1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <net/addrconf.h> 66 #include <linux/uaccess.h> 67 #include <linux/crash_dump.h> 68 69 #include "cxgb4.h" 70 #include "cxgb4_filter.h" 71 #include "t4_regs.h" 72 #include "t4_values.h" 73 #include "t4_msg.h" 74 #include "t4fw_api.h" 75 #include "t4fw_version.h" 76 #include "cxgb4_dcb.h" 77 #include "cxgb4_debugfs.h" 78 #include "clip_tbl.h" 79 #include "l2t.h" 80 #include "sched.h" 81 #include "cxgb4_tc_u32.h" 82 83 char cxgb4_driver_name[] = KBUILD_MODNAME; 84 85 #ifdef DRV_VERSION 86 #undef DRV_VERSION 87 #endif 88 #define DRV_VERSION "2.0.0-ko" 89 const char cxgb4_driver_version[] = DRV_VERSION; 90 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 91 92 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 93 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 94 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 95 96 /* Macros needed to support the PCI Device ID Table ... 97 */ 98 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 99 static const struct pci_device_id cxgb4_pci_tbl[] = { 100 #define CH_PCI_DEVICE_ID_FUNCTION 0x4 101 102 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 103 * called for both. 104 */ 105 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 106 107 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 108 {PCI_VDEVICE(CHELSIO, (devid)), 4} 109 110 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 111 { 0, } \ 112 } 113 114 #include "t4_pci_id_tbl.h" 115 116 #define FW4_FNAME "cxgb4/t4fw.bin" 117 #define FW5_FNAME "cxgb4/t5fw.bin" 118 #define FW6_FNAME "cxgb4/t6fw.bin" 119 #define FW4_CFNAME "cxgb4/t4-config.txt" 120 #define FW5_CFNAME "cxgb4/t5-config.txt" 121 #define FW6_CFNAME "cxgb4/t6-config.txt" 122 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 123 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 124 #define PHY_AQ1202_DEVICEID 0x4409 125 #define PHY_BCM84834_DEVICEID 0x4486 126 127 MODULE_DESCRIPTION(DRV_DESC); 128 MODULE_AUTHOR("Chelsio Communications"); 129 MODULE_LICENSE("Dual BSD/GPL"); 130 MODULE_VERSION(DRV_VERSION); 131 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 132 MODULE_FIRMWARE(FW4_FNAME); 133 MODULE_FIRMWARE(FW5_FNAME); 134 MODULE_FIRMWARE(FW6_FNAME); 135 136 /* 137 * The driver uses the best interrupt scheme available on a platform in the 138 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 139 * of these schemes the driver may consider as follows: 140 * 141 * msi = 2: choose from among all three options 142 * msi = 1: only consider MSI and INTx interrupts 143 * msi = 0: force INTx interrupts 144 */ 145 static int msi = 2; 146 147 module_param(msi, int, 0644); 148 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 149 150 /* 151 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 152 * offset by 2 bytes in order to have the IP headers line up on 4-byte 153 * boundaries. This is a requirement for many architectures which will throw 154 * a machine check fault if an attempt is made to access one of the 4-byte IP 155 * header fields on a non-4-byte boundary. And it's a major performance issue 156 * even on some architectures which allow it like some implementations of the 157 * x86 ISA. However, some architectures don't mind this and for some very 158 * edge-case performance sensitive applications (like forwarding large volumes 159 * of small packets), setting this DMA offset to 0 will decrease the number of 160 * PCI-E Bus transfers enough to measurably affect performance. 161 */ 162 static int rx_dma_offset = 2; 163 164 /* TX Queue select used to determine what algorithm to use for selecting TX 165 * queue. Select between the kernel provided function (select_queue=0) or user 166 * cxgb_select_queue function (select_queue=1) 167 * 168 * Default: select_queue=0 169 */ 170 static int select_queue; 171 module_param(select_queue, int, 0644); 172 MODULE_PARM_DESC(select_queue, 173 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 174 175 static struct dentry *cxgb4_debugfs_root; 176 177 LIST_HEAD(adapter_list); 178 DEFINE_MUTEX(uld_mutex); 179 180 static void link_report(struct net_device *dev) 181 { 182 if (!netif_carrier_ok(dev)) 183 netdev_info(dev, "link down\n"); 184 else { 185 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 186 187 const char *s; 188 const struct port_info *p = netdev_priv(dev); 189 190 switch (p->link_cfg.speed) { 191 case 100: 192 s = "100Mbps"; 193 break; 194 case 1000: 195 s = "1Gbps"; 196 break; 197 case 10000: 198 s = "10Gbps"; 199 break; 200 case 25000: 201 s = "25Gbps"; 202 break; 203 case 40000: 204 s = "40Gbps"; 205 break; 206 case 100000: 207 s = "100Gbps"; 208 break; 209 default: 210 pr_info("%s: unsupported speed: %d\n", 211 dev->name, p->link_cfg.speed); 212 return; 213 } 214 215 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 216 fc[p->link_cfg.fc]); 217 } 218 } 219 220 #ifdef CONFIG_CHELSIO_T4_DCB 221 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 222 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 223 { 224 struct port_info *pi = netdev_priv(dev); 225 struct adapter *adap = pi->adapter; 226 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 227 int i; 228 229 /* We use a simple mapping of Port TX Queue Index to DCB 230 * Priority when we're enabling DCB. 231 */ 232 for (i = 0; i < pi->nqsets; i++, txq++) { 233 u32 name, value; 234 int err; 235 236 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 237 FW_PARAMS_PARAM_X_V( 238 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 239 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 240 value = enable ? i : 0xffffffff; 241 242 /* Since we can be called while atomic (from "interrupt 243 * level") we need to issue the Set Parameters Commannd 244 * without sleeping (timeout < 0). 245 */ 246 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 247 &name, &value, 248 -FW_CMD_MAX_TIMEOUT); 249 250 if (err) 251 dev_err(adap->pdev_dev, 252 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 253 enable ? "set" : "unset", pi->port_id, i, -err); 254 else 255 txq->dcb_prio = value; 256 } 257 } 258 259 static int cxgb4_dcb_enabled(const struct net_device *dev) 260 { 261 struct port_info *pi = netdev_priv(dev); 262 263 if (!pi->dcb.enabled) 264 return 0; 265 266 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 267 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 268 } 269 #endif /* CONFIG_CHELSIO_T4_DCB */ 270 271 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 272 { 273 struct net_device *dev = adapter->port[port_id]; 274 275 /* Skip changes from disabled ports. */ 276 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 277 if (link_stat) 278 netif_carrier_on(dev); 279 else { 280 #ifdef CONFIG_CHELSIO_T4_DCB 281 if (cxgb4_dcb_enabled(dev)) { 282 cxgb4_dcb_state_init(dev); 283 dcb_tx_queue_prio_enable(dev, false); 284 } 285 #endif /* CONFIG_CHELSIO_T4_DCB */ 286 netif_carrier_off(dev); 287 } 288 289 link_report(dev); 290 } 291 } 292 293 void t4_os_portmod_changed(const struct adapter *adap, int port_id) 294 { 295 static const char *mod_str[] = { 296 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 297 }; 298 299 const struct net_device *dev = adap->port[port_id]; 300 const struct port_info *pi = netdev_priv(dev); 301 302 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 303 netdev_info(dev, "port module unplugged\n"); 304 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 305 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 306 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 307 netdev_info(dev, "%s: unsupported port module inserted\n", 308 dev->name); 309 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 310 netdev_info(dev, "%s: unknown port module inserted\n", 311 dev->name); 312 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 313 netdev_info(dev, "%s: transceiver module error\n", dev->name); 314 else 315 netdev_info(dev, "%s: unknown module type %d inserted\n", 316 dev->name, pi->mod_type); 317 } 318 319 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 320 module_param(dbfifo_int_thresh, int, 0644); 321 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 322 323 /* 324 * usecs to sleep while draining the dbfifo 325 */ 326 static int dbfifo_drain_delay = 1000; 327 module_param(dbfifo_drain_delay, int, 0644); 328 MODULE_PARM_DESC(dbfifo_drain_delay, 329 "usecs to sleep while draining the dbfifo"); 330 331 static inline int cxgb4_set_addr_hash(struct port_info *pi) 332 { 333 struct adapter *adap = pi->adapter; 334 u64 vec = 0; 335 bool ucast = false; 336 struct hash_mac_addr *entry; 337 338 /* Calculate the hash vector for the updated list and program it */ 339 list_for_each_entry(entry, &adap->mac_hlist, list) { 340 ucast |= is_unicast_ether_addr(entry->addr); 341 vec |= (1ULL << hash_mac_addr(entry->addr)); 342 } 343 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast, 344 vec, false); 345 } 346 347 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr) 348 { 349 struct port_info *pi = netdev_priv(netdev); 350 struct adapter *adap = pi->adapter; 351 int ret; 352 u64 mhash = 0; 353 u64 uhash = 0; 354 bool free = false; 355 bool ucast = is_unicast_ether_addr(mac_addr); 356 const u8 *maclist[1] = {mac_addr}; 357 struct hash_mac_addr *new_entry; 358 359 ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist, 360 NULL, ucast ? &uhash : &mhash, false); 361 if (ret < 0) 362 goto out; 363 /* if hash != 0, then add the addr to hash addr list 364 * so on the end we will calculate the hash for the 365 * list and program it 366 */ 367 if (uhash || mhash) { 368 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 369 if (!new_entry) 370 return -ENOMEM; 371 ether_addr_copy(new_entry->addr, mac_addr); 372 list_add_tail(&new_entry->list, &adap->mac_hlist); 373 ret = cxgb4_set_addr_hash(pi); 374 } 375 out: 376 return ret < 0 ? ret : 0; 377 } 378 379 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 380 { 381 struct port_info *pi = netdev_priv(netdev); 382 struct adapter *adap = pi->adapter; 383 int ret; 384 const u8 *maclist[1] = {mac_addr}; 385 struct hash_mac_addr *entry, *tmp; 386 387 /* If the MAC address to be removed is in the hash addr 388 * list, delete it from the list and update hash vector 389 */ 390 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) { 391 if (ether_addr_equal(entry->addr, mac_addr)) { 392 list_del(&entry->list); 393 kfree(entry); 394 return cxgb4_set_addr_hash(pi); 395 } 396 } 397 398 ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false); 399 return ret < 0 ? -EINVAL : 0; 400 } 401 402 /* 403 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 404 * If @mtu is -1 it is left unchanged. 405 */ 406 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 407 { 408 struct port_info *pi = netdev_priv(dev); 409 struct adapter *adapter = pi->adapter; 410 411 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 412 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 413 414 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, 415 (dev->flags & IFF_PROMISC) ? 1 : 0, 416 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 417 sleep_ok); 418 } 419 420 /** 421 * link_start - enable a port 422 * @dev: the port to enable 423 * 424 * Performs the MAC and PHY actions needed to enable a port. 425 */ 426 static int link_start(struct net_device *dev) 427 { 428 int ret; 429 struct port_info *pi = netdev_priv(dev); 430 unsigned int mb = pi->adapter->pf; 431 432 /* 433 * We do not set address filters and promiscuity here, the stack does 434 * that step explicitly. 435 */ 436 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 437 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 438 if (ret == 0) { 439 ret = t4_change_mac(pi->adapter, mb, pi->viid, 440 pi->xact_addr_filt, dev->dev_addr, true, 441 true); 442 if (ret >= 0) { 443 pi->xact_addr_filt = ret; 444 ret = 0; 445 } 446 } 447 if (ret == 0) 448 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 449 &pi->link_cfg); 450 if (ret == 0) { 451 local_bh_disable(); 452 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true, 453 true, CXGB4_DCB_ENABLED); 454 local_bh_enable(); 455 } 456 457 return ret; 458 } 459 460 #ifdef CONFIG_CHELSIO_T4_DCB 461 /* Handle a Data Center Bridging update message from the firmware. */ 462 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 463 { 464 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 465 struct net_device *dev = adap->port[adap->chan_map[port]]; 466 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 467 int new_dcb_enabled; 468 469 cxgb4_dcb_handle_fw_update(adap, pcmd); 470 new_dcb_enabled = cxgb4_dcb_enabled(dev); 471 472 /* If the DCB has become enabled or disabled on the port then we're 473 * going to need to set up/tear down DCB Priority parameters for the 474 * TX Queues associated with the port. 475 */ 476 if (new_dcb_enabled != old_dcb_enabled) 477 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 478 } 479 #endif /* CONFIG_CHELSIO_T4_DCB */ 480 481 /* Response queue handler for the FW event queue. 482 */ 483 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 484 const struct pkt_gl *gl) 485 { 486 u8 opcode = ((const struct rss_header *)rsp)->opcode; 487 488 rsp++; /* skip RSS header */ 489 490 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 491 */ 492 if (unlikely(opcode == CPL_FW4_MSG && 493 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 494 rsp++; 495 opcode = ((const struct rss_header *)rsp)->opcode; 496 rsp++; 497 if (opcode != CPL_SGE_EGR_UPDATE) { 498 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 499 , opcode); 500 goto out; 501 } 502 } 503 504 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 505 const struct cpl_sge_egr_update *p = (void *)rsp; 506 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 507 struct sge_txq *txq; 508 509 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 510 txq->restarts++; 511 if (txq->q_type == CXGB4_TXQ_ETH) { 512 struct sge_eth_txq *eq; 513 514 eq = container_of(txq, struct sge_eth_txq, q); 515 netif_tx_wake_queue(eq->txq); 516 } else { 517 struct sge_uld_txq *oq; 518 519 oq = container_of(txq, struct sge_uld_txq, q); 520 tasklet_schedule(&oq->qresume_tsk); 521 } 522 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 523 const struct cpl_fw6_msg *p = (void *)rsp; 524 525 #ifdef CONFIG_CHELSIO_T4_DCB 526 const struct fw_port_cmd *pcmd = (const void *)p->data; 527 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 528 unsigned int action = 529 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 530 531 if (cmd == FW_PORT_CMD && 532 action == FW_PORT_ACTION_GET_PORT_INFO) { 533 int port = FW_PORT_CMD_PORTID_G( 534 be32_to_cpu(pcmd->op_to_portid)); 535 struct net_device *dev = 536 q->adap->port[q->adap->chan_map[port]]; 537 int state_input = ((pcmd->u.info.dcbxdis_pkd & 538 FW_PORT_CMD_DCBXDIS_F) 539 ? CXGB4_DCB_INPUT_FW_DISABLED 540 : CXGB4_DCB_INPUT_FW_ENABLED); 541 542 cxgb4_dcb_state_fsm(dev, state_input); 543 } 544 545 if (cmd == FW_PORT_CMD && 546 action == FW_PORT_ACTION_L2_DCB_CFG) 547 dcb_rpl(q->adap, pcmd); 548 else 549 #endif 550 if (p->type == 0) 551 t4_handle_fw_rpl(q->adap, p->data); 552 } else if (opcode == CPL_L2T_WRITE_RPL) { 553 const struct cpl_l2t_write_rpl *p = (void *)rsp; 554 555 do_l2t_write_rpl(q->adap, p); 556 } else if (opcode == CPL_SET_TCB_RPL) { 557 const struct cpl_set_tcb_rpl *p = (void *)rsp; 558 559 filter_rpl(q->adap, p); 560 } else 561 dev_err(q->adap->pdev_dev, 562 "unexpected CPL %#x on FW event queue\n", opcode); 563 out: 564 return 0; 565 } 566 567 static void disable_msi(struct adapter *adapter) 568 { 569 if (adapter->flags & USING_MSIX) { 570 pci_disable_msix(adapter->pdev); 571 adapter->flags &= ~USING_MSIX; 572 } else if (adapter->flags & USING_MSI) { 573 pci_disable_msi(adapter->pdev); 574 adapter->flags &= ~USING_MSI; 575 } 576 } 577 578 /* 579 * Interrupt handler for non-data events used with MSI-X. 580 */ 581 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 582 { 583 struct adapter *adap = cookie; 584 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 585 586 if (v & PFSW_F) { 587 adap->swintr = 1; 588 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 589 } 590 if (adap->flags & MASTER_PF) 591 t4_slow_intr_handler(adap); 592 return IRQ_HANDLED; 593 } 594 595 /* 596 * Name the MSI-X interrupts. 597 */ 598 static void name_msix_vecs(struct adapter *adap) 599 { 600 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); 601 602 /* non-data interrupts */ 603 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); 604 605 /* FW events */ 606 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", 607 adap->port[0]->name); 608 609 /* Ethernet queues */ 610 for_each_port(adap, j) { 611 struct net_device *d = adap->port[j]; 612 const struct port_info *pi = netdev_priv(d); 613 614 for (i = 0; i < pi->nqsets; i++, msi_idx++) 615 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", 616 d->name, i); 617 } 618 } 619 620 static int request_msix_queue_irqs(struct adapter *adap) 621 { 622 struct sge *s = &adap->sge; 623 int err, ethqidx; 624 int msi_index = 2; 625 626 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, 627 adap->msix_info[1].desc, &s->fw_evtq); 628 if (err) 629 return err; 630 631 for_each_ethrxq(s, ethqidx) { 632 err = request_irq(adap->msix_info[msi_index].vec, 633 t4_sge_intr_msix, 0, 634 adap->msix_info[msi_index].desc, 635 &s->ethrxq[ethqidx].rspq); 636 if (err) 637 goto unwind; 638 msi_index++; 639 } 640 return 0; 641 642 unwind: 643 while (--ethqidx >= 0) 644 free_irq(adap->msix_info[--msi_index].vec, 645 &s->ethrxq[ethqidx].rspq); 646 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 647 return err; 648 } 649 650 static void free_msix_queue_irqs(struct adapter *adap) 651 { 652 int i, msi_index = 2; 653 struct sge *s = &adap->sge; 654 655 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 656 for_each_ethrxq(s, i) 657 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq); 658 } 659 660 /** 661 * cxgb4_write_rss - write the RSS table for a given port 662 * @pi: the port 663 * @queues: array of queue indices for RSS 664 * 665 * Sets up the portion of the HW RSS table for the port's VI to distribute 666 * packets to the Rx queues in @queues. 667 * Should never be called before setting up sge eth rx queues 668 */ 669 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 670 { 671 u16 *rss; 672 int i, err; 673 struct adapter *adapter = pi->adapter; 674 const struct sge_eth_rxq *rxq; 675 676 rxq = &adapter->sge.ethrxq[pi->first_qset]; 677 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL); 678 if (!rss) 679 return -ENOMEM; 680 681 /* map the queue indices to queue ids */ 682 for (i = 0; i < pi->rss_size; i++, queues++) 683 rss[i] = rxq[*queues].rspq.abs_id; 684 685 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0, 686 pi->rss_size, rss, pi->rss_size); 687 /* If Tunnel All Lookup isn't specified in the global RSS 688 * Configuration, then we need to specify a default Ingress 689 * Queue for any ingress packets which aren't hashed. We'll 690 * use our first ingress queue ... 691 */ 692 if (!err) 693 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid, 694 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 695 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 696 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 697 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 698 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 699 rss[0]); 700 kfree(rss); 701 return err; 702 } 703 704 /** 705 * setup_rss - configure RSS 706 * @adap: the adapter 707 * 708 * Sets up RSS for each port. 709 */ 710 static int setup_rss(struct adapter *adap) 711 { 712 int i, j, err; 713 714 for_each_port(adap, i) { 715 const struct port_info *pi = adap2pinfo(adap, i); 716 717 /* Fill default values with equal distribution */ 718 for (j = 0; j < pi->rss_size; j++) 719 pi->rss[j] = j % pi->nqsets; 720 721 err = cxgb4_write_rss(pi, pi->rss); 722 if (err) 723 return err; 724 } 725 return 0; 726 } 727 728 /* 729 * Return the channel of the ingress queue with the given qid. 730 */ 731 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 732 { 733 qid -= p->ingr_start; 734 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 735 } 736 737 /* 738 * Wait until all NAPI handlers are descheduled. 739 */ 740 static void quiesce_rx(struct adapter *adap) 741 { 742 int i; 743 744 for (i = 0; i < adap->sge.ingr_sz; i++) { 745 struct sge_rspq *q = adap->sge.ingr_map[i]; 746 747 if (q && q->handler) 748 napi_disable(&q->napi); 749 } 750 } 751 752 /* Disable interrupt and napi handler */ 753 static void disable_interrupts(struct adapter *adap) 754 { 755 if (adap->flags & FULL_INIT_DONE) { 756 t4_intr_disable(adap); 757 if (adap->flags & USING_MSIX) { 758 free_msix_queue_irqs(adap); 759 free_irq(adap->msix_info[0].vec, adap); 760 } else { 761 free_irq(adap->pdev->irq, adap); 762 } 763 quiesce_rx(adap); 764 } 765 } 766 767 /* 768 * Enable NAPI scheduling and interrupt generation for all Rx queues. 769 */ 770 static void enable_rx(struct adapter *adap) 771 { 772 int i; 773 774 for (i = 0; i < adap->sge.ingr_sz; i++) { 775 struct sge_rspq *q = adap->sge.ingr_map[i]; 776 777 if (!q) 778 continue; 779 if (q->handler) 780 napi_enable(&q->napi); 781 782 /* 0-increment GTS to start the timer and enable interrupts */ 783 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 784 SEINTARM_V(q->intr_params) | 785 INGRESSQID_V(q->cntxt_id)); 786 } 787 } 788 789 790 static int setup_fw_sge_queues(struct adapter *adap) 791 { 792 struct sge *s = &adap->sge; 793 int err = 0; 794 795 bitmap_zero(s->starving_fl, s->egr_sz); 796 bitmap_zero(s->txq_maperr, s->egr_sz); 797 798 if (adap->flags & USING_MSIX) 799 adap->msi_idx = 1; /* vector 0 is for non-queue interrupts */ 800 else { 801 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 802 NULL, NULL, NULL, -1); 803 if (err) 804 return err; 805 adap->msi_idx = -((int)s->intrq.abs_id + 1); 806 } 807 808 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 809 adap->msi_idx, NULL, fwevtq_handler, NULL, -1); 810 if (err) 811 t4_free_sge_resources(adap); 812 return err; 813 } 814 815 /** 816 * setup_sge_queues - configure SGE Tx/Rx/response queues 817 * @adap: the adapter 818 * 819 * Determines how many sets of SGE queues to use and initializes them. 820 * We support multiple queue sets per port if we have MSI-X, otherwise 821 * just one queue set per port. 822 */ 823 static int setup_sge_queues(struct adapter *adap) 824 { 825 int err, i, j; 826 struct sge *s = &adap->sge; 827 struct sge_uld_rxq_info *rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 828 unsigned int cmplqid = 0; 829 830 for_each_port(adap, i) { 831 struct net_device *dev = adap->port[i]; 832 struct port_info *pi = netdev_priv(dev); 833 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 834 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 835 836 for (j = 0; j < pi->nqsets; j++, q++) { 837 if (adap->msi_idx > 0) 838 adap->msi_idx++; 839 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 840 adap->msi_idx, &q->fl, 841 t4_ethrx_handler, 842 NULL, 843 t4_get_mps_bg_map(adap, 844 pi->tx_chan)); 845 if (err) 846 goto freeout; 847 q->rspq.idx = j; 848 memset(&q->stats, 0, sizeof(q->stats)); 849 } 850 for (j = 0; j < pi->nqsets; j++, t++) { 851 err = t4_sge_alloc_eth_txq(adap, t, dev, 852 netdev_get_tx_queue(dev, j), 853 s->fw_evtq.cntxt_id); 854 if (err) 855 goto freeout; 856 } 857 } 858 859 for_each_port(adap, i) { 860 /* Note that cmplqid below is 0 if we don't 861 * have RDMA queues, and that's the right value. 862 */ 863 if (rxq_info) 864 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id; 865 866 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 867 s->fw_evtq.cntxt_id, cmplqid); 868 if (err) 869 goto freeout; 870 } 871 872 t4_write_reg(adap, is_t4(adap->params.chip) ? 873 MPS_TRC_RSS_CONTROL_A : 874 MPS_T5_TRC_RSS_CONTROL_A, 875 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 876 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 877 return 0; 878 freeout: 879 t4_free_sge_resources(adap); 880 return err; 881 } 882 883 /* 884 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc. 885 * The allocated memory is cleared. 886 */ 887 void *t4_alloc_mem(size_t size) 888 { 889 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 890 891 if (!p) 892 p = vzalloc(size); 893 return p; 894 } 895 896 /* 897 * Free memory allocated through alloc_mem(). 898 */ 899 void t4_free_mem(void *addr) 900 { 901 kvfree(addr); 902 } 903 904 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 905 void *accel_priv, select_queue_fallback_t fallback) 906 { 907 int txq; 908 909 #ifdef CONFIG_CHELSIO_T4_DCB 910 /* If a Data Center Bridging has been successfully negotiated on this 911 * link then we'll use the skb's priority to map it to a TX Queue. 912 * The skb's priority is determined via the VLAN Tag Priority Code 913 * Point field. 914 */ 915 if (cxgb4_dcb_enabled(dev)) { 916 u16 vlan_tci; 917 int err; 918 919 err = vlan_get_tag(skb, &vlan_tci); 920 if (unlikely(err)) { 921 if (net_ratelimit()) 922 netdev_warn(dev, 923 "TX Packet without VLAN Tag on DCB Link\n"); 924 txq = 0; 925 } else { 926 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 927 #ifdef CONFIG_CHELSIO_T4_FCOE 928 if (skb->protocol == htons(ETH_P_FCOE)) 929 txq = skb->priority & 0x7; 930 #endif /* CONFIG_CHELSIO_T4_FCOE */ 931 } 932 return txq; 933 } 934 #endif /* CONFIG_CHELSIO_T4_DCB */ 935 936 if (select_queue) { 937 txq = (skb_rx_queue_recorded(skb) 938 ? skb_get_rx_queue(skb) 939 : smp_processor_id()); 940 941 while (unlikely(txq >= dev->real_num_tx_queues)) 942 txq -= dev->real_num_tx_queues; 943 944 return txq; 945 } 946 947 return fallback(dev, skb) % dev->real_num_tx_queues; 948 } 949 950 static int closest_timer(const struct sge *s, int time) 951 { 952 int i, delta, match = 0, min_delta = INT_MAX; 953 954 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 955 delta = time - s->timer_val[i]; 956 if (delta < 0) 957 delta = -delta; 958 if (delta < min_delta) { 959 min_delta = delta; 960 match = i; 961 } 962 } 963 return match; 964 } 965 966 static int closest_thres(const struct sge *s, int thres) 967 { 968 int i, delta, match = 0, min_delta = INT_MAX; 969 970 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 971 delta = thres - s->counter_val[i]; 972 if (delta < 0) 973 delta = -delta; 974 if (delta < min_delta) { 975 min_delta = delta; 976 match = i; 977 } 978 } 979 return match; 980 } 981 982 /** 983 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 984 * @q: the Rx queue 985 * @us: the hold-off time in us, or 0 to disable timer 986 * @cnt: the hold-off packet count, or 0 to disable counter 987 * 988 * Sets an Rx queue's interrupt hold-off time and packet count. At least 989 * one of the two needs to be enabled for the queue to generate interrupts. 990 */ 991 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 992 unsigned int us, unsigned int cnt) 993 { 994 struct adapter *adap = q->adap; 995 996 if ((us | cnt) == 0) 997 cnt = 1; 998 999 if (cnt) { 1000 int err; 1001 u32 v, new_idx; 1002 1003 new_idx = closest_thres(&adap->sge, cnt); 1004 if (q->desc && q->pktcnt_idx != new_idx) { 1005 /* the queue has already been created, update it */ 1006 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1007 FW_PARAMS_PARAM_X_V( 1008 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1009 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1010 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1011 &v, &new_idx); 1012 if (err) 1013 return err; 1014 } 1015 q->pktcnt_idx = new_idx; 1016 } 1017 1018 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1019 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1020 return 0; 1021 } 1022 1023 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1024 { 1025 const struct port_info *pi = netdev_priv(dev); 1026 netdev_features_t changed = dev->features ^ features; 1027 int err; 1028 1029 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1030 return 0; 1031 1032 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1, 1033 -1, -1, -1, 1034 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1035 if (unlikely(err)) 1036 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1037 return err; 1038 } 1039 1040 static int setup_debugfs(struct adapter *adap) 1041 { 1042 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1043 return -1; 1044 1045 #ifdef CONFIG_DEBUG_FS 1046 t4_setup_debugfs(adap); 1047 #endif 1048 return 0; 1049 } 1050 1051 /* 1052 * upper-layer driver support 1053 */ 1054 1055 /* 1056 * Allocate an active-open TID and set it to the supplied value. 1057 */ 1058 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1059 { 1060 int atid = -1; 1061 1062 spin_lock_bh(&t->atid_lock); 1063 if (t->afree) { 1064 union aopen_entry *p = t->afree; 1065 1066 atid = (p - t->atid_tab) + t->atid_base; 1067 t->afree = p->next; 1068 p->data = data; 1069 t->atids_in_use++; 1070 } 1071 spin_unlock_bh(&t->atid_lock); 1072 return atid; 1073 } 1074 EXPORT_SYMBOL(cxgb4_alloc_atid); 1075 1076 /* 1077 * Release an active-open TID. 1078 */ 1079 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1080 { 1081 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1082 1083 spin_lock_bh(&t->atid_lock); 1084 p->next = t->afree; 1085 t->afree = p; 1086 t->atids_in_use--; 1087 spin_unlock_bh(&t->atid_lock); 1088 } 1089 EXPORT_SYMBOL(cxgb4_free_atid); 1090 1091 /* 1092 * Allocate a server TID and set it to the supplied value. 1093 */ 1094 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1095 { 1096 int stid; 1097 1098 spin_lock_bh(&t->stid_lock); 1099 if (family == PF_INET) { 1100 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1101 if (stid < t->nstids) 1102 __set_bit(stid, t->stid_bmap); 1103 else 1104 stid = -1; 1105 } else { 1106 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); 1107 if (stid < 0) 1108 stid = -1; 1109 } 1110 if (stid >= 0) { 1111 t->stid_tab[stid].data = data; 1112 stid += t->stid_base; 1113 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1114 * This is equivalent to 4 TIDs. With CLIP enabled it 1115 * needs 2 TIDs. 1116 */ 1117 if (family == PF_INET) 1118 t->stids_in_use++; 1119 else 1120 t->stids_in_use += 2; 1121 } 1122 spin_unlock_bh(&t->stid_lock); 1123 return stid; 1124 } 1125 EXPORT_SYMBOL(cxgb4_alloc_stid); 1126 1127 /* Allocate a server filter TID and set it to the supplied value. 1128 */ 1129 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1130 { 1131 int stid; 1132 1133 spin_lock_bh(&t->stid_lock); 1134 if (family == PF_INET) { 1135 stid = find_next_zero_bit(t->stid_bmap, 1136 t->nstids + t->nsftids, t->nstids); 1137 if (stid < (t->nstids + t->nsftids)) 1138 __set_bit(stid, t->stid_bmap); 1139 else 1140 stid = -1; 1141 } else { 1142 stid = -1; 1143 } 1144 if (stid >= 0) { 1145 t->stid_tab[stid].data = data; 1146 stid -= t->nstids; 1147 stid += t->sftid_base; 1148 t->sftids_in_use++; 1149 } 1150 spin_unlock_bh(&t->stid_lock); 1151 return stid; 1152 } 1153 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1154 1155 /* Release a server TID. 1156 */ 1157 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1158 { 1159 /* Is it a server filter TID? */ 1160 if (t->nsftids && (stid >= t->sftid_base)) { 1161 stid -= t->sftid_base; 1162 stid += t->nstids; 1163 } else { 1164 stid -= t->stid_base; 1165 } 1166 1167 spin_lock_bh(&t->stid_lock); 1168 if (family == PF_INET) 1169 __clear_bit(stid, t->stid_bmap); 1170 else 1171 bitmap_release_region(t->stid_bmap, stid, 1); 1172 t->stid_tab[stid].data = NULL; 1173 if (stid < t->nstids) { 1174 if (family == PF_INET) 1175 t->stids_in_use--; 1176 else 1177 t->stids_in_use -= 2; 1178 } else { 1179 t->sftids_in_use--; 1180 } 1181 spin_unlock_bh(&t->stid_lock); 1182 } 1183 EXPORT_SYMBOL(cxgb4_free_stid); 1184 1185 /* 1186 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1187 */ 1188 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1189 unsigned int tid) 1190 { 1191 struct cpl_tid_release *req; 1192 1193 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1194 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req)); 1195 INIT_TP_WR(req, tid); 1196 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1197 } 1198 1199 /* 1200 * Queue a TID release request and if necessary schedule a work queue to 1201 * process it. 1202 */ 1203 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1204 unsigned int tid) 1205 { 1206 void **p = &t->tid_tab[tid]; 1207 struct adapter *adap = container_of(t, struct adapter, tids); 1208 1209 spin_lock_bh(&adap->tid_release_lock); 1210 *p = adap->tid_release_head; 1211 /* Low 2 bits encode the Tx channel number */ 1212 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1213 if (!adap->tid_release_task_busy) { 1214 adap->tid_release_task_busy = true; 1215 queue_work(adap->workq, &adap->tid_release_task); 1216 } 1217 spin_unlock_bh(&adap->tid_release_lock); 1218 } 1219 1220 /* 1221 * Process the list of pending TID release requests. 1222 */ 1223 static void process_tid_release_list(struct work_struct *work) 1224 { 1225 struct sk_buff *skb; 1226 struct adapter *adap; 1227 1228 adap = container_of(work, struct adapter, tid_release_task); 1229 1230 spin_lock_bh(&adap->tid_release_lock); 1231 while (adap->tid_release_head) { 1232 void **p = adap->tid_release_head; 1233 unsigned int chan = (uintptr_t)p & 3; 1234 p = (void *)p - chan; 1235 1236 adap->tid_release_head = *p; 1237 *p = NULL; 1238 spin_unlock_bh(&adap->tid_release_lock); 1239 1240 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1241 GFP_KERNEL))) 1242 schedule_timeout_uninterruptible(1); 1243 1244 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1245 t4_ofld_send(adap, skb); 1246 spin_lock_bh(&adap->tid_release_lock); 1247 } 1248 adap->tid_release_task_busy = false; 1249 spin_unlock_bh(&adap->tid_release_lock); 1250 } 1251 1252 /* 1253 * Release a TID and inform HW. If we are unable to allocate the release 1254 * message we defer to a work queue. 1255 */ 1256 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid) 1257 { 1258 struct sk_buff *skb; 1259 struct adapter *adap = container_of(t, struct adapter, tids); 1260 1261 WARN_ON(tid >= t->ntids); 1262 1263 if (t->tid_tab[tid]) { 1264 t->tid_tab[tid] = NULL; 1265 if (t->hash_base && (tid >= t->hash_base)) 1266 atomic_dec(&t->hash_tids_in_use); 1267 else 1268 atomic_dec(&t->tids_in_use); 1269 } 1270 1271 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1272 if (likely(skb)) { 1273 mk_tid_release(skb, chan, tid); 1274 t4_ofld_send(adap, skb); 1275 } else 1276 cxgb4_queue_tid_release(t, chan, tid); 1277 } 1278 EXPORT_SYMBOL(cxgb4_remove_tid); 1279 1280 /* 1281 * Allocate and initialize the TID tables. Returns 0 on success. 1282 */ 1283 static int tid_init(struct tid_info *t) 1284 { 1285 struct adapter *adap = container_of(t, struct adapter, tids); 1286 unsigned int max_ftids = t->nftids + t->nsftids; 1287 unsigned int natids = t->natids; 1288 unsigned int stid_bmap_size; 1289 unsigned int ftid_bmap_size; 1290 size_t size; 1291 1292 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1293 ftid_bmap_size = BITS_TO_LONGS(t->nftids); 1294 size = t->ntids * sizeof(*t->tid_tab) + 1295 natids * sizeof(*t->atid_tab) + 1296 t->nstids * sizeof(*t->stid_tab) + 1297 t->nsftids * sizeof(*t->stid_tab) + 1298 stid_bmap_size * sizeof(long) + 1299 max_ftids * sizeof(*t->ftid_tab) + 1300 ftid_bmap_size * sizeof(long); 1301 1302 t->tid_tab = t4_alloc_mem(size); 1303 if (!t->tid_tab) 1304 return -ENOMEM; 1305 1306 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1307 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1308 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1309 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1310 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids]; 1311 spin_lock_init(&t->stid_lock); 1312 spin_lock_init(&t->atid_lock); 1313 spin_lock_init(&t->ftid_lock); 1314 1315 t->stids_in_use = 0; 1316 t->sftids_in_use = 0; 1317 t->afree = NULL; 1318 t->atids_in_use = 0; 1319 atomic_set(&t->tids_in_use, 0); 1320 atomic_set(&t->hash_tids_in_use, 0); 1321 1322 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1323 if (natids) { 1324 while (--natids) 1325 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1326 t->afree = t->atid_tab; 1327 } 1328 1329 if (is_offload(adap)) { 1330 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1331 /* Reserve stid 0 for T4/T5 adapters */ 1332 if (!t->stid_base && 1333 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1334 __set_bit(0, t->stid_bmap); 1335 } 1336 1337 bitmap_zero(t->ftid_bmap, t->nftids); 1338 return 0; 1339 } 1340 1341 /** 1342 * cxgb4_create_server - create an IP server 1343 * @dev: the device 1344 * @stid: the server TID 1345 * @sip: local IP address to bind server to 1346 * @sport: the server's TCP port 1347 * @queue: queue to direct messages from this server to 1348 * 1349 * Create an IP server for the given port and address. 1350 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1351 */ 1352 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1353 __be32 sip, __be16 sport, __be16 vlan, 1354 unsigned int queue) 1355 { 1356 unsigned int chan; 1357 struct sk_buff *skb; 1358 struct adapter *adap; 1359 struct cpl_pass_open_req *req; 1360 int ret; 1361 1362 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1363 if (!skb) 1364 return -ENOMEM; 1365 1366 adap = netdev2adap(dev); 1367 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req)); 1368 INIT_TP_WR(req, 0); 1369 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1370 req->local_port = sport; 1371 req->peer_port = htons(0); 1372 req->local_ip = sip; 1373 req->peer_ip = htonl(0); 1374 chan = rxq_to_chan(&adap->sge, queue); 1375 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1376 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1377 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1378 ret = t4_mgmt_tx(adap, skb); 1379 return net_xmit_eval(ret); 1380 } 1381 EXPORT_SYMBOL(cxgb4_create_server); 1382 1383 /* cxgb4_create_server6 - create an IPv6 server 1384 * @dev: the device 1385 * @stid: the server TID 1386 * @sip: local IPv6 address to bind server to 1387 * @sport: the server's TCP port 1388 * @queue: queue to direct messages from this server to 1389 * 1390 * Create an IPv6 server for the given port and address. 1391 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1392 */ 1393 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1394 const struct in6_addr *sip, __be16 sport, 1395 unsigned int queue) 1396 { 1397 unsigned int chan; 1398 struct sk_buff *skb; 1399 struct adapter *adap; 1400 struct cpl_pass_open_req6 *req; 1401 int ret; 1402 1403 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1404 if (!skb) 1405 return -ENOMEM; 1406 1407 adap = netdev2adap(dev); 1408 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req)); 1409 INIT_TP_WR(req, 0); 1410 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1411 req->local_port = sport; 1412 req->peer_port = htons(0); 1413 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1414 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1415 req->peer_ip_hi = cpu_to_be64(0); 1416 req->peer_ip_lo = cpu_to_be64(0); 1417 chan = rxq_to_chan(&adap->sge, queue); 1418 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1419 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1420 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1421 ret = t4_mgmt_tx(adap, skb); 1422 return net_xmit_eval(ret); 1423 } 1424 EXPORT_SYMBOL(cxgb4_create_server6); 1425 1426 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1427 unsigned int queue, bool ipv6) 1428 { 1429 struct sk_buff *skb; 1430 struct adapter *adap; 1431 struct cpl_close_listsvr_req *req; 1432 int ret; 1433 1434 adap = netdev2adap(dev); 1435 1436 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1437 if (!skb) 1438 return -ENOMEM; 1439 1440 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req)); 1441 INIT_TP_WR(req, 0); 1442 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 1443 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 1444 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 1445 ret = t4_mgmt_tx(adap, skb); 1446 return net_xmit_eval(ret); 1447 } 1448 EXPORT_SYMBOL(cxgb4_remove_server); 1449 1450 /** 1451 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 1452 * @mtus: the HW MTU table 1453 * @mtu: the target MTU 1454 * @idx: index of selected entry in the MTU table 1455 * 1456 * Returns the index and the value in the HW MTU table that is closest to 1457 * but does not exceed @mtu, unless @mtu is smaller than any value in the 1458 * table, in which case that smallest available value is selected. 1459 */ 1460 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 1461 unsigned int *idx) 1462 { 1463 unsigned int i = 0; 1464 1465 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 1466 ++i; 1467 if (idx) 1468 *idx = i; 1469 return mtus[i]; 1470 } 1471 EXPORT_SYMBOL(cxgb4_best_mtu); 1472 1473 /** 1474 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 1475 * @mtus: the HW MTU table 1476 * @header_size: Header Size 1477 * @data_size_max: maximum Data Segment Size 1478 * @data_size_align: desired Data Segment Size Alignment (2^N) 1479 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 1480 * 1481 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 1482 * MTU Table based solely on a Maximum MTU parameter, we break that 1483 * parameter up into a Header Size and Maximum Data Segment Size, and 1484 * provide a desired Data Segment Size Alignment. If we find an MTU in 1485 * the Hardware MTU Table which will result in a Data Segment Size with 1486 * the requested alignment _and_ that MTU isn't "too far" from the 1487 * closest MTU, then we'll return that rather than the closest MTU. 1488 */ 1489 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 1490 unsigned short header_size, 1491 unsigned short data_size_max, 1492 unsigned short data_size_align, 1493 unsigned int *mtu_idxp) 1494 { 1495 unsigned short max_mtu = header_size + data_size_max; 1496 unsigned short data_size_align_mask = data_size_align - 1; 1497 int mtu_idx, aligned_mtu_idx; 1498 1499 /* Scan the MTU Table till we find an MTU which is larger than our 1500 * Maximum MTU or we reach the end of the table. Along the way, 1501 * record the last MTU found, if any, which will result in a Data 1502 * Segment Length matching the requested alignment. 1503 */ 1504 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 1505 unsigned short data_size = mtus[mtu_idx] - header_size; 1506 1507 /* If this MTU minus the Header Size would result in a 1508 * Data Segment Size of the desired alignment, remember it. 1509 */ 1510 if ((data_size & data_size_align_mask) == 0) 1511 aligned_mtu_idx = mtu_idx; 1512 1513 /* If we're not at the end of the Hardware MTU Table and the 1514 * next element is larger than our Maximum MTU, drop out of 1515 * the loop. 1516 */ 1517 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 1518 break; 1519 } 1520 1521 /* If we fell out of the loop because we ran to the end of the table, 1522 * then we just have to use the last [largest] entry. 1523 */ 1524 if (mtu_idx == NMTUS) 1525 mtu_idx--; 1526 1527 /* If we found an MTU which resulted in the requested Data Segment 1528 * Length alignment and that's "not far" from the largest MTU which is 1529 * less than or equal to the maximum MTU, then use that. 1530 */ 1531 if (aligned_mtu_idx >= 0 && 1532 mtu_idx - aligned_mtu_idx <= 1) 1533 mtu_idx = aligned_mtu_idx; 1534 1535 /* If the caller has passed in an MTU Index pointer, pass the 1536 * MTU Index back. Return the MTU value. 1537 */ 1538 if (mtu_idxp) 1539 *mtu_idxp = mtu_idx; 1540 return mtus[mtu_idx]; 1541 } 1542 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 1543 1544 /** 1545 * cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI 1546 * @chip: chip type 1547 * @viid: VI id of the given port 1548 * 1549 * Return the SMT index for this VI. 1550 */ 1551 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid) 1552 { 1553 /* In T4/T5, SMT contains 256 SMAC entries organized in 1554 * 128 rows of 2 entries each. 1555 * In T6, SMT contains 256 SMAC entries in 256 rows. 1556 * TODO: The below code needs to be updated when we add support 1557 * for 256 VFs. 1558 */ 1559 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1560 return ((viid & 0x7f) << 1); 1561 else 1562 return (viid & 0x7f); 1563 } 1564 EXPORT_SYMBOL(cxgb4_tp_smt_idx); 1565 1566 /** 1567 * cxgb4_port_chan - get the HW channel of a port 1568 * @dev: the net device for the port 1569 * 1570 * Return the HW Tx channel of the given port. 1571 */ 1572 unsigned int cxgb4_port_chan(const struct net_device *dev) 1573 { 1574 return netdev2pinfo(dev)->tx_chan; 1575 } 1576 EXPORT_SYMBOL(cxgb4_port_chan); 1577 1578 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 1579 { 1580 struct adapter *adap = netdev2adap(dev); 1581 u32 v1, v2, lp_count, hp_count; 1582 1583 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1584 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1585 if (is_t4(adap->params.chip)) { 1586 lp_count = LP_COUNT_G(v1); 1587 hp_count = HP_COUNT_G(v1); 1588 } else { 1589 lp_count = LP_COUNT_T5_G(v1); 1590 hp_count = HP_COUNT_T5_G(v2); 1591 } 1592 return lpfifo ? lp_count : hp_count; 1593 } 1594 EXPORT_SYMBOL(cxgb4_dbfifo_count); 1595 1596 /** 1597 * cxgb4_port_viid - get the VI id of a port 1598 * @dev: the net device for the port 1599 * 1600 * Return the VI id of the given port. 1601 */ 1602 unsigned int cxgb4_port_viid(const struct net_device *dev) 1603 { 1604 return netdev2pinfo(dev)->viid; 1605 } 1606 EXPORT_SYMBOL(cxgb4_port_viid); 1607 1608 /** 1609 * cxgb4_port_idx - get the index of a port 1610 * @dev: the net device for the port 1611 * 1612 * Return the index of the given port. 1613 */ 1614 unsigned int cxgb4_port_idx(const struct net_device *dev) 1615 { 1616 return netdev2pinfo(dev)->port_id; 1617 } 1618 EXPORT_SYMBOL(cxgb4_port_idx); 1619 1620 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 1621 struct tp_tcp_stats *v6) 1622 { 1623 struct adapter *adap = pci_get_drvdata(pdev); 1624 1625 spin_lock(&adap->stats_lock); 1626 t4_tp_get_tcp_stats(adap, v4, v6); 1627 spin_unlock(&adap->stats_lock); 1628 } 1629 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 1630 1631 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 1632 const unsigned int *pgsz_order) 1633 { 1634 struct adapter *adap = netdev2adap(dev); 1635 1636 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 1637 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 1638 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 1639 HPZ3_V(pgsz_order[3])); 1640 } 1641 EXPORT_SYMBOL(cxgb4_iscsi_init); 1642 1643 int cxgb4_flush_eq_cache(struct net_device *dev) 1644 { 1645 struct adapter *adap = netdev2adap(dev); 1646 1647 return t4_sge_ctxt_flush(adap, adap->mbox); 1648 } 1649 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 1650 1651 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 1652 { 1653 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 1654 __be64 indices; 1655 int ret; 1656 1657 spin_lock(&adap->win0_lock); 1658 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 1659 sizeof(indices), (__be32 *)&indices, 1660 T4_MEMORY_READ); 1661 spin_unlock(&adap->win0_lock); 1662 if (!ret) { 1663 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 1664 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 1665 } 1666 return ret; 1667 } 1668 1669 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 1670 u16 size) 1671 { 1672 struct adapter *adap = netdev2adap(dev); 1673 u16 hw_pidx, hw_cidx; 1674 int ret; 1675 1676 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 1677 if (ret) 1678 goto out; 1679 1680 if (pidx != hw_pidx) { 1681 u16 delta; 1682 u32 val; 1683 1684 if (pidx >= hw_pidx) 1685 delta = pidx - hw_pidx; 1686 else 1687 delta = size - hw_pidx + pidx; 1688 1689 if (is_t4(adap->params.chip)) 1690 val = PIDX_V(delta); 1691 else 1692 val = PIDX_T5_V(delta); 1693 wmb(); 1694 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1695 QID_V(qid) | val); 1696 } 1697 out: 1698 return ret; 1699 } 1700 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 1701 1702 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 1703 { 1704 struct adapter *adap; 1705 u32 offset, memtype, memaddr; 1706 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 1707 u32 edc0_end, edc1_end, mc0_end, mc1_end; 1708 int ret; 1709 1710 adap = netdev2adap(dev); 1711 1712 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 1713 1714 /* Figure out where the offset lands in the Memory Type/Address scheme. 1715 * This code assumes that the memory is laid out starting at offset 0 1716 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 1717 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 1718 * MC0, and some have both MC0 and MC1. 1719 */ 1720 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 1721 edc0_size = EDRAM0_SIZE_G(size) << 20; 1722 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 1723 edc1_size = EDRAM1_SIZE_G(size) << 20; 1724 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 1725 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 1726 1727 edc0_end = edc0_size; 1728 edc1_end = edc0_end + edc1_size; 1729 mc0_end = edc1_end + mc0_size; 1730 1731 if (offset < edc0_end) { 1732 memtype = MEM_EDC0; 1733 memaddr = offset; 1734 } else if (offset < edc1_end) { 1735 memtype = MEM_EDC1; 1736 memaddr = offset - edc0_end; 1737 } else { 1738 if (offset < mc0_end) { 1739 memtype = MEM_MC0; 1740 memaddr = offset - edc1_end; 1741 } else if (is_t5(adap->params.chip)) { 1742 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1743 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 1744 mc1_end = mc0_end + mc1_size; 1745 if (offset < mc1_end) { 1746 memtype = MEM_MC1; 1747 memaddr = offset - mc0_end; 1748 } else { 1749 /* offset beyond the end of any memory */ 1750 goto err; 1751 } 1752 } else { 1753 /* T4/T6 only has a single memory channel */ 1754 goto err; 1755 } 1756 } 1757 1758 spin_lock(&adap->win0_lock); 1759 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 1760 spin_unlock(&adap->win0_lock); 1761 return ret; 1762 1763 err: 1764 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 1765 stag, offset); 1766 return -EINVAL; 1767 } 1768 EXPORT_SYMBOL(cxgb4_read_tpte); 1769 1770 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 1771 { 1772 u32 hi, lo; 1773 struct adapter *adap; 1774 1775 adap = netdev2adap(dev); 1776 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 1777 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 1778 1779 return ((u64)hi << 32) | (u64)lo; 1780 } 1781 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 1782 1783 int cxgb4_bar2_sge_qregs(struct net_device *dev, 1784 unsigned int qid, 1785 enum cxgb4_bar2_qtype qtype, 1786 int user, 1787 u64 *pbar2_qoffset, 1788 unsigned int *pbar2_qid) 1789 { 1790 return t4_bar2_sge_qregs(netdev2adap(dev), 1791 qid, 1792 (qtype == CXGB4_BAR2_QTYPE_EGRESS 1793 ? T4_BAR2_QTYPE_EGRESS 1794 : T4_BAR2_QTYPE_INGRESS), 1795 user, 1796 pbar2_qoffset, 1797 pbar2_qid); 1798 } 1799 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 1800 1801 static struct pci_driver cxgb4_driver; 1802 1803 static void check_neigh_update(struct neighbour *neigh) 1804 { 1805 const struct device *parent; 1806 const struct net_device *netdev = neigh->dev; 1807 1808 if (is_vlan_dev(netdev)) 1809 netdev = vlan_dev_real_dev(netdev); 1810 parent = netdev->dev.parent; 1811 if (parent && parent->driver == &cxgb4_driver.driver) 1812 t4_l2t_update(dev_get_drvdata(parent), neigh); 1813 } 1814 1815 static int netevent_cb(struct notifier_block *nb, unsigned long event, 1816 void *data) 1817 { 1818 switch (event) { 1819 case NETEVENT_NEIGH_UPDATE: 1820 check_neigh_update(data); 1821 break; 1822 case NETEVENT_REDIRECT: 1823 default: 1824 break; 1825 } 1826 return 0; 1827 } 1828 1829 static bool netevent_registered; 1830 static struct notifier_block cxgb4_netevent_nb = { 1831 .notifier_call = netevent_cb 1832 }; 1833 1834 static void drain_db_fifo(struct adapter *adap, int usecs) 1835 { 1836 u32 v1, v2, lp_count, hp_count; 1837 1838 do { 1839 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1840 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1841 if (is_t4(adap->params.chip)) { 1842 lp_count = LP_COUNT_G(v1); 1843 hp_count = HP_COUNT_G(v1); 1844 } else { 1845 lp_count = LP_COUNT_T5_G(v1); 1846 hp_count = HP_COUNT_T5_G(v2); 1847 } 1848 1849 if (lp_count == 0 && hp_count == 0) 1850 break; 1851 set_current_state(TASK_UNINTERRUPTIBLE); 1852 schedule_timeout(usecs_to_jiffies(usecs)); 1853 } while (1); 1854 } 1855 1856 static void disable_txq_db(struct sge_txq *q) 1857 { 1858 unsigned long flags; 1859 1860 spin_lock_irqsave(&q->db_lock, flags); 1861 q->db_disabled = 1; 1862 spin_unlock_irqrestore(&q->db_lock, flags); 1863 } 1864 1865 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 1866 { 1867 spin_lock_irq(&q->db_lock); 1868 if (q->db_pidx_inc) { 1869 /* Make sure that all writes to the TX descriptors 1870 * are committed before we tell HW about them. 1871 */ 1872 wmb(); 1873 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1874 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 1875 q->db_pidx_inc = 0; 1876 } 1877 q->db_disabled = 0; 1878 spin_unlock_irq(&q->db_lock); 1879 } 1880 1881 static void disable_dbs(struct adapter *adap) 1882 { 1883 int i; 1884 1885 for_each_ethrxq(&adap->sge, i) 1886 disable_txq_db(&adap->sge.ethtxq[i].q); 1887 if (is_offload(adap)) { 1888 struct sge_uld_txq_info *txq_info = 1889 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1890 1891 if (txq_info) { 1892 for_each_ofldtxq(&adap->sge, i) { 1893 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1894 1895 disable_txq_db(&txq->q); 1896 } 1897 } 1898 } 1899 for_each_port(adap, i) 1900 disable_txq_db(&adap->sge.ctrlq[i].q); 1901 } 1902 1903 static void enable_dbs(struct adapter *adap) 1904 { 1905 int i; 1906 1907 for_each_ethrxq(&adap->sge, i) 1908 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 1909 if (is_offload(adap)) { 1910 struct sge_uld_txq_info *txq_info = 1911 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1912 1913 if (txq_info) { 1914 for_each_ofldtxq(&adap->sge, i) { 1915 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1916 1917 enable_txq_db(adap, &txq->q); 1918 } 1919 } 1920 } 1921 for_each_port(adap, i) 1922 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 1923 } 1924 1925 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 1926 { 1927 enum cxgb4_uld type = CXGB4_ULD_RDMA; 1928 1929 if (adap->uld && adap->uld[type].handle) 1930 adap->uld[type].control(adap->uld[type].handle, cmd); 1931 } 1932 1933 static void process_db_full(struct work_struct *work) 1934 { 1935 struct adapter *adap; 1936 1937 adap = container_of(work, struct adapter, db_full_task); 1938 1939 drain_db_fifo(adap, dbfifo_drain_delay); 1940 enable_dbs(adap); 1941 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 1942 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1943 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 1944 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 1945 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 1946 else 1947 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 1948 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 1949 } 1950 1951 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 1952 { 1953 u16 hw_pidx, hw_cidx; 1954 int ret; 1955 1956 spin_lock_irq(&q->db_lock); 1957 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 1958 if (ret) 1959 goto out; 1960 if (q->db_pidx != hw_pidx) { 1961 u16 delta; 1962 u32 val; 1963 1964 if (q->db_pidx >= hw_pidx) 1965 delta = q->db_pidx - hw_pidx; 1966 else 1967 delta = q->size - hw_pidx + q->db_pidx; 1968 1969 if (is_t4(adap->params.chip)) 1970 val = PIDX_V(delta); 1971 else 1972 val = PIDX_T5_V(delta); 1973 wmb(); 1974 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1975 QID_V(q->cntxt_id) | val); 1976 } 1977 out: 1978 q->db_disabled = 0; 1979 q->db_pidx_inc = 0; 1980 spin_unlock_irq(&q->db_lock); 1981 if (ret) 1982 CH_WARN(adap, "DB drop recovery failed.\n"); 1983 } 1984 1985 static void recover_all_queues(struct adapter *adap) 1986 { 1987 int i; 1988 1989 for_each_ethrxq(&adap->sge, i) 1990 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 1991 if (is_offload(adap)) { 1992 struct sge_uld_txq_info *txq_info = 1993 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1994 if (txq_info) { 1995 for_each_ofldtxq(&adap->sge, i) { 1996 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1997 1998 sync_txq_pidx(adap, &txq->q); 1999 } 2000 } 2001 } 2002 for_each_port(adap, i) 2003 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2004 } 2005 2006 static void process_db_drop(struct work_struct *work) 2007 { 2008 struct adapter *adap; 2009 2010 adap = container_of(work, struct adapter, db_drop_task); 2011 2012 if (is_t4(adap->params.chip)) { 2013 drain_db_fifo(adap, dbfifo_drain_delay); 2014 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2015 drain_db_fifo(adap, dbfifo_drain_delay); 2016 recover_all_queues(adap); 2017 drain_db_fifo(adap, dbfifo_drain_delay); 2018 enable_dbs(adap); 2019 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2020 } else if (is_t5(adap->params.chip)) { 2021 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2022 u16 qid = (dropped_db >> 15) & 0x1ffff; 2023 u16 pidx_inc = dropped_db & 0x1fff; 2024 u64 bar2_qoffset; 2025 unsigned int bar2_qid; 2026 int ret; 2027 2028 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2029 0, &bar2_qoffset, &bar2_qid); 2030 if (ret) 2031 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2032 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2033 else 2034 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2035 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2036 2037 /* Re-enable BAR2 WC */ 2038 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2039 } 2040 2041 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2042 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2043 } 2044 2045 void t4_db_full(struct adapter *adap) 2046 { 2047 if (is_t4(adap->params.chip)) { 2048 disable_dbs(adap); 2049 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2050 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2051 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2052 queue_work(adap->workq, &adap->db_full_task); 2053 } 2054 } 2055 2056 void t4_db_dropped(struct adapter *adap) 2057 { 2058 if (is_t4(adap->params.chip)) { 2059 disable_dbs(adap); 2060 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2061 } 2062 queue_work(adap->workq, &adap->db_drop_task); 2063 } 2064 2065 void t4_register_netevent_notifier(void) 2066 { 2067 if (!netevent_registered) { 2068 register_netevent_notifier(&cxgb4_netevent_nb); 2069 netevent_registered = true; 2070 } 2071 } 2072 2073 static void detach_ulds(struct adapter *adap) 2074 { 2075 unsigned int i; 2076 2077 mutex_lock(&uld_mutex); 2078 list_del(&adap->list_node); 2079 for (i = 0; i < CXGB4_ULD_MAX; i++) 2080 if (adap->uld && adap->uld[i].handle) { 2081 adap->uld[i].state_change(adap->uld[i].handle, 2082 CXGB4_STATE_DETACH); 2083 adap->uld[i].handle = NULL; 2084 } 2085 if (netevent_registered && list_empty(&adapter_list)) { 2086 unregister_netevent_notifier(&cxgb4_netevent_nb); 2087 netevent_registered = false; 2088 } 2089 mutex_unlock(&uld_mutex); 2090 } 2091 2092 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2093 { 2094 unsigned int i; 2095 2096 mutex_lock(&uld_mutex); 2097 for (i = 0; i < CXGB4_ULD_MAX; i++) 2098 if (adap->uld && adap->uld[i].handle) 2099 adap->uld[i].state_change(adap->uld[i].handle, 2100 new_state); 2101 mutex_unlock(&uld_mutex); 2102 } 2103 2104 #if IS_ENABLED(CONFIG_IPV6) 2105 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2106 unsigned long event, void *data) 2107 { 2108 struct inet6_ifaddr *ifa = data; 2109 struct net_device *event_dev = ifa->idev->dev; 2110 const struct device *parent = NULL; 2111 #if IS_ENABLED(CONFIG_BONDING) 2112 struct adapter *adap; 2113 #endif 2114 if (is_vlan_dev(event_dev)) 2115 event_dev = vlan_dev_real_dev(event_dev); 2116 #if IS_ENABLED(CONFIG_BONDING) 2117 if (event_dev->flags & IFF_MASTER) { 2118 list_for_each_entry(adap, &adapter_list, list_node) { 2119 switch (event) { 2120 case NETDEV_UP: 2121 cxgb4_clip_get(adap->port[0], 2122 (const u32 *)ifa, 1); 2123 break; 2124 case NETDEV_DOWN: 2125 cxgb4_clip_release(adap->port[0], 2126 (const u32 *)ifa, 1); 2127 break; 2128 default: 2129 break; 2130 } 2131 } 2132 return NOTIFY_OK; 2133 } 2134 #endif 2135 2136 if (event_dev) 2137 parent = event_dev->dev.parent; 2138 2139 if (parent && parent->driver == &cxgb4_driver.driver) { 2140 switch (event) { 2141 case NETDEV_UP: 2142 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2143 break; 2144 case NETDEV_DOWN: 2145 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2146 break; 2147 default: 2148 break; 2149 } 2150 } 2151 return NOTIFY_OK; 2152 } 2153 2154 static bool inet6addr_registered; 2155 static struct notifier_block cxgb4_inet6addr_notifier = { 2156 .notifier_call = cxgb4_inet6addr_handler 2157 }; 2158 2159 static void update_clip(const struct adapter *adap) 2160 { 2161 int i; 2162 struct net_device *dev; 2163 int ret; 2164 2165 rcu_read_lock(); 2166 2167 for (i = 0; i < MAX_NPORTS; i++) { 2168 dev = adap->port[i]; 2169 ret = 0; 2170 2171 if (dev) 2172 ret = cxgb4_update_root_dev_clip(dev); 2173 2174 if (ret < 0) 2175 break; 2176 } 2177 rcu_read_unlock(); 2178 } 2179 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2180 2181 /** 2182 * cxgb_up - enable the adapter 2183 * @adap: adapter being enabled 2184 * 2185 * Called when the first port is enabled, this function performs the 2186 * actions necessary to make an adapter operational, such as completing 2187 * the initialization of HW modules, and enabling interrupts. 2188 * 2189 * Must be called with the rtnl lock held. 2190 */ 2191 static int cxgb_up(struct adapter *adap) 2192 { 2193 int err; 2194 2195 err = setup_sge_queues(adap); 2196 if (err) 2197 goto out; 2198 err = setup_rss(adap); 2199 if (err) 2200 goto freeq; 2201 2202 if (adap->flags & USING_MSIX) { 2203 name_msix_vecs(adap); 2204 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, 2205 adap->msix_info[0].desc, adap); 2206 if (err) 2207 goto irq_err; 2208 err = request_msix_queue_irqs(adap); 2209 if (err) { 2210 free_irq(adap->msix_info[0].vec, adap); 2211 goto irq_err; 2212 } 2213 } else { 2214 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2215 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED, 2216 adap->port[0]->name, adap); 2217 if (err) 2218 goto irq_err; 2219 } 2220 enable_rx(adap); 2221 t4_sge_start(adap); 2222 t4_intr_enable(adap); 2223 adap->flags |= FULL_INIT_DONE; 2224 notify_ulds(adap, CXGB4_STATE_UP); 2225 #if IS_ENABLED(CONFIG_IPV6) 2226 update_clip(adap); 2227 #endif 2228 /* Initialize hash mac addr list*/ 2229 INIT_LIST_HEAD(&adap->mac_hlist); 2230 out: 2231 return err; 2232 irq_err: 2233 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2234 freeq: 2235 t4_free_sge_resources(adap); 2236 goto out; 2237 } 2238 2239 static void cxgb_down(struct adapter *adapter) 2240 { 2241 cancel_work_sync(&adapter->tid_release_task); 2242 cancel_work_sync(&adapter->db_full_task); 2243 cancel_work_sync(&adapter->db_drop_task); 2244 adapter->tid_release_task_busy = false; 2245 adapter->tid_release_head = NULL; 2246 2247 t4_sge_stop(adapter); 2248 t4_free_sge_resources(adapter); 2249 adapter->flags &= ~FULL_INIT_DONE; 2250 } 2251 2252 /* 2253 * net_device operations 2254 */ 2255 static int cxgb_open(struct net_device *dev) 2256 { 2257 int err; 2258 struct port_info *pi = netdev_priv(dev); 2259 struct adapter *adapter = pi->adapter; 2260 2261 netif_carrier_off(dev); 2262 2263 if (!(adapter->flags & FULL_INIT_DONE)) { 2264 err = cxgb_up(adapter); 2265 if (err < 0) 2266 return err; 2267 } 2268 2269 err = link_start(dev); 2270 if (!err) 2271 netif_tx_start_all_queues(dev); 2272 return err; 2273 } 2274 2275 static int cxgb_close(struct net_device *dev) 2276 { 2277 struct port_info *pi = netdev_priv(dev); 2278 struct adapter *adapter = pi->adapter; 2279 2280 netif_tx_stop_all_queues(dev); 2281 netif_carrier_off(dev); 2282 return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false); 2283 } 2284 2285 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2286 __be32 sip, __be16 sport, __be16 vlan, 2287 unsigned int queue, unsigned char port, unsigned char mask) 2288 { 2289 int ret; 2290 struct filter_entry *f; 2291 struct adapter *adap; 2292 int i; 2293 u8 *val; 2294 2295 adap = netdev2adap(dev); 2296 2297 /* Adjust stid to correct filter index */ 2298 stid -= adap->tids.sftid_base; 2299 stid += adap->tids.nftids; 2300 2301 /* Check to make sure the filter requested is writable ... 2302 */ 2303 f = &adap->tids.ftid_tab[stid]; 2304 ret = writable_filter(f); 2305 if (ret) 2306 return ret; 2307 2308 /* Clear out any old resources being used by the filter before 2309 * we start constructing the new filter. 2310 */ 2311 if (f->valid) 2312 clear_filter(adap, f); 2313 2314 /* Clear out filter specifications */ 2315 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2316 f->fs.val.lport = cpu_to_be16(sport); 2317 f->fs.mask.lport = ~0; 2318 val = (u8 *)&sip; 2319 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2320 for (i = 0; i < 4; i++) { 2321 f->fs.val.lip[i] = val[i]; 2322 f->fs.mask.lip[i] = ~0; 2323 } 2324 if (adap->params.tp.vlan_pri_map & PORT_F) { 2325 f->fs.val.iport = port; 2326 f->fs.mask.iport = mask; 2327 } 2328 } 2329 2330 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2331 f->fs.val.proto = IPPROTO_TCP; 2332 f->fs.mask.proto = ~0; 2333 } 2334 2335 f->fs.dirsteer = 1; 2336 f->fs.iq = queue; 2337 /* Mark filter as locked */ 2338 f->locked = 1; 2339 f->fs.rpttid = 1; 2340 2341 /* Save the actual tid. We need this to get the corresponding 2342 * filter entry structure in filter_rpl. 2343 */ 2344 f->tid = stid + adap->tids.ftid_base; 2345 ret = set_filter_wr(adap, stid); 2346 if (ret) { 2347 clear_filter(adap, f); 2348 return ret; 2349 } 2350 2351 return 0; 2352 } 2353 EXPORT_SYMBOL(cxgb4_create_server_filter); 2354 2355 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2356 unsigned int queue, bool ipv6) 2357 { 2358 struct filter_entry *f; 2359 struct adapter *adap; 2360 2361 adap = netdev2adap(dev); 2362 2363 /* Adjust stid to correct filter index */ 2364 stid -= adap->tids.sftid_base; 2365 stid += adap->tids.nftids; 2366 2367 f = &adap->tids.ftid_tab[stid]; 2368 /* Unlock the filter */ 2369 f->locked = 0; 2370 2371 return delete_filter(adap, stid); 2372 } 2373 EXPORT_SYMBOL(cxgb4_remove_server_filter); 2374 2375 static void cxgb_get_stats(struct net_device *dev, 2376 struct rtnl_link_stats64 *ns) 2377 { 2378 struct port_stats stats; 2379 struct port_info *p = netdev_priv(dev); 2380 struct adapter *adapter = p->adapter; 2381 2382 /* Block retrieving statistics during EEH error 2383 * recovery. Otherwise, the recovery might fail 2384 * and the PCI device will be removed permanently 2385 */ 2386 spin_lock(&adapter->stats_lock); 2387 if (!netif_device_present(dev)) { 2388 spin_unlock(&adapter->stats_lock); 2389 return; 2390 } 2391 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 2392 &p->stats_base); 2393 spin_unlock(&adapter->stats_lock); 2394 2395 ns->tx_bytes = stats.tx_octets; 2396 ns->tx_packets = stats.tx_frames; 2397 ns->rx_bytes = stats.rx_octets; 2398 ns->rx_packets = stats.rx_frames; 2399 ns->multicast = stats.rx_mcast_frames; 2400 2401 /* detailed rx_errors */ 2402 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 2403 stats.rx_runt; 2404 ns->rx_over_errors = 0; 2405 ns->rx_crc_errors = stats.rx_fcs_err; 2406 ns->rx_frame_errors = stats.rx_symbol_err; 2407 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 + 2408 stats.rx_ovflow2 + stats.rx_ovflow3 + 2409 stats.rx_trunc0 + stats.rx_trunc1 + 2410 stats.rx_trunc2 + stats.rx_trunc3; 2411 ns->rx_missed_errors = 0; 2412 2413 /* detailed tx_errors */ 2414 ns->tx_aborted_errors = 0; 2415 ns->tx_carrier_errors = 0; 2416 ns->tx_fifo_errors = 0; 2417 ns->tx_heartbeat_errors = 0; 2418 ns->tx_window_errors = 0; 2419 2420 ns->tx_errors = stats.tx_error_frames; 2421 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 2422 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 2423 } 2424 2425 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2426 { 2427 unsigned int mbox; 2428 int ret = 0, prtad, devad; 2429 struct port_info *pi = netdev_priv(dev); 2430 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 2431 2432 switch (cmd) { 2433 case SIOCGMIIPHY: 2434 if (pi->mdio_addr < 0) 2435 return -EOPNOTSUPP; 2436 data->phy_id = pi->mdio_addr; 2437 break; 2438 case SIOCGMIIREG: 2439 case SIOCSMIIREG: 2440 if (mdio_phy_id_is_c45(data->phy_id)) { 2441 prtad = mdio_phy_id_prtad(data->phy_id); 2442 devad = mdio_phy_id_devad(data->phy_id); 2443 } else if (data->phy_id < 32) { 2444 prtad = data->phy_id; 2445 devad = 0; 2446 data->reg_num &= 0x1f; 2447 } else 2448 return -EINVAL; 2449 2450 mbox = pi->adapter->pf; 2451 if (cmd == SIOCGMIIREG) 2452 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 2453 data->reg_num, &data->val_out); 2454 else 2455 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 2456 data->reg_num, data->val_in); 2457 break; 2458 case SIOCGHWTSTAMP: 2459 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2460 sizeof(pi->tstamp_config)) ? 2461 -EFAULT : 0; 2462 case SIOCSHWTSTAMP: 2463 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 2464 sizeof(pi->tstamp_config))) 2465 return -EFAULT; 2466 2467 switch (pi->tstamp_config.rx_filter) { 2468 case HWTSTAMP_FILTER_NONE: 2469 pi->rxtstamp = false; 2470 break; 2471 case HWTSTAMP_FILTER_ALL: 2472 pi->rxtstamp = true; 2473 break; 2474 default: 2475 pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; 2476 return -ERANGE; 2477 } 2478 2479 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2480 sizeof(pi->tstamp_config)) ? 2481 -EFAULT : 0; 2482 default: 2483 return -EOPNOTSUPP; 2484 } 2485 return ret; 2486 } 2487 2488 static void cxgb_set_rxmode(struct net_device *dev) 2489 { 2490 /* unfortunately we can't return errors to the stack */ 2491 set_rxmode(dev, -1, false); 2492 } 2493 2494 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2495 { 2496 int ret; 2497 struct port_info *pi = netdev_priv(dev); 2498 2499 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1, 2500 -1, -1, -1, true); 2501 if (!ret) 2502 dev->mtu = new_mtu; 2503 return ret; 2504 } 2505 2506 #ifdef CONFIG_PCI_IOV 2507 static int dummy_open(struct net_device *dev) 2508 { 2509 /* Turn carrier off since we don't have to transmit anything on this 2510 * interface. 2511 */ 2512 netif_carrier_off(dev); 2513 return 0; 2514 } 2515 2516 /* Fill MAC address that will be assigned by the FW */ 2517 static void fill_vf_station_mac_addr(struct adapter *adap) 2518 { 2519 unsigned int i; 2520 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN]; 2521 int err; 2522 u8 *na; 2523 u16 a, b; 2524 2525 err = t4_get_raw_vpd_params(adap, &adap->params.vpd); 2526 if (!err) { 2527 na = adap->params.vpd.na; 2528 for (i = 0; i < ETH_ALEN; i++) 2529 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 2530 hex2val(na[2 * i + 1])); 2531 a = (hw_addr[0] << 8) | hw_addr[1]; 2532 b = (hw_addr[1] << 8) | hw_addr[2]; 2533 a ^= b; 2534 a |= 0x0200; /* locally assigned Ethernet MAC address */ 2535 a &= ~0x0100; /* not a multicast Ethernet MAC address */ 2536 macaddr[0] = a >> 8; 2537 macaddr[1] = a & 0xff; 2538 2539 for (i = 2; i < 5; i++) 2540 macaddr[i] = hw_addr[i + 1]; 2541 2542 for (i = 0; i < adap->num_vfs; i++) { 2543 macaddr[5] = adap->pf * 16 + i; 2544 ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr); 2545 } 2546 } 2547 } 2548 2549 static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac) 2550 { 2551 struct port_info *pi = netdev_priv(dev); 2552 struct adapter *adap = pi->adapter; 2553 int ret; 2554 2555 /* verify MAC addr is valid */ 2556 if (!is_valid_ether_addr(mac)) { 2557 dev_err(pi->adapter->pdev_dev, 2558 "Invalid Ethernet address %pM for VF %d\n", 2559 mac, vf); 2560 return -EINVAL; 2561 } 2562 2563 dev_info(pi->adapter->pdev_dev, 2564 "Setting MAC %pM on VF %d\n", mac, vf); 2565 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac); 2566 if (!ret) 2567 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac); 2568 return ret; 2569 } 2570 2571 static int cxgb_get_vf_config(struct net_device *dev, 2572 int vf, struct ifla_vf_info *ivi) 2573 { 2574 struct port_info *pi = netdev_priv(dev); 2575 struct adapter *adap = pi->adapter; 2576 2577 if (vf >= adap->num_vfs) 2578 return -EINVAL; 2579 ivi->vf = vf; 2580 ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr); 2581 return 0; 2582 } 2583 2584 static int cxgb_get_phys_port_id(struct net_device *dev, 2585 struct netdev_phys_item_id *ppid) 2586 { 2587 struct port_info *pi = netdev_priv(dev); 2588 unsigned int phy_port_id; 2589 2590 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id; 2591 ppid->id_len = sizeof(phy_port_id); 2592 memcpy(ppid->id, &phy_port_id, ppid->id_len); 2593 return 0; 2594 } 2595 2596 #endif 2597 2598 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 2599 { 2600 int ret; 2601 struct sockaddr *addr = p; 2602 struct port_info *pi = netdev_priv(dev); 2603 2604 if (!is_valid_ether_addr(addr->sa_data)) 2605 return -EADDRNOTAVAIL; 2606 2607 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid, 2608 pi->xact_addr_filt, addr->sa_data, true, true); 2609 if (ret < 0) 2610 return ret; 2611 2612 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 2613 pi->xact_addr_filt = ret; 2614 return 0; 2615 } 2616 2617 #ifdef CONFIG_NET_POLL_CONTROLLER 2618 static void cxgb_netpoll(struct net_device *dev) 2619 { 2620 struct port_info *pi = netdev_priv(dev); 2621 struct adapter *adap = pi->adapter; 2622 2623 if (adap->flags & USING_MSIX) { 2624 int i; 2625 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 2626 2627 for (i = pi->nqsets; i; i--, rx++) 2628 t4_sge_intr_msix(0, &rx->rspq); 2629 } else 2630 t4_intr_handler(adap)(0, adap); 2631 } 2632 #endif 2633 2634 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate) 2635 { 2636 struct port_info *pi = netdev_priv(dev); 2637 struct adapter *adap = pi->adapter; 2638 struct sched_class *e; 2639 struct ch_sched_params p; 2640 struct ch_sched_queue qe; 2641 u32 req_rate; 2642 int err = 0; 2643 2644 if (!can_sched(dev)) 2645 return -ENOTSUPP; 2646 2647 if (index < 0 || index > pi->nqsets - 1) 2648 return -EINVAL; 2649 2650 if (!(adap->flags & FULL_INIT_DONE)) { 2651 dev_err(adap->pdev_dev, 2652 "Failed to rate limit on queue %d. Link Down?\n", 2653 index); 2654 return -EINVAL; 2655 } 2656 2657 /* Convert from Mbps to Kbps */ 2658 req_rate = rate << 10; 2659 2660 /* Max rate is 10 Gbps */ 2661 if (req_rate >= SCHED_MAX_RATE_KBPS) { 2662 dev_err(adap->pdev_dev, 2663 "Invalid rate %u Mbps, Max rate is %u Gbps\n", 2664 rate, SCHED_MAX_RATE_KBPS); 2665 return -ERANGE; 2666 } 2667 2668 /* First unbind the queue from any existing class */ 2669 memset(&qe, 0, sizeof(qe)); 2670 qe.queue = index; 2671 qe.class = SCHED_CLS_NONE; 2672 2673 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE); 2674 if (err) { 2675 dev_err(adap->pdev_dev, 2676 "Unbinding Queue %d on port %d fail. Err: %d\n", 2677 index, pi->port_id, err); 2678 return err; 2679 } 2680 2681 /* Queue already unbound */ 2682 if (!req_rate) 2683 return 0; 2684 2685 /* Fetch any available unused or matching scheduling class */ 2686 memset(&p, 0, sizeof(p)); 2687 p.type = SCHED_CLASS_TYPE_PACKET; 2688 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL; 2689 p.u.params.mode = SCHED_CLASS_MODE_CLASS; 2690 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS; 2691 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS; 2692 p.u.params.channel = pi->tx_chan; 2693 p.u.params.class = SCHED_CLS_NONE; 2694 p.u.params.minrate = 0; 2695 p.u.params.maxrate = req_rate; 2696 p.u.params.weight = 0; 2697 p.u.params.pktsize = dev->mtu; 2698 2699 e = cxgb4_sched_class_alloc(dev, &p); 2700 if (!e) 2701 return -ENOMEM; 2702 2703 /* Bind the queue to a scheduling class */ 2704 memset(&qe, 0, sizeof(qe)); 2705 qe.queue = index; 2706 qe.class = e->idx; 2707 2708 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE); 2709 if (err) 2710 dev_err(adap->pdev_dev, 2711 "Queue rate limiting failed. Err: %d\n", err); 2712 return err; 2713 } 2714 2715 static int cxgb_setup_tc(struct net_device *dev, u32 handle, __be16 proto, 2716 struct tc_to_netdev *tc) 2717 { 2718 struct port_info *pi = netdev2pinfo(dev); 2719 struct adapter *adap = netdev2adap(dev); 2720 2721 if (!(adap->flags & FULL_INIT_DONE)) { 2722 dev_err(adap->pdev_dev, 2723 "Failed to setup tc on port %d. Link Down?\n", 2724 pi->port_id); 2725 return -EINVAL; 2726 } 2727 2728 if (TC_H_MAJ(handle) == TC_H_MAJ(TC_H_INGRESS) && 2729 tc->type == TC_SETUP_CLSU32) { 2730 switch (tc->cls_u32->command) { 2731 case TC_CLSU32_NEW_KNODE: 2732 case TC_CLSU32_REPLACE_KNODE: 2733 return cxgb4_config_knode(dev, proto, tc->cls_u32); 2734 case TC_CLSU32_DELETE_KNODE: 2735 return cxgb4_delete_knode(dev, proto, tc->cls_u32); 2736 default: 2737 return -EOPNOTSUPP; 2738 } 2739 } 2740 2741 return -EOPNOTSUPP; 2742 } 2743 2744 static const struct net_device_ops cxgb4_netdev_ops = { 2745 .ndo_open = cxgb_open, 2746 .ndo_stop = cxgb_close, 2747 .ndo_start_xmit = t4_eth_xmit, 2748 .ndo_select_queue = cxgb_select_queue, 2749 .ndo_get_stats64 = cxgb_get_stats, 2750 .ndo_set_rx_mode = cxgb_set_rxmode, 2751 .ndo_set_mac_address = cxgb_set_mac_addr, 2752 .ndo_set_features = cxgb_set_features, 2753 .ndo_validate_addr = eth_validate_addr, 2754 .ndo_do_ioctl = cxgb_ioctl, 2755 .ndo_change_mtu = cxgb_change_mtu, 2756 #ifdef CONFIG_NET_POLL_CONTROLLER 2757 .ndo_poll_controller = cxgb_netpoll, 2758 #endif 2759 #ifdef CONFIG_CHELSIO_T4_FCOE 2760 .ndo_fcoe_enable = cxgb_fcoe_enable, 2761 .ndo_fcoe_disable = cxgb_fcoe_disable, 2762 #endif /* CONFIG_CHELSIO_T4_FCOE */ 2763 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate, 2764 .ndo_setup_tc = cxgb_setup_tc, 2765 }; 2766 2767 #ifdef CONFIG_PCI_IOV 2768 static const struct net_device_ops cxgb4_mgmt_netdev_ops = { 2769 .ndo_open = dummy_open, 2770 .ndo_set_vf_mac = cxgb_set_vf_mac, 2771 .ndo_get_vf_config = cxgb_get_vf_config, 2772 .ndo_get_phys_port_id = cxgb_get_phys_port_id, 2773 }; 2774 #endif 2775 2776 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 2777 { 2778 struct adapter *adapter = netdev2adap(dev); 2779 2780 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver)); 2781 strlcpy(info->version, cxgb4_driver_version, 2782 sizeof(info->version)); 2783 strlcpy(info->bus_info, pci_name(adapter->pdev), 2784 sizeof(info->bus_info)); 2785 } 2786 2787 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = { 2788 .get_drvinfo = get_drvinfo, 2789 }; 2790 2791 void t4_fatal_err(struct adapter *adap) 2792 { 2793 int port; 2794 2795 /* Disable the SGE since ULDs are going to free resources that 2796 * could be exposed to the adapter. RDMA MWs for example... 2797 */ 2798 t4_shutdown_adapter(adap); 2799 for_each_port(adap, port) { 2800 struct net_device *dev = adap->port[port]; 2801 2802 /* If we get here in very early initialization the network 2803 * devices may not have been set up yet. 2804 */ 2805 if (!dev) 2806 continue; 2807 2808 netif_tx_stop_all_queues(dev); 2809 netif_carrier_off(dev); 2810 } 2811 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 2812 } 2813 2814 static void setup_memwin(struct adapter *adap) 2815 { 2816 u32 nic_win_base = t4_get_util_window(adap); 2817 2818 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 2819 } 2820 2821 static void setup_memwin_rdma(struct adapter *adap) 2822 { 2823 if (adap->vres.ocq.size) { 2824 u32 start; 2825 unsigned int sz_kb; 2826 2827 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 2828 start &= PCI_BASE_ADDRESS_MEM_MASK; 2829 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 2830 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 2831 t4_write_reg(adap, 2832 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 2833 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 2834 t4_write_reg(adap, 2835 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 2836 adap->vres.ocq.start); 2837 t4_read_reg(adap, 2838 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 2839 } 2840 } 2841 2842 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 2843 { 2844 u32 v; 2845 int ret; 2846 2847 /* get device capabilities */ 2848 memset(c, 0, sizeof(*c)); 2849 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 2850 FW_CMD_REQUEST_F | FW_CMD_READ_F); 2851 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 2852 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 2853 if (ret < 0) 2854 return ret; 2855 2856 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 2857 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 2858 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 2859 if (ret < 0) 2860 return ret; 2861 2862 ret = t4_config_glbl_rss(adap, adap->pf, 2863 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 2864 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 2865 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 2866 if (ret < 0) 2867 return ret; 2868 2869 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 2870 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 2871 FW_CMD_CAP_PF); 2872 if (ret < 0) 2873 return ret; 2874 2875 t4_sge_init(adap); 2876 2877 /* tweak some settings */ 2878 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 2879 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 2880 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 2881 v = t4_read_reg(adap, TP_PIO_DATA_A); 2882 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 2883 2884 /* first 4 Tx modulation queues point to consecutive Tx channels */ 2885 adap->params.tp.tx_modq_map = 0xE4; 2886 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 2887 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 2888 2889 /* associate each Tx modulation queue with consecutive Tx channels */ 2890 v = 0x84218421; 2891 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 2892 &v, 1, TP_TX_SCHED_HDR_A); 2893 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 2894 &v, 1, TP_TX_SCHED_FIFO_A); 2895 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 2896 &v, 1, TP_TX_SCHED_PCMD_A); 2897 2898 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 2899 if (is_offload(adap)) { 2900 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 2901 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 2902 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 2903 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 2904 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 2905 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 2906 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 2907 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 2908 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 2909 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 2910 } 2911 2912 /* get basic stuff going */ 2913 return t4_early_init(adap, adap->pf); 2914 } 2915 2916 /* 2917 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 2918 */ 2919 #define MAX_ATIDS 8192U 2920 2921 /* 2922 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 2923 * 2924 * If the firmware we're dealing with has Configuration File support, then 2925 * we use that to perform all configuration 2926 */ 2927 2928 /* 2929 * Tweak configuration based on module parameters, etc. Most of these have 2930 * defaults assigned to them by Firmware Configuration Files (if we're using 2931 * them) but need to be explicitly set if we're using hard-coded 2932 * initialization. But even in the case of using Firmware Configuration 2933 * Files, we'd like to expose the ability to change these via module 2934 * parameters so these are essentially common tweaks/settings for 2935 * Configuration Files and hard-coded initialization ... 2936 */ 2937 static int adap_init0_tweaks(struct adapter *adapter) 2938 { 2939 /* 2940 * Fix up various Host-Dependent Parameters like Page Size, Cache 2941 * Line Size, etc. The firmware default is for a 4KB Page Size and 2942 * 64B Cache Line Size ... 2943 */ 2944 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 2945 2946 /* 2947 * Process module parameters which affect early initialization. 2948 */ 2949 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 2950 dev_err(&adapter->pdev->dev, 2951 "Ignoring illegal rx_dma_offset=%d, using 2\n", 2952 rx_dma_offset); 2953 rx_dma_offset = 2; 2954 } 2955 t4_set_reg_field(adapter, SGE_CONTROL_A, 2956 PKTSHIFT_V(PKTSHIFT_M), 2957 PKTSHIFT_V(rx_dma_offset)); 2958 2959 /* 2960 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 2961 * adds the pseudo header itself. 2962 */ 2963 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 2964 CSUM_HAS_PSEUDO_HDR_F, 0); 2965 2966 return 0; 2967 } 2968 2969 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 2970 * unto themselves and they contain their own firmware to perform their 2971 * tasks ... 2972 */ 2973 static int phy_aq1202_version(const u8 *phy_fw_data, 2974 size_t phy_fw_size) 2975 { 2976 int offset; 2977 2978 /* At offset 0x8 you're looking for the primary image's 2979 * starting offset which is 3 Bytes wide 2980 * 2981 * At offset 0xa of the primary image, you look for the offset 2982 * of the DRAM segment which is 3 Bytes wide. 2983 * 2984 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 2985 * wide 2986 */ 2987 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 2988 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 2989 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 2990 2991 offset = le24(phy_fw_data + 0x8) << 12; 2992 offset = le24(phy_fw_data + offset + 0xa); 2993 return be16(phy_fw_data + offset + 0x27e); 2994 2995 #undef be16 2996 #undef le16 2997 #undef le24 2998 } 2999 3000 static struct info_10gbt_phy_fw { 3001 unsigned int phy_fw_id; /* PCI Device ID */ 3002 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 3003 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 3004 int phy_flash; /* Has FLASH for PHY Firmware */ 3005 } phy_info_array[] = { 3006 { 3007 PHY_AQ1202_DEVICEID, 3008 PHY_AQ1202_FIRMWARE, 3009 phy_aq1202_version, 3010 1, 3011 }, 3012 { 3013 PHY_BCM84834_DEVICEID, 3014 PHY_BCM84834_FIRMWARE, 3015 NULL, 3016 0, 3017 }, 3018 { 0, NULL, NULL }, 3019 }; 3020 3021 static struct info_10gbt_phy_fw *find_phy_info(int devid) 3022 { 3023 int i; 3024 3025 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 3026 if (phy_info_array[i].phy_fw_id == devid) 3027 return &phy_info_array[i]; 3028 } 3029 return NULL; 3030 } 3031 3032 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 3033 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 3034 * we return a negative error number. If we transfer new firmware we return 1 3035 * (from t4_load_phy_fw()). If we don't do anything we return 0. 3036 */ 3037 static int adap_init0_phy(struct adapter *adap) 3038 { 3039 const struct firmware *phyf; 3040 int ret; 3041 struct info_10gbt_phy_fw *phy_info; 3042 3043 /* Use the device ID to determine which PHY file to flash. 3044 */ 3045 phy_info = find_phy_info(adap->pdev->device); 3046 if (!phy_info) { 3047 dev_warn(adap->pdev_dev, 3048 "No PHY Firmware file found for this PHY\n"); 3049 return -EOPNOTSUPP; 3050 } 3051 3052 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 3053 * use that. The adapter firmware provides us with a memory buffer 3054 * where we can load a PHY firmware file from the host if we want to 3055 * override the PHY firmware File in flash. 3056 */ 3057 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 3058 adap->pdev_dev); 3059 if (ret < 0) { 3060 /* For adapters without FLASH attached to PHY for their 3061 * firmware, it's obviously a fatal error if we can't get the 3062 * firmware to the adapter. For adapters with PHY firmware 3063 * FLASH storage, it's worth a warning if we can't find the 3064 * PHY Firmware but we'll neuter the error ... 3065 */ 3066 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 3067 "/lib/firmware/%s, error %d\n", 3068 phy_info->phy_fw_file, -ret); 3069 if (phy_info->phy_flash) { 3070 int cur_phy_fw_ver = 0; 3071 3072 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3073 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 3074 "FLASH copy, version %#x\n", cur_phy_fw_ver); 3075 ret = 0; 3076 } 3077 3078 return ret; 3079 } 3080 3081 /* Load PHY Firmware onto adapter. 3082 */ 3083 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock, 3084 phy_info->phy_fw_version, 3085 (u8 *)phyf->data, phyf->size); 3086 if (ret < 0) 3087 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 3088 -ret); 3089 else if (ret > 0) { 3090 int new_phy_fw_ver = 0; 3091 3092 if (phy_info->phy_fw_version) 3093 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 3094 phyf->size); 3095 dev_info(adap->pdev_dev, "Successfully transferred PHY " 3096 "Firmware /lib/firmware/%s, version %#x\n", 3097 phy_info->phy_fw_file, new_phy_fw_ver); 3098 } 3099 3100 release_firmware(phyf); 3101 3102 return ret; 3103 } 3104 3105 /* 3106 * Attempt to initialize the adapter via a Firmware Configuration File. 3107 */ 3108 static int adap_init0_config(struct adapter *adapter, int reset) 3109 { 3110 struct fw_caps_config_cmd caps_cmd; 3111 const struct firmware *cf; 3112 unsigned long mtype = 0, maddr = 0; 3113 u32 finiver, finicsum, cfcsum; 3114 int ret; 3115 int config_issued = 0; 3116 char *fw_config_file, fw_config_file_path[256]; 3117 char *config_name = NULL; 3118 3119 /* 3120 * Reset device if necessary. 3121 */ 3122 if (reset) { 3123 ret = t4_fw_reset(adapter, adapter->mbox, 3124 PIORSTMODE_F | PIORST_F); 3125 if (ret < 0) 3126 goto bye; 3127 } 3128 3129 /* If this is a 10Gb/s-BT adapter make sure the chip-external 3130 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 3131 * to be performed after any global adapter RESET above since some 3132 * PHYs only have local RAM copies of the PHY firmware. 3133 */ 3134 if (is_10gbt_device(adapter->pdev->device)) { 3135 ret = adap_init0_phy(adapter); 3136 if (ret < 0) 3137 goto bye; 3138 } 3139 /* 3140 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 3141 * then use that. Otherwise, use the configuration file stored 3142 * in the adapter flash ... 3143 */ 3144 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 3145 case CHELSIO_T4: 3146 fw_config_file = FW4_CFNAME; 3147 break; 3148 case CHELSIO_T5: 3149 fw_config_file = FW5_CFNAME; 3150 break; 3151 case CHELSIO_T6: 3152 fw_config_file = FW6_CFNAME; 3153 break; 3154 default: 3155 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 3156 adapter->pdev->device); 3157 ret = -EINVAL; 3158 goto bye; 3159 } 3160 3161 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 3162 if (ret < 0) { 3163 config_name = "On FLASH"; 3164 mtype = FW_MEMTYPE_CF_FLASH; 3165 maddr = t4_flash_cfg_addr(adapter); 3166 } else { 3167 u32 params[7], val[7]; 3168 3169 sprintf(fw_config_file_path, 3170 "/lib/firmware/%s", fw_config_file); 3171 config_name = fw_config_file_path; 3172 3173 if (cf->size >= FLASH_CFG_MAX_SIZE) 3174 ret = -ENOMEM; 3175 else { 3176 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3177 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3178 ret = t4_query_params(adapter, adapter->mbox, 3179 adapter->pf, 0, 1, params, val); 3180 if (ret == 0) { 3181 /* 3182 * For t4_memory_rw() below addresses and 3183 * sizes have to be in terms of multiples of 4 3184 * bytes. So, if the Configuration File isn't 3185 * a multiple of 4 bytes in length we'll have 3186 * to write that out separately since we can't 3187 * guarantee that the bytes following the 3188 * residual byte in the buffer returned by 3189 * request_firmware() are zeroed out ... 3190 */ 3191 size_t resid = cf->size & 0x3; 3192 size_t size = cf->size & ~0x3; 3193 __be32 *data = (__be32 *)cf->data; 3194 3195 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 3196 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 3197 3198 spin_lock(&adapter->win0_lock); 3199 ret = t4_memory_rw(adapter, 0, mtype, maddr, 3200 size, data, T4_MEMORY_WRITE); 3201 if (ret == 0 && resid != 0) { 3202 union { 3203 __be32 word; 3204 char buf[4]; 3205 } last; 3206 int i; 3207 3208 last.word = data[size >> 2]; 3209 for (i = resid; i < 4; i++) 3210 last.buf[i] = 0; 3211 ret = t4_memory_rw(adapter, 0, mtype, 3212 maddr + size, 3213 4, &last.word, 3214 T4_MEMORY_WRITE); 3215 } 3216 spin_unlock(&adapter->win0_lock); 3217 } 3218 } 3219 3220 release_firmware(cf); 3221 if (ret) 3222 goto bye; 3223 } 3224 3225 /* 3226 * Issue a Capability Configuration command to the firmware to get it 3227 * to parse the Configuration File. We don't use t4_fw_config_file() 3228 * because we want the ability to modify various features after we've 3229 * processed the configuration file ... 3230 */ 3231 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3232 caps_cmd.op_to_write = 3233 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3234 FW_CMD_REQUEST_F | 3235 FW_CMD_READ_F); 3236 caps_cmd.cfvalid_to_len16 = 3237 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 3238 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 3239 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 3240 FW_LEN16(caps_cmd)); 3241 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3242 &caps_cmd); 3243 3244 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 3245 * Configuration File in FLASH), our last gasp effort is to use the 3246 * Firmware Configuration File which is embedded in the firmware. A 3247 * very few early versions of the firmware didn't have one embedded 3248 * but we can ignore those. 3249 */ 3250 if (ret == -ENOENT) { 3251 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3252 caps_cmd.op_to_write = 3253 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3254 FW_CMD_REQUEST_F | 3255 FW_CMD_READ_F); 3256 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3257 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 3258 sizeof(caps_cmd), &caps_cmd); 3259 config_name = "Firmware Default"; 3260 } 3261 3262 config_issued = 1; 3263 if (ret < 0) 3264 goto bye; 3265 3266 finiver = ntohl(caps_cmd.finiver); 3267 finicsum = ntohl(caps_cmd.finicsum); 3268 cfcsum = ntohl(caps_cmd.cfcsum); 3269 if (finicsum != cfcsum) 3270 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 3271 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 3272 finicsum, cfcsum); 3273 3274 /* 3275 * And now tell the firmware to use the configuration we just loaded. 3276 */ 3277 caps_cmd.op_to_write = 3278 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3279 FW_CMD_REQUEST_F | 3280 FW_CMD_WRITE_F); 3281 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3282 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3283 NULL); 3284 if (ret < 0) 3285 goto bye; 3286 3287 /* 3288 * Tweak configuration based on system architecture, module 3289 * parameters, etc. 3290 */ 3291 ret = adap_init0_tweaks(adapter); 3292 if (ret < 0) 3293 goto bye; 3294 3295 /* 3296 * And finally tell the firmware to initialize itself using the 3297 * parameters from the Configuration File. 3298 */ 3299 ret = t4_fw_initialize(adapter, adapter->mbox); 3300 if (ret < 0) 3301 goto bye; 3302 3303 /* Emit Firmware Configuration File information and return 3304 * successfully. 3305 */ 3306 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 3307 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 3308 config_name, finiver, cfcsum); 3309 return 0; 3310 3311 /* 3312 * Something bad happened. Return the error ... (If the "error" 3313 * is that there's no Configuration File on the adapter we don't 3314 * want to issue a warning since this is fairly common.) 3315 */ 3316 bye: 3317 if (config_issued && ret != -ENOENT) 3318 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 3319 config_name, -ret); 3320 return ret; 3321 } 3322 3323 static struct fw_info fw_info_array[] = { 3324 { 3325 .chip = CHELSIO_T4, 3326 .fs_name = FW4_CFNAME, 3327 .fw_mod_name = FW4_FNAME, 3328 .fw_hdr = { 3329 .chip = FW_HDR_CHIP_T4, 3330 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 3331 .intfver_nic = FW_INTFVER(T4, NIC), 3332 .intfver_vnic = FW_INTFVER(T4, VNIC), 3333 .intfver_ri = FW_INTFVER(T4, RI), 3334 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 3335 .intfver_fcoe = FW_INTFVER(T4, FCOE), 3336 }, 3337 }, { 3338 .chip = CHELSIO_T5, 3339 .fs_name = FW5_CFNAME, 3340 .fw_mod_name = FW5_FNAME, 3341 .fw_hdr = { 3342 .chip = FW_HDR_CHIP_T5, 3343 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 3344 .intfver_nic = FW_INTFVER(T5, NIC), 3345 .intfver_vnic = FW_INTFVER(T5, VNIC), 3346 .intfver_ri = FW_INTFVER(T5, RI), 3347 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 3348 .intfver_fcoe = FW_INTFVER(T5, FCOE), 3349 }, 3350 }, { 3351 .chip = CHELSIO_T6, 3352 .fs_name = FW6_CFNAME, 3353 .fw_mod_name = FW6_FNAME, 3354 .fw_hdr = { 3355 .chip = FW_HDR_CHIP_T6, 3356 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 3357 .intfver_nic = FW_INTFVER(T6, NIC), 3358 .intfver_vnic = FW_INTFVER(T6, VNIC), 3359 .intfver_ofld = FW_INTFVER(T6, OFLD), 3360 .intfver_ri = FW_INTFVER(T6, RI), 3361 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 3362 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 3363 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 3364 .intfver_fcoe = FW_INTFVER(T6, FCOE), 3365 }, 3366 } 3367 3368 }; 3369 3370 static struct fw_info *find_fw_info(int chip) 3371 { 3372 int i; 3373 3374 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 3375 if (fw_info_array[i].chip == chip) 3376 return &fw_info_array[i]; 3377 } 3378 return NULL; 3379 } 3380 3381 /* 3382 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3383 */ 3384 static int adap_init0(struct adapter *adap) 3385 { 3386 int ret; 3387 u32 v, port_vec; 3388 enum dev_state state; 3389 u32 params[7], val[7]; 3390 struct fw_caps_config_cmd caps_cmd; 3391 int reset = 1; 3392 3393 /* Grab Firmware Device Log parameters as early as possible so we have 3394 * access to it for debugging, etc. 3395 */ 3396 ret = t4_init_devlog_params(adap); 3397 if (ret < 0) 3398 return ret; 3399 3400 /* Contact FW, advertising Master capability */ 3401 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, 3402 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state); 3403 if (ret < 0) { 3404 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 3405 ret); 3406 return ret; 3407 } 3408 if (ret == adap->mbox) 3409 adap->flags |= MASTER_PF; 3410 3411 /* 3412 * If we're the Master PF Driver and the device is uninitialized, 3413 * then let's consider upgrading the firmware ... (We always want 3414 * to check the firmware version number in order to A. get it for 3415 * later reporting and B. to warn if the currently loaded firmware 3416 * is excessively mismatched relative to the driver.) 3417 */ 3418 t4_get_fw_version(adap, &adap->params.fw_vers); 3419 t4_get_bs_version(adap, &adap->params.bs_vers); 3420 t4_get_tp_version(adap, &adap->params.tp_vers); 3421 t4_get_exprom_version(adap, &adap->params.er_vers); 3422 3423 ret = t4_check_fw_version(adap); 3424 /* If firmware is too old (not supported by driver) force an update. */ 3425 if (ret) 3426 state = DEV_STATE_UNINIT; 3427 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) { 3428 struct fw_info *fw_info; 3429 struct fw_hdr *card_fw; 3430 const struct firmware *fw; 3431 const u8 *fw_data = NULL; 3432 unsigned int fw_size = 0; 3433 3434 /* This is the firmware whose headers the driver was compiled 3435 * against 3436 */ 3437 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 3438 if (fw_info == NULL) { 3439 dev_err(adap->pdev_dev, 3440 "unable to get firmware info for chip %d.\n", 3441 CHELSIO_CHIP_VERSION(adap->params.chip)); 3442 return -EINVAL; 3443 } 3444 3445 /* allocate memory to read the header of the firmware on the 3446 * card 3447 */ 3448 card_fw = t4_alloc_mem(sizeof(*card_fw)); 3449 3450 /* Get FW from from /lib/firmware/ */ 3451 ret = request_firmware(&fw, fw_info->fw_mod_name, 3452 adap->pdev_dev); 3453 if (ret < 0) { 3454 dev_err(adap->pdev_dev, 3455 "unable to load firmware image %s, error %d\n", 3456 fw_info->fw_mod_name, ret); 3457 } else { 3458 fw_data = fw->data; 3459 fw_size = fw->size; 3460 } 3461 3462 /* upgrade FW logic */ 3463 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 3464 state, &reset); 3465 3466 /* Cleaning up */ 3467 release_firmware(fw); 3468 t4_free_mem(card_fw); 3469 3470 if (ret < 0) 3471 goto bye; 3472 } 3473 3474 /* 3475 * Grab VPD parameters. This should be done after we establish a 3476 * connection to the firmware since some of the VPD parameters 3477 * (notably the Core Clock frequency) are retrieved via requests to 3478 * the firmware. On the other hand, we need these fairly early on 3479 * so we do this right after getting ahold of the firmware. 3480 */ 3481 ret = t4_get_vpd_params(adap, &adap->params.vpd); 3482 if (ret < 0) 3483 goto bye; 3484 3485 /* 3486 * Find out what ports are available to us. Note that we need to do 3487 * this before calling adap_init0_no_config() since it needs nports 3488 * and portvec ... 3489 */ 3490 v = 3491 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3492 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 3493 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 3494 if (ret < 0) 3495 goto bye; 3496 3497 adap->params.nports = hweight32(port_vec); 3498 adap->params.portvec = port_vec; 3499 3500 /* If the firmware is initialized already, emit a simply note to that 3501 * effect. Otherwise, it's time to try initializing the adapter. 3502 */ 3503 if (state == DEV_STATE_INIT) { 3504 dev_info(adap->pdev_dev, "Coming up as %s: "\ 3505 "Adapter already initialized\n", 3506 adap->flags & MASTER_PF ? "MASTER" : "SLAVE"); 3507 } else { 3508 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 3509 "Initializing adapter\n"); 3510 3511 /* Find out whether we're dealing with a version of the 3512 * firmware which has configuration file support. 3513 */ 3514 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3515 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3516 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3517 params, val); 3518 3519 /* If the firmware doesn't support Configuration Files, 3520 * return an error. 3521 */ 3522 if (ret < 0) { 3523 dev_err(adap->pdev_dev, "firmware doesn't support " 3524 "Firmware Configuration Files\n"); 3525 goto bye; 3526 } 3527 3528 /* The firmware provides us with a memory buffer where we can 3529 * load a Configuration File from the host if we want to 3530 * override the Configuration File in flash. 3531 */ 3532 ret = adap_init0_config(adap, reset); 3533 if (ret == -ENOENT) { 3534 dev_err(adap->pdev_dev, "no Configuration File " 3535 "present on adapter.\n"); 3536 goto bye; 3537 } 3538 if (ret < 0) { 3539 dev_err(adap->pdev_dev, "could not initialize " 3540 "adapter, error %d\n", -ret); 3541 goto bye; 3542 } 3543 } 3544 3545 /* Give the SGE code a chance to pull in anything that it needs ... 3546 * Note that this must be called after we retrieve our VPD parameters 3547 * in order to know how to convert core ticks to seconds, etc. 3548 */ 3549 ret = t4_sge_init(adap); 3550 if (ret < 0) 3551 goto bye; 3552 3553 if (is_bypass_device(adap->pdev->device)) 3554 adap->params.bypass = 1; 3555 3556 /* 3557 * Grab some of our basic fundamental operating parameters. 3558 */ 3559 #define FW_PARAM_DEV(param) \ 3560 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \ 3561 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param)) 3562 3563 #define FW_PARAM_PFVF(param) \ 3564 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \ 3565 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \ 3566 FW_PARAMS_PARAM_Y_V(0) | \ 3567 FW_PARAMS_PARAM_Z_V(0) 3568 3569 params[0] = FW_PARAM_PFVF(EQ_START); 3570 params[1] = FW_PARAM_PFVF(L2T_START); 3571 params[2] = FW_PARAM_PFVF(L2T_END); 3572 params[3] = FW_PARAM_PFVF(FILTER_START); 3573 params[4] = FW_PARAM_PFVF(FILTER_END); 3574 params[5] = FW_PARAM_PFVF(IQFLINT_START); 3575 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 3576 if (ret < 0) 3577 goto bye; 3578 adap->sge.egr_start = val[0]; 3579 adap->l2t_start = val[1]; 3580 adap->l2t_end = val[2]; 3581 adap->tids.ftid_base = val[3]; 3582 adap->tids.nftids = val[4] - val[3] + 1; 3583 adap->sge.ingr_start = val[5]; 3584 3585 /* qids (ingress/egress) returned from firmware can be anywhere 3586 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 3587 * Hence driver needs to allocate memory for this range to 3588 * store the queue info. Get the highest IQFLINT/EQ index returned 3589 * in FW_EQ_*_CMD.alloc command. 3590 */ 3591 params[0] = FW_PARAM_PFVF(EQ_END); 3592 params[1] = FW_PARAM_PFVF(IQFLINT_END); 3593 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3594 if (ret < 0) 3595 goto bye; 3596 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 3597 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 3598 3599 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 3600 sizeof(*adap->sge.egr_map), GFP_KERNEL); 3601 if (!adap->sge.egr_map) { 3602 ret = -ENOMEM; 3603 goto bye; 3604 } 3605 3606 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 3607 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 3608 if (!adap->sge.ingr_map) { 3609 ret = -ENOMEM; 3610 goto bye; 3611 } 3612 3613 /* Allocate the memory for the vaious egress queue bitmaps 3614 * ie starving_fl, txq_maperr and blocked_fl. 3615 */ 3616 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3617 sizeof(long), GFP_KERNEL); 3618 if (!adap->sge.starving_fl) { 3619 ret = -ENOMEM; 3620 goto bye; 3621 } 3622 3623 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3624 sizeof(long), GFP_KERNEL); 3625 if (!adap->sge.txq_maperr) { 3626 ret = -ENOMEM; 3627 goto bye; 3628 } 3629 3630 #ifdef CONFIG_DEBUG_FS 3631 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3632 sizeof(long), GFP_KERNEL); 3633 if (!adap->sge.blocked_fl) { 3634 ret = -ENOMEM; 3635 goto bye; 3636 } 3637 #endif 3638 3639 params[0] = FW_PARAM_PFVF(CLIP_START); 3640 params[1] = FW_PARAM_PFVF(CLIP_END); 3641 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3642 if (ret < 0) 3643 goto bye; 3644 adap->clipt_start = val[0]; 3645 adap->clipt_end = val[1]; 3646 3647 /* We don't yet have a PARAMs calls to retrieve the number of Traffic 3648 * Classes supported by the hardware/firmware so we hard code it here 3649 * for now. 3650 */ 3651 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16; 3652 3653 /* query params related to active filter region */ 3654 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 3655 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 3656 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3657 /* If Active filter size is set we enable establishing 3658 * offload connection through firmware work request 3659 */ 3660 if ((val[0] != val[1]) && (ret >= 0)) { 3661 adap->flags |= FW_OFLD_CONN; 3662 adap->tids.aftid_base = val[0]; 3663 adap->tids.aftid_end = val[1]; 3664 } 3665 3666 /* If we're running on newer firmware, let it know that we're 3667 * prepared to deal with encapsulated CPL messages. Older 3668 * firmware won't understand this and we'll just get 3669 * unencapsulated messages ... 3670 */ 3671 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 3672 val[0] = 1; 3673 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 3674 3675 /* 3676 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 3677 * capability. Earlier versions of the firmware didn't have the 3678 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 3679 * permission to use ULPTX MEMWRITE DSGL. 3680 */ 3681 if (is_t4(adap->params.chip)) { 3682 adap->params.ulptx_memwrite_dsgl = false; 3683 } else { 3684 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 3685 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 3686 1, params, val); 3687 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 3688 } 3689 3690 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */ 3691 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 3692 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 3693 1, params, val); 3694 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0); 3695 3696 /* 3697 * Get device capabilities so we can determine what resources we need 3698 * to manage. 3699 */ 3700 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3701 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3702 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3703 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3704 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 3705 &caps_cmd); 3706 if (ret < 0) 3707 goto bye; 3708 3709 if (caps_cmd.ofldcaps) { 3710 /* query offload-related parameters */ 3711 params[0] = FW_PARAM_DEV(NTID); 3712 params[1] = FW_PARAM_PFVF(SERVER_START); 3713 params[2] = FW_PARAM_PFVF(SERVER_END); 3714 params[3] = FW_PARAM_PFVF(TDDP_START); 3715 params[4] = FW_PARAM_PFVF(TDDP_END); 3716 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 3717 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 3718 params, val); 3719 if (ret < 0) 3720 goto bye; 3721 adap->tids.ntids = val[0]; 3722 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 3723 adap->tids.stid_base = val[1]; 3724 adap->tids.nstids = val[2] - val[1] + 1; 3725 /* 3726 * Setup server filter region. Divide the available filter 3727 * region into two parts. Regular filters get 1/3rd and server 3728 * filters get 2/3rd part. This is only enabled if workarond 3729 * path is enabled. 3730 * 1. For regular filters. 3731 * 2. Server filter: This are special filters which are used 3732 * to redirect SYN packets to offload queue. 3733 */ 3734 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) { 3735 adap->tids.sftid_base = adap->tids.ftid_base + 3736 DIV_ROUND_UP(adap->tids.nftids, 3); 3737 adap->tids.nsftids = adap->tids.nftids - 3738 DIV_ROUND_UP(adap->tids.nftids, 3); 3739 adap->tids.nftids = adap->tids.sftid_base - 3740 adap->tids.ftid_base; 3741 } 3742 adap->vres.ddp.start = val[3]; 3743 adap->vres.ddp.size = val[4] - val[3] + 1; 3744 adap->params.ofldq_wr_cred = val[5]; 3745 3746 adap->params.offload = 1; 3747 adap->num_ofld_uld += 1; 3748 } 3749 if (caps_cmd.rdmacaps) { 3750 params[0] = FW_PARAM_PFVF(STAG_START); 3751 params[1] = FW_PARAM_PFVF(STAG_END); 3752 params[2] = FW_PARAM_PFVF(RQ_START); 3753 params[3] = FW_PARAM_PFVF(RQ_END); 3754 params[4] = FW_PARAM_PFVF(PBL_START); 3755 params[5] = FW_PARAM_PFVF(PBL_END); 3756 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 3757 params, val); 3758 if (ret < 0) 3759 goto bye; 3760 adap->vres.stag.start = val[0]; 3761 adap->vres.stag.size = val[1] - val[0] + 1; 3762 adap->vres.rq.start = val[2]; 3763 adap->vres.rq.size = val[3] - val[2] + 1; 3764 adap->vres.pbl.start = val[4]; 3765 adap->vres.pbl.size = val[5] - val[4] + 1; 3766 3767 params[0] = FW_PARAM_PFVF(SQRQ_START); 3768 params[1] = FW_PARAM_PFVF(SQRQ_END); 3769 params[2] = FW_PARAM_PFVF(CQ_START); 3770 params[3] = FW_PARAM_PFVF(CQ_END); 3771 params[4] = FW_PARAM_PFVF(OCQ_START); 3772 params[5] = FW_PARAM_PFVF(OCQ_END); 3773 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 3774 val); 3775 if (ret < 0) 3776 goto bye; 3777 adap->vres.qp.start = val[0]; 3778 adap->vres.qp.size = val[1] - val[0] + 1; 3779 adap->vres.cq.start = val[2]; 3780 adap->vres.cq.size = val[3] - val[2] + 1; 3781 adap->vres.ocq.start = val[4]; 3782 adap->vres.ocq.size = val[5] - val[4] + 1; 3783 3784 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 3785 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 3786 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 3787 val); 3788 if (ret < 0) { 3789 adap->params.max_ordird_qp = 8; 3790 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 3791 ret = 0; 3792 } else { 3793 adap->params.max_ordird_qp = val[0]; 3794 adap->params.max_ird_adapter = val[1]; 3795 } 3796 dev_info(adap->pdev_dev, 3797 "max_ordird_qp %d max_ird_adapter %d\n", 3798 adap->params.max_ordird_qp, 3799 adap->params.max_ird_adapter); 3800 adap->num_ofld_uld += 2; 3801 } 3802 if (caps_cmd.iscsicaps) { 3803 params[0] = FW_PARAM_PFVF(ISCSI_START); 3804 params[1] = FW_PARAM_PFVF(ISCSI_END); 3805 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 3806 params, val); 3807 if (ret < 0) 3808 goto bye; 3809 adap->vres.iscsi.start = val[0]; 3810 adap->vres.iscsi.size = val[1] - val[0] + 1; 3811 /* LIO target and cxgb4i initiaitor */ 3812 adap->num_ofld_uld += 2; 3813 } 3814 if (caps_cmd.cryptocaps) { 3815 /* Should query params here...TODO */ 3816 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE); 3817 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 3818 params, val); 3819 if (ret < 0) { 3820 if (ret != -EINVAL) 3821 goto bye; 3822 } else { 3823 adap->vres.ncrypto_fc = val[0]; 3824 } 3825 adap->params.crypto |= ULP_CRYPTO_LOOKASIDE; 3826 adap->num_uld += 1; 3827 } 3828 #undef FW_PARAM_PFVF 3829 #undef FW_PARAM_DEV 3830 3831 /* The MTU/MSS Table is initialized by now, so load their values. If 3832 * we're initializing the adapter, then we'll make any modifications 3833 * we want to the MTU/MSS Table and also initialize the congestion 3834 * parameters. 3835 */ 3836 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 3837 if (state != DEV_STATE_INIT) { 3838 int i; 3839 3840 /* The default MTU Table contains values 1492 and 1500. 3841 * However, for TCP, it's better to have two values which are 3842 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 3843 * This allows us to have a TCP Data Payload which is a 3844 * multiple of 8 regardless of what combination of TCP Options 3845 * are in use (always a multiple of 4 bytes) which is 3846 * important for performance reasons. For instance, if no 3847 * options are in use, then we have a 20-byte IP header and a 3848 * 20-byte TCP header. In this case, a 1500-byte MSS would 3849 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 3850 * which is not a multiple of 8. So using an MSS of 1488 in 3851 * this case results in a TCP Data Payload of 1448 bytes which 3852 * is a multiple of 8. On the other hand, if 12-byte TCP Time 3853 * Stamps have been negotiated, then an MTU of 1500 bytes 3854 * results in a TCP Data Payload of 1448 bytes which, as 3855 * above, is a multiple of 8 bytes ... 3856 */ 3857 for (i = 0; i < NMTUS; i++) 3858 if (adap->params.mtus[i] == 1492) { 3859 adap->params.mtus[i] = 1488; 3860 break; 3861 } 3862 3863 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 3864 adap->params.b_wnd); 3865 } 3866 t4_init_sge_params(adap); 3867 adap->flags |= FW_OK; 3868 t4_init_tp_params(adap); 3869 return 0; 3870 3871 /* 3872 * Something bad happened. If a command timed out or failed with EIO 3873 * FW does not operate within its spec or something catastrophic 3874 * happened to HW/FW, stop issuing commands. 3875 */ 3876 bye: 3877 kfree(adap->sge.egr_map); 3878 kfree(adap->sge.ingr_map); 3879 kfree(adap->sge.starving_fl); 3880 kfree(adap->sge.txq_maperr); 3881 #ifdef CONFIG_DEBUG_FS 3882 kfree(adap->sge.blocked_fl); 3883 #endif 3884 if (ret != -ETIMEDOUT && ret != -EIO) 3885 t4_fw_bye(adap, adap->mbox); 3886 return ret; 3887 } 3888 3889 /* EEH callbacks */ 3890 3891 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 3892 pci_channel_state_t state) 3893 { 3894 int i; 3895 struct adapter *adap = pci_get_drvdata(pdev); 3896 3897 if (!adap) 3898 goto out; 3899 3900 rtnl_lock(); 3901 adap->flags &= ~FW_OK; 3902 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 3903 spin_lock(&adap->stats_lock); 3904 for_each_port(adap, i) { 3905 struct net_device *dev = adap->port[i]; 3906 3907 netif_device_detach(dev); 3908 netif_carrier_off(dev); 3909 } 3910 spin_unlock(&adap->stats_lock); 3911 disable_interrupts(adap); 3912 if (adap->flags & FULL_INIT_DONE) 3913 cxgb_down(adap); 3914 rtnl_unlock(); 3915 if ((adap->flags & DEV_ENABLED)) { 3916 pci_disable_device(pdev); 3917 adap->flags &= ~DEV_ENABLED; 3918 } 3919 out: return state == pci_channel_io_perm_failure ? 3920 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 3921 } 3922 3923 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 3924 { 3925 int i, ret; 3926 struct fw_caps_config_cmd c; 3927 struct adapter *adap = pci_get_drvdata(pdev); 3928 3929 if (!adap) { 3930 pci_restore_state(pdev); 3931 pci_save_state(pdev); 3932 return PCI_ERS_RESULT_RECOVERED; 3933 } 3934 3935 if (!(adap->flags & DEV_ENABLED)) { 3936 if (pci_enable_device(pdev)) { 3937 dev_err(&pdev->dev, "Cannot reenable PCI " 3938 "device after reset\n"); 3939 return PCI_ERS_RESULT_DISCONNECT; 3940 } 3941 adap->flags |= DEV_ENABLED; 3942 } 3943 3944 pci_set_master(pdev); 3945 pci_restore_state(pdev); 3946 pci_save_state(pdev); 3947 pci_cleanup_aer_uncorrect_error_status(pdev); 3948 3949 if (t4_wait_dev_ready(adap->regs) < 0) 3950 return PCI_ERS_RESULT_DISCONNECT; 3951 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 3952 return PCI_ERS_RESULT_DISCONNECT; 3953 adap->flags |= FW_OK; 3954 if (adap_init1(adap, &c)) 3955 return PCI_ERS_RESULT_DISCONNECT; 3956 3957 for_each_port(adap, i) { 3958 struct port_info *p = adap2pinfo(adap, i); 3959 3960 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1, 3961 NULL, NULL); 3962 if (ret < 0) 3963 return PCI_ERS_RESULT_DISCONNECT; 3964 p->viid = ret; 3965 p->xact_addr_filt = -1; 3966 } 3967 3968 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 3969 adap->params.b_wnd); 3970 setup_memwin(adap); 3971 if (cxgb_up(adap)) 3972 return PCI_ERS_RESULT_DISCONNECT; 3973 return PCI_ERS_RESULT_RECOVERED; 3974 } 3975 3976 static void eeh_resume(struct pci_dev *pdev) 3977 { 3978 int i; 3979 struct adapter *adap = pci_get_drvdata(pdev); 3980 3981 if (!adap) 3982 return; 3983 3984 rtnl_lock(); 3985 for_each_port(adap, i) { 3986 struct net_device *dev = adap->port[i]; 3987 3988 if (netif_running(dev)) { 3989 link_start(dev); 3990 cxgb_set_rxmode(dev); 3991 } 3992 netif_device_attach(dev); 3993 } 3994 rtnl_unlock(); 3995 } 3996 3997 static const struct pci_error_handlers cxgb4_eeh = { 3998 .error_detected = eeh_err_detected, 3999 .slot_reset = eeh_slot_reset, 4000 .resume = eeh_resume, 4001 }; 4002 4003 /* Return true if the Link Configuration supports "High Speeds" (those greater 4004 * than 1Gb/s). 4005 */ 4006 static inline bool is_x_10g_port(const struct link_config *lc) 4007 { 4008 unsigned int speeds, high_speeds; 4009 4010 speeds = FW_PORT_CAP_SPEED_V(FW_PORT_CAP_SPEED_G(lc->supported)); 4011 high_speeds = speeds & ~(FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G); 4012 4013 return high_speeds != 0; 4014 } 4015 4016 /* 4017 * Perform default configuration of DMA queues depending on the number and type 4018 * of ports we found and the number of available CPUs. Most settings can be 4019 * modified by the admin prior to actual use. 4020 */ 4021 static void cfg_queues(struct adapter *adap) 4022 { 4023 struct sge *s = &adap->sge; 4024 int i = 0, n10g = 0, qidx = 0; 4025 #ifndef CONFIG_CHELSIO_T4_DCB 4026 int q10g = 0; 4027 #endif 4028 4029 /* Reduce memory usage in kdump environment, disable all offload. 4030 */ 4031 if (is_kdump_kernel()) { 4032 adap->params.offload = 0; 4033 adap->params.crypto = 0; 4034 } else if (is_uld(adap) && t4_uld_mem_alloc(adap)) { 4035 adap->params.offload = 0; 4036 adap->params.crypto = 0; 4037 } 4038 4039 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 4040 #ifdef CONFIG_CHELSIO_T4_DCB 4041 /* For Data Center Bridging support we need to be able to support up 4042 * to 8 Traffic Priorities; each of which will be assigned to its 4043 * own TX Queue in order to prevent Head-Of-Line Blocking. 4044 */ 4045 if (adap->params.nports * 8 > MAX_ETH_QSETS) { 4046 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n", 4047 MAX_ETH_QSETS, adap->params.nports * 8); 4048 BUG_ON(1); 4049 } 4050 4051 for_each_port(adap, i) { 4052 struct port_info *pi = adap2pinfo(adap, i); 4053 4054 pi->first_qset = qidx; 4055 pi->nqsets = 8; 4056 qidx += pi->nqsets; 4057 } 4058 #else /* !CONFIG_CHELSIO_T4_DCB */ 4059 /* 4060 * We default to 1 queue per non-10G port and up to # of cores queues 4061 * per 10G port. 4062 */ 4063 if (n10g) 4064 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g; 4065 if (q10g > netif_get_num_default_rss_queues()) 4066 q10g = netif_get_num_default_rss_queues(); 4067 4068 for_each_port(adap, i) { 4069 struct port_info *pi = adap2pinfo(adap, i); 4070 4071 pi->first_qset = qidx; 4072 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 4073 qidx += pi->nqsets; 4074 } 4075 #endif /* !CONFIG_CHELSIO_T4_DCB */ 4076 4077 s->ethqsets = qidx; 4078 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 4079 4080 if (is_uld(adap)) { 4081 /* 4082 * For offload we use 1 queue/channel if all ports are up to 1G, 4083 * otherwise we divide all available queues amongst the channels 4084 * capped by the number of available cores. 4085 */ 4086 if (n10g) { 4087 i = min_t(int, MAX_OFLD_QSETS, num_online_cpus()); 4088 s->ofldqsets = roundup(i, adap->params.nports); 4089 } else { 4090 s->ofldqsets = adap->params.nports; 4091 } 4092 } 4093 4094 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 4095 struct sge_eth_rxq *r = &s->ethrxq[i]; 4096 4097 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 4098 r->fl.size = 72; 4099 } 4100 4101 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 4102 s->ethtxq[i].q.size = 1024; 4103 4104 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 4105 s->ctrlq[i].q.size = 512; 4106 4107 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 4108 init_rspq(adap, &s->intrq, 0, 1, 512, 64); 4109 } 4110 4111 /* 4112 * Reduce the number of Ethernet queues across all ports to at most n. 4113 * n provides at least one queue per port. 4114 */ 4115 static void reduce_ethqs(struct adapter *adap, int n) 4116 { 4117 int i; 4118 struct port_info *pi; 4119 4120 while (n < adap->sge.ethqsets) 4121 for_each_port(adap, i) { 4122 pi = adap2pinfo(adap, i); 4123 if (pi->nqsets > 1) { 4124 pi->nqsets--; 4125 adap->sge.ethqsets--; 4126 if (adap->sge.ethqsets <= n) 4127 break; 4128 } 4129 } 4130 4131 n = 0; 4132 for_each_port(adap, i) { 4133 pi = adap2pinfo(adap, i); 4134 pi->first_qset = n; 4135 n += pi->nqsets; 4136 } 4137 } 4138 4139 static int get_msix_info(struct adapter *adap) 4140 { 4141 struct uld_msix_info *msix_info; 4142 unsigned int max_ingq = 0; 4143 4144 if (is_offload(adap)) 4145 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld; 4146 if (is_pci_uld(adap)) 4147 max_ingq += MAX_OFLD_QSETS * adap->num_uld; 4148 4149 if (!max_ingq) 4150 goto out; 4151 4152 msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL); 4153 if (!msix_info) 4154 return -ENOMEM; 4155 4156 adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq), 4157 sizeof(long), GFP_KERNEL); 4158 if (!adap->msix_bmap_ulds.msix_bmap) { 4159 kfree(msix_info); 4160 return -ENOMEM; 4161 } 4162 spin_lock_init(&adap->msix_bmap_ulds.lock); 4163 adap->msix_info_ulds = msix_info; 4164 out: 4165 return 0; 4166 } 4167 4168 static void free_msix_info(struct adapter *adap) 4169 { 4170 if (!(adap->num_uld && adap->num_ofld_uld)) 4171 return; 4172 4173 kfree(adap->msix_info_ulds); 4174 kfree(adap->msix_bmap_ulds.msix_bmap); 4175 } 4176 4177 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 4178 #define EXTRA_VECS 2 4179 4180 static int enable_msix(struct adapter *adap) 4181 { 4182 int ofld_need = 0, uld_need = 0; 4183 int i, j, want, need, allocated; 4184 struct sge *s = &adap->sge; 4185 unsigned int nchan = adap->params.nports; 4186 struct msix_entry *entries; 4187 int max_ingq = MAX_INGQ; 4188 4189 if (is_pci_uld(adap)) 4190 max_ingq += (MAX_OFLD_QSETS * adap->num_uld); 4191 if (is_offload(adap)) 4192 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld); 4193 entries = kmalloc(sizeof(*entries) * (max_ingq + 1), 4194 GFP_KERNEL); 4195 if (!entries) 4196 return -ENOMEM; 4197 4198 /* map for msix */ 4199 if (get_msix_info(adap)) { 4200 adap->params.offload = 0; 4201 adap->params.crypto = 0; 4202 } 4203 4204 for (i = 0; i < max_ingq + 1; ++i) 4205 entries[i].entry = i; 4206 4207 want = s->max_ethqsets + EXTRA_VECS; 4208 if (is_offload(adap)) { 4209 want += adap->num_ofld_uld * s->ofldqsets; 4210 ofld_need = adap->num_ofld_uld * nchan; 4211 } 4212 if (is_pci_uld(adap)) { 4213 want += adap->num_uld * s->ofldqsets; 4214 uld_need = adap->num_uld * nchan; 4215 } 4216 #ifdef CONFIG_CHELSIO_T4_DCB 4217 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 4218 * each port. 4219 */ 4220 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 4221 #else 4222 need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 4223 #endif 4224 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 4225 if (allocated < 0) { 4226 dev_info(adap->pdev_dev, "not enough MSI-X vectors left," 4227 " not using MSI-X\n"); 4228 kfree(entries); 4229 return allocated; 4230 } 4231 4232 /* Distribute available vectors to the various queue groups. 4233 * Every group gets its minimum requirement and NIC gets top 4234 * priority for leftovers. 4235 */ 4236 i = allocated - EXTRA_VECS - ofld_need - uld_need; 4237 if (i < s->max_ethqsets) { 4238 s->max_ethqsets = i; 4239 if (i < s->ethqsets) 4240 reduce_ethqs(adap, i); 4241 } 4242 if (is_uld(adap)) { 4243 if (allocated < want) 4244 s->nqs_per_uld = nchan; 4245 else 4246 s->nqs_per_uld = s->ofldqsets; 4247 } 4248 4249 for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i) 4250 adap->msix_info[i].vec = entries[i].vector; 4251 if (is_uld(adap)) { 4252 for (j = 0 ; i < allocated; ++i, j++) { 4253 adap->msix_info_ulds[j].vec = entries[i].vector; 4254 adap->msix_info_ulds[j].idx = i; 4255 } 4256 adap->msix_bmap_ulds.mapsize = j; 4257 } 4258 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, " 4259 "nic %d per uld %d\n", 4260 allocated, s->max_ethqsets, s->nqs_per_uld); 4261 4262 kfree(entries); 4263 return 0; 4264 } 4265 4266 #undef EXTRA_VECS 4267 4268 static int init_rss(struct adapter *adap) 4269 { 4270 unsigned int i; 4271 int err; 4272 4273 err = t4_init_rss_mode(adap, adap->mbox); 4274 if (err) 4275 return err; 4276 4277 for_each_port(adap, i) { 4278 struct port_info *pi = adap2pinfo(adap, i); 4279 4280 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 4281 if (!pi->rss) 4282 return -ENOMEM; 4283 } 4284 return 0; 4285 } 4286 4287 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap, 4288 enum pci_bus_speed *speed, 4289 enum pcie_link_width *width) 4290 { 4291 u32 lnkcap1, lnkcap2; 4292 int err1, err2; 4293 4294 #define PCIE_MLW_CAP_SHIFT 4 /* start of MLW mask in link capabilities */ 4295 4296 *speed = PCI_SPEED_UNKNOWN; 4297 *width = PCIE_LNK_WIDTH_UNKNOWN; 4298 4299 err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP, 4300 &lnkcap1); 4301 err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2, 4302 &lnkcap2); 4303 if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */ 4304 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB) 4305 *speed = PCIE_SPEED_8_0GT; 4306 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB) 4307 *speed = PCIE_SPEED_5_0GT; 4308 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB) 4309 *speed = PCIE_SPEED_2_5GT; 4310 } 4311 if (!err1) { 4312 *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT; 4313 if (!lnkcap2) { /* pre-r3.0 */ 4314 if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB) 4315 *speed = PCIE_SPEED_5_0GT; 4316 else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB) 4317 *speed = PCIE_SPEED_2_5GT; 4318 } 4319 } 4320 4321 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 4322 return err1 ? err1 : err2 ? err2 : -EINVAL; 4323 return 0; 4324 } 4325 4326 static void cxgb4_check_pcie_caps(struct adapter *adap) 4327 { 4328 enum pcie_link_width width, width_cap; 4329 enum pci_bus_speed speed, speed_cap; 4330 4331 #define PCIE_SPEED_STR(speed) \ 4332 (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \ 4333 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \ 4334 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \ 4335 "Unknown") 4336 4337 if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) { 4338 dev_warn(adap->pdev_dev, 4339 "Unable to determine PCIe device BW capabilities\n"); 4340 return; 4341 } 4342 4343 if (pcie_get_minimum_link(adap->pdev, &speed, &width) || 4344 speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) { 4345 dev_warn(adap->pdev_dev, 4346 "Unable to determine PCI Express bandwidth.\n"); 4347 return; 4348 } 4349 4350 dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n", 4351 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap)); 4352 dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n", 4353 width, width_cap); 4354 if (speed < speed_cap || width < width_cap) 4355 dev_info(adap->pdev_dev, 4356 "A slot with more lanes and/or higher speed is " 4357 "suggested for optimal performance.\n"); 4358 } 4359 4360 /* Dump basic information about the adapter */ 4361 static void print_adapter_info(struct adapter *adapter) 4362 { 4363 /* Device information */ 4364 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n", 4365 adapter->params.vpd.id, 4366 CHELSIO_CHIP_RELEASE(adapter->params.chip)); 4367 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n", 4368 adapter->params.vpd.sn, adapter->params.vpd.pn); 4369 4370 /* Firmware Version */ 4371 if (!adapter->params.fw_vers) 4372 dev_warn(adapter->pdev_dev, "No firmware loaded\n"); 4373 else 4374 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n", 4375 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), 4376 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), 4377 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), 4378 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers)); 4379 4380 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap 4381 * Firmware, so dev_info() is more appropriate here.) 4382 */ 4383 if (!adapter->params.bs_vers) 4384 dev_info(adapter->pdev_dev, "No bootstrap loaded\n"); 4385 else 4386 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n", 4387 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers), 4388 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers), 4389 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers), 4390 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers)); 4391 4392 /* TP Microcode Version */ 4393 if (!adapter->params.tp_vers) 4394 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n"); 4395 else 4396 dev_info(adapter->pdev_dev, 4397 "TP Microcode version: %u.%u.%u.%u\n", 4398 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), 4399 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), 4400 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), 4401 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); 4402 4403 /* Expansion ROM version */ 4404 if (!adapter->params.er_vers) 4405 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n"); 4406 else 4407 dev_info(adapter->pdev_dev, 4408 "Expansion ROM version: %u.%u.%u.%u\n", 4409 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers), 4410 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers), 4411 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers), 4412 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers)); 4413 4414 /* Software/Hardware configuration */ 4415 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n", 4416 is_offload(adapter) ? "R" : "", 4417 ((adapter->flags & USING_MSIX) ? "MSI-X" : 4418 (adapter->flags & USING_MSI) ? "MSI" : ""), 4419 is_offload(adapter) ? "Offload" : "non-Offload"); 4420 } 4421 4422 static void print_port_info(const struct net_device *dev) 4423 { 4424 char buf[80]; 4425 char *bufp = buf; 4426 const char *spd = ""; 4427 const struct port_info *pi = netdev_priv(dev); 4428 const struct adapter *adap = pi->adapter; 4429 4430 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB) 4431 spd = " 2.5 GT/s"; 4432 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB) 4433 spd = " 5 GT/s"; 4434 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB) 4435 spd = " 8 GT/s"; 4436 4437 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M) 4438 bufp += sprintf(bufp, "100M/"); 4439 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G) 4440 bufp += sprintf(bufp, "1G/"); 4441 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G) 4442 bufp += sprintf(bufp, "10G/"); 4443 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_25G) 4444 bufp += sprintf(bufp, "25G/"); 4445 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G) 4446 bufp += sprintf(bufp, "40G/"); 4447 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100G) 4448 bufp += sprintf(bufp, "100G/"); 4449 if (bufp != buf) 4450 --bufp; 4451 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 4452 4453 netdev_info(dev, "%s: Chelsio %s (%s) %s\n", 4454 dev->name, adap->params.vpd.id, adap->name, buf); 4455 } 4456 4457 static void enable_pcie_relaxed_ordering(struct pci_dev *dev) 4458 { 4459 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN); 4460 } 4461 4462 /* 4463 * Free the following resources: 4464 * - memory used for tables 4465 * - MSI/MSI-X 4466 * - net devices 4467 * - resources FW is holding for us 4468 */ 4469 static void free_some_resources(struct adapter *adapter) 4470 { 4471 unsigned int i; 4472 4473 t4_free_mem(adapter->l2t); 4474 t4_cleanup_sched(adapter); 4475 t4_free_mem(adapter->tids.tid_tab); 4476 cxgb4_cleanup_tc_u32(adapter); 4477 kfree(adapter->sge.egr_map); 4478 kfree(adapter->sge.ingr_map); 4479 kfree(adapter->sge.starving_fl); 4480 kfree(adapter->sge.txq_maperr); 4481 #ifdef CONFIG_DEBUG_FS 4482 kfree(adapter->sge.blocked_fl); 4483 #endif 4484 disable_msi(adapter); 4485 4486 for_each_port(adapter, i) 4487 if (adapter->port[i]) { 4488 struct port_info *pi = adap2pinfo(adapter, i); 4489 4490 if (pi->viid != 0) 4491 t4_free_vi(adapter, adapter->mbox, adapter->pf, 4492 0, pi->viid); 4493 kfree(adap2pinfo(adapter, i)->rss); 4494 free_netdev(adapter->port[i]); 4495 } 4496 if (adapter->flags & FW_OK) 4497 t4_fw_bye(adapter, adapter->pf); 4498 } 4499 4500 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 4501 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 4502 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 4503 #define SEGMENT_SIZE 128 4504 4505 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev) 4506 { 4507 u16 device_id; 4508 4509 /* Retrieve adapter's device ID */ 4510 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 4511 4512 switch (device_id >> 12) { 4513 case CHELSIO_T4: 4514 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 4515 case CHELSIO_T5: 4516 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 4517 case CHELSIO_T6: 4518 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 4519 default: 4520 dev_err(&pdev->dev, "Device %d is not supported\n", 4521 device_id); 4522 } 4523 return -EINVAL; 4524 } 4525 4526 #ifdef CONFIG_PCI_IOV 4527 static void dummy_setup(struct net_device *dev) 4528 { 4529 dev->type = ARPHRD_NONE; 4530 dev->mtu = 0; 4531 dev->hard_header_len = 0; 4532 dev->addr_len = 0; 4533 dev->tx_queue_len = 0; 4534 dev->flags |= IFF_NOARP; 4535 dev->priv_flags |= IFF_NO_QUEUE; 4536 4537 /* Initialize the device structure. */ 4538 dev->netdev_ops = &cxgb4_mgmt_netdev_ops; 4539 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops; 4540 dev->destructor = free_netdev; 4541 } 4542 4543 static int config_mgmt_dev(struct pci_dev *pdev) 4544 { 4545 struct adapter *adap = pci_get_drvdata(pdev); 4546 struct net_device *netdev; 4547 struct port_info *pi; 4548 char name[IFNAMSIZ]; 4549 int err; 4550 4551 snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf); 4552 netdev = alloc_netdev(sizeof(struct port_info), name, NET_NAME_UNKNOWN, 4553 dummy_setup); 4554 if (!netdev) 4555 return -ENOMEM; 4556 4557 pi = netdev_priv(netdev); 4558 pi->adapter = adap; 4559 pi->port_id = adap->pf % adap->params.nports; 4560 SET_NETDEV_DEV(netdev, &pdev->dev); 4561 4562 adap->port[0] = netdev; 4563 4564 err = register_netdev(adap->port[0]); 4565 if (err) { 4566 pr_info("Unable to register VF mgmt netdev %s\n", name); 4567 free_netdev(adap->port[0]); 4568 adap->port[0] = NULL; 4569 return err; 4570 } 4571 return 0; 4572 } 4573 4574 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs) 4575 { 4576 struct adapter *adap = pci_get_drvdata(pdev); 4577 int err = 0; 4578 int current_vfs = pci_num_vf(pdev); 4579 u32 pcie_fw; 4580 4581 pcie_fw = readl(adap->regs + PCIE_FW_A); 4582 /* Check if cxgb4 is the MASTER and fw is initialized */ 4583 if (!(pcie_fw & PCIE_FW_INIT_F) || 4584 !(pcie_fw & PCIE_FW_MASTER_VLD_F) || 4585 PCIE_FW_MASTER_G(pcie_fw) != 4) { 4586 dev_warn(&pdev->dev, 4587 "cxgb4 driver needs to be MASTER to support SRIOV\n"); 4588 return -EOPNOTSUPP; 4589 } 4590 4591 /* If any of the VF's is already assigned to Guest OS, then 4592 * SRIOV for the same cannot be modified 4593 */ 4594 if (current_vfs && pci_vfs_assigned(pdev)) { 4595 dev_err(&pdev->dev, 4596 "Cannot modify SR-IOV while VFs are assigned\n"); 4597 num_vfs = current_vfs; 4598 return num_vfs; 4599 } 4600 4601 /* Disable SRIOV when zero is passed. 4602 * One needs to disable SRIOV before modifying it, else 4603 * stack throws the below warning: 4604 * " 'n' VFs already enabled. Disable before enabling 'm' VFs." 4605 */ 4606 if (!num_vfs) { 4607 pci_disable_sriov(pdev); 4608 if (adap->port[0]) { 4609 unregister_netdev(adap->port[0]); 4610 adap->port[0] = NULL; 4611 } 4612 /* free VF resources */ 4613 kfree(adap->vfinfo); 4614 adap->vfinfo = NULL; 4615 adap->num_vfs = 0; 4616 return num_vfs; 4617 } 4618 4619 if (num_vfs != current_vfs) { 4620 err = pci_enable_sriov(pdev, num_vfs); 4621 if (err) 4622 return err; 4623 4624 adap->num_vfs = num_vfs; 4625 err = config_mgmt_dev(pdev); 4626 if (err) 4627 return err; 4628 } 4629 4630 adap->vfinfo = kcalloc(adap->num_vfs, 4631 sizeof(struct vf_info), GFP_KERNEL); 4632 if (adap->vfinfo) 4633 fill_vf_station_mac_addr(adap); 4634 return num_vfs; 4635 } 4636 #endif 4637 4638 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 4639 { 4640 int func, i, err, s_qpp, qpp, num_seg; 4641 struct port_info *pi; 4642 bool highdma = false; 4643 struct adapter *adapter = NULL; 4644 struct net_device *netdev; 4645 void __iomem *regs; 4646 u32 whoami, pl_rev; 4647 enum chip_type chip; 4648 static int adap_idx = 1; 4649 #ifdef CONFIG_PCI_IOV 4650 u32 v, port_vec; 4651 #endif 4652 4653 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 4654 4655 err = pci_request_regions(pdev, KBUILD_MODNAME); 4656 if (err) { 4657 /* Just info, some other driver may have claimed the device. */ 4658 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 4659 return err; 4660 } 4661 4662 err = pci_enable_device(pdev); 4663 if (err) { 4664 dev_err(&pdev->dev, "cannot enable PCI device\n"); 4665 goto out_release_regions; 4666 } 4667 4668 regs = pci_ioremap_bar(pdev, 0); 4669 if (!regs) { 4670 dev_err(&pdev->dev, "cannot map device registers\n"); 4671 err = -ENOMEM; 4672 goto out_disable_device; 4673 } 4674 4675 err = t4_wait_dev_ready(regs); 4676 if (err < 0) 4677 goto out_unmap_bar0; 4678 4679 /* We control everything through one PF */ 4680 whoami = readl(regs + PL_WHOAMI_A); 4681 pl_rev = REV_G(readl(regs + PL_REV_A)); 4682 chip = get_chip_type(pdev, pl_rev); 4683 func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ? 4684 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4685 if (func != ent->driver_data) { 4686 #ifndef CONFIG_PCI_IOV 4687 iounmap(regs); 4688 #endif 4689 pci_disable_device(pdev); 4690 pci_save_state(pdev); /* to restore SR-IOV later */ 4691 goto sriov; 4692 } 4693 4694 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 4695 highdma = true; 4696 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 4697 if (err) { 4698 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 4699 "coherent allocations\n"); 4700 goto out_unmap_bar0; 4701 } 4702 } else { 4703 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 4704 if (err) { 4705 dev_err(&pdev->dev, "no usable DMA configuration\n"); 4706 goto out_unmap_bar0; 4707 } 4708 } 4709 4710 pci_enable_pcie_error_reporting(pdev); 4711 enable_pcie_relaxed_ordering(pdev); 4712 pci_set_master(pdev); 4713 pci_save_state(pdev); 4714 4715 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 4716 if (!adapter) { 4717 err = -ENOMEM; 4718 goto out_unmap_bar0; 4719 } 4720 adap_idx++; 4721 4722 adapter->workq = create_singlethread_workqueue("cxgb4"); 4723 if (!adapter->workq) { 4724 err = -ENOMEM; 4725 goto out_free_adapter; 4726 } 4727 4728 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 4729 (sizeof(struct mbox_cmd) * 4730 T4_OS_LOG_MBOX_CMDS), 4731 GFP_KERNEL); 4732 if (!adapter->mbox_log) { 4733 err = -ENOMEM; 4734 goto out_free_adapter; 4735 } 4736 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS; 4737 4738 /* PCI device has been enabled */ 4739 adapter->flags |= DEV_ENABLED; 4740 4741 adapter->regs = regs; 4742 adapter->pdev = pdev; 4743 adapter->pdev_dev = &pdev->dev; 4744 adapter->name = pci_name(pdev); 4745 adapter->mbox = func; 4746 adapter->pf = func; 4747 adapter->msg_enable = DFLT_MSG_ENABLE; 4748 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 4749 4750 spin_lock_init(&adapter->stats_lock); 4751 spin_lock_init(&adapter->tid_release_lock); 4752 spin_lock_init(&adapter->win0_lock); 4753 spin_lock_init(&adapter->mbox_lock); 4754 4755 INIT_LIST_HEAD(&adapter->mlist.list); 4756 4757 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 4758 INIT_WORK(&adapter->db_full_task, process_db_full); 4759 INIT_WORK(&adapter->db_drop_task, process_db_drop); 4760 4761 err = t4_prep_adapter(adapter); 4762 if (err) 4763 goto out_free_adapter; 4764 4765 4766 if (!is_t4(adapter->params.chip)) { 4767 s_qpp = (QUEUESPERPAGEPF0_S + 4768 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 4769 adapter->pf); 4770 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 4771 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 4772 num_seg = PAGE_SIZE / SEGMENT_SIZE; 4773 4774 /* Each segment size is 128B. Write coalescing is enabled only 4775 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 4776 * queue is less no of segments that can be accommodated in 4777 * a page size. 4778 */ 4779 if (qpp > num_seg) { 4780 dev_err(&pdev->dev, 4781 "Incorrect number of egress queues per page\n"); 4782 err = -EINVAL; 4783 goto out_free_adapter; 4784 } 4785 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 4786 pci_resource_len(pdev, 2)); 4787 if (!adapter->bar2) { 4788 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 4789 err = -ENOMEM; 4790 goto out_free_adapter; 4791 } 4792 } 4793 4794 setup_memwin(adapter); 4795 err = adap_init0(adapter); 4796 #ifdef CONFIG_DEBUG_FS 4797 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); 4798 #endif 4799 setup_memwin_rdma(adapter); 4800 if (err) 4801 goto out_unmap_bar; 4802 4803 /* configure SGE_STAT_CFG_A to read WC stats */ 4804 if (!is_t4(adapter->params.chip)) 4805 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | 4806 (is_t5(adapter->params.chip) ? STATMODE_V(0) : 4807 T6_STATMODE_V(0))); 4808 4809 for_each_port(adapter, i) { 4810 netdev = alloc_etherdev_mq(sizeof(struct port_info), 4811 MAX_ETH_QSETS); 4812 if (!netdev) { 4813 err = -ENOMEM; 4814 goto out_free_dev; 4815 } 4816 4817 SET_NETDEV_DEV(netdev, &pdev->dev); 4818 4819 adapter->port[i] = netdev; 4820 pi = netdev_priv(netdev); 4821 pi->adapter = adapter; 4822 pi->xact_addr_filt = -1; 4823 pi->port_id = i; 4824 netdev->irq = pdev->irq; 4825 4826 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 4827 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 4828 NETIF_F_RXCSUM | NETIF_F_RXHASH | 4829 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 4830 NETIF_F_HW_TC; 4831 if (highdma) 4832 netdev->hw_features |= NETIF_F_HIGHDMA; 4833 netdev->features |= netdev->hw_features; 4834 netdev->vlan_features = netdev->features & VLAN_FEAT; 4835 4836 netdev->priv_flags |= IFF_UNICAST_FLT; 4837 4838 /* MTU range: 81 - 9600 */ 4839 netdev->min_mtu = 81; 4840 netdev->max_mtu = MAX_MTU; 4841 4842 netdev->netdev_ops = &cxgb4_netdev_ops; 4843 #ifdef CONFIG_CHELSIO_T4_DCB 4844 netdev->dcbnl_ops = &cxgb4_dcb_ops; 4845 cxgb4_dcb_state_init(netdev); 4846 #endif 4847 cxgb4_set_ethtool_ops(netdev); 4848 } 4849 4850 pci_set_drvdata(pdev, adapter); 4851 4852 if (adapter->flags & FW_OK) { 4853 err = t4_port_init(adapter, func, func, 0); 4854 if (err) 4855 goto out_free_dev; 4856 } else if (adapter->params.nports == 1) { 4857 /* If we don't have a connection to the firmware -- possibly 4858 * because of an error -- grab the raw VPD parameters so we 4859 * can set the proper MAC Address on the debug network 4860 * interface that we've created. 4861 */ 4862 u8 hw_addr[ETH_ALEN]; 4863 u8 *na = adapter->params.vpd.na; 4864 4865 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 4866 if (!err) { 4867 for (i = 0; i < ETH_ALEN; i++) 4868 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 4869 hex2val(na[2 * i + 1])); 4870 t4_set_hw_addr(adapter, 0, hw_addr); 4871 } 4872 } 4873 4874 /* Configure queues and allocate tables now, they can be needed as 4875 * soon as the first register_netdev completes. 4876 */ 4877 cfg_queues(adapter); 4878 4879 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 4880 if (!adapter->l2t) { 4881 /* We tolerate a lack of L2T, giving up some functionality */ 4882 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 4883 adapter->params.offload = 0; 4884 } 4885 4886 #if IS_ENABLED(CONFIG_IPV6) 4887 if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) && 4888 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { 4889 /* CLIP functionality is not present in hardware, 4890 * hence disable all offload features 4891 */ 4892 dev_warn(&pdev->dev, 4893 "CLIP not enabled in hardware, continuing\n"); 4894 adapter->params.offload = 0; 4895 } else { 4896 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 4897 adapter->clipt_end); 4898 if (!adapter->clipt) { 4899 /* We tolerate a lack of clip_table, giving up 4900 * some functionality 4901 */ 4902 dev_warn(&pdev->dev, 4903 "could not allocate Clip table, continuing\n"); 4904 adapter->params.offload = 0; 4905 } 4906 } 4907 #endif 4908 4909 for_each_port(adapter, i) { 4910 pi = adap2pinfo(adapter, i); 4911 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls); 4912 if (!pi->sched_tbl) 4913 dev_warn(&pdev->dev, 4914 "could not activate scheduling on port %d\n", 4915 i); 4916 } 4917 4918 if (tid_init(&adapter->tids) < 0) { 4919 dev_warn(&pdev->dev, "could not allocate TID table, " 4920 "continuing\n"); 4921 adapter->params.offload = 0; 4922 } else { 4923 adapter->tc_u32 = cxgb4_init_tc_u32(adapter); 4924 if (!adapter->tc_u32) 4925 dev_warn(&pdev->dev, 4926 "could not offload tc u32, continuing\n"); 4927 } 4928 4929 if (is_offload(adapter)) { 4930 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 4931 u32 hash_base, hash_reg; 4932 4933 if (chip <= CHELSIO_T5) { 4934 hash_reg = LE_DB_TID_HASHBASE_A; 4935 hash_base = t4_read_reg(adapter, hash_reg); 4936 adapter->tids.hash_base = hash_base / 4; 4937 } else { 4938 hash_reg = T6_LE_DB_HASH_TID_BASE_A; 4939 hash_base = t4_read_reg(adapter, hash_reg); 4940 adapter->tids.hash_base = hash_base; 4941 } 4942 } 4943 } 4944 4945 /* See what interrupts we'll be using */ 4946 if (msi > 1 && enable_msix(adapter) == 0) 4947 adapter->flags |= USING_MSIX; 4948 else if (msi > 0 && pci_enable_msi(pdev) == 0) { 4949 adapter->flags |= USING_MSI; 4950 if (msi > 1) 4951 free_msix_info(adapter); 4952 } 4953 4954 /* check for PCI Express bandwidth capabiltites */ 4955 cxgb4_check_pcie_caps(adapter); 4956 4957 err = init_rss(adapter); 4958 if (err) 4959 goto out_free_dev; 4960 4961 /* 4962 * The card is now ready to go. If any errors occur during device 4963 * registration we do not fail the whole card but rather proceed only 4964 * with the ports we manage to register successfully. However we must 4965 * register at least one net device. 4966 */ 4967 for_each_port(adapter, i) { 4968 pi = adap2pinfo(adapter, i); 4969 adapter->port[i]->dev_port = pi->lport; 4970 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 4971 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 4972 4973 err = register_netdev(adapter->port[i]); 4974 if (err) 4975 break; 4976 adapter->chan_map[pi->tx_chan] = i; 4977 print_port_info(adapter->port[i]); 4978 } 4979 if (i == 0) { 4980 dev_err(&pdev->dev, "could not register any net devices\n"); 4981 goto out_free_dev; 4982 } 4983 if (err) { 4984 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 4985 err = 0; 4986 } 4987 4988 if (cxgb4_debugfs_root) { 4989 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 4990 cxgb4_debugfs_root); 4991 setup_debugfs(adapter); 4992 } 4993 4994 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 4995 pdev->needs_freset = 1; 4996 4997 if (is_uld(adapter)) { 4998 mutex_lock(&uld_mutex); 4999 list_add_tail(&adapter->list_node, &adapter_list); 5000 mutex_unlock(&uld_mutex); 5001 } 5002 5003 print_adapter_info(adapter); 5004 setup_fw_sge_queues(adapter); 5005 return 0; 5006 5007 sriov: 5008 #ifdef CONFIG_PCI_IOV 5009 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 5010 if (!adapter) { 5011 err = -ENOMEM; 5012 goto free_pci_region; 5013 } 5014 5015 adapter->pdev = pdev; 5016 adapter->pdev_dev = &pdev->dev; 5017 adapter->name = pci_name(pdev); 5018 adapter->mbox = func; 5019 adapter->pf = func; 5020 adapter->regs = regs; 5021 adapter->adap_idx = adap_idx; 5022 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 5023 (sizeof(struct mbox_cmd) * 5024 T4_OS_LOG_MBOX_CMDS), 5025 GFP_KERNEL); 5026 if (!adapter->mbox_log) { 5027 err = -ENOMEM; 5028 goto free_adapter; 5029 } 5030 spin_lock_init(&adapter->mbox_lock); 5031 INIT_LIST_HEAD(&adapter->mlist.list); 5032 5033 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 5034 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 5035 err = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 1, 5036 &v, &port_vec); 5037 if (err < 0) { 5038 dev_err(adapter->pdev_dev, "Could not fetch port params\n"); 5039 goto free_adapter; 5040 } 5041 5042 adapter->params.nports = hweight32(port_vec); 5043 pci_set_drvdata(pdev, adapter); 5044 return 0; 5045 5046 free_adapter: 5047 kfree(adapter); 5048 free_pci_region: 5049 iounmap(regs); 5050 pci_disable_sriov(pdev); 5051 pci_release_regions(pdev); 5052 return err; 5053 #else 5054 return 0; 5055 #endif 5056 5057 out_free_dev: 5058 free_some_resources(adapter); 5059 if (adapter->flags & USING_MSIX) 5060 free_msix_info(adapter); 5061 if (adapter->num_uld || adapter->num_ofld_uld) 5062 t4_uld_mem_free(adapter); 5063 out_unmap_bar: 5064 if (!is_t4(adapter->params.chip)) 5065 iounmap(adapter->bar2); 5066 out_free_adapter: 5067 if (adapter->workq) 5068 destroy_workqueue(adapter->workq); 5069 5070 kfree(adapter->mbox_log); 5071 kfree(adapter); 5072 out_unmap_bar0: 5073 iounmap(regs); 5074 out_disable_device: 5075 pci_disable_pcie_error_reporting(pdev); 5076 pci_disable_device(pdev); 5077 out_release_regions: 5078 pci_release_regions(pdev); 5079 return err; 5080 } 5081 5082 static void remove_one(struct pci_dev *pdev) 5083 { 5084 struct adapter *adapter = pci_get_drvdata(pdev); 5085 5086 if (!adapter) { 5087 pci_release_regions(pdev); 5088 return; 5089 } 5090 5091 if (adapter->pf == 4) { 5092 int i; 5093 5094 /* Tear down per-adapter Work Queue first since it can contain 5095 * references to our adapter data structure. 5096 */ 5097 destroy_workqueue(adapter->workq); 5098 5099 if (is_uld(adapter)) 5100 detach_ulds(adapter); 5101 5102 disable_interrupts(adapter); 5103 5104 for_each_port(adapter, i) 5105 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5106 unregister_netdev(adapter->port[i]); 5107 5108 debugfs_remove_recursive(adapter->debugfs_root); 5109 5110 /* If we allocated filters, free up state associated with any 5111 * valid filters ... 5112 */ 5113 clear_all_filters(adapter); 5114 5115 if (adapter->flags & FULL_INIT_DONE) 5116 cxgb_down(adapter); 5117 5118 if (adapter->flags & USING_MSIX) 5119 free_msix_info(adapter); 5120 if (adapter->num_uld || adapter->num_ofld_uld) 5121 t4_uld_mem_free(adapter); 5122 free_some_resources(adapter); 5123 #if IS_ENABLED(CONFIG_IPV6) 5124 t4_cleanup_clip_tbl(adapter); 5125 #endif 5126 iounmap(adapter->regs); 5127 if (!is_t4(adapter->params.chip)) 5128 iounmap(adapter->bar2); 5129 pci_disable_pcie_error_reporting(pdev); 5130 if ((adapter->flags & DEV_ENABLED)) { 5131 pci_disable_device(pdev); 5132 adapter->flags &= ~DEV_ENABLED; 5133 } 5134 pci_release_regions(pdev); 5135 kfree(adapter->mbox_log); 5136 synchronize_rcu(); 5137 kfree(adapter); 5138 } 5139 #ifdef CONFIG_PCI_IOV 5140 else { 5141 if (adapter->port[0]) 5142 unregister_netdev(adapter->port[0]); 5143 iounmap(adapter->regs); 5144 kfree(adapter->vfinfo); 5145 kfree(adapter); 5146 pci_disable_sriov(pdev); 5147 pci_release_regions(pdev); 5148 } 5149 #endif 5150 } 5151 5152 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt 5153 * delivery. This is essentially a stripped down version of the PCI remove() 5154 * function where we do the minimal amount of work necessary to shutdown any 5155 * further activity. 5156 */ 5157 static void shutdown_one(struct pci_dev *pdev) 5158 { 5159 struct adapter *adapter = pci_get_drvdata(pdev); 5160 5161 /* As with remove_one() above (see extended comment), we only want do 5162 * do cleanup on PCI Devices which went all the way through init_one() 5163 * ... 5164 */ 5165 if (!adapter) { 5166 pci_release_regions(pdev); 5167 return; 5168 } 5169 5170 if (adapter->pf == 4) { 5171 int i; 5172 5173 for_each_port(adapter, i) 5174 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5175 cxgb_close(adapter->port[i]); 5176 5177 t4_uld_clean_up(adapter); 5178 disable_interrupts(adapter); 5179 disable_msi(adapter); 5180 5181 t4_sge_stop(adapter); 5182 if (adapter->flags & FW_OK) 5183 t4_fw_bye(adapter, adapter->mbox); 5184 } 5185 #ifdef CONFIG_PCI_IOV 5186 else { 5187 if (adapter->port[0]) 5188 unregister_netdev(adapter->port[0]); 5189 iounmap(adapter->regs); 5190 kfree(adapter->vfinfo); 5191 kfree(adapter); 5192 pci_disable_sriov(pdev); 5193 pci_release_regions(pdev); 5194 } 5195 #endif 5196 } 5197 5198 static struct pci_driver cxgb4_driver = { 5199 .name = KBUILD_MODNAME, 5200 .id_table = cxgb4_pci_tbl, 5201 .probe = init_one, 5202 .remove = remove_one, 5203 .shutdown = shutdown_one, 5204 #ifdef CONFIG_PCI_IOV 5205 .sriov_configure = cxgb4_iov_configure, 5206 #endif 5207 .err_handler = &cxgb4_eeh, 5208 }; 5209 5210 static int __init cxgb4_init_module(void) 5211 { 5212 int ret; 5213 5214 /* Debugfs support is optional, just warn if this fails */ 5215 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 5216 if (!cxgb4_debugfs_root) 5217 pr_warn("could not create debugfs entry, continuing\n"); 5218 5219 ret = pci_register_driver(&cxgb4_driver); 5220 if (ret < 0) 5221 debugfs_remove(cxgb4_debugfs_root); 5222 5223 #if IS_ENABLED(CONFIG_IPV6) 5224 if (!inet6addr_registered) { 5225 register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 5226 inet6addr_registered = true; 5227 } 5228 #endif 5229 5230 return ret; 5231 } 5232 5233 static void __exit cxgb4_cleanup_module(void) 5234 { 5235 #if IS_ENABLED(CONFIG_IPV6) 5236 if (inet6addr_registered) { 5237 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 5238 inet6addr_registered = false; 5239 } 5240 #endif 5241 pci_unregister_driver(&cxgb4_driver); 5242 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 5243 } 5244 5245 module_init(cxgb4_init_module); 5246 module_exit(cxgb4_cleanup_module); 5247