1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <linux/uaccess.h> 66 #include <linux/crash_dump.h> 67 #include <net/udp_tunnel.h> 68 #include <net/xfrm.h> 69 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) 70 #include <net/tls.h> 71 #endif 72 73 #include "cxgb4.h" 74 #include "cxgb4_filter.h" 75 #include "t4_regs.h" 76 #include "t4_values.h" 77 #include "t4_msg.h" 78 #include "t4fw_api.h" 79 #include "t4fw_version.h" 80 #include "cxgb4_dcb.h" 81 #include "srq.h" 82 #include "cxgb4_debugfs.h" 83 #include "clip_tbl.h" 84 #include "l2t.h" 85 #include "smt.h" 86 #include "sched.h" 87 #include "cxgb4_tc_u32.h" 88 #include "cxgb4_tc_flower.h" 89 #include "cxgb4_tc_mqprio.h" 90 #include "cxgb4_tc_matchall.h" 91 #include "cxgb4_ptp.h" 92 #include "cxgb4_cudbg.h" 93 94 char cxgb4_driver_name[] = KBUILD_MODNAME; 95 96 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 97 98 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 99 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 100 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 101 102 /* Macros needed to support the PCI Device ID Table ... 103 */ 104 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 105 static const struct pci_device_id cxgb4_pci_tbl[] = { 106 #define CXGB4_UNIFIED_PF 0x4 107 108 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF 109 110 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 111 * called for both. 112 */ 113 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 114 115 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 116 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF} 117 118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 119 { 0, } \ 120 } 121 122 #include "t4_pci_id_tbl.h" 123 124 #define FW4_FNAME "cxgb4/t4fw.bin" 125 #define FW5_FNAME "cxgb4/t5fw.bin" 126 #define FW6_FNAME "cxgb4/t6fw.bin" 127 #define FW4_CFNAME "cxgb4/t4-config.txt" 128 #define FW5_CFNAME "cxgb4/t5-config.txt" 129 #define FW6_CFNAME "cxgb4/t6-config.txt" 130 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 131 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 132 #define PHY_AQ1202_DEVICEID 0x4409 133 #define PHY_BCM84834_DEVICEID 0x4486 134 135 MODULE_DESCRIPTION(DRV_DESC); 136 MODULE_AUTHOR("Chelsio Communications"); 137 MODULE_LICENSE("Dual BSD/GPL"); 138 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 139 MODULE_FIRMWARE(FW4_FNAME); 140 MODULE_FIRMWARE(FW5_FNAME); 141 MODULE_FIRMWARE(FW6_FNAME); 142 143 /* 144 * The driver uses the best interrupt scheme available on a platform in the 145 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 146 * of these schemes the driver may consider as follows: 147 * 148 * msi = 2: choose from among all three options 149 * msi = 1: only consider MSI and INTx interrupts 150 * msi = 0: force INTx interrupts 151 */ 152 static int msi = 2; 153 154 module_param(msi, int, 0644); 155 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 156 157 /* 158 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 159 * offset by 2 bytes in order to have the IP headers line up on 4-byte 160 * boundaries. This is a requirement for many architectures which will throw 161 * a machine check fault if an attempt is made to access one of the 4-byte IP 162 * header fields on a non-4-byte boundary. And it's a major performance issue 163 * even on some architectures which allow it like some implementations of the 164 * x86 ISA. However, some architectures don't mind this and for some very 165 * edge-case performance sensitive applications (like forwarding large volumes 166 * of small packets), setting this DMA offset to 0 will decrease the number of 167 * PCI-E Bus transfers enough to measurably affect performance. 168 */ 169 static int rx_dma_offset = 2; 170 171 /* TX Queue select used to determine what algorithm to use for selecting TX 172 * queue. Select between the kernel provided function (select_queue=0) or user 173 * cxgb_select_queue function (select_queue=1) 174 * 175 * Default: select_queue=0 176 */ 177 static int select_queue; 178 module_param(select_queue, int, 0644); 179 MODULE_PARM_DESC(select_queue, 180 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 181 182 static struct dentry *cxgb4_debugfs_root; 183 184 LIST_HEAD(adapter_list); 185 DEFINE_MUTEX(uld_mutex); 186 LIST_HEAD(uld_list); 187 188 static int cfg_queues(struct adapter *adap); 189 190 static void link_report(struct net_device *dev) 191 { 192 if (!netif_carrier_ok(dev)) 193 netdev_info(dev, "link down\n"); 194 else { 195 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 196 197 const char *s; 198 const struct port_info *p = netdev_priv(dev); 199 200 switch (p->link_cfg.speed) { 201 case 100: 202 s = "100Mbps"; 203 break; 204 case 1000: 205 s = "1Gbps"; 206 break; 207 case 10000: 208 s = "10Gbps"; 209 break; 210 case 25000: 211 s = "25Gbps"; 212 break; 213 case 40000: 214 s = "40Gbps"; 215 break; 216 case 50000: 217 s = "50Gbps"; 218 break; 219 case 100000: 220 s = "100Gbps"; 221 break; 222 default: 223 pr_info("%s: unsupported speed: %d\n", 224 dev->name, p->link_cfg.speed); 225 return; 226 } 227 228 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 229 fc[p->link_cfg.fc]); 230 } 231 } 232 233 #ifdef CONFIG_CHELSIO_T4_DCB 234 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 235 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 236 { 237 struct port_info *pi = netdev_priv(dev); 238 struct adapter *adap = pi->adapter; 239 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 240 int i; 241 242 /* We use a simple mapping of Port TX Queue Index to DCB 243 * Priority when we're enabling DCB. 244 */ 245 for (i = 0; i < pi->nqsets; i++, txq++) { 246 u32 name, value; 247 int err; 248 249 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 250 FW_PARAMS_PARAM_X_V( 251 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 252 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 253 value = enable ? i : 0xffffffff; 254 255 /* Since we can be called while atomic (from "interrupt 256 * level") we need to issue the Set Parameters Commannd 257 * without sleeping (timeout < 0). 258 */ 259 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 260 &name, &value, 261 -FW_CMD_MAX_TIMEOUT); 262 263 if (err) 264 dev_err(adap->pdev_dev, 265 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 266 enable ? "set" : "unset", pi->port_id, i, -err); 267 else 268 txq->dcb_prio = enable ? value : 0; 269 } 270 } 271 272 int cxgb4_dcb_enabled(const struct net_device *dev) 273 { 274 struct port_info *pi = netdev_priv(dev); 275 276 if (!pi->dcb.enabled) 277 return 0; 278 279 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 280 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 281 } 282 #endif /* CONFIG_CHELSIO_T4_DCB */ 283 284 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 285 { 286 struct net_device *dev = adapter->port[port_id]; 287 288 /* Skip changes from disabled ports. */ 289 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 290 if (link_stat) 291 netif_carrier_on(dev); 292 else { 293 #ifdef CONFIG_CHELSIO_T4_DCB 294 if (cxgb4_dcb_enabled(dev)) { 295 cxgb4_dcb_reset(dev); 296 dcb_tx_queue_prio_enable(dev, false); 297 } 298 #endif /* CONFIG_CHELSIO_T4_DCB */ 299 netif_carrier_off(dev); 300 } 301 302 link_report(dev); 303 } 304 } 305 306 void t4_os_portmod_changed(struct adapter *adap, int port_id) 307 { 308 static const char *mod_str[] = { 309 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 310 }; 311 312 struct net_device *dev = adap->port[port_id]; 313 struct port_info *pi = netdev_priv(dev); 314 315 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 316 netdev_info(dev, "port module unplugged\n"); 317 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 318 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 319 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 320 netdev_info(dev, "%s: unsupported port module inserted\n", 321 dev->name); 322 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 323 netdev_info(dev, "%s: unknown port module inserted\n", 324 dev->name); 325 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 326 netdev_info(dev, "%s: transceiver module error\n", dev->name); 327 else 328 netdev_info(dev, "%s: unknown module type %d inserted\n", 329 dev->name, pi->mod_type); 330 331 /* If the interface is running, then we'll need any "sticky" Link 332 * Parameters redone with a new Transceiver Module. 333 */ 334 pi->link_cfg.redo_l1cfg = netif_running(dev); 335 } 336 337 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 338 module_param(dbfifo_int_thresh, int, 0644); 339 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 340 341 /* 342 * usecs to sleep while draining the dbfifo 343 */ 344 static int dbfifo_drain_delay = 1000; 345 module_param(dbfifo_drain_delay, int, 0644); 346 MODULE_PARM_DESC(dbfifo_drain_delay, 347 "usecs to sleep while draining the dbfifo"); 348 349 static inline int cxgb4_set_addr_hash(struct port_info *pi) 350 { 351 struct adapter *adap = pi->adapter; 352 u64 vec = 0; 353 bool ucast = false; 354 struct hash_mac_addr *entry; 355 356 /* Calculate the hash vector for the updated list and program it */ 357 list_for_each_entry(entry, &adap->mac_hlist, list) { 358 ucast |= is_unicast_ether_addr(entry->addr); 359 vec |= (1ULL << hash_mac_addr(entry->addr)); 360 } 361 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast, 362 vec, false); 363 } 364 365 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr) 366 { 367 struct port_info *pi = netdev_priv(netdev); 368 struct adapter *adap = pi->adapter; 369 int ret; 370 u64 mhash = 0; 371 u64 uhash = 0; 372 /* idx stores the index of allocated filters, 373 * its size should be modified based on the number of 374 * MAC addresses that we allocate filters for 375 */ 376 377 u16 idx[1] = {}; 378 bool free = false; 379 bool ucast = is_unicast_ether_addr(mac_addr); 380 const u8 *maclist[1] = {mac_addr}; 381 struct hash_mac_addr *new_entry; 382 383 ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist, 384 idx, ucast ? &uhash : &mhash, false); 385 if (ret < 0) 386 goto out; 387 /* if hash != 0, then add the addr to hash addr list 388 * so on the end we will calculate the hash for the 389 * list and program it 390 */ 391 if (uhash || mhash) { 392 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 393 if (!new_entry) 394 return -ENOMEM; 395 ether_addr_copy(new_entry->addr, mac_addr); 396 list_add_tail(&new_entry->list, &adap->mac_hlist); 397 ret = cxgb4_set_addr_hash(pi); 398 } 399 out: 400 return ret < 0 ? ret : 0; 401 } 402 403 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 404 { 405 struct port_info *pi = netdev_priv(netdev); 406 struct adapter *adap = pi->adapter; 407 int ret; 408 const u8 *maclist[1] = {mac_addr}; 409 struct hash_mac_addr *entry, *tmp; 410 411 /* If the MAC address to be removed is in the hash addr 412 * list, delete it from the list and update hash vector 413 */ 414 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) { 415 if (ether_addr_equal(entry->addr, mac_addr)) { 416 list_del(&entry->list); 417 kfree(entry); 418 return cxgb4_set_addr_hash(pi); 419 } 420 } 421 422 ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false); 423 return ret < 0 ? -EINVAL : 0; 424 } 425 426 /* 427 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 428 * If @mtu is -1 it is left unchanged. 429 */ 430 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 431 { 432 struct port_info *pi = netdev_priv(dev); 433 struct adapter *adapter = pi->adapter; 434 435 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 436 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 437 438 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, pi->viid_mirror, 439 mtu, (dev->flags & IFF_PROMISC) ? 1 : 0, 440 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 441 sleep_ok); 442 } 443 444 /** 445 * cxgb4_change_mac - Update match filter for a MAC address. 446 * @pi: the port_info 447 * @viid: the VI id 448 * @tcam_idx: TCAM index of existing filter for old value of MAC address, 449 * or -1 450 * @addr: the new MAC address value 451 * @persist: whether a new MAC allocation should be persistent 452 * @smt_idx: the destination to store the new SMT index. 453 * 454 * Modifies an MPS filter and sets it to the new MAC address if 455 * @tcam_idx >= 0, or adds the MAC address to a new filter if 456 * @tcam_idx < 0. In the latter case the address is added persistently 457 * if @persist is %true. 458 * Addresses are programmed to hash region, if tcam runs out of entries. 459 * 460 */ 461 int cxgb4_change_mac(struct port_info *pi, unsigned int viid, 462 int *tcam_idx, const u8 *addr, bool persist, 463 u8 *smt_idx) 464 { 465 struct adapter *adapter = pi->adapter; 466 struct hash_mac_addr *entry, *new_entry; 467 int ret; 468 469 ret = t4_change_mac(adapter, adapter->mbox, viid, 470 *tcam_idx, addr, persist, smt_idx); 471 /* We ran out of TCAM entries. try programming hash region. */ 472 if (ret == -ENOMEM) { 473 /* If the MAC address to be updated is in the hash addr 474 * list, update it from the list 475 */ 476 list_for_each_entry(entry, &adapter->mac_hlist, list) { 477 if (entry->iface_mac) { 478 ether_addr_copy(entry->addr, addr); 479 goto set_hash; 480 } 481 } 482 new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL); 483 if (!new_entry) 484 return -ENOMEM; 485 ether_addr_copy(new_entry->addr, addr); 486 new_entry->iface_mac = true; 487 list_add_tail(&new_entry->list, &adapter->mac_hlist); 488 set_hash: 489 ret = cxgb4_set_addr_hash(pi); 490 } else if (ret >= 0) { 491 *tcam_idx = ret; 492 ret = 0; 493 } 494 495 return ret; 496 } 497 498 /* 499 * link_start - enable a port 500 * @dev: the port to enable 501 * 502 * Performs the MAC and PHY actions needed to enable a port. 503 */ 504 static int link_start(struct net_device *dev) 505 { 506 struct port_info *pi = netdev_priv(dev); 507 unsigned int mb = pi->adapter->mbox; 508 int ret; 509 510 /* 511 * We do not set address filters and promiscuity here, the stack does 512 * that step explicitly. 513 */ 514 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, pi->viid_mirror, 515 dev->mtu, -1, -1, -1, 516 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 517 if (ret == 0) 518 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt, 519 dev->dev_addr, true, &pi->smt_idx); 520 if (ret == 0) 521 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 522 &pi->link_cfg); 523 if (ret == 0) { 524 local_bh_disable(); 525 ret = t4_enable_pi_params(pi->adapter, mb, pi, true, 526 true, CXGB4_DCB_ENABLED); 527 local_bh_enable(); 528 } 529 530 return ret; 531 } 532 533 #ifdef CONFIG_CHELSIO_T4_DCB 534 /* Handle a Data Center Bridging update message from the firmware. */ 535 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 536 { 537 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 538 struct net_device *dev = adap->port[adap->chan_map[port]]; 539 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 540 int new_dcb_enabled; 541 542 cxgb4_dcb_handle_fw_update(adap, pcmd); 543 new_dcb_enabled = cxgb4_dcb_enabled(dev); 544 545 /* If the DCB has become enabled or disabled on the port then we're 546 * going to need to set up/tear down DCB Priority parameters for the 547 * TX Queues associated with the port. 548 */ 549 if (new_dcb_enabled != old_dcb_enabled) 550 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 551 } 552 #endif /* CONFIG_CHELSIO_T4_DCB */ 553 554 /* Response queue handler for the FW event queue. 555 */ 556 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 557 const struct pkt_gl *gl) 558 { 559 u8 opcode = ((const struct rss_header *)rsp)->opcode; 560 561 rsp++; /* skip RSS header */ 562 563 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 564 */ 565 if (unlikely(opcode == CPL_FW4_MSG && 566 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 567 rsp++; 568 opcode = ((const struct rss_header *)rsp)->opcode; 569 rsp++; 570 if (opcode != CPL_SGE_EGR_UPDATE) { 571 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 572 , opcode); 573 goto out; 574 } 575 } 576 577 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 578 const struct cpl_sge_egr_update *p = (void *)rsp; 579 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 580 struct sge_txq *txq; 581 582 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 583 txq->restarts++; 584 if (txq->q_type == CXGB4_TXQ_ETH) { 585 struct sge_eth_txq *eq; 586 587 eq = container_of(txq, struct sge_eth_txq, q); 588 t4_sge_eth_txq_egress_update(q->adap, eq, -1); 589 } else { 590 struct sge_uld_txq *oq; 591 592 oq = container_of(txq, struct sge_uld_txq, q); 593 tasklet_schedule(&oq->qresume_tsk); 594 } 595 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 596 const struct cpl_fw6_msg *p = (void *)rsp; 597 598 #ifdef CONFIG_CHELSIO_T4_DCB 599 const struct fw_port_cmd *pcmd = (const void *)p->data; 600 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 601 unsigned int action = 602 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 603 604 if (cmd == FW_PORT_CMD && 605 (action == FW_PORT_ACTION_GET_PORT_INFO || 606 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 607 int port = FW_PORT_CMD_PORTID_G( 608 be32_to_cpu(pcmd->op_to_portid)); 609 struct net_device *dev; 610 int dcbxdis, state_input; 611 612 dev = q->adap->port[q->adap->chan_map[port]]; 613 dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO 614 ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F) 615 : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32) 616 & FW_PORT_CMD_DCBXDIS32_F)); 617 state_input = (dcbxdis 618 ? CXGB4_DCB_INPUT_FW_DISABLED 619 : CXGB4_DCB_INPUT_FW_ENABLED); 620 621 cxgb4_dcb_state_fsm(dev, state_input); 622 } 623 624 if (cmd == FW_PORT_CMD && 625 action == FW_PORT_ACTION_L2_DCB_CFG) 626 dcb_rpl(q->adap, pcmd); 627 else 628 #endif 629 if (p->type == 0) 630 t4_handle_fw_rpl(q->adap, p->data); 631 } else if (opcode == CPL_L2T_WRITE_RPL) { 632 const struct cpl_l2t_write_rpl *p = (void *)rsp; 633 634 do_l2t_write_rpl(q->adap, p); 635 } else if (opcode == CPL_SMT_WRITE_RPL) { 636 const struct cpl_smt_write_rpl *p = (void *)rsp; 637 638 do_smt_write_rpl(q->adap, p); 639 } else if (opcode == CPL_SET_TCB_RPL) { 640 const struct cpl_set_tcb_rpl *p = (void *)rsp; 641 642 filter_rpl(q->adap, p); 643 } else if (opcode == CPL_ACT_OPEN_RPL) { 644 const struct cpl_act_open_rpl *p = (void *)rsp; 645 646 hash_filter_rpl(q->adap, p); 647 } else if (opcode == CPL_ABORT_RPL_RSS) { 648 const struct cpl_abort_rpl_rss *p = (void *)rsp; 649 650 hash_del_filter_rpl(q->adap, p); 651 } else if (opcode == CPL_SRQ_TABLE_RPL) { 652 const struct cpl_srq_table_rpl *p = (void *)rsp; 653 654 do_srq_table_rpl(q->adap, p); 655 } else 656 dev_err(q->adap->pdev_dev, 657 "unexpected CPL %#x on FW event queue\n", opcode); 658 out: 659 return 0; 660 } 661 662 static void disable_msi(struct adapter *adapter) 663 { 664 if (adapter->flags & CXGB4_USING_MSIX) { 665 pci_disable_msix(adapter->pdev); 666 adapter->flags &= ~CXGB4_USING_MSIX; 667 } else if (adapter->flags & CXGB4_USING_MSI) { 668 pci_disable_msi(adapter->pdev); 669 adapter->flags &= ~CXGB4_USING_MSI; 670 } 671 } 672 673 /* 674 * Interrupt handler for non-data events used with MSI-X. 675 */ 676 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 677 { 678 struct adapter *adap = cookie; 679 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 680 681 if (v & PFSW_F) { 682 adap->swintr = 1; 683 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 684 } 685 if (adap->flags & CXGB4_MASTER_PF) 686 t4_slow_intr_handler(adap); 687 return IRQ_HANDLED; 688 } 689 690 int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec, 691 cpumask_var_t *aff_mask, int idx) 692 { 693 int rv; 694 695 if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) { 696 dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n"); 697 return -ENOMEM; 698 } 699 700 cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)), 701 *aff_mask); 702 703 rv = irq_set_affinity_hint(vec, *aff_mask); 704 if (rv) 705 dev_warn(adap->pdev_dev, 706 "irq_set_affinity_hint %u failed %d\n", 707 vec, rv); 708 709 return 0; 710 } 711 712 void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask) 713 { 714 irq_set_affinity_hint(vec, NULL); 715 free_cpumask_var(aff_mask); 716 } 717 718 static int request_msix_queue_irqs(struct adapter *adap) 719 { 720 struct sge *s = &adap->sge; 721 struct msix_info *minfo; 722 int err, ethqidx; 723 724 if (s->fwevtq_msix_idx < 0) 725 return -ENOMEM; 726 727 err = request_irq(adap->msix_info[s->fwevtq_msix_idx].vec, 728 t4_sge_intr_msix, 0, 729 adap->msix_info[s->fwevtq_msix_idx].desc, 730 &s->fw_evtq); 731 if (err) 732 return err; 733 734 for_each_ethrxq(s, ethqidx) { 735 minfo = s->ethrxq[ethqidx].msix; 736 err = request_irq(minfo->vec, 737 t4_sge_intr_msix, 0, 738 minfo->desc, 739 &s->ethrxq[ethqidx].rspq); 740 if (err) 741 goto unwind; 742 743 cxgb4_set_msix_aff(adap, minfo->vec, 744 &minfo->aff_mask, ethqidx); 745 } 746 return 0; 747 748 unwind: 749 while (--ethqidx >= 0) { 750 minfo = s->ethrxq[ethqidx].msix; 751 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask); 752 free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq); 753 } 754 free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq); 755 return err; 756 } 757 758 static void free_msix_queue_irqs(struct adapter *adap) 759 { 760 struct sge *s = &adap->sge; 761 struct msix_info *minfo; 762 int i; 763 764 free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq); 765 for_each_ethrxq(s, i) { 766 minfo = s->ethrxq[i].msix; 767 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask); 768 free_irq(minfo->vec, &s->ethrxq[i].rspq); 769 } 770 } 771 772 static int setup_ppod_edram(struct adapter *adap) 773 { 774 unsigned int param, val; 775 int ret; 776 777 /* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check 778 * if firmware supports ppod edram feature or not. If firmware 779 * returns 1, then driver can enable this feature by sending 780 * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to 781 * enable ppod edram feature. 782 */ 783 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 784 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM)); 785 786 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 787 if (ret < 0) { 788 dev_warn(adap->pdev_dev, 789 "querying PPOD_EDRAM support failed: %d\n", 790 ret); 791 return -1; 792 } 793 794 if (val != 1) 795 return -1; 796 797 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 798 if (ret < 0) { 799 dev_err(adap->pdev_dev, 800 "setting PPOD_EDRAM failed: %d\n", ret); 801 return -1; 802 } 803 return 0; 804 } 805 806 static void adap_config_hpfilter(struct adapter *adapter) 807 { 808 u32 param, val = 0; 809 int ret; 810 811 /* Enable HP filter region. Older fw will fail this request and 812 * it is fine. 813 */ 814 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 815 ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0, 816 1, ¶m, &val); 817 818 /* An error means FW doesn't know about HP filter support, 819 * it's not a problem, don't return an error. 820 */ 821 if (ret < 0) 822 dev_err(adapter->pdev_dev, 823 "HP filter region isn't supported by FW\n"); 824 } 825 826 static int cxgb4_config_rss(const struct port_info *pi, u16 *rss, 827 u16 rss_size, u16 viid) 828 { 829 struct adapter *adap = pi->adapter; 830 int ret; 831 832 ret = t4_config_rss_range(adap, adap->mbox, viid, 0, rss_size, rss, 833 rss_size); 834 if (ret) 835 return ret; 836 837 /* If Tunnel All Lookup isn't specified in the global RSS 838 * Configuration, then we need to specify a default Ingress 839 * Queue for any ingress packets which aren't hashed. We'll 840 * use our first ingress queue ... 841 */ 842 return t4_config_vi_rss(adap, adap->mbox, viid, 843 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 844 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 845 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 846 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 847 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 848 rss[0]); 849 } 850 851 /** 852 * cxgb4_write_rss - write the RSS table for a given port 853 * @pi: the port 854 * @queues: array of queue indices for RSS 855 * 856 * Sets up the portion of the HW RSS table for the port's VI to distribute 857 * packets to the Rx queues in @queues. 858 * Should never be called before setting up sge eth rx queues 859 */ 860 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 861 { 862 struct adapter *adapter = pi->adapter; 863 const struct sge_eth_rxq *rxq; 864 int i, err; 865 u16 *rss; 866 867 rxq = &adapter->sge.ethrxq[pi->first_qset]; 868 rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL); 869 if (!rss) 870 return -ENOMEM; 871 872 /* map the queue indices to queue ids */ 873 for (i = 0; i < pi->rss_size; i++, queues++) 874 rss[i] = rxq[*queues].rspq.abs_id; 875 876 err = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid); 877 kfree(rss); 878 return err; 879 } 880 881 /** 882 * setup_rss - configure RSS 883 * @adap: the adapter 884 * 885 * Sets up RSS for each port. 886 */ 887 static int setup_rss(struct adapter *adap) 888 { 889 int i, j, err; 890 891 for_each_port(adap, i) { 892 const struct port_info *pi = adap2pinfo(adap, i); 893 894 /* Fill default values with equal distribution */ 895 for (j = 0; j < pi->rss_size; j++) 896 pi->rss[j] = j % pi->nqsets; 897 898 err = cxgb4_write_rss(pi, pi->rss); 899 if (err) 900 return err; 901 } 902 return 0; 903 } 904 905 /* 906 * Return the channel of the ingress queue with the given qid. 907 */ 908 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 909 { 910 qid -= p->ingr_start; 911 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 912 } 913 914 void cxgb4_quiesce_rx(struct sge_rspq *q) 915 { 916 if (q->handler) 917 napi_disable(&q->napi); 918 } 919 920 /* 921 * Wait until all NAPI handlers are descheduled. 922 */ 923 static void quiesce_rx(struct adapter *adap) 924 { 925 int i; 926 927 for (i = 0; i < adap->sge.ingr_sz; i++) { 928 struct sge_rspq *q = adap->sge.ingr_map[i]; 929 930 if (!q) 931 continue; 932 933 cxgb4_quiesce_rx(q); 934 } 935 } 936 937 /* Disable interrupt and napi handler */ 938 static void disable_interrupts(struct adapter *adap) 939 { 940 struct sge *s = &adap->sge; 941 942 if (adap->flags & CXGB4_FULL_INIT_DONE) { 943 t4_intr_disable(adap); 944 if (adap->flags & CXGB4_USING_MSIX) { 945 free_msix_queue_irqs(adap); 946 free_irq(adap->msix_info[s->nd_msix_idx].vec, 947 adap); 948 } else { 949 free_irq(adap->pdev->irq, adap); 950 } 951 quiesce_rx(adap); 952 } 953 } 954 955 void cxgb4_enable_rx(struct adapter *adap, struct sge_rspq *q) 956 { 957 if (q->handler) 958 napi_enable(&q->napi); 959 960 /* 0-increment GTS to start the timer and enable interrupts */ 961 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 962 SEINTARM_V(q->intr_params) | 963 INGRESSQID_V(q->cntxt_id)); 964 } 965 966 /* 967 * Enable NAPI scheduling and interrupt generation for all Rx queues. 968 */ 969 static void enable_rx(struct adapter *adap) 970 { 971 int i; 972 973 for (i = 0; i < adap->sge.ingr_sz; i++) { 974 struct sge_rspq *q = adap->sge.ingr_map[i]; 975 976 if (!q) 977 continue; 978 979 cxgb4_enable_rx(adap, q); 980 } 981 } 982 983 static int setup_non_data_intr(struct adapter *adap) 984 { 985 int msix; 986 987 adap->sge.nd_msix_idx = -1; 988 if (!(adap->flags & CXGB4_USING_MSIX)) 989 return 0; 990 991 /* Request MSI-X vector for non-data interrupt */ 992 msix = cxgb4_get_msix_idx_from_bmap(adap); 993 if (msix < 0) 994 return -ENOMEM; 995 996 snprintf(adap->msix_info[msix].desc, 997 sizeof(adap->msix_info[msix].desc), 998 "%s", adap->port[0]->name); 999 1000 adap->sge.nd_msix_idx = msix; 1001 return 0; 1002 } 1003 1004 static int setup_fw_sge_queues(struct adapter *adap) 1005 { 1006 struct sge *s = &adap->sge; 1007 int msix, err = 0; 1008 1009 bitmap_zero(s->starving_fl, s->egr_sz); 1010 bitmap_zero(s->txq_maperr, s->egr_sz); 1011 1012 if (adap->flags & CXGB4_USING_MSIX) { 1013 s->fwevtq_msix_idx = -1; 1014 msix = cxgb4_get_msix_idx_from_bmap(adap); 1015 if (msix < 0) 1016 return -ENOMEM; 1017 1018 snprintf(adap->msix_info[msix].desc, 1019 sizeof(adap->msix_info[msix].desc), 1020 "%s-FWeventq", adap->port[0]->name); 1021 } else { 1022 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 1023 NULL, NULL, NULL, -1); 1024 if (err) 1025 return err; 1026 msix = -((int)s->intrq.abs_id + 1); 1027 } 1028 1029 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 1030 msix, NULL, fwevtq_handler, NULL, -1); 1031 if (err && msix >= 0) 1032 cxgb4_free_msix_idx_in_bmap(adap, msix); 1033 1034 s->fwevtq_msix_idx = msix; 1035 return err; 1036 } 1037 1038 /** 1039 * setup_sge_queues - configure SGE Tx/Rx/response queues 1040 * @adap: the adapter 1041 * 1042 * Determines how many sets of SGE queues to use and initializes them. 1043 * We support multiple queue sets per port if we have MSI-X, otherwise 1044 * just one queue set per port. 1045 */ 1046 static int setup_sge_queues(struct adapter *adap) 1047 { 1048 struct sge_uld_rxq_info *rxq_info = NULL; 1049 struct sge *s = &adap->sge; 1050 unsigned int cmplqid = 0; 1051 int err, i, j, msix = 0; 1052 1053 if (is_uld(adap)) 1054 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 1055 1056 if (!(adap->flags & CXGB4_USING_MSIX)) 1057 msix = -((int)s->intrq.abs_id + 1); 1058 1059 for_each_port(adap, i) { 1060 struct net_device *dev = adap->port[i]; 1061 struct port_info *pi = netdev_priv(dev); 1062 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 1063 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 1064 1065 for (j = 0; j < pi->nqsets; j++, q++) { 1066 if (msix >= 0) { 1067 msix = cxgb4_get_msix_idx_from_bmap(adap); 1068 if (msix < 0) { 1069 err = msix; 1070 goto freeout; 1071 } 1072 1073 snprintf(adap->msix_info[msix].desc, 1074 sizeof(adap->msix_info[msix].desc), 1075 "%s-Rx%d", dev->name, j); 1076 q->msix = &adap->msix_info[msix]; 1077 } 1078 1079 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 1080 msix, &q->fl, 1081 t4_ethrx_handler, 1082 NULL, 1083 t4_get_tp_ch_map(adap, 1084 pi->tx_chan)); 1085 if (err) 1086 goto freeout; 1087 q->rspq.idx = j; 1088 memset(&q->stats, 0, sizeof(q->stats)); 1089 } 1090 1091 q = &s->ethrxq[pi->first_qset]; 1092 for (j = 0; j < pi->nqsets; j++, t++, q++) { 1093 err = t4_sge_alloc_eth_txq(adap, t, dev, 1094 netdev_get_tx_queue(dev, j), 1095 q->rspq.cntxt_id, 1096 !!(adap->flags & CXGB4_SGE_DBQ_TIMER)); 1097 if (err) 1098 goto freeout; 1099 } 1100 } 1101 1102 for_each_port(adap, i) { 1103 /* Note that cmplqid below is 0 if we don't 1104 * have RDMA queues, and that's the right value. 1105 */ 1106 if (rxq_info) 1107 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id; 1108 1109 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 1110 s->fw_evtq.cntxt_id, cmplqid); 1111 if (err) 1112 goto freeout; 1113 } 1114 1115 if (!is_t4(adap->params.chip)) { 1116 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0], 1117 netdev_get_tx_queue(adap->port[0], 0) 1118 , s->fw_evtq.cntxt_id, false); 1119 if (err) 1120 goto freeout; 1121 } 1122 1123 t4_write_reg(adap, is_t4(adap->params.chip) ? 1124 MPS_TRC_RSS_CONTROL_A : 1125 MPS_T5_TRC_RSS_CONTROL_A, 1126 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 1127 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 1128 return 0; 1129 freeout: 1130 dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err); 1131 t4_free_sge_resources(adap); 1132 return err; 1133 } 1134 1135 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 1136 struct net_device *sb_dev) 1137 { 1138 int txq; 1139 1140 #ifdef CONFIG_CHELSIO_T4_DCB 1141 /* If a Data Center Bridging has been successfully negotiated on this 1142 * link then we'll use the skb's priority to map it to a TX Queue. 1143 * The skb's priority is determined via the VLAN Tag Priority Code 1144 * Point field. 1145 */ 1146 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) { 1147 u16 vlan_tci; 1148 int err; 1149 1150 err = vlan_get_tag(skb, &vlan_tci); 1151 if (unlikely(err)) { 1152 if (net_ratelimit()) 1153 netdev_warn(dev, 1154 "TX Packet without VLAN Tag on DCB Link\n"); 1155 txq = 0; 1156 } else { 1157 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 1158 #ifdef CONFIG_CHELSIO_T4_FCOE 1159 if (skb->protocol == htons(ETH_P_FCOE)) 1160 txq = skb->priority & 0x7; 1161 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1162 } 1163 return txq; 1164 } 1165 #endif /* CONFIG_CHELSIO_T4_DCB */ 1166 1167 if (dev->num_tc) { 1168 struct port_info *pi = netdev2pinfo(dev); 1169 u8 ver, proto; 1170 1171 ver = ip_hdr(skb)->version; 1172 proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : 1173 ip_hdr(skb)->protocol; 1174 1175 /* Send unsupported traffic pattern to normal NIC queues. */ 1176 txq = netdev_pick_tx(dev, skb, sb_dev); 1177 if (xfrm_offload(skb) || is_ptp_enabled(skb, dev) || 1178 skb->encapsulation || 1179 cxgb4_is_ktls_skb(skb) || 1180 (proto != IPPROTO_TCP && proto != IPPROTO_UDP)) 1181 txq = txq % pi->nqsets; 1182 1183 return txq; 1184 } 1185 1186 if (select_queue) { 1187 txq = (skb_rx_queue_recorded(skb) 1188 ? skb_get_rx_queue(skb) 1189 : smp_processor_id()); 1190 1191 while (unlikely(txq >= dev->real_num_tx_queues)) 1192 txq -= dev->real_num_tx_queues; 1193 1194 return txq; 1195 } 1196 1197 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; 1198 } 1199 1200 static int closest_timer(const struct sge *s, int time) 1201 { 1202 int i, delta, match = 0, min_delta = INT_MAX; 1203 1204 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 1205 delta = time - s->timer_val[i]; 1206 if (delta < 0) 1207 delta = -delta; 1208 if (delta < min_delta) { 1209 min_delta = delta; 1210 match = i; 1211 } 1212 } 1213 return match; 1214 } 1215 1216 static int closest_thres(const struct sge *s, int thres) 1217 { 1218 int i, delta, match = 0, min_delta = INT_MAX; 1219 1220 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 1221 delta = thres - s->counter_val[i]; 1222 if (delta < 0) 1223 delta = -delta; 1224 if (delta < min_delta) { 1225 min_delta = delta; 1226 match = i; 1227 } 1228 } 1229 return match; 1230 } 1231 1232 /** 1233 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 1234 * @q: the Rx queue 1235 * @us: the hold-off time in us, or 0 to disable timer 1236 * @cnt: the hold-off packet count, or 0 to disable counter 1237 * 1238 * Sets an Rx queue's interrupt hold-off time and packet count. At least 1239 * one of the two needs to be enabled for the queue to generate interrupts. 1240 */ 1241 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 1242 unsigned int us, unsigned int cnt) 1243 { 1244 struct adapter *adap = q->adap; 1245 1246 if ((us | cnt) == 0) 1247 cnt = 1; 1248 1249 if (cnt) { 1250 int err; 1251 u32 v, new_idx; 1252 1253 new_idx = closest_thres(&adap->sge, cnt); 1254 if (q->desc && q->pktcnt_idx != new_idx) { 1255 /* the queue has already been created, update it */ 1256 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1257 FW_PARAMS_PARAM_X_V( 1258 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1259 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1260 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1261 &v, &new_idx); 1262 if (err) 1263 return err; 1264 } 1265 q->pktcnt_idx = new_idx; 1266 } 1267 1268 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1269 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1270 return 0; 1271 } 1272 1273 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1274 { 1275 netdev_features_t changed = dev->features ^ features; 1276 const struct port_info *pi = netdev_priv(dev); 1277 int err; 1278 1279 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1280 return 0; 1281 1282 err = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid, 1283 pi->viid_mirror, -1, -1, -1, -1, 1284 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1285 if (unlikely(err)) 1286 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1287 return err; 1288 } 1289 1290 static int setup_debugfs(struct adapter *adap) 1291 { 1292 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1293 return -1; 1294 1295 #ifdef CONFIG_DEBUG_FS 1296 t4_setup_debugfs(adap); 1297 #endif 1298 return 0; 1299 } 1300 1301 static void cxgb4_port_mirror_free_rxq(struct adapter *adap, 1302 struct sge_eth_rxq *mirror_rxq) 1303 { 1304 if ((adap->flags & CXGB4_FULL_INIT_DONE) && 1305 !(adap->flags & CXGB4_SHUTTING_DOWN)) 1306 cxgb4_quiesce_rx(&mirror_rxq->rspq); 1307 1308 if (adap->flags & CXGB4_USING_MSIX) { 1309 cxgb4_clear_msix_aff(mirror_rxq->msix->vec, 1310 mirror_rxq->msix->aff_mask); 1311 free_irq(mirror_rxq->msix->vec, &mirror_rxq->rspq); 1312 cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx); 1313 } 1314 1315 free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl); 1316 } 1317 1318 static int cxgb4_port_mirror_alloc_queues(struct net_device *dev) 1319 { 1320 struct port_info *pi = netdev2pinfo(dev); 1321 struct adapter *adap = netdev2adap(dev); 1322 struct sge_eth_rxq *mirror_rxq; 1323 struct sge *s = &adap->sge; 1324 int ret = 0, msix = 0; 1325 u16 i, rxqid; 1326 u16 *rss; 1327 1328 if (!pi->vi_mirror_count) 1329 return 0; 1330 1331 if (s->mirror_rxq[pi->port_id]) 1332 return 0; 1333 1334 mirror_rxq = kcalloc(pi->nmirrorqsets, sizeof(*mirror_rxq), GFP_KERNEL); 1335 if (!mirror_rxq) 1336 return -ENOMEM; 1337 1338 s->mirror_rxq[pi->port_id] = mirror_rxq; 1339 1340 if (!(adap->flags & CXGB4_USING_MSIX)) 1341 msix = -((int)adap->sge.intrq.abs_id + 1); 1342 1343 for (i = 0, rxqid = 0; i < pi->nmirrorqsets; i++, rxqid++) { 1344 mirror_rxq = &s->mirror_rxq[pi->port_id][i]; 1345 1346 /* Allocate Mirror Rxqs */ 1347 if (msix >= 0) { 1348 msix = cxgb4_get_msix_idx_from_bmap(adap); 1349 if (msix < 0) { 1350 ret = msix; 1351 goto out_free_queues; 1352 } 1353 1354 mirror_rxq->msix = &adap->msix_info[msix]; 1355 snprintf(mirror_rxq->msix->desc, 1356 sizeof(mirror_rxq->msix->desc), 1357 "%s-mirrorrxq%d", dev->name, i); 1358 } 1359 1360 init_rspq(adap, &mirror_rxq->rspq, 1361 CXGB4_MIRROR_RXQ_DEFAULT_INTR_USEC, 1362 CXGB4_MIRROR_RXQ_DEFAULT_PKT_CNT, 1363 CXGB4_MIRROR_RXQ_DEFAULT_DESC_NUM, 1364 CXGB4_MIRROR_RXQ_DEFAULT_DESC_SIZE); 1365 1366 mirror_rxq->fl.size = CXGB4_MIRROR_FLQ_DEFAULT_DESC_NUM; 1367 1368 ret = t4_sge_alloc_rxq(adap, &mirror_rxq->rspq, false, 1369 dev, msix, &mirror_rxq->fl, 1370 t4_ethrx_handler, NULL, 0); 1371 if (ret) 1372 goto out_free_msix_idx; 1373 1374 /* Setup MSI-X vectors for Mirror Rxqs */ 1375 if (adap->flags & CXGB4_USING_MSIX) { 1376 ret = request_irq(mirror_rxq->msix->vec, 1377 t4_sge_intr_msix, 0, 1378 mirror_rxq->msix->desc, 1379 &mirror_rxq->rspq); 1380 if (ret) 1381 goto out_free_rxq; 1382 1383 cxgb4_set_msix_aff(adap, mirror_rxq->msix->vec, 1384 &mirror_rxq->msix->aff_mask, i); 1385 } 1386 1387 /* Start NAPI for Mirror Rxqs */ 1388 cxgb4_enable_rx(adap, &mirror_rxq->rspq); 1389 } 1390 1391 /* Setup RSS for Mirror Rxqs */ 1392 rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 1393 if (!rss) { 1394 ret = -ENOMEM; 1395 goto out_free_queues; 1396 } 1397 1398 mirror_rxq = &s->mirror_rxq[pi->port_id][0]; 1399 for (i = 0; i < pi->rss_size; i++) 1400 rss[i] = mirror_rxq[i % pi->nmirrorqsets].rspq.abs_id; 1401 1402 ret = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid_mirror); 1403 kfree(rss); 1404 if (ret) 1405 goto out_free_queues; 1406 1407 return 0; 1408 1409 out_free_rxq: 1410 free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl); 1411 1412 out_free_msix_idx: 1413 cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx); 1414 1415 out_free_queues: 1416 while (rxqid-- > 0) 1417 cxgb4_port_mirror_free_rxq(adap, 1418 &s->mirror_rxq[pi->port_id][rxqid]); 1419 1420 kfree(s->mirror_rxq[pi->port_id]); 1421 s->mirror_rxq[pi->port_id] = NULL; 1422 return ret; 1423 } 1424 1425 static void cxgb4_port_mirror_free_queues(struct net_device *dev) 1426 { 1427 struct port_info *pi = netdev2pinfo(dev); 1428 struct adapter *adap = netdev2adap(dev); 1429 struct sge *s = &adap->sge; 1430 u16 i; 1431 1432 if (!pi->vi_mirror_count) 1433 return; 1434 1435 if (!s->mirror_rxq[pi->port_id]) 1436 return; 1437 1438 for (i = 0; i < pi->nmirrorqsets; i++) 1439 cxgb4_port_mirror_free_rxq(adap, 1440 &s->mirror_rxq[pi->port_id][i]); 1441 1442 kfree(s->mirror_rxq[pi->port_id]); 1443 s->mirror_rxq[pi->port_id] = NULL; 1444 } 1445 1446 static int cxgb4_port_mirror_start(struct net_device *dev) 1447 { 1448 struct port_info *pi = netdev2pinfo(dev); 1449 struct adapter *adap = netdev2adap(dev); 1450 int ret, idx = -1; 1451 1452 if (!pi->vi_mirror_count) 1453 return 0; 1454 1455 /* Mirror VIs can be created dynamically after stack had 1456 * already setup Rx modes like MTU, promisc, allmulti, etc. 1457 * on main VI. So, parse what the stack had setup on the 1458 * main VI and update the same on the mirror VI. 1459 */ 1460 ret = t4_set_rxmode(adap, adap->mbox, pi->viid, pi->viid_mirror, 1461 dev->mtu, (dev->flags & IFF_PROMISC) ? 1 : 0, 1462 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, 1463 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 1464 if (ret) { 1465 dev_err(adap->pdev_dev, 1466 "Failed start up Rx mode for Mirror VI 0x%x, ret: %d\n", 1467 pi->viid_mirror, ret); 1468 return ret; 1469 } 1470 1471 /* Enable replication bit for the device's MAC address 1472 * in MPS TCAM, so that the packets for the main VI are 1473 * replicated to mirror VI. 1474 */ 1475 ret = cxgb4_update_mac_filt(pi, pi->viid_mirror, &idx, 1476 dev->dev_addr, true, NULL); 1477 if (ret) { 1478 dev_err(adap->pdev_dev, 1479 "Failed updating MAC filter for Mirror VI 0x%x, ret: %d\n", 1480 pi->viid_mirror, ret); 1481 return ret; 1482 } 1483 1484 /* Enabling a Virtual Interface can result in an interrupt 1485 * during the processing of the VI Enable command and, in some 1486 * paths, result in an attempt to issue another command in the 1487 * interrupt context. Thus, we disable interrupts during the 1488 * course of the VI Enable command ... 1489 */ 1490 local_bh_disable(); 1491 ret = t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, true, true, 1492 false); 1493 local_bh_enable(); 1494 if (ret) 1495 dev_err(adap->pdev_dev, 1496 "Failed starting Mirror VI 0x%x, ret: %d\n", 1497 pi->viid_mirror, ret); 1498 1499 return ret; 1500 } 1501 1502 static void cxgb4_port_mirror_stop(struct net_device *dev) 1503 { 1504 struct port_info *pi = netdev2pinfo(dev); 1505 struct adapter *adap = netdev2adap(dev); 1506 1507 if (!pi->vi_mirror_count) 1508 return; 1509 1510 t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, false, false, 1511 false); 1512 } 1513 1514 int cxgb4_port_mirror_alloc(struct net_device *dev) 1515 { 1516 struct port_info *pi = netdev2pinfo(dev); 1517 struct adapter *adap = netdev2adap(dev); 1518 int ret = 0; 1519 1520 if (!pi->nmirrorqsets) 1521 return -EOPNOTSUPP; 1522 1523 mutex_lock(&pi->vi_mirror_mutex); 1524 if (pi->viid_mirror) { 1525 pi->vi_mirror_count++; 1526 goto out_unlock; 1527 } 1528 1529 ret = t4_init_port_mirror(pi, adap->mbox, pi->port_id, adap->pf, 0, 1530 &pi->viid_mirror); 1531 if (ret) 1532 goto out_unlock; 1533 1534 pi->vi_mirror_count = 1; 1535 1536 if (adap->flags & CXGB4_FULL_INIT_DONE) { 1537 ret = cxgb4_port_mirror_alloc_queues(dev); 1538 if (ret) 1539 goto out_free_vi; 1540 1541 ret = cxgb4_port_mirror_start(dev); 1542 if (ret) 1543 goto out_free_queues; 1544 } 1545 1546 mutex_unlock(&pi->vi_mirror_mutex); 1547 return 0; 1548 1549 out_free_queues: 1550 cxgb4_port_mirror_free_queues(dev); 1551 1552 out_free_vi: 1553 pi->vi_mirror_count = 0; 1554 t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror); 1555 pi->viid_mirror = 0; 1556 1557 out_unlock: 1558 mutex_unlock(&pi->vi_mirror_mutex); 1559 return ret; 1560 } 1561 1562 void cxgb4_port_mirror_free(struct net_device *dev) 1563 { 1564 struct port_info *pi = netdev2pinfo(dev); 1565 struct adapter *adap = netdev2adap(dev); 1566 1567 mutex_lock(&pi->vi_mirror_mutex); 1568 if (!pi->viid_mirror) 1569 goto out_unlock; 1570 1571 if (pi->vi_mirror_count > 1) { 1572 pi->vi_mirror_count--; 1573 goto out_unlock; 1574 } 1575 1576 cxgb4_port_mirror_stop(dev); 1577 cxgb4_port_mirror_free_queues(dev); 1578 1579 pi->vi_mirror_count = 0; 1580 t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror); 1581 pi->viid_mirror = 0; 1582 1583 out_unlock: 1584 mutex_unlock(&pi->vi_mirror_mutex); 1585 } 1586 1587 /* 1588 * upper-layer driver support 1589 */ 1590 1591 /* 1592 * Allocate an active-open TID and set it to the supplied value. 1593 */ 1594 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1595 { 1596 int atid = -1; 1597 1598 spin_lock_bh(&t->atid_lock); 1599 if (t->afree) { 1600 union aopen_entry *p = t->afree; 1601 1602 atid = (p - t->atid_tab) + t->atid_base; 1603 t->afree = p->next; 1604 p->data = data; 1605 t->atids_in_use++; 1606 } 1607 spin_unlock_bh(&t->atid_lock); 1608 return atid; 1609 } 1610 EXPORT_SYMBOL(cxgb4_alloc_atid); 1611 1612 /* 1613 * Release an active-open TID. 1614 */ 1615 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1616 { 1617 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1618 1619 spin_lock_bh(&t->atid_lock); 1620 p->next = t->afree; 1621 t->afree = p; 1622 t->atids_in_use--; 1623 spin_unlock_bh(&t->atid_lock); 1624 } 1625 EXPORT_SYMBOL(cxgb4_free_atid); 1626 1627 /* 1628 * Allocate a server TID and set it to the supplied value. 1629 */ 1630 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1631 { 1632 int stid; 1633 1634 spin_lock_bh(&t->stid_lock); 1635 if (family == PF_INET) { 1636 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1637 if (stid < t->nstids) 1638 __set_bit(stid, t->stid_bmap); 1639 else 1640 stid = -1; 1641 } else { 1642 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); 1643 if (stid < 0) 1644 stid = -1; 1645 } 1646 if (stid >= 0) { 1647 t->stid_tab[stid].data = data; 1648 stid += t->stid_base; 1649 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1650 * This is equivalent to 4 TIDs. With CLIP enabled it 1651 * needs 2 TIDs. 1652 */ 1653 if (family == PF_INET6) { 1654 t->stids_in_use += 2; 1655 t->v6_stids_in_use += 2; 1656 } else { 1657 t->stids_in_use++; 1658 } 1659 } 1660 spin_unlock_bh(&t->stid_lock); 1661 return stid; 1662 } 1663 EXPORT_SYMBOL(cxgb4_alloc_stid); 1664 1665 /* Allocate a server filter TID and set it to the supplied value. 1666 */ 1667 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1668 { 1669 int stid; 1670 1671 spin_lock_bh(&t->stid_lock); 1672 if (family == PF_INET) { 1673 stid = find_next_zero_bit(t->stid_bmap, 1674 t->nstids + t->nsftids, t->nstids); 1675 if (stid < (t->nstids + t->nsftids)) 1676 __set_bit(stid, t->stid_bmap); 1677 else 1678 stid = -1; 1679 } else { 1680 stid = -1; 1681 } 1682 if (stid >= 0) { 1683 t->stid_tab[stid].data = data; 1684 stid -= t->nstids; 1685 stid += t->sftid_base; 1686 t->sftids_in_use++; 1687 } 1688 spin_unlock_bh(&t->stid_lock); 1689 return stid; 1690 } 1691 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1692 1693 /* Release a server TID. 1694 */ 1695 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1696 { 1697 /* Is it a server filter TID? */ 1698 if (t->nsftids && (stid >= t->sftid_base)) { 1699 stid -= t->sftid_base; 1700 stid += t->nstids; 1701 } else { 1702 stid -= t->stid_base; 1703 } 1704 1705 spin_lock_bh(&t->stid_lock); 1706 if (family == PF_INET) 1707 __clear_bit(stid, t->stid_bmap); 1708 else 1709 bitmap_release_region(t->stid_bmap, stid, 1); 1710 t->stid_tab[stid].data = NULL; 1711 if (stid < t->nstids) { 1712 if (family == PF_INET6) { 1713 t->stids_in_use -= 2; 1714 t->v6_stids_in_use -= 2; 1715 } else { 1716 t->stids_in_use--; 1717 } 1718 } else { 1719 t->sftids_in_use--; 1720 } 1721 1722 spin_unlock_bh(&t->stid_lock); 1723 } 1724 EXPORT_SYMBOL(cxgb4_free_stid); 1725 1726 /* 1727 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1728 */ 1729 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1730 unsigned int tid) 1731 { 1732 struct cpl_tid_release *req; 1733 1734 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1735 req = __skb_put(skb, sizeof(*req)); 1736 INIT_TP_WR(req, tid); 1737 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1738 } 1739 1740 /* 1741 * Queue a TID release request and if necessary schedule a work queue to 1742 * process it. 1743 */ 1744 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1745 unsigned int tid) 1746 { 1747 struct adapter *adap = container_of(t, struct adapter, tids); 1748 void **p = &t->tid_tab[tid - t->tid_base]; 1749 1750 spin_lock_bh(&adap->tid_release_lock); 1751 *p = adap->tid_release_head; 1752 /* Low 2 bits encode the Tx channel number */ 1753 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1754 if (!adap->tid_release_task_busy) { 1755 adap->tid_release_task_busy = true; 1756 queue_work(adap->workq, &adap->tid_release_task); 1757 } 1758 spin_unlock_bh(&adap->tid_release_lock); 1759 } 1760 1761 /* 1762 * Process the list of pending TID release requests. 1763 */ 1764 static void process_tid_release_list(struct work_struct *work) 1765 { 1766 struct sk_buff *skb; 1767 struct adapter *adap; 1768 1769 adap = container_of(work, struct adapter, tid_release_task); 1770 1771 spin_lock_bh(&adap->tid_release_lock); 1772 while (adap->tid_release_head) { 1773 void **p = adap->tid_release_head; 1774 unsigned int chan = (uintptr_t)p & 3; 1775 p = (void *)p - chan; 1776 1777 adap->tid_release_head = *p; 1778 *p = NULL; 1779 spin_unlock_bh(&adap->tid_release_lock); 1780 1781 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1782 GFP_KERNEL))) 1783 schedule_timeout_uninterruptible(1); 1784 1785 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1786 t4_ofld_send(adap, skb); 1787 spin_lock_bh(&adap->tid_release_lock); 1788 } 1789 adap->tid_release_task_busy = false; 1790 spin_unlock_bh(&adap->tid_release_lock); 1791 } 1792 1793 /* 1794 * Release a TID and inform HW. If we are unable to allocate the release 1795 * message we defer to a work queue. 1796 */ 1797 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid, 1798 unsigned short family) 1799 { 1800 struct adapter *adap = container_of(t, struct adapter, tids); 1801 struct sk_buff *skb; 1802 1803 WARN_ON(tid_out_of_range(&adap->tids, tid)); 1804 1805 if (t->tid_tab[tid - adap->tids.tid_base]) { 1806 t->tid_tab[tid - adap->tids.tid_base] = NULL; 1807 atomic_dec(&t->conns_in_use); 1808 if (t->hash_base && (tid >= t->hash_base)) { 1809 if (family == AF_INET6) 1810 atomic_sub(2, &t->hash_tids_in_use); 1811 else 1812 atomic_dec(&t->hash_tids_in_use); 1813 } else { 1814 if (family == AF_INET6) 1815 atomic_sub(2, &t->tids_in_use); 1816 else 1817 atomic_dec(&t->tids_in_use); 1818 } 1819 } 1820 1821 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1822 if (likely(skb)) { 1823 mk_tid_release(skb, chan, tid); 1824 t4_ofld_send(adap, skb); 1825 } else 1826 cxgb4_queue_tid_release(t, chan, tid); 1827 } 1828 EXPORT_SYMBOL(cxgb4_remove_tid); 1829 1830 /* 1831 * Allocate and initialize the TID tables. Returns 0 on success. 1832 */ 1833 static int tid_init(struct tid_info *t) 1834 { 1835 struct adapter *adap = container_of(t, struct adapter, tids); 1836 unsigned int max_ftids = t->nftids + t->nsftids; 1837 unsigned int natids = t->natids; 1838 unsigned int hpftid_bmap_size; 1839 unsigned int eotid_bmap_size; 1840 unsigned int stid_bmap_size; 1841 unsigned int ftid_bmap_size; 1842 size_t size; 1843 1844 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1845 ftid_bmap_size = BITS_TO_LONGS(t->nftids); 1846 hpftid_bmap_size = BITS_TO_LONGS(t->nhpftids); 1847 eotid_bmap_size = BITS_TO_LONGS(t->neotids); 1848 size = t->ntids * sizeof(*t->tid_tab) + 1849 natids * sizeof(*t->atid_tab) + 1850 t->nstids * sizeof(*t->stid_tab) + 1851 t->nsftids * sizeof(*t->stid_tab) + 1852 stid_bmap_size * sizeof(long) + 1853 t->nhpftids * sizeof(*t->hpftid_tab) + 1854 hpftid_bmap_size * sizeof(long) + 1855 max_ftids * sizeof(*t->ftid_tab) + 1856 ftid_bmap_size * sizeof(long) + 1857 t->neotids * sizeof(*t->eotid_tab) + 1858 eotid_bmap_size * sizeof(long); 1859 1860 t->tid_tab = kvzalloc(size, GFP_KERNEL); 1861 if (!t->tid_tab) 1862 return -ENOMEM; 1863 1864 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1865 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1866 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1867 t->hpftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1868 t->hpftid_bmap = (unsigned long *)&t->hpftid_tab[t->nhpftids]; 1869 t->ftid_tab = (struct filter_entry *)&t->hpftid_bmap[hpftid_bmap_size]; 1870 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids]; 1871 t->eotid_tab = (struct eotid_entry *)&t->ftid_bmap[ftid_bmap_size]; 1872 t->eotid_bmap = (unsigned long *)&t->eotid_tab[t->neotids]; 1873 spin_lock_init(&t->stid_lock); 1874 spin_lock_init(&t->atid_lock); 1875 spin_lock_init(&t->ftid_lock); 1876 1877 t->stids_in_use = 0; 1878 t->v6_stids_in_use = 0; 1879 t->sftids_in_use = 0; 1880 t->afree = NULL; 1881 t->atids_in_use = 0; 1882 atomic_set(&t->tids_in_use, 0); 1883 atomic_set(&t->conns_in_use, 0); 1884 atomic_set(&t->hash_tids_in_use, 0); 1885 atomic_set(&t->eotids_in_use, 0); 1886 1887 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1888 if (natids) { 1889 while (--natids) 1890 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1891 t->afree = t->atid_tab; 1892 } 1893 1894 if (is_offload(adap)) { 1895 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1896 /* Reserve stid 0 for T4/T5 adapters */ 1897 if (!t->stid_base && 1898 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1899 __set_bit(0, t->stid_bmap); 1900 1901 if (t->neotids) 1902 bitmap_zero(t->eotid_bmap, t->neotids); 1903 } 1904 1905 if (t->nhpftids) 1906 bitmap_zero(t->hpftid_bmap, t->nhpftids); 1907 bitmap_zero(t->ftid_bmap, t->nftids); 1908 return 0; 1909 } 1910 1911 /** 1912 * cxgb4_create_server - create an IP server 1913 * @dev: the device 1914 * @stid: the server TID 1915 * @sip: local IP address to bind server to 1916 * @sport: the server's TCP port 1917 * @vlan: the VLAN header information 1918 * @queue: queue to direct messages from this server to 1919 * 1920 * Create an IP server for the given port and address. 1921 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1922 */ 1923 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1924 __be32 sip, __be16 sport, __be16 vlan, 1925 unsigned int queue) 1926 { 1927 unsigned int chan; 1928 struct sk_buff *skb; 1929 struct adapter *adap; 1930 struct cpl_pass_open_req *req; 1931 int ret; 1932 1933 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1934 if (!skb) 1935 return -ENOMEM; 1936 1937 adap = netdev2adap(dev); 1938 req = __skb_put(skb, sizeof(*req)); 1939 INIT_TP_WR(req, 0); 1940 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1941 req->local_port = sport; 1942 req->peer_port = htons(0); 1943 req->local_ip = sip; 1944 req->peer_ip = htonl(0); 1945 chan = rxq_to_chan(&adap->sge, queue); 1946 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1947 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1948 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1949 ret = t4_mgmt_tx(adap, skb); 1950 return net_xmit_eval(ret); 1951 } 1952 EXPORT_SYMBOL(cxgb4_create_server); 1953 1954 /* cxgb4_create_server6 - create an IPv6 server 1955 * @dev: the device 1956 * @stid: the server TID 1957 * @sip: local IPv6 address to bind server to 1958 * @sport: the server's TCP port 1959 * @queue: queue to direct messages from this server to 1960 * 1961 * Create an IPv6 server for the given port and address. 1962 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1963 */ 1964 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1965 const struct in6_addr *sip, __be16 sport, 1966 unsigned int queue) 1967 { 1968 unsigned int chan; 1969 struct sk_buff *skb; 1970 struct adapter *adap; 1971 struct cpl_pass_open_req6 *req; 1972 int ret; 1973 1974 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1975 if (!skb) 1976 return -ENOMEM; 1977 1978 adap = netdev2adap(dev); 1979 req = __skb_put(skb, sizeof(*req)); 1980 INIT_TP_WR(req, 0); 1981 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1982 req->local_port = sport; 1983 req->peer_port = htons(0); 1984 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1985 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1986 req->peer_ip_hi = cpu_to_be64(0); 1987 req->peer_ip_lo = cpu_to_be64(0); 1988 chan = rxq_to_chan(&adap->sge, queue); 1989 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1990 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1991 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1992 ret = t4_mgmt_tx(adap, skb); 1993 return net_xmit_eval(ret); 1994 } 1995 EXPORT_SYMBOL(cxgb4_create_server6); 1996 1997 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1998 unsigned int queue, bool ipv6) 1999 { 2000 struct sk_buff *skb; 2001 struct adapter *adap; 2002 struct cpl_close_listsvr_req *req; 2003 int ret; 2004 2005 adap = netdev2adap(dev); 2006 2007 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 2008 if (!skb) 2009 return -ENOMEM; 2010 2011 req = __skb_put(skb, sizeof(*req)); 2012 INIT_TP_WR(req, 0); 2013 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 2014 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 2015 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 2016 ret = t4_mgmt_tx(adap, skb); 2017 return net_xmit_eval(ret); 2018 } 2019 EXPORT_SYMBOL(cxgb4_remove_server); 2020 2021 /** 2022 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 2023 * @mtus: the HW MTU table 2024 * @mtu: the target MTU 2025 * @idx: index of selected entry in the MTU table 2026 * 2027 * Returns the index and the value in the HW MTU table that is closest to 2028 * but does not exceed @mtu, unless @mtu is smaller than any value in the 2029 * table, in which case that smallest available value is selected. 2030 */ 2031 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 2032 unsigned int *idx) 2033 { 2034 unsigned int i = 0; 2035 2036 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 2037 ++i; 2038 if (idx) 2039 *idx = i; 2040 return mtus[i]; 2041 } 2042 EXPORT_SYMBOL(cxgb4_best_mtu); 2043 2044 /** 2045 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 2046 * @mtus: the HW MTU table 2047 * @header_size: Header Size 2048 * @data_size_max: maximum Data Segment Size 2049 * @data_size_align: desired Data Segment Size Alignment (2^N) 2050 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 2051 * 2052 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 2053 * MTU Table based solely on a Maximum MTU parameter, we break that 2054 * parameter up into a Header Size and Maximum Data Segment Size, and 2055 * provide a desired Data Segment Size Alignment. If we find an MTU in 2056 * the Hardware MTU Table which will result in a Data Segment Size with 2057 * the requested alignment _and_ that MTU isn't "too far" from the 2058 * closest MTU, then we'll return that rather than the closest MTU. 2059 */ 2060 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 2061 unsigned short header_size, 2062 unsigned short data_size_max, 2063 unsigned short data_size_align, 2064 unsigned int *mtu_idxp) 2065 { 2066 unsigned short max_mtu = header_size + data_size_max; 2067 unsigned short data_size_align_mask = data_size_align - 1; 2068 int mtu_idx, aligned_mtu_idx; 2069 2070 /* Scan the MTU Table till we find an MTU which is larger than our 2071 * Maximum MTU or we reach the end of the table. Along the way, 2072 * record the last MTU found, if any, which will result in a Data 2073 * Segment Length matching the requested alignment. 2074 */ 2075 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 2076 unsigned short data_size = mtus[mtu_idx] - header_size; 2077 2078 /* If this MTU minus the Header Size would result in a 2079 * Data Segment Size of the desired alignment, remember it. 2080 */ 2081 if ((data_size & data_size_align_mask) == 0) 2082 aligned_mtu_idx = mtu_idx; 2083 2084 /* If we're not at the end of the Hardware MTU Table and the 2085 * next element is larger than our Maximum MTU, drop out of 2086 * the loop. 2087 */ 2088 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 2089 break; 2090 } 2091 2092 /* If we fell out of the loop because we ran to the end of the table, 2093 * then we just have to use the last [largest] entry. 2094 */ 2095 if (mtu_idx == NMTUS) 2096 mtu_idx--; 2097 2098 /* If we found an MTU which resulted in the requested Data Segment 2099 * Length alignment and that's "not far" from the largest MTU which is 2100 * less than or equal to the maximum MTU, then use that. 2101 */ 2102 if (aligned_mtu_idx >= 0 && 2103 mtu_idx - aligned_mtu_idx <= 1) 2104 mtu_idx = aligned_mtu_idx; 2105 2106 /* If the caller has passed in an MTU Index pointer, pass the 2107 * MTU Index back. Return the MTU value. 2108 */ 2109 if (mtu_idxp) 2110 *mtu_idxp = mtu_idx; 2111 return mtus[mtu_idx]; 2112 } 2113 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 2114 2115 /** 2116 * cxgb4_port_chan - get the HW channel of a port 2117 * @dev: the net device for the port 2118 * 2119 * Return the HW Tx channel of the given port. 2120 */ 2121 unsigned int cxgb4_port_chan(const struct net_device *dev) 2122 { 2123 return netdev2pinfo(dev)->tx_chan; 2124 } 2125 EXPORT_SYMBOL(cxgb4_port_chan); 2126 2127 /** 2128 * cxgb4_port_e2cchan - get the HW c-channel of a port 2129 * @dev: the net device for the port 2130 * 2131 * Return the HW RX c-channel of the given port. 2132 */ 2133 unsigned int cxgb4_port_e2cchan(const struct net_device *dev) 2134 { 2135 return netdev2pinfo(dev)->rx_cchan; 2136 } 2137 EXPORT_SYMBOL(cxgb4_port_e2cchan); 2138 2139 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 2140 { 2141 struct adapter *adap = netdev2adap(dev); 2142 u32 v1, v2, lp_count, hp_count; 2143 2144 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 2145 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 2146 if (is_t4(adap->params.chip)) { 2147 lp_count = LP_COUNT_G(v1); 2148 hp_count = HP_COUNT_G(v1); 2149 } else { 2150 lp_count = LP_COUNT_T5_G(v1); 2151 hp_count = HP_COUNT_T5_G(v2); 2152 } 2153 return lpfifo ? lp_count : hp_count; 2154 } 2155 EXPORT_SYMBOL(cxgb4_dbfifo_count); 2156 2157 /** 2158 * cxgb4_port_viid - get the VI id of a port 2159 * @dev: the net device for the port 2160 * 2161 * Return the VI id of the given port. 2162 */ 2163 unsigned int cxgb4_port_viid(const struct net_device *dev) 2164 { 2165 return netdev2pinfo(dev)->viid; 2166 } 2167 EXPORT_SYMBOL(cxgb4_port_viid); 2168 2169 /** 2170 * cxgb4_port_idx - get the index of a port 2171 * @dev: the net device for the port 2172 * 2173 * Return the index of the given port. 2174 */ 2175 unsigned int cxgb4_port_idx(const struct net_device *dev) 2176 { 2177 return netdev2pinfo(dev)->port_id; 2178 } 2179 EXPORT_SYMBOL(cxgb4_port_idx); 2180 2181 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 2182 struct tp_tcp_stats *v6) 2183 { 2184 struct adapter *adap = pci_get_drvdata(pdev); 2185 2186 spin_lock(&adap->stats_lock); 2187 t4_tp_get_tcp_stats(adap, v4, v6, false); 2188 spin_unlock(&adap->stats_lock); 2189 } 2190 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 2191 2192 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 2193 const unsigned int *pgsz_order) 2194 { 2195 struct adapter *adap = netdev2adap(dev); 2196 2197 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 2198 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 2199 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 2200 HPZ3_V(pgsz_order[3])); 2201 } 2202 EXPORT_SYMBOL(cxgb4_iscsi_init); 2203 2204 int cxgb4_flush_eq_cache(struct net_device *dev) 2205 { 2206 struct adapter *adap = netdev2adap(dev); 2207 2208 return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS); 2209 } 2210 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 2211 2212 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 2213 { 2214 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 2215 __be64 indices; 2216 int ret; 2217 2218 spin_lock(&adap->win0_lock); 2219 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 2220 sizeof(indices), (__be32 *)&indices, 2221 T4_MEMORY_READ); 2222 spin_unlock(&adap->win0_lock); 2223 if (!ret) { 2224 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 2225 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 2226 } 2227 return ret; 2228 } 2229 2230 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 2231 u16 size) 2232 { 2233 struct adapter *adap = netdev2adap(dev); 2234 u16 hw_pidx, hw_cidx; 2235 int ret; 2236 2237 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 2238 if (ret) 2239 goto out; 2240 2241 if (pidx != hw_pidx) { 2242 u16 delta; 2243 u32 val; 2244 2245 if (pidx >= hw_pidx) 2246 delta = pidx - hw_pidx; 2247 else 2248 delta = size - hw_pidx + pidx; 2249 2250 if (is_t4(adap->params.chip)) 2251 val = PIDX_V(delta); 2252 else 2253 val = PIDX_T5_V(delta); 2254 wmb(); 2255 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2256 QID_V(qid) | val); 2257 } 2258 out: 2259 return ret; 2260 } 2261 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 2262 2263 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 2264 { 2265 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 2266 u32 edc0_end, edc1_end, mc0_end, mc1_end; 2267 u32 offset, memtype, memaddr; 2268 struct adapter *adap; 2269 u32 hma_size = 0; 2270 int ret; 2271 2272 adap = netdev2adap(dev); 2273 2274 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 2275 2276 /* Figure out where the offset lands in the Memory Type/Address scheme. 2277 * This code assumes that the memory is laid out starting at offset 0 2278 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 2279 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 2280 * MC0, and some have both MC0 and MC1. 2281 */ 2282 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 2283 edc0_size = EDRAM0_SIZE_G(size) << 20; 2284 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 2285 edc1_size = EDRAM1_SIZE_G(size) << 20; 2286 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 2287 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 2288 2289 if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) { 2290 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 2291 hma_size = EXT_MEM1_SIZE_G(size) << 20; 2292 } 2293 edc0_end = edc0_size; 2294 edc1_end = edc0_end + edc1_size; 2295 mc0_end = edc1_end + mc0_size; 2296 2297 if (offset < edc0_end) { 2298 memtype = MEM_EDC0; 2299 memaddr = offset; 2300 } else if (offset < edc1_end) { 2301 memtype = MEM_EDC1; 2302 memaddr = offset - edc0_end; 2303 } else { 2304 if (hma_size && (offset < (edc1_end + hma_size))) { 2305 memtype = MEM_HMA; 2306 memaddr = offset - edc1_end; 2307 } else if (offset < mc0_end) { 2308 memtype = MEM_MC0; 2309 memaddr = offset - edc1_end; 2310 } else if (is_t5(adap->params.chip)) { 2311 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 2312 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 2313 mc1_end = mc0_end + mc1_size; 2314 if (offset < mc1_end) { 2315 memtype = MEM_MC1; 2316 memaddr = offset - mc0_end; 2317 } else { 2318 /* offset beyond the end of any memory */ 2319 goto err; 2320 } 2321 } else { 2322 /* T4/T6 only has a single memory channel */ 2323 goto err; 2324 } 2325 } 2326 2327 spin_lock(&adap->win0_lock); 2328 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 2329 spin_unlock(&adap->win0_lock); 2330 return ret; 2331 2332 err: 2333 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 2334 stag, offset); 2335 return -EINVAL; 2336 } 2337 EXPORT_SYMBOL(cxgb4_read_tpte); 2338 2339 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 2340 { 2341 u32 hi, lo; 2342 struct adapter *adap; 2343 2344 adap = netdev2adap(dev); 2345 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 2346 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 2347 2348 return ((u64)hi << 32) | (u64)lo; 2349 } 2350 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 2351 2352 int cxgb4_bar2_sge_qregs(struct net_device *dev, 2353 unsigned int qid, 2354 enum cxgb4_bar2_qtype qtype, 2355 int user, 2356 u64 *pbar2_qoffset, 2357 unsigned int *pbar2_qid) 2358 { 2359 return t4_bar2_sge_qregs(netdev2adap(dev), 2360 qid, 2361 (qtype == CXGB4_BAR2_QTYPE_EGRESS 2362 ? T4_BAR2_QTYPE_EGRESS 2363 : T4_BAR2_QTYPE_INGRESS), 2364 user, 2365 pbar2_qoffset, 2366 pbar2_qid); 2367 } 2368 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 2369 2370 static struct pci_driver cxgb4_driver; 2371 2372 static void check_neigh_update(struct neighbour *neigh) 2373 { 2374 const struct device *parent; 2375 const struct net_device *netdev = neigh->dev; 2376 2377 if (is_vlan_dev(netdev)) 2378 netdev = vlan_dev_real_dev(netdev); 2379 parent = netdev->dev.parent; 2380 if (parent && parent->driver == &cxgb4_driver.driver) 2381 t4_l2t_update(dev_get_drvdata(parent), neigh); 2382 } 2383 2384 static int netevent_cb(struct notifier_block *nb, unsigned long event, 2385 void *data) 2386 { 2387 switch (event) { 2388 case NETEVENT_NEIGH_UPDATE: 2389 check_neigh_update(data); 2390 break; 2391 case NETEVENT_REDIRECT: 2392 default: 2393 break; 2394 } 2395 return 0; 2396 } 2397 2398 static bool netevent_registered; 2399 static struct notifier_block cxgb4_netevent_nb = { 2400 .notifier_call = netevent_cb 2401 }; 2402 2403 static void drain_db_fifo(struct adapter *adap, int usecs) 2404 { 2405 u32 v1, v2, lp_count, hp_count; 2406 2407 do { 2408 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 2409 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 2410 if (is_t4(adap->params.chip)) { 2411 lp_count = LP_COUNT_G(v1); 2412 hp_count = HP_COUNT_G(v1); 2413 } else { 2414 lp_count = LP_COUNT_T5_G(v1); 2415 hp_count = HP_COUNT_T5_G(v2); 2416 } 2417 2418 if (lp_count == 0 && hp_count == 0) 2419 break; 2420 set_current_state(TASK_UNINTERRUPTIBLE); 2421 schedule_timeout(usecs_to_jiffies(usecs)); 2422 } while (1); 2423 } 2424 2425 static void disable_txq_db(struct sge_txq *q) 2426 { 2427 unsigned long flags; 2428 2429 spin_lock_irqsave(&q->db_lock, flags); 2430 q->db_disabled = 1; 2431 spin_unlock_irqrestore(&q->db_lock, flags); 2432 } 2433 2434 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 2435 { 2436 spin_lock_irq(&q->db_lock); 2437 if (q->db_pidx_inc) { 2438 /* Make sure that all writes to the TX descriptors 2439 * are committed before we tell HW about them. 2440 */ 2441 wmb(); 2442 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2443 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 2444 q->db_pidx_inc = 0; 2445 } 2446 q->db_disabled = 0; 2447 spin_unlock_irq(&q->db_lock); 2448 } 2449 2450 static void disable_dbs(struct adapter *adap) 2451 { 2452 int i; 2453 2454 for_each_ethrxq(&adap->sge, i) 2455 disable_txq_db(&adap->sge.ethtxq[i].q); 2456 if (is_offload(adap)) { 2457 struct sge_uld_txq_info *txq_info = 2458 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2459 2460 if (txq_info) { 2461 for_each_ofldtxq(&adap->sge, i) { 2462 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2463 2464 disable_txq_db(&txq->q); 2465 } 2466 } 2467 } 2468 for_each_port(adap, i) 2469 disable_txq_db(&adap->sge.ctrlq[i].q); 2470 } 2471 2472 static void enable_dbs(struct adapter *adap) 2473 { 2474 int i; 2475 2476 for_each_ethrxq(&adap->sge, i) 2477 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 2478 if (is_offload(adap)) { 2479 struct sge_uld_txq_info *txq_info = 2480 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2481 2482 if (txq_info) { 2483 for_each_ofldtxq(&adap->sge, i) { 2484 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2485 2486 enable_txq_db(adap, &txq->q); 2487 } 2488 } 2489 } 2490 for_each_port(adap, i) 2491 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 2492 } 2493 2494 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 2495 { 2496 enum cxgb4_uld type = CXGB4_ULD_RDMA; 2497 2498 if (adap->uld && adap->uld[type].handle) 2499 adap->uld[type].control(adap->uld[type].handle, cmd); 2500 } 2501 2502 static void process_db_full(struct work_struct *work) 2503 { 2504 struct adapter *adap; 2505 2506 adap = container_of(work, struct adapter, db_full_task); 2507 2508 drain_db_fifo(adap, dbfifo_drain_delay); 2509 enable_dbs(adap); 2510 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2511 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2512 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2513 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 2514 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 2515 else 2516 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2517 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 2518 } 2519 2520 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 2521 { 2522 u16 hw_pidx, hw_cidx; 2523 int ret; 2524 2525 spin_lock_irq(&q->db_lock); 2526 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 2527 if (ret) 2528 goto out; 2529 if (q->db_pidx != hw_pidx) { 2530 u16 delta; 2531 u32 val; 2532 2533 if (q->db_pidx >= hw_pidx) 2534 delta = q->db_pidx - hw_pidx; 2535 else 2536 delta = q->size - hw_pidx + q->db_pidx; 2537 2538 if (is_t4(adap->params.chip)) 2539 val = PIDX_V(delta); 2540 else 2541 val = PIDX_T5_V(delta); 2542 wmb(); 2543 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2544 QID_V(q->cntxt_id) | val); 2545 } 2546 out: 2547 q->db_disabled = 0; 2548 q->db_pidx_inc = 0; 2549 spin_unlock_irq(&q->db_lock); 2550 if (ret) 2551 CH_WARN(adap, "DB drop recovery failed.\n"); 2552 } 2553 2554 static void recover_all_queues(struct adapter *adap) 2555 { 2556 int i; 2557 2558 for_each_ethrxq(&adap->sge, i) 2559 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 2560 if (is_offload(adap)) { 2561 struct sge_uld_txq_info *txq_info = 2562 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2563 if (txq_info) { 2564 for_each_ofldtxq(&adap->sge, i) { 2565 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2566 2567 sync_txq_pidx(adap, &txq->q); 2568 } 2569 } 2570 } 2571 for_each_port(adap, i) 2572 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2573 } 2574 2575 static void process_db_drop(struct work_struct *work) 2576 { 2577 struct adapter *adap; 2578 2579 adap = container_of(work, struct adapter, db_drop_task); 2580 2581 if (is_t4(adap->params.chip)) { 2582 drain_db_fifo(adap, dbfifo_drain_delay); 2583 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2584 drain_db_fifo(adap, dbfifo_drain_delay); 2585 recover_all_queues(adap); 2586 drain_db_fifo(adap, dbfifo_drain_delay); 2587 enable_dbs(adap); 2588 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2589 } else if (is_t5(adap->params.chip)) { 2590 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2591 u16 qid = (dropped_db >> 15) & 0x1ffff; 2592 u16 pidx_inc = dropped_db & 0x1fff; 2593 u64 bar2_qoffset; 2594 unsigned int bar2_qid; 2595 int ret; 2596 2597 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2598 0, &bar2_qoffset, &bar2_qid); 2599 if (ret) 2600 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2601 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2602 else 2603 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2604 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2605 2606 /* Re-enable BAR2 WC */ 2607 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2608 } 2609 2610 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2611 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2612 } 2613 2614 void t4_db_full(struct adapter *adap) 2615 { 2616 if (is_t4(adap->params.chip)) { 2617 disable_dbs(adap); 2618 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2619 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2620 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2621 queue_work(adap->workq, &adap->db_full_task); 2622 } 2623 } 2624 2625 void t4_db_dropped(struct adapter *adap) 2626 { 2627 if (is_t4(adap->params.chip)) { 2628 disable_dbs(adap); 2629 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2630 } 2631 queue_work(adap->workq, &adap->db_drop_task); 2632 } 2633 2634 void t4_register_netevent_notifier(void) 2635 { 2636 if (!netevent_registered) { 2637 register_netevent_notifier(&cxgb4_netevent_nb); 2638 netevent_registered = true; 2639 } 2640 } 2641 2642 static void detach_ulds(struct adapter *adap) 2643 { 2644 unsigned int i; 2645 2646 mutex_lock(&uld_mutex); 2647 list_del(&adap->list_node); 2648 2649 for (i = 0; i < CXGB4_ULD_MAX; i++) 2650 if (adap->uld && adap->uld[i].handle) 2651 adap->uld[i].state_change(adap->uld[i].handle, 2652 CXGB4_STATE_DETACH); 2653 2654 if (netevent_registered && list_empty(&adapter_list)) { 2655 unregister_netevent_notifier(&cxgb4_netevent_nb); 2656 netevent_registered = false; 2657 } 2658 mutex_unlock(&uld_mutex); 2659 } 2660 2661 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2662 { 2663 unsigned int i; 2664 2665 mutex_lock(&uld_mutex); 2666 for (i = 0; i < CXGB4_ULD_MAX; i++) 2667 if (adap->uld && adap->uld[i].handle) 2668 adap->uld[i].state_change(adap->uld[i].handle, 2669 new_state); 2670 mutex_unlock(&uld_mutex); 2671 } 2672 2673 #if IS_ENABLED(CONFIG_IPV6) 2674 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2675 unsigned long event, void *data) 2676 { 2677 struct inet6_ifaddr *ifa = data; 2678 struct net_device *event_dev = ifa->idev->dev; 2679 const struct device *parent = NULL; 2680 #if IS_ENABLED(CONFIG_BONDING) 2681 struct adapter *adap; 2682 #endif 2683 if (is_vlan_dev(event_dev)) 2684 event_dev = vlan_dev_real_dev(event_dev); 2685 #if IS_ENABLED(CONFIG_BONDING) 2686 if (event_dev->flags & IFF_MASTER) { 2687 list_for_each_entry(adap, &adapter_list, list_node) { 2688 switch (event) { 2689 case NETDEV_UP: 2690 cxgb4_clip_get(adap->port[0], 2691 (const u32 *)ifa, 1); 2692 break; 2693 case NETDEV_DOWN: 2694 cxgb4_clip_release(adap->port[0], 2695 (const u32 *)ifa, 1); 2696 break; 2697 default: 2698 break; 2699 } 2700 } 2701 return NOTIFY_OK; 2702 } 2703 #endif 2704 2705 if (event_dev) 2706 parent = event_dev->dev.parent; 2707 2708 if (parent && parent->driver == &cxgb4_driver.driver) { 2709 switch (event) { 2710 case NETDEV_UP: 2711 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2712 break; 2713 case NETDEV_DOWN: 2714 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2715 break; 2716 default: 2717 break; 2718 } 2719 } 2720 return NOTIFY_OK; 2721 } 2722 2723 static bool inet6addr_registered; 2724 static struct notifier_block cxgb4_inet6addr_notifier = { 2725 .notifier_call = cxgb4_inet6addr_handler 2726 }; 2727 2728 static void update_clip(const struct adapter *adap) 2729 { 2730 int i; 2731 struct net_device *dev; 2732 int ret; 2733 2734 rcu_read_lock(); 2735 2736 for (i = 0; i < MAX_NPORTS; i++) { 2737 dev = adap->port[i]; 2738 ret = 0; 2739 2740 if (dev) 2741 ret = cxgb4_update_root_dev_clip(dev); 2742 2743 if (ret < 0) 2744 break; 2745 } 2746 rcu_read_unlock(); 2747 } 2748 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2749 2750 /** 2751 * cxgb_up - enable the adapter 2752 * @adap: adapter being enabled 2753 * 2754 * Called when the first port is enabled, this function performs the 2755 * actions necessary to make an adapter operational, such as completing 2756 * the initialization of HW modules, and enabling interrupts. 2757 * 2758 * Must be called with the rtnl lock held. 2759 */ 2760 static int cxgb_up(struct adapter *adap) 2761 { 2762 struct sge *s = &adap->sge; 2763 int err; 2764 2765 mutex_lock(&uld_mutex); 2766 err = setup_sge_queues(adap); 2767 if (err) 2768 goto rel_lock; 2769 err = setup_rss(adap); 2770 if (err) 2771 goto freeq; 2772 2773 if (adap->flags & CXGB4_USING_MSIX) { 2774 if (s->nd_msix_idx < 0) { 2775 err = -ENOMEM; 2776 goto irq_err; 2777 } 2778 2779 err = request_irq(adap->msix_info[s->nd_msix_idx].vec, 2780 t4_nondata_intr, 0, 2781 adap->msix_info[s->nd_msix_idx].desc, adap); 2782 if (err) 2783 goto irq_err; 2784 2785 err = request_msix_queue_irqs(adap); 2786 if (err) 2787 goto irq_err_free_nd_msix; 2788 } else { 2789 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2790 (adap->flags & CXGB4_USING_MSI) ? 0 2791 : IRQF_SHARED, 2792 adap->port[0]->name, adap); 2793 if (err) 2794 goto irq_err; 2795 } 2796 2797 enable_rx(adap); 2798 t4_sge_start(adap); 2799 t4_intr_enable(adap); 2800 adap->flags |= CXGB4_FULL_INIT_DONE; 2801 mutex_unlock(&uld_mutex); 2802 2803 notify_ulds(adap, CXGB4_STATE_UP); 2804 #if IS_ENABLED(CONFIG_IPV6) 2805 update_clip(adap); 2806 #endif 2807 return err; 2808 2809 irq_err_free_nd_msix: 2810 free_irq(adap->msix_info[s->nd_msix_idx].vec, adap); 2811 irq_err: 2812 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2813 freeq: 2814 t4_free_sge_resources(adap); 2815 rel_lock: 2816 mutex_unlock(&uld_mutex); 2817 return err; 2818 } 2819 2820 static void cxgb_down(struct adapter *adapter) 2821 { 2822 cancel_work_sync(&adapter->tid_release_task); 2823 cancel_work_sync(&adapter->db_full_task); 2824 cancel_work_sync(&adapter->db_drop_task); 2825 adapter->tid_release_task_busy = false; 2826 adapter->tid_release_head = NULL; 2827 2828 t4_sge_stop(adapter); 2829 t4_free_sge_resources(adapter); 2830 2831 adapter->flags &= ~CXGB4_FULL_INIT_DONE; 2832 } 2833 2834 /* 2835 * net_device operations 2836 */ 2837 static int cxgb_open(struct net_device *dev) 2838 { 2839 struct port_info *pi = netdev_priv(dev); 2840 struct adapter *adapter = pi->adapter; 2841 int err; 2842 2843 netif_carrier_off(dev); 2844 2845 if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) { 2846 err = cxgb_up(adapter); 2847 if (err < 0) 2848 return err; 2849 } 2850 2851 /* It's possible that the basic port information could have 2852 * changed since we first read it. 2853 */ 2854 err = t4_update_port_info(pi); 2855 if (err < 0) 2856 return err; 2857 2858 err = link_start(dev); 2859 if (err) 2860 return err; 2861 2862 if (pi->nmirrorqsets) { 2863 mutex_lock(&pi->vi_mirror_mutex); 2864 err = cxgb4_port_mirror_alloc_queues(dev); 2865 if (err) 2866 goto out_unlock; 2867 2868 err = cxgb4_port_mirror_start(dev); 2869 if (err) 2870 goto out_free_queues; 2871 mutex_unlock(&pi->vi_mirror_mutex); 2872 } 2873 2874 netif_tx_start_all_queues(dev); 2875 return 0; 2876 2877 out_free_queues: 2878 cxgb4_port_mirror_free_queues(dev); 2879 2880 out_unlock: 2881 mutex_unlock(&pi->vi_mirror_mutex); 2882 return err; 2883 } 2884 2885 static int cxgb_close(struct net_device *dev) 2886 { 2887 struct port_info *pi = netdev_priv(dev); 2888 struct adapter *adapter = pi->adapter; 2889 int ret; 2890 2891 netif_tx_stop_all_queues(dev); 2892 netif_carrier_off(dev); 2893 ret = t4_enable_pi_params(adapter, adapter->pf, pi, 2894 false, false, false); 2895 #ifdef CONFIG_CHELSIO_T4_DCB 2896 cxgb4_dcb_reset(dev); 2897 dcb_tx_queue_prio_enable(dev, false); 2898 #endif 2899 if (ret) 2900 return ret; 2901 2902 if (pi->nmirrorqsets) { 2903 mutex_lock(&pi->vi_mirror_mutex); 2904 cxgb4_port_mirror_stop(dev); 2905 cxgb4_port_mirror_free_queues(dev); 2906 mutex_unlock(&pi->vi_mirror_mutex); 2907 } 2908 2909 return 0; 2910 } 2911 2912 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2913 __be32 sip, __be16 sport, __be16 vlan, 2914 unsigned int queue, unsigned char port, unsigned char mask) 2915 { 2916 int ret; 2917 struct filter_entry *f; 2918 struct adapter *adap; 2919 int i; 2920 u8 *val; 2921 2922 adap = netdev2adap(dev); 2923 2924 /* Adjust stid to correct filter index */ 2925 stid -= adap->tids.sftid_base; 2926 stid += adap->tids.nftids; 2927 2928 /* Check to make sure the filter requested is writable ... 2929 */ 2930 f = &adap->tids.ftid_tab[stid]; 2931 ret = writable_filter(f); 2932 if (ret) 2933 return ret; 2934 2935 /* Clear out any old resources being used by the filter before 2936 * we start constructing the new filter. 2937 */ 2938 if (f->valid) 2939 clear_filter(adap, f); 2940 2941 /* Clear out filter specifications */ 2942 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2943 f->fs.val.lport = be16_to_cpu(sport); 2944 f->fs.mask.lport = ~0; 2945 val = (u8 *)&sip; 2946 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2947 for (i = 0; i < 4; i++) { 2948 f->fs.val.lip[i] = val[i]; 2949 f->fs.mask.lip[i] = ~0; 2950 } 2951 if (adap->params.tp.vlan_pri_map & PORT_F) { 2952 f->fs.val.iport = port; 2953 f->fs.mask.iport = mask; 2954 } 2955 } 2956 2957 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2958 f->fs.val.proto = IPPROTO_TCP; 2959 f->fs.mask.proto = ~0; 2960 } 2961 2962 f->fs.dirsteer = 1; 2963 f->fs.iq = queue; 2964 /* Mark filter as locked */ 2965 f->locked = 1; 2966 f->fs.rpttid = 1; 2967 2968 /* Save the actual tid. We need this to get the corresponding 2969 * filter entry structure in filter_rpl. 2970 */ 2971 f->tid = stid + adap->tids.ftid_base; 2972 ret = set_filter_wr(adap, stid); 2973 if (ret) { 2974 clear_filter(adap, f); 2975 return ret; 2976 } 2977 2978 return 0; 2979 } 2980 EXPORT_SYMBOL(cxgb4_create_server_filter); 2981 2982 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2983 unsigned int queue, bool ipv6) 2984 { 2985 struct filter_entry *f; 2986 struct adapter *adap; 2987 2988 adap = netdev2adap(dev); 2989 2990 /* Adjust stid to correct filter index */ 2991 stid -= adap->tids.sftid_base; 2992 stid += adap->tids.nftids; 2993 2994 f = &adap->tids.ftid_tab[stid]; 2995 /* Unlock the filter */ 2996 f->locked = 0; 2997 2998 return delete_filter(adap, stid); 2999 } 3000 EXPORT_SYMBOL(cxgb4_remove_server_filter); 3001 3002 static void cxgb_get_stats(struct net_device *dev, 3003 struct rtnl_link_stats64 *ns) 3004 { 3005 struct port_stats stats; 3006 struct port_info *p = netdev_priv(dev); 3007 struct adapter *adapter = p->adapter; 3008 3009 /* Block retrieving statistics during EEH error 3010 * recovery. Otherwise, the recovery might fail 3011 * and the PCI device will be removed permanently 3012 */ 3013 spin_lock(&adapter->stats_lock); 3014 if (!netif_device_present(dev)) { 3015 spin_unlock(&adapter->stats_lock); 3016 return; 3017 } 3018 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 3019 &p->stats_base); 3020 spin_unlock(&adapter->stats_lock); 3021 3022 ns->tx_bytes = stats.tx_octets; 3023 ns->tx_packets = stats.tx_frames; 3024 ns->rx_bytes = stats.rx_octets; 3025 ns->rx_packets = stats.rx_frames; 3026 ns->multicast = stats.rx_mcast_frames; 3027 3028 /* detailed rx_errors */ 3029 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 3030 stats.rx_runt; 3031 ns->rx_over_errors = 0; 3032 ns->rx_crc_errors = stats.rx_fcs_err; 3033 ns->rx_frame_errors = stats.rx_symbol_err; 3034 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 + 3035 stats.rx_ovflow2 + stats.rx_ovflow3 + 3036 stats.rx_trunc0 + stats.rx_trunc1 + 3037 stats.rx_trunc2 + stats.rx_trunc3; 3038 ns->rx_missed_errors = 0; 3039 3040 /* detailed tx_errors */ 3041 ns->tx_aborted_errors = 0; 3042 ns->tx_carrier_errors = 0; 3043 ns->tx_fifo_errors = 0; 3044 ns->tx_heartbeat_errors = 0; 3045 ns->tx_window_errors = 0; 3046 3047 ns->tx_errors = stats.tx_error_frames; 3048 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 3049 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 3050 } 3051 3052 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 3053 { 3054 unsigned int mbox; 3055 int ret = 0, prtad, devad; 3056 struct port_info *pi = netdev_priv(dev); 3057 struct adapter *adapter = pi->adapter; 3058 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 3059 3060 switch (cmd) { 3061 case SIOCGMIIPHY: 3062 if (pi->mdio_addr < 0) 3063 return -EOPNOTSUPP; 3064 data->phy_id = pi->mdio_addr; 3065 break; 3066 case SIOCGMIIREG: 3067 case SIOCSMIIREG: 3068 if (mdio_phy_id_is_c45(data->phy_id)) { 3069 prtad = mdio_phy_id_prtad(data->phy_id); 3070 devad = mdio_phy_id_devad(data->phy_id); 3071 } else if (data->phy_id < 32) { 3072 prtad = data->phy_id; 3073 devad = 0; 3074 data->reg_num &= 0x1f; 3075 } else 3076 return -EINVAL; 3077 3078 mbox = pi->adapter->pf; 3079 if (cmd == SIOCGMIIREG) 3080 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 3081 data->reg_num, &data->val_out); 3082 else 3083 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 3084 data->reg_num, data->val_in); 3085 break; 3086 case SIOCGHWTSTAMP: 3087 return copy_to_user(req->ifr_data, &pi->tstamp_config, 3088 sizeof(pi->tstamp_config)) ? 3089 -EFAULT : 0; 3090 case SIOCSHWTSTAMP: 3091 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 3092 sizeof(pi->tstamp_config))) 3093 return -EFAULT; 3094 3095 if (!is_t4(adapter->params.chip)) { 3096 switch (pi->tstamp_config.tx_type) { 3097 case HWTSTAMP_TX_OFF: 3098 case HWTSTAMP_TX_ON: 3099 break; 3100 default: 3101 return -ERANGE; 3102 } 3103 3104 switch (pi->tstamp_config.rx_filter) { 3105 case HWTSTAMP_FILTER_NONE: 3106 pi->rxtstamp = false; 3107 break; 3108 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 3109 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 3110 cxgb4_ptprx_timestamping(pi, pi->port_id, 3111 PTP_TS_L4); 3112 break; 3113 case HWTSTAMP_FILTER_PTP_V2_EVENT: 3114 cxgb4_ptprx_timestamping(pi, pi->port_id, 3115 PTP_TS_L2_L4); 3116 break; 3117 case HWTSTAMP_FILTER_ALL: 3118 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 3119 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 3120 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 3121 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 3122 pi->rxtstamp = true; 3123 break; 3124 default: 3125 pi->tstamp_config.rx_filter = 3126 HWTSTAMP_FILTER_NONE; 3127 return -ERANGE; 3128 } 3129 3130 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) && 3131 (pi->tstamp_config.rx_filter == 3132 HWTSTAMP_FILTER_NONE)) { 3133 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0) 3134 pi->ptp_enable = false; 3135 } 3136 3137 if (pi->tstamp_config.rx_filter != 3138 HWTSTAMP_FILTER_NONE) { 3139 if (cxgb4_ptp_redirect_rx_packet(adapter, 3140 pi) >= 0) 3141 pi->ptp_enable = true; 3142 } 3143 } else { 3144 /* For T4 Adapters */ 3145 switch (pi->tstamp_config.rx_filter) { 3146 case HWTSTAMP_FILTER_NONE: 3147 pi->rxtstamp = false; 3148 break; 3149 case HWTSTAMP_FILTER_ALL: 3150 pi->rxtstamp = true; 3151 break; 3152 default: 3153 pi->tstamp_config.rx_filter = 3154 HWTSTAMP_FILTER_NONE; 3155 return -ERANGE; 3156 } 3157 } 3158 return copy_to_user(req->ifr_data, &pi->tstamp_config, 3159 sizeof(pi->tstamp_config)) ? 3160 -EFAULT : 0; 3161 default: 3162 return -EOPNOTSUPP; 3163 } 3164 return ret; 3165 } 3166 3167 static void cxgb_set_rxmode(struct net_device *dev) 3168 { 3169 /* unfortunately we can't return errors to the stack */ 3170 set_rxmode(dev, -1, false); 3171 } 3172 3173 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 3174 { 3175 struct port_info *pi = netdev_priv(dev); 3176 int ret; 3177 3178 ret = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid, 3179 pi->viid_mirror, new_mtu, -1, -1, -1, -1, true); 3180 if (!ret) 3181 dev->mtu = new_mtu; 3182 return ret; 3183 } 3184 3185 #ifdef CONFIG_PCI_IOV 3186 static int cxgb4_mgmt_open(struct net_device *dev) 3187 { 3188 /* Turn carrier off since we don't have to transmit anything on this 3189 * interface. 3190 */ 3191 netif_carrier_off(dev); 3192 return 0; 3193 } 3194 3195 /* Fill MAC address that will be assigned by the FW */ 3196 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap) 3197 { 3198 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN]; 3199 unsigned int i, vf, nvfs; 3200 u16 a, b; 3201 int err; 3202 u8 *na; 3203 3204 err = t4_get_raw_vpd_params(adap, &adap->params.vpd); 3205 if (err) 3206 return; 3207 3208 na = adap->params.vpd.na; 3209 for (i = 0; i < ETH_ALEN; i++) 3210 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 3211 hex2val(na[2 * i + 1])); 3212 3213 a = (hw_addr[0] << 8) | hw_addr[1]; 3214 b = (hw_addr[1] << 8) | hw_addr[2]; 3215 a ^= b; 3216 a |= 0x0200; /* locally assigned Ethernet MAC address */ 3217 a &= ~0x0100; /* not a multicast Ethernet MAC address */ 3218 macaddr[0] = a >> 8; 3219 macaddr[1] = a & 0xff; 3220 3221 for (i = 2; i < 5; i++) 3222 macaddr[i] = hw_addr[i + 1]; 3223 3224 for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev); 3225 vf < nvfs; vf++) { 3226 macaddr[5] = adap->pf * nvfs + vf; 3227 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr); 3228 } 3229 } 3230 3231 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac) 3232 { 3233 struct port_info *pi = netdev_priv(dev); 3234 struct adapter *adap = pi->adapter; 3235 int ret; 3236 3237 /* verify MAC addr is valid */ 3238 if (!is_valid_ether_addr(mac)) { 3239 dev_err(pi->adapter->pdev_dev, 3240 "Invalid Ethernet address %pM for VF %d\n", 3241 mac, vf); 3242 return -EINVAL; 3243 } 3244 3245 dev_info(pi->adapter->pdev_dev, 3246 "Setting MAC %pM on VF %d\n", mac, vf); 3247 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac); 3248 if (!ret) 3249 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac); 3250 return ret; 3251 } 3252 3253 static int cxgb4_mgmt_get_vf_config(struct net_device *dev, 3254 int vf, struct ifla_vf_info *ivi) 3255 { 3256 struct port_info *pi = netdev_priv(dev); 3257 struct adapter *adap = pi->adapter; 3258 struct vf_info *vfinfo; 3259 3260 if (vf >= adap->num_vfs) 3261 return -EINVAL; 3262 vfinfo = &adap->vfinfo[vf]; 3263 3264 ivi->vf = vf; 3265 ivi->max_tx_rate = vfinfo->tx_rate; 3266 ivi->min_tx_rate = 0; 3267 ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr); 3268 ivi->vlan = vfinfo->vlan; 3269 ivi->linkstate = vfinfo->link_state; 3270 return 0; 3271 } 3272 3273 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev, 3274 struct netdev_phys_item_id *ppid) 3275 { 3276 struct port_info *pi = netdev_priv(dev); 3277 unsigned int phy_port_id; 3278 3279 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id; 3280 ppid->id_len = sizeof(phy_port_id); 3281 memcpy(ppid->id, &phy_port_id, ppid->id_len); 3282 return 0; 3283 } 3284 3285 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf, 3286 int min_tx_rate, int max_tx_rate) 3287 { 3288 struct port_info *pi = netdev_priv(dev); 3289 struct adapter *adap = pi->adapter; 3290 unsigned int link_ok, speed, mtu; 3291 u32 fw_pfvf, fw_class; 3292 int class_id = vf; 3293 int ret; 3294 u16 pktsize; 3295 3296 if (vf >= adap->num_vfs) 3297 return -EINVAL; 3298 3299 if (min_tx_rate) { 3300 dev_err(adap->pdev_dev, 3301 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n", 3302 min_tx_rate, vf); 3303 return -EINVAL; 3304 } 3305 3306 if (max_tx_rate == 0) { 3307 /* unbind VF to to any Traffic Class */ 3308 fw_pfvf = 3309 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 3310 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 3311 fw_class = 0xffffffff; 3312 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, 3313 &fw_pfvf, &fw_class); 3314 if (ret) { 3315 dev_err(adap->pdev_dev, 3316 "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n", 3317 ret, adap->pf, vf); 3318 return -EINVAL; 3319 } 3320 dev_info(adap->pdev_dev, 3321 "PF %d VF %d is unbound from TX Rate Limiting\n", 3322 adap->pf, vf); 3323 adap->vfinfo[vf].tx_rate = 0; 3324 return 0; 3325 } 3326 3327 ret = t4_get_link_params(pi, &link_ok, &speed, &mtu); 3328 if (ret != FW_SUCCESS) { 3329 dev_err(adap->pdev_dev, 3330 "Failed to get link information for VF %d\n", vf); 3331 return -EINVAL; 3332 } 3333 3334 if (!link_ok) { 3335 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf); 3336 return -EINVAL; 3337 } 3338 3339 if (max_tx_rate > speed) { 3340 dev_err(adap->pdev_dev, 3341 "Max tx rate %d for VF %d can't be > link-speed %u", 3342 max_tx_rate, vf, speed); 3343 return -EINVAL; 3344 } 3345 3346 pktsize = mtu; 3347 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */ 3348 pktsize = pktsize - sizeof(struct ethhdr) - 4; 3349 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */ 3350 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr); 3351 /* configure Traffic Class for rate-limiting */ 3352 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET, 3353 SCHED_CLASS_LEVEL_CL_RL, 3354 SCHED_CLASS_MODE_CLASS, 3355 SCHED_CLASS_RATEUNIT_BITS, 3356 SCHED_CLASS_RATEMODE_ABS, 3357 pi->tx_chan, class_id, 0, 3358 max_tx_rate * 1000, 0, pktsize, 0); 3359 if (ret) { 3360 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n", 3361 ret); 3362 return -EINVAL; 3363 } 3364 dev_info(adap->pdev_dev, 3365 "Class %d with MSS %u configured with rate %u\n", 3366 class_id, pktsize, max_tx_rate); 3367 3368 /* bind VF to configured Traffic Class */ 3369 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 3370 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 3371 fw_class = class_id; 3372 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf, 3373 &fw_class); 3374 if (ret) { 3375 dev_err(adap->pdev_dev, 3376 "Err %d in binding PF %d VF %d to Traffic Class %d\n", 3377 ret, adap->pf, vf, class_id); 3378 return -EINVAL; 3379 } 3380 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n", 3381 adap->pf, vf, class_id); 3382 adap->vfinfo[vf].tx_rate = max_tx_rate; 3383 return 0; 3384 } 3385 3386 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf, 3387 u16 vlan, u8 qos, __be16 vlan_proto) 3388 { 3389 struct port_info *pi = netdev_priv(dev); 3390 struct adapter *adap = pi->adapter; 3391 int ret; 3392 3393 if (vf >= adap->num_vfs || vlan > 4095 || qos > 7) 3394 return -EINVAL; 3395 3396 if (vlan_proto != htons(ETH_P_8021Q) || qos != 0) 3397 return -EPROTONOSUPPORT; 3398 3399 ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan); 3400 if (!ret) { 3401 adap->vfinfo[vf].vlan = vlan; 3402 return 0; 3403 } 3404 3405 dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n", 3406 ret, (vlan ? "setting" : "clearing"), adap->pf, vf); 3407 return ret; 3408 } 3409 3410 static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf, 3411 int link) 3412 { 3413 struct port_info *pi = netdev_priv(dev); 3414 struct adapter *adap = pi->adapter; 3415 u32 param, val; 3416 int ret = 0; 3417 3418 if (vf >= adap->num_vfs) 3419 return -EINVAL; 3420 3421 switch (link) { 3422 case IFLA_VF_LINK_STATE_AUTO: 3423 val = FW_VF_LINK_STATE_AUTO; 3424 break; 3425 3426 case IFLA_VF_LINK_STATE_ENABLE: 3427 val = FW_VF_LINK_STATE_ENABLE; 3428 break; 3429 3430 case IFLA_VF_LINK_STATE_DISABLE: 3431 val = FW_VF_LINK_STATE_DISABLE; 3432 break; 3433 3434 default: 3435 return -EINVAL; 3436 } 3437 3438 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 3439 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE)); 3440 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, 3441 ¶m, &val); 3442 if (ret) { 3443 dev_err(adap->pdev_dev, 3444 "Error %d in setting PF %d VF %d link state\n", 3445 ret, adap->pf, vf); 3446 return -EINVAL; 3447 } 3448 3449 adap->vfinfo[vf].link_state = link; 3450 return ret; 3451 } 3452 #endif /* CONFIG_PCI_IOV */ 3453 3454 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 3455 { 3456 int ret; 3457 struct sockaddr *addr = p; 3458 struct port_info *pi = netdev_priv(dev); 3459 3460 if (!is_valid_ether_addr(addr->sa_data)) 3461 return -EADDRNOTAVAIL; 3462 3463 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt, 3464 addr->sa_data, true, &pi->smt_idx); 3465 if (ret < 0) 3466 return ret; 3467 3468 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 3469 return 0; 3470 } 3471 3472 #ifdef CONFIG_NET_POLL_CONTROLLER 3473 static void cxgb_netpoll(struct net_device *dev) 3474 { 3475 struct port_info *pi = netdev_priv(dev); 3476 struct adapter *adap = pi->adapter; 3477 3478 if (adap->flags & CXGB4_USING_MSIX) { 3479 int i; 3480 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 3481 3482 for (i = pi->nqsets; i; i--, rx++) 3483 t4_sge_intr_msix(0, &rx->rspq); 3484 } else 3485 t4_intr_handler(adap)(0, adap); 3486 } 3487 #endif 3488 3489 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate) 3490 { 3491 struct port_info *pi = netdev_priv(dev); 3492 struct adapter *adap = pi->adapter; 3493 struct ch_sched_queue qe = { 0 }; 3494 struct ch_sched_params p = { 0 }; 3495 struct sched_class *e; 3496 u32 req_rate; 3497 int err = 0; 3498 3499 if (!can_sched(dev)) 3500 return -ENOTSUPP; 3501 3502 if (index < 0 || index > pi->nqsets - 1) 3503 return -EINVAL; 3504 3505 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { 3506 dev_err(adap->pdev_dev, 3507 "Failed to rate limit on queue %d. Link Down?\n", 3508 index); 3509 return -EINVAL; 3510 } 3511 3512 qe.queue = index; 3513 e = cxgb4_sched_queue_lookup(dev, &qe); 3514 if (e && e->info.u.params.level != SCHED_CLASS_LEVEL_CL_RL) { 3515 dev_err(adap->pdev_dev, 3516 "Queue %u already bound to class %u of type: %u\n", 3517 index, e->idx, e->info.u.params.level); 3518 return -EBUSY; 3519 } 3520 3521 /* Convert from Mbps to Kbps */ 3522 req_rate = rate * 1000; 3523 3524 /* Max rate is 100 Gbps */ 3525 if (req_rate > SCHED_MAX_RATE_KBPS) { 3526 dev_err(adap->pdev_dev, 3527 "Invalid rate %u Mbps, Max rate is %u Mbps\n", 3528 rate, SCHED_MAX_RATE_KBPS / 1000); 3529 return -ERANGE; 3530 } 3531 3532 /* First unbind the queue from any existing class */ 3533 memset(&qe, 0, sizeof(qe)); 3534 qe.queue = index; 3535 qe.class = SCHED_CLS_NONE; 3536 3537 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE); 3538 if (err) { 3539 dev_err(adap->pdev_dev, 3540 "Unbinding Queue %d on port %d fail. Err: %d\n", 3541 index, pi->port_id, err); 3542 return err; 3543 } 3544 3545 /* Queue already unbound */ 3546 if (!req_rate) 3547 return 0; 3548 3549 /* Fetch any available unused or matching scheduling class */ 3550 p.type = SCHED_CLASS_TYPE_PACKET; 3551 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL; 3552 p.u.params.mode = SCHED_CLASS_MODE_CLASS; 3553 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS; 3554 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS; 3555 p.u.params.channel = pi->tx_chan; 3556 p.u.params.class = SCHED_CLS_NONE; 3557 p.u.params.minrate = 0; 3558 p.u.params.maxrate = req_rate; 3559 p.u.params.weight = 0; 3560 p.u.params.pktsize = dev->mtu; 3561 3562 e = cxgb4_sched_class_alloc(dev, &p); 3563 if (!e) 3564 return -ENOMEM; 3565 3566 /* Bind the queue to a scheduling class */ 3567 memset(&qe, 0, sizeof(qe)); 3568 qe.queue = index; 3569 qe.class = e->idx; 3570 3571 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE); 3572 if (err) 3573 dev_err(adap->pdev_dev, 3574 "Queue rate limiting failed. Err: %d\n", err); 3575 return err; 3576 } 3577 3578 static int cxgb_setup_tc_flower(struct net_device *dev, 3579 struct flow_cls_offload *cls_flower) 3580 { 3581 switch (cls_flower->command) { 3582 case FLOW_CLS_REPLACE: 3583 return cxgb4_tc_flower_replace(dev, cls_flower); 3584 case FLOW_CLS_DESTROY: 3585 return cxgb4_tc_flower_destroy(dev, cls_flower); 3586 case FLOW_CLS_STATS: 3587 return cxgb4_tc_flower_stats(dev, cls_flower); 3588 default: 3589 return -EOPNOTSUPP; 3590 } 3591 } 3592 3593 static int cxgb_setup_tc_cls_u32(struct net_device *dev, 3594 struct tc_cls_u32_offload *cls_u32) 3595 { 3596 switch (cls_u32->command) { 3597 case TC_CLSU32_NEW_KNODE: 3598 case TC_CLSU32_REPLACE_KNODE: 3599 return cxgb4_config_knode(dev, cls_u32); 3600 case TC_CLSU32_DELETE_KNODE: 3601 return cxgb4_delete_knode(dev, cls_u32); 3602 default: 3603 return -EOPNOTSUPP; 3604 } 3605 } 3606 3607 static int cxgb_setup_tc_matchall(struct net_device *dev, 3608 struct tc_cls_matchall_offload *cls_matchall, 3609 bool ingress) 3610 { 3611 struct adapter *adap = netdev2adap(dev); 3612 3613 if (!adap->tc_matchall) 3614 return -ENOMEM; 3615 3616 switch (cls_matchall->command) { 3617 case TC_CLSMATCHALL_REPLACE: 3618 return cxgb4_tc_matchall_replace(dev, cls_matchall, ingress); 3619 case TC_CLSMATCHALL_DESTROY: 3620 return cxgb4_tc_matchall_destroy(dev, cls_matchall, ingress); 3621 case TC_CLSMATCHALL_STATS: 3622 if (ingress) 3623 return cxgb4_tc_matchall_stats(dev, cls_matchall); 3624 break; 3625 default: 3626 break; 3627 } 3628 3629 return -EOPNOTSUPP; 3630 } 3631 3632 static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type, 3633 void *type_data, void *cb_priv) 3634 { 3635 struct net_device *dev = cb_priv; 3636 struct port_info *pi = netdev2pinfo(dev); 3637 struct adapter *adap = netdev2adap(dev); 3638 3639 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { 3640 dev_err(adap->pdev_dev, 3641 "Failed to setup tc on port %d. Link Down?\n", 3642 pi->port_id); 3643 return -EINVAL; 3644 } 3645 3646 if (!tc_cls_can_offload_and_chain0(dev, type_data)) 3647 return -EOPNOTSUPP; 3648 3649 switch (type) { 3650 case TC_SETUP_CLSU32: 3651 return cxgb_setup_tc_cls_u32(dev, type_data); 3652 case TC_SETUP_CLSFLOWER: 3653 return cxgb_setup_tc_flower(dev, type_data); 3654 case TC_SETUP_CLSMATCHALL: 3655 return cxgb_setup_tc_matchall(dev, type_data, true); 3656 default: 3657 return -EOPNOTSUPP; 3658 } 3659 } 3660 3661 static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type, 3662 void *type_data, void *cb_priv) 3663 { 3664 struct net_device *dev = cb_priv; 3665 struct port_info *pi = netdev2pinfo(dev); 3666 struct adapter *adap = netdev2adap(dev); 3667 3668 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { 3669 dev_err(adap->pdev_dev, 3670 "Failed to setup tc on port %d. Link Down?\n", 3671 pi->port_id); 3672 return -EINVAL; 3673 } 3674 3675 if (!tc_cls_can_offload_and_chain0(dev, type_data)) 3676 return -EOPNOTSUPP; 3677 3678 switch (type) { 3679 case TC_SETUP_CLSMATCHALL: 3680 return cxgb_setup_tc_matchall(dev, type_data, false); 3681 default: 3682 break; 3683 } 3684 3685 return -EOPNOTSUPP; 3686 } 3687 3688 static int cxgb_setup_tc_mqprio(struct net_device *dev, 3689 struct tc_mqprio_qopt_offload *mqprio) 3690 { 3691 struct adapter *adap = netdev2adap(dev); 3692 3693 if (!is_ethofld(adap) || !adap->tc_mqprio) 3694 return -ENOMEM; 3695 3696 return cxgb4_setup_tc_mqprio(dev, mqprio); 3697 } 3698 3699 static LIST_HEAD(cxgb_block_cb_list); 3700 3701 static int cxgb_setup_tc_block(struct net_device *dev, 3702 struct flow_block_offload *f) 3703 { 3704 struct port_info *pi = netdev_priv(dev); 3705 flow_setup_cb_t *cb; 3706 bool ingress_only; 3707 3708 pi->tc_block_shared = f->block_shared; 3709 if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) { 3710 cb = cxgb_setup_tc_block_egress_cb; 3711 ingress_only = false; 3712 } else { 3713 cb = cxgb_setup_tc_block_ingress_cb; 3714 ingress_only = true; 3715 } 3716 3717 return flow_block_cb_setup_simple(f, &cxgb_block_cb_list, 3718 cb, pi, dev, ingress_only); 3719 } 3720 3721 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type, 3722 void *type_data) 3723 { 3724 switch (type) { 3725 case TC_SETUP_QDISC_MQPRIO: 3726 return cxgb_setup_tc_mqprio(dev, type_data); 3727 case TC_SETUP_BLOCK: 3728 return cxgb_setup_tc_block(dev, type_data); 3729 default: 3730 return -EOPNOTSUPP; 3731 } 3732 } 3733 3734 static int cxgb_udp_tunnel_unset_port(struct net_device *netdev, 3735 unsigned int table, unsigned int entry, 3736 struct udp_tunnel_info *ti) 3737 { 3738 struct port_info *pi = netdev_priv(netdev); 3739 struct adapter *adapter = pi->adapter; 3740 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3741 int ret = 0, i; 3742 3743 switch (ti->type) { 3744 case UDP_TUNNEL_TYPE_VXLAN: 3745 adapter->vxlan_port = 0; 3746 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0); 3747 break; 3748 case UDP_TUNNEL_TYPE_GENEVE: 3749 adapter->geneve_port = 0; 3750 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0); 3751 break; 3752 default: 3753 return -EINVAL; 3754 } 3755 3756 /* Matchall mac entries can be deleted only after all tunnel ports 3757 * are brought down or removed. 3758 */ 3759 if (!adapter->rawf_cnt) 3760 return 0; 3761 for_each_port(adapter, i) { 3762 pi = adap2pinfo(adapter, i); 3763 ret = t4_free_raw_mac_filt(adapter, pi->viid, 3764 match_all_mac, match_all_mac, 3765 adapter->rawf_start + pi->port_id, 3766 1, pi->port_id, false); 3767 if (ret < 0) { 3768 netdev_info(netdev, "Failed to free mac filter entry, for port %d\n", 3769 i); 3770 return ret; 3771 } 3772 } 3773 3774 return 0; 3775 } 3776 3777 static int cxgb_udp_tunnel_set_port(struct net_device *netdev, 3778 unsigned int table, unsigned int entry, 3779 struct udp_tunnel_info *ti) 3780 { 3781 struct port_info *pi = netdev_priv(netdev); 3782 struct adapter *adapter = pi->adapter; 3783 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3784 int i, ret; 3785 3786 switch (ti->type) { 3787 case UDP_TUNNEL_TYPE_VXLAN: 3788 adapter->vxlan_port = ti->port; 3789 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 3790 VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F); 3791 break; 3792 case UDP_TUNNEL_TYPE_GENEVE: 3793 adapter->geneve_port = ti->port; 3794 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 3795 GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F); 3796 break; 3797 default: 3798 return -EINVAL; 3799 } 3800 3801 /* Create a 'match all' mac filter entry for inner mac, 3802 * if raw mac interface is supported. Once the linux kernel provides 3803 * driver entry points for adding/deleting the inner mac addresses, 3804 * we will remove this 'match all' entry and fallback to adding 3805 * exact match filters. 3806 */ 3807 for_each_port(adapter, i) { 3808 pi = adap2pinfo(adapter, i); 3809 3810 ret = t4_alloc_raw_mac_filt(adapter, pi->viid, 3811 match_all_mac, 3812 match_all_mac, 3813 adapter->rawf_start + pi->port_id, 3814 1, pi->port_id, false); 3815 if (ret < 0) { 3816 netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n", 3817 be16_to_cpu(ti->port)); 3818 return ret; 3819 } 3820 } 3821 3822 return 0; 3823 } 3824 3825 static const struct udp_tunnel_nic_info cxgb_udp_tunnels = { 3826 .set_port = cxgb_udp_tunnel_set_port, 3827 .unset_port = cxgb_udp_tunnel_unset_port, 3828 .tables = { 3829 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 3830 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 3831 }, 3832 }; 3833 3834 static netdev_features_t cxgb_features_check(struct sk_buff *skb, 3835 struct net_device *dev, 3836 netdev_features_t features) 3837 { 3838 struct port_info *pi = netdev_priv(dev); 3839 struct adapter *adapter = pi->adapter; 3840 3841 if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3842 return features; 3843 3844 /* Check if hw supports offload for this packet */ 3845 if (!skb->encapsulation || cxgb_encap_offload_supported(skb)) 3846 return features; 3847 3848 /* Offload is not supported for this encapsulated packet */ 3849 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3850 } 3851 3852 static netdev_features_t cxgb_fix_features(struct net_device *dev, 3853 netdev_features_t features) 3854 { 3855 /* Disable GRO, if RX_CSUM is disabled */ 3856 if (!(features & NETIF_F_RXCSUM)) 3857 features &= ~NETIF_F_GRO; 3858 3859 return features; 3860 } 3861 3862 static const struct net_device_ops cxgb4_netdev_ops = { 3863 .ndo_open = cxgb_open, 3864 .ndo_stop = cxgb_close, 3865 .ndo_start_xmit = t4_start_xmit, 3866 .ndo_select_queue = cxgb_select_queue, 3867 .ndo_get_stats64 = cxgb_get_stats, 3868 .ndo_set_rx_mode = cxgb_set_rxmode, 3869 .ndo_set_mac_address = cxgb_set_mac_addr, 3870 .ndo_set_features = cxgb_set_features, 3871 .ndo_validate_addr = eth_validate_addr, 3872 .ndo_do_ioctl = cxgb_ioctl, 3873 .ndo_change_mtu = cxgb_change_mtu, 3874 #ifdef CONFIG_NET_POLL_CONTROLLER 3875 .ndo_poll_controller = cxgb_netpoll, 3876 #endif 3877 #ifdef CONFIG_CHELSIO_T4_FCOE 3878 .ndo_fcoe_enable = cxgb_fcoe_enable, 3879 .ndo_fcoe_disable = cxgb_fcoe_disable, 3880 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3881 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate, 3882 .ndo_setup_tc = cxgb_setup_tc, 3883 .ndo_features_check = cxgb_features_check, 3884 .ndo_fix_features = cxgb_fix_features, 3885 }; 3886 3887 #ifdef CONFIG_PCI_IOV 3888 static const struct net_device_ops cxgb4_mgmt_netdev_ops = { 3889 .ndo_open = cxgb4_mgmt_open, 3890 .ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac, 3891 .ndo_get_vf_config = cxgb4_mgmt_get_vf_config, 3892 .ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate, 3893 .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id, 3894 .ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan, 3895 .ndo_set_vf_link_state = cxgb4_mgmt_set_vf_link_state, 3896 }; 3897 3898 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev, 3899 struct ethtool_drvinfo *info) 3900 { 3901 struct adapter *adapter = netdev2adap(dev); 3902 3903 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver)); 3904 strlcpy(info->bus_info, pci_name(adapter->pdev), 3905 sizeof(info->bus_info)); 3906 } 3907 3908 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = { 3909 .get_drvinfo = cxgb4_mgmt_get_drvinfo, 3910 }; 3911 #endif 3912 3913 static void notify_fatal_err(struct work_struct *work) 3914 { 3915 struct adapter *adap; 3916 3917 adap = container_of(work, struct adapter, fatal_err_notify_task); 3918 notify_ulds(adap, CXGB4_STATE_FATAL_ERROR); 3919 } 3920 3921 void t4_fatal_err(struct adapter *adap) 3922 { 3923 int port; 3924 3925 if (pci_channel_offline(adap->pdev)) 3926 return; 3927 3928 /* Disable the SGE since ULDs are going to free resources that 3929 * could be exposed to the adapter. RDMA MWs for example... 3930 */ 3931 t4_shutdown_adapter(adap); 3932 for_each_port(adap, port) { 3933 struct net_device *dev = adap->port[port]; 3934 3935 /* If we get here in very early initialization the network 3936 * devices may not have been set up yet. 3937 */ 3938 if (!dev) 3939 continue; 3940 3941 netif_tx_stop_all_queues(dev); 3942 netif_carrier_off(dev); 3943 } 3944 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 3945 queue_work(adap->workq, &adap->fatal_err_notify_task); 3946 } 3947 3948 static void setup_memwin(struct adapter *adap) 3949 { 3950 u32 nic_win_base = t4_get_util_window(adap); 3951 3952 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 3953 } 3954 3955 static void setup_memwin_rdma(struct adapter *adap) 3956 { 3957 if (adap->vres.ocq.size) { 3958 u32 start; 3959 unsigned int sz_kb; 3960 3961 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 3962 start &= PCI_BASE_ADDRESS_MEM_MASK; 3963 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 3964 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 3965 t4_write_reg(adap, 3966 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 3967 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 3968 t4_write_reg(adap, 3969 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 3970 adap->vres.ocq.start); 3971 t4_read_reg(adap, 3972 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 3973 } 3974 } 3975 3976 /* HMA Definitions */ 3977 3978 /* The maximum number of address that can be send in a single FW cmd */ 3979 #define HMA_MAX_ADDR_IN_CMD 5 3980 3981 #define HMA_PAGE_SIZE PAGE_SIZE 3982 3983 #define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */ 3984 3985 #define HMA_PAGE_ORDER \ 3986 ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \ 3987 ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0) 3988 3989 /* The minimum and maximum possible HMA sizes that can be specified in the FW 3990 * configuration(in units of MB). 3991 */ 3992 #define HMA_MIN_TOTAL_SIZE 1 3993 #define HMA_MAX_TOTAL_SIZE \ 3994 (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \ 3995 HMA_MAX_NO_FW_ADDRESS) >> 20) 3996 3997 static void adap_free_hma_mem(struct adapter *adapter) 3998 { 3999 struct scatterlist *iter; 4000 struct page *page; 4001 int i; 4002 4003 if (!adapter->hma.sgt) 4004 return; 4005 4006 if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) { 4007 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl, 4008 adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL); 4009 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG; 4010 } 4011 4012 for_each_sg(adapter->hma.sgt->sgl, iter, 4013 adapter->hma.sgt->orig_nents, i) { 4014 page = sg_page(iter); 4015 if (page) 4016 __free_pages(page, HMA_PAGE_ORDER); 4017 } 4018 4019 kfree(adapter->hma.phy_addr); 4020 sg_free_table(adapter->hma.sgt); 4021 kfree(adapter->hma.sgt); 4022 adapter->hma.sgt = NULL; 4023 } 4024 4025 static int adap_config_hma(struct adapter *adapter) 4026 { 4027 struct scatterlist *sgl, *iter; 4028 struct sg_table *sgt; 4029 struct page *newpage; 4030 unsigned int i, j, k; 4031 u32 param, hma_size; 4032 unsigned int ncmds; 4033 size_t page_size; 4034 u32 page_order; 4035 int node, ret; 4036 4037 /* HMA is supported only for T6+ cards. 4038 * Avoid initializing HMA in kdump kernels. 4039 */ 4040 if (is_kdump_kernel() || 4041 CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 4042 return 0; 4043 4044 /* Get the HMA region size required by fw */ 4045 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4046 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE)); 4047 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 4048 1, ¶m, &hma_size); 4049 /* An error means card has its own memory or HMA is not supported by 4050 * the firmware. Return without any errors. 4051 */ 4052 if (ret || !hma_size) 4053 return 0; 4054 4055 if (hma_size < HMA_MIN_TOTAL_SIZE || 4056 hma_size > HMA_MAX_TOTAL_SIZE) { 4057 dev_err(adapter->pdev_dev, 4058 "HMA size %uMB beyond bounds(%u-%lu)MB\n", 4059 hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE); 4060 return -EINVAL; 4061 } 4062 4063 page_size = HMA_PAGE_SIZE; 4064 page_order = HMA_PAGE_ORDER; 4065 adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL); 4066 if (unlikely(!adapter->hma.sgt)) { 4067 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n"); 4068 return -ENOMEM; 4069 } 4070 sgt = adapter->hma.sgt; 4071 /* FW returned value will be in MB's 4072 */ 4073 sgt->orig_nents = (hma_size << 20) / (page_size << page_order); 4074 if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) { 4075 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n"); 4076 kfree(adapter->hma.sgt); 4077 adapter->hma.sgt = NULL; 4078 return -ENOMEM; 4079 } 4080 4081 sgl = adapter->hma.sgt->sgl; 4082 node = dev_to_node(adapter->pdev_dev); 4083 for_each_sg(sgl, iter, sgt->orig_nents, i) { 4084 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL | 4085 __GFP_ZERO, page_order); 4086 if (!newpage) { 4087 dev_err(adapter->pdev_dev, 4088 "Not enough memory for HMA page allocation\n"); 4089 ret = -ENOMEM; 4090 goto free_hma; 4091 } 4092 sg_set_page(iter, newpage, page_size << page_order, 0); 4093 } 4094 4095 sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents, 4096 DMA_BIDIRECTIONAL); 4097 if (!sgt->nents) { 4098 dev_err(adapter->pdev_dev, 4099 "Not enough memory for HMA DMA mapping"); 4100 ret = -ENOMEM; 4101 goto free_hma; 4102 } 4103 adapter->hma.flags |= HMA_DMA_MAPPED_FLAG; 4104 4105 adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t), 4106 GFP_KERNEL); 4107 if (unlikely(!adapter->hma.phy_addr)) 4108 goto free_hma; 4109 4110 for_each_sg(sgl, iter, sgt->nents, i) { 4111 newpage = sg_page(iter); 4112 adapter->hma.phy_addr[i] = sg_dma_address(iter); 4113 } 4114 4115 ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD); 4116 /* Pass on the addresses to firmware */ 4117 for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) { 4118 struct fw_hma_cmd hma_cmd; 4119 u8 naddr = HMA_MAX_ADDR_IN_CMD; 4120 u8 soc = 0, eoc = 0; 4121 u8 hma_mode = 1; /* Presently we support only Page table mode */ 4122 4123 soc = (i == 0) ? 1 : 0; 4124 eoc = (i == ncmds - 1) ? 1 : 0; 4125 4126 /* For last cmd, set naddr corresponding to remaining 4127 * addresses 4128 */ 4129 if (i == ncmds - 1) { 4130 naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD; 4131 naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD; 4132 } 4133 memset(&hma_cmd, 0, sizeof(hma_cmd)); 4134 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) | 4135 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 4136 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd)); 4137 4138 hma_cmd.mode_to_pcie_params = 4139 htonl(FW_HMA_CMD_MODE_V(hma_mode) | 4140 FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc)); 4141 4142 /* HMA cmd size specified in MB's */ 4143 hma_cmd.naddr_size = 4144 htonl(FW_HMA_CMD_SIZE_V(hma_size) | 4145 FW_HMA_CMD_NADDR_V(naddr)); 4146 4147 /* Total Page size specified in units of 4K */ 4148 hma_cmd.addr_size_pkd = 4149 htonl(FW_HMA_CMD_ADDR_SIZE_V 4150 ((page_size << page_order) >> 12)); 4151 4152 /* Fill the 5 addresses */ 4153 for (j = 0; j < naddr; j++) { 4154 hma_cmd.phy_address[j] = 4155 cpu_to_be64(adapter->hma.phy_addr[j + k]); 4156 } 4157 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd, 4158 sizeof(hma_cmd), &hma_cmd); 4159 if (ret) { 4160 dev_err(adapter->pdev_dev, 4161 "HMA FW command failed with err %d\n", ret); 4162 goto free_hma; 4163 } 4164 } 4165 4166 if (!ret) 4167 dev_info(adapter->pdev_dev, 4168 "Reserved %uMB host memory for HMA\n", hma_size); 4169 return ret; 4170 4171 free_hma: 4172 adap_free_hma_mem(adapter); 4173 return ret; 4174 } 4175 4176 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 4177 { 4178 u32 v; 4179 int ret; 4180 4181 /* Now that we've successfully configured and initialized the adapter 4182 * can ask the Firmware what resources it has provisioned for us. 4183 */ 4184 ret = t4_get_pfres(adap); 4185 if (ret) { 4186 dev_err(adap->pdev_dev, 4187 "Unable to retrieve resource provisioning information\n"); 4188 return ret; 4189 } 4190 4191 /* get device capabilities */ 4192 memset(c, 0, sizeof(*c)); 4193 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4194 FW_CMD_REQUEST_F | FW_CMD_READ_F); 4195 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 4196 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 4197 if (ret < 0) 4198 return ret; 4199 4200 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4201 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 4202 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 4203 if (ret < 0) 4204 return ret; 4205 4206 ret = t4_config_glbl_rss(adap, adap->pf, 4207 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 4208 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 4209 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 4210 if (ret < 0) 4211 return ret; 4212 4213 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 4214 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 4215 FW_CMD_CAP_PF); 4216 if (ret < 0) 4217 return ret; 4218 4219 t4_sge_init(adap); 4220 4221 /* tweak some settings */ 4222 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 4223 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 4224 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 4225 v = t4_read_reg(adap, TP_PIO_DATA_A); 4226 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 4227 4228 /* first 4 Tx modulation queues point to consecutive Tx channels */ 4229 adap->params.tp.tx_modq_map = 0xE4; 4230 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 4231 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 4232 4233 /* associate each Tx modulation queue with consecutive Tx channels */ 4234 v = 0x84218421; 4235 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4236 &v, 1, TP_TX_SCHED_HDR_A); 4237 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4238 &v, 1, TP_TX_SCHED_FIFO_A); 4239 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4240 &v, 1, TP_TX_SCHED_PCMD_A); 4241 4242 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 4243 if (is_offload(adap)) { 4244 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 4245 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4246 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4247 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4248 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 4249 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 4250 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4251 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4252 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4253 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 4254 } 4255 4256 /* get basic stuff going */ 4257 return t4_early_init(adap, adap->pf); 4258 } 4259 4260 /* 4261 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 4262 */ 4263 #define MAX_ATIDS 8192U 4264 4265 /* 4266 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 4267 * 4268 * If the firmware we're dealing with has Configuration File support, then 4269 * we use that to perform all configuration 4270 */ 4271 4272 /* 4273 * Tweak configuration based on module parameters, etc. Most of these have 4274 * defaults assigned to them by Firmware Configuration Files (if we're using 4275 * them) but need to be explicitly set if we're using hard-coded 4276 * initialization. But even in the case of using Firmware Configuration 4277 * Files, we'd like to expose the ability to change these via module 4278 * parameters so these are essentially common tweaks/settings for 4279 * Configuration Files and hard-coded initialization ... 4280 */ 4281 static int adap_init0_tweaks(struct adapter *adapter) 4282 { 4283 /* 4284 * Fix up various Host-Dependent Parameters like Page Size, Cache 4285 * Line Size, etc. The firmware default is for a 4KB Page Size and 4286 * 64B Cache Line Size ... 4287 */ 4288 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 4289 4290 /* 4291 * Process module parameters which affect early initialization. 4292 */ 4293 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 4294 dev_err(&adapter->pdev->dev, 4295 "Ignoring illegal rx_dma_offset=%d, using 2\n", 4296 rx_dma_offset); 4297 rx_dma_offset = 2; 4298 } 4299 t4_set_reg_field(adapter, SGE_CONTROL_A, 4300 PKTSHIFT_V(PKTSHIFT_M), 4301 PKTSHIFT_V(rx_dma_offset)); 4302 4303 /* 4304 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 4305 * adds the pseudo header itself. 4306 */ 4307 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 4308 CSUM_HAS_PSEUDO_HDR_F, 0); 4309 4310 return 0; 4311 } 4312 4313 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 4314 * unto themselves and they contain their own firmware to perform their 4315 * tasks ... 4316 */ 4317 static int phy_aq1202_version(const u8 *phy_fw_data, 4318 size_t phy_fw_size) 4319 { 4320 int offset; 4321 4322 /* At offset 0x8 you're looking for the primary image's 4323 * starting offset which is 3 Bytes wide 4324 * 4325 * At offset 0xa of the primary image, you look for the offset 4326 * of the DRAM segment which is 3 Bytes wide. 4327 * 4328 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 4329 * wide 4330 */ 4331 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 4332 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 4333 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 4334 4335 offset = le24(phy_fw_data + 0x8) << 12; 4336 offset = le24(phy_fw_data + offset + 0xa); 4337 return be16(phy_fw_data + offset + 0x27e); 4338 4339 #undef be16 4340 #undef le16 4341 #undef le24 4342 } 4343 4344 static struct info_10gbt_phy_fw { 4345 unsigned int phy_fw_id; /* PCI Device ID */ 4346 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 4347 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 4348 int phy_flash; /* Has FLASH for PHY Firmware */ 4349 } phy_info_array[] = { 4350 { 4351 PHY_AQ1202_DEVICEID, 4352 PHY_AQ1202_FIRMWARE, 4353 phy_aq1202_version, 4354 1, 4355 }, 4356 { 4357 PHY_BCM84834_DEVICEID, 4358 PHY_BCM84834_FIRMWARE, 4359 NULL, 4360 0, 4361 }, 4362 { 0, NULL, NULL }, 4363 }; 4364 4365 static struct info_10gbt_phy_fw *find_phy_info(int devid) 4366 { 4367 int i; 4368 4369 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 4370 if (phy_info_array[i].phy_fw_id == devid) 4371 return &phy_info_array[i]; 4372 } 4373 return NULL; 4374 } 4375 4376 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 4377 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 4378 * we return a negative error number. If we transfer new firmware we return 1 4379 * (from t4_load_phy_fw()). If we don't do anything we return 0. 4380 */ 4381 static int adap_init0_phy(struct adapter *adap) 4382 { 4383 const struct firmware *phyf; 4384 int ret; 4385 struct info_10gbt_phy_fw *phy_info; 4386 4387 /* Use the device ID to determine which PHY file to flash. 4388 */ 4389 phy_info = find_phy_info(adap->pdev->device); 4390 if (!phy_info) { 4391 dev_warn(adap->pdev_dev, 4392 "No PHY Firmware file found for this PHY\n"); 4393 return -EOPNOTSUPP; 4394 } 4395 4396 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 4397 * use that. The adapter firmware provides us with a memory buffer 4398 * where we can load a PHY firmware file from the host if we want to 4399 * override the PHY firmware File in flash. 4400 */ 4401 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 4402 adap->pdev_dev); 4403 if (ret < 0) { 4404 /* For adapters without FLASH attached to PHY for their 4405 * firmware, it's obviously a fatal error if we can't get the 4406 * firmware to the adapter. For adapters with PHY firmware 4407 * FLASH storage, it's worth a warning if we can't find the 4408 * PHY Firmware but we'll neuter the error ... 4409 */ 4410 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 4411 "/lib/firmware/%s, error %d\n", 4412 phy_info->phy_fw_file, -ret); 4413 if (phy_info->phy_flash) { 4414 int cur_phy_fw_ver = 0; 4415 4416 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 4417 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 4418 "FLASH copy, version %#x\n", cur_phy_fw_ver); 4419 ret = 0; 4420 } 4421 4422 return ret; 4423 } 4424 4425 /* Load PHY Firmware onto adapter. 4426 */ 4427 ret = t4_load_phy_fw(adap, MEMWIN_NIC, phy_info->phy_fw_version, 4428 (u8 *)phyf->data, phyf->size); 4429 if (ret < 0) 4430 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 4431 -ret); 4432 else if (ret > 0) { 4433 int new_phy_fw_ver = 0; 4434 4435 if (phy_info->phy_fw_version) 4436 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 4437 phyf->size); 4438 dev_info(adap->pdev_dev, "Successfully transferred PHY " 4439 "Firmware /lib/firmware/%s, version %#x\n", 4440 phy_info->phy_fw_file, new_phy_fw_ver); 4441 } 4442 4443 release_firmware(phyf); 4444 4445 return ret; 4446 } 4447 4448 /* 4449 * Attempt to initialize the adapter via a Firmware Configuration File. 4450 */ 4451 static int adap_init0_config(struct adapter *adapter, int reset) 4452 { 4453 char *fw_config_file, fw_config_file_path[256]; 4454 u32 finiver, finicsum, cfcsum, param, val; 4455 struct fw_caps_config_cmd caps_cmd; 4456 unsigned long mtype = 0, maddr = 0; 4457 const struct firmware *cf; 4458 char *config_name = NULL; 4459 int config_issued = 0; 4460 int ret; 4461 4462 /* 4463 * Reset device if necessary. 4464 */ 4465 if (reset) { 4466 ret = t4_fw_reset(adapter, adapter->mbox, 4467 PIORSTMODE_F | PIORST_F); 4468 if (ret < 0) 4469 goto bye; 4470 } 4471 4472 /* If this is a 10Gb/s-BT adapter make sure the chip-external 4473 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 4474 * to be performed after any global adapter RESET above since some 4475 * PHYs only have local RAM copies of the PHY firmware. 4476 */ 4477 if (is_10gbt_device(adapter->pdev->device)) { 4478 ret = adap_init0_phy(adapter); 4479 if (ret < 0) 4480 goto bye; 4481 } 4482 /* 4483 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 4484 * then use that. Otherwise, use the configuration file stored 4485 * in the adapter flash ... 4486 */ 4487 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 4488 case CHELSIO_T4: 4489 fw_config_file = FW4_CFNAME; 4490 break; 4491 case CHELSIO_T5: 4492 fw_config_file = FW5_CFNAME; 4493 break; 4494 case CHELSIO_T6: 4495 fw_config_file = FW6_CFNAME; 4496 break; 4497 default: 4498 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 4499 adapter->pdev->device); 4500 ret = -EINVAL; 4501 goto bye; 4502 } 4503 4504 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 4505 if (ret < 0) { 4506 config_name = "On FLASH"; 4507 mtype = FW_MEMTYPE_CF_FLASH; 4508 maddr = t4_flash_cfg_addr(adapter); 4509 } else { 4510 u32 params[7], val[7]; 4511 4512 sprintf(fw_config_file_path, 4513 "/lib/firmware/%s", fw_config_file); 4514 config_name = fw_config_file_path; 4515 4516 if (cf->size >= FLASH_CFG_MAX_SIZE) 4517 ret = -ENOMEM; 4518 else { 4519 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4520 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 4521 ret = t4_query_params(adapter, adapter->mbox, 4522 adapter->pf, 0, 1, params, val); 4523 if (ret == 0) { 4524 /* 4525 * For t4_memory_rw() below addresses and 4526 * sizes have to be in terms of multiples of 4 4527 * bytes. So, if the Configuration File isn't 4528 * a multiple of 4 bytes in length we'll have 4529 * to write that out separately since we can't 4530 * guarantee that the bytes following the 4531 * residual byte in the buffer returned by 4532 * request_firmware() are zeroed out ... 4533 */ 4534 size_t resid = cf->size & 0x3; 4535 size_t size = cf->size & ~0x3; 4536 __be32 *data = (__be32 *)cf->data; 4537 4538 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 4539 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 4540 4541 spin_lock(&adapter->win0_lock); 4542 ret = t4_memory_rw(adapter, 0, mtype, maddr, 4543 size, data, T4_MEMORY_WRITE); 4544 if (ret == 0 && resid != 0) { 4545 union { 4546 __be32 word; 4547 char buf[4]; 4548 } last; 4549 int i; 4550 4551 last.word = data[size >> 2]; 4552 for (i = resid; i < 4; i++) 4553 last.buf[i] = 0; 4554 ret = t4_memory_rw(adapter, 0, mtype, 4555 maddr + size, 4556 4, &last.word, 4557 T4_MEMORY_WRITE); 4558 } 4559 spin_unlock(&adapter->win0_lock); 4560 } 4561 } 4562 4563 release_firmware(cf); 4564 if (ret) 4565 goto bye; 4566 } 4567 4568 val = 0; 4569 4570 /* Ofld + Hash filter is supported. Older fw will fail this request and 4571 * it is fine. 4572 */ 4573 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4574 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD)); 4575 ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0, 4576 1, ¶m, &val); 4577 4578 /* FW doesn't know about Hash filter + ofld support, 4579 * it's not a problem, don't return an error. 4580 */ 4581 if (ret < 0) { 4582 dev_warn(adapter->pdev_dev, 4583 "Hash filter with ofld is not supported by FW\n"); 4584 } 4585 4586 /* 4587 * Issue a Capability Configuration command to the firmware to get it 4588 * to parse the Configuration File. We don't use t4_fw_config_file() 4589 * because we want the ability to modify various features after we've 4590 * processed the configuration file ... 4591 */ 4592 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4593 caps_cmd.op_to_write = 4594 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4595 FW_CMD_REQUEST_F | 4596 FW_CMD_READ_F); 4597 caps_cmd.cfvalid_to_len16 = 4598 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 4599 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 4600 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 4601 FW_LEN16(caps_cmd)); 4602 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4603 &caps_cmd); 4604 4605 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 4606 * Configuration File in FLASH), our last gasp effort is to use the 4607 * Firmware Configuration File which is embedded in the firmware. A 4608 * very few early versions of the firmware didn't have one embedded 4609 * but we can ignore those. 4610 */ 4611 if (ret == -ENOENT) { 4612 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4613 caps_cmd.op_to_write = 4614 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4615 FW_CMD_REQUEST_F | 4616 FW_CMD_READ_F); 4617 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4618 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 4619 sizeof(caps_cmd), &caps_cmd); 4620 config_name = "Firmware Default"; 4621 } 4622 4623 config_issued = 1; 4624 if (ret < 0) 4625 goto bye; 4626 4627 finiver = ntohl(caps_cmd.finiver); 4628 finicsum = ntohl(caps_cmd.finicsum); 4629 cfcsum = ntohl(caps_cmd.cfcsum); 4630 if (finicsum != cfcsum) 4631 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 4632 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 4633 finicsum, cfcsum); 4634 4635 /* 4636 * And now tell the firmware to use the configuration we just loaded. 4637 */ 4638 caps_cmd.op_to_write = 4639 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4640 FW_CMD_REQUEST_F | 4641 FW_CMD_WRITE_F); 4642 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4643 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4644 NULL); 4645 if (ret < 0) 4646 goto bye; 4647 4648 /* 4649 * Tweak configuration based on system architecture, module 4650 * parameters, etc. 4651 */ 4652 ret = adap_init0_tweaks(adapter); 4653 if (ret < 0) 4654 goto bye; 4655 4656 /* We will proceed even if HMA init fails. */ 4657 ret = adap_config_hma(adapter); 4658 if (ret) 4659 dev_err(adapter->pdev_dev, 4660 "HMA configuration failed with error %d\n", ret); 4661 4662 if (is_t6(adapter->params.chip)) { 4663 adap_config_hpfilter(adapter); 4664 ret = setup_ppod_edram(adapter); 4665 if (!ret) 4666 dev_info(adapter->pdev_dev, "Successfully enabled " 4667 "ppod edram feature\n"); 4668 } 4669 4670 /* 4671 * And finally tell the firmware to initialize itself using the 4672 * parameters from the Configuration File. 4673 */ 4674 ret = t4_fw_initialize(adapter, adapter->mbox); 4675 if (ret < 0) 4676 goto bye; 4677 4678 /* Emit Firmware Configuration File information and return 4679 * successfully. 4680 */ 4681 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 4682 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 4683 config_name, finiver, cfcsum); 4684 return 0; 4685 4686 /* 4687 * Something bad happened. Return the error ... (If the "error" 4688 * is that there's no Configuration File on the adapter we don't 4689 * want to issue a warning since this is fairly common.) 4690 */ 4691 bye: 4692 if (config_issued && ret != -ENOENT) 4693 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 4694 config_name, -ret); 4695 return ret; 4696 } 4697 4698 static struct fw_info fw_info_array[] = { 4699 { 4700 .chip = CHELSIO_T4, 4701 .fs_name = FW4_CFNAME, 4702 .fw_mod_name = FW4_FNAME, 4703 .fw_hdr = { 4704 .chip = FW_HDR_CHIP_T4, 4705 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 4706 .intfver_nic = FW_INTFVER(T4, NIC), 4707 .intfver_vnic = FW_INTFVER(T4, VNIC), 4708 .intfver_ri = FW_INTFVER(T4, RI), 4709 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4710 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4711 }, 4712 }, { 4713 .chip = CHELSIO_T5, 4714 .fs_name = FW5_CFNAME, 4715 .fw_mod_name = FW5_FNAME, 4716 .fw_hdr = { 4717 .chip = FW_HDR_CHIP_T5, 4718 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 4719 .intfver_nic = FW_INTFVER(T5, NIC), 4720 .intfver_vnic = FW_INTFVER(T5, VNIC), 4721 .intfver_ri = FW_INTFVER(T5, RI), 4722 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4723 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4724 }, 4725 }, { 4726 .chip = CHELSIO_T6, 4727 .fs_name = FW6_CFNAME, 4728 .fw_mod_name = FW6_FNAME, 4729 .fw_hdr = { 4730 .chip = FW_HDR_CHIP_T6, 4731 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 4732 .intfver_nic = FW_INTFVER(T6, NIC), 4733 .intfver_vnic = FW_INTFVER(T6, VNIC), 4734 .intfver_ofld = FW_INTFVER(T6, OFLD), 4735 .intfver_ri = FW_INTFVER(T6, RI), 4736 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4737 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4738 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4739 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4740 }, 4741 } 4742 4743 }; 4744 4745 static struct fw_info *find_fw_info(int chip) 4746 { 4747 int i; 4748 4749 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 4750 if (fw_info_array[i].chip == chip) 4751 return &fw_info_array[i]; 4752 } 4753 return NULL; 4754 } 4755 4756 /* 4757 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 4758 */ 4759 static int adap_init0(struct adapter *adap, int vpd_skip) 4760 { 4761 struct fw_caps_config_cmd caps_cmd; 4762 u32 params[7], val[7]; 4763 enum dev_state state; 4764 u32 v, port_vec; 4765 int reset = 1; 4766 int ret; 4767 4768 /* Grab Firmware Device Log parameters as early as possible so we have 4769 * access to it for debugging, etc. 4770 */ 4771 ret = t4_init_devlog_params(adap); 4772 if (ret < 0) 4773 return ret; 4774 4775 /* Contact FW, advertising Master capability */ 4776 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, 4777 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state); 4778 if (ret < 0) { 4779 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 4780 ret); 4781 return ret; 4782 } 4783 if (ret == adap->mbox) 4784 adap->flags |= CXGB4_MASTER_PF; 4785 4786 /* 4787 * If we're the Master PF Driver and the device is uninitialized, 4788 * then let's consider upgrading the firmware ... (We always want 4789 * to check the firmware version number in order to A. get it for 4790 * later reporting and B. to warn if the currently loaded firmware 4791 * is excessively mismatched relative to the driver.) 4792 */ 4793 4794 t4_get_version_info(adap); 4795 ret = t4_check_fw_version(adap); 4796 /* If firmware is too old (not supported by driver) force an update. */ 4797 if (ret) 4798 state = DEV_STATE_UNINIT; 4799 if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) { 4800 struct fw_info *fw_info; 4801 struct fw_hdr *card_fw; 4802 const struct firmware *fw; 4803 const u8 *fw_data = NULL; 4804 unsigned int fw_size = 0; 4805 4806 /* This is the firmware whose headers the driver was compiled 4807 * against 4808 */ 4809 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 4810 if (fw_info == NULL) { 4811 dev_err(adap->pdev_dev, 4812 "unable to get firmware info for chip %d.\n", 4813 CHELSIO_CHIP_VERSION(adap->params.chip)); 4814 return -EINVAL; 4815 } 4816 4817 /* allocate memory to read the header of the firmware on the 4818 * card 4819 */ 4820 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL); 4821 if (!card_fw) { 4822 ret = -ENOMEM; 4823 goto bye; 4824 } 4825 4826 /* Get FW from from /lib/firmware/ */ 4827 ret = request_firmware(&fw, fw_info->fw_mod_name, 4828 adap->pdev_dev); 4829 if (ret < 0) { 4830 dev_err(adap->pdev_dev, 4831 "unable to load firmware image %s, error %d\n", 4832 fw_info->fw_mod_name, ret); 4833 } else { 4834 fw_data = fw->data; 4835 fw_size = fw->size; 4836 } 4837 4838 /* upgrade FW logic */ 4839 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 4840 state, &reset); 4841 4842 /* Cleaning up */ 4843 release_firmware(fw); 4844 kvfree(card_fw); 4845 4846 if (ret < 0) 4847 goto bye; 4848 } 4849 4850 /* If the firmware is initialized already, emit a simply note to that 4851 * effect. Otherwise, it's time to try initializing the adapter. 4852 */ 4853 if (state == DEV_STATE_INIT) { 4854 ret = adap_config_hma(adap); 4855 if (ret) 4856 dev_err(adap->pdev_dev, 4857 "HMA configuration failed with error %d\n", 4858 ret); 4859 dev_info(adap->pdev_dev, "Coming up as %s: "\ 4860 "Adapter already initialized\n", 4861 adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE"); 4862 } else { 4863 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 4864 "Initializing adapter\n"); 4865 4866 /* Find out whether we're dealing with a version of the 4867 * firmware which has configuration file support. 4868 */ 4869 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4870 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 4871 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 4872 params, val); 4873 4874 /* If the firmware doesn't support Configuration Files, 4875 * return an error. 4876 */ 4877 if (ret < 0) { 4878 dev_err(adap->pdev_dev, "firmware doesn't support " 4879 "Firmware Configuration Files\n"); 4880 goto bye; 4881 } 4882 4883 /* The firmware provides us with a memory buffer where we can 4884 * load a Configuration File from the host if we want to 4885 * override the Configuration File in flash. 4886 */ 4887 ret = adap_init0_config(adap, reset); 4888 if (ret == -ENOENT) { 4889 dev_err(adap->pdev_dev, "no Configuration File " 4890 "present on adapter.\n"); 4891 goto bye; 4892 } 4893 if (ret < 0) { 4894 dev_err(adap->pdev_dev, "could not initialize " 4895 "adapter, error %d\n", -ret); 4896 goto bye; 4897 } 4898 } 4899 4900 /* Now that we've successfully configured and initialized the adapter 4901 * (or found it already initialized), we can ask the Firmware what 4902 * resources it has provisioned for us. 4903 */ 4904 ret = t4_get_pfres(adap); 4905 if (ret) { 4906 dev_err(adap->pdev_dev, 4907 "Unable to retrieve resource provisioning information\n"); 4908 goto bye; 4909 } 4910 4911 /* Grab VPD parameters. This should be done after we establish a 4912 * connection to the firmware since some of the VPD parameters 4913 * (notably the Core Clock frequency) are retrieved via requests to 4914 * the firmware. On the other hand, we need these fairly early on 4915 * so we do this right after getting ahold of the firmware. 4916 * 4917 * We need to do this after initializing the adapter because someone 4918 * could have FLASHed a new VPD which won't be read by the firmware 4919 * until we do the RESET ... 4920 */ 4921 if (!vpd_skip) { 4922 ret = t4_get_vpd_params(adap, &adap->params.vpd); 4923 if (ret < 0) 4924 goto bye; 4925 } 4926 4927 /* Find out what ports are available to us. Note that we need to do 4928 * this before calling adap_init0_no_config() since it needs nports 4929 * and portvec ... 4930 */ 4931 v = 4932 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4933 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 4934 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 4935 if (ret < 0) 4936 goto bye; 4937 4938 adap->params.nports = hweight32(port_vec); 4939 adap->params.portvec = port_vec; 4940 4941 /* Give the SGE code a chance to pull in anything that it needs ... 4942 * Note that this must be called after we retrieve our VPD parameters 4943 * in order to know how to convert core ticks to seconds, etc. 4944 */ 4945 ret = t4_sge_init(adap); 4946 if (ret < 0) 4947 goto bye; 4948 4949 /* Grab the SGE Doorbell Queue Timer values. If successful, that 4950 * indicates that the Firmware and Hardware support this. 4951 */ 4952 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4953 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK)); 4954 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4955 1, params, val); 4956 4957 if (!ret) { 4958 adap->sge.dbqtimer_tick = val[0]; 4959 ret = t4_read_sge_dbqtimers(adap, 4960 ARRAY_SIZE(adap->sge.dbqtimer_val), 4961 adap->sge.dbqtimer_val); 4962 } 4963 4964 if (!ret) 4965 adap->flags |= CXGB4_SGE_DBQ_TIMER; 4966 4967 if (is_bypass_device(adap->pdev->device)) 4968 adap->params.bypass = 1; 4969 4970 /* 4971 * Grab some of our basic fundamental operating parameters. 4972 */ 4973 params[0] = FW_PARAM_PFVF(EQ_START); 4974 params[1] = FW_PARAM_PFVF(L2T_START); 4975 params[2] = FW_PARAM_PFVF(L2T_END); 4976 params[3] = FW_PARAM_PFVF(FILTER_START); 4977 params[4] = FW_PARAM_PFVF(FILTER_END); 4978 params[5] = FW_PARAM_PFVF(IQFLINT_START); 4979 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 4980 if (ret < 0) 4981 goto bye; 4982 adap->sge.egr_start = val[0]; 4983 adap->l2t_start = val[1]; 4984 adap->l2t_end = val[2]; 4985 adap->tids.ftid_base = val[3]; 4986 adap->tids.nftids = val[4] - val[3] + 1; 4987 adap->sge.ingr_start = val[5]; 4988 4989 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 4990 params[0] = FW_PARAM_PFVF(HPFILTER_START); 4991 params[1] = FW_PARAM_PFVF(HPFILTER_END); 4992 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4993 params, val); 4994 if (ret < 0) 4995 goto bye; 4996 4997 adap->tids.hpftid_base = val[0]; 4998 adap->tids.nhpftids = val[1] - val[0] + 1; 4999 5000 /* Read the raw mps entries. In T6, the last 2 tcam entries 5001 * are reserved for raw mac addresses (rawf = 2, one per port). 5002 */ 5003 params[0] = FW_PARAM_PFVF(RAWF_START); 5004 params[1] = FW_PARAM_PFVF(RAWF_END); 5005 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 5006 params, val); 5007 if (ret == 0) { 5008 adap->rawf_start = val[0]; 5009 adap->rawf_cnt = val[1] - val[0] + 1; 5010 } 5011 5012 adap->tids.tid_base = 5013 t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A); 5014 } 5015 5016 /* qids (ingress/egress) returned from firmware can be anywhere 5017 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 5018 * Hence driver needs to allocate memory for this range to 5019 * store the queue info. Get the highest IQFLINT/EQ index returned 5020 * in FW_EQ_*_CMD.alloc command. 5021 */ 5022 params[0] = FW_PARAM_PFVF(EQ_END); 5023 params[1] = FW_PARAM_PFVF(IQFLINT_END); 5024 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 5025 if (ret < 0) 5026 goto bye; 5027 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 5028 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 5029 5030 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 5031 sizeof(*adap->sge.egr_map), GFP_KERNEL); 5032 if (!adap->sge.egr_map) { 5033 ret = -ENOMEM; 5034 goto bye; 5035 } 5036 5037 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 5038 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 5039 if (!adap->sge.ingr_map) { 5040 ret = -ENOMEM; 5041 goto bye; 5042 } 5043 5044 /* Allocate the memory for the vaious egress queue bitmaps 5045 * ie starving_fl, txq_maperr and blocked_fl. 5046 */ 5047 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 5048 sizeof(long), GFP_KERNEL); 5049 if (!adap->sge.starving_fl) { 5050 ret = -ENOMEM; 5051 goto bye; 5052 } 5053 5054 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 5055 sizeof(long), GFP_KERNEL); 5056 if (!adap->sge.txq_maperr) { 5057 ret = -ENOMEM; 5058 goto bye; 5059 } 5060 5061 #ifdef CONFIG_DEBUG_FS 5062 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 5063 sizeof(long), GFP_KERNEL); 5064 if (!adap->sge.blocked_fl) { 5065 ret = -ENOMEM; 5066 goto bye; 5067 } 5068 #endif 5069 5070 params[0] = FW_PARAM_PFVF(CLIP_START); 5071 params[1] = FW_PARAM_PFVF(CLIP_END); 5072 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 5073 if (ret < 0) 5074 goto bye; 5075 adap->clipt_start = val[0]; 5076 adap->clipt_end = val[1]; 5077 5078 /* Get the supported number of traffic classes */ 5079 params[0] = FW_PARAM_DEV(NUM_TM_CLASS); 5080 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 5081 if (ret < 0) { 5082 /* We couldn't retrieve the number of Traffic Classes 5083 * supported by the hardware/firmware. So we hard 5084 * code it here. 5085 */ 5086 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16; 5087 } else { 5088 adap->params.nsched_cls = val[0]; 5089 } 5090 5091 /* query params related to active filter region */ 5092 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 5093 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 5094 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 5095 /* If Active filter size is set we enable establishing 5096 * offload connection through firmware work request 5097 */ 5098 if ((val[0] != val[1]) && (ret >= 0)) { 5099 adap->flags |= CXGB4_FW_OFLD_CONN; 5100 adap->tids.aftid_base = val[0]; 5101 adap->tids.aftid_end = val[1]; 5102 } 5103 5104 /* If we're running on newer firmware, let it know that we're 5105 * prepared to deal with encapsulated CPL messages. Older 5106 * firmware won't understand this and we'll just get 5107 * unencapsulated messages ... 5108 */ 5109 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 5110 val[0] = 1; 5111 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 5112 5113 /* 5114 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 5115 * capability. Earlier versions of the firmware didn't have the 5116 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 5117 * permission to use ULPTX MEMWRITE DSGL. 5118 */ 5119 if (is_t4(adap->params.chip)) { 5120 adap->params.ulptx_memwrite_dsgl = false; 5121 } else { 5122 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 5123 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5124 1, params, val); 5125 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 5126 } 5127 5128 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */ 5129 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 5130 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5131 1, params, val); 5132 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0); 5133 5134 /* See if FW supports FW_FILTER2 work request */ 5135 if (is_t4(adap->params.chip)) { 5136 adap->params.filter2_wr_support = false; 5137 } else { 5138 params[0] = FW_PARAM_DEV(FILTER2_WR); 5139 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5140 1, params, val); 5141 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0); 5142 } 5143 5144 /* Check if FW supports returning vin and smt index. 5145 * If this is not supported, driver will interpret 5146 * these values from viid. 5147 */ 5148 params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 5149 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5150 1, params, val); 5151 adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0); 5152 5153 /* 5154 * Get device capabilities so we can determine what resources we need 5155 * to manage. 5156 */ 5157 memset(&caps_cmd, 0, sizeof(caps_cmd)); 5158 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 5159 FW_CMD_REQUEST_F | FW_CMD_READ_F); 5160 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 5161 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 5162 &caps_cmd); 5163 if (ret < 0) 5164 goto bye; 5165 5166 /* hash filter has some mandatory register settings to be tested and for 5167 * that it needs to test whether offload is enabled or not, hence 5168 * checking and setting it here. 5169 */ 5170 if (caps_cmd.ofldcaps) 5171 adap->params.offload = 1; 5172 5173 if (caps_cmd.ofldcaps || 5174 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) || 5175 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD))) { 5176 /* query offload-related parameters */ 5177 params[0] = FW_PARAM_DEV(NTID); 5178 params[1] = FW_PARAM_PFVF(SERVER_START); 5179 params[2] = FW_PARAM_PFVF(SERVER_END); 5180 params[3] = FW_PARAM_PFVF(TDDP_START); 5181 params[4] = FW_PARAM_PFVF(TDDP_END); 5182 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5183 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 5184 params, val); 5185 if (ret < 0) 5186 goto bye; 5187 adap->tids.ntids = val[0]; 5188 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 5189 adap->tids.stid_base = val[1]; 5190 adap->tids.nstids = val[2] - val[1] + 1; 5191 /* 5192 * Setup server filter region. Divide the available filter 5193 * region into two parts. Regular filters get 1/3rd and server 5194 * filters get 2/3rd part. This is only enabled if workarond 5195 * path is enabled. 5196 * 1. For regular filters. 5197 * 2. Server filter: This are special filters which are used 5198 * to redirect SYN packets to offload queue. 5199 */ 5200 if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) { 5201 adap->tids.sftid_base = adap->tids.ftid_base + 5202 DIV_ROUND_UP(adap->tids.nftids, 3); 5203 adap->tids.nsftids = adap->tids.nftids - 5204 DIV_ROUND_UP(adap->tids.nftids, 3); 5205 adap->tids.nftids = adap->tids.sftid_base - 5206 adap->tids.ftid_base; 5207 } 5208 adap->vres.ddp.start = val[3]; 5209 adap->vres.ddp.size = val[4] - val[3] + 1; 5210 adap->params.ofldq_wr_cred = val[5]; 5211 5212 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 5213 init_hash_filter(adap); 5214 } else { 5215 adap->num_ofld_uld += 1; 5216 } 5217 5218 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD)) { 5219 params[0] = FW_PARAM_PFVF(ETHOFLD_START); 5220 params[1] = FW_PARAM_PFVF(ETHOFLD_END); 5221 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 5222 params, val); 5223 if (!ret) { 5224 adap->tids.eotid_base = val[0]; 5225 adap->tids.neotids = min_t(u32, MAX_ATIDS, 5226 val[1] - val[0] + 1); 5227 adap->params.ethofld = 1; 5228 } 5229 } 5230 } 5231 if (caps_cmd.rdmacaps) { 5232 params[0] = FW_PARAM_PFVF(STAG_START); 5233 params[1] = FW_PARAM_PFVF(STAG_END); 5234 params[2] = FW_PARAM_PFVF(RQ_START); 5235 params[3] = FW_PARAM_PFVF(RQ_END); 5236 params[4] = FW_PARAM_PFVF(PBL_START); 5237 params[5] = FW_PARAM_PFVF(PBL_END); 5238 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 5239 params, val); 5240 if (ret < 0) 5241 goto bye; 5242 adap->vres.stag.start = val[0]; 5243 adap->vres.stag.size = val[1] - val[0] + 1; 5244 adap->vres.rq.start = val[2]; 5245 adap->vres.rq.size = val[3] - val[2] + 1; 5246 adap->vres.pbl.start = val[4]; 5247 adap->vres.pbl.size = val[5] - val[4] + 1; 5248 5249 params[0] = FW_PARAM_PFVF(SRQ_START); 5250 params[1] = FW_PARAM_PFVF(SRQ_END); 5251 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 5252 params, val); 5253 if (!ret) { 5254 adap->vres.srq.start = val[0]; 5255 adap->vres.srq.size = val[1] - val[0] + 1; 5256 } 5257 if (adap->vres.srq.size) { 5258 adap->srq = t4_init_srq(adap->vres.srq.size); 5259 if (!adap->srq) 5260 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n"); 5261 } 5262 5263 params[0] = FW_PARAM_PFVF(SQRQ_START); 5264 params[1] = FW_PARAM_PFVF(SQRQ_END); 5265 params[2] = FW_PARAM_PFVF(CQ_START); 5266 params[3] = FW_PARAM_PFVF(CQ_END); 5267 params[4] = FW_PARAM_PFVF(OCQ_START); 5268 params[5] = FW_PARAM_PFVF(OCQ_END); 5269 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 5270 val); 5271 if (ret < 0) 5272 goto bye; 5273 adap->vres.qp.start = val[0]; 5274 adap->vres.qp.size = val[1] - val[0] + 1; 5275 adap->vres.cq.start = val[2]; 5276 adap->vres.cq.size = val[3] - val[2] + 1; 5277 adap->vres.ocq.start = val[4]; 5278 adap->vres.ocq.size = val[5] - val[4] + 1; 5279 5280 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 5281 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5282 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 5283 val); 5284 if (ret < 0) { 5285 adap->params.max_ordird_qp = 8; 5286 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 5287 ret = 0; 5288 } else { 5289 adap->params.max_ordird_qp = val[0]; 5290 adap->params.max_ird_adapter = val[1]; 5291 } 5292 dev_info(adap->pdev_dev, 5293 "max_ordird_qp %d max_ird_adapter %d\n", 5294 adap->params.max_ordird_qp, 5295 adap->params.max_ird_adapter); 5296 5297 /* Enable write_with_immediate if FW supports it */ 5298 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM); 5299 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 5300 val); 5301 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0); 5302 5303 /* Enable write_cmpl if FW supports it */ 5304 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR); 5305 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 5306 val); 5307 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0); 5308 adap->num_ofld_uld += 2; 5309 } 5310 if (caps_cmd.iscsicaps) { 5311 params[0] = FW_PARAM_PFVF(ISCSI_START); 5312 params[1] = FW_PARAM_PFVF(ISCSI_END); 5313 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 5314 params, val); 5315 if (ret < 0) 5316 goto bye; 5317 adap->vres.iscsi.start = val[0]; 5318 adap->vres.iscsi.size = val[1] - val[0] + 1; 5319 if (is_t6(adap->params.chip)) { 5320 params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START); 5321 params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END); 5322 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 5323 params, val); 5324 if (!ret) { 5325 adap->vres.ppod_edram.start = val[0]; 5326 adap->vres.ppod_edram.size = 5327 val[1] - val[0] + 1; 5328 5329 dev_info(adap->pdev_dev, 5330 "ppod edram start 0x%x end 0x%x size 0x%x\n", 5331 val[0], val[1], 5332 adap->vres.ppod_edram.size); 5333 } 5334 } 5335 /* LIO target and cxgb4i initiaitor */ 5336 adap->num_ofld_uld += 2; 5337 } 5338 if (caps_cmd.cryptocaps) { 5339 if (ntohs(caps_cmd.cryptocaps) & 5340 FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) { 5341 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE); 5342 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5343 2, params, val); 5344 if (ret < 0) { 5345 if (ret != -EINVAL) 5346 goto bye; 5347 } else { 5348 adap->vres.ncrypto_fc = val[0]; 5349 } 5350 adap->num_ofld_uld += 1; 5351 } 5352 if (ntohs(caps_cmd.cryptocaps) & 5353 FW_CAPS_CONFIG_TLS_INLINE) { 5354 params[0] = FW_PARAM_PFVF(TLS_START); 5355 params[1] = FW_PARAM_PFVF(TLS_END); 5356 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5357 2, params, val); 5358 if (ret < 0) 5359 goto bye; 5360 adap->vres.key.start = val[0]; 5361 adap->vres.key.size = val[1] - val[0] + 1; 5362 adap->num_uld += 1; 5363 } 5364 adap->params.crypto = ntohs(caps_cmd.cryptocaps); 5365 } 5366 5367 /* The MTU/MSS Table is initialized by now, so load their values. If 5368 * we're initializing the adapter, then we'll make any modifications 5369 * we want to the MTU/MSS Table and also initialize the congestion 5370 * parameters. 5371 */ 5372 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 5373 if (state != DEV_STATE_INIT) { 5374 int i; 5375 5376 /* The default MTU Table contains values 1492 and 1500. 5377 * However, for TCP, it's better to have two values which are 5378 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 5379 * This allows us to have a TCP Data Payload which is a 5380 * multiple of 8 regardless of what combination of TCP Options 5381 * are in use (always a multiple of 4 bytes) which is 5382 * important for performance reasons. For instance, if no 5383 * options are in use, then we have a 20-byte IP header and a 5384 * 20-byte TCP header. In this case, a 1500-byte MSS would 5385 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 5386 * which is not a multiple of 8. So using an MSS of 1488 in 5387 * this case results in a TCP Data Payload of 1448 bytes which 5388 * is a multiple of 8. On the other hand, if 12-byte TCP Time 5389 * Stamps have been negotiated, then an MTU of 1500 bytes 5390 * results in a TCP Data Payload of 1448 bytes which, as 5391 * above, is a multiple of 8 bytes ... 5392 */ 5393 for (i = 0; i < NMTUS; i++) 5394 if (adap->params.mtus[i] == 1492) { 5395 adap->params.mtus[i] = 1488; 5396 break; 5397 } 5398 5399 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 5400 adap->params.b_wnd); 5401 } 5402 t4_init_sge_params(adap); 5403 adap->flags |= CXGB4_FW_OK; 5404 t4_init_tp_params(adap, true); 5405 return 0; 5406 5407 /* 5408 * Something bad happened. If a command timed out or failed with EIO 5409 * FW does not operate within its spec or something catastrophic 5410 * happened to HW/FW, stop issuing commands. 5411 */ 5412 bye: 5413 adap_free_hma_mem(adap); 5414 kfree(adap->sge.egr_map); 5415 kfree(adap->sge.ingr_map); 5416 kfree(adap->sge.starving_fl); 5417 kfree(adap->sge.txq_maperr); 5418 #ifdef CONFIG_DEBUG_FS 5419 kfree(adap->sge.blocked_fl); 5420 #endif 5421 if (ret != -ETIMEDOUT && ret != -EIO) 5422 t4_fw_bye(adap, adap->mbox); 5423 return ret; 5424 } 5425 5426 /* EEH callbacks */ 5427 5428 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 5429 pci_channel_state_t state) 5430 { 5431 int i; 5432 struct adapter *adap = pci_get_drvdata(pdev); 5433 5434 if (!adap) 5435 goto out; 5436 5437 rtnl_lock(); 5438 adap->flags &= ~CXGB4_FW_OK; 5439 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 5440 spin_lock(&adap->stats_lock); 5441 for_each_port(adap, i) { 5442 struct net_device *dev = adap->port[i]; 5443 if (dev) { 5444 netif_device_detach(dev); 5445 netif_carrier_off(dev); 5446 } 5447 } 5448 spin_unlock(&adap->stats_lock); 5449 disable_interrupts(adap); 5450 if (adap->flags & CXGB4_FULL_INIT_DONE) 5451 cxgb_down(adap); 5452 rtnl_unlock(); 5453 if ((adap->flags & CXGB4_DEV_ENABLED)) { 5454 pci_disable_device(pdev); 5455 adap->flags &= ~CXGB4_DEV_ENABLED; 5456 } 5457 out: return state == pci_channel_io_perm_failure ? 5458 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 5459 } 5460 5461 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 5462 { 5463 int i, ret; 5464 struct fw_caps_config_cmd c; 5465 struct adapter *adap = pci_get_drvdata(pdev); 5466 5467 if (!adap) { 5468 pci_restore_state(pdev); 5469 pci_save_state(pdev); 5470 return PCI_ERS_RESULT_RECOVERED; 5471 } 5472 5473 if (!(adap->flags & CXGB4_DEV_ENABLED)) { 5474 if (pci_enable_device(pdev)) { 5475 dev_err(&pdev->dev, "Cannot reenable PCI " 5476 "device after reset\n"); 5477 return PCI_ERS_RESULT_DISCONNECT; 5478 } 5479 adap->flags |= CXGB4_DEV_ENABLED; 5480 } 5481 5482 pci_set_master(pdev); 5483 pci_restore_state(pdev); 5484 pci_save_state(pdev); 5485 5486 if (t4_wait_dev_ready(adap->regs) < 0) 5487 return PCI_ERS_RESULT_DISCONNECT; 5488 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 5489 return PCI_ERS_RESULT_DISCONNECT; 5490 adap->flags |= CXGB4_FW_OK; 5491 if (adap_init1(adap, &c)) 5492 return PCI_ERS_RESULT_DISCONNECT; 5493 5494 for_each_port(adap, i) { 5495 struct port_info *pi = adap2pinfo(adap, i); 5496 u8 vivld = 0, vin = 0; 5497 5498 ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1, 5499 NULL, NULL, &vivld, &vin); 5500 if (ret < 0) 5501 return PCI_ERS_RESULT_DISCONNECT; 5502 pi->viid = ret; 5503 pi->xact_addr_filt = -1; 5504 /* If fw supports returning the VIN as part of FW_VI_CMD, 5505 * save the returned values. 5506 */ 5507 if (adap->params.viid_smt_extn_support) { 5508 pi->vivld = vivld; 5509 pi->vin = vin; 5510 } else { 5511 /* Retrieve the values from VIID */ 5512 pi->vivld = FW_VIID_VIVLD_G(pi->viid); 5513 pi->vin = FW_VIID_VIN_G(pi->viid); 5514 } 5515 } 5516 5517 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 5518 adap->params.b_wnd); 5519 setup_memwin(adap); 5520 if (cxgb_up(adap)) 5521 return PCI_ERS_RESULT_DISCONNECT; 5522 return PCI_ERS_RESULT_RECOVERED; 5523 } 5524 5525 static void eeh_resume(struct pci_dev *pdev) 5526 { 5527 int i; 5528 struct adapter *adap = pci_get_drvdata(pdev); 5529 5530 if (!adap) 5531 return; 5532 5533 rtnl_lock(); 5534 for_each_port(adap, i) { 5535 struct net_device *dev = adap->port[i]; 5536 if (dev) { 5537 if (netif_running(dev)) { 5538 link_start(dev); 5539 cxgb_set_rxmode(dev); 5540 } 5541 netif_device_attach(dev); 5542 } 5543 } 5544 rtnl_unlock(); 5545 } 5546 5547 static void eeh_reset_prepare(struct pci_dev *pdev) 5548 { 5549 struct adapter *adapter = pci_get_drvdata(pdev); 5550 int i; 5551 5552 if (adapter->pf != 4) 5553 return; 5554 5555 adapter->flags &= ~CXGB4_FW_OK; 5556 5557 notify_ulds(adapter, CXGB4_STATE_DOWN); 5558 5559 for_each_port(adapter, i) 5560 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5561 cxgb_close(adapter->port[i]); 5562 5563 disable_interrupts(adapter); 5564 cxgb4_free_mps_ref_entries(adapter); 5565 5566 adap_free_hma_mem(adapter); 5567 5568 if (adapter->flags & CXGB4_FULL_INIT_DONE) 5569 cxgb_down(adapter); 5570 } 5571 5572 static void eeh_reset_done(struct pci_dev *pdev) 5573 { 5574 struct adapter *adapter = pci_get_drvdata(pdev); 5575 int err, i; 5576 5577 if (adapter->pf != 4) 5578 return; 5579 5580 err = t4_wait_dev_ready(adapter->regs); 5581 if (err < 0) { 5582 dev_err(adapter->pdev_dev, 5583 "Device not ready, err %d", err); 5584 return; 5585 } 5586 5587 setup_memwin(adapter); 5588 5589 err = adap_init0(adapter, 1); 5590 if (err) { 5591 dev_err(adapter->pdev_dev, 5592 "Adapter init failed, err %d", err); 5593 return; 5594 } 5595 5596 setup_memwin_rdma(adapter); 5597 5598 if (adapter->flags & CXGB4_FW_OK) { 5599 err = t4_port_init(adapter, adapter->pf, adapter->pf, 0); 5600 if (err) { 5601 dev_err(adapter->pdev_dev, 5602 "Port init failed, err %d", err); 5603 return; 5604 } 5605 } 5606 5607 err = cfg_queues(adapter); 5608 if (err) { 5609 dev_err(adapter->pdev_dev, 5610 "Config queues failed, err %d", err); 5611 return; 5612 } 5613 5614 cxgb4_init_mps_ref_entries(adapter); 5615 5616 err = setup_fw_sge_queues(adapter); 5617 if (err) { 5618 dev_err(adapter->pdev_dev, 5619 "FW sge queue allocation failed, err %d", err); 5620 return; 5621 } 5622 5623 for_each_port(adapter, i) 5624 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5625 cxgb_open(adapter->port[i]); 5626 } 5627 5628 static const struct pci_error_handlers cxgb4_eeh = { 5629 .error_detected = eeh_err_detected, 5630 .slot_reset = eeh_slot_reset, 5631 .resume = eeh_resume, 5632 .reset_prepare = eeh_reset_prepare, 5633 .reset_done = eeh_reset_done, 5634 }; 5635 5636 /* Return true if the Link Configuration supports "High Speeds" (those greater 5637 * than 1Gb/s). 5638 */ 5639 static inline bool is_x_10g_port(const struct link_config *lc) 5640 { 5641 unsigned int speeds, high_speeds; 5642 5643 speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps)); 5644 high_speeds = speeds & 5645 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G); 5646 5647 return high_speeds != 0; 5648 } 5649 5650 /* Perform default configuration of DMA queues depending on the number and type 5651 * of ports we found and the number of available CPUs. Most settings can be 5652 * modified by the admin prior to actual use. 5653 */ 5654 static int cfg_queues(struct adapter *adap) 5655 { 5656 u32 avail_qsets, avail_eth_qsets, avail_uld_qsets; 5657 u32 ncpus = num_online_cpus(); 5658 u32 niqflint, neq, num_ulds; 5659 struct sge *s = &adap->sge; 5660 u32 i, n10g = 0, qidx = 0; 5661 u32 q10g = 0, q1g; 5662 5663 /* Reduce memory usage in kdump environment, disable all offload. */ 5664 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) { 5665 adap->params.offload = 0; 5666 adap->params.crypto = 0; 5667 adap->params.ethofld = 0; 5668 } 5669 5670 /* Calculate the number of Ethernet Queue Sets available based on 5671 * resources provisioned for us. We always have an Asynchronous 5672 * Firmware Event Ingress Queue. If we're operating in MSI or Legacy 5673 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt 5674 * Ingress Queue. Meanwhile, we need two Egress Queues for each 5675 * Queue Set: one for the Free List and one for the Ethernet TX Queue. 5676 * 5677 * Note that we should also take into account all of the various 5678 * Offload Queues. But, in any situation where we're operating in 5679 * a Resource Constrained Provisioning environment, doing any Offload 5680 * at all is problematic ... 5681 */ 5682 niqflint = adap->params.pfres.niqflint - 1; 5683 if (!(adap->flags & CXGB4_USING_MSIX)) 5684 niqflint--; 5685 neq = adap->params.pfres.neq / 2; 5686 avail_qsets = min(niqflint, neq); 5687 5688 if (avail_qsets < adap->params.nports) { 5689 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n", 5690 avail_qsets, adap->params.nports); 5691 return -ENOMEM; 5692 } 5693 5694 /* Count the number of 10Gb/s or better ports */ 5695 for_each_port(adap, i) 5696 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 5697 5698 avail_eth_qsets = min_t(u32, avail_qsets, MAX_ETH_QSETS); 5699 5700 /* We default to 1 queue per non-10G port and up to # of cores queues 5701 * per 10G port. 5702 */ 5703 if (n10g) 5704 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g; 5705 5706 #ifdef CONFIG_CHELSIO_T4_DCB 5707 /* For Data Center Bridging support we need to be able to support up 5708 * to 8 Traffic Priorities; each of which will be assigned to its 5709 * own TX Queue in order to prevent Head-Of-Line Blocking. 5710 */ 5711 q1g = 8; 5712 if (adap->params.nports * 8 > avail_eth_qsets) { 5713 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n", 5714 avail_eth_qsets, adap->params.nports * 8); 5715 return -ENOMEM; 5716 } 5717 5718 if (adap->params.nports * ncpus < avail_eth_qsets) 5719 q10g = max(8U, ncpus); 5720 else 5721 q10g = max(8U, q10g); 5722 5723 while ((q10g * n10g) > 5724 (avail_eth_qsets - (adap->params.nports - n10g) * q1g)) 5725 q10g--; 5726 5727 #else /* !CONFIG_CHELSIO_T4_DCB */ 5728 q1g = 1; 5729 q10g = min(q10g, ncpus); 5730 #endif /* !CONFIG_CHELSIO_T4_DCB */ 5731 if (is_kdump_kernel()) { 5732 q10g = 1; 5733 q1g = 1; 5734 } 5735 5736 for_each_port(adap, i) { 5737 struct port_info *pi = adap2pinfo(adap, i); 5738 5739 pi->first_qset = qidx; 5740 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : q1g; 5741 qidx += pi->nqsets; 5742 } 5743 5744 s->ethqsets = qidx; 5745 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 5746 avail_qsets -= qidx; 5747 5748 if (is_uld(adap)) { 5749 /* For offload we use 1 queue/channel if all ports are up to 1G, 5750 * otherwise we divide all available queues amongst the channels 5751 * capped by the number of available cores. 5752 */ 5753 num_ulds = adap->num_uld + adap->num_ofld_uld; 5754 i = min_t(u32, MAX_OFLD_QSETS, ncpus); 5755 avail_uld_qsets = roundup(i, adap->params.nports); 5756 if (avail_qsets < num_ulds * adap->params.nports) { 5757 adap->params.offload = 0; 5758 adap->params.crypto = 0; 5759 s->ofldqsets = 0; 5760 } else if (avail_qsets < num_ulds * avail_uld_qsets || !n10g) { 5761 s->ofldqsets = adap->params.nports; 5762 } else { 5763 s->ofldqsets = avail_uld_qsets; 5764 } 5765 5766 avail_qsets -= num_ulds * s->ofldqsets; 5767 } 5768 5769 /* ETHOFLD Queues used for QoS offload should follow same 5770 * allocation scheme as normal Ethernet Queues. 5771 */ 5772 if (is_ethofld(adap)) { 5773 if (avail_qsets < s->max_ethqsets) { 5774 adap->params.ethofld = 0; 5775 s->eoqsets = 0; 5776 } else { 5777 s->eoqsets = s->max_ethqsets; 5778 } 5779 avail_qsets -= s->eoqsets; 5780 } 5781 5782 /* Mirror queues must follow same scheme as normal Ethernet 5783 * Queues, when there are enough queues available. Otherwise, 5784 * allocate at least 1 queue per port. If even 1 queue is not 5785 * available, then disable mirror queues support. 5786 */ 5787 if (avail_qsets >= s->max_ethqsets) 5788 s->mirrorqsets = s->max_ethqsets; 5789 else if (avail_qsets >= adap->params.nports) 5790 s->mirrorqsets = adap->params.nports; 5791 else 5792 s->mirrorqsets = 0; 5793 avail_qsets -= s->mirrorqsets; 5794 5795 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 5796 struct sge_eth_rxq *r = &s->ethrxq[i]; 5797 5798 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 5799 r->fl.size = 72; 5800 } 5801 5802 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 5803 s->ethtxq[i].q.size = 1024; 5804 5805 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 5806 s->ctrlq[i].q.size = 512; 5807 5808 if (!is_t4(adap->params.chip)) 5809 s->ptptxq.q.size = 8; 5810 5811 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 5812 init_rspq(adap, &s->intrq, 0, 1, 512, 64); 5813 5814 return 0; 5815 } 5816 5817 /* 5818 * Reduce the number of Ethernet queues across all ports to at most n. 5819 * n provides at least one queue per port. 5820 */ 5821 static void reduce_ethqs(struct adapter *adap, int n) 5822 { 5823 int i; 5824 struct port_info *pi; 5825 5826 while (n < adap->sge.ethqsets) 5827 for_each_port(adap, i) { 5828 pi = adap2pinfo(adap, i); 5829 if (pi->nqsets > 1) { 5830 pi->nqsets--; 5831 adap->sge.ethqsets--; 5832 if (adap->sge.ethqsets <= n) 5833 break; 5834 } 5835 } 5836 5837 n = 0; 5838 for_each_port(adap, i) { 5839 pi = adap2pinfo(adap, i); 5840 pi->first_qset = n; 5841 n += pi->nqsets; 5842 } 5843 } 5844 5845 static int alloc_msix_info(struct adapter *adap, u32 num_vec) 5846 { 5847 struct msix_info *msix_info; 5848 5849 msix_info = kcalloc(num_vec, sizeof(*msix_info), GFP_KERNEL); 5850 if (!msix_info) 5851 return -ENOMEM; 5852 5853 adap->msix_bmap.msix_bmap = kcalloc(BITS_TO_LONGS(num_vec), 5854 sizeof(long), GFP_KERNEL); 5855 if (!adap->msix_bmap.msix_bmap) { 5856 kfree(msix_info); 5857 return -ENOMEM; 5858 } 5859 5860 spin_lock_init(&adap->msix_bmap.lock); 5861 adap->msix_bmap.mapsize = num_vec; 5862 5863 adap->msix_info = msix_info; 5864 return 0; 5865 } 5866 5867 static void free_msix_info(struct adapter *adap) 5868 { 5869 kfree(adap->msix_bmap.msix_bmap); 5870 kfree(adap->msix_info); 5871 } 5872 5873 int cxgb4_get_msix_idx_from_bmap(struct adapter *adap) 5874 { 5875 struct msix_bmap *bmap = &adap->msix_bmap; 5876 unsigned int msix_idx; 5877 unsigned long flags; 5878 5879 spin_lock_irqsave(&bmap->lock, flags); 5880 msix_idx = find_first_zero_bit(bmap->msix_bmap, bmap->mapsize); 5881 if (msix_idx < bmap->mapsize) { 5882 __set_bit(msix_idx, bmap->msix_bmap); 5883 } else { 5884 spin_unlock_irqrestore(&bmap->lock, flags); 5885 return -ENOSPC; 5886 } 5887 5888 spin_unlock_irqrestore(&bmap->lock, flags); 5889 return msix_idx; 5890 } 5891 5892 void cxgb4_free_msix_idx_in_bmap(struct adapter *adap, 5893 unsigned int msix_idx) 5894 { 5895 struct msix_bmap *bmap = &adap->msix_bmap; 5896 unsigned long flags; 5897 5898 spin_lock_irqsave(&bmap->lock, flags); 5899 __clear_bit(msix_idx, bmap->msix_bmap); 5900 spin_unlock_irqrestore(&bmap->lock, flags); 5901 } 5902 5903 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 5904 #define EXTRA_VECS 2 5905 5906 static int enable_msix(struct adapter *adap) 5907 { 5908 u32 eth_need, uld_need = 0, ethofld_need = 0, mirror_need = 0; 5909 u32 ethqsets = 0, ofldqsets = 0, eoqsets = 0, mirrorqsets = 0; 5910 u8 num_uld = 0, nchan = adap->params.nports; 5911 u32 i, want, need, num_vec; 5912 struct sge *s = &adap->sge; 5913 struct msix_entry *entries; 5914 struct port_info *pi; 5915 int allocated, ret; 5916 5917 want = s->max_ethqsets; 5918 #ifdef CONFIG_CHELSIO_T4_DCB 5919 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 5920 * each port. 5921 */ 5922 need = 8 * nchan; 5923 #else 5924 need = nchan; 5925 #endif 5926 eth_need = need; 5927 if (is_uld(adap)) { 5928 num_uld = adap->num_ofld_uld + adap->num_uld; 5929 want += num_uld * s->ofldqsets; 5930 uld_need = num_uld * nchan; 5931 need += uld_need; 5932 } 5933 5934 if (is_ethofld(adap)) { 5935 want += s->eoqsets; 5936 ethofld_need = eth_need; 5937 need += ethofld_need; 5938 } 5939 5940 if (s->mirrorqsets) { 5941 want += s->mirrorqsets; 5942 mirror_need = nchan; 5943 need += mirror_need; 5944 } 5945 5946 want += EXTRA_VECS; 5947 need += EXTRA_VECS; 5948 5949 entries = kmalloc_array(want, sizeof(*entries), GFP_KERNEL); 5950 if (!entries) 5951 return -ENOMEM; 5952 5953 for (i = 0; i < want; i++) 5954 entries[i].entry = i; 5955 5956 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 5957 if (allocated < 0) { 5958 /* Disable offload and attempt to get vectors for NIC 5959 * only mode. 5960 */ 5961 want = s->max_ethqsets + EXTRA_VECS; 5962 need = eth_need + EXTRA_VECS; 5963 allocated = pci_enable_msix_range(adap->pdev, entries, 5964 need, want); 5965 if (allocated < 0) { 5966 dev_info(adap->pdev_dev, 5967 "Disabling MSI-X due to insufficient MSI-X vectors\n"); 5968 ret = allocated; 5969 goto out_free; 5970 } 5971 5972 dev_info(adap->pdev_dev, 5973 "Disabling offload due to insufficient MSI-X vectors\n"); 5974 adap->params.offload = 0; 5975 adap->params.crypto = 0; 5976 adap->params.ethofld = 0; 5977 s->ofldqsets = 0; 5978 s->eoqsets = 0; 5979 s->mirrorqsets = 0; 5980 uld_need = 0; 5981 ethofld_need = 0; 5982 mirror_need = 0; 5983 } 5984 5985 num_vec = allocated; 5986 if (num_vec < want) { 5987 /* Distribute available vectors to the various queue groups. 5988 * Every group gets its minimum requirement and NIC gets top 5989 * priority for leftovers. 5990 */ 5991 ethqsets = eth_need; 5992 if (is_uld(adap)) 5993 ofldqsets = nchan; 5994 if (is_ethofld(adap)) 5995 eoqsets = ethofld_need; 5996 if (s->mirrorqsets) 5997 mirrorqsets = mirror_need; 5998 5999 num_vec -= need; 6000 while (num_vec) { 6001 if (num_vec < eth_need + ethofld_need || 6002 ethqsets > s->max_ethqsets) 6003 break; 6004 6005 for_each_port(adap, i) { 6006 pi = adap2pinfo(adap, i); 6007 if (pi->nqsets < 2) 6008 continue; 6009 6010 ethqsets++; 6011 num_vec--; 6012 if (ethofld_need) { 6013 eoqsets++; 6014 num_vec--; 6015 } 6016 } 6017 } 6018 6019 if (is_uld(adap)) { 6020 while (num_vec) { 6021 if (num_vec < uld_need || 6022 ofldqsets > s->ofldqsets) 6023 break; 6024 6025 ofldqsets++; 6026 num_vec -= uld_need; 6027 } 6028 } 6029 6030 if (s->mirrorqsets) { 6031 while (num_vec) { 6032 if (num_vec < mirror_need || 6033 mirrorqsets > s->mirrorqsets) 6034 break; 6035 6036 mirrorqsets++; 6037 num_vec -= mirror_need; 6038 } 6039 } 6040 } else { 6041 ethqsets = s->max_ethqsets; 6042 if (is_uld(adap)) 6043 ofldqsets = s->ofldqsets; 6044 if (is_ethofld(adap)) 6045 eoqsets = s->eoqsets; 6046 if (s->mirrorqsets) 6047 mirrorqsets = s->mirrorqsets; 6048 } 6049 6050 if (ethqsets < s->max_ethqsets) { 6051 s->max_ethqsets = ethqsets; 6052 reduce_ethqs(adap, ethqsets); 6053 } 6054 6055 if (is_uld(adap)) { 6056 s->ofldqsets = ofldqsets; 6057 s->nqs_per_uld = s->ofldqsets; 6058 } 6059 6060 if (is_ethofld(adap)) 6061 s->eoqsets = eoqsets; 6062 6063 if (s->mirrorqsets) { 6064 s->mirrorqsets = mirrorqsets; 6065 for_each_port(adap, i) { 6066 pi = adap2pinfo(adap, i); 6067 pi->nmirrorqsets = s->mirrorqsets / nchan; 6068 mutex_init(&pi->vi_mirror_mutex); 6069 } 6070 } 6071 6072 /* map for msix */ 6073 ret = alloc_msix_info(adap, allocated); 6074 if (ret) 6075 goto out_disable_msix; 6076 6077 for (i = 0; i < allocated; i++) { 6078 adap->msix_info[i].vec = entries[i].vector; 6079 adap->msix_info[i].idx = i; 6080 } 6081 6082 dev_info(adap->pdev_dev, 6083 "%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d mirrorqsets %d\n", 6084 allocated, s->max_ethqsets, s->eoqsets, s->nqs_per_uld, 6085 s->mirrorqsets); 6086 6087 kfree(entries); 6088 return 0; 6089 6090 out_disable_msix: 6091 pci_disable_msix(adap->pdev); 6092 6093 out_free: 6094 kfree(entries); 6095 return ret; 6096 } 6097 6098 #undef EXTRA_VECS 6099 6100 static int init_rss(struct adapter *adap) 6101 { 6102 unsigned int i; 6103 int err; 6104 6105 err = t4_init_rss_mode(adap, adap->mbox); 6106 if (err) 6107 return err; 6108 6109 for_each_port(adap, i) { 6110 struct port_info *pi = adap2pinfo(adap, i); 6111 6112 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 6113 if (!pi->rss) 6114 return -ENOMEM; 6115 } 6116 return 0; 6117 } 6118 6119 /* Dump basic information about the adapter */ 6120 static void print_adapter_info(struct adapter *adapter) 6121 { 6122 /* Hardware/Firmware/etc. Version/Revision IDs */ 6123 t4_dump_version_info(adapter); 6124 6125 /* Software/Hardware configuration */ 6126 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n", 6127 is_offload(adapter) ? "R" : "", 6128 ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" : 6129 (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""), 6130 is_offload(adapter) ? "Offload" : "non-Offload"); 6131 } 6132 6133 static void print_port_info(const struct net_device *dev) 6134 { 6135 char buf[80]; 6136 char *bufp = buf; 6137 const struct port_info *pi = netdev_priv(dev); 6138 const struct adapter *adap = pi->adapter; 6139 6140 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M) 6141 bufp += sprintf(bufp, "100M/"); 6142 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G) 6143 bufp += sprintf(bufp, "1G/"); 6144 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G) 6145 bufp += sprintf(bufp, "10G/"); 6146 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G) 6147 bufp += sprintf(bufp, "25G/"); 6148 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G) 6149 bufp += sprintf(bufp, "40G/"); 6150 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G) 6151 bufp += sprintf(bufp, "50G/"); 6152 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G) 6153 bufp += sprintf(bufp, "100G/"); 6154 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G) 6155 bufp += sprintf(bufp, "200G/"); 6156 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G) 6157 bufp += sprintf(bufp, "400G/"); 6158 if (bufp != buf) 6159 --bufp; 6160 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 6161 6162 netdev_info(dev, "%s: Chelsio %s (%s) %s\n", 6163 dev->name, adap->params.vpd.id, adap->name, buf); 6164 } 6165 6166 /* 6167 * Free the following resources: 6168 * - memory used for tables 6169 * - MSI/MSI-X 6170 * - net devices 6171 * - resources FW is holding for us 6172 */ 6173 static void free_some_resources(struct adapter *adapter) 6174 { 6175 unsigned int i; 6176 6177 kvfree(adapter->smt); 6178 kvfree(adapter->l2t); 6179 kvfree(adapter->srq); 6180 t4_cleanup_sched(adapter); 6181 kvfree(adapter->tids.tid_tab); 6182 cxgb4_cleanup_tc_matchall(adapter); 6183 cxgb4_cleanup_tc_mqprio(adapter); 6184 cxgb4_cleanup_tc_flower(adapter); 6185 cxgb4_cleanup_tc_u32(adapter); 6186 cxgb4_cleanup_ethtool_filters(adapter); 6187 kfree(adapter->sge.egr_map); 6188 kfree(adapter->sge.ingr_map); 6189 kfree(adapter->sge.starving_fl); 6190 kfree(adapter->sge.txq_maperr); 6191 #ifdef CONFIG_DEBUG_FS 6192 kfree(adapter->sge.blocked_fl); 6193 #endif 6194 disable_msi(adapter); 6195 6196 for_each_port(adapter, i) 6197 if (adapter->port[i]) { 6198 struct port_info *pi = adap2pinfo(adapter, i); 6199 6200 if (pi->viid != 0) 6201 t4_free_vi(adapter, adapter->mbox, adapter->pf, 6202 0, pi->viid); 6203 kfree(adap2pinfo(adapter, i)->rss); 6204 free_netdev(adapter->port[i]); 6205 } 6206 if (adapter->flags & CXGB4_FW_OK) 6207 t4_fw_bye(adapter, adapter->pf); 6208 } 6209 6210 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \ 6211 NETIF_F_GSO_UDP_L4) 6212 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 6213 NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 6214 #define SEGMENT_SIZE 128 6215 6216 static int t4_get_chip_type(struct adapter *adap, int ver) 6217 { 6218 u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A)); 6219 6220 switch (ver) { 6221 case CHELSIO_T4: 6222 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 6223 case CHELSIO_T5: 6224 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 6225 case CHELSIO_T6: 6226 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 6227 default: 6228 break; 6229 } 6230 return -EINVAL; 6231 } 6232 6233 #ifdef CONFIG_PCI_IOV 6234 static void cxgb4_mgmt_setup(struct net_device *dev) 6235 { 6236 dev->type = ARPHRD_NONE; 6237 dev->mtu = 0; 6238 dev->hard_header_len = 0; 6239 dev->addr_len = 0; 6240 dev->tx_queue_len = 0; 6241 dev->flags |= IFF_NOARP; 6242 dev->priv_flags |= IFF_NO_QUEUE; 6243 6244 /* Initialize the device structure. */ 6245 dev->netdev_ops = &cxgb4_mgmt_netdev_ops; 6246 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops; 6247 } 6248 6249 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs) 6250 { 6251 struct adapter *adap = pci_get_drvdata(pdev); 6252 int err = 0; 6253 int current_vfs = pci_num_vf(pdev); 6254 u32 pcie_fw; 6255 6256 pcie_fw = readl(adap->regs + PCIE_FW_A); 6257 /* Check if fw is initialized */ 6258 if (!(pcie_fw & PCIE_FW_INIT_F)) { 6259 dev_warn(&pdev->dev, "Device not initialized\n"); 6260 return -EOPNOTSUPP; 6261 } 6262 6263 /* If any of the VF's is already assigned to Guest OS, then 6264 * SRIOV for the same cannot be modified 6265 */ 6266 if (current_vfs && pci_vfs_assigned(pdev)) { 6267 dev_err(&pdev->dev, 6268 "Cannot modify SR-IOV while VFs are assigned\n"); 6269 return current_vfs; 6270 } 6271 /* Note that the upper-level code ensures that we're never called with 6272 * a non-zero "num_vfs" when we already have VFs instantiated. But 6273 * it never hurts to code defensively. 6274 */ 6275 if (num_vfs != 0 && current_vfs != 0) 6276 return -EBUSY; 6277 6278 /* Nothing to do for no change. */ 6279 if (num_vfs == current_vfs) 6280 return num_vfs; 6281 6282 /* Disable SRIOV when zero is passed. */ 6283 if (!num_vfs) { 6284 pci_disable_sriov(pdev); 6285 /* free VF Management Interface */ 6286 unregister_netdev(adap->port[0]); 6287 free_netdev(adap->port[0]); 6288 adap->port[0] = NULL; 6289 6290 /* free VF resources */ 6291 adap->num_vfs = 0; 6292 kfree(adap->vfinfo); 6293 adap->vfinfo = NULL; 6294 return 0; 6295 } 6296 6297 if (!current_vfs) { 6298 struct fw_pfvf_cmd port_cmd, port_rpl; 6299 struct net_device *netdev; 6300 unsigned int pmask, port; 6301 struct pci_dev *pbridge; 6302 struct port_info *pi; 6303 char name[IFNAMSIZ]; 6304 u32 devcap2; 6305 u16 flags; 6306 6307 /* If we want to instantiate Virtual Functions, then our 6308 * parent bridge's PCI-E needs to support Alternative Routing 6309 * ID (ARI) because our VFs will show up at function offset 8 6310 * and above. 6311 */ 6312 pbridge = pdev->bus->self; 6313 pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags); 6314 pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2); 6315 6316 if ((flags & PCI_EXP_FLAGS_VERS) < 2 || 6317 !(devcap2 & PCI_EXP_DEVCAP2_ARI)) { 6318 /* Our parent bridge does not support ARI so issue a 6319 * warning and skip instantiating the VFs. They 6320 * won't be reachable. 6321 */ 6322 dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n", 6323 pbridge->bus->number, PCI_SLOT(pbridge->devfn), 6324 PCI_FUNC(pbridge->devfn)); 6325 return -ENOTSUPP; 6326 } 6327 memset(&port_cmd, 0, sizeof(port_cmd)); 6328 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 6329 FW_CMD_REQUEST_F | 6330 FW_CMD_READ_F | 6331 FW_PFVF_CMD_PFN_V(adap->pf) | 6332 FW_PFVF_CMD_VFN_V(0)); 6333 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd)); 6334 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd), 6335 &port_rpl); 6336 if (err) 6337 return err; 6338 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq)); 6339 port = ffs(pmask) - 1; 6340 /* Allocate VF Management Interface. */ 6341 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx, 6342 adap->pf); 6343 netdev = alloc_netdev(sizeof(struct port_info), 6344 name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup); 6345 if (!netdev) 6346 return -ENOMEM; 6347 6348 pi = netdev_priv(netdev); 6349 pi->adapter = adap; 6350 pi->lport = port; 6351 pi->tx_chan = port; 6352 SET_NETDEV_DEV(netdev, &pdev->dev); 6353 6354 adap->port[0] = netdev; 6355 pi->port_id = 0; 6356 6357 err = register_netdev(adap->port[0]); 6358 if (err) { 6359 pr_info("Unable to register VF mgmt netdev %s\n", name); 6360 free_netdev(adap->port[0]); 6361 adap->port[0] = NULL; 6362 return err; 6363 } 6364 /* Allocate and set up VF Information. */ 6365 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev), 6366 sizeof(struct vf_info), GFP_KERNEL); 6367 if (!adap->vfinfo) { 6368 unregister_netdev(adap->port[0]); 6369 free_netdev(adap->port[0]); 6370 adap->port[0] = NULL; 6371 return -ENOMEM; 6372 } 6373 cxgb4_mgmt_fill_vf_station_mac_addr(adap); 6374 } 6375 /* Instantiate the requested number of VFs. */ 6376 err = pci_enable_sriov(pdev, num_vfs); 6377 if (err) { 6378 pr_info("Unable to instantiate %d VFs\n", num_vfs); 6379 if (!current_vfs) { 6380 unregister_netdev(adap->port[0]); 6381 free_netdev(adap->port[0]); 6382 adap->port[0] = NULL; 6383 kfree(adap->vfinfo); 6384 adap->vfinfo = NULL; 6385 } 6386 return err; 6387 } 6388 6389 adap->num_vfs = num_vfs; 6390 return num_vfs; 6391 } 6392 #endif /* CONFIG_PCI_IOV */ 6393 6394 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) || IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE) 6395 6396 static int chcr_offload_state(struct adapter *adap, 6397 enum cxgb4_netdev_tls_ops op_val) 6398 { 6399 switch (op_val) { 6400 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) 6401 case CXGB4_TLSDEV_OPS: 6402 if (!adap->uld[CXGB4_ULD_KTLS].handle) { 6403 dev_dbg(adap->pdev_dev, "ch_ktls driver is not loaded\n"); 6404 return -EOPNOTSUPP; 6405 } 6406 if (!adap->uld[CXGB4_ULD_KTLS].tlsdev_ops) { 6407 dev_dbg(adap->pdev_dev, 6408 "ch_ktls driver has no registered tlsdev_ops\n"); 6409 return -EOPNOTSUPP; 6410 } 6411 break; 6412 #endif /* CONFIG_CHELSIO_TLS_DEVICE */ 6413 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE) 6414 case CXGB4_XFRMDEV_OPS: 6415 if (!adap->uld[CXGB4_ULD_IPSEC].handle) { 6416 dev_dbg(adap->pdev_dev, "chipsec driver is not loaded\n"); 6417 return -EOPNOTSUPP; 6418 } 6419 if (!adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops) { 6420 dev_dbg(adap->pdev_dev, 6421 "chipsec driver has no registered xfrmdev_ops\n"); 6422 return -EOPNOTSUPP; 6423 } 6424 break; 6425 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */ 6426 default: 6427 dev_dbg(adap->pdev_dev, 6428 "driver has no support for offload %d\n", op_val); 6429 return -EOPNOTSUPP; 6430 } 6431 6432 return 0; 6433 } 6434 6435 #endif /* CONFIG_CHELSIO_TLS_DEVICE || CONFIG_CHELSIO_IPSEC_INLINE */ 6436 6437 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) 6438 6439 static int cxgb4_ktls_dev_add(struct net_device *netdev, struct sock *sk, 6440 enum tls_offload_ctx_dir direction, 6441 struct tls_crypto_info *crypto_info, 6442 u32 tcp_sn) 6443 { 6444 struct adapter *adap = netdev2adap(netdev); 6445 int ret; 6446 6447 mutex_lock(&uld_mutex); 6448 ret = chcr_offload_state(adap, CXGB4_TLSDEV_OPS); 6449 if (ret) 6450 goto out_unlock; 6451 6452 ret = cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_ENABLE); 6453 if (ret) 6454 goto out_unlock; 6455 6456 ret = adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_add(netdev, sk, 6457 direction, 6458 crypto_info, 6459 tcp_sn); 6460 /* if there is a failure, clear the refcount */ 6461 if (ret) 6462 cxgb4_set_ktls_feature(adap, 6463 FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE); 6464 out_unlock: 6465 mutex_unlock(&uld_mutex); 6466 return ret; 6467 } 6468 6469 static void cxgb4_ktls_dev_del(struct net_device *netdev, 6470 struct tls_context *tls_ctx, 6471 enum tls_offload_ctx_dir direction) 6472 { 6473 struct adapter *adap = netdev2adap(netdev); 6474 6475 mutex_lock(&uld_mutex); 6476 if (chcr_offload_state(adap, CXGB4_TLSDEV_OPS)) 6477 goto out_unlock; 6478 6479 adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_del(netdev, tls_ctx, 6480 direction); 6481 6482 out_unlock: 6483 cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE); 6484 mutex_unlock(&uld_mutex); 6485 } 6486 6487 static const struct tlsdev_ops cxgb4_ktls_ops = { 6488 .tls_dev_add = cxgb4_ktls_dev_add, 6489 .tls_dev_del = cxgb4_ktls_dev_del, 6490 }; 6491 #endif /* CONFIG_CHELSIO_TLS_DEVICE */ 6492 6493 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE) 6494 6495 static int cxgb4_xfrm_add_state(struct xfrm_state *x) 6496 { 6497 struct adapter *adap = netdev2adap(x->xso.dev); 6498 int ret; 6499 6500 if (!mutex_trylock(&uld_mutex)) { 6501 dev_dbg(adap->pdev_dev, 6502 "crypto uld critical resource is under use\n"); 6503 return -EBUSY; 6504 } 6505 ret = chcr_offload_state(adap, CXGB4_XFRMDEV_OPS); 6506 if (ret) 6507 goto out_unlock; 6508 6509 ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_add(x); 6510 6511 out_unlock: 6512 mutex_unlock(&uld_mutex); 6513 6514 return ret; 6515 } 6516 6517 static void cxgb4_xfrm_del_state(struct xfrm_state *x) 6518 { 6519 struct adapter *adap = netdev2adap(x->xso.dev); 6520 6521 if (!mutex_trylock(&uld_mutex)) { 6522 dev_dbg(adap->pdev_dev, 6523 "crypto uld critical resource is under use\n"); 6524 return; 6525 } 6526 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS)) 6527 goto out_unlock; 6528 6529 adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_delete(x); 6530 6531 out_unlock: 6532 mutex_unlock(&uld_mutex); 6533 } 6534 6535 static void cxgb4_xfrm_free_state(struct xfrm_state *x) 6536 { 6537 struct adapter *adap = netdev2adap(x->xso.dev); 6538 6539 if (!mutex_trylock(&uld_mutex)) { 6540 dev_dbg(adap->pdev_dev, 6541 "crypto uld critical resource is under use\n"); 6542 return; 6543 } 6544 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS)) 6545 goto out_unlock; 6546 6547 adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_free(x); 6548 6549 out_unlock: 6550 mutex_unlock(&uld_mutex); 6551 } 6552 6553 static bool cxgb4_ipsec_offload_ok(struct sk_buff *skb, struct xfrm_state *x) 6554 { 6555 struct adapter *adap = netdev2adap(x->xso.dev); 6556 bool ret = false; 6557 6558 if (!mutex_trylock(&uld_mutex)) { 6559 dev_dbg(adap->pdev_dev, 6560 "crypto uld critical resource is under use\n"); 6561 return ret; 6562 } 6563 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS)) 6564 goto out_unlock; 6565 6566 ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_offload_ok(skb, x); 6567 6568 out_unlock: 6569 mutex_unlock(&uld_mutex); 6570 return ret; 6571 } 6572 6573 static void cxgb4_advance_esn_state(struct xfrm_state *x) 6574 { 6575 struct adapter *adap = netdev2adap(x->xso.dev); 6576 6577 if (!mutex_trylock(&uld_mutex)) { 6578 dev_dbg(adap->pdev_dev, 6579 "crypto uld critical resource is under use\n"); 6580 return; 6581 } 6582 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS)) 6583 goto out_unlock; 6584 6585 adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_advance_esn(x); 6586 6587 out_unlock: 6588 mutex_unlock(&uld_mutex); 6589 } 6590 6591 static const struct xfrmdev_ops cxgb4_xfrmdev_ops = { 6592 .xdo_dev_state_add = cxgb4_xfrm_add_state, 6593 .xdo_dev_state_delete = cxgb4_xfrm_del_state, 6594 .xdo_dev_state_free = cxgb4_xfrm_free_state, 6595 .xdo_dev_offload_ok = cxgb4_ipsec_offload_ok, 6596 .xdo_dev_state_advance_esn = cxgb4_advance_esn_state, 6597 }; 6598 6599 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */ 6600 6601 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 6602 { 6603 struct net_device *netdev; 6604 struct adapter *adapter; 6605 static int adap_idx = 1; 6606 int s_qpp, qpp, num_seg; 6607 struct port_info *pi; 6608 bool highdma = false; 6609 enum chip_type chip; 6610 void __iomem *regs; 6611 int func, chip_ver; 6612 u16 device_id; 6613 int i, err; 6614 u32 whoami; 6615 6616 err = pci_request_regions(pdev, KBUILD_MODNAME); 6617 if (err) { 6618 /* Just info, some other driver may have claimed the device. */ 6619 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 6620 return err; 6621 } 6622 6623 err = pci_enable_device(pdev); 6624 if (err) { 6625 dev_err(&pdev->dev, "cannot enable PCI device\n"); 6626 goto out_release_regions; 6627 } 6628 6629 regs = pci_ioremap_bar(pdev, 0); 6630 if (!regs) { 6631 dev_err(&pdev->dev, "cannot map device registers\n"); 6632 err = -ENOMEM; 6633 goto out_disable_device; 6634 } 6635 6636 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 6637 if (!adapter) { 6638 err = -ENOMEM; 6639 goto out_unmap_bar0; 6640 } 6641 6642 adapter->regs = regs; 6643 err = t4_wait_dev_ready(regs); 6644 if (err < 0) 6645 goto out_free_adapter; 6646 6647 /* We control everything through one PF */ 6648 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 6649 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 6650 chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id)); 6651 if ((int)chip < 0) { 6652 dev_err(&pdev->dev, "Device %d is not supported\n", device_id); 6653 err = chip; 6654 goto out_free_adapter; 6655 } 6656 chip_ver = CHELSIO_CHIP_VERSION(chip); 6657 func = chip_ver <= CHELSIO_T5 ? 6658 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 6659 6660 adapter->pdev = pdev; 6661 adapter->pdev_dev = &pdev->dev; 6662 adapter->name = pci_name(pdev); 6663 adapter->mbox = func; 6664 adapter->pf = func; 6665 adapter->params.chip = chip; 6666 adapter->adap_idx = adap_idx; 6667 adapter->msg_enable = DFLT_MSG_ENABLE; 6668 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 6669 (sizeof(struct mbox_cmd) * 6670 T4_OS_LOG_MBOX_CMDS), 6671 GFP_KERNEL); 6672 if (!adapter->mbox_log) { 6673 err = -ENOMEM; 6674 goto out_free_adapter; 6675 } 6676 spin_lock_init(&adapter->mbox_lock); 6677 INIT_LIST_HEAD(&adapter->mlist.list); 6678 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS; 6679 pci_set_drvdata(pdev, adapter); 6680 6681 if (func != ent->driver_data) { 6682 pci_disable_device(pdev); 6683 pci_save_state(pdev); /* to restore SR-IOV later */ 6684 return 0; 6685 } 6686 6687 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 6688 highdma = true; 6689 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 6690 if (err) { 6691 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 6692 "coherent allocations\n"); 6693 goto out_free_adapter; 6694 } 6695 } else { 6696 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 6697 if (err) { 6698 dev_err(&pdev->dev, "no usable DMA configuration\n"); 6699 goto out_free_adapter; 6700 } 6701 } 6702 6703 pci_enable_pcie_error_reporting(pdev); 6704 pci_set_master(pdev); 6705 pci_save_state(pdev); 6706 adap_idx++; 6707 adapter->workq = create_singlethread_workqueue("cxgb4"); 6708 if (!adapter->workq) { 6709 err = -ENOMEM; 6710 goto out_free_adapter; 6711 } 6712 6713 /* PCI device has been enabled */ 6714 adapter->flags |= CXGB4_DEV_ENABLED; 6715 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 6716 6717 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 6718 * Ingress Packet Data to Free List Buffers in order to allow for 6719 * chipset performance optimizations between the Root Complex and 6720 * Memory Controllers. (Messages to the associated Ingress Queue 6721 * notifying new Packet Placement in the Free Lists Buffers will be 6722 * send without the Relaxed Ordering Attribute thus guaranteeing that 6723 * all preceding PCIe Transaction Layer Packets will be processed 6724 * first.) But some Root Complexes have various issues with Upstream 6725 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 6726 * The PCIe devices which under the Root Complexes will be cleared the 6727 * Relaxed Ordering bit in the configuration space, So we check our 6728 * PCIe configuration space to see if it's flagged with advice against 6729 * using Relaxed Ordering. 6730 */ 6731 if (!pcie_relaxed_ordering_enabled(pdev)) 6732 adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING; 6733 6734 spin_lock_init(&adapter->stats_lock); 6735 spin_lock_init(&adapter->tid_release_lock); 6736 spin_lock_init(&adapter->win0_lock); 6737 6738 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 6739 INIT_WORK(&adapter->db_full_task, process_db_full); 6740 INIT_WORK(&adapter->db_drop_task, process_db_drop); 6741 INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err); 6742 6743 err = t4_prep_adapter(adapter); 6744 if (err) 6745 goto out_free_adapter; 6746 6747 if (is_kdump_kernel()) { 6748 /* Collect hardware state and append to /proc/vmcore */ 6749 err = cxgb4_cudbg_vmcore_add_dump(adapter); 6750 if (err) { 6751 dev_warn(adapter->pdev_dev, 6752 "Fail collecting vmcore device dump, err: %d. Continuing\n", 6753 err); 6754 err = 0; 6755 } 6756 } 6757 6758 if (!is_t4(adapter->params.chip)) { 6759 s_qpp = (QUEUESPERPAGEPF0_S + 6760 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 6761 adapter->pf); 6762 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 6763 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 6764 num_seg = PAGE_SIZE / SEGMENT_SIZE; 6765 6766 /* Each segment size is 128B. Write coalescing is enabled only 6767 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 6768 * queue is less no of segments that can be accommodated in 6769 * a page size. 6770 */ 6771 if (qpp > num_seg) { 6772 dev_err(&pdev->dev, 6773 "Incorrect number of egress queues per page\n"); 6774 err = -EINVAL; 6775 goto out_free_adapter; 6776 } 6777 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 6778 pci_resource_len(pdev, 2)); 6779 if (!adapter->bar2) { 6780 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 6781 err = -ENOMEM; 6782 goto out_free_adapter; 6783 } 6784 } 6785 6786 setup_memwin(adapter); 6787 err = adap_init0(adapter, 0); 6788 #ifdef CONFIG_DEBUG_FS 6789 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); 6790 #endif 6791 setup_memwin_rdma(adapter); 6792 if (err) 6793 goto out_unmap_bar; 6794 6795 /* configure SGE_STAT_CFG_A to read WC stats */ 6796 if (!is_t4(adapter->params.chip)) 6797 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | 6798 (is_t5(adapter->params.chip) ? STATMODE_V(0) : 6799 T6_STATMODE_V(0))); 6800 6801 /* Initialize hash mac addr list */ 6802 INIT_LIST_HEAD(&adapter->mac_hlist); 6803 6804 for_each_port(adapter, i) { 6805 /* For supporting MQPRIO Offload, need some extra 6806 * queues for each ETHOFLD TIDs. Keep it equal to 6807 * MAX_ATIDs for now. Once we connect to firmware 6808 * later and query the EOTID params, we'll come to 6809 * know the actual # of EOTIDs supported. 6810 */ 6811 netdev = alloc_etherdev_mq(sizeof(struct port_info), 6812 MAX_ETH_QSETS + MAX_ATIDS); 6813 if (!netdev) { 6814 err = -ENOMEM; 6815 goto out_free_dev; 6816 } 6817 6818 SET_NETDEV_DEV(netdev, &pdev->dev); 6819 6820 adapter->port[i] = netdev; 6821 pi = netdev_priv(netdev); 6822 pi->adapter = adapter; 6823 pi->xact_addr_filt = -1; 6824 pi->port_id = i; 6825 netdev->irq = pdev->irq; 6826 6827 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 6828 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 6829 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO | 6830 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 6831 NETIF_F_HW_TC | NETIF_F_NTUPLE; 6832 6833 if (chip_ver > CHELSIO_T5) { 6834 netdev->hw_enc_features |= NETIF_F_IP_CSUM | 6835 NETIF_F_IPV6_CSUM | 6836 NETIF_F_RXCSUM | 6837 NETIF_F_GSO_UDP_TUNNEL | 6838 NETIF_F_GSO_UDP_TUNNEL_CSUM | 6839 NETIF_F_TSO | NETIF_F_TSO6; 6840 6841 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL | 6842 NETIF_F_GSO_UDP_TUNNEL_CSUM | 6843 NETIF_F_HW_TLS_RECORD; 6844 6845 if (adapter->rawf_cnt) 6846 netdev->udp_tunnel_nic_info = &cxgb_udp_tunnels; 6847 } 6848 6849 if (highdma) 6850 netdev->hw_features |= NETIF_F_HIGHDMA; 6851 netdev->features |= netdev->hw_features; 6852 netdev->vlan_features = netdev->features & VLAN_FEAT; 6853 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) 6854 if (pi->adapter->params.crypto & FW_CAPS_CONFIG_TLS_HW) { 6855 netdev->hw_features |= NETIF_F_HW_TLS_TX; 6856 netdev->tlsdev_ops = &cxgb4_ktls_ops; 6857 /* initialize the refcount */ 6858 refcount_set(&pi->adapter->chcr_ktls.ktls_refcount, 0); 6859 } 6860 #endif /* CONFIG_CHELSIO_TLS_DEVICE */ 6861 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE) 6862 if (pi->adapter->params.crypto & FW_CAPS_CONFIG_IPSEC_INLINE) { 6863 netdev->hw_enc_features |= NETIF_F_HW_ESP; 6864 netdev->features |= NETIF_F_HW_ESP; 6865 netdev->xfrmdev_ops = &cxgb4_xfrmdev_ops; 6866 } 6867 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */ 6868 6869 netdev->priv_flags |= IFF_UNICAST_FLT; 6870 6871 /* MTU range: 81 - 9600 */ 6872 netdev->min_mtu = 81; /* accommodate SACK */ 6873 netdev->max_mtu = MAX_MTU; 6874 6875 netdev->netdev_ops = &cxgb4_netdev_ops; 6876 #ifdef CONFIG_CHELSIO_T4_DCB 6877 netdev->dcbnl_ops = &cxgb4_dcb_ops; 6878 cxgb4_dcb_state_init(netdev); 6879 cxgb4_dcb_version_init(netdev); 6880 #endif 6881 cxgb4_set_ethtool_ops(netdev); 6882 } 6883 6884 cxgb4_init_ethtool_dump(adapter); 6885 6886 pci_set_drvdata(pdev, adapter); 6887 6888 if (adapter->flags & CXGB4_FW_OK) { 6889 err = t4_port_init(adapter, func, func, 0); 6890 if (err) 6891 goto out_free_dev; 6892 } else if (adapter->params.nports == 1) { 6893 /* If we don't have a connection to the firmware -- possibly 6894 * because of an error -- grab the raw VPD parameters so we 6895 * can set the proper MAC Address on the debug network 6896 * interface that we've created. 6897 */ 6898 u8 hw_addr[ETH_ALEN]; 6899 u8 *na = adapter->params.vpd.na; 6900 6901 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 6902 if (!err) { 6903 for (i = 0; i < ETH_ALEN; i++) 6904 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 6905 hex2val(na[2 * i + 1])); 6906 t4_set_hw_addr(adapter, 0, hw_addr); 6907 } 6908 } 6909 6910 if (!(adapter->flags & CXGB4_FW_OK)) 6911 goto fw_attach_fail; 6912 6913 /* Configure queues and allocate tables now, they can be needed as 6914 * soon as the first register_netdev completes. 6915 */ 6916 err = cfg_queues(adapter); 6917 if (err) 6918 goto out_free_dev; 6919 6920 adapter->smt = t4_init_smt(); 6921 if (!adapter->smt) { 6922 /* We tolerate a lack of SMT, giving up some functionality */ 6923 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n"); 6924 } 6925 6926 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 6927 if (!adapter->l2t) { 6928 /* We tolerate a lack of L2T, giving up some functionality */ 6929 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 6930 adapter->params.offload = 0; 6931 } 6932 6933 #if IS_ENABLED(CONFIG_IPV6) 6934 if (chip_ver <= CHELSIO_T5 && 6935 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { 6936 /* CLIP functionality is not present in hardware, 6937 * hence disable all offload features 6938 */ 6939 dev_warn(&pdev->dev, 6940 "CLIP not enabled in hardware, continuing\n"); 6941 adapter->params.offload = 0; 6942 } else { 6943 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 6944 adapter->clipt_end); 6945 if (!adapter->clipt) { 6946 /* We tolerate a lack of clip_table, giving up 6947 * some functionality 6948 */ 6949 dev_warn(&pdev->dev, 6950 "could not allocate Clip table, continuing\n"); 6951 adapter->params.offload = 0; 6952 } 6953 } 6954 #endif 6955 6956 for_each_port(adapter, i) { 6957 pi = adap2pinfo(adapter, i); 6958 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls); 6959 if (!pi->sched_tbl) 6960 dev_warn(&pdev->dev, 6961 "could not activate scheduling on port %d\n", 6962 i); 6963 } 6964 6965 if (is_offload(adapter) || is_hashfilter(adapter)) { 6966 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 6967 u32 v; 6968 6969 v = t4_read_reg(adapter, LE_DB_HASH_CONFIG_A); 6970 if (chip_ver <= CHELSIO_T5) { 6971 adapter->tids.nhash = 1 << HASHTIDSIZE_G(v); 6972 v = t4_read_reg(adapter, LE_DB_TID_HASHBASE_A); 6973 adapter->tids.hash_base = v / 4; 6974 } else { 6975 adapter->tids.nhash = HASHTBLSIZE_G(v) << 3; 6976 v = t4_read_reg(adapter, 6977 T6_LE_DB_HASH_TID_BASE_A); 6978 adapter->tids.hash_base = v; 6979 } 6980 } 6981 } 6982 6983 if (tid_init(&adapter->tids) < 0) { 6984 dev_warn(&pdev->dev, "could not allocate TID table, " 6985 "continuing\n"); 6986 adapter->params.offload = 0; 6987 } else { 6988 adapter->tc_u32 = cxgb4_init_tc_u32(adapter); 6989 if (!adapter->tc_u32) 6990 dev_warn(&pdev->dev, 6991 "could not offload tc u32, continuing\n"); 6992 6993 if (cxgb4_init_tc_flower(adapter)) 6994 dev_warn(&pdev->dev, 6995 "could not offload tc flower, continuing\n"); 6996 6997 if (cxgb4_init_tc_mqprio(adapter)) 6998 dev_warn(&pdev->dev, 6999 "could not offload tc mqprio, continuing\n"); 7000 7001 if (cxgb4_init_tc_matchall(adapter)) 7002 dev_warn(&pdev->dev, 7003 "could not offload tc matchall, continuing\n"); 7004 if (cxgb4_init_ethtool_filters(adapter)) 7005 dev_warn(&pdev->dev, 7006 "could not initialize ethtool filters, continuing\n"); 7007 } 7008 7009 /* See what interrupts we'll be using */ 7010 if (msi > 1 && enable_msix(adapter) == 0) 7011 adapter->flags |= CXGB4_USING_MSIX; 7012 else if (msi > 0 && pci_enable_msi(pdev) == 0) { 7013 adapter->flags |= CXGB4_USING_MSI; 7014 if (msi > 1) 7015 free_msix_info(adapter); 7016 } 7017 7018 /* check for PCI Express bandwidth capabiltites */ 7019 pcie_print_link_status(pdev); 7020 7021 cxgb4_init_mps_ref_entries(adapter); 7022 7023 err = init_rss(adapter); 7024 if (err) 7025 goto out_free_dev; 7026 7027 err = setup_non_data_intr(adapter); 7028 if (err) { 7029 dev_err(adapter->pdev_dev, 7030 "Non Data interrupt allocation failed, err: %d\n", err); 7031 goto out_free_dev; 7032 } 7033 7034 err = setup_fw_sge_queues(adapter); 7035 if (err) { 7036 dev_err(adapter->pdev_dev, 7037 "FW sge queue allocation failed, err %d", err); 7038 goto out_free_dev; 7039 } 7040 7041 fw_attach_fail: 7042 /* 7043 * The card is now ready to go. If any errors occur during device 7044 * registration we do not fail the whole card but rather proceed only 7045 * with the ports we manage to register successfully. However we must 7046 * register at least one net device. 7047 */ 7048 for_each_port(adapter, i) { 7049 pi = adap2pinfo(adapter, i); 7050 adapter->port[i]->dev_port = pi->lport; 7051 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 7052 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 7053 7054 netif_carrier_off(adapter->port[i]); 7055 7056 err = register_netdev(adapter->port[i]); 7057 if (err) 7058 break; 7059 adapter->chan_map[pi->tx_chan] = i; 7060 print_port_info(adapter->port[i]); 7061 } 7062 if (i == 0) { 7063 dev_err(&pdev->dev, "could not register any net devices\n"); 7064 goto out_free_dev; 7065 } 7066 if (err) { 7067 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 7068 err = 0; 7069 } 7070 7071 if (cxgb4_debugfs_root) { 7072 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 7073 cxgb4_debugfs_root); 7074 setup_debugfs(adapter); 7075 } 7076 7077 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 7078 pdev->needs_freset = 1; 7079 7080 if (is_uld(adapter)) 7081 cxgb4_uld_enable(adapter); 7082 7083 if (!is_t4(adapter->params.chip)) 7084 cxgb4_ptp_init(adapter); 7085 7086 if (IS_REACHABLE(CONFIG_THERMAL) && 7087 !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK)) 7088 cxgb4_thermal_init(adapter); 7089 7090 print_adapter_info(adapter); 7091 return 0; 7092 7093 out_free_dev: 7094 t4_free_sge_resources(adapter); 7095 free_some_resources(adapter); 7096 if (adapter->flags & CXGB4_USING_MSIX) 7097 free_msix_info(adapter); 7098 if (adapter->num_uld || adapter->num_ofld_uld) 7099 t4_uld_mem_free(adapter); 7100 out_unmap_bar: 7101 if (!is_t4(adapter->params.chip)) 7102 iounmap(adapter->bar2); 7103 out_free_adapter: 7104 if (adapter->workq) 7105 destroy_workqueue(adapter->workq); 7106 7107 kfree(adapter->mbox_log); 7108 kfree(adapter); 7109 out_unmap_bar0: 7110 iounmap(regs); 7111 out_disable_device: 7112 pci_disable_pcie_error_reporting(pdev); 7113 pci_disable_device(pdev); 7114 out_release_regions: 7115 pci_release_regions(pdev); 7116 return err; 7117 } 7118 7119 static void remove_one(struct pci_dev *pdev) 7120 { 7121 struct adapter *adapter = pci_get_drvdata(pdev); 7122 struct hash_mac_addr *entry, *tmp; 7123 7124 if (!adapter) { 7125 pci_release_regions(pdev); 7126 return; 7127 } 7128 7129 /* If we allocated filters, free up state associated with any 7130 * valid filters ... 7131 */ 7132 clear_all_filters(adapter); 7133 7134 adapter->flags |= CXGB4_SHUTTING_DOWN; 7135 7136 if (adapter->pf == 4) { 7137 int i; 7138 7139 /* Tear down per-adapter Work Queue first since it can contain 7140 * references to our adapter data structure. 7141 */ 7142 destroy_workqueue(adapter->workq); 7143 7144 if (is_uld(adapter)) { 7145 detach_ulds(adapter); 7146 t4_uld_clean_up(adapter); 7147 } 7148 7149 adap_free_hma_mem(adapter); 7150 7151 disable_interrupts(adapter); 7152 7153 cxgb4_free_mps_ref_entries(adapter); 7154 7155 for_each_port(adapter, i) 7156 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 7157 unregister_netdev(adapter->port[i]); 7158 7159 debugfs_remove_recursive(adapter->debugfs_root); 7160 7161 if (!is_t4(adapter->params.chip)) 7162 cxgb4_ptp_stop(adapter); 7163 if (IS_REACHABLE(CONFIG_THERMAL)) 7164 cxgb4_thermal_remove(adapter); 7165 7166 if (adapter->flags & CXGB4_FULL_INIT_DONE) 7167 cxgb_down(adapter); 7168 7169 if (adapter->flags & CXGB4_USING_MSIX) 7170 free_msix_info(adapter); 7171 if (adapter->num_uld || adapter->num_ofld_uld) 7172 t4_uld_mem_free(adapter); 7173 free_some_resources(adapter); 7174 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, 7175 list) { 7176 list_del(&entry->list); 7177 kfree(entry); 7178 } 7179 7180 #if IS_ENABLED(CONFIG_IPV6) 7181 t4_cleanup_clip_tbl(adapter); 7182 #endif 7183 if (!is_t4(adapter->params.chip)) 7184 iounmap(adapter->bar2); 7185 } 7186 #ifdef CONFIG_PCI_IOV 7187 else { 7188 cxgb4_iov_configure(adapter->pdev, 0); 7189 } 7190 #endif 7191 iounmap(adapter->regs); 7192 pci_disable_pcie_error_reporting(pdev); 7193 if ((adapter->flags & CXGB4_DEV_ENABLED)) { 7194 pci_disable_device(pdev); 7195 adapter->flags &= ~CXGB4_DEV_ENABLED; 7196 } 7197 pci_release_regions(pdev); 7198 kfree(adapter->mbox_log); 7199 synchronize_rcu(); 7200 kfree(adapter); 7201 } 7202 7203 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt 7204 * delivery. This is essentially a stripped down version of the PCI remove() 7205 * function where we do the minimal amount of work necessary to shutdown any 7206 * further activity. 7207 */ 7208 static void shutdown_one(struct pci_dev *pdev) 7209 { 7210 struct adapter *adapter = pci_get_drvdata(pdev); 7211 7212 /* As with remove_one() above (see extended comment), we only want do 7213 * do cleanup on PCI Devices which went all the way through init_one() 7214 * ... 7215 */ 7216 if (!adapter) { 7217 pci_release_regions(pdev); 7218 return; 7219 } 7220 7221 adapter->flags |= CXGB4_SHUTTING_DOWN; 7222 7223 if (adapter->pf == 4) { 7224 int i; 7225 7226 for_each_port(adapter, i) 7227 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 7228 cxgb_close(adapter->port[i]); 7229 7230 rtnl_lock(); 7231 cxgb4_mqprio_stop_offload(adapter); 7232 rtnl_unlock(); 7233 7234 if (is_uld(adapter)) { 7235 detach_ulds(adapter); 7236 t4_uld_clean_up(adapter); 7237 } 7238 7239 disable_interrupts(adapter); 7240 disable_msi(adapter); 7241 7242 t4_sge_stop(adapter); 7243 if (adapter->flags & CXGB4_FW_OK) 7244 t4_fw_bye(adapter, adapter->mbox); 7245 } 7246 } 7247 7248 static struct pci_driver cxgb4_driver = { 7249 .name = KBUILD_MODNAME, 7250 .id_table = cxgb4_pci_tbl, 7251 .probe = init_one, 7252 .remove = remove_one, 7253 .shutdown = shutdown_one, 7254 #ifdef CONFIG_PCI_IOV 7255 .sriov_configure = cxgb4_iov_configure, 7256 #endif 7257 .err_handler = &cxgb4_eeh, 7258 }; 7259 7260 static int __init cxgb4_init_module(void) 7261 { 7262 int ret; 7263 7264 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 7265 7266 ret = pci_register_driver(&cxgb4_driver); 7267 if (ret < 0) 7268 goto err_pci; 7269 7270 #if IS_ENABLED(CONFIG_IPV6) 7271 if (!inet6addr_registered) { 7272 ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 7273 if (ret) 7274 pci_unregister_driver(&cxgb4_driver); 7275 else 7276 inet6addr_registered = true; 7277 } 7278 #endif 7279 7280 if (ret == 0) 7281 return ret; 7282 7283 err_pci: 7284 debugfs_remove(cxgb4_debugfs_root); 7285 7286 return ret; 7287 } 7288 7289 static void __exit cxgb4_cleanup_module(void) 7290 { 7291 #if IS_ENABLED(CONFIG_IPV6) 7292 if (inet6addr_registered) { 7293 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 7294 inet6addr_registered = false; 7295 } 7296 #endif 7297 pci_unregister_driver(&cxgb4_driver); 7298 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 7299 } 7300 7301 module_init(cxgb4_init_module); 7302 module_exit(cxgb4_cleanup_module); 7303