1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <linux/uaccess.h> 66 #include <linux/crash_dump.h> 67 #include <net/udp_tunnel.h> 68 #include <net/xfrm.h> 69 70 #include "cxgb4.h" 71 #include "cxgb4_filter.h" 72 #include "t4_regs.h" 73 #include "t4_values.h" 74 #include "t4_msg.h" 75 #include "t4fw_api.h" 76 #include "t4fw_version.h" 77 #include "cxgb4_dcb.h" 78 #include "srq.h" 79 #include "cxgb4_debugfs.h" 80 #include "clip_tbl.h" 81 #include "l2t.h" 82 #include "smt.h" 83 #include "sched.h" 84 #include "cxgb4_tc_u32.h" 85 #include "cxgb4_tc_flower.h" 86 #include "cxgb4_tc_mqprio.h" 87 #include "cxgb4_tc_matchall.h" 88 #include "cxgb4_ptp.h" 89 #include "cxgb4_cudbg.h" 90 91 char cxgb4_driver_name[] = KBUILD_MODNAME; 92 93 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 94 95 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 96 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 97 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 98 99 /* Macros needed to support the PCI Device ID Table ... 100 */ 101 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 102 static const struct pci_device_id cxgb4_pci_tbl[] = { 103 #define CXGB4_UNIFIED_PF 0x4 104 105 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF 106 107 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 108 * called for both. 109 */ 110 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 111 112 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 113 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF} 114 115 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 116 { 0, } \ 117 } 118 119 #include "t4_pci_id_tbl.h" 120 121 #define FW4_FNAME "cxgb4/t4fw.bin" 122 #define FW5_FNAME "cxgb4/t5fw.bin" 123 #define FW6_FNAME "cxgb4/t6fw.bin" 124 #define FW4_CFNAME "cxgb4/t4-config.txt" 125 #define FW5_CFNAME "cxgb4/t5-config.txt" 126 #define FW6_CFNAME "cxgb4/t6-config.txt" 127 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 128 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 129 #define PHY_AQ1202_DEVICEID 0x4409 130 #define PHY_BCM84834_DEVICEID 0x4486 131 132 MODULE_DESCRIPTION(DRV_DESC); 133 MODULE_AUTHOR("Chelsio Communications"); 134 MODULE_LICENSE("Dual BSD/GPL"); 135 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 136 MODULE_FIRMWARE(FW4_FNAME); 137 MODULE_FIRMWARE(FW5_FNAME); 138 MODULE_FIRMWARE(FW6_FNAME); 139 140 /* 141 * The driver uses the best interrupt scheme available on a platform in the 142 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 143 * of these schemes the driver may consider as follows: 144 * 145 * msi = 2: choose from among all three options 146 * msi = 1: only consider MSI and INTx interrupts 147 * msi = 0: force INTx interrupts 148 */ 149 static int msi = 2; 150 151 module_param(msi, int, 0644); 152 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 153 154 /* 155 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 156 * offset by 2 bytes in order to have the IP headers line up on 4-byte 157 * boundaries. This is a requirement for many architectures which will throw 158 * a machine check fault if an attempt is made to access one of the 4-byte IP 159 * header fields on a non-4-byte boundary. And it's a major performance issue 160 * even on some architectures which allow it like some implementations of the 161 * x86 ISA. However, some architectures don't mind this and for some very 162 * edge-case performance sensitive applications (like forwarding large volumes 163 * of small packets), setting this DMA offset to 0 will decrease the number of 164 * PCI-E Bus transfers enough to measurably affect performance. 165 */ 166 static int rx_dma_offset = 2; 167 168 /* TX Queue select used to determine what algorithm to use for selecting TX 169 * queue. Select between the kernel provided function (select_queue=0) or user 170 * cxgb_select_queue function (select_queue=1) 171 * 172 * Default: select_queue=0 173 */ 174 static int select_queue; 175 module_param(select_queue, int, 0644); 176 MODULE_PARM_DESC(select_queue, 177 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 178 179 static struct dentry *cxgb4_debugfs_root; 180 181 LIST_HEAD(adapter_list); 182 DEFINE_MUTEX(uld_mutex); 183 184 static int cfg_queues(struct adapter *adap); 185 186 static void link_report(struct net_device *dev) 187 { 188 if (!netif_carrier_ok(dev)) 189 netdev_info(dev, "link down\n"); 190 else { 191 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 192 193 const char *s; 194 const struct port_info *p = netdev_priv(dev); 195 196 switch (p->link_cfg.speed) { 197 case 100: 198 s = "100Mbps"; 199 break; 200 case 1000: 201 s = "1Gbps"; 202 break; 203 case 10000: 204 s = "10Gbps"; 205 break; 206 case 25000: 207 s = "25Gbps"; 208 break; 209 case 40000: 210 s = "40Gbps"; 211 break; 212 case 50000: 213 s = "50Gbps"; 214 break; 215 case 100000: 216 s = "100Gbps"; 217 break; 218 default: 219 pr_info("%s: unsupported speed: %d\n", 220 dev->name, p->link_cfg.speed); 221 return; 222 } 223 224 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 225 fc[p->link_cfg.fc]); 226 } 227 } 228 229 #ifdef CONFIG_CHELSIO_T4_DCB 230 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 231 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 232 { 233 struct port_info *pi = netdev_priv(dev); 234 struct adapter *adap = pi->adapter; 235 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 236 int i; 237 238 /* We use a simple mapping of Port TX Queue Index to DCB 239 * Priority when we're enabling DCB. 240 */ 241 for (i = 0; i < pi->nqsets; i++, txq++) { 242 u32 name, value; 243 int err; 244 245 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 246 FW_PARAMS_PARAM_X_V( 247 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 248 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 249 value = enable ? i : 0xffffffff; 250 251 /* Since we can be called while atomic (from "interrupt 252 * level") we need to issue the Set Parameters Commannd 253 * without sleeping (timeout < 0). 254 */ 255 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 256 &name, &value, 257 -FW_CMD_MAX_TIMEOUT); 258 259 if (err) 260 dev_err(adap->pdev_dev, 261 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 262 enable ? "set" : "unset", pi->port_id, i, -err); 263 else 264 txq->dcb_prio = enable ? value : 0; 265 } 266 } 267 268 int cxgb4_dcb_enabled(const struct net_device *dev) 269 { 270 struct port_info *pi = netdev_priv(dev); 271 272 if (!pi->dcb.enabled) 273 return 0; 274 275 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 276 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 277 } 278 #endif /* CONFIG_CHELSIO_T4_DCB */ 279 280 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 281 { 282 struct net_device *dev = adapter->port[port_id]; 283 284 /* Skip changes from disabled ports. */ 285 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 286 if (link_stat) 287 netif_carrier_on(dev); 288 else { 289 #ifdef CONFIG_CHELSIO_T4_DCB 290 if (cxgb4_dcb_enabled(dev)) { 291 cxgb4_dcb_reset(dev); 292 dcb_tx_queue_prio_enable(dev, false); 293 } 294 #endif /* CONFIG_CHELSIO_T4_DCB */ 295 netif_carrier_off(dev); 296 } 297 298 link_report(dev); 299 } 300 } 301 302 void t4_os_portmod_changed(struct adapter *adap, int port_id) 303 { 304 static const char *mod_str[] = { 305 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 306 }; 307 308 struct net_device *dev = adap->port[port_id]; 309 struct port_info *pi = netdev_priv(dev); 310 311 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 312 netdev_info(dev, "port module unplugged\n"); 313 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 314 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 315 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 316 netdev_info(dev, "%s: unsupported port module inserted\n", 317 dev->name); 318 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 319 netdev_info(dev, "%s: unknown port module inserted\n", 320 dev->name); 321 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 322 netdev_info(dev, "%s: transceiver module error\n", dev->name); 323 else 324 netdev_info(dev, "%s: unknown module type %d inserted\n", 325 dev->name, pi->mod_type); 326 327 /* If the interface is running, then we'll need any "sticky" Link 328 * Parameters redone with a new Transceiver Module. 329 */ 330 pi->link_cfg.redo_l1cfg = netif_running(dev); 331 } 332 333 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 334 module_param(dbfifo_int_thresh, int, 0644); 335 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 336 337 /* 338 * usecs to sleep while draining the dbfifo 339 */ 340 static int dbfifo_drain_delay = 1000; 341 module_param(dbfifo_drain_delay, int, 0644); 342 MODULE_PARM_DESC(dbfifo_drain_delay, 343 "usecs to sleep while draining the dbfifo"); 344 345 static inline int cxgb4_set_addr_hash(struct port_info *pi) 346 { 347 struct adapter *adap = pi->adapter; 348 u64 vec = 0; 349 bool ucast = false; 350 struct hash_mac_addr *entry; 351 352 /* Calculate the hash vector for the updated list and program it */ 353 list_for_each_entry(entry, &adap->mac_hlist, list) { 354 ucast |= is_unicast_ether_addr(entry->addr); 355 vec |= (1ULL << hash_mac_addr(entry->addr)); 356 } 357 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast, 358 vec, false); 359 } 360 361 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr) 362 { 363 struct port_info *pi = netdev_priv(netdev); 364 struct adapter *adap = pi->adapter; 365 int ret; 366 u64 mhash = 0; 367 u64 uhash = 0; 368 /* idx stores the index of allocated filters, 369 * its size should be modified based on the number of 370 * MAC addresses that we allocate filters for 371 */ 372 373 u16 idx[1] = {}; 374 bool free = false; 375 bool ucast = is_unicast_ether_addr(mac_addr); 376 const u8 *maclist[1] = {mac_addr}; 377 struct hash_mac_addr *new_entry; 378 379 ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist, 380 idx, ucast ? &uhash : &mhash, false); 381 if (ret < 0) 382 goto out; 383 /* if hash != 0, then add the addr to hash addr list 384 * so on the end we will calculate the hash for the 385 * list and program it 386 */ 387 if (uhash || mhash) { 388 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 389 if (!new_entry) 390 return -ENOMEM; 391 ether_addr_copy(new_entry->addr, mac_addr); 392 list_add_tail(&new_entry->list, &adap->mac_hlist); 393 ret = cxgb4_set_addr_hash(pi); 394 } 395 out: 396 return ret < 0 ? ret : 0; 397 } 398 399 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 400 { 401 struct port_info *pi = netdev_priv(netdev); 402 struct adapter *adap = pi->adapter; 403 int ret; 404 const u8 *maclist[1] = {mac_addr}; 405 struct hash_mac_addr *entry, *tmp; 406 407 /* If the MAC address to be removed is in the hash addr 408 * list, delete it from the list and update hash vector 409 */ 410 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) { 411 if (ether_addr_equal(entry->addr, mac_addr)) { 412 list_del(&entry->list); 413 kfree(entry); 414 return cxgb4_set_addr_hash(pi); 415 } 416 } 417 418 ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false); 419 return ret < 0 ? -EINVAL : 0; 420 } 421 422 /* 423 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 424 * If @mtu is -1 it is left unchanged. 425 */ 426 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 427 { 428 struct port_info *pi = netdev_priv(dev); 429 struct adapter *adapter = pi->adapter; 430 431 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 432 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 433 434 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, 435 (dev->flags & IFF_PROMISC) ? 1 : 0, 436 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 437 sleep_ok); 438 } 439 440 /** 441 * cxgb4_change_mac - Update match filter for a MAC address. 442 * @pi: the port_info 443 * @viid: the VI id 444 * @tcam_idx: TCAM index of existing filter for old value of MAC address, 445 * or -1 446 * @addr: the new MAC address value 447 * @persist: whether a new MAC allocation should be persistent 448 * @add_smt: if true also add the address to the HW SMT 449 * 450 * Modifies an MPS filter and sets it to the new MAC address if 451 * @tcam_idx >= 0, or adds the MAC address to a new filter if 452 * @tcam_idx < 0. In the latter case the address is added persistently 453 * if @persist is %true. 454 * Addresses are programmed to hash region, if tcam runs out of entries. 455 * 456 */ 457 int cxgb4_change_mac(struct port_info *pi, unsigned int viid, 458 int *tcam_idx, const u8 *addr, bool persist, 459 u8 *smt_idx) 460 { 461 struct adapter *adapter = pi->adapter; 462 struct hash_mac_addr *entry, *new_entry; 463 int ret; 464 465 ret = t4_change_mac(adapter, adapter->mbox, viid, 466 *tcam_idx, addr, persist, smt_idx); 467 /* We ran out of TCAM entries. try programming hash region. */ 468 if (ret == -ENOMEM) { 469 /* If the MAC address to be updated is in the hash addr 470 * list, update it from the list 471 */ 472 list_for_each_entry(entry, &adapter->mac_hlist, list) { 473 if (entry->iface_mac) { 474 ether_addr_copy(entry->addr, addr); 475 goto set_hash; 476 } 477 } 478 new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL); 479 if (!new_entry) 480 return -ENOMEM; 481 ether_addr_copy(new_entry->addr, addr); 482 new_entry->iface_mac = true; 483 list_add_tail(&new_entry->list, &adapter->mac_hlist); 484 set_hash: 485 ret = cxgb4_set_addr_hash(pi); 486 } else if (ret >= 0) { 487 *tcam_idx = ret; 488 ret = 0; 489 } 490 491 return ret; 492 } 493 494 /* 495 * link_start - enable a port 496 * @dev: the port to enable 497 * 498 * Performs the MAC and PHY actions needed to enable a port. 499 */ 500 static int link_start(struct net_device *dev) 501 { 502 int ret; 503 struct port_info *pi = netdev_priv(dev); 504 unsigned int mb = pi->adapter->pf; 505 506 /* 507 * We do not set address filters and promiscuity here, the stack does 508 * that step explicitly. 509 */ 510 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 511 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 512 if (ret == 0) 513 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt, 514 dev->dev_addr, true, &pi->smt_idx); 515 if (ret == 0) 516 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 517 &pi->link_cfg); 518 if (ret == 0) { 519 local_bh_disable(); 520 ret = t4_enable_pi_params(pi->adapter, mb, pi, true, 521 true, CXGB4_DCB_ENABLED); 522 local_bh_enable(); 523 } 524 525 return ret; 526 } 527 528 #ifdef CONFIG_CHELSIO_T4_DCB 529 /* Handle a Data Center Bridging update message from the firmware. */ 530 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 531 { 532 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 533 struct net_device *dev = adap->port[adap->chan_map[port]]; 534 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 535 int new_dcb_enabled; 536 537 cxgb4_dcb_handle_fw_update(adap, pcmd); 538 new_dcb_enabled = cxgb4_dcb_enabled(dev); 539 540 /* If the DCB has become enabled or disabled on the port then we're 541 * going to need to set up/tear down DCB Priority parameters for the 542 * TX Queues associated with the port. 543 */ 544 if (new_dcb_enabled != old_dcb_enabled) 545 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 546 } 547 #endif /* CONFIG_CHELSIO_T4_DCB */ 548 549 /* Response queue handler for the FW event queue. 550 */ 551 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 552 const struct pkt_gl *gl) 553 { 554 u8 opcode = ((const struct rss_header *)rsp)->opcode; 555 556 rsp++; /* skip RSS header */ 557 558 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 559 */ 560 if (unlikely(opcode == CPL_FW4_MSG && 561 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 562 rsp++; 563 opcode = ((const struct rss_header *)rsp)->opcode; 564 rsp++; 565 if (opcode != CPL_SGE_EGR_UPDATE) { 566 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 567 , opcode); 568 goto out; 569 } 570 } 571 572 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 573 const struct cpl_sge_egr_update *p = (void *)rsp; 574 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 575 struct sge_txq *txq; 576 577 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 578 txq->restarts++; 579 if (txq->q_type == CXGB4_TXQ_ETH) { 580 struct sge_eth_txq *eq; 581 582 eq = container_of(txq, struct sge_eth_txq, q); 583 t4_sge_eth_txq_egress_update(q->adap, eq, -1); 584 } else { 585 struct sge_uld_txq *oq; 586 587 oq = container_of(txq, struct sge_uld_txq, q); 588 tasklet_schedule(&oq->qresume_tsk); 589 } 590 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 591 const struct cpl_fw6_msg *p = (void *)rsp; 592 593 #ifdef CONFIG_CHELSIO_T4_DCB 594 const struct fw_port_cmd *pcmd = (const void *)p->data; 595 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 596 unsigned int action = 597 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 598 599 if (cmd == FW_PORT_CMD && 600 (action == FW_PORT_ACTION_GET_PORT_INFO || 601 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 602 int port = FW_PORT_CMD_PORTID_G( 603 be32_to_cpu(pcmd->op_to_portid)); 604 struct net_device *dev; 605 int dcbxdis, state_input; 606 607 dev = q->adap->port[q->adap->chan_map[port]]; 608 dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO 609 ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F) 610 : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32) 611 & FW_PORT_CMD_DCBXDIS32_F)); 612 state_input = (dcbxdis 613 ? CXGB4_DCB_INPUT_FW_DISABLED 614 : CXGB4_DCB_INPUT_FW_ENABLED); 615 616 cxgb4_dcb_state_fsm(dev, state_input); 617 } 618 619 if (cmd == FW_PORT_CMD && 620 action == FW_PORT_ACTION_L2_DCB_CFG) 621 dcb_rpl(q->adap, pcmd); 622 else 623 #endif 624 if (p->type == 0) 625 t4_handle_fw_rpl(q->adap, p->data); 626 } else if (opcode == CPL_L2T_WRITE_RPL) { 627 const struct cpl_l2t_write_rpl *p = (void *)rsp; 628 629 do_l2t_write_rpl(q->adap, p); 630 } else if (opcode == CPL_SMT_WRITE_RPL) { 631 const struct cpl_smt_write_rpl *p = (void *)rsp; 632 633 do_smt_write_rpl(q->adap, p); 634 } else if (opcode == CPL_SET_TCB_RPL) { 635 const struct cpl_set_tcb_rpl *p = (void *)rsp; 636 637 filter_rpl(q->adap, p); 638 } else if (opcode == CPL_ACT_OPEN_RPL) { 639 const struct cpl_act_open_rpl *p = (void *)rsp; 640 641 hash_filter_rpl(q->adap, p); 642 } else if (opcode == CPL_ABORT_RPL_RSS) { 643 const struct cpl_abort_rpl_rss *p = (void *)rsp; 644 645 hash_del_filter_rpl(q->adap, p); 646 } else if (opcode == CPL_SRQ_TABLE_RPL) { 647 const struct cpl_srq_table_rpl *p = (void *)rsp; 648 649 do_srq_table_rpl(q->adap, p); 650 } else 651 dev_err(q->adap->pdev_dev, 652 "unexpected CPL %#x on FW event queue\n", opcode); 653 out: 654 return 0; 655 } 656 657 static void disable_msi(struct adapter *adapter) 658 { 659 if (adapter->flags & CXGB4_USING_MSIX) { 660 pci_disable_msix(adapter->pdev); 661 adapter->flags &= ~CXGB4_USING_MSIX; 662 } else if (adapter->flags & CXGB4_USING_MSI) { 663 pci_disable_msi(adapter->pdev); 664 adapter->flags &= ~CXGB4_USING_MSI; 665 } 666 } 667 668 /* 669 * Interrupt handler for non-data events used with MSI-X. 670 */ 671 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 672 { 673 struct adapter *adap = cookie; 674 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 675 676 if (v & PFSW_F) { 677 adap->swintr = 1; 678 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 679 } 680 if (adap->flags & CXGB4_MASTER_PF) 681 t4_slow_intr_handler(adap); 682 return IRQ_HANDLED; 683 } 684 685 int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec, 686 cpumask_var_t *aff_mask, int idx) 687 { 688 int rv; 689 690 if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) { 691 dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n"); 692 return -ENOMEM; 693 } 694 695 cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)), 696 *aff_mask); 697 698 rv = irq_set_affinity_hint(vec, *aff_mask); 699 if (rv) 700 dev_warn(adap->pdev_dev, 701 "irq_set_affinity_hint %u failed %d\n", 702 vec, rv); 703 704 return 0; 705 } 706 707 void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask) 708 { 709 irq_set_affinity_hint(vec, NULL); 710 free_cpumask_var(aff_mask); 711 } 712 713 static int request_msix_queue_irqs(struct adapter *adap) 714 { 715 struct sge *s = &adap->sge; 716 struct msix_info *minfo; 717 int err, ethqidx; 718 719 if (s->fwevtq_msix_idx < 0) 720 return -ENOMEM; 721 722 err = request_irq(adap->msix_info[s->fwevtq_msix_idx].vec, 723 t4_sge_intr_msix, 0, 724 adap->msix_info[s->fwevtq_msix_idx].desc, 725 &s->fw_evtq); 726 if (err) 727 return err; 728 729 for_each_ethrxq(s, ethqidx) { 730 minfo = s->ethrxq[ethqidx].msix; 731 err = request_irq(minfo->vec, 732 t4_sge_intr_msix, 0, 733 minfo->desc, 734 &s->ethrxq[ethqidx].rspq); 735 if (err) 736 goto unwind; 737 738 cxgb4_set_msix_aff(adap, minfo->vec, 739 &minfo->aff_mask, ethqidx); 740 } 741 return 0; 742 743 unwind: 744 while (--ethqidx >= 0) { 745 minfo = s->ethrxq[ethqidx].msix; 746 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask); 747 free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq); 748 } 749 free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq); 750 return err; 751 } 752 753 static void free_msix_queue_irqs(struct adapter *adap) 754 { 755 struct sge *s = &adap->sge; 756 struct msix_info *minfo; 757 int i; 758 759 free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq); 760 for_each_ethrxq(s, i) { 761 minfo = s->ethrxq[i].msix; 762 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask); 763 free_irq(minfo->vec, &s->ethrxq[i].rspq); 764 } 765 } 766 767 static int setup_ppod_edram(struct adapter *adap) 768 { 769 unsigned int param, val; 770 int ret; 771 772 /* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check 773 * if firmware supports ppod edram feature or not. If firmware 774 * returns 1, then driver can enable this feature by sending 775 * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to 776 * enable ppod edram feature. 777 */ 778 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 779 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM)); 780 781 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 782 if (ret < 0) { 783 dev_warn(adap->pdev_dev, 784 "querying PPOD_EDRAM support failed: %d\n", 785 ret); 786 return -1; 787 } 788 789 if (val != 1) 790 return -1; 791 792 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 793 if (ret < 0) { 794 dev_err(adap->pdev_dev, 795 "setting PPOD_EDRAM failed: %d\n", ret); 796 return -1; 797 } 798 return 0; 799 } 800 801 static void adap_config_hpfilter(struct adapter *adapter) 802 { 803 u32 param, val = 0; 804 int ret; 805 806 /* Enable HP filter region. Older fw will fail this request and 807 * it is fine. 808 */ 809 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 810 ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0, 811 1, ¶m, &val); 812 813 /* An error means FW doesn't know about HP filter support, 814 * it's not a problem, don't return an error. 815 */ 816 if (ret < 0) 817 dev_err(adapter->pdev_dev, 818 "HP filter region isn't supported by FW\n"); 819 } 820 821 /** 822 * cxgb4_write_rss - write the RSS table for a given port 823 * @pi: the port 824 * @queues: array of queue indices for RSS 825 * 826 * Sets up the portion of the HW RSS table for the port's VI to distribute 827 * packets to the Rx queues in @queues. 828 * Should never be called before setting up sge eth rx queues 829 */ 830 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 831 { 832 u16 *rss; 833 int i, err; 834 struct adapter *adapter = pi->adapter; 835 const struct sge_eth_rxq *rxq; 836 837 rxq = &adapter->sge.ethrxq[pi->first_qset]; 838 rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL); 839 if (!rss) 840 return -ENOMEM; 841 842 /* map the queue indices to queue ids */ 843 for (i = 0; i < pi->rss_size; i++, queues++) 844 rss[i] = rxq[*queues].rspq.abs_id; 845 846 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0, 847 pi->rss_size, rss, pi->rss_size); 848 /* If Tunnel All Lookup isn't specified in the global RSS 849 * Configuration, then we need to specify a default Ingress 850 * Queue for any ingress packets which aren't hashed. We'll 851 * use our first ingress queue ... 852 */ 853 if (!err) 854 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid, 855 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 856 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 857 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 858 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 859 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 860 rss[0]); 861 kfree(rss); 862 return err; 863 } 864 865 /** 866 * setup_rss - configure RSS 867 * @adap: the adapter 868 * 869 * Sets up RSS for each port. 870 */ 871 static int setup_rss(struct adapter *adap) 872 { 873 int i, j, err; 874 875 for_each_port(adap, i) { 876 const struct port_info *pi = adap2pinfo(adap, i); 877 878 /* Fill default values with equal distribution */ 879 for (j = 0; j < pi->rss_size; j++) 880 pi->rss[j] = j % pi->nqsets; 881 882 err = cxgb4_write_rss(pi, pi->rss); 883 if (err) 884 return err; 885 } 886 return 0; 887 } 888 889 /* 890 * Return the channel of the ingress queue with the given qid. 891 */ 892 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 893 { 894 qid -= p->ingr_start; 895 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 896 } 897 898 void cxgb4_quiesce_rx(struct sge_rspq *q) 899 { 900 if (q->handler) 901 napi_disable(&q->napi); 902 } 903 904 /* 905 * Wait until all NAPI handlers are descheduled. 906 */ 907 static void quiesce_rx(struct adapter *adap) 908 { 909 int i; 910 911 for (i = 0; i < adap->sge.ingr_sz; i++) { 912 struct sge_rspq *q = adap->sge.ingr_map[i]; 913 914 if (!q) 915 continue; 916 917 cxgb4_quiesce_rx(q); 918 } 919 } 920 921 /* Disable interrupt and napi handler */ 922 static void disable_interrupts(struct adapter *adap) 923 { 924 struct sge *s = &adap->sge; 925 926 if (adap->flags & CXGB4_FULL_INIT_DONE) { 927 t4_intr_disable(adap); 928 if (adap->flags & CXGB4_USING_MSIX) { 929 free_msix_queue_irqs(adap); 930 free_irq(adap->msix_info[s->nd_msix_idx].vec, 931 adap); 932 } else { 933 free_irq(adap->pdev->irq, adap); 934 } 935 quiesce_rx(adap); 936 } 937 } 938 939 void cxgb4_enable_rx(struct adapter *adap, struct sge_rspq *q) 940 { 941 if (q->handler) 942 napi_enable(&q->napi); 943 944 /* 0-increment GTS to start the timer and enable interrupts */ 945 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 946 SEINTARM_V(q->intr_params) | 947 INGRESSQID_V(q->cntxt_id)); 948 } 949 950 /* 951 * Enable NAPI scheduling and interrupt generation for all Rx queues. 952 */ 953 static void enable_rx(struct adapter *adap) 954 { 955 int i; 956 957 for (i = 0; i < adap->sge.ingr_sz; i++) { 958 struct sge_rspq *q = adap->sge.ingr_map[i]; 959 960 if (!q) 961 continue; 962 963 cxgb4_enable_rx(adap, q); 964 } 965 } 966 967 static int setup_non_data_intr(struct adapter *adap) 968 { 969 int msix; 970 971 adap->sge.nd_msix_idx = -1; 972 if (!(adap->flags & CXGB4_USING_MSIX)) 973 return 0; 974 975 /* Request MSI-X vector for non-data interrupt */ 976 msix = cxgb4_get_msix_idx_from_bmap(adap); 977 if (msix < 0) 978 return -ENOMEM; 979 980 snprintf(adap->msix_info[msix].desc, 981 sizeof(adap->msix_info[msix].desc), 982 "%s", adap->port[0]->name); 983 984 adap->sge.nd_msix_idx = msix; 985 return 0; 986 } 987 988 static int setup_fw_sge_queues(struct adapter *adap) 989 { 990 struct sge *s = &adap->sge; 991 int msix, err = 0; 992 993 bitmap_zero(s->starving_fl, s->egr_sz); 994 bitmap_zero(s->txq_maperr, s->egr_sz); 995 996 if (adap->flags & CXGB4_USING_MSIX) { 997 s->fwevtq_msix_idx = -1; 998 msix = cxgb4_get_msix_idx_from_bmap(adap); 999 if (msix < 0) 1000 return -ENOMEM; 1001 1002 snprintf(adap->msix_info[msix].desc, 1003 sizeof(adap->msix_info[msix].desc), 1004 "%s-FWeventq", adap->port[0]->name); 1005 } else { 1006 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 1007 NULL, NULL, NULL, -1); 1008 if (err) 1009 return err; 1010 msix = -((int)s->intrq.abs_id + 1); 1011 } 1012 1013 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 1014 msix, NULL, fwevtq_handler, NULL, -1); 1015 if (err && msix >= 0) 1016 cxgb4_free_msix_idx_in_bmap(adap, msix); 1017 1018 s->fwevtq_msix_idx = msix; 1019 return err; 1020 } 1021 1022 /** 1023 * setup_sge_queues - configure SGE Tx/Rx/response queues 1024 * @adap: the adapter 1025 * 1026 * Determines how many sets of SGE queues to use and initializes them. 1027 * We support multiple queue sets per port if we have MSI-X, otherwise 1028 * just one queue set per port. 1029 */ 1030 static int setup_sge_queues(struct adapter *adap) 1031 { 1032 struct sge_uld_rxq_info *rxq_info = NULL; 1033 struct sge *s = &adap->sge; 1034 unsigned int cmplqid = 0; 1035 int err, i, j, msix = 0; 1036 1037 if (is_uld(adap)) 1038 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 1039 1040 if (!(adap->flags & CXGB4_USING_MSIX)) 1041 msix = -((int)s->intrq.abs_id + 1); 1042 1043 for_each_port(adap, i) { 1044 struct net_device *dev = adap->port[i]; 1045 struct port_info *pi = netdev_priv(dev); 1046 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 1047 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 1048 1049 for (j = 0; j < pi->nqsets; j++, q++) { 1050 if (msix >= 0) { 1051 msix = cxgb4_get_msix_idx_from_bmap(adap); 1052 if (msix < 0) { 1053 err = msix; 1054 goto freeout; 1055 } 1056 1057 snprintf(adap->msix_info[msix].desc, 1058 sizeof(adap->msix_info[msix].desc), 1059 "%s-Rx%d", dev->name, j); 1060 q->msix = &adap->msix_info[msix]; 1061 } 1062 1063 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 1064 msix, &q->fl, 1065 t4_ethrx_handler, 1066 NULL, 1067 t4_get_tp_ch_map(adap, 1068 pi->tx_chan)); 1069 if (err) 1070 goto freeout; 1071 q->rspq.idx = j; 1072 memset(&q->stats, 0, sizeof(q->stats)); 1073 } 1074 1075 q = &s->ethrxq[pi->first_qset]; 1076 for (j = 0; j < pi->nqsets; j++, t++, q++) { 1077 err = t4_sge_alloc_eth_txq(adap, t, dev, 1078 netdev_get_tx_queue(dev, j), 1079 q->rspq.cntxt_id, 1080 !!(adap->flags & CXGB4_SGE_DBQ_TIMER)); 1081 if (err) 1082 goto freeout; 1083 } 1084 } 1085 1086 for_each_port(adap, i) { 1087 /* Note that cmplqid below is 0 if we don't 1088 * have RDMA queues, and that's the right value. 1089 */ 1090 if (rxq_info) 1091 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id; 1092 1093 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 1094 s->fw_evtq.cntxt_id, cmplqid); 1095 if (err) 1096 goto freeout; 1097 } 1098 1099 if (!is_t4(adap->params.chip)) { 1100 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0], 1101 netdev_get_tx_queue(adap->port[0], 0) 1102 , s->fw_evtq.cntxt_id, false); 1103 if (err) 1104 goto freeout; 1105 } 1106 1107 t4_write_reg(adap, is_t4(adap->params.chip) ? 1108 MPS_TRC_RSS_CONTROL_A : 1109 MPS_T5_TRC_RSS_CONTROL_A, 1110 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 1111 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 1112 return 0; 1113 freeout: 1114 dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err); 1115 t4_free_sge_resources(adap); 1116 return err; 1117 } 1118 1119 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 1120 struct net_device *sb_dev) 1121 { 1122 int txq; 1123 1124 #ifdef CONFIG_CHELSIO_T4_DCB 1125 /* If a Data Center Bridging has been successfully negotiated on this 1126 * link then we'll use the skb's priority to map it to a TX Queue. 1127 * The skb's priority is determined via the VLAN Tag Priority Code 1128 * Point field. 1129 */ 1130 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) { 1131 u16 vlan_tci; 1132 int err; 1133 1134 err = vlan_get_tag(skb, &vlan_tci); 1135 if (unlikely(err)) { 1136 if (net_ratelimit()) 1137 netdev_warn(dev, 1138 "TX Packet without VLAN Tag on DCB Link\n"); 1139 txq = 0; 1140 } else { 1141 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 1142 #ifdef CONFIG_CHELSIO_T4_FCOE 1143 if (skb->protocol == htons(ETH_P_FCOE)) 1144 txq = skb->priority & 0x7; 1145 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1146 } 1147 return txq; 1148 } 1149 #endif /* CONFIG_CHELSIO_T4_DCB */ 1150 1151 if (dev->num_tc) { 1152 struct port_info *pi = netdev2pinfo(dev); 1153 u8 ver, proto; 1154 1155 ver = ip_hdr(skb)->version; 1156 proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : 1157 ip_hdr(skb)->protocol; 1158 1159 /* Send unsupported traffic pattern to normal NIC queues. */ 1160 txq = netdev_pick_tx(dev, skb, sb_dev); 1161 if (xfrm_offload(skb) || is_ptp_enabled(skb, dev) || 1162 skb->encapsulation || 1163 (proto != IPPROTO_TCP && proto != IPPROTO_UDP)) 1164 txq = txq % pi->nqsets; 1165 1166 return txq; 1167 } 1168 1169 if (select_queue) { 1170 txq = (skb_rx_queue_recorded(skb) 1171 ? skb_get_rx_queue(skb) 1172 : smp_processor_id()); 1173 1174 while (unlikely(txq >= dev->real_num_tx_queues)) 1175 txq -= dev->real_num_tx_queues; 1176 1177 return txq; 1178 } 1179 1180 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; 1181 } 1182 1183 static int closest_timer(const struct sge *s, int time) 1184 { 1185 int i, delta, match = 0, min_delta = INT_MAX; 1186 1187 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 1188 delta = time - s->timer_val[i]; 1189 if (delta < 0) 1190 delta = -delta; 1191 if (delta < min_delta) { 1192 min_delta = delta; 1193 match = i; 1194 } 1195 } 1196 return match; 1197 } 1198 1199 static int closest_thres(const struct sge *s, int thres) 1200 { 1201 int i, delta, match = 0, min_delta = INT_MAX; 1202 1203 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 1204 delta = thres - s->counter_val[i]; 1205 if (delta < 0) 1206 delta = -delta; 1207 if (delta < min_delta) { 1208 min_delta = delta; 1209 match = i; 1210 } 1211 } 1212 return match; 1213 } 1214 1215 /** 1216 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 1217 * @q: the Rx queue 1218 * @us: the hold-off time in us, or 0 to disable timer 1219 * @cnt: the hold-off packet count, or 0 to disable counter 1220 * 1221 * Sets an Rx queue's interrupt hold-off time and packet count. At least 1222 * one of the two needs to be enabled for the queue to generate interrupts. 1223 */ 1224 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 1225 unsigned int us, unsigned int cnt) 1226 { 1227 struct adapter *adap = q->adap; 1228 1229 if ((us | cnt) == 0) 1230 cnt = 1; 1231 1232 if (cnt) { 1233 int err; 1234 u32 v, new_idx; 1235 1236 new_idx = closest_thres(&adap->sge, cnt); 1237 if (q->desc && q->pktcnt_idx != new_idx) { 1238 /* the queue has already been created, update it */ 1239 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1240 FW_PARAMS_PARAM_X_V( 1241 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1242 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1243 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1244 &v, &new_idx); 1245 if (err) 1246 return err; 1247 } 1248 q->pktcnt_idx = new_idx; 1249 } 1250 1251 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1252 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1253 return 0; 1254 } 1255 1256 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1257 { 1258 const struct port_info *pi = netdev_priv(dev); 1259 netdev_features_t changed = dev->features ^ features; 1260 int err; 1261 1262 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1263 return 0; 1264 1265 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1, 1266 -1, -1, -1, 1267 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1268 if (unlikely(err)) 1269 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1270 return err; 1271 } 1272 1273 static int setup_debugfs(struct adapter *adap) 1274 { 1275 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1276 return -1; 1277 1278 #ifdef CONFIG_DEBUG_FS 1279 t4_setup_debugfs(adap); 1280 #endif 1281 return 0; 1282 } 1283 1284 /* 1285 * upper-layer driver support 1286 */ 1287 1288 /* 1289 * Allocate an active-open TID and set it to the supplied value. 1290 */ 1291 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1292 { 1293 int atid = -1; 1294 1295 spin_lock_bh(&t->atid_lock); 1296 if (t->afree) { 1297 union aopen_entry *p = t->afree; 1298 1299 atid = (p - t->atid_tab) + t->atid_base; 1300 t->afree = p->next; 1301 p->data = data; 1302 t->atids_in_use++; 1303 } 1304 spin_unlock_bh(&t->atid_lock); 1305 return atid; 1306 } 1307 EXPORT_SYMBOL(cxgb4_alloc_atid); 1308 1309 /* 1310 * Release an active-open TID. 1311 */ 1312 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1313 { 1314 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1315 1316 spin_lock_bh(&t->atid_lock); 1317 p->next = t->afree; 1318 t->afree = p; 1319 t->atids_in_use--; 1320 spin_unlock_bh(&t->atid_lock); 1321 } 1322 EXPORT_SYMBOL(cxgb4_free_atid); 1323 1324 /* 1325 * Allocate a server TID and set it to the supplied value. 1326 */ 1327 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1328 { 1329 int stid; 1330 1331 spin_lock_bh(&t->stid_lock); 1332 if (family == PF_INET) { 1333 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1334 if (stid < t->nstids) 1335 __set_bit(stid, t->stid_bmap); 1336 else 1337 stid = -1; 1338 } else { 1339 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); 1340 if (stid < 0) 1341 stid = -1; 1342 } 1343 if (stid >= 0) { 1344 t->stid_tab[stid].data = data; 1345 stid += t->stid_base; 1346 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1347 * This is equivalent to 4 TIDs. With CLIP enabled it 1348 * needs 2 TIDs. 1349 */ 1350 if (family == PF_INET6) { 1351 t->stids_in_use += 2; 1352 t->v6_stids_in_use += 2; 1353 } else { 1354 t->stids_in_use++; 1355 } 1356 } 1357 spin_unlock_bh(&t->stid_lock); 1358 return stid; 1359 } 1360 EXPORT_SYMBOL(cxgb4_alloc_stid); 1361 1362 /* Allocate a server filter TID and set it to the supplied value. 1363 */ 1364 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1365 { 1366 int stid; 1367 1368 spin_lock_bh(&t->stid_lock); 1369 if (family == PF_INET) { 1370 stid = find_next_zero_bit(t->stid_bmap, 1371 t->nstids + t->nsftids, t->nstids); 1372 if (stid < (t->nstids + t->nsftids)) 1373 __set_bit(stid, t->stid_bmap); 1374 else 1375 stid = -1; 1376 } else { 1377 stid = -1; 1378 } 1379 if (stid >= 0) { 1380 t->stid_tab[stid].data = data; 1381 stid -= t->nstids; 1382 stid += t->sftid_base; 1383 t->sftids_in_use++; 1384 } 1385 spin_unlock_bh(&t->stid_lock); 1386 return stid; 1387 } 1388 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1389 1390 /* Release a server TID. 1391 */ 1392 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1393 { 1394 /* Is it a server filter TID? */ 1395 if (t->nsftids && (stid >= t->sftid_base)) { 1396 stid -= t->sftid_base; 1397 stid += t->nstids; 1398 } else { 1399 stid -= t->stid_base; 1400 } 1401 1402 spin_lock_bh(&t->stid_lock); 1403 if (family == PF_INET) 1404 __clear_bit(stid, t->stid_bmap); 1405 else 1406 bitmap_release_region(t->stid_bmap, stid, 1); 1407 t->stid_tab[stid].data = NULL; 1408 if (stid < t->nstids) { 1409 if (family == PF_INET6) { 1410 t->stids_in_use -= 2; 1411 t->v6_stids_in_use -= 2; 1412 } else { 1413 t->stids_in_use--; 1414 } 1415 } else { 1416 t->sftids_in_use--; 1417 } 1418 1419 spin_unlock_bh(&t->stid_lock); 1420 } 1421 EXPORT_SYMBOL(cxgb4_free_stid); 1422 1423 /* 1424 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1425 */ 1426 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1427 unsigned int tid) 1428 { 1429 struct cpl_tid_release *req; 1430 1431 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1432 req = __skb_put(skb, sizeof(*req)); 1433 INIT_TP_WR(req, tid); 1434 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1435 } 1436 1437 /* 1438 * Queue a TID release request and if necessary schedule a work queue to 1439 * process it. 1440 */ 1441 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1442 unsigned int tid) 1443 { 1444 struct adapter *adap = container_of(t, struct adapter, tids); 1445 void **p = &t->tid_tab[tid - t->tid_base]; 1446 1447 spin_lock_bh(&adap->tid_release_lock); 1448 *p = adap->tid_release_head; 1449 /* Low 2 bits encode the Tx channel number */ 1450 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1451 if (!adap->tid_release_task_busy) { 1452 adap->tid_release_task_busy = true; 1453 queue_work(adap->workq, &adap->tid_release_task); 1454 } 1455 spin_unlock_bh(&adap->tid_release_lock); 1456 } 1457 1458 /* 1459 * Process the list of pending TID release requests. 1460 */ 1461 static void process_tid_release_list(struct work_struct *work) 1462 { 1463 struct sk_buff *skb; 1464 struct adapter *adap; 1465 1466 adap = container_of(work, struct adapter, tid_release_task); 1467 1468 spin_lock_bh(&adap->tid_release_lock); 1469 while (adap->tid_release_head) { 1470 void **p = adap->tid_release_head; 1471 unsigned int chan = (uintptr_t)p & 3; 1472 p = (void *)p - chan; 1473 1474 adap->tid_release_head = *p; 1475 *p = NULL; 1476 spin_unlock_bh(&adap->tid_release_lock); 1477 1478 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1479 GFP_KERNEL))) 1480 schedule_timeout_uninterruptible(1); 1481 1482 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1483 t4_ofld_send(adap, skb); 1484 spin_lock_bh(&adap->tid_release_lock); 1485 } 1486 adap->tid_release_task_busy = false; 1487 spin_unlock_bh(&adap->tid_release_lock); 1488 } 1489 1490 /* 1491 * Release a TID and inform HW. If we are unable to allocate the release 1492 * message we defer to a work queue. 1493 */ 1494 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid, 1495 unsigned short family) 1496 { 1497 struct adapter *adap = container_of(t, struct adapter, tids); 1498 struct sk_buff *skb; 1499 1500 WARN_ON(tid_out_of_range(&adap->tids, tid)); 1501 1502 if (t->tid_tab[tid - adap->tids.tid_base]) { 1503 t->tid_tab[tid - adap->tids.tid_base] = NULL; 1504 atomic_dec(&t->conns_in_use); 1505 if (t->hash_base && (tid >= t->hash_base)) { 1506 if (family == AF_INET6) 1507 atomic_sub(2, &t->hash_tids_in_use); 1508 else 1509 atomic_dec(&t->hash_tids_in_use); 1510 } else { 1511 if (family == AF_INET6) 1512 atomic_sub(2, &t->tids_in_use); 1513 else 1514 atomic_dec(&t->tids_in_use); 1515 } 1516 } 1517 1518 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1519 if (likely(skb)) { 1520 mk_tid_release(skb, chan, tid); 1521 t4_ofld_send(adap, skb); 1522 } else 1523 cxgb4_queue_tid_release(t, chan, tid); 1524 } 1525 EXPORT_SYMBOL(cxgb4_remove_tid); 1526 1527 /* 1528 * Allocate and initialize the TID tables. Returns 0 on success. 1529 */ 1530 static int tid_init(struct tid_info *t) 1531 { 1532 struct adapter *adap = container_of(t, struct adapter, tids); 1533 unsigned int max_ftids = t->nftids + t->nsftids; 1534 unsigned int natids = t->natids; 1535 unsigned int hpftid_bmap_size; 1536 unsigned int eotid_bmap_size; 1537 unsigned int stid_bmap_size; 1538 unsigned int ftid_bmap_size; 1539 size_t size; 1540 1541 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1542 ftid_bmap_size = BITS_TO_LONGS(t->nftids); 1543 hpftid_bmap_size = BITS_TO_LONGS(t->nhpftids); 1544 eotid_bmap_size = BITS_TO_LONGS(t->neotids); 1545 size = t->ntids * sizeof(*t->tid_tab) + 1546 natids * sizeof(*t->atid_tab) + 1547 t->nstids * sizeof(*t->stid_tab) + 1548 t->nsftids * sizeof(*t->stid_tab) + 1549 stid_bmap_size * sizeof(long) + 1550 t->nhpftids * sizeof(*t->hpftid_tab) + 1551 hpftid_bmap_size * sizeof(long) + 1552 max_ftids * sizeof(*t->ftid_tab) + 1553 ftid_bmap_size * sizeof(long) + 1554 t->neotids * sizeof(*t->eotid_tab) + 1555 eotid_bmap_size * sizeof(long); 1556 1557 t->tid_tab = kvzalloc(size, GFP_KERNEL); 1558 if (!t->tid_tab) 1559 return -ENOMEM; 1560 1561 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1562 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1563 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1564 t->hpftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1565 t->hpftid_bmap = (unsigned long *)&t->hpftid_tab[t->nhpftids]; 1566 t->ftid_tab = (struct filter_entry *)&t->hpftid_bmap[hpftid_bmap_size]; 1567 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids]; 1568 t->eotid_tab = (struct eotid_entry *)&t->ftid_bmap[ftid_bmap_size]; 1569 t->eotid_bmap = (unsigned long *)&t->eotid_tab[t->neotids]; 1570 spin_lock_init(&t->stid_lock); 1571 spin_lock_init(&t->atid_lock); 1572 spin_lock_init(&t->ftid_lock); 1573 1574 t->stids_in_use = 0; 1575 t->v6_stids_in_use = 0; 1576 t->sftids_in_use = 0; 1577 t->afree = NULL; 1578 t->atids_in_use = 0; 1579 atomic_set(&t->tids_in_use, 0); 1580 atomic_set(&t->conns_in_use, 0); 1581 atomic_set(&t->hash_tids_in_use, 0); 1582 1583 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1584 if (natids) { 1585 while (--natids) 1586 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1587 t->afree = t->atid_tab; 1588 } 1589 1590 if (is_offload(adap)) { 1591 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1592 /* Reserve stid 0 for T4/T5 adapters */ 1593 if (!t->stid_base && 1594 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1595 __set_bit(0, t->stid_bmap); 1596 1597 if (t->neotids) 1598 bitmap_zero(t->eotid_bmap, t->neotids); 1599 } 1600 1601 if (t->nhpftids) 1602 bitmap_zero(t->hpftid_bmap, t->nhpftids); 1603 bitmap_zero(t->ftid_bmap, t->nftids); 1604 return 0; 1605 } 1606 1607 /** 1608 * cxgb4_create_server - create an IP server 1609 * @dev: the device 1610 * @stid: the server TID 1611 * @sip: local IP address to bind server to 1612 * @sport: the server's TCP port 1613 * @queue: queue to direct messages from this server to 1614 * 1615 * Create an IP server for the given port and address. 1616 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1617 */ 1618 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1619 __be32 sip, __be16 sport, __be16 vlan, 1620 unsigned int queue) 1621 { 1622 unsigned int chan; 1623 struct sk_buff *skb; 1624 struct adapter *adap; 1625 struct cpl_pass_open_req *req; 1626 int ret; 1627 1628 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1629 if (!skb) 1630 return -ENOMEM; 1631 1632 adap = netdev2adap(dev); 1633 req = __skb_put(skb, sizeof(*req)); 1634 INIT_TP_WR(req, 0); 1635 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1636 req->local_port = sport; 1637 req->peer_port = htons(0); 1638 req->local_ip = sip; 1639 req->peer_ip = htonl(0); 1640 chan = rxq_to_chan(&adap->sge, queue); 1641 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1642 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1643 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1644 ret = t4_mgmt_tx(adap, skb); 1645 return net_xmit_eval(ret); 1646 } 1647 EXPORT_SYMBOL(cxgb4_create_server); 1648 1649 /* cxgb4_create_server6 - create an IPv6 server 1650 * @dev: the device 1651 * @stid: the server TID 1652 * @sip: local IPv6 address to bind server to 1653 * @sport: the server's TCP port 1654 * @queue: queue to direct messages from this server to 1655 * 1656 * Create an IPv6 server for the given port and address. 1657 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1658 */ 1659 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1660 const struct in6_addr *sip, __be16 sport, 1661 unsigned int queue) 1662 { 1663 unsigned int chan; 1664 struct sk_buff *skb; 1665 struct adapter *adap; 1666 struct cpl_pass_open_req6 *req; 1667 int ret; 1668 1669 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1670 if (!skb) 1671 return -ENOMEM; 1672 1673 adap = netdev2adap(dev); 1674 req = __skb_put(skb, sizeof(*req)); 1675 INIT_TP_WR(req, 0); 1676 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1677 req->local_port = sport; 1678 req->peer_port = htons(0); 1679 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1680 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1681 req->peer_ip_hi = cpu_to_be64(0); 1682 req->peer_ip_lo = cpu_to_be64(0); 1683 chan = rxq_to_chan(&adap->sge, queue); 1684 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1685 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1686 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1687 ret = t4_mgmt_tx(adap, skb); 1688 return net_xmit_eval(ret); 1689 } 1690 EXPORT_SYMBOL(cxgb4_create_server6); 1691 1692 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1693 unsigned int queue, bool ipv6) 1694 { 1695 struct sk_buff *skb; 1696 struct adapter *adap; 1697 struct cpl_close_listsvr_req *req; 1698 int ret; 1699 1700 adap = netdev2adap(dev); 1701 1702 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1703 if (!skb) 1704 return -ENOMEM; 1705 1706 req = __skb_put(skb, sizeof(*req)); 1707 INIT_TP_WR(req, 0); 1708 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 1709 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 1710 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 1711 ret = t4_mgmt_tx(adap, skb); 1712 return net_xmit_eval(ret); 1713 } 1714 EXPORT_SYMBOL(cxgb4_remove_server); 1715 1716 /** 1717 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 1718 * @mtus: the HW MTU table 1719 * @mtu: the target MTU 1720 * @idx: index of selected entry in the MTU table 1721 * 1722 * Returns the index and the value in the HW MTU table that is closest to 1723 * but does not exceed @mtu, unless @mtu is smaller than any value in the 1724 * table, in which case that smallest available value is selected. 1725 */ 1726 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 1727 unsigned int *idx) 1728 { 1729 unsigned int i = 0; 1730 1731 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 1732 ++i; 1733 if (idx) 1734 *idx = i; 1735 return mtus[i]; 1736 } 1737 EXPORT_SYMBOL(cxgb4_best_mtu); 1738 1739 /** 1740 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 1741 * @mtus: the HW MTU table 1742 * @header_size: Header Size 1743 * @data_size_max: maximum Data Segment Size 1744 * @data_size_align: desired Data Segment Size Alignment (2^N) 1745 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 1746 * 1747 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 1748 * MTU Table based solely on a Maximum MTU parameter, we break that 1749 * parameter up into a Header Size and Maximum Data Segment Size, and 1750 * provide a desired Data Segment Size Alignment. If we find an MTU in 1751 * the Hardware MTU Table which will result in a Data Segment Size with 1752 * the requested alignment _and_ that MTU isn't "too far" from the 1753 * closest MTU, then we'll return that rather than the closest MTU. 1754 */ 1755 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 1756 unsigned short header_size, 1757 unsigned short data_size_max, 1758 unsigned short data_size_align, 1759 unsigned int *mtu_idxp) 1760 { 1761 unsigned short max_mtu = header_size + data_size_max; 1762 unsigned short data_size_align_mask = data_size_align - 1; 1763 int mtu_idx, aligned_mtu_idx; 1764 1765 /* Scan the MTU Table till we find an MTU which is larger than our 1766 * Maximum MTU or we reach the end of the table. Along the way, 1767 * record the last MTU found, if any, which will result in a Data 1768 * Segment Length matching the requested alignment. 1769 */ 1770 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 1771 unsigned short data_size = mtus[mtu_idx] - header_size; 1772 1773 /* If this MTU minus the Header Size would result in a 1774 * Data Segment Size of the desired alignment, remember it. 1775 */ 1776 if ((data_size & data_size_align_mask) == 0) 1777 aligned_mtu_idx = mtu_idx; 1778 1779 /* If we're not at the end of the Hardware MTU Table and the 1780 * next element is larger than our Maximum MTU, drop out of 1781 * the loop. 1782 */ 1783 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 1784 break; 1785 } 1786 1787 /* If we fell out of the loop because we ran to the end of the table, 1788 * then we just have to use the last [largest] entry. 1789 */ 1790 if (mtu_idx == NMTUS) 1791 mtu_idx--; 1792 1793 /* If we found an MTU which resulted in the requested Data Segment 1794 * Length alignment and that's "not far" from the largest MTU which is 1795 * less than or equal to the maximum MTU, then use that. 1796 */ 1797 if (aligned_mtu_idx >= 0 && 1798 mtu_idx - aligned_mtu_idx <= 1) 1799 mtu_idx = aligned_mtu_idx; 1800 1801 /* If the caller has passed in an MTU Index pointer, pass the 1802 * MTU Index back. Return the MTU value. 1803 */ 1804 if (mtu_idxp) 1805 *mtu_idxp = mtu_idx; 1806 return mtus[mtu_idx]; 1807 } 1808 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 1809 1810 /** 1811 * cxgb4_port_chan - get the HW channel of a port 1812 * @dev: the net device for the port 1813 * 1814 * Return the HW Tx channel of the given port. 1815 */ 1816 unsigned int cxgb4_port_chan(const struct net_device *dev) 1817 { 1818 return netdev2pinfo(dev)->tx_chan; 1819 } 1820 EXPORT_SYMBOL(cxgb4_port_chan); 1821 1822 /** 1823 * cxgb4_port_e2cchan - get the HW c-channel of a port 1824 * @dev: the net device for the port 1825 * 1826 * Return the HW RX c-channel of the given port. 1827 */ 1828 unsigned int cxgb4_port_e2cchan(const struct net_device *dev) 1829 { 1830 return netdev2pinfo(dev)->rx_cchan; 1831 } 1832 EXPORT_SYMBOL(cxgb4_port_e2cchan); 1833 1834 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 1835 { 1836 struct adapter *adap = netdev2adap(dev); 1837 u32 v1, v2, lp_count, hp_count; 1838 1839 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1840 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1841 if (is_t4(adap->params.chip)) { 1842 lp_count = LP_COUNT_G(v1); 1843 hp_count = HP_COUNT_G(v1); 1844 } else { 1845 lp_count = LP_COUNT_T5_G(v1); 1846 hp_count = HP_COUNT_T5_G(v2); 1847 } 1848 return lpfifo ? lp_count : hp_count; 1849 } 1850 EXPORT_SYMBOL(cxgb4_dbfifo_count); 1851 1852 /** 1853 * cxgb4_port_viid - get the VI id of a port 1854 * @dev: the net device for the port 1855 * 1856 * Return the VI id of the given port. 1857 */ 1858 unsigned int cxgb4_port_viid(const struct net_device *dev) 1859 { 1860 return netdev2pinfo(dev)->viid; 1861 } 1862 EXPORT_SYMBOL(cxgb4_port_viid); 1863 1864 /** 1865 * cxgb4_port_idx - get the index of a port 1866 * @dev: the net device for the port 1867 * 1868 * Return the index of the given port. 1869 */ 1870 unsigned int cxgb4_port_idx(const struct net_device *dev) 1871 { 1872 return netdev2pinfo(dev)->port_id; 1873 } 1874 EXPORT_SYMBOL(cxgb4_port_idx); 1875 1876 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 1877 struct tp_tcp_stats *v6) 1878 { 1879 struct adapter *adap = pci_get_drvdata(pdev); 1880 1881 spin_lock(&adap->stats_lock); 1882 t4_tp_get_tcp_stats(adap, v4, v6, false); 1883 spin_unlock(&adap->stats_lock); 1884 } 1885 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 1886 1887 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 1888 const unsigned int *pgsz_order) 1889 { 1890 struct adapter *adap = netdev2adap(dev); 1891 1892 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 1893 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 1894 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 1895 HPZ3_V(pgsz_order[3])); 1896 } 1897 EXPORT_SYMBOL(cxgb4_iscsi_init); 1898 1899 int cxgb4_flush_eq_cache(struct net_device *dev) 1900 { 1901 struct adapter *adap = netdev2adap(dev); 1902 1903 return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS); 1904 } 1905 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 1906 1907 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 1908 { 1909 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 1910 __be64 indices; 1911 int ret; 1912 1913 spin_lock(&adap->win0_lock); 1914 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 1915 sizeof(indices), (__be32 *)&indices, 1916 T4_MEMORY_READ); 1917 spin_unlock(&adap->win0_lock); 1918 if (!ret) { 1919 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 1920 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 1921 } 1922 return ret; 1923 } 1924 1925 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 1926 u16 size) 1927 { 1928 struct adapter *adap = netdev2adap(dev); 1929 u16 hw_pidx, hw_cidx; 1930 int ret; 1931 1932 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 1933 if (ret) 1934 goto out; 1935 1936 if (pidx != hw_pidx) { 1937 u16 delta; 1938 u32 val; 1939 1940 if (pidx >= hw_pidx) 1941 delta = pidx - hw_pidx; 1942 else 1943 delta = size - hw_pidx + pidx; 1944 1945 if (is_t4(adap->params.chip)) 1946 val = PIDX_V(delta); 1947 else 1948 val = PIDX_T5_V(delta); 1949 wmb(); 1950 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1951 QID_V(qid) | val); 1952 } 1953 out: 1954 return ret; 1955 } 1956 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 1957 1958 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 1959 { 1960 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 1961 u32 edc0_end, edc1_end, mc0_end, mc1_end; 1962 u32 offset, memtype, memaddr; 1963 struct adapter *adap; 1964 u32 hma_size = 0; 1965 int ret; 1966 1967 adap = netdev2adap(dev); 1968 1969 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 1970 1971 /* Figure out where the offset lands in the Memory Type/Address scheme. 1972 * This code assumes that the memory is laid out starting at offset 0 1973 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 1974 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 1975 * MC0, and some have both MC0 and MC1. 1976 */ 1977 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 1978 edc0_size = EDRAM0_SIZE_G(size) << 20; 1979 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 1980 edc1_size = EDRAM1_SIZE_G(size) << 20; 1981 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 1982 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 1983 1984 if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) { 1985 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1986 hma_size = EXT_MEM1_SIZE_G(size) << 20; 1987 } 1988 edc0_end = edc0_size; 1989 edc1_end = edc0_end + edc1_size; 1990 mc0_end = edc1_end + mc0_size; 1991 1992 if (offset < edc0_end) { 1993 memtype = MEM_EDC0; 1994 memaddr = offset; 1995 } else if (offset < edc1_end) { 1996 memtype = MEM_EDC1; 1997 memaddr = offset - edc0_end; 1998 } else { 1999 if (hma_size && (offset < (edc1_end + hma_size))) { 2000 memtype = MEM_HMA; 2001 memaddr = offset - edc1_end; 2002 } else if (offset < mc0_end) { 2003 memtype = MEM_MC0; 2004 memaddr = offset - edc1_end; 2005 } else if (is_t5(adap->params.chip)) { 2006 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 2007 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 2008 mc1_end = mc0_end + mc1_size; 2009 if (offset < mc1_end) { 2010 memtype = MEM_MC1; 2011 memaddr = offset - mc0_end; 2012 } else { 2013 /* offset beyond the end of any memory */ 2014 goto err; 2015 } 2016 } else { 2017 /* T4/T6 only has a single memory channel */ 2018 goto err; 2019 } 2020 } 2021 2022 spin_lock(&adap->win0_lock); 2023 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 2024 spin_unlock(&adap->win0_lock); 2025 return ret; 2026 2027 err: 2028 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 2029 stag, offset); 2030 return -EINVAL; 2031 } 2032 EXPORT_SYMBOL(cxgb4_read_tpte); 2033 2034 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 2035 { 2036 u32 hi, lo; 2037 struct adapter *adap; 2038 2039 adap = netdev2adap(dev); 2040 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 2041 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 2042 2043 return ((u64)hi << 32) | (u64)lo; 2044 } 2045 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 2046 2047 int cxgb4_bar2_sge_qregs(struct net_device *dev, 2048 unsigned int qid, 2049 enum cxgb4_bar2_qtype qtype, 2050 int user, 2051 u64 *pbar2_qoffset, 2052 unsigned int *pbar2_qid) 2053 { 2054 return t4_bar2_sge_qregs(netdev2adap(dev), 2055 qid, 2056 (qtype == CXGB4_BAR2_QTYPE_EGRESS 2057 ? T4_BAR2_QTYPE_EGRESS 2058 : T4_BAR2_QTYPE_INGRESS), 2059 user, 2060 pbar2_qoffset, 2061 pbar2_qid); 2062 } 2063 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 2064 2065 static struct pci_driver cxgb4_driver; 2066 2067 static void check_neigh_update(struct neighbour *neigh) 2068 { 2069 const struct device *parent; 2070 const struct net_device *netdev = neigh->dev; 2071 2072 if (is_vlan_dev(netdev)) 2073 netdev = vlan_dev_real_dev(netdev); 2074 parent = netdev->dev.parent; 2075 if (parent && parent->driver == &cxgb4_driver.driver) 2076 t4_l2t_update(dev_get_drvdata(parent), neigh); 2077 } 2078 2079 static int netevent_cb(struct notifier_block *nb, unsigned long event, 2080 void *data) 2081 { 2082 switch (event) { 2083 case NETEVENT_NEIGH_UPDATE: 2084 check_neigh_update(data); 2085 break; 2086 case NETEVENT_REDIRECT: 2087 default: 2088 break; 2089 } 2090 return 0; 2091 } 2092 2093 static bool netevent_registered; 2094 static struct notifier_block cxgb4_netevent_nb = { 2095 .notifier_call = netevent_cb 2096 }; 2097 2098 static void drain_db_fifo(struct adapter *adap, int usecs) 2099 { 2100 u32 v1, v2, lp_count, hp_count; 2101 2102 do { 2103 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 2104 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 2105 if (is_t4(adap->params.chip)) { 2106 lp_count = LP_COUNT_G(v1); 2107 hp_count = HP_COUNT_G(v1); 2108 } else { 2109 lp_count = LP_COUNT_T5_G(v1); 2110 hp_count = HP_COUNT_T5_G(v2); 2111 } 2112 2113 if (lp_count == 0 && hp_count == 0) 2114 break; 2115 set_current_state(TASK_UNINTERRUPTIBLE); 2116 schedule_timeout(usecs_to_jiffies(usecs)); 2117 } while (1); 2118 } 2119 2120 static void disable_txq_db(struct sge_txq *q) 2121 { 2122 unsigned long flags; 2123 2124 spin_lock_irqsave(&q->db_lock, flags); 2125 q->db_disabled = 1; 2126 spin_unlock_irqrestore(&q->db_lock, flags); 2127 } 2128 2129 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 2130 { 2131 spin_lock_irq(&q->db_lock); 2132 if (q->db_pidx_inc) { 2133 /* Make sure that all writes to the TX descriptors 2134 * are committed before we tell HW about them. 2135 */ 2136 wmb(); 2137 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2138 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 2139 q->db_pidx_inc = 0; 2140 } 2141 q->db_disabled = 0; 2142 spin_unlock_irq(&q->db_lock); 2143 } 2144 2145 static void disable_dbs(struct adapter *adap) 2146 { 2147 int i; 2148 2149 for_each_ethrxq(&adap->sge, i) 2150 disable_txq_db(&adap->sge.ethtxq[i].q); 2151 if (is_offload(adap)) { 2152 struct sge_uld_txq_info *txq_info = 2153 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2154 2155 if (txq_info) { 2156 for_each_ofldtxq(&adap->sge, i) { 2157 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2158 2159 disable_txq_db(&txq->q); 2160 } 2161 } 2162 } 2163 for_each_port(adap, i) 2164 disable_txq_db(&adap->sge.ctrlq[i].q); 2165 } 2166 2167 static void enable_dbs(struct adapter *adap) 2168 { 2169 int i; 2170 2171 for_each_ethrxq(&adap->sge, i) 2172 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 2173 if (is_offload(adap)) { 2174 struct sge_uld_txq_info *txq_info = 2175 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2176 2177 if (txq_info) { 2178 for_each_ofldtxq(&adap->sge, i) { 2179 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2180 2181 enable_txq_db(adap, &txq->q); 2182 } 2183 } 2184 } 2185 for_each_port(adap, i) 2186 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 2187 } 2188 2189 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 2190 { 2191 enum cxgb4_uld type = CXGB4_ULD_RDMA; 2192 2193 if (adap->uld && adap->uld[type].handle) 2194 adap->uld[type].control(adap->uld[type].handle, cmd); 2195 } 2196 2197 static void process_db_full(struct work_struct *work) 2198 { 2199 struct adapter *adap; 2200 2201 adap = container_of(work, struct adapter, db_full_task); 2202 2203 drain_db_fifo(adap, dbfifo_drain_delay); 2204 enable_dbs(adap); 2205 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2206 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2207 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2208 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 2209 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 2210 else 2211 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2212 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 2213 } 2214 2215 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 2216 { 2217 u16 hw_pidx, hw_cidx; 2218 int ret; 2219 2220 spin_lock_irq(&q->db_lock); 2221 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 2222 if (ret) 2223 goto out; 2224 if (q->db_pidx != hw_pidx) { 2225 u16 delta; 2226 u32 val; 2227 2228 if (q->db_pidx >= hw_pidx) 2229 delta = q->db_pidx - hw_pidx; 2230 else 2231 delta = q->size - hw_pidx + q->db_pidx; 2232 2233 if (is_t4(adap->params.chip)) 2234 val = PIDX_V(delta); 2235 else 2236 val = PIDX_T5_V(delta); 2237 wmb(); 2238 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2239 QID_V(q->cntxt_id) | val); 2240 } 2241 out: 2242 q->db_disabled = 0; 2243 q->db_pidx_inc = 0; 2244 spin_unlock_irq(&q->db_lock); 2245 if (ret) 2246 CH_WARN(adap, "DB drop recovery failed.\n"); 2247 } 2248 2249 static void recover_all_queues(struct adapter *adap) 2250 { 2251 int i; 2252 2253 for_each_ethrxq(&adap->sge, i) 2254 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 2255 if (is_offload(adap)) { 2256 struct sge_uld_txq_info *txq_info = 2257 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2258 if (txq_info) { 2259 for_each_ofldtxq(&adap->sge, i) { 2260 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2261 2262 sync_txq_pidx(adap, &txq->q); 2263 } 2264 } 2265 } 2266 for_each_port(adap, i) 2267 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2268 } 2269 2270 static void process_db_drop(struct work_struct *work) 2271 { 2272 struct adapter *adap; 2273 2274 adap = container_of(work, struct adapter, db_drop_task); 2275 2276 if (is_t4(adap->params.chip)) { 2277 drain_db_fifo(adap, dbfifo_drain_delay); 2278 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2279 drain_db_fifo(adap, dbfifo_drain_delay); 2280 recover_all_queues(adap); 2281 drain_db_fifo(adap, dbfifo_drain_delay); 2282 enable_dbs(adap); 2283 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2284 } else if (is_t5(adap->params.chip)) { 2285 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2286 u16 qid = (dropped_db >> 15) & 0x1ffff; 2287 u16 pidx_inc = dropped_db & 0x1fff; 2288 u64 bar2_qoffset; 2289 unsigned int bar2_qid; 2290 int ret; 2291 2292 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2293 0, &bar2_qoffset, &bar2_qid); 2294 if (ret) 2295 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2296 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2297 else 2298 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2299 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2300 2301 /* Re-enable BAR2 WC */ 2302 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2303 } 2304 2305 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2306 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2307 } 2308 2309 void t4_db_full(struct adapter *adap) 2310 { 2311 if (is_t4(adap->params.chip)) { 2312 disable_dbs(adap); 2313 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2314 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2315 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2316 queue_work(adap->workq, &adap->db_full_task); 2317 } 2318 } 2319 2320 void t4_db_dropped(struct adapter *adap) 2321 { 2322 if (is_t4(adap->params.chip)) { 2323 disable_dbs(adap); 2324 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2325 } 2326 queue_work(adap->workq, &adap->db_drop_task); 2327 } 2328 2329 void t4_register_netevent_notifier(void) 2330 { 2331 if (!netevent_registered) { 2332 register_netevent_notifier(&cxgb4_netevent_nb); 2333 netevent_registered = true; 2334 } 2335 } 2336 2337 static void detach_ulds(struct adapter *adap) 2338 { 2339 unsigned int i; 2340 2341 mutex_lock(&uld_mutex); 2342 list_del(&adap->list_node); 2343 2344 for (i = 0; i < CXGB4_ULD_MAX; i++) 2345 if (adap->uld && adap->uld[i].handle) 2346 adap->uld[i].state_change(adap->uld[i].handle, 2347 CXGB4_STATE_DETACH); 2348 2349 if (netevent_registered && list_empty(&adapter_list)) { 2350 unregister_netevent_notifier(&cxgb4_netevent_nb); 2351 netevent_registered = false; 2352 } 2353 mutex_unlock(&uld_mutex); 2354 } 2355 2356 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2357 { 2358 unsigned int i; 2359 2360 mutex_lock(&uld_mutex); 2361 for (i = 0; i < CXGB4_ULD_MAX; i++) 2362 if (adap->uld && adap->uld[i].handle) 2363 adap->uld[i].state_change(adap->uld[i].handle, 2364 new_state); 2365 mutex_unlock(&uld_mutex); 2366 } 2367 2368 #if IS_ENABLED(CONFIG_IPV6) 2369 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2370 unsigned long event, void *data) 2371 { 2372 struct inet6_ifaddr *ifa = data; 2373 struct net_device *event_dev = ifa->idev->dev; 2374 const struct device *parent = NULL; 2375 #if IS_ENABLED(CONFIG_BONDING) 2376 struct adapter *adap; 2377 #endif 2378 if (is_vlan_dev(event_dev)) 2379 event_dev = vlan_dev_real_dev(event_dev); 2380 #if IS_ENABLED(CONFIG_BONDING) 2381 if (event_dev->flags & IFF_MASTER) { 2382 list_for_each_entry(adap, &adapter_list, list_node) { 2383 switch (event) { 2384 case NETDEV_UP: 2385 cxgb4_clip_get(adap->port[0], 2386 (const u32 *)ifa, 1); 2387 break; 2388 case NETDEV_DOWN: 2389 cxgb4_clip_release(adap->port[0], 2390 (const u32 *)ifa, 1); 2391 break; 2392 default: 2393 break; 2394 } 2395 } 2396 return NOTIFY_OK; 2397 } 2398 #endif 2399 2400 if (event_dev) 2401 parent = event_dev->dev.parent; 2402 2403 if (parent && parent->driver == &cxgb4_driver.driver) { 2404 switch (event) { 2405 case NETDEV_UP: 2406 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2407 break; 2408 case NETDEV_DOWN: 2409 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2410 break; 2411 default: 2412 break; 2413 } 2414 } 2415 return NOTIFY_OK; 2416 } 2417 2418 static bool inet6addr_registered; 2419 static struct notifier_block cxgb4_inet6addr_notifier = { 2420 .notifier_call = cxgb4_inet6addr_handler 2421 }; 2422 2423 static void update_clip(const struct adapter *adap) 2424 { 2425 int i; 2426 struct net_device *dev; 2427 int ret; 2428 2429 rcu_read_lock(); 2430 2431 for (i = 0; i < MAX_NPORTS; i++) { 2432 dev = adap->port[i]; 2433 ret = 0; 2434 2435 if (dev) 2436 ret = cxgb4_update_root_dev_clip(dev); 2437 2438 if (ret < 0) 2439 break; 2440 } 2441 rcu_read_unlock(); 2442 } 2443 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2444 2445 /** 2446 * cxgb_up - enable the adapter 2447 * @adap: adapter being enabled 2448 * 2449 * Called when the first port is enabled, this function performs the 2450 * actions necessary to make an adapter operational, such as completing 2451 * the initialization of HW modules, and enabling interrupts. 2452 * 2453 * Must be called with the rtnl lock held. 2454 */ 2455 static int cxgb_up(struct adapter *adap) 2456 { 2457 struct sge *s = &adap->sge; 2458 int err; 2459 2460 mutex_lock(&uld_mutex); 2461 err = setup_sge_queues(adap); 2462 if (err) 2463 goto rel_lock; 2464 err = setup_rss(adap); 2465 if (err) 2466 goto freeq; 2467 2468 if (adap->flags & CXGB4_USING_MSIX) { 2469 if (s->nd_msix_idx < 0) { 2470 err = -ENOMEM; 2471 goto irq_err; 2472 } 2473 2474 err = request_irq(adap->msix_info[s->nd_msix_idx].vec, 2475 t4_nondata_intr, 0, 2476 adap->msix_info[s->nd_msix_idx].desc, adap); 2477 if (err) 2478 goto irq_err; 2479 2480 err = request_msix_queue_irqs(adap); 2481 if (err) 2482 goto irq_err_free_nd_msix; 2483 } else { 2484 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2485 (adap->flags & CXGB4_USING_MSI) ? 0 2486 : IRQF_SHARED, 2487 adap->port[0]->name, adap); 2488 if (err) 2489 goto irq_err; 2490 } 2491 2492 enable_rx(adap); 2493 t4_sge_start(adap); 2494 t4_intr_enable(adap); 2495 adap->flags |= CXGB4_FULL_INIT_DONE; 2496 mutex_unlock(&uld_mutex); 2497 2498 notify_ulds(adap, CXGB4_STATE_UP); 2499 #if IS_ENABLED(CONFIG_IPV6) 2500 update_clip(adap); 2501 #endif 2502 return err; 2503 2504 irq_err_free_nd_msix: 2505 free_irq(adap->msix_info[s->nd_msix_idx].vec, adap); 2506 irq_err: 2507 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2508 freeq: 2509 t4_free_sge_resources(adap); 2510 rel_lock: 2511 mutex_unlock(&uld_mutex); 2512 return err; 2513 } 2514 2515 static void cxgb_down(struct adapter *adapter) 2516 { 2517 cancel_work_sync(&adapter->tid_release_task); 2518 cancel_work_sync(&adapter->db_full_task); 2519 cancel_work_sync(&adapter->db_drop_task); 2520 adapter->tid_release_task_busy = false; 2521 adapter->tid_release_head = NULL; 2522 2523 t4_sge_stop(adapter); 2524 t4_free_sge_resources(adapter); 2525 2526 adapter->flags &= ~CXGB4_FULL_INIT_DONE; 2527 } 2528 2529 /* 2530 * net_device operations 2531 */ 2532 int cxgb_open(struct net_device *dev) 2533 { 2534 struct port_info *pi = netdev_priv(dev); 2535 struct adapter *adapter = pi->adapter; 2536 int err; 2537 2538 netif_carrier_off(dev); 2539 2540 if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) { 2541 err = cxgb_up(adapter); 2542 if (err < 0) 2543 return err; 2544 } 2545 2546 /* It's possible that the basic port information could have 2547 * changed since we first read it. 2548 */ 2549 err = t4_update_port_info(pi); 2550 if (err < 0) 2551 return err; 2552 2553 err = link_start(dev); 2554 if (!err) 2555 netif_tx_start_all_queues(dev); 2556 return err; 2557 } 2558 2559 int cxgb_close(struct net_device *dev) 2560 { 2561 struct port_info *pi = netdev_priv(dev); 2562 struct adapter *adapter = pi->adapter; 2563 int ret; 2564 2565 netif_tx_stop_all_queues(dev); 2566 netif_carrier_off(dev); 2567 ret = t4_enable_pi_params(adapter, adapter->pf, pi, 2568 false, false, false); 2569 #ifdef CONFIG_CHELSIO_T4_DCB 2570 cxgb4_dcb_reset(dev); 2571 dcb_tx_queue_prio_enable(dev, false); 2572 #endif 2573 return ret; 2574 } 2575 2576 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2577 __be32 sip, __be16 sport, __be16 vlan, 2578 unsigned int queue, unsigned char port, unsigned char mask) 2579 { 2580 int ret; 2581 struct filter_entry *f; 2582 struct adapter *adap; 2583 int i; 2584 u8 *val; 2585 2586 adap = netdev2adap(dev); 2587 2588 /* Adjust stid to correct filter index */ 2589 stid -= adap->tids.sftid_base; 2590 stid += adap->tids.nftids; 2591 2592 /* Check to make sure the filter requested is writable ... 2593 */ 2594 f = &adap->tids.ftid_tab[stid]; 2595 ret = writable_filter(f); 2596 if (ret) 2597 return ret; 2598 2599 /* Clear out any old resources being used by the filter before 2600 * we start constructing the new filter. 2601 */ 2602 if (f->valid) 2603 clear_filter(adap, f); 2604 2605 /* Clear out filter specifications */ 2606 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2607 f->fs.val.lport = cpu_to_be16(sport); 2608 f->fs.mask.lport = ~0; 2609 val = (u8 *)&sip; 2610 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2611 for (i = 0; i < 4; i++) { 2612 f->fs.val.lip[i] = val[i]; 2613 f->fs.mask.lip[i] = ~0; 2614 } 2615 if (adap->params.tp.vlan_pri_map & PORT_F) { 2616 f->fs.val.iport = port; 2617 f->fs.mask.iport = mask; 2618 } 2619 } 2620 2621 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2622 f->fs.val.proto = IPPROTO_TCP; 2623 f->fs.mask.proto = ~0; 2624 } 2625 2626 f->fs.dirsteer = 1; 2627 f->fs.iq = queue; 2628 /* Mark filter as locked */ 2629 f->locked = 1; 2630 f->fs.rpttid = 1; 2631 2632 /* Save the actual tid. We need this to get the corresponding 2633 * filter entry structure in filter_rpl. 2634 */ 2635 f->tid = stid + adap->tids.ftid_base; 2636 ret = set_filter_wr(adap, stid); 2637 if (ret) { 2638 clear_filter(adap, f); 2639 return ret; 2640 } 2641 2642 return 0; 2643 } 2644 EXPORT_SYMBOL(cxgb4_create_server_filter); 2645 2646 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2647 unsigned int queue, bool ipv6) 2648 { 2649 struct filter_entry *f; 2650 struct adapter *adap; 2651 2652 adap = netdev2adap(dev); 2653 2654 /* Adjust stid to correct filter index */ 2655 stid -= adap->tids.sftid_base; 2656 stid += adap->tids.nftids; 2657 2658 f = &adap->tids.ftid_tab[stid]; 2659 /* Unlock the filter */ 2660 f->locked = 0; 2661 2662 return delete_filter(adap, stid); 2663 } 2664 EXPORT_SYMBOL(cxgb4_remove_server_filter); 2665 2666 static void cxgb_get_stats(struct net_device *dev, 2667 struct rtnl_link_stats64 *ns) 2668 { 2669 struct port_stats stats; 2670 struct port_info *p = netdev_priv(dev); 2671 struct adapter *adapter = p->adapter; 2672 2673 /* Block retrieving statistics during EEH error 2674 * recovery. Otherwise, the recovery might fail 2675 * and the PCI device will be removed permanently 2676 */ 2677 spin_lock(&adapter->stats_lock); 2678 if (!netif_device_present(dev)) { 2679 spin_unlock(&adapter->stats_lock); 2680 return; 2681 } 2682 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 2683 &p->stats_base); 2684 spin_unlock(&adapter->stats_lock); 2685 2686 ns->tx_bytes = stats.tx_octets; 2687 ns->tx_packets = stats.tx_frames; 2688 ns->rx_bytes = stats.rx_octets; 2689 ns->rx_packets = stats.rx_frames; 2690 ns->multicast = stats.rx_mcast_frames; 2691 2692 /* detailed rx_errors */ 2693 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 2694 stats.rx_runt; 2695 ns->rx_over_errors = 0; 2696 ns->rx_crc_errors = stats.rx_fcs_err; 2697 ns->rx_frame_errors = stats.rx_symbol_err; 2698 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 + 2699 stats.rx_ovflow2 + stats.rx_ovflow3 + 2700 stats.rx_trunc0 + stats.rx_trunc1 + 2701 stats.rx_trunc2 + stats.rx_trunc3; 2702 ns->rx_missed_errors = 0; 2703 2704 /* detailed tx_errors */ 2705 ns->tx_aborted_errors = 0; 2706 ns->tx_carrier_errors = 0; 2707 ns->tx_fifo_errors = 0; 2708 ns->tx_heartbeat_errors = 0; 2709 ns->tx_window_errors = 0; 2710 2711 ns->tx_errors = stats.tx_error_frames; 2712 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 2713 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 2714 } 2715 2716 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2717 { 2718 unsigned int mbox; 2719 int ret = 0, prtad, devad; 2720 struct port_info *pi = netdev_priv(dev); 2721 struct adapter *adapter = pi->adapter; 2722 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 2723 2724 switch (cmd) { 2725 case SIOCGMIIPHY: 2726 if (pi->mdio_addr < 0) 2727 return -EOPNOTSUPP; 2728 data->phy_id = pi->mdio_addr; 2729 break; 2730 case SIOCGMIIREG: 2731 case SIOCSMIIREG: 2732 if (mdio_phy_id_is_c45(data->phy_id)) { 2733 prtad = mdio_phy_id_prtad(data->phy_id); 2734 devad = mdio_phy_id_devad(data->phy_id); 2735 } else if (data->phy_id < 32) { 2736 prtad = data->phy_id; 2737 devad = 0; 2738 data->reg_num &= 0x1f; 2739 } else 2740 return -EINVAL; 2741 2742 mbox = pi->adapter->pf; 2743 if (cmd == SIOCGMIIREG) 2744 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 2745 data->reg_num, &data->val_out); 2746 else 2747 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 2748 data->reg_num, data->val_in); 2749 break; 2750 case SIOCGHWTSTAMP: 2751 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2752 sizeof(pi->tstamp_config)) ? 2753 -EFAULT : 0; 2754 case SIOCSHWTSTAMP: 2755 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 2756 sizeof(pi->tstamp_config))) 2757 return -EFAULT; 2758 2759 if (!is_t4(adapter->params.chip)) { 2760 switch (pi->tstamp_config.tx_type) { 2761 case HWTSTAMP_TX_OFF: 2762 case HWTSTAMP_TX_ON: 2763 break; 2764 default: 2765 return -ERANGE; 2766 } 2767 2768 switch (pi->tstamp_config.rx_filter) { 2769 case HWTSTAMP_FILTER_NONE: 2770 pi->rxtstamp = false; 2771 break; 2772 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 2773 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2774 cxgb4_ptprx_timestamping(pi, pi->port_id, 2775 PTP_TS_L4); 2776 break; 2777 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2778 cxgb4_ptprx_timestamping(pi, pi->port_id, 2779 PTP_TS_L2_L4); 2780 break; 2781 case HWTSTAMP_FILTER_ALL: 2782 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 2783 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 2784 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2785 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2786 pi->rxtstamp = true; 2787 break; 2788 default: 2789 pi->tstamp_config.rx_filter = 2790 HWTSTAMP_FILTER_NONE; 2791 return -ERANGE; 2792 } 2793 2794 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) && 2795 (pi->tstamp_config.rx_filter == 2796 HWTSTAMP_FILTER_NONE)) { 2797 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0) 2798 pi->ptp_enable = false; 2799 } 2800 2801 if (pi->tstamp_config.rx_filter != 2802 HWTSTAMP_FILTER_NONE) { 2803 if (cxgb4_ptp_redirect_rx_packet(adapter, 2804 pi) >= 0) 2805 pi->ptp_enable = true; 2806 } 2807 } else { 2808 /* For T4 Adapters */ 2809 switch (pi->tstamp_config.rx_filter) { 2810 case HWTSTAMP_FILTER_NONE: 2811 pi->rxtstamp = false; 2812 break; 2813 case HWTSTAMP_FILTER_ALL: 2814 pi->rxtstamp = true; 2815 break; 2816 default: 2817 pi->tstamp_config.rx_filter = 2818 HWTSTAMP_FILTER_NONE; 2819 return -ERANGE; 2820 } 2821 } 2822 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2823 sizeof(pi->tstamp_config)) ? 2824 -EFAULT : 0; 2825 default: 2826 return -EOPNOTSUPP; 2827 } 2828 return ret; 2829 } 2830 2831 static void cxgb_set_rxmode(struct net_device *dev) 2832 { 2833 /* unfortunately we can't return errors to the stack */ 2834 set_rxmode(dev, -1, false); 2835 } 2836 2837 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2838 { 2839 int ret; 2840 struct port_info *pi = netdev_priv(dev); 2841 2842 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1, 2843 -1, -1, -1, true); 2844 if (!ret) 2845 dev->mtu = new_mtu; 2846 return ret; 2847 } 2848 2849 #ifdef CONFIG_PCI_IOV 2850 static int cxgb4_mgmt_open(struct net_device *dev) 2851 { 2852 /* Turn carrier off since we don't have to transmit anything on this 2853 * interface. 2854 */ 2855 netif_carrier_off(dev); 2856 return 0; 2857 } 2858 2859 /* Fill MAC address that will be assigned by the FW */ 2860 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap) 2861 { 2862 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN]; 2863 unsigned int i, vf, nvfs; 2864 u16 a, b; 2865 int err; 2866 u8 *na; 2867 2868 adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev, 2869 PCI_CAP_ID_VPD); 2870 err = t4_get_raw_vpd_params(adap, &adap->params.vpd); 2871 if (err) 2872 return; 2873 2874 na = adap->params.vpd.na; 2875 for (i = 0; i < ETH_ALEN; i++) 2876 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 2877 hex2val(na[2 * i + 1])); 2878 2879 a = (hw_addr[0] << 8) | hw_addr[1]; 2880 b = (hw_addr[1] << 8) | hw_addr[2]; 2881 a ^= b; 2882 a |= 0x0200; /* locally assigned Ethernet MAC address */ 2883 a &= ~0x0100; /* not a multicast Ethernet MAC address */ 2884 macaddr[0] = a >> 8; 2885 macaddr[1] = a & 0xff; 2886 2887 for (i = 2; i < 5; i++) 2888 macaddr[i] = hw_addr[i + 1]; 2889 2890 for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev); 2891 vf < nvfs; vf++) { 2892 macaddr[5] = adap->pf * nvfs + vf; 2893 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr); 2894 } 2895 } 2896 2897 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac) 2898 { 2899 struct port_info *pi = netdev_priv(dev); 2900 struct adapter *adap = pi->adapter; 2901 int ret; 2902 2903 /* verify MAC addr is valid */ 2904 if (!is_valid_ether_addr(mac)) { 2905 dev_err(pi->adapter->pdev_dev, 2906 "Invalid Ethernet address %pM for VF %d\n", 2907 mac, vf); 2908 return -EINVAL; 2909 } 2910 2911 dev_info(pi->adapter->pdev_dev, 2912 "Setting MAC %pM on VF %d\n", mac, vf); 2913 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac); 2914 if (!ret) 2915 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac); 2916 return ret; 2917 } 2918 2919 static int cxgb4_mgmt_get_vf_config(struct net_device *dev, 2920 int vf, struct ifla_vf_info *ivi) 2921 { 2922 struct port_info *pi = netdev_priv(dev); 2923 struct adapter *adap = pi->adapter; 2924 struct vf_info *vfinfo; 2925 2926 if (vf >= adap->num_vfs) 2927 return -EINVAL; 2928 vfinfo = &adap->vfinfo[vf]; 2929 2930 ivi->vf = vf; 2931 ivi->max_tx_rate = vfinfo->tx_rate; 2932 ivi->min_tx_rate = 0; 2933 ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr); 2934 ivi->vlan = vfinfo->vlan; 2935 ivi->linkstate = vfinfo->link_state; 2936 return 0; 2937 } 2938 2939 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev, 2940 struct netdev_phys_item_id *ppid) 2941 { 2942 struct port_info *pi = netdev_priv(dev); 2943 unsigned int phy_port_id; 2944 2945 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id; 2946 ppid->id_len = sizeof(phy_port_id); 2947 memcpy(ppid->id, &phy_port_id, ppid->id_len); 2948 return 0; 2949 } 2950 2951 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf, 2952 int min_tx_rate, int max_tx_rate) 2953 { 2954 struct port_info *pi = netdev_priv(dev); 2955 struct adapter *adap = pi->adapter; 2956 unsigned int link_ok, speed, mtu; 2957 u32 fw_pfvf, fw_class; 2958 int class_id = vf; 2959 int ret; 2960 u16 pktsize; 2961 2962 if (vf >= adap->num_vfs) 2963 return -EINVAL; 2964 2965 if (min_tx_rate) { 2966 dev_err(adap->pdev_dev, 2967 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n", 2968 min_tx_rate, vf); 2969 return -EINVAL; 2970 } 2971 2972 if (max_tx_rate == 0) { 2973 /* unbind VF to to any Traffic Class */ 2974 fw_pfvf = 2975 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2976 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 2977 fw_class = 0xffffffff; 2978 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, 2979 &fw_pfvf, &fw_class); 2980 if (ret) { 2981 dev_err(adap->pdev_dev, 2982 "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n", 2983 ret, adap->pf, vf); 2984 return -EINVAL; 2985 } 2986 dev_info(adap->pdev_dev, 2987 "PF %d VF %d is unbound from TX Rate Limiting\n", 2988 adap->pf, vf); 2989 adap->vfinfo[vf].tx_rate = 0; 2990 return 0; 2991 } 2992 2993 ret = t4_get_link_params(pi, &link_ok, &speed, &mtu); 2994 if (ret != FW_SUCCESS) { 2995 dev_err(adap->pdev_dev, 2996 "Failed to get link information for VF %d\n", vf); 2997 return -EINVAL; 2998 } 2999 3000 if (!link_ok) { 3001 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf); 3002 return -EINVAL; 3003 } 3004 3005 if (max_tx_rate > speed) { 3006 dev_err(adap->pdev_dev, 3007 "Max tx rate %d for VF %d can't be > link-speed %u", 3008 max_tx_rate, vf, speed); 3009 return -EINVAL; 3010 } 3011 3012 pktsize = mtu; 3013 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */ 3014 pktsize = pktsize - sizeof(struct ethhdr) - 4; 3015 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */ 3016 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr); 3017 /* configure Traffic Class for rate-limiting */ 3018 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET, 3019 SCHED_CLASS_LEVEL_CL_RL, 3020 SCHED_CLASS_MODE_CLASS, 3021 SCHED_CLASS_RATEUNIT_BITS, 3022 SCHED_CLASS_RATEMODE_ABS, 3023 pi->tx_chan, class_id, 0, 3024 max_tx_rate * 1000, 0, pktsize); 3025 if (ret) { 3026 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n", 3027 ret); 3028 return -EINVAL; 3029 } 3030 dev_info(adap->pdev_dev, 3031 "Class %d with MSS %u configured with rate %u\n", 3032 class_id, pktsize, max_tx_rate); 3033 3034 /* bind VF to configured Traffic Class */ 3035 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 3036 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 3037 fw_class = class_id; 3038 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf, 3039 &fw_class); 3040 if (ret) { 3041 dev_err(adap->pdev_dev, 3042 "Err %d in binding PF %d VF %d to Traffic Class %d\n", 3043 ret, adap->pf, vf, class_id); 3044 return -EINVAL; 3045 } 3046 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n", 3047 adap->pf, vf, class_id); 3048 adap->vfinfo[vf].tx_rate = max_tx_rate; 3049 return 0; 3050 } 3051 3052 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf, 3053 u16 vlan, u8 qos, __be16 vlan_proto) 3054 { 3055 struct port_info *pi = netdev_priv(dev); 3056 struct adapter *adap = pi->adapter; 3057 int ret; 3058 3059 if (vf >= adap->num_vfs || vlan > 4095 || qos > 7) 3060 return -EINVAL; 3061 3062 if (vlan_proto != htons(ETH_P_8021Q) || qos != 0) 3063 return -EPROTONOSUPPORT; 3064 3065 ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan); 3066 if (!ret) { 3067 adap->vfinfo[vf].vlan = vlan; 3068 return 0; 3069 } 3070 3071 dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n", 3072 ret, (vlan ? "setting" : "clearing"), adap->pf, vf); 3073 return ret; 3074 } 3075 3076 static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf, 3077 int link) 3078 { 3079 struct port_info *pi = netdev_priv(dev); 3080 struct adapter *adap = pi->adapter; 3081 u32 param, val; 3082 int ret = 0; 3083 3084 if (vf >= adap->num_vfs) 3085 return -EINVAL; 3086 3087 switch (link) { 3088 case IFLA_VF_LINK_STATE_AUTO: 3089 val = FW_VF_LINK_STATE_AUTO; 3090 break; 3091 3092 case IFLA_VF_LINK_STATE_ENABLE: 3093 val = FW_VF_LINK_STATE_ENABLE; 3094 break; 3095 3096 case IFLA_VF_LINK_STATE_DISABLE: 3097 val = FW_VF_LINK_STATE_DISABLE; 3098 break; 3099 3100 default: 3101 return -EINVAL; 3102 } 3103 3104 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 3105 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE)); 3106 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, 3107 ¶m, &val); 3108 if (ret) { 3109 dev_err(adap->pdev_dev, 3110 "Error %d in setting PF %d VF %d link state\n", 3111 ret, adap->pf, vf); 3112 return -EINVAL; 3113 } 3114 3115 adap->vfinfo[vf].link_state = link; 3116 return ret; 3117 } 3118 #endif /* CONFIG_PCI_IOV */ 3119 3120 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 3121 { 3122 int ret; 3123 struct sockaddr *addr = p; 3124 struct port_info *pi = netdev_priv(dev); 3125 3126 if (!is_valid_ether_addr(addr->sa_data)) 3127 return -EADDRNOTAVAIL; 3128 3129 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt, 3130 addr->sa_data, true, &pi->smt_idx); 3131 if (ret < 0) 3132 return ret; 3133 3134 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 3135 return 0; 3136 } 3137 3138 #ifdef CONFIG_NET_POLL_CONTROLLER 3139 static void cxgb_netpoll(struct net_device *dev) 3140 { 3141 struct port_info *pi = netdev_priv(dev); 3142 struct adapter *adap = pi->adapter; 3143 3144 if (adap->flags & CXGB4_USING_MSIX) { 3145 int i; 3146 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 3147 3148 for (i = pi->nqsets; i; i--, rx++) 3149 t4_sge_intr_msix(0, &rx->rspq); 3150 } else 3151 t4_intr_handler(adap)(0, adap); 3152 } 3153 #endif 3154 3155 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate) 3156 { 3157 struct port_info *pi = netdev_priv(dev); 3158 struct adapter *adap = pi->adapter; 3159 struct ch_sched_queue qe = { 0 }; 3160 struct ch_sched_params p = { 0 }; 3161 struct sched_class *e; 3162 u32 req_rate; 3163 int err = 0; 3164 3165 if (!can_sched(dev)) 3166 return -ENOTSUPP; 3167 3168 if (index < 0 || index > pi->nqsets - 1) 3169 return -EINVAL; 3170 3171 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { 3172 dev_err(adap->pdev_dev, 3173 "Failed to rate limit on queue %d. Link Down?\n", 3174 index); 3175 return -EINVAL; 3176 } 3177 3178 qe.queue = index; 3179 e = cxgb4_sched_queue_lookup(dev, &qe); 3180 if (e && e->info.u.params.level != SCHED_CLASS_LEVEL_CL_RL) { 3181 dev_err(adap->pdev_dev, 3182 "Queue %u already bound to class %u of type: %u\n", 3183 index, e->idx, e->info.u.params.level); 3184 return -EBUSY; 3185 } 3186 3187 /* Convert from Mbps to Kbps */ 3188 req_rate = rate * 1000; 3189 3190 /* Max rate is 100 Gbps */ 3191 if (req_rate > SCHED_MAX_RATE_KBPS) { 3192 dev_err(adap->pdev_dev, 3193 "Invalid rate %u Mbps, Max rate is %u Mbps\n", 3194 rate, SCHED_MAX_RATE_KBPS / 1000); 3195 return -ERANGE; 3196 } 3197 3198 /* First unbind the queue from any existing class */ 3199 memset(&qe, 0, sizeof(qe)); 3200 qe.queue = index; 3201 qe.class = SCHED_CLS_NONE; 3202 3203 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE); 3204 if (err) { 3205 dev_err(adap->pdev_dev, 3206 "Unbinding Queue %d on port %d fail. Err: %d\n", 3207 index, pi->port_id, err); 3208 return err; 3209 } 3210 3211 /* Queue already unbound */ 3212 if (!req_rate) 3213 return 0; 3214 3215 /* Fetch any available unused or matching scheduling class */ 3216 p.type = SCHED_CLASS_TYPE_PACKET; 3217 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL; 3218 p.u.params.mode = SCHED_CLASS_MODE_CLASS; 3219 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS; 3220 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS; 3221 p.u.params.channel = pi->tx_chan; 3222 p.u.params.class = SCHED_CLS_NONE; 3223 p.u.params.minrate = 0; 3224 p.u.params.maxrate = req_rate; 3225 p.u.params.weight = 0; 3226 p.u.params.pktsize = dev->mtu; 3227 3228 e = cxgb4_sched_class_alloc(dev, &p); 3229 if (!e) 3230 return -ENOMEM; 3231 3232 /* Bind the queue to a scheduling class */ 3233 memset(&qe, 0, sizeof(qe)); 3234 qe.queue = index; 3235 qe.class = e->idx; 3236 3237 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE); 3238 if (err) 3239 dev_err(adap->pdev_dev, 3240 "Queue rate limiting failed. Err: %d\n", err); 3241 return err; 3242 } 3243 3244 static int cxgb_setup_tc_flower(struct net_device *dev, 3245 struct flow_cls_offload *cls_flower) 3246 { 3247 switch (cls_flower->command) { 3248 case FLOW_CLS_REPLACE: 3249 return cxgb4_tc_flower_replace(dev, cls_flower); 3250 case FLOW_CLS_DESTROY: 3251 return cxgb4_tc_flower_destroy(dev, cls_flower); 3252 case FLOW_CLS_STATS: 3253 return cxgb4_tc_flower_stats(dev, cls_flower); 3254 default: 3255 return -EOPNOTSUPP; 3256 } 3257 } 3258 3259 static int cxgb_setup_tc_cls_u32(struct net_device *dev, 3260 struct tc_cls_u32_offload *cls_u32) 3261 { 3262 switch (cls_u32->command) { 3263 case TC_CLSU32_NEW_KNODE: 3264 case TC_CLSU32_REPLACE_KNODE: 3265 return cxgb4_config_knode(dev, cls_u32); 3266 case TC_CLSU32_DELETE_KNODE: 3267 return cxgb4_delete_knode(dev, cls_u32); 3268 default: 3269 return -EOPNOTSUPP; 3270 } 3271 } 3272 3273 static int cxgb_setup_tc_matchall(struct net_device *dev, 3274 struct tc_cls_matchall_offload *cls_matchall, 3275 bool ingress) 3276 { 3277 struct adapter *adap = netdev2adap(dev); 3278 3279 if (!adap->tc_matchall) 3280 return -ENOMEM; 3281 3282 switch (cls_matchall->command) { 3283 case TC_CLSMATCHALL_REPLACE: 3284 return cxgb4_tc_matchall_replace(dev, cls_matchall, ingress); 3285 case TC_CLSMATCHALL_DESTROY: 3286 return cxgb4_tc_matchall_destroy(dev, cls_matchall, ingress); 3287 case TC_CLSMATCHALL_STATS: 3288 if (ingress) 3289 return cxgb4_tc_matchall_stats(dev, cls_matchall); 3290 break; 3291 default: 3292 break; 3293 } 3294 3295 return -EOPNOTSUPP; 3296 } 3297 3298 static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type, 3299 void *type_data, void *cb_priv) 3300 { 3301 struct net_device *dev = cb_priv; 3302 struct port_info *pi = netdev2pinfo(dev); 3303 struct adapter *adap = netdev2adap(dev); 3304 3305 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { 3306 dev_err(adap->pdev_dev, 3307 "Failed to setup tc on port %d. Link Down?\n", 3308 pi->port_id); 3309 return -EINVAL; 3310 } 3311 3312 if (!tc_cls_can_offload_and_chain0(dev, type_data)) 3313 return -EOPNOTSUPP; 3314 3315 switch (type) { 3316 case TC_SETUP_CLSU32: 3317 return cxgb_setup_tc_cls_u32(dev, type_data); 3318 case TC_SETUP_CLSFLOWER: 3319 return cxgb_setup_tc_flower(dev, type_data); 3320 case TC_SETUP_CLSMATCHALL: 3321 return cxgb_setup_tc_matchall(dev, type_data, true); 3322 default: 3323 return -EOPNOTSUPP; 3324 } 3325 } 3326 3327 static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type, 3328 void *type_data, void *cb_priv) 3329 { 3330 struct net_device *dev = cb_priv; 3331 struct port_info *pi = netdev2pinfo(dev); 3332 struct adapter *adap = netdev2adap(dev); 3333 3334 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { 3335 dev_err(adap->pdev_dev, 3336 "Failed to setup tc on port %d. Link Down?\n", 3337 pi->port_id); 3338 return -EINVAL; 3339 } 3340 3341 if (!tc_cls_can_offload_and_chain0(dev, type_data)) 3342 return -EOPNOTSUPP; 3343 3344 switch (type) { 3345 case TC_SETUP_CLSMATCHALL: 3346 return cxgb_setup_tc_matchall(dev, type_data, false); 3347 default: 3348 break; 3349 } 3350 3351 return -EOPNOTSUPP; 3352 } 3353 3354 static int cxgb_setup_tc_mqprio(struct net_device *dev, 3355 struct tc_mqprio_qopt_offload *mqprio) 3356 { 3357 struct adapter *adap = netdev2adap(dev); 3358 3359 if (!is_ethofld(adap) || !adap->tc_mqprio) 3360 return -ENOMEM; 3361 3362 return cxgb4_setup_tc_mqprio(dev, mqprio); 3363 } 3364 3365 static LIST_HEAD(cxgb_block_cb_list); 3366 3367 static int cxgb_setup_tc_block(struct net_device *dev, 3368 struct flow_block_offload *f) 3369 { 3370 struct port_info *pi = netdev_priv(dev); 3371 flow_setup_cb_t *cb; 3372 bool ingress_only; 3373 3374 pi->tc_block_shared = f->block_shared; 3375 if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) { 3376 cb = cxgb_setup_tc_block_egress_cb; 3377 ingress_only = false; 3378 } else { 3379 cb = cxgb_setup_tc_block_ingress_cb; 3380 ingress_only = true; 3381 } 3382 3383 return flow_block_cb_setup_simple(f, &cxgb_block_cb_list, 3384 cb, pi, dev, ingress_only); 3385 } 3386 3387 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type, 3388 void *type_data) 3389 { 3390 switch (type) { 3391 case TC_SETUP_QDISC_MQPRIO: 3392 return cxgb_setup_tc_mqprio(dev, type_data); 3393 case TC_SETUP_BLOCK: 3394 return cxgb_setup_tc_block(dev, type_data); 3395 default: 3396 return -EOPNOTSUPP; 3397 } 3398 } 3399 3400 static void cxgb_del_udp_tunnel(struct net_device *netdev, 3401 struct udp_tunnel_info *ti) 3402 { 3403 struct port_info *pi = netdev_priv(netdev); 3404 struct adapter *adapter = pi->adapter; 3405 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 3406 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3407 int ret = 0, i; 3408 3409 if (chip_ver < CHELSIO_T6) 3410 return; 3411 3412 switch (ti->type) { 3413 case UDP_TUNNEL_TYPE_VXLAN: 3414 if (!adapter->vxlan_port_cnt || 3415 adapter->vxlan_port != ti->port) 3416 return; /* Invalid VxLAN destination port */ 3417 3418 adapter->vxlan_port_cnt--; 3419 if (adapter->vxlan_port_cnt) 3420 return; 3421 3422 adapter->vxlan_port = 0; 3423 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0); 3424 break; 3425 case UDP_TUNNEL_TYPE_GENEVE: 3426 if (!adapter->geneve_port_cnt || 3427 adapter->geneve_port != ti->port) 3428 return; /* Invalid GENEVE destination port */ 3429 3430 adapter->geneve_port_cnt--; 3431 if (adapter->geneve_port_cnt) 3432 return; 3433 3434 adapter->geneve_port = 0; 3435 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0); 3436 break; 3437 default: 3438 return; 3439 } 3440 3441 /* Matchall mac entries can be deleted only after all tunnel ports 3442 * are brought down or removed. 3443 */ 3444 if (!adapter->rawf_cnt) 3445 return; 3446 for_each_port(adapter, i) { 3447 pi = adap2pinfo(adapter, i); 3448 ret = t4_free_raw_mac_filt(adapter, pi->viid, 3449 match_all_mac, match_all_mac, 3450 adapter->rawf_start + 3451 pi->port_id, 3452 1, pi->port_id, false); 3453 if (ret < 0) { 3454 netdev_info(netdev, "Failed to free mac filter entry, for port %d\n", 3455 i); 3456 return; 3457 } 3458 } 3459 } 3460 3461 static void cxgb_add_udp_tunnel(struct net_device *netdev, 3462 struct udp_tunnel_info *ti) 3463 { 3464 struct port_info *pi = netdev_priv(netdev); 3465 struct adapter *adapter = pi->adapter; 3466 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 3467 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3468 int i, ret; 3469 3470 if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt) 3471 return; 3472 3473 switch (ti->type) { 3474 case UDP_TUNNEL_TYPE_VXLAN: 3475 /* Callback for adding vxlan port can be called with the same 3476 * port for both IPv4 and IPv6. We should not disable the 3477 * offloading when the same port for both protocols is added 3478 * and later one of them is removed. 3479 */ 3480 if (adapter->vxlan_port_cnt && 3481 adapter->vxlan_port == ti->port) { 3482 adapter->vxlan_port_cnt++; 3483 return; 3484 } 3485 3486 /* We will support only one VxLAN port */ 3487 if (adapter->vxlan_port_cnt) { 3488 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", 3489 be16_to_cpu(adapter->vxlan_port), 3490 be16_to_cpu(ti->port)); 3491 return; 3492 } 3493 3494 adapter->vxlan_port = ti->port; 3495 adapter->vxlan_port_cnt = 1; 3496 3497 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 3498 VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F); 3499 break; 3500 case UDP_TUNNEL_TYPE_GENEVE: 3501 if (adapter->geneve_port_cnt && 3502 adapter->geneve_port == ti->port) { 3503 adapter->geneve_port_cnt++; 3504 return; 3505 } 3506 3507 /* We will support only one GENEVE port */ 3508 if (adapter->geneve_port_cnt) { 3509 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", 3510 be16_to_cpu(adapter->geneve_port), 3511 be16_to_cpu(ti->port)); 3512 return; 3513 } 3514 3515 adapter->geneve_port = ti->port; 3516 adapter->geneve_port_cnt = 1; 3517 3518 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 3519 GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F); 3520 break; 3521 default: 3522 return; 3523 } 3524 3525 /* Create a 'match all' mac filter entry for inner mac, 3526 * if raw mac interface is supported. Once the linux kernel provides 3527 * driver entry points for adding/deleting the inner mac addresses, 3528 * we will remove this 'match all' entry and fallback to adding 3529 * exact match filters. 3530 */ 3531 for_each_port(adapter, i) { 3532 pi = adap2pinfo(adapter, i); 3533 3534 ret = t4_alloc_raw_mac_filt(adapter, pi->viid, 3535 match_all_mac, 3536 match_all_mac, 3537 adapter->rawf_start + 3538 pi->port_id, 3539 1, pi->port_id, false); 3540 if (ret < 0) { 3541 netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n", 3542 be16_to_cpu(ti->port)); 3543 cxgb_del_udp_tunnel(netdev, ti); 3544 return; 3545 } 3546 } 3547 } 3548 3549 static netdev_features_t cxgb_features_check(struct sk_buff *skb, 3550 struct net_device *dev, 3551 netdev_features_t features) 3552 { 3553 struct port_info *pi = netdev_priv(dev); 3554 struct adapter *adapter = pi->adapter; 3555 3556 if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3557 return features; 3558 3559 /* Check if hw supports offload for this packet */ 3560 if (!skb->encapsulation || cxgb_encap_offload_supported(skb)) 3561 return features; 3562 3563 /* Offload is not supported for this encapsulated packet */ 3564 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3565 } 3566 3567 static netdev_features_t cxgb_fix_features(struct net_device *dev, 3568 netdev_features_t features) 3569 { 3570 /* Disable GRO, if RX_CSUM is disabled */ 3571 if (!(features & NETIF_F_RXCSUM)) 3572 features &= ~NETIF_F_GRO; 3573 3574 return features; 3575 } 3576 3577 static const struct net_device_ops cxgb4_netdev_ops = { 3578 .ndo_open = cxgb_open, 3579 .ndo_stop = cxgb_close, 3580 .ndo_start_xmit = t4_start_xmit, 3581 .ndo_select_queue = cxgb_select_queue, 3582 .ndo_get_stats64 = cxgb_get_stats, 3583 .ndo_set_rx_mode = cxgb_set_rxmode, 3584 .ndo_set_mac_address = cxgb_set_mac_addr, 3585 .ndo_set_features = cxgb_set_features, 3586 .ndo_validate_addr = eth_validate_addr, 3587 .ndo_do_ioctl = cxgb_ioctl, 3588 .ndo_change_mtu = cxgb_change_mtu, 3589 #ifdef CONFIG_NET_POLL_CONTROLLER 3590 .ndo_poll_controller = cxgb_netpoll, 3591 #endif 3592 #ifdef CONFIG_CHELSIO_T4_FCOE 3593 .ndo_fcoe_enable = cxgb_fcoe_enable, 3594 .ndo_fcoe_disable = cxgb_fcoe_disable, 3595 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3596 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate, 3597 .ndo_setup_tc = cxgb_setup_tc, 3598 .ndo_udp_tunnel_add = cxgb_add_udp_tunnel, 3599 .ndo_udp_tunnel_del = cxgb_del_udp_tunnel, 3600 .ndo_features_check = cxgb_features_check, 3601 .ndo_fix_features = cxgb_fix_features, 3602 }; 3603 3604 #ifdef CONFIG_PCI_IOV 3605 static const struct net_device_ops cxgb4_mgmt_netdev_ops = { 3606 .ndo_open = cxgb4_mgmt_open, 3607 .ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac, 3608 .ndo_get_vf_config = cxgb4_mgmt_get_vf_config, 3609 .ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate, 3610 .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id, 3611 .ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan, 3612 .ndo_set_vf_link_state = cxgb4_mgmt_set_vf_link_state, 3613 }; 3614 #endif 3615 3616 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev, 3617 struct ethtool_drvinfo *info) 3618 { 3619 struct adapter *adapter = netdev2adap(dev); 3620 3621 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver)); 3622 strlcpy(info->bus_info, pci_name(adapter->pdev), 3623 sizeof(info->bus_info)); 3624 } 3625 3626 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = { 3627 .get_drvinfo = cxgb4_mgmt_get_drvinfo, 3628 }; 3629 3630 static void notify_fatal_err(struct work_struct *work) 3631 { 3632 struct adapter *adap; 3633 3634 adap = container_of(work, struct adapter, fatal_err_notify_task); 3635 notify_ulds(adap, CXGB4_STATE_FATAL_ERROR); 3636 } 3637 3638 void t4_fatal_err(struct adapter *adap) 3639 { 3640 int port; 3641 3642 if (pci_channel_offline(adap->pdev)) 3643 return; 3644 3645 /* Disable the SGE since ULDs are going to free resources that 3646 * could be exposed to the adapter. RDMA MWs for example... 3647 */ 3648 t4_shutdown_adapter(adap); 3649 for_each_port(adap, port) { 3650 struct net_device *dev = adap->port[port]; 3651 3652 /* If we get here in very early initialization the network 3653 * devices may not have been set up yet. 3654 */ 3655 if (!dev) 3656 continue; 3657 3658 netif_tx_stop_all_queues(dev); 3659 netif_carrier_off(dev); 3660 } 3661 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 3662 queue_work(adap->workq, &adap->fatal_err_notify_task); 3663 } 3664 3665 static void setup_memwin(struct adapter *adap) 3666 { 3667 u32 nic_win_base = t4_get_util_window(adap); 3668 3669 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 3670 } 3671 3672 static void setup_memwin_rdma(struct adapter *adap) 3673 { 3674 if (adap->vres.ocq.size) { 3675 u32 start; 3676 unsigned int sz_kb; 3677 3678 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 3679 start &= PCI_BASE_ADDRESS_MEM_MASK; 3680 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 3681 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 3682 t4_write_reg(adap, 3683 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 3684 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 3685 t4_write_reg(adap, 3686 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 3687 adap->vres.ocq.start); 3688 t4_read_reg(adap, 3689 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 3690 } 3691 } 3692 3693 /* HMA Definitions */ 3694 3695 /* The maximum number of address that can be send in a single FW cmd */ 3696 #define HMA_MAX_ADDR_IN_CMD 5 3697 3698 #define HMA_PAGE_SIZE PAGE_SIZE 3699 3700 #define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */ 3701 3702 #define HMA_PAGE_ORDER \ 3703 ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \ 3704 ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0) 3705 3706 /* The minimum and maximum possible HMA sizes that can be specified in the FW 3707 * configuration(in units of MB). 3708 */ 3709 #define HMA_MIN_TOTAL_SIZE 1 3710 #define HMA_MAX_TOTAL_SIZE \ 3711 (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \ 3712 HMA_MAX_NO_FW_ADDRESS) >> 20) 3713 3714 static void adap_free_hma_mem(struct adapter *adapter) 3715 { 3716 struct scatterlist *iter; 3717 struct page *page; 3718 int i; 3719 3720 if (!adapter->hma.sgt) 3721 return; 3722 3723 if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) { 3724 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl, 3725 adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL); 3726 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG; 3727 } 3728 3729 for_each_sg(adapter->hma.sgt->sgl, iter, 3730 adapter->hma.sgt->orig_nents, i) { 3731 page = sg_page(iter); 3732 if (page) 3733 __free_pages(page, HMA_PAGE_ORDER); 3734 } 3735 3736 kfree(adapter->hma.phy_addr); 3737 sg_free_table(adapter->hma.sgt); 3738 kfree(adapter->hma.sgt); 3739 adapter->hma.sgt = NULL; 3740 } 3741 3742 static int adap_config_hma(struct adapter *adapter) 3743 { 3744 struct scatterlist *sgl, *iter; 3745 struct sg_table *sgt; 3746 struct page *newpage; 3747 unsigned int i, j, k; 3748 u32 param, hma_size; 3749 unsigned int ncmds; 3750 size_t page_size; 3751 u32 page_order; 3752 int node, ret; 3753 3754 /* HMA is supported only for T6+ cards. 3755 * Avoid initializing HMA in kdump kernels. 3756 */ 3757 if (is_kdump_kernel() || 3758 CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3759 return 0; 3760 3761 /* Get the HMA region size required by fw */ 3762 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3763 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE)); 3764 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3765 1, ¶m, &hma_size); 3766 /* An error means card has its own memory or HMA is not supported by 3767 * the firmware. Return without any errors. 3768 */ 3769 if (ret || !hma_size) 3770 return 0; 3771 3772 if (hma_size < HMA_MIN_TOTAL_SIZE || 3773 hma_size > HMA_MAX_TOTAL_SIZE) { 3774 dev_err(adapter->pdev_dev, 3775 "HMA size %uMB beyond bounds(%u-%lu)MB\n", 3776 hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE); 3777 return -EINVAL; 3778 } 3779 3780 page_size = HMA_PAGE_SIZE; 3781 page_order = HMA_PAGE_ORDER; 3782 adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL); 3783 if (unlikely(!adapter->hma.sgt)) { 3784 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n"); 3785 return -ENOMEM; 3786 } 3787 sgt = adapter->hma.sgt; 3788 /* FW returned value will be in MB's 3789 */ 3790 sgt->orig_nents = (hma_size << 20) / (page_size << page_order); 3791 if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) { 3792 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n"); 3793 kfree(adapter->hma.sgt); 3794 adapter->hma.sgt = NULL; 3795 return -ENOMEM; 3796 } 3797 3798 sgl = adapter->hma.sgt->sgl; 3799 node = dev_to_node(adapter->pdev_dev); 3800 for_each_sg(sgl, iter, sgt->orig_nents, i) { 3801 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL | 3802 __GFP_ZERO, page_order); 3803 if (!newpage) { 3804 dev_err(adapter->pdev_dev, 3805 "Not enough memory for HMA page allocation\n"); 3806 ret = -ENOMEM; 3807 goto free_hma; 3808 } 3809 sg_set_page(iter, newpage, page_size << page_order, 0); 3810 } 3811 3812 sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents, 3813 DMA_BIDIRECTIONAL); 3814 if (!sgt->nents) { 3815 dev_err(adapter->pdev_dev, 3816 "Not enough memory for HMA DMA mapping"); 3817 ret = -ENOMEM; 3818 goto free_hma; 3819 } 3820 adapter->hma.flags |= HMA_DMA_MAPPED_FLAG; 3821 3822 adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t), 3823 GFP_KERNEL); 3824 if (unlikely(!adapter->hma.phy_addr)) 3825 goto free_hma; 3826 3827 for_each_sg(sgl, iter, sgt->nents, i) { 3828 newpage = sg_page(iter); 3829 adapter->hma.phy_addr[i] = sg_dma_address(iter); 3830 } 3831 3832 ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD); 3833 /* Pass on the addresses to firmware */ 3834 for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) { 3835 struct fw_hma_cmd hma_cmd; 3836 u8 naddr = HMA_MAX_ADDR_IN_CMD; 3837 u8 soc = 0, eoc = 0; 3838 u8 hma_mode = 1; /* Presently we support only Page table mode */ 3839 3840 soc = (i == 0) ? 1 : 0; 3841 eoc = (i == ncmds - 1) ? 1 : 0; 3842 3843 /* For last cmd, set naddr corresponding to remaining 3844 * addresses 3845 */ 3846 if (i == ncmds - 1) { 3847 naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD; 3848 naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD; 3849 } 3850 memset(&hma_cmd, 0, sizeof(hma_cmd)); 3851 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) | 3852 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3853 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd)); 3854 3855 hma_cmd.mode_to_pcie_params = 3856 htonl(FW_HMA_CMD_MODE_V(hma_mode) | 3857 FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc)); 3858 3859 /* HMA cmd size specified in MB's */ 3860 hma_cmd.naddr_size = 3861 htonl(FW_HMA_CMD_SIZE_V(hma_size) | 3862 FW_HMA_CMD_NADDR_V(naddr)); 3863 3864 /* Total Page size specified in units of 4K */ 3865 hma_cmd.addr_size_pkd = 3866 htonl(FW_HMA_CMD_ADDR_SIZE_V 3867 ((page_size << page_order) >> 12)); 3868 3869 /* Fill the 5 addresses */ 3870 for (j = 0; j < naddr; j++) { 3871 hma_cmd.phy_address[j] = 3872 cpu_to_be64(adapter->hma.phy_addr[j + k]); 3873 } 3874 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd, 3875 sizeof(hma_cmd), &hma_cmd); 3876 if (ret) { 3877 dev_err(adapter->pdev_dev, 3878 "HMA FW command failed with err %d\n", ret); 3879 goto free_hma; 3880 } 3881 } 3882 3883 if (!ret) 3884 dev_info(adapter->pdev_dev, 3885 "Reserved %uMB host memory for HMA\n", hma_size); 3886 return ret; 3887 3888 free_hma: 3889 adap_free_hma_mem(adapter); 3890 return ret; 3891 } 3892 3893 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 3894 { 3895 u32 v; 3896 int ret; 3897 3898 /* Now that we've successfully configured and initialized the adapter 3899 * can ask the Firmware what resources it has provisioned for us. 3900 */ 3901 ret = t4_get_pfres(adap); 3902 if (ret) { 3903 dev_err(adap->pdev_dev, 3904 "Unable to retrieve resource provisioning information\n"); 3905 return ret; 3906 } 3907 3908 /* get device capabilities */ 3909 memset(c, 0, sizeof(*c)); 3910 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3911 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3912 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 3913 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 3914 if (ret < 0) 3915 return ret; 3916 3917 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3918 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3919 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 3920 if (ret < 0) 3921 return ret; 3922 3923 ret = t4_config_glbl_rss(adap, adap->pf, 3924 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 3925 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 3926 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 3927 if (ret < 0) 3928 return ret; 3929 3930 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 3931 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 3932 FW_CMD_CAP_PF); 3933 if (ret < 0) 3934 return ret; 3935 3936 t4_sge_init(adap); 3937 3938 /* tweak some settings */ 3939 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 3940 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 3941 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 3942 v = t4_read_reg(adap, TP_PIO_DATA_A); 3943 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 3944 3945 /* first 4 Tx modulation queues point to consecutive Tx channels */ 3946 adap->params.tp.tx_modq_map = 0xE4; 3947 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 3948 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 3949 3950 /* associate each Tx modulation queue with consecutive Tx channels */ 3951 v = 0x84218421; 3952 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3953 &v, 1, TP_TX_SCHED_HDR_A); 3954 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3955 &v, 1, TP_TX_SCHED_FIFO_A); 3956 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3957 &v, 1, TP_TX_SCHED_PCMD_A); 3958 3959 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 3960 if (is_offload(adap)) { 3961 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 3962 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3963 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3964 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3965 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3966 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 3967 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3968 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3969 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3970 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3971 } 3972 3973 /* get basic stuff going */ 3974 return t4_early_init(adap, adap->pf); 3975 } 3976 3977 /* 3978 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 3979 */ 3980 #define MAX_ATIDS 8192U 3981 3982 /* 3983 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3984 * 3985 * If the firmware we're dealing with has Configuration File support, then 3986 * we use that to perform all configuration 3987 */ 3988 3989 /* 3990 * Tweak configuration based on module parameters, etc. Most of these have 3991 * defaults assigned to them by Firmware Configuration Files (if we're using 3992 * them) but need to be explicitly set if we're using hard-coded 3993 * initialization. But even in the case of using Firmware Configuration 3994 * Files, we'd like to expose the ability to change these via module 3995 * parameters so these are essentially common tweaks/settings for 3996 * Configuration Files and hard-coded initialization ... 3997 */ 3998 static int adap_init0_tweaks(struct adapter *adapter) 3999 { 4000 /* 4001 * Fix up various Host-Dependent Parameters like Page Size, Cache 4002 * Line Size, etc. The firmware default is for a 4KB Page Size and 4003 * 64B Cache Line Size ... 4004 */ 4005 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 4006 4007 /* 4008 * Process module parameters which affect early initialization. 4009 */ 4010 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 4011 dev_err(&adapter->pdev->dev, 4012 "Ignoring illegal rx_dma_offset=%d, using 2\n", 4013 rx_dma_offset); 4014 rx_dma_offset = 2; 4015 } 4016 t4_set_reg_field(adapter, SGE_CONTROL_A, 4017 PKTSHIFT_V(PKTSHIFT_M), 4018 PKTSHIFT_V(rx_dma_offset)); 4019 4020 /* 4021 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 4022 * adds the pseudo header itself. 4023 */ 4024 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 4025 CSUM_HAS_PSEUDO_HDR_F, 0); 4026 4027 return 0; 4028 } 4029 4030 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 4031 * unto themselves and they contain their own firmware to perform their 4032 * tasks ... 4033 */ 4034 static int phy_aq1202_version(const u8 *phy_fw_data, 4035 size_t phy_fw_size) 4036 { 4037 int offset; 4038 4039 /* At offset 0x8 you're looking for the primary image's 4040 * starting offset which is 3 Bytes wide 4041 * 4042 * At offset 0xa of the primary image, you look for the offset 4043 * of the DRAM segment which is 3 Bytes wide. 4044 * 4045 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 4046 * wide 4047 */ 4048 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 4049 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 4050 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 4051 4052 offset = le24(phy_fw_data + 0x8) << 12; 4053 offset = le24(phy_fw_data + offset + 0xa); 4054 return be16(phy_fw_data + offset + 0x27e); 4055 4056 #undef be16 4057 #undef le16 4058 #undef le24 4059 } 4060 4061 static struct info_10gbt_phy_fw { 4062 unsigned int phy_fw_id; /* PCI Device ID */ 4063 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 4064 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 4065 int phy_flash; /* Has FLASH for PHY Firmware */ 4066 } phy_info_array[] = { 4067 { 4068 PHY_AQ1202_DEVICEID, 4069 PHY_AQ1202_FIRMWARE, 4070 phy_aq1202_version, 4071 1, 4072 }, 4073 { 4074 PHY_BCM84834_DEVICEID, 4075 PHY_BCM84834_FIRMWARE, 4076 NULL, 4077 0, 4078 }, 4079 { 0, NULL, NULL }, 4080 }; 4081 4082 static struct info_10gbt_phy_fw *find_phy_info(int devid) 4083 { 4084 int i; 4085 4086 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 4087 if (phy_info_array[i].phy_fw_id == devid) 4088 return &phy_info_array[i]; 4089 } 4090 return NULL; 4091 } 4092 4093 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 4094 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 4095 * we return a negative error number. If we transfer new firmware we return 1 4096 * (from t4_load_phy_fw()). If we don't do anything we return 0. 4097 */ 4098 static int adap_init0_phy(struct adapter *adap) 4099 { 4100 const struct firmware *phyf; 4101 int ret; 4102 struct info_10gbt_phy_fw *phy_info; 4103 4104 /* Use the device ID to determine which PHY file to flash. 4105 */ 4106 phy_info = find_phy_info(adap->pdev->device); 4107 if (!phy_info) { 4108 dev_warn(adap->pdev_dev, 4109 "No PHY Firmware file found for this PHY\n"); 4110 return -EOPNOTSUPP; 4111 } 4112 4113 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 4114 * use that. The adapter firmware provides us with a memory buffer 4115 * where we can load a PHY firmware file from the host if we want to 4116 * override the PHY firmware File in flash. 4117 */ 4118 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 4119 adap->pdev_dev); 4120 if (ret < 0) { 4121 /* For adapters without FLASH attached to PHY for their 4122 * firmware, it's obviously a fatal error if we can't get the 4123 * firmware to the adapter. For adapters with PHY firmware 4124 * FLASH storage, it's worth a warning if we can't find the 4125 * PHY Firmware but we'll neuter the error ... 4126 */ 4127 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 4128 "/lib/firmware/%s, error %d\n", 4129 phy_info->phy_fw_file, -ret); 4130 if (phy_info->phy_flash) { 4131 int cur_phy_fw_ver = 0; 4132 4133 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 4134 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 4135 "FLASH copy, version %#x\n", cur_phy_fw_ver); 4136 ret = 0; 4137 } 4138 4139 return ret; 4140 } 4141 4142 /* Load PHY Firmware onto adapter. 4143 */ 4144 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock, 4145 phy_info->phy_fw_version, 4146 (u8 *)phyf->data, phyf->size); 4147 if (ret < 0) 4148 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 4149 -ret); 4150 else if (ret > 0) { 4151 int new_phy_fw_ver = 0; 4152 4153 if (phy_info->phy_fw_version) 4154 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 4155 phyf->size); 4156 dev_info(adap->pdev_dev, "Successfully transferred PHY " 4157 "Firmware /lib/firmware/%s, version %#x\n", 4158 phy_info->phy_fw_file, new_phy_fw_ver); 4159 } 4160 4161 release_firmware(phyf); 4162 4163 return ret; 4164 } 4165 4166 /* 4167 * Attempt to initialize the adapter via a Firmware Configuration File. 4168 */ 4169 static int adap_init0_config(struct adapter *adapter, int reset) 4170 { 4171 char *fw_config_file, fw_config_file_path[256]; 4172 u32 finiver, finicsum, cfcsum, param, val; 4173 struct fw_caps_config_cmd caps_cmd; 4174 unsigned long mtype = 0, maddr = 0; 4175 const struct firmware *cf; 4176 char *config_name = NULL; 4177 int config_issued = 0; 4178 int ret; 4179 4180 /* 4181 * Reset device if necessary. 4182 */ 4183 if (reset) { 4184 ret = t4_fw_reset(adapter, adapter->mbox, 4185 PIORSTMODE_F | PIORST_F); 4186 if (ret < 0) 4187 goto bye; 4188 } 4189 4190 /* If this is a 10Gb/s-BT adapter make sure the chip-external 4191 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 4192 * to be performed after any global adapter RESET above since some 4193 * PHYs only have local RAM copies of the PHY firmware. 4194 */ 4195 if (is_10gbt_device(adapter->pdev->device)) { 4196 ret = adap_init0_phy(adapter); 4197 if (ret < 0) 4198 goto bye; 4199 } 4200 /* 4201 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 4202 * then use that. Otherwise, use the configuration file stored 4203 * in the adapter flash ... 4204 */ 4205 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 4206 case CHELSIO_T4: 4207 fw_config_file = FW4_CFNAME; 4208 break; 4209 case CHELSIO_T5: 4210 fw_config_file = FW5_CFNAME; 4211 break; 4212 case CHELSIO_T6: 4213 fw_config_file = FW6_CFNAME; 4214 break; 4215 default: 4216 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 4217 adapter->pdev->device); 4218 ret = -EINVAL; 4219 goto bye; 4220 } 4221 4222 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 4223 if (ret < 0) { 4224 config_name = "On FLASH"; 4225 mtype = FW_MEMTYPE_CF_FLASH; 4226 maddr = t4_flash_cfg_addr(adapter); 4227 } else { 4228 u32 params[7], val[7]; 4229 4230 sprintf(fw_config_file_path, 4231 "/lib/firmware/%s", fw_config_file); 4232 config_name = fw_config_file_path; 4233 4234 if (cf->size >= FLASH_CFG_MAX_SIZE) 4235 ret = -ENOMEM; 4236 else { 4237 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4238 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 4239 ret = t4_query_params(adapter, adapter->mbox, 4240 adapter->pf, 0, 1, params, val); 4241 if (ret == 0) { 4242 /* 4243 * For t4_memory_rw() below addresses and 4244 * sizes have to be in terms of multiples of 4 4245 * bytes. So, if the Configuration File isn't 4246 * a multiple of 4 bytes in length we'll have 4247 * to write that out separately since we can't 4248 * guarantee that the bytes following the 4249 * residual byte in the buffer returned by 4250 * request_firmware() are zeroed out ... 4251 */ 4252 size_t resid = cf->size & 0x3; 4253 size_t size = cf->size & ~0x3; 4254 __be32 *data = (__be32 *)cf->data; 4255 4256 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 4257 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 4258 4259 spin_lock(&adapter->win0_lock); 4260 ret = t4_memory_rw(adapter, 0, mtype, maddr, 4261 size, data, T4_MEMORY_WRITE); 4262 if (ret == 0 && resid != 0) { 4263 union { 4264 __be32 word; 4265 char buf[4]; 4266 } last; 4267 int i; 4268 4269 last.word = data[size >> 2]; 4270 for (i = resid; i < 4; i++) 4271 last.buf[i] = 0; 4272 ret = t4_memory_rw(adapter, 0, mtype, 4273 maddr + size, 4274 4, &last.word, 4275 T4_MEMORY_WRITE); 4276 } 4277 spin_unlock(&adapter->win0_lock); 4278 } 4279 } 4280 4281 release_firmware(cf); 4282 if (ret) 4283 goto bye; 4284 } 4285 4286 val = 0; 4287 4288 /* Ofld + Hash filter is supported. Older fw will fail this request and 4289 * it is fine. 4290 */ 4291 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4292 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD)); 4293 ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0, 4294 1, ¶m, &val); 4295 4296 /* FW doesn't know about Hash filter + ofld support, 4297 * it's not a problem, don't return an error. 4298 */ 4299 if (ret < 0) { 4300 dev_warn(adapter->pdev_dev, 4301 "Hash filter with ofld is not supported by FW\n"); 4302 } 4303 4304 /* 4305 * Issue a Capability Configuration command to the firmware to get it 4306 * to parse the Configuration File. We don't use t4_fw_config_file() 4307 * because we want the ability to modify various features after we've 4308 * processed the configuration file ... 4309 */ 4310 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4311 caps_cmd.op_to_write = 4312 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4313 FW_CMD_REQUEST_F | 4314 FW_CMD_READ_F); 4315 caps_cmd.cfvalid_to_len16 = 4316 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 4317 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 4318 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 4319 FW_LEN16(caps_cmd)); 4320 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4321 &caps_cmd); 4322 4323 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 4324 * Configuration File in FLASH), our last gasp effort is to use the 4325 * Firmware Configuration File which is embedded in the firmware. A 4326 * very few early versions of the firmware didn't have one embedded 4327 * but we can ignore those. 4328 */ 4329 if (ret == -ENOENT) { 4330 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4331 caps_cmd.op_to_write = 4332 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4333 FW_CMD_REQUEST_F | 4334 FW_CMD_READ_F); 4335 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4336 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 4337 sizeof(caps_cmd), &caps_cmd); 4338 config_name = "Firmware Default"; 4339 } 4340 4341 config_issued = 1; 4342 if (ret < 0) 4343 goto bye; 4344 4345 finiver = ntohl(caps_cmd.finiver); 4346 finicsum = ntohl(caps_cmd.finicsum); 4347 cfcsum = ntohl(caps_cmd.cfcsum); 4348 if (finicsum != cfcsum) 4349 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 4350 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 4351 finicsum, cfcsum); 4352 4353 /* 4354 * And now tell the firmware to use the configuration we just loaded. 4355 */ 4356 caps_cmd.op_to_write = 4357 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4358 FW_CMD_REQUEST_F | 4359 FW_CMD_WRITE_F); 4360 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4361 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4362 NULL); 4363 if (ret < 0) 4364 goto bye; 4365 4366 /* 4367 * Tweak configuration based on system architecture, module 4368 * parameters, etc. 4369 */ 4370 ret = adap_init0_tweaks(adapter); 4371 if (ret < 0) 4372 goto bye; 4373 4374 /* We will proceed even if HMA init fails. */ 4375 ret = adap_config_hma(adapter); 4376 if (ret) 4377 dev_err(adapter->pdev_dev, 4378 "HMA configuration failed with error %d\n", ret); 4379 4380 if (is_t6(adapter->params.chip)) { 4381 adap_config_hpfilter(adapter); 4382 ret = setup_ppod_edram(adapter); 4383 if (!ret) 4384 dev_info(adapter->pdev_dev, "Successfully enabled " 4385 "ppod edram feature\n"); 4386 } 4387 4388 /* 4389 * And finally tell the firmware to initialize itself using the 4390 * parameters from the Configuration File. 4391 */ 4392 ret = t4_fw_initialize(adapter, adapter->mbox); 4393 if (ret < 0) 4394 goto bye; 4395 4396 /* Emit Firmware Configuration File information and return 4397 * successfully. 4398 */ 4399 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 4400 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 4401 config_name, finiver, cfcsum); 4402 return 0; 4403 4404 /* 4405 * Something bad happened. Return the error ... (If the "error" 4406 * is that there's no Configuration File on the adapter we don't 4407 * want to issue a warning since this is fairly common.) 4408 */ 4409 bye: 4410 if (config_issued && ret != -ENOENT) 4411 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 4412 config_name, -ret); 4413 return ret; 4414 } 4415 4416 static struct fw_info fw_info_array[] = { 4417 { 4418 .chip = CHELSIO_T4, 4419 .fs_name = FW4_CFNAME, 4420 .fw_mod_name = FW4_FNAME, 4421 .fw_hdr = { 4422 .chip = FW_HDR_CHIP_T4, 4423 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 4424 .intfver_nic = FW_INTFVER(T4, NIC), 4425 .intfver_vnic = FW_INTFVER(T4, VNIC), 4426 .intfver_ri = FW_INTFVER(T4, RI), 4427 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4428 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4429 }, 4430 }, { 4431 .chip = CHELSIO_T5, 4432 .fs_name = FW5_CFNAME, 4433 .fw_mod_name = FW5_FNAME, 4434 .fw_hdr = { 4435 .chip = FW_HDR_CHIP_T5, 4436 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 4437 .intfver_nic = FW_INTFVER(T5, NIC), 4438 .intfver_vnic = FW_INTFVER(T5, VNIC), 4439 .intfver_ri = FW_INTFVER(T5, RI), 4440 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4441 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4442 }, 4443 }, { 4444 .chip = CHELSIO_T6, 4445 .fs_name = FW6_CFNAME, 4446 .fw_mod_name = FW6_FNAME, 4447 .fw_hdr = { 4448 .chip = FW_HDR_CHIP_T6, 4449 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 4450 .intfver_nic = FW_INTFVER(T6, NIC), 4451 .intfver_vnic = FW_INTFVER(T6, VNIC), 4452 .intfver_ofld = FW_INTFVER(T6, OFLD), 4453 .intfver_ri = FW_INTFVER(T6, RI), 4454 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4455 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4456 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4457 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4458 }, 4459 } 4460 4461 }; 4462 4463 static struct fw_info *find_fw_info(int chip) 4464 { 4465 int i; 4466 4467 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 4468 if (fw_info_array[i].chip == chip) 4469 return &fw_info_array[i]; 4470 } 4471 return NULL; 4472 } 4473 4474 /* 4475 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 4476 */ 4477 static int adap_init0(struct adapter *adap, int vpd_skip) 4478 { 4479 struct fw_caps_config_cmd caps_cmd; 4480 u32 params[7], val[7]; 4481 enum dev_state state; 4482 u32 v, port_vec; 4483 int reset = 1; 4484 int ret; 4485 4486 /* Grab Firmware Device Log parameters as early as possible so we have 4487 * access to it for debugging, etc. 4488 */ 4489 ret = t4_init_devlog_params(adap); 4490 if (ret < 0) 4491 return ret; 4492 4493 /* Contact FW, advertising Master capability */ 4494 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, 4495 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state); 4496 if (ret < 0) { 4497 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 4498 ret); 4499 return ret; 4500 } 4501 if (ret == adap->mbox) 4502 adap->flags |= CXGB4_MASTER_PF; 4503 4504 /* 4505 * If we're the Master PF Driver and the device is uninitialized, 4506 * then let's consider upgrading the firmware ... (We always want 4507 * to check the firmware version number in order to A. get it for 4508 * later reporting and B. to warn if the currently loaded firmware 4509 * is excessively mismatched relative to the driver.) 4510 */ 4511 4512 t4_get_version_info(adap); 4513 ret = t4_check_fw_version(adap); 4514 /* If firmware is too old (not supported by driver) force an update. */ 4515 if (ret) 4516 state = DEV_STATE_UNINIT; 4517 if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) { 4518 struct fw_info *fw_info; 4519 struct fw_hdr *card_fw; 4520 const struct firmware *fw; 4521 const u8 *fw_data = NULL; 4522 unsigned int fw_size = 0; 4523 4524 /* This is the firmware whose headers the driver was compiled 4525 * against 4526 */ 4527 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 4528 if (fw_info == NULL) { 4529 dev_err(adap->pdev_dev, 4530 "unable to get firmware info for chip %d.\n", 4531 CHELSIO_CHIP_VERSION(adap->params.chip)); 4532 return -EINVAL; 4533 } 4534 4535 /* allocate memory to read the header of the firmware on the 4536 * card 4537 */ 4538 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL); 4539 if (!card_fw) { 4540 ret = -ENOMEM; 4541 goto bye; 4542 } 4543 4544 /* Get FW from from /lib/firmware/ */ 4545 ret = request_firmware(&fw, fw_info->fw_mod_name, 4546 adap->pdev_dev); 4547 if (ret < 0) { 4548 dev_err(adap->pdev_dev, 4549 "unable to load firmware image %s, error %d\n", 4550 fw_info->fw_mod_name, ret); 4551 } else { 4552 fw_data = fw->data; 4553 fw_size = fw->size; 4554 } 4555 4556 /* upgrade FW logic */ 4557 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 4558 state, &reset); 4559 4560 /* Cleaning up */ 4561 release_firmware(fw); 4562 kvfree(card_fw); 4563 4564 if (ret < 0) 4565 goto bye; 4566 } 4567 4568 /* If the firmware is initialized already, emit a simply note to that 4569 * effect. Otherwise, it's time to try initializing the adapter. 4570 */ 4571 if (state == DEV_STATE_INIT) { 4572 ret = adap_config_hma(adap); 4573 if (ret) 4574 dev_err(adap->pdev_dev, 4575 "HMA configuration failed with error %d\n", 4576 ret); 4577 dev_info(adap->pdev_dev, "Coming up as %s: "\ 4578 "Adapter already initialized\n", 4579 adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE"); 4580 } else { 4581 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 4582 "Initializing adapter\n"); 4583 4584 /* Find out whether we're dealing with a version of the 4585 * firmware which has configuration file support. 4586 */ 4587 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4588 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 4589 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 4590 params, val); 4591 4592 /* If the firmware doesn't support Configuration Files, 4593 * return an error. 4594 */ 4595 if (ret < 0) { 4596 dev_err(adap->pdev_dev, "firmware doesn't support " 4597 "Firmware Configuration Files\n"); 4598 goto bye; 4599 } 4600 4601 /* The firmware provides us with a memory buffer where we can 4602 * load a Configuration File from the host if we want to 4603 * override the Configuration File in flash. 4604 */ 4605 ret = adap_init0_config(adap, reset); 4606 if (ret == -ENOENT) { 4607 dev_err(adap->pdev_dev, "no Configuration File " 4608 "present on adapter.\n"); 4609 goto bye; 4610 } 4611 if (ret < 0) { 4612 dev_err(adap->pdev_dev, "could not initialize " 4613 "adapter, error %d\n", -ret); 4614 goto bye; 4615 } 4616 } 4617 4618 /* Now that we've successfully configured and initialized the adapter 4619 * (or found it already initialized), we can ask the Firmware what 4620 * resources it has provisioned for us. 4621 */ 4622 ret = t4_get_pfres(adap); 4623 if (ret) { 4624 dev_err(adap->pdev_dev, 4625 "Unable to retrieve resource provisioning information\n"); 4626 goto bye; 4627 } 4628 4629 /* Grab VPD parameters. This should be done after we establish a 4630 * connection to the firmware since some of the VPD parameters 4631 * (notably the Core Clock frequency) are retrieved via requests to 4632 * the firmware. On the other hand, we need these fairly early on 4633 * so we do this right after getting ahold of the firmware. 4634 * 4635 * We need to do this after initializing the adapter because someone 4636 * could have FLASHed a new VPD which won't be read by the firmware 4637 * until we do the RESET ... 4638 */ 4639 if (!vpd_skip) { 4640 ret = t4_get_vpd_params(adap, &adap->params.vpd); 4641 if (ret < 0) 4642 goto bye; 4643 } 4644 4645 /* Find out what ports are available to us. Note that we need to do 4646 * this before calling adap_init0_no_config() since it needs nports 4647 * and portvec ... 4648 */ 4649 v = 4650 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4651 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 4652 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 4653 if (ret < 0) 4654 goto bye; 4655 4656 adap->params.nports = hweight32(port_vec); 4657 adap->params.portvec = port_vec; 4658 4659 /* Give the SGE code a chance to pull in anything that it needs ... 4660 * Note that this must be called after we retrieve our VPD parameters 4661 * in order to know how to convert core ticks to seconds, etc. 4662 */ 4663 ret = t4_sge_init(adap); 4664 if (ret < 0) 4665 goto bye; 4666 4667 /* Grab the SGE Doorbell Queue Timer values. If successful, that 4668 * indicates that the Firmware and Hardware support this. 4669 */ 4670 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4671 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK)); 4672 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4673 1, params, val); 4674 4675 if (!ret) { 4676 adap->sge.dbqtimer_tick = val[0]; 4677 ret = t4_read_sge_dbqtimers(adap, 4678 ARRAY_SIZE(adap->sge.dbqtimer_val), 4679 adap->sge.dbqtimer_val); 4680 } 4681 4682 if (!ret) 4683 adap->flags |= CXGB4_SGE_DBQ_TIMER; 4684 4685 if (is_bypass_device(adap->pdev->device)) 4686 adap->params.bypass = 1; 4687 4688 /* 4689 * Grab some of our basic fundamental operating parameters. 4690 */ 4691 params[0] = FW_PARAM_PFVF(EQ_START); 4692 params[1] = FW_PARAM_PFVF(L2T_START); 4693 params[2] = FW_PARAM_PFVF(L2T_END); 4694 params[3] = FW_PARAM_PFVF(FILTER_START); 4695 params[4] = FW_PARAM_PFVF(FILTER_END); 4696 params[5] = FW_PARAM_PFVF(IQFLINT_START); 4697 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 4698 if (ret < 0) 4699 goto bye; 4700 adap->sge.egr_start = val[0]; 4701 adap->l2t_start = val[1]; 4702 adap->l2t_end = val[2]; 4703 adap->tids.ftid_base = val[3]; 4704 adap->tids.nftids = val[4] - val[3] + 1; 4705 adap->sge.ingr_start = val[5]; 4706 4707 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 4708 params[0] = FW_PARAM_PFVF(HPFILTER_START); 4709 params[1] = FW_PARAM_PFVF(HPFILTER_END); 4710 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4711 params, val); 4712 if (ret < 0) 4713 goto bye; 4714 4715 adap->tids.hpftid_base = val[0]; 4716 adap->tids.nhpftids = val[1] - val[0] + 1; 4717 4718 /* Read the raw mps entries. In T6, the last 2 tcam entries 4719 * are reserved for raw mac addresses (rawf = 2, one per port). 4720 */ 4721 params[0] = FW_PARAM_PFVF(RAWF_START); 4722 params[1] = FW_PARAM_PFVF(RAWF_END); 4723 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4724 params, val); 4725 if (ret == 0) { 4726 adap->rawf_start = val[0]; 4727 adap->rawf_cnt = val[1] - val[0] + 1; 4728 } 4729 4730 adap->tids.tid_base = 4731 t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A); 4732 } 4733 4734 /* qids (ingress/egress) returned from firmware can be anywhere 4735 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 4736 * Hence driver needs to allocate memory for this range to 4737 * store the queue info. Get the highest IQFLINT/EQ index returned 4738 * in FW_EQ_*_CMD.alloc command. 4739 */ 4740 params[0] = FW_PARAM_PFVF(EQ_END); 4741 params[1] = FW_PARAM_PFVF(IQFLINT_END); 4742 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4743 if (ret < 0) 4744 goto bye; 4745 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 4746 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 4747 4748 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 4749 sizeof(*adap->sge.egr_map), GFP_KERNEL); 4750 if (!adap->sge.egr_map) { 4751 ret = -ENOMEM; 4752 goto bye; 4753 } 4754 4755 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 4756 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 4757 if (!adap->sge.ingr_map) { 4758 ret = -ENOMEM; 4759 goto bye; 4760 } 4761 4762 /* Allocate the memory for the vaious egress queue bitmaps 4763 * ie starving_fl, txq_maperr and blocked_fl. 4764 */ 4765 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4766 sizeof(long), GFP_KERNEL); 4767 if (!adap->sge.starving_fl) { 4768 ret = -ENOMEM; 4769 goto bye; 4770 } 4771 4772 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4773 sizeof(long), GFP_KERNEL); 4774 if (!adap->sge.txq_maperr) { 4775 ret = -ENOMEM; 4776 goto bye; 4777 } 4778 4779 #ifdef CONFIG_DEBUG_FS 4780 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4781 sizeof(long), GFP_KERNEL); 4782 if (!adap->sge.blocked_fl) { 4783 ret = -ENOMEM; 4784 goto bye; 4785 } 4786 #endif 4787 4788 params[0] = FW_PARAM_PFVF(CLIP_START); 4789 params[1] = FW_PARAM_PFVF(CLIP_END); 4790 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4791 if (ret < 0) 4792 goto bye; 4793 adap->clipt_start = val[0]; 4794 adap->clipt_end = val[1]; 4795 4796 /* Get the supported number of traffic classes */ 4797 params[0] = FW_PARAM_DEV(NUM_TM_CLASS); 4798 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 4799 if (ret < 0) { 4800 /* We couldn't retrieve the number of Traffic Classes 4801 * supported by the hardware/firmware. So we hard 4802 * code it here. 4803 */ 4804 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16; 4805 } else { 4806 adap->params.nsched_cls = val[0]; 4807 } 4808 4809 /* query params related to active filter region */ 4810 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 4811 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 4812 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4813 /* If Active filter size is set we enable establishing 4814 * offload connection through firmware work request 4815 */ 4816 if ((val[0] != val[1]) && (ret >= 0)) { 4817 adap->flags |= CXGB4_FW_OFLD_CONN; 4818 adap->tids.aftid_base = val[0]; 4819 adap->tids.aftid_end = val[1]; 4820 } 4821 4822 /* If we're running on newer firmware, let it know that we're 4823 * prepared to deal with encapsulated CPL messages. Older 4824 * firmware won't understand this and we'll just get 4825 * unencapsulated messages ... 4826 */ 4827 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 4828 val[0] = 1; 4829 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 4830 4831 /* 4832 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 4833 * capability. Earlier versions of the firmware didn't have the 4834 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 4835 * permission to use ULPTX MEMWRITE DSGL. 4836 */ 4837 if (is_t4(adap->params.chip)) { 4838 adap->params.ulptx_memwrite_dsgl = false; 4839 } else { 4840 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 4841 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4842 1, params, val); 4843 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 4844 } 4845 4846 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */ 4847 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 4848 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4849 1, params, val); 4850 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0); 4851 4852 /* See if FW supports FW_FILTER2 work request */ 4853 if (is_t4(adap->params.chip)) { 4854 adap->params.filter2_wr_support = 0; 4855 } else { 4856 params[0] = FW_PARAM_DEV(FILTER2_WR); 4857 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4858 1, params, val); 4859 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0); 4860 } 4861 4862 /* Check if FW supports returning vin and smt index. 4863 * If this is not supported, driver will interpret 4864 * these values from viid. 4865 */ 4866 params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 4867 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4868 1, params, val); 4869 adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0); 4870 4871 /* 4872 * Get device capabilities so we can determine what resources we need 4873 * to manage. 4874 */ 4875 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4876 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4877 FW_CMD_REQUEST_F | FW_CMD_READ_F); 4878 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4879 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 4880 &caps_cmd); 4881 if (ret < 0) 4882 goto bye; 4883 4884 /* hash filter has some mandatory register settings to be tested and for 4885 * that it needs to test whether offload is enabled or not, hence 4886 * checking and setting it here. 4887 */ 4888 if (caps_cmd.ofldcaps) 4889 adap->params.offload = 1; 4890 4891 if (caps_cmd.ofldcaps || 4892 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) || 4893 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD))) { 4894 /* query offload-related parameters */ 4895 params[0] = FW_PARAM_DEV(NTID); 4896 params[1] = FW_PARAM_PFVF(SERVER_START); 4897 params[2] = FW_PARAM_PFVF(SERVER_END); 4898 params[3] = FW_PARAM_PFVF(TDDP_START); 4899 params[4] = FW_PARAM_PFVF(TDDP_END); 4900 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 4901 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4902 params, val); 4903 if (ret < 0) 4904 goto bye; 4905 adap->tids.ntids = val[0]; 4906 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 4907 adap->tids.stid_base = val[1]; 4908 adap->tids.nstids = val[2] - val[1] + 1; 4909 /* 4910 * Setup server filter region. Divide the available filter 4911 * region into two parts. Regular filters get 1/3rd and server 4912 * filters get 2/3rd part. This is only enabled if workarond 4913 * path is enabled. 4914 * 1. For regular filters. 4915 * 2. Server filter: This are special filters which are used 4916 * to redirect SYN packets to offload queue. 4917 */ 4918 if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) { 4919 adap->tids.sftid_base = adap->tids.ftid_base + 4920 DIV_ROUND_UP(adap->tids.nftids, 3); 4921 adap->tids.nsftids = adap->tids.nftids - 4922 DIV_ROUND_UP(adap->tids.nftids, 3); 4923 adap->tids.nftids = adap->tids.sftid_base - 4924 adap->tids.ftid_base; 4925 } 4926 adap->vres.ddp.start = val[3]; 4927 adap->vres.ddp.size = val[4] - val[3] + 1; 4928 adap->params.ofldq_wr_cred = val[5]; 4929 4930 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 4931 init_hash_filter(adap); 4932 } else { 4933 adap->num_ofld_uld += 1; 4934 } 4935 4936 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD)) { 4937 params[0] = FW_PARAM_PFVF(ETHOFLD_START); 4938 params[1] = FW_PARAM_PFVF(ETHOFLD_END); 4939 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4940 params, val); 4941 if (!ret) { 4942 adap->tids.eotid_base = val[0]; 4943 adap->tids.neotids = min_t(u32, MAX_ATIDS, 4944 val[1] - val[0] + 1); 4945 adap->params.ethofld = 1; 4946 } 4947 } 4948 } 4949 if (caps_cmd.rdmacaps) { 4950 params[0] = FW_PARAM_PFVF(STAG_START); 4951 params[1] = FW_PARAM_PFVF(STAG_END); 4952 params[2] = FW_PARAM_PFVF(RQ_START); 4953 params[3] = FW_PARAM_PFVF(RQ_END); 4954 params[4] = FW_PARAM_PFVF(PBL_START); 4955 params[5] = FW_PARAM_PFVF(PBL_END); 4956 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4957 params, val); 4958 if (ret < 0) 4959 goto bye; 4960 adap->vres.stag.start = val[0]; 4961 adap->vres.stag.size = val[1] - val[0] + 1; 4962 adap->vres.rq.start = val[2]; 4963 adap->vres.rq.size = val[3] - val[2] + 1; 4964 adap->vres.pbl.start = val[4]; 4965 adap->vres.pbl.size = val[5] - val[4] + 1; 4966 4967 params[0] = FW_PARAM_PFVF(SRQ_START); 4968 params[1] = FW_PARAM_PFVF(SRQ_END); 4969 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4970 params, val); 4971 if (!ret) { 4972 adap->vres.srq.start = val[0]; 4973 adap->vres.srq.size = val[1] - val[0] + 1; 4974 } 4975 if (adap->vres.srq.size) { 4976 adap->srq = t4_init_srq(adap->vres.srq.size); 4977 if (!adap->srq) 4978 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n"); 4979 } 4980 4981 params[0] = FW_PARAM_PFVF(SQRQ_START); 4982 params[1] = FW_PARAM_PFVF(SQRQ_END); 4983 params[2] = FW_PARAM_PFVF(CQ_START); 4984 params[3] = FW_PARAM_PFVF(CQ_END); 4985 params[4] = FW_PARAM_PFVF(OCQ_START); 4986 params[5] = FW_PARAM_PFVF(OCQ_END); 4987 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 4988 val); 4989 if (ret < 0) 4990 goto bye; 4991 adap->vres.qp.start = val[0]; 4992 adap->vres.qp.size = val[1] - val[0] + 1; 4993 adap->vres.cq.start = val[2]; 4994 adap->vres.cq.size = val[3] - val[2] + 1; 4995 adap->vres.ocq.start = val[4]; 4996 adap->vres.ocq.size = val[5] - val[4] + 1; 4997 4998 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 4999 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5000 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 5001 val); 5002 if (ret < 0) { 5003 adap->params.max_ordird_qp = 8; 5004 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 5005 ret = 0; 5006 } else { 5007 adap->params.max_ordird_qp = val[0]; 5008 adap->params.max_ird_adapter = val[1]; 5009 } 5010 dev_info(adap->pdev_dev, 5011 "max_ordird_qp %d max_ird_adapter %d\n", 5012 adap->params.max_ordird_qp, 5013 adap->params.max_ird_adapter); 5014 5015 /* Enable write_with_immediate if FW supports it */ 5016 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM); 5017 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 5018 val); 5019 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0); 5020 5021 /* Enable write_cmpl if FW supports it */ 5022 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR); 5023 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 5024 val); 5025 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0); 5026 adap->num_ofld_uld += 2; 5027 } 5028 if (caps_cmd.iscsicaps) { 5029 params[0] = FW_PARAM_PFVF(ISCSI_START); 5030 params[1] = FW_PARAM_PFVF(ISCSI_END); 5031 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 5032 params, val); 5033 if (ret < 0) 5034 goto bye; 5035 adap->vres.iscsi.start = val[0]; 5036 adap->vres.iscsi.size = val[1] - val[0] + 1; 5037 if (is_t6(adap->params.chip)) { 5038 params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START); 5039 params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END); 5040 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 5041 params, val); 5042 if (!ret) { 5043 adap->vres.ppod_edram.start = val[0]; 5044 adap->vres.ppod_edram.size = 5045 val[1] - val[0] + 1; 5046 5047 dev_info(adap->pdev_dev, 5048 "ppod edram start 0x%x end 0x%x size 0x%x\n", 5049 val[0], val[1], 5050 adap->vres.ppod_edram.size); 5051 } 5052 } 5053 /* LIO target and cxgb4i initiaitor */ 5054 adap->num_ofld_uld += 2; 5055 } 5056 if (caps_cmd.cryptocaps) { 5057 if (ntohs(caps_cmd.cryptocaps) & 5058 FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) { 5059 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE); 5060 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5061 2, params, val); 5062 if (ret < 0) { 5063 if (ret != -EINVAL) 5064 goto bye; 5065 } else { 5066 adap->vres.ncrypto_fc = val[0]; 5067 } 5068 adap->num_ofld_uld += 1; 5069 } 5070 if (ntohs(caps_cmd.cryptocaps) & 5071 FW_CAPS_CONFIG_TLS_INLINE) { 5072 params[0] = FW_PARAM_PFVF(TLS_START); 5073 params[1] = FW_PARAM_PFVF(TLS_END); 5074 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5075 2, params, val); 5076 if (ret < 0) 5077 goto bye; 5078 adap->vres.key.start = val[0]; 5079 adap->vres.key.size = val[1] - val[0] + 1; 5080 adap->num_uld += 1; 5081 } 5082 adap->params.crypto = ntohs(caps_cmd.cryptocaps); 5083 } 5084 5085 /* The MTU/MSS Table is initialized by now, so load their values. If 5086 * we're initializing the adapter, then we'll make any modifications 5087 * we want to the MTU/MSS Table and also initialize the congestion 5088 * parameters. 5089 */ 5090 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 5091 if (state != DEV_STATE_INIT) { 5092 int i; 5093 5094 /* The default MTU Table contains values 1492 and 1500. 5095 * However, for TCP, it's better to have two values which are 5096 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 5097 * This allows us to have a TCP Data Payload which is a 5098 * multiple of 8 regardless of what combination of TCP Options 5099 * are in use (always a multiple of 4 bytes) which is 5100 * important for performance reasons. For instance, if no 5101 * options are in use, then we have a 20-byte IP header and a 5102 * 20-byte TCP header. In this case, a 1500-byte MSS would 5103 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 5104 * which is not a multiple of 8. So using an MSS of 1488 in 5105 * this case results in a TCP Data Payload of 1448 bytes which 5106 * is a multiple of 8. On the other hand, if 12-byte TCP Time 5107 * Stamps have been negotiated, then an MTU of 1500 bytes 5108 * results in a TCP Data Payload of 1448 bytes which, as 5109 * above, is a multiple of 8 bytes ... 5110 */ 5111 for (i = 0; i < NMTUS; i++) 5112 if (adap->params.mtus[i] == 1492) { 5113 adap->params.mtus[i] = 1488; 5114 break; 5115 } 5116 5117 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 5118 adap->params.b_wnd); 5119 } 5120 t4_init_sge_params(adap); 5121 adap->flags |= CXGB4_FW_OK; 5122 t4_init_tp_params(adap, true); 5123 return 0; 5124 5125 /* 5126 * Something bad happened. If a command timed out or failed with EIO 5127 * FW does not operate within its spec or something catastrophic 5128 * happened to HW/FW, stop issuing commands. 5129 */ 5130 bye: 5131 adap_free_hma_mem(adap); 5132 kfree(adap->sge.egr_map); 5133 kfree(adap->sge.ingr_map); 5134 kfree(adap->sge.starving_fl); 5135 kfree(adap->sge.txq_maperr); 5136 #ifdef CONFIG_DEBUG_FS 5137 kfree(adap->sge.blocked_fl); 5138 #endif 5139 if (ret != -ETIMEDOUT && ret != -EIO) 5140 t4_fw_bye(adap, adap->mbox); 5141 return ret; 5142 } 5143 5144 /* EEH callbacks */ 5145 5146 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 5147 pci_channel_state_t state) 5148 { 5149 int i; 5150 struct adapter *adap = pci_get_drvdata(pdev); 5151 5152 if (!adap) 5153 goto out; 5154 5155 rtnl_lock(); 5156 adap->flags &= ~CXGB4_FW_OK; 5157 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 5158 spin_lock(&adap->stats_lock); 5159 for_each_port(adap, i) { 5160 struct net_device *dev = adap->port[i]; 5161 if (dev) { 5162 netif_device_detach(dev); 5163 netif_carrier_off(dev); 5164 } 5165 } 5166 spin_unlock(&adap->stats_lock); 5167 disable_interrupts(adap); 5168 if (adap->flags & CXGB4_FULL_INIT_DONE) 5169 cxgb_down(adap); 5170 rtnl_unlock(); 5171 if ((adap->flags & CXGB4_DEV_ENABLED)) { 5172 pci_disable_device(pdev); 5173 adap->flags &= ~CXGB4_DEV_ENABLED; 5174 } 5175 out: return state == pci_channel_io_perm_failure ? 5176 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 5177 } 5178 5179 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 5180 { 5181 int i, ret; 5182 struct fw_caps_config_cmd c; 5183 struct adapter *adap = pci_get_drvdata(pdev); 5184 5185 if (!adap) { 5186 pci_restore_state(pdev); 5187 pci_save_state(pdev); 5188 return PCI_ERS_RESULT_RECOVERED; 5189 } 5190 5191 if (!(adap->flags & CXGB4_DEV_ENABLED)) { 5192 if (pci_enable_device(pdev)) { 5193 dev_err(&pdev->dev, "Cannot reenable PCI " 5194 "device after reset\n"); 5195 return PCI_ERS_RESULT_DISCONNECT; 5196 } 5197 adap->flags |= CXGB4_DEV_ENABLED; 5198 } 5199 5200 pci_set_master(pdev); 5201 pci_restore_state(pdev); 5202 pci_save_state(pdev); 5203 5204 if (t4_wait_dev_ready(adap->regs) < 0) 5205 return PCI_ERS_RESULT_DISCONNECT; 5206 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 5207 return PCI_ERS_RESULT_DISCONNECT; 5208 adap->flags |= CXGB4_FW_OK; 5209 if (adap_init1(adap, &c)) 5210 return PCI_ERS_RESULT_DISCONNECT; 5211 5212 for_each_port(adap, i) { 5213 struct port_info *pi = adap2pinfo(adap, i); 5214 u8 vivld = 0, vin = 0; 5215 5216 ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1, 5217 NULL, NULL, &vivld, &vin); 5218 if (ret < 0) 5219 return PCI_ERS_RESULT_DISCONNECT; 5220 pi->viid = ret; 5221 pi->xact_addr_filt = -1; 5222 /* If fw supports returning the VIN as part of FW_VI_CMD, 5223 * save the returned values. 5224 */ 5225 if (adap->params.viid_smt_extn_support) { 5226 pi->vivld = vivld; 5227 pi->vin = vin; 5228 } else { 5229 /* Retrieve the values from VIID */ 5230 pi->vivld = FW_VIID_VIVLD_G(pi->viid); 5231 pi->vin = FW_VIID_VIN_G(pi->viid); 5232 } 5233 } 5234 5235 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 5236 adap->params.b_wnd); 5237 setup_memwin(adap); 5238 if (cxgb_up(adap)) 5239 return PCI_ERS_RESULT_DISCONNECT; 5240 return PCI_ERS_RESULT_RECOVERED; 5241 } 5242 5243 static void eeh_resume(struct pci_dev *pdev) 5244 { 5245 int i; 5246 struct adapter *adap = pci_get_drvdata(pdev); 5247 5248 if (!adap) 5249 return; 5250 5251 rtnl_lock(); 5252 for_each_port(adap, i) { 5253 struct net_device *dev = adap->port[i]; 5254 if (dev) { 5255 if (netif_running(dev)) { 5256 link_start(dev); 5257 cxgb_set_rxmode(dev); 5258 } 5259 netif_device_attach(dev); 5260 } 5261 } 5262 rtnl_unlock(); 5263 } 5264 5265 static void eeh_reset_prepare(struct pci_dev *pdev) 5266 { 5267 struct adapter *adapter = pci_get_drvdata(pdev); 5268 int i; 5269 5270 if (adapter->pf != 4) 5271 return; 5272 5273 adapter->flags &= ~CXGB4_FW_OK; 5274 5275 notify_ulds(adapter, CXGB4_STATE_DOWN); 5276 5277 for_each_port(adapter, i) 5278 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5279 cxgb_close(adapter->port[i]); 5280 5281 disable_interrupts(adapter); 5282 cxgb4_free_mps_ref_entries(adapter); 5283 5284 adap_free_hma_mem(adapter); 5285 5286 if (adapter->flags & CXGB4_FULL_INIT_DONE) 5287 cxgb_down(adapter); 5288 } 5289 5290 static void eeh_reset_done(struct pci_dev *pdev) 5291 { 5292 struct adapter *adapter = pci_get_drvdata(pdev); 5293 int err, i; 5294 5295 if (adapter->pf != 4) 5296 return; 5297 5298 err = t4_wait_dev_ready(adapter->regs); 5299 if (err < 0) { 5300 dev_err(adapter->pdev_dev, 5301 "Device not ready, err %d", err); 5302 return; 5303 } 5304 5305 setup_memwin(adapter); 5306 5307 err = adap_init0(adapter, 1); 5308 if (err) { 5309 dev_err(adapter->pdev_dev, 5310 "Adapter init failed, err %d", err); 5311 return; 5312 } 5313 5314 setup_memwin_rdma(adapter); 5315 5316 if (adapter->flags & CXGB4_FW_OK) { 5317 err = t4_port_init(adapter, adapter->pf, adapter->pf, 0); 5318 if (err) { 5319 dev_err(adapter->pdev_dev, 5320 "Port init failed, err %d", err); 5321 return; 5322 } 5323 } 5324 5325 err = cfg_queues(adapter); 5326 if (err) { 5327 dev_err(adapter->pdev_dev, 5328 "Config queues failed, err %d", err); 5329 return; 5330 } 5331 5332 cxgb4_init_mps_ref_entries(adapter); 5333 5334 err = setup_fw_sge_queues(adapter); 5335 if (err) { 5336 dev_err(adapter->pdev_dev, 5337 "FW sge queue allocation failed, err %d", err); 5338 return; 5339 } 5340 5341 for_each_port(adapter, i) 5342 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5343 cxgb_open(adapter->port[i]); 5344 } 5345 5346 static const struct pci_error_handlers cxgb4_eeh = { 5347 .error_detected = eeh_err_detected, 5348 .slot_reset = eeh_slot_reset, 5349 .resume = eeh_resume, 5350 .reset_prepare = eeh_reset_prepare, 5351 .reset_done = eeh_reset_done, 5352 }; 5353 5354 /* Return true if the Link Configuration supports "High Speeds" (those greater 5355 * than 1Gb/s). 5356 */ 5357 static inline bool is_x_10g_port(const struct link_config *lc) 5358 { 5359 unsigned int speeds, high_speeds; 5360 5361 speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps)); 5362 high_speeds = speeds & 5363 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G); 5364 5365 return high_speeds != 0; 5366 } 5367 5368 /* Perform default configuration of DMA queues depending on the number and type 5369 * of ports we found and the number of available CPUs. Most settings can be 5370 * modified by the admin prior to actual use. 5371 */ 5372 static int cfg_queues(struct adapter *adap) 5373 { 5374 u32 avail_qsets, avail_eth_qsets, avail_uld_qsets; 5375 u32 i, n10g = 0, qidx = 0, n1g = 0; 5376 u32 ncpus = num_online_cpus(); 5377 u32 niqflint, neq, num_ulds; 5378 struct sge *s = &adap->sge; 5379 u32 q10g = 0, q1g; 5380 5381 /* Reduce memory usage in kdump environment, disable all offload. */ 5382 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) { 5383 adap->params.offload = 0; 5384 adap->params.crypto = 0; 5385 adap->params.ethofld = 0; 5386 } 5387 5388 /* Calculate the number of Ethernet Queue Sets available based on 5389 * resources provisioned for us. We always have an Asynchronous 5390 * Firmware Event Ingress Queue. If we're operating in MSI or Legacy 5391 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt 5392 * Ingress Queue. Meanwhile, we need two Egress Queues for each 5393 * Queue Set: one for the Free List and one for the Ethernet TX Queue. 5394 * 5395 * Note that we should also take into account all of the various 5396 * Offload Queues. But, in any situation where we're operating in 5397 * a Resource Constrained Provisioning environment, doing any Offload 5398 * at all is problematic ... 5399 */ 5400 niqflint = adap->params.pfres.niqflint - 1; 5401 if (!(adap->flags & CXGB4_USING_MSIX)) 5402 niqflint--; 5403 neq = adap->params.pfres.neq / 2; 5404 avail_qsets = min(niqflint, neq); 5405 5406 if (avail_qsets < adap->params.nports) { 5407 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n", 5408 avail_qsets, adap->params.nports); 5409 return -ENOMEM; 5410 } 5411 5412 /* Count the number of 10Gb/s or better ports */ 5413 for_each_port(adap, i) 5414 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 5415 5416 avail_eth_qsets = min_t(u32, avail_qsets, MAX_ETH_QSETS); 5417 5418 /* We default to 1 queue per non-10G port and up to # of cores queues 5419 * per 10G port. 5420 */ 5421 if (n10g) 5422 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g; 5423 5424 n1g = adap->params.nports - n10g; 5425 #ifdef CONFIG_CHELSIO_T4_DCB 5426 /* For Data Center Bridging support we need to be able to support up 5427 * to 8 Traffic Priorities; each of which will be assigned to its 5428 * own TX Queue in order to prevent Head-Of-Line Blocking. 5429 */ 5430 q1g = 8; 5431 if (adap->params.nports * 8 > avail_eth_qsets) { 5432 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n", 5433 avail_eth_qsets, adap->params.nports * 8); 5434 return -ENOMEM; 5435 } 5436 5437 if (adap->params.nports * ncpus < avail_eth_qsets) 5438 q10g = max(8U, ncpus); 5439 else 5440 q10g = max(8U, q10g); 5441 5442 while ((q10g * n10g) > (avail_eth_qsets - n1g * q1g)) 5443 q10g--; 5444 5445 #else /* !CONFIG_CHELSIO_T4_DCB */ 5446 q1g = 1; 5447 q10g = min(q10g, ncpus); 5448 #endif /* !CONFIG_CHELSIO_T4_DCB */ 5449 if (is_kdump_kernel()) { 5450 q10g = 1; 5451 q1g = 1; 5452 } 5453 5454 for_each_port(adap, i) { 5455 struct port_info *pi = adap2pinfo(adap, i); 5456 5457 pi->first_qset = qidx; 5458 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : q1g; 5459 qidx += pi->nqsets; 5460 } 5461 5462 s->ethqsets = qidx; 5463 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 5464 avail_qsets -= qidx; 5465 5466 if (is_uld(adap)) { 5467 /* For offload we use 1 queue/channel if all ports are up to 1G, 5468 * otherwise we divide all available queues amongst the channels 5469 * capped by the number of available cores. 5470 */ 5471 num_ulds = adap->num_uld + adap->num_ofld_uld; 5472 i = min_t(u32, MAX_OFLD_QSETS, ncpus); 5473 avail_uld_qsets = roundup(i, adap->params.nports); 5474 if (avail_qsets < num_ulds * adap->params.nports) { 5475 adap->params.offload = 0; 5476 adap->params.crypto = 0; 5477 s->ofldqsets = 0; 5478 } else if (avail_qsets < num_ulds * avail_uld_qsets || !n10g) { 5479 s->ofldqsets = adap->params.nports; 5480 } else { 5481 s->ofldqsets = avail_uld_qsets; 5482 } 5483 5484 avail_qsets -= num_ulds * s->ofldqsets; 5485 } 5486 5487 /* ETHOFLD Queues used for QoS offload should follow same 5488 * allocation scheme as normal Ethernet Queues. 5489 */ 5490 if (is_ethofld(adap)) { 5491 if (avail_qsets < s->max_ethqsets) { 5492 adap->params.ethofld = 0; 5493 s->eoqsets = 0; 5494 } else { 5495 s->eoqsets = s->max_ethqsets; 5496 } 5497 avail_qsets -= s->eoqsets; 5498 } 5499 5500 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 5501 struct sge_eth_rxq *r = &s->ethrxq[i]; 5502 5503 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 5504 r->fl.size = 72; 5505 } 5506 5507 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 5508 s->ethtxq[i].q.size = 1024; 5509 5510 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 5511 s->ctrlq[i].q.size = 512; 5512 5513 if (!is_t4(adap->params.chip)) 5514 s->ptptxq.q.size = 8; 5515 5516 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 5517 init_rspq(adap, &s->intrq, 0, 1, 512, 64); 5518 5519 return 0; 5520 } 5521 5522 /* 5523 * Reduce the number of Ethernet queues across all ports to at most n. 5524 * n provides at least one queue per port. 5525 */ 5526 static void reduce_ethqs(struct adapter *adap, int n) 5527 { 5528 int i; 5529 struct port_info *pi; 5530 5531 while (n < adap->sge.ethqsets) 5532 for_each_port(adap, i) { 5533 pi = adap2pinfo(adap, i); 5534 if (pi->nqsets > 1) { 5535 pi->nqsets--; 5536 adap->sge.ethqsets--; 5537 if (adap->sge.ethqsets <= n) 5538 break; 5539 } 5540 } 5541 5542 n = 0; 5543 for_each_port(adap, i) { 5544 pi = adap2pinfo(adap, i); 5545 pi->first_qset = n; 5546 n += pi->nqsets; 5547 } 5548 } 5549 5550 static int alloc_msix_info(struct adapter *adap, u32 num_vec) 5551 { 5552 struct msix_info *msix_info; 5553 5554 msix_info = kcalloc(num_vec, sizeof(*msix_info), GFP_KERNEL); 5555 if (!msix_info) 5556 return -ENOMEM; 5557 5558 adap->msix_bmap.msix_bmap = kcalloc(BITS_TO_LONGS(num_vec), 5559 sizeof(long), GFP_KERNEL); 5560 if (!adap->msix_bmap.msix_bmap) { 5561 kfree(msix_info); 5562 return -ENOMEM; 5563 } 5564 5565 spin_lock_init(&adap->msix_bmap.lock); 5566 adap->msix_bmap.mapsize = num_vec; 5567 5568 adap->msix_info = msix_info; 5569 return 0; 5570 } 5571 5572 static void free_msix_info(struct adapter *adap) 5573 { 5574 kfree(adap->msix_bmap.msix_bmap); 5575 kfree(adap->msix_info); 5576 } 5577 5578 int cxgb4_get_msix_idx_from_bmap(struct adapter *adap) 5579 { 5580 struct msix_bmap *bmap = &adap->msix_bmap; 5581 unsigned int msix_idx; 5582 unsigned long flags; 5583 5584 spin_lock_irqsave(&bmap->lock, flags); 5585 msix_idx = find_first_zero_bit(bmap->msix_bmap, bmap->mapsize); 5586 if (msix_idx < bmap->mapsize) { 5587 __set_bit(msix_idx, bmap->msix_bmap); 5588 } else { 5589 spin_unlock_irqrestore(&bmap->lock, flags); 5590 return -ENOSPC; 5591 } 5592 5593 spin_unlock_irqrestore(&bmap->lock, flags); 5594 return msix_idx; 5595 } 5596 5597 void cxgb4_free_msix_idx_in_bmap(struct adapter *adap, 5598 unsigned int msix_idx) 5599 { 5600 struct msix_bmap *bmap = &adap->msix_bmap; 5601 unsigned long flags; 5602 5603 spin_lock_irqsave(&bmap->lock, flags); 5604 __clear_bit(msix_idx, bmap->msix_bmap); 5605 spin_unlock_irqrestore(&bmap->lock, flags); 5606 } 5607 5608 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 5609 #define EXTRA_VECS 2 5610 5611 static int enable_msix(struct adapter *adap) 5612 { 5613 u32 eth_need, uld_need = 0, ethofld_need = 0; 5614 u32 ethqsets = 0, ofldqsets = 0, eoqsets = 0; 5615 u8 num_uld = 0, nchan = adap->params.nports; 5616 u32 i, want, need, num_vec; 5617 struct sge *s = &adap->sge; 5618 struct msix_entry *entries; 5619 struct port_info *pi; 5620 int allocated, ret; 5621 5622 want = s->max_ethqsets; 5623 #ifdef CONFIG_CHELSIO_T4_DCB 5624 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 5625 * each port. 5626 */ 5627 need = 8 * nchan; 5628 #else 5629 need = nchan; 5630 #endif 5631 eth_need = need; 5632 if (is_uld(adap)) { 5633 num_uld = adap->num_ofld_uld + adap->num_uld; 5634 want += num_uld * s->ofldqsets; 5635 uld_need = num_uld * nchan; 5636 need += uld_need; 5637 } 5638 5639 if (is_ethofld(adap)) { 5640 want += s->eoqsets; 5641 ethofld_need = eth_need; 5642 need += ethofld_need; 5643 } 5644 5645 want += EXTRA_VECS; 5646 need += EXTRA_VECS; 5647 5648 entries = kmalloc_array(want, sizeof(*entries), GFP_KERNEL); 5649 if (!entries) 5650 return -ENOMEM; 5651 5652 for (i = 0; i < want; i++) 5653 entries[i].entry = i; 5654 5655 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 5656 if (allocated < 0) { 5657 /* Disable offload and attempt to get vectors for NIC 5658 * only mode. 5659 */ 5660 want = s->max_ethqsets + EXTRA_VECS; 5661 need = eth_need + EXTRA_VECS; 5662 allocated = pci_enable_msix_range(adap->pdev, entries, 5663 need, want); 5664 if (allocated < 0) { 5665 dev_info(adap->pdev_dev, 5666 "Disabling MSI-X due to insufficient MSI-X vectors\n"); 5667 ret = allocated; 5668 goto out_free; 5669 } 5670 5671 dev_info(adap->pdev_dev, 5672 "Disabling offload due to insufficient MSI-X vectors\n"); 5673 adap->params.offload = 0; 5674 adap->params.crypto = 0; 5675 adap->params.ethofld = 0; 5676 s->ofldqsets = 0; 5677 s->eoqsets = 0; 5678 uld_need = 0; 5679 ethofld_need = 0; 5680 } 5681 5682 num_vec = allocated; 5683 if (num_vec < want) { 5684 /* Distribute available vectors to the various queue groups. 5685 * Every group gets its minimum requirement and NIC gets top 5686 * priority for leftovers. 5687 */ 5688 ethqsets = eth_need; 5689 if (is_uld(adap)) 5690 ofldqsets = nchan; 5691 if (is_ethofld(adap)) 5692 eoqsets = ethofld_need; 5693 5694 num_vec -= need; 5695 while (num_vec) { 5696 if (num_vec < eth_need + ethofld_need || 5697 ethqsets > s->max_ethqsets) 5698 break; 5699 5700 for_each_port(adap, i) { 5701 pi = adap2pinfo(adap, i); 5702 if (pi->nqsets < 2) 5703 continue; 5704 5705 ethqsets++; 5706 num_vec--; 5707 if (ethofld_need) { 5708 eoqsets++; 5709 num_vec--; 5710 } 5711 } 5712 } 5713 5714 if (is_uld(adap)) { 5715 while (num_vec) { 5716 if (num_vec < uld_need || 5717 ofldqsets > s->ofldqsets) 5718 break; 5719 5720 ofldqsets++; 5721 num_vec -= uld_need; 5722 } 5723 } 5724 } else { 5725 ethqsets = s->max_ethqsets; 5726 if (is_uld(adap)) 5727 ofldqsets = s->ofldqsets; 5728 if (is_ethofld(adap)) 5729 eoqsets = s->eoqsets; 5730 } 5731 5732 if (ethqsets < s->max_ethqsets) { 5733 s->max_ethqsets = ethqsets; 5734 reduce_ethqs(adap, ethqsets); 5735 } 5736 5737 if (is_uld(adap)) { 5738 s->ofldqsets = ofldqsets; 5739 s->nqs_per_uld = s->ofldqsets; 5740 } 5741 5742 if (is_ethofld(adap)) 5743 s->eoqsets = eoqsets; 5744 5745 /* map for msix */ 5746 ret = alloc_msix_info(adap, allocated); 5747 if (ret) 5748 goto out_disable_msix; 5749 5750 for (i = 0; i < allocated; i++) { 5751 adap->msix_info[i].vec = entries[i].vector; 5752 adap->msix_info[i].idx = i; 5753 } 5754 5755 dev_info(adap->pdev_dev, 5756 "%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d\n", 5757 allocated, s->max_ethqsets, s->eoqsets, s->nqs_per_uld); 5758 5759 kfree(entries); 5760 return 0; 5761 5762 out_disable_msix: 5763 pci_disable_msix(adap->pdev); 5764 5765 out_free: 5766 kfree(entries); 5767 return ret; 5768 } 5769 5770 #undef EXTRA_VECS 5771 5772 static int init_rss(struct adapter *adap) 5773 { 5774 unsigned int i; 5775 int err; 5776 5777 err = t4_init_rss_mode(adap, adap->mbox); 5778 if (err) 5779 return err; 5780 5781 for_each_port(adap, i) { 5782 struct port_info *pi = adap2pinfo(adap, i); 5783 5784 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 5785 if (!pi->rss) 5786 return -ENOMEM; 5787 } 5788 return 0; 5789 } 5790 5791 /* Dump basic information about the adapter */ 5792 static void print_adapter_info(struct adapter *adapter) 5793 { 5794 /* Hardware/Firmware/etc. Version/Revision IDs */ 5795 t4_dump_version_info(adapter); 5796 5797 /* Software/Hardware configuration */ 5798 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n", 5799 is_offload(adapter) ? "R" : "", 5800 ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" : 5801 (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""), 5802 is_offload(adapter) ? "Offload" : "non-Offload"); 5803 } 5804 5805 static void print_port_info(const struct net_device *dev) 5806 { 5807 char buf[80]; 5808 char *bufp = buf; 5809 const struct port_info *pi = netdev_priv(dev); 5810 const struct adapter *adap = pi->adapter; 5811 5812 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M) 5813 bufp += sprintf(bufp, "100M/"); 5814 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G) 5815 bufp += sprintf(bufp, "1G/"); 5816 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G) 5817 bufp += sprintf(bufp, "10G/"); 5818 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G) 5819 bufp += sprintf(bufp, "25G/"); 5820 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G) 5821 bufp += sprintf(bufp, "40G/"); 5822 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G) 5823 bufp += sprintf(bufp, "50G/"); 5824 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G) 5825 bufp += sprintf(bufp, "100G/"); 5826 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G) 5827 bufp += sprintf(bufp, "200G/"); 5828 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G) 5829 bufp += sprintf(bufp, "400G/"); 5830 if (bufp != buf) 5831 --bufp; 5832 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 5833 5834 netdev_info(dev, "%s: Chelsio %s (%s) %s\n", 5835 dev->name, adap->params.vpd.id, adap->name, buf); 5836 } 5837 5838 /* 5839 * Free the following resources: 5840 * - memory used for tables 5841 * - MSI/MSI-X 5842 * - net devices 5843 * - resources FW is holding for us 5844 */ 5845 static void free_some_resources(struct adapter *adapter) 5846 { 5847 unsigned int i; 5848 5849 kvfree(adapter->smt); 5850 kvfree(adapter->l2t); 5851 kvfree(adapter->srq); 5852 t4_cleanup_sched(adapter); 5853 kvfree(adapter->tids.tid_tab); 5854 cxgb4_cleanup_tc_matchall(adapter); 5855 cxgb4_cleanup_tc_mqprio(adapter); 5856 cxgb4_cleanup_tc_flower(adapter); 5857 cxgb4_cleanup_tc_u32(adapter); 5858 kfree(adapter->sge.egr_map); 5859 kfree(adapter->sge.ingr_map); 5860 kfree(adapter->sge.starving_fl); 5861 kfree(adapter->sge.txq_maperr); 5862 #ifdef CONFIG_DEBUG_FS 5863 kfree(adapter->sge.blocked_fl); 5864 #endif 5865 disable_msi(adapter); 5866 5867 for_each_port(adapter, i) 5868 if (adapter->port[i]) { 5869 struct port_info *pi = adap2pinfo(adapter, i); 5870 5871 if (pi->viid != 0) 5872 t4_free_vi(adapter, adapter->mbox, adapter->pf, 5873 0, pi->viid); 5874 kfree(adap2pinfo(adapter, i)->rss); 5875 free_netdev(adapter->port[i]); 5876 } 5877 if (adapter->flags & CXGB4_FW_OK) 5878 t4_fw_bye(adapter, adapter->pf); 5879 } 5880 5881 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \ 5882 NETIF_F_GSO_UDP_L4) 5883 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 5884 NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 5885 #define SEGMENT_SIZE 128 5886 5887 static int t4_get_chip_type(struct adapter *adap, int ver) 5888 { 5889 u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A)); 5890 5891 switch (ver) { 5892 case CHELSIO_T4: 5893 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 5894 case CHELSIO_T5: 5895 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 5896 case CHELSIO_T6: 5897 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 5898 default: 5899 break; 5900 } 5901 return -EINVAL; 5902 } 5903 5904 #ifdef CONFIG_PCI_IOV 5905 static void cxgb4_mgmt_setup(struct net_device *dev) 5906 { 5907 dev->type = ARPHRD_NONE; 5908 dev->mtu = 0; 5909 dev->hard_header_len = 0; 5910 dev->addr_len = 0; 5911 dev->tx_queue_len = 0; 5912 dev->flags |= IFF_NOARP; 5913 dev->priv_flags |= IFF_NO_QUEUE; 5914 5915 /* Initialize the device structure. */ 5916 dev->netdev_ops = &cxgb4_mgmt_netdev_ops; 5917 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops; 5918 } 5919 5920 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs) 5921 { 5922 struct adapter *adap = pci_get_drvdata(pdev); 5923 int err = 0; 5924 int current_vfs = pci_num_vf(pdev); 5925 u32 pcie_fw; 5926 5927 pcie_fw = readl(adap->regs + PCIE_FW_A); 5928 /* Check if fw is initialized */ 5929 if (!(pcie_fw & PCIE_FW_INIT_F)) { 5930 dev_warn(&pdev->dev, "Device not initialized\n"); 5931 return -EOPNOTSUPP; 5932 } 5933 5934 /* If any of the VF's is already assigned to Guest OS, then 5935 * SRIOV for the same cannot be modified 5936 */ 5937 if (current_vfs && pci_vfs_assigned(pdev)) { 5938 dev_err(&pdev->dev, 5939 "Cannot modify SR-IOV while VFs are assigned\n"); 5940 return current_vfs; 5941 } 5942 /* Note that the upper-level code ensures that we're never called with 5943 * a non-zero "num_vfs" when we already have VFs instantiated. But 5944 * it never hurts to code defensively. 5945 */ 5946 if (num_vfs != 0 && current_vfs != 0) 5947 return -EBUSY; 5948 5949 /* Nothing to do for no change. */ 5950 if (num_vfs == current_vfs) 5951 return num_vfs; 5952 5953 /* Disable SRIOV when zero is passed. */ 5954 if (!num_vfs) { 5955 pci_disable_sriov(pdev); 5956 /* free VF Management Interface */ 5957 unregister_netdev(adap->port[0]); 5958 free_netdev(adap->port[0]); 5959 adap->port[0] = NULL; 5960 5961 /* free VF resources */ 5962 adap->num_vfs = 0; 5963 kfree(adap->vfinfo); 5964 adap->vfinfo = NULL; 5965 return 0; 5966 } 5967 5968 if (!current_vfs) { 5969 struct fw_pfvf_cmd port_cmd, port_rpl; 5970 struct net_device *netdev; 5971 unsigned int pmask, port; 5972 struct pci_dev *pbridge; 5973 struct port_info *pi; 5974 char name[IFNAMSIZ]; 5975 u32 devcap2; 5976 u16 flags; 5977 5978 /* If we want to instantiate Virtual Functions, then our 5979 * parent bridge's PCI-E needs to support Alternative Routing 5980 * ID (ARI) because our VFs will show up at function offset 8 5981 * and above. 5982 */ 5983 pbridge = pdev->bus->self; 5984 pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags); 5985 pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2); 5986 5987 if ((flags & PCI_EXP_FLAGS_VERS) < 2 || 5988 !(devcap2 & PCI_EXP_DEVCAP2_ARI)) { 5989 /* Our parent bridge does not support ARI so issue a 5990 * warning and skip instantiating the VFs. They 5991 * won't be reachable. 5992 */ 5993 dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n", 5994 pbridge->bus->number, PCI_SLOT(pbridge->devfn), 5995 PCI_FUNC(pbridge->devfn)); 5996 return -ENOTSUPP; 5997 } 5998 memset(&port_cmd, 0, sizeof(port_cmd)); 5999 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 6000 FW_CMD_REQUEST_F | 6001 FW_CMD_READ_F | 6002 FW_PFVF_CMD_PFN_V(adap->pf) | 6003 FW_PFVF_CMD_VFN_V(0)); 6004 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd)); 6005 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd), 6006 &port_rpl); 6007 if (err) 6008 return err; 6009 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq)); 6010 port = ffs(pmask) - 1; 6011 /* Allocate VF Management Interface. */ 6012 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx, 6013 adap->pf); 6014 netdev = alloc_netdev(sizeof(struct port_info), 6015 name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup); 6016 if (!netdev) 6017 return -ENOMEM; 6018 6019 pi = netdev_priv(netdev); 6020 pi->adapter = adap; 6021 pi->lport = port; 6022 pi->tx_chan = port; 6023 SET_NETDEV_DEV(netdev, &pdev->dev); 6024 6025 adap->port[0] = netdev; 6026 pi->port_id = 0; 6027 6028 err = register_netdev(adap->port[0]); 6029 if (err) { 6030 pr_info("Unable to register VF mgmt netdev %s\n", name); 6031 free_netdev(adap->port[0]); 6032 adap->port[0] = NULL; 6033 return err; 6034 } 6035 /* Allocate and set up VF Information. */ 6036 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev), 6037 sizeof(struct vf_info), GFP_KERNEL); 6038 if (!adap->vfinfo) { 6039 unregister_netdev(adap->port[0]); 6040 free_netdev(adap->port[0]); 6041 adap->port[0] = NULL; 6042 return -ENOMEM; 6043 } 6044 cxgb4_mgmt_fill_vf_station_mac_addr(adap); 6045 } 6046 /* Instantiate the requested number of VFs. */ 6047 err = pci_enable_sriov(pdev, num_vfs); 6048 if (err) { 6049 pr_info("Unable to instantiate %d VFs\n", num_vfs); 6050 if (!current_vfs) { 6051 unregister_netdev(adap->port[0]); 6052 free_netdev(adap->port[0]); 6053 adap->port[0] = NULL; 6054 kfree(adap->vfinfo); 6055 adap->vfinfo = NULL; 6056 } 6057 return err; 6058 } 6059 6060 adap->num_vfs = num_vfs; 6061 return num_vfs; 6062 } 6063 #endif /* CONFIG_PCI_IOV */ 6064 6065 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 6066 { 6067 struct net_device *netdev; 6068 struct adapter *adapter; 6069 static int adap_idx = 1; 6070 int s_qpp, qpp, num_seg; 6071 struct port_info *pi; 6072 bool highdma = false; 6073 enum chip_type chip; 6074 void __iomem *regs; 6075 int func, chip_ver; 6076 u16 device_id; 6077 int i, err; 6078 u32 whoami; 6079 6080 err = pci_request_regions(pdev, KBUILD_MODNAME); 6081 if (err) { 6082 /* Just info, some other driver may have claimed the device. */ 6083 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 6084 return err; 6085 } 6086 6087 err = pci_enable_device(pdev); 6088 if (err) { 6089 dev_err(&pdev->dev, "cannot enable PCI device\n"); 6090 goto out_release_regions; 6091 } 6092 6093 regs = pci_ioremap_bar(pdev, 0); 6094 if (!regs) { 6095 dev_err(&pdev->dev, "cannot map device registers\n"); 6096 err = -ENOMEM; 6097 goto out_disable_device; 6098 } 6099 6100 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 6101 if (!adapter) { 6102 err = -ENOMEM; 6103 goto out_unmap_bar0; 6104 } 6105 6106 adapter->regs = regs; 6107 err = t4_wait_dev_ready(regs); 6108 if (err < 0) 6109 goto out_free_adapter; 6110 6111 /* We control everything through one PF */ 6112 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 6113 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 6114 chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id)); 6115 if ((int)chip < 0) { 6116 dev_err(&pdev->dev, "Device %d is not supported\n", device_id); 6117 err = chip; 6118 goto out_free_adapter; 6119 } 6120 chip_ver = CHELSIO_CHIP_VERSION(chip); 6121 func = chip_ver <= CHELSIO_T5 ? 6122 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 6123 6124 adapter->pdev = pdev; 6125 adapter->pdev_dev = &pdev->dev; 6126 adapter->name = pci_name(pdev); 6127 adapter->mbox = func; 6128 adapter->pf = func; 6129 adapter->params.chip = chip; 6130 adapter->adap_idx = adap_idx; 6131 adapter->msg_enable = DFLT_MSG_ENABLE; 6132 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 6133 (sizeof(struct mbox_cmd) * 6134 T4_OS_LOG_MBOX_CMDS), 6135 GFP_KERNEL); 6136 if (!adapter->mbox_log) { 6137 err = -ENOMEM; 6138 goto out_free_adapter; 6139 } 6140 spin_lock_init(&adapter->mbox_lock); 6141 INIT_LIST_HEAD(&adapter->mlist.list); 6142 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS; 6143 pci_set_drvdata(pdev, adapter); 6144 6145 if (func != ent->driver_data) { 6146 pci_disable_device(pdev); 6147 pci_save_state(pdev); /* to restore SR-IOV later */ 6148 return 0; 6149 } 6150 6151 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 6152 highdma = true; 6153 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 6154 if (err) { 6155 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 6156 "coherent allocations\n"); 6157 goto out_free_adapter; 6158 } 6159 } else { 6160 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 6161 if (err) { 6162 dev_err(&pdev->dev, "no usable DMA configuration\n"); 6163 goto out_free_adapter; 6164 } 6165 } 6166 6167 pci_enable_pcie_error_reporting(pdev); 6168 pci_set_master(pdev); 6169 pci_save_state(pdev); 6170 adap_idx++; 6171 adapter->workq = create_singlethread_workqueue("cxgb4"); 6172 if (!adapter->workq) { 6173 err = -ENOMEM; 6174 goto out_free_adapter; 6175 } 6176 6177 /* PCI device has been enabled */ 6178 adapter->flags |= CXGB4_DEV_ENABLED; 6179 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 6180 6181 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 6182 * Ingress Packet Data to Free List Buffers in order to allow for 6183 * chipset performance optimizations between the Root Complex and 6184 * Memory Controllers. (Messages to the associated Ingress Queue 6185 * notifying new Packet Placement in the Free Lists Buffers will be 6186 * send without the Relaxed Ordering Attribute thus guaranteeing that 6187 * all preceding PCIe Transaction Layer Packets will be processed 6188 * first.) But some Root Complexes have various issues with Upstream 6189 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 6190 * The PCIe devices which under the Root Complexes will be cleared the 6191 * Relaxed Ordering bit in the configuration space, So we check our 6192 * PCIe configuration space to see if it's flagged with advice against 6193 * using Relaxed Ordering. 6194 */ 6195 if (!pcie_relaxed_ordering_enabled(pdev)) 6196 adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING; 6197 6198 spin_lock_init(&adapter->stats_lock); 6199 spin_lock_init(&adapter->tid_release_lock); 6200 spin_lock_init(&adapter->win0_lock); 6201 6202 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 6203 INIT_WORK(&adapter->db_full_task, process_db_full); 6204 INIT_WORK(&adapter->db_drop_task, process_db_drop); 6205 INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err); 6206 6207 err = t4_prep_adapter(adapter); 6208 if (err) 6209 goto out_free_adapter; 6210 6211 if (is_kdump_kernel()) { 6212 /* Collect hardware state and append to /proc/vmcore */ 6213 err = cxgb4_cudbg_vmcore_add_dump(adapter); 6214 if (err) { 6215 dev_warn(adapter->pdev_dev, 6216 "Fail collecting vmcore device dump, err: %d. Continuing\n", 6217 err); 6218 err = 0; 6219 } 6220 } 6221 6222 if (!is_t4(adapter->params.chip)) { 6223 s_qpp = (QUEUESPERPAGEPF0_S + 6224 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 6225 adapter->pf); 6226 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 6227 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 6228 num_seg = PAGE_SIZE / SEGMENT_SIZE; 6229 6230 /* Each segment size is 128B. Write coalescing is enabled only 6231 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 6232 * queue is less no of segments that can be accommodated in 6233 * a page size. 6234 */ 6235 if (qpp > num_seg) { 6236 dev_err(&pdev->dev, 6237 "Incorrect number of egress queues per page\n"); 6238 err = -EINVAL; 6239 goto out_free_adapter; 6240 } 6241 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 6242 pci_resource_len(pdev, 2)); 6243 if (!adapter->bar2) { 6244 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 6245 err = -ENOMEM; 6246 goto out_free_adapter; 6247 } 6248 } 6249 6250 setup_memwin(adapter); 6251 err = adap_init0(adapter, 0); 6252 #ifdef CONFIG_DEBUG_FS 6253 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); 6254 #endif 6255 setup_memwin_rdma(adapter); 6256 if (err) 6257 goto out_unmap_bar; 6258 6259 /* configure SGE_STAT_CFG_A to read WC stats */ 6260 if (!is_t4(adapter->params.chip)) 6261 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | 6262 (is_t5(adapter->params.chip) ? STATMODE_V(0) : 6263 T6_STATMODE_V(0))); 6264 6265 /* Initialize hash mac addr list */ 6266 INIT_LIST_HEAD(&adapter->mac_hlist); 6267 6268 for_each_port(adapter, i) { 6269 /* For supporting MQPRIO Offload, need some extra 6270 * queues for each ETHOFLD TIDs. Keep it equal to 6271 * MAX_ATIDs for now. Once we connect to firmware 6272 * later and query the EOTID params, we'll come to 6273 * know the actual # of EOTIDs supported. 6274 */ 6275 netdev = alloc_etherdev_mq(sizeof(struct port_info), 6276 MAX_ETH_QSETS + MAX_ATIDS); 6277 if (!netdev) { 6278 err = -ENOMEM; 6279 goto out_free_dev; 6280 } 6281 6282 SET_NETDEV_DEV(netdev, &pdev->dev); 6283 6284 adapter->port[i] = netdev; 6285 pi = netdev_priv(netdev); 6286 pi->adapter = adapter; 6287 pi->xact_addr_filt = -1; 6288 pi->port_id = i; 6289 netdev->irq = pdev->irq; 6290 6291 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 6292 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 6293 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO | 6294 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 6295 NETIF_F_HW_TC; 6296 6297 if (chip_ver > CHELSIO_T5) { 6298 netdev->hw_enc_features |= NETIF_F_IP_CSUM | 6299 NETIF_F_IPV6_CSUM | 6300 NETIF_F_RXCSUM | 6301 NETIF_F_GSO_UDP_TUNNEL | 6302 NETIF_F_GSO_UDP_TUNNEL_CSUM | 6303 NETIF_F_TSO | NETIF_F_TSO6; 6304 6305 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL | 6306 NETIF_F_GSO_UDP_TUNNEL_CSUM | 6307 NETIF_F_HW_TLS_RECORD; 6308 } 6309 6310 if (highdma) 6311 netdev->hw_features |= NETIF_F_HIGHDMA; 6312 netdev->features |= netdev->hw_features; 6313 netdev->vlan_features = netdev->features & VLAN_FEAT; 6314 6315 netdev->priv_flags |= IFF_UNICAST_FLT; 6316 6317 /* MTU range: 81 - 9600 */ 6318 netdev->min_mtu = 81; /* accommodate SACK */ 6319 netdev->max_mtu = MAX_MTU; 6320 6321 netdev->netdev_ops = &cxgb4_netdev_ops; 6322 #ifdef CONFIG_CHELSIO_T4_DCB 6323 netdev->dcbnl_ops = &cxgb4_dcb_ops; 6324 cxgb4_dcb_state_init(netdev); 6325 cxgb4_dcb_version_init(netdev); 6326 #endif 6327 cxgb4_set_ethtool_ops(netdev); 6328 } 6329 6330 cxgb4_init_ethtool_dump(adapter); 6331 6332 pci_set_drvdata(pdev, adapter); 6333 6334 if (adapter->flags & CXGB4_FW_OK) { 6335 err = t4_port_init(adapter, func, func, 0); 6336 if (err) 6337 goto out_free_dev; 6338 } else if (adapter->params.nports == 1) { 6339 /* If we don't have a connection to the firmware -- possibly 6340 * because of an error -- grab the raw VPD parameters so we 6341 * can set the proper MAC Address on the debug network 6342 * interface that we've created. 6343 */ 6344 u8 hw_addr[ETH_ALEN]; 6345 u8 *na = adapter->params.vpd.na; 6346 6347 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 6348 if (!err) { 6349 for (i = 0; i < ETH_ALEN; i++) 6350 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 6351 hex2val(na[2 * i + 1])); 6352 t4_set_hw_addr(adapter, 0, hw_addr); 6353 } 6354 } 6355 6356 if (!(adapter->flags & CXGB4_FW_OK)) 6357 goto fw_attach_fail; 6358 6359 /* Configure queues and allocate tables now, they can be needed as 6360 * soon as the first register_netdev completes. 6361 */ 6362 err = cfg_queues(adapter); 6363 if (err) 6364 goto out_free_dev; 6365 6366 adapter->smt = t4_init_smt(); 6367 if (!adapter->smt) { 6368 /* We tolerate a lack of SMT, giving up some functionality */ 6369 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n"); 6370 } 6371 6372 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 6373 if (!adapter->l2t) { 6374 /* We tolerate a lack of L2T, giving up some functionality */ 6375 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 6376 adapter->params.offload = 0; 6377 } 6378 6379 #if IS_ENABLED(CONFIG_IPV6) 6380 if (chip_ver <= CHELSIO_T5 && 6381 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { 6382 /* CLIP functionality is not present in hardware, 6383 * hence disable all offload features 6384 */ 6385 dev_warn(&pdev->dev, 6386 "CLIP not enabled in hardware, continuing\n"); 6387 adapter->params.offload = 0; 6388 } else { 6389 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 6390 adapter->clipt_end); 6391 if (!adapter->clipt) { 6392 /* We tolerate a lack of clip_table, giving up 6393 * some functionality 6394 */ 6395 dev_warn(&pdev->dev, 6396 "could not allocate Clip table, continuing\n"); 6397 adapter->params.offload = 0; 6398 } 6399 } 6400 #endif 6401 6402 for_each_port(adapter, i) { 6403 pi = adap2pinfo(adapter, i); 6404 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls); 6405 if (!pi->sched_tbl) 6406 dev_warn(&pdev->dev, 6407 "could not activate scheduling on port %d\n", 6408 i); 6409 } 6410 6411 if (tid_init(&adapter->tids) < 0) { 6412 dev_warn(&pdev->dev, "could not allocate TID table, " 6413 "continuing\n"); 6414 adapter->params.offload = 0; 6415 } else { 6416 adapter->tc_u32 = cxgb4_init_tc_u32(adapter); 6417 if (!adapter->tc_u32) 6418 dev_warn(&pdev->dev, 6419 "could not offload tc u32, continuing\n"); 6420 6421 if (cxgb4_init_tc_flower(adapter)) 6422 dev_warn(&pdev->dev, 6423 "could not offload tc flower, continuing\n"); 6424 6425 if (cxgb4_init_tc_mqprio(adapter)) 6426 dev_warn(&pdev->dev, 6427 "could not offload tc mqprio, continuing\n"); 6428 6429 if (cxgb4_init_tc_matchall(adapter)) 6430 dev_warn(&pdev->dev, 6431 "could not offload tc matchall, continuing\n"); 6432 } 6433 6434 if (is_offload(adapter) || is_hashfilter(adapter)) { 6435 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 6436 u32 hash_base, hash_reg; 6437 6438 if (chip_ver <= CHELSIO_T5) { 6439 hash_reg = LE_DB_TID_HASHBASE_A; 6440 hash_base = t4_read_reg(adapter, hash_reg); 6441 adapter->tids.hash_base = hash_base / 4; 6442 } else { 6443 hash_reg = T6_LE_DB_HASH_TID_BASE_A; 6444 hash_base = t4_read_reg(adapter, hash_reg); 6445 adapter->tids.hash_base = hash_base; 6446 } 6447 } 6448 } 6449 6450 /* See what interrupts we'll be using */ 6451 if (msi > 1 && enable_msix(adapter) == 0) 6452 adapter->flags |= CXGB4_USING_MSIX; 6453 else if (msi > 0 && pci_enable_msi(pdev) == 0) { 6454 adapter->flags |= CXGB4_USING_MSI; 6455 if (msi > 1) 6456 free_msix_info(adapter); 6457 } 6458 6459 /* check for PCI Express bandwidth capabiltites */ 6460 pcie_print_link_status(pdev); 6461 6462 cxgb4_init_mps_ref_entries(adapter); 6463 6464 err = init_rss(adapter); 6465 if (err) 6466 goto out_free_dev; 6467 6468 err = setup_non_data_intr(adapter); 6469 if (err) { 6470 dev_err(adapter->pdev_dev, 6471 "Non Data interrupt allocation failed, err: %d\n", err); 6472 goto out_free_dev; 6473 } 6474 6475 err = setup_fw_sge_queues(adapter); 6476 if (err) { 6477 dev_err(adapter->pdev_dev, 6478 "FW sge queue allocation failed, err %d", err); 6479 goto out_free_dev; 6480 } 6481 6482 fw_attach_fail: 6483 /* 6484 * The card is now ready to go. If any errors occur during device 6485 * registration we do not fail the whole card but rather proceed only 6486 * with the ports we manage to register successfully. However we must 6487 * register at least one net device. 6488 */ 6489 for_each_port(adapter, i) { 6490 pi = adap2pinfo(adapter, i); 6491 adapter->port[i]->dev_port = pi->lport; 6492 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 6493 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 6494 6495 netif_carrier_off(adapter->port[i]); 6496 6497 err = register_netdev(adapter->port[i]); 6498 if (err) 6499 break; 6500 adapter->chan_map[pi->tx_chan] = i; 6501 print_port_info(adapter->port[i]); 6502 } 6503 if (i == 0) { 6504 dev_err(&pdev->dev, "could not register any net devices\n"); 6505 goto out_free_dev; 6506 } 6507 if (err) { 6508 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 6509 err = 0; 6510 } 6511 6512 if (cxgb4_debugfs_root) { 6513 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 6514 cxgb4_debugfs_root); 6515 setup_debugfs(adapter); 6516 } 6517 6518 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 6519 pdev->needs_freset = 1; 6520 6521 if (is_uld(adapter)) { 6522 mutex_lock(&uld_mutex); 6523 list_add_tail(&adapter->list_node, &adapter_list); 6524 mutex_unlock(&uld_mutex); 6525 } 6526 6527 if (!is_t4(adapter->params.chip)) 6528 cxgb4_ptp_init(adapter); 6529 6530 if (IS_REACHABLE(CONFIG_THERMAL) && 6531 !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK)) 6532 cxgb4_thermal_init(adapter); 6533 6534 print_adapter_info(adapter); 6535 return 0; 6536 6537 out_free_dev: 6538 t4_free_sge_resources(adapter); 6539 free_some_resources(adapter); 6540 if (adapter->flags & CXGB4_USING_MSIX) 6541 free_msix_info(adapter); 6542 if (adapter->num_uld || adapter->num_ofld_uld) 6543 t4_uld_mem_free(adapter); 6544 out_unmap_bar: 6545 if (!is_t4(adapter->params.chip)) 6546 iounmap(adapter->bar2); 6547 out_free_adapter: 6548 if (adapter->workq) 6549 destroy_workqueue(adapter->workq); 6550 6551 kfree(adapter->mbox_log); 6552 kfree(adapter); 6553 out_unmap_bar0: 6554 iounmap(regs); 6555 out_disable_device: 6556 pci_disable_pcie_error_reporting(pdev); 6557 pci_disable_device(pdev); 6558 out_release_regions: 6559 pci_release_regions(pdev); 6560 return err; 6561 } 6562 6563 static void remove_one(struct pci_dev *pdev) 6564 { 6565 struct adapter *adapter = pci_get_drvdata(pdev); 6566 struct hash_mac_addr *entry, *tmp; 6567 6568 if (!adapter) { 6569 pci_release_regions(pdev); 6570 return; 6571 } 6572 6573 /* If we allocated filters, free up state associated with any 6574 * valid filters ... 6575 */ 6576 clear_all_filters(adapter); 6577 6578 adapter->flags |= CXGB4_SHUTTING_DOWN; 6579 6580 if (adapter->pf == 4) { 6581 int i; 6582 6583 /* Tear down per-adapter Work Queue first since it can contain 6584 * references to our adapter data structure. 6585 */ 6586 destroy_workqueue(adapter->workq); 6587 6588 if (is_uld(adapter)) { 6589 detach_ulds(adapter); 6590 t4_uld_clean_up(adapter); 6591 } 6592 6593 adap_free_hma_mem(adapter); 6594 6595 disable_interrupts(adapter); 6596 6597 cxgb4_free_mps_ref_entries(adapter); 6598 6599 for_each_port(adapter, i) 6600 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 6601 unregister_netdev(adapter->port[i]); 6602 6603 debugfs_remove_recursive(adapter->debugfs_root); 6604 6605 if (!is_t4(adapter->params.chip)) 6606 cxgb4_ptp_stop(adapter); 6607 if (IS_REACHABLE(CONFIG_THERMAL)) 6608 cxgb4_thermal_remove(adapter); 6609 6610 if (adapter->flags & CXGB4_FULL_INIT_DONE) 6611 cxgb_down(adapter); 6612 6613 if (adapter->flags & CXGB4_USING_MSIX) 6614 free_msix_info(adapter); 6615 if (adapter->num_uld || adapter->num_ofld_uld) 6616 t4_uld_mem_free(adapter); 6617 free_some_resources(adapter); 6618 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, 6619 list) { 6620 list_del(&entry->list); 6621 kfree(entry); 6622 } 6623 6624 #if IS_ENABLED(CONFIG_IPV6) 6625 t4_cleanup_clip_tbl(adapter); 6626 #endif 6627 if (!is_t4(adapter->params.chip)) 6628 iounmap(adapter->bar2); 6629 } 6630 #ifdef CONFIG_PCI_IOV 6631 else { 6632 cxgb4_iov_configure(adapter->pdev, 0); 6633 } 6634 #endif 6635 iounmap(adapter->regs); 6636 pci_disable_pcie_error_reporting(pdev); 6637 if ((adapter->flags & CXGB4_DEV_ENABLED)) { 6638 pci_disable_device(pdev); 6639 adapter->flags &= ~CXGB4_DEV_ENABLED; 6640 } 6641 pci_release_regions(pdev); 6642 kfree(adapter->mbox_log); 6643 synchronize_rcu(); 6644 kfree(adapter); 6645 } 6646 6647 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt 6648 * delivery. This is essentially a stripped down version of the PCI remove() 6649 * function where we do the minimal amount of work necessary to shutdown any 6650 * further activity. 6651 */ 6652 static void shutdown_one(struct pci_dev *pdev) 6653 { 6654 struct adapter *adapter = pci_get_drvdata(pdev); 6655 6656 /* As with remove_one() above (see extended comment), we only want do 6657 * do cleanup on PCI Devices which went all the way through init_one() 6658 * ... 6659 */ 6660 if (!adapter) { 6661 pci_release_regions(pdev); 6662 return; 6663 } 6664 6665 adapter->flags |= CXGB4_SHUTTING_DOWN; 6666 6667 if (adapter->pf == 4) { 6668 int i; 6669 6670 for_each_port(adapter, i) 6671 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 6672 cxgb_close(adapter->port[i]); 6673 6674 rtnl_lock(); 6675 cxgb4_mqprio_stop_offload(adapter); 6676 rtnl_unlock(); 6677 6678 if (is_uld(adapter)) { 6679 detach_ulds(adapter); 6680 t4_uld_clean_up(adapter); 6681 } 6682 6683 disable_interrupts(adapter); 6684 disable_msi(adapter); 6685 6686 t4_sge_stop(adapter); 6687 if (adapter->flags & CXGB4_FW_OK) 6688 t4_fw_bye(adapter, adapter->mbox); 6689 } 6690 } 6691 6692 static struct pci_driver cxgb4_driver = { 6693 .name = KBUILD_MODNAME, 6694 .id_table = cxgb4_pci_tbl, 6695 .probe = init_one, 6696 .remove = remove_one, 6697 .shutdown = shutdown_one, 6698 #ifdef CONFIG_PCI_IOV 6699 .sriov_configure = cxgb4_iov_configure, 6700 #endif 6701 .err_handler = &cxgb4_eeh, 6702 }; 6703 6704 static int __init cxgb4_init_module(void) 6705 { 6706 int ret; 6707 6708 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 6709 6710 ret = pci_register_driver(&cxgb4_driver); 6711 if (ret < 0) 6712 goto err_pci; 6713 6714 #if IS_ENABLED(CONFIG_IPV6) 6715 if (!inet6addr_registered) { 6716 ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6717 if (ret) 6718 pci_unregister_driver(&cxgb4_driver); 6719 else 6720 inet6addr_registered = true; 6721 } 6722 #endif 6723 6724 if (ret == 0) 6725 return ret; 6726 6727 err_pci: 6728 debugfs_remove(cxgb4_debugfs_root); 6729 6730 return ret; 6731 } 6732 6733 static void __exit cxgb4_cleanup_module(void) 6734 { 6735 #if IS_ENABLED(CONFIG_IPV6) 6736 if (inet6addr_registered) { 6737 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6738 inet6addr_registered = false; 6739 } 6740 #endif 6741 pci_unregister_driver(&cxgb4_driver); 6742 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 6743 } 6744 6745 module_init(cxgb4_init_module); 6746 module_exit(cxgb4_cleanup_module); 6747