1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <linux/uaccess.h>
67 #include <linux/crash_dump.h>
68 
69 #include "cxgb4.h"
70 #include "cxgb4_filter.h"
71 #include "t4_regs.h"
72 #include "t4_values.h"
73 #include "t4_msg.h"
74 #include "t4fw_api.h"
75 #include "t4fw_version.h"
76 #include "cxgb4_dcb.h"
77 #include "cxgb4_debugfs.h"
78 #include "clip_tbl.h"
79 #include "l2t.h"
80 #include "sched.h"
81 #include "cxgb4_tc_u32.h"
82 
83 char cxgb4_driver_name[] = KBUILD_MODNAME;
84 
85 #ifdef DRV_VERSION
86 #undef DRV_VERSION
87 #endif
88 #define DRV_VERSION "2.0.0-ko"
89 const char cxgb4_driver_version[] = DRV_VERSION;
90 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
91 
92 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
93 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
94 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
95 
96 /* Macros needed to support the PCI Device ID Table ...
97  */
98 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
99 	static const struct pci_device_id cxgb4_pci_tbl[] = {
100 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
101 
102 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
103  * called for both.
104  */
105 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
106 
107 #define CH_PCI_ID_TABLE_ENTRY(devid) \
108 		{PCI_VDEVICE(CHELSIO, (devid)), 4}
109 
110 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
111 		{ 0, } \
112 	}
113 
114 #include "t4_pci_id_tbl.h"
115 
116 #define FW4_FNAME "cxgb4/t4fw.bin"
117 #define FW5_FNAME "cxgb4/t5fw.bin"
118 #define FW6_FNAME "cxgb4/t6fw.bin"
119 #define FW4_CFNAME "cxgb4/t4-config.txt"
120 #define FW5_CFNAME "cxgb4/t5-config.txt"
121 #define FW6_CFNAME "cxgb4/t6-config.txt"
122 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
123 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
124 #define PHY_AQ1202_DEVICEID 0x4409
125 #define PHY_BCM84834_DEVICEID 0x4486
126 
127 MODULE_DESCRIPTION(DRV_DESC);
128 MODULE_AUTHOR("Chelsio Communications");
129 MODULE_LICENSE("Dual BSD/GPL");
130 MODULE_VERSION(DRV_VERSION);
131 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
132 MODULE_FIRMWARE(FW4_FNAME);
133 MODULE_FIRMWARE(FW5_FNAME);
134 MODULE_FIRMWARE(FW6_FNAME);
135 
136 /*
137  * The driver uses the best interrupt scheme available on a platform in the
138  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
139  * of these schemes the driver may consider as follows:
140  *
141  * msi = 2: choose from among all three options
142  * msi = 1: only consider MSI and INTx interrupts
143  * msi = 0: force INTx interrupts
144  */
145 static int msi = 2;
146 
147 module_param(msi, int, 0644);
148 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
149 
150 /*
151  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
152  * offset by 2 bytes in order to have the IP headers line up on 4-byte
153  * boundaries.  This is a requirement for many architectures which will throw
154  * a machine check fault if an attempt is made to access one of the 4-byte IP
155  * header fields on a non-4-byte boundary.  And it's a major performance issue
156  * even on some architectures which allow it like some implementations of the
157  * x86 ISA.  However, some architectures don't mind this and for some very
158  * edge-case performance sensitive applications (like forwarding large volumes
159  * of small packets), setting this DMA offset to 0 will decrease the number of
160  * PCI-E Bus transfers enough to measurably affect performance.
161  */
162 static int rx_dma_offset = 2;
163 
164 /* TX Queue select used to determine what algorithm to use for selecting TX
165  * queue. Select between the kernel provided function (select_queue=0) or user
166  * cxgb_select_queue function (select_queue=1)
167  *
168  * Default: select_queue=0
169  */
170 static int select_queue;
171 module_param(select_queue, int, 0644);
172 MODULE_PARM_DESC(select_queue,
173 		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
174 
175 static struct dentry *cxgb4_debugfs_root;
176 
177 LIST_HEAD(adapter_list);
178 DEFINE_MUTEX(uld_mutex);
179 
180 static void link_report(struct net_device *dev)
181 {
182 	if (!netif_carrier_ok(dev))
183 		netdev_info(dev, "link down\n");
184 	else {
185 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
186 
187 		const char *s;
188 		const struct port_info *p = netdev_priv(dev);
189 
190 		switch (p->link_cfg.speed) {
191 		case 100:
192 			s = "100Mbps";
193 			break;
194 		case 1000:
195 			s = "1Gbps";
196 			break;
197 		case 10000:
198 			s = "10Gbps";
199 			break;
200 		case 25000:
201 			s = "25Gbps";
202 			break;
203 		case 40000:
204 			s = "40Gbps";
205 			break;
206 		case 100000:
207 			s = "100Gbps";
208 			break;
209 		default:
210 			pr_info("%s: unsupported speed: %d\n",
211 				dev->name, p->link_cfg.speed);
212 			return;
213 		}
214 
215 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
216 			    fc[p->link_cfg.fc]);
217 	}
218 }
219 
220 #ifdef CONFIG_CHELSIO_T4_DCB
221 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
222 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
223 {
224 	struct port_info *pi = netdev_priv(dev);
225 	struct adapter *adap = pi->adapter;
226 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
227 	int i;
228 
229 	/* We use a simple mapping of Port TX Queue Index to DCB
230 	 * Priority when we're enabling DCB.
231 	 */
232 	for (i = 0; i < pi->nqsets; i++, txq++) {
233 		u32 name, value;
234 		int err;
235 
236 		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
237 			FW_PARAMS_PARAM_X_V(
238 				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
239 			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
240 		value = enable ? i : 0xffffffff;
241 
242 		/* Since we can be called while atomic (from "interrupt
243 		 * level") we need to issue the Set Parameters Commannd
244 		 * without sleeping (timeout < 0).
245 		 */
246 		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
247 					    &name, &value,
248 					    -FW_CMD_MAX_TIMEOUT);
249 
250 		if (err)
251 			dev_err(adap->pdev_dev,
252 				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
253 				enable ? "set" : "unset", pi->port_id, i, -err);
254 		else
255 			txq->dcb_prio = value;
256 	}
257 }
258 
259 static int cxgb4_dcb_enabled(const struct net_device *dev)
260 {
261 	struct port_info *pi = netdev_priv(dev);
262 
263 	if (!pi->dcb.enabled)
264 		return 0;
265 
266 	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
267 		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
268 }
269 #endif /* CONFIG_CHELSIO_T4_DCB */
270 
271 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
272 {
273 	struct net_device *dev = adapter->port[port_id];
274 
275 	/* Skip changes from disabled ports. */
276 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
277 		if (link_stat)
278 			netif_carrier_on(dev);
279 		else {
280 #ifdef CONFIG_CHELSIO_T4_DCB
281 			if (cxgb4_dcb_enabled(dev)) {
282 				cxgb4_dcb_state_init(dev);
283 				dcb_tx_queue_prio_enable(dev, false);
284 			}
285 #endif /* CONFIG_CHELSIO_T4_DCB */
286 			netif_carrier_off(dev);
287 		}
288 
289 		link_report(dev);
290 	}
291 }
292 
293 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
294 {
295 	static const char *mod_str[] = {
296 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
297 	};
298 
299 	const struct net_device *dev = adap->port[port_id];
300 	const struct port_info *pi = netdev_priv(dev);
301 
302 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
303 		netdev_info(dev, "port module unplugged\n");
304 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
305 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
306 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
307 		netdev_info(dev, "%s: unsupported port module inserted\n",
308 			    dev->name);
309 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
310 		netdev_info(dev, "%s: unknown port module inserted\n",
311 			    dev->name);
312 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
313 		netdev_info(dev, "%s: transceiver module error\n", dev->name);
314 	else
315 		netdev_info(dev, "%s: unknown module type %d inserted\n",
316 			    dev->name, pi->mod_type);
317 }
318 
319 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
320 module_param(dbfifo_int_thresh, int, 0644);
321 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
322 
323 /*
324  * usecs to sleep while draining the dbfifo
325  */
326 static int dbfifo_drain_delay = 1000;
327 module_param(dbfifo_drain_delay, int, 0644);
328 MODULE_PARM_DESC(dbfifo_drain_delay,
329 		 "usecs to sleep while draining the dbfifo");
330 
331 static inline int cxgb4_set_addr_hash(struct port_info *pi)
332 {
333 	struct adapter *adap = pi->adapter;
334 	u64 vec = 0;
335 	bool ucast = false;
336 	struct hash_mac_addr *entry;
337 
338 	/* Calculate the hash vector for the updated list and program it */
339 	list_for_each_entry(entry, &adap->mac_hlist, list) {
340 		ucast |= is_unicast_ether_addr(entry->addr);
341 		vec |= (1ULL << hash_mac_addr(entry->addr));
342 	}
343 	return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
344 				vec, false);
345 }
346 
347 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
348 {
349 	struct port_info *pi = netdev_priv(netdev);
350 	struct adapter *adap = pi->adapter;
351 	int ret;
352 	u64 mhash = 0;
353 	u64 uhash = 0;
354 	bool free = false;
355 	bool ucast = is_unicast_ether_addr(mac_addr);
356 	const u8 *maclist[1] = {mac_addr};
357 	struct hash_mac_addr *new_entry;
358 
359 	ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
360 				NULL, ucast ? &uhash : &mhash, false);
361 	if (ret < 0)
362 		goto out;
363 	/* if hash != 0, then add the addr to hash addr list
364 	 * so on the end we will calculate the hash for the
365 	 * list and program it
366 	 */
367 	if (uhash || mhash) {
368 		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
369 		if (!new_entry)
370 			return -ENOMEM;
371 		ether_addr_copy(new_entry->addr, mac_addr);
372 		list_add_tail(&new_entry->list, &adap->mac_hlist);
373 		ret = cxgb4_set_addr_hash(pi);
374 	}
375 out:
376 	return ret < 0 ? ret : 0;
377 }
378 
379 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
380 {
381 	struct port_info *pi = netdev_priv(netdev);
382 	struct adapter *adap = pi->adapter;
383 	int ret;
384 	const u8 *maclist[1] = {mac_addr};
385 	struct hash_mac_addr *entry, *tmp;
386 
387 	/* If the MAC address to be removed is in the hash addr
388 	 * list, delete it from the list and update hash vector
389 	 */
390 	list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
391 		if (ether_addr_equal(entry->addr, mac_addr)) {
392 			list_del(&entry->list);
393 			kfree(entry);
394 			return cxgb4_set_addr_hash(pi);
395 		}
396 	}
397 
398 	ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
399 	return ret < 0 ? -EINVAL : 0;
400 }
401 
402 /*
403  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
404  * If @mtu is -1 it is left unchanged.
405  */
406 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
407 {
408 	struct port_info *pi = netdev_priv(dev);
409 	struct adapter *adapter = pi->adapter;
410 
411 	__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
412 	__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
413 
414 	return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
415 			     (dev->flags & IFF_PROMISC) ? 1 : 0,
416 			     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
417 			     sleep_ok);
418 }
419 
420 /**
421  *	link_start - enable a port
422  *	@dev: the port to enable
423  *
424  *	Performs the MAC and PHY actions needed to enable a port.
425  */
426 static int link_start(struct net_device *dev)
427 {
428 	int ret;
429 	struct port_info *pi = netdev_priv(dev);
430 	unsigned int mb = pi->adapter->pf;
431 
432 	/*
433 	 * We do not set address filters and promiscuity here, the stack does
434 	 * that step explicitly.
435 	 */
436 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
437 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
438 	if (ret == 0) {
439 		ret = t4_change_mac(pi->adapter, mb, pi->viid,
440 				    pi->xact_addr_filt, dev->dev_addr, true,
441 				    true);
442 		if (ret >= 0) {
443 			pi->xact_addr_filt = ret;
444 			ret = 0;
445 		}
446 	}
447 	if (ret == 0)
448 		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
449 				    &pi->link_cfg);
450 	if (ret == 0) {
451 		local_bh_disable();
452 		ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
453 					  true, CXGB4_DCB_ENABLED);
454 		local_bh_enable();
455 	}
456 
457 	return ret;
458 }
459 
460 #ifdef CONFIG_CHELSIO_T4_DCB
461 /* Handle a Data Center Bridging update message from the firmware. */
462 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
463 {
464 	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
465 	struct net_device *dev = adap->port[adap->chan_map[port]];
466 	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
467 	int new_dcb_enabled;
468 
469 	cxgb4_dcb_handle_fw_update(adap, pcmd);
470 	new_dcb_enabled = cxgb4_dcb_enabled(dev);
471 
472 	/* If the DCB has become enabled or disabled on the port then we're
473 	 * going to need to set up/tear down DCB Priority parameters for the
474 	 * TX Queues associated with the port.
475 	 */
476 	if (new_dcb_enabled != old_dcb_enabled)
477 		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
478 }
479 #endif /* CONFIG_CHELSIO_T4_DCB */
480 
481 /* Response queue handler for the FW event queue.
482  */
483 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
484 			  const struct pkt_gl *gl)
485 {
486 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
487 
488 	rsp++;                                          /* skip RSS header */
489 
490 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
491 	 */
492 	if (unlikely(opcode == CPL_FW4_MSG &&
493 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
494 		rsp++;
495 		opcode = ((const struct rss_header *)rsp)->opcode;
496 		rsp++;
497 		if (opcode != CPL_SGE_EGR_UPDATE) {
498 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
499 				, opcode);
500 			goto out;
501 		}
502 	}
503 
504 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
505 		const struct cpl_sge_egr_update *p = (void *)rsp;
506 		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
507 		struct sge_txq *txq;
508 
509 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
510 		txq->restarts++;
511 		if (txq->q_type == CXGB4_TXQ_ETH) {
512 			struct sge_eth_txq *eq;
513 
514 			eq = container_of(txq, struct sge_eth_txq, q);
515 			netif_tx_wake_queue(eq->txq);
516 		} else {
517 			struct sge_uld_txq *oq;
518 
519 			oq = container_of(txq, struct sge_uld_txq, q);
520 			tasklet_schedule(&oq->qresume_tsk);
521 		}
522 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
523 		const struct cpl_fw6_msg *p = (void *)rsp;
524 
525 #ifdef CONFIG_CHELSIO_T4_DCB
526 		const struct fw_port_cmd *pcmd = (const void *)p->data;
527 		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
528 		unsigned int action =
529 			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
530 
531 		if (cmd == FW_PORT_CMD &&
532 		    action == FW_PORT_ACTION_GET_PORT_INFO) {
533 			int port = FW_PORT_CMD_PORTID_G(
534 					be32_to_cpu(pcmd->op_to_portid));
535 			struct net_device *dev =
536 				q->adap->port[q->adap->chan_map[port]];
537 			int state_input = ((pcmd->u.info.dcbxdis_pkd &
538 					    FW_PORT_CMD_DCBXDIS_F)
539 					   ? CXGB4_DCB_INPUT_FW_DISABLED
540 					   : CXGB4_DCB_INPUT_FW_ENABLED);
541 
542 			cxgb4_dcb_state_fsm(dev, state_input);
543 		}
544 
545 		if (cmd == FW_PORT_CMD &&
546 		    action == FW_PORT_ACTION_L2_DCB_CFG)
547 			dcb_rpl(q->adap, pcmd);
548 		else
549 #endif
550 			if (p->type == 0)
551 				t4_handle_fw_rpl(q->adap, p->data);
552 	} else if (opcode == CPL_L2T_WRITE_RPL) {
553 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
554 
555 		do_l2t_write_rpl(q->adap, p);
556 	} else if (opcode == CPL_SET_TCB_RPL) {
557 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
558 
559 		filter_rpl(q->adap, p);
560 	} else
561 		dev_err(q->adap->pdev_dev,
562 			"unexpected CPL %#x on FW event queue\n", opcode);
563 out:
564 	return 0;
565 }
566 
567 static void disable_msi(struct adapter *adapter)
568 {
569 	if (adapter->flags & USING_MSIX) {
570 		pci_disable_msix(adapter->pdev);
571 		adapter->flags &= ~USING_MSIX;
572 	} else if (adapter->flags & USING_MSI) {
573 		pci_disable_msi(adapter->pdev);
574 		adapter->flags &= ~USING_MSI;
575 	}
576 }
577 
578 /*
579  * Interrupt handler for non-data events used with MSI-X.
580  */
581 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
582 {
583 	struct adapter *adap = cookie;
584 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
585 
586 	if (v & PFSW_F) {
587 		adap->swintr = 1;
588 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
589 	}
590 	if (adap->flags & MASTER_PF)
591 		t4_slow_intr_handler(adap);
592 	return IRQ_HANDLED;
593 }
594 
595 /*
596  * Name the MSI-X interrupts.
597  */
598 static void name_msix_vecs(struct adapter *adap)
599 {
600 	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
601 
602 	/* non-data interrupts */
603 	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
604 
605 	/* FW events */
606 	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
607 		 adap->port[0]->name);
608 
609 	/* Ethernet queues */
610 	for_each_port(adap, j) {
611 		struct net_device *d = adap->port[j];
612 		const struct port_info *pi = netdev_priv(d);
613 
614 		for (i = 0; i < pi->nqsets; i++, msi_idx++)
615 			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
616 				 d->name, i);
617 	}
618 }
619 
620 static int request_msix_queue_irqs(struct adapter *adap)
621 {
622 	struct sge *s = &adap->sge;
623 	int err, ethqidx;
624 	int msi_index = 2;
625 
626 	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
627 			  adap->msix_info[1].desc, &s->fw_evtq);
628 	if (err)
629 		return err;
630 
631 	for_each_ethrxq(s, ethqidx) {
632 		err = request_irq(adap->msix_info[msi_index].vec,
633 				  t4_sge_intr_msix, 0,
634 				  adap->msix_info[msi_index].desc,
635 				  &s->ethrxq[ethqidx].rspq);
636 		if (err)
637 			goto unwind;
638 		msi_index++;
639 	}
640 	return 0;
641 
642 unwind:
643 	while (--ethqidx >= 0)
644 		free_irq(adap->msix_info[--msi_index].vec,
645 			 &s->ethrxq[ethqidx].rspq);
646 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
647 	return err;
648 }
649 
650 static void free_msix_queue_irqs(struct adapter *adap)
651 {
652 	int i, msi_index = 2;
653 	struct sge *s = &adap->sge;
654 
655 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
656 	for_each_ethrxq(s, i)
657 		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
658 }
659 
660 /**
661  *	cxgb4_write_rss - write the RSS table for a given port
662  *	@pi: the port
663  *	@queues: array of queue indices for RSS
664  *
665  *	Sets up the portion of the HW RSS table for the port's VI to distribute
666  *	packets to the Rx queues in @queues.
667  *	Should never be called before setting up sge eth rx queues
668  */
669 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
670 {
671 	u16 *rss;
672 	int i, err;
673 	struct adapter *adapter = pi->adapter;
674 	const struct sge_eth_rxq *rxq;
675 
676 	rxq = &adapter->sge.ethrxq[pi->first_qset];
677 	rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
678 	if (!rss)
679 		return -ENOMEM;
680 
681 	/* map the queue indices to queue ids */
682 	for (i = 0; i < pi->rss_size; i++, queues++)
683 		rss[i] = rxq[*queues].rspq.abs_id;
684 
685 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
686 				  pi->rss_size, rss, pi->rss_size);
687 	/* If Tunnel All Lookup isn't specified in the global RSS
688 	 * Configuration, then we need to specify a default Ingress
689 	 * Queue for any ingress packets which aren't hashed.  We'll
690 	 * use our first ingress queue ...
691 	 */
692 	if (!err)
693 		err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
694 				       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
695 				       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
696 				       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
697 				       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
698 				       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
699 				       rss[0]);
700 	kfree(rss);
701 	return err;
702 }
703 
704 /**
705  *	setup_rss - configure RSS
706  *	@adap: the adapter
707  *
708  *	Sets up RSS for each port.
709  */
710 static int setup_rss(struct adapter *adap)
711 {
712 	int i, j, err;
713 
714 	for_each_port(adap, i) {
715 		const struct port_info *pi = adap2pinfo(adap, i);
716 
717 		/* Fill default values with equal distribution */
718 		for (j = 0; j < pi->rss_size; j++)
719 			pi->rss[j] = j % pi->nqsets;
720 
721 		err = cxgb4_write_rss(pi, pi->rss);
722 		if (err)
723 			return err;
724 	}
725 	return 0;
726 }
727 
728 /*
729  * Return the channel of the ingress queue with the given qid.
730  */
731 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
732 {
733 	qid -= p->ingr_start;
734 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
735 }
736 
737 /*
738  * Wait until all NAPI handlers are descheduled.
739  */
740 static void quiesce_rx(struct adapter *adap)
741 {
742 	int i;
743 
744 	for (i = 0; i < adap->sge.ingr_sz; i++) {
745 		struct sge_rspq *q = adap->sge.ingr_map[i];
746 
747 		if (q && q->handler)
748 			napi_disable(&q->napi);
749 	}
750 }
751 
752 /* Disable interrupt and napi handler */
753 static void disable_interrupts(struct adapter *adap)
754 {
755 	if (adap->flags & FULL_INIT_DONE) {
756 		t4_intr_disable(adap);
757 		if (adap->flags & USING_MSIX) {
758 			free_msix_queue_irqs(adap);
759 			free_irq(adap->msix_info[0].vec, adap);
760 		} else {
761 			free_irq(adap->pdev->irq, adap);
762 		}
763 		quiesce_rx(adap);
764 	}
765 }
766 
767 /*
768  * Enable NAPI scheduling and interrupt generation for all Rx queues.
769  */
770 static void enable_rx(struct adapter *adap)
771 {
772 	int i;
773 
774 	for (i = 0; i < adap->sge.ingr_sz; i++) {
775 		struct sge_rspq *q = adap->sge.ingr_map[i];
776 
777 		if (!q)
778 			continue;
779 		if (q->handler)
780 			napi_enable(&q->napi);
781 
782 		/* 0-increment GTS to start the timer and enable interrupts */
783 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
784 			     SEINTARM_V(q->intr_params) |
785 			     INGRESSQID_V(q->cntxt_id));
786 	}
787 }
788 
789 
790 static int setup_fw_sge_queues(struct adapter *adap)
791 {
792 	struct sge *s = &adap->sge;
793 	int err = 0;
794 
795 	bitmap_zero(s->starving_fl, s->egr_sz);
796 	bitmap_zero(s->txq_maperr, s->egr_sz);
797 
798 	if (adap->flags & USING_MSIX)
799 		adap->msi_idx = 1;         /* vector 0 is for non-queue interrupts */
800 	else {
801 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
802 				       NULL, NULL, NULL, -1);
803 		if (err)
804 			return err;
805 		adap->msi_idx = -((int)s->intrq.abs_id + 1);
806 	}
807 
808 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
809 			       adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
810 	if (err)
811 		t4_free_sge_resources(adap);
812 	return err;
813 }
814 
815 /**
816  *	setup_sge_queues - configure SGE Tx/Rx/response queues
817  *	@adap: the adapter
818  *
819  *	Determines how many sets of SGE queues to use and initializes them.
820  *	We support multiple queue sets per port if we have MSI-X, otherwise
821  *	just one queue set per port.
822  */
823 static int setup_sge_queues(struct adapter *adap)
824 {
825 	int err, i, j;
826 	struct sge *s = &adap->sge;
827 	struct sge_uld_rxq_info *rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
828 	unsigned int cmplqid = 0;
829 
830 	for_each_port(adap, i) {
831 		struct net_device *dev = adap->port[i];
832 		struct port_info *pi = netdev_priv(dev);
833 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
834 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
835 
836 		for (j = 0; j < pi->nqsets; j++, q++) {
837 			if (adap->msi_idx > 0)
838 				adap->msi_idx++;
839 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
840 					       adap->msi_idx, &q->fl,
841 					       t4_ethrx_handler,
842 					       NULL,
843 					       t4_get_mps_bg_map(adap,
844 								 pi->tx_chan));
845 			if (err)
846 				goto freeout;
847 			q->rspq.idx = j;
848 			memset(&q->stats, 0, sizeof(q->stats));
849 		}
850 		for (j = 0; j < pi->nqsets; j++, t++) {
851 			err = t4_sge_alloc_eth_txq(adap, t, dev,
852 					netdev_get_tx_queue(dev, j),
853 					s->fw_evtq.cntxt_id);
854 			if (err)
855 				goto freeout;
856 		}
857 	}
858 
859 	for_each_port(adap, i) {
860 		/* Note that cmplqid below is 0 if we don't
861 		 * have RDMA queues, and that's the right value.
862 		 */
863 		if (rxq_info)
864 			cmplqid	= rxq_info->uldrxq[i].rspq.cntxt_id;
865 
866 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
867 					    s->fw_evtq.cntxt_id, cmplqid);
868 		if (err)
869 			goto freeout;
870 	}
871 
872 	t4_write_reg(adap, is_t4(adap->params.chip) ?
873 				MPS_TRC_RSS_CONTROL_A :
874 				MPS_T5_TRC_RSS_CONTROL_A,
875 		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
876 		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
877 	return 0;
878 freeout:
879 	t4_free_sge_resources(adap);
880 	return err;
881 }
882 
883 /*
884  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
885  * The allocated memory is cleared.
886  */
887 void *t4_alloc_mem(size_t size)
888 {
889 	void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
890 
891 	if (!p)
892 		p = vzalloc(size);
893 	return p;
894 }
895 
896 /*
897  * Free memory allocated through alloc_mem().
898  */
899 void t4_free_mem(void *addr)
900 {
901 	kvfree(addr);
902 }
903 
904 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
905 			     void *accel_priv, select_queue_fallback_t fallback)
906 {
907 	int txq;
908 
909 #ifdef CONFIG_CHELSIO_T4_DCB
910 	/* If a Data Center Bridging has been successfully negotiated on this
911 	 * link then we'll use the skb's priority to map it to a TX Queue.
912 	 * The skb's priority is determined via the VLAN Tag Priority Code
913 	 * Point field.
914 	 */
915 	if (cxgb4_dcb_enabled(dev)) {
916 		u16 vlan_tci;
917 		int err;
918 
919 		err = vlan_get_tag(skb, &vlan_tci);
920 		if (unlikely(err)) {
921 			if (net_ratelimit())
922 				netdev_warn(dev,
923 					    "TX Packet without VLAN Tag on DCB Link\n");
924 			txq = 0;
925 		} else {
926 			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
927 #ifdef CONFIG_CHELSIO_T4_FCOE
928 			if (skb->protocol == htons(ETH_P_FCOE))
929 				txq = skb->priority & 0x7;
930 #endif /* CONFIG_CHELSIO_T4_FCOE */
931 		}
932 		return txq;
933 	}
934 #endif /* CONFIG_CHELSIO_T4_DCB */
935 
936 	if (select_queue) {
937 		txq = (skb_rx_queue_recorded(skb)
938 			? skb_get_rx_queue(skb)
939 			: smp_processor_id());
940 
941 		while (unlikely(txq >= dev->real_num_tx_queues))
942 			txq -= dev->real_num_tx_queues;
943 
944 		return txq;
945 	}
946 
947 	return fallback(dev, skb) % dev->real_num_tx_queues;
948 }
949 
950 static int closest_timer(const struct sge *s, int time)
951 {
952 	int i, delta, match = 0, min_delta = INT_MAX;
953 
954 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
955 		delta = time - s->timer_val[i];
956 		if (delta < 0)
957 			delta = -delta;
958 		if (delta < min_delta) {
959 			min_delta = delta;
960 			match = i;
961 		}
962 	}
963 	return match;
964 }
965 
966 static int closest_thres(const struct sge *s, int thres)
967 {
968 	int i, delta, match = 0, min_delta = INT_MAX;
969 
970 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
971 		delta = thres - s->counter_val[i];
972 		if (delta < 0)
973 			delta = -delta;
974 		if (delta < min_delta) {
975 			min_delta = delta;
976 			match = i;
977 		}
978 	}
979 	return match;
980 }
981 
982 /**
983  *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
984  *	@q: the Rx queue
985  *	@us: the hold-off time in us, or 0 to disable timer
986  *	@cnt: the hold-off packet count, or 0 to disable counter
987  *
988  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
989  *	one of the two needs to be enabled for the queue to generate interrupts.
990  */
991 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
992 			       unsigned int us, unsigned int cnt)
993 {
994 	struct adapter *adap = q->adap;
995 
996 	if ((us | cnt) == 0)
997 		cnt = 1;
998 
999 	if (cnt) {
1000 		int err;
1001 		u32 v, new_idx;
1002 
1003 		new_idx = closest_thres(&adap->sge, cnt);
1004 		if (q->desc && q->pktcnt_idx != new_idx) {
1005 			/* the queue has already been created, update it */
1006 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1007 			    FW_PARAMS_PARAM_X_V(
1008 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1009 			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1010 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1011 					    &v, &new_idx);
1012 			if (err)
1013 				return err;
1014 		}
1015 		q->pktcnt_idx = new_idx;
1016 	}
1017 
1018 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1019 	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1020 	return 0;
1021 }
1022 
1023 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1024 {
1025 	const struct port_info *pi = netdev_priv(dev);
1026 	netdev_features_t changed = dev->features ^ features;
1027 	int err;
1028 
1029 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1030 		return 0;
1031 
1032 	err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1033 			    -1, -1, -1,
1034 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1035 	if (unlikely(err))
1036 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1037 	return err;
1038 }
1039 
1040 static int setup_debugfs(struct adapter *adap)
1041 {
1042 	if (IS_ERR_OR_NULL(adap->debugfs_root))
1043 		return -1;
1044 
1045 #ifdef CONFIG_DEBUG_FS
1046 	t4_setup_debugfs(adap);
1047 #endif
1048 	return 0;
1049 }
1050 
1051 /*
1052  * upper-layer driver support
1053  */
1054 
1055 /*
1056  * Allocate an active-open TID and set it to the supplied value.
1057  */
1058 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1059 {
1060 	int atid = -1;
1061 
1062 	spin_lock_bh(&t->atid_lock);
1063 	if (t->afree) {
1064 		union aopen_entry *p = t->afree;
1065 
1066 		atid = (p - t->atid_tab) + t->atid_base;
1067 		t->afree = p->next;
1068 		p->data = data;
1069 		t->atids_in_use++;
1070 	}
1071 	spin_unlock_bh(&t->atid_lock);
1072 	return atid;
1073 }
1074 EXPORT_SYMBOL(cxgb4_alloc_atid);
1075 
1076 /*
1077  * Release an active-open TID.
1078  */
1079 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1080 {
1081 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1082 
1083 	spin_lock_bh(&t->atid_lock);
1084 	p->next = t->afree;
1085 	t->afree = p;
1086 	t->atids_in_use--;
1087 	spin_unlock_bh(&t->atid_lock);
1088 }
1089 EXPORT_SYMBOL(cxgb4_free_atid);
1090 
1091 /*
1092  * Allocate a server TID and set it to the supplied value.
1093  */
1094 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1095 {
1096 	int stid;
1097 
1098 	spin_lock_bh(&t->stid_lock);
1099 	if (family == PF_INET) {
1100 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1101 		if (stid < t->nstids)
1102 			__set_bit(stid, t->stid_bmap);
1103 		else
1104 			stid = -1;
1105 	} else {
1106 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1107 		if (stid < 0)
1108 			stid = -1;
1109 	}
1110 	if (stid >= 0) {
1111 		t->stid_tab[stid].data = data;
1112 		stid += t->stid_base;
1113 		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1114 		 * This is equivalent to 4 TIDs. With CLIP enabled it
1115 		 * needs 2 TIDs.
1116 		 */
1117 		if (family == PF_INET)
1118 			t->stids_in_use++;
1119 		else
1120 			t->stids_in_use += 2;
1121 	}
1122 	spin_unlock_bh(&t->stid_lock);
1123 	return stid;
1124 }
1125 EXPORT_SYMBOL(cxgb4_alloc_stid);
1126 
1127 /* Allocate a server filter TID and set it to the supplied value.
1128  */
1129 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1130 {
1131 	int stid;
1132 
1133 	spin_lock_bh(&t->stid_lock);
1134 	if (family == PF_INET) {
1135 		stid = find_next_zero_bit(t->stid_bmap,
1136 				t->nstids + t->nsftids, t->nstids);
1137 		if (stid < (t->nstids + t->nsftids))
1138 			__set_bit(stid, t->stid_bmap);
1139 		else
1140 			stid = -1;
1141 	} else {
1142 		stid = -1;
1143 	}
1144 	if (stid >= 0) {
1145 		t->stid_tab[stid].data = data;
1146 		stid -= t->nstids;
1147 		stid += t->sftid_base;
1148 		t->sftids_in_use++;
1149 	}
1150 	spin_unlock_bh(&t->stid_lock);
1151 	return stid;
1152 }
1153 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1154 
1155 /* Release a server TID.
1156  */
1157 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1158 {
1159 	/* Is it a server filter TID? */
1160 	if (t->nsftids && (stid >= t->sftid_base)) {
1161 		stid -= t->sftid_base;
1162 		stid += t->nstids;
1163 	} else {
1164 		stid -= t->stid_base;
1165 	}
1166 
1167 	spin_lock_bh(&t->stid_lock);
1168 	if (family == PF_INET)
1169 		__clear_bit(stid, t->stid_bmap);
1170 	else
1171 		bitmap_release_region(t->stid_bmap, stid, 1);
1172 	t->stid_tab[stid].data = NULL;
1173 	if (stid < t->nstids) {
1174 		if (family == PF_INET)
1175 			t->stids_in_use--;
1176 		else
1177 			t->stids_in_use -= 2;
1178 	} else {
1179 		t->sftids_in_use--;
1180 	}
1181 	spin_unlock_bh(&t->stid_lock);
1182 }
1183 EXPORT_SYMBOL(cxgb4_free_stid);
1184 
1185 /*
1186  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1187  */
1188 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1189 			   unsigned int tid)
1190 {
1191 	struct cpl_tid_release *req;
1192 
1193 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1194 	req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1195 	INIT_TP_WR(req, tid);
1196 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1197 }
1198 
1199 /*
1200  * Queue a TID release request and if necessary schedule a work queue to
1201  * process it.
1202  */
1203 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1204 				    unsigned int tid)
1205 {
1206 	void **p = &t->tid_tab[tid];
1207 	struct adapter *adap = container_of(t, struct adapter, tids);
1208 
1209 	spin_lock_bh(&adap->tid_release_lock);
1210 	*p = adap->tid_release_head;
1211 	/* Low 2 bits encode the Tx channel number */
1212 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1213 	if (!adap->tid_release_task_busy) {
1214 		adap->tid_release_task_busy = true;
1215 		queue_work(adap->workq, &adap->tid_release_task);
1216 	}
1217 	spin_unlock_bh(&adap->tid_release_lock);
1218 }
1219 
1220 /*
1221  * Process the list of pending TID release requests.
1222  */
1223 static void process_tid_release_list(struct work_struct *work)
1224 {
1225 	struct sk_buff *skb;
1226 	struct adapter *adap;
1227 
1228 	adap = container_of(work, struct adapter, tid_release_task);
1229 
1230 	spin_lock_bh(&adap->tid_release_lock);
1231 	while (adap->tid_release_head) {
1232 		void **p = adap->tid_release_head;
1233 		unsigned int chan = (uintptr_t)p & 3;
1234 		p = (void *)p - chan;
1235 
1236 		adap->tid_release_head = *p;
1237 		*p = NULL;
1238 		spin_unlock_bh(&adap->tid_release_lock);
1239 
1240 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1241 					 GFP_KERNEL)))
1242 			schedule_timeout_uninterruptible(1);
1243 
1244 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1245 		t4_ofld_send(adap, skb);
1246 		spin_lock_bh(&adap->tid_release_lock);
1247 	}
1248 	adap->tid_release_task_busy = false;
1249 	spin_unlock_bh(&adap->tid_release_lock);
1250 }
1251 
1252 /*
1253  * Release a TID and inform HW.  If we are unable to allocate the release
1254  * message we defer to a work queue.
1255  */
1256 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1257 {
1258 	struct sk_buff *skb;
1259 	struct adapter *adap = container_of(t, struct adapter, tids);
1260 
1261 	WARN_ON(tid >= t->ntids);
1262 
1263 	if (t->tid_tab[tid]) {
1264 		t->tid_tab[tid] = NULL;
1265 		if (t->hash_base && (tid >= t->hash_base))
1266 			atomic_dec(&t->hash_tids_in_use);
1267 		else
1268 			atomic_dec(&t->tids_in_use);
1269 	}
1270 
1271 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1272 	if (likely(skb)) {
1273 		mk_tid_release(skb, chan, tid);
1274 		t4_ofld_send(adap, skb);
1275 	} else
1276 		cxgb4_queue_tid_release(t, chan, tid);
1277 }
1278 EXPORT_SYMBOL(cxgb4_remove_tid);
1279 
1280 /*
1281  * Allocate and initialize the TID tables.  Returns 0 on success.
1282  */
1283 static int tid_init(struct tid_info *t)
1284 {
1285 	struct adapter *adap = container_of(t, struct adapter, tids);
1286 	unsigned int max_ftids = t->nftids + t->nsftids;
1287 	unsigned int natids = t->natids;
1288 	unsigned int stid_bmap_size;
1289 	unsigned int ftid_bmap_size;
1290 	size_t size;
1291 
1292 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1293 	ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1294 	size = t->ntids * sizeof(*t->tid_tab) +
1295 	       natids * sizeof(*t->atid_tab) +
1296 	       t->nstids * sizeof(*t->stid_tab) +
1297 	       t->nsftids * sizeof(*t->stid_tab) +
1298 	       stid_bmap_size * sizeof(long) +
1299 	       max_ftids * sizeof(*t->ftid_tab) +
1300 	       ftid_bmap_size * sizeof(long);
1301 
1302 	t->tid_tab = t4_alloc_mem(size);
1303 	if (!t->tid_tab)
1304 		return -ENOMEM;
1305 
1306 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1307 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1308 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1309 	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1310 	t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1311 	spin_lock_init(&t->stid_lock);
1312 	spin_lock_init(&t->atid_lock);
1313 	spin_lock_init(&t->ftid_lock);
1314 
1315 	t->stids_in_use = 0;
1316 	t->sftids_in_use = 0;
1317 	t->afree = NULL;
1318 	t->atids_in_use = 0;
1319 	atomic_set(&t->tids_in_use, 0);
1320 	atomic_set(&t->hash_tids_in_use, 0);
1321 
1322 	/* Setup the free list for atid_tab and clear the stid bitmap. */
1323 	if (natids) {
1324 		while (--natids)
1325 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1326 		t->afree = t->atid_tab;
1327 	}
1328 
1329 	if (is_offload(adap)) {
1330 		bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1331 		/* Reserve stid 0 for T4/T5 adapters */
1332 		if (!t->stid_base &&
1333 		    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1334 			__set_bit(0, t->stid_bmap);
1335 	}
1336 
1337 	bitmap_zero(t->ftid_bmap, t->nftids);
1338 	return 0;
1339 }
1340 
1341 /**
1342  *	cxgb4_create_server - create an IP server
1343  *	@dev: the device
1344  *	@stid: the server TID
1345  *	@sip: local IP address to bind server to
1346  *	@sport: the server's TCP port
1347  *	@queue: queue to direct messages from this server to
1348  *
1349  *	Create an IP server for the given port and address.
1350  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1351  */
1352 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1353 			__be32 sip, __be16 sport, __be16 vlan,
1354 			unsigned int queue)
1355 {
1356 	unsigned int chan;
1357 	struct sk_buff *skb;
1358 	struct adapter *adap;
1359 	struct cpl_pass_open_req *req;
1360 	int ret;
1361 
1362 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1363 	if (!skb)
1364 		return -ENOMEM;
1365 
1366 	adap = netdev2adap(dev);
1367 	req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1368 	INIT_TP_WR(req, 0);
1369 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1370 	req->local_port = sport;
1371 	req->peer_port = htons(0);
1372 	req->local_ip = sip;
1373 	req->peer_ip = htonl(0);
1374 	chan = rxq_to_chan(&adap->sge, queue);
1375 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1376 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1377 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1378 	ret = t4_mgmt_tx(adap, skb);
1379 	return net_xmit_eval(ret);
1380 }
1381 EXPORT_SYMBOL(cxgb4_create_server);
1382 
1383 /*	cxgb4_create_server6 - create an IPv6 server
1384  *	@dev: the device
1385  *	@stid: the server TID
1386  *	@sip: local IPv6 address to bind server to
1387  *	@sport: the server's TCP port
1388  *	@queue: queue to direct messages from this server to
1389  *
1390  *	Create an IPv6 server for the given port and address.
1391  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1392  */
1393 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1394 			 const struct in6_addr *sip, __be16 sport,
1395 			 unsigned int queue)
1396 {
1397 	unsigned int chan;
1398 	struct sk_buff *skb;
1399 	struct adapter *adap;
1400 	struct cpl_pass_open_req6 *req;
1401 	int ret;
1402 
1403 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1404 	if (!skb)
1405 		return -ENOMEM;
1406 
1407 	adap = netdev2adap(dev);
1408 	req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1409 	INIT_TP_WR(req, 0);
1410 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1411 	req->local_port = sport;
1412 	req->peer_port = htons(0);
1413 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1414 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1415 	req->peer_ip_hi = cpu_to_be64(0);
1416 	req->peer_ip_lo = cpu_to_be64(0);
1417 	chan = rxq_to_chan(&adap->sge, queue);
1418 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1419 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1420 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1421 	ret = t4_mgmt_tx(adap, skb);
1422 	return net_xmit_eval(ret);
1423 }
1424 EXPORT_SYMBOL(cxgb4_create_server6);
1425 
1426 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1427 			unsigned int queue, bool ipv6)
1428 {
1429 	struct sk_buff *skb;
1430 	struct adapter *adap;
1431 	struct cpl_close_listsvr_req *req;
1432 	int ret;
1433 
1434 	adap = netdev2adap(dev);
1435 
1436 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1437 	if (!skb)
1438 		return -ENOMEM;
1439 
1440 	req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1441 	INIT_TP_WR(req, 0);
1442 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1443 	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1444 				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1445 	ret = t4_mgmt_tx(adap, skb);
1446 	return net_xmit_eval(ret);
1447 }
1448 EXPORT_SYMBOL(cxgb4_remove_server);
1449 
1450 /**
1451  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1452  *	@mtus: the HW MTU table
1453  *	@mtu: the target MTU
1454  *	@idx: index of selected entry in the MTU table
1455  *
1456  *	Returns the index and the value in the HW MTU table that is closest to
1457  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
1458  *	table, in which case that smallest available value is selected.
1459  */
1460 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1461 			    unsigned int *idx)
1462 {
1463 	unsigned int i = 0;
1464 
1465 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1466 		++i;
1467 	if (idx)
1468 		*idx = i;
1469 	return mtus[i];
1470 }
1471 EXPORT_SYMBOL(cxgb4_best_mtu);
1472 
1473 /**
1474  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1475  *     @mtus: the HW MTU table
1476  *     @header_size: Header Size
1477  *     @data_size_max: maximum Data Segment Size
1478  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1479  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1480  *
1481  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1482  *     MTU Table based solely on a Maximum MTU parameter, we break that
1483  *     parameter up into a Header Size and Maximum Data Segment Size, and
1484  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1485  *     the Hardware MTU Table which will result in a Data Segment Size with
1486  *     the requested alignment _and_ that MTU isn't "too far" from the
1487  *     closest MTU, then we'll return that rather than the closest MTU.
1488  */
1489 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1490 				    unsigned short header_size,
1491 				    unsigned short data_size_max,
1492 				    unsigned short data_size_align,
1493 				    unsigned int *mtu_idxp)
1494 {
1495 	unsigned short max_mtu = header_size + data_size_max;
1496 	unsigned short data_size_align_mask = data_size_align - 1;
1497 	int mtu_idx, aligned_mtu_idx;
1498 
1499 	/* Scan the MTU Table till we find an MTU which is larger than our
1500 	 * Maximum MTU or we reach the end of the table.  Along the way,
1501 	 * record the last MTU found, if any, which will result in a Data
1502 	 * Segment Length matching the requested alignment.
1503 	 */
1504 	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1505 		unsigned short data_size = mtus[mtu_idx] - header_size;
1506 
1507 		/* If this MTU minus the Header Size would result in a
1508 		 * Data Segment Size of the desired alignment, remember it.
1509 		 */
1510 		if ((data_size & data_size_align_mask) == 0)
1511 			aligned_mtu_idx = mtu_idx;
1512 
1513 		/* If we're not at the end of the Hardware MTU Table and the
1514 		 * next element is larger than our Maximum MTU, drop out of
1515 		 * the loop.
1516 		 */
1517 		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1518 			break;
1519 	}
1520 
1521 	/* If we fell out of the loop because we ran to the end of the table,
1522 	 * then we just have to use the last [largest] entry.
1523 	 */
1524 	if (mtu_idx == NMTUS)
1525 		mtu_idx--;
1526 
1527 	/* If we found an MTU which resulted in the requested Data Segment
1528 	 * Length alignment and that's "not far" from the largest MTU which is
1529 	 * less than or equal to the maximum MTU, then use that.
1530 	 */
1531 	if (aligned_mtu_idx >= 0 &&
1532 	    mtu_idx - aligned_mtu_idx <= 1)
1533 		mtu_idx = aligned_mtu_idx;
1534 
1535 	/* If the caller has passed in an MTU Index pointer, pass the
1536 	 * MTU Index back.  Return the MTU value.
1537 	 */
1538 	if (mtu_idxp)
1539 		*mtu_idxp = mtu_idx;
1540 	return mtus[mtu_idx];
1541 }
1542 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1543 
1544 /**
1545  *	cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1546  *	@chip: chip type
1547  *	@viid: VI id of the given port
1548  *
1549  *	Return the SMT index for this VI.
1550  */
1551 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1552 {
1553 	/* In T4/T5, SMT contains 256 SMAC entries organized in
1554 	 * 128 rows of 2 entries each.
1555 	 * In T6, SMT contains 256 SMAC entries in 256 rows.
1556 	 * TODO: The below code needs to be updated when we add support
1557 	 * for 256 VFs.
1558 	 */
1559 	if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1560 		return ((viid & 0x7f) << 1);
1561 	else
1562 		return (viid & 0x7f);
1563 }
1564 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1565 
1566 /**
1567  *	cxgb4_port_chan - get the HW channel of a port
1568  *	@dev: the net device for the port
1569  *
1570  *	Return the HW Tx channel of the given port.
1571  */
1572 unsigned int cxgb4_port_chan(const struct net_device *dev)
1573 {
1574 	return netdev2pinfo(dev)->tx_chan;
1575 }
1576 EXPORT_SYMBOL(cxgb4_port_chan);
1577 
1578 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1579 {
1580 	struct adapter *adap = netdev2adap(dev);
1581 	u32 v1, v2, lp_count, hp_count;
1582 
1583 	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1584 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1585 	if (is_t4(adap->params.chip)) {
1586 		lp_count = LP_COUNT_G(v1);
1587 		hp_count = HP_COUNT_G(v1);
1588 	} else {
1589 		lp_count = LP_COUNT_T5_G(v1);
1590 		hp_count = HP_COUNT_T5_G(v2);
1591 	}
1592 	return lpfifo ? lp_count : hp_count;
1593 }
1594 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1595 
1596 /**
1597  *	cxgb4_port_viid - get the VI id of a port
1598  *	@dev: the net device for the port
1599  *
1600  *	Return the VI id of the given port.
1601  */
1602 unsigned int cxgb4_port_viid(const struct net_device *dev)
1603 {
1604 	return netdev2pinfo(dev)->viid;
1605 }
1606 EXPORT_SYMBOL(cxgb4_port_viid);
1607 
1608 /**
1609  *	cxgb4_port_idx - get the index of a port
1610  *	@dev: the net device for the port
1611  *
1612  *	Return the index of the given port.
1613  */
1614 unsigned int cxgb4_port_idx(const struct net_device *dev)
1615 {
1616 	return netdev2pinfo(dev)->port_id;
1617 }
1618 EXPORT_SYMBOL(cxgb4_port_idx);
1619 
1620 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1621 			 struct tp_tcp_stats *v6)
1622 {
1623 	struct adapter *adap = pci_get_drvdata(pdev);
1624 
1625 	spin_lock(&adap->stats_lock);
1626 	t4_tp_get_tcp_stats(adap, v4, v6);
1627 	spin_unlock(&adap->stats_lock);
1628 }
1629 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1630 
1631 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1632 		      const unsigned int *pgsz_order)
1633 {
1634 	struct adapter *adap = netdev2adap(dev);
1635 
1636 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1637 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1638 		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1639 		     HPZ3_V(pgsz_order[3]));
1640 }
1641 EXPORT_SYMBOL(cxgb4_iscsi_init);
1642 
1643 int cxgb4_flush_eq_cache(struct net_device *dev)
1644 {
1645 	struct adapter *adap = netdev2adap(dev);
1646 
1647 	return t4_sge_ctxt_flush(adap, adap->mbox);
1648 }
1649 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1650 
1651 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1652 {
1653 	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1654 	__be64 indices;
1655 	int ret;
1656 
1657 	spin_lock(&adap->win0_lock);
1658 	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1659 			   sizeof(indices), (__be32 *)&indices,
1660 			   T4_MEMORY_READ);
1661 	spin_unlock(&adap->win0_lock);
1662 	if (!ret) {
1663 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1664 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1665 	}
1666 	return ret;
1667 }
1668 
1669 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1670 			u16 size)
1671 {
1672 	struct adapter *adap = netdev2adap(dev);
1673 	u16 hw_pidx, hw_cidx;
1674 	int ret;
1675 
1676 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1677 	if (ret)
1678 		goto out;
1679 
1680 	if (pidx != hw_pidx) {
1681 		u16 delta;
1682 		u32 val;
1683 
1684 		if (pidx >= hw_pidx)
1685 			delta = pidx - hw_pidx;
1686 		else
1687 			delta = size - hw_pidx + pidx;
1688 
1689 		if (is_t4(adap->params.chip))
1690 			val = PIDX_V(delta);
1691 		else
1692 			val = PIDX_T5_V(delta);
1693 		wmb();
1694 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1695 			     QID_V(qid) | val);
1696 	}
1697 out:
1698 	return ret;
1699 }
1700 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1701 
1702 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1703 {
1704 	struct adapter *adap;
1705 	u32 offset, memtype, memaddr;
1706 	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1707 	u32 edc0_end, edc1_end, mc0_end, mc1_end;
1708 	int ret;
1709 
1710 	adap = netdev2adap(dev);
1711 
1712 	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1713 
1714 	/* Figure out where the offset lands in the Memory Type/Address scheme.
1715 	 * This code assumes that the memory is laid out starting at offset 0
1716 	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1717 	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
1718 	 * MC0, and some have both MC0 and MC1.
1719 	 */
1720 	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1721 	edc0_size = EDRAM0_SIZE_G(size) << 20;
1722 	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1723 	edc1_size = EDRAM1_SIZE_G(size) << 20;
1724 	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1725 	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1726 
1727 	edc0_end = edc0_size;
1728 	edc1_end = edc0_end + edc1_size;
1729 	mc0_end = edc1_end + mc0_size;
1730 
1731 	if (offset < edc0_end) {
1732 		memtype = MEM_EDC0;
1733 		memaddr = offset;
1734 	} else if (offset < edc1_end) {
1735 		memtype = MEM_EDC1;
1736 		memaddr = offset - edc0_end;
1737 	} else {
1738 		if (offset < mc0_end) {
1739 			memtype = MEM_MC0;
1740 			memaddr = offset - edc1_end;
1741 		} else if (is_t5(adap->params.chip)) {
1742 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1743 			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1744 			mc1_end = mc0_end + mc1_size;
1745 			if (offset < mc1_end) {
1746 				memtype = MEM_MC1;
1747 				memaddr = offset - mc0_end;
1748 			} else {
1749 				/* offset beyond the end of any memory */
1750 				goto err;
1751 			}
1752 		} else {
1753 			/* T4/T6 only has a single memory channel */
1754 			goto err;
1755 		}
1756 	}
1757 
1758 	spin_lock(&adap->win0_lock);
1759 	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1760 	spin_unlock(&adap->win0_lock);
1761 	return ret;
1762 
1763 err:
1764 	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1765 		stag, offset);
1766 	return -EINVAL;
1767 }
1768 EXPORT_SYMBOL(cxgb4_read_tpte);
1769 
1770 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1771 {
1772 	u32 hi, lo;
1773 	struct adapter *adap;
1774 
1775 	adap = netdev2adap(dev);
1776 	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1777 	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1778 
1779 	return ((u64)hi << 32) | (u64)lo;
1780 }
1781 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1782 
1783 int cxgb4_bar2_sge_qregs(struct net_device *dev,
1784 			 unsigned int qid,
1785 			 enum cxgb4_bar2_qtype qtype,
1786 			 int user,
1787 			 u64 *pbar2_qoffset,
1788 			 unsigned int *pbar2_qid)
1789 {
1790 	return t4_bar2_sge_qregs(netdev2adap(dev),
1791 				 qid,
1792 				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
1793 				  ? T4_BAR2_QTYPE_EGRESS
1794 				  : T4_BAR2_QTYPE_INGRESS),
1795 				 user,
1796 				 pbar2_qoffset,
1797 				 pbar2_qid);
1798 }
1799 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1800 
1801 static struct pci_driver cxgb4_driver;
1802 
1803 static void check_neigh_update(struct neighbour *neigh)
1804 {
1805 	const struct device *parent;
1806 	const struct net_device *netdev = neigh->dev;
1807 
1808 	if (is_vlan_dev(netdev))
1809 		netdev = vlan_dev_real_dev(netdev);
1810 	parent = netdev->dev.parent;
1811 	if (parent && parent->driver == &cxgb4_driver.driver)
1812 		t4_l2t_update(dev_get_drvdata(parent), neigh);
1813 }
1814 
1815 static int netevent_cb(struct notifier_block *nb, unsigned long event,
1816 		       void *data)
1817 {
1818 	switch (event) {
1819 	case NETEVENT_NEIGH_UPDATE:
1820 		check_neigh_update(data);
1821 		break;
1822 	case NETEVENT_REDIRECT:
1823 	default:
1824 		break;
1825 	}
1826 	return 0;
1827 }
1828 
1829 static bool netevent_registered;
1830 static struct notifier_block cxgb4_netevent_nb = {
1831 	.notifier_call = netevent_cb
1832 };
1833 
1834 static void drain_db_fifo(struct adapter *adap, int usecs)
1835 {
1836 	u32 v1, v2, lp_count, hp_count;
1837 
1838 	do {
1839 		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1840 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1841 		if (is_t4(adap->params.chip)) {
1842 			lp_count = LP_COUNT_G(v1);
1843 			hp_count = HP_COUNT_G(v1);
1844 		} else {
1845 			lp_count = LP_COUNT_T5_G(v1);
1846 			hp_count = HP_COUNT_T5_G(v2);
1847 		}
1848 
1849 		if (lp_count == 0 && hp_count == 0)
1850 			break;
1851 		set_current_state(TASK_UNINTERRUPTIBLE);
1852 		schedule_timeout(usecs_to_jiffies(usecs));
1853 	} while (1);
1854 }
1855 
1856 static void disable_txq_db(struct sge_txq *q)
1857 {
1858 	unsigned long flags;
1859 
1860 	spin_lock_irqsave(&q->db_lock, flags);
1861 	q->db_disabled = 1;
1862 	spin_unlock_irqrestore(&q->db_lock, flags);
1863 }
1864 
1865 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1866 {
1867 	spin_lock_irq(&q->db_lock);
1868 	if (q->db_pidx_inc) {
1869 		/* Make sure that all writes to the TX descriptors
1870 		 * are committed before we tell HW about them.
1871 		 */
1872 		wmb();
1873 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1874 			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1875 		q->db_pidx_inc = 0;
1876 	}
1877 	q->db_disabled = 0;
1878 	spin_unlock_irq(&q->db_lock);
1879 }
1880 
1881 static void disable_dbs(struct adapter *adap)
1882 {
1883 	int i;
1884 
1885 	for_each_ethrxq(&adap->sge, i)
1886 		disable_txq_db(&adap->sge.ethtxq[i].q);
1887 	if (is_offload(adap)) {
1888 		struct sge_uld_txq_info *txq_info =
1889 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1890 
1891 		if (txq_info) {
1892 			for_each_ofldtxq(&adap->sge, i) {
1893 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1894 
1895 				disable_txq_db(&txq->q);
1896 			}
1897 		}
1898 	}
1899 	for_each_port(adap, i)
1900 		disable_txq_db(&adap->sge.ctrlq[i].q);
1901 }
1902 
1903 static void enable_dbs(struct adapter *adap)
1904 {
1905 	int i;
1906 
1907 	for_each_ethrxq(&adap->sge, i)
1908 		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1909 	if (is_offload(adap)) {
1910 		struct sge_uld_txq_info *txq_info =
1911 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1912 
1913 		if (txq_info) {
1914 			for_each_ofldtxq(&adap->sge, i) {
1915 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1916 
1917 				enable_txq_db(adap, &txq->q);
1918 			}
1919 		}
1920 	}
1921 	for_each_port(adap, i)
1922 		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
1923 }
1924 
1925 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
1926 {
1927 	enum cxgb4_uld type = CXGB4_ULD_RDMA;
1928 
1929 	if (adap->uld && adap->uld[type].handle)
1930 		adap->uld[type].control(adap->uld[type].handle, cmd);
1931 }
1932 
1933 static void process_db_full(struct work_struct *work)
1934 {
1935 	struct adapter *adap;
1936 
1937 	adap = container_of(work, struct adapter, db_full_task);
1938 
1939 	drain_db_fifo(adap, dbfifo_drain_delay);
1940 	enable_dbs(adap);
1941 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1942 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1943 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1944 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
1945 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
1946 	else
1947 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1948 				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
1949 }
1950 
1951 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
1952 {
1953 	u16 hw_pidx, hw_cidx;
1954 	int ret;
1955 
1956 	spin_lock_irq(&q->db_lock);
1957 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
1958 	if (ret)
1959 		goto out;
1960 	if (q->db_pidx != hw_pidx) {
1961 		u16 delta;
1962 		u32 val;
1963 
1964 		if (q->db_pidx >= hw_pidx)
1965 			delta = q->db_pidx - hw_pidx;
1966 		else
1967 			delta = q->size - hw_pidx + q->db_pidx;
1968 
1969 		if (is_t4(adap->params.chip))
1970 			val = PIDX_V(delta);
1971 		else
1972 			val = PIDX_T5_V(delta);
1973 		wmb();
1974 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1975 			     QID_V(q->cntxt_id) | val);
1976 	}
1977 out:
1978 	q->db_disabled = 0;
1979 	q->db_pidx_inc = 0;
1980 	spin_unlock_irq(&q->db_lock);
1981 	if (ret)
1982 		CH_WARN(adap, "DB drop recovery failed.\n");
1983 }
1984 
1985 static void recover_all_queues(struct adapter *adap)
1986 {
1987 	int i;
1988 
1989 	for_each_ethrxq(&adap->sge, i)
1990 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
1991 	if (is_offload(adap)) {
1992 		struct sge_uld_txq_info *txq_info =
1993 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1994 		if (txq_info) {
1995 			for_each_ofldtxq(&adap->sge, i) {
1996 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1997 
1998 				sync_txq_pidx(adap, &txq->q);
1999 			}
2000 		}
2001 	}
2002 	for_each_port(adap, i)
2003 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2004 }
2005 
2006 static void process_db_drop(struct work_struct *work)
2007 {
2008 	struct adapter *adap;
2009 
2010 	adap = container_of(work, struct adapter, db_drop_task);
2011 
2012 	if (is_t4(adap->params.chip)) {
2013 		drain_db_fifo(adap, dbfifo_drain_delay);
2014 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2015 		drain_db_fifo(adap, dbfifo_drain_delay);
2016 		recover_all_queues(adap);
2017 		drain_db_fifo(adap, dbfifo_drain_delay);
2018 		enable_dbs(adap);
2019 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2020 	} else if (is_t5(adap->params.chip)) {
2021 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2022 		u16 qid = (dropped_db >> 15) & 0x1ffff;
2023 		u16 pidx_inc = dropped_db & 0x1fff;
2024 		u64 bar2_qoffset;
2025 		unsigned int bar2_qid;
2026 		int ret;
2027 
2028 		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2029 					0, &bar2_qoffset, &bar2_qid);
2030 		if (ret)
2031 			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2032 				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2033 		else
2034 			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2035 			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2036 
2037 		/* Re-enable BAR2 WC */
2038 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2039 	}
2040 
2041 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2042 		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2043 }
2044 
2045 void t4_db_full(struct adapter *adap)
2046 {
2047 	if (is_t4(adap->params.chip)) {
2048 		disable_dbs(adap);
2049 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2050 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2051 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2052 		queue_work(adap->workq, &adap->db_full_task);
2053 	}
2054 }
2055 
2056 void t4_db_dropped(struct adapter *adap)
2057 {
2058 	if (is_t4(adap->params.chip)) {
2059 		disable_dbs(adap);
2060 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2061 	}
2062 	queue_work(adap->workq, &adap->db_drop_task);
2063 }
2064 
2065 void t4_register_netevent_notifier(void)
2066 {
2067 	if (!netevent_registered) {
2068 		register_netevent_notifier(&cxgb4_netevent_nb);
2069 		netevent_registered = true;
2070 	}
2071 }
2072 
2073 static void detach_ulds(struct adapter *adap)
2074 {
2075 	unsigned int i;
2076 
2077 	mutex_lock(&uld_mutex);
2078 	list_del(&adap->list_node);
2079 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2080 		if (adap->uld && adap->uld[i].handle) {
2081 			adap->uld[i].state_change(adap->uld[i].handle,
2082 					     CXGB4_STATE_DETACH);
2083 			adap->uld[i].handle = NULL;
2084 		}
2085 	if (netevent_registered && list_empty(&adapter_list)) {
2086 		unregister_netevent_notifier(&cxgb4_netevent_nb);
2087 		netevent_registered = false;
2088 	}
2089 	mutex_unlock(&uld_mutex);
2090 }
2091 
2092 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2093 {
2094 	unsigned int i;
2095 
2096 	mutex_lock(&uld_mutex);
2097 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2098 		if (adap->uld && adap->uld[i].handle)
2099 			adap->uld[i].state_change(adap->uld[i].handle,
2100 						  new_state);
2101 	mutex_unlock(&uld_mutex);
2102 }
2103 
2104 #if IS_ENABLED(CONFIG_IPV6)
2105 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2106 				   unsigned long event, void *data)
2107 {
2108 	struct inet6_ifaddr *ifa = data;
2109 	struct net_device *event_dev = ifa->idev->dev;
2110 	const struct device *parent = NULL;
2111 #if IS_ENABLED(CONFIG_BONDING)
2112 	struct adapter *adap;
2113 #endif
2114 	if (is_vlan_dev(event_dev))
2115 		event_dev = vlan_dev_real_dev(event_dev);
2116 #if IS_ENABLED(CONFIG_BONDING)
2117 	if (event_dev->flags & IFF_MASTER) {
2118 		list_for_each_entry(adap, &adapter_list, list_node) {
2119 			switch (event) {
2120 			case NETDEV_UP:
2121 				cxgb4_clip_get(adap->port[0],
2122 					       (const u32 *)ifa, 1);
2123 				break;
2124 			case NETDEV_DOWN:
2125 				cxgb4_clip_release(adap->port[0],
2126 						   (const u32 *)ifa, 1);
2127 				break;
2128 			default:
2129 				break;
2130 			}
2131 		}
2132 		return NOTIFY_OK;
2133 	}
2134 #endif
2135 
2136 	if (event_dev)
2137 		parent = event_dev->dev.parent;
2138 
2139 	if (parent && parent->driver == &cxgb4_driver.driver) {
2140 		switch (event) {
2141 		case NETDEV_UP:
2142 			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2143 			break;
2144 		case NETDEV_DOWN:
2145 			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2146 			break;
2147 		default:
2148 			break;
2149 		}
2150 	}
2151 	return NOTIFY_OK;
2152 }
2153 
2154 static bool inet6addr_registered;
2155 static struct notifier_block cxgb4_inet6addr_notifier = {
2156 	.notifier_call = cxgb4_inet6addr_handler
2157 };
2158 
2159 static void update_clip(const struct adapter *adap)
2160 {
2161 	int i;
2162 	struct net_device *dev;
2163 	int ret;
2164 
2165 	rcu_read_lock();
2166 
2167 	for (i = 0; i < MAX_NPORTS; i++) {
2168 		dev = adap->port[i];
2169 		ret = 0;
2170 
2171 		if (dev)
2172 			ret = cxgb4_update_root_dev_clip(dev);
2173 
2174 		if (ret < 0)
2175 			break;
2176 	}
2177 	rcu_read_unlock();
2178 }
2179 #endif /* IS_ENABLED(CONFIG_IPV6) */
2180 
2181 /**
2182  *	cxgb_up - enable the adapter
2183  *	@adap: adapter being enabled
2184  *
2185  *	Called when the first port is enabled, this function performs the
2186  *	actions necessary to make an adapter operational, such as completing
2187  *	the initialization of HW modules, and enabling interrupts.
2188  *
2189  *	Must be called with the rtnl lock held.
2190  */
2191 static int cxgb_up(struct adapter *adap)
2192 {
2193 	int err;
2194 
2195 	err = setup_sge_queues(adap);
2196 	if (err)
2197 		goto out;
2198 	err = setup_rss(adap);
2199 	if (err)
2200 		goto freeq;
2201 
2202 	if (adap->flags & USING_MSIX) {
2203 		name_msix_vecs(adap);
2204 		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2205 				  adap->msix_info[0].desc, adap);
2206 		if (err)
2207 			goto irq_err;
2208 		err = request_msix_queue_irqs(adap);
2209 		if (err) {
2210 			free_irq(adap->msix_info[0].vec, adap);
2211 			goto irq_err;
2212 		}
2213 	} else {
2214 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2215 				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2216 				  adap->port[0]->name, adap);
2217 		if (err)
2218 			goto irq_err;
2219 	}
2220 	enable_rx(adap);
2221 	t4_sge_start(adap);
2222 	t4_intr_enable(adap);
2223 	adap->flags |= FULL_INIT_DONE;
2224 	notify_ulds(adap, CXGB4_STATE_UP);
2225 #if IS_ENABLED(CONFIG_IPV6)
2226 	update_clip(adap);
2227 #endif
2228 	/* Initialize hash mac addr list*/
2229 	INIT_LIST_HEAD(&adap->mac_hlist);
2230  out:
2231 	return err;
2232  irq_err:
2233 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2234  freeq:
2235 	t4_free_sge_resources(adap);
2236 	goto out;
2237 }
2238 
2239 static void cxgb_down(struct adapter *adapter)
2240 {
2241 	cancel_work_sync(&adapter->tid_release_task);
2242 	cancel_work_sync(&adapter->db_full_task);
2243 	cancel_work_sync(&adapter->db_drop_task);
2244 	adapter->tid_release_task_busy = false;
2245 	adapter->tid_release_head = NULL;
2246 
2247 	t4_sge_stop(adapter);
2248 	t4_free_sge_resources(adapter);
2249 	adapter->flags &= ~FULL_INIT_DONE;
2250 }
2251 
2252 /*
2253  * net_device operations
2254  */
2255 static int cxgb_open(struct net_device *dev)
2256 {
2257 	int err;
2258 	struct port_info *pi = netdev_priv(dev);
2259 	struct adapter *adapter = pi->adapter;
2260 
2261 	netif_carrier_off(dev);
2262 
2263 	if (!(adapter->flags & FULL_INIT_DONE)) {
2264 		err = cxgb_up(adapter);
2265 		if (err < 0)
2266 			return err;
2267 	}
2268 
2269 	err = link_start(dev);
2270 	if (!err)
2271 		netif_tx_start_all_queues(dev);
2272 	return err;
2273 }
2274 
2275 static int cxgb_close(struct net_device *dev)
2276 {
2277 	struct port_info *pi = netdev_priv(dev);
2278 	struct adapter *adapter = pi->adapter;
2279 
2280 	netif_tx_stop_all_queues(dev);
2281 	netif_carrier_off(dev);
2282 	return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2283 }
2284 
2285 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2286 		__be32 sip, __be16 sport, __be16 vlan,
2287 		unsigned int queue, unsigned char port, unsigned char mask)
2288 {
2289 	int ret;
2290 	struct filter_entry *f;
2291 	struct adapter *adap;
2292 	int i;
2293 	u8 *val;
2294 
2295 	adap = netdev2adap(dev);
2296 
2297 	/* Adjust stid to correct filter index */
2298 	stid -= adap->tids.sftid_base;
2299 	stid += adap->tids.nftids;
2300 
2301 	/* Check to make sure the filter requested is writable ...
2302 	 */
2303 	f = &adap->tids.ftid_tab[stid];
2304 	ret = writable_filter(f);
2305 	if (ret)
2306 		return ret;
2307 
2308 	/* Clear out any old resources being used by the filter before
2309 	 * we start constructing the new filter.
2310 	 */
2311 	if (f->valid)
2312 		clear_filter(adap, f);
2313 
2314 	/* Clear out filter specifications */
2315 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2316 	f->fs.val.lport = cpu_to_be16(sport);
2317 	f->fs.mask.lport  = ~0;
2318 	val = (u8 *)&sip;
2319 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2320 		for (i = 0; i < 4; i++) {
2321 			f->fs.val.lip[i] = val[i];
2322 			f->fs.mask.lip[i] = ~0;
2323 		}
2324 		if (adap->params.tp.vlan_pri_map & PORT_F) {
2325 			f->fs.val.iport = port;
2326 			f->fs.mask.iport = mask;
2327 		}
2328 	}
2329 
2330 	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2331 		f->fs.val.proto = IPPROTO_TCP;
2332 		f->fs.mask.proto = ~0;
2333 	}
2334 
2335 	f->fs.dirsteer = 1;
2336 	f->fs.iq = queue;
2337 	/* Mark filter as locked */
2338 	f->locked = 1;
2339 	f->fs.rpttid = 1;
2340 
2341 	/* Save the actual tid. We need this to get the corresponding
2342 	 * filter entry structure in filter_rpl.
2343 	 */
2344 	f->tid = stid + adap->tids.ftid_base;
2345 	ret = set_filter_wr(adap, stid);
2346 	if (ret) {
2347 		clear_filter(adap, f);
2348 		return ret;
2349 	}
2350 
2351 	return 0;
2352 }
2353 EXPORT_SYMBOL(cxgb4_create_server_filter);
2354 
2355 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2356 		unsigned int queue, bool ipv6)
2357 {
2358 	struct filter_entry *f;
2359 	struct adapter *adap;
2360 
2361 	adap = netdev2adap(dev);
2362 
2363 	/* Adjust stid to correct filter index */
2364 	stid -= adap->tids.sftid_base;
2365 	stid += adap->tids.nftids;
2366 
2367 	f = &adap->tids.ftid_tab[stid];
2368 	/* Unlock the filter */
2369 	f->locked = 0;
2370 
2371 	return delete_filter(adap, stid);
2372 }
2373 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2374 
2375 static void cxgb_get_stats(struct net_device *dev,
2376 			   struct rtnl_link_stats64 *ns)
2377 {
2378 	struct port_stats stats;
2379 	struct port_info *p = netdev_priv(dev);
2380 	struct adapter *adapter = p->adapter;
2381 
2382 	/* Block retrieving statistics during EEH error
2383 	 * recovery. Otherwise, the recovery might fail
2384 	 * and the PCI device will be removed permanently
2385 	 */
2386 	spin_lock(&adapter->stats_lock);
2387 	if (!netif_device_present(dev)) {
2388 		spin_unlock(&adapter->stats_lock);
2389 		return;
2390 	}
2391 	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2392 				 &p->stats_base);
2393 	spin_unlock(&adapter->stats_lock);
2394 
2395 	ns->tx_bytes   = stats.tx_octets;
2396 	ns->tx_packets = stats.tx_frames;
2397 	ns->rx_bytes   = stats.rx_octets;
2398 	ns->rx_packets = stats.rx_frames;
2399 	ns->multicast  = stats.rx_mcast_frames;
2400 
2401 	/* detailed rx_errors */
2402 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2403 			       stats.rx_runt;
2404 	ns->rx_over_errors   = 0;
2405 	ns->rx_crc_errors    = stats.rx_fcs_err;
2406 	ns->rx_frame_errors  = stats.rx_symbol_err;
2407 	ns->rx_dropped	     = stats.rx_ovflow0 + stats.rx_ovflow1 +
2408 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
2409 			       stats.rx_trunc0 + stats.rx_trunc1 +
2410 			       stats.rx_trunc2 + stats.rx_trunc3;
2411 	ns->rx_missed_errors = 0;
2412 
2413 	/* detailed tx_errors */
2414 	ns->tx_aborted_errors   = 0;
2415 	ns->tx_carrier_errors   = 0;
2416 	ns->tx_fifo_errors      = 0;
2417 	ns->tx_heartbeat_errors = 0;
2418 	ns->tx_window_errors    = 0;
2419 
2420 	ns->tx_errors = stats.tx_error_frames;
2421 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2422 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2423 }
2424 
2425 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2426 {
2427 	unsigned int mbox;
2428 	int ret = 0, prtad, devad;
2429 	struct port_info *pi = netdev_priv(dev);
2430 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2431 
2432 	switch (cmd) {
2433 	case SIOCGMIIPHY:
2434 		if (pi->mdio_addr < 0)
2435 			return -EOPNOTSUPP;
2436 		data->phy_id = pi->mdio_addr;
2437 		break;
2438 	case SIOCGMIIREG:
2439 	case SIOCSMIIREG:
2440 		if (mdio_phy_id_is_c45(data->phy_id)) {
2441 			prtad = mdio_phy_id_prtad(data->phy_id);
2442 			devad = mdio_phy_id_devad(data->phy_id);
2443 		} else if (data->phy_id < 32) {
2444 			prtad = data->phy_id;
2445 			devad = 0;
2446 			data->reg_num &= 0x1f;
2447 		} else
2448 			return -EINVAL;
2449 
2450 		mbox = pi->adapter->pf;
2451 		if (cmd == SIOCGMIIREG)
2452 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2453 					 data->reg_num, &data->val_out);
2454 		else
2455 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2456 					 data->reg_num, data->val_in);
2457 		break;
2458 	case SIOCGHWTSTAMP:
2459 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2460 				    sizeof(pi->tstamp_config)) ?
2461 			-EFAULT : 0;
2462 	case SIOCSHWTSTAMP:
2463 		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2464 				   sizeof(pi->tstamp_config)))
2465 			return -EFAULT;
2466 
2467 		switch (pi->tstamp_config.rx_filter) {
2468 		case HWTSTAMP_FILTER_NONE:
2469 			pi->rxtstamp = false;
2470 			break;
2471 		case HWTSTAMP_FILTER_ALL:
2472 			pi->rxtstamp = true;
2473 			break;
2474 		default:
2475 			pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
2476 			return -ERANGE;
2477 		}
2478 
2479 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2480 				    sizeof(pi->tstamp_config)) ?
2481 			-EFAULT : 0;
2482 	default:
2483 		return -EOPNOTSUPP;
2484 	}
2485 	return ret;
2486 }
2487 
2488 static void cxgb_set_rxmode(struct net_device *dev)
2489 {
2490 	/* unfortunately we can't return errors to the stack */
2491 	set_rxmode(dev, -1, false);
2492 }
2493 
2494 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2495 {
2496 	int ret;
2497 	struct port_info *pi = netdev_priv(dev);
2498 
2499 	ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2500 			    -1, -1, -1, true);
2501 	if (!ret)
2502 		dev->mtu = new_mtu;
2503 	return ret;
2504 }
2505 
2506 #ifdef CONFIG_PCI_IOV
2507 static int dummy_open(struct net_device *dev)
2508 {
2509 	/* Turn carrier off since we don't have to transmit anything on this
2510 	 * interface.
2511 	 */
2512 	netif_carrier_off(dev);
2513 	return 0;
2514 }
2515 
2516 /* Fill MAC address that will be assigned by the FW */
2517 static void fill_vf_station_mac_addr(struct adapter *adap)
2518 {
2519 	unsigned int i;
2520 	u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2521 	int err;
2522 	u8 *na;
2523 	u16 a, b;
2524 
2525 	err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2526 	if (!err) {
2527 		na = adap->params.vpd.na;
2528 		for (i = 0; i < ETH_ALEN; i++)
2529 			hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2530 				      hex2val(na[2 * i + 1]));
2531 		a = (hw_addr[0] << 8) | hw_addr[1];
2532 		b = (hw_addr[1] << 8) | hw_addr[2];
2533 		a ^= b;
2534 		a |= 0x0200;    /* locally assigned Ethernet MAC address */
2535 		a &= ~0x0100;   /* not a multicast Ethernet MAC address */
2536 		macaddr[0] = a >> 8;
2537 		macaddr[1] = a & 0xff;
2538 
2539 		for (i = 2; i < 5; i++)
2540 			macaddr[i] = hw_addr[i + 1];
2541 
2542 		for (i = 0; i < adap->num_vfs; i++) {
2543 			macaddr[5] = adap->pf * 16 + i;
2544 			ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr);
2545 		}
2546 	}
2547 }
2548 
2549 static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2550 {
2551 	struct port_info *pi = netdev_priv(dev);
2552 	struct adapter *adap = pi->adapter;
2553 	int ret;
2554 
2555 	/* verify MAC addr is valid */
2556 	if (!is_valid_ether_addr(mac)) {
2557 		dev_err(pi->adapter->pdev_dev,
2558 			"Invalid Ethernet address %pM for VF %d\n",
2559 			mac, vf);
2560 		return -EINVAL;
2561 	}
2562 
2563 	dev_info(pi->adapter->pdev_dev,
2564 		 "Setting MAC %pM on VF %d\n", mac, vf);
2565 	ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2566 	if (!ret)
2567 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2568 	return ret;
2569 }
2570 
2571 static int cxgb_get_vf_config(struct net_device *dev,
2572 			      int vf, struct ifla_vf_info *ivi)
2573 {
2574 	struct port_info *pi = netdev_priv(dev);
2575 	struct adapter *adap = pi->adapter;
2576 
2577 	if (vf >= adap->num_vfs)
2578 		return -EINVAL;
2579 	ivi->vf = vf;
2580 	ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr);
2581 	return 0;
2582 }
2583 
2584 static int cxgb_get_phys_port_id(struct net_device *dev,
2585 				 struct netdev_phys_item_id *ppid)
2586 {
2587 	struct port_info *pi = netdev_priv(dev);
2588 	unsigned int phy_port_id;
2589 
2590 	phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2591 	ppid->id_len = sizeof(phy_port_id);
2592 	memcpy(ppid->id, &phy_port_id, ppid->id_len);
2593 	return 0;
2594 }
2595 
2596 #endif
2597 
2598 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2599 {
2600 	int ret;
2601 	struct sockaddr *addr = p;
2602 	struct port_info *pi = netdev_priv(dev);
2603 
2604 	if (!is_valid_ether_addr(addr->sa_data))
2605 		return -EADDRNOTAVAIL;
2606 
2607 	ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2608 			    pi->xact_addr_filt, addr->sa_data, true, true);
2609 	if (ret < 0)
2610 		return ret;
2611 
2612 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2613 	pi->xact_addr_filt = ret;
2614 	return 0;
2615 }
2616 
2617 #ifdef CONFIG_NET_POLL_CONTROLLER
2618 static void cxgb_netpoll(struct net_device *dev)
2619 {
2620 	struct port_info *pi = netdev_priv(dev);
2621 	struct adapter *adap = pi->adapter;
2622 
2623 	if (adap->flags & USING_MSIX) {
2624 		int i;
2625 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2626 
2627 		for (i = pi->nqsets; i; i--, rx++)
2628 			t4_sge_intr_msix(0, &rx->rspq);
2629 	} else
2630 		t4_intr_handler(adap)(0, adap);
2631 }
2632 #endif
2633 
2634 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
2635 {
2636 	struct port_info *pi = netdev_priv(dev);
2637 	struct adapter *adap = pi->adapter;
2638 	struct sched_class *e;
2639 	struct ch_sched_params p;
2640 	struct ch_sched_queue qe;
2641 	u32 req_rate;
2642 	int err = 0;
2643 
2644 	if (!can_sched(dev))
2645 		return -ENOTSUPP;
2646 
2647 	if (index < 0 || index > pi->nqsets - 1)
2648 		return -EINVAL;
2649 
2650 	if (!(adap->flags & FULL_INIT_DONE)) {
2651 		dev_err(adap->pdev_dev,
2652 			"Failed to rate limit on queue %d. Link Down?\n",
2653 			index);
2654 		return -EINVAL;
2655 	}
2656 
2657 	/* Convert from Mbps to Kbps */
2658 	req_rate = rate << 10;
2659 
2660 	/* Max rate is 10 Gbps */
2661 	if (req_rate >= SCHED_MAX_RATE_KBPS) {
2662 		dev_err(adap->pdev_dev,
2663 			"Invalid rate %u Mbps, Max rate is %u Gbps\n",
2664 			rate, SCHED_MAX_RATE_KBPS);
2665 		return -ERANGE;
2666 	}
2667 
2668 	/* First unbind the queue from any existing class */
2669 	memset(&qe, 0, sizeof(qe));
2670 	qe.queue = index;
2671 	qe.class = SCHED_CLS_NONE;
2672 
2673 	err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
2674 	if (err) {
2675 		dev_err(adap->pdev_dev,
2676 			"Unbinding Queue %d on port %d fail. Err: %d\n",
2677 			index, pi->port_id, err);
2678 		return err;
2679 	}
2680 
2681 	/* Queue already unbound */
2682 	if (!req_rate)
2683 		return 0;
2684 
2685 	/* Fetch any available unused or matching scheduling class */
2686 	memset(&p, 0, sizeof(p));
2687 	p.type = SCHED_CLASS_TYPE_PACKET;
2688 	p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
2689 	p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
2690 	p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
2691 	p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
2692 	p.u.params.channel  = pi->tx_chan;
2693 	p.u.params.class    = SCHED_CLS_NONE;
2694 	p.u.params.minrate  = 0;
2695 	p.u.params.maxrate  = req_rate;
2696 	p.u.params.weight   = 0;
2697 	p.u.params.pktsize  = dev->mtu;
2698 
2699 	e = cxgb4_sched_class_alloc(dev, &p);
2700 	if (!e)
2701 		return -ENOMEM;
2702 
2703 	/* Bind the queue to a scheduling class */
2704 	memset(&qe, 0, sizeof(qe));
2705 	qe.queue = index;
2706 	qe.class = e->idx;
2707 
2708 	err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
2709 	if (err)
2710 		dev_err(adap->pdev_dev,
2711 			"Queue rate limiting failed. Err: %d\n", err);
2712 	return err;
2713 }
2714 
2715 static int cxgb_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
2716 			 struct tc_to_netdev *tc)
2717 {
2718 	struct port_info *pi = netdev2pinfo(dev);
2719 	struct adapter *adap = netdev2adap(dev);
2720 
2721 	if (!(adap->flags & FULL_INIT_DONE)) {
2722 		dev_err(adap->pdev_dev,
2723 			"Failed to setup tc on port %d. Link Down?\n",
2724 			pi->port_id);
2725 		return -EINVAL;
2726 	}
2727 
2728 	if (TC_H_MAJ(handle) == TC_H_MAJ(TC_H_INGRESS) &&
2729 	    tc->type == TC_SETUP_CLSU32) {
2730 		switch (tc->cls_u32->command) {
2731 		case TC_CLSU32_NEW_KNODE:
2732 		case TC_CLSU32_REPLACE_KNODE:
2733 			return cxgb4_config_knode(dev, proto, tc->cls_u32);
2734 		case TC_CLSU32_DELETE_KNODE:
2735 			return cxgb4_delete_knode(dev, proto, tc->cls_u32);
2736 		default:
2737 			return -EOPNOTSUPP;
2738 		}
2739 	}
2740 
2741 	return -EOPNOTSUPP;
2742 }
2743 
2744 static const struct net_device_ops cxgb4_netdev_ops = {
2745 	.ndo_open             = cxgb_open,
2746 	.ndo_stop             = cxgb_close,
2747 	.ndo_start_xmit       = t4_eth_xmit,
2748 	.ndo_select_queue     =	cxgb_select_queue,
2749 	.ndo_get_stats64      = cxgb_get_stats,
2750 	.ndo_set_rx_mode      = cxgb_set_rxmode,
2751 	.ndo_set_mac_address  = cxgb_set_mac_addr,
2752 	.ndo_set_features     = cxgb_set_features,
2753 	.ndo_validate_addr    = eth_validate_addr,
2754 	.ndo_do_ioctl         = cxgb_ioctl,
2755 	.ndo_change_mtu       = cxgb_change_mtu,
2756 #ifdef CONFIG_NET_POLL_CONTROLLER
2757 	.ndo_poll_controller  = cxgb_netpoll,
2758 #endif
2759 #ifdef CONFIG_CHELSIO_T4_FCOE
2760 	.ndo_fcoe_enable      = cxgb_fcoe_enable,
2761 	.ndo_fcoe_disable     = cxgb_fcoe_disable,
2762 #endif /* CONFIG_CHELSIO_T4_FCOE */
2763 	.ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
2764 	.ndo_setup_tc         = cxgb_setup_tc,
2765 };
2766 
2767 #ifdef CONFIG_PCI_IOV
2768 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
2769 	.ndo_open             = dummy_open,
2770 	.ndo_set_vf_mac       = cxgb_set_vf_mac,
2771 	.ndo_get_vf_config    = cxgb_get_vf_config,
2772 	.ndo_get_phys_port_id = cxgb_get_phys_port_id,
2773 };
2774 #endif
2775 
2776 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2777 {
2778 	struct adapter *adapter = netdev2adap(dev);
2779 
2780 	strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
2781 	strlcpy(info->version, cxgb4_driver_version,
2782 		sizeof(info->version));
2783 	strlcpy(info->bus_info, pci_name(adapter->pdev),
2784 		sizeof(info->bus_info));
2785 }
2786 
2787 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
2788 	.get_drvinfo       = get_drvinfo,
2789 };
2790 
2791 void t4_fatal_err(struct adapter *adap)
2792 {
2793 	int port;
2794 
2795 	/* Disable the SGE since ULDs are going to free resources that
2796 	 * could be exposed to the adapter.  RDMA MWs for example...
2797 	 */
2798 	t4_shutdown_adapter(adap);
2799 	for_each_port(adap, port) {
2800 		struct net_device *dev = adap->port[port];
2801 
2802 		/* If we get here in very early initialization the network
2803 		 * devices may not have been set up yet.
2804 		 */
2805 		if (!dev)
2806 			continue;
2807 
2808 		netif_tx_stop_all_queues(dev);
2809 		netif_carrier_off(dev);
2810 	}
2811 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
2812 }
2813 
2814 static void setup_memwin(struct adapter *adap)
2815 {
2816 	u32 nic_win_base = t4_get_util_window(adap);
2817 
2818 	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
2819 }
2820 
2821 static void setup_memwin_rdma(struct adapter *adap)
2822 {
2823 	if (adap->vres.ocq.size) {
2824 		u32 start;
2825 		unsigned int sz_kb;
2826 
2827 		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
2828 		start &= PCI_BASE_ADDRESS_MEM_MASK;
2829 		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
2830 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
2831 		t4_write_reg(adap,
2832 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
2833 			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
2834 		t4_write_reg(adap,
2835 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
2836 			     adap->vres.ocq.start);
2837 		t4_read_reg(adap,
2838 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
2839 	}
2840 }
2841 
2842 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
2843 {
2844 	u32 v;
2845 	int ret;
2846 
2847 	/* get device capabilities */
2848 	memset(c, 0, sizeof(*c));
2849 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2850 			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
2851 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
2852 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
2853 	if (ret < 0)
2854 		return ret;
2855 
2856 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2857 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
2858 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
2859 	if (ret < 0)
2860 		return ret;
2861 
2862 	ret = t4_config_glbl_rss(adap, adap->pf,
2863 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
2864 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
2865 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
2866 	if (ret < 0)
2867 		return ret;
2868 
2869 	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
2870 			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
2871 			  FW_CMD_CAP_PF);
2872 	if (ret < 0)
2873 		return ret;
2874 
2875 	t4_sge_init(adap);
2876 
2877 	/* tweak some settings */
2878 	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
2879 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
2880 	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
2881 	v = t4_read_reg(adap, TP_PIO_DATA_A);
2882 	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
2883 
2884 	/* first 4 Tx modulation queues point to consecutive Tx channels */
2885 	adap->params.tp.tx_modq_map = 0xE4;
2886 	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
2887 		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
2888 
2889 	/* associate each Tx modulation queue with consecutive Tx channels */
2890 	v = 0x84218421;
2891 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2892 			  &v, 1, TP_TX_SCHED_HDR_A);
2893 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2894 			  &v, 1, TP_TX_SCHED_FIFO_A);
2895 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2896 			  &v, 1, TP_TX_SCHED_PCMD_A);
2897 
2898 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
2899 	if (is_offload(adap)) {
2900 		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
2901 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2902 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2903 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2904 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
2905 		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
2906 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2907 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2908 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2909 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
2910 	}
2911 
2912 	/* get basic stuff going */
2913 	return t4_early_init(adap, adap->pf);
2914 }
2915 
2916 /*
2917  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
2918  */
2919 #define MAX_ATIDS 8192U
2920 
2921 /*
2922  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
2923  *
2924  * If the firmware we're dealing with has Configuration File support, then
2925  * we use that to perform all configuration
2926  */
2927 
2928 /*
2929  * Tweak configuration based on module parameters, etc.  Most of these have
2930  * defaults assigned to them by Firmware Configuration Files (if we're using
2931  * them) but need to be explicitly set if we're using hard-coded
2932  * initialization.  But even in the case of using Firmware Configuration
2933  * Files, we'd like to expose the ability to change these via module
2934  * parameters so these are essentially common tweaks/settings for
2935  * Configuration Files and hard-coded initialization ...
2936  */
2937 static int adap_init0_tweaks(struct adapter *adapter)
2938 {
2939 	/*
2940 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
2941 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
2942 	 * 64B Cache Line Size ...
2943 	 */
2944 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
2945 
2946 	/*
2947 	 * Process module parameters which affect early initialization.
2948 	 */
2949 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
2950 		dev_err(&adapter->pdev->dev,
2951 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
2952 			rx_dma_offset);
2953 		rx_dma_offset = 2;
2954 	}
2955 	t4_set_reg_field(adapter, SGE_CONTROL_A,
2956 			 PKTSHIFT_V(PKTSHIFT_M),
2957 			 PKTSHIFT_V(rx_dma_offset));
2958 
2959 	/*
2960 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
2961 	 * adds the pseudo header itself.
2962 	 */
2963 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
2964 			       CSUM_HAS_PSEUDO_HDR_F, 0);
2965 
2966 	return 0;
2967 }
2968 
2969 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
2970  * unto themselves and they contain their own firmware to perform their
2971  * tasks ...
2972  */
2973 static int phy_aq1202_version(const u8 *phy_fw_data,
2974 			      size_t phy_fw_size)
2975 {
2976 	int offset;
2977 
2978 	/* At offset 0x8 you're looking for the primary image's
2979 	 * starting offset which is 3 Bytes wide
2980 	 *
2981 	 * At offset 0xa of the primary image, you look for the offset
2982 	 * of the DRAM segment which is 3 Bytes wide.
2983 	 *
2984 	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
2985 	 * wide
2986 	 */
2987 	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
2988 	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
2989 	#define le24(__p) (le16(__p) | ((__p)[2] << 16))
2990 
2991 	offset = le24(phy_fw_data + 0x8) << 12;
2992 	offset = le24(phy_fw_data + offset + 0xa);
2993 	return be16(phy_fw_data + offset + 0x27e);
2994 
2995 	#undef be16
2996 	#undef le16
2997 	#undef le24
2998 }
2999 
3000 static struct info_10gbt_phy_fw {
3001 	unsigned int phy_fw_id;		/* PCI Device ID */
3002 	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
3003 	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3004 	int phy_flash;			/* Has FLASH for PHY Firmware */
3005 } phy_info_array[] = {
3006 	{
3007 		PHY_AQ1202_DEVICEID,
3008 		PHY_AQ1202_FIRMWARE,
3009 		phy_aq1202_version,
3010 		1,
3011 	},
3012 	{
3013 		PHY_BCM84834_DEVICEID,
3014 		PHY_BCM84834_FIRMWARE,
3015 		NULL,
3016 		0,
3017 	},
3018 	{ 0, NULL, NULL },
3019 };
3020 
3021 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3022 {
3023 	int i;
3024 
3025 	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3026 		if (phy_info_array[i].phy_fw_id == devid)
3027 			return &phy_info_array[i];
3028 	}
3029 	return NULL;
3030 }
3031 
3032 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3033  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3034  * we return a negative error number.  If we transfer new firmware we return 1
3035  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3036  */
3037 static int adap_init0_phy(struct adapter *adap)
3038 {
3039 	const struct firmware *phyf;
3040 	int ret;
3041 	struct info_10gbt_phy_fw *phy_info;
3042 
3043 	/* Use the device ID to determine which PHY file to flash.
3044 	 */
3045 	phy_info = find_phy_info(adap->pdev->device);
3046 	if (!phy_info) {
3047 		dev_warn(adap->pdev_dev,
3048 			 "No PHY Firmware file found for this PHY\n");
3049 		return -EOPNOTSUPP;
3050 	}
3051 
3052 	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3053 	 * use that. The adapter firmware provides us with a memory buffer
3054 	 * where we can load a PHY firmware file from the host if we want to
3055 	 * override the PHY firmware File in flash.
3056 	 */
3057 	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3058 				      adap->pdev_dev);
3059 	if (ret < 0) {
3060 		/* For adapters without FLASH attached to PHY for their
3061 		 * firmware, it's obviously a fatal error if we can't get the
3062 		 * firmware to the adapter.  For adapters with PHY firmware
3063 		 * FLASH storage, it's worth a warning if we can't find the
3064 		 * PHY Firmware but we'll neuter the error ...
3065 		 */
3066 		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3067 			"/lib/firmware/%s, error %d\n",
3068 			phy_info->phy_fw_file, -ret);
3069 		if (phy_info->phy_flash) {
3070 			int cur_phy_fw_ver = 0;
3071 
3072 			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3073 			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3074 				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3075 			ret = 0;
3076 		}
3077 
3078 		return ret;
3079 	}
3080 
3081 	/* Load PHY Firmware onto adapter.
3082 	 */
3083 	ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3084 			     phy_info->phy_fw_version,
3085 			     (u8 *)phyf->data, phyf->size);
3086 	if (ret < 0)
3087 		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3088 			-ret);
3089 	else if (ret > 0) {
3090 		int new_phy_fw_ver = 0;
3091 
3092 		if (phy_info->phy_fw_version)
3093 			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3094 								  phyf->size);
3095 		dev_info(adap->pdev_dev, "Successfully transferred PHY "
3096 			 "Firmware /lib/firmware/%s, version %#x\n",
3097 			 phy_info->phy_fw_file, new_phy_fw_ver);
3098 	}
3099 
3100 	release_firmware(phyf);
3101 
3102 	return ret;
3103 }
3104 
3105 /*
3106  * Attempt to initialize the adapter via a Firmware Configuration File.
3107  */
3108 static int adap_init0_config(struct adapter *adapter, int reset)
3109 {
3110 	struct fw_caps_config_cmd caps_cmd;
3111 	const struct firmware *cf;
3112 	unsigned long mtype = 0, maddr = 0;
3113 	u32 finiver, finicsum, cfcsum;
3114 	int ret;
3115 	int config_issued = 0;
3116 	char *fw_config_file, fw_config_file_path[256];
3117 	char *config_name = NULL;
3118 
3119 	/*
3120 	 * Reset device if necessary.
3121 	 */
3122 	if (reset) {
3123 		ret = t4_fw_reset(adapter, adapter->mbox,
3124 				  PIORSTMODE_F | PIORST_F);
3125 		if (ret < 0)
3126 			goto bye;
3127 	}
3128 
3129 	/* If this is a 10Gb/s-BT adapter make sure the chip-external
3130 	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3131 	 * to be performed after any global adapter RESET above since some
3132 	 * PHYs only have local RAM copies of the PHY firmware.
3133 	 */
3134 	if (is_10gbt_device(adapter->pdev->device)) {
3135 		ret = adap_init0_phy(adapter);
3136 		if (ret < 0)
3137 			goto bye;
3138 	}
3139 	/*
3140 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3141 	 * then use that.  Otherwise, use the configuration file stored
3142 	 * in the adapter flash ...
3143 	 */
3144 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3145 	case CHELSIO_T4:
3146 		fw_config_file = FW4_CFNAME;
3147 		break;
3148 	case CHELSIO_T5:
3149 		fw_config_file = FW5_CFNAME;
3150 		break;
3151 	case CHELSIO_T6:
3152 		fw_config_file = FW6_CFNAME;
3153 		break;
3154 	default:
3155 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3156 		       adapter->pdev->device);
3157 		ret = -EINVAL;
3158 		goto bye;
3159 	}
3160 
3161 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3162 	if (ret < 0) {
3163 		config_name = "On FLASH";
3164 		mtype = FW_MEMTYPE_CF_FLASH;
3165 		maddr = t4_flash_cfg_addr(adapter);
3166 	} else {
3167 		u32 params[7], val[7];
3168 
3169 		sprintf(fw_config_file_path,
3170 			"/lib/firmware/%s", fw_config_file);
3171 		config_name = fw_config_file_path;
3172 
3173 		if (cf->size >= FLASH_CFG_MAX_SIZE)
3174 			ret = -ENOMEM;
3175 		else {
3176 			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3177 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3178 			ret = t4_query_params(adapter, adapter->mbox,
3179 					      adapter->pf, 0, 1, params, val);
3180 			if (ret == 0) {
3181 				/*
3182 				 * For t4_memory_rw() below addresses and
3183 				 * sizes have to be in terms of multiples of 4
3184 				 * bytes.  So, if the Configuration File isn't
3185 				 * a multiple of 4 bytes in length we'll have
3186 				 * to write that out separately since we can't
3187 				 * guarantee that the bytes following the
3188 				 * residual byte in the buffer returned by
3189 				 * request_firmware() are zeroed out ...
3190 				 */
3191 				size_t resid = cf->size & 0x3;
3192 				size_t size = cf->size & ~0x3;
3193 				__be32 *data = (__be32 *)cf->data;
3194 
3195 				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3196 				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3197 
3198 				spin_lock(&adapter->win0_lock);
3199 				ret = t4_memory_rw(adapter, 0, mtype, maddr,
3200 						   size, data, T4_MEMORY_WRITE);
3201 				if (ret == 0 && resid != 0) {
3202 					union {
3203 						__be32 word;
3204 						char buf[4];
3205 					} last;
3206 					int i;
3207 
3208 					last.word = data[size >> 2];
3209 					for (i = resid; i < 4; i++)
3210 						last.buf[i] = 0;
3211 					ret = t4_memory_rw(adapter, 0, mtype,
3212 							   maddr + size,
3213 							   4, &last.word,
3214 							   T4_MEMORY_WRITE);
3215 				}
3216 				spin_unlock(&adapter->win0_lock);
3217 			}
3218 		}
3219 
3220 		release_firmware(cf);
3221 		if (ret)
3222 			goto bye;
3223 	}
3224 
3225 	/*
3226 	 * Issue a Capability Configuration command to the firmware to get it
3227 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
3228 	 * because we want the ability to modify various features after we've
3229 	 * processed the configuration file ...
3230 	 */
3231 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3232 	caps_cmd.op_to_write =
3233 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3234 		      FW_CMD_REQUEST_F |
3235 		      FW_CMD_READ_F);
3236 	caps_cmd.cfvalid_to_len16 =
3237 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3238 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3239 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3240 		      FW_LEN16(caps_cmd));
3241 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3242 			 &caps_cmd);
3243 
3244 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3245 	 * Configuration File in FLASH), our last gasp effort is to use the
3246 	 * Firmware Configuration File which is embedded in the firmware.  A
3247 	 * very few early versions of the firmware didn't have one embedded
3248 	 * but we can ignore those.
3249 	 */
3250 	if (ret == -ENOENT) {
3251 		memset(&caps_cmd, 0, sizeof(caps_cmd));
3252 		caps_cmd.op_to_write =
3253 			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3254 					FW_CMD_REQUEST_F |
3255 					FW_CMD_READ_F);
3256 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3257 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3258 				sizeof(caps_cmd), &caps_cmd);
3259 		config_name = "Firmware Default";
3260 	}
3261 
3262 	config_issued = 1;
3263 	if (ret < 0)
3264 		goto bye;
3265 
3266 	finiver = ntohl(caps_cmd.finiver);
3267 	finicsum = ntohl(caps_cmd.finicsum);
3268 	cfcsum = ntohl(caps_cmd.cfcsum);
3269 	if (finicsum != cfcsum)
3270 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3271 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3272 			 finicsum, cfcsum);
3273 
3274 	/*
3275 	 * And now tell the firmware to use the configuration we just loaded.
3276 	 */
3277 	caps_cmd.op_to_write =
3278 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3279 		      FW_CMD_REQUEST_F |
3280 		      FW_CMD_WRITE_F);
3281 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3282 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3283 			 NULL);
3284 	if (ret < 0)
3285 		goto bye;
3286 
3287 	/*
3288 	 * Tweak configuration based on system architecture, module
3289 	 * parameters, etc.
3290 	 */
3291 	ret = adap_init0_tweaks(adapter);
3292 	if (ret < 0)
3293 		goto bye;
3294 
3295 	/*
3296 	 * And finally tell the firmware to initialize itself using the
3297 	 * parameters from the Configuration File.
3298 	 */
3299 	ret = t4_fw_initialize(adapter, adapter->mbox);
3300 	if (ret < 0)
3301 		goto bye;
3302 
3303 	/* Emit Firmware Configuration File information and return
3304 	 * successfully.
3305 	 */
3306 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3307 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3308 		 config_name, finiver, cfcsum);
3309 	return 0;
3310 
3311 	/*
3312 	 * Something bad happened.  Return the error ...  (If the "error"
3313 	 * is that there's no Configuration File on the adapter we don't
3314 	 * want to issue a warning since this is fairly common.)
3315 	 */
3316 bye:
3317 	if (config_issued && ret != -ENOENT)
3318 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3319 			 config_name, -ret);
3320 	return ret;
3321 }
3322 
3323 static struct fw_info fw_info_array[] = {
3324 	{
3325 		.chip = CHELSIO_T4,
3326 		.fs_name = FW4_CFNAME,
3327 		.fw_mod_name = FW4_FNAME,
3328 		.fw_hdr = {
3329 			.chip = FW_HDR_CHIP_T4,
3330 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3331 			.intfver_nic = FW_INTFVER(T4, NIC),
3332 			.intfver_vnic = FW_INTFVER(T4, VNIC),
3333 			.intfver_ri = FW_INTFVER(T4, RI),
3334 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
3335 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
3336 		},
3337 	}, {
3338 		.chip = CHELSIO_T5,
3339 		.fs_name = FW5_CFNAME,
3340 		.fw_mod_name = FW5_FNAME,
3341 		.fw_hdr = {
3342 			.chip = FW_HDR_CHIP_T5,
3343 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3344 			.intfver_nic = FW_INTFVER(T5, NIC),
3345 			.intfver_vnic = FW_INTFVER(T5, VNIC),
3346 			.intfver_ri = FW_INTFVER(T5, RI),
3347 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
3348 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
3349 		},
3350 	}, {
3351 		.chip = CHELSIO_T6,
3352 		.fs_name = FW6_CFNAME,
3353 		.fw_mod_name = FW6_FNAME,
3354 		.fw_hdr = {
3355 			.chip = FW_HDR_CHIP_T6,
3356 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3357 			.intfver_nic = FW_INTFVER(T6, NIC),
3358 			.intfver_vnic = FW_INTFVER(T6, VNIC),
3359 			.intfver_ofld = FW_INTFVER(T6, OFLD),
3360 			.intfver_ri = FW_INTFVER(T6, RI),
3361 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3362 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
3363 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3364 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
3365 		},
3366 	}
3367 
3368 };
3369 
3370 static struct fw_info *find_fw_info(int chip)
3371 {
3372 	int i;
3373 
3374 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3375 		if (fw_info_array[i].chip == chip)
3376 			return &fw_info_array[i];
3377 	}
3378 	return NULL;
3379 }
3380 
3381 /*
3382  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3383  */
3384 static int adap_init0(struct adapter *adap)
3385 {
3386 	int ret;
3387 	u32 v, port_vec;
3388 	enum dev_state state;
3389 	u32 params[7], val[7];
3390 	struct fw_caps_config_cmd caps_cmd;
3391 	int reset = 1;
3392 
3393 	/* Grab Firmware Device Log parameters as early as possible so we have
3394 	 * access to it for debugging, etc.
3395 	 */
3396 	ret = t4_init_devlog_params(adap);
3397 	if (ret < 0)
3398 		return ret;
3399 
3400 	/* Contact FW, advertising Master capability */
3401 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
3402 			  is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
3403 	if (ret < 0) {
3404 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3405 			ret);
3406 		return ret;
3407 	}
3408 	if (ret == adap->mbox)
3409 		adap->flags |= MASTER_PF;
3410 
3411 	/*
3412 	 * If we're the Master PF Driver and the device is uninitialized,
3413 	 * then let's consider upgrading the firmware ...  (We always want
3414 	 * to check the firmware version number in order to A. get it for
3415 	 * later reporting and B. to warn if the currently loaded firmware
3416 	 * is excessively mismatched relative to the driver.)
3417 	 */
3418 	t4_get_fw_version(adap, &adap->params.fw_vers);
3419 	t4_get_bs_version(adap, &adap->params.bs_vers);
3420 	t4_get_tp_version(adap, &adap->params.tp_vers);
3421 	t4_get_exprom_version(adap, &adap->params.er_vers);
3422 
3423 	ret = t4_check_fw_version(adap);
3424 	/* If firmware is too old (not supported by driver) force an update. */
3425 	if (ret)
3426 		state = DEV_STATE_UNINIT;
3427 	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3428 		struct fw_info *fw_info;
3429 		struct fw_hdr *card_fw;
3430 		const struct firmware *fw;
3431 		const u8 *fw_data = NULL;
3432 		unsigned int fw_size = 0;
3433 
3434 		/* This is the firmware whose headers the driver was compiled
3435 		 * against
3436 		 */
3437 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3438 		if (fw_info == NULL) {
3439 			dev_err(adap->pdev_dev,
3440 				"unable to get firmware info for chip %d.\n",
3441 				CHELSIO_CHIP_VERSION(adap->params.chip));
3442 			return -EINVAL;
3443 		}
3444 
3445 		/* allocate memory to read the header of the firmware on the
3446 		 * card
3447 		 */
3448 		card_fw = t4_alloc_mem(sizeof(*card_fw));
3449 
3450 		/* Get FW from from /lib/firmware/ */
3451 		ret = request_firmware(&fw, fw_info->fw_mod_name,
3452 				       adap->pdev_dev);
3453 		if (ret < 0) {
3454 			dev_err(adap->pdev_dev,
3455 				"unable to load firmware image %s, error %d\n",
3456 				fw_info->fw_mod_name, ret);
3457 		} else {
3458 			fw_data = fw->data;
3459 			fw_size = fw->size;
3460 		}
3461 
3462 		/* upgrade FW logic */
3463 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3464 				 state, &reset);
3465 
3466 		/* Cleaning up */
3467 		release_firmware(fw);
3468 		t4_free_mem(card_fw);
3469 
3470 		if (ret < 0)
3471 			goto bye;
3472 	}
3473 
3474 	/*
3475 	 * Grab VPD parameters.  This should be done after we establish a
3476 	 * connection to the firmware since some of the VPD parameters
3477 	 * (notably the Core Clock frequency) are retrieved via requests to
3478 	 * the firmware.  On the other hand, we need these fairly early on
3479 	 * so we do this right after getting ahold of the firmware.
3480 	 */
3481 	ret = t4_get_vpd_params(adap, &adap->params.vpd);
3482 	if (ret < 0)
3483 		goto bye;
3484 
3485 	/*
3486 	 * Find out what ports are available to us.  Note that we need to do
3487 	 * this before calling adap_init0_no_config() since it needs nports
3488 	 * and portvec ...
3489 	 */
3490 	v =
3491 	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3492 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3493 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3494 	if (ret < 0)
3495 		goto bye;
3496 
3497 	adap->params.nports = hweight32(port_vec);
3498 	adap->params.portvec = port_vec;
3499 
3500 	/* If the firmware is initialized already, emit a simply note to that
3501 	 * effect. Otherwise, it's time to try initializing the adapter.
3502 	 */
3503 	if (state == DEV_STATE_INIT) {
3504 		dev_info(adap->pdev_dev, "Coming up as %s: "\
3505 			 "Adapter already initialized\n",
3506 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3507 	} else {
3508 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3509 			 "Initializing adapter\n");
3510 
3511 		/* Find out whether we're dealing with a version of the
3512 		 * firmware which has configuration file support.
3513 		 */
3514 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3515 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3516 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3517 				      params, val);
3518 
3519 		/* If the firmware doesn't support Configuration Files,
3520 		 * return an error.
3521 		 */
3522 		if (ret < 0) {
3523 			dev_err(adap->pdev_dev, "firmware doesn't support "
3524 				"Firmware Configuration Files\n");
3525 			goto bye;
3526 		}
3527 
3528 		/* The firmware provides us with a memory buffer where we can
3529 		 * load a Configuration File from the host if we want to
3530 		 * override the Configuration File in flash.
3531 		 */
3532 		ret = adap_init0_config(adap, reset);
3533 		if (ret == -ENOENT) {
3534 			dev_err(adap->pdev_dev, "no Configuration File "
3535 				"present on adapter.\n");
3536 			goto bye;
3537 		}
3538 		if (ret < 0) {
3539 			dev_err(adap->pdev_dev, "could not initialize "
3540 				"adapter, error %d\n", -ret);
3541 			goto bye;
3542 		}
3543 	}
3544 
3545 	/* Give the SGE code a chance to pull in anything that it needs ...
3546 	 * Note that this must be called after we retrieve our VPD parameters
3547 	 * in order to know how to convert core ticks to seconds, etc.
3548 	 */
3549 	ret = t4_sge_init(adap);
3550 	if (ret < 0)
3551 		goto bye;
3552 
3553 	if (is_bypass_device(adap->pdev->device))
3554 		adap->params.bypass = 1;
3555 
3556 	/*
3557 	 * Grab some of our basic fundamental operating parameters.
3558 	 */
3559 #define FW_PARAM_DEV(param) \
3560 	(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3561 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3562 
3563 #define FW_PARAM_PFVF(param) \
3564 	FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3565 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3566 	FW_PARAMS_PARAM_Y_V(0) | \
3567 	FW_PARAMS_PARAM_Z_V(0)
3568 
3569 	params[0] = FW_PARAM_PFVF(EQ_START);
3570 	params[1] = FW_PARAM_PFVF(L2T_START);
3571 	params[2] = FW_PARAM_PFVF(L2T_END);
3572 	params[3] = FW_PARAM_PFVF(FILTER_START);
3573 	params[4] = FW_PARAM_PFVF(FILTER_END);
3574 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
3575 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3576 	if (ret < 0)
3577 		goto bye;
3578 	adap->sge.egr_start = val[0];
3579 	adap->l2t_start = val[1];
3580 	adap->l2t_end = val[2];
3581 	adap->tids.ftid_base = val[3];
3582 	adap->tids.nftids = val[4] - val[3] + 1;
3583 	adap->sge.ingr_start = val[5];
3584 
3585 	/* qids (ingress/egress) returned from firmware can be anywhere
3586 	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3587 	 * Hence driver needs to allocate memory for this range to
3588 	 * store the queue info. Get the highest IQFLINT/EQ index returned
3589 	 * in FW_EQ_*_CMD.alloc command.
3590 	 */
3591 	params[0] = FW_PARAM_PFVF(EQ_END);
3592 	params[1] = FW_PARAM_PFVF(IQFLINT_END);
3593 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3594 	if (ret < 0)
3595 		goto bye;
3596 	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3597 	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3598 
3599 	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3600 				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
3601 	if (!adap->sge.egr_map) {
3602 		ret = -ENOMEM;
3603 		goto bye;
3604 	}
3605 
3606 	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3607 				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3608 	if (!adap->sge.ingr_map) {
3609 		ret = -ENOMEM;
3610 		goto bye;
3611 	}
3612 
3613 	/* Allocate the memory for the vaious egress queue bitmaps
3614 	 * ie starving_fl, txq_maperr and blocked_fl.
3615 	 */
3616 	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3617 					sizeof(long), GFP_KERNEL);
3618 	if (!adap->sge.starving_fl) {
3619 		ret = -ENOMEM;
3620 		goto bye;
3621 	}
3622 
3623 	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3624 				       sizeof(long), GFP_KERNEL);
3625 	if (!adap->sge.txq_maperr) {
3626 		ret = -ENOMEM;
3627 		goto bye;
3628 	}
3629 
3630 #ifdef CONFIG_DEBUG_FS
3631 	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3632 				       sizeof(long), GFP_KERNEL);
3633 	if (!adap->sge.blocked_fl) {
3634 		ret = -ENOMEM;
3635 		goto bye;
3636 	}
3637 #endif
3638 
3639 	params[0] = FW_PARAM_PFVF(CLIP_START);
3640 	params[1] = FW_PARAM_PFVF(CLIP_END);
3641 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3642 	if (ret < 0)
3643 		goto bye;
3644 	adap->clipt_start = val[0];
3645 	adap->clipt_end = val[1];
3646 
3647 	/* We don't yet have a PARAMs calls to retrieve the number of Traffic
3648 	 * Classes supported by the hardware/firmware so we hard code it here
3649 	 * for now.
3650 	 */
3651 	adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
3652 
3653 	/* query params related to active filter region */
3654 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3655 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3656 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3657 	/* If Active filter size is set we enable establishing
3658 	 * offload connection through firmware work request
3659 	 */
3660 	if ((val[0] != val[1]) && (ret >= 0)) {
3661 		adap->flags |= FW_OFLD_CONN;
3662 		adap->tids.aftid_base = val[0];
3663 		adap->tids.aftid_end = val[1];
3664 	}
3665 
3666 	/* If we're running on newer firmware, let it know that we're
3667 	 * prepared to deal with encapsulated CPL messages.  Older
3668 	 * firmware won't understand this and we'll just get
3669 	 * unencapsulated messages ...
3670 	 */
3671 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3672 	val[0] = 1;
3673 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3674 
3675 	/*
3676 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3677 	 * capability.  Earlier versions of the firmware didn't have the
3678 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3679 	 * permission to use ULPTX MEMWRITE DSGL.
3680 	 */
3681 	if (is_t4(adap->params.chip)) {
3682 		adap->params.ulptx_memwrite_dsgl = false;
3683 	} else {
3684 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3685 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3686 				      1, params, val);
3687 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3688 	}
3689 
3690 	/* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
3691 	params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
3692 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3693 			      1, params, val);
3694 	adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
3695 
3696 	/*
3697 	 * Get device capabilities so we can determine what resources we need
3698 	 * to manage.
3699 	 */
3700 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3701 	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3702 				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
3703 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3704 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3705 			 &caps_cmd);
3706 	if (ret < 0)
3707 		goto bye;
3708 
3709 	if (caps_cmd.ofldcaps) {
3710 		/* query offload-related parameters */
3711 		params[0] = FW_PARAM_DEV(NTID);
3712 		params[1] = FW_PARAM_PFVF(SERVER_START);
3713 		params[2] = FW_PARAM_PFVF(SERVER_END);
3714 		params[3] = FW_PARAM_PFVF(TDDP_START);
3715 		params[4] = FW_PARAM_PFVF(TDDP_END);
3716 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3717 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3718 				      params, val);
3719 		if (ret < 0)
3720 			goto bye;
3721 		adap->tids.ntids = val[0];
3722 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3723 		adap->tids.stid_base = val[1];
3724 		adap->tids.nstids = val[2] - val[1] + 1;
3725 		/*
3726 		 * Setup server filter region. Divide the available filter
3727 		 * region into two parts. Regular filters get 1/3rd and server
3728 		 * filters get 2/3rd part. This is only enabled if workarond
3729 		 * path is enabled.
3730 		 * 1. For regular filters.
3731 		 * 2. Server filter: This are special filters which are used
3732 		 * to redirect SYN packets to offload queue.
3733 		 */
3734 		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3735 			adap->tids.sftid_base = adap->tids.ftid_base +
3736 					DIV_ROUND_UP(adap->tids.nftids, 3);
3737 			adap->tids.nsftids = adap->tids.nftids -
3738 					 DIV_ROUND_UP(adap->tids.nftids, 3);
3739 			adap->tids.nftids = adap->tids.sftid_base -
3740 						adap->tids.ftid_base;
3741 		}
3742 		adap->vres.ddp.start = val[3];
3743 		adap->vres.ddp.size = val[4] - val[3] + 1;
3744 		adap->params.ofldq_wr_cred = val[5];
3745 
3746 		adap->params.offload = 1;
3747 		adap->num_ofld_uld += 1;
3748 	}
3749 	if (caps_cmd.rdmacaps) {
3750 		params[0] = FW_PARAM_PFVF(STAG_START);
3751 		params[1] = FW_PARAM_PFVF(STAG_END);
3752 		params[2] = FW_PARAM_PFVF(RQ_START);
3753 		params[3] = FW_PARAM_PFVF(RQ_END);
3754 		params[4] = FW_PARAM_PFVF(PBL_START);
3755 		params[5] = FW_PARAM_PFVF(PBL_END);
3756 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3757 				      params, val);
3758 		if (ret < 0)
3759 			goto bye;
3760 		adap->vres.stag.start = val[0];
3761 		adap->vres.stag.size = val[1] - val[0] + 1;
3762 		adap->vres.rq.start = val[2];
3763 		adap->vres.rq.size = val[3] - val[2] + 1;
3764 		adap->vres.pbl.start = val[4];
3765 		adap->vres.pbl.size = val[5] - val[4] + 1;
3766 
3767 		params[0] = FW_PARAM_PFVF(SQRQ_START);
3768 		params[1] = FW_PARAM_PFVF(SQRQ_END);
3769 		params[2] = FW_PARAM_PFVF(CQ_START);
3770 		params[3] = FW_PARAM_PFVF(CQ_END);
3771 		params[4] = FW_PARAM_PFVF(OCQ_START);
3772 		params[5] = FW_PARAM_PFVF(OCQ_END);
3773 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
3774 				      val);
3775 		if (ret < 0)
3776 			goto bye;
3777 		adap->vres.qp.start = val[0];
3778 		adap->vres.qp.size = val[1] - val[0] + 1;
3779 		adap->vres.cq.start = val[2];
3780 		adap->vres.cq.size = val[3] - val[2] + 1;
3781 		adap->vres.ocq.start = val[4];
3782 		adap->vres.ocq.size = val[5] - val[4] + 1;
3783 
3784 		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
3785 		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3786 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
3787 				      val);
3788 		if (ret < 0) {
3789 			adap->params.max_ordird_qp = 8;
3790 			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
3791 			ret = 0;
3792 		} else {
3793 			adap->params.max_ordird_qp = val[0];
3794 			adap->params.max_ird_adapter = val[1];
3795 		}
3796 		dev_info(adap->pdev_dev,
3797 			 "max_ordird_qp %d max_ird_adapter %d\n",
3798 			 adap->params.max_ordird_qp,
3799 			 adap->params.max_ird_adapter);
3800 		adap->num_ofld_uld += 2;
3801 	}
3802 	if (caps_cmd.iscsicaps) {
3803 		params[0] = FW_PARAM_PFVF(ISCSI_START);
3804 		params[1] = FW_PARAM_PFVF(ISCSI_END);
3805 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
3806 				      params, val);
3807 		if (ret < 0)
3808 			goto bye;
3809 		adap->vres.iscsi.start = val[0];
3810 		adap->vres.iscsi.size = val[1] - val[0] + 1;
3811 		/* LIO target and cxgb4i initiaitor */
3812 		adap->num_ofld_uld += 2;
3813 	}
3814 	if (caps_cmd.cryptocaps) {
3815 		/* Should query params here...TODO */
3816 		params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
3817 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
3818 				      params, val);
3819 		if (ret < 0) {
3820 			if (ret != -EINVAL)
3821 				goto bye;
3822 		} else {
3823 			adap->vres.ncrypto_fc = val[0];
3824 		}
3825 		adap->params.crypto |= ULP_CRYPTO_LOOKASIDE;
3826 		adap->num_uld += 1;
3827 	}
3828 #undef FW_PARAM_PFVF
3829 #undef FW_PARAM_DEV
3830 
3831 	/* The MTU/MSS Table is initialized by now, so load their values.  If
3832 	 * we're initializing the adapter, then we'll make any modifications
3833 	 * we want to the MTU/MSS Table and also initialize the congestion
3834 	 * parameters.
3835 	 */
3836 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
3837 	if (state != DEV_STATE_INIT) {
3838 		int i;
3839 
3840 		/* The default MTU Table contains values 1492 and 1500.
3841 		 * However, for TCP, it's better to have two values which are
3842 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
3843 		 * This allows us to have a TCP Data Payload which is a
3844 		 * multiple of 8 regardless of what combination of TCP Options
3845 		 * are in use (always a multiple of 4 bytes) which is
3846 		 * important for performance reasons.  For instance, if no
3847 		 * options are in use, then we have a 20-byte IP header and a
3848 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
3849 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
3850 		 * which is not a multiple of 8.  So using an MSS of 1488 in
3851 		 * this case results in a TCP Data Payload of 1448 bytes which
3852 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
3853 		 * Stamps have been negotiated, then an MTU of 1500 bytes
3854 		 * results in a TCP Data Payload of 1448 bytes which, as
3855 		 * above, is a multiple of 8 bytes ...
3856 		 */
3857 		for (i = 0; i < NMTUS; i++)
3858 			if (adap->params.mtus[i] == 1492) {
3859 				adap->params.mtus[i] = 1488;
3860 				break;
3861 			}
3862 
3863 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3864 			     adap->params.b_wnd);
3865 	}
3866 	t4_init_sge_params(adap);
3867 	adap->flags |= FW_OK;
3868 	t4_init_tp_params(adap);
3869 	return 0;
3870 
3871 	/*
3872 	 * Something bad happened.  If a command timed out or failed with EIO
3873 	 * FW does not operate within its spec or something catastrophic
3874 	 * happened to HW/FW, stop issuing commands.
3875 	 */
3876 bye:
3877 	kfree(adap->sge.egr_map);
3878 	kfree(adap->sge.ingr_map);
3879 	kfree(adap->sge.starving_fl);
3880 	kfree(adap->sge.txq_maperr);
3881 #ifdef CONFIG_DEBUG_FS
3882 	kfree(adap->sge.blocked_fl);
3883 #endif
3884 	if (ret != -ETIMEDOUT && ret != -EIO)
3885 		t4_fw_bye(adap, adap->mbox);
3886 	return ret;
3887 }
3888 
3889 /* EEH callbacks */
3890 
3891 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
3892 					 pci_channel_state_t state)
3893 {
3894 	int i;
3895 	struct adapter *adap = pci_get_drvdata(pdev);
3896 
3897 	if (!adap)
3898 		goto out;
3899 
3900 	rtnl_lock();
3901 	adap->flags &= ~FW_OK;
3902 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
3903 	spin_lock(&adap->stats_lock);
3904 	for_each_port(adap, i) {
3905 		struct net_device *dev = adap->port[i];
3906 
3907 		netif_device_detach(dev);
3908 		netif_carrier_off(dev);
3909 	}
3910 	spin_unlock(&adap->stats_lock);
3911 	disable_interrupts(adap);
3912 	if (adap->flags & FULL_INIT_DONE)
3913 		cxgb_down(adap);
3914 	rtnl_unlock();
3915 	if ((adap->flags & DEV_ENABLED)) {
3916 		pci_disable_device(pdev);
3917 		adap->flags &= ~DEV_ENABLED;
3918 	}
3919 out:	return state == pci_channel_io_perm_failure ?
3920 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
3921 }
3922 
3923 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
3924 {
3925 	int i, ret;
3926 	struct fw_caps_config_cmd c;
3927 	struct adapter *adap = pci_get_drvdata(pdev);
3928 
3929 	if (!adap) {
3930 		pci_restore_state(pdev);
3931 		pci_save_state(pdev);
3932 		return PCI_ERS_RESULT_RECOVERED;
3933 	}
3934 
3935 	if (!(adap->flags & DEV_ENABLED)) {
3936 		if (pci_enable_device(pdev)) {
3937 			dev_err(&pdev->dev, "Cannot reenable PCI "
3938 					    "device after reset\n");
3939 			return PCI_ERS_RESULT_DISCONNECT;
3940 		}
3941 		adap->flags |= DEV_ENABLED;
3942 	}
3943 
3944 	pci_set_master(pdev);
3945 	pci_restore_state(pdev);
3946 	pci_save_state(pdev);
3947 	pci_cleanup_aer_uncorrect_error_status(pdev);
3948 
3949 	if (t4_wait_dev_ready(adap->regs) < 0)
3950 		return PCI_ERS_RESULT_DISCONNECT;
3951 	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
3952 		return PCI_ERS_RESULT_DISCONNECT;
3953 	adap->flags |= FW_OK;
3954 	if (adap_init1(adap, &c))
3955 		return PCI_ERS_RESULT_DISCONNECT;
3956 
3957 	for_each_port(adap, i) {
3958 		struct port_info *p = adap2pinfo(adap, i);
3959 
3960 		ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
3961 				  NULL, NULL);
3962 		if (ret < 0)
3963 			return PCI_ERS_RESULT_DISCONNECT;
3964 		p->viid = ret;
3965 		p->xact_addr_filt = -1;
3966 	}
3967 
3968 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3969 		     adap->params.b_wnd);
3970 	setup_memwin(adap);
3971 	if (cxgb_up(adap))
3972 		return PCI_ERS_RESULT_DISCONNECT;
3973 	return PCI_ERS_RESULT_RECOVERED;
3974 }
3975 
3976 static void eeh_resume(struct pci_dev *pdev)
3977 {
3978 	int i;
3979 	struct adapter *adap = pci_get_drvdata(pdev);
3980 
3981 	if (!adap)
3982 		return;
3983 
3984 	rtnl_lock();
3985 	for_each_port(adap, i) {
3986 		struct net_device *dev = adap->port[i];
3987 
3988 		if (netif_running(dev)) {
3989 			link_start(dev);
3990 			cxgb_set_rxmode(dev);
3991 		}
3992 		netif_device_attach(dev);
3993 	}
3994 	rtnl_unlock();
3995 }
3996 
3997 static const struct pci_error_handlers cxgb4_eeh = {
3998 	.error_detected = eeh_err_detected,
3999 	.slot_reset     = eeh_slot_reset,
4000 	.resume         = eeh_resume,
4001 };
4002 
4003 /* Return true if the Link Configuration supports "High Speeds" (those greater
4004  * than 1Gb/s).
4005  */
4006 static inline bool is_x_10g_port(const struct link_config *lc)
4007 {
4008 	unsigned int speeds, high_speeds;
4009 
4010 	speeds = FW_PORT_CAP_SPEED_V(FW_PORT_CAP_SPEED_G(lc->supported));
4011 	high_speeds = speeds & ~(FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G);
4012 
4013 	return high_speeds != 0;
4014 }
4015 
4016 /*
4017  * Perform default configuration of DMA queues depending on the number and type
4018  * of ports we found and the number of available CPUs.  Most settings can be
4019  * modified by the admin prior to actual use.
4020  */
4021 static void cfg_queues(struct adapter *adap)
4022 {
4023 	struct sge *s = &adap->sge;
4024 	int i = 0, n10g = 0, qidx = 0;
4025 #ifndef CONFIG_CHELSIO_T4_DCB
4026 	int q10g = 0;
4027 #endif
4028 
4029 	/* Reduce memory usage in kdump environment, disable all offload.
4030 	 */
4031 	if (is_kdump_kernel()) {
4032 		adap->params.offload = 0;
4033 		adap->params.crypto = 0;
4034 	} else if (is_uld(adap) && t4_uld_mem_alloc(adap)) {
4035 		adap->params.offload = 0;
4036 		adap->params.crypto = 0;
4037 	}
4038 
4039 	n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4040 #ifdef CONFIG_CHELSIO_T4_DCB
4041 	/* For Data Center Bridging support we need to be able to support up
4042 	 * to 8 Traffic Priorities; each of which will be assigned to its
4043 	 * own TX Queue in order to prevent Head-Of-Line Blocking.
4044 	 */
4045 	if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4046 		dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4047 			MAX_ETH_QSETS, adap->params.nports * 8);
4048 		BUG_ON(1);
4049 	}
4050 
4051 	for_each_port(adap, i) {
4052 		struct port_info *pi = adap2pinfo(adap, i);
4053 
4054 		pi->first_qset = qidx;
4055 		pi->nqsets = 8;
4056 		qidx += pi->nqsets;
4057 	}
4058 #else /* !CONFIG_CHELSIO_T4_DCB */
4059 	/*
4060 	 * We default to 1 queue per non-10G port and up to # of cores queues
4061 	 * per 10G port.
4062 	 */
4063 	if (n10g)
4064 		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4065 	if (q10g > netif_get_num_default_rss_queues())
4066 		q10g = netif_get_num_default_rss_queues();
4067 
4068 	for_each_port(adap, i) {
4069 		struct port_info *pi = adap2pinfo(adap, i);
4070 
4071 		pi->first_qset = qidx;
4072 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4073 		qidx += pi->nqsets;
4074 	}
4075 #endif /* !CONFIG_CHELSIO_T4_DCB */
4076 
4077 	s->ethqsets = qidx;
4078 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4079 
4080 	if (is_uld(adap)) {
4081 		/*
4082 		 * For offload we use 1 queue/channel if all ports are up to 1G,
4083 		 * otherwise we divide all available queues amongst the channels
4084 		 * capped by the number of available cores.
4085 		 */
4086 		if (n10g) {
4087 			i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
4088 			s->ofldqsets = roundup(i, adap->params.nports);
4089 		} else {
4090 			s->ofldqsets = adap->params.nports;
4091 		}
4092 	}
4093 
4094 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4095 		struct sge_eth_rxq *r = &s->ethrxq[i];
4096 
4097 		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4098 		r->fl.size = 72;
4099 	}
4100 
4101 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4102 		s->ethtxq[i].q.size = 1024;
4103 
4104 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4105 		s->ctrlq[i].q.size = 512;
4106 
4107 	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4108 	init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4109 }
4110 
4111 /*
4112  * Reduce the number of Ethernet queues across all ports to at most n.
4113  * n provides at least one queue per port.
4114  */
4115 static void reduce_ethqs(struct adapter *adap, int n)
4116 {
4117 	int i;
4118 	struct port_info *pi;
4119 
4120 	while (n < adap->sge.ethqsets)
4121 		for_each_port(adap, i) {
4122 			pi = adap2pinfo(adap, i);
4123 			if (pi->nqsets > 1) {
4124 				pi->nqsets--;
4125 				adap->sge.ethqsets--;
4126 				if (adap->sge.ethqsets <= n)
4127 					break;
4128 			}
4129 		}
4130 
4131 	n = 0;
4132 	for_each_port(adap, i) {
4133 		pi = adap2pinfo(adap, i);
4134 		pi->first_qset = n;
4135 		n += pi->nqsets;
4136 	}
4137 }
4138 
4139 static int get_msix_info(struct adapter *adap)
4140 {
4141 	struct uld_msix_info *msix_info;
4142 	unsigned int max_ingq = 0;
4143 
4144 	if (is_offload(adap))
4145 		max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
4146 	if (is_pci_uld(adap))
4147 		max_ingq += MAX_OFLD_QSETS * adap->num_uld;
4148 
4149 	if (!max_ingq)
4150 		goto out;
4151 
4152 	msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
4153 	if (!msix_info)
4154 		return -ENOMEM;
4155 
4156 	adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
4157 						 sizeof(long), GFP_KERNEL);
4158 	if (!adap->msix_bmap_ulds.msix_bmap) {
4159 		kfree(msix_info);
4160 		return -ENOMEM;
4161 	}
4162 	spin_lock_init(&adap->msix_bmap_ulds.lock);
4163 	adap->msix_info_ulds = msix_info;
4164 out:
4165 	return 0;
4166 }
4167 
4168 static void free_msix_info(struct adapter *adap)
4169 {
4170 	if (!(adap->num_uld && adap->num_ofld_uld))
4171 		return;
4172 
4173 	kfree(adap->msix_info_ulds);
4174 	kfree(adap->msix_bmap_ulds.msix_bmap);
4175 }
4176 
4177 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4178 #define EXTRA_VECS 2
4179 
4180 static int enable_msix(struct adapter *adap)
4181 {
4182 	int ofld_need = 0, uld_need = 0;
4183 	int i, j, want, need, allocated;
4184 	struct sge *s = &adap->sge;
4185 	unsigned int nchan = adap->params.nports;
4186 	struct msix_entry *entries;
4187 	int max_ingq = MAX_INGQ;
4188 
4189 	if (is_pci_uld(adap))
4190 		max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
4191 	if (is_offload(adap))
4192 		max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
4193 	entries = kmalloc(sizeof(*entries) * (max_ingq + 1),
4194 			  GFP_KERNEL);
4195 	if (!entries)
4196 		return -ENOMEM;
4197 
4198 	/* map for msix */
4199 	if (get_msix_info(adap)) {
4200 		adap->params.offload = 0;
4201 		adap->params.crypto = 0;
4202 	}
4203 
4204 	for (i = 0; i < max_ingq + 1; ++i)
4205 		entries[i].entry = i;
4206 
4207 	want = s->max_ethqsets + EXTRA_VECS;
4208 	if (is_offload(adap)) {
4209 		want += adap->num_ofld_uld * s->ofldqsets;
4210 		ofld_need = adap->num_ofld_uld * nchan;
4211 	}
4212 	if (is_pci_uld(adap)) {
4213 		want += adap->num_uld * s->ofldqsets;
4214 		uld_need = adap->num_uld * nchan;
4215 	}
4216 #ifdef CONFIG_CHELSIO_T4_DCB
4217 	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4218 	 * each port.
4219 	 */
4220 	need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4221 #else
4222 	need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4223 #endif
4224 	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4225 	if (allocated < 0) {
4226 		dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4227 			 " not using MSI-X\n");
4228 		kfree(entries);
4229 		return allocated;
4230 	}
4231 
4232 	/* Distribute available vectors to the various queue groups.
4233 	 * Every group gets its minimum requirement and NIC gets top
4234 	 * priority for leftovers.
4235 	 */
4236 	i = allocated - EXTRA_VECS - ofld_need - uld_need;
4237 	if (i < s->max_ethqsets) {
4238 		s->max_ethqsets = i;
4239 		if (i < s->ethqsets)
4240 			reduce_ethqs(adap, i);
4241 	}
4242 	if (is_uld(adap)) {
4243 		if (allocated < want)
4244 			s->nqs_per_uld = nchan;
4245 		else
4246 			s->nqs_per_uld = s->ofldqsets;
4247 	}
4248 
4249 	for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
4250 		adap->msix_info[i].vec = entries[i].vector;
4251 	if (is_uld(adap)) {
4252 		for (j = 0 ; i < allocated; ++i, j++) {
4253 			adap->msix_info_ulds[j].vec = entries[i].vector;
4254 			adap->msix_info_ulds[j].idx = i;
4255 		}
4256 		adap->msix_bmap_ulds.mapsize = j;
4257 	}
4258 	dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4259 		 "nic %d per uld %d\n",
4260 		 allocated, s->max_ethqsets, s->nqs_per_uld);
4261 
4262 	kfree(entries);
4263 	return 0;
4264 }
4265 
4266 #undef EXTRA_VECS
4267 
4268 static int init_rss(struct adapter *adap)
4269 {
4270 	unsigned int i;
4271 	int err;
4272 
4273 	err = t4_init_rss_mode(adap, adap->mbox);
4274 	if (err)
4275 		return err;
4276 
4277 	for_each_port(adap, i) {
4278 		struct port_info *pi = adap2pinfo(adap, i);
4279 
4280 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4281 		if (!pi->rss)
4282 			return -ENOMEM;
4283 	}
4284 	return 0;
4285 }
4286 
4287 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4288 					enum pci_bus_speed *speed,
4289 					enum pcie_link_width *width)
4290 {
4291 	u32 lnkcap1, lnkcap2;
4292 	int err1, err2;
4293 
4294 #define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */
4295 
4296 	*speed = PCI_SPEED_UNKNOWN;
4297 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4298 
4299 	err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4300 					  &lnkcap1);
4301 	err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4302 					  &lnkcap2);
4303 	if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4304 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4305 			*speed = PCIE_SPEED_8_0GT;
4306 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4307 			*speed = PCIE_SPEED_5_0GT;
4308 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4309 			*speed = PCIE_SPEED_2_5GT;
4310 	}
4311 	if (!err1) {
4312 		*width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4313 		if (!lnkcap2) { /* pre-r3.0 */
4314 			if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4315 				*speed = PCIE_SPEED_5_0GT;
4316 			else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4317 				*speed = PCIE_SPEED_2_5GT;
4318 		}
4319 	}
4320 
4321 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4322 		return err1 ? err1 : err2 ? err2 : -EINVAL;
4323 	return 0;
4324 }
4325 
4326 static void cxgb4_check_pcie_caps(struct adapter *adap)
4327 {
4328 	enum pcie_link_width width, width_cap;
4329 	enum pci_bus_speed speed, speed_cap;
4330 
4331 #define PCIE_SPEED_STR(speed) \
4332 	(speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4333 	 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4334 	 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4335 	 "Unknown")
4336 
4337 	if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4338 		dev_warn(adap->pdev_dev,
4339 			 "Unable to determine PCIe device BW capabilities\n");
4340 		return;
4341 	}
4342 
4343 	if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4344 	    speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4345 		dev_warn(adap->pdev_dev,
4346 			 "Unable to determine PCI Express bandwidth.\n");
4347 		return;
4348 	}
4349 
4350 	dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4351 		 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4352 	dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4353 		 width, width_cap);
4354 	if (speed < speed_cap || width < width_cap)
4355 		dev_info(adap->pdev_dev,
4356 			 "A slot with more lanes and/or higher speed is "
4357 			 "suggested for optimal performance.\n");
4358 }
4359 
4360 /* Dump basic information about the adapter */
4361 static void print_adapter_info(struct adapter *adapter)
4362 {
4363 	/* Device information */
4364 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
4365 		 adapter->params.vpd.id,
4366 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
4367 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
4368 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
4369 
4370 	/* Firmware Version */
4371 	if (!adapter->params.fw_vers)
4372 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
4373 	else
4374 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
4375 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
4376 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
4377 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
4378 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
4379 
4380 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
4381 	 * Firmware, so dev_info() is more appropriate here.)
4382 	 */
4383 	if (!adapter->params.bs_vers)
4384 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
4385 	else
4386 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
4387 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
4388 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
4389 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
4390 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
4391 
4392 	/* TP Microcode Version */
4393 	if (!adapter->params.tp_vers)
4394 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
4395 	else
4396 		dev_info(adapter->pdev_dev,
4397 			 "TP Microcode version: %u.%u.%u.%u\n",
4398 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
4399 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
4400 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
4401 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
4402 
4403 	/* Expansion ROM version */
4404 	if (!adapter->params.er_vers)
4405 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
4406 	else
4407 		dev_info(adapter->pdev_dev,
4408 			 "Expansion ROM version: %u.%u.%u.%u\n",
4409 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
4410 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
4411 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
4412 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
4413 
4414 	/* Software/Hardware configuration */
4415 	dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
4416 		 is_offload(adapter) ? "R" : "",
4417 		 ((adapter->flags & USING_MSIX) ? "MSI-X" :
4418 		  (adapter->flags & USING_MSI) ? "MSI" : ""),
4419 		 is_offload(adapter) ? "Offload" : "non-Offload");
4420 }
4421 
4422 static void print_port_info(const struct net_device *dev)
4423 {
4424 	char buf[80];
4425 	char *bufp = buf;
4426 	const char *spd = "";
4427 	const struct port_info *pi = netdev_priv(dev);
4428 	const struct adapter *adap = pi->adapter;
4429 
4430 	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4431 		spd = " 2.5 GT/s";
4432 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4433 		spd = " 5 GT/s";
4434 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4435 		spd = " 8 GT/s";
4436 
4437 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4438 		bufp += sprintf(bufp, "100M/");
4439 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4440 		bufp += sprintf(bufp, "1G/");
4441 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4442 		bufp += sprintf(bufp, "10G/");
4443 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_25G)
4444 		bufp += sprintf(bufp, "25G/");
4445 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4446 		bufp += sprintf(bufp, "40G/");
4447 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100G)
4448 		bufp += sprintf(bufp, "100G/");
4449 	if (bufp != buf)
4450 		--bufp;
4451 	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4452 
4453 	netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
4454 		    dev->name, adap->params.vpd.id, adap->name, buf);
4455 }
4456 
4457 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4458 {
4459 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4460 }
4461 
4462 /*
4463  * Free the following resources:
4464  * - memory used for tables
4465  * - MSI/MSI-X
4466  * - net devices
4467  * - resources FW is holding for us
4468  */
4469 static void free_some_resources(struct adapter *adapter)
4470 {
4471 	unsigned int i;
4472 
4473 	t4_free_mem(adapter->l2t);
4474 	t4_cleanup_sched(adapter);
4475 	t4_free_mem(adapter->tids.tid_tab);
4476 	cxgb4_cleanup_tc_u32(adapter);
4477 	kfree(adapter->sge.egr_map);
4478 	kfree(adapter->sge.ingr_map);
4479 	kfree(adapter->sge.starving_fl);
4480 	kfree(adapter->sge.txq_maperr);
4481 #ifdef CONFIG_DEBUG_FS
4482 	kfree(adapter->sge.blocked_fl);
4483 #endif
4484 	disable_msi(adapter);
4485 
4486 	for_each_port(adapter, i)
4487 		if (adapter->port[i]) {
4488 			struct port_info *pi = adap2pinfo(adapter, i);
4489 
4490 			if (pi->viid != 0)
4491 				t4_free_vi(adapter, adapter->mbox, adapter->pf,
4492 					   0, pi->viid);
4493 			kfree(adap2pinfo(adapter, i)->rss);
4494 			free_netdev(adapter->port[i]);
4495 		}
4496 	if (adapter->flags & FW_OK)
4497 		t4_fw_bye(adapter, adapter->pf);
4498 }
4499 
4500 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4501 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4502 		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4503 #define SEGMENT_SIZE 128
4504 
4505 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4506 {
4507 	u16 device_id;
4508 
4509 	/* Retrieve adapter's device ID */
4510 	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4511 
4512 	switch (device_id >> 12) {
4513 	case CHELSIO_T4:
4514 		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4515 	case CHELSIO_T5:
4516 		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4517 	case CHELSIO_T6:
4518 		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4519 	default:
4520 		dev_err(&pdev->dev, "Device %d is not supported\n",
4521 			device_id);
4522 	}
4523 	return -EINVAL;
4524 }
4525 
4526 #ifdef CONFIG_PCI_IOV
4527 static void dummy_setup(struct net_device *dev)
4528 {
4529 	dev->type = ARPHRD_NONE;
4530 	dev->mtu = 0;
4531 	dev->hard_header_len = 0;
4532 	dev->addr_len = 0;
4533 	dev->tx_queue_len = 0;
4534 	dev->flags |= IFF_NOARP;
4535 	dev->priv_flags |= IFF_NO_QUEUE;
4536 
4537 	/* Initialize the device structure. */
4538 	dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
4539 	dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
4540 	dev->destructor = free_netdev;
4541 }
4542 
4543 static int config_mgmt_dev(struct pci_dev *pdev)
4544 {
4545 	struct adapter *adap = pci_get_drvdata(pdev);
4546 	struct net_device *netdev;
4547 	struct port_info *pi;
4548 	char name[IFNAMSIZ];
4549 	int err;
4550 
4551 	snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf);
4552 	netdev = alloc_netdev(sizeof(struct port_info), name, NET_NAME_UNKNOWN,
4553 			      dummy_setup);
4554 	if (!netdev)
4555 		return -ENOMEM;
4556 
4557 	pi = netdev_priv(netdev);
4558 	pi->adapter = adap;
4559 	pi->port_id = adap->pf % adap->params.nports;
4560 	SET_NETDEV_DEV(netdev, &pdev->dev);
4561 
4562 	adap->port[0] = netdev;
4563 
4564 	err = register_netdev(adap->port[0]);
4565 	if (err) {
4566 		pr_info("Unable to register VF mgmt netdev %s\n", name);
4567 		free_netdev(adap->port[0]);
4568 		adap->port[0] = NULL;
4569 		return err;
4570 	}
4571 	return 0;
4572 }
4573 
4574 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
4575 {
4576 	struct adapter *adap = pci_get_drvdata(pdev);
4577 	int err = 0;
4578 	int current_vfs = pci_num_vf(pdev);
4579 	u32 pcie_fw;
4580 
4581 	pcie_fw = readl(adap->regs + PCIE_FW_A);
4582 	/* Check if cxgb4 is the MASTER and fw is initialized */
4583 	if (!(pcie_fw & PCIE_FW_INIT_F) ||
4584 	    !(pcie_fw & PCIE_FW_MASTER_VLD_F) ||
4585 	    PCIE_FW_MASTER_G(pcie_fw) != 4) {
4586 		dev_warn(&pdev->dev,
4587 			 "cxgb4 driver needs to be MASTER to support SRIOV\n");
4588 		return -EOPNOTSUPP;
4589 	}
4590 
4591 	/* If any of the VF's is already assigned to Guest OS, then
4592 	 * SRIOV for the same cannot be modified
4593 	 */
4594 	if (current_vfs && pci_vfs_assigned(pdev)) {
4595 		dev_err(&pdev->dev,
4596 			"Cannot modify SR-IOV while VFs are assigned\n");
4597 		num_vfs = current_vfs;
4598 		return num_vfs;
4599 	}
4600 
4601 	/* Disable SRIOV when zero is passed.
4602 	 * One needs to disable SRIOV before modifying it, else
4603 	 * stack throws the below warning:
4604 	 * " 'n' VFs already enabled. Disable before enabling 'm' VFs."
4605 	 */
4606 	if (!num_vfs) {
4607 		pci_disable_sriov(pdev);
4608 		if (adap->port[0]) {
4609 			unregister_netdev(adap->port[0]);
4610 			adap->port[0] = NULL;
4611 		}
4612 		/* free VF resources */
4613 		kfree(adap->vfinfo);
4614 		adap->vfinfo = NULL;
4615 		adap->num_vfs = 0;
4616 		return num_vfs;
4617 	}
4618 
4619 	if (num_vfs != current_vfs) {
4620 		err = pci_enable_sriov(pdev, num_vfs);
4621 		if (err)
4622 			return err;
4623 
4624 		adap->num_vfs = num_vfs;
4625 		err = config_mgmt_dev(pdev);
4626 		if (err)
4627 			return err;
4628 	}
4629 
4630 	adap->vfinfo = kcalloc(adap->num_vfs,
4631 			       sizeof(struct vf_info), GFP_KERNEL);
4632 	if (adap->vfinfo)
4633 		fill_vf_station_mac_addr(adap);
4634 	return num_vfs;
4635 }
4636 #endif
4637 
4638 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4639 {
4640 	int func, i, err, s_qpp, qpp, num_seg;
4641 	struct port_info *pi;
4642 	bool highdma = false;
4643 	struct adapter *adapter = NULL;
4644 	struct net_device *netdev;
4645 	void __iomem *regs;
4646 	u32 whoami, pl_rev;
4647 	enum chip_type chip;
4648 	static int adap_idx = 1;
4649 #ifdef CONFIG_PCI_IOV
4650 	u32 v, port_vec;
4651 #endif
4652 
4653 	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4654 
4655 	err = pci_request_regions(pdev, KBUILD_MODNAME);
4656 	if (err) {
4657 		/* Just info, some other driver may have claimed the device. */
4658 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4659 		return err;
4660 	}
4661 
4662 	err = pci_enable_device(pdev);
4663 	if (err) {
4664 		dev_err(&pdev->dev, "cannot enable PCI device\n");
4665 		goto out_release_regions;
4666 	}
4667 
4668 	regs = pci_ioremap_bar(pdev, 0);
4669 	if (!regs) {
4670 		dev_err(&pdev->dev, "cannot map device registers\n");
4671 		err = -ENOMEM;
4672 		goto out_disable_device;
4673 	}
4674 
4675 	err = t4_wait_dev_ready(regs);
4676 	if (err < 0)
4677 		goto out_unmap_bar0;
4678 
4679 	/* We control everything through one PF */
4680 	whoami = readl(regs + PL_WHOAMI_A);
4681 	pl_rev = REV_G(readl(regs + PL_REV_A));
4682 	chip = get_chip_type(pdev, pl_rev);
4683 	func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4684 		SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4685 	if (func != ent->driver_data) {
4686 #ifndef CONFIG_PCI_IOV
4687 		iounmap(regs);
4688 #endif
4689 		pci_disable_device(pdev);
4690 		pci_save_state(pdev);        /* to restore SR-IOV later */
4691 		goto sriov;
4692 	}
4693 
4694 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4695 		highdma = true;
4696 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4697 		if (err) {
4698 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4699 				"coherent allocations\n");
4700 			goto out_unmap_bar0;
4701 		}
4702 	} else {
4703 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4704 		if (err) {
4705 			dev_err(&pdev->dev, "no usable DMA configuration\n");
4706 			goto out_unmap_bar0;
4707 		}
4708 	}
4709 
4710 	pci_enable_pcie_error_reporting(pdev);
4711 	enable_pcie_relaxed_ordering(pdev);
4712 	pci_set_master(pdev);
4713 	pci_save_state(pdev);
4714 
4715 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4716 	if (!adapter) {
4717 		err = -ENOMEM;
4718 		goto out_unmap_bar0;
4719 	}
4720 	adap_idx++;
4721 
4722 	adapter->workq = create_singlethread_workqueue("cxgb4");
4723 	if (!adapter->workq) {
4724 		err = -ENOMEM;
4725 		goto out_free_adapter;
4726 	}
4727 
4728 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
4729 				    (sizeof(struct mbox_cmd) *
4730 				     T4_OS_LOG_MBOX_CMDS),
4731 				    GFP_KERNEL);
4732 	if (!adapter->mbox_log) {
4733 		err = -ENOMEM;
4734 		goto out_free_adapter;
4735 	}
4736 	adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
4737 
4738 	/* PCI device has been enabled */
4739 	adapter->flags |= DEV_ENABLED;
4740 
4741 	adapter->regs = regs;
4742 	adapter->pdev = pdev;
4743 	adapter->pdev_dev = &pdev->dev;
4744 	adapter->name = pci_name(pdev);
4745 	adapter->mbox = func;
4746 	adapter->pf = func;
4747 	adapter->msg_enable = DFLT_MSG_ENABLE;
4748 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4749 
4750 	spin_lock_init(&adapter->stats_lock);
4751 	spin_lock_init(&adapter->tid_release_lock);
4752 	spin_lock_init(&adapter->win0_lock);
4753 	spin_lock_init(&adapter->mbox_lock);
4754 
4755 	INIT_LIST_HEAD(&adapter->mlist.list);
4756 
4757 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4758 	INIT_WORK(&adapter->db_full_task, process_db_full);
4759 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
4760 
4761 	err = t4_prep_adapter(adapter);
4762 	if (err)
4763 		goto out_free_adapter;
4764 
4765 
4766 	if (!is_t4(adapter->params.chip)) {
4767 		s_qpp = (QUEUESPERPAGEPF0_S +
4768 			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4769 			adapter->pf);
4770 		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4771 		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4772 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
4773 
4774 		/* Each segment size is 128B. Write coalescing is enabled only
4775 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4776 		 * queue is less no of segments that can be accommodated in
4777 		 * a page size.
4778 		 */
4779 		if (qpp > num_seg) {
4780 			dev_err(&pdev->dev,
4781 				"Incorrect number of egress queues per page\n");
4782 			err = -EINVAL;
4783 			goto out_free_adapter;
4784 		}
4785 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4786 		pci_resource_len(pdev, 2));
4787 		if (!adapter->bar2) {
4788 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
4789 			err = -ENOMEM;
4790 			goto out_free_adapter;
4791 		}
4792 	}
4793 
4794 	setup_memwin(adapter);
4795 	err = adap_init0(adapter);
4796 #ifdef CONFIG_DEBUG_FS
4797 	bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4798 #endif
4799 	setup_memwin_rdma(adapter);
4800 	if (err)
4801 		goto out_unmap_bar;
4802 
4803 	/* configure SGE_STAT_CFG_A to read WC stats */
4804 	if (!is_t4(adapter->params.chip))
4805 		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
4806 			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
4807 			      T6_STATMODE_V(0)));
4808 
4809 	for_each_port(adapter, i) {
4810 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
4811 					   MAX_ETH_QSETS);
4812 		if (!netdev) {
4813 			err = -ENOMEM;
4814 			goto out_free_dev;
4815 		}
4816 
4817 		SET_NETDEV_DEV(netdev, &pdev->dev);
4818 
4819 		adapter->port[i] = netdev;
4820 		pi = netdev_priv(netdev);
4821 		pi->adapter = adapter;
4822 		pi->xact_addr_filt = -1;
4823 		pi->port_id = i;
4824 		netdev->irq = pdev->irq;
4825 
4826 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4827 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4828 			NETIF_F_RXCSUM | NETIF_F_RXHASH |
4829 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
4830 			NETIF_F_HW_TC;
4831 		if (highdma)
4832 			netdev->hw_features |= NETIF_F_HIGHDMA;
4833 		netdev->features |= netdev->hw_features;
4834 		netdev->vlan_features = netdev->features & VLAN_FEAT;
4835 
4836 		netdev->priv_flags |= IFF_UNICAST_FLT;
4837 
4838 		/* MTU range: 81 - 9600 */
4839 		netdev->min_mtu = 81;
4840 		netdev->max_mtu = MAX_MTU;
4841 
4842 		netdev->netdev_ops = &cxgb4_netdev_ops;
4843 #ifdef CONFIG_CHELSIO_T4_DCB
4844 		netdev->dcbnl_ops = &cxgb4_dcb_ops;
4845 		cxgb4_dcb_state_init(netdev);
4846 #endif
4847 		cxgb4_set_ethtool_ops(netdev);
4848 	}
4849 
4850 	pci_set_drvdata(pdev, adapter);
4851 
4852 	if (adapter->flags & FW_OK) {
4853 		err = t4_port_init(adapter, func, func, 0);
4854 		if (err)
4855 			goto out_free_dev;
4856 	} else if (adapter->params.nports == 1) {
4857 		/* If we don't have a connection to the firmware -- possibly
4858 		 * because of an error -- grab the raw VPD parameters so we
4859 		 * can set the proper MAC Address on the debug network
4860 		 * interface that we've created.
4861 		 */
4862 		u8 hw_addr[ETH_ALEN];
4863 		u8 *na = adapter->params.vpd.na;
4864 
4865 		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
4866 		if (!err) {
4867 			for (i = 0; i < ETH_ALEN; i++)
4868 				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
4869 					      hex2val(na[2 * i + 1]));
4870 			t4_set_hw_addr(adapter, 0, hw_addr);
4871 		}
4872 	}
4873 
4874 	/* Configure queues and allocate tables now, they can be needed as
4875 	 * soon as the first register_netdev completes.
4876 	 */
4877 	cfg_queues(adapter);
4878 
4879 	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
4880 	if (!adapter->l2t) {
4881 		/* We tolerate a lack of L2T, giving up some functionality */
4882 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4883 		adapter->params.offload = 0;
4884 	}
4885 
4886 #if IS_ENABLED(CONFIG_IPV6)
4887 	if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
4888 	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
4889 		/* CLIP functionality is not present in hardware,
4890 		 * hence disable all offload features
4891 		 */
4892 		dev_warn(&pdev->dev,
4893 			 "CLIP not enabled in hardware, continuing\n");
4894 		adapter->params.offload = 0;
4895 	} else {
4896 		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4897 						  adapter->clipt_end);
4898 		if (!adapter->clipt) {
4899 			/* We tolerate a lack of clip_table, giving up
4900 			 * some functionality
4901 			 */
4902 			dev_warn(&pdev->dev,
4903 				 "could not allocate Clip table, continuing\n");
4904 			adapter->params.offload = 0;
4905 		}
4906 	}
4907 #endif
4908 
4909 	for_each_port(adapter, i) {
4910 		pi = adap2pinfo(adapter, i);
4911 		pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
4912 		if (!pi->sched_tbl)
4913 			dev_warn(&pdev->dev,
4914 				 "could not activate scheduling on port %d\n",
4915 				 i);
4916 	}
4917 
4918 	if (tid_init(&adapter->tids) < 0) {
4919 		dev_warn(&pdev->dev, "could not allocate TID table, "
4920 			 "continuing\n");
4921 		adapter->params.offload = 0;
4922 	} else {
4923 		adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
4924 		if (!adapter->tc_u32)
4925 			dev_warn(&pdev->dev,
4926 				 "could not offload tc u32, continuing\n");
4927 	}
4928 
4929 	if (is_offload(adapter)) {
4930 		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
4931 			u32 hash_base, hash_reg;
4932 
4933 			if (chip <= CHELSIO_T5) {
4934 				hash_reg = LE_DB_TID_HASHBASE_A;
4935 				hash_base = t4_read_reg(adapter, hash_reg);
4936 				adapter->tids.hash_base = hash_base / 4;
4937 			} else {
4938 				hash_reg = T6_LE_DB_HASH_TID_BASE_A;
4939 				hash_base = t4_read_reg(adapter, hash_reg);
4940 				adapter->tids.hash_base = hash_base;
4941 			}
4942 		}
4943 	}
4944 
4945 	/* See what interrupts we'll be using */
4946 	if (msi > 1 && enable_msix(adapter) == 0)
4947 		adapter->flags |= USING_MSIX;
4948 	else if (msi > 0 && pci_enable_msi(pdev) == 0) {
4949 		adapter->flags |= USING_MSI;
4950 		if (msi > 1)
4951 			free_msix_info(adapter);
4952 	}
4953 
4954 	/* check for PCI Express bandwidth capabiltites */
4955 	cxgb4_check_pcie_caps(adapter);
4956 
4957 	err = init_rss(adapter);
4958 	if (err)
4959 		goto out_free_dev;
4960 
4961 	/*
4962 	 * The card is now ready to go.  If any errors occur during device
4963 	 * registration we do not fail the whole card but rather proceed only
4964 	 * with the ports we manage to register successfully.  However we must
4965 	 * register at least one net device.
4966 	 */
4967 	for_each_port(adapter, i) {
4968 		pi = adap2pinfo(adapter, i);
4969 		adapter->port[i]->dev_port = pi->lport;
4970 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4971 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4972 
4973 		err = register_netdev(adapter->port[i]);
4974 		if (err)
4975 			break;
4976 		adapter->chan_map[pi->tx_chan] = i;
4977 		print_port_info(adapter->port[i]);
4978 	}
4979 	if (i == 0) {
4980 		dev_err(&pdev->dev, "could not register any net devices\n");
4981 		goto out_free_dev;
4982 	}
4983 	if (err) {
4984 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4985 		err = 0;
4986 	}
4987 
4988 	if (cxgb4_debugfs_root) {
4989 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4990 							   cxgb4_debugfs_root);
4991 		setup_debugfs(adapter);
4992 	}
4993 
4994 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4995 	pdev->needs_freset = 1;
4996 
4997 	if (is_uld(adapter)) {
4998 		mutex_lock(&uld_mutex);
4999 		list_add_tail(&adapter->list_node, &adapter_list);
5000 		mutex_unlock(&uld_mutex);
5001 	}
5002 
5003 	print_adapter_info(adapter);
5004 	setup_fw_sge_queues(adapter);
5005 	return 0;
5006 
5007 sriov:
5008 #ifdef CONFIG_PCI_IOV
5009 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5010 	if (!adapter) {
5011 		err = -ENOMEM;
5012 		goto free_pci_region;
5013 	}
5014 
5015 	adapter->pdev = pdev;
5016 	adapter->pdev_dev = &pdev->dev;
5017 	adapter->name = pci_name(pdev);
5018 	adapter->mbox = func;
5019 	adapter->pf = func;
5020 	adapter->regs = regs;
5021 	adapter->adap_idx = adap_idx;
5022 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5023 				    (sizeof(struct mbox_cmd) *
5024 				     T4_OS_LOG_MBOX_CMDS),
5025 				    GFP_KERNEL);
5026 	if (!adapter->mbox_log) {
5027 		err = -ENOMEM;
5028 		goto free_adapter;
5029 	}
5030 	spin_lock_init(&adapter->mbox_lock);
5031 	INIT_LIST_HEAD(&adapter->mlist.list);
5032 
5033 	v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
5034 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
5035 	err = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 1,
5036 			      &v, &port_vec);
5037 	if (err < 0) {
5038 		dev_err(adapter->pdev_dev, "Could not fetch port params\n");
5039 		goto free_adapter;
5040 	}
5041 
5042 	adapter->params.nports = hweight32(port_vec);
5043 	pci_set_drvdata(pdev, adapter);
5044 	return 0;
5045 
5046  free_adapter:
5047 	kfree(adapter);
5048  free_pci_region:
5049 	iounmap(regs);
5050 	pci_disable_sriov(pdev);
5051 	pci_release_regions(pdev);
5052 	return err;
5053 #else
5054 	return 0;
5055 #endif
5056 
5057  out_free_dev:
5058 	free_some_resources(adapter);
5059 	if (adapter->flags & USING_MSIX)
5060 		free_msix_info(adapter);
5061 	if (adapter->num_uld || adapter->num_ofld_uld)
5062 		t4_uld_mem_free(adapter);
5063  out_unmap_bar:
5064 	if (!is_t4(adapter->params.chip))
5065 		iounmap(adapter->bar2);
5066  out_free_adapter:
5067 	if (adapter->workq)
5068 		destroy_workqueue(adapter->workq);
5069 
5070 	kfree(adapter->mbox_log);
5071 	kfree(adapter);
5072  out_unmap_bar0:
5073 	iounmap(regs);
5074  out_disable_device:
5075 	pci_disable_pcie_error_reporting(pdev);
5076 	pci_disable_device(pdev);
5077  out_release_regions:
5078 	pci_release_regions(pdev);
5079 	return err;
5080 }
5081 
5082 static void remove_one(struct pci_dev *pdev)
5083 {
5084 	struct adapter *adapter = pci_get_drvdata(pdev);
5085 
5086 	if (!adapter) {
5087 		pci_release_regions(pdev);
5088 		return;
5089 	}
5090 
5091 	if (adapter->pf == 4) {
5092 		int i;
5093 
5094 		/* Tear down per-adapter Work Queue first since it can contain
5095 		 * references to our adapter data structure.
5096 		 */
5097 		destroy_workqueue(adapter->workq);
5098 
5099 		if (is_uld(adapter))
5100 			detach_ulds(adapter);
5101 
5102 		disable_interrupts(adapter);
5103 
5104 		for_each_port(adapter, i)
5105 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5106 				unregister_netdev(adapter->port[i]);
5107 
5108 		debugfs_remove_recursive(adapter->debugfs_root);
5109 
5110 		/* If we allocated filters, free up state associated with any
5111 		 * valid filters ...
5112 		 */
5113 		clear_all_filters(adapter);
5114 
5115 		if (adapter->flags & FULL_INIT_DONE)
5116 			cxgb_down(adapter);
5117 
5118 		if (adapter->flags & USING_MSIX)
5119 			free_msix_info(adapter);
5120 		if (adapter->num_uld || adapter->num_ofld_uld)
5121 			t4_uld_mem_free(adapter);
5122 		free_some_resources(adapter);
5123 #if IS_ENABLED(CONFIG_IPV6)
5124 		t4_cleanup_clip_tbl(adapter);
5125 #endif
5126 		iounmap(adapter->regs);
5127 		if (!is_t4(adapter->params.chip))
5128 			iounmap(adapter->bar2);
5129 		pci_disable_pcie_error_reporting(pdev);
5130 		if ((adapter->flags & DEV_ENABLED)) {
5131 			pci_disable_device(pdev);
5132 			adapter->flags &= ~DEV_ENABLED;
5133 		}
5134 		pci_release_regions(pdev);
5135 		kfree(adapter->mbox_log);
5136 		synchronize_rcu();
5137 		kfree(adapter);
5138 	}
5139 #ifdef CONFIG_PCI_IOV
5140 	else {
5141 		if (adapter->port[0])
5142 			unregister_netdev(adapter->port[0]);
5143 		iounmap(adapter->regs);
5144 		kfree(adapter->vfinfo);
5145 		kfree(adapter);
5146 		pci_disable_sriov(pdev);
5147 		pci_release_regions(pdev);
5148 	}
5149 #endif
5150 }
5151 
5152 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
5153  * delivery.  This is essentially a stripped down version of the PCI remove()
5154  * function where we do the minimal amount of work necessary to shutdown any
5155  * further activity.
5156  */
5157 static void shutdown_one(struct pci_dev *pdev)
5158 {
5159 	struct adapter *adapter = pci_get_drvdata(pdev);
5160 
5161 	/* As with remove_one() above (see extended comment), we only want do
5162 	 * do cleanup on PCI Devices which went all the way through init_one()
5163 	 * ...
5164 	 */
5165 	if (!adapter) {
5166 		pci_release_regions(pdev);
5167 		return;
5168 	}
5169 
5170 	if (adapter->pf == 4) {
5171 		int i;
5172 
5173 		for_each_port(adapter, i)
5174 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5175 				cxgb_close(adapter->port[i]);
5176 
5177 		t4_uld_clean_up(adapter);
5178 		disable_interrupts(adapter);
5179 		disable_msi(adapter);
5180 
5181 		t4_sge_stop(adapter);
5182 		if (adapter->flags & FW_OK)
5183 			t4_fw_bye(adapter, adapter->mbox);
5184 	}
5185 #ifdef CONFIG_PCI_IOV
5186 	else {
5187 		if (adapter->port[0])
5188 			unregister_netdev(adapter->port[0]);
5189 		iounmap(adapter->regs);
5190 		kfree(adapter->vfinfo);
5191 		kfree(adapter);
5192 		pci_disable_sriov(pdev);
5193 		pci_release_regions(pdev);
5194 	}
5195 #endif
5196 }
5197 
5198 static struct pci_driver cxgb4_driver = {
5199 	.name     = KBUILD_MODNAME,
5200 	.id_table = cxgb4_pci_tbl,
5201 	.probe    = init_one,
5202 	.remove   = remove_one,
5203 	.shutdown = shutdown_one,
5204 #ifdef CONFIG_PCI_IOV
5205 	.sriov_configure = cxgb4_iov_configure,
5206 #endif
5207 	.err_handler = &cxgb4_eeh,
5208 };
5209 
5210 static int __init cxgb4_init_module(void)
5211 {
5212 	int ret;
5213 
5214 	/* Debugfs support is optional, just warn if this fails */
5215 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5216 	if (!cxgb4_debugfs_root)
5217 		pr_warn("could not create debugfs entry, continuing\n");
5218 
5219 	ret = pci_register_driver(&cxgb4_driver);
5220 	if (ret < 0)
5221 		debugfs_remove(cxgb4_debugfs_root);
5222 
5223 #if IS_ENABLED(CONFIG_IPV6)
5224 	if (!inet6addr_registered) {
5225 		register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5226 		inet6addr_registered = true;
5227 	}
5228 #endif
5229 
5230 	return ret;
5231 }
5232 
5233 static void __exit cxgb4_cleanup_module(void)
5234 {
5235 #if IS_ENABLED(CONFIG_IPV6)
5236 	if (inet6addr_registered) {
5237 		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5238 		inet6addr_registered = false;
5239 	}
5240 #endif
5241 	pci_unregister_driver(&cxgb4_driver);
5242 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5243 }
5244 
5245 module_init(cxgb4_init_module);
5246 module_exit(cxgb4_cleanup_module);
5247