1 /*
2  * Copyright (c) 2006-2008 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/list.h>
34 #include <linux/slab.h>
35 #include <net/neighbour.h>
36 #include <linux/notifier.h>
37 #include <linux/atomic.h>
38 #include <linux/proc_fs.h>
39 #include <linux/if_vlan.h>
40 #include <net/netevent.h>
41 #include <linux/highmem.h>
42 #include <linux/vmalloc.h>
43 #include <linux/export.h>
44 
45 #include "common.h"
46 #include "regs.h"
47 #include "cxgb3_ioctl.h"
48 #include "cxgb3_ctl_defs.h"
49 #include "cxgb3_defs.h"
50 #include "l2t.h"
51 #include "firmware_exports.h"
52 #include "cxgb3_offload.h"
53 
54 static LIST_HEAD(client_list);
55 static LIST_HEAD(ofld_dev_list);
56 static DEFINE_MUTEX(cxgb3_db_lock);
57 
58 static DEFINE_RWLOCK(adapter_list_lock);
59 static LIST_HEAD(adapter_list);
60 
61 static const unsigned int MAX_ATIDS = 64 * 1024;
62 static const unsigned int ATID_BASE = 0x10000;
63 
64 static void cxgb_neigh_update(struct neighbour *neigh);
65 static void cxgb_redirect(struct dst_entry *old, struct neighbour *old_neigh,
66 			  struct dst_entry *new, struct neighbour *new_neigh);
67 
68 static inline int offload_activated(struct t3cdev *tdev)
69 {
70 	const struct adapter *adapter = tdev2adap(tdev);
71 
72 	return test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
73 }
74 
75 /**
76  *	cxgb3_register_client - register an offload client
77  *	@client: the client
78  *
79  *	Add the client to the client list,
80  *	and call backs the client for each activated offload device
81  */
82 void cxgb3_register_client(struct cxgb3_client *client)
83 {
84 	struct t3cdev *tdev;
85 
86 	mutex_lock(&cxgb3_db_lock);
87 	list_add_tail(&client->client_list, &client_list);
88 
89 	if (client->add) {
90 		list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
91 			if (offload_activated(tdev))
92 				client->add(tdev);
93 		}
94 	}
95 	mutex_unlock(&cxgb3_db_lock);
96 }
97 
98 EXPORT_SYMBOL(cxgb3_register_client);
99 
100 /**
101  *	cxgb3_unregister_client - unregister an offload client
102  *	@client: the client
103  *
104  *	Remove the client to the client list,
105  *	and call backs the client for each activated offload device.
106  */
107 void cxgb3_unregister_client(struct cxgb3_client *client)
108 {
109 	struct t3cdev *tdev;
110 
111 	mutex_lock(&cxgb3_db_lock);
112 	list_del(&client->client_list);
113 
114 	if (client->remove) {
115 		list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
116 			if (offload_activated(tdev))
117 				client->remove(tdev);
118 		}
119 	}
120 	mutex_unlock(&cxgb3_db_lock);
121 }
122 
123 EXPORT_SYMBOL(cxgb3_unregister_client);
124 
125 /**
126  *	cxgb3_add_clients - activate registered clients for an offload device
127  *	@tdev: the offload device
128  *
129  *	Call backs all registered clients once a offload device is activated
130  */
131 void cxgb3_add_clients(struct t3cdev *tdev)
132 {
133 	struct cxgb3_client *client;
134 
135 	mutex_lock(&cxgb3_db_lock);
136 	list_for_each_entry(client, &client_list, client_list) {
137 		if (client->add)
138 			client->add(tdev);
139 	}
140 	mutex_unlock(&cxgb3_db_lock);
141 }
142 
143 /**
144  *	cxgb3_remove_clients - deactivates registered clients
145  *			       for an offload device
146  *	@tdev: the offload device
147  *
148  *	Call backs all registered clients once a offload device is deactivated
149  */
150 void cxgb3_remove_clients(struct t3cdev *tdev)
151 {
152 	struct cxgb3_client *client;
153 
154 	mutex_lock(&cxgb3_db_lock);
155 	list_for_each_entry(client, &client_list, client_list) {
156 		if (client->remove)
157 			client->remove(tdev);
158 	}
159 	mutex_unlock(&cxgb3_db_lock);
160 }
161 
162 void cxgb3_event_notify(struct t3cdev *tdev, u32 event, u32 port)
163 {
164 	struct cxgb3_client *client;
165 
166 	mutex_lock(&cxgb3_db_lock);
167 	list_for_each_entry(client, &client_list, client_list) {
168 		if (client->event_handler)
169 			client->event_handler(tdev, event, port);
170 	}
171 	mutex_unlock(&cxgb3_db_lock);
172 }
173 
174 static struct net_device *get_iff_from_mac(struct adapter *adapter,
175 					   const unsigned char *mac,
176 					   unsigned int vlan)
177 {
178 	int i;
179 
180 	for_each_port(adapter, i) {
181 		struct net_device *dev = adapter->port[i];
182 
183 		if (!memcmp(dev->dev_addr, mac, ETH_ALEN)) {
184 			if (vlan && vlan != VLAN_VID_MASK) {
185 				rcu_read_lock();
186 				dev = __vlan_find_dev_deep(dev, vlan);
187 				rcu_read_unlock();
188 			} else if (netif_is_bond_slave(dev)) {
189 				while (dev->master)
190 					dev = dev->master;
191 			}
192 			return dev;
193 		}
194 	}
195 	return NULL;
196 }
197 
198 static int cxgb_ulp_iscsi_ctl(struct adapter *adapter, unsigned int req,
199 			      void *data)
200 {
201 	int i;
202 	int ret = 0;
203 	unsigned int val = 0;
204 	struct ulp_iscsi_info *uiip = data;
205 
206 	switch (req) {
207 	case ULP_ISCSI_GET_PARAMS:
208 		uiip->pdev = adapter->pdev;
209 		uiip->llimit = t3_read_reg(adapter, A_ULPRX_ISCSI_LLIMIT);
210 		uiip->ulimit = t3_read_reg(adapter, A_ULPRX_ISCSI_ULIMIT);
211 		uiip->tagmask = t3_read_reg(adapter, A_ULPRX_ISCSI_TAGMASK);
212 
213 		val = t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ);
214 		for (i = 0; i < 4; i++, val >>= 8)
215 			uiip->pgsz_factor[i] = val & 0xFF;
216 
217 		val = t3_read_reg(adapter, A_TP_PARA_REG7);
218 		uiip->max_txsz =
219 		uiip->max_rxsz = min((val >> S_PMMAXXFERLEN0)&M_PMMAXXFERLEN0,
220 				     (val >> S_PMMAXXFERLEN1)&M_PMMAXXFERLEN1);
221 		/*
222 		 * On tx, the iscsi pdu has to be <= tx page size and has to
223 		 * fit into the Tx PM FIFO.
224 		 */
225 		val = min(adapter->params.tp.tx_pg_size,
226 			  t3_read_reg(adapter, A_PM1_TX_CFG) >> 17);
227 		uiip->max_txsz = min(val, uiip->max_txsz);
228 
229 		/* set MaxRxData to 16224 */
230 		val = t3_read_reg(adapter, A_TP_PARA_REG2);
231 		if ((val >> S_MAXRXDATA) != 0x3f60) {
232 			val &= (M_RXCOALESCESIZE << S_RXCOALESCESIZE);
233 			val |= V_MAXRXDATA(0x3f60);
234 			printk(KERN_INFO
235 				"%s, iscsi set MaxRxData to 16224 (0x%x).\n",
236 				adapter->name, val);
237 			t3_write_reg(adapter, A_TP_PARA_REG2, val);
238 		}
239 
240 		/*
241 		 * on rx, the iscsi pdu has to be < rx page size and the
242 		 * the max rx data length programmed in TP
243 		 */
244 		val = min(adapter->params.tp.rx_pg_size,
245 			  ((t3_read_reg(adapter, A_TP_PARA_REG2)) >>
246 				S_MAXRXDATA) & M_MAXRXDATA);
247 		uiip->max_rxsz = min(val, uiip->max_rxsz);
248 		break;
249 	case ULP_ISCSI_SET_PARAMS:
250 		t3_write_reg(adapter, A_ULPRX_ISCSI_TAGMASK, uiip->tagmask);
251 		/* program the ddp page sizes */
252 		for (i = 0; i < 4; i++)
253 			val |= (uiip->pgsz_factor[i] & 0xF) << (8 * i);
254 		if (val && (val != t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ))) {
255 			printk(KERN_INFO
256 				"%s, setting iscsi pgsz 0x%x, %u,%u,%u,%u.\n",
257 				adapter->name, val, uiip->pgsz_factor[0],
258 				uiip->pgsz_factor[1], uiip->pgsz_factor[2],
259 				uiip->pgsz_factor[3]);
260 			t3_write_reg(adapter, A_ULPRX_ISCSI_PSZ, val);
261 		}
262 		break;
263 	default:
264 		ret = -EOPNOTSUPP;
265 	}
266 	return ret;
267 }
268 
269 /* Response queue used for RDMA events. */
270 #define ASYNC_NOTIF_RSPQ 0
271 
272 static int cxgb_rdma_ctl(struct adapter *adapter, unsigned int req, void *data)
273 {
274 	int ret = 0;
275 
276 	switch (req) {
277 	case RDMA_GET_PARAMS: {
278 		struct rdma_info *rdma = data;
279 		struct pci_dev *pdev = adapter->pdev;
280 
281 		rdma->udbell_physbase = pci_resource_start(pdev, 2);
282 		rdma->udbell_len = pci_resource_len(pdev, 2);
283 		rdma->tpt_base =
284 			t3_read_reg(adapter, A_ULPTX_TPT_LLIMIT);
285 		rdma->tpt_top = t3_read_reg(adapter, A_ULPTX_TPT_ULIMIT);
286 		rdma->pbl_base =
287 			t3_read_reg(adapter, A_ULPTX_PBL_LLIMIT);
288 		rdma->pbl_top = t3_read_reg(adapter, A_ULPTX_PBL_ULIMIT);
289 		rdma->rqt_base = t3_read_reg(adapter, A_ULPRX_RQ_LLIMIT);
290 		rdma->rqt_top = t3_read_reg(adapter, A_ULPRX_RQ_ULIMIT);
291 		rdma->kdb_addr = adapter->regs + A_SG_KDOORBELL;
292 		rdma->pdev = pdev;
293 		break;
294 	}
295 	case RDMA_CQ_OP:{
296 		unsigned long flags;
297 		struct rdma_cq_op *rdma = data;
298 
299 		/* may be called in any context */
300 		spin_lock_irqsave(&adapter->sge.reg_lock, flags);
301 		ret = t3_sge_cqcntxt_op(adapter, rdma->id, rdma->op,
302 					rdma->credits);
303 		spin_unlock_irqrestore(&adapter->sge.reg_lock, flags);
304 		break;
305 	}
306 	case RDMA_GET_MEM:{
307 		struct ch_mem_range *t = data;
308 		struct mc7 *mem;
309 
310 		if ((t->addr & 7) || (t->len & 7))
311 			return -EINVAL;
312 		if (t->mem_id == MEM_CM)
313 			mem = &adapter->cm;
314 		else if (t->mem_id == MEM_PMRX)
315 			mem = &adapter->pmrx;
316 		else if (t->mem_id == MEM_PMTX)
317 			mem = &adapter->pmtx;
318 		else
319 			return -EINVAL;
320 
321 		ret =
322 			t3_mc7_bd_read(mem, t->addr / 8, t->len / 8,
323 					(u64 *) t->buf);
324 		if (ret)
325 			return ret;
326 		break;
327 	}
328 	case RDMA_CQ_SETUP:{
329 		struct rdma_cq_setup *rdma = data;
330 
331 		spin_lock_irq(&adapter->sge.reg_lock);
332 		ret =
333 			t3_sge_init_cqcntxt(adapter, rdma->id,
334 					rdma->base_addr, rdma->size,
335 					ASYNC_NOTIF_RSPQ,
336 					rdma->ovfl_mode, rdma->credits,
337 					rdma->credit_thres);
338 		spin_unlock_irq(&adapter->sge.reg_lock);
339 		break;
340 	}
341 	case RDMA_CQ_DISABLE:
342 		spin_lock_irq(&adapter->sge.reg_lock);
343 		ret = t3_sge_disable_cqcntxt(adapter, *(unsigned int *)data);
344 		spin_unlock_irq(&adapter->sge.reg_lock);
345 		break;
346 	case RDMA_CTRL_QP_SETUP:{
347 		struct rdma_ctrlqp_setup *rdma = data;
348 
349 		spin_lock_irq(&adapter->sge.reg_lock);
350 		ret = t3_sge_init_ecntxt(adapter, FW_RI_SGEEC_START, 0,
351 						SGE_CNTXT_RDMA,
352 						ASYNC_NOTIF_RSPQ,
353 						rdma->base_addr, rdma->size,
354 						FW_RI_TID_START, 1, 0);
355 		spin_unlock_irq(&adapter->sge.reg_lock);
356 		break;
357 	}
358 	case RDMA_GET_MIB: {
359 		spin_lock(&adapter->stats_lock);
360 		t3_tp_get_mib_stats(adapter, (struct tp_mib_stats *)data);
361 		spin_unlock(&adapter->stats_lock);
362 		break;
363 	}
364 	default:
365 		ret = -EOPNOTSUPP;
366 	}
367 	return ret;
368 }
369 
370 static int cxgb_offload_ctl(struct t3cdev *tdev, unsigned int req, void *data)
371 {
372 	struct adapter *adapter = tdev2adap(tdev);
373 	struct tid_range *tid;
374 	struct mtutab *mtup;
375 	struct iff_mac *iffmacp;
376 	struct ddp_params *ddpp;
377 	struct adap_ports *ports;
378 	struct ofld_page_info *rx_page_info;
379 	struct tp_params *tp = &adapter->params.tp;
380 	int i;
381 
382 	switch (req) {
383 	case GET_MAX_OUTSTANDING_WR:
384 		*(unsigned int *)data = FW_WR_NUM;
385 		break;
386 	case GET_WR_LEN:
387 		*(unsigned int *)data = WR_FLITS;
388 		break;
389 	case GET_TX_MAX_CHUNK:
390 		*(unsigned int *)data = 1 << 20;	/* 1MB */
391 		break;
392 	case GET_TID_RANGE:
393 		tid = data;
394 		tid->num = t3_mc5_size(&adapter->mc5) -
395 		    adapter->params.mc5.nroutes -
396 		    adapter->params.mc5.nfilters - adapter->params.mc5.nservers;
397 		tid->base = 0;
398 		break;
399 	case GET_STID_RANGE:
400 		tid = data;
401 		tid->num = adapter->params.mc5.nservers;
402 		tid->base = t3_mc5_size(&adapter->mc5) - tid->num -
403 		    adapter->params.mc5.nfilters - adapter->params.mc5.nroutes;
404 		break;
405 	case GET_L2T_CAPACITY:
406 		*(unsigned int *)data = 2048;
407 		break;
408 	case GET_MTUS:
409 		mtup = data;
410 		mtup->size = NMTUS;
411 		mtup->mtus = adapter->params.mtus;
412 		break;
413 	case GET_IFF_FROM_MAC:
414 		iffmacp = data;
415 		iffmacp->dev = get_iff_from_mac(adapter, iffmacp->mac_addr,
416 						iffmacp->vlan_tag &
417 						VLAN_VID_MASK);
418 		break;
419 	case GET_DDP_PARAMS:
420 		ddpp = data;
421 		ddpp->llimit = t3_read_reg(adapter, A_ULPRX_TDDP_LLIMIT);
422 		ddpp->ulimit = t3_read_reg(adapter, A_ULPRX_TDDP_ULIMIT);
423 		ddpp->tag_mask = t3_read_reg(adapter, A_ULPRX_TDDP_TAGMASK);
424 		break;
425 	case GET_PORTS:
426 		ports = data;
427 		ports->nports = adapter->params.nports;
428 		for_each_port(adapter, i)
429 			ports->lldevs[i] = adapter->port[i];
430 		break;
431 	case ULP_ISCSI_GET_PARAMS:
432 	case ULP_ISCSI_SET_PARAMS:
433 		if (!offload_running(adapter))
434 			return -EAGAIN;
435 		return cxgb_ulp_iscsi_ctl(adapter, req, data);
436 	case RDMA_GET_PARAMS:
437 	case RDMA_CQ_OP:
438 	case RDMA_CQ_SETUP:
439 	case RDMA_CQ_DISABLE:
440 	case RDMA_CTRL_QP_SETUP:
441 	case RDMA_GET_MEM:
442 	case RDMA_GET_MIB:
443 		if (!offload_running(adapter))
444 			return -EAGAIN;
445 		return cxgb_rdma_ctl(adapter, req, data);
446 	case GET_RX_PAGE_INFO:
447 		rx_page_info = data;
448 		rx_page_info->page_size = tp->rx_pg_size;
449 		rx_page_info->num = tp->rx_num_pgs;
450 		break;
451 	case GET_ISCSI_IPV4ADDR: {
452 		struct iscsi_ipv4addr *p = data;
453 		struct port_info *pi = netdev_priv(p->dev);
454 		p->ipv4addr = pi->iscsi_ipv4addr;
455 		break;
456 	}
457 	case GET_EMBEDDED_INFO: {
458 		struct ch_embedded_info *e = data;
459 
460 		spin_lock(&adapter->stats_lock);
461 		t3_get_fw_version(adapter, &e->fw_vers);
462 		t3_get_tp_version(adapter, &e->tp_vers);
463 		spin_unlock(&adapter->stats_lock);
464 		break;
465 	}
466 	default:
467 		return -EOPNOTSUPP;
468 	}
469 	return 0;
470 }
471 
472 /*
473  * Dummy handler for Rx offload packets in case we get an offload packet before
474  * proper processing is setup.  This complains and drops the packet as it isn't
475  * normal to get offload packets at this stage.
476  */
477 static int rx_offload_blackhole(struct t3cdev *dev, struct sk_buff **skbs,
478 				int n)
479 {
480 	while (n--)
481 		dev_kfree_skb_any(skbs[n]);
482 	return 0;
483 }
484 
485 static void dummy_neigh_update(struct t3cdev *dev, struct neighbour *neigh)
486 {
487 }
488 
489 void cxgb3_set_dummy_ops(struct t3cdev *dev)
490 {
491 	dev->recv = rx_offload_blackhole;
492 	dev->neigh_update = dummy_neigh_update;
493 }
494 
495 /*
496  * Free an active-open TID.
497  */
498 void *cxgb3_free_atid(struct t3cdev *tdev, int atid)
499 {
500 	struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
501 	union active_open_entry *p = atid2entry(t, atid);
502 	void *ctx = p->t3c_tid.ctx;
503 
504 	spin_lock_bh(&t->atid_lock);
505 	p->next = t->afree;
506 	t->afree = p;
507 	t->atids_in_use--;
508 	spin_unlock_bh(&t->atid_lock);
509 
510 	return ctx;
511 }
512 
513 EXPORT_SYMBOL(cxgb3_free_atid);
514 
515 /*
516  * Free a server TID and return it to the free pool.
517  */
518 void cxgb3_free_stid(struct t3cdev *tdev, int stid)
519 {
520 	struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
521 	union listen_entry *p = stid2entry(t, stid);
522 
523 	spin_lock_bh(&t->stid_lock);
524 	p->next = t->sfree;
525 	t->sfree = p;
526 	t->stids_in_use--;
527 	spin_unlock_bh(&t->stid_lock);
528 }
529 
530 EXPORT_SYMBOL(cxgb3_free_stid);
531 
532 void cxgb3_insert_tid(struct t3cdev *tdev, struct cxgb3_client *client,
533 		      void *ctx, unsigned int tid)
534 {
535 	struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
536 
537 	t->tid_tab[tid].client = client;
538 	t->tid_tab[tid].ctx = ctx;
539 	atomic_inc(&t->tids_in_use);
540 }
541 
542 EXPORT_SYMBOL(cxgb3_insert_tid);
543 
544 /*
545  * Populate a TID_RELEASE WR.  The skb must be already propely sized.
546  */
547 static inline void mk_tid_release(struct sk_buff *skb, unsigned int tid)
548 {
549 	struct cpl_tid_release *req;
550 
551 	skb->priority = CPL_PRIORITY_SETUP;
552 	req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
553 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
554 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
555 }
556 
557 static void t3_process_tid_release_list(struct work_struct *work)
558 {
559 	struct t3c_data *td = container_of(work, struct t3c_data,
560 					   tid_release_task);
561 	struct sk_buff *skb;
562 	struct t3cdev *tdev = td->dev;
563 
564 
565 	spin_lock_bh(&td->tid_release_lock);
566 	while (td->tid_release_list) {
567 		struct t3c_tid_entry *p = td->tid_release_list;
568 
569 		td->tid_release_list = p->ctx;
570 		spin_unlock_bh(&td->tid_release_lock);
571 
572 		skb = alloc_skb(sizeof(struct cpl_tid_release),
573 				GFP_KERNEL);
574 		if (!skb)
575 			skb = td->nofail_skb;
576 		if (!skb) {
577 			spin_lock_bh(&td->tid_release_lock);
578 			p->ctx = (void *)td->tid_release_list;
579 			td->tid_release_list = p;
580 			break;
581 		}
582 		mk_tid_release(skb, p - td->tid_maps.tid_tab);
583 		cxgb3_ofld_send(tdev, skb);
584 		p->ctx = NULL;
585 		if (skb == td->nofail_skb)
586 			td->nofail_skb =
587 				alloc_skb(sizeof(struct cpl_tid_release),
588 					GFP_KERNEL);
589 		spin_lock_bh(&td->tid_release_lock);
590 	}
591 	td->release_list_incomplete = (td->tid_release_list == NULL) ? 0 : 1;
592 	spin_unlock_bh(&td->tid_release_lock);
593 
594 	if (!td->nofail_skb)
595 		td->nofail_skb =
596 			alloc_skb(sizeof(struct cpl_tid_release),
597 				GFP_KERNEL);
598 }
599 
600 /* use ctx as a next pointer in the tid release list */
601 void cxgb3_queue_tid_release(struct t3cdev *tdev, unsigned int tid)
602 {
603 	struct t3c_data *td = T3C_DATA(tdev);
604 	struct t3c_tid_entry *p = &td->tid_maps.tid_tab[tid];
605 
606 	spin_lock_bh(&td->tid_release_lock);
607 	p->ctx = (void *)td->tid_release_list;
608 	p->client = NULL;
609 	td->tid_release_list = p;
610 	if (!p->ctx || td->release_list_incomplete)
611 		schedule_work(&td->tid_release_task);
612 	spin_unlock_bh(&td->tid_release_lock);
613 }
614 
615 EXPORT_SYMBOL(cxgb3_queue_tid_release);
616 
617 /*
618  * Remove a tid from the TID table.  A client may defer processing its last
619  * CPL message if it is locked at the time it arrives, and while the message
620  * sits in the client's backlog the TID may be reused for another connection.
621  * To handle this we atomically switch the TID association if it still points
622  * to the original client context.
623  */
624 void cxgb3_remove_tid(struct t3cdev *tdev, void *ctx, unsigned int tid)
625 {
626 	struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
627 
628 	BUG_ON(tid >= t->ntids);
629 	if (tdev->type == T3A)
630 		(void)cmpxchg(&t->tid_tab[tid].ctx, ctx, NULL);
631 	else {
632 		struct sk_buff *skb;
633 
634 		skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
635 		if (likely(skb)) {
636 			mk_tid_release(skb, tid);
637 			cxgb3_ofld_send(tdev, skb);
638 			t->tid_tab[tid].ctx = NULL;
639 		} else
640 			cxgb3_queue_tid_release(tdev, tid);
641 	}
642 	atomic_dec(&t->tids_in_use);
643 }
644 
645 EXPORT_SYMBOL(cxgb3_remove_tid);
646 
647 int cxgb3_alloc_atid(struct t3cdev *tdev, struct cxgb3_client *client,
648 		     void *ctx)
649 {
650 	int atid = -1;
651 	struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
652 
653 	spin_lock_bh(&t->atid_lock);
654 	if (t->afree &&
655 	    t->atids_in_use + atomic_read(&t->tids_in_use) + MC5_MIN_TIDS <=
656 	    t->ntids) {
657 		union active_open_entry *p = t->afree;
658 
659 		atid = (p - t->atid_tab) + t->atid_base;
660 		t->afree = p->next;
661 		p->t3c_tid.ctx = ctx;
662 		p->t3c_tid.client = client;
663 		t->atids_in_use++;
664 	}
665 	spin_unlock_bh(&t->atid_lock);
666 	return atid;
667 }
668 
669 EXPORT_SYMBOL(cxgb3_alloc_atid);
670 
671 int cxgb3_alloc_stid(struct t3cdev *tdev, struct cxgb3_client *client,
672 		     void *ctx)
673 {
674 	int stid = -1;
675 	struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
676 
677 	spin_lock_bh(&t->stid_lock);
678 	if (t->sfree) {
679 		union listen_entry *p = t->sfree;
680 
681 		stid = (p - t->stid_tab) + t->stid_base;
682 		t->sfree = p->next;
683 		p->t3c_tid.ctx = ctx;
684 		p->t3c_tid.client = client;
685 		t->stids_in_use++;
686 	}
687 	spin_unlock_bh(&t->stid_lock);
688 	return stid;
689 }
690 
691 EXPORT_SYMBOL(cxgb3_alloc_stid);
692 
693 /* Get the t3cdev associated with a net_device */
694 struct t3cdev *dev2t3cdev(struct net_device *dev)
695 {
696 	const struct port_info *pi = netdev_priv(dev);
697 
698 	return (struct t3cdev *)pi->adapter;
699 }
700 
701 EXPORT_SYMBOL(dev2t3cdev);
702 
703 static int do_smt_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
704 {
705 	struct cpl_smt_write_rpl *rpl = cplhdr(skb);
706 
707 	if (rpl->status != CPL_ERR_NONE)
708 		printk(KERN_ERR
709 		       "Unexpected SMT_WRITE_RPL status %u for entry %u\n",
710 		       rpl->status, GET_TID(rpl));
711 
712 	return CPL_RET_BUF_DONE;
713 }
714 
715 static int do_l2t_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
716 {
717 	struct cpl_l2t_write_rpl *rpl = cplhdr(skb);
718 
719 	if (rpl->status != CPL_ERR_NONE)
720 		printk(KERN_ERR
721 		       "Unexpected L2T_WRITE_RPL status %u for entry %u\n",
722 		       rpl->status, GET_TID(rpl));
723 
724 	return CPL_RET_BUF_DONE;
725 }
726 
727 static int do_rte_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
728 {
729 	struct cpl_rte_write_rpl *rpl = cplhdr(skb);
730 
731 	if (rpl->status != CPL_ERR_NONE)
732 		printk(KERN_ERR
733 		       "Unexpected RTE_WRITE_RPL status %u for entry %u\n",
734 		       rpl->status, GET_TID(rpl));
735 
736 	return CPL_RET_BUF_DONE;
737 }
738 
739 static int do_act_open_rpl(struct t3cdev *dev, struct sk_buff *skb)
740 {
741 	struct cpl_act_open_rpl *rpl = cplhdr(skb);
742 	unsigned int atid = G_TID(ntohl(rpl->atid));
743 	struct t3c_tid_entry *t3c_tid;
744 
745 	t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid);
746 	if (t3c_tid && t3c_tid->ctx && t3c_tid->client &&
747 	    t3c_tid->client->handlers &&
748 	    t3c_tid->client->handlers[CPL_ACT_OPEN_RPL]) {
749 		return t3c_tid->client->handlers[CPL_ACT_OPEN_RPL] (dev, skb,
750 								    t3c_tid->
751 								    ctx);
752 	} else {
753 		printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
754 		       dev->name, CPL_ACT_OPEN_RPL);
755 		return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
756 	}
757 }
758 
759 static int do_stid_rpl(struct t3cdev *dev, struct sk_buff *skb)
760 {
761 	union opcode_tid *p = cplhdr(skb);
762 	unsigned int stid = G_TID(ntohl(p->opcode_tid));
763 	struct t3c_tid_entry *t3c_tid;
764 
765 	t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid);
766 	if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
767 	    t3c_tid->client->handlers[p->opcode]) {
768 		return t3c_tid->client->handlers[p->opcode] (dev, skb,
769 							     t3c_tid->ctx);
770 	} else {
771 		printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
772 		       dev->name, p->opcode);
773 		return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
774 	}
775 }
776 
777 static int do_hwtid_rpl(struct t3cdev *dev, struct sk_buff *skb)
778 {
779 	union opcode_tid *p = cplhdr(skb);
780 	unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
781 	struct t3c_tid_entry *t3c_tid;
782 
783 	t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
784 	if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
785 	    t3c_tid->client->handlers[p->opcode]) {
786 		return t3c_tid->client->handlers[p->opcode]
787 		    (dev, skb, t3c_tid->ctx);
788 	} else {
789 		printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
790 		       dev->name, p->opcode);
791 		return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
792 	}
793 }
794 
795 static int do_cr(struct t3cdev *dev, struct sk_buff *skb)
796 {
797 	struct cpl_pass_accept_req *req = cplhdr(skb);
798 	unsigned int stid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
799 	struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
800 	struct t3c_tid_entry *t3c_tid;
801 	unsigned int tid = GET_TID(req);
802 
803 	if (unlikely(tid >= t->ntids)) {
804 		printk("%s: passive open TID %u too large\n",
805 		       dev->name, tid);
806 		t3_fatal_err(tdev2adap(dev));
807 		return CPL_RET_BUF_DONE;
808 	}
809 
810 	t3c_tid = lookup_stid(t, stid);
811 	if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
812 	    t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]) {
813 		return t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]
814 		    (dev, skb, t3c_tid->ctx);
815 	} else {
816 		printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
817 		       dev->name, CPL_PASS_ACCEPT_REQ);
818 		return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
819 	}
820 }
821 
822 /*
823  * Returns an sk_buff for a reply CPL message of size len.  If the input
824  * sk_buff has no other users it is trimmed and reused, otherwise a new buffer
825  * is allocated.  The input skb must be of size at least len.  Note that this
826  * operation does not destroy the original skb data even if it decides to reuse
827  * the buffer.
828  */
829 static struct sk_buff *cxgb3_get_cpl_reply_skb(struct sk_buff *skb, size_t len,
830 					       gfp_t gfp)
831 {
832 	if (likely(!skb_cloned(skb))) {
833 		BUG_ON(skb->len < len);
834 		__skb_trim(skb, len);
835 		skb_get(skb);
836 	} else {
837 		skb = alloc_skb(len, gfp);
838 		if (skb)
839 			__skb_put(skb, len);
840 	}
841 	return skb;
842 }
843 
844 static int do_abort_req_rss(struct t3cdev *dev, struct sk_buff *skb)
845 {
846 	union opcode_tid *p = cplhdr(skb);
847 	unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
848 	struct t3c_tid_entry *t3c_tid;
849 
850 	t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
851 	if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
852 	    t3c_tid->client->handlers[p->opcode]) {
853 		return t3c_tid->client->handlers[p->opcode]
854 		    (dev, skb, t3c_tid->ctx);
855 	} else {
856 		struct cpl_abort_req_rss *req = cplhdr(skb);
857 		struct cpl_abort_rpl *rpl;
858 		struct sk_buff *reply_skb;
859 		unsigned int tid = GET_TID(req);
860 		u8 cmd = req->status;
861 
862 		if (req->status == CPL_ERR_RTX_NEG_ADVICE ||
863 		    req->status == CPL_ERR_PERSIST_NEG_ADVICE)
864 			goto out;
865 
866 		reply_skb = cxgb3_get_cpl_reply_skb(skb,
867 						    sizeof(struct
868 							   cpl_abort_rpl),
869 						    GFP_ATOMIC);
870 
871 		if (!reply_skb) {
872 			printk("do_abort_req_rss: couldn't get skb!\n");
873 			goto out;
874 		}
875 		reply_skb->priority = CPL_PRIORITY_DATA;
876 		__skb_put(reply_skb, sizeof(struct cpl_abort_rpl));
877 		rpl = cplhdr(reply_skb);
878 		rpl->wr.wr_hi =
879 		    htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
880 		rpl->wr.wr_lo = htonl(V_WR_TID(tid));
881 		OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, tid));
882 		rpl->cmd = cmd;
883 		cxgb3_ofld_send(dev, reply_skb);
884 out:
885 		return CPL_RET_BUF_DONE;
886 	}
887 }
888 
889 static int do_act_establish(struct t3cdev *dev, struct sk_buff *skb)
890 {
891 	struct cpl_act_establish *req = cplhdr(skb);
892 	unsigned int atid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
893 	struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
894 	struct t3c_tid_entry *t3c_tid;
895 	unsigned int tid = GET_TID(req);
896 
897 	if (unlikely(tid >= t->ntids)) {
898 		printk("%s: active establish TID %u too large\n",
899 		       dev->name, tid);
900 		t3_fatal_err(tdev2adap(dev));
901 		return CPL_RET_BUF_DONE;
902 	}
903 
904 	t3c_tid = lookup_atid(t, atid);
905 	if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
906 	    t3c_tid->client->handlers[CPL_ACT_ESTABLISH]) {
907 		return t3c_tid->client->handlers[CPL_ACT_ESTABLISH]
908 		    (dev, skb, t3c_tid->ctx);
909 	} else {
910 		printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
911 		       dev->name, CPL_ACT_ESTABLISH);
912 		return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
913 	}
914 }
915 
916 static int do_trace(struct t3cdev *dev, struct sk_buff *skb)
917 {
918 	struct cpl_trace_pkt *p = cplhdr(skb);
919 
920 	skb->protocol = htons(0xffff);
921 	skb->dev = dev->lldev;
922 	skb_pull(skb, sizeof(*p));
923 	skb_reset_mac_header(skb);
924 	netif_receive_skb(skb);
925 	return 0;
926 }
927 
928 /*
929  * That skb would better have come from process_responses() where we abuse
930  * ->priority and ->csum to carry our data.  NB: if we get to per-arch
931  * ->csum, the things might get really interesting here.
932  */
933 
934 static inline u32 get_hwtid(struct sk_buff *skb)
935 {
936 	return ntohl((__force __be32)skb->priority) >> 8 & 0xfffff;
937 }
938 
939 static inline u32 get_opcode(struct sk_buff *skb)
940 {
941 	return G_OPCODE(ntohl((__force __be32)skb->csum));
942 }
943 
944 static int do_term(struct t3cdev *dev, struct sk_buff *skb)
945 {
946 	unsigned int hwtid = get_hwtid(skb);
947 	unsigned int opcode = get_opcode(skb);
948 	struct t3c_tid_entry *t3c_tid;
949 
950 	t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
951 	if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
952 	    t3c_tid->client->handlers[opcode]) {
953 		return t3c_tid->client->handlers[opcode] (dev, skb,
954 							  t3c_tid->ctx);
955 	} else {
956 		printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
957 		       dev->name, opcode);
958 		return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
959 	}
960 }
961 
962 static int nb_callback(struct notifier_block *self, unsigned long event,
963 		       void *ctx)
964 {
965 	switch (event) {
966 	case (NETEVENT_NEIGH_UPDATE):{
967 		cxgb_neigh_update((struct neighbour *)ctx);
968 		break;
969 	}
970 	case (NETEVENT_REDIRECT):{
971 		struct netevent_redirect *nr = ctx;
972 		cxgb_redirect(nr->old, nr->old_neigh,
973 			      nr->new, nr->new_neigh);
974 		cxgb_neigh_update(nr->new_neigh);
975 		break;
976 	}
977 	default:
978 		break;
979 	}
980 	return 0;
981 }
982 
983 static struct notifier_block nb = {
984 	.notifier_call = nb_callback
985 };
986 
987 /*
988  * Process a received packet with an unknown/unexpected CPL opcode.
989  */
990 static int do_bad_cpl(struct t3cdev *dev, struct sk_buff *skb)
991 {
992 	printk(KERN_ERR "%s: received bad CPL command 0x%x\n", dev->name,
993 	       *skb->data);
994 	return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
995 }
996 
997 /*
998  * Handlers for each CPL opcode
999  */
1000 static cpl_handler_func cpl_handlers[NUM_CPL_CMDS];
1001 
1002 /*
1003  * Add a new handler to the CPL dispatch table.  A NULL handler may be supplied
1004  * to unregister an existing handler.
1005  */
1006 void t3_register_cpl_handler(unsigned int opcode, cpl_handler_func h)
1007 {
1008 	if (opcode < NUM_CPL_CMDS)
1009 		cpl_handlers[opcode] = h ? h : do_bad_cpl;
1010 	else
1011 		printk(KERN_ERR "T3C: handler registration for "
1012 		       "opcode %x failed\n", opcode);
1013 }
1014 
1015 EXPORT_SYMBOL(t3_register_cpl_handler);
1016 
1017 /*
1018  * T3CDEV's receive method.
1019  */
1020 static int process_rx(struct t3cdev *dev, struct sk_buff **skbs, int n)
1021 {
1022 	while (n--) {
1023 		struct sk_buff *skb = *skbs++;
1024 		unsigned int opcode = get_opcode(skb);
1025 		int ret = cpl_handlers[opcode] (dev, skb);
1026 
1027 #if VALIDATE_TID
1028 		if (ret & CPL_RET_UNKNOWN_TID) {
1029 			union opcode_tid *p = cplhdr(skb);
1030 
1031 			printk(KERN_ERR "%s: CPL message (opcode %u) had "
1032 			       "unknown TID %u\n", dev->name, opcode,
1033 			       G_TID(ntohl(p->opcode_tid)));
1034 		}
1035 #endif
1036 		if (ret & CPL_RET_BUF_DONE)
1037 			kfree_skb(skb);
1038 	}
1039 	return 0;
1040 }
1041 
1042 /*
1043  * Sends an sk_buff to a T3C driver after dealing with any active network taps.
1044  */
1045 int cxgb3_ofld_send(struct t3cdev *dev, struct sk_buff *skb)
1046 {
1047 	int r;
1048 
1049 	local_bh_disable();
1050 	r = dev->send(dev, skb);
1051 	local_bh_enable();
1052 	return r;
1053 }
1054 
1055 EXPORT_SYMBOL(cxgb3_ofld_send);
1056 
1057 static int is_offloading(struct net_device *dev)
1058 {
1059 	struct adapter *adapter;
1060 	int i;
1061 
1062 	read_lock_bh(&adapter_list_lock);
1063 	list_for_each_entry(adapter, &adapter_list, adapter_list) {
1064 		for_each_port(adapter, i) {
1065 			if (dev == adapter->port[i]) {
1066 				read_unlock_bh(&adapter_list_lock);
1067 				return 1;
1068 			}
1069 		}
1070 	}
1071 	read_unlock_bh(&adapter_list_lock);
1072 	return 0;
1073 }
1074 
1075 static void cxgb_neigh_update(struct neighbour *neigh)
1076 {
1077 	struct net_device *dev;
1078 
1079 	if (!neigh)
1080 		return;
1081 	dev = neigh->dev;
1082 	if (dev && (is_offloading(dev))) {
1083 		struct t3cdev *tdev = dev2t3cdev(dev);
1084 
1085 		BUG_ON(!tdev);
1086 		t3_l2t_update(tdev, neigh);
1087 	}
1088 }
1089 
1090 static void set_l2t_ix(struct t3cdev *tdev, u32 tid, struct l2t_entry *e)
1091 {
1092 	struct sk_buff *skb;
1093 	struct cpl_set_tcb_field *req;
1094 
1095 	skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
1096 	if (!skb) {
1097 		printk(KERN_ERR "%s: cannot allocate skb!\n", __func__);
1098 		return;
1099 	}
1100 	skb->priority = CPL_PRIORITY_CONTROL;
1101 	req = (struct cpl_set_tcb_field *)skb_put(skb, sizeof(*req));
1102 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1103 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid));
1104 	req->reply = 0;
1105 	req->cpu_idx = 0;
1106 	req->word = htons(W_TCB_L2T_IX);
1107 	req->mask = cpu_to_be64(V_TCB_L2T_IX(M_TCB_L2T_IX));
1108 	req->val = cpu_to_be64(V_TCB_L2T_IX(e->idx));
1109 	tdev->send(tdev, skb);
1110 }
1111 
1112 static void cxgb_redirect(struct dst_entry *old, struct neighbour *old_neigh,
1113 			  struct dst_entry *new, struct neighbour *new_neigh)
1114 {
1115 	struct net_device *olddev, *newdev;
1116 	struct tid_info *ti;
1117 	struct t3cdev *tdev;
1118 	u32 tid;
1119 	int update_tcb;
1120 	struct l2t_entry *e;
1121 	struct t3c_tid_entry *te;
1122 
1123 	olddev = old_neigh->dev;
1124 	newdev = new_neigh->dev;
1125 
1126 	if (!is_offloading(olddev))
1127 		return;
1128 	if (!is_offloading(newdev)) {
1129 		printk(KERN_WARNING "%s: Redirect to non-offload "
1130 		       "device ignored.\n", __func__);
1131 		return;
1132 	}
1133 	tdev = dev2t3cdev(olddev);
1134 	BUG_ON(!tdev);
1135 	if (tdev != dev2t3cdev(newdev)) {
1136 		printk(KERN_WARNING "%s: Redirect to different "
1137 		       "offload device ignored.\n", __func__);
1138 		return;
1139 	}
1140 
1141 	/* Add new L2T entry */
1142 	e = t3_l2t_get(tdev, new, newdev);
1143 	if (!e) {
1144 		printk(KERN_ERR "%s: couldn't allocate new l2t entry!\n",
1145 		       __func__);
1146 		return;
1147 	}
1148 
1149 	/* Walk tid table and notify clients of dst change. */
1150 	ti = &(T3C_DATA(tdev))->tid_maps;
1151 	for (tid = 0; tid < ti->ntids; tid++) {
1152 		te = lookup_tid(ti, tid);
1153 		BUG_ON(!te);
1154 		if (te && te->ctx && te->client && te->client->redirect) {
1155 			update_tcb = te->client->redirect(te->ctx, old, new, e);
1156 			if (update_tcb) {
1157 				rcu_read_lock();
1158 				l2t_hold(L2DATA(tdev), e);
1159 				rcu_read_unlock();
1160 				set_l2t_ix(tdev, tid, e);
1161 			}
1162 		}
1163 	}
1164 	l2t_release(tdev, e);
1165 }
1166 
1167 /*
1168  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1169  * The allocated memory is cleared.
1170  */
1171 void *cxgb_alloc_mem(unsigned long size)
1172 {
1173 	void *p = kzalloc(size, GFP_KERNEL);
1174 
1175 	if (!p)
1176 		p = vzalloc(size);
1177 	return p;
1178 }
1179 
1180 /*
1181  * Free memory allocated through t3_alloc_mem().
1182  */
1183 void cxgb_free_mem(void *addr)
1184 {
1185 	if (is_vmalloc_addr(addr))
1186 		vfree(addr);
1187 	else
1188 		kfree(addr);
1189 }
1190 
1191 /*
1192  * Allocate and initialize the TID tables.  Returns 0 on success.
1193  */
1194 static int init_tid_tabs(struct tid_info *t, unsigned int ntids,
1195 			 unsigned int natids, unsigned int nstids,
1196 			 unsigned int atid_base, unsigned int stid_base)
1197 {
1198 	unsigned long size = ntids * sizeof(*t->tid_tab) +
1199 	    natids * sizeof(*t->atid_tab) + nstids * sizeof(*t->stid_tab);
1200 
1201 	t->tid_tab = cxgb_alloc_mem(size);
1202 	if (!t->tid_tab)
1203 		return -ENOMEM;
1204 
1205 	t->stid_tab = (union listen_entry *)&t->tid_tab[ntids];
1206 	t->atid_tab = (union active_open_entry *)&t->stid_tab[nstids];
1207 	t->ntids = ntids;
1208 	t->nstids = nstids;
1209 	t->stid_base = stid_base;
1210 	t->sfree = NULL;
1211 	t->natids = natids;
1212 	t->atid_base = atid_base;
1213 	t->afree = NULL;
1214 	t->stids_in_use = t->atids_in_use = 0;
1215 	atomic_set(&t->tids_in_use, 0);
1216 	spin_lock_init(&t->stid_lock);
1217 	spin_lock_init(&t->atid_lock);
1218 
1219 	/*
1220 	 * Setup the free lists for stid_tab and atid_tab.
1221 	 */
1222 	if (nstids) {
1223 		while (--nstids)
1224 			t->stid_tab[nstids - 1].next = &t->stid_tab[nstids];
1225 		t->sfree = t->stid_tab;
1226 	}
1227 	if (natids) {
1228 		while (--natids)
1229 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1230 		t->afree = t->atid_tab;
1231 	}
1232 	return 0;
1233 }
1234 
1235 static void free_tid_maps(struct tid_info *t)
1236 {
1237 	cxgb_free_mem(t->tid_tab);
1238 }
1239 
1240 static inline void add_adapter(struct adapter *adap)
1241 {
1242 	write_lock_bh(&adapter_list_lock);
1243 	list_add_tail(&adap->adapter_list, &adapter_list);
1244 	write_unlock_bh(&adapter_list_lock);
1245 }
1246 
1247 static inline void remove_adapter(struct adapter *adap)
1248 {
1249 	write_lock_bh(&adapter_list_lock);
1250 	list_del(&adap->adapter_list);
1251 	write_unlock_bh(&adapter_list_lock);
1252 }
1253 
1254 int cxgb3_offload_activate(struct adapter *adapter)
1255 {
1256 	struct t3cdev *dev = &adapter->tdev;
1257 	int natids, err;
1258 	struct t3c_data *t;
1259 	struct tid_range stid_range, tid_range;
1260 	struct mtutab mtutab;
1261 	unsigned int l2t_capacity;
1262 
1263 	t = kzalloc(sizeof(*t), GFP_KERNEL);
1264 	if (!t)
1265 		return -ENOMEM;
1266 
1267 	err = -EOPNOTSUPP;
1268 	if (dev->ctl(dev, GET_TX_MAX_CHUNK, &t->tx_max_chunk) < 0 ||
1269 	    dev->ctl(dev, GET_MAX_OUTSTANDING_WR, &t->max_wrs) < 0 ||
1270 	    dev->ctl(dev, GET_L2T_CAPACITY, &l2t_capacity) < 0 ||
1271 	    dev->ctl(dev, GET_MTUS, &mtutab) < 0 ||
1272 	    dev->ctl(dev, GET_TID_RANGE, &tid_range) < 0 ||
1273 	    dev->ctl(dev, GET_STID_RANGE, &stid_range) < 0)
1274 		goto out_free;
1275 
1276 	err = -ENOMEM;
1277 	RCU_INIT_POINTER(dev->l2opt, t3_init_l2t(l2t_capacity));
1278 	if (!L2DATA(dev))
1279 		goto out_free;
1280 
1281 	natids = min(tid_range.num / 2, MAX_ATIDS);
1282 	err = init_tid_tabs(&t->tid_maps, tid_range.num, natids,
1283 			    stid_range.num, ATID_BASE, stid_range.base);
1284 	if (err)
1285 		goto out_free_l2t;
1286 
1287 	t->mtus = mtutab.mtus;
1288 	t->nmtus = mtutab.size;
1289 
1290 	INIT_WORK(&t->tid_release_task, t3_process_tid_release_list);
1291 	spin_lock_init(&t->tid_release_lock);
1292 	INIT_LIST_HEAD(&t->list_node);
1293 	t->dev = dev;
1294 
1295 	T3C_DATA(dev) = t;
1296 	dev->recv = process_rx;
1297 	dev->neigh_update = t3_l2t_update;
1298 
1299 	/* Register netevent handler once */
1300 	if (list_empty(&adapter_list))
1301 		register_netevent_notifier(&nb);
1302 
1303 	t->nofail_skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_KERNEL);
1304 	t->release_list_incomplete = 0;
1305 
1306 	add_adapter(adapter);
1307 	return 0;
1308 
1309 out_free_l2t:
1310 	t3_free_l2t(L2DATA(dev));
1311 	RCU_INIT_POINTER(dev->l2opt, NULL);
1312 out_free:
1313 	kfree(t);
1314 	return err;
1315 }
1316 
1317 static void clean_l2_data(struct rcu_head *head)
1318 {
1319 	struct l2t_data *d = container_of(head, struct l2t_data, rcu_head);
1320 	t3_free_l2t(d);
1321 }
1322 
1323 
1324 void cxgb3_offload_deactivate(struct adapter *adapter)
1325 {
1326 	struct t3cdev *tdev = &adapter->tdev;
1327 	struct t3c_data *t = T3C_DATA(tdev);
1328 	struct l2t_data *d;
1329 
1330 	remove_adapter(adapter);
1331 	if (list_empty(&adapter_list))
1332 		unregister_netevent_notifier(&nb);
1333 
1334 	free_tid_maps(&t->tid_maps);
1335 	T3C_DATA(tdev) = NULL;
1336 	rcu_read_lock();
1337 	d = L2DATA(tdev);
1338 	rcu_read_unlock();
1339 	RCU_INIT_POINTER(tdev->l2opt, NULL);
1340 	call_rcu(&d->rcu_head, clean_l2_data);
1341 	if (t->nofail_skb)
1342 		kfree_skb(t->nofail_skb);
1343 	kfree(t);
1344 }
1345 
1346 static inline void register_tdev(struct t3cdev *tdev)
1347 {
1348 	static int unit;
1349 
1350 	mutex_lock(&cxgb3_db_lock);
1351 	snprintf(tdev->name, sizeof(tdev->name), "ofld_dev%d", unit++);
1352 	list_add_tail(&tdev->ofld_dev_list, &ofld_dev_list);
1353 	mutex_unlock(&cxgb3_db_lock);
1354 }
1355 
1356 static inline void unregister_tdev(struct t3cdev *tdev)
1357 {
1358 	mutex_lock(&cxgb3_db_lock);
1359 	list_del(&tdev->ofld_dev_list);
1360 	mutex_unlock(&cxgb3_db_lock);
1361 }
1362 
1363 static inline int adap2type(struct adapter *adapter)
1364 {
1365 	int type = 0;
1366 
1367 	switch (adapter->params.rev) {
1368 	case T3_REV_A:
1369 		type = T3A;
1370 		break;
1371 	case T3_REV_B:
1372 	case T3_REV_B2:
1373 		type = T3B;
1374 		break;
1375 	case T3_REV_C:
1376 		type = T3C;
1377 		break;
1378 	}
1379 	return type;
1380 }
1381 
1382 void __devinit cxgb3_adapter_ofld(struct adapter *adapter)
1383 {
1384 	struct t3cdev *tdev = &adapter->tdev;
1385 
1386 	INIT_LIST_HEAD(&tdev->ofld_dev_list);
1387 
1388 	cxgb3_set_dummy_ops(tdev);
1389 	tdev->send = t3_offload_tx;
1390 	tdev->ctl = cxgb_offload_ctl;
1391 	tdev->type = adap2type(adapter);
1392 
1393 	register_tdev(tdev);
1394 }
1395 
1396 void __devexit cxgb3_adapter_unofld(struct adapter *adapter)
1397 {
1398 	struct t3cdev *tdev = &adapter->tdev;
1399 
1400 	tdev->recv = NULL;
1401 	tdev->neigh_update = NULL;
1402 
1403 	unregister_tdev(tdev);
1404 }
1405 
1406 void __init cxgb3_offload_init(void)
1407 {
1408 	int i;
1409 
1410 	for (i = 0; i < NUM_CPL_CMDS; ++i)
1411 		cpl_handlers[i] = do_bad_cpl;
1412 
1413 	t3_register_cpl_handler(CPL_SMT_WRITE_RPL, do_smt_write_rpl);
1414 	t3_register_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl);
1415 	t3_register_cpl_handler(CPL_RTE_WRITE_RPL, do_rte_write_rpl);
1416 	t3_register_cpl_handler(CPL_PASS_OPEN_RPL, do_stid_rpl);
1417 	t3_register_cpl_handler(CPL_CLOSE_LISTSRV_RPL, do_stid_rpl);
1418 	t3_register_cpl_handler(CPL_PASS_ACCEPT_REQ, do_cr);
1419 	t3_register_cpl_handler(CPL_PASS_ESTABLISH, do_hwtid_rpl);
1420 	t3_register_cpl_handler(CPL_ABORT_RPL_RSS, do_hwtid_rpl);
1421 	t3_register_cpl_handler(CPL_ABORT_RPL, do_hwtid_rpl);
1422 	t3_register_cpl_handler(CPL_RX_URG_NOTIFY, do_hwtid_rpl);
1423 	t3_register_cpl_handler(CPL_RX_DATA, do_hwtid_rpl);
1424 	t3_register_cpl_handler(CPL_TX_DATA_ACK, do_hwtid_rpl);
1425 	t3_register_cpl_handler(CPL_TX_DMA_ACK, do_hwtid_rpl);
1426 	t3_register_cpl_handler(CPL_ACT_OPEN_RPL, do_act_open_rpl);
1427 	t3_register_cpl_handler(CPL_PEER_CLOSE, do_hwtid_rpl);
1428 	t3_register_cpl_handler(CPL_CLOSE_CON_RPL, do_hwtid_rpl);
1429 	t3_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req_rss);
1430 	t3_register_cpl_handler(CPL_ACT_ESTABLISH, do_act_establish);
1431 	t3_register_cpl_handler(CPL_SET_TCB_RPL, do_hwtid_rpl);
1432 	t3_register_cpl_handler(CPL_GET_TCB_RPL, do_hwtid_rpl);
1433 	t3_register_cpl_handler(CPL_RDMA_TERMINATE, do_term);
1434 	t3_register_cpl_handler(CPL_RDMA_EC_STATUS, do_hwtid_rpl);
1435 	t3_register_cpl_handler(CPL_TRACE_PKT, do_trace);
1436 	t3_register_cpl_handler(CPL_RX_DATA_DDP, do_hwtid_rpl);
1437 	t3_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_hwtid_rpl);
1438 	t3_register_cpl_handler(CPL_ISCSI_HDR, do_hwtid_rpl);
1439 }
1440