1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <linux/uaccess.h> 66 #include <linux/crash_dump.h> 67 #include <net/udp_tunnel.h> 68 #include <net/xfrm.h> 69 #if defined(CONFIG_CHELSIO_TLS_DEVICE) 70 #include <net/tls.h> 71 #endif 72 73 #include "cxgb4.h" 74 #include "cxgb4_filter.h" 75 #include "t4_regs.h" 76 #include "t4_values.h" 77 #include "t4_msg.h" 78 #include "t4fw_api.h" 79 #include "t4fw_version.h" 80 #include "cxgb4_dcb.h" 81 #include "srq.h" 82 #include "cxgb4_debugfs.h" 83 #include "clip_tbl.h" 84 #include "l2t.h" 85 #include "smt.h" 86 #include "sched.h" 87 #include "cxgb4_tc_u32.h" 88 #include "cxgb4_tc_flower.h" 89 #include "cxgb4_tc_mqprio.h" 90 #include "cxgb4_tc_matchall.h" 91 #include "cxgb4_ptp.h" 92 #include "cxgb4_cudbg.h" 93 94 char cxgb4_driver_name[] = KBUILD_MODNAME; 95 96 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 97 98 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 99 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 100 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 101 102 /* Macros needed to support the PCI Device ID Table ... 103 */ 104 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 105 static const struct pci_device_id cxgb4_pci_tbl[] = { 106 #define CXGB4_UNIFIED_PF 0x4 107 108 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF 109 110 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 111 * called for both. 112 */ 113 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 114 115 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 116 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF} 117 118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 119 { 0, } \ 120 } 121 122 #include "t4_pci_id_tbl.h" 123 124 #define FW4_FNAME "cxgb4/t4fw.bin" 125 #define FW5_FNAME "cxgb4/t5fw.bin" 126 #define FW6_FNAME "cxgb4/t6fw.bin" 127 #define FW4_CFNAME "cxgb4/t4-config.txt" 128 #define FW5_CFNAME "cxgb4/t5-config.txt" 129 #define FW6_CFNAME "cxgb4/t6-config.txt" 130 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 131 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 132 #define PHY_AQ1202_DEVICEID 0x4409 133 #define PHY_BCM84834_DEVICEID 0x4486 134 135 MODULE_DESCRIPTION(DRV_DESC); 136 MODULE_AUTHOR("Chelsio Communications"); 137 MODULE_LICENSE("Dual BSD/GPL"); 138 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 139 MODULE_FIRMWARE(FW4_FNAME); 140 MODULE_FIRMWARE(FW5_FNAME); 141 MODULE_FIRMWARE(FW6_FNAME); 142 143 /* 144 * The driver uses the best interrupt scheme available on a platform in the 145 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 146 * of these schemes the driver may consider as follows: 147 * 148 * msi = 2: choose from among all three options 149 * msi = 1: only consider MSI and INTx interrupts 150 * msi = 0: force INTx interrupts 151 */ 152 static int msi = 2; 153 154 module_param(msi, int, 0644); 155 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 156 157 /* 158 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 159 * offset by 2 bytes in order to have the IP headers line up on 4-byte 160 * boundaries. This is a requirement for many architectures which will throw 161 * a machine check fault if an attempt is made to access one of the 4-byte IP 162 * header fields on a non-4-byte boundary. And it's a major performance issue 163 * even on some architectures which allow it like some implementations of the 164 * x86 ISA. However, some architectures don't mind this and for some very 165 * edge-case performance sensitive applications (like forwarding large volumes 166 * of small packets), setting this DMA offset to 0 will decrease the number of 167 * PCI-E Bus transfers enough to measurably affect performance. 168 */ 169 static int rx_dma_offset = 2; 170 171 /* TX Queue select used to determine what algorithm to use for selecting TX 172 * queue. Select between the kernel provided function (select_queue=0) or user 173 * cxgb_select_queue function (select_queue=1) 174 * 175 * Default: select_queue=0 176 */ 177 static int select_queue; 178 module_param(select_queue, int, 0644); 179 MODULE_PARM_DESC(select_queue, 180 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 181 182 static struct dentry *cxgb4_debugfs_root; 183 184 LIST_HEAD(adapter_list); 185 DEFINE_MUTEX(uld_mutex); 186 LIST_HEAD(uld_list); 187 188 static int cfg_queues(struct adapter *adap); 189 190 static void link_report(struct net_device *dev) 191 { 192 if (!netif_carrier_ok(dev)) 193 netdev_info(dev, "link down\n"); 194 else { 195 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 196 197 const char *s; 198 const struct port_info *p = netdev_priv(dev); 199 200 switch (p->link_cfg.speed) { 201 case 100: 202 s = "100Mbps"; 203 break; 204 case 1000: 205 s = "1Gbps"; 206 break; 207 case 10000: 208 s = "10Gbps"; 209 break; 210 case 25000: 211 s = "25Gbps"; 212 break; 213 case 40000: 214 s = "40Gbps"; 215 break; 216 case 50000: 217 s = "50Gbps"; 218 break; 219 case 100000: 220 s = "100Gbps"; 221 break; 222 default: 223 pr_info("%s: unsupported speed: %d\n", 224 dev->name, p->link_cfg.speed); 225 return; 226 } 227 228 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 229 fc[p->link_cfg.fc]); 230 } 231 } 232 233 #ifdef CONFIG_CHELSIO_T4_DCB 234 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 235 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 236 { 237 struct port_info *pi = netdev_priv(dev); 238 struct adapter *adap = pi->adapter; 239 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 240 int i; 241 242 /* We use a simple mapping of Port TX Queue Index to DCB 243 * Priority when we're enabling DCB. 244 */ 245 for (i = 0; i < pi->nqsets; i++, txq++) { 246 u32 name, value; 247 int err; 248 249 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 250 FW_PARAMS_PARAM_X_V( 251 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 252 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 253 value = enable ? i : 0xffffffff; 254 255 /* Since we can be called while atomic (from "interrupt 256 * level") we need to issue the Set Parameters Commannd 257 * without sleeping (timeout < 0). 258 */ 259 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 260 &name, &value, 261 -FW_CMD_MAX_TIMEOUT); 262 263 if (err) 264 dev_err(adap->pdev_dev, 265 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 266 enable ? "set" : "unset", pi->port_id, i, -err); 267 else 268 txq->dcb_prio = enable ? value : 0; 269 } 270 } 271 272 int cxgb4_dcb_enabled(const struct net_device *dev) 273 { 274 struct port_info *pi = netdev_priv(dev); 275 276 if (!pi->dcb.enabled) 277 return 0; 278 279 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 280 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 281 } 282 #endif /* CONFIG_CHELSIO_T4_DCB */ 283 284 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 285 { 286 struct net_device *dev = adapter->port[port_id]; 287 288 /* Skip changes from disabled ports. */ 289 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 290 if (link_stat) 291 netif_carrier_on(dev); 292 else { 293 #ifdef CONFIG_CHELSIO_T4_DCB 294 if (cxgb4_dcb_enabled(dev)) { 295 cxgb4_dcb_reset(dev); 296 dcb_tx_queue_prio_enable(dev, false); 297 } 298 #endif /* CONFIG_CHELSIO_T4_DCB */ 299 netif_carrier_off(dev); 300 } 301 302 link_report(dev); 303 } 304 } 305 306 void t4_os_portmod_changed(struct adapter *adap, int port_id) 307 { 308 static const char *mod_str[] = { 309 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 310 }; 311 312 struct net_device *dev = adap->port[port_id]; 313 struct port_info *pi = netdev_priv(dev); 314 315 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 316 netdev_info(dev, "port module unplugged\n"); 317 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 318 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 319 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 320 netdev_info(dev, "%s: unsupported port module inserted\n", 321 dev->name); 322 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 323 netdev_info(dev, "%s: unknown port module inserted\n", 324 dev->name); 325 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 326 netdev_info(dev, "%s: transceiver module error\n", dev->name); 327 else 328 netdev_info(dev, "%s: unknown module type %d inserted\n", 329 dev->name, pi->mod_type); 330 331 /* If the interface is running, then we'll need any "sticky" Link 332 * Parameters redone with a new Transceiver Module. 333 */ 334 pi->link_cfg.redo_l1cfg = netif_running(dev); 335 } 336 337 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 338 module_param(dbfifo_int_thresh, int, 0644); 339 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 340 341 /* 342 * usecs to sleep while draining the dbfifo 343 */ 344 static int dbfifo_drain_delay = 1000; 345 module_param(dbfifo_drain_delay, int, 0644); 346 MODULE_PARM_DESC(dbfifo_drain_delay, 347 "usecs to sleep while draining the dbfifo"); 348 349 static inline int cxgb4_set_addr_hash(struct port_info *pi) 350 { 351 struct adapter *adap = pi->adapter; 352 u64 vec = 0; 353 bool ucast = false; 354 struct hash_mac_addr *entry; 355 356 /* Calculate the hash vector for the updated list and program it */ 357 list_for_each_entry(entry, &adap->mac_hlist, list) { 358 ucast |= is_unicast_ether_addr(entry->addr); 359 vec |= (1ULL << hash_mac_addr(entry->addr)); 360 } 361 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast, 362 vec, false); 363 } 364 365 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr) 366 { 367 struct port_info *pi = netdev_priv(netdev); 368 struct adapter *adap = pi->adapter; 369 int ret; 370 u64 mhash = 0; 371 u64 uhash = 0; 372 /* idx stores the index of allocated filters, 373 * its size should be modified based on the number of 374 * MAC addresses that we allocate filters for 375 */ 376 377 u16 idx[1] = {}; 378 bool free = false; 379 bool ucast = is_unicast_ether_addr(mac_addr); 380 const u8 *maclist[1] = {mac_addr}; 381 struct hash_mac_addr *new_entry; 382 383 ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist, 384 idx, ucast ? &uhash : &mhash, false); 385 if (ret < 0) 386 goto out; 387 /* if hash != 0, then add the addr to hash addr list 388 * so on the end we will calculate the hash for the 389 * list and program it 390 */ 391 if (uhash || mhash) { 392 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 393 if (!new_entry) 394 return -ENOMEM; 395 ether_addr_copy(new_entry->addr, mac_addr); 396 list_add_tail(&new_entry->list, &adap->mac_hlist); 397 ret = cxgb4_set_addr_hash(pi); 398 } 399 out: 400 return ret < 0 ? ret : 0; 401 } 402 403 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 404 { 405 struct port_info *pi = netdev_priv(netdev); 406 struct adapter *adap = pi->adapter; 407 int ret; 408 const u8 *maclist[1] = {mac_addr}; 409 struct hash_mac_addr *entry, *tmp; 410 411 /* If the MAC address to be removed is in the hash addr 412 * list, delete it from the list and update hash vector 413 */ 414 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) { 415 if (ether_addr_equal(entry->addr, mac_addr)) { 416 list_del(&entry->list); 417 kfree(entry); 418 return cxgb4_set_addr_hash(pi); 419 } 420 } 421 422 ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false); 423 return ret < 0 ? -EINVAL : 0; 424 } 425 426 /* 427 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 428 * If @mtu is -1 it is left unchanged. 429 */ 430 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 431 { 432 struct port_info *pi = netdev_priv(dev); 433 struct adapter *adapter = pi->adapter; 434 435 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 436 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 437 438 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, pi->viid_mirror, 439 mtu, (dev->flags & IFF_PROMISC) ? 1 : 0, 440 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 441 sleep_ok); 442 } 443 444 /** 445 * cxgb4_change_mac - Update match filter for a MAC address. 446 * @pi: the port_info 447 * @viid: the VI id 448 * @tcam_idx: TCAM index of existing filter for old value of MAC address, 449 * or -1 450 * @addr: the new MAC address value 451 * @persist: whether a new MAC allocation should be persistent 452 * @smt_idx: the destination to store the new SMT index. 453 * 454 * Modifies an MPS filter and sets it to the new MAC address if 455 * @tcam_idx >= 0, or adds the MAC address to a new filter if 456 * @tcam_idx < 0. In the latter case the address is added persistently 457 * if @persist is %true. 458 * Addresses are programmed to hash region, if tcam runs out of entries. 459 * 460 */ 461 int cxgb4_change_mac(struct port_info *pi, unsigned int viid, 462 int *tcam_idx, const u8 *addr, bool persist, 463 u8 *smt_idx) 464 { 465 struct adapter *adapter = pi->adapter; 466 struct hash_mac_addr *entry, *new_entry; 467 int ret; 468 469 ret = t4_change_mac(adapter, adapter->mbox, viid, 470 *tcam_idx, addr, persist, smt_idx); 471 /* We ran out of TCAM entries. try programming hash region. */ 472 if (ret == -ENOMEM) { 473 /* If the MAC address to be updated is in the hash addr 474 * list, update it from the list 475 */ 476 list_for_each_entry(entry, &adapter->mac_hlist, list) { 477 if (entry->iface_mac) { 478 ether_addr_copy(entry->addr, addr); 479 goto set_hash; 480 } 481 } 482 new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL); 483 if (!new_entry) 484 return -ENOMEM; 485 ether_addr_copy(new_entry->addr, addr); 486 new_entry->iface_mac = true; 487 list_add_tail(&new_entry->list, &adapter->mac_hlist); 488 set_hash: 489 ret = cxgb4_set_addr_hash(pi); 490 } else if (ret >= 0) { 491 *tcam_idx = ret; 492 ret = 0; 493 } 494 495 return ret; 496 } 497 498 /* 499 * link_start - enable a port 500 * @dev: the port to enable 501 * 502 * Performs the MAC and PHY actions needed to enable a port. 503 */ 504 static int link_start(struct net_device *dev) 505 { 506 struct port_info *pi = netdev_priv(dev); 507 unsigned int mb = pi->adapter->mbox; 508 int ret; 509 510 /* 511 * We do not set address filters and promiscuity here, the stack does 512 * that step explicitly. 513 */ 514 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, pi->viid_mirror, 515 dev->mtu, -1, -1, -1, 516 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 517 if (ret == 0) 518 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt, 519 dev->dev_addr, true, &pi->smt_idx); 520 if (ret == 0) 521 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 522 &pi->link_cfg); 523 if (ret == 0) { 524 local_bh_disable(); 525 ret = t4_enable_pi_params(pi->adapter, mb, pi, true, 526 true, CXGB4_DCB_ENABLED); 527 local_bh_enable(); 528 } 529 530 return ret; 531 } 532 533 #ifdef CONFIG_CHELSIO_T4_DCB 534 /* Handle a Data Center Bridging update message from the firmware. */ 535 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 536 { 537 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 538 struct net_device *dev = adap->port[adap->chan_map[port]]; 539 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 540 int new_dcb_enabled; 541 542 cxgb4_dcb_handle_fw_update(adap, pcmd); 543 new_dcb_enabled = cxgb4_dcb_enabled(dev); 544 545 /* If the DCB has become enabled or disabled on the port then we're 546 * going to need to set up/tear down DCB Priority parameters for the 547 * TX Queues associated with the port. 548 */ 549 if (new_dcb_enabled != old_dcb_enabled) 550 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 551 } 552 #endif /* CONFIG_CHELSIO_T4_DCB */ 553 554 /* Response queue handler for the FW event queue. 555 */ 556 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 557 const struct pkt_gl *gl) 558 { 559 u8 opcode = ((const struct rss_header *)rsp)->opcode; 560 561 rsp++; /* skip RSS header */ 562 563 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 564 */ 565 if (unlikely(opcode == CPL_FW4_MSG && 566 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 567 rsp++; 568 opcode = ((const struct rss_header *)rsp)->opcode; 569 rsp++; 570 if (opcode != CPL_SGE_EGR_UPDATE) { 571 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 572 , opcode); 573 goto out; 574 } 575 } 576 577 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 578 const struct cpl_sge_egr_update *p = (void *)rsp; 579 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 580 struct sge_txq *txq; 581 582 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 583 txq->restarts++; 584 if (txq->q_type == CXGB4_TXQ_ETH) { 585 struct sge_eth_txq *eq; 586 587 eq = container_of(txq, struct sge_eth_txq, q); 588 t4_sge_eth_txq_egress_update(q->adap, eq, -1); 589 } else { 590 struct sge_uld_txq *oq; 591 592 oq = container_of(txq, struct sge_uld_txq, q); 593 tasklet_schedule(&oq->qresume_tsk); 594 } 595 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 596 const struct cpl_fw6_msg *p = (void *)rsp; 597 598 #ifdef CONFIG_CHELSIO_T4_DCB 599 const struct fw_port_cmd *pcmd = (const void *)p->data; 600 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 601 unsigned int action = 602 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 603 604 if (cmd == FW_PORT_CMD && 605 (action == FW_PORT_ACTION_GET_PORT_INFO || 606 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 607 int port = FW_PORT_CMD_PORTID_G( 608 be32_to_cpu(pcmd->op_to_portid)); 609 struct net_device *dev; 610 int dcbxdis, state_input; 611 612 dev = q->adap->port[q->adap->chan_map[port]]; 613 dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO 614 ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F) 615 : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32) 616 & FW_PORT_CMD_DCBXDIS32_F)); 617 state_input = (dcbxdis 618 ? CXGB4_DCB_INPUT_FW_DISABLED 619 : CXGB4_DCB_INPUT_FW_ENABLED); 620 621 cxgb4_dcb_state_fsm(dev, state_input); 622 } 623 624 if (cmd == FW_PORT_CMD && 625 action == FW_PORT_ACTION_L2_DCB_CFG) 626 dcb_rpl(q->adap, pcmd); 627 else 628 #endif 629 if (p->type == 0) 630 t4_handle_fw_rpl(q->adap, p->data); 631 } else if (opcode == CPL_L2T_WRITE_RPL) { 632 const struct cpl_l2t_write_rpl *p = (void *)rsp; 633 634 do_l2t_write_rpl(q->adap, p); 635 } else if (opcode == CPL_SMT_WRITE_RPL) { 636 const struct cpl_smt_write_rpl *p = (void *)rsp; 637 638 do_smt_write_rpl(q->adap, p); 639 } else if (opcode == CPL_SET_TCB_RPL) { 640 const struct cpl_set_tcb_rpl *p = (void *)rsp; 641 642 filter_rpl(q->adap, p); 643 } else if (opcode == CPL_ACT_OPEN_RPL) { 644 const struct cpl_act_open_rpl *p = (void *)rsp; 645 646 hash_filter_rpl(q->adap, p); 647 } else if (opcode == CPL_ABORT_RPL_RSS) { 648 const struct cpl_abort_rpl_rss *p = (void *)rsp; 649 650 hash_del_filter_rpl(q->adap, p); 651 } else if (opcode == CPL_SRQ_TABLE_RPL) { 652 const struct cpl_srq_table_rpl *p = (void *)rsp; 653 654 do_srq_table_rpl(q->adap, p); 655 } else 656 dev_err(q->adap->pdev_dev, 657 "unexpected CPL %#x on FW event queue\n", opcode); 658 out: 659 return 0; 660 } 661 662 static void disable_msi(struct adapter *adapter) 663 { 664 if (adapter->flags & CXGB4_USING_MSIX) { 665 pci_disable_msix(adapter->pdev); 666 adapter->flags &= ~CXGB4_USING_MSIX; 667 } else if (adapter->flags & CXGB4_USING_MSI) { 668 pci_disable_msi(adapter->pdev); 669 adapter->flags &= ~CXGB4_USING_MSI; 670 } 671 } 672 673 /* 674 * Interrupt handler for non-data events used with MSI-X. 675 */ 676 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 677 { 678 struct adapter *adap = cookie; 679 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 680 681 if (v & PFSW_F) { 682 adap->swintr = 1; 683 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 684 } 685 if (adap->flags & CXGB4_MASTER_PF) 686 t4_slow_intr_handler(adap); 687 return IRQ_HANDLED; 688 } 689 690 int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec, 691 cpumask_var_t *aff_mask, int idx) 692 { 693 int rv; 694 695 if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) { 696 dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n"); 697 return -ENOMEM; 698 } 699 700 cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)), 701 *aff_mask); 702 703 rv = irq_set_affinity_hint(vec, *aff_mask); 704 if (rv) 705 dev_warn(adap->pdev_dev, 706 "irq_set_affinity_hint %u failed %d\n", 707 vec, rv); 708 709 return 0; 710 } 711 712 void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask) 713 { 714 irq_set_affinity_hint(vec, NULL); 715 free_cpumask_var(aff_mask); 716 } 717 718 static int request_msix_queue_irqs(struct adapter *adap) 719 { 720 struct sge *s = &adap->sge; 721 struct msix_info *minfo; 722 int err, ethqidx; 723 724 if (s->fwevtq_msix_idx < 0) 725 return -ENOMEM; 726 727 err = request_irq(adap->msix_info[s->fwevtq_msix_idx].vec, 728 t4_sge_intr_msix, 0, 729 adap->msix_info[s->fwevtq_msix_idx].desc, 730 &s->fw_evtq); 731 if (err) 732 return err; 733 734 for_each_ethrxq(s, ethqidx) { 735 minfo = s->ethrxq[ethqidx].msix; 736 err = request_irq(minfo->vec, 737 t4_sge_intr_msix, 0, 738 minfo->desc, 739 &s->ethrxq[ethqidx].rspq); 740 if (err) 741 goto unwind; 742 743 cxgb4_set_msix_aff(adap, minfo->vec, 744 &minfo->aff_mask, ethqidx); 745 } 746 return 0; 747 748 unwind: 749 while (--ethqidx >= 0) { 750 minfo = s->ethrxq[ethqidx].msix; 751 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask); 752 free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq); 753 } 754 free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq); 755 return err; 756 } 757 758 static void free_msix_queue_irqs(struct adapter *adap) 759 { 760 struct sge *s = &adap->sge; 761 struct msix_info *minfo; 762 int i; 763 764 free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq); 765 for_each_ethrxq(s, i) { 766 minfo = s->ethrxq[i].msix; 767 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask); 768 free_irq(minfo->vec, &s->ethrxq[i].rspq); 769 } 770 } 771 772 static int setup_ppod_edram(struct adapter *adap) 773 { 774 unsigned int param, val; 775 int ret; 776 777 /* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check 778 * if firmware supports ppod edram feature or not. If firmware 779 * returns 1, then driver can enable this feature by sending 780 * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to 781 * enable ppod edram feature. 782 */ 783 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 784 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM)); 785 786 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 787 if (ret < 0) { 788 dev_warn(adap->pdev_dev, 789 "querying PPOD_EDRAM support failed: %d\n", 790 ret); 791 return -1; 792 } 793 794 if (val != 1) 795 return -1; 796 797 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 798 if (ret < 0) { 799 dev_err(adap->pdev_dev, 800 "setting PPOD_EDRAM failed: %d\n", ret); 801 return -1; 802 } 803 return 0; 804 } 805 806 static void adap_config_hpfilter(struct adapter *adapter) 807 { 808 u32 param, val = 0; 809 int ret; 810 811 /* Enable HP filter region. Older fw will fail this request and 812 * it is fine. 813 */ 814 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 815 ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0, 816 1, ¶m, &val); 817 818 /* An error means FW doesn't know about HP filter support, 819 * it's not a problem, don't return an error. 820 */ 821 if (ret < 0) 822 dev_err(adapter->pdev_dev, 823 "HP filter region isn't supported by FW\n"); 824 } 825 826 static int cxgb4_config_rss(const struct port_info *pi, u16 *rss, 827 u16 rss_size, u16 viid) 828 { 829 struct adapter *adap = pi->adapter; 830 int ret; 831 832 ret = t4_config_rss_range(adap, adap->mbox, viid, 0, rss_size, rss, 833 rss_size); 834 if (ret) 835 return ret; 836 837 /* If Tunnel All Lookup isn't specified in the global RSS 838 * Configuration, then we need to specify a default Ingress 839 * Queue for any ingress packets which aren't hashed. We'll 840 * use our first ingress queue ... 841 */ 842 return t4_config_vi_rss(adap, adap->mbox, viid, 843 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 844 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 845 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 846 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 847 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 848 rss[0]); 849 } 850 851 /** 852 * cxgb4_write_rss - write the RSS table for a given port 853 * @pi: the port 854 * @queues: array of queue indices for RSS 855 * 856 * Sets up the portion of the HW RSS table for the port's VI to distribute 857 * packets to the Rx queues in @queues. 858 * Should never be called before setting up sge eth rx queues 859 */ 860 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 861 { 862 struct adapter *adapter = pi->adapter; 863 const struct sge_eth_rxq *rxq; 864 int i, err; 865 u16 *rss; 866 867 rxq = &adapter->sge.ethrxq[pi->first_qset]; 868 rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL); 869 if (!rss) 870 return -ENOMEM; 871 872 /* map the queue indices to queue ids */ 873 for (i = 0; i < pi->rss_size; i++, queues++) 874 rss[i] = rxq[*queues].rspq.abs_id; 875 876 err = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid); 877 kfree(rss); 878 return err; 879 } 880 881 /** 882 * setup_rss - configure RSS 883 * @adap: the adapter 884 * 885 * Sets up RSS for each port. 886 */ 887 static int setup_rss(struct adapter *adap) 888 { 889 int i, j, err; 890 891 for_each_port(adap, i) { 892 const struct port_info *pi = adap2pinfo(adap, i); 893 894 /* Fill default values with equal distribution */ 895 for (j = 0; j < pi->rss_size; j++) 896 pi->rss[j] = j % pi->nqsets; 897 898 err = cxgb4_write_rss(pi, pi->rss); 899 if (err) 900 return err; 901 } 902 return 0; 903 } 904 905 /* 906 * Return the channel of the ingress queue with the given qid. 907 */ 908 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 909 { 910 qid -= p->ingr_start; 911 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 912 } 913 914 void cxgb4_quiesce_rx(struct sge_rspq *q) 915 { 916 if (q->handler) 917 napi_disable(&q->napi); 918 } 919 920 /* 921 * Wait until all NAPI handlers are descheduled. 922 */ 923 static void quiesce_rx(struct adapter *adap) 924 { 925 int i; 926 927 for (i = 0; i < adap->sge.ingr_sz; i++) { 928 struct sge_rspq *q = adap->sge.ingr_map[i]; 929 930 if (!q) 931 continue; 932 933 cxgb4_quiesce_rx(q); 934 } 935 } 936 937 /* Disable interrupt and napi handler */ 938 static void disable_interrupts(struct adapter *adap) 939 { 940 struct sge *s = &adap->sge; 941 942 if (adap->flags & CXGB4_FULL_INIT_DONE) { 943 t4_intr_disable(adap); 944 if (adap->flags & CXGB4_USING_MSIX) { 945 free_msix_queue_irqs(adap); 946 free_irq(adap->msix_info[s->nd_msix_idx].vec, 947 adap); 948 } else { 949 free_irq(adap->pdev->irq, adap); 950 } 951 quiesce_rx(adap); 952 } 953 } 954 955 void cxgb4_enable_rx(struct adapter *adap, struct sge_rspq *q) 956 { 957 if (q->handler) 958 napi_enable(&q->napi); 959 960 /* 0-increment GTS to start the timer and enable interrupts */ 961 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 962 SEINTARM_V(q->intr_params) | 963 INGRESSQID_V(q->cntxt_id)); 964 } 965 966 /* 967 * Enable NAPI scheduling and interrupt generation for all Rx queues. 968 */ 969 static void enable_rx(struct adapter *adap) 970 { 971 int i; 972 973 for (i = 0; i < adap->sge.ingr_sz; i++) { 974 struct sge_rspq *q = adap->sge.ingr_map[i]; 975 976 if (!q) 977 continue; 978 979 cxgb4_enable_rx(adap, q); 980 } 981 } 982 983 static int setup_non_data_intr(struct adapter *adap) 984 { 985 int msix; 986 987 adap->sge.nd_msix_idx = -1; 988 if (!(adap->flags & CXGB4_USING_MSIX)) 989 return 0; 990 991 /* Request MSI-X vector for non-data interrupt */ 992 msix = cxgb4_get_msix_idx_from_bmap(adap); 993 if (msix < 0) 994 return -ENOMEM; 995 996 snprintf(adap->msix_info[msix].desc, 997 sizeof(adap->msix_info[msix].desc), 998 "%s", adap->port[0]->name); 999 1000 adap->sge.nd_msix_idx = msix; 1001 return 0; 1002 } 1003 1004 static int setup_fw_sge_queues(struct adapter *adap) 1005 { 1006 struct sge *s = &adap->sge; 1007 int msix, err = 0; 1008 1009 bitmap_zero(s->starving_fl, s->egr_sz); 1010 bitmap_zero(s->txq_maperr, s->egr_sz); 1011 1012 if (adap->flags & CXGB4_USING_MSIX) { 1013 s->fwevtq_msix_idx = -1; 1014 msix = cxgb4_get_msix_idx_from_bmap(adap); 1015 if (msix < 0) 1016 return -ENOMEM; 1017 1018 snprintf(adap->msix_info[msix].desc, 1019 sizeof(adap->msix_info[msix].desc), 1020 "%s-FWeventq", adap->port[0]->name); 1021 } else { 1022 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 1023 NULL, NULL, NULL, -1); 1024 if (err) 1025 return err; 1026 msix = -((int)s->intrq.abs_id + 1); 1027 } 1028 1029 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 1030 msix, NULL, fwevtq_handler, NULL, -1); 1031 if (err && msix >= 0) 1032 cxgb4_free_msix_idx_in_bmap(adap, msix); 1033 1034 s->fwevtq_msix_idx = msix; 1035 return err; 1036 } 1037 1038 /** 1039 * setup_sge_queues - configure SGE Tx/Rx/response queues 1040 * @adap: the adapter 1041 * 1042 * Determines how many sets of SGE queues to use and initializes them. 1043 * We support multiple queue sets per port if we have MSI-X, otherwise 1044 * just one queue set per port. 1045 */ 1046 static int setup_sge_queues(struct adapter *adap) 1047 { 1048 struct sge_uld_rxq_info *rxq_info = NULL; 1049 struct sge *s = &adap->sge; 1050 unsigned int cmplqid = 0; 1051 int err, i, j, msix = 0; 1052 1053 if (is_uld(adap)) 1054 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 1055 1056 if (!(adap->flags & CXGB4_USING_MSIX)) 1057 msix = -((int)s->intrq.abs_id + 1); 1058 1059 for_each_port(adap, i) { 1060 struct net_device *dev = adap->port[i]; 1061 struct port_info *pi = netdev_priv(dev); 1062 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 1063 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 1064 1065 for (j = 0; j < pi->nqsets; j++, q++) { 1066 if (msix >= 0) { 1067 msix = cxgb4_get_msix_idx_from_bmap(adap); 1068 if (msix < 0) { 1069 err = msix; 1070 goto freeout; 1071 } 1072 1073 snprintf(adap->msix_info[msix].desc, 1074 sizeof(adap->msix_info[msix].desc), 1075 "%s-Rx%d", dev->name, j); 1076 q->msix = &adap->msix_info[msix]; 1077 } 1078 1079 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 1080 msix, &q->fl, 1081 t4_ethrx_handler, 1082 NULL, 1083 t4_get_tp_ch_map(adap, 1084 pi->tx_chan)); 1085 if (err) 1086 goto freeout; 1087 q->rspq.idx = j; 1088 memset(&q->stats, 0, sizeof(q->stats)); 1089 } 1090 1091 q = &s->ethrxq[pi->first_qset]; 1092 for (j = 0; j < pi->nqsets; j++, t++, q++) { 1093 err = t4_sge_alloc_eth_txq(adap, t, dev, 1094 netdev_get_tx_queue(dev, j), 1095 q->rspq.cntxt_id, 1096 !!(adap->flags & CXGB4_SGE_DBQ_TIMER)); 1097 if (err) 1098 goto freeout; 1099 } 1100 } 1101 1102 for_each_port(adap, i) { 1103 /* Note that cmplqid below is 0 if we don't 1104 * have RDMA queues, and that's the right value. 1105 */ 1106 if (rxq_info) 1107 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id; 1108 1109 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 1110 s->fw_evtq.cntxt_id, cmplqid); 1111 if (err) 1112 goto freeout; 1113 } 1114 1115 if (!is_t4(adap->params.chip)) { 1116 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0], 1117 netdev_get_tx_queue(adap->port[0], 0) 1118 , s->fw_evtq.cntxt_id, false); 1119 if (err) 1120 goto freeout; 1121 } 1122 1123 t4_write_reg(adap, is_t4(adap->params.chip) ? 1124 MPS_TRC_RSS_CONTROL_A : 1125 MPS_T5_TRC_RSS_CONTROL_A, 1126 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 1127 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 1128 return 0; 1129 freeout: 1130 dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err); 1131 t4_free_sge_resources(adap); 1132 return err; 1133 } 1134 1135 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 1136 struct net_device *sb_dev) 1137 { 1138 int txq; 1139 1140 #ifdef CONFIG_CHELSIO_T4_DCB 1141 /* If a Data Center Bridging has been successfully negotiated on this 1142 * link then we'll use the skb's priority to map it to a TX Queue. 1143 * The skb's priority is determined via the VLAN Tag Priority Code 1144 * Point field. 1145 */ 1146 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) { 1147 u16 vlan_tci; 1148 int err; 1149 1150 err = vlan_get_tag(skb, &vlan_tci); 1151 if (unlikely(err)) { 1152 if (net_ratelimit()) 1153 netdev_warn(dev, 1154 "TX Packet without VLAN Tag on DCB Link\n"); 1155 txq = 0; 1156 } else { 1157 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 1158 #ifdef CONFIG_CHELSIO_T4_FCOE 1159 if (skb->protocol == htons(ETH_P_FCOE)) 1160 txq = skb->priority & 0x7; 1161 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1162 } 1163 return txq; 1164 } 1165 #endif /* CONFIG_CHELSIO_T4_DCB */ 1166 1167 if (dev->num_tc) { 1168 struct port_info *pi = netdev2pinfo(dev); 1169 u8 ver, proto; 1170 1171 ver = ip_hdr(skb)->version; 1172 proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : 1173 ip_hdr(skb)->protocol; 1174 1175 /* Send unsupported traffic pattern to normal NIC queues. */ 1176 txq = netdev_pick_tx(dev, skb, sb_dev); 1177 if (xfrm_offload(skb) || is_ptp_enabled(skb, dev) || 1178 skb->encapsulation || 1179 (proto != IPPROTO_TCP && proto != IPPROTO_UDP)) 1180 txq = txq % pi->nqsets; 1181 1182 return txq; 1183 } 1184 1185 if (select_queue) { 1186 txq = (skb_rx_queue_recorded(skb) 1187 ? skb_get_rx_queue(skb) 1188 : smp_processor_id()); 1189 1190 while (unlikely(txq >= dev->real_num_tx_queues)) 1191 txq -= dev->real_num_tx_queues; 1192 1193 return txq; 1194 } 1195 1196 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; 1197 } 1198 1199 static int closest_timer(const struct sge *s, int time) 1200 { 1201 int i, delta, match = 0, min_delta = INT_MAX; 1202 1203 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 1204 delta = time - s->timer_val[i]; 1205 if (delta < 0) 1206 delta = -delta; 1207 if (delta < min_delta) { 1208 min_delta = delta; 1209 match = i; 1210 } 1211 } 1212 return match; 1213 } 1214 1215 static int closest_thres(const struct sge *s, int thres) 1216 { 1217 int i, delta, match = 0, min_delta = INT_MAX; 1218 1219 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 1220 delta = thres - s->counter_val[i]; 1221 if (delta < 0) 1222 delta = -delta; 1223 if (delta < min_delta) { 1224 min_delta = delta; 1225 match = i; 1226 } 1227 } 1228 return match; 1229 } 1230 1231 /** 1232 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 1233 * @q: the Rx queue 1234 * @us: the hold-off time in us, or 0 to disable timer 1235 * @cnt: the hold-off packet count, or 0 to disable counter 1236 * 1237 * Sets an Rx queue's interrupt hold-off time and packet count. At least 1238 * one of the two needs to be enabled for the queue to generate interrupts. 1239 */ 1240 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 1241 unsigned int us, unsigned int cnt) 1242 { 1243 struct adapter *adap = q->adap; 1244 1245 if ((us | cnt) == 0) 1246 cnt = 1; 1247 1248 if (cnt) { 1249 int err; 1250 u32 v, new_idx; 1251 1252 new_idx = closest_thres(&adap->sge, cnt); 1253 if (q->desc && q->pktcnt_idx != new_idx) { 1254 /* the queue has already been created, update it */ 1255 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1256 FW_PARAMS_PARAM_X_V( 1257 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1258 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1259 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1260 &v, &new_idx); 1261 if (err) 1262 return err; 1263 } 1264 q->pktcnt_idx = new_idx; 1265 } 1266 1267 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1268 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1269 return 0; 1270 } 1271 1272 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1273 { 1274 netdev_features_t changed = dev->features ^ features; 1275 const struct port_info *pi = netdev_priv(dev); 1276 int err; 1277 1278 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1279 return 0; 1280 1281 err = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid, 1282 pi->viid_mirror, -1, -1, -1, -1, 1283 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1284 if (unlikely(err)) 1285 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1286 return err; 1287 } 1288 1289 static int setup_debugfs(struct adapter *adap) 1290 { 1291 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1292 return -1; 1293 1294 #ifdef CONFIG_DEBUG_FS 1295 t4_setup_debugfs(adap); 1296 #endif 1297 return 0; 1298 } 1299 1300 static void cxgb4_port_mirror_free_rxq(struct adapter *adap, 1301 struct sge_eth_rxq *mirror_rxq) 1302 { 1303 if ((adap->flags & CXGB4_FULL_INIT_DONE) && 1304 !(adap->flags & CXGB4_SHUTTING_DOWN)) 1305 cxgb4_quiesce_rx(&mirror_rxq->rspq); 1306 1307 if (adap->flags & CXGB4_USING_MSIX) { 1308 cxgb4_clear_msix_aff(mirror_rxq->msix->vec, 1309 mirror_rxq->msix->aff_mask); 1310 free_irq(mirror_rxq->msix->vec, &mirror_rxq->rspq); 1311 cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx); 1312 } 1313 1314 free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl); 1315 } 1316 1317 static int cxgb4_port_mirror_alloc_queues(struct net_device *dev) 1318 { 1319 struct port_info *pi = netdev2pinfo(dev); 1320 struct adapter *adap = netdev2adap(dev); 1321 struct sge_eth_rxq *mirror_rxq; 1322 struct sge *s = &adap->sge; 1323 int ret = 0, msix = 0; 1324 u16 i, rxqid; 1325 u16 *rss; 1326 1327 if (!pi->vi_mirror_count) 1328 return 0; 1329 1330 if (s->mirror_rxq[pi->port_id]) 1331 return 0; 1332 1333 mirror_rxq = kcalloc(pi->nmirrorqsets, sizeof(*mirror_rxq), GFP_KERNEL); 1334 if (!mirror_rxq) 1335 return -ENOMEM; 1336 1337 s->mirror_rxq[pi->port_id] = mirror_rxq; 1338 1339 if (!(adap->flags & CXGB4_USING_MSIX)) 1340 msix = -((int)adap->sge.intrq.abs_id + 1); 1341 1342 for (i = 0, rxqid = 0; i < pi->nmirrorqsets; i++, rxqid++) { 1343 mirror_rxq = &s->mirror_rxq[pi->port_id][i]; 1344 1345 /* Allocate Mirror Rxqs */ 1346 if (msix >= 0) { 1347 msix = cxgb4_get_msix_idx_from_bmap(adap); 1348 if (msix < 0) { 1349 ret = msix; 1350 goto out_free_queues; 1351 } 1352 1353 mirror_rxq->msix = &adap->msix_info[msix]; 1354 snprintf(mirror_rxq->msix->desc, 1355 sizeof(mirror_rxq->msix->desc), 1356 "%s-mirrorrxq%d", dev->name, i); 1357 } 1358 1359 init_rspq(adap, &mirror_rxq->rspq, 1360 CXGB4_MIRROR_RXQ_DEFAULT_INTR_USEC, 1361 CXGB4_MIRROR_RXQ_DEFAULT_PKT_CNT, 1362 CXGB4_MIRROR_RXQ_DEFAULT_DESC_NUM, 1363 CXGB4_MIRROR_RXQ_DEFAULT_DESC_SIZE); 1364 1365 mirror_rxq->fl.size = CXGB4_MIRROR_FLQ_DEFAULT_DESC_NUM; 1366 1367 ret = t4_sge_alloc_rxq(adap, &mirror_rxq->rspq, false, 1368 dev, msix, &mirror_rxq->fl, 1369 t4_ethrx_handler, NULL, 0); 1370 if (ret) 1371 goto out_free_msix_idx; 1372 1373 /* Setup MSI-X vectors for Mirror Rxqs */ 1374 if (adap->flags & CXGB4_USING_MSIX) { 1375 ret = request_irq(mirror_rxq->msix->vec, 1376 t4_sge_intr_msix, 0, 1377 mirror_rxq->msix->desc, 1378 &mirror_rxq->rspq); 1379 if (ret) 1380 goto out_free_rxq; 1381 1382 cxgb4_set_msix_aff(adap, mirror_rxq->msix->vec, 1383 &mirror_rxq->msix->aff_mask, i); 1384 } 1385 1386 /* Start NAPI for Mirror Rxqs */ 1387 cxgb4_enable_rx(adap, &mirror_rxq->rspq); 1388 } 1389 1390 /* Setup RSS for Mirror Rxqs */ 1391 rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 1392 if (!rss) { 1393 ret = -ENOMEM; 1394 goto out_free_queues; 1395 } 1396 1397 mirror_rxq = &s->mirror_rxq[pi->port_id][0]; 1398 for (i = 0; i < pi->rss_size; i++) 1399 rss[i] = mirror_rxq[i % pi->nmirrorqsets].rspq.abs_id; 1400 1401 ret = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid_mirror); 1402 kfree(rss); 1403 if (ret) 1404 goto out_free_queues; 1405 1406 return 0; 1407 1408 out_free_rxq: 1409 free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl); 1410 1411 out_free_msix_idx: 1412 cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx); 1413 1414 out_free_queues: 1415 while (rxqid-- > 0) 1416 cxgb4_port_mirror_free_rxq(adap, 1417 &s->mirror_rxq[pi->port_id][rxqid]); 1418 1419 kfree(s->mirror_rxq[pi->port_id]); 1420 s->mirror_rxq[pi->port_id] = NULL; 1421 return ret; 1422 } 1423 1424 static void cxgb4_port_mirror_free_queues(struct net_device *dev) 1425 { 1426 struct port_info *pi = netdev2pinfo(dev); 1427 struct adapter *adap = netdev2adap(dev); 1428 struct sge *s = &adap->sge; 1429 u16 i; 1430 1431 if (!pi->vi_mirror_count) 1432 return; 1433 1434 if (!s->mirror_rxq[pi->port_id]) 1435 return; 1436 1437 for (i = 0; i < pi->nmirrorqsets; i++) 1438 cxgb4_port_mirror_free_rxq(adap, 1439 &s->mirror_rxq[pi->port_id][i]); 1440 1441 kfree(s->mirror_rxq[pi->port_id]); 1442 s->mirror_rxq[pi->port_id] = NULL; 1443 } 1444 1445 static int cxgb4_port_mirror_start(struct net_device *dev) 1446 { 1447 struct port_info *pi = netdev2pinfo(dev); 1448 struct adapter *adap = netdev2adap(dev); 1449 int ret, idx = -1; 1450 1451 if (!pi->vi_mirror_count) 1452 return 0; 1453 1454 /* Mirror VIs can be created dynamically after stack had 1455 * already setup Rx modes like MTU, promisc, allmulti, etc. 1456 * on main VI. So, parse what the stack had setup on the 1457 * main VI and update the same on the mirror VI. 1458 */ 1459 ret = t4_set_rxmode(adap, adap->mbox, pi->viid, pi->viid_mirror, 1460 dev->mtu, (dev->flags & IFF_PROMISC) ? 1 : 0, 1461 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, 1462 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 1463 if (ret) { 1464 dev_err(adap->pdev_dev, 1465 "Failed start up Rx mode for Mirror VI 0x%x, ret: %d\n", 1466 pi->viid_mirror, ret); 1467 return ret; 1468 } 1469 1470 /* Enable replication bit for the device's MAC address 1471 * in MPS TCAM, so that the packets for the main VI are 1472 * replicated to mirror VI. 1473 */ 1474 ret = cxgb4_update_mac_filt(pi, pi->viid_mirror, &idx, 1475 dev->dev_addr, true, NULL); 1476 if (ret) { 1477 dev_err(adap->pdev_dev, 1478 "Failed updating MAC filter for Mirror VI 0x%x, ret: %d\n", 1479 pi->viid_mirror, ret); 1480 return ret; 1481 } 1482 1483 /* Enabling a Virtual Interface can result in an interrupt 1484 * during the processing of the VI Enable command and, in some 1485 * paths, result in an attempt to issue another command in the 1486 * interrupt context. Thus, we disable interrupts during the 1487 * course of the VI Enable command ... 1488 */ 1489 local_bh_disable(); 1490 ret = t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, true, true, 1491 false); 1492 local_bh_enable(); 1493 if (ret) 1494 dev_err(adap->pdev_dev, 1495 "Failed starting Mirror VI 0x%x, ret: %d\n", 1496 pi->viid_mirror, ret); 1497 1498 return ret; 1499 } 1500 1501 static void cxgb4_port_mirror_stop(struct net_device *dev) 1502 { 1503 struct port_info *pi = netdev2pinfo(dev); 1504 struct adapter *adap = netdev2adap(dev); 1505 1506 if (!pi->vi_mirror_count) 1507 return; 1508 1509 t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, false, false, 1510 false); 1511 } 1512 1513 int cxgb4_port_mirror_alloc(struct net_device *dev) 1514 { 1515 struct port_info *pi = netdev2pinfo(dev); 1516 struct adapter *adap = netdev2adap(dev); 1517 int ret = 0; 1518 1519 if (!pi->nmirrorqsets) 1520 return -EOPNOTSUPP; 1521 1522 mutex_lock(&pi->vi_mirror_mutex); 1523 if (pi->viid_mirror) { 1524 pi->vi_mirror_count++; 1525 goto out_unlock; 1526 } 1527 1528 ret = t4_init_port_mirror(pi, adap->mbox, pi->port_id, adap->pf, 0, 1529 &pi->viid_mirror); 1530 if (ret) 1531 goto out_unlock; 1532 1533 pi->vi_mirror_count = 1; 1534 1535 if (adap->flags & CXGB4_FULL_INIT_DONE) { 1536 ret = cxgb4_port_mirror_alloc_queues(dev); 1537 if (ret) 1538 goto out_free_vi; 1539 1540 ret = cxgb4_port_mirror_start(dev); 1541 if (ret) 1542 goto out_free_queues; 1543 } 1544 1545 mutex_unlock(&pi->vi_mirror_mutex); 1546 return 0; 1547 1548 out_free_queues: 1549 cxgb4_port_mirror_free_queues(dev); 1550 1551 out_free_vi: 1552 pi->vi_mirror_count = 0; 1553 t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror); 1554 pi->viid_mirror = 0; 1555 1556 out_unlock: 1557 mutex_unlock(&pi->vi_mirror_mutex); 1558 return ret; 1559 } 1560 1561 void cxgb4_port_mirror_free(struct net_device *dev) 1562 { 1563 struct port_info *pi = netdev2pinfo(dev); 1564 struct adapter *adap = netdev2adap(dev); 1565 1566 mutex_lock(&pi->vi_mirror_mutex); 1567 if (!pi->viid_mirror) 1568 goto out_unlock; 1569 1570 if (pi->vi_mirror_count > 1) { 1571 pi->vi_mirror_count--; 1572 goto out_unlock; 1573 } 1574 1575 cxgb4_port_mirror_stop(dev); 1576 cxgb4_port_mirror_free_queues(dev); 1577 1578 pi->vi_mirror_count = 0; 1579 t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror); 1580 pi->viid_mirror = 0; 1581 1582 out_unlock: 1583 mutex_unlock(&pi->vi_mirror_mutex); 1584 } 1585 1586 /* 1587 * upper-layer driver support 1588 */ 1589 1590 /* 1591 * Allocate an active-open TID and set it to the supplied value. 1592 */ 1593 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1594 { 1595 int atid = -1; 1596 1597 spin_lock_bh(&t->atid_lock); 1598 if (t->afree) { 1599 union aopen_entry *p = t->afree; 1600 1601 atid = (p - t->atid_tab) + t->atid_base; 1602 t->afree = p->next; 1603 p->data = data; 1604 t->atids_in_use++; 1605 } 1606 spin_unlock_bh(&t->atid_lock); 1607 return atid; 1608 } 1609 EXPORT_SYMBOL(cxgb4_alloc_atid); 1610 1611 /* 1612 * Release an active-open TID. 1613 */ 1614 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1615 { 1616 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1617 1618 spin_lock_bh(&t->atid_lock); 1619 p->next = t->afree; 1620 t->afree = p; 1621 t->atids_in_use--; 1622 spin_unlock_bh(&t->atid_lock); 1623 } 1624 EXPORT_SYMBOL(cxgb4_free_atid); 1625 1626 /* 1627 * Allocate a server TID and set it to the supplied value. 1628 */ 1629 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1630 { 1631 int stid; 1632 1633 spin_lock_bh(&t->stid_lock); 1634 if (family == PF_INET) { 1635 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1636 if (stid < t->nstids) 1637 __set_bit(stid, t->stid_bmap); 1638 else 1639 stid = -1; 1640 } else { 1641 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); 1642 if (stid < 0) 1643 stid = -1; 1644 } 1645 if (stid >= 0) { 1646 t->stid_tab[stid].data = data; 1647 stid += t->stid_base; 1648 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1649 * This is equivalent to 4 TIDs. With CLIP enabled it 1650 * needs 2 TIDs. 1651 */ 1652 if (family == PF_INET6) { 1653 t->stids_in_use += 2; 1654 t->v6_stids_in_use += 2; 1655 } else { 1656 t->stids_in_use++; 1657 } 1658 } 1659 spin_unlock_bh(&t->stid_lock); 1660 return stid; 1661 } 1662 EXPORT_SYMBOL(cxgb4_alloc_stid); 1663 1664 /* Allocate a server filter TID and set it to the supplied value. 1665 */ 1666 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1667 { 1668 int stid; 1669 1670 spin_lock_bh(&t->stid_lock); 1671 if (family == PF_INET) { 1672 stid = find_next_zero_bit(t->stid_bmap, 1673 t->nstids + t->nsftids, t->nstids); 1674 if (stid < (t->nstids + t->nsftids)) 1675 __set_bit(stid, t->stid_bmap); 1676 else 1677 stid = -1; 1678 } else { 1679 stid = -1; 1680 } 1681 if (stid >= 0) { 1682 t->stid_tab[stid].data = data; 1683 stid -= t->nstids; 1684 stid += t->sftid_base; 1685 t->sftids_in_use++; 1686 } 1687 spin_unlock_bh(&t->stid_lock); 1688 return stid; 1689 } 1690 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1691 1692 /* Release a server TID. 1693 */ 1694 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1695 { 1696 /* Is it a server filter TID? */ 1697 if (t->nsftids && (stid >= t->sftid_base)) { 1698 stid -= t->sftid_base; 1699 stid += t->nstids; 1700 } else { 1701 stid -= t->stid_base; 1702 } 1703 1704 spin_lock_bh(&t->stid_lock); 1705 if (family == PF_INET) 1706 __clear_bit(stid, t->stid_bmap); 1707 else 1708 bitmap_release_region(t->stid_bmap, stid, 1); 1709 t->stid_tab[stid].data = NULL; 1710 if (stid < t->nstids) { 1711 if (family == PF_INET6) { 1712 t->stids_in_use -= 2; 1713 t->v6_stids_in_use -= 2; 1714 } else { 1715 t->stids_in_use--; 1716 } 1717 } else { 1718 t->sftids_in_use--; 1719 } 1720 1721 spin_unlock_bh(&t->stid_lock); 1722 } 1723 EXPORT_SYMBOL(cxgb4_free_stid); 1724 1725 /* 1726 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1727 */ 1728 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1729 unsigned int tid) 1730 { 1731 struct cpl_tid_release *req; 1732 1733 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1734 req = __skb_put(skb, sizeof(*req)); 1735 INIT_TP_WR(req, tid); 1736 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1737 } 1738 1739 /* 1740 * Queue a TID release request and if necessary schedule a work queue to 1741 * process it. 1742 */ 1743 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1744 unsigned int tid) 1745 { 1746 struct adapter *adap = container_of(t, struct adapter, tids); 1747 void **p = &t->tid_tab[tid - t->tid_base]; 1748 1749 spin_lock_bh(&adap->tid_release_lock); 1750 *p = adap->tid_release_head; 1751 /* Low 2 bits encode the Tx channel number */ 1752 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1753 if (!adap->tid_release_task_busy) { 1754 adap->tid_release_task_busy = true; 1755 queue_work(adap->workq, &adap->tid_release_task); 1756 } 1757 spin_unlock_bh(&adap->tid_release_lock); 1758 } 1759 1760 /* 1761 * Process the list of pending TID release requests. 1762 */ 1763 static void process_tid_release_list(struct work_struct *work) 1764 { 1765 struct sk_buff *skb; 1766 struct adapter *adap; 1767 1768 adap = container_of(work, struct adapter, tid_release_task); 1769 1770 spin_lock_bh(&adap->tid_release_lock); 1771 while (adap->tid_release_head) { 1772 void **p = adap->tid_release_head; 1773 unsigned int chan = (uintptr_t)p & 3; 1774 p = (void *)p - chan; 1775 1776 adap->tid_release_head = *p; 1777 *p = NULL; 1778 spin_unlock_bh(&adap->tid_release_lock); 1779 1780 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1781 GFP_KERNEL))) 1782 schedule_timeout_uninterruptible(1); 1783 1784 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1785 t4_ofld_send(adap, skb); 1786 spin_lock_bh(&adap->tid_release_lock); 1787 } 1788 adap->tid_release_task_busy = false; 1789 spin_unlock_bh(&adap->tid_release_lock); 1790 } 1791 1792 /* 1793 * Release a TID and inform HW. If we are unable to allocate the release 1794 * message we defer to a work queue. 1795 */ 1796 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid, 1797 unsigned short family) 1798 { 1799 struct adapter *adap = container_of(t, struct adapter, tids); 1800 struct sk_buff *skb; 1801 1802 WARN_ON(tid_out_of_range(&adap->tids, tid)); 1803 1804 if (t->tid_tab[tid - adap->tids.tid_base]) { 1805 t->tid_tab[tid - adap->tids.tid_base] = NULL; 1806 atomic_dec(&t->conns_in_use); 1807 if (t->hash_base && (tid >= t->hash_base)) { 1808 if (family == AF_INET6) 1809 atomic_sub(2, &t->hash_tids_in_use); 1810 else 1811 atomic_dec(&t->hash_tids_in_use); 1812 } else { 1813 if (family == AF_INET6) 1814 atomic_sub(2, &t->tids_in_use); 1815 else 1816 atomic_dec(&t->tids_in_use); 1817 } 1818 } 1819 1820 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1821 if (likely(skb)) { 1822 mk_tid_release(skb, chan, tid); 1823 t4_ofld_send(adap, skb); 1824 } else 1825 cxgb4_queue_tid_release(t, chan, tid); 1826 } 1827 EXPORT_SYMBOL(cxgb4_remove_tid); 1828 1829 /* 1830 * Allocate and initialize the TID tables. Returns 0 on success. 1831 */ 1832 static int tid_init(struct tid_info *t) 1833 { 1834 struct adapter *adap = container_of(t, struct adapter, tids); 1835 unsigned int max_ftids = t->nftids + t->nsftids; 1836 unsigned int natids = t->natids; 1837 unsigned int hpftid_bmap_size; 1838 unsigned int eotid_bmap_size; 1839 unsigned int stid_bmap_size; 1840 unsigned int ftid_bmap_size; 1841 size_t size; 1842 1843 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1844 ftid_bmap_size = BITS_TO_LONGS(t->nftids); 1845 hpftid_bmap_size = BITS_TO_LONGS(t->nhpftids); 1846 eotid_bmap_size = BITS_TO_LONGS(t->neotids); 1847 size = t->ntids * sizeof(*t->tid_tab) + 1848 natids * sizeof(*t->atid_tab) + 1849 t->nstids * sizeof(*t->stid_tab) + 1850 t->nsftids * sizeof(*t->stid_tab) + 1851 stid_bmap_size * sizeof(long) + 1852 t->nhpftids * sizeof(*t->hpftid_tab) + 1853 hpftid_bmap_size * sizeof(long) + 1854 max_ftids * sizeof(*t->ftid_tab) + 1855 ftid_bmap_size * sizeof(long) + 1856 t->neotids * sizeof(*t->eotid_tab) + 1857 eotid_bmap_size * sizeof(long); 1858 1859 t->tid_tab = kvzalloc(size, GFP_KERNEL); 1860 if (!t->tid_tab) 1861 return -ENOMEM; 1862 1863 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1864 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1865 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1866 t->hpftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1867 t->hpftid_bmap = (unsigned long *)&t->hpftid_tab[t->nhpftids]; 1868 t->ftid_tab = (struct filter_entry *)&t->hpftid_bmap[hpftid_bmap_size]; 1869 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids]; 1870 t->eotid_tab = (struct eotid_entry *)&t->ftid_bmap[ftid_bmap_size]; 1871 t->eotid_bmap = (unsigned long *)&t->eotid_tab[t->neotids]; 1872 spin_lock_init(&t->stid_lock); 1873 spin_lock_init(&t->atid_lock); 1874 spin_lock_init(&t->ftid_lock); 1875 1876 t->stids_in_use = 0; 1877 t->v6_stids_in_use = 0; 1878 t->sftids_in_use = 0; 1879 t->afree = NULL; 1880 t->atids_in_use = 0; 1881 atomic_set(&t->tids_in_use, 0); 1882 atomic_set(&t->conns_in_use, 0); 1883 atomic_set(&t->hash_tids_in_use, 0); 1884 atomic_set(&t->eotids_in_use, 0); 1885 1886 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1887 if (natids) { 1888 while (--natids) 1889 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1890 t->afree = t->atid_tab; 1891 } 1892 1893 if (is_offload(adap)) { 1894 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1895 /* Reserve stid 0 for T4/T5 adapters */ 1896 if (!t->stid_base && 1897 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1898 __set_bit(0, t->stid_bmap); 1899 1900 if (t->neotids) 1901 bitmap_zero(t->eotid_bmap, t->neotids); 1902 } 1903 1904 if (t->nhpftids) 1905 bitmap_zero(t->hpftid_bmap, t->nhpftids); 1906 bitmap_zero(t->ftid_bmap, t->nftids); 1907 return 0; 1908 } 1909 1910 /** 1911 * cxgb4_create_server - create an IP server 1912 * @dev: the device 1913 * @stid: the server TID 1914 * @sip: local IP address to bind server to 1915 * @sport: the server's TCP port 1916 * @vlan: the VLAN header information 1917 * @queue: queue to direct messages from this server to 1918 * 1919 * Create an IP server for the given port and address. 1920 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1921 */ 1922 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1923 __be32 sip, __be16 sport, __be16 vlan, 1924 unsigned int queue) 1925 { 1926 unsigned int chan; 1927 struct sk_buff *skb; 1928 struct adapter *adap; 1929 struct cpl_pass_open_req *req; 1930 int ret; 1931 1932 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1933 if (!skb) 1934 return -ENOMEM; 1935 1936 adap = netdev2adap(dev); 1937 req = __skb_put(skb, sizeof(*req)); 1938 INIT_TP_WR(req, 0); 1939 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1940 req->local_port = sport; 1941 req->peer_port = htons(0); 1942 req->local_ip = sip; 1943 req->peer_ip = htonl(0); 1944 chan = rxq_to_chan(&adap->sge, queue); 1945 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1946 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1947 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1948 ret = t4_mgmt_tx(adap, skb); 1949 return net_xmit_eval(ret); 1950 } 1951 EXPORT_SYMBOL(cxgb4_create_server); 1952 1953 /* cxgb4_create_server6 - create an IPv6 server 1954 * @dev: the device 1955 * @stid: the server TID 1956 * @sip: local IPv6 address to bind server to 1957 * @sport: the server's TCP port 1958 * @queue: queue to direct messages from this server to 1959 * 1960 * Create an IPv6 server for the given port and address. 1961 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1962 */ 1963 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1964 const struct in6_addr *sip, __be16 sport, 1965 unsigned int queue) 1966 { 1967 unsigned int chan; 1968 struct sk_buff *skb; 1969 struct adapter *adap; 1970 struct cpl_pass_open_req6 *req; 1971 int ret; 1972 1973 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1974 if (!skb) 1975 return -ENOMEM; 1976 1977 adap = netdev2adap(dev); 1978 req = __skb_put(skb, sizeof(*req)); 1979 INIT_TP_WR(req, 0); 1980 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1981 req->local_port = sport; 1982 req->peer_port = htons(0); 1983 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1984 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1985 req->peer_ip_hi = cpu_to_be64(0); 1986 req->peer_ip_lo = cpu_to_be64(0); 1987 chan = rxq_to_chan(&adap->sge, queue); 1988 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1989 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1990 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1991 ret = t4_mgmt_tx(adap, skb); 1992 return net_xmit_eval(ret); 1993 } 1994 EXPORT_SYMBOL(cxgb4_create_server6); 1995 1996 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1997 unsigned int queue, bool ipv6) 1998 { 1999 struct sk_buff *skb; 2000 struct adapter *adap; 2001 struct cpl_close_listsvr_req *req; 2002 int ret; 2003 2004 adap = netdev2adap(dev); 2005 2006 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 2007 if (!skb) 2008 return -ENOMEM; 2009 2010 req = __skb_put(skb, sizeof(*req)); 2011 INIT_TP_WR(req, 0); 2012 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 2013 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 2014 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 2015 ret = t4_mgmt_tx(adap, skb); 2016 return net_xmit_eval(ret); 2017 } 2018 EXPORT_SYMBOL(cxgb4_remove_server); 2019 2020 /** 2021 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 2022 * @mtus: the HW MTU table 2023 * @mtu: the target MTU 2024 * @idx: index of selected entry in the MTU table 2025 * 2026 * Returns the index and the value in the HW MTU table that is closest to 2027 * but does not exceed @mtu, unless @mtu is smaller than any value in the 2028 * table, in which case that smallest available value is selected. 2029 */ 2030 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 2031 unsigned int *idx) 2032 { 2033 unsigned int i = 0; 2034 2035 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 2036 ++i; 2037 if (idx) 2038 *idx = i; 2039 return mtus[i]; 2040 } 2041 EXPORT_SYMBOL(cxgb4_best_mtu); 2042 2043 /** 2044 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 2045 * @mtus: the HW MTU table 2046 * @header_size: Header Size 2047 * @data_size_max: maximum Data Segment Size 2048 * @data_size_align: desired Data Segment Size Alignment (2^N) 2049 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 2050 * 2051 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 2052 * MTU Table based solely on a Maximum MTU parameter, we break that 2053 * parameter up into a Header Size and Maximum Data Segment Size, and 2054 * provide a desired Data Segment Size Alignment. If we find an MTU in 2055 * the Hardware MTU Table which will result in a Data Segment Size with 2056 * the requested alignment _and_ that MTU isn't "too far" from the 2057 * closest MTU, then we'll return that rather than the closest MTU. 2058 */ 2059 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 2060 unsigned short header_size, 2061 unsigned short data_size_max, 2062 unsigned short data_size_align, 2063 unsigned int *mtu_idxp) 2064 { 2065 unsigned short max_mtu = header_size + data_size_max; 2066 unsigned short data_size_align_mask = data_size_align - 1; 2067 int mtu_idx, aligned_mtu_idx; 2068 2069 /* Scan the MTU Table till we find an MTU which is larger than our 2070 * Maximum MTU or we reach the end of the table. Along the way, 2071 * record the last MTU found, if any, which will result in a Data 2072 * Segment Length matching the requested alignment. 2073 */ 2074 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 2075 unsigned short data_size = mtus[mtu_idx] - header_size; 2076 2077 /* If this MTU minus the Header Size would result in a 2078 * Data Segment Size of the desired alignment, remember it. 2079 */ 2080 if ((data_size & data_size_align_mask) == 0) 2081 aligned_mtu_idx = mtu_idx; 2082 2083 /* If we're not at the end of the Hardware MTU Table and the 2084 * next element is larger than our Maximum MTU, drop out of 2085 * the loop. 2086 */ 2087 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 2088 break; 2089 } 2090 2091 /* If we fell out of the loop because we ran to the end of the table, 2092 * then we just have to use the last [largest] entry. 2093 */ 2094 if (mtu_idx == NMTUS) 2095 mtu_idx--; 2096 2097 /* If we found an MTU which resulted in the requested Data Segment 2098 * Length alignment and that's "not far" from the largest MTU which is 2099 * less than or equal to the maximum MTU, then use that. 2100 */ 2101 if (aligned_mtu_idx >= 0 && 2102 mtu_idx - aligned_mtu_idx <= 1) 2103 mtu_idx = aligned_mtu_idx; 2104 2105 /* If the caller has passed in an MTU Index pointer, pass the 2106 * MTU Index back. Return the MTU value. 2107 */ 2108 if (mtu_idxp) 2109 *mtu_idxp = mtu_idx; 2110 return mtus[mtu_idx]; 2111 } 2112 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 2113 2114 /** 2115 * cxgb4_port_chan - get the HW channel of a port 2116 * @dev: the net device for the port 2117 * 2118 * Return the HW Tx channel of the given port. 2119 */ 2120 unsigned int cxgb4_port_chan(const struct net_device *dev) 2121 { 2122 return netdev2pinfo(dev)->tx_chan; 2123 } 2124 EXPORT_SYMBOL(cxgb4_port_chan); 2125 2126 /** 2127 * cxgb4_port_e2cchan - get the HW c-channel of a port 2128 * @dev: the net device for the port 2129 * 2130 * Return the HW RX c-channel of the given port. 2131 */ 2132 unsigned int cxgb4_port_e2cchan(const struct net_device *dev) 2133 { 2134 return netdev2pinfo(dev)->rx_cchan; 2135 } 2136 EXPORT_SYMBOL(cxgb4_port_e2cchan); 2137 2138 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 2139 { 2140 struct adapter *adap = netdev2adap(dev); 2141 u32 v1, v2, lp_count, hp_count; 2142 2143 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 2144 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 2145 if (is_t4(adap->params.chip)) { 2146 lp_count = LP_COUNT_G(v1); 2147 hp_count = HP_COUNT_G(v1); 2148 } else { 2149 lp_count = LP_COUNT_T5_G(v1); 2150 hp_count = HP_COUNT_T5_G(v2); 2151 } 2152 return lpfifo ? lp_count : hp_count; 2153 } 2154 EXPORT_SYMBOL(cxgb4_dbfifo_count); 2155 2156 /** 2157 * cxgb4_port_viid - get the VI id of a port 2158 * @dev: the net device for the port 2159 * 2160 * Return the VI id of the given port. 2161 */ 2162 unsigned int cxgb4_port_viid(const struct net_device *dev) 2163 { 2164 return netdev2pinfo(dev)->viid; 2165 } 2166 EXPORT_SYMBOL(cxgb4_port_viid); 2167 2168 /** 2169 * cxgb4_port_idx - get the index of a port 2170 * @dev: the net device for the port 2171 * 2172 * Return the index of the given port. 2173 */ 2174 unsigned int cxgb4_port_idx(const struct net_device *dev) 2175 { 2176 return netdev2pinfo(dev)->port_id; 2177 } 2178 EXPORT_SYMBOL(cxgb4_port_idx); 2179 2180 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 2181 struct tp_tcp_stats *v6) 2182 { 2183 struct adapter *adap = pci_get_drvdata(pdev); 2184 2185 spin_lock(&adap->stats_lock); 2186 t4_tp_get_tcp_stats(adap, v4, v6, false); 2187 spin_unlock(&adap->stats_lock); 2188 } 2189 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 2190 2191 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 2192 const unsigned int *pgsz_order) 2193 { 2194 struct adapter *adap = netdev2adap(dev); 2195 2196 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 2197 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 2198 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 2199 HPZ3_V(pgsz_order[3])); 2200 } 2201 EXPORT_SYMBOL(cxgb4_iscsi_init); 2202 2203 int cxgb4_flush_eq_cache(struct net_device *dev) 2204 { 2205 struct adapter *adap = netdev2adap(dev); 2206 2207 return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS); 2208 } 2209 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 2210 2211 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 2212 { 2213 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 2214 __be64 indices; 2215 int ret; 2216 2217 spin_lock(&adap->win0_lock); 2218 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 2219 sizeof(indices), (__be32 *)&indices, 2220 T4_MEMORY_READ); 2221 spin_unlock(&adap->win0_lock); 2222 if (!ret) { 2223 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 2224 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 2225 } 2226 return ret; 2227 } 2228 2229 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 2230 u16 size) 2231 { 2232 struct adapter *adap = netdev2adap(dev); 2233 u16 hw_pidx, hw_cidx; 2234 int ret; 2235 2236 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 2237 if (ret) 2238 goto out; 2239 2240 if (pidx != hw_pidx) { 2241 u16 delta; 2242 u32 val; 2243 2244 if (pidx >= hw_pidx) 2245 delta = pidx - hw_pidx; 2246 else 2247 delta = size - hw_pidx + pidx; 2248 2249 if (is_t4(adap->params.chip)) 2250 val = PIDX_V(delta); 2251 else 2252 val = PIDX_T5_V(delta); 2253 wmb(); 2254 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2255 QID_V(qid) | val); 2256 } 2257 out: 2258 return ret; 2259 } 2260 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 2261 2262 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 2263 { 2264 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 2265 u32 edc0_end, edc1_end, mc0_end, mc1_end; 2266 u32 offset, memtype, memaddr; 2267 struct adapter *adap; 2268 u32 hma_size = 0; 2269 int ret; 2270 2271 adap = netdev2adap(dev); 2272 2273 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 2274 2275 /* Figure out where the offset lands in the Memory Type/Address scheme. 2276 * This code assumes that the memory is laid out starting at offset 0 2277 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 2278 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 2279 * MC0, and some have both MC0 and MC1. 2280 */ 2281 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 2282 edc0_size = EDRAM0_SIZE_G(size) << 20; 2283 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 2284 edc1_size = EDRAM1_SIZE_G(size) << 20; 2285 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 2286 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 2287 2288 if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) { 2289 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 2290 hma_size = EXT_MEM1_SIZE_G(size) << 20; 2291 } 2292 edc0_end = edc0_size; 2293 edc1_end = edc0_end + edc1_size; 2294 mc0_end = edc1_end + mc0_size; 2295 2296 if (offset < edc0_end) { 2297 memtype = MEM_EDC0; 2298 memaddr = offset; 2299 } else if (offset < edc1_end) { 2300 memtype = MEM_EDC1; 2301 memaddr = offset - edc0_end; 2302 } else { 2303 if (hma_size && (offset < (edc1_end + hma_size))) { 2304 memtype = MEM_HMA; 2305 memaddr = offset - edc1_end; 2306 } else if (offset < mc0_end) { 2307 memtype = MEM_MC0; 2308 memaddr = offset - edc1_end; 2309 } else if (is_t5(adap->params.chip)) { 2310 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 2311 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 2312 mc1_end = mc0_end + mc1_size; 2313 if (offset < mc1_end) { 2314 memtype = MEM_MC1; 2315 memaddr = offset - mc0_end; 2316 } else { 2317 /* offset beyond the end of any memory */ 2318 goto err; 2319 } 2320 } else { 2321 /* T4/T6 only has a single memory channel */ 2322 goto err; 2323 } 2324 } 2325 2326 spin_lock(&adap->win0_lock); 2327 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 2328 spin_unlock(&adap->win0_lock); 2329 return ret; 2330 2331 err: 2332 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 2333 stag, offset); 2334 return -EINVAL; 2335 } 2336 EXPORT_SYMBOL(cxgb4_read_tpte); 2337 2338 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 2339 { 2340 u32 hi, lo; 2341 struct adapter *adap; 2342 2343 adap = netdev2adap(dev); 2344 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 2345 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 2346 2347 return ((u64)hi << 32) | (u64)lo; 2348 } 2349 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 2350 2351 int cxgb4_bar2_sge_qregs(struct net_device *dev, 2352 unsigned int qid, 2353 enum cxgb4_bar2_qtype qtype, 2354 int user, 2355 u64 *pbar2_qoffset, 2356 unsigned int *pbar2_qid) 2357 { 2358 return t4_bar2_sge_qregs(netdev2adap(dev), 2359 qid, 2360 (qtype == CXGB4_BAR2_QTYPE_EGRESS 2361 ? T4_BAR2_QTYPE_EGRESS 2362 : T4_BAR2_QTYPE_INGRESS), 2363 user, 2364 pbar2_qoffset, 2365 pbar2_qid); 2366 } 2367 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 2368 2369 static struct pci_driver cxgb4_driver; 2370 2371 static void check_neigh_update(struct neighbour *neigh) 2372 { 2373 const struct device *parent; 2374 const struct net_device *netdev = neigh->dev; 2375 2376 if (is_vlan_dev(netdev)) 2377 netdev = vlan_dev_real_dev(netdev); 2378 parent = netdev->dev.parent; 2379 if (parent && parent->driver == &cxgb4_driver.driver) 2380 t4_l2t_update(dev_get_drvdata(parent), neigh); 2381 } 2382 2383 static int netevent_cb(struct notifier_block *nb, unsigned long event, 2384 void *data) 2385 { 2386 switch (event) { 2387 case NETEVENT_NEIGH_UPDATE: 2388 check_neigh_update(data); 2389 break; 2390 case NETEVENT_REDIRECT: 2391 default: 2392 break; 2393 } 2394 return 0; 2395 } 2396 2397 static bool netevent_registered; 2398 static struct notifier_block cxgb4_netevent_nb = { 2399 .notifier_call = netevent_cb 2400 }; 2401 2402 static void drain_db_fifo(struct adapter *adap, int usecs) 2403 { 2404 u32 v1, v2, lp_count, hp_count; 2405 2406 do { 2407 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 2408 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 2409 if (is_t4(adap->params.chip)) { 2410 lp_count = LP_COUNT_G(v1); 2411 hp_count = HP_COUNT_G(v1); 2412 } else { 2413 lp_count = LP_COUNT_T5_G(v1); 2414 hp_count = HP_COUNT_T5_G(v2); 2415 } 2416 2417 if (lp_count == 0 && hp_count == 0) 2418 break; 2419 set_current_state(TASK_UNINTERRUPTIBLE); 2420 schedule_timeout(usecs_to_jiffies(usecs)); 2421 } while (1); 2422 } 2423 2424 static void disable_txq_db(struct sge_txq *q) 2425 { 2426 unsigned long flags; 2427 2428 spin_lock_irqsave(&q->db_lock, flags); 2429 q->db_disabled = 1; 2430 spin_unlock_irqrestore(&q->db_lock, flags); 2431 } 2432 2433 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 2434 { 2435 spin_lock_irq(&q->db_lock); 2436 if (q->db_pidx_inc) { 2437 /* Make sure that all writes to the TX descriptors 2438 * are committed before we tell HW about them. 2439 */ 2440 wmb(); 2441 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2442 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 2443 q->db_pidx_inc = 0; 2444 } 2445 q->db_disabled = 0; 2446 spin_unlock_irq(&q->db_lock); 2447 } 2448 2449 static void disable_dbs(struct adapter *adap) 2450 { 2451 int i; 2452 2453 for_each_ethrxq(&adap->sge, i) 2454 disable_txq_db(&adap->sge.ethtxq[i].q); 2455 if (is_offload(adap)) { 2456 struct sge_uld_txq_info *txq_info = 2457 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2458 2459 if (txq_info) { 2460 for_each_ofldtxq(&adap->sge, i) { 2461 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2462 2463 disable_txq_db(&txq->q); 2464 } 2465 } 2466 } 2467 for_each_port(adap, i) 2468 disable_txq_db(&adap->sge.ctrlq[i].q); 2469 } 2470 2471 static void enable_dbs(struct adapter *adap) 2472 { 2473 int i; 2474 2475 for_each_ethrxq(&adap->sge, i) 2476 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 2477 if (is_offload(adap)) { 2478 struct sge_uld_txq_info *txq_info = 2479 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2480 2481 if (txq_info) { 2482 for_each_ofldtxq(&adap->sge, i) { 2483 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2484 2485 enable_txq_db(adap, &txq->q); 2486 } 2487 } 2488 } 2489 for_each_port(adap, i) 2490 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 2491 } 2492 2493 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 2494 { 2495 enum cxgb4_uld type = CXGB4_ULD_RDMA; 2496 2497 if (adap->uld && adap->uld[type].handle) 2498 adap->uld[type].control(adap->uld[type].handle, cmd); 2499 } 2500 2501 static void process_db_full(struct work_struct *work) 2502 { 2503 struct adapter *adap; 2504 2505 adap = container_of(work, struct adapter, db_full_task); 2506 2507 drain_db_fifo(adap, dbfifo_drain_delay); 2508 enable_dbs(adap); 2509 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2510 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2511 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2512 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 2513 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 2514 else 2515 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2516 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 2517 } 2518 2519 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 2520 { 2521 u16 hw_pidx, hw_cidx; 2522 int ret; 2523 2524 spin_lock_irq(&q->db_lock); 2525 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 2526 if (ret) 2527 goto out; 2528 if (q->db_pidx != hw_pidx) { 2529 u16 delta; 2530 u32 val; 2531 2532 if (q->db_pidx >= hw_pidx) 2533 delta = q->db_pidx - hw_pidx; 2534 else 2535 delta = q->size - hw_pidx + q->db_pidx; 2536 2537 if (is_t4(adap->params.chip)) 2538 val = PIDX_V(delta); 2539 else 2540 val = PIDX_T5_V(delta); 2541 wmb(); 2542 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2543 QID_V(q->cntxt_id) | val); 2544 } 2545 out: 2546 q->db_disabled = 0; 2547 q->db_pidx_inc = 0; 2548 spin_unlock_irq(&q->db_lock); 2549 if (ret) 2550 CH_WARN(adap, "DB drop recovery failed.\n"); 2551 } 2552 2553 static void recover_all_queues(struct adapter *adap) 2554 { 2555 int i; 2556 2557 for_each_ethrxq(&adap->sge, i) 2558 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 2559 if (is_offload(adap)) { 2560 struct sge_uld_txq_info *txq_info = 2561 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2562 if (txq_info) { 2563 for_each_ofldtxq(&adap->sge, i) { 2564 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2565 2566 sync_txq_pidx(adap, &txq->q); 2567 } 2568 } 2569 } 2570 for_each_port(adap, i) 2571 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2572 } 2573 2574 static void process_db_drop(struct work_struct *work) 2575 { 2576 struct adapter *adap; 2577 2578 adap = container_of(work, struct adapter, db_drop_task); 2579 2580 if (is_t4(adap->params.chip)) { 2581 drain_db_fifo(adap, dbfifo_drain_delay); 2582 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2583 drain_db_fifo(adap, dbfifo_drain_delay); 2584 recover_all_queues(adap); 2585 drain_db_fifo(adap, dbfifo_drain_delay); 2586 enable_dbs(adap); 2587 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2588 } else if (is_t5(adap->params.chip)) { 2589 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2590 u16 qid = (dropped_db >> 15) & 0x1ffff; 2591 u16 pidx_inc = dropped_db & 0x1fff; 2592 u64 bar2_qoffset; 2593 unsigned int bar2_qid; 2594 int ret; 2595 2596 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2597 0, &bar2_qoffset, &bar2_qid); 2598 if (ret) 2599 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2600 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2601 else 2602 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2603 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2604 2605 /* Re-enable BAR2 WC */ 2606 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2607 } 2608 2609 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2610 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2611 } 2612 2613 void t4_db_full(struct adapter *adap) 2614 { 2615 if (is_t4(adap->params.chip)) { 2616 disable_dbs(adap); 2617 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2618 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2619 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2620 queue_work(adap->workq, &adap->db_full_task); 2621 } 2622 } 2623 2624 void t4_db_dropped(struct adapter *adap) 2625 { 2626 if (is_t4(adap->params.chip)) { 2627 disable_dbs(adap); 2628 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2629 } 2630 queue_work(adap->workq, &adap->db_drop_task); 2631 } 2632 2633 void t4_register_netevent_notifier(void) 2634 { 2635 if (!netevent_registered) { 2636 register_netevent_notifier(&cxgb4_netevent_nb); 2637 netevent_registered = true; 2638 } 2639 } 2640 2641 static void detach_ulds(struct adapter *adap) 2642 { 2643 unsigned int i; 2644 2645 mutex_lock(&uld_mutex); 2646 list_del(&adap->list_node); 2647 2648 for (i = 0; i < CXGB4_ULD_MAX; i++) 2649 if (adap->uld && adap->uld[i].handle) 2650 adap->uld[i].state_change(adap->uld[i].handle, 2651 CXGB4_STATE_DETACH); 2652 2653 if (netevent_registered && list_empty(&adapter_list)) { 2654 unregister_netevent_notifier(&cxgb4_netevent_nb); 2655 netevent_registered = false; 2656 } 2657 mutex_unlock(&uld_mutex); 2658 } 2659 2660 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2661 { 2662 unsigned int i; 2663 2664 mutex_lock(&uld_mutex); 2665 for (i = 0; i < CXGB4_ULD_MAX; i++) 2666 if (adap->uld && adap->uld[i].handle) 2667 adap->uld[i].state_change(adap->uld[i].handle, 2668 new_state); 2669 mutex_unlock(&uld_mutex); 2670 } 2671 2672 #if IS_ENABLED(CONFIG_IPV6) 2673 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2674 unsigned long event, void *data) 2675 { 2676 struct inet6_ifaddr *ifa = data; 2677 struct net_device *event_dev = ifa->idev->dev; 2678 const struct device *parent = NULL; 2679 #if IS_ENABLED(CONFIG_BONDING) 2680 struct adapter *adap; 2681 #endif 2682 if (is_vlan_dev(event_dev)) 2683 event_dev = vlan_dev_real_dev(event_dev); 2684 #if IS_ENABLED(CONFIG_BONDING) 2685 if (event_dev->flags & IFF_MASTER) { 2686 list_for_each_entry(adap, &adapter_list, list_node) { 2687 switch (event) { 2688 case NETDEV_UP: 2689 cxgb4_clip_get(adap->port[0], 2690 (const u32 *)ifa, 1); 2691 break; 2692 case NETDEV_DOWN: 2693 cxgb4_clip_release(adap->port[0], 2694 (const u32 *)ifa, 1); 2695 break; 2696 default: 2697 break; 2698 } 2699 } 2700 return NOTIFY_OK; 2701 } 2702 #endif 2703 2704 if (event_dev) 2705 parent = event_dev->dev.parent; 2706 2707 if (parent && parent->driver == &cxgb4_driver.driver) { 2708 switch (event) { 2709 case NETDEV_UP: 2710 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2711 break; 2712 case NETDEV_DOWN: 2713 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2714 break; 2715 default: 2716 break; 2717 } 2718 } 2719 return NOTIFY_OK; 2720 } 2721 2722 static bool inet6addr_registered; 2723 static struct notifier_block cxgb4_inet6addr_notifier = { 2724 .notifier_call = cxgb4_inet6addr_handler 2725 }; 2726 2727 static void update_clip(const struct adapter *adap) 2728 { 2729 int i; 2730 struct net_device *dev; 2731 int ret; 2732 2733 rcu_read_lock(); 2734 2735 for (i = 0; i < MAX_NPORTS; i++) { 2736 dev = adap->port[i]; 2737 ret = 0; 2738 2739 if (dev) 2740 ret = cxgb4_update_root_dev_clip(dev); 2741 2742 if (ret < 0) 2743 break; 2744 } 2745 rcu_read_unlock(); 2746 } 2747 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2748 2749 /** 2750 * cxgb_up - enable the adapter 2751 * @adap: adapter being enabled 2752 * 2753 * Called when the first port is enabled, this function performs the 2754 * actions necessary to make an adapter operational, such as completing 2755 * the initialization of HW modules, and enabling interrupts. 2756 * 2757 * Must be called with the rtnl lock held. 2758 */ 2759 static int cxgb_up(struct adapter *adap) 2760 { 2761 struct sge *s = &adap->sge; 2762 int err; 2763 2764 mutex_lock(&uld_mutex); 2765 err = setup_sge_queues(adap); 2766 if (err) 2767 goto rel_lock; 2768 err = setup_rss(adap); 2769 if (err) 2770 goto freeq; 2771 2772 if (adap->flags & CXGB4_USING_MSIX) { 2773 if (s->nd_msix_idx < 0) { 2774 err = -ENOMEM; 2775 goto irq_err; 2776 } 2777 2778 err = request_irq(adap->msix_info[s->nd_msix_idx].vec, 2779 t4_nondata_intr, 0, 2780 adap->msix_info[s->nd_msix_idx].desc, adap); 2781 if (err) 2782 goto irq_err; 2783 2784 err = request_msix_queue_irqs(adap); 2785 if (err) 2786 goto irq_err_free_nd_msix; 2787 } else { 2788 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2789 (adap->flags & CXGB4_USING_MSI) ? 0 2790 : IRQF_SHARED, 2791 adap->port[0]->name, adap); 2792 if (err) 2793 goto irq_err; 2794 } 2795 2796 enable_rx(adap); 2797 t4_sge_start(adap); 2798 t4_intr_enable(adap); 2799 adap->flags |= CXGB4_FULL_INIT_DONE; 2800 mutex_unlock(&uld_mutex); 2801 2802 notify_ulds(adap, CXGB4_STATE_UP); 2803 #if IS_ENABLED(CONFIG_IPV6) 2804 update_clip(adap); 2805 #endif 2806 return err; 2807 2808 irq_err_free_nd_msix: 2809 free_irq(adap->msix_info[s->nd_msix_idx].vec, adap); 2810 irq_err: 2811 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2812 freeq: 2813 t4_free_sge_resources(adap); 2814 rel_lock: 2815 mutex_unlock(&uld_mutex); 2816 return err; 2817 } 2818 2819 static void cxgb_down(struct adapter *adapter) 2820 { 2821 cancel_work_sync(&adapter->tid_release_task); 2822 cancel_work_sync(&adapter->db_full_task); 2823 cancel_work_sync(&adapter->db_drop_task); 2824 adapter->tid_release_task_busy = false; 2825 adapter->tid_release_head = NULL; 2826 2827 t4_sge_stop(adapter); 2828 t4_free_sge_resources(adapter); 2829 2830 adapter->flags &= ~CXGB4_FULL_INIT_DONE; 2831 } 2832 2833 /* 2834 * net_device operations 2835 */ 2836 int cxgb_open(struct net_device *dev) 2837 { 2838 struct port_info *pi = netdev_priv(dev); 2839 struct adapter *adapter = pi->adapter; 2840 int err; 2841 2842 netif_carrier_off(dev); 2843 2844 if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) { 2845 err = cxgb_up(adapter); 2846 if (err < 0) 2847 return err; 2848 } 2849 2850 /* It's possible that the basic port information could have 2851 * changed since we first read it. 2852 */ 2853 err = t4_update_port_info(pi); 2854 if (err < 0) 2855 return err; 2856 2857 err = link_start(dev); 2858 if (err) 2859 return err; 2860 2861 if (pi->nmirrorqsets) { 2862 mutex_lock(&pi->vi_mirror_mutex); 2863 err = cxgb4_port_mirror_alloc_queues(dev); 2864 if (err) 2865 goto out_unlock; 2866 2867 err = cxgb4_port_mirror_start(dev); 2868 if (err) 2869 goto out_free_queues; 2870 mutex_unlock(&pi->vi_mirror_mutex); 2871 } 2872 2873 netif_tx_start_all_queues(dev); 2874 return 0; 2875 2876 out_free_queues: 2877 cxgb4_port_mirror_free_queues(dev); 2878 2879 out_unlock: 2880 mutex_unlock(&pi->vi_mirror_mutex); 2881 return err; 2882 } 2883 2884 int cxgb_close(struct net_device *dev) 2885 { 2886 struct port_info *pi = netdev_priv(dev); 2887 struct adapter *adapter = pi->adapter; 2888 int ret; 2889 2890 netif_tx_stop_all_queues(dev); 2891 netif_carrier_off(dev); 2892 ret = t4_enable_pi_params(adapter, adapter->pf, pi, 2893 false, false, false); 2894 #ifdef CONFIG_CHELSIO_T4_DCB 2895 cxgb4_dcb_reset(dev); 2896 dcb_tx_queue_prio_enable(dev, false); 2897 #endif 2898 if (ret) 2899 return ret; 2900 2901 if (pi->nmirrorqsets) { 2902 mutex_lock(&pi->vi_mirror_mutex); 2903 cxgb4_port_mirror_stop(dev); 2904 cxgb4_port_mirror_free_queues(dev); 2905 mutex_unlock(&pi->vi_mirror_mutex); 2906 } 2907 2908 return 0; 2909 } 2910 2911 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2912 __be32 sip, __be16 sport, __be16 vlan, 2913 unsigned int queue, unsigned char port, unsigned char mask) 2914 { 2915 int ret; 2916 struct filter_entry *f; 2917 struct adapter *adap; 2918 int i; 2919 u8 *val; 2920 2921 adap = netdev2adap(dev); 2922 2923 /* Adjust stid to correct filter index */ 2924 stid -= adap->tids.sftid_base; 2925 stid += adap->tids.nftids; 2926 2927 /* Check to make sure the filter requested is writable ... 2928 */ 2929 f = &adap->tids.ftid_tab[stid]; 2930 ret = writable_filter(f); 2931 if (ret) 2932 return ret; 2933 2934 /* Clear out any old resources being used by the filter before 2935 * we start constructing the new filter. 2936 */ 2937 if (f->valid) 2938 clear_filter(adap, f); 2939 2940 /* Clear out filter specifications */ 2941 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2942 f->fs.val.lport = be16_to_cpu(sport); 2943 f->fs.mask.lport = ~0; 2944 val = (u8 *)&sip; 2945 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2946 for (i = 0; i < 4; i++) { 2947 f->fs.val.lip[i] = val[i]; 2948 f->fs.mask.lip[i] = ~0; 2949 } 2950 if (adap->params.tp.vlan_pri_map & PORT_F) { 2951 f->fs.val.iport = port; 2952 f->fs.mask.iport = mask; 2953 } 2954 } 2955 2956 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2957 f->fs.val.proto = IPPROTO_TCP; 2958 f->fs.mask.proto = ~0; 2959 } 2960 2961 f->fs.dirsteer = 1; 2962 f->fs.iq = queue; 2963 /* Mark filter as locked */ 2964 f->locked = 1; 2965 f->fs.rpttid = 1; 2966 2967 /* Save the actual tid. We need this to get the corresponding 2968 * filter entry structure in filter_rpl. 2969 */ 2970 f->tid = stid + adap->tids.ftid_base; 2971 ret = set_filter_wr(adap, stid); 2972 if (ret) { 2973 clear_filter(adap, f); 2974 return ret; 2975 } 2976 2977 return 0; 2978 } 2979 EXPORT_SYMBOL(cxgb4_create_server_filter); 2980 2981 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2982 unsigned int queue, bool ipv6) 2983 { 2984 struct filter_entry *f; 2985 struct adapter *adap; 2986 2987 adap = netdev2adap(dev); 2988 2989 /* Adjust stid to correct filter index */ 2990 stid -= adap->tids.sftid_base; 2991 stid += adap->tids.nftids; 2992 2993 f = &adap->tids.ftid_tab[stid]; 2994 /* Unlock the filter */ 2995 f->locked = 0; 2996 2997 return delete_filter(adap, stid); 2998 } 2999 EXPORT_SYMBOL(cxgb4_remove_server_filter); 3000 3001 static void cxgb_get_stats(struct net_device *dev, 3002 struct rtnl_link_stats64 *ns) 3003 { 3004 struct port_stats stats; 3005 struct port_info *p = netdev_priv(dev); 3006 struct adapter *adapter = p->adapter; 3007 3008 /* Block retrieving statistics during EEH error 3009 * recovery. Otherwise, the recovery might fail 3010 * and the PCI device will be removed permanently 3011 */ 3012 spin_lock(&adapter->stats_lock); 3013 if (!netif_device_present(dev)) { 3014 spin_unlock(&adapter->stats_lock); 3015 return; 3016 } 3017 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 3018 &p->stats_base); 3019 spin_unlock(&adapter->stats_lock); 3020 3021 ns->tx_bytes = stats.tx_octets; 3022 ns->tx_packets = stats.tx_frames; 3023 ns->rx_bytes = stats.rx_octets; 3024 ns->rx_packets = stats.rx_frames; 3025 ns->multicast = stats.rx_mcast_frames; 3026 3027 /* detailed rx_errors */ 3028 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 3029 stats.rx_runt; 3030 ns->rx_over_errors = 0; 3031 ns->rx_crc_errors = stats.rx_fcs_err; 3032 ns->rx_frame_errors = stats.rx_symbol_err; 3033 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 + 3034 stats.rx_ovflow2 + stats.rx_ovflow3 + 3035 stats.rx_trunc0 + stats.rx_trunc1 + 3036 stats.rx_trunc2 + stats.rx_trunc3; 3037 ns->rx_missed_errors = 0; 3038 3039 /* detailed tx_errors */ 3040 ns->tx_aborted_errors = 0; 3041 ns->tx_carrier_errors = 0; 3042 ns->tx_fifo_errors = 0; 3043 ns->tx_heartbeat_errors = 0; 3044 ns->tx_window_errors = 0; 3045 3046 ns->tx_errors = stats.tx_error_frames; 3047 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 3048 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 3049 } 3050 3051 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 3052 { 3053 unsigned int mbox; 3054 int ret = 0, prtad, devad; 3055 struct port_info *pi = netdev_priv(dev); 3056 struct adapter *adapter = pi->adapter; 3057 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 3058 3059 switch (cmd) { 3060 case SIOCGMIIPHY: 3061 if (pi->mdio_addr < 0) 3062 return -EOPNOTSUPP; 3063 data->phy_id = pi->mdio_addr; 3064 break; 3065 case SIOCGMIIREG: 3066 case SIOCSMIIREG: 3067 if (mdio_phy_id_is_c45(data->phy_id)) { 3068 prtad = mdio_phy_id_prtad(data->phy_id); 3069 devad = mdio_phy_id_devad(data->phy_id); 3070 } else if (data->phy_id < 32) { 3071 prtad = data->phy_id; 3072 devad = 0; 3073 data->reg_num &= 0x1f; 3074 } else 3075 return -EINVAL; 3076 3077 mbox = pi->adapter->pf; 3078 if (cmd == SIOCGMIIREG) 3079 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 3080 data->reg_num, &data->val_out); 3081 else 3082 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 3083 data->reg_num, data->val_in); 3084 break; 3085 case SIOCGHWTSTAMP: 3086 return copy_to_user(req->ifr_data, &pi->tstamp_config, 3087 sizeof(pi->tstamp_config)) ? 3088 -EFAULT : 0; 3089 case SIOCSHWTSTAMP: 3090 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 3091 sizeof(pi->tstamp_config))) 3092 return -EFAULT; 3093 3094 if (!is_t4(adapter->params.chip)) { 3095 switch (pi->tstamp_config.tx_type) { 3096 case HWTSTAMP_TX_OFF: 3097 case HWTSTAMP_TX_ON: 3098 break; 3099 default: 3100 return -ERANGE; 3101 } 3102 3103 switch (pi->tstamp_config.rx_filter) { 3104 case HWTSTAMP_FILTER_NONE: 3105 pi->rxtstamp = false; 3106 break; 3107 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 3108 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 3109 cxgb4_ptprx_timestamping(pi, pi->port_id, 3110 PTP_TS_L4); 3111 break; 3112 case HWTSTAMP_FILTER_PTP_V2_EVENT: 3113 cxgb4_ptprx_timestamping(pi, pi->port_id, 3114 PTP_TS_L2_L4); 3115 break; 3116 case HWTSTAMP_FILTER_ALL: 3117 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 3118 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 3119 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 3120 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 3121 pi->rxtstamp = true; 3122 break; 3123 default: 3124 pi->tstamp_config.rx_filter = 3125 HWTSTAMP_FILTER_NONE; 3126 return -ERANGE; 3127 } 3128 3129 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) && 3130 (pi->tstamp_config.rx_filter == 3131 HWTSTAMP_FILTER_NONE)) { 3132 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0) 3133 pi->ptp_enable = false; 3134 } 3135 3136 if (pi->tstamp_config.rx_filter != 3137 HWTSTAMP_FILTER_NONE) { 3138 if (cxgb4_ptp_redirect_rx_packet(adapter, 3139 pi) >= 0) 3140 pi->ptp_enable = true; 3141 } 3142 } else { 3143 /* For T4 Adapters */ 3144 switch (pi->tstamp_config.rx_filter) { 3145 case HWTSTAMP_FILTER_NONE: 3146 pi->rxtstamp = false; 3147 break; 3148 case HWTSTAMP_FILTER_ALL: 3149 pi->rxtstamp = true; 3150 break; 3151 default: 3152 pi->tstamp_config.rx_filter = 3153 HWTSTAMP_FILTER_NONE; 3154 return -ERANGE; 3155 } 3156 } 3157 return copy_to_user(req->ifr_data, &pi->tstamp_config, 3158 sizeof(pi->tstamp_config)) ? 3159 -EFAULT : 0; 3160 default: 3161 return -EOPNOTSUPP; 3162 } 3163 return ret; 3164 } 3165 3166 static void cxgb_set_rxmode(struct net_device *dev) 3167 { 3168 /* unfortunately we can't return errors to the stack */ 3169 set_rxmode(dev, -1, false); 3170 } 3171 3172 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 3173 { 3174 struct port_info *pi = netdev_priv(dev); 3175 int ret; 3176 3177 ret = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid, 3178 pi->viid_mirror, new_mtu, -1, -1, -1, -1, true); 3179 if (!ret) 3180 dev->mtu = new_mtu; 3181 return ret; 3182 } 3183 3184 #ifdef CONFIG_PCI_IOV 3185 static int cxgb4_mgmt_open(struct net_device *dev) 3186 { 3187 /* Turn carrier off since we don't have to transmit anything on this 3188 * interface. 3189 */ 3190 netif_carrier_off(dev); 3191 return 0; 3192 } 3193 3194 /* Fill MAC address that will be assigned by the FW */ 3195 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap) 3196 { 3197 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN]; 3198 unsigned int i, vf, nvfs; 3199 u16 a, b; 3200 int err; 3201 u8 *na; 3202 3203 adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev, 3204 PCI_CAP_ID_VPD); 3205 err = t4_get_raw_vpd_params(adap, &adap->params.vpd); 3206 if (err) 3207 return; 3208 3209 na = adap->params.vpd.na; 3210 for (i = 0; i < ETH_ALEN; i++) 3211 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 3212 hex2val(na[2 * i + 1])); 3213 3214 a = (hw_addr[0] << 8) | hw_addr[1]; 3215 b = (hw_addr[1] << 8) | hw_addr[2]; 3216 a ^= b; 3217 a |= 0x0200; /* locally assigned Ethernet MAC address */ 3218 a &= ~0x0100; /* not a multicast Ethernet MAC address */ 3219 macaddr[0] = a >> 8; 3220 macaddr[1] = a & 0xff; 3221 3222 for (i = 2; i < 5; i++) 3223 macaddr[i] = hw_addr[i + 1]; 3224 3225 for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev); 3226 vf < nvfs; vf++) { 3227 macaddr[5] = adap->pf * nvfs + vf; 3228 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr); 3229 } 3230 } 3231 3232 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac) 3233 { 3234 struct port_info *pi = netdev_priv(dev); 3235 struct adapter *adap = pi->adapter; 3236 int ret; 3237 3238 /* verify MAC addr is valid */ 3239 if (!is_valid_ether_addr(mac)) { 3240 dev_err(pi->adapter->pdev_dev, 3241 "Invalid Ethernet address %pM for VF %d\n", 3242 mac, vf); 3243 return -EINVAL; 3244 } 3245 3246 dev_info(pi->adapter->pdev_dev, 3247 "Setting MAC %pM on VF %d\n", mac, vf); 3248 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac); 3249 if (!ret) 3250 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac); 3251 return ret; 3252 } 3253 3254 static int cxgb4_mgmt_get_vf_config(struct net_device *dev, 3255 int vf, struct ifla_vf_info *ivi) 3256 { 3257 struct port_info *pi = netdev_priv(dev); 3258 struct adapter *adap = pi->adapter; 3259 struct vf_info *vfinfo; 3260 3261 if (vf >= adap->num_vfs) 3262 return -EINVAL; 3263 vfinfo = &adap->vfinfo[vf]; 3264 3265 ivi->vf = vf; 3266 ivi->max_tx_rate = vfinfo->tx_rate; 3267 ivi->min_tx_rate = 0; 3268 ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr); 3269 ivi->vlan = vfinfo->vlan; 3270 ivi->linkstate = vfinfo->link_state; 3271 return 0; 3272 } 3273 3274 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev, 3275 struct netdev_phys_item_id *ppid) 3276 { 3277 struct port_info *pi = netdev_priv(dev); 3278 unsigned int phy_port_id; 3279 3280 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id; 3281 ppid->id_len = sizeof(phy_port_id); 3282 memcpy(ppid->id, &phy_port_id, ppid->id_len); 3283 return 0; 3284 } 3285 3286 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf, 3287 int min_tx_rate, int max_tx_rate) 3288 { 3289 struct port_info *pi = netdev_priv(dev); 3290 struct adapter *adap = pi->adapter; 3291 unsigned int link_ok, speed, mtu; 3292 u32 fw_pfvf, fw_class; 3293 int class_id = vf; 3294 int ret; 3295 u16 pktsize; 3296 3297 if (vf >= adap->num_vfs) 3298 return -EINVAL; 3299 3300 if (min_tx_rate) { 3301 dev_err(adap->pdev_dev, 3302 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n", 3303 min_tx_rate, vf); 3304 return -EINVAL; 3305 } 3306 3307 if (max_tx_rate == 0) { 3308 /* unbind VF to to any Traffic Class */ 3309 fw_pfvf = 3310 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 3311 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 3312 fw_class = 0xffffffff; 3313 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, 3314 &fw_pfvf, &fw_class); 3315 if (ret) { 3316 dev_err(adap->pdev_dev, 3317 "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n", 3318 ret, adap->pf, vf); 3319 return -EINVAL; 3320 } 3321 dev_info(adap->pdev_dev, 3322 "PF %d VF %d is unbound from TX Rate Limiting\n", 3323 adap->pf, vf); 3324 adap->vfinfo[vf].tx_rate = 0; 3325 return 0; 3326 } 3327 3328 ret = t4_get_link_params(pi, &link_ok, &speed, &mtu); 3329 if (ret != FW_SUCCESS) { 3330 dev_err(adap->pdev_dev, 3331 "Failed to get link information for VF %d\n", vf); 3332 return -EINVAL; 3333 } 3334 3335 if (!link_ok) { 3336 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf); 3337 return -EINVAL; 3338 } 3339 3340 if (max_tx_rate > speed) { 3341 dev_err(adap->pdev_dev, 3342 "Max tx rate %d for VF %d can't be > link-speed %u", 3343 max_tx_rate, vf, speed); 3344 return -EINVAL; 3345 } 3346 3347 pktsize = mtu; 3348 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */ 3349 pktsize = pktsize - sizeof(struct ethhdr) - 4; 3350 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */ 3351 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr); 3352 /* configure Traffic Class for rate-limiting */ 3353 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET, 3354 SCHED_CLASS_LEVEL_CL_RL, 3355 SCHED_CLASS_MODE_CLASS, 3356 SCHED_CLASS_RATEUNIT_BITS, 3357 SCHED_CLASS_RATEMODE_ABS, 3358 pi->tx_chan, class_id, 0, 3359 max_tx_rate * 1000, 0, pktsize, 0); 3360 if (ret) { 3361 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n", 3362 ret); 3363 return -EINVAL; 3364 } 3365 dev_info(adap->pdev_dev, 3366 "Class %d with MSS %u configured with rate %u\n", 3367 class_id, pktsize, max_tx_rate); 3368 3369 /* bind VF to configured Traffic Class */ 3370 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 3371 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 3372 fw_class = class_id; 3373 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf, 3374 &fw_class); 3375 if (ret) { 3376 dev_err(adap->pdev_dev, 3377 "Err %d in binding PF %d VF %d to Traffic Class %d\n", 3378 ret, adap->pf, vf, class_id); 3379 return -EINVAL; 3380 } 3381 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n", 3382 adap->pf, vf, class_id); 3383 adap->vfinfo[vf].tx_rate = max_tx_rate; 3384 return 0; 3385 } 3386 3387 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf, 3388 u16 vlan, u8 qos, __be16 vlan_proto) 3389 { 3390 struct port_info *pi = netdev_priv(dev); 3391 struct adapter *adap = pi->adapter; 3392 int ret; 3393 3394 if (vf >= adap->num_vfs || vlan > 4095 || qos > 7) 3395 return -EINVAL; 3396 3397 if (vlan_proto != htons(ETH_P_8021Q) || qos != 0) 3398 return -EPROTONOSUPPORT; 3399 3400 ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan); 3401 if (!ret) { 3402 adap->vfinfo[vf].vlan = vlan; 3403 return 0; 3404 } 3405 3406 dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n", 3407 ret, (vlan ? "setting" : "clearing"), adap->pf, vf); 3408 return ret; 3409 } 3410 3411 static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf, 3412 int link) 3413 { 3414 struct port_info *pi = netdev_priv(dev); 3415 struct adapter *adap = pi->adapter; 3416 u32 param, val; 3417 int ret = 0; 3418 3419 if (vf >= adap->num_vfs) 3420 return -EINVAL; 3421 3422 switch (link) { 3423 case IFLA_VF_LINK_STATE_AUTO: 3424 val = FW_VF_LINK_STATE_AUTO; 3425 break; 3426 3427 case IFLA_VF_LINK_STATE_ENABLE: 3428 val = FW_VF_LINK_STATE_ENABLE; 3429 break; 3430 3431 case IFLA_VF_LINK_STATE_DISABLE: 3432 val = FW_VF_LINK_STATE_DISABLE; 3433 break; 3434 3435 default: 3436 return -EINVAL; 3437 } 3438 3439 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 3440 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE)); 3441 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, 3442 ¶m, &val); 3443 if (ret) { 3444 dev_err(adap->pdev_dev, 3445 "Error %d in setting PF %d VF %d link state\n", 3446 ret, adap->pf, vf); 3447 return -EINVAL; 3448 } 3449 3450 adap->vfinfo[vf].link_state = link; 3451 return ret; 3452 } 3453 #endif /* CONFIG_PCI_IOV */ 3454 3455 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 3456 { 3457 int ret; 3458 struct sockaddr *addr = p; 3459 struct port_info *pi = netdev_priv(dev); 3460 3461 if (!is_valid_ether_addr(addr->sa_data)) 3462 return -EADDRNOTAVAIL; 3463 3464 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt, 3465 addr->sa_data, true, &pi->smt_idx); 3466 if (ret < 0) 3467 return ret; 3468 3469 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 3470 return 0; 3471 } 3472 3473 #ifdef CONFIG_NET_POLL_CONTROLLER 3474 static void cxgb_netpoll(struct net_device *dev) 3475 { 3476 struct port_info *pi = netdev_priv(dev); 3477 struct adapter *adap = pi->adapter; 3478 3479 if (adap->flags & CXGB4_USING_MSIX) { 3480 int i; 3481 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 3482 3483 for (i = pi->nqsets; i; i--, rx++) 3484 t4_sge_intr_msix(0, &rx->rspq); 3485 } else 3486 t4_intr_handler(adap)(0, adap); 3487 } 3488 #endif 3489 3490 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate) 3491 { 3492 struct port_info *pi = netdev_priv(dev); 3493 struct adapter *adap = pi->adapter; 3494 struct ch_sched_queue qe = { 0 }; 3495 struct ch_sched_params p = { 0 }; 3496 struct sched_class *e; 3497 u32 req_rate; 3498 int err = 0; 3499 3500 if (!can_sched(dev)) 3501 return -ENOTSUPP; 3502 3503 if (index < 0 || index > pi->nqsets - 1) 3504 return -EINVAL; 3505 3506 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { 3507 dev_err(adap->pdev_dev, 3508 "Failed to rate limit on queue %d. Link Down?\n", 3509 index); 3510 return -EINVAL; 3511 } 3512 3513 qe.queue = index; 3514 e = cxgb4_sched_queue_lookup(dev, &qe); 3515 if (e && e->info.u.params.level != SCHED_CLASS_LEVEL_CL_RL) { 3516 dev_err(adap->pdev_dev, 3517 "Queue %u already bound to class %u of type: %u\n", 3518 index, e->idx, e->info.u.params.level); 3519 return -EBUSY; 3520 } 3521 3522 /* Convert from Mbps to Kbps */ 3523 req_rate = rate * 1000; 3524 3525 /* Max rate is 100 Gbps */ 3526 if (req_rate > SCHED_MAX_RATE_KBPS) { 3527 dev_err(adap->pdev_dev, 3528 "Invalid rate %u Mbps, Max rate is %u Mbps\n", 3529 rate, SCHED_MAX_RATE_KBPS / 1000); 3530 return -ERANGE; 3531 } 3532 3533 /* First unbind the queue from any existing class */ 3534 memset(&qe, 0, sizeof(qe)); 3535 qe.queue = index; 3536 qe.class = SCHED_CLS_NONE; 3537 3538 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE); 3539 if (err) { 3540 dev_err(adap->pdev_dev, 3541 "Unbinding Queue %d on port %d fail. Err: %d\n", 3542 index, pi->port_id, err); 3543 return err; 3544 } 3545 3546 /* Queue already unbound */ 3547 if (!req_rate) 3548 return 0; 3549 3550 /* Fetch any available unused or matching scheduling class */ 3551 p.type = SCHED_CLASS_TYPE_PACKET; 3552 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL; 3553 p.u.params.mode = SCHED_CLASS_MODE_CLASS; 3554 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS; 3555 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS; 3556 p.u.params.channel = pi->tx_chan; 3557 p.u.params.class = SCHED_CLS_NONE; 3558 p.u.params.minrate = 0; 3559 p.u.params.maxrate = req_rate; 3560 p.u.params.weight = 0; 3561 p.u.params.pktsize = dev->mtu; 3562 3563 e = cxgb4_sched_class_alloc(dev, &p); 3564 if (!e) 3565 return -ENOMEM; 3566 3567 /* Bind the queue to a scheduling class */ 3568 memset(&qe, 0, sizeof(qe)); 3569 qe.queue = index; 3570 qe.class = e->idx; 3571 3572 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE); 3573 if (err) 3574 dev_err(adap->pdev_dev, 3575 "Queue rate limiting failed. Err: %d\n", err); 3576 return err; 3577 } 3578 3579 static int cxgb_setup_tc_flower(struct net_device *dev, 3580 struct flow_cls_offload *cls_flower) 3581 { 3582 switch (cls_flower->command) { 3583 case FLOW_CLS_REPLACE: 3584 return cxgb4_tc_flower_replace(dev, cls_flower); 3585 case FLOW_CLS_DESTROY: 3586 return cxgb4_tc_flower_destroy(dev, cls_flower); 3587 case FLOW_CLS_STATS: 3588 return cxgb4_tc_flower_stats(dev, cls_flower); 3589 default: 3590 return -EOPNOTSUPP; 3591 } 3592 } 3593 3594 static int cxgb_setup_tc_cls_u32(struct net_device *dev, 3595 struct tc_cls_u32_offload *cls_u32) 3596 { 3597 switch (cls_u32->command) { 3598 case TC_CLSU32_NEW_KNODE: 3599 case TC_CLSU32_REPLACE_KNODE: 3600 return cxgb4_config_knode(dev, cls_u32); 3601 case TC_CLSU32_DELETE_KNODE: 3602 return cxgb4_delete_knode(dev, cls_u32); 3603 default: 3604 return -EOPNOTSUPP; 3605 } 3606 } 3607 3608 static int cxgb_setup_tc_matchall(struct net_device *dev, 3609 struct tc_cls_matchall_offload *cls_matchall, 3610 bool ingress) 3611 { 3612 struct adapter *adap = netdev2adap(dev); 3613 3614 if (!adap->tc_matchall) 3615 return -ENOMEM; 3616 3617 switch (cls_matchall->command) { 3618 case TC_CLSMATCHALL_REPLACE: 3619 return cxgb4_tc_matchall_replace(dev, cls_matchall, ingress); 3620 case TC_CLSMATCHALL_DESTROY: 3621 return cxgb4_tc_matchall_destroy(dev, cls_matchall, ingress); 3622 case TC_CLSMATCHALL_STATS: 3623 if (ingress) 3624 return cxgb4_tc_matchall_stats(dev, cls_matchall); 3625 break; 3626 default: 3627 break; 3628 } 3629 3630 return -EOPNOTSUPP; 3631 } 3632 3633 static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type, 3634 void *type_data, void *cb_priv) 3635 { 3636 struct net_device *dev = cb_priv; 3637 struct port_info *pi = netdev2pinfo(dev); 3638 struct adapter *adap = netdev2adap(dev); 3639 3640 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { 3641 dev_err(adap->pdev_dev, 3642 "Failed to setup tc on port %d. Link Down?\n", 3643 pi->port_id); 3644 return -EINVAL; 3645 } 3646 3647 if (!tc_cls_can_offload_and_chain0(dev, type_data)) 3648 return -EOPNOTSUPP; 3649 3650 switch (type) { 3651 case TC_SETUP_CLSU32: 3652 return cxgb_setup_tc_cls_u32(dev, type_data); 3653 case TC_SETUP_CLSFLOWER: 3654 return cxgb_setup_tc_flower(dev, type_data); 3655 case TC_SETUP_CLSMATCHALL: 3656 return cxgb_setup_tc_matchall(dev, type_data, true); 3657 default: 3658 return -EOPNOTSUPP; 3659 } 3660 } 3661 3662 static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type, 3663 void *type_data, void *cb_priv) 3664 { 3665 struct net_device *dev = cb_priv; 3666 struct port_info *pi = netdev2pinfo(dev); 3667 struct adapter *adap = netdev2adap(dev); 3668 3669 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { 3670 dev_err(adap->pdev_dev, 3671 "Failed to setup tc on port %d. Link Down?\n", 3672 pi->port_id); 3673 return -EINVAL; 3674 } 3675 3676 if (!tc_cls_can_offload_and_chain0(dev, type_data)) 3677 return -EOPNOTSUPP; 3678 3679 switch (type) { 3680 case TC_SETUP_CLSMATCHALL: 3681 return cxgb_setup_tc_matchall(dev, type_data, false); 3682 default: 3683 break; 3684 } 3685 3686 return -EOPNOTSUPP; 3687 } 3688 3689 static int cxgb_setup_tc_mqprio(struct net_device *dev, 3690 struct tc_mqprio_qopt_offload *mqprio) 3691 { 3692 struct adapter *adap = netdev2adap(dev); 3693 3694 if (!is_ethofld(adap) || !adap->tc_mqprio) 3695 return -ENOMEM; 3696 3697 return cxgb4_setup_tc_mqprio(dev, mqprio); 3698 } 3699 3700 static LIST_HEAD(cxgb_block_cb_list); 3701 3702 static int cxgb_setup_tc_block(struct net_device *dev, 3703 struct flow_block_offload *f) 3704 { 3705 struct port_info *pi = netdev_priv(dev); 3706 flow_setup_cb_t *cb; 3707 bool ingress_only; 3708 3709 pi->tc_block_shared = f->block_shared; 3710 if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) { 3711 cb = cxgb_setup_tc_block_egress_cb; 3712 ingress_only = false; 3713 } else { 3714 cb = cxgb_setup_tc_block_ingress_cb; 3715 ingress_only = true; 3716 } 3717 3718 return flow_block_cb_setup_simple(f, &cxgb_block_cb_list, 3719 cb, pi, dev, ingress_only); 3720 } 3721 3722 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type, 3723 void *type_data) 3724 { 3725 switch (type) { 3726 case TC_SETUP_QDISC_MQPRIO: 3727 return cxgb_setup_tc_mqprio(dev, type_data); 3728 case TC_SETUP_BLOCK: 3729 return cxgb_setup_tc_block(dev, type_data); 3730 default: 3731 return -EOPNOTSUPP; 3732 } 3733 } 3734 3735 static int cxgb_udp_tunnel_unset_port(struct net_device *netdev, 3736 unsigned int table, unsigned int entry, 3737 struct udp_tunnel_info *ti) 3738 { 3739 struct port_info *pi = netdev_priv(netdev); 3740 struct adapter *adapter = pi->adapter; 3741 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3742 int ret = 0, i; 3743 3744 switch (ti->type) { 3745 case UDP_TUNNEL_TYPE_VXLAN: 3746 adapter->vxlan_port = 0; 3747 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0); 3748 break; 3749 case UDP_TUNNEL_TYPE_GENEVE: 3750 adapter->geneve_port = 0; 3751 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0); 3752 break; 3753 default: 3754 return -EINVAL; 3755 } 3756 3757 /* Matchall mac entries can be deleted only after all tunnel ports 3758 * are brought down or removed. 3759 */ 3760 if (!adapter->rawf_cnt) 3761 return 0; 3762 for_each_port(adapter, i) { 3763 pi = adap2pinfo(adapter, i); 3764 ret = t4_free_raw_mac_filt(adapter, pi->viid, 3765 match_all_mac, match_all_mac, 3766 adapter->rawf_start + pi->port_id, 3767 1, pi->port_id, false); 3768 if (ret < 0) { 3769 netdev_info(netdev, "Failed to free mac filter entry, for port %d\n", 3770 i); 3771 return ret; 3772 } 3773 } 3774 3775 return 0; 3776 } 3777 3778 static int cxgb_udp_tunnel_set_port(struct net_device *netdev, 3779 unsigned int table, unsigned int entry, 3780 struct udp_tunnel_info *ti) 3781 { 3782 struct port_info *pi = netdev_priv(netdev); 3783 struct adapter *adapter = pi->adapter; 3784 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3785 int i, ret; 3786 3787 switch (ti->type) { 3788 case UDP_TUNNEL_TYPE_VXLAN: 3789 adapter->vxlan_port = ti->port; 3790 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 3791 VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F); 3792 break; 3793 case UDP_TUNNEL_TYPE_GENEVE: 3794 adapter->geneve_port = ti->port; 3795 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 3796 GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F); 3797 break; 3798 default: 3799 return -EINVAL; 3800 } 3801 3802 /* Create a 'match all' mac filter entry for inner mac, 3803 * if raw mac interface is supported. Once the linux kernel provides 3804 * driver entry points for adding/deleting the inner mac addresses, 3805 * we will remove this 'match all' entry and fallback to adding 3806 * exact match filters. 3807 */ 3808 for_each_port(adapter, i) { 3809 pi = adap2pinfo(adapter, i); 3810 3811 ret = t4_alloc_raw_mac_filt(adapter, pi->viid, 3812 match_all_mac, 3813 match_all_mac, 3814 adapter->rawf_start + pi->port_id, 3815 1, pi->port_id, false); 3816 if (ret < 0) { 3817 netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n", 3818 be16_to_cpu(ti->port)); 3819 return ret; 3820 } 3821 } 3822 3823 return 0; 3824 } 3825 3826 static const struct udp_tunnel_nic_info cxgb_udp_tunnels = { 3827 .set_port = cxgb_udp_tunnel_set_port, 3828 .unset_port = cxgb_udp_tunnel_unset_port, 3829 .tables = { 3830 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 3831 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 3832 }, 3833 }; 3834 3835 static netdev_features_t cxgb_features_check(struct sk_buff *skb, 3836 struct net_device *dev, 3837 netdev_features_t features) 3838 { 3839 struct port_info *pi = netdev_priv(dev); 3840 struct adapter *adapter = pi->adapter; 3841 3842 if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3843 return features; 3844 3845 /* Check if hw supports offload for this packet */ 3846 if (!skb->encapsulation || cxgb_encap_offload_supported(skb)) 3847 return features; 3848 3849 /* Offload is not supported for this encapsulated packet */ 3850 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3851 } 3852 3853 static netdev_features_t cxgb_fix_features(struct net_device *dev, 3854 netdev_features_t features) 3855 { 3856 /* Disable GRO, if RX_CSUM is disabled */ 3857 if (!(features & NETIF_F_RXCSUM)) 3858 features &= ~NETIF_F_GRO; 3859 3860 return features; 3861 } 3862 3863 static const struct net_device_ops cxgb4_netdev_ops = { 3864 .ndo_open = cxgb_open, 3865 .ndo_stop = cxgb_close, 3866 .ndo_start_xmit = t4_start_xmit, 3867 .ndo_select_queue = cxgb_select_queue, 3868 .ndo_get_stats64 = cxgb_get_stats, 3869 .ndo_set_rx_mode = cxgb_set_rxmode, 3870 .ndo_set_mac_address = cxgb_set_mac_addr, 3871 .ndo_set_features = cxgb_set_features, 3872 .ndo_validate_addr = eth_validate_addr, 3873 .ndo_do_ioctl = cxgb_ioctl, 3874 .ndo_change_mtu = cxgb_change_mtu, 3875 #ifdef CONFIG_NET_POLL_CONTROLLER 3876 .ndo_poll_controller = cxgb_netpoll, 3877 #endif 3878 #ifdef CONFIG_CHELSIO_T4_FCOE 3879 .ndo_fcoe_enable = cxgb_fcoe_enable, 3880 .ndo_fcoe_disable = cxgb_fcoe_disable, 3881 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3882 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate, 3883 .ndo_setup_tc = cxgb_setup_tc, 3884 .ndo_udp_tunnel_add = udp_tunnel_nic_add_port, 3885 .ndo_udp_tunnel_del = udp_tunnel_nic_del_port, 3886 .ndo_features_check = cxgb_features_check, 3887 .ndo_fix_features = cxgb_fix_features, 3888 }; 3889 3890 #ifdef CONFIG_PCI_IOV 3891 static const struct net_device_ops cxgb4_mgmt_netdev_ops = { 3892 .ndo_open = cxgb4_mgmt_open, 3893 .ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac, 3894 .ndo_get_vf_config = cxgb4_mgmt_get_vf_config, 3895 .ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate, 3896 .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id, 3897 .ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan, 3898 .ndo_set_vf_link_state = cxgb4_mgmt_set_vf_link_state, 3899 }; 3900 #endif 3901 3902 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev, 3903 struct ethtool_drvinfo *info) 3904 { 3905 struct adapter *adapter = netdev2adap(dev); 3906 3907 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver)); 3908 strlcpy(info->bus_info, pci_name(adapter->pdev), 3909 sizeof(info->bus_info)); 3910 } 3911 3912 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = { 3913 .get_drvinfo = cxgb4_mgmt_get_drvinfo, 3914 }; 3915 3916 static void notify_fatal_err(struct work_struct *work) 3917 { 3918 struct adapter *adap; 3919 3920 adap = container_of(work, struct adapter, fatal_err_notify_task); 3921 notify_ulds(adap, CXGB4_STATE_FATAL_ERROR); 3922 } 3923 3924 void t4_fatal_err(struct adapter *adap) 3925 { 3926 int port; 3927 3928 if (pci_channel_offline(adap->pdev)) 3929 return; 3930 3931 /* Disable the SGE since ULDs are going to free resources that 3932 * could be exposed to the adapter. RDMA MWs for example... 3933 */ 3934 t4_shutdown_adapter(adap); 3935 for_each_port(adap, port) { 3936 struct net_device *dev = adap->port[port]; 3937 3938 /* If we get here in very early initialization the network 3939 * devices may not have been set up yet. 3940 */ 3941 if (!dev) 3942 continue; 3943 3944 netif_tx_stop_all_queues(dev); 3945 netif_carrier_off(dev); 3946 } 3947 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 3948 queue_work(adap->workq, &adap->fatal_err_notify_task); 3949 } 3950 3951 static void setup_memwin(struct adapter *adap) 3952 { 3953 u32 nic_win_base = t4_get_util_window(adap); 3954 3955 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 3956 } 3957 3958 static void setup_memwin_rdma(struct adapter *adap) 3959 { 3960 if (adap->vres.ocq.size) { 3961 u32 start; 3962 unsigned int sz_kb; 3963 3964 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 3965 start &= PCI_BASE_ADDRESS_MEM_MASK; 3966 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 3967 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 3968 t4_write_reg(adap, 3969 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 3970 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 3971 t4_write_reg(adap, 3972 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 3973 adap->vres.ocq.start); 3974 t4_read_reg(adap, 3975 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 3976 } 3977 } 3978 3979 /* HMA Definitions */ 3980 3981 /* The maximum number of address that can be send in a single FW cmd */ 3982 #define HMA_MAX_ADDR_IN_CMD 5 3983 3984 #define HMA_PAGE_SIZE PAGE_SIZE 3985 3986 #define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */ 3987 3988 #define HMA_PAGE_ORDER \ 3989 ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \ 3990 ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0) 3991 3992 /* The minimum and maximum possible HMA sizes that can be specified in the FW 3993 * configuration(in units of MB). 3994 */ 3995 #define HMA_MIN_TOTAL_SIZE 1 3996 #define HMA_MAX_TOTAL_SIZE \ 3997 (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \ 3998 HMA_MAX_NO_FW_ADDRESS) >> 20) 3999 4000 static void adap_free_hma_mem(struct adapter *adapter) 4001 { 4002 struct scatterlist *iter; 4003 struct page *page; 4004 int i; 4005 4006 if (!adapter->hma.sgt) 4007 return; 4008 4009 if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) { 4010 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl, 4011 adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL); 4012 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG; 4013 } 4014 4015 for_each_sg(adapter->hma.sgt->sgl, iter, 4016 adapter->hma.sgt->orig_nents, i) { 4017 page = sg_page(iter); 4018 if (page) 4019 __free_pages(page, HMA_PAGE_ORDER); 4020 } 4021 4022 kfree(adapter->hma.phy_addr); 4023 sg_free_table(adapter->hma.sgt); 4024 kfree(adapter->hma.sgt); 4025 adapter->hma.sgt = NULL; 4026 } 4027 4028 static int adap_config_hma(struct adapter *adapter) 4029 { 4030 struct scatterlist *sgl, *iter; 4031 struct sg_table *sgt; 4032 struct page *newpage; 4033 unsigned int i, j, k; 4034 u32 param, hma_size; 4035 unsigned int ncmds; 4036 size_t page_size; 4037 u32 page_order; 4038 int node, ret; 4039 4040 /* HMA is supported only for T6+ cards. 4041 * Avoid initializing HMA in kdump kernels. 4042 */ 4043 if (is_kdump_kernel() || 4044 CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 4045 return 0; 4046 4047 /* Get the HMA region size required by fw */ 4048 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4049 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE)); 4050 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 4051 1, ¶m, &hma_size); 4052 /* An error means card has its own memory or HMA is not supported by 4053 * the firmware. Return without any errors. 4054 */ 4055 if (ret || !hma_size) 4056 return 0; 4057 4058 if (hma_size < HMA_MIN_TOTAL_SIZE || 4059 hma_size > HMA_MAX_TOTAL_SIZE) { 4060 dev_err(adapter->pdev_dev, 4061 "HMA size %uMB beyond bounds(%u-%lu)MB\n", 4062 hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE); 4063 return -EINVAL; 4064 } 4065 4066 page_size = HMA_PAGE_SIZE; 4067 page_order = HMA_PAGE_ORDER; 4068 adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL); 4069 if (unlikely(!adapter->hma.sgt)) { 4070 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n"); 4071 return -ENOMEM; 4072 } 4073 sgt = adapter->hma.sgt; 4074 /* FW returned value will be in MB's 4075 */ 4076 sgt->orig_nents = (hma_size << 20) / (page_size << page_order); 4077 if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) { 4078 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n"); 4079 kfree(adapter->hma.sgt); 4080 adapter->hma.sgt = NULL; 4081 return -ENOMEM; 4082 } 4083 4084 sgl = adapter->hma.sgt->sgl; 4085 node = dev_to_node(adapter->pdev_dev); 4086 for_each_sg(sgl, iter, sgt->orig_nents, i) { 4087 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL | 4088 __GFP_ZERO, page_order); 4089 if (!newpage) { 4090 dev_err(adapter->pdev_dev, 4091 "Not enough memory for HMA page allocation\n"); 4092 ret = -ENOMEM; 4093 goto free_hma; 4094 } 4095 sg_set_page(iter, newpage, page_size << page_order, 0); 4096 } 4097 4098 sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents, 4099 DMA_BIDIRECTIONAL); 4100 if (!sgt->nents) { 4101 dev_err(adapter->pdev_dev, 4102 "Not enough memory for HMA DMA mapping"); 4103 ret = -ENOMEM; 4104 goto free_hma; 4105 } 4106 adapter->hma.flags |= HMA_DMA_MAPPED_FLAG; 4107 4108 adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t), 4109 GFP_KERNEL); 4110 if (unlikely(!adapter->hma.phy_addr)) 4111 goto free_hma; 4112 4113 for_each_sg(sgl, iter, sgt->nents, i) { 4114 newpage = sg_page(iter); 4115 adapter->hma.phy_addr[i] = sg_dma_address(iter); 4116 } 4117 4118 ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD); 4119 /* Pass on the addresses to firmware */ 4120 for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) { 4121 struct fw_hma_cmd hma_cmd; 4122 u8 naddr = HMA_MAX_ADDR_IN_CMD; 4123 u8 soc = 0, eoc = 0; 4124 u8 hma_mode = 1; /* Presently we support only Page table mode */ 4125 4126 soc = (i == 0) ? 1 : 0; 4127 eoc = (i == ncmds - 1) ? 1 : 0; 4128 4129 /* For last cmd, set naddr corresponding to remaining 4130 * addresses 4131 */ 4132 if (i == ncmds - 1) { 4133 naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD; 4134 naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD; 4135 } 4136 memset(&hma_cmd, 0, sizeof(hma_cmd)); 4137 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) | 4138 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 4139 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd)); 4140 4141 hma_cmd.mode_to_pcie_params = 4142 htonl(FW_HMA_CMD_MODE_V(hma_mode) | 4143 FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc)); 4144 4145 /* HMA cmd size specified in MB's */ 4146 hma_cmd.naddr_size = 4147 htonl(FW_HMA_CMD_SIZE_V(hma_size) | 4148 FW_HMA_CMD_NADDR_V(naddr)); 4149 4150 /* Total Page size specified in units of 4K */ 4151 hma_cmd.addr_size_pkd = 4152 htonl(FW_HMA_CMD_ADDR_SIZE_V 4153 ((page_size << page_order) >> 12)); 4154 4155 /* Fill the 5 addresses */ 4156 for (j = 0; j < naddr; j++) { 4157 hma_cmd.phy_address[j] = 4158 cpu_to_be64(adapter->hma.phy_addr[j + k]); 4159 } 4160 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd, 4161 sizeof(hma_cmd), &hma_cmd); 4162 if (ret) { 4163 dev_err(adapter->pdev_dev, 4164 "HMA FW command failed with err %d\n", ret); 4165 goto free_hma; 4166 } 4167 } 4168 4169 if (!ret) 4170 dev_info(adapter->pdev_dev, 4171 "Reserved %uMB host memory for HMA\n", hma_size); 4172 return ret; 4173 4174 free_hma: 4175 adap_free_hma_mem(adapter); 4176 return ret; 4177 } 4178 4179 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 4180 { 4181 u32 v; 4182 int ret; 4183 4184 /* Now that we've successfully configured and initialized the adapter 4185 * can ask the Firmware what resources it has provisioned for us. 4186 */ 4187 ret = t4_get_pfres(adap); 4188 if (ret) { 4189 dev_err(adap->pdev_dev, 4190 "Unable to retrieve resource provisioning information\n"); 4191 return ret; 4192 } 4193 4194 /* get device capabilities */ 4195 memset(c, 0, sizeof(*c)); 4196 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4197 FW_CMD_REQUEST_F | FW_CMD_READ_F); 4198 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 4199 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 4200 if (ret < 0) 4201 return ret; 4202 4203 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4204 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 4205 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 4206 if (ret < 0) 4207 return ret; 4208 4209 ret = t4_config_glbl_rss(adap, adap->pf, 4210 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 4211 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 4212 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 4213 if (ret < 0) 4214 return ret; 4215 4216 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 4217 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 4218 FW_CMD_CAP_PF); 4219 if (ret < 0) 4220 return ret; 4221 4222 t4_sge_init(adap); 4223 4224 /* tweak some settings */ 4225 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 4226 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 4227 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 4228 v = t4_read_reg(adap, TP_PIO_DATA_A); 4229 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 4230 4231 /* first 4 Tx modulation queues point to consecutive Tx channels */ 4232 adap->params.tp.tx_modq_map = 0xE4; 4233 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 4234 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 4235 4236 /* associate each Tx modulation queue with consecutive Tx channels */ 4237 v = 0x84218421; 4238 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4239 &v, 1, TP_TX_SCHED_HDR_A); 4240 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4241 &v, 1, TP_TX_SCHED_FIFO_A); 4242 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4243 &v, 1, TP_TX_SCHED_PCMD_A); 4244 4245 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 4246 if (is_offload(adap)) { 4247 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 4248 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4249 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4250 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4251 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 4252 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 4253 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4254 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4255 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4256 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 4257 } 4258 4259 /* get basic stuff going */ 4260 return t4_early_init(adap, adap->pf); 4261 } 4262 4263 /* 4264 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 4265 */ 4266 #define MAX_ATIDS 8192U 4267 4268 /* 4269 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 4270 * 4271 * If the firmware we're dealing with has Configuration File support, then 4272 * we use that to perform all configuration 4273 */ 4274 4275 /* 4276 * Tweak configuration based on module parameters, etc. Most of these have 4277 * defaults assigned to them by Firmware Configuration Files (if we're using 4278 * them) but need to be explicitly set if we're using hard-coded 4279 * initialization. But even in the case of using Firmware Configuration 4280 * Files, we'd like to expose the ability to change these via module 4281 * parameters so these are essentially common tweaks/settings for 4282 * Configuration Files and hard-coded initialization ... 4283 */ 4284 static int adap_init0_tweaks(struct adapter *adapter) 4285 { 4286 /* 4287 * Fix up various Host-Dependent Parameters like Page Size, Cache 4288 * Line Size, etc. The firmware default is for a 4KB Page Size and 4289 * 64B Cache Line Size ... 4290 */ 4291 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 4292 4293 /* 4294 * Process module parameters which affect early initialization. 4295 */ 4296 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 4297 dev_err(&adapter->pdev->dev, 4298 "Ignoring illegal rx_dma_offset=%d, using 2\n", 4299 rx_dma_offset); 4300 rx_dma_offset = 2; 4301 } 4302 t4_set_reg_field(adapter, SGE_CONTROL_A, 4303 PKTSHIFT_V(PKTSHIFT_M), 4304 PKTSHIFT_V(rx_dma_offset)); 4305 4306 /* 4307 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 4308 * adds the pseudo header itself. 4309 */ 4310 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 4311 CSUM_HAS_PSEUDO_HDR_F, 0); 4312 4313 return 0; 4314 } 4315 4316 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 4317 * unto themselves and they contain their own firmware to perform their 4318 * tasks ... 4319 */ 4320 static int phy_aq1202_version(const u8 *phy_fw_data, 4321 size_t phy_fw_size) 4322 { 4323 int offset; 4324 4325 /* At offset 0x8 you're looking for the primary image's 4326 * starting offset which is 3 Bytes wide 4327 * 4328 * At offset 0xa of the primary image, you look for the offset 4329 * of the DRAM segment which is 3 Bytes wide. 4330 * 4331 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 4332 * wide 4333 */ 4334 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 4335 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 4336 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 4337 4338 offset = le24(phy_fw_data + 0x8) << 12; 4339 offset = le24(phy_fw_data + offset + 0xa); 4340 return be16(phy_fw_data + offset + 0x27e); 4341 4342 #undef be16 4343 #undef le16 4344 #undef le24 4345 } 4346 4347 static struct info_10gbt_phy_fw { 4348 unsigned int phy_fw_id; /* PCI Device ID */ 4349 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 4350 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 4351 int phy_flash; /* Has FLASH for PHY Firmware */ 4352 } phy_info_array[] = { 4353 { 4354 PHY_AQ1202_DEVICEID, 4355 PHY_AQ1202_FIRMWARE, 4356 phy_aq1202_version, 4357 1, 4358 }, 4359 { 4360 PHY_BCM84834_DEVICEID, 4361 PHY_BCM84834_FIRMWARE, 4362 NULL, 4363 0, 4364 }, 4365 { 0, NULL, NULL }, 4366 }; 4367 4368 static struct info_10gbt_phy_fw *find_phy_info(int devid) 4369 { 4370 int i; 4371 4372 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 4373 if (phy_info_array[i].phy_fw_id == devid) 4374 return &phy_info_array[i]; 4375 } 4376 return NULL; 4377 } 4378 4379 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 4380 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 4381 * we return a negative error number. If we transfer new firmware we return 1 4382 * (from t4_load_phy_fw()). If we don't do anything we return 0. 4383 */ 4384 static int adap_init0_phy(struct adapter *adap) 4385 { 4386 const struct firmware *phyf; 4387 int ret; 4388 struct info_10gbt_phy_fw *phy_info; 4389 4390 /* Use the device ID to determine which PHY file to flash. 4391 */ 4392 phy_info = find_phy_info(adap->pdev->device); 4393 if (!phy_info) { 4394 dev_warn(adap->pdev_dev, 4395 "No PHY Firmware file found for this PHY\n"); 4396 return -EOPNOTSUPP; 4397 } 4398 4399 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 4400 * use that. The adapter firmware provides us with a memory buffer 4401 * where we can load a PHY firmware file from the host if we want to 4402 * override the PHY firmware File in flash. 4403 */ 4404 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 4405 adap->pdev_dev); 4406 if (ret < 0) { 4407 /* For adapters without FLASH attached to PHY for their 4408 * firmware, it's obviously a fatal error if we can't get the 4409 * firmware to the adapter. For adapters with PHY firmware 4410 * FLASH storage, it's worth a warning if we can't find the 4411 * PHY Firmware but we'll neuter the error ... 4412 */ 4413 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 4414 "/lib/firmware/%s, error %d\n", 4415 phy_info->phy_fw_file, -ret); 4416 if (phy_info->phy_flash) { 4417 int cur_phy_fw_ver = 0; 4418 4419 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 4420 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 4421 "FLASH copy, version %#x\n", cur_phy_fw_ver); 4422 ret = 0; 4423 } 4424 4425 return ret; 4426 } 4427 4428 /* Load PHY Firmware onto adapter. 4429 */ 4430 spin_lock_bh(&adap->win0_lock); 4431 ret = t4_load_phy_fw(adap, MEMWIN_NIC, phy_info->phy_fw_version, 4432 (u8 *)phyf->data, phyf->size); 4433 spin_unlock_bh(&adap->win0_lock); 4434 if (ret < 0) 4435 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 4436 -ret); 4437 else if (ret > 0) { 4438 int new_phy_fw_ver = 0; 4439 4440 if (phy_info->phy_fw_version) 4441 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 4442 phyf->size); 4443 dev_info(adap->pdev_dev, "Successfully transferred PHY " 4444 "Firmware /lib/firmware/%s, version %#x\n", 4445 phy_info->phy_fw_file, new_phy_fw_ver); 4446 } 4447 4448 release_firmware(phyf); 4449 4450 return ret; 4451 } 4452 4453 /* 4454 * Attempt to initialize the adapter via a Firmware Configuration File. 4455 */ 4456 static int adap_init0_config(struct adapter *adapter, int reset) 4457 { 4458 char *fw_config_file, fw_config_file_path[256]; 4459 u32 finiver, finicsum, cfcsum, param, val; 4460 struct fw_caps_config_cmd caps_cmd; 4461 unsigned long mtype = 0, maddr = 0; 4462 const struct firmware *cf; 4463 char *config_name = NULL; 4464 int config_issued = 0; 4465 int ret; 4466 4467 /* 4468 * Reset device if necessary. 4469 */ 4470 if (reset) { 4471 ret = t4_fw_reset(adapter, adapter->mbox, 4472 PIORSTMODE_F | PIORST_F); 4473 if (ret < 0) 4474 goto bye; 4475 } 4476 4477 /* If this is a 10Gb/s-BT adapter make sure the chip-external 4478 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 4479 * to be performed after any global adapter RESET above since some 4480 * PHYs only have local RAM copies of the PHY firmware. 4481 */ 4482 if (is_10gbt_device(adapter->pdev->device)) { 4483 ret = adap_init0_phy(adapter); 4484 if (ret < 0) 4485 goto bye; 4486 } 4487 /* 4488 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 4489 * then use that. Otherwise, use the configuration file stored 4490 * in the adapter flash ... 4491 */ 4492 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 4493 case CHELSIO_T4: 4494 fw_config_file = FW4_CFNAME; 4495 break; 4496 case CHELSIO_T5: 4497 fw_config_file = FW5_CFNAME; 4498 break; 4499 case CHELSIO_T6: 4500 fw_config_file = FW6_CFNAME; 4501 break; 4502 default: 4503 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 4504 adapter->pdev->device); 4505 ret = -EINVAL; 4506 goto bye; 4507 } 4508 4509 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 4510 if (ret < 0) { 4511 config_name = "On FLASH"; 4512 mtype = FW_MEMTYPE_CF_FLASH; 4513 maddr = t4_flash_cfg_addr(adapter); 4514 } else { 4515 u32 params[7], val[7]; 4516 4517 sprintf(fw_config_file_path, 4518 "/lib/firmware/%s", fw_config_file); 4519 config_name = fw_config_file_path; 4520 4521 if (cf->size >= FLASH_CFG_MAX_SIZE) 4522 ret = -ENOMEM; 4523 else { 4524 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4525 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 4526 ret = t4_query_params(adapter, adapter->mbox, 4527 adapter->pf, 0, 1, params, val); 4528 if (ret == 0) { 4529 /* 4530 * For t4_memory_rw() below addresses and 4531 * sizes have to be in terms of multiples of 4 4532 * bytes. So, if the Configuration File isn't 4533 * a multiple of 4 bytes in length we'll have 4534 * to write that out separately since we can't 4535 * guarantee that the bytes following the 4536 * residual byte in the buffer returned by 4537 * request_firmware() are zeroed out ... 4538 */ 4539 size_t resid = cf->size & 0x3; 4540 size_t size = cf->size & ~0x3; 4541 __be32 *data = (__be32 *)cf->data; 4542 4543 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 4544 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 4545 4546 spin_lock(&adapter->win0_lock); 4547 ret = t4_memory_rw(adapter, 0, mtype, maddr, 4548 size, data, T4_MEMORY_WRITE); 4549 if (ret == 0 && resid != 0) { 4550 union { 4551 __be32 word; 4552 char buf[4]; 4553 } last; 4554 int i; 4555 4556 last.word = data[size >> 2]; 4557 for (i = resid; i < 4; i++) 4558 last.buf[i] = 0; 4559 ret = t4_memory_rw(adapter, 0, mtype, 4560 maddr + size, 4561 4, &last.word, 4562 T4_MEMORY_WRITE); 4563 } 4564 spin_unlock(&adapter->win0_lock); 4565 } 4566 } 4567 4568 release_firmware(cf); 4569 if (ret) 4570 goto bye; 4571 } 4572 4573 val = 0; 4574 4575 /* Ofld + Hash filter is supported. Older fw will fail this request and 4576 * it is fine. 4577 */ 4578 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4579 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD)); 4580 ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0, 4581 1, ¶m, &val); 4582 4583 /* FW doesn't know about Hash filter + ofld support, 4584 * it's not a problem, don't return an error. 4585 */ 4586 if (ret < 0) { 4587 dev_warn(adapter->pdev_dev, 4588 "Hash filter with ofld is not supported by FW\n"); 4589 } 4590 4591 /* 4592 * Issue a Capability Configuration command to the firmware to get it 4593 * to parse the Configuration File. We don't use t4_fw_config_file() 4594 * because we want the ability to modify various features after we've 4595 * processed the configuration file ... 4596 */ 4597 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4598 caps_cmd.op_to_write = 4599 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4600 FW_CMD_REQUEST_F | 4601 FW_CMD_READ_F); 4602 caps_cmd.cfvalid_to_len16 = 4603 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 4604 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 4605 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 4606 FW_LEN16(caps_cmd)); 4607 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4608 &caps_cmd); 4609 4610 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 4611 * Configuration File in FLASH), our last gasp effort is to use the 4612 * Firmware Configuration File which is embedded in the firmware. A 4613 * very few early versions of the firmware didn't have one embedded 4614 * but we can ignore those. 4615 */ 4616 if (ret == -ENOENT) { 4617 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4618 caps_cmd.op_to_write = 4619 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4620 FW_CMD_REQUEST_F | 4621 FW_CMD_READ_F); 4622 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4623 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 4624 sizeof(caps_cmd), &caps_cmd); 4625 config_name = "Firmware Default"; 4626 } 4627 4628 config_issued = 1; 4629 if (ret < 0) 4630 goto bye; 4631 4632 finiver = ntohl(caps_cmd.finiver); 4633 finicsum = ntohl(caps_cmd.finicsum); 4634 cfcsum = ntohl(caps_cmd.cfcsum); 4635 if (finicsum != cfcsum) 4636 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 4637 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 4638 finicsum, cfcsum); 4639 4640 /* 4641 * And now tell the firmware to use the configuration we just loaded. 4642 */ 4643 caps_cmd.op_to_write = 4644 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4645 FW_CMD_REQUEST_F | 4646 FW_CMD_WRITE_F); 4647 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4648 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4649 NULL); 4650 if (ret < 0) 4651 goto bye; 4652 4653 /* 4654 * Tweak configuration based on system architecture, module 4655 * parameters, etc. 4656 */ 4657 ret = adap_init0_tweaks(adapter); 4658 if (ret < 0) 4659 goto bye; 4660 4661 /* We will proceed even if HMA init fails. */ 4662 ret = adap_config_hma(adapter); 4663 if (ret) 4664 dev_err(adapter->pdev_dev, 4665 "HMA configuration failed with error %d\n", ret); 4666 4667 if (is_t6(adapter->params.chip)) { 4668 adap_config_hpfilter(adapter); 4669 ret = setup_ppod_edram(adapter); 4670 if (!ret) 4671 dev_info(adapter->pdev_dev, "Successfully enabled " 4672 "ppod edram feature\n"); 4673 } 4674 4675 /* 4676 * And finally tell the firmware to initialize itself using the 4677 * parameters from the Configuration File. 4678 */ 4679 ret = t4_fw_initialize(adapter, adapter->mbox); 4680 if (ret < 0) 4681 goto bye; 4682 4683 /* Emit Firmware Configuration File information and return 4684 * successfully. 4685 */ 4686 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 4687 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 4688 config_name, finiver, cfcsum); 4689 return 0; 4690 4691 /* 4692 * Something bad happened. Return the error ... (If the "error" 4693 * is that there's no Configuration File on the adapter we don't 4694 * want to issue a warning since this is fairly common.) 4695 */ 4696 bye: 4697 if (config_issued && ret != -ENOENT) 4698 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 4699 config_name, -ret); 4700 return ret; 4701 } 4702 4703 static struct fw_info fw_info_array[] = { 4704 { 4705 .chip = CHELSIO_T4, 4706 .fs_name = FW4_CFNAME, 4707 .fw_mod_name = FW4_FNAME, 4708 .fw_hdr = { 4709 .chip = FW_HDR_CHIP_T4, 4710 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 4711 .intfver_nic = FW_INTFVER(T4, NIC), 4712 .intfver_vnic = FW_INTFVER(T4, VNIC), 4713 .intfver_ri = FW_INTFVER(T4, RI), 4714 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4715 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4716 }, 4717 }, { 4718 .chip = CHELSIO_T5, 4719 .fs_name = FW5_CFNAME, 4720 .fw_mod_name = FW5_FNAME, 4721 .fw_hdr = { 4722 .chip = FW_HDR_CHIP_T5, 4723 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 4724 .intfver_nic = FW_INTFVER(T5, NIC), 4725 .intfver_vnic = FW_INTFVER(T5, VNIC), 4726 .intfver_ri = FW_INTFVER(T5, RI), 4727 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4728 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4729 }, 4730 }, { 4731 .chip = CHELSIO_T6, 4732 .fs_name = FW6_CFNAME, 4733 .fw_mod_name = FW6_FNAME, 4734 .fw_hdr = { 4735 .chip = FW_HDR_CHIP_T6, 4736 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 4737 .intfver_nic = FW_INTFVER(T6, NIC), 4738 .intfver_vnic = FW_INTFVER(T6, VNIC), 4739 .intfver_ofld = FW_INTFVER(T6, OFLD), 4740 .intfver_ri = FW_INTFVER(T6, RI), 4741 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4742 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4743 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4744 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4745 }, 4746 } 4747 4748 }; 4749 4750 static struct fw_info *find_fw_info(int chip) 4751 { 4752 int i; 4753 4754 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 4755 if (fw_info_array[i].chip == chip) 4756 return &fw_info_array[i]; 4757 } 4758 return NULL; 4759 } 4760 4761 /* 4762 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 4763 */ 4764 static int adap_init0(struct adapter *adap, int vpd_skip) 4765 { 4766 struct fw_caps_config_cmd caps_cmd; 4767 u32 params[7], val[7]; 4768 enum dev_state state; 4769 u32 v, port_vec; 4770 int reset = 1; 4771 int ret; 4772 4773 /* Grab Firmware Device Log parameters as early as possible so we have 4774 * access to it for debugging, etc. 4775 */ 4776 ret = t4_init_devlog_params(adap); 4777 if (ret < 0) 4778 return ret; 4779 4780 /* Contact FW, advertising Master capability */ 4781 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, 4782 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state); 4783 if (ret < 0) { 4784 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 4785 ret); 4786 return ret; 4787 } 4788 if (ret == adap->mbox) 4789 adap->flags |= CXGB4_MASTER_PF; 4790 4791 /* 4792 * If we're the Master PF Driver and the device is uninitialized, 4793 * then let's consider upgrading the firmware ... (We always want 4794 * to check the firmware version number in order to A. get it for 4795 * later reporting and B. to warn if the currently loaded firmware 4796 * is excessively mismatched relative to the driver.) 4797 */ 4798 4799 t4_get_version_info(adap); 4800 ret = t4_check_fw_version(adap); 4801 /* If firmware is too old (not supported by driver) force an update. */ 4802 if (ret) 4803 state = DEV_STATE_UNINIT; 4804 if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) { 4805 struct fw_info *fw_info; 4806 struct fw_hdr *card_fw; 4807 const struct firmware *fw; 4808 const u8 *fw_data = NULL; 4809 unsigned int fw_size = 0; 4810 4811 /* This is the firmware whose headers the driver was compiled 4812 * against 4813 */ 4814 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 4815 if (fw_info == NULL) { 4816 dev_err(adap->pdev_dev, 4817 "unable to get firmware info for chip %d.\n", 4818 CHELSIO_CHIP_VERSION(adap->params.chip)); 4819 return -EINVAL; 4820 } 4821 4822 /* allocate memory to read the header of the firmware on the 4823 * card 4824 */ 4825 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL); 4826 if (!card_fw) { 4827 ret = -ENOMEM; 4828 goto bye; 4829 } 4830 4831 /* Get FW from from /lib/firmware/ */ 4832 ret = request_firmware(&fw, fw_info->fw_mod_name, 4833 adap->pdev_dev); 4834 if (ret < 0) { 4835 dev_err(adap->pdev_dev, 4836 "unable to load firmware image %s, error %d\n", 4837 fw_info->fw_mod_name, ret); 4838 } else { 4839 fw_data = fw->data; 4840 fw_size = fw->size; 4841 } 4842 4843 /* upgrade FW logic */ 4844 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 4845 state, &reset); 4846 4847 /* Cleaning up */ 4848 release_firmware(fw); 4849 kvfree(card_fw); 4850 4851 if (ret < 0) 4852 goto bye; 4853 } 4854 4855 /* If the firmware is initialized already, emit a simply note to that 4856 * effect. Otherwise, it's time to try initializing the adapter. 4857 */ 4858 if (state == DEV_STATE_INIT) { 4859 ret = adap_config_hma(adap); 4860 if (ret) 4861 dev_err(adap->pdev_dev, 4862 "HMA configuration failed with error %d\n", 4863 ret); 4864 dev_info(adap->pdev_dev, "Coming up as %s: "\ 4865 "Adapter already initialized\n", 4866 adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE"); 4867 } else { 4868 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 4869 "Initializing adapter\n"); 4870 4871 /* Find out whether we're dealing with a version of the 4872 * firmware which has configuration file support. 4873 */ 4874 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4875 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 4876 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 4877 params, val); 4878 4879 /* If the firmware doesn't support Configuration Files, 4880 * return an error. 4881 */ 4882 if (ret < 0) { 4883 dev_err(adap->pdev_dev, "firmware doesn't support " 4884 "Firmware Configuration Files\n"); 4885 goto bye; 4886 } 4887 4888 /* The firmware provides us with a memory buffer where we can 4889 * load a Configuration File from the host if we want to 4890 * override the Configuration File in flash. 4891 */ 4892 ret = adap_init0_config(adap, reset); 4893 if (ret == -ENOENT) { 4894 dev_err(adap->pdev_dev, "no Configuration File " 4895 "present on adapter.\n"); 4896 goto bye; 4897 } 4898 if (ret < 0) { 4899 dev_err(adap->pdev_dev, "could not initialize " 4900 "adapter, error %d\n", -ret); 4901 goto bye; 4902 } 4903 } 4904 4905 /* Now that we've successfully configured and initialized the adapter 4906 * (or found it already initialized), we can ask the Firmware what 4907 * resources it has provisioned for us. 4908 */ 4909 ret = t4_get_pfres(adap); 4910 if (ret) { 4911 dev_err(adap->pdev_dev, 4912 "Unable to retrieve resource provisioning information\n"); 4913 goto bye; 4914 } 4915 4916 /* Grab VPD parameters. This should be done after we establish a 4917 * connection to the firmware since some of the VPD parameters 4918 * (notably the Core Clock frequency) are retrieved via requests to 4919 * the firmware. On the other hand, we need these fairly early on 4920 * so we do this right after getting ahold of the firmware. 4921 * 4922 * We need to do this after initializing the adapter because someone 4923 * could have FLASHed a new VPD which won't be read by the firmware 4924 * until we do the RESET ... 4925 */ 4926 if (!vpd_skip) { 4927 ret = t4_get_vpd_params(adap, &adap->params.vpd); 4928 if (ret < 0) 4929 goto bye; 4930 } 4931 4932 /* Find out what ports are available to us. Note that we need to do 4933 * this before calling adap_init0_no_config() since it needs nports 4934 * and portvec ... 4935 */ 4936 v = 4937 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4938 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 4939 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 4940 if (ret < 0) 4941 goto bye; 4942 4943 adap->params.nports = hweight32(port_vec); 4944 adap->params.portvec = port_vec; 4945 4946 /* Give the SGE code a chance to pull in anything that it needs ... 4947 * Note that this must be called after we retrieve our VPD parameters 4948 * in order to know how to convert core ticks to seconds, etc. 4949 */ 4950 ret = t4_sge_init(adap); 4951 if (ret < 0) 4952 goto bye; 4953 4954 /* Grab the SGE Doorbell Queue Timer values. If successful, that 4955 * indicates that the Firmware and Hardware support this. 4956 */ 4957 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4958 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK)); 4959 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4960 1, params, val); 4961 4962 if (!ret) { 4963 adap->sge.dbqtimer_tick = val[0]; 4964 ret = t4_read_sge_dbqtimers(adap, 4965 ARRAY_SIZE(adap->sge.dbqtimer_val), 4966 adap->sge.dbqtimer_val); 4967 } 4968 4969 if (!ret) 4970 adap->flags |= CXGB4_SGE_DBQ_TIMER; 4971 4972 if (is_bypass_device(adap->pdev->device)) 4973 adap->params.bypass = 1; 4974 4975 /* 4976 * Grab some of our basic fundamental operating parameters. 4977 */ 4978 params[0] = FW_PARAM_PFVF(EQ_START); 4979 params[1] = FW_PARAM_PFVF(L2T_START); 4980 params[2] = FW_PARAM_PFVF(L2T_END); 4981 params[3] = FW_PARAM_PFVF(FILTER_START); 4982 params[4] = FW_PARAM_PFVF(FILTER_END); 4983 params[5] = FW_PARAM_PFVF(IQFLINT_START); 4984 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 4985 if (ret < 0) 4986 goto bye; 4987 adap->sge.egr_start = val[0]; 4988 adap->l2t_start = val[1]; 4989 adap->l2t_end = val[2]; 4990 adap->tids.ftid_base = val[3]; 4991 adap->tids.nftids = val[4] - val[3] + 1; 4992 adap->sge.ingr_start = val[5]; 4993 4994 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 4995 params[0] = FW_PARAM_PFVF(HPFILTER_START); 4996 params[1] = FW_PARAM_PFVF(HPFILTER_END); 4997 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4998 params, val); 4999 if (ret < 0) 5000 goto bye; 5001 5002 adap->tids.hpftid_base = val[0]; 5003 adap->tids.nhpftids = val[1] - val[0] + 1; 5004 5005 /* Read the raw mps entries. In T6, the last 2 tcam entries 5006 * are reserved for raw mac addresses (rawf = 2, one per port). 5007 */ 5008 params[0] = FW_PARAM_PFVF(RAWF_START); 5009 params[1] = FW_PARAM_PFVF(RAWF_END); 5010 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 5011 params, val); 5012 if (ret == 0) { 5013 adap->rawf_start = val[0]; 5014 adap->rawf_cnt = val[1] - val[0] + 1; 5015 } 5016 5017 adap->tids.tid_base = 5018 t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A); 5019 } 5020 5021 /* qids (ingress/egress) returned from firmware can be anywhere 5022 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 5023 * Hence driver needs to allocate memory for this range to 5024 * store the queue info. Get the highest IQFLINT/EQ index returned 5025 * in FW_EQ_*_CMD.alloc command. 5026 */ 5027 params[0] = FW_PARAM_PFVF(EQ_END); 5028 params[1] = FW_PARAM_PFVF(IQFLINT_END); 5029 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 5030 if (ret < 0) 5031 goto bye; 5032 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 5033 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 5034 5035 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 5036 sizeof(*adap->sge.egr_map), GFP_KERNEL); 5037 if (!adap->sge.egr_map) { 5038 ret = -ENOMEM; 5039 goto bye; 5040 } 5041 5042 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 5043 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 5044 if (!adap->sge.ingr_map) { 5045 ret = -ENOMEM; 5046 goto bye; 5047 } 5048 5049 /* Allocate the memory for the vaious egress queue bitmaps 5050 * ie starving_fl, txq_maperr and blocked_fl. 5051 */ 5052 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 5053 sizeof(long), GFP_KERNEL); 5054 if (!adap->sge.starving_fl) { 5055 ret = -ENOMEM; 5056 goto bye; 5057 } 5058 5059 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 5060 sizeof(long), GFP_KERNEL); 5061 if (!adap->sge.txq_maperr) { 5062 ret = -ENOMEM; 5063 goto bye; 5064 } 5065 5066 #ifdef CONFIG_DEBUG_FS 5067 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 5068 sizeof(long), GFP_KERNEL); 5069 if (!adap->sge.blocked_fl) { 5070 ret = -ENOMEM; 5071 goto bye; 5072 } 5073 #endif 5074 5075 params[0] = FW_PARAM_PFVF(CLIP_START); 5076 params[1] = FW_PARAM_PFVF(CLIP_END); 5077 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 5078 if (ret < 0) 5079 goto bye; 5080 adap->clipt_start = val[0]; 5081 adap->clipt_end = val[1]; 5082 5083 /* Get the supported number of traffic classes */ 5084 params[0] = FW_PARAM_DEV(NUM_TM_CLASS); 5085 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 5086 if (ret < 0) { 5087 /* We couldn't retrieve the number of Traffic Classes 5088 * supported by the hardware/firmware. So we hard 5089 * code it here. 5090 */ 5091 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16; 5092 } else { 5093 adap->params.nsched_cls = val[0]; 5094 } 5095 5096 /* query params related to active filter region */ 5097 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 5098 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 5099 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 5100 /* If Active filter size is set we enable establishing 5101 * offload connection through firmware work request 5102 */ 5103 if ((val[0] != val[1]) && (ret >= 0)) { 5104 adap->flags |= CXGB4_FW_OFLD_CONN; 5105 adap->tids.aftid_base = val[0]; 5106 adap->tids.aftid_end = val[1]; 5107 } 5108 5109 /* If we're running on newer firmware, let it know that we're 5110 * prepared to deal with encapsulated CPL messages. Older 5111 * firmware won't understand this and we'll just get 5112 * unencapsulated messages ... 5113 */ 5114 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 5115 val[0] = 1; 5116 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 5117 5118 /* 5119 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 5120 * capability. Earlier versions of the firmware didn't have the 5121 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 5122 * permission to use ULPTX MEMWRITE DSGL. 5123 */ 5124 if (is_t4(adap->params.chip)) { 5125 adap->params.ulptx_memwrite_dsgl = false; 5126 } else { 5127 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 5128 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5129 1, params, val); 5130 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 5131 } 5132 5133 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */ 5134 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 5135 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5136 1, params, val); 5137 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0); 5138 5139 /* See if FW supports FW_FILTER2 work request */ 5140 if (is_t4(adap->params.chip)) { 5141 adap->params.filter2_wr_support = 0; 5142 } else { 5143 params[0] = FW_PARAM_DEV(FILTER2_WR); 5144 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5145 1, params, val); 5146 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0); 5147 } 5148 5149 /* Check if FW supports returning vin and smt index. 5150 * If this is not supported, driver will interpret 5151 * these values from viid. 5152 */ 5153 params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 5154 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5155 1, params, val); 5156 adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0); 5157 5158 /* 5159 * Get device capabilities so we can determine what resources we need 5160 * to manage. 5161 */ 5162 memset(&caps_cmd, 0, sizeof(caps_cmd)); 5163 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 5164 FW_CMD_REQUEST_F | FW_CMD_READ_F); 5165 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 5166 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 5167 &caps_cmd); 5168 if (ret < 0) 5169 goto bye; 5170 5171 /* hash filter has some mandatory register settings to be tested and for 5172 * that it needs to test whether offload is enabled or not, hence 5173 * checking and setting it here. 5174 */ 5175 if (caps_cmd.ofldcaps) 5176 adap->params.offload = 1; 5177 5178 if (caps_cmd.ofldcaps || 5179 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) || 5180 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD))) { 5181 /* query offload-related parameters */ 5182 params[0] = FW_PARAM_DEV(NTID); 5183 params[1] = FW_PARAM_PFVF(SERVER_START); 5184 params[2] = FW_PARAM_PFVF(SERVER_END); 5185 params[3] = FW_PARAM_PFVF(TDDP_START); 5186 params[4] = FW_PARAM_PFVF(TDDP_END); 5187 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5188 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 5189 params, val); 5190 if (ret < 0) 5191 goto bye; 5192 adap->tids.ntids = val[0]; 5193 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 5194 adap->tids.stid_base = val[1]; 5195 adap->tids.nstids = val[2] - val[1] + 1; 5196 /* 5197 * Setup server filter region. Divide the available filter 5198 * region into two parts. Regular filters get 1/3rd and server 5199 * filters get 2/3rd part. This is only enabled if workarond 5200 * path is enabled. 5201 * 1. For regular filters. 5202 * 2. Server filter: This are special filters which are used 5203 * to redirect SYN packets to offload queue. 5204 */ 5205 if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) { 5206 adap->tids.sftid_base = adap->tids.ftid_base + 5207 DIV_ROUND_UP(adap->tids.nftids, 3); 5208 adap->tids.nsftids = adap->tids.nftids - 5209 DIV_ROUND_UP(adap->tids.nftids, 3); 5210 adap->tids.nftids = adap->tids.sftid_base - 5211 adap->tids.ftid_base; 5212 } 5213 adap->vres.ddp.start = val[3]; 5214 adap->vres.ddp.size = val[4] - val[3] + 1; 5215 adap->params.ofldq_wr_cred = val[5]; 5216 5217 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 5218 init_hash_filter(adap); 5219 } else { 5220 adap->num_ofld_uld += 1; 5221 } 5222 5223 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD)) { 5224 params[0] = FW_PARAM_PFVF(ETHOFLD_START); 5225 params[1] = FW_PARAM_PFVF(ETHOFLD_END); 5226 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 5227 params, val); 5228 if (!ret) { 5229 adap->tids.eotid_base = val[0]; 5230 adap->tids.neotids = min_t(u32, MAX_ATIDS, 5231 val[1] - val[0] + 1); 5232 adap->params.ethofld = 1; 5233 } 5234 } 5235 } 5236 if (caps_cmd.rdmacaps) { 5237 params[0] = FW_PARAM_PFVF(STAG_START); 5238 params[1] = FW_PARAM_PFVF(STAG_END); 5239 params[2] = FW_PARAM_PFVF(RQ_START); 5240 params[3] = FW_PARAM_PFVF(RQ_END); 5241 params[4] = FW_PARAM_PFVF(PBL_START); 5242 params[5] = FW_PARAM_PFVF(PBL_END); 5243 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 5244 params, val); 5245 if (ret < 0) 5246 goto bye; 5247 adap->vres.stag.start = val[0]; 5248 adap->vres.stag.size = val[1] - val[0] + 1; 5249 adap->vres.rq.start = val[2]; 5250 adap->vres.rq.size = val[3] - val[2] + 1; 5251 adap->vres.pbl.start = val[4]; 5252 adap->vres.pbl.size = val[5] - val[4] + 1; 5253 5254 params[0] = FW_PARAM_PFVF(SRQ_START); 5255 params[1] = FW_PARAM_PFVF(SRQ_END); 5256 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 5257 params, val); 5258 if (!ret) { 5259 adap->vres.srq.start = val[0]; 5260 adap->vres.srq.size = val[1] - val[0] + 1; 5261 } 5262 if (adap->vres.srq.size) { 5263 adap->srq = t4_init_srq(adap->vres.srq.size); 5264 if (!adap->srq) 5265 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n"); 5266 } 5267 5268 params[0] = FW_PARAM_PFVF(SQRQ_START); 5269 params[1] = FW_PARAM_PFVF(SQRQ_END); 5270 params[2] = FW_PARAM_PFVF(CQ_START); 5271 params[3] = FW_PARAM_PFVF(CQ_END); 5272 params[4] = FW_PARAM_PFVF(OCQ_START); 5273 params[5] = FW_PARAM_PFVF(OCQ_END); 5274 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 5275 val); 5276 if (ret < 0) 5277 goto bye; 5278 adap->vres.qp.start = val[0]; 5279 adap->vres.qp.size = val[1] - val[0] + 1; 5280 adap->vres.cq.start = val[2]; 5281 adap->vres.cq.size = val[3] - val[2] + 1; 5282 adap->vres.ocq.start = val[4]; 5283 adap->vres.ocq.size = val[5] - val[4] + 1; 5284 5285 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 5286 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5287 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 5288 val); 5289 if (ret < 0) { 5290 adap->params.max_ordird_qp = 8; 5291 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 5292 ret = 0; 5293 } else { 5294 adap->params.max_ordird_qp = val[0]; 5295 adap->params.max_ird_adapter = val[1]; 5296 } 5297 dev_info(adap->pdev_dev, 5298 "max_ordird_qp %d max_ird_adapter %d\n", 5299 adap->params.max_ordird_qp, 5300 adap->params.max_ird_adapter); 5301 5302 /* Enable write_with_immediate if FW supports it */ 5303 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM); 5304 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 5305 val); 5306 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0); 5307 5308 /* Enable write_cmpl if FW supports it */ 5309 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR); 5310 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 5311 val); 5312 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0); 5313 adap->num_ofld_uld += 2; 5314 } 5315 if (caps_cmd.iscsicaps) { 5316 params[0] = FW_PARAM_PFVF(ISCSI_START); 5317 params[1] = FW_PARAM_PFVF(ISCSI_END); 5318 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 5319 params, val); 5320 if (ret < 0) 5321 goto bye; 5322 adap->vres.iscsi.start = val[0]; 5323 adap->vres.iscsi.size = val[1] - val[0] + 1; 5324 if (is_t6(adap->params.chip)) { 5325 params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START); 5326 params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END); 5327 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 5328 params, val); 5329 if (!ret) { 5330 adap->vres.ppod_edram.start = val[0]; 5331 adap->vres.ppod_edram.size = 5332 val[1] - val[0] + 1; 5333 5334 dev_info(adap->pdev_dev, 5335 "ppod edram start 0x%x end 0x%x size 0x%x\n", 5336 val[0], val[1], 5337 adap->vres.ppod_edram.size); 5338 } 5339 } 5340 /* LIO target and cxgb4i initiaitor */ 5341 adap->num_ofld_uld += 2; 5342 } 5343 if (caps_cmd.cryptocaps) { 5344 if (ntohs(caps_cmd.cryptocaps) & 5345 FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) { 5346 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE); 5347 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5348 2, params, val); 5349 if (ret < 0) { 5350 if (ret != -EINVAL) 5351 goto bye; 5352 } else { 5353 adap->vres.ncrypto_fc = val[0]; 5354 } 5355 adap->num_ofld_uld += 1; 5356 } 5357 if (ntohs(caps_cmd.cryptocaps) & 5358 FW_CAPS_CONFIG_TLS_INLINE) { 5359 params[0] = FW_PARAM_PFVF(TLS_START); 5360 params[1] = FW_PARAM_PFVF(TLS_END); 5361 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5362 2, params, val); 5363 if (ret < 0) 5364 goto bye; 5365 adap->vres.key.start = val[0]; 5366 adap->vres.key.size = val[1] - val[0] + 1; 5367 adap->num_uld += 1; 5368 } 5369 adap->params.crypto = ntohs(caps_cmd.cryptocaps); 5370 } 5371 5372 /* The MTU/MSS Table is initialized by now, so load their values. If 5373 * we're initializing the adapter, then we'll make any modifications 5374 * we want to the MTU/MSS Table and also initialize the congestion 5375 * parameters. 5376 */ 5377 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 5378 if (state != DEV_STATE_INIT) { 5379 int i; 5380 5381 /* The default MTU Table contains values 1492 and 1500. 5382 * However, for TCP, it's better to have two values which are 5383 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 5384 * This allows us to have a TCP Data Payload which is a 5385 * multiple of 8 regardless of what combination of TCP Options 5386 * are in use (always a multiple of 4 bytes) which is 5387 * important for performance reasons. For instance, if no 5388 * options are in use, then we have a 20-byte IP header and a 5389 * 20-byte TCP header. In this case, a 1500-byte MSS would 5390 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 5391 * which is not a multiple of 8. So using an MSS of 1488 in 5392 * this case results in a TCP Data Payload of 1448 bytes which 5393 * is a multiple of 8. On the other hand, if 12-byte TCP Time 5394 * Stamps have been negotiated, then an MTU of 1500 bytes 5395 * results in a TCP Data Payload of 1448 bytes which, as 5396 * above, is a multiple of 8 bytes ... 5397 */ 5398 for (i = 0; i < NMTUS; i++) 5399 if (adap->params.mtus[i] == 1492) { 5400 adap->params.mtus[i] = 1488; 5401 break; 5402 } 5403 5404 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 5405 adap->params.b_wnd); 5406 } 5407 t4_init_sge_params(adap); 5408 adap->flags |= CXGB4_FW_OK; 5409 t4_init_tp_params(adap, true); 5410 return 0; 5411 5412 /* 5413 * Something bad happened. If a command timed out or failed with EIO 5414 * FW does not operate within its spec or something catastrophic 5415 * happened to HW/FW, stop issuing commands. 5416 */ 5417 bye: 5418 adap_free_hma_mem(adap); 5419 kfree(adap->sge.egr_map); 5420 kfree(adap->sge.ingr_map); 5421 kfree(adap->sge.starving_fl); 5422 kfree(adap->sge.txq_maperr); 5423 #ifdef CONFIG_DEBUG_FS 5424 kfree(adap->sge.blocked_fl); 5425 #endif 5426 if (ret != -ETIMEDOUT && ret != -EIO) 5427 t4_fw_bye(adap, adap->mbox); 5428 return ret; 5429 } 5430 5431 /* EEH callbacks */ 5432 5433 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 5434 pci_channel_state_t state) 5435 { 5436 int i; 5437 struct adapter *adap = pci_get_drvdata(pdev); 5438 5439 if (!adap) 5440 goto out; 5441 5442 rtnl_lock(); 5443 adap->flags &= ~CXGB4_FW_OK; 5444 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 5445 spin_lock(&adap->stats_lock); 5446 for_each_port(adap, i) { 5447 struct net_device *dev = adap->port[i]; 5448 if (dev) { 5449 netif_device_detach(dev); 5450 netif_carrier_off(dev); 5451 } 5452 } 5453 spin_unlock(&adap->stats_lock); 5454 disable_interrupts(adap); 5455 if (adap->flags & CXGB4_FULL_INIT_DONE) 5456 cxgb_down(adap); 5457 rtnl_unlock(); 5458 if ((adap->flags & CXGB4_DEV_ENABLED)) { 5459 pci_disable_device(pdev); 5460 adap->flags &= ~CXGB4_DEV_ENABLED; 5461 } 5462 out: return state == pci_channel_io_perm_failure ? 5463 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 5464 } 5465 5466 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 5467 { 5468 int i, ret; 5469 struct fw_caps_config_cmd c; 5470 struct adapter *adap = pci_get_drvdata(pdev); 5471 5472 if (!adap) { 5473 pci_restore_state(pdev); 5474 pci_save_state(pdev); 5475 return PCI_ERS_RESULT_RECOVERED; 5476 } 5477 5478 if (!(adap->flags & CXGB4_DEV_ENABLED)) { 5479 if (pci_enable_device(pdev)) { 5480 dev_err(&pdev->dev, "Cannot reenable PCI " 5481 "device after reset\n"); 5482 return PCI_ERS_RESULT_DISCONNECT; 5483 } 5484 adap->flags |= CXGB4_DEV_ENABLED; 5485 } 5486 5487 pci_set_master(pdev); 5488 pci_restore_state(pdev); 5489 pci_save_state(pdev); 5490 5491 if (t4_wait_dev_ready(adap->regs) < 0) 5492 return PCI_ERS_RESULT_DISCONNECT; 5493 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 5494 return PCI_ERS_RESULT_DISCONNECT; 5495 adap->flags |= CXGB4_FW_OK; 5496 if (adap_init1(adap, &c)) 5497 return PCI_ERS_RESULT_DISCONNECT; 5498 5499 for_each_port(adap, i) { 5500 struct port_info *pi = adap2pinfo(adap, i); 5501 u8 vivld = 0, vin = 0; 5502 5503 ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1, 5504 NULL, NULL, &vivld, &vin); 5505 if (ret < 0) 5506 return PCI_ERS_RESULT_DISCONNECT; 5507 pi->viid = ret; 5508 pi->xact_addr_filt = -1; 5509 /* If fw supports returning the VIN as part of FW_VI_CMD, 5510 * save the returned values. 5511 */ 5512 if (adap->params.viid_smt_extn_support) { 5513 pi->vivld = vivld; 5514 pi->vin = vin; 5515 } else { 5516 /* Retrieve the values from VIID */ 5517 pi->vivld = FW_VIID_VIVLD_G(pi->viid); 5518 pi->vin = FW_VIID_VIN_G(pi->viid); 5519 } 5520 } 5521 5522 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 5523 adap->params.b_wnd); 5524 setup_memwin(adap); 5525 if (cxgb_up(adap)) 5526 return PCI_ERS_RESULT_DISCONNECT; 5527 return PCI_ERS_RESULT_RECOVERED; 5528 } 5529 5530 static void eeh_resume(struct pci_dev *pdev) 5531 { 5532 int i; 5533 struct adapter *adap = pci_get_drvdata(pdev); 5534 5535 if (!adap) 5536 return; 5537 5538 rtnl_lock(); 5539 for_each_port(adap, i) { 5540 struct net_device *dev = adap->port[i]; 5541 if (dev) { 5542 if (netif_running(dev)) { 5543 link_start(dev); 5544 cxgb_set_rxmode(dev); 5545 } 5546 netif_device_attach(dev); 5547 } 5548 } 5549 rtnl_unlock(); 5550 } 5551 5552 static void eeh_reset_prepare(struct pci_dev *pdev) 5553 { 5554 struct adapter *adapter = pci_get_drvdata(pdev); 5555 int i; 5556 5557 if (adapter->pf != 4) 5558 return; 5559 5560 adapter->flags &= ~CXGB4_FW_OK; 5561 5562 notify_ulds(adapter, CXGB4_STATE_DOWN); 5563 5564 for_each_port(adapter, i) 5565 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5566 cxgb_close(adapter->port[i]); 5567 5568 disable_interrupts(adapter); 5569 cxgb4_free_mps_ref_entries(adapter); 5570 5571 adap_free_hma_mem(adapter); 5572 5573 if (adapter->flags & CXGB4_FULL_INIT_DONE) 5574 cxgb_down(adapter); 5575 } 5576 5577 static void eeh_reset_done(struct pci_dev *pdev) 5578 { 5579 struct adapter *adapter = pci_get_drvdata(pdev); 5580 int err, i; 5581 5582 if (adapter->pf != 4) 5583 return; 5584 5585 err = t4_wait_dev_ready(adapter->regs); 5586 if (err < 0) { 5587 dev_err(adapter->pdev_dev, 5588 "Device not ready, err %d", err); 5589 return; 5590 } 5591 5592 setup_memwin(adapter); 5593 5594 err = adap_init0(adapter, 1); 5595 if (err) { 5596 dev_err(adapter->pdev_dev, 5597 "Adapter init failed, err %d", err); 5598 return; 5599 } 5600 5601 setup_memwin_rdma(adapter); 5602 5603 if (adapter->flags & CXGB4_FW_OK) { 5604 err = t4_port_init(adapter, adapter->pf, adapter->pf, 0); 5605 if (err) { 5606 dev_err(adapter->pdev_dev, 5607 "Port init failed, err %d", err); 5608 return; 5609 } 5610 } 5611 5612 err = cfg_queues(adapter); 5613 if (err) { 5614 dev_err(adapter->pdev_dev, 5615 "Config queues failed, err %d", err); 5616 return; 5617 } 5618 5619 cxgb4_init_mps_ref_entries(adapter); 5620 5621 err = setup_fw_sge_queues(adapter); 5622 if (err) { 5623 dev_err(adapter->pdev_dev, 5624 "FW sge queue allocation failed, err %d", err); 5625 return; 5626 } 5627 5628 for_each_port(adapter, i) 5629 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5630 cxgb_open(adapter->port[i]); 5631 } 5632 5633 static const struct pci_error_handlers cxgb4_eeh = { 5634 .error_detected = eeh_err_detected, 5635 .slot_reset = eeh_slot_reset, 5636 .resume = eeh_resume, 5637 .reset_prepare = eeh_reset_prepare, 5638 .reset_done = eeh_reset_done, 5639 }; 5640 5641 /* Return true if the Link Configuration supports "High Speeds" (those greater 5642 * than 1Gb/s). 5643 */ 5644 static inline bool is_x_10g_port(const struct link_config *lc) 5645 { 5646 unsigned int speeds, high_speeds; 5647 5648 speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps)); 5649 high_speeds = speeds & 5650 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G); 5651 5652 return high_speeds != 0; 5653 } 5654 5655 /* Perform default configuration of DMA queues depending on the number and type 5656 * of ports we found and the number of available CPUs. Most settings can be 5657 * modified by the admin prior to actual use. 5658 */ 5659 static int cfg_queues(struct adapter *adap) 5660 { 5661 u32 avail_qsets, avail_eth_qsets, avail_uld_qsets; 5662 u32 ncpus = num_online_cpus(); 5663 u32 niqflint, neq, num_ulds; 5664 struct sge *s = &adap->sge; 5665 u32 i, n10g = 0, qidx = 0; 5666 u32 q10g = 0, q1g; 5667 5668 /* Reduce memory usage in kdump environment, disable all offload. */ 5669 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) { 5670 adap->params.offload = 0; 5671 adap->params.crypto = 0; 5672 adap->params.ethofld = 0; 5673 } 5674 5675 /* Calculate the number of Ethernet Queue Sets available based on 5676 * resources provisioned for us. We always have an Asynchronous 5677 * Firmware Event Ingress Queue. If we're operating in MSI or Legacy 5678 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt 5679 * Ingress Queue. Meanwhile, we need two Egress Queues for each 5680 * Queue Set: one for the Free List and one for the Ethernet TX Queue. 5681 * 5682 * Note that we should also take into account all of the various 5683 * Offload Queues. But, in any situation where we're operating in 5684 * a Resource Constrained Provisioning environment, doing any Offload 5685 * at all is problematic ... 5686 */ 5687 niqflint = adap->params.pfres.niqflint - 1; 5688 if (!(adap->flags & CXGB4_USING_MSIX)) 5689 niqflint--; 5690 neq = adap->params.pfres.neq / 2; 5691 avail_qsets = min(niqflint, neq); 5692 5693 if (avail_qsets < adap->params.nports) { 5694 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n", 5695 avail_qsets, adap->params.nports); 5696 return -ENOMEM; 5697 } 5698 5699 /* Count the number of 10Gb/s or better ports */ 5700 for_each_port(adap, i) 5701 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 5702 5703 avail_eth_qsets = min_t(u32, avail_qsets, MAX_ETH_QSETS); 5704 5705 /* We default to 1 queue per non-10G port and up to # of cores queues 5706 * per 10G port. 5707 */ 5708 if (n10g) 5709 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g; 5710 5711 #ifdef CONFIG_CHELSIO_T4_DCB 5712 /* For Data Center Bridging support we need to be able to support up 5713 * to 8 Traffic Priorities; each of which will be assigned to its 5714 * own TX Queue in order to prevent Head-Of-Line Blocking. 5715 */ 5716 q1g = 8; 5717 if (adap->params.nports * 8 > avail_eth_qsets) { 5718 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n", 5719 avail_eth_qsets, adap->params.nports * 8); 5720 return -ENOMEM; 5721 } 5722 5723 if (adap->params.nports * ncpus < avail_eth_qsets) 5724 q10g = max(8U, ncpus); 5725 else 5726 q10g = max(8U, q10g); 5727 5728 while ((q10g * n10g) > 5729 (avail_eth_qsets - (adap->params.nports - n10g) * q1g)) 5730 q10g--; 5731 5732 #else /* !CONFIG_CHELSIO_T4_DCB */ 5733 q1g = 1; 5734 q10g = min(q10g, ncpus); 5735 #endif /* !CONFIG_CHELSIO_T4_DCB */ 5736 if (is_kdump_kernel()) { 5737 q10g = 1; 5738 q1g = 1; 5739 } 5740 5741 for_each_port(adap, i) { 5742 struct port_info *pi = adap2pinfo(adap, i); 5743 5744 pi->first_qset = qidx; 5745 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : q1g; 5746 qidx += pi->nqsets; 5747 } 5748 5749 s->ethqsets = qidx; 5750 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 5751 avail_qsets -= qidx; 5752 5753 if (is_uld(adap)) { 5754 /* For offload we use 1 queue/channel if all ports are up to 1G, 5755 * otherwise we divide all available queues amongst the channels 5756 * capped by the number of available cores. 5757 */ 5758 num_ulds = adap->num_uld + adap->num_ofld_uld; 5759 i = min_t(u32, MAX_OFLD_QSETS, ncpus); 5760 avail_uld_qsets = roundup(i, adap->params.nports); 5761 if (avail_qsets < num_ulds * adap->params.nports) { 5762 adap->params.offload = 0; 5763 adap->params.crypto = 0; 5764 s->ofldqsets = 0; 5765 } else if (avail_qsets < num_ulds * avail_uld_qsets || !n10g) { 5766 s->ofldqsets = adap->params.nports; 5767 } else { 5768 s->ofldqsets = avail_uld_qsets; 5769 } 5770 5771 avail_qsets -= num_ulds * s->ofldqsets; 5772 } 5773 5774 /* ETHOFLD Queues used for QoS offload should follow same 5775 * allocation scheme as normal Ethernet Queues. 5776 */ 5777 if (is_ethofld(adap)) { 5778 if (avail_qsets < s->max_ethqsets) { 5779 adap->params.ethofld = 0; 5780 s->eoqsets = 0; 5781 } else { 5782 s->eoqsets = s->max_ethqsets; 5783 } 5784 avail_qsets -= s->eoqsets; 5785 } 5786 5787 /* Mirror queues must follow same scheme as normal Ethernet 5788 * Queues, when there are enough queues available. Otherwise, 5789 * allocate at least 1 queue per port. If even 1 queue is not 5790 * available, then disable mirror queues support. 5791 */ 5792 if (avail_qsets >= s->max_ethqsets) 5793 s->mirrorqsets = s->max_ethqsets; 5794 else if (avail_qsets >= adap->params.nports) 5795 s->mirrorqsets = adap->params.nports; 5796 else 5797 s->mirrorqsets = 0; 5798 avail_qsets -= s->mirrorqsets; 5799 5800 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 5801 struct sge_eth_rxq *r = &s->ethrxq[i]; 5802 5803 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 5804 r->fl.size = 72; 5805 } 5806 5807 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 5808 s->ethtxq[i].q.size = 1024; 5809 5810 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 5811 s->ctrlq[i].q.size = 512; 5812 5813 if (!is_t4(adap->params.chip)) 5814 s->ptptxq.q.size = 8; 5815 5816 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 5817 init_rspq(adap, &s->intrq, 0, 1, 512, 64); 5818 5819 return 0; 5820 } 5821 5822 /* 5823 * Reduce the number of Ethernet queues across all ports to at most n. 5824 * n provides at least one queue per port. 5825 */ 5826 static void reduce_ethqs(struct adapter *adap, int n) 5827 { 5828 int i; 5829 struct port_info *pi; 5830 5831 while (n < adap->sge.ethqsets) 5832 for_each_port(adap, i) { 5833 pi = adap2pinfo(adap, i); 5834 if (pi->nqsets > 1) { 5835 pi->nqsets--; 5836 adap->sge.ethqsets--; 5837 if (adap->sge.ethqsets <= n) 5838 break; 5839 } 5840 } 5841 5842 n = 0; 5843 for_each_port(adap, i) { 5844 pi = adap2pinfo(adap, i); 5845 pi->first_qset = n; 5846 n += pi->nqsets; 5847 } 5848 } 5849 5850 static int alloc_msix_info(struct adapter *adap, u32 num_vec) 5851 { 5852 struct msix_info *msix_info; 5853 5854 msix_info = kcalloc(num_vec, sizeof(*msix_info), GFP_KERNEL); 5855 if (!msix_info) 5856 return -ENOMEM; 5857 5858 adap->msix_bmap.msix_bmap = kcalloc(BITS_TO_LONGS(num_vec), 5859 sizeof(long), GFP_KERNEL); 5860 if (!adap->msix_bmap.msix_bmap) { 5861 kfree(msix_info); 5862 return -ENOMEM; 5863 } 5864 5865 spin_lock_init(&adap->msix_bmap.lock); 5866 adap->msix_bmap.mapsize = num_vec; 5867 5868 adap->msix_info = msix_info; 5869 return 0; 5870 } 5871 5872 static void free_msix_info(struct adapter *adap) 5873 { 5874 kfree(adap->msix_bmap.msix_bmap); 5875 kfree(adap->msix_info); 5876 } 5877 5878 int cxgb4_get_msix_idx_from_bmap(struct adapter *adap) 5879 { 5880 struct msix_bmap *bmap = &adap->msix_bmap; 5881 unsigned int msix_idx; 5882 unsigned long flags; 5883 5884 spin_lock_irqsave(&bmap->lock, flags); 5885 msix_idx = find_first_zero_bit(bmap->msix_bmap, bmap->mapsize); 5886 if (msix_idx < bmap->mapsize) { 5887 __set_bit(msix_idx, bmap->msix_bmap); 5888 } else { 5889 spin_unlock_irqrestore(&bmap->lock, flags); 5890 return -ENOSPC; 5891 } 5892 5893 spin_unlock_irqrestore(&bmap->lock, flags); 5894 return msix_idx; 5895 } 5896 5897 void cxgb4_free_msix_idx_in_bmap(struct adapter *adap, 5898 unsigned int msix_idx) 5899 { 5900 struct msix_bmap *bmap = &adap->msix_bmap; 5901 unsigned long flags; 5902 5903 spin_lock_irqsave(&bmap->lock, flags); 5904 __clear_bit(msix_idx, bmap->msix_bmap); 5905 spin_unlock_irqrestore(&bmap->lock, flags); 5906 } 5907 5908 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 5909 #define EXTRA_VECS 2 5910 5911 static int enable_msix(struct adapter *adap) 5912 { 5913 u32 eth_need, uld_need = 0, ethofld_need = 0, mirror_need = 0; 5914 u32 ethqsets = 0, ofldqsets = 0, eoqsets = 0, mirrorqsets = 0; 5915 u8 num_uld = 0, nchan = adap->params.nports; 5916 u32 i, want, need, num_vec; 5917 struct sge *s = &adap->sge; 5918 struct msix_entry *entries; 5919 struct port_info *pi; 5920 int allocated, ret; 5921 5922 want = s->max_ethqsets; 5923 #ifdef CONFIG_CHELSIO_T4_DCB 5924 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 5925 * each port. 5926 */ 5927 need = 8 * nchan; 5928 #else 5929 need = nchan; 5930 #endif 5931 eth_need = need; 5932 if (is_uld(adap)) { 5933 num_uld = adap->num_ofld_uld + adap->num_uld; 5934 want += num_uld * s->ofldqsets; 5935 uld_need = num_uld * nchan; 5936 need += uld_need; 5937 } 5938 5939 if (is_ethofld(adap)) { 5940 want += s->eoqsets; 5941 ethofld_need = eth_need; 5942 need += ethofld_need; 5943 } 5944 5945 if (s->mirrorqsets) { 5946 want += s->mirrorqsets; 5947 mirror_need = nchan; 5948 need += mirror_need; 5949 } 5950 5951 want += EXTRA_VECS; 5952 need += EXTRA_VECS; 5953 5954 entries = kmalloc_array(want, sizeof(*entries), GFP_KERNEL); 5955 if (!entries) 5956 return -ENOMEM; 5957 5958 for (i = 0; i < want; i++) 5959 entries[i].entry = i; 5960 5961 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 5962 if (allocated < 0) { 5963 /* Disable offload and attempt to get vectors for NIC 5964 * only mode. 5965 */ 5966 want = s->max_ethqsets + EXTRA_VECS; 5967 need = eth_need + EXTRA_VECS; 5968 allocated = pci_enable_msix_range(adap->pdev, entries, 5969 need, want); 5970 if (allocated < 0) { 5971 dev_info(adap->pdev_dev, 5972 "Disabling MSI-X due to insufficient MSI-X vectors\n"); 5973 ret = allocated; 5974 goto out_free; 5975 } 5976 5977 dev_info(adap->pdev_dev, 5978 "Disabling offload due to insufficient MSI-X vectors\n"); 5979 adap->params.offload = 0; 5980 adap->params.crypto = 0; 5981 adap->params.ethofld = 0; 5982 s->ofldqsets = 0; 5983 s->eoqsets = 0; 5984 s->mirrorqsets = 0; 5985 uld_need = 0; 5986 ethofld_need = 0; 5987 mirror_need = 0; 5988 } 5989 5990 num_vec = allocated; 5991 if (num_vec < want) { 5992 /* Distribute available vectors to the various queue groups. 5993 * Every group gets its minimum requirement and NIC gets top 5994 * priority for leftovers. 5995 */ 5996 ethqsets = eth_need; 5997 if (is_uld(adap)) 5998 ofldqsets = nchan; 5999 if (is_ethofld(adap)) 6000 eoqsets = ethofld_need; 6001 if (s->mirrorqsets) 6002 mirrorqsets = mirror_need; 6003 6004 num_vec -= need; 6005 while (num_vec) { 6006 if (num_vec < eth_need + ethofld_need || 6007 ethqsets > s->max_ethqsets) 6008 break; 6009 6010 for_each_port(adap, i) { 6011 pi = adap2pinfo(adap, i); 6012 if (pi->nqsets < 2) 6013 continue; 6014 6015 ethqsets++; 6016 num_vec--; 6017 if (ethofld_need) { 6018 eoqsets++; 6019 num_vec--; 6020 } 6021 } 6022 } 6023 6024 if (is_uld(adap)) { 6025 while (num_vec) { 6026 if (num_vec < uld_need || 6027 ofldqsets > s->ofldqsets) 6028 break; 6029 6030 ofldqsets++; 6031 num_vec -= uld_need; 6032 } 6033 } 6034 6035 if (s->mirrorqsets) { 6036 while (num_vec) { 6037 if (num_vec < mirror_need || 6038 mirrorqsets > s->mirrorqsets) 6039 break; 6040 6041 mirrorqsets++; 6042 num_vec -= mirror_need; 6043 } 6044 } 6045 } else { 6046 ethqsets = s->max_ethqsets; 6047 if (is_uld(adap)) 6048 ofldqsets = s->ofldqsets; 6049 if (is_ethofld(adap)) 6050 eoqsets = s->eoqsets; 6051 if (s->mirrorqsets) 6052 mirrorqsets = s->mirrorqsets; 6053 } 6054 6055 if (ethqsets < s->max_ethqsets) { 6056 s->max_ethqsets = ethqsets; 6057 reduce_ethqs(adap, ethqsets); 6058 } 6059 6060 if (is_uld(adap)) { 6061 s->ofldqsets = ofldqsets; 6062 s->nqs_per_uld = s->ofldqsets; 6063 } 6064 6065 if (is_ethofld(adap)) 6066 s->eoqsets = eoqsets; 6067 6068 if (s->mirrorqsets) { 6069 s->mirrorqsets = mirrorqsets; 6070 for_each_port(adap, i) { 6071 pi = adap2pinfo(adap, i); 6072 pi->nmirrorqsets = s->mirrorqsets / nchan; 6073 mutex_init(&pi->vi_mirror_mutex); 6074 } 6075 } 6076 6077 /* map for msix */ 6078 ret = alloc_msix_info(adap, allocated); 6079 if (ret) 6080 goto out_disable_msix; 6081 6082 for (i = 0; i < allocated; i++) { 6083 adap->msix_info[i].vec = entries[i].vector; 6084 adap->msix_info[i].idx = i; 6085 } 6086 6087 dev_info(adap->pdev_dev, 6088 "%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d mirrorqsets %d\n", 6089 allocated, s->max_ethqsets, s->eoqsets, s->nqs_per_uld, 6090 s->mirrorqsets); 6091 6092 kfree(entries); 6093 return 0; 6094 6095 out_disable_msix: 6096 pci_disable_msix(adap->pdev); 6097 6098 out_free: 6099 kfree(entries); 6100 return ret; 6101 } 6102 6103 #undef EXTRA_VECS 6104 6105 static int init_rss(struct adapter *adap) 6106 { 6107 unsigned int i; 6108 int err; 6109 6110 err = t4_init_rss_mode(adap, adap->mbox); 6111 if (err) 6112 return err; 6113 6114 for_each_port(adap, i) { 6115 struct port_info *pi = adap2pinfo(adap, i); 6116 6117 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 6118 if (!pi->rss) 6119 return -ENOMEM; 6120 } 6121 return 0; 6122 } 6123 6124 /* Dump basic information about the adapter */ 6125 static void print_adapter_info(struct adapter *adapter) 6126 { 6127 /* Hardware/Firmware/etc. Version/Revision IDs */ 6128 t4_dump_version_info(adapter); 6129 6130 /* Software/Hardware configuration */ 6131 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n", 6132 is_offload(adapter) ? "R" : "", 6133 ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" : 6134 (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""), 6135 is_offload(adapter) ? "Offload" : "non-Offload"); 6136 } 6137 6138 static void print_port_info(const struct net_device *dev) 6139 { 6140 char buf[80]; 6141 char *bufp = buf; 6142 const struct port_info *pi = netdev_priv(dev); 6143 const struct adapter *adap = pi->adapter; 6144 6145 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M) 6146 bufp += sprintf(bufp, "100M/"); 6147 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G) 6148 bufp += sprintf(bufp, "1G/"); 6149 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G) 6150 bufp += sprintf(bufp, "10G/"); 6151 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G) 6152 bufp += sprintf(bufp, "25G/"); 6153 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G) 6154 bufp += sprintf(bufp, "40G/"); 6155 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G) 6156 bufp += sprintf(bufp, "50G/"); 6157 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G) 6158 bufp += sprintf(bufp, "100G/"); 6159 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G) 6160 bufp += sprintf(bufp, "200G/"); 6161 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G) 6162 bufp += sprintf(bufp, "400G/"); 6163 if (bufp != buf) 6164 --bufp; 6165 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 6166 6167 netdev_info(dev, "%s: Chelsio %s (%s) %s\n", 6168 dev->name, adap->params.vpd.id, adap->name, buf); 6169 } 6170 6171 /* 6172 * Free the following resources: 6173 * - memory used for tables 6174 * - MSI/MSI-X 6175 * - net devices 6176 * - resources FW is holding for us 6177 */ 6178 static void free_some_resources(struct adapter *adapter) 6179 { 6180 unsigned int i; 6181 6182 kvfree(adapter->smt); 6183 kvfree(adapter->l2t); 6184 kvfree(adapter->srq); 6185 t4_cleanup_sched(adapter); 6186 kvfree(adapter->tids.tid_tab); 6187 cxgb4_cleanup_tc_matchall(adapter); 6188 cxgb4_cleanup_tc_mqprio(adapter); 6189 cxgb4_cleanup_tc_flower(adapter); 6190 cxgb4_cleanup_tc_u32(adapter); 6191 cxgb4_cleanup_ethtool_filters(adapter); 6192 kfree(adapter->sge.egr_map); 6193 kfree(adapter->sge.ingr_map); 6194 kfree(adapter->sge.starving_fl); 6195 kfree(adapter->sge.txq_maperr); 6196 #ifdef CONFIG_DEBUG_FS 6197 kfree(adapter->sge.blocked_fl); 6198 #endif 6199 disable_msi(adapter); 6200 6201 for_each_port(adapter, i) 6202 if (adapter->port[i]) { 6203 struct port_info *pi = adap2pinfo(adapter, i); 6204 6205 if (pi->viid != 0) 6206 t4_free_vi(adapter, adapter->mbox, adapter->pf, 6207 0, pi->viid); 6208 kfree(adap2pinfo(adapter, i)->rss); 6209 free_netdev(adapter->port[i]); 6210 } 6211 if (adapter->flags & CXGB4_FW_OK) 6212 t4_fw_bye(adapter, adapter->pf); 6213 } 6214 6215 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \ 6216 NETIF_F_GSO_UDP_L4) 6217 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 6218 NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 6219 #define SEGMENT_SIZE 128 6220 6221 static int t4_get_chip_type(struct adapter *adap, int ver) 6222 { 6223 u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A)); 6224 6225 switch (ver) { 6226 case CHELSIO_T4: 6227 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 6228 case CHELSIO_T5: 6229 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 6230 case CHELSIO_T6: 6231 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 6232 default: 6233 break; 6234 } 6235 return -EINVAL; 6236 } 6237 6238 #ifdef CONFIG_PCI_IOV 6239 static void cxgb4_mgmt_setup(struct net_device *dev) 6240 { 6241 dev->type = ARPHRD_NONE; 6242 dev->mtu = 0; 6243 dev->hard_header_len = 0; 6244 dev->addr_len = 0; 6245 dev->tx_queue_len = 0; 6246 dev->flags |= IFF_NOARP; 6247 dev->priv_flags |= IFF_NO_QUEUE; 6248 6249 /* Initialize the device structure. */ 6250 dev->netdev_ops = &cxgb4_mgmt_netdev_ops; 6251 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops; 6252 } 6253 6254 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs) 6255 { 6256 struct adapter *adap = pci_get_drvdata(pdev); 6257 int err = 0; 6258 int current_vfs = pci_num_vf(pdev); 6259 u32 pcie_fw; 6260 6261 pcie_fw = readl(adap->regs + PCIE_FW_A); 6262 /* Check if fw is initialized */ 6263 if (!(pcie_fw & PCIE_FW_INIT_F)) { 6264 dev_warn(&pdev->dev, "Device not initialized\n"); 6265 return -EOPNOTSUPP; 6266 } 6267 6268 /* If any of the VF's is already assigned to Guest OS, then 6269 * SRIOV for the same cannot be modified 6270 */ 6271 if (current_vfs && pci_vfs_assigned(pdev)) { 6272 dev_err(&pdev->dev, 6273 "Cannot modify SR-IOV while VFs are assigned\n"); 6274 return current_vfs; 6275 } 6276 /* Note that the upper-level code ensures that we're never called with 6277 * a non-zero "num_vfs" when we already have VFs instantiated. But 6278 * it never hurts to code defensively. 6279 */ 6280 if (num_vfs != 0 && current_vfs != 0) 6281 return -EBUSY; 6282 6283 /* Nothing to do for no change. */ 6284 if (num_vfs == current_vfs) 6285 return num_vfs; 6286 6287 /* Disable SRIOV when zero is passed. */ 6288 if (!num_vfs) { 6289 pci_disable_sriov(pdev); 6290 /* free VF Management Interface */ 6291 unregister_netdev(adap->port[0]); 6292 free_netdev(adap->port[0]); 6293 adap->port[0] = NULL; 6294 6295 /* free VF resources */ 6296 adap->num_vfs = 0; 6297 kfree(adap->vfinfo); 6298 adap->vfinfo = NULL; 6299 return 0; 6300 } 6301 6302 if (!current_vfs) { 6303 struct fw_pfvf_cmd port_cmd, port_rpl; 6304 struct net_device *netdev; 6305 unsigned int pmask, port; 6306 struct pci_dev *pbridge; 6307 struct port_info *pi; 6308 char name[IFNAMSIZ]; 6309 u32 devcap2; 6310 u16 flags; 6311 6312 /* If we want to instantiate Virtual Functions, then our 6313 * parent bridge's PCI-E needs to support Alternative Routing 6314 * ID (ARI) because our VFs will show up at function offset 8 6315 * and above. 6316 */ 6317 pbridge = pdev->bus->self; 6318 pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags); 6319 pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2); 6320 6321 if ((flags & PCI_EXP_FLAGS_VERS) < 2 || 6322 !(devcap2 & PCI_EXP_DEVCAP2_ARI)) { 6323 /* Our parent bridge does not support ARI so issue a 6324 * warning and skip instantiating the VFs. They 6325 * won't be reachable. 6326 */ 6327 dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n", 6328 pbridge->bus->number, PCI_SLOT(pbridge->devfn), 6329 PCI_FUNC(pbridge->devfn)); 6330 return -ENOTSUPP; 6331 } 6332 memset(&port_cmd, 0, sizeof(port_cmd)); 6333 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 6334 FW_CMD_REQUEST_F | 6335 FW_CMD_READ_F | 6336 FW_PFVF_CMD_PFN_V(adap->pf) | 6337 FW_PFVF_CMD_VFN_V(0)); 6338 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd)); 6339 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd), 6340 &port_rpl); 6341 if (err) 6342 return err; 6343 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq)); 6344 port = ffs(pmask) - 1; 6345 /* Allocate VF Management Interface. */ 6346 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx, 6347 adap->pf); 6348 netdev = alloc_netdev(sizeof(struct port_info), 6349 name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup); 6350 if (!netdev) 6351 return -ENOMEM; 6352 6353 pi = netdev_priv(netdev); 6354 pi->adapter = adap; 6355 pi->lport = port; 6356 pi->tx_chan = port; 6357 SET_NETDEV_DEV(netdev, &pdev->dev); 6358 6359 adap->port[0] = netdev; 6360 pi->port_id = 0; 6361 6362 err = register_netdev(adap->port[0]); 6363 if (err) { 6364 pr_info("Unable to register VF mgmt netdev %s\n", name); 6365 free_netdev(adap->port[0]); 6366 adap->port[0] = NULL; 6367 return err; 6368 } 6369 /* Allocate and set up VF Information. */ 6370 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev), 6371 sizeof(struct vf_info), GFP_KERNEL); 6372 if (!adap->vfinfo) { 6373 unregister_netdev(adap->port[0]); 6374 free_netdev(adap->port[0]); 6375 adap->port[0] = NULL; 6376 return -ENOMEM; 6377 } 6378 cxgb4_mgmt_fill_vf_station_mac_addr(adap); 6379 } 6380 /* Instantiate the requested number of VFs. */ 6381 err = pci_enable_sriov(pdev, num_vfs); 6382 if (err) { 6383 pr_info("Unable to instantiate %d VFs\n", num_vfs); 6384 if (!current_vfs) { 6385 unregister_netdev(adap->port[0]); 6386 free_netdev(adap->port[0]); 6387 adap->port[0] = NULL; 6388 kfree(adap->vfinfo); 6389 adap->vfinfo = NULL; 6390 } 6391 return err; 6392 } 6393 6394 adap->num_vfs = num_vfs; 6395 return num_vfs; 6396 } 6397 #endif /* CONFIG_PCI_IOV */ 6398 6399 #if defined(CONFIG_CHELSIO_TLS_DEVICE) || IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE) 6400 6401 static int chcr_offload_state(struct adapter *adap, 6402 enum cxgb4_netdev_tls_ops op_val) 6403 { 6404 switch (op_val) { 6405 #if defined(CONFIG_CHELSIO_TLS_DEVICE) 6406 case CXGB4_TLSDEV_OPS: 6407 if (!adap->uld[CXGB4_ULD_CRYPTO].handle) { 6408 dev_dbg(adap->pdev_dev, "chcr driver is not loaded\n"); 6409 return -EOPNOTSUPP; 6410 } 6411 if (!adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops) { 6412 dev_dbg(adap->pdev_dev, 6413 "chcr driver has no registered tlsdev_ops\n"); 6414 return -EOPNOTSUPP; 6415 } 6416 break; 6417 #endif /* CONFIG_CHELSIO_TLS_DEVICE */ 6418 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE) 6419 case CXGB4_XFRMDEV_OPS: 6420 if (!adap->uld[CXGB4_ULD_IPSEC].handle) { 6421 dev_dbg(adap->pdev_dev, "chipsec driver is not loaded\n"); 6422 return -EOPNOTSUPP; 6423 } 6424 if (!adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops) { 6425 dev_dbg(adap->pdev_dev, 6426 "chipsec driver has no registered xfrmdev_ops\n"); 6427 return -EOPNOTSUPP; 6428 } 6429 break; 6430 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */ 6431 default: 6432 dev_dbg(adap->pdev_dev, 6433 "driver has no support for offload %d\n", op_val); 6434 return -EOPNOTSUPP; 6435 } 6436 6437 return 0; 6438 } 6439 6440 #endif /* CONFIG_CHELSIO_TLS_DEVICE || CONFIG_CHELSIO_IPSEC_INLINE */ 6441 6442 #if defined(CONFIG_CHELSIO_TLS_DEVICE) 6443 6444 static int cxgb4_ktls_dev_add(struct net_device *netdev, struct sock *sk, 6445 enum tls_offload_ctx_dir direction, 6446 struct tls_crypto_info *crypto_info, 6447 u32 tcp_sn) 6448 { 6449 struct adapter *adap = netdev2adap(netdev); 6450 int ret; 6451 6452 mutex_lock(&uld_mutex); 6453 ret = chcr_offload_state(adap, CXGB4_TLSDEV_OPS); 6454 if (ret) 6455 goto out_unlock; 6456 6457 ret = cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_ENABLE); 6458 if (ret) 6459 goto out_unlock; 6460 6461 ret = adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops->tls_dev_add(netdev, sk, 6462 direction, 6463 crypto_info, 6464 tcp_sn); 6465 /* if there is a failure, clear the refcount */ 6466 if (ret) 6467 cxgb4_set_ktls_feature(adap, 6468 FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE); 6469 out_unlock: 6470 mutex_unlock(&uld_mutex); 6471 return ret; 6472 } 6473 6474 static void cxgb4_ktls_dev_del(struct net_device *netdev, 6475 struct tls_context *tls_ctx, 6476 enum tls_offload_ctx_dir direction) 6477 { 6478 struct adapter *adap = netdev2adap(netdev); 6479 6480 mutex_lock(&uld_mutex); 6481 if (chcr_offload_state(adap, CXGB4_TLSDEV_OPS)) 6482 goto out_unlock; 6483 6484 adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops->tls_dev_del(netdev, tls_ctx, 6485 direction); 6486 cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE); 6487 6488 out_unlock: 6489 mutex_unlock(&uld_mutex); 6490 } 6491 6492 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE) 6493 6494 static int cxgb4_xfrm_add_state(struct xfrm_state *x) 6495 { 6496 struct adapter *adap = netdev2adap(x->xso.dev); 6497 int ret; 6498 6499 if (!mutex_trylock(&uld_mutex)) { 6500 dev_dbg(adap->pdev_dev, 6501 "crypto uld critical resource is under use\n"); 6502 return -EBUSY; 6503 } 6504 ret = chcr_offload_state(adap, CXGB4_XFRMDEV_OPS); 6505 if (ret) 6506 goto out_unlock; 6507 6508 ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_add(x); 6509 6510 out_unlock: 6511 mutex_unlock(&uld_mutex); 6512 6513 return ret; 6514 } 6515 6516 static void cxgb4_xfrm_del_state(struct xfrm_state *x) 6517 { 6518 struct adapter *adap = netdev2adap(x->xso.dev); 6519 6520 if (!mutex_trylock(&uld_mutex)) { 6521 dev_dbg(adap->pdev_dev, 6522 "crypto uld critical resource is under use\n"); 6523 return; 6524 } 6525 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS)) 6526 goto out_unlock; 6527 6528 adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_delete(x); 6529 6530 out_unlock: 6531 mutex_unlock(&uld_mutex); 6532 } 6533 6534 static void cxgb4_xfrm_free_state(struct xfrm_state *x) 6535 { 6536 struct adapter *adap = netdev2adap(x->xso.dev); 6537 6538 if (!mutex_trylock(&uld_mutex)) { 6539 dev_dbg(adap->pdev_dev, 6540 "crypto uld critical resource is under use\n"); 6541 return; 6542 } 6543 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS)) 6544 goto out_unlock; 6545 6546 adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_free(x); 6547 6548 out_unlock: 6549 mutex_unlock(&uld_mutex); 6550 } 6551 6552 static bool cxgb4_ipsec_offload_ok(struct sk_buff *skb, struct xfrm_state *x) 6553 { 6554 struct adapter *adap = netdev2adap(x->xso.dev); 6555 bool ret = false; 6556 6557 if (!mutex_trylock(&uld_mutex)) { 6558 dev_dbg(adap->pdev_dev, 6559 "crypto uld critical resource is under use\n"); 6560 return ret; 6561 } 6562 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS)) 6563 goto out_unlock; 6564 6565 ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_offload_ok(skb, x); 6566 6567 out_unlock: 6568 mutex_unlock(&uld_mutex); 6569 return ret; 6570 } 6571 6572 static void cxgb4_advance_esn_state(struct xfrm_state *x) 6573 { 6574 struct adapter *adap = netdev2adap(x->xso.dev); 6575 6576 if (!mutex_trylock(&uld_mutex)) { 6577 dev_dbg(adap->pdev_dev, 6578 "crypto uld critical resource is under use\n"); 6579 return; 6580 } 6581 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS)) 6582 goto out_unlock; 6583 6584 adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_advance_esn(x); 6585 6586 out_unlock: 6587 mutex_unlock(&uld_mutex); 6588 } 6589 6590 static const struct xfrmdev_ops cxgb4_xfrmdev_ops = { 6591 .xdo_dev_state_add = cxgb4_xfrm_add_state, 6592 .xdo_dev_state_delete = cxgb4_xfrm_del_state, 6593 .xdo_dev_state_free = cxgb4_xfrm_free_state, 6594 .xdo_dev_offload_ok = cxgb4_ipsec_offload_ok, 6595 .xdo_dev_state_advance_esn = cxgb4_advance_esn_state, 6596 }; 6597 6598 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */ 6599 6600 static const struct tlsdev_ops cxgb4_ktls_ops = { 6601 .tls_dev_add = cxgb4_ktls_dev_add, 6602 .tls_dev_del = cxgb4_ktls_dev_del, 6603 }; 6604 #endif /* CONFIG_CHELSIO_TLS_DEVICE */ 6605 6606 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 6607 { 6608 struct net_device *netdev; 6609 struct adapter *adapter; 6610 static int adap_idx = 1; 6611 int s_qpp, qpp, num_seg; 6612 struct port_info *pi; 6613 bool highdma = false; 6614 enum chip_type chip; 6615 void __iomem *regs; 6616 int func, chip_ver; 6617 u16 device_id; 6618 int i, err; 6619 u32 whoami; 6620 6621 err = pci_request_regions(pdev, KBUILD_MODNAME); 6622 if (err) { 6623 /* Just info, some other driver may have claimed the device. */ 6624 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 6625 return err; 6626 } 6627 6628 err = pci_enable_device(pdev); 6629 if (err) { 6630 dev_err(&pdev->dev, "cannot enable PCI device\n"); 6631 goto out_release_regions; 6632 } 6633 6634 regs = pci_ioremap_bar(pdev, 0); 6635 if (!regs) { 6636 dev_err(&pdev->dev, "cannot map device registers\n"); 6637 err = -ENOMEM; 6638 goto out_disable_device; 6639 } 6640 6641 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 6642 if (!adapter) { 6643 err = -ENOMEM; 6644 goto out_unmap_bar0; 6645 } 6646 6647 adapter->regs = regs; 6648 err = t4_wait_dev_ready(regs); 6649 if (err < 0) 6650 goto out_free_adapter; 6651 6652 /* We control everything through one PF */ 6653 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 6654 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 6655 chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id)); 6656 if ((int)chip < 0) { 6657 dev_err(&pdev->dev, "Device %d is not supported\n", device_id); 6658 err = chip; 6659 goto out_free_adapter; 6660 } 6661 chip_ver = CHELSIO_CHIP_VERSION(chip); 6662 func = chip_ver <= CHELSIO_T5 ? 6663 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 6664 6665 adapter->pdev = pdev; 6666 adapter->pdev_dev = &pdev->dev; 6667 adapter->name = pci_name(pdev); 6668 adapter->mbox = func; 6669 adapter->pf = func; 6670 adapter->params.chip = chip; 6671 adapter->adap_idx = adap_idx; 6672 adapter->msg_enable = DFLT_MSG_ENABLE; 6673 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 6674 (sizeof(struct mbox_cmd) * 6675 T4_OS_LOG_MBOX_CMDS), 6676 GFP_KERNEL); 6677 if (!adapter->mbox_log) { 6678 err = -ENOMEM; 6679 goto out_free_adapter; 6680 } 6681 spin_lock_init(&adapter->mbox_lock); 6682 INIT_LIST_HEAD(&adapter->mlist.list); 6683 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS; 6684 pci_set_drvdata(pdev, adapter); 6685 6686 if (func != ent->driver_data) { 6687 pci_disable_device(pdev); 6688 pci_save_state(pdev); /* to restore SR-IOV later */ 6689 return 0; 6690 } 6691 6692 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 6693 highdma = true; 6694 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 6695 if (err) { 6696 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 6697 "coherent allocations\n"); 6698 goto out_free_adapter; 6699 } 6700 } else { 6701 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 6702 if (err) { 6703 dev_err(&pdev->dev, "no usable DMA configuration\n"); 6704 goto out_free_adapter; 6705 } 6706 } 6707 6708 pci_enable_pcie_error_reporting(pdev); 6709 pci_set_master(pdev); 6710 pci_save_state(pdev); 6711 adap_idx++; 6712 adapter->workq = create_singlethread_workqueue("cxgb4"); 6713 if (!adapter->workq) { 6714 err = -ENOMEM; 6715 goto out_free_adapter; 6716 } 6717 6718 /* PCI device has been enabled */ 6719 adapter->flags |= CXGB4_DEV_ENABLED; 6720 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 6721 6722 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 6723 * Ingress Packet Data to Free List Buffers in order to allow for 6724 * chipset performance optimizations between the Root Complex and 6725 * Memory Controllers. (Messages to the associated Ingress Queue 6726 * notifying new Packet Placement in the Free Lists Buffers will be 6727 * send without the Relaxed Ordering Attribute thus guaranteeing that 6728 * all preceding PCIe Transaction Layer Packets will be processed 6729 * first.) But some Root Complexes have various issues with Upstream 6730 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 6731 * The PCIe devices which under the Root Complexes will be cleared the 6732 * Relaxed Ordering bit in the configuration space, So we check our 6733 * PCIe configuration space to see if it's flagged with advice against 6734 * using Relaxed Ordering. 6735 */ 6736 if (!pcie_relaxed_ordering_enabled(pdev)) 6737 adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING; 6738 6739 spin_lock_init(&adapter->stats_lock); 6740 spin_lock_init(&adapter->tid_release_lock); 6741 spin_lock_init(&adapter->win0_lock); 6742 6743 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 6744 INIT_WORK(&adapter->db_full_task, process_db_full); 6745 INIT_WORK(&adapter->db_drop_task, process_db_drop); 6746 INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err); 6747 6748 err = t4_prep_adapter(adapter); 6749 if (err) 6750 goto out_free_adapter; 6751 6752 if (is_kdump_kernel()) { 6753 /* Collect hardware state and append to /proc/vmcore */ 6754 err = cxgb4_cudbg_vmcore_add_dump(adapter); 6755 if (err) { 6756 dev_warn(adapter->pdev_dev, 6757 "Fail collecting vmcore device dump, err: %d. Continuing\n", 6758 err); 6759 err = 0; 6760 } 6761 } 6762 6763 if (!is_t4(adapter->params.chip)) { 6764 s_qpp = (QUEUESPERPAGEPF0_S + 6765 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 6766 adapter->pf); 6767 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 6768 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 6769 num_seg = PAGE_SIZE / SEGMENT_SIZE; 6770 6771 /* Each segment size is 128B. Write coalescing is enabled only 6772 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 6773 * queue is less no of segments that can be accommodated in 6774 * a page size. 6775 */ 6776 if (qpp > num_seg) { 6777 dev_err(&pdev->dev, 6778 "Incorrect number of egress queues per page\n"); 6779 err = -EINVAL; 6780 goto out_free_adapter; 6781 } 6782 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 6783 pci_resource_len(pdev, 2)); 6784 if (!adapter->bar2) { 6785 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 6786 err = -ENOMEM; 6787 goto out_free_adapter; 6788 } 6789 } 6790 6791 setup_memwin(adapter); 6792 err = adap_init0(adapter, 0); 6793 #ifdef CONFIG_DEBUG_FS 6794 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); 6795 #endif 6796 setup_memwin_rdma(adapter); 6797 if (err) 6798 goto out_unmap_bar; 6799 6800 /* configure SGE_STAT_CFG_A to read WC stats */ 6801 if (!is_t4(adapter->params.chip)) 6802 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | 6803 (is_t5(adapter->params.chip) ? STATMODE_V(0) : 6804 T6_STATMODE_V(0))); 6805 6806 /* Initialize hash mac addr list */ 6807 INIT_LIST_HEAD(&adapter->mac_hlist); 6808 6809 for_each_port(adapter, i) { 6810 /* For supporting MQPRIO Offload, need some extra 6811 * queues for each ETHOFLD TIDs. Keep it equal to 6812 * MAX_ATIDs for now. Once we connect to firmware 6813 * later and query the EOTID params, we'll come to 6814 * know the actual # of EOTIDs supported. 6815 */ 6816 netdev = alloc_etherdev_mq(sizeof(struct port_info), 6817 MAX_ETH_QSETS + MAX_ATIDS); 6818 if (!netdev) { 6819 err = -ENOMEM; 6820 goto out_free_dev; 6821 } 6822 6823 SET_NETDEV_DEV(netdev, &pdev->dev); 6824 6825 adapter->port[i] = netdev; 6826 pi = netdev_priv(netdev); 6827 pi->adapter = adapter; 6828 pi->xact_addr_filt = -1; 6829 pi->port_id = i; 6830 netdev->irq = pdev->irq; 6831 6832 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 6833 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 6834 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO | 6835 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 6836 NETIF_F_HW_TC | NETIF_F_NTUPLE; 6837 6838 if (chip_ver > CHELSIO_T5) { 6839 netdev->hw_enc_features |= NETIF_F_IP_CSUM | 6840 NETIF_F_IPV6_CSUM | 6841 NETIF_F_RXCSUM | 6842 NETIF_F_GSO_UDP_TUNNEL | 6843 NETIF_F_GSO_UDP_TUNNEL_CSUM | 6844 NETIF_F_TSO | NETIF_F_TSO6; 6845 6846 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL | 6847 NETIF_F_GSO_UDP_TUNNEL_CSUM | 6848 NETIF_F_HW_TLS_RECORD; 6849 6850 if (adapter->rawf_cnt) 6851 netdev->udp_tunnel_nic_info = &cxgb_udp_tunnels; 6852 } 6853 6854 if (highdma) 6855 netdev->hw_features |= NETIF_F_HIGHDMA; 6856 netdev->features |= netdev->hw_features; 6857 netdev->vlan_features = netdev->features & VLAN_FEAT; 6858 #if defined(CONFIG_CHELSIO_TLS_DEVICE) 6859 if (pi->adapter->params.crypto & FW_CAPS_CONFIG_TLS_HW) { 6860 netdev->hw_features |= NETIF_F_HW_TLS_TX; 6861 netdev->tlsdev_ops = &cxgb4_ktls_ops; 6862 /* initialize the refcount */ 6863 refcount_set(&pi->adapter->chcr_ktls.ktls_refcount, 0); 6864 } 6865 #endif /* CONFIG_CHELSIO_TLS_DEVICE */ 6866 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE) 6867 if (pi->adapter->params.crypto & FW_CAPS_CONFIG_IPSEC_INLINE) { 6868 netdev->hw_enc_features |= NETIF_F_HW_ESP; 6869 netdev->features |= NETIF_F_HW_ESP; 6870 netdev->xfrmdev_ops = &cxgb4_xfrmdev_ops; 6871 } 6872 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */ 6873 6874 netdev->priv_flags |= IFF_UNICAST_FLT; 6875 6876 /* MTU range: 81 - 9600 */ 6877 netdev->min_mtu = 81; /* accommodate SACK */ 6878 netdev->max_mtu = MAX_MTU; 6879 6880 netdev->netdev_ops = &cxgb4_netdev_ops; 6881 #ifdef CONFIG_CHELSIO_T4_DCB 6882 netdev->dcbnl_ops = &cxgb4_dcb_ops; 6883 cxgb4_dcb_state_init(netdev); 6884 cxgb4_dcb_version_init(netdev); 6885 #endif 6886 cxgb4_set_ethtool_ops(netdev); 6887 } 6888 6889 cxgb4_init_ethtool_dump(adapter); 6890 6891 pci_set_drvdata(pdev, adapter); 6892 6893 if (adapter->flags & CXGB4_FW_OK) { 6894 err = t4_port_init(adapter, func, func, 0); 6895 if (err) 6896 goto out_free_dev; 6897 } else if (adapter->params.nports == 1) { 6898 /* If we don't have a connection to the firmware -- possibly 6899 * because of an error -- grab the raw VPD parameters so we 6900 * can set the proper MAC Address on the debug network 6901 * interface that we've created. 6902 */ 6903 u8 hw_addr[ETH_ALEN]; 6904 u8 *na = adapter->params.vpd.na; 6905 6906 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 6907 if (!err) { 6908 for (i = 0; i < ETH_ALEN; i++) 6909 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 6910 hex2val(na[2 * i + 1])); 6911 t4_set_hw_addr(adapter, 0, hw_addr); 6912 } 6913 } 6914 6915 if (!(adapter->flags & CXGB4_FW_OK)) 6916 goto fw_attach_fail; 6917 6918 /* Configure queues and allocate tables now, they can be needed as 6919 * soon as the first register_netdev completes. 6920 */ 6921 err = cfg_queues(adapter); 6922 if (err) 6923 goto out_free_dev; 6924 6925 adapter->smt = t4_init_smt(); 6926 if (!adapter->smt) { 6927 /* We tolerate a lack of SMT, giving up some functionality */ 6928 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n"); 6929 } 6930 6931 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 6932 if (!adapter->l2t) { 6933 /* We tolerate a lack of L2T, giving up some functionality */ 6934 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 6935 adapter->params.offload = 0; 6936 } 6937 6938 #if IS_ENABLED(CONFIG_IPV6) 6939 if (chip_ver <= CHELSIO_T5 && 6940 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { 6941 /* CLIP functionality is not present in hardware, 6942 * hence disable all offload features 6943 */ 6944 dev_warn(&pdev->dev, 6945 "CLIP not enabled in hardware, continuing\n"); 6946 adapter->params.offload = 0; 6947 } else { 6948 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 6949 adapter->clipt_end); 6950 if (!adapter->clipt) { 6951 /* We tolerate a lack of clip_table, giving up 6952 * some functionality 6953 */ 6954 dev_warn(&pdev->dev, 6955 "could not allocate Clip table, continuing\n"); 6956 adapter->params.offload = 0; 6957 } 6958 } 6959 #endif 6960 6961 for_each_port(adapter, i) { 6962 pi = adap2pinfo(adapter, i); 6963 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls); 6964 if (!pi->sched_tbl) 6965 dev_warn(&pdev->dev, 6966 "could not activate scheduling on port %d\n", 6967 i); 6968 } 6969 6970 if (is_offload(adapter) || is_hashfilter(adapter)) { 6971 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 6972 u32 v; 6973 6974 v = t4_read_reg(adapter, LE_DB_HASH_CONFIG_A); 6975 if (chip_ver <= CHELSIO_T5) { 6976 adapter->tids.nhash = 1 << HASHTIDSIZE_G(v); 6977 v = t4_read_reg(adapter, LE_DB_TID_HASHBASE_A); 6978 adapter->tids.hash_base = v / 4; 6979 } else { 6980 adapter->tids.nhash = HASHTBLSIZE_G(v) << 3; 6981 v = t4_read_reg(adapter, 6982 T6_LE_DB_HASH_TID_BASE_A); 6983 adapter->tids.hash_base = v; 6984 } 6985 } 6986 } 6987 6988 if (tid_init(&adapter->tids) < 0) { 6989 dev_warn(&pdev->dev, "could not allocate TID table, " 6990 "continuing\n"); 6991 adapter->params.offload = 0; 6992 } else { 6993 adapter->tc_u32 = cxgb4_init_tc_u32(adapter); 6994 if (!adapter->tc_u32) 6995 dev_warn(&pdev->dev, 6996 "could not offload tc u32, continuing\n"); 6997 6998 if (cxgb4_init_tc_flower(adapter)) 6999 dev_warn(&pdev->dev, 7000 "could not offload tc flower, continuing\n"); 7001 7002 if (cxgb4_init_tc_mqprio(adapter)) 7003 dev_warn(&pdev->dev, 7004 "could not offload tc mqprio, continuing\n"); 7005 7006 if (cxgb4_init_tc_matchall(adapter)) 7007 dev_warn(&pdev->dev, 7008 "could not offload tc matchall, continuing\n"); 7009 if (cxgb4_init_ethtool_filters(adapter)) 7010 dev_warn(&pdev->dev, 7011 "could not initialize ethtool filters, continuing\n"); 7012 } 7013 7014 /* See what interrupts we'll be using */ 7015 if (msi > 1 && enable_msix(adapter) == 0) 7016 adapter->flags |= CXGB4_USING_MSIX; 7017 else if (msi > 0 && pci_enable_msi(pdev) == 0) { 7018 adapter->flags |= CXGB4_USING_MSI; 7019 if (msi > 1) 7020 free_msix_info(adapter); 7021 } 7022 7023 /* check for PCI Express bandwidth capabiltites */ 7024 pcie_print_link_status(pdev); 7025 7026 cxgb4_init_mps_ref_entries(adapter); 7027 7028 err = init_rss(adapter); 7029 if (err) 7030 goto out_free_dev; 7031 7032 err = setup_non_data_intr(adapter); 7033 if (err) { 7034 dev_err(adapter->pdev_dev, 7035 "Non Data interrupt allocation failed, err: %d\n", err); 7036 goto out_free_dev; 7037 } 7038 7039 err = setup_fw_sge_queues(adapter); 7040 if (err) { 7041 dev_err(adapter->pdev_dev, 7042 "FW sge queue allocation failed, err %d", err); 7043 goto out_free_dev; 7044 } 7045 7046 fw_attach_fail: 7047 /* 7048 * The card is now ready to go. If any errors occur during device 7049 * registration we do not fail the whole card but rather proceed only 7050 * with the ports we manage to register successfully. However we must 7051 * register at least one net device. 7052 */ 7053 for_each_port(adapter, i) { 7054 pi = adap2pinfo(adapter, i); 7055 adapter->port[i]->dev_port = pi->lport; 7056 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 7057 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 7058 7059 netif_carrier_off(adapter->port[i]); 7060 7061 err = register_netdev(adapter->port[i]); 7062 if (err) 7063 break; 7064 adapter->chan_map[pi->tx_chan] = i; 7065 print_port_info(adapter->port[i]); 7066 } 7067 if (i == 0) { 7068 dev_err(&pdev->dev, "could not register any net devices\n"); 7069 goto out_free_dev; 7070 } 7071 if (err) { 7072 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 7073 err = 0; 7074 } 7075 7076 if (cxgb4_debugfs_root) { 7077 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 7078 cxgb4_debugfs_root); 7079 setup_debugfs(adapter); 7080 } 7081 7082 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 7083 pdev->needs_freset = 1; 7084 7085 if (is_uld(adapter)) 7086 cxgb4_uld_enable(adapter); 7087 7088 if (!is_t4(adapter->params.chip)) 7089 cxgb4_ptp_init(adapter); 7090 7091 if (IS_REACHABLE(CONFIG_THERMAL) && 7092 !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK)) 7093 cxgb4_thermal_init(adapter); 7094 7095 print_adapter_info(adapter); 7096 return 0; 7097 7098 out_free_dev: 7099 t4_free_sge_resources(adapter); 7100 free_some_resources(adapter); 7101 if (adapter->flags & CXGB4_USING_MSIX) 7102 free_msix_info(adapter); 7103 if (adapter->num_uld || adapter->num_ofld_uld) 7104 t4_uld_mem_free(adapter); 7105 out_unmap_bar: 7106 if (!is_t4(adapter->params.chip)) 7107 iounmap(adapter->bar2); 7108 out_free_adapter: 7109 if (adapter->workq) 7110 destroy_workqueue(adapter->workq); 7111 7112 kfree(adapter->mbox_log); 7113 kfree(adapter); 7114 out_unmap_bar0: 7115 iounmap(regs); 7116 out_disable_device: 7117 pci_disable_pcie_error_reporting(pdev); 7118 pci_disable_device(pdev); 7119 out_release_regions: 7120 pci_release_regions(pdev); 7121 return err; 7122 } 7123 7124 static void remove_one(struct pci_dev *pdev) 7125 { 7126 struct adapter *adapter = pci_get_drvdata(pdev); 7127 struct hash_mac_addr *entry, *tmp; 7128 7129 if (!adapter) { 7130 pci_release_regions(pdev); 7131 return; 7132 } 7133 7134 /* If we allocated filters, free up state associated with any 7135 * valid filters ... 7136 */ 7137 clear_all_filters(adapter); 7138 7139 adapter->flags |= CXGB4_SHUTTING_DOWN; 7140 7141 if (adapter->pf == 4) { 7142 int i; 7143 7144 /* Tear down per-adapter Work Queue first since it can contain 7145 * references to our adapter data structure. 7146 */ 7147 destroy_workqueue(adapter->workq); 7148 7149 if (is_uld(adapter)) { 7150 detach_ulds(adapter); 7151 t4_uld_clean_up(adapter); 7152 } 7153 7154 adap_free_hma_mem(adapter); 7155 7156 disable_interrupts(adapter); 7157 7158 cxgb4_free_mps_ref_entries(adapter); 7159 7160 for_each_port(adapter, i) 7161 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 7162 unregister_netdev(adapter->port[i]); 7163 7164 debugfs_remove_recursive(adapter->debugfs_root); 7165 7166 if (!is_t4(adapter->params.chip)) 7167 cxgb4_ptp_stop(adapter); 7168 if (IS_REACHABLE(CONFIG_THERMAL)) 7169 cxgb4_thermal_remove(adapter); 7170 7171 if (adapter->flags & CXGB4_FULL_INIT_DONE) 7172 cxgb_down(adapter); 7173 7174 if (adapter->flags & CXGB4_USING_MSIX) 7175 free_msix_info(adapter); 7176 if (adapter->num_uld || adapter->num_ofld_uld) 7177 t4_uld_mem_free(adapter); 7178 free_some_resources(adapter); 7179 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, 7180 list) { 7181 list_del(&entry->list); 7182 kfree(entry); 7183 } 7184 7185 #if IS_ENABLED(CONFIG_IPV6) 7186 t4_cleanup_clip_tbl(adapter); 7187 #endif 7188 if (!is_t4(adapter->params.chip)) 7189 iounmap(adapter->bar2); 7190 } 7191 #ifdef CONFIG_PCI_IOV 7192 else { 7193 cxgb4_iov_configure(adapter->pdev, 0); 7194 } 7195 #endif 7196 iounmap(adapter->regs); 7197 pci_disable_pcie_error_reporting(pdev); 7198 if ((adapter->flags & CXGB4_DEV_ENABLED)) { 7199 pci_disable_device(pdev); 7200 adapter->flags &= ~CXGB4_DEV_ENABLED; 7201 } 7202 pci_release_regions(pdev); 7203 kfree(adapter->mbox_log); 7204 synchronize_rcu(); 7205 kfree(adapter); 7206 } 7207 7208 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt 7209 * delivery. This is essentially a stripped down version of the PCI remove() 7210 * function where we do the minimal amount of work necessary to shutdown any 7211 * further activity. 7212 */ 7213 static void shutdown_one(struct pci_dev *pdev) 7214 { 7215 struct adapter *adapter = pci_get_drvdata(pdev); 7216 7217 /* As with remove_one() above (see extended comment), we only want do 7218 * do cleanup on PCI Devices which went all the way through init_one() 7219 * ... 7220 */ 7221 if (!adapter) { 7222 pci_release_regions(pdev); 7223 return; 7224 } 7225 7226 adapter->flags |= CXGB4_SHUTTING_DOWN; 7227 7228 if (adapter->pf == 4) { 7229 int i; 7230 7231 for_each_port(adapter, i) 7232 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 7233 cxgb_close(adapter->port[i]); 7234 7235 rtnl_lock(); 7236 cxgb4_mqprio_stop_offload(adapter); 7237 rtnl_unlock(); 7238 7239 if (is_uld(adapter)) { 7240 detach_ulds(adapter); 7241 t4_uld_clean_up(adapter); 7242 } 7243 7244 disable_interrupts(adapter); 7245 disable_msi(adapter); 7246 7247 t4_sge_stop(adapter); 7248 if (adapter->flags & CXGB4_FW_OK) 7249 t4_fw_bye(adapter, adapter->mbox); 7250 } 7251 } 7252 7253 static struct pci_driver cxgb4_driver = { 7254 .name = KBUILD_MODNAME, 7255 .id_table = cxgb4_pci_tbl, 7256 .probe = init_one, 7257 .remove = remove_one, 7258 .shutdown = shutdown_one, 7259 #ifdef CONFIG_PCI_IOV 7260 .sriov_configure = cxgb4_iov_configure, 7261 #endif 7262 .err_handler = &cxgb4_eeh, 7263 }; 7264 7265 static int __init cxgb4_init_module(void) 7266 { 7267 int ret; 7268 7269 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 7270 7271 ret = pci_register_driver(&cxgb4_driver); 7272 if (ret < 0) 7273 goto err_pci; 7274 7275 #if IS_ENABLED(CONFIG_IPV6) 7276 if (!inet6addr_registered) { 7277 ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 7278 if (ret) 7279 pci_unregister_driver(&cxgb4_driver); 7280 else 7281 inet6addr_registered = true; 7282 } 7283 #endif 7284 7285 if (ret == 0) 7286 return ret; 7287 7288 err_pci: 7289 debugfs_remove(cxgb4_debugfs_root); 7290 7291 return ret; 7292 } 7293 7294 static void __exit cxgb4_cleanup_module(void) 7295 { 7296 #if IS_ENABLED(CONFIG_IPV6) 7297 if (inet6addr_registered) { 7298 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 7299 inet6addr_registered = false; 7300 } 7301 #endif 7302 pci_unregister_driver(&cxgb4_driver); 7303 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 7304 } 7305 7306 module_init(cxgb4_init_module); 7307 module_exit(cxgb4_cleanup_module); 7308