, 0x9cec, 1731 0x9d00, 0x9d6c, 1732 0x9d80, 0x9dec, 1733 0x9e00, 0x9e6c, 1734 0x9e80, 0x9eec, 1735 0x9f00, 0x9f6c, 1736 0x9f80, 0xa020, 1737 0xd004, 0xd03c, 1738 0xdfc0, 0xdfe0, 1739 0xe000, 0x11088, 1740 0x1109c, 0x1117c, 1741 0x11190, 0x11204, 1742 0x19040, 0x1906c, 1743 0x19078, 0x19080, 1744 0x1908c, 0x19124, 1745 0x19150, 0x191b0, 1746 0x191d0, 0x191e8, 1747 0x19238, 0x19290, 1748 0x193f8, 0x19474, 1749 0x19490, 0x194cc, 1750 0x194f0, 0x194f8, 1751 0x19c00, 0x19c60, 1752 0x19c94, 0x19e10, 1753 0x19e50, 0x19f34, 1754 0x19f40, 0x19f50, 1755 0x19f90, 0x19fe4, 1756 0x1a000, 0x1a06c, 1757 0x1a0b0, 0x1a120, 1758 0x1a128, 0x1a138, 1759 0x1a190, 0x1a1c4, 1760 0x1a1fc, 0x1a1fc, 1761 0x1e008, 0x1e00c, 1762 0x1e040, 0x1e04c, 1763 0x1e284, 0x1e290, 1764 0x1e2c0, 0x1e2c0, 1765 0x1e2e0, 0x1e2e0, 1766 0x1e300, 0x1e384, 1767 0x1e3c0, 0x1e3c8, 1768 0x1e408, 0x1e40c, 1769 0x1e440, 0x1e44c, 1770 0x1e684, 0x1e690, 1771 0x1e6c0, 0x1e6c0, 1772 0x1e6e0, 0x1e6e0, 1773 0x1e700, 0x1e784, 1774 0x1e7c0, 0x1e7c8, 1775 0x1e808, 0x1e80c, 1776 0x1e840, 0x1e84c, 1777 0x1ea84, 0x1ea90, 1778 0x1eac0, 0x1eac0, 1779 0x1eae0, 0x1eae0, 1780 0x1eb00, 0x1eb84, 1781 0x1ebc0, 0x1ebc8, 1782 0x1ec08, 0x1ec0c, 1783 0x1ec40, 0x1ec4c, 1784 0x1ee84, 0x1ee90, 1785 0x1eec0, 0x1eec0, 1786 0x1eee0, 0x1eee0, 1787 0x1ef00, 0x1ef84, 1788 0x1efc0, 0x1efc8, 1789 0x1f008, 0x1f00c, 1790 0x1f040, 0x1f04c, 1791 0x1f284, 0x1f290, 1792 0x1f2c0, 0x1f2c0, 1793 0x1f2e0, 0x1f2e0, 1794 0x1f300, 0x1f384, 1795 0x1f3c0, 0x1f3c8, 1796 0x1f408, 0x1f40c, 1797 0x1f440, 0x1f44c, 1798 0x1f684, 0x1f690, 1799 0x1f6c0, 0x1f6c0, 1800 0x1f6e0, 0x1f6e0, 1801 0x1f700, 0x1f784, 1802 0x1f7c0, 0x1f7c8, 1803 0x1f808, 0x1f80c, 1804 0x1f840, 0x1f84c, 1805 0x1fa84, 0x1fa90, 1806 0x1fac0, 0x1fac0, 1807 0x1fae0, 0x1fae0, 1808 0x1fb00, 0x1fb84, 1809 0x1fbc0, 0x1fbc8, 1810 0x1fc08, 0x1fc0c, 1811 0x1fc40, 0x1fc4c, 1812 0x1fe84, 0x1fe90, 1813 0x1fec0, 0x1fec0, 1814 0x1fee0, 0x1fee0, 1815 0x1ff00, 0x1ff84, 1816 0x1ffc0, 0x1ffc8, 1817 0x30000, 0x30030, 1818 0x30100, 0x30144, 1819 0x30190, 0x301d0, 1820 0x30200, 0x30318, 1821 0x30400, 0x3052c, 1822 0x30540, 0x3061c, 1823 0x30800, 0x30834, 1824 0x308c0, 0x30908, 1825 0x30910, 0x309ac, 1826 0x30a00, 0x30a04, 1827 0x30a0c, 0x30a2c, 1828 0x30a44, 0x30a50, 1829 0x30a74, 0x30c24, 1830 0x30d08, 0x30d14, 1831 0x30d1c, 0x30d20, 1832 0x30d3c, 0x30d50, 1833 0x31200, 0x3120c, 1834 0x31220, 0x31220, 1835 0x31240, 0x31240, 1836 0x31600, 0x31600, 1837 0x31608, 0x3160c, 1838 0x31a00, 0x31a1c, 1839 0x31e04, 0x31e20, 1840 0x31e38, 0x31e3c, 1841 0x31e80, 0x31e80, 1842 0x31e88, 0x31ea8, 1843 0x31eb0, 0x31eb4, 1844 0x31ec8, 0x31ed4, 1845 0x31fb8, 0x32004, 1846 0x32208, 0x3223c, 1847 0x32600, 0x32630, 1848 0x32a00, 0x32abc, 1849 0x32b00, 0x32b70, 1850 0x33000, 0x33048, 1851 0x33060, 0x3309c, 1852 0x330f0, 0x33148, 1853 0x33160, 0x3319c, 1854 0x331f0, 0x332e4, 1855 0x332f8, 0x333e4, 1856 0x333f8, 0x33448, 1857 0x33460, 0x3349c, 1858 0x334f0, 0x33548, 1859 0x33560, 0x3359c, 1860 0x335f0, 0x336e4, 1861 0x336f8, 0x337e4, 1862 0x337f8, 0x337fc, 1863 0x33814, 0x33814, 1864 0x3382c, 0x3382c, 1865 0x33880, 0x3388c, 1866 0x338e8, 0x338ec, 1867 0x33900, 0x33948, 1868 0x33960, 0x3399c, 1869 0x339f0, 0x33ae4, 1870 0x33af8, 0x33b10, 1871 0x33b28, 0x33b28, 1872 0x33b3c, 0x33b50, 1873 0x33bf0, 0x33c10, 1874 0x33c28, 0x33c28, 1875 0x33c3c, 0x33c50, 1876 0x33cf0, 0x33cfc, 1877 0x34000, 0x34030, 1878 0x34100, 0x34144, 1879 0x34190, 0x341d0, 1880 0x34200, 0x34318, 1881 0x34400, 0x3452c, 1882 0x34540, 0x3461c, 1883 0x34800, 0x34834, 1884 0x348c0, 0x34908, 1885 0x34910, 0x349ac, 1886 0x34a00, 0x34a04, 1887 0x34a0c, 0x34a2c, 1888 0x34a44, 0x34a50, 1889 0x34a74, 0x34c24, 1890 0x34d08, 0x34d14, 1891 0x34d1c, 0x34d20, 1892 0x34d3c, 0x34d50, 1893 0x35200, 0x3520c, 1894 0x35220, 0x35220, 1895 0x35240, 0x35240, 1896 0x35600, 0x35600, 1897 0x35608, 0x3560c, 1898 0x35a00, 0x35a1c, 1899 0x35e04, 0x35e20, 1900 0x35e38, 0x35e3c, 1901 0x35e80, 0x35e80, 1902 0x35e88, 0x35ea8, 1903 0x35eb0, 0x35eb4, 1904 0x35ec8, 0x35ed4, 1905 0x35fb8, 0x36004, 1906 0x36208, 0x3623c, 1907 0x36600, 0x36630, 1908 0x36a00, 0x36abc, 1909 0x36b00, 0x36b70, 1910 0x37000, 0x37048, 1911 0x37060, 0x3709c, 1912 0x370f0, 0x37148, 1913 0x37160, 0x3719c, 1914 0x371f0, 0x372e4, 1915 0x372f8, 0x373e4, 1916 0x373f8, 0x37448, 1917 0x37460, 0x3749c, 1918 0x374f0, 0x37548, 1919 0x37560, 0x3759c, 1920 0x375f0, 0x376e4, 1921 0x376f8, 0x377e4, 1922 0x377f8, 0x377fc, 1923 0x37814, 0x37814, 1924 0x3782c, 0x3782c, 1925 0x37880, 0x3788c, 1926 0x378e8, 0x378ec, 1927 0x37900, 0x37948, 1928 0x37960, 0x3799c, 1929 0x379f0, 0x37ae4, 1930 0x37af8, 0x37b10, 1931 0x37b28, 0x37b28, 1932 0x37b3c, 0x37b50, 1933 0x37bf0, 0x37c10, 1934 0x37c28, 0x37c28, 1935 0x37c3c, 0x37c50, 1936 0x37cf0, 0x37cfc, 1937 0x38000, 0x38030, 1938 0x38100, 0x38144, 1939 0x38190, 0x381d0, 1940 0x38200, 0x38318, 1941 0x38400, 0x3852c, 1942 0x38540, 0x3861c, 1943 0x38800, 0x38834, 1944 0x388c0, 0x38908, 1945 0x38910, 0x389ac, 1946 0x38a00, 0x38a04, 1947 0x38a0c, 0x38a2c, 1948 0x38a44, 0x38a50, 1949 0x38a74, 0x38c24, 1950 0x38d08, 0x38d14, 1951 0x38d1c, 0x38d20, 1952 0x38d3c, 0x38d50, 1953 0x39200, 0x3920c, 1954 0x39220, 0x39220, 1955 0x39240, 0x39240, 1956 0x39600, 0x39600, 1957 0x39608, 0x3960c, 1958 0x39a00, 0x39a1c, 1959 0x39e04, 0x39e20, 1960 0x39e38, 0x39e3c, 1961 0x39e80, 0x39e80, 1962 0x39e88, 0x39ea8, 1963 0x39eb0, 0x39eb4, 1964 0x39ec8, 0x39ed4, 1965 0x39fb8, 0x3a004, 1966 0x3a208, 0x3a23c, 1967 0x3a600, 0x3a630, 1968 0x3aa00, 0x3aabc, 1969 0x3ab00, 0x3ab70, 1970 0x3b000, 0x3b048, 1971 0x3b060, 0x3b09c, 1972 0x3b0f0, 0x3b148, 1973 0x3b160, 0x3b19c, 1974 0x3b1f0, 0x3b2e4, 1975 0x3b2f8, 0x3b3e4, 1976 0x3b3f8, 0x3b448, 1977 0x3b460, 0x3b49c, 1978 0x3b4f0, 0x3b548, 1979 0x3b560, 0x3b59c, 1980 0x3b5f0, 0x3b6e4, 1981 0x3b6f8, 0x3b7e4, 1982 0x3b7f8, 0x3b7fc, 1983 0x3b814, 0x3b814, 1984 0x3b82c, 0x3b82c, 1985 0x3b880, 0x3b88c, 1986 0x3b8e8, 0x3b8ec, 1987 0x3b900, 0x3b948, 1988 0x3b960, 0x3b99c, 1989 0x3b9f0, 0x3bae4, 1990 0x3baf8, 0x3bb10, 1991 0x3bb28, 0x3bb28, 1992 0x3bb3c, 0x3bb50, 1993 0x3bbf0, 0x3bc10, 1994 0x3bc28, 0x3bc28, 1995 0x3bc3c, 0x3bc50, 1996 0x3bcf0, 0x3bcfc, 1997 0x3c000, 0x3c030, 1998 0x3c100, 0x3c144, 1999 0x3c190, 0x3c1d0, 2000 0x3c200, 0x3c318, 2001 0x3c400, 0x3c52c, 2002 0x3c540, 0x3c61c, 2003 0x3c800, 0x3c834, 2004 0x3c8c0, 0x3c908, 2005 0x3c910, 0x3c9ac, 2006 0x3ca00, 0x3ca04, 2007 0x3ca0c, 0x3ca2c, 2008 0x3ca44, 0x3ca50, 2009 0x3ca74, 0x3cc24, 2010 0x3cd08, 0x3cd14, 2011 0x3cd1c, 0x3cd20, 2012 0x3cd3c, 0x3cd50, 2013 0x3d200, 0x3d20c, 2014 0x3d220, 0x3d220, 2015 0x3d240, 0x3d240, 2016 0x3d600, 0x3d600, 2017 0x3d608, 0x3d60c, 2018 0x3da00, 0x3da1c, 2019 0x3de04, 0x3de20, 2020 0x3de38, 0x3de3c, 2021 0x3de80, 0x3de80, 2022 0x3de88, 0x3dea8, 2023 0x3deb0, 0x3deb4, 2024 0x3dec8, 0x3ded4, 2025 0x3dfb8, 0x3e004, 2026 0x3e208, 0x3e23c, 2027 0x3e600, 0x3e630, 2028 0x3ea00, 0x3eabc, 2029 0x3eb00, 0x3eb70, 2030 0x3f000, 0x3f048, 2031 0x3f060, 0x3f09c, 2032 0x3f0f0, 0x3f148, 2033 0x3f160, 0x3f19c, 2034 0x3f1f0, 0x3f2e4, 2035 0x3f2f8, 0x3f3e4, 2036 0x3f3f8, 0x3f448, 2037 0x3f460, 0x3f49c, 2038 0x3f4f0, 0x3f548, 2039 0x3f560, 0x3f59c, 2040 0x3f5f0, 0x3f6e4, 2041 0x3f6f8, 0x3f7e4, 2042 0x3f7f8, 0x3f7fc, 2043 0x3f814, 0x3f814, 2044 0x3f82c, 0x3f82c, 2045 0x3f880, 0x3f88c, 2046 0x3f8e8, 0x3f8ec, 2047 0x3f900, 0x3f948, 2048 0x3f960, 0x3f99c, 2049 0x3f9f0, 0x3fae4, 2050 0x3faf8, 0x3fb10, 2051 0x3fb28, 0x3fb28, 2052 0x3fb3c, 0x3fb50, 2053 0x3fbf0, 0x3fc10, 2054 0x3fc28, 0x3fc28, 2055 0x3fc3c, 0x3fc50, 2056 0x3fcf0, 0x3fcfc, 2057 0x40000, 0x4000c, 2058 0x40040, 0x40068, 2059 0x40080, 0x40144, 2060 0x40180, 0x4018c, 2061 0x40200, 0x40298, 2062 0x402ac, 0x4033c, 2063 0x403f8, 0x403fc, 2064 0x41300, 0x413c4, 2065 0x41400, 0x4141c, 2066 0x41480, 0x414d0, 2067 0x44000, 0x44078, 2068 0x440c0, 0x44278, 2069 0x442c0, 0x44478, 2070 0x444c0, 0x44678, 2071 0x446c0, 0x44878, 2072 0x448c0, 0x449fc, 2073 0x45000, 0x45068, 2074 0x45080, 0x45084, 2075 0x450a0, 0x450b0, 2076 0x45200, 0x45268, 2077 0x45280, 0x45284, 2078 0x452a0, 0x452b0, 2079 0x460c0, 0x460e4, 2080 0x47000, 0x4708c, 2081 0x47200, 0x47250, 2082 0x47400, 0x47420, 2083 0x47600, 0x47618, 2084 0x47800, 0x47814, 2085 0x48000, 0x4800c, 2086 0x48040, 0x48068, 2087 0x48080, 0x48144, 2088 0x48180, 0x4818c, 2089 0x48200, 0x48298, 2090 0x482ac, 0x4833c, 2091 0x483f8, 0x483fc, 2092 0x49300, 0x493c4, 2093 0x49400, 0x4941c, 2094 0x49480, 0x494d0, 2095 0x4c000, 0x4c078, 2096 0x4c0c0, 0x4c278, 2097 0x4c2c0, 0x4c478, 2098 0x4c4c0, 0x4c678, 2099 0x4c6c0, 0x4c878, 2100 0x4c8c0, 0x4c9fc, 2101 0x4d000, 0x4d068, 2102 0x4d080, 0x4d084, 2103 0x4d0a0, 0x4d0b0, 2104 0x4d200, 0x4d268, 2105 0x4d280, 0x4d284, 2106 0x4d2a0, 0x4d2b0, 2107 0x4e0c0, 0x4e0e4, 2108 0x4f000, 0x4f08c, 2109 0x4f200, 0x4f250, 2110 0x4f400, 0x4f420, 2111 0x4f600, 0x4f618, 2112 0x4f800, 0x4f814, 2113 0x50000, 0x500cc, 2114 0x50400, 0x50400, 2115 0x50800, 0x508cc, 2116 0x50c00, 0x50c00, 2117 0x51000, 0x5101c, 2118 0x51300, 0x51308, 2119 }; 2120 2121 int i; 2122 struct adapter *ap = netdev2adap(dev); 2123 static const unsigned int *reg_ranges; 2124 int arr_size = 0, buf_size = 0; 2125 2126 if (is_t4(ap->params.chip)) { 2127 reg_ranges = &t4_reg_ranges[0]; 2128 arr_size = ARRAY_SIZE(t4_reg_ranges); 2129 buf_size = T4_REGMAP_SIZE; 2130 } else { 2131 reg_ranges = &t5_reg_ranges[0]; 2132 arr_size = ARRAY_SIZE(t5_reg_ranges); 2133 buf_size = T5_REGMAP_SIZE; 2134 } 2135 2136 regs->version = mk_adap_vers(ap); 2137 2138 memset(buf, 0, buf_size); 2139 for (i = 0; i < arr_size; i += 2) 2140 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]); 2141 } 2142 2143 static int restart_autoneg(struct net_device *dev) 2144 { 2145 struct port_info *p = netdev_priv(dev); 2146 2147 if (!netif_running(dev)) 2148 return -EAGAIN; 2149 if (p->link_cfg.autoneg != AUTONEG_ENABLE) 2150 return -EINVAL; 2151 t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan); 2152 return 0; 2153 } 2154 2155 static int identify_port(struct net_device *dev, 2156 enum ethtool_phys_id_state state) 2157 { 2158 unsigned int val; 2159 struct adapter *adap = netdev2adap(dev); 2160 2161 if (state == ETHTOOL_ID_ACTIVE) 2162 val = 0xffff; 2163 else if (state == ETHTOOL_ID_INACTIVE) 2164 val = 0; 2165 else 2166 return -EINVAL; 2167 2168 return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val); 2169 } 2170 2171 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps) 2172 { 2173 unsigned int v = 0; 2174 2175 if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI || 2176 type == FW_PORT_TYPE_BT_XAUI) { 2177 v |= SUPPORTED_TP; 2178 if (caps & FW_PORT_CAP_SPEED_100M) 2179 v |= SUPPORTED_100baseT_Full; 2180 if (caps & FW_PORT_CAP_SPEED_1G) 2181 v |= SUPPORTED_1000baseT_Full; 2182 if (caps & FW_PORT_CAP_SPEED_10G) 2183 v |= SUPPORTED_10000baseT_Full; 2184 } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) { 2185 v |= SUPPORTED_Backplane; 2186 if (caps & FW_PORT_CAP_SPEED_1G) 2187 v |= SUPPORTED_1000baseKX_Full; 2188 if (caps & FW_PORT_CAP_SPEED_10G) 2189 v |= SUPPORTED_10000baseKX4_Full; 2190 } else if (type == FW_PORT_TYPE_KR) 2191 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full; 2192 else if (type == FW_PORT_TYPE_BP_AP) 2193 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC | 2194 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full; 2195 else if (type == FW_PORT_TYPE_BP4_AP) 2196 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC | 2197 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full | 2198 SUPPORTED_10000baseKX4_Full; 2199 else if (type == FW_PORT_TYPE_FIBER_XFI || 2200 type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP) 2201 v |= SUPPORTED_FIBRE; 2202 2203 if (caps & FW_PORT_CAP_ANEG) 2204 v |= SUPPORTED_Autoneg; 2205 return v; 2206 } 2207 2208 static unsigned int to_fw_linkcaps(unsigned int caps) 2209 { 2210 unsigned int v = 0; 2211 2212 if (caps & ADVERTISED_100baseT_Full) 2213 v |= FW_PORT_CAP_SPEED_100M; 2214 if (caps & ADVERTISED_1000baseT_Full) 2215 v |= FW_PORT_CAP_SPEED_1G; 2216 if (caps & ADVERTISED_10000baseT_Full) 2217 v |= FW_PORT_CAP_SPEED_10G; 2218 return v; 2219 } 2220 2221 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2222 { 2223 const struct port_info *p = netdev_priv(dev); 2224 2225 if (p->port_type == FW_PORT_TYPE_BT_SGMII || 2226 p->port_type == FW_PORT_TYPE_BT_XFI || 2227 p->port_type == FW_PORT_TYPE_BT_XAUI) 2228 cmd->port = PORT_TP; 2229 else if (p->port_type == FW_PORT_TYPE_FIBER_XFI || 2230 p->port_type == FW_PORT_TYPE_FIBER_XAUI) 2231 cmd->port = PORT_FIBRE; 2232 else if (p->port_type == FW_PORT_TYPE_SFP) { 2233 if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE || 2234 p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE) 2235 cmd->port = PORT_DA; 2236 else 2237 cmd->port = PORT_FIBRE; 2238 } else 2239 cmd->port = PORT_OTHER; 2240 2241 if (p->mdio_addr >= 0) { 2242 cmd->phy_address = p->mdio_addr; 2243 cmd->transceiver = XCVR_EXTERNAL; 2244 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ? 2245 MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45; 2246 } else { 2247 cmd->phy_address = 0; /* not really, but no better option */ 2248 cmd->transceiver = XCVR_INTERNAL; 2249 cmd->mdio_support = 0; 2250 } 2251 2252 cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported); 2253 cmd->advertising = from_fw_linkcaps(p->port_type, 2254 p->link_cfg.advertising); 2255 ethtool_cmd_speed_set(cmd, 2256 netif_carrier_ok(dev) ? p->link_cfg.speed : 0); 2257 cmd->duplex = DUPLEX_FULL; 2258 cmd->autoneg = p->link_cfg.autoneg; 2259 cmd->maxtxpkt = 0; 2260 cmd->maxrxpkt = 0; 2261 return 0; 2262 } 2263 2264 static unsigned int speed_to_caps(int speed) 2265 { 2266 if (speed == SPEED_100) 2267 return FW_PORT_CAP_SPEED_100M; 2268 if (speed == SPEED_1000) 2269 return FW_PORT_CAP_SPEED_1G; 2270 if (speed == SPEED_10000) 2271 return FW_PORT_CAP_SPEED_10G; 2272 return 0; 2273 } 2274 2275 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2276 { 2277 unsigned int cap; 2278 struct port_info *p = netdev_priv(dev); 2279 struct link_config *lc = &p->link_cfg; 2280 u32 speed = ethtool_cmd_speed(cmd); 2281 2282 if (cmd->duplex != DUPLEX_FULL) /* only full-duplex supported */ 2283 return -EINVAL; 2284 2285 if (!(lc->supported & FW_PORT_CAP_ANEG)) { 2286 /* 2287 * PHY offers a single speed. See if that's what's 2288 * being requested. 2289 */ 2290 if (cmd->autoneg == AUTONEG_DISABLE && 2291 (lc->supported & speed_to_caps(speed))) 2292 return 0; 2293 return -EINVAL; 2294 } 2295 2296 if (cmd->autoneg == AUTONEG_DISABLE) { 2297 cap = speed_to_caps(speed); 2298 2299 if (!(lc->supported & cap) || (speed == SPEED_1000) || 2300 (speed == SPEED_10000)) 2301 return -EINVAL; 2302 lc->requested_speed = cap; 2303 lc->advertising = 0; 2304 } else { 2305 cap = to_fw_linkcaps(cmd->advertising); 2306 if (!(lc->supported & cap)) 2307 return -EINVAL; 2308 lc->requested_speed = 0; 2309 lc->advertising = cap | FW_PORT_CAP_ANEG; 2310 } 2311 lc->autoneg = cmd->autoneg; 2312 2313 if (netif_running(dev)) 2314 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan, 2315 lc); 2316 return 0; 2317 } 2318 2319 static void get_pauseparam(struct net_device *dev, 2320 struct ethtool_pauseparam *epause) 2321 { 2322 struct port_info *p = netdev_priv(dev); 2323 2324 epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0; 2325 epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0; 2326 epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0; 2327 } 2328 2329 static int set_pauseparam(struct net_device *dev, 2330 struct ethtool_pauseparam *epause) 2331 { 2332 struct port_info *p = netdev_priv(dev); 2333 struct link_config *lc = &p->link_cfg; 2334 2335 if (epause->autoneg == AUTONEG_DISABLE) 2336 lc->requested_fc = 0; 2337 else if (lc->supported & FW_PORT_CAP_ANEG) 2338 lc->requested_fc = PAUSE_AUTONEG; 2339 else 2340 return -EINVAL; 2341 2342 if (epause->rx_pause) 2343 lc->requested_fc |= PAUSE_RX; 2344 if (epause->tx_pause) 2345 lc->requested_fc |= PAUSE_TX; 2346 if (netif_running(dev)) 2347 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan, 2348 lc); 2349 return 0; 2350 } 2351 2352 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e) 2353 { 2354 const struct port_info *pi = netdev_priv(dev); 2355 const struct sge *s = &pi->adapter->sge; 2356 2357 e->rx_max_pending = MAX_RX_BUFFERS; 2358 e->rx_mini_max_pending = MAX_RSPQ_ENTRIES; 2359 e->rx_jumbo_max_pending = 0; 2360 e->tx_max_pending = MAX_TXQ_ENTRIES; 2361 2362 e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8; 2363 e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size; 2364 e->rx_jumbo_pending = 0; 2365 e->tx_pending = s->ethtxq[pi->first_qset].q.size; 2366 } 2367 2368 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e) 2369 { 2370 int i; 2371 const struct port_info *pi = netdev_priv(dev); 2372 struct adapter *adapter = pi->adapter; 2373 struct sge *s = &adapter->sge; 2374 2375 if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending || 2376 e->tx_pending > MAX_TXQ_ENTRIES || 2377 e->rx_mini_pending > MAX_RSPQ_ENTRIES || 2378 e->rx_mini_pending < MIN_RSPQ_ENTRIES || 2379 e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES) 2380 return -EINVAL; 2381 2382 if (adapter->flags & FULL_INIT_DONE) 2383 return -EBUSY; 2384 2385 for (i = 0; i < pi->nqsets; ++i) { 2386 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending; 2387 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8; 2388 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending; 2389 } 2390 return 0; 2391 } 2392 2393 static int closest_timer(const struct sge *s, int time) 2394 { 2395 int i, delta, match = 0, min_delta = INT_MAX; 2396 2397 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 2398 delta = time - s->timer_val[i]; 2399 if (delta < 0) 2400 delta = -delta; 2401 if (delta < min_delta) { 2402 min_delta = delta; 2403 match = i; 2404 } 2405 } 2406 return match; 2407 } 2408 2409 static int closest_thres(const struct sge *s, int thres) 2410 { 2411 int i, delta, match = 0, min_delta = INT_MAX; 2412 2413 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 2414 delta = thres - s->counter_val[i]; 2415 if (delta < 0) 2416 delta = -delta; 2417 if (delta < min_delta) { 2418 min_delta = delta; 2419 match = i; 2420 } 2421 } 2422 return match; 2423 } 2424 2425 /* 2426 * Return a queue's interrupt hold-off time in us. 0 means no timer. 2427 */ 2428 static unsigned int qtimer_val(const struct adapter *adap, 2429 const struct sge_rspq *q) 2430 { 2431 unsigned int idx = q->intr_params >> 1; 2432 2433 return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0; 2434 } 2435 2436 /** 2437 * set_rxq_intr_params - set a queue's interrupt holdoff parameters 2438 * @adap: the adapter 2439 * @q: the Rx queue 2440 * @us: the hold-off time in us, or 0 to disable timer 2441 * @cnt: the hold-off packet count, or 0 to disable counter 2442 * 2443 * Sets an Rx queue's interrupt hold-off time and packet count. At least 2444 * one of the two needs to be enabled for the queue to generate interrupts. 2445 */ 2446 static int set_rxq_intr_params(struct adapter *adap, struct sge_rspq *q, 2447 unsigned int us, unsigned int cnt) 2448 { 2449 if ((us | cnt) == 0) 2450 cnt = 1; 2451 2452 if (cnt) { 2453 int err; 2454 u32 v, new_idx; 2455 2456 new_idx = closest_thres(&adap->sge, cnt); 2457 if (q->desc && q->pktcnt_idx != new_idx) { 2458 /* the queue has already been created, update it */ 2459 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | 2460 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 2461 FW_PARAMS_PARAM_YZ(q->cntxt_id); 2462 err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v, 2463 &new_idx); 2464 if (err) 2465 return err; 2466 } 2467 q->pktcnt_idx = new_idx; 2468 } 2469 2470 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 2471 q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0); 2472 return 0; 2473 } 2474 2475 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c) 2476 { 2477 const struct port_info *pi = netdev_priv(dev); 2478 struct adapter *adap = pi->adapter; 2479 struct sge_rspq *q; 2480 int i; 2481 int r = 0; 2482 2483 for (i = pi->first_qset; i < pi->first_qset + pi->nqsets; i++) { 2484 q = &adap->sge.ethrxq[i].rspq; 2485 r = set_rxq_intr_params(adap, q, c->rx_coalesce_usecs, 2486 c->rx_max_coalesced_frames); 2487 if (r) { 2488 dev_err(&dev->dev, "failed to set coalesce %d\n", r); 2489 break; 2490 } 2491 } 2492 return r; 2493 } 2494 2495 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c) 2496 { 2497 const struct port_info *pi = netdev_priv(dev); 2498 const struct adapter *adap = pi->adapter; 2499 const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq; 2500 2501 c->rx_coalesce_usecs = qtimer_val(adap, rq); 2502 c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ? 2503 adap->sge.counter_val[rq->pktcnt_idx] : 0; 2504 return 0; 2505 } 2506 2507 /** 2508 * eeprom_ptov - translate a physical EEPROM address to virtual 2509 * @phys_addr: the physical EEPROM address 2510 * @fn: the PCI function number 2511 * @sz: size of function-specific area 2512 * 2513 * Translate a physical EEPROM address to virtual. The first 1K is 2514 * accessed through virtual addresses starting at 31K, the rest is 2515 * accessed through virtual addresses starting at 0. 2516 * 2517 * The mapping is as follows: 2518 * [0..1K) -> [31K..32K) 2519 * [1K..1K+A) -> [31K-A..31K) 2520 * [1K+A..ES) -> [0..ES-A-1K) 2521 * 2522 * where A = @fn * @sz, and ES = EEPROM size. 2523 */ 2524 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 2525 { 2526 fn *= sz; 2527 if (phys_addr < 1024) 2528 return phys_addr + (31 << 10); 2529 if (phys_addr < 1024 + fn) 2530 return 31744 - fn + phys_addr - 1024; 2531 if (phys_addr < EEPROMSIZE) 2532 return phys_addr - 1024 - fn; 2533 return -EINVAL; 2534 } 2535 2536 /* 2537 * The next two routines implement eeprom read/write from physical addresses. 2538 */ 2539 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v) 2540 { 2541 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE); 2542 2543 if (vaddr >= 0) 2544 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v); 2545 return vaddr < 0 ? vaddr : 0; 2546 } 2547 2548 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v) 2549 { 2550 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE); 2551 2552 if (vaddr >= 0) 2553 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v); 2554 return vaddr < 0 ? vaddr : 0; 2555 } 2556 2557 #define EEPROM_MAGIC 0x38E2F10C 2558 2559 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e, 2560 u8 *data) 2561 { 2562 int i, err = 0; 2563 struct adapter *adapter = netdev2adap(dev); 2564 2565 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL); 2566 if (!buf) 2567 return -ENOMEM; 2568 2569 e->magic = EEPROM_MAGIC; 2570 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4) 2571 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]); 2572 2573 if (!err) 2574 memcpy(data, buf + e->offset, e->len); 2575 kfree(buf); 2576 return err; 2577 } 2578 2579 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, 2580 u8 *data) 2581 { 2582 u8 *buf; 2583 int err = 0; 2584 u32 aligned_offset, aligned_len, *p; 2585 struct adapter *adapter = netdev2adap(dev); 2586 2587 if (eeprom->magic != EEPROM_MAGIC) 2588 return -EINVAL; 2589 2590 aligned_offset = eeprom->offset & ~3; 2591 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3; 2592 2593 if (adapter->fn > 0) { 2594 u32 start = 1024 + adapter->fn * EEPROMPFSIZE; 2595 2596 if (aligned_offset < start || 2597 aligned_offset + aligned_len > start + EEPROMPFSIZE) 2598 return -EPERM; 2599 } 2600 2601 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) { 2602 /* 2603 * RMW possibly needed for first or last words. 2604 */ 2605 buf = kmalloc(aligned_len, GFP_KERNEL); 2606 if (!buf) 2607 return -ENOMEM; 2608 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf); 2609 if (!err && aligned_len > 4) 2610 err = eeprom_rd_phys(adapter, 2611 aligned_offset + aligned_len - 4, 2612 (u32 *)&buf[aligned_len - 4]); 2613 if (err) 2614 goto out; 2615 memcpy(buf + (eeprom->offset & 3), data, eeprom->len); 2616 } else 2617 buf = data; 2618 2619 err = t4_seeprom_wp(adapter, false); 2620 if (err) 2621 goto out; 2622 2623 for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) { 2624 err = eeprom_wr_phys(adapter, aligned_offset, *p); 2625 aligned_offset += 4; 2626 } 2627 2628 if (!err) 2629 err = t4_seeprom_wp(adapter, true); 2630 out: 2631 if (buf != data) 2632 kfree(buf); 2633 return err; 2634 } 2635 2636 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef) 2637 { 2638 int ret; 2639 const struct firmware *fw; 2640 struct adapter *adap = netdev2adap(netdev); 2641 2642 ef->data[sizeof(ef->data) - 1] = '\0'; 2643 ret = request_firmware(&fw, ef->data, adap->pdev_dev); 2644 if (ret < 0) 2645 return ret; 2646 2647 ret = t4_load_fw(adap, fw->data, fw->size); 2648 release_firmware(fw); 2649 if (!ret) 2650 dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data); 2651 return ret; 2652 } 2653 2654 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC) 2655 #define BCAST_CRC 0xa0ccc1a6 2656 2657 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2658 { 2659 wol->supported = WAKE_BCAST | WAKE_MAGIC; 2660 wol->wolopts = netdev2adap(dev)->wol; 2661 memset(&wol->sopass, 0, sizeof(wol->sopass)); 2662 } 2663 2664 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2665 { 2666 int err = 0; 2667 struct port_info *pi = netdev_priv(dev); 2668 2669 if (wol->wolopts & ~WOL_SUPPORTED) 2670 return -EINVAL; 2671 t4_wol_magic_enable(pi->adapter, pi->tx_chan, 2672 (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL); 2673 if (wol->wolopts & WAKE_BCAST) { 2674 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL, 2675 ~0ULL, 0, false); 2676 if (!err) 2677 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1, 2678 ~6ULL, ~0ULL, BCAST_CRC, true); 2679 } else 2680 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false); 2681 return err; 2682 } 2683 2684 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 2685 { 2686 const struct port_info *pi = netdev_priv(dev); 2687 netdev_features_t changed = dev->features ^ features; 2688 int err; 2689 2690 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 2691 return 0; 2692 2693 err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1, 2694 -1, -1, -1, 2695 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 2696 if (unlikely(err)) 2697 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 2698 return err; 2699 } 2700 2701 static u32 get_rss_table_size(struct net_device *dev) 2702 { 2703 const struct port_info *pi = netdev_priv(dev); 2704 2705 return pi->rss_size; 2706 } 2707 2708 static int get_rss_table(struct net_device *dev, u32 *p) 2709 { 2710 const struct port_info *pi = netdev_priv(dev); 2711 unsigned int n = pi->rss_size; 2712 2713 while (n--) 2714 p[n] = pi->rss[n]; 2715 return 0; 2716 } 2717 2718 static int set_rss_table(struct net_device *dev, const u32 *p) 2719 { 2720 unsigned int i; 2721 struct port_info *pi = netdev_priv(dev); 2722 2723 for (i = 0; i < pi->rss_size; i++) 2724 pi->rss[i] = p[i]; 2725 if (pi->adapter->flags & FULL_INIT_DONE) 2726 return write_rss(pi, pi->rss); 2727 return 0; 2728 } 2729 2730 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 2731 u32 *rules) 2732 { 2733 const struct port_info *pi = netdev_priv(dev); 2734 2735 switch (info->cmd) { 2736 case ETHTOOL_GRXFH: { 2737 unsigned int v = pi->rss_mode; 2738 2739 info->data = 0; 2740 switch (info->flow_type) { 2741 case TCP_V4_FLOW: 2742 if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 2743 info->data = RXH_IP_SRC | RXH_IP_DST | 2744 RXH_L4_B_0_1 | RXH_L4_B_2_3; 2745 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 2746 info->data = RXH_IP_SRC | RXH_IP_DST; 2747 break; 2748 case UDP_V4_FLOW: 2749 if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) && 2750 (v & FW_RSS_VI_CONFIG_CMD_UDPEN)) 2751 info->data = RXH_IP_SRC | RXH_IP_DST | 2752 RXH_L4_B_0_1 | RXH_L4_B_2_3; 2753 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 2754 info->data = RXH_IP_SRC | RXH_IP_DST; 2755 break; 2756 case SCTP_V4_FLOW: 2757 case AH_ESP_V4_FLOW: 2758 case IPV4_FLOW: 2759 if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 2760 info->data = RXH_IP_SRC | RXH_IP_DST; 2761 break; 2762 case TCP_V6_FLOW: 2763 if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 2764 info->data = RXH_IP_SRC | RXH_IP_DST | 2765 RXH_L4_B_0_1 | RXH_L4_B_2_3; 2766 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 2767 info->data = RXH_IP_SRC | RXH_IP_DST; 2768 break; 2769 case UDP_V6_FLOW: 2770 if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) && 2771 (v & FW_RSS_VI_CONFIG_CMD_UDPEN)) 2772 info->data = RXH_IP_SRC | RXH_IP_DST | 2773 RXH_L4_B_0_1 | RXH_L4_B_2_3; 2774 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 2775 info->data = RXH_IP_SRC | RXH_IP_DST; 2776 break; 2777 case SCTP_V6_FLOW: 2778 case AH_ESP_V6_FLOW: 2779 case IPV6_FLOW: 2780 if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 2781 info->data = RXH_IP_SRC | RXH_IP_DST; 2782 break; 2783 } 2784 return 0; 2785 } 2786 case ETHTOOL_GRXRINGS: 2787 info->data = pi->nqsets; 2788 return 0; 2789 } 2790 return -EOPNOTSUPP; 2791 } 2792 2793 static const struct ethtool_ops cxgb_ethtool_ops = { 2794 .get_settings = get_settings, 2795 .set_settings = set_settings, 2796 .get_drvinfo = get_drvinfo, 2797 .get_msglevel = get_msglevel, 2798 .set_msglevel = set_msglevel, 2799 .get_ringparam = get_sge_param, 2800 .set_ringparam = set_sge_param, 2801 .get_coalesce = get_coalesce, 2802 .set_coalesce = set_coalesce, 2803 .get_eeprom_len = get_eeprom_len, 2804 .get_eeprom = get_eeprom, 2805 .set_eeprom = set_eeprom, 2806 .get_pauseparam = get_pauseparam, 2807 .set_pauseparam = set_pauseparam, 2808 .get_link = ethtool_op_get_link, 2809 .get_strings = get_strings, 2810 .set_phys_id = identify_port, 2811 .nway_reset = restart_autoneg, 2812 .get_sset_count = get_sset_count, 2813 .get_ethtool_stats = get_stats, 2814 .get_regs_len = get_regs_len, 2815 .get_regs = get_regs, 2816 .get_wol = get_wol, 2817 .set_wol = set_wol, 2818 .get_rxnfc = get_rxnfc, 2819 .get_rxfh_indir_size = get_rss_table_size, 2820 .get_rxfh_indir = get_rss_table, 2821 .set_rxfh_indir = set_rss_table, 2822 .flash_device = set_flash, 2823 }; 2824 2825 /* 2826 * debugfs support 2827 */ 2828 static ssize_t mem_read(struct file *file, char __user *buf, size_t count, 2829 loff_t *ppos) 2830 { 2831 loff_t pos = *ppos; 2832 loff_t avail = file_inode(file)->i_size; 2833 unsigned int mem = (uintptr_t)file->private_data & 3; 2834 struct adapter *adap = file->private_data - mem; 2835 2836 if (pos < 0) 2837 return -EINVAL; 2838 if (pos >= avail) 2839 return 0; 2840 if (count > avail - pos) 2841 count = avail - pos; 2842 2843 while (count) { 2844 size_t len; 2845 int ret, ofst; 2846 __be32 data[16]; 2847 2848 if ((mem == MEM_MC) || (mem == MEM_MC1)) 2849 ret = t4_mc_read(adap, mem % MEM_MC, pos, data, NULL); 2850 else 2851 ret = t4_edc_read(adap, mem, pos, data, NULL); 2852 if (ret) 2853 return ret; 2854 2855 ofst = pos % sizeof(data); 2856 len = min(count, sizeof(data) - ofst); 2857 if (copy_to_user(buf, (u8 *)data + ofst, len)) 2858 return -EFAULT; 2859 2860 buf += len; 2861 pos += len; 2862 count -= len; 2863 } 2864 count = pos - *ppos; 2865 *ppos = pos; 2866 return count; 2867 } 2868 2869 static const struct file_operations mem_debugfs_fops = { 2870 .owner = THIS_MODULE, 2871 .open = simple_open, 2872 .read = mem_read, 2873 .llseek = default_llseek, 2874 }; 2875 2876 static void add_debugfs_mem(struct adapter *adap, const char *name, 2877 unsigned int idx, unsigned int size_mb) 2878 { 2879 struct dentry *de; 2880 2881 de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root, 2882 (void *)adap + idx, &mem_debugfs_fops); 2883 if (de && de->d_inode) 2884 de->d_inode->i_size = size_mb << 20; 2885 } 2886 2887 static int setup_debugfs(struct adapter *adap) 2888 { 2889 int i; 2890 u32 size; 2891 2892 if (IS_ERR_OR_NULL(adap->debugfs_root)) 2893 return -1; 2894 2895 i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE); 2896 if (i & EDRAM0_ENABLE) { 2897 size = t4_read_reg(adap, MA_EDRAM0_BAR); 2898 add_debugfs_mem(adap, "edc0", MEM_EDC0, EDRAM_SIZE_GET(size)); 2899 } 2900 if (i & EDRAM1_ENABLE) { 2901 size = t4_read_reg(adap, MA_EDRAM1_BAR); 2902 add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM_SIZE_GET(size)); 2903 } 2904 if (is_t4(adap->params.chip)) { 2905 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR); 2906 if (i & EXT_MEM_ENABLE) 2907 add_debugfs_mem(adap, "mc", MEM_MC, 2908 EXT_MEM_SIZE_GET(size)); 2909 } else { 2910 if (i & EXT_MEM_ENABLE) { 2911 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR); 2912 add_debugfs_mem(adap, "mc0", MEM_MC0, 2913 EXT_MEM_SIZE_GET(size)); 2914 } 2915 if (i & EXT_MEM1_ENABLE) { 2916 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR); 2917 add_debugfs_mem(adap, "mc1", MEM_MC1, 2918 EXT_MEM_SIZE_GET(size)); 2919 } 2920 } 2921 if (adap->l2t) 2922 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap, 2923 &t4_l2t_fops); 2924 return 0; 2925 } 2926 2927 /* 2928 * upper-layer driver support 2929 */ 2930 2931 /* 2932 * Allocate an active-open TID and set it to the supplied value. 2933 */ 2934 int cxgb4_alloc_atid(struct tid_info *t, void *data) 2935 { 2936 int atid = -1; 2937 2938 spin_lock_bh(&t->atid_lock); 2939 if (t->afree) { 2940 union aopen_entry *p = t->afree; 2941 2942 atid = (p - t->atid_tab) + t->atid_base; 2943 t->afree = p->next; 2944 p->data = data; 2945 t->atids_in_use++; 2946 } 2947 spin_unlock_bh(&t->atid_lock); 2948 return atid; 2949 } 2950 EXPORT_SYMBOL(cxgb4_alloc_atid); 2951 2952 /* 2953 * Release an active-open TID. 2954 */ 2955 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 2956 { 2957 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 2958 2959 spin_lock_bh(&t->atid_lock); 2960 p->next = t->afree; 2961 t->afree = p; 2962 t->atids_in_use--; 2963 spin_unlock_bh(&t->atid_lock); 2964 } 2965 EXPORT_SYMBOL(cxgb4_free_atid); 2966 2967 /* 2968 * Allocate a server TID and set it to the supplied value. 2969 */ 2970 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 2971 { 2972 int stid; 2973 2974 spin_lock_bh(&t->stid_lock); 2975 if (family == PF_INET) { 2976 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 2977 if (stid < t->nstids) 2978 __set_bit(stid, t->stid_bmap); 2979 else 2980 stid = -1; 2981 } else { 2982 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2); 2983 if (stid < 0) 2984 stid = -1; 2985 } 2986 if (stid >= 0) { 2987 t->stid_tab[stid].data = data; 2988 stid += t->stid_base; 2989 /* IPv6 requires max of 520 bits or 16 cells in TCAM 2990 * This is equivalent to 4 TIDs. With CLIP enabled it 2991 * needs 2 TIDs. 2992 */ 2993 if (family == PF_INET) 2994 t->stids_in_use++; 2995 else 2996 t->stids_in_use += 4; 2997 } 2998 spin_unlock_bh(&t->stid_lock); 2999 return stid; 3000 } 3001 EXPORT_SYMBOL(cxgb4_alloc_stid); 3002 3003 /* Allocate a server filter TID and set it to the supplied value. 3004 */ 3005 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 3006 { 3007 int stid; 3008 3009 spin_lock_bh(&t->stid_lock); 3010 if (family == PF_INET) { 3011 stid = find_next_zero_bit(t->stid_bmap, 3012 t->nstids + t->nsftids, t->nstids); 3013 if (stid < (t->nstids + t->nsftids)) 3014 __set_bit(stid, t->stid_bmap); 3015 else 3016 stid = -1; 3017 } else { 3018 stid = -1; 3019 } 3020 if (stid >= 0) { 3021 t->stid_tab[stid].data = data; 3022 stid -= t->nstids; 3023 stid += t->sftid_base; 3024 t->stids_in_use++; 3025 } 3026 spin_unlock_bh(&t->stid_lock); 3027 return stid; 3028 } 3029 EXPORT_SYMBOL(cxgb4_alloc_sftid); 3030 3031 /* Release a server TID. 3032 */ 3033 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 3034 { 3035 /* Is it a server filter TID? */ 3036 if (t->nsftids && (stid >= t->sftid_base)) { 3037 stid -= t->sftid_base; 3038 stid += t->nstids; 3039 } else { 3040 stid -= t->stid_base; 3041 } 3042 3043 spin_lock_bh(&t->stid_lock); 3044 if (family == PF_INET) 3045 __clear_bit(stid, t->stid_bmap); 3046 else 3047 bitmap_release_region(t->stid_bmap, stid, 2); 3048 t->stid_tab[stid].data = NULL; 3049 if (family == PF_INET) 3050 t->stids_in_use--; 3051 else 3052 t->stids_in_use -= 4; 3053 spin_unlock_bh(&t->stid_lock); 3054 } 3055 EXPORT_SYMBOL(cxgb4_free_stid); 3056 3057 /* 3058 * Populate a TID_RELEASE WR. Caller must properly size the skb. 3059 */ 3060 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 3061 unsigned int tid) 3062 { 3063 struct cpl_tid_release *req; 3064 3065 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 3066 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req)); 3067 INIT_TP_WR(req, tid); 3068 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 3069 } 3070 3071 /* 3072 * Queue a TID release request and if necessary schedule a work queue to 3073 * process it. 3074 */ 3075 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 3076 unsigned int tid) 3077 { 3078 void **p = &t->tid_tab[tid]; 3079 struct adapter *adap = container_of(t, struct adapter, tids); 3080 3081 spin_lock_bh(&adap->tid_release_lock); 3082 *p = adap->tid_release_head; 3083 /* Low 2 bits encode the Tx channel number */ 3084 adap->tid_release_head = (void **)((uintptr_t)p | chan); 3085 if (!adap->tid_release_task_busy) { 3086 adap->tid_release_task_busy = true; 3087 queue_work(workq, &adap->tid_release_task); 3088 } 3089 spin_unlock_bh(&adap->tid_release_lock); 3090 } 3091 3092 /* 3093 * Process the list of pending TID release requests. 3094 */ 3095 static void process_tid_release_list(struct work_struct *work) 3096 { 3097 struct sk_buff *skb; 3098 struct adapter *adap; 3099 3100 adap = container_of(work, struct adapter, tid_release_task); 3101 3102 spin_lock_bh(&adap->tid_release_lock); 3103 while (adap->tid_release_head) { 3104 void **p = adap->tid_release_head; 3105 unsigned int chan = (uintptr_t)p & 3; 3106 p = (void *)p - chan; 3107 3108 adap->tid_release_head = *p; 3109 *p = NULL; 3110 spin_unlock_bh(&adap->tid_release_lock); 3111 3112 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 3113 GFP_KERNEL))) 3114 schedule_timeout_uninterruptible(1); 3115 3116 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 3117 t4_ofld_send(adap, skb); 3118 spin_lock_bh(&adap->tid_release_lock); 3119 } 3120 adap->tid_release_task_busy = false; 3121 spin_unlock_bh(&adap->tid_release_lock); 3122 } 3123 3124 /* 3125 * Release a TID and inform HW. If we are unable to allocate the release 3126 * message we defer to a work queue. 3127 */ 3128 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid) 3129 { 3130 void *old; 3131 struct sk_buff *skb; 3132 struct adapter *adap = container_of(t, struct adapter, tids); 3133 3134 old = t->tid_tab[tid]; 3135 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 3136 if (likely(skb)) { 3137 t->tid_tab[tid] = NULL; 3138 mk_tid_release(skb, chan, tid); 3139 t4_ofld_send(adap, skb); 3140 } else 3141 cxgb4_queue_tid_release(t, chan, tid); 3142 if (old) 3143 atomic_dec(&t->tids_in_use); 3144 } 3145 EXPORT_SYMBOL(cxgb4_remove_tid); 3146 3147 /* 3148 * Allocate and initialize the TID tables. Returns 0 on success. 3149 */ 3150 static int tid_init(struct tid_info *t) 3151 { 3152 size_t size; 3153 unsigned int stid_bmap_size; 3154 unsigned int natids = t->natids; 3155 struct adapter *adap = container_of(t, struct adapter, tids); 3156 3157 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 3158 size = t->ntids * sizeof(*t->tid_tab) + 3159 natids * sizeof(*t->atid_tab) + 3160 t->nstids * sizeof(*t->stid_tab) + 3161 t->nsftids * sizeof(*t->stid_tab) + 3162 stid_bmap_size * sizeof(long) + 3163 t->nftids * sizeof(*t->ftid_tab) + 3164 t->nsftids * sizeof(*t->ftid_tab); 3165 3166 t->tid_tab = t4_alloc_mem(size); 3167 if (!t->tid_tab) 3168 return -ENOMEM; 3169 3170 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 3171 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 3172 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 3173 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 3174 spin_lock_init(&t->stid_lock); 3175 spin_lock_init(&t->atid_lock); 3176 3177 t->stids_in_use = 0; 3178 t->afree = NULL; 3179 t->atids_in_use = 0; 3180 atomic_set(&t->tids_in_use, 0); 3181 3182 /* Setup the free list for atid_tab and clear the stid bitmap. */ 3183 if (natids) { 3184 while (--natids) 3185 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 3186 t->afree = t->atid_tab; 3187 } 3188 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 3189 /* Reserve stid 0 for T4/T5 adapters */ 3190 if (!t->stid_base && 3191 (is_t4(adap->params.chip) || is_t5(adap->params.chip))) 3192 __set_bit(0, t->stid_bmap); 3193 3194 return 0; 3195 } 3196 3197 static int cxgb4_clip_get(const struct net_device *dev, 3198 const struct in6_addr *lip) 3199 { 3200 struct adapter *adap; 3201 struct fw_clip_cmd c; 3202 3203 adap = netdev2adap(dev); 3204 memset(&c, 0, sizeof(c)); 3205 c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) | 3206 FW_CMD_REQUEST | FW_CMD_WRITE); 3207 c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_ALLOC | FW_LEN16(c)); 3208 *(__be64 *)&c.ip_hi = *(__be64 *)(lip->s6_addr); 3209 *(__be64 *)&c.ip_lo = *(__be64 *)(lip->s6_addr + 8); 3210 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false); 3211 } 3212 3213 static int cxgb4_clip_release(const struct net_device *dev, 3214 const struct in6_addr *lip) 3215 { 3216 struct adapter *adap; 3217 struct fw_clip_cmd c; 3218 3219 adap = netdev2adap(dev); 3220 memset(&c, 0, sizeof(c)); 3221 c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) | 3222 FW_CMD_REQUEST | FW_CMD_READ); 3223 c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_FREE | FW_LEN16(c)); 3224 *(__be64 *)&c.ip_hi = *(__be64 *)(lip->s6_addr); 3225 *(__be64 *)&c.ip_lo = *(__be64 *)(lip->s6_addr + 8); 3226 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false); 3227 } 3228 3229 /** 3230 * cxgb4_create_server - create an IP server 3231 * @dev: the device 3232 * @stid: the server TID 3233 * @sip: local IP address to bind server to 3234 * @sport: the server's TCP port 3235 * @queue: queue to direct messages from this server to 3236 * 3237 * Create an IP server for the given port and address. 3238 * Returns <0 on error and one of the %NET_XMIT_* values on success. 3239 */ 3240 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 3241 __be32 sip, __be16 sport, __be16 vlan, 3242 unsigned int queue) 3243 { 3244 unsigned int chan; 3245 struct sk_buff *skb; 3246 struct adapter *adap; 3247 struct cpl_pass_open_req *req; 3248 int ret; 3249 3250 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 3251 if (!skb) 3252 return -ENOMEM; 3253 3254 adap = netdev2adap(dev); 3255 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req)); 3256 INIT_TP_WR(req, 0); 3257 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 3258 req->local_port = sport; 3259 req->peer_port = htons(0); 3260 req->local_ip = sip; 3261 req->peer_ip = htonl(0); 3262 chan = rxq_to_chan(&adap->sge, queue); 3263 req->opt0 = cpu_to_be64(TX_CHAN(chan)); 3264 req->opt1 = cpu_to_be64(CONN_POLICY_ASK | 3265 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue)); 3266 ret = t4_mgmt_tx(adap, skb); 3267 return net_xmit_eval(ret); 3268 } 3269 EXPORT_SYMBOL(cxgb4_create_server); 3270 3271 /* cxgb4_create_server6 - create an IPv6 server 3272 * @dev: the device 3273 * @stid: the server TID 3274 * @sip: local IPv6 address to bind server to 3275 * @sport: the server's TCP port 3276 * @queue: queue to direct messages from this server to 3277 * 3278 * Create an IPv6 server for the given port and address. 3279 * Returns <0 on error and one of the %NET_XMIT_* values on success. 3280 */ 3281 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 3282 const struct in6_addr *sip, __be16 sport, 3283 unsigned int queue) 3284 { 3285 unsigned int chan; 3286 struct sk_buff *skb; 3287 struct adapter *adap; 3288 struct cpl_pass_open_req6 *req; 3289 int ret; 3290 3291 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 3292 if (!skb) 3293 return -ENOMEM; 3294 3295 adap = netdev2adap(dev); 3296 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req)); 3297 INIT_TP_WR(req, 0); 3298 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 3299 req->local_port = sport; 3300 req->peer_port = htons(0); 3301 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 3302 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 3303 req->peer_ip_hi = cpu_to_be64(0); 3304 req->peer_ip_lo = cpu_to_be64(0); 3305 chan = rxq_to_chan(&adap->sge, queue); 3306 req->opt0 = cpu_to_be64(TX_CHAN(chan)); 3307 req->opt1 = cpu_to_be64(CONN_POLICY_ASK | 3308 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue)); 3309 ret = t4_mgmt_tx(adap, skb); 3310 return net_xmit_eval(ret); 3311 } 3312 EXPORT_SYMBOL(cxgb4_create_server6); 3313 3314 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 3315 unsigned int queue, bool ipv6) 3316 { 3317 struct sk_buff *skb; 3318 struct adapter *adap; 3319 struct cpl_close_listsvr_req *req; 3320 int ret; 3321 3322 adap = netdev2adap(dev); 3323 3324 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 3325 if (!skb) 3326 return -ENOMEM; 3327 3328 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req)); 3329 INIT_TP_WR(req, 0); 3330 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 3331 req->reply_ctrl = htons(NO_REPLY(0) | (ipv6 ? LISTSVR_IPV6(1) : 3332 LISTSVR_IPV6(0)) | QUEUENO(queue)); 3333 ret = t4_mgmt_tx(adap, skb); 3334 return net_xmit_eval(ret); 3335 } 3336 EXPORT_SYMBOL(cxgb4_remove_server); 3337 3338 /** 3339 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 3340 * @mtus: the HW MTU table 3341 * @mtu: the target MTU 3342 * @idx: index of selected entry in the MTU table 3343 * 3344 * Returns the index and the value in the HW MTU table that is closest to 3345 * but does not exceed @mtu, unless @mtu is smaller than any value in the 3346 * table, in which case that smallest available value is selected. 3347 */ 3348 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 3349 unsigned int *idx) 3350 { 3351 unsigned int i = 0; 3352 3353 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 3354 ++i; 3355 if (idx) 3356 *idx = i; 3357 return mtus[i]; 3358 } 3359 EXPORT_SYMBOL(cxgb4_best_mtu); 3360 3361 /** 3362 * cxgb4_port_chan - get the HW channel of a port 3363 * @dev: the net device for the port 3364 * 3365 * Return the HW Tx channel of the given port. 3366 */ 3367 unsigned int cxgb4_port_chan(const struct net_device *dev) 3368 { 3369 return netdev2pinfo(dev)->tx_chan; 3370 } 3371 EXPORT_SYMBOL(cxgb4_port_chan); 3372 3373 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 3374 { 3375 struct adapter *adap = netdev2adap(dev); 3376 u32 v1, v2, lp_count, hp_count; 3377 3378 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS); 3379 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2); 3380 if (is_t4(adap->params.chip)) { 3381 lp_count = G_LP_COUNT(v1); 3382 hp_count = G_HP_COUNT(v1); 3383 } else { 3384 lp_count = G_LP_COUNT_T5(v1); 3385 hp_count = G_HP_COUNT_T5(v2); 3386 } 3387 return lpfifo ? lp_count : hp_count; 3388 } 3389 EXPORT_SYMBOL(cxgb4_dbfifo_count); 3390 3391 /** 3392 * cxgb4_port_viid - get the VI id of a port 3393 * @dev: the net device for the port 3394 * 3395 * Return the VI id of the given port. 3396 */ 3397 unsigned int cxgb4_port_viid(const struct net_device *dev) 3398 { 3399 return netdev2pinfo(dev)->viid; 3400 } 3401 EXPORT_SYMBOL(cxgb4_port_viid); 3402 3403 /** 3404 * cxgb4_port_idx - get the index of a port 3405 * @dev: the net device for the port 3406 * 3407 * Return the index of the given port. 3408 */ 3409 unsigned int cxgb4_port_idx(const struct net_device *dev) 3410 { 3411 return netdev2pinfo(dev)->port_id; 3412 } 3413 EXPORT_SYMBOL(cxgb4_port_idx); 3414 3415 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 3416 struct tp_tcp_stats *v6) 3417 { 3418 struct adapter *adap = pci_get_drvdata(pdev); 3419 3420 spin_lock(&adap->stats_lock); 3421 t4_tp_get_tcp_stats(adap, v4, v6); 3422 spin_unlock(&adap->stats_lock); 3423 } 3424 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 3425 3426 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 3427 const unsigned int *pgsz_order) 3428 { 3429 struct adapter *adap = netdev2adap(dev); 3430 3431 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask); 3432 t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) | 3433 HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) | 3434 HPZ3(pgsz_order[3])); 3435 } 3436 EXPORT_SYMBOL(cxgb4_iscsi_init); 3437 3438 int cxgb4_flush_eq_cache(struct net_device *dev) 3439 { 3440 struct adapter *adap = netdev2adap(dev); 3441 int ret; 3442 3443 ret = t4_fwaddrspace_write(adap, adap->mbox, 3444 0xe1000000 + A_SGE_CTXT_CMD, 0x20000000); 3445 return ret; 3446 } 3447 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 3448 3449 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 3450 { 3451 u32 addr = t4_read_reg(adap, A_SGE_DBQ_CTXT_BADDR) + 24 * qid + 8; 3452 __be64 indices; 3453 int ret; 3454 3455 ret = t4_mem_win_read_len(adap, addr, (__be32 *)&indices, 8); 3456 if (!ret) { 3457 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 3458 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 3459 } 3460 return ret; 3461 } 3462 3463 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 3464 u16 size) 3465 { 3466 struct adapter *adap = netdev2adap(dev); 3467 u16 hw_pidx, hw_cidx; 3468 int ret; 3469 3470 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 3471 if (ret) 3472 goto out; 3473 3474 if (pidx != hw_pidx) { 3475 u16 delta; 3476 3477 if (pidx >= hw_pidx) 3478 delta = pidx - hw_pidx; 3479 else 3480 delta = size - hw_pidx + pidx; 3481 wmb(); 3482 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL), 3483 QID(qid) | PIDX(delta)); 3484 } 3485 out: 3486 return ret; 3487 } 3488 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 3489 3490 void cxgb4_disable_db_coalescing(struct net_device *dev) 3491 { 3492 struct adapter *adap; 3493 3494 adap = netdev2adap(dev); 3495 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE, 3496 F_NOCOALESCE); 3497 } 3498 EXPORT_SYMBOL(cxgb4_disable_db_coalescing); 3499 3500 void cxgb4_enable_db_coalescing(struct net_device *dev) 3501 { 3502 struct adapter *adap; 3503 3504 adap = netdev2adap(dev); 3505 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE, 0); 3506 } 3507 EXPORT_SYMBOL(cxgb4_enable_db_coalescing); 3508 3509 static struct pci_driver cxgb4_driver; 3510 3511 static void check_neigh_update(struct neighbour *neigh) 3512 { 3513 const struct device *parent; 3514 const struct net_device *netdev = neigh->dev; 3515 3516 if (netdev->priv_flags & IFF_802_1Q_VLAN) 3517 netdev = vlan_dev_real_dev(netdev); 3518 parent = netdev->dev.parent; 3519 if (parent && parent->driver == &cxgb4_driver.driver) 3520 t4_l2t_update(dev_get_drvdata(parent), neigh); 3521 } 3522 3523 static int netevent_cb(struct notifier_block *nb, unsigned long event, 3524 void *data) 3525 { 3526 switch (event) { 3527 case NETEVENT_NEIGH_UPDATE: 3528 check_neigh_update(data); 3529 break; 3530 case NETEVENT_REDIRECT: 3531 default: 3532 break; 3533 } 3534 return 0; 3535 } 3536 3537 static bool netevent_registered; 3538 static struct notifier_block cxgb4_netevent_nb = { 3539 .notifier_call = netevent_cb 3540 }; 3541 3542 static void drain_db_fifo(struct adapter *adap, int usecs) 3543 { 3544 u32 v1, v2, lp_count, hp_count; 3545 3546 do { 3547 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS); 3548 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2); 3549 if (is_t4(adap->params.chip)) { 3550 lp_count = G_LP_COUNT(v1); 3551 hp_count = G_HP_COUNT(v1); 3552 } else { 3553 lp_count = G_LP_COUNT_T5(v1); 3554 hp_count = G_HP_COUNT_T5(v2); 3555 } 3556 3557 if (lp_count == 0 && hp_count == 0) 3558 break; 3559 set_current_state(TASK_UNINTERRUPTIBLE); 3560 schedule_timeout(usecs_to_jiffies(usecs)); 3561 } while (1); 3562 } 3563 3564 static void disable_txq_db(struct sge_txq *q) 3565 { 3566 spin_lock_irq(&q->db_lock); 3567 q->db_disabled = 1; 3568 spin_unlock_irq(&q->db_lock); 3569 } 3570 3571 static void enable_txq_db(struct sge_txq *q) 3572 { 3573 spin_lock_irq(&q->db_lock); 3574 q->db_disabled = 0; 3575 spin_unlock_irq(&q->db_lock); 3576 } 3577 3578 static void disable_dbs(struct adapter *adap) 3579 { 3580 int i; 3581 3582 for_each_ethrxq(&adap->sge, i) 3583 disable_txq_db(&adap->sge.ethtxq[i].q); 3584 for_each_ofldrxq(&adap->sge, i) 3585 disable_txq_db(&adap->sge.ofldtxq[i].q); 3586 for_each_port(adap, i) 3587 disable_txq_db(&adap->sge.ctrlq[i].q); 3588 } 3589 3590 static void enable_dbs(struct adapter *adap) 3591 { 3592 int i; 3593 3594 for_each_ethrxq(&adap->sge, i) 3595 enable_txq_db(&adap->sge.ethtxq[i].q); 3596 for_each_ofldrxq(&adap->sge, i) 3597 enable_txq_db(&adap->sge.ofldtxq[i].q); 3598 for_each_port(adap, i) 3599 enable_txq_db(&adap->sge.ctrlq[i].q); 3600 } 3601 3602 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 3603 { 3604 u16 hw_pidx, hw_cidx; 3605 int ret; 3606 3607 spin_lock_bh(&q->db_lock); 3608 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 3609 if (ret) 3610 goto out; 3611 if (q->db_pidx != hw_pidx) { 3612 u16 delta; 3613 3614 if (q->db_pidx >= hw_pidx) 3615 delta = q->db_pidx - hw_pidx; 3616 else 3617 delta = q->size - hw_pidx + q->db_pidx; 3618 wmb(); 3619 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL), 3620 QID(q->cntxt_id) | PIDX(delta)); 3621 } 3622 out: 3623 q->db_disabled = 0; 3624 spin_unlock_bh(&q->db_lock); 3625 if (ret) 3626 CH_WARN(adap, "DB drop recovery failed.\n"); 3627 } 3628 static void recover_all_queues(struct adapter *adap) 3629 { 3630 int i; 3631 3632 for_each_ethrxq(&adap->sge, i) 3633 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 3634 for_each_ofldrxq(&adap->sge, i) 3635 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q); 3636 for_each_port(adap, i) 3637 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 3638 } 3639 3640 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 3641 { 3642 mutex_lock(&uld_mutex); 3643 if (adap->uld_handle[CXGB4_ULD_RDMA]) 3644 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA], 3645 cmd); 3646 mutex_unlock(&uld_mutex); 3647 } 3648 3649 static void process_db_full(struct work_struct *work) 3650 { 3651 struct adapter *adap; 3652 3653 adap = container_of(work, struct adapter, db_full_task); 3654 3655 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 3656 drain_db_fifo(adap, dbfifo_drain_delay); 3657 t4_set_reg_field(adap, SGE_INT_ENABLE3, 3658 DBFIFO_HP_INT | DBFIFO_LP_INT, 3659 DBFIFO_HP_INT | DBFIFO_LP_INT); 3660 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 3661 } 3662 3663 static void process_db_drop(struct work_struct *work) 3664 { 3665 struct adapter *adap; 3666 3667 adap = container_of(work, struct adapter, db_drop_task); 3668 3669 if (is_t4(adap->params.chip)) { 3670 disable_dbs(adap); 3671 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 3672 drain_db_fifo(adap, 1); 3673 recover_all_queues(adap); 3674 enable_dbs(adap); 3675 } else { 3676 u32 dropped_db = t4_read_reg(adap, 0x010ac); 3677 u16 qid = (dropped_db >> 15) & 0x1ffff; 3678 u16 pidx_inc = dropped_db & 0x1fff; 3679 unsigned int s_qpp; 3680 unsigned short udb_density; 3681 unsigned long qpshift; 3682 int page; 3683 u32 udb; 3684 3685 dev_warn(adap->pdev_dev, 3686 "Dropped DB 0x%x qid %d bar2 %d coalesce %d pidx %d\n", 3687 dropped_db, qid, 3688 (dropped_db >> 14) & 1, 3689 (dropped_db >> 13) & 1, 3690 pidx_inc); 3691 3692 drain_db_fifo(adap, 1); 3693 3694 s_qpp = QUEUESPERPAGEPF1 * adap->fn; 3695 udb_density = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adap, 3696 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp); 3697 qpshift = PAGE_SHIFT - ilog2(udb_density); 3698 udb = qid << qpshift; 3699 udb &= PAGE_MASK; 3700 page = udb / PAGE_SIZE; 3701 udb += (qid - (page * udb_density)) * 128; 3702 3703 writel(PIDX(pidx_inc), adap->bar2 + udb + 8); 3704 3705 /* Re-enable BAR2 WC */ 3706 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 3707 } 3708 3709 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_DROPPED_DB, 0); 3710 } 3711 3712 void t4_db_full(struct adapter *adap) 3713 { 3714 if (is_t4(adap->params.chip)) { 3715 t4_set_reg_field(adap, SGE_INT_ENABLE3, 3716 DBFIFO_HP_INT | DBFIFO_LP_INT, 0); 3717 queue_work(workq, &adap->db_full_task); 3718 } 3719 } 3720 3721 void t4_db_dropped(struct adapter *adap) 3722 { 3723 if (is_t4(adap->params.chip)) 3724 queue_work(workq, &adap->db_drop_task); 3725 } 3726 3727 static void uld_attach(struct adapter *adap, unsigned int uld) 3728 { 3729 void *handle; 3730 struct cxgb4_lld_info lli; 3731 unsigned short i; 3732 3733 lli.pdev = adap->pdev; 3734 lli.l2t = adap->l2t; 3735 lli.tids = &adap->tids; 3736 lli.ports = adap->port; 3737 lli.vr = &adap->vres; 3738 lli.mtus = adap->params.mtus; 3739 if (uld == CXGB4_ULD_RDMA) { 3740 lli.rxq_ids = adap->sge.rdma_rxq; 3741 lli.nrxq = adap->sge.rdmaqs; 3742 } else if (uld == CXGB4_ULD_ISCSI) { 3743 lli.rxq_ids = adap->sge.ofld_rxq; 3744 lli.nrxq = adap->sge.ofldqsets; 3745 } 3746 lli.ntxq = adap->sge.ofldqsets; 3747 lli.nchan = adap->params.nports; 3748 lli.nports = adap->params.nports; 3749 lli.wr_cred = adap->params.ofldq_wr_cred; 3750 lli.adapter_type = adap->params.chip; 3751 lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2)); 3752 lli.udb_density = 1 << QUEUESPERPAGEPF0_GET( 3753 t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >> 3754 (adap->fn * 4)); 3755 lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET( 3756 t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >> 3757 (adap->fn * 4)); 3758 lli.filt_mode = adap->params.tp.vlan_pri_map; 3759 /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */ 3760 for (i = 0; i < NCHAN; i++) 3761 lli.tx_modq[i] = i; 3762 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS); 3763 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL); 3764 lli.fw_vers = adap->params.fw_vers; 3765 lli.dbfifo_int_thresh = dbfifo_int_thresh; 3766 lli.sge_pktshift = adap->sge.pktshift; 3767 lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN; 3768 3769 handle = ulds[uld].add(&lli); 3770 if (IS_ERR(handle)) { 3771 dev_warn(adap->pdev_dev, 3772 "could not attach to the %s driver, error %ld\n", 3773 uld_str[uld], PTR_ERR(handle)); 3774 return; 3775 } 3776 3777 adap->uld_handle[uld] = handle; 3778 3779 if (!netevent_registered) { 3780 register_netevent_notifier(&cxgb4_netevent_nb); 3781 netevent_registered = true; 3782 } 3783 3784 if (adap->flags & FULL_INIT_DONE) 3785 ulds[uld].state_change(handle, CXGB4_STATE_UP); 3786 } 3787 3788 static void attach_ulds(struct adapter *adap) 3789 { 3790 unsigned int i; 3791 3792 spin_lock(&adap_rcu_lock); 3793 list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list); 3794 spin_unlock(&adap_rcu_lock); 3795 3796 mutex_lock(&uld_mutex); 3797 list_add_tail(&adap->list_node, &adapter_list); 3798 for (i = 0; i < CXGB4_ULD_MAX; i++) 3799 if (ulds[i].add) 3800 uld_attach(adap, i); 3801 mutex_unlock(&uld_mutex); 3802 } 3803 3804 static void detach_ulds(struct adapter *adap) 3805 { 3806 unsigned int i; 3807 3808 mutex_lock(&uld_mutex); 3809 list_del(&adap->list_node); 3810 for (i = 0; i < CXGB4_ULD_MAX; i++) 3811 if (adap->uld_handle[i]) { 3812 ulds[i].state_change(adap->uld_handle[i], 3813 CXGB4_STATE_DETACH); 3814 adap->uld_handle[i] = NULL; 3815 } 3816 if (netevent_registered && list_empty(&adapter_list)) { 3817 unregister_netevent_notifier(&cxgb4_netevent_nb); 3818 netevent_registered = false; 3819 } 3820 mutex_unlock(&uld_mutex); 3821 3822 spin_lock(&adap_rcu_lock); 3823 list_del_rcu(&adap->rcu_node); 3824 spin_unlock(&adap_rcu_lock); 3825 } 3826 3827 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 3828 { 3829 unsigned int i; 3830 3831 mutex_lock(&uld_mutex); 3832 for (i = 0; i < CXGB4_ULD_MAX; i++) 3833 if (adap->uld_handle[i]) 3834 ulds[i].state_change(adap->uld_handle[i], new_state); 3835 mutex_unlock(&uld_mutex); 3836 } 3837 3838 /** 3839 * cxgb4_register_uld - register an upper-layer driver 3840 * @type: the ULD type 3841 * @p: the ULD methods 3842 * 3843 * Registers an upper-layer driver with this driver and notifies the ULD 3844 * about any presently available devices that support its type. Returns 3845 * %-EBUSY if a ULD of the same type is already registered. 3846 */ 3847 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p) 3848 { 3849 int ret = 0; 3850 struct adapter *adap; 3851 3852 if (type >= CXGB4_ULD_MAX) 3853 return -EINVAL; 3854 mutex_lock(&uld_mutex); 3855 if (ulds[type].add) { 3856 ret = -EBUSY; 3857 goto out; 3858 } 3859 ulds[type] = *p; 3860 list_for_each_entry(adap, &adapter_list, list_node) 3861 uld_attach(adap, type); 3862 out: mutex_unlock(&uld_mutex); 3863 return ret; 3864 } 3865 EXPORT_SYMBOL(cxgb4_register_uld); 3866 3867 /** 3868 * cxgb4_unregister_uld - unregister an upper-layer driver 3869 * @type: the ULD type 3870 * 3871 * Unregisters an existing upper-layer driver. 3872 */ 3873 int cxgb4_unregister_uld(enum cxgb4_uld type) 3874 { 3875 struct adapter *adap; 3876 3877 if (type >= CXGB4_ULD_MAX) 3878 return -EINVAL; 3879 mutex_lock(&uld_mutex); 3880 list_for_each_entry(adap, &adapter_list, list_node) 3881 adap->uld_handle[type] = NULL; 3882 ulds[type].add = NULL; 3883 mutex_unlock(&uld_mutex); 3884 return 0; 3885 } 3886 EXPORT_SYMBOL(cxgb4_unregister_uld); 3887 3888 /* Check if netdev on which event is occured belongs to us or not. Return 3889 * suceess (1) if it belongs otherwise failure (0). 3890 */ 3891 static int cxgb4_netdev(struct net_device *netdev) 3892 { 3893 struct adapter *adap; 3894 int i; 3895 3896 spin_lock(&adap_rcu_lock); 3897 list_for_each_entry_rcu(adap, &adap_rcu_list, rcu_node) 3898 for (i = 0; i < MAX_NPORTS; i++) 3899 if (adap->port[i] == netdev) { 3900 spin_unlock(&adap_rcu_lock); 3901 return 1; 3902 } 3903 spin_unlock(&adap_rcu_lock); 3904 return 0; 3905 } 3906 3907 static int clip_add(struct net_device *event_dev, struct inet6_ifaddr *ifa, 3908 unsigned long event) 3909 { 3910 int ret = NOTIFY_DONE; 3911 3912 rcu_read_lock(); 3913 if (cxgb4_netdev(event_dev)) { 3914 switch (event) { 3915 case NETDEV_UP: 3916 ret = cxgb4_clip_get(event_dev, 3917 (const struct in6_addr *)ifa->addr.s6_addr); 3918 if (ret < 0) { 3919 rcu_read_unlock(); 3920 return ret; 3921 } 3922 ret = NOTIFY_OK; 3923 break; 3924 case NETDEV_DOWN: 3925 cxgb4_clip_release(event_dev, 3926 (const struct in6_addr *)ifa->addr.s6_addr); 3927 ret = NOTIFY_OK; 3928 break; 3929 default: 3930 break; 3931 } 3932 } 3933 rcu_read_unlock(); 3934 return ret; 3935 } 3936 3937 static int cxgb4_inet6addr_handler(struct notifier_block *this, 3938 unsigned long event, void *data) 3939 { 3940 struct inet6_ifaddr *ifa = data; 3941 struct net_device *event_dev; 3942 int ret = NOTIFY_DONE; 3943 struct bonding *bond = netdev_priv(ifa->idev->dev); 3944 struct list_head *iter; 3945 struct slave *slave; 3946 struct pci_dev *first_pdev = NULL; 3947 3948 if (ifa->idev->dev->priv_flags & IFF_802_1Q_VLAN) { 3949 event_dev = vlan_dev_real_dev(ifa->idev->dev); 3950 ret = clip_add(event_dev, ifa, event); 3951 } else if (ifa->idev->dev->flags & IFF_MASTER) { 3952 /* It is possible that two different adapters are bonded in one 3953 * bond. We need to find such different adapters and add clip 3954 * in all of them only once. 3955 */ 3956 read_lock(&bond->lock); 3957 bond_for_each_slave(bond, slave, iter) { 3958 if (!first_pdev) { 3959 ret = clip_add(slave->dev, ifa, event); 3960 /* If clip_add is success then only initialize 3961 * first_pdev since it means it is our device 3962 */ 3963 if (ret == NOTIFY_OK) 3964 first_pdev = to_pci_dev( 3965 slave->dev->dev.parent); 3966 } else if (first_pdev != 3967 to_pci_dev(slave->dev->dev.parent)) 3968 ret = clip_add(slave->dev, ifa, event); 3969 } 3970 read_unlock(&bond->lock); 3971 } else 3972 ret = clip_add(ifa->idev->dev, ifa, event); 3973 3974 return ret; 3975 } 3976 3977 static struct notifier_block cxgb4_inet6addr_notifier = { 3978 .notifier_call = cxgb4_inet6addr_handler 3979 }; 3980 3981 /* Retrieves IPv6 addresses from a root device (bond, vlan) associated with 3982 * a physical device. 3983 * The physical device reference is needed to send the actul CLIP command. 3984 */ 3985 static int update_dev_clip(struct net_device *root_dev, struct net_device *dev) 3986 { 3987 struct inet6_dev *idev = NULL; 3988 struct inet6_ifaddr *ifa; 3989 int ret = 0; 3990 3991 idev = __in6_dev_get(root_dev); 3992 if (!idev) 3993 return ret; 3994 3995 read_lock_bh(&idev->lock); 3996 list_for_each_entry(ifa, &idev->addr_list, if_list) { 3997 ret = cxgb4_clip_get(dev, 3998 (const struct in6_addr *)ifa->addr.s6_addr); 3999 if (ret < 0) 4000 break; 4001 } 4002 read_unlock_bh(&idev->lock); 4003 4004 return ret; 4005 } 4006 4007 static int update_root_dev_clip(struct net_device *dev) 4008 { 4009 struct net_device *root_dev = NULL; 4010 int i, ret = 0; 4011 4012 /* First populate the real net device's IPv6 addresses */ 4013 ret = update_dev_clip(dev, dev); 4014 if (ret) 4015 return ret; 4016 4017 /* Parse all bond and vlan devices layered on top of the physical dev */ 4018 for (i = 0; i < VLAN_N_VID; i++) { 4019 root_dev = __vlan_find_dev_deep(dev, htons(ETH_P_8021Q), i); 4020 if (!root_dev) 4021 continue; 4022 4023 ret = update_dev_clip(root_dev, dev); 4024 if (ret) 4025 break; 4026 } 4027 return ret; 4028 } 4029 4030 static void update_clip(const struct adapter *adap) 4031 { 4032 int i; 4033 struct net_device *dev; 4034 int ret; 4035 4036 rcu_read_lock(); 4037 4038 for (i = 0; i < MAX_NPORTS; i++) { 4039 dev = adap->port[i]; 4040 ret = 0; 4041 4042 if (dev) 4043 ret = update_root_dev_clip(dev); 4044 4045 if (ret < 0) 4046 break; 4047 } 4048 rcu_read_unlock(); 4049 } 4050 4051 /** 4052 * cxgb_up - enable the adapter 4053 * @adap: adapter being enabled 4054 * 4055 * Called when the first port is enabled, this function performs the 4056 * actions necessary to make an adapter operational, such as completing 4057 * the initialization of HW modules, and enabling interrupts. 4058 * 4059 * Must be called with the rtnl lock held. 4060 */ 4061 static int cxgb_up(struct adapter *adap) 4062 { 4063 int err; 4064 4065 err = setup_sge_queues(adap); 4066 if (err) 4067 goto out; 4068 err = setup_rss(adap); 4069 if (err) 4070 goto freeq; 4071 4072 if (adap->flags & USING_MSIX) { 4073 name_msix_vecs(adap); 4074 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, 4075 adap->msix_info[0].desc, adap); 4076 if (err) 4077 goto irq_err; 4078 4079 err = request_msix_queue_irqs(adap); 4080 if (err) { 4081 free_irq(adap->msix_info[0].vec, adap); 4082 goto irq_err; 4083 } 4084 } else { 4085 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 4086 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED, 4087 adap->port[0]->name, adap); 4088 if (err) 4089 goto irq_err; 4090 } 4091 enable_rx(adap); 4092 t4_sge_start(adap); 4093 t4_intr_enable(adap); 4094 adap->flags |= FULL_INIT_DONE; 4095 notify_ulds(adap, CXGB4_STATE_UP); 4096 update_clip(adap); 4097 out: 4098 return err; 4099 irq_err: 4100 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 4101 freeq: 4102 t4_free_sge_resources(adap); 4103 goto out; 4104 } 4105 4106 static void cxgb_down(struct adapter *adapter) 4107 { 4108 t4_intr_disable(adapter); 4109 cancel_work_sync(&adapter->tid_release_task); 4110 cancel_work_sync(&adapter->db_full_task); 4111 cancel_work_sync(&adapter->db_drop_task); 4112 adapter->tid_release_task_busy = false; 4113 adapter->tid_release_head = NULL; 4114 4115 if (adapter->flags & USING_MSIX) { 4116 free_msix_queue_irqs(adapter); 4117 free_irq(adapter->msix_info[0].vec, adapter); 4118 } else 4119 free_irq(adapter->pdev->irq, adapter); 4120 quiesce_rx(adapter); 4121 t4_sge_stop(adapter); 4122 t4_free_sge_resources(adapter); 4123 adapter->flags &= ~FULL_INIT_DONE; 4124 } 4125 4126 /* 4127 * net_device operations 4128 */ 4129 static int cxgb_open(struct net_device *dev) 4130 { 4131 int err; 4132 struct port_info *pi = netdev_priv(dev); 4133 struct adapter *adapter = pi->adapter; 4134 4135 netif_carrier_off(dev); 4136 4137 if (!(adapter->flags & FULL_INIT_DONE)) { 4138 err = cxgb_up(adapter); 4139 if (err < 0) 4140 return err; 4141 } 4142 4143 err = link_start(dev); 4144 if (!err) 4145 netif_tx_start_all_queues(dev); 4146 return err; 4147 } 4148 4149 static int cxgb_close(struct net_device *dev) 4150 { 4151 struct port_info *pi = netdev_priv(dev); 4152 struct adapter *adapter = pi->adapter; 4153 4154 netif_tx_stop_all_queues(dev); 4155 netif_carrier_off(dev); 4156 return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false); 4157 } 4158 4159 /* Return an error number if the indicated filter isn't writable ... 4160 */ 4161 static int writable_filter(struct filter_entry *f) 4162 { 4163 if (f->locked) 4164 return -EPERM; 4165 if (f->pending) 4166 return -EBUSY; 4167 4168 return 0; 4169 } 4170 4171 /* Delete the filter at the specified index (if valid). The checks for all 4172 * the common problems with doing this like the filter being locked, currently 4173 * pending in another operation, etc. 4174 */ 4175 static int delete_filter(struct adapter *adapter, unsigned int fidx) 4176 { 4177 struct filter_entry *f; 4178 int ret; 4179 4180 if (fidx >= adapter->tids.nftids + adapter->tids.nsftids) 4181 return -EINVAL; 4182 4183 f = &adapter->tids.ftid_tab[fidx]; 4184 ret = writable_filter(f); 4185 if (ret) 4186 return ret; 4187 if (f->valid) 4188 return del_filter_wr(adapter, fidx); 4189 4190 return 0; 4191 } 4192 4193 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 4194 __be32 sip, __be16 sport, __be16 vlan, 4195 unsigned int queue, unsigned char port, unsigned char mask) 4196 { 4197 int ret; 4198 struct filter_entry *f; 4199 struct adapter *adap; 4200 int i; 4201 u8 *val; 4202 4203 adap = netdev2adap(dev); 4204 4205 /* Adjust stid to correct filter index */ 4206 stid -= adap->tids.sftid_base; 4207 stid += adap->tids.nftids; 4208 4209 /* Check to make sure the filter requested is writable ... 4210 */ 4211 f = &adap->tids.ftid_tab[stid]; 4212 ret = writable_filter(f); 4213 if (ret) 4214 return ret; 4215 4216 /* Clear out any old resources being used by the filter before 4217 * we start constructing the new filter. 4218 */ 4219 if (f->valid) 4220 clear_filter(adap, f); 4221 4222 /* Clear out filter specifications */ 4223 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 4224 f->fs.val.lport = cpu_to_be16(sport); 4225 f->fs.mask.lport = ~0; 4226 val = (u8 *)&sip; 4227 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 4228 for (i = 0; i < 4; i++) { 4229 f->fs.val.lip[i] = val[i]; 4230 f->fs.mask.lip[i] = ~0; 4231 } 4232 if (adap->params.tp.vlan_pri_map & F_PORT) { 4233 f->fs.val.iport = port; 4234 f->fs.mask.iport = mask; 4235 } 4236 } 4237 4238 if (adap->params.tp.vlan_pri_map & F_PROTOCOL) { 4239 f->fs.val.proto = IPPROTO_TCP; 4240 f->fs.mask.proto = ~0; 4241 } 4242 4243 f->fs.dirsteer = 1; 4244 f->fs.iq = queue; 4245 /* Mark filter as locked */ 4246 f->locked = 1; 4247 f->fs.rpttid = 1; 4248 4249 ret = set_filter_wr(adap, stid); 4250 if (ret) { 4251 clear_filter(adap, f); 4252 return ret; 4253 } 4254 4255 return 0; 4256 } 4257 EXPORT_SYMBOL(cxgb4_create_server_filter); 4258 4259 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 4260 unsigned int queue, bool ipv6) 4261 { 4262 int ret; 4263 struct filter_entry *f; 4264 struct adapter *adap; 4265 4266 adap = netdev2adap(dev); 4267 4268 /* Adjust stid to correct filter index */ 4269 stid -= adap->tids.sftid_base; 4270 stid += adap->tids.nftids; 4271 4272 f = &adap->tids.ftid_tab[stid]; 4273 /* Unlock the filter */ 4274 f->locked = 0; 4275 4276 ret = delete_filter(adap, stid); 4277 if (ret) 4278 return ret; 4279 4280 return 0; 4281 } 4282 EXPORT_SYMBOL(cxgb4_remove_server_filter); 4283 4284 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev, 4285 struct rtnl_link_stats64 *ns) 4286 { 4287 struct port_stats stats; 4288 struct port_info *p = netdev_priv(dev); 4289 struct adapter *adapter = p->adapter; 4290 4291 spin_lock(&adapter->stats_lock); 4292 t4_get_port_stats(adapter, p->tx_chan, &stats); 4293 spin_unlock(&adapter->stats_lock); 4294 4295 ns->tx_bytes = stats.tx_octets; 4296 ns->tx_packets = stats.tx_frames; 4297 ns->rx_bytes = stats.rx_octets; 4298 ns->rx_packets = stats.rx_frames; 4299 ns->multicast = stats.rx_mcast_frames; 4300 4301 /* detailed rx_errors */ 4302 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 4303 stats.rx_runt; 4304 ns->rx_over_errors = 0; 4305 ns->rx_crc_errors = stats.rx_fcs_err; 4306 ns->rx_frame_errors = stats.rx_symbol_err; 4307 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 + 4308 stats.rx_ovflow2 + stats.rx_ovflow3 + 4309 stats.rx_trunc0 + stats.rx_trunc1 + 4310 stats.rx_trunc2 + stats.rx_trunc3; 4311 ns->rx_missed_errors = 0; 4312 4313 /* detailed tx_errors */ 4314 ns->tx_aborted_errors = 0; 4315 ns->tx_carrier_errors = 0; 4316 ns->tx_fifo_errors = 0; 4317 ns->tx_heartbeat_errors = 0; 4318 ns->tx_window_errors = 0; 4319 4320 ns->tx_errors = stats.tx_error_frames; 4321 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 4322 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 4323 return ns; 4324 } 4325 4326 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 4327 { 4328 unsigned int mbox; 4329 int ret = 0, prtad, devad; 4330 struct port_info *pi = netdev_priv(dev); 4331 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 4332 4333 switch (cmd) { 4334 case SIOCGMIIPHY: 4335 if (pi->mdio_addr < 0) 4336 return -EOPNOTSUPP; 4337 data->phy_id = pi->mdio_addr; 4338 break; 4339 case SIOCGMIIREG: 4340 case SIOCSMIIREG: 4341 if (mdio_phy_id_is_c45(data->phy_id)) { 4342 prtad = mdio_phy_id_prtad(data->phy_id); 4343 devad = mdio_phy_id_devad(data->phy_id); 4344 } else if (data->phy_id < 32) { 4345 prtad = data->phy_id; 4346 devad = 0; 4347 data->reg_num &= 0x1f; 4348 } else 4349 return -EINVAL; 4350 4351 mbox = pi->adapter->fn; 4352 if (cmd == SIOCGMIIREG) 4353 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 4354 data->reg_num, &data->val_out); 4355 else 4356 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 4357 data->reg_num, data->val_in); 4358 break; 4359 default: 4360 return -EOPNOTSUPP; 4361 } 4362 return ret; 4363 } 4364 4365 static void cxgb_set_rxmode(struct net_device *dev) 4366 { 4367 /* unfortunately we can't return errors to the stack */ 4368 set_rxmode(dev, -1, false); 4369 } 4370 4371 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 4372 { 4373 int ret; 4374 struct port_info *pi = netdev_priv(dev); 4375 4376 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */ 4377 return -EINVAL; 4378 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1, 4379 -1, -1, -1, true); 4380 if (!ret) 4381 dev->mtu = new_mtu; 4382 return ret; 4383 } 4384 4385 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 4386 { 4387 int ret; 4388 struct sockaddr *addr = p; 4389 struct port_info *pi = netdev_priv(dev); 4390 4391 if (!is_valid_ether_addr(addr->sa_data)) 4392 return -EADDRNOTAVAIL; 4393 4394 ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid, 4395 pi->xact_addr_filt, addr->sa_data, true, true); 4396 if (ret < 0) 4397 return ret; 4398 4399 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 4400 pi->xact_addr_filt = ret; 4401 return 0; 4402 } 4403 4404 #ifdef CONFIG_NET_POLL_CONTROLLER 4405 static void cxgb_netpoll(struct net_device *dev) 4406 { 4407 struct port_info *pi = netdev_priv(dev); 4408 struct adapter *adap = pi->adapter; 4409 4410 if (adap->flags & USING_MSIX) { 4411 int i; 4412 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 4413 4414 for (i = pi->nqsets; i; i--, rx++) 4415 t4_sge_intr_msix(0, &rx->rspq); 4416 } else 4417 t4_intr_handler(adap)(0, adap); 4418 } 4419 #endif 4420 4421 static const struct net_device_ops cxgb4_netdev_ops = { 4422 .ndo_open = cxgb_open, 4423 .ndo_stop = cxgb_close, 4424 .ndo_start_xmit = t4_eth_xmit, 4425 .ndo_get_stats64 = cxgb_get_stats, 4426 .ndo_set_rx_mode = cxgb_set_rxmode, 4427 .ndo_set_mac_address = cxgb_set_mac_addr, 4428 .ndo_set_features = cxgb_set_features, 4429 .ndo_validate_addr = eth_validate_addr, 4430 .ndo_do_ioctl = cxgb_ioctl, 4431 .ndo_change_mtu = cxgb_change_mtu, 4432 #ifdef CONFIG_NET_POLL_CONTROLLER 4433 .ndo_poll_controller = cxgb_netpoll, 4434 #endif 4435 }; 4436 4437 void t4_fatal_err(struct adapter *adap) 4438 { 4439 t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0); 4440 t4_intr_disable(adap); 4441 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 4442 } 4443 4444 static void setup_memwin(struct adapter *adap) 4445 { 4446 u32 bar0, mem_win0_base, mem_win1_base, mem_win2_base; 4447 4448 bar0 = pci_resource_start(adap->pdev, 0); /* truncation intentional */ 4449 if (is_t4(adap->params.chip)) { 4450 mem_win0_base = bar0 + MEMWIN0_BASE; 4451 mem_win1_base = bar0 + MEMWIN1_BASE; 4452 mem_win2_base = bar0 + MEMWIN2_BASE; 4453 } else { 4454 /* For T5, only relative offset inside the PCIe BAR is passed */ 4455 mem_win0_base = MEMWIN0_BASE; 4456 mem_win1_base = MEMWIN1_BASE_T5; 4457 mem_win2_base = MEMWIN2_BASE_T5; 4458 } 4459 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0), 4460 mem_win0_base | BIR(0) | 4461 WINDOW(ilog2(MEMWIN0_APERTURE) - 10)); 4462 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1), 4463 mem_win1_base | BIR(0) | 4464 WINDOW(ilog2(MEMWIN1_APERTURE) - 10)); 4465 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2), 4466 mem_win2_base | BIR(0) | 4467 WINDOW(ilog2(MEMWIN2_APERTURE) - 10)); 4468 } 4469 4470 static void setup_memwin_rdma(struct adapter *adap) 4471 { 4472 if (adap->vres.ocq.size) { 4473 unsigned int start, sz_kb; 4474 4475 start = pci_resource_start(adap->pdev, 2) + 4476 OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 4477 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 4478 t4_write_reg(adap, 4479 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3), 4480 start | BIR(1) | WINDOW(ilog2(sz_kb))); 4481 t4_write_reg(adap, 4482 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3), 4483 adap->vres.ocq.start); 4484 t4_read_reg(adap, 4485 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3)); 4486 } 4487 } 4488 4489 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 4490 { 4491 u32 v; 4492 int ret; 4493 4494 /* get device capabilities */ 4495 memset(c, 0, sizeof(*c)); 4496 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4497 FW_CMD_REQUEST | FW_CMD_READ); 4498 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 4499 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c); 4500 if (ret < 0) 4501 return ret; 4502 4503 /* select capabilities we'll be using */ 4504 if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) { 4505 if (!vf_acls) 4506 c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM); 4507 else 4508 c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM); 4509 } else if (vf_acls) { 4510 dev_err(adap->pdev_dev, "virtualization ACLs not supported"); 4511 return ret; 4512 } 4513 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4514 FW_CMD_REQUEST | FW_CMD_WRITE); 4515 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL); 4516 if (ret < 0) 4517 return ret; 4518 4519 ret = t4_config_glbl_rss(adap, adap->fn, 4520 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 4521 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN | 4522 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP); 4523 if (ret < 0) 4524 return ret; 4525 4526 ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ, 4527 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF); 4528 if (ret < 0) 4529 return ret; 4530 4531 t4_sge_init(adap); 4532 4533 /* tweak some settings */ 4534 t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849); 4535 t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12)); 4536 t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG); 4537 v = t4_read_reg(adap, TP_PIO_DATA); 4538 t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR); 4539 4540 /* first 4 Tx modulation queues point to consecutive Tx channels */ 4541 adap->params.tp.tx_modq_map = 0xE4; 4542 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP, 4543 V_TX_MOD_QUEUE_REQ_MAP(adap->params.tp.tx_modq_map)); 4544 4545 /* associate each Tx modulation queue with consecutive Tx channels */ 4546 v = 0x84218421; 4547 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA, 4548 &v, 1, A_TP_TX_SCHED_HDR); 4549 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA, 4550 &v, 1, A_TP_TX_SCHED_FIFO); 4551 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA, 4552 &v, 1, A_TP_TX_SCHED_PCMD); 4553 4554 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 4555 if (is_offload(adap)) { 4556 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 4557 V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4558 V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4559 V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4560 V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 4561 t4_write_reg(adap, A_TP_TX_MOD_CHANNEL_WEIGHT, 4562 V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4563 V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4564 V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4565 V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 4566 } 4567 4568 /* get basic stuff going */ 4569 return t4_early_init(adap, adap->fn); 4570 } 4571 4572 /* 4573 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 4574 */ 4575 #define MAX_ATIDS 8192U 4576 4577 /* 4578 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 4579 * 4580 * If the firmware we're dealing with has Configuration File support, then 4581 * we use that to perform all configuration 4582 */ 4583 4584 /* 4585 * Tweak configuration based on module parameters, etc. Most of these have 4586 * defaults assigned to them by Firmware Configuration Files (if we're using 4587 * them) but need to be explicitly set if we're using hard-coded 4588 * initialization. But even in the case of using Firmware Configuration 4589 * Files, we'd like to expose the ability to change these via module 4590 * parameters so these are essentially common tweaks/settings for 4591 * Configuration Files and hard-coded initialization ... 4592 */ 4593 static int adap_init0_tweaks(struct adapter *adapter) 4594 { 4595 /* 4596 * Fix up various Host-Dependent Parameters like Page Size, Cache 4597 * Line Size, etc. The firmware default is for a 4KB Page Size and 4598 * 64B Cache Line Size ... 4599 */ 4600 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 4601 4602 /* 4603 * Process module parameters which affect early initialization. 4604 */ 4605 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 4606 dev_err(&adapter->pdev->dev, 4607 "Ignoring illegal rx_dma_offset=%d, using 2\n", 4608 rx_dma_offset); 4609 rx_dma_offset = 2; 4610 } 4611 t4_set_reg_field(adapter, SGE_CONTROL, 4612 PKTSHIFT_MASK, 4613 PKTSHIFT(rx_dma_offset)); 4614 4615 /* 4616 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 4617 * adds the pseudo header itself. 4618 */ 4619 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG, 4620 CSUM_HAS_PSEUDO_HDR, 0); 4621 4622 return 0; 4623 } 4624 4625 /* 4626 * Attempt to initialize the adapter via a Firmware Configuration File. 4627 */ 4628 static int adap_init0_config(struct adapter *adapter, int reset) 4629 { 4630 struct fw_caps_config_cmd caps_cmd; 4631 const struct firmware *cf; 4632 unsigned long mtype = 0, maddr = 0; 4633 u32 finiver, finicsum, cfcsum; 4634 int ret; 4635 int config_issued = 0; 4636 char *fw_config_file, fw_config_file_path[256]; 4637 char *config_name = NULL; 4638 4639 /* 4640 * Reset device if necessary. 4641 */ 4642 if (reset) { 4643 ret = t4_fw_reset(adapter, adapter->mbox, 4644 PIORSTMODE | PIORST); 4645 if (ret < 0) 4646 goto bye; 4647 } 4648 4649 /* 4650 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 4651 * then use that. Otherwise, use the configuration file stored 4652 * in the adapter flash ... 4653 */ 4654 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 4655 case CHELSIO_T4: 4656 fw_config_file = FW4_CFNAME; 4657 break; 4658 case CHELSIO_T5: 4659 fw_config_file = FW5_CFNAME; 4660 break; 4661 default: 4662 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 4663 adapter->pdev->device); 4664 ret = -EINVAL; 4665 goto bye; 4666 } 4667 4668 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 4669 if (ret < 0) { 4670 config_name = "On FLASH"; 4671 mtype = FW_MEMTYPE_CF_FLASH; 4672 maddr = t4_flash_cfg_addr(adapter); 4673 } else { 4674 u32 params[7], val[7]; 4675 4676 sprintf(fw_config_file_path, 4677 "/lib/firmware/%s", fw_config_file); 4678 config_name = fw_config_file_path; 4679 4680 if (cf->size >= FLASH_CFG_MAX_SIZE) 4681 ret = -ENOMEM; 4682 else { 4683 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 4684 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF)); 4685 ret = t4_query_params(adapter, adapter->mbox, 4686 adapter->fn, 0, 1, params, val); 4687 if (ret == 0) { 4688 /* 4689 * For t4_memory_write() below addresses and 4690 * sizes have to be in terms of multiples of 4 4691 * bytes. So, if the Configuration File isn't 4692 * a multiple of 4 bytes in length we'll have 4693 * to write that out separately since we can't 4694 * guarantee that the bytes following the 4695 * residual byte in the buffer returned by 4696 * request_firmware() are zeroed out ... 4697 */ 4698 size_t resid = cf->size & 0x3; 4699 size_t size = cf->size & ~0x3; 4700 __be32 *data = (__be32 *)cf->data; 4701 4702 mtype = FW_PARAMS_PARAM_Y_GET(val[0]); 4703 maddr = FW_PARAMS_PARAM_Z_GET(val[0]) << 16; 4704 4705 ret = t4_memory_write(adapter, mtype, maddr, 4706 size, data); 4707 if (ret == 0 && resid != 0) { 4708 union { 4709 __be32 word; 4710 char buf[4]; 4711 } last; 4712 int i; 4713 4714 last.word = data[size >> 2]; 4715 for (i = resid; i < 4; i++) 4716 last.buf[i] = 0; 4717 ret = t4_memory_write(adapter, mtype, 4718 maddr + size, 4719 4, &last.word); 4720 } 4721 } 4722 } 4723 4724 release_firmware(cf); 4725 if (ret) 4726 goto bye; 4727 } 4728 4729 /* 4730 * Issue a Capability Configuration command to the firmware to get it 4731 * to parse the Configuration File. We don't use t4_fw_config_file() 4732 * because we want the ability to modify various features after we've 4733 * processed the configuration file ... 4734 */ 4735 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4736 caps_cmd.op_to_write = 4737 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4738 FW_CMD_REQUEST | 4739 FW_CMD_READ); 4740 caps_cmd.cfvalid_to_len16 = 4741 htonl(FW_CAPS_CONFIG_CMD_CFVALID | 4742 FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4743 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) | 4744 FW_LEN16(caps_cmd)); 4745 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4746 &caps_cmd); 4747 4748 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 4749 * Configuration File in FLASH), our last gasp effort is to use the 4750 * Firmware Configuration File which is embedded in the firmware. A 4751 * very few early versions of the firmware didn't have one embedded 4752 * but we can ignore those. 4753 */ 4754 if (ret == -ENOENT) { 4755 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4756 caps_cmd.op_to_write = 4757 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4758 FW_CMD_REQUEST | 4759 FW_CMD_READ); 4760 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4761 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 4762 sizeof(caps_cmd), &caps_cmd); 4763 config_name = "Firmware Default"; 4764 } 4765 4766 config_issued = 1; 4767 if (ret < 0) 4768 goto bye; 4769 4770 finiver = ntohl(caps_cmd.finiver); 4771 finicsum = ntohl(caps_cmd.finicsum); 4772 cfcsum = ntohl(caps_cmd.cfcsum); 4773 if (finicsum != cfcsum) 4774 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 4775 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 4776 finicsum, cfcsum); 4777 4778 /* 4779 * And now tell the firmware to use the configuration we just loaded. 4780 */ 4781 caps_cmd.op_to_write = 4782 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4783 FW_CMD_REQUEST | 4784 FW_CMD_WRITE); 4785 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4786 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4787 NULL); 4788 if (ret < 0) 4789 goto bye; 4790 4791 /* 4792 * Tweak configuration based on system architecture, module 4793 * parameters, etc. 4794 */ 4795 ret = adap_init0_tweaks(adapter); 4796 if (ret < 0) 4797 goto bye; 4798 4799 /* 4800 * And finally tell the firmware to initialize itself using the 4801 * parameters from the Configuration File. 4802 */ 4803 ret = t4_fw_initialize(adapter, adapter->mbox); 4804 if (ret < 0) 4805 goto bye; 4806 4807 /* 4808 * Return successfully and note that we're operating with parameters 4809 * not supplied by the driver, rather than from hard-wired 4810 * initialization constants burried in the driver. 4811 */ 4812 adapter->flags |= USING_SOFT_PARAMS; 4813 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 4814 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 4815 config_name, finiver, cfcsum); 4816 return 0; 4817 4818 /* 4819 * Something bad happened. Return the error ... (If the "error" 4820 * is that there's no Configuration File on the adapter we don't 4821 * want to issue a warning since this is fairly common.) 4822 */ 4823 bye: 4824 if (config_issued && ret != -ENOENT) 4825 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 4826 config_name, -ret); 4827 return ret; 4828 } 4829 4830 /* 4831 * Attempt to initialize the adapter via hard-coded, driver supplied 4832 * parameters ... 4833 */ 4834 static int adap_init0_no_config(struct adapter *adapter, int reset) 4835 { 4836 struct sge *s = &adapter->sge; 4837 struct fw_caps_config_cmd caps_cmd; 4838 u32 v; 4839 int i, ret; 4840 4841 /* 4842 * Reset device if necessary 4843 */ 4844 if (reset) { 4845 ret = t4_fw_reset(adapter, adapter->mbox, 4846 PIORSTMODE | PIORST); 4847 if (ret < 0) 4848 goto bye; 4849 } 4850 4851 /* 4852 * Get device capabilities and select which we'll be using. 4853 */ 4854 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4855 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4856 FW_CMD_REQUEST | FW_CMD_READ); 4857 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4858 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4859 &caps_cmd); 4860 if (ret < 0) 4861 goto bye; 4862 4863 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) { 4864 if (!vf_acls) 4865 caps_cmd.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM); 4866 else 4867 caps_cmd.niccaps = htons(FW_CAPS_CONFIG_NIC_VM); 4868 } else if (vf_acls) { 4869 dev_err(adapter->pdev_dev, "virtualization ACLs not supported"); 4870 goto bye; 4871 } 4872 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4873 FW_CMD_REQUEST | FW_CMD_WRITE); 4874 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4875 NULL); 4876 if (ret < 0) 4877 goto bye; 4878 4879 /* 4880 * Tweak configuration based on system architecture, module 4881 * parameters, etc. 4882 */ 4883 ret = adap_init0_tweaks(adapter); 4884 if (ret < 0) 4885 goto bye; 4886 4887 /* 4888 * Select RSS Global Mode we want to use. We use "Basic Virtual" 4889 * mode which maps each Virtual Interface to its own section of 4890 * the RSS Table and we turn on all map and hash enables ... 4891 */ 4892 adapter->flags |= RSS_TNLALLLOOKUP; 4893 ret = t4_config_glbl_rss(adapter, adapter->mbox, 4894 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 4895 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN | 4896 FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ | 4897 ((adapter->flags & RSS_TNLALLLOOKUP) ? 4898 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP : 0)); 4899 if (ret < 0) 4900 goto bye; 4901 4902 /* 4903 * Set up our own fundamental resource provisioning ... 4904 */ 4905 ret = t4_cfg_pfvf(adapter, adapter->mbox, adapter->fn, 0, 4906 PFRES_NEQ, PFRES_NETHCTRL, 4907 PFRES_NIQFLINT, PFRES_NIQ, 4908 PFRES_TC, PFRES_NVI, 4909 FW_PFVF_CMD_CMASK_MASK, 4910 pfvfres_pmask(adapter, adapter->fn, 0), 4911 PFRES_NEXACTF, 4912 PFRES_R_CAPS, PFRES_WX_CAPS); 4913 if (ret < 0) 4914 goto bye; 4915 4916 /* 4917 * Perform low level SGE initialization. We need to do this before we 4918 * send the firmware the INITIALIZE command because that will cause 4919 * any other PF Drivers which are waiting for the Master 4920 * Initialization to proceed forward. 4921 */ 4922 for (i = 0; i < SGE_NTIMERS - 1; i++) 4923 s->timer_val[i] = min(intr_holdoff[i], MAX_SGE_TIMERVAL); 4924 s->timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL; 4925 s->counter_val[0] = 1; 4926 for (i = 1; i < SGE_NCOUNTERS; i++) 4927 s->counter_val[i] = min(intr_cnt[i - 1], 4928 THRESHOLD_0_GET(THRESHOLD_0_MASK)); 4929 t4_sge_init(adapter); 4930 4931 #ifdef CONFIG_PCI_IOV 4932 /* 4933 * Provision resource limits for Virtual Functions. We currently 4934 * grant them all the same static resource limits except for the Port 4935 * Access Rights Mask which we're assigning based on the PF. All of 4936 * the static provisioning stuff for both the PF and VF really needs 4937 * to be managed in a persistent manner for each device which the 4938 * firmware controls. 4939 */ 4940 { 4941 int pf, vf; 4942 4943 for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) { 4944 if (num_vf[pf] <= 0) 4945 continue; 4946 4947 /* VF numbering starts at 1! */ 4948 for (vf = 1; vf <= num_vf[pf]; vf++) { 4949 ret = t4_cfg_pfvf(adapter, adapter->mbox, 4950 pf, vf, 4951 VFRES_NEQ, VFRES_NETHCTRL, 4952 VFRES_NIQFLINT, VFRES_NIQ, 4953 VFRES_TC, VFRES_NVI, 4954 FW_PFVF_CMD_CMASK_MASK, 4955 pfvfres_pmask( 4956 adapter, pf, vf), 4957 VFRES_NEXACTF, 4958 VFRES_R_CAPS, VFRES_WX_CAPS); 4959 if (ret < 0) 4960 dev_warn(adapter->pdev_dev, 4961 "failed to "\ 4962 "provision pf/vf=%d/%d; " 4963 "err=%d\n", pf, vf, ret); 4964 } 4965 } 4966 } 4967 #endif 4968 4969 /* 4970 * Set up the default filter mode. Later we'll want to implement this 4971 * via a firmware command, etc. ... This needs to be done before the 4972 * firmare initialization command ... If the selected set of fields 4973 * isn't equal to the default value, we'll need to make sure that the 4974 * field selections will fit in the 36-bit budget. 4975 */ 4976 if (tp_vlan_pri_map != TP_VLAN_PRI_MAP_DEFAULT) { 4977 int j, bits = 0; 4978 4979 for (j = TP_VLAN_PRI_MAP_FIRST; j <= TP_VLAN_PRI_MAP_LAST; j++) 4980 switch (tp_vlan_pri_map & (1 << j)) { 4981 case 0: 4982 /* compressed filter field not enabled */ 4983 break; 4984 case FCOE_MASK: 4985 bits += 1; 4986 break; 4987 case PORT_MASK: 4988 bits += 3; 4989 break; 4990 case VNIC_ID_MASK: 4991 bits += 17; 4992 break; 4993 case VLAN_MASK: 4994 bits += 17; 4995 break; 4996 case TOS_MASK: 4997 bits += 8; 4998 break; 4999 case PROTOCOL_MASK: 5000 bits += 8; 5001 break; 5002 case ETHERTYPE_MASK: 5003 bits += 16; 5004 break; 5005 case MACMATCH_MASK: 5006 bits += 9; 5007 break; 5008 case MPSHITTYPE_MASK: 5009 bits += 3; 5010 break; 5011 case FRAGMENTATION_MASK: 5012 bits += 1; 5013 break; 5014 } 5015 5016 if (bits > 36) { 5017 dev_err(adapter->pdev_dev, 5018 "tp_vlan_pri_map=%#x needs %d bits > 36;"\ 5019 " using %#x\n", tp_vlan_pri_map, bits, 5020 TP_VLAN_PRI_MAP_DEFAULT); 5021 tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT; 5022 } 5023 } 5024 v = tp_vlan_pri_map; 5025 t4_write_indirect(adapter, TP_PIO_ADDR, TP_PIO_DATA, 5026 &v, 1, TP_VLAN_PRI_MAP); 5027 5028 /* 5029 * We need Five Tuple Lookup mode to be set in TP_GLOBAL_CONFIG order 5030 * to support any of the compressed filter fields above. Newer 5031 * versions of the firmware do this automatically but it doesn't hurt 5032 * to set it here. Meanwhile, we do _not_ need to set Lookup Every 5033 * Packet in TP_INGRESS_CONFIG to support matching non-TCP packets 5034 * since the firmware automatically turns this on and off when we have 5035 * a non-zero number of filters active (since it does have a 5036 * performance impact). 5037 */ 5038 if (tp_vlan_pri_map) 5039 t4_set_reg_field(adapter, TP_GLOBAL_CONFIG, 5040 FIVETUPLELOOKUP_MASK, 5041 FIVETUPLELOOKUP_MASK); 5042 5043 /* 5044 * Tweak some settings. 5045 */ 5046 t4_write_reg(adapter, TP_SHIFT_CNT, SYNSHIFTMAX(6) | 5047 RXTSHIFTMAXR1(4) | RXTSHIFTMAXR2(15) | 5048 PERSHIFTBACKOFFMAX(8) | PERSHIFTMAX(8) | 5049 KEEPALIVEMAXR1(4) | KEEPALIVEMAXR2(9)); 5050 5051 /* 5052 * Get basic stuff going by issuing the Firmware Initialize command. 5053 * Note that this _must_ be after all PFVF commands ... 5054 */ 5055 ret = t4_fw_initialize(adapter, adapter->mbox); 5056 if (ret < 0) 5057 goto bye; 5058 5059 /* 5060 * Return successfully! 5061 */ 5062 dev_info(adapter->pdev_dev, "Successfully configured using built-in "\ 5063 "driver parameters\n"); 5064 return 0; 5065 5066 /* 5067 * Something bad happened. Return the error ... 5068 */ 5069 bye: 5070 return ret; 5071 } 5072 5073 static struct fw_info fw_info_array[] = { 5074 { 5075 .chip = CHELSIO_T4, 5076 .fs_name = FW4_CFNAME, 5077 .fw_mod_name = FW4_FNAME, 5078 .fw_hdr = { 5079 .chip = FW_HDR_CHIP_T4, 5080 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 5081 .intfver_nic = FW_INTFVER(T4, NIC), 5082 .intfver_vnic = FW_INTFVER(T4, VNIC), 5083 .intfver_ri = FW_INTFVER(T4, RI), 5084 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 5085 .intfver_fcoe = FW_INTFVER(T4, FCOE), 5086 }, 5087 }, { 5088 .chip = CHELSIO_T5, 5089 .fs_name = FW5_CFNAME, 5090 .fw_mod_name = FW5_FNAME, 5091 .fw_hdr = { 5092 .chip = FW_HDR_CHIP_T5, 5093 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 5094 .intfver_nic = FW_INTFVER(T5, NIC), 5095 .intfver_vnic = FW_INTFVER(T5, VNIC), 5096 .intfver_ri = FW_INTFVER(T5, RI), 5097 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 5098 .intfver_fcoe = FW_INTFVER(T5, FCOE), 5099 }, 5100 } 5101 }; 5102 5103 static struct fw_info *find_fw_info(int chip) 5104 { 5105 int i; 5106 5107 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 5108 if (fw_info_array[i].chip == chip) 5109 return &fw_info_array[i]; 5110 } 5111 return NULL; 5112 } 5113 5114 /* 5115 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 5116 */ 5117 static int adap_init0(struct adapter *adap) 5118 { 5119 int ret; 5120 u32 v, port_vec; 5121 enum dev_state state; 5122 u32 params[7], val[7]; 5123 struct fw_caps_config_cmd caps_cmd; 5124 int reset = 1; 5125 5126 /* 5127 * Contact FW, advertising Master capability (and potentially forcing 5128 * ourselves as the Master PF if our module parameter force_init is 5129 * set). 5130 */ 5131 ret = t4_fw_hello(adap, adap->mbox, adap->fn, 5132 force_init ? MASTER_MUST : MASTER_MAY, 5133 &state); 5134 if (ret < 0) { 5135 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 5136 ret); 5137 return ret; 5138 } 5139 if (ret == adap->mbox) 5140 adap->flags |= MASTER_PF; 5141 if (force_init && state == DEV_STATE_INIT) 5142 state = DEV_STATE_UNINIT; 5143 5144 /* 5145 * If we're the Master PF Driver and the device is uninitialized, 5146 * then let's consider upgrading the firmware ... (We always want 5147 * to check the firmware version number in order to A. get it for 5148 * later reporting and B. to warn if the currently loaded firmware 5149 * is excessively mismatched relative to the driver.) 5150 */ 5151 t4_get_fw_version(adap, &adap->params.fw_vers); 5152 t4_get_tp_version(adap, &adap->params.tp_vers); 5153 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) { 5154 struct fw_info *fw_info; 5155 struct fw_hdr *card_fw; 5156 const struct firmware *fw; 5157 const u8 *fw_data = NULL; 5158 unsigned int fw_size = 0; 5159 5160 /* This is the firmware whose headers the driver was compiled 5161 * against 5162 */ 5163 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 5164 if (fw_info == NULL) { 5165 dev_err(adap->pdev_dev, 5166 "unable to get firmware info for chip %d.\n", 5167 CHELSIO_CHIP_VERSION(adap->params.chip)); 5168 return -EINVAL; 5169 } 5170 5171 /* allocate memory to read the header of the firmware on the 5172 * card 5173 */ 5174 card_fw = t4_alloc_mem(sizeof(*card_fw)); 5175 5176 /* Get FW from from /lib/firmware/ */ 5177 ret = request_firmware(&fw, fw_info->fw_mod_name, 5178 adap->pdev_dev); 5179 if (ret < 0) { 5180 dev_err(adap->pdev_dev, 5181 "unable to load firmware image %s, error %d\n", 5182 fw_info->fw_mod_name, ret); 5183 } else { 5184 fw_data = fw->data; 5185 fw_size = fw->size; 5186 } 5187 5188 /* upgrade FW logic */ 5189 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 5190 state, &reset); 5191 5192 /* Cleaning up */ 5193 if (fw != NULL) 5194 release_firmware(fw); 5195 t4_free_mem(card_fw); 5196 5197 if (ret < 0) 5198 goto bye; 5199 } 5200 5201 /* 5202 * Grab VPD parameters. This should be done after we establish a 5203 * connection to the firmware since some of the VPD parameters 5204 * (notably the Core Clock frequency) are retrieved via requests to 5205 * the firmware. On the other hand, we need these fairly early on 5206 * so we do this right after getting ahold of the firmware. 5207 */ 5208 ret = get_vpd_params(adap, &adap->params.vpd); 5209 if (ret < 0) 5210 goto bye; 5211 5212 /* 5213 * Find out what ports are available to us. Note that we need to do 5214 * this before calling adap_init0_no_config() since it needs nports 5215 * and portvec ... 5216 */ 5217 v = 5218 FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5219 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC); 5220 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec); 5221 if (ret < 0) 5222 goto bye; 5223 5224 adap->params.nports = hweight32(port_vec); 5225 adap->params.portvec = port_vec; 5226 5227 /* 5228 * If the firmware is initialized already (and we're not forcing a 5229 * master initialization), note that we're living with existing 5230 * adapter parameters. Otherwise, it's time to try initializing the 5231 * adapter ... 5232 */ 5233 if (state == DEV_STATE_INIT) { 5234 dev_info(adap->pdev_dev, "Coming up as %s: "\ 5235 "Adapter already initialized\n", 5236 adap->flags & MASTER_PF ? "MASTER" : "SLAVE"); 5237 adap->flags |= USING_SOFT_PARAMS; 5238 } else { 5239 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 5240 "Initializing adapter\n"); 5241 5242 /* 5243 * If the firmware doesn't support Configuration 5244 * Files warn user and exit, 5245 */ 5246 if (ret < 0) 5247 dev_warn(adap->pdev_dev, "Firmware doesn't support " 5248 "configuration file.\n"); 5249 if (force_old_init) 5250 ret = adap_init0_no_config(adap, reset); 5251 else { 5252 /* 5253 * Find out whether we're dealing with a version of 5254 * the firmware which has configuration file support. 5255 */ 5256 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5257 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF)); 5258 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, 5259 params, val); 5260 5261 /* 5262 * If the firmware doesn't support Configuration 5263 * Files, use the old Driver-based, hard-wired 5264 * initialization. Otherwise, try using the 5265 * Configuration File support and fall back to the 5266 * Driver-based initialization if there's no 5267 * Configuration File found. 5268 */ 5269 if (ret < 0) 5270 ret = adap_init0_no_config(adap, reset); 5271 else { 5272 /* 5273 * The firmware provides us with a memory 5274 * buffer where we can load a Configuration 5275 * File from the host if we want to override 5276 * the Configuration File in flash. 5277 */ 5278 5279 ret = adap_init0_config(adap, reset); 5280 if (ret == -ENOENT) { 5281 dev_info(adap->pdev_dev, 5282 "No Configuration File present " 5283 "on adapter. Using hard-wired " 5284 "configuration parameters.\n"); 5285 ret = adap_init0_no_config(adap, reset); 5286 } 5287 } 5288 } 5289 if (ret < 0) { 5290 dev_err(adap->pdev_dev, 5291 "could not initialize adapter, error %d\n", 5292 -ret); 5293 goto bye; 5294 } 5295 } 5296 5297 /* 5298 * If we're living with non-hard-coded parameters (either from a 5299 * Firmware Configuration File or values programmed by a different PF 5300 * Driver), give the SGE code a chance to pull in anything that it 5301 * needs ... Note that this must be called after we retrieve our VPD 5302 * parameters in order to know how to convert core ticks to seconds. 5303 */ 5304 if (adap->flags & USING_SOFT_PARAMS) { 5305 ret = t4_sge_init(adap); 5306 if (ret < 0) 5307 goto bye; 5308 } 5309 5310 if (is_bypass_device(adap->pdev->device)) 5311 adap->params.bypass = 1; 5312 5313 /* 5314 * Grab some of our basic fundamental operating parameters. 5315 */ 5316 #define FW_PARAM_DEV(param) \ 5317 (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 5318 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 5319 5320 #define FW_PARAM_PFVF(param) \ 5321 FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 5322 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)| \ 5323 FW_PARAMS_PARAM_Y(0) | \ 5324 FW_PARAMS_PARAM_Z(0) 5325 5326 params[0] = FW_PARAM_PFVF(EQ_START); 5327 params[1] = FW_PARAM_PFVF(L2T_START); 5328 params[2] = FW_PARAM_PFVF(L2T_END); 5329 params[3] = FW_PARAM_PFVF(FILTER_START); 5330 params[4] = FW_PARAM_PFVF(FILTER_END); 5331 params[5] = FW_PARAM_PFVF(IQFLINT_START); 5332 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val); 5333 if (ret < 0) 5334 goto bye; 5335 adap->sge.egr_start = val[0]; 5336 adap->l2t_start = val[1]; 5337 adap->l2t_end = val[2]; 5338 adap->tids.ftid_base = val[3]; 5339 adap->tids.nftids = val[4] - val[3] + 1; 5340 adap->sge.ingr_start = val[5]; 5341 5342 /* query params related to active filter region */ 5343 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 5344 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 5345 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val); 5346 /* If Active filter size is set we enable establishing 5347 * offload connection through firmware work request 5348 */ 5349 if ((val[0] != val[1]) && (ret >= 0)) { 5350 adap->flags |= FW_OFLD_CONN; 5351 adap->tids.aftid_base = val[0]; 5352 adap->tids.aftid_end = val[1]; 5353 } 5354 5355 /* If we're running on newer firmware, let it know that we're 5356 * prepared to deal with encapsulated CPL messages. Older 5357 * firmware won't understand this and we'll just get 5358 * unencapsulated messages ... 5359 */ 5360 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 5361 val[0] = 1; 5362 (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val); 5363 5364 /* 5365 * Get device capabilities so we can determine what resources we need 5366 * to manage. 5367 */ 5368 memset(&caps_cmd, 0, sizeof(caps_cmd)); 5369 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5370 FW_CMD_REQUEST | FW_CMD_READ); 5371 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 5372 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 5373 &caps_cmd); 5374 if (ret < 0) 5375 goto bye; 5376 5377 if (caps_cmd.ofldcaps) { 5378 /* query offload-related parameters */ 5379 params[0] = FW_PARAM_DEV(NTID); 5380 params[1] = FW_PARAM_PFVF(SERVER_START); 5381 params[2] = FW_PARAM_PFVF(SERVER_END); 5382 params[3] = FW_PARAM_PFVF(TDDP_START); 5383 params[4] = FW_PARAM_PFVF(TDDP_END); 5384 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5385 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, 5386 params, val); 5387 if (ret < 0) 5388 goto bye; 5389 adap->tids.ntids = val[0]; 5390 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 5391 adap->tids.stid_base = val[1]; 5392 adap->tids.nstids = val[2] - val[1] + 1; 5393 /* 5394 * Setup server filter region. Divide the availble filter 5395 * region into two parts. Regular filters get 1/3rd and server 5396 * filters get 2/3rd part. This is only enabled if workarond 5397 * path is enabled. 5398 * 1. For regular filters. 5399 * 2. Server filter: This are special filters which are used 5400 * to redirect SYN packets to offload queue. 5401 */ 5402 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) { 5403 adap->tids.sftid_base = adap->tids.ftid_base + 5404 DIV_ROUND_UP(adap->tids.nftids, 3); 5405 adap->tids.nsftids = adap->tids.nftids - 5406 DIV_ROUND_UP(adap->tids.nftids, 3); 5407 adap->tids.nftids = adap->tids.sftid_base - 5408 adap->tids.ftid_base; 5409 } 5410 adap->vres.ddp.start = val[3]; 5411 adap->vres.ddp.size = val[4] - val[3] + 1; 5412 adap->params.ofldq_wr_cred = val[5]; 5413 5414 adap->params.offload = 1; 5415 } 5416 if (caps_cmd.rdmacaps) { 5417 params[0] = FW_PARAM_PFVF(STAG_START); 5418 params[1] = FW_PARAM_PFVF(STAG_END); 5419 params[2] = FW_PARAM_PFVF(RQ_START); 5420 params[3] = FW_PARAM_PFVF(RQ_END); 5421 params[4] = FW_PARAM_PFVF(PBL_START); 5422 params[5] = FW_PARAM_PFVF(PBL_END); 5423 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, 5424 params, val); 5425 if (ret < 0) 5426 goto bye; 5427 adap->vres.stag.start = val[0]; 5428 adap->vres.stag.size = val[1] - val[0] + 1; 5429 adap->vres.rq.start = val[2]; 5430 adap->vres.rq.size = val[3] - val[2] + 1; 5431 adap->vres.pbl.start = val[4]; 5432 adap->vres.pbl.size = val[5] - val[4] + 1; 5433 5434 params[0] = FW_PARAM_PFVF(SQRQ_START); 5435 params[1] = FW_PARAM_PFVF(SQRQ_END); 5436 params[2] = FW_PARAM_PFVF(CQ_START); 5437 params[3] = FW_PARAM_PFVF(CQ_END); 5438 params[4] = FW_PARAM_PFVF(OCQ_START); 5439 params[5] = FW_PARAM_PFVF(OCQ_END); 5440 ret = t4_query_params(adap, 0, 0, 0, 6, params, val); 5441 if (ret < 0) 5442 goto bye; 5443 adap->vres.qp.start = val[0]; 5444 adap->vres.qp.size = val[1] - val[0] + 1; 5445 adap->vres.cq.start = val[2]; 5446 adap->vres.cq.size = val[3] - val[2] + 1; 5447 adap->vres.ocq.start = val[4]; 5448 adap->vres.ocq.size = val[5] - val[4] + 1; 5449 } 5450 if (caps_cmd.iscsicaps) { 5451 params[0] = FW_PARAM_PFVF(ISCSI_START); 5452 params[1] = FW_PARAM_PFVF(ISCSI_END); 5453 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, 5454 params, val); 5455 if (ret < 0) 5456 goto bye; 5457 adap->vres.iscsi.start = val[0]; 5458 adap->vres.iscsi.size = val[1] - val[0] + 1; 5459 } 5460 #undef FW_PARAM_PFVF 5461 #undef FW_PARAM_DEV 5462 5463 /* 5464 * These are finalized by FW initialization, load their values now. 5465 */ 5466 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 5467 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 5468 adap->params.b_wnd); 5469 5470 t4_init_tp_params(adap); 5471 adap->flags |= FW_OK; 5472 return 0; 5473 5474 /* 5475 * Something bad happened. If a command timed out or failed with EIO 5476 * FW does not operate within its spec or something catastrophic 5477 * happened to HW/FW, stop issuing commands. 5478 */ 5479 bye: 5480 if (ret != -ETIMEDOUT && ret != -EIO) 5481 t4_fw_bye(adap, adap->mbox); 5482 return ret; 5483 } 5484 5485 /* EEH callbacks */ 5486 5487 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 5488 pci_channel_state_t state) 5489 { 5490 int i; 5491 struct adapter *adap = pci_get_drvdata(pdev); 5492 5493 if (!adap) 5494 goto out; 5495 5496 rtnl_lock(); 5497 adap->flags &= ~FW_OK; 5498 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 5499 for_each_port(adap, i) { 5500 struct net_device *dev = adap->port[i]; 5501 5502 netif_device_detach(dev); 5503 netif_carrier_off(dev); 5504 } 5505 if (adap->flags & FULL_INIT_DONE) 5506 cxgb_down(adap); 5507 rtnl_unlock(); 5508 pci_disable_device(pdev); 5509 out: return state == pci_channel_io_perm_failure ? 5510 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 5511 } 5512 5513 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 5514 { 5515 int i, ret; 5516 struct fw_caps_config_cmd c; 5517 struct adapter *adap = pci_get_drvdata(pdev); 5518 5519 if (!adap) { 5520 pci_restore_state(pdev); 5521 pci_save_state(pdev); 5522 return PCI_ERS_RESULT_RECOVERED; 5523 } 5524 5525 if (pci_enable_device(pdev)) { 5526 dev_err(&pdev->dev, "cannot reenable PCI device after reset\n"); 5527 return PCI_ERS_RESULT_DISCONNECT; 5528 } 5529 5530 pci_set_master(pdev); 5531 pci_restore_state(pdev); 5532 pci_save_state(pdev); 5533 pci_cleanup_aer_uncorrect_error_status(pdev); 5534 5535 if (t4_wait_dev_ready(adap) < 0) 5536 return PCI_ERS_RESULT_DISCONNECT; 5537 if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0) 5538 return PCI_ERS_RESULT_DISCONNECT; 5539 adap->flags |= FW_OK; 5540 if (adap_init1(adap, &c)) 5541 return PCI_ERS_RESULT_DISCONNECT; 5542 5543 for_each_port(adap, i) { 5544 struct port_info *p = adap2pinfo(adap, i); 5545 5546 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1, 5547 NULL, NULL); 5548 if (ret < 0) 5549 return PCI_ERS_RESULT_DISCONNECT; 5550 p->viid = ret; 5551 p->xact_addr_filt = -1; 5552 } 5553 5554 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 5555 adap->params.b_wnd); 5556 setup_memwin(adap); 5557 if (cxgb_up(adap)) 5558 return PCI_ERS_RESULT_DISCONNECT; 5559 return PCI_ERS_RESULT_RECOVERED; 5560 } 5561 5562 static void eeh_resume(struct pci_dev *pdev) 5563 { 5564 int i; 5565 struct adapter *adap = pci_get_drvdata(pdev); 5566 5567 if (!adap) 5568 return; 5569 5570 rtnl_lock(); 5571 for_each_port(adap, i) { 5572 struct net_device *dev = adap->port[i]; 5573 5574 if (netif_running(dev)) { 5575 link_start(dev); 5576 cxgb_set_rxmode(dev); 5577 } 5578 netif_device_attach(dev); 5579 } 5580 rtnl_unlock(); 5581 } 5582 5583 static const struct pci_error_handlers cxgb4_eeh = { 5584 .error_detected = eeh_err_detected, 5585 .slot_reset = eeh_slot_reset, 5586 .resume = eeh_resume, 5587 }; 5588 5589 static inline bool is_10g_port(const struct link_config *lc) 5590 { 5591 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0; 5592 } 5593 5594 static inline void init_rspq(struct sge_rspq *q, u8 timer_idx, u8 pkt_cnt_idx, 5595 unsigned int size, unsigned int iqe_size) 5596 { 5597 q->intr_params = QINTR_TIMER_IDX(timer_idx) | 5598 (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0); 5599 q->pktcnt_idx = pkt_cnt_idx < SGE_NCOUNTERS ? pkt_cnt_idx : 0; 5600 q->iqe_len = iqe_size; 5601 q->size = size; 5602 } 5603 5604 /* 5605 * Perform default configuration of DMA queues depending on the number and type 5606 * of ports we found and the number of available CPUs. Most settings can be 5607 * modified by the admin prior to actual use. 5608 */ 5609 static void cfg_queues(struct adapter *adap) 5610 { 5611 struct sge *s = &adap->sge; 5612 int i, q10g = 0, n10g = 0, qidx = 0; 5613 5614 for_each_port(adap, i) 5615 n10g += is_10g_port(&adap2pinfo(adap, i)->link_cfg); 5616 5617 /* 5618 * We default to 1 queue per non-10G port and up to # of cores queues 5619 * per 10G port. 5620 */ 5621 if (n10g) 5622 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g; 5623 if (q10g > netif_get_num_default_rss_queues()) 5624 q10g = netif_get_num_default_rss_queues(); 5625 5626 for_each_port(adap, i) { 5627 struct port_info *pi = adap2pinfo(adap, i); 5628 5629 pi->first_qset = qidx; 5630 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1; 5631 qidx += pi->nqsets; 5632 } 5633 5634 s->ethqsets = qidx; 5635 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 5636 5637 if (is_offload(adap)) { 5638 /* 5639 * For offload we use 1 queue/channel if all ports are up to 1G, 5640 * otherwise we divide all available queues amongst the channels 5641 * capped by the number of available cores. 5642 */ 5643 if (n10g) { 5644 i = min_t(int, ARRAY_SIZE(s->ofldrxq), 5645 num_online_cpus()); 5646 s->ofldqsets = roundup(i, adap->params.nports); 5647 } else 5648 s->ofldqsets = adap->params.nports; 5649 /* For RDMA one Rx queue per channel suffices */ 5650 s->rdmaqs = adap->params.nports; 5651 } 5652 5653 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 5654 struct sge_eth_rxq *r = &s->ethrxq[i]; 5655 5656 init_rspq(&r->rspq, 0, 0, 1024, 64); 5657 r->fl.size = 72; 5658 } 5659 5660 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 5661 s->ethtxq[i].q.size = 1024; 5662 5663 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 5664 s->ctrlq[i].q.size = 512; 5665 5666 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) 5667 s->ofldtxq[i].q.size = 1024; 5668 5669 for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) { 5670 struct sge_ofld_rxq *r = &s->ofldrxq[i]; 5671 5672 init_rspq(&r->rspq, 0, 0, 1024, 64); 5673 r->rspq.uld = CXGB4_ULD_ISCSI; 5674 r->fl.size = 72; 5675 } 5676 5677 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) { 5678 struct sge_ofld_rxq *r = &s->rdmarxq[i]; 5679 5680 init_rspq(&r->rspq, 0, 0, 511, 64); 5681 r->rspq.uld = CXGB4_ULD_RDMA; 5682 r->fl.size = 72; 5683 } 5684 5685 init_rspq(&s->fw_evtq, 6, 0, 512, 64); 5686 init_rspq(&s->intrq, 6, 0, 2 * MAX_INGQ, 64); 5687 } 5688 5689 /* 5690 * Reduce the number of Ethernet queues across all ports to at most n. 5691 * n provides at least one queue per port. 5692 */ 5693 static void reduce_ethqs(struct adapter *adap, int n) 5694 { 5695 int i; 5696 struct port_info *pi; 5697 5698 while (n < adap->sge.ethqsets) 5699 for_each_port(adap, i) { 5700 pi = adap2pinfo(adap, i); 5701 if (pi->nqsets > 1) { 5702 pi->nqsets--; 5703 adap->sge.ethqsets--; 5704 if (adap->sge.ethqsets <= n) 5705 break; 5706 } 5707 } 5708 5709 n = 0; 5710 for_each_port(adap, i) { 5711 pi = adap2pinfo(adap, i); 5712 pi->first_qset = n; 5713 n += pi->nqsets; 5714 } 5715 } 5716 5717 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 5718 #define EXTRA_VECS 2 5719 5720 static int enable_msix(struct adapter *adap) 5721 { 5722 int ofld_need = 0; 5723 int i, err, want, need; 5724 struct sge *s = &adap->sge; 5725 unsigned int nchan = adap->params.nports; 5726 struct msix_entry entries[MAX_INGQ + 1]; 5727 5728 for (i = 0; i < ARRAY_SIZE(entries); ++i) 5729 entries[i].entry = i; 5730 5731 want = s->max_ethqsets + EXTRA_VECS; 5732 if (is_offload(adap)) { 5733 want += s->rdmaqs + s->ofldqsets; 5734 /* need nchan for each possible ULD */ 5735 ofld_need = 2 * nchan; 5736 } 5737 need = adap->params.nports + EXTRA_VECS + ofld_need; 5738 5739 while ((err = pci_enable_msix(adap->pdev, entries, want)) >= need) 5740 want = err; 5741 5742 if (!err) { 5743 /* 5744 * Distribute available vectors to the various queue groups. 5745 * Every group gets its minimum requirement and NIC gets top 5746 * priority for leftovers. 5747 */ 5748 i = want - EXTRA_VECS - ofld_need; 5749 if (i < s->max_ethqsets) { 5750 s->max_ethqsets = i; 5751 if (i < s->ethqsets) 5752 reduce_ethqs(adap, i); 5753 } 5754 if (is_offload(adap)) { 5755 i = want - EXTRA_VECS - s->max_ethqsets; 5756 i -= ofld_need - nchan; 5757 s->ofldqsets = (i / nchan) * nchan; /* round down */ 5758 } 5759 for (i = 0; i < want; ++i) 5760 adap->msix_info[i].vec = entries[i].vector; 5761 } else if (err > 0) 5762 dev_info(adap->pdev_dev, 5763 "only %d MSI-X vectors left, not using MSI-X\n", err); 5764 return err; 5765 } 5766 5767 #undef EXTRA_VECS 5768 5769 static int init_rss(struct adapter *adap) 5770 { 5771 unsigned int i, j; 5772 5773 for_each_port(adap, i) { 5774 struct port_info *pi = adap2pinfo(adap, i); 5775 5776 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 5777 if (!pi->rss) 5778 return -ENOMEM; 5779 for (j = 0; j < pi->rss_size; j++) 5780 pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets); 5781 } 5782 return 0; 5783 } 5784 5785 static void print_port_info(const struct net_device *dev) 5786 { 5787 static const char *base[] = { 5788 "R XFI", "R XAUI", "T SGMII", "T XFI", "T XAUI", "KX4", "CX4", 5789 "KX", "KR", "R SFP+", "KR/KX", "KR/KX/KX4" 5790 }; 5791 5792 char buf[80]; 5793 char *bufp = buf; 5794 const char *spd = ""; 5795 const struct port_info *pi = netdev_priv(dev); 5796 const struct adapter *adap = pi->adapter; 5797 5798 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB) 5799 spd = " 2.5 GT/s"; 5800 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB) 5801 spd = " 5 GT/s"; 5802 5803 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M) 5804 bufp += sprintf(bufp, "100/"); 5805 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G) 5806 bufp += sprintf(bufp, "1000/"); 5807 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G) 5808 bufp += sprintf(bufp, "10G/"); 5809 if (bufp != buf) 5810 --bufp; 5811 sprintf(bufp, "BASE-%s", base[pi->port_type]); 5812 5813 netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n", 5814 adap->params.vpd.id, 5815 CHELSIO_CHIP_RELEASE(adap->params.chip), buf, 5816 is_offload(adap) ? "R" : "", adap->params.pci.width, spd, 5817 (adap->flags & USING_MSIX) ? " MSI-X" : 5818 (adap->flags & USING_MSI) ? " MSI" : ""); 5819 netdev_info(dev, "S/N: %s, E/C: %s\n", 5820 adap->params.vpd.sn, adap->params.vpd.ec); 5821 } 5822 5823 static void enable_pcie_relaxed_ordering(struct pci_dev *dev) 5824 { 5825 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN); 5826 } 5827 5828 /* 5829 * Free the following resources: 5830 * - memory used for tables 5831 * - MSI/MSI-X 5832 * - net devices 5833 * - resources FW is holding for us 5834 */ 5835 static void free_some_resources(struct adapter *adapter) 5836 { 5837 unsigned int i; 5838 5839 t4_free_mem(adapter->l2t); 5840 t4_free_mem(adapter->tids.tid_tab); 5841 disable_msi(adapter); 5842 5843 for_each_port(adapter, i) 5844 if (adapter->port[i]) { 5845 kfree(adap2pinfo(adapter, i)->rss); 5846 free_netdev(adapter->port[i]); 5847 } 5848 if (adapter->flags & FW_OK) 5849 t4_fw_bye(adapter, adapter->fn); 5850 } 5851 5852 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 5853 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 5854 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 5855 #define SEGMENT_SIZE 128 5856 5857 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 5858 { 5859 int func, i, err, s_qpp, qpp, num_seg; 5860 struct port_info *pi; 5861 bool highdma = false; 5862 struct adapter *adapter = NULL; 5863 5864 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 5865 5866 err = pci_request_regions(pdev, KBUILD_MODNAME); 5867 if (err) { 5868 /* Just info, some other driver may have claimed the device. */ 5869 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 5870 return err; 5871 } 5872 5873 /* We control everything through one PF */ 5874 func = PCI_FUNC(pdev->devfn); 5875 if (func != ent->driver_data) { 5876 pci_save_state(pdev); /* to restore SR-IOV later */ 5877 goto sriov; 5878 } 5879 5880 err = pci_enable_device(pdev); 5881 if (err) { 5882 dev_err(&pdev->dev, "cannot enable PCI device\n"); 5883 goto out_release_regions; 5884 } 5885 5886 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 5887 highdma = true; 5888 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 5889 if (err) { 5890 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 5891 "coherent allocations\n"); 5892 goto out_disable_device; 5893 } 5894 } else { 5895 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 5896 if (err) { 5897 dev_err(&pdev->dev, "no usable DMA configuration\n"); 5898 goto out_disable_device; 5899 } 5900 } 5901 5902 pci_enable_pcie_error_reporting(pdev); 5903 enable_pcie_relaxed_ordering(pdev); 5904 pci_set_master(pdev); 5905 pci_save_state(pdev); 5906 5907 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 5908 if (!adapter) { 5909 err = -ENOMEM; 5910 goto out_disable_device; 5911 } 5912 5913 adapter->regs = pci_ioremap_bar(pdev, 0); 5914 if (!adapter->regs) { 5915 dev_err(&pdev->dev, "cannot map device registers\n"); 5916 err = -ENOMEM; 5917 goto out_free_adapter; 5918 } 5919 5920 adapter->pdev = pdev; 5921 adapter->pdev_dev = &pdev->dev; 5922 adapter->mbox = func; 5923 adapter->fn = func; 5924 adapter->msg_enable = dflt_msg_enable; 5925 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 5926 5927 spin_lock_init(&adapter->stats_lock); 5928 spin_lock_init(&adapter->tid_release_lock); 5929 5930 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 5931 INIT_WORK(&adapter->db_full_task, process_db_full); 5932 INIT_WORK(&adapter->db_drop_task, process_db_drop); 5933 5934 err = t4_prep_adapter(adapter); 5935 if (err) 5936 goto out_unmap_bar0; 5937 5938 if (!is_t4(adapter->params.chip)) { 5939 s_qpp = QUEUESPERPAGEPF1 * adapter->fn; 5940 qpp = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adapter, 5941 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp); 5942 num_seg = PAGE_SIZE / SEGMENT_SIZE; 5943 5944 /* Each segment size is 128B. Write coalescing is enabled only 5945 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 5946 * queue is less no of segments that can be accommodated in 5947 * a page size. 5948 */ 5949 if (qpp > num_seg) { 5950 dev_err(&pdev->dev, 5951 "Incorrect number of egress queues per page\n"); 5952 err = -EINVAL; 5953 goto out_unmap_bar0; 5954 } 5955 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 5956 pci_resource_len(pdev, 2)); 5957 if (!adapter->bar2) { 5958 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 5959 err = -ENOMEM; 5960 goto out_unmap_bar0; 5961 } 5962 } 5963 5964 setup_memwin(adapter); 5965 err = adap_init0(adapter); 5966 setup_memwin_rdma(adapter); 5967 if (err) 5968 goto out_unmap_bar; 5969 5970 for_each_port(adapter, i) { 5971 struct net_device *netdev; 5972 5973 netdev = alloc_etherdev_mq(sizeof(struct port_info), 5974 MAX_ETH_QSETS); 5975 if (!netdev) { 5976 err = -ENOMEM; 5977 goto out_free_dev; 5978 } 5979 5980 SET_NETDEV_DEV(netdev, &pdev->dev); 5981 5982 adapter->port[i] = netdev; 5983 pi = netdev_priv(netdev); 5984 pi->adapter = adapter; 5985 pi->xact_addr_filt = -1; 5986 pi->port_id = i; 5987 netdev->irq = pdev->irq; 5988 5989 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 5990 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 5991 NETIF_F_RXCSUM | NETIF_F_RXHASH | 5992 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 5993 if (highdma) 5994 netdev->hw_features |= NETIF_F_HIGHDMA; 5995 netdev->features |= netdev->hw_features; 5996 netdev->vlan_features = netdev->features & VLAN_FEAT; 5997 5998 netdev->priv_flags |= IFF_UNICAST_FLT; 5999 6000 netdev->netdev_ops = &cxgb4_netdev_ops; 6001 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops); 6002 } 6003 6004 pci_set_drvdata(pdev, adapter); 6005 6006 if (adapter->flags & FW_OK) { 6007 err = t4_port_init(adapter, func, func, 0); 6008 if (err) 6009 goto out_free_dev; 6010 } 6011 6012 /* 6013 * Configure queues and allocate tables now, they can be needed as 6014 * soon as the first register_netdev completes. 6015 */ 6016 cfg_queues(adapter); 6017 6018 adapter->l2t = t4_init_l2t(); 6019 if (!adapter->l2t) { 6020 /* We tolerate a lack of L2T, giving up some functionality */ 6021 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 6022 adapter->params.offload = 0; 6023 } 6024 6025 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) { 6026 dev_warn(&pdev->dev, "could not allocate TID table, " 6027 "continuing\n"); 6028 adapter->params.offload = 0; 6029 } 6030 6031 /* See what interrupts we'll be using */ 6032 if (msi > 1 && enable_msix(adapter) == 0) 6033 adapter->flags |= USING_MSIX; 6034 else if (msi > 0 && pci_enable_msi(pdev) == 0) 6035 adapter->flags |= USING_MSI; 6036 6037 err = init_rss(adapter); 6038 if (err) 6039 goto out_free_dev; 6040 6041 /* 6042 * The card is now ready to go. If any errors occur during device 6043 * registration we do not fail the whole card but rather proceed only 6044 * with the ports we manage to register successfully. However we must 6045 * register at least one net device. 6046 */ 6047 for_each_port(adapter, i) { 6048 pi = adap2pinfo(adapter, i); 6049 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 6050 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 6051 6052 err = register_netdev(adapter->port[i]); 6053 if (err) 6054 break; 6055 adapter->chan_map[pi->tx_chan] = i; 6056 print_port_info(adapter->port[i]); 6057 } 6058 if (i == 0) { 6059 dev_err(&pdev->dev, "could not register any net devices\n"); 6060 goto out_free_dev; 6061 } 6062 if (err) { 6063 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 6064 err = 0; 6065 } 6066 6067 if (cxgb4_debugfs_root) { 6068 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 6069 cxgb4_debugfs_root); 6070 setup_debugfs(adapter); 6071 } 6072 6073 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 6074 pdev->needs_freset = 1; 6075 6076 if (is_offload(adapter)) 6077 attach_ulds(adapter); 6078 6079 sriov: 6080 #ifdef CONFIG_PCI_IOV 6081 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0) 6082 if (pci_enable_sriov(pdev, num_vf[func]) == 0) 6083 dev_info(&pdev->dev, 6084 "instantiated %u virtual functions\n", 6085 num_vf[func]); 6086 #endif 6087 return 0; 6088 6089 out_free_dev: 6090 free_some_resources(adapter); 6091 out_unmap_bar: 6092 if (!is_t4(adapter->params.chip)) 6093 iounmap(adapter->bar2); 6094 out_unmap_bar0: 6095 iounmap(adapter->regs); 6096 out_free_adapter: 6097 kfree(adapter); 6098 out_disable_device: 6099 pci_disable_pcie_error_reporting(pdev); 6100 pci_disable_device(pdev); 6101 out_release_regions: 6102 pci_release_regions(pdev); 6103 return err; 6104 } 6105 6106 static void remove_one(struct pci_dev *pdev) 6107 { 6108 struct adapter *adapter = pci_get_drvdata(pdev); 6109 6110 #ifdef CONFIG_PCI_IOV 6111 pci_disable_sriov(pdev); 6112 6113 #endif 6114 6115 if (adapter) { 6116 int i; 6117 6118 if (is_offload(adapter)) 6119 detach_ulds(adapter); 6120 6121 for_each_port(adapter, i) 6122 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 6123 unregister_netdev(adapter->port[i]); 6124 6125 if (adapter->debugfs_root) 6126 debugfs_remove_recursive(adapter->debugfs_root); 6127 6128 /* If we allocated filters, free up state associated with any 6129 * valid filters ... 6130 */ 6131 if (adapter->tids.ftid_tab) { 6132 struct filter_entry *f = &adapter->tids.ftid_tab[0]; 6133 for (i = 0; i < (adapter->tids.nftids + 6134 adapter->tids.nsftids); i++, f++) 6135 if (f->valid) 6136 clear_filter(adapter, f); 6137 } 6138 6139 if (adapter->flags & FULL_INIT_DONE) 6140 cxgb_down(adapter); 6141 6142 free_some_resources(adapter); 6143 iounmap(adapter->regs); 6144 if (!is_t4(adapter->params.chip)) 6145 iounmap(adapter->bar2); 6146 kfree(adapter); 6147 pci_disable_pcie_error_reporting(pdev); 6148 pci_disable_device(pdev); 6149 pci_release_regions(pdev); 6150 } else 6151 pci_release_regions(pdev); 6152 } 6153 6154 static struct pci_driver cxgb4_driver = { 6155 .name = KBUILD_MODNAME, 6156 .id_table = cxgb4_pci_tbl, 6157 .probe = init_one, 6158 .remove = remove_one, 6159 .err_handler = &cxgb4_eeh, 6160 }; 6161 6162 static int __init cxgb4_init_module(void) 6163 { 6164 int ret; 6165 6166 workq = create_singlethread_workqueue("cxgb4"); 6167 if (!workq) 6168 return -ENOMEM; 6169 6170 /* Debugfs support is optional, just warn if this fails */ 6171 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 6172 if (!cxgb4_debugfs_root) 6173 pr_warn("could not create debugfs entry, continuing\n"); 6174 6175 ret = pci_register_driver(&cxgb4_driver); 6176 if (ret < 0) { 6177 debugfs_remove(cxgb4_debugfs_root); 6178 destroy_workqueue(workq); 6179 } 6180 6181 register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6182 6183 return ret; 6184 } 6185 6186 static void __exit cxgb4_cleanup_module(void) 6187 { 6188 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6189 pci_unregister_driver(&cxgb4_driver); 6190 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 6191 flush_workqueue(workq); 6192 destroy_workqueue(workq); 6193 } 6194 6195 module_init(cxgb4_init_module); 6196 module_exit(cxgb4_cleanup_module); 6197