1 /* bnx2x_sriov.c: QLogic Everest network driver.
2  *
3  * Copyright 2009-2013 Broadcom Corporation
4  * Copyright 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * Unless you and QLogic execute a separate written software license
8  * agreement governing use of this software, this software is licensed to you
9  * under the terms of the GNU General Public License version 2, available
10  * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
11  *
12  * Notwithstanding the above, under no circumstances may you combine this
13  * software in any way with any other QLogic software provided under a
14  * license other than the GPL, without QLogic's express prior written
15  * consent.
16  *
17  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
18  * Written by: Shmulik Ravid
19  *	       Ariel Elior <ariel.elior@qlogic.com>
20  *
21  */
22 #include "bnx2x.h"
23 #include "bnx2x_init.h"
24 #include "bnx2x_cmn.h"
25 #include "bnx2x_sp.h"
26 #include <linux/crc32.h>
27 #include <linux/if_vlan.h>
28 
29 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
30 			    struct bnx2x_virtf **vf,
31 			    struct pf_vf_bulletin_content **bulletin,
32 			    bool test_queue);
33 
34 /* General service functions */
35 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
36 					 u16 pf_id)
37 {
38 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
39 		pf_id);
40 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
41 		pf_id);
42 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
43 		pf_id);
44 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
45 		pf_id);
46 }
47 
48 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
49 					u8 enable)
50 {
51 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
52 		enable);
53 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
54 		enable);
55 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
56 		enable);
57 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
58 		enable);
59 }
60 
61 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
62 {
63 	int idx;
64 
65 	for_each_vf(bp, idx)
66 		if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid)
67 			break;
68 	return idx;
69 }
70 
71 static
72 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
73 {
74 	u16 idx =  (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid);
75 	return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL;
76 }
77 
78 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf,
79 				u8 igu_sb_id, u8 segment, u16 index, u8 op,
80 				u8 update)
81 {
82 	/* acking a VF sb through the PF - use the GRC */
83 	u32 ctl;
84 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
85 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
86 	u32 func_encode = vf->abs_vfid;
87 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id;
88 	struct igu_regular cmd_data = {0};
89 
90 	cmd_data.sb_id_and_flags =
91 			((index << IGU_REGULAR_SB_INDEX_SHIFT) |
92 			 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
93 			 (update << IGU_REGULAR_BUPDATE_SHIFT) |
94 			 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
95 
96 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
97 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
98 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
99 
100 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
101 	   cmd_data.sb_id_and_flags, igu_addr_data);
102 	REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags);
103 	mmiowb();
104 	barrier();
105 
106 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
107 	   ctl, igu_addr_ctl);
108 	REG_WR(bp, igu_addr_ctl, ctl);
109 	mmiowb();
110 	barrier();
111 }
112 
113 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp,
114 				       struct bnx2x_virtf *vf,
115 				       bool print_err)
116 {
117 	if (!bnx2x_leading_vfq(vf, sp_initialized)) {
118 		if (print_err)
119 			BNX2X_ERR("Slowpath objects not yet initialized!\n");
120 		else
121 			DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n");
122 		return false;
123 	}
124 	return true;
125 }
126 
127 /* VFOP operations states */
128 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf,
129 			      struct bnx2x_queue_init_params *init_params,
130 			      struct bnx2x_queue_setup_params *setup_params,
131 			      u16 q_idx, u16 sb_idx)
132 {
133 	DP(BNX2X_MSG_IOV,
134 	   "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
135 	   vf->abs_vfid,
136 	   q_idx,
137 	   sb_idx,
138 	   init_params->tx.sb_cq_index,
139 	   init_params->tx.hc_rate,
140 	   setup_params->flags,
141 	   setup_params->txq_params.traffic_type);
142 }
143 
144 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf,
145 			    struct bnx2x_queue_init_params *init_params,
146 			    struct bnx2x_queue_setup_params *setup_params,
147 			    u16 q_idx, u16 sb_idx)
148 {
149 	struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params;
150 
151 	DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
152 	   "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
153 	   vf->abs_vfid,
154 	   q_idx,
155 	   sb_idx,
156 	   init_params->rx.sb_cq_index,
157 	   init_params->rx.hc_rate,
158 	   setup_params->gen_params.mtu,
159 	   rxq_params->buf_sz,
160 	   rxq_params->sge_buf_sz,
161 	   rxq_params->max_sges_pkt,
162 	   rxq_params->tpa_agg_sz,
163 	   setup_params->flags,
164 	   rxq_params->drop_flags,
165 	   rxq_params->cache_line_log);
166 }
167 
168 void bnx2x_vfop_qctor_prep(struct bnx2x *bp,
169 			   struct bnx2x_virtf *vf,
170 			   struct bnx2x_vf_queue *q,
171 			   struct bnx2x_vf_queue_construct_params *p,
172 			   unsigned long q_type)
173 {
174 	struct bnx2x_queue_init_params *init_p = &p->qstate.params.init;
175 	struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup;
176 
177 	/* INIT */
178 
179 	/* Enable host coalescing in the transition to INIT state */
180 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags))
181 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags);
182 
183 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags))
184 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags);
185 
186 	/* FW SB ID */
187 	init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
188 	init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
189 
190 	/* context */
191 	init_p->cxts[0] = q->cxt;
192 
193 	/* SETUP */
194 
195 	/* Setup-op general parameters */
196 	setup_p->gen_params.spcl_id = vf->sp_cl_id;
197 	setup_p->gen_params.stat_id = vfq_stat_id(vf, q);
198 	setup_p->gen_params.fp_hsi = vf->fp_hsi;
199 
200 	/* Setup-op flags:
201 	 * collect statistics, zero statistics, local-switching, security,
202 	 * OV for Flex10, RSS and MCAST for leading
203 	 */
204 	if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags))
205 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags);
206 
207 	/* for VFs, enable tx switching, bd coherency, and mac address
208 	 * anti-spoofing
209 	 */
210 	__set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags);
211 	__set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags);
212 	__set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
213 
214 	/* Setup-op rx parameters */
215 	if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) {
216 		struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params;
217 
218 		rxq_p->cl_qzone_id = vfq_qzone_id(vf, q);
219 		rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx);
220 		rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid);
221 
222 		if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags))
223 			rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES;
224 	}
225 
226 	/* Setup-op tx parameters */
227 	if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) {
228 		setup_p->txq_params.tss_leading_cl_id = vf->leading_rss;
229 		setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
230 	}
231 }
232 
233 static int bnx2x_vf_queue_create(struct bnx2x *bp,
234 				 struct bnx2x_virtf *vf, int qid,
235 				 struct bnx2x_vf_queue_construct_params *qctor)
236 {
237 	struct bnx2x_queue_state_params *q_params;
238 	int rc = 0;
239 
240 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
241 
242 	/* Prepare ramrod information */
243 	q_params = &qctor->qstate;
244 	q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
245 	set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags);
246 
247 	if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
248 	    BNX2X_Q_LOGICAL_STATE_ACTIVE) {
249 		DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n");
250 		goto out;
251 	}
252 
253 	/* Run Queue 'construction' ramrods */
254 	q_params->cmd = BNX2X_Q_CMD_INIT;
255 	rc = bnx2x_queue_state_change(bp, q_params);
256 	if (rc)
257 		goto out;
258 
259 	memcpy(&q_params->params.setup, &qctor->prep_qsetup,
260 	       sizeof(struct bnx2x_queue_setup_params));
261 	q_params->cmd = BNX2X_Q_CMD_SETUP;
262 	rc = bnx2x_queue_state_change(bp, q_params);
263 	if (rc)
264 		goto out;
265 
266 	/* enable interrupts */
267 	bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)),
268 			    USTORM_ID, 0, IGU_INT_ENABLE, 0);
269 out:
270 	return rc;
271 }
272 
273 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf,
274 				  int qid)
275 {
276 	enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT,
277 				       BNX2X_Q_CMD_TERMINATE,
278 				       BNX2X_Q_CMD_CFC_DEL};
279 	struct bnx2x_queue_state_params q_params;
280 	int rc, i;
281 
282 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
283 
284 	/* Prepare ramrod information */
285 	memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params));
286 	q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
287 	set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
288 
289 	if (bnx2x_get_q_logical_state(bp, q_params.q_obj) ==
290 	    BNX2X_Q_LOGICAL_STATE_STOPPED) {
291 		DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n");
292 		goto out;
293 	}
294 
295 	/* Run Queue 'destruction' ramrods */
296 	for (i = 0; i < ARRAY_SIZE(cmds); i++) {
297 		q_params.cmd = cmds[i];
298 		rc = bnx2x_queue_state_change(bp, &q_params);
299 		if (rc) {
300 			BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]);
301 			return rc;
302 		}
303 	}
304 out:
305 	/* Clean Context */
306 	if (bnx2x_vfq(vf, qid, cxt)) {
307 		bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0;
308 		bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0;
309 	}
310 
311 	return 0;
312 }
313 
314 static void
315 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid)
316 {
317 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
318 	if (vf) {
319 		/* the first igu entry belonging to VFs of this PF */
320 		if (!BP_VFDB(bp)->first_vf_igu_entry)
321 			BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id;
322 
323 		/* the first igu entry belonging to this VF */
324 		if (!vf_sb_count(vf))
325 			vf->igu_base_id = igu_sb_id;
326 
327 		++vf_sb_count(vf);
328 		++vf->sb_count;
329 	}
330 	BP_VFDB(bp)->vf_sbs_pool++;
331 }
332 
333 static inline void bnx2x_vf_vlan_credit(struct bnx2x *bp,
334 					struct bnx2x_vlan_mac_obj *obj,
335 					atomic_t *counter)
336 {
337 	struct list_head *pos;
338 	int read_lock;
339 	int cnt = 0;
340 
341 	read_lock = bnx2x_vlan_mac_h_read_lock(bp, obj);
342 	if (read_lock)
343 		DP(BNX2X_MSG_SP, "Failed to take vlan mac read head; continuing anyway\n");
344 
345 	list_for_each(pos, &obj->head)
346 		cnt++;
347 
348 	if (!read_lock)
349 		bnx2x_vlan_mac_h_read_unlock(bp, obj);
350 
351 	atomic_set(counter, cnt);
352 }
353 
354 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf,
355 				   int qid, bool drv_only, int type)
356 {
357 	struct bnx2x_vlan_mac_ramrod_params ramrod;
358 	int rc;
359 
360 	DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid,
361 			  (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
362 			  (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
363 
364 	/* Prepare ramrod params */
365 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
366 	if (type == BNX2X_VF_FILTER_VLAN_MAC) {
367 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
368 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
369 	} else if (type == BNX2X_VF_FILTER_MAC) {
370 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
371 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
372 	} else {
373 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
374 	}
375 	ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL;
376 
377 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
378 	if (drv_only)
379 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
380 	else
381 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
382 
383 	/* Start deleting */
384 	rc = ramrod.vlan_mac_obj->delete_all(bp,
385 					     ramrod.vlan_mac_obj,
386 					     &ramrod.user_req.vlan_mac_flags,
387 					     &ramrod.ramrod_flags);
388 	if (rc) {
389 		BNX2X_ERR("Failed to delete all %s\n",
390 			  (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
391 			  (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
392 		return rc;
393 	}
394 
395 	return 0;
396 }
397 
398 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp,
399 				    struct bnx2x_virtf *vf, int qid,
400 				    struct bnx2x_vf_mac_vlan_filter *filter,
401 				    bool drv_only)
402 {
403 	struct bnx2x_vlan_mac_ramrod_params ramrod;
404 	int rc;
405 
406 	DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n",
407 	   vf->abs_vfid, filter->add ? "Adding" : "Deleting",
408 	   (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MAC" :
409 	   (filter->type == BNX2X_VF_FILTER_MAC) ? "MAC" : "VLAN");
410 
411 	/* Prepare ramrod params */
412 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
413 	if (filter->type == BNX2X_VF_FILTER_VLAN_MAC) {
414 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
415 		ramrod.user_req.u.vlan.vlan = filter->vid;
416 		memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
417 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
418 	} else if (filter->type == BNX2X_VF_FILTER_VLAN) {
419 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
420 		ramrod.user_req.u.vlan.vlan = filter->vid;
421 	} else {
422 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
423 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
424 		memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
425 	}
426 	ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD :
427 					    BNX2X_VLAN_MAC_DEL;
428 
429 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
430 	if (drv_only)
431 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
432 	else
433 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
434 
435 	/* Add/Remove the filter */
436 	rc = bnx2x_config_vlan_mac(bp, &ramrod);
437 	if (rc == -EEXIST)
438 		return 0;
439 	if (rc) {
440 		BNX2X_ERR("Failed to %s %s\n",
441 			  filter->add ? "add" : "delete",
442 			  (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ?
443 				"VLAN-MAC" :
444 			  (filter->type == BNX2X_VF_FILTER_MAC) ?
445 				"MAC" : "VLAN");
446 		return rc;
447 	}
448 
449 	filter->applied = true;
450 
451 	return 0;
452 }
453 
454 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf,
455 				  struct bnx2x_vf_mac_vlan_filters *filters,
456 				  int qid, bool drv_only)
457 {
458 	int rc = 0, i;
459 
460 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
461 
462 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
463 		return -EINVAL;
464 
465 	/* Prepare ramrod params */
466 	for (i = 0; i < filters->count; i++) {
467 		rc = bnx2x_vf_mac_vlan_config(bp, vf, qid,
468 					      &filters->filters[i], drv_only);
469 		if (rc)
470 			break;
471 	}
472 
473 	/* Rollback if needed */
474 	if (i != filters->count) {
475 		BNX2X_ERR("Managed only %d/%d filters - rolling back\n",
476 			  i, filters->count);
477 		while (--i >= 0) {
478 			if (!filters->filters[i].applied)
479 				continue;
480 			filters->filters[i].add = !filters->filters[i].add;
481 			bnx2x_vf_mac_vlan_config(bp, vf, qid,
482 						 &filters->filters[i],
483 						 drv_only);
484 		}
485 	}
486 
487 	/* It's our responsibility to free the filters */
488 	kfree(filters);
489 
490 	return rc;
491 }
492 
493 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid,
494 			 struct bnx2x_vf_queue_construct_params *qctor)
495 {
496 	int rc;
497 
498 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
499 
500 	rc = bnx2x_vf_queue_create(bp, vf, qid, qctor);
501 	if (rc)
502 		goto op_err;
503 
504 	/* Schedule the configuration of any pending vlan filters */
505 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN,
506 			       BNX2X_MSG_IOV);
507 	return 0;
508 op_err:
509 	BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
510 	return rc;
511 }
512 
513 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf,
514 			       int qid)
515 {
516 	int rc;
517 
518 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
519 
520 	/* If needed, clean the filtering data base */
521 	if ((qid == LEADING_IDX) &&
522 	    bnx2x_validate_vf_sp_objs(bp, vf, false)) {
523 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
524 					     BNX2X_VF_FILTER_VLAN_MAC);
525 		if (rc)
526 			goto op_err;
527 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
528 					     BNX2X_VF_FILTER_VLAN);
529 		if (rc)
530 			goto op_err;
531 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
532 					     BNX2X_VF_FILTER_MAC);
533 		if (rc)
534 			goto op_err;
535 	}
536 
537 	/* Terminate queue */
538 	if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) {
539 		struct bnx2x_queue_state_params qstate;
540 
541 		memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
542 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
543 		qstate.q_obj->state = BNX2X_Q_STATE_STOPPED;
544 		qstate.cmd = BNX2X_Q_CMD_TERMINATE;
545 		set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
546 		rc = bnx2x_queue_state_change(bp, &qstate);
547 		if (rc)
548 			goto op_err;
549 	}
550 
551 	return 0;
552 op_err:
553 	BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
554 	return rc;
555 }
556 
557 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf,
558 		   bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only)
559 {
560 	struct bnx2x_mcast_list_elem *mc = NULL;
561 	struct bnx2x_mcast_ramrod_params mcast;
562 	int rc, i;
563 
564 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
565 
566 	/* Prepare Multicast command */
567 	memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params));
568 	mcast.mcast_obj = &vf->mcast_obj;
569 	if (drv_only)
570 		set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags);
571 	else
572 		set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags);
573 	if (mc_num) {
574 		mc = kzalloc(mc_num * sizeof(struct bnx2x_mcast_list_elem),
575 			     GFP_KERNEL);
576 		if (!mc) {
577 			BNX2X_ERR("Cannot Configure multicasts due to lack of memory\n");
578 			return -ENOMEM;
579 		}
580 	}
581 
582 	if (mc_num) {
583 		INIT_LIST_HEAD(&mcast.mcast_list);
584 		for (i = 0; i < mc_num; i++) {
585 			mc[i].mac = mcasts[i];
586 			list_add_tail(&mc[i].link,
587 				      &mcast.mcast_list);
588 		}
589 
590 		/* add new mcasts */
591 		mcast.mcast_list_len = mc_num;
592 		rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_SET);
593 		if (rc)
594 			BNX2X_ERR("Failed to set multicasts\n");
595 	} else {
596 		/* clear existing mcasts */
597 		rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL);
598 		if (rc)
599 			BNX2X_ERR("Failed to remove multicasts\n");
600 	}
601 
602 	kfree(mc);
603 
604 	return rc;
605 }
606 
607 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid,
608 				  struct bnx2x_rx_mode_ramrod_params *ramrod,
609 				  struct bnx2x_virtf *vf,
610 				  unsigned long accept_flags)
611 {
612 	struct bnx2x_vf_queue *vfq = vfq_get(vf, qid);
613 
614 	memset(ramrod, 0, sizeof(*ramrod));
615 	ramrod->cid = vfq->cid;
616 	ramrod->cl_id = vfq_cl_id(vf, vfq);
617 	ramrod->rx_mode_obj = &bp->rx_mode_obj;
618 	ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid);
619 	ramrod->rx_accept_flags = accept_flags;
620 	ramrod->tx_accept_flags = accept_flags;
621 	ramrod->pstate = &vf->filter_state;
622 	ramrod->state = BNX2X_FILTER_RX_MODE_PENDING;
623 
624 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
625 	set_bit(RAMROD_RX, &ramrod->ramrod_flags);
626 	set_bit(RAMROD_TX, &ramrod->ramrod_flags);
627 
628 	ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2);
629 	ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2);
630 }
631 
632 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf,
633 		    int qid, unsigned long accept_flags)
634 {
635 	struct bnx2x_rx_mode_ramrod_params ramrod;
636 
637 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
638 
639 	bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags);
640 	set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
641 	vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags;
642 	return bnx2x_config_rx_mode(bp, &ramrod);
643 }
644 
645 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid)
646 {
647 	int rc;
648 
649 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
650 
651 	/* Remove all classification configuration for leading queue */
652 	if (qid == LEADING_IDX) {
653 		rc = bnx2x_vf_rxmode(bp, vf, qid, 0);
654 		if (rc)
655 			goto op_err;
656 
657 		/* Remove filtering if feasible */
658 		if (bnx2x_validate_vf_sp_objs(bp, vf, true)) {
659 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
660 						     false,
661 						     BNX2X_VF_FILTER_VLAN_MAC);
662 			if (rc)
663 				goto op_err;
664 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
665 						     false,
666 						     BNX2X_VF_FILTER_VLAN);
667 			if (rc)
668 				goto op_err;
669 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
670 						     false,
671 						     BNX2X_VF_FILTER_MAC);
672 			if (rc)
673 				goto op_err;
674 			rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false);
675 			if (rc)
676 				goto op_err;
677 		}
678 	}
679 
680 	/* Destroy queue */
681 	rc = bnx2x_vf_queue_destroy(bp, vf, qid);
682 	if (rc)
683 		goto op_err;
684 	return rc;
685 op_err:
686 	BNX2X_ERR("vf[%d:%d] error: rc %d\n",
687 		  vf->abs_vfid, qid, rc);
688 	return rc;
689 }
690 
691 /* VF enable primitives
692  * when pretend is required the caller is responsible
693  * for calling pretend prior to calling these routines
694  */
695 
696 /* internal vf enable - until vf is enabled internally all transactions
697  * are blocked. This routine should always be called last with pretend.
698  */
699 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable)
700 {
701 	REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0);
702 }
703 
704 /* clears vf error in all semi blocks */
705 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid)
706 {
707 	REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid);
708 	REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid);
709 	REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid);
710 	REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid);
711 }
712 
713 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid)
714 {
715 	u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5;
716 	u32 was_err_reg = 0;
717 
718 	switch (was_err_group) {
719 	case 0:
720 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR;
721 	    break;
722 	case 1:
723 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR;
724 	    break;
725 	case 2:
726 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR;
727 	    break;
728 	case 3:
729 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR;
730 	    break;
731 	}
732 	REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f));
733 }
734 
735 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf)
736 {
737 	int i;
738 	u32 val;
739 
740 	/* Set VF masks and configuration - pretend */
741 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
742 
743 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
744 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
745 	REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
746 	REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
747 	REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
748 	REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
749 
750 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
751 	val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN);
752 	val &= ~IGU_VF_CONF_PARENT_MASK;
753 	val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT;
754 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
755 
756 	DP(BNX2X_MSG_IOV,
757 	   "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n",
758 	   vf->abs_vfid, val);
759 
760 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
761 
762 	/* iterate over all queues, clear sb consumer */
763 	for (i = 0; i < vf_sb_count(vf); i++) {
764 		u8 igu_sb_id = vf_igu_sb(vf, i);
765 
766 		/* zero prod memory */
767 		REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0);
768 
769 		/* clear sb state machine */
770 		bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id,
771 				       false /* VF */);
772 
773 		/* disable + update */
774 		bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0,
775 				    IGU_INT_DISABLE, 1);
776 	}
777 }
778 
779 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid)
780 {
781 	/* set the VF-PF association in the FW */
782 	storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp));
783 	storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1);
784 
785 	/* clear vf errors*/
786 	bnx2x_vf_semi_clear_err(bp, abs_vfid);
787 	bnx2x_vf_pglue_clear_err(bp, abs_vfid);
788 
789 	/* internal vf-enable - pretend */
790 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid));
791 	DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid);
792 	bnx2x_vf_enable_internal(bp, true);
793 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
794 }
795 
796 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf)
797 {
798 	/* Reset vf in IGU  interrupts are still disabled */
799 	bnx2x_vf_igu_reset(bp, vf);
800 
801 	/* pretend to enable the vf with the PBF */
802 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
803 	REG_WR(bp, PBF_REG_DISABLE_VF, 0);
804 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
805 }
806 
807 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid)
808 {
809 	struct pci_dev *dev;
810 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
811 
812 	if (!vf)
813 		return false;
814 
815 	dev = pci_get_bus_and_slot(vf->bus, vf->devfn);
816 	if (dev)
817 		return bnx2x_is_pcie_pending(dev);
818 	return false;
819 }
820 
821 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid)
822 {
823 	/* Verify no pending pci transactions */
824 	if (bnx2x_vf_is_pcie_pending(bp, abs_vfid))
825 		BNX2X_ERR("PCIE Transactions still pending\n");
826 
827 	return 0;
828 }
829 
830 /* must be called after the number of PF queues and the number of VFs are
831  * both known
832  */
833 static void
834 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
835 {
836 	struct vf_pf_resc_request *resc = &vf->alloc_resc;
837 
838 	/* will be set only during VF-ACQUIRE */
839 	resc->num_rxqs = 0;
840 	resc->num_txqs = 0;
841 
842 	resc->num_mac_filters = VF_MAC_CREDIT_CNT;
843 	resc->num_vlan_filters = VF_VLAN_CREDIT_CNT;
844 
845 	/* no real limitation */
846 	resc->num_mc_filters = 0;
847 
848 	/* num_sbs already set */
849 	resc->num_sbs = vf->sb_count;
850 }
851 
852 /* FLR routines: */
853 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
854 {
855 	/* reset the state variables */
856 	bnx2x_iov_static_resc(bp, vf);
857 	vf->state = VF_FREE;
858 }
859 
860 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf)
861 {
862 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
863 
864 	/* DQ usage counter */
865 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
866 	bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT,
867 					"DQ VF usage counter timed out",
868 					poll_cnt);
869 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
870 
871 	/* FW cleanup command - poll for the results */
872 	if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid),
873 				   poll_cnt))
874 		BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid);
875 
876 	/* verify TX hw is flushed */
877 	bnx2x_tx_hw_flushed(bp, poll_cnt);
878 }
879 
880 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf)
881 {
882 	int rc, i;
883 
884 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
885 
886 	/* the cleanup operations are valid if and only if the VF
887 	 * was first acquired.
888 	 */
889 	for (i = 0; i < vf_rxq_count(vf); i++) {
890 		rc = bnx2x_vf_queue_flr(bp, vf, i);
891 		if (rc)
892 			goto out;
893 	}
894 
895 	/* remove multicasts */
896 	bnx2x_vf_mcast(bp, vf, NULL, 0, true);
897 
898 	/* dispatch final cleanup and wait for HW queues to flush */
899 	bnx2x_vf_flr_clnup_hw(bp, vf);
900 
901 	/* release VF resources */
902 	bnx2x_vf_free_resc(bp, vf);
903 
904 	vf->malicious = false;
905 
906 	/* re-open the mailbox */
907 	bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
908 	return;
909 out:
910 	BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n",
911 		  vf->abs_vfid, i, rc);
912 }
913 
914 static void bnx2x_vf_flr_clnup(struct bnx2x *bp)
915 {
916 	struct bnx2x_virtf *vf;
917 	int i;
918 
919 	for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) {
920 		/* VF should be RESET & in FLR cleanup states */
921 		if (bnx2x_vf(bp, i, state) != VF_RESET ||
922 		    !bnx2x_vf(bp, i, flr_clnup_stage))
923 			continue;
924 
925 		DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n",
926 		   i, BNX2X_NR_VIRTFN(bp));
927 
928 		vf = BP_VF(bp, i);
929 
930 		/* lock the vf pf channel */
931 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
932 
933 		/* invoke the VF FLR SM */
934 		bnx2x_vf_flr(bp, vf);
935 
936 		/* mark the VF to be ACKED and continue */
937 		vf->flr_clnup_stage = false;
938 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
939 	}
940 
941 	/* Acknowledge the handled VFs.
942 	 * we are acknowledge all the vfs which an flr was requested for, even
943 	 * if amongst them there are such that we never opened, since the mcp
944 	 * will interrupt us immediately again if we only ack some of the bits,
945 	 * resulting in an endless loop. This can happen for example in KVM
946 	 * where an 'all ones' flr request is sometimes given by hyper visor
947 	 */
948 	DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
949 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
950 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
951 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i],
952 			  bp->vfdb->flrd_vfs[i]);
953 
954 	bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0);
955 
956 	/* clear the acked bits - better yet if the MCP implemented
957 	 * write to clear semantics
958 	 */
959 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
960 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0);
961 }
962 
963 void bnx2x_vf_handle_flr_event(struct bnx2x *bp)
964 {
965 	int i;
966 
967 	/* Read FLR'd VFs */
968 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
969 		bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]);
970 
971 	DP(BNX2X_MSG_MCP,
972 	   "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
973 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
974 
975 	for_each_vf(bp, i) {
976 		struct bnx2x_virtf *vf = BP_VF(bp, i);
977 		u32 reset = 0;
978 
979 		if (vf->abs_vfid < 32)
980 			reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid);
981 		else
982 			reset = bp->vfdb->flrd_vfs[1] &
983 				(1 << (vf->abs_vfid - 32));
984 
985 		if (reset) {
986 			/* set as reset and ready for cleanup */
987 			vf->state = VF_RESET;
988 			vf->flr_clnup_stage = true;
989 
990 			DP(BNX2X_MSG_IOV,
991 			   "Initiating Final cleanup for VF %d\n",
992 			   vf->abs_vfid);
993 		}
994 	}
995 
996 	/* do the FLR cleanup for all marked VFs*/
997 	bnx2x_vf_flr_clnup(bp);
998 }
999 
1000 /* IOV global initialization routines  */
1001 void bnx2x_iov_init_dq(struct bnx2x *bp)
1002 {
1003 	if (!IS_SRIOV(bp))
1004 		return;
1005 
1006 	/* Set the DQ such that the CID reflect the abs_vfid */
1007 	REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0);
1008 	REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
1009 
1010 	/* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
1011 	 * the PF L2 queues
1012 	 */
1013 	REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
1014 
1015 	/* The VF window size is the log2 of the max number of CIDs per VF */
1016 	REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
1017 
1018 	/* The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
1019 	 * the Pf doorbell size although the 2 are independent.
1020 	 */
1021 	REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3);
1022 
1023 	/* No security checks for now -
1024 	 * configure single rule (out of 16) mask = 0x1, value = 0x0,
1025 	 * CID range 0 - 0x1ffff
1026 	 */
1027 	REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1);
1028 	REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0);
1029 	REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
1030 	REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
1031 
1032 	/* set the VF doorbell threshold. This threshold represents the amount
1033 	 * of doorbells allowed in the main DORQ fifo for a specific VF.
1034 	 */
1035 	REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64);
1036 }
1037 
1038 void bnx2x_iov_init_dmae(struct bnx2x *bp)
1039 {
1040 	if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV))
1041 		REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0);
1042 }
1043 
1044 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid)
1045 {
1046 	struct pci_dev *dev = bp->pdev;
1047 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1048 
1049 	return dev->bus->number + ((dev->devfn + iov->offset +
1050 				    iov->stride * vfid) >> 8);
1051 }
1052 
1053 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid)
1054 {
1055 	struct pci_dev *dev = bp->pdev;
1056 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1057 
1058 	return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff;
1059 }
1060 
1061 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf)
1062 {
1063 	int i, n;
1064 	struct pci_dev *dev = bp->pdev;
1065 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1066 
1067 	for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) {
1068 		u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i);
1069 		u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i);
1070 
1071 		size /= iov->total;
1072 		vf->bars[n].bar = start + size * vf->abs_vfid;
1073 		vf->bars[n].size = size;
1074 	}
1075 }
1076 
1077 static int
1078 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp)
1079 {
1080 	int sb_id;
1081 	u32 val;
1082 	u8 fid, current_pf = 0;
1083 
1084 	/* IGU in normal mode - read CAM */
1085 	for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) {
1086 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4);
1087 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
1088 			continue;
1089 		fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID);
1090 		if (fid & IGU_FID_ENCODE_IS_PF)
1091 			current_pf = fid & IGU_FID_PF_NUM_MASK;
1092 		else if (current_pf == BP_FUNC(bp))
1093 			bnx2x_vf_set_igu_info(bp, sb_id,
1094 					      (fid & IGU_FID_VF_NUM_MASK));
1095 		DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n",
1096 		   ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"),
1097 		   ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) :
1098 		   (fid & IGU_FID_VF_NUM_MASK)), sb_id,
1099 		   GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR));
1100 	}
1101 	DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool);
1102 	return BP_VFDB(bp)->vf_sbs_pool;
1103 }
1104 
1105 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp)
1106 {
1107 	if (bp->vfdb) {
1108 		kfree(bp->vfdb->vfqs);
1109 		kfree(bp->vfdb->vfs);
1110 		kfree(bp->vfdb);
1111 	}
1112 	bp->vfdb = NULL;
1113 }
1114 
1115 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1116 {
1117 	int pos;
1118 	struct pci_dev *dev = bp->pdev;
1119 
1120 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
1121 	if (!pos) {
1122 		BNX2X_ERR("failed to find SRIOV capability in device\n");
1123 		return -ENODEV;
1124 	}
1125 
1126 	iov->pos = pos;
1127 	DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos);
1128 	pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
1129 	pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total);
1130 	pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial);
1131 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
1132 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
1133 	pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
1134 	pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap);
1135 	pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
1136 
1137 	return 0;
1138 }
1139 
1140 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1141 {
1142 	u32 val;
1143 
1144 	/* read the SRIOV capability structure
1145 	 * The fields can be read via configuration read or
1146 	 * directly from the device (starting at offset PCICFG_OFFSET)
1147 	 */
1148 	if (bnx2x_sriov_pci_cfg_info(bp, iov))
1149 		return -ENODEV;
1150 
1151 	/* get the number of SRIOV bars */
1152 	iov->nres = 0;
1153 
1154 	/* read the first_vfid */
1155 	val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF);
1156 	iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK)
1157 			       * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp));
1158 
1159 	DP(BNX2X_MSG_IOV,
1160 	   "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
1161 	   BP_FUNC(bp),
1162 	   iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total,
1163 	   iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
1164 
1165 	return 0;
1166 }
1167 
1168 /* must be called after PF bars are mapped */
1169 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param,
1170 		       int num_vfs_param)
1171 {
1172 	int err, i;
1173 	struct bnx2x_sriov *iov;
1174 	struct pci_dev *dev = bp->pdev;
1175 
1176 	bp->vfdb = NULL;
1177 
1178 	/* verify is pf */
1179 	if (IS_VF(bp))
1180 		return 0;
1181 
1182 	/* verify sriov capability is present in configuration space */
1183 	if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV))
1184 		return 0;
1185 
1186 	/* verify chip revision */
1187 	if (CHIP_IS_E1x(bp))
1188 		return 0;
1189 
1190 	/* check if SRIOV support is turned off */
1191 	if (!num_vfs_param)
1192 		return 0;
1193 
1194 	/* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
1195 	if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) {
1196 		BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
1197 			  BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID);
1198 		return 0;
1199 	}
1200 
1201 	/* SRIOV can be enabled only with MSIX */
1202 	if (int_mode_param == BNX2X_INT_MODE_MSI ||
1203 	    int_mode_param == BNX2X_INT_MODE_INTX) {
1204 		BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
1205 		return 0;
1206 	}
1207 
1208 	err = -EIO;
1209 	/* verify ari is enabled */
1210 	if (!pci_ari_enabled(bp->pdev->bus)) {
1211 		BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
1212 		return 0;
1213 	}
1214 
1215 	/* verify igu is in normal mode */
1216 	if (CHIP_INT_MODE_IS_BC(bp)) {
1217 		BNX2X_ERR("IGU not normal mode,  SRIOV can not be enabled\n");
1218 		return 0;
1219 	}
1220 
1221 	/* allocate the vfs database */
1222 	bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL);
1223 	if (!bp->vfdb) {
1224 		BNX2X_ERR("failed to allocate vf database\n");
1225 		err = -ENOMEM;
1226 		goto failed;
1227 	}
1228 
1229 	/* get the sriov info - Linux already collected all the pertinent
1230 	 * information, however the sriov structure is for the private use
1231 	 * of the pci module. Also we want this information regardless
1232 	 * of the hyper-visor.
1233 	 */
1234 	iov = &(bp->vfdb->sriov);
1235 	err = bnx2x_sriov_info(bp, iov);
1236 	if (err)
1237 		goto failed;
1238 
1239 	/* SR-IOV capability was enabled but there are no VFs*/
1240 	if (iov->total == 0)
1241 		goto failed;
1242 
1243 	iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param);
1244 
1245 	DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n",
1246 	   num_vfs_param, iov->nr_virtfn);
1247 
1248 	/* allocate the vf array */
1249 	bp->vfdb->vfs = kzalloc(sizeof(struct bnx2x_virtf) *
1250 				BNX2X_NR_VIRTFN(bp), GFP_KERNEL);
1251 	if (!bp->vfdb->vfs) {
1252 		BNX2X_ERR("failed to allocate vf array\n");
1253 		err = -ENOMEM;
1254 		goto failed;
1255 	}
1256 
1257 	/* Initial VF init - index and abs_vfid - nr_virtfn must be set */
1258 	for_each_vf(bp, i) {
1259 		bnx2x_vf(bp, i, index) = i;
1260 		bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i;
1261 		bnx2x_vf(bp, i, state) = VF_FREE;
1262 		mutex_init(&bnx2x_vf(bp, i, op_mutex));
1263 		bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE;
1264 	}
1265 
1266 	/* re-read the IGU CAM for VFs - index and abs_vfid must be set */
1267 	if (!bnx2x_get_vf_igu_cam_info(bp)) {
1268 		BNX2X_ERR("No entries in IGU CAM for vfs\n");
1269 		err = -EINVAL;
1270 		goto failed;
1271 	}
1272 
1273 	/* allocate the queue arrays for all VFs */
1274 	bp->vfdb->vfqs = kzalloc(
1275 		BNX2X_MAX_NUM_VF_QUEUES * sizeof(struct bnx2x_vf_queue),
1276 		GFP_KERNEL);
1277 
1278 	if (!bp->vfdb->vfqs) {
1279 		BNX2X_ERR("failed to allocate vf queue array\n");
1280 		err = -ENOMEM;
1281 		goto failed;
1282 	}
1283 
1284 	/* Prepare the VFs event synchronization mechanism */
1285 	mutex_init(&bp->vfdb->event_mutex);
1286 
1287 	mutex_init(&bp->vfdb->bulletin_mutex);
1288 
1289 	if (SHMEM2_HAS(bp, sriov_switch_mode))
1290 		SHMEM2_WR(bp, sriov_switch_mode, SRIOV_SWITCH_MODE_VEB);
1291 
1292 	return 0;
1293 failed:
1294 	DP(BNX2X_MSG_IOV, "Failed err=%d\n", err);
1295 	__bnx2x_iov_free_vfdb(bp);
1296 	return err;
1297 }
1298 
1299 void bnx2x_iov_remove_one(struct bnx2x *bp)
1300 {
1301 	int vf_idx;
1302 
1303 	/* if SRIOV is not enabled there's nothing to do */
1304 	if (!IS_SRIOV(bp))
1305 		return;
1306 
1307 	bnx2x_disable_sriov(bp);
1308 
1309 	/* disable access to all VFs */
1310 	for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) {
1311 		bnx2x_pretend_func(bp,
1312 				   HW_VF_HANDLE(bp,
1313 						bp->vfdb->sriov.first_vf_in_pf +
1314 						vf_idx));
1315 		DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n",
1316 		   bp->vfdb->sriov.first_vf_in_pf + vf_idx);
1317 		bnx2x_vf_enable_internal(bp, 0);
1318 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1319 	}
1320 
1321 	/* free vf database */
1322 	__bnx2x_iov_free_vfdb(bp);
1323 }
1324 
1325 void bnx2x_iov_free_mem(struct bnx2x *bp)
1326 {
1327 	int i;
1328 
1329 	if (!IS_SRIOV(bp))
1330 		return;
1331 
1332 	/* free vfs hw contexts */
1333 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1334 		struct hw_dma *cxt = &bp->vfdb->context[i];
1335 		BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size);
1336 	}
1337 
1338 	BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr,
1339 		       BP_VFDB(bp)->sp_dma.mapping,
1340 		       BP_VFDB(bp)->sp_dma.size);
1341 
1342 	BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr,
1343 		       BP_VF_MBX_DMA(bp)->mapping,
1344 		       BP_VF_MBX_DMA(bp)->size);
1345 
1346 	BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr,
1347 		       BP_VF_BULLETIN_DMA(bp)->mapping,
1348 		       BP_VF_BULLETIN_DMA(bp)->size);
1349 }
1350 
1351 int bnx2x_iov_alloc_mem(struct bnx2x *bp)
1352 {
1353 	size_t tot_size;
1354 	int i, rc = 0;
1355 
1356 	if (!IS_SRIOV(bp))
1357 		return rc;
1358 
1359 	/* allocate vfs hw contexts */
1360 	tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) *
1361 		BNX2X_CIDS_PER_VF * sizeof(union cdu_context);
1362 
1363 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1364 		struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i);
1365 		cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ);
1366 
1367 		if (cxt->size) {
1368 			cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size);
1369 			if (!cxt->addr)
1370 				goto alloc_mem_err;
1371 		} else {
1372 			cxt->addr = NULL;
1373 			cxt->mapping = 0;
1374 		}
1375 		tot_size -= cxt->size;
1376 	}
1377 
1378 	/* allocate vfs ramrods dma memory - client_init and set_mac */
1379 	tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp);
1380 	BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping,
1381 						   tot_size);
1382 	if (!BP_VFDB(bp)->sp_dma.addr)
1383 		goto alloc_mem_err;
1384 	BP_VFDB(bp)->sp_dma.size = tot_size;
1385 
1386 	/* allocate mailboxes */
1387 	tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE;
1388 	BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping,
1389 						  tot_size);
1390 	if (!BP_VF_MBX_DMA(bp)->addr)
1391 		goto alloc_mem_err;
1392 
1393 	BP_VF_MBX_DMA(bp)->size = tot_size;
1394 
1395 	/* allocate local bulletin boards */
1396 	tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE;
1397 	BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping,
1398 						       tot_size);
1399 	if (!BP_VF_BULLETIN_DMA(bp)->addr)
1400 		goto alloc_mem_err;
1401 
1402 	BP_VF_BULLETIN_DMA(bp)->size = tot_size;
1403 
1404 	return 0;
1405 
1406 alloc_mem_err:
1407 	return -ENOMEM;
1408 }
1409 
1410 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf,
1411 			   struct bnx2x_vf_queue *q)
1412 {
1413 	u8 cl_id = vfq_cl_id(vf, q);
1414 	u8 func_id = FW_VF_HANDLE(vf->abs_vfid);
1415 	unsigned long q_type = 0;
1416 
1417 	set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1418 	set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1419 
1420 	/* Queue State object */
1421 	bnx2x_init_queue_obj(bp, &q->sp_obj,
1422 			     cl_id, &q->cid, 1, func_id,
1423 			     bnx2x_vf_sp(bp, vf, q_data),
1424 			     bnx2x_vf_sp_map(bp, vf, q_data),
1425 			     q_type);
1426 
1427 	/* sp indication is set only when vlan/mac/etc. are initialized */
1428 	q->sp_initialized = false;
1429 
1430 	DP(BNX2X_MSG_IOV,
1431 	   "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n",
1432 	   vf->abs_vfid, q->sp_obj.func_id, q->cid);
1433 }
1434 
1435 static int bnx2x_max_speed_cap(struct bnx2x *bp)
1436 {
1437 	u32 supported = bp->port.supported[bnx2x_get_link_cfg_idx(bp)];
1438 
1439 	if (supported &
1440 	    (SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full))
1441 		return 20000;
1442 
1443 	return 10000; /* assume lowest supported speed is 10G */
1444 }
1445 
1446 int bnx2x_iov_link_update_vf(struct bnx2x *bp, int idx)
1447 {
1448 	struct bnx2x_link_report_data *state = &bp->last_reported_link;
1449 	struct pf_vf_bulletin_content *bulletin;
1450 	struct bnx2x_virtf *vf;
1451 	bool update = true;
1452 	int rc = 0;
1453 
1454 	/* sanity and init */
1455 	rc = bnx2x_vf_op_prep(bp, idx, &vf, &bulletin, false);
1456 	if (rc)
1457 		return rc;
1458 
1459 	mutex_lock(&bp->vfdb->bulletin_mutex);
1460 
1461 	if (vf->link_cfg == IFLA_VF_LINK_STATE_AUTO) {
1462 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1463 
1464 		bulletin->link_speed = state->line_speed;
1465 		bulletin->link_flags = 0;
1466 		if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1467 			     &state->link_report_flags))
1468 			bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1469 		if (test_bit(BNX2X_LINK_REPORT_FD,
1470 			     &state->link_report_flags))
1471 			bulletin->link_flags |= VFPF_LINK_REPORT_FULL_DUPLEX;
1472 		if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1473 			     &state->link_report_flags))
1474 			bulletin->link_flags |= VFPF_LINK_REPORT_RX_FC_ON;
1475 		if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1476 			     &state->link_report_flags))
1477 			bulletin->link_flags |= VFPF_LINK_REPORT_TX_FC_ON;
1478 	} else if (vf->link_cfg == IFLA_VF_LINK_STATE_DISABLE &&
1479 		   !(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1480 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1481 		bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1482 	} else if (vf->link_cfg == IFLA_VF_LINK_STATE_ENABLE &&
1483 		   (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1484 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1485 		bulletin->link_speed = bnx2x_max_speed_cap(bp);
1486 		bulletin->link_flags &= ~VFPF_LINK_REPORT_LINK_DOWN;
1487 	} else {
1488 		update = false;
1489 	}
1490 
1491 	if (update) {
1492 		DP(NETIF_MSG_LINK | BNX2X_MSG_IOV,
1493 		   "vf %d mode %u speed %d flags %x\n", idx,
1494 		   vf->link_cfg, bulletin->link_speed, bulletin->link_flags);
1495 
1496 		/* Post update on VF's bulletin board */
1497 		rc = bnx2x_post_vf_bulletin(bp, idx);
1498 		if (rc) {
1499 			BNX2X_ERR("failed to update VF[%d] bulletin\n", idx);
1500 			goto out;
1501 		}
1502 	}
1503 
1504 out:
1505 	mutex_unlock(&bp->vfdb->bulletin_mutex);
1506 	return rc;
1507 }
1508 
1509 int bnx2x_set_vf_link_state(struct net_device *dev, int idx, int link_state)
1510 {
1511 	struct bnx2x *bp = netdev_priv(dev);
1512 	struct bnx2x_virtf *vf = BP_VF(bp, idx);
1513 
1514 	if (!vf)
1515 		return -EINVAL;
1516 
1517 	if (vf->link_cfg == link_state)
1518 		return 0; /* nothing todo */
1519 
1520 	vf->link_cfg = link_state;
1521 
1522 	return bnx2x_iov_link_update_vf(bp, idx);
1523 }
1524 
1525 void bnx2x_iov_link_update(struct bnx2x *bp)
1526 {
1527 	int vfid;
1528 
1529 	if (!IS_SRIOV(bp))
1530 		return;
1531 
1532 	for_each_vf(bp, vfid)
1533 		bnx2x_iov_link_update_vf(bp, vfid);
1534 }
1535 
1536 /* called by bnx2x_nic_load */
1537 int bnx2x_iov_nic_init(struct bnx2x *bp)
1538 {
1539 	int vfid;
1540 
1541 	if (!IS_SRIOV(bp)) {
1542 		DP(BNX2X_MSG_IOV, "vfdb was not allocated\n");
1543 		return 0;
1544 	}
1545 
1546 	DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn);
1547 
1548 	/* let FLR complete ... */
1549 	msleep(100);
1550 
1551 	/* initialize vf database */
1552 	for_each_vf(bp, vfid) {
1553 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1554 
1555 		int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) *
1556 			BNX2X_CIDS_PER_VF;
1557 
1558 		union cdu_context *base_cxt = (union cdu_context *)
1559 			BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1560 			(base_vf_cid & (ILT_PAGE_CIDS-1));
1561 
1562 		DP(BNX2X_MSG_IOV,
1563 		   "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
1564 		   vf->abs_vfid, vf_sb_count(vf), base_vf_cid,
1565 		   BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt);
1566 
1567 		/* init statically provisioned resources */
1568 		bnx2x_iov_static_resc(bp, vf);
1569 
1570 		/* queues are initialized during VF-ACQUIRE */
1571 		vf->filter_state = 0;
1572 		vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id);
1573 
1574 		bnx2x_init_credit_pool(&vf->vf_vlans_pool, 0,
1575 				       vf_vlan_rules_cnt(vf));
1576 		bnx2x_init_credit_pool(&vf->vf_macs_pool, 0,
1577 				       vf_mac_rules_cnt(vf));
1578 
1579 		/*  init mcast object - This object will be re-initialized
1580 		 *  during VF-ACQUIRE with the proper cl_id and cid.
1581 		 *  It needs to be initialized here so that it can be safely
1582 		 *  handled by a subsequent FLR flow.
1583 		 */
1584 		bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF,
1585 				     0xFF, 0xFF, 0xFF,
1586 				     bnx2x_vf_sp(bp, vf, mcast_rdata),
1587 				     bnx2x_vf_sp_map(bp, vf, mcast_rdata),
1588 				     BNX2X_FILTER_MCAST_PENDING,
1589 				     &vf->filter_state,
1590 				     BNX2X_OBJ_TYPE_RX_TX);
1591 
1592 		/* set the mailbox message addresses */
1593 		BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *)
1594 			(((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid *
1595 			MBX_MSG_ALIGNED_SIZE);
1596 
1597 		BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping +
1598 			vfid * MBX_MSG_ALIGNED_SIZE;
1599 
1600 		/* Enable vf mailbox */
1601 		bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
1602 	}
1603 
1604 	/* Final VF init */
1605 	for_each_vf(bp, vfid) {
1606 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1607 
1608 		/* fill in the BDF and bars */
1609 		vf->bus = bnx2x_vf_bus(bp, vfid);
1610 		vf->devfn = bnx2x_vf_devfn(bp, vfid);
1611 		bnx2x_vf_set_bars(bp, vf);
1612 
1613 		DP(BNX2X_MSG_IOV,
1614 		   "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
1615 		   vf->abs_vfid, vf->bus, vf->devfn,
1616 		   (unsigned)vf->bars[0].bar, vf->bars[0].size,
1617 		   (unsigned)vf->bars[1].bar, vf->bars[1].size,
1618 		   (unsigned)vf->bars[2].bar, vf->bars[2].size);
1619 	}
1620 
1621 	return 0;
1622 }
1623 
1624 /* called by bnx2x_chip_cleanup */
1625 int bnx2x_iov_chip_cleanup(struct bnx2x *bp)
1626 {
1627 	int i;
1628 
1629 	if (!IS_SRIOV(bp))
1630 		return 0;
1631 
1632 	/* release all the VFs */
1633 	for_each_vf(bp, i)
1634 		bnx2x_vf_release(bp, BP_VF(bp, i));
1635 
1636 	return 0;
1637 }
1638 
1639 /* called by bnx2x_init_hw_func, returns the next ilt line */
1640 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line)
1641 {
1642 	int i;
1643 	struct bnx2x_ilt *ilt = BP_ILT(bp);
1644 
1645 	if (!IS_SRIOV(bp))
1646 		return line;
1647 
1648 	/* set vfs ilt lines */
1649 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1650 		struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i);
1651 
1652 		ilt->lines[line+i].page = hw_cxt->addr;
1653 		ilt->lines[line+i].page_mapping = hw_cxt->mapping;
1654 		ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
1655 	}
1656 	return line + i;
1657 }
1658 
1659 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid)
1660 {
1661 	return ((cid >= BNX2X_FIRST_VF_CID) &&
1662 		((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS));
1663 }
1664 
1665 static
1666 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp,
1667 					struct bnx2x_vf_queue *vfq,
1668 					union event_ring_elem *elem)
1669 {
1670 	unsigned long ramrod_flags = 0;
1671 	int rc = 0;
1672 	u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
1673 
1674 	/* Always push next commands out, don't wait here */
1675 	set_bit(RAMROD_CONT, &ramrod_flags);
1676 
1677 	switch (echo >> BNX2X_SWCID_SHIFT) {
1678 	case BNX2X_FILTER_MAC_PENDING:
1679 		rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem,
1680 					   &ramrod_flags);
1681 		break;
1682 	case BNX2X_FILTER_VLAN_PENDING:
1683 		rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem,
1684 					    &ramrod_flags);
1685 		break;
1686 	default:
1687 		BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
1688 		return;
1689 	}
1690 	if (rc < 0)
1691 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
1692 	else if (rc > 0)
1693 		DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n");
1694 }
1695 
1696 static
1697 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp,
1698 			       struct bnx2x_virtf *vf)
1699 {
1700 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
1701 	int rc;
1702 
1703 	rparam.mcast_obj = &vf->mcast_obj;
1704 	vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw);
1705 
1706 	/* If there are pending mcast commands - send them */
1707 	if (vf->mcast_obj.check_pending(&vf->mcast_obj)) {
1708 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
1709 		if (rc < 0)
1710 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
1711 				  rc);
1712 	}
1713 }
1714 
1715 static
1716 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp,
1717 				 struct bnx2x_virtf *vf)
1718 {
1719 	smp_mb__before_atomic();
1720 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
1721 	smp_mb__after_atomic();
1722 }
1723 
1724 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp,
1725 					   struct bnx2x_virtf *vf)
1726 {
1727 	vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw);
1728 }
1729 
1730 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem)
1731 {
1732 	struct bnx2x_virtf *vf;
1733 	int qidx = 0, abs_vfid;
1734 	u8 opcode;
1735 	u16 cid = 0xffff;
1736 
1737 	if (!IS_SRIOV(bp))
1738 		return 1;
1739 
1740 	/* first get the cid - the only events we handle here are cfc-delete
1741 	 * and set-mac completion
1742 	 */
1743 	opcode = elem->message.opcode;
1744 
1745 	switch (opcode) {
1746 	case EVENT_RING_OPCODE_CFC_DEL:
1747 		cid = SW_CID(elem->message.data.cfc_del_event.cid);
1748 		DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid);
1749 		break;
1750 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1751 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1752 	case EVENT_RING_OPCODE_FILTERS_RULES:
1753 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1754 		cid = SW_CID(elem->message.data.eth_event.echo);
1755 		DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid);
1756 		break;
1757 	case EVENT_RING_OPCODE_VF_FLR:
1758 		abs_vfid = elem->message.data.vf_flr_event.vf_id;
1759 		DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n",
1760 		   abs_vfid);
1761 		goto get_vf;
1762 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1763 		abs_vfid = elem->message.data.malicious_vf_event.vf_id;
1764 		BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
1765 			  abs_vfid,
1766 			  elem->message.data.malicious_vf_event.err_id);
1767 		goto get_vf;
1768 	default:
1769 		return 1;
1770 	}
1771 
1772 	/* check if the cid is the VF range */
1773 	if (!bnx2x_iov_is_vf_cid(bp, cid)) {
1774 		DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid);
1775 		return 1;
1776 	}
1777 
1778 	/* extract vf and rxq index from vf_cid - relies on the following:
1779 	 * 1. vfid on cid reflects the true abs_vfid
1780 	 * 2. The max number of VFs (per path) is 64
1781 	 */
1782 	qidx = cid & ((1 << BNX2X_VF_CID_WND)-1);
1783 	abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1784 get_vf:
1785 	vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
1786 
1787 	if (!vf) {
1788 		BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
1789 			  cid, abs_vfid);
1790 		return 0;
1791 	}
1792 
1793 	switch (opcode) {
1794 	case EVENT_RING_OPCODE_CFC_DEL:
1795 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n",
1796 		   vf->abs_vfid, qidx);
1797 		vfq_get(vf, qidx)->sp_obj.complete_cmd(bp,
1798 						       &vfq_get(vf,
1799 								qidx)->sp_obj,
1800 						       BNX2X_Q_CMD_CFC_DEL);
1801 		break;
1802 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1803 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n",
1804 		   vf->abs_vfid, qidx);
1805 		bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem);
1806 		break;
1807 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1808 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n",
1809 		   vf->abs_vfid, qidx);
1810 		bnx2x_vf_handle_mcast_eqe(bp, vf);
1811 		break;
1812 	case EVENT_RING_OPCODE_FILTERS_RULES:
1813 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n",
1814 		   vf->abs_vfid, qidx);
1815 		bnx2x_vf_handle_filters_eqe(bp, vf);
1816 		break;
1817 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1818 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n",
1819 		   vf->abs_vfid, qidx);
1820 		bnx2x_vf_handle_rss_update_eqe(bp, vf);
1821 	case EVENT_RING_OPCODE_VF_FLR:
1822 		/* Do nothing for now */
1823 		return 0;
1824 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1825 		vf->malicious = true;
1826 		return 0;
1827 	}
1828 
1829 	return 0;
1830 }
1831 
1832 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid)
1833 {
1834 	/* extract the vf from vf_cid - relies on the following:
1835 	 * 1. vfid on cid reflects the true abs_vfid
1836 	 * 2. The max number of VFs (per path) is 64
1837 	 */
1838 	int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1839 	return bnx2x_vf_by_abs_fid(bp, abs_vfid);
1840 }
1841 
1842 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid,
1843 				struct bnx2x_queue_sp_obj **q_obj)
1844 {
1845 	struct bnx2x_virtf *vf;
1846 
1847 	if (!IS_SRIOV(bp))
1848 		return;
1849 
1850 	vf = bnx2x_vf_by_cid(bp, vf_cid);
1851 
1852 	if (vf) {
1853 		/* extract queue index from vf_cid - relies on the following:
1854 		 * 1. vfid on cid reflects the true abs_vfid
1855 		 * 2. The max number of VFs (per path) is 64
1856 		 */
1857 		int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1);
1858 		*q_obj = &bnx2x_vfq(vf, q_index, sp_obj);
1859 	} else {
1860 		BNX2X_ERR("No vf matching cid %d\n", vf_cid);
1861 	}
1862 }
1863 
1864 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp)
1865 {
1866 	int i;
1867 	int first_queue_query_index, num_queues_req;
1868 	dma_addr_t cur_data_offset;
1869 	struct stats_query_entry *cur_query_entry;
1870 	u8 stats_count = 0;
1871 	bool is_fcoe = false;
1872 
1873 	if (!IS_SRIOV(bp))
1874 		return;
1875 
1876 	if (!NO_FCOE(bp))
1877 		is_fcoe = true;
1878 
1879 	/* fcoe adds one global request and one queue request */
1880 	num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe;
1881 	first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX -
1882 		(is_fcoe ? 0 : 1);
1883 
1884 	DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1885 	       "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
1886 	       BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index,
1887 	       first_queue_query_index + num_queues_req);
1888 
1889 	cur_data_offset = bp->fw_stats_data_mapping +
1890 		offsetof(struct bnx2x_fw_stats_data, queue_stats) +
1891 		num_queues_req * sizeof(struct per_queue_stats);
1892 
1893 	cur_query_entry = &bp->fw_stats_req->
1894 		query[first_queue_query_index + num_queues_req];
1895 
1896 	for_each_vf(bp, i) {
1897 		int j;
1898 		struct bnx2x_virtf *vf = BP_VF(bp, i);
1899 
1900 		if (vf->state != VF_ENABLED) {
1901 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1902 			       "vf %d not enabled so no stats for it\n",
1903 			       vf->abs_vfid);
1904 			continue;
1905 		}
1906 
1907 		if (vf->malicious) {
1908 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1909 			       "vf %d malicious so no stats for it\n",
1910 			       vf->abs_vfid);
1911 			continue;
1912 		}
1913 
1914 		DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1915 		       "add addresses for vf %d\n", vf->abs_vfid);
1916 		for_each_vfq(vf, j) {
1917 			struct bnx2x_vf_queue *rxq = vfq_get(vf, j);
1918 
1919 			dma_addr_t q_stats_addr =
1920 				vf->fw_stat_map + j * vf->stats_stride;
1921 
1922 			/* collect stats fro active queues only */
1923 			if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) ==
1924 			    BNX2X_Q_LOGICAL_STATE_STOPPED)
1925 				continue;
1926 
1927 			/* create stats query entry for this queue */
1928 			cur_query_entry->kind = STATS_TYPE_QUEUE;
1929 			cur_query_entry->index = vfq_stat_id(vf, rxq);
1930 			cur_query_entry->funcID =
1931 				cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid));
1932 			cur_query_entry->address.hi =
1933 				cpu_to_le32(U64_HI(q_stats_addr));
1934 			cur_query_entry->address.lo =
1935 				cpu_to_le32(U64_LO(q_stats_addr));
1936 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1937 			       "added address %x %x for vf %d queue %d client %d\n",
1938 			       cur_query_entry->address.hi,
1939 			       cur_query_entry->address.lo,
1940 			       cur_query_entry->funcID,
1941 			       j, cur_query_entry->index);
1942 			cur_query_entry++;
1943 			cur_data_offset += sizeof(struct per_queue_stats);
1944 			stats_count++;
1945 
1946 			/* all stats are coalesced to the leading queue */
1947 			if (vf->cfg_flags & VF_CFG_STATS_COALESCE)
1948 				break;
1949 		}
1950 	}
1951 	bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count;
1952 }
1953 
1954 /* VF API helpers */
1955 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid,
1956 				u8 enable)
1957 {
1958 	u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4;
1959 	u32 val = enable ? (abs_vfid | (1 << 6)) : 0;
1960 
1961 	REG_WR(bp, reg, val);
1962 }
1963 
1964 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf)
1965 {
1966 	int i;
1967 
1968 	for_each_vfq(vf, i)
1969 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
1970 				    vfq_qzone_id(vf, vfq_get(vf, i)), false);
1971 }
1972 
1973 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf)
1974 {
1975 	u32 val;
1976 
1977 	/* clear the VF configuration - pretend */
1978 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
1979 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
1980 	val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN |
1981 		 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK);
1982 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
1983 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1984 }
1985 
1986 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf)
1987 {
1988 	return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF),
1989 		     BNX2X_VF_MAX_QUEUES);
1990 }
1991 
1992 static
1993 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf,
1994 			    struct vf_pf_resc_request *req_resc)
1995 {
1996 	u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1997 	u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1998 
1999 	return ((req_resc->num_rxqs <= rxq_cnt) &&
2000 		(req_resc->num_txqs <= txq_cnt) &&
2001 		(req_resc->num_sbs <= vf_sb_count(vf))   &&
2002 		(req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) &&
2003 		(req_resc->num_vlan_filters <= vf_vlan_rules_cnt(vf)));
2004 }
2005 
2006 /* CORE VF API */
2007 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf,
2008 		     struct vf_pf_resc_request *resc)
2009 {
2010 	int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) *
2011 		BNX2X_CIDS_PER_VF;
2012 
2013 	union cdu_context *base_cxt = (union cdu_context *)
2014 		BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
2015 		(base_vf_cid & (ILT_PAGE_CIDS-1));
2016 	int i;
2017 
2018 	/* if state is 'acquired' the VF was not released or FLR'd, in
2019 	 * this case the returned resources match the acquired already
2020 	 * acquired resources. Verify that the requested numbers do
2021 	 * not exceed the already acquired numbers.
2022 	 */
2023 	if (vf->state == VF_ACQUIRED) {
2024 		DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
2025 		   vf->abs_vfid);
2026 
2027 		if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2028 			BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
2029 				  vf->abs_vfid);
2030 			return -EINVAL;
2031 		}
2032 		return 0;
2033 	}
2034 
2035 	/* Otherwise vf state must be 'free' or 'reset' */
2036 	if (vf->state != VF_FREE && vf->state != VF_RESET) {
2037 		BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
2038 			  vf->abs_vfid, vf->state);
2039 		return -EINVAL;
2040 	}
2041 
2042 	/* static allocation:
2043 	 * the global maximum number are fixed per VF. Fail the request if
2044 	 * requested number exceed these globals
2045 	 */
2046 	if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2047 		DP(BNX2X_MSG_IOV,
2048 		   "cannot fulfill vf resource request. Placing maximal available values in response\n");
2049 		/* set the max resource in the vf */
2050 		return -ENOMEM;
2051 	}
2052 
2053 	/* Set resources counters - 0 request means max available */
2054 	vf_sb_count(vf) = resc->num_sbs;
2055 	vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2056 	vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2057 
2058 	DP(BNX2X_MSG_IOV,
2059 	   "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
2060 	   vf_sb_count(vf), vf_rxq_count(vf),
2061 	   vf_txq_count(vf), vf_mac_rules_cnt(vf),
2062 	   vf_vlan_rules_cnt(vf));
2063 
2064 	/* Initialize the queues */
2065 	if (!vf->vfqs) {
2066 		DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n");
2067 		return -EINVAL;
2068 	}
2069 
2070 	for_each_vfq(vf, i) {
2071 		struct bnx2x_vf_queue *q = vfq_get(vf, i);
2072 
2073 		if (!q) {
2074 			BNX2X_ERR("q number %d was not allocated\n", i);
2075 			return -EINVAL;
2076 		}
2077 
2078 		q->index = i;
2079 		q->cxt = &((base_cxt + i)->eth);
2080 		q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i;
2081 
2082 		DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
2083 		   vf->abs_vfid, i, q->index, q->cid, q->cxt);
2084 
2085 		/* init SP objects */
2086 		bnx2x_vfq_init(bp, vf, q);
2087 	}
2088 	vf->state = VF_ACQUIRED;
2089 	return 0;
2090 }
2091 
2092 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map)
2093 {
2094 	struct bnx2x_func_init_params func_init = {0};
2095 	int i;
2096 
2097 	/* the sb resources are initialized at this point, do the
2098 	 * FW/HW initializations
2099 	 */
2100 	for_each_vf_sb(vf, i)
2101 		bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true,
2102 			      vf_igu_sb(vf, i), vf_igu_sb(vf, i));
2103 
2104 	/* Sanity checks */
2105 	if (vf->state != VF_ACQUIRED) {
2106 		DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n",
2107 		   vf->abs_vfid, vf->state);
2108 		return -EINVAL;
2109 	}
2110 
2111 	/* let FLR complete ... */
2112 	msleep(100);
2113 
2114 	/* FLR cleanup epilogue */
2115 	if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid))
2116 		return -EBUSY;
2117 
2118 	/* reset IGU VF statistics: MSIX */
2119 	REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0);
2120 
2121 	/* function setup */
2122 	func_init.pf_id = BP_FUNC(bp);
2123 	func_init.func_id = FW_VF_HANDLE(vf->abs_vfid);
2124 	bnx2x_func_init(bp, &func_init);
2125 
2126 	/* Enable the vf */
2127 	bnx2x_vf_enable_access(bp, vf->abs_vfid);
2128 	bnx2x_vf_enable_traffic(bp, vf);
2129 
2130 	/* queue protection table */
2131 	for_each_vfq(vf, i)
2132 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
2133 				    vfq_qzone_id(vf, vfq_get(vf, i)), true);
2134 
2135 	vf->state = VF_ENABLED;
2136 
2137 	/* update vf bulletin board */
2138 	bnx2x_post_vf_bulletin(bp, vf->index);
2139 
2140 	return 0;
2141 }
2142 
2143 struct set_vf_state_cookie {
2144 	struct bnx2x_virtf *vf;
2145 	u8 state;
2146 };
2147 
2148 static void bnx2x_set_vf_state(void *cookie)
2149 {
2150 	struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie;
2151 
2152 	p->vf->state = p->state;
2153 }
2154 
2155 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf)
2156 {
2157 	int rc = 0, i;
2158 
2159 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2160 
2161 	/* Close all queues */
2162 	for (i = 0; i < vf_rxq_count(vf); i++) {
2163 		rc = bnx2x_vf_queue_teardown(bp, vf, i);
2164 		if (rc)
2165 			goto op_err;
2166 	}
2167 
2168 	/* disable the interrupts */
2169 	DP(BNX2X_MSG_IOV, "disabling igu\n");
2170 	bnx2x_vf_igu_disable(bp, vf);
2171 
2172 	/* disable the VF */
2173 	DP(BNX2X_MSG_IOV, "clearing qtbl\n");
2174 	bnx2x_vf_clr_qtbl(bp, vf);
2175 
2176 	/* need to make sure there are no outstanding stats ramrods which may
2177 	 * cause the device to access the VF's stats buffer which it will free
2178 	 * as soon as we return from the close flow.
2179 	 */
2180 	{
2181 		struct set_vf_state_cookie cookie;
2182 
2183 		cookie.vf = vf;
2184 		cookie.state = VF_ACQUIRED;
2185 		rc = bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie);
2186 		if (rc)
2187 			goto op_err;
2188 	}
2189 
2190 	DP(BNX2X_MSG_IOV, "set state to acquired\n");
2191 
2192 	return 0;
2193 op_err:
2194 	BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc);
2195 	return rc;
2196 }
2197 
2198 /* VF release can be called either: 1. The VF was acquired but
2199  * not enabled 2. the vf was enabled or in the process of being
2200  * enabled
2201  */
2202 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf)
2203 {
2204 	int rc;
2205 
2206 	DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid,
2207 	   vf->state == VF_FREE ? "Free" :
2208 	   vf->state == VF_ACQUIRED ? "Acquired" :
2209 	   vf->state == VF_ENABLED ? "Enabled" :
2210 	   vf->state == VF_RESET ? "Reset" :
2211 	   "Unknown");
2212 
2213 	switch (vf->state) {
2214 	case VF_ENABLED:
2215 		rc = bnx2x_vf_close(bp, vf);
2216 		if (rc)
2217 			goto op_err;
2218 		/* Fallthrough to release resources */
2219 	case VF_ACQUIRED:
2220 		DP(BNX2X_MSG_IOV, "about to free resources\n");
2221 		bnx2x_vf_free_resc(bp, vf);
2222 		break;
2223 
2224 	case VF_FREE:
2225 	case VF_RESET:
2226 	default:
2227 		break;
2228 	}
2229 	return 0;
2230 op_err:
2231 	BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc);
2232 	return rc;
2233 }
2234 
2235 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2236 			struct bnx2x_config_rss_params *rss)
2237 {
2238 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2239 	set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags);
2240 	return bnx2x_config_rss(bp, rss);
2241 }
2242 
2243 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2244 			struct vfpf_tpa_tlv *tlv,
2245 			struct bnx2x_queue_update_tpa_params *params)
2246 {
2247 	aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr;
2248 	struct bnx2x_queue_state_params qstate;
2249 	int qid, rc = 0;
2250 
2251 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2252 
2253 	/* Set ramrod params */
2254 	memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
2255 	memcpy(&qstate.params.update_tpa, params,
2256 	       sizeof(struct bnx2x_queue_update_tpa_params));
2257 	qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA;
2258 	set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
2259 
2260 	for (qid = 0; qid < vf_rxq_count(vf); qid++) {
2261 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
2262 		qstate.params.update_tpa.sge_map = sge_addr[qid];
2263 		DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n",
2264 		   vf->abs_vfid, qid, U64_HI(sge_addr[qid]),
2265 		   U64_LO(sge_addr[qid]));
2266 		rc = bnx2x_queue_state_change(bp, &qstate);
2267 		if (rc) {
2268 			BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n",
2269 				  U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]),
2270 				  vf->abs_vfid, qid);
2271 			return rc;
2272 		}
2273 	}
2274 
2275 	return rc;
2276 }
2277 
2278 /* VF release ~ VF close + VF release-resources
2279  * Release is the ultimate SW shutdown and is called whenever an
2280  * irrecoverable error is encountered.
2281  */
2282 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf)
2283 {
2284 	int rc;
2285 
2286 	DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid);
2287 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2288 
2289 	rc = bnx2x_vf_free(bp, vf);
2290 	if (rc)
2291 		WARN(rc,
2292 		     "VF[%d] Failed to allocate resources for release op- rc=%d\n",
2293 		     vf->abs_vfid, rc);
2294 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2295 	return rc;
2296 }
2297 
2298 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2299 			      enum channel_tlvs tlv)
2300 {
2301 	/* we don't lock the channel for unsupported tlvs */
2302 	if (!bnx2x_tlv_supported(tlv)) {
2303 		BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n");
2304 		return;
2305 	}
2306 
2307 	/* lock the channel */
2308 	mutex_lock(&vf->op_mutex);
2309 
2310 	/* record the locking op */
2311 	vf->op_current = tlv;
2312 
2313 	/* log the lock */
2314 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n",
2315 	   vf->abs_vfid, tlv);
2316 }
2317 
2318 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2319 				enum channel_tlvs expected_tlv)
2320 {
2321 	enum channel_tlvs current_tlv;
2322 
2323 	if (!vf) {
2324 		BNX2X_ERR("VF was %p\n", vf);
2325 		return;
2326 	}
2327 
2328 	current_tlv = vf->op_current;
2329 
2330 	/* we don't unlock the channel for unsupported tlvs */
2331 	if (!bnx2x_tlv_supported(expected_tlv))
2332 		return;
2333 
2334 	WARN(expected_tlv != vf->op_current,
2335 	     "lock mismatch: expected %d found %d", expected_tlv,
2336 	     vf->op_current);
2337 
2338 	/* record the locking op */
2339 	vf->op_current = CHANNEL_TLV_NONE;
2340 
2341 	/* lock the channel */
2342 	mutex_unlock(&vf->op_mutex);
2343 
2344 	/* log the unlock */
2345 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n",
2346 	   vf->abs_vfid, current_tlv);
2347 }
2348 
2349 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable)
2350 {
2351 	struct bnx2x_queue_state_params q_params;
2352 	u32 prev_flags;
2353 	int i, rc;
2354 
2355 	/* Verify changes are needed and record current Tx switching state */
2356 	prev_flags = bp->flags;
2357 	if (enable)
2358 		bp->flags |= TX_SWITCHING;
2359 	else
2360 		bp->flags &= ~TX_SWITCHING;
2361 	if (prev_flags == bp->flags)
2362 		return 0;
2363 
2364 	/* Verify state enables the sending of queue ramrods */
2365 	if ((bp->state != BNX2X_STATE_OPEN) ||
2366 	    (bnx2x_get_q_logical_state(bp,
2367 				      &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) !=
2368 	     BNX2X_Q_LOGICAL_STATE_ACTIVE))
2369 		return 0;
2370 
2371 	/* send q. update ramrod to configure Tx switching */
2372 	memset(&q_params, 0, sizeof(q_params));
2373 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2374 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
2375 	__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
2376 		  &q_params.params.update.update_flags);
2377 	if (enable)
2378 		__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2379 			  &q_params.params.update.update_flags);
2380 	else
2381 		__clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2382 			    &q_params.params.update.update_flags);
2383 
2384 	/* send the ramrod on all the queues of the PF */
2385 	for_each_eth_queue(bp, i) {
2386 		struct bnx2x_fastpath *fp = &bp->fp[i];
2387 
2388 		/* Set the appropriate Queue object */
2389 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
2390 
2391 		/* Update the Queue state */
2392 		rc = bnx2x_queue_state_change(bp, &q_params);
2393 		if (rc) {
2394 			BNX2X_ERR("Failed to configure Tx switching\n");
2395 			return rc;
2396 		}
2397 	}
2398 
2399 	DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled");
2400 	return 0;
2401 }
2402 
2403 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param)
2404 {
2405 	struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev));
2406 
2407 	if (!IS_SRIOV(bp)) {
2408 		BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n");
2409 		return -EINVAL;
2410 	}
2411 
2412 	DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
2413 	   num_vfs_param, BNX2X_NR_VIRTFN(bp));
2414 
2415 	/* HW channel is only operational when PF is up */
2416 	if (bp->state != BNX2X_STATE_OPEN) {
2417 		BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
2418 		return -EINVAL;
2419 	}
2420 
2421 	/* we are always bound by the total_vfs in the configuration space */
2422 	if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) {
2423 		BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
2424 			  num_vfs_param, BNX2X_NR_VIRTFN(bp));
2425 		num_vfs_param = BNX2X_NR_VIRTFN(bp);
2426 	}
2427 
2428 	bp->requested_nr_virtfn = num_vfs_param;
2429 	if (num_vfs_param == 0) {
2430 		bnx2x_set_pf_tx_switching(bp, false);
2431 		bnx2x_disable_sriov(bp);
2432 		return 0;
2433 	} else {
2434 		return bnx2x_enable_sriov(bp);
2435 	}
2436 }
2437 
2438 #define IGU_ENTRY_SIZE 4
2439 
2440 int bnx2x_enable_sriov(struct bnx2x *bp)
2441 {
2442 	int rc = 0, req_vfs = bp->requested_nr_virtfn;
2443 	int vf_idx, sb_idx, vfq_idx, qcount, first_vf;
2444 	u32 igu_entry, address;
2445 	u16 num_vf_queues;
2446 
2447 	if (req_vfs == 0)
2448 		return 0;
2449 
2450 	first_vf = bp->vfdb->sriov.first_vf_in_pf;
2451 
2452 	/* statically distribute vf sb pool between VFs */
2453 	num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES,
2454 			      BP_VFDB(bp)->vf_sbs_pool / req_vfs);
2455 
2456 	/* zero previous values learned from igu cam */
2457 	for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) {
2458 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2459 
2460 		vf->sb_count = 0;
2461 		vf_sb_count(BP_VF(bp, vf_idx)) = 0;
2462 	}
2463 	bp->vfdb->vf_sbs_pool = 0;
2464 
2465 	/* prepare IGU cam */
2466 	sb_idx = BP_VFDB(bp)->first_vf_igu_entry;
2467 	address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE;
2468 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2469 		for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) {
2470 			igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT |
2471 				vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT |
2472 				IGU_REG_MAPPING_MEMORY_VALID;
2473 			DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n",
2474 			   sb_idx, vf_idx);
2475 			REG_WR(bp, address, igu_entry);
2476 			sb_idx++;
2477 			address += IGU_ENTRY_SIZE;
2478 		}
2479 	}
2480 
2481 	/* Reinitialize vf database according to igu cam */
2482 	bnx2x_get_vf_igu_cam_info(bp);
2483 
2484 	DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n",
2485 	   BP_VFDB(bp)->vf_sbs_pool, num_vf_queues);
2486 
2487 	qcount = 0;
2488 	for_each_vf(bp, vf_idx) {
2489 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2490 
2491 		/* set local queue arrays */
2492 		vf->vfqs = &bp->vfdb->vfqs[qcount];
2493 		qcount += vf_sb_count(vf);
2494 		bnx2x_iov_static_resc(bp, vf);
2495 	}
2496 
2497 	/* prepare msix vectors in VF configuration space - the value in the
2498 	 * PCI configuration space should be the index of the last entry,
2499 	 * namely one less than the actual size of the table
2500 	 */
2501 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2502 		bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx));
2503 		REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL,
2504 		       num_vf_queues - 1);
2505 		DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n",
2506 		   vf_idx, num_vf_queues - 1);
2507 	}
2508 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
2509 
2510 	/* enable sriov. This will probe all the VFs, and consequentially cause
2511 	 * the "acquire" messages to appear on the VF PF channel.
2512 	 */
2513 	DP(BNX2X_MSG_IOV, "about to call enable sriov\n");
2514 	bnx2x_disable_sriov(bp);
2515 
2516 	rc = bnx2x_set_pf_tx_switching(bp, true);
2517 	if (rc)
2518 		return rc;
2519 
2520 	rc = pci_enable_sriov(bp->pdev, req_vfs);
2521 	if (rc) {
2522 		BNX2X_ERR("pci_enable_sriov failed with %d\n", rc);
2523 		return rc;
2524 	}
2525 	DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs);
2526 	return req_vfs;
2527 }
2528 
2529 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp)
2530 {
2531 	int vfidx;
2532 	struct pf_vf_bulletin_content *bulletin;
2533 
2534 	DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n");
2535 	for_each_vf(bp, vfidx) {
2536 		bulletin = BP_VF_BULLETIN(bp, vfidx);
2537 		if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2538 			bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0,
2539 					  htons(ETH_P_8021Q));
2540 	}
2541 }
2542 
2543 void bnx2x_disable_sriov(struct bnx2x *bp)
2544 {
2545 	if (pci_vfs_assigned(bp->pdev)) {
2546 		DP(BNX2X_MSG_IOV,
2547 		   "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2548 		return;
2549 	}
2550 
2551 	pci_disable_sriov(bp->pdev);
2552 }
2553 
2554 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
2555 			    struct bnx2x_virtf **vf,
2556 			    struct pf_vf_bulletin_content **bulletin,
2557 			    bool test_queue)
2558 {
2559 	if (bp->state != BNX2X_STATE_OPEN) {
2560 		BNX2X_ERR("PF is down - can't utilize iov-related functionality\n");
2561 		return -EINVAL;
2562 	}
2563 
2564 	if (!IS_SRIOV(bp)) {
2565 		BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n");
2566 		return -EINVAL;
2567 	}
2568 
2569 	if (vfidx >= BNX2X_NR_VIRTFN(bp)) {
2570 		BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
2571 			  vfidx, BNX2X_NR_VIRTFN(bp));
2572 		return -EINVAL;
2573 	}
2574 
2575 	/* init members */
2576 	*vf = BP_VF(bp, vfidx);
2577 	*bulletin = BP_VF_BULLETIN(bp, vfidx);
2578 
2579 	if (!*vf) {
2580 		BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx);
2581 		return -EINVAL;
2582 	}
2583 
2584 	if (test_queue && !(*vf)->vfqs) {
2585 		BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n",
2586 			  vfidx);
2587 		return -EINVAL;
2588 	}
2589 
2590 	if (!*bulletin) {
2591 		BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n",
2592 			  vfidx);
2593 		return -EINVAL;
2594 	}
2595 
2596 	return 0;
2597 }
2598 
2599 int bnx2x_get_vf_config(struct net_device *dev, int vfidx,
2600 			struct ifla_vf_info *ivi)
2601 {
2602 	struct bnx2x *bp = netdev_priv(dev);
2603 	struct bnx2x_virtf *vf = NULL;
2604 	struct pf_vf_bulletin_content *bulletin = NULL;
2605 	struct bnx2x_vlan_mac_obj *mac_obj;
2606 	struct bnx2x_vlan_mac_obj *vlan_obj;
2607 	int rc;
2608 
2609 	/* sanity and init */
2610 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2611 	if (rc)
2612 		return rc;
2613 
2614 	mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2615 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2616 	if (!mac_obj || !vlan_obj) {
2617 		BNX2X_ERR("VF partially initialized\n");
2618 		return -EINVAL;
2619 	}
2620 
2621 	ivi->vf = vfidx;
2622 	ivi->qos = 0;
2623 	ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */
2624 	ivi->min_tx_rate = 0;
2625 	ivi->spoofchk = 1; /*always enabled */
2626 	if (vf->state == VF_ENABLED) {
2627 		/* mac and vlan are in vlan_mac objects */
2628 		if (bnx2x_validate_vf_sp_objs(bp, vf, false)) {
2629 			mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac,
2630 						0, ETH_ALEN);
2631 			vlan_obj->get_n_elements(bp, vlan_obj, 1,
2632 						 (u8 *)&ivi->vlan, 0,
2633 						 VLAN_HLEN);
2634 		}
2635 	} else {
2636 		mutex_lock(&bp->vfdb->bulletin_mutex);
2637 		/* mac */
2638 		if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID))
2639 			/* mac configured by ndo so its in bulletin board */
2640 			memcpy(&ivi->mac, bulletin->mac, ETH_ALEN);
2641 		else
2642 			/* function has not been loaded yet. Show mac as 0s */
2643 			eth_zero_addr(ivi->mac);
2644 
2645 		/* vlan */
2646 		if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2647 			/* vlan configured by ndo so its in bulletin board */
2648 			memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN);
2649 		else
2650 			/* function has not been loaded yet. Show vlans as 0s */
2651 			memset(&ivi->vlan, 0, VLAN_HLEN);
2652 
2653 		mutex_unlock(&bp->vfdb->bulletin_mutex);
2654 	}
2655 
2656 	return 0;
2657 }
2658 
2659 /* New mac for VF. Consider these cases:
2660  * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
2661  *    supply at acquire.
2662  * 2. VF has already been acquired but has not yet initialized - store in local
2663  *    bulletin board. mac will be posted on VF bulletin board after VF init. VF
2664  *    will configure this mac when it is ready.
2665  * 3. VF has already initialized but has not yet setup a queue - post the new
2666  *    mac on VF's bulletin board right now. VF will configure this mac when it
2667  *    is ready.
2668  * 4. VF has already set a queue - delete any macs already configured for this
2669  *    queue and manually config the new mac.
2670  * In any event, once this function has been called refuse any attempts by the
2671  * VF to configure any mac for itself except for this mac. In case of a race
2672  * where the VF fails to see the new post on its bulletin board before sending a
2673  * mac configuration request, the PF will simply fail the request and VF can try
2674  * again after consulting its bulletin board.
2675  */
2676 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac)
2677 {
2678 	struct bnx2x *bp = netdev_priv(dev);
2679 	int rc, q_logical_state;
2680 	struct bnx2x_virtf *vf = NULL;
2681 	struct pf_vf_bulletin_content *bulletin = NULL;
2682 
2683 	if (!is_valid_ether_addr(mac)) {
2684 		BNX2X_ERR("mac address invalid\n");
2685 		return -EINVAL;
2686 	}
2687 
2688 	/* sanity and init */
2689 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2690 	if (rc)
2691 		return rc;
2692 
2693 	mutex_lock(&bp->vfdb->bulletin_mutex);
2694 
2695 	/* update PF's copy of the VF's bulletin. Will no longer accept mac
2696 	 * configuration requests from vf unless match this mac
2697 	 */
2698 	bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID;
2699 	memcpy(bulletin->mac, mac, ETH_ALEN);
2700 
2701 	/* Post update on VF's bulletin board */
2702 	rc = bnx2x_post_vf_bulletin(bp, vfidx);
2703 
2704 	/* release lock before checking return code */
2705 	mutex_unlock(&bp->vfdb->bulletin_mutex);
2706 
2707 	if (rc) {
2708 		BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2709 		return rc;
2710 	}
2711 
2712 	q_logical_state =
2713 		bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj));
2714 	if (vf->state == VF_ENABLED &&
2715 	    q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
2716 		/* configure the mac in device on this vf's queue */
2717 		unsigned long ramrod_flags = 0;
2718 		struct bnx2x_vlan_mac_obj *mac_obj;
2719 
2720 		/* User should be able to see failure reason in system logs */
2721 		if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2722 			return -EINVAL;
2723 
2724 		/* must lock vfpf channel to protect against vf flows */
2725 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2726 
2727 		/* remove existing eth macs */
2728 		mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2729 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true);
2730 		if (rc) {
2731 			BNX2X_ERR("failed to delete eth macs\n");
2732 			rc = -EINVAL;
2733 			goto out;
2734 		}
2735 
2736 		/* remove existing uc list macs */
2737 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true);
2738 		if (rc) {
2739 			BNX2X_ERR("failed to delete uc_list macs\n");
2740 			rc = -EINVAL;
2741 			goto out;
2742 		}
2743 
2744 		/* configure the new mac to device */
2745 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2746 		bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true,
2747 				  BNX2X_ETH_MAC, &ramrod_flags);
2748 
2749 out:
2750 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2751 	}
2752 
2753 	return rc;
2754 }
2755 
2756 static void bnx2x_set_vf_vlan_acceptance(struct bnx2x *bp,
2757 					 struct bnx2x_virtf *vf, bool accept)
2758 {
2759 	struct bnx2x_rx_mode_ramrod_params rx_ramrod;
2760 	unsigned long accept_flags;
2761 
2762 	/* need to remove/add the VF's accept_any_vlan bit */
2763 	accept_flags = bnx2x_leading_vfq(vf, accept_flags);
2764 	if (accept)
2765 		set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2766 	else
2767 		clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2768 
2769 	bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf,
2770 			      accept_flags);
2771 	bnx2x_leading_vfq(vf, accept_flags) = accept_flags;
2772 	bnx2x_config_rx_mode(bp, &rx_ramrod);
2773 }
2774 
2775 static int bnx2x_set_vf_vlan_filter(struct bnx2x *bp, struct bnx2x_virtf *vf,
2776 				    u16 vlan, bool add)
2777 {
2778 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
2779 	unsigned long ramrod_flags = 0;
2780 	int rc = 0;
2781 
2782 	/* configure the new vlan to device */
2783 	memset(&ramrod_param, 0, sizeof(ramrod_param));
2784 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2785 	ramrod_param.vlan_mac_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2786 	ramrod_param.ramrod_flags = ramrod_flags;
2787 	ramrod_param.user_req.u.vlan.vlan = vlan;
2788 	ramrod_param.user_req.cmd = add ? BNX2X_VLAN_MAC_ADD
2789 					: BNX2X_VLAN_MAC_DEL;
2790 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
2791 	if (rc) {
2792 		BNX2X_ERR("failed to configure vlan\n");
2793 		return -EINVAL;
2794 	}
2795 
2796 	return 0;
2797 }
2798 
2799 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos,
2800 		      __be16 vlan_proto)
2801 {
2802 	struct pf_vf_bulletin_content *bulletin = NULL;
2803 	struct bnx2x *bp = netdev_priv(dev);
2804 	struct bnx2x_vlan_mac_obj *vlan_obj;
2805 	unsigned long vlan_mac_flags = 0;
2806 	unsigned long ramrod_flags = 0;
2807 	struct bnx2x_virtf *vf = NULL;
2808 	int i, rc;
2809 
2810 	if (vlan > 4095) {
2811 		BNX2X_ERR("illegal vlan value %d\n", vlan);
2812 		return -EINVAL;
2813 	}
2814 
2815 	if (vlan_proto != htons(ETH_P_8021Q))
2816 		return -EPROTONOSUPPORT;
2817 
2818 	DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n",
2819 	   vfidx, vlan, 0);
2820 
2821 	/* sanity and init */
2822 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2823 	if (rc)
2824 		return rc;
2825 
2826 	/* update PF's copy of the VF's bulletin. No point in posting the vlan
2827 	 * to the VF since it doesn't have anything to do with it. But it useful
2828 	 * to store it here in case the VF is not up yet and we can only
2829 	 * configure the vlan later when it does. Treat vlan id 0 as remove the
2830 	 * Host tag.
2831 	 */
2832 	mutex_lock(&bp->vfdb->bulletin_mutex);
2833 
2834 	if (vlan > 0)
2835 		bulletin->valid_bitmap |= 1 << VLAN_VALID;
2836 	else
2837 		bulletin->valid_bitmap &= ~(1 << VLAN_VALID);
2838 	bulletin->vlan = vlan;
2839 
2840 	/* Post update on VF's bulletin board */
2841 	rc = bnx2x_post_vf_bulletin(bp, vfidx);
2842 	if (rc)
2843 		BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2844 	mutex_unlock(&bp->vfdb->bulletin_mutex);
2845 
2846 	/* is vf initialized and queue set up? */
2847 	if (vf->state != VF_ENABLED ||
2848 	    bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2849 	    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2850 		return rc;
2851 
2852 	/* User should be able to see error in system logs */
2853 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2854 		return -EINVAL;
2855 
2856 	/* must lock vfpf channel to protect against vf flows */
2857 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2858 
2859 	/* remove existing vlans */
2860 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2861 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2862 	rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags,
2863 				  &ramrod_flags);
2864 	if (rc) {
2865 		BNX2X_ERR("failed to delete vlans\n");
2866 		rc = -EINVAL;
2867 		goto out;
2868 	}
2869 
2870 	/* clear accept_any_vlan when HV forces vlan, otherwise
2871 	 * according to VF capabilities
2872 	 */
2873 	if (vlan || !(vf->cfg_flags & VF_CFG_VLAN_FILTER))
2874 		bnx2x_set_vf_vlan_acceptance(bp, vf, !vlan);
2875 
2876 	rc = bnx2x_set_vf_vlan_filter(bp, vf, vlan, true);
2877 	if (rc)
2878 		goto out;
2879 
2880 	/* send queue update ramrods to configure default vlan and
2881 	 * silent vlan removal
2882 	 */
2883 	for_each_vfq(vf, i) {
2884 		struct bnx2x_queue_state_params q_params = {NULL};
2885 		struct bnx2x_queue_update_params *update_params;
2886 
2887 		q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj);
2888 
2889 		/* validate the Q is UP */
2890 		if (bnx2x_get_q_logical_state(bp, q_params.q_obj) !=
2891 		    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2892 			continue;
2893 
2894 		__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2895 		q_params.cmd = BNX2X_Q_CMD_UPDATE;
2896 		update_params = &q_params.params.update;
2897 		__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
2898 			  &update_params->update_flags);
2899 		__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
2900 			  &update_params->update_flags);
2901 		if (vlan == 0) {
2902 			/* if vlan is 0 then we want to leave the VF traffic
2903 			 * untagged, and leave the incoming traffic untouched
2904 			 * (i.e. do not remove any vlan tags).
2905 			 */
2906 			__clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2907 				    &update_params->update_flags);
2908 			__clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2909 				    &update_params->update_flags);
2910 		} else {
2911 			/* configure default vlan to vf queue and set silent
2912 			 * vlan removal (the vf remains unaware of this vlan).
2913 			 */
2914 			__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2915 				  &update_params->update_flags);
2916 			__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2917 				  &update_params->update_flags);
2918 			update_params->def_vlan = vlan;
2919 			update_params->silent_removal_value =
2920 				vlan & VLAN_VID_MASK;
2921 			update_params->silent_removal_mask = VLAN_VID_MASK;
2922 		}
2923 
2924 		/* Update the Queue state */
2925 		rc = bnx2x_queue_state_change(bp, &q_params);
2926 		if (rc) {
2927 			BNX2X_ERR("Failed to configure default VLAN queue %d\n",
2928 				  i);
2929 			goto out;
2930 		}
2931 	}
2932 out:
2933 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2934 
2935 	if (rc)
2936 		DP(BNX2X_MSG_IOV,
2937 		   "updated VF[%d] vlan configuration (vlan = %d)\n",
2938 		   vfidx, vlan);
2939 
2940 	return rc;
2941 }
2942 
2943 /* crc is the first field in the bulletin board. Compute the crc over the
2944  * entire bulletin board excluding the crc field itself. Use the length field
2945  * as the Bulletin Board was posted by a PF with possibly a different version
2946  * from the vf which will sample it. Therefore, the length is computed by the
2947  * PF and then used blindly by the VF.
2948  */
2949 u32 bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content *bulletin)
2950 {
2951 	return crc32(BULLETIN_CRC_SEED,
2952 		 ((u8 *)bulletin) + sizeof(bulletin->crc),
2953 		 bulletin->length - sizeof(bulletin->crc));
2954 }
2955 
2956 /* Check for new posts on the bulletin board */
2957 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp)
2958 {
2959 	struct pf_vf_bulletin_content *bulletin;
2960 	int attempts;
2961 
2962 	/* sampling structure in mid post may result with corrupted data
2963 	 * validate crc to ensure coherency.
2964 	 */
2965 	for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) {
2966 		u32 crc;
2967 
2968 		/* sample the bulletin board */
2969 		memcpy(&bp->shadow_bulletin, bp->pf2vf_bulletin,
2970 		       sizeof(union pf_vf_bulletin));
2971 
2972 		crc = bnx2x_crc_vf_bulletin(&bp->shadow_bulletin.content);
2973 
2974 		if (bp->shadow_bulletin.content.crc == crc)
2975 			break;
2976 
2977 		BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
2978 			  bp->shadow_bulletin.content.crc, crc);
2979 	}
2980 
2981 	if (attempts >= BULLETIN_ATTEMPTS) {
2982 		BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
2983 			  attempts);
2984 		return PFVF_BULLETIN_CRC_ERR;
2985 	}
2986 	bulletin = &bp->shadow_bulletin.content;
2987 
2988 	/* bulletin board hasn't changed since last sample */
2989 	if (bp->old_bulletin.version == bulletin->version)
2990 		return PFVF_BULLETIN_UNCHANGED;
2991 
2992 	/* the mac address in bulletin board is valid and is new */
2993 	if (bulletin->valid_bitmap & 1 << MAC_ADDR_VALID &&
2994 	    !ether_addr_equal(bulletin->mac, bp->old_bulletin.mac)) {
2995 		/* update new mac to net device */
2996 		memcpy(bp->dev->dev_addr, bulletin->mac, ETH_ALEN);
2997 	}
2998 
2999 	if (bulletin->valid_bitmap & (1 << LINK_VALID)) {
3000 		DP(BNX2X_MSG_IOV, "link update speed %d flags %x\n",
3001 		   bulletin->link_speed, bulletin->link_flags);
3002 
3003 		bp->vf_link_vars.line_speed = bulletin->link_speed;
3004 		bp->vf_link_vars.link_report_flags = 0;
3005 		/* Link is down */
3006 		if (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)
3007 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
3008 				  &bp->vf_link_vars.link_report_flags);
3009 		/* Full DUPLEX */
3010 		if (bulletin->link_flags & VFPF_LINK_REPORT_FULL_DUPLEX)
3011 			__set_bit(BNX2X_LINK_REPORT_FD,
3012 				  &bp->vf_link_vars.link_report_flags);
3013 		/* Rx Flow Control is ON */
3014 		if (bulletin->link_flags & VFPF_LINK_REPORT_RX_FC_ON)
3015 			__set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
3016 				  &bp->vf_link_vars.link_report_flags);
3017 		/* Tx Flow Control is ON */
3018 		if (bulletin->link_flags & VFPF_LINK_REPORT_TX_FC_ON)
3019 			__set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
3020 				  &bp->vf_link_vars.link_report_flags);
3021 		__bnx2x_link_report(bp);
3022 	}
3023 
3024 	/* copy new bulletin board to bp */
3025 	memcpy(&bp->old_bulletin, bulletin,
3026 	       sizeof(struct pf_vf_bulletin_content));
3027 
3028 	return PFVF_BULLETIN_UPDATED;
3029 }
3030 
3031 void bnx2x_timer_sriov(struct bnx2x *bp)
3032 {
3033 	bnx2x_sample_bulletin(bp);
3034 
3035 	/* if channel is down we need to self destruct */
3036 	if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN)
3037 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
3038 				       BNX2X_MSG_IOV);
3039 }
3040 
3041 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp)
3042 {
3043 	/* vf doorbells are embedded within the regview */
3044 	return bp->regview + PXP_VF_ADDR_DB_START;
3045 }
3046 
3047 void bnx2x_vf_pci_dealloc(struct bnx2x *bp)
3048 {
3049 	BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
3050 		       sizeof(struct bnx2x_vf_mbx_msg));
3051 	BNX2X_PCI_FREE(bp->pf2vf_bulletin, bp->pf2vf_bulletin_mapping,
3052 		       sizeof(union pf_vf_bulletin));
3053 }
3054 
3055 int bnx2x_vf_pci_alloc(struct bnx2x *bp)
3056 {
3057 	mutex_init(&bp->vf2pf_mutex);
3058 
3059 	/* allocate vf2pf mailbox for vf to pf channel */
3060 	bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping,
3061 					 sizeof(struct bnx2x_vf_mbx_msg));
3062 	if (!bp->vf2pf_mbox)
3063 		goto alloc_mem_err;
3064 
3065 	/* allocate pf 2 vf bulletin board */
3066 	bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping,
3067 					     sizeof(union pf_vf_bulletin));
3068 	if (!bp->pf2vf_bulletin)
3069 		goto alloc_mem_err;
3070 
3071 	bnx2x_vf_bulletin_finalize(&bp->pf2vf_bulletin->content, true);
3072 
3073 	return 0;
3074 
3075 alloc_mem_err:
3076 	bnx2x_vf_pci_dealloc(bp);
3077 	return -ENOMEM;
3078 }
3079 
3080 void bnx2x_iov_channel_down(struct bnx2x *bp)
3081 {
3082 	int vf_idx;
3083 	struct pf_vf_bulletin_content *bulletin;
3084 
3085 	if (!IS_SRIOV(bp))
3086 		return;
3087 
3088 	for_each_vf(bp, vf_idx) {
3089 		/* locate this VFs bulletin board and update the channel down
3090 		 * bit
3091 		 */
3092 		bulletin = BP_VF_BULLETIN(bp, vf_idx);
3093 		bulletin->valid_bitmap |= 1 << CHANNEL_DOWN;
3094 
3095 		/* update vf bulletin board */
3096 		bnx2x_post_vf_bulletin(bp, vf_idx);
3097 	}
3098 }
3099 
3100 void bnx2x_iov_task(struct work_struct *work)
3101 {
3102 	struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work);
3103 
3104 	if (!netif_running(bp->dev))
3105 		return;
3106 
3107 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR,
3108 			       &bp->iov_task_state))
3109 		bnx2x_vf_handle_flr_event(bp);
3110 
3111 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG,
3112 			       &bp->iov_task_state))
3113 		bnx2x_vf_mbx(bp);
3114 }
3115 
3116 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag)
3117 {
3118 	smp_mb__before_atomic();
3119 	set_bit(flag, &bp->iov_task_state);
3120 	smp_mb__after_atomic();
3121 	DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
3122 	queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0);
3123 }
3124