1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <asm/uaccess.h> 65 66 #include "cxgb4.h" 67 #include "t4_regs.h" 68 #include "t4_msg.h" 69 #include "t4fw_api.h" 70 #include "l2t.h" 71 72 #include <../drivers/net/bonding/bonding.h> 73 74 #ifdef DRV_VERSION 75 #undef DRV_VERSION 76 #endif 77 #define DRV_VERSION "2.0.0-ko" 78 #define DRV_DESC "Chelsio T4/T5 Network Driver" 79 80 /* 81 * Max interrupt hold-off timer value in us. Queues fall back to this value 82 * under extreme memory pressure so it's largish to give the system time to 83 * recover. 84 */ 85 #define MAX_SGE_TIMERVAL 200U 86 87 enum { 88 /* 89 * Physical Function provisioning constants. 90 */ 91 PFRES_NVI = 4, /* # of Virtual Interfaces */ 92 PFRES_NETHCTRL = 128, /* # of EQs used for ETH or CTRL Qs */ 93 PFRES_NIQFLINT = 128, /* # of ingress Qs/w Free List(s)/intr 94 */ 95 PFRES_NEQ = 256, /* # of egress queues */ 96 PFRES_NIQ = 0, /* # of ingress queues */ 97 PFRES_TC = 0, /* PCI-E traffic class */ 98 PFRES_NEXACTF = 128, /* # of exact MPS filters */ 99 100 PFRES_R_CAPS = FW_CMD_CAP_PF, 101 PFRES_WX_CAPS = FW_CMD_CAP_PF, 102 103 #ifdef CONFIG_PCI_IOV 104 /* 105 * Virtual Function provisioning constants. We need two extra Ingress 106 * Queues with Interrupt capability to serve as the VF's Firmware 107 * Event Queue and Forwarded Interrupt Queue (when using MSI mode) -- 108 * neither will have Free Lists associated with them). For each 109 * Ethernet/Control Egress Queue and for each Free List, we need an 110 * Egress Context. 111 */ 112 VFRES_NPORTS = 1, /* # of "ports" per VF */ 113 VFRES_NQSETS = 2, /* # of "Queue Sets" per VF */ 114 115 VFRES_NVI = VFRES_NPORTS, /* # of Virtual Interfaces */ 116 VFRES_NETHCTRL = VFRES_NQSETS, /* # of EQs used for ETH or CTRL Qs */ 117 VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */ 118 VFRES_NEQ = VFRES_NQSETS*2, /* # of egress queues */ 119 VFRES_NIQ = 0, /* # of non-fl/int ingress queues */ 120 VFRES_TC = 0, /* PCI-E traffic class */ 121 VFRES_NEXACTF = 16, /* # of exact MPS filters */ 122 123 VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT, 124 VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF, 125 #endif 126 }; 127 128 /* 129 * Provide a Port Access Rights Mask for the specified PF/VF. This is very 130 * static and likely not to be useful in the long run. We really need to 131 * implement some form of persistent configuration which the firmware 132 * controls. 133 */ 134 static unsigned int pfvfres_pmask(struct adapter *adapter, 135 unsigned int pf, unsigned int vf) 136 { 137 unsigned int portn, portvec; 138 139 /* 140 * Give PF's access to all of the ports. 141 */ 142 if (vf == 0) 143 return FW_PFVF_CMD_PMASK_MASK; 144 145 /* 146 * For VFs, we'll assign them access to the ports based purely on the 147 * PF. We assign active ports in order, wrapping around if there are 148 * fewer active ports than PFs: e.g. active port[pf % nports]. 149 * Unfortunately the adapter's port_info structs haven't been 150 * initialized yet so we have to compute this. 151 */ 152 if (adapter->params.nports == 0) 153 return 0; 154 155 portn = pf % adapter->params.nports; 156 portvec = adapter->params.portvec; 157 for (;;) { 158 /* 159 * Isolate the lowest set bit in the port vector. If we're at 160 * the port number that we want, return that as the pmask. 161 * otherwise mask that bit out of the port vector and 162 * decrement our port number ... 163 */ 164 unsigned int pmask = portvec ^ (portvec & (portvec-1)); 165 if (portn == 0) 166 return pmask; 167 portn--; 168 portvec &= ~pmask; 169 } 170 /*NOTREACHED*/ 171 } 172 173 enum { 174 MAX_TXQ_ENTRIES = 16384, 175 MAX_CTRL_TXQ_ENTRIES = 1024, 176 MAX_RSPQ_ENTRIES = 16384, 177 MAX_RX_BUFFERS = 16384, 178 MIN_TXQ_ENTRIES = 32, 179 MIN_CTRL_TXQ_ENTRIES = 32, 180 MIN_RSPQ_ENTRIES = 128, 181 MIN_FL_ENTRIES = 16 182 }; 183 184 /* Host shadow copy of ingress filter entry. This is in host native format 185 * and doesn't match the ordering or bit order, etc. of the hardware of the 186 * firmware command. The use of bit-field structure elements is purely to 187 * remind ourselves of the field size limitations and save memory in the case 188 * where the filter table is large. 189 */ 190 struct filter_entry { 191 /* Administrative fields for filter. 192 */ 193 u32 valid:1; /* filter allocated and valid */ 194 u32 locked:1; /* filter is administratively locked */ 195 196 u32 pending:1; /* filter action is pending firmware reply */ 197 u32 smtidx:8; /* Source MAC Table index for smac */ 198 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */ 199 200 /* The filter itself. Most of this is a straight copy of information 201 * provided by the extended ioctl(). Some fields are translated to 202 * internal forms -- for instance the Ingress Queue ID passed in from 203 * the ioctl() is translated into the Absolute Ingress Queue ID. 204 */ 205 struct ch_filter_specification fs; 206 }; 207 208 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 209 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 210 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 211 212 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) } 213 214 static DEFINE_PCI_DEVICE_TABLE(cxgb4_pci_tbl) = { 215 CH_DEVICE(0xa000, 0), /* PE10K */ 216 CH_DEVICE(0x4001, -1), 217 CH_DEVICE(0x4002, -1), 218 CH_DEVICE(0x4003, -1), 219 CH_DEVICE(0x4004, -1), 220 CH_DEVICE(0x4005, -1), 221 CH_DEVICE(0x4006, -1), 222 CH_DEVICE(0x4007, -1), 223 CH_DEVICE(0x4008, -1), 224 CH_DEVICE(0x4009, -1), 225 CH_DEVICE(0x400a, -1), 226 CH_DEVICE(0x4401, 4), 227 CH_DEVICE(0x4402, 4), 228 CH_DEVICE(0x4403, 4), 229 CH_DEVICE(0x4404, 4), 230 CH_DEVICE(0x4405, 4), 231 CH_DEVICE(0x4406, 4), 232 CH_DEVICE(0x4407, 4), 233 CH_DEVICE(0x4408, 4), 234 CH_DEVICE(0x4409, 4), 235 CH_DEVICE(0x440a, 4), 236 CH_DEVICE(0x440d, 4), 237 CH_DEVICE(0x440e, 4), 238 CH_DEVICE(0x5001, 4), 239 CH_DEVICE(0x5002, 4), 240 CH_DEVICE(0x5003, 4), 241 CH_DEVICE(0x5004, 4), 242 CH_DEVICE(0x5005, 4), 243 CH_DEVICE(0x5006, 4), 244 CH_DEVICE(0x5007, 4), 245 CH_DEVICE(0x5008, 4), 246 CH_DEVICE(0x5009, 4), 247 CH_DEVICE(0x500A, 4), 248 CH_DEVICE(0x500B, 4), 249 CH_DEVICE(0x500C, 4), 250 CH_DEVICE(0x500D, 4), 251 CH_DEVICE(0x500E, 4), 252 CH_DEVICE(0x500F, 4), 253 CH_DEVICE(0x5010, 4), 254 CH_DEVICE(0x5011, 4), 255 CH_DEVICE(0x5012, 4), 256 CH_DEVICE(0x5013, 4), 257 CH_DEVICE(0x5014, 4), 258 CH_DEVICE(0x5015, 4), 259 CH_DEVICE(0x5080, 4), 260 CH_DEVICE(0x5081, 4), 261 CH_DEVICE(0x5082, 4), 262 CH_DEVICE(0x5083, 4), 263 CH_DEVICE(0x5084, 4), 264 CH_DEVICE(0x5085, 4), 265 CH_DEVICE(0x5401, 4), 266 CH_DEVICE(0x5402, 4), 267 CH_DEVICE(0x5403, 4), 268 CH_DEVICE(0x5404, 4), 269 CH_DEVICE(0x5405, 4), 270 CH_DEVICE(0x5406, 4), 271 CH_DEVICE(0x5407, 4), 272 CH_DEVICE(0x5408, 4), 273 CH_DEVICE(0x5409, 4), 274 CH_DEVICE(0x540A, 4), 275 CH_DEVICE(0x540B, 4), 276 CH_DEVICE(0x540C, 4), 277 CH_DEVICE(0x540D, 4), 278 CH_DEVICE(0x540E, 4), 279 CH_DEVICE(0x540F, 4), 280 CH_DEVICE(0x5410, 4), 281 CH_DEVICE(0x5411, 4), 282 CH_DEVICE(0x5412, 4), 283 CH_DEVICE(0x5413, 4), 284 CH_DEVICE(0x5414, 4), 285 CH_DEVICE(0x5415, 4), 286 CH_DEVICE(0x5480, 4), 287 CH_DEVICE(0x5481, 4), 288 CH_DEVICE(0x5482, 4), 289 CH_DEVICE(0x5483, 4), 290 CH_DEVICE(0x5484, 4), 291 CH_DEVICE(0x5485, 4), 292 { 0, } 293 }; 294 295 #define FW4_FNAME "cxgb4/t4fw.bin" 296 #define FW5_FNAME "cxgb4/t5fw.bin" 297 #define FW4_CFNAME "cxgb4/t4-config.txt" 298 #define FW5_CFNAME "cxgb4/t5-config.txt" 299 300 MODULE_DESCRIPTION(DRV_DESC); 301 MODULE_AUTHOR("Chelsio Communications"); 302 MODULE_LICENSE("Dual BSD/GPL"); 303 MODULE_VERSION(DRV_VERSION); 304 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 305 MODULE_FIRMWARE(FW4_FNAME); 306 MODULE_FIRMWARE(FW5_FNAME); 307 308 /* 309 * Normally we're willing to become the firmware's Master PF but will be happy 310 * if another PF has already become the Master and initialized the adapter. 311 * Setting "force_init" will cause this driver to forcibly establish itself as 312 * the Master PF and initialize the adapter. 313 */ 314 static uint force_init; 315 316 module_param(force_init, uint, 0644); 317 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter"); 318 319 /* 320 * Normally if the firmware we connect to has Configuration File support, we 321 * use that and only fall back to the old Driver-based initialization if the 322 * Configuration File fails for some reason. If force_old_init is set, then 323 * we'll always use the old Driver-based initialization sequence. 324 */ 325 static uint force_old_init; 326 327 module_param(force_old_init, uint, 0644); 328 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence"); 329 330 static int dflt_msg_enable = DFLT_MSG_ENABLE; 331 332 module_param(dflt_msg_enable, int, 0644); 333 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap"); 334 335 /* 336 * The driver uses the best interrupt scheme available on a platform in the 337 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 338 * of these schemes the driver may consider as follows: 339 * 340 * msi = 2: choose from among all three options 341 * msi = 1: only consider MSI and INTx interrupts 342 * msi = 0: force INTx interrupts 343 */ 344 static int msi = 2; 345 346 module_param(msi, int, 0644); 347 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 348 349 /* 350 * Queue interrupt hold-off timer values. Queues default to the first of these 351 * upon creation. 352 */ 353 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 }; 354 355 module_param_array(intr_holdoff, uint, NULL, 0644); 356 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers " 357 "0..4 in microseconds"); 358 359 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 }; 360 361 module_param_array(intr_cnt, uint, NULL, 0644); 362 MODULE_PARM_DESC(intr_cnt, 363 "thresholds 1..3 for queue interrupt packet counters"); 364 365 /* 366 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 367 * offset by 2 bytes in order to have the IP headers line up on 4-byte 368 * boundaries. This is a requirement for many architectures which will throw 369 * a machine check fault if an attempt is made to access one of the 4-byte IP 370 * header fields on a non-4-byte boundary. And it's a major performance issue 371 * even on some architectures which allow it like some implementations of the 372 * x86 ISA. However, some architectures don't mind this and for some very 373 * edge-case performance sensitive applications (like forwarding large volumes 374 * of small packets), setting this DMA offset to 0 will decrease the number of 375 * PCI-E Bus transfers enough to measurably affect performance. 376 */ 377 static int rx_dma_offset = 2; 378 379 static bool vf_acls; 380 381 #ifdef CONFIG_PCI_IOV 382 module_param(vf_acls, bool, 0644); 383 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement"); 384 385 /* Configure the number of PCI-E Virtual Function which are to be instantiated 386 * on SR-IOV Capable Physical Functions. 387 */ 388 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV]; 389 390 module_param_array(num_vf, uint, NULL, 0644); 391 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3"); 392 #endif 393 394 /* 395 * The filter TCAM has a fixed portion and a variable portion. The fixed 396 * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP 397 * ports. The variable portion is 36 bits which can include things like Exact 398 * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits), 399 * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would 400 * far exceed the 36-bit budget for this "compressed" header portion of the 401 * filter. Thus, we have a scarce resource which must be carefully managed. 402 * 403 * By default we set this up to mostly match the set of filter matching 404 * capabilities of T3 but with accommodations for some of T4's more 405 * interesting features: 406 * 407 * { IP Fragment (1), MPS Match Type (3), IP Protocol (8), 408 * [Inner] VLAN (17), Port (3), FCoE (1) } 409 */ 410 enum { 411 TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC, 412 TP_VLAN_PRI_MAP_FIRST = FCOE_SHIFT, 413 TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_SHIFT, 414 }; 415 416 static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT; 417 418 module_param(tp_vlan_pri_map, uint, 0644); 419 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration"); 420 421 static struct dentry *cxgb4_debugfs_root; 422 423 static LIST_HEAD(adapter_list); 424 static DEFINE_MUTEX(uld_mutex); 425 /* Adapter list to be accessed from atomic context */ 426 static LIST_HEAD(adap_rcu_list); 427 static DEFINE_SPINLOCK(adap_rcu_lock); 428 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX]; 429 static const char *uld_str[] = { "RDMA", "iSCSI" }; 430 431 static void link_report(struct net_device *dev) 432 { 433 if (!netif_carrier_ok(dev)) 434 netdev_info(dev, "link down\n"); 435 else { 436 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 437 438 const char *s = "10Mbps"; 439 const struct port_info *p = netdev_priv(dev); 440 441 switch (p->link_cfg.speed) { 442 case 10000: 443 s = "10Gbps"; 444 break; 445 case 1000: 446 s = "1000Mbps"; 447 break; 448 case 100: 449 s = "100Mbps"; 450 break; 451 case 40000: 452 s = "40Gbps"; 453 break; 454 } 455 456 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 457 fc[p->link_cfg.fc]); 458 } 459 } 460 461 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 462 { 463 struct net_device *dev = adapter->port[port_id]; 464 465 /* Skip changes from disabled ports. */ 466 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 467 if (link_stat) 468 netif_carrier_on(dev); 469 else 470 netif_carrier_off(dev); 471 472 link_report(dev); 473 } 474 } 475 476 void t4_os_portmod_changed(const struct adapter *adap, int port_id) 477 { 478 static const char *mod_str[] = { 479 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 480 }; 481 482 const struct net_device *dev = adap->port[port_id]; 483 const struct port_info *pi = netdev_priv(dev); 484 485 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 486 netdev_info(dev, "port module unplugged\n"); 487 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 488 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 489 } 490 491 /* 492 * Configure the exact and hash address filters to handle a port's multicast 493 * and secondary unicast MAC addresses. 494 */ 495 static int set_addr_filters(const struct net_device *dev, bool sleep) 496 { 497 u64 mhash = 0; 498 u64 uhash = 0; 499 bool free = true; 500 u16 filt_idx[7]; 501 const u8 *addr[7]; 502 int ret, naddr = 0; 503 const struct netdev_hw_addr *ha; 504 int uc_cnt = netdev_uc_count(dev); 505 int mc_cnt = netdev_mc_count(dev); 506 const struct port_info *pi = netdev_priv(dev); 507 unsigned int mb = pi->adapter->fn; 508 509 /* first do the secondary unicast addresses */ 510 netdev_for_each_uc_addr(ha, dev) { 511 addr[naddr++] = ha->addr; 512 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) { 513 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free, 514 naddr, addr, filt_idx, &uhash, sleep); 515 if (ret < 0) 516 return ret; 517 518 free = false; 519 naddr = 0; 520 } 521 } 522 523 /* next set up the multicast addresses */ 524 netdev_for_each_mc_addr(ha, dev) { 525 addr[naddr++] = ha->addr; 526 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) { 527 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free, 528 naddr, addr, filt_idx, &mhash, sleep); 529 if (ret < 0) 530 return ret; 531 532 free = false; 533 naddr = 0; 534 } 535 } 536 537 return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0, 538 uhash | mhash, sleep); 539 } 540 541 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 542 module_param(dbfifo_int_thresh, int, 0644); 543 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 544 545 /* 546 * usecs to sleep while draining the dbfifo 547 */ 548 static int dbfifo_drain_delay = 1000; 549 module_param(dbfifo_drain_delay, int, 0644); 550 MODULE_PARM_DESC(dbfifo_drain_delay, 551 "usecs to sleep while draining the dbfifo"); 552 553 /* 554 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 555 * If @mtu is -1 it is left unchanged. 556 */ 557 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 558 { 559 int ret; 560 struct port_info *pi = netdev_priv(dev); 561 562 ret = set_addr_filters(dev, sleep_ok); 563 if (ret == 0) 564 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu, 565 (dev->flags & IFF_PROMISC) ? 1 : 0, 566 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 567 sleep_ok); 568 return ret; 569 } 570 571 static struct workqueue_struct *workq; 572 573 /** 574 * link_start - enable a port 575 * @dev: the port to enable 576 * 577 * Performs the MAC and PHY actions needed to enable a port. 578 */ 579 static int link_start(struct net_device *dev) 580 { 581 int ret; 582 struct port_info *pi = netdev_priv(dev); 583 unsigned int mb = pi->adapter->fn; 584 585 /* 586 * We do not set address filters and promiscuity here, the stack does 587 * that step explicitly. 588 */ 589 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 590 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 591 if (ret == 0) { 592 ret = t4_change_mac(pi->adapter, mb, pi->viid, 593 pi->xact_addr_filt, dev->dev_addr, true, 594 true); 595 if (ret >= 0) { 596 pi->xact_addr_filt = ret; 597 ret = 0; 598 } 599 } 600 if (ret == 0) 601 ret = t4_link_start(pi->adapter, mb, pi->tx_chan, 602 &pi->link_cfg); 603 if (ret == 0) 604 ret = t4_enable_vi(pi->adapter, mb, pi->viid, true, true); 605 return ret; 606 } 607 608 /* Clear a filter and release any of its resources that we own. This also 609 * clears the filter's "pending" status. 610 */ 611 static void clear_filter(struct adapter *adap, struct filter_entry *f) 612 { 613 /* If the new or old filter have loopback rewriteing rules then we'll 614 * need to free any existing Layer Two Table (L2T) entries of the old 615 * filter rule. The firmware will handle freeing up any Source MAC 616 * Table (SMT) entries used for rewriting Source MAC Addresses in 617 * loopback rules. 618 */ 619 if (f->l2t) 620 cxgb4_l2t_release(f->l2t); 621 622 /* The zeroing of the filter rule below clears the filter valid, 623 * pending, locked flags, l2t pointer, etc. so it's all we need for 624 * this operation. 625 */ 626 memset(f, 0, sizeof(*f)); 627 } 628 629 /* Handle a filter write/deletion reply. 630 */ 631 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl) 632 { 633 unsigned int idx = GET_TID(rpl); 634 unsigned int nidx = idx - adap->tids.ftid_base; 635 unsigned int ret; 636 struct filter_entry *f; 637 638 if (idx >= adap->tids.ftid_base && nidx < 639 (adap->tids.nftids + adap->tids.nsftids)) { 640 idx = nidx; 641 ret = GET_TCB_COOKIE(rpl->cookie); 642 f = &adap->tids.ftid_tab[idx]; 643 644 if (ret == FW_FILTER_WR_FLT_DELETED) { 645 /* Clear the filter when we get confirmation from the 646 * hardware that the filter has been deleted. 647 */ 648 clear_filter(adap, f); 649 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) { 650 dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n", 651 idx); 652 clear_filter(adap, f); 653 } else if (ret == FW_FILTER_WR_FLT_ADDED) { 654 f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff; 655 f->pending = 0; /* asynchronous setup completed */ 656 f->valid = 1; 657 } else { 658 /* Something went wrong. Issue a warning about the 659 * problem and clear everything out. 660 */ 661 dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n", 662 idx, ret); 663 clear_filter(adap, f); 664 } 665 } 666 } 667 668 /* Response queue handler for the FW event queue. 669 */ 670 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 671 const struct pkt_gl *gl) 672 { 673 u8 opcode = ((const struct rss_header *)rsp)->opcode; 674 675 rsp++; /* skip RSS header */ 676 677 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 678 */ 679 if (unlikely(opcode == CPL_FW4_MSG && 680 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 681 rsp++; 682 opcode = ((const struct rss_header *)rsp)->opcode; 683 rsp++; 684 if (opcode != CPL_SGE_EGR_UPDATE) { 685 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 686 , opcode); 687 goto out; 688 } 689 } 690 691 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 692 const struct cpl_sge_egr_update *p = (void *)rsp; 693 unsigned int qid = EGR_QID(ntohl(p->opcode_qid)); 694 struct sge_txq *txq; 695 696 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 697 txq->restarts++; 698 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) { 699 struct sge_eth_txq *eq; 700 701 eq = container_of(txq, struct sge_eth_txq, q); 702 netif_tx_wake_queue(eq->txq); 703 } else { 704 struct sge_ofld_txq *oq; 705 706 oq = container_of(txq, struct sge_ofld_txq, q); 707 tasklet_schedule(&oq->qresume_tsk); 708 } 709 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 710 const struct cpl_fw6_msg *p = (void *)rsp; 711 712 if (p->type == 0) 713 t4_handle_fw_rpl(q->adap, p->data); 714 } else if (opcode == CPL_L2T_WRITE_RPL) { 715 const struct cpl_l2t_write_rpl *p = (void *)rsp; 716 717 do_l2t_write_rpl(q->adap, p); 718 } else if (opcode == CPL_SET_TCB_RPL) { 719 const struct cpl_set_tcb_rpl *p = (void *)rsp; 720 721 filter_rpl(q->adap, p); 722 } else 723 dev_err(q->adap->pdev_dev, 724 "unexpected CPL %#x on FW event queue\n", opcode); 725 out: 726 return 0; 727 } 728 729 /** 730 * uldrx_handler - response queue handler for ULD queues 731 * @q: the response queue that received the packet 732 * @rsp: the response queue descriptor holding the offload message 733 * @gl: the gather list of packet fragments 734 * 735 * Deliver an ingress offload packet to a ULD. All processing is done by 736 * the ULD, we just maintain statistics. 737 */ 738 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp, 739 const struct pkt_gl *gl) 740 { 741 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq); 742 743 /* FW can send CPLs encapsulated in a CPL_FW4_MSG. 744 */ 745 if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG && 746 ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL) 747 rsp += 2; 748 749 if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) { 750 rxq->stats.nomem++; 751 return -1; 752 } 753 if (gl == NULL) 754 rxq->stats.imm++; 755 else if (gl == CXGB4_MSG_AN) 756 rxq->stats.an++; 757 else 758 rxq->stats.pkts++; 759 return 0; 760 } 761 762 static void disable_msi(struct adapter *adapter) 763 { 764 if (adapter->flags & USING_MSIX) { 765 pci_disable_msix(adapter->pdev); 766 adapter->flags &= ~USING_MSIX; 767 } else if (adapter->flags & USING_MSI) { 768 pci_disable_msi(adapter->pdev); 769 adapter->flags &= ~USING_MSI; 770 } 771 } 772 773 /* 774 * Interrupt handler for non-data events used with MSI-X. 775 */ 776 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 777 { 778 struct adapter *adap = cookie; 779 780 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE)); 781 if (v & PFSW) { 782 adap->swintr = 1; 783 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v); 784 } 785 t4_slow_intr_handler(adap); 786 return IRQ_HANDLED; 787 } 788 789 /* 790 * Name the MSI-X interrupts. 791 */ 792 static void name_msix_vecs(struct adapter *adap) 793 { 794 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); 795 796 /* non-data interrupts */ 797 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); 798 799 /* FW events */ 800 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", 801 adap->port[0]->name); 802 803 /* Ethernet queues */ 804 for_each_port(adap, j) { 805 struct net_device *d = adap->port[j]; 806 const struct port_info *pi = netdev_priv(d); 807 808 for (i = 0; i < pi->nqsets; i++, msi_idx++) 809 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", 810 d->name, i); 811 } 812 813 /* offload queues */ 814 for_each_ofldrxq(&adap->sge, i) 815 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d", 816 adap->port[0]->name, i); 817 818 for_each_rdmarxq(&adap->sge, i) 819 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d", 820 adap->port[0]->name, i); 821 822 for_each_rdmaciq(&adap->sge, i) 823 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d", 824 adap->port[0]->name, i); 825 } 826 827 static int request_msix_queue_irqs(struct adapter *adap) 828 { 829 struct sge *s = &adap->sge; 830 int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0; 831 int msi_index = 2; 832 833 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, 834 adap->msix_info[1].desc, &s->fw_evtq); 835 if (err) 836 return err; 837 838 for_each_ethrxq(s, ethqidx) { 839 err = request_irq(adap->msix_info[msi_index].vec, 840 t4_sge_intr_msix, 0, 841 adap->msix_info[msi_index].desc, 842 &s->ethrxq[ethqidx].rspq); 843 if (err) 844 goto unwind; 845 msi_index++; 846 } 847 for_each_ofldrxq(s, ofldqidx) { 848 err = request_irq(adap->msix_info[msi_index].vec, 849 t4_sge_intr_msix, 0, 850 adap->msix_info[msi_index].desc, 851 &s->ofldrxq[ofldqidx].rspq); 852 if (err) 853 goto unwind; 854 msi_index++; 855 } 856 for_each_rdmarxq(s, rdmaqidx) { 857 err = request_irq(adap->msix_info[msi_index].vec, 858 t4_sge_intr_msix, 0, 859 adap->msix_info[msi_index].desc, 860 &s->rdmarxq[rdmaqidx].rspq); 861 if (err) 862 goto unwind; 863 msi_index++; 864 } 865 for_each_rdmaciq(s, rdmaciqqidx) { 866 err = request_irq(adap->msix_info[msi_index].vec, 867 t4_sge_intr_msix, 0, 868 adap->msix_info[msi_index].desc, 869 &s->rdmaciq[rdmaciqqidx].rspq); 870 if (err) 871 goto unwind; 872 msi_index++; 873 } 874 return 0; 875 876 unwind: 877 while (--rdmaciqqidx >= 0) 878 free_irq(adap->msix_info[--msi_index].vec, 879 &s->rdmaciq[rdmaciqqidx].rspq); 880 while (--rdmaqidx >= 0) 881 free_irq(adap->msix_info[--msi_index].vec, 882 &s->rdmarxq[rdmaqidx].rspq); 883 while (--ofldqidx >= 0) 884 free_irq(adap->msix_info[--msi_index].vec, 885 &s->ofldrxq[ofldqidx].rspq); 886 while (--ethqidx >= 0) 887 free_irq(adap->msix_info[--msi_index].vec, 888 &s->ethrxq[ethqidx].rspq); 889 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 890 return err; 891 } 892 893 static void free_msix_queue_irqs(struct adapter *adap) 894 { 895 int i, msi_index = 2; 896 struct sge *s = &adap->sge; 897 898 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 899 for_each_ethrxq(s, i) 900 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq); 901 for_each_ofldrxq(s, i) 902 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq); 903 for_each_rdmarxq(s, i) 904 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq); 905 for_each_rdmaciq(s, i) 906 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq); 907 } 908 909 /** 910 * write_rss - write the RSS table for a given port 911 * @pi: the port 912 * @queues: array of queue indices for RSS 913 * 914 * Sets up the portion of the HW RSS table for the port's VI to distribute 915 * packets to the Rx queues in @queues. 916 */ 917 static int write_rss(const struct port_info *pi, const u16 *queues) 918 { 919 u16 *rss; 920 int i, err; 921 const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset]; 922 923 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL); 924 if (!rss) 925 return -ENOMEM; 926 927 /* map the queue indices to queue ids */ 928 for (i = 0; i < pi->rss_size; i++, queues++) 929 rss[i] = q[*queues].rspq.abs_id; 930 931 err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0, 932 pi->rss_size, rss, pi->rss_size); 933 kfree(rss); 934 return err; 935 } 936 937 /** 938 * setup_rss - configure RSS 939 * @adap: the adapter 940 * 941 * Sets up RSS for each port. 942 */ 943 static int setup_rss(struct adapter *adap) 944 { 945 int i, err; 946 947 for_each_port(adap, i) { 948 const struct port_info *pi = adap2pinfo(adap, i); 949 950 err = write_rss(pi, pi->rss); 951 if (err) 952 return err; 953 } 954 return 0; 955 } 956 957 /* 958 * Return the channel of the ingress queue with the given qid. 959 */ 960 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 961 { 962 qid -= p->ingr_start; 963 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 964 } 965 966 /* 967 * Wait until all NAPI handlers are descheduled. 968 */ 969 static void quiesce_rx(struct adapter *adap) 970 { 971 int i; 972 973 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) { 974 struct sge_rspq *q = adap->sge.ingr_map[i]; 975 976 if (q && q->handler) 977 napi_disable(&q->napi); 978 } 979 } 980 981 /* 982 * Enable NAPI scheduling and interrupt generation for all Rx queues. 983 */ 984 static void enable_rx(struct adapter *adap) 985 { 986 int i; 987 988 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) { 989 struct sge_rspq *q = adap->sge.ingr_map[i]; 990 991 if (!q) 992 continue; 993 if (q->handler) 994 napi_enable(&q->napi); 995 /* 0-increment GTS to start the timer and enable interrupts */ 996 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS), 997 SEINTARM(q->intr_params) | 998 INGRESSQID(q->cntxt_id)); 999 } 1000 } 1001 1002 /** 1003 * setup_sge_queues - configure SGE Tx/Rx/response queues 1004 * @adap: the adapter 1005 * 1006 * Determines how many sets of SGE queues to use and initializes them. 1007 * We support multiple queue sets per port if we have MSI-X, otherwise 1008 * just one queue set per port. 1009 */ 1010 static int setup_sge_queues(struct adapter *adap) 1011 { 1012 int err, msi_idx, i, j; 1013 struct sge *s = &adap->sge; 1014 1015 bitmap_zero(s->starving_fl, MAX_EGRQ); 1016 bitmap_zero(s->txq_maperr, MAX_EGRQ); 1017 1018 if (adap->flags & USING_MSIX) 1019 msi_idx = 1; /* vector 0 is for non-queue interrupts */ 1020 else { 1021 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 1022 NULL, NULL); 1023 if (err) 1024 return err; 1025 msi_idx = -((int)s->intrq.abs_id + 1); 1026 } 1027 1028 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 1029 msi_idx, NULL, fwevtq_handler); 1030 if (err) { 1031 freeout: t4_free_sge_resources(adap); 1032 return err; 1033 } 1034 1035 for_each_port(adap, i) { 1036 struct net_device *dev = adap->port[i]; 1037 struct port_info *pi = netdev_priv(dev); 1038 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 1039 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 1040 1041 for (j = 0; j < pi->nqsets; j++, q++) { 1042 if (msi_idx > 0) 1043 msi_idx++; 1044 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 1045 msi_idx, &q->fl, 1046 t4_ethrx_handler); 1047 if (err) 1048 goto freeout; 1049 q->rspq.idx = j; 1050 memset(&q->stats, 0, sizeof(q->stats)); 1051 } 1052 for (j = 0; j < pi->nqsets; j++, t++) { 1053 err = t4_sge_alloc_eth_txq(adap, t, dev, 1054 netdev_get_tx_queue(dev, j), 1055 s->fw_evtq.cntxt_id); 1056 if (err) 1057 goto freeout; 1058 } 1059 } 1060 1061 j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */ 1062 for_each_ofldrxq(s, i) { 1063 struct sge_ofld_rxq *q = &s->ofldrxq[i]; 1064 struct net_device *dev = adap->port[i / j]; 1065 1066 if (msi_idx > 0) 1067 msi_idx++; 1068 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx, 1069 q->fl.size ? &q->fl : NULL, 1070 uldrx_handler); 1071 if (err) 1072 goto freeout; 1073 memset(&q->stats, 0, sizeof(q->stats)); 1074 s->ofld_rxq[i] = q->rspq.abs_id; 1075 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev, 1076 s->fw_evtq.cntxt_id); 1077 if (err) 1078 goto freeout; 1079 } 1080 1081 for_each_rdmarxq(s, i) { 1082 struct sge_ofld_rxq *q = &s->rdmarxq[i]; 1083 1084 if (msi_idx > 0) 1085 msi_idx++; 1086 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i], 1087 msi_idx, q->fl.size ? &q->fl : NULL, 1088 uldrx_handler); 1089 if (err) 1090 goto freeout; 1091 memset(&q->stats, 0, sizeof(q->stats)); 1092 s->rdma_rxq[i] = q->rspq.abs_id; 1093 } 1094 1095 for_each_rdmaciq(s, i) { 1096 struct sge_ofld_rxq *q = &s->rdmaciq[i]; 1097 1098 if (msi_idx > 0) 1099 msi_idx++; 1100 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i], 1101 msi_idx, q->fl.size ? &q->fl : NULL, 1102 uldrx_handler); 1103 if (err) 1104 goto freeout; 1105 memset(&q->stats, 0, sizeof(q->stats)); 1106 s->rdma_ciq[i] = q->rspq.abs_id; 1107 } 1108 1109 for_each_port(adap, i) { 1110 /* 1111 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't 1112 * have RDMA queues, and that's the right value. 1113 */ 1114 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 1115 s->fw_evtq.cntxt_id, 1116 s->rdmarxq[i].rspq.cntxt_id); 1117 if (err) 1118 goto freeout; 1119 } 1120 1121 t4_write_reg(adap, MPS_TRC_RSS_CONTROL, 1122 RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) | 1123 QUEUENUMBER(s->ethrxq[0].rspq.abs_id)); 1124 return 0; 1125 } 1126 1127 /* 1128 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc. 1129 * The allocated memory is cleared. 1130 */ 1131 void *t4_alloc_mem(size_t size) 1132 { 1133 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 1134 1135 if (!p) 1136 p = vzalloc(size); 1137 return p; 1138 } 1139 1140 /* 1141 * Free memory allocated through alloc_mem(). 1142 */ 1143 static void t4_free_mem(void *addr) 1144 { 1145 if (is_vmalloc_addr(addr)) 1146 vfree(addr); 1147 else 1148 kfree(addr); 1149 } 1150 1151 /* Send a Work Request to write the filter at a specified index. We construct 1152 * a Firmware Filter Work Request to have the work done and put the indicated 1153 * filter into "pending" mode which will prevent any further actions against 1154 * it till we get a reply from the firmware on the completion status of the 1155 * request. 1156 */ 1157 static int set_filter_wr(struct adapter *adapter, int fidx) 1158 { 1159 struct filter_entry *f = &adapter->tids.ftid_tab[fidx]; 1160 struct sk_buff *skb; 1161 struct fw_filter_wr *fwr; 1162 unsigned int ftid; 1163 1164 /* If the new filter requires loopback Destination MAC and/or VLAN 1165 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for 1166 * the filter. 1167 */ 1168 if (f->fs.newdmac || f->fs.newvlan) { 1169 /* allocate L2T entry for new filter */ 1170 f->l2t = t4_l2t_alloc_switching(adapter->l2t); 1171 if (f->l2t == NULL) 1172 return -EAGAIN; 1173 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan, 1174 f->fs.eport, f->fs.dmac)) { 1175 cxgb4_l2t_release(f->l2t); 1176 f->l2t = NULL; 1177 return -ENOMEM; 1178 } 1179 } 1180 1181 ftid = adapter->tids.ftid_base + fidx; 1182 1183 skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL); 1184 fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr)); 1185 memset(fwr, 0, sizeof(*fwr)); 1186 1187 /* It would be nice to put most of the following in t4_hw.c but most 1188 * of the work is translating the cxgbtool ch_filter_specification 1189 * into the Work Request and the definition of that structure is 1190 * currently in cxgbtool.h which isn't appropriate to pull into the 1191 * common code. We may eventually try to come up with a more neutral 1192 * filter specification structure but for now it's easiest to simply 1193 * put this fairly direct code in line ... 1194 */ 1195 fwr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR)); 1196 fwr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*fwr)/16)); 1197 fwr->tid_to_iq = 1198 htonl(V_FW_FILTER_WR_TID(ftid) | 1199 V_FW_FILTER_WR_RQTYPE(f->fs.type) | 1200 V_FW_FILTER_WR_NOREPLY(0) | 1201 V_FW_FILTER_WR_IQ(f->fs.iq)); 1202 fwr->del_filter_to_l2tix = 1203 htonl(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) | 1204 V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) | 1205 V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) | 1206 V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) | 1207 V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) | 1208 V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) | 1209 V_FW_FILTER_WR_DMAC(f->fs.newdmac) | 1210 V_FW_FILTER_WR_SMAC(f->fs.newsmac) | 1211 V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT || 1212 f->fs.newvlan == VLAN_REWRITE) | 1213 V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE || 1214 f->fs.newvlan == VLAN_REWRITE) | 1215 V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) | 1216 V_FW_FILTER_WR_TXCHAN(f->fs.eport) | 1217 V_FW_FILTER_WR_PRIO(f->fs.prio) | 1218 V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0)); 1219 fwr->ethtype = htons(f->fs.val.ethtype); 1220 fwr->ethtypem = htons(f->fs.mask.ethtype); 1221 fwr->frag_to_ovlan_vldm = 1222 (V_FW_FILTER_WR_FRAG(f->fs.val.frag) | 1223 V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) | 1224 V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.ivlan_vld) | 1225 V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.ovlan_vld) | 1226 V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.ivlan_vld) | 1227 V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.ovlan_vld)); 1228 fwr->smac_sel = 0; 1229 fwr->rx_chan_rx_rpl_iq = 1230 htons(V_FW_FILTER_WR_RX_CHAN(0) | 1231 V_FW_FILTER_WR_RX_RPL_IQ(adapter->sge.fw_evtq.abs_id)); 1232 fwr->maci_to_matchtypem = 1233 htonl(V_FW_FILTER_WR_MACI(f->fs.val.macidx) | 1234 V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) | 1235 V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) | 1236 V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) | 1237 V_FW_FILTER_WR_PORT(f->fs.val.iport) | 1238 V_FW_FILTER_WR_PORTM(f->fs.mask.iport) | 1239 V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) | 1240 V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype)); 1241 fwr->ptcl = f->fs.val.proto; 1242 fwr->ptclm = f->fs.mask.proto; 1243 fwr->ttyp = f->fs.val.tos; 1244 fwr->ttypm = f->fs.mask.tos; 1245 fwr->ivlan = htons(f->fs.val.ivlan); 1246 fwr->ivlanm = htons(f->fs.mask.ivlan); 1247 fwr->ovlan = htons(f->fs.val.ovlan); 1248 fwr->ovlanm = htons(f->fs.mask.ovlan); 1249 memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip)); 1250 memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm)); 1251 memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip)); 1252 memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm)); 1253 fwr->lp = htons(f->fs.val.lport); 1254 fwr->lpm = htons(f->fs.mask.lport); 1255 fwr->fp = htons(f->fs.val.fport); 1256 fwr->fpm = htons(f->fs.mask.fport); 1257 if (f->fs.newsmac) 1258 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma)); 1259 1260 /* Mark the filter as "pending" and ship off the Filter Work Request. 1261 * When we get the Work Request Reply we'll clear the pending status. 1262 */ 1263 f->pending = 1; 1264 set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3); 1265 t4_ofld_send(adapter, skb); 1266 return 0; 1267 } 1268 1269 /* Delete the filter at a specified index. 1270 */ 1271 static int del_filter_wr(struct adapter *adapter, int fidx) 1272 { 1273 struct filter_entry *f = &adapter->tids.ftid_tab[fidx]; 1274 struct sk_buff *skb; 1275 struct fw_filter_wr *fwr; 1276 unsigned int len, ftid; 1277 1278 len = sizeof(*fwr); 1279 ftid = adapter->tids.ftid_base + fidx; 1280 1281 skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL); 1282 fwr = (struct fw_filter_wr *)__skb_put(skb, len); 1283 t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id); 1284 1285 /* Mark the filter as "pending" and ship off the Filter Work Request. 1286 * When we get the Work Request Reply we'll clear the pending status. 1287 */ 1288 f->pending = 1; 1289 t4_mgmt_tx(adapter, skb); 1290 return 0; 1291 } 1292 1293 static inline int is_offload(const struct adapter *adap) 1294 { 1295 return adap->params.offload; 1296 } 1297 1298 /* 1299 * Implementation of ethtool operations. 1300 */ 1301 1302 static u32 get_msglevel(struct net_device *dev) 1303 { 1304 return netdev2adap(dev)->msg_enable; 1305 } 1306 1307 static void set_msglevel(struct net_device *dev, u32 val) 1308 { 1309 netdev2adap(dev)->msg_enable = val; 1310 } 1311 1312 static char stats_strings[][ETH_GSTRING_LEN] = { 1313 "TxOctetsOK ", 1314 "TxFramesOK ", 1315 "TxBroadcastFrames ", 1316 "TxMulticastFrames ", 1317 "TxUnicastFrames ", 1318 "TxErrorFrames ", 1319 1320 "TxFrames64 ", 1321 "TxFrames65To127 ", 1322 "TxFrames128To255 ", 1323 "TxFrames256To511 ", 1324 "TxFrames512To1023 ", 1325 "TxFrames1024To1518 ", 1326 "TxFrames1519ToMax ", 1327 1328 "TxFramesDropped ", 1329 "TxPauseFrames ", 1330 "TxPPP0Frames ", 1331 "TxPPP1Frames ", 1332 "TxPPP2Frames ", 1333 "TxPPP3Frames ", 1334 "TxPPP4Frames ", 1335 "TxPPP5Frames ", 1336 "TxPPP6Frames ", 1337 "TxPPP7Frames ", 1338 1339 "RxOctetsOK ", 1340 "RxFramesOK ", 1341 "RxBroadcastFrames ", 1342 "RxMulticastFrames ", 1343 "RxUnicastFrames ", 1344 1345 "RxFramesTooLong ", 1346 "RxJabberErrors ", 1347 "RxFCSErrors ", 1348 "RxLengthErrors ", 1349 "RxSymbolErrors ", 1350 "RxRuntFrames ", 1351 1352 "RxFrames64 ", 1353 "RxFrames65To127 ", 1354 "RxFrames128To255 ", 1355 "RxFrames256To511 ", 1356 "RxFrames512To1023 ", 1357 "RxFrames1024To1518 ", 1358 "RxFrames1519ToMax ", 1359 1360 "RxPauseFrames ", 1361 "RxPPP0Frames ", 1362 "RxPPP1Frames ", 1363 "RxPPP2Frames ", 1364 "RxPPP3Frames ", 1365 "RxPPP4Frames ", 1366 "RxPPP5Frames ", 1367 "RxPPP6Frames ", 1368 "RxPPP7Frames ", 1369 1370 "RxBG0FramesDropped ", 1371 "RxBG1FramesDropped ", 1372 "RxBG2FramesDropped ", 1373 "RxBG3FramesDropped ", 1374 "RxBG0FramesTrunc ", 1375 "RxBG1FramesTrunc ", 1376 "RxBG2FramesTrunc ", 1377 "RxBG3FramesTrunc ", 1378 1379 "TSO ", 1380 "TxCsumOffload ", 1381 "RxCsumGood ", 1382 "VLANextractions ", 1383 "VLANinsertions ", 1384 "GROpackets ", 1385 "GROmerged ", 1386 "WriteCoalSuccess ", 1387 "WriteCoalFail ", 1388 }; 1389 1390 static int get_sset_count(struct net_device *dev, int sset) 1391 { 1392 switch (sset) { 1393 case ETH_SS_STATS: 1394 return ARRAY_SIZE(stats_strings); 1395 default: 1396 return -EOPNOTSUPP; 1397 } 1398 } 1399 1400 #define T4_REGMAP_SIZE (160 * 1024) 1401 #define T5_REGMAP_SIZE (332 * 1024) 1402 1403 static int get_regs_len(struct net_device *dev) 1404 { 1405 struct adapter *adap = netdev2adap(dev); 1406 if (is_t4(adap->params.chip)) 1407 return T4_REGMAP_SIZE; 1408 else 1409 return T5_REGMAP_SIZE; 1410 } 1411 1412 static int get_eeprom_len(struct net_device *dev) 1413 { 1414 return EEPROMSIZE; 1415 } 1416 1417 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1418 { 1419 struct adapter *adapter = netdev2adap(dev); 1420 1421 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 1422 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1423 strlcpy(info->bus_info, pci_name(adapter->pdev), 1424 sizeof(info->bus_info)); 1425 1426 if (adapter->params.fw_vers) 1427 snprintf(info->fw_version, sizeof(info->fw_version), 1428 "%u.%u.%u.%u, TP %u.%u.%u.%u", 1429 FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers), 1430 FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers), 1431 FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers), 1432 FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers), 1433 FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers), 1434 FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers), 1435 FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers), 1436 FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers)); 1437 } 1438 1439 static void get_strings(struct net_device *dev, u32 stringset, u8 *data) 1440 { 1441 if (stringset == ETH_SS_STATS) 1442 memcpy(data, stats_strings, sizeof(stats_strings)); 1443 } 1444 1445 /* 1446 * port stats maintained per queue of the port. They should be in the same 1447 * order as in stats_strings above. 1448 */ 1449 struct queue_port_stats { 1450 u64 tso; 1451 u64 tx_csum; 1452 u64 rx_csum; 1453 u64 vlan_ex; 1454 u64 vlan_ins; 1455 u64 gro_pkts; 1456 u64 gro_merged; 1457 }; 1458 1459 static void collect_sge_port_stats(const struct adapter *adap, 1460 const struct port_info *p, struct queue_port_stats *s) 1461 { 1462 int i; 1463 const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset]; 1464 const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset]; 1465 1466 memset(s, 0, sizeof(*s)); 1467 for (i = 0; i < p->nqsets; i++, rx++, tx++) { 1468 s->tso += tx->tso; 1469 s->tx_csum += tx->tx_cso; 1470 s->rx_csum += rx->stats.rx_cso; 1471 s->vlan_ex += rx->stats.vlan_ex; 1472 s->vlan_ins += tx->vlan_ins; 1473 s->gro_pkts += rx->stats.lro_pkts; 1474 s->gro_merged += rx->stats.lro_merged; 1475 } 1476 } 1477 1478 static void get_stats(struct net_device *dev, struct ethtool_stats *stats, 1479 u64 *data) 1480 { 1481 struct port_info *pi = netdev_priv(dev); 1482 struct adapter *adapter = pi->adapter; 1483 u32 val1, val2; 1484 1485 t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data); 1486 1487 data += sizeof(struct port_stats) / sizeof(u64); 1488 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data); 1489 data += sizeof(struct queue_port_stats) / sizeof(u64); 1490 if (!is_t4(adapter->params.chip)) { 1491 t4_write_reg(adapter, SGE_STAT_CFG, STATSOURCE_T5(7)); 1492 val1 = t4_read_reg(adapter, SGE_STAT_TOTAL); 1493 val2 = t4_read_reg(adapter, SGE_STAT_MATCH); 1494 *data = val1 - val2; 1495 data++; 1496 *data = val2; 1497 data++; 1498 } else { 1499 memset(data, 0, 2 * sizeof(u64)); 1500 *data += 2; 1501 } 1502 } 1503 1504 /* 1505 * Return a version number to identify the type of adapter. The scheme is: 1506 * - bits 0..9: chip version 1507 * - bits 10..15: chip revision 1508 * - bits 16..23: register dump version 1509 */ 1510 static inline unsigned int mk_adap_vers(const struct adapter *ap) 1511 { 1512 return CHELSIO_CHIP_VERSION(ap->params.chip) | 1513 (CHELSIO_CHIP_RELEASE(ap->params.chip) << 10) | (1 << 16); 1514 } 1515 1516 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start, 1517 unsigned int end) 1518 { 1519 u32 *p = buf + start; 1520 1521 for ( ; start <= end; start += sizeof(u32)) 1522 *p++ = t4_read_reg(ap, start); 1523 } 1524 1525 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, 1526 void *buf) 1527 { 1528 static const unsigned int t4_reg_ranges[] = { 1529 0x1008, 0x1108, 1530 0x1180, 0x11b4, 1531 0x11fc, 0x123c, 1532 0x1300, 0x173c, 1533 0x1800, 0x18fc, 1534 0x3000, 0x30d8, 1535 0x30e0, 0x5924, 1536 0x5960, 0x59d4, 1537 0x5a00, 0x5af8, 1538 0x6000, 0x6098, 1539 0x6100, 0x6150, 1540 0x6200, 0x6208, 1541 0x6240, 0x6248, 1542 0x6280, 0x6338, 1543 0x6370, 0x638c, 1544 0x6400, 0x643c, 1545 0x6500, 0x6524, 1546 0x6a00, 0x6a38, 1547 0x6a60, 0x6a78, 1548 0x6b00, 0x6b84, 1549 0x6bf0, 0x6c84, 1550 0x6cf0, 0x6d84, 1551 0x6df0, 0x6e84, 1552 0x6ef0, 0x6f84, 1553 0x6ff0, 0x7084, 1554 0x70f0, 0x7184, 1555 0x71f0, 0x7284, 1556 0x72f0, 0x7384, 1557 0x73f0, 0x7450, 1558 0x7500, 0x7530, 1559 0x7600, 0x761c, 1560 0x7680, 0x76cc, 1561 0x7700, 0x7798, 1562 0x77c0, 0x77fc, 1563 0x7900, 0x79fc, 1564 0x7b00, 0x7c38, 1565 0x7d00, 0x7efc, 1566 0x8dc0, 0x8e1c, 1567 0x8e30, 0x8e78, 1568 0x8ea0, 0x8f6c, 1569 0x8fc0, 0x9074, 1570 0x90fc, 0x90fc, 1571 0x9400, 0x9458, 1572 0x9600, 0x96bc, 1573 0x9800, 0x9808, 1574 0x9820, 0x983c, 1575 0x9850, 0x9864, 1576 0x9c00, 0x9c6c, 1577 0x9c80, 0x9cec, 1578 0x9d00, 0x9d6c, 1579 0x9d80, 0x9dec, 1580 0x9e00, 0x9e6c, 1581 0x9e80, 0x9eec, 1582 0x9f00, 0x9f6c, 1583 0x9f80, 0x9fec, 1584 0xd004, 0xd03c, 1585 0xdfc0, 0xdfe0, 1586 0xe000, 0xea7c, 1587 0xf000, 0x11190, 1588 0x19040, 0x1906c, 1589 0x19078, 0x19080, 1590 0x1908c, 0x19124, 1591 0x19150, 0x191b0, 1592 0x191d0, 0x191e8, 1593 0x19238, 0x1924c, 1594 0x193f8, 0x19474, 1595 0x19490, 0x194f8, 1596 0x19800, 0x19f30, 1597 0x1a000, 0x1a06c, 1598 0x1a0b0, 0x1a120, 1599 0x1a128, 0x1a138, 1600 0x1a190, 0x1a1c4, 1601 0x1a1fc, 0x1a1fc, 1602 0x1e040, 0x1e04c, 1603 0x1e284, 0x1e28c, 1604 0x1e2c0, 0x1e2c0, 1605 0x1e2e0, 0x1e2e0, 1606 0x1e300, 0x1e384, 1607 0x1e3c0, 0x1e3c8, 1608 0x1e440, 0x1e44c, 1609 0x1e684, 0x1e68c, 1610 0x1e6c0, 0x1e6c0, 1611 0x1e6e0, 0x1e6e0, 1612 0x1e700, 0x1e784, 1613 0x1e7c0, 0x1e7c8, 1614 0x1e840, 0x1e84c, 1615 0x1ea84, 0x1ea8c, 1616 0x1eac0, 0x1eac0, 1617 0x1eae0, 0x1eae0, 1618 0x1eb00, 0x1eb84, 1619 0x1ebc0, 0x1ebc8, 1620 0x1ec40, 0x1ec4c, 1621 0x1ee84, 0x1ee8c, 1622 0x1eec0, 0x1eec0, 1623 0x1eee0, 0x1eee0, 1624 0x1ef00, 0x1ef84, 1625 0x1efc0, 0x1efc8, 1626 0x1f040, 0x1f04c, 1627 0x1f284, 0x1f28c, 1628 0x1f2c0, 0x1f2c0, 1629 0x1f2e0, 0x1f2e0, 1630 0x1f300, 0x1f384, 1631 0x1f3c0, 0x1f3c8, 1632 0x1f440, 0x1f44c, 1633 0x1f684, 0x1f68c, 1634 0x1f6c0, 0x1f6c0, 1635 0x1f6e0, 0x1f6e0, 1636 0x1f700, 0x1f784, 1637 0x1f7c0, 0x1f7c8, 1638 0x1f840, 0x1f84c, 1639 0x1fa84, 0x1fa8c, 1640 0x1fac0, 0x1fac0, 1641 0x1fae0, 0x1fae0, 1642 0x1fb00, 0x1fb84, 1643 0x1fbc0, 0x1fbc8, 1644 0x1fc40, 0x1fc4c, 1645 0x1fe84, 0x1fe8c, 1646 0x1fec0, 0x1fec0, 1647 0x1fee0, 0x1fee0, 1648 0x1ff00, 0x1ff84, 1649 0x1ffc0, 0x1ffc8, 1650 0x20000, 0x2002c, 1651 0x20100, 0x2013c, 1652 0x20190, 0x201c8, 1653 0x20200, 0x20318, 1654 0x20400, 0x20528, 1655 0x20540, 0x20614, 1656 0x21000, 0x21040, 1657 0x2104c, 0x21060, 1658 0x210c0, 0x210ec, 1659 0x21200, 0x21268, 1660 0x21270, 0x21284, 1661 0x212fc, 0x21388, 1662 0x21400, 0x21404, 1663 0x21500, 0x21518, 1664 0x2152c, 0x2153c, 1665 0x21550, 0x21554, 1666 0x21600, 0x21600, 1667 0x21608, 0x21628, 1668 0x21630, 0x2163c, 1669 0x21700, 0x2171c, 1670 0x21780, 0x2178c, 1671 0x21800, 0x21c38, 1672 0x21c80, 0x21d7c, 1673 0x21e00, 0x21e04, 1674 0x22000, 0x2202c, 1675 0x22100, 0x2213c, 1676 0x22190, 0x221c8, 1677 0x22200, 0x22318, 1678 0x22400, 0x22528, 1679 0x22540, 0x22614, 1680 0x23000, 0x23040, 1681 0x2304c, 0x23060, 1682 0x230c0, 0x230ec, 1683 0x23200, 0x23268, 1684 0x23270, 0x23284, 1685 0x232fc, 0x23388, 1686 0x23400, 0x23404, 1687 0x23500, 0x23518, 1688 0x2352c, 0x2353c, 1689 0x23550, 0x23554, 1690 0x23600, 0x23600, 1691 0x23608, 0x23628, 1692 0x23630, 0x2363c, 1693 0x23700, 0x2371c, 1694 0x23780, 0x2378c, 1695 0x23800, 0x23c38, 1696 0x23c80, 0x23d7c, 1697 0x23e00, 0x23e04, 1698 0x24000, 0x2402c, 1699 0x24100, 0x2413c, 1700 0x24190, 0x241c8, 1701 0x24200, 0x24318, 1702 0x24400, 0x24528, 1703 0x24540, 0x24614, 1704 0x25000, 0x25040, 1705 0x2504c, 0x25060, 1706 0x250c0, 0x250ec, 1707 0x25200, 0x25268, 1708 0x25270, 0x25284, 1709 0x252fc, 0x25388, 1710 0x25400, 0x25404, 1711 0x25500, 0x25518, 1712 0x2552c, 0x2553c, 1713 0x25550, 0x25554, 1714 0x25600, 0x25600, 1715 0x25608, 0x25628, 1716 0x25630, 0x2563c, 1717 0x25700, 0x2571c, 1718 0x25780, 0x2578c, 1719 0x25800, 0x25c38, 1720 0x25c80, 0x25d7c, 1721 0x25e00, 0x25e04, 1722 0x26000, 0x2602c, 1723 0x26100, 0x2613c, 1724 0x26190, 0x261c8, 1725 0x26200, 0x26318, 1726 0x26400, 0x26528, 1727 0x26540, 0x26614, 1728 0x27000, 0x27040, 1729 0x2704c, 0x27060, 1730 0x270c0, 0x270ec, 1731 0x27200, 0x27268, 1732 0x27270, 0x27284, 1733 0x272fc, 0x27388, 1734 0x27400, 0x27404, 1735 0x27500, 0x27518, 1736 0x2752c, 0x2753c, 1737 0x27550, 0x27554, 1738 0x27600, 0x27600, 1739 0x27608, 0x27628, 1740 0x27630, 0x2763c, 1741 0x27700, 0x2771c, 1742 0x27780, 0x2778c, 1743 0x27800, 0x27c38, 1744 0x27c80, 0x27d7c, 1745 0x27e00, 0x27e04 1746 }; 1747 1748 static const unsigned int t5_reg_ranges[] = { 1749 0x1008, 0x1148, 1750 0x1180, 0x11b4, 1751 0x11fc, 0x123c, 1752 0x1280, 0x173c, 1753 0x1800, 0x18fc, 1754 0x3000, 0x3028, 1755 0x3060, 0x30d8, 1756 0x30e0, 0x30fc, 1757 0x3140, 0x357c, 1758 0x35a8, 0x35cc, 1759 0x35ec, 0x35ec, 1760 0x3600, 0x5624, 1761 0x56cc, 0x575c, 1762 0x580c, 0x5814, 1763 0x5890, 0x58bc, 1764 0x5940, 0x59dc, 1765 0x59fc, 0x5a18, 1766 0x5a60, 0x5a9c, 1767 0x5b9c, 0x5bfc, 1768 0x6000, 0x6040, 1769 0x6058, 0x614c, 1770 0x7700, 0x7798, 1771 0x77c0, 0x78fc, 1772 0x7b00, 0x7c54, 1773 0x7d00, 0x7efc, 1774 0x8dc0, 0x8de0, 1775 0x8df8, 0x8e84, 1776 0x8ea0, 0x8f84, 1777 0x8fc0, 0x90f8, 1778 0x9400, 0x9470, 1779 0x9600, 0x96f4, 1780 0x9800, 0x9808, 1781 0x9820, 0x983c, 1782 0x9850, 0x9864, 1783 0x9c00, 0x9c6c, 1784 0x9c80, 0x9cec, 1785 0x9d00, 0x9d6c, 1786 0x9d80, 0x9dec, 1787 0x9e00, 0x9e6c, 1788 0x9e80, 0x9eec, 1789 0x9f00, 0x9f6c, 1790 0x9f80, 0xa020, 1791 0xd004, 0xd03c, 1792 0xdfc0, 0xdfe0, 1793 0xe000, 0x11088, 1794 0x1109c, 0x1117c, 1795 0x11190, 0x11204, 1796 0x19040, 0x1906c, 1797 0x19078, 0x19080, 1798 0x1908c, 0x19124, 1799 0x19150, 0x191b0, 1800 0x191d0, 0x191e8, 1801 0x19238, 0x19290, 1802 0x193f8, 0x19474, 1803 0x19490, 0x194cc, 1804 0x194f0, 0x194f8, 1805 0x19c00, 0x19c60, 1806 0x19c94, 0x19e10, 1807 0x19e50, 0x19f34, 1808 0x19f40, 0x19f50, 1809 0x19f90, 0x19fe4, 1810 0x1a000, 0x1a06c, 1811 0x1a0b0, 0x1a120, 1812 0x1a128, 0x1a138, 1813 0x1a190, 0x1a1c4, 1814 0x1a1fc, 0x1a1fc, 1815 0x1e008, 0x1e00c, 1816 0x1e040, 0x1e04c, 1817 0x1e284, 0x1e290, 1818 0x1e2c0, 0x1e2c0, 1819 0x1e2e0, 0x1e2e0, 1820 0x1e300, 0x1e384, 1821 0x1e3c0, 0x1e3c8, 1822 0x1e408, 0x1e40c, 1823 0x1e440, 0x1e44c, 1824 0x1e684, 0x1e690, 1825 0x1e6c0, 0x1e6c0, 1826 0x1e6e0, 0x1e6e0, 1827 0x1e700, 0x1e784, 1828 0x1e7c0, 0x1e7c8, 1829 0x1e808, 0x1e80c, 1830 0x1e840, 0x1e84c, 1831 0x1ea84, 0x1ea90, 1832 0x1eac0, 0x1eac0, 1833 0x1eae0, 0x1eae0, 1834 0x1eb00, 0x1eb84, 1835 0x1ebc0, 0x1ebc8, 1836 0x1ec08, 0x1ec0c, 1837 0x1ec40, 0x1ec4c, 1838 0x1ee84, 0x1ee90, 1839 0x1eec0, 0x1eec0, 1840 0x1eee0, 0x1eee0, 1841 0x1ef00, 0x1ef84, 1842 0x1efc0, 0x1efc8, 1843 0x1f008, 0x1f00c, 1844 0x1f040, 0x1f04c, 1845 0x1f284, 0x1f290, 1846 0x1f2c0, 0x1f2c0, 1847 0x1f2e0, 0x1f2e0, 1848 0x1f300, 0x1f384, 1849 0x1f3c0, 0x1f3c8, 1850 0x1f408, 0x1f40c, 1851 0x1f440, 0x1f44c, 1852 0x1f684, 0x1f690, 1853 0x1f6c0, 0x1f6c0, 1854 0x1f6e0, 0x1f6e0, 1855 0x1f700, 0x1f784, 1856 0x1f7c0, 0x1f7c8, 1857 0x1f808, 0x1f80c, 1858 0x1f840, 0x1f84c, 1859 0x1fa84, 0x1fa90, 1860 0x1fac0, 0x1fac0, 1861 0x1fae0, 0x1fae0, 1862 0x1fb00, 0x1fb84, 1863 0x1fbc0, 0x1fbc8, 1864 0x1fc08, 0x1fc0c, 1865 0x1fc40, 0x1fc4c, 1866 0x1fe84, 0x1fe90, 1867 0x1fec0, 0x1fec0, 1868 0x1fee0, 0x1fee0, 1869 0x1ff00, 0x1ff84, 1870 0x1ffc0, 0x1ffc8, 1871 0x30000, 0x30030, 1872 0x30100, 0x30144, 1873 0x30190, 0x301d0, 1874 0x30200, 0x30318, 1875 0x30400, 0x3052c, 1876 0x30540, 0x3061c, 1877 0x30800, 0x30834, 1878 0x308c0, 0x30908, 1879 0x30910, 0x309ac, 1880 0x30a00, 0x30a04, 1881 0x30a0c, 0x30a2c, 1882 0x30a44, 0x30a50, 1883 0x30a74, 0x30c24, 1884 0x30d08, 0x30d14, 1885 0x30d1c, 0x30d20, 1886 0x30d3c, 0x30d50, 1887 0x31200, 0x3120c, 1888 0x31220, 0x31220, 1889 0x31240, 0x31240, 1890 0x31600, 0x31600, 1891 0x31608, 0x3160c, 1892 0x31a00, 0x31a1c, 1893 0x31e04, 0x31e20, 1894 0x31e38, 0x31e3c, 1895 0x31e80, 0x31e80, 1896 0x31e88, 0x31ea8, 1897 0x31eb0, 0x31eb4, 1898 0x31ec8, 0x31ed4, 1899 0x31fb8, 0x32004, 1900 0x32208, 0x3223c, 1901 0x32600, 0x32630, 1902 0x32a00, 0x32abc, 1903 0x32b00, 0x32b70, 1904 0x33000, 0x33048, 1905 0x33060, 0x3309c, 1906 0x330f0, 0x33148, 1907 0x33160, 0x3319c, 1908 0x331f0, 0x332e4, 1909 0x332f8, 0x333e4, 1910 0x333f8, 0x33448, 1911 0x33460, 0x3349c, 1912 0x334f0, 0x33548, 1913 0x33560, 0x3359c, 1914 0x335f0, 0x336e4, 1915 0x336f8, 0x337e4, 1916 0x337f8, 0x337fc, 1917 0x33814, 0x33814, 1918 0x3382c, 0x3382c, 1919 0x33880, 0x3388c, 1920 0x338e8, 0x338ec, 1921 0x33900, 0x33948, 1922 0x33960, 0x3399c, 1923 0x339f0, 0x33ae4, 1924 0x33af8, 0x33b10, 1925 0x33b28, 0x33b28, 1926 0x33b3c, 0x33b50, 1927 0x33bf0, 0x33c10, 1928 0x33c28, 0x33c28, 1929 0x33c3c, 0x33c50, 1930 0x33cf0, 0x33cfc, 1931 0x34000, 0x34030, 1932 0x34100, 0x34144, 1933 0x34190, 0x341d0, 1934 0x34200, 0x34318, 1935 0x34400, 0x3452c, 1936 0x34540, 0x3461c, 1937 0x34800, 0x34834, 1938 0x348c0, 0x34908, 1939 0x34910, 0x349ac, 1940 0x34a00, 0x34a04, 1941 0x34a0c, 0x34a2c, 1942 0x34a44, 0x34a50, 1943 0x34a74, 0x34c24, 1944 0x34d08, 0x34d14, 1945 0x34d1c, 0x34d20, 1946 0x34d3c, 0x34d50, 1947 0x35200, 0x3520c, 1948 0x35220, 0x35220, 1949 0x35240, 0x35240, 1950 0x35600, 0x35600, 1951 0x35608, 0x3560c, 1952 0x35a00, 0x35a1c, 1953 0x35e04, 0x35e20, 1954 0x35e38, 0x35e3c, 1955 0x35e80, 0x35e80, 1956 0x35e88, 0x35ea8, 1957 0x35eb0, 0x35eb4, 1958 0x35ec8, 0x35ed4, 1959 0x35fb8, 0x36004, 1960 0x36208, 0x3623c, 1961 0x36600, 0x36630, 1962 0x36a00, 0x36abc, 1963 0x36b00, 0x36b70, 1964 0x37000, 0x37048, 1965 0x37060, 0x3709c, 1966 0x370f0, 0x37148, 1967 0x37160, 0x3719c, 1968 0x371f0, 0x372e4, 1969 0x372f8, 0x373e4, 1970 0x373f8, 0x37448, 1971 0x37460, 0x3749c, 1972 0x374f0, 0x37548, 1973 0x37560, 0x3759c, 1974 0x375f0, 0x376e4, 1975 0x376f8, 0x377e4, 1976 0x377f8, 0x377fc, 1977 0x37814, 0x37814, 1978 0x3782c, 0x3782c, 1979 0x37880, 0x3788c, 1980 0x378e8, 0x378ec, 1981 0x37900, 0x37948, 1982 0x37960, 0x3799c, 1983 0x379f0, 0x37ae4, 1984 0x37af8, 0x37b10, 1985 0x37b28, 0x37b28, 1986 0x37b3c, 0x37b50, 1987 0x37bf0, 0x37c10, 1988 0x37c28, 0x37c28, 1989 0x37c3c, 0x37c50, 1990 0x37cf0, 0x37cfc, 1991 0x38000, 0x38030, 1992 0x38100, 0x38144, 1993 0x38190, 0x381d0, 1994 0x38200, 0x38318, 1995 0x38400, 0x3852c, 1996 0x38540, 0x3861c, 1997 0x38800, 0x38834, 1998 0x388c0, 0x38908, 1999 0x38910, 0x389ac, 2000 0x38a00, 0x38a04, 2001 0x38a0c, 0x38a2c, 2002 0x38a44, 0x38a50, 2003 0x38a74, 0x38c24, 2004 0x38d08, 0x38d14, 2005 0x38d1c, 0x38d20, 2006 0x38d3c, 0x38d50, 2007 0x39200, 0x3920c, 2008 0x39220, 0x39220, 2009 0x39240, 0x39240, 2010 0x39600, 0x39600, 2011 0x39608, 0x3960c, 2012 0x39a00, 0x39a1c, 2013 0x39e04, 0x39e20, 2014 0x39e38, 0x39e3c, 2015 0x39e80, 0x39e80, 2016 0x39e88, 0x39ea8, 2017 0x39eb0, 0x39eb4, 2018 0x39ec8, 0x39ed4, 2019 0x39fb8, 0x3a004, 2020 0x3a208, 0x3a23c, 2021 0x3a600, 0x3a630, 2022 0x3aa00, 0x3aabc, 2023 0x3ab00, 0x3ab70, 2024 0x3b000, 0x3b048, 2025 0x3b060, 0x3b09c, 2026 0x3b0f0, 0x3b148, 2027 0x3b160, 0x3b19c, 2028 0x3b1f0, 0x3b2e4, 2029 0x3b2f8, 0x3b3e4, 2030 0x3b3f8, 0x3b448, 2031 0x3b460, 0x3b49c, 2032 0x3b4f0, 0x3b548, 2033 0x3b560, 0x3b59c, 2034 0x3b5f0, 0x3b6e4, 2035 0x3b6f8, 0x3b7e4, 2036 0x3b7f8, 0x3b7fc, 2037 0x3b814, 0x3b814, 2038 0x3b82c, 0x3b82c, 2039 0x3b880, 0x3b88c, 2040 0x3b8e8, 0x3b8ec, 2041 0x3b900, 0x3b948, 2042 0x3b960, 0x3b99c, 2043 0x3b9f0, 0x3bae4, 2044 0x3baf8, 0x3bb10, 2045 0x3bb28, 0x3bb28, 2046 0x3bb3c, 0x3bb50, 2047 0x3bbf0, 0x3bc10, 2048 0x3bc28, 0x3bc28, 2049 0x3bc3c, 0x3bc50, 2050 0x3bcf0, 0x3bcfc, 2051 0x3c000, 0x3c030, 2052 0x3c100, 0x3c144, 2053 0x3c190, 0x3c1d0, 2054 0x3c200, 0x3c318, 2055 0x3c400, 0x3c52c, 2056 0x3c540, 0x3c61c, 2057 0x3c800, 0x3c834, 2058 0x3c8c0, 0x3c908, 2059 0x3c910, 0x3c9ac, 2060 0x3ca00, 0x3ca04, 2061 0x3ca0c, 0x3ca2c, 2062 0x3ca44, 0x3ca50, 2063 0x3ca74, 0x3cc24, 2064 0x3cd08, 0x3cd14, 2065 0x3cd1c, 0x3cd20, 2066 0x3cd3c, 0x3cd50, 2067 0x3d200, 0x3d20c, 2068 0x3d220, 0x3d220, 2069 0x3d240, 0x3d240, 2070 0x3d600, 0x3d600, 2071 0x3d608, 0x3d60c, 2072 0x3da00, 0x3da1c, 2073 0x3de04, 0x3de20, 2074 0x3de38, 0x3de3c, 2075 0x3de80, 0x3de80, 2076 0x3de88, 0x3dea8, 2077 0x3deb0, 0x3deb4, 2078 0x3dec8, 0x3ded4, 2079 0x3dfb8, 0x3e004, 2080 0x3e208, 0x3e23c, 2081 0x3e600, 0x3e630, 2082 0x3ea00, 0x3eabc, 2083 0x3eb00, 0x3eb70, 2084 0x3f000, 0x3f048, 2085 0x3f060, 0x3f09c, 2086 0x3f0f0, 0x3f148, 2087 0x3f160, 0x3f19c, 2088 0x3f1f0, 0x3f2e4, 2089 0x3f2f8, 0x3f3e4, 2090 0x3f3f8, 0x3f448, 2091 0x3f460, 0x3f49c, 2092 0x3f4f0, 0x3f548, 2093 0x3f560, 0x3f59c, 2094 0x3f5f0, 0x3f6e4, 2095 0x3f6f8, 0x3f7e4, 2096 0x3f7f8, 0x3f7fc, 2097 0x3f814, 0x3f814, 2098 0x3f82c, 0x3f82c, 2099 0x3f880, 0x3f88c, 2100 0x3f8e8, 0x3f8ec, 2101 0x3f900, 0x3f948, 2102 0x3f960, 0x3f99c, 2103 0x3f9f0, 0x3fae4, 2104 0x3faf8, 0x3fb10, 2105 0x3fb28, 0x3fb28, 2106 0x3fb3c, 0x3fb50, 2107 0x3fbf0, 0x3fc10, 2108 0x3fc28, 0x3fc28, 2109 0x3fc3c, 0x3fc50, 2110 0x3fcf0, 0x3fcfc, 2111 0x40000, 0x4000c, 2112 0x40040, 0x40068, 2113 0x40080, 0x40144, 2114 0x40180, 0x4018c, 2115 0x40200, 0x40298, 2116 0x402ac, 0x4033c, 2117 0x403f8, 0x403fc, 2118 0x41304, 0x413c4, 2119 0x41400, 0x4141c, 2120 0x41480, 0x414d0, 2121 0x44000, 0x44078, 2122 0x440c0, 0x44278, 2123 0x442c0, 0x44478, 2124 0x444c0, 0x44678, 2125 0x446c0, 0x44878, 2126 0x448c0, 0x449fc, 2127 0x45000, 0x45068, 2128 0x45080, 0x45084, 2129 0x450a0, 0x450b0, 2130 0x45200, 0x45268, 2131 0x45280, 0x45284, 2132 0x452a0, 0x452b0, 2133 0x460c0, 0x460e4, 2134 0x47000, 0x4708c, 2135 0x47200, 0x47250, 2136 0x47400, 0x47420, 2137 0x47600, 0x47618, 2138 0x47800, 0x47814, 2139 0x48000, 0x4800c, 2140 0x48040, 0x48068, 2141 0x48080, 0x48144, 2142 0x48180, 0x4818c, 2143 0x48200, 0x48298, 2144 0x482ac, 0x4833c, 2145 0x483f8, 0x483fc, 2146 0x49304, 0x493c4, 2147 0x49400, 0x4941c, 2148 0x49480, 0x494d0, 2149 0x4c000, 0x4c078, 2150 0x4c0c0, 0x4c278, 2151 0x4c2c0, 0x4c478, 2152 0x4c4c0, 0x4c678, 2153 0x4c6c0, 0x4c878, 2154 0x4c8c0, 0x4c9fc, 2155 0x4d000, 0x4d068, 2156 0x4d080, 0x4d084, 2157 0x4d0a0, 0x4d0b0, 2158 0x4d200, 0x4d268, 2159 0x4d280, 0x4d284, 2160 0x4d2a0, 0x4d2b0, 2161 0x4e0c0, 0x4e0e4, 2162 0x4f000, 0x4f08c, 2163 0x4f200, 0x4f250, 2164 0x4f400, 0x4f420, 2165 0x4f600, 0x4f618, 2166 0x4f800, 0x4f814, 2167 0x50000, 0x500cc, 2168 0x50400, 0x50400, 2169 0x50800, 0x508cc, 2170 0x50c00, 0x50c00, 2171 0x51000, 0x5101c, 2172 0x51300, 0x51308, 2173 }; 2174 2175 int i; 2176 struct adapter *ap = netdev2adap(dev); 2177 static const unsigned int *reg_ranges; 2178 int arr_size = 0, buf_size = 0; 2179 2180 if (is_t4(ap->params.chip)) { 2181 reg_ranges = &t4_reg_ranges[0]; 2182 arr_size = ARRAY_SIZE(t4_reg_ranges); 2183 buf_size = T4_REGMAP_SIZE; 2184 } else { 2185 reg_ranges = &t5_reg_ranges[0]; 2186 arr_size = ARRAY_SIZE(t5_reg_ranges); 2187 buf_size = T5_REGMAP_SIZE; 2188 } 2189 2190 regs->version = mk_adap_vers(ap); 2191 2192 memset(buf, 0, buf_size); 2193 for (i = 0; i < arr_size; i += 2) 2194 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]); 2195 } 2196 2197 static int restart_autoneg(struct net_device *dev) 2198 { 2199 struct port_info *p = netdev_priv(dev); 2200 2201 if (!netif_running(dev)) 2202 return -EAGAIN; 2203 if (p->link_cfg.autoneg != AUTONEG_ENABLE) 2204 return -EINVAL; 2205 t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan); 2206 return 0; 2207 } 2208 2209 static int identify_port(struct net_device *dev, 2210 enum ethtool_phys_id_state state) 2211 { 2212 unsigned int val; 2213 struct adapter *adap = netdev2adap(dev); 2214 2215 if (state == ETHTOOL_ID_ACTIVE) 2216 val = 0xffff; 2217 else if (state == ETHTOOL_ID_INACTIVE) 2218 val = 0; 2219 else 2220 return -EINVAL; 2221 2222 return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val); 2223 } 2224 2225 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps) 2226 { 2227 unsigned int v = 0; 2228 2229 if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI || 2230 type == FW_PORT_TYPE_BT_XAUI) { 2231 v |= SUPPORTED_TP; 2232 if (caps & FW_PORT_CAP_SPEED_100M) 2233 v |= SUPPORTED_100baseT_Full; 2234 if (caps & FW_PORT_CAP_SPEED_1G) 2235 v |= SUPPORTED_1000baseT_Full; 2236 if (caps & FW_PORT_CAP_SPEED_10G) 2237 v |= SUPPORTED_10000baseT_Full; 2238 } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) { 2239 v |= SUPPORTED_Backplane; 2240 if (caps & FW_PORT_CAP_SPEED_1G) 2241 v |= SUPPORTED_1000baseKX_Full; 2242 if (caps & FW_PORT_CAP_SPEED_10G) 2243 v |= SUPPORTED_10000baseKX4_Full; 2244 } else if (type == FW_PORT_TYPE_KR) 2245 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full; 2246 else if (type == FW_PORT_TYPE_BP_AP) 2247 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC | 2248 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full; 2249 else if (type == FW_PORT_TYPE_BP4_AP) 2250 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC | 2251 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full | 2252 SUPPORTED_10000baseKX4_Full; 2253 else if (type == FW_PORT_TYPE_FIBER_XFI || 2254 type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP) 2255 v |= SUPPORTED_FIBRE; 2256 else if (type == FW_PORT_TYPE_BP40_BA) 2257 v |= SUPPORTED_40000baseSR4_Full; 2258 2259 if (caps & FW_PORT_CAP_ANEG) 2260 v |= SUPPORTED_Autoneg; 2261 return v; 2262 } 2263 2264 static unsigned int to_fw_linkcaps(unsigned int caps) 2265 { 2266 unsigned int v = 0; 2267 2268 if (caps & ADVERTISED_100baseT_Full) 2269 v |= FW_PORT_CAP_SPEED_100M; 2270 if (caps & ADVERTISED_1000baseT_Full) 2271 v |= FW_PORT_CAP_SPEED_1G; 2272 if (caps & ADVERTISED_10000baseT_Full) 2273 v |= FW_PORT_CAP_SPEED_10G; 2274 if (caps & ADVERTISED_40000baseSR4_Full) 2275 v |= FW_PORT_CAP_SPEED_40G; 2276 return v; 2277 } 2278 2279 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2280 { 2281 const struct port_info *p = netdev_priv(dev); 2282 2283 if (p->port_type == FW_PORT_TYPE_BT_SGMII || 2284 p->port_type == FW_PORT_TYPE_BT_XFI || 2285 p->port_type == FW_PORT_TYPE_BT_XAUI) 2286 cmd->port = PORT_TP; 2287 else if (p->port_type == FW_PORT_TYPE_FIBER_XFI || 2288 p->port_type == FW_PORT_TYPE_FIBER_XAUI) 2289 cmd->port = PORT_FIBRE; 2290 else if (p->port_type == FW_PORT_TYPE_SFP || 2291 p->port_type == FW_PORT_TYPE_QSFP_10G || 2292 p->port_type == FW_PORT_TYPE_QSFP) { 2293 if (p->mod_type == FW_PORT_MOD_TYPE_LR || 2294 p->mod_type == FW_PORT_MOD_TYPE_SR || 2295 p->mod_type == FW_PORT_MOD_TYPE_ER || 2296 p->mod_type == FW_PORT_MOD_TYPE_LRM) 2297 cmd->port = PORT_FIBRE; 2298 else if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE || 2299 p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE) 2300 cmd->port = PORT_DA; 2301 else 2302 cmd->port = PORT_OTHER; 2303 } else 2304 cmd->port = PORT_OTHER; 2305 2306 if (p->mdio_addr >= 0) { 2307 cmd->phy_address = p->mdio_addr; 2308 cmd->transceiver = XCVR_EXTERNAL; 2309 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ? 2310 MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45; 2311 } else { 2312 cmd->phy_address = 0; /* not really, but no better option */ 2313 cmd->transceiver = XCVR_INTERNAL; 2314 cmd->mdio_support = 0; 2315 } 2316 2317 cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported); 2318 cmd->advertising = from_fw_linkcaps(p->port_type, 2319 p->link_cfg.advertising); 2320 ethtool_cmd_speed_set(cmd, 2321 netif_carrier_ok(dev) ? p->link_cfg.speed : 0); 2322 cmd->duplex = DUPLEX_FULL; 2323 cmd->autoneg = p->link_cfg.autoneg; 2324 cmd->maxtxpkt = 0; 2325 cmd->maxrxpkt = 0; 2326 return 0; 2327 } 2328 2329 static unsigned int speed_to_caps(int speed) 2330 { 2331 if (speed == 100) 2332 return FW_PORT_CAP_SPEED_100M; 2333 if (speed == 1000) 2334 return FW_PORT_CAP_SPEED_1G; 2335 if (speed == 10000) 2336 return FW_PORT_CAP_SPEED_10G; 2337 if (speed == 40000) 2338 return FW_PORT_CAP_SPEED_40G; 2339 return 0; 2340 } 2341 2342 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2343 { 2344 unsigned int cap; 2345 struct port_info *p = netdev_priv(dev); 2346 struct link_config *lc = &p->link_cfg; 2347 u32 speed = ethtool_cmd_speed(cmd); 2348 2349 if (cmd->duplex != DUPLEX_FULL) /* only full-duplex supported */ 2350 return -EINVAL; 2351 2352 if (!(lc->supported & FW_PORT_CAP_ANEG)) { 2353 /* 2354 * PHY offers a single speed. See if that's what's 2355 * being requested. 2356 */ 2357 if (cmd->autoneg == AUTONEG_DISABLE && 2358 (lc->supported & speed_to_caps(speed))) 2359 return 0; 2360 return -EINVAL; 2361 } 2362 2363 if (cmd->autoneg == AUTONEG_DISABLE) { 2364 cap = speed_to_caps(speed); 2365 2366 if (!(lc->supported & cap) || 2367 (speed == 1000) || 2368 (speed == 10000) || 2369 (speed == 40000)) 2370 return -EINVAL; 2371 lc->requested_speed = cap; 2372 lc->advertising = 0; 2373 } else { 2374 cap = to_fw_linkcaps(cmd->advertising); 2375 if (!(lc->supported & cap)) 2376 return -EINVAL; 2377 lc->requested_speed = 0; 2378 lc->advertising = cap | FW_PORT_CAP_ANEG; 2379 } 2380 lc->autoneg = cmd->autoneg; 2381 2382 if (netif_running(dev)) 2383 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan, 2384 lc); 2385 return 0; 2386 } 2387 2388 static void get_pauseparam(struct net_device *dev, 2389 struct ethtool_pauseparam *epause) 2390 { 2391 struct port_info *p = netdev_priv(dev); 2392 2393 epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0; 2394 epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0; 2395 epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0; 2396 } 2397 2398 static int set_pauseparam(struct net_device *dev, 2399 struct ethtool_pauseparam *epause) 2400 { 2401 struct port_info *p = netdev_priv(dev); 2402 struct link_config *lc = &p->link_cfg; 2403 2404 if (epause->autoneg == AUTONEG_DISABLE) 2405 lc->requested_fc = 0; 2406 else if (lc->supported & FW_PORT_CAP_ANEG) 2407 lc->requested_fc = PAUSE_AUTONEG; 2408 else 2409 return -EINVAL; 2410 2411 if (epause->rx_pause) 2412 lc->requested_fc |= PAUSE_RX; 2413 if (epause->tx_pause) 2414 lc->requested_fc |= PAUSE_TX; 2415 if (netif_running(dev)) 2416 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan, 2417 lc); 2418 return 0; 2419 } 2420 2421 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e) 2422 { 2423 const struct port_info *pi = netdev_priv(dev); 2424 const struct sge *s = &pi->adapter->sge; 2425 2426 e->rx_max_pending = MAX_RX_BUFFERS; 2427 e->rx_mini_max_pending = MAX_RSPQ_ENTRIES; 2428 e->rx_jumbo_max_pending = 0; 2429 e->tx_max_pending = MAX_TXQ_ENTRIES; 2430 2431 e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8; 2432 e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size; 2433 e->rx_jumbo_pending = 0; 2434 e->tx_pending = s->ethtxq[pi->first_qset].q.size; 2435 } 2436 2437 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e) 2438 { 2439 int i; 2440 const struct port_info *pi = netdev_priv(dev); 2441 struct adapter *adapter = pi->adapter; 2442 struct sge *s = &adapter->sge; 2443 2444 if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending || 2445 e->tx_pending > MAX_TXQ_ENTRIES || 2446 e->rx_mini_pending > MAX_RSPQ_ENTRIES || 2447 e->rx_mini_pending < MIN_RSPQ_ENTRIES || 2448 e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES) 2449 return -EINVAL; 2450 2451 if (adapter->flags & FULL_INIT_DONE) 2452 return -EBUSY; 2453 2454 for (i = 0; i < pi->nqsets; ++i) { 2455 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending; 2456 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8; 2457 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending; 2458 } 2459 return 0; 2460 } 2461 2462 static int closest_timer(const struct sge *s, int time) 2463 { 2464 int i, delta, match = 0, min_delta = INT_MAX; 2465 2466 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 2467 delta = time - s->timer_val[i]; 2468 if (delta < 0) 2469 delta = -delta; 2470 if (delta < min_delta) { 2471 min_delta = delta; 2472 match = i; 2473 } 2474 } 2475 return match; 2476 } 2477 2478 static int closest_thres(const struct sge *s, int thres) 2479 { 2480 int i, delta, match = 0, min_delta = INT_MAX; 2481 2482 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 2483 delta = thres - s->counter_val[i]; 2484 if (delta < 0) 2485 delta = -delta; 2486 if (delta < min_delta) { 2487 min_delta = delta; 2488 match = i; 2489 } 2490 } 2491 return match; 2492 } 2493 2494 /* 2495 * Return a queue's interrupt hold-off time in us. 0 means no timer. 2496 */ 2497 static unsigned int qtimer_val(const struct adapter *adap, 2498 const struct sge_rspq *q) 2499 { 2500 unsigned int idx = q->intr_params >> 1; 2501 2502 return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0; 2503 } 2504 2505 /** 2506 * set_rspq_intr_params - set a queue's interrupt holdoff parameters 2507 * @q: the Rx queue 2508 * @us: the hold-off time in us, or 0 to disable timer 2509 * @cnt: the hold-off packet count, or 0 to disable counter 2510 * 2511 * Sets an Rx queue's interrupt hold-off time and packet count. At least 2512 * one of the two needs to be enabled for the queue to generate interrupts. 2513 */ 2514 static int set_rspq_intr_params(struct sge_rspq *q, 2515 unsigned int us, unsigned int cnt) 2516 { 2517 struct adapter *adap = q->adap; 2518 2519 if ((us | cnt) == 0) 2520 cnt = 1; 2521 2522 if (cnt) { 2523 int err; 2524 u32 v, new_idx; 2525 2526 new_idx = closest_thres(&adap->sge, cnt); 2527 if (q->desc && q->pktcnt_idx != new_idx) { 2528 /* the queue has already been created, update it */ 2529 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | 2530 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 2531 FW_PARAMS_PARAM_YZ(q->cntxt_id); 2532 err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v, 2533 &new_idx); 2534 if (err) 2535 return err; 2536 } 2537 q->pktcnt_idx = new_idx; 2538 } 2539 2540 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 2541 q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0); 2542 return 0; 2543 } 2544 2545 /** 2546 * set_rx_intr_params - set a net devices's RX interrupt holdoff paramete! 2547 * @dev: the network device 2548 * @us: the hold-off time in us, or 0 to disable timer 2549 * @cnt: the hold-off packet count, or 0 to disable counter 2550 * 2551 * Set the RX interrupt hold-off parameters for a network device. 2552 */ 2553 static int set_rx_intr_params(struct net_device *dev, 2554 unsigned int us, unsigned int cnt) 2555 { 2556 int i, err; 2557 struct port_info *pi = netdev_priv(dev); 2558 struct adapter *adap = pi->adapter; 2559 struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset]; 2560 2561 for (i = 0; i < pi->nqsets; i++, q++) { 2562 err = set_rspq_intr_params(&q->rspq, us, cnt); 2563 if (err) 2564 return err; 2565 } 2566 return 0; 2567 } 2568 2569 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c) 2570 { 2571 return set_rx_intr_params(dev, c->rx_coalesce_usecs, 2572 c->rx_max_coalesced_frames); 2573 } 2574 2575 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c) 2576 { 2577 const struct port_info *pi = netdev_priv(dev); 2578 const struct adapter *adap = pi->adapter; 2579 const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq; 2580 2581 c->rx_coalesce_usecs = qtimer_val(adap, rq); 2582 c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ? 2583 adap->sge.counter_val[rq->pktcnt_idx] : 0; 2584 return 0; 2585 } 2586 2587 /** 2588 * eeprom_ptov - translate a physical EEPROM address to virtual 2589 * @phys_addr: the physical EEPROM address 2590 * @fn: the PCI function number 2591 * @sz: size of function-specific area 2592 * 2593 * Translate a physical EEPROM address to virtual. The first 1K is 2594 * accessed through virtual addresses starting at 31K, the rest is 2595 * accessed through virtual addresses starting at 0. 2596 * 2597 * The mapping is as follows: 2598 * [0..1K) -> [31K..32K) 2599 * [1K..1K+A) -> [31K-A..31K) 2600 * [1K+A..ES) -> [0..ES-A-1K) 2601 * 2602 * where A = @fn * @sz, and ES = EEPROM size. 2603 */ 2604 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 2605 { 2606 fn *= sz; 2607 if (phys_addr < 1024) 2608 return phys_addr + (31 << 10); 2609 if (phys_addr < 1024 + fn) 2610 return 31744 - fn + phys_addr - 1024; 2611 if (phys_addr < EEPROMSIZE) 2612 return phys_addr - 1024 - fn; 2613 return -EINVAL; 2614 } 2615 2616 /* 2617 * The next two routines implement eeprom read/write from physical addresses. 2618 */ 2619 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v) 2620 { 2621 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE); 2622 2623 if (vaddr >= 0) 2624 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v); 2625 return vaddr < 0 ? vaddr : 0; 2626 } 2627 2628 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v) 2629 { 2630 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE); 2631 2632 if (vaddr >= 0) 2633 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v); 2634 return vaddr < 0 ? vaddr : 0; 2635 } 2636 2637 #define EEPROM_MAGIC 0x38E2F10C 2638 2639 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e, 2640 u8 *data) 2641 { 2642 int i, err = 0; 2643 struct adapter *adapter = netdev2adap(dev); 2644 2645 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL); 2646 if (!buf) 2647 return -ENOMEM; 2648 2649 e->magic = EEPROM_MAGIC; 2650 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4) 2651 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]); 2652 2653 if (!err) 2654 memcpy(data, buf + e->offset, e->len); 2655 kfree(buf); 2656 return err; 2657 } 2658 2659 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, 2660 u8 *data) 2661 { 2662 u8 *buf; 2663 int err = 0; 2664 u32 aligned_offset, aligned_len, *p; 2665 struct adapter *adapter = netdev2adap(dev); 2666 2667 if (eeprom->magic != EEPROM_MAGIC) 2668 return -EINVAL; 2669 2670 aligned_offset = eeprom->offset & ~3; 2671 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3; 2672 2673 if (adapter->fn > 0) { 2674 u32 start = 1024 + adapter->fn * EEPROMPFSIZE; 2675 2676 if (aligned_offset < start || 2677 aligned_offset + aligned_len > start + EEPROMPFSIZE) 2678 return -EPERM; 2679 } 2680 2681 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) { 2682 /* 2683 * RMW possibly needed for first or last words. 2684 */ 2685 buf = kmalloc(aligned_len, GFP_KERNEL); 2686 if (!buf) 2687 return -ENOMEM; 2688 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf); 2689 if (!err && aligned_len > 4) 2690 err = eeprom_rd_phys(adapter, 2691 aligned_offset + aligned_len - 4, 2692 (u32 *)&buf[aligned_len - 4]); 2693 if (err) 2694 goto out; 2695 memcpy(buf + (eeprom->offset & 3), data, eeprom->len); 2696 } else 2697 buf = data; 2698 2699 err = t4_seeprom_wp(adapter, false); 2700 if (err) 2701 goto out; 2702 2703 for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) { 2704 err = eeprom_wr_phys(adapter, aligned_offset, *p); 2705 aligned_offset += 4; 2706 } 2707 2708 if (!err) 2709 err = t4_seeprom_wp(adapter, true); 2710 out: 2711 if (buf != data) 2712 kfree(buf); 2713 return err; 2714 } 2715 2716 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef) 2717 { 2718 int ret; 2719 const struct firmware *fw; 2720 struct adapter *adap = netdev2adap(netdev); 2721 2722 ef->data[sizeof(ef->data) - 1] = '\0'; 2723 ret = request_firmware(&fw, ef->data, adap->pdev_dev); 2724 if (ret < 0) 2725 return ret; 2726 2727 ret = t4_load_fw(adap, fw->data, fw->size); 2728 release_firmware(fw); 2729 if (!ret) 2730 dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data); 2731 return ret; 2732 } 2733 2734 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC) 2735 #define BCAST_CRC 0xa0ccc1a6 2736 2737 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2738 { 2739 wol->supported = WAKE_BCAST | WAKE_MAGIC; 2740 wol->wolopts = netdev2adap(dev)->wol; 2741 memset(&wol->sopass, 0, sizeof(wol->sopass)); 2742 } 2743 2744 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2745 { 2746 int err = 0; 2747 struct port_info *pi = netdev_priv(dev); 2748 2749 if (wol->wolopts & ~WOL_SUPPORTED) 2750 return -EINVAL; 2751 t4_wol_magic_enable(pi->adapter, pi->tx_chan, 2752 (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL); 2753 if (wol->wolopts & WAKE_BCAST) { 2754 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL, 2755 ~0ULL, 0, false); 2756 if (!err) 2757 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1, 2758 ~6ULL, ~0ULL, BCAST_CRC, true); 2759 } else 2760 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false); 2761 return err; 2762 } 2763 2764 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 2765 { 2766 const struct port_info *pi = netdev_priv(dev); 2767 netdev_features_t changed = dev->features ^ features; 2768 int err; 2769 2770 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 2771 return 0; 2772 2773 err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1, 2774 -1, -1, -1, 2775 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 2776 if (unlikely(err)) 2777 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 2778 return err; 2779 } 2780 2781 static u32 get_rss_table_size(struct net_device *dev) 2782 { 2783 const struct port_info *pi = netdev_priv(dev); 2784 2785 return pi->rss_size; 2786 } 2787 2788 static int get_rss_table(struct net_device *dev, u32 *p, u8 *key) 2789 { 2790 const struct port_info *pi = netdev_priv(dev); 2791 unsigned int n = pi->rss_size; 2792 2793 while (n--) 2794 p[n] = pi->rss[n]; 2795 return 0; 2796 } 2797 2798 static int set_rss_table(struct net_device *dev, const u32 *p, const u8 *key) 2799 { 2800 unsigned int i; 2801 struct port_info *pi = netdev_priv(dev); 2802 2803 for (i = 0; i < pi->rss_size; i++) 2804 pi->rss[i] = p[i]; 2805 if (pi->adapter->flags & FULL_INIT_DONE) 2806 return write_rss(pi, pi->rss); 2807 return 0; 2808 } 2809 2810 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 2811 u32 *rules) 2812 { 2813 const struct port_info *pi = netdev_priv(dev); 2814 2815 switch (info->cmd) { 2816 case ETHTOOL_GRXFH: { 2817 unsigned int v = pi->rss_mode; 2818 2819 info->data = 0; 2820 switch (info->flow_type) { 2821 case TCP_V4_FLOW: 2822 if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 2823 info->data = RXH_IP_SRC | RXH_IP_DST | 2824 RXH_L4_B_0_1 | RXH_L4_B_2_3; 2825 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 2826 info->data = RXH_IP_SRC | RXH_IP_DST; 2827 break; 2828 case UDP_V4_FLOW: 2829 if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) && 2830 (v & FW_RSS_VI_CONFIG_CMD_UDPEN)) 2831 info->data = RXH_IP_SRC | RXH_IP_DST | 2832 RXH_L4_B_0_1 | RXH_L4_B_2_3; 2833 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 2834 info->data = RXH_IP_SRC | RXH_IP_DST; 2835 break; 2836 case SCTP_V4_FLOW: 2837 case AH_ESP_V4_FLOW: 2838 case IPV4_FLOW: 2839 if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 2840 info->data = RXH_IP_SRC | RXH_IP_DST; 2841 break; 2842 case TCP_V6_FLOW: 2843 if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 2844 info->data = RXH_IP_SRC | RXH_IP_DST | 2845 RXH_L4_B_0_1 | RXH_L4_B_2_3; 2846 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 2847 info->data = RXH_IP_SRC | RXH_IP_DST; 2848 break; 2849 case UDP_V6_FLOW: 2850 if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) && 2851 (v & FW_RSS_VI_CONFIG_CMD_UDPEN)) 2852 info->data = RXH_IP_SRC | RXH_IP_DST | 2853 RXH_L4_B_0_1 | RXH_L4_B_2_3; 2854 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 2855 info->data = RXH_IP_SRC | RXH_IP_DST; 2856 break; 2857 case SCTP_V6_FLOW: 2858 case AH_ESP_V6_FLOW: 2859 case IPV6_FLOW: 2860 if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 2861 info->data = RXH_IP_SRC | RXH_IP_DST; 2862 break; 2863 } 2864 return 0; 2865 } 2866 case ETHTOOL_GRXRINGS: 2867 info->data = pi->nqsets; 2868 return 0; 2869 } 2870 return -EOPNOTSUPP; 2871 } 2872 2873 static const struct ethtool_ops cxgb_ethtool_ops = { 2874 .get_settings = get_settings, 2875 .set_settings = set_settings, 2876 .get_drvinfo = get_drvinfo, 2877 .get_msglevel = get_msglevel, 2878 .set_msglevel = set_msglevel, 2879 .get_ringparam = get_sge_param, 2880 .set_ringparam = set_sge_param, 2881 .get_coalesce = get_coalesce, 2882 .set_coalesce = set_coalesce, 2883 .get_eeprom_len = get_eeprom_len, 2884 .get_eeprom = get_eeprom, 2885 .set_eeprom = set_eeprom, 2886 .get_pauseparam = get_pauseparam, 2887 .set_pauseparam = set_pauseparam, 2888 .get_link = ethtool_op_get_link, 2889 .get_strings = get_strings, 2890 .set_phys_id = identify_port, 2891 .nway_reset = restart_autoneg, 2892 .get_sset_count = get_sset_count, 2893 .get_ethtool_stats = get_stats, 2894 .get_regs_len = get_regs_len, 2895 .get_regs = get_regs, 2896 .get_wol = get_wol, 2897 .set_wol = set_wol, 2898 .get_rxnfc = get_rxnfc, 2899 .get_rxfh_indir_size = get_rss_table_size, 2900 .get_rxfh = get_rss_table, 2901 .set_rxfh = set_rss_table, 2902 .flash_device = set_flash, 2903 }; 2904 2905 /* 2906 * debugfs support 2907 */ 2908 static ssize_t mem_read(struct file *file, char __user *buf, size_t count, 2909 loff_t *ppos) 2910 { 2911 loff_t pos = *ppos; 2912 loff_t avail = file_inode(file)->i_size; 2913 unsigned int mem = (uintptr_t)file->private_data & 3; 2914 struct adapter *adap = file->private_data - mem; 2915 2916 if (pos < 0) 2917 return -EINVAL; 2918 if (pos >= avail) 2919 return 0; 2920 if (count > avail - pos) 2921 count = avail - pos; 2922 2923 while (count) { 2924 size_t len; 2925 int ret, ofst; 2926 __be32 data[16]; 2927 2928 if ((mem == MEM_MC) || (mem == MEM_MC1)) 2929 ret = t4_mc_read(adap, mem % MEM_MC, pos, data, NULL); 2930 else 2931 ret = t4_edc_read(adap, mem, pos, data, NULL); 2932 if (ret) 2933 return ret; 2934 2935 ofst = pos % sizeof(data); 2936 len = min(count, sizeof(data) - ofst); 2937 if (copy_to_user(buf, (u8 *)data + ofst, len)) 2938 return -EFAULT; 2939 2940 buf += len; 2941 pos += len; 2942 count -= len; 2943 } 2944 count = pos - *ppos; 2945 *ppos = pos; 2946 return count; 2947 } 2948 2949 static const struct file_operations mem_debugfs_fops = { 2950 .owner = THIS_MODULE, 2951 .open = simple_open, 2952 .read = mem_read, 2953 .llseek = default_llseek, 2954 }; 2955 2956 static void add_debugfs_mem(struct adapter *adap, const char *name, 2957 unsigned int idx, unsigned int size_mb) 2958 { 2959 struct dentry *de; 2960 2961 de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root, 2962 (void *)adap + idx, &mem_debugfs_fops); 2963 if (de && de->d_inode) 2964 de->d_inode->i_size = size_mb << 20; 2965 } 2966 2967 static int setup_debugfs(struct adapter *adap) 2968 { 2969 int i; 2970 u32 size; 2971 2972 if (IS_ERR_OR_NULL(adap->debugfs_root)) 2973 return -1; 2974 2975 i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE); 2976 if (i & EDRAM0_ENABLE) { 2977 size = t4_read_reg(adap, MA_EDRAM0_BAR); 2978 add_debugfs_mem(adap, "edc0", MEM_EDC0, EDRAM_SIZE_GET(size)); 2979 } 2980 if (i & EDRAM1_ENABLE) { 2981 size = t4_read_reg(adap, MA_EDRAM1_BAR); 2982 add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM_SIZE_GET(size)); 2983 } 2984 if (is_t4(adap->params.chip)) { 2985 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR); 2986 if (i & EXT_MEM_ENABLE) 2987 add_debugfs_mem(adap, "mc", MEM_MC, 2988 EXT_MEM_SIZE_GET(size)); 2989 } else { 2990 if (i & EXT_MEM_ENABLE) { 2991 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR); 2992 add_debugfs_mem(adap, "mc0", MEM_MC0, 2993 EXT_MEM_SIZE_GET(size)); 2994 } 2995 if (i & EXT_MEM1_ENABLE) { 2996 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR); 2997 add_debugfs_mem(adap, "mc1", MEM_MC1, 2998 EXT_MEM_SIZE_GET(size)); 2999 } 3000 } 3001 if (adap->l2t) 3002 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap, 3003 &t4_l2t_fops); 3004 return 0; 3005 } 3006 3007 /* 3008 * upper-layer driver support 3009 */ 3010 3011 /* 3012 * Allocate an active-open TID and set it to the supplied value. 3013 */ 3014 int cxgb4_alloc_atid(struct tid_info *t, void *data) 3015 { 3016 int atid = -1; 3017 3018 spin_lock_bh(&t->atid_lock); 3019 if (t->afree) { 3020 union aopen_entry *p = t->afree; 3021 3022 atid = (p - t->atid_tab) + t->atid_base; 3023 t->afree = p->next; 3024 p->data = data; 3025 t->atids_in_use++; 3026 } 3027 spin_unlock_bh(&t->atid_lock); 3028 return atid; 3029 } 3030 EXPORT_SYMBOL(cxgb4_alloc_atid); 3031 3032 /* 3033 * Release an active-open TID. 3034 */ 3035 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 3036 { 3037 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 3038 3039 spin_lock_bh(&t->atid_lock); 3040 p->next = t->afree; 3041 t->afree = p; 3042 t->atids_in_use--; 3043 spin_unlock_bh(&t->atid_lock); 3044 } 3045 EXPORT_SYMBOL(cxgb4_free_atid); 3046 3047 /* 3048 * Allocate a server TID and set it to the supplied value. 3049 */ 3050 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 3051 { 3052 int stid; 3053 3054 spin_lock_bh(&t->stid_lock); 3055 if (family == PF_INET) { 3056 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 3057 if (stid < t->nstids) 3058 __set_bit(stid, t->stid_bmap); 3059 else 3060 stid = -1; 3061 } else { 3062 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2); 3063 if (stid < 0) 3064 stid = -1; 3065 } 3066 if (stid >= 0) { 3067 t->stid_tab[stid].data = data; 3068 stid += t->stid_base; 3069 /* IPv6 requires max of 520 bits or 16 cells in TCAM 3070 * This is equivalent to 4 TIDs. With CLIP enabled it 3071 * needs 2 TIDs. 3072 */ 3073 if (family == PF_INET) 3074 t->stids_in_use++; 3075 else 3076 t->stids_in_use += 4; 3077 } 3078 spin_unlock_bh(&t->stid_lock); 3079 return stid; 3080 } 3081 EXPORT_SYMBOL(cxgb4_alloc_stid); 3082 3083 /* Allocate a server filter TID and set it to the supplied value. 3084 */ 3085 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 3086 { 3087 int stid; 3088 3089 spin_lock_bh(&t->stid_lock); 3090 if (family == PF_INET) { 3091 stid = find_next_zero_bit(t->stid_bmap, 3092 t->nstids + t->nsftids, t->nstids); 3093 if (stid < (t->nstids + t->nsftids)) 3094 __set_bit(stid, t->stid_bmap); 3095 else 3096 stid = -1; 3097 } else { 3098 stid = -1; 3099 } 3100 if (stid >= 0) { 3101 t->stid_tab[stid].data = data; 3102 stid -= t->nstids; 3103 stid += t->sftid_base; 3104 t->stids_in_use++; 3105 } 3106 spin_unlock_bh(&t->stid_lock); 3107 return stid; 3108 } 3109 EXPORT_SYMBOL(cxgb4_alloc_sftid); 3110 3111 /* Release a server TID. 3112 */ 3113 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 3114 { 3115 /* Is it a server filter TID? */ 3116 if (t->nsftids && (stid >= t->sftid_base)) { 3117 stid -= t->sftid_base; 3118 stid += t->nstids; 3119 } else { 3120 stid -= t->stid_base; 3121 } 3122 3123 spin_lock_bh(&t->stid_lock); 3124 if (family == PF_INET) 3125 __clear_bit(stid, t->stid_bmap); 3126 else 3127 bitmap_release_region(t->stid_bmap, stid, 2); 3128 t->stid_tab[stid].data = NULL; 3129 if (family == PF_INET) 3130 t->stids_in_use--; 3131 else 3132 t->stids_in_use -= 4; 3133 spin_unlock_bh(&t->stid_lock); 3134 } 3135 EXPORT_SYMBOL(cxgb4_free_stid); 3136 3137 /* 3138 * Populate a TID_RELEASE WR. Caller must properly size the skb. 3139 */ 3140 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 3141 unsigned int tid) 3142 { 3143 struct cpl_tid_release *req; 3144 3145 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 3146 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req)); 3147 INIT_TP_WR(req, tid); 3148 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 3149 } 3150 3151 /* 3152 * Queue a TID release request and if necessary schedule a work queue to 3153 * process it. 3154 */ 3155 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 3156 unsigned int tid) 3157 { 3158 void **p = &t->tid_tab[tid]; 3159 struct adapter *adap = container_of(t, struct adapter, tids); 3160 3161 spin_lock_bh(&adap->tid_release_lock); 3162 *p = adap->tid_release_head; 3163 /* Low 2 bits encode the Tx channel number */ 3164 adap->tid_release_head = (void **)((uintptr_t)p | chan); 3165 if (!adap->tid_release_task_busy) { 3166 adap->tid_release_task_busy = true; 3167 queue_work(workq, &adap->tid_release_task); 3168 } 3169 spin_unlock_bh(&adap->tid_release_lock); 3170 } 3171 3172 /* 3173 * Process the list of pending TID release requests. 3174 */ 3175 static void process_tid_release_list(struct work_struct *work) 3176 { 3177 struct sk_buff *skb; 3178 struct adapter *adap; 3179 3180 adap = container_of(work, struct adapter, tid_release_task); 3181 3182 spin_lock_bh(&adap->tid_release_lock); 3183 while (adap->tid_release_head) { 3184 void **p = adap->tid_release_head; 3185 unsigned int chan = (uintptr_t)p & 3; 3186 p = (void *)p - chan; 3187 3188 adap->tid_release_head = *p; 3189 *p = NULL; 3190 spin_unlock_bh(&adap->tid_release_lock); 3191 3192 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 3193 GFP_KERNEL))) 3194 schedule_timeout_uninterruptible(1); 3195 3196 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 3197 t4_ofld_send(adap, skb); 3198 spin_lock_bh(&adap->tid_release_lock); 3199 } 3200 adap->tid_release_task_busy = false; 3201 spin_unlock_bh(&adap->tid_release_lock); 3202 } 3203 3204 /* 3205 * Release a TID and inform HW. If we are unable to allocate the release 3206 * message we defer to a work queue. 3207 */ 3208 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid) 3209 { 3210 void *old; 3211 struct sk_buff *skb; 3212 struct adapter *adap = container_of(t, struct adapter, tids); 3213 3214 old = t->tid_tab[tid]; 3215 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 3216 if (likely(skb)) { 3217 t->tid_tab[tid] = NULL; 3218 mk_tid_release(skb, chan, tid); 3219 t4_ofld_send(adap, skb); 3220 } else 3221 cxgb4_queue_tid_release(t, chan, tid); 3222 if (old) 3223 atomic_dec(&t->tids_in_use); 3224 } 3225 EXPORT_SYMBOL(cxgb4_remove_tid); 3226 3227 /* 3228 * Allocate and initialize the TID tables. Returns 0 on success. 3229 */ 3230 static int tid_init(struct tid_info *t) 3231 { 3232 size_t size; 3233 unsigned int stid_bmap_size; 3234 unsigned int natids = t->natids; 3235 struct adapter *adap = container_of(t, struct adapter, tids); 3236 3237 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 3238 size = t->ntids * sizeof(*t->tid_tab) + 3239 natids * sizeof(*t->atid_tab) + 3240 t->nstids * sizeof(*t->stid_tab) + 3241 t->nsftids * sizeof(*t->stid_tab) + 3242 stid_bmap_size * sizeof(long) + 3243 t->nftids * sizeof(*t->ftid_tab) + 3244 t->nsftids * sizeof(*t->ftid_tab); 3245 3246 t->tid_tab = t4_alloc_mem(size); 3247 if (!t->tid_tab) 3248 return -ENOMEM; 3249 3250 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 3251 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 3252 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 3253 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 3254 spin_lock_init(&t->stid_lock); 3255 spin_lock_init(&t->atid_lock); 3256 3257 t->stids_in_use = 0; 3258 t->afree = NULL; 3259 t->atids_in_use = 0; 3260 atomic_set(&t->tids_in_use, 0); 3261 3262 /* Setup the free list for atid_tab and clear the stid bitmap. */ 3263 if (natids) { 3264 while (--natids) 3265 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 3266 t->afree = t->atid_tab; 3267 } 3268 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 3269 /* Reserve stid 0 for T4/T5 adapters */ 3270 if (!t->stid_base && 3271 (is_t4(adap->params.chip) || is_t5(adap->params.chip))) 3272 __set_bit(0, t->stid_bmap); 3273 3274 return 0; 3275 } 3276 3277 static int cxgb4_clip_get(const struct net_device *dev, 3278 const struct in6_addr *lip) 3279 { 3280 struct adapter *adap; 3281 struct fw_clip_cmd c; 3282 3283 adap = netdev2adap(dev); 3284 memset(&c, 0, sizeof(c)); 3285 c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) | 3286 FW_CMD_REQUEST | FW_CMD_WRITE); 3287 c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_ALLOC | FW_LEN16(c)); 3288 c.ip_hi = *(__be64 *)(lip->s6_addr); 3289 c.ip_lo = *(__be64 *)(lip->s6_addr + 8); 3290 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false); 3291 } 3292 3293 static int cxgb4_clip_release(const struct net_device *dev, 3294 const struct in6_addr *lip) 3295 { 3296 struct adapter *adap; 3297 struct fw_clip_cmd c; 3298 3299 adap = netdev2adap(dev); 3300 memset(&c, 0, sizeof(c)); 3301 c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) | 3302 FW_CMD_REQUEST | FW_CMD_READ); 3303 c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_FREE | FW_LEN16(c)); 3304 c.ip_hi = *(__be64 *)(lip->s6_addr); 3305 c.ip_lo = *(__be64 *)(lip->s6_addr + 8); 3306 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false); 3307 } 3308 3309 /** 3310 * cxgb4_create_server - create an IP server 3311 * @dev: the device 3312 * @stid: the server TID 3313 * @sip: local IP address to bind server to 3314 * @sport: the server's TCP port 3315 * @queue: queue to direct messages from this server to 3316 * 3317 * Create an IP server for the given port and address. 3318 * Returns <0 on error and one of the %NET_XMIT_* values on success. 3319 */ 3320 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 3321 __be32 sip, __be16 sport, __be16 vlan, 3322 unsigned int queue) 3323 { 3324 unsigned int chan; 3325 struct sk_buff *skb; 3326 struct adapter *adap; 3327 struct cpl_pass_open_req *req; 3328 int ret; 3329 3330 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 3331 if (!skb) 3332 return -ENOMEM; 3333 3334 adap = netdev2adap(dev); 3335 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req)); 3336 INIT_TP_WR(req, 0); 3337 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 3338 req->local_port = sport; 3339 req->peer_port = htons(0); 3340 req->local_ip = sip; 3341 req->peer_ip = htonl(0); 3342 chan = rxq_to_chan(&adap->sge, queue); 3343 req->opt0 = cpu_to_be64(TX_CHAN(chan)); 3344 req->opt1 = cpu_to_be64(CONN_POLICY_ASK | 3345 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue)); 3346 ret = t4_mgmt_tx(adap, skb); 3347 return net_xmit_eval(ret); 3348 } 3349 EXPORT_SYMBOL(cxgb4_create_server); 3350 3351 /* cxgb4_create_server6 - create an IPv6 server 3352 * @dev: the device 3353 * @stid: the server TID 3354 * @sip: local IPv6 address to bind server to 3355 * @sport: the server's TCP port 3356 * @queue: queue to direct messages from this server to 3357 * 3358 * Create an IPv6 server for the given port and address. 3359 * Returns <0 on error and one of the %NET_XMIT_* values on success. 3360 */ 3361 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 3362 const struct in6_addr *sip, __be16 sport, 3363 unsigned int queue) 3364 { 3365 unsigned int chan; 3366 struct sk_buff *skb; 3367 struct adapter *adap; 3368 struct cpl_pass_open_req6 *req; 3369 int ret; 3370 3371 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 3372 if (!skb) 3373 return -ENOMEM; 3374 3375 adap = netdev2adap(dev); 3376 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req)); 3377 INIT_TP_WR(req, 0); 3378 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 3379 req->local_port = sport; 3380 req->peer_port = htons(0); 3381 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 3382 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 3383 req->peer_ip_hi = cpu_to_be64(0); 3384 req->peer_ip_lo = cpu_to_be64(0); 3385 chan = rxq_to_chan(&adap->sge, queue); 3386 req->opt0 = cpu_to_be64(TX_CHAN(chan)); 3387 req->opt1 = cpu_to_be64(CONN_POLICY_ASK | 3388 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue)); 3389 ret = t4_mgmt_tx(adap, skb); 3390 return net_xmit_eval(ret); 3391 } 3392 EXPORT_SYMBOL(cxgb4_create_server6); 3393 3394 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 3395 unsigned int queue, bool ipv6) 3396 { 3397 struct sk_buff *skb; 3398 struct adapter *adap; 3399 struct cpl_close_listsvr_req *req; 3400 int ret; 3401 3402 adap = netdev2adap(dev); 3403 3404 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 3405 if (!skb) 3406 return -ENOMEM; 3407 3408 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req)); 3409 INIT_TP_WR(req, 0); 3410 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 3411 req->reply_ctrl = htons(NO_REPLY(0) | (ipv6 ? LISTSVR_IPV6(1) : 3412 LISTSVR_IPV6(0)) | QUEUENO(queue)); 3413 ret = t4_mgmt_tx(adap, skb); 3414 return net_xmit_eval(ret); 3415 } 3416 EXPORT_SYMBOL(cxgb4_remove_server); 3417 3418 /** 3419 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 3420 * @mtus: the HW MTU table 3421 * @mtu: the target MTU 3422 * @idx: index of selected entry in the MTU table 3423 * 3424 * Returns the index and the value in the HW MTU table that is closest to 3425 * but does not exceed @mtu, unless @mtu is smaller than any value in the 3426 * table, in which case that smallest available value is selected. 3427 */ 3428 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 3429 unsigned int *idx) 3430 { 3431 unsigned int i = 0; 3432 3433 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 3434 ++i; 3435 if (idx) 3436 *idx = i; 3437 return mtus[i]; 3438 } 3439 EXPORT_SYMBOL(cxgb4_best_mtu); 3440 3441 /** 3442 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 3443 * @mtus: the HW MTU table 3444 * @header_size: Header Size 3445 * @data_size_max: maximum Data Segment Size 3446 * @data_size_align: desired Data Segment Size Alignment (2^N) 3447 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 3448 * 3449 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 3450 * MTU Table based solely on a Maximum MTU parameter, we break that 3451 * parameter up into a Header Size and Maximum Data Segment Size, and 3452 * provide a desired Data Segment Size Alignment. If we find an MTU in 3453 * the Hardware MTU Table which will result in a Data Segment Size with 3454 * the requested alignment _and_ that MTU isn't "too far" from the 3455 * closest MTU, then we'll return that rather than the closest MTU. 3456 */ 3457 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 3458 unsigned short header_size, 3459 unsigned short data_size_max, 3460 unsigned short data_size_align, 3461 unsigned int *mtu_idxp) 3462 { 3463 unsigned short max_mtu = header_size + data_size_max; 3464 unsigned short data_size_align_mask = data_size_align - 1; 3465 int mtu_idx, aligned_mtu_idx; 3466 3467 /* Scan the MTU Table till we find an MTU which is larger than our 3468 * Maximum MTU or we reach the end of the table. Along the way, 3469 * record the last MTU found, if any, which will result in a Data 3470 * Segment Length matching the requested alignment. 3471 */ 3472 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 3473 unsigned short data_size = mtus[mtu_idx] - header_size; 3474 3475 /* If this MTU minus the Header Size would result in a 3476 * Data Segment Size of the desired alignment, remember it. 3477 */ 3478 if ((data_size & data_size_align_mask) == 0) 3479 aligned_mtu_idx = mtu_idx; 3480 3481 /* If we're not at the end of the Hardware MTU Table and the 3482 * next element is larger than our Maximum MTU, drop out of 3483 * the loop. 3484 */ 3485 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 3486 break; 3487 } 3488 3489 /* If we fell out of the loop because we ran to the end of the table, 3490 * then we just have to use the last [largest] entry. 3491 */ 3492 if (mtu_idx == NMTUS) 3493 mtu_idx--; 3494 3495 /* If we found an MTU which resulted in the requested Data Segment 3496 * Length alignment and that's "not far" from the largest MTU which is 3497 * less than or equal to the maximum MTU, then use that. 3498 */ 3499 if (aligned_mtu_idx >= 0 && 3500 mtu_idx - aligned_mtu_idx <= 1) 3501 mtu_idx = aligned_mtu_idx; 3502 3503 /* If the caller has passed in an MTU Index pointer, pass the 3504 * MTU Index back. Return the MTU value. 3505 */ 3506 if (mtu_idxp) 3507 *mtu_idxp = mtu_idx; 3508 return mtus[mtu_idx]; 3509 } 3510 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 3511 3512 /** 3513 * cxgb4_port_chan - get the HW channel of a port 3514 * @dev: the net device for the port 3515 * 3516 * Return the HW Tx channel of the given port. 3517 */ 3518 unsigned int cxgb4_port_chan(const struct net_device *dev) 3519 { 3520 return netdev2pinfo(dev)->tx_chan; 3521 } 3522 EXPORT_SYMBOL(cxgb4_port_chan); 3523 3524 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 3525 { 3526 struct adapter *adap = netdev2adap(dev); 3527 u32 v1, v2, lp_count, hp_count; 3528 3529 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS); 3530 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2); 3531 if (is_t4(adap->params.chip)) { 3532 lp_count = G_LP_COUNT(v1); 3533 hp_count = G_HP_COUNT(v1); 3534 } else { 3535 lp_count = G_LP_COUNT_T5(v1); 3536 hp_count = G_HP_COUNT_T5(v2); 3537 } 3538 return lpfifo ? lp_count : hp_count; 3539 } 3540 EXPORT_SYMBOL(cxgb4_dbfifo_count); 3541 3542 /** 3543 * cxgb4_port_viid - get the VI id of a port 3544 * @dev: the net device for the port 3545 * 3546 * Return the VI id of the given port. 3547 */ 3548 unsigned int cxgb4_port_viid(const struct net_device *dev) 3549 { 3550 return netdev2pinfo(dev)->viid; 3551 } 3552 EXPORT_SYMBOL(cxgb4_port_viid); 3553 3554 /** 3555 * cxgb4_port_idx - get the index of a port 3556 * @dev: the net device for the port 3557 * 3558 * Return the index of the given port. 3559 */ 3560 unsigned int cxgb4_port_idx(const struct net_device *dev) 3561 { 3562 return netdev2pinfo(dev)->port_id; 3563 } 3564 EXPORT_SYMBOL(cxgb4_port_idx); 3565 3566 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 3567 struct tp_tcp_stats *v6) 3568 { 3569 struct adapter *adap = pci_get_drvdata(pdev); 3570 3571 spin_lock(&adap->stats_lock); 3572 t4_tp_get_tcp_stats(adap, v4, v6); 3573 spin_unlock(&adap->stats_lock); 3574 } 3575 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 3576 3577 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 3578 const unsigned int *pgsz_order) 3579 { 3580 struct adapter *adap = netdev2adap(dev); 3581 3582 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask); 3583 t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) | 3584 HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) | 3585 HPZ3(pgsz_order[3])); 3586 } 3587 EXPORT_SYMBOL(cxgb4_iscsi_init); 3588 3589 int cxgb4_flush_eq_cache(struct net_device *dev) 3590 { 3591 struct adapter *adap = netdev2adap(dev); 3592 int ret; 3593 3594 ret = t4_fwaddrspace_write(adap, adap->mbox, 3595 0xe1000000 + A_SGE_CTXT_CMD, 0x20000000); 3596 return ret; 3597 } 3598 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 3599 3600 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 3601 { 3602 u32 addr = t4_read_reg(adap, A_SGE_DBQ_CTXT_BADDR) + 24 * qid + 8; 3603 __be64 indices; 3604 int ret; 3605 3606 ret = t4_mem_win_read_len(adap, addr, (__be32 *)&indices, 8); 3607 if (!ret) { 3608 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 3609 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 3610 } 3611 return ret; 3612 } 3613 3614 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 3615 u16 size) 3616 { 3617 struct adapter *adap = netdev2adap(dev); 3618 u16 hw_pidx, hw_cidx; 3619 int ret; 3620 3621 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 3622 if (ret) 3623 goto out; 3624 3625 if (pidx != hw_pidx) { 3626 u16 delta; 3627 3628 if (pidx >= hw_pidx) 3629 delta = pidx - hw_pidx; 3630 else 3631 delta = size - hw_pidx + pidx; 3632 wmb(); 3633 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL), 3634 QID(qid) | PIDX(delta)); 3635 } 3636 out: 3637 return ret; 3638 } 3639 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 3640 3641 void cxgb4_disable_db_coalescing(struct net_device *dev) 3642 { 3643 struct adapter *adap; 3644 3645 adap = netdev2adap(dev); 3646 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE, 3647 F_NOCOALESCE); 3648 } 3649 EXPORT_SYMBOL(cxgb4_disable_db_coalescing); 3650 3651 void cxgb4_enable_db_coalescing(struct net_device *dev) 3652 { 3653 struct adapter *adap; 3654 3655 adap = netdev2adap(dev); 3656 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE, 0); 3657 } 3658 EXPORT_SYMBOL(cxgb4_enable_db_coalescing); 3659 3660 static struct pci_driver cxgb4_driver; 3661 3662 static void check_neigh_update(struct neighbour *neigh) 3663 { 3664 const struct device *parent; 3665 const struct net_device *netdev = neigh->dev; 3666 3667 if (netdev->priv_flags & IFF_802_1Q_VLAN) 3668 netdev = vlan_dev_real_dev(netdev); 3669 parent = netdev->dev.parent; 3670 if (parent && parent->driver == &cxgb4_driver.driver) 3671 t4_l2t_update(dev_get_drvdata(parent), neigh); 3672 } 3673 3674 static int netevent_cb(struct notifier_block *nb, unsigned long event, 3675 void *data) 3676 { 3677 switch (event) { 3678 case NETEVENT_NEIGH_UPDATE: 3679 check_neigh_update(data); 3680 break; 3681 case NETEVENT_REDIRECT: 3682 default: 3683 break; 3684 } 3685 return 0; 3686 } 3687 3688 static bool netevent_registered; 3689 static struct notifier_block cxgb4_netevent_nb = { 3690 .notifier_call = netevent_cb 3691 }; 3692 3693 static void drain_db_fifo(struct adapter *adap, int usecs) 3694 { 3695 u32 v1, v2, lp_count, hp_count; 3696 3697 do { 3698 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS); 3699 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2); 3700 if (is_t4(adap->params.chip)) { 3701 lp_count = G_LP_COUNT(v1); 3702 hp_count = G_HP_COUNT(v1); 3703 } else { 3704 lp_count = G_LP_COUNT_T5(v1); 3705 hp_count = G_HP_COUNT_T5(v2); 3706 } 3707 3708 if (lp_count == 0 && hp_count == 0) 3709 break; 3710 set_current_state(TASK_UNINTERRUPTIBLE); 3711 schedule_timeout(usecs_to_jiffies(usecs)); 3712 } while (1); 3713 } 3714 3715 static void disable_txq_db(struct sge_txq *q) 3716 { 3717 unsigned long flags; 3718 3719 spin_lock_irqsave(&q->db_lock, flags); 3720 q->db_disabled = 1; 3721 spin_unlock_irqrestore(&q->db_lock, flags); 3722 } 3723 3724 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 3725 { 3726 spin_lock_irq(&q->db_lock); 3727 if (q->db_pidx_inc) { 3728 /* Make sure that all writes to the TX descriptors 3729 * are committed before we tell HW about them. 3730 */ 3731 wmb(); 3732 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL), 3733 QID(q->cntxt_id) | PIDX(q->db_pidx_inc)); 3734 q->db_pidx_inc = 0; 3735 } 3736 q->db_disabled = 0; 3737 spin_unlock_irq(&q->db_lock); 3738 } 3739 3740 static void disable_dbs(struct adapter *adap) 3741 { 3742 int i; 3743 3744 for_each_ethrxq(&adap->sge, i) 3745 disable_txq_db(&adap->sge.ethtxq[i].q); 3746 for_each_ofldrxq(&adap->sge, i) 3747 disable_txq_db(&adap->sge.ofldtxq[i].q); 3748 for_each_port(adap, i) 3749 disable_txq_db(&adap->sge.ctrlq[i].q); 3750 } 3751 3752 static void enable_dbs(struct adapter *adap) 3753 { 3754 int i; 3755 3756 for_each_ethrxq(&adap->sge, i) 3757 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 3758 for_each_ofldrxq(&adap->sge, i) 3759 enable_txq_db(adap, &adap->sge.ofldtxq[i].q); 3760 for_each_port(adap, i) 3761 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 3762 } 3763 3764 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 3765 { 3766 if (adap->uld_handle[CXGB4_ULD_RDMA]) 3767 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA], 3768 cmd); 3769 } 3770 3771 static void process_db_full(struct work_struct *work) 3772 { 3773 struct adapter *adap; 3774 3775 adap = container_of(work, struct adapter, db_full_task); 3776 3777 drain_db_fifo(adap, dbfifo_drain_delay); 3778 enable_dbs(adap); 3779 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 3780 t4_set_reg_field(adap, SGE_INT_ENABLE3, 3781 DBFIFO_HP_INT | DBFIFO_LP_INT, 3782 DBFIFO_HP_INT | DBFIFO_LP_INT); 3783 } 3784 3785 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 3786 { 3787 u16 hw_pidx, hw_cidx; 3788 int ret; 3789 3790 spin_lock_irq(&q->db_lock); 3791 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 3792 if (ret) 3793 goto out; 3794 if (q->db_pidx != hw_pidx) { 3795 u16 delta; 3796 3797 if (q->db_pidx >= hw_pidx) 3798 delta = q->db_pidx - hw_pidx; 3799 else 3800 delta = q->size - hw_pidx + q->db_pidx; 3801 wmb(); 3802 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL), 3803 QID(q->cntxt_id) | PIDX(delta)); 3804 } 3805 out: 3806 q->db_disabled = 0; 3807 q->db_pidx_inc = 0; 3808 spin_unlock_irq(&q->db_lock); 3809 if (ret) 3810 CH_WARN(adap, "DB drop recovery failed.\n"); 3811 } 3812 static void recover_all_queues(struct adapter *adap) 3813 { 3814 int i; 3815 3816 for_each_ethrxq(&adap->sge, i) 3817 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 3818 for_each_ofldrxq(&adap->sge, i) 3819 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q); 3820 for_each_port(adap, i) 3821 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 3822 } 3823 3824 static void process_db_drop(struct work_struct *work) 3825 { 3826 struct adapter *adap; 3827 3828 adap = container_of(work, struct adapter, db_drop_task); 3829 3830 if (is_t4(adap->params.chip)) { 3831 drain_db_fifo(adap, dbfifo_drain_delay); 3832 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 3833 drain_db_fifo(adap, dbfifo_drain_delay); 3834 recover_all_queues(adap); 3835 drain_db_fifo(adap, dbfifo_drain_delay); 3836 enable_dbs(adap); 3837 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 3838 } else { 3839 u32 dropped_db = t4_read_reg(adap, 0x010ac); 3840 u16 qid = (dropped_db >> 15) & 0x1ffff; 3841 u16 pidx_inc = dropped_db & 0x1fff; 3842 unsigned int s_qpp; 3843 unsigned short udb_density; 3844 unsigned long qpshift; 3845 int page; 3846 u32 udb; 3847 3848 dev_warn(adap->pdev_dev, 3849 "Dropped DB 0x%x qid %d bar2 %d coalesce %d pidx %d\n", 3850 dropped_db, qid, 3851 (dropped_db >> 14) & 1, 3852 (dropped_db >> 13) & 1, 3853 pidx_inc); 3854 3855 drain_db_fifo(adap, 1); 3856 3857 s_qpp = QUEUESPERPAGEPF1 * adap->fn; 3858 udb_density = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adap, 3859 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp); 3860 qpshift = PAGE_SHIFT - ilog2(udb_density); 3861 udb = qid << qpshift; 3862 udb &= PAGE_MASK; 3863 page = udb / PAGE_SIZE; 3864 udb += (qid - (page * udb_density)) * 128; 3865 3866 writel(PIDX(pidx_inc), adap->bar2 + udb + 8); 3867 3868 /* Re-enable BAR2 WC */ 3869 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 3870 } 3871 3872 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_DROPPED_DB, 0); 3873 } 3874 3875 void t4_db_full(struct adapter *adap) 3876 { 3877 if (is_t4(adap->params.chip)) { 3878 disable_dbs(adap); 3879 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 3880 t4_set_reg_field(adap, SGE_INT_ENABLE3, 3881 DBFIFO_HP_INT | DBFIFO_LP_INT, 0); 3882 queue_work(workq, &adap->db_full_task); 3883 } 3884 } 3885 3886 void t4_db_dropped(struct adapter *adap) 3887 { 3888 if (is_t4(adap->params.chip)) { 3889 disable_dbs(adap); 3890 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 3891 } 3892 queue_work(workq, &adap->db_drop_task); 3893 } 3894 3895 static void uld_attach(struct adapter *adap, unsigned int uld) 3896 { 3897 void *handle; 3898 struct cxgb4_lld_info lli; 3899 unsigned short i; 3900 3901 lli.pdev = adap->pdev; 3902 lli.l2t = adap->l2t; 3903 lli.tids = &adap->tids; 3904 lli.ports = adap->port; 3905 lli.vr = &adap->vres; 3906 lli.mtus = adap->params.mtus; 3907 if (uld == CXGB4_ULD_RDMA) { 3908 lli.rxq_ids = adap->sge.rdma_rxq; 3909 lli.ciq_ids = adap->sge.rdma_ciq; 3910 lli.nrxq = adap->sge.rdmaqs; 3911 lli.nciq = adap->sge.rdmaciqs; 3912 } else if (uld == CXGB4_ULD_ISCSI) { 3913 lli.rxq_ids = adap->sge.ofld_rxq; 3914 lli.nrxq = adap->sge.ofldqsets; 3915 } 3916 lli.ntxq = adap->sge.ofldqsets; 3917 lli.nchan = adap->params.nports; 3918 lli.nports = adap->params.nports; 3919 lli.wr_cred = adap->params.ofldq_wr_cred; 3920 lli.adapter_type = adap->params.chip; 3921 lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2)); 3922 lli.udb_density = 1 << QUEUESPERPAGEPF0_GET( 3923 t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >> 3924 (adap->fn * 4)); 3925 lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET( 3926 t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >> 3927 (adap->fn * 4)); 3928 lli.filt_mode = adap->params.tp.vlan_pri_map; 3929 /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */ 3930 for (i = 0; i < NCHAN; i++) 3931 lli.tx_modq[i] = i; 3932 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS); 3933 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL); 3934 lli.fw_vers = adap->params.fw_vers; 3935 lli.dbfifo_int_thresh = dbfifo_int_thresh; 3936 lli.sge_pktshift = adap->sge.pktshift; 3937 lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN; 3938 lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl; 3939 3940 handle = ulds[uld].add(&lli); 3941 if (IS_ERR(handle)) { 3942 dev_warn(adap->pdev_dev, 3943 "could not attach to the %s driver, error %ld\n", 3944 uld_str[uld], PTR_ERR(handle)); 3945 return; 3946 } 3947 3948 adap->uld_handle[uld] = handle; 3949 3950 if (!netevent_registered) { 3951 register_netevent_notifier(&cxgb4_netevent_nb); 3952 netevent_registered = true; 3953 } 3954 3955 if (adap->flags & FULL_INIT_DONE) 3956 ulds[uld].state_change(handle, CXGB4_STATE_UP); 3957 } 3958 3959 static void attach_ulds(struct adapter *adap) 3960 { 3961 unsigned int i; 3962 3963 spin_lock(&adap_rcu_lock); 3964 list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list); 3965 spin_unlock(&adap_rcu_lock); 3966 3967 mutex_lock(&uld_mutex); 3968 list_add_tail(&adap->list_node, &adapter_list); 3969 for (i = 0; i < CXGB4_ULD_MAX; i++) 3970 if (ulds[i].add) 3971 uld_attach(adap, i); 3972 mutex_unlock(&uld_mutex); 3973 } 3974 3975 static void detach_ulds(struct adapter *adap) 3976 { 3977 unsigned int i; 3978 3979 mutex_lock(&uld_mutex); 3980 list_del(&adap->list_node); 3981 for (i = 0; i < CXGB4_ULD_MAX; i++) 3982 if (adap->uld_handle[i]) { 3983 ulds[i].state_change(adap->uld_handle[i], 3984 CXGB4_STATE_DETACH); 3985 adap->uld_handle[i] = NULL; 3986 } 3987 if (netevent_registered && list_empty(&adapter_list)) { 3988 unregister_netevent_notifier(&cxgb4_netevent_nb); 3989 netevent_registered = false; 3990 } 3991 mutex_unlock(&uld_mutex); 3992 3993 spin_lock(&adap_rcu_lock); 3994 list_del_rcu(&adap->rcu_node); 3995 spin_unlock(&adap_rcu_lock); 3996 } 3997 3998 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 3999 { 4000 unsigned int i; 4001 4002 mutex_lock(&uld_mutex); 4003 for (i = 0; i < CXGB4_ULD_MAX; i++) 4004 if (adap->uld_handle[i]) 4005 ulds[i].state_change(adap->uld_handle[i], new_state); 4006 mutex_unlock(&uld_mutex); 4007 } 4008 4009 /** 4010 * cxgb4_register_uld - register an upper-layer driver 4011 * @type: the ULD type 4012 * @p: the ULD methods 4013 * 4014 * Registers an upper-layer driver with this driver and notifies the ULD 4015 * about any presently available devices that support its type. Returns 4016 * %-EBUSY if a ULD of the same type is already registered. 4017 */ 4018 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p) 4019 { 4020 int ret = 0; 4021 struct adapter *adap; 4022 4023 if (type >= CXGB4_ULD_MAX) 4024 return -EINVAL; 4025 mutex_lock(&uld_mutex); 4026 if (ulds[type].add) { 4027 ret = -EBUSY; 4028 goto out; 4029 } 4030 ulds[type] = *p; 4031 list_for_each_entry(adap, &adapter_list, list_node) 4032 uld_attach(adap, type); 4033 out: mutex_unlock(&uld_mutex); 4034 return ret; 4035 } 4036 EXPORT_SYMBOL(cxgb4_register_uld); 4037 4038 /** 4039 * cxgb4_unregister_uld - unregister an upper-layer driver 4040 * @type: the ULD type 4041 * 4042 * Unregisters an existing upper-layer driver. 4043 */ 4044 int cxgb4_unregister_uld(enum cxgb4_uld type) 4045 { 4046 struct adapter *adap; 4047 4048 if (type >= CXGB4_ULD_MAX) 4049 return -EINVAL; 4050 mutex_lock(&uld_mutex); 4051 list_for_each_entry(adap, &adapter_list, list_node) 4052 adap->uld_handle[type] = NULL; 4053 ulds[type].add = NULL; 4054 mutex_unlock(&uld_mutex); 4055 return 0; 4056 } 4057 EXPORT_SYMBOL(cxgb4_unregister_uld); 4058 4059 /* Check if netdev on which event is occured belongs to us or not. Return 4060 * suceess (1) if it belongs otherwise failure (0). 4061 */ 4062 static int cxgb4_netdev(struct net_device *netdev) 4063 { 4064 struct adapter *adap; 4065 int i; 4066 4067 spin_lock(&adap_rcu_lock); 4068 list_for_each_entry_rcu(adap, &adap_rcu_list, rcu_node) 4069 for (i = 0; i < MAX_NPORTS; i++) 4070 if (adap->port[i] == netdev) { 4071 spin_unlock(&adap_rcu_lock); 4072 return 1; 4073 } 4074 spin_unlock(&adap_rcu_lock); 4075 return 0; 4076 } 4077 4078 static int clip_add(struct net_device *event_dev, struct inet6_ifaddr *ifa, 4079 unsigned long event) 4080 { 4081 int ret = NOTIFY_DONE; 4082 4083 rcu_read_lock(); 4084 if (cxgb4_netdev(event_dev)) { 4085 switch (event) { 4086 case NETDEV_UP: 4087 ret = cxgb4_clip_get(event_dev, 4088 (const struct in6_addr *)ifa->addr.s6_addr); 4089 if (ret < 0) { 4090 rcu_read_unlock(); 4091 return ret; 4092 } 4093 ret = NOTIFY_OK; 4094 break; 4095 case NETDEV_DOWN: 4096 cxgb4_clip_release(event_dev, 4097 (const struct in6_addr *)ifa->addr.s6_addr); 4098 ret = NOTIFY_OK; 4099 break; 4100 default: 4101 break; 4102 } 4103 } 4104 rcu_read_unlock(); 4105 return ret; 4106 } 4107 4108 static int cxgb4_inet6addr_handler(struct notifier_block *this, 4109 unsigned long event, void *data) 4110 { 4111 struct inet6_ifaddr *ifa = data; 4112 struct net_device *event_dev; 4113 int ret = NOTIFY_DONE; 4114 struct bonding *bond = netdev_priv(ifa->idev->dev); 4115 struct list_head *iter; 4116 struct slave *slave; 4117 struct pci_dev *first_pdev = NULL; 4118 4119 if (ifa->idev->dev->priv_flags & IFF_802_1Q_VLAN) { 4120 event_dev = vlan_dev_real_dev(ifa->idev->dev); 4121 ret = clip_add(event_dev, ifa, event); 4122 } else if (ifa->idev->dev->flags & IFF_MASTER) { 4123 /* It is possible that two different adapters are bonded in one 4124 * bond. We need to find such different adapters and add clip 4125 * in all of them only once. 4126 */ 4127 read_lock(&bond->lock); 4128 bond_for_each_slave(bond, slave, iter) { 4129 if (!first_pdev) { 4130 ret = clip_add(slave->dev, ifa, event); 4131 /* If clip_add is success then only initialize 4132 * first_pdev since it means it is our device 4133 */ 4134 if (ret == NOTIFY_OK) 4135 first_pdev = to_pci_dev( 4136 slave->dev->dev.parent); 4137 } else if (first_pdev != 4138 to_pci_dev(slave->dev->dev.parent)) 4139 ret = clip_add(slave->dev, ifa, event); 4140 } 4141 read_unlock(&bond->lock); 4142 } else 4143 ret = clip_add(ifa->idev->dev, ifa, event); 4144 4145 return ret; 4146 } 4147 4148 static struct notifier_block cxgb4_inet6addr_notifier = { 4149 .notifier_call = cxgb4_inet6addr_handler 4150 }; 4151 4152 /* Retrieves IPv6 addresses from a root device (bond, vlan) associated with 4153 * a physical device. 4154 * The physical device reference is needed to send the actul CLIP command. 4155 */ 4156 static int update_dev_clip(struct net_device *root_dev, struct net_device *dev) 4157 { 4158 struct inet6_dev *idev = NULL; 4159 struct inet6_ifaddr *ifa; 4160 int ret = 0; 4161 4162 idev = __in6_dev_get(root_dev); 4163 if (!idev) 4164 return ret; 4165 4166 read_lock_bh(&idev->lock); 4167 list_for_each_entry(ifa, &idev->addr_list, if_list) { 4168 ret = cxgb4_clip_get(dev, 4169 (const struct in6_addr *)ifa->addr.s6_addr); 4170 if (ret < 0) 4171 break; 4172 } 4173 read_unlock_bh(&idev->lock); 4174 4175 return ret; 4176 } 4177 4178 static int update_root_dev_clip(struct net_device *dev) 4179 { 4180 struct net_device *root_dev = NULL; 4181 int i, ret = 0; 4182 4183 /* First populate the real net device's IPv6 addresses */ 4184 ret = update_dev_clip(dev, dev); 4185 if (ret) 4186 return ret; 4187 4188 /* Parse all bond and vlan devices layered on top of the physical dev */ 4189 for (i = 0; i < VLAN_N_VID; i++) { 4190 root_dev = __vlan_find_dev_deep_rcu(dev, htons(ETH_P_8021Q), i); 4191 if (!root_dev) 4192 continue; 4193 4194 ret = update_dev_clip(root_dev, dev); 4195 if (ret) 4196 break; 4197 } 4198 return ret; 4199 } 4200 4201 static void update_clip(const struct adapter *adap) 4202 { 4203 int i; 4204 struct net_device *dev; 4205 int ret; 4206 4207 rcu_read_lock(); 4208 4209 for (i = 0; i < MAX_NPORTS; i++) { 4210 dev = adap->port[i]; 4211 ret = 0; 4212 4213 if (dev) 4214 ret = update_root_dev_clip(dev); 4215 4216 if (ret < 0) 4217 break; 4218 } 4219 rcu_read_unlock(); 4220 } 4221 4222 /** 4223 * cxgb_up - enable the adapter 4224 * @adap: adapter being enabled 4225 * 4226 * Called when the first port is enabled, this function performs the 4227 * actions necessary to make an adapter operational, such as completing 4228 * the initialization of HW modules, and enabling interrupts. 4229 * 4230 * Must be called with the rtnl lock held. 4231 */ 4232 static int cxgb_up(struct adapter *adap) 4233 { 4234 int err; 4235 4236 err = setup_sge_queues(adap); 4237 if (err) 4238 goto out; 4239 err = setup_rss(adap); 4240 if (err) 4241 goto freeq; 4242 4243 if (adap->flags & USING_MSIX) { 4244 name_msix_vecs(adap); 4245 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, 4246 adap->msix_info[0].desc, adap); 4247 if (err) 4248 goto irq_err; 4249 4250 err = request_msix_queue_irqs(adap); 4251 if (err) { 4252 free_irq(adap->msix_info[0].vec, adap); 4253 goto irq_err; 4254 } 4255 } else { 4256 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 4257 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED, 4258 adap->port[0]->name, adap); 4259 if (err) 4260 goto irq_err; 4261 } 4262 enable_rx(adap); 4263 t4_sge_start(adap); 4264 t4_intr_enable(adap); 4265 adap->flags |= FULL_INIT_DONE; 4266 notify_ulds(adap, CXGB4_STATE_UP); 4267 update_clip(adap); 4268 out: 4269 return err; 4270 irq_err: 4271 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 4272 freeq: 4273 t4_free_sge_resources(adap); 4274 goto out; 4275 } 4276 4277 static void cxgb_down(struct adapter *adapter) 4278 { 4279 t4_intr_disable(adapter); 4280 cancel_work_sync(&adapter->tid_release_task); 4281 cancel_work_sync(&adapter->db_full_task); 4282 cancel_work_sync(&adapter->db_drop_task); 4283 adapter->tid_release_task_busy = false; 4284 adapter->tid_release_head = NULL; 4285 4286 if (adapter->flags & USING_MSIX) { 4287 free_msix_queue_irqs(adapter); 4288 free_irq(adapter->msix_info[0].vec, adapter); 4289 } else 4290 free_irq(adapter->pdev->irq, adapter); 4291 quiesce_rx(adapter); 4292 t4_sge_stop(adapter); 4293 t4_free_sge_resources(adapter); 4294 adapter->flags &= ~FULL_INIT_DONE; 4295 } 4296 4297 /* 4298 * net_device operations 4299 */ 4300 static int cxgb_open(struct net_device *dev) 4301 { 4302 int err; 4303 struct port_info *pi = netdev_priv(dev); 4304 struct adapter *adapter = pi->adapter; 4305 4306 netif_carrier_off(dev); 4307 4308 if (!(adapter->flags & FULL_INIT_DONE)) { 4309 err = cxgb_up(adapter); 4310 if (err < 0) 4311 return err; 4312 } 4313 4314 err = link_start(dev); 4315 if (!err) 4316 netif_tx_start_all_queues(dev); 4317 return err; 4318 } 4319 4320 static int cxgb_close(struct net_device *dev) 4321 { 4322 struct port_info *pi = netdev_priv(dev); 4323 struct adapter *adapter = pi->adapter; 4324 4325 netif_tx_stop_all_queues(dev); 4326 netif_carrier_off(dev); 4327 return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false); 4328 } 4329 4330 /* Return an error number if the indicated filter isn't writable ... 4331 */ 4332 static int writable_filter(struct filter_entry *f) 4333 { 4334 if (f->locked) 4335 return -EPERM; 4336 if (f->pending) 4337 return -EBUSY; 4338 4339 return 0; 4340 } 4341 4342 /* Delete the filter at the specified index (if valid). The checks for all 4343 * the common problems with doing this like the filter being locked, currently 4344 * pending in another operation, etc. 4345 */ 4346 static int delete_filter(struct adapter *adapter, unsigned int fidx) 4347 { 4348 struct filter_entry *f; 4349 int ret; 4350 4351 if (fidx >= adapter->tids.nftids + adapter->tids.nsftids) 4352 return -EINVAL; 4353 4354 f = &adapter->tids.ftid_tab[fidx]; 4355 ret = writable_filter(f); 4356 if (ret) 4357 return ret; 4358 if (f->valid) 4359 return del_filter_wr(adapter, fidx); 4360 4361 return 0; 4362 } 4363 4364 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 4365 __be32 sip, __be16 sport, __be16 vlan, 4366 unsigned int queue, unsigned char port, unsigned char mask) 4367 { 4368 int ret; 4369 struct filter_entry *f; 4370 struct adapter *adap; 4371 int i; 4372 u8 *val; 4373 4374 adap = netdev2adap(dev); 4375 4376 /* Adjust stid to correct filter index */ 4377 stid -= adap->tids.sftid_base; 4378 stid += adap->tids.nftids; 4379 4380 /* Check to make sure the filter requested is writable ... 4381 */ 4382 f = &adap->tids.ftid_tab[stid]; 4383 ret = writable_filter(f); 4384 if (ret) 4385 return ret; 4386 4387 /* Clear out any old resources being used by the filter before 4388 * we start constructing the new filter. 4389 */ 4390 if (f->valid) 4391 clear_filter(adap, f); 4392 4393 /* Clear out filter specifications */ 4394 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 4395 f->fs.val.lport = cpu_to_be16(sport); 4396 f->fs.mask.lport = ~0; 4397 val = (u8 *)&sip; 4398 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 4399 for (i = 0; i < 4; i++) { 4400 f->fs.val.lip[i] = val[i]; 4401 f->fs.mask.lip[i] = ~0; 4402 } 4403 if (adap->params.tp.vlan_pri_map & F_PORT) { 4404 f->fs.val.iport = port; 4405 f->fs.mask.iport = mask; 4406 } 4407 } 4408 4409 if (adap->params.tp.vlan_pri_map & F_PROTOCOL) { 4410 f->fs.val.proto = IPPROTO_TCP; 4411 f->fs.mask.proto = ~0; 4412 } 4413 4414 f->fs.dirsteer = 1; 4415 f->fs.iq = queue; 4416 /* Mark filter as locked */ 4417 f->locked = 1; 4418 f->fs.rpttid = 1; 4419 4420 ret = set_filter_wr(adap, stid); 4421 if (ret) { 4422 clear_filter(adap, f); 4423 return ret; 4424 } 4425 4426 return 0; 4427 } 4428 EXPORT_SYMBOL(cxgb4_create_server_filter); 4429 4430 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 4431 unsigned int queue, bool ipv6) 4432 { 4433 int ret; 4434 struct filter_entry *f; 4435 struct adapter *adap; 4436 4437 adap = netdev2adap(dev); 4438 4439 /* Adjust stid to correct filter index */ 4440 stid -= adap->tids.sftid_base; 4441 stid += adap->tids.nftids; 4442 4443 f = &adap->tids.ftid_tab[stid]; 4444 /* Unlock the filter */ 4445 f->locked = 0; 4446 4447 ret = delete_filter(adap, stid); 4448 if (ret) 4449 return ret; 4450 4451 return 0; 4452 } 4453 EXPORT_SYMBOL(cxgb4_remove_server_filter); 4454 4455 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev, 4456 struct rtnl_link_stats64 *ns) 4457 { 4458 struct port_stats stats; 4459 struct port_info *p = netdev_priv(dev); 4460 struct adapter *adapter = p->adapter; 4461 4462 /* Block retrieving statistics during EEH error 4463 * recovery. Otherwise, the recovery might fail 4464 * and the PCI device will be removed permanently 4465 */ 4466 spin_lock(&adapter->stats_lock); 4467 if (!netif_device_present(dev)) { 4468 spin_unlock(&adapter->stats_lock); 4469 return ns; 4470 } 4471 t4_get_port_stats(adapter, p->tx_chan, &stats); 4472 spin_unlock(&adapter->stats_lock); 4473 4474 ns->tx_bytes = stats.tx_octets; 4475 ns->tx_packets = stats.tx_frames; 4476 ns->rx_bytes = stats.rx_octets; 4477 ns->rx_packets = stats.rx_frames; 4478 ns->multicast = stats.rx_mcast_frames; 4479 4480 /* detailed rx_errors */ 4481 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 4482 stats.rx_runt; 4483 ns->rx_over_errors = 0; 4484 ns->rx_crc_errors = stats.rx_fcs_err; 4485 ns->rx_frame_errors = stats.rx_symbol_err; 4486 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 + 4487 stats.rx_ovflow2 + stats.rx_ovflow3 + 4488 stats.rx_trunc0 + stats.rx_trunc1 + 4489 stats.rx_trunc2 + stats.rx_trunc3; 4490 ns->rx_missed_errors = 0; 4491 4492 /* detailed tx_errors */ 4493 ns->tx_aborted_errors = 0; 4494 ns->tx_carrier_errors = 0; 4495 ns->tx_fifo_errors = 0; 4496 ns->tx_heartbeat_errors = 0; 4497 ns->tx_window_errors = 0; 4498 4499 ns->tx_errors = stats.tx_error_frames; 4500 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 4501 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 4502 return ns; 4503 } 4504 4505 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 4506 { 4507 unsigned int mbox; 4508 int ret = 0, prtad, devad; 4509 struct port_info *pi = netdev_priv(dev); 4510 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 4511 4512 switch (cmd) { 4513 case SIOCGMIIPHY: 4514 if (pi->mdio_addr < 0) 4515 return -EOPNOTSUPP; 4516 data->phy_id = pi->mdio_addr; 4517 break; 4518 case SIOCGMIIREG: 4519 case SIOCSMIIREG: 4520 if (mdio_phy_id_is_c45(data->phy_id)) { 4521 prtad = mdio_phy_id_prtad(data->phy_id); 4522 devad = mdio_phy_id_devad(data->phy_id); 4523 } else if (data->phy_id < 32) { 4524 prtad = data->phy_id; 4525 devad = 0; 4526 data->reg_num &= 0x1f; 4527 } else 4528 return -EINVAL; 4529 4530 mbox = pi->adapter->fn; 4531 if (cmd == SIOCGMIIREG) 4532 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 4533 data->reg_num, &data->val_out); 4534 else 4535 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 4536 data->reg_num, data->val_in); 4537 break; 4538 default: 4539 return -EOPNOTSUPP; 4540 } 4541 return ret; 4542 } 4543 4544 static void cxgb_set_rxmode(struct net_device *dev) 4545 { 4546 /* unfortunately we can't return errors to the stack */ 4547 set_rxmode(dev, -1, false); 4548 } 4549 4550 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 4551 { 4552 int ret; 4553 struct port_info *pi = netdev_priv(dev); 4554 4555 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */ 4556 return -EINVAL; 4557 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1, 4558 -1, -1, -1, true); 4559 if (!ret) 4560 dev->mtu = new_mtu; 4561 return ret; 4562 } 4563 4564 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 4565 { 4566 int ret; 4567 struct sockaddr *addr = p; 4568 struct port_info *pi = netdev_priv(dev); 4569 4570 if (!is_valid_ether_addr(addr->sa_data)) 4571 return -EADDRNOTAVAIL; 4572 4573 ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid, 4574 pi->xact_addr_filt, addr->sa_data, true, true); 4575 if (ret < 0) 4576 return ret; 4577 4578 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 4579 pi->xact_addr_filt = ret; 4580 return 0; 4581 } 4582 4583 #ifdef CONFIG_NET_POLL_CONTROLLER 4584 static void cxgb_netpoll(struct net_device *dev) 4585 { 4586 struct port_info *pi = netdev_priv(dev); 4587 struct adapter *adap = pi->adapter; 4588 4589 if (adap->flags & USING_MSIX) { 4590 int i; 4591 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 4592 4593 for (i = pi->nqsets; i; i--, rx++) 4594 t4_sge_intr_msix(0, &rx->rspq); 4595 } else 4596 t4_intr_handler(adap)(0, adap); 4597 } 4598 #endif 4599 4600 static const struct net_device_ops cxgb4_netdev_ops = { 4601 .ndo_open = cxgb_open, 4602 .ndo_stop = cxgb_close, 4603 .ndo_start_xmit = t4_eth_xmit, 4604 .ndo_get_stats64 = cxgb_get_stats, 4605 .ndo_set_rx_mode = cxgb_set_rxmode, 4606 .ndo_set_mac_address = cxgb_set_mac_addr, 4607 .ndo_set_features = cxgb_set_features, 4608 .ndo_validate_addr = eth_validate_addr, 4609 .ndo_do_ioctl = cxgb_ioctl, 4610 .ndo_change_mtu = cxgb_change_mtu, 4611 #ifdef CONFIG_NET_POLL_CONTROLLER 4612 .ndo_poll_controller = cxgb_netpoll, 4613 #endif 4614 }; 4615 4616 void t4_fatal_err(struct adapter *adap) 4617 { 4618 t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0); 4619 t4_intr_disable(adap); 4620 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 4621 } 4622 4623 static void setup_memwin(struct adapter *adap) 4624 { 4625 u32 bar0, mem_win0_base, mem_win1_base, mem_win2_base; 4626 4627 bar0 = pci_resource_start(adap->pdev, 0); /* truncation intentional */ 4628 if (is_t4(adap->params.chip)) { 4629 mem_win0_base = bar0 + MEMWIN0_BASE; 4630 mem_win1_base = bar0 + MEMWIN1_BASE; 4631 mem_win2_base = bar0 + MEMWIN2_BASE; 4632 } else { 4633 /* For T5, only relative offset inside the PCIe BAR is passed */ 4634 mem_win0_base = MEMWIN0_BASE; 4635 mem_win1_base = MEMWIN1_BASE_T5; 4636 mem_win2_base = MEMWIN2_BASE_T5; 4637 } 4638 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0), 4639 mem_win0_base | BIR(0) | 4640 WINDOW(ilog2(MEMWIN0_APERTURE) - 10)); 4641 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1), 4642 mem_win1_base | BIR(0) | 4643 WINDOW(ilog2(MEMWIN1_APERTURE) - 10)); 4644 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2), 4645 mem_win2_base | BIR(0) | 4646 WINDOW(ilog2(MEMWIN2_APERTURE) - 10)); 4647 } 4648 4649 static void setup_memwin_rdma(struct adapter *adap) 4650 { 4651 if (adap->vres.ocq.size) { 4652 unsigned int start, sz_kb; 4653 4654 start = pci_resource_start(adap->pdev, 2) + 4655 OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 4656 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 4657 t4_write_reg(adap, 4658 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3), 4659 start | BIR(1) | WINDOW(ilog2(sz_kb))); 4660 t4_write_reg(adap, 4661 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3), 4662 adap->vres.ocq.start); 4663 t4_read_reg(adap, 4664 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3)); 4665 } 4666 } 4667 4668 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 4669 { 4670 u32 v; 4671 int ret; 4672 4673 /* get device capabilities */ 4674 memset(c, 0, sizeof(*c)); 4675 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4676 FW_CMD_REQUEST | FW_CMD_READ); 4677 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 4678 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c); 4679 if (ret < 0) 4680 return ret; 4681 4682 /* select capabilities we'll be using */ 4683 if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) { 4684 if (!vf_acls) 4685 c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM); 4686 else 4687 c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM); 4688 } else if (vf_acls) { 4689 dev_err(adap->pdev_dev, "virtualization ACLs not supported"); 4690 return ret; 4691 } 4692 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4693 FW_CMD_REQUEST | FW_CMD_WRITE); 4694 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL); 4695 if (ret < 0) 4696 return ret; 4697 4698 ret = t4_config_glbl_rss(adap, adap->fn, 4699 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 4700 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN | 4701 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP); 4702 if (ret < 0) 4703 return ret; 4704 4705 ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ, 4706 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF); 4707 if (ret < 0) 4708 return ret; 4709 4710 t4_sge_init(adap); 4711 4712 /* tweak some settings */ 4713 t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849); 4714 t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12)); 4715 t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG); 4716 v = t4_read_reg(adap, TP_PIO_DATA); 4717 t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR); 4718 4719 /* first 4 Tx modulation queues point to consecutive Tx channels */ 4720 adap->params.tp.tx_modq_map = 0xE4; 4721 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP, 4722 V_TX_MOD_QUEUE_REQ_MAP(adap->params.tp.tx_modq_map)); 4723 4724 /* associate each Tx modulation queue with consecutive Tx channels */ 4725 v = 0x84218421; 4726 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA, 4727 &v, 1, A_TP_TX_SCHED_HDR); 4728 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA, 4729 &v, 1, A_TP_TX_SCHED_FIFO); 4730 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA, 4731 &v, 1, A_TP_TX_SCHED_PCMD); 4732 4733 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 4734 if (is_offload(adap)) { 4735 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 4736 V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4737 V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4738 V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4739 V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 4740 t4_write_reg(adap, A_TP_TX_MOD_CHANNEL_WEIGHT, 4741 V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4742 V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4743 V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4744 V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 4745 } 4746 4747 /* get basic stuff going */ 4748 return t4_early_init(adap, adap->fn); 4749 } 4750 4751 /* 4752 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 4753 */ 4754 #define MAX_ATIDS 8192U 4755 4756 /* 4757 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 4758 * 4759 * If the firmware we're dealing with has Configuration File support, then 4760 * we use that to perform all configuration 4761 */ 4762 4763 /* 4764 * Tweak configuration based on module parameters, etc. Most of these have 4765 * defaults assigned to them by Firmware Configuration Files (if we're using 4766 * them) but need to be explicitly set if we're using hard-coded 4767 * initialization. But even in the case of using Firmware Configuration 4768 * Files, we'd like to expose the ability to change these via module 4769 * parameters so these are essentially common tweaks/settings for 4770 * Configuration Files and hard-coded initialization ... 4771 */ 4772 static int adap_init0_tweaks(struct adapter *adapter) 4773 { 4774 /* 4775 * Fix up various Host-Dependent Parameters like Page Size, Cache 4776 * Line Size, etc. The firmware default is for a 4KB Page Size and 4777 * 64B Cache Line Size ... 4778 */ 4779 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 4780 4781 /* 4782 * Process module parameters which affect early initialization. 4783 */ 4784 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 4785 dev_err(&adapter->pdev->dev, 4786 "Ignoring illegal rx_dma_offset=%d, using 2\n", 4787 rx_dma_offset); 4788 rx_dma_offset = 2; 4789 } 4790 t4_set_reg_field(adapter, SGE_CONTROL, 4791 PKTSHIFT_MASK, 4792 PKTSHIFT(rx_dma_offset)); 4793 4794 /* 4795 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 4796 * adds the pseudo header itself. 4797 */ 4798 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG, 4799 CSUM_HAS_PSEUDO_HDR, 0); 4800 4801 return 0; 4802 } 4803 4804 /* 4805 * Attempt to initialize the adapter via a Firmware Configuration File. 4806 */ 4807 static int adap_init0_config(struct adapter *adapter, int reset) 4808 { 4809 struct fw_caps_config_cmd caps_cmd; 4810 const struct firmware *cf; 4811 unsigned long mtype = 0, maddr = 0; 4812 u32 finiver, finicsum, cfcsum; 4813 int ret; 4814 int config_issued = 0; 4815 char *fw_config_file, fw_config_file_path[256]; 4816 char *config_name = NULL; 4817 4818 /* 4819 * Reset device if necessary. 4820 */ 4821 if (reset) { 4822 ret = t4_fw_reset(adapter, adapter->mbox, 4823 PIORSTMODE | PIORST); 4824 if (ret < 0) 4825 goto bye; 4826 } 4827 4828 /* 4829 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 4830 * then use that. Otherwise, use the configuration file stored 4831 * in the adapter flash ... 4832 */ 4833 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 4834 case CHELSIO_T4: 4835 fw_config_file = FW4_CFNAME; 4836 break; 4837 case CHELSIO_T5: 4838 fw_config_file = FW5_CFNAME; 4839 break; 4840 default: 4841 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 4842 adapter->pdev->device); 4843 ret = -EINVAL; 4844 goto bye; 4845 } 4846 4847 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 4848 if (ret < 0) { 4849 config_name = "On FLASH"; 4850 mtype = FW_MEMTYPE_CF_FLASH; 4851 maddr = t4_flash_cfg_addr(adapter); 4852 } else { 4853 u32 params[7], val[7]; 4854 4855 sprintf(fw_config_file_path, 4856 "/lib/firmware/%s", fw_config_file); 4857 config_name = fw_config_file_path; 4858 4859 if (cf->size >= FLASH_CFG_MAX_SIZE) 4860 ret = -ENOMEM; 4861 else { 4862 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 4863 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF)); 4864 ret = t4_query_params(adapter, adapter->mbox, 4865 adapter->fn, 0, 1, params, val); 4866 if (ret == 0) { 4867 /* 4868 * For t4_memory_write() below addresses and 4869 * sizes have to be in terms of multiples of 4 4870 * bytes. So, if the Configuration File isn't 4871 * a multiple of 4 bytes in length we'll have 4872 * to write that out separately since we can't 4873 * guarantee that the bytes following the 4874 * residual byte in the buffer returned by 4875 * request_firmware() are zeroed out ... 4876 */ 4877 size_t resid = cf->size & 0x3; 4878 size_t size = cf->size & ~0x3; 4879 __be32 *data = (__be32 *)cf->data; 4880 4881 mtype = FW_PARAMS_PARAM_Y_GET(val[0]); 4882 maddr = FW_PARAMS_PARAM_Z_GET(val[0]) << 16; 4883 4884 ret = t4_memory_write(adapter, mtype, maddr, 4885 size, data); 4886 if (ret == 0 && resid != 0) { 4887 union { 4888 __be32 word; 4889 char buf[4]; 4890 } last; 4891 int i; 4892 4893 last.word = data[size >> 2]; 4894 for (i = resid; i < 4; i++) 4895 last.buf[i] = 0; 4896 ret = t4_memory_write(adapter, mtype, 4897 maddr + size, 4898 4, &last.word); 4899 } 4900 } 4901 } 4902 4903 release_firmware(cf); 4904 if (ret) 4905 goto bye; 4906 } 4907 4908 /* 4909 * Issue a Capability Configuration command to the firmware to get it 4910 * to parse the Configuration File. We don't use t4_fw_config_file() 4911 * because we want the ability to modify various features after we've 4912 * processed the configuration file ... 4913 */ 4914 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4915 caps_cmd.op_to_write = 4916 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4917 FW_CMD_REQUEST | 4918 FW_CMD_READ); 4919 caps_cmd.cfvalid_to_len16 = 4920 htonl(FW_CAPS_CONFIG_CMD_CFVALID | 4921 FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4922 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) | 4923 FW_LEN16(caps_cmd)); 4924 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4925 &caps_cmd); 4926 4927 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 4928 * Configuration File in FLASH), our last gasp effort is to use the 4929 * Firmware Configuration File which is embedded in the firmware. A 4930 * very few early versions of the firmware didn't have one embedded 4931 * but we can ignore those. 4932 */ 4933 if (ret == -ENOENT) { 4934 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4935 caps_cmd.op_to_write = 4936 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4937 FW_CMD_REQUEST | 4938 FW_CMD_READ); 4939 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4940 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 4941 sizeof(caps_cmd), &caps_cmd); 4942 config_name = "Firmware Default"; 4943 } 4944 4945 config_issued = 1; 4946 if (ret < 0) 4947 goto bye; 4948 4949 finiver = ntohl(caps_cmd.finiver); 4950 finicsum = ntohl(caps_cmd.finicsum); 4951 cfcsum = ntohl(caps_cmd.cfcsum); 4952 if (finicsum != cfcsum) 4953 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 4954 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 4955 finicsum, cfcsum); 4956 4957 /* 4958 * And now tell the firmware to use the configuration we just loaded. 4959 */ 4960 caps_cmd.op_to_write = 4961 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4962 FW_CMD_REQUEST | 4963 FW_CMD_WRITE); 4964 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4965 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4966 NULL); 4967 if (ret < 0) 4968 goto bye; 4969 4970 /* 4971 * Tweak configuration based on system architecture, module 4972 * parameters, etc. 4973 */ 4974 ret = adap_init0_tweaks(adapter); 4975 if (ret < 0) 4976 goto bye; 4977 4978 /* 4979 * And finally tell the firmware to initialize itself using the 4980 * parameters from the Configuration File. 4981 */ 4982 ret = t4_fw_initialize(adapter, adapter->mbox); 4983 if (ret < 0) 4984 goto bye; 4985 4986 /* 4987 * Return successfully and note that we're operating with parameters 4988 * not supplied by the driver, rather than from hard-wired 4989 * initialization constants burried in the driver. 4990 */ 4991 adapter->flags |= USING_SOFT_PARAMS; 4992 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 4993 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 4994 config_name, finiver, cfcsum); 4995 return 0; 4996 4997 /* 4998 * Something bad happened. Return the error ... (If the "error" 4999 * is that there's no Configuration File on the adapter we don't 5000 * want to issue a warning since this is fairly common.) 5001 */ 5002 bye: 5003 if (config_issued && ret != -ENOENT) 5004 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 5005 config_name, -ret); 5006 return ret; 5007 } 5008 5009 /* 5010 * Attempt to initialize the adapter via hard-coded, driver supplied 5011 * parameters ... 5012 */ 5013 static int adap_init0_no_config(struct adapter *adapter, int reset) 5014 { 5015 struct sge *s = &adapter->sge; 5016 struct fw_caps_config_cmd caps_cmd; 5017 u32 v; 5018 int i, ret; 5019 5020 /* 5021 * Reset device if necessary 5022 */ 5023 if (reset) { 5024 ret = t4_fw_reset(adapter, adapter->mbox, 5025 PIORSTMODE | PIORST); 5026 if (ret < 0) 5027 goto bye; 5028 } 5029 5030 /* 5031 * Get device capabilities and select which we'll be using. 5032 */ 5033 memset(&caps_cmd, 0, sizeof(caps_cmd)); 5034 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5035 FW_CMD_REQUEST | FW_CMD_READ); 5036 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 5037 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 5038 &caps_cmd); 5039 if (ret < 0) 5040 goto bye; 5041 5042 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) { 5043 if (!vf_acls) 5044 caps_cmd.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM); 5045 else 5046 caps_cmd.niccaps = htons(FW_CAPS_CONFIG_NIC_VM); 5047 } else if (vf_acls) { 5048 dev_err(adapter->pdev_dev, "virtualization ACLs not supported"); 5049 goto bye; 5050 } 5051 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5052 FW_CMD_REQUEST | FW_CMD_WRITE); 5053 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 5054 NULL); 5055 if (ret < 0) 5056 goto bye; 5057 5058 /* 5059 * Tweak configuration based on system architecture, module 5060 * parameters, etc. 5061 */ 5062 ret = adap_init0_tweaks(adapter); 5063 if (ret < 0) 5064 goto bye; 5065 5066 /* 5067 * Select RSS Global Mode we want to use. We use "Basic Virtual" 5068 * mode which maps each Virtual Interface to its own section of 5069 * the RSS Table and we turn on all map and hash enables ... 5070 */ 5071 adapter->flags |= RSS_TNLALLLOOKUP; 5072 ret = t4_config_glbl_rss(adapter, adapter->mbox, 5073 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 5074 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN | 5075 FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ | 5076 ((adapter->flags & RSS_TNLALLLOOKUP) ? 5077 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP : 0)); 5078 if (ret < 0) 5079 goto bye; 5080 5081 /* 5082 * Set up our own fundamental resource provisioning ... 5083 */ 5084 ret = t4_cfg_pfvf(adapter, adapter->mbox, adapter->fn, 0, 5085 PFRES_NEQ, PFRES_NETHCTRL, 5086 PFRES_NIQFLINT, PFRES_NIQ, 5087 PFRES_TC, PFRES_NVI, 5088 FW_PFVF_CMD_CMASK_MASK, 5089 pfvfres_pmask(adapter, adapter->fn, 0), 5090 PFRES_NEXACTF, 5091 PFRES_R_CAPS, PFRES_WX_CAPS); 5092 if (ret < 0) 5093 goto bye; 5094 5095 /* 5096 * Perform low level SGE initialization. We need to do this before we 5097 * send the firmware the INITIALIZE command because that will cause 5098 * any other PF Drivers which are waiting for the Master 5099 * Initialization to proceed forward. 5100 */ 5101 for (i = 0; i < SGE_NTIMERS - 1; i++) 5102 s->timer_val[i] = min(intr_holdoff[i], MAX_SGE_TIMERVAL); 5103 s->timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL; 5104 s->counter_val[0] = 1; 5105 for (i = 1; i < SGE_NCOUNTERS; i++) 5106 s->counter_val[i] = min(intr_cnt[i - 1], 5107 THRESHOLD_0_GET(THRESHOLD_0_MASK)); 5108 t4_sge_init(adapter); 5109 5110 #ifdef CONFIG_PCI_IOV 5111 /* 5112 * Provision resource limits for Virtual Functions. We currently 5113 * grant them all the same static resource limits except for the Port 5114 * Access Rights Mask which we're assigning based on the PF. All of 5115 * the static provisioning stuff for both the PF and VF really needs 5116 * to be managed in a persistent manner for each device which the 5117 * firmware controls. 5118 */ 5119 { 5120 int pf, vf; 5121 5122 for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) { 5123 if (num_vf[pf] <= 0) 5124 continue; 5125 5126 /* VF numbering starts at 1! */ 5127 for (vf = 1; vf <= num_vf[pf]; vf++) { 5128 ret = t4_cfg_pfvf(adapter, adapter->mbox, 5129 pf, vf, 5130 VFRES_NEQ, VFRES_NETHCTRL, 5131 VFRES_NIQFLINT, VFRES_NIQ, 5132 VFRES_TC, VFRES_NVI, 5133 FW_PFVF_CMD_CMASK_MASK, 5134 pfvfres_pmask( 5135 adapter, pf, vf), 5136 VFRES_NEXACTF, 5137 VFRES_R_CAPS, VFRES_WX_CAPS); 5138 if (ret < 0) 5139 dev_warn(adapter->pdev_dev, 5140 "failed to "\ 5141 "provision pf/vf=%d/%d; " 5142 "err=%d\n", pf, vf, ret); 5143 } 5144 } 5145 } 5146 #endif 5147 5148 /* 5149 * Set up the default filter mode. Later we'll want to implement this 5150 * via a firmware command, etc. ... This needs to be done before the 5151 * firmare initialization command ... If the selected set of fields 5152 * isn't equal to the default value, we'll need to make sure that the 5153 * field selections will fit in the 36-bit budget. 5154 */ 5155 if (tp_vlan_pri_map != TP_VLAN_PRI_MAP_DEFAULT) { 5156 int j, bits = 0; 5157 5158 for (j = TP_VLAN_PRI_MAP_FIRST; j <= TP_VLAN_PRI_MAP_LAST; j++) 5159 switch (tp_vlan_pri_map & (1 << j)) { 5160 case 0: 5161 /* compressed filter field not enabled */ 5162 break; 5163 case FCOE_MASK: 5164 bits += 1; 5165 break; 5166 case PORT_MASK: 5167 bits += 3; 5168 break; 5169 case VNIC_ID_MASK: 5170 bits += 17; 5171 break; 5172 case VLAN_MASK: 5173 bits += 17; 5174 break; 5175 case TOS_MASK: 5176 bits += 8; 5177 break; 5178 case PROTOCOL_MASK: 5179 bits += 8; 5180 break; 5181 case ETHERTYPE_MASK: 5182 bits += 16; 5183 break; 5184 case MACMATCH_MASK: 5185 bits += 9; 5186 break; 5187 case MPSHITTYPE_MASK: 5188 bits += 3; 5189 break; 5190 case FRAGMENTATION_MASK: 5191 bits += 1; 5192 break; 5193 } 5194 5195 if (bits > 36) { 5196 dev_err(adapter->pdev_dev, 5197 "tp_vlan_pri_map=%#x needs %d bits > 36;"\ 5198 " using %#x\n", tp_vlan_pri_map, bits, 5199 TP_VLAN_PRI_MAP_DEFAULT); 5200 tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT; 5201 } 5202 } 5203 v = tp_vlan_pri_map; 5204 t4_write_indirect(adapter, TP_PIO_ADDR, TP_PIO_DATA, 5205 &v, 1, TP_VLAN_PRI_MAP); 5206 5207 /* 5208 * We need Five Tuple Lookup mode to be set in TP_GLOBAL_CONFIG order 5209 * to support any of the compressed filter fields above. Newer 5210 * versions of the firmware do this automatically but it doesn't hurt 5211 * to set it here. Meanwhile, we do _not_ need to set Lookup Every 5212 * Packet in TP_INGRESS_CONFIG to support matching non-TCP packets 5213 * since the firmware automatically turns this on and off when we have 5214 * a non-zero number of filters active (since it does have a 5215 * performance impact). 5216 */ 5217 if (tp_vlan_pri_map) 5218 t4_set_reg_field(adapter, TP_GLOBAL_CONFIG, 5219 FIVETUPLELOOKUP_MASK, 5220 FIVETUPLELOOKUP_MASK); 5221 5222 /* 5223 * Tweak some settings. 5224 */ 5225 t4_write_reg(adapter, TP_SHIFT_CNT, SYNSHIFTMAX(6) | 5226 RXTSHIFTMAXR1(4) | RXTSHIFTMAXR2(15) | 5227 PERSHIFTBACKOFFMAX(8) | PERSHIFTMAX(8) | 5228 KEEPALIVEMAXR1(4) | KEEPALIVEMAXR2(9)); 5229 5230 /* 5231 * Get basic stuff going by issuing the Firmware Initialize command. 5232 * Note that this _must_ be after all PFVF commands ... 5233 */ 5234 ret = t4_fw_initialize(adapter, adapter->mbox); 5235 if (ret < 0) 5236 goto bye; 5237 5238 /* 5239 * Return successfully! 5240 */ 5241 dev_info(adapter->pdev_dev, "Successfully configured using built-in "\ 5242 "driver parameters\n"); 5243 return 0; 5244 5245 /* 5246 * Something bad happened. Return the error ... 5247 */ 5248 bye: 5249 return ret; 5250 } 5251 5252 static struct fw_info fw_info_array[] = { 5253 { 5254 .chip = CHELSIO_T4, 5255 .fs_name = FW4_CFNAME, 5256 .fw_mod_name = FW4_FNAME, 5257 .fw_hdr = { 5258 .chip = FW_HDR_CHIP_T4, 5259 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 5260 .intfver_nic = FW_INTFVER(T4, NIC), 5261 .intfver_vnic = FW_INTFVER(T4, VNIC), 5262 .intfver_ri = FW_INTFVER(T4, RI), 5263 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 5264 .intfver_fcoe = FW_INTFVER(T4, FCOE), 5265 }, 5266 }, { 5267 .chip = CHELSIO_T5, 5268 .fs_name = FW5_CFNAME, 5269 .fw_mod_name = FW5_FNAME, 5270 .fw_hdr = { 5271 .chip = FW_HDR_CHIP_T5, 5272 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 5273 .intfver_nic = FW_INTFVER(T5, NIC), 5274 .intfver_vnic = FW_INTFVER(T5, VNIC), 5275 .intfver_ri = FW_INTFVER(T5, RI), 5276 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 5277 .intfver_fcoe = FW_INTFVER(T5, FCOE), 5278 }, 5279 } 5280 }; 5281 5282 static struct fw_info *find_fw_info(int chip) 5283 { 5284 int i; 5285 5286 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 5287 if (fw_info_array[i].chip == chip) 5288 return &fw_info_array[i]; 5289 } 5290 return NULL; 5291 } 5292 5293 /* 5294 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 5295 */ 5296 static int adap_init0(struct adapter *adap) 5297 { 5298 int ret; 5299 u32 v, port_vec; 5300 enum dev_state state; 5301 u32 params[7], val[7]; 5302 struct fw_caps_config_cmd caps_cmd; 5303 int reset = 1; 5304 5305 /* 5306 * Contact FW, advertising Master capability (and potentially forcing 5307 * ourselves as the Master PF if our module parameter force_init is 5308 * set). 5309 */ 5310 ret = t4_fw_hello(adap, adap->mbox, adap->fn, 5311 force_init ? MASTER_MUST : MASTER_MAY, 5312 &state); 5313 if (ret < 0) { 5314 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 5315 ret); 5316 return ret; 5317 } 5318 if (ret == adap->mbox) 5319 adap->flags |= MASTER_PF; 5320 if (force_init && state == DEV_STATE_INIT) 5321 state = DEV_STATE_UNINIT; 5322 5323 /* 5324 * If we're the Master PF Driver and the device is uninitialized, 5325 * then let's consider upgrading the firmware ... (We always want 5326 * to check the firmware version number in order to A. get it for 5327 * later reporting and B. to warn if the currently loaded firmware 5328 * is excessively mismatched relative to the driver.) 5329 */ 5330 t4_get_fw_version(adap, &adap->params.fw_vers); 5331 t4_get_tp_version(adap, &adap->params.tp_vers); 5332 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) { 5333 struct fw_info *fw_info; 5334 struct fw_hdr *card_fw; 5335 const struct firmware *fw; 5336 const u8 *fw_data = NULL; 5337 unsigned int fw_size = 0; 5338 5339 /* This is the firmware whose headers the driver was compiled 5340 * against 5341 */ 5342 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 5343 if (fw_info == NULL) { 5344 dev_err(adap->pdev_dev, 5345 "unable to get firmware info for chip %d.\n", 5346 CHELSIO_CHIP_VERSION(adap->params.chip)); 5347 return -EINVAL; 5348 } 5349 5350 /* allocate memory to read the header of the firmware on the 5351 * card 5352 */ 5353 card_fw = t4_alloc_mem(sizeof(*card_fw)); 5354 5355 /* Get FW from from /lib/firmware/ */ 5356 ret = request_firmware(&fw, fw_info->fw_mod_name, 5357 adap->pdev_dev); 5358 if (ret < 0) { 5359 dev_err(adap->pdev_dev, 5360 "unable to load firmware image %s, error %d\n", 5361 fw_info->fw_mod_name, ret); 5362 } else { 5363 fw_data = fw->data; 5364 fw_size = fw->size; 5365 } 5366 5367 /* upgrade FW logic */ 5368 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 5369 state, &reset); 5370 5371 /* Cleaning up */ 5372 if (fw != NULL) 5373 release_firmware(fw); 5374 t4_free_mem(card_fw); 5375 5376 if (ret < 0) 5377 goto bye; 5378 } 5379 5380 /* 5381 * Grab VPD parameters. This should be done after we establish a 5382 * connection to the firmware since some of the VPD parameters 5383 * (notably the Core Clock frequency) are retrieved via requests to 5384 * the firmware. On the other hand, we need these fairly early on 5385 * so we do this right after getting ahold of the firmware. 5386 */ 5387 ret = get_vpd_params(adap, &adap->params.vpd); 5388 if (ret < 0) 5389 goto bye; 5390 5391 /* 5392 * Find out what ports are available to us. Note that we need to do 5393 * this before calling adap_init0_no_config() since it needs nports 5394 * and portvec ... 5395 */ 5396 v = 5397 FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5398 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC); 5399 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec); 5400 if (ret < 0) 5401 goto bye; 5402 5403 adap->params.nports = hweight32(port_vec); 5404 adap->params.portvec = port_vec; 5405 5406 /* 5407 * If the firmware is initialized already (and we're not forcing a 5408 * master initialization), note that we're living with existing 5409 * adapter parameters. Otherwise, it's time to try initializing the 5410 * adapter ... 5411 */ 5412 if (state == DEV_STATE_INIT) { 5413 dev_info(adap->pdev_dev, "Coming up as %s: "\ 5414 "Adapter already initialized\n", 5415 adap->flags & MASTER_PF ? "MASTER" : "SLAVE"); 5416 adap->flags |= USING_SOFT_PARAMS; 5417 } else { 5418 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 5419 "Initializing adapter\n"); 5420 5421 /* 5422 * If the firmware doesn't support Configuration 5423 * Files warn user and exit, 5424 */ 5425 if (ret < 0) 5426 dev_warn(adap->pdev_dev, "Firmware doesn't support " 5427 "configuration file.\n"); 5428 if (force_old_init) 5429 ret = adap_init0_no_config(adap, reset); 5430 else { 5431 /* 5432 * Find out whether we're dealing with a version of 5433 * the firmware which has configuration file support. 5434 */ 5435 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5436 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF)); 5437 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, 5438 params, val); 5439 5440 /* 5441 * If the firmware doesn't support Configuration 5442 * Files, use the old Driver-based, hard-wired 5443 * initialization. Otherwise, try using the 5444 * Configuration File support and fall back to the 5445 * Driver-based initialization if there's no 5446 * Configuration File found. 5447 */ 5448 if (ret < 0) 5449 ret = adap_init0_no_config(adap, reset); 5450 else { 5451 /* 5452 * The firmware provides us with a memory 5453 * buffer where we can load a Configuration 5454 * File from the host if we want to override 5455 * the Configuration File in flash. 5456 */ 5457 5458 ret = adap_init0_config(adap, reset); 5459 if (ret == -ENOENT) { 5460 dev_info(adap->pdev_dev, 5461 "No Configuration File present " 5462 "on adapter. Using hard-wired " 5463 "configuration parameters.\n"); 5464 ret = adap_init0_no_config(adap, reset); 5465 } 5466 } 5467 } 5468 if (ret < 0) { 5469 dev_err(adap->pdev_dev, 5470 "could not initialize adapter, error %d\n", 5471 -ret); 5472 goto bye; 5473 } 5474 } 5475 5476 /* 5477 * If we're living with non-hard-coded parameters (either from a 5478 * Firmware Configuration File or values programmed by a different PF 5479 * Driver), give the SGE code a chance to pull in anything that it 5480 * needs ... Note that this must be called after we retrieve our VPD 5481 * parameters in order to know how to convert core ticks to seconds. 5482 */ 5483 if (adap->flags & USING_SOFT_PARAMS) { 5484 ret = t4_sge_init(adap); 5485 if (ret < 0) 5486 goto bye; 5487 } 5488 5489 if (is_bypass_device(adap->pdev->device)) 5490 adap->params.bypass = 1; 5491 5492 /* 5493 * Grab some of our basic fundamental operating parameters. 5494 */ 5495 #define FW_PARAM_DEV(param) \ 5496 (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 5497 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 5498 5499 #define FW_PARAM_PFVF(param) \ 5500 FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 5501 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)| \ 5502 FW_PARAMS_PARAM_Y(0) | \ 5503 FW_PARAMS_PARAM_Z(0) 5504 5505 params[0] = FW_PARAM_PFVF(EQ_START); 5506 params[1] = FW_PARAM_PFVF(L2T_START); 5507 params[2] = FW_PARAM_PFVF(L2T_END); 5508 params[3] = FW_PARAM_PFVF(FILTER_START); 5509 params[4] = FW_PARAM_PFVF(FILTER_END); 5510 params[5] = FW_PARAM_PFVF(IQFLINT_START); 5511 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val); 5512 if (ret < 0) 5513 goto bye; 5514 adap->sge.egr_start = val[0]; 5515 adap->l2t_start = val[1]; 5516 adap->l2t_end = val[2]; 5517 adap->tids.ftid_base = val[3]; 5518 adap->tids.nftids = val[4] - val[3] + 1; 5519 adap->sge.ingr_start = val[5]; 5520 5521 /* query params related to active filter region */ 5522 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 5523 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 5524 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val); 5525 /* If Active filter size is set we enable establishing 5526 * offload connection through firmware work request 5527 */ 5528 if ((val[0] != val[1]) && (ret >= 0)) { 5529 adap->flags |= FW_OFLD_CONN; 5530 adap->tids.aftid_base = val[0]; 5531 adap->tids.aftid_end = val[1]; 5532 } 5533 5534 /* If we're running on newer firmware, let it know that we're 5535 * prepared to deal with encapsulated CPL messages. Older 5536 * firmware won't understand this and we'll just get 5537 * unencapsulated messages ... 5538 */ 5539 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 5540 val[0] = 1; 5541 (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val); 5542 5543 /* 5544 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 5545 * capability. Earlier versions of the firmware didn't have the 5546 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 5547 * permission to use ULPTX MEMWRITE DSGL. 5548 */ 5549 if (is_t4(adap->params.chip)) { 5550 adap->params.ulptx_memwrite_dsgl = false; 5551 } else { 5552 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 5553 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 5554 1, params, val); 5555 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 5556 } 5557 5558 /* 5559 * Get device capabilities so we can determine what resources we need 5560 * to manage. 5561 */ 5562 memset(&caps_cmd, 0, sizeof(caps_cmd)); 5563 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5564 FW_CMD_REQUEST | FW_CMD_READ); 5565 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 5566 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 5567 &caps_cmd); 5568 if (ret < 0) 5569 goto bye; 5570 5571 if (caps_cmd.ofldcaps) { 5572 /* query offload-related parameters */ 5573 params[0] = FW_PARAM_DEV(NTID); 5574 params[1] = FW_PARAM_PFVF(SERVER_START); 5575 params[2] = FW_PARAM_PFVF(SERVER_END); 5576 params[3] = FW_PARAM_PFVF(TDDP_START); 5577 params[4] = FW_PARAM_PFVF(TDDP_END); 5578 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5579 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, 5580 params, val); 5581 if (ret < 0) 5582 goto bye; 5583 adap->tids.ntids = val[0]; 5584 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 5585 adap->tids.stid_base = val[1]; 5586 adap->tids.nstids = val[2] - val[1] + 1; 5587 /* 5588 * Setup server filter region. Divide the availble filter 5589 * region into two parts. Regular filters get 1/3rd and server 5590 * filters get 2/3rd part. This is only enabled if workarond 5591 * path is enabled. 5592 * 1. For regular filters. 5593 * 2. Server filter: This are special filters which are used 5594 * to redirect SYN packets to offload queue. 5595 */ 5596 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) { 5597 adap->tids.sftid_base = adap->tids.ftid_base + 5598 DIV_ROUND_UP(adap->tids.nftids, 3); 5599 adap->tids.nsftids = adap->tids.nftids - 5600 DIV_ROUND_UP(adap->tids.nftids, 3); 5601 adap->tids.nftids = adap->tids.sftid_base - 5602 adap->tids.ftid_base; 5603 } 5604 adap->vres.ddp.start = val[3]; 5605 adap->vres.ddp.size = val[4] - val[3] + 1; 5606 adap->params.ofldq_wr_cred = val[5]; 5607 5608 adap->params.offload = 1; 5609 } 5610 if (caps_cmd.rdmacaps) { 5611 params[0] = FW_PARAM_PFVF(STAG_START); 5612 params[1] = FW_PARAM_PFVF(STAG_END); 5613 params[2] = FW_PARAM_PFVF(RQ_START); 5614 params[3] = FW_PARAM_PFVF(RQ_END); 5615 params[4] = FW_PARAM_PFVF(PBL_START); 5616 params[5] = FW_PARAM_PFVF(PBL_END); 5617 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, 5618 params, val); 5619 if (ret < 0) 5620 goto bye; 5621 adap->vres.stag.start = val[0]; 5622 adap->vres.stag.size = val[1] - val[0] + 1; 5623 adap->vres.rq.start = val[2]; 5624 adap->vres.rq.size = val[3] - val[2] + 1; 5625 adap->vres.pbl.start = val[4]; 5626 adap->vres.pbl.size = val[5] - val[4] + 1; 5627 5628 params[0] = FW_PARAM_PFVF(SQRQ_START); 5629 params[1] = FW_PARAM_PFVF(SQRQ_END); 5630 params[2] = FW_PARAM_PFVF(CQ_START); 5631 params[3] = FW_PARAM_PFVF(CQ_END); 5632 params[4] = FW_PARAM_PFVF(OCQ_START); 5633 params[5] = FW_PARAM_PFVF(OCQ_END); 5634 ret = t4_query_params(adap, 0, 0, 0, 6, params, val); 5635 if (ret < 0) 5636 goto bye; 5637 adap->vres.qp.start = val[0]; 5638 adap->vres.qp.size = val[1] - val[0] + 1; 5639 adap->vres.cq.start = val[2]; 5640 adap->vres.cq.size = val[3] - val[2] + 1; 5641 adap->vres.ocq.start = val[4]; 5642 adap->vres.ocq.size = val[5] - val[4] + 1; 5643 } 5644 if (caps_cmd.iscsicaps) { 5645 params[0] = FW_PARAM_PFVF(ISCSI_START); 5646 params[1] = FW_PARAM_PFVF(ISCSI_END); 5647 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, 5648 params, val); 5649 if (ret < 0) 5650 goto bye; 5651 adap->vres.iscsi.start = val[0]; 5652 adap->vres.iscsi.size = val[1] - val[0] + 1; 5653 } 5654 #undef FW_PARAM_PFVF 5655 #undef FW_PARAM_DEV 5656 5657 /* The MTU/MSS Table is initialized by now, so load their values. If 5658 * we're initializing the adapter, then we'll make any modifications 5659 * we want to the MTU/MSS Table and also initialize the congestion 5660 * parameters. 5661 */ 5662 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 5663 if (state != DEV_STATE_INIT) { 5664 int i; 5665 5666 /* The default MTU Table contains values 1492 and 1500. 5667 * However, for TCP, it's better to have two values which are 5668 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 5669 * This allows us to have a TCP Data Payload which is a 5670 * multiple of 8 regardless of what combination of TCP Options 5671 * are in use (always a multiple of 4 bytes) which is 5672 * important for performance reasons. For instance, if no 5673 * options are in use, then we have a 20-byte IP header and a 5674 * 20-byte TCP header. In this case, a 1500-byte MSS would 5675 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 5676 * which is not a multiple of 8. So using an MSS of 1488 in 5677 * this case results in a TCP Data Payload of 1448 bytes which 5678 * is a multiple of 8. On the other hand, if 12-byte TCP Time 5679 * Stamps have been negotiated, then an MTU of 1500 bytes 5680 * results in a TCP Data Payload of 1448 bytes which, as 5681 * above, is a multiple of 8 bytes ... 5682 */ 5683 for (i = 0; i < NMTUS; i++) 5684 if (adap->params.mtus[i] == 1492) { 5685 adap->params.mtus[i] = 1488; 5686 break; 5687 } 5688 5689 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 5690 adap->params.b_wnd); 5691 } 5692 t4_init_tp_params(adap); 5693 adap->flags |= FW_OK; 5694 return 0; 5695 5696 /* 5697 * Something bad happened. If a command timed out or failed with EIO 5698 * FW does not operate within its spec or something catastrophic 5699 * happened to HW/FW, stop issuing commands. 5700 */ 5701 bye: 5702 if (ret != -ETIMEDOUT && ret != -EIO) 5703 t4_fw_bye(adap, adap->mbox); 5704 return ret; 5705 } 5706 5707 /* EEH callbacks */ 5708 5709 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 5710 pci_channel_state_t state) 5711 { 5712 int i; 5713 struct adapter *adap = pci_get_drvdata(pdev); 5714 5715 if (!adap) 5716 goto out; 5717 5718 rtnl_lock(); 5719 adap->flags &= ~FW_OK; 5720 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 5721 spin_lock(&adap->stats_lock); 5722 for_each_port(adap, i) { 5723 struct net_device *dev = adap->port[i]; 5724 5725 netif_device_detach(dev); 5726 netif_carrier_off(dev); 5727 } 5728 spin_unlock(&adap->stats_lock); 5729 if (adap->flags & FULL_INIT_DONE) 5730 cxgb_down(adap); 5731 rtnl_unlock(); 5732 if ((adap->flags & DEV_ENABLED)) { 5733 pci_disable_device(pdev); 5734 adap->flags &= ~DEV_ENABLED; 5735 } 5736 out: return state == pci_channel_io_perm_failure ? 5737 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 5738 } 5739 5740 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 5741 { 5742 int i, ret; 5743 struct fw_caps_config_cmd c; 5744 struct adapter *adap = pci_get_drvdata(pdev); 5745 5746 if (!adap) { 5747 pci_restore_state(pdev); 5748 pci_save_state(pdev); 5749 return PCI_ERS_RESULT_RECOVERED; 5750 } 5751 5752 if (!(adap->flags & DEV_ENABLED)) { 5753 if (pci_enable_device(pdev)) { 5754 dev_err(&pdev->dev, "Cannot reenable PCI " 5755 "device after reset\n"); 5756 return PCI_ERS_RESULT_DISCONNECT; 5757 } 5758 adap->flags |= DEV_ENABLED; 5759 } 5760 5761 pci_set_master(pdev); 5762 pci_restore_state(pdev); 5763 pci_save_state(pdev); 5764 pci_cleanup_aer_uncorrect_error_status(pdev); 5765 5766 if (t4_wait_dev_ready(adap) < 0) 5767 return PCI_ERS_RESULT_DISCONNECT; 5768 if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0) 5769 return PCI_ERS_RESULT_DISCONNECT; 5770 adap->flags |= FW_OK; 5771 if (adap_init1(adap, &c)) 5772 return PCI_ERS_RESULT_DISCONNECT; 5773 5774 for_each_port(adap, i) { 5775 struct port_info *p = adap2pinfo(adap, i); 5776 5777 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1, 5778 NULL, NULL); 5779 if (ret < 0) 5780 return PCI_ERS_RESULT_DISCONNECT; 5781 p->viid = ret; 5782 p->xact_addr_filt = -1; 5783 } 5784 5785 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 5786 adap->params.b_wnd); 5787 setup_memwin(adap); 5788 if (cxgb_up(adap)) 5789 return PCI_ERS_RESULT_DISCONNECT; 5790 return PCI_ERS_RESULT_RECOVERED; 5791 } 5792 5793 static void eeh_resume(struct pci_dev *pdev) 5794 { 5795 int i; 5796 struct adapter *adap = pci_get_drvdata(pdev); 5797 5798 if (!adap) 5799 return; 5800 5801 rtnl_lock(); 5802 for_each_port(adap, i) { 5803 struct net_device *dev = adap->port[i]; 5804 5805 if (netif_running(dev)) { 5806 link_start(dev); 5807 cxgb_set_rxmode(dev); 5808 } 5809 netif_device_attach(dev); 5810 } 5811 rtnl_unlock(); 5812 } 5813 5814 static const struct pci_error_handlers cxgb4_eeh = { 5815 .error_detected = eeh_err_detected, 5816 .slot_reset = eeh_slot_reset, 5817 .resume = eeh_resume, 5818 }; 5819 5820 static inline bool is_x_10g_port(const struct link_config *lc) 5821 { 5822 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 || 5823 (lc->supported & FW_PORT_CAP_SPEED_40G) != 0; 5824 } 5825 5826 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q, 5827 unsigned int us, unsigned int cnt, 5828 unsigned int size, unsigned int iqe_size) 5829 { 5830 q->adap = adap; 5831 set_rspq_intr_params(q, us, cnt); 5832 q->iqe_len = iqe_size; 5833 q->size = size; 5834 } 5835 5836 /* 5837 * Perform default configuration of DMA queues depending on the number and type 5838 * of ports we found and the number of available CPUs. Most settings can be 5839 * modified by the admin prior to actual use. 5840 */ 5841 static void cfg_queues(struct adapter *adap) 5842 { 5843 struct sge *s = &adap->sge; 5844 int i, q10g = 0, n10g = 0, qidx = 0; 5845 int ciq_size; 5846 5847 for_each_port(adap, i) 5848 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 5849 5850 /* 5851 * We default to 1 queue per non-10G port and up to # of cores queues 5852 * per 10G port. 5853 */ 5854 if (n10g) 5855 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g; 5856 if (q10g > netif_get_num_default_rss_queues()) 5857 q10g = netif_get_num_default_rss_queues(); 5858 5859 for_each_port(adap, i) { 5860 struct port_info *pi = adap2pinfo(adap, i); 5861 5862 pi->first_qset = qidx; 5863 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 5864 qidx += pi->nqsets; 5865 } 5866 5867 s->ethqsets = qidx; 5868 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 5869 5870 if (is_offload(adap)) { 5871 /* 5872 * For offload we use 1 queue/channel if all ports are up to 1G, 5873 * otherwise we divide all available queues amongst the channels 5874 * capped by the number of available cores. 5875 */ 5876 if (n10g) { 5877 i = min_t(int, ARRAY_SIZE(s->ofldrxq), 5878 num_online_cpus()); 5879 s->ofldqsets = roundup(i, adap->params.nports); 5880 } else 5881 s->ofldqsets = adap->params.nports; 5882 /* For RDMA one Rx queue per channel suffices */ 5883 s->rdmaqs = adap->params.nports; 5884 s->rdmaciqs = adap->params.nports; 5885 } 5886 5887 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 5888 struct sge_eth_rxq *r = &s->ethrxq[i]; 5889 5890 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 5891 r->fl.size = 72; 5892 } 5893 5894 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 5895 s->ethtxq[i].q.size = 1024; 5896 5897 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 5898 s->ctrlq[i].q.size = 512; 5899 5900 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) 5901 s->ofldtxq[i].q.size = 1024; 5902 5903 for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) { 5904 struct sge_ofld_rxq *r = &s->ofldrxq[i]; 5905 5906 init_rspq(adap, &r->rspq, 5, 1, 1024, 64); 5907 r->rspq.uld = CXGB4_ULD_ISCSI; 5908 r->fl.size = 72; 5909 } 5910 5911 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) { 5912 struct sge_ofld_rxq *r = &s->rdmarxq[i]; 5913 5914 init_rspq(adap, &r->rspq, 5, 1, 511, 64); 5915 r->rspq.uld = CXGB4_ULD_RDMA; 5916 r->fl.size = 72; 5917 } 5918 5919 ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids; 5920 if (ciq_size > SGE_MAX_IQ_SIZE) { 5921 CH_WARN(adap, "CIQ size too small for available IQs\n"); 5922 ciq_size = SGE_MAX_IQ_SIZE; 5923 } 5924 5925 for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) { 5926 struct sge_ofld_rxq *r = &s->rdmaciq[i]; 5927 5928 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64); 5929 r->rspq.uld = CXGB4_ULD_RDMA; 5930 } 5931 5932 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 5933 init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64); 5934 } 5935 5936 /* 5937 * Reduce the number of Ethernet queues across all ports to at most n. 5938 * n provides at least one queue per port. 5939 */ 5940 static void reduce_ethqs(struct adapter *adap, int n) 5941 { 5942 int i; 5943 struct port_info *pi; 5944 5945 while (n < adap->sge.ethqsets) 5946 for_each_port(adap, i) { 5947 pi = adap2pinfo(adap, i); 5948 if (pi->nqsets > 1) { 5949 pi->nqsets--; 5950 adap->sge.ethqsets--; 5951 if (adap->sge.ethqsets <= n) 5952 break; 5953 } 5954 } 5955 5956 n = 0; 5957 for_each_port(adap, i) { 5958 pi = adap2pinfo(adap, i); 5959 pi->first_qset = n; 5960 n += pi->nqsets; 5961 } 5962 } 5963 5964 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 5965 #define EXTRA_VECS 2 5966 5967 static int enable_msix(struct adapter *adap) 5968 { 5969 int ofld_need = 0; 5970 int i, want, need; 5971 struct sge *s = &adap->sge; 5972 unsigned int nchan = adap->params.nports; 5973 struct msix_entry entries[MAX_INGQ + 1]; 5974 5975 for (i = 0; i < ARRAY_SIZE(entries); ++i) 5976 entries[i].entry = i; 5977 5978 want = s->max_ethqsets + EXTRA_VECS; 5979 if (is_offload(adap)) { 5980 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets; 5981 /* need nchan for each possible ULD */ 5982 ofld_need = 3 * nchan; 5983 } 5984 need = adap->params.nports + EXTRA_VECS + ofld_need; 5985 5986 want = pci_enable_msix_range(adap->pdev, entries, need, want); 5987 if (want < 0) 5988 return want; 5989 5990 /* 5991 * Distribute available vectors to the various queue groups. 5992 * Every group gets its minimum requirement and NIC gets top 5993 * priority for leftovers. 5994 */ 5995 i = want - EXTRA_VECS - ofld_need; 5996 if (i < s->max_ethqsets) { 5997 s->max_ethqsets = i; 5998 if (i < s->ethqsets) 5999 reduce_ethqs(adap, i); 6000 } 6001 if (is_offload(adap)) { 6002 i = want - EXTRA_VECS - s->max_ethqsets; 6003 i -= ofld_need - nchan; 6004 s->ofldqsets = (i / nchan) * nchan; /* round down */ 6005 } 6006 for (i = 0; i < want; ++i) 6007 adap->msix_info[i].vec = entries[i].vector; 6008 6009 return 0; 6010 } 6011 6012 #undef EXTRA_VECS 6013 6014 static int init_rss(struct adapter *adap) 6015 { 6016 unsigned int i, j; 6017 6018 for_each_port(adap, i) { 6019 struct port_info *pi = adap2pinfo(adap, i); 6020 6021 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 6022 if (!pi->rss) 6023 return -ENOMEM; 6024 for (j = 0; j < pi->rss_size; j++) 6025 pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets); 6026 } 6027 return 0; 6028 } 6029 6030 static void print_port_info(const struct net_device *dev) 6031 { 6032 char buf[80]; 6033 char *bufp = buf; 6034 const char *spd = ""; 6035 const struct port_info *pi = netdev_priv(dev); 6036 const struct adapter *adap = pi->adapter; 6037 6038 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB) 6039 spd = " 2.5 GT/s"; 6040 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB) 6041 spd = " 5 GT/s"; 6042 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB) 6043 spd = " 8 GT/s"; 6044 6045 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M) 6046 bufp += sprintf(bufp, "100/"); 6047 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G) 6048 bufp += sprintf(bufp, "1000/"); 6049 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G) 6050 bufp += sprintf(bufp, "10G/"); 6051 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G) 6052 bufp += sprintf(bufp, "40G/"); 6053 if (bufp != buf) 6054 --bufp; 6055 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 6056 6057 netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n", 6058 adap->params.vpd.id, 6059 CHELSIO_CHIP_RELEASE(adap->params.chip), buf, 6060 is_offload(adap) ? "R" : "", adap->params.pci.width, spd, 6061 (adap->flags & USING_MSIX) ? " MSI-X" : 6062 (adap->flags & USING_MSI) ? " MSI" : ""); 6063 netdev_info(dev, "S/N: %s, P/N: %s\n", 6064 adap->params.vpd.sn, adap->params.vpd.pn); 6065 } 6066 6067 static void enable_pcie_relaxed_ordering(struct pci_dev *dev) 6068 { 6069 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN); 6070 } 6071 6072 /* 6073 * Free the following resources: 6074 * - memory used for tables 6075 * - MSI/MSI-X 6076 * - net devices 6077 * - resources FW is holding for us 6078 */ 6079 static void free_some_resources(struct adapter *adapter) 6080 { 6081 unsigned int i; 6082 6083 t4_free_mem(adapter->l2t); 6084 t4_free_mem(adapter->tids.tid_tab); 6085 disable_msi(adapter); 6086 6087 for_each_port(adapter, i) 6088 if (adapter->port[i]) { 6089 kfree(adap2pinfo(adapter, i)->rss); 6090 free_netdev(adapter->port[i]); 6091 } 6092 if (adapter->flags & FW_OK) 6093 t4_fw_bye(adapter, adapter->fn); 6094 } 6095 6096 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 6097 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 6098 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 6099 #define SEGMENT_SIZE 128 6100 6101 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 6102 { 6103 int func, i, err, s_qpp, qpp, num_seg; 6104 struct port_info *pi; 6105 bool highdma = false; 6106 struct adapter *adapter = NULL; 6107 6108 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 6109 6110 err = pci_request_regions(pdev, KBUILD_MODNAME); 6111 if (err) { 6112 /* Just info, some other driver may have claimed the device. */ 6113 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 6114 return err; 6115 } 6116 6117 /* We control everything through one PF */ 6118 func = PCI_FUNC(pdev->devfn); 6119 if (func != ent->driver_data) { 6120 pci_save_state(pdev); /* to restore SR-IOV later */ 6121 goto sriov; 6122 } 6123 6124 err = pci_enable_device(pdev); 6125 if (err) { 6126 dev_err(&pdev->dev, "cannot enable PCI device\n"); 6127 goto out_release_regions; 6128 } 6129 6130 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 6131 highdma = true; 6132 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 6133 if (err) { 6134 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 6135 "coherent allocations\n"); 6136 goto out_disable_device; 6137 } 6138 } else { 6139 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 6140 if (err) { 6141 dev_err(&pdev->dev, "no usable DMA configuration\n"); 6142 goto out_disable_device; 6143 } 6144 } 6145 6146 pci_enable_pcie_error_reporting(pdev); 6147 enable_pcie_relaxed_ordering(pdev); 6148 pci_set_master(pdev); 6149 pci_save_state(pdev); 6150 6151 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 6152 if (!adapter) { 6153 err = -ENOMEM; 6154 goto out_disable_device; 6155 } 6156 6157 /* PCI device has been enabled */ 6158 adapter->flags |= DEV_ENABLED; 6159 6160 adapter->regs = pci_ioremap_bar(pdev, 0); 6161 if (!adapter->regs) { 6162 dev_err(&pdev->dev, "cannot map device registers\n"); 6163 err = -ENOMEM; 6164 goto out_free_adapter; 6165 } 6166 6167 adapter->pdev = pdev; 6168 adapter->pdev_dev = &pdev->dev; 6169 adapter->mbox = func; 6170 adapter->fn = func; 6171 adapter->msg_enable = dflt_msg_enable; 6172 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 6173 6174 spin_lock_init(&adapter->stats_lock); 6175 spin_lock_init(&adapter->tid_release_lock); 6176 6177 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 6178 INIT_WORK(&adapter->db_full_task, process_db_full); 6179 INIT_WORK(&adapter->db_drop_task, process_db_drop); 6180 6181 err = t4_prep_adapter(adapter); 6182 if (err) 6183 goto out_unmap_bar0; 6184 6185 if (!is_t4(adapter->params.chip)) { 6186 s_qpp = QUEUESPERPAGEPF1 * adapter->fn; 6187 qpp = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adapter, 6188 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp); 6189 num_seg = PAGE_SIZE / SEGMENT_SIZE; 6190 6191 /* Each segment size is 128B. Write coalescing is enabled only 6192 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 6193 * queue is less no of segments that can be accommodated in 6194 * a page size. 6195 */ 6196 if (qpp > num_seg) { 6197 dev_err(&pdev->dev, 6198 "Incorrect number of egress queues per page\n"); 6199 err = -EINVAL; 6200 goto out_unmap_bar0; 6201 } 6202 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 6203 pci_resource_len(pdev, 2)); 6204 if (!adapter->bar2) { 6205 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 6206 err = -ENOMEM; 6207 goto out_unmap_bar0; 6208 } 6209 } 6210 6211 setup_memwin(adapter); 6212 err = adap_init0(adapter); 6213 setup_memwin_rdma(adapter); 6214 if (err) 6215 goto out_unmap_bar; 6216 6217 for_each_port(adapter, i) { 6218 struct net_device *netdev; 6219 6220 netdev = alloc_etherdev_mq(sizeof(struct port_info), 6221 MAX_ETH_QSETS); 6222 if (!netdev) { 6223 err = -ENOMEM; 6224 goto out_free_dev; 6225 } 6226 6227 SET_NETDEV_DEV(netdev, &pdev->dev); 6228 6229 adapter->port[i] = netdev; 6230 pi = netdev_priv(netdev); 6231 pi->adapter = adapter; 6232 pi->xact_addr_filt = -1; 6233 pi->port_id = i; 6234 netdev->irq = pdev->irq; 6235 6236 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 6237 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 6238 NETIF_F_RXCSUM | NETIF_F_RXHASH | 6239 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 6240 if (highdma) 6241 netdev->hw_features |= NETIF_F_HIGHDMA; 6242 netdev->features |= netdev->hw_features; 6243 netdev->vlan_features = netdev->features & VLAN_FEAT; 6244 6245 netdev->priv_flags |= IFF_UNICAST_FLT; 6246 6247 netdev->netdev_ops = &cxgb4_netdev_ops; 6248 netdev->ethtool_ops = &cxgb_ethtool_ops; 6249 } 6250 6251 pci_set_drvdata(pdev, adapter); 6252 6253 if (adapter->flags & FW_OK) { 6254 err = t4_port_init(adapter, func, func, 0); 6255 if (err) 6256 goto out_free_dev; 6257 } 6258 6259 /* 6260 * Configure queues and allocate tables now, they can be needed as 6261 * soon as the first register_netdev completes. 6262 */ 6263 cfg_queues(adapter); 6264 6265 adapter->l2t = t4_init_l2t(); 6266 if (!adapter->l2t) { 6267 /* We tolerate a lack of L2T, giving up some functionality */ 6268 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 6269 adapter->params.offload = 0; 6270 } 6271 6272 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) { 6273 dev_warn(&pdev->dev, "could not allocate TID table, " 6274 "continuing\n"); 6275 adapter->params.offload = 0; 6276 } 6277 6278 /* See what interrupts we'll be using */ 6279 if (msi > 1 && enable_msix(adapter) == 0) 6280 adapter->flags |= USING_MSIX; 6281 else if (msi > 0 && pci_enable_msi(pdev) == 0) 6282 adapter->flags |= USING_MSI; 6283 6284 err = init_rss(adapter); 6285 if (err) 6286 goto out_free_dev; 6287 6288 /* 6289 * The card is now ready to go. If any errors occur during device 6290 * registration we do not fail the whole card but rather proceed only 6291 * with the ports we manage to register successfully. However we must 6292 * register at least one net device. 6293 */ 6294 for_each_port(adapter, i) { 6295 pi = adap2pinfo(adapter, i); 6296 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 6297 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 6298 6299 err = register_netdev(adapter->port[i]); 6300 if (err) 6301 break; 6302 adapter->chan_map[pi->tx_chan] = i; 6303 print_port_info(adapter->port[i]); 6304 } 6305 if (i == 0) { 6306 dev_err(&pdev->dev, "could not register any net devices\n"); 6307 goto out_free_dev; 6308 } 6309 if (err) { 6310 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 6311 err = 0; 6312 } 6313 6314 if (cxgb4_debugfs_root) { 6315 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 6316 cxgb4_debugfs_root); 6317 setup_debugfs(adapter); 6318 } 6319 6320 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 6321 pdev->needs_freset = 1; 6322 6323 if (is_offload(adapter)) 6324 attach_ulds(adapter); 6325 6326 sriov: 6327 #ifdef CONFIG_PCI_IOV 6328 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0) 6329 if (pci_enable_sriov(pdev, num_vf[func]) == 0) 6330 dev_info(&pdev->dev, 6331 "instantiated %u virtual functions\n", 6332 num_vf[func]); 6333 #endif 6334 return 0; 6335 6336 out_free_dev: 6337 free_some_resources(adapter); 6338 out_unmap_bar: 6339 if (!is_t4(adapter->params.chip)) 6340 iounmap(adapter->bar2); 6341 out_unmap_bar0: 6342 iounmap(adapter->regs); 6343 out_free_adapter: 6344 kfree(adapter); 6345 out_disable_device: 6346 pci_disable_pcie_error_reporting(pdev); 6347 pci_disable_device(pdev); 6348 out_release_regions: 6349 pci_release_regions(pdev); 6350 return err; 6351 } 6352 6353 static void remove_one(struct pci_dev *pdev) 6354 { 6355 struct adapter *adapter = pci_get_drvdata(pdev); 6356 6357 #ifdef CONFIG_PCI_IOV 6358 pci_disable_sriov(pdev); 6359 6360 #endif 6361 6362 if (adapter) { 6363 int i; 6364 6365 if (is_offload(adapter)) 6366 detach_ulds(adapter); 6367 6368 for_each_port(adapter, i) 6369 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 6370 unregister_netdev(adapter->port[i]); 6371 6372 if (adapter->debugfs_root) 6373 debugfs_remove_recursive(adapter->debugfs_root); 6374 6375 /* If we allocated filters, free up state associated with any 6376 * valid filters ... 6377 */ 6378 if (adapter->tids.ftid_tab) { 6379 struct filter_entry *f = &adapter->tids.ftid_tab[0]; 6380 for (i = 0; i < (adapter->tids.nftids + 6381 adapter->tids.nsftids); i++, f++) 6382 if (f->valid) 6383 clear_filter(adapter, f); 6384 } 6385 6386 if (adapter->flags & FULL_INIT_DONE) 6387 cxgb_down(adapter); 6388 6389 free_some_resources(adapter); 6390 iounmap(adapter->regs); 6391 if (!is_t4(adapter->params.chip)) 6392 iounmap(adapter->bar2); 6393 pci_disable_pcie_error_reporting(pdev); 6394 if ((adapter->flags & DEV_ENABLED)) { 6395 pci_disable_device(pdev); 6396 adapter->flags &= ~DEV_ENABLED; 6397 } 6398 pci_release_regions(pdev); 6399 kfree(adapter); 6400 } else 6401 pci_release_regions(pdev); 6402 } 6403 6404 static struct pci_driver cxgb4_driver = { 6405 .name = KBUILD_MODNAME, 6406 .id_table = cxgb4_pci_tbl, 6407 .probe = init_one, 6408 .remove = remove_one, 6409 .shutdown = remove_one, 6410 .err_handler = &cxgb4_eeh, 6411 }; 6412 6413 static int __init cxgb4_init_module(void) 6414 { 6415 int ret; 6416 6417 workq = create_singlethread_workqueue("cxgb4"); 6418 if (!workq) 6419 return -ENOMEM; 6420 6421 /* Debugfs support is optional, just warn if this fails */ 6422 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 6423 if (!cxgb4_debugfs_root) 6424 pr_warn("could not create debugfs entry, continuing\n"); 6425 6426 ret = pci_register_driver(&cxgb4_driver); 6427 if (ret < 0) { 6428 debugfs_remove(cxgb4_debugfs_root); 6429 destroy_workqueue(workq); 6430 } 6431 6432 register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6433 6434 return ret; 6435 } 6436 6437 static void __exit cxgb4_cleanup_module(void) 6438 { 6439 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6440 pci_unregister_driver(&cxgb4_driver); 6441 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 6442 flush_workqueue(workq); 6443 destroy_workqueue(workq); 6444 } 6445 6446 module_init(cxgb4_init_module); 6447 module_exit(cxgb4_cleanup_module); 6448