1 /* bnx2x_sriov.c: QLogic Everest network driver. 2 * 3 * Copyright 2009-2013 Broadcom Corporation 4 * Copyright 2014 QLogic Corporation 5 * All rights reserved 6 * 7 * Unless you and QLogic execute a separate written software license 8 * agreement governing use of this software, this software is licensed to you 9 * under the terms of the GNU General Public License version 2, available 10 * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL"). 11 * 12 * Notwithstanding the above, under no circumstances may you combine this 13 * software in any way with any other QLogic software provided under a 14 * license other than the GPL, without QLogic's express prior written 15 * consent. 16 * 17 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 18 * Written by: Shmulik Ravid 19 * Ariel Elior <ariel.elior@qlogic.com> 20 * 21 */ 22 #include "bnx2x.h" 23 #include "bnx2x_init.h" 24 #include "bnx2x_cmn.h" 25 #include "bnx2x_sp.h" 26 #include <linux/crc32.h> 27 #include <linux/if_vlan.h> 28 29 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx, 30 struct bnx2x_virtf **vf, 31 struct pf_vf_bulletin_content **bulletin, 32 bool test_queue); 33 34 /* General service functions */ 35 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid, 36 u16 pf_id) 37 { 38 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid), 39 pf_id); 40 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid), 41 pf_id); 42 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid), 43 pf_id); 44 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid), 45 pf_id); 46 } 47 48 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid, 49 u8 enable) 50 { 51 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid), 52 enable); 53 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid), 54 enable); 55 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid), 56 enable); 57 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid), 58 enable); 59 } 60 61 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid) 62 { 63 int idx; 64 65 for_each_vf(bp, idx) 66 if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid) 67 break; 68 return idx; 69 } 70 71 static 72 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid) 73 { 74 u16 idx = (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid); 75 return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL; 76 } 77 78 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf, 79 u8 igu_sb_id, u8 segment, u16 index, u8 op, 80 u8 update) 81 { 82 /* acking a VF sb through the PF - use the GRC */ 83 u32 ctl; 84 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 85 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 86 u32 func_encode = vf->abs_vfid; 87 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id; 88 struct igu_regular cmd_data = {0}; 89 90 cmd_data.sb_id_and_flags = 91 ((index << IGU_REGULAR_SB_INDEX_SHIFT) | 92 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) | 93 (update << IGU_REGULAR_BUPDATE_SHIFT) | 94 (op << IGU_REGULAR_ENABLE_INT_SHIFT)); 95 96 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT | 97 func_encode << IGU_CTRL_REG_FID_SHIFT | 98 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT; 99 100 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 101 cmd_data.sb_id_and_flags, igu_addr_data); 102 REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags); 103 mmiowb(); 104 barrier(); 105 106 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 107 ctl, igu_addr_ctl); 108 REG_WR(bp, igu_addr_ctl, ctl); 109 mmiowb(); 110 barrier(); 111 } 112 113 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp, 114 struct bnx2x_virtf *vf, 115 bool print_err) 116 { 117 if (!bnx2x_leading_vfq(vf, sp_initialized)) { 118 if (print_err) 119 BNX2X_ERR("Slowpath objects not yet initialized!\n"); 120 else 121 DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n"); 122 return false; 123 } 124 return true; 125 } 126 127 /* VFOP operations states */ 128 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf, 129 struct bnx2x_queue_init_params *init_params, 130 struct bnx2x_queue_setup_params *setup_params, 131 u16 q_idx, u16 sb_idx) 132 { 133 DP(BNX2X_MSG_IOV, 134 "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d", 135 vf->abs_vfid, 136 q_idx, 137 sb_idx, 138 init_params->tx.sb_cq_index, 139 init_params->tx.hc_rate, 140 setup_params->flags, 141 setup_params->txq_params.traffic_type); 142 } 143 144 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf, 145 struct bnx2x_queue_init_params *init_params, 146 struct bnx2x_queue_setup_params *setup_params, 147 u16 q_idx, u16 sb_idx) 148 { 149 struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params; 150 151 DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n" 152 "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n", 153 vf->abs_vfid, 154 q_idx, 155 sb_idx, 156 init_params->rx.sb_cq_index, 157 init_params->rx.hc_rate, 158 setup_params->gen_params.mtu, 159 rxq_params->buf_sz, 160 rxq_params->sge_buf_sz, 161 rxq_params->max_sges_pkt, 162 rxq_params->tpa_agg_sz, 163 setup_params->flags, 164 rxq_params->drop_flags, 165 rxq_params->cache_line_log); 166 } 167 168 void bnx2x_vfop_qctor_prep(struct bnx2x *bp, 169 struct bnx2x_virtf *vf, 170 struct bnx2x_vf_queue *q, 171 struct bnx2x_vf_queue_construct_params *p, 172 unsigned long q_type) 173 { 174 struct bnx2x_queue_init_params *init_p = &p->qstate.params.init; 175 struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup; 176 177 /* INIT */ 178 179 /* Enable host coalescing in the transition to INIT state */ 180 if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags)) 181 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags); 182 183 if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags)) 184 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags); 185 186 /* FW SB ID */ 187 init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx); 188 init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx); 189 190 /* context */ 191 init_p->cxts[0] = q->cxt; 192 193 /* SETUP */ 194 195 /* Setup-op general parameters */ 196 setup_p->gen_params.spcl_id = vf->sp_cl_id; 197 setup_p->gen_params.stat_id = vfq_stat_id(vf, q); 198 setup_p->gen_params.fp_hsi = vf->fp_hsi; 199 200 /* Setup-op flags: 201 * collect statistics, zero statistics, local-switching, security, 202 * OV for Flex10, RSS and MCAST for leading 203 */ 204 if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags)) 205 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags); 206 207 /* for VFs, enable tx switching, bd coherency, and mac address 208 * anti-spoofing 209 */ 210 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags); 211 __set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags); 212 __set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags); 213 214 /* Setup-op rx parameters */ 215 if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) { 216 struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params; 217 218 rxq_p->cl_qzone_id = vfq_qzone_id(vf, q); 219 rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx); 220 rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid); 221 222 if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags)) 223 rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES; 224 } 225 226 /* Setup-op tx parameters */ 227 if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) { 228 setup_p->txq_params.tss_leading_cl_id = vf->leading_rss; 229 setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx); 230 } 231 } 232 233 static int bnx2x_vf_queue_create(struct bnx2x *bp, 234 struct bnx2x_virtf *vf, int qid, 235 struct bnx2x_vf_queue_construct_params *qctor) 236 { 237 struct bnx2x_queue_state_params *q_params; 238 int rc = 0; 239 240 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 241 242 /* Prepare ramrod information */ 243 q_params = &qctor->qstate; 244 q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj); 245 set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags); 246 247 if (bnx2x_get_q_logical_state(bp, q_params->q_obj) == 248 BNX2X_Q_LOGICAL_STATE_ACTIVE) { 249 DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n"); 250 goto out; 251 } 252 253 /* Run Queue 'construction' ramrods */ 254 q_params->cmd = BNX2X_Q_CMD_INIT; 255 rc = bnx2x_queue_state_change(bp, q_params); 256 if (rc) 257 goto out; 258 259 memcpy(&q_params->params.setup, &qctor->prep_qsetup, 260 sizeof(struct bnx2x_queue_setup_params)); 261 q_params->cmd = BNX2X_Q_CMD_SETUP; 262 rc = bnx2x_queue_state_change(bp, q_params); 263 if (rc) 264 goto out; 265 266 /* enable interrupts */ 267 bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)), 268 USTORM_ID, 0, IGU_INT_ENABLE, 0); 269 out: 270 return rc; 271 } 272 273 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf, 274 int qid) 275 { 276 enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT, 277 BNX2X_Q_CMD_TERMINATE, 278 BNX2X_Q_CMD_CFC_DEL}; 279 struct bnx2x_queue_state_params q_params; 280 int rc, i; 281 282 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 283 284 /* Prepare ramrod information */ 285 memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params)); 286 q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj); 287 set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 288 289 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) == 290 BNX2X_Q_LOGICAL_STATE_STOPPED) { 291 DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n"); 292 goto out; 293 } 294 295 /* Run Queue 'destruction' ramrods */ 296 for (i = 0; i < ARRAY_SIZE(cmds); i++) { 297 q_params.cmd = cmds[i]; 298 rc = bnx2x_queue_state_change(bp, &q_params); 299 if (rc) { 300 BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]); 301 return rc; 302 } 303 } 304 out: 305 /* Clean Context */ 306 if (bnx2x_vfq(vf, qid, cxt)) { 307 bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0; 308 bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0; 309 } 310 311 return 0; 312 } 313 314 static void 315 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid) 316 { 317 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid); 318 if (vf) { 319 /* the first igu entry belonging to VFs of this PF */ 320 if (!BP_VFDB(bp)->first_vf_igu_entry) 321 BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id; 322 323 /* the first igu entry belonging to this VF */ 324 if (!vf_sb_count(vf)) 325 vf->igu_base_id = igu_sb_id; 326 327 ++vf_sb_count(vf); 328 ++vf->sb_count; 329 } 330 BP_VFDB(bp)->vf_sbs_pool++; 331 } 332 333 static inline void bnx2x_vf_vlan_credit(struct bnx2x *bp, 334 struct bnx2x_vlan_mac_obj *obj, 335 atomic_t *counter) 336 { 337 struct list_head *pos; 338 int read_lock; 339 int cnt = 0; 340 341 read_lock = bnx2x_vlan_mac_h_read_lock(bp, obj); 342 if (read_lock) 343 DP(BNX2X_MSG_SP, "Failed to take vlan mac read head; continuing anyway\n"); 344 345 list_for_each(pos, &obj->head) 346 cnt++; 347 348 if (!read_lock) 349 bnx2x_vlan_mac_h_read_unlock(bp, obj); 350 351 atomic_set(counter, cnt); 352 } 353 354 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf, 355 int qid, bool drv_only, int type) 356 { 357 struct bnx2x_vlan_mac_ramrod_params ramrod; 358 int rc; 359 360 DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid, 361 (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" : 362 (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs"); 363 364 /* Prepare ramrod params */ 365 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params)); 366 if (type == BNX2X_VF_FILTER_VLAN_MAC) { 367 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); 368 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj); 369 } else if (type == BNX2X_VF_FILTER_MAC) { 370 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); 371 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj); 372 } else { 373 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj); 374 } 375 ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL; 376 377 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags); 378 if (drv_only) 379 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags); 380 else 381 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags); 382 383 /* Start deleting */ 384 rc = ramrod.vlan_mac_obj->delete_all(bp, 385 ramrod.vlan_mac_obj, 386 &ramrod.user_req.vlan_mac_flags, 387 &ramrod.ramrod_flags); 388 if (rc) { 389 BNX2X_ERR("Failed to delete all %s\n", 390 (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" : 391 (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs"); 392 return rc; 393 } 394 395 return 0; 396 } 397 398 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp, 399 struct bnx2x_virtf *vf, int qid, 400 struct bnx2x_vf_mac_vlan_filter *filter, 401 bool drv_only) 402 { 403 struct bnx2x_vlan_mac_ramrod_params ramrod; 404 int rc; 405 406 DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n", 407 vf->abs_vfid, filter->add ? "Adding" : "Deleting", 408 (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MAC" : 409 (filter->type == BNX2X_VF_FILTER_MAC) ? "MAC" : "VLAN"); 410 411 /* Prepare ramrod params */ 412 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params)); 413 if (filter->type == BNX2X_VF_FILTER_VLAN_MAC) { 414 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj); 415 ramrod.user_req.u.vlan.vlan = filter->vid; 416 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN); 417 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); 418 } else if (filter->type == BNX2X_VF_FILTER_VLAN) { 419 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj); 420 ramrod.user_req.u.vlan.vlan = filter->vid; 421 } else { 422 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); 423 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj); 424 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN); 425 } 426 ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD : 427 BNX2X_VLAN_MAC_DEL; 428 429 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags); 430 if (drv_only) 431 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags); 432 else 433 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags); 434 435 /* Add/Remove the filter */ 436 rc = bnx2x_config_vlan_mac(bp, &ramrod); 437 if (rc == -EEXIST) 438 return 0; 439 if (rc) { 440 BNX2X_ERR("Failed to %s %s\n", 441 filter->add ? "add" : "delete", 442 (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? 443 "VLAN-MAC" : 444 (filter->type == BNX2X_VF_FILTER_MAC) ? 445 "MAC" : "VLAN"); 446 return rc; 447 } 448 449 filter->applied = true; 450 451 return 0; 452 } 453 454 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf, 455 struct bnx2x_vf_mac_vlan_filters *filters, 456 int qid, bool drv_only) 457 { 458 int rc = 0, i; 459 460 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 461 462 if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) 463 return -EINVAL; 464 465 /* Prepare ramrod params */ 466 for (i = 0; i < filters->count; i++) { 467 rc = bnx2x_vf_mac_vlan_config(bp, vf, qid, 468 &filters->filters[i], drv_only); 469 if (rc) 470 break; 471 } 472 473 /* Rollback if needed */ 474 if (i != filters->count) { 475 BNX2X_ERR("Managed only %d/%d filters - rolling back\n", 476 i, filters->count); 477 while (--i >= 0) { 478 if (!filters->filters[i].applied) 479 continue; 480 filters->filters[i].add = !filters->filters[i].add; 481 bnx2x_vf_mac_vlan_config(bp, vf, qid, 482 &filters->filters[i], 483 drv_only); 484 } 485 } 486 487 /* It's our responsibility to free the filters */ 488 kfree(filters); 489 490 return rc; 491 } 492 493 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid, 494 struct bnx2x_vf_queue_construct_params *qctor) 495 { 496 int rc; 497 498 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 499 500 rc = bnx2x_vf_queue_create(bp, vf, qid, qctor); 501 if (rc) 502 goto op_err; 503 504 /* Schedule the configuration of any pending vlan filters */ 505 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN, 506 BNX2X_MSG_IOV); 507 return 0; 508 op_err: 509 BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc); 510 return rc; 511 } 512 513 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf, 514 int qid) 515 { 516 int rc; 517 518 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 519 520 /* If needed, clean the filtering data base */ 521 if ((qid == LEADING_IDX) && 522 bnx2x_validate_vf_sp_objs(bp, vf, false)) { 523 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, 524 BNX2X_VF_FILTER_VLAN_MAC); 525 if (rc) 526 goto op_err; 527 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, 528 BNX2X_VF_FILTER_VLAN); 529 if (rc) 530 goto op_err; 531 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, 532 BNX2X_VF_FILTER_MAC); 533 if (rc) 534 goto op_err; 535 } 536 537 /* Terminate queue */ 538 if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) { 539 struct bnx2x_queue_state_params qstate; 540 541 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params)); 542 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj); 543 qstate.q_obj->state = BNX2X_Q_STATE_STOPPED; 544 qstate.cmd = BNX2X_Q_CMD_TERMINATE; 545 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags); 546 rc = bnx2x_queue_state_change(bp, &qstate); 547 if (rc) 548 goto op_err; 549 } 550 551 return 0; 552 op_err: 553 BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc); 554 return rc; 555 } 556 557 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf, 558 bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only) 559 { 560 struct bnx2x_mcast_list_elem *mc = NULL; 561 struct bnx2x_mcast_ramrod_params mcast; 562 int rc, i; 563 564 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 565 566 /* Prepare Multicast command */ 567 memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params)); 568 mcast.mcast_obj = &vf->mcast_obj; 569 if (drv_only) 570 set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags); 571 else 572 set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags); 573 if (mc_num) { 574 mc = kcalloc(mc_num, sizeof(struct bnx2x_mcast_list_elem), 575 GFP_KERNEL); 576 if (!mc) { 577 BNX2X_ERR("Cannot Configure multicasts due to lack of memory\n"); 578 return -ENOMEM; 579 } 580 } 581 582 if (mc_num) { 583 INIT_LIST_HEAD(&mcast.mcast_list); 584 for (i = 0; i < mc_num; i++) { 585 mc[i].mac = mcasts[i]; 586 list_add_tail(&mc[i].link, 587 &mcast.mcast_list); 588 } 589 590 /* add new mcasts */ 591 mcast.mcast_list_len = mc_num; 592 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_SET); 593 if (rc) 594 BNX2X_ERR("Failed to set multicasts\n"); 595 } else { 596 /* clear existing mcasts */ 597 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL); 598 if (rc) 599 BNX2X_ERR("Failed to remove multicasts\n"); 600 } 601 602 kfree(mc); 603 604 return rc; 605 } 606 607 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid, 608 struct bnx2x_rx_mode_ramrod_params *ramrod, 609 struct bnx2x_virtf *vf, 610 unsigned long accept_flags) 611 { 612 struct bnx2x_vf_queue *vfq = vfq_get(vf, qid); 613 614 memset(ramrod, 0, sizeof(*ramrod)); 615 ramrod->cid = vfq->cid; 616 ramrod->cl_id = vfq_cl_id(vf, vfq); 617 ramrod->rx_mode_obj = &bp->rx_mode_obj; 618 ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid); 619 ramrod->rx_accept_flags = accept_flags; 620 ramrod->tx_accept_flags = accept_flags; 621 ramrod->pstate = &vf->filter_state; 622 ramrod->state = BNX2X_FILTER_RX_MODE_PENDING; 623 624 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state); 625 set_bit(RAMROD_RX, &ramrod->ramrod_flags); 626 set_bit(RAMROD_TX, &ramrod->ramrod_flags); 627 628 ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2); 629 ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2); 630 } 631 632 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf, 633 int qid, unsigned long accept_flags) 634 { 635 struct bnx2x_rx_mode_ramrod_params ramrod; 636 637 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 638 639 bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags); 640 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags); 641 vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags; 642 return bnx2x_config_rx_mode(bp, &ramrod); 643 } 644 645 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid) 646 { 647 int rc; 648 649 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 650 651 /* Remove all classification configuration for leading queue */ 652 if (qid == LEADING_IDX) { 653 rc = bnx2x_vf_rxmode(bp, vf, qid, 0); 654 if (rc) 655 goto op_err; 656 657 /* Remove filtering if feasible */ 658 if (bnx2x_validate_vf_sp_objs(bp, vf, true)) { 659 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, 660 false, 661 BNX2X_VF_FILTER_VLAN_MAC); 662 if (rc) 663 goto op_err; 664 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, 665 false, 666 BNX2X_VF_FILTER_VLAN); 667 if (rc) 668 goto op_err; 669 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, 670 false, 671 BNX2X_VF_FILTER_MAC); 672 if (rc) 673 goto op_err; 674 rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false); 675 if (rc) 676 goto op_err; 677 } 678 } 679 680 /* Destroy queue */ 681 rc = bnx2x_vf_queue_destroy(bp, vf, qid); 682 if (rc) 683 goto op_err; 684 return rc; 685 op_err: 686 BNX2X_ERR("vf[%d:%d] error: rc %d\n", 687 vf->abs_vfid, qid, rc); 688 return rc; 689 } 690 691 /* VF enable primitives 692 * when pretend is required the caller is responsible 693 * for calling pretend prior to calling these routines 694 */ 695 696 /* internal vf enable - until vf is enabled internally all transactions 697 * are blocked. This routine should always be called last with pretend. 698 */ 699 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable) 700 { 701 REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0); 702 } 703 704 /* clears vf error in all semi blocks */ 705 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid) 706 { 707 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid); 708 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid); 709 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid); 710 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid); 711 } 712 713 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid) 714 { 715 u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5; 716 u32 was_err_reg = 0; 717 718 switch (was_err_group) { 719 case 0: 720 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR; 721 break; 722 case 1: 723 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR; 724 break; 725 case 2: 726 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR; 727 break; 728 case 3: 729 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR; 730 break; 731 } 732 REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f)); 733 } 734 735 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf) 736 { 737 int i; 738 u32 val; 739 740 /* Set VF masks and configuration - pretend */ 741 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 742 743 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 744 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 745 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0); 746 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0); 747 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0); 748 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0); 749 750 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION); 751 val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN); 752 val &= ~IGU_VF_CONF_PARENT_MASK; 753 val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT; 754 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val); 755 756 DP(BNX2X_MSG_IOV, 757 "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n", 758 vf->abs_vfid, val); 759 760 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 761 762 /* iterate over all queues, clear sb consumer */ 763 for (i = 0; i < vf_sb_count(vf); i++) { 764 u8 igu_sb_id = vf_igu_sb(vf, i); 765 766 /* zero prod memory */ 767 REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0); 768 769 /* clear sb state machine */ 770 bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id, 771 false /* VF */); 772 773 /* disable + update */ 774 bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0, 775 IGU_INT_DISABLE, 1); 776 } 777 } 778 779 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid) 780 { 781 /* set the VF-PF association in the FW */ 782 storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp)); 783 storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1); 784 785 /* clear vf errors*/ 786 bnx2x_vf_semi_clear_err(bp, abs_vfid); 787 bnx2x_vf_pglue_clear_err(bp, abs_vfid); 788 789 /* internal vf-enable - pretend */ 790 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid)); 791 DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid); 792 bnx2x_vf_enable_internal(bp, true); 793 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 794 } 795 796 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf) 797 { 798 /* Reset vf in IGU interrupts are still disabled */ 799 bnx2x_vf_igu_reset(bp, vf); 800 801 /* pretend to enable the vf with the PBF */ 802 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 803 REG_WR(bp, PBF_REG_DISABLE_VF, 0); 804 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 805 } 806 807 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid) 808 { 809 struct pci_dev *dev; 810 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid); 811 812 if (!vf) 813 return false; 814 815 dev = pci_get_domain_bus_and_slot(vf->domain, vf->bus, vf->devfn); 816 if (dev) 817 return bnx2x_is_pcie_pending(dev); 818 return false; 819 } 820 821 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid) 822 { 823 /* Verify no pending pci transactions */ 824 if (bnx2x_vf_is_pcie_pending(bp, abs_vfid)) 825 BNX2X_ERR("PCIE Transactions still pending\n"); 826 827 return 0; 828 } 829 830 /* must be called after the number of PF queues and the number of VFs are 831 * both known 832 */ 833 static void 834 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf) 835 { 836 struct vf_pf_resc_request *resc = &vf->alloc_resc; 837 838 /* will be set only during VF-ACQUIRE */ 839 resc->num_rxqs = 0; 840 resc->num_txqs = 0; 841 842 resc->num_mac_filters = VF_MAC_CREDIT_CNT; 843 resc->num_vlan_filters = VF_VLAN_CREDIT_CNT; 844 845 /* no real limitation */ 846 resc->num_mc_filters = 0; 847 848 /* num_sbs already set */ 849 resc->num_sbs = vf->sb_count; 850 } 851 852 /* FLR routines: */ 853 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf) 854 { 855 /* reset the state variables */ 856 bnx2x_iov_static_resc(bp, vf); 857 vf->state = VF_FREE; 858 } 859 860 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf) 861 { 862 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp); 863 864 /* DQ usage counter */ 865 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 866 bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT, 867 "DQ VF usage counter timed out", 868 poll_cnt); 869 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 870 871 /* FW cleanup command - poll for the results */ 872 if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid), 873 poll_cnt)) 874 BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid); 875 876 /* verify TX hw is flushed */ 877 bnx2x_tx_hw_flushed(bp, poll_cnt); 878 } 879 880 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf) 881 { 882 int rc, i; 883 884 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 885 886 /* the cleanup operations are valid if and only if the VF 887 * was first acquired. 888 */ 889 for (i = 0; i < vf_rxq_count(vf); i++) { 890 rc = bnx2x_vf_queue_flr(bp, vf, i); 891 if (rc) 892 goto out; 893 } 894 895 /* remove multicasts */ 896 bnx2x_vf_mcast(bp, vf, NULL, 0, true); 897 898 /* dispatch final cleanup and wait for HW queues to flush */ 899 bnx2x_vf_flr_clnup_hw(bp, vf); 900 901 /* release VF resources */ 902 bnx2x_vf_free_resc(bp, vf); 903 904 vf->malicious = false; 905 906 /* re-open the mailbox */ 907 bnx2x_vf_enable_mbx(bp, vf->abs_vfid); 908 return; 909 out: 910 BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n", 911 vf->abs_vfid, i, rc); 912 } 913 914 static void bnx2x_vf_flr_clnup(struct bnx2x *bp) 915 { 916 struct bnx2x_virtf *vf; 917 int i; 918 919 for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) { 920 /* VF should be RESET & in FLR cleanup states */ 921 if (bnx2x_vf(bp, i, state) != VF_RESET || 922 !bnx2x_vf(bp, i, flr_clnup_stage)) 923 continue; 924 925 DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n", 926 i, BNX2X_NR_VIRTFN(bp)); 927 928 vf = BP_VF(bp, i); 929 930 /* lock the vf pf channel */ 931 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR); 932 933 /* invoke the VF FLR SM */ 934 bnx2x_vf_flr(bp, vf); 935 936 /* mark the VF to be ACKED and continue */ 937 vf->flr_clnup_stage = false; 938 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR); 939 } 940 941 /* Acknowledge the handled VFs. 942 * we are acknowledge all the vfs which an flr was requested for, even 943 * if amongst them there are such that we never opened, since the mcp 944 * will interrupt us immediately again if we only ack some of the bits, 945 * resulting in an endless loop. This can happen for example in KVM 946 * where an 'all ones' flr request is sometimes given by hyper visor 947 */ 948 DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n", 949 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]); 950 for (i = 0; i < FLRD_VFS_DWORDS; i++) 951 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 952 bp->vfdb->flrd_vfs[i]); 953 954 bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0); 955 956 /* clear the acked bits - better yet if the MCP implemented 957 * write to clear semantics 958 */ 959 for (i = 0; i < FLRD_VFS_DWORDS; i++) 960 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0); 961 } 962 963 void bnx2x_vf_handle_flr_event(struct bnx2x *bp) 964 { 965 int i; 966 967 /* Read FLR'd VFs */ 968 for (i = 0; i < FLRD_VFS_DWORDS; i++) 969 bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]); 970 971 DP(BNX2X_MSG_MCP, 972 "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n", 973 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]); 974 975 for_each_vf(bp, i) { 976 struct bnx2x_virtf *vf = BP_VF(bp, i); 977 u32 reset = 0; 978 979 if (vf->abs_vfid < 32) 980 reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid); 981 else 982 reset = bp->vfdb->flrd_vfs[1] & 983 (1 << (vf->abs_vfid - 32)); 984 985 if (reset) { 986 /* set as reset and ready for cleanup */ 987 vf->state = VF_RESET; 988 vf->flr_clnup_stage = true; 989 990 DP(BNX2X_MSG_IOV, 991 "Initiating Final cleanup for VF %d\n", 992 vf->abs_vfid); 993 } 994 } 995 996 /* do the FLR cleanup for all marked VFs*/ 997 bnx2x_vf_flr_clnup(bp); 998 } 999 1000 /* IOV global initialization routines */ 1001 void bnx2x_iov_init_dq(struct bnx2x *bp) 1002 { 1003 if (!IS_SRIOV(bp)) 1004 return; 1005 1006 /* Set the DQ such that the CID reflect the abs_vfid */ 1007 REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0); 1008 REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS)); 1009 1010 /* Set VFs starting CID. If its > 0 the preceding CIDs are belong to 1011 * the PF L2 queues 1012 */ 1013 REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID); 1014 1015 /* The VF window size is the log2 of the max number of CIDs per VF */ 1016 REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND); 1017 1018 /* The VF doorbell size 0 - *B, 4 - 128B. We set it here to match 1019 * the Pf doorbell size although the 2 are independent. 1020 */ 1021 REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3); 1022 1023 /* No security checks for now - 1024 * configure single rule (out of 16) mask = 0x1, value = 0x0, 1025 * CID range 0 - 0x1ffff 1026 */ 1027 REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1); 1028 REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0); 1029 REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0); 1030 REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff); 1031 1032 /* set the VF doorbell threshold. This threshold represents the amount 1033 * of doorbells allowed in the main DORQ fifo for a specific VF. 1034 */ 1035 REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64); 1036 } 1037 1038 void bnx2x_iov_init_dmae(struct bnx2x *bp) 1039 { 1040 if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV)) 1041 REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0); 1042 } 1043 1044 static int bnx2x_vf_domain(struct bnx2x *bp, int vfid) 1045 { 1046 struct pci_dev *dev = bp->pdev; 1047 1048 return pci_domain_nr(dev->bus); 1049 } 1050 1051 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid) 1052 { 1053 struct pci_dev *dev = bp->pdev; 1054 struct bnx2x_sriov *iov = &bp->vfdb->sriov; 1055 1056 return dev->bus->number + ((dev->devfn + iov->offset + 1057 iov->stride * vfid) >> 8); 1058 } 1059 1060 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid) 1061 { 1062 struct pci_dev *dev = bp->pdev; 1063 struct bnx2x_sriov *iov = &bp->vfdb->sriov; 1064 1065 return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff; 1066 } 1067 1068 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf) 1069 { 1070 int i, n; 1071 struct pci_dev *dev = bp->pdev; 1072 struct bnx2x_sriov *iov = &bp->vfdb->sriov; 1073 1074 for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) { 1075 u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i); 1076 u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i); 1077 1078 size /= iov->total; 1079 vf->bars[n].bar = start + size * vf->abs_vfid; 1080 vf->bars[n].size = size; 1081 } 1082 } 1083 1084 static int 1085 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp) 1086 { 1087 int sb_id; 1088 u32 val; 1089 u8 fid, current_pf = 0; 1090 1091 /* IGU in normal mode - read CAM */ 1092 for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) { 1093 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4); 1094 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) 1095 continue; 1096 fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID); 1097 if (fid & IGU_FID_ENCODE_IS_PF) 1098 current_pf = fid & IGU_FID_PF_NUM_MASK; 1099 else if (current_pf == BP_FUNC(bp)) 1100 bnx2x_vf_set_igu_info(bp, sb_id, 1101 (fid & IGU_FID_VF_NUM_MASK)); 1102 DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n", 1103 ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"), 1104 ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) : 1105 (fid & IGU_FID_VF_NUM_MASK)), sb_id, 1106 GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)); 1107 } 1108 DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool); 1109 return BP_VFDB(bp)->vf_sbs_pool; 1110 } 1111 1112 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp) 1113 { 1114 if (bp->vfdb) { 1115 kfree(bp->vfdb->vfqs); 1116 kfree(bp->vfdb->vfs); 1117 kfree(bp->vfdb); 1118 } 1119 bp->vfdb = NULL; 1120 } 1121 1122 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov) 1123 { 1124 int pos; 1125 struct pci_dev *dev = bp->pdev; 1126 1127 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV); 1128 if (!pos) { 1129 BNX2X_ERR("failed to find SRIOV capability in device\n"); 1130 return -ENODEV; 1131 } 1132 1133 iov->pos = pos; 1134 DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos); 1135 pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl); 1136 pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total); 1137 pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial); 1138 pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset); 1139 pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride); 1140 pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz); 1141 pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap); 1142 pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link); 1143 1144 return 0; 1145 } 1146 1147 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov) 1148 { 1149 u32 val; 1150 1151 /* read the SRIOV capability structure 1152 * The fields can be read via configuration read or 1153 * directly from the device (starting at offset PCICFG_OFFSET) 1154 */ 1155 if (bnx2x_sriov_pci_cfg_info(bp, iov)) 1156 return -ENODEV; 1157 1158 /* get the number of SRIOV bars */ 1159 iov->nres = 0; 1160 1161 /* read the first_vfid */ 1162 val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF); 1163 iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK) 1164 * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp)); 1165 1166 DP(BNX2X_MSG_IOV, 1167 "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n", 1168 BP_FUNC(bp), 1169 iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total, 1170 iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz); 1171 1172 return 0; 1173 } 1174 1175 /* must be called after PF bars are mapped */ 1176 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param, 1177 int num_vfs_param) 1178 { 1179 int err, i; 1180 struct bnx2x_sriov *iov; 1181 struct pci_dev *dev = bp->pdev; 1182 1183 bp->vfdb = NULL; 1184 1185 /* verify is pf */ 1186 if (IS_VF(bp)) 1187 return 0; 1188 1189 /* verify sriov capability is present in configuration space */ 1190 if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV)) 1191 return 0; 1192 1193 /* verify chip revision */ 1194 if (CHIP_IS_E1x(bp)) 1195 return 0; 1196 1197 /* check if SRIOV support is turned off */ 1198 if (!num_vfs_param) 1199 return 0; 1200 1201 /* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */ 1202 if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) { 1203 BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n", 1204 BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID); 1205 return 0; 1206 } 1207 1208 /* SRIOV can be enabled only with MSIX */ 1209 if (int_mode_param == BNX2X_INT_MODE_MSI || 1210 int_mode_param == BNX2X_INT_MODE_INTX) { 1211 BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n"); 1212 return 0; 1213 } 1214 1215 err = -EIO; 1216 /* verify ari is enabled */ 1217 if (!pci_ari_enabled(bp->pdev->bus)) { 1218 BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n"); 1219 return 0; 1220 } 1221 1222 /* verify igu is in normal mode */ 1223 if (CHIP_INT_MODE_IS_BC(bp)) { 1224 BNX2X_ERR("IGU not normal mode, SRIOV can not be enabled\n"); 1225 return 0; 1226 } 1227 1228 /* allocate the vfs database */ 1229 bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL); 1230 if (!bp->vfdb) { 1231 BNX2X_ERR("failed to allocate vf database\n"); 1232 err = -ENOMEM; 1233 goto failed; 1234 } 1235 1236 /* get the sriov info - Linux already collected all the pertinent 1237 * information, however the sriov structure is for the private use 1238 * of the pci module. Also we want this information regardless 1239 * of the hyper-visor. 1240 */ 1241 iov = &(bp->vfdb->sriov); 1242 err = bnx2x_sriov_info(bp, iov); 1243 if (err) 1244 goto failed; 1245 1246 /* SR-IOV capability was enabled but there are no VFs*/ 1247 if (iov->total == 0) 1248 goto failed; 1249 1250 iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param); 1251 1252 DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n", 1253 num_vfs_param, iov->nr_virtfn); 1254 1255 /* allocate the vf array */ 1256 bp->vfdb->vfs = kcalloc(BNX2X_NR_VIRTFN(bp), 1257 sizeof(struct bnx2x_virtf), 1258 GFP_KERNEL); 1259 if (!bp->vfdb->vfs) { 1260 BNX2X_ERR("failed to allocate vf array\n"); 1261 err = -ENOMEM; 1262 goto failed; 1263 } 1264 1265 /* Initial VF init - index and abs_vfid - nr_virtfn must be set */ 1266 for_each_vf(bp, i) { 1267 bnx2x_vf(bp, i, index) = i; 1268 bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i; 1269 bnx2x_vf(bp, i, state) = VF_FREE; 1270 mutex_init(&bnx2x_vf(bp, i, op_mutex)); 1271 bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE; 1272 } 1273 1274 /* re-read the IGU CAM for VFs - index and abs_vfid must be set */ 1275 if (!bnx2x_get_vf_igu_cam_info(bp)) { 1276 BNX2X_ERR("No entries in IGU CAM for vfs\n"); 1277 err = -EINVAL; 1278 goto failed; 1279 } 1280 1281 /* allocate the queue arrays for all VFs */ 1282 bp->vfdb->vfqs = kcalloc(BNX2X_MAX_NUM_VF_QUEUES, 1283 sizeof(struct bnx2x_vf_queue), 1284 GFP_KERNEL); 1285 1286 if (!bp->vfdb->vfqs) { 1287 BNX2X_ERR("failed to allocate vf queue array\n"); 1288 err = -ENOMEM; 1289 goto failed; 1290 } 1291 1292 /* Prepare the VFs event synchronization mechanism */ 1293 mutex_init(&bp->vfdb->event_mutex); 1294 1295 mutex_init(&bp->vfdb->bulletin_mutex); 1296 1297 if (SHMEM2_HAS(bp, sriov_switch_mode)) 1298 SHMEM2_WR(bp, sriov_switch_mode, SRIOV_SWITCH_MODE_VEB); 1299 1300 return 0; 1301 failed: 1302 DP(BNX2X_MSG_IOV, "Failed err=%d\n", err); 1303 __bnx2x_iov_free_vfdb(bp); 1304 return err; 1305 } 1306 1307 void bnx2x_iov_remove_one(struct bnx2x *bp) 1308 { 1309 int vf_idx; 1310 1311 /* if SRIOV is not enabled there's nothing to do */ 1312 if (!IS_SRIOV(bp)) 1313 return; 1314 1315 bnx2x_disable_sriov(bp); 1316 1317 /* disable access to all VFs */ 1318 for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) { 1319 bnx2x_pretend_func(bp, 1320 HW_VF_HANDLE(bp, 1321 bp->vfdb->sriov.first_vf_in_pf + 1322 vf_idx)); 1323 DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n", 1324 bp->vfdb->sriov.first_vf_in_pf + vf_idx); 1325 bnx2x_vf_enable_internal(bp, 0); 1326 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 1327 } 1328 1329 /* free vf database */ 1330 __bnx2x_iov_free_vfdb(bp); 1331 } 1332 1333 void bnx2x_iov_free_mem(struct bnx2x *bp) 1334 { 1335 int i; 1336 1337 if (!IS_SRIOV(bp)) 1338 return; 1339 1340 /* free vfs hw contexts */ 1341 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) { 1342 struct hw_dma *cxt = &bp->vfdb->context[i]; 1343 BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size); 1344 } 1345 1346 BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr, 1347 BP_VFDB(bp)->sp_dma.mapping, 1348 BP_VFDB(bp)->sp_dma.size); 1349 1350 BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr, 1351 BP_VF_MBX_DMA(bp)->mapping, 1352 BP_VF_MBX_DMA(bp)->size); 1353 1354 BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr, 1355 BP_VF_BULLETIN_DMA(bp)->mapping, 1356 BP_VF_BULLETIN_DMA(bp)->size); 1357 } 1358 1359 int bnx2x_iov_alloc_mem(struct bnx2x *bp) 1360 { 1361 size_t tot_size; 1362 int i, rc = 0; 1363 1364 if (!IS_SRIOV(bp)) 1365 return rc; 1366 1367 /* allocate vfs hw contexts */ 1368 tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) * 1369 BNX2X_CIDS_PER_VF * sizeof(union cdu_context); 1370 1371 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) { 1372 struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i); 1373 cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ); 1374 1375 if (cxt->size) { 1376 cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size); 1377 if (!cxt->addr) 1378 goto alloc_mem_err; 1379 } else { 1380 cxt->addr = NULL; 1381 cxt->mapping = 0; 1382 } 1383 tot_size -= cxt->size; 1384 } 1385 1386 /* allocate vfs ramrods dma memory - client_init and set_mac */ 1387 tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp); 1388 BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping, 1389 tot_size); 1390 if (!BP_VFDB(bp)->sp_dma.addr) 1391 goto alloc_mem_err; 1392 BP_VFDB(bp)->sp_dma.size = tot_size; 1393 1394 /* allocate mailboxes */ 1395 tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE; 1396 BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping, 1397 tot_size); 1398 if (!BP_VF_MBX_DMA(bp)->addr) 1399 goto alloc_mem_err; 1400 1401 BP_VF_MBX_DMA(bp)->size = tot_size; 1402 1403 /* allocate local bulletin boards */ 1404 tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE; 1405 BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping, 1406 tot_size); 1407 if (!BP_VF_BULLETIN_DMA(bp)->addr) 1408 goto alloc_mem_err; 1409 1410 BP_VF_BULLETIN_DMA(bp)->size = tot_size; 1411 1412 return 0; 1413 1414 alloc_mem_err: 1415 return -ENOMEM; 1416 } 1417 1418 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf, 1419 struct bnx2x_vf_queue *q) 1420 { 1421 u8 cl_id = vfq_cl_id(vf, q); 1422 u8 func_id = FW_VF_HANDLE(vf->abs_vfid); 1423 unsigned long q_type = 0; 1424 1425 set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 1426 set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 1427 1428 /* Queue State object */ 1429 bnx2x_init_queue_obj(bp, &q->sp_obj, 1430 cl_id, &q->cid, 1, func_id, 1431 bnx2x_vf_sp(bp, vf, q_data), 1432 bnx2x_vf_sp_map(bp, vf, q_data), 1433 q_type); 1434 1435 /* sp indication is set only when vlan/mac/etc. are initialized */ 1436 q->sp_initialized = false; 1437 1438 DP(BNX2X_MSG_IOV, 1439 "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n", 1440 vf->abs_vfid, q->sp_obj.func_id, q->cid); 1441 } 1442 1443 static int bnx2x_max_speed_cap(struct bnx2x *bp) 1444 { 1445 u32 supported = bp->port.supported[bnx2x_get_link_cfg_idx(bp)]; 1446 1447 if (supported & 1448 (SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full)) 1449 return 20000; 1450 1451 return 10000; /* assume lowest supported speed is 10G */ 1452 } 1453 1454 int bnx2x_iov_link_update_vf(struct bnx2x *bp, int idx) 1455 { 1456 struct bnx2x_link_report_data *state = &bp->last_reported_link; 1457 struct pf_vf_bulletin_content *bulletin; 1458 struct bnx2x_virtf *vf; 1459 bool update = true; 1460 int rc = 0; 1461 1462 /* sanity and init */ 1463 rc = bnx2x_vf_op_prep(bp, idx, &vf, &bulletin, false); 1464 if (rc) 1465 return rc; 1466 1467 mutex_lock(&bp->vfdb->bulletin_mutex); 1468 1469 if (vf->link_cfg == IFLA_VF_LINK_STATE_AUTO) { 1470 bulletin->valid_bitmap |= 1 << LINK_VALID; 1471 1472 bulletin->link_speed = state->line_speed; 1473 bulletin->link_flags = 0; 1474 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1475 &state->link_report_flags)) 1476 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN; 1477 if (test_bit(BNX2X_LINK_REPORT_FD, 1478 &state->link_report_flags)) 1479 bulletin->link_flags |= VFPF_LINK_REPORT_FULL_DUPLEX; 1480 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1481 &state->link_report_flags)) 1482 bulletin->link_flags |= VFPF_LINK_REPORT_RX_FC_ON; 1483 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1484 &state->link_report_flags)) 1485 bulletin->link_flags |= VFPF_LINK_REPORT_TX_FC_ON; 1486 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_DISABLE && 1487 !(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) { 1488 bulletin->valid_bitmap |= 1 << LINK_VALID; 1489 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN; 1490 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_ENABLE && 1491 (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) { 1492 bulletin->valid_bitmap |= 1 << LINK_VALID; 1493 bulletin->link_speed = bnx2x_max_speed_cap(bp); 1494 bulletin->link_flags &= ~VFPF_LINK_REPORT_LINK_DOWN; 1495 } else { 1496 update = false; 1497 } 1498 1499 if (update) { 1500 DP(NETIF_MSG_LINK | BNX2X_MSG_IOV, 1501 "vf %d mode %u speed %d flags %x\n", idx, 1502 vf->link_cfg, bulletin->link_speed, bulletin->link_flags); 1503 1504 /* Post update on VF's bulletin board */ 1505 rc = bnx2x_post_vf_bulletin(bp, idx); 1506 if (rc) { 1507 BNX2X_ERR("failed to update VF[%d] bulletin\n", idx); 1508 goto out; 1509 } 1510 } 1511 1512 out: 1513 mutex_unlock(&bp->vfdb->bulletin_mutex); 1514 return rc; 1515 } 1516 1517 int bnx2x_set_vf_link_state(struct net_device *dev, int idx, int link_state) 1518 { 1519 struct bnx2x *bp = netdev_priv(dev); 1520 struct bnx2x_virtf *vf = BP_VF(bp, idx); 1521 1522 if (!vf) 1523 return -EINVAL; 1524 1525 if (vf->link_cfg == link_state) 1526 return 0; /* nothing todo */ 1527 1528 vf->link_cfg = link_state; 1529 1530 return bnx2x_iov_link_update_vf(bp, idx); 1531 } 1532 1533 void bnx2x_iov_link_update(struct bnx2x *bp) 1534 { 1535 int vfid; 1536 1537 if (!IS_SRIOV(bp)) 1538 return; 1539 1540 for_each_vf(bp, vfid) 1541 bnx2x_iov_link_update_vf(bp, vfid); 1542 } 1543 1544 /* called by bnx2x_nic_load */ 1545 int bnx2x_iov_nic_init(struct bnx2x *bp) 1546 { 1547 int vfid; 1548 1549 if (!IS_SRIOV(bp)) { 1550 DP(BNX2X_MSG_IOV, "vfdb was not allocated\n"); 1551 return 0; 1552 } 1553 1554 DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn); 1555 1556 /* let FLR complete ... */ 1557 msleep(100); 1558 1559 /* initialize vf database */ 1560 for_each_vf(bp, vfid) { 1561 struct bnx2x_virtf *vf = BP_VF(bp, vfid); 1562 1563 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) * 1564 BNX2X_CIDS_PER_VF; 1565 1566 union cdu_context *base_cxt = (union cdu_context *) 1567 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr + 1568 (base_vf_cid & (ILT_PAGE_CIDS-1)); 1569 1570 DP(BNX2X_MSG_IOV, 1571 "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n", 1572 vf->abs_vfid, vf_sb_count(vf), base_vf_cid, 1573 BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt); 1574 1575 /* init statically provisioned resources */ 1576 bnx2x_iov_static_resc(bp, vf); 1577 1578 /* queues are initialized during VF-ACQUIRE */ 1579 vf->filter_state = 0; 1580 vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id); 1581 1582 bnx2x_init_credit_pool(&vf->vf_vlans_pool, 0, 1583 vf_vlan_rules_cnt(vf)); 1584 bnx2x_init_credit_pool(&vf->vf_macs_pool, 0, 1585 vf_mac_rules_cnt(vf)); 1586 1587 /* init mcast object - This object will be re-initialized 1588 * during VF-ACQUIRE with the proper cl_id and cid. 1589 * It needs to be initialized here so that it can be safely 1590 * handled by a subsequent FLR flow. 1591 */ 1592 bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF, 1593 0xFF, 0xFF, 0xFF, 1594 bnx2x_vf_sp(bp, vf, mcast_rdata), 1595 bnx2x_vf_sp_map(bp, vf, mcast_rdata), 1596 BNX2X_FILTER_MCAST_PENDING, 1597 &vf->filter_state, 1598 BNX2X_OBJ_TYPE_RX_TX); 1599 1600 /* set the mailbox message addresses */ 1601 BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *) 1602 (((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid * 1603 MBX_MSG_ALIGNED_SIZE); 1604 1605 BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping + 1606 vfid * MBX_MSG_ALIGNED_SIZE; 1607 1608 /* Enable vf mailbox */ 1609 bnx2x_vf_enable_mbx(bp, vf->abs_vfid); 1610 } 1611 1612 /* Final VF init */ 1613 for_each_vf(bp, vfid) { 1614 struct bnx2x_virtf *vf = BP_VF(bp, vfid); 1615 1616 /* fill in the BDF and bars */ 1617 vf->domain = bnx2x_vf_domain(bp, vfid); 1618 vf->bus = bnx2x_vf_bus(bp, vfid); 1619 vf->devfn = bnx2x_vf_devfn(bp, vfid); 1620 bnx2x_vf_set_bars(bp, vf); 1621 1622 DP(BNX2X_MSG_IOV, 1623 "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n", 1624 vf->abs_vfid, vf->bus, vf->devfn, 1625 (unsigned)vf->bars[0].bar, vf->bars[0].size, 1626 (unsigned)vf->bars[1].bar, vf->bars[1].size, 1627 (unsigned)vf->bars[2].bar, vf->bars[2].size); 1628 } 1629 1630 return 0; 1631 } 1632 1633 /* called by bnx2x_chip_cleanup */ 1634 int bnx2x_iov_chip_cleanup(struct bnx2x *bp) 1635 { 1636 int i; 1637 1638 if (!IS_SRIOV(bp)) 1639 return 0; 1640 1641 /* release all the VFs */ 1642 for_each_vf(bp, i) 1643 bnx2x_vf_release(bp, BP_VF(bp, i)); 1644 1645 return 0; 1646 } 1647 1648 /* called by bnx2x_init_hw_func, returns the next ilt line */ 1649 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line) 1650 { 1651 int i; 1652 struct bnx2x_ilt *ilt = BP_ILT(bp); 1653 1654 if (!IS_SRIOV(bp)) 1655 return line; 1656 1657 /* set vfs ilt lines */ 1658 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) { 1659 struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i); 1660 1661 ilt->lines[line+i].page = hw_cxt->addr; 1662 ilt->lines[line+i].page_mapping = hw_cxt->mapping; 1663 ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */ 1664 } 1665 return line + i; 1666 } 1667 1668 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid) 1669 { 1670 return ((cid >= BNX2X_FIRST_VF_CID) && 1671 ((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS)); 1672 } 1673 1674 static 1675 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp, 1676 struct bnx2x_vf_queue *vfq, 1677 union event_ring_elem *elem) 1678 { 1679 unsigned long ramrod_flags = 0; 1680 int rc = 0; 1681 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo); 1682 1683 /* Always push next commands out, don't wait here */ 1684 set_bit(RAMROD_CONT, &ramrod_flags); 1685 1686 switch (echo >> BNX2X_SWCID_SHIFT) { 1687 case BNX2X_FILTER_MAC_PENDING: 1688 rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem, 1689 &ramrod_flags); 1690 break; 1691 case BNX2X_FILTER_VLAN_PENDING: 1692 rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem, 1693 &ramrod_flags); 1694 break; 1695 default: 1696 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo); 1697 return; 1698 } 1699 if (rc < 0) 1700 BNX2X_ERR("Failed to schedule new commands: %d\n", rc); 1701 else if (rc > 0) 1702 DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n"); 1703 } 1704 1705 static 1706 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp, 1707 struct bnx2x_virtf *vf) 1708 { 1709 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 1710 int rc; 1711 1712 rparam.mcast_obj = &vf->mcast_obj; 1713 vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw); 1714 1715 /* If there are pending mcast commands - send them */ 1716 if (vf->mcast_obj.check_pending(&vf->mcast_obj)) { 1717 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 1718 if (rc < 0) 1719 BNX2X_ERR("Failed to send pending mcast commands: %d\n", 1720 rc); 1721 } 1722 } 1723 1724 static 1725 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp, 1726 struct bnx2x_virtf *vf) 1727 { 1728 smp_mb__before_atomic(); 1729 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state); 1730 smp_mb__after_atomic(); 1731 } 1732 1733 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp, 1734 struct bnx2x_virtf *vf) 1735 { 1736 vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw); 1737 } 1738 1739 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem) 1740 { 1741 struct bnx2x_virtf *vf; 1742 int qidx = 0, abs_vfid; 1743 u8 opcode; 1744 u16 cid = 0xffff; 1745 1746 if (!IS_SRIOV(bp)) 1747 return 1; 1748 1749 /* first get the cid - the only events we handle here are cfc-delete 1750 * and set-mac completion 1751 */ 1752 opcode = elem->message.opcode; 1753 1754 switch (opcode) { 1755 case EVENT_RING_OPCODE_CFC_DEL: 1756 cid = SW_CID(elem->message.data.cfc_del_event.cid); 1757 DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid); 1758 break; 1759 case EVENT_RING_OPCODE_CLASSIFICATION_RULES: 1760 case EVENT_RING_OPCODE_MULTICAST_RULES: 1761 case EVENT_RING_OPCODE_FILTERS_RULES: 1762 case EVENT_RING_OPCODE_RSS_UPDATE_RULES: 1763 cid = SW_CID(elem->message.data.eth_event.echo); 1764 DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid); 1765 break; 1766 case EVENT_RING_OPCODE_VF_FLR: 1767 abs_vfid = elem->message.data.vf_flr_event.vf_id; 1768 DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n", 1769 abs_vfid); 1770 goto get_vf; 1771 case EVENT_RING_OPCODE_MALICIOUS_VF: 1772 abs_vfid = elem->message.data.malicious_vf_event.vf_id; 1773 BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n", 1774 abs_vfid, 1775 elem->message.data.malicious_vf_event.err_id); 1776 goto get_vf; 1777 default: 1778 return 1; 1779 } 1780 1781 /* check if the cid is the VF range */ 1782 if (!bnx2x_iov_is_vf_cid(bp, cid)) { 1783 DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid); 1784 return 1; 1785 } 1786 1787 /* extract vf and rxq index from vf_cid - relies on the following: 1788 * 1. vfid on cid reflects the true abs_vfid 1789 * 2. The max number of VFs (per path) is 64 1790 */ 1791 qidx = cid & ((1 << BNX2X_VF_CID_WND)-1); 1792 abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1); 1793 get_vf: 1794 vf = bnx2x_vf_by_abs_fid(bp, abs_vfid); 1795 1796 if (!vf) { 1797 BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n", 1798 cid, abs_vfid); 1799 return 0; 1800 } 1801 1802 switch (opcode) { 1803 case EVENT_RING_OPCODE_CFC_DEL: 1804 DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n", 1805 vf->abs_vfid, qidx); 1806 vfq_get(vf, qidx)->sp_obj.complete_cmd(bp, 1807 &vfq_get(vf, 1808 qidx)->sp_obj, 1809 BNX2X_Q_CMD_CFC_DEL); 1810 break; 1811 case EVENT_RING_OPCODE_CLASSIFICATION_RULES: 1812 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n", 1813 vf->abs_vfid, qidx); 1814 bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem); 1815 break; 1816 case EVENT_RING_OPCODE_MULTICAST_RULES: 1817 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n", 1818 vf->abs_vfid, qidx); 1819 bnx2x_vf_handle_mcast_eqe(bp, vf); 1820 break; 1821 case EVENT_RING_OPCODE_FILTERS_RULES: 1822 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n", 1823 vf->abs_vfid, qidx); 1824 bnx2x_vf_handle_filters_eqe(bp, vf); 1825 break; 1826 case EVENT_RING_OPCODE_RSS_UPDATE_RULES: 1827 DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n", 1828 vf->abs_vfid, qidx); 1829 bnx2x_vf_handle_rss_update_eqe(bp, vf); 1830 /* fall through */ 1831 case EVENT_RING_OPCODE_VF_FLR: 1832 /* Do nothing for now */ 1833 return 0; 1834 case EVENT_RING_OPCODE_MALICIOUS_VF: 1835 vf->malicious = true; 1836 return 0; 1837 } 1838 1839 return 0; 1840 } 1841 1842 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid) 1843 { 1844 /* extract the vf from vf_cid - relies on the following: 1845 * 1. vfid on cid reflects the true abs_vfid 1846 * 2. The max number of VFs (per path) is 64 1847 */ 1848 int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1); 1849 return bnx2x_vf_by_abs_fid(bp, abs_vfid); 1850 } 1851 1852 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid, 1853 struct bnx2x_queue_sp_obj **q_obj) 1854 { 1855 struct bnx2x_virtf *vf; 1856 1857 if (!IS_SRIOV(bp)) 1858 return; 1859 1860 vf = bnx2x_vf_by_cid(bp, vf_cid); 1861 1862 if (vf) { 1863 /* extract queue index from vf_cid - relies on the following: 1864 * 1. vfid on cid reflects the true abs_vfid 1865 * 2. The max number of VFs (per path) is 64 1866 */ 1867 int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1); 1868 *q_obj = &bnx2x_vfq(vf, q_index, sp_obj); 1869 } else { 1870 BNX2X_ERR("No vf matching cid %d\n", vf_cid); 1871 } 1872 } 1873 1874 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp) 1875 { 1876 int i; 1877 int first_queue_query_index, num_queues_req; 1878 dma_addr_t cur_data_offset; 1879 struct stats_query_entry *cur_query_entry; 1880 u8 stats_count = 0; 1881 bool is_fcoe = false; 1882 1883 if (!IS_SRIOV(bp)) 1884 return; 1885 1886 if (!NO_FCOE(bp)) 1887 is_fcoe = true; 1888 1889 /* fcoe adds one global request and one queue request */ 1890 num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe; 1891 first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX - 1892 (is_fcoe ? 0 : 1); 1893 1894 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1895 "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n", 1896 BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index, 1897 first_queue_query_index + num_queues_req); 1898 1899 cur_data_offset = bp->fw_stats_data_mapping + 1900 offsetof(struct bnx2x_fw_stats_data, queue_stats) + 1901 num_queues_req * sizeof(struct per_queue_stats); 1902 1903 cur_query_entry = &bp->fw_stats_req-> 1904 query[first_queue_query_index + num_queues_req]; 1905 1906 for_each_vf(bp, i) { 1907 int j; 1908 struct bnx2x_virtf *vf = BP_VF(bp, i); 1909 1910 if (vf->state != VF_ENABLED) { 1911 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1912 "vf %d not enabled so no stats for it\n", 1913 vf->abs_vfid); 1914 continue; 1915 } 1916 1917 if (vf->malicious) { 1918 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1919 "vf %d malicious so no stats for it\n", 1920 vf->abs_vfid); 1921 continue; 1922 } 1923 1924 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1925 "add addresses for vf %d\n", vf->abs_vfid); 1926 for_each_vfq(vf, j) { 1927 struct bnx2x_vf_queue *rxq = vfq_get(vf, j); 1928 1929 dma_addr_t q_stats_addr = 1930 vf->fw_stat_map + j * vf->stats_stride; 1931 1932 /* collect stats fro active queues only */ 1933 if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) == 1934 BNX2X_Q_LOGICAL_STATE_STOPPED) 1935 continue; 1936 1937 /* create stats query entry for this queue */ 1938 cur_query_entry->kind = STATS_TYPE_QUEUE; 1939 cur_query_entry->index = vfq_stat_id(vf, rxq); 1940 cur_query_entry->funcID = 1941 cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid)); 1942 cur_query_entry->address.hi = 1943 cpu_to_le32(U64_HI(q_stats_addr)); 1944 cur_query_entry->address.lo = 1945 cpu_to_le32(U64_LO(q_stats_addr)); 1946 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1947 "added address %x %x for vf %d queue %d client %d\n", 1948 cur_query_entry->address.hi, 1949 cur_query_entry->address.lo, 1950 cur_query_entry->funcID, 1951 j, cur_query_entry->index); 1952 cur_query_entry++; 1953 cur_data_offset += sizeof(struct per_queue_stats); 1954 stats_count++; 1955 1956 /* all stats are coalesced to the leading queue */ 1957 if (vf->cfg_flags & VF_CFG_STATS_COALESCE) 1958 break; 1959 } 1960 } 1961 bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count; 1962 } 1963 1964 /* VF API helpers */ 1965 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid, 1966 u8 enable) 1967 { 1968 u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4; 1969 u32 val = enable ? (abs_vfid | (1 << 6)) : 0; 1970 1971 REG_WR(bp, reg, val); 1972 } 1973 1974 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf) 1975 { 1976 int i; 1977 1978 for_each_vfq(vf, i) 1979 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid, 1980 vfq_qzone_id(vf, vfq_get(vf, i)), false); 1981 } 1982 1983 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf) 1984 { 1985 u32 val; 1986 1987 /* clear the VF configuration - pretend */ 1988 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 1989 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION); 1990 val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN | 1991 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK); 1992 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val); 1993 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 1994 } 1995 1996 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf) 1997 { 1998 return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF), 1999 BNX2X_VF_MAX_QUEUES); 2000 } 2001 2002 static 2003 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf, 2004 struct vf_pf_resc_request *req_resc) 2005 { 2006 u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf); 2007 u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf); 2008 2009 return ((req_resc->num_rxqs <= rxq_cnt) && 2010 (req_resc->num_txqs <= txq_cnt) && 2011 (req_resc->num_sbs <= vf_sb_count(vf)) && 2012 (req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) && 2013 (req_resc->num_vlan_filters <= vf_vlan_rules_cnt(vf))); 2014 } 2015 2016 /* CORE VF API */ 2017 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf, 2018 struct vf_pf_resc_request *resc) 2019 { 2020 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) * 2021 BNX2X_CIDS_PER_VF; 2022 2023 union cdu_context *base_cxt = (union cdu_context *) 2024 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr + 2025 (base_vf_cid & (ILT_PAGE_CIDS-1)); 2026 int i; 2027 2028 /* if state is 'acquired' the VF was not released or FLR'd, in 2029 * this case the returned resources match the acquired already 2030 * acquired resources. Verify that the requested numbers do 2031 * not exceed the already acquired numbers. 2032 */ 2033 if (vf->state == VF_ACQUIRED) { 2034 DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n", 2035 vf->abs_vfid); 2036 2037 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) { 2038 BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n", 2039 vf->abs_vfid); 2040 return -EINVAL; 2041 } 2042 return 0; 2043 } 2044 2045 /* Otherwise vf state must be 'free' or 'reset' */ 2046 if (vf->state != VF_FREE && vf->state != VF_RESET) { 2047 BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n", 2048 vf->abs_vfid, vf->state); 2049 return -EINVAL; 2050 } 2051 2052 /* static allocation: 2053 * the global maximum number are fixed per VF. Fail the request if 2054 * requested number exceed these globals 2055 */ 2056 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) { 2057 DP(BNX2X_MSG_IOV, 2058 "cannot fulfill vf resource request. Placing maximal available values in response\n"); 2059 /* set the max resource in the vf */ 2060 return -ENOMEM; 2061 } 2062 2063 /* Set resources counters - 0 request means max available */ 2064 vf_sb_count(vf) = resc->num_sbs; 2065 vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf); 2066 vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf); 2067 2068 DP(BNX2X_MSG_IOV, 2069 "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n", 2070 vf_sb_count(vf), vf_rxq_count(vf), 2071 vf_txq_count(vf), vf_mac_rules_cnt(vf), 2072 vf_vlan_rules_cnt(vf)); 2073 2074 /* Initialize the queues */ 2075 if (!vf->vfqs) { 2076 DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n"); 2077 return -EINVAL; 2078 } 2079 2080 for_each_vfq(vf, i) { 2081 struct bnx2x_vf_queue *q = vfq_get(vf, i); 2082 2083 if (!q) { 2084 BNX2X_ERR("q number %d was not allocated\n", i); 2085 return -EINVAL; 2086 } 2087 2088 q->index = i; 2089 q->cxt = &((base_cxt + i)->eth); 2090 q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i; 2091 2092 DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n", 2093 vf->abs_vfid, i, q->index, q->cid, q->cxt); 2094 2095 /* init SP objects */ 2096 bnx2x_vfq_init(bp, vf, q); 2097 } 2098 vf->state = VF_ACQUIRED; 2099 return 0; 2100 } 2101 2102 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map) 2103 { 2104 struct bnx2x_func_init_params func_init = {0}; 2105 int i; 2106 2107 /* the sb resources are initialized at this point, do the 2108 * FW/HW initializations 2109 */ 2110 for_each_vf_sb(vf, i) 2111 bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true, 2112 vf_igu_sb(vf, i), vf_igu_sb(vf, i)); 2113 2114 /* Sanity checks */ 2115 if (vf->state != VF_ACQUIRED) { 2116 DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n", 2117 vf->abs_vfid, vf->state); 2118 return -EINVAL; 2119 } 2120 2121 /* let FLR complete ... */ 2122 msleep(100); 2123 2124 /* FLR cleanup epilogue */ 2125 if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid)) 2126 return -EBUSY; 2127 2128 /* reset IGU VF statistics: MSIX */ 2129 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0); 2130 2131 /* function setup */ 2132 func_init.pf_id = BP_FUNC(bp); 2133 func_init.func_id = FW_VF_HANDLE(vf->abs_vfid); 2134 bnx2x_func_init(bp, &func_init); 2135 2136 /* Enable the vf */ 2137 bnx2x_vf_enable_access(bp, vf->abs_vfid); 2138 bnx2x_vf_enable_traffic(bp, vf); 2139 2140 /* queue protection table */ 2141 for_each_vfq(vf, i) 2142 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid, 2143 vfq_qzone_id(vf, vfq_get(vf, i)), true); 2144 2145 vf->state = VF_ENABLED; 2146 2147 /* update vf bulletin board */ 2148 bnx2x_post_vf_bulletin(bp, vf->index); 2149 2150 return 0; 2151 } 2152 2153 struct set_vf_state_cookie { 2154 struct bnx2x_virtf *vf; 2155 u8 state; 2156 }; 2157 2158 static void bnx2x_set_vf_state(void *cookie) 2159 { 2160 struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie; 2161 2162 p->vf->state = p->state; 2163 } 2164 2165 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf) 2166 { 2167 int rc = 0, i; 2168 2169 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 2170 2171 /* Close all queues */ 2172 for (i = 0; i < vf_rxq_count(vf); i++) { 2173 rc = bnx2x_vf_queue_teardown(bp, vf, i); 2174 if (rc) 2175 goto op_err; 2176 } 2177 2178 /* disable the interrupts */ 2179 DP(BNX2X_MSG_IOV, "disabling igu\n"); 2180 bnx2x_vf_igu_disable(bp, vf); 2181 2182 /* disable the VF */ 2183 DP(BNX2X_MSG_IOV, "clearing qtbl\n"); 2184 bnx2x_vf_clr_qtbl(bp, vf); 2185 2186 /* need to make sure there are no outstanding stats ramrods which may 2187 * cause the device to access the VF's stats buffer which it will free 2188 * as soon as we return from the close flow. 2189 */ 2190 { 2191 struct set_vf_state_cookie cookie; 2192 2193 cookie.vf = vf; 2194 cookie.state = VF_ACQUIRED; 2195 rc = bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie); 2196 if (rc) 2197 goto op_err; 2198 } 2199 2200 DP(BNX2X_MSG_IOV, "set state to acquired\n"); 2201 2202 return 0; 2203 op_err: 2204 BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc); 2205 return rc; 2206 } 2207 2208 /* VF release can be called either: 1. The VF was acquired but 2209 * not enabled 2. the vf was enabled or in the process of being 2210 * enabled 2211 */ 2212 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf) 2213 { 2214 int rc; 2215 2216 DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid, 2217 vf->state == VF_FREE ? "Free" : 2218 vf->state == VF_ACQUIRED ? "Acquired" : 2219 vf->state == VF_ENABLED ? "Enabled" : 2220 vf->state == VF_RESET ? "Reset" : 2221 "Unknown"); 2222 2223 switch (vf->state) { 2224 case VF_ENABLED: 2225 rc = bnx2x_vf_close(bp, vf); 2226 if (rc) 2227 goto op_err; 2228 /* Fallthrough to release resources */ 2229 case VF_ACQUIRED: 2230 DP(BNX2X_MSG_IOV, "about to free resources\n"); 2231 bnx2x_vf_free_resc(bp, vf); 2232 break; 2233 2234 case VF_FREE: 2235 case VF_RESET: 2236 default: 2237 break; 2238 } 2239 return 0; 2240 op_err: 2241 BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc); 2242 return rc; 2243 } 2244 2245 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf, 2246 struct bnx2x_config_rss_params *rss) 2247 { 2248 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 2249 set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags); 2250 return bnx2x_config_rss(bp, rss); 2251 } 2252 2253 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf, 2254 struct vfpf_tpa_tlv *tlv, 2255 struct bnx2x_queue_update_tpa_params *params) 2256 { 2257 aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr; 2258 struct bnx2x_queue_state_params qstate; 2259 int qid, rc = 0; 2260 2261 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 2262 2263 /* Set ramrod params */ 2264 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params)); 2265 memcpy(&qstate.params.update_tpa, params, 2266 sizeof(struct bnx2x_queue_update_tpa_params)); 2267 qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA; 2268 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags); 2269 2270 for (qid = 0; qid < vf_rxq_count(vf); qid++) { 2271 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj); 2272 qstate.params.update_tpa.sge_map = sge_addr[qid]; 2273 DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n", 2274 vf->abs_vfid, qid, U64_HI(sge_addr[qid]), 2275 U64_LO(sge_addr[qid])); 2276 rc = bnx2x_queue_state_change(bp, &qstate); 2277 if (rc) { 2278 BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n", 2279 U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]), 2280 vf->abs_vfid, qid); 2281 return rc; 2282 } 2283 } 2284 2285 return rc; 2286 } 2287 2288 /* VF release ~ VF close + VF release-resources 2289 * Release is the ultimate SW shutdown and is called whenever an 2290 * irrecoverable error is encountered. 2291 */ 2292 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf) 2293 { 2294 int rc; 2295 2296 DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid); 2297 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF); 2298 2299 rc = bnx2x_vf_free(bp, vf); 2300 if (rc) 2301 WARN(rc, 2302 "VF[%d] Failed to allocate resources for release op- rc=%d\n", 2303 vf->abs_vfid, rc); 2304 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF); 2305 return rc; 2306 } 2307 2308 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf, 2309 enum channel_tlvs tlv) 2310 { 2311 /* we don't lock the channel for unsupported tlvs */ 2312 if (!bnx2x_tlv_supported(tlv)) { 2313 BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n"); 2314 return; 2315 } 2316 2317 /* lock the channel */ 2318 mutex_lock(&vf->op_mutex); 2319 2320 /* record the locking op */ 2321 vf->op_current = tlv; 2322 2323 /* log the lock */ 2324 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n", 2325 vf->abs_vfid, tlv); 2326 } 2327 2328 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf, 2329 enum channel_tlvs expected_tlv) 2330 { 2331 enum channel_tlvs current_tlv; 2332 2333 if (!vf) { 2334 BNX2X_ERR("VF was %p\n", vf); 2335 return; 2336 } 2337 2338 current_tlv = vf->op_current; 2339 2340 /* we don't unlock the channel for unsupported tlvs */ 2341 if (!bnx2x_tlv_supported(expected_tlv)) 2342 return; 2343 2344 WARN(expected_tlv != vf->op_current, 2345 "lock mismatch: expected %d found %d", expected_tlv, 2346 vf->op_current); 2347 2348 /* record the locking op */ 2349 vf->op_current = CHANNEL_TLV_NONE; 2350 2351 /* lock the channel */ 2352 mutex_unlock(&vf->op_mutex); 2353 2354 /* log the unlock */ 2355 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n", 2356 vf->abs_vfid, current_tlv); 2357 } 2358 2359 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable) 2360 { 2361 struct bnx2x_queue_state_params q_params; 2362 u32 prev_flags; 2363 int i, rc; 2364 2365 /* Verify changes are needed and record current Tx switching state */ 2366 prev_flags = bp->flags; 2367 if (enable) 2368 bp->flags |= TX_SWITCHING; 2369 else 2370 bp->flags &= ~TX_SWITCHING; 2371 if (prev_flags == bp->flags) 2372 return 0; 2373 2374 /* Verify state enables the sending of queue ramrods */ 2375 if ((bp->state != BNX2X_STATE_OPEN) || 2376 (bnx2x_get_q_logical_state(bp, 2377 &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) != 2378 BNX2X_Q_LOGICAL_STATE_ACTIVE)) 2379 return 0; 2380 2381 /* send q. update ramrod to configure Tx switching */ 2382 memset(&q_params, 0, sizeof(q_params)); 2383 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 2384 q_params.cmd = BNX2X_Q_CMD_UPDATE; 2385 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG, 2386 &q_params.params.update.update_flags); 2387 if (enable) 2388 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING, 2389 &q_params.params.update.update_flags); 2390 else 2391 __clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING, 2392 &q_params.params.update.update_flags); 2393 2394 /* send the ramrod on all the queues of the PF */ 2395 for_each_eth_queue(bp, i) { 2396 struct bnx2x_fastpath *fp = &bp->fp[i]; 2397 2398 /* Set the appropriate Queue object */ 2399 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 2400 2401 /* Update the Queue state */ 2402 rc = bnx2x_queue_state_change(bp, &q_params); 2403 if (rc) { 2404 BNX2X_ERR("Failed to configure Tx switching\n"); 2405 return rc; 2406 } 2407 } 2408 2409 DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled"); 2410 return 0; 2411 } 2412 2413 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param) 2414 { 2415 struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev)); 2416 2417 if (!IS_SRIOV(bp)) { 2418 BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n"); 2419 return -EINVAL; 2420 } 2421 2422 DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n", 2423 num_vfs_param, BNX2X_NR_VIRTFN(bp)); 2424 2425 /* HW channel is only operational when PF is up */ 2426 if (bp->state != BNX2X_STATE_OPEN) { 2427 BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n"); 2428 return -EINVAL; 2429 } 2430 2431 /* we are always bound by the total_vfs in the configuration space */ 2432 if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) { 2433 BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n", 2434 num_vfs_param, BNX2X_NR_VIRTFN(bp)); 2435 num_vfs_param = BNX2X_NR_VIRTFN(bp); 2436 } 2437 2438 bp->requested_nr_virtfn = num_vfs_param; 2439 if (num_vfs_param == 0) { 2440 bnx2x_set_pf_tx_switching(bp, false); 2441 bnx2x_disable_sriov(bp); 2442 return 0; 2443 } else { 2444 return bnx2x_enable_sriov(bp); 2445 } 2446 } 2447 2448 #define IGU_ENTRY_SIZE 4 2449 2450 int bnx2x_enable_sriov(struct bnx2x *bp) 2451 { 2452 int rc = 0, req_vfs = bp->requested_nr_virtfn; 2453 int vf_idx, sb_idx, vfq_idx, qcount, first_vf; 2454 u32 igu_entry, address; 2455 u16 num_vf_queues; 2456 2457 if (req_vfs == 0) 2458 return 0; 2459 2460 first_vf = bp->vfdb->sriov.first_vf_in_pf; 2461 2462 /* statically distribute vf sb pool between VFs */ 2463 num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES, 2464 BP_VFDB(bp)->vf_sbs_pool / req_vfs); 2465 2466 /* zero previous values learned from igu cam */ 2467 for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) { 2468 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx); 2469 2470 vf->sb_count = 0; 2471 vf_sb_count(BP_VF(bp, vf_idx)) = 0; 2472 } 2473 bp->vfdb->vf_sbs_pool = 0; 2474 2475 /* prepare IGU cam */ 2476 sb_idx = BP_VFDB(bp)->first_vf_igu_entry; 2477 address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE; 2478 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) { 2479 for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) { 2480 igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT | 2481 vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT | 2482 IGU_REG_MAPPING_MEMORY_VALID; 2483 DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n", 2484 sb_idx, vf_idx); 2485 REG_WR(bp, address, igu_entry); 2486 sb_idx++; 2487 address += IGU_ENTRY_SIZE; 2488 } 2489 } 2490 2491 /* Reinitialize vf database according to igu cam */ 2492 bnx2x_get_vf_igu_cam_info(bp); 2493 2494 DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n", 2495 BP_VFDB(bp)->vf_sbs_pool, num_vf_queues); 2496 2497 qcount = 0; 2498 for_each_vf(bp, vf_idx) { 2499 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx); 2500 2501 /* set local queue arrays */ 2502 vf->vfqs = &bp->vfdb->vfqs[qcount]; 2503 qcount += vf_sb_count(vf); 2504 bnx2x_iov_static_resc(bp, vf); 2505 } 2506 2507 /* prepare msix vectors in VF configuration space - the value in the 2508 * PCI configuration space should be the index of the last entry, 2509 * namely one less than the actual size of the table 2510 */ 2511 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) { 2512 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx)); 2513 REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL, 2514 num_vf_queues - 1); 2515 DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n", 2516 vf_idx, num_vf_queues - 1); 2517 } 2518 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 2519 2520 /* enable sriov. This will probe all the VFs, and consequentially cause 2521 * the "acquire" messages to appear on the VF PF channel. 2522 */ 2523 DP(BNX2X_MSG_IOV, "about to call enable sriov\n"); 2524 bnx2x_disable_sriov(bp); 2525 2526 rc = bnx2x_set_pf_tx_switching(bp, true); 2527 if (rc) 2528 return rc; 2529 2530 rc = pci_enable_sriov(bp->pdev, req_vfs); 2531 if (rc) { 2532 BNX2X_ERR("pci_enable_sriov failed with %d\n", rc); 2533 return rc; 2534 } 2535 DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs); 2536 return req_vfs; 2537 } 2538 2539 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp) 2540 { 2541 int vfidx; 2542 struct pf_vf_bulletin_content *bulletin; 2543 2544 DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n"); 2545 for_each_vf(bp, vfidx) { 2546 bulletin = BP_VF_BULLETIN(bp, vfidx); 2547 if (bulletin->valid_bitmap & (1 << VLAN_VALID)) 2548 bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0, 2549 htons(ETH_P_8021Q)); 2550 } 2551 } 2552 2553 void bnx2x_disable_sriov(struct bnx2x *bp) 2554 { 2555 if (pci_vfs_assigned(bp->pdev)) { 2556 DP(BNX2X_MSG_IOV, 2557 "Unloading driver while VFs are assigned - VFs will not be deallocated\n"); 2558 return; 2559 } 2560 2561 pci_disable_sriov(bp->pdev); 2562 } 2563 2564 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx, 2565 struct bnx2x_virtf **vf, 2566 struct pf_vf_bulletin_content **bulletin, 2567 bool test_queue) 2568 { 2569 if (bp->state != BNX2X_STATE_OPEN) { 2570 BNX2X_ERR("PF is down - can't utilize iov-related functionality\n"); 2571 return -EINVAL; 2572 } 2573 2574 if (!IS_SRIOV(bp)) { 2575 BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n"); 2576 return -EINVAL; 2577 } 2578 2579 if (vfidx >= BNX2X_NR_VIRTFN(bp)) { 2580 BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n", 2581 vfidx, BNX2X_NR_VIRTFN(bp)); 2582 return -EINVAL; 2583 } 2584 2585 /* init members */ 2586 *vf = BP_VF(bp, vfidx); 2587 *bulletin = BP_VF_BULLETIN(bp, vfidx); 2588 2589 if (!*vf) { 2590 BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx); 2591 return -EINVAL; 2592 } 2593 2594 if (test_queue && !(*vf)->vfqs) { 2595 BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n", 2596 vfidx); 2597 return -EINVAL; 2598 } 2599 2600 if (!*bulletin) { 2601 BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n", 2602 vfidx); 2603 return -EINVAL; 2604 } 2605 2606 return 0; 2607 } 2608 2609 int bnx2x_get_vf_config(struct net_device *dev, int vfidx, 2610 struct ifla_vf_info *ivi) 2611 { 2612 struct bnx2x *bp = netdev_priv(dev); 2613 struct bnx2x_virtf *vf = NULL; 2614 struct pf_vf_bulletin_content *bulletin = NULL; 2615 struct bnx2x_vlan_mac_obj *mac_obj; 2616 struct bnx2x_vlan_mac_obj *vlan_obj; 2617 int rc; 2618 2619 /* sanity and init */ 2620 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true); 2621 if (rc) 2622 return rc; 2623 2624 mac_obj = &bnx2x_leading_vfq(vf, mac_obj); 2625 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj); 2626 if (!mac_obj || !vlan_obj) { 2627 BNX2X_ERR("VF partially initialized\n"); 2628 return -EINVAL; 2629 } 2630 2631 ivi->vf = vfidx; 2632 ivi->qos = 0; 2633 ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */ 2634 ivi->min_tx_rate = 0; 2635 ivi->spoofchk = 1; /*always enabled */ 2636 if (vf->state == VF_ENABLED) { 2637 /* mac and vlan are in vlan_mac objects */ 2638 if (bnx2x_validate_vf_sp_objs(bp, vf, false)) { 2639 mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac, 2640 0, ETH_ALEN); 2641 vlan_obj->get_n_elements(bp, vlan_obj, 1, 2642 (u8 *)&ivi->vlan, 0, 2643 VLAN_HLEN); 2644 } 2645 } else { 2646 mutex_lock(&bp->vfdb->bulletin_mutex); 2647 /* mac */ 2648 if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID)) 2649 /* mac configured by ndo so its in bulletin board */ 2650 memcpy(&ivi->mac, bulletin->mac, ETH_ALEN); 2651 else 2652 /* function has not been loaded yet. Show mac as 0s */ 2653 eth_zero_addr(ivi->mac); 2654 2655 /* vlan */ 2656 if (bulletin->valid_bitmap & (1 << VLAN_VALID)) 2657 /* vlan configured by ndo so its in bulletin board */ 2658 memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN); 2659 else 2660 /* function has not been loaded yet. Show vlans as 0s */ 2661 memset(&ivi->vlan, 0, VLAN_HLEN); 2662 2663 mutex_unlock(&bp->vfdb->bulletin_mutex); 2664 } 2665 2666 return 0; 2667 } 2668 2669 /* New mac for VF. Consider these cases: 2670 * 1. VF hasn't been acquired yet - save the mac in local bulletin board and 2671 * supply at acquire. 2672 * 2. VF has already been acquired but has not yet initialized - store in local 2673 * bulletin board. mac will be posted on VF bulletin board after VF init. VF 2674 * will configure this mac when it is ready. 2675 * 3. VF has already initialized but has not yet setup a queue - post the new 2676 * mac on VF's bulletin board right now. VF will configure this mac when it 2677 * is ready. 2678 * 4. VF has already set a queue - delete any macs already configured for this 2679 * queue and manually config the new mac. 2680 * In any event, once this function has been called refuse any attempts by the 2681 * VF to configure any mac for itself except for this mac. In case of a race 2682 * where the VF fails to see the new post on its bulletin board before sending a 2683 * mac configuration request, the PF will simply fail the request and VF can try 2684 * again after consulting its bulletin board. 2685 */ 2686 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac) 2687 { 2688 struct bnx2x *bp = netdev_priv(dev); 2689 int rc, q_logical_state; 2690 struct bnx2x_virtf *vf = NULL; 2691 struct pf_vf_bulletin_content *bulletin = NULL; 2692 2693 if (!is_valid_ether_addr(mac)) { 2694 BNX2X_ERR("mac address invalid\n"); 2695 return -EINVAL; 2696 } 2697 2698 /* sanity and init */ 2699 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true); 2700 if (rc) 2701 return rc; 2702 2703 mutex_lock(&bp->vfdb->bulletin_mutex); 2704 2705 /* update PF's copy of the VF's bulletin. Will no longer accept mac 2706 * configuration requests from vf unless match this mac 2707 */ 2708 bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID; 2709 memcpy(bulletin->mac, mac, ETH_ALEN); 2710 2711 /* Post update on VF's bulletin board */ 2712 rc = bnx2x_post_vf_bulletin(bp, vfidx); 2713 2714 /* release lock before checking return code */ 2715 mutex_unlock(&bp->vfdb->bulletin_mutex); 2716 2717 if (rc) { 2718 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx); 2719 return rc; 2720 } 2721 2722 q_logical_state = 2723 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)); 2724 if (vf->state == VF_ENABLED && 2725 q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) { 2726 /* configure the mac in device on this vf's queue */ 2727 unsigned long ramrod_flags = 0; 2728 struct bnx2x_vlan_mac_obj *mac_obj; 2729 2730 /* User should be able to see failure reason in system logs */ 2731 if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) 2732 return -EINVAL; 2733 2734 /* must lock vfpf channel to protect against vf flows */ 2735 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC); 2736 2737 /* remove existing eth macs */ 2738 mac_obj = &bnx2x_leading_vfq(vf, mac_obj); 2739 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true); 2740 if (rc) { 2741 BNX2X_ERR("failed to delete eth macs\n"); 2742 rc = -EINVAL; 2743 goto out; 2744 } 2745 2746 /* remove existing uc list macs */ 2747 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true); 2748 if (rc) { 2749 BNX2X_ERR("failed to delete uc_list macs\n"); 2750 rc = -EINVAL; 2751 goto out; 2752 } 2753 2754 /* configure the new mac to device */ 2755 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2756 bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true, 2757 BNX2X_ETH_MAC, &ramrod_flags); 2758 2759 out: 2760 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC); 2761 } 2762 2763 return rc; 2764 } 2765 2766 static void bnx2x_set_vf_vlan_acceptance(struct bnx2x *bp, 2767 struct bnx2x_virtf *vf, bool accept) 2768 { 2769 struct bnx2x_rx_mode_ramrod_params rx_ramrod; 2770 unsigned long accept_flags; 2771 2772 /* need to remove/add the VF's accept_any_vlan bit */ 2773 accept_flags = bnx2x_leading_vfq(vf, accept_flags); 2774 if (accept) 2775 set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); 2776 else 2777 clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); 2778 2779 bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf, 2780 accept_flags); 2781 bnx2x_leading_vfq(vf, accept_flags) = accept_flags; 2782 bnx2x_config_rx_mode(bp, &rx_ramrod); 2783 } 2784 2785 static int bnx2x_set_vf_vlan_filter(struct bnx2x *bp, struct bnx2x_virtf *vf, 2786 u16 vlan, bool add) 2787 { 2788 struct bnx2x_vlan_mac_ramrod_params ramrod_param; 2789 unsigned long ramrod_flags = 0; 2790 int rc = 0; 2791 2792 /* configure the new vlan to device */ 2793 memset(&ramrod_param, 0, sizeof(ramrod_param)); 2794 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2795 ramrod_param.vlan_mac_obj = &bnx2x_leading_vfq(vf, vlan_obj); 2796 ramrod_param.ramrod_flags = ramrod_flags; 2797 ramrod_param.user_req.u.vlan.vlan = vlan; 2798 ramrod_param.user_req.cmd = add ? BNX2X_VLAN_MAC_ADD 2799 : BNX2X_VLAN_MAC_DEL; 2800 rc = bnx2x_config_vlan_mac(bp, &ramrod_param); 2801 if (rc) { 2802 BNX2X_ERR("failed to configure vlan\n"); 2803 return -EINVAL; 2804 } 2805 2806 return 0; 2807 } 2808 2809 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos, 2810 __be16 vlan_proto) 2811 { 2812 struct pf_vf_bulletin_content *bulletin = NULL; 2813 struct bnx2x *bp = netdev_priv(dev); 2814 struct bnx2x_vlan_mac_obj *vlan_obj; 2815 unsigned long vlan_mac_flags = 0; 2816 unsigned long ramrod_flags = 0; 2817 struct bnx2x_virtf *vf = NULL; 2818 int i, rc; 2819 2820 if (vlan > 4095) { 2821 BNX2X_ERR("illegal vlan value %d\n", vlan); 2822 return -EINVAL; 2823 } 2824 2825 if (vlan_proto != htons(ETH_P_8021Q)) 2826 return -EPROTONOSUPPORT; 2827 2828 DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n", 2829 vfidx, vlan, 0); 2830 2831 /* sanity and init */ 2832 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true); 2833 if (rc) 2834 return rc; 2835 2836 /* update PF's copy of the VF's bulletin. No point in posting the vlan 2837 * to the VF since it doesn't have anything to do with it. But it useful 2838 * to store it here in case the VF is not up yet and we can only 2839 * configure the vlan later when it does. Treat vlan id 0 as remove the 2840 * Host tag. 2841 */ 2842 mutex_lock(&bp->vfdb->bulletin_mutex); 2843 2844 if (vlan > 0) 2845 bulletin->valid_bitmap |= 1 << VLAN_VALID; 2846 else 2847 bulletin->valid_bitmap &= ~(1 << VLAN_VALID); 2848 bulletin->vlan = vlan; 2849 2850 /* Post update on VF's bulletin board */ 2851 rc = bnx2x_post_vf_bulletin(bp, vfidx); 2852 if (rc) 2853 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx); 2854 mutex_unlock(&bp->vfdb->bulletin_mutex); 2855 2856 /* is vf initialized and queue set up? */ 2857 if (vf->state != VF_ENABLED || 2858 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) != 2859 BNX2X_Q_LOGICAL_STATE_ACTIVE) 2860 return rc; 2861 2862 /* User should be able to see error in system logs */ 2863 if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) 2864 return -EINVAL; 2865 2866 /* must lock vfpf channel to protect against vf flows */ 2867 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN); 2868 2869 /* remove existing vlans */ 2870 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2871 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj); 2872 rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags, 2873 &ramrod_flags); 2874 if (rc) { 2875 BNX2X_ERR("failed to delete vlans\n"); 2876 rc = -EINVAL; 2877 goto out; 2878 } 2879 2880 /* clear accept_any_vlan when HV forces vlan, otherwise 2881 * according to VF capabilities 2882 */ 2883 if (vlan || !(vf->cfg_flags & VF_CFG_VLAN_FILTER)) 2884 bnx2x_set_vf_vlan_acceptance(bp, vf, !vlan); 2885 2886 rc = bnx2x_set_vf_vlan_filter(bp, vf, vlan, true); 2887 if (rc) 2888 goto out; 2889 2890 /* send queue update ramrods to configure default vlan and 2891 * silent vlan removal 2892 */ 2893 for_each_vfq(vf, i) { 2894 struct bnx2x_queue_state_params q_params = {NULL}; 2895 struct bnx2x_queue_update_params *update_params; 2896 2897 q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj); 2898 2899 /* validate the Q is UP */ 2900 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) != 2901 BNX2X_Q_LOGICAL_STATE_ACTIVE) 2902 continue; 2903 2904 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 2905 q_params.cmd = BNX2X_Q_CMD_UPDATE; 2906 update_params = &q_params.params.update; 2907 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG, 2908 &update_params->update_flags); 2909 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG, 2910 &update_params->update_flags); 2911 if (vlan == 0) { 2912 /* if vlan is 0 then we want to leave the VF traffic 2913 * untagged, and leave the incoming traffic untouched 2914 * (i.e. do not remove any vlan tags). 2915 */ 2916 __clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, 2917 &update_params->update_flags); 2918 __clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, 2919 &update_params->update_flags); 2920 } else { 2921 /* configure default vlan to vf queue and set silent 2922 * vlan removal (the vf remains unaware of this vlan). 2923 */ 2924 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, 2925 &update_params->update_flags); 2926 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, 2927 &update_params->update_flags); 2928 update_params->def_vlan = vlan; 2929 update_params->silent_removal_value = 2930 vlan & VLAN_VID_MASK; 2931 update_params->silent_removal_mask = VLAN_VID_MASK; 2932 } 2933 2934 /* Update the Queue state */ 2935 rc = bnx2x_queue_state_change(bp, &q_params); 2936 if (rc) { 2937 BNX2X_ERR("Failed to configure default VLAN queue %d\n", 2938 i); 2939 goto out; 2940 } 2941 } 2942 out: 2943 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN); 2944 2945 if (rc) 2946 DP(BNX2X_MSG_IOV, 2947 "updated VF[%d] vlan configuration (vlan = %d)\n", 2948 vfidx, vlan); 2949 2950 return rc; 2951 } 2952 2953 /* crc is the first field in the bulletin board. Compute the crc over the 2954 * entire bulletin board excluding the crc field itself. Use the length field 2955 * as the Bulletin Board was posted by a PF with possibly a different version 2956 * from the vf which will sample it. Therefore, the length is computed by the 2957 * PF and then used blindly by the VF. 2958 */ 2959 u32 bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content *bulletin) 2960 { 2961 return crc32(BULLETIN_CRC_SEED, 2962 ((u8 *)bulletin) + sizeof(bulletin->crc), 2963 bulletin->length - sizeof(bulletin->crc)); 2964 } 2965 2966 /* Check for new posts on the bulletin board */ 2967 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp) 2968 { 2969 struct pf_vf_bulletin_content *bulletin; 2970 int attempts; 2971 2972 /* sampling structure in mid post may result with corrupted data 2973 * validate crc to ensure coherency. 2974 */ 2975 for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) { 2976 u32 crc; 2977 2978 /* sample the bulletin board */ 2979 memcpy(&bp->shadow_bulletin, bp->pf2vf_bulletin, 2980 sizeof(union pf_vf_bulletin)); 2981 2982 crc = bnx2x_crc_vf_bulletin(&bp->shadow_bulletin.content); 2983 2984 if (bp->shadow_bulletin.content.crc == crc) 2985 break; 2986 2987 BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n", 2988 bp->shadow_bulletin.content.crc, crc); 2989 } 2990 2991 if (attempts >= BULLETIN_ATTEMPTS) { 2992 BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n", 2993 attempts); 2994 return PFVF_BULLETIN_CRC_ERR; 2995 } 2996 bulletin = &bp->shadow_bulletin.content; 2997 2998 /* bulletin board hasn't changed since last sample */ 2999 if (bp->old_bulletin.version == bulletin->version) 3000 return PFVF_BULLETIN_UNCHANGED; 3001 3002 /* the mac address in bulletin board is valid and is new */ 3003 if (bulletin->valid_bitmap & 1 << MAC_ADDR_VALID && 3004 !ether_addr_equal(bulletin->mac, bp->old_bulletin.mac)) { 3005 /* update new mac to net device */ 3006 memcpy(bp->dev->dev_addr, bulletin->mac, ETH_ALEN); 3007 } 3008 3009 if (bulletin->valid_bitmap & (1 << LINK_VALID)) { 3010 DP(BNX2X_MSG_IOV, "link update speed %d flags %x\n", 3011 bulletin->link_speed, bulletin->link_flags); 3012 3013 bp->vf_link_vars.line_speed = bulletin->link_speed; 3014 bp->vf_link_vars.link_report_flags = 0; 3015 /* Link is down */ 3016 if (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN) 3017 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 3018 &bp->vf_link_vars.link_report_flags); 3019 /* Full DUPLEX */ 3020 if (bulletin->link_flags & VFPF_LINK_REPORT_FULL_DUPLEX) 3021 __set_bit(BNX2X_LINK_REPORT_FD, 3022 &bp->vf_link_vars.link_report_flags); 3023 /* Rx Flow Control is ON */ 3024 if (bulletin->link_flags & VFPF_LINK_REPORT_RX_FC_ON) 3025 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON, 3026 &bp->vf_link_vars.link_report_flags); 3027 /* Tx Flow Control is ON */ 3028 if (bulletin->link_flags & VFPF_LINK_REPORT_TX_FC_ON) 3029 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON, 3030 &bp->vf_link_vars.link_report_flags); 3031 __bnx2x_link_report(bp); 3032 } 3033 3034 /* copy new bulletin board to bp */ 3035 memcpy(&bp->old_bulletin, bulletin, 3036 sizeof(struct pf_vf_bulletin_content)); 3037 3038 return PFVF_BULLETIN_UPDATED; 3039 } 3040 3041 void bnx2x_timer_sriov(struct bnx2x *bp) 3042 { 3043 bnx2x_sample_bulletin(bp); 3044 3045 /* if channel is down we need to self destruct */ 3046 if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN) 3047 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, 3048 BNX2X_MSG_IOV); 3049 } 3050 3051 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp) 3052 { 3053 /* vf doorbells are embedded within the regview */ 3054 return bp->regview + PXP_VF_ADDR_DB_START; 3055 } 3056 3057 void bnx2x_vf_pci_dealloc(struct bnx2x *bp) 3058 { 3059 BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping, 3060 sizeof(struct bnx2x_vf_mbx_msg)); 3061 BNX2X_PCI_FREE(bp->pf2vf_bulletin, bp->pf2vf_bulletin_mapping, 3062 sizeof(union pf_vf_bulletin)); 3063 } 3064 3065 int bnx2x_vf_pci_alloc(struct bnx2x *bp) 3066 { 3067 mutex_init(&bp->vf2pf_mutex); 3068 3069 /* allocate vf2pf mailbox for vf to pf channel */ 3070 bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping, 3071 sizeof(struct bnx2x_vf_mbx_msg)); 3072 if (!bp->vf2pf_mbox) 3073 goto alloc_mem_err; 3074 3075 /* allocate pf 2 vf bulletin board */ 3076 bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping, 3077 sizeof(union pf_vf_bulletin)); 3078 if (!bp->pf2vf_bulletin) 3079 goto alloc_mem_err; 3080 3081 bnx2x_vf_bulletin_finalize(&bp->pf2vf_bulletin->content, true); 3082 3083 return 0; 3084 3085 alloc_mem_err: 3086 bnx2x_vf_pci_dealloc(bp); 3087 return -ENOMEM; 3088 } 3089 3090 void bnx2x_iov_channel_down(struct bnx2x *bp) 3091 { 3092 int vf_idx; 3093 struct pf_vf_bulletin_content *bulletin; 3094 3095 if (!IS_SRIOV(bp)) 3096 return; 3097 3098 for_each_vf(bp, vf_idx) { 3099 /* locate this VFs bulletin board and update the channel down 3100 * bit 3101 */ 3102 bulletin = BP_VF_BULLETIN(bp, vf_idx); 3103 bulletin->valid_bitmap |= 1 << CHANNEL_DOWN; 3104 3105 /* update vf bulletin board */ 3106 bnx2x_post_vf_bulletin(bp, vf_idx); 3107 } 3108 } 3109 3110 void bnx2x_iov_task(struct work_struct *work) 3111 { 3112 struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work); 3113 3114 if (!netif_running(bp->dev)) 3115 return; 3116 3117 if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR, 3118 &bp->iov_task_state)) 3119 bnx2x_vf_handle_flr_event(bp); 3120 3121 if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG, 3122 &bp->iov_task_state)) 3123 bnx2x_vf_mbx(bp); 3124 } 3125 3126 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag) 3127 { 3128 smp_mb__before_atomic(); 3129 set_bit(flag, &bp->iov_task_state); 3130 smp_mb__after_atomic(); 3131 DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag); 3132 queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0); 3133 } 3134