1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <asm/uaccess.h>
65 
66 #include "cxgb4.h"
67 #include "t4_regs.h"
68 #include "t4_msg.h"
69 #include "t4fw_api.h"
70 #include "l2t.h"
71 
72 #include <../drivers/net/bonding/bonding.h>
73 
74 #ifdef DRV_VERSION
75 #undef DRV_VERSION
76 #endif
77 #define DRV_VERSION "2.0.0-ko"
78 #define DRV_DESC "Chelsio T4/T5 Network Driver"
79 
80 /*
81  * Max interrupt hold-off timer value in us.  Queues fall back to this value
82  * under extreme memory pressure so it's largish to give the system time to
83  * recover.
84  */
85 #define MAX_SGE_TIMERVAL 200U
86 
87 enum {
88 	/*
89 	 * Physical Function provisioning constants.
90 	 */
91 	PFRES_NVI = 4,			/* # of Virtual Interfaces */
92 	PFRES_NETHCTRL = 128,		/* # of EQs used for ETH or CTRL Qs */
93 	PFRES_NIQFLINT = 128,		/* # of ingress Qs/w Free List(s)/intr
94 					 */
95 	PFRES_NEQ = 256,		/* # of egress queues */
96 	PFRES_NIQ = 0,			/* # of ingress queues */
97 	PFRES_TC = 0,			/* PCI-E traffic class */
98 	PFRES_NEXACTF = 128,		/* # of exact MPS filters */
99 
100 	PFRES_R_CAPS = FW_CMD_CAP_PF,
101 	PFRES_WX_CAPS = FW_CMD_CAP_PF,
102 
103 #ifdef CONFIG_PCI_IOV
104 	/*
105 	 * Virtual Function provisioning constants.  We need two extra Ingress
106 	 * Queues with Interrupt capability to serve as the VF's Firmware
107 	 * Event Queue and Forwarded Interrupt Queue (when using MSI mode) --
108 	 * neither will have Free Lists associated with them).  For each
109 	 * Ethernet/Control Egress Queue and for each Free List, we need an
110 	 * Egress Context.
111 	 */
112 	VFRES_NPORTS = 1,		/* # of "ports" per VF */
113 	VFRES_NQSETS = 2,		/* # of "Queue Sets" per VF */
114 
115 	VFRES_NVI = VFRES_NPORTS,	/* # of Virtual Interfaces */
116 	VFRES_NETHCTRL = VFRES_NQSETS,	/* # of EQs used for ETH or CTRL Qs */
117 	VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
118 	VFRES_NEQ = VFRES_NQSETS*2,	/* # of egress queues */
119 	VFRES_NIQ = 0,			/* # of non-fl/int ingress queues */
120 	VFRES_TC = 0,			/* PCI-E traffic class */
121 	VFRES_NEXACTF = 16,		/* # of exact MPS filters */
122 
123 	VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
124 	VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
125 #endif
126 };
127 
128 /*
129  * Provide a Port Access Rights Mask for the specified PF/VF.  This is very
130  * static and likely not to be useful in the long run.  We really need to
131  * implement some form of persistent configuration which the firmware
132  * controls.
133  */
134 static unsigned int pfvfres_pmask(struct adapter *adapter,
135 				  unsigned int pf, unsigned int vf)
136 {
137 	unsigned int portn, portvec;
138 
139 	/*
140 	 * Give PF's access to all of the ports.
141 	 */
142 	if (vf == 0)
143 		return FW_PFVF_CMD_PMASK_MASK;
144 
145 	/*
146 	 * For VFs, we'll assign them access to the ports based purely on the
147 	 * PF.  We assign active ports in order, wrapping around if there are
148 	 * fewer active ports than PFs: e.g. active port[pf % nports].
149 	 * Unfortunately the adapter's port_info structs haven't been
150 	 * initialized yet so we have to compute this.
151 	 */
152 	if (adapter->params.nports == 0)
153 		return 0;
154 
155 	portn = pf % adapter->params.nports;
156 	portvec = adapter->params.portvec;
157 	for (;;) {
158 		/*
159 		 * Isolate the lowest set bit in the port vector.  If we're at
160 		 * the port number that we want, return that as the pmask.
161 		 * otherwise mask that bit out of the port vector and
162 		 * decrement our port number ...
163 		 */
164 		unsigned int pmask = portvec ^ (portvec & (portvec-1));
165 		if (portn == 0)
166 			return pmask;
167 		portn--;
168 		portvec &= ~pmask;
169 	}
170 	/*NOTREACHED*/
171 }
172 
173 enum {
174 	MAX_TXQ_ENTRIES      = 16384,
175 	MAX_CTRL_TXQ_ENTRIES = 1024,
176 	MAX_RSPQ_ENTRIES     = 16384,
177 	MAX_RX_BUFFERS       = 16384,
178 	MIN_TXQ_ENTRIES      = 32,
179 	MIN_CTRL_TXQ_ENTRIES = 32,
180 	MIN_RSPQ_ENTRIES     = 128,
181 	MIN_FL_ENTRIES       = 16
182 };
183 
184 /* Host shadow copy of ingress filter entry.  This is in host native format
185  * and doesn't match the ordering or bit order, etc. of the hardware of the
186  * firmware command.  The use of bit-field structure elements is purely to
187  * remind ourselves of the field size limitations and save memory in the case
188  * where the filter table is large.
189  */
190 struct filter_entry {
191 	/* Administrative fields for filter.
192 	 */
193 	u32 valid:1;            /* filter allocated and valid */
194 	u32 locked:1;           /* filter is administratively locked */
195 
196 	u32 pending:1;          /* filter action is pending firmware reply */
197 	u32 smtidx:8;           /* Source MAC Table index for smac */
198 	struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
199 
200 	/* The filter itself.  Most of this is a straight copy of information
201 	 * provided by the extended ioctl().  Some fields are translated to
202 	 * internal forms -- for instance the Ingress Queue ID passed in from
203 	 * the ioctl() is translated into the Absolute Ingress Queue ID.
204 	 */
205 	struct ch_filter_specification fs;
206 };
207 
208 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
209 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
210 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
211 
212 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
213 
214 static DEFINE_PCI_DEVICE_TABLE(cxgb4_pci_tbl) = {
215 	CH_DEVICE(0xa000, 0),  /* PE10K */
216 	CH_DEVICE(0x4001, -1),
217 	CH_DEVICE(0x4002, -1),
218 	CH_DEVICE(0x4003, -1),
219 	CH_DEVICE(0x4004, -1),
220 	CH_DEVICE(0x4005, -1),
221 	CH_DEVICE(0x4006, -1),
222 	CH_DEVICE(0x4007, -1),
223 	CH_DEVICE(0x4008, -1),
224 	CH_DEVICE(0x4009, -1),
225 	CH_DEVICE(0x400a, -1),
226 	CH_DEVICE(0x4401, 4),
227 	CH_DEVICE(0x4402, 4),
228 	CH_DEVICE(0x4403, 4),
229 	CH_DEVICE(0x4404, 4),
230 	CH_DEVICE(0x4405, 4),
231 	CH_DEVICE(0x4406, 4),
232 	CH_DEVICE(0x4407, 4),
233 	CH_DEVICE(0x4408, 4),
234 	CH_DEVICE(0x4409, 4),
235 	CH_DEVICE(0x440a, 4),
236 	CH_DEVICE(0x440d, 4),
237 	CH_DEVICE(0x440e, 4),
238 	CH_DEVICE(0x5001, 4),
239 	CH_DEVICE(0x5002, 4),
240 	CH_DEVICE(0x5003, 4),
241 	CH_DEVICE(0x5004, 4),
242 	CH_DEVICE(0x5005, 4),
243 	CH_DEVICE(0x5006, 4),
244 	CH_DEVICE(0x5007, 4),
245 	CH_DEVICE(0x5008, 4),
246 	CH_DEVICE(0x5009, 4),
247 	CH_DEVICE(0x500A, 4),
248 	CH_DEVICE(0x500B, 4),
249 	CH_DEVICE(0x500C, 4),
250 	CH_DEVICE(0x500D, 4),
251 	CH_DEVICE(0x500E, 4),
252 	CH_DEVICE(0x500F, 4),
253 	CH_DEVICE(0x5010, 4),
254 	CH_DEVICE(0x5011, 4),
255 	CH_DEVICE(0x5012, 4),
256 	CH_DEVICE(0x5013, 4),
257 	CH_DEVICE(0x5401, 4),
258 	CH_DEVICE(0x5402, 4),
259 	CH_DEVICE(0x5403, 4),
260 	CH_DEVICE(0x5404, 4),
261 	CH_DEVICE(0x5405, 4),
262 	CH_DEVICE(0x5406, 4),
263 	CH_DEVICE(0x5407, 4),
264 	CH_DEVICE(0x5408, 4),
265 	CH_DEVICE(0x5409, 4),
266 	CH_DEVICE(0x540A, 4),
267 	CH_DEVICE(0x540B, 4),
268 	CH_DEVICE(0x540C, 4),
269 	CH_DEVICE(0x540D, 4),
270 	CH_DEVICE(0x540E, 4),
271 	CH_DEVICE(0x540F, 4),
272 	CH_DEVICE(0x5410, 4),
273 	CH_DEVICE(0x5411, 4),
274 	CH_DEVICE(0x5412, 4),
275 	CH_DEVICE(0x5413, 4),
276 	{ 0, }
277 };
278 
279 #define FW4_FNAME "cxgb4/t4fw.bin"
280 #define FW5_FNAME "cxgb4/t5fw.bin"
281 #define FW4_CFNAME "cxgb4/t4-config.txt"
282 #define FW5_CFNAME "cxgb4/t5-config.txt"
283 
284 MODULE_DESCRIPTION(DRV_DESC);
285 MODULE_AUTHOR("Chelsio Communications");
286 MODULE_LICENSE("Dual BSD/GPL");
287 MODULE_VERSION(DRV_VERSION);
288 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
289 MODULE_FIRMWARE(FW4_FNAME);
290 MODULE_FIRMWARE(FW5_FNAME);
291 
292 /*
293  * Normally we're willing to become the firmware's Master PF but will be happy
294  * if another PF has already become the Master and initialized the adapter.
295  * Setting "force_init" will cause this driver to forcibly establish itself as
296  * the Master PF and initialize the adapter.
297  */
298 static uint force_init;
299 
300 module_param(force_init, uint, 0644);
301 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
302 
303 /*
304  * Normally if the firmware we connect to has Configuration File support, we
305  * use that and only fall back to the old Driver-based initialization if the
306  * Configuration File fails for some reason.  If force_old_init is set, then
307  * we'll always use the old Driver-based initialization sequence.
308  */
309 static uint force_old_init;
310 
311 module_param(force_old_init, uint, 0644);
312 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence");
313 
314 static int dflt_msg_enable = DFLT_MSG_ENABLE;
315 
316 module_param(dflt_msg_enable, int, 0644);
317 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
318 
319 /*
320  * The driver uses the best interrupt scheme available on a platform in the
321  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
322  * of these schemes the driver may consider as follows:
323  *
324  * msi = 2: choose from among all three options
325  * msi = 1: only consider MSI and INTx interrupts
326  * msi = 0: force INTx interrupts
327  */
328 static int msi = 2;
329 
330 module_param(msi, int, 0644);
331 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
332 
333 /*
334  * Queue interrupt hold-off timer values.  Queues default to the first of these
335  * upon creation.
336  */
337 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
338 
339 module_param_array(intr_holdoff, uint, NULL, 0644);
340 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
341 		 "0..4 in microseconds");
342 
343 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
344 
345 module_param_array(intr_cnt, uint, NULL, 0644);
346 MODULE_PARM_DESC(intr_cnt,
347 		 "thresholds 1..3 for queue interrupt packet counters");
348 
349 /*
350  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
351  * offset by 2 bytes in order to have the IP headers line up on 4-byte
352  * boundaries.  This is a requirement for many architectures which will throw
353  * a machine check fault if an attempt is made to access one of the 4-byte IP
354  * header fields on a non-4-byte boundary.  And it's a major performance issue
355  * even on some architectures which allow it like some implementations of the
356  * x86 ISA.  However, some architectures don't mind this and for some very
357  * edge-case performance sensitive applications (like forwarding large volumes
358  * of small packets), setting this DMA offset to 0 will decrease the number of
359  * PCI-E Bus transfers enough to measurably affect performance.
360  */
361 static int rx_dma_offset = 2;
362 
363 static bool vf_acls;
364 
365 #ifdef CONFIG_PCI_IOV
366 module_param(vf_acls, bool, 0644);
367 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
368 
369 /* Configure the number of PCI-E Virtual Function which are to be instantiated
370  * on SR-IOV Capable Physical Functions.
371  */
372 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
373 
374 module_param_array(num_vf, uint, NULL, 0644);
375 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
376 #endif
377 
378 /*
379  * The filter TCAM has a fixed portion and a variable portion.  The fixed
380  * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP
381  * ports.  The variable portion is 36 bits which can include things like Exact
382  * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits),
383  * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would
384  * far exceed the 36-bit budget for this "compressed" header portion of the
385  * filter.  Thus, we have a scarce resource which must be carefully managed.
386  *
387  * By default we set this up to mostly match the set of filter matching
388  * capabilities of T3 but with accommodations for some of T4's more
389  * interesting features:
390  *
391  *   { IP Fragment (1), MPS Match Type (3), IP Protocol (8),
392  *     [Inner] VLAN (17), Port (3), FCoE (1) }
393  */
394 enum {
395 	TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC,
396 	TP_VLAN_PRI_MAP_FIRST = FCOE_SHIFT,
397 	TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_SHIFT,
398 };
399 
400 static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
401 
402 module_param(tp_vlan_pri_map, uint, 0644);
403 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration");
404 
405 static struct dentry *cxgb4_debugfs_root;
406 
407 static LIST_HEAD(adapter_list);
408 static DEFINE_MUTEX(uld_mutex);
409 /* Adapter list to be accessed from atomic context */
410 static LIST_HEAD(adap_rcu_list);
411 static DEFINE_SPINLOCK(adap_rcu_lock);
412 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
413 static const char *uld_str[] = { "RDMA", "iSCSI" };
414 
415 static void link_report(struct net_device *dev)
416 {
417 	if (!netif_carrier_ok(dev))
418 		netdev_info(dev, "link down\n");
419 	else {
420 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
421 
422 		const char *s = "10Mbps";
423 		const struct port_info *p = netdev_priv(dev);
424 
425 		switch (p->link_cfg.speed) {
426 		case SPEED_10000:
427 			s = "10Gbps";
428 			break;
429 		case SPEED_1000:
430 			s = "1000Mbps";
431 			break;
432 		case SPEED_100:
433 			s = "100Mbps";
434 			break;
435 		}
436 
437 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
438 			    fc[p->link_cfg.fc]);
439 	}
440 }
441 
442 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
443 {
444 	struct net_device *dev = adapter->port[port_id];
445 
446 	/* Skip changes from disabled ports. */
447 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
448 		if (link_stat)
449 			netif_carrier_on(dev);
450 		else
451 			netif_carrier_off(dev);
452 
453 		link_report(dev);
454 	}
455 }
456 
457 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
458 {
459 	static const char *mod_str[] = {
460 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
461 	};
462 
463 	const struct net_device *dev = adap->port[port_id];
464 	const struct port_info *pi = netdev_priv(dev);
465 
466 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
467 		netdev_info(dev, "port module unplugged\n");
468 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
469 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
470 }
471 
472 /*
473  * Configure the exact and hash address filters to handle a port's multicast
474  * and secondary unicast MAC addresses.
475  */
476 static int set_addr_filters(const struct net_device *dev, bool sleep)
477 {
478 	u64 mhash = 0;
479 	u64 uhash = 0;
480 	bool free = true;
481 	u16 filt_idx[7];
482 	const u8 *addr[7];
483 	int ret, naddr = 0;
484 	const struct netdev_hw_addr *ha;
485 	int uc_cnt = netdev_uc_count(dev);
486 	int mc_cnt = netdev_mc_count(dev);
487 	const struct port_info *pi = netdev_priv(dev);
488 	unsigned int mb = pi->adapter->fn;
489 
490 	/* first do the secondary unicast addresses */
491 	netdev_for_each_uc_addr(ha, dev) {
492 		addr[naddr++] = ha->addr;
493 		if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
494 			ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
495 					naddr, addr, filt_idx, &uhash, sleep);
496 			if (ret < 0)
497 				return ret;
498 
499 			free = false;
500 			naddr = 0;
501 		}
502 	}
503 
504 	/* next set up the multicast addresses */
505 	netdev_for_each_mc_addr(ha, dev) {
506 		addr[naddr++] = ha->addr;
507 		if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
508 			ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
509 					naddr, addr, filt_idx, &mhash, sleep);
510 			if (ret < 0)
511 				return ret;
512 
513 			free = false;
514 			naddr = 0;
515 		}
516 	}
517 
518 	return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
519 				uhash | mhash, sleep);
520 }
521 
522 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
523 module_param(dbfifo_int_thresh, int, 0644);
524 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
525 
526 /*
527  * usecs to sleep while draining the dbfifo
528  */
529 static int dbfifo_drain_delay = 1000;
530 module_param(dbfifo_drain_delay, int, 0644);
531 MODULE_PARM_DESC(dbfifo_drain_delay,
532 		 "usecs to sleep while draining the dbfifo");
533 
534 /*
535  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
536  * If @mtu is -1 it is left unchanged.
537  */
538 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
539 {
540 	int ret;
541 	struct port_info *pi = netdev_priv(dev);
542 
543 	ret = set_addr_filters(dev, sleep_ok);
544 	if (ret == 0)
545 		ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
546 				    (dev->flags & IFF_PROMISC) ? 1 : 0,
547 				    (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
548 				    sleep_ok);
549 	return ret;
550 }
551 
552 static struct workqueue_struct *workq;
553 
554 /**
555  *	link_start - enable a port
556  *	@dev: the port to enable
557  *
558  *	Performs the MAC and PHY actions needed to enable a port.
559  */
560 static int link_start(struct net_device *dev)
561 {
562 	int ret;
563 	struct port_info *pi = netdev_priv(dev);
564 	unsigned int mb = pi->adapter->fn;
565 
566 	/*
567 	 * We do not set address filters and promiscuity here, the stack does
568 	 * that step explicitly.
569 	 */
570 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
571 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
572 	if (ret == 0) {
573 		ret = t4_change_mac(pi->adapter, mb, pi->viid,
574 				    pi->xact_addr_filt, dev->dev_addr, true,
575 				    true);
576 		if (ret >= 0) {
577 			pi->xact_addr_filt = ret;
578 			ret = 0;
579 		}
580 	}
581 	if (ret == 0)
582 		ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
583 				    &pi->link_cfg);
584 	if (ret == 0)
585 		ret = t4_enable_vi(pi->adapter, mb, pi->viid, true, true);
586 	return ret;
587 }
588 
589 /* Clear a filter and release any of its resources that we own.  This also
590  * clears the filter's "pending" status.
591  */
592 static void clear_filter(struct adapter *adap, struct filter_entry *f)
593 {
594 	/* If the new or old filter have loopback rewriteing rules then we'll
595 	 * need to free any existing Layer Two Table (L2T) entries of the old
596 	 * filter rule.  The firmware will handle freeing up any Source MAC
597 	 * Table (SMT) entries used for rewriting Source MAC Addresses in
598 	 * loopback rules.
599 	 */
600 	if (f->l2t)
601 		cxgb4_l2t_release(f->l2t);
602 
603 	/* The zeroing of the filter rule below clears the filter valid,
604 	 * pending, locked flags, l2t pointer, etc. so it's all we need for
605 	 * this operation.
606 	 */
607 	memset(f, 0, sizeof(*f));
608 }
609 
610 /* Handle a filter write/deletion reply.
611  */
612 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
613 {
614 	unsigned int idx = GET_TID(rpl);
615 	unsigned int nidx = idx - adap->tids.ftid_base;
616 	unsigned int ret;
617 	struct filter_entry *f;
618 
619 	if (idx >= adap->tids.ftid_base && nidx <
620 	   (adap->tids.nftids + adap->tids.nsftids)) {
621 		idx = nidx;
622 		ret = GET_TCB_COOKIE(rpl->cookie);
623 		f = &adap->tids.ftid_tab[idx];
624 
625 		if (ret == FW_FILTER_WR_FLT_DELETED) {
626 			/* Clear the filter when we get confirmation from the
627 			 * hardware that the filter has been deleted.
628 			 */
629 			clear_filter(adap, f);
630 		} else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
631 			dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
632 				idx);
633 			clear_filter(adap, f);
634 		} else if (ret == FW_FILTER_WR_FLT_ADDED) {
635 			f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
636 			f->pending = 0;  /* asynchronous setup completed */
637 			f->valid = 1;
638 		} else {
639 			/* Something went wrong.  Issue a warning about the
640 			 * problem and clear everything out.
641 			 */
642 			dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
643 				idx, ret);
644 			clear_filter(adap, f);
645 		}
646 	}
647 }
648 
649 /* Response queue handler for the FW event queue.
650  */
651 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
652 			  const struct pkt_gl *gl)
653 {
654 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
655 
656 	rsp++;                                          /* skip RSS header */
657 
658 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
659 	 */
660 	if (unlikely(opcode == CPL_FW4_MSG &&
661 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
662 		rsp++;
663 		opcode = ((const struct rss_header *)rsp)->opcode;
664 		rsp++;
665 		if (opcode != CPL_SGE_EGR_UPDATE) {
666 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
667 				, opcode);
668 			goto out;
669 		}
670 	}
671 
672 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
673 		const struct cpl_sge_egr_update *p = (void *)rsp;
674 		unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
675 		struct sge_txq *txq;
676 
677 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
678 		txq->restarts++;
679 		if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
680 			struct sge_eth_txq *eq;
681 
682 			eq = container_of(txq, struct sge_eth_txq, q);
683 			netif_tx_wake_queue(eq->txq);
684 		} else {
685 			struct sge_ofld_txq *oq;
686 
687 			oq = container_of(txq, struct sge_ofld_txq, q);
688 			tasklet_schedule(&oq->qresume_tsk);
689 		}
690 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
691 		const struct cpl_fw6_msg *p = (void *)rsp;
692 
693 		if (p->type == 0)
694 			t4_handle_fw_rpl(q->adap, p->data);
695 	} else if (opcode == CPL_L2T_WRITE_RPL) {
696 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
697 
698 		do_l2t_write_rpl(q->adap, p);
699 	} else if (opcode == CPL_SET_TCB_RPL) {
700 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
701 
702 		filter_rpl(q->adap, p);
703 	} else
704 		dev_err(q->adap->pdev_dev,
705 			"unexpected CPL %#x on FW event queue\n", opcode);
706 out:
707 	return 0;
708 }
709 
710 /**
711  *	uldrx_handler - response queue handler for ULD queues
712  *	@q: the response queue that received the packet
713  *	@rsp: the response queue descriptor holding the offload message
714  *	@gl: the gather list of packet fragments
715  *
716  *	Deliver an ingress offload packet to a ULD.  All processing is done by
717  *	the ULD, we just maintain statistics.
718  */
719 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
720 			 const struct pkt_gl *gl)
721 {
722 	struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
723 
724 	/* FW can send CPLs encapsulated in a CPL_FW4_MSG.
725 	 */
726 	if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
727 	    ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
728 		rsp += 2;
729 
730 	if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
731 		rxq->stats.nomem++;
732 		return -1;
733 	}
734 	if (gl == NULL)
735 		rxq->stats.imm++;
736 	else if (gl == CXGB4_MSG_AN)
737 		rxq->stats.an++;
738 	else
739 		rxq->stats.pkts++;
740 	return 0;
741 }
742 
743 static void disable_msi(struct adapter *adapter)
744 {
745 	if (adapter->flags & USING_MSIX) {
746 		pci_disable_msix(adapter->pdev);
747 		adapter->flags &= ~USING_MSIX;
748 	} else if (adapter->flags & USING_MSI) {
749 		pci_disable_msi(adapter->pdev);
750 		adapter->flags &= ~USING_MSI;
751 	}
752 }
753 
754 /*
755  * Interrupt handler for non-data events used with MSI-X.
756  */
757 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
758 {
759 	struct adapter *adap = cookie;
760 
761 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
762 	if (v & PFSW) {
763 		adap->swintr = 1;
764 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
765 	}
766 	t4_slow_intr_handler(adap);
767 	return IRQ_HANDLED;
768 }
769 
770 /*
771  * Name the MSI-X interrupts.
772  */
773 static void name_msix_vecs(struct adapter *adap)
774 {
775 	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
776 
777 	/* non-data interrupts */
778 	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
779 
780 	/* FW events */
781 	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
782 		 adap->port[0]->name);
783 
784 	/* Ethernet queues */
785 	for_each_port(adap, j) {
786 		struct net_device *d = adap->port[j];
787 		const struct port_info *pi = netdev_priv(d);
788 
789 		for (i = 0; i < pi->nqsets; i++, msi_idx++)
790 			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
791 				 d->name, i);
792 	}
793 
794 	/* offload queues */
795 	for_each_ofldrxq(&adap->sge, i)
796 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
797 			 adap->port[0]->name, i);
798 
799 	for_each_rdmarxq(&adap->sge, i)
800 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
801 			 adap->port[0]->name, i);
802 }
803 
804 static int request_msix_queue_irqs(struct adapter *adap)
805 {
806 	struct sge *s = &adap->sge;
807 	int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, msi_index = 2;
808 
809 	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
810 			  adap->msix_info[1].desc, &s->fw_evtq);
811 	if (err)
812 		return err;
813 
814 	for_each_ethrxq(s, ethqidx) {
815 		err = request_irq(adap->msix_info[msi_index].vec,
816 				  t4_sge_intr_msix, 0,
817 				  adap->msix_info[msi_index].desc,
818 				  &s->ethrxq[ethqidx].rspq);
819 		if (err)
820 			goto unwind;
821 		msi_index++;
822 	}
823 	for_each_ofldrxq(s, ofldqidx) {
824 		err = request_irq(adap->msix_info[msi_index].vec,
825 				  t4_sge_intr_msix, 0,
826 				  adap->msix_info[msi_index].desc,
827 				  &s->ofldrxq[ofldqidx].rspq);
828 		if (err)
829 			goto unwind;
830 		msi_index++;
831 	}
832 	for_each_rdmarxq(s, rdmaqidx) {
833 		err = request_irq(adap->msix_info[msi_index].vec,
834 				  t4_sge_intr_msix, 0,
835 				  adap->msix_info[msi_index].desc,
836 				  &s->rdmarxq[rdmaqidx].rspq);
837 		if (err)
838 			goto unwind;
839 		msi_index++;
840 	}
841 	return 0;
842 
843 unwind:
844 	while (--rdmaqidx >= 0)
845 		free_irq(adap->msix_info[--msi_index].vec,
846 			 &s->rdmarxq[rdmaqidx].rspq);
847 	while (--ofldqidx >= 0)
848 		free_irq(adap->msix_info[--msi_index].vec,
849 			 &s->ofldrxq[ofldqidx].rspq);
850 	while (--ethqidx >= 0)
851 		free_irq(adap->msix_info[--msi_index].vec,
852 			 &s->ethrxq[ethqidx].rspq);
853 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
854 	return err;
855 }
856 
857 static void free_msix_queue_irqs(struct adapter *adap)
858 {
859 	int i, msi_index = 2;
860 	struct sge *s = &adap->sge;
861 
862 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
863 	for_each_ethrxq(s, i)
864 		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
865 	for_each_ofldrxq(s, i)
866 		free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
867 	for_each_rdmarxq(s, i)
868 		free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
869 }
870 
871 /**
872  *	write_rss - write the RSS table for a given port
873  *	@pi: the port
874  *	@queues: array of queue indices for RSS
875  *
876  *	Sets up the portion of the HW RSS table for the port's VI to distribute
877  *	packets to the Rx queues in @queues.
878  */
879 static int write_rss(const struct port_info *pi, const u16 *queues)
880 {
881 	u16 *rss;
882 	int i, err;
883 	const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
884 
885 	rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
886 	if (!rss)
887 		return -ENOMEM;
888 
889 	/* map the queue indices to queue ids */
890 	for (i = 0; i < pi->rss_size; i++, queues++)
891 		rss[i] = q[*queues].rspq.abs_id;
892 
893 	err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
894 				  pi->rss_size, rss, pi->rss_size);
895 	kfree(rss);
896 	return err;
897 }
898 
899 /**
900  *	setup_rss - configure RSS
901  *	@adap: the adapter
902  *
903  *	Sets up RSS for each port.
904  */
905 static int setup_rss(struct adapter *adap)
906 {
907 	int i, err;
908 
909 	for_each_port(adap, i) {
910 		const struct port_info *pi = adap2pinfo(adap, i);
911 
912 		err = write_rss(pi, pi->rss);
913 		if (err)
914 			return err;
915 	}
916 	return 0;
917 }
918 
919 /*
920  * Return the channel of the ingress queue with the given qid.
921  */
922 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
923 {
924 	qid -= p->ingr_start;
925 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
926 }
927 
928 /*
929  * Wait until all NAPI handlers are descheduled.
930  */
931 static void quiesce_rx(struct adapter *adap)
932 {
933 	int i;
934 
935 	for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
936 		struct sge_rspq *q = adap->sge.ingr_map[i];
937 
938 		if (q && q->handler)
939 			napi_disable(&q->napi);
940 	}
941 }
942 
943 /*
944  * Enable NAPI scheduling and interrupt generation for all Rx queues.
945  */
946 static void enable_rx(struct adapter *adap)
947 {
948 	int i;
949 
950 	for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
951 		struct sge_rspq *q = adap->sge.ingr_map[i];
952 
953 		if (!q)
954 			continue;
955 		if (q->handler)
956 			napi_enable(&q->napi);
957 		/* 0-increment GTS to start the timer and enable interrupts */
958 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
959 			     SEINTARM(q->intr_params) |
960 			     INGRESSQID(q->cntxt_id));
961 	}
962 }
963 
964 /**
965  *	setup_sge_queues - configure SGE Tx/Rx/response queues
966  *	@adap: the adapter
967  *
968  *	Determines how many sets of SGE queues to use and initializes them.
969  *	We support multiple queue sets per port if we have MSI-X, otherwise
970  *	just one queue set per port.
971  */
972 static int setup_sge_queues(struct adapter *adap)
973 {
974 	int err, msi_idx, i, j;
975 	struct sge *s = &adap->sge;
976 
977 	bitmap_zero(s->starving_fl, MAX_EGRQ);
978 	bitmap_zero(s->txq_maperr, MAX_EGRQ);
979 
980 	if (adap->flags & USING_MSIX)
981 		msi_idx = 1;         /* vector 0 is for non-queue interrupts */
982 	else {
983 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
984 				       NULL, NULL);
985 		if (err)
986 			return err;
987 		msi_idx = -((int)s->intrq.abs_id + 1);
988 	}
989 
990 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
991 			       msi_idx, NULL, fwevtq_handler);
992 	if (err) {
993 freeout:	t4_free_sge_resources(adap);
994 		return err;
995 	}
996 
997 	for_each_port(adap, i) {
998 		struct net_device *dev = adap->port[i];
999 		struct port_info *pi = netdev_priv(dev);
1000 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1001 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1002 
1003 		for (j = 0; j < pi->nqsets; j++, q++) {
1004 			if (msi_idx > 0)
1005 				msi_idx++;
1006 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1007 					       msi_idx, &q->fl,
1008 					       t4_ethrx_handler);
1009 			if (err)
1010 				goto freeout;
1011 			q->rspq.idx = j;
1012 			memset(&q->stats, 0, sizeof(q->stats));
1013 		}
1014 		for (j = 0; j < pi->nqsets; j++, t++) {
1015 			err = t4_sge_alloc_eth_txq(adap, t, dev,
1016 					netdev_get_tx_queue(dev, j),
1017 					s->fw_evtq.cntxt_id);
1018 			if (err)
1019 				goto freeout;
1020 		}
1021 	}
1022 
1023 	j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1024 	for_each_ofldrxq(s, i) {
1025 		struct sge_ofld_rxq *q = &s->ofldrxq[i];
1026 		struct net_device *dev = adap->port[i / j];
1027 
1028 		if (msi_idx > 0)
1029 			msi_idx++;
1030 		err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
1031 				       &q->fl, uldrx_handler);
1032 		if (err)
1033 			goto freeout;
1034 		memset(&q->stats, 0, sizeof(q->stats));
1035 		s->ofld_rxq[i] = q->rspq.abs_id;
1036 		err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
1037 					    s->fw_evtq.cntxt_id);
1038 		if (err)
1039 			goto freeout;
1040 	}
1041 
1042 	for_each_rdmarxq(s, i) {
1043 		struct sge_ofld_rxq *q = &s->rdmarxq[i];
1044 
1045 		if (msi_idx > 0)
1046 			msi_idx++;
1047 		err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1048 				       msi_idx, &q->fl, uldrx_handler);
1049 		if (err)
1050 			goto freeout;
1051 		memset(&q->stats, 0, sizeof(q->stats));
1052 		s->rdma_rxq[i] = q->rspq.abs_id;
1053 	}
1054 
1055 	for_each_port(adap, i) {
1056 		/*
1057 		 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1058 		 * have RDMA queues, and that's the right value.
1059 		 */
1060 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1061 					    s->fw_evtq.cntxt_id,
1062 					    s->rdmarxq[i].rspq.cntxt_id);
1063 		if (err)
1064 			goto freeout;
1065 	}
1066 
1067 	t4_write_reg(adap, MPS_TRC_RSS_CONTROL,
1068 		     RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
1069 		     QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
1070 	return 0;
1071 }
1072 
1073 /*
1074  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1075  * The allocated memory is cleared.
1076  */
1077 void *t4_alloc_mem(size_t size)
1078 {
1079 	void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1080 
1081 	if (!p)
1082 		p = vzalloc(size);
1083 	return p;
1084 }
1085 
1086 /*
1087  * Free memory allocated through alloc_mem().
1088  */
1089 static void t4_free_mem(void *addr)
1090 {
1091 	if (is_vmalloc_addr(addr))
1092 		vfree(addr);
1093 	else
1094 		kfree(addr);
1095 }
1096 
1097 /* Send a Work Request to write the filter at a specified index.  We construct
1098  * a Firmware Filter Work Request to have the work done and put the indicated
1099  * filter into "pending" mode which will prevent any further actions against
1100  * it till we get a reply from the firmware on the completion status of the
1101  * request.
1102  */
1103 static int set_filter_wr(struct adapter *adapter, int fidx)
1104 {
1105 	struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1106 	struct sk_buff *skb;
1107 	struct fw_filter_wr *fwr;
1108 	unsigned int ftid;
1109 
1110 	/* If the new filter requires loopback Destination MAC and/or VLAN
1111 	 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1112 	 * the filter.
1113 	 */
1114 	if (f->fs.newdmac || f->fs.newvlan) {
1115 		/* allocate L2T entry for new filter */
1116 		f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1117 		if (f->l2t == NULL)
1118 			return -EAGAIN;
1119 		if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1120 					f->fs.eport, f->fs.dmac)) {
1121 			cxgb4_l2t_release(f->l2t);
1122 			f->l2t = NULL;
1123 			return -ENOMEM;
1124 		}
1125 	}
1126 
1127 	ftid = adapter->tids.ftid_base + fidx;
1128 
1129 	skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL);
1130 	fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1131 	memset(fwr, 0, sizeof(*fwr));
1132 
1133 	/* It would be nice to put most of the following in t4_hw.c but most
1134 	 * of the work is translating the cxgbtool ch_filter_specification
1135 	 * into the Work Request and the definition of that structure is
1136 	 * currently in cxgbtool.h which isn't appropriate to pull into the
1137 	 * common code.  We may eventually try to come up with a more neutral
1138 	 * filter specification structure but for now it's easiest to simply
1139 	 * put this fairly direct code in line ...
1140 	 */
1141 	fwr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
1142 	fwr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*fwr)/16));
1143 	fwr->tid_to_iq =
1144 		htonl(V_FW_FILTER_WR_TID(ftid) |
1145 		      V_FW_FILTER_WR_RQTYPE(f->fs.type) |
1146 		      V_FW_FILTER_WR_NOREPLY(0) |
1147 		      V_FW_FILTER_WR_IQ(f->fs.iq));
1148 	fwr->del_filter_to_l2tix =
1149 		htonl(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
1150 		      V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
1151 		      V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
1152 		      V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
1153 		      V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
1154 		      V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
1155 		      V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
1156 		      V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
1157 		      V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
1158 					     f->fs.newvlan == VLAN_REWRITE) |
1159 		      V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
1160 					    f->fs.newvlan == VLAN_REWRITE) |
1161 		      V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
1162 		      V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
1163 		      V_FW_FILTER_WR_PRIO(f->fs.prio) |
1164 		      V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
1165 	fwr->ethtype = htons(f->fs.val.ethtype);
1166 	fwr->ethtypem = htons(f->fs.mask.ethtype);
1167 	fwr->frag_to_ovlan_vldm =
1168 		(V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
1169 		 V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
1170 		 V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.ivlan_vld) |
1171 		 V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.ovlan_vld) |
1172 		 V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.ivlan_vld) |
1173 		 V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.ovlan_vld));
1174 	fwr->smac_sel = 0;
1175 	fwr->rx_chan_rx_rpl_iq =
1176 		htons(V_FW_FILTER_WR_RX_CHAN(0) |
1177 		      V_FW_FILTER_WR_RX_RPL_IQ(adapter->sge.fw_evtq.abs_id));
1178 	fwr->maci_to_matchtypem =
1179 		htonl(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
1180 		      V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
1181 		      V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
1182 		      V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
1183 		      V_FW_FILTER_WR_PORT(f->fs.val.iport) |
1184 		      V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
1185 		      V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
1186 		      V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
1187 	fwr->ptcl = f->fs.val.proto;
1188 	fwr->ptclm = f->fs.mask.proto;
1189 	fwr->ttyp = f->fs.val.tos;
1190 	fwr->ttypm = f->fs.mask.tos;
1191 	fwr->ivlan = htons(f->fs.val.ivlan);
1192 	fwr->ivlanm = htons(f->fs.mask.ivlan);
1193 	fwr->ovlan = htons(f->fs.val.ovlan);
1194 	fwr->ovlanm = htons(f->fs.mask.ovlan);
1195 	memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1196 	memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1197 	memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1198 	memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1199 	fwr->lp = htons(f->fs.val.lport);
1200 	fwr->lpm = htons(f->fs.mask.lport);
1201 	fwr->fp = htons(f->fs.val.fport);
1202 	fwr->fpm = htons(f->fs.mask.fport);
1203 	if (f->fs.newsmac)
1204 		memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1205 
1206 	/* Mark the filter as "pending" and ship off the Filter Work Request.
1207 	 * When we get the Work Request Reply we'll clear the pending status.
1208 	 */
1209 	f->pending = 1;
1210 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1211 	t4_ofld_send(adapter, skb);
1212 	return 0;
1213 }
1214 
1215 /* Delete the filter at a specified index.
1216  */
1217 static int del_filter_wr(struct adapter *adapter, int fidx)
1218 {
1219 	struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1220 	struct sk_buff *skb;
1221 	struct fw_filter_wr *fwr;
1222 	unsigned int len, ftid;
1223 
1224 	len = sizeof(*fwr);
1225 	ftid = adapter->tids.ftid_base + fidx;
1226 
1227 	skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
1228 	fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1229 	t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1230 
1231 	/* Mark the filter as "pending" and ship off the Filter Work Request.
1232 	 * When we get the Work Request Reply we'll clear the pending status.
1233 	 */
1234 	f->pending = 1;
1235 	t4_mgmt_tx(adapter, skb);
1236 	return 0;
1237 }
1238 
1239 static inline int is_offload(const struct adapter *adap)
1240 {
1241 	return adap->params.offload;
1242 }
1243 
1244 /*
1245  * Implementation of ethtool operations.
1246  */
1247 
1248 static u32 get_msglevel(struct net_device *dev)
1249 {
1250 	return netdev2adap(dev)->msg_enable;
1251 }
1252 
1253 static void set_msglevel(struct net_device *dev, u32 val)
1254 {
1255 	netdev2adap(dev)->msg_enable = val;
1256 }
1257 
1258 static char stats_strings[][ETH_GSTRING_LEN] = {
1259 	"TxOctetsOK         ",
1260 	"TxFramesOK         ",
1261 	"TxBroadcastFrames  ",
1262 	"TxMulticastFrames  ",
1263 	"TxUnicastFrames    ",
1264 	"TxErrorFrames      ",
1265 
1266 	"TxFrames64         ",
1267 	"TxFrames65To127    ",
1268 	"TxFrames128To255   ",
1269 	"TxFrames256To511   ",
1270 	"TxFrames512To1023  ",
1271 	"TxFrames1024To1518 ",
1272 	"TxFrames1519ToMax  ",
1273 
1274 	"TxFramesDropped    ",
1275 	"TxPauseFrames      ",
1276 	"TxPPP0Frames       ",
1277 	"TxPPP1Frames       ",
1278 	"TxPPP2Frames       ",
1279 	"TxPPP3Frames       ",
1280 	"TxPPP4Frames       ",
1281 	"TxPPP5Frames       ",
1282 	"TxPPP6Frames       ",
1283 	"TxPPP7Frames       ",
1284 
1285 	"RxOctetsOK         ",
1286 	"RxFramesOK         ",
1287 	"RxBroadcastFrames  ",
1288 	"RxMulticastFrames  ",
1289 	"RxUnicastFrames    ",
1290 
1291 	"RxFramesTooLong    ",
1292 	"RxJabberErrors     ",
1293 	"RxFCSErrors        ",
1294 	"RxLengthErrors     ",
1295 	"RxSymbolErrors     ",
1296 	"RxRuntFrames       ",
1297 
1298 	"RxFrames64         ",
1299 	"RxFrames65To127    ",
1300 	"RxFrames128To255   ",
1301 	"RxFrames256To511   ",
1302 	"RxFrames512To1023  ",
1303 	"RxFrames1024To1518 ",
1304 	"RxFrames1519ToMax  ",
1305 
1306 	"RxPauseFrames      ",
1307 	"RxPPP0Frames       ",
1308 	"RxPPP1Frames       ",
1309 	"RxPPP2Frames       ",
1310 	"RxPPP3Frames       ",
1311 	"RxPPP4Frames       ",
1312 	"RxPPP5Frames       ",
1313 	"RxPPP6Frames       ",
1314 	"RxPPP7Frames       ",
1315 
1316 	"RxBG0FramesDropped ",
1317 	"RxBG1FramesDropped ",
1318 	"RxBG2FramesDropped ",
1319 	"RxBG3FramesDropped ",
1320 	"RxBG0FramesTrunc   ",
1321 	"RxBG1FramesTrunc   ",
1322 	"RxBG2FramesTrunc   ",
1323 	"RxBG3FramesTrunc   ",
1324 
1325 	"TSO                ",
1326 	"TxCsumOffload      ",
1327 	"RxCsumGood         ",
1328 	"VLANextractions    ",
1329 	"VLANinsertions     ",
1330 	"GROpackets         ",
1331 	"GROmerged          ",
1332 	"WriteCoalSuccess   ",
1333 	"WriteCoalFail      ",
1334 };
1335 
1336 static int get_sset_count(struct net_device *dev, int sset)
1337 {
1338 	switch (sset) {
1339 	case ETH_SS_STATS:
1340 		return ARRAY_SIZE(stats_strings);
1341 	default:
1342 		return -EOPNOTSUPP;
1343 	}
1344 }
1345 
1346 #define T4_REGMAP_SIZE (160 * 1024)
1347 #define T5_REGMAP_SIZE (332 * 1024)
1348 
1349 static int get_regs_len(struct net_device *dev)
1350 {
1351 	struct adapter *adap = netdev2adap(dev);
1352 	if (is_t4(adap->params.chip))
1353 		return T4_REGMAP_SIZE;
1354 	else
1355 		return T5_REGMAP_SIZE;
1356 }
1357 
1358 static int get_eeprom_len(struct net_device *dev)
1359 {
1360 	return EEPROMSIZE;
1361 }
1362 
1363 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1364 {
1365 	struct adapter *adapter = netdev2adap(dev);
1366 
1367 	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
1368 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1369 	strlcpy(info->bus_info, pci_name(adapter->pdev),
1370 		sizeof(info->bus_info));
1371 
1372 	if (adapter->params.fw_vers)
1373 		snprintf(info->fw_version, sizeof(info->fw_version),
1374 			"%u.%u.%u.%u, TP %u.%u.%u.%u",
1375 			FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
1376 			FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
1377 			FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
1378 			FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
1379 			FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
1380 			FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
1381 			FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
1382 			FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
1383 }
1384 
1385 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1386 {
1387 	if (stringset == ETH_SS_STATS)
1388 		memcpy(data, stats_strings, sizeof(stats_strings));
1389 }
1390 
1391 /*
1392  * port stats maintained per queue of the port.  They should be in the same
1393  * order as in stats_strings above.
1394  */
1395 struct queue_port_stats {
1396 	u64 tso;
1397 	u64 tx_csum;
1398 	u64 rx_csum;
1399 	u64 vlan_ex;
1400 	u64 vlan_ins;
1401 	u64 gro_pkts;
1402 	u64 gro_merged;
1403 };
1404 
1405 static void collect_sge_port_stats(const struct adapter *adap,
1406 		const struct port_info *p, struct queue_port_stats *s)
1407 {
1408 	int i;
1409 	const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1410 	const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1411 
1412 	memset(s, 0, sizeof(*s));
1413 	for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1414 		s->tso += tx->tso;
1415 		s->tx_csum += tx->tx_cso;
1416 		s->rx_csum += rx->stats.rx_cso;
1417 		s->vlan_ex += rx->stats.vlan_ex;
1418 		s->vlan_ins += tx->vlan_ins;
1419 		s->gro_pkts += rx->stats.lro_pkts;
1420 		s->gro_merged += rx->stats.lro_merged;
1421 	}
1422 }
1423 
1424 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1425 		      u64 *data)
1426 {
1427 	struct port_info *pi = netdev_priv(dev);
1428 	struct adapter *adapter = pi->adapter;
1429 	u32 val1, val2;
1430 
1431 	t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1432 
1433 	data += sizeof(struct port_stats) / sizeof(u64);
1434 	collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1435 	data += sizeof(struct queue_port_stats) / sizeof(u64);
1436 	if (!is_t4(adapter->params.chip)) {
1437 		t4_write_reg(adapter, SGE_STAT_CFG, STATSOURCE_T5(7));
1438 		val1 = t4_read_reg(adapter, SGE_STAT_TOTAL);
1439 		val2 = t4_read_reg(adapter, SGE_STAT_MATCH);
1440 		*data = val1 - val2;
1441 		data++;
1442 		*data = val2;
1443 		data++;
1444 	} else {
1445 		memset(data, 0, 2 * sizeof(u64));
1446 		*data += 2;
1447 	}
1448 }
1449 
1450 /*
1451  * Return a version number to identify the type of adapter.  The scheme is:
1452  * - bits 0..9: chip version
1453  * - bits 10..15: chip revision
1454  * - bits 16..23: register dump version
1455  */
1456 static inline unsigned int mk_adap_vers(const struct adapter *ap)
1457 {
1458 	return CHELSIO_CHIP_VERSION(ap->params.chip) |
1459 		(CHELSIO_CHIP_RELEASE(ap->params.chip) << 10) | (1 << 16);
1460 }
1461 
1462 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1463 			   unsigned int end)
1464 {
1465 	u32 *p = buf + start;
1466 
1467 	for ( ; start <= end; start += sizeof(u32))
1468 		*p++ = t4_read_reg(ap, start);
1469 }
1470 
1471 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1472 		     void *buf)
1473 {
1474 	static const unsigned int t4_reg_ranges[] = {
1475 		0x1008, 0x1108,
1476 		0x1180, 0x11b4,
1477 		0x11fc, 0x123c,
1478 		0x1300, 0x173c,
1479 		0x1800, 0x18fc,
1480 		0x3000, 0x30d8,
1481 		0x30e0, 0x5924,
1482 		0x5960, 0x59d4,
1483 		0x5a00, 0x5af8,
1484 		0x6000, 0x6098,
1485 		0x6100, 0x6150,
1486 		0x6200, 0x6208,
1487 		0x6240, 0x6248,
1488 		0x6280, 0x6338,
1489 		0x6370, 0x638c,
1490 		0x6400, 0x643c,
1491 		0x6500, 0x6524,
1492 		0x6a00, 0x6a38,
1493 		0x6a60, 0x6a78,
1494 		0x6b00, 0x6b84,
1495 		0x6bf0, 0x6c84,
1496 		0x6cf0, 0x6d84,
1497 		0x6df0, 0x6e84,
1498 		0x6ef0, 0x6f84,
1499 		0x6ff0, 0x7084,
1500 		0x70f0, 0x7184,
1501 		0x71f0, 0x7284,
1502 		0x72f0, 0x7384,
1503 		0x73f0, 0x7450,
1504 		0x7500, 0x7530,
1505 		0x7600, 0x761c,
1506 		0x7680, 0x76cc,
1507 		0x7700, 0x7798,
1508 		0x77c0, 0x77fc,
1509 		0x7900, 0x79fc,
1510 		0x7b00, 0x7c38,
1511 		0x7d00, 0x7efc,
1512 		0x8dc0, 0x8e1c,
1513 		0x8e30, 0x8e78,
1514 		0x8ea0, 0x8f6c,
1515 		0x8fc0, 0x9074,
1516 		0x90fc, 0x90fc,
1517 		0x9400, 0x9458,
1518 		0x9600, 0x96bc,
1519 		0x9800, 0x9808,
1520 		0x9820, 0x983c,
1521 		0x9850, 0x9864,
1522 		0x9c00, 0x9c6c,
1523 		0x9c80, 0x9cec,
1524 		0x9d00, 0x9d6c,
1525 		0x9d80, 0x9dec,
1526 		0x9e00, 0x9e6c,
1527 		0x9e80, 0x9eec,
1528 		0x9f00, 0x9f6c,
1529 		0x9f80, 0x9fec,
1530 		0xd004, 0xd03c,
1531 		0xdfc0, 0xdfe0,
1532 		0xe000, 0xea7c,
1533 		0xf000, 0x11190,
1534 		0x19040, 0x1906c,
1535 		0x19078, 0x19080,
1536 		0x1908c, 0x19124,
1537 		0x19150, 0x191b0,
1538 		0x191d0, 0x191e8,
1539 		0x19238, 0x1924c,
1540 		0x193f8, 0x19474,
1541 		0x19490, 0x194f8,
1542 		0x19800, 0x19f30,
1543 		0x1a000, 0x1a06c,
1544 		0x1a0b0, 0x1a120,
1545 		0x1a128, 0x1a138,
1546 		0x1a190, 0x1a1c4,
1547 		0x1a1fc, 0x1a1fc,
1548 		0x1e040, 0x1e04c,
1549 		0x1e284, 0x1e28c,
1550 		0x1e2c0, 0x1e2c0,
1551 		0x1e2e0, 0x1e2e0,
1552 		0x1e300, 0x1e384,
1553 		0x1e3c0, 0x1e3c8,
1554 		0x1e440, 0x1e44c,
1555 		0x1e684, 0x1e68c,
1556 		0x1e6c0, 0x1e6c0,
1557 		0x1e6e0, 0x1e6e0,
1558 		0x1e700, 0x1e784,
1559 		0x1e7c0, 0x1e7c8,
1560 		0x1e840, 0x1e84c,
1561 		0x1ea84, 0x1ea8c,
1562 		0x1eac0, 0x1eac0,
1563 		0x1eae0, 0x1eae0,
1564 		0x1eb00, 0x1eb84,
1565 		0x1ebc0, 0x1ebc8,
1566 		0x1ec40, 0x1ec4c,
1567 		0x1ee84, 0x1ee8c,
1568 		0x1eec0, 0x1eec0,
1569 		0x1eee0, 0x1eee0,
1570 		0x1ef00, 0x1ef84,
1571 		0x1efc0, 0x1efc8,
1572 		0x1f040, 0x1f04c,
1573 		0x1f284, 0x1f28c,
1574 		0x1f2c0, 0x1f2c0,
1575 		0x1f2e0, 0x1f2e0,
1576 		0x1f300, 0x1f384,
1577 		0x1f3c0, 0x1f3c8,
1578 		0x1f440, 0x1f44c,
1579 		0x1f684, 0x1f68c,
1580 		0x1f6c0, 0x1f6c0,
1581 		0x1f6e0, 0x1f6e0,
1582 		0x1f700, 0x1f784,
1583 		0x1f7c0, 0x1f7c8,
1584 		0x1f840, 0x1f84c,
1585 		0x1fa84, 0x1fa8c,
1586 		0x1fac0, 0x1fac0,
1587 		0x1fae0, 0x1fae0,
1588 		0x1fb00, 0x1fb84,
1589 		0x1fbc0, 0x1fbc8,
1590 		0x1fc40, 0x1fc4c,
1591 		0x1fe84, 0x1fe8c,
1592 		0x1fec0, 0x1fec0,
1593 		0x1fee0, 0x1fee0,
1594 		0x1ff00, 0x1ff84,
1595 		0x1ffc0, 0x1ffc8,
1596 		0x20000, 0x2002c,
1597 		0x20100, 0x2013c,
1598 		0x20190, 0x201c8,
1599 		0x20200, 0x20318,
1600 		0x20400, 0x20528,
1601 		0x20540, 0x20614,
1602 		0x21000, 0x21040,
1603 		0x2104c, 0x21060,
1604 		0x210c0, 0x210ec,
1605 		0x21200, 0x21268,
1606 		0x21270, 0x21284,
1607 		0x212fc, 0x21388,
1608 		0x21400, 0x21404,
1609 		0x21500, 0x21518,
1610 		0x2152c, 0x2153c,
1611 		0x21550, 0x21554,
1612 		0x21600, 0x21600,
1613 		0x21608, 0x21628,
1614 		0x21630, 0x2163c,
1615 		0x21700, 0x2171c,
1616 		0x21780, 0x2178c,
1617 		0x21800, 0x21c38,
1618 		0x21c80, 0x21d7c,
1619 		0x21e00, 0x21e04,
1620 		0x22000, 0x2202c,
1621 		0x22100, 0x2213c,
1622 		0x22190, 0x221c8,
1623 		0x22200, 0x22318,
1624 		0x22400, 0x22528,
1625 		0x22540, 0x22614,
1626 		0x23000, 0x23040,
1627 		0x2304c, 0x23060,
1628 		0x230c0, 0x230ec,
1629 		0x23200, 0x23268,
1630 		0x23270, 0x23284,
1631 		0x232fc, 0x23388,
1632 		0x23400, 0x23404,
1633 		0x23500, 0x23518,
1634 		0x2352c, 0x2353c,
1635 		0x23550, 0x23554,
1636 		0x23600, 0x23600,
1637 		0x23608, 0x23628,
1638 		0x23630, 0x2363c,
1639 		0x23700, 0x2371c,
1640 		0x23780, 0x2378c,
1641 		0x23800, 0x23c38,
1642 		0x23c80, 0x23d7c,
1643 		0x23e00, 0x23e04,
1644 		0x24000, 0x2402c,
1645 		0x24100, 0x2413c,
1646 		0x24190, 0x241c8,
1647 		0x24200, 0x24318,
1648 		0x24400, 0x24528,
1649 		0x24540, 0x24614,
1650 		0x25000, 0x25040,
1651 		0x2504c, 0x25060,
1652 		0x250c0, 0x250ec,
1653 		0x25200, 0x25268,
1654 		0x25270, 0x25284,
1655 		0x252fc, 0x25388,
1656 		0x25400, 0x25404,
1657 		0x25500, 0x25518,
1658 		0x2552c, 0x2553c,
1659 		0x25550, 0x25554,
1660 		0x25600, 0x25600,
1661 		0x25608, 0x25628,
1662 		0x25630, 0x2563c,
1663 		0x25700, 0x2571c,
1664 		0x25780, 0x2578c,
1665 		0x25800, 0x25c38,
1666 		0x25c80, 0x25d7c,
1667 		0x25e00, 0x25e04,
1668 		0x26000, 0x2602c,
1669 		0x26100, 0x2613c,
1670 		0x26190, 0x261c8,
1671 		0x26200, 0x26318,
1672 		0x26400, 0x26528,
1673 		0x26540, 0x26614,
1674 		0x27000, 0x27040,
1675 		0x2704c, 0x27060,
1676 		0x270c0, 0x270ec,
1677 		0x27200, 0x27268,
1678 		0x27270, 0x27284,
1679 		0x272fc, 0x27388,
1680 		0x27400, 0x27404,
1681 		0x27500, 0x27518,
1682 		0x2752c, 0x2753c,
1683 		0x27550, 0x27554,
1684 		0x27600, 0x27600,
1685 		0x27608, 0x27628,
1686 		0x27630, 0x2763c,
1687 		0x27700, 0x2771c,
1688 		0x27780, 0x2778c,
1689 		0x27800, 0x27c38,
1690 		0x27c80, 0x27d7c,
1691 		0x27e00, 0x27e04
1692 	};
1693 
1694 	static const unsigned int t5_reg_ranges[] = {
1695 		0x1008, 0x1148,
1696 		0x1180, 0x11b4,
1697 		0x11fc, 0x123c,
1698 		0x1280, 0x173c,
1699 		0x1800, 0x18fc,
1700 		0x3000, 0x3028,
1701 		0x3060, 0x30d8,
1702 		0x30e0, 0x30fc,
1703 		0x3140, 0x357c,
1704 		0x35a8, 0x35cc,
1705 		0x35ec, 0x35ec,
1706 		0x3600, 0x5624,
1707 		0x56cc, 0x575c,
1708 		0x580c, 0x5814,
1709 		0x5890, 0x58bc,
1710 		0x5940, 0x59dc,
1711 		0x59fc, 0x5a18,
1712 		0x5a60, 0x5a9c,
1713 		0x5b9c, 0x5bfc,
1714 		0x6000, 0x6040,
1715 		0x6058, 0x614c,
1716 		0x7700, 0x7798,
1717 		0x77c0, 0x78fc,
1718 		0x7b00, 0x7c54,
1719 		0x7d00, 0x7efc,
1720 		0x8dc0, 0x8de0,
1721 		0x8df8, 0x8e84,
1722 		0x8ea0, 0x8f84,
1723 		0x8fc0, 0x90f8,
1724 		0x9400, 0x9470,
1725 		0x9600, 0x96f4,
1726 		0x9800, 0x9808,
1727 		0x9820, 0x983c,
1728 		0x9850, 0x9864,
1729 		0x9c00, 0x9c6c,
1730 		0x9c80, 0x9cec,
1731 		0x9d00, 0x9d6c,
1732 		0x9d80, 0x9dec,
1733 		0x9e00, 0x9e6c,
1734 		0x9e80, 0x9eec,
1735 		0x9f00, 0x9f6c,
1736 		0x9f80, 0xa020,
1737 		0xd004, 0xd03c,
1738 		0xdfc0, 0xdfe0,
1739 		0xe000, 0x11088,
1740 		0x1109c, 0x1117c,
1741 		0x11190, 0x11204,
1742 		0x19040, 0x1906c,
1743 		0x19078, 0x19080,
1744 		0x1908c, 0x19124,
1745 		0x19150, 0x191b0,
1746 		0x191d0, 0x191e8,
1747 		0x19238, 0x19290,
1748 		0x193f8, 0x19474,
1749 		0x19490, 0x194cc,
1750 		0x194f0, 0x194f8,
1751 		0x19c00, 0x19c60,
1752 		0x19c94, 0x19e10,
1753 		0x19e50, 0x19f34,
1754 		0x19f40, 0x19f50,
1755 		0x19f90, 0x19fe4,
1756 		0x1a000, 0x1a06c,
1757 		0x1a0b0, 0x1a120,
1758 		0x1a128, 0x1a138,
1759 		0x1a190, 0x1a1c4,
1760 		0x1a1fc, 0x1a1fc,
1761 		0x1e008, 0x1e00c,
1762 		0x1e040, 0x1e04c,
1763 		0x1e284, 0x1e290,
1764 		0x1e2c0, 0x1e2c0,
1765 		0x1e2e0, 0x1e2e0,
1766 		0x1e300, 0x1e384,
1767 		0x1e3c0, 0x1e3c8,
1768 		0x1e408, 0x1e40c,
1769 		0x1e440, 0x1e44c,
1770 		0x1e684, 0x1e690,
1771 		0x1e6c0, 0x1e6c0,
1772 		0x1e6e0, 0x1e6e0,
1773 		0x1e700, 0x1e784,
1774 		0x1e7c0, 0x1e7c8,
1775 		0x1e808, 0x1e80c,
1776 		0x1e840, 0x1e84c,
1777 		0x1ea84, 0x1ea90,
1778 		0x1eac0, 0x1eac0,
1779 		0x1eae0, 0x1eae0,
1780 		0x1eb00, 0x1eb84,
1781 		0x1ebc0, 0x1ebc8,
1782 		0x1ec08, 0x1ec0c,
1783 		0x1ec40, 0x1ec4c,
1784 		0x1ee84, 0x1ee90,
1785 		0x1eec0, 0x1eec0,
1786 		0x1eee0, 0x1eee0,
1787 		0x1ef00, 0x1ef84,
1788 		0x1efc0, 0x1efc8,
1789 		0x1f008, 0x1f00c,
1790 		0x1f040, 0x1f04c,
1791 		0x1f284, 0x1f290,
1792 		0x1f2c0, 0x1f2c0,
1793 		0x1f2e0, 0x1f2e0,
1794 		0x1f300, 0x1f384,
1795 		0x1f3c0, 0x1f3c8,
1796 		0x1f408, 0x1f40c,
1797 		0x1f440, 0x1f44c,
1798 		0x1f684, 0x1f690,
1799 		0x1f6c0, 0x1f6c0,
1800 		0x1f6e0, 0x1f6e0,
1801 		0x1f700, 0x1f784,
1802 		0x1f7c0, 0x1f7c8,
1803 		0x1f808, 0x1f80c,
1804 		0x1f840, 0x1f84c,
1805 		0x1fa84, 0x1fa90,
1806 		0x1fac0, 0x1fac0,
1807 		0x1fae0, 0x1fae0,
1808 		0x1fb00, 0x1fb84,
1809 		0x1fbc0, 0x1fbc8,
1810 		0x1fc08, 0x1fc0c,
1811 		0x1fc40, 0x1fc4c,
1812 		0x1fe84, 0x1fe90,
1813 		0x1fec0, 0x1fec0,
1814 		0x1fee0, 0x1fee0,
1815 		0x1ff00, 0x1ff84,
1816 		0x1ffc0, 0x1ffc8,
1817 		0x30000, 0x30030,
1818 		0x30100, 0x30144,
1819 		0x30190, 0x301d0,
1820 		0x30200, 0x30318,
1821 		0x30400, 0x3052c,
1822 		0x30540, 0x3061c,
1823 		0x30800, 0x30834,
1824 		0x308c0, 0x30908,
1825 		0x30910, 0x309ac,
1826 		0x30a00, 0x30a04,
1827 		0x30a0c, 0x30a2c,
1828 		0x30a44, 0x30a50,
1829 		0x30a74, 0x30c24,
1830 		0x30d08, 0x30d14,
1831 		0x30d1c, 0x30d20,
1832 		0x30d3c, 0x30d50,
1833 		0x31200, 0x3120c,
1834 		0x31220, 0x31220,
1835 		0x31240, 0x31240,
1836 		0x31600, 0x31600,
1837 		0x31608, 0x3160c,
1838 		0x31a00, 0x31a1c,
1839 		0x31e04, 0x31e20,
1840 		0x31e38, 0x31e3c,
1841 		0x31e80, 0x31e80,
1842 		0x31e88, 0x31ea8,
1843 		0x31eb0, 0x31eb4,
1844 		0x31ec8, 0x31ed4,
1845 		0x31fb8, 0x32004,
1846 		0x32208, 0x3223c,
1847 		0x32600, 0x32630,
1848 		0x32a00, 0x32abc,
1849 		0x32b00, 0x32b70,
1850 		0x33000, 0x33048,
1851 		0x33060, 0x3309c,
1852 		0x330f0, 0x33148,
1853 		0x33160, 0x3319c,
1854 		0x331f0, 0x332e4,
1855 		0x332f8, 0x333e4,
1856 		0x333f8, 0x33448,
1857 		0x33460, 0x3349c,
1858 		0x334f0, 0x33548,
1859 		0x33560, 0x3359c,
1860 		0x335f0, 0x336e4,
1861 		0x336f8, 0x337e4,
1862 		0x337f8, 0x337fc,
1863 		0x33814, 0x33814,
1864 		0x3382c, 0x3382c,
1865 		0x33880, 0x3388c,
1866 		0x338e8, 0x338ec,
1867 		0x33900, 0x33948,
1868 		0x33960, 0x3399c,
1869 		0x339f0, 0x33ae4,
1870 		0x33af8, 0x33b10,
1871 		0x33b28, 0x33b28,
1872 		0x33b3c, 0x33b50,
1873 		0x33bf0, 0x33c10,
1874 		0x33c28, 0x33c28,
1875 		0x33c3c, 0x33c50,
1876 		0x33cf0, 0x33cfc,
1877 		0x34000, 0x34030,
1878 		0x34100, 0x34144,
1879 		0x34190, 0x341d0,
1880 		0x34200, 0x34318,
1881 		0x34400, 0x3452c,
1882 		0x34540, 0x3461c,
1883 		0x34800, 0x34834,
1884 		0x348c0, 0x34908,
1885 		0x34910, 0x349ac,
1886 		0x34a00, 0x34a04,
1887 		0x34a0c, 0x34a2c,
1888 		0x34a44, 0x34a50,
1889 		0x34a74, 0x34c24,
1890 		0x34d08, 0x34d14,
1891 		0x34d1c, 0x34d20,
1892 		0x34d3c, 0x34d50,
1893 		0x35200, 0x3520c,
1894 		0x35220, 0x35220,
1895 		0x35240, 0x35240,
1896 		0x35600, 0x35600,
1897 		0x35608, 0x3560c,
1898 		0x35a00, 0x35a1c,
1899 		0x35e04, 0x35e20,
1900 		0x35e38, 0x35e3c,
1901 		0x35e80, 0x35e80,
1902 		0x35e88, 0x35ea8,
1903 		0x35eb0, 0x35eb4,
1904 		0x35ec8, 0x35ed4,
1905 		0x35fb8, 0x36004,
1906 		0x36208, 0x3623c,
1907 		0x36600, 0x36630,
1908 		0x36a00, 0x36abc,
1909 		0x36b00, 0x36b70,
1910 		0x37000, 0x37048,
1911 		0x37060, 0x3709c,
1912 		0x370f0, 0x37148,
1913 		0x37160, 0x3719c,
1914 		0x371f0, 0x372e4,
1915 		0x372f8, 0x373e4,
1916 		0x373f8, 0x37448,
1917 		0x37460, 0x3749c,
1918 		0x374f0, 0x37548,
1919 		0x37560, 0x3759c,
1920 		0x375f0, 0x376e4,
1921 		0x376f8, 0x377e4,
1922 		0x377f8, 0x377fc,
1923 		0x37814, 0x37814,
1924 		0x3782c, 0x3782c,
1925 		0x37880, 0x3788c,
1926 		0x378e8, 0x378ec,
1927 		0x37900, 0x37948,
1928 		0x37960, 0x3799c,
1929 		0x379f0, 0x37ae4,
1930 		0x37af8, 0x37b10,
1931 		0x37b28, 0x37b28,
1932 		0x37b3c, 0x37b50,
1933 		0x37bf0, 0x37c10,
1934 		0x37c28, 0x37c28,
1935 		0x37c3c, 0x37c50,
1936 		0x37cf0, 0x37cfc,
1937 		0x38000, 0x38030,
1938 		0x38100, 0x38144,
1939 		0x38190, 0x381d0,
1940 		0x38200, 0x38318,
1941 		0x38400, 0x3852c,
1942 		0x38540, 0x3861c,
1943 		0x38800, 0x38834,
1944 		0x388c0, 0x38908,
1945 		0x38910, 0x389ac,
1946 		0x38a00, 0x38a04,
1947 		0x38a0c, 0x38a2c,
1948 		0x38a44, 0x38a50,
1949 		0x38a74, 0x38c24,
1950 		0x38d08, 0x38d14,
1951 		0x38d1c, 0x38d20,
1952 		0x38d3c, 0x38d50,
1953 		0x39200, 0x3920c,
1954 		0x39220, 0x39220,
1955 		0x39240, 0x39240,
1956 		0x39600, 0x39600,
1957 		0x39608, 0x3960c,
1958 		0x39a00, 0x39a1c,
1959 		0x39e04, 0x39e20,
1960 		0x39e38, 0x39e3c,
1961 		0x39e80, 0x39e80,
1962 		0x39e88, 0x39ea8,
1963 		0x39eb0, 0x39eb4,
1964 		0x39ec8, 0x39ed4,
1965 		0x39fb8, 0x3a004,
1966 		0x3a208, 0x3a23c,
1967 		0x3a600, 0x3a630,
1968 		0x3aa00, 0x3aabc,
1969 		0x3ab00, 0x3ab70,
1970 		0x3b000, 0x3b048,
1971 		0x3b060, 0x3b09c,
1972 		0x3b0f0, 0x3b148,
1973 		0x3b160, 0x3b19c,
1974 		0x3b1f0, 0x3b2e4,
1975 		0x3b2f8, 0x3b3e4,
1976 		0x3b3f8, 0x3b448,
1977 		0x3b460, 0x3b49c,
1978 		0x3b4f0, 0x3b548,
1979 		0x3b560, 0x3b59c,
1980 		0x3b5f0, 0x3b6e4,
1981 		0x3b6f8, 0x3b7e4,
1982 		0x3b7f8, 0x3b7fc,
1983 		0x3b814, 0x3b814,
1984 		0x3b82c, 0x3b82c,
1985 		0x3b880, 0x3b88c,
1986 		0x3b8e8, 0x3b8ec,
1987 		0x3b900, 0x3b948,
1988 		0x3b960, 0x3b99c,
1989 		0x3b9f0, 0x3bae4,
1990 		0x3baf8, 0x3bb10,
1991 		0x3bb28, 0x3bb28,
1992 		0x3bb3c, 0x3bb50,
1993 		0x3bbf0, 0x3bc10,
1994 		0x3bc28, 0x3bc28,
1995 		0x3bc3c, 0x3bc50,
1996 		0x3bcf0, 0x3bcfc,
1997 		0x3c000, 0x3c030,
1998 		0x3c100, 0x3c144,
1999 		0x3c190, 0x3c1d0,
2000 		0x3c200, 0x3c318,
2001 		0x3c400, 0x3c52c,
2002 		0x3c540, 0x3c61c,
2003 		0x3c800, 0x3c834,
2004 		0x3c8c0, 0x3c908,
2005 		0x3c910, 0x3c9ac,
2006 		0x3ca00, 0x3ca04,
2007 		0x3ca0c, 0x3ca2c,
2008 		0x3ca44, 0x3ca50,
2009 		0x3ca74, 0x3cc24,
2010 		0x3cd08, 0x3cd14,
2011 		0x3cd1c, 0x3cd20,
2012 		0x3cd3c, 0x3cd50,
2013 		0x3d200, 0x3d20c,
2014 		0x3d220, 0x3d220,
2015 		0x3d240, 0x3d240,
2016 		0x3d600, 0x3d600,
2017 		0x3d608, 0x3d60c,
2018 		0x3da00, 0x3da1c,
2019 		0x3de04, 0x3de20,
2020 		0x3de38, 0x3de3c,
2021 		0x3de80, 0x3de80,
2022 		0x3de88, 0x3dea8,
2023 		0x3deb0, 0x3deb4,
2024 		0x3dec8, 0x3ded4,
2025 		0x3dfb8, 0x3e004,
2026 		0x3e208, 0x3e23c,
2027 		0x3e600, 0x3e630,
2028 		0x3ea00, 0x3eabc,
2029 		0x3eb00, 0x3eb70,
2030 		0x3f000, 0x3f048,
2031 		0x3f060, 0x3f09c,
2032 		0x3f0f0, 0x3f148,
2033 		0x3f160, 0x3f19c,
2034 		0x3f1f0, 0x3f2e4,
2035 		0x3f2f8, 0x3f3e4,
2036 		0x3f3f8, 0x3f448,
2037 		0x3f460, 0x3f49c,
2038 		0x3f4f0, 0x3f548,
2039 		0x3f560, 0x3f59c,
2040 		0x3f5f0, 0x3f6e4,
2041 		0x3f6f8, 0x3f7e4,
2042 		0x3f7f8, 0x3f7fc,
2043 		0x3f814, 0x3f814,
2044 		0x3f82c, 0x3f82c,
2045 		0x3f880, 0x3f88c,
2046 		0x3f8e8, 0x3f8ec,
2047 		0x3f900, 0x3f948,
2048 		0x3f960, 0x3f99c,
2049 		0x3f9f0, 0x3fae4,
2050 		0x3faf8, 0x3fb10,
2051 		0x3fb28, 0x3fb28,
2052 		0x3fb3c, 0x3fb50,
2053 		0x3fbf0, 0x3fc10,
2054 		0x3fc28, 0x3fc28,
2055 		0x3fc3c, 0x3fc50,
2056 		0x3fcf0, 0x3fcfc,
2057 		0x40000, 0x4000c,
2058 		0x40040, 0x40068,
2059 		0x40080, 0x40144,
2060 		0x40180, 0x4018c,
2061 		0x40200, 0x40298,
2062 		0x402ac, 0x4033c,
2063 		0x403f8, 0x403fc,
2064 		0x41300, 0x413c4,
2065 		0x41400, 0x4141c,
2066 		0x41480, 0x414d0,
2067 		0x44000, 0x44078,
2068 		0x440c0, 0x44278,
2069 		0x442c0, 0x44478,
2070 		0x444c0, 0x44678,
2071 		0x446c0, 0x44878,
2072 		0x448c0, 0x449fc,
2073 		0x45000, 0x45068,
2074 		0x45080, 0x45084,
2075 		0x450a0, 0x450b0,
2076 		0x45200, 0x45268,
2077 		0x45280, 0x45284,
2078 		0x452a0, 0x452b0,
2079 		0x460c0, 0x460e4,
2080 		0x47000, 0x4708c,
2081 		0x47200, 0x47250,
2082 		0x47400, 0x47420,
2083 		0x47600, 0x47618,
2084 		0x47800, 0x47814,
2085 		0x48000, 0x4800c,
2086 		0x48040, 0x48068,
2087 		0x48080, 0x48144,
2088 		0x48180, 0x4818c,
2089 		0x48200, 0x48298,
2090 		0x482ac, 0x4833c,
2091 		0x483f8, 0x483fc,
2092 		0x49300, 0x493c4,
2093 		0x49400, 0x4941c,
2094 		0x49480, 0x494d0,
2095 		0x4c000, 0x4c078,
2096 		0x4c0c0, 0x4c278,
2097 		0x4c2c0, 0x4c478,
2098 		0x4c4c0, 0x4c678,
2099 		0x4c6c0, 0x4c878,
2100 		0x4c8c0, 0x4c9fc,
2101 		0x4d000, 0x4d068,
2102 		0x4d080, 0x4d084,
2103 		0x4d0a0, 0x4d0b0,
2104 		0x4d200, 0x4d268,
2105 		0x4d280, 0x4d284,
2106 		0x4d2a0, 0x4d2b0,
2107 		0x4e0c0, 0x4e0e4,
2108 		0x4f000, 0x4f08c,
2109 		0x4f200, 0x4f250,
2110 		0x4f400, 0x4f420,
2111 		0x4f600, 0x4f618,
2112 		0x4f800, 0x4f814,
2113 		0x50000, 0x500cc,
2114 		0x50400, 0x50400,
2115 		0x50800, 0x508cc,
2116 		0x50c00, 0x50c00,
2117 		0x51000, 0x5101c,
2118 		0x51300, 0x51308,
2119 	};
2120 
2121 	int i;
2122 	struct adapter *ap = netdev2adap(dev);
2123 	static const unsigned int *reg_ranges;
2124 	int arr_size = 0, buf_size = 0;
2125 
2126 	if (is_t4(ap->params.chip)) {
2127 		reg_ranges = &t4_reg_ranges[0];
2128 		arr_size = ARRAY_SIZE(t4_reg_ranges);
2129 		buf_size = T4_REGMAP_SIZE;
2130 	} else {
2131 		reg_ranges = &t5_reg_ranges[0];
2132 		arr_size = ARRAY_SIZE(t5_reg_ranges);
2133 		buf_size = T5_REGMAP_SIZE;
2134 	}
2135 
2136 	regs->version = mk_adap_vers(ap);
2137 
2138 	memset(buf, 0, buf_size);
2139 	for (i = 0; i < arr_size; i += 2)
2140 		reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
2141 }
2142 
2143 static int restart_autoneg(struct net_device *dev)
2144 {
2145 	struct port_info *p = netdev_priv(dev);
2146 
2147 	if (!netif_running(dev))
2148 		return -EAGAIN;
2149 	if (p->link_cfg.autoneg != AUTONEG_ENABLE)
2150 		return -EINVAL;
2151 	t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
2152 	return 0;
2153 }
2154 
2155 static int identify_port(struct net_device *dev,
2156 			 enum ethtool_phys_id_state state)
2157 {
2158 	unsigned int val;
2159 	struct adapter *adap = netdev2adap(dev);
2160 
2161 	if (state == ETHTOOL_ID_ACTIVE)
2162 		val = 0xffff;
2163 	else if (state == ETHTOOL_ID_INACTIVE)
2164 		val = 0;
2165 	else
2166 		return -EINVAL;
2167 
2168 	return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val);
2169 }
2170 
2171 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
2172 {
2173 	unsigned int v = 0;
2174 
2175 	if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
2176 	    type == FW_PORT_TYPE_BT_XAUI) {
2177 		v |= SUPPORTED_TP;
2178 		if (caps & FW_PORT_CAP_SPEED_100M)
2179 			v |= SUPPORTED_100baseT_Full;
2180 		if (caps & FW_PORT_CAP_SPEED_1G)
2181 			v |= SUPPORTED_1000baseT_Full;
2182 		if (caps & FW_PORT_CAP_SPEED_10G)
2183 			v |= SUPPORTED_10000baseT_Full;
2184 	} else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
2185 		v |= SUPPORTED_Backplane;
2186 		if (caps & FW_PORT_CAP_SPEED_1G)
2187 			v |= SUPPORTED_1000baseKX_Full;
2188 		if (caps & FW_PORT_CAP_SPEED_10G)
2189 			v |= SUPPORTED_10000baseKX4_Full;
2190 	} else if (type == FW_PORT_TYPE_KR)
2191 		v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
2192 	else if (type == FW_PORT_TYPE_BP_AP)
2193 		v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2194 		     SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
2195 	else if (type == FW_PORT_TYPE_BP4_AP)
2196 		v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2197 		     SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
2198 		     SUPPORTED_10000baseKX4_Full;
2199 	else if (type == FW_PORT_TYPE_FIBER_XFI ||
2200 		 type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP)
2201 		v |= SUPPORTED_FIBRE;
2202 
2203 	if (caps & FW_PORT_CAP_ANEG)
2204 		v |= SUPPORTED_Autoneg;
2205 	return v;
2206 }
2207 
2208 static unsigned int to_fw_linkcaps(unsigned int caps)
2209 {
2210 	unsigned int v = 0;
2211 
2212 	if (caps & ADVERTISED_100baseT_Full)
2213 		v |= FW_PORT_CAP_SPEED_100M;
2214 	if (caps & ADVERTISED_1000baseT_Full)
2215 		v |= FW_PORT_CAP_SPEED_1G;
2216 	if (caps & ADVERTISED_10000baseT_Full)
2217 		v |= FW_PORT_CAP_SPEED_10G;
2218 	return v;
2219 }
2220 
2221 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2222 {
2223 	const struct port_info *p = netdev_priv(dev);
2224 
2225 	if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
2226 	    p->port_type == FW_PORT_TYPE_BT_XFI ||
2227 	    p->port_type == FW_PORT_TYPE_BT_XAUI)
2228 		cmd->port = PORT_TP;
2229 	else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
2230 		 p->port_type == FW_PORT_TYPE_FIBER_XAUI)
2231 		cmd->port = PORT_FIBRE;
2232 	else if (p->port_type == FW_PORT_TYPE_SFP) {
2233 		if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
2234 		    p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
2235 			cmd->port = PORT_DA;
2236 		else
2237 			cmd->port = PORT_FIBRE;
2238 	} else
2239 		cmd->port = PORT_OTHER;
2240 
2241 	if (p->mdio_addr >= 0) {
2242 		cmd->phy_address = p->mdio_addr;
2243 		cmd->transceiver = XCVR_EXTERNAL;
2244 		cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
2245 			MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
2246 	} else {
2247 		cmd->phy_address = 0;  /* not really, but no better option */
2248 		cmd->transceiver = XCVR_INTERNAL;
2249 		cmd->mdio_support = 0;
2250 	}
2251 
2252 	cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
2253 	cmd->advertising = from_fw_linkcaps(p->port_type,
2254 					    p->link_cfg.advertising);
2255 	ethtool_cmd_speed_set(cmd,
2256 			      netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
2257 	cmd->duplex = DUPLEX_FULL;
2258 	cmd->autoneg = p->link_cfg.autoneg;
2259 	cmd->maxtxpkt = 0;
2260 	cmd->maxrxpkt = 0;
2261 	return 0;
2262 }
2263 
2264 static unsigned int speed_to_caps(int speed)
2265 {
2266 	if (speed == SPEED_100)
2267 		return FW_PORT_CAP_SPEED_100M;
2268 	if (speed == SPEED_1000)
2269 		return FW_PORT_CAP_SPEED_1G;
2270 	if (speed == SPEED_10000)
2271 		return FW_PORT_CAP_SPEED_10G;
2272 	return 0;
2273 }
2274 
2275 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2276 {
2277 	unsigned int cap;
2278 	struct port_info *p = netdev_priv(dev);
2279 	struct link_config *lc = &p->link_cfg;
2280 	u32 speed = ethtool_cmd_speed(cmd);
2281 
2282 	if (cmd->duplex != DUPLEX_FULL)     /* only full-duplex supported */
2283 		return -EINVAL;
2284 
2285 	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2286 		/*
2287 		 * PHY offers a single speed.  See if that's what's
2288 		 * being requested.
2289 		 */
2290 		if (cmd->autoneg == AUTONEG_DISABLE &&
2291 		    (lc->supported & speed_to_caps(speed)))
2292 			return 0;
2293 		return -EINVAL;
2294 	}
2295 
2296 	if (cmd->autoneg == AUTONEG_DISABLE) {
2297 		cap = speed_to_caps(speed);
2298 
2299 		if (!(lc->supported & cap) || (speed == SPEED_1000) ||
2300 		    (speed == SPEED_10000))
2301 			return -EINVAL;
2302 		lc->requested_speed = cap;
2303 		lc->advertising = 0;
2304 	} else {
2305 		cap = to_fw_linkcaps(cmd->advertising);
2306 		if (!(lc->supported & cap))
2307 			return -EINVAL;
2308 		lc->requested_speed = 0;
2309 		lc->advertising = cap | FW_PORT_CAP_ANEG;
2310 	}
2311 	lc->autoneg = cmd->autoneg;
2312 
2313 	if (netif_running(dev))
2314 		return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2315 				     lc);
2316 	return 0;
2317 }
2318 
2319 static void get_pauseparam(struct net_device *dev,
2320 			   struct ethtool_pauseparam *epause)
2321 {
2322 	struct port_info *p = netdev_priv(dev);
2323 
2324 	epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
2325 	epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
2326 	epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
2327 }
2328 
2329 static int set_pauseparam(struct net_device *dev,
2330 			  struct ethtool_pauseparam *epause)
2331 {
2332 	struct port_info *p = netdev_priv(dev);
2333 	struct link_config *lc = &p->link_cfg;
2334 
2335 	if (epause->autoneg == AUTONEG_DISABLE)
2336 		lc->requested_fc = 0;
2337 	else if (lc->supported & FW_PORT_CAP_ANEG)
2338 		lc->requested_fc = PAUSE_AUTONEG;
2339 	else
2340 		return -EINVAL;
2341 
2342 	if (epause->rx_pause)
2343 		lc->requested_fc |= PAUSE_RX;
2344 	if (epause->tx_pause)
2345 		lc->requested_fc |= PAUSE_TX;
2346 	if (netif_running(dev))
2347 		return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2348 				     lc);
2349 	return 0;
2350 }
2351 
2352 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2353 {
2354 	const struct port_info *pi = netdev_priv(dev);
2355 	const struct sge *s = &pi->adapter->sge;
2356 
2357 	e->rx_max_pending = MAX_RX_BUFFERS;
2358 	e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
2359 	e->rx_jumbo_max_pending = 0;
2360 	e->tx_max_pending = MAX_TXQ_ENTRIES;
2361 
2362 	e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
2363 	e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
2364 	e->rx_jumbo_pending = 0;
2365 	e->tx_pending = s->ethtxq[pi->first_qset].q.size;
2366 }
2367 
2368 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2369 {
2370 	int i;
2371 	const struct port_info *pi = netdev_priv(dev);
2372 	struct adapter *adapter = pi->adapter;
2373 	struct sge *s = &adapter->sge;
2374 
2375 	if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
2376 	    e->tx_pending > MAX_TXQ_ENTRIES ||
2377 	    e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
2378 	    e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
2379 	    e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
2380 		return -EINVAL;
2381 
2382 	if (adapter->flags & FULL_INIT_DONE)
2383 		return -EBUSY;
2384 
2385 	for (i = 0; i < pi->nqsets; ++i) {
2386 		s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
2387 		s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
2388 		s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
2389 	}
2390 	return 0;
2391 }
2392 
2393 static int closest_timer(const struct sge *s, int time)
2394 {
2395 	int i, delta, match = 0, min_delta = INT_MAX;
2396 
2397 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
2398 		delta = time - s->timer_val[i];
2399 		if (delta < 0)
2400 			delta = -delta;
2401 		if (delta < min_delta) {
2402 			min_delta = delta;
2403 			match = i;
2404 		}
2405 	}
2406 	return match;
2407 }
2408 
2409 static int closest_thres(const struct sge *s, int thres)
2410 {
2411 	int i, delta, match = 0, min_delta = INT_MAX;
2412 
2413 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
2414 		delta = thres - s->counter_val[i];
2415 		if (delta < 0)
2416 			delta = -delta;
2417 		if (delta < min_delta) {
2418 			min_delta = delta;
2419 			match = i;
2420 		}
2421 	}
2422 	return match;
2423 }
2424 
2425 /*
2426  * Return a queue's interrupt hold-off time in us.  0 means no timer.
2427  */
2428 static unsigned int qtimer_val(const struct adapter *adap,
2429 			       const struct sge_rspq *q)
2430 {
2431 	unsigned int idx = q->intr_params >> 1;
2432 
2433 	return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
2434 }
2435 
2436 /**
2437  *	set_rxq_intr_params - set a queue's interrupt holdoff parameters
2438  *	@adap: the adapter
2439  *	@q: the Rx queue
2440  *	@us: the hold-off time in us, or 0 to disable timer
2441  *	@cnt: the hold-off packet count, or 0 to disable counter
2442  *
2443  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
2444  *	one of the two needs to be enabled for the queue to generate interrupts.
2445  */
2446 static int set_rxq_intr_params(struct adapter *adap, struct sge_rspq *q,
2447 			       unsigned int us, unsigned int cnt)
2448 {
2449 	if ((us | cnt) == 0)
2450 		cnt = 1;
2451 
2452 	if (cnt) {
2453 		int err;
2454 		u32 v, new_idx;
2455 
2456 		new_idx = closest_thres(&adap->sge, cnt);
2457 		if (q->desc && q->pktcnt_idx != new_idx) {
2458 			/* the queue has already been created, update it */
2459 			v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2460 			    FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
2461 			    FW_PARAMS_PARAM_YZ(q->cntxt_id);
2462 			err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
2463 					    &new_idx);
2464 			if (err)
2465 				return err;
2466 		}
2467 		q->pktcnt_idx = new_idx;
2468 	}
2469 
2470 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
2471 	q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
2472 	return 0;
2473 }
2474 
2475 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2476 {
2477 	const struct port_info *pi = netdev_priv(dev);
2478 	struct adapter *adap = pi->adapter;
2479 	struct sge_rspq *q;
2480 	int i;
2481 	int r = 0;
2482 
2483 	for (i = pi->first_qset; i < pi->first_qset + pi->nqsets; i++) {
2484 		q = &adap->sge.ethrxq[i].rspq;
2485 		r = set_rxq_intr_params(adap, q, c->rx_coalesce_usecs,
2486 			c->rx_max_coalesced_frames);
2487 		if (r) {
2488 			dev_err(&dev->dev, "failed to set coalesce %d\n", r);
2489 			break;
2490 		}
2491 	}
2492 	return r;
2493 }
2494 
2495 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2496 {
2497 	const struct port_info *pi = netdev_priv(dev);
2498 	const struct adapter *adap = pi->adapter;
2499 	const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
2500 
2501 	c->rx_coalesce_usecs = qtimer_val(adap, rq);
2502 	c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
2503 		adap->sge.counter_val[rq->pktcnt_idx] : 0;
2504 	return 0;
2505 }
2506 
2507 /**
2508  *	eeprom_ptov - translate a physical EEPROM address to virtual
2509  *	@phys_addr: the physical EEPROM address
2510  *	@fn: the PCI function number
2511  *	@sz: size of function-specific area
2512  *
2513  *	Translate a physical EEPROM address to virtual.  The first 1K is
2514  *	accessed through virtual addresses starting at 31K, the rest is
2515  *	accessed through virtual addresses starting at 0.
2516  *
2517  *	The mapping is as follows:
2518  *	[0..1K) -> [31K..32K)
2519  *	[1K..1K+A) -> [31K-A..31K)
2520  *	[1K+A..ES) -> [0..ES-A-1K)
2521  *
2522  *	where A = @fn * @sz, and ES = EEPROM size.
2523  */
2524 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2525 {
2526 	fn *= sz;
2527 	if (phys_addr < 1024)
2528 		return phys_addr + (31 << 10);
2529 	if (phys_addr < 1024 + fn)
2530 		return 31744 - fn + phys_addr - 1024;
2531 	if (phys_addr < EEPROMSIZE)
2532 		return phys_addr - 1024 - fn;
2533 	return -EINVAL;
2534 }
2535 
2536 /*
2537  * The next two routines implement eeprom read/write from physical addresses.
2538  */
2539 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
2540 {
2541 	int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2542 
2543 	if (vaddr >= 0)
2544 		vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
2545 	return vaddr < 0 ? vaddr : 0;
2546 }
2547 
2548 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
2549 {
2550 	int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2551 
2552 	if (vaddr >= 0)
2553 		vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
2554 	return vaddr < 0 ? vaddr : 0;
2555 }
2556 
2557 #define EEPROM_MAGIC 0x38E2F10C
2558 
2559 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2560 		      u8 *data)
2561 {
2562 	int i, err = 0;
2563 	struct adapter *adapter = netdev2adap(dev);
2564 
2565 	u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2566 	if (!buf)
2567 		return -ENOMEM;
2568 
2569 	e->magic = EEPROM_MAGIC;
2570 	for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2571 		err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
2572 
2573 	if (!err)
2574 		memcpy(data, buf + e->offset, e->len);
2575 	kfree(buf);
2576 	return err;
2577 }
2578 
2579 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2580 		      u8 *data)
2581 {
2582 	u8 *buf;
2583 	int err = 0;
2584 	u32 aligned_offset, aligned_len, *p;
2585 	struct adapter *adapter = netdev2adap(dev);
2586 
2587 	if (eeprom->magic != EEPROM_MAGIC)
2588 		return -EINVAL;
2589 
2590 	aligned_offset = eeprom->offset & ~3;
2591 	aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2592 
2593 	if (adapter->fn > 0) {
2594 		u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
2595 
2596 		if (aligned_offset < start ||
2597 		    aligned_offset + aligned_len > start + EEPROMPFSIZE)
2598 			return -EPERM;
2599 	}
2600 
2601 	if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2602 		/*
2603 		 * RMW possibly needed for first or last words.
2604 		 */
2605 		buf = kmalloc(aligned_len, GFP_KERNEL);
2606 		if (!buf)
2607 			return -ENOMEM;
2608 		err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
2609 		if (!err && aligned_len > 4)
2610 			err = eeprom_rd_phys(adapter,
2611 					     aligned_offset + aligned_len - 4,
2612 					     (u32 *)&buf[aligned_len - 4]);
2613 		if (err)
2614 			goto out;
2615 		memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2616 	} else
2617 		buf = data;
2618 
2619 	err = t4_seeprom_wp(adapter, false);
2620 	if (err)
2621 		goto out;
2622 
2623 	for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
2624 		err = eeprom_wr_phys(adapter, aligned_offset, *p);
2625 		aligned_offset += 4;
2626 	}
2627 
2628 	if (!err)
2629 		err = t4_seeprom_wp(adapter, true);
2630 out:
2631 	if (buf != data)
2632 		kfree(buf);
2633 	return err;
2634 }
2635 
2636 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
2637 {
2638 	int ret;
2639 	const struct firmware *fw;
2640 	struct adapter *adap = netdev2adap(netdev);
2641 
2642 	ef->data[sizeof(ef->data) - 1] = '\0';
2643 	ret = request_firmware(&fw, ef->data, adap->pdev_dev);
2644 	if (ret < 0)
2645 		return ret;
2646 
2647 	ret = t4_load_fw(adap, fw->data, fw->size);
2648 	release_firmware(fw);
2649 	if (!ret)
2650 		dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data);
2651 	return ret;
2652 }
2653 
2654 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
2655 #define BCAST_CRC 0xa0ccc1a6
2656 
2657 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2658 {
2659 	wol->supported = WAKE_BCAST | WAKE_MAGIC;
2660 	wol->wolopts = netdev2adap(dev)->wol;
2661 	memset(&wol->sopass, 0, sizeof(wol->sopass));
2662 }
2663 
2664 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2665 {
2666 	int err = 0;
2667 	struct port_info *pi = netdev_priv(dev);
2668 
2669 	if (wol->wolopts & ~WOL_SUPPORTED)
2670 		return -EINVAL;
2671 	t4_wol_magic_enable(pi->adapter, pi->tx_chan,
2672 			    (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
2673 	if (wol->wolopts & WAKE_BCAST) {
2674 		err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
2675 					~0ULL, 0, false);
2676 		if (!err)
2677 			err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
2678 						~6ULL, ~0ULL, BCAST_CRC, true);
2679 	} else
2680 		t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
2681 	return err;
2682 }
2683 
2684 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2685 {
2686 	const struct port_info *pi = netdev_priv(dev);
2687 	netdev_features_t changed = dev->features ^ features;
2688 	int err;
2689 
2690 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
2691 		return 0;
2692 
2693 	err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
2694 			    -1, -1, -1,
2695 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
2696 	if (unlikely(err))
2697 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
2698 	return err;
2699 }
2700 
2701 static u32 get_rss_table_size(struct net_device *dev)
2702 {
2703 	const struct port_info *pi = netdev_priv(dev);
2704 
2705 	return pi->rss_size;
2706 }
2707 
2708 static int get_rss_table(struct net_device *dev, u32 *p)
2709 {
2710 	const struct port_info *pi = netdev_priv(dev);
2711 	unsigned int n = pi->rss_size;
2712 
2713 	while (n--)
2714 		p[n] = pi->rss[n];
2715 	return 0;
2716 }
2717 
2718 static int set_rss_table(struct net_device *dev, const u32 *p)
2719 {
2720 	unsigned int i;
2721 	struct port_info *pi = netdev_priv(dev);
2722 
2723 	for (i = 0; i < pi->rss_size; i++)
2724 		pi->rss[i] = p[i];
2725 	if (pi->adapter->flags & FULL_INIT_DONE)
2726 		return write_rss(pi, pi->rss);
2727 	return 0;
2728 }
2729 
2730 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
2731 		     u32 *rules)
2732 {
2733 	const struct port_info *pi = netdev_priv(dev);
2734 
2735 	switch (info->cmd) {
2736 	case ETHTOOL_GRXFH: {
2737 		unsigned int v = pi->rss_mode;
2738 
2739 		info->data = 0;
2740 		switch (info->flow_type) {
2741 		case TCP_V4_FLOW:
2742 			if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
2743 				info->data = RXH_IP_SRC | RXH_IP_DST |
2744 					     RXH_L4_B_0_1 | RXH_L4_B_2_3;
2745 			else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2746 				info->data = RXH_IP_SRC | RXH_IP_DST;
2747 			break;
2748 		case UDP_V4_FLOW:
2749 			if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
2750 			    (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
2751 				info->data = RXH_IP_SRC | RXH_IP_DST |
2752 					     RXH_L4_B_0_1 | RXH_L4_B_2_3;
2753 			else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2754 				info->data = RXH_IP_SRC | RXH_IP_DST;
2755 			break;
2756 		case SCTP_V4_FLOW:
2757 		case AH_ESP_V4_FLOW:
2758 		case IPV4_FLOW:
2759 			if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2760 				info->data = RXH_IP_SRC | RXH_IP_DST;
2761 			break;
2762 		case TCP_V6_FLOW:
2763 			if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
2764 				info->data = RXH_IP_SRC | RXH_IP_DST |
2765 					     RXH_L4_B_0_1 | RXH_L4_B_2_3;
2766 			else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
2767 				info->data = RXH_IP_SRC | RXH_IP_DST;
2768 			break;
2769 		case UDP_V6_FLOW:
2770 			if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
2771 			    (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
2772 				info->data = RXH_IP_SRC | RXH_IP_DST |
2773 					     RXH_L4_B_0_1 | RXH_L4_B_2_3;
2774 			else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
2775 				info->data = RXH_IP_SRC | RXH_IP_DST;
2776 			break;
2777 		case SCTP_V6_FLOW:
2778 		case AH_ESP_V6_FLOW:
2779 		case IPV6_FLOW:
2780 			if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
2781 				info->data = RXH_IP_SRC | RXH_IP_DST;
2782 			break;
2783 		}
2784 		return 0;
2785 	}
2786 	case ETHTOOL_GRXRINGS:
2787 		info->data = pi->nqsets;
2788 		return 0;
2789 	}
2790 	return -EOPNOTSUPP;
2791 }
2792 
2793 static const struct ethtool_ops cxgb_ethtool_ops = {
2794 	.get_settings      = get_settings,
2795 	.set_settings      = set_settings,
2796 	.get_drvinfo       = get_drvinfo,
2797 	.get_msglevel      = get_msglevel,
2798 	.set_msglevel      = set_msglevel,
2799 	.get_ringparam     = get_sge_param,
2800 	.set_ringparam     = set_sge_param,
2801 	.get_coalesce      = get_coalesce,
2802 	.set_coalesce      = set_coalesce,
2803 	.get_eeprom_len    = get_eeprom_len,
2804 	.get_eeprom        = get_eeprom,
2805 	.set_eeprom        = set_eeprom,
2806 	.get_pauseparam    = get_pauseparam,
2807 	.set_pauseparam    = set_pauseparam,
2808 	.get_link          = ethtool_op_get_link,
2809 	.get_strings       = get_strings,
2810 	.set_phys_id       = identify_port,
2811 	.nway_reset        = restart_autoneg,
2812 	.get_sset_count    = get_sset_count,
2813 	.get_ethtool_stats = get_stats,
2814 	.get_regs_len      = get_regs_len,
2815 	.get_regs          = get_regs,
2816 	.get_wol           = get_wol,
2817 	.set_wol           = set_wol,
2818 	.get_rxnfc         = get_rxnfc,
2819 	.get_rxfh_indir_size = get_rss_table_size,
2820 	.get_rxfh_indir    = get_rss_table,
2821 	.set_rxfh_indir    = set_rss_table,
2822 	.flash_device      = set_flash,
2823 };
2824 
2825 /*
2826  * debugfs support
2827  */
2828 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
2829 			loff_t *ppos)
2830 {
2831 	loff_t pos = *ppos;
2832 	loff_t avail = file_inode(file)->i_size;
2833 	unsigned int mem = (uintptr_t)file->private_data & 3;
2834 	struct adapter *adap = file->private_data - mem;
2835 
2836 	if (pos < 0)
2837 		return -EINVAL;
2838 	if (pos >= avail)
2839 		return 0;
2840 	if (count > avail - pos)
2841 		count = avail - pos;
2842 
2843 	while (count) {
2844 		size_t len;
2845 		int ret, ofst;
2846 		__be32 data[16];
2847 
2848 		if ((mem == MEM_MC) || (mem == MEM_MC1))
2849 			ret = t4_mc_read(adap, mem % MEM_MC, pos, data, NULL);
2850 		else
2851 			ret = t4_edc_read(adap, mem, pos, data, NULL);
2852 		if (ret)
2853 			return ret;
2854 
2855 		ofst = pos % sizeof(data);
2856 		len = min(count, sizeof(data) - ofst);
2857 		if (copy_to_user(buf, (u8 *)data + ofst, len))
2858 			return -EFAULT;
2859 
2860 		buf += len;
2861 		pos += len;
2862 		count -= len;
2863 	}
2864 	count = pos - *ppos;
2865 	*ppos = pos;
2866 	return count;
2867 }
2868 
2869 static const struct file_operations mem_debugfs_fops = {
2870 	.owner   = THIS_MODULE,
2871 	.open    = simple_open,
2872 	.read    = mem_read,
2873 	.llseek  = default_llseek,
2874 };
2875 
2876 static void add_debugfs_mem(struct adapter *adap, const char *name,
2877 			    unsigned int idx, unsigned int size_mb)
2878 {
2879 	struct dentry *de;
2880 
2881 	de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root,
2882 				 (void *)adap + idx, &mem_debugfs_fops);
2883 	if (de && de->d_inode)
2884 		de->d_inode->i_size = size_mb << 20;
2885 }
2886 
2887 static int setup_debugfs(struct adapter *adap)
2888 {
2889 	int i;
2890 	u32 size;
2891 
2892 	if (IS_ERR_OR_NULL(adap->debugfs_root))
2893 		return -1;
2894 
2895 	i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE);
2896 	if (i & EDRAM0_ENABLE) {
2897 		size = t4_read_reg(adap, MA_EDRAM0_BAR);
2898 		add_debugfs_mem(adap, "edc0", MEM_EDC0,	EDRAM_SIZE_GET(size));
2899 	}
2900 	if (i & EDRAM1_ENABLE) {
2901 		size = t4_read_reg(adap, MA_EDRAM1_BAR);
2902 		add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM_SIZE_GET(size));
2903 	}
2904 	if (is_t4(adap->params.chip)) {
2905 		size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
2906 		if (i & EXT_MEM_ENABLE)
2907 			add_debugfs_mem(adap, "mc", MEM_MC,
2908 					EXT_MEM_SIZE_GET(size));
2909 	} else {
2910 		if (i & EXT_MEM_ENABLE) {
2911 			size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
2912 			add_debugfs_mem(adap, "mc0", MEM_MC0,
2913 					EXT_MEM_SIZE_GET(size));
2914 		}
2915 		if (i & EXT_MEM1_ENABLE) {
2916 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR);
2917 			add_debugfs_mem(adap, "mc1", MEM_MC1,
2918 					EXT_MEM_SIZE_GET(size));
2919 		}
2920 	}
2921 	if (adap->l2t)
2922 		debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap,
2923 				    &t4_l2t_fops);
2924 	return 0;
2925 }
2926 
2927 /*
2928  * upper-layer driver support
2929  */
2930 
2931 /*
2932  * Allocate an active-open TID and set it to the supplied value.
2933  */
2934 int cxgb4_alloc_atid(struct tid_info *t, void *data)
2935 {
2936 	int atid = -1;
2937 
2938 	spin_lock_bh(&t->atid_lock);
2939 	if (t->afree) {
2940 		union aopen_entry *p = t->afree;
2941 
2942 		atid = (p - t->atid_tab) + t->atid_base;
2943 		t->afree = p->next;
2944 		p->data = data;
2945 		t->atids_in_use++;
2946 	}
2947 	spin_unlock_bh(&t->atid_lock);
2948 	return atid;
2949 }
2950 EXPORT_SYMBOL(cxgb4_alloc_atid);
2951 
2952 /*
2953  * Release an active-open TID.
2954  */
2955 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
2956 {
2957 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
2958 
2959 	spin_lock_bh(&t->atid_lock);
2960 	p->next = t->afree;
2961 	t->afree = p;
2962 	t->atids_in_use--;
2963 	spin_unlock_bh(&t->atid_lock);
2964 }
2965 EXPORT_SYMBOL(cxgb4_free_atid);
2966 
2967 /*
2968  * Allocate a server TID and set it to the supplied value.
2969  */
2970 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
2971 {
2972 	int stid;
2973 
2974 	spin_lock_bh(&t->stid_lock);
2975 	if (family == PF_INET) {
2976 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
2977 		if (stid < t->nstids)
2978 			__set_bit(stid, t->stid_bmap);
2979 		else
2980 			stid = -1;
2981 	} else {
2982 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
2983 		if (stid < 0)
2984 			stid = -1;
2985 	}
2986 	if (stid >= 0) {
2987 		t->stid_tab[stid].data = data;
2988 		stid += t->stid_base;
2989 		t->stids_in_use++;
2990 	}
2991 	spin_unlock_bh(&t->stid_lock);
2992 	return stid;
2993 }
2994 EXPORT_SYMBOL(cxgb4_alloc_stid);
2995 
2996 /* Allocate a server filter TID and set it to the supplied value.
2997  */
2998 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
2999 {
3000 	int stid;
3001 
3002 	spin_lock_bh(&t->stid_lock);
3003 	if (family == PF_INET) {
3004 		stid = find_next_zero_bit(t->stid_bmap,
3005 				t->nstids + t->nsftids, t->nstids);
3006 		if (stid < (t->nstids + t->nsftids))
3007 			__set_bit(stid, t->stid_bmap);
3008 		else
3009 			stid = -1;
3010 	} else {
3011 		stid = -1;
3012 	}
3013 	if (stid >= 0) {
3014 		t->stid_tab[stid].data = data;
3015 		stid += t->stid_base;
3016 		t->stids_in_use++;
3017 	}
3018 	spin_unlock_bh(&t->stid_lock);
3019 	return stid;
3020 }
3021 EXPORT_SYMBOL(cxgb4_alloc_sftid);
3022 
3023 /* Release a server TID.
3024  */
3025 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
3026 {
3027 	stid -= t->stid_base;
3028 	spin_lock_bh(&t->stid_lock);
3029 	if (family == PF_INET)
3030 		__clear_bit(stid, t->stid_bmap);
3031 	else
3032 		bitmap_release_region(t->stid_bmap, stid, 2);
3033 	t->stid_tab[stid].data = NULL;
3034 	t->stids_in_use--;
3035 	spin_unlock_bh(&t->stid_lock);
3036 }
3037 EXPORT_SYMBOL(cxgb4_free_stid);
3038 
3039 /*
3040  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
3041  */
3042 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
3043 			   unsigned int tid)
3044 {
3045 	struct cpl_tid_release *req;
3046 
3047 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
3048 	req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
3049 	INIT_TP_WR(req, tid);
3050 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
3051 }
3052 
3053 /*
3054  * Queue a TID release request and if necessary schedule a work queue to
3055  * process it.
3056  */
3057 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
3058 				    unsigned int tid)
3059 {
3060 	void **p = &t->tid_tab[tid];
3061 	struct adapter *adap = container_of(t, struct adapter, tids);
3062 
3063 	spin_lock_bh(&adap->tid_release_lock);
3064 	*p = adap->tid_release_head;
3065 	/* Low 2 bits encode the Tx channel number */
3066 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
3067 	if (!adap->tid_release_task_busy) {
3068 		adap->tid_release_task_busy = true;
3069 		queue_work(workq, &adap->tid_release_task);
3070 	}
3071 	spin_unlock_bh(&adap->tid_release_lock);
3072 }
3073 
3074 /*
3075  * Process the list of pending TID release requests.
3076  */
3077 static void process_tid_release_list(struct work_struct *work)
3078 {
3079 	struct sk_buff *skb;
3080 	struct adapter *adap;
3081 
3082 	adap = container_of(work, struct adapter, tid_release_task);
3083 
3084 	spin_lock_bh(&adap->tid_release_lock);
3085 	while (adap->tid_release_head) {
3086 		void **p = adap->tid_release_head;
3087 		unsigned int chan = (uintptr_t)p & 3;
3088 		p = (void *)p - chan;
3089 
3090 		adap->tid_release_head = *p;
3091 		*p = NULL;
3092 		spin_unlock_bh(&adap->tid_release_lock);
3093 
3094 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
3095 					 GFP_KERNEL)))
3096 			schedule_timeout_uninterruptible(1);
3097 
3098 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
3099 		t4_ofld_send(adap, skb);
3100 		spin_lock_bh(&adap->tid_release_lock);
3101 	}
3102 	adap->tid_release_task_busy = false;
3103 	spin_unlock_bh(&adap->tid_release_lock);
3104 }
3105 
3106 /*
3107  * Release a TID and inform HW.  If we are unable to allocate the release
3108  * message we defer to a work queue.
3109  */
3110 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
3111 {
3112 	void *old;
3113 	struct sk_buff *skb;
3114 	struct adapter *adap = container_of(t, struct adapter, tids);
3115 
3116 	old = t->tid_tab[tid];
3117 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
3118 	if (likely(skb)) {
3119 		t->tid_tab[tid] = NULL;
3120 		mk_tid_release(skb, chan, tid);
3121 		t4_ofld_send(adap, skb);
3122 	} else
3123 		cxgb4_queue_tid_release(t, chan, tid);
3124 	if (old)
3125 		atomic_dec(&t->tids_in_use);
3126 }
3127 EXPORT_SYMBOL(cxgb4_remove_tid);
3128 
3129 /*
3130  * Allocate and initialize the TID tables.  Returns 0 on success.
3131  */
3132 static int tid_init(struct tid_info *t)
3133 {
3134 	size_t size;
3135 	unsigned int stid_bmap_size;
3136 	unsigned int natids = t->natids;
3137 
3138 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
3139 	size = t->ntids * sizeof(*t->tid_tab) +
3140 	       natids * sizeof(*t->atid_tab) +
3141 	       t->nstids * sizeof(*t->stid_tab) +
3142 	       t->nsftids * sizeof(*t->stid_tab) +
3143 	       stid_bmap_size * sizeof(long) +
3144 	       t->nftids * sizeof(*t->ftid_tab) +
3145 	       t->nsftids * sizeof(*t->ftid_tab);
3146 
3147 	t->tid_tab = t4_alloc_mem(size);
3148 	if (!t->tid_tab)
3149 		return -ENOMEM;
3150 
3151 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
3152 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
3153 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
3154 	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
3155 	spin_lock_init(&t->stid_lock);
3156 	spin_lock_init(&t->atid_lock);
3157 
3158 	t->stids_in_use = 0;
3159 	t->afree = NULL;
3160 	t->atids_in_use = 0;
3161 	atomic_set(&t->tids_in_use, 0);
3162 
3163 	/* Setup the free list for atid_tab and clear the stid bitmap. */
3164 	if (natids) {
3165 		while (--natids)
3166 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
3167 		t->afree = t->atid_tab;
3168 	}
3169 	bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
3170 	return 0;
3171 }
3172 
3173 static int cxgb4_clip_get(const struct net_device *dev,
3174 			  const struct in6_addr *lip)
3175 {
3176 	struct adapter *adap;
3177 	struct fw_clip_cmd c;
3178 
3179 	adap = netdev2adap(dev);
3180 	memset(&c, 0, sizeof(c));
3181 	c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3182 			FW_CMD_REQUEST | FW_CMD_WRITE);
3183 	c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_ALLOC | FW_LEN16(c));
3184 	*(__be64 *)&c.ip_hi = *(__be64 *)(lip->s6_addr);
3185 	*(__be64 *)&c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3186 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3187 }
3188 
3189 static int cxgb4_clip_release(const struct net_device *dev,
3190 			      const struct in6_addr *lip)
3191 {
3192 	struct adapter *adap;
3193 	struct fw_clip_cmd c;
3194 
3195 	adap = netdev2adap(dev);
3196 	memset(&c, 0, sizeof(c));
3197 	c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3198 			FW_CMD_REQUEST | FW_CMD_READ);
3199 	c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_FREE | FW_LEN16(c));
3200 	*(__be64 *)&c.ip_hi = *(__be64 *)(lip->s6_addr);
3201 	*(__be64 *)&c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3202 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3203 }
3204 
3205 /**
3206  *	cxgb4_create_server - create an IP server
3207  *	@dev: the device
3208  *	@stid: the server TID
3209  *	@sip: local IP address to bind server to
3210  *	@sport: the server's TCP port
3211  *	@queue: queue to direct messages from this server to
3212  *
3213  *	Create an IP server for the given port and address.
3214  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
3215  */
3216 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
3217 			__be32 sip, __be16 sport, __be16 vlan,
3218 			unsigned int queue)
3219 {
3220 	unsigned int chan;
3221 	struct sk_buff *skb;
3222 	struct adapter *adap;
3223 	struct cpl_pass_open_req *req;
3224 	int ret;
3225 
3226 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3227 	if (!skb)
3228 		return -ENOMEM;
3229 
3230 	adap = netdev2adap(dev);
3231 	req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
3232 	INIT_TP_WR(req, 0);
3233 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
3234 	req->local_port = sport;
3235 	req->peer_port = htons(0);
3236 	req->local_ip = sip;
3237 	req->peer_ip = htonl(0);
3238 	chan = rxq_to_chan(&adap->sge, queue);
3239 	req->opt0 = cpu_to_be64(TX_CHAN(chan));
3240 	req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3241 				SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3242 	ret = t4_mgmt_tx(adap, skb);
3243 	return net_xmit_eval(ret);
3244 }
3245 EXPORT_SYMBOL(cxgb4_create_server);
3246 
3247 /*	cxgb4_create_server6 - create an IPv6 server
3248  *	@dev: the device
3249  *	@stid: the server TID
3250  *	@sip: local IPv6 address to bind server to
3251  *	@sport: the server's TCP port
3252  *	@queue: queue to direct messages from this server to
3253  *
3254  *	Create an IPv6 server for the given port and address.
3255  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
3256  */
3257 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
3258 			 const struct in6_addr *sip, __be16 sport,
3259 			 unsigned int queue)
3260 {
3261 	unsigned int chan;
3262 	struct sk_buff *skb;
3263 	struct adapter *adap;
3264 	struct cpl_pass_open_req6 *req;
3265 	int ret;
3266 
3267 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3268 	if (!skb)
3269 		return -ENOMEM;
3270 
3271 	adap = netdev2adap(dev);
3272 	req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
3273 	INIT_TP_WR(req, 0);
3274 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
3275 	req->local_port = sport;
3276 	req->peer_port = htons(0);
3277 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
3278 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
3279 	req->peer_ip_hi = cpu_to_be64(0);
3280 	req->peer_ip_lo = cpu_to_be64(0);
3281 	chan = rxq_to_chan(&adap->sge, queue);
3282 	req->opt0 = cpu_to_be64(TX_CHAN(chan));
3283 	req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3284 				SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3285 	ret = t4_mgmt_tx(adap, skb);
3286 	return net_xmit_eval(ret);
3287 }
3288 EXPORT_SYMBOL(cxgb4_create_server6);
3289 
3290 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
3291 			unsigned int queue, bool ipv6)
3292 {
3293 	struct sk_buff *skb;
3294 	struct adapter *adap;
3295 	struct cpl_close_listsvr_req *req;
3296 	int ret;
3297 
3298 	adap = netdev2adap(dev);
3299 
3300 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3301 	if (!skb)
3302 		return -ENOMEM;
3303 
3304 	req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
3305 	INIT_TP_WR(req, 0);
3306 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
3307 	req->reply_ctrl = htons(NO_REPLY(0) | (ipv6 ? LISTSVR_IPV6(1) :
3308 				LISTSVR_IPV6(0)) | QUEUENO(queue));
3309 	ret = t4_mgmt_tx(adap, skb);
3310 	return net_xmit_eval(ret);
3311 }
3312 EXPORT_SYMBOL(cxgb4_remove_server);
3313 
3314 /**
3315  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
3316  *	@mtus: the HW MTU table
3317  *	@mtu: the target MTU
3318  *	@idx: index of selected entry in the MTU table
3319  *
3320  *	Returns the index and the value in the HW MTU table that is closest to
3321  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
3322  *	table, in which case that smallest available value is selected.
3323  */
3324 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
3325 			    unsigned int *idx)
3326 {
3327 	unsigned int i = 0;
3328 
3329 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
3330 		++i;
3331 	if (idx)
3332 		*idx = i;
3333 	return mtus[i];
3334 }
3335 EXPORT_SYMBOL(cxgb4_best_mtu);
3336 
3337 /**
3338  *	cxgb4_port_chan - get the HW channel of a port
3339  *	@dev: the net device for the port
3340  *
3341  *	Return the HW Tx channel of the given port.
3342  */
3343 unsigned int cxgb4_port_chan(const struct net_device *dev)
3344 {
3345 	return netdev2pinfo(dev)->tx_chan;
3346 }
3347 EXPORT_SYMBOL(cxgb4_port_chan);
3348 
3349 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
3350 {
3351 	struct adapter *adap = netdev2adap(dev);
3352 	u32 v1, v2, lp_count, hp_count;
3353 
3354 	v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3355 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3356 	if (is_t4(adap->params.chip)) {
3357 		lp_count = G_LP_COUNT(v1);
3358 		hp_count = G_HP_COUNT(v1);
3359 	} else {
3360 		lp_count = G_LP_COUNT_T5(v1);
3361 		hp_count = G_HP_COUNT_T5(v2);
3362 	}
3363 	return lpfifo ? lp_count : hp_count;
3364 }
3365 EXPORT_SYMBOL(cxgb4_dbfifo_count);
3366 
3367 /**
3368  *	cxgb4_port_viid - get the VI id of a port
3369  *	@dev: the net device for the port
3370  *
3371  *	Return the VI id of the given port.
3372  */
3373 unsigned int cxgb4_port_viid(const struct net_device *dev)
3374 {
3375 	return netdev2pinfo(dev)->viid;
3376 }
3377 EXPORT_SYMBOL(cxgb4_port_viid);
3378 
3379 /**
3380  *	cxgb4_port_idx - get the index of a port
3381  *	@dev: the net device for the port
3382  *
3383  *	Return the index of the given port.
3384  */
3385 unsigned int cxgb4_port_idx(const struct net_device *dev)
3386 {
3387 	return netdev2pinfo(dev)->port_id;
3388 }
3389 EXPORT_SYMBOL(cxgb4_port_idx);
3390 
3391 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
3392 			 struct tp_tcp_stats *v6)
3393 {
3394 	struct adapter *adap = pci_get_drvdata(pdev);
3395 
3396 	spin_lock(&adap->stats_lock);
3397 	t4_tp_get_tcp_stats(adap, v4, v6);
3398 	spin_unlock(&adap->stats_lock);
3399 }
3400 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
3401 
3402 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
3403 		      const unsigned int *pgsz_order)
3404 {
3405 	struct adapter *adap = netdev2adap(dev);
3406 
3407 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
3408 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
3409 		     HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
3410 		     HPZ3(pgsz_order[3]));
3411 }
3412 EXPORT_SYMBOL(cxgb4_iscsi_init);
3413 
3414 int cxgb4_flush_eq_cache(struct net_device *dev)
3415 {
3416 	struct adapter *adap = netdev2adap(dev);
3417 	int ret;
3418 
3419 	ret = t4_fwaddrspace_write(adap, adap->mbox,
3420 				   0xe1000000 + A_SGE_CTXT_CMD, 0x20000000);
3421 	return ret;
3422 }
3423 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
3424 
3425 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
3426 {
3427 	u32 addr = t4_read_reg(adap, A_SGE_DBQ_CTXT_BADDR) + 24 * qid + 8;
3428 	__be64 indices;
3429 	int ret;
3430 
3431 	ret = t4_mem_win_read_len(adap, addr, (__be32 *)&indices, 8);
3432 	if (!ret) {
3433 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
3434 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3435 	}
3436 	return ret;
3437 }
3438 
3439 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
3440 			u16 size)
3441 {
3442 	struct adapter *adap = netdev2adap(dev);
3443 	u16 hw_pidx, hw_cidx;
3444 	int ret;
3445 
3446 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
3447 	if (ret)
3448 		goto out;
3449 
3450 	if (pidx != hw_pidx) {
3451 		u16 delta;
3452 
3453 		if (pidx >= hw_pidx)
3454 			delta = pidx - hw_pidx;
3455 		else
3456 			delta = size - hw_pidx + pidx;
3457 		wmb();
3458 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3459 			     QID(qid) | PIDX(delta));
3460 	}
3461 out:
3462 	return ret;
3463 }
3464 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
3465 
3466 void cxgb4_disable_db_coalescing(struct net_device *dev)
3467 {
3468 	struct adapter *adap;
3469 
3470 	adap = netdev2adap(dev);
3471 	t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE,
3472 			 F_NOCOALESCE);
3473 }
3474 EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
3475 
3476 void cxgb4_enable_db_coalescing(struct net_device *dev)
3477 {
3478 	struct adapter *adap;
3479 
3480 	adap = netdev2adap(dev);
3481 	t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE, 0);
3482 }
3483 EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
3484 
3485 static struct pci_driver cxgb4_driver;
3486 
3487 static void check_neigh_update(struct neighbour *neigh)
3488 {
3489 	const struct device *parent;
3490 	const struct net_device *netdev = neigh->dev;
3491 
3492 	if (netdev->priv_flags & IFF_802_1Q_VLAN)
3493 		netdev = vlan_dev_real_dev(netdev);
3494 	parent = netdev->dev.parent;
3495 	if (parent && parent->driver == &cxgb4_driver.driver)
3496 		t4_l2t_update(dev_get_drvdata(parent), neigh);
3497 }
3498 
3499 static int netevent_cb(struct notifier_block *nb, unsigned long event,
3500 		       void *data)
3501 {
3502 	switch (event) {
3503 	case NETEVENT_NEIGH_UPDATE:
3504 		check_neigh_update(data);
3505 		break;
3506 	case NETEVENT_REDIRECT:
3507 	default:
3508 		break;
3509 	}
3510 	return 0;
3511 }
3512 
3513 static bool netevent_registered;
3514 static struct notifier_block cxgb4_netevent_nb = {
3515 	.notifier_call = netevent_cb
3516 };
3517 
3518 static void drain_db_fifo(struct adapter *adap, int usecs)
3519 {
3520 	u32 v1, v2, lp_count, hp_count;
3521 
3522 	do {
3523 		v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3524 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3525 		if (is_t4(adap->params.chip)) {
3526 			lp_count = G_LP_COUNT(v1);
3527 			hp_count = G_HP_COUNT(v1);
3528 		} else {
3529 			lp_count = G_LP_COUNT_T5(v1);
3530 			hp_count = G_HP_COUNT_T5(v2);
3531 		}
3532 
3533 		if (lp_count == 0 && hp_count == 0)
3534 			break;
3535 		set_current_state(TASK_UNINTERRUPTIBLE);
3536 		schedule_timeout(usecs_to_jiffies(usecs));
3537 	} while (1);
3538 }
3539 
3540 static void disable_txq_db(struct sge_txq *q)
3541 {
3542 	spin_lock_irq(&q->db_lock);
3543 	q->db_disabled = 1;
3544 	spin_unlock_irq(&q->db_lock);
3545 }
3546 
3547 static void enable_txq_db(struct sge_txq *q)
3548 {
3549 	spin_lock_irq(&q->db_lock);
3550 	q->db_disabled = 0;
3551 	spin_unlock_irq(&q->db_lock);
3552 }
3553 
3554 static void disable_dbs(struct adapter *adap)
3555 {
3556 	int i;
3557 
3558 	for_each_ethrxq(&adap->sge, i)
3559 		disable_txq_db(&adap->sge.ethtxq[i].q);
3560 	for_each_ofldrxq(&adap->sge, i)
3561 		disable_txq_db(&adap->sge.ofldtxq[i].q);
3562 	for_each_port(adap, i)
3563 		disable_txq_db(&adap->sge.ctrlq[i].q);
3564 }
3565 
3566 static void enable_dbs(struct adapter *adap)
3567 {
3568 	int i;
3569 
3570 	for_each_ethrxq(&adap->sge, i)
3571 		enable_txq_db(&adap->sge.ethtxq[i].q);
3572 	for_each_ofldrxq(&adap->sge, i)
3573 		enable_txq_db(&adap->sge.ofldtxq[i].q);
3574 	for_each_port(adap, i)
3575 		enable_txq_db(&adap->sge.ctrlq[i].q);
3576 }
3577 
3578 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
3579 {
3580 	u16 hw_pidx, hw_cidx;
3581 	int ret;
3582 
3583 	spin_lock_bh(&q->db_lock);
3584 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
3585 	if (ret)
3586 		goto out;
3587 	if (q->db_pidx != hw_pidx) {
3588 		u16 delta;
3589 
3590 		if (q->db_pidx >= hw_pidx)
3591 			delta = q->db_pidx - hw_pidx;
3592 		else
3593 			delta = q->size - hw_pidx + q->db_pidx;
3594 		wmb();
3595 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3596 			     QID(q->cntxt_id) | PIDX(delta));
3597 	}
3598 out:
3599 	q->db_disabled = 0;
3600 	spin_unlock_bh(&q->db_lock);
3601 	if (ret)
3602 		CH_WARN(adap, "DB drop recovery failed.\n");
3603 }
3604 static void recover_all_queues(struct adapter *adap)
3605 {
3606 	int i;
3607 
3608 	for_each_ethrxq(&adap->sge, i)
3609 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
3610 	for_each_ofldrxq(&adap->sge, i)
3611 		sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
3612 	for_each_port(adap, i)
3613 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
3614 }
3615 
3616 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
3617 {
3618 	mutex_lock(&uld_mutex);
3619 	if (adap->uld_handle[CXGB4_ULD_RDMA])
3620 		ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
3621 				cmd);
3622 	mutex_unlock(&uld_mutex);
3623 }
3624 
3625 static void process_db_full(struct work_struct *work)
3626 {
3627 	struct adapter *adap;
3628 
3629 	adap = container_of(work, struct adapter, db_full_task);
3630 
3631 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
3632 	drain_db_fifo(adap, dbfifo_drain_delay);
3633 	t4_set_reg_field(adap, SGE_INT_ENABLE3,
3634 			 DBFIFO_HP_INT | DBFIFO_LP_INT,
3635 			 DBFIFO_HP_INT | DBFIFO_LP_INT);
3636 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
3637 }
3638 
3639 static void process_db_drop(struct work_struct *work)
3640 {
3641 	struct adapter *adap;
3642 
3643 	adap = container_of(work, struct adapter, db_drop_task);
3644 
3645 	if (is_t4(adap->params.chip)) {
3646 		disable_dbs(adap);
3647 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
3648 		drain_db_fifo(adap, 1);
3649 		recover_all_queues(adap);
3650 		enable_dbs(adap);
3651 	} else {
3652 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
3653 		u16 qid = (dropped_db >> 15) & 0x1ffff;
3654 		u16 pidx_inc = dropped_db & 0x1fff;
3655 		unsigned int s_qpp;
3656 		unsigned short udb_density;
3657 		unsigned long qpshift;
3658 		int page;
3659 		u32 udb;
3660 
3661 		dev_warn(adap->pdev_dev,
3662 			 "Dropped DB 0x%x qid %d bar2 %d coalesce %d pidx %d\n",
3663 			 dropped_db, qid,
3664 			 (dropped_db >> 14) & 1,
3665 			 (dropped_db >> 13) & 1,
3666 			 pidx_inc);
3667 
3668 		drain_db_fifo(adap, 1);
3669 
3670 		s_qpp = QUEUESPERPAGEPF1 * adap->fn;
3671 		udb_density = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adap,
3672 				SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
3673 		qpshift = PAGE_SHIFT - ilog2(udb_density);
3674 		udb = qid << qpshift;
3675 		udb &= PAGE_MASK;
3676 		page = udb / PAGE_SIZE;
3677 		udb += (qid - (page * udb_density)) * 128;
3678 
3679 		writel(PIDX(pidx_inc),  adap->bar2 + udb + 8);
3680 
3681 		/* Re-enable BAR2 WC */
3682 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
3683 	}
3684 
3685 	t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_DROPPED_DB, 0);
3686 }
3687 
3688 void t4_db_full(struct adapter *adap)
3689 {
3690 	if (is_t4(adap->params.chip)) {
3691 		t4_set_reg_field(adap, SGE_INT_ENABLE3,
3692 				 DBFIFO_HP_INT | DBFIFO_LP_INT, 0);
3693 		queue_work(workq, &adap->db_full_task);
3694 	}
3695 }
3696 
3697 void t4_db_dropped(struct adapter *adap)
3698 {
3699 	if (is_t4(adap->params.chip))
3700 		queue_work(workq, &adap->db_drop_task);
3701 }
3702 
3703 static void uld_attach(struct adapter *adap, unsigned int uld)
3704 {
3705 	void *handle;
3706 	struct cxgb4_lld_info lli;
3707 	unsigned short i;
3708 
3709 	lli.pdev = adap->pdev;
3710 	lli.l2t = adap->l2t;
3711 	lli.tids = &adap->tids;
3712 	lli.ports = adap->port;
3713 	lli.vr = &adap->vres;
3714 	lli.mtus = adap->params.mtus;
3715 	if (uld == CXGB4_ULD_RDMA) {
3716 		lli.rxq_ids = adap->sge.rdma_rxq;
3717 		lli.nrxq = adap->sge.rdmaqs;
3718 	} else if (uld == CXGB4_ULD_ISCSI) {
3719 		lli.rxq_ids = adap->sge.ofld_rxq;
3720 		lli.nrxq = adap->sge.ofldqsets;
3721 	}
3722 	lli.ntxq = adap->sge.ofldqsets;
3723 	lli.nchan = adap->params.nports;
3724 	lli.nports = adap->params.nports;
3725 	lli.wr_cred = adap->params.ofldq_wr_cred;
3726 	lli.adapter_type = adap->params.chip;
3727 	lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
3728 	lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
3729 			t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
3730 			(adap->fn * 4));
3731 	lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
3732 			t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
3733 			(adap->fn * 4));
3734 	lli.filt_mode = adap->filter_mode;
3735 	/* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
3736 	for (i = 0; i < NCHAN; i++)
3737 		lli.tx_modq[i] = i;
3738 	lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
3739 	lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
3740 	lli.fw_vers = adap->params.fw_vers;
3741 	lli.dbfifo_int_thresh = dbfifo_int_thresh;
3742 	lli.sge_pktshift = adap->sge.pktshift;
3743 	lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
3744 
3745 	handle = ulds[uld].add(&lli);
3746 	if (IS_ERR(handle)) {
3747 		dev_warn(adap->pdev_dev,
3748 			 "could not attach to the %s driver, error %ld\n",
3749 			 uld_str[uld], PTR_ERR(handle));
3750 		return;
3751 	}
3752 
3753 	adap->uld_handle[uld] = handle;
3754 
3755 	if (!netevent_registered) {
3756 		register_netevent_notifier(&cxgb4_netevent_nb);
3757 		netevent_registered = true;
3758 	}
3759 
3760 	if (adap->flags & FULL_INIT_DONE)
3761 		ulds[uld].state_change(handle, CXGB4_STATE_UP);
3762 }
3763 
3764 static void attach_ulds(struct adapter *adap)
3765 {
3766 	unsigned int i;
3767 
3768 	spin_lock(&adap_rcu_lock);
3769 	list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
3770 	spin_unlock(&adap_rcu_lock);
3771 
3772 	mutex_lock(&uld_mutex);
3773 	list_add_tail(&adap->list_node, &adapter_list);
3774 	for (i = 0; i < CXGB4_ULD_MAX; i++)
3775 		if (ulds[i].add)
3776 			uld_attach(adap, i);
3777 	mutex_unlock(&uld_mutex);
3778 }
3779 
3780 static void detach_ulds(struct adapter *adap)
3781 {
3782 	unsigned int i;
3783 
3784 	mutex_lock(&uld_mutex);
3785 	list_del(&adap->list_node);
3786 	for (i = 0; i < CXGB4_ULD_MAX; i++)
3787 		if (adap->uld_handle[i]) {
3788 			ulds[i].state_change(adap->uld_handle[i],
3789 					     CXGB4_STATE_DETACH);
3790 			adap->uld_handle[i] = NULL;
3791 		}
3792 	if (netevent_registered && list_empty(&adapter_list)) {
3793 		unregister_netevent_notifier(&cxgb4_netevent_nb);
3794 		netevent_registered = false;
3795 	}
3796 	mutex_unlock(&uld_mutex);
3797 
3798 	spin_lock(&adap_rcu_lock);
3799 	list_del_rcu(&adap->rcu_node);
3800 	spin_unlock(&adap_rcu_lock);
3801 }
3802 
3803 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
3804 {
3805 	unsigned int i;
3806 
3807 	mutex_lock(&uld_mutex);
3808 	for (i = 0; i < CXGB4_ULD_MAX; i++)
3809 		if (adap->uld_handle[i])
3810 			ulds[i].state_change(adap->uld_handle[i], new_state);
3811 	mutex_unlock(&uld_mutex);
3812 }
3813 
3814 /**
3815  *	cxgb4_register_uld - register an upper-layer driver
3816  *	@type: the ULD type
3817  *	@p: the ULD methods
3818  *
3819  *	Registers an upper-layer driver with this driver and notifies the ULD
3820  *	about any presently available devices that support its type.  Returns
3821  *	%-EBUSY if a ULD of the same type is already registered.
3822  */
3823 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
3824 {
3825 	int ret = 0;
3826 	struct adapter *adap;
3827 
3828 	if (type >= CXGB4_ULD_MAX)
3829 		return -EINVAL;
3830 	mutex_lock(&uld_mutex);
3831 	if (ulds[type].add) {
3832 		ret = -EBUSY;
3833 		goto out;
3834 	}
3835 	ulds[type] = *p;
3836 	list_for_each_entry(adap, &adapter_list, list_node)
3837 		uld_attach(adap, type);
3838 out:	mutex_unlock(&uld_mutex);
3839 	return ret;
3840 }
3841 EXPORT_SYMBOL(cxgb4_register_uld);
3842 
3843 /**
3844  *	cxgb4_unregister_uld - unregister an upper-layer driver
3845  *	@type: the ULD type
3846  *
3847  *	Unregisters an existing upper-layer driver.
3848  */
3849 int cxgb4_unregister_uld(enum cxgb4_uld type)
3850 {
3851 	struct adapter *adap;
3852 
3853 	if (type >= CXGB4_ULD_MAX)
3854 		return -EINVAL;
3855 	mutex_lock(&uld_mutex);
3856 	list_for_each_entry(adap, &adapter_list, list_node)
3857 		adap->uld_handle[type] = NULL;
3858 	ulds[type].add = NULL;
3859 	mutex_unlock(&uld_mutex);
3860 	return 0;
3861 }
3862 EXPORT_SYMBOL(cxgb4_unregister_uld);
3863 
3864 /* Check if netdev on which event is occured belongs to us or not. Return
3865  * suceess (1) if it belongs otherwise failure (0).
3866  */
3867 static int cxgb4_netdev(struct net_device *netdev)
3868 {
3869 	struct adapter *adap;
3870 	int i;
3871 
3872 	spin_lock(&adap_rcu_lock);
3873 	list_for_each_entry_rcu(adap, &adap_rcu_list, rcu_node)
3874 		for (i = 0; i < MAX_NPORTS; i++)
3875 			if (adap->port[i] == netdev) {
3876 				spin_unlock(&adap_rcu_lock);
3877 				return 1;
3878 			}
3879 	spin_unlock(&adap_rcu_lock);
3880 	return 0;
3881 }
3882 
3883 static int clip_add(struct net_device *event_dev, struct inet6_ifaddr *ifa,
3884 		    unsigned long event)
3885 {
3886 	int ret = NOTIFY_DONE;
3887 
3888 	rcu_read_lock();
3889 	if (cxgb4_netdev(event_dev)) {
3890 		switch (event) {
3891 		case NETDEV_UP:
3892 			ret = cxgb4_clip_get(event_dev,
3893 				(const struct in6_addr *)ifa->addr.s6_addr);
3894 			if (ret < 0) {
3895 				rcu_read_unlock();
3896 				return ret;
3897 			}
3898 			ret = NOTIFY_OK;
3899 			break;
3900 		case NETDEV_DOWN:
3901 			cxgb4_clip_release(event_dev,
3902 				(const struct in6_addr *)ifa->addr.s6_addr);
3903 			ret = NOTIFY_OK;
3904 			break;
3905 		default:
3906 			break;
3907 		}
3908 	}
3909 	rcu_read_unlock();
3910 	return ret;
3911 }
3912 
3913 static int cxgb4_inet6addr_handler(struct notifier_block *this,
3914 		unsigned long event, void *data)
3915 {
3916 	struct inet6_ifaddr *ifa = data;
3917 	struct net_device *event_dev;
3918 	int ret = NOTIFY_DONE;
3919 	struct bonding *bond = netdev_priv(ifa->idev->dev);
3920 	struct list_head *iter;
3921 	struct slave *slave;
3922 	struct pci_dev *first_pdev = NULL;
3923 
3924 	if (ifa->idev->dev->priv_flags & IFF_802_1Q_VLAN) {
3925 		event_dev = vlan_dev_real_dev(ifa->idev->dev);
3926 		ret = clip_add(event_dev, ifa, event);
3927 	} else if (ifa->idev->dev->flags & IFF_MASTER) {
3928 		/* It is possible that two different adapters are bonded in one
3929 		 * bond. We need to find such different adapters and add clip
3930 		 * in all of them only once.
3931 		 */
3932 		read_lock(&bond->lock);
3933 		bond_for_each_slave(bond, slave, iter) {
3934 			if (!first_pdev) {
3935 				ret = clip_add(slave->dev, ifa, event);
3936 				/* If clip_add is success then only initialize
3937 				 * first_pdev since it means it is our device
3938 				 */
3939 				if (ret == NOTIFY_OK)
3940 					first_pdev = to_pci_dev(
3941 							slave->dev->dev.parent);
3942 			} else if (first_pdev !=
3943 				   to_pci_dev(slave->dev->dev.parent))
3944 					ret = clip_add(slave->dev, ifa, event);
3945 		}
3946 		read_unlock(&bond->lock);
3947 	} else
3948 		ret = clip_add(ifa->idev->dev, ifa, event);
3949 
3950 	return ret;
3951 }
3952 
3953 static struct notifier_block cxgb4_inet6addr_notifier = {
3954 	.notifier_call = cxgb4_inet6addr_handler
3955 };
3956 
3957 /* Retrieves IPv6 addresses from a root device (bond, vlan) associated with
3958  * a physical device.
3959  * The physical device reference is needed to send the actul CLIP command.
3960  */
3961 static int update_dev_clip(struct net_device *root_dev, struct net_device *dev)
3962 {
3963 	struct inet6_dev *idev = NULL;
3964 	struct inet6_ifaddr *ifa;
3965 	int ret = 0;
3966 
3967 	idev = __in6_dev_get(root_dev);
3968 	if (!idev)
3969 		return ret;
3970 
3971 	read_lock_bh(&idev->lock);
3972 	list_for_each_entry(ifa, &idev->addr_list, if_list) {
3973 		ret = cxgb4_clip_get(dev,
3974 				(const struct in6_addr *)ifa->addr.s6_addr);
3975 		if (ret < 0)
3976 			break;
3977 	}
3978 	read_unlock_bh(&idev->lock);
3979 
3980 	return ret;
3981 }
3982 
3983 static int update_root_dev_clip(struct net_device *dev)
3984 {
3985 	struct net_device *root_dev = NULL;
3986 	int i, ret = 0;
3987 
3988 	/* First populate the real net device's IPv6 addresses */
3989 	ret = update_dev_clip(dev, dev);
3990 	if (ret)
3991 		return ret;
3992 
3993 	/* Parse all bond and vlan devices layered on top of the physical dev */
3994 	for (i = 0; i < VLAN_N_VID; i++) {
3995 		root_dev = __vlan_find_dev_deep(dev, htons(ETH_P_8021Q), i);
3996 		if (!root_dev)
3997 			continue;
3998 
3999 		ret = update_dev_clip(root_dev, dev);
4000 		if (ret)
4001 			break;
4002 	}
4003 	return ret;
4004 }
4005 
4006 static void update_clip(const struct adapter *adap)
4007 {
4008 	int i;
4009 	struct net_device *dev;
4010 	int ret;
4011 
4012 	rcu_read_lock();
4013 
4014 	for (i = 0; i < MAX_NPORTS; i++) {
4015 		dev = adap->port[i];
4016 		ret = 0;
4017 
4018 		if (dev)
4019 			ret = update_root_dev_clip(dev);
4020 
4021 		if (ret < 0)
4022 			break;
4023 	}
4024 	rcu_read_unlock();
4025 }
4026 
4027 /**
4028  *	cxgb_up - enable the adapter
4029  *	@adap: adapter being enabled
4030  *
4031  *	Called when the first port is enabled, this function performs the
4032  *	actions necessary to make an adapter operational, such as completing
4033  *	the initialization of HW modules, and enabling interrupts.
4034  *
4035  *	Must be called with the rtnl lock held.
4036  */
4037 static int cxgb_up(struct adapter *adap)
4038 {
4039 	int err;
4040 
4041 	err = setup_sge_queues(adap);
4042 	if (err)
4043 		goto out;
4044 	err = setup_rss(adap);
4045 	if (err)
4046 		goto freeq;
4047 
4048 	if (adap->flags & USING_MSIX) {
4049 		name_msix_vecs(adap);
4050 		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
4051 				  adap->msix_info[0].desc, adap);
4052 		if (err)
4053 			goto irq_err;
4054 
4055 		err = request_msix_queue_irqs(adap);
4056 		if (err) {
4057 			free_irq(adap->msix_info[0].vec, adap);
4058 			goto irq_err;
4059 		}
4060 	} else {
4061 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
4062 				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
4063 				  adap->port[0]->name, adap);
4064 		if (err)
4065 			goto irq_err;
4066 	}
4067 	enable_rx(adap);
4068 	t4_sge_start(adap);
4069 	t4_intr_enable(adap);
4070 	adap->flags |= FULL_INIT_DONE;
4071 	notify_ulds(adap, CXGB4_STATE_UP);
4072 	update_clip(adap);
4073  out:
4074 	return err;
4075  irq_err:
4076 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
4077  freeq:
4078 	t4_free_sge_resources(adap);
4079 	goto out;
4080 }
4081 
4082 static void cxgb_down(struct adapter *adapter)
4083 {
4084 	t4_intr_disable(adapter);
4085 	cancel_work_sync(&adapter->tid_release_task);
4086 	cancel_work_sync(&adapter->db_full_task);
4087 	cancel_work_sync(&adapter->db_drop_task);
4088 	adapter->tid_release_task_busy = false;
4089 	adapter->tid_release_head = NULL;
4090 
4091 	if (adapter->flags & USING_MSIX) {
4092 		free_msix_queue_irqs(adapter);
4093 		free_irq(adapter->msix_info[0].vec, adapter);
4094 	} else
4095 		free_irq(adapter->pdev->irq, adapter);
4096 	quiesce_rx(adapter);
4097 	t4_sge_stop(adapter);
4098 	t4_free_sge_resources(adapter);
4099 	adapter->flags &= ~FULL_INIT_DONE;
4100 }
4101 
4102 /*
4103  * net_device operations
4104  */
4105 static int cxgb_open(struct net_device *dev)
4106 {
4107 	int err;
4108 	struct port_info *pi = netdev_priv(dev);
4109 	struct adapter *adapter = pi->adapter;
4110 
4111 	netif_carrier_off(dev);
4112 
4113 	if (!(adapter->flags & FULL_INIT_DONE)) {
4114 		err = cxgb_up(adapter);
4115 		if (err < 0)
4116 			return err;
4117 	}
4118 
4119 	err = link_start(dev);
4120 	if (!err)
4121 		netif_tx_start_all_queues(dev);
4122 	return err;
4123 }
4124 
4125 static int cxgb_close(struct net_device *dev)
4126 {
4127 	struct port_info *pi = netdev_priv(dev);
4128 	struct adapter *adapter = pi->adapter;
4129 
4130 	netif_tx_stop_all_queues(dev);
4131 	netif_carrier_off(dev);
4132 	return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
4133 }
4134 
4135 /* Return an error number if the indicated filter isn't writable ...
4136  */
4137 static int writable_filter(struct filter_entry *f)
4138 {
4139 	if (f->locked)
4140 		return -EPERM;
4141 	if (f->pending)
4142 		return -EBUSY;
4143 
4144 	return 0;
4145 }
4146 
4147 /* Delete the filter at the specified index (if valid).  The checks for all
4148  * the common problems with doing this like the filter being locked, currently
4149  * pending in another operation, etc.
4150  */
4151 static int delete_filter(struct adapter *adapter, unsigned int fidx)
4152 {
4153 	struct filter_entry *f;
4154 	int ret;
4155 
4156 	if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
4157 		return -EINVAL;
4158 
4159 	f = &adapter->tids.ftid_tab[fidx];
4160 	ret = writable_filter(f);
4161 	if (ret)
4162 		return ret;
4163 	if (f->valid)
4164 		return del_filter_wr(adapter, fidx);
4165 
4166 	return 0;
4167 }
4168 
4169 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
4170 		__be32 sip, __be16 sport, __be16 vlan,
4171 		unsigned int queue, unsigned char port, unsigned char mask)
4172 {
4173 	int ret;
4174 	struct filter_entry *f;
4175 	struct adapter *adap;
4176 	int i;
4177 	u8 *val;
4178 
4179 	adap = netdev2adap(dev);
4180 
4181 	/* Adjust stid to correct filter index */
4182 	stid -= adap->tids.nstids;
4183 	stid += adap->tids.nftids;
4184 
4185 	/* Check to make sure the filter requested is writable ...
4186 	 */
4187 	f = &adap->tids.ftid_tab[stid];
4188 	ret = writable_filter(f);
4189 	if (ret)
4190 		return ret;
4191 
4192 	/* Clear out any old resources being used by the filter before
4193 	 * we start constructing the new filter.
4194 	 */
4195 	if (f->valid)
4196 		clear_filter(adap, f);
4197 
4198 	/* Clear out filter specifications */
4199 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
4200 	f->fs.val.lport = cpu_to_be16(sport);
4201 	f->fs.mask.lport  = ~0;
4202 	val = (u8 *)&sip;
4203 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
4204 		for (i = 0; i < 4; i++) {
4205 			f->fs.val.lip[i] = val[i];
4206 			f->fs.mask.lip[i] = ~0;
4207 		}
4208 		if (adap->filter_mode & F_PORT) {
4209 			f->fs.val.iport = port;
4210 			f->fs.mask.iport = mask;
4211 		}
4212 	}
4213 
4214 	f->fs.dirsteer = 1;
4215 	f->fs.iq = queue;
4216 	/* Mark filter as locked */
4217 	f->locked = 1;
4218 	f->fs.rpttid = 1;
4219 
4220 	ret = set_filter_wr(adap, stid);
4221 	if (ret) {
4222 		clear_filter(adap, f);
4223 		return ret;
4224 	}
4225 
4226 	return 0;
4227 }
4228 EXPORT_SYMBOL(cxgb4_create_server_filter);
4229 
4230 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
4231 		unsigned int queue, bool ipv6)
4232 {
4233 	int ret;
4234 	struct filter_entry *f;
4235 	struct adapter *adap;
4236 
4237 	adap = netdev2adap(dev);
4238 
4239 	/* Adjust stid to correct filter index */
4240 	stid -= adap->tids.nstids;
4241 	stid += adap->tids.nftids;
4242 
4243 	f = &adap->tids.ftid_tab[stid];
4244 	/* Unlock the filter */
4245 	f->locked = 0;
4246 
4247 	ret = delete_filter(adap, stid);
4248 	if (ret)
4249 		return ret;
4250 
4251 	return 0;
4252 }
4253 EXPORT_SYMBOL(cxgb4_remove_server_filter);
4254 
4255 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
4256 						struct rtnl_link_stats64 *ns)
4257 {
4258 	struct port_stats stats;
4259 	struct port_info *p = netdev_priv(dev);
4260 	struct adapter *adapter = p->adapter;
4261 
4262 	spin_lock(&adapter->stats_lock);
4263 	t4_get_port_stats(adapter, p->tx_chan, &stats);
4264 	spin_unlock(&adapter->stats_lock);
4265 
4266 	ns->tx_bytes   = stats.tx_octets;
4267 	ns->tx_packets = stats.tx_frames;
4268 	ns->rx_bytes   = stats.rx_octets;
4269 	ns->rx_packets = stats.rx_frames;
4270 	ns->multicast  = stats.rx_mcast_frames;
4271 
4272 	/* detailed rx_errors */
4273 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
4274 			       stats.rx_runt;
4275 	ns->rx_over_errors   = 0;
4276 	ns->rx_crc_errors    = stats.rx_fcs_err;
4277 	ns->rx_frame_errors  = stats.rx_symbol_err;
4278 	ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
4279 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
4280 			       stats.rx_trunc0 + stats.rx_trunc1 +
4281 			       stats.rx_trunc2 + stats.rx_trunc3;
4282 	ns->rx_missed_errors = 0;
4283 
4284 	/* detailed tx_errors */
4285 	ns->tx_aborted_errors   = 0;
4286 	ns->tx_carrier_errors   = 0;
4287 	ns->tx_fifo_errors      = 0;
4288 	ns->tx_heartbeat_errors = 0;
4289 	ns->tx_window_errors    = 0;
4290 
4291 	ns->tx_errors = stats.tx_error_frames;
4292 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
4293 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
4294 	return ns;
4295 }
4296 
4297 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
4298 {
4299 	unsigned int mbox;
4300 	int ret = 0, prtad, devad;
4301 	struct port_info *pi = netdev_priv(dev);
4302 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
4303 
4304 	switch (cmd) {
4305 	case SIOCGMIIPHY:
4306 		if (pi->mdio_addr < 0)
4307 			return -EOPNOTSUPP;
4308 		data->phy_id = pi->mdio_addr;
4309 		break;
4310 	case SIOCGMIIREG:
4311 	case SIOCSMIIREG:
4312 		if (mdio_phy_id_is_c45(data->phy_id)) {
4313 			prtad = mdio_phy_id_prtad(data->phy_id);
4314 			devad = mdio_phy_id_devad(data->phy_id);
4315 		} else if (data->phy_id < 32) {
4316 			prtad = data->phy_id;
4317 			devad = 0;
4318 			data->reg_num &= 0x1f;
4319 		} else
4320 			return -EINVAL;
4321 
4322 		mbox = pi->adapter->fn;
4323 		if (cmd == SIOCGMIIREG)
4324 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
4325 					 data->reg_num, &data->val_out);
4326 		else
4327 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
4328 					 data->reg_num, data->val_in);
4329 		break;
4330 	default:
4331 		return -EOPNOTSUPP;
4332 	}
4333 	return ret;
4334 }
4335 
4336 static void cxgb_set_rxmode(struct net_device *dev)
4337 {
4338 	/* unfortunately we can't return errors to the stack */
4339 	set_rxmode(dev, -1, false);
4340 }
4341 
4342 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
4343 {
4344 	int ret;
4345 	struct port_info *pi = netdev_priv(dev);
4346 
4347 	if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
4348 		return -EINVAL;
4349 	ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
4350 			    -1, -1, -1, true);
4351 	if (!ret)
4352 		dev->mtu = new_mtu;
4353 	return ret;
4354 }
4355 
4356 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
4357 {
4358 	int ret;
4359 	struct sockaddr *addr = p;
4360 	struct port_info *pi = netdev_priv(dev);
4361 
4362 	if (!is_valid_ether_addr(addr->sa_data))
4363 		return -EADDRNOTAVAIL;
4364 
4365 	ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
4366 			    pi->xact_addr_filt, addr->sa_data, true, true);
4367 	if (ret < 0)
4368 		return ret;
4369 
4370 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4371 	pi->xact_addr_filt = ret;
4372 	return 0;
4373 }
4374 
4375 #ifdef CONFIG_NET_POLL_CONTROLLER
4376 static void cxgb_netpoll(struct net_device *dev)
4377 {
4378 	struct port_info *pi = netdev_priv(dev);
4379 	struct adapter *adap = pi->adapter;
4380 
4381 	if (adap->flags & USING_MSIX) {
4382 		int i;
4383 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
4384 
4385 		for (i = pi->nqsets; i; i--, rx++)
4386 			t4_sge_intr_msix(0, &rx->rspq);
4387 	} else
4388 		t4_intr_handler(adap)(0, adap);
4389 }
4390 #endif
4391 
4392 static const struct net_device_ops cxgb4_netdev_ops = {
4393 	.ndo_open             = cxgb_open,
4394 	.ndo_stop             = cxgb_close,
4395 	.ndo_start_xmit       = t4_eth_xmit,
4396 	.ndo_get_stats64      = cxgb_get_stats,
4397 	.ndo_set_rx_mode      = cxgb_set_rxmode,
4398 	.ndo_set_mac_address  = cxgb_set_mac_addr,
4399 	.ndo_set_features     = cxgb_set_features,
4400 	.ndo_validate_addr    = eth_validate_addr,
4401 	.ndo_do_ioctl         = cxgb_ioctl,
4402 	.ndo_change_mtu       = cxgb_change_mtu,
4403 #ifdef CONFIG_NET_POLL_CONTROLLER
4404 	.ndo_poll_controller  = cxgb_netpoll,
4405 #endif
4406 };
4407 
4408 void t4_fatal_err(struct adapter *adap)
4409 {
4410 	t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
4411 	t4_intr_disable(adap);
4412 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
4413 }
4414 
4415 static void setup_memwin(struct adapter *adap)
4416 {
4417 	u32 bar0, mem_win0_base, mem_win1_base, mem_win2_base;
4418 
4419 	bar0 = pci_resource_start(adap->pdev, 0);  /* truncation intentional */
4420 	if (is_t4(adap->params.chip)) {
4421 		mem_win0_base = bar0 + MEMWIN0_BASE;
4422 		mem_win1_base = bar0 + MEMWIN1_BASE;
4423 		mem_win2_base = bar0 + MEMWIN2_BASE;
4424 	} else {
4425 		/* For T5, only relative offset inside the PCIe BAR is passed */
4426 		mem_win0_base = MEMWIN0_BASE;
4427 		mem_win1_base = MEMWIN1_BASE_T5;
4428 		mem_win2_base = MEMWIN2_BASE_T5;
4429 	}
4430 	t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
4431 		     mem_win0_base | BIR(0) |
4432 		     WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
4433 	t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
4434 		     mem_win1_base | BIR(0) |
4435 		     WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
4436 	t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
4437 		     mem_win2_base | BIR(0) |
4438 		     WINDOW(ilog2(MEMWIN2_APERTURE) - 10));
4439 }
4440 
4441 static void setup_memwin_rdma(struct adapter *adap)
4442 {
4443 	if (adap->vres.ocq.size) {
4444 		unsigned int start, sz_kb;
4445 
4446 		start = pci_resource_start(adap->pdev, 2) +
4447 			OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
4448 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
4449 		t4_write_reg(adap,
4450 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
4451 			     start | BIR(1) | WINDOW(ilog2(sz_kb)));
4452 		t4_write_reg(adap,
4453 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
4454 			     adap->vres.ocq.start);
4455 		t4_read_reg(adap,
4456 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
4457 	}
4458 }
4459 
4460 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4461 {
4462 	u32 v;
4463 	int ret;
4464 
4465 	/* get device capabilities */
4466 	memset(c, 0, sizeof(*c));
4467 	c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4468 			       FW_CMD_REQUEST | FW_CMD_READ);
4469 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
4470 	ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
4471 	if (ret < 0)
4472 		return ret;
4473 
4474 	/* select capabilities we'll be using */
4475 	if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
4476 		if (!vf_acls)
4477 			c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
4478 		else
4479 			c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
4480 	} else if (vf_acls) {
4481 		dev_err(adap->pdev_dev, "virtualization ACLs not supported");
4482 		return ret;
4483 	}
4484 	c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4485 			       FW_CMD_REQUEST | FW_CMD_WRITE);
4486 	ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
4487 	if (ret < 0)
4488 		return ret;
4489 
4490 	ret = t4_config_glbl_rss(adap, adap->fn,
4491 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4492 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
4493 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
4494 	if (ret < 0)
4495 		return ret;
4496 
4497 	ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
4498 			  0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
4499 	if (ret < 0)
4500 		return ret;
4501 
4502 	t4_sge_init(adap);
4503 
4504 	/* tweak some settings */
4505 	t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
4506 	t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
4507 	t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
4508 	v = t4_read_reg(adap, TP_PIO_DATA);
4509 	t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
4510 
4511 	/* first 4 Tx modulation queues point to consecutive Tx channels */
4512 	adap->params.tp.tx_modq_map = 0xE4;
4513 	t4_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
4514 		     V_TX_MOD_QUEUE_REQ_MAP(adap->params.tp.tx_modq_map));
4515 
4516 	/* associate each Tx modulation queue with consecutive Tx channels */
4517 	v = 0x84218421;
4518 	t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4519 			  &v, 1, A_TP_TX_SCHED_HDR);
4520 	t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4521 			  &v, 1, A_TP_TX_SCHED_FIFO);
4522 	t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4523 			  &v, 1, A_TP_TX_SCHED_PCMD);
4524 
4525 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
4526 	if (is_offload(adap)) {
4527 		t4_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0,
4528 			     V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4529 			     V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4530 			     V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4531 			     V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4532 		t4_write_reg(adap, A_TP_TX_MOD_CHANNEL_WEIGHT,
4533 			     V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4534 			     V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4535 			     V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4536 			     V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4537 	}
4538 
4539 	/* get basic stuff going */
4540 	return t4_early_init(adap, adap->fn);
4541 }
4542 
4543 /*
4544  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
4545  */
4546 #define MAX_ATIDS 8192U
4547 
4548 /*
4549  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4550  *
4551  * If the firmware we're dealing with has Configuration File support, then
4552  * we use that to perform all configuration
4553  */
4554 
4555 /*
4556  * Tweak configuration based on module parameters, etc.  Most of these have
4557  * defaults assigned to them by Firmware Configuration Files (if we're using
4558  * them) but need to be explicitly set if we're using hard-coded
4559  * initialization.  But even in the case of using Firmware Configuration
4560  * Files, we'd like to expose the ability to change these via module
4561  * parameters so these are essentially common tweaks/settings for
4562  * Configuration Files and hard-coded initialization ...
4563  */
4564 static int adap_init0_tweaks(struct adapter *adapter)
4565 {
4566 	/*
4567 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
4568 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
4569 	 * 64B Cache Line Size ...
4570 	 */
4571 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
4572 
4573 	/*
4574 	 * Process module parameters which affect early initialization.
4575 	 */
4576 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
4577 		dev_err(&adapter->pdev->dev,
4578 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
4579 			rx_dma_offset);
4580 		rx_dma_offset = 2;
4581 	}
4582 	t4_set_reg_field(adapter, SGE_CONTROL,
4583 			 PKTSHIFT_MASK,
4584 			 PKTSHIFT(rx_dma_offset));
4585 
4586 	/*
4587 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
4588 	 * adds the pseudo header itself.
4589 	 */
4590 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG,
4591 			       CSUM_HAS_PSEUDO_HDR, 0);
4592 
4593 	return 0;
4594 }
4595 
4596 /*
4597  * Attempt to initialize the adapter via a Firmware Configuration File.
4598  */
4599 static int adap_init0_config(struct adapter *adapter, int reset)
4600 {
4601 	struct fw_caps_config_cmd caps_cmd;
4602 	const struct firmware *cf;
4603 	unsigned long mtype = 0, maddr = 0;
4604 	u32 finiver, finicsum, cfcsum;
4605 	int ret;
4606 	int config_issued = 0;
4607 	char *fw_config_file, fw_config_file_path[256];
4608 	char *config_name = NULL;
4609 
4610 	/*
4611 	 * Reset device if necessary.
4612 	 */
4613 	if (reset) {
4614 		ret = t4_fw_reset(adapter, adapter->mbox,
4615 				  PIORSTMODE | PIORST);
4616 		if (ret < 0)
4617 			goto bye;
4618 	}
4619 
4620 	/*
4621 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4622 	 * then use that.  Otherwise, use the configuration file stored
4623 	 * in the adapter flash ...
4624 	 */
4625 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
4626 	case CHELSIO_T4:
4627 		fw_config_file = FW4_CFNAME;
4628 		break;
4629 	case CHELSIO_T5:
4630 		fw_config_file = FW5_CFNAME;
4631 		break;
4632 	default:
4633 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4634 		       adapter->pdev->device);
4635 		ret = -EINVAL;
4636 		goto bye;
4637 	}
4638 
4639 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
4640 	if (ret < 0) {
4641 		config_name = "On FLASH";
4642 		mtype = FW_MEMTYPE_CF_FLASH;
4643 		maddr = t4_flash_cfg_addr(adapter);
4644 	} else {
4645 		u32 params[7], val[7];
4646 
4647 		sprintf(fw_config_file_path,
4648 			"/lib/firmware/%s", fw_config_file);
4649 		config_name = fw_config_file_path;
4650 
4651 		if (cf->size >= FLASH_CFG_MAX_SIZE)
4652 			ret = -ENOMEM;
4653 		else {
4654 			params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
4655 			     FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
4656 			ret = t4_query_params(adapter, adapter->mbox,
4657 					      adapter->fn, 0, 1, params, val);
4658 			if (ret == 0) {
4659 				/*
4660 				 * For t4_memory_write() below addresses and
4661 				 * sizes have to be in terms of multiples of 4
4662 				 * bytes.  So, if the Configuration File isn't
4663 				 * a multiple of 4 bytes in length we'll have
4664 				 * to write that out separately since we can't
4665 				 * guarantee that the bytes following the
4666 				 * residual byte in the buffer returned by
4667 				 * request_firmware() are zeroed out ...
4668 				 */
4669 				size_t resid = cf->size & 0x3;
4670 				size_t size = cf->size & ~0x3;
4671 				__be32 *data = (__be32 *)cf->data;
4672 
4673 				mtype = FW_PARAMS_PARAM_Y_GET(val[0]);
4674 				maddr = FW_PARAMS_PARAM_Z_GET(val[0]) << 16;
4675 
4676 				ret = t4_memory_write(adapter, mtype, maddr,
4677 						      size, data);
4678 				if (ret == 0 && resid != 0) {
4679 					union {
4680 						__be32 word;
4681 						char buf[4];
4682 					} last;
4683 					int i;
4684 
4685 					last.word = data[size >> 2];
4686 					for (i = resid; i < 4; i++)
4687 						last.buf[i] = 0;
4688 					ret = t4_memory_write(adapter, mtype,
4689 							      maddr + size,
4690 							      4, &last.word);
4691 				}
4692 			}
4693 		}
4694 
4695 		release_firmware(cf);
4696 		if (ret)
4697 			goto bye;
4698 	}
4699 
4700 	/*
4701 	 * Issue a Capability Configuration command to the firmware to get it
4702 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
4703 	 * because we want the ability to modify various features after we've
4704 	 * processed the configuration file ...
4705 	 */
4706 	memset(&caps_cmd, 0, sizeof(caps_cmd));
4707 	caps_cmd.op_to_write =
4708 		htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4709 		      FW_CMD_REQUEST |
4710 		      FW_CMD_READ);
4711 	caps_cmd.cfvalid_to_len16 =
4712 		htonl(FW_CAPS_CONFIG_CMD_CFVALID |
4713 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
4714 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
4715 		      FW_LEN16(caps_cmd));
4716 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4717 			 &caps_cmd);
4718 
4719 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
4720 	 * Configuration File in FLASH), our last gasp effort is to use the
4721 	 * Firmware Configuration File which is embedded in the firmware.  A
4722 	 * very few early versions of the firmware didn't have one embedded
4723 	 * but we can ignore those.
4724 	 */
4725 	if (ret == -ENOENT) {
4726 		memset(&caps_cmd, 0, sizeof(caps_cmd));
4727 		caps_cmd.op_to_write =
4728 			htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4729 					FW_CMD_REQUEST |
4730 					FW_CMD_READ);
4731 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4732 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
4733 				sizeof(caps_cmd), &caps_cmd);
4734 		config_name = "Firmware Default";
4735 	}
4736 
4737 	config_issued = 1;
4738 	if (ret < 0)
4739 		goto bye;
4740 
4741 	finiver = ntohl(caps_cmd.finiver);
4742 	finicsum = ntohl(caps_cmd.finicsum);
4743 	cfcsum = ntohl(caps_cmd.cfcsum);
4744 	if (finicsum != cfcsum)
4745 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
4746 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4747 			 finicsum, cfcsum);
4748 
4749 	/*
4750 	 * And now tell the firmware to use the configuration we just loaded.
4751 	 */
4752 	caps_cmd.op_to_write =
4753 		htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4754 		      FW_CMD_REQUEST |
4755 		      FW_CMD_WRITE);
4756 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4757 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4758 			 NULL);
4759 	if (ret < 0)
4760 		goto bye;
4761 
4762 	/*
4763 	 * Tweak configuration based on system architecture, module
4764 	 * parameters, etc.
4765 	 */
4766 	ret = adap_init0_tweaks(adapter);
4767 	if (ret < 0)
4768 		goto bye;
4769 
4770 	/*
4771 	 * And finally tell the firmware to initialize itself using the
4772 	 * parameters from the Configuration File.
4773 	 */
4774 	ret = t4_fw_initialize(adapter, adapter->mbox);
4775 	if (ret < 0)
4776 		goto bye;
4777 
4778 	/*
4779 	 * Return successfully and note that we're operating with parameters
4780 	 * not supplied by the driver, rather than from hard-wired
4781 	 * initialization constants burried in the driver.
4782 	 */
4783 	adapter->flags |= USING_SOFT_PARAMS;
4784 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4785 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4786 		 config_name, finiver, cfcsum);
4787 	return 0;
4788 
4789 	/*
4790 	 * Something bad happened.  Return the error ...  (If the "error"
4791 	 * is that there's no Configuration File on the adapter we don't
4792 	 * want to issue a warning since this is fairly common.)
4793 	 */
4794 bye:
4795 	if (config_issued && ret != -ENOENT)
4796 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4797 			 config_name, -ret);
4798 	return ret;
4799 }
4800 
4801 /*
4802  * Attempt to initialize the adapter via hard-coded, driver supplied
4803  * parameters ...
4804  */
4805 static int adap_init0_no_config(struct adapter *adapter, int reset)
4806 {
4807 	struct sge *s = &adapter->sge;
4808 	struct fw_caps_config_cmd caps_cmd;
4809 	u32 v;
4810 	int i, ret;
4811 
4812 	/*
4813 	 * Reset device if necessary
4814 	 */
4815 	if (reset) {
4816 		ret = t4_fw_reset(adapter, adapter->mbox,
4817 				  PIORSTMODE | PIORST);
4818 		if (ret < 0)
4819 			goto bye;
4820 	}
4821 
4822 	/*
4823 	 * Get device capabilities and select which we'll be using.
4824 	 */
4825 	memset(&caps_cmd, 0, sizeof(caps_cmd));
4826 	caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4827 				     FW_CMD_REQUEST | FW_CMD_READ);
4828 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4829 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4830 			 &caps_cmd);
4831 	if (ret < 0)
4832 		goto bye;
4833 
4834 	if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
4835 		if (!vf_acls)
4836 			caps_cmd.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
4837 		else
4838 			caps_cmd.niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
4839 	} else if (vf_acls) {
4840 		dev_err(adapter->pdev_dev, "virtualization ACLs not supported");
4841 		goto bye;
4842 	}
4843 	caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4844 			      FW_CMD_REQUEST | FW_CMD_WRITE);
4845 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4846 			 NULL);
4847 	if (ret < 0)
4848 		goto bye;
4849 
4850 	/*
4851 	 * Tweak configuration based on system architecture, module
4852 	 * parameters, etc.
4853 	 */
4854 	ret = adap_init0_tweaks(adapter);
4855 	if (ret < 0)
4856 		goto bye;
4857 
4858 	/*
4859 	 * Select RSS Global Mode we want to use.  We use "Basic Virtual"
4860 	 * mode which maps each Virtual Interface to its own section of
4861 	 * the RSS Table and we turn on all map and hash enables ...
4862 	 */
4863 	adapter->flags |= RSS_TNLALLLOOKUP;
4864 	ret = t4_config_glbl_rss(adapter, adapter->mbox,
4865 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4866 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
4867 				 FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ |
4868 				 ((adapter->flags & RSS_TNLALLLOOKUP) ?
4869 					FW_RSS_GLB_CONFIG_CMD_TNLALLLKP : 0));
4870 	if (ret < 0)
4871 		goto bye;
4872 
4873 	/*
4874 	 * Set up our own fundamental resource provisioning ...
4875 	 */
4876 	ret = t4_cfg_pfvf(adapter, adapter->mbox, adapter->fn, 0,
4877 			  PFRES_NEQ, PFRES_NETHCTRL,
4878 			  PFRES_NIQFLINT, PFRES_NIQ,
4879 			  PFRES_TC, PFRES_NVI,
4880 			  FW_PFVF_CMD_CMASK_MASK,
4881 			  pfvfres_pmask(adapter, adapter->fn, 0),
4882 			  PFRES_NEXACTF,
4883 			  PFRES_R_CAPS, PFRES_WX_CAPS);
4884 	if (ret < 0)
4885 		goto bye;
4886 
4887 	/*
4888 	 * Perform low level SGE initialization.  We need to do this before we
4889 	 * send the firmware the INITIALIZE command because that will cause
4890 	 * any other PF Drivers which are waiting for the Master
4891 	 * Initialization to proceed forward.
4892 	 */
4893 	for (i = 0; i < SGE_NTIMERS - 1; i++)
4894 		s->timer_val[i] = min(intr_holdoff[i], MAX_SGE_TIMERVAL);
4895 	s->timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
4896 	s->counter_val[0] = 1;
4897 	for (i = 1; i < SGE_NCOUNTERS; i++)
4898 		s->counter_val[i] = min(intr_cnt[i - 1],
4899 					THRESHOLD_0_GET(THRESHOLD_0_MASK));
4900 	t4_sge_init(adapter);
4901 
4902 #ifdef CONFIG_PCI_IOV
4903 	/*
4904 	 * Provision resource limits for Virtual Functions.  We currently
4905 	 * grant them all the same static resource limits except for the Port
4906 	 * Access Rights Mask which we're assigning based on the PF.  All of
4907 	 * the static provisioning stuff for both the PF and VF really needs
4908 	 * to be managed in a persistent manner for each device which the
4909 	 * firmware controls.
4910 	 */
4911 	{
4912 		int pf, vf;
4913 
4914 		for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) {
4915 			if (num_vf[pf] <= 0)
4916 				continue;
4917 
4918 			/* VF numbering starts at 1! */
4919 			for (vf = 1; vf <= num_vf[pf]; vf++) {
4920 				ret = t4_cfg_pfvf(adapter, adapter->mbox,
4921 						  pf, vf,
4922 						  VFRES_NEQ, VFRES_NETHCTRL,
4923 						  VFRES_NIQFLINT, VFRES_NIQ,
4924 						  VFRES_TC, VFRES_NVI,
4925 						  FW_PFVF_CMD_CMASK_MASK,
4926 						  pfvfres_pmask(
4927 						  adapter, pf, vf),
4928 						  VFRES_NEXACTF,
4929 						  VFRES_R_CAPS, VFRES_WX_CAPS);
4930 				if (ret < 0)
4931 					dev_warn(adapter->pdev_dev,
4932 						 "failed to "\
4933 						 "provision pf/vf=%d/%d; "
4934 						 "err=%d\n", pf, vf, ret);
4935 			}
4936 		}
4937 	}
4938 #endif
4939 
4940 	/*
4941 	 * Set up the default filter mode.  Later we'll want to implement this
4942 	 * via a firmware command, etc. ...  This needs to be done before the
4943 	 * firmare initialization command ...  If the selected set of fields
4944 	 * isn't equal to the default value, we'll need to make sure that the
4945 	 * field selections will fit in the 36-bit budget.
4946 	 */
4947 	if (tp_vlan_pri_map != TP_VLAN_PRI_MAP_DEFAULT) {
4948 		int j, bits = 0;
4949 
4950 		for (j = TP_VLAN_PRI_MAP_FIRST; j <= TP_VLAN_PRI_MAP_LAST; j++)
4951 			switch (tp_vlan_pri_map & (1 << j)) {
4952 			case 0:
4953 				/* compressed filter field not enabled */
4954 				break;
4955 			case FCOE_MASK:
4956 				bits +=  1;
4957 				break;
4958 			case PORT_MASK:
4959 				bits +=  3;
4960 				break;
4961 			case VNIC_ID_MASK:
4962 				bits += 17;
4963 				break;
4964 			case VLAN_MASK:
4965 				bits += 17;
4966 				break;
4967 			case TOS_MASK:
4968 				bits +=  8;
4969 				break;
4970 			case PROTOCOL_MASK:
4971 				bits +=  8;
4972 				break;
4973 			case ETHERTYPE_MASK:
4974 				bits += 16;
4975 				break;
4976 			case MACMATCH_MASK:
4977 				bits +=  9;
4978 				break;
4979 			case MPSHITTYPE_MASK:
4980 				bits +=  3;
4981 				break;
4982 			case FRAGMENTATION_MASK:
4983 				bits +=  1;
4984 				break;
4985 			}
4986 
4987 		if (bits > 36) {
4988 			dev_err(adapter->pdev_dev,
4989 				"tp_vlan_pri_map=%#x needs %d bits > 36;"\
4990 				" using %#x\n", tp_vlan_pri_map, bits,
4991 				TP_VLAN_PRI_MAP_DEFAULT);
4992 			tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
4993 		}
4994 	}
4995 	v = tp_vlan_pri_map;
4996 	t4_write_indirect(adapter, TP_PIO_ADDR, TP_PIO_DATA,
4997 			  &v, 1, TP_VLAN_PRI_MAP);
4998 
4999 	/*
5000 	 * We need Five Tuple Lookup mode to be set in TP_GLOBAL_CONFIG order
5001 	 * to support any of the compressed filter fields above.  Newer
5002 	 * versions of the firmware do this automatically but it doesn't hurt
5003 	 * to set it here.  Meanwhile, we do _not_ need to set Lookup Every
5004 	 * Packet in TP_INGRESS_CONFIG to support matching non-TCP packets
5005 	 * since the firmware automatically turns this on and off when we have
5006 	 * a non-zero number of filters active (since it does have a
5007 	 * performance impact).
5008 	 */
5009 	if (tp_vlan_pri_map)
5010 		t4_set_reg_field(adapter, TP_GLOBAL_CONFIG,
5011 				 FIVETUPLELOOKUP_MASK,
5012 				 FIVETUPLELOOKUP_MASK);
5013 
5014 	/*
5015 	 * Tweak some settings.
5016 	 */
5017 	t4_write_reg(adapter, TP_SHIFT_CNT, SYNSHIFTMAX(6) |
5018 		     RXTSHIFTMAXR1(4) | RXTSHIFTMAXR2(15) |
5019 		     PERSHIFTBACKOFFMAX(8) | PERSHIFTMAX(8) |
5020 		     KEEPALIVEMAXR1(4) | KEEPALIVEMAXR2(9));
5021 
5022 	/*
5023 	 * Get basic stuff going by issuing the Firmware Initialize command.
5024 	 * Note that this _must_ be after all PFVF commands ...
5025 	 */
5026 	ret = t4_fw_initialize(adapter, adapter->mbox);
5027 	if (ret < 0)
5028 		goto bye;
5029 
5030 	/*
5031 	 * Return successfully!
5032 	 */
5033 	dev_info(adapter->pdev_dev, "Successfully configured using built-in "\
5034 		 "driver parameters\n");
5035 	return 0;
5036 
5037 	/*
5038 	 * Something bad happened.  Return the error ...
5039 	 */
5040 bye:
5041 	return ret;
5042 }
5043 
5044 static struct fw_info fw_info_array[] = {
5045 	{
5046 		.chip = CHELSIO_T4,
5047 		.fs_name = FW4_CFNAME,
5048 		.fw_mod_name = FW4_FNAME,
5049 		.fw_hdr = {
5050 			.chip = FW_HDR_CHIP_T4,
5051 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
5052 			.intfver_nic = FW_INTFVER(T4, NIC),
5053 			.intfver_vnic = FW_INTFVER(T4, VNIC),
5054 			.intfver_ri = FW_INTFVER(T4, RI),
5055 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
5056 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
5057 		},
5058 	}, {
5059 		.chip = CHELSIO_T5,
5060 		.fs_name = FW5_CFNAME,
5061 		.fw_mod_name = FW5_FNAME,
5062 		.fw_hdr = {
5063 			.chip = FW_HDR_CHIP_T5,
5064 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
5065 			.intfver_nic = FW_INTFVER(T5, NIC),
5066 			.intfver_vnic = FW_INTFVER(T5, VNIC),
5067 			.intfver_ri = FW_INTFVER(T5, RI),
5068 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
5069 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
5070 		},
5071 	}
5072 };
5073 
5074 static struct fw_info *find_fw_info(int chip)
5075 {
5076 	int i;
5077 
5078 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
5079 		if (fw_info_array[i].chip == chip)
5080 			return &fw_info_array[i];
5081 	}
5082 	return NULL;
5083 }
5084 
5085 /*
5086  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5087  */
5088 static int adap_init0(struct adapter *adap)
5089 {
5090 	int ret;
5091 	u32 v, port_vec;
5092 	enum dev_state state;
5093 	u32 params[7], val[7];
5094 	struct fw_caps_config_cmd caps_cmd;
5095 	int reset = 1, j;
5096 
5097 	/*
5098 	 * Contact FW, advertising Master capability (and potentially forcing
5099 	 * ourselves as the Master PF if our module parameter force_init is
5100 	 * set).
5101 	 */
5102 	ret = t4_fw_hello(adap, adap->mbox, adap->fn,
5103 			  force_init ? MASTER_MUST : MASTER_MAY,
5104 			  &state);
5105 	if (ret < 0) {
5106 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
5107 			ret);
5108 		return ret;
5109 	}
5110 	if (ret == adap->mbox)
5111 		adap->flags |= MASTER_PF;
5112 	if (force_init && state == DEV_STATE_INIT)
5113 		state = DEV_STATE_UNINIT;
5114 
5115 	/*
5116 	 * If we're the Master PF Driver and the device is uninitialized,
5117 	 * then let's consider upgrading the firmware ...  (We always want
5118 	 * to check the firmware version number in order to A. get it for
5119 	 * later reporting and B. to warn if the currently loaded firmware
5120 	 * is excessively mismatched relative to the driver.)
5121 	 */
5122 	t4_get_fw_version(adap, &adap->params.fw_vers);
5123 	t4_get_tp_version(adap, &adap->params.tp_vers);
5124 	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
5125 		struct fw_info *fw_info;
5126 		struct fw_hdr *card_fw;
5127 		const struct firmware *fw;
5128 		const u8 *fw_data = NULL;
5129 		unsigned int fw_size = 0;
5130 
5131 		/* This is the firmware whose headers the driver was compiled
5132 		 * against
5133 		 */
5134 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
5135 		if (fw_info == NULL) {
5136 			dev_err(adap->pdev_dev,
5137 				"unable to get firmware info for chip %d.\n",
5138 				CHELSIO_CHIP_VERSION(adap->params.chip));
5139 			return -EINVAL;
5140 		}
5141 
5142 		/* allocate memory to read the header of the firmware on the
5143 		 * card
5144 		 */
5145 		card_fw = t4_alloc_mem(sizeof(*card_fw));
5146 
5147 		/* Get FW from from /lib/firmware/ */
5148 		ret = request_firmware(&fw, fw_info->fw_mod_name,
5149 				       adap->pdev_dev);
5150 		if (ret < 0) {
5151 			dev_err(adap->pdev_dev,
5152 				"unable to load firmware image %s, error %d\n",
5153 				fw_info->fw_mod_name, ret);
5154 		} else {
5155 			fw_data = fw->data;
5156 			fw_size = fw->size;
5157 		}
5158 
5159 		/* upgrade FW logic */
5160 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
5161 				 state, &reset);
5162 
5163 		/* Cleaning up */
5164 		if (fw != NULL)
5165 			release_firmware(fw);
5166 		t4_free_mem(card_fw);
5167 
5168 		if (ret < 0)
5169 			goto bye;
5170 	}
5171 
5172 	/*
5173 	 * Grab VPD parameters.  This should be done after we establish a
5174 	 * connection to the firmware since some of the VPD parameters
5175 	 * (notably the Core Clock frequency) are retrieved via requests to
5176 	 * the firmware.  On the other hand, we need these fairly early on
5177 	 * so we do this right after getting ahold of the firmware.
5178 	 */
5179 	ret = get_vpd_params(adap, &adap->params.vpd);
5180 	if (ret < 0)
5181 		goto bye;
5182 
5183 	/*
5184 	 * Find out what ports are available to us.  Note that we need to do
5185 	 * this before calling adap_init0_no_config() since it needs nports
5186 	 * and portvec ...
5187 	 */
5188 	v =
5189 	    FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5190 	    FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
5191 	ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
5192 	if (ret < 0)
5193 		goto bye;
5194 
5195 	adap->params.nports = hweight32(port_vec);
5196 	adap->params.portvec = port_vec;
5197 
5198 	/*
5199 	 * If the firmware is initialized already (and we're not forcing a
5200 	 * master initialization), note that we're living with existing
5201 	 * adapter parameters.  Otherwise, it's time to try initializing the
5202 	 * adapter ...
5203 	 */
5204 	if (state == DEV_STATE_INIT) {
5205 		dev_info(adap->pdev_dev, "Coming up as %s: "\
5206 			 "Adapter already initialized\n",
5207 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
5208 		adap->flags |= USING_SOFT_PARAMS;
5209 	} else {
5210 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
5211 			 "Initializing adapter\n");
5212 
5213 		/*
5214 		 * If the firmware doesn't support Configuration
5215 		 * Files warn user and exit,
5216 		 */
5217 		if (ret < 0)
5218 			dev_warn(adap->pdev_dev, "Firmware doesn't support "
5219 				 "configuration file.\n");
5220 		if (force_old_init)
5221 			ret = adap_init0_no_config(adap, reset);
5222 		else {
5223 			/*
5224 			 * Find out whether we're dealing with a version of
5225 			 * the firmware which has configuration file support.
5226 			 */
5227 			params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5228 				     FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5229 			ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
5230 					      params, val);
5231 
5232 			/*
5233 			 * If the firmware doesn't support Configuration
5234 			 * Files, use the old Driver-based, hard-wired
5235 			 * initialization.  Otherwise, try using the
5236 			 * Configuration File support and fall back to the
5237 			 * Driver-based initialization if there's no
5238 			 * Configuration File found.
5239 			 */
5240 			if (ret < 0)
5241 				ret = adap_init0_no_config(adap, reset);
5242 			else {
5243 				/*
5244 				 * The firmware provides us with a memory
5245 				 * buffer where we can load a Configuration
5246 				 * File from the host if we want to override
5247 				 * the Configuration File in flash.
5248 				 */
5249 
5250 				ret = adap_init0_config(adap, reset);
5251 				if (ret == -ENOENT) {
5252 					dev_info(adap->pdev_dev,
5253 					    "No Configuration File present "
5254 					    "on adapter. Using hard-wired "
5255 					    "configuration parameters.\n");
5256 					ret = adap_init0_no_config(adap, reset);
5257 				}
5258 			}
5259 		}
5260 		if (ret < 0) {
5261 			dev_err(adap->pdev_dev,
5262 				"could not initialize adapter, error %d\n",
5263 				-ret);
5264 			goto bye;
5265 		}
5266 	}
5267 
5268 	/*
5269 	 * If we're living with non-hard-coded parameters (either from a
5270 	 * Firmware Configuration File or values programmed by a different PF
5271 	 * Driver), give the SGE code a chance to pull in anything that it
5272 	 * needs ...  Note that this must be called after we retrieve our VPD
5273 	 * parameters in order to know how to convert core ticks to seconds.
5274 	 */
5275 	if (adap->flags & USING_SOFT_PARAMS) {
5276 		ret = t4_sge_init(adap);
5277 		if (ret < 0)
5278 			goto bye;
5279 	}
5280 
5281 	if (is_bypass_device(adap->pdev->device))
5282 		adap->params.bypass = 1;
5283 
5284 	/*
5285 	 * Grab some of our basic fundamental operating parameters.
5286 	 */
5287 #define FW_PARAM_DEV(param) \
5288 	(FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5289 	FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5290 
5291 #define FW_PARAM_PFVF(param) \
5292 	FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5293 	FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)|  \
5294 	FW_PARAMS_PARAM_Y(0) | \
5295 	FW_PARAMS_PARAM_Z(0)
5296 
5297 	params[0] = FW_PARAM_PFVF(EQ_START);
5298 	params[1] = FW_PARAM_PFVF(L2T_START);
5299 	params[2] = FW_PARAM_PFVF(L2T_END);
5300 	params[3] = FW_PARAM_PFVF(FILTER_START);
5301 	params[4] = FW_PARAM_PFVF(FILTER_END);
5302 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
5303 	ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
5304 	if (ret < 0)
5305 		goto bye;
5306 	adap->sge.egr_start = val[0];
5307 	adap->l2t_start = val[1];
5308 	adap->l2t_end = val[2];
5309 	adap->tids.ftid_base = val[3];
5310 	adap->tids.nftids = val[4] - val[3] + 1;
5311 	adap->sge.ingr_start = val[5];
5312 
5313 	/* query params related to active filter region */
5314 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5315 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5316 	ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
5317 	/* If Active filter size is set we enable establishing
5318 	 * offload connection through firmware work request
5319 	 */
5320 	if ((val[0] != val[1]) && (ret >= 0)) {
5321 		adap->flags |= FW_OFLD_CONN;
5322 		adap->tids.aftid_base = val[0];
5323 		adap->tids.aftid_end = val[1];
5324 	}
5325 
5326 	/* If we're running on newer firmware, let it know that we're
5327 	 * prepared to deal with encapsulated CPL messages.  Older
5328 	 * firmware won't understand this and we'll just get
5329 	 * unencapsulated messages ...
5330 	 */
5331 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5332 	val[0] = 1;
5333 	(void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
5334 
5335 	/*
5336 	 * Get device capabilities so we can determine what resources we need
5337 	 * to manage.
5338 	 */
5339 	memset(&caps_cmd, 0, sizeof(caps_cmd));
5340 	caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5341 				     FW_CMD_REQUEST | FW_CMD_READ);
5342 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5343 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5344 			 &caps_cmd);
5345 	if (ret < 0)
5346 		goto bye;
5347 
5348 	if (caps_cmd.ofldcaps) {
5349 		/* query offload-related parameters */
5350 		params[0] = FW_PARAM_DEV(NTID);
5351 		params[1] = FW_PARAM_PFVF(SERVER_START);
5352 		params[2] = FW_PARAM_PFVF(SERVER_END);
5353 		params[3] = FW_PARAM_PFVF(TDDP_START);
5354 		params[4] = FW_PARAM_PFVF(TDDP_END);
5355 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5356 		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5357 				      params, val);
5358 		if (ret < 0)
5359 			goto bye;
5360 		adap->tids.ntids = val[0];
5361 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5362 		adap->tids.stid_base = val[1];
5363 		adap->tids.nstids = val[2] - val[1] + 1;
5364 		/*
5365 		 * Setup server filter region. Divide the availble filter
5366 		 * region into two parts. Regular filters get 1/3rd and server
5367 		 * filters get 2/3rd part. This is only enabled if workarond
5368 		 * path is enabled.
5369 		 * 1. For regular filters.
5370 		 * 2. Server filter: This are special filters which are used
5371 		 * to redirect SYN packets to offload queue.
5372 		 */
5373 		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
5374 			adap->tids.sftid_base = adap->tids.ftid_base +
5375 					DIV_ROUND_UP(adap->tids.nftids, 3);
5376 			adap->tids.nsftids = adap->tids.nftids -
5377 					 DIV_ROUND_UP(adap->tids.nftids, 3);
5378 			adap->tids.nftids = adap->tids.sftid_base -
5379 						adap->tids.ftid_base;
5380 		}
5381 		adap->vres.ddp.start = val[3];
5382 		adap->vres.ddp.size = val[4] - val[3] + 1;
5383 		adap->params.ofldq_wr_cred = val[5];
5384 
5385 		adap->params.offload = 1;
5386 	}
5387 	if (caps_cmd.rdmacaps) {
5388 		params[0] = FW_PARAM_PFVF(STAG_START);
5389 		params[1] = FW_PARAM_PFVF(STAG_END);
5390 		params[2] = FW_PARAM_PFVF(RQ_START);
5391 		params[3] = FW_PARAM_PFVF(RQ_END);
5392 		params[4] = FW_PARAM_PFVF(PBL_START);
5393 		params[5] = FW_PARAM_PFVF(PBL_END);
5394 		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5395 				      params, val);
5396 		if (ret < 0)
5397 			goto bye;
5398 		adap->vres.stag.start = val[0];
5399 		adap->vres.stag.size = val[1] - val[0] + 1;
5400 		adap->vres.rq.start = val[2];
5401 		adap->vres.rq.size = val[3] - val[2] + 1;
5402 		adap->vres.pbl.start = val[4];
5403 		adap->vres.pbl.size = val[5] - val[4] + 1;
5404 
5405 		params[0] = FW_PARAM_PFVF(SQRQ_START);
5406 		params[1] = FW_PARAM_PFVF(SQRQ_END);
5407 		params[2] = FW_PARAM_PFVF(CQ_START);
5408 		params[3] = FW_PARAM_PFVF(CQ_END);
5409 		params[4] = FW_PARAM_PFVF(OCQ_START);
5410 		params[5] = FW_PARAM_PFVF(OCQ_END);
5411 		ret = t4_query_params(adap, 0, 0, 0, 6, params, val);
5412 		if (ret < 0)
5413 			goto bye;
5414 		adap->vres.qp.start = val[0];
5415 		adap->vres.qp.size = val[1] - val[0] + 1;
5416 		adap->vres.cq.start = val[2];
5417 		adap->vres.cq.size = val[3] - val[2] + 1;
5418 		adap->vres.ocq.start = val[4];
5419 		adap->vres.ocq.size = val[5] - val[4] + 1;
5420 	}
5421 	if (caps_cmd.iscsicaps) {
5422 		params[0] = FW_PARAM_PFVF(ISCSI_START);
5423 		params[1] = FW_PARAM_PFVF(ISCSI_END);
5424 		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
5425 				      params, val);
5426 		if (ret < 0)
5427 			goto bye;
5428 		adap->vres.iscsi.start = val[0];
5429 		adap->vres.iscsi.size = val[1] - val[0] + 1;
5430 	}
5431 #undef FW_PARAM_PFVF
5432 #undef FW_PARAM_DEV
5433 
5434 	/*
5435 	 * These are finalized by FW initialization, load their values now.
5436 	 */
5437 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION);
5438 	adap->params.tp.tre = TIMERRESOLUTION_GET(v);
5439 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_GET(v);
5440 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
5441 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5442 		     adap->params.b_wnd);
5443 
5444 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
5445 	for (j = 0; j < NCHAN; j++)
5446 		adap->params.tp.tx_modq[j] = j;
5447 
5448 	t4_read_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5449 			 &adap->filter_mode, 1,
5450 			 TP_VLAN_PRI_MAP);
5451 
5452 	adap->flags |= FW_OK;
5453 	return 0;
5454 
5455 	/*
5456 	 * Something bad happened.  If a command timed out or failed with EIO
5457 	 * FW does not operate within its spec or something catastrophic
5458 	 * happened to HW/FW, stop issuing commands.
5459 	 */
5460 bye:
5461 	if (ret != -ETIMEDOUT && ret != -EIO)
5462 		t4_fw_bye(adap, adap->mbox);
5463 	return ret;
5464 }
5465 
5466 /* EEH callbacks */
5467 
5468 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
5469 					 pci_channel_state_t state)
5470 {
5471 	int i;
5472 	struct adapter *adap = pci_get_drvdata(pdev);
5473 
5474 	if (!adap)
5475 		goto out;
5476 
5477 	rtnl_lock();
5478 	adap->flags &= ~FW_OK;
5479 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
5480 	for_each_port(adap, i) {
5481 		struct net_device *dev = adap->port[i];
5482 
5483 		netif_device_detach(dev);
5484 		netif_carrier_off(dev);
5485 	}
5486 	if (adap->flags & FULL_INIT_DONE)
5487 		cxgb_down(adap);
5488 	rtnl_unlock();
5489 	pci_disable_device(pdev);
5490 out:	return state == pci_channel_io_perm_failure ?
5491 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
5492 }
5493 
5494 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
5495 {
5496 	int i, ret;
5497 	struct fw_caps_config_cmd c;
5498 	struct adapter *adap = pci_get_drvdata(pdev);
5499 
5500 	if (!adap) {
5501 		pci_restore_state(pdev);
5502 		pci_save_state(pdev);
5503 		return PCI_ERS_RESULT_RECOVERED;
5504 	}
5505 
5506 	if (pci_enable_device(pdev)) {
5507 		dev_err(&pdev->dev, "cannot reenable PCI device after reset\n");
5508 		return PCI_ERS_RESULT_DISCONNECT;
5509 	}
5510 
5511 	pci_set_master(pdev);
5512 	pci_restore_state(pdev);
5513 	pci_save_state(pdev);
5514 	pci_cleanup_aer_uncorrect_error_status(pdev);
5515 
5516 	if (t4_wait_dev_ready(adap) < 0)
5517 		return PCI_ERS_RESULT_DISCONNECT;
5518 	if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
5519 		return PCI_ERS_RESULT_DISCONNECT;
5520 	adap->flags |= FW_OK;
5521 	if (adap_init1(adap, &c))
5522 		return PCI_ERS_RESULT_DISCONNECT;
5523 
5524 	for_each_port(adap, i) {
5525 		struct port_info *p = adap2pinfo(adap, i);
5526 
5527 		ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
5528 				  NULL, NULL);
5529 		if (ret < 0)
5530 			return PCI_ERS_RESULT_DISCONNECT;
5531 		p->viid = ret;
5532 		p->xact_addr_filt = -1;
5533 	}
5534 
5535 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5536 		     adap->params.b_wnd);
5537 	setup_memwin(adap);
5538 	if (cxgb_up(adap))
5539 		return PCI_ERS_RESULT_DISCONNECT;
5540 	return PCI_ERS_RESULT_RECOVERED;
5541 }
5542 
5543 static void eeh_resume(struct pci_dev *pdev)
5544 {
5545 	int i;
5546 	struct adapter *adap = pci_get_drvdata(pdev);
5547 
5548 	if (!adap)
5549 		return;
5550 
5551 	rtnl_lock();
5552 	for_each_port(adap, i) {
5553 		struct net_device *dev = adap->port[i];
5554 
5555 		if (netif_running(dev)) {
5556 			link_start(dev);
5557 			cxgb_set_rxmode(dev);
5558 		}
5559 		netif_device_attach(dev);
5560 	}
5561 	rtnl_unlock();
5562 }
5563 
5564 static const struct pci_error_handlers cxgb4_eeh = {
5565 	.error_detected = eeh_err_detected,
5566 	.slot_reset     = eeh_slot_reset,
5567 	.resume         = eeh_resume,
5568 };
5569 
5570 static inline bool is_10g_port(const struct link_config *lc)
5571 {
5572 	return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0;
5573 }
5574 
5575 static inline void init_rspq(struct sge_rspq *q, u8 timer_idx, u8 pkt_cnt_idx,
5576 			     unsigned int size, unsigned int iqe_size)
5577 {
5578 	q->intr_params = QINTR_TIMER_IDX(timer_idx) |
5579 			 (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0);
5580 	q->pktcnt_idx = pkt_cnt_idx < SGE_NCOUNTERS ? pkt_cnt_idx : 0;
5581 	q->iqe_len = iqe_size;
5582 	q->size = size;
5583 }
5584 
5585 /*
5586  * Perform default configuration of DMA queues depending on the number and type
5587  * of ports we found and the number of available CPUs.  Most settings can be
5588  * modified by the admin prior to actual use.
5589  */
5590 static void cfg_queues(struct adapter *adap)
5591 {
5592 	struct sge *s = &adap->sge;
5593 	int i, q10g = 0, n10g = 0, qidx = 0;
5594 
5595 	for_each_port(adap, i)
5596 		n10g += is_10g_port(&adap2pinfo(adap, i)->link_cfg);
5597 
5598 	/*
5599 	 * We default to 1 queue per non-10G port and up to # of cores queues
5600 	 * per 10G port.
5601 	 */
5602 	if (n10g)
5603 		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
5604 	if (q10g > netif_get_num_default_rss_queues())
5605 		q10g = netif_get_num_default_rss_queues();
5606 
5607 	for_each_port(adap, i) {
5608 		struct port_info *pi = adap2pinfo(adap, i);
5609 
5610 		pi->first_qset = qidx;
5611 		pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
5612 		qidx += pi->nqsets;
5613 	}
5614 
5615 	s->ethqsets = qidx;
5616 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
5617 
5618 	if (is_offload(adap)) {
5619 		/*
5620 		 * For offload we use 1 queue/channel if all ports are up to 1G,
5621 		 * otherwise we divide all available queues amongst the channels
5622 		 * capped by the number of available cores.
5623 		 */
5624 		if (n10g) {
5625 			i = min_t(int, ARRAY_SIZE(s->ofldrxq),
5626 				  num_online_cpus());
5627 			s->ofldqsets = roundup(i, adap->params.nports);
5628 		} else
5629 			s->ofldqsets = adap->params.nports;
5630 		/* For RDMA one Rx queue per channel suffices */
5631 		s->rdmaqs = adap->params.nports;
5632 	}
5633 
5634 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5635 		struct sge_eth_rxq *r = &s->ethrxq[i];
5636 
5637 		init_rspq(&r->rspq, 0, 0, 1024, 64);
5638 		r->fl.size = 72;
5639 	}
5640 
5641 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5642 		s->ethtxq[i].q.size = 1024;
5643 
5644 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5645 		s->ctrlq[i].q.size = 512;
5646 
5647 	for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
5648 		s->ofldtxq[i].q.size = 1024;
5649 
5650 	for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
5651 		struct sge_ofld_rxq *r = &s->ofldrxq[i];
5652 
5653 		init_rspq(&r->rspq, 0, 0, 1024, 64);
5654 		r->rspq.uld = CXGB4_ULD_ISCSI;
5655 		r->fl.size = 72;
5656 	}
5657 
5658 	for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
5659 		struct sge_ofld_rxq *r = &s->rdmarxq[i];
5660 
5661 		init_rspq(&r->rspq, 0, 0, 511, 64);
5662 		r->rspq.uld = CXGB4_ULD_RDMA;
5663 		r->fl.size = 72;
5664 	}
5665 
5666 	init_rspq(&s->fw_evtq, 6, 0, 512, 64);
5667 	init_rspq(&s->intrq, 6, 0, 2 * MAX_INGQ, 64);
5668 }
5669 
5670 /*
5671  * Reduce the number of Ethernet queues across all ports to at most n.
5672  * n provides at least one queue per port.
5673  */
5674 static void reduce_ethqs(struct adapter *adap, int n)
5675 {
5676 	int i;
5677 	struct port_info *pi;
5678 
5679 	while (n < adap->sge.ethqsets)
5680 		for_each_port(adap, i) {
5681 			pi = adap2pinfo(adap, i);
5682 			if (pi->nqsets > 1) {
5683 				pi->nqsets--;
5684 				adap->sge.ethqsets--;
5685 				if (adap->sge.ethqsets <= n)
5686 					break;
5687 			}
5688 		}
5689 
5690 	n = 0;
5691 	for_each_port(adap, i) {
5692 		pi = adap2pinfo(adap, i);
5693 		pi->first_qset = n;
5694 		n += pi->nqsets;
5695 	}
5696 }
5697 
5698 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5699 #define EXTRA_VECS 2
5700 
5701 static int enable_msix(struct adapter *adap)
5702 {
5703 	int ofld_need = 0;
5704 	int i, err, want, need;
5705 	struct sge *s = &adap->sge;
5706 	unsigned int nchan = adap->params.nports;
5707 	struct msix_entry entries[MAX_INGQ + 1];
5708 
5709 	for (i = 0; i < ARRAY_SIZE(entries); ++i)
5710 		entries[i].entry = i;
5711 
5712 	want = s->max_ethqsets + EXTRA_VECS;
5713 	if (is_offload(adap)) {
5714 		want += s->rdmaqs + s->ofldqsets;
5715 		/* need nchan for each possible ULD */
5716 		ofld_need = 2 * nchan;
5717 	}
5718 	need = adap->params.nports + EXTRA_VECS + ofld_need;
5719 
5720 	while ((err = pci_enable_msix(adap->pdev, entries, want)) >= need)
5721 		want = err;
5722 
5723 	if (!err) {
5724 		/*
5725 		 * Distribute available vectors to the various queue groups.
5726 		 * Every group gets its minimum requirement and NIC gets top
5727 		 * priority for leftovers.
5728 		 */
5729 		i = want - EXTRA_VECS - ofld_need;
5730 		if (i < s->max_ethqsets) {
5731 			s->max_ethqsets = i;
5732 			if (i < s->ethqsets)
5733 				reduce_ethqs(adap, i);
5734 		}
5735 		if (is_offload(adap)) {
5736 			i = want - EXTRA_VECS - s->max_ethqsets;
5737 			i -= ofld_need - nchan;
5738 			s->ofldqsets = (i / nchan) * nchan;  /* round down */
5739 		}
5740 		for (i = 0; i < want; ++i)
5741 			adap->msix_info[i].vec = entries[i].vector;
5742 	} else if (err > 0)
5743 		dev_info(adap->pdev_dev,
5744 			 "only %d MSI-X vectors left, not using MSI-X\n", err);
5745 	return err;
5746 }
5747 
5748 #undef EXTRA_VECS
5749 
5750 static int init_rss(struct adapter *adap)
5751 {
5752 	unsigned int i, j;
5753 
5754 	for_each_port(adap, i) {
5755 		struct port_info *pi = adap2pinfo(adap, i);
5756 
5757 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
5758 		if (!pi->rss)
5759 			return -ENOMEM;
5760 		for (j = 0; j < pi->rss_size; j++)
5761 			pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
5762 	}
5763 	return 0;
5764 }
5765 
5766 static void print_port_info(const struct net_device *dev)
5767 {
5768 	static const char *base[] = {
5769 		"R XFI", "R XAUI", "T SGMII", "T XFI", "T XAUI", "KX4", "CX4",
5770 		"KX", "KR", "R SFP+", "KR/KX", "KR/KX/KX4"
5771 	};
5772 
5773 	char buf[80];
5774 	char *bufp = buf;
5775 	const char *spd = "";
5776 	const struct port_info *pi = netdev_priv(dev);
5777 	const struct adapter *adap = pi->adapter;
5778 
5779 	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
5780 		spd = " 2.5 GT/s";
5781 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
5782 		spd = " 5 GT/s";
5783 
5784 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
5785 		bufp += sprintf(bufp, "100/");
5786 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
5787 		bufp += sprintf(bufp, "1000/");
5788 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
5789 		bufp += sprintf(bufp, "10G/");
5790 	if (bufp != buf)
5791 		--bufp;
5792 	sprintf(bufp, "BASE-%s", base[pi->port_type]);
5793 
5794 	netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
5795 		    adap->params.vpd.id,
5796 		    CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
5797 		    is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
5798 		    (adap->flags & USING_MSIX) ? " MSI-X" :
5799 		    (adap->flags & USING_MSI) ? " MSI" : "");
5800 	netdev_info(dev, "S/N: %s, E/C: %s\n",
5801 		    adap->params.vpd.sn, adap->params.vpd.ec);
5802 }
5803 
5804 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
5805 {
5806 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
5807 }
5808 
5809 /*
5810  * Free the following resources:
5811  * - memory used for tables
5812  * - MSI/MSI-X
5813  * - net devices
5814  * - resources FW is holding for us
5815  */
5816 static void free_some_resources(struct adapter *adapter)
5817 {
5818 	unsigned int i;
5819 
5820 	t4_free_mem(adapter->l2t);
5821 	t4_free_mem(adapter->tids.tid_tab);
5822 	disable_msi(adapter);
5823 
5824 	for_each_port(adapter, i)
5825 		if (adapter->port[i]) {
5826 			kfree(adap2pinfo(adapter, i)->rss);
5827 			free_netdev(adapter->port[i]);
5828 		}
5829 	if (adapter->flags & FW_OK)
5830 		t4_fw_bye(adapter, adapter->fn);
5831 }
5832 
5833 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
5834 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
5835 		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
5836 #define SEGMENT_SIZE 128
5837 
5838 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5839 {
5840 	int func, i, err, s_qpp, qpp, num_seg;
5841 	struct port_info *pi;
5842 	bool highdma = false;
5843 	struct adapter *adapter = NULL;
5844 
5845 	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
5846 
5847 	err = pci_request_regions(pdev, KBUILD_MODNAME);
5848 	if (err) {
5849 		/* Just info, some other driver may have claimed the device. */
5850 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
5851 		return err;
5852 	}
5853 
5854 	/* We control everything through one PF */
5855 	func = PCI_FUNC(pdev->devfn);
5856 	if (func != ent->driver_data) {
5857 		pci_save_state(pdev);        /* to restore SR-IOV later */
5858 		goto sriov;
5859 	}
5860 
5861 	err = pci_enable_device(pdev);
5862 	if (err) {
5863 		dev_err(&pdev->dev, "cannot enable PCI device\n");
5864 		goto out_release_regions;
5865 	}
5866 
5867 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5868 		highdma = true;
5869 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
5870 		if (err) {
5871 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
5872 				"coherent allocations\n");
5873 			goto out_disable_device;
5874 		}
5875 	} else {
5876 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5877 		if (err) {
5878 			dev_err(&pdev->dev, "no usable DMA configuration\n");
5879 			goto out_disable_device;
5880 		}
5881 	}
5882 
5883 	pci_enable_pcie_error_reporting(pdev);
5884 	enable_pcie_relaxed_ordering(pdev);
5885 	pci_set_master(pdev);
5886 	pci_save_state(pdev);
5887 
5888 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5889 	if (!adapter) {
5890 		err = -ENOMEM;
5891 		goto out_disable_device;
5892 	}
5893 
5894 	adapter->regs = pci_ioremap_bar(pdev, 0);
5895 	if (!adapter->regs) {
5896 		dev_err(&pdev->dev, "cannot map device registers\n");
5897 		err = -ENOMEM;
5898 		goto out_free_adapter;
5899 	}
5900 
5901 	adapter->pdev = pdev;
5902 	adapter->pdev_dev = &pdev->dev;
5903 	adapter->mbox = func;
5904 	adapter->fn = func;
5905 	adapter->msg_enable = dflt_msg_enable;
5906 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
5907 
5908 	spin_lock_init(&adapter->stats_lock);
5909 	spin_lock_init(&adapter->tid_release_lock);
5910 
5911 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
5912 	INIT_WORK(&adapter->db_full_task, process_db_full);
5913 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
5914 
5915 	err = t4_prep_adapter(adapter);
5916 	if (err)
5917 		goto out_unmap_bar0;
5918 
5919 	if (!is_t4(adapter->params.chip)) {
5920 		s_qpp = QUEUESPERPAGEPF1 * adapter->fn;
5921 		qpp = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adapter,
5922 		      SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
5923 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
5924 
5925 		/* Each segment size is 128B. Write coalescing is enabled only
5926 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
5927 		 * queue is less no of segments that can be accommodated in
5928 		 * a page size.
5929 		 */
5930 		if (qpp > num_seg) {
5931 			dev_err(&pdev->dev,
5932 				"Incorrect number of egress queues per page\n");
5933 			err = -EINVAL;
5934 			goto out_unmap_bar0;
5935 		}
5936 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
5937 		pci_resource_len(pdev, 2));
5938 		if (!adapter->bar2) {
5939 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
5940 			err = -ENOMEM;
5941 			goto out_unmap_bar0;
5942 		}
5943 	}
5944 
5945 	setup_memwin(adapter);
5946 	err = adap_init0(adapter);
5947 	setup_memwin_rdma(adapter);
5948 	if (err)
5949 		goto out_unmap_bar;
5950 
5951 	for_each_port(adapter, i) {
5952 		struct net_device *netdev;
5953 
5954 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
5955 					   MAX_ETH_QSETS);
5956 		if (!netdev) {
5957 			err = -ENOMEM;
5958 			goto out_free_dev;
5959 		}
5960 
5961 		SET_NETDEV_DEV(netdev, &pdev->dev);
5962 
5963 		adapter->port[i] = netdev;
5964 		pi = netdev_priv(netdev);
5965 		pi->adapter = adapter;
5966 		pi->xact_addr_filt = -1;
5967 		pi->port_id = i;
5968 		netdev->irq = pdev->irq;
5969 
5970 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5971 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5972 			NETIF_F_RXCSUM | NETIF_F_RXHASH |
5973 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
5974 		if (highdma)
5975 			netdev->hw_features |= NETIF_F_HIGHDMA;
5976 		netdev->features |= netdev->hw_features;
5977 		netdev->vlan_features = netdev->features & VLAN_FEAT;
5978 
5979 		netdev->priv_flags |= IFF_UNICAST_FLT;
5980 
5981 		netdev->netdev_ops = &cxgb4_netdev_ops;
5982 		SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
5983 	}
5984 
5985 	pci_set_drvdata(pdev, adapter);
5986 
5987 	if (adapter->flags & FW_OK) {
5988 		err = t4_port_init(adapter, func, func, 0);
5989 		if (err)
5990 			goto out_free_dev;
5991 	}
5992 
5993 	/*
5994 	 * Configure queues and allocate tables now, they can be needed as
5995 	 * soon as the first register_netdev completes.
5996 	 */
5997 	cfg_queues(adapter);
5998 
5999 	adapter->l2t = t4_init_l2t();
6000 	if (!adapter->l2t) {
6001 		/* We tolerate a lack of L2T, giving up some functionality */
6002 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6003 		adapter->params.offload = 0;
6004 	}
6005 
6006 	if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
6007 		dev_warn(&pdev->dev, "could not allocate TID table, "
6008 			 "continuing\n");
6009 		adapter->params.offload = 0;
6010 	}
6011 
6012 	/* See what interrupts we'll be using */
6013 	if (msi > 1 && enable_msix(adapter) == 0)
6014 		adapter->flags |= USING_MSIX;
6015 	else if (msi > 0 && pci_enable_msi(pdev) == 0)
6016 		adapter->flags |= USING_MSI;
6017 
6018 	err = init_rss(adapter);
6019 	if (err)
6020 		goto out_free_dev;
6021 
6022 	/*
6023 	 * The card is now ready to go.  If any errors occur during device
6024 	 * registration we do not fail the whole card but rather proceed only
6025 	 * with the ports we manage to register successfully.  However we must
6026 	 * register at least one net device.
6027 	 */
6028 	for_each_port(adapter, i) {
6029 		pi = adap2pinfo(adapter, i);
6030 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6031 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6032 
6033 		err = register_netdev(adapter->port[i]);
6034 		if (err)
6035 			break;
6036 		adapter->chan_map[pi->tx_chan] = i;
6037 		print_port_info(adapter->port[i]);
6038 	}
6039 	if (i == 0) {
6040 		dev_err(&pdev->dev, "could not register any net devices\n");
6041 		goto out_free_dev;
6042 	}
6043 	if (err) {
6044 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6045 		err = 0;
6046 	}
6047 
6048 	if (cxgb4_debugfs_root) {
6049 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6050 							   cxgb4_debugfs_root);
6051 		setup_debugfs(adapter);
6052 	}
6053 
6054 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6055 	pdev->needs_freset = 1;
6056 
6057 	if (is_offload(adapter))
6058 		attach_ulds(adapter);
6059 
6060 sriov:
6061 #ifdef CONFIG_PCI_IOV
6062 	if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
6063 		if (pci_enable_sriov(pdev, num_vf[func]) == 0)
6064 			dev_info(&pdev->dev,
6065 				 "instantiated %u virtual functions\n",
6066 				 num_vf[func]);
6067 #endif
6068 	return 0;
6069 
6070  out_free_dev:
6071 	free_some_resources(adapter);
6072  out_unmap_bar:
6073 	if (!is_t4(adapter->params.chip))
6074 		iounmap(adapter->bar2);
6075  out_unmap_bar0:
6076 	iounmap(adapter->regs);
6077  out_free_adapter:
6078 	kfree(adapter);
6079  out_disable_device:
6080 	pci_disable_pcie_error_reporting(pdev);
6081 	pci_disable_device(pdev);
6082  out_release_regions:
6083 	pci_release_regions(pdev);
6084 	return err;
6085 }
6086 
6087 static void remove_one(struct pci_dev *pdev)
6088 {
6089 	struct adapter *adapter = pci_get_drvdata(pdev);
6090 
6091 #ifdef CONFIG_PCI_IOV
6092 	pci_disable_sriov(pdev);
6093 
6094 #endif
6095 
6096 	if (adapter) {
6097 		int i;
6098 
6099 		if (is_offload(adapter))
6100 			detach_ulds(adapter);
6101 
6102 		for_each_port(adapter, i)
6103 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6104 				unregister_netdev(adapter->port[i]);
6105 
6106 		if (adapter->debugfs_root)
6107 			debugfs_remove_recursive(adapter->debugfs_root);
6108 
6109 		/* If we allocated filters, free up state associated with any
6110 		 * valid filters ...
6111 		 */
6112 		if (adapter->tids.ftid_tab) {
6113 			struct filter_entry *f = &adapter->tids.ftid_tab[0];
6114 			for (i = 0; i < (adapter->tids.nftids +
6115 					adapter->tids.nsftids); i++, f++)
6116 				if (f->valid)
6117 					clear_filter(adapter, f);
6118 		}
6119 
6120 		if (adapter->flags & FULL_INIT_DONE)
6121 			cxgb_down(adapter);
6122 
6123 		free_some_resources(adapter);
6124 		iounmap(adapter->regs);
6125 		if (!is_t4(adapter->params.chip))
6126 			iounmap(adapter->bar2);
6127 		kfree(adapter);
6128 		pci_disable_pcie_error_reporting(pdev);
6129 		pci_disable_device(pdev);
6130 		pci_release_regions(pdev);
6131 	} else
6132 		pci_release_regions(pdev);
6133 }
6134 
6135 static struct pci_driver cxgb4_driver = {
6136 	.name     = KBUILD_MODNAME,
6137 	.id_table = cxgb4_pci_tbl,
6138 	.probe    = init_one,
6139 	.remove   = remove_one,
6140 	.err_handler = &cxgb4_eeh,
6141 };
6142 
6143 static int __init cxgb4_init_module(void)
6144 {
6145 	int ret;
6146 
6147 	workq = create_singlethread_workqueue("cxgb4");
6148 	if (!workq)
6149 		return -ENOMEM;
6150 
6151 	/* Debugfs support is optional, just warn if this fails */
6152 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6153 	if (!cxgb4_debugfs_root)
6154 		pr_warn("could not create debugfs entry, continuing\n");
6155 
6156 	ret = pci_register_driver(&cxgb4_driver);
6157 	if (ret < 0) {
6158 		debugfs_remove(cxgb4_debugfs_root);
6159 		destroy_workqueue(workq);
6160 	}
6161 
6162 	register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6163 
6164 	return ret;
6165 }
6166 
6167 static void __exit cxgb4_cleanup_module(void)
6168 {
6169 	unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6170 	pci_unregister_driver(&cxgb4_driver);
6171 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
6172 	flush_workqueue(workq);
6173 	destroy_workqueue(workq);
6174 }
6175 
6176 module_init(cxgb4_init_module);
6177 module_exit(cxgb4_cleanup_module);
6178