1 /* bnx2x_sriov.c: QLogic Everest network driver.
2  *
3  * Copyright 2009-2013 Broadcom Corporation
4  * Copyright 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * Unless you and QLogic execute a separate written software license
8  * agreement governing use of this software, this software is licensed to you
9  * under the terms of the GNU General Public License version 2, available
10  * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
11  *
12  * Notwithstanding the above, under no circumstances may you combine this
13  * software in any way with any other QLogic software provided under a
14  * license other than the GPL, without QLogic's express prior written
15  * consent.
16  *
17  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
18  * Written by: Shmulik Ravid
19  *	       Ariel Elior <ariel.elior@qlogic.com>
20  *
21  */
22 #include "bnx2x.h"
23 #include "bnx2x_init.h"
24 #include "bnx2x_cmn.h"
25 #include "bnx2x_sp.h"
26 #include <linux/crc32.h>
27 #include <linux/if_vlan.h>
28 
29 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
30 			    struct bnx2x_virtf **vf,
31 			    struct pf_vf_bulletin_content **bulletin,
32 			    bool test_queue);
33 
34 /* General service functions */
35 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
36 					 u16 pf_id)
37 {
38 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
39 		pf_id);
40 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
41 		pf_id);
42 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
43 		pf_id);
44 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
45 		pf_id);
46 }
47 
48 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
49 					u8 enable)
50 {
51 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
52 		enable);
53 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
54 		enable);
55 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
56 		enable);
57 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
58 		enable);
59 }
60 
61 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
62 {
63 	int idx;
64 
65 	for_each_vf(bp, idx)
66 		if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid)
67 			break;
68 	return idx;
69 }
70 
71 static
72 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
73 {
74 	u16 idx =  (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid);
75 	return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL;
76 }
77 
78 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf,
79 				u8 igu_sb_id, u8 segment, u16 index, u8 op,
80 				u8 update)
81 {
82 	/* acking a VF sb through the PF - use the GRC */
83 	u32 ctl;
84 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
85 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
86 	u32 func_encode = vf->abs_vfid;
87 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id;
88 	struct igu_regular cmd_data = {0};
89 
90 	cmd_data.sb_id_and_flags =
91 			((index << IGU_REGULAR_SB_INDEX_SHIFT) |
92 			 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
93 			 (update << IGU_REGULAR_BUPDATE_SHIFT) |
94 			 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
95 
96 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
97 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
98 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
99 
100 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
101 	   cmd_data.sb_id_and_flags, igu_addr_data);
102 	REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags);
103 	barrier();
104 
105 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
106 	   ctl, igu_addr_ctl);
107 	REG_WR(bp, igu_addr_ctl, ctl);
108 	barrier();
109 }
110 
111 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp,
112 				       struct bnx2x_virtf *vf,
113 				       bool print_err)
114 {
115 	if (!bnx2x_leading_vfq(vf, sp_initialized)) {
116 		if (print_err)
117 			BNX2X_ERR("Slowpath objects not yet initialized!\n");
118 		else
119 			DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n");
120 		return false;
121 	}
122 	return true;
123 }
124 
125 /* VFOP operations states */
126 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf,
127 			      struct bnx2x_queue_init_params *init_params,
128 			      struct bnx2x_queue_setup_params *setup_params,
129 			      u16 q_idx, u16 sb_idx)
130 {
131 	DP(BNX2X_MSG_IOV,
132 	   "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
133 	   vf->abs_vfid,
134 	   q_idx,
135 	   sb_idx,
136 	   init_params->tx.sb_cq_index,
137 	   init_params->tx.hc_rate,
138 	   setup_params->flags,
139 	   setup_params->txq_params.traffic_type);
140 }
141 
142 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf,
143 			    struct bnx2x_queue_init_params *init_params,
144 			    struct bnx2x_queue_setup_params *setup_params,
145 			    u16 q_idx, u16 sb_idx)
146 {
147 	struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params;
148 
149 	DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
150 	   "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
151 	   vf->abs_vfid,
152 	   q_idx,
153 	   sb_idx,
154 	   init_params->rx.sb_cq_index,
155 	   init_params->rx.hc_rate,
156 	   setup_params->gen_params.mtu,
157 	   rxq_params->buf_sz,
158 	   rxq_params->sge_buf_sz,
159 	   rxq_params->max_sges_pkt,
160 	   rxq_params->tpa_agg_sz,
161 	   setup_params->flags,
162 	   rxq_params->drop_flags,
163 	   rxq_params->cache_line_log);
164 }
165 
166 void bnx2x_vfop_qctor_prep(struct bnx2x *bp,
167 			   struct bnx2x_virtf *vf,
168 			   struct bnx2x_vf_queue *q,
169 			   struct bnx2x_vf_queue_construct_params *p,
170 			   unsigned long q_type)
171 {
172 	struct bnx2x_queue_init_params *init_p = &p->qstate.params.init;
173 	struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup;
174 
175 	/* INIT */
176 
177 	/* Enable host coalescing in the transition to INIT state */
178 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags))
179 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags);
180 
181 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags))
182 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags);
183 
184 	/* FW SB ID */
185 	init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
186 	init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
187 
188 	/* context */
189 	init_p->cxts[0] = q->cxt;
190 
191 	/* SETUP */
192 
193 	/* Setup-op general parameters */
194 	setup_p->gen_params.spcl_id = vf->sp_cl_id;
195 	setup_p->gen_params.stat_id = vfq_stat_id(vf, q);
196 	setup_p->gen_params.fp_hsi = vf->fp_hsi;
197 
198 	/* Setup-op flags:
199 	 * collect statistics, zero statistics, local-switching, security,
200 	 * OV for Flex10, RSS and MCAST for leading
201 	 */
202 	if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags))
203 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags);
204 
205 	/* for VFs, enable tx switching, bd coherency, and mac address
206 	 * anti-spoofing
207 	 */
208 	__set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags);
209 	__set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags);
210 	if (vf->spoofchk)
211 		__set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
212 	else
213 		__clear_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
214 
215 	/* Setup-op rx parameters */
216 	if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) {
217 		struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params;
218 
219 		rxq_p->cl_qzone_id = vfq_qzone_id(vf, q);
220 		rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx);
221 		rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid);
222 
223 		if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags))
224 			rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES;
225 	}
226 
227 	/* Setup-op tx parameters */
228 	if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) {
229 		setup_p->txq_params.tss_leading_cl_id = vf->leading_rss;
230 		setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
231 	}
232 }
233 
234 static int bnx2x_vf_queue_create(struct bnx2x *bp,
235 				 struct bnx2x_virtf *vf, int qid,
236 				 struct bnx2x_vf_queue_construct_params *qctor)
237 {
238 	struct bnx2x_queue_state_params *q_params;
239 	int rc = 0;
240 
241 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
242 
243 	/* Prepare ramrod information */
244 	q_params = &qctor->qstate;
245 	q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
246 	set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags);
247 
248 	if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
249 	    BNX2X_Q_LOGICAL_STATE_ACTIVE) {
250 		DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n");
251 		goto out;
252 	}
253 
254 	/* Run Queue 'construction' ramrods */
255 	q_params->cmd = BNX2X_Q_CMD_INIT;
256 	rc = bnx2x_queue_state_change(bp, q_params);
257 	if (rc)
258 		goto out;
259 
260 	memcpy(&q_params->params.setup, &qctor->prep_qsetup,
261 	       sizeof(struct bnx2x_queue_setup_params));
262 	q_params->cmd = BNX2X_Q_CMD_SETUP;
263 	rc = bnx2x_queue_state_change(bp, q_params);
264 	if (rc)
265 		goto out;
266 
267 	/* enable interrupts */
268 	bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)),
269 			    USTORM_ID, 0, IGU_INT_ENABLE, 0);
270 out:
271 	return rc;
272 }
273 
274 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf,
275 				  int qid)
276 {
277 	enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT,
278 				       BNX2X_Q_CMD_TERMINATE,
279 				       BNX2X_Q_CMD_CFC_DEL};
280 	struct bnx2x_queue_state_params q_params;
281 	int rc, i;
282 
283 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
284 
285 	/* Prepare ramrod information */
286 	memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params));
287 	q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
288 	set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
289 
290 	if (bnx2x_get_q_logical_state(bp, q_params.q_obj) ==
291 	    BNX2X_Q_LOGICAL_STATE_STOPPED) {
292 		DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n");
293 		goto out;
294 	}
295 
296 	/* Run Queue 'destruction' ramrods */
297 	for (i = 0; i < ARRAY_SIZE(cmds); i++) {
298 		q_params.cmd = cmds[i];
299 		rc = bnx2x_queue_state_change(bp, &q_params);
300 		if (rc) {
301 			BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]);
302 			return rc;
303 		}
304 	}
305 out:
306 	/* Clean Context */
307 	if (bnx2x_vfq(vf, qid, cxt)) {
308 		bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0;
309 		bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0;
310 	}
311 
312 	return 0;
313 }
314 
315 static void
316 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid)
317 {
318 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
319 	if (vf) {
320 		/* the first igu entry belonging to VFs of this PF */
321 		if (!BP_VFDB(bp)->first_vf_igu_entry)
322 			BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id;
323 
324 		/* the first igu entry belonging to this VF */
325 		if (!vf_sb_count(vf))
326 			vf->igu_base_id = igu_sb_id;
327 
328 		++vf_sb_count(vf);
329 		++vf->sb_count;
330 	}
331 	BP_VFDB(bp)->vf_sbs_pool++;
332 }
333 
334 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf,
335 				   int qid, bool drv_only, int type)
336 {
337 	struct bnx2x_vlan_mac_ramrod_params ramrod;
338 	int rc;
339 
340 	DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid,
341 			  (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
342 			  (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
343 
344 	/* Prepare ramrod params */
345 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
346 	if (type == BNX2X_VF_FILTER_VLAN_MAC) {
347 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
348 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
349 	} else if (type == BNX2X_VF_FILTER_MAC) {
350 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
351 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
352 	} else {
353 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
354 	}
355 	ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL;
356 
357 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
358 	if (drv_only)
359 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
360 	else
361 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
362 
363 	/* Start deleting */
364 	rc = ramrod.vlan_mac_obj->delete_all(bp,
365 					     ramrod.vlan_mac_obj,
366 					     &ramrod.user_req.vlan_mac_flags,
367 					     &ramrod.ramrod_flags);
368 	if (rc) {
369 		BNX2X_ERR("Failed to delete all %s\n",
370 			  (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
371 			  (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
372 		return rc;
373 	}
374 
375 	return 0;
376 }
377 
378 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp,
379 				    struct bnx2x_virtf *vf, int qid,
380 				    struct bnx2x_vf_mac_vlan_filter *filter,
381 				    bool drv_only)
382 {
383 	struct bnx2x_vlan_mac_ramrod_params ramrod;
384 	int rc;
385 
386 	DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n",
387 	   vf->abs_vfid, filter->add ? "Adding" : "Deleting",
388 	   (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MAC" :
389 	   (filter->type == BNX2X_VF_FILTER_MAC) ? "MAC" : "VLAN");
390 
391 	/* Prepare ramrod params */
392 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
393 	if (filter->type == BNX2X_VF_FILTER_VLAN_MAC) {
394 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
395 		ramrod.user_req.u.vlan.vlan = filter->vid;
396 		memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
397 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
398 	} else if (filter->type == BNX2X_VF_FILTER_VLAN) {
399 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
400 		ramrod.user_req.u.vlan.vlan = filter->vid;
401 	} else {
402 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
403 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
404 		memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
405 	}
406 	ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD :
407 					    BNX2X_VLAN_MAC_DEL;
408 
409 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
410 	if (drv_only)
411 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
412 	else
413 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
414 
415 	/* Add/Remove the filter */
416 	rc = bnx2x_config_vlan_mac(bp, &ramrod);
417 	if (rc == -EEXIST)
418 		return 0;
419 	if (rc) {
420 		BNX2X_ERR("Failed to %s %s\n",
421 			  filter->add ? "add" : "delete",
422 			  (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ?
423 				"VLAN-MAC" :
424 			  (filter->type == BNX2X_VF_FILTER_MAC) ?
425 				"MAC" : "VLAN");
426 		return rc;
427 	}
428 
429 	filter->applied = true;
430 
431 	return 0;
432 }
433 
434 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf,
435 				  struct bnx2x_vf_mac_vlan_filters *filters,
436 				  int qid, bool drv_only)
437 {
438 	int rc = 0, i;
439 
440 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
441 
442 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
443 		return -EINVAL;
444 
445 	/* Prepare ramrod params */
446 	for (i = 0; i < filters->count; i++) {
447 		rc = bnx2x_vf_mac_vlan_config(bp, vf, qid,
448 					      &filters->filters[i], drv_only);
449 		if (rc)
450 			break;
451 	}
452 
453 	/* Rollback if needed */
454 	if (i != filters->count) {
455 		BNX2X_ERR("Managed only %d/%d filters - rolling back\n",
456 			  i, filters->count);
457 		while (--i >= 0) {
458 			if (!filters->filters[i].applied)
459 				continue;
460 			filters->filters[i].add = !filters->filters[i].add;
461 			bnx2x_vf_mac_vlan_config(bp, vf, qid,
462 						 &filters->filters[i],
463 						 drv_only);
464 		}
465 	}
466 
467 	/* It's our responsibility to free the filters */
468 	kfree(filters);
469 
470 	return rc;
471 }
472 
473 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid,
474 			 struct bnx2x_vf_queue_construct_params *qctor)
475 {
476 	int rc;
477 
478 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
479 
480 	rc = bnx2x_vf_queue_create(bp, vf, qid, qctor);
481 	if (rc)
482 		goto op_err;
483 
484 	/* Schedule the configuration of any pending vlan filters */
485 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN,
486 			       BNX2X_MSG_IOV);
487 	return 0;
488 op_err:
489 	BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
490 	return rc;
491 }
492 
493 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf,
494 			       int qid)
495 {
496 	int rc;
497 
498 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
499 
500 	/* If needed, clean the filtering data base */
501 	if ((qid == LEADING_IDX) &&
502 	    bnx2x_validate_vf_sp_objs(bp, vf, false)) {
503 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
504 					     BNX2X_VF_FILTER_VLAN_MAC);
505 		if (rc)
506 			goto op_err;
507 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
508 					     BNX2X_VF_FILTER_VLAN);
509 		if (rc)
510 			goto op_err;
511 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
512 					     BNX2X_VF_FILTER_MAC);
513 		if (rc)
514 			goto op_err;
515 	}
516 
517 	/* Terminate queue */
518 	if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) {
519 		struct bnx2x_queue_state_params qstate;
520 
521 		memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
522 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
523 		qstate.q_obj->state = BNX2X_Q_STATE_STOPPED;
524 		qstate.cmd = BNX2X_Q_CMD_TERMINATE;
525 		set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
526 		rc = bnx2x_queue_state_change(bp, &qstate);
527 		if (rc)
528 			goto op_err;
529 	}
530 
531 	return 0;
532 op_err:
533 	BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
534 	return rc;
535 }
536 
537 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf,
538 		   bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only)
539 {
540 	struct bnx2x_mcast_list_elem *mc = NULL;
541 	struct bnx2x_mcast_ramrod_params mcast;
542 	int rc, i;
543 
544 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
545 
546 	/* Prepare Multicast command */
547 	memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params));
548 	mcast.mcast_obj = &vf->mcast_obj;
549 	if (drv_only)
550 		set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags);
551 	else
552 		set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags);
553 	if (mc_num) {
554 		mc = kcalloc(mc_num, sizeof(struct bnx2x_mcast_list_elem),
555 			     GFP_KERNEL);
556 		if (!mc) {
557 			BNX2X_ERR("Cannot Configure multicasts due to lack of memory\n");
558 			return -ENOMEM;
559 		}
560 	}
561 
562 	if (mc_num) {
563 		INIT_LIST_HEAD(&mcast.mcast_list);
564 		for (i = 0; i < mc_num; i++) {
565 			mc[i].mac = mcasts[i];
566 			list_add_tail(&mc[i].link,
567 				      &mcast.mcast_list);
568 		}
569 
570 		/* add new mcasts */
571 		mcast.mcast_list_len = mc_num;
572 		rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_SET);
573 		if (rc)
574 			BNX2X_ERR("Failed to set multicasts\n");
575 	} else {
576 		/* clear existing mcasts */
577 		rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL);
578 		if (rc)
579 			BNX2X_ERR("Failed to remove multicasts\n");
580 	}
581 
582 	kfree(mc);
583 
584 	return rc;
585 }
586 
587 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid,
588 				  struct bnx2x_rx_mode_ramrod_params *ramrod,
589 				  struct bnx2x_virtf *vf,
590 				  unsigned long accept_flags)
591 {
592 	struct bnx2x_vf_queue *vfq = vfq_get(vf, qid);
593 
594 	memset(ramrod, 0, sizeof(*ramrod));
595 	ramrod->cid = vfq->cid;
596 	ramrod->cl_id = vfq_cl_id(vf, vfq);
597 	ramrod->rx_mode_obj = &bp->rx_mode_obj;
598 	ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid);
599 	ramrod->rx_accept_flags = accept_flags;
600 	ramrod->tx_accept_flags = accept_flags;
601 	ramrod->pstate = &vf->filter_state;
602 	ramrod->state = BNX2X_FILTER_RX_MODE_PENDING;
603 
604 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
605 	set_bit(RAMROD_RX, &ramrod->ramrod_flags);
606 	set_bit(RAMROD_TX, &ramrod->ramrod_flags);
607 
608 	ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2);
609 	ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2);
610 }
611 
612 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf,
613 		    int qid, unsigned long accept_flags)
614 {
615 	struct bnx2x_rx_mode_ramrod_params ramrod;
616 
617 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
618 
619 	bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags);
620 	set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
621 	vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags;
622 	return bnx2x_config_rx_mode(bp, &ramrod);
623 }
624 
625 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid)
626 {
627 	int rc;
628 
629 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
630 
631 	/* Remove all classification configuration for leading queue */
632 	if (qid == LEADING_IDX) {
633 		rc = bnx2x_vf_rxmode(bp, vf, qid, 0);
634 		if (rc)
635 			goto op_err;
636 
637 		/* Remove filtering if feasible */
638 		if (bnx2x_validate_vf_sp_objs(bp, vf, true)) {
639 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
640 						     false,
641 						     BNX2X_VF_FILTER_VLAN_MAC);
642 			if (rc)
643 				goto op_err;
644 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
645 						     false,
646 						     BNX2X_VF_FILTER_VLAN);
647 			if (rc)
648 				goto op_err;
649 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
650 						     false,
651 						     BNX2X_VF_FILTER_MAC);
652 			if (rc)
653 				goto op_err;
654 			rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false);
655 			if (rc)
656 				goto op_err;
657 		}
658 	}
659 
660 	/* Destroy queue */
661 	rc = bnx2x_vf_queue_destroy(bp, vf, qid);
662 	if (rc)
663 		goto op_err;
664 	return rc;
665 op_err:
666 	BNX2X_ERR("vf[%d:%d] error: rc %d\n",
667 		  vf->abs_vfid, qid, rc);
668 	return rc;
669 }
670 
671 /* VF enable primitives
672  * when pretend is required the caller is responsible
673  * for calling pretend prior to calling these routines
674  */
675 
676 /* internal vf enable - until vf is enabled internally all transactions
677  * are blocked. This routine should always be called last with pretend.
678  */
679 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable)
680 {
681 	REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0);
682 }
683 
684 /* clears vf error in all semi blocks */
685 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid)
686 {
687 	REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid);
688 	REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid);
689 	REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid);
690 	REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid);
691 }
692 
693 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid)
694 {
695 	u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5;
696 	u32 was_err_reg = 0;
697 
698 	switch (was_err_group) {
699 	case 0:
700 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR;
701 	    break;
702 	case 1:
703 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR;
704 	    break;
705 	case 2:
706 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR;
707 	    break;
708 	case 3:
709 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR;
710 	    break;
711 	}
712 	REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f));
713 }
714 
715 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf)
716 {
717 	int i;
718 	u32 val;
719 
720 	/* Set VF masks and configuration - pretend */
721 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
722 
723 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
724 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
725 	REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
726 	REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
727 	REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
728 	REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
729 
730 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
731 	val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN);
732 	val &= ~IGU_VF_CONF_PARENT_MASK;
733 	val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT;
734 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
735 
736 	DP(BNX2X_MSG_IOV,
737 	   "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n",
738 	   vf->abs_vfid, val);
739 
740 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
741 
742 	/* iterate over all queues, clear sb consumer */
743 	for (i = 0; i < vf_sb_count(vf); i++) {
744 		u8 igu_sb_id = vf_igu_sb(vf, i);
745 
746 		/* zero prod memory */
747 		REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0);
748 
749 		/* clear sb state machine */
750 		bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id,
751 				       false /* VF */);
752 
753 		/* disable + update */
754 		bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0,
755 				    IGU_INT_DISABLE, 1);
756 	}
757 }
758 
759 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid)
760 {
761 	/* set the VF-PF association in the FW */
762 	storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp));
763 	storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1);
764 
765 	/* clear vf errors*/
766 	bnx2x_vf_semi_clear_err(bp, abs_vfid);
767 	bnx2x_vf_pglue_clear_err(bp, abs_vfid);
768 
769 	/* internal vf-enable - pretend */
770 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid));
771 	DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid);
772 	bnx2x_vf_enable_internal(bp, true);
773 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
774 }
775 
776 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf)
777 {
778 	/* Reset vf in IGU  interrupts are still disabled */
779 	bnx2x_vf_igu_reset(bp, vf);
780 
781 	/* pretend to enable the vf with the PBF */
782 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
783 	REG_WR(bp, PBF_REG_DISABLE_VF, 0);
784 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
785 }
786 
787 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid)
788 {
789 	struct pci_dev *dev;
790 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
791 
792 	if (!vf)
793 		return false;
794 
795 	dev = pci_get_domain_bus_and_slot(vf->domain, vf->bus, vf->devfn);
796 	if (dev)
797 		return bnx2x_is_pcie_pending(dev);
798 	return false;
799 }
800 
801 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid)
802 {
803 	/* Verify no pending pci transactions */
804 	if (bnx2x_vf_is_pcie_pending(bp, abs_vfid))
805 		BNX2X_ERR("PCIE Transactions still pending\n");
806 
807 	return 0;
808 }
809 
810 /* must be called after the number of PF queues and the number of VFs are
811  * both known
812  */
813 static void
814 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
815 {
816 	struct vf_pf_resc_request *resc = &vf->alloc_resc;
817 
818 	/* will be set only during VF-ACQUIRE */
819 	resc->num_rxqs = 0;
820 	resc->num_txqs = 0;
821 
822 	resc->num_mac_filters = VF_MAC_CREDIT_CNT;
823 	resc->num_vlan_filters = VF_VLAN_CREDIT_CNT;
824 
825 	/* no real limitation */
826 	resc->num_mc_filters = 0;
827 
828 	/* num_sbs already set */
829 	resc->num_sbs = vf->sb_count;
830 }
831 
832 /* FLR routines: */
833 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
834 {
835 	/* reset the state variables */
836 	bnx2x_iov_static_resc(bp, vf);
837 	vf->state = VF_FREE;
838 }
839 
840 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf)
841 {
842 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
843 
844 	/* DQ usage counter */
845 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
846 	bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT,
847 					"DQ VF usage counter timed out",
848 					poll_cnt);
849 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
850 
851 	/* FW cleanup command - poll for the results */
852 	if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid),
853 				   poll_cnt))
854 		BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid);
855 
856 	/* verify TX hw is flushed */
857 	bnx2x_tx_hw_flushed(bp, poll_cnt);
858 }
859 
860 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf)
861 {
862 	int rc, i;
863 
864 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
865 
866 	/* the cleanup operations are valid if and only if the VF
867 	 * was first acquired.
868 	 */
869 	for (i = 0; i < vf_rxq_count(vf); i++) {
870 		rc = bnx2x_vf_queue_flr(bp, vf, i);
871 		if (rc)
872 			goto out;
873 	}
874 
875 	/* remove multicasts */
876 	bnx2x_vf_mcast(bp, vf, NULL, 0, true);
877 
878 	/* dispatch final cleanup and wait for HW queues to flush */
879 	bnx2x_vf_flr_clnup_hw(bp, vf);
880 
881 	/* release VF resources */
882 	bnx2x_vf_free_resc(bp, vf);
883 
884 	vf->malicious = false;
885 
886 	/* re-open the mailbox */
887 	bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
888 	return;
889 out:
890 	BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n",
891 		  vf->abs_vfid, i, rc);
892 }
893 
894 static void bnx2x_vf_flr_clnup(struct bnx2x *bp)
895 {
896 	struct bnx2x_virtf *vf;
897 	int i;
898 
899 	for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) {
900 		/* VF should be RESET & in FLR cleanup states */
901 		if (bnx2x_vf(bp, i, state) != VF_RESET ||
902 		    !bnx2x_vf(bp, i, flr_clnup_stage))
903 			continue;
904 
905 		DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n",
906 		   i, BNX2X_NR_VIRTFN(bp));
907 
908 		vf = BP_VF(bp, i);
909 
910 		/* lock the vf pf channel */
911 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
912 
913 		/* invoke the VF FLR SM */
914 		bnx2x_vf_flr(bp, vf);
915 
916 		/* mark the VF to be ACKED and continue */
917 		vf->flr_clnup_stage = false;
918 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
919 	}
920 
921 	/* Acknowledge the handled VFs.
922 	 * we are acknowledge all the vfs which an flr was requested for, even
923 	 * if amongst them there are such that we never opened, since the mcp
924 	 * will interrupt us immediately again if we only ack some of the bits,
925 	 * resulting in an endless loop. This can happen for example in KVM
926 	 * where an 'all ones' flr request is sometimes given by hyper visor
927 	 */
928 	DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
929 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
930 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
931 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i],
932 			  bp->vfdb->flrd_vfs[i]);
933 
934 	bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0);
935 
936 	/* clear the acked bits - better yet if the MCP implemented
937 	 * write to clear semantics
938 	 */
939 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
940 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0);
941 }
942 
943 void bnx2x_vf_handle_flr_event(struct bnx2x *bp)
944 {
945 	int i;
946 
947 	/* Read FLR'd VFs */
948 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
949 		bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]);
950 
951 	DP(BNX2X_MSG_MCP,
952 	   "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
953 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
954 
955 	for_each_vf(bp, i) {
956 		struct bnx2x_virtf *vf = BP_VF(bp, i);
957 		u32 reset = 0;
958 
959 		if (vf->abs_vfid < 32)
960 			reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid);
961 		else
962 			reset = bp->vfdb->flrd_vfs[1] &
963 				(1 << (vf->abs_vfid - 32));
964 
965 		if (reset) {
966 			/* set as reset and ready for cleanup */
967 			vf->state = VF_RESET;
968 			vf->flr_clnup_stage = true;
969 
970 			DP(BNX2X_MSG_IOV,
971 			   "Initiating Final cleanup for VF %d\n",
972 			   vf->abs_vfid);
973 		}
974 	}
975 
976 	/* do the FLR cleanup for all marked VFs*/
977 	bnx2x_vf_flr_clnup(bp);
978 }
979 
980 /* IOV global initialization routines  */
981 void bnx2x_iov_init_dq(struct bnx2x *bp)
982 {
983 	if (!IS_SRIOV(bp))
984 		return;
985 
986 	/* Set the DQ such that the CID reflect the abs_vfid */
987 	REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0);
988 	REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
989 
990 	/* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
991 	 * the PF L2 queues
992 	 */
993 	REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
994 
995 	/* The VF window size is the log2 of the max number of CIDs per VF */
996 	REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
997 
998 	/* The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
999 	 * the Pf doorbell size although the 2 are independent.
1000 	 */
1001 	REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3);
1002 
1003 	/* No security checks for now -
1004 	 * configure single rule (out of 16) mask = 0x1, value = 0x0,
1005 	 * CID range 0 - 0x1ffff
1006 	 */
1007 	REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1);
1008 	REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0);
1009 	REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
1010 	REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
1011 
1012 	/* set the VF doorbell threshold. This threshold represents the amount
1013 	 * of doorbells allowed in the main DORQ fifo for a specific VF.
1014 	 */
1015 	REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64);
1016 }
1017 
1018 void bnx2x_iov_init_dmae(struct bnx2x *bp)
1019 {
1020 	if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV))
1021 		REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0);
1022 }
1023 
1024 static int bnx2x_vf_domain(struct bnx2x *bp, int vfid)
1025 {
1026 	struct pci_dev *dev = bp->pdev;
1027 
1028 	return pci_domain_nr(dev->bus);
1029 }
1030 
1031 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid)
1032 {
1033 	struct pci_dev *dev = bp->pdev;
1034 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1035 
1036 	return dev->bus->number + ((dev->devfn + iov->offset +
1037 				    iov->stride * vfid) >> 8);
1038 }
1039 
1040 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid)
1041 {
1042 	struct pci_dev *dev = bp->pdev;
1043 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1044 
1045 	return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff;
1046 }
1047 
1048 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf)
1049 {
1050 	int i, n;
1051 	struct pci_dev *dev = bp->pdev;
1052 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1053 
1054 	for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) {
1055 		u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i);
1056 		u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i);
1057 
1058 		size /= iov->total;
1059 		vf->bars[n].bar = start + size * vf->abs_vfid;
1060 		vf->bars[n].size = size;
1061 	}
1062 }
1063 
1064 static int
1065 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp)
1066 {
1067 	int sb_id;
1068 	u32 val;
1069 	u8 fid, current_pf = 0;
1070 
1071 	/* IGU in normal mode - read CAM */
1072 	for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) {
1073 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4);
1074 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
1075 			continue;
1076 		fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID);
1077 		if (fid & IGU_FID_ENCODE_IS_PF)
1078 			current_pf = fid & IGU_FID_PF_NUM_MASK;
1079 		else if (current_pf == BP_FUNC(bp))
1080 			bnx2x_vf_set_igu_info(bp, sb_id,
1081 					      (fid & IGU_FID_VF_NUM_MASK));
1082 		DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n",
1083 		   ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"),
1084 		   ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) :
1085 		   (fid & IGU_FID_VF_NUM_MASK)), sb_id,
1086 		   GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR));
1087 	}
1088 	DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool);
1089 	return BP_VFDB(bp)->vf_sbs_pool;
1090 }
1091 
1092 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp)
1093 {
1094 	if (bp->vfdb) {
1095 		kfree(bp->vfdb->vfqs);
1096 		kfree(bp->vfdb->vfs);
1097 		kfree(bp->vfdb);
1098 	}
1099 	bp->vfdb = NULL;
1100 }
1101 
1102 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1103 {
1104 	int pos;
1105 	struct pci_dev *dev = bp->pdev;
1106 
1107 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
1108 	if (!pos) {
1109 		BNX2X_ERR("failed to find SRIOV capability in device\n");
1110 		return -ENODEV;
1111 	}
1112 
1113 	iov->pos = pos;
1114 	DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos);
1115 	pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
1116 	pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total);
1117 	pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial);
1118 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
1119 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
1120 	pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
1121 	pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap);
1122 	pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
1123 
1124 	return 0;
1125 }
1126 
1127 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1128 {
1129 	u32 val;
1130 
1131 	/* read the SRIOV capability structure
1132 	 * The fields can be read via configuration read or
1133 	 * directly from the device (starting at offset PCICFG_OFFSET)
1134 	 */
1135 	if (bnx2x_sriov_pci_cfg_info(bp, iov))
1136 		return -ENODEV;
1137 
1138 	/* get the number of SRIOV bars */
1139 	iov->nres = 0;
1140 
1141 	/* read the first_vfid */
1142 	val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF);
1143 	iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK)
1144 			       * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp));
1145 
1146 	DP(BNX2X_MSG_IOV,
1147 	   "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
1148 	   BP_FUNC(bp),
1149 	   iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total,
1150 	   iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
1151 
1152 	return 0;
1153 }
1154 
1155 /* must be called after PF bars are mapped */
1156 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param,
1157 		       int num_vfs_param)
1158 {
1159 	int err, i;
1160 	struct bnx2x_sriov *iov;
1161 	struct pci_dev *dev = bp->pdev;
1162 
1163 	bp->vfdb = NULL;
1164 
1165 	/* verify is pf */
1166 	if (IS_VF(bp))
1167 		return 0;
1168 
1169 	/* verify sriov capability is present in configuration space */
1170 	if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV))
1171 		return 0;
1172 
1173 	/* verify chip revision */
1174 	if (CHIP_IS_E1x(bp))
1175 		return 0;
1176 
1177 	/* check if SRIOV support is turned off */
1178 	if (!num_vfs_param)
1179 		return 0;
1180 
1181 	/* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
1182 	if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) {
1183 		BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
1184 			  BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID);
1185 		return 0;
1186 	}
1187 
1188 	/* SRIOV can be enabled only with MSIX */
1189 	if (int_mode_param == BNX2X_INT_MODE_MSI ||
1190 	    int_mode_param == BNX2X_INT_MODE_INTX) {
1191 		BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
1192 		return 0;
1193 	}
1194 
1195 	err = -EIO;
1196 	/* verify ari is enabled */
1197 	if (!pci_ari_enabled(bp->pdev->bus)) {
1198 		BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
1199 		return 0;
1200 	}
1201 
1202 	/* verify igu is in normal mode */
1203 	if (CHIP_INT_MODE_IS_BC(bp)) {
1204 		BNX2X_ERR("IGU not normal mode,  SRIOV can not be enabled\n");
1205 		return 0;
1206 	}
1207 
1208 	/* allocate the vfs database */
1209 	bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL);
1210 	if (!bp->vfdb) {
1211 		BNX2X_ERR("failed to allocate vf database\n");
1212 		err = -ENOMEM;
1213 		goto failed;
1214 	}
1215 
1216 	/* get the sriov info - Linux already collected all the pertinent
1217 	 * information, however the sriov structure is for the private use
1218 	 * of the pci module. Also we want this information regardless
1219 	 * of the hyper-visor.
1220 	 */
1221 	iov = &(bp->vfdb->sriov);
1222 	err = bnx2x_sriov_info(bp, iov);
1223 	if (err)
1224 		goto failed;
1225 
1226 	/* SR-IOV capability was enabled but there are no VFs*/
1227 	if (iov->total == 0) {
1228 		err = -EINVAL;
1229 		goto failed;
1230 	}
1231 
1232 	iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param);
1233 
1234 	DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n",
1235 	   num_vfs_param, iov->nr_virtfn);
1236 
1237 	/* allocate the vf array */
1238 	bp->vfdb->vfs = kcalloc(BNX2X_NR_VIRTFN(bp),
1239 				sizeof(struct bnx2x_virtf),
1240 				GFP_KERNEL);
1241 	if (!bp->vfdb->vfs) {
1242 		BNX2X_ERR("failed to allocate vf array\n");
1243 		err = -ENOMEM;
1244 		goto failed;
1245 	}
1246 
1247 	/* Initial VF init - index and abs_vfid - nr_virtfn must be set */
1248 	for_each_vf(bp, i) {
1249 		bnx2x_vf(bp, i, index) = i;
1250 		bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i;
1251 		bnx2x_vf(bp, i, state) = VF_FREE;
1252 		mutex_init(&bnx2x_vf(bp, i, op_mutex));
1253 		bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE;
1254 		/* enable spoofchk by default */
1255 		bnx2x_vf(bp, i, spoofchk) = 1;
1256 	}
1257 
1258 	/* re-read the IGU CAM for VFs - index and abs_vfid must be set */
1259 	if (!bnx2x_get_vf_igu_cam_info(bp)) {
1260 		BNX2X_ERR("No entries in IGU CAM for vfs\n");
1261 		err = -EINVAL;
1262 		goto failed;
1263 	}
1264 
1265 	/* allocate the queue arrays for all VFs */
1266 	bp->vfdb->vfqs = kcalloc(BNX2X_MAX_NUM_VF_QUEUES,
1267 				 sizeof(struct bnx2x_vf_queue),
1268 				 GFP_KERNEL);
1269 
1270 	if (!bp->vfdb->vfqs) {
1271 		BNX2X_ERR("failed to allocate vf queue array\n");
1272 		err = -ENOMEM;
1273 		goto failed;
1274 	}
1275 
1276 	/* Prepare the VFs event synchronization mechanism */
1277 	mutex_init(&bp->vfdb->event_mutex);
1278 
1279 	mutex_init(&bp->vfdb->bulletin_mutex);
1280 
1281 	if (SHMEM2_HAS(bp, sriov_switch_mode))
1282 		SHMEM2_WR(bp, sriov_switch_mode, SRIOV_SWITCH_MODE_VEB);
1283 
1284 	return 0;
1285 failed:
1286 	DP(BNX2X_MSG_IOV, "Failed err=%d\n", err);
1287 	__bnx2x_iov_free_vfdb(bp);
1288 	return err;
1289 }
1290 
1291 void bnx2x_iov_remove_one(struct bnx2x *bp)
1292 {
1293 	int vf_idx;
1294 
1295 	/* if SRIOV is not enabled there's nothing to do */
1296 	if (!IS_SRIOV(bp))
1297 		return;
1298 
1299 	bnx2x_disable_sriov(bp);
1300 
1301 	/* disable access to all VFs */
1302 	for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) {
1303 		bnx2x_pretend_func(bp,
1304 				   HW_VF_HANDLE(bp,
1305 						bp->vfdb->sriov.first_vf_in_pf +
1306 						vf_idx));
1307 		DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n",
1308 		   bp->vfdb->sriov.first_vf_in_pf + vf_idx);
1309 		bnx2x_vf_enable_internal(bp, 0);
1310 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1311 	}
1312 
1313 	/* free vf database */
1314 	__bnx2x_iov_free_vfdb(bp);
1315 }
1316 
1317 void bnx2x_iov_free_mem(struct bnx2x *bp)
1318 {
1319 	int i;
1320 
1321 	if (!IS_SRIOV(bp))
1322 		return;
1323 
1324 	/* free vfs hw contexts */
1325 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1326 		struct hw_dma *cxt = &bp->vfdb->context[i];
1327 		BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size);
1328 	}
1329 
1330 	BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr,
1331 		       BP_VFDB(bp)->sp_dma.mapping,
1332 		       BP_VFDB(bp)->sp_dma.size);
1333 
1334 	BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr,
1335 		       BP_VF_MBX_DMA(bp)->mapping,
1336 		       BP_VF_MBX_DMA(bp)->size);
1337 
1338 	BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr,
1339 		       BP_VF_BULLETIN_DMA(bp)->mapping,
1340 		       BP_VF_BULLETIN_DMA(bp)->size);
1341 }
1342 
1343 int bnx2x_iov_alloc_mem(struct bnx2x *bp)
1344 {
1345 	size_t tot_size;
1346 	int i, rc = 0;
1347 
1348 	if (!IS_SRIOV(bp))
1349 		return rc;
1350 
1351 	/* allocate vfs hw contexts */
1352 	tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) *
1353 		BNX2X_CIDS_PER_VF * sizeof(union cdu_context);
1354 
1355 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1356 		struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i);
1357 		cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ);
1358 
1359 		if (cxt->size) {
1360 			cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size);
1361 			if (!cxt->addr)
1362 				goto alloc_mem_err;
1363 		} else {
1364 			cxt->addr = NULL;
1365 			cxt->mapping = 0;
1366 		}
1367 		tot_size -= cxt->size;
1368 	}
1369 
1370 	/* allocate vfs ramrods dma memory - client_init and set_mac */
1371 	tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp);
1372 	BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping,
1373 						   tot_size);
1374 	if (!BP_VFDB(bp)->sp_dma.addr)
1375 		goto alloc_mem_err;
1376 	BP_VFDB(bp)->sp_dma.size = tot_size;
1377 
1378 	/* allocate mailboxes */
1379 	tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE;
1380 	BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping,
1381 						  tot_size);
1382 	if (!BP_VF_MBX_DMA(bp)->addr)
1383 		goto alloc_mem_err;
1384 
1385 	BP_VF_MBX_DMA(bp)->size = tot_size;
1386 
1387 	/* allocate local bulletin boards */
1388 	tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE;
1389 	BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping,
1390 						       tot_size);
1391 	if (!BP_VF_BULLETIN_DMA(bp)->addr)
1392 		goto alloc_mem_err;
1393 
1394 	BP_VF_BULLETIN_DMA(bp)->size = tot_size;
1395 
1396 	return 0;
1397 
1398 alloc_mem_err:
1399 	return -ENOMEM;
1400 }
1401 
1402 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf,
1403 			   struct bnx2x_vf_queue *q)
1404 {
1405 	u8 cl_id = vfq_cl_id(vf, q);
1406 	u8 func_id = FW_VF_HANDLE(vf->abs_vfid);
1407 	unsigned long q_type = 0;
1408 
1409 	set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1410 	set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1411 
1412 	/* Queue State object */
1413 	bnx2x_init_queue_obj(bp, &q->sp_obj,
1414 			     cl_id, &q->cid, 1, func_id,
1415 			     bnx2x_vf_sp(bp, vf, q_data),
1416 			     bnx2x_vf_sp_map(bp, vf, q_data),
1417 			     q_type);
1418 
1419 	/* sp indication is set only when vlan/mac/etc. are initialized */
1420 	q->sp_initialized = false;
1421 
1422 	DP(BNX2X_MSG_IOV,
1423 	   "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n",
1424 	   vf->abs_vfid, q->sp_obj.func_id, q->cid);
1425 }
1426 
1427 static int bnx2x_max_speed_cap(struct bnx2x *bp)
1428 {
1429 	u32 supported = bp->port.supported[bnx2x_get_link_cfg_idx(bp)];
1430 
1431 	if (supported &
1432 	    (SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full))
1433 		return 20000;
1434 
1435 	return 10000; /* assume lowest supported speed is 10G */
1436 }
1437 
1438 int bnx2x_iov_link_update_vf(struct bnx2x *bp, int idx)
1439 {
1440 	struct bnx2x_link_report_data *state = &bp->last_reported_link;
1441 	struct pf_vf_bulletin_content *bulletin;
1442 	struct bnx2x_virtf *vf;
1443 	bool update = true;
1444 	int rc = 0;
1445 
1446 	/* sanity and init */
1447 	rc = bnx2x_vf_op_prep(bp, idx, &vf, &bulletin, false);
1448 	if (rc)
1449 		return rc;
1450 
1451 	mutex_lock(&bp->vfdb->bulletin_mutex);
1452 
1453 	if (vf->link_cfg == IFLA_VF_LINK_STATE_AUTO) {
1454 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1455 
1456 		bulletin->link_speed = state->line_speed;
1457 		bulletin->link_flags = 0;
1458 		if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1459 			     &state->link_report_flags))
1460 			bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1461 		if (test_bit(BNX2X_LINK_REPORT_FD,
1462 			     &state->link_report_flags))
1463 			bulletin->link_flags |= VFPF_LINK_REPORT_FULL_DUPLEX;
1464 		if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1465 			     &state->link_report_flags))
1466 			bulletin->link_flags |= VFPF_LINK_REPORT_RX_FC_ON;
1467 		if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1468 			     &state->link_report_flags))
1469 			bulletin->link_flags |= VFPF_LINK_REPORT_TX_FC_ON;
1470 	} else if (vf->link_cfg == IFLA_VF_LINK_STATE_DISABLE &&
1471 		   !(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1472 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1473 		bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1474 	} else if (vf->link_cfg == IFLA_VF_LINK_STATE_ENABLE &&
1475 		   (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1476 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1477 		bulletin->link_speed = bnx2x_max_speed_cap(bp);
1478 		bulletin->link_flags &= ~VFPF_LINK_REPORT_LINK_DOWN;
1479 	} else {
1480 		update = false;
1481 	}
1482 
1483 	if (update) {
1484 		DP(NETIF_MSG_LINK | BNX2X_MSG_IOV,
1485 		   "vf %d mode %u speed %d flags %x\n", idx,
1486 		   vf->link_cfg, bulletin->link_speed, bulletin->link_flags);
1487 
1488 		/* Post update on VF's bulletin board */
1489 		rc = bnx2x_post_vf_bulletin(bp, idx);
1490 		if (rc) {
1491 			BNX2X_ERR("failed to update VF[%d] bulletin\n", idx);
1492 			goto out;
1493 		}
1494 	}
1495 
1496 out:
1497 	mutex_unlock(&bp->vfdb->bulletin_mutex);
1498 	return rc;
1499 }
1500 
1501 int bnx2x_set_vf_link_state(struct net_device *dev, int idx, int link_state)
1502 {
1503 	struct bnx2x *bp = netdev_priv(dev);
1504 	struct bnx2x_virtf *vf = BP_VF(bp, idx);
1505 
1506 	if (!vf)
1507 		return -EINVAL;
1508 
1509 	if (vf->link_cfg == link_state)
1510 		return 0; /* nothing todo */
1511 
1512 	vf->link_cfg = link_state;
1513 
1514 	return bnx2x_iov_link_update_vf(bp, idx);
1515 }
1516 
1517 void bnx2x_iov_link_update(struct bnx2x *bp)
1518 {
1519 	int vfid;
1520 
1521 	if (!IS_SRIOV(bp))
1522 		return;
1523 
1524 	for_each_vf(bp, vfid)
1525 		bnx2x_iov_link_update_vf(bp, vfid);
1526 }
1527 
1528 /* called by bnx2x_nic_load */
1529 int bnx2x_iov_nic_init(struct bnx2x *bp)
1530 {
1531 	int vfid;
1532 
1533 	if (!IS_SRIOV(bp)) {
1534 		DP(BNX2X_MSG_IOV, "vfdb was not allocated\n");
1535 		return 0;
1536 	}
1537 
1538 	DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn);
1539 
1540 	/* let FLR complete ... */
1541 	msleep(100);
1542 
1543 	/* initialize vf database */
1544 	for_each_vf(bp, vfid) {
1545 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1546 
1547 		int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) *
1548 			BNX2X_CIDS_PER_VF;
1549 
1550 		union cdu_context *base_cxt = (union cdu_context *)
1551 			BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1552 			(base_vf_cid & (ILT_PAGE_CIDS-1));
1553 
1554 		DP(BNX2X_MSG_IOV,
1555 		   "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
1556 		   vf->abs_vfid, vf_sb_count(vf), base_vf_cid,
1557 		   BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt);
1558 
1559 		/* init statically provisioned resources */
1560 		bnx2x_iov_static_resc(bp, vf);
1561 
1562 		/* queues are initialized during VF-ACQUIRE */
1563 		vf->filter_state = 0;
1564 		vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id);
1565 
1566 		bnx2x_init_credit_pool(&vf->vf_vlans_pool, 0,
1567 				       vf_vlan_rules_cnt(vf));
1568 		bnx2x_init_credit_pool(&vf->vf_macs_pool, 0,
1569 				       vf_mac_rules_cnt(vf));
1570 
1571 		/*  init mcast object - This object will be re-initialized
1572 		 *  during VF-ACQUIRE with the proper cl_id and cid.
1573 		 *  It needs to be initialized here so that it can be safely
1574 		 *  handled by a subsequent FLR flow.
1575 		 */
1576 		bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF,
1577 				     0xFF, 0xFF, 0xFF,
1578 				     bnx2x_vf_sp(bp, vf, mcast_rdata),
1579 				     bnx2x_vf_sp_map(bp, vf, mcast_rdata),
1580 				     BNX2X_FILTER_MCAST_PENDING,
1581 				     &vf->filter_state,
1582 				     BNX2X_OBJ_TYPE_RX_TX);
1583 
1584 		/* set the mailbox message addresses */
1585 		BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *)
1586 			(((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid *
1587 			MBX_MSG_ALIGNED_SIZE);
1588 
1589 		BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping +
1590 			vfid * MBX_MSG_ALIGNED_SIZE;
1591 
1592 		/* Enable vf mailbox */
1593 		bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
1594 	}
1595 
1596 	/* Final VF init */
1597 	for_each_vf(bp, vfid) {
1598 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1599 
1600 		/* fill in the BDF and bars */
1601 		vf->domain = bnx2x_vf_domain(bp, vfid);
1602 		vf->bus = bnx2x_vf_bus(bp, vfid);
1603 		vf->devfn = bnx2x_vf_devfn(bp, vfid);
1604 		bnx2x_vf_set_bars(bp, vf);
1605 
1606 		DP(BNX2X_MSG_IOV,
1607 		   "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
1608 		   vf->abs_vfid, vf->bus, vf->devfn,
1609 		   (unsigned)vf->bars[0].bar, vf->bars[0].size,
1610 		   (unsigned)vf->bars[1].bar, vf->bars[1].size,
1611 		   (unsigned)vf->bars[2].bar, vf->bars[2].size);
1612 	}
1613 
1614 	return 0;
1615 }
1616 
1617 /* called by bnx2x_chip_cleanup */
1618 int bnx2x_iov_chip_cleanup(struct bnx2x *bp)
1619 {
1620 	int i;
1621 
1622 	if (!IS_SRIOV(bp))
1623 		return 0;
1624 
1625 	/* release all the VFs */
1626 	for_each_vf(bp, i)
1627 		bnx2x_vf_release(bp, BP_VF(bp, i));
1628 
1629 	return 0;
1630 }
1631 
1632 /* called by bnx2x_init_hw_func, returns the next ilt line */
1633 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line)
1634 {
1635 	int i;
1636 	struct bnx2x_ilt *ilt = BP_ILT(bp);
1637 
1638 	if (!IS_SRIOV(bp))
1639 		return line;
1640 
1641 	/* set vfs ilt lines */
1642 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1643 		struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i);
1644 
1645 		ilt->lines[line+i].page = hw_cxt->addr;
1646 		ilt->lines[line+i].page_mapping = hw_cxt->mapping;
1647 		ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
1648 	}
1649 	return line + i;
1650 }
1651 
1652 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid)
1653 {
1654 	return ((cid >= BNX2X_FIRST_VF_CID) &&
1655 		((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS));
1656 }
1657 
1658 static
1659 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp,
1660 					struct bnx2x_vf_queue *vfq,
1661 					union event_ring_elem *elem)
1662 {
1663 	unsigned long ramrod_flags = 0;
1664 	int rc = 0;
1665 	u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
1666 
1667 	/* Always push next commands out, don't wait here */
1668 	set_bit(RAMROD_CONT, &ramrod_flags);
1669 
1670 	switch (echo >> BNX2X_SWCID_SHIFT) {
1671 	case BNX2X_FILTER_MAC_PENDING:
1672 		rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem,
1673 					   &ramrod_flags);
1674 		break;
1675 	case BNX2X_FILTER_VLAN_PENDING:
1676 		rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem,
1677 					    &ramrod_flags);
1678 		break;
1679 	default:
1680 		BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
1681 		return;
1682 	}
1683 	if (rc < 0)
1684 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
1685 	else if (rc > 0)
1686 		DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n");
1687 }
1688 
1689 static
1690 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp,
1691 			       struct bnx2x_virtf *vf)
1692 {
1693 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
1694 	int rc;
1695 
1696 	rparam.mcast_obj = &vf->mcast_obj;
1697 	vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw);
1698 
1699 	/* If there are pending mcast commands - send them */
1700 	if (vf->mcast_obj.check_pending(&vf->mcast_obj)) {
1701 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
1702 		if (rc < 0)
1703 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
1704 				  rc);
1705 	}
1706 }
1707 
1708 static
1709 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp,
1710 				 struct bnx2x_virtf *vf)
1711 {
1712 	smp_mb__before_atomic();
1713 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
1714 	smp_mb__after_atomic();
1715 }
1716 
1717 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp,
1718 					   struct bnx2x_virtf *vf)
1719 {
1720 	vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw);
1721 }
1722 
1723 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem)
1724 {
1725 	struct bnx2x_virtf *vf;
1726 	int qidx = 0, abs_vfid;
1727 	u8 opcode;
1728 	u16 cid = 0xffff;
1729 
1730 	if (!IS_SRIOV(bp))
1731 		return 1;
1732 
1733 	/* first get the cid - the only events we handle here are cfc-delete
1734 	 * and set-mac completion
1735 	 */
1736 	opcode = elem->message.opcode;
1737 
1738 	switch (opcode) {
1739 	case EVENT_RING_OPCODE_CFC_DEL:
1740 		cid = SW_CID(elem->message.data.cfc_del_event.cid);
1741 		DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid);
1742 		break;
1743 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1744 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1745 	case EVENT_RING_OPCODE_FILTERS_RULES:
1746 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1747 		cid = SW_CID(elem->message.data.eth_event.echo);
1748 		DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid);
1749 		break;
1750 	case EVENT_RING_OPCODE_VF_FLR:
1751 		abs_vfid = elem->message.data.vf_flr_event.vf_id;
1752 		DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n",
1753 		   abs_vfid);
1754 		goto get_vf;
1755 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1756 		abs_vfid = elem->message.data.malicious_vf_event.vf_id;
1757 		BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
1758 			  abs_vfid,
1759 			  elem->message.data.malicious_vf_event.err_id);
1760 		goto get_vf;
1761 	default:
1762 		return 1;
1763 	}
1764 
1765 	/* check if the cid is the VF range */
1766 	if (!bnx2x_iov_is_vf_cid(bp, cid)) {
1767 		DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid);
1768 		return 1;
1769 	}
1770 
1771 	/* extract vf and rxq index from vf_cid - relies on the following:
1772 	 * 1. vfid on cid reflects the true abs_vfid
1773 	 * 2. The max number of VFs (per path) is 64
1774 	 */
1775 	qidx = cid & ((1 << BNX2X_VF_CID_WND)-1);
1776 	abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1777 get_vf:
1778 	vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
1779 
1780 	if (!vf) {
1781 		BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
1782 			  cid, abs_vfid);
1783 		return 0;
1784 	}
1785 
1786 	switch (opcode) {
1787 	case EVENT_RING_OPCODE_CFC_DEL:
1788 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n",
1789 		   vf->abs_vfid, qidx);
1790 		vfq_get(vf, qidx)->sp_obj.complete_cmd(bp,
1791 						       &vfq_get(vf,
1792 								qidx)->sp_obj,
1793 						       BNX2X_Q_CMD_CFC_DEL);
1794 		break;
1795 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1796 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n",
1797 		   vf->abs_vfid, qidx);
1798 		bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem);
1799 		break;
1800 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1801 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n",
1802 		   vf->abs_vfid, qidx);
1803 		bnx2x_vf_handle_mcast_eqe(bp, vf);
1804 		break;
1805 	case EVENT_RING_OPCODE_FILTERS_RULES:
1806 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n",
1807 		   vf->abs_vfid, qidx);
1808 		bnx2x_vf_handle_filters_eqe(bp, vf);
1809 		break;
1810 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1811 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n",
1812 		   vf->abs_vfid, qidx);
1813 		bnx2x_vf_handle_rss_update_eqe(bp, vf);
1814 		fallthrough;
1815 	case EVENT_RING_OPCODE_VF_FLR:
1816 		/* Do nothing for now */
1817 		return 0;
1818 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1819 		vf->malicious = true;
1820 		return 0;
1821 	}
1822 
1823 	return 0;
1824 }
1825 
1826 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid)
1827 {
1828 	/* extract the vf from vf_cid - relies on the following:
1829 	 * 1. vfid on cid reflects the true abs_vfid
1830 	 * 2. The max number of VFs (per path) is 64
1831 	 */
1832 	int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1833 	return bnx2x_vf_by_abs_fid(bp, abs_vfid);
1834 }
1835 
1836 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid,
1837 				struct bnx2x_queue_sp_obj **q_obj)
1838 {
1839 	struct bnx2x_virtf *vf;
1840 
1841 	if (!IS_SRIOV(bp))
1842 		return;
1843 
1844 	vf = bnx2x_vf_by_cid(bp, vf_cid);
1845 
1846 	if (vf) {
1847 		/* extract queue index from vf_cid - relies on the following:
1848 		 * 1. vfid on cid reflects the true abs_vfid
1849 		 * 2. The max number of VFs (per path) is 64
1850 		 */
1851 		int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1);
1852 		*q_obj = &bnx2x_vfq(vf, q_index, sp_obj);
1853 	} else {
1854 		BNX2X_ERR("No vf matching cid %d\n", vf_cid);
1855 	}
1856 }
1857 
1858 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp)
1859 {
1860 	int i;
1861 	int first_queue_query_index, num_queues_req;
1862 	dma_addr_t cur_data_offset;
1863 	struct stats_query_entry *cur_query_entry;
1864 	u8 stats_count = 0;
1865 	bool is_fcoe = false;
1866 
1867 	if (!IS_SRIOV(bp))
1868 		return;
1869 
1870 	if (!NO_FCOE(bp))
1871 		is_fcoe = true;
1872 
1873 	/* fcoe adds one global request and one queue request */
1874 	num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe;
1875 	first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX -
1876 		(is_fcoe ? 0 : 1);
1877 
1878 	DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1879 	       "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
1880 	       BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index,
1881 	       first_queue_query_index + num_queues_req);
1882 
1883 	cur_data_offset = bp->fw_stats_data_mapping +
1884 		offsetof(struct bnx2x_fw_stats_data, queue_stats) +
1885 		num_queues_req * sizeof(struct per_queue_stats);
1886 
1887 	cur_query_entry = &bp->fw_stats_req->
1888 		query[first_queue_query_index + num_queues_req];
1889 
1890 	for_each_vf(bp, i) {
1891 		int j;
1892 		struct bnx2x_virtf *vf = BP_VF(bp, i);
1893 
1894 		if (vf->state != VF_ENABLED) {
1895 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1896 			       "vf %d not enabled so no stats for it\n",
1897 			       vf->abs_vfid);
1898 			continue;
1899 		}
1900 
1901 		if (vf->malicious) {
1902 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1903 			       "vf %d malicious so no stats for it\n",
1904 			       vf->abs_vfid);
1905 			continue;
1906 		}
1907 
1908 		DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1909 		       "add addresses for vf %d\n", vf->abs_vfid);
1910 		for_each_vfq(vf, j) {
1911 			struct bnx2x_vf_queue *rxq = vfq_get(vf, j);
1912 
1913 			dma_addr_t q_stats_addr =
1914 				vf->fw_stat_map + j * vf->stats_stride;
1915 
1916 			/* collect stats fro active queues only */
1917 			if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) ==
1918 			    BNX2X_Q_LOGICAL_STATE_STOPPED)
1919 				continue;
1920 
1921 			/* create stats query entry for this queue */
1922 			cur_query_entry->kind = STATS_TYPE_QUEUE;
1923 			cur_query_entry->index = vfq_stat_id(vf, rxq);
1924 			cur_query_entry->funcID =
1925 				cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid));
1926 			cur_query_entry->address.hi =
1927 				cpu_to_le32(U64_HI(q_stats_addr));
1928 			cur_query_entry->address.lo =
1929 				cpu_to_le32(U64_LO(q_stats_addr));
1930 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1931 			       "added address %x %x for vf %d queue %d client %d\n",
1932 			       cur_query_entry->address.hi,
1933 			       cur_query_entry->address.lo,
1934 			       cur_query_entry->funcID,
1935 			       j, cur_query_entry->index);
1936 			cur_query_entry++;
1937 			cur_data_offset += sizeof(struct per_queue_stats);
1938 			stats_count++;
1939 
1940 			/* all stats are coalesced to the leading queue */
1941 			if (vf->cfg_flags & VF_CFG_STATS_COALESCE)
1942 				break;
1943 		}
1944 	}
1945 	bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count;
1946 }
1947 
1948 /* VF API helpers */
1949 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid,
1950 				u8 enable)
1951 {
1952 	u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4;
1953 	u32 val = enable ? (abs_vfid | (1 << 6)) : 0;
1954 
1955 	REG_WR(bp, reg, val);
1956 }
1957 
1958 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf)
1959 {
1960 	int i;
1961 
1962 	for_each_vfq(vf, i)
1963 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
1964 				    vfq_qzone_id(vf, vfq_get(vf, i)), false);
1965 }
1966 
1967 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf)
1968 {
1969 	u32 val;
1970 
1971 	/* clear the VF configuration - pretend */
1972 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
1973 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
1974 	val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN |
1975 		 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK);
1976 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
1977 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1978 }
1979 
1980 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf)
1981 {
1982 	return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF),
1983 		     BNX2X_VF_MAX_QUEUES);
1984 }
1985 
1986 static
1987 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf,
1988 			    struct vf_pf_resc_request *req_resc)
1989 {
1990 	u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1991 	u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1992 
1993 	return ((req_resc->num_rxqs <= rxq_cnt) &&
1994 		(req_resc->num_txqs <= txq_cnt) &&
1995 		(req_resc->num_sbs <= vf_sb_count(vf))   &&
1996 		(req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) &&
1997 		(req_resc->num_vlan_filters <= vf_vlan_rules_cnt(vf)));
1998 }
1999 
2000 /* CORE VF API */
2001 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf,
2002 		     struct vf_pf_resc_request *resc)
2003 {
2004 	int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) *
2005 		BNX2X_CIDS_PER_VF;
2006 
2007 	union cdu_context *base_cxt = (union cdu_context *)
2008 		BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
2009 		(base_vf_cid & (ILT_PAGE_CIDS-1));
2010 	int i;
2011 
2012 	/* if state is 'acquired' the VF was not released or FLR'd, in
2013 	 * this case the returned resources match the acquired already
2014 	 * acquired resources. Verify that the requested numbers do
2015 	 * not exceed the already acquired numbers.
2016 	 */
2017 	if (vf->state == VF_ACQUIRED) {
2018 		DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
2019 		   vf->abs_vfid);
2020 
2021 		if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2022 			BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
2023 				  vf->abs_vfid);
2024 			return -EINVAL;
2025 		}
2026 		return 0;
2027 	}
2028 
2029 	/* Otherwise vf state must be 'free' or 'reset' */
2030 	if (vf->state != VF_FREE && vf->state != VF_RESET) {
2031 		BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
2032 			  vf->abs_vfid, vf->state);
2033 		return -EINVAL;
2034 	}
2035 
2036 	/* static allocation:
2037 	 * the global maximum number are fixed per VF. Fail the request if
2038 	 * requested number exceed these globals
2039 	 */
2040 	if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2041 		DP(BNX2X_MSG_IOV,
2042 		   "cannot fulfill vf resource request. Placing maximal available values in response\n");
2043 		/* set the max resource in the vf */
2044 		return -ENOMEM;
2045 	}
2046 
2047 	/* Set resources counters - 0 request means max available */
2048 	vf_sb_count(vf) = resc->num_sbs;
2049 	vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2050 	vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2051 
2052 	DP(BNX2X_MSG_IOV,
2053 	   "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
2054 	   vf_sb_count(vf), vf_rxq_count(vf),
2055 	   vf_txq_count(vf), vf_mac_rules_cnt(vf),
2056 	   vf_vlan_rules_cnt(vf));
2057 
2058 	/* Initialize the queues */
2059 	if (!vf->vfqs) {
2060 		DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n");
2061 		return -EINVAL;
2062 	}
2063 
2064 	for_each_vfq(vf, i) {
2065 		struct bnx2x_vf_queue *q = vfq_get(vf, i);
2066 
2067 		if (!q) {
2068 			BNX2X_ERR("q number %d was not allocated\n", i);
2069 			return -EINVAL;
2070 		}
2071 
2072 		q->index = i;
2073 		q->cxt = &((base_cxt + i)->eth);
2074 		q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i;
2075 
2076 		DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
2077 		   vf->abs_vfid, i, q->index, q->cid, q->cxt);
2078 
2079 		/* init SP objects */
2080 		bnx2x_vfq_init(bp, vf, q);
2081 	}
2082 	vf->state = VF_ACQUIRED;
2083 	return 0;
2084 }
2085 
2086 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map)
2087 {
2088 	struct bnx2x_func_init_params func_init = {0};
2089 	int i;
2090 
2091 	/* the sb resources are initialized at this point, do the
2092 	 * FW/HW initializations
2093 	 */
2094 	for_each_vf_sb(vf, i)
2095 		bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true,
2096 			      vf_igu_sb(vf, i), vf_igu_sb(vf, i));
2097 
2098 	/* Sanity checks */
2099 	if (vf->state != VF_ACQUIRED) {
2100 		DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n",
2101 		   vf->abs_vfid, vf->state);
2102 		return -EINVAL;
2103 	}
2104 
2105 	/* let FLR complete ... */
2106 	msleep(100);
2107 
2108 	/* FLR cleanup epilogue */
2109 	if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid))
2110 		return -EBUSY;
2111 
2112 	/* reset IGU VF statistics: MSIX */
2113 	REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0);
2114 
2115 	/* function setup */
2116 	func_init.pf_id = BP_FUNC(bp);
2117 	func_init.func_id = FW_VF_HANDLE(vf->abs_vfid);
2118 	bnx2x_func_init(bp, &func_init);
2119 
2120 	/* Enable the vf */
2121 	bnx2x_vf_enable_access(bp, vf->abs_vfid);
2122 	bnx2x_vf_enable_traffic(bp, vf);
2123 
2124 	/* queue protection table */
2125 	for_each_vfq(vf, i)
2126 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
2127 				    vfq_qzone_id(vf, vfq_get(vf, i)), true);
2128 
2129 	vf->state = VF_ENABLED;
2130 
2131 	/* update vf bulletin board */
2132 	bnx2x_post_vf_bulletin(bp, vf->index);
2133 
2134 	return 0;
2135 }
2136 
2137 struct set_vf_state_cookie {
2138 	struct bnx2x_virtf *vf;
2139 	u8 state;
2140 };
2141 
2142 static void bnx2x_set_vf_state(void *cookie)
2143 {
2144 	struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie;
2145 
2146 	p->vf->state = p->state;
2147 }
2148 
2149 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf)
2150 {
2151 	int rc = 0, i;
2152 
2153 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2154 
2155 	/* Close all queues */
2156 	for (i = 0; i < vf_rxq_count(vf); i++) {
2157 		rc = bnx2x_vf_queue_teardown(bp, vf, i);
2158 		if (rc)
2159 			goto op_err;
2160 	}
2161 
2162 	/* disable the interrupts */
2163 	DP(BNX2X_MSG_IOV, "disabling igu\n");
2164 	bnx2x_vf_igu_disable(bp, vf);
2165 
2166 	/* disable the VF */
2167 	DP(BNX2X_MSG_IOV, "clearing qtbl\n");
2168 	bnx2x_vf_clr_qtbl(bp, vf);
2169 
2170 	/* need to make sure there are no outstanding stats ramrods which may
2171 	 * cause the device to access the VF's stats buffer which it will free
2172 	 * as soon as we return from the close flow.
2173 	 */
2174 	{
2175 		struct set_vf_state_cookie cookie;
2176 
2177 		cookie.vf = vf;
2178 		cookie.state = VF_ACQUIRED;
2179 		rc = bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie);
2180 		if (rc)
2181 			goto op_err;
2182 	}
2183 
2184 	DP(BNX2X_MSG_IOV, "set state to acquired\n");
2185 
2186 	return 0;
2187 op_err:
2188 	BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc);
2189 	return rc;
2190 }
2191 
2192 /* VF release can be called either: 1. The VF was acquired but
2193  * not enabled 2. the vf was enabled or in the process of being
2194  * enabled
2195  */
2196 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf)
2197 {
2198 	int rc;
2199 
2200 	DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid,
2201 	   vf->state == VF_FREE ? "Free" :
2202 	   vf->state == VF_ACQUIRED ? "Acquired" :
2203 	   vf->state == VF_ENABLED ? "Enabled" :
2204 	   vf->state == VF_RESET ? "Reset" :
2205 	   "Unknown");
2206 
2207 	switch (vf->state) {
2208 	case VF_ENABLED:
2209 		rc = bnx2x_vf_close(bp, vf);
2210 		if (rc)
2211 			goto op_err;
2212 		fallthrough;	/* to release resources */
2213 	case VF_ACQUIRED:
2214 		DP(BNX2X_MSG_IOV, "about to free resources\n");
2215 		bnx2x_vf_free_resc(bp, vf);
2216 		break;
2217 
2218 	case VF_FREE:
2219 	case VF_RESET:
2220 	default:
2221 		break;
2222 	}
2223 	return 0;
2224 op_err:
2225 	BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc);
2226 	return rc;
2227 }
2228 
2229 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2230 			struct bnx2x_config_rss_params *rss)
2231 {
2232 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2233 	set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags);
2234 	return bnx2x_config_rss(bp, rss);
2235 }
2236 
2237 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2238 			struct vfpf_tpa_tlv *tlv,
2239 			struct bnx2x_queue_update_tpa_params *params)
2240 {
2241 	aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr;
2242 	struct bnx2x_queue_state_params qstate;
2243 	int qid, rc = 0;
2244 
2245 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2246 
2247 	/* Set ramrod params */
2248 	memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
2249 	memcpy(&qstate.params.update_tpa, params,
2250 	       sizeof(struct bnx2x_queue_update_tpa_params));
2251 	qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA;
2252 	set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
2253 
2254 	for (qid = 0; qid < vf_rxq_count(vf); qid++) {
2255 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
2256 		qstate.params.update_tpa.sge_map = sge_addr[qid];
2257 		DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n",
2258 		   vf->abs_vfid, qid, U64_HI(sge_addr[qid]),
2259 		   U64_LO(sge_addr[qid]));
2260 		rc = bnx2x_queue_state_change(bp, &qstate);
2261 		if (rc) {
2262 			BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n",
2263 				  U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]),
2264 				  vf->abs_vfid, qid);
2265 			return rc;
2266 		}
2267 	}
2268 
2269 	return rc;
2270 }
2271 
2272 /* VF release ~ VF close + VF release-resources
2273  * Release is the ultimate SW shutdown and is called whenever an
2274  * irrecoverable error is encountered.
2275  */
2276 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf)
2277 {
2278 	int rc;
2279 
2280 	DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid);
2281 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2282 
2283 	rc = bnx2x_vf_free(bp, vf);
2284 	if (rc)
2285 		WARN(rc,
2286 		     "VF[%d] Failed to allocate resources for release op- rc=%d\n",
2287 		     vf->abs_vfid, rc);
2288 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2289 	return rc;
2290 }
2291 
2292 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2293 			      enum channel_tlvs tlv)
2294 {
2295 	/* we don't lock the channel for unsupported tlvs */
2296 	if (!bnx2x_tlv_supported(tlv)) {
2297 		BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n");
2298 		return;
2299 	}
2300 
2301 	/* lock the channel */
2302 	mutex_lock(&vf->op_mutex);
2303 
2304 	/* record the locking op */
2305 	vf->op_current = tlv;
2306 
2307 	/* log the lock */
2308 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n",
2309 	   vf->abs_vfid, tlv);
2310 }
2311 
2312 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2313 				enum channel_tlvs expected_tlv)
2314 {
2315 	enum channel_tlvs current_tlv;
2316 
2317 	if (!vf) {
2318 		BNX2X_ERR("VF was %p\n", vf);
2319 		return;
2320 	}
2321 
2322 	current_tlv = vf->op_current;
2323 
2324 	/* we don't unlock the channel for unsupported tlvs */
2325 	if (!bnx2x_tlv_supported(expected_tlv))
2326 		return;
2327 
2328 	WARN(expected_tlv != vf->op_current,
2329 	     "lock mismatch: expected %d found %d", expected_tlv,
2330 	     vf->op_current);
2331 
2332 	/* record the locking op */
2333 	vf->op_current = CHANNEL_TLV_NONE;
2334 
2335 	/* lock the channel */
2336 	mutex_unlock(&vf->op_mutex);
2337 
2338 	/* log the unlock */
2339 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n",
2340 	   vf->abs_vfid, current_tlv);
2341 }
2342 
2343 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable)
2344 {
2345 	struct bnx2x_queue_state_params q_params;
2346 	u32 prev_flags;
2347 	int i, rc;
2348 
2349 	/* Verify changes are needed and record current Tx switching state */
2350 	prev_flags = bp->flags;
2351 	if (enable)
2352 		bp->flags |= TX_SWITCHING;
2353 	else
2354 		bp->flags &= ~TX_SWITCHING;
2355 	if (prev_flags == bp->flags)
2356 		return 0;
2357 
2358 	/* Verify state enables the sending of queue ramrods */
2359 	if ((bp->state != BNX2X_STATE_OPEN) ||
2360 	    (bnx2x_get_q_logical_state(bp,
2361 				      &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) !=
2362 	     BNX2X_Q_LOGICAL_STATE_ACTIVE))
2363 		return 0;
2364 
2365 	/* send q. update ramrod to configure Tx switching */
2366 	memset(&q_params, 0, sizeof(q_params));
2367 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2368 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
2369 	__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
2370 		  &q_params.params.update.update_flags);
2371 	if (enable)
2372 		__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2373 			  &q_params.params.update.update_flags);
2374 	else
2375 		__clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2376 			    &q_params.params.update.update_flags);
2377 
2378 	/* send the ramrod on all the queues of the PF */
2379 	for_each_eth_queue(bp, i) {
2380 		struct bnx2x_fastpath *fp = &bp->fp[i];
2381 		int tx_idx;
2382 
2383 		/* Set the appropriate Queue object */
2384 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
2385 
2386 		for (tx_idx = FIRST_TX_COS_INDEX;
2387 		     tx_idx < fp->max_cos; tx_idx++) {
2388 			q_params.params.update.cid_index = tx_idx;
2389 
2390 			/* Update the Queue state */
2391 			rc = bnx2x_queue_state_change(bp, &q_params);
2392 			if (rc) {
2393 				BNX2X_ERR("Failed to configure Tx switching\n");
2394 				return rc;
2395 			}
2396 		}
2397 	}
2398 
2399 	DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled");
2400 	return 0;
2401 }
2402 
2403 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param)
2404 {
2405 	struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev));
2406 
2407 	if (!IS_SRIOV(bp)) {
2408 		BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n");
2409 		return -EINVAL;
2410 	}
2411 
2412 	DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
2413 	   num_vfs_param, BNX2X_NR_VIRTFN(bp));
2414 
2415 	/* HW channel is only operational when PF is up */
2416 	if (bp->state != BNX2X_STATE_OPEN) {
2417 		BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
2418 		return -EINVAL;
2419 	}
2420 
2421 	/* we are always bound by the total_vfs in the configuration space */
2422 	if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) {
2423 		BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
2424 			  num_vfs_param, BNX2X_NR_VIRTFN(bp));
2425 		num_vfs_param = BNX2X_NR_VIRTFN(bp);
2426 	}
2427 
2428 	bp->requested_nr_virtfn = num_vfs_param;
2429 	if (num_vfs_param == 0) {
2430 		bnx2x_set_pf_tx_switching(bp, false);
2431 		bnx2x_disable_sriov(bp);
2432 		return 0;
2433 	} else {
2434 		return bnx2x_enable_sriov(bp);
2435 	}
2436 }
2437 
2438 #define IGU_ENTRY_SIZE 4
2439 
2440 int bnx2x_enable_sriov(struct bnx2x *bp)
2441 {
2442 	int rc = 0, req_vfs = bp->requested_nr_virtfn;
2443 	int vf_idx, sb_idx, vfq_idx, qcount, first_vf;
2444 	u32 igu_entry, address;
2445 	u16 num_vf_queues;
2446 
2447 	if (req_vfs == 0)
2448 		return 0;
2449 
2450 	first_vf = bp->vfdb->sriov.first_vf_in_pf;
2451 
2452 	/* statically distribute vf sb pool between VFs */
2453 	num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES,
2454 			      BP_VFDB(bp)->vf_sbs_pool / req_vfs);
2455 
2456 	/* zero previous values learned from igu cam */
2457 	for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) {
2458 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2459 
2460 		vf->sb_count = 0;
2461 		vf_sb_count(BP_VF(bp, vf_idx)) = 0;
2462 	}
2463 	bp->vfdb->vf_sbs_pool = 0;
2464 
2465 	/* prepare IGU cam */
2466 	sb_idx = BP_VFDB(bp)->first_vf_igu_entry;
2467 	address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE;
2468 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2469 		for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) {
2470 			igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT |
2471 				vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT |
2472 				IGU_REG_MAPPING_MEMORY_VALID;
2473 			DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n",
2474 			   sb_idx, vf_idx);
2475 			REG_WR(bp, address, igu_entry);
2476 			sb_idx++;
2477 			address += IGU_ENTRY_SIZE;
2478 		}
2479 	}
2480 
2481 	/* Reinitialize vf database according to igu cam */
2482 	bnx2x_get_vf_igu_cam_info(bp);
2483 
2484 	DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n",
2485 	   BP_VFDB(bp)->vf_sbs_pool, num_vf_queues);
2486 
2487 	qcount = 0;
2488 	for_each_vf(bp, vf_idx) {
2489 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2490 
2491 		/* set local queue arrays */
2492 		vf->vfqs = &bp->vfdb->vfqs[qcount];
2493 		qcount += vf_sb_count(vf);
2494 		bnx2x_iov_static_resc(bp, vf);
2495 	}
2496 
2497 	/* prepare msix vectors in VF configuration space - the value in the
2498 	 * PCI configuration space should be the index of the last entry,
2499 	 * namely one less than the actual size of the table
2500 	 */
2501 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2502 		bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx));
2503 		REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL,
2504 		       num_vf_queues - 1);
2505 		DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n",
2506 		   vf_idx, num_vf_queues - 1);
2507 	}
2508 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
2509 
2510 	/* enable sriov. This will probe all the VFs, and consequentially cause
2511 	 * the "acquire" messages to appear on the VF PF channel.
2512 	 */
2513 	DP(BNX2X_MSG_IOV, "about to call enable sriov\n");
2514 	bnx2x_disable_sriov(bp);
2515 
2516 	rc = bnx2x_set_pf_tx_switching(bp, true);
2517 	if (rc)
2518 		return rc;
2519 
2520 	rc = pci_enable_sriov(bp->pdev, req_vfs);
2521 	if (rc) {
2522 		BNX2X_ERR("pci_enable_sriov failed with %d\n", rc);
2523 		return rc;
2524 	}
2525 	DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs);
2526 	return req_vfs;
2527 }
2528 
2529 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp)
2530 {
2531 	int vfidx;
2532 	struct pf_vf_bulletin_content *bulletin;
2533 
2534 	DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n");
2535 	for_each_vf(bp, vfidx) {
2536 		bulletin = BP_VF_BULLETIN(bp, vfidx);
2537 		if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2538 			bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0,
2539 					  htons(ETH_P_8021Q));
2540 	}
2541 }
2542 
2543 void bnx2x_disable_sriov(struct bnx2x *bp)
2544 {
2545 	if (pci_vfs_assigned(bp->pdev)) {
2546 		DP(BNX2X_MSG_IOV,
2547 		   "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2548 		return;
2549 	}
2550 
2551 	pci_disable_sriov(bp->pdev);
2552 }
2553 
2554 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
2555 			    struct bnx2x_virtf **vf,
2556 			    struct pf_vf_bulletin_content **bulletin,
2557 			    bool test_queue)
2558 {
2559 	if (bp->state != BNX2X_STATE_OPEN) {
2560 		BNX2X_ERR("PF is down - can't utilize iov-related functionality\n");
2561 		return -EINVAL;
2562 	}
2563 
2564 	if (!IS_SRIOV(bp)) {
2565 		BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n");
2566 		return -EINVAL;
2567 	}
2568 
2569 	if (vfidx >= BNX2X_NR_VIRTFN(bp)) {
2570 		BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
2571 			  vfidx, BNX2X_NR_VIRTFN(bp));
2572 		return -EINVAL;
2573 	}
2574 
2575 	/* init members */
2576 	*vf = BP_VF(bp, vfidx);
2577 	*bulletin = BP_VF_BULLETIN(bp, vfidx);
2578 
2579 	if (!*vf) {
2580 		BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx);
2581 		return -EINVAL;
2582 	}
2583 
2584 	if (test_queue && !(*vf)->vfqs) {
2585 		BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n",
2586 			  vfidx);
2587 		return -EINVAL;
2588 	}
2589 
2590 	if (!*bulletin) {
2591 		BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n",
2592 			  vfidx);
2593 		return -EINVAL;
2594 	}
2595 
2596 	return 0;
2597 }
2598 
2599 int bnx2x_get_vf_config(struct net_device *dev, int vfidx,
2600 			struct ifla_vf_info *ivi)
2601 {
2602 	struct bnx2x *bp = netdev_priv(dev);
2603 	struct bnx2x_virtf *vf = NULL;
2604 	struct pf_vf_bulletin_content *bulletin = NULL;
2605 	struct bnx2x_vlan_mac_obj *mac_obj;
2606 	struct bnx2x_vlan_mac_obj *vlan_obj;
2607 	int rc;
2608 
2609 	/* sanity and init */
2610 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2611 	if (rc)
2612 		return rc;
2613 
2614 	mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2615 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2616 	if (!mac_obj || !vlan_obj) {
2617 		BNX2X_ERR("VF partially initialized\n");
2618 		return -EINVAL;
2619 	}
2620 
2621 	ivi->vf = vfidx;
2622 	ivi->qos = 0;
2623 	ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */
2624 	ivi->min_tx_rate = 0;
2625 	ivi->spoofchk = vf->spoofchk ? 1 : 0;
2626 	ivi->linkstate = vf->link_cfg;
2627 	if (vf->state == VF_ENABLED) {
2628 		/* mac and vlan are in vlan_mac objects */
2629 		if (bnx2x_validate_vf_sp_objs(bp, vf, false)) {
2630 			mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac,
2631 						0, ETH_ALEN);
2632 			vlan_obj->get_n_elements(bp, vlan_obj, 1,
2633 						 (u8 *)&ivi->vlan, 0,
2634 						 VLAN_HLEN);
2635 		}
2636 	} else {
2637 		mutex_lock(&bp->vfdb->bulletin_mutex);
2638 		/* mac */
2639 		if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID))
2640 			/* mac configured by ndo so its in bulletin board */
2641 			memcpy(&ivi->mac, bulletin->mac, ETH_ALEN);
2642 		else
2643 			/* function has not been loaded yet. Show mac as 0s */
2644 			eth_zero_addr(ivi->mac);
2645 
2646 		/* vlan */
2647 		if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2648 			/* vlan configured by ndo so its in bulletin board */
2649 			memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN);
2650 		else
2651 			/* function has not been loaded yet. Show vlans as 0s */
2652 			memset(&ivi->vlan, 0, VLAN_HLEN);
2653 
2654 		mutex_unlock(&bp->vfdb->bulletin_mutex);
2655 	}
2656 
2657 	return 0;
2658 }
2659 
2660 /* New mac for VF. Consider these cases:
2661  * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
2662  *    supply at acquire.
2663  * 2. VF has already been acquired but has not yet initialized - store in local
2664  *    bulletin board. mac will be posted on VF bulletin board after VF init. VF
2665  *    will configure this mac when it is ready.
2666  * 3. VF has already initialized but has not yet setup a queue - post the new
2667  *    mac on VF's bulletin board right now. VF will configure this mac when it
2668  *    is ready.
2669  * 4. VF has already set a queue - delete any macs already configured for this
2670  *    queue and manually config the new mac.
2671  * In any event, once this function has been called refuse any attempts by the
2672  * VF to configure any mac for itself except for this mac. In case of a race
2673  * where the VF fails to see the new post on its bulletin board before sending a
2674  * mac configuration request, the PF will simply fail the request and VF can try
2675  * again after consulting its bulletin board.
2676  */
2677 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac)
2678 {
2679 	struct bnx2x *bp = netdev_priv(dev);
2680 	int rc, q_logical_state;
2681 	struct bnx2x_virtf *vf = NULL;
2682 	struct pf_vf_bulletin_content *bulletin = NULL;
2683 
2684 	if (!is_valid_ether_addr(mac)) {
2685 		BNX2X_ERR("mac address invalid\n");
2686 		return -EINVAL;
2687 	}
2688 
2689 	/* sanity and init */
2690 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2691 	if (rc)
2692 		return rc;
2693 
2694 	mutex_lock(&bp->vfdb->bulletin_mutex);
2695 
2696 	/* update PF's copy of the VF's bulletin. Will no longer accept mac
2697 	 * configuration requests from vf unless match this mac
2698 	 */
2699 	bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID;
2700 	memcpy(bulletin->mac, mac, ETH_ALEN);
2701 
2702 	/* Post update on VF's bulletin board */
2703 	rc = bnx2x_post_vf_bulletin(bp, vfidx);
2704 
2705 	/* release lock before checking return code */
2706 	mutex_unlock(&bp->vfdb->bulletin_mutex);
2707 
2708 	if (rc) {
2709 		BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2710 		return rc;
2711 	}
2712 
2713 	q_logical_state =
2714 		bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj));
2715 	if (vf->state == VF_ENABLED &&
2716 	    q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
2717 		/* configure the mac in device on this vf's queue */
2718 		unsigned long ramrod_flags = 0;
2719 		struct bnx2x_vlan_mac_obj *mac_obj;
2720 
2721 		/* User should be able to see failure reason in system logs */
2722 		if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2723 			return -EINVAL;
2724 
2725 		/* must lock vfpf channel to protect against vf flows */
2726 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2727 
2728 		/* remove existing eth macs */
2729 		mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2730 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true);
2731 		if (rc) {
2732 			BNX2X_ERR("failed to delete eth macs\n");
2733 			rc = -EINVAL;
2734 			goto out;
2735 		}
2736 
2737 		/* remove existing uc list macs */
2738 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true);
2739 		if (rc) {
2740 			BNX2X_ERR("failed to delete uc_list macs\n");
2741 			rc = -EINVAL;
2742 			goto out;
2743 		}
2744 
2745 		/* configure the new mac to device */
2746 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2747 		bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true,
2748 				  BNX2X_ETH_MAC, &ramrod_flags);
2749 
2750 out:
2751 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2752 	}
2753 
2754 	return rc;
2755 }
2756 
2757 static void bnx2x_set_vf_vlan_acceptance(struct bnx2x *bp,
2758 					 struct bnx2x_virtf *vf, bool accept)
2759 {
2760 	struct bnx2x_rx_mode_ramrod_params rx_ramrod;
2761 	unsigned long accept_flags;
2762 
2763 	/* need to remove/add the VF's accept_any_vlan bit */
2764 	accept_flags = bnx2x_leading_vfq(vf, accept_flags);
2765 	if (accept)
2766 		set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2767 	else
2768 		clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2769 
2770 	bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf,
2771 			      accept_flags);
2772 	bnx2x_leading_vfq(vf, accept_flags) = accept_flags;
2773 	bnx2x_config_rx_mode(bp, &rx_ramrod);
2774 }
2775 
2776 static int bnx2x_set_vf_vlan_filter(struct bnx2x *bp, struct bnx2x_virtf *vf,
2777 				    u16 vlan, bool add)
2778 {
2779 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
2780 	unsigned long ramrod_flags = 0;
2781 	int rc = 0;
2782 
2783 	/* configure the new vlan to device */
2784 	memset(&ramrod_param, 0, sizeof(ramrod_param));
2785 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2786 	ramrod_param.vlan_mac_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2787 	ramrod_param.ramrod_flags = ramrod_flags;
2788 	ramrod_param.user_req.u.vlan.vlan = vlan;
2789 	ramrod_param.user_req.cmd = add ? BNX2X_VLAN_MAC_ADD
2790 					: BNX2X_VLAN_MAC_DEL;
2791 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
2792 	if (rc) {
2793 		BNX2X_ERR("failed to configure vlan\n");
2794 		return -EINVAL;
2795 	}
2796 
2797 	return 0;
2798 }
2799 
2800 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos,
2801 		      __be16 vlan_proto)
2802 {
2803 	struct pf_vf_bulletin_content *bulletin = NULL;
2804 	struct bnx2x *bp = netdev_priv(dev);
2805 	struct bnx2x_vlan_mac_obj *vlan_obj;
2806 	unsigned long vlan_mac_flags = 0;
2807 	unsigned long ramrod_flags = 0;
2808 	struct bnx2x_virtf *vf = NULL;
2809 	int i, rc;
2810 
2811 	if (vlan > 4095) {
2812 		BNX2X_ERR("illegal vlan value %d\n", vlan);
2813 		return -EINVAL;
2814 	}
2815 
2816 	if (vlan_proto != htons(ETH_P_8021Q))
2817 		return -EPROTONOSUPPORT;
2818 
2819 	DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n",
2820 	   vfidx, vlan, 0);
2821 
2822 	/* sanity and init */
2823 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2824 	if (rc)
2825 		return rc;
2826 
2827 	/* update PF's copy of the VF's bulletin. No point in posting the vlan
2828 	 * to the VF since it doesn't have anything to do with it. But it useful
2829 	 * to store it here in case the VF is not up yet and we can only
2830 	 * configure the vlan later when it does. Treat vlan id 0 as remove the
2831 	 * Host tag.
2832 	 */
2833 	mutex_lock(&bp->vfdb->bulletin_mutex);
2834 
2835 	if (vlan > 0)
2836 		bulletin->valid_bitmap |= 1 << VLAN_VALID;
2837 	else
2838 		bulletin->valid_bitmap &= ~(1 << VLAN_VALID);
2839 	bulletin->vlan = vlan;
2840 
2841 	/* Post update on VF's bulletin board */
2842 	rc = bnx2x_post_vf_bulletin(bp, vfidx);
2843 	if (rc)
2844 		BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2845 	mutex_unlock(&bp->vfdb->bulletin_mutex);
2846 
2847 	/* is vf initialized and queue set up? */
2848 	if (vf->state != VF_ENABLED ||
2849 	    bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2850 	    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2851 		return rc;
2852 
2853 	/* User should be able to see error in system logs */
2854 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2855 		return -EINVAL;
2856 
2857 	/* must lock vfpf channel to protect against vf flows */
2858 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2859 
2860 	/* remove existing vlans */
2861 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2862 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2863 	rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags,
2864 				  &ramrod_flags);
2865 	if (rc) {
2866 		BNX2X_ERR("failed to delete vlans\n");
2867 		rc = -EINVAL;
2868 		goto out;
2869 	}
2870 
2871 	/* clear accept_any_vlan when HV forces vlan, otherwise
2872 	 * according to VF capabilities
2873 	 */
2874 	if (vlan || !(vf->cfg_flags & VF_CFG_VLAN_FILTER))
2875 		bnx2x_set_vf_vlan_acceptance(bp, vf, !vlan);
2876 
2877 	rc = bnx2x_set_vf_vlan_filter(bp, vf, vlan, true);
2878 	if (rc)
2879 		goto out;
2880 
2881 	/* send queue update ramrods to configure default vlan and
2882 	 * silent vlan removal
2883 	 */
2884 	for_each_vfq(vf, i) {
2885 		struct bnx2x_queue_state_params q_params = {NULL};
2886 		struct bnx2x_queue_update_params *update_params;
2887 
2888 		q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj);
2889 
2890 		/* validate the Q is UP */
2891 		if (bnx2x_get_q_logical_state(bp, q_params.q_obj) !=
2892 		    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2893 			continue;
2894 
2895 		__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2896 		q_params.cmd = BNX2X_Q_CMD_UPDATE;
2897 		update_params = &q_params.params.update;
2898 		__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
2899 			  &update_params->update_flags);
2900 		__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
2901 			  &update_params->update_flags);
2902 		if (vlan == 0) {
2903 			/* if vlan is 0 then we want to leave the VF traffic
2904 			 * untagged, and leave the incoming traffic untouched
2905 			 * (i.e. do not remove any vlan tags).
2906 			 */
2907 			__clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2908 				    &update_params->update_flags);
2909 			__clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2910 				    &update_params->update_flags);
2911 		} else {
2912 			/* configure default vlan to vf queue and set silent
2913 			 * vlan removal (the vf remains unaware of this vlan).
2914 			 */
2915 			__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2916 				  &update_params->update_flags);
2917 			__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2918 				  &update_params->update_flags);
2919 			update_params->def_vlan = vlan;
2920 			update_params->silent_removal_value =
2921 				vlan & VLAN_VID_MASK;
2922 			update_params->silent_removal_mask = VLAN_VID_MASK;
2923 		}
2924 
2925 		/* Update the Queue state */
2926 		rc = bnx2x_queue_state_change(bp, &q_params);
2927 		if (rc) {
2928 			BNX2X_ERR("Failed to configure default VLAN queue %d\n",
2929 				  i);
2930 			goto out;
2931 		}
2932 	}
2933 out:
2934 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2935 
2936 	if (rc)
2937 		DP(BNX2X_MSG_IOV,
2938 		   "updated VF[%d] vlan configuration (vlan = %d)\n",
2939 		   vfidx, vlan);
2940 
2941 	return rc;
2942 }
2943 
2944 int bnx2x_set_vf_spoofchk(struct net_device *dev, int idx, bool val)
2945 {
2946 	struct bnx2x *bp = netdev_priv(dev);
2947 	struct bnx2x_virtf *vf;
2948 	int i, rc = 0;
2949 
2950 	vf = BP_VF(bp, idx);
2951 	if (!vf)
2952 		return -EINVAL;
2953 
2954 	/* nothing to do */
2955 	if (vf->spoofchk == val)
2956 		return 0;
2957 
2958 	vf->spoofchk = val ? 1 : 0;
2959 
2960 	DP(BNX2X_MSG_IOV, "%s spoofchk for VF %d\n",
2961 	   val ? "enabling" : "disabling", idx);
2962 
2963 	/* is vf initialized and queue set up? */
2964 	if (vf->state != VF_ENABLED ||
2965 	    bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2966 	    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2967 		return rc;
2968 
2969 	/* User should be able to see error in system logs */
2970 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2971 		return -EINVAL;
2972 
2973 	/* send queue update ramrods to configure spoofchk */
2974 	for_each_vfq(vf, i) {
2975 		struct bnx2x_queue_state_params q_params = {NULL};
2976 		struct bnx2x_queue_update_params *update_params;
2977 
2978 		q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj);
2979 
2980 		/* validate the Q is UP */
2981 		if (bnx2x_get_q_logical_state(bp, q_params.q_obj) !=
2982 		    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2983 			continue;
2984 
2985 		__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2986 		q_params.cmd = BNX2X_Q_CMD_UPDATE;
2987 		update_params = &q_params.params.update;
2988 		__set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG,
2989 			  &update_params->update_flags);
2990 		if (val) {
2991 			__set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF,
2992 				  &update_params->update_flags);
2993 		} else {
2994 			__clear_bit(BNX2X_Q_UPDATE_ANTI_SPOOF,
2995 				    &update_params->update_flags);
2996 		}
2997 
2998 		/* Update the Queue state */
2999 		rc = bnx2x_queue_state_change(bp, &q_params);
3000 		if (rc) {
3001 			BNX2X_ERR("Failed to %s spoofchk on VF %d - vfq %d\n",
3002 				  val ? "enable" : "disable", idx, i);
3003 			goto out;
3004 		}
3005 	}
3006 out:
3007 	if (!rc)
3008 		DP(BNX2X_MSG_IOV,
3009 		   "%s spoofchk for VF[%d]\n", val ? "Enabled" : "Disabled",
3010 		   idx);
3011 
3012 	return rc;
3013 }
3014 
3015 /* crc is the first field in the bulletin board. Compute the crc over the
3016  * entire bulletin board excluding the crc field itself. Use the length field
3017  * as the Bulletin Board was posted by a PF with possibly a different version
3018  * from the vf which will sample it. Therefore, the length is computed by the
3019  * PF and then used blindly by the VF.
3020  */
3021 u32 bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content *bulletin)
3022 {
3023 	return crc32(BULLETIN_CRC_SEED,
3024 		 ((u8 *)bulletin) + sizeof(bulletin->crc),
3025 		 bulletin->length - sizeof(bulletin->crc));
3026 }
3027 
3028 /* Check for new posts on the bulletin board */
3029 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp)
3030 {
3031 	struct pf_vf_bulletin_content *bulletin;
3032 	int attempts;
3033 
3034 	/* sampling structure in mid post may result with corrupted data
3035 	 * validate crc to ensure coherency.
3036 	 */
3037 	for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) {
3038 		u32 crc;
3039 
3040 		/* sample the bulletin board */
3041 		memcpy(&bp->shadow_bulletin, bp->pf2vf_bulletin,
3042 		       sizeof(union pf_vf_bulletin));
3043 
3044 		crc = bnx2x_crc_vf_bulletin(&bp->shadow_bulletin.content);
3045 
3046 		if (bp->shadow_bulletin.content.crc == crc)
3047 			break;
3048 
3049 		BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
3050 			  bp->shadow_bulletin.content.crc, crc);
3051 	}
3052 
3053 	if (attempts >= BULLETIN_ATTEMPTS) {
3054 		BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
3055 			  attempts);
3056 		return PFVF_BULLETIN_CRC_ERR;
3057 	}
3058 	bulletin = &bp->shadow_bulletin.content;
3059 
3060 	/* bulletin board hasn't changed since last sample */
3061 	if (bp->old_bulletin.version == bulletin->version)
3062 		return PFVF_BULLETIN_UNCHANGED;
3063 
3064 	/* the mac address in bulletin board is valid and is new */
3065 	if (bulletin->valid_bitmap & 1 << MAC_ADDR_VALID &&
3066 	    !ether_addr_equal(bulletin->mac, bp->old_bulletin.mac)) {
3067 		/* update new mac to net device */
3068 		memcpy(bp->dev->dev_addr, bulletin->mac, ETH_ALEN);
3069 	}
3070 
3071 	if (bulletin->valid_bitmap & (1 << LINK_VALID)) {
3072 		DP(BNX2X_MSG_IOV, "link update speed %d flags %x\n",
3073 		   bulletin->link_speed, bulletin->link_flags);
3074 
3075 		bp->vf_link_vars.line_speed = bulletin->link_speed;
3076 		bp->vf_link_vars.link_report_flags = 0;
3077 		/* Link is down */
3078 		if (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)
3079 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
3080 				  &bp->vf_link_vars.link_report_flags);
3081 		/* Full DUPLEX */
3082 		if (bulletin->link_flags & VFPF_LINK_REPORT_FULL_DUPLEX)
3083 			__set_bit(BNX2X_LINK_REPORT_FD,
3084 				  &bp->vf_link_vars.link_report_flags);
3085 		/* Rx Flow Control is ON */
3086 		if (bulletin->link_flags & VFPF_LINK_REPORT_RX_FC_ON)
3087 			__set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
3088 				  &bp->vf_link_vars.link_report_flags);
3089 		/* Tx Flow Control is ON */
3090 		if (bulletin->link_flags & VFPF_LINK_REPORT_TX_FC_ON)
3091 			__set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
3092 				  &bp->vf_link_vars.link_report_flags);
3093 		__bnx2x_link_report(bp);
3094 	}
3095 
3096 	/* copy new bulletin board to bp */
3097 	memcpy(&bp->old_bulletin, bulletin,
3098 	       sizeof(struct pf_vf_bulletin_content));
3099 
3100 	return PFVF_BULLETIN_UPDATED;
3101 }
3102 
3103 void bnx2x_timer_sriov(struct bnx2x *bp)
3104 {
3105 	bnx2x_sample_bulletin(bp);
3106 
3107 	/* if channel is down we need to self destruct */
3108 	if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN)
3109 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
3110 				       BNX2X_MSG_IOV);
3111 }
3112 
3113 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp)
3114 {
3115 	/* vf doorbells are embedded within the regview */
3116 	return bp->regview + PXP_VF_ADDR_DB_START;
3117 }
3118 
3119 void bnx2x_vf_pci_dealloc(struct bnx2x *bp)
3120 {
3121 	BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
3122 		       sizeof(struct bnx2x_vf_mbx_msg));
3123 	BNX2X_PCI_FREE(bp->pf2vf_bulletin, bp->pf2vf_bulletin_mapping,
3124 		       sizeof(union pf_vf_bulletin));
3125 }
3126 
3127 int bnx2x_vf_pci_alloc(struct bnx2x *bp)
3128 {
3129 	mutex_init(&bp->vf2pf_mutex);
3130 
3131 	/* allocate vf2pf mailbox for vf to pf channel */
3132 	bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping,
3133 					 sizeof(struct bnx2x_vf_mbx_msg));
3134 	if (!bp->vf2pf_mbox)
3135 		goto alloc_mem_err;
3136 
3137 	/* allocate pf 2 vf bulletin board */
3138 	bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping,
3139 					     sizeof(union pf_vf_bulletin));
3140 	if (!bp->pf2vf_bulletin)
3141 		goto alloc_mem_err;
3142 
3143 	bnx2x_vf_bulletin_finalize(&bp->pf2vf_bulletin->content, true);
3144 
3145 	return 0;
3146 
3147 alloc_mem_err:
3148 	bnx2x_vf_pci_dealloc(bp);
3149 	return -ENOMEM;
3150 }
3151 
3152 void bnx2x_iov_channel_down(struct bnx2x *bp)
3153 {
3154 	int vf_idx;
3155 	struct pf_vf_bulletin_content *bulletin;
3156 
3157 	if (!IS_SRIOV(bp))
3158 		return;
3159 
3160 	for_each_vf(bp, vf_idx) {
3161 		/* locate this VFs bulletin board and update the channel down
3162 		 * bit
3163 		 */
3164 		bulletin = BP_VF_BULLETIN(bp, vf_idx);
3165 		bulletin->valid_bitmap |= 1 << CHANNEL_DOWN;
3166 
3167 		/* update vf bulletin board */
3168 		bnx2x_post_vf_bulletin(bp, vf_idx);
3169 	}
3170 }
3171 
3172 void bnx2x_iov_task(struct work_struct *work)
3173 {
3174 	struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work);
3175 
3176 	if (!netif_running(bp->dev))
3177 		return;
3178 
3179 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR,
3180 			       &bp->iov_task_state))
3181 		bnx2x_vf_handle_flr_event(bp);
3182 
3183 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG,
3184 			       &bp->iov_task_state))
3185 		bnx2x_vf_mbx(bp);
3186 }
3187 
3188 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag)
3189 {
3190 	smp_mb__before_atomic();
3191 	set_bit(flag, &bp->iov_task_state);
3192 	smp_mb__after_atomic();
3193 	DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
3194 	queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0);
3195 }
3196