1 /* bnx2x_sriov.c: QLogic Everest network driver. 2 * 3 * Copyright 2009-2013 Broadcom Corporation 4 * Copyright 2014 QLogic Corporation 5 * All rights reserved 6 * 7 * Unless you and QLogic execute a separate written software license 8 * agreement governing use of this software, this software is licensed to you 9 * under the terms of the GNU General Public License version 2, available 10 * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL"). 11 * 12 * Notwithstanding the above, under no circumstances may you combine this 13 * software in any way with any other QLogic software provided under a 14 * license other than the GPL, without QLogic's express prior written 15 * consent. 16 * 17 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 18 * Written by: Shmulik Ravid 19 * Ariel Elior <ariel.elior@qlogic.com> 20 * 21 */ 22 #include "bnx2x.h" 23 #include "bnx2x_init.h" 24 #include "bnx2x_cmn.h" 25 #include "bnx2x_sp.h" 26 #include <linux/crc32.h> 27 #include <linux/if_vlan.h> 28 29 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx, 30 struct bnx2x_virtf **vf, 31 struct pf_vf_bulletin_content **bulletin, 32 bool test_queue); 33 34 /* General service functions */ 35 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid, 36 u16 pf_id) 37 { 38 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid), 39 pf_id); 40 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid), 41 pf_id); 42 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid), 43 pf_id); 44 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid), 45 pf_id); 46 } 47 48 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid, 49 u8 enable) 50 { 51 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid), 52 enable); 53 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid), 54 enable); 55 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid), 56 enable); 57 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid), 58 enable); 59 } 60 61 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid) 62 { 63 int idx; 64 65 for_each_vf(bp, idx) 66 if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid) 67 break; 68 return idx; 69 } 70 71 static 72 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid) 73 { 74 u16 idx = (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid); 75 return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL; 76 } 77 78 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf, 79 u8 igu_sb_id, u8 segment, u16 index, u8 op, 80 u8 update) 81 { 82 /* acking a VF sb through the PF - use the GRC */ 83 u32 ctl; 84 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 85 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 86 u32 func_encode = vf->abs_vfid; 87 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id; 88 struct igu_regular cmd_data = {0}; 89 90 cmd_data.sb_id_and_flags = 91 ((index << IGU_REGULAR_SB_INDEX_SHIFT) | 92 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) | 93 (update << IGU_REGULAR_BUPDATE_SHIFT) | 94 (op << IGU_REGULAR_ENABLE_INT_SHIFT)); 95 96 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT | 97 func_encode << IGU_CTRL_REG_FID_SHIFT | 98 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT; 99 100 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 101 cmd_data.sb_id_and_flags, igu_addr_data); 102 REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags); 103 barrier(); 104 105 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 106 ctl, igu_addr_ctl); 107 REG_WR(bp, igu_addr_ctl, ctl); 108 barrier(); 109 } 110 111 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp, 112 struct bnx2x_virtf *vf, 113 bool print_err) 114 { 115 if (!bnx2x_leading_vfq(vf, sp_initialized)) { 116 if (print_err) 117 BNX2X_ERR("Slowpath objects not yet initialized!\n"); 118 else 119 DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n"); 120 return false; 121 } 122 return true; 123 } 124 125 /* VFOP operations states */ 126 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf, 127 struct bnx2x_queue_init_params *init_params, 128 struct bnx2x_queue_setup_params *setup_params, 129 u16 q_idx, u16 sb_idx) 130 { 131 DP(BNX2X_MSG_IOV, 132 "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d", 133 vf->abs_vfid, 134 q_idx, 135 sb_idx, 136 init_params->tx.sb_cq_index, 137 init_params->tx.hc_rate, 138 setup_params->flags, 139 setup_params->txq_params.traffic_type); 140 } 141 142 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf, 143 struct bnx2x_queue_init_params *init_params, 144 struct bnx2x_queue_setup_params *setup_params, 145 u16 q_idx, u16 sb_idx) 146 { 147 struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params; 148 149 DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n" 150 "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n", 151 vf->abs_vfid, 152 q_idx, 153 sb_idx, 154 init_params->rx.sb_cq_index, 155 init_params->rx.hc_rate, 156 setup_params->gen_params.mtu, 157 rxq_params->buf_sz, 158 rxq_params->sge_buf_sz, 159 rxq_params->max_sges_pkt, 160 rxq_params->tpa_agg_sz, 161 setup_params->flags, 162 rxq_params->drop_flags, 163 rxq_params->cache_line_log); 164 } 165 166 void bnx2x_vfop_qctor_prep(struct bnx2x *bp, 167 struct bnx2x_virtf *vf, 168 struct bnx2x_vf_queue *q, 169 struct bnx2x_vf_queue_construct_params *p, 170 unsigned long q_type) 171 { 172 struct bnx2x_queue_init_params *init_p = &p->qstate.params.init; 173 struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup; 174 175 /* INIT */ 176 177 /* Enable host coalescing in the transition to INIT state */ 178 if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags)) 179 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags); 180 181 if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags)) 182 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags); 183 184 /* FW SB ID */ 185 init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx); 186 init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx); 187 188 /* context */ 189 init_p->cxts[0] = q->cxt; 190 191 /* SETUP */ 192 193 /* Setup-op general parameters */ 194 setup_p->gen_params.spcl_id = vf->sp_cl_id; 195 setup_p->gen_params.stat_id = vfq_stat_id(vf, q); 196 setup_p->gen_params.fp_hsi = vf->fp_hsi; 197 198 /* Setup-op flags: 199 * collect statistics, zero statistics, local-switching, security, 200 * OV for Flex10, RSS and MCAST for leading 201 */ 202 if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags)) 203 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags); 204 205 /* for VFs, enable tx switching, bd coherency, and mac address 206 * anti-spoofing 207 */ 208 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags); 209 __set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags); 210 if (vf->spoofchk) 211 __set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags); 212 else 213 __clear_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags); 214 215 /* Setup-op rx parameters */ 216 if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) { 217 struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params; 218 219 rxq_p->cl_qzone_id = vfq_qzone_id(vf, q); 220 rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx); 221 rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid); 222 223 if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags)) 224 rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES; 225 } 226 227 /* Setup-op tx parameters */ 228 if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) { 229 setup_p->txq_params.tss_leading_cl_id = vf->leading_rss; 230 setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx); 231 } 232 } 233 234 static int bnx2x_vf_queue_create(struct bnx2x *bp, 235 struct bnx2x_virtf *vf, int qid, 236 struct bnx2x_vf_queue_construct_params *qctor) 237 { 238 struct bnx2x_queue_state_params *q_params; 239 int rc = 0; 240 241 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 242 243 /* Prepare ramrod information */ 244 q_params = &qctor->qstate; 245 q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj); 246 set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags); 247 248 if (bnx2x_get_q_logical_state(bp, q_params->q_obj) == 249 BNX2X_Q_LOGICAL_STATE_ACTIVE) { 250 DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n"); 251 goto out; 252 } 253 254 /* Run Queue 'construction' ramrods */ 255 q_params->cmd = BNX2X_Q_CMD_INIT; 256 rc = bnx2x_queue_state_change(bp, q_params); 257 if (rc) 258 goto out; 259 260 memcpy(&q_params->params.setup, &qctor->prep_qsetup, 261 sizeof(struct bnx2x_queue_setup_params)); 262 q_params->cmd = BNX2X_Q_CMD_SETUP; 263 rc = bnx2x_queue_state_change(bp, q_params); 264 if (rc) 265 goto out; 266 267 /* enable interrupts */ 268 bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)), 269 USTORM_ID, 0, IGU_INT_ENABLE, 0); 270 out: 271 return rc; 272 } 273 274 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf, 275 int qid) 276 { 277 enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT, 278 BNX2X_Q_CMD_TERMINATE, 279 BNX2X_Q_CMD_CFC_DEL}; 280 struct bnx2x_queue_state_params q_params; 281 int rc, i; 282 283 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 284 285 /* Prepare ramrod information */ 286 memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params)); 287 q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj); 288 set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 289 290 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) == 291 BNX2X_Q_LOGICAL_STATE_STOPPED) { 292 DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n"); 293 goto out; 294 } 295 296 /* Run Queue 'destruction' ramrods */ 297 for (i = 0; i < ARRAY_SIZE(cmds); i++) { 298 q_params.cmd = cmds[i]; 299 rc = bnx2x_queue_state_change(bp, &q_params); 300 if (rc) { 301 BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]); 302 return rc; 303 } 304 } 305 out: 306 /* Clean Context */ 307 if (bnx2x_vfq(vf, qid, cxt)) { 308 bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0; 309 bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0; 310 } 311 312 return 0; 313 } 314 315 static void 316 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid) 317 { 318 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid); 319 if (vf) { 320 /* the first igu entry belonging to VFs of this PF */ 321 if (!BP_VFDB(bp)->first_vf_igu_entry) 322 BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id; 323 324 /* the first igu entry belonging to this VF */ 325 if (!vf_sb_count(vf)) 326 vf->igu_base_id = igu_sb_id; 327 328 ++vf_sb_count(vf); 329 ++vf->sb_count; 330 } 331 BP_VFDB(bp)->vf_sbs_pool++; 332 } 333 334 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf, 335 int qid, bool drv_only, int type) 336 { 337 struct bnx2x_vlan_mac_ramrod_params ramrod; 338 int rc; 339 340 DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid, 341 (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" : 342 (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs"); 343 344 /* Prepare ramrod params */ 345 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params)); 346 if (type == BNX2X_VF_FILTER_VLAN_MAC) { 347 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); 348 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj); 349 } else if (type == BNX2X_VF_FILTER_MAC) { 350 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); 351 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj); 352 } else { 353 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj); 354 } 355 ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL; 356 357 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags); 358 if (drv_only) 359 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags); 360 else 361 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags); 362 363 /* Start deleting */ 364 rc = ramrod.vlan_mac_obj->delete_all(bp, 365 ramrod.vlan_mac_obj, 366 &ramrod.user_req.vlan_mac_flags, 367 &ramrod.ramrod_flags); 368 if (rc) { 369 BNX2X_ERR("Failed to delete all %s\n", 370 (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" : 371 (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs"); 372 return rc; 373 } 374 375 return 0; 376 } 377 378 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp, 379 struct bnx2x_virtf *vf, int qid, 380 struct bnx2x_vf_mac_vlan_filter *filter, 381 bool drv_only) 382 { 383 struct bnx2x_vlan_mac_ramrod_params ramrod; 384 int rc; 385 386 DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n", 387 vf->abs_vfid, filter->add ? "Adding" : "Deleting", 388 (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MAC" : 389 (filter->type == BNX2X_VF_FILTER_MAC) ? "MAC" : "VLAN"); 390 391 /* Prepare ramrod params */ 392 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params)); 393 if (filter->type == BNX2X_VF_FILTER_VLAN_MAC) { 394 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj); 395 ramrod.user_req.u.vlan.vlan = filter->vid; 396 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN); 397 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); 398 } else if (filter->type == BNX2X_VF_FILTER_VLAN) { 399 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj); 400 ramrod.user_req.u.vlan.vlan = filter->vid; 401 } else { 402 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); 403 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj); 404 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN); 405 } 406 ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD : 407 BNX2X_VLAN_MAC_DEL; 408 409 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags); 410 if (drv_only) 411 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags); 412 else 413 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags); 414 415 /* Add/Remove the filter */ 416 rc = bnx2x_config_vlan_mac(bp, &ramrod); 417 if (rc == -EEXIST) 418 return 0; 419 if (rc) { 420 BNX2X_ERR("Failed to %s %s\n", 421 filter->add ? "add" : "delete", 422 (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? 423 "VLAN-MAC" : 424 (filter->type == BNX2X_VF_FILTER_MAC) ? 425 "MAC" : "VLAN"); 426 return rc; 427 } 428 429 filter->applied = true; 430 431 return 0; 432 } 433 434 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf, 435 struct bnx2x_vf_mac_vlan_filters *filters, 436 int qid, bool drv_only) 437 { 438 int rc = 0, i; 439 440 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 441 442 if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) 443 return -EINVAL; 444 445 /* Prepare ramrod params */ 446 for (i = 0; i < filters->count; i++) { 447 rc = bnx2x_vf_mac_vlan_config(bp, vf, qid, 448 &filters->filters[i], drv_only); 449 if (rc) 450 break; 451 } 452 453 /* Rollback if needed */ 454 if (i != filters->count) { 455 BNX2X_ERR("Managed only %d/%d filters - rolling back\n", 456 i, filters->count); 457 while (--i >= 0) { 458 if (!filters->filters[i].applied) 459 continue; 460 filters->filters[i].add = !filters->filters[i].add; 461 bnx2x_vf_mac_vlan_config(bp, vf, qid, 462 &filters->filters[i], 463 drv_only); 464 } 465 } 466 467 /* It's our responsibility to free the filters */ 468 kfree(filters); 469 470 return rc; 471 } 472 473 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid, 474 struct bnx2x_vf_queue_construct_params *qctor) 475 { 476 int rc; 477 478 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 479 480 rc = bnx2x_vf_queue_create(bp, vf, qid, qctor); 481 if (rc) 482 goto op_err; 483 484 /* Schedule the configuration of any pending vlan filters */ 485 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN, 486 BNX2X_MSG_IOV); 487 return 0; 488 op_err: 489 BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc); 490 return rc; 491 } 492 493 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf, 494 int qid) 495 { 496 int rc; 497 498 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 499 500 /* If needed, clean the filtering data base */ 501 if ((qid == LEADING_IDX) && 502 bnx2x_validate_vf_sp_objs(bp, vf, false)) { 503 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, 504 BNX2X_VF_FILTER_VLAN_MAC); 505 if (rc) 506 goto op_err; 507 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, 508 BNX2X_VF_FILTER_VLAN); 509 if (rc) 510 goto op_err; 511 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, 512 BNX2X_VF_FILTER_MAC); 513 if (rc) 514 goto op_err; 515 } 516 517 /* Terminate queue */ 518 if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) { 519 struct bnx2x_queue_state_params qstate; 520 521 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params)); 522 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj); 523 qstate.q_obj->state = BNX2X_Q_STATE_STOPPED; 524 qstate.cmd = BNX2X_Q_CMD_TERMINATE; 525 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags); 526 rc = bnx2x_queue_state_change(bp, &qstate); 527 if (rc) 528 goto op_err; 529 } 530 531 return 0; 532 op_err: 533 BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc); 534 return rc; 535 } 536 537 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf, 538 bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only) 539 { 540 struct bnx2x_mcast_list_elem *mc = NULL; 541 struct bnx2x_mcast_ramrod_params mcast; 542 int rc, i; 543 544 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 545 546 /* Prepare Multicast command */ 547 memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params)); 548 mcast.mcast_obj = &vf->mcast_obj; 549 if (drv_only) 550 set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags); 551 else 552 set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags); 553 if (mc_num) { 554 mc = kcalloc(mc_num, sizeof(struct bnx2x_mcast_list_elem), 555 GFP_KERNEL); 556 if (!mc) { 557 BNX2X_ERR("Cannot Configure multicasts due to lack of memory\n"); 558 return -ENOMEM; 559 } 560 } 561 562 if (mc_num) { 563 INIT_LIST_HEAD(&mcast.mcast_list); 564 for (i = 0; i < mc_num; i++) { 565 mc[i].mac = mcasts[i]; 566 list_add_tail(&mc[i].link, 567 &mcast.mcast_list); 568 } 569 570 /* add new mcasts */ 571 mcast.mcast_list_len = mc_num; 572 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_SET); 573 if (rc) 574 BNX2X_ERR("Failed to set multicasts\n"); 575 } else { 576 /* clear existing mcasts */ 577 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL); 578 if (rc) 579 BNX2X_ERR("Failed to remove multicasts\n"); 580 } 581 582 kfree(mc); 583 584 return rc; 585 } 586 587 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid, 588 struct bnx2x_rx_mode_ramrod_params *ramrod, 589 struct bnx2x_virtf *vf, 590 unsigned long accept_flags) 591 { 592 struct bnx2x_vf_queue *vfq = vfq_get(vf, qid); 593 594 memset(ramrod, 0, sizeof(*ramrod)); 595 ramrod->cid = vfq->cid; 596 ramrod->cl_id = vfq_cl_id(vf, vfq); 597 ramrod->rx_mode_obj = &bp->rx_mode_obj; 598 ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid); 599 ramrod->rx_accept_flags = accept_flags; 600 ramrod->tx_accept_flags = accept_flags; 601 ramrod->pstate = &vf->filter_state; 602 ramrod->state = BNX2X_FILTER_RX_MODE_PENDING; 603 604 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state); 605 set_bit(RAMROD_RX, &ramrod->ramrod_flags); 606 set_bit(RAMROD_TX, &ramrod->ramrod_flags); 607 608 ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2); 609 ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2); 610 } 611 612 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf, 613 int qid, unsigned long accept_flags) 614 { 615 struct bnx2x_rx_mode_ramrod_params ramrod; 616 617 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 618 619 bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags); 620 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags); 621 vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags; 622 return bnx2x_config_rx_mode(bp, &ramrod); 623 } 624 625 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid) 626 { 627 int rc; 628 629 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 630 631 /* Remove all classification configuration for leading queue */ 632 if (qid == LEADING_IDX) { 633 rc = bnx2x_vf_rxmode(bp, vf, qid, 0); 634 if (rc) 635 goto op_err; 636 637 /* Remove filtering if feasible */ 638 if (bnx2x_validate_vf_sp_objs(bp, vf, true)) { 639 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, 640 false, 641 BNX2X_VF_FILTER_VLAN_MAC); 642 if (rc) 643 goto op_err; 644 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, 645 false, 646 BNX2X_VF_FILTER_VLAN); 647 if (rc) 648 goto op_err; 649 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, 650 false, 651 BNX2X_VF_FILTER_MAC); 652 if (rc) 653 goto op_err; 654 rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false); 655 if (rc) 656 goto op_err; 657 } 658 } 659 660 /* Destroy queue */ 661 rc = bnx2x_vf_queue_destroy(bp, vf, qid); 662 if (rc) 663 goto op_err; 664 return rc; 665 op_err: 666 BNX2X_ERR("vf[%d:%d] error: rc %d\n", 667 vf->abs_vfid, qid, rc); 668 return rc; 669 } 670 671 /* VF enable primitives 672 * when pretend is required the caller is responsible 673 * for calling pretend prior to calling these routines 674 */ 675 676 /* internal vf enable - until vf is enabled internally all transactions 677 * are blocked. This routine should always be called last with pretend. 678 */ 679 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable) 680 { 681 REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0); 682 } 683 684 /* clears vf error in all semi blocks */ 685 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid) 686 { 687 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid); 688 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid); 689 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid); 690 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid); 691 } 692 693 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid) 694 { 695 u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5; 696 u32 was_err_reg = 0; 697 698 switch (was_err_group) { 699 case 0: 700 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR; 701 break; 702 case 1: 703 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR; 704 break; 705 case 2: 706 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR; 707 break; 708 case 3: 709 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR; 710 break; 711 } 712 REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f)); 713 } 714 715 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf) 716 { 717 int i; 718 u32 val; 719 720 /* Set VF masks and configuration - pretend */ 721 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 722 723 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 724 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 725 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0); 726 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0); 727 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0); 728 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0); 729 730 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION); 731 val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN); 732 val &= ~IGU_VF_CONF_PARENT_MASK; 733 val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT; 734 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val); 735 736 DP(BNX2X_MSG_IOV, 737 "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n", 738 vf->abs_vfid, val); 739 740 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 741 742 /* iterate over all queues, clear sb consumer */ 743 for (i = 0; i < vf_sb_count(vf); i++) { 744 u8 igu_sb_id = vf_igu_sb(vf, i); 745 746 /* zero prod memory */ 747 REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0); 748 749 /* clear sb state machine */ 750 bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id, 751 false /* VF */); 752 753 /* disable + update */ 754 bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0, 755 IGU_INT_DISABLE, 1); 756 } 757 } 758 759 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid) 760 { 761 u16 abs_fid; 762 763 abs_fid = FW_VF_HANDLE(abs_vfid); 764 765 /* set the VF-PF association in the FW */ 766 storm_memset_vf_to_pf(bp, abs_fid, BP_FUNC(bp)); 767 storm_memset_func_en(bp, abs_fid, 1); 768 769 /* Invalidate fp_hsi version for vfs */ 770 if (bp->fw_cap & FW_CAP_INVALIDATE_VF_FP_HSI) 771 REG_WR8(bp, BAR_XSTRORM_INTMEM + 772 XSTORM_ETH_FUNCTION_INFO_FP_HSI_VALID_E2_OFFSET(abs_fid), 0); 773 774 /* clear vf errors*/ 775 bnx2x_vf_semi_clear_err(bp, abs_vfid); 776 bnx2x_vf_pglue_clear_err(bp, abs_vfid); 777 778 /* internal vf-enable - pretend */ 779 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid)); 780 DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid); 781 bnx2x_vf_enable_internal(bp, true); 782 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 783 } 784 785 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf) 786 { 787 /* Reset vf in IGU interrupts are still disabled */ 788 bnx2x_vf_igu_reset(bp, vf); 789 790 /* pretend to enable the vf with the PBF */ 791 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 792 REG_WR(bp, PBF_REG_DISABLE_VF, 0); 793 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 794 } 795 796 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid) 797 { 798 struct pci_dev *dev; 799 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid); 800 801 if (!vf) 802 return false; 803 804 dev = pci_get_domain_bus_and_slot(vf->domain, vf->bus, vf->devfn); 805 if (dev) 806 return bnx2x_is_pcie_pending(dev); 807 return false; 808 } 809 810 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid) 811 { 812 /* Verify no pending pci transactions */ 813 if (bnx2x_vf_is_pcie_pending(bp, abs_vfid)) 814 BNX2X_ERR("PCIE Transactions still pending\n"); 815 816 return 0; 817 } 818 819 /* must be called after the number of PF queues and the number of VFs are 820 * both known 821 */ 822 static void 823 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf) 824 { 825 struct vf_pf_resc_request *resc = &vf->alloc_resc; 826 827 /* will be set only during VF-ACQUIRE */ 828 resc->num_rxqs = 0; 829 resc->num_txqs = 0; 830 831 resc->num_mac_filters = VF_MAC_CREDIT_CNT; 832 resc->num_vlan_filters = VF_VLAN_CREDIT_CNT; 833 834 /* no real limitation */ 835 resc->num_mc_filters = 0; 836 837 /* num_sbs already set */ 838 resc->num_sbs = vf->sb_count; 839 } 840 841 /* FLR routines: */ 842 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf) 843 { 844 /* reset the state variables */ 845 bnx2x_iov_static_resc(bp, vf); 846 vf->state = VF_FREE; 847 } 848 849 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf) 850 { 851 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp); 852 853 /* DQ usage counter */ 854 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 855 bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT, 856 "DQ VF usage counter timed out", 857 poll_cnt); 858 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 859 860 /* FW cleanup command - poll for the results */ 861 if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid), 862 poll_cnt)) 863 BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid); 864 865 /* verify TX hw is flushed */ 866 bnx2x_tx_hw_flushed(bp, poll_cnt); 867 } 868 869 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf) 870 { 871 int rc, i; 872 873 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 874 875 /* the cleanup operations are valid if and only if the VF 876 * was first acquired. 877 */ 878 for (i = 0; i < vf_rxq_count(vf); i++) { 879 rc = bnx2x_vf_queue_flr(bp, vf, i); 880 if (rc) 881 goto out; 882 } 883 884 /* remove multicasts */ 885 bnx2x_vf_mcast(bp, vf, NULL, 0, true); 886 887 /* dispatch final cleanup and wait for HW queues to flush */ 888 bnx2x_vf_flr_clnup_hw(bp, vf); 889 890 /* release VF resources */ 891 bnx2x_vf_free_resc(bp, vf); 892 893 vf->malicious = false; 894 895 /* re-open the mailbox */ 896 bnx2x_vf_enable_mbx(bp, vf->abs_vfid); 897 return; 898 out: 899 BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n", 900 vf->abs_vfid, i, rc); 901 } 902 903 static void bnx2x_vf_flr_clnup(struct bnx2x *bp) 904 { 905 struct bnx2x_virtf *vf; 906 int i; 907 908 for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) { 909 /* VF should be RESET & in FLR cleanup states */ 910 if (bnx2x_vf(bp, i, state) != VF_RESET || 911 !bnx2x_vf(bp, i, flr_clnup_stage)) 912 continue; 913 914 DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n", 915 i, BNX2X_NR_VIRTFN(bp)); 916 917 vf = BP_VF(bp, i); 918 919 /* lock the vf pf channel */ 920 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR); 921 922 /* invoke the VF FLR SM */ 923 bnx2x_vf_flr(bp, vf); 924 925 /* mark the VF to be ACKED and continue */ 926 vf->flr_clnup_stage = false; 927 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR); 928 } 929 930 /* Acknowledge the handled VFs. 931 * we are acknowledge all the vfs which an flr was requested for, even 932 * if amongst them there are such that we never opened, since the mcp 933 * will interrupt us immediately again if we only ack some of the bits, 934 * resulting in an endless loop. This can happen for example in KVM 935 * where an 'all ones' flr request is sometimes given by hyper visor 936 */ 937 DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n", 938 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]); 939 for (i = 0; i < FLRD_VFS_DWORDS; i++) 940 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 941 bp->vfdb->flrd_vfs[i]); 942 943 bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0); 944 945 /* clear the acked bits - better yet if the MCP implemented 946 * write to clear semantics 947 */ 948 for (i = 0; i < FLRD_VFS_DWORDS; i++) 949 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0); 950 } 951 952 void bnx2x_vf_handle_flr_event(struct bnx2x *bp) 953 { 954 int i; 955 956 /* Read FLR'd VFs */ 957 for (i = 0; i < FLRD_VFS_DWORDS; i++) 958 bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]); 959 960 DP(BNX2X_MSG_MCP, 961 "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n", 962 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]); 963 964 for_each_vf(bp, i) { 965 struct bnx2x_virtf *vf = BP_VF(bp, i); 966 u32 reset = 0; 967 968 if (vf->abs_vfid < 32) 969 reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid); 970 else 971 reset = bp->vfdb->flrd_vfs[1] & 972 (1 << (vf->abs_vfid - 32)); 973 974 if (reset) { 975 /* set as reset and ready for cleanup */ 976 vf->state = VF_RESET; 977 vf->flr_clnup_stage = true; 978 979 DP(BNX2X_MSG_IOV, 980 "Initiating Final cleanup for VF %d\n", 981 vf->abs_vfid); 982 } 983 } 984 985 /* do the FLR cleanup for all marked VFs*/ 986 bnx2x_vf_flr_clnup(bp); 987 } 988 989 /* IOV global initialization routines */ 990 void bnx2x_iov_init_dq(struct bnx2x *bp) 991 { 992 if (!IS_SRIOV(bp)) 993 return; 994 995 /* Set the DQ such that the CID reflect the abs_vfid */ 996 REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0); 997 REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS)); 998 999 /* Set VFs starting CID. If its > 0 the preceding CIDs are belong to 1000 * the PF L2 queues 1001 */ 1002 REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID); 1003 1004 /* The VF window size is the log2 of the max number of CIDs per VF */ 1005 REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND); 1006 1007 /* The VF doorbell size 0 - *B, 4 - 128B. We set it here to match 1008 * the Pf doorbell size although the 2 are independent. 1009 */ 1010 REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3); 1011 1012 /* No security checks for now - 1013 * configure single rule (out of 16) mask = 0x1, value = 0x0, 1014 * CID range 0 - 0x1ffff 1015 */ 1016 REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1); 1017 REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0); 1018 REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0); 1019 REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff); 1020 1021 /* set the VF doorbell threshold. This threshold represents the amount 1022 * of doorbells allowed in the main DORQ fifo for a specific VF. 1023 */ 1024 REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64); 1025 } 1026 1027 void bnx2x_iov_init_dmae(struct bnx2x *bp) 1028 { 1029 if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV)) 1030 REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0); 1031 } 1032 1033 static int bnx2x_vf_domain(struct bnx2x *bp, int vfid) 1034 { 1035 struct pci_dev *dev = bp->pdev; 1036 1037 return pci_domain_nr(dev->bus); 1038 } 1039 1040 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid) 1041 { 1042 struct pci_dev *dev = bp->pdev; 1043 struct bnx2x_sriov *iov = &bp->vfdb->sriov; 1044 1045 return dev->bus->number + ((dev->devfn + iov->offset + 1046 iov->stride * vfid) >> 8); 1047 } 1048 1049 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid) 1050 { 1051 struct pci_dev *dev = bp->pdev; 1052 struct bnx2x_sriov *iov = &bp->vfdb->sriov; 1053 1054 return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff; 1055 } 1056 1057 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf) 1058 { 1059 int i, n; 1060 struct pci_dev *dev = bp->pdev; 1061 struct bnx2x_sriov *iov = &bp->vfdb->sriov; 1062 1063 for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) { 1064 u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i); 1065 u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i); 1066 1067 size /= iov->total; 1068 vf->bars[n].bar = start + size * vf->abs_vfid; 1069 vf->bars[n].size = size; 1070 } 1071 } 1072 1073 static int 1074 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp) 1075 { 1076 int sb_id; 1077 u32 val; 1078 u8 fid, current_pf = 0; 1079 1080 /* IGU in normal mode - read CAM */ 1081 for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) { 1082 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4); 1083 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) 1084 continue; 1085 fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID); 1086 if (fid & IGU_FID_ENCODE_IS_PF) 1087 current_pf = fid & IGU_FID_PF_NUM_MASK; 1088 else if (current_pf == BP_FUNC(bp)) 1089 bnx2x_vf_set_igu_info(bp, sb_id, 1090 (fid & IGU_FID_VF_NUM_MASK)); 1091 DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n", 1092 ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"), 1093 ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) : 1094 (fid & IGU_FID_VF_NUM_MASK)), sb_id, 1095 GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)); 1096 } 1097 DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool); 1098 return BP_VFDB(bp)->vf_sbs_pool; 1099 } 1100 1101 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp) 1102 { 1103 if (bp->vfdb) { 1104 kfree(bp->vfdb->vfqs); 1105 kfree(bp->vfdb->vfs); 1106 kfree(bp->vfdb); 1107 } 1108 bp->vfdb = NULL; 1109 } 1110 1111 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov) 1112 { 1113 int pos; 1114 struct pci_dev *dev = bp->pdev; 1115 1116 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV); 1117 if (!pos) { 1118 BNX2X_ERR("failed to find SRIOV capability in device\n"); 1119 return -ENODEV; 1120 } 1121 1122 iov->pos = pos; 1123 DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos); 1124 pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl); 1125 pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total); 1126 pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial); 1127 pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset); 1128 pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride); 1129 pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz); 1130 pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap); 1131 pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link); 1132 1133 return 0; 1134 } 1135 1136 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov) 1137 { 1138 u32 val; 1139 1140 /* read the SRIOV capability structure 1141 * The fields can be read via configuration read or 1142 * directly from the device (starting at offset PCICFG_OFFSET) 1143 */ 1144 if (bnx2x_sriov_pci_cfg_info(bp, iov)) 1145 return -ENODEV; 1146 1147 /* get the number of SRIOV bars */ 1148 iov->nres = 0; 1149 1150 /* read the first_vfid */ 1151 val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF); 1152 iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK) 1153 * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp)); 1154 1155 DP(BNX2X_MSG_IOV, 1156 "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n", 1157 BP_FUNC(bp), 1158 iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total, 1159 iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz); 1160 1161 return 0; 1162 } 1163 1164 /* must be called after PF bars are mapped */ 1165 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param, 1166 int num_vfs_param) 1167 { 1168 int err, i; 1169 struct bnx2x_sriov *iov; 1170 struct pci_dev *dev = bp->pdev; 1171 1172 bp->vfdb = NULL; 1173 1174 /* verify is pf */ 1175 if (IS_VF(bp)) 1176 return 0; 1177 1178 /* verify sriov capability is present in configuration space */ 1179 if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV)) 1180 return 0; 1181 1182 /* verify chip revision */ 1183 if (CHIP_IS_E1x(bp)) 1184 return 0; 1185 1186 /* check if SRIOV support is turned off */ 1187 if (!num_vfs_param) 1188 return 0; 1189 1190 /* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */ 1191 if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) { 1192 BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n", 1193 BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID); 1194 return 0; 1195 } 1196 1197 /* SRIOV can be enabled only with MSIX */ 1198 if (int_mode_param == BNX2X_INT_MODE_MSI || 1199 int_mode_param == BNX2X_INT_MODE_INTX) { 1200 BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n"); 1201 return 0; 1202 } 1203 1204 /* verify ari is enabled */ 1205 if (!pci_ari_enabled(bp->pdev->bus)) { 1206 BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n"); 1207 return 0; 1208 } 1209 1210 /* verify igu is in normal mode */ 1211 if (CHIP_INT_MODE_IS_BC(bp)) { 1212 BNX2X_ERR("IGU not normal mode, SRIOV can not be enabled\n"); 1213 return 0; 1214 } 1215 1216 /* allocate the vfs database */ 1217 bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL); 1218 if (!bp->vfdb) { 1219 BNX2X_ERR("failed to allocate vf database\n"); 1220 err = -ENOMEM; 1221 goto failed; 1222 } 1223 1224 /* get the sriov info - Linux already collected all the pertinent 1225 * information, however the sriov structure is for the private use 1226 * of the pci module. Also we want this information regardless 1227 * of the hyper-visor. 1228 */ 1229 iov = &(bp->vfdb->sriov); 1230 err = bnx2x_sriov_info(bp, iov); 1231 if (err) 1232 goto failed; 1233 1234 /* SR-IOV capability was enabled but there are no VFs*/ 1235 if (iov->total == 0) { 1236 err = 0; 1237 goto failed; 1238 } 1239 1240 iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param); 1241 1242 DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n", 1243 num_vfs_param, iov->nr_virtfn); 1244 1245 /* allocate the vf array */ 1246 bp->vfdb->vfs = kcalloc(BNX2X_NR_VIRTFN(bp), 1247 sizeof(struct bnx2x_virtf), 1248 GFP_KERNEL); 1249 if (!bp->vfdb->vfs) { 1250 BNX2X_ERR("failed to allocate vf array\n"); 1251 err = -ENOMEM; 1252 goto failed; 1253 } 1254 1255 /* Initial VF init - index and abs_vfid - nr_virtfn must be set */ 1256 for_each_vf(bp, i) { 1257 bnx2x_vf(bp, i, index) = i; 1258 bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i; 1259 bnx2x_vf(bp, i, state) = VF_FREE; 1260 mutex_init(&bnx2x_vf(bp, i, op_mutex)); 1261 bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE; 1262 /* enable spoofchk by default */ 1263 bnx2x_vf(bp, i, spoofchk) = 1; 1264 } 1265 1266 /* re-read the IGU CAM for VFs - index and abs_vfid must be set */ 1267 if (!bnx2x_get_vf_igu_cam_info(bp)) { 1268 BNX2X_ERR("No entries in IGU CAM for vfs\n"); 1269 err = -EINVAL; 1270 goto failed; 1271 } 1272 1273 /* allocate the queue arrays for all VFs */ 1274 bp->vfdb->vfqs = kcalloc(BNX2X_MAX_NUM_VF_QUEUES, 1275 sizeof(struct bnx2x_vf_queue), 1276 GFP_KERNEL); 1277 1278 if (!bp->vfdb->vfqs) { 1279 BNX2X_ERR("failed to allocate vf queue array\n"); 1280 err = -ENOMEM; 1281 goto failed; 1282 } 1283 1284 /* Prepare the VFs event synchronization mechanism */ 1285 mutex_init(&bp->vfdb->event_mutex); 1286 1287 mutex_init(&bp->vfdb->bulletin_mutex); 1288 1289 if (SHMEM2_HAS(bp, sriov_switch_mode)) 1290 SHMEM2_WR(bp, sriov_switch_mode, SRIOV_SWITCH_MODE_VEB); 1291 1292 return 0; 1293 failed: 1294 DP(BNX2X_MSG_IOV, "Failed err=%d\n", err); 1295 __bnx2x_iov_free_vfdb(bp); 1296 return err; 1297 } 1298 1299 void bnx2x_iov_remove_one(struct bnx2x *bp) 1300 { 1301 int vf_idx; 1302 1303 /* if SRIOV is not enabled there's nothing to do */ 1304 if (!IS_SRIOV(bp)) 1305 return; 1306 1307 bnx2x_disable_sriov(bp); 1308 1309 /* disable access to all VFs */ 1310 for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) { 1311 bnx2x_pretend_func(bp, 1312 HW_VF_HANDLE(bp, 1313 bp->vfdb->sriov.first_vf_in_pf + 1314 vf_idx)); 1315 DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n", 1316 bp->vfdb->sriov.first_vf_in_pf + vf_idx); 1317 bnx2x_vf_enable_internal(bp, 0); 1318 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 1319 } 1320 1321 /* free vf database */ 1322 __bnx2x_iov_free_vfdb(bp); 1323 } 1324 1325 void bnx2x_iov_free_mem(struct bnx2x *bp) 1326 { 1327 int i; 1328 1329 if (!IS_SRIOV(bp)) 1330 return; 1331 1332 /* free vfs hw contexts */ 1333 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) { 1334 struct hw_dma *cxt = &bp->vfdb->context[i]; 1335 BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size); 1336 } 1337 1338 BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr, 1339 BP_VFDB(bp)->sp_dma.mapping, 1340 BP_VFDB(bp)->sp_dma.size); 1341 1342 BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr, 1343 BP_VF_MBX_DMA(bp)->mapping, 1344 BP_VF_MBX_DMA(bp)->size); 1345 1346 BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr, 1347 BP_VF_BULLETIN_DMA(bp)->mapping, 1348 BP_VF_BULLETIN_DMA(bp)->size); 1349 } 1350 1351 int bnx2x_iov_alloc_mem(struct bnx2x *bp) 1352 { 1353 size_t tot_size; 1354 int i, rc = 0; 1355 1356 if (!IS_SRIOV(bp)) 1357 return rc; 1358 1359 /* allocate vfs hw contexts */ 1360 tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) * 1361 BNX2X_CIDS_PER_VF * sizeof(union cdu_context); 1362 1363 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) { 1364 struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i); 1365 cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ); 1366 1367 if (cxt->size) { 1368 cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size); 1369 if (!cxt->addr) 1370 goto alloc_mem_err; 1371 } else { 1372 cxt->addr = NULL; 1373 cxt->mapping = 0; 1374 } 1375 tot_size -= cxt->size; 1376 } 1377 1378 /* allocate vfs ramrods dma memory - client_init and set_mac */ 1379 tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp); 1380 BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping, 1381 tot_size); 1382 if (!BP_VFDB(bp)->sp_dma.addr) 1383 goto alloc_mem_err; 1384 BP_VFDB(bp)->sp_dma.size = tot_size; 1385 1386 /* allocate mailboxes */ 1387 tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE; 1388 BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping, 1389 tot_size); 1390 if (!BP_VF_MBX_DMA(bp)->addr) 1391 goto alloc_mem_err; 1392 1393 BP_VF_MBX_DMA(bp)->size = tot_size; 1394 1395 /* allocate local bulletin boards */ 1396 tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE; 1397 BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping, 1398 tot_size); 1399 if (!BP_VF_BULLETIN_DMA(bp)->addr) 1400 goto alloc_mem_err; 1401 1402 BP_VF_BULLETIN_DMA(bp)->size = tot_size; 1403 1404 return 0; 1405 1406 alloc_mem_err: 1407 return -ENOMEM; 1408 } 1409 1410 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf, 1411 struct bnx2x_vf_queue *q) 1412 { 1413 u8 cl_id = vfq_cl_id(vf, q); 1414 u8 func_id = FW_VF_HANDLE(vf->abs_vfid); 1415 unsigned long q_type = 0; 1416 1417 set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 1418 set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 1419 1420 /* Queue State object */ 1421 bnx2x_init_queue_obj(bp, &q->sp_obj, 1422 cl_id, &q->cid, 1, func_id, 1423 bnx2x_vf_sp(bp, vf, q_data), 1424 bnx2x_vf_sp_map(bp, vf, q_data), 1425 q_type); 1426 1427 /* sp indication is set only when vlan/mac/etc. are initialized */ 1428 q->sp_initialized = false; 1429 1430 DP(BNX2X_MSG_IOV, 1431 "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n", 1432 vf->abs_vfid, q->sp_obj.func_id, q->cid); 1433 } 1434 1435 static int bnx2x_max_speed_cap(struct bnx2x *bp) 1436 { 1437 u32 supported = bp->port.supported[bnx2x_get_link_cfg_idx(bp)]; 1438 1439 if (supported & 1440 (SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full)) 1441 return 20000; 1442 1443 return 10000; /* assume lowest supported speed is 10G */ 1444 } 1445 1446 int bnx2x_iov_link_update_vf(struct bnx2x *bp, int idx) 1447 { 1448 struct bnx2x_link_report_data *state = &bp->last_reported_link; 1449 struct pf_vf_bulletin_content *bulletin; 1450 struct bnx2x_virtf *vf; 1451 bool update = true; 1452 int rc = 0; 1453 1454 /* sanity and init */ 1455 rc = bnx2x_vf_op_prep(bp, idx, &vf, &bulletin, false); 1456 if (rc) 1457 return rc; 1458 1459 mutex_lock(&bp->vfdb->bulletin_mutex); 1460 1461 if (vf->link_cfg == IFLA_VF_LINK_STATE_AUTO) { 1462 bulletin->valid_bitmap |= 1 << LINK_VALID; 1463 1464 bulletin->link_speed = state->line_speed; 1465 bulletin->link_flags = 0; 1466 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1467 &state->link_report_flags)) 1468 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN; 1469 if (test_bit(BNX2X_LINK_REPORT_FD, 1470 &state->link_report_flags)) 1471 bulletin->link_flags |= VFPF_LINK_REPORT_FULL_DUPLEX; 1472 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1473 &state->link_report_flags)) 1474 bulletin->link_flags |= VFPF_LINK_REPORT_RX_FC_ON; 1475 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1476 &state->link_report_flags)) 1477 bulletin->link_flags |= VFPF_LINK_REPORT_TX_FC_ON; 1478 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_DISABLE && 1479 !(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) { 1480 bulletin->valid_bitmap |= 1 << LINK_VALID; 1481 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN; 1482 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_ENABLE && 1483 (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) { 1484 bulletin->valid_bitmap |= 1 << LINK_VALID; 1485 bulletin->link_speed = bnx2x_max_speed_cap(bp); 1486 bulletin->link_flags &= ~VFPF_LINK_REPORT_LINK_DOWN; 1487 } else { 1488 update = false; 1489 } 1490 1491 if (update) { 1492 DP(NETIF_MSG_LINK | BNX2X_MSG_IOV, 1493 "vf %d mode %u speed %d flags %x\n", idx, 1494 vf->link_cfg, bulletin->link_speed, bulletin->link_flags); 1495 1496 /* Post update on VF's bulletin board */ 1497 rc = bnx2x_post_vf_bulletin(bp, idx); 1498 if (rc) { 1499 BNX2X_ERR("failed to update VF[%d] bulletin\n", idx); 1500 goto out; 1501 } 1502 } 1503 1504 out: 1505 mutex_unlock(&bp->vfdb->bulletin_mutex); 1506 return rc; 1507 } 1508 1509 int bnx2x_set_vf_link_state(struct net_device *dev, int idx, int link_state) 1510 { 1511 struct bnx2x *bp = netdev_priv(dev); 1512 struct bnx2x_virtf *vf = BP_VF(bp, idx); 1513 1514 if (!vf) 1515 return -EINVAL; 1516 1517 if (vf->link_cfg == link_state) 1518 return 0; /* nothing todo */ 1519 1520 vf->link_cfg = link_state; 1521 1522 return bnx2x_iov_link_update_vf(bp, idx); 1523 } 1524 1525 void bnx2x_iov_link_update(struct bnx2x *bp) 1526 { 1527 int vfid; 1528 1529 if (!IS_SRIOV(bp)) 1530 return; 1531 1532 for_each_vf(bp, vfid) 1533 bnx2x_iov_link_update_vf(bp, vfid); 1534 } 1535 1536 /* called by bnx2x_nic_load */ 1537 int bnx2x_iov_nic_init(struct bnx2x *bp) 1538 { 1539 int vfid; 1540 1541 if (!IS_SRIOV(bp)) { 1542 DP(BNX2X_MSG_IOV, "vfdb was not allocated\n"); 1543 return 0; 1544 } 1545 1546 DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn); 1547 1548 /* let FLR complete ... */ 1549 msleep(100); 1550 1551 /* initialize vf database */ 1552 for_each_vf(bp, vfid) { 1553 struct bnx2x_virtf *vf = BP_VF(bp, vfid); 1554 1555 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) * 1556 BNX2X_CIDS_PER_VF; 1557 1558 union cdu_context *base_cxt = (union cdu_context *) 1559 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr + 1560 (base_vf_cid & (ILT_PAGE_CIDS-1)); 1561 1562 DP(BNX2X_MSG_IOV, 1563 "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n", 1564 vf->abs_vfid, vf_sb_count(vf), base_vf_cid, 1565 BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt); 1566 1567 /* init statically provisioned resources */ 1568 bnx2x_iov_static_resc(bp, vf); 1569 1570 /* queues are initialized during VF-ACQUIRE */ 1571 vf->filter_state = 0; 1572 vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id); 1573 1574 bnx2x_init_credit_pool(&vf->vf_vlans_pool, 0, 1575 vf_vlan_rules_cnt(vf)); 1576 bnx2x_init_credit_pool(&vf->vf_macs_pool, 0, 1577 vf_mac_rules_cnt(vf)); 1578 1579 /* init mcast object - This object will be re-initialized 1580 * during VF-ACQUIRE with the proper cl_id and cid. 1581 * It needs to be initialized here so that it can be safely 1582 * handled by a subsequent FLR flow. 1583 */ 1584 bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF, 1585 0xFF, 0xFF, 0xFF, 1586 bnx2x_vf_sp(bp, vf, mcast_rdata), 1587 bnx2x_vf_sp_map(bp, vf, mcast_rdata), 1588 BNX2X_FILTER_MCAST_PENDING, 1589 &vf->filter_state, 1590 BNX2X_OBJ_TYPE_RX_TX); 1591 1592 /* set the mailbox message addresses */ 1593 BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *) 1594 (((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid * 1595 MBX_MSG_ALIGNED_SIZE); 1596 1597 BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping + 1598 vfid * MBX_MSG_ALIGNED_SIZE; 1599 1600 /* Enable vf mailbox */ 1601 bnx2x_vf_enable_mbx(bp, vf->abs_vfid); 1602 } 1603 1604 /* Final VF init */ 1605 for_each_vf(bp, vfid) { 1606 struct bnx2x_virtf *vf = BP_VF(bp, vfid); 1607 1608 /* fill in the BDF and bars */ 1609 vf->domain = bnx2x_vf_domain(bp, vfid); 1610 vf->bus = bnx2x_vf_bus(bp, vfid); 1611 vf->devfn = bnx2x_vf_devfn(bp, vfid); 1612 bnx2x_vf_set_bars(bp, vf); 1613 1614 DP(BNX2X_MSG_IOV, 1615 "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n", 1616 vf->abs_vfid, vf->bus, vf->devfn, 1617 (unsigned)vf->bars[0].bar, vf->bars[0].size, 1618 (unsigned)vf->bars[1].bar, vf->bars[1].size, 1619 (unsigned)vf->bars[2].bar, vf->bars[2].size); 1620 } 1621 1622 return 0; 1623 } 1624 1625 /* called by bnx2x_chip_cleanup */ 1626 int bnx2x_iov_chip_cleanup(struct bnx2x *bp) 1627 { 1628 int i; 1629 1630 if (!IS_SRIOV(bp)) 1631 return 0; 1632 1633 /* release all the VFs */ 1634 for_each_vf(bp, i) 1635 bnx2x_vf_release(bp, BP_VF(bp, i)); 1636 1637 return 0; 1638 } 1639 1640 /* called by bnx2x_init_hw_func, returns the next ilt line */ 1641 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line) 1642 { 1643 int i; 1644 struct bnx2x_ilt *ilt = BP_ILT(bp); 1645 1646 if (!IS_SRIOV(bp)) 1647 return line; 1648 1649 /* set vfs ilt lines */ 1650 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) { 1651 struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i); 1652 1653 ilt->lines[line+i].page = hw_cxt->addr; 1654 ilt->lines[line+i].page_mapping = hw_cxt->mapping; 1655 ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */ 1656 } 1657 return line + i; 1658 } 1659 1660 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid) 1661 { 1662 return ((cid >= BNX2X_FIRST_VF_CID) && 1663 ((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS)); 1664 } 1665 1666 static 1667 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp, 1668 struct bnx2x_vf_queue *vfq, 1669 union event_ring_elem *elem) 1670 { 1671 unsigned long ramrod_flags = 0; 1672 int rc = 0; 1673 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo); 1674 1675 /* Always push next commands out, don't wait here */ 1676 set_bit(RAMROD_CONT, &ramrod_flags); 1677 1678 switch (echo >> BNX2X_SWCID_SHIFT) { 1679 case BNX2X_FILTER_MAC_PENDING: 1680 rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem, 1681 &ramrod_flags); 1682 break; 1683 case BNX2X_FILTER_VLAN_PENDING: 1684 rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem, 1685 &ramrod_flags); 1686 break; 1687 default: 1688 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo); 1689 return; 1690 } 1691 if (rc < 0) 1692 BNX2X_ERR("Failed to schedule new commands: %d\n", rc); 1693 else if (rc > 0) 1694 DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n"); 1695 } 1696 1697 static 1698 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp, 1699 struct bnx2x_virtf *vf) 1700 { 1701 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 1702 int rc; 1703 1704 rparam.mcast_obj = &vf->mcast_obj; 1705 vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw); 1706 1707 /* If there are pending mcast commands - send them */ 1708 if (vf->mcast_obj.check_pending(&vf->mcast_obj)) { 1709 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 1710 if (rc < 0) 1711 BNX2X_ERR("Failed to send pending mcast commands: %d\n", 1712 rc); 1713 } 1714 } 1715 1716 static 1717 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp, 1718 struct bnx2x_virtf *vf) 1719 { 1720 smp_mb__before_atomic(); 1721 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state); 1722 smp_mb__after_atomic(); 1723 } 1724 1725 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp, 1726 struct bnx2x_virtf *vf) 1727 { 1728 vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw); 1729 } 1730 1731 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem) 1732 { 1733 struct bnx2x_virtf *vf; 1734 int qidx = 0, abs_vfid; 1735 u8 opcode; 1736 u16 cid = 0xffff; 1737 1738 if (!IS_SRIOV(bp)) 1739 return 1; 1740 1741 /* first get the cid - the only events we handle here are cfc-delete 1742 * and set-mac completion 1743 */ 1744 opcode = elem->message.opcode; 1745 1746 switch (opcode) { 1747 case EVENT_RING_OPCODE_CFC_DEL: 1748 cid = SW_CID(elem->message.data.cfc_del_event.cid); 1749 DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid); 1750 break; 1751 case EVENT_RING_OPCODE_CLASSIFICATION_RULES: 1752 case EVENT_RING_OPCODE_MULTICAST_RULES: 1753 case EVENT_RING_OPCODE_FILTERS_RULES: 1754 case EVENT_RING_OPCODE_RSS_UPDATE_RULES: 1755 cid = SW_CID(elem->message.data.eth_event.echo); 1756 DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid); 1757 break; 1758 case EVENT_RING_OPCODE_VF_FLR: 1759 abs_vfid = elem->message.data.vf_flr_event.vf_id; 1760 DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n", 1761 abs_vfid); 1762 goto get_vf; 1763 case EVENT_RING_OPCODE_MALICIOUS_VF: 1764 abs_vfid = elem->message.data.malicious_vf_event.vf_id; 1765 BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n", 1766 abs_vfid, 1767 elem->message.data.malicious_vf_event.err_id); 1768 goto get_vf; 1769 default: 1770 return 1; 1771 } 1772 1773 /* check if the cid is the VF range */ 1774 if (!bnx2x_iov_is_vf_cid(bp, cid)) { 1775 DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid); 1776 return 1; 1777 } 1778 1779 /* extract vf and rxq index from vf_cid - relies on the following: 1780 * 1. vfid on cid reflects the true abs_vfid 1781 * 2. The max number of VFs (per path) is 64 1782 */ 1783 qidx = cid & ((1 << BNX2X_VF_CID_WND)-1); 1784 abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1); 1785 get_vf: 1786 vf = bnx2x_vf_by_abs_fid(bp, abs_vfid); 1787 1788 if (!vf) { 1789 BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n", 1790 cid, abs_vfid); 1791 return 0; 1792 } 1793 1794 switch (opcode) { 1795 case EVENT_RING_OPCODE_CFC_DEL: 1796 DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n", 1797 vf->abs_vfid, qidx); 1798 vfq_get(vf, qidx)->sp_obj.complete_cmd(bp, 1799 &vfq_get(vf, 1800 qidx)->sp_obj, 1801 BNX2X_Q_CMD_CFC_DEL); 1802 break; 1803 case EVENT_RING_OPCODE_CLASSIFICATION_RULES: 1804 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n", 1805 vf->abs_vfid, qidx); 1806 bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem); 1807 break; 1808 case EVENT_RING_OPCODE_MULTICAST_RULES: 1809 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n", 1810 vf->abs_vfid, qidx); 1811 bnx2x_vf_handle_mcast_eqe(bp, vf); 1812 break; 1813 case EVENT_RING_OPCODE_FILTERS_RULES: 1814 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n", 1815 vf->abs_vfid, qidx); 1816 bnx2x_vf_handle_filters_eqe(bp, vf); 1817 break; 1818 case EVENT_RING_OPCODE_RSS_UPDATE_RULES: 1819 DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n", 1820 vf->abs_vfid, qidx); 1821 bnx2x_vf_handle_rss_update_eqe(bp, vf); 1822 fallthrough; 1823 case EVENT_RING_OPCODE_VF_FLR: 1824 /* Do nothing for now */ 1825 return 0; 1826 case EVENT_RING_OPCODE_MALICIOUS_VF: 1827 vf->malicious = true; 1828 return 0; 1829 } 1830 1831 return 0; 1832 } 1833 1834 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid) 1835 { 1836 /* extract the vf from vf_cid - relies on the following: 1837 * 1. vfid on cid reflects the true abs_vfid 1838 * 2. The max number of VFs (per path) is 64 1839 */ 1840 int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1); 1841 return bnx2x_vf_by_abs_fid(bp, abs_vfid); 1842 } 1843 1844 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid, 1845 struct bnx2x_queue_sp_obj **q_obj) 1846 { 1847 struct bnx2x_virtf *vf; 1848 1849 if (!IS_SRIOV(bp)) 1850 return; 1851 1852 vf = bnx2x_vf_by_cid(bp, vf_cid); 1853 1854 if (vf) { 1855 /* extract queue index from vf_cid - relies on the following: 1856 * 1. vfid on cid reflects the true abs_vfid 1857 * 2. The max number of VFs (per path) is 64 1858 */ 1859 int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1); 1860 *q_obj = &bnx2x_vfq(vf, q_index, sp_obj); 1861 } else { 1862 BNX2X_ERR("No vf matching cid %d\n", vf_cid); 1863 } 1864 } 1865 1866 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp) 1867 { 1868 int i; 1869 int first_queue_query_index, num_queues_req; 1870 struct stats_query_entry *cur_query_entry; 1871 u8 stats_count = 0; 1872 bool is_fcoe = false; 1873 1874 if (!IS_SRIOV(bp)) 1875 return; 1876 1877 if (!NO_FCOE(bp)) 1878 is_fcoe = true; 1879 1880 /* fcoe adds one global request and one queue request */ 1881 num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe; 1882 first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX - 1883 (is_fcoe ? 0 : 1); 1884 1885 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1886 "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n", 1887 BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index, 1888 first_queue_query_index + num_queues_req); 1889 1890 cur_query_entry = &bp->fw_stats_req-> 1891 query[first_queue_query_index + num_queues_req]; 1892 1893 for_each_vf(bp, i) { 1894 int j; 1895 struct bnx2x_virtf *vf = BP_VF(bp, i); 1896 1897 if (vf->state != VF_ENABLED) { 1898 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1899 "vf %d not enabled so no stats for it\n", 1900 vf->abs_vfid); 1901 continue; 1902 } 1903 1904 if (vf->malicious) { 1905 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1906 "vf %d malicious so no stats for it\n", 1907 vf->abs_vfid); 1908 continue; 1909 } 1910 1911 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1912 "add addresses for vf %d\n", vf->abs_vfid); 1913 for_each_vfq(vf, j) { 1914 struct bnx2x_vf_queue *rxq = vfq_get(vf, j); 1915 1916 dma_addr_t q_stats_addr = 1917 vf->fw_stat_map + j * vf->stats_stride; 1918 1919 /* collect stats fro active queues only */ 1920 if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) == 1921 BNX2X_Q_LOGICAL_STATE_STOPPED) 1922 continue; 1923 1924 /* create stats query entry for this queue */ 1925 cur_query_entry->kind = STATS_TYPE_QUEUE; 1926 cur_query_entry->index = vfq_stat_id(vf, rxq); 1927 cur_query_entry->funcID = 1928 cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid)); 1929 cur_query_entry->address.hi = 1930 cpu_to_le32(U64_HI(q_stats_addr)); 1931 cur_query_entry->address.lo = 1932 cpu_to_le32(U64_LO(q_stats_addr)); 1933 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1934 "added address %x %x for vf %d queue %d client %d\n", 1935 cur_query_entry->address.hi, 1936 cur_query_entry->address.lo, 1937 cur_query_entry->funcID, 1938 j, cur_query_entry->index); 1939 cur_query_entry++; 1940 stats_count++; 1941 1942 /* all stats are coalesced to the leading queue */ 1943 if (vf->cfg_flags & VF_CFG_STATS_COALESCE) 1944 break; 1945 } 1946 } 1947 bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count; 1948 } 1949 1950 /* VF API helpers */ 1951 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid, 1952 u8 enable) 1953 { 1954 u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4; 1955 u32 val = enable ? (abs_vfid | (1 << 6)) : 0; 1956 1957 REG_WR(bp, reg, val); 1958 } 1959 1960 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf) 1961 { 1962 int i; 1963 1964 for_each_vfq(vf, i) 1965 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid, 1966 vfq_qzone_id(vf, vfq_get(vf, i)), false); 1967 } 1968 1969 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf) 1970 { 1971 u32 val; 1972 1973 /* clear the VF configuration - pretend */ 1974 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 1975 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION); 1976 val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN | 1977 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK); 1978 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val); 1979 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 1980 } 1981 1982 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf) 1983 { 1984 return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF), 1985 BNX2X_VF_MAX_QUEUES); 1986 } 1987 1988 static 1989 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf, 1990 struct vf_pf_resc_request *req_resc) 1991 { 1992 u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf); 1993 u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf); 1994 1995 return ((req_resc->num_rxqs <= rxq_cnt) && 1996 (req_resc->num_txqs <= txq_cnt) && 1997 (req_resc->num_sbs <= vf_sb_count(vf)) && 1998 (req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) && 1999 (req_resc->num_vlan_filters <= vf_vlan_rules_cnt(vf))); 2000 } 2001 2002 /* CORE VF API */ 2003 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf, 2004 struct vf_pf_resc_request *resc) 2005 { 2006 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) * 2007 BNX2X_CIDS_PER_VF; 2008 2009 union cdu_context *base_cxt = (union cdu_context *) 2010 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr + 2011 (base_vf_cid & (ILT_PAGE_CIDS-1)); 2012 int i; 2013 2014 /* if state is 'acquired' the VF was not released or FLR'd, in 2015 * this case the returned resources match the acquired already 2016 * acquired resources. Verify that the requested numbers do 2017 * not exceed the already acquired numbers. 2018 */ 2019 if (vf->state == VF_ACQUIRED) { 2020 DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n", 2021 vf->abs_vfid); 2022 2023 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) { 2024 BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n", 2025 vf->abs_vfid); 2026 return -EINVAL; 2027 } 2028 return 0; 2029 } 2030 2031 /* Otherwise vf state must be 'free' or 'reset' */ 2032 if (vf->state != VF_FREE && vf->state != VF_RESET) { 2033 BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n", 2034 vf->abs_vfid, vf->state); 2035 return -EINVAL; 2036 } 2037 2038 /* static allocation: 2039 * the global maximum number are fixed per VF. Fail the request if 2040 * requested number exceed these globals 2041 */ 2042 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) { 2043 DP(BNX2X_MSG_IOV, 2044 "cannot fulfill vf resource request. Placing maximal available values in response\n"); 2045 /* set the max resource in the vf */ 2046 return -ENOMEM; 2047 } 2048 2049 /* Set resources counters - 0 request means max available */ 2050 vf_sb_count(vf) = resc->num_sbs; 2051 vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf); 2052 vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf); 2053 2054 DP(BNX2X_MSG_IOV, 2055 "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n", 2056 vf_sb_count(vf), vf_rxq_count(vf), 2057 vf_txq_count(vf), vf_mac_rules_cnt(vf), 2058 vf_vlan_rules_cnt(vf)); 2059 2060 /* Initialize the queues */ 2061 if (!vf->vfqs) { 2062 DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n"); 2063 return -EINVAL; 2064 } 2065 2066 for_each_vfq(vf, i) { 2067 struct bnx2x_vf_queue *q = vfq_get(vf, i); 2068 2069 if (!q) { 2070 BNX2X_ERR("q number %d was not allocated\n", i); 2071 return -EINVAL; 2072 } 2073 2074 q->index = i; 2075 q->cxt = &((base_cxt + i)->eth); 2076 q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i; 2077 2078 DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n", 2079 vf->abs_vfid, i, q->index, q->cid, q->cxt); 2080 2081 /* init SP objects */ 2082 bnx2x_vfq_init(bp, vf, q); 2083 } 2084 vf->state = VF_ACQUIRED; 2085 return 0; 2086 } 2087 2088 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map) 2089 { 2090 struct bnx2x_func_init_params func_init = {0}; 2091 int i; 2092 2093 /* the sb resources are initialized at this point, do the 2094 * FW/HW initializations 2095 */ 2096 for_each_vf_sb(vf, i) 2097 bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true, 2098 vf_igu_sb(vf, i), vf_igu_sb(vf, i)); 2099 2100 /* Sanity checks */ 2101 if (vf->state != VF_ACQUIRED) { 2102 DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n", 2103 vf->abs_vfid, vf->state); 2104 return -EINVAL; 2105 } 2106 2107 /* let FLR complete ... */ 2108 msleep(100); 2109 2110 /* FLR cleanup epilogue */ 2111 if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid)) 2112 return -EBUSY; 2113 2114 /* reset IGU VF statistics: MSIX */ 2115 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0); 2116 2117 /* function setup */ 2118 func_init.pf_id = BP_FUNC(bp); 2119 func_init.func_id = FW_VF_HANDLE(vf->abs_vfid); 2120 bnx2x_func_init(bp, &func_init); 2121 2122 /* Enable the vf */ 2123 bnx2x_vf_enable_access(bp, vf->abs_vfid); 2124 bnx2x_vf_enable_traffic(bp, vf); 2125 2126 /* queue protection table */ 2127 for_each_vfq(vf, i) 2128 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid, 2129 vfq_qzone_id(vf, vfq_get(vf, i)), true); 2130 2131 vf->state = VF_ENABLED; 2132 2133 /* update vf bulletin board */ 2134 bnx2x_post_vf_bulletin(bp, vf->index); 2135 2136 return 0; 2137 } 2138 2139 struct set_vf_state_cookie { 2140 struct bnx2x_virtf *vf; 2141 u8 state; 2142 }; 2143 2144 static void bnx2x_set_vf_state(void *cookie) 2145 { 2146 struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie; 2147 2148 p->vf->state = p->state; 2149 } 2150 2151 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf) 2152 { 2153 int rc = 0, i; 2154 2155 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 2156 2157 /* Close all queues */ 2158 for (i = 0; i < vf_rxq_count(vf); i++) { 2159 rc = bnx2x_vf_queue_teardown(bp, vf, i); 2160 if (rc) 2161 goto op_err; 2162 } 2163 2164 /* disable the interrupts */ 2165 DP(BNX2X_MSG_IOV, "disabling igu\n"); 2166 bnx2x_vf_igu_disable(bp, vf); 2167 2168 /* disable the VF */ 2169 DP(BNX2X_MSG_IOV, "clearing qtbl\n"); 2170 bnx2x_vf_clr_qtbl(bp, vf); 2171 2172 /* need to make sure there are no outstanding stats ramrods which may 2173 * cause the device to access the VF's stats buffer which it will free 2174 * as soon as we return from the close flow. 2175 */ 2176 { 2177 struct set_vf_state_cookie cookie; 2178 2179 cookie.vf = vf; 2180 cookie.state = VF_ACQUIRED; 2181 rc = bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie); 2182 if (rc) 2183 goto op_err; 2184 } 2185 2186 DP(BNX2X_MSG_IOV, "set state to acquired\n"); 2187 2188 return 0; 2189 op_err: 2190 BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc); 2191 return rc; 2192 } 2193 2194 /* VF release can be called either: 1. The VF was acquired but 2195 * not enabled 2. the vf was enabled or in the process of being 2196 * enabled 2197 */ 2198 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf) 2199 { 2200 int rc; 2201 2202 DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid, 2203 vf->state == VF_FREE ? "Free" : 2204 vf->state == VF_ACQUIRED ? "Acquired" : 2205 vf->state == VF_ENABLED ? "Enabled" : 2206 vf->state == VF_RESET ? "Reset" : 2207 "Unknown"); 2208 2209 switch (vf->state) { 2210 case VF_ENABLED: 2211 rc = bnx2x_vf_close(bp, vf); 2212 if (rc) 2213 goto op_err; 2214 fallthrough; /* to release resources */ 2215 case VF_ACQUIRED: 2216 DP(BNX2X_MSG_IOV, "about to free resources\n"); 2217 bnx2x_vf_free_resc(bp, vf); 2218 break; 2219 2220 case VF_FREE: 2221 case VF_RESET: 2222 default: 2223 break; 2224 } 2225 return 0; 2226 op_err: 2227 BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc); 2228 return rc; 2229 } 2230 2231 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf, 2232 struct bnx2x_config_rss_params *rss) 2233 { 2234 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 2235 set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags); 2236 return bnx2x_config_rss(bp, rss); 2237 } 2238 2239 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf, 2240 struct vfpf_tpa_tlv *tlv, 2241 struct bnx2x_queue_update_tpa_params *params) 2242 { 2243 aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr; 2244 struct bnx2x_queue_state_params qstate; 2245 int qid, rc = 0; 2246 2247 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 2248 2249 /* Set ramrod params */ 2250 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params)); 2251 memcpy(&qstate.params.update_tpa, params, 2252 sizeof(struct bnx2x_queue_update_tpa_params)); 2253 qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA; 2254 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags); 2255 2256 for (qid = 0; qid < vf_rxq_count(vf); qid++) { 2257 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj); 2258 qstate.params.update_tpa.sge_map = sge_addr[qid]; 2259 DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n", 2260 vf->abs_vfid, qid, U64_HI(sge_addr[qid]), 2261 U64_LO(sge_addr[qid])); 2262 rc = bnx2x_queue_state_change(bp, &qstate); 2263 if (rc) { 2264 BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n", 2265 U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]), 2266 vf->abs_vfid, qid); 2267 return rc; 2268 } 2269 } 2270 2271 return rc; 2272 } 2273 2274 /* VF release ~ VF close + VF release-resources 2275 * Release is the ultimate SW shutdown and is called whenever an 2276 * irrecoverable error is encountered. 2277 */ 2278 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf) 2279 { 2280 int rc; 2281 2282 DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid); 2283 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF); 2284 2285 rc = bnx2x_vf_free(bp, vf); 2286 if (rc) 2287 WARN(rc, 2288 "VF[%d] Failed to allocate resources for release op- rc=%d\n", 2289 vf->abs_vfid, rc); 2290 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF); 2291 return rc; 2292 } 2293 2294 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf, 2295 enum channel_tlvs tlv) 2296 { 2297 /* we don't lock the channel for unsupported tlvs */ 2298 if (!bnx2x_tlv_supported(tlv)) { 2299 BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n"); 2300 return; 2301 } 2302 2303 /* lock the channel */ 2304 mutex_lock(&vf->op_mutex); 2305 2306 /* record the locking op */ 2307 vf->op_current = tlv; 2308 2309 /* log the lock */ 2310 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n", 2311 vf->abs_vfid, tlv); 2312 } 2313 2314 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf, 2315 enum channel_tlvs expected_tlv) 2316 { 2317 enum channel_tlvs current_tlv; 2318 2319 if (!vf) { 2320 BNX2X_ERR("VF was %p\n", vf); 2321 return; 2322 } 2323 2324 current_tlv = vf->op_current; 2325 2326 /* we don't unlock the channel for unsupported tlvs */ 2327 if (!bnx2x_tlv_supported(expected_tlv)) 2328 return; 2329 2330 WARN(expected_tlv != vf->op_current, 2331 "lock mismatch: expected %d found %d", expected_tlv, 2332 vf->op_current); 2333 2334 /* record the locking op */ 2335 vf->op_current = CHANNEL_TLV_NONE; 2336 2337 /* lock the channel */ 2338 mutex_unlock(&vf->op_mutex); 2339 2340 /* log the unlock */ 2341 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n", 2342 vf->abs_vfid, current_tlv); 2343 } 2344 2345 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable) 2346 { 2347 struct bnx2x_queue_state_params q_params; 2348 u32 prev_flags; 2349 int i, rc; 2350 2351 /* Verify changes are needed and record current Tx switching state */ 2352 prev_flags = bp->flags; 2353 if (enable) 2354 bp->flags |= TX_SWITCHING; 2355 else 2356 bp->flags &= ~TX_SWITCHING; 2357 if (prev_flags == bp->flags) 2358 return 0; 2359 2360 /* Verify state enables the sending of queue ramrods */ 2361 if ((bp->state != BNX2X_STATE_OPEN) || 2362 (bnx2x_get_q_logical_state(bp, 2363 &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) != 2364 BNX2X_Q_LOGICAL_STATE_ACTIVE)) 2365 return 0; 2366 2367 /* send q. update ramrod to configure Tx switching */ 2368 memset(&q_params, 0, sizeof(q_params)); 2369 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 2370 q_params.cmd = BNX2X_Q_CMD_UPDATE; 2371 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG, 2372 &q_params.params.update.update_flags); 2373 if (enable) 2374 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING, 2375 &q_params.params.update.update_flags); 2376 else 2377 __clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING, 2378 &q_params.params.update.update_flags); 2379 2380 /* send the ramrod on all the queues of the PF */ 2381 for_each_eth_queue(bp, i) { 2382 struct bnx2x_fastpath *fp = &bp->fp[i]; 2383 int tx_idx; 2384 2385 /* Set the appropriate Queue object */ 2386 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 2387 2388 for (tx_idx = FIRST_TX_COS_INDEX; 2389 tx_idx < fp->max_cos; tx_idx++) { 2390 q_params.params.update.cid_index = tx_idx; 2391 2392 /* Update the Queue state */ 2393 rc = bnx2x_queue_state_change(bp, &q_params); 2394 if (rc) { 2395 BNX2X_ERR("Failed to configure Tx switching\n"); 2396 return rc; 2397 } 2398 } 2399 } 2400 2401 DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled"); 2402 return 0; 2403 } 2404 2405 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param) 2406 { 2407 struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev)); 2408 2409 if (!IS_SRIOV(bp)) { 2410 BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n"); 2411 return -EINVAL; 2412 } 2413 2414 DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n", 2415 num_vfs_param, BNX2X_NR_VIRTFN(bp)); 2416 2417 /* HW channel is only operational when PF is up */ 2418 if (bp->state != BNX2X_STATE_OPEN) { 2419 BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n"); 2420 return -EINVAL; 2421 } 2422 2423 /* we are always bound by the total_vfs in the configuration space */ 2424 if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) { 2425 BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n", 2426 num_vfs_param, BNX2X_NR_VIRTFN(bp)); 2427 num_vfs_param = BNX2X_NR_VIRTFN(bp); 2428 } 2429 2430 bp->requested_nr_virtfn = num_vfs_param; 2431 if (num_vfs_param == 0) { 2432 bnx2x_set_pf_tx_switching(bp, false); 2433 bnx2x_disable_sriov(bp); 2434 return 0; 2435 } else { 2436 return bnx2x_enable_sriov(bp); 2437 } 2438 } 2439 2440 #define IGU_ENTRY_SIZE 4 2441 2442 int bnx2x_enable_sriov(struct bnx2x *bp) 2443 { 2444 int rc = 0, req_vfs = bp->requested_nr_virtfn; 2445 int vf_idx, sb_idx, vfq_idx, qcount, first_vf; 2446 u32 igu_entry, address; 2447 u16 num_vf_queues; 2448 2449 if (req_vfs == 0) 2450 return 0; 2451 2452 first_vf = bp->vfdb->sriov.first_vf_in_pf; 2453 2454 /* statically distribute vf sb pool between VFs */ 2455 num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES, 2456 BP_VFDB(bp)->vf_sbs_pool / req_vfs); 2457 2458 /* zero previous values learned from igu cam */ 2459 for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) { 2460 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx); 2461 2462 vf->sb_count = 0; 2463 vf_sb_count(BP_VF(bp, vf_idx)) = 0; 2464 } 2465 bp->vfdb->vf_sbs_pool = 0; 2466 2467 /* prepare IGU cam */ 2468 sb_idx = BP_VFDB(bp)->first_vf_igu_entry; 2469 address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE; 2470 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) { 2471 for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) { 2472 igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT | 2473 vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT | 2474 IGU_REG_MAPPING_MEMORY_VALID; 2475 DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n", 2476 sb_idx, vf_idx); 2477 REG_WR(bp, address, igu_entry); 2478 sb_idx++; 2479 address += IGU_ENTRY_SIZE; 2480 } 2481 } 2482 2483 /* Reinitialize vf database according to igu cam */ 2484 bnx2x_get_vf_igu_cam_info(bp); 2485 2486 DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n", 2487 BP_VFDB(bp)->vf_sbs_pool, num_vf_queues); 2488 2489 qcount = 0; 2490 for_each_vf(bp, vf_idx) { 2491 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx); 2492 2493 /* set local queue arrays */ 2494 vf->vfqs = &bp->vfdb->vfqs[qcount]; 2495 qcount += vf_sb_count(vf); 2496 bnx2x_iov_static_resc(bp, vf); 2497 } 2498 2499 /* prepare msix vectors in VF configuration space - the value in the 2500 * PCI configuration space should be the index of the last entry, 2501 * namely one less than the actual size of the table 2502 */ 2503 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) { 2504 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx)); 2505 REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL, 2506 num_vf_queues - 1); 2507 DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n", 2508 vf_idx, num_vf_queues - 1); 2509 } 2510 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 2511 2512 /* enable sriov. This will probe all the VFs, and consequentially cause 2513 * the "acquire" messages to appear on the VF PF channel. 2514 */ 2515 DP(BNX2X_MSG_IOV, "about to call enable sriov\n"); 2516 bnx2x_disable_sriov(bp); 2517 2518 rc = bnx2x_set_pf_tx_switching(bp, true); 2519 if (rc) 2520 return rc; 2521 2522 rc = pci_enable_sriov(bp->pdev, req_vfs); 2523 if (rc) { 2524 BNX2X_ERR("pci_enable_sriov failed with %d\n", rc); 2525 return rc; 2526 } 2527 DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs); 2528 return req_vfs; 2529 } 2530 2531 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp) 2532 { 2533 int vfidx; 2534 struct pf_vf_bulletin_content *bulletin; 2535 2536 DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n"); 2537 for_each_vf(bp, vfidx) { 2538 bulletin = BP_VF_BULLETIN(bp, vfidx); 2539 if (bulletin->valid_bitmap & (1 << VLAN_VALID)) 2540 bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0, 2541 htons(ETH_P_8021Q)); 2542 } 2543 } 2544 2545 void bnx2x_disable_sriov(struct bnx2x *bp) 2546 { 2547 if (pci_vfs_assigned(bp->pdev)) { 2548 DP(BNX2X_MSG_IOV, 2549 "Unloading driver while VFs are assigned - VFs will not be deallocated\n"); 2550 return; 2551 } 2552 2553 pci_disable_sriov(bp->pdev); 2554 } 2555 2556 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx, 2557 struct bnx2x_virtf **vf, 2558 struct pf_vf_bulletin_content **bulletin, 2559 bool test_queue) 2560 { 2561 if (bp->state != BNX2X_STATE_OPEN) { 2562 BNX2X_ERR("PF is down - can't utilize iov-related functionality\n"); 2563 return -EINVAL; 2564 } 2565 2566 if (!IS_SRIOV(bp)) { 2567 BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n"); 2568 return -EINVAL; 2569 } 2570 2571 if (vfidx >= BNX2X_NR_VIRTFN(bp)) { 2572 BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n", 2573 vfidx, BNX2X_NR_VIRTFN(bp)); 2574 return -EINVAL; 2575 } 2576 2577 /* init members */ 2578 *vf = BP_VF(bp, vfidx); 2579 *bulletin = BP_VF_BULLETIN(bp, vfidx); 2580 2581 if (!*vf) { 2582 BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx); 2583 return -EINVAL; 2584 } 2585 2586 if (test_queue && !(*vf)->vfqs) { 2587 BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n", 2588 vfidx); 2589 return -EINVAL; 2590 } 2591 2592 if (!*bulletin) { 2593 BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n", 2594 vfidx); 2595 return -EINVAL; 2596 } 2597 2598 return 0; 2599 } 2600 2601 int bnx2x_get_vf_config(struct net_device *dev, int vfidx, 2602 struct ifla_vf_info *ivi) 2603 { 2604 struct bnx2x *bp = netdev_priv(dev); 2605 struct bnx2x_virtf *vf = NULL; 2606 struct pf_vf_bulletin_content *bulletin = NULL; 2607 struct bnx2x_vlan_mac_obj *mac_obj; 2608 struct bnx2x_vlan_mac_obj *vlan_obj; 2609 int rc; 2610 2611 /* sanity and init */ 2612 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true); 2613 if (rc) 2614 return rc; 2615 2616 mac_obj = &bnx2x_leading_vfq(vf, mac_obj); 2617 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj); 2618 if (!mac_obj || !vlan_obj) { 2619 BNX2X_ERR("VF partially initialized\n"); 2620 return -EINVAL; 2621 } 2622 2623 ivi->vf = vfidx; 2624 ivi->qos = 0; 2625 ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */ 2626 ivi->min_tx_rate = 0; 2627 ivi->spoofchk = vf->spoofchk ? 1 : 0; 2628 ivi->linkstate = vf->link_cfg; 2629 if (vf->state == VF_ENABLED) { 2630 /* mac and vlan are in vlan_mac objects */ 2631 if (bnx2x_validate_vf_sp_objs(bp, vf, false)) { 2632 mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac, 2633 0, ETH_ALEN); 2634 vlan_obj->get_n_elements(bp, vlan_obj, 1, 2635 (u8 *)&ivi->vlan, 0, 2636 VLAN_HLEN); 2637 } 2638 } else { 2639 mutex_lock(&bp->vfdb->bulletin_mutex); 2640 /* mac */ 2641 if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID)) 2642 /* mac configured by ndo so its in bulletin board */ 2643 memcpy(&ivi->mac, bulletin->mac, ETH_ALEN); 2644 else 2645 /* function has not been loaded yet. Show mac as 0s */ 2646 eth_zero_addr(ivi->mac); 2647 2648 /* vlan */ 2649 if (bulletin->valid_bitmap & (1 << VLAN_VALID)) 2650 /* vlan configured by ndo so its in bulletin board */ 2651 memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN); 2652 else 2653 /* function has not been loaded yet. Show vlans as 0s */ 2654 memset(&ivi->vlan, 0, VLAN_HLEN); 2655 2656 mutex_unlock(&bp->vfdb->bulletin_mutex); 2657 } 2658 2659 return 0; 2660 } 2661 2662 /* New mac for VF. Consider these cases: 2663 * 1. VF hasn't been acquired yet - save the mac in local bulletin board and 2664 * supply at acquire. 2665 * 2. VF has already been acquired but has not yet initialized - store in local 2666 * bulletin board. mac will be posted on VF bulletin board after VF init. VF 2667 * will configure this mac when it is ready. 2668 * 3. VF has already initialized but has not yet setup a queue - post the new 2669 * mac on VF's bulletin board right now. VF will configure this mac when it 2670 * is ready. 2671 * 4. VF has already set a queue - delete any macs already configured for this 2672 * queue and manually config the new mac. 2673 * In any event, once this function has been called refuse any attempts by the 2674 * VF to configure any mac for itself except for this mac. In case of a race 2675 * where the VF fails to see the new post on its bulletin board before sending a 2676 * mac configuration request, the PF will simply fail the request and VF can try 2677 * again after consulting its bulletin board. 2678 */ 2679 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac) 2680 { 2681 struct bnx2x *bp = netdev_priv(dev); 2682 int rc, q_logical_state; 2683 struct bnx2x_virtf *vf = NULL; 2684 struct pf_vf_bulletin_content *bulletin = NULL; 2685 2686 if (!is_valid_ether_addr(mac)) { 2687 BNX2X_ERR("mac address invalid\n"); 2688 return -EINVAL; 2689 } 2690 2691 /* sanity and init */ 2692 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true); 2693 if (rc) 2694 return rc; 2695 2696 mutex_lock(&bp->vfdb->bulletin_mutex); 2697 2698 /* update PF's copy of the VF's bulletin. Will no longer accept mac 2699 * configuration requests from vf unless match this mac 2700 */ 2701 bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID; 2702 memcpy(bulletin->mac, mac, ETH_ALEN); 2703 2704 /* Post update on VF's bulletin board */ 2705 rc = bnx2x_post_vf_bulletin(bp, vfidx); 2706 2707 /* release lock before checking return code */ 2708 mutex_unlock(&bp->vfdb->bulletin_mutex); 2709 2710 if (rc) { 2711 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx); 2712 return rc; 2713 } 2714 2715 q_logical_state = 2716 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)); 2717 if (vf->state == VF_ENABLED && 2718 q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) { 2719 /* configure the mac in device on this vf's queue */ 2720 unsigned long ramrod_flags = 0; 2721 struct bnx2x_vlan_mac_obj *mac_obj; 2722 2723 /* User should be able to see failure reason in system logs */ 2724 if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) 2725 return -EINVAL; 2726 2727 /* must lock vfpf channel to protect against vf flows */ 2728 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC); 2729 2730 /* remove existing eth macs */ 2731 mac_obj = &bnx2x_leading_vfq(vf, mac_obj); 2732 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true); 2733 if (rc) { 2734 BNX2X_ERR("failed to delete eth macs\n"); 2735 rc = -EINVAL; 2736 goto out; 2737 } 2738 2739 /* remove existing uc list macs */ 2740 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true); 2741 if (rc) { 2742 BNX2X_ERR("failed to delete uc_list macs\n"); 2743 rc = -EINVAL; 2744 goto out; 2745 } 2746 2747 /* configure the new mac to device */ 2748 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2749 bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true, 2750 BNX2X_ETH_MAC, &ramrod_flags); 2751 2752 out: 2753 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC); 2754 } 2755 2756 return rc; 2757 } 2758 2759 static void bnx2x_set_vf_vlan_acceptance(struct bnx2x *bp, 2760 struct bnx2x_virtf *vf, bool accept) 2761 { 2762 struct bnx2x_rx_mode_ramrod_params rx_ramrod; 2763 unsigned long accept_flags; 2764 2765 /* need to remove/add the VF's accept_any_vlan bit */ 2766 accept_flags = bnx2x_leading_vfq(vf, accept_flags); 2767 if (accept) 2768 set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); 2769 else 2770 clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); 2771 2772 bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf, 2773 accept_flags); 2774 bnx2x_leading_vfq(vf, accept_flags) = accept_flags; 2775 bnx2x_config_rx_mode(bp, &rx_ramrod); 2776 } 2777 2778 static int bnx2x_set_vf_vlan_filter(struct bnx2x *bp, struct bnx2x_virtf *vf, 2779 u16 vlan, bool add) 2780 { 2781 struct bnx2x_vlan_mac_ramrod_params ramrod_param; 2782 unsigned long ramrod_flags = 0; 2783 int rc = 0; 2784 2785 /* configure the new vlan to device */ 2786 memset(&ramrod_param, 0, sizeof(ramrod_param)); 2787 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2788 ramrod_param.vlan_mac_obj = &bnx2x_leading_vfq(vf, vlan_obj); 2789 ramrod_param.ramrod_flags = ramrod_flags; 2790 ramrod_param.user_req.u.vlan.vlan = vlan; 2791 ramrod_param.user_req.cmd = add ? BNX2X_VLAN_MAC_ADD 2792 : BNX2X_VLAN_MAC_DEL; 2793 rc = bnx2x_config_vlan_mac(bp, &ramrod_param); 2794 if (rc) { 2795 BNX2X_ERR("failed to configure vlan\n"); 2796 return -EINVAL; 2797 } 2798 2799 return 0; 2800 } 2801 2802 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos, 2803 __be16 vlan_proto) 2804 { 2805 struct pf_vf_bulletin_content *bulletin = NULL; 2806 struct bnx2x *bp = netdev_priv(dev); 2807 struct bnx2x_vlan_mac_obj *vlan_obj; 2808 unsigned long vlan_mac_flags = 0; 2809 unsigned long ramrod_flags = 0; 2810 struct bnx2x_virtf *vf = NULL; 2811 int i, rc; 2812 2813 if (vlan > 4095) { 2814 BNX2X_ERR("illegal vlan value %d\n", vlan); 2815 return -EINVAL; 2816 } 2817 2818 if (vlan_proto != htons(ETH_P_8021Q)) 2819 return -EPROTONOSUPPORT; 2820 2821 DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n", 2822 vfidx, vlan, 0); 2823 2824 /* sanity and init */ 2825 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true); 2826 if (rc) 2827 return rc; 2828 2829 /* update PF's copy of the VF's bulletin. No point in posting the vlan 2830 * to the VF since it doesn't have anything to do with it. But it useful 2831 * to store it here in case the VF is not up yet and we can only 2832 * configure the vlan later when it does. Treat vlan id 0 as remove the 2833 * Host tag. 2834 */ 2835 mutex_lock(&bp->vfdb->bulletin_mutex); 2836 2837 if (vlan > 0) 2838 bulletin->valid_bitmap |= 1 << VLAN_VALID; 2839 else 2840 bulletin->valid_bitmap &= ~(1 << VLAN_VALID); 2841 bulletin->vlan = vlan; 2842 2843 /* Post update on VF's bulletin board */ 2844 rc = bnx2x_post_vf_bulletin(bp, vfidx); 2845 if (rc) 2846 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx); 2847 mutex_unlock(&bp->vfdb->bulletin_mutex); 2848 2849 /* is vf initialized and queue set up? */ 2850 if (vf->state != VF_ENABLED || 2851 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) != 2852 BNX2X_Q_LOGICAL_STATE_ACTIVE) 2853 return rc; 2854 2855 /* User should be able to see error in system logs */ 2856 if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) 2857 return -EINVAL; 2858 2859 /* must lock vfpf channel to protect against vf flows */ 2860 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN); 2861 2862 /* remove existing vlans */ 2863 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2864 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj); 2865 rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags, 2866 &ramrod_flags); 2867 if (rc) { 2868 BNX2X_ERR("failed to delete vlans\n"); 2869 rc = -EINVAL; 2870 goto out; 2871 } 2872 2873 /* clear accept_any_vlan when HV forces vlan, otherwise 2874 * according to VF capabilities 2875 */ 2876 if (vlan || !(vf->cfg_flags & VF_CFG_VLAN_FILTER)) 2877 bnx2x_set_vf_vlan_acceptance(bp, vf, !vlan); 2878 2879 rc = bnx2x_set_vf_vlan_filter(bp, vf, vlan, true); 2880 if (rc) 2881 goto out; 2882 2883 /* send queue update ramrods to configure default vlan and 2884 * silent vlan removal 2885 */ 2886 for_each_vfq(vf, i) { 2887 struct bnx2x_queue_state_params q_params = {NULL}; 2888 struct bnx2x_queue_update_params *update_params; 2889 2890 q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj); 2891 2892 /* validate the Q is UP */ 2893 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) != 2894 BNX2X_Q_LOGICAL_STATE_ACTIVE) 2895 continue; 2896 2897 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 2898 q_params.cmd = BNX2X_Q_CMD_UPDATE; 2899 update_params = &q_params.params.update; 2900 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG, 2901 &update_params->update_flags); 2902 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG, 2903 &update_params->update_flags); 2904 if (vlan == 0) { 2905 /* if vlan is 0 then we want to leave the VF traffic 2906 * untagged, and leave the incoming traffic untouched 2907 * (i.e. do not remove any vlan tags). 2908 */ 2909 __clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, 2910 &update_params->update_flags); 2911 __clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, 2912 &update_params->update_flags); 2913 } else { 2914 /* configure default vlan to vf queue and set silent 2915 * vlan removal (the vf remains unaware of this vlan). 2916 */ 2917 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, 2918 &update_params->update_flags); 2919 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, 2920 &update_params->update_flags); 2921 update_params->def_vlan = vlan; 2922 update_params->silent_removal_value = 2923 vlan & VLAN_VID_MASK; 2924 update_params->silent_removal_mask = VLAN_VID_MASK; 2925 } 2926 2927 /* Update the Queue state */ 2928 rc = bnx2x_queue_state_change(bp, &q_params); 2929 if (rc) { 2930 BNX2X_ERR("Failed to configure default VLAN queue %d\n", 2931 i); 2932 goto out; 2933 } 2934 } 2935 out: 2936 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN); 2937 2938 if (rc) 2939 DP(BNX2X_MSG_IOV, 2940 "updated VF[%d] vlan configuration (vlan = %d)\n", 2941 vfidx, vlan); 2942 2943 return rc; 2944 } 2945 2946 int bnx2x_set_vf_spoofchk(struct net_device *dev, int idx, bool val) 2947 { 2948 struct bnx2x *bp = netdev_priv(dev); 2949 struct bnx2x_virtf *vf; 2950 int i, rc = 0; 2951 2952 vf = BP_VF(bp, idx); 2953 if (!vf) 2954 return -EINVAL; 2955 2956 /* nothing to do */ 2957 if (vf->spoofchk == val) 2958 return 0; 2959 2960 vf->spoofchk = val ? 1 : 0; 2961 2962 DP(BNX2X_MSG_IOV, "%s spoofchk for VF %d\n", 2963 val ? "enabling" : "disabling", idx); 2964 2965 /* is vf initialized and queue set up? */ 2966 if (vf->state != VF_ENABLED || 2967 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) != 2968 BNX2X_Q_LOGICAL_STATE_ACTIVE) 2969 return rc; 2970 2971 /* User should be able to see error in system logs */ 2972 if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) 2973 return -EINVAL; 2974 2975 /* send queue update ramrods to configure spoofchk */ 2976 for_each_vfq(vf, i) { 2977 struct bnx2x_queue_state_params q_params = {NULL}; 2978 struct bnx2x_queue_update_params *update_params; 2979 2980 q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj); 2981 2982 /* validate the Q is UP */ 2983 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) != 2984 BNX2X_Q_LOGICAL_STATE_ACTIVE) 2985 continue; 2986 2987 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 2988 q_params.cmd = BNX2X_Q_CMD_UPDATE; 2989 update_params = &q_params.params.update; 2990 __set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG, 2991 &update_params->update_flags); 2992 if (val) { 2993 __set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF, 2994 &update_params->update_flags); 2995 } else { 2996 __clear_bit(BNX2X_Q_UPDATE_ANTI_SPOOF, 2997 &update_params->update_flags); 2998 } 2999 3000 /* Update the Queue state */ 3001 rc = bnx2x_queue_state_change(bp, &q_params); 3002 if (rc) { 3003 BNX2X_ERR("Failed to %s spoofchk on VF %d - vfq %d\n", 3004 val ? "enable" : "disable", idx, i); 3005 goto out; 3006 } 3007 } 3008 out: 3009 if (!rc) 3010 DP(BNX2X_MSG_IOV, 3011 "%s spoofchk for VF[%d]\n", val ? "Enabled" : "Disabled", 3012 idx); 3013 3014 return rc; 3015 } 3016 3017 /* crc is the first field in the bulletin board. Compute the crc over the 3018 * entire bulletin board excluding the crc field itself. Use the length field 3019 * as the Bulletin Board was posted by a PF with possibly a different version 3020 * from the vf which will sample it. Therefore, the length is computed by the 3021 * PF and then used blindly by the VF. 3022 */ 3023 u32 bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content *bulletin) 3024 { 3025 return crc32(BULLETIN_CRC_SEED, 3026 ((u8 *)bulletin) + sizeof(bulletin->crc), 3027 bulletin->length - sizeof(bulletin->crc)); 3028 } 3029 3030 /* Check for new posts on the bulletin board */ 3031 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp) 3032 { 3033 struct pf_vf_bulletin_content *bulletin; 3034 int attempts; 3035 3036 /* sampling structure in mid post may result with corrupted data 3037 * validate crc to ensure coherency. 3038 */ 3039 for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) { 3040 u32 crc; 3041 3042 /* sample the bulletin board */ 3043 memcpy(&bp->shadow_bulletin, bp->pf2vf_bulletin, 3044 sizeof(union pf_vf_bulletin)); 3045 3046 crc = bnx2x_crc_vf_bulletin(&bp->shadow_bulletin.content); 3047 3048 if (bp->shadow_bulletin.content.crc == crc) 3049 break; 3050 3051 BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n", 3052 bp->shadow_bulletin.content.crc, crc); 3053 } 3054 3055 if (attempts >= BULLETIN_ATTEMPTS) { 3056 BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n", 3057 attempts); 3058 return PFVF_BULLETIN_CRC_ERR; 3059 } 3060 bulletin = &bp->shadow_bulletin.content; 3061 3062 /* bulletin board hasn't changed since last sample */ 3063 if (bp->old_bulletin.version == bulletin->version) 3064 return PFVF_BULLETIN_UNCHANGED; 3065 3066 /* the mac address in bulletin board is valid and is new */ 3067 if (bulletin->valid_bitmap & 1 << MAC_ADDR_VALID && 3068 !ether_addr_equal(bulletin->mac, bp->old_bulletin.mac)) { 3069 /* update new mac to net device */ 3070 eth_hw_addr_set(bp->dev, bulletin->mac); 3071 } 3072 3073 if (bulletin->valid_bitmap & (1 << LINK_VALID)) { 3074 DP(BNX2X_MSG_IOV, "link update speed %d flags %x\n", 3075 bulletin->link_speed, bulletin->link_flags); 3076 3077 bp->vf_link_vars.line_speed = bulletin->link_speed; 3078 bp->vf_link_vars.link_report_flags = 0; 3079 /* Link is down */ 3080 if (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN) 3081 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 3082 &bp->vf_link_vars.link_report_flags); 3083 /* Full DUPLEX */ 3084 if (bulletin->link_flags & VFPF_LINK_REPORT_FULL_DUPLEX) 3085 __set_bit(BNX2X_LINK_REPORT_FD, 3086 &bp->vf_link_vars.link_report_flags); 3087 /* Rx Flow Control is ON */ 3088 if (bulletin->link_flags & VFPF_LINK_REPORT_RX_FC_ON) 3089 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON, 3090 &bp->vf_link_vars.link_report_flags); 3091 /* Tx Flow Control is ON */ 3092 if (bulletin->link_flags & VFPF_LINK_REPORT_TX_FC_ON) 3093 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON, 3094 &bp->vf_link_vars.link_report_flags); 3095 __bnx2x_link_report(bp); 3096 } 3097 3098 /* copy new bulletin board to bp */ 3099 memcpy(&bp->old_bulletin, bulletin, 3100 sizeof(struct pf_vf_bulletin_content)); 3101 3102 return PFVF_BULLETIN_UPDATED; 3103 } 3104 3105 void bnx2x_timer_sriov(struct bnx2x *bp) 3106 { 3107 bnx2x_sample_bulletin(bp); 3108 3109 /* if channel is down we need to self destruct */ 3110 if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN) 3111 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, 3112 BNX2X_MSG_IOV); 3113 } 3114 3115 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp) 3116 { 3117 /* vf doorbells are embedded within the regview */ 3118 return bp->regview + PXP_VF_ADDR_DB_START; 3119 } 3120 3121 void bnx2x_vf_pci_dealloc(struct bnx2x *bp) 3122 { 3123 BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping, 3124 sizeof(struct bnx2x_vf_mbx_msg)); 3125 BNX2X_PCI_FREE(bp->pf2vf_bulletin, bp->pf2vf_bulletin_mapping, 3126 sizeof(union pf_vf_bulletin)); 3127 } 3128 3129 int bnx2x_vf_pci_alloc(struct bnx2x *bp) 3130 { 3131 mutex_init(&bp->vf2pf_mutex); 3132 3133 /* allocate vf2pf mailbox for vf to pf channel */ 3134 bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping, 3135 sizeof(struct bnx2x_vf_mbx_msg)); 3136 if (!bp->vf2pf_mbox) 3137 goto alloc_mem_err; 3138 3139 /* allocate pf 2 vf bulletin board */ 3140 bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping, 3141 sizeof(union pf_vf_bulletin)); 3142 if (!bp->pf2vf_bulletin) 3143 goto alloc_mem_err; 3144 3145 bnx2x_vf_bulletin_finalize(&bp->pf2vf_bulletin->content, true); 3146 3147 return 0; 3148 3149 alloc_mem_err: 3150 bnx2x_vf_pci_dealloc(bp); 3151 return -ENOMEM; 3152 } 3153 3154 void bnx2x_iov_channel_down(struct bnx2x *bp) 3155 { 3156 int vf_idx; 3157 struct pf_vf_bulletin_content *bulletin; 3158 3159 if (!IS_SRIOV(bp)) 3160 return; 3161 3162 for_each_vf(bp, vf_idx) { 3163 /* locate this VFs bulletin board and update the channel down 3164 * bit 3165 */ 3166 bulletin = BP_VF_BULLETIN(bp, vf_idx); 3167 bulletin->valid_bitmap |= 1 << CHANNEL_DOWN; 3168 3169 /* update vf bulletin board */ 3170 bnx2x_post_vf_bulletin(bp, vf_idx); 3171 } 3172 } 3173 3174 void bnx2x_iov_task(struct work_struct *work) 3175 { 3176 struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work); 3177 3178 if (!netif_running(bp->dev)) 3179 return; 3180 3181 if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR, 3182 &bp->iov_task_state)) 3183 bnx2x_vf_handle_flr_event(bp); 3184 3185 if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG, 3186 &bp->iov_task_state)) 3187 bnx2x_vf_mbx(bp); 3188 } 3189 3190 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag) 3191 { 3192 smp_mb__before_atomic(); 3193 set_bit(flag, &bp->iov_task_state); 3194 smp_mb__after_atomic(); 3195 DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag); 3196 queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0); 3197 } 3198