1 /* bnx2x_sriov.c: Broadcom Everest network driver.
2  *
3  * Copyright 2009-2013 Broadcom Corporation
4  *
5  * Unless you and Broadcom execute a separate written software license
6  * agreement governing use of this software, this software is licensed to you
7  * under the terms of the GNU General Public License version 2, available
8  * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
9  *
10  * Notwithstanding the above, under no circumstances may you combine this
11  * software in any way with any other Broadcom software provided under a
12  * license other than the GPL, without Broadcom's express prior written
13  * consent.
14  *
15  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
16  * Written by: Shmulik Ravid
17  *	       Ariel Elior <ariel.elior@qlogic.com>
18  *
19  */
20 #include "bnx2x.h"
21 #include "bnx2x_init.h"
22 #include "bnx2x_cmn.h"
23 #include "bnx2x_sp.h"
24 #include <linux/crc32.h>
25 #include <linux/if_vlan.h>
26 
27 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
28 			    struct bnx2x_virtf **vf,
29 			    struct pf_vf_bulletin_content **bulletin,
30 			    bool test_queue);
31 
32 /* General service functions */
33 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
34 					 u16 pf_id)
35 {
36 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
37 		pf_id);
38 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
39 		pf_id);
40 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
41 		pf_id);
42 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
43 		pf_id);
44 }
45 
46 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
47 					u8 enable)
48 {
49 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
50 		enable);
51 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
52 		enable);
53 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
54 		enable);
55 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
56 		enable);
57 }
58 
59 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
60 {
61 	int idx;
62 
63 	for_each_vf(bp, idx)
64 		if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid)
65 			break;
66 	return idx;
67 }
68 
69 static
70 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
71 {
72 	u16 idx =  (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid);
73 	return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL;
74 }
75 
76 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf,
77 				u8 igu_sb_id, u8 segment, u16 index, u8 op,
78 				u8 update)
79 {
80 	/* acking a VF sb through the PF - use the GRC */
81 	u32 ctl;
82 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
83 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
84 	u32 func_encode = vf->abs_vfid;
85 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id;
86 	struct igu_regular cmd_data = {0};
87 
88 	cmd_data.sb_id_and_flags =
89 			((index << IGU_REGULAR_SB_INDEX_SHIFT) |
90 			 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
91 			 (update << IGU_REGULAR_BUPDATE_SHIFT) |
92 			 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
93 
94 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
95 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
96 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
97 
98 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
99 	   cmd_data.sb_id_and_flags, igu_addr_data);
100 	REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags);
101 	mmiowb();
102 	barrier();
103 
104 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
105 	   ctl, igu_addr_ctl);
106 	REG_WR(bp, igu_addr_ctl, ctl);
107 	mmiowb();
108 	barrier();
109 }
110 
111 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp,
112 				       struct bnx2x_virtf *vf,
113 				       bool print_err)
114 {
115 	if (!bnx2x_leading_vfq(vf, sp_initialized)) {
116 		if (print_err)
117 			BNX2X_ERR("Slowpath objects not yet initialized!\n");
118 		else
119 			DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n");
120 		return false;
121 	}
122 	return true;
123 }
124 
125 /* VFOP operations states */
126 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf,
127 			      struct bnx2x_queue_init_params *init_params,
128 			      struct bnx2x_queue_setup_params *setup_params,
129 			      u16 q_idx, u16 sb_idx)
130 {
131 	DP(BNX2X_MSG_IOV,
132 	   "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
133 	   vf->abs_vfid,
134 	   q_idx,
135 	   sb_idx,
136 	   init_params->tx.sb_cq_index,
137 	   init_params->tx.hc_rate,
138 	   setup_params->flags,
139 	   setup_params->txq_params.traffic_type);
140 }
141 
142 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf,
143 			    struct bnx2x_queue_init_params *init_params,
144 			    struct bnx2x_queue_setup_params *setup_params,
145 			    u16 q_idx, u16 sb_idx)
146 {
147 	struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params;
148 
149 	DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
150 	   "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
151 	   vf->abs_vfid,
152 	   q_idx,
153 	   sb_idx,
154 	   init_params->rx.sb_cq_index,
155 	   init_params->rx.hc_rate,
156 	   setup_params->gen_params.mtu,
157 	   rxq_params->buf_sz,
158 	   rxq_params->sge_buf_sz,
159 	   rxq_params->max_sges_pkt,
160 	   rxq_params->tpa_agg_sz,
161 	   setup_params->flags,
162 	   rxq_params->drop_flags,
163 	   rxq_params->cache_line_log);
164 }
165 
166 void bnx2x_vfop_qctor_prep(struct bnx2x *bp,
167 			   struct bnx2x_virtf *vf,
168 			   struct bnx2x_vf_queue *q,
169 			   struct bnx2x_vf_queue_construct_params *p,
170 			   unsigned long q_type)
171 {
172 	struct bnx2x_queue_init_params *init_p = &p->qstate.params.init;
173 	struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup;
174 
175 	/* INIT */
176 
177 	/* Enable host coalescing in the transition to INIT state */
178 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags))
179 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags);
180 
181 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags))
182 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags);
183 
184 	/* FW SB ID */
185 	init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
186 	init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
187 
188 	/* context */
189 	init_p->cxts[0] = q->cxt;
190 
191 	/* SETUP */
192 
193 	/* Setup-op general parameters */
194 	setup_p->gen_params.spcl_id = vf->sp_cl_id;
195 	setup_p->gen_params.stat_id = vfq_stat_id(vf, q);
196 	setup_p->gen_params.fp_hsi = vf->fp_hsi;
197 
198 	/* Setup-op pause params:
199 	 * Nothing to do, the pause thresholds are set by default to 0 which
200 	 * effectively turns off the feature for this queue. We don't want
201 	 * one queue (VF) to interfering with another queue (another VF)
202 	 */
203 	if (vf->cfg_flags & VF_CFG_FW_FC)
204 		BNX2X_ERR("No support for pause to VFs (abs_vfid: %d)\n",
205 			  vf->abs_vfid);
206 	/* Setup-op flags:
207 	 * collect statistics, zero statistics, local-switching, security,
208 	 * OV for Flex10, RSS and MCAST for leading
209 	 */
210 	if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags))
211 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags);
212 
213 	/* for VFs, enable tx switching, bd coherency, and mac address
214 	 * anti-spoofing
215 	 */
216 	__set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags);
217 	__set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags);
218 	__set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
219 
220 	/* Setup-op rx parameters */
221 	if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) {
222 		struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params;
223 
224 		rxq_p->cl_qzone_id = vfq_qzone_id(vf, q);
225 		rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx);
226 		rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid);
227 
228 		if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags))
229 			rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES;
230 	}
231 
232 	/* Setup-op tx parameters */
233 	if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) {
234 		setup_p->txq_params.tss_leading_cl_id = vf->leading_rss;
235 		setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
236 	}
237 }
238 
239 static int bnx2x_vf_queue_create(struct bnx2x *bp,
240 				 struct bnx2x_virtf *vf, int qid,
241 				 struct bnx2x_vf_queue_construct_params *qctor)
242 {
243 	struct bnx2x_queue_state_params *q_params;
244 	int rc = 0;
245 
246 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
247 
248 	/* Prepare ramrod information */
249 	q_params = &qctor->qstate;
250 	q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
251 	set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags);
252 
253 	if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
254 	    BNX2X_Q_LOGICAL_STATE_ACTIVE) {
255 		DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n");
256 		goto out;
257 	}
258 
259 	/* Run Queue 'construction' ramrods */
260 	q_params->cmd = BNX2X_Q_CMD_INIT;
261 	rc = bnx2x_queue_state_change(bp, q_params);
262 	if (rc)
263 		goto out;
264 
265 	memcpy(&q_params->params.setup, &qctor->prep_qsetup,
266 	       sizeof(struct bnx2x_queue_setup_params));
267 	q_params->cmd = BNX2X_Q_CMD_SETUP;
268 	rc = bnx2x_queue_state_change(bp, q_params);
269 	if (rc)
270 		goto out;
271 
272 	/* enable interrupts */
273 	bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)),
274 			    USTORM_ID, 0, IGU_INT_ENABLE, 0);
275 out:
276 	return rc;
277 }
278 
279 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf,
280 				  int qid)
281 {
282 	enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT,
283 				       BNX2X_Q_CMD_TERMINATE,
284 				       BNX2X_Q_CMD_CFC_DEL};
285 	struct bnx2x_queue_state_params q_params;
286 	int rc, i;
287 
288 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
289 
290 	/* Prepare ramrod information */
291 	memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params));
292 	q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
293 	set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
294 
295 	if (bnx2x_get_q_logical_state(bp, q_params.q_obj) ==
296 	    BNX2X_Q_LOGICAL_STATE_STOPPED) {
297 		DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n");
298 		goto out;
299 	}
300 
301 	/* Run Queue 'destruction' ramrods */
302 	for (i = 0; i < ARRAY_SIZE(cmds); i++) {
303 		q_params.cmd = cmds[i];
304 		rc = bnx2x_queue_state_change(bp, &q_params);
305 		if (rc) {
306 			BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]);
307 			return rc;
308 		}
309 	}
310 out:
311 	/* Clean Context */
312 	if (bnx2x_vfq(vf, qid, cxt)) {
313 		bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0;
314 		bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0;
315 	}
316 
317 	return 0;
318 }
319 
320 static void
321 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid)
322 {
323 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
324 	if (vf) {
325 		/* the first igu entry belonging to VFs of this PF */
326 		if (!BP_VFDB(bp)->first_vf_igu_entry)
327 			BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id;
328 
329 		/* the first igu entry belonging to this VF */
330 		if (!vf_sb_count(vf))
331 			vf->igu_base_id = igu_sb_id;
332 
333 		++vf_sb_count(vf);
334 		++vf->sb_count;
335 	}
336 	BP_VFDB(bp)->vf_sbs_pool++;
337 }
338 
339 static inline void bnx2x_vf_vlan_credit(struct bnx2x *bp,
340 					struct bnx2x_vlan_mac_obj *obj,
341 					atomic_t *counter)
342 {
343 	struct list_head *pos;
344 	int read_lock;
345 	int cnt = 0;
346 
347 	read_lock = bnx2x_vlan_mac_h_read_lock(bp, obj);
348 	if (read_lock)
349 		DP(BNX2X_MSG_SP, "Failed to take vlan mac read head; continuing anyway\n");
350 
351 	list_for_each(pos, &obj->head)
352 		cnt++;
353 
354 	if (!read_lock)
355 		bnx2x_vlan_mac_h_read_unlock(bp, obj);
356 
357 	atomic_set(counter, cnt);
358 }
359 
360 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf,
361 				   int qid, bool drv_only, bool mac)
362 {
363 	struct bnx2x_vlan_mac_ramrod_params ramrod;
364 	int rc;
365 
366 	DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid,
367 	   mac ? "MACs" : "VLANs");
368 
369 	/* Prepare ramrod params */
370 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
371 	if (mac) {
372 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
373 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
374 	} else {
375 		set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
376 			&ramrod.user_req.vlan_mac_flags);
377 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
378 	}
379 	ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL;
380 
381 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
382 	if (drv_only)
383 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
384 	else
385 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
386 
387 	/* Start deleting */
388 	rc = ramrod.vlan_mac_obj->delete_all(bp,
389 					     ramrod.vlan_mac_obj,
390 					     &ramrod.user_req.vlan_mac_flags,
391 					     &ramrod.ramrod_flags);
392 	if (rc) {
393 		BNX2X_ERR("Failed to delete all %s\n",
394 			  mac ? "MACs" : "VLANs");
395 		return rc;
396 	}
397 
398 	/* Clear the vlan counters */
399 	if (!mac)
400 		atomic_set(&bnx2x_vfq(vf, qid, vlan_count), 0);
401 
402 	return 0;
403 }
404 
405 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp,
406 				    struct bnx2x_virtf *vf, int qid,
407 				    struct bnx2x_vf_mac_vlan_filter *filter,
408 				    bool drv_only)
409 {
410 	struct bnx2x_vlan_mac_ramrod_params ramrod;
411 	int rc;
412 
413 	DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n",
414 	   vf->abs_vfid, filter->add ? "Adding" : "Deleting",
415 	   filter->type == BNX2X_VF_FILTER_MAC ? "MAC" : "VLAN");
416 
417 	/* Prepare ramrod params */
418 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
419 	if (filter->type == BNX2X_VF_FILTER_VLAN) {
420 		set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
421 			&ramrod.user_req.vlan_mac_flags);
422 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
423 		ramrod.user_req.u.vlan.vlan = filter->vid;
424 	} else {
425 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
426 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
427 		memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
428 	}
429 	ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD :
430 					    BNX2X_VLAN_MAC_DEL;
431 
432 	/* Verify there are available vlan credits */
433 	if (filter->add && filter->type == BNX2X_VF_FILTER_VLAN &&
434 	    (atomic_read(&bnx2x_vfq(vf, qid, vlan_count)) >=
435 	     vf_vlan_rules_cnt(vf))) {
436 		BNX2X_ERR("No credits for vlan [%d >= %d]\n",
437 			  atomic_read(&bnx2x_vfq(vf, qid, vlan_count)),
438 			  vf_vlan_rules_cnt(vf));
439 		return -ENOMEM;
440 	}
441 
442 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
443 	if (drv_only)
444 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
445 	else
446 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
447 
448 	/* Add/Remove the filter */
449 	rc = bnx2x_config_vlan_mac(bp, &ramrod);
450 	if (rc && rc != -EEXIST) {
451 		BNX2X_ERR("Failed to %s %s\n",
452 			  filter->add ? "add" : "delete",
453 			  filter->type == BNX2X_VF_FILTER_MAC ? "MAC" :
454 								"VLAN");
455 		return rc;
456 	}
457 
458 	/* Update the vlan counters */
459 	if (filter->type == BNX2X_VF_FILTER_VLAN)
460 		bnx2x_vf_vlan_credit(bp, ramrod.vlan_mac_obj,
461 				     &bnx2x_vfq(vf, qid, vlan_count));
462 
463 	return 0;
464 }
465 
466 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf,
467 				  struct bnx2x_vf_mac_vlan_filters *filters,
468 				  int qid, bool drv_only)
469 {
470 	int rc = 0, i;
471 
472 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
473 
474 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
475 		return -EINVAL;
476 
477 	/* Prepare ramrod params */
478 	for (i = 0; i < filters->count; i++) {
479 		rc = bnx2x_vf_mac_vlan_config(bp, vf, qid,
480 					      &filters->filters[i], drv_only);
481 		if (rc)
482 			break;
483 	}
484 
485 	/* Rollback if needed */
486 	if (i != filters->count) {
487 		BNX2X_ERR("Managed only %d/%d filters - rolling back\n",
488 			  i, filters->count + 1);
489 		while (--i >= 0) {
490 			filters->filters[i].add = !filters->filters[i].add;
491 			bnx2x_vf_mac_vlan_config(bp, vf, qid,
492 						 &filters->filters[i],
493 						 drv_only);
494 		}
495 	}
496 
497 	/* It's our responsibility to free the filters */
498 	kfree(filters);
499 
500 	return rc;
501 }
502 
503 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid,
504 			 struct bnx2x_vf_queue_construct_params *qctor)
505 {
506 	int rc;
507 
508 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
509 
510 	rc = bnx2x_vf_queue_create(bp, vf, qid, qctor);
511 	if (rc)
512 		goto op_err;
513 
514 	/* Configure vlan0 for leading queue */
515 	if (!qid) {
516 		struct bnx2x_vf_mac_vlan_filter filter;
517 
518 		memset(&filter, 0, sizeof(struct bnx2x_vf_mac_vlan_filter));
519 		filter.type = BNX2X_VF_FILTER_VLAN;
520 		filter.add = true;
521 		filter.vid = 0;
522 		rc = bnx2x_vf_mac_vlan_config(bp, vf, qid, &filter, false);
523 		if (rc)
524 			goto op_err;
525 	}
526 
527 	/* Schedule the configuration of any pending vlan filters */
528 	vf->cfg_flags |= VF_CFG_VLAN;
529 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN,
530 			       BNX2X_MSG_IOV);
531 	return 0;
532 op_err:
533 	BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
534 	return rc;
535 }
536 
537 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf,
538 			       int qid)
539 {
540 	int rc;
541 
542 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
543 
544 	/* If needed, clean the filtering data base */
545 	if ((qid == LEADING_IDX) &&
546 	    bnx2x_validate_vf_sp_objs(bp, vf, false)) {
547 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, false);
548 		if (rc)
549 			goto op_err;
550 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, true);
551 		if (rc)
552 			goto op_err;
553 	}
554 
555 	/* Terminate queue */
556 	if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) {
557 		struct bnx2x_queue_state_params qstate;
558 
559 		memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
560 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
561 		qstate.q_obj->state = BNX2X_Q_STATE_STOPPED;
562 		qstate.cmd = BNX2X_Q_CMD_TERMINATE;
563 		set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
564 		rc = bnx2x_queue_state_change(bp, &qstate);
565 		if (rc)
566 			goto op_err;
567 	}
568 
569 	return 0;
570 op_err:
571 	BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
572 	return rc;
573 }
574 
575 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf,
576 		   bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only)
577 {
578 	struct bnx2x_mcast_list_elem *mc = NULL;
579 	struct bnx2x_mcast_ramrod_params mcast;
580 	int rc, i;
581 
582 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
583 
584 	/* Prepare Multicast command */
585 	memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params));
586 	mcast.mcast_obj = &vf->mcast_obj;
587 	if (drv_only)
588 		set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags);
589 	else
590 		set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags);
591 	if (mc_num) {
592 		mc = kzalloc(mc_num * sizeof(struct bnx2x_mcast_list_elem),
593 			     GFP_KERNEL);
594 		if (!mc) {
595 			BNX2X_ERR("Cannot Configure mulicasts due to lack of memory\n");
596 			return -ENOMEM;
597 		}
598 	}
599 
600 	/* clear existing mcasts */
601 	mcast.mcast_list_len = vf->mcast_list_len;
602 	vf->mcast_list_len = mc_num;
603 	rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL);
604 	if (rc) {
605 		BNX2X_ERR("Failed to remove multicasts\n");
606 		kfree(mc);
607 		return rc;
608 	}
609 
610 	/* update mcast list on the ramrod params */
611 	if (mc_num) {
612 		INIT_LIST_HEAD(&mcast.mcast_list);
613 		for (i = 0; i < mc_num; i++) {
614 			mc[i].mac = mcasts[i];
615 			list_add_tail(&mc[i].link,
616 				      &mcast.mcast_list);
617 		}
618 
619 		/* add new mcasts */
620 		mcast.mcast_list_len = mc_num;
621 		rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_ADD);
622 		if (rc)
623 			BNX2X_ERR("Faled to add multicasts\n");
624 		kfree(mc);
625 	}
626 
627 	return rc;
628 }
629 
630 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid,
631 				  struct bnx2x_rx_mode_ramrod_params *ramrod,
632 				  struct bnx2x_virtf *vf,
633 				  unsigned long accept_flags)
634 {
635 	struct bnx2x_vf_queue *vfq = vfq_get(vf, qid);
636 
637 	memset(ramrod, 0, sizeof(*ramrod));
638 	ramrod->cid = vfq->cid;
639 	ramrod->cl_id = vfq_cl_id(vf, vfq);
640 	ramrod->rx_mode_obj = &bp->rx_mode_obj;
641 	ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid);
642 	ramrod->rx_accept_flags = accept_flags;
643 	ramrod->tx_accept_flags = accept_flags;
644 	ramrod->pstate = &vf->filter_state;
645 	ramrod->state = BNX2X_FILTER_RX_MODE_PENDING;
646 
647 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
648 	set_bit(RAMROD_RX, &ramrod->ramrod_flags);
649 	set_bit(RAMROD_TX, &ramrod->ramrod_flags);
650 
651 	ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2);
652 	ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2);
653 }
654 
655 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf,
656 		    int qid, unsigned long accept_flags)
657 {
658 	struct bnx2x_rx_mode_ramrod_params ramrod;
659 
660 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
661 
662 	bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags);
663 	set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
664 	vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags;
665 	return bnx2x_config_rx_mode(bp, &ramrod);
666 }
667 
668 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid)
669 {
670 	int rc;
671 
672 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
673 
674 	/* Remove all classification configuration for leading queue */
675 	if (qid == LEADING_IDX) {
676 		rc = bnx2x_vf_rxmode(bp, vf, qid, 0);
677 		if (rc)
678 			goto op_err;
679 
680 		/* Remove filtering if feasible */
681 		if (bnx2x_validate_vf_sp_objs(bp, vf, true)) {
682 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
683 						     false, false);
684 			if (rc)
685 				goto op_err;
686 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
687 						     false, true);
688 			if (rc)
689 				goto op_err;
690 			rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false);
691 			if (rc)
692 				goto op_err;
693 		}
694 	}
695 
696 	/* Destroy queue */
697 	rc = bnx2x_vf_queue_destroy(bp, vf, qid);
698 	if (rc)
699 		goto op_err;
700 	return rc;
701 op_err:
702 	BNX2X_ERR("vf[%d:%d] error: rc %d\n",
703 		  vf->abs_vfid, qid, rc);
704 	return rc;
705 }
706 
707 /* VF enable primitives
708  * when pretend is required the caller is responsible
709  * for calling pretend prior to calling these routines
710  */
711 
712 /* internal vf enable - until vf is enabled internally all transactions
713  * are blocked. This routine should always be called last with pretend.
714  */
715 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable)
716 {
717 	REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0);
718 }
719 
720 /* clears vf error in all semi blocks */
721 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid)
722 {
723 	REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid);
724 	REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid);
725 	REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid);
726 	REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid);
727 }
728 
729 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid)
730 {
731 	u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5;
732 	u32 was_err_reg = 0;
733 
734 	switch (was_err_group) {
735 	case 0:
736 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR;
737 	    break;
738 	case 1:
739 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR;
740 	    break;
741 	case 2:
742 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR;
743 	    break;
744 	case 3:
745 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR;
746 	    break;
747 	}
748 	REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f));
749 }
750 
751 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf)
752 {
753 	int i;
754 	u32 val;
755 
756 	/* Set VF masks and configuration - pretend */
757 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
758 
759 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
760 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
761 	REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
762 	REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
763 	REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
764 	REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
765 
766 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
767 	val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN);
768 	if (vf->cfg_flags & VF_CFG_INT_SIMD)
769 		val |= IGU_VF_CONF_SINGLE_ISR_EN;
770 	val &= ~IGU_VF_CONF_PARENT_MASK;
771 	val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT;
772 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
773 
774 	DP(BNX2X_MSG_IOV,
775 	   "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n",
776 	   vf->abs_vfid, val);
777 
778 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
779 
780 	/* iterate over all queues, clear sb consumer */
781 	for (i = 0; i < vf_sb_count(vf); i++) {
782 		u8 igu_sb_id = vf_igu_sb(vf, i);
783 
784 		/* zero prod memory */
785 		REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0);
786 
787 		/* clear sb state machine */
788 		bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id,
789 				       false /* VF */);
790 
791 		/* disable + update */
792 		bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0,
793 				    IGU_INT_DISABLE, 1);
794 	}
795 }
796 
797 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid)
798 {
799 	/* set the VF-PF association in the FW */
800 	storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp));
801 	storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1);
802 
803 	/* clear vf errors*/
804 	bnx2x_vf_semi_clear_err(bp, abs_vfid);
805 	bnx2x_vf_pglue_clear_err(bp, abs_vfid);
806 
807 	/* internal vf-enable - pretend */
808 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid));
809 	DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid);
810 	bnx2x_vf_enable_internal(bp, true);
811 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
812 }
813 
814 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf)
815 {
816 	/* Reset vf in IGU  interrupts are still disabled */
817 	bnx2x_vf_igu_reset(bp, vf);
818 
819 	/* pretend to enable the vf with the PBF */
820 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
821 	REG_WR(bp, PBF_REG_DISABLE_VF, 0);
822 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
823 }
824 
825 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid)
826 {
827 	struct pci_dev *dev;
828 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
829 
830 	if (!vf)
831 		return false;
832 
833 	dev = pci_get_bus_and_slot(vf->bus, vf->devfn);
834 	if (dev)
835 		return bnx2x_is_pcie_pending(dev);
836 	return false;
837 }
838 
839 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid)
840 {
841 	/* Verify no pending pci transactions */
842 	if (bnx2x_vf_is_pcie_pending(bp, abs_vfid))
843 		BNX2X_ERR("PCIE Transactions still pending\n");
844 
845 	return 0;
846 }
847 
848 static void bnx2x_iov_re_set_vlan_filters(struct bnx2x *bp,
849 					  struct bnx2x_virtf *vf,
850 					  int new)
851 {
852 	int num = vf_vlan_rules_cnt(vf);
853 	int diff = new - num;
854 	bool rc = true;
855 
856 	DP(BNX2X_MSG_IOV, "vf[%d] - %d vlan filter credits [previously %d]\n",
857 	   vf->abs_vfid, new, num);
858 
859 	if (diff > 0)
860 		rc = bp->vlans_pool.get(&bp->vlans_pool, diff);
861 	else if (diff < 0)
862 		rc = bp->vlans_pool.put(&bp->vlans_pool, -diff);
863 
864 	if (rc)
865 		vf_vlan_rules_cnt(vf) = new;
866 	else
867 		DP(BNX2X_MSG_IOV, "vf[%d] - Failed to configure vlan filter credits change\n",
868 		   vf->abs_vfid);
869 }
870 
871 /* must be called after the number of PF queues and the number of VFs are
872  * both known
873  */
874 static void
875 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
876 {
877 	struct vf_pf_resc_request *resc = &vf->alloc_resc;
878 	u16 vlan_count = 0;
879 
880 	/* will be set only during VF-ACQUIRE */
881 	resc->num_rxqs = 0;
882 	resc->num_txqs = 0;
883 
884 	/* no credit calculations for macs (just yet) */
885 	resc->num_mac_filters = 1;
886 
887 	/* divvy up vlan rules */
888 	bnx2x_iov_re_set_vlan_filters(bp, vf, 0);
889 	vlan_count = bp->vlans_pool.check(&bp->vlans_pool);
890 	vlan_count = 1 << ilog2(vlan_count);
891 	bnx2x_iov_re_set_vlan_filters(bp, vf,
892 				      vlan_count / BNX2X_NR_VIRTFN(bp));
893 
894 	/* no real limitation */
895 	resc->num_mc_filters = 0;
896 
897 	/* num_sbs already set */
898 	resc->num_sbs = vf->sb_count;
899 }
900 
901 /* FLR routines: */
902 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
903 {
904 	/* reset the state variables */
905 	bnx2x_iov_static_resc(bp, vf);
906 	vf->state = VF_FREE;
907 }
908 
909 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf)
910 {
911 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
912 
913 	/* DQ usage counter */
914 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
915 	bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT,
916 					"DQ VF usage counter timed out",
917 					poll_cnt);
918 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
919 
920 	/* FW cleanup command - poll for the results */
921 	if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid),
922 				   poll_cnt))
923 		BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid);
924 
925 	/* verify TX hw is flushed */
926 	bnx2x_tx_hw_flushed(bp, poll_cnt);
927 }
928 
929 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf)
930 {
931 	int rc, i;
932 
933 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
934 
935 	/* the cleanup operations are valid if and only if the VF
936 	 * was first acquired.
937 	 */
938 	for (i = 0; i < vf_rxq_count(vf); i++) {
939 		rc = bnx2x_vf_queue_flr(bp, vf, i);
940 		if (rc)
941 			goto out;
942 	}
943 
944 	/* remove multicasts */
945 	bnx2x_vf_mcast(bp, vf, NULL, 0, true);
946 
947 	/* dispatch final cleanup and wait for HW queues to flush */
948 	bnx2x_vf_flr_clnup_hw(bp, vf);
949 
950 	/* release VF resources */
951 	bnx2x_vf_free_resc(bp, vf);
952 
953 	/* re-open the mailbox */
954 	bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
955 	return;
956 out:
957 	BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n",
958 		  vf->abs_vfid, i, rc);
959 }
960 
961 static void bnx2x_vf_flr_clnup(struct bnx2x *bp)
962 {
963 	struct bnx2x_virtf *vf;
964 	int i;
965 
966 	for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) {
967 		/* VF should be RESET & in FLR cleanup states */
968 		if (bnx2x_vf(bp, i, state) != VF_RESET ||
969 		    !bnx2x_vf(bp, i, flr_clnup_stage))
970 			continue;
971 
972 		DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n",
973 		   i, BNX2X_NR_VIRTFN(bp));
974 
975 		vf = BP_VF(bp, i);
976 
977 		/* lock the vf pf channel */
978 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
979 
980 		/* invoke the VF FLR SM */
981 		bnx2x_vf_flr(bp, vf);
982 
983 		/* mark the VF to be ACKED and continue */
984 		vf->flr_clnup_stage = false;
985 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
986 	}
987 
988 	/* Acknowledge the handled VFs.
989 	 * we are acknowledge all the vfs which an flr was requested for, even
990 	 * if amongst them there are such that we never opened, since the mcp
991 	 * will interrupt us immediately again if we only ack some of the bits,
992 	 * resulting in an endless loop. This can happen for example in KVM
993 	 * where an 'all ones' flr request is sometimes given by hyper visor
994 	 */
995 	DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
996 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
997 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
998 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i],
999 			  bp->vfdb->flrd_vfs[i]);
1000 
1001 	bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0);
1002 
1003 	/* clear the acked bits - better yet if the MCP implemented
1004 	 * write to clear semantics
1005 	 */
1006 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
1007 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0);
1008 }
1009 
1010 void bnx2x_vf_handle_flr_event(struct bnx2x *bp)
1011 {
1012 	int i;
1013 
1014 	/* Read FLR'd VFs */
1015 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
1016 		bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]);
1017 
1018 	DP(BNX2X_MSG_MCP,
1019 	   "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
1020 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
1021 
1022 	for_each_vf(bp, i) {
1023 		struct bnx2x_virtf *vf = BP_VF(bp, i);
1024 		u32 reset = 0;
1025 
1026 		if (vf->abs_vfid < 32)
1027 			reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid);
1028 		else
1029 			reset = bp->vfdb->flrd_vfs[1] &
1030 				(1 << (vf->abs_vfid - 32));
1031 
1032 		if (reset) {
1033 			/* set as reset and ready for cleanup */
1034 			vf->state = VF_RESET;
1035 			vf->flr_clnup_stage = true;
1036 
1037 			DP(BNX2X_MSG_IOV,
1038 			   "Initiating Final cleanup for VF %d\n",
1039 			   vf->abs_vfid);
1040 		}
1041 	}
1042 
1043 	/* do the FLR cleanup for all marked VFs*/
1044 	bnx2x_vf_flr_clnup(bp);
1045 }
1046 
1047 /* IOV global initialization routines  */
1048 void bnx2x_iov_init_dq(struct bnx2x *bp)
1049 {
1050 	if (!IS_SRIOV(bp))
1051 		return;
1052 
1053 	/* Set the DQ such that the CID reflect the abs_vfid */
1054 	REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0);
1055 	REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
1056 
1057 	/* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
1058 	 * the PF L2 queues
1059 	 */
1060 	REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
1061 
1062 	/* The VF window size is the log2 of the max number of CIDs per VF */
1063 	REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
1064 
1065 	/* The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
1066 	 * the Pf doorbell size although the 2 are independent.
1067 	 */
1068 	REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3);
1069 
1070 	/* No security checks for now -
1071 	 * configure single rule (out of 16) mask = 0x1, value = 0x0,
1072 	 * CID range 0 - 0x1ffff
1073 	 */
1074 	REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1);
1075 	REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0);
1076 	REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
1077 	REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
1078 
1079 	/* set the VF doorbell threshold. This threshold represents the amount
1080 	 * of doorbells allowed in the main DORQ fifo for a specific VF.
1081 	 */
1082 	REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64);
1083 }
1084 
1085 void bnx2x_iov_init_dmae(struct bnx2x *bp)
1086 {
1087 	if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV))
1088 		REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0);
1089 }
1090 
1091 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid)
1092 {
1093 	struct pci_dev *dev = bp->pdev;
1094 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1095 
1096 	return dev->bus->number + ((dev->devfn + iov->offset +
1097 				    iov->stride * vfid) >> 8);
1098 }
1099 
1100 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid)
1101 {
1102 	struct pci_dev *dev = bp->pdev;
1103 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1104 
1105 	return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff;
1106 }
1107 
1108 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf)
1109 {
1110 	int i, n;
1111 	struct pci_dev *dev = bp->pdev;
1112 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1113 
1114 	for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) {
1115 		u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i);
1116 		u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i);
1117 
1118 		size /= iov->total;
1119 		vf->bars[n].bar = start + size * vf->abs_vfid;
1120 		vf->bars[n].size = size;
1121 	}
1122 }
1123 
1124 static int bnx2x_ari_enabled(struct pci_dev *dev)
1125 {
1126 	return dev->bus->self && dev->bus->self->ari_enabled;
1127 }
1128 
1129 static int
1130 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp)
1131 {
1132 	int sb_id;
1133 	u32 val;
1134 	u8 fid, current_pf = 0;
1135 
1136 	/* IGU in normal mode - read CAM */
1137 	for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) {
1138 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4);
1139 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
1140 			continue;
1141 		fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID);
1142 		if (fid & IGU_FID_ENCODE_IS_PF)
1143 			current_pf = fid & IGU_FID_PF_NUM_MASK;
1144 		else if (current_pf == BP_FUNC(bp))
1145 			bnx2x_vf_set_igu_info(bp, sb_id,
1146 					      (fid & IGU_FID_VF_NUM_MASK));
1147 		DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n",
1148 		   ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"),
1149 		   ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) :
1150 		   (fid & IGU_FID_VF_NUM_MASK)), sb_id,
1151 		   GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR));
1152 	}
1153 	DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool);
1154 	return BP_VFDB(bp)->vf_sbs_pool;
1155 }
1156 
1157 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp)
1158 {
1159 	if (bp->vfdb) {
1160 		kfree(bp->vfdb->vfqs);
1161 		kfree(bp->vfdb->vfs);
1162 		kfree(bp->vfdb);
1163 	}
1164 	bp->vfdb = NULL;
1165 }
1166 
1167 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1168 {
1169 	int pos;
1170 	struct pci_dev *dev = bp->pdev;
1171 
1172 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
1173 	if (!pos) {
1174 		BNX2X_ERR("failed to find SRIOV capability in device\n");
1175 		return -ENODEV;
1176 	}
1177 
1178 	iov->pos = pos;
1179 	DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos);
1180 	pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
1181 	pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total);
1182 	pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial);
1183 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
1184 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
1185 	pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
1186 	pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap);
1187 	pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
1188 
1189 	return 0;
1190 }
1191 
1192 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1193 {
1194 	u32 val;
1195 
1196 	/* read the SRIOV capability structure
1197 	 * The fields can be read via configuration read or
1198 	 * directly from the device (starting at offset PCICFG_OFFSET)
1199 	 */
1200 	if (bnx2x_sriov_pci_cfg_info(bp, iov))
1201 		return -ENODEV;
1202 
1203 	/* get the number of SRIOV bars */
1204 	iov->nres = 0;
1205 
1206 	/* read the first_vfid */
1207 	val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF);
1208 	iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK)
1209 			       * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp));
1210 
1211 	DP(BNX2X_MSG_IOV,
1212 	   "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
1213 	   BP_FUNC(bp),
1214 	   iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total,
1215 	   iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
1216 
1217 	return 0;
1218 }
1219 
1220 /* must be called after PF bars are mapped */
1221 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param,
1222 		       int num_vfs_param)
1223 {
1224 	int err, i;
1225 	struct bnx2x_sriov *iov;
1226 	struct pci_dev *dev = bp->pdev;
1227 
1228 	bp->vfdb = NULL;
1229 
1230 	/* verify is pf */
1231 	if (IS_VF(bp))
1232 		return 0;
1233 
1234 	/* verify sriov capability is present in configuration space */
1235 	if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV))
1236 		return 0;
1237 
1238 	/* verify chip revision */
1239 	if (CHIP_IS_E1x(bp))
1240 		return 0;
1241 
1242 	/* check if SRIOV support is turned off */
1243 	if (!num_vfs_param)
1244 		return 0;
1245 
1246 	/* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
1247 	if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) {
1248 		BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
1249 			  BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID);
1250 		return 0;
1251 	}
1252 
1253 	/* SRIOV can be enabled only with MSIX */
1254 	if (int_mode_param == BNX2X_INT_MODE_MSI ||
1255 	    int_mode_param == BNX2X_INT_MODE_INTX) {
1256 		BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
1257 		return 0;
1258 	}
1259 
1260 	err = -EIO;
1261 	/* verify ari is enabled */
1262 	if (!bnx2x_ari_enabled(bp->pdev)) {
1263 		BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
1264 		return 0;
1265 	}
1266 
1267 	/* verify igu is in normal mode */
1268 	if (CHIP_INT_MODE_IS_BC(bp)) {
1269 		BNX2X_ERR("IGU not normal mode,  SRIOV can not be enabled\n");
1270 		return 0;
1271 	}
1272 
1273 	/* allocate the vfs database */
1274 	bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL);
1275 	if (!bp->vfdb) {
1276 		BNX2X_ERR("failed to allocate vf database\n");
1277 		err = -ENOMEM;
1278 		goto failed;
1279 	}
1280 
1281 	/* get the sriov info - Linux already collected all the pertinent
1282 	 * information, however the sriov structure is for the private use
1283 	 * of the pci module. Also we want this information regardless
1284 	 * of the hyper-visor.
1285 	 */
1286 	iov = &(bp->vfdb->sriov);
1287 	err = bnx2x_sriov_info(bp, iov);
1288 	if (err)
1289 		goto failed;
1290 
1291 	/* SR-IOV capability was enabled but there are no VFs*/
1292 	if (iov->total == 0)
1293 		goto failed;
1294 
1295 	iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param);
1296 
1297 	DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n",
1298 	   num_vfs_param, iov->nr_virtfn);
1299 
1300 	/* allocate the vf array */
1301 	bp->vfdb->vfs = kzalloc(sizeof(struct bnx2x_virtf) *
1302 				BNX2X_NR_VIRTFN(bp), GFP_KERNEL);
1303 	if (!bp->vfdb->vfs) {
1304 		BNX2X_ERR("failed to allocate vf array\n");
1305 		err = -ENOMEM;
1306 		goto failed;
1307 	}
1308 
1309 	/* Initial VF init - index and abs_vfid - nr_virtfn must be set */
1310 	for_each_vf(bp, i) {
1311 		bnx2x_vf(bp, i, index) = i;
1312 		bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i;
1313 		bnx2x_vf(bp, i, state) = VF_FREE;
1314 		mutex_init(&bnx2x_vf(bp, i, op_mutex));
1315 		bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE;
1316 	}
1317 
1318 	/* re-read the IGU CAM for VFs - index and abs_vfid must be set */
1319 	if (!bnx2x_get_vf_igu_cam_info(bp)) {
1320 		BNX2X_ERR("No entries in IGU CAM for vfs\n");
1321 		err = -EINVAL;
1322 		goto failed;
1323 	}
1324 
1325 	/* allocate the queue arrays for all VFs */
1326 	bp->vfdb->vfqs = kzalloc(
1327 		BNX2X_MAX_NUM_VF_QUEUES * sizeof(struct bnx2x_vf_queue),
1328 		GFP_KERNEL);
1329 
1330 	if (!bp->vfdb->vfqs) {
1331 		BNX2X_ERR("failed to allocate vf queue array\n");
1332 		err = -ENOMEM;
1333 		goto failed;
1334 	}
1335 
1336 	/* Prepare the VFs event synchronization mechanism */
1337 	mutex_init(&bp->vfdb->event_mutex);
1338 
1339 	mutex_init(&bp->vfdb->bulletin_mutex);
1340 
1341 	return 0;
1342 failed:
1343 	DP(BNX2X_MSG_IOV, "Failed err=%d\n", err);
1344 	__bnx2x_iov_free_vfdb(bp);
1345 	return err;
1346 }
1347 
1348 void bnx2x_iov_remove_one(struct bnx2x *bp)
1349 {
1350 	int vf_idx;
1351 
1352 	/* if SRIOV is not enabled there's nothing to do */
1353 	if (!IS_SRIOV(bp))
1354 		return;
1355 
1356 	bnx2x_disable_sriov(bp);
1357 
1358 	/* disable access to all VFs */
1359 	for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) {
1360 		bnx2x_pretend_func(bp,
1361 				   HW_VF_HANDLE(bp,
1362 						bp->vfdb->sriov.first_vf_in_pf +
1363 						vf_idx));
1364 		DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n",
1365 		   bp->vfdb->sriov.first_vf_in_pf + vf_idx);
1366 		bnx2x_vf_enable_internal(bp, 0);
1367 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1368 	}
1369 
1370 	/* free vf database */
1371 	__bnx2x_iov_free_vfdb(bp);
1372 }
1373 
1374 void bnx2x_iov_free_mem(struct bnx2x *bp)
1375 {
1376 	int i;
1377 
1378 	if (!IS_SRIOV(bp))
1379 		return;
1380 
1381 	/* free vfs hw contexts */
1382 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1383 		struct hw_dma *cxt = &bp->vfdb->context[i];
1384 		BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size);
1385 	}
1386 
1387 	BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr,
1388 		       BP_VFDB(bp)->sp_dma.mapping,
1389 		       BP_VFDB(bp)->sp_dma.size);
1390 
1391 	BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr,
1392 		       BP_VF_MBX_DMA(bp)->mapping,
1393 		       BP_VF_MBX_DMA(bp)->size);
1394 
1395 	BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr,
1396 		       BP_VF_BULLETIN_DMA(bp)->mapping,
1397 		       BP_VF_BULLETIN_DMA(bp)->size);
1398 }
1399 
1400 int bnx2x_iov_alloc_mem(struct bnx2x *bp)
1401 {
1402 	size_t tot_size;
1403 	int i, rc = 0;
1404 
1405 	if (!IS_SRIOV(bp))
1406 		return rc;
1407 
1408 	/* allocate vfs hw contexts */
1409 	tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) *
1410 		BNX2X_CIDS_PER_VF * sizeof(union cdu_context);
1411 
1412 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1413 		struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i);
1414 		cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ);
1415 
1416 		if (cxt->size) {
1417 			cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size);
1418 			if (!cxt->addr)
1419 				goto alloc_mem_err;
1420 		} else {
1421 			cxt->addr = NULL;
1422 			cxt->mapping = 0;
1423 		}
1424 		tot_size -= cxt->size;
1425 	}
1426 
1427 	/* allocate vfs ramrods dma memory - client_init and set_mac */
1428 	tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp);
1429 	BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping,
1430 						   tot_size);
1431 	if (!BP_VFDB(bp)->sp_dma.addr)
1432 		goto alloc_mem_err;
1433 	BP_VFDB(bp)->sp_dma.size = tot_size;
1434 
1435 	/* allocate mailboxes */
1436 	tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE;
1437 	BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping,
1438 						  tot_size);
1439 	if (!BP_VF_MBX_DMA(bp)->addr)
1440 		goto alloc_mem_err;
1441 
1442 	BP_VF_MBX_DMA(bp)->size = tot_size;
1443 
1444 	/* allocate local bulletin boards */
1445 	tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE;
1446 	BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping,
1447 						       tot_size);
1448 	if (!BP_VF_BULLETIN_DMA(bp)->addr)
1449 		goto alloc_mem_err;
1450 
1451 	BP_VF_BULLETIN_DMA(bp)->size = tot_size;
1452 
1453 	return 0;
1454 
1455 alloc_mem_err:
1456 	return -ENOMEM;
1457 }
1458 
1459 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf,
1460 			   struct bnx2x_vf_queue *q)
1461 {
1462 	u8 cl_id = vfq_cl_id(vf, q);
1463 	u8 func_id = FW_VF_HANDLE(vf->abs_vfid);
1464 	unsigned long q_type = 0;
1465 
1466 	set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1467 	set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1468 
1469 	/* Queue State object */
1470 	bnx2x_init_queue_obj(bp, &q->sp_obj,
1471 			     cl_id, &q->cid, 1, func_id,
1472 			     bnx2x_vf_sp(bp, vf, q_data),
1473 			     bnx2x_vf_sp_map(bp, vf, q_data),
1474 			     q_type);
1475 
1476 	/* sp indication is set only when vlan/mac/etc. are initialized */
1477 	q->sp_initialized = false;
1478 
1479 	DP(BNX2X_MSG_IOV,
1480 	   "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n",
1481 	   vf->abs_vfid, q->sp_obj.func_id, q->cid);
1482 }
1483 
1484 static int bnx2x_max_speed_cap(struct bnx2x *bp)
1485 {
1486 	u32 supported = bp->port.supported[bnx2x_get_link_cfg_idx(bp)];
1487 
1488 	if (supported &
1489 	    (SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full))
1490 		return 20000;
1491 
1492 	return 10000; /* assume lowest supported speed is 10G */
1493 }
1494 
1495 int bnx2x_iov_link_update_vf(struct bnx2x *bp, int idx)
1496 {
1497 	struct bnx2x_link_report_data *state = &bp->last_reported_link;
1498 	struct pf_vf_bulletin_content *bulletin;
1499 	struct bnx2x_virtf *vf;
1500 	bool update = true;
1501 	int rc = 0;
1502 
1503 	/* sanity and init */
1504 	rc = bnx2x_vf_op_prep(bp, idx, &vf, &bulletin, false);
1505 	if (rc)
1506 		return rc;
1507 
1508 	mutex_lock(&bp->vfdb->bulletin_mutex);
1509 
1510 	if (vf->link_cfg == IFLA_VF_LINK_STATE_AUTO) {
1511 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1512 
1513 		bulletin->link_speed = state->line_speed;
1514 		bulletin->link_flags = 0;
1515 		if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1516 			     &state->link_report_flags))
1517 			bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1518 		if (test_bit(BNX2X_LINK_REPORT_FD,
1519 			     &state->link_report_flags))
1520 			bulletin->link_flags |= VFPF_LINK_REPORT_FULL_DUPLEX;
1521 		if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1522 			     &state->link_report_flags))
1523 			bulletin->link_flags |= VFPF_LINK_REPORT_RX_FC_ON;
1524 		if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1525 			     &state->link_report_flags))
1526 			bulletin->link_flags |= VFPF_LINK_REPORT_TX_FC_ON;
1527 	} else if (vf->link_cfg == IFLA_VF_LINK_STATE_DISABLE &&
1528 		   !(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1529 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1530 		bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1531 	} else if (vf->link_cfg == IFLA_VF_LINK_STATE_ENABLE &&
1532 		   (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1533 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1534 		bulletin->link_speed = bnx2x_max_speed_cap(bp);
1535 		bulletin->link_flags &= ~VFPF_LINK_REPORT_LINK_DOWN;
1536 	} else {
1537 		update = false;
1538 	}
1539 
1540 	if (update) {
1541 		DP(NETIF_MSG_LINK | BNX2X_MSG_IOV,
1542 		   "vf %d mode %u speed %d flags %x\n", idx,
1543 		   vf->link_cfg, bulletin->link_speed, bulletin->link_flags);
1544 
1545 		/* Post update on VF's bulletin board */
1546 		rc = bnx2x_post_vf_bulletin(bp, idx);
1547 		if (rc) {
1548 			BNX2X_ERR("failed to update VF[%d] bulletin\n", idx);
1549 			goto out;
1550 		}
1551 	}
1552 
1553 out:
1554 	mutex_unlock(&bp->vfdb->bulletin_mutex);
1555 	return rc;
1556 }
1557 
1558 int bnx2x_set_vf_link_state(struct net_device *dev, int idx, int link_state)
1559 {
1560 	struct bnx2x *bp = netdev_priv(dev);
1561 	struct bnx2x_virtf *vf = BP_VF(bp, idx);
1562 
1563 	if (!vf)
1564 		return -EINVAL;
1565 
1566 	if (vf->link_cfg == link_state)
1567 		return 0; /* nothing todo */
1568 
1569 	vf->link_cfg = link_state;
1570 
1571 	return bnx2x_iov_link_update_vf(bp, idx);
1572 }
1573 
1574 void bnx2x_iov_link_update(struct bnx2x *bp)
1575 {
1576 	int vfid;
1577 
1578 	if (!IS_SRIOV(bp))
1579 		return;
1580 
1581 	for_each_vf(bp, vfid)
1582 		bnx2x_iov_link_update_vf(bp, vfid);
1583 }
1584 
1585 /* called by bnx2x_nic_load */
1586 int bnx2x_iov_nic_init(struct bnx2x *bp)
1587 {
1588 	int vfid;
1589 
1590 	if (!IS_SRIOV(bp)) {
1591 		DP(BNX2X_MSG_IOV, "vfdb was not allocated\n");
1592 		return 0;
1593 	}
1594 
1595 	DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn);
1596 
1597 	/* let FLR complete ... */
1598 	msleep(100);
1599 
1600 	/* initialize vf database */
1601 	for_each_vf(bp, vfid) {
1602 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1603 
1604 		int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) *
1605 			BNX2X_CIDS_PER_VF;
1606 
1607 		union cdu_context *base_cxt = (union cdu_context *)
1608 			BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1609 			(base_vf_cid & (ILT_PAGE_CIDS-1));
1610 
1611 		DP(BNX2X_MSG_IOV,
1612 		   "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
1613 		   vf->abs_vfid, vf_sb_count(vf), base_vf_cid,
1614 		   BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt);
1615 
1616 		/* init statically provisioned resources */
1617 		bnx2x_iov_static_resc(bp, vf);
1618 
1619 		/* queues are initialized during VF-ACQUIRE */
1620 		vf->filter_state = 0;
1621 		vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id);
1622 
1623 		/*  init mcast object - This object will be re-initialized
1624 		 *  during VF-ACQUIRE with the proper cl_id and cid.
1625 		 *  It needs to be initialized here so that it can be safely
1626 		 *  handled by a subsequent FLR flow.
1627 		 */
1628 		vf->mcast_list_len = 0;
1629 		bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF,
1630 				     0xFF, 0xFF, 0xFF,
1631 				     bnx2x_vf_sp(bp, vf, mcast_rdata),
1632 				     bnx2x_vf_sp_map(bp, vf, mcast_rdata),
1633 				     BNX2X_FILTER_MCAST_PENDING,
1634 				     &vf->filter_state,
1635 				     BNX2X_OBJ_TYPE_RX_TX);
1636 
1637 		/* set the mailbox message addresses */
1638 		BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *)
1639 			(((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid *
1640 			MBX_MSG_ALIGNED_SIZE);
1641 
1642 		BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping +
1643 			vfid * MBX_MSG_ALIGNED_SIZE;
1644 
1645 		/* Enable vf mailbox */
1646 		bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
1647 	}
1648 
1649 	/* Final VF init */
1650 	for_each_vf(bp, vfid) {
1651 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1652 
1653 		/* fill in the BDF and bars */
1654 		vf->bus = bnx2x_vf_bus(bp, vfid);
1655 		vf->devfn = bnx2x_vf_devfn(bp, vfid);
1656 		bnx2x_vf_set_bars(bp, vf);
1657 
1658 		DP(BNX2X_MSG_IOV,
1659 		   "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
1660 		   vf->abs_vfid, vf->bus, vf->devfn,
1661 		   (unsigned)vf->bars[0].bar, vf->bars[0].size,
1662 		   (unsigned)vf->bars[1].bar, vf->bars[1].size,
1663 		   (unsigned)vf->bars[2].bar, vf->bars[2].size);
1664 	}
1665 
1666 	return 0;
1667 }
1668 
1669 /* called by bnx2x_chip_cleanup */
1670 int bnx2x_iov_chip_cleanup(struct bnx2x *bp)
1671 {
1672 	int i;
1673 
1674 	if (!IS_SRIOV(bp))
1675 		return 0;
1676 
1677 	/* release all the VFs */
1678 	for_each_vf(bp, i)
1679 		bnx2x_vf_release(bp, BP_VF(bp, i));
1680 
1681 	return 0;
1682 }
1683 
1684 /* called by bnx2x_init_hw_func, returns the next ilt line */
1685 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line)
1686 {
1687 	int i;
1688 	struct bnx2x_ilt *ilt = BP_ILT(bp);
1689 
1690 	if (!IS_SRIOV(bp))
1691 		return line;
1692 
1693 	/* set vfs ilt lines */
1694 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1695 		struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i);
1696 
1697 		ilt->lines[line+i].page = hw_cxt->addr;
1698 		ilt->lines[line+i].page_mapping = hw_cxt->mapping;
1699 		ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
1700 	}
1701 	return line + i;
1702 }
1703 
1704 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid)
1705 {
1706 	return ((cid >= BNX2X_FIRST_VF_CID) &&
1707 		((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS));
1708 }
1709 
1710 static
1711 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp,
1712 					struct bnx2x_vf_queue *vfq,
1713 					union event_ring_elem *elem)
1714 {
1715 	unsigned long ramrod_flags = 0;
1716 	int rc = 0;
1717 
1718 	/* Always push next commands out, don't wait here */
1719 	set_bit(RAMROD_CONT, &ramrod_flags);
1720 
1721 	switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
1722 	case BNX2X_FILTER_MAC_PENDING:
1723 		rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem,
1724 					   &ramrod_flags);
1725 		break;
1726 	case BNX2X_FILTER_VLAN_PENDING:
1727 		rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem,
1728 					    &ramrod_flags);
1729 		break;
1730 	default:
1731 		BNX2X_ERR("Unsupported classification command: %d\n",
1732 			  elem->message.data.eth_event.echo);
1733 		return;
1734 	}
1735 	if (rc < 0)
1736 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
1737 	else if (rc > 0)
1738 		DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n");
1739 }
1740 
1741 static
1742 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp,
1743 			       struct bnx2x_virtf *vf)
1744 {
1745 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
1746 	int rc;
1747 
1748 	rparam.mcast_obj = &vf->mcast_obj;
1749 	vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw);
1750 
1751 	/* If there are pending mcast commands - send them */
1752 	if (vf->mcast_obj.check_pending(&vf->mcast_obj)) {
1753 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
1754 		if (rc < 0)
1755 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
1756 				  rc);
1757 	}
1758 }
1759 
1760 static
1761 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp,
1762 				 struct bnx2x_virtf *vf)
1763 {
1764 	smp_mb__before_atomic();
1765 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
1766 	smp_mb__after_atomic();
1767 }
1768 
1769 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp,
1770 					   struct bnx2x_virtf *vf)
1771 {
1772 	vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw);
1773 }
1774 
1775 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem)
1776 {
1777 	struct bnx2x_virtf *vf;
1778 	int qidx = 0, abs_vfid;
1779 	u8 opcode;
1780 	u16 cid = 0xffff;
1781 
1782 	if (!IS_SRIOV(bp))
1783 		return 1;
1784 
1785 	/* first get the cid - the only events we handle here are cfc-delete
1786 	 * and set-mac completion
1787 	 */
1788 	opcode = elem->message.opcode;
1789 
1790 	switch (opcode) {
1791 	case EVENT_RING_OPCODE_CFC_DEL:
1792 		cid = SW_CID((__force __le32)
1793 			     elem->message.data.cfc_del_event.cid);
1794 		DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid);
1795 		break;
1796 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1797 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1798 	case EVENT_RING_OPCODE_FILTERS_RULES:
1799 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1800 		cid = (elem->message.data.eth_event.echo &
1801 		       BNX2X_SWCID_MASK);
1802 		DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid);
1803 		break;
1804 	case EVENT_RING_OPCODE_VF_FLR:
1805 		abs_vfid = elem->message.data.vf_flr_event.vf_id;
1806 		DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n",
1807 		   abs_vfid);
1808 		goto get_vf;
1809 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1810 		abs_vfid = elem->message.data.malicious_vf_event.vf_id;
1811 		BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
1812 			  abs_vfid,
1813 			  elem->message.data.malicious_vf_event.err_id);
1814 		goto get_vf;
1815 	default:
1816 		return 1;
1817 	}
1818 
1819 	/* check if the cid is the VF range */
1820 	if (!bnx2x_iov_is_vf_cid(bp, cid)) {
1821 		DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid);
1822 		return 1;
1823 	}
1824 
1825 	/* extract vf and rxq index from vf_cid - relies on the following:
1826 	 * 1. vfid on cid reflects the true abs_vfid
1827 	 * 2. The max number of VFs (per path) is 64
1828 	 */
1829 	qidx = cid & ((1 << BNX2X_VF_CID_WND)-1);
1830 	abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1831 get_vf:
1832 	vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
1833 
1834 	if (!vf) {
1835 		BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
1836 			  cid, abs_vfid);
1837 		return 0;
1838 	}
1839 
1840 	switch (opcode) {
1841 	case EVENT_RING_OPCODE_CFC_DEL:
1842 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n",
1843 		   vf->abs_vfid, qidx);
1844 		vfq_get(vf, qidx)->sp_obj.complete_cmd(bp,
1845 						       &vfq_get(vf,
1846 								qidx)->sp_obj,
1847 						       BNX2X_Q_CMD_CFC_DEL);
1848 		break;
1849 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1850 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n",
1851 		   vf->abs_vfid, qidx);
1852 		bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem);
1853 		break;
1854 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1855 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n",
1856 		   vf->abs_vfid, qidx);
1857 		bnx2x_vf_handle_mcast_eqe(bp, vf);
1858 		break;
1859 	case EVENT_RING_OPCODE_FILTERS_RULES:
1860 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n",
1861 		   vf->abs_vfid, qidx);
1862 		bnx2x_vf_handle_filters_eqe(bp, vf);
1863 		break;
1864 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1865 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n",
1866 		   vf->abs_vfid, qidx);
1867 		bnx2x_vf_handle_rss_update_eqe(bp, vf);
1868 	case EVENT_RING_OPCODE_VF_FLR:
1869 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1870 		/* Do nothing for now */
1871 		return 0;
1872 	}
1873 
1874 	return 0;
1875 }
1876 
1877 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid)
1878 {
1879 	/* extract the vf from vf_cid - relies on the following:
1880 	 * 1. vfid on cid reflects the true abs_vfid
1881 	 * 2. The max number of VFs (per path) is 64
1882 	 */
1883 	int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1884 	return bnx2x_vf_by_abs_fid(bp, abs_vfid);
1885 }
1886 
1887 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid,
1888 				struct bnx2x_queue_sp_obj **q_obj)
1889 {
1890 	struct bnx2x_virtf *vf;
1891 
1892 	if (!IS_SRIOV(bp))
1893 		return;
1894 
1895 	vf = bnx2x_vf_by_cid(bp, vf_cid);
1896 
1897 	if (vf) {
1898 		/* extract queue index from vf_cid - relies on the following:
1899 		 * 1. vfid on cid reflects the true abs_vfid
1900 		 * 2. The max number of VFs (per path) is 64
1901 		 */
1902 		int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1);
1903 		*q_obj = &bnx2x_vfq(vf, q_index, sp_obj);
1904 	} else {
1905 		BNX2X_ERR("No vf matching cid %d\n", vf_cid);
1906 	}
1907 }
1908 
1909 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp)
1910 {
1911 	int i;
1912 	int first_queue_query_index, num_queues_req;
1913 	dma_addr_t cur_data_offset;
1914 	struct stats_query_entry *cur_query_entry;
1915 	u8 stats_count = 0;
1916 	bool is_fcoe = false;
1917 
1918 	if (!IS_SRIOV(bp))
1919 		return;
1920 
1921 	if (!NO_FCOE(bp))
1922 		is_fcoe = true;
1923 
1924 	/* fcoe adds one global request and one queue request */
1925 	num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe;
1926 	first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX -
1927 		(is_fcoe ? 0 : 1);
1928 
1929 	DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1930 	       "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
1931 	       BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index,
1932 	       first_queue_query_index + num_queues_req);
1933 
1934 	cur_data_offset = bp->fw_stats_data_mapping +
1935 		offsetof(struct bnx2x_fw_stats_data, queue_stats) +
1936 		num_queues_req * sizeof(struct per_queue_stats);
1937 
1938 	cur_query_entry = &bp->fw_stats_req->
1939 		query[first_queue_query_index + num_queues_req];
1940 
1941 	for_each_vf(bp, i) {
1942 		int j;
1943 		struct bnx2x_virtf *vf = BP_VF(bp, i);
1944 
1945 		if (vf->state != VF_ENABLED) {
1946 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1947 			       "vf %d not enabled so no stats for it\n",
1948 			       vf->abs_vfid);
1949 			continue;
1950 		}
1951 
1952 		DP(BNX2X_MSG_IOV, "add addresses for vf %d\n", vf->abs_vfid);
1953 		for_each_vfq(vf, j) {
1954 			struct bnx2x_vf_queue *rxq = vfq_get(vf, j);
1955 
1956 			dma_addr_t q_stats_addr =
1957 				vf->fw_stat_map + j * vf->stats_stride;
1958 
1959 			/* collect stats fro active queues only */
1960 			if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) ==
1961 			    BNX2X_Q_LOGICAL_STATE_STOPPED)
1962 				continue;
1963 
1964 			/* create stats query entry for this queue */
1965 			cur_query_entry->kind = STATS_TYPE_QUEUE;
1966 			cur_query_entry->index = vfq_stat_id(vf, rxq);
1967 			cur_query_entry->funcID =
1968 				cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid));
1969 			cur_query_entry->address.hi =
1970 				cpu_to_le32(U64_HI(q_stats_addr));
1971 			cur_query_entry->address.lo =
1972 				cpu_to_le32(U64_LO(q_stats_addr));
1973 			DP(BNX2X_MSG_IOV,
1974 			   "added address %x %x for vf %d queue %d client %d\n",
1975 			   cur_query_entry->address.hi,
1976 			   cur_query_entry->address.lo, cur_query_entry->funcID,
1977 			   j, cur_query_entry->index);
1978 			cur_query_entry++;
1979 			cur_data_offset += sizeof(struct per_queue_stats);
1980 			stats_count++;
1981 
1982 			/* all stats are coalesced to the leading queue */
1983 			if (vf->cfg_flags & VF_CFG_STATS_COALESCE)
1984 				break;
1985 		}
1986 	}
1987 	bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count;
1988 }
1989 
1990 /* VF API helpers */
1991 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid,
1992 				u8 enable)
1993 {
1994 	u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4;
1995 	u32 val = enable ? (abs_vfid | (1 << 6)) : 0;
1996 
1997 	REG_WR(bp, reg, val);
1998 }
1999 
2000 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf)
2001 {
2002 	int i;
2003 
2004 	for_each_vfq(vf, i)
2005 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
2006 				    vfq_qzone_id(vf, vfq_get(vf, i)), false);
2007 }
2008 
2009 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf)
2010 {
2011 	u32 val;
2012 
2013 	/* clear the VF configuration - pretend */
2014 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
2015 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
2016 	val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN |
2017 		 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK);
2018 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
2019 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
2020 }
2021 
2022 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf)
2023 {
2024 	return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF),
2025 		     BNX2X_VF_MAX_QUEUES);
2026 }
2027 
2028 static
2029 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf,
2030 			    struct vf_pf_resc_request *req_resc)
2031 {
2032 	u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
2033 	u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
2034 
2035 	/* Save a vlan filter for the Hypervisor */
2036 	return ((req_resc->num_rxqs <= rxq_cnt) &&
2037 		(req_resc->num_txqs <= txq_cnt) &&
2038 		(req_resc->num_sbs <= vf_sb_count(vf))   &&
2039 		(req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) &&
2040 		(req_resc->num_vlan_filters <= vf_vlan_rules_visible_cnt(vf)));
2041 }
2042 
2043 /* CORE VF API */
2044 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf,
2045 		     struct vf_pf_resc_request *resc)
2046 {
2047 	int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) *
2048 		BNX2X_CIDS_PER_VF;
2049 
2050 	union cdu_context *base_cxt = (union cdu_context *)
2051 		BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
2052 		(base_vf_cid & (ILT_PAGE_CIDS-1));
2053 	int i;
2054 
2055 	/* if state is 'acquired' the VF was not released or FLR'd, in
2056 	 * this case the returned resources match the acquired already
2057 	 * acquired resources. Verify that the requested numbers do
2058 	 * not exceed the already acquired numbers.
2059 	 */
2060 	if (vf->state == VF_ACQUIRED) {
2061 		DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
2062 		   vf->abs_vfid);
2063 
2064 		if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2065 			BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
2066 				  vf->abs_vfid);
2067 			return -EINVAL;
2068 		}
2069 		return 0;
2070 	}
2071 
2072 	/* Otherwise vf state must be 'free' or 'reset' */
2073 	if (vf->state != VF_FREE && vf->state != VF_RESET) {
2074 		BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
2075 			  vf->abs_vfid, vf->state);
2076 		return -EINVAL;
2077 	}
2078 
2079 	/* static allocation:
2080 	 * the global maximum number are fixed per VF. Fail the request if
2081 	 * requested number exceed these globals
2082 	 */
2083 	if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2084 		DP(BNX2X_MSG_IOV,
2085 		   "cannot fulfill vf resource request. Placing maximal available values in response\n");
2086 		/* set the max resource in the vf */
2087 		return -ENOMEM;
2088 	}
2089 
2090 	/* Set resources counters - 0 request means max available */
2091 	vf_sb_count(vf) = resc->num_sbs;
2092 	vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2093 	vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2094 	if (resc->num_mac_filters)
2095 		vf_mac_rules_cnt(vf) = resc->num_mac_filters;
2096 	/* Add an additional vlan filter credit for the hypervisor */
2097 	bnx2x_iov_re_set_vlan_filters(bp, vf, resc->num_vlan_filters + 1);
2098 
2099 	DP(BNX2X_MSG_IOV,
2100 	   "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
2101 	   vf_sb_count(vf), vf_rxq_count(vf),
2102 	   vf_txq_count(vf), vf_mac_rules_cnt(vf),
2103 	   vf_vlan_rules_visible_cnt(vf));
2104 
2105 	/* Initialize the queues */
2106 	if (!vf->vfqs) {
2107 		DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n");
2108 		return -EINVAL;
2109 	}
2110 
2111 	for_each_vfq(vf, i) {
2112 		struct bnx2x_vf_queue *q = vfq_get(vf, i);
2113 
2114 		if (!q) {
2115 			BNX2X_ERR("q number %d was not allocated\n", i);
2116 			return -EINVAL;
2117 		}
2118 
2119 		q->index = i;
2120 		q->cxt = &((base_cxt + i)->eth);
2121 		q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i;
2122 
2123 		DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
2124 		   vf->abs_vfid, i, q->index, q->cid, q->cxt);
2125 
2126 		/* init SP objects */
2127 		bnx2x_vfq_init(bp, vf, q);
2128 	}
2129 	vf->state = VF_ACQUIRED;
2130 	return 0;
2131 }
2132 
2133 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map)
2134 {
2135 	struct bnx2x_func_init_params func_init = {0};
2136 	u16 flags = 0;
2137 	int i;
2138 
2139 	/* the sb resources are initialized at this point, do the
2140 	 * FW/HW initializations
2141 	 */
2142 	for_each_vf_sb(vf, i)
2143 		bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true,
2144 			      vf_igu_sb(vf, i), vf_igu_sb(vf, i));
2145 
2146 	/* Sanity checks */
2147 	if (vf->state != VF_ACQUIRED) {
2148 		DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n",
2149 		   vf->abs_vfid, vf->state);
2150 		return -EINVAL;
2151 	}
2152 
2153 	/* let FLR complete ... */
2154 	msleep(100);
2155 
2156 	/* FLR cleanup epilogue */
2157 	if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid))
2158 		return -EBUSY;
2159 
2160 	/* reset IGU VF statistics: MSIX */
2161 	REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0);
2162 
2163 	/* vf init */
2164 	if (vf->cfg_flags & VF_CFG_STATS)
2165 		flags |= (FUNC_FLG_STATS | FUNC_FLG_SPQ);
2166 
2167 	if (vf->cfg_flags & VF_CFG_TPA)
2168 		flags |= FUNC_FLG_TPA;
2169 
2170 	if (is_vf_multi(vf))
2171 		flags |= FUNC_FLG_RSS;
2172 
2173 	/* function setup */
2174 	func_init.func_flgs = flags;
2175 	func_init.pf_id = BP_FUNC(bp);
2176 	func_init.func_id = FW_VF_HANDLE(vf->abs_vfid);
2177 	func_init.fw_stat_map = vf->fw_stat_map;
2178 	func_init.spq_map = vf->spq_map;
2179 	func_init.spq_prod = 0;
2180 	bnx2x_func_init(bp, &func_init);
2181 
2182 	/* Enable the vf */
2183 	bnx2x_vf_enable_access(bp, vf->abs_vfid);
2184 	bnx2x_vf_enable_traffic(bp, vf);
2185 
2186 	/* queue protection table */
2187 	for_each_vfq(vf, i)
2188 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
2189 				    vfq_qzone_id(vf, vfq_get(vf, i)), true);
2190 
2191 	vf->state = VF_ENABLED;
2192 
2193 	/* update vf bulletin board */
2194 	bnx2x_post_vf_bulletin(bp, vf->index);
2195 
2196 	return 0;
2197 }
2198 
2199 struct set_vf_state_cookie {
2200 	struct bnx2x_virtf *vf;
2201 	u8 state;
2202 };
2203 
2204 static void bnx2x_set_vf_state(void *cookie)
2205 {
2206 	struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie;
2207 
2208 	p->vf->state = p->state;
2209 }
2210 
2211 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf)
2212 {
2213 	int rc = 0, i;
2214 
2215 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2216 
2217 	/* Close all queues */
2218 	for (i = 0; i < vf_rxq_count(vf); i++) {
2219 		rc = bnx2x_vf_queue_teardown(bp, vf, i);
2220 		if (rc)
2221 			goto op_err;
2222 	}
2223 
2224 	/* disable the interrupts */
2225 	DP(BNX2X_MSG_IOV, "disabling igu\n");
2226 	bnx2x_vf_igu_disable(bp, vf);
2227 
2228 	/* disable the VF */
2229 	DP(BNX2X_MSG_IOV, "clearing qtbl\n");
2230 	bnx2x_vf_clr_qtbl(bp, vf);
2231 
2232 	/* need to make sure there are no outstanding stats ramrods which may
2233 	 * cause the device to access the VF's stats buffer which it will free
2234 	 * as soon as we return from the close flow.
2235 	 */
2236 	{
2237 		struct set_vf_state_cookie cookie;
2238 
2239 		cookie.vf = vf;
2240 		cookie.state = VF_ACQUIRED;
2241 		rc = bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie);
2242 		if (rc)
2243 			goto op_err;
2244 	}
2245 
2246 	DP(BNX2X_MSG_IOV, "set state to acquired\n");
2247 
2248 	return 0;
2249 op_err:
2250 	BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc);
2251 	return rc;
2252 }
2253 
2254 /* VF release can be called either: 1. The VF was acquired but
2255  * not enabled 2. the vf was enabled or in the process of being
2256  * enabled
2257  */
2258 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf)
2259 {
2260 	int rc;
2261 
2262 	DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid,
2263 	   vf->state == VF_FREE ? "Free" :
2264 	   vf->state == VF_ACQUIRED ? "Acquired" :
2265 	   vf->state == VF_ENABLED ? "Enabled" :
2266 	   vf->state == VF_RESET ? "Reset" :
2267 	   "Unknown");
2268 
2269 	switch (vf->state) {
2270 	case VF_ENABLED:
2271 		rc = bnx2x_vf_close(bp, vf);
2272 		if (rc)
2273 			goto op_err;
2274 		/* Fallthrough to release resources */
2275 	case VF_ACQUIRED:
2276 		DP(BNX2X_MSG_IOV, "about to free resources\n");
2277 		bnx2x_vf_free_resc(bp, vf);
2278 		break;
2279 
2280 	case VF_FREE:
2281 	case VF_RESET:
2282 	default:
2283 		break;
2284 	}
2285 	return 0;
2286 op_err:
2287 	BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc);
2288 	return rc;
2289 }
2290 
2291 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2292 			struct bnx2x_config_rss_params *rss)
2293 {
2294 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2295 	set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags);
2296 	return bnx2x_config_rss(bp, rss);
2297 }
2298 
2299 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2300 			struct vfpf_tpa_tlv *tlv,
2301 			struct bnx2x_queue_update_tpa_params *params)
2302 {
2303 	aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr;
2304 	struct bnx2x_queue_state_params qstate;
2305 	int qid, rc = 0;
2306 
2307 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2308 
2309 	/* Set ramrod params */
2310 	memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
2311 	memcpy(&qstate.params.update_tpa, params,
2312 	       sizeof(struct bnx2x_queue_update_tpa_params));
2313 	qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA;
2314 	set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
2315 
2316 	for (qid = 0; qid < vf_rxq_count(vf); qid++) {
2317 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
2318 		qstate.params.update_tpa.sge_map = sge_addr[qid];
2319 		DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n",
2320 		   vf->abs_vfid, qid, U64_HI(sge_addr[qid]),
2321 		   U64_LO(sge_addr[qid]));
2322 		rc = bnx2x_queue_state_change(bp, &qstate);
2323 		if (rc) {
2324 			BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n",
2325 				  U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]),
2326 				  vf->abs_vfid, qid);
2327 			return rc;
2328 		}
2329 	}
2330 
2331 	return rc;
2332 }
2333 
2334 /* VF release ~ VF close + VF release-resources
2335  * Release is the ultimate SW shutdown and is called whenever an
2336  * irrecoverable error is encountered.
2337  */
2338 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf)
2339 {
2340 	int rc;
2341 
2342 	DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid);
2343 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2344 
2345 	rc = bnx2x_vf_free(bp, vf);
2346 	if (rc)
2347 		WARN(rc,
2348 		     "VF[%d] Failed to allocate resources for release op- rc=%d\n",
2349 		     vf->abs_vfid, rc);
2350 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2351 	return rc;
2352 }
2353 
2354 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2355 			      enum channel_tlvs tlv)
2356 {
2357 	/* we don't lock the channel for unsupported tlvs */
2358 	if (!bnx2x_tlv_supported(tlv)) {
2359 		BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n");
2360 		return;
2361 	}
2362 
2363 	/* lock the channel */
2364 	mutex_lock(&vf->op_mutex);
2365 
2366 	/* record the locking op */
2367 	vf->op_current = tlv;
2368 
2369 	/* log the lock */
2370 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n",
2371 	   vf->abs_vfid, tlv);
2372 }
2373 
2374 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2375 				enum channel_tlvs expected_tlv)
2376 {
2377 	enum channel_tlvs current_tlv;
2378 
2379 	if (!vf) {
2380 		BNX2X_ERR("VF was %p\n", vf);
2381 		return;
2382 	}
2383 
2384 	current_tlv = vf->op_current;
2385 
2386 	/* we don't unlock the channel for unsupported tlvs */
2387 	if (!bnx2x_tlv_supported(expected_tlv))
2388 		return;
2389 
2390 	WARN(expected_tlv != vf->op_current,
2391 	     "lock mismatch: expected %d found %d", expected_tlv,
2392 	     vf->op_current);
2393 
2394 	/* record the locking op */
2395 	vf->op_current = CHANNEL_TLV_NONE;
2396 
2397 	/* lock the channel */
2398 	mutex_unlock(&vf->op_mutex);
2399 
2400 	/* log the unlock */
2401 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n",
2402 	   vf->abs_vfid, current_tlv);
2403 }
2404 
2405 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable)
2406 {
2407 	struct bnx2x_queue_state_params q_params;
2408 	u32 prev_flags;
2409 	int i, rc;
2410 
2411 	/* Verify changes are needed and record current Tx switching state */
2412 	prev_flags = bp->flags;
2413 	if (enable)
2414 		bp->flags |= TX_SWITCHING;
2415 	else
2416 		bp->flags &= ~TX_SWITCHING;
2417 	if (prev_flags == bp->flags)
2418 		return 0;
2419 
2420 	/* Verify state enables the sending of queue ramrods */
2421 	if ((bp->state != BNX2X_STATE_OPEN) ||
2422 	    (bnx2x_get_q_logical_state(bp,
2423 				      &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) !=
2424 	     BNX2X_Q_LOGICAL_STATE_ACTIVE))
2425 		return 0;
2426 
2427 	/* send q. update ramrod to configure Tx switching */
2428 	memset(&q_params, 0, sizeof(q_params));
2429 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2430 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
2431 	__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
2432 		  &q_params.params.update.update_flags);
2433 	if (enable)
2434 		__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2435 			  &q_params.params.update.update_flags);
2436 	else
2437 		__clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2438 			    &q_params.params.update.update_flags);
2439 
2440 	/* send the ramrod on all the queues of the PF */
2441 	for_each_eth_queue(bp, i) {
2442 		struct bnx2x_fastpath *fp = &bp->fp[i];
2443 
2444 		/* Set the appropriate Queue object */
2445 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
2446 
2447 		/* Update the Queue state */
2448 		rc = bnx2x_queue_state_change(bp, &q_params);
2449 		if (rc) {
2450 			BNX2X_ERR("Failed to configure Tx switching\n");
2451 			return rc;
2452 		}
2453 	}
2454 
2455 	DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled");
2456 	return 0;
2457 }
2458 
2459 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param)
2460 {
2461 	struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev));
2462 
2463 	if (!IS_SRIOV(bp)) {
2464 		BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n");
2465 		return -EINVAL;
2466 	}
2467 
2468 	DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
2469 	   num_vfs_param, BNX2X_NR_VIRTFN(bp));
2470 
2471 	/* HW channel is only operational when PF is up */
2472 	if (bp->state != BNX2X_STATE_OPEN) {
2473 		BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
2474 		return -EINVAL;
2475 	}
2476 
2477 	/* we are always bound by the total_vfs in the configuration space */
2478 	if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) {
2479 		BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
2480 			  num_vfs_param, BNX2X_NR_VIRTFN(bp));
2481 		num_vfs_param = BNX2X_NR_VIRTFN(bp);
2482 	}
2483 
2484 	bp->requested_nr_virtfn = num_vfs_param;
2485 	if (num_vfs_param == 0) {
2486 		bnx2x_set_pf_tx_switching(bp, false);
2487 		bnx2x_disable_sriov(bp);
2488 		return 0;
2489 	} else {
2490 		return bnx2x_enable_sriov(bp);
2491 	}
2492 }
2493 
2494 #define IGU_ENTRY_SIZE 4
2495 
2496 int bnx2x_enable_sriov(struct bnx2x *bp)
2497 {
2498 	int rc = 0, req_vfs = bp->requested_nr_virtfn;
2499 	int vf_idx, sb_idx, vfq_idx, qcount, first_vf;
2500 	u32 igu_entry, address;
2501 	u16 num_vf_queues;
2502 
2503 	if (req_vfs == 0)
2504 		return 0;
2505 
2506 	first_vf = bp->vfdb->sriov.first_vf_in_pf;
2507 
2508 	/* statically distribute vf sb pool between VFs */
2509 	num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES,
2510 			      BP_VFDB(bp)->vf_sbs_pool / req_vfs);
2511 
2512 	/* zero previous values learned from igu cam */
2513 	for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) {
2514 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2515 
2516 		vf->sb_count = 0;
2517 		vf_sb_count(BP_VF(bp, vf_idx)) = 0;
2518 	}
2519 	bp->vfdb->vf_sbs_pool = 0;
2520 
2521 	/* prepare IGU cam */
2522 	sb_idx = BP_VFDB(bp)->first_vf_igu_entry;
2523 	address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE;
2524 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2525 		for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) {
2526 			igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT |
2527 				vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT |
2528 				IGU_REG_MAPPING_MEMORY_VALID;
2529 			DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n",
2530 			   sb_idx, vf_idx);
2531 			REG_WR(bp, address, igu_entry);
2532 			sb_idx++;
2533 			address += IGU_ENTRY_SIZE;
2534 		}
2535 	}
2536 
2537 	/* Reinitialize vf database according to igu cam */
2538 	bnx2x_get_vf_igu_cam_info(bp);
2539 
2540 	DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n",
2541 	   BP_VFDB(bp)->vf_sbs_pool, num_vf_queues);
2542 
2543 	qcount = 0;
2544 	for_each_vf(bp, vf_idx) {
2545 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2546 
2547 		/* set local queue arrays */
2548 		vf->vfqs = &bp->vfdb->vfqs[qcount];
2549 		qcount += vf_sb_count(vf);
2550 		bnx2x_iov_static_resc(bp, vf);
2551 	}
2552 
2553 	/* prepare msix vectors in VF configuration space - the value in the
2554 	 * PCI configuration space should be the index of the last entry,
2555 	 * namely one less than the actual size of the table
2556 	 */
2557 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2558 		bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx));
2559 		REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL,
2560 		       num_vf_queues - 1);
2561 		DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n",
2562 		   vf_idx, num_vf_queues - 1);
2563 	}
2564 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
2565 
2566 	/* enable sriov. This will probe all the VFs, and consequentially cause
2567 	 * the "acquire" messages to appear on the VF PF channel.
2568 	 */
2569 	DP(BNX2X_MSG_IOV, "about to call enable sriov\n");
2570 	bnx2x_disable_sriov(bp);
2571 
2572 	rc = bnx2x_set_pf_tx_switching(bp, true);
2573 	if (rc)
2574 		return rc;
2575 
2576 	rc = pci_enable_sriov(bp->pdev, req_vfs);
2577 	if (rc) {
2578 		BNX2X_ERR("pci_enable_sriov failed with %d\n", rc);
2579 		return rc;
2580 	}
2581 	DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs);
2582 	return req_vfs;
2583 }
2584 
2585 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp)
2586 {
2587 	int vfidx;
2588 	struct pf_vf_bulletin_content *bulletin;
2589 
2590 	DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n");
2591 	for_each_vf(bp, vfidx) {
2592 	bulletin = BP_VF_BULLETIN(bp, vfidx);
2593 		if (BP_VF(bp, vfidx)->cfg_flags & VF_CFG_VLAN)
2594 			bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0);
2595 	}
2596 }
2597 
2598 void bnx2x_disable_sriov(struct bnx2x *bp)
2599 {
2600 	if (pci_vfs_assigned(bp->pdev)) {
2601 		DP(BNX2X_MSG_IOV,
2602 		   "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2603 		return;
2604 	}
2605 
2606 	pci_disable_sriov(bp->pdev);
2607 }
2608 
2609 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
2610 			    struct bnx2x_virtf **vf,
2611 			    struct pf_vf_bulletin_content **bulletin,
2612 			    bool test_queue)
2613 {
2614 	if (bp->state != BNX2X_STATE_OPEN) {
2615 		BNX2X_ERR("PF is down - can't utilize iov-related functionality\n");
2616 		return -EINVAL;
2617 	}
2618 
2619 	if (!IS_SRIOV(bp)) {
2620 		BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n");
2621 		return -EINVAL;
2622 	}
2623 
2624 	if (vfidx >= BNX2X_NR_VIRTFN(bp)) {
2625 		BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
2626 			  vfidx, BNX2X_NR_VIRTFN(bp));
2627 		return -EINVAL;
2628 	}
2629 
2630 	/* init members */
2631 	*vf = BP_VF(bp, vfidx);
2632 	*bulletin = BP_VF_BULLETIN(bp, vfidx);
2633 
2634 	if (!*vf) {
2635 		BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx);
2636 		return -EINVAL;
2637 	}
2638 
2639 	if (test_queue && !(*vf)->vfqs) {
2640 		BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n",
2641 			  vfidx);
2642 		return -EINVAL;
2643 	}
2644 
2645 	if (!*bulletin) {
2646 		BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n",
2647 			  vfidx);
2648 		return -EINVAL;
2649 	}
2650 
2651 	return 0;
2652 }
2653 
2654 int bnx2x_get_vf_config(struct net_device *dev, int vfidx,
2655 			struct ifla_vf_info *ivi)
2656 {
2657 	struct bnx2x *bp = netdev_priv(dev);
2658 	struct bnx2x_virtf *vf = NULL;
2659 	struct pf_vf_bulletin_content *bulletin = NULL;
2660 	struct bnx2x_vlan_mac_obj *mac_obj;
2661 	struct bnx2x_vlan_mac_obj *vlan_obj;
2662 	int rc;
2663 
2664 	/* sanity and init */
2665 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2666 	if (rc)
2667 		return rc;
2668 
2669 	mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2670 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2671 	if (!mac_obj || !vlan_obj) {
2672 		BNX2X_ERR("VF partially initialized\n");
2673 		return -EINVAL;
2674 	}
2675 
2676 	ivi->vf = vfidx;
2677 	ivi->qos = 0;
2678 	ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */
2679 	ivi->min_tx_rate = 0;
2680 	ivi->spoofchk = 1; /*always enabled */
2681 	if (vf->state == VF_ENABLED) {
2682 		/* mac and vlan are in vlan_mac objects */
2683 		if (bnx2x_validate_vf_sp_objs(bp, vf, false)) {
2684 			mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac,
2685 						0, ETH_ALEN);
2686 			vlan_obj->get_n_elements(bp, vlan_obj, 1,
2687 						 (u8 *)&ivi->vlan, 0,
2688 						 VLAN_HLEN);
2689 		}
2690 	} else {
2691 		mutex_lock(&bp->vfdb->bulletin_mutex);
2692 		/* mac */
2693 		if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID))
2694 			/* mac configured by ndo so its in bulletin board */
2695 			memcpy(&ivi->mac, bulletin->mac, ETH_ALEN);
2696 		else
2697 			/* function has not been loaded yet. Show mac as 0s */
2698 			memset(&ivi->mac, 0, ETH_ALEN);
2699 
2700 		/* vlan */
2701 		if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2702 			/* vlan configured by ndo so its in bulletin board */
2703 			memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN);
2704 		else
2705 			/* function has not been loaded yet. Show vlans as 0s */
2706 			memset(&ivi->vlan, 0, VLAN_HLEN);
2707 
2708 		mutex_unlock(&bp->vfdb->bulletin_mutex);
2709 	}
2710 
2711 	return 0;
2712 }
2713 
2714 /* New mac for VF. Consider these cases:
2715  * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
2716  *    supply at acquire.
2717  * 2. VF has already been acquired but has not yet initialized - store in local
2718  *    bulletin board. mac will be posted on VF bulletin board after VF init. VF
2719  *    will configure this mac when it is ready.
2720  * 3. VF has already initialized but has not yet setup a queue - post the new
2721  *    mac on VF's bulletin board right now. VF will configure this mac when it
2722  *    is ready.
2723  * 4. VF has already set a queue - delete any macs already configured for this
2724  *    queue and manually config the new mac.
2725  * In any event, once this function has been called refuse any attempts by the
2726  * VF to configure any mac for itself except for this mac. In case of a race
2727  * where the VF fails to see the new post on its bulletin board before sending a
2728  * mac configuration request, the PF will simply fail the request and VF can try
2729  * again after consulting its bulletin board.
2730  */
2731 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac)
2732 {
2733 	struct bnx2x *bp = netdev_priv(dev);
2734 	int rc, q_logical_state;
2735 	struct bnx2x_virtf *vf = NULL;
2736 	struct pf_vf_bulletin_content *bulletin = NULL;
2737 
2738 	if (!is_valid_ether_addr(mac)) {
2739 		BNX2X_ERR("mac address invalid\n");
2740 		return -EINVAL;
2741 	}
2742 
2743 	/* sanity and init */
2744 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2745 	if (rc)
2746 		return rc;
2747 
2748 	mutex_lock(&bp->vfdb->bulletin_mutex);
2749 
2750 	/* update PF's copy of the VF's bulletin. Will no longer accept mac
2751 	 * configuration requests from vf unless match this mac
2752 	 */
2753 	bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID;
2754 	memcpy(bulletin->mac, mac, ETH_ALEN);
2755 
2756 	/* Post update on VF's bulletin board */
2757 	rc = bnx2x_post_vf_bulletin(bp, vfidx);
2758 
2759 	/* release lock before checking return code */
2760 	mutex_unlock(&bp->vfdb->bulletin_mutex);
2761 
2762 	if (rc) {
2763 		BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2764 		return rc;
2765 	}
2766 
2767 	q_logical_state =
2768 		bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj));
2769 	if (vf->state == VF_ENABLED &&
2770 	    q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
2771 		/* configure the mac in device on this vf's queue */
2772 		unsigned long ramrod_flags = 0;
2773 		struct bnx2x_vlan_mac_obj *mac_obj;
2774 
2775 		/* User should be able to see failure reason in system logs */
2776 		if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2777 			return -EINVAL;
2778 
2779 		/* must lock vfpf channel to protect against vf flows */
2780 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2781 
2782 		/* remove existing eth macs */
2783 		mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2784 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true);
2785 		if (rc) {
2786 			BNX2X_ERR("failed to delete eth macs\n");
2787 			rc = -EINVAL;
2788 			goto out;
2789 		}
2790 
2791 		/* remove existing uc list macs */
2792 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true);
2793 		if (rc) {
2794 			BNX2X_ERR("failed to delete uc_list macs\n");
2795 			rc = -EINVAL;
2796 			goto out;
2797 		}
2798 
2799 		/* configure the new mac to device */
2800 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2801 		bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true,
2802 				  BNX2X_ETH_MAC, &ramrod_flags);
2803 
2804 out:
2805 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2806 	}
2807 
2808 	return rc;
2809 }
2810 
2811 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos)
2812 {
2813 	struct bnx2x_queue_state_params q_params = {NULL};
2814 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
2815 	struct bnx2x_queue_update_params *update_params;
2816 	struct pf_vf_bulletin_content *bulletin = NULL;
2817 	struct bnx2x_rx_mode_ramrod_params rx_ramrod;
2818 	struct bnx2x *bp = netdev_priv(dev);
2819 	struct bnx2x_vlan_mac_obj *vlan_obj;
2820 	unsigned long vlan_mac_flags = 0;
2821 	unsigned long ramrod_flags = 0;
2822 	struct bnx2x_virtf *vf = NULL;
2823 	unsigned long accept_flags;
2824 	int rc;
2825 
2826 	if (vlan > 4095) {
2827 		BNX2X_ERR("illegal vlan value %d\n", vlan);
2828 		return -EINVAL;
2829 	}
2830 
2831 	DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n",
2832 	   vfidx, vlan, 0);
2833 
2834 	/* sanity and init */
2835 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2836 	if (rc)
2837 		return rc;
2838 
2839 	/* update PF's copy of the VF's bulletin. No point in posting the vlan
2840 	 * to the VF since it doesn't have anything to do with it. But it useful
2841 	 * to store it here in case the VF is not up yet and we can only
2842 	 * configure the vlan later when it does. Treat vlan id 0 as remove the
2843 	 * Host tag.
2844 	 */
2845 	mutex_lock(&bp->vfdb->bulletin_mutex);
2846 
2847 	if (vlan > 0)
2848 		bulletin->valid_bitmap |= 1 << VLAN_VALID;
2849 	else
2850 		bulletin->valid_bitmap &= ~(1 << VLAN_VALID);
2851 	bulletin->vlan = vlan;
2852 
2853 	mutex_unlock(&bp->vfdb->bulletin_mutex);
2854 
2855 	/* is vf initialized and queue set up? */
2856 	if (vf->state != VF_ENABLED ||
2857 	    bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2858 	    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2859 		return rc;
2860 
2861 	/* User should be able to see error in system logs */
2862 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2863 		return -EINVAL;
2864 
2865 	/* must lock vfpf channel to protect against vf flows */
2866 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2867 
2868 	/* remove existing vlans */
2869 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2870 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2871 	rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags,
2872 				  &ramrod_flags);
2873 	if (rc) {
2874 		BNX2X_ERR("failed to delete vlans\n");
2875 		rc = -EINVAL;
2876 		goto out;
2877 	}
2878 
2879 	/* need to remove/add the VF's accept_any_vlan bit */
2880 	accept_flags = bnx2x_leading_vfq(vf, accept_flags);
2881 	if (vlan)
2882 		clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2883 	else
2884 		set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2885 
2886 	bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf,
2887 			      accept_flags);
2888 	bnx2x_leading_vfq(vf, accept_flags) = accept_flags;
2889 	bnx2x_config_rx_mode(bp, &rx_ramrod);
2890 
2891 	/* configure the new vlan to device */
2892 	memset(&ramrod_param, 0, sizeof(ramrod_param));
2893 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2894 	ramrod_param.vlan_mac_obj = vlan_obj;
2895 	ramrod_param.ramrod_flags = ramrod_flags;
2896 	set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
2897 		&ramrod_param.user_req.vlan_mac_flags);
2898 	ramrod_param.user_req.u.vlan.vlan = vlan;
2899 	ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
2900 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
2901 	if (rc) {
2902 		BNX2X_ERR("failed to configure vlan\n");
2903 		rc =  -EINVAL;
2904 		goto out;
2905 	}
2906 
2907 	/* send queue update ramrod to configure default vlan and silent
2908 	 * vlan removal
2909 	 */
2910 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2911 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
2912 	q_params.q_obj = &bnx2x_leading_vfq(vf, sp_obj);
2913 	update_params = &q_params.params.update;
2914 	__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
2915 		  &update_params->update_flags);
2916 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
2917 		  &update_params->update_flags);
2918 	if (vlan == 0) {
2919 		/* if vlan is 0 then we want to leave the VF traffic
2920 		 * untagged, and leave the incoming traffic untouched
2921 		 * (i.e. do not remove any vlan tags).
2922 		 */
2923 		__clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2924 			    &update_params->update_flags);
2925 		__clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2926 			    &update_params->update_flags);
2927 	} else {
2928 		/* configure default vlan to vf queue and set silent
2929 		 * vlan removal (the vf remains unaware of this vlan).
2930 		 */
2931 		__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2932 			  &update_params->update_flags);
2933 		__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2934 			  &update_params->update_flags);
2935 		update_params->def_vlan = vlan;
2936 		update_params->silent_removal_value =
2937 			vlan & VLAN_VID_MASK;
2938 		update_params->silent_removal_mask = VLAN_VID_MASK;
2939 	}
2940 
2941 	/* Update the Queue state */
2942 	rc = bnx2x_queue_state_change(bp, &q_params);
2943 	if (rc) {
2944 		BNX2X_ERR("Failed to configure default VLAN\n");
2945 		goto out;
2946 	}
2947 
2948 
2949 	/* clear the flag indicating that this VF needs its vlan
2950 	 * (will only be set if the HV configured the Vlan before vf was
2951 	 * up and we were called because the VF came up later
2952 	 */
2953 out:
2954 	vf->cfg_flags &= ~VF_CFG_VLAN;
2955 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2956 
2957 	return rc;
2958 }
2959 
2960 /* crc is the first field in the bulletin board. Compute the crc over the
2961  * entire bulletin board excluding the crc field itself. Use the length field
2962  * as the Bulletin Board was posted by a PF with possibly a different version
2963  * from the vf which will sample it. Therefore, the length is computed by the
2964  * PF and then used blindly by the VF.
2965  */
2966 u32 bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content *bulletin)
2967 {
2968 	return crc32(BULLETIN_CRC_SEED,
2969 		 ((u8 *)bulletin) + sizeof(bulletin->crc),
2970 		 bulletin->length - sizeof(bulletin->crc));
2971 }
2972 
2973 /* Check for new posts on the bulletin board */
2974 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp)
2975 {
2976 	struct pf_vf_bulletin_content *bulletin;
2977 	int attempts;
2978 
2979 	/* sampling structure in mid post may result with corrupted data
2980 	 * validate crc to ensure coherency.
2981 	 */
2982 	for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) {
2983 		u32 crc;
2984 
2985 		/* sample the bulletin board */
2986 		memcpy(&bp->shadow_bulletin, bp->pf2vf_bulletin,
2987 		       sizeof(union pf_vf_bulletin));
2988 
2989 		crc = bnx2x_crc_vf_bulletin(&bp->shadow_bulletin.content);
2990 
2991 		if (bp->shadow_bulletin.content.crc == crc)
2992 			break;
2993 
2994 		BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
2995 			  bp->shadow_bulletin.content.crc, crc);
2996 	}
2997 
2998 	if (attempts >= BULLETIN_ATTEMPTS) {
2999 		BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
3000 			  attempts);
3001 		return PFVF_BULLETIN_CRC_ERR;
3002 	}
3003 	bulletin = &bp->shadow_bulletin.content;
3004 
3005 	/* bulletin board hasn't changed since last sample */
3006 	if (bp->old_bulletin.version == bulletin->version)
3007 		return PFVF_BULLETIN_UNCHANGED;
3008 
3009 	/* the mac address in bulletin board is valid and is new */
3010 	if (bulletin->valid_bitmap & 1 << MAC_ADDR_VALID &&
3011 	    !ether_addr_equal(bulletin->mac, bp->old_bulletin.mac)) {
3012 		/* update new mac to net device */
3013 		memcpy(bp->dev->dev_addr, bulletin->mac, ETH_ALEN);
3014 	}
3015 
3016 	if (bulletin->valid_bitmap & (1 << LINK_VALID)) {
3017 		DP(BNX2X_MSG_IOV, "link update speed %d flags %x\n",
3018 		   bulletin->link_speed, bulletin->link_flags);
3019 
3020 		bp->vf_link_vars.line_speed = bulletin->link_speed;
3021 		bp->vf_link_vars.link_report_flags = 0;
3022 		/* Link is down */
3023 		if (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)
3024 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
3025 				  &bp->vf_link_vars.link_report_flags);
3026 		/* Full DUPLEX */
3027 		if (bulletin->link_flags & VFPF_LINK_REPORT_FULL_DUPLEX)
3028 			__set_bit(BNX2X_LINK_REPORT_FD,
3029 				  &bp->vf_link_vars.link_report_flags);
3030 		/* Rx Flow Control is ON */
3031 		if (bulletin->link_flags & VFPF_LINK_REPORT_RX_FC_ON)
3032 			__set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
3033 				  &bp->vf_link_vars.link_report_flags);
3034 		/* Tx Flow Control is ON */
3035 		if (bulletin->link_flags & VFPF_LINK_REPORT_TX_FC_ON)
3036 			__set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
3037 				  &bp->vf_link_vars.link_report_flags);
3038 		__bnx2x_link_report(bp);
3039 	}
3040 
3041 	/* copy new bulletin board to bp */
3042 	memcpy(&bp->old_bulletin, bulletin,
3043 	       sizeof(struct pf_vf_bulletin_content));
3044 
3045 	return PFVF_BULLETIN_UPDATED;
3046 }
3047 
3048 void bnx2x_timer_sriov(struct bnx2x *bp)
3049 {
3050 	bnx2x_sample_bulletin(bp);
3051 
3052 	/* if channel is down we need to self destruct */
3053 	if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN)
3054 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
3055 				       BNX2X_MSG_IOV);
3056 }
3057 
3058 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp)
3059 {
3060 	/* vf doorbells are embedded within the regview */
3061 	return bp->regview + PXP_VF_ADDR_DB_START;
3062 }
3063 
3064 void bnx2x_vf_pci_dealloc(struct bnx2x *bp)
3065 {
3066 	BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
3067 		       sizeof(struct bnx2x_vf_mbx_msg));
3068 	BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->pf2vf_bulletin_mapping,
3069 		       sizeof(union pf_vf_bulletin));
3070 }
3071 
3072 int bnx2x_vf_pci_alloc(struct bnx2x *bp)
3073 {
3074 	mutex_init(&bp->vf2pf_mutex);
3075 
3076 	/* allocate vf2pf mailbox for vf to pf channel */
3077 	bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping,
3078 					 sizeof(struct bnx2x_vf_mbx_msg));
3079 	if (!bp->vf2pf_mbox)
3080 		goto alloc_mem_err;
3081 
3082 	/* allocate pf 2 vf bulletin board */
3083 	bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping,
3084 					     sizeof(union pf_vf_bulletin));
3085 	if (!bp->pf2vf_bulletin)
3086 		goto alloc_mem_err;
3087 
3088 	bnx2x_vf_bulletin_finalize(&bp->pf2vf_bulletin->content, true);
3089 
3090 	return 0;
3091 
3092 alloc_mem_err:
3093 	bnx2x_vf_pci_dealloc(bp);
3094 	return -ENOMEM;
3095 }
3096 
3097 void bnx2x_iov_channel_down(struct bnx2x *bp)
3098 {
3099 	int vf_idx;
3100 	struct pf_vf_bulletin_content *bulletin;
3101 
3102 	if (!IS_SRIOV(bp))
3103 		return;
3104 
3105 	for_each_vf(bp, vf_idx) {
3106 		/* locate this VFs bulletin board and update the channel down
3107 		 * bit
3108 		 */
3109 		bulletin = BP_VF_BULLETIN(bp, vf_idx);
3110 		bulletin->valid_bitmap |= 1 << CHANNEL_DOWN;
3111 
3112 		/* update vf bulletin board */
3113 		bnx2x_post_vf_bulletin(bp, vf_idx);
3114 	}
3115 }
3116 
3117 void bnx2x_iov_task(struct work_struct *work)
3118 {
3119 	struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work);
3120 
3121 	if (!netif_running(bp->dev))
3122 		return;
3123 
3124 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR,
3125 			       &bp->iov_task_state))
3126 		bnx2x_vf_handle_flr_event(bp);
3127 
3128 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG,
3129 			       &bp->iov_task_state))
3130 		bnx2x_vf_mbx(bp);
3131 }
3132 
3133 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag)
3134 {
3135 	smp_mb__before_atomic();
3136 	set_bit(flag, &bp->iov_task_state);
3137 	smp_mb__after_atomic();
3138 	DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
3139 	queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0);
3140 }
3141