1 /* bnx2x_sriov.c: Broadcom Everest network driver.
2  *
3  * Copyright 2009-2013 Broadcom Corporation
4  *
5  * Unless you and Broadcom execute a separate written software license
6  * agreement governing use of this software, this software is licensed to you
7  * under the terms of the GNU General Public License version 2, available
8  * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
9  *
10  * Notwithstanding the above, under no circumstances may you combine this
11  * software in any way with any other Broadcom software provided under a
12  * license other than the GPL, without Broadcom's express prior written
13  * consent.
14  *
15  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
16  * Written by: Shmulik Ravid <shmulikr@broadcom.com>
17  *	       Ariel Elior <ariele@broadcom.com>
18  *
19  */
20 #include "bnx2x.h"
21 #include "bnx2x_init.h"
22 #include "bnx2x_cmn.h"
23 #include "bnx2x_sp.h"
24 #include <linux/crc32.h>
25 #include <linux/if_vlan.h>
26 
27 /* General service functions */
28 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
29 					 u16 pf_id)
30 {
31 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
32 		pf_id);
33 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
34 		pf_id);
35 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
36 		pf_id);
37 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
38 		pf_id);
39 }
40 
41 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
42 					u8 enable)
43 {
44 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
45 		enable);
46 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
47 		enable);
48 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
49 		enable);
50 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
51 		enable);
52 }
53 
54 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
55 {
56 	int idx;
57 
58 	for_each_vf(bp, idx)
59 		if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid)
60 			break;
61 	return idx;
62 }
63 
64 static
65 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
66 {
67 	u16 idx =  (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid);
68 	return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL;
69 }
70 
71 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf,
72 				u8 igu_sb_id, u8 segment, u16 index, u8 op,
73 				u8 update)
74 {
75 	/* acking a VF sb through the PF - use the GRC */
76 	u32 ctl;
77 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
78 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
79 	u32 func_encode = vf->abs_vfid;
80 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id;
81 	struct igu_regular cmd_data = {0};
82 
83 	cmd_data.sb_id_and_flags =
84 			((index << IGU_REGULAR_SB_INDEX_SHIFT) |
85 			 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
86 			 (update << IGU_REGULAR_BUPDATE_SHIFT) |
87 			 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
88 
89 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
90 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
91 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
92 
93 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
94 	   cmd_data.sb_id_and_flags, igu_addr_data);
95 	REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags);
96 	mmiowb();
97 	barrier();
98 
99 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
100 	   ctl, igu_addr_ctl);
101 	REG_WR(bp, igu_addr_ctl, ctl);
102 	mmiowb();
103 	barrier();
104 }
105 
106 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp,
107 				       struct bnx2x_virtf *vf,
108 				       bool print_err)
109 {
110 	if (!bnx2x_leading_vfq(vf, sp_initialized)) {
111 		if (print_err)
112 			BNX2X_ERR("Slowpath objects not yet initialized!\n");
113 		else
114 			DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n");
115 		return false;
116 	}
117 	return true;
118 }
119 
120 /* VFOP operations states */
121 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf,
122 			      struct bnx2x_queue_init_params *init_params,
123 			      struct bnx2x_queue_setup_params *setup_params,
124 			      u16 q_idx, u16 sb_idx)
125 {
126 	DP(BNX2X_MSG_IOV,
127 	   "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
128 	   vf->abs_vfid,
129 	   q_idx,
130 	   sb_idx,
131 	   init_params->tx.sb_cq_index,
132 	   init_params->tx.hc_rate,
133 	   setup_params->flags,
134 	   setup_params->txq_params.traffic_type);
135 }
136 
137 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf,
138 			    struct bnx2x_queue_init_params *init_params,
139 			    struct bnx2x_queue_setup_params *setup_params,
140 			    u16 q_idx, u16 sb_idx)
141 {
142 	struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params;
143 
144 	DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
145 	   "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
146 	   vf->abs_vfid,
147 	   q_idx,
148 	   sb_idx,
149 	   init_params->rx.sb_cq_index,
150 	   init_params->rx.hc_rate,
151 	   setup_params->gen_params.mtu,
152 	   rxq_params->buf_sz,
153 	   rxq_params->sge_buf_sz,
154 	   rxq_params->max_sges_pkt,
155 	   rxq_params->tpa_agg_sz,
156 	   setup_params->flags,
157 	   rxq_params->drop_flags,
158 	   rxq_params->cache_line_log);
159 }
160 
161 void bnx2x_vfop_qctor_prep(struct bnx2x *bp,
162 			   struct bnx2x_virtf *vf,
163 			   struct bnx2x_vf_queue *q,
164 			   struct bnx2x_vf_queue_construct_params *p,
165 			   unsigned long q_type)
166 {
167 	struct bnx2x_queue_init_params *init_p = &p->qstate.params.init;
168 	struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup;
169 
170 	/* INIT */
171 
172 	/* Enable host coalescing in the transition to INIT state */
173 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags))
174 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags);
175 
176 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags))
177 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags);
178 
179 	/* FW SB ID */
180 	init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
181 	init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
182 
183 	/* context */
184 	init_p->cxts[0] = q->cxt;
185 
186 	/* SETUP */
187 
188 	/* Setup-op general parameters */
189 	setup_p->gen_params.spcl_id = vf->sp_cl_id;
190 	setup_p->gen_params.stat_id = vfq_stat_id(vf, q);
191 
192 	/* Setup-op pause params:
193 	 * Nothing to do, the pause thresholds are set by default to 0 which
194 	 * effectively turns off the feature for this queue. We don't want
195 	 * one queue (VF) to interfering with another queue (another VF)
196 	 */
197 	if (vf->cfg_flags & VF_CFG_FW_FC)
198 		BNX2X_ERR("No support for pause to VFs (abs_vfid: %d)\n",
199 			  vf->abs_vfid);
200 	/* Setup-op flags:
201 	 * collect statistics, zero statistics, local-switching, security,
202 	 * OV for Flex10, RSS and MCAST for leading
203 	 */
204 	if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags))
205 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags);
206 
207 	/* for VFs, enable tx switching, bd coherency, and mac address
208 	 * anti-spoofing
209 	 */
210 	__set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags);
211 	__set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags);
212 	__set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
213 
214 	/* Setup-op rx parameters */
215 	if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) {
216 		struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params;
217 
218 		rxq_p->cl_qzone_id = vfq_qzone_id(vf, q);
219 		rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx);
220 		rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid);
221 
222 		if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags))
223 			rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES;
224 	}
225 
226 	/* Setup-op tx parameters */
227 	if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) {
228 		setup_p->txq_params.tss_leading_cl_id = vf->leading_rss;
229 		setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
230 	}
231 }
232 
233 static int bnx2x_vf_queue_create(struct bnx2x *bp,
234 				 struct bnx2x_virtf *vf, int qid,
235 				 struct bnx2x_vf_queue_construct_params *qctor)
236 {
237 	struct bnx2x_queue_state_params *q_params;
238 	int rc = 0;
239 
240 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
241 
242 	/* Prepare ramrod information */
243 	q_params = &qctor->qstate;
244 	q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
245 	set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags);
246 
247 	if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
248 	    BNX2X_Q_LOGICAL_STATE_ACTIVE) {
249 		DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n");
250 		goto out;
251 	}
252 
253 	/* Run Queue 'construction' ramrods */
254 	q_params->cmd = BNX2X_Q_CMD_INIT;
255 	rc = bnx2x_queue_state_change(bp, q_params);
256 	if (rc)
257 		goto out;
258 
259 	memcpy(&q_params->params.setup, &qctor->prep_qsetup,
260 	       sizeof(struct bnx2x_queue_setup_params));
261 	q_params->cmd = BNX2X_Q_CMD_SETUP;
262 	rc = bnx2x_queue_state_change(bp, q_params);
263 	if (rc)
264 		goto out;
265 
266 	/* enable interrupts */
267 	bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)),
268 			    USTORM_ID, 0, IGU_INT_ENABLE, 0);
269 out:
270 	return rc;
271 }
272 
273 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf,
274 				  int qid)
275 {
276 	enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT,
277 				       BNX2X_Q_CMD_TERMINATE,
278 				       BNX2X_Q_CMD_CFC_DEL};
279 	struct bnx2x_queue_state_params q_params;
280 	int rc, i;
281 
282 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
283 
284 	/* Prepare ramrod information */
285 	memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params));
286 	q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
287 	set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
288 
289 	if (bnx2x_get_q_logical_state(bp, q_params.q_obj) ==
290 	    BNX2X_Q_LOGICAL_STATE_STOPPED) {
291 		DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n");
292 		goto out;
293 	}
294 
295 	/* Run Queue 'destruction' ramrods */
296 	for (i = 0; i < ARRAY_SIZE(cmds); i++) {
297 		q_params.cmd = cmds[i];
298 		rc = bnx2x_queue_state_change(bp, &q_params);
299 		if (rc) {
300 			BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]);
301 			return rc;
302 		}
303 	}
304 out:
305 	/* Clean Context */
306 	if (bnx2x_vfq(vf, qid, cxt)) {
307 		bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0;
308 		bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0;
309 	}
310 
311 	return 0;
312 }
313 
314 static void
315 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid)
316 {
317 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
318 	if (vf) {
319 		/* the first igu entry belonging to VFs of this PF */
320 		if (!BP_VFDB(bp)->first_vf_igu_entry)
321 			BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id;
322 
323 		/* the first igu entry belonging to this VF */
324 		if (!vf_sb_count(vf))
325 			vf->igu_base_id = igu_sb_id;
326 
327 		++vf_sb_count(vf);
328 		++vf->sb_count;
329 	}
330 	BP_VFDB(bp)->vf_sbs_pool++;
331 }
332 
333 static inline void bnx2x_vf_vlan_credit(struct bnx2x *bp,
334 					struct bnx2x_vlan_mac_obj *obj,
335 					atomic_t *counter)
336 {
337 	struct list_head *pos;
338 	int read_lock;
339 	int cnt = 0;
340 
341 	read_lock = bnx2x_vlan_mac_h_read_lock(bp, obj);
342 	if (read_lock)
343 		DP(BNX2X_MSG_SP, "Failed to take vlan mac read head; continuing anyway\n");
344 
345 	list_for_each(pos, &obj->head)
346 		cnt++;
347 
348 	if (!read_lock)
349 		bnx2x_vlan_mac_h_read_unlock(bp, obj);
350 
351 	atomic_set(counter, cnt);
352 }
353 
354 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf,
355 				   int qid, bool drv_only, bool mac)
356 {
357 	struct bnx2x_vlan_mac_ramrod_params ramrod;
358 	int rc;
359 
360 	DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid,
361 	   mac ? "MACs" : "VLANs");
362 
363 	/* Prepare ramrod params */
364 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
365 	if (mac) {
366 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
367 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
368 	} else {
369 		set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
370 			&ramrod.user_req.vlan_mac_flags);
371 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
372 	}
373 	ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL;
374 
375 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
376 	if (drv_only)
377 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
378 	else
379 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
380 
381 	/* Start deleting */
382 	rc = ramrod.vlan_mac_obj->delete_all(bp,
383 					     ramrod.vlan_mac_obj,
384 					     &ramrod.user_req.vlan_mac_flags,
385 					     &ramrod.ramrod_flags);
386 	if (rc) {
387 		BNX2X_ERR("Failed to delete all %s\n",
388 			  mac ? "MACs" : "VLANs");
389 		return rc;
390 	}
391 
392 	/* Clear the vlan counters */
393 	if (!mac)
394 		atomic_set(&bnx2x_vfq(vf, qid, vlan_count), 0);
395 
396 	return 0;
397 }
398 
399 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp,
400 				    struct bnx2x_virtf *vf, int qid,
401 				    struct bnx2x_vf_mac_vlan_filter *filter,
402 				    bool drv_only)
403 {
404 	struct bnx2x_vlan_mac_ramrod_params ramrod;
405 	int rc;
406 
407 	DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n",
408 	   vf->abs_vfid, filter->add ? "Adding" : "Deleting",
409 	   filter->type == BNX2X_VF_FILTER_MAC ? "MAC" : "VLAN");
410 
411 	/* Prepare ramrod params */
412 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
413 	if (filter->type == BNX2X_VF_FILTER_VLAN) {
414 		set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
415 			&ramrod.user_req.vlan_mac_flags);
416 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
417 		ramrod.user_req.u.vlan.vlan = filter->vid;
418 	} else {
419 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
420 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
421 		memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
422 	}
423 	ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD :
424 					    BNX2X_VLAN_MAC_DEL;
425 
426 	/* Verify there are available vlan credits */
427 	if (filter->add && filter->type == BNX2X_VF_FILTER_VLAN &&
428 	    (atomic_read(&bnx2x_vfq(vf, qid, vlan_count)) >=
429 	     vf_vlan_rules_cnt(vf))) {
430 		BNX2X_ERR("No credits for vlan\n");
431 		return -ENOMEM;
432 	}
433 
434 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
435 	if (drv_only)
436 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
437 	else
438 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
439 
440 	/* Add/Remove the filter */
441 	rc = bnx2x_config_vlan_mac(bp, &ramrod);
442 	if (rc && rc != -EEXIST) {
443 		BNX2X_ERR("Failed to %s %s\n",
444 			  filter->add ? "add" : "delete",
445 			  filter->type == BNX2X_VF_FILTER_MAC ? "MAC" :
446 								"VLAN");
447 		return rc;
448 	}
449 
450 	/* Update the vlan counters */
451 	if (filter->type == BNX2X_VF_FILTER_VLAN)
452 		bnx2x_vf_vlan_credit(bp, ramrod.vlan_mac_obj,
453 				     &bnx2x_vfq(vf, qid, vlan_count));
454 
455 	return 0;
456 }
457 
458 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf,
459 				  struct bnx2x_vf_mac_vlan_filters *filters,
460 				  int qid, bool drv_only)
461 {
462 	int rc = 0, i;
463 
464 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
465 
466 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
467 		return -EINVAL;
468 
469 	/* Prepare ramrod params */
470 	for (i = 0; i < filters->count; i++) {
471 		rc = bnx2x_vf_mac_vlan_config(bp, vf, qid,
472 					      &filters->filters[i], drv_only);
473 		if (rc)
474 			break;
475 	}
476 
477 	/* Rollback if needed */
478 	if (i != filters->count) {
479 		BNX2X_ERR("Managed only %d/%d filters - rolling back\n",
480 			  i, filters->count + 1);
481 		while (--i >= 0) {
482 			filters->filters[i].add = !filters->filters[i].add;
483 			bnx2x_vf_mac_vlan_config(bp, vf, qid,
484 						 &filters->filters[i],
485 						 drv_only);
486 		}
487 	}
488 
489 	/* It's our responsibility to free the filters */
490 	kfree(filters);
491 
492 	return rc;
493 }
494 
495 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid,
496 			 struct bnx2x_vf_queue_construct_params *qctor)
497 {
498 	int rc;
499 
500 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
501 
502 	rc = bnx2x_vf_queue_create(bp, vf, qid, qctor);
503 	if (rc)
504 		goto op_err;
505 
506 	/* Configure vlan0 for leading queue */
507 	if (!qid) {
508 		struct bnx2x_vf_mac_vlan_filter filter;
509 
510 		memset(&filter, 0, sizeof(struct bnx2x_vf_mac_vlan_filter));
511 		filter.type = BNX2X_VF_FILTER_VLAN;
512 		filter.add = true;
513 		filter.vid = 0;
514 		rc = bnx2x_vf_mac_vlan_config(bp, vf, qid, &filter, false);
515 		if (rc)
516 			goto op_err;
517 	}
518 
519 	/* Schedule the configuration of any pending vlan filters */
520 	vf->cfg_flags |= VF_CFG_VLAN;
521 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN,
522 			       BNX2X_MSG_IOV);
523 	return 0;
524 op_err:
525 	BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
526 	return rc;
527 }
528 
529 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf,
530 			       int qid)
531 {
532 	int rc;
533 
534 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
535 
536 	/* If needed, clean the filtering data base */
537 	if ((qid == LEADING_IDX) &&
538 	    bnx2x_validate_vf_sp_objs(bp, vf, false)) {
539 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, false);
540 		if (rc)
541 			goto op_err;
542 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, true);
543 		if (rc)
544 			goto op_err;
545 	}
546 
547 	/* Terminate queue */
548 	if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) {
549 		struct bnx2x_queue_state_params qstate;
550 
551 		memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
552 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
553 		qstate.q_obj->state = BNX2X_Q_STATE_STOPPED;
554 		qstate.cmd = BNX2X_Q_CMD_TERMINATE;
555 		set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
556 		rc = bnx2x_queue_state_change(bp, &qstate);
557 		if (rc)
558 			goto op_err;
559 	}
560 
561 	return 0;
562 op_err:
563 	BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
564 	return rc;
565 }
566 
567 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf,
568 		   bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only)
569 {
570 	struct bnx2x_mcast_list_elem *mc = NULL;
571 	struct bnx2x_mcast_ramrod_params mcast;
572 	int rc, i;
573 
574 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
575 
576 	/* Prepare Multicast command */
577 	memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params));
578 	mcast.mcast_obj = &vf->mcast_obj;
579 	if (drv_only)
580 		set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags);
581 	else
582 		set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags);
583 	if (mc_num) {
584 		mc = kzalloc(mc_num * sizeof(struct bnx2x_mcast_list_elem),
585 			     GFP_KERNEL);
586 		if (!mc) {
587 			BNX2X_ERR("Cannot Configure mulicasts due to lack of memory\n");
588 			return -ENOMEM;
589 		}
590 	}
591 
592 	/* clear existing mcasts */
593 	mcast.mcast_list_len = vf->mcast_list_len;
594 	vf->mcast_list_len = mc_num;
595 	rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL);
596 	if (rc) {
597 		BNX2X_ERR("Failed to remove multicasts\n");
598 		if (mc)
599 			kfree(mc);
600 		return rc;
601 	}
602 
603 	/* update mcast list on the ramrod params */
604 	if (mc_num) {
605 		INIT_LIST_HEAD(&mcast.mcast_list);
606 		for (i = 0; i < mc_num; i++) {
607 			mc[i].mac = mcasts[i];
608 			list_add_tail(&mc[i].link,
609 				      &mcast.mcast_list);
610 		}
611 
612 		/* add new mcasts */
613 		rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_ADD);
614 		if (rc)
615 			BNX2X_ERR("Faled to add multicasts\n");
616 		kfree(mc);
617 	}
618 
619 	return rc;
620 }
621 
622 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid,
623 				  struct bnx2x_rx_mode_ramrod_params *ramrod,
624 				  struct bnx2x_virtf *vf,
625 				  unsigned long accept_flags)
626 {
627 	struct bnx2x_vf_queue *vfq = vfq_get(vf, qid);
628 
629 	memset(ramrod, 0, sizeof(*ramrod));
630 	ramrod->cid = vfq->cid;
631 	ramrod->cl_id = vfq_cl_id(vf, vfq);
632 	ramrod->rx_mode_obj = &bp->rx_mode_obj;
633 	ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid);
634 	ramrod->rx_accept_flags = accept_flags;
635 	ramrod->tx_accept_flags = accept_flags;
636 	ramrod->pstate = &vf->filter_state;
637 	ramrod->state = BNX2X_FILTER_RX_MODE_PENDING;
638 
639 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
640 	set_bit(RAMROD_RX, &ramrod->ramrod_flags);
641 	set_bit(RAMROD_TX, &ramrod->ramrod_flags);
642 
643 	ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2);
644 	ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2);
645 }
646 
647 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf,
648 		    int qid, unsigned long accept_flags)
649 {
650 	struct bnx2x_rx_mode_ramrod_params ramrod;
651 
652 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
653 
654 	bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags);
655 	set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
656 	vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags;
657 	return bnx2x_config_rx_mode(bp, &ramrod);
658 }
659 
660 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid)
661 {
662 	int rc;
663 
664 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
665 
666 	/* Remove all classification configuration for leading queue */
667 	if (qid == LEADING_IDX) {
668 		rc = bnx2x_vf_rxmode(bp, vf, qid, 0);
669 		if (rc)
670 			goto op_err;
671 
672 		/* Remove filtering if feasible */
673 		if (bnx2x_validate_vf_sp_objs(bp, vf, true)) {
674 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
675 						     false, false);
676 			if (rc)
677 				goto op_err;
678 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
679 						     false, true);
680 			if (rc)
681 				goto op_err;
682 			rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false);
683 			if (rc)
684 				goto op_err;
685 		}
686 	}
687 
688 	/* Destroy queue */
689 	rc = bnx2x_vf_queue_destroy(bp, vf, qid);
690 	if (rc)
691 		goto op_err;
692 	return rc;
693 op_err:
694 	BNX2X_ERR("vf[%d:%d] error: rc %d\n",
695 		  vf->abs_vfid, qid, rc);
696 	return rc;
697 }
698 
699 /* VF enable primitives
700  * when pretend is required the caller is responsible
701  * for calling pretend prior to calling these routines
702  */
703 
704 /* internal vf enable - until vf is enabled internally all transactions
705  * are blocked. This routine should always be called last with pretend.
706  */
707 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable)
708 {
709 	REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0);
710 }
711 
712 /* clears vf error in all semi blocks */
713 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid)
714 {
715 	REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid);
716 	REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid);
717 	REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid);
718 	REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid);
719 }
720 
721 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid)
722 {
723 	u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5;
724 	u32 was_err_reg = 0;
725 
726 	switch (was_err_group) {
727 	case 0:
728 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR;
729 	    break;
730 	case 1:
731 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR;
732 	    break;
733 	case 2:
734 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR;
735 	    break;
736 	case 3:
737 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR;
738 	    break;
739 	}
740 	REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f));
741 }
742 
743 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf)
744 {
745 	int i;
746 	u32 val;
747 
748 	/* Set VF masks and configuration - pretend */
749 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
750 
751 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
752 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
753 	REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
754 	REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
755 	REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
756 	REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
757 
758 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
759 	val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN);
760 	if (vf->cfg_flags & VF_CFG_INT_SIMD)
761 		val |= IGU_VF_CONF_SINGLE_ISR_EN;
762 	val &= ~IGU_VF_CONF_PARENT_MASK;
763 	val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT;
764 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
765 
766 	DP(BNX2X_MSG_IOV,
767 	   "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n",
768 	   vf->abs_vfid, val);
769 
770 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
771 
772 	/* iterate over all queues, clear sb consumer */
773 	for (i = 0; i < vf_sb_count(vf); i++) {
774 		u8 igu_sb_id = vf_igu_sb(vf, i);
775 
776 		/* zero prod memory */
777 		REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0);
778 
779 		/* clear sb state machine */
780 		bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id,
781 				       false /* VF */);
782 
783 		/* disable + update */
784 		bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0,
785 				    IGU_INT_DISABLE, 1);
786 	}
787 }
788 
789 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid)
790 {
791 	/* set the VF-PF association in the FW */
792 	storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp));
793 	storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1);
794 
795 	/* clear vf errors*/
796 	bnx2x_vf_semi_clear_err(bp, abs_vfid);
797 	bnx2x_vf_pglue_clear_err(bp, abs_vfid);
798 
799 	/* internal vf-enable - pretend */
800 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid));
801 	DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid);
802 	bnx2x_vf_enable_internal(bp, true);
803 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
804 }
805 
806 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf)
807 {
808 	/* Reset vf in IGU  interrupts are still disabled */
809 	bnx2x_vf_igu_reset(bp, vf);
810 
811 	/* pretend to enable the vf with the PBF */
812 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
813 	REG_WR(bp, PBF_REG_DISABLE_VF, 0);
814 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
815 }
816 
817 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid)
818 {
819 	struct pci_dev *dev;
820 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
821 
822 	if (!vf)
823 		return false;
824 
825 	dev = pci_get_bus_and_slot(vf->bus, vf->devfn);
826 	if (dev)
827 		return bnx2x_is_pcie_pending(dev);
828 	return false;
829 }
830 
831 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid)
832 {
833 	/* Verify no pending pci transactions */
834 	if (bnx2x_vf_is_pcie_pending(bp, abs_vfid))
835 		BNX2X_ERR("PCIE Transactions still pending\n");
836 
837 	return 0;
838 }
839 
840 /* must be called after the number of PF queues and the number of VFs are
841  * both known
842  */
843 static void
844 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
845 {
846 	struct vf_pf_resc_request *resc = &vf->alloc_resc;
847 	u16 vlan_count = 0;
848 
849 	/* will be set only during VF-ACQUIRE */
850 	resc->num_rxqs = 0;
851 	resc->num_txqs = 0;
852 
853 	/* no credit calculations for macs (just yet) */
854 	resc->num_mac_filters = 1;
855 
856 	/* divvy up vlan rules */
857 	vlan_count = bp->vlans_pool.check(&bp->vlans_pool);
858 	vlan_count = 1 << ilog2(vlan_count);
859 	resc->num_vlan_filters = vlan_count / BNX2X_NR_VIRTFN(bp);
860 
861 	/* no real limitation */
862 	resc->num_mc_filters = 0;
863 
864 	/* num_sbs already set */
865 	resc->num_sbs = vf->sb_count;
866 }
867 
868 /* FLR routines: */
869 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
870 {
871 	/* reset the state variables */
872 	bnx2x_iov_static_resc(bp, vf);
873 	vf->state = VF_FREE;
874 }
875 
876 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf)
877 {
878 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
879 
880 	/* DQ usage counter */
881 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
882 	bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT,
883 					"DQ VF usage counter timed out",
884 					poll_cnt);
885 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
886 
887 	/* FW cleanup command - poll for the results */
888 	if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid),
889 				   poll_cnt))
890 		BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid);
891 
892 	/* verify TX hw is flushed */
893 	bnx2x_tx_hw_flushed(bp, poll_cnt);
894 }
895 
896 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf)
897 {
898 	int rc, i;
899 
900 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
901 
902 	/* the cleanup operations are valid if and only if the VF
903 	 * was first acquired.
904 	 */
905 	for (i = 0; i < vf_rxq_count(vf); i++) {
906 		rc = bnx2x_vf_queue_flr(bp, vf, i);
907 		if (rc)
908 			goto out;
909 	}
910 
911 	/* remove multicasts */
912 	bnx2x_vf_mcast(bp, vf, NULL, 0, true);
913 
914 	/* dispatch final cleanup and wait for HW queues to flush */
915 	bnx2x_vf_flr_clnup_hw(bp, vf);
916 
917 	/* release VF resources */
918 	bnx2x_vf_free_resc(bp, vf);
919 
920 	/* re-open the mailbox */
921 	bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
922 	return;
923 out:
924 	BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n",
925 		  vf->abs_vfid, i, rc);
926 }
927 
928 static void bnx2x_vf_flr_clnup(struct bnx2x *bp)
929 {
930 	struct bnx2x_virtf *vf;
931 	int i;
932 
933 	for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) {
934 		/* VF should be RESET & in FLR cleanup states */
935 		if (bnx2x_vf(bp, i, state) != VF_RESET ||
936 		    !bnx2x_vf(bp, i, flr_clnup_stage))
937 			continue;
938 
939 		DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n",
940 		   i, BNX2X_NR_VIRTFN(bp));
941 
942 		vf = BP_VF(bp, i);
943 
944 		/* lock the vf pf channel */
945 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
946 
947 		/* invoke the VF FLR SM */
948 		bnx2x_vf_flr(bp, vf);
949 
950 		/* mark the VF to be ACKED and continue */
951 		vf->flr_clnup_stage = false;
952 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
953 	}
954 
955 	/* Acknowledge the handled VFs.
956 	 * we are acknowledge all the vfs which an flr was requested for, even
957 	 * if amongst them there are such that we never opened, since the mcp
958 	 * will interrupt us immediately again if we only ack some of the bits,
959 	 * resulting in an endless loop. This can happen for example in KVM
960 	 * where an 'all ones' flr request is sometimes given by hyper visor
961 	 */
962 	DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
963 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
964 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
965 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i],
966 			  bp->vfdb->flrd_vfs[i]);
967 
968 	bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0);
969 
970 	/* clear the acked bits - better yet if the MCP implemented
971 	 * write to clear semantics
972 	 */
973 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
974 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0);
975 }
976 
977 void bnx2x_vf_handle_flr_event(struct bnx2x *bp)
978 {
979 	int i;
980 
981 	/* Read FLR'd VFs */
982 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
983 		bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]);
984 
985 	DP(BNX2X_MSG_MCP,
986 	   "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
987 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
988 
989 	for_each_vf(bp, i) {
990 		struct bnx2x_virtf *vf = BP_VF(bp, i);
991 		u32 reset = 0;
992 
993 		if (vf->abs_vfid < 32)
994 			reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid);
995 		else
996 			reset = bp->vfdb->flrd_vfs[1] &
997 				(1 << (vf->abs_vfid - 32));
998 
999 		if (reset) {
1000 			/* set as reset and ready for cleanup */
1001 			vf->state = VF_RESET;
1002 			vf->flr_clnup_stage = true;
1003 
1004 			DP(BNX2X_MSG_IOV,
1005 			   "Initiating Final cleanup for VF %d\n",
1006 			   vf->abs_vfid);
1007 		}
1008 	}
1009 
1010 	/* do the FLR cleanup for all marked VFs*/
1011 	bnx2x_vf_flr_clnup(bp);
1012 }
1013 
1014 /* IOV global initialization routines  */
1015 void bnx2x_iov_init_dq(struct bnx2x *bp)
1016 {
1017 	if (!IS_SRIOV(bp))
1018 		return;
1019 
1020 	/* Set the DQ such that the CID reflect the abs_vfid */
1021 	REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0);
1022 	REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
1023 
1024 	/* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
1025 	 * the PF L2 queues
1026 	 */
1027 	REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
1028 
1029 	/* The VF window size is the log2 of the max number of CIDs per VF */
1030 	REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
1031 
1032 	/* The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
1033 	 * the Pf doorbell size although the 2 are independent.
1034 	 */
1035 	REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3);
1036 
1037 	/* No security checks for now -
1038 	 * configure single rule (out of 16) mask = 0x1, value = 0x0,
1039 	 * CID range 0 - 0x1ffff
1040 	 */
1041 	REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1);
1042 	REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0);
1043 	REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
1044 	REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
1045 
1046 	/* set the VF doorbell threshold */
1047 	REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 4);
1048 }
1049 
1050 void bnx2x_iov_init_dmae(struct bnx2x *bp)
1051 {
1052 	if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV))
1053 		REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0);
1054 }
1055 
1056 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid)
1057 {
1058 	struct pci_dev *dev = bp->pdev;
1059 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1060 
1061 	return dev->bus->number + ((dev->devfn + iov->offset +
1062 				    iov->stride * vfid) >> 8);
1063 }
1064 
1065 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid)
1066 {
1067 	struct pci_dev *dev = bp->pdev;
1068 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1069 
1070 	return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff;
1071 }
1072 
1073 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf)
1074 {
1075 	int i, n;
1076 	struct pci_dev *dev = bp->pdev;
1077 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1078 
1079 	for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) {
1080 		u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i);
1081 		u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i);
1082 
1083 		size /= iov->total;
1084 		vf->bars[n].bar = start + size * vf->abs_vfid;
1085 		vf->bars[n].size = size;
1086 	}
1087 }
1088 
1089 static int bnx2x_ari_enabled(struct pci_dev *dev)
1090 {
1091 	return dev->bus->self && dev->bus->self->ari_enabled;
1092 }
1093 
1094 static void
1095 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp)
1096 {
1097 	int sb_id;
1098 	u32 val;
1099 	u8 fid, current_pf = 0;
1100 
1101 	/* IGU in normal mode - read CAM */
1102 	for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) {
1103 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4);
1104 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
1105 			continue;
1106 		fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID);
1107 		if (fid & IGU_FID_ENCODE_IS_PF)
1108 			current_pf = fid & IGU_FID_PF_NUM_MASK;
1109 		else if (current_pf == BP_FUNC(bp))
1110 			bnx2x_vf_set_igu_info(bp, sb_id,
1111 					      (fid & IGU_FID_VF_NUM_MASK));
1112 		DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n",
1113 		   ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"),
1114 		   ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) :
1115 		   (fid & IGU_FID_VF_NUM_MASK)), sb_id,
1116 		   GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR));
1117 	}
1118 	DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool);
1119 }
1120 
1121 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp)
1122 {
1123 	if (bp->vfdb) {
1124 		kfree(bp->vfdb->vfqs);
1125 		kfree(bp->vfdb->vfs);
1126 		kfree(bp->vfdb);
1127 	}
1128 	bp->vfdb = NULL;
1129 }
1130 
1131 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1132 {
1133 	int pos;
1134 	struct pci_dev *dev = bp->pdev;
1135 
1136 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
1137 	if (!pos) {
1138 		BNX2X_ERR("failed to find SRIOV capability in device\n");
1139 		return -ENODEV;
1140 	}
1141 
1142 	iov->pos = pos;
1143 	DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos);
1144 	pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
1145 	pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total);
1146 	pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial);
1147 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
1148 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
1149 	pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
1150 	pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap);
1151 	pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
1152 
1153 	return 0;
1154 }
1155 
1156 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1157 {
1158 	u32 val;
1159 
1160 	/* read the SRIOV capability structure
1161 	 * The fields can be read via configuration read or
1162 	 * directly from the device (starting at offset PCICFG_OFFSET)
1163 	 */
1164 	if (bnx2x_sriov_pci_cfg_info(bp, iov))
1165 		return -ENODEV;
1166 
1167 	/* get the number of SRIOV bars */
1168 	iov->nres = 0;
1169 
1170 	/* read the first_vfid */
1171 	val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF);
1172 	iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK)
1173 			       * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp));
1174 
1175 	DP(BNX2X_MSG_IOV,
1176 	   "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
1177 	   BP_FUNC(bp),
1178 	   iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total,
1179 	   iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
1180 
1181 	return 0;
1182 }
1183 
1184 /* must be called after PF bars are mapped */
1185 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param,
1186 		       int num_vfs_param)
1187 {
1188 	int err, i;
1189 	struct bnx2x_sriov *iov;
1190 	struct pci_dev *dev = bp->pdev;
1191 
1192 	bp->vfdb = NULL;
1193 
1194 	/* verify is pf */
1195 	if (IS_VF(bp))
1196 		return 0;
1197 
1198 	/* verify sriov capability is present in configuration space */
1199 	if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV))
1200 		return 0;
1201 
1202 	/* verify chip revision */
1203 	if (CHIP_IS_E1x(bp))
1204 		return 0;
1205 
1206 	/* check if SRIOV support is turned off */
1207 	if (!num_vfs_param)
1208 		return 0;
1209 
1210 	/* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
1211 	if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) {
1212 		BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
1213 			  BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID);
1214 		return 0;
1215 	}
1216 
1217 	/* SRIOV can be enabled only with MSIX */
1218 	if (int_mode_param == BNX2X_INT_MODE_MSI ||
1219 	    int_mode_param == BNX2X_INT_MODE_INTX) {
1220 		BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
1221 		return 0;
1222 	}
1223 
1224 	err = -EIO;
1225 	/* verify ari is enabled */
1226 	if (!bnx2x_ari_enabled(bp->pdev)) {
1227 		BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
1228 		return 0;
1229 	}
1230 
1231 	/* verify igu is in normal mode */
1232 	if (CHIP_INT_MODE_IS_BC(bp)) {
1233 		BNX2X_ERR("IGU not normal mode,  SRIOV can not be enabled\n");
1234 		return 0;
1235 	}
1236 
1237 	/* allocate the vfs database */
1238 	bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL);
1239 	if (!bp->vfdb) {
1240 		BNX2X_ERR("failed to allocate vf database\n");
1241 		err = -ENOMEM;
1242 		goto failed;
1243 	}
1244 
1245 	/* get the sriov info - Linux already collected all the pertinent
1246 	 * information, however the sriov structure is for the private use
1247 	 * of the pci module. Also we want this information regardless
1248 	 * of the hyper-visor.
1249 	 */
1250 	iov = &(bp->vfdb->sriov);
1251 	err = bnx2x_sriov_info(bp, iov);
1252 	if (err)
1253 		goto failed;
1254 
1255 	/* SR-IOV capability was enabled but there are no VFs*/
1256 	if (iov->total == 0)
1257 		goto failed;
1258 
1259 	iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param);
1260 
1261 	DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n",
1262 	   num_vfs_param, iov->nr_virtfn);
1263 
1264 	/* allocate the vf array */
1265 	bp->vfdb->vfs = kzalloc(sizeof(struct bnx2x_virtf) *
1266 				BNX2X_NR_VIRTFN(bp), GFP_KERNEL);
1267 	if (!bp->vfdb->vfs) {
1268 		BNX2X_ERR("failed to allocate vf array\n");
1269 		err = -ENOMEM;
1270 		goto failed;
1271 	}
1272 
1273 	/* Initial VF init - index and abs_vfid - nr_virtfn must be set */
1274 	for_each_vf(bp, i) {
1275 		bnx2x_vf(bp, i, index) = i;
1276 		bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i;
1277 		bnx2x_vf(bp, i, state) = VF_FREE;
1278 		mutex_init(&bnx2x_vf(bp, i, op_mutex));
1279 		bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE;
1280 	}
1281 
1282 	/* re-read the IGU CAM for VFs - index and abs_vfid must be set */
1283 	bnx2x_get_vf_igu_cam_info(bp);
1284 
1285 	/* allocate the queue arrays for all VFs */
1286 	bp->vfdb->vfqs = kzalloc(
1287 		BNX2X_MAX_NUM_VF_QUEUES * sizeof(struct bnx2x_vf_queue),
1288 		GFP_KERNEL);
1289 
1290 	DP(BNX2X_MSG_IOV, "bp->vfdb->vfqs was %p\n", bp->vfdb->vfqs);
1291 
1292 	if (!bp->vfdb->vfqs) {
1293 		BNX2X_ERR("failed to allocate vf queue array\n");
1294 		err = -ENOMEM;
1295 		goto failed;
1296 	}
1297 
1298 	/* Prepare the VFs event synchronization mechanism */
1299 	mutex_init(&bp->vfdb->event_mutex);
1300 
1301 	return 0;
1302 failed:
1303 	DP(BNX2X_MSG_IOV, "Failed err=%d\n", err);
1304 	__bnx2x_iov_free_vfdb(bp);
1305 	return err;
1306 }
1307 
1308 void bnx2x_iov_remove_one(struct bnx2x *bp)
1309 {
1310 	int vf_idx;
1311 
1312 	/* if SRIOV is not enabled there's nothing to do */
1313 	if (!IS_SRIOV(bp))
1314 		return;
1315 
1316 	DP(BNX2X_MSG_IOV, "about to call disable sriov\n");
1317 	pci_disable_sriov(bp->pdev);
1318 	DP(BNX2X_MSG_IOV, "sriov disabled\n");
1319 
1320 	/* disable access to all VFs */
1321 	for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) {
1322 		bnx2x_pretend_func(bp,
1323 				   HW_VF_HANDLE(bp,
1324 						bp->vfdb->sriov.first_vf_in_pf +
1325 						vf_idx));
1326 		DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n",
1327 		   bp->vfdb->sriov.first_vf_in_pf + vf_idx);
1328 		bnx2x_vf_enable_internal(bp, 0);
1329 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1330 	}
1331 
1332 	/* free vf database */
1333 	__bnx2x_iov_free_vfdb(bp);
1334 }
1335 
1336 void bnx2x_iov_free_mem(struct bnx2x *bp)
1337 {
1338 	int i;
1339 
1340 	if (!IS_SRIOV(bp))
1341 		return;
1342 
1343 	/* free vfs hw contexts */
1344 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1345 		struct hw_dma *cxt = &bp->vfdb->context[i];
1346 		BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size);
1347 	}
1348 
1349 	BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr,
1350 		       BP_VFDB(bp)->sp_dma.mapping,
1351 		       BP_VFDB(bp)->sp_dma.size);
1352 
1353 	BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr,
1354 		       BP_VF_MBX_DMA(bp)->mapping,
1355 		       BP_VF_MBX_DMA(bp)->size);
1356 
1357 	BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr,
1358 		       BP_VF_BULLETIN_DMA(bp)->mapping,
1359 		       BP_VF_BULLETIN_DMA(bp)->size);
1360 }
1361 
1362 int bnx2x_iov_alloc_mem(struct bnx2x *bp)
1363 {
1364 	size_t tot_size;
1365 	int i, rc = 0;
1366 
1367 	if (!IS_SRIOV(bp))
1368 		return rc;
1369 
1370 	/* allocate vfs hw contexts */
1371 	tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) *
1372 		BNX2X_CIDS_PER_VF * sizeof(union cdu_context);
1373 
1374 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1375 		struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i);
1376 		cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ);
1377 
1378 		if (cxt->size) {
1379 			cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size);
1380 			if (!cxt->addr)
1381 				goto alloc_mem_err;
1382 		} else {
1383 			cxt->addr = NULL;
1384 			cxt->mapping = 0;
1385 		}
1386 		tot_size -= cxt->size;
1387 	}
1388 
1389 	/* allocate vfs ramrods dma memory - client_init and set_mac */
1390 	tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp);
1391 	BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping,
1392 						   tot_size);
1393 	if (!BP_VFDB(bp)->sp_dma.addr)
1394 		goto alloc_mem_err;
1395 	BP_VFDB(bp)->sp_dma.size = tot_size;
1396 
1397 	/* allocate mailboxes */
1398 	tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE;
1399 	BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping,
1400 						  tot_size);
1401 	if (!BP_VF_MBX_DMA(bp)->addr)
1402 		goto alloc_mem_err;
1403 
1404 	BP_VF_MBX_DMA(bp)->size = tot_size;
1405 
1406 	/* allocate local bulletin boards */
1407 	tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE;
1408 	BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping,
1409 						       tot_size);
1410 	if (!BP_VF_BULLETIN_DMA(bp)->addr)
1411 		goto alloc_mem_err;
1412 
1413 	BP_VF_BULLETIN_DMA(bp)->size = tot_size;
1414 
1415 	return 0;
1416 
1417 alloc_mem_err:
1418 	return -ENOMEM;
1419 }
1420 
1421 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf,
1422 			   struct bnx2x_vf_queue *q)
1423 {
1424 	u8 cl_id = vfq_cl_id(vf, q);
1425 	u8 func_id = FW_VF_HANDLE(vf->abs_vfid);
1426 	unsigned long q_type = 0;
1427 
1428 	set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1429 	set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1430 
1431 	/* Queue State object */
1432 	bnx2x_init_queue_obj(bp, &q->sp_obj,
1433 			     cl_id, &q->cid, 1, func_id,
1434 			     bnx2x_vf_sp(bp, vf, q_data),
1435 			     bnx2x_vf_sp_map(bp, vf, q_data),
1436 			     q_type);
1437 
1438 	/* sp indication is set only when vlan/mac/etc. are initialized */
1439 	q->sp_initialized = false;
1440 
1441 	DP(BNX2X_MSG_IOV,
1442 	   "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n",
1443 	   vf->abs_vfid, q->sp_obj.func_id, q->cid);
1444 }
1445 
1446 /* called by bnx2x_nic_load */
1447 int bnx2x_iov_nic_init(struct bnx2x *bp)
1448 {
1449 	int vfid;
1450 
1451 	if (!IS_SRIOV(bp)) {
1452 		DP(BNX2X_MSG_IOV, "vfdb was not allocated\n");
1453 		return 0;
1454 	}
1455 
1456 	DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn);
1457 
1458 	/* let FLR complete ... */
1459 	msleep(100);
1460 
1461 	/* initialize vf database */
1462 	for_each_vf(bp, vfid) {
1463 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1464 
1465 		int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) *
1466 			BNX2X_CIDS_PER_VF;
1467 
1468 		union cdu_context *base_cxt = (union cdu_context *)
1469 			BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1470 			(base_vf_cid & (ILT_PAGE_CIDS-1));
1471 
1472 		DP(BNX2X_MSG_IOV,
1473 		   "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
1474 		   vf->abs_vfid, vf_sb_count(vf), base_vf_cid,
1475 		   BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt);
1476 
1477 		/* init statically provisioned resources */
1478 		bnx2x_iov_static_resc(bp, vf);
1479 
1480 		/* queues are initialized during VF-ACQUIRE */
1481 
1482 		/* reserve the vf vlan credit */
1483 		bp->vlans_pool.get(&bp->vlans_pool, vf_vlan_rules_cnt(vf));
1484 
1485 		vf->filter_state = 0;
1486 		vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id);
1487 
1488 		/*  init mcast object - This object will be re-initialized
1489 		 *  during VF-ACQUIRE with the proper cl_id and cid.
1490 		 *  It needs to be initialized here so that it can be safely
1491 		 *  handled by a subsequent FLR flow.
1492 		 */
1493 		vf->mcast_list_len = 0;
1494 		bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF,
1495 				     0xFF, 0xFF, 0xFF,
1496 				     bnx2x_vf_sp(bp, vf, mcast_rdata),
1497 				     bnx2x_vf_sp_map(bp, vf, mcast_rdata),
1498 				     BNX2X_FILTER_MCAST_PENDING,
1499 				     &vf->filter_state,
1500 				     BNX2X_OBJ_TYPE_RX_TX);
1501 
1502 		/* set the mailbox message addresses */
1503 		BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *)
1504 			(((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid *
1505 			MBX_MSG_ALIGNED_SIZE);
1506 
1507 		BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping +
1508 			vfid * MBX_MSG_ALIGNED_SIZE;
1509 
1510 		/* Enable vf mailbox */
1511 		bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
1512 	}
1513 
1514 	/* Final VF init */
1515 	for_each_vf(bp, vfid) {
1516 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1517 
1518 		/* fill in the BDF and bars */
1519 		vf->bus = bnx2x_vf_bus(bp, vfid);
1520 		vf->devfn = bnx2x_vf_devfn(bp, vfid);
1521 		bnx2x_vf_set_bars(bp, vf);
1522 
1523 		DP(BNX2X_MSG_IOV,
1524 		   "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
1525 		   vf->abs_vfid, vf->bus, vf->devfn,
1526 		   (unsigned)vf->bars[0].bar, vf->bars[0].size,
1527 		   (unsigned)vf->bars[1].bar, vf->bars[1].size,
1528 		   (unsigned)vf->bars[2].bar, vf->bars[2].size);
1529 	}
1530 
1531 	return 0;
1532 }
1533 
1534 /* called by bnx2x_chip_cleanup */
1535 int bnx2x_iov_chip_cleanup(struct bnx2x *bp)
1536 {
1537 	int i;
1538 
1539 	if (!IS_SRIOV(bp))
1540 		return 0;
1541 
1542 	/* release all the VFs */
1543 	for_each_vf(bp, i)
1544 		bnx2x_vf_release(bp, BP_VF(bp, i));
1545 
1546 	return 0;
1547 }
1548 
1549 /* called by bnx2x_init_hw_func, returns the next ilt line */
1550 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line)
1551 {
1552 	int i;
1553 	struct bnx2x_ilt *ilt = BP_ILT(bp);
1554 
1555 	if (!IS_SRIOV(bp))
1556 		return line;
1557 
1558 	/* set vfs ilt lines */
1559 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1560 		struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i);
1561 
1562 		ilt->lines[line+i].page = hw_cxt->addr;
1563 		ilt->lines[line+i].page_mapping = hw_cxt->mapping;
1564 		ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
1565 	}
1566 	return line + i;
1567 }
1568 
1569 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid)
1570 {
1571 	return ((cid >= BNX2X_FIRST_VF_CID) &&
1572 		((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS));
1573 }
1574 
1575 static
1576 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp,
1577 					struct bnx2x_vf_queue *vfq,
1578 					union event_ring_elem *elem)
1579 {
1580 	unsigned long ramrod_flags = 0;
1581 	int rc = 0;
1582 
1583 	/* Always push next commands out, don't wait here */
1584 	set_bit(RAMROD_CONT, &ramrod_flags);
1585 
1586 	switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
1587 	case BNX2X_FILTER_MAC_PENDING:
1588 		rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem,
1589 					   &ramrod_flags);
1590 		break;
1591 	case BNX2X_FILTER_VLAN_PENDING:
1592 		rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem,
1593 					    &ramrod_flags);
1594 		break;
1595 	default:
1596 		BNX2X_ERR("Unsupported classification command: %d\n",
1597 			  elem->message.data.eth_event.echo);
1598 		return;
1599 	}
1600 	if (rc < 0)
1601 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
1602 	else if (rc > 0)
1603 		DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n");
1604 }
1605 
1606 static
1607 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp,
1608 			       struct bnx2x_virtf *vf)
1609 {
1610 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
1611 	int rc;
1612 
1613 	rparam.mcast_obj = &vf->mcast_obj;
1614 	vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw);
1615 
1616 	/* If there are pending mcast commands - send them */
1617 	if (vf->mcast_obj.check_pending(&vf->mcast_obj)) {
1618 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
1619 		if (rc < 0)
1620 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
1621 				  rc);
1622 	}
1623 }
1624 
1625 static
1626 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp,
1627 				 struct bnx2x_virtf *vf)
1628 {
1629 	smp_mb__before_clear_bit();
1630 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
1631 	smp_mb__after_clear_bit();
1632 }
1633 
1634 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp,
1635 					   struct bnx2x_virtf *vf)
1636 {
1637 	vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw);
1638 }
1639 
1640 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem)
1641 {
1642 	struct bnx2x_virtf *vf;
1643 	int qidx = 0, abs_vfid;
1644 	u8 opcode;
1645 	u16 cid = 0xffff;
1646 
1647 	if (!IS_SRIOV(bp))
1648 		return 1;
1649 
1650 	/* first get the cid - the only events we handle here are cfc-delete
1651 	 * and set-mac completion
1652 	 */
1653 	opcode = elem->message.opcode;
1654 
1655 	switch (opcode) {
1656 	case EVENT_RING_OPCODE_CFC_DEL:
1657 		cid = SW_CID((__force __le32)
1658 			     elem->message.data.cfc_del_event.cid);
1659 		DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid);
1660 		break;
1661 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1662 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1663 	case EVENT_RING_OPCODE_FILTERS_RULES:
1664 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1665 		cid = (elem->message.data.eth_event.echo &
1666 		       BNX2X_SWCID_MASK);
1667 		DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid);
1668 		break;
1669 	case EVENT_RING_OPCODE_VF_FLR:
1670 		abs_vfid = elem->message.data.vf_flr_event.vf_id;
1671 		DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n",
1672 		   abs_vfid);
1673 		goto get_vf;
1674 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1675 		abs_vfid = elem->message.data.malicious_vf_event.vf_id;
1676 		BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
1677 			  abs_vfid,
1678 			  elem->message.data.malicious_vf_event.err_id);
1679 		goto get_vf;
1680 	default:
1681 		return 1;
1682 	}
1683 
1684 	/* check if the cid is the VF range */
1685 	if (!bnx2x_iov_is_vf_cid(bp, cid)) {
1686 		DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid);
1687 		return 1;
1688 	}
1689 
1690 	/* extract vf and rxq index from vf_cid - relies on the following:
1691 	 * 1. vfid on cid reflects the true abs_vfid
1692 	 * 2. The max number of VFs (per path) is 64
1693 	 */
1694 	qidx = cid & ((1 << BNX2X_VF_CID_WND)-1);
1695 	abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1696 get_vf:
1697 	vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
1698 
1699 	if (!vf) {
1700 		BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
1701 			  cid, abs_vfid);
1702 		return 0;
1703 	}
1704 
1705 	switch (opcode) {
1706 	case EVENT_RING_OPCODE_CFC_DEL:
1707 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n",
1708 		   vf->abs_vfid, qidx);
1709 		vfq_get(vf, qidx)->sp_obj.complete_cmd(bp,
1710 						       &vfq_get(vf,
1711 								qidx)->sp_obj,
1712 						       BNX2X_Q_CMD_CFC_DEL);
1713 		break;
1714 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1715 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n",
1716 		   vf->abs_vfid, qidx);
1717 		bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem);
1718 		break;
1719 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1720 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n",
1721 		   vf->abs_vfid, qidx);
1722 		bnx2x_vf_handle_mcast_eqe(bp, vf);
1723 		break;
1724 	case EVENT_RING_OPCODE_FILTERS_RULES:
1725 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n",
1726 		   vf->abs_vfid, qidx);
1727 		bnx2x_vf_handle_filters_eqe(bp, vf);
1728 		break;
1729 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1730 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n",
1731 		   vf->abs_vfid, qidx);
1732 		bnx2x_vf_handle_rss_update_eqe(bp, vf);
1733 	case EVENT_RING_OPCODE_VF_FLR:
1734 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1735 		/* Do nothing for now */
1736 		return 0;
1737 	}
1738 
1739 	return 0;
1740 }
1741 
1742 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid)
1743 {
1744 	/* extract the vf from vf_cid - relies on the following:
1745 	 * 1. vfid on cid reflects the true abs_vfid
1746 	 * 2. The max number of VFs (per path) is 64
1747 	 */
1748 	int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1749 	return bnx2x_vf_by_abs_fid(bp, abs_vfid);
1750 }
1751 
1752 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid,
1753 				struct bnx2x_queue_sp_obj **q_obj)
1754 {
1755 	struct bnx2x_virtf *vf;
1756 
1757 	if (!IS_SRIOV(bp))
1758 		return;
1759 
1760 	vf = bnx2x_vf_by_cid(bp, vf_cid);
1761 
1762 	if (vf) {
1763 		/* extract queue index from vf_cid - relies on the following:
1764 		 * 1. vfid on cid reflects the true abs_vfid
1765 		 * 2. The max number of VFs (per path) is 64
1766 		 */
1767 		int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1);
1768 		*q_obj = &bnx2x_vfq(vf, q_index, sp_obj);
1769 	} else {
1770 		BNX2X_ERR("No vf matching cid %d\n", vf_cid);
1771 	}
1772 }
1773 
1774 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp)
1775 {
1776 	int i;
1777 	int first_queue_query_index, num_queues_req;
1778 	dma_addr_t cur_data_offset;
1779 	struct stats_query_entry *cur_query_entry;
1780 	u8 stats_count = 0;
1781 	bool is_fcoe = false;
1782 
1783 	if (!IS_SRIOV(bp))
1784 		return;
1785 
1786 	if (!NO_FCOE(bp))
1787 		is_fcoe = true;
1788 
1789 	/* fcoe adds one global request and one queue request */
1790 	num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe;
1791 	first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX -
1792 		(is_fcoe ? 0 : 1);
1793 
1794 	DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1795 	       "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
1796 	       BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index,
1797 	       first_queue_query_index + num_queues_req);
1798 
1799 	cur_data_offset = bp->fw_stats_data_mapping +
1800 		offsetof(struct bnx2x_fw_stats_data, queue_stats) +
1801 		num_queues_req * sizeof(struct per_queue_stats);
1802 
1803 	cur_query_entry = &bp->fw_stats_req->
1804 		query[first_queue_query_index + num_queues_req];
1805 
1806 	for_each_vf(bp, i) {
1807 		int j;
1808 		struct bnx2x_virtf *vf = BP_VF(bp, i);
1809 
1810 		if (vf->state != VF_ENABLED) {
1811 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1812 			       "vf %d not enabled so no stats for it\n",
1813 			       vf->abs_vfid);
1814 			continue;
1815 		}
1816 
1817 		DP(BNX2X_MSG_IOV, "add addresses for vf %d\n", vf->abs_vfid);
1818 		for_each_vfq(vf, j) {
1819 			struct bnx2x_vf_queue *rxq = vfq_get(vf, j);
1820 
1821 			dma_addr_t q_stats_addr =
1822 				vf->fw_stat_map + j * vf->stats_stride;
1823 
1824 			/* collect stats fro active queues only */
1825 			if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) ==
1826 			    BNX2X_Q_LOGICAL_STATE_STOPPED)
1827 				continue;
1828 
1829 			/* create stats query entry for this queue */
1830 			cur_query_entry->kind = STATS_TYPE_QUEUE;
1831 			cur_query_entry->index = vfq_stat_id(vf, rxq);
1832 			cur_query_entry->funcID =
1833 				cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid));
1834 			cur_query_entry->address.hi =
1835 				cpu_to_le32(U64_HI(q_stats_addr));
1836 			cur_query_entry->address.lo =
1837 				cpu_to_le32(U64_LO(q_stats_addr));
1838 			DP(BNX2X_MSG_IOV,
1839 			   "added address %x %x for vf %d queue %d client %d\n",
1840 			   cur_query_entry->address.hi,
1841 			   cur_query_entry->address.lo, cur_query_entry->funcID,
1842 			   j, cur_query_entry->index);
1843 			cur_query_entry++;
1844 			cur_data_offset += sizeof(struct per_queue_stats);
1845 			stats_count++;
1846 
1847 			/* all stats are coalesced to the leading queue */
1848 			if (vf->cfg_flags & VF_CFG_STATS_COALESCE)
1849 				break;
1850 		}
1851 	}
1852 	bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count;
1853 }
1854 
1855 static inline
1856 struct bnx2x_virtf *__vf_from_stat_id(struct bnx2x *bp, u8 stat_id)
1857 {
1858 	int i;
1859 	struct bnx2x_virtf *vf = NULL;
1860 
1861 	for_each_vf(bp, i) {
1862 		vf = BP_VF(bp, i);
1863 		if (stat_id >= vf->igu_base_id &&
1864 		    stat_id < vf->igu_base_id + vf_sb_count(vf))
1865 			break;
1866 	}
1867 	return vf;
1868 }
1869 
1870 /* VF API helpers */
1871 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid,
1872 				u8 enable)
1873 {
1874 	u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4;
1875 	u32 val = enable ? (abs_vfid | (1 << 6)) : 0;
1876 
1877 	REG_WR(bp, reg, val);
1878 }
1879 
1880 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf)
1881 {
1882 	int i;
1883 
1884 	for_each_vfq(vf, i)
1885 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
1886 				    vfq_qzone_id(vf, vfq_get(vf, i)), false);
1887 }
1888 
1889 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf)
1890 {
1891 	u32 val;
1892 
1893 	/* clear the VF configuration - pretend */
1894 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
1895 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
1896 	val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN |
1897 		 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK);
1898 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
1899 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1900 }
1901 
1902 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf)
1903 {
1904 	return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF),
1905 		     BNX2X_VF_MAX_QUEUES);
1906 }
1907 
1908 static
1909 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf,
1910 			    struct vf_pf_resc_request *req_resc)
1911 {
1912 	u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1913 	u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1914 
1915 	return ((req_resc->num_rxqs <= rxq_cnt) &&
1916 		(req_resc->num_txqs <= txq_cnt) &&
1917 		(req_resc->num_sbs <= vf_sb_count(vf))   &&
1918 		(req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) &&
1919 		(req_resc->num_vlan_filters <= vf_vlan_rules_cnt(vf)));
1920 }
1921 
1922 /* CORE VF API */
1923 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf,
1924 		     struct vf_pf_resc_request *resc)
1925 {
1926 	int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) *
1927 		BNX2X_CIDS_PER_VF;
1928 
1929 	union cdu_context *base_cxt = (union cdu_context *)
1930 		BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1931 		(base_vf_cid & (ILT_PAGE_CIDS-1));
1932 	int i;
1933 
1934 	/* if state is 'acquired' the VF was not released or FLR'd, in
1935 	 * this case the returned resources match the acquired already
1936 	 * acquired resources. Verify that the requested numbers do
1937 	 * not exceed the already acquired numbers.
1938 	 */
1939 	if (vf->state == VF_ACQUIRED) {
1940 		DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
1941 		   vf->abs_vfid);
1942 
1943 		if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
1944 			BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
1945 				  vf->abs_vfid);
1946 			return -EINVAL;
1947 		}
1948 		return 0;
1949 	}
1950 
1951 	/* Otherwise vf state must be 'free' or 'reset' */
1952 	if (vf->state != VF_FREE && vf->state != VF_RESET) {
1953 		BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
1954 			  vf->abs_vfid, vf->state);
1955 		return -EINVAL;
1956 	}
1957 
1958 	/* static allocation:
1959 	 * the global maximum number are fixed per VF. Fail the request if
1960 	 * requested number exceed these globals
1961 	 */
1962 	if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
1963 		DP(BNX2X_MSG_IOV,
1964 		   "cannot fulfill vf resource request. Placing maximal available values in response\n");
1965 		/* set the max resource in the vf */
1966 		return -ENOMEM;
1967 	}
1968 
1969 	/* Set resources counters - 0 request means max available */
1970 	vf_sb_count(vf) = resc->num_sbs;
1971 	vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
1972 	vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
1973 	if (resc->num_mac_filters)
1974 		vf_mac_rules_cnt(vf) = resc->num_mac_filters;
1975 	if (resc->num_vlan_filters)
1976 		vf_vlan_rules_cnt(vf) = resc->num_vlan_filters;
1977 
1978 	DP(BNX2X_MSG_IOV,
1979 	   "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
1980 	   vf_sb_count(vf), vf_rxq_count(vf),
1981 	   vf_txq_count(vf), vf_mac_rules_cnt(vf),
1982 	   vf_vlan_rules_cnt(vf));
1983 
1984 	/* Initialize the queues */
1985 	if (!vf->vfqs) {
1986 		DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n");
1987 		return -EINVAL;
1988 	}
1989 
1990 	for_each_vfq(vf, i) {
1991 		struct bnx2x_vf_queue *q = vfq_get(vf, i);
1992 
1993 		if (!q) {
1994 			BNX2X_ERR("q number %d was not allocated\n", i);
1995 			return -EINVAL;
1996 		}
1997 
1998 		q->index = i;
1999 		q->cxt = &((base_cxt + i)->eth);
2000 		q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i;
2001 
2002 		DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
2003 		   vf->abs_vfid, i, q->index, q->cid, q->cxt);
2004 
2005 		/* init SP objects */
2006 		bnx2x_vfq_init(bp, vf, q);
2007 	}
2008 	vf->state = VF_ACQUIRED;
2009 	return 0;
2010 }
2011 
2012 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map)
2013 {
2014 	struct bnx2x_func_init_params func_init = {0};
2015 	u16 flags = 0;
2016 	int i;
2017 
2018 	/* the sb resources are initialized at this point, do the
2019 	 * FW/HW initializations
2020 	 */
2021 	for_each_vf_sb(vf, i)
2022 		bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true,
2023 			      vf_igu_sb(vf, i), vf_igu_sb(vf, i));
2024 
2025 	/* Sanity checks */
2026 	if (vf->state != VF_ACQUIRED) {
2027 		DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n",
2028 		   vf->abs_vfid, vf->state);
2029 		return -EINVAL;
2030 	}
2031 
2032 	/* let FLR complete ... */
2033 	msleep(100);
2034 
2035 	/* FLR cleanup epilogue */
2036 	if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid))
2037 		return -EBUSY;
2038 
2039 	/* reset IGU VF statistics: MSIX */
2040 	REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0);
2041 
2042 	/* vf init */
2043 	if (vf->cfg_flags & VF_CFG_STATS)
2044 		flags |= (FUNC_FLG_STATS | FUNC_FLG_SPQ);
2045 
2046 	if (vf->cfg_flags & VF_CFG_TPA)
2047 		flags |= FUNC_FLG_TPA;
2048 
2049 	if (is_vf_multi(vf))
2050 		flags |= FUNC_FLG_RSS;
2051 
2052 	/* function setup */
2053 	func_init.func_flgs = flags;
2054 	func_init.pf_id = BP_FUNC(bp);
2055 	func_init.func_id = FW_VF_HANDLE(vf->abs_vfid);
2056 	func_init.fw_stat_map = vf->fw_stat_map;
2057 	func_init.spq_map = vf->spq_map;
2058 	func_init.spq_prod = 0;
2059 	bnx2x_func_init(bp, &func_init);
2060 
2061 	/* Enable the vf */
2062 	bnx2x_vf_enable_access(bp, vf->abs_vfid);
2063 	bnx2x_vf_enable_traffic(bp, vf);
2064 
2065 	/* queue protection table */
2066 	for_each_vfq(vf, i)
2067 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
2068 				    vfq_qzone_id(vf, vfq_get(vf, i)), true);
2069 
2070 	vf->state = VF_ENABLED;
2071 
2072 	/* update vf bulletin board */
2073 	bnx2x_post_vf_bulletin(bp, vf->index);
2074 
2075 	return 0;
2076 }
2077 
2078 struct set_vf_state_cookie {
2079 	struct bnx2x_virtf *vf;
2080 	u8 state;
2081 };
2082 
2083 static void bnx2x_set_vf_state(void *cookie)
2084 {
2085 	struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie;
2086 
2087 	p->vf->state = p->state;
2088 }
2089 
2090 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf)
2091 {
2092 	int rc = 0, i;
2093 
2094 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2095 
2096 	/* Close all queues */
2097 	for (i = 0; i < vf_rxq_count(vf); i++) {
2098 		rc = bnx2x_vf_queue_teardown(bp, vf, i);
2099 		if (rc)
2100 			goto op_err;
2101 	}
2102 
2103 	/* disable the interrupts */
2104 	DP(BNX2X_MSG_IOV, "disabling igu\n");
2105 	bnx2x_vf_igu_disable(bp, vf);
2106 
2107 	/* disable the VF */
2108 	DP(BNX2X_MSG_IOV, "clearing qtbl\n");
2109 	bnx2x_vf_clr_qtbl(bp, vf);
2110 
2111 	/* need to make sure there are no outstanding stats ramrods which may
2112 	 * cause the device to access the VF's stats buffer which it will free
2113 	 * as soon as we return from the close flow.
2114 	 */
2115 	{
2116 		struct set_vf_state_cookie cookie;
2117 
2118 		cookie.vf = vf;
2119 		cookie.state = VF_ACQUIRED;
2120 		bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie);
2121 	}
2122 
2123 	DP(BNX2X_MSG_IOV, "set state to acquired\n");
2124 
2125 	return 0;
2126 op_err:
2127 	BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc);
2128 	return rc;
2129 }
2130 
2131 /* VF release can be called either: 1. The VF was acquired but
2132  * not enabled 2. the vf was enabled or in the process of being
2133  * enabled
2134  */
2135 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf)
2136 {
2137 	int rc;
2138 
2139 	DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid,
2140 	   vf->state == VF_FREE ? "Free" :
2141 	   vf->state == VF_ACQUIRED ? "Acquired" :
2142 	   vf->state == VF_ENABLED ? "Enabled" :
2143 	   vf->state == VF_RESET ? "Reset" :
2144 	   "Unknown");
2145 
2146 	switch (vf->state) {
2147 	case VF_ENABLED:
2148 		rc = bnx2x_vf_close(bp, vf);
2149 		if (rc)
2150 			goto op_err;
2151 		/* Fallthrough to release resources */
2152 	case VF_ACQUIRED:
2153 		DP(BNX2X_MSG_IOV, "about to free resources\n");
2154 		bnx2x_vf_free_resc(bp, vf);
2155 		break;
2156 
2157 	case VF_FREE:
2158 	case VF_RESET:
2159 	default:
2160 		break;
2161 	}
2162 	return 0;
2163 op_err:
2164 	BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc);
2165 	return rc;
2166 }
2167 
2168 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2169 			struct bnx2x_config_rss_params *rss)
2170 {
2171 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2172 	set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags);
2173 	return bnx2x_config_rss(bp, rss);
2174 }
2175 
2176 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2177 			struct vfpf_tpa_tlv *tlv,
2178 			struct bnx2x_queue_update_tpa_params *params)
2179 {
2180 	aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr;
2181 	struct bnx2x_queue_state_params qstate;
2182 	int qid, rc = 0;
2183 
2184 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2185 
2186 	/* Set ramrod params */
2187 	memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
2188 	memcpy(&qstate.params.update_tpa, params,
2189 	       sizeof(struct bnx2x_queue_update_tpa_params));
2190 	qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA;
2191 	set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
2192 
2193 	for (qid = 0; qid < vf_rxq_count(vf); qid++) {
2194 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
2195 		qstate.params.update_tpa.sge_map = sge_addr[qid];
2196 		DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n",
2197 		   vf->abs_vfid, qid, U64_HI(sge_addr[qid]),
2198 		   U64_LO(sge_addr[qid]));
2199 		rc = bnx2x_queue_state_change(bp, &qstate);
2200 		if (rc) {
2201 			BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n",
2202 				  U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]),
2203 				  vf->abs_vfid, qid);
2204 			return rc;
2205 		}
2206 	}
2207 
2208 	return rc;
2209 }
2210 
2211 /* VF release ~ VF close + VF release-resources
2212  * Release is the ultimate SW shutdown and is called whenever an
2213  * irrecoverable error is encountered.
2214  */
2215 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf)
2216 {
2217 	int rc;
2218 
2219 	DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid);
2220 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2221 
2222 	rc = bnx2x_vf_free(bp, vf);
2223 	if (rc)
2224 		WARN(rc,
2225 		     "VF[%d] Failed to allocate resources for release op- rc=%d\n",
2226 		     vf->abs_vfid, rc);
2227 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2228 	return rc;
2229 }
2230 
2231 static inline void bnx2x_vf_get_sbdf(struct bnx2x *bp,
2232 			      struct bnx2x_virtf *vf, u32 *sbdf)
2233 {
2234 	*sbdf = vf->devfn | (vf->bus << 8);
2235 }
2236 
2237 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2238 			      enum channel_tlvs tlv)
2239 {
2240 	/* we don't lock the channel for unsupported tlvs */
2241 	if (!bnx2x_tlv_supported(tlv)) {
2242 		BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n");
2243 		return;
2244 	}
2245 
2246 	/* lock the channel */
2247 	mutex_lock(&vf->op_mutex);
2248 
2249 	/* record the locking op */
2250 	vf->op_current = tlv;
2251 
2252 	/* log the lock */
2253 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n",
2254 	   vf->abs_vfid, tlv);
2255 }
2256 
2257 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2258 				enum channel_tlvs expected_tlv)
2259 {
2260 	enum channel_tlvs current_tlv;
2261 
2262 	if (!vf) {
2263 		BNX2X_ERR("VF was %p\n", vf);
2264 		return;
2265 	}
2266 
2267 	current_tlv = vf->op_current;
2268 
2269 	/* we don't unlock the channel for unsupported tlvs */
2270 	if (!bnx2x_tlv_supported(expected_tlv))
2271 		return;
2272 
2273 	WARN(expected_tlv != vf->op_current,
2274 	     "lock mismatch: expected %d found %d", expected_tlv,
2275 	     vf->op_current);
2276 
2277 	/* record the locking op */
2278 	vf->op_current = CHANNEL_TLV_NONE;
2279 
2280 	/* lock the channel */
2281 	mutex_unlock(&vf->op_mutex);
2282 
2283 	/* log the unlock */
2284 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n",
2285 	   vf->abs_vfid, vf->op_current);
2286 }
2287 
2288 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable)
2289 {
2290 	struct bnx2x_queue_state_params q_params;
2291 	u32 prev_flags;
2292 	int i, rc;
2293 
2294 	/* Verify changes are needed and record current Tx switching state */
2295 	prev_flags = bp->flags;
2296 	if (enable)
2297 		bp->flags |= TX_SWITCHING;
2298 	else
2299 		bp->flags &= ~TX_SWITCHING;
2300 	if (prev_flags == bp->flags)
2301 		return 0;
2302 
2303 	/* Verify state enables the sending of queue ramrods */
2304 	if ((bp->state != BNX2X_STATE_OPEN) ||
2305 	    (bnx2x_get_q_logical_state(bp,
2306 				      &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) !=
2307 	     BNX2X_Q_LOGICAL_STATE_ACTIVE))
2308 		return 0;
2309 
2310 	/* send q. update ramrod to configure Tx switching */
2311 	memset(&q_params, 0, sizeof(q_params));
2312 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2313 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
2314 	__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
2315 		  &q_params.params.update.update_flags);
2316 	if (enable)
2317 		__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2318 			  &q_params.params.update.update_flags);
2319 	else
2320 		__clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2321 			    &q_params.params.update.update_flags);
2322 
2323 	/* send the ramrod on all the queues of the PF */
2324 	for_each_eth_queue(bp, i) {
2325 		struct bnx2x_fastpath *fp = &bp->fp[i];
2326 
2327 		/* Set the appropriate Queue object */
2328 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
2329 
2330 		/* Update the Queue state */
2331 		rc = bnx2x_queue_state_change(bp, &q_params);
2332 		if (rc) {
2333 			BNX2X_ERR("Failed to configure Tx switching\n");
2334 			return rc;
2335 		}
2336 	}
2337 
2338 	DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled");
2339 	return 0;
2340 }
2341 
2342 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param)
2343 {
2344 	struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev));
2345 
2346 	if (!IS_SRIOV(bp)) {
2347 		BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n");
2348 		return -EINVAL;
2349 	}
2350 
2351 	DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
2352 	   num_vfs_param, BNX2X_NR_VIRTFN(bp));
2353 
2354 	/* HW channel is only operational when PF is up */
2355 	if (bp->state != BNX2X_STATE_OPEN) {
2356 		BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
2357 		return -EINVAL;
2358 	}
2359 
2360 	/* we are always bound by the total_vfs in the configuration space */
2361 	if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) {
2362 		BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
2363 			  num_vfs_param, BNX2X_NR_VIRTFN(bp));
2364 		num_vfs_param = BNX2X_NR_VIRTFN(bp);
2365 	}
2366 
2367 	bp->requested_nr_virtfn = num_vfs_param;
2368 	if (num_vfs_param == 0) {
2369 		bnx2x_set_pf_tx_switching(bp, false);
2370 		pci_disable_sriov(dev);
2371 		return 0;
2372 	} else {
2373 		return bnx2x_enable_sriov(bp);
2374 	}
2375 }
2376 
2377 #define IGU_ENTRY_SIZE 4
2378 
2379 int bnx2x_enable_sriov(struct bnx2x *bp)
2380 {
2381 	int rc = 0, req_vfs = bp->requested_nr_virtfn;
2382 	int vf_idx, sb_idx, vfq_idx, qcount, first_vf;
2383 	u32 igu_entry, address;
2384 	u16 num_vf_queues;
2385 
2386 	if (req_vfs == 0)
2387 		return 0;
2388 
2389 	first_vf = bp->vfdb->sriov.first_vf_in_pf;
2390 
2391 	/* statically distribute vf sb pool between VFs */
2392 	num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES,
2393 			      BP_VFDB(bp)->vf_sbs_pool / req_vfs);
2394 
2395 	/* zero previous values learned from igu cam */
2396 	for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) {
2397 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2398 
2399 		vf->sb_count = 0;
2400 		vf_sb_count(BP_VF(bp, vf_idx)) = 0;
2401 	}
2402 	bp->vfdb->vf_sbs_pool = 0;
2403 
2404 	/* prepare IGU cam */
2405 	sb_idx = BP_VFDB(bp)->first_vf_igu_entry;
2406 	address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE;
2407 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2408 		for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) {
2409 			igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT |
2410 				vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT |
2411 				IGU_REG_MAPPING_MEMORY_VALID;
2412 			DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n",
2413 			   sb_idx, vf_idx);
2414 			REG_WR(bp, address, igu_entry);
2415 			sb_idx++;
2416 			address += IGU_ENTRY_SIZE;
2417 		}
2418 	}
2419 
2420 	/* Reinitialize vf database according to igu cam */
2421 	bnx2x_get_vf_igu_cam_info(bp);
2422 
2423 	DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n",
2424 	   BP_VFDB(bp)->vf_sbs_pool, num_vf_queues);
2425 
2426 	qcount = 0;
2427 	for_each_vf(bp, vf_idx) {
2428 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2429 
2430 		/* set local queue arrays */
2431 		vf->vfqs = &bp->vfdb->vfqs[qcount];
2432 		qcount += vf_sb_count(vf);
2433 		bnx2x_iov_static_resc(bp, vf);
2434 	}
2435 
2436 	/* prepare msix vectors in VF configuration space - the value in the
2437 	 * PCI configuration space should be the index of the last entry,
2438 	 * namely one less than the actual size of the table
2439 	 */
2440 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2441 		bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx));
2442 		REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL,
2443 		       num_vf_queues - 1);
2444 		DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n",
2445 		   vf_idx, num_vf_queues - 1);
2446 	}
2447 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
2448 
2449 	/* enable sriov. This will probe all the VFs, and consequentially cause
2450 	 * the "acquire" messages to appear on the VF PF channel.
2451 	 */
2452 	DP(BNX2X_MSG_IOV, "about to call enable sriov\n");
2453 	bnx2x_disable_sriov(bp);
2454 
2455 	rc = bnx2x_set_pf_tx_switching(bp, true);
2456 	if (rc)
2457 		return rc;
2458 
2459 	rc = pci_enable_sriov(bp->pdev, req_vfs);
2460 	if (rc) {
2461 		BNX2X_ERR("pci_enable_sriov failed with %d\n", rc);
2462 		return rc;
2463 	}
2464 	DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs);
2465 	return req_vfs;
2466 }
2467 
2468 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp)
2469 {
2470 	int vfidx;
2471 	struct pf_vf_bulletin_content *bulletin;
2472 
2473 	DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n");
2474 	for_each_vf(bp, vfidx) {
2475 	bulletin = BP_VF_BULLETIN(bp, vfidx);
2476 		if (BP_VF(bp, vfidx)->cfg_flags & VF_CFG_VLAN)
2477 			bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0);
2478 	}
2479 }
2480 
2481 void bnx2x_disable_sriov(struct bnx2x *bp)
2482 {
2483 	pci_disable_sriov(bp->pdev);
2484 }
2485 
2486 static int bnx2x_vf_ndo_prep(struct bnx2x *bp, int vfidx,
2487 			     struct bnx2x_virtf **vf,
2488 			     struct pf_vf_bulletin_content **bulletin)
2489 {
2490 	if (bp->state != BNX2X_STATE_OPEN) {
2491 		BNX2X_ERR("vf ndo called though PF is down\n");
2492 		return -EINVAL;
2493 	}
2494 
2495 	if (!IS_SRIOV(bp)) {
2496 		BNX2X_ERR("vf ndo called though sriov is disabled\n");
2497 		return -EINVAL;
2498 	}
2499 
2500 	if (vfidx >= BNX2X_NR_VIRTFN(bp)) {
2501 		BNX2X_ERR("vf ndo called for uninitialized VF. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
2502 			  vfidx, BNX2X_NR_VIRTFN(bp));
2503 		return -EINVAL;
2504 	}
2505 
2506 	/* init members */
2507 	*vf = BP_VF(bp, vfidx);
2508 	*bulletin = BP_VF_BULLETIN(bp, vfidx);
2509 
2510 	if (!*vf) {
2511 		BNX2X_ERR("vf ndo called but vf struct is null. vfidx was %d\n",
2512 			  vfidx);
2513 		return -EINVAL;
2514 	}
2515 
2516 	if (!(*vf)->vfqs) {
2517 		BNX2X_ERR("vf ndo called but vfqs struct is null. Was ndo invoked before dynamically enabling SR-IOV? vfidx was %d\n",
2518 			  vfidx);
2519 		return -EINVAL;
2520 	}
2521 
2522 	if (!*bulletin) {
2523 		BNX2X_ERR("vf ndo called but Bulletin Board struct is null. vfidx was %d\n",
2524 			  vfidx);
2525 		return -EINVAL;
2526 	}
2527 
2528 	return 0;
2529 }
2530 
2531 int bnx2x_get_vf_config(struct net_device *dev, int vfidx,
2532 			struct ifla_vf_info *ivi)
2533 {
2534 	struct bnx2x *bp = netdev_priv(dev);
2535 	struct bnx2x_virtf *vf = NULL;
2536 	struct pf_vf_bulletin_content *bulletin = NULL;
2537 	struct bnx2x_vlan_mac_obj *mac_obj;
2538 	struct bnx2x_vlan_mac_obj *vlan_obj;
2539 	int rc;
2540 
2541 	/* sanity and init */
2542 	rc = bnx2x_vf_ndo_prep(bp, vfidx, &vf, &bulletin);
2543 	if (rc)
2544 		return rc;
2545 	mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2546 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2547 	if (!mac_obj || !vlan_obj) {
2548 		BNX2X_ERR("VF partially initialized\n");
2549 		return -EINVAL;
2550 	}
2551 
2552 	ivi->vf = vfidx;
2553 	ivi->qos = 0;
2554 	ivi->tx_rate = 10000; /* always 10G. TBA take from link struct */
2555 	ivi->spoofchk = 1; /*always enabled */
2556 	if (vf->state == VF_ENABLED) {
2557 		/* mac and vlan are in vlan_mac objects */
2558 		if (bnx2x_validate_vf_sp_objs(bp, vf, false)) {
2559 			mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac,
2560 						0, ETH_ALEN);
2561 			vlan_obj->get_n_elements(bp, vlan_obj, 1,
2562 						 (u8 *)&ivi->vlan, 0,
2563 						 VLAN_HLEN);
2564 		}
2565 	} else {
2566 		/* mac */
2567 		if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID))
2568 			/* mac configured by ndo so its in bulletin board */
2569 			memcpy(&ivi->mac, bulletin->mac, ETH_ALEN);
2570 		else
2571 			/* function has not been loaded yet. Show mac as 0s */
2572 			memset(&ivi->mac, 0, ETH_ALEN);
2573 
2574 		/* vlan */
2575 		if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2576 			/* vlan configured by ndo so its in bulletin board */
2577 			memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN);
2578 		else
2579 			/* function has not been loaded yet. Show vlans as 0s */
2580 			memset(&ivi->vlan, 0, VLAN_HLEN);
2581 	}
2582 
2583 	return 0;
2584 }
2585 
2586 /* New mac for VF. Consider these cases:
2587  * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
2588  *    supply at acquire.
2589  * 2. VF has already been acquired but has not yet initialized - store in local
2590  *    bulletin board. mac will be posted on VF bulletin board after VF init. VF
2591  *    will configure this mac when it is ready.
2592  * 3. VF has already initialized but has not yet setup a queue - post the new
2593  *    mac on VF's bulletin board right now. VF will configure this mac when it
2594  *    is ready.
2595  * 4. VF has already set a queue - delete any macs already configured for this
2596  *    queue and manually config the new mac.
2597  * In any event, once this function has been called refuse any attempts by the
2598  * VF to configure any mac for itself except for this mac. In case of a race
2599  * where the VF fails to see the new post on its bulletin board before sending a
2600  * mac configuration request, the PF will simply fail the request and VF can try
2601  * again after consulting its bulletin board.
2602  */
2603 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac)
2604 {
2605 	struct bnx2x *bp = netdev_priv(dev);
2606 	int rc, q_logical_state;
2607 	struct bnx2x_virtf *vf = NULL;
2608 	struct pf_vf_bulletin_content *bulletin = NULL;
2609 
2610 	/* sanity and init */
2611 	rc = bnx2x_vf_ndo_prep(bp, vfidx, &vf, &bulletin);
2612 	if (rc)
2613 		return rc;
2614 	if (!is_valid_ether_addr(mac)) {
2615 		BNX2X_ERR("mac address invalid\n");
2616 		return -EINVAL;
2617 	}
2618 
2619 	/* update PF's copy of the VF's bulletin. Will no longer accept mac
2620 	 * configuration requests from vf unless match this mac
2621 	 */
2622 	bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID;
2623 	memcpy(bulletin->mac, mac, ETH_ALEN);
2624 
2625 	/* Post update on VF's bulletin board */
2626 	rc = bnx2x_post_vf_bulletin(bp, vfidx);
2627 	if (rc) {
2628 		BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2629 		return rc;
2630 	}
2631 
2632 	q_logical_state =
2633 		bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj));
2634 	if (vf->state == VF_ENABLED &&
2635 	    q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
2636 		/* configure the mac in device on this vf's queue */
2637 		unsigned long ramrod_flags = 0;
2638 		struct bnx2x_vlan_mac_obj *mac_obj;
2639 
2640 		/* User should be able to see failure reason in system logs */
2641 		if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2642 			return -EINVAL;
2643 
2644 		/* must lock vfpf channel to protect against vf flows */
2645 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2646 
2647 		/* remove existing eth macs */
2648 		mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2649 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true);
2650 		if (rc) {
2651 			BNX2X_ERR("failed to delete eth macs\n");
2652 			rc = -EINVAL;
2653 			goto out;
2654 		}
2655 
2656 		/* remove existing uc list macs */
2657 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true);
2658 		if (rc) {
2659 			BNX2X_ERR("failed to delete uc_list macs\n");
2660 			rc = -EINVAL;
2661 			goto out;
2662 		}
2663 
2664 		/* configure the new mac to device */
2665 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2666 		bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true,
2667 				  BNX2X_ETH_MAC, &ramrod_flags);
2668 
2669 out:
2670 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2671 	}
2672 
2673 	return 0;
2674 }
2675 
2676 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos)
2677 {
2678 	struct bnx2x_queue_state_params q_params = {NULL};
2679 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
2680 	struct bnx2x_queue_update_params *update_params;
2681 	struct pf_vf_bulletin_content *bulletin = NULL;
2682 	struct bnx2x_rx_mode_ramrod_params rx_ramrod;
2683 	struct bnx2x *bp = netdev_priv(dev);
2684 	struct bnx2x_vlan_mac_obj *vlan_obj;
2685 	unsigned long vlan_mac_flags = 0;
2686 	unsigned long ramrod_flags = 0;
2687 	struct bnx2x_virtf *vf = NULL;
2688 	unsigned long accept_flags;
2689 	int rc;
2690 
2691 	/* sanity and init */
2692 	rc = bnx2x_vf_ndo_prep(bp, vfidx, &vf, &bulletin);
2693 	if (rc)
2694 		return rc;
2695 
2696 	if (vlan > 4095) {
2697 		BNX2X_ERR("illegal vlan value %d\n", vlan);
2698 		return -EINVAL;
2699 	}
2700 
2701 	DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n",
2702 	   vfidx, vlan, 0);
2703 
2704 	/* update PF's copy of the VF's bulletin. No point in posting the vlan
2705 	 * to the VF since it doesn't have anything to do with it. But it useful
2706 	 * to store it here in case the VF is not up yet and we can only
2707 	 * configure the vlan later when it does. Treat vlan id 0 as remove the
2708 	 * Host tag.
2709 	 */
2710 	if (vlan > 0)
2711 		bulletin->valid_bitmap |= 1 << VLAN_VALID;
2712 	else
2713 		bulletin->valid_bitmap &= ~(1 << VLAN_VALID);
2714 	bulletin->vlan = vlan;
2715 
2716 	/* is vf initialized and queue set up? */
2717 	if (vf->state != VF_ENABLED ||
2718 	    bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2719 	    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2720 		return rc;
2721 
2722 	/* User should be able to see error in system logs */
2723 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2724 		return -EINVAL;
2725 
2726 	/* must lock vfpf channel to protect against vf flows */
2727 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2728 
2729 	/* remove existing vlans */
2730 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2731 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2732 	rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags,
2733 				  &ramrod_flags);
2734 	if (rc) {
2735 		BNX2X_ERR("failed to delete vlans\n");
2736 		rc = -EINVAL;
2737 		goto out;
2738 	}
2739 
2740 	/* need to remove/add the VF's accept_any_vlan bit */
2741 	accept_flags = bnx2x_leading_vfq(vf, accept_flags);
2742 	if (vlan)
2743 		clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2744 	else
2745 		set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2746 
2747 	bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf,
2748 			      accept_flags);
2749 	bnx2x_leading_vfq(vf, accept_flags) = accept_flags;
2750 	bnx2x_config_rx_mode(bp, &rx_ramrod);
2751 
2752 	/* configure the new vlan to device */
2753 	memset(&ramrod_param, 0, sizeof(ramrod_param));
2754 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2755 	ramrod_param.vlan_mac_obj = vlan_obj;
2756 	ramrod_param.ramrod_flags = ramrod_flags;
2757 	set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
2758 		&ramrod_param.user_req.vlan_mac_flags);
2759 	ramrod_param.user_req.u.vlan.vlan = vlan;
2760 	ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
2761 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
2762 	if (rc) {
2763 		BNX2X_ERR("failed to configure vlan\n");
2764 		rc =  -EINVAL;
2765 		goto out;
2766 	}
2767 
2768 	/* send queue update ramrod to configure default vlan and silent
2769 	 * vlan removal
2770 	 */
2771 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2772 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
2773 	q_params.q_obj = &bnx2x_leading_vfq(vf, sp_obj);
2774 	update_params = &q_params.params.update;
2775 	__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
2776 		  &update_params->update_flags);
2777 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
2778 		  &update_params->update_flags);
2779 	if (vlan == 0) {
2780 		/* if vlan is 0 then we want to leave the VF traffic
2781 		 * untagged, and leave the incoming traffic untouched
2782 		 * (i.e. do not remove any vlan tags).
2783 		 */
2784 		__clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2785 			    &update_params->update_flags);
2786 		__clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2787 			    &update_params->update_flags);
2788 	} else {
2789 		/* configure default vlan to vf queue and set silent
2790 		 * vlan removal (the vf remains unaware of this vlan).
2791 		 */
2792 		__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2793 			  &update_params->update_flags);
2794 		__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2795 			  &update_params->update_flags);
2796 		update_params->def_vlan = vlan;
2797 		update_params->silent_removal_value =
2798 			vlan & VLAN_VID_MASK;
2799 		update_params->silent_removal_mask = VLAN_VID_MASK;
2800 	}
2801 
2802 	/* Update the Queue state */
2803 	rc = bnx2x_queue_state_change(bp, &q_params);
2804 	if (rc) {
2805 		BNX2X_ERR("Failed to configure default VLAN\n");
2806 		goto out;
2807 	}
2808 
2809 
2810 	/* clear the flag indicating that this VF needs its vlan
2811 	 * (will only be set if the HV configured the Vlan before vf was
2812 	 * up and we were called because the VF came up later
2813 	 */
2814 out:
2815 	vf->cfg_flags &= ~VF_CFG_VLAN;
2816 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2817 
2818 	return rc;
2819 }
2820 
2821 /* crc is the first field in the bulletin board. Compute the crc over the
2822  * entire bulletin board excluding the crc field itself. Use the length field
2823  * as the Bulletin Board was posted by a PF with possibly a different version
2824  * from the vf which will sample it. Therefore, the length is computed by the
2825  * PF and the used blindly by the VF.
2826  */
2827 u32 bnx2x_crc_vf_bulletin(struct bnx2x *bp,
2828 			  struct pf_vf_bulletin_content *bulletin)
2829 {
2830 	return crc32(BULLETIN_CRC_SEED,
2831 		 ((u8 *)bulletin) + sizeof(bulletin->crc),
2832 		 bulletin->length - sizeof(bulletin->crc));
2833 }
2834 
2835 /* Check for new posts on the bulletin board */
2836 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp)
2837 {
2838 	struct pf_vf_bulletin_content bulletin = bp->pf2vf_bulletin->content;
2839 	int attempts;
2840 
2841 	/* bulletin board hasn't changed since last sample */
2842 	if (bp->old_bulletin.version == bulletin.version)
2843 		return PFVF_BULLETIN_UNCHANGED;
2844 
2845 	/* validate crc of new bulletin board */
2846 	if (bp->old_bulletin.version != bp->pf2vf_bulletin->content.version) {
2847 		/* sampling structure in mid post may result with corrupted data
2848 		 * validate crc to ensure coherency.
2849 		 */
2850 		for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) {
2851 			bulletin = bp->pf2vf_bulletin->content;
2852 			if (bulletin.crc == bnx2x_crc_vf_bulletin(bp,
2853 								  &bulletin))
2854 				break;
2855 			BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
2856 				  bulletin.crc,
2857 				  bnx2x_crc_vf_bulletin(bp, &bulletin));
2858 		}
2859 		if (attempts >= BULLETIN_ATTEMPTS) {
2860 			BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
2861 				  attempts);
2862 			return PFVF_BULLETIN_CRC_ERR;
2863 		}
2864 	}
2865 
2866 	/* the mac address in bulletin board is valid and is new */
2867 	if (bulletin.valid_bitmap & 1 << MAC_ADDR_VALID &&
2868 	    !ether_addr_equal(bulletin.mac, bp->old_bulletin.mac)) {
2869 		/* update new mac to net device */
2870 		memcpy(bp->dev->dev_addr, bulletin.mac, ETH_ALEN);
2871 	}
2872 
2873 	/* the vlan in bulletin board is valid and is new */
2874 	if (bulletin.valid_bitmap & 1 << VLAN_VALID)
2875 		memcpy(&bulletin.vlan, &bp->old_bulletin.vlan, VLAN_HLEN);
2876 
2877 	/* copy new bulletin board to bp */
2878 	bp->old_bulletin = bulletin;
2879 
2880 	return PFVF_BULLETIN_UPDATED;
2881 }
2882 
2883 void bnx2x_timer_sriov(struct bnx2x *bp)
2884 {
2885 	bnx2x_sample_bulletin(bp);
2886 
2887 	/* if channel is down we need to self destruct */
2888 	if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN)
2889 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
2890 				       BNX2X_MSG_IOV);
2891 }
2892 
2893 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp)
2894 {
2895 	/* vf doorbells are embedded within the regview */
2896 	return bp->regview + PXP_VF_ADDR_DB_START;
2897 }
2898 
2899 void bnx2x_vf_pci_dealloc(struct bnx2x *bp)
2900 {
2901 	BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
2902 		       sizeof(struct bnx2x_vf_mbx_msg));
2903 	BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->pf2vf_bulletin_mapping,
2904 		       sizeof(union pf_vf_bulletin));
2905 }
2906 
2907 int bnx2x_vf_pci_alloc(struct bnx2x *bp)
2908 {
2909 	mutex_init(&bp->vf2pf_mutex);
2910 
2911 	/* allocate vf2pf mailbox for vf to pf channel */
2912 	bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping,
2913 					 sizeof(struct bnx2x_vf_mbx_msg));
2914 	if (!bp->vf2pf_mbox)
2915 		goto alloc_mem_err;
2916 
2917 	/* allocate pf 2 vf bulletin board */
2918 	bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping,
2919 					     sizeof(union pf_vf_bulletin));
2920 	if (!bp->pf2vf_bulletin)
2921 		goto alloc_mem_err;
2922 
2923 	return 0;
2924 
2925 alloc_mem_err:
2926 	bnx2x_vf_pci_dealloc(bp);
2927 	return -ENOMEM;
2928 }
2929 
2930 void bnx2x_iov_channel_down(struct bnx2x *bp)
2931 {
2932 	int vf_idx;
2933 	struct pf_vf_bulletin_content *bulletin;
2934 
2935 	if (!IS_SRIOV(bp))
2936 		return;
2937 
2938 	for_each_vf(bp, vf_idx) {
2939 		/* locate this VFs bulletin board and update the channel down
2940 		 * bit
2941 		 */
2942 		bulletin = BP_VF_BULLETIN(bp, vf_idx);
2943 		bulletin->valid_bitmap |= 1 << CHANNEL_DOWN;
2944 
2945 		/* update vf bulletin board */
2946 		bnx2x_post_vf_bulletin(bp, vf_idx);
2947 	}
2948 }
2949 
2950 void bnx2x_iov_task(struct work_struct *work)
2951 {
2952 	struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work);
2953 
2954 	if (!netif_running(bp->dev))
2955 		return;
2956 
2957 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR,
2958 			       &bp->iov_task_state))
2959 		bnx2x_vf_handle_flr_event(bp);
2960 
2961 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG,
2962 			       &bp->iov_task_state))
2963 		bnx2x_vf_mbx(bp);
2964 }
2965 
2966 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag)
2967 {
2968 	smp_mb__before_clear_bit();
2969 	set_bit(flag, &bp->iov_task_state);
2970 	smp_mb__after_clear_bit();
2971 	DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
2972 	queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0);
2973 }
2974