/* * Copyright (c) 2006-2008 Chelsio, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include "common.h" #include "regs.h" #include "cxgb3_ioctl.h" #include "cxgb3_ctl_defs.h" #include "cxgb3_defs.h" #include "l2t.h" #include "firmware_exports.h" #include "cxgb3_offload.h" static LIST_HEAD(client_list); static LIST_HEAD(ofld_dev_list); static DEFINE_MUTEX(cxgb3_db_lock); static DEFINE_RWLOCK(adapter_list_lock); static LIST_HEAD(adapter_list); static const unsigned int MAX_ATIDS = 64 * 1024; static const unsigned int ATID_BASE = 0x10000; static void cxgb_neigh_update(struct neighbour *neigh); static void cxgb_redirect(struct dst_entry *old, struct neighbour *old_neigh, struct dst_entry *new, struct neighbour *new_neigh); static inline int offload_activated(struct t3cdev *tdev) { const struct adapter *adapter = tdev2adap(tdev); return test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map); } /** * cxgb3_register_client - register an offload client * @client: the client * * Add the client to the client list, * and call backs the client for each activated offload device */ void cxgb3_register_client(struct cxgb3_client *client) { struct t3cdev *tdev; mutex_lock(&cxgb3_db_lock); list_add_tail(&client->client_list, &client_list); if (client->add) { list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) { if (offload_activated(tdev)) client->add(tdev); } } mutex_unlock(&cxgb3_db_lock); } EXPORT_SYMBOL(cxgb3_register_client); /** * cxgb3_unregister_client - unregister an offload client * @client: the client * * Remove the client to the client list, * and call backs the client for each activated offload device. */ void cxgb3_unregister_client(struct cxgb3_client *client) { struct t3cdev *tdev; mutex_lock(&cxgb3_db_lock); list_del(&client->client_list); if (client->remove) { list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) { if (offload_activated(tdev)) client->remove(tdev); } } mutex_unlock(&cxgb3_db_lock); } EXPORT_SYMBOL(cxgb3_unregister_client); /** * cxgb3_add_clients - activate registered clients for an offload device * @tdev: the offload device * * Call backs all registered clients once a offload device is activated */ void cxgb3_add_clients(struct t3cdev *tdev) { struct cxgb3_client *client; mutex_lock(&cxgb3_db_lock); list_for_each_entry(client, &client_list, client_list) { if (client->add) client->add(tdev); } mutex_unlock(&cxgb3_db_lock); } /** * cxgb3_remove_clients - deactivates registered clients * for an offload device * @tdev: the offload device * * Call backs all registered clients once a offload device is deactivated */ void cxgb3_remove_clients(struct t3cdev *tdev) { struct cxgb3_client *client; mutex_lock(&cxgb3_db_lock); list_for_each_entry(client, &client_list, client_list) { if (client->remove) client->remove(tdev); } mutex_unlock(&cxgb3_db_lock); } void cxgb3_event_notify(struct t3cdev *tdev, u32 event, u32 port) { struct cxgb3_client *client; mutex_lock(&cxgb3_db_lock); list_for_each_entry(client, &client_list, client_list) { if (client->event_handler) client->event_handler(tdev, event, port); } mutex_unlock(&cxgb3_db_lock); } static struct net_device *get_iff_from_mac(struct adapter *adapter, const unsigned char *mac, unsigned int vlan) { int i; for_each_port(adapter, i) { struct net_device *dev = adapter->port[i]; if (!memcmp(dev->dev_addr, mac, ETH_ALEN)) { if (vlan && vlan != VLAN_VID_MASK) { rcu_read_lock(); dev = __vlan_find_dev_deep(dev, vlan); rcu_read_unlock(); } else if (netif_is_bond_slave(dev)) { while (dev->master) dev = dev->master; } return dev; } } return NULL; } static int cxgb_ulp_iscsi_ctl(struct adapter *adapter, unsigned int req, void *data) { int i; int ret = 0; unsigned int val = 0; struct ulp_iscsi_info *uiip = data; switch (req) { case ULP_ISCSI_GET_PARAMS: uiip->pdev = adapter->pdev; uiip->llimit = t3_read_reg(adapter, A_ULPRX_ISCSI_LLIMIT); uiip->ulimit = t3_read_reg(adapter, A_ULPRX_ISCSI_ULIMIT); uiip->tagmask = t3_read_reg(adapter, A_ULPRX_ISCSI_TAGMASK); val = t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ); for (i = 0; i < 4; i++, val >>= 8) uiip->pgsz_factor[i] = val & 0xFF; val = t3_read_reg(adapter, A_TP_PARA_REG7); uiip->max_txsz = uiip->max_rxsz = min((val >> S_PMMAXXFERLEN0)&M_PMMAXXFERLEN0, (val >> S_PMMAXXFERLEN1)&M_PMMAXXFERLEN1); /* * On tx, the iscsi pdu has to be <= tx page size and has to * fit into the Tx PM FIFO. */ val = min(adapter->params.tp.tx_pg_size, t3_read_reg(adapter, A_PM1_TX_CFG) >> 17); uiip->max_txsz = min(val, uiip->max_txsz); /* set MaxRxData to 16224 */ val = t3_read_reg(adapter, A_TP_PARA_REG2); if ((val >> S_MAXRXDATA) != 0x3f60) { val &= (M_RXCOALESCESIZE << S_RXCOALESCESIZE); val |= V_MAXRXDATA(0x3f60); printk(KERN_INFO "%s, iscsi set MaxRxData to 16224 (0x%x).\n", adapter->name, val); t3_write_reg(adapter, A_TP_PARA_REG2, val); } /* * on rx, the iscsi pdu has to be < rx page size and the * the max rx data length programmed in TP */ val = min(adapter->params.tp.rx_pg_size, ((t3_read_reg(adapter, A_TP_PARA_REG2)) >> S_MAXRXDATA) & M_MAXRXDATA); uiip->max_rxsz = min(val, uiip->max_rxsz); break; case ULP_ISCSI_SET_PARAMS: t3_write_reg(adapter, A_ULPRX_ISCSI_TAGMASK, uiip->tagmask); /* program the ddp page sizes */ for (i = 0; i < 4; i++) val |= (uiip->pgsz_factor[i] & 0xF) << (8 * i); if (val && (val != t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ))) { printk(KERN_INFO "%s, setting iscsi pgsz 0x%x, %u,%u,%u,%u.\n", adapter->name, val, uiip->pgsz_factor[0], uiip->pgsz_factor[1], uiip->pgsz_factor[2], uiip->pgsz_factor[3]); t3_write_reg(adapter, A_ULPRX_ISCSI_PSZ, val); } break; default: ret = -EOPNOTSUPP; } return ret; } /* Response queue used for RDMA events. */ #define ASYNC_NOTIF_RSPQ 0 static int cxgb_rdma_ctl(struct adapter *adapter, unsigned int req, void *data) { int ret = 0; switch (req) { case RDMA_GET_PARAMS: { struct rdma_info *rdma = data; struct pci_dev *pdev = adapter->pdev; rdma->udbell_physbase = pci_resource_start(pdev, 2); rdma->udbell_len = pci_resource_len(pdev, 2); rdma->tpt_base = t3_read_reg(adapter, A_ULPTX_TPT_LLIMIT); rdma->tpt_top = t3_read_reg(adapter, A_ULPTX_TPT_ULIMIT); rdma->pbl_base = t3_read_reg(adapter, A_ULPTX_PBL_LLIMIT); rdma->pbl_top = t3_read_reg(adapter, A_ULPTX_PBL_ULIMIT); rdma->rqt_base = t3_read_reg(adapter, A_ULPRX_RQ_LLIMIT); rdma->rqt_top = t3_read_reg(adapter, A_ULPRX_RQ_ULIMIT); rdma->kdb_addr = adapter->regs + A_SG_KDOORBELL; rdma->pdev = pdev; break; } case RDMA_CQ_OP:{ unsigned long flags; struct rdma_cq_op *rdma = data; /* may be called in any context */ spin_lock_irqsave(&adapter->sge.reg_lock, flags); ret = t3_sge_cqcntxt_op(adapter, rdma->id, rdma->op, rdma->credits); spin_unlock_irqrestore(&adapter->sge.reg_lock, flags); break; } case RDMA_GET_MEM:{ struct ch_mem_range *t = data; struct mc7 *mem; if ((t->addr & 7) || (t->len & 7)) return -EINVAL; if (t->mem_id == MEM_CM) mem = &adapter->cm; else if (t->mem_id == MEM_PMRX) mem = &adapter->pmrx; else if (t->mem_id == MEM_PMTX) mem = &adapter->pmtx; else return -EINVAL; ret = t3_mc7_bd_read(mem, t->addr / 8, t->len / 8, (u64 *) t->buf); if (ret) return ret; break; } case RDMA_CQ_SETUP:{ struct rdma_cq_setup *rdma = data; spin_lock_irq(&adapter->sge.reg_lock); ret = t3_sge_init_cqcntxt(adapter, rdma->id, rdma->base_addr, rdma->size, ASYNC_NOTIF_RSPQ, rdma->ovfl_mode, rdma->credits, rdma->credit_thres); spin_unlock_irq(&adapter->sge.reg_lock); break; } case RDMA_CQ_DISABLE: spin_lock_irq(&adapter->sge.reg_lock); ret = t3_sge_disable_cqcntxt(adapter, *(unsigned int *)data); spin_unlock_irq(&adapter->sge.reg_lock); break; case RDMA_CTRL_QP_SETUP:{ struct rdma_ctrlqp_setup *rdma = data; spin_lock_irq(&adapter->sge.reg_lock); ret = t3_sge_init_ecntxt(adapter, FW_RI_SGEEC_START, 0, SGE_CNTXT_RDMA, ASYNC_NOTIF_RSPQ, rdma->base_addr, rdma->size, FW_RI_TID_START, 1, 0); spin_unlock_irq(&adapter->sge.reg_lock); break; } case RDMA_GET_MIB: { spin_lock(&adapter->stats_lock); t3_tp_get_mib_stats(adapter, (struct tp_mib_stats *)data); spin_unlock(&adapter->stats_lock); break; } default: ret = -EOPNOTSUPP; } return ret; } static int cxgb_offload_ctl(struct t3cdev *tdev, unsigned int req, void *data) { struct adapter *adapter = tdev2adap(tdev); struct tid_range *tid; struct mtutab *mtup; struct iff_mac *iffmacp; struct ddp_params *ddpp; struct adap_ports *ports; struct ofld_page_info *rx_page_info; struct tp_params *tp = &adapter->params.tp; int i; switch (req) { case GET_MAX_OUTSTANDING_WR: *(unsigned int *)data = FW_WR_NUM; break; case GET_WR_LEN: *(unsigned int *)data = WR_FLITS; break; case GET_TX_MAX_CHUNK: *(unsigned int *)data = 1 << 20; /* 1MB */ break; case GET_TID_RANGE: tid = data; tid->num = t3_mc5_size(&adapter->mc5) - adapter->params.mc5.nroutes - adapter->params.mc5.nfilters - adapter->params.mc5.nservers; tid->base = 0; break; case GET_STID_RANGE: tid = data; tid->num = adapter->params.mc5.nservers; tid->base = t3_mc5_size(&adapter->mc5) - tid->num - adapter->params.mc5.nfilters - adapter->params.mc5.nroutes; break; case GET_L2T_CAPACITY: *(unsigned int *)data = 2048; break; case GET_MTUS: mtup = data; mtup->size = NMTUS; mtup->mtus = adapter->params.mtus; break; case GET_IFF_FROM_MAC: iffmacp = data; iffmacp->dev = get_iff_from_mac(adapter, iffmacp->mac_addr, iffmacp->vlan_tag & VLAN_VID_MASK); break; case GET_DDP_PARAMS: ddpp = data; ddpp->llimit = t3_read_reg(adapter, A_ULPRX_TDDP_LLIMIT); ddpp->ulimit = t3_read_reg(adapter, A_ULPRX_TDDP_ULIMIT); ddpp->tag_mask = t3_read_reg(adapter, A_ULPRX_TDDP_TAGMASK); break; case GET_PORTS: ports = data; ports->nports = adapter->params.nports; for_each_port(adapter, i) ports->lldevs[i] = adapter->port[i]; break; case ULP_ISCSI_GET_PARAMS: case ULP_ISCSI_SET_PARAMS: if (!offload_running(adapter)) return -EAGAIN; return cxgb_ulp_iscsi_ctl(adapter, req, data); case RDMA_GET_PARAMS: case RDMA_CQ_OP: case RDMA_CQ_SETUP: case RDMA_CQ_DISABLE: case RDMA_CTRL_QP_SETUP: case RDMA_GET_MEM: case RDMA_GET_MIB: if (!offload_running(adapter)) return -EAGAIN; return cxgb_rdma_ctl(adapter, req, data); case GET_RX_PAGE_INFO: rx_page_info = data; rx_page_info->page_size = tp->rx_pg_size; rx_page_info->num = tp->rx_num_pgs; break; case GET_ISCSI_IPV4ADDR: { struct iscsi_ipv4addr *p = data; struct port_info *pi = netdev_priv(p->dev); p->ipv4addr = pi->iscsi_ipv4addr; break; } case GET_EMBEDDED_INFO: { struct ch_embedded_info *e = data; spin_lock(&adapter->stats_lock); t3_get_fw_version(adapter, &e->fw_vers); t3_get_tp_version(adapter, &e->tp_vers); spin_unlock(&adapter->stats_lock); break; } default: return -EOPNOTSUPP; } return 0; } /* * Dummy handler for Rx offload packets in case we get an offload packet before * proper processing is setup. This complains and drops the packet as it isn't * normal to get offload packets at this stage. */ static int rx_offload_blackhole(struct t3cdev *dev, struct sk_buff **skbs, int n) { while (n--) dev_kfree_skb_any(skbs[n]); return 0; } static void dummy_neigh_update(struct t3cdev *dev, struct neighbour *neigh) { } void cxgb3_set_dummy_ops(struct t3cdev *dev) { dev->recv = rx_offload_blackhole; dev->neigh_update = dummy_neigh_update; } /* * Free an active-open TID. */ void *cxgb3_free_atid(struct t3cdev *tdev, int atid) { struct tid_info *t = &(T3C_DATA(tdev))->tid_maps; union active_open_entry *p = atid2entry(t, atid); void *ctx = p->t3c_tid.ctx; spin_lock_bh(&t->atid_lock); p->next = t->afree; t->afree = p; t->atids_in_use--; spin_unlock_bh(&t->atid_lock); return ctx; } EXPORT_SYMBOL(cxgb3_free_atid); /* * Free a server TID and return it to the free pool. */ void cxgb3_free_stid(struct t3cdev *tdev, int stid) { struct tid_info *t = &(T3C_DATA(tdev))->tid_maps; union listen_entry *p = stid2entry(t, stid); spin_lock_bh(&t->stid_lock); p->next = t->sfree; t->sfree = p; t->stids_in_use--; spin_unlock_bh(&t->stid_lock); } EXPORT_SYMBOL(cxgb3_free_stid); void cxgb3_insert_tid(struct t3cdev *tdev, struct cxgb3_client *client, void *ctx, unsigned int tid) { struct tid_info *t = &(T3C_DATA(tdev))->tid_maps; t->tid_tab[tid].client = client; t->tid_tab[tid].ctx = ctx; atomic_inc(&t->tids_in_use); } EXPORT_SYMBOL(cxgb3_insert_tid); /* * Populate a TID_RELEASE WR. The skb must be already propely sized. */ static inline void mk_tid_release(struct sk_buff *skb, unsigned int tid) { struct cpl_tid_release *req; skb->priority = CPL_PRIORITY_SETUP; req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req)); req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); } static void t3_process_tid_release_list(struct work_struct *work) { struct t3c_data *td = container_of(work, struct t3c_data, tid_release_task); struct sk_buff *skb; struct t3cdev *tdev = td->dev; spin_lock_bh(&td->tid_release_lock); while (td->tid_release_list) { struct t3c_tid_entry *p = td->tid_release_list; td->tid_release_list = p->ctx; spin_unlock_bh(&td->tid_release_lock); skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_KERNEL); if (!skb) skb = td->nofail_skb; if (!skb) { spin_lock_bh(&td->tid_release_lock); p->ctx = (void *)td->tid_release_list; td->tid_release_list = p; break; } mk_tid_release(skb, p - td->tid_maps.tid_tab); cxgb3_ofld_send(tdev, skb); p->ctx = NULL; if (skb == td->nofail_skb) td->nofail_skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_KERNEL); spin_lock_bh(&td->tid_release_lock); } td->release_list_incomplete = (td->tid_release_list == NULL) ? 0 : 1; spin_unlock_bh(&td->tid_release_lock); if (!td->nofail_skb) td->nofail_skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_KERNEL); } /* use ctx as a next pointer in the tid release list */ void cxgb3_queue_tid_release(struct t3cdev *tdev, unsigned int tid) { struct t3c_data *td = T3C_DATA(tdev); struct t3c_tid_entry *p = &td->tid_maps.tid_tab[tid]; spin_lock_bh(&td->tid_release_lock); p->ctx = (void *)td->tid_release_list; p->client = NULL; td->tid_release_list = p; if (!p->ctx || td->release_list_incomplete) schedule_work(&td->tid_release_task); spin_unlock_bh(&td->tid_release_lock); } EXPORT_SYMBOL(cxgb3_queue_tid_release); /* * Remove a tid from the TID table. A client may defer processing its last * CPL message if it is locked at the time it arrives, and while the message * sits in the client's backlog the TID may be reused for another connection. * To handle this we atomically switch the TID association if it still points * to the original client context. */ void cxgb3_remove_tid(struct t3cdev *tdev, void *ctx, unsigned int tid) { struct tid_info *t = &(T3C_DATA(tdev))->tid_maps; BUG_ON(tid >= t->ntids); if (tdev->type == T3A) (void)cmpxchg(&t->tid_tab[tid].ctx, ctx, NULL); else { struct sk_buff *skb; skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); if (likely(skb)) { mk_tid_release(skb, tid); cxgb3_ofld_send(tdev, skb); t->tid_tab[tid].ctx = NULL; } else cxgb3_queue_tid_release(tdev, tid); } atomic_dec(&t->tids_in_use); } EXPORT_SYMBOL(cxgb3_remove_tid); int cxgb3_alloc_atid(struct t3cdev *tdev, struct cxgb3_client *client, void *ctx) { int atid = -1; struct tid_info *t = &(T3C_DATA(tdev))->tid_maps; spin_lock_bh(&t->atid_lock); if (t->afree && t->atids_in_use + atomic_read(&t->tids_in_use) + MC5_MIN_TIDS <= t->ntids) { union active_open_entry *p = t->afree; atid = (p - t->atid_tab) + t->atid_base; t->afree = p->next; p->t3c_tid.ctx = ctx; p->t3c_tid.client = client; t->atids_in_use++; } spin_unlock_bh(&t->atid_lock); return atid; } EXPORT_SYMBOL(cxgb3_alloc_atid); int cxgb3_alloc_stid(struct t3cdev *tdev, struct cxgb3_client *client, void *ctx) { int stid = -1; struct tid_info *t = &(T3C_DATA(tdev))->tid_maps; spin_lock_bh(&t->stid_lock); if (t->sfree) { union listen_entry *p = t->sfree; stid = (p - t->stid_tab) + t->stid_base; t->sfree = p->next; p->t3c_tid.ctx = ctx; p->t3c_tid.client = client; t->stids_in_use++; } spin_unlock_bh(&t->stid_lock); return stid; } EXPORT_SYMBOL(cxgb3_alloc_stid); /* Get the t3cdev associated with a net_device */ struct t3cdev *dev2t3cdev(struct net_device *dev) { const struct port_info *pi = netdev_priv(dev); return (struct t3cdev *)pi->adapter; } EXPORT_SYMBOL(dev2t3cdev); static int do_smt_write_rpl(struct t3cdev *dev, struct sk_buff *skb) { struct cpl_smt_write_rpl *rpl = cplhdr(skb); if (rpl->status != CPL_ERR_NONE) printk(KERN_ERR "Unexpected SMT_WRITE_RPL status %u for entry %u\n", rpl->status, GET_TID(rpl)); return CPL_RET_BUF_DONE; } static int do_l2t_write_rpl(struct t3cdev *dev, struct sk_buff *skb) { struct cpl_l2t_write_rpl *rpl = cplhdr(skb); if (rpl->status != CPL_ERR_NONE) printk(KERN_ERR "Unexpected L2T_WRITE_RPL status %u for entry %u\n", rpl->status, GET_TID(rpl)); return CPL_RET_BUF_DONE; } static int do_rte_write_rpl(struct t3cdev *dev, struct sk_buff *skb) { struct cpl_rte_write_rpl *rpl = cplhdr(skb); if (rpl->status != CPL_ERR_NONE) printk(KERN_ERR "Unexpected RTE_WRITE_RPL status %u for entry %u\n", rpl->status, GET_TID(rpl)); return CPL_RET_BUF_DONE; } static int do_act_open_rpl(struct t3cdev *dev, struct sk_buff *skb) { struct cpl_act_open_rpl *rpl = cplhdr(skb); unsigned int atid = G_TID(ntohl(rpl->atid)); struct t3c_tid_entry *t3c_tid; t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid); if (t3c_tid && t3c_tid->ctx && t3c_tid->client && t3c_tid->client->handlers && t3c_tid->client->handlers[CPL_ACT_OPEN_RPL]) { return t3c_tid->client->handlers[CPL_ACT_OPEN_RPL] (dev, skb, t3c_tid-> ctx); } else { printk(KERN_ERR "%s: received clientless CPL command 0x%x\n", dev->name, CPL_ACT_OPEN_RPL); return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG; } } static int do_stid_rpl(struct t3cdev *dev, struct sk_buff *skb) { union opcode_tid *p = cplhdr(skb); unsigned int stid = G_TID(ntohl(p->opcode_tid)); struct t3c_tid_entry *t3c_tid; t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid); if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers && t3c_tid->client->handlers[p->opcode]) { return t3c_tid->client->handlers[p->opcode] (dev, skb, t3c_tid->ctx); } else { printk(KERN_ERR "%s: received clientless CPL command 0x%x\n", dev->name, p->opcode); return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG; } } static int do_hwtid_rpl(struct t3cdev *dev, struct sk_buff *skb) { union opcode_tid *p = cplhdr(skb); unsigned int hwtid = G_TID(ntohl(p->opcode_tid)); struct t3c_tid_entry *t3c_tid; t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid); if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers && t3c_tid->client->handlers[p->opcode]) { return t3c_tid->client->handlers[p->opcode] (dev, skb, t3c_tid->ctx); } else { printk(KERN_ERR "%s: received clientless CPL command 0x%x\n", dev->name, p->opcode); return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG; } } static int do_cr(struct t3cdev *dev, struct sk_buff *skb) { struct cpl_pass_accept_req *req = cplhdr(skb); unsigned int stid = G_PASS_OPEN_TID(ntohl(req->tos_tid)); struct tid_info *t = &(T3C_DATA(dev))->tid_maps; struct t3c_tid_entry *t3c_tid; unsigned int tid = GET_TID(req); if (unlikely(tid >= t->ntids)) { printk("%s: passive open TID %u too large\n", dev->name, tid); t3_fatal_err(tdev2adap(dev)); return CPL_RET_BUF_DONE; } t3c_tid = lookup_stid(t, stid); if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers && t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]) { return t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ] (dev, skb, t3c_tid->ctx); } else { printk(KERN_ERR "%s: received clientless CPL command 0x%x\n", dev->name, CPL_PASS_ACCEPT_REQ); return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG; } } /* * Returns an sk_buff for a reply CPL message of size len. If the input * sk_buff has no other users it is trimmed and reused, otherwise a new buffer * is allocated. The input skb must be of size at least len. Note that this * operation does not destroy the original skb data even if it decides to reuse * the buffer. */ static struct sk_buff *cxgb3_get_cpl_reply_skb(struct sk_buff *skb, size_t len, gfp_t gfp) { if (likely(!skb_cloned(skb))) { BUG_ON(skb->len < len); __skb_trim(skb, len); skb_get(skb); } else { skb = alloc_skb(len, gfp); if (skb) __skb_put(skb, len); } return skb; } static int do_abort_req_rss(struct t3cdev *dev, struct sk_buff *skb) { union opcode_tid *p = cplhdr(skb); unsigned int hwtid = G_TID(ntohl(p->opcode_tid)); struct t3c_tid_entry *t3c_tid; t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid); if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers && t3c_tid->client->handlers[p->opcode]) { return t3c_tid->client->handlers[p->opcode] (dev, skb, t3c_tid->ctx); } else { struct cpl_abort_req_rss *req = cplhdr(skb); struct cpl_abort_rpl *rpl; struct sk_buff *reply_skb; unsigned int tid = GET_TID(req); u8 cmd = req->status; if (req->status == CPL_ERR_RTX_NEG_ADVICE || req->status == CPL_ERR_PERSIST_NEG_ADVICE) goto out; reply_skb = cxgb3_get_cpl_reply_skb(skb, sizeof(struct cpl_abort_rpl), GFP_ATOMIC); if (!reply_skb) { printk("do_abort_req_rss: couldn't get skb!\n"); goto out; } reply_skb->priority = CPL_PRIORITY_DATA; __skb_put(reply_skb, sizeof(struct cpl_abort_rpl)); rpl = cplhdr(reply_skb); rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL)); rpl->wr.wr_lo = htonl(V_WR_TID(tid)); OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, tid)); rpl->cmd = cmd; cxgb3_ofld_send(dev, reply_skb); out: return CPL_RET_BUF_DONE; } } static int do_act_establish(struct t3cdev *dev, struct sk_buff *skb) { struct cpl_act_establish *req = cplhdr(skb); unsigned int atid = G_PASS_OPEN_TID(ntohl(req->tos_tid)); struct tid_info *t = &(T3C_DATA(dev))->tid_maps; struct t3c_tid_entry *t3c_tid; unsigned int tid = GET_TID(req); if (unlikely(tid >= t->ntids)) { printk("%s: active establish TID %u too large\n", dev->name, tid); t3_fatal_err(tdev2adap(dev)); return CPL_RET_BUF_DONE; } t3c_tid = lookup_atid(t, atid); if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers && t3c_tid->client->handlers[CPL_ACT_ESTABLISH]) { return t3c_tid->client->handlers[CPL_ACT_ESTABLISH] (dev, skb, t3c_tid->ctx); } else { printk(KERN_ERR "%s: received clientless CPL command 0x%x\n", dev->name, CPL_ACT_ESTABLISH); return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG; } } static int do_trace(struct t3cdev *dev, struct sk_buff *skb) { struct cpl_trace_pkt *p = cplhdr(skb); skb->protocol = htons(0xffff); skb->dev = dev->lldev; skb_pull(skb, sizeof(*p)); skb_reset_mac_header(skb); netif_receive_skb(skb); return 0; } /* * That skb would better have come from process_responses() where we abuse * ->priority and ->csum to carry our data. NB: if we get to per-arch * ->csum, the things might get really interesting here. */ static inline u32 get_hwtid(struct sk_buff *skb) { return ntohl((__force __be32)skb->priority) >> 8 & 0xfffff; } static inline u32 get_opcode(struct sk_buff *skb) { return G_OPCODE(ntohl((__force __be32)skb->csum)); } static int do_term(struct t3cdev *dev, struct sk_buff *skb) { unsigned int hwtid = get_hwtid(skb); unsigned int opcode = get_opcode(skb); struct t3c_tid_entry *t3c_tid; t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid); if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers && t3c_tid->client->handlers[opcode]) { return t3c_tid->client->handlers[opcode] (dev, skb, t3c_tid->ctx); } else { printk(KERN_ERR "%s: received clientless CPL command 0x%x\n", dev->name, opcode); return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG; } } static int nb_callback(struct notifier_block *self, unsigned long event, void *ctx) { switch (event) { case (NETEVENT_NEIGH_UPDATE):{ cxgb_neigh_update((struct neighbour *)ctx); break; } case (NETEVENT_REDIRECT):{ struct netevent_redirect *nr = ctx; cxgb_redirect(nr->old, nr->old_neigh, nr->new, nr->new_neigh); cxgb_neigh_update(nr->new_neigh); break; } default: break; } return 0; } static struct notifier_block nb = { .notifier_call = nb_callback }; /* * Process a received packet with an unknown/unexpected CPL opcode. */ static int do_bad_cpl(struct t3cdev *dev, struct sk_buff *skb) { printk(KERN_ERR "%s: received bad CPL command 0x%x\n", dev->name, *skb->data); return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG; } /* * Handlers for each CPL opcode */ static cpl_handler_func cpl_handlers[NUM_CPL_CMDS]; /* * Add a new handler to the CPL dispatch table. A NULL handler may be supplied * to unregister an existing handler. */ void t3_register_cpl_handler(unsigned int opcode, cpl_handler_func h) { if (opcode < NUM_CPL_CMDS) cpl_handlers[opcode] = h ? h : do_bad_cpl; else printk(KERN_ERR "T3C: handler registration for " "opcode %x failed\n", opcode); } EXPORT_SYMBOL(t3_register_cpl_handler); /* * T3CDEV's receive method. */ static int process_rx(struct t3cdev *dev, struct sk_buff **skbs, int n) { while (n--) { struct sk_buff *skb = *skbs++; unsigned int opcode = get_opcode(skb); int ret = cpl_handlers[opcode] (dev, skb); #if VALIDATE_TID if (ret & CPL_RET_UNKNOWN_TID) { union opcode_tid *p = cplhdr(skb); printk(KERN_ERR "%s: CPL message (opcode %u) had " "unknown TID %u\n", dev->name, opcode, G_TID(ntohl(p->opcode_tid))); } #endif if (ret & CPL_RET_BUF_DONE) kfree_skb(skb); } return 0; } /* * Sends an sk_buff to a T3C driver after dealing with any active network taps. */ int cxgb3_ofld_send(struct t3cdev *dev, struct sk_buff *skb) { int r; local_bh_disable(); r = dev->send(dev, skb); local_bh_enable(); return r; } EXPORT_SYMBOL(cxgb3_ofld_send); static int is_offloading(struct net_device *dev) { struct adapter *adapter; int i; read_lock_bh(&adapter_list_lock); list_for_each_entry(adapter, &adapter_list, adapter_list) { for_each_port(adapter, i) { if (dev == adapter->port[i]) { read_unlock_bh(&adapter_list_lock); return 1; } } } read_unlock_bh(&adapter_list_lock); return 0; } static void cxgb_neigh_update(struct neighbour *neigh) { struct net_device *dev; if (!neigh) return; dev = neigh->dev; if (dev && (is_offloading(dev))) { struct t3cdev *tdev = dev2t3cdev(dev); BUG_ON(!tdev); t3_l2t_update(tdev, neigh); } } static void set_l2t_ix(struct t3cdev *tdev, u32 tid, struct l2t_entry *e) { struct sk_buff *skb; struct cpl_set_tcb_field *req; skb = alloc_skb(sizeof(*req), GFP_ATOMIC); if (!skb) { printk(KERN_ERR "%s: cannot allocate skb!\n", __func__); return; } skb->priority = CPL_PRIORITY_CONTROL; req = (struct cpl_set_tcb_field *)skb_put(skb, sizeof(*req)); req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid)); req->reply = 0; req->cpu_idx = 0; req->word = htons(W_TCB_L2T_IX); req->mask = cpu_to_be64(V_TCB_L2T_IX(M_TCB_L2T_IX)); req->val = cpu_to_be64(V_TCB_L2T_IX(e->idx)); tdev->send(tdev, skb); } static void cxgb_redirect(struct dst_entry *old, struct neighbour *old_neigh, struct dst_entry *new, struct neighbour *new_neigh) { struct net_device *olddev, *newdev; struct tid_info *ti; struct t3cdev *tdev; u32 tid; int update_tcb; struct l2t_entry *e; struct t3c_tid_entry *te; olddev = old_neigh->dev; newdev = new_neigh->dev; if (!is_offloading(olddev)) return; if (!is_offloading(newdev)) { printk(KERN_WARNING "%s: Redirect to non-offload " "device ignored.\n", __func__); return; } tdev = dev2t3cdev(olddev); BUG_ON(!tdev); if (tdev != dev2t3cdev(newdev)) { printk(KERN_WARNING "%s: Redirect to different " "offload device ignored.\n", __func__); return; } /* Add new L2T entry */ e = t3_l2t_get(tdev, new, newdev); if (!e) { printk(KERN_ERR "%s: couldn't allocate new l2t entry!\n", __func__); return; } /* Walk tid table and notify clients of dst change. */ ti = &(T3C_DATA(tdev))->tid_maps; for (tid = 0; tid < ti->ntids; tid++) { te = lookup_tid(ti, tid); BUG_ON(!te); if (te && te->ctx && te->client && te->client->redirect) { update_tcb = te->client->redirect(te->ctx, old, new, e); if (update_tcb) { rcu_read_lock(); l2t_hold(L2DATA(tdev), e); rcu_read_unlock(); set_l2t_ix(tdev, tid, e); } } } l2t_release(tdev, e); } /* * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc. * The allocated memory is cleared. */ void *cxgb_alloc_mem(unsigned long size) { void *p = kzalloc(size, GFP_KERNEL); if (!p) p = vzalloc(size); return p; } /* * Free memory allocated through t3_alloc_mem(). */ void cxgb_free_mem(void *addr) { if (is_vmalloc_addr(addr)) vfree(addr); else kfree(addr); } /* * Allocate and initialize the TID tables. Returns 0 on success. */ static int init_tid_tabs(struct tid_info *t, unsigned int ntids, unsigned int natids, unsigned int nstids, unsigned int atid_base, unsigned int stid_base) { unsigned long size = ntids * sizeof(*t->tid_tab) + natids * sizeof(*t->atid_tab) + nstids * sizeof(*t->stid_tab); t->tid_tab = cxgb_alloc_mem(size); if (!t->tid_tab) return -ENOMEM; t->stid_tab = (union listen_entry *)&t->tid_tab[ntids]; t->atid_tab = (union active_open_entry *)&t->stid_tab[nstids]; t->ntids = ntids; t->nstids = nstids; t->stid_base = stid_base; t->sfree = NULL; t->natids = natids; t->atid_base = atid_base; t->afree = NULL; t->stids_in_use = t->atids_in_use = 0; atomic_set(&t->tids_in_use, 0); spin_lock_init(&t->stid_lock); spin_lock_init(&t->atid_lock); /* * Setup the free lists for stid_tab and atid_tab. */ if (nstids) { while (--nstids) t->stid_tab[nstids - 1].next = &t->stid_tab[nstids]; t->sfree = t->stid_tab; } if (natids) { while (--natids) t->atid_tab[natids - 1].next = &t->atid_tab[natids]; t->afree = t->atid_tab; } return 0; } static void free_tid_maps(struct tid_info *t) { cxgb_free_mem(t->tid_tab); } static inline void add_adapter(struct adapter *adap) { write_lock_bh(&adapter_list_lock); list_add_tail(&adap->adapter_list, &adapter_list); write_unlock_bh(&adapter_list_lock); } static inline void remove_adapter(struct adapter *adap) { write_lock_bh(&adapter_list_lock); list_del(&adap->adapter_list); write_unlock_bh(&adapter_list_lock); } int cxgb3_offload_activate(struct adapter *adapter) { struct t3cdev *dev = &adapter->tdev; int natids, err; struct t3c_data *t; struct tid_range stid_range, tid_range; struct mtutab mtutab; unsigned int l2t_capacity; t = kzalloc(sizeof(*t), GFP_KERNEL); if (!t) return -ENOMEM; err = -EOPNOTSUPP; if (dev->ctl(dev, GET_TX_MAX_CHUNK, &t->tx_max_chunk) < 0 || dev->ctl(dev, GET_MAX_OUTSTANDING_WR, &t->max_wrs) < 0 || dev->ctl(dev, GET_L2T_CAPACITY, &l2t_capacity) < 0 || dev->ctl(dev, GET_MTUS, &mtutab) < 0 || dev->ctl(dev, GET_TID_RANGE, &tid_range) < 0 || dev->ctl(dev, GET_STID_RANGE, &stid_range) < 0) goto out_free; err = -ENOMEM; RCU_INIT_POINTER(dev->l2opt, t3_init_l2t(l2t_capacity)); if (!L2DATA(dev)) goto out_free; natids = min(tid_range.num / 2, MAX_ATIDS); err = init_tid_tabs(&t->tid_maps, tid_range.num, natids, stid_range.num, ATID_BASE, stid_range.base); if (err) goto out_free_l2t; t->mtus = mtutab.mtus; t->nmtus = mtutab.size; INIT_WORK(&t->tid_release_task, t3_process_tid_release_list); spin_lock_init(&t->tid_release_lock); INIT_LIST_HEAD(&t->list_node); t->dev = dev; T3C_DATA(dev) = t; dev->recv = process_rx; dev->neigh_update = t3_l2t_update; /* Register netevent handler once */ if (list_empty(&adapter_list)) register_netevent_notifier(&nb); t->nofail_skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_KERNEL); t->release_list_incomplete = 0; add_adapter(adapter); return 0; out_free_l2t: t3_free_l2t(L2DATA(dev)); RCU_INIT_POINTER(dev->l2opt, NULL); out_free: kfree(t); return err; } static void clean_l2_data(struct rcu_head *head) { struct l2t_data *d = container_of(head, struct l2t_data, rcu_head); t3_free_l2t(d); } void cxgb3_offload_deactivate(struct adapter *adapter) { struct t3cdev *tdev = &adapter->tdev; struct t3c_data *t = T3C_DATA(tdev); struct l2t_data *d; remove_adapter(adapter); if (list_empty(&adapter_list)) unregister_netevent_notifier(&nb); free_tid_maps(&t->tid_maps); T3C_DATA(tdev) = NULL; rcu_read_lock(); d = L2DATA(tdev); rcu_read_unlock(); RCU_INIT_POINTER(tdev->l2opt, NULL); call_rcu(&d->rcu_head, clean_l2_data); if (t->nofail_skb) kfree_skb(t->nofail_skb); kfree(t); } static inline void register_tdev(struct t3cdev *tdev) { static int unit; mutex_lock(&cxgb3_db_lock); snprintf(tdev->name, sizeof(tdev->name), "ofld_dev%d", unit++); list_add_tail(&tdev->ofld_dev_list, &ofld_dev_list); mutex_unlock(&cxgb3_db_lock); } static inline void unregister_tdev(struct t3cdev *tdev) { mutex_lock(&cxgb3_db_lock); list_del(&tdev->ofld_dev_list); mutex_unlock(&cxgb3_db_lock); } static inline int adap2type(struct adapter *adapter) { int type = 0; switch (adapter->params.rev) { case T3_REV_A: type = T3A; break; case T3_REV_B: case T3_REV_B2: type = T3B; break; case T3_REV_C: type = T3C; break; } return type; } void __devinit cxgb3_adapter_ofld(struct adapter *adapter) { struct t3cdev *tdev = &adapter->tdev; INIT_LIST_HEAD(&tdev->ofld_dev_list); cxgb3_set_dummy_ops(tdev); tdev->send = t3_offload_tx; tdev->ctl = cxgb_offload_ctl; tdev->type = adap2type(adapter); register_tdev(tdev); } void __devexit cxgb3_adapter_unofld(struct adapter *adapter) { struct t3cdev *tdev = &adapter->tdev; tdev->recv = NULL; tdev->neigh_update = NULL; unregister_tdev(tdev); } void __init cxgb3_offload_init(void) { int i; for (i = 0; i < NUM_CPL_CMDS; ++i) cpl_handlers[i] = do_bad_cpl; t3_register_cpl_handler(CPL_SMT_WRITE_RPL, do_smt_write_rpl); t3_register_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl); t3_register_cpl_handler(CPL_RTE_WRITE_RPL, do_rte_write_rpl); t3_register_cpl_handler(CPL_PASS_OPEN_RPL, do_stid_rpl); t3_register_cpl_handler(CPL_CLOSE_LISTSRV_RPL, do_stid_rpl); t3_register_cpl_handler(CPL_PASS_ACCEPT_REQ, do_cr); t3_register_cpl_handler(CPL_PASS_ESTABLISH, do_hwtid_rpl); t3_register_cpl_handler(CPL_ABORT_RPL_RSS, do_hwtid_rpl); t3_register_cpl_handler(CPL_ABORT_RPL, do_hwtid_rpl); t3_register_cpl_handler(CPL_RX_URG_NOTIFY, do_hwtid_rpl); t3_register_cpl_handler(CPL_RX_DATA, do_hwtid_rpl); t3_register_cpl_handler(CPL_TX_DATA_ACK, do_hwtid_rpl); t3_register_cpl_handler(CPL_TX_DMA_ACK, do_hwtid_rpl); t3_register_cpl_handler(CPL_ACT_OPEN_RPL, do_act_open_rpl); t3_register_cpl_handler(CPL_PEER_CLOSE, do_hwtid_rpl); t3_register_cpl_handler(CPL_CLOSE_CON_RPL, do_hwtid_rpl); t3_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req_rss); t3_register_cpl_handler(CPL_ACT_ESTABLISH, do_act_establish); t3_register_cpl_handler(CPL_SET_TCB_RPL, do_hwtid_rpl); t3_register_cpl_handler(CPL_GET_TCB_RPL, do_hwtid_rpl); t3_register_cpl_handler(CPL_RDMA_TERMINATE, do_term); t3_register_cpl_handler(CPL_RDMA_EC_STATUS, do_hwtid_rpl); t3_register_cpl_handler(CPL_TRACE_PKT, do_trace); t3_register_cpl_handler(CPL_RX_DATA_DDP, do_hwtid_rpl); t3_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_hwtid_rpl); t3_register_cpl_handler(CPL_ISCSI_HDR, do_hwtid_rpl); }