1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <asm/uaccess.h> 65 66 #include "cxgb4.h" 67 #include "t4_regs.h" 68 #include "t4_msg.h" 69 #include "t4fw_api.h" 70 #include "l2t.h" 71 72 #include <../drivers/net/bonding/bonding.h> 73 74 #ifdef DRV_VERSION 75 #undef DRV_VERSION 76 #endif 77 #define DRV_VERSION "2.0.0-ko" 78 #define DRV_DESC "Chelsio T4/T5 Network Driver" 79 80 /* 81 * Max interrupt hold-off timer value in us. Queues fall back to this value 82 * under extreme memory pressure so it's largish to give the system time to 83 * recover. 84 */ 85 #define MAX_SGE_TIMERVAL 200U 86 87 enum { 88 /* 89 * Physical Function provisioning constants. 90 */ 91 PFRES_NVI = 4, /* # of Virtual Interfaces */ 92 PFRES_NETHCTRL = 128, /* # of EQs used for ETH or CTRL Qs */ 93 PFRES_NIQFLINT = 128, /* # of ingress Qs/w Free List(s)/intr 94 */ 95 PFRES_NEQ = 256, /* # of egress queues */ 96 PFRES_NIQ = 0, /* # of ingress queues */ 97 PFRES_TC = 0, /* PCI-E traffic class */ 98 PFRES_NEXACTF = 128, /* # of exact MPS filters */ 99 100 PFRES_R_CAPS = FW_CMD_CAP_PF, 101 PFRES_WX_CAPS = FW_CMD_CAP_PF, 102 103 #ifdef CONFIG_PCI_IOV 104 /* 105 * Virtual Function provisioning constants. We need two extra Ingress 106 * Queues with Interrupt capability to serve as the VF's Firmware 107 * Event Queue and Forwarded Interrupt Queue (when using MSI mode) -- 108 * neither will have Free Lists associated with them). For each 109 * Ethernet/Control Egress Queue and for each Free List, we need an 110 * Egress Context. 111 */ 112 VFRES_NPORTS = 1, /* # of "ports" per VF */ 113 VFRES_NQSETS = 2, /* # of "Queue Sets" per VF */ 114 115 VFRES_NVI = VFRES_NPORTS, /* # of Virtual Interfaces */ 116 VFRES_NETHCTRL = VFRES_NQSETS, /* # of EQs used for ETH or CTRL Qs */ 117 VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */ 118 VFRES_NEQ = VFRES_NQSETS*2, /* # of egress queues */ 119 VFRES_NIQ = 0, /* # of non-fl/int ingress queues */ 120 VFRES_TC = 0, /* PCI-E traffic class */ 121 VFRES_NEXACTF = 16, /* # of exact MPS filters */ 122 123 VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT, 124 VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF, 125 #endif 126 }; 127 128 /* 129 * Provide a Port Access Rights Mask for the specified PF/VF. This is very 130 * static and likely not to be useful in the long run. We really need to 131 * implement some form of persistent configuration which the firmware 132 * controls. 133 */ 134 static unsigned int pfvfres_pmask(struct adapter *adapter, 135 unsigned int pf, unsigned int vf) 136 { 137 unsigned int portn, portvec; 138 139 /* 140 * Give PF's access to all of the ports. 141 */ 142 if (vf == 0) 143 return FW_PFVF_CMD_PMASK_MASK; 144 145 /* 146 * For VFs, we'll assign them access to the ports based purely on the 147 * PF. We assign active ports in order, wrapping around if there are 148 * fewer active ports than PFs: e.g. active port[pf % nports]. 149 * Unfortunately the adapter's port_info structs haven't been 150 * initialized yet so we have to compute this. 151 */ 152 if (adapter->params.nports == 0) 153 return 0; 154 155 portn = pf % adapter->params.nports; 156 portvec = adapter->params.portvec; 157 for (;;) { 158 /* 159 * Isolate the lowest set bit in the port vector. If we're at 160 * the port number that we want, return that as the pmask. 161 * otherwise mask that bit out of the port vector and 162 * decrement our port number ... 163 */ 164 unsigned int pmask = portvec ^ (portvec & (portvec-1)); 165 if (portn == 0) 166 return pmask; 167 portn--; 168 portvec &= ~pmask; 169 } 170 /*NOTREACHED*/ 171 } 172 173 enum { 174 MAX_TXQ_ENTRIES = 16384, 175 MAX_CTRL_TXQ_ENTRIES = 1024, 176 MAX_RSPQ_ENTRIES = 16384, 177 MAX_RX_BUFFERS = 16384, 178 MIN_TXQ_ENTRIES = 32, 179 MIN_CTRL_TXQ_ENTRIES = 32, 180 MIN_RSPQ_ENTRIES = 128, 181 MIN_FL_ENTRIES = 16 182 }; 183 184 /* Host shadow copy of ingress filter entry. This is in host native format 185 * and doesn't match the ordering or bit order, etc. of the hardware of the 186 * firmware command. The use of bit-field structure elements is purely to 187 * remind ourselves of the field size limitations and save memory in the case 188 * where the filter table is large. 189 */ 190 struct filter_entry { 191 /* Administrative fields for filter. 192 */ 193 u32 valid:1; /* filter allocated and valid */ 194 u32 locked:1; /* filter is administratively locked */ 195 196 u32 pending:1; /* filter action is pending firmware reply */ 197 u32 smtidx:8; /* Source MAC Table index for smac */ 198 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */ 199 200 /* The filter itself. Most of this is a straight copy of information 201 * provided by the extended ioctl(). Some fields are translated to 202 * internal forms -- for instance the Ingress Queue ID passed in from 203 * the ioctl() is translated into the Absolute Ingress Queue ID. 204 */ 205 struct ch_filter_specification fs; 206 }; 207 208 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 209 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 210 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 211 212 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) } 213 214 static DEFINE_PCI_DEVICE_TABLE(cxgb4_pci_tbl) = { 215 CH_DEVICE(0xa000, 0), /* PE10K */ 216 CH_DEVICE(0x4001, -1), 217 CH_DEVICE(0x4002, -1), 218 CH_DEVICE(0x4003, -1), 219 CH_DEVICE(0x4004, -1), 220 CH_DEVICE(0x4005, -1), 221 CH_DEVICE(0x4006, -1), 222 CH_DEVICE(0x4007, -1), 223 CH_DEVICE(0x4008, -1), 224 CH_DEVICE(0x4009, -1), 225 CH_DEVICE(0x400a, -1), 226 CH_DEVICE(0x4401, 4), 227 CH_DEVICE(0x4402, 4), 228 CH_DEVICE(0x4403, 4), 229 CH_DEVICE(0x4404, 4), 230 CH_DEVICE(0x4405, 4), 231 CH_DEVICE(0x4406, 4), 232 CH_DEVICE(0x4407, 4), 233 CH_DEVICE(0x4408, 4), 234 CH_DEVICE(0x4409, 4), 235 CH_DEVICE(0x440a, 4), 236 CH_DEVICE(0x440d, 4), 237 CH_DEVICE(0x440e, 4), 238 CH_DEVICE(0x5001, 4), 239 CH_DEVICE(0x5002, 4), 240 CH_DEVICE(0x5003, 4), 241 CH_DEVICE(0x5004, 4), 242 CH_DEVICE(0x5005, 4), 243 CH_DEVICE(0x5006, 4), 244 CH_DEVICE(0x5007, 4), 245 CH_DEVICE(0x5008, 4), 246 CH_DEVICE(0x5009, 4), 247 CH_DEVICE(0x500A, 4), 248 CH_DEVICE(0x500B, 4), 249 CH_DEVICE(0x500C, 4), 250 CH_DEVICE(0x500D, 4), 251 CH_DEVICE(0x500E, 4), 252 CH_DEVICE(0x500F, 4), 253 CH_DEVICE(0x5010, 4), 254 CH_DEVICE(0x5011, 4), 255 CH_DEVICE(0x5012, 4), 256 CH_DEVICE(0x5013, 4), 257 CH_DEVICE(0x5401, 4), 258 CH_DEVICE(0x5402, 4), 259 CH_DEVICE(0x5403, 4), 260 CH_DEVICE(0x5404, 4), 261 CH_DEVICE(0x5405, 4), 262 CH_DEVICE(0x5406, 4), 263 CH_DEVICE(0x5407, 4), 264 CH_DEVICE(0x5408, 4), 265 CH_DEVICE(0x5409, 4), 266 CH_DEVICE(0x540A, 4), 267 CH_DEVICE(0x540B, 4), 268 CH_DEVICE(0x540C, 4), 269 CH_DEVICE(0x540D, 4), 270 CH_DEVICE(0x540E, 4), 271 CH_DEVICE(0x540F, 4), 272 CH_DEVICE(0x5410, 4), 273 CH_DEVICE(0x5411, 4), 274 CH_DEVICE(0x5412, 4), 275 CH_DEVICE(0x5413, 4), 276 { 0, } 277 }; 278 279 #define FW_FNAME "cxgb4/t4fw.bin" 280 #define FW5_FNAME "cxgb4/t5fw.bin" 281 #define FW_CFNAME "cxgb4/t4-config.txt" 282 #define FW5_CFNAME "cxgb4/t5-config.txt" 283 284 MODULE_DESCRIPTION(DRV_DESC); 285 MODULE_AUTHOR("Chelsio Communications"); 286 MODULE_LICENSE("Dual BSD/GPL"); 287 MODULE_VERSION(DRV_VERSION); 288 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 289 MODULE_FIRMWARE(FW_FNAME); 290 MODULE_FIRMWARE(FW5_FNAME); 291 292 /* 293 * Normally we're willing to become the firmware's Master PF but will be happy 294 * if another PF has already become the Master and initialized the adapter. 295 * Setting "force_init" will cause this driver to forcibly establish itself as 296 * the Master PF and initialize the adapter. 297 */ 298 static uint force_init; 299 300 module_param(force_init, uint, 0644); 301 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter"); 302 303 /* 304 * Normally if the firmware we connect to has Configuration File support, we 305 * use that and only fall back to the old Driver-based initialization if the 306 * Configuration File fails for some reason. If force_old_init is set, then 307 * we'll always use the old Driver-based initialization sequence. 308 */ 309 static uint force_old_init; 310 311 module_param(force_old_init, uint, 0644); 312 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence"); 313 314 static int dflt_msg_enable = DFLT_MSG_ENABLE; 315 316 module_param(dflt_msg_enable, int, 0644); 317 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap"); 318 319 /* 320 * The driver uses the best interrupt scheme available on a platform in the 321 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 322 * of these schemes the driver may consider as follows: 323 * 324 * msi = 2: choose from among all three options 325 * msi = 1: only consider MSI and INTx interrupts 326 * msi = 0: force INTx interrupts 327 */ 328 static int msi = 2; 329 330 module_param(msi, int, 0644); 331 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 332 333 /* 334 * Queue interrupt hold-off timer values. Queues default to the first of these 335 * upon creation. 336 */ 337 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 }; 338 339 module_param_array(intr_holdoff, uint, NULL, 0644); 340 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers " 341 "0..4 in microseconds"); 342 343 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 }; 344 345 module_param_array(intr_cnt, uint, NULL, 0644); 346 MODULE_PARM_DESC(intr_cnt, 347 "thresholds 1..3 for queue interrupt packet counters"); 348 349 /* 350 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 351 * offset by 2 bytes in order to have the IP headers line up on 4-byte 352 * boundaries. This is a requirement for many architectures which will throw 353 * a machine check fault if an attempt is made to access one of the 4-byte IP 354 * header fields on a non-4-byte boundary. And it's a major performance issue 355 * even on some architectures which allow it like some implementations of the 356 * x86 ISA. However, some architectures don't mind this and for some very 357 * edge-case performance sensitive applications (like forwarding large volumes 358 * of small packets), setting this DMA offset to 0 will decrease the number of 359 * PCI-E Bus transfers enough to measurably affect performance. 360 */ 361 static int rx_dma_offset = 2; 362 363 static bool vf_acls; 364 365 #ifdef CONFIG_PCI_IOV 366 module_param(vf_acls, bool, 0644); 367 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement"); 368 369 /* Configure the number of PCI-E Virtual Function which are to be instantiated 370 * on SR-IOV Capable Physical Functions. 371 */ 372 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV]; 373 374 module_param_array(num_vf, uint, NULL, 0644); 375 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3"); 376 #endif 377 378 /* 379 * The filter TCAM has a fixed portion and a variable portion. The fixed 380 * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP 381 * ports. The variable portion is 36 bits which can include things like Exact 382 * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits), 383 * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would 384 * far exceed the 36-bit budget for this "compressed" header portion of the 385 * filter. Thus, we have a scarce resource which must be carefully managed. 386 * 387 * By default we set this up to mostly match the set of filter matching 388 * capabilities of T3 but with accommodations for some of T4's more 389 * interesting features: 390 * 391 * { IP Fragment (1), MPS Match Type (3), IP Protocol (8), 392 * [Inner] VLAN (17), Port (3), FCoE (1) } 393 */ 394 enum { 395 TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC, 396 TP_VLAN_PRI_MAP_FIRST = FCOE_SHIFT, 397 TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_SHIFT, 398 }; 399 400 static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT; 401 402 module_param(tp_vlan_pri_map, uint, 0644); 403 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration"); 404 405 static struct dentry *cxgb4_debugfs_root; 406 407 static LIST_HEAD(adapter_list); 408 static DEFINE_MUTEX(uld_mutex); 409 /* Adapter list to be accessed from atomic context */ 410 static LIST_HEAD(adap_rcu_list); 411 static DEFINE_SPINLOCK(adap_rcu_lock); 412 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX]; 413 static const char *uld_str[] = { "RDMA", "iSCSI" }; 414 415 static void link_report(struct net_device *dev) 416 { 417 if (!netif_carrier_ok(dev)) 418 netdev_info(dev, "link down\n"); 419 else { 420 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 421 422 const char *s = "10Mbps"; 423 const struct port_info *p = netdev_priv(dev); 424 425 switch (p->link_cfg.speed) { 426 case SPEED_10000: 427 s = "10Gbps"; 428 break; 429 case SPEED_1000: 430 s = "1000Mbps"; 431 break; 432 case SPEED_100: 433 s = "100Mbps"; 434 break; 435 } 436 437 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 438 fc[p->link_cfg.fc]); 439 } 440 } 441 442 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 443 { 444 struct net_device *dev = adapter->port[port_id]; 445 446 /* Skip changes from disabled ports. */ 447 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 448 if (link_stat) 449 netif_carrier_on(dev); 450 else 451 netif_carrier_off(dev); 452 453 link_report(dev); 454 } 455 } 456 457 void t4_os_portmod_changed(const struct adapter *adap, int port_id) 458 { 459 static const char *mod_str[] = { 460 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 461 }; 462 463 const struct net_device *dev = adap->port[port_id]; 464 const struct port_info *pi = netdev_priv(dev); 465 466 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 467 netdev_info(dev, "port module unplugged\n"); 468 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 469 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 470 } 471 472 /* 473 * Configure the exact and hash address filters to handle a port's multicast 474 * and secondary unicast MAC addresses. 475 */ 476 static int set_addr_filters(const struct net_device *dev, bool sleep) 477 { 478 u64 mhash = 0; 479 u64 uhash = 0; 480 bool free = true; 481 u16 filt_idx[7]; 482 const u8 *addr[7]; 483 int ret, naddr = 0; 484 const struct netdev_hw_addr *ha; 485 int uc_cnt = netdev_uc_count(dev); 486 int mc_cnt = netdev_mc_count(dev); 487 const struct port_info *pi = netdev_priv(dev); 488 unsigned int mb = pi->adapter->fn; 489 490 /* first do the secondary unicast addresses */ 491 netdev_for_each_uc_addr(ha, dev) { 492 addr[naddr++] = ha->addr; 493 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) { 494 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free, 495 naddr, addr, filt_idx, &uhash, sleep); 496 if (ret < 0) 497 return ret; 498 499 free = false; 500 naddr = 0; 501 } 502 } 503 504 /* next set up the multicast addresses */ 505 netdev_for_each_mc_addr(ha, dev) { 506 addr[naddr++] = ha->addr; 507 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) { 508 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free, 509 naddr, addr, filt_idx, &mhash, sleep); 510 if (ret < 0) 511 return ret; 512 513 free = false; 514 naddr = 0; 515 } 516 } 517 518 return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0, 519 uhash | mhash, sleep); 520 } 521 522 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 523 module_param(dbfifo_int_thresh, int, 0644); 524 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 525 526 /* 527 * usecs to sleep while draining the dbfifo 528 */ 529 static int dbfifo_drain_delay = 1000; 530 module_param(dbfifo_drain_delay, int, 0644); 531 MODULE_PARM_DESC(dbfifo_drain_delay, 532 "usecs to sleep while draining the dbfifo"); 533 534 /* 535 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 536 * If @mtu is -1 it is left unchanged. 537 */ 538 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 539 { 540 int ret; 541 struct port_info *pi = netdev_priv(dev); 542 543 ret = set_addr_filters(dev, sleep_ok); 544 if (ret == 0) 545 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu, 546 (dev->flags & IFF_PROMISC) ? 1 : 0, 547 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 548 sleep_ok); 549 return ret; 550 } 551 552 static struct workqueue_struct *workq; 553 554 /** 555 * link_start - enable a port 556 * @dev: the port to enable 557 * 558 * Performs the MAC and PHY actions needed to enable a port. 559 */ 560 static int link_start(struct net_device *dev) 561 { 562 int ret; 563 struct port_info *pi = netdev_priv(dev); 564 unsigned int mb = pi->adapter->fn; 565 566 /* 567 * We do not set address filters and promiscuity here, the stack does 568 * that step explicitly. 569 */ 570 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 571 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 572 if (ret == 0) { 573 ret = t4_change_mac(pi->adapter, mb, pi->viid, 574 pi->xact_addr_filt, dev->dev_addr, true, 575 true); 576 if (ret >= 0) { 577 pi->xact_addr_filt = ret; 578 ret = 0; 579 } 580 } 581 if (ret == 0) 582 ret = t4_link_start(pi->adapter, mb, pi->tx_chan, 583 &pi->link_cfg); 584 if (ret == 0) 585 ret = t4_enable_vi(pi->adapter, mb, pi->viid, true, true); 586 return ret; 587 } 588 589 /* Clear a filter and release any of its resources that we own. This also 590 * clears the filter's "pending" status. 591 */ 592 static void clear_filter(struct adapter *adap, struct filter_entry *f) 593 { 594 /* If the new or old filter have loopback rewriteing rules then we'll 595 * need to free any existing Layer Two Table (L2T) entries of the old 596 * filter rule. The firmware will handle freeing up any Source MAC 597 * Table (SMT) entries used for rewriting Source MAC Addresses in 598 * loopback rules. 599 */ 600 if (f->l2t) 601 cxgb4_l2t_release(f->l2t); 602 603 /* The zeroing of the filter rule below clears the filter valid, 604 * pending, locked flags, l2t pointer, etc. so it's all we need for 605 * this operation. 606 */ 607 memset(f, 0, sizeof(*f)); 608 } 609 610 /* Handle a filter write/deletion reply. 611 */ 612 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl) 613 { 614 unsigned int idx = GET_TID(rpl); 615 unsigned int nidx = idx - adap->tids.ftid_base; 616 unsigned int ret; 617 struct filter_entry *f; 618 619 if (idx >= adap->tids.ftid_base && nidx < 620 (adap->tids.nftids + adap->tids.nsftids)) { 621 idx = nidx; 622 ret = GET_TCB_COOKIE(rpl->cookie); 623 f = &adap->tids.ftid_tab[idx]; 624 625 if (ret == FW_FILTER_WR_FLT_DELETED) { 626 /* Clear the filter when we get confirmation from the 627 * hardware that the filter has been deleted. 628 */ 629 clear_filter(adap, f); 630 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) { 631 dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n", 632 idx); 633 clear_filter(adap, f); 634 } else if (ret == FW_FILTER_WR_FLT_ADDED) { 635 f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff; 636 f->pending = 0; /* asynchronous setup completed */ 637 f->valid = 1; 638 } else { 639 /* Something went wrong. Issue a warning about the 640 * problem and clear everything out. 641 */ 642 dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n", 643 idx, ret); 644 clear_filter(adap, f); 645 } 646 } 647 } 648 649 /* Response queue handler for the FW event queue. 650 */ 651 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 652 const struct pkt_gl *gl) 653 { 654 u8 opcode = ((const struct rss_header *)rsp)->opcode; 655 656 rsp++; /* skip RSS header */ 657 658 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 659 */ 660 if (unlikely(opcode == CPL_FW4_MSG && 661 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 662 rsp++; 663 opcode = ((const struct rss_header *)rsp)->opcode; 664 rsp++; 665 if (opcode != CPL_SGE_EGR_UPDATE) { 666 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 667 , opcode); 668 goto out; 669 } 670 } 671 672 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 673 const struct cpl_sge_egr_update *p = (void *)rsp; 674 unsigned int qid = EGR_QID(ntohl(p->opcode_qid)); 675 struct sge_txq *txq; 676 677 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 678 txq->restarts++; 679 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) { 680 struct sge_eth_txq *eq; 681 682 eq = container_of(txq, struct sge_eth_txq, q); 683 netif_tx_wake_queue(eq->txq); 684 } else { 685 struct sge_ofld_txq *oq; 686 687 oq = container_of(txq, struct sge_ofld_txq, q); 688 tasklet_schedule(&oq->qresume_tsk); 689 } 690 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 691 const struct cpl_fw6_msg *p = (void *)rsp; 692 693 if (p->type == 0) 694 t4_handle_fw_rpl(q->adap, p->data); 695 } else if (opcode == CPL_L2T_WRITE_RPL) { 696 const struct cpl_l2t_write_rpl *p = (void *)rsp; 697 698 do_l2t_write_rpl(q->adap, p); 699 } else if (opcode == CPL_SET_TCB_RPL) { 700 const struct cpl_set_tcb_rpl *p = (void *)rsp; 701 702 filter_rpl(q->adap, p); 703 } else 704 dev_err(q->adap->pdev_dev, 705 "unexpected CPL %#x on FW event queue\n", opcode); 706 out: 707 return 0; 708 } 709 710 /** 711 * uldrx_handler - response queue handler for ULD queues 712 * @q: the response queue that received the packet 713 * @rsp: the response queue descriptor holding the offload message 714 * @gl: the gather list of packet fragments 715 * 716 * Deliver an ingress offload packet to a ULD. All processing is done by 717 * the ULD, we just maintain statistics. 718 */ 719 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp, 720 const struct pkt_gl *gl) 721 { 722 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq); 723 724 /* FW can send CPLs encapsulated in a CPL_FW4_MSG. 725 */ 726 if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG && 727 ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL) 728 rsp += 2; 729 730 if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) { 731 rxq->stats.nomem++; 732 return -1; 733 } 734 if (gl == NULL) 735 rxq->stats.imm++; 736 else if (gl == CXGB4_MSG_AN) 737 rxq->stats.an++; 738 else 739 rxq->stats.pkts++; 740 return 0; 741 } 742 743 static void disable_msi(struct adapter *adapter) 744 { 745 if (adapter->flags & USING_MSIX) { 746 pci_disable_msix(adapter->pdev); 747 adapter->flags &= ~USING_MSIX; 748 } else if (adapter->flags & USING_MSI) { 749 pci_disable_msi(adapter->pdev); 750 adapter->flags &= ~USING_MSI; 751 } 752 } 753 754 /* 755 * Interrupt handler for non-data events used with MSI-X. 756 */ 757 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 758 { 759 struct adapter *adap = cookie; 760 761 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE)); 762 if (v & PFSW) { 763 adap->swintr = 1; 764 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v); 765 } 766 t4_slow_intr_handler(adap); 767 return IRQ_HANDLED; 768 } 769 770 /* 771 * Name the MSI-X interrupts. 772 */ 773 static void name_msix_vecs(struct adapter *adap) 774 { 775 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); 776 777 /* non-data interrupts */ 778 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); 779 780 /* FW events */ 781 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", 782 adap->port[0]->name); 783 784 /* Ethernet queues */ 785 for_each_port(adap, j) { 786 struct net_device *d = adap->port[j]; 787 const struct port_info *pi = netdev_priv(d); 788 789 for (i = 0; i < pi->nqsets; i++, msi_idx++) 790 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", 791 d->name, i); 792 } 793 794 /* offload queues */ 795 for_each_ofldrxq(&adap->sge, i) 796 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d", 797 adap->port[0]->name, i); 798 799 for_each_rdmarxq(&adap->sge, i) 800 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d", 801 adap->port[0]->name, i); 802 } 803 804 static int request_msix_queue_irqs(struct adapter *adap) 805 { 806 struct sge *s = &adap->sge; 807 int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, msi_index = 2; 808 809 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, 810 adap->msix_info[1].desc, &s->fw_evtq); 811 if (err) 812 return err; 813 814 for_each_ethrxq(s, ethqidx) { 815 err = request_irq(adap->msix_info[msi_index].vec, 816 t4_sge_intr_msix, 0, 817 adap->msix_info[msi_index].desc, 818 &s->ethrxq[ethqidx].rspq); 819 if (err) 820 goto unwind; 821 msi_index++; 822 } 823 for_each_ofldrxq(s, ofldqidx) { 824 err = request_irq(adap->msix_info[msi_index].vec, 825 t4_sge_intr_msix, 0, 826 adap->msix_info[msi_index].desc, 827 &s->ofldrxq[ofldqidx].rspq); 828 if (err) 829 goto unwind; 830 msi_index++; 831 } 832 for_each_rdmarxq(s, rdmaqidx) { 833 err = request_irq(adap->msix_info[msi_index].vec, 834 t4_sge_intr_msix, 0, 835 adap->msix_info[msi_index].desc, 836 &s->rdmarxq[rdmaqidx].rspq); 837 if (err) 838 goto unwind; 839 msi_index++; 840 } 841 return 0; 842 843 unwind: 844 while (--rdmaqidx >= 0) 845 free_irq(adap->msix_info[--msi_index].vec, 846 &s->rdmarxq[rdmaqidx].rspq); 847 while (--ofldqidx >= 0) 848 free_irq(adap->msix_info[--msi_index].vec, 849 &s->ofldrxq[ofldqidx].rspq); 850 while (--ethqidx >= 0) 851 free_irq(adap->msix_info[--msi_index].vec, 852 &s->ethrxq[ethqidx].rspq); 853 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 854 return err; 855 } 856 857 static void free_msix_queue_irqs(struct adapter *adap) 858 { 859 int i, msi_index = 2; 860 struct sge *s = &adap->sge; 861 862 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 863 for_each_ethrxq(s, i) 864 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq); 865 for_each_ofldrxq(s, i) 866 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq); 867 for_each_rdmarxq(s, i) 868 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq); 869 } 870 871 /** 872 * write_rss - write the RSS table for a given port 873 * @pi: the port 874 * @queues: array of queue indices for RSS 875 * 876 * Sets up the portion of the HW RSS table for the port's VI to distribute 877 * packets to the Rx queues in @queues. 878 */ 879 static int write_rss(const struct port_info *pi, const u16 *queues) 880 { 881 u16 *rss; 882 int i, err; 883 const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset]; 884 885 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL); 886 if (!rss) 887 return -ENOMEM; 888 889 /* map the queue indices to queue ids */ 890 for (i = 0; i < pi->rss_size; i++, queues++) 891 rss[i] = q[*queues].rspq.abs_id; 892 893 err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0, 894 pi->rss_size, rss, pi->rss_size); 895 kfree(rss); 896 return err; 897 } 898 899 /** 900 * setup_rss - configure RSS 901 * @adap: the adapter 902 * 903 * Sets up RSS for each port. 904 */ 905 static int setup_rss(struct adapter *adap) 906 { 907 int i, err; 908 909 for_each_port(adap, i) { 910 const struct port_info *pi = adap2pinfo(adap, i); 911 912 err = write_rss(pi, pi->rss); 913 if (err) 914 return err; 915 } 916 return 0; 917 } 918 919 /* 920 * Return the channel of the ingress queue with the given qid. 921 */ 922 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 923 { 924 qid -= p->ingr_start; 925 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 926 } 927 928 /* 929 * Wait until all NAPI handlers are descheduled. 930 */ 931 static void quiesce_rx(struct adapter *adap) 932 { 933 int i; 934 935 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) { 936 struct sge_rspq *q = adap->sge.ingr_map[i]; 937 938 if (q && q->handler) 939 napi_disable(&q->napi); 940 } 941 } 942 943 /* 944 * Enable NAPI scheduling and interrupt generation for all Rx queues. 945 */ 946 static void enable_rx(struct adapter *adap) 947 { 948 int i; 949 950 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) { 951 struct sge_rspq *q = adap->sge.ingr_map[i]; 952 953 if (!q) 954 continue; 955 if (q->handler) 956 napi_enable(&q->napi); 957 /* 0-increment GTS to start the timer and enable interrupts */ 958 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS), 959 SEINTARM(q->intr_params) | 960 INGRESSQID(q->cntxt_id)); 961 } 962 } 963 964 /** 965 * setup_sge_queues - configure SGE Tx/Rx/response queues 966 * @adap: the adapter 967 * 968 * Determines how many sets of SGE queues to use and initializes them. 969 * We support multiple queue sets per port if we have MSI-X, otherwise 970 * just one queue set per port. 971 */ 972 static int setup_sge_queues(struct adapter *adap) 973 { 974 int err, msi_idx, i, j; 975 struct sge *s = &adap->sge; 976 977 bitmap_zero(s->starving_fl, MAX_EGRQ); 978 bitmap_zero(s->txq_maperr, MAX_EGRQ); 979 980 if (adap->flags & USING_MSIX) 981 msi_idx = 1; /* vector 0 is for non-queue interrupts */ 982 else { 983 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 984 NULL, NULL); 985 if (err) 986 return err; 987 msi_idx = -((int)s->intrq.abs_id + 1); 988 } 989 990 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 991 msi_idx, NULL, fwevtq_handler); 992 if (err) { 993 freeout: t4_free_sge_resources(adap); 994 return err; 995 } 996 997 for_each_port(adap, i) { 998 struct net_device *dev = adap->port[i]; 999 struct port_info *pi = netdev_priv(dev); 1000 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 1001 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 1002 1003 for (j = 0; j < pi->nqsets; j++, q++) { 1004 if (msi_idx > 0) 1005 msi_idx++; 1006 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 1007 msi_idx, &q->fl, 1008 t4_ethrx_handler); 1009 if (err) 1010 goto freeout; 1011 q->rspq.idx = j; 1012 memset(&q->stats, 0, sizeof(q->stats)); 1013 } 1014 for (j = 0; j < pi->nqsets; j++, t++) { 1015 err = t4_sge_alloc_eth_txq(adap, t, dev, 1016 netdev_get_tx_queue(dev, j), 1017 s->fw_evtq.cntxt_id); 1018 if (err) 1019 goto freeout; 1020 } 1021 } 1022 1023 j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */ 1024 for_each_ofldrxq(s, i) { 1025 struct sge_ofld_rxq *q = &s->ofldrxq[i]; 1026 struct net_device *dev = adap->port[i / j]; 1027 1028 if (msi_idx > 0) 1029 msi_idx++; 1030 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx, 1031 &q->fl, uldrx_handler); 1032 if (err) 1033 goto freeout; 1034 memset(&q->stats, 0, sizeof(q->stats)); 1035 s->ofld_rxq[i] = q->rspq.abs_id; 1036 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev, 1037 s->fw_evtq.cntxt_id); 1038 if (err) 1039 goto freeout; 1040 } 1041 1042 for_each_rdmarxq(s, i) { 1043 struct sge_ofld_rxq *q = &s->rdmarxq[i]; 1044 1045 if (msi_idx > 0) 1046 msi_idx++; 1047 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i], 1048 msi_idx, &q->fl, uldrx_handler); 1049 if (err) 1050 goto freeout; 1051 memset(&q->stats, 0, sizeof(q->stats)); 1052 s->rdma_rxq[i] = q->rspq.abs_id; 1053 } 1054 1055 for_each_port(adap, i) { 1056 /* 1057 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't 1058 * have RDMA queues, and that's the right value. 1059 */ 1060 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 1061 s->fw_evtq.cntxt_id, 1062 s->rdmarxq[i].rspq.cntxt_id); 1063 if (err) 1064 goto freeout; 1065 } 1066 1067 t4_write_reg(adap, MPS_TRC_RSS_CONTROL, 1068 RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) | 1069 QUEUENUMBER(s->ethrxq[0].rspq.abs_id)); 1070 return 0; 1071 } 1072 1073 /* 1074 * Returns 0 if new FW was successfully loaded, a positive errno if a load was 1075 * started but failed, and a negative errno if flash load couldn't start. 1076 */ 1077 static int upgrade_fw(struct adapter *adap) 1078 { 1079 int ret; 1080 u32 vers, exp_major; 1081 const struct fw_hdr *hdr; 1082 const struct firmware *fw; 1083 struct device *dev = adap->pdev_dev; 1084 char *fw_file_name; 1085 1086 switch (CHELSIO_CHIP_VERSION(adap->chip)) { 1087 case CHELSIO_T4: 1088 fw_file_name = FW_FNAME; 1089 exp_major = FW_VERSION_MAJOR; 1090 break; 1091 case CHELSIO_T5: 1092 fw_file_name = FW5_FNAME; 1093 exp_major = FW_VERSION_MAJOR_T5; 1094 break; 1095 default: 1096 dev_err(dev, "Unsupported chip type, %x\n", adap->chip); 1097 return -EINVAL; 1098 } 1099 1100 ret = request_firmware(&fw, fw_file_name, dev); 1101 if (ret < 0) { 1102 dev_err(dev, "unable to load firmware image %s, error %d\n", 1103 fw_file_name, ret); 1104 return ret; 1105 } 1106 1107 hdr = (const struct fw_hdr *)fw->data; 1108 vers = ntohl(hdr->fw_ver); 1109 if (FW_HDR_FW_VER_MAJOR_GET(vers) != exp_major) { 1110 ret = -EINVAL; /* wrong major version, won't do */ 1111 goto out; 1112 } 1113 1114 /* 1115 * If the flash FW is unusable or we found something newer, load it. 1116 */ 1117 if (FW_HDR_FW_VER_MAJOR_GET(adap->params.fw_vers) != exp_major || 1118 vers > adap->params.fw_vers) { 1119 dev_info(dev, "upgrading firmware ...\n"); 1120 ret = t4_fw_upgrade(adap, adap->mbox, fw->data, fw->size, 1121 /*force=*/false); 1122 if (!ret) 1123 dev_info(dev, 1124 "firmware upgraded to version %pI4 from %s\n", 1125 &hdr->fw_ver, fw_file_name); 1126 else 1127 dev_err(dev, "firmware upgrade failed! err=%d\n", -ret); 1128 } else { 1129 /* 1130 * Tell our caller that we didn't upgrade the firmware. 1131 */ 1132 ret = -EINVAL; 1133 } 1134 1135 out: release_firmware(fw); 1136 return ret; 1137 } 1138 1139 /* 1140 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc. 1141 * The allocated memory is cleared. 1142 */ 1143 void *t4_alloc_mem(size_t size) 1144 { 1145 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 1146 1147 if (!p) 1148 p = vzalloc(size); 1149 return p; 1150 } 1151 1152 /* 1153 * Free memory allocated through alloc_mem(). 1154 */ 1155 static void t4_free_mem(void *addr) 1156 { 1157 if (is_vmalloc_addr(addr)) 1158 vfree(addr); 1159 else 1160 kfree(addr); 1161 } 1162 1163 /* Send a Work Request to write the filter at a specified index. We construct 1164 * a Firmware Filter Work Request to have the work done and put the indicated 1165 * filter into "pending" mode which will prevent any further actions against 1166 * it till we get a reply from the firmware on the completion status of the 1167 * request. 1168 */ 1169 static int set_filter_wr(struct adapter *adapter, int fidx) 1170 { 1171 struct filter_entry *f = &adapter->tids.ftid_tab[fidx]; 1172 struct sk_buff *skb; 1173 struct fw_filter_wr *fwr; 1174 unsigned int ftid; 1175 1176 /* If the new filter requires loopback Destination MAC and/or VLAN 1177 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for 1178 * the filter. 1179 */ 1180 if (f->fs.newdmac || f->fs.newvlan) { 1181 /* allocate L2T entry for new filter */ 1182 f->l2t = t4_l2t_alloc_switching(adapter->l2t); 1183 if (f->l2t == NULL) 1184 return -EAGAIN; 1185 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan, 1186 f->fs.eport, f->fs.dmac)) { 1187 cxgb4_l2t_release(f->l2t); 1188 f->l2t = NULL; 1189 return -ENOMEM; 1190 } 1191 } 1192 1193 ftid = adapter->tids.ftid_base + fidx; 1194 1195 skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL); 1196 fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr)); 1197 memset(fwr, 0, sizeof(*fwr)); 1198 1199 /* It would be nice to put most of the following in t4_hw.c but most 1200 * of the work is translating the cxgbtool ch_filter_specification 1201 * into the Work Request and the definition of that structure is 1202 * currently in cxgbtool.h which isn't appropriate to pull into the 1203 * common code. We may eventually try to come up with a more neutral 1204 * filter specification structure but for now it's easiest to simply 1205 * put this fairly direct code in line ... 1206 */ 1207 fwr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR)); 1208 fwr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*fwr)/16)); 1209 fwr->tid_to_iq = 1210 htonl(V_FW_FILTER_WR_TID(ftid) | 1211 V_FW_FILTER_WR_RQTYPE(f->fs.type) | 1212 V_FW_FILTER_WR_NOREPLY(0) | 1213 V_FW_FILTER_WR_IQ(f->fs.iq)); 1214 fwr->del_filter_to_l2tix = 1215 htonl(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) | 1216 V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) | 1217 V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) | 1218 V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) | 1219 V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) | 1220 V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) | 1221 V_FW_FILTER_WR_DMAC(f->fs.newdmac) | 1222 V_FW_FILTER_WR_SMAC(f->fs.newsmac) | 1223 V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT || 1224 f->fs.newvlan == VLAN_REWRITE) | 1225 V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE || 1226 f->fs.newvlan == VLAN_REWRITE) | 1227 V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) | 1228 V_FW_FILTER_WR_TXCHAN(f->fs.eport) | 1229 V_FW_FILTER_WR_PRIO(f->fs.prio) | 1230 V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0)); 1231 fwr->ethtype = htons(f->fs.val.ethtype); 1232 fwr->ethtypem = htons(f->fs.mask.ethtype); 1233 fwr->frag_to_ovlan_vldm = 1234 (V_FW_FILTER_WR_FRAG(f->fs.val.frag) | 1235 V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) | 1236 V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.ivlan_vld) | 1237 V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.ovlan_vld) | 1238 V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.ivlan_vld) | 1239 V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.ovlan_vld)); 1240 fwr->smac_sel = 0; 1241 fwr->rx_chan_rx_rpl_iq = 1242 htons(V_FW_FILTER_WR_RX_CHAN(0) | 1243 V_FW_FILTER_WR_RX_RPL_IQ(adapter->sge.fw_evtq.abs_id)); 1244 fwr->maci_to_matchtypem = 1245 htonl(V_FW_FILTER_WR_MACI(f->fs.val.macidx) | 1246 V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) | 1247 V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) | 1248 V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) | 1249 V_FW_FILTER_WR_PORT(f->fs.val.iport) | 1250 V_FW_FILTER_WR_PORTM(f->fs.mask.iport) | 1251 V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) | 1252 V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype)); 1253 fwr->ptcl = f->fs.val.proto; 1254 fwr->ptclm = f->fs.mask.proto; 1255 fwr->ttyp = f->fs.val.tos; 1256 fwr->ttypm = f->fs.mask.tos; 1257 fwr->ivlan = htons(f->fs.val.ivlan); 1258 fwr->ivlanm = htons(f->fs.mask.ivlan); 1259 fwr->ovlan = htons(f->fs.val.ovlan); 1260 fwr->ovlanm = htons(f->fs.mask.ovlan); 1261 memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip)); 1262 memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm)); 1263 memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip)); 1264 memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm)); 1265 fwr->lp = htons(f->fs.val.lport); 1266 fwr->lpm = htons(f->fs.mask.lport); 1267 fwr->fp = htons(f->fs.val.fport); 1268 fwr->fpm = htons(f->fs.mask.fport); 1269 if (f->fs.newsmac) 1270 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma)); 1271 1272 /* Mark the filter as "pending" and ship off the Filter Work Request. 1273 * When we get the Work Request Reply we'll clear the pending status. 1274 */ 1275 f->pending = 1; 1276 set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3); 1277 t4_ofld_send(adapter, skb); 1278 return 0; 1279 } 1280 1281 /* Delete the filter at a specified index. 1282 */ 1283 static int del_filter_wr(struct adapter *adapter, int fidx) 1284 { 1285 struct filter_entry *f = &adapter->tids.ftid_tab[fidx]; 1286 struct sk_buff *skb; 1287 struct fw_filter_wr *fwr; 1288 unsigned int len, ftid; 1289 1290 len = sizeof(*fwr); 1291 ftid = adapter->tids.ftid_base + fidx; 1292 1293 skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL); 1294 fwr = (struct fw_filter_wr *)__skb_put(skb, len); 1295 t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id); 1296 1297 /* Mark the filter as "pending" and ship off the Filter Work Request. 1298 * When we get the Work Request Reply we'll clear the pending status. 1299 */ 1300 f->pending = 1; 1301 t4_mgmt_tx(adapter, skb); 1302 return 0; 1303 } 1304 1305 static inline int is_offload(const struct adapter *adap) 1306 { 1307 return adap->params.offload; 1308 } 1309 1310 /* 1311 * Implementation of ethtool operations. 1312 */ 1313 1314 static u32 get_msglevel(struct net_device *dev) 1315 { 1316 return netdev2adap(dev)->msg_enable; 1317 } 1318 1319 static void set_msglevel(struct net_device *dev, u32 val) 1320 { 1321 netdev2adap(dev)->msg_enable = val; 1322 } 1323 1324 static char stats_strings[][ETH_GSTRING_LEN] = { 1325 "TxOctetsOK ", 1326 "TxFramesOK ", 1327 "TxBroadcastFrames ", 1328 "TxMulticastFrames ", 1329 "TxUnicastFrames ", 1330 "TxErrorFrames ", 1331 1332 "TxFrames64 ", 1333 "TxFrames65To127 ", 1334 "TxFrames128To255 ", 1335 "TxFrames256To511 ", 1336 "TxFrames512To1023 ", 1337 "TxFrames1024To1518 ", 1338 "TxFrames1519ToMax ", 1339 1340 "TxFramesDropped ", 1341 "TxPauseFrames ", 1342 "TxPPP0Frames ", 1343 "TxPPP1Frames ", 1344 "TxPPP2Frames ", 1345 "TxPPP3Frames ", 1346 "TxPPP4Frames ", 1347 "TxPPP5Frames ", 1348 "TxPPP6Frames ", 1349 "TxPPP7Frames ", 1350 1351 "RxOctetsOK ", 1352 "RxFramesOK ", 1353 "RxBroadcastFrames ", 1354 "RxMulticastFrames ", 1355 "RxUnicastFrames ", 1356 1357 "RxFramesTooLong ", 1358 "RxJabberErrors ", 1359 "RxFCSErrors ", 1360 "RxLengthErrors ", 1361 "RxSymbolErrors ", 1362 "RxRuntFrames ", 1363 1364 "RxFrames64 ", 1365 "RxFrames65To127 ", 1366 "RxFrames128To255 ", 1367 "RxFrames256To511 ", 1368 "RxFrames512To1023 ", 1369 "RxFrames1024To1518 ", 1370 "RxFrames1519ToMax ", 1371 1372 "RxPauseFrames ", 1373 "RxPPP0Frames ", 1374 "RxPPP1Frames ", 1375 "RxPPP2Frames ", 1376 "RxPPP3Frames ", 1377 "RxPPP4Frames ", 1378 "RxPPP5Frames ", 1379 "RxPPP6Frames ", 1380 "RxPPP7Frames ", 1381 1382 "RxBG0FramesDropped ", 1383 "RxBG1FramesDropped ", 1384 "RxBG2FramesDropped ", 1385 "RxBG3FramesDropped ", 1386 "RxBG0FramesTrunc ", 1387 "RxBG1FramesTrunc ", 1388 "RxBG2FramesTrunc ", 1389 "RxBG3FramesTrunc ", 1390 1391 "TSO ", 1392 "TxCsumOffload ", 1393 "RxCsumGood ", 1394 "VLANextractions ", 1395 "VLANinsertions ", 1396 "GROpackets ", 1397 "GROmerged ", 1398 "WriteCoalSuccess ", 1399 "WriteCoalFail ", 1400 }; 1401 1402 static int get_sset_count(struct net_device *dev, int sset) 1403 { 1404 switch (sset) { 1405 case ETH_SS_STATS: 1406 return ARRAY_SIZE(stats_strings); 1407 default: 1408 return -EOPNOTSUPP; 1409 } 1410 } 1411 1412 #define T4_REGMAP_SIZE (160 * 1024) 1413 #define T5_REGMAP_SIZE (332 * 1024) 1414 1415 static int get_regs_len(struct net_device *dev) 1416 { 1417 struct adapter *adap = netdev2adap(dev); 1418 if (is_t4(adap->chip)) 1419 return T4_REGMAP_SIZE; 1420 else 1421 return T5_REGMAP_SIZE; 1422 } 1423 1424 static int get_eeprom_len(struct net_device *dev) 1425 { 1426 return EEPROMSIZE; 1427 } 1428 1429 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1430 { 1431 struct adapter *adapter = netdev2adap(dev); 1432 1433 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 1434 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1435 strlcpy(info->bus_info, pci_name(adapter->pdev), 1436 sizeof(info->bus_info)); 1437 1438 if (adapter->params.fw_vers) 1439 snprintf(info->fw_version, sizeof(info->fw_version), 1440 "%u.%u.%u.%u, TP %u.%u.%u.%u", 1441 FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers), 1442 FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers), 1443 FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers), 1444 FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers), 1445 FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers), 1446 FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers), 1447 FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers), 1448 FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers)); 1449 } 1450 1451 static void get_strings(struct net_device *dev, u32 stringset, u8 *data) 1452 { 1453 if (stringset == ETH_SS_STATS) 1454 memcpy(data, stats_strings, sizeof(stats_strings)); 1455 } 1456 1457 /* 1458 * port stats maintained per queue of the port. They should be in the same 1459 * order as in stats_strings above. 1460 */ 1461 struct queue_port_stats { 1462 u64 tso; 1463 u64 tx_csum; 1464 u64 rx_csum; 1465 u64 vlan_ex; 1466 u64 vlan_ins; 1467 u64 gro_pkts; 1468 u64 gro_merged; 1469 }; 1470 1471 static void collect_sge_port_stats(const struct adapter *adap, 1472 const struct port_info *p, struct queue_port_stats *s) 1473 { 1474 int i; 1475 const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset]; 1476 const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset]; 1477 1478 memset(s, 0, sizeof(*s)); 1479 for (i = 0; i < p->nqsets; i++, rx++, tx++) { 1480 s->tso += tx->tso; 1481 s->tx_csum += tx->tx_cso; 1482 s->rx_csum += rx->stats.rx_cso; 1483 s->vlan_ex += rx->stats.vlan_ex; 1484 s->vlan_ins += tx->vlan_ins; 1485 s->gro_pkts += rx->stats.lro_pkts; 1486 s->gro_merged += rx->stats.lro_merged; 1487 } 1488 } 1489 1490 static void get_stats(struct net_device *dev, struct ethtool_stats *stats, 1491 u64 *data) 1492 { 1493 struct port_info *pi = netdev_priv(dev); 1494 struct adapter *adapter = pi->adapter; 1495 u32 val1, val2; 1496 1497 t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data); 1498 1499 data += sizeof(struct port_stats) / sizeof(u64); 1500 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data); 1501 data += sizeof(struct queue_port_stats) / sizeof(u64); 1502 if (!is_t4(adapter->chip)) { 1503 t4_write_reg(adapter, SGE_STAT_CFG, STATSOURCE_T5(7)); 1504 val1 = t4_read_reg(adapter, SGE_STAT_TOTAL); 1505 val2 = t4_read_reg(adapter, SGE_STAT_MATCH); 1506 *data = val1 - val2; 1507 data++; 1508 *data = val2; 1509 data++; 1510 } else { 1511 memset(data, 0, 2 * sizeof(u64)); 1512 *data += 2; 1513 } 1514 } 1515 1516 /* 1517 * Return a version number to identify the type of adapter. The scheme is: 1518 * - bits 0..9: chip version 1519 * - bits 10..15: chip revision 1520 * - bits 16..23: register dump version 1521 */ 1522 static inline unsigned int mk_adap_vers(const struct adapter *ap) 1523 { 1524 return CHELSIO_CHIP_VERSION(ap->chip) | 1525 (CHELSIO_CHIP_RELEASE(ap->chip) << 10) | (1 << 16); 1526 } 1527 1528 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start, 1529 unsigned int end) 1530 { 1531 u32 *p = buf + start; 1532 1533 for ( ; start <= end; start += sizeof(u32)) 1534 *p++ = t4_read_reg(ap, start); 1535 } 1536 1537 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, 1538 void *buf) 1539 { 1540 static const unsigned int t4_reg_ranges[] = { 1541 0x1008, 0x1108, 1542 0x1180, 0x11b4, 1543 0x11fc, 0x123c, 1544 0x1300, 0x173c, 1545 0x1800, 0x18fc, 1546 0x3000, 0x30d8, 1547 0x30e0, 0x5924, 1548 0x5960, 0x59d4, 1549 0x5a00, 0x5af8, 1550 0x6000, 0x6098, 1551 0x6100, 0x6150, 1552 0x6200, 0x6208, 1553 0x6240, 0x6248, 1554 0x6280, 0x6338, 1555 0x6370, 0x638c, 1556 0x6400, 0x643c, 1557 0x6500, 0x6524, 1558 0x6a00, 0x6a38, 1559 0x6a60, 0x6a78, 1560 0x6b00, 0x6b84, 1561 0x6bf0, 0x6c84, 1562 0x6cf0, 0x6d84, 1563 0x6df0, 0x6e84, 1564 0x6ef0, 0x6f84, 1565 0x6ff0, 0x7084, 1566 0x70f0, 0x7184, 1567 0x71f0, 0x7284, 1568 0x72f0, 0x7384, 1569 0x73f0, 0x7450, 1570 0x7500, 0x7530, 1571 0x7600, 0x761c, 1572 0x7680, 0x76cc, 1573 0x7700, 0x7798, 1574 0x77c0, 0x77fc, 1575 0x7900, 0x79fc, 1576 0x7b00, 0x7c38, 1577 0x7d00, 0x7efc, 1578 0x8dc0, 0x8e1c, 1579 0x8e30, 0x8e78, 1580 0x8ea0, 0x8f6c, 1581 0x8fc0, 0x9074, 1582 0x90fc, 0x90fc, 1583 0x9400, 0x9458, 1584 0x9600, 0x96bc, 1585 0x9800, 0x9808, 1586 0x9820, 0x983c, 1587 0x9850, 0x9864, 1588 0x9c00, 0x9c6c, 1589 0x9c80, 0x9cec, 1590 0x9d00, 0x9d6c, 1591 0x9d80, 0x9dec, 1592 0x9e00, 0x9e6c, 1593 0x9e80, 0x9eec, 1594 0x9f00, 0x9f6c, 1595 0x9f80, 0x9fec, 1596 0xd004, 0xd03c, 1597 0xdfc0, 0xdfe0, 1598 0xe000, 0xea7c, 1599 0xf000, 0x11190, 1600 0x19040, 0x1906c, 1601 0x19078, 0x19080, 1602 0x1908c, 0x19124, 1603 0x19150, 0x191b0, 1604 0x191d0, 0x191e8, 1605 0x19238, 0x1924c, 1606 0x193f8, 0x19474, 1607 0x19490, 0x194f8, 1608 0x19800, 0x19f30, 1609 0x1a000, 0x1a06c, 1610 0x1a0b0, 0x1a120, 1611 0x1a128, 0x1a138, 1612 0x1a190, 0x1a1c4, 1613 0x1a1fc, 0x1a1fc, 1614 0x1e040, 0x1e04c, 1615 0x1e284, 0x1e28c, 1616 0x1e2c0, 0x1e2c0, 1617 0x1e2e0, 0x1e2e0, 1618 0x1e300, 0x1e384, 1619 0x1e3c0, 0x1e3c8, 1620 0x1e440, 0x1e44c, 1621 0x1e684, 0x1e68c, 1622 0x1e6c0, 0x1e6c0, 1623 0x1e6e0, 0x1e6e0, 1624 0x1e700, 0x1e784, 1625 0x1e7c0, 0x1e7c8, 1626 0x1e840, 0x1e84c, 1627 0x1ea84, 0x1ea8c, 1628 0x1eac0, 0x1eac0, 1629 0x1eae0, 0x1eae0, 1630 0x1eb00, 0x1eb84, 1631 0x1ebc0, 0x1ebc8, 1632 0x1ec40, 0x1ec4c, 1633 0x1ee84, 0x1ee8c, 1634 0x1eec0, 0x1eec0, 1635 0x1eee0, 0x1eee0, 1636 0x1ef00, 0x1ef84, 1637 0x1efc0, 0x1efc8, 1638 0x1f040, 0x1f04c, 1639 0x1f284, 0x1f28c, 1640 0x1f2c0, 0x1f2c0, 1641 0x1f2e0, 0x1f2e0, 1642 0x1f300, 0x1f384, 1643 0x1f3c0, 0x1f3c8, 1644 0x1f440, 0x1f44c, 1645 0x1f684, 0x1f68c, 1646 0x1f6c0, 0x1f6c0, 1647 0x1f6e0, 0x1f6e0, 1648 0x1f700, 0x1f784, 1649 0x1f7c0, 0x1f7c8, 1650 0x1f840, 0x1f84c, 1651 0x1fa84, 0x1fa8c, 1652 0x1fac0, 0x1fac0, 1653 0x1fae0, 0x1fae0, 1654 0x1fb00, 0x1fb84, 1655 0x1fbc0, 0x1fbc8, 1656 0x1fc40, 0x1fc4c, 1657 0x1fe84, 0x1fe8c, 1658 0x1fec0, 0x1fec0, 1659 0x1fee0, 0x1fee0, 1660 0x1ff00, 0x1ff84, 1661 0x1ffc0, 0x1ffc8, 1662 0x20000, 0x2002c, 1663 0x20100, 0x2013c, 1664 0x20190, 0x201c8, 1665 0x20200, 0x20318, 1666 0x20400, 0x20528, 1667 0x20540, 0x20614, 1668 0x21000, 0x21040, 1669 0x2104c, 0x21060, 1670 0x210c0, 0x210ec, 1671 0x21200, 0x21268, 1672 0x21270, 0x21284, 1673 0x212fc, 0x21388, 1674 0x21400, 0x21404, 1675 0x21500, 0x21518, 1676 0x2152c, 0x2153c, 1677 0x21550, 0x21554, 1678 0x21600, 0x21600, 1679 0x21608, 0x21628, 1680 0x21630, 0x2163c, 1681 0x21700, 0x2171c, 1682 0x21780, 0x2178c, 1683 0x21800, 0x21c38, 1684 0x21c80, 0x21d7c, 1685 0x21e00, 0x21e04, 1686 0x22000, 0x2202c, 1687 0x22100, 0x2213c, 1688 0x22190, 0x221c8, 1689 0x22200, 0x22318, 1690 0x22400, 0x22528, 1691 0x22540, 0x22614, 1692 0x23000, 0x23040, 1693 0x2304c, 0x23060, 1694 0x230c0, 0x230ec, 1695 0x23200, 0x23268, 1696 0x23270, 0x23284, 1697 0x232fc, 0x23388, 1698 0x23400, 0x23404, 1699 0x23500, 0x23518, 1700 0x2352c, 0x2353c, 1701 0x23550, 0x23554, 1702 0x23600, 0x23600, 1703 0x23608, 0x23628, 1704 0x23630, 0x2363c, 1705 0x23700, 0x2371c, 1706 0x23780, 0x2378c, 1707 0x23800, 0x23c38, 1708 0x23c80, 0x23d7c, 1709 0x23e00, 0x23e04, 1710 0x24000, 0x2402c, 1711 0x24100, 0x2413c, 1712 0x24190, 0x241c8, 1713 0x24200, 0x24318, 1714 0x24400, 0x24528, 1715 0x24540, 0x24614, 1716 0x25000, 0x25040, 1717 0x2504c, 0x25060, 1718 0x250c0, 0x250ec, 1719 0x25200, 0x25268, 1720 0x25270, 0x25284, 1721 0x252fc, 0x25388, 1722 0x25400, 0x25404, 1723 0x25500, 0x25518, 1724 0x2552c, 0x2553c, 1725 0x25550, 0x25554, 1726 0x25600, 0x25600, 1727 0x25608, 0x25628, 1728 0x25630, 0x2563c, 1729 0x25700, 0x2571c, 1730 0x25780, 0x2578c, 1731 0x25800, 0x25c38, 1732 0x25c80, 0x25d7c, 1733 0x25e00, 0x25e04, 1734 0x26000, 0x2602c, 1735 0x26100, 0x2613c, 1736 0x26190, 0x261c8, 1737 0x26200, 0x26318, 1738 0x26400, 0x26528, 1739 0x26540, 0x26614, 1740 0x27000, 0x27040, 1741 0x2704c, 0x27060, 1742 0x270c0, 0x270ec, 1743 0x27200, 0x27268, 1744 0x27270, 0x27284, 1745 0x272fc, 0x27388, 1746 0x27400, 0x27404, 1747 0x27500, 0x27518, 1748 0x2752c, 0x2753c, 1749 0x27550, 0x27554, 1750 0x27600, 0x27600, 1751 0x27608, 0x27628, 1752 0x27630, 0x2763c, 1753 0x27700, 0x2771c, 1754 0x27780, 0x2778c, 1755 0x27800, 0x27c38, 1756 0x27c80, 0x27d7c, 1757 0x27e00, 0x27e04 1758 }; 1759 1760 static const unsigned int t5_reg_ranges[] = { 1761 0x1008, 0x1148, 1762 0x1180, 0x11b4, 1763 0x11fc, 0x123c, 1764 0x1280, 0x173c, 1765 0x1800, 0x18fc, 1766 0x3000, 0x3028, 1767 0x3060, 0x30d8, 1768 0x30e0, 0x30fc, 1769 0x3140, 0x357c, 1770 0x35a8, 0x35cc, 1771 0x35ec, 0x35ec, 1772 0x3600, 0x5624, 1773 0x56cc, 0x575c, 1774 0x580c, 0x5814, 1775 0x5890, 0x58bc, 1776 0x5940, 0x59dc, 1777 0x59fc, 0x5a18, 1778 0x5a60, 0x5a9c, 1779 0x5b9c, 0x5bfc, 1780 0x6000, 0x6040, 1781 0x6058, 0x614c, 1782 0x7700, 0x7798, 1783 0x77c0, 0x78fc, 1784 0x7b00, 0x7c54, 1785 0x7d00, 0x7efc, 1786 0x8dc0, 0x8de0, 1787 0x8df8, 0x8e84, 1788 0x8ea0, 0x8f84, 1789 0x8fc0, 0x90f8, 1790 0x9400, 0x9470, 1791 0x9600, 0x96f4, 1792 0x9800, 0x9808, 1793 0x9820, 0x983c, 1794 0x9850, 0x9864, 1795 0x9c00, 0x9c6c, 1796 0x9c80, 0x9cec, 1797 0x9d00, 0x9d6c, 1798 0x9d80, 0x9dec, 1799 0x9e00, 0x9e6c, 1800 0x9e80, 0x9eec, 1801 0x9f00, 0x9f6c, 1802 0x9f80, 0xa020, 1803 0xd004, 0xd03c, 1804 0xdfc0, 0xdfe0, 1805 0xe000, 0x11088, 1806 0x1109c, 0x1117c, 1807 0x11190, 0x11204, 1808 0x19040, 0x1906c, 1809 0x19078, 0x19080, 1810 0x1908c, 0x19124, 1811 0x19150, 0x191b0, 1812 0x191d0, 0x191e8, 1813 0x19238, 0x19290, 1814 0x193f8, 0x19474, 1815 0x19490, 0x194cc, 1816 0x194f0, 0x194f8, 1817 0x19c00, 0x19c60, 1818 0x19c94, 0x19e10, 1819 0x19e50, 0x19f34, 1820 0x19f40, 0x19f50, 1821 0x19f90, 0x19fe4, 1822 0x1a000, 0x1a06c, 1823 0x1a0b0, 0x1a120, 1824 0x1a128, 0x1a138, 1825 0x1a190, 0x1a1c4, 1826 0x1a1fc, 0x1a1fc, 1827 0x1e008, 0x1e00c, 1828 0x1e040, 0x1e04c, 1829 0x1e284, 0x1e290, 1830 0x1e2c0, 0x1e2c0, 1831 0x1e2e0, 0x1e2e0, 1832 0x1e300, 0x1e384, 1833 0x1e3c0, 0x1e3c8, 1834 0x1e408, 0x1e40c, 1835 0x1e440, 0x1e44c, 1836 0x1e684, 0x1e690, 1837 0x1e6c0, 0x1e6c0, 1838 0x1e6e0, 0x1e6e0, 1839 0x1e700, 0x1e784, 1840 0x1e7c0, 0x1e7c8, 1841 0x1e808, 0x1e80c, 1842 0x1e840, 0x1e84c, 1843 0x1ea84, 0x1ea90, 1844 0x1eac0, 0x1eac0, 1845 0x1eae0, 0x1eae0, 1846 0x1eb00, 0x1eb84, 1847 0x1ebc0, 0x1ebc8, 1848 0x1ec08, 0x1ec0c, 1849 0x1ec40, 0x1ec4c, 1850 0x1ee84, 0x1ee90, 1851 0x1eec0, 0x1eec0, 1852 0x1eee0, 0x1eee0, 1853 0x1ef00, 0x1ef84, 1854 0x1efc0, 0x1efc8, 1855 0x1f008, 0x1f00c, 1856 0x1f040, 0x1f04c, 1857 0x1f284, 0x1f290, 1858 0x1f2c0, 0x1f2c0, 1859 0x1f2e0, 0x1f2e0, 1860 0x1f300, 0x1f384, 1861 0x1f3c0, 0x1f3c8, 1862 0x1f408, 0x1f40c, 1863 0x1f440, 0x1f44c, 1864 0x1f684, 0x1f690, 1865 0x1f6c0, 0x1f6c0, 1866 0x1f6e0, 0x1f6e0, 1867 0x1f700, 0x1f784, 1868 0x1f7c0, 0x1f7c8, 1869 0x1f808, 0x1f80c, 1870 0x1f840, 0x1f84c, 1871 0x1fa84, 0x1fa90, 1872 0x1fac0, 0x1fac0, 1873 0x1fae0, 0x1fae0, 1874 0x1fb00, 0x1fb84, 1875 0x1fbc0, 0x1fbc8, 1876 0x1fc08, 0x1fc0c, 1877 0x1fc40, 0x1fc4c, 1878 0x1fe84, 0x1fe90, 1879 0x1fec0, 0x1fec0, 1880 0x1fee0, 0x1fee0, 1881 0x1ff00, 0x1ff84, 1882 0x1ffc0, 0x1ffc8, 1883 0x30000, 0x30030, 1884 0x30100, 0x30144, 1885 0x30190, 0x301d0, 1886 0x30200, 0x30318, 1887 0x30400, 0x3052c, 1888 0x30540, 0x3061c, 1889 0x30800, 0x30834, 1890 0x308c0, 0x30908, 1891 0x30910, 0x309ac, 1892 0x30a00, 0x30a04, 1893 0x30a0c, 0x30a2c, 1894 0x30a44, 0x30a50, 1895 0x30a74, 0x30c24, 1896 0x30d08, 0x30d14, 1897 0x30d1c, 0x30d20, 1898 0x30d3c, 0x30d50, 1899 0x31200, 0x3120c, 1900 0x31220, 0x31220, 1901 0x31240, 0x31240, 1902 0x31600, 0x31600, 1903 0x31608, 0x3160c, 1904 0x31a00, 0x31a1c, 1905 0x31e04, 0x31e20, 1906 0x31e38, 0x31e3c, 1907 0x31e80, 0x31e80, 1908 0x31e88, 0x31ea8, 1909 0x31eb0, 0x31eb4, 1910 0x31ec8, 0x31ed4, 1911 0x31fb8, 0x32004, 1912 0x32208, 0x3223c, 1913 0x32600, 0x32630, 1914 0x32a00, 0x32abc, 1915 0x32b00, 0x32b70, 1916 0x33000, 0x33048, 1917 0x33060, 0x3309c, 1918 0x330f0, 0x33148, 1919 0x33160, 0x3319c, 1920 0x331f0, 0x332e4, 1921 0x332f8, 0x333e4, 1922 0x333f8, 0x33448, 1923 0x33460, 0x3349c, 1924 0x334f0, 0x33548, 1925 0x33560, 0x3359c, 1926 0x335f0, 0x336e4, 1927 0x336f8, 0x337e4, 1928 0x337f8, 0x337fc, 1929 0x33814, 0x33814, 1930 0x3382c, 0x3382c, 1931 0x33880, 0x3388c, 1932 0x338e8, 0x338ec, 1933 0x33900, 0x33948, 1934 0x33960, 0x3399c, 1935 0x339f0, 0x33ae4, 1936 0x33af8, 0x33b10, 1937 0x33b28, 0x33b28, 1938 0x33b3c, 0x33b50, 1939 0x33bf0, 0x33c10, 1940 0x33c28, 0x33c28, 1941 0x33c3c, 0x33c50, 1942 0x33cf0, 0x33cfc, 1943 0x34000, 0x34030, 1944 0x34100, 0x34144, 1945 0x34190, 0x341d0, 1946 0x34200, 0x34318, 1947 0x34400, 0x3452c, 1948 0x34540, 0x3461c, 1949 0x34800, 0x34834, 1950 0x348c0, 0x34908, 1951 0x34910, 0x349ac, 1952 0x34a00, 0x34a04, 1953 0x34a0c, 0x34a2c, 1954 0x34a44, 0x34a50, 1955 0x34a74, 0x34c24, 1956 0x34d08, 0x34d14, 1957 0x34d1c, 0x34d20, 1958 0x34d3c, 0x34d50, 1959 0x35200, 0x3520c, 1960 0x35220, 0x35220, 1961 0x35240, 0x35240, 1962 0x35600, 0x35600, 1963 0x35608, 0x3560c, 1964 0x35a00, 0x35a1c, 1965 0x35e04, 0x35e20, 1966 0x35e38, 0x35e3c, 1967 0x35e80, 0x35e80, 1968 0x35e88, 0x35ea8, 1969 0x35eb0, 0x35eb4, 1970 0x35ec8, 0x35ed4, 1971 0x35fb8, 0x36004, 1972 0x36208, 0x3623c, 1973 0x36600, 0x36630, 1974 0x36a00, 0x36abc, 1975 0x36b00, 0x36b70, 1976 0x37000, 0x37048, 1977 0x37060, 0x3709c, 1978 0x370f0, 0x37148, 1979 0x37160, 0x3719c, 1980 0x371f0, 0x372e4, 1981 0x372f8, 0x373e4, 1982 0x373f8, 0x37448, 1983 0x37460, 0x3749c, 1984 0x374f0, 0x37548, 1985 0x37560, 0x3759c, 1986 0x375f0, 0x376e4, 1987 0x376f8, 0x377e4, 1988 0x377f8, 0x377fc, 1989 0x37814, 0x37814, 1990 0x3782c, 0x3782c, 1991 0x37880, 0x3788c, 1992 0x378e8, 0x378ec, 1993 0x37900, 0x37948, 1994 0x37960, 0x3799c, 1995 0x379f0, 0x37ae4, 1996 0x37af8, 0x37b10, 1997 0x37b28, 0x37b28, 1998 0x37b3c, 0x37b50, 1999 0x37bf0, 0x37c10, 2000 0x37c28, 0x37c28, 2001 0x37c3c, 0x37c50, 2002 0x37cf0, 0x37cfc, 2003 0x38000, 0x38030, 2004 0x38100, 0x38144, 2005 0x38190, 0x381d0, 2006 0x38200, 0x38318, 2007 0x38400, 0x3852c, 2008 0x38540, 0x3861c, 2009 0x38800, 0x38834, 2010 0x388c0, 0x38908, 2011 0x38910, 0x389ac, 2012 0x38a00, 0x38a04, 2013 0x38a0c, 0x38a2c, 2014 0x38a44, 0x38a50, 2015 0x38a74, 0x38c24, 2016 0x38d08, 0x38d14, 2017 0x38d1c, 0x38d20, 2018 0x38d3c, 0x38d50, 2019 0x39200, 0x3920c, 2020 0x39220, 0x39220, 2021 0x39240, 0x39240, 2022 0x39600, 0x39600, 2023 0x39608, 0x3960c, 2024 0x39a00, 0x39a1c, 2025 0x39e04, 0x39e20, 2026 0x39e38, 0x39e3c, 2027 0x39e80, 0x39e80, 2028 0x39e88, 0x39ea8, 2029 0x39eb0, 0x39eb4, 2030 0x39ec8, 0x39ed4, 2031 0x39fb8, 0x3a004, 2032 0x3a208, 0x3a23c, 2033 0x3a600, 0x3a630, 2034 0x3aa00, 0x3aabc, 2035 0x3ab00, 0x3ab70, 2036 0x3b000, 0x3b048, 2037 0x3b060, 0x3b09c, 2038 0x3b0f0, 0x3b148, 2039 0x3b160, 0x3b19c, 2040 0x3b1f0, 0x3b2e4, 2041 0x3b2f8, 0x3b3e4, 2042 0x3b3f8, 0x3b448, 2043 0x3b460, 0x3b49c, 2044 0x3b4f0, 0x3b548, 2045 0x3b560, 0x3b59c, 2046 0x3b5f0, 0x3b6e4, 2047 0x3b6f8, 0x3b7e4, 2048 0x3b7f8, 0x3b7fc, 2049 0x3b814, 0x3b814, 2050 0x3b82c, 0x3b82c, 2051 0x3b880, 0x3b88c, 2052 0x3b8e8, 0x3b8ec, 2053 0x3b900, 0x3b948, 2054 0x3b960, 0x3b99c, 2055 0x3b9f0, 0x3bae4, 2056 0x3baf8, 0x3bb10, 2057 0x3bb28, 0x3bb28, 2058 0x3bb3c, 0x3bb50, 2059 0x3bbf0, 0x3bc10, 2060 0x3bc28, 0x3bc28, 2061 0x3bc3c, 0x3bc50, 2062 0x3bcf0, 0x3bcfc, 2063 0x3c000, 0x3c030, 2064 0x3c100, 0x3c144, 2065 0x3c190, 0x3c1d0, 2066 0x3c200, 0x3c318, 2067 0x3c400, 0x3c52c, 2068 0x3c540, 0x3c61c, 2069 0x3c800, 0x3c834, 2070 0x3c8c0, 0x3c908, 2071 0x3c910, 0x3c9ac, 2072 0x3ca00, 0x3ca04, 2073 0x3ca0c, 0x3ca2c, 2074 0x3ca44, 0x3ca50, 2075 0x3ca74, 0x3cc24, 2076 0x3cd08, 0x3cd14, 2077 0x3cd1c, 0x3cd20, 2078 0x3cd3c, 0x3cd50, 2079 0x3d200, 0x3d20c, 2080 0x3d220, 0x3d220, 2081 0x3d240, 0x3d240, 2082 0x3d600, 0x3d600, 2083 0x3d608, 0x3d60c, 2084 0x3da00, 0x3da1c, 2085 0x3de04, 0x3de20, 2086 0x3de38, 0x3de3c, 2087 0x3de80, 0x3de80, 2088 0x3de88, 0x3dea8, 2089 0x3deb0, 0x3deb4, 2090 0x3dec8, 0x3ded4, 2091 0x3dfb8, 0x3e004, 2092 0x3e208, 0x3e23c, 2093 0x3e600, 0x3e630, 2094 0x3ea00, 0x3eabc, 2095 0x3eb00, 0x3eb70, 2096 0x3f000, 0x3f048, 2097 0x3f060, 0x3f09c, 2098 0x3f0f0, 0x3f148, 2099 0x3f160, 0x3f19c, 2100 0x3f1f0, 0x3f2e4, 2101 0x3f2f8, 0x3f3e4, 2102 0x3f3f8, 0x3f448, 2103 0x3f460, 0x3f49c, 2104 0x3f4f0, 0x3f548, 2105 0x3f560, 0x3f59c, 2106 0x3f5f0, 0x3f6e4, 2107 0x3f6f8, 0x3f7e4, 2108 0x3f7f8, 0x3f7fc, 2109 0x3f814, 0x3f814, 2110 0x3f82c, 0x3f82c, 2111 0x3f880, 0x3f88c, 2112 0x3f8e8, 0x3f8ec, 2113 0x3f900, 0x3f948, 2114 0x3f960, 0x3f99c, 2115 0x3f9f0, 0x3fae4, 2116 0x3faf8, 0x3fb10, 2117 0x3fb28, 0x3fb28, 2118 0x3fb3c, 0x3fb50, 2119 0x3fbf0, 0x3fc10, 2120 0x3fc28, 0x3fc28, 2121 0x3fc3c, 0x3fc50, 2122 0x3fcf0, 0x3fcfc, 2123 0x40000, 0x4000c, 2124 0x40040, 0x40068, 2125 0x40080, 0x40144, 2126 0x40180, 0x4018c, 2127 0x40200, 0x40298, 2128 0x402ac, 0x4033c, 2129 0x403f8, 0x403fc, 2130 0x41300, 0x413c4, 2131 0x41400, 0x4141c, 2132 0x41480, 0x414d0, 2133 0x44000, 0x44078, 2134 0x440c0, 0x44278, 2135 0x442c0, 0x44478, 2136 0x444c0, 0x44678, 2137 0x446c0, 0x44878, 2138 0x448c0, 0x449fc, 2139 0x45000, 0x45068, 2140 0x45080, 0x45084, 2141 0x450a0, 0x450b0, 2142 0x45200, 0x45268, 2143 0x45280, 0x45284, 2144 0x452a0, 0x452b0, 2145 0x460c0, 0x460e4, 2146 0x47000, 0x4708c, 2147 0x47200, 0x47250, 2148 0x47400, 0x47420, 2149 0x47600, 0x47618, 2150 0x47800, 0x47814, 2151 0x48000, 0x4800c, 2152 0x48040, 0x48068, 2153 0x48080, 0x48144, 2154 0x48180, 0x4818c, 2155 0x48200, 0x48298, 2156 0x482ac, 0x4833c, 2157 0x483f8, 0x483fc, 2158 0x49300, 0x493c4, 2159 0x49400, 0x4941c, 2160 0x49480, 0x494d0, 2161 0x4c000, 0x4c078, 2162 0x4c0c0, 0x4c278, 2163 0x4c2c0, 0x4c478, 2164 0x4c4c0, 0x4c678, 2165 0x4c6c0, 0x4c878, 2166 0x4c8c0, 0x4c9fc, 2167 0x4d000, 0x4d068, 2168 0x4d080, 0x4d084, 2169 0x4d0a0, 0x4d0b0, 2170 0x4d200, 0x4d268, 2171 0x4d280, 0x4d284, 2172 0x4d2a0, 0x4d2b0, 2173 0x4e0c0, 0x4e0e4, 2174 0x4f000, 0x4f08c, 2175 0x4f200, 0x4f250, 2176 0x4f400, 0x4f420, 2177 0x4f600, 0x4f618, 2178 0x4f800, 0x4f814, 2179 0x50000, 0x500cc, 2180 0x50400, 0x50400, 2181 0x50800, 0x508cc, 2182 0x50c00, 0x50c00, 2183 0x51000, 0x5101c, 2184 0x51300, 0x51308, 2185 }; 2186 2187 int i; 2188 struct adapter *ap = netdev2adap(dev); 2189 static const unsigned int *reg_ranges; 2190 int arr_size = 0, buf_size = 0; 2191 2192 if (is_t4(ap->chip)) { 2193 reg_ranges = &t4_reg_ranges[0]; 2194 arr_size = ARRAY_SIZE(t4_reg_ranges); 2195 buf_size = T4_REGMAP_SIZE; 2196 } else { 2197 reg_ranges = &t5_reg_ranges[0]; 2198 arr_size = ARRAY_SIZE(t5_reg_ranges); 2199 buf_size = T5_REGMAP_SIZE; 2200 } 2201 2202 regs->version = mk_adap_vers(ap); 2203 2204 memset(buf, 0, buf_size); 2205 for (i = 0; i < arr_size; i += 2) 2206 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]); 2207 } 2208 2209 static int restart_autoneg(struct net_device *dev) 2210 { 2211 struct port_info *p = netdev_priv(dev); 2212 2213 if (!netif_running(dev)) 2214 return -EAGAIN; 2215 if (p->link_cfg.autoneg != AUTONEG_ENABLE) 2216 return -EINVAL; 2217 t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan); 2218 return 0; 2219 } 2220 2221 static int identify_port(struct net_device *dev, 2222 enum ethtool_phys_id_state state) 2223 { 2224 unsigned int val; 2225 struct adapter *adap = netdev2adap(dev); 2226 2227 if (state == ETHTOOL_ID_ACTIVE) 2228 val = 0xffff; 2229 else if (state == ETHTOOL_ID_INACTIVE) 2230 val = 0; 2231 else 2232 return -EINVAL; 2233 2234 return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val); 2235 } 2236 2237 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps) 2238 { 2239 unsigned int v = 0; 2240 2241 if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI || 2242 type == FW_PORT_TYPE_BT_XAUI) { 2243 v |= SUPPORTED_TP; 2244 if (caps & FW_PORT_CAP_SPEED_100M) 2245 v |= SUPPORTED_100baseT_Full; 2246 if (caps & FW_PORT_CAP_SPEED_1G) 2247 v |= SUPPORTED_1000baseT_Full; 2248 if (caps & FW_PORT_CAP_SPEED_10G) 2249 v |= SUPPORTED_10000baseT_Full; 2250 } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) { 2251 v |= SUPPORTED_Backplane; 2252 if (caps & FW_PORT_CAP_SPEED_1G) 2253 v |= SUPPORTED_1000baseKX_Full; 2254 if (caps & FW_PORT_CAP_SPEED_10G) 2255 v |= SUPPORTED_10000baseKX4_Full; 2256 } else if (type == FW_PORT_TYPE_KR) 2257 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full; 2258 else if (type == FW_PORT_TYPE_BP_AP) 2259 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC | 2260 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full; 2261 else if (type == FW_PORT_TYPE_BP4_AP) 2262 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC | 2263 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full | 2264 SUPPORTED_10000baseKX4_Full; 2265 else if (type == FW_PORT_TYPE_FIBER_XFI || 2266 type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP) 2267 v |= SUPPORTED_FIBRE; 2268 2269 if (caps & FW_PORT_CAP_ANEG) 2270 v |= SUPPORTED_Autoneg; 2271 return v; 2272 } 2273 2274 static unsigned int to_fw_linkcaps(unsigned int caps) 2275 { 2276 unsigned int v = 0; 2277 2278 if (caps & ADVERTISED_100baseT_Full) 2279 v |= FW_PORT_CAP_SPEED_100M; 2280 if (caps & ADVERTISED_1000baseT_Full) 2281 v |= FW_PORT_CAP_SPEED_1G; 2282 if (caps & ADVERTISED_10000baseT_Full) 2283 v |= FW_PORT_CAP_SPEED_10G; 2284 return v; 2285 } 2286 2287 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2288 { 2289 const struct port_info *p = netdev_priv(dev); 2290 2291 if (p->port_type == FW_PORT_TYPE_BT_SGMII || 2292 p->port_type == FW_PORT_TYPE_BT_XFI || 2293 p->port_type == FW_PORT_TYPE_BT_XAUI) 2294 cmd->port = PORT_TP; 2295 else if (p->port_type == FW_PORT_TYPE_FIBER_XFI || 2296 p->port_type == FW_PORT_TYPE_FIBER_XAUI) 2297 cmd->port = PORT_FIBRE; 2298 else if (p->port_type == FW_PORT_TYPE_SFP) { 2299 if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE || 2300 p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE) 2301 cmd->port = PORT_DA; 2302 else 2303 cmd->port = PORT_FIBRE; 2304 } else 2305 cmd->port = PORT_OTHER; 2306 2307 if (p->mdio_addr >= 0) { 2308 cmd->phy_address = p->mdio_addr; 2309 cmd->transceiver = XCVR_EXTERNAL; 2310 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ? 2311 MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45; 2312 } else { 2313 cmd->phy_address = 0; /* not really, but no better option */ 2314 cmd->transceiver = XCVR_INTERNAL; 2315 cmd->mdio_support = 0; 2316 } 2317 2318 cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported); 2319 cmd->advertising = from_fw_linkcaps(p->port_type, 2320 p->link_cfg.advertising); 2321 ethtool_cmd_speed_set(cmd, 2322 netif_carrier_ok(dev) ? p->link_cfg.speed : 0); 2323 cmd->duplex = DUPLEX_FULL; 2324 cmd->autoneg = p->link_cfg.autoneg; 2325 cmd->maxtxpkt = 0; 2326 cmd->maxrxpkt = 0; 2327 return 0; 2328 } 2329 2330 static unsigned int speed_to_caps(int speed) 2331 { 2332 if (speed == SPEED_100) 2333 return FW_PORT_CAP_SPEED_100M; 2334 if (speed == SPEED_1000) 2335 return FW_PORT_CAP_SPEED_1G; 2336 if (speed == SPEED_10000) 2337 return FW_PORT_CAP_SPEED_10G; 2338 return 0; 2339 } 2340 2341 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2342 { 2343 unsigned int cap; 2344 struct port_info *p = netdev_priv(dev); 2345 struct link_config *lc = &p->link_cfg; 2346 u32 speed = ethtool_cmd_speed(cmd); 2347 2348 if (cmd->duplex != DUPLEX_FULL) /* only full-duplex supported */ 2349 return -EINVAL; 2350 2351 if (!(lc->supported & FW_PORT_CAP_ANEG)) { 2352 /* 2353 * PHY offers a single speed. See if that's what's 2354 * being requested. 2355 */ 2356 if (cmd->autoneg == AUTONEG_DISABLE && 2357 (lc->supported & speed_to_caps(speed))) 2358 return 0; 2359 return -EINVAL; 2360 } 2361 2362 if (cmd->autoneg == AUTONEG_DISABLE) { 2363 cap = speed_to_caps(speed); 2364 2365 if (!(lc->supported & cap) || (speed == SPEED_1000) || 2366 (speed == SPEED_10000)) 2367 return -EINVAL; 2368 lc->requested_speed = cap; 2369 lc->advertising = 0; 2370 } else { 2371 cap = to_fw_linkcaps(cmd->advertising); 2372 if (!(lc->supported & cap)) 2373 return -EINVAL; 2374 lc->requested_speed = 0; 2375 lc->advertising = cap | FW_PORT_CAP_ANEG; 2376 } 2377 lc->autoneg = cmd->autoneg; 2378 2379 if (netif_running(dev)) 2380 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan, 2381 lc); 2382 return 0; 2383 } 2384 2385 static void get_pauseparam(struct net_device *dev, 2386 struct ethtool_pauseparam *epause) 2387 { 2388 struct port_info *p = netdev_priv(dev); 2389 2390 epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0; 2391 epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0; 2392 epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0; 2393 } 2394 2395 static int set_pauseparam(struct net_device *dev, 2396 struct ethtool_pauseparam *epause) 2397 { 2398 struct port_info *p = netdev_priv(dev); 2399 struct link_config *lc = &p->link_cfg; 2400 2401 if (epause->autoneg == AUTONEG_DISABLE) 2402 lc->requested_fc = 0; 2403 else if (lc->supported & FW_PORT_CAP_ANEG) 2404 lc->requested_fc = PAUSE_AUTONEG; 2405 else 2406 return -EINVAL; 2407 2408 if (epause->rx_pause) 2409 lc->requested_fc |= PAUSE_RX; 2410 if (epause->tx_pause) 2411 lc->requested_fc |= PAUSE_TX; 2412 if (netif_running(dev)) 2413 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan, 2414 lc); 2415 return 0; 2416 } 2417 2418 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e) 2419 { 2420 const struct port_info *pi = netdev_priv(dev); 2421 const struct sge *s = &pi->adapter->sge; 2422 2423 e->rx_max_pending = MAX_RX_BUFFERS; 2424 e->rx_mini_max_pending = MAX_RSPQ_ENTRIES; 2425 e->rx_jumbo_max_pending = 0; 2426 e->tx_max_pending = MAX_TXQ_ENTRIES; 2427 2428 e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8; 2429 e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size; 2430 e->rx_jumbo_pending = 0; 2431 e->tx_pending = s->ethtxq[pi->first_qset].q.size; 2432 } 2433 2434 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e) 2435 { 2436 int i; 2437 const struct port_info *pi = netdev_priv(dev); 2438 struct adapter *adapter = pi->adapter; 2439 struct sge *s = &adapter->sge; 2440 2441 if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending || 2442 e->tx_pending > MAX_TXQ_ENTRIES || 2443 e->rx_mini_pending > MAX_RSPQ_ENTRIES || 2444 e->rx_mini_pending < MIN_RSPQ_ENTRIES || 2445 e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES) 2446 return -EINVAL; 2447 2448 if (adapter->flags & FULL_INIT_DONE) 2449 return -EBUSY; 2450 2451 for (i = 0; i < pi->nqsets; ++i) { 2452 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending; 2453 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8; 2454 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending; 2455 } 2456 return 0; 2457 } 2458 2459 static int closest_timer(const struct sge *s, int time) 2460 { 2461 int i, delta, match = 0, min_delta = INT_MAX; 2462 2463 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 2464 delta = time - s->timer_val[i]; 2465 if (delta < 0) 2466 delta = -delta; 2467 if (delta < min_delta) { 2468 min_delta = delta; 2469 match = i; 2470 } 2471 } 2472 return match; 2473 } 2474 2475 static int closest_thres(const struct sge *s, int thres) 2476 { 2477 int i, delta, match = 0, min_delta = INT_MAX; 2478 2479 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 2480 delta = thres - s->counter_val[i]; 2481 if (delta < 0) 2482 delta = -delta; 2483 if (delta < min_delta) { 2484 min_delta = delta; 2485 match = i; 2486 } 2487 } 2488 return match; 2489 } 2490 2491 /* 2492 * Return a queue's interrupt hold-off time in us. 0 means no timer. 2493 */ 2494 static unsigned int qtimer_val(const struct adapter *adap, 2495 const struct sge_rspq *q) 2496 { 2497 unsigned int idx = q->intr_params >> 1; 2498 2499 return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0; 2500 } 2501 2502 /** 2503 * set_rxq_intr_params - set a queue's interrupt holdoff parameters 2504 * @adap: the adapter 2505 * @q: the Rx queue 2506 * @us: the hold-off time in us, or 0 to disable timer 2507 * @cnt: the hold-off packet count, or 0 to disable counter 2508 * 2509 * Sets an Rx queue's interrupt hold-off time and packet count. At least 2510 * one of the two needs to be enabled for the queue to generate interrupts. 2511 */ 2512 static int set_rxq_intr_params(struct adapter *adap, struct sge_rspq *q, 2513 unsigned int us, unsigned int cnt) 2514 { 2515 if ((us | cnt) == 0) 2516 cnt = 1; 2517 2518 if (cnt) { 2519 int err; 2520 u32 v, new_idx; 2521 2522 new_idx = closest_thres(&adap->sge, cnt); 2523 if (q->desc && q->pktcnt_idx != new_idx) { 2524 /* the queue has already been created, update it */ 2525 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | 2526 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 2527 FW_PARAMS_PARAM_YZ(q->cntxt_id); 2528 err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v, 2529 &new_idx); 2530 if (err) 2531 return err; 2532 } 2533 q->pktcnt_idx = new_idx; 2534 } 2535 2536 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 2537 q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0); 2538 return 0; 2539 } 2540 2541 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c) 2542 { 2543 const struct port_info *pi = netdev_priv(dev); 2544 struct adapter *adap = pi->adapter; 2545 struct sge_rspq *q; 2546 int i; 2547 int r = 0; 2548 2549 for (i = pi->first_qset; i < pi->first_qset + pi->nqsets; i++) { 2550 q = &adap->sge.ethrxq[i].rspq; 2551 r = set_rxq_intr_params(adap, q, c->rx_coalesce_usecs, 2552 c->rx_max_coalesced_frames); 2553 if (r) { 2554 dev_err(&dev->dev, "failed to set coalesce %d\n", r); 2555 break; 2556 } 2557 } 2558 return r; 2559 } 2560 2561 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c) 2562 { 2563 const struct port_info *pi = netdev_priv(dev); 2564 const struct adapter *adap = pi->adapter; 2565 const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq; 2566 2567 c->rx_coalesce_usecs = qtimer_val(adap, rq); 2568 c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ? 2569 adap->sge.counter_val[rq->pktcnt_idx] : 0; 2570 return 0; 2571 } 2572 2573 /** 2574 * eeprom_ptov - translate a physical EEPROM address to virtual 2575 * @phys_addr: the physical EEPROM address 2576 * @fn: the PCI function number 2577 * @sz: size of function-specific area 2578 * 2579 * Translate a physical EEPROM address to virtual. The first 1K is 2580 * accessed through virtual addresses starting at 31K, the rest is 2581 * accessed through virtual addresses starting at 0. 2582 * 2583 * The mapping is as follows: 2584 * [0..1K) -> [31K..32K) 2585 * [1K..1K+A) -> [31K-A..31K) 2586 * [1K+A..ES) -> [0..ES-A-1K) 2587 * 2588 * where A = @fn * @sz, and ES = EEPROM size. 2589 */ 2590 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 2591 { 2592 fn *= sz; 2593 if (phys_addr < 1024) 2594 return phys_addr + (31 << 10); 2595 if (phys_addr < 1024 + fn) 2596 return 31744 - fn + phys_addr - 1024; 2597 if (phys_addr < EEPROMSIZE) 2598 return phys_addr - 1024 - fn; 2599 return -EINVAL; 2600 } 2601 2602 /* 2603 * The next two routines implement eeprom read/write from physical addresses. 2604 */ 2605 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v) 2606 { 2607 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE); 2608 2609 if (vaddr >= 0) 2610 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v); 2611 return vaddr < 0 ? vaddr : 0; 2612 } 2613 2614 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v) 2615 { 2616 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE); 2617 2618 if (vaddr >= 0) 2619 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v); 2620 return vaddr < 0 ? vaddr : 0; 2621 } 2622 2623 #define EEPROM_MAGIC 0x38E2F10C 2624 2625 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e, 2626 u8 *data) 2627 { 2628 int i, err = 0; 2629 struct adapter *adapter = netdev2adap(dev); 2630 2631 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL); 2632 if (!buf) 2633 return -ENOMEM; 2634 2635 e->magic = EEPROM_MAGIC; 2636 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4) 2637 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]); 2638 2639 if (!err) 2640 memcpy(data, buf + e->offset, e->len); 2641 kfree(buf); 2642 return err; 2643 } 2644 2645 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, 2646 u8 *data) 2647 { 2648 u8 *buf; 2649 int err = 0; 2650 u32 aligned_offset, aligned_len, *p; 2651 struct adapter *adapter = netdev2adap(dev); 2652 2653 if (eeprom->magic != EEPROM_MAGIC) 2654 return -EINVAL; 2655 2656 aligned_offset = eeprom->offset & ~3; 2657 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3; 2658 2659 if (adapter->fn > 0) { 2660 u32 start = 1024 + adapter->fn * EEPROMPFSIZE; 2661 2662 if (aligned_offset < start || 2663 aligned_offset + aligned_len > start + EEPROMPFSIZE) 2664 return -EPERM; 2665 } 2666 2667 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) { 2668 /* 2669 * RMW possibly needed for first or last words. 2670 */ 2671 buf = kmalloc(aligned_len, GFP_KERNEL); 2672 if (!buf) 2673 return -ENOMEM; 2674 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf); 2675 if (!err && aligned_len > 4) 2676 err = eeprom_rd_phys(adapter, 2677 aligned_offset + aligned_len - 4, 2678 (u32 *)&buf[aligned_len - 4]); 2679 if (err) 2680 goto out; 2681 memcpy(buf + (eeprom->offset & 3), data, eeprom->len); 2682 } else 2683 buf = data; 2684 2685 err = t4_seeprom_wp(adapter, false); 2686 if (err) 2687 goto out; 2688 2689 for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) { 2690 err = eeprom_wr_phys(adapter, aligned_offset, *p); 2691 aligned_offset += 4; 2692 } 2693 2694 if (!err) 2695 err = t4_seeprom_wp(adapter, true); 2696 out: 2697 if (buf != data) 2698 kfree(buf); 2699 return err; 2700 } 2701 2702 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef) 2703 { 2704 int ret; 2705 const struct firmware *fw; 2706 struct adapter *adap = netdev2adap(netdev); 2707 2708 ef->data[sizeof(ef->data) - 1] = '\0'; 2709 ret = request_firmware(&fw, ef->data, adap->pdev_dev); 2710 if (ret < 0) 2711 return ret; 2712 2713 ret = t4_load_fw(adap, fw->data, fw->size); 2714 release_firmware(fw); 2715 if (!ret) 2716 dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data); 2717 return ret; 2718 } 2719 2720 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC) 2721 #define BCAST_CRC 0xa0ccc1a6 2722 2723 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2724 { 2725 wol->supported = WAKE_BCAST | WAKE_MAGIC; 2726 wol->wolopts = netdev2adap(dev)->wol; 2727 memset(&wol->sopass, 0, sizeof(wol->sopass)); 2728 } 2729 2730 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2731 { 2732 int err = 0; 2733 struct port_info *pi = netdev_priv(dev); 2734 2735 if (wol->wolopts & ~WOL_SUPPORTED) 2736 return -EINVAL; 2737 t4_wol_magic_enable(pi->adapter, pi->tx_chan, 2738 (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL); 2739 if (wol->wolopts & WAKE_BCAST) { 2740 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL, 2741 ~0ULL, 0, false); 2742 if (!err) 2743 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1, 2744 ~6ULL, ~0ULL, BCAST_CRC, true); 2745 } else 2746 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false); 2747 return err; 2748 } 2749 2750 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 2751 { 2752 const struct port_info *pi = netdev_priv(dev); 2753 netdev_features_t changed = dev->features ^ features; 2754 int err; 2755 2756 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 2757 return 0; 2758 2759 err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1, 2760 -1, -1, -1, 2761 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 2762 if (unlikely(err)) 2763 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 2764 return err; 2765 } 2766 2767 static u32 get_rss_table_size(struct net_device *dev) 2768 { 2769 const struct port_info *pi = netdev_priv(dev); 2770 2771 return pi->rss_size; 2772 } 2773 2774 static int get_rss_table(struct net_device *dev, u32 *p) 2775 { 2776 const struct port_info *pi = netdev_priv(dev); 2777 unsigned int n = pi->rss_size; 2778 2779 while (n--) 2780 p[n] = pi->rss[n]; 2781 return 0; 2782 } 2783 2784 static int set_rss_table(struct net_device *dev, const u32 *p) 2785 { 2786 unsigned int i; 2787 struct port_info *pi = netdev_priv(dev); 2788 2789 for (i = 0; i < pi->rss_size; i++) 2790 pi->rss[i] = p[i]; 2791 if (pi->adapter->flags & FULL_INIT_DONE) 2792 return write_rss(pi, pi->rss); 2793 return 0; 2794 } 2795 2796 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 2797 u32 *rules) 2798 { 2799 const struct port_info *pi = netdev_priv(dev); 2800 2801 switch (info->cmd) { 2802 case ETHTOOL_GRXFH: { 2803 unsigned int v = pi->rss_mode; 2804 2805 info->data = 0; 2806 switch (info->flow_type) { 2807 case TCP_V4_FLOW: 2808 if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 2809 info->data = RXH_IP_SRC | RXH_IP_DST | 2810 RXH_L4_B_0_1 | RXH_L4_B_2_3; 2811 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 2812 info->data = RXH_IP_SRC | RXH_IP_DST; 2813 break; 2814 case UDP_V4_FLOW: 2815 if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) && 2816 (v & FW_RSS_VI_CONFIG_CMD_UDPEN)) 2817 info->data = RXH_IP_SRC | RXH_IP_DST | 2818 RXH_L4_B_0_1 | RXH_L4_B_2_3; 2819 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 2820 info->data = RXH_IP_SRC | RXH_IP_DST; 2821 break; 2822 case SCTP_V4_FLOW: 2823 case AH_ESP_V4_FLOW: 2824 case IPV4_FLOW: 2825 if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 2826 info->data = RXH_IP_SRC | RXH_IP_DST; 2827 break; 2828 case TCP_V6_FLOW: 2829 if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 2830 info->data = RXH_IP_SRC | RXH_IP_DST | 2831 RXH_L4_B_0_1 | RXH_L4_B_2_3; 2832 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 2833 info->data = RXH_IP_SRC | RXH_IP_DST; 2834 break; 2835 case UDP_V6_FLOW: 2836 if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) && 2837 (v & FW_RSS_VI_CONFIG_CMD_UDPEN)) 2838 info->data = RXH_IP_SRC | RXH_IP_DST | 2839 RXH_L4_B_0_1 | RXH_L4_B_2_3; 2840 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 2841 info->data = RXH_IP_SRC | RXH_IP_DST; 2842 break; 2843 case SCTP_V6_FLOW: 2844 case AH_ESP_V6_FLOW: 2845 case IPV6_FLOW: 2846 if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 2847 info->data = RXH_IP_SRC | RXH_IP_DST; 2848 break; 2849 } 2850 return 0; 2851 } 2852 case ETHTOOL_GRXRINGS: 2853 info->data = pi->nqsets; 2854 return 0; 2855 } 2856 return -EOPNOTSUPP; 2857 } 2858 2859 static const struct ethtool_ops cxgb_ethtool_ops = { 2860 .get_settings = get_settings, 2861 .set_settings = set_settings, 2862 .get_drvinfo = get_drvinfo, 2863 .get_msglevel = get_msglevel, 2864 .set_msglevel = set_msglevel, 2865 .get_ringparam = get_sge_param, 2866 .set_ringparam = set_sge_param, 2867 .get_coalesce = get_coalesce, 2868 .set_coalesce = set_coalesce, 2869 .get_eeprom_len = get_eeprom_len, 2870 .get_eeprom = get_eeprom, 2871 .set_eeprom = set_eeprom, 2872 .get_pauseparam = get_pauseparam, 2873 .set_pauseparam = set_pauseparam, 2874 .get_link = ethtool_op_get_link, 2875 .get_strings = get_strings, 2876 .set_phys_id = identify_port, 2877 .nway_reset = restart_autoneg, 2878 .get_sset_count = get_sset_count, 2879 .get_ethtool_stats = get_stats, 2880 .get_regs_len = get_regs_len, 2881 .get_regs = get_regs, 2882 .get_wol = get_wol, 2883 .set_wol = set_wol, 2884 .get_rxnfc = get_rxnfc, 2885 .get_rxfh_indir_size = get_rss_table_size, 2886 .get_rxfh_indir = get_rss_table, 2887 .set_rxfh_indir = set_rss_table, 2888 .flash_device = set_flash, 2889 }; 2890 2891 /* 2892 * debugfs support 2893 */ 2894 static ssize_t mem_read(struct file *file, char __user *buf, size_t count, 2895 loff_t *ppos) 2896 { 2897 loff_t pos = *ppos; 2898 loff_t avail = file_inode(file)->i_size; 2899 unsigned int mem = (uintptr_t)file->private_data & 3; 2900 struct adapter *adap = file->private_data - mem; 2901 2902 if (pos < 0) 2903 return -EINVAL; 2904 if (pos >= avail) 2905 return 0; 2906 if (count > avail - pos) 2907 count = avail - pos; 2908 2909 while (count) { 2910 size_t len; 2911 int ret, ofst; 2912 __be32 data[16]; 2913 2914 if ((mem == MEM_MC) || (mem == MEM_MC1)) 2915 ret = t4_mc_read(adap, mem % MEM_MC, pos, data, NULL); 2916 else 2917 ret = t4_edc_read(adap, mem, pos, data, NULL); 2918 if (ret) 2919 return ret; 2920 2921 ofst = pos % sizeof(data); 2922 len = min(count, sizeof(data) - ofst); 2923 if (copy_to_user(buf, (u8 *)data + ofst, len)) 2924 return -EFAULT; 2925 2926 buf += len; 2927 pos += len; 2928 count -= len; 2929 } 2930 count = pos - *ppos; 2931 *ppos = pos; 2932 return count; 2933 } 2934 2935 static const struct file_operations mem_debugfs_fops = { 2936 .owner = THIS_MODULE, 2937 .open = simple_open, 2938 .read = mem_read, 2939 .llseek = default_llseek, 2940 }; 2941 2942 static void add_debugfs_mem(struct adapter *adap, const char *name, 2943 unsigned int idx, unsigned int size_mb) 2944 { 2945 struct dentry *de; 2946 2947 de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root, 2948 (void *)adap + idx, &mem_debugfs_fops); 2949 if (de && de->d_inode) 2950 de->d_inode->i_size = size_mb << 20; 2951 } 2952 2953 static int setup_debugfs(struct adapter *adap) 2954 { 2955 int i; 2956 u32 size; 2957 2958 if (IS_ERR_OR_NULL(adap->debugfs_root)) 2959 return -1; 2960 2961 i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE); 2962 if (i & EDRAM0_ENABLE) { 2963 size = t4_read_reg(adap, MA_EDRAM0_BAR); 2964 add_debugfs_mem(adap, "edc0", MEM_EDC0, EDRAM_SIZE_GET(size)); 2965 } 2966 if (i & EDRAM1_ENABLE) { 2967 size = t4_read_reg(adap, MA_EDRAM1_BAR); 2968 add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM_SIZE_GET(size)); 2969 } 2970 if (is_t4(adap->chip)) { 2971 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR); 2972 if (i & EXT_MEM_ENABLE) 2973 add_debugfs_mem(adap, "mc", MEM_MC, 2974 EXT_MEM_SIZE_GET(size)); 2975 } else { 2976 if (i & EXT_MEM_ENABLE) { 2977 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR); 2978 add_debugfs_mem(adap, "mc0", MEM_MC0, 2979 EXT_MEM_SIZE_GET(size)); 2980 } 2981 if (i & EXT_MEM1_ENABLE) { 2982 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR); 2983 add_debugfs_mem(adap, "mc1", MEM_MC1, 2984 EXT_MEM_SIZE_GET(size)); 2985 } 2986 } 2987 if (adap->l2t) 2988 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap, 2989 &t4_l2t_fops); 2990 return 0; 2991 } 2992 2993 /* 2994 * upper-layer driver support 2995 */ 2996 2997 /* 2998 * Allocate an active-open TID and set it to the supplied value. 2999 */ 3000 int cxgb4_alloc_atid(struct tid_info *t, void *data) 3001 { 3002 int atid = -1; 3003 3004 spin_lock_bh(&t->atid_lock); 3005 if (t->afree) { 3006 union aopen_entry *p = t->afree; 3007 3008 atid = (p - t->atid_tab) + t->atid_base; 3009 t->afree = p->next; 3010 p->data = data; 3011 t->atids_in_use++; 3012 } 3013 spin_unlock_bh(&t->atid_lock); 3014 return atid; 3015 } 3016 EXPORT_SYMBOL(cxgb4_alloc_atid); 3017 3018 /* 3019 * Release an active-open TID. 3020 */ 3021 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 3022 { 3023 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 3024 3025 spin_lock_bh(&t->atid_lock); 3026 p->next = t->afree; 3027 t->afree = p; 3028 t->atids_in_use--; 3029 spin_unlock_bh(&t->atid_lock); 3030 } 3031 EXPORT_SYMBOL(cxgb4_free_atid); 3032 3033 /* 3034 * Allocate a server TID and set it to the supplied value. 3035 */ 3036 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 3037 { 3038 int stid; 3039 3040 spin_lock_bh(&t->stid_lock); 3041 if (family == PF_INET) { 3042 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 3043 if (stid < t->nstids) 3044 __set_bit(stid, t->stid_bmap); 3045 else 3046 stid = -1; 3047 } else { 3048 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2); 3049 if (stid < 0) 3050 stid = -1; 3051 } 3052 if (stid >= 0) { 3053 t->stid_tab[stid].data = data; 3054 stid += t->stid_base; 3055 t->stids_in_use++; 3056 } 3057 spin_unlock_bh(&t->stid_lock); 3058 return stid; 3059 } 3060 EXPORT_SYMBOL(cxgb4_alloc_stid); 3061 3062 /* Allocate a server filter TID and set it to the supplied value. 3063 */ 3064 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 3065 { 3066 int stid; 3067 3068 spin_lock_bh(&t->stid_lock); 3069 if (family == PF_INET) { 3070 stid = find_next_zero_bit(t->stid_bmap, 3071 t->nstids + t->nsftids, t->nstids); 3072 if (stid < (t->nstids + t->nsftids)) 3073 __set_bit(stid, t->stid_bmap); 3074 else 3075 stid = -1; 3076 } else { 3077 stid = -1; 3078 } 3079 if (stid >= 0) { 3080 t->stid_tab[stid].data = data; 3081 stid += t->stid_base; 3082 t->stids_in_use++; 3083 } 3084 spin_unlock_bh(&t->stid_lock); 3085 return stid; 3086 } 3087 EXPORT_SYMBOL(cxgb4_alloc_sftid); 3088 3089 /* Release a server TID. 3090 */ 3091 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 3092 { 3093 stid -= t->stid_base; 3094 spin_lock_bh(&t->stid_lock); 3095 if (family == PF_INET) 3096 __clear_bit(stid, t->stid_bmap); 3097 else 3098 bitmap_release_region(t->stid_bmap, stid, 2); 3099 t->stid_tab[stid].data = NULL; 3100 t->stids_in_use--; 3101 spin_unlock_bh(&t->stid_lock); 3102 } 3103 EXPORT_SYMBOL(cxgb4_free_stid); 3104 3105 /* 3106 * Populate a TID_RELEASE WR. Caller must properly size the skb. 3107 */ 3108 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 3109 unsigned int tid) 3110 { 3111 struct cpl_tid_release *req; 3112 3113 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 3114 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req)); 3115 INIT_TP_WR(req, tid); 3116 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 3117 } 3118 3119 /* 3120 * Queue a TID release request and if necessary schedule a work queue to 3121 * process it. 3122 */ 3123 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 3124 unsigned int tid) 3125 { 3126 void **p = &t->tid_tab[tid]; 3127 struct adapter *adap = container_of(t, struct adapter, tids); 3128 3129 spin_lock_bh(&adap->tid_release_lock); 3130 *p = adap->tid_release_head; 3131 /* Low 2 bits encode the Tx channel number */ 3132 adap->tid_release_head = (void **)((uintptr_t)p | chan); 3133 if (!adap->tid_release_task_busy) { 3134 adap->tid_release_task_busy = true; 3135 queue_work(workq, &adap->tid_release_task); 3136 } 3137 spin_unlock_bh(&adap->tid_release_lock); 3138 } 3139 3140 /* 3141 * Process the list of pending TID release requests. 3142 */ 3143 static void process_tid_release_list(struct work_struct *work) 3144 { 3145 struct sk_buff *skb; 3146 struct adapter *adap; 3147 3148 adap = container_of(work, struct adapter, tid_release_task); 3149 3150 spin_lock_bh(&adap->tid_release_lock); 3151 while (adap->tid_release_head) { 3152 void **p = adap->tid_release_head; 3153 unsigned int chan = (uintptr_t)p & 3; 3154 p = (void *)p - chan; 3155 3156 adap->tid_release_head = *p; 3157 *p = NULL; 3158 spin_unlock_bh(&adap->tid_release_lock); 3159 3160 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 3161 GFP_KERNEL))) 3162 schedule_timeout_uninterruptible(1); 3163 3164 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 3165 t4_ofld_send(adap, skb); 3166 spin_lock_bh(&adap->tid_release_lock); 3167 } 3168 adap->tid_release_task_busy = false; 3169 spin_unlock_bh(&adap->tid_release_lock); 3170 } 3171 3172 /* 3173 * Release a TID and inform HW. If we are unable to allocate the release 3174 * message we defer to a work queue. 3175 */ 3176 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid) 3177 { 3178 void *old; 3179 struct sk_buff *skb; 3180 struct adapter *adap = container_of(t, struct adapter, tids); 3181 3182 old = t->tid_tab[tid]; 3183 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 3184 if (likely(skb)) { 3185 t->tid_tab[tid] = NULL; 3186 mk_tid_release(skb, chan, tid); 3187 t4_ofld_send(adap, skb); 3188 } else 3189 cxgb4_queue_tid_release(t, chan, tid); 3190 if (old) 3191 atomic_dec(&t->tids_in_use); 3192 } 3193 EXPORT_SYMBOL(cxgb4_remove_tid); 3194 3195 /* 3196 * Allocate and initialize the TID tables. Returns 0 on success. 3197 */ 3198 static int tid_init(struct tid_info *t) 3199 { 3200 size_t size; 3201 unsigned int stid_bmap_size; 3202 unsigned int natids = t->natids; 3203 3204 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 3205 size = t->ntids * sizeof(*t->tid_tab) + 3206 natids * sizeof(*t->atid_tab) + 3207 t->nstids * sizeof(*t->stid_tab) + 3208 t->nsftids * sizeof(*t->stid_tab) + 3209 stid_bmap_size * sizeof(long) + 3210 t->nftids * sizeof(*t->ftid_tab) + 3211 t->nsftids * sizeof(*t->ftid_tab); 3212 3213 t->tid_tab = t4_alloc_mem(size); 3214 if (!t->tid_tab) 3215 return -ENOMEM; 3216 3217 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 3218 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 3219 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 3220 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 3221 spin_lock_init(&t->stid_lock); 3222 spin_lock_init(&t->atid_lock); 3223 3224 t->stids_in_use = 0; 3225 t->afree = NULL; 3226 t->atids_in_use = 0; 3227 atomic_set(&t->tids_in_use, 0); 3228 3229 /* Setup the free list for atid_tab and clear the stid bitmap. */ 3230 if (natids) { 3231 while (--natids) 3232 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 3233 t->afree = t->atid_tab; 3234 } 3235 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 3236 return 0; 3237 } 3238 3239 static int cxgb4_clip_get(const struct net_device *dev, 3240 const struct in6_addr *lip) 3241 { 3242 struct adapter *adap; 3243 struct fw_clip_cmd c; 3244 3245 adap = netdev2adap(dev); 3246 memset(&c, 0, sizeof(c)); 3247 c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) | 3248 FW_CMD_REQUEST | FW_CMD_WRITE); 3249 c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_ALLOC | FW_LEN16(c)); 3250 *(__be64 *)&c.ip_hi = *(__be64 *)(lip->s6_addr); 3251 *(__be64 *)&c.ip_lo = *(__be64 *)(lip->s6_addr + 8); 3252 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false); 3253 } 3254 3255 static int cxgb4_clip_release(const struct net_device *dev, 3256 const struct in6_addr *lip) 3257 { 3258 struct adapter *adap; 3259 struct fw_clip_cmd c; 3260 3261 adap = netdev2adap(dev); 3262 memset(&c, 0, sizeof(c)); 3263 c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) | 3264 FW_CMD_REQUEST | FW_CMD_READ); 3265 c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_FREE | FW_LEN16(c)); 3266 *(__be64 *)&c.ip_hi = *(__be64 *)(lip->s6_addr); 3267 *(__be64 *)&c.ip_lo = *(__be64 *)(lip->s6_addr + 8); 3268 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false); 3269 } 3270 3271 /** 3272 * cxgb4_create_server - create an IP server 3273 * @dev: the device 3274 * @stid: the server TID 3275 * @sip: local IP address to bind server to 3276 * @sport: the server's TCP port 3277 * @queue: queue to direct messages from this server to 3278 * 3279 * Create an IP server for the given port and address. 3280 * Returns <0 on error and one of the %NET_XMIT_* values on success. 3281 */ 3282 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 3283 __be32 sip, __be16 sport, __be16 vlan, 3284 unsigned int queue) 3285 { 3286 unsigned int chan; 3287 struct sk_buff *skb; 3288 struct adapter *adap; 3289 struct cpl_pass_open_req *req; 3290 int ret; 3291 3292 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 3293 if (!skb) 3294 return -ENOMEM; 3295 3296 adap = netdev2adap(dev); 3297 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req)); 3298 INIT_TP_WR(req, 0); 3299 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 3300 req->local_port = sport; 3301 req->peer_port = htons(0); 3302 req->local_ip = sip; 3303 req->peer_ip = htonl(0); 3304 chan = rxq_to_chan(&adap->sge, queue); 3305 req->opt0 = cpu_to_be64(TX_CHAN(chan)); 3306 req->opt1 = cpu_to_be64(CONN_POLICY_ASK | 3307 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue)); 3308 ret = t4_mgmt_tx(adap, skb); 3309 return net_xmit_eval(ret); 3310 } 3311 EXPORT_SYMBOL(cxgb4_create_server); 3312 3313 /* cxgb4_create_server6 - create an IPv6 server 3314 * @dev: the device 3315 * @stid: the server TID 3316 * @sip: local IPv6 address to bind server to 3317 * @sport: the server's TCP port 3318 * @queue: queue to direct messages from this server to 3319 * 3320 * Create an IPv6 server for the given port and address. 3321 * Returns <0 on error and one of the %NET_XMIT_* values on success. 3322 */ 3323 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 3324 const struct in6_addr *sip, __be16 sport, 3325 unsigned int queue) 3326 { 3327 unsigned int chan; 3328 struct sk_buff *skb; 3329 struct adapter *adap; 3330 struct cpl_pass_open_req6 *req; 3331 int ret; 3332 3333 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 3334 if (!skb) 3335 return -ENOMEM; 3336 3337 adap = netdev2adap(dev); 3338 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req)); 3339 INIT_TP_WR(req, 0); 3340 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 3341 req->local_port = sport; 3342 req->peer_port = htons(0); 3343 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 3344 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 3345 req->peer_ip_hi = cpu_to_be64(0); 3346 req->peer_ip_lo = cpu_to_be64(0); 3347 chan = rxq_to_chan(&adap->sge, queue); 3348 req->opt0 = cpu_to_be64(TX_CHAN(chan)); 3349 req->opt1 = cpu_to_be64(CONN_POLICY_ASK | 3350 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue)); 3351 ret = t4_mgmt_tx(adap, skb); 3352 return net_xmit_eval(ret); 3353 } 3354 EXPORT_SYMBOL(cxgb4_create_server6); 3355 3356 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 3357 unsigned int queue, bool ipv6) 3358 { 3359 struct sk_buff *skb; 3360 struct adapter *adap; 3361 struct cpl_close_listsvr_req *req; 3362 int ret; 3363 3364 adap = netdev2adap(dev); 3365 3366 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 3367 if (!skb) 3368 return -ENOMEM; 3369 3370 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req)); 3371 INIT_TP_WR(req, 0); 3372 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 3373 req->reply_ctrl = htons(NO_REPLY(0) | (ipv6 ? LISTSVR_IPV6(1) : 3374 LISTSVR_IPV6(0)) | QUEUENO(queue)); 3375 ret = t4_mgmt_tx(adap, skb); 3376 return net_xmit_eval(ret); 3377 } 3378 EXPORT_SYMBOL(cxgb4_remove_server); 3379 3380 /** 3381 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 3382 * @mtus: the HW MTU table 3383 * @mtu: the target MTU 3384 * @idx: index of selected entry in the MTU table 3385 * 3386 * Returns the index and the value in the HW MTU table that is closest to 3387 * but does not exceed @mtu, unless @mtu is smaller than any value in the 3388 * table, in which case that smallest available value is selected. 3389 */ 3390 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 3391 unsigned int *idx) 3392 { 3393 unsigned int i = 0; 3394 3395 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 3396 ++i; 3397 if (idx) 3398 *idx = i; 3399 return mtus[i]; 3400 } 3401 EXPORT_SYMBOL(cxgb4_best_mtu); 3402 3403 /** 3404 * cxgb4_port_chan - get the HW channel of a port 3405 * @dev: the net device for the port 3406 * 3407 * Return the HW Tx channel of the given port. 3408 */ 3409 unsigned int cxgb4_port_chan(const struct net_device *dev) 3410 { 3411 return netdev2pinfo(dev)->tx_chan; 3412 } 3413 EXPORT_SYMBOL(cxgb4_port_chan); 3414 3415 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 3416 { 3417 struct adapter *adap = netdev2adap(dev); 3418 u32 v1, v2, lp_count, hp_count; 3419 3420 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS); 3421 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2); 3422 if (is_t4(adap->chip)) { 3423 lp_count = G_LP_COUNT(v1); 3424 hp_count = G_HP_COUNT(v1); 3425 } else { 3426 lp_count = G_LP_COUNT_T5(v1); 3427 hp_count = G_HP_COUNT_T5(v2); 3428 } 3429 return lpfifo ? lp_count : hp_count; 3430 } 3431 EXPORT_SYMBOL(cxgb4_dbfifo_count); 3432 3433 /** 3434 * cxgb4_port_viid - get the VI id of a port 3435 * @dev: the net device for the port 3436 * 3437 * Return the VI id of the given port. 3438 */ 3439 unsigned int cxgb4_port_viid(const struct net_device *dev) 3440 { 3441 return netdev2pinfo(dev)->viid; 3442 } 3443 EXPORT_SYMBOL(cxgb4_port_viid); 3444 3445 /** 3446 * cxgb4_port_idx - get the index of a port 3447 * @dev: the net device for the port 3448 * 3449 * Return the index of the given port. 3450 */ 3451 unsigned int cxgb4_port_idx(const struct net_device *dev) 3452 { 3453 return netdev2pinfo(dev)->port_id; 3454 } 3455 EXPORT_SYMBOL(cxgb4_port_idx); 3456 3457 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 3458 struct tp_tcp_stats *v6) 3459 { 3460 struct adapter *adap = pci_get_drvdata(pdev); 3461 3462 spin_lock(&adap->stats_lock); 3463 t4_tp_get_tcp_stats(adap, v4, v6); 3464 spin_unlock(&adap->stats_lock); 3465 } 3466 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 3467 3468 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 3469 const unsigned int *pgsz_order) 3470 { 3471 struct adapter *adap = netdev2adap(dev); 3472 3473 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask); 3474 t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) | 3475 HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) | 3476 HPZ3(pgsz_order[3])); 3477 } 3478 EXPORT_SYMBOL(cxgb4_iscsi_init); 3479 3480 int cxgb4_flush_eq_cache(struct net_device *dev) 3481 { 3482 struct adapter *adap = netdev2adap(dev); 3483 int ret; 3484 3485 ret = t4_fwaddrspace_write(adap, adap->mbox, 3486 0xe1000000 + A_SGE_CTXT_CMD, 0x20000000); 3487 return ret; 3488 } 3489 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 3490 3491 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 3492 { 3493 u32 addr = t4_read_reg(adap, A_SGE_DBQ_CTXT_BADDR) + 24 * qid + 8; 3494 __be64 indices; 3495 int ret; 3496 3497 ret = t4_mem_win_read_len(adap, addr, (__be32 *)&indices, 8); 3498 if (!ret) { 3499 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 3500 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 3501 } 3502 return ret; 3503 } 3504 3505 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 3506 u16 size) 3507 { 3508 struct adapter *adap = netdev2adap(dev); 3509 u16 hw_pidx, hw_cidx; 3510 int ret; 3511 3512 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 3513 if (ret) 3514 goto out; 3515 3516 if (pidx != hw_pidx) { 3517 u16 delta; 3518 3519 if (pidx >= hw_pidx) 3520 delta = pidx - hw_pidx; 3521 else 3522 delta = size - hw_pidx + pidx; 3523 wmb(); 3524 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL), 3525 QID(qid) | PIDX(delta)); 3526 } 3527 out: 3528 return ret; 3529 } 3530 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 3531 3532 void cxgb4_disable_db_coalescing(struct net_device *dev) 3533 { 3534 struct adapter *adap; 3535 3536 adap = netdev2adap(dev); 3537 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE, 3538 F_NOCOALESCE); 3539 } 3540 EXPORT_SYMBOL(cxgb4_disable_db_coalescing); 3541 3542 void cxgb4_enable_db_coalescing(struct net_device *dev) 3543 { 3544 struct adapter *adap; 3545 3546 adap = netdev2adap(dev); 3547 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE, 0); 3548 } 3549 EXPORT_SYMBOL(cxgb4_enable_db_coalescing); 3550 3551 static struct pci_driver cxgb4_driver; 3552 3553 static void check_neigh_update(struct neighbour *neigh) 3554 { 3555 const struct device *parent; 3556 const struct net_device *netdev = neigh->dev; 3557 3558 if (netdev->priv_flags & IFF_802_1Q_VLAN) 3559 netdev = vlan_dev_real_dev(netdev); 3560 parent = netdev->dev.parent; 3561 if (parent && parent->driver == &cxgb4_driver.driver) 3562 t4_l2t_update(dev_get_drvdata(parent), neigh); 3563 } 3564 3565 static int netevent_cb(struct notifier_block *nb, unsigned long event, 3566 void *data) 3567 { 3568 switch (event) { 3569 case NETEVENT_NEIGH_UPDATE: 3570 check_neigh_update(data); 3571 break; 3572 case NETEVENT_REDIRECT: 3573 default: 3574 break; 3575 } 3576 return 0; 3577 } 3578 3579 static bool netevent_registered; 3580 static struct notifier_block cxgb4_netevent_nb = { 3581 .notifier_call = netevent_cb 3582 }; 3583 3584 static void drain_db_fifo(struct adapter *adap, int usecs) 3585 { 3586 u32 v1, v2, lp_count, hp_count; 3587 3588 do { 3589 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS); 3590 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2); 3591 if (is_t4(adap->chip)) { 3592 lp_count = G_LP_COUNT(v1); 3593 hp_count = G_HP_COUNT(v1); 3594 } else { 3595 lp_count = G_LP_COUNT_T5(v1); 3596 hp_count = G_HP_COUNT_T5(v2); 3597 } 3598 3599 if (lp_count == 0 && hp_count == 0) 3600 break; 3601 set_current_state(TASK_UNINTERRUPTIBLE); 3602 schedule_timeout(usecs_to_jiffies(usecs)); 3603 } while (1); 3604 } 3605 3606 static void disable_txq_db(struct sge_txq *q) 3607 { 3608 spin_lock_irq(&q->db_lock); 3609 q->db_disabled = 1; 3610 spin_unlock_irq(&q->db_lock); 3611 } 3612 3613 static void enable_txq_db(struct sge_txq *q) 3614 { 3615 spin_lock_irq(&q->db_lock); 3616 q->db_disabled = 0; 3617 spin_unlock_irq(&q->db_lock); 3618 } 3619 3620 static void disable_dbs(struct adapter *adap) 3621 { 3622 int i; 3623 3624 for_each_ethrxq(&adap->sge, i) 3625 disable_txq_db(&adap->sge.ethtxq[i].q); 3626 for_each_ofldrxq(&adap->sge, i) 3627 disable_txq_db(&adap->sge.ofldtxq[i].q); 3628 for_each_port(adap, i) 3629 disable_txq_db(&adap->sge.ctrlq[i].q); 3630 } 3631 3632 static void enable_dbs(struct adapter *adap) 3633 { 3634 int i; 3635 3636 for_each_ethrxq(&adap->sge, i) 3637 enable_txq_db(&adap->sge.ethtxq[i].q); 3638 for_each_ofldrxq(&adap->sge, i) 3639 enable_txq_db(&adap->sge.ofldtxq[i].q); 3640 for_each_port(adap, i) 3641 enable_txq_db(&adap->sge.ctrlq[i].q); 3642 } 3643 3644 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 3645 { 3646 u16 hw_pidx, hw_cidx; 3647 int ret; 3648 3649 spin_lock_bh(&q->db_lock); 3650 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 3651 if (ret) 3652 goto out; 3653 if (q->db_pidx != hw_pidx) { 3654 u16 delta; 3655 3656 if (q->db_pidx >= hw_pidx) 3657 delta = q->db_pidx - hw_pidx; 3658 else 3659 delta = q->size - hw_pidx + q->db_pidx; 3660 wmb(); 3661 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL), 3662 QID(q->cntxt_id) | PIDX(delta)); 3663 } 3664 out: 3665 q->db_disabled = 0; 3666 spin_unlock_bh(&q->db_lock); 3667 if (ret) 3668 CH_WARN(adap, "DB drop recovery failed.\n"); 3669 } 3670 static void recover_all_queues(struct adapter *adap) 3671 { 3672 int i; 3673 3674 for_each_ethrxq(&adap->sge, i) 3675 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 3676 for_each_ofldrxq(&adap->sge, i) 3677 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q); 3678 for_each_port(adap, i) 3679 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 3680 } 3681 3682 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 3683 { 3684 mutex_lock(&uld_mutex); 3685 if (adap->uld_handle[CXGB4_ULD_RDMA]) 3686 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA], 3687 cmd); 3688 mutex_unlock(&uld_mutex); 3689 } 3690 3691 static void process_db_full(struct work_struct *work) 3692 { 3693 struct adapter *adap; 3694 3695 adap = container_of(work, struct adapter, db_full_task); 3696 3697 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 3698 drain_db_fifo(adap, dbfifo_drain_delay); 3699 t4_set_reg_field(adap, SGE_INT_ENABLE3, 3700 DBFIFO_HP_INT | DBFIFO_LP_INT, 3701 DBFIFO_HP_INT | DBFIFO_LP_INT); 3702 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 3703 } 3704 3705 static void process_db_drop(struct work_struct *work) 3706 { 3707 struct adapter *adap; 3708 3709 adap = container_of(work, struct adapter, db_drop_task); 3710 3711 if (is_t4(adap->chip)) { 3712 disable_dbs(adap); 3713 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 3714 drain_db_fifo(adap, 1); 3715 recover_all_queues(adap); 3716 enable_dbs(adap); 3717 } else { 3718 u32 dropped_db = t4_read_reg(adap, 0x010ac); 3719 u16 qid = (dropped_db >> 15) & 0x1ffff; 3720 u16 pidx_inc = dropped_db & 0x1fff; 3721 unsigned int s_qpp; 3722 unsigned short udb_density; 3723 unsigned long qpshift; 3724 int page; 3725 u32 udb; 3726 3727 dev_warn(adap->pdev_dev, 3728 "Dropped DB 0x%x qid %d bar2 %d coalesce %d pidx %d\n", 3729 dropped_db, qid, 3730 (dropped_db >> 14) & 1, 3731 (dropped_db >> 13) & 1, 3732 pidx_inc); 3733 3734 drain_db_fifo(adap, 1); 3735 3736 s_qpp = QUEUESPERPAGEPF1 * adap->fn; 3737 udb_density = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adap, 3738 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp); 3739 qpshift = PAGE_SHIFT - ilog2(udb_density); 3740 udb = qid << qpshift; 3741 udb &= PAGE_MASK; 3742 page = udb / PAGE_SIZE; 3743 udb += (qid - (page * udb_density)) * 128; 3744 3745 writel(PIDX(pidx_inc), adap->bar2 + udb + 8); 3746 3747 /* Re-enable BAR2 WC */ 3748 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 3749 } 3750 3751 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_DROPPED_DB, 0); 3752 } 3753 3754 void t4_db_full(struct adapter *adap) 3755 { 3756 if (is_t4(adap->chip)) { 3757 t4_set_reg_field(adap, SGE_INT_ENABLE3, 3758 DBFIFO_HP_INT | DBFIFO_LP_INT, 0); 3759 queue_work(workq, &adap->db_full_task); 3760 } 3761 } 3762 3763 void t4_db_dropped(struct adapter *adap) 3764 { 3765 if (is_t4(adap->chip)) 3766 queue_work(workq, &adap->db_drop_task); 3767 } 3768 3769 static void uld_attach(struct adapter *adap, unsigned int uld) 3770 { 3771 void *handle; 3772 struct cxgb4_lld_info lli; 3773 unsigned short i; 3774 3775 lli.pdev = adap->pdev; 3776 lli.l2t = adap->l2t; 3777 lli.tids = &adap->tids; 3778 lli.ports = adap->port; 3779 lli.vr = &adap->vres; 3780 lli.mtus = adap->params.mtus; 3781 if (uld == CXGB4_ULD_RDMA) { 3782 lli.rxq_ids = adap->sge.rdma_rxq; 3783 lli.nrxq = adap->sge.rdmaqs; 3784 } else if (uld == CXGB4_ULD_ISCSI) { 3785 lli.rxq_ids = adap->sge.ofld_rxq; 3786 lli.nrxq = adap->sge.ofldqsets; 3787 } 3788 lli.ntxq = adap->sge.ofldqsets; 3789 lli.nchan = adap->params.nports; 3790 lli.nports = adap->params.nports; 3791 lli.wr_cred = adap->params.ofldq_wr_cred; 3792 lli.adapter_type = adap->params.rev; 3793 lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2)); 3794 lli.udb_density = 1 << QUEUESPERPAGEPF0_GET( 3795 t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >> 3796 (adap->fn * 4)); 3797 lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET( 3798 t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >> 3799 (adap->fn * 4)); 3800 lli.filt_mode = adap->filter_mode; 3801 /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */ 3802 for (i = 0; i < NCHAN; i++) 3803 lli.tx_modq[i] = i; 3804 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS); 3805 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL); 3806 lli.fw_vers = adap->params.fw_vers; 3807 lli.dbfifo_int_thresh = dbfifo_int_thresh; 3808 lli.sge_pktshift = adap->sge.pktshift; 3809 lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN; 3810 3811 handle = ulds[uld].add(&lli); 3812 if (IS_ERR(handle)) { 3813 dev_warn(adap->pdev_dev, 3814 "could not attach to the %s driver, error %ld\n", 3815 uld_str[uld], PTR_ERR(handle)); 3816 return; 3817 } 3818 3819 adap->uld_handle[uld] = handle; 3820 3821 if (!netevent_registered) { 3822 register_netevent_notifier(&cxgb4_netevent_nb); 3823 netevent_registered = true; 3824 } 3825 3826 if (adap->flags & FULL_INIT_DONE) 3827 ulds[uld].state_change(handle, CXGB4_STATE_UP); 3828 } 3829 3830 static void attach_ulds(struct adapter *adap) 3831 { 3832 unsigned int i; 3833 3834 spin_lock(&adap_rcu_lock); 3835 list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list); 3836 spin_unlock(&adap_rcu_lock); 3837 3838 mutex_lock(&uld_mutex); 3839 list_add_tail(&adap->list_node, &adapter_list); 3840 for (i = 0; i < CXGB4_ULD_MAX; i++) 3841 if (ulds[i].add) 3842 uld_attach(adap, i); 3843 mutex_unlock(&uld_mutex); 3844 } 3845 3846 static void detach_ulds(struct adapter *adap) 3847 { 3848 unsigned int i; 3849 3850 mutex_lock(&uld_mutex); 3851 list_del(&adap->list_node); 3852 for (i = 0; i < CXGB4_ULD_MAX; i++) 3853 if (adap->uld_handle[i]) { 3854 ulds[i].state_change(adap->uld_handle[i], 3855 CXGB4_STATE_DETACH); 3856 adap->uld_handle[i] = NULL; 3857 } 3858 if (netevent_registered && list_empty(&adapter_list)) { 3859 unregister_netevent_notifier(&cxgb4_netevent_nb); 3860 netevent_registered = false; 3861 } 3862 mutex_unlock(&uld_mutex); 3863 3864 spin_lock(&adap_rcu_lock); 3865 list_del_rcu(&adap->rcu_node); 3866 spin_unlock(&adap_rcu_lock); 3867 } 3868 3869 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 3870 { 3871 unsigned int i; 3872 3873 mutex_lock(&uld_mutex); 3874 for (i = 0; i < CXGB4_ULD_MAX; i++) 3875 if (adap->uld_handle[i]) 3876 ulds[i].state_change(adap->uld_handle[i], new_state); 3877 mutex_unlock(&uld_mutex); 3878 } 3879 3880 /** 3881 * cxgb4_register_uld - register an upper-layer driver 3882 * @type: the ULD type 3883 * @p: the ULD methods 3884 * 3885 * Registers an upper-layer driver with this driver and notifies the ULD 3886 * about any presently available devices that support its type. Returns 3887 * %-EBUSY if a ULD of the same type is already registered. 3888 */ 3889 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p) 3890 { 3891 int ret = 0; 3892 struct adapter *adap; 3893 3894 if (type >= CXGB4_ULD_MAX) 3895 return -EINVAL; 3896 mutex_lock(&uld_mutex); 3897 if (ulds[type].add) { 3898 ret = -EBUSY; 3899 goto out; 3900 } 3901 ulds[type] = *p; 3902 list_for_each_entry(adap, &adapter_list, list_node) 3903 uld_attach(adap, type); 3904 out: mutex_unlock(&uld_mutex); 3905 return ret; 3906 } 3907 EXPORT_SYMBOL(cxgb4_register_uld); 3908 3909 /** 3910 * cxgb4_unregister_uld - unregister an upper-layer driver 3911 * @type: the ULD type 3912 * 3913 * Unregisters an existing upper-layer driver. 3914 */ 3915 int cxgb4_unregister_uld(enum cxgb4_uld type) 3916 { 3917 struct adapter *adap; 3918 3919 if (type >= CXGB4_ULD_MAX) 3920 return -EINVAL; 3921 mutex_lock(&uld_mutex); 3922 list_for_each_entry(adap, &adapter_list, list_node) 3923 adap->uld_handle[type] = NULL; 3924 ulds[type].add = NULL; 3925 mutex_unlock(&uld_mutex); 3926 return 0; 3927 } 3928 EXPORT_SYMBOL(cxgb4_unregister_uld); 3929 3930 /* Check if netdev on which event is occured belongs to us or not. Return 3931 * suceess (1) if it belongs otherwise failure (0). 3932 */ 3933 static int cxgb4_netdev(struct net_device *netdev) 3934 { 3935 struct adapter *adap; 3936 int i; 3937 3938 spin_lock(&adap_rcu_lock); 3939 list_for_each_entry_rcu(adap, &adap_rcu_list, rcu_node) 3940 for (i = 0; i < MAX_NPORTS; i++) 3941 if (adap->port[i] == netdev) { 3942 spin_unlock(&adap_rcu_lock); 3943 return 1; 3944 } 3945 spin_unlock(&adap_rcu_lock); 3946 return 0; 3947 } 3948 3949 static int clip_add(struct net_device *event_dev, struct inet6_ifaddr *ifa, 3950 unsigned long event) 3951 { 3952 int ret = NOTIFY_DONE; 3953 3954 rcu_read_lock(); 3955 if (cxgb4_netdev(event_dev)) { 3956 switch (event) { 3957 case NETDEV_UP: 3958 ret = cxgb4_clip_get(event_dev, 3959 (const struct in6_addr *)ifa->addr.s6_addr); 3960 if (ret < 0) { 3961 rcu_read_unlock(); 3962 return ret; 3963 } 3964 ret = NOTIFY_OK; 3965 break; 3966 case NETDEV_DOWN: 3967 cxgb4_clip_release(event_dev, 3968 (const struct in6_addr *)ifa->addr.s6_addr); 3969 ret = NOTIFY_OK; 3970 break; 3971 default: 3972 break; 3973 } 3974 } 3975 rcu_read_unlock(); 3976 return ret; 3977 } 3978 3979 static int cxgb4_inet6addr_handler(struct notifier_block *this, 3980 unsigned long event, void *data) 3981 { 3982 struct inet6_ifaddr *ifa = data; 3983 struct net_device *event_dev; 3984 int ret = NOTIFY_DONE; 3985 struct bonding *bond = netdev_priv(ifa->idev->dev); 3986 struct slave *slave; 3987 struct pci_dev *first_pdev = NULL; 3988 3989 if (ifa->idev->dev->priv_flags & IFF_802_1Q_VLAN) { 3990 event_dev = vlan_dev_real_dev(ifa->idev->dev); 3991 ret = clip_add(event_dev, ifa, event); 3992 } else if (ifa->idev->dev->flags & IFF_MASTER) { 3993 /* It is possible that two different adapters are bonded in one 3994 * bond. We need to find such different adapters and add clip 3995 * in all of them only once. 3996 */ 3997 read_lock(&bond->lock); 3998 bond_for_each_slave(bond, slave) { 3999 if (!first_pdev) { 4000 ret = clip_add(slave->dev, ifa, event); 4001 /* If clip_add is success then only initialize 4002 * first_pdev since it means it is our device 4003 */ 4004 if (ret == NOTIFY_OK) 4005 first_pdev = to_pci_dev( 4006 slave->dev->dev.parent); 4007 } else if (first_pdev != 4008 to_pci_dev(slave->dev->dev.parent)) 4009 ret = clip_add(slave->dev, ifa, event); 4010 } 4011 read_unlock(&bond->lock); 4012 } else 4013 ret = clip_add(ifa->idev->dev, ifa, event); 4014 4015 return ret; 4016 } 4017 4018 static struct notifier_block cxgb4_inet6addr_notifier = { 4019 .notifier_call = cxgb4_inet6addr_handler 4020 }; 4021 4022 /* Retrieves IPv6 addresses from a root device (bond, vlan) associated with 4023 * a physical device. 4024 * The physical device reference is needed to send the actul CLIP command. 4025 */ 4026 static int update_dev_clip(struct net_device *root_dev, struct net_device *dev) 4027 { 4028 struct inet6_dev *idev = NULL; 4029 struct inet6_ifaddr *ifa; 4030 int ret = 0; 4031 4032 idev = __in6_dev_get(root_dev); 4033 if (!idev) 4034 return ret; 4035 4036 read_lock_bh(&idev->lock); 4037 list_for_each_entry(ifa, &idev->addr_list, if_list) { 4038 ret = cxgb4_clip_get(dev, 4039 (const struct in6_addr *)ifa->addr.s6_addr); 4040 if (ret < 0) 4041 break; 4042 } 4043 read_unlock_bh(&idev->lock); 4044 4045 return ret; 4046 } 4047 4048 static int update_root_dev_clip(struct net_device *dev) 4049 { 4050 struct net_device *root_dev = NULL; 4051 int i, ret = 0; 4052 4053 /* First populate the real net device's IPv6 addresses */ 4054 ret = update_dev_clip(dev, dev); 4055 if (ret) 4056 return ret; 4057 4058 /* Parse all bond and vlan devices layered on top of the physical dev */ 4059 for (i = 0; i < VLAN_N_VID; i++) { 4060 root_dev = __vlan_find_dev_deep(dev, htons(ETH_P_8021Q), i); 4061 if (!root_dev) 4062 continue; 4063 4064 ret = update_dev_clip(root_dev, dev); 4065 if (ret) 4066 break; 4067 } 4068 return ret; 4069 } 4070 4071 static void update_clip(const struct adapter *adap) 4072 { 4073 int i; 4074 struct net_device *dev; 4075 int ret; 4076 4077 rcu_read_lock(); 4078 4079 for (i = 0; i < MAX_NPORTS; i++) { 4080 dev = adap->port[i]; 4081 ret = 0; 4082 4083 if (dev) 4084 ret = update_root_dev_clip(dev); 4085 4086 if (ret < 0) 4087 break; 4088 } 4089 rcu_read_unlock(); 4090 } 4091 4092 /** 4093 * cxgb_up - enable the adapter 4094 * @adap: adapter being enabled 4095 * 4096 * Called when the first port is enabled, this function performs the 4097 * actions necessary to make an adapter operational, such as completing 4098 * the initialization of HW modules, and enabling interrupts. 4099 * 4100 * Must be called with the rtnl lock held. 4101 */ 4102 static int cxgb_up(struct adapter *adap) 4103 { 4104 int err; 4105 4106 err = setup_sge_queues(adap); 4107 if (err) 4108 goto out; 4109 err = setup_rss(adap); 4110 if (err) 4111 goto freeq; 4112 4113 if (adap->flags & USING_MSIX) { 4114 name_msix_vecs(adap); 4115 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, 4116 adap->msix_info[0].desc, adap); 4117 if (err) 4118 goto irq_err; 4119 4120 err = request_msix_queue_irqs(adap); 4121 if (err) { 4122 free_irq(adap->msix_info[0].vec, adap); 4123 goto irq_err; 4124 } 4125 } else { 4126 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 4127 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED, 4128 adap->port[0]->name, adap); 4129 if (err) 4130 goto irq_err; 4131 } 4132 enable_rx(adap); 4133 t4_sge_start(adap); 4134 t4_intr_enable(adap); 4135 adap->flags |= FULL_INIT_DONE; 4136 notify_ulds(adap, CXGB4_STATE_UP); 4137 update_clip(adap); 4138 out: 4139 return err; 4140 irq_err: 4141 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 4142 freeq: 4143 t4_free_sge_resources(adap); 4144 goto out; 4145 } 4146 4147 static void cxgb_down(struct adapter *adapter) 4148 { 4149 t4_intr_disable(adapter); 4150 cancel_work_sync(&adapter->tid_release_task); 4151 cancel_work_sync(&adapter->db_full_task); 4152 cancel_work_sync(&adapter->db_drop_task); 4153 adapter->tid_release_task_busy = false; 4154 adapter->tid_release_head = NULL; 4155 4156 if (adapter->flags & USING_MSIX) { 4157 free_msix_queue_irqs(adapter); 4158 free_irq(adapter->msix_info[0].vec, adapter); 4159 } else 4160 free_irq(adapter->pdev->irq, adapter); 4161 quiesce_rx(adapter); 4162 t4_sge_stop(adapter); 4163 t4_free_sge_resources(adapter); 4164 adapter->flags &= ~FULL_INIT_DONE; 4165 } 4166 4167 /* 4168 * net_device operations 4169 */ 4170 static int cxgb_open(struct net_device *dev) 4171 { 4172 int err; 4173 struct port_info *pi = netdev_priv(dev); 4174 struct adapter *adapter = pi->adapter; 4175 4176 netif_carrier_off(dev); 4177 4178 if (!(adapter->flags & FULL_INIT_DONE)) { 4179 err = cxgb_up(adapter); 4180 if (err < 0) 4181 return err; 4182 } 4183 4184 err = link_start(dev); 4185 if (!err) 4186 netif_tx_start_all_queues(dev); 4187 return err; 4188 } 4189 4190 static int cxgb_close(struct net_device *dev) 4191 { 4192 struct port_info *pi = netdev_priv(dev); 4193 struct adapter *adapter = pi->adapter; 4194 4195 netif_tx_stop_all_queues(dev); 4196 netif_carrier_off(dev); 4197 return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false); 4198 } 4199 4200 /* Return an error number if the indicated filter isn't writable ... 4201 */ 4202 static int writable_filter(struct filter_entry *f) 4203 { 4204 if (f->locked) 4205 return -EPERM; 4206 if (f->pending) 4207 return -EBUSY; 4208 4209 return 0; 4210 } 4211 4212 /* Delete the filter at the specified index (if valid). The checks for all 4213 * the common problems with doing this like the filter being locked, currently 4214 * pending in another operation, etc. 4215 */ 4216 static int delete_filter(struct adapter *adapter, unsigned int fidx) 4217 { 4218 struct filter_entry *f; 4219 int ret; 4220 4221 if (fidx >= adapter->tids.nftids + adapter->tids.nsftids) 4222 return -EINVAL; 4223 4224 f = &adapter->tids.ftid_tab[fidx]; 4225 ret = writable_filter(f); 4226 if (ret) 4227 return ret; 4228 if (f->valid) 4229 return del_filter_wr(adapter, fidx); 4230 4231 return 0; 4232 } 4233 4234 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 4235 __be32 sip, __be16 sport, __be16 vlan, 4236 unsigned int queue, unsigned char port, unsigned char mask) 4237 { 4238 int ret; 4239 struct filter_entry *f; 4240 struct adapter *adap; 4241 int i; 4242 u8 *val; 4243 4244 adap = netdev2adap(dev); 4245 4246 /* Adjust stid to correct filter index */ 4247 stid -= adap->tids.nstids; 4248 stid += adap->tids.nftids; 4249 4250 /* Check to make sure the filter requested is writable ... 4251 */ 4252 f = &adap->tids.ftid_tab[stid]; 4253 ret = writable_filter(f); 4254 if (ret) 4255 return ret; 4256 4257 /* Clear out any old resources being used by the filter before 4258 * we start constructing the new filter. 4259 */ 4260 if (f->valid) 4261 clear_filter(adap, f); 4262 4263 /* Clear out filter specifications */ 4264 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 4265 f->fs.val.lport = cpu_to_be16(sport); 4266 f->fs.mask.lport = ~0; 4267 val = (u8 *)&sip; 4268 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 4269 for (i = 0; i < 4; i++) { 4270 f->fs.val.lip[i] = val[i]; 4271 f->fs.mask.lip[i] = ~0; 4272 } 4273 if (adap->filter_mode & F_PORT) { 4274 f->fs.val.iport = port; 4275 f->fs.mask.iport = mask; 4276 } 4277 } 4278 4279 f->fs.dirsteer = 1; 4280 f->fs.iq = queue; 4281 /* Mark filter as locked */ 4282 f->locked = 1; 4283 f->fs.rpttid = 1; 4284 4285 ret = set_filter_wr(adap, stid); 4286 if (ret) { 4287 clear_filter(adap, f); 4288 return ret; 4289 } 4290 4291 return 0; 4292 } 4293 EXPORT_SYMBOL(cxgb4_create_server_filter); 4294 4295 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 4296 unsigned int queue, bool ipv6) 4297 { 4298 int ret; 4299 struct filter_entry *f; 4300 struct adapter *adap; 4301 4302 adap = netdev2adap(dev); 4303 4304 /* Adjust stid to correct filter index */ 4305 stid -= adap->tids.nstids; 4306 stid += adap->tids.nftids; 4307 4308 f = &adap->tids.ftid_tab[stid]; 4309 /* Unlock the filter */ 4310 f->locked = 0; 4311 4312 ret = delete_filter(adap, stid); 4313 if (ret) 4314 return ret; 4315 4316 return 0; 4317 } 4318 EXPORT_SYMBOL(cxgb4_remove_server_filter); 4319 4320 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev, 4321 struct rtnl_link_stats64 *ns) 4322 { 4323 struct port_stats stats; 4324 struct port_info *p = netdev_priv(dev); 4325 struct adapter *adapter = p->adapter; 4326 4327 spin_lock(&adapter->stats_lock); 4328 t4_get_port_stats(adapter, p->tx_chan, &stats); 4329 spin_unlock(&adapter->stats_lock); 4330 4331 ns->tx_bytes = stats.tx_octets; 4332 ns->tx_packets = stats.tx_frames; 4333 ns->rx_bytes = stats.rx_octets; 4334 ns->rx_packets = stats.rx_frames; 4335 ns->multicast = stats.rx_mcast_frames; 4336 4337 /* detailed rx_errors */ 4338 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 4339 stats.rx_runt; 4340 ns->rx_over_errors = 0; 4341 ns->rx_crc_errors = stats.rx_fcs_err; 4342 ns->rx_frame_errors = stats.rx_symbol_err; 4343 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 + 4344 stats.rx_ovflow2 + stats.rx_ovflow3 + 4345 stats.rx_trunc0 + stats.rx_trunc1 + 4346 stats.rx_trunc2 + stats.rx_trunc3; 4347 ns->rx_missed_errors = 0; 4348 4349 /* detailed tx_errors */ 4350 ns->tx_aborted_errors = 0; 4351 ns->tx_carrier_errors = 0; 4352 ns->tx_fifo_errors = 0; 4353 ns->tx_heartbeat_errors = 0; 4354 ns->tx_window_errors = 0; 4355 4356 ns->tx_errors = stats.tx_error_frames; 4357 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 4358 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 4359 return ns; 4360 } 4361 4362 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 4363 { 4364 unsigned int mbox; 4365 int ret = 0, prtad, devad; 4366 struct port_info *pi = netdev_priv(dev); 4367 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 4368 4369 switch (cmd) { 4370 case SIOCGMIIPHY: 4371 if (pi->mdio_addr < 0) 4372 return -EOPNOTSUPP; 4373 data->phy_id = pi->mdio_addr; 4374 break; 4375 case SIOCGMIIREG: 4376 case SIOCSMIIREG: 4377 if (mdio_phy_id_is_c45(data->phy_id)) { 4378 prtad = mdio_phy_id_prtad(data->phy_id); 4379 devad = mdio_phy_id_devad(data->phy_id); 4380 } else if (data->phy_id < 32) { 4381 prtad = data->phy_id; 4382 devad = 0; 4383 data->reg_num &= 0x1f; 4384 } else 4385 return -EINVAL; 4386 4387 mbox = pi->adapter->fn; 4388 if (cmd == SIOCGMIIREG) 4389 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 4390 data->reg_num, &data->val_out); 4391 else 4392 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 4393 data->reg_num, data->val_in); 4394 break; 4395 default: 4396 return -EOPNOTSUPP; 4397 } 4398 return ret; 4399 } 4400 4401 static void cxgb_set_rxmode(struct net_device *dev) 4402 { 4403 /* unfortunately we can't return errors to the stack */ 4404 set_rxmode(dev, -1, false); 4405 } 4406 4407 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 4408 { 4409 int ret; 4410 struct port_info *pi = netdev_priv(dev); 4411 4412 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */ 4413 return -EINVAL; 4414 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1, 4415 -1, -1, -1, true); 4416 if (!ret) 4417 dev->mtu = new_mtu; 4418 return ret; 4419 } 4420 4421 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 4422 { 4423 int ret; 4424 struct sockaddr *addr = p; 4425 struct port_info *pi = netdev_priv(dev); 4426 4427 if (!is_valid_ether_addr(addr->sa_data)) 4428 return -EADDRNOTAVAIL; 4429 4430 ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid, 4431 pi->xact_addr_filt, addr->sa_data, true, true); 4432 if (ret < 0) 4433 return ret; 4434 4435 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 4436 pi->xact_addr_filt = ret; 4437 return 0; 4438 } 4439 4440 #ifdef CONFIG_NET_POLL_CONTROLLER 4441 static void cxgb_netpoll(struct net_device *dev) 4442 { 4443 struct port_info *pi = netdev_priv(dev); 4444 struct adapter *adap = pi->adapter; 4445 4446 if (adap->flags & USING_MSIX) { 4447 int i; 4448 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 4449 4450 for (i = pi->nqsets; i; i--, rx++) 4451 t4_sge_intr_msix(0, &rx->rspq); 4452 } else 4453 t4_intr_handler(adap)(0, adap); 4454 } 4455 #endif 4456 4457 static const struct net_device_ops cxgb4_netdev_ops = { 4458 .ndo_open = cxgb_open, 4459 .ndo_stop = cxgb_close, 4460 .ndo_start_xmit = t4_eth_xmit, 4461 .ndo_get_stats64 = cxgb_get_stats, 4462 .ndo_set_rx_mode = cxgb_set_rxmode, 4463 .ndo_set_mac_address = cxgb_set_mac_addr, 4464 .ndo_set_features = cxgb_set_features, 4465 .ndo_validate_addr = eth_validate_addr, 4466 .ndo_do_ioctl = cxgb_ioctl, 4467 .ndo_change_mtu = cxgb_change_mtu, 4468 #ifdef CONFIG_NET_POLL_CONTROLLER 4469 .ndo_poll_controller = cxgb_netpoll, 4470 #endif 4471 }; 4472 4473 void t4_fatal_err(struct adapter *adap) 4474 { 4475 t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0); 4476 t4_intr_disable(adap); 4477 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 4478 } 4479 4480 static void setup_memwin(struct adapter *adap) 4481 { 4482 u32 bar0, mem_win0_base, mem_win1_base, mem_win2_base; 4483 4484 bar0 = pci_resource_start(adap->pdev, 0); /* truncation intentional */ 4485 if (is_t4(adap->chip)) { 4486 mem_win0_base = bar0 + MEMWIN0_BASE; 4487 mem_win1_base = bar0 + MEMWIN1_BASE; 4488 mem_win2_base = bar0 + MEMWIN2_BASE; 4489 } else { 4490 /* For T5, only relative offset inside the PCIe BAR is passed */ 4491 mem_win0_base = MEMWIN0_BASE; 4492 mem_win1_base = MEMWIN1_BASE_T5; 4493 mem_win2_base = MEMWIN2_BASE_T5; 4494 } 4495 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0), 4496 mem_win0_base | BIR(0) | 4497 WINDOW(ilog2(MEMWIN0_APERTURE) - 10)); 4498 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1), 4499 mem_win1_base | BIR(0) | 4500 WINDOW(ilog2(MEMWIN1_APERTURE) - 10)); 4501 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2), 4502 mem_win2_base | BIR(0) | 4503 WINDOW(ilog2(MEMWIN2_APERTURE) - 10)); 4504 } 4505 4506 static void setup_memwin_rdma(struct adapter *adap) 4507 { 4508 if (adap->vres.ocq.size) { 4509 unsigned int start, sz_kb; 4510 4511 start = pci_resource_start(adap->pdev, 2) + 4512 OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 4513 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 4514 t4_write_reg(adap, 4515 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3), 4516 start | BIR(1) | WINDOW(ilog2(sz_kb))); 4517 t4_write_reg(adap, 4518 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3), 4519 adap->vres.ocq.start); 4520 t4_read_reg(adap, 4521 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3)); 4522 } 4523 } 4524 4525 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 4526 { 4527 u32 v; 4528 int ret; 4529 4530 /* get device capabilities */ 4531 memset(c, 0, sizeof(*c)); 4532 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4533 FW_CMD_REQUEST | FW_CMD_READ); 4534 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 4535 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c); 4536 if (ret < 0) 4537 return ret; 4538 4539 /* select capabilities we'll be using */ 4540 if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) { 4541 if (!vf_acls) 4542 c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM); 4543 else 4544 c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM); 4545 } else if (vf_acls) { 4546 dev_err(adap->pdev_dev, "virtualization ACLs not supported"); 4547 return ret; 4548 } 4549 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4550 FW_CMD_REQUEST | FW_CMD_WRITE); 4551 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL); 4552 if (ret < 0) 4553 return ret; 4554 4555 ret = t4_config_glbl_rss(adap, adap->fn, 4556 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 4557 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN | 4558 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP); 4559 if (ret < 0) 4560 return ret; 4561 4562 ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ, 4563 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF); 4564 if (ret < 0) 4565 return ret; 4566 4567 t4_sge_init(adap); 4568 4569 /* tweak some settings */ 4570 t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849); 4571 t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12)); 4572 t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG); 4573 v = t4_read_reg(adap, TP_PIO_DATA); 4574 t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR); 4575 4576 /* first 4 Tx modulation queues point to consecutive Tx channels */ 4577 adap->params.tp.tx_modq_map = 0xE4; 4578 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP, 4579 V_TX_MOD_QUEUE_REQ_MAP(adap->params.tp.tx_modq_map)); 4580 4581 /* associate each Tx modulation queue with consecutive Tx channels */ 4582 v = 0x84218421; 4583 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA, 4584 &v, 1, A_TP_TX_SCHED_HDR); 4585 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA, 4586 &v, 1, A_TP_TX_SCHED_FIFO); 4587 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA, 4588 &v, 1, A_TP_TX_SCHED_PCMD); 4589 4590 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 4591 if (is_offload(adap)) { 4592 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 4593 V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4594 V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4595 V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4596 V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 4597 t4_write_reg(adap, A_TP_TX_MOD_CHANNEL_WEIGHT, 4598 V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4599 V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4600 V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4601 V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 4602 } 4603 4604 /* get basic stuff going */ 4605 return t4_early_init(adap, adap->fn); 4606 } 4607 4608 /* 4609 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 4610 */ 4611 #define MAX_ATIDS 8192U 4612 4613 /* 4614 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 4615 * 4616 * If the firmware we're dealing with has Configuration File support, then 4617 * we use that to perform all configuration 4618 */ 4619 4620 /* 4621 * Tweak configuration based on module parameters, etc. Most of these have 4622 * defaults assigned to them by Firmware Configuration Files (if we're using 4623 * them) but need to be explicitly set if we're using hard-coded 4624 * initialization. But even in the case of using Firmware Configuration 4625 * Files, we'd like to expose the ability to change these via module 4626 * parameters so these are essentially common tweaks/settings for 4627 * Configuration Files and hard-coded initialization ... 4628 */ 4629 static int adap_init0_tweaks(struct adapter *adapter) 4630 { 4631 /* 4632 * Fix up various Host-Dependent Parameters like Page Size, Cache 4633 * Line Size, etc. The firmware default is for a 4KB Page Size and 4634 * 64B Cache Line Size ... 4635 */ 4636 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 4637 4638 /* 4639 * Process module parameters which affect early initialization. 4640 */ 4641 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 4642 dev_err(&adapter->pdev->dev, 4643 "Ignoring illegal rx_dma_offset=%d, using 2\n", 4644 rx_dma_offset); 4645 rx_dma_offset = 2; 4646 } 4647 t4_set_reg_field(adapter, SGE_CONTROL, 4648 PKTSHIFT_MASK, 4649 PKTSHIFT(rx_dma_offset)); 4650 4651 /* 4652 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 4653 * adds the pseudo header itself. 4654 */ 4655 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG, 4656 CSUM_HAS_PSEUDO_HDR, 0); 4657 4658 return 0; 4659 } 4660 4661 /* 4662 * Attempt to initialize the adapter via a Firmware Configuration File. 4663 */ 4664 static int adap_init0_config(struct adapter *adapter, int reset) 4665 { 4666 struct fw_caps_config_cmd caps_cmd; 4667 const struct firmware *cf; 4668 unsigned long mtype = 0, maddr = 0; 4669 u32 finiver, finicsum, cfcsum; 4670 int ret, using_flash; 4671 char *fw_config_file, fw_config_file_path[256]; 4672 4673 /* 4674 * Reset device if necessary. 4675 */ 4676 if (reset) { 4677 ret = t4_fw_reset(adapter, adapter->mbox, 4678 PIORSTMODE | PIORST); 4679 if (ret < 0) 4680 goto bye; 4681 } 4682 4683 /* 4684 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 4685 * then use that. Otherwise, use the configuration file stored 4686 * in the adapter flash ... 4687 */ 4688 switch (CHELSIO_CHIP_VERSION(adapter->chip)) { 4689 case CHELSIO_T4: 4690 fw_config_file = FW_CFNAME; 4691 break; 4692 case CHELSIO_T5: 4693 fw_config_file = FW5_CFNAME; 4694 break; 4695 default: 4696 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 4697 adapter->pdev->device); 4698 ret = -EINVAL; 4699 goto bye; 4700 } 4701 4702 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 4703 if (ret < 0) { 4704 using_flash = 1; 4705 mtype = FW_MEMTYPE_CF_FLASH; 4706 maddr = t4_flash_cfg_addr(adapter); 4707 } else { 4708 u32 params[7], val[7]; 4709 4710 using_flash = 0; 4711 if (cf->size >= FLASH_CFG_MAX_SIZE) 4712 ret = -ENOMEM; 4713 else { 4714 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 4715 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF)); 4716 ret = t4_query_params(adapter, adapter->mbox, 4717 adapter->fn, 0, 1, params, val); 4718 if (ret == 0) { 4719 /* 4720 * For t4_memory_write() below addresses and 4721 * sizes have to be in terms of multiples of 4 4722 * bytes. So, if the Configuration File isn't 4723 * a multiple of 4 bytes in length we'll have 4724 * to write that out separately since we can't 4725 * guarantee that the bytes following the 4726 * residual byte in the buffer returned by 4727 * request_firmware() are zeroed out ... 4728 */ 4729 size_t resid = cf->size & 0x3; 4730 size_t size = cf->size & ~0x3; 4731 __be32 *data = (__be32 *)cf->data; 4732 4733 mtype = FW_PARAMS_PARAM_Y_GET(val[0]); 4734 maddr = FW_PARAMS_PARAM_Z_GET(val[0]) << 16; 4735 4736 ret = t4_memory_write(adapter, mtype, maddr, 4737 size, data); 4738 if (ret == 0 && resid != 0) { 4739 union { 4740 __be32 word; 4741 char buf[4]; 4742 } last; 4743 int i; 4744 4745 last.word = data[size >> 2]; 4746 for (i = resid; i < 4; i++) 4747 last.buf[i] = 0; 4748 ret = t4_memory_write(adapter, mtype, 4749 maddr + size, 4750 4, &last.word); 4751 } 4752 } 4753 } 4754 4755 release_firmware(cf); 4756 if (ret) 4757 goto bye; 4758 } 4759 4760 /* 4761 * Issue a Capability Configuration command to the firmware to get it 4762 * to parse the Configuration File. We don't use t4_fw_config_file() 4763 * because we want the ability to modify various features after we've 4764 * processed the configuration file ... 4765 */ 4766 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4767 caps_cmd.op_to_write = 4768 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4769 FW_CMD_REQUEST | 4770 FW_CMD_READ); 4771 caps_cmd.cfvalid_to_len16 = 4772 htonl(FW_CAPS_CONFIG_CMD_CFVALID | 4773 FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4774 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) | 4775 FW_LEN16(caps_cmd)); 4776 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4777 &caps_cmd); 4778 if (ret < 0) 4779 goto bye; 4780 4781 finiver = ntohl(caps_cmd.finiver); 4782 finicsum = ntohl(caps_cmd.finicsum); 4783 cfcsum = ntohl(caps_cmd.cfcsum); 4784 if (finicsum != cfcsum) 4785 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 4786 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 4787 finicsum, cfcsum); 4788 4789 /* 4790 * And now tell the firmware to use the configuration we just loaded. 4791 */ 4792 caps_cmd.op_to_write = 4793 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4794 FW_CMD_REQUEST | 4795 FW_CMD_WRITE); 4796 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4797 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4798 NULL); 4799 if (ret < 0) 4800 goto bye; 4801 4802 /* 4803 * Tweak configuration based on system architecture, module 4804 * parameters, etc. 4805 */ 4806 ret = adap_init0_tweaks(adapter); 4807 if (ret < 0) 4808 goto bye; 4809 4810 /* 4811 * And finally tell the firmware to initialize itself using the 4812 * parameters from the Configuration File. 4813 */ 4814 ret = t4_fw_initialize(adapter, adapter->mbox); 4815 if (ret < 0) 4816 goto bye; 4817 4818 sprintf(fw_config_file_path, "/lib/firmware/%s", fw_config_file); 4819 /* 4820 * Return successfully and note that we're operating with parameters 4821 * not supplied by the driver, rather than from hard-wired 4822 * initialization constants burried in the driver. 4823 */ 4824 adapter->flags |= USING_SOFT_PARAMS; 4825 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 4826 "Configuration File %s, version %#x, computed checksum %#x\n", 4827 (using_flash 4828 ? "in device FLASH" 4829 : fw_config_file_path), 4830 finiver, cfcsum); 4831 return 0; 4832 4833 /* 4834 * Something bad happened. Return the error ... (If the "error" 4835 * is that there's no Configuration File on the adapter we don't 4836 * want to issue a warning since this is fairly common.) 4837 */ 4838 bye: 4839 if (ret != -ENOENT) 4840 dev_warn(adapter->pdev_dev, "Configuration file error %d\n", 4841 -ret); 4842 return ret; 4843 } 4844 4845 /* 4846 * Attempt to initialize the adapter via hard-coded, driver supplied 4847 * parameters ... 4848 */ 4849 static int adap_init0_no_config(struct adapter *adapter, int reset) 4850 { 4851 struct sge *s = &adapter->sge; 4852 struct fw_caps_config_cmd caps_cmd; 4853 u32 v; 4854 int i, ret; 4855 4856 /* 4857 * Reset device if necessary 4858 */ 4859 if (reset) { 4860 ret = t4_fw_reset(adapter, adapter->mbox, 4861 PIORSTMODE | PIORST); 4862 if (ret < 0) 4863 goto bye; 4864 } 4865 4866 /* 4867 * Get device capabilities and select which we'll be using. 4868 */ 4869 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4870 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4871 FW_CMD_REQUEST | FW_CMD_READ); 4872 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4873 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4874 &caps_cmd); 4875 if (ret < 0) 4876 goto bye; 4877 4878 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) { 4879 if (!vf_acls) 4880 caps_cmd.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM); 4881 else 4882 caps_cmd.niccaps = htons(FW_CAPS_CONFIG_NIC_VM); 4883 } else if (vf_acls) { 4884 dev_err(adapter->pdev_dev, "virtualization ACLs not supported"); 4885 goto bye; 4886 } 4887 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4888 FW_CMD_REQUEST | FW_CMD_WRITE); 4889 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4890 NULL); 4891 if (ret < 0) 4892 goto bye; 4893 4894 /* 4895 * Tweak configuration based on system architecture, module 4896 * parameters, etc. 4897 */ 4898 ret = adap_init0_tweaks(adapter); 4899 if (ret < 0) 4900 goto bye; 4901 4902 /* 4903 * Select RSS Global Mode we want to use. We use "Basic Virtual" 4904 * mode which maps each Virtual Interface to its own section of 4905 * the RSS Table and we turn on all map and hash enables ... 4906 */ 4907 adapter->flags |= RSS_TNLALLLOOKUP; 4908 ret = t4_config_glbl_rss(adapter, adapter->mbox, 4909 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 4910 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN | 4911 FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ | 4912 ((adapter->flags & RSS_TNLALLLOOKUP) ? 4913 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP : 0)); 4914 if (ret < 0) 4915 goto bye; 4916 4917 /* 4918 * Set up our own fundamental resource provisioning ... 4919 */ 4920 ret = t4_cfg_pfvf(adapter, adapter->mbox, adapter->fn, 0, 4921 PFRES_NEQ, PFRES_NETHCTRL, 4922 PFRES_NIQFLINT, PFRES_NIQ, 4923 PFRES_TC, PFRES_NVI, 4924 FW_PFVF_CMD_CMASK_MASK, 4925 pfvfres_pmask(adapter, adapter->fn, 0), 4926 PFRES_NEXACTF, 4927 PFRES_R_CAPS, PFRES_WX_CAPS); 4928 if (ret < 0) 4929 goto bye; 4930 4931 /* 4932 * Perform low level SGE initialization. We need to do this before we 4933 * send the firmware the INITIALIZE command because that will cause 4934 * any other PF Drivers which are waiting for the Master 4935 * Initialization to proceed forward. 4936 */ 4937 for (i = 0; i < SGE_NTIMERS - 1; i++) 4938 s->timer_val[i] = min(intr_holdoff[i], MAX_SGE_TIMERVAL); 4939 s->timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL; 4940 s->counter_val[0] = 1; 4941 for (i = 1; i < SGE_NCOUNTERS; i++) 4942 s->counter_val[i] = min(intr_cnt[i - 1], 4943 THRESHOLD_0_GET(THRESHOLD_0_MASK)); 4944 t4_sge_init(adapter); 4945 4946 #ifdef CONFIG_PCI_IOV 4947 /* 4948 * Provision resource limits for Virtual Functions. We currently 4949 * grant them all the same static resource limits except for the Port 4950 * Access Rights Mask which we're assigning based on the PF. All of 4951 * the static provisioning stuff for both the PF and VF really needs 4952 * to be managed in a persistent manner for each device which the 4953 * firmware controls. 4954 */ 4955 { 4956 int pf, vf; 4957 4958 for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) { 4959 if (num_vf[pf] <= 0) 4960 continue; 4961 4962 /* VF numbering starts at 1! */ 4963 for (vf = 1; vf <= num_vf[pf]; vf++) { 4964 ret = t4_cfg_pfvf(adapter, adapter->mbox, 4965 pf, vf, 4966 VFRES_NEQ, VFRES_NETHCTRL, 4967 VFRES_NIQFLINT, VFRES_NIQ, 4968 VFRES_TC, VFRES_NVI, 4969 FW_PFVF_CMD_CMASK_MASK, 4970 pfvfres_pmask( 4971 adapter, pf, vf), 4972 VFRES_NEXACTF, 4973 VFRES_R_CAPS, VFRES_WX_CAPS); 4974 if (ret < 0) 4975 dev_warn(adapter->pdev_dev, 4976 "failed to "\ 4977 "provision pf/vf=%d/%d; " 4978 "err=%d\n", pf, vf, ret); 4979 } 4980 } 4981 } 4982 #endif 4983 4984 /* 4985 * Set up the default filter mode. Later we'll want to implement this 4986 * via a firmware command, etc. ... This needs to be done before the 4987 * firmare initialization command ... If the selected set of fields 4988 * isn't equal to the default value, we'll need to make sure that the 4989 * field selections will fit in the 36-bit budget. 4990 */ 4991 if (tp_vlan_pri_map != TP_VLAN_PRI_MAP_DEFAULT) { 4992 int j, bits = 0; 4993 4994 for (j = TP_VLAN_PRI_MAP_FIRST; j <= TP_VLAN_PRI_MAP_LAST; j++) 4995 switch (tp_vlan_pri_map & (1 << j)) { 4996 case 0: 4997 /* compressed filter field not enabled */ 4998 break; 4999 case FCOE_MASK: 5000 bits += 1; 5001 break; 5002 case PORT_MASK: 5003 bits += 3; 5004 break; 5005 case VNIC_ID_MASK: 5006 bits += 17; 5007 break; 5008 case VLAN_MASK: 5009 bits += 17; 5010 break; 5011 case TOS_MASK: 5012 bits += 8; 5013 break; 5014 case PROTOCOL_MASK: 5015 bits += 8; 5016 break; 5017 case ETHERTYPE_MASK: 5018 bits += 16; 5019 break; 5020 case MACMATCH_MASK: 5021 bits += 9; 5022 break; 5023 case MPSHITTYPE_MASK: 5024 bits += 3; 5025 break; 5026 case FRAGMENTATION_MASK: 5027 bits += 1; 5028 break; 5029 } 5030 5031 if (bits > 36) { 5032 dev_err(adapter->pdev_dev, 5033 "tp_vlan_pri_map=%#x needs %d bits > 36;"\ 5034 " using %#x\n", tp_vlan_pri_map, bits, 5035 TP_VLAN_PRI_MAP_DEFAULT); 5036 tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT; 5037 } 5038 } 5039 v = tp_vlan_pri_map; 5040 t4_write_indirect(adapter, TP_PIO_ADDR, TP_PIO_DATA, 5041 &v, 1, TP_VLAN_PRI_MAP); 5042 5043 /* 5044 * We need Five Tuple Lookup mode to be set in TP_GLOBAL_CONFIG order 5045 * to support any of the compressed filter fields above. Newer 5046 * versions of the firmware do this automatically but it doesn't hurt 5047 * to set it here. Meanwhile, we do _not_ need to set Lookup Every 5048 * Packet in TP_INGRESS_CONFIG to support matching non-TCP packets 5049 * since the firmware automatically turns this on and off when we have 5050 * a non-zero number of filters active (since it does have a 5051 * performance impact). 5052 */ 5053 if (tp_vlan_pri_map) 5054 t4_set_reg_field(adapter, TP_GLOBAL_CONFIG, 5055 FIVETUPLELOOKUP_MASK, 5056 FIVETUPLELOOKUP_MASK); 5057 5058 /* 5059 * Tweak some settings. 5060 */ 5061 t4_write_reg(adapter, TP_SHIFT_CNT, SYNSHIFTMAX(6) | 5062 RXTSHIFTMAXR1(4) | RXTSHIFTMAXR2(15) | 5063 PERSHIFTBACKOFFMAX(8) | PERSHIFTMAX(8) | 5064 KEEPALIVEMAXR1(4) | KEEPALIVEMAXR2(9)); 5065 5066 /* 5067 * Get basic stuff going by issuing the Firmware Initialize command. 5068 * Note that this _must_ be after all PFVF commands ... 5069 */ 5070 ret = t4_fw_initialize(adapter, adapter->mbox); 5071 if (ret < 0) 5072 goto bye; 5073 5074 /* 5075 * Return successfully! 5076 */ 5077 dev_info(adapter->pdev_dev, "Successfully configured using built-in "\ 5078 "driver parameters\n"); 5079 return 0; 5080 5081 /* 5082 * Something bad happened. Return the error ... 5083 */ 5084 bye: 5085 return ret; 5086 } 5087 5088 /* 5089 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 5090 */ 5091 static int adap_init0(struct adapter *adap) 5092 { 5093 int ret; 5094 u32 v, port_vec; 5095 enum dev_state state; 5096 u32 params[7], val[7]; 5097 struct fw_caps_config_cmd caps_cmd; 5098 int reset = 1, j; 5099 5100 /* 5101 * Contact FW, advertising Master capability (and potentially forcing 5102 * ourselves as the Master PF if our module parameter force_init is 5103 * set). 5104 */ 5105 ret = t4_fw_hello(adap, adap->mbox, adap->fn, 5106 force_init ? MASTER_MUST : MASTER_MAY, 5107 &state); 5108 if (ret < 0) { 5109 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 5110 ret); 5111 return ret; 5112 } 5113 if (ret == adap->mbox) 5114 adap->flags |= MASTER_PF; 5115 if (force_init && state == DEV_STATE_INIT) 5116 state = DEV_STATE_UNINIT; 5117 5118 /* 5119 * If we're the Master PF Driver and the device is uninitialized, 5120 * then let's consider upgrading the firmware ... (We always want 5121 * to check the firmware version number in order to A. get it for 5122 * later reporting and B. to warn if the currently loaded firmware 5123 * is excessively mismatched relative to the driver.) 5124 */ 5125 ret = t4_check_fw_version(adap); 5126 5127 /* The error code -EFAULT is returned by t4_check_fw_version() if 5128 * firmware on adapter < supported firmware. If firmware on adapter 5129 * is too old (not supported by driver) and we're the MASTER_PF set 5130 * adapter state to DEV_STATE_UNINIT to force firmware upgrade 5131 * and reinitialization. 5132 */ 5133 if ((adap->flags & MASTER_PF) && ret == -EFAULT) 5134 state = DEV_STATE_UNINIT; 5135 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) { 5136 if (ret == -EINVAL || ret == -EFAULT || ret > 0) { 5137 if (upgrade_fw(adap) >= 0) { 5138 /* 5139 * Note that the chip was reset as part of the 5140 * firmware upgrade so we don't reset it again 5141 * below and grab the new firmware version. 5142 */ 5143 reset = 0; 5144 ret = t4_check_fw_version(adap); 5145 } else 5146 if (ret == -EFAULT) { 5147 /* 5148 * Firmware is old but still might 5149 * work if we force reinitialization 5150 * of the adapter. Ignoring FW upgrade 5151 * failure. 5152 */ 5153 dev_warn(adap->pdev_dev, 5154 "Ignoring firmware upgrade " 5155 "failure, and forcing driver " 5156 "to reinitialize the " 5157 "adapter.\n"); 5158 ret = 0; 5159 } 5160 } 5161 if (ret < 0) 5162 return ret; 5163 } 5164 5165 /* 5166 * Grab VPD parameters. This should be done after we establish a 5167 * connection to the firmware since some of the VPD parameters 5168 * (notably the Core Clock frequency) are retrieved via requests to 5169 * the firmware. On the other hand, we need these fairly early on 5170 * so we do this right after getting ahold of the firmware. 5171 */ 5172 ret = get_vpd_params(adap, &adap->params.vpd); 5173 if (ret < 0) 5174 goto bye; 5175 5176 /* 5177 * Find out what ports are available to us. Note that we need to do 5178 * this before calling adap_init0_no_config() since it needs nports 5179 * and portvec ... 5180 */ 5181 v = 5182 FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5183 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC); 5184 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec); 5185 if (ret < 0) 5186 goto bye; 5187 5188 adap->params.nports = hweight32(port_vec); 5189 adap->params.portvec = port_vec; 5190 5191 /* 5192 * If the firmware is initialized already (and we're not forcing a 5193 * master initialization), note that we're living with existing 5194 * adapter parameters. Otherwise, it's time to try initializing the 5195 * adapter ... 5196 */ 5197 if (state == DEV_STATE_INIT) { 5198 dev_info(adap->pdev_dev, "Coming up as %s: "\ 5199 "Adapter already initialized\n", 5200 adap->flags & MASTER_PF ? "MASTER" : "SLAVE"); 5201 adap->flags |= USING_SOFT_PARAMS; 5202 } else { 5203 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 5204 "Initializing adapter\n"); 5205 5206 /* 5207 * If the firmware doesn't support Configuration 5208 * Files warn user and exit, 5209 */ 5210 if (ret < 0) 5211 dev_warn(adap->pdev_dev, "Firmware doesn't support " 5212 "configuration file.\n"); 5213 if (force_old_init) 5214 ret = adap_init0_no_config(adap, reset); 5215 else { 5216 /* 5217 * Find out whether we're dealing with a version of 5218 * the firmware which has configuration file support. 5219 */ 5220 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5221 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF)); 5222 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, 5223 params, val); 5224 5225 /* 5226 * If the firmware doesn't support Configuration 5227 * Files, use the old Driver-based, hard-wired 5228 * initialization. Otherwise, try using the 5229 * Configuration File support and fall back to the 5230 * Driver-based initialization if there's no 5231 * Configuration File found. 5232 */ 5233 if (ret < 0) 5234 ret = adap_init0_no_config(adap, reset); 5235 else { 5236 /* 5237 * The firmware provides us with a memory 5238 * buffer where we can load a Configuration 5239 * File from the host if we want to override 5240 * the Configuration File in flash. 5241 */ 5242 5243 ret = adap_init0_config(adap, reset); 5244 if (ret == -ENOENT) { 5245 dev_info(adap->pdev_dev, 5246 "No Configuration File present " 5247 "on adapter. Using hard-wired " 5248 "configuration parameters.\n"); 5249 ret = adap_init0_no_config(adap, reset); 5250 } 5251 } 5252 } 5253 if (ret < 0) { 5254 dev_err(adap->pdev_dev, 5255 "could not initialize adapter, error %d\n", 5256 -ret); 5257 goto bye; 5258 } 5259 } 5260 5261 /* 5262 * If we're living with non-hard-coded parameters (either from a 5263 * Firmware Configuration File or values programmed by a different PF 5264 * Driver), give the SGE code a chance to pull in anything that it 5265 * needs ... Note that this must be called after we retrieve our VPD 5266 * parameters in order to know how to convert core ticks to seconds. 5267 */ 5268 if (adap->flags & USING_SOFT_PARAMS) { 5269 ret = t4_sge_init(adap); 5270 if (ret < 0) 5271 goto bye; 5272 } 5273 5274 if (is_bypass_device(adap->pdev->device)) 5275 adap->params.bypass = 1; 5276 5277 /* 5278 * Grab some of our basic fundamental operating parameters. 5279 */ 5280 #define FW_PARAM_DEV(param) \ 5281 (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 5282 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 5283 5284 #define FW_PARAM_PFVF(param) \ 5285 FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 5286 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)| \ 5287 FW_PARAMS_PARAM_Y(0) | \ 5288 FW_PARAMS_PARAM_Z(0) 5289 5290 params[0] = FW_PARAM_PFVF(EQ_START); 5291 params[1] = FW_PARAM_PFVF(L2T_START); 5292 params[2] = FW_PARAM_PFVF(L2T_END); 5293 params[3] = FW_PARAM_PFVF(FILTER_START); 5294 params[4] = FW_PARAM_PFVF(FILTER_END); 5295 params[5] = FW_PARAM_PFVF(IQFLINT_START); 5296 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val); 5297 if (ret < 0) 5298 goto bye; 5299 adap->sge.egr_start = val[0]; 5300 adap->l2t_start = val[1]; 5301 adap->l2t_end = val[2]; 5302 adap->tids.ftid_base = val[3]; 5303 adap->tids.nftids = val[4] - val[3] + 1; 5304 adap->sge.ingr_start = val[5]; 5305 5306 /* query params related to active filter region */ 5307 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 5308 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 5309 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val); 5310 /* If Active filter size is set we enable establishing 5311 * offload connection through firmware work request 5312 */ 5313 if ((val[0] != val[1]) && (ret >= 0)) { 5314 adap->flags |= FW_OFLD_CONN; 5315 adap->tids.aftid_base = val[0]; 5316 adap->tids.aftid_end = val[1]; 5317 } 5318 5319 /* If we're running on newer firmware, let it know that we're 5320 * prepared to deal with encapsulated CPL messages. Older 5321 * firmware won't understand this and we'll just get 5322 * unencapsulated messages ... 5323 */ 5324 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 5325 val[0] = 1; 5326 (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val); 5327 5328 /* 5329 * Get device capabilities so we can determine what resources we need 5330 * to manage. 5331 */ 5332 memset(&caps_cmd, 0, sizeof(caps_cmd)); 5333 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5334 FW_CMD_REQUEST | FW_CMD_READ); 5335 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 5336 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 5337 &caps_cmd); 5338 if (ret < 0) 5339 goto bye; 5340 5341 if (caps_cmd.ofldcaps) { 5342 /* query offload-related parameters */ 5343 params[0] = FW_PARAM_DEV(NTID); 5344 params[1] = FW_PARAM_PFVF(SERVER_START); 5345 params[2] = FW_PARAM_PFVF(SERVER_END); 5346 params[3] = FW_PARAM_PFVF(TDDP_START); 5347 params[4] = FW_PARAM_PFVF(TDDP_END); 5348 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5349 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, 5350 params, val); 5351 if (ret < 0) 5352 goto bye; 5353 adap->tids.ntids = val[0]; 5354 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 5355 adap->tids.stid_base = val[1]; 5356 adap->tids.nstids = val[2] - val[1] + 1; 5357 /* 5358 * Setup server filter region. Divide the availble filter 5359 * region into two parts. Regular filters get 1/3rd and server 5360 * filters get 2/3rd part. This is only enabled if workarond 5361 * path is enabled. 5362 * 1. For regular filters. 5363 * 2. Server filter: This are special filters which are used 5364 * to redirect SYN packets to offload queue. 5365 */ 5366 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) { 5367 adap->tids.sftid_base = adap->tids.ftid_base + 5368 DIV_ROUND_UP(adap->tids.nftids, 3); 5369 adap->tids.nsftids = adap->tids.nftids - 5370 DIV_ROUND_UP(adap->tids.nftids, 3); 5371 adap->tids.nftids = adap->tids.sftid_base - 5372 adap->tids.ftid_base; 5373 } 5374 adap->vres.ddp.start = val[3]; 5375 adap->vres.ddp.size = val[4] - val[3] + 1; 5376 adap->params.ofldq_wr_cred = val[5]; 5377 5378 adap->params.offload = 1; 5379 } 5380 if (caps_cmd.rdmacaps) { 5381 params[0] = FW_PARAM_PFVF(STAG_START); 5382 params[1] = FW_PARAM_PFVF(STAG_END); 5383 params[2] = FW_PARAM_PFVF(RQ_START); 5384 params[3] = FW_PARAM_PFVF(RQ_END); 5385 params[4] = FW_PARAM_PFVF(PBL_START); 5386 params[5] = FW_PARAM_PFVF(PBL_END); 5387 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, 5388 params, val); 5389 if (ret < 0) 5390 goto bye; 5391 adap->vres.stag.start = val[0]; 5392 adap->vres.stag.size = val[1] - val[0] + 1; 5393 adap->vres.rq.start = val[2]; 5394 adap->vres.rq.size = val[3] - val[2] + 1; 5395 adap->vres.pbl.start = val[4]; 5396 adap->vres.pbl.size = val[5] - val[4] + 1; 5397 5398 params[0] = FW_PARAM_PFVF(SQRQ_START); 5399 params[1] = FW_PARAM_PFVF(SQRQ_END); 5400 params[2] = FW_PARAM_PFVF(CQ_START); 5401 params[3] = FW_PARAM_PFVF(CQ_END); 5402 params[4] = FW_PARAM_PFVF(OCQ_START); 5403 params[5] = FW_PARAM_PFVF(OCQ_END); 5404 ret = t4_query_params(adap, 0, 0, 0, 6, params, val); 5405 if (ret < 0) 5406 goto bye; 5407 adap->vres.qp.start = val[0]; 5408 adap->vres.qp.size = val[1] - val[0] + 1; 5409 adap->vres.cq.start = val[2]; 5410 adap->vres.cq.size = val[3] - val[2] + 1; 5411 adap->vres.ocq.start = val[4]; 5412 adap->vres.ocq.size = val[5] - val[4] + 1; 5413 } 5414 if (caps_cmd.iscsicaps) { 5415 params[0] = FW_PARAM_PFVF(ISCSI_START); 5416 params[1] = FW_PARAM_PFVF(ISCSI_END); 5417 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, 5418 params, val); 5419 if (ret < 0) 5420 goto bye; 5421 adap->vres.iscsi.start = val[0]; 5422 adap->vres.iscsi.size = val[1] - val[0] + 1; 5423 } 5424 #undef FW_PARAM_PFVF 5425 #undef FW_PARAM_DEV 5426 5427 /* 5428 * These are finalized by FW initialization, load their values now. 5429 */ 5430 v = t4_read_reg(adap, TP_TIMER_RESOLUTION); 5431 adap->params.tp.tre = TIMERRESOLUTION_GET(v); 5432 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_GET(v); 5433 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 5434 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 5435 adap->params.b_wnd); 5436 5437 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 5438 for (j = 0; j < NCHAN; j++) 5439 adap->params.tp.tx_modq[j] = j; 5440 5441 t4_read_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA, 5442 &adap->filter_mode, 1, 5443 TP_VLAN_PRI_MAP); 5444 5445 adap->flags |= FW_OK; 5446 return 0; 5447 5448 /* 5449 * Something bad happened. If a command timed out or failed with EIO 5450 * FW does not operate within its spec or something catastrophic 5451 * happened to HW/FW, stop issuing commands. 5452 */ 5453 bye: 5454 if (ret != -ETIMEDOUT && ret != -EIO) 5455 t4_fw_bye(adap, adap->mbox); 5456 return ret; 5457 } 5458 5459 /* EEH callbacks */ 5460 5461 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 5462 pci_channel_state_t state) 5463 { 5464 int i; 5465 struct adapter *adap = pci_get_drvdata(pdev); 5466 5467 if (!adap) 5468 goto out; 5469 5470 rtnl_lock(); 5471 adap->flags &= ~FW_OK; 5472 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 5473 for_each_port(adap, i) { 5474 struct net_device *dev = adap->port[i]; 5475 5476 netif_device_detach(dev); 5477 netif_carrier_off(dev); 5478 } 5479 if (adap->flags & FULL_INIT_DONE) 5480 cxgb_down(adap); 5481 rtnl_unlock(); 5482 pci_disable_device(pdev); 5483 out: return state == pci_channel_io_perm_failure ? 5484 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 5485 } 5486 5487 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 5488 { 5489 int i, ret; 5490 struct fw_caps_config_cmd c; 5491 struct adapter *adap = pci_get_drvdata(pdev); 5492 5493 if (!adap) { 5494 pci_restore_state(pdev); 5495 pci_save_state(pdev); 5496 return PCI_ERS_RESULT_RECOVERED; 5497 } 5498 5499 if (pci_enable_device(pdev)) { 5500 dev_err(&pdev->dev, "cannot reenable PCI device after reset\n"); 5501 return PCI_ERS_RESULT_DISCONNECT; 5502 } 5503 5504 pci_set_master(pdev); 5505 pci_restore_state(pdev); 5506 pci_save_state(pdev); 5507 pci_cleanup_aer_uncorrect_error_status(pdev); 5508 5509 if (t4_wait_dev_ready(adap) < 0) 5510 return PCI_ERS_RESULT_DISCONNECT; 5511 if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0) 5512 return PCI_ERS_RESULT_DISCONNECT; 5513 adap->flags |= FW_OK; 5514 if (adap_init1(adap, &c)) 5515 return PCI_ERS_RESULT_DISCONNECT; 5516 5517 for_each_port(adap, i) { 5518 struct port_info *p = adap2pinfo(adap, i); 5519 5520 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1, 5521 NULL, NULL); 5522 if (ret < 0) 5523 return PCI_ERS_RESULT_DISCONNECT; 5524 p->viid = ret; 5525 p->xact_addr_filt = -1; 5526 } 5527 5528 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 5529 adap->params.b_wnd); 5530 setup_memwin(adap); 5531 if (cxgb_up(adap)) 5532 return PCI_ERS_RESULT_DISCONNECT; 5533 return PCI_ERS_RESULT_RECOVERED; 5534 } 5535 5536 static void eeh_resume(struct pci_dev *pdev) 5537 { 5538 int i; 5539 struct adapter *adap = pci_get_drvdata(pdev); 5540 5541 if (!adap) 5542 return; 5543 5544 rtnl_lock(); 5545 for_each_port(adap, i) { 5546 struct net_device *dev = adap->port[i]; 5547 5548 if (netif_running(dev)) { 5549 link_start(dev); 5550 cxgb_set_rxmode(dev); 5551 } 5552 netif_device_attach(dev); 5553 } 5554 rtnl_unlock(); 5555 } 5556 5557 static const struct pci_error_handlers cxgb4_eeh = { 5558 .error_detected = eeh_err_detected, 5559 .slot_reset = eeh_slot_reset, 5560 .resume = eeh_resume, 5561 }; 5562 5563 static inline bool is_10g_port(const struct link_config *lc) 5564 { 5565 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0; 5566 } 5567 5568 static inline void init_rspq(struct sge_rspq *q, u8 timer_idx, u8 pkt_cnt_idx, 5569 unsigned int size, unsigned int iqe_size) 5570 { 5571 q->intr_params = QINTR_TIMER_IDX(timer_idx) | 5572 (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0); 5573 q->pktcnt_idx = pkt_cnt_idx < SGE_NCOUNTERS ? pkt_cnt_idx : 0; 5574 q->iqe_len = iqe_size; 5575 q->size = size; 5576 } 5577 5578 /* 5579 * Perform default configuration of DMA queues depending on the number and type 5580 * of ports we found and the number of available CPUs. Most settings can be 5581 * modified by the admin prior to actual use. 5582 */ 5583 static void cfg_queues(struct adapter *adap) 5584 { 5585 struct sge *s = &adap->sge; 5586 int i, q10g = 0, n10g = 0, qidx = 0; 5587 5588 for_each_port(adap, i) 5589 n10g += is_10g_port(&adap2pinfo(adap, i)->link_cfg); 5590 5591 /* 5592 * We default to 1 queue per non-10G port and up to # of cores queues 5593 * per 10G port. 5594 */ 5595 if (n10g) 5596 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g; 5597 if (q10g > netif_get_num_default_rss_queues()) 5598 q10g = netif_get_num_default_rss_queues(); 5599 5600 for_each_port(adap, i) { 5601 struct port_info *pi = adap2pinfo(adap, i); 5602 5603 pi->first_qset = qidx; 5604 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1; 5605 qidx += pi->nqsets; 5606 } 5607 5608 s->ethqsets = qidx; 5609 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 5610 5611 if (is_offload(adap)) { 5612 /* 5613 * For offload we use 1 queue/channel if all ports are up to 1G, 5614 * otherwise we divide all available queues amongst the channels 5615 * capped by the number of available cores. 5616 */ 5617 if (n10g) { 5618 i = min_t(int, ARRAY_SIZE(s->ofldrxq), 5619 num_online_cpus()); 5620 s->ofldqsets = roundup(i, adap->params.nports); 5621 } else 5622 s->ofldqsets = adap->params.nports; 5623 /* For RDMA one Rx queue per channel suffices */ 5624 s->rdmaqs = adap->params.nports; 5625 } 5626 5627 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 5628 struct sge_eth_rxq *r = &s->ethrxq[i]; 5629 5630 init_rspq(&r->rspq, 0, 0, 1024, 64); 5631 r->fl.size = 72; 5632 } 5633 5634 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 5635 s->ethtxq[i].q.size = 1024; 5636 5637 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 5638 s->ctrlq[i].q.size = 512; 5639 5640 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) 5641 s->ofldtxq[i].q.size = 1024; 5642 5643 for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) { 5644 struct sge_ofld_rxq *r = &s->ofldrxq[i]; 5645 5646 init_rspq(&r->rspq, 0, 0, 1024, 64); 5647 r->rspq.uld = CXGB4_ULD_ISCSI; 5648 r->fl.size = 72; 5649 } 5650 5651 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) { 5652 struct sge_ofld_rxq *r = &s->rdmarxq[i]; 5653 5654 init_rspq(&r->rspq, 0, 0, 511, 64); 5655 r->rspq.uld = CXGB4_ULD_RDMA; 5656 r->fl.size = 72; 5657 } 5658 5659 init_rspq(&s->fw_evtq, 6, 0, 512, 64); 5660 init_rspq(&s->intrq, 6, 0, 2 * MAX_INGQ, 64); 5661 } 5662 5663 /* 5664 * Reduce the number of Ethernet queues across all ports to at most n. 5665 * n provides at least one queue per port. 5666 */ 5667 static void reduce_ethqs(struct adapter *adap, int n) 5668 { 5669 int i; 5670 struct port_info *pi; 5671 5672 while (n < adap->sge.ethqsets) 5673 for_each_port(adap, i) { 5674 pi = adap2pinfo(adap, i); 5675 if (pi->nqsets > 1) { 5676 pi->nqsets--; 5677 adap->sge.ethqsets--; 5678 if (adap->sge.ethqsets <= n) 5679 break; 5680 } 5681 } 5682 5683 n = 0; 5684 for_each_port(adap, i) { 5685 pi = adap2pinfo(adap, i); 5686 pi->first_qset = n; 5687 n += pi->nqsets; 5688 } 5689 } 5690 5691 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 5692 #define EXTRA_VECS 2 5693 5694 static int enable_msix(struct adapter *adap) 5695 { 5696 int ofld_need = 0; 5697 int i, err, want, need; 5698 struct sge *s = &adap->sge; 5699 unsigned int nchan = adap->params.nports; 5700 struct msix_entry entries[MAX_INGQ + 1]; 5701 5702 for (i = 0; i < ARRAY_SIZE(entries); ++i) 5703 entries[i].entry = i; 5704 5705 want = s->max_ethqsets + EXTRA_VECS; 5706 if (is_offload(adap)) { 5707 want += s->rdmaqs + s->ofldqsets; 5708 /* need nchan for each possible ULD */ 5709 ofld_need = 2 * nchan; 5710 } 5711 need = adap->params.nports + EXTRA_VECS + ofld_need; 5712 5713 while ((err = pci_enable_msix(adap->pdev, entries, want)) >= need) 5714 want = err; 5715 5716 if (!err) { 5717 /* 5718 * Distribute available vectors to the various queue groups. 5719 * Every group gets its minimum requirement and NIC gets top 5720 * priority for leftovers. 5721 */ 5722 i = want - EXTRA_VECS - ofld_need; 5723 if (i < s->max_ethqsets) { 5724 s->max_ethqsets = i; 5725 if (i < s->ethqsets) 5726 reduce_ethqs(adap, i); 5727 } 5728 if (is_offload(adap)) { 5729 i = want - EXTRA_VECS - s->max_ethqsets; 5730 i -= ofld_need - nchan; 5731 s->ofldqsets = (i / nchan) * nchan; /* round down */ 5732 } 5733 for (i = 0; i < want; ++i) 5734 adap->msix_info[i].vec = entries[i].vector; 5735 } else if (err > 0) 5736 dev_info(adap->pdev_dev, 5737 "only %d MSI-X vectors left, not using MSI-X\n", err); 5738 return err; 5739 } 5740 5741 #undef EXTRA_VECS 5742 5743 static int init_rss(struct adapter *adap) 5744 { 5745 unsigned int i, j; 5746 5747 for_each_port(adap, i) { 5748 struct port_info *pi = adap2pinfo(adap, i); 5749 5750 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 5751 if (!pi->rss) 5752 return -ENOMEM; 5753 for (j = 0; j < pi->rss_size; j++) 5754 pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets); 5755 } 5756 return 0; 5757 } 5758 5759 static void print_port_info(const struct net_device *dev) 5760 { 5761 static const char *base[] = { 5762 "R XFI", "R XAUI", "T SGMII", "T XFI", "T XAUI", "KX4", "CX4", 5763 "KX", "KR", "R SFP+", "KR/KX", "KR/KX/KX4" 5764 }; 5765 5766 char buf[80]; 5767 char *bufp = buf; 5768 const char *spd = ""; 5769 const struct port_info *pi = netdev_priv(dev); 5770 const struct adapter *adap = pi->adapter; 5771 5772 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB) 5773 spd = " 2.5 GT/s"; 5774 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB) 5775 spd = " 5 GT/s"; 5776 5777 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M) 5778 bufp += sprintf(bufp, "100/"); 5779 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G) 5780 bufp += sprintf(bufp, "1000/"); 5781 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G) 5782 bufp += sprintf(bufp, "10G/"); 5783 if (bufp != buf) 5784 --bufp; 5785 sprintf(bufp, "BASE-%s", base[pi->port_type]); 5786 5787 netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n", 5788 adap->params.vpd.id, 5789 CHELSIO_CHIP_RELEASE(adap->params.rev), buf, 5790 is_offload(adap) ? "R" : "", adap->params.pci.width, spd, 5791 (adap->flags & USING_MSIX) ? " MSI-X" : 5792 (adap->flags & USING_MSI) ? " MSI" : ""); 5793 netdev_info(dev, "S/N: %s, E/C: %s\n", 5794 adap->params.vpd.sn, adap->params.vpd.ec); 5795 } 5796 5797 static void enable_pcie_relaxed_ordering(struct pci_dev *dev) 5798 { 5799 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN); 5800 } 5801 5802 /* 5803 * Free the following resources: 5804 * - memory used for tables 5805 * - MSI/MSI-X 5806 * - net devices 5807 * - resources FW is holding for us 5808 */ 5809 static void free_some_resources(struct adapter *adapter) 5810 { 5811 unsigned int i; 5812 5813 t4_free_mem(adapter->l2t); 5814 t4_free_mem(adapter->tids.tid_tab); 5815 disable_msi(adapter); 5816 5817 for_each_port(adapter, i) 5818 if (adapter->port[i]) { 5819 kfree(adap2pinfo(adapter, i)->rss); 5820 free_netdev(adapter->port[i]); 5821 } 5822 if (adapter->flags & FW_OK) 5823 t4_fw_bye(adapter, adapter->fn); 5824 } 5825 5826 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 5827 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 5828 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 5829 #define SEGMENT_SIZE 128 5830 5831 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 5832 { 5833 int func, i, err, s_qpp, qpp, num_seg; 5834 struct port_info *pi; 5835 bool highdma = false; 5836 struct adapter *adapter = NULL; 5837 5838 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 5839 5840 err = pci_request_regions(pdev, KBUILD_MODNAME); 5841 if (err) { 5842 /* Just info, some other driver may have claimed the device. */ 5843 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 5844 return err; 5845 } 5846 5847 /* We control everything through one PF */ 5848 func = PCI_FUNC(pdev->devfn); 5849 if (func != ent->driver_data) { 5850 pci_save_state(pdev); /* to restore SR-IOV later */ 5851 goto sriov; 5852 } 5853 5854 err = pci_enable_device(pdev); 5855 if (err) { 5856 dev_err(&pdev->dev, "cannot enable PCI device\n"); 5857 goto out_release_regions; 5858 } 5859 5860 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 5861 highdma = true; 5862 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 5863 if (err) { 5864 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 5865 "coherent allocations\n"); 5866 goto out_disable_device; 5867 } 5868 } else { 5869 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 5870 if (err) { 5871 dev_err(&pdev->dev, "no usable DMA configuration\n"); 5872 goto out_disable_device; 5873 } 5874 } 5875 5876 pci_enable_pcie_error_reporting(pdev); 5877 enable_pcie_relaxed_ordering(pdev); 5878 pci_set_master(pdev); 5879 pci_save_state(pdev); 5880 5881 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 5882 if (!adapter) { 5883 err = -ENOMEM; 5884 goto out_disable_device; 5885 } 5886 5887 adapter->regs = pci_ioremap_bar(pdev, 0); 5888 if (!adapter->regs) { 5889 dev_err(&pdev->dev, "cannot map device registers\n"); 5890 err = -ENOMEM; 5891 goto out_free_adapter; 5892 } 5893 5894 adapter->pdev = pdev; 5895 adapter->pdev_dev = &pdev->dev; 5896 adapter->mbox = func; 5897 adapter->fn = func; 5898 adapter->msg_enable = dflt_msg_enable; 5899 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 5900 5901 spin_lock_init(&adapter->stats_lock); 5902 spin_lock_init(&adapter->tid_release_lock); 5903 5904 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 5905 INIT_WORK(&adapter->db_full_task, process_db_full); 5906 INIT_WORK(&adapter->db_drop_task, process_db_drop); 5907 5908 err = t4_prep_adapter(adapter); 5909 if (err) 5910 goto out_unmap_bar0; 5911 5912 if (!is_t4(adapter->chip)) { 5913 s_qpp = QUEUESPERPAGEPF1 * adapter->fn; 5914 qpp = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adapter, 5915 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp); 5916 num_seg = PAGE_SIZE / SEGMENT_SIZE; 5917 5918 /* Each segment size is 128B. Write coalescing is enabled only 5919 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 5920 * queue is less no of segments that can be accommodated in 5921 * a page size. 5922 */ 5923 if (qpp > num_seg) { 5924 dev_err(&pdev->dev, 5925 "Incorrect number of egress queues per page\n"); 5926 err = -EINVAL; 5927 goto out_unmap_bar0; 5928 } 5929 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 5930 pci_resource_len(pdev, 2)); 5931 if (!adapter->bar2) { 5932 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 5933 err = -ENOMEM; 5934 goto out_unmap_bar0; 5935 } 5936 } 5937 5938 setup_memwin(adapter); 5939 err = adap_init0(adapter); 5940 setup_memwin_rdma(adapter); 5941 if (err) 5942 goto out_unmap_bar; 5943 5944 for_each_port(adapter, i) { 5945 struct net_device *netdev; 5946 5947 netdev = alloc_etherdev_mq(sizeof(struct port_info), 5948 MAX_ETH_QSETS); 5949 if (!netdev) { 5950 err = -ENOMEM; 5951 goto out_free_dev; 5952 } 5953 5954 SET_NETDEV_DEV(netdev, &pdev->dev); 5955 5956 adapter->port[i] = netdev; 5957 pi = netdev_priv(netdev); 5958 pi->adapter = adapter; 5959 pi->xact_addr_filt = -1; 5960 pi->port_id = i; 5961 netdev->irq = pdev->irq; 5962 5963 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 5964 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 5965 NETIF_F_RXCSUM | NETIF_F_RXHASH | 5966 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 5967 if (highdma) 5968 netdev->hw_features |= NETIF_F_HIGHDMA; 5969 netdev->features |= netdev->hw_features; 5970 netdev->vlan_features = netdev->features & VLAN_FEAT; 5971 5972 netdev->priv_flags |= IFF_UNICAST_FLT; 5973 5974 netdev->netdev_ops = &cxgb4_netdev_ops; 5975 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops); 5976 } 5977 5978 pci_set_drvdata(pdev, adapter); 5979 5980 if (adapter->flags & FW_OK) { 5981 err = t4_port_init(adapter, func, func, 0); 5982 if (err) 5983 goto out_free_dev; 5984 } 5985 5986 /* 5987 * Configure queues and allocate tables now, they can be needed as 5988 * soon as the first register_netdev completes. 5989 */ 5990 cfg_queues(adapter); 5991 5992 adapter->l2t = t4_init_l2t(); 5993 if (!adapter->l2t) { 5994 /* We tolerate a lack of L2T, giving up some functionality */ 5995 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 5996 adapter->params.offload = 0; 5997 } 5998 5999 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) { 6000 dev_warn(&pdev->dev, "could not allocate TID table, " 6001 "continuing\n"); 6002 adapter->params.offload = 0; 6003 } 6004 6005 /* See what interrupts we'll be using */ 6006 if (msi > 1 && enable_msix(adapter) == 0) 6007 adapter->flags |= USING_MSIX; 6008 else if (msi > 0 && pci_enable_msi(pdev) == 0) 6009 adapter->flags |= USING_MSI; 6010 6011 err = init_rss(adapter); 6012 if (err) 6013 goto out_free_dev; 6014 6015 /* 6016 * The card is now ready to go. If any errors occur during device 6017 * registration we do not fail the whole card but rather proceed only 6018 * with the ports we manage to register successfully. However we must 6019 * register at least one net device. 6020 */ 6021 for_each_port(adapter, i) { 6022 pi = adap2pinfo(adapter, i); 6023 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 6024 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 6025 6026 err = register_netdev(adapter->port[i]); 6027 if (err) 6028 break; 6029 adapter->chan_map[pi->tx_chan] = i; 6030 print_port_info(adapter->port[i]); 6031 } 6032 if (i == 0) { 6033 dev_err(&pdev->dev, "could not register any net devices\n"); 6034 goto out_free_dev; 6035 } 6036 if (err) { 6037 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 6038 err = 0; 6039 } 6040 6041 if (cxgb4_debugfs_root) { 6042 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 6043 cxgb4_debugfs_root); 6044 setup_debugfs(adapter); 6045 } 6046 6047 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 6048 pdev->needs_freset = 1; 6049 6050 if (is_offload(adapter)) 6051 attach_ulds(adapter); 6052 6053 sriov: 6054 #ifdef CONFIG_PCI_IOV 6055 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0) 6056 if (pci_enable_sriov(pdev, num_vf[func]) == 0) 6057 dev_info(&pdev->dev, 6058 "instantiated %u virtual functions\n", 6059 num_vf[func]); 6060 #endif 6061 return 0; 6062 6063 out_free_dev: 6064 free_some_resources(adapter); 6065 out_unmap_bar: 6066 if (!is_t4(adapter->chip)) 6067 iounmap(adapter->bar2); 6068 out_unmap_bar0: 6069 iounmap(adapter->regs); 6070 out_free_adapter: 6071 kfree(adapter); 6072 out_disable_device: 6073 pci_disable_pcie_error_reporting(pdev); 6074 pci_disable_device(pdev); 6075 out_release_regions: 6076 pci_release_regions(pdev); 6077 pci_set_drvdata(pdev, NULL); 6078 return err; 6079 } 6080 6081 static void remove_one(struct pci_dev *pdev) 6082 { 6083 struct adapter *adapter = pci_get_drvdata(pdev); 6084 6085 #ifdef CONFIG_PCI_IOV 6086 pci_disable_sriov(pdev); 6087 6088 #endif 6089 6090 if (adapter) { 6091 int i; 6092 6093 if (is_offload(adapter)) 6094 detach_ulds(adapter); 6095 6096 for_each_port(adapter, i) 6097 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 6098 unregister_netdev(adapter->port[i]); 6099 6100 if (adapter->debugfs_root) 6101 debugfs_remove_recursive(adapter->debugfs_root); 6102 6103 /* If we allocated filters, free up state associated with any 6104 * valid filters ... 6105 */ 6106 if (adapter->tids.ftid_tab) { 6107 struct filter_entry *f = &adapter->tids.ftid_tab[0]; 6108 for (i = 0; i < (adapter->tids.nftids + 6109 adapter->tids.nsftids); i++, f++) 6110 if (f->valid) 6111 clear_filter(adapter, f); 6112 } 6113 6114 if (adapter->flags & FULL_INIT_DONE) 6115 cxgb_down(adapter); 6116 6117 free_some_resources(adapter); 6118 iounmap(adapter->regs); 6119 if (!is_t4(adapter->chip)) 6120 iounmap(adapter->bar2); 6121 kfree(adapter); 6122 pci_disable_pcie_error_reporting(pdev); 6123 pci_disable_device(pdev); 6124 pci_release_regions(pdev); 6125 pci_set_drvdata(pdev, NULL); 6126 } else 6127 pci_release_regions(pdev); 6128 } 6129 6130 static struct pci_driver cxgb4_driver = { 6131 .name = KBUILD_MODNAME, 6132 .id_table = cxgb4_pci_tbl, 6133 .probe = init_one, 6134 .remove = remove_one, 6135 .err_handler = &cxgb4_eeh, 6136 }; 6137 6138 static int __init cxgb4_init_module(void) 6139 { 6140 int ret; 6141 6142 workq = create_singlethread_workqueue("cxgb4"); 6143 if (!workq) 6144 return -ENOMEM; 6145 6146 /* Debugfs support is optional, just warn if this fails */ 6147 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 6148 if (!cxgb4_debugfs_root) 6149 pr_warn("could not create debugfs entry, continuing\n"); 6150 6151 ret = pci_register_driver(&cxgb4_driver); 6152 if (ret < 0) { 6153 debugfs_remove(cxgb4_debugfs_root); 6154 destroy_workqueue(workq); 6155 } 6156 6157 register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6158 6159 return ret; 6160 } 6161 6162 static void __exit cxgb4_cleanup_module(void) 6163 { 6164 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6165 pci_unregister_driver(&cxgb4_driver); 6166 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 6167 flush_workqueue(workq); 6168 destroy_workqueue(workq); 6169 } 6170 6171 module_init(cxgb4_init_module); 6172 module_exit(cxgb4_cleanup_module); 6173