xref: /openbmc/linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_sriov.c (revision 9977a8c3497a8f7f7f951994f298a8e4d961234f)
1 /* bnx2x_sriov.c: QLogic Everest network driver.
2  *
3  * Copyright 2009-2013 Broadcom Corporation
4  * Copyright 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * Unless you and QLogic execute a separate written software license
8  * agreement governing use of this software, this software is licensed to you
9  * under the terms of the GNU General Public License version 2, available
10  * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
11  *
12  * Notwithstanding the above, under no circumstances may you combine this
13  * software in any way with any other QLogic software provided under a
14  * license other than the GPL, without QLogic's express prior written
15  * consent.
16  *
17  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
18  * Written by: Shmulik Ravid
19  *	       Ariel Elior <ariel.elior@qlogic.com>
20  *
21  */
22 #include "bnx2x.h"
23 #include "bnx2x_init.h"
24 #include "bnx2x_cmn.h"
25 #include "bnx2x_sp.h"
26 #include <linux/crc32.h>
27 #include <linux/if_vlan.h>
28 
29 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
30 			    struct bnx2x_virtf **vf,
31 			    struct pf_vf_bulletin_content **bulletin,
32 			    bool test_queue);
33 
34 /* General service functions */
35 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
36 					 u16 pf_id)
37 {
38 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
39 		pf_id);
40 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
41 		pf_id);
42 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
43 		pf_id);
44 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
45 		pf_id);
46 }
47 
48 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
49 					u8 enable)
50 {
51 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
52 		enable);
53 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
54 		enable);
55 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
56 		enable);
57 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
58 		enable);
59 }
60 
61 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
62 {
63 	int idx;
64 
65 	for_each_vf(bp, idx)
66 		if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid)
67 			break;
68 	return idx;
69 }
70 
71 static
72 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
73 {
74 	u16 idx =  (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid);
75 	return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL;
76 }
77 
78 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf,
79 				u8 igu_sb_id, u8 segment, u16 index, u8 op,
80 				u8 update)
81 {
82 	/* acking a VF sb through the PF - use the GRC */
83 	u32 ctl;
84 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
85 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
86 	u32 func_encode = vf->abs_vfid;
87 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id;
88 	struct igu_regular cmd_data = {0};
89 
90 	cmd_data.sb_id_and_flags =
91 			((index << IGU_REGULAR_SB_INDEX_SHIFT) |
92 			 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
93 			 (update << IGU_REGULAR_BUPDATE_SHIFT) |
94 			 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
95 
96 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
97 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
98 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
99 
100 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
101 	   cmd_data.sb_id_and_flags, igu_addr_data);
102 	REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags);
103 	mmiowb();
104 	barrier();
105 
106 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
107 	   ctl, igu_addr_ctl);
108 	REG_WR(bp, igu_addr_ctl, ctl);
109 	mmiowb();
110 	barrier();
111 }
112 
113 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp,
114 				       struct bnx2x_virtf *vf,
115 				       bool print_err)
116 {
117 	if (!bnx2x_leading_vfq(vf, sp_initialized)) {
118 		if (print_err)
119 			BNX2X_ERR("Slowpath objects not yet initialized!\n");
120 		else
121 			DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n");
122 		return false;
123 	}
124 	return true;
125 }
126 
127 /* VFOP operations states */
128 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf,
129 			      struct bnx2x_queue_init_params *init_params,
130 			      struct bnx2x_queue_setup_params *setup_params,
131 			      u16 q_idx, u16 sb_idx)
132 {
133 	DP(BNX2X_MSG_IOV,
134 	   "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
135 	   vf->abs_vfid,
136 	   q_idx,
137 	   sb_idx,
138 	   init_params->tx.sb_cq_index,
139 	   init_params->tx.hc_rate,
140 	   setup_params->flags,
141 	   setup_params->txq_params.traffic_type);
142 }
143 
144 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf,
145 			    struct bnx2x_queue_init_params *init_params,
146 			    struct bnx2x_queue_setup_params *setup_params,
147 			    u16 q_idx, u16 sb_idx)
148 {
149 	struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params;
150 
151 	DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
152 	   "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
153 	   vf->abs_vfid,
154 	   q_idx,
155 	   sb_idx,
156 	   init_params->rx.sb_cq_index,
157 	   init_params->rx.hc_rate,
158 	   setup_params->gen_params.mtu,
159 	   rxq_params->buf_sz,
160 	   rxq_params->sge_buf_sz,
161 	   rxq_params->max_sges_pkt,
162 	   rxq_params->tpa_agg_sz,
163 	   setup_params->flags,
164 	   rxq_params->drop_flags,
165 	   rxq_params->cache_line_log);
166 }
167 
168 void bnx2x_vfop_qctor_prep(struct bnx2x *bp,
169 			   struct bnx2x_virtf *vf,
170 			   struct bnx2x_vf_queue *q,
171 			   struct bnx2x_vf_queue_construct_params *p,
172 			   unsigned long q_type)
173 {
174 	struct bnx2x_queue_init_params *init_p = &p->qstate.params.init;
175 	struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup;
176 
177 	/* INIT */
178 
179 	/* Enable host coalescing in the transition to INIT state */
180 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags))
181 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags);
182 
183 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags))
184 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags);
185 
186 	/* FW SB ID */
187 	init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
188 	init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
189 
190 	/* context */
191 	init_p->cxts[0] = q->cxt;
192 
193 	/* SETUP */
194 
195 	/* Setup-op general parameters */
196 	setup_p->gen_params.spcl_id = vf->sp_cl_id;
197 	setup_p->gen_params.stat_id = vfq_stat_id(vf, q);
198 	setup_p->gen_params.fp_hsi = vf->fp_hsi;
199 
200 	/* Setup-op flags:
201 	 * collect statistics, zero statistics, local-switching, security,
202 	 * OV for Flex10, RSS and MCAST for leading
203 	 */
204 	if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags))
205 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags);
206 
207 	/* for VFs, enable tx switching, bd coherency, and mac address
208 	 * anti-spoofing
209 	 */
210 	__set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags);
211 	__set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags);
212 	__set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
213 
214 	/* Setup-op rx parameters */
215 	if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) {
216 		struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params;
217 
218 		rxq_p->cl_qzone_id = vfq_qzone_id(vf, q);
219 		rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx);
220 		rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid);
221 
222 		if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags))
223 			rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES;
224 	}
225 
226 	/* Setup-op tx parameters */
227 	if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) {
228 		setup_p->txq_params.tss_leading_cl_id = vf->leading_rss;
229 		setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
230 	}
231 }
232 
233 static int bnx2x_vf_queue_create(struct bnx2x *bp,
234 				 struct bnx2x_virtf *vf, int qid,
235 				 struct bnx2x_vf_queue_construct_params *qctor)
236 {
237 	struct bnx2x_queue_state_params *q_params;
238 	int rc = 0;
239 
240 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
241 
242 	/* Prepare ramrod information */
243 	q_params = &qctor->qstate;
244 	q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
245 	set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags);
246 
247 	if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
248 	    BNX2X_Q_LOGICAL_STATE_ACTIVE) {
249 		DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n");
250 		goto out;
251 	}
252 
253 	/* Run Queue 'construction' ramrods */
254 	q_params->cmd = BNX2X_Q_CMD_INIT;
255 	rc = bnx2x_queue_state_change(bp, q_params);
256 	if (rc)
257 		goto out;
258 
259 	memcpy(&q_params->params.setup, &qctor->prep_qsetup,
260 	       sizeof(struct bnx2x_queue_setup_params));
261 	q_params->cmd = BNX2X_Q_CMD_SETUP;
262 	rc = bnx2x_queue_state_change(bp, q_params);
263 	if (rc)
264 		goto out;
265 
266 	/* enable interrupts */
267 	bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)),
268 			    USTORM_ID, 0, IGU_INT_ENABLE, 0);
269 out:
270 	return rc;
271 }
272 
273 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf,
274 				  int qid)
275 {
276 	enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT,
277 				       BNX2X_Q_CMD_TERMINATE,
278 				       BNX2X_Q_CMD_CFC_DEL};
279 	struct bnx2x_queue_state_params q_params;
280 	int rc, i;
281 
282 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
283 
284 	/* Prepare ramrod information */
285 	memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params));
286 	q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
287 	set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
288 
289 	if (bnx2x_get_q_logical_state(bp, q_params.q_obj) ==
290 	    BNX2X_Q_LOGICAL_STATE_STOPPED) {
291 		DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n");
292 		goto out;
293 	}
294 
295 	/* Run Queue 'destruction' ramrods */
296 	for (i = 0; i < ARRAY_SIZE(cmds); i++) {
297 		q_params.cmd = cmds[i];
298 		rc = bnx2x_queue_state_change(bp, &q_params);
299 		if (rc) {
300 			BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]);
301 			return rc;
302 		}
303 	}
304 out:
305 	/* Clean Context */
306 	if (bnx2x_vfq(vf, qid, cxt)) {
307 		bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0;
308 		bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0;
309 	}
310 
311 	return 0;
312 }
313 
314 static void
315 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid)
316 {
317 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
318 	if (vf) {
319 		/* the first igu entry belonging to VFs of this PF */
320 		if (!BP_VFDB(bp)->first_vf_igu_entry)
321 			BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id;
322 
323 		/* the first igu entry belonging to this VF */
324 		if (!vf_sb_count(vf))
325 			vf->igu_base_id = igu_sb_id;
326 
327 		++vf_sb_count(vf);
328 		++vf->sb_count;
329 	}
330 	BP_VFDB(bp)->vf_sbs_pool++;
331 }
332 
333 static inline void bnx2x_vf_vlan_credit(struct bnx2x *bp,
334 					struct bnx2x_vlan_mac_obj *obj,
335 					atomic_t *counter)
336 {
337 	struct list_head *pos;
338 	int read_lock;
339 	int cnt = 0;
340 
341 	read_lock = bnx2x_vlan_mac_h_read_lock(bp, obj);
342 	if (read_lock)
343 		DP(BNX2X_MSG_SP, "Failed to take vlan mac read head; continuing anyway\n");
344 
345 	list_for_each(pos, &obj->head)
346 		cnt++;
347 
348 	if (!read_lock)
349 		bnx2x_vlan_mac_h_read_unlock(bp, obj);
350 
351 	atomic_set(counter, cnt);
352 }
353 
354 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf,
355 				   int qid, bool drv_only, int type)
356 {
357 	struct bnx2x_vlan_mac_ramrod_params ramrod;
358 	int rc;
359 
360 	DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid,
361 			  (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
362 			  (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
363 
364 	/* Prepare ramrod params */
365 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
366 	if (type == BNX2X_VF_FILTER_VLAN_MAC) {
367 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
368 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
369 	} else if (type == BNX2X_VF_FILTER_MAC) {
370 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
371 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
372 	} else {
373 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
374 	}
375 	ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL;
376 
377 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
378 	if (drv_only)
379 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
380 	else
381 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
382 
383 	/* Start deleting */
384 	rc = ramrod.vlan_mac_obj->delete_all(bp,
385 					     ramrod.vlan_mac_obj,
386 					     &ramrod.user_req.vlan_mac_flags,
387 					     &ramrod.ramrod_flags);
388 	if (rc) {
389 		BNX2X_ERR("Failed to delete all %s\n",
390 			  (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
391 			  (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
392 		return rc;
393 	}
394 
395 	return 0;
396 }
397 
398 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp,
399 				    struct bnx2x_virtf *vf, int qid,
400 				    struct bnx2x_vf_mac_vlan_filter *filter,
401 				    bool drv_only)
402 {
403 	struct bnx2x_vlan_mac_ramrod_params ramrod;
404 	int rc;
405 
406 	DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n",
407 	   vf->abs_vfid, filter->add ? "Adding" : "Deleting",
408 	   (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MAC" :
409 	   (filter->type == BNX2X_VF_FILTER_MAC) ? "MAC" : "VLAN");
410 
411 	/* Prepare ramrod params */
412 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
413 	if (filter->type == BNX2X_VF_FILTER_VLAN_MAC) {
414 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
415 		ramrod.user_req.u.vlan.vlan = filter->vid;
416 		memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
417 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
418 	} else if (filter->type == BNX2X_VF_FILTER_VLAN) {
419 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
420 		ramrod.user_req.u.vlan.vlan = filter->vid;
421 	} else {
422 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
423 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
424 		memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
425 	}
426 	ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD :
427 					    BNX2X_VLAN_MAC_DEL;
428 
429 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
430 	if (drv_only)
431 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
432 	else
433 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
434 
435 	/* Add/Remove the filter */
436 	rc = bnx2x_config_vlan_mac(bp, &ramrod);
437 	if (rc == -EEXIST)
438 		return 0;
439 	if (rc) {
440 		BNX2X_ERR("Failed to %s %s\n",
441 			  filter->add ? "add" : "delete",
442 			  (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ?
443 				"VLAN-MAC" :
444 			  (filter->type == BNX2X_VF_FILTER_MAC) ?
445 				"MAC" : "VLAN");
446 		return rc;
447 	}
448 
449 	filter->applied = true;
450 
451 	return 0;
452 }
453 
454 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf,
455 				  struct bnx2x_vf_mac_vlan_filters *filters,
456 				  int qid, bool drv_only)
457 {
458 	int rc = 0, i;
459 
460 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
461 
462 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
463 		return -EINVAL;
464 
465 	/* Prepare ramrod params */
466 	for (i = 0; i < filters->count; i++) {
467 		rc = bnx2x_vf_mac_vlan_config(bp, vf, qid,
468 					      &filters->filters[i], drv_only);
469 		if (rc)
470 			break;
471 	}
472 
473 	/* Rollback if needed */
474 	if (i != filters->count) {
475 		BNX2X_ERR("Managed only %d/%d filters - rolling back\n",
476 			  i, filters->count);
477 		while (--i >= 0) {
478 			if (!filters->filters[i].applied)
479 				continue;
480 			filters->filters[i].add = !filters->filters[i].add;
481 			bnx2x_vf_mac_vlan_config(bp, vf, qid,
482 						 &filters->filters[i],
483 						 drv_only);
484 		}
485 	}
486 
487 	/* It's our responsibility to free the filters */
488 	kfree(filters);
489 
490 	return rc;
491 }
492 
493 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid,
494 			 struct bnx2x_vf_queue_construct_params *qctor)
495 {
496 	int rc;
497 
498 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
499 
500 	rc = bnx2x_vf_queue_create(bp, vf, qid, qctor);
501 	if (rc)
502 		goto op_err;
503 
504 	/* Schedule the configuration of any pending vlan filters */
505 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN,
506 			       BNX2X_MSG_IOV);
507 	return 0;
508 op_err:
509 	BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
510 	return rc;
511 }
512 
513 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf,
514 			       int qid)
515 {
516 	int rc;
517 
518 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
519 
520 	/* If needed, clean the filtering data base */
521 	if ((qid == LEADING_IDX) &&
522 	    bnx2x_validate_vf_sp_objs(bp, vf, false)) {
523 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
524 					     BNX2X_VF_FILTER_VLAN_MAC);
525 		if (rc)
526 			goto op_err;
527 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
528 					     BNX2X_VF_FILTER_VLAN);
529 		if (rc)
530 			goto op_err;
531 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
532 					     BNX2X_VF_FILTER_MAC);
533 		if (rc)
534 			goto op_err;
535 	}
536 
537 	/* Terminate queue */
538 	if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) {
539 		struct bnx2x_queue_state_params qstate;
540 
541 		memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
542 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
543 		qstate.q_obj->state = BNX2X_Q_STATE_STOPPED;
544 		qstate.cmd = BNX2X_Q_CMD_TERMINATE;
545 		set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
546 		rc = bnx2x_queue_state_change(bp, &qstate);
547 		if (rc)
548 			goto op_err;
549 	}
550 
551 	return 0;
552 op_err:
553 	BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
554 	return rc;
555 }
556 
557 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf,
558 		   bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only)
559 {
560 	struct bnx2x_mcast_list_elem *mc = NULL;
561 	struct bnx2x_mcast_ramrod_params mcast;
562 	int rc, i;
563 
564 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
565 
566 	/* Prepare Multicast command */
567 	memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params));
568 	mcast.mcast_obj = &vf->mcast_obj;
569 	if (drv_only)
570 		set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags);
571 	else
572 		set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags);
573 	if (mc_num) {
574 		mc = kzalloc(mc_num * sizeof(struct bnx2x_mcast_list_elem),
575 			     GFP_KERNEL);
576 		if (!mc) {
577 			BNX2X_ERR("Cannot Configure multicasts due to lack of memory\n");
578 			return -ENOMEM;
579 		}
580 	}
581 
582 	if (mc_num) {
583 		INIT_LIST_HEAD(&mcast.mcast_list);
584 		for (i = 0; i < mc_num; i++) {
585 			mc[i].mac = mcasts[i];
586 			list_add_tail(&mc[i].link,
587 				      &mcast.mcast_list);
588 		}
589 
590 		/* add new mcasts */
591 		mcast.mcast_list_len = mc_num;
592 		rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_SET);
593 		if (rc)
594 			BNX2X_ERR("Failed to set multicasts\n");
595 	} else {
596 		/* clear existing mcasts */
597 		rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL);
598 		if (rc)
599 			BNX2X_ERR("Failed to remove multicasts\n");
600 	}
601 
602 	kfree(mc);
603 
604 	return rc;
605 }
606 
607 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid,
608 				  struct bnx2x_rx_mode_ramrod_params *ramrod,
609 				  struct bnx2x_virtf *vf,
610 				  unsigned long accept_flags)
611 {
612 	struct bnx2x_vf_queue *vfq = vfq_get(vf, qid);
613 
614 	memset(ramrod, 0, sizeof(*ramrod));
615 	ramrod->cid = vfq->cid;
616 	ramrod->cl_id = vfq_cl_id(vf, vfq);
617 	ramrod->rx_mode_obj = &bp->rx_mode_obj;
618 	ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid);
619 	ramrod->rx_accept_flags = accept_flags;
620 	ramrod->tx_accept_flags = accept_flags;
621 	ramrod->pstate = &vf->filter_state;
622 	ramrod->state = BNX2X_FILTER_RX_MODE_PENDING;
623 
624 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
625 	set_bit(RAMROD_RX, &ramrod->ramrod_flags);
626 	set_bit(RAMROD_TX, &ramrod->ramrod_flags);
627 
628 	ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2);
629 	ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2);
630 }
631 
632 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf,
633 		    int qid, unsigned long accept_flags)
634 {
635 	struct bnx2x_rx_mode_ramrod_params ramrod;
636 
637 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
638 
639 	bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags);
640 	set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
641 	vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags;
642 	return bnx2x_config_rx_mode(bp, &ramrod);
643 }
644 
645 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid)
646 {
647 	int rc;
648 
649 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
650 
651 	/* Remove all classification configuration for leading queue */
652 	if (qid == LEADING_IDX) {
653 		rc = bnx2x_vf_rxmode(bp, vf, qid, 0);
654 		if (rc)
655 			goto op_err;
656 
657 		/* Remove filtering if feasible */
658 		if (bnx2x_validate_vf_sp_objs(bp, vf, true)) {
659 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
660 						     false,
661 						     BNX2X_VF_FILTER_VLAN_MAC);
662 			if (rc)
663 				goto op_err;
664 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
665 						     false,
666 						     BNX2X_VF_FILTER_VLAN);
667 			if (rc)
668 				goto op_err;
669 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
670 						     false,
671 						     BNX2X_VF_FILTER_MAC);
672 			if (rc)
673 				goto op_err;
674 			rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false);
675 			if (rc)
676 				goto op_err;
677 		}
678 	}
679 
680 	/* Destroy queue */
681 	rc = bnx2x_vf_queue_destroy(bp, vf, qid);
682 	if (rc)
683 		goto op_err;
684 	return rc;
685 op_err:
686 	BNX2X_ERR("vf[%d:%d] error: rc %d\n",
687 		  vf->abs_vfid, qid, rc);
688 	return rc;
689 }
690 
691 /* VF enable primitives
692  * when pretend is required the caller is responsible
693  * for calling pretend prior to calling these routines
694  */
695 
696 /* internal vf enable - until vf is enabled internally all transactions
697  * are blocked. This routine should always be called last with pretend.
698  */
699 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable)
700 {
701 	REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0);
702 }
703 
704 /* clears vf error in all semi blocks */
705 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid)
706 {
707 	REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid);
708 	REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid);
709 	REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid);
710 	REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid);
711 }
712 
713 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid)
714 {
715 	u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5;
716 	u32 was_err_reg = 0;
717 
718 	switch (was_err_group) {
719 	case 0:
720 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR;
721 	    break;
722 	case 1:
723 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR;
724 	    break;
725 	case 2:
726 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR;
727 	    break;
728 	case 3:
729 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR;
730 	    break;
731 	}
732 	REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f));
733 }
734 
735 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf)
736 {
737 	int i;
738 	u32 val;
739 
740 	/* Set VF masks and configuration - pretend */
741 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
742 
743 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
744 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
745 	REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
746 	REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
747 	REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
748 	REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
749 
750 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
751 	val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN);
752 	val &= ~IGU_VF_CONF_PARENT_MASK;
753 	val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT;
754 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
755 
756 	DP(BNX2X_MSG_IOV,
757 	   "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n",
758 	   vf->abs_vfid, val);
759 
760 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
761 
762 	/* iterate over all queues, clear sb consumer */
763 	for (i = 0; i < vf_sb_count(vf); i++) {
764 		u8 igu_sb_id = vf_igu_sb(vf, i);
765 
766 		/* zero prod memory */
767 		REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0);
768 
769 		/* clear sb state machine */
770 		bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id,
771 				       false /* VF */);
772 
773 		/* disable + update */
774 		bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0,
775 				    IGU_INT_DISABLE, 1);
776 	}
777 }
778 
779 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid)
780 {
781 	/* set the VF-PF association in the FW */
782 	storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp));
783 	storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1);
784 
785 	/* clear vf errors*/
786 	bnx2x_vf_semi_clear_err(bp, abs_vfid);
787 	bnx2x_vf_pglue_clear_err(bp, abs_vfid);
788 
789 	/* internal vf-enable - pretend */
790 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid));
791 	DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid);
792 	bnx2x_vf_enable_internal(bp, true);
793 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
794 }
795 
796 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf)
797 {
798 	/* Reset vf in IGU  interrupts are still disabled */
799 	bnx2x_vf_igu_reset(bp, vf);
800 
801 	/* pretend to enable the vf with the PBF */
802 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
803 	REG_WR(bp, PBF_REG_DISABLE_VF, 0);
804 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
805 }
806 
807 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid)
808 {
809 	struct pci_dev *dev;
810 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
811 
812 	if (!vf)
813 		return false;
814 
815 	dev = pci_get_domain_bus_and_slot(vf->domain, vf->bus, vf->devfn);
816 	if (dev)
817 		return bnx2x_is_pcie_pending(dev);
818 	return false;
819 }
820 
821 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid)
822 {
823 	/* Verify no pending pci transactions */
824 	if (bnx2x_vf_is_pcie_pending(bp, abs_vfid))
825 		BNX2X_ERR("PCIE Transactions still pending\n");
826 
827 	return 0;
828 }
829 
830 /* must be called after the number of PF queues and the number of VFs are
831  * both known
832  */
833 static void
834 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
835 {
836 	struct vf_pf_resc_request *resc = &vf->alloc_resc;
837 
838 	/* will be set only during VF-ACQUIRE */
839 	resc->num_rxqs = 0;
840 	resc->num_txqs = 0;
841 
842 	resc->num_mac_filters = VF_MAC_CREDIT_CNT;
843 	resc->num_vlan_filters = VF_VLAN_CREDIT_CNT;
844 
845 	/* no real limitation */
846 	resc->num_mc_filters = 0;
847 
848 	/* num_sbs already set */
849 	resc->num_sbs = vf->sb_count;
850 }
851 
852 /* FLR routines: */
853 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
854 {
855 	/* reset the state variables */
856 	bnx2x_iov_static_resc(bp, vf);
857 	vf->state = VF_FREE;
858 }
859 
860 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf)
861 {
862 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
863 
864 	/* DQ usage counter */
865 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
866 	bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT,
867 					"DQ VF usage counter timed out",
868 					poll_cnt);
869 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
870 
871 	/* FW cleanup command - poll for the results */
872 	if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid),
873 				   poll_cnt))
874 		BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid);
875 
876 	/* verify TX hw is flushed */
877 	bnx2x_tx_hw_flushed(bp, poll_cnt);
878 }
879 
880 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf)
881 {
882 	int rc, i;
883 
884 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
885 
886 	/* the cleanup operations are valid if and only if the VF
887 	 * was first acquired.
888 	 */
889 	for (i = 0; i < vf_rxq_count(vf); i++) {
890 		rc = bnx2x_vf_queue_flr(bp, vf, i);
891 		if (rc)
892 			goto out;
893 	}
894 
895 	/* remove multicasts */
896 	bnx2x_vf_mcast(bp, vf, NULL, 0, true);
897 
898 	/* dispatch final cleanup and wait for HW queues to flush */
899 	bnx2x_vf_flr_clnup_hw(bp, vf);
900 
901 	/* release VF resources */
902 	bnx2x_vf_free_resc(bp, vf);
903 
904 	vf->malicious = false;
905 
906 	/* re-open the mailbox */
907 	bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
908 	return;
909 out:
910 	BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n",
911 		  vf->abs_vfid, i, rc);
912 }
913 
914 static void bnx2x_vf_flr_clnup(struct bnx2x *bp)
915 {
916 	struct bnx2x_virtf *vf;
917 	int i;
918 
919 	for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) {
920 		/* VF should be RESET & in FLR cleanup states */
921 		if (bnx2x_vf(bp, i, state) != VF_RESET ||
922 		    !bnx2x_vf(bp, i, flr_clnup_stage))
923 			continue;
924 
925 		DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n",
926 		   i, BNX2X_NR_VIRTFN(bp));
927 
928 		vf = BP_VF(bp, i);
929 
930 		/* lock the vf pf channel */
931 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
932 
933 		/* invoke the VF FLR SM */
934 		bnx2x_vf_flr(bp, vf);
935 
936 		/* mark the VF to be ACKED and continue */
937 		vf->flr_clnup_stage = false;
938 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
939 	}
940 
941 	/* Acknowledge the handled VFs.
942 	 * we are acknowledge all the vfs which an flr was requested for, even
943 	 * if amongst them there are such that we never opened, since the mcp
944 	 * will interrupt us immediately again if we only ack some of the bits,
945 	 * resulting in an endless loop. This can happen for example in KVM
946 	 * where an 'all ones' flr request is sometimes given by hyper visor
947 	 */
948 	DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
949 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
950 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
951 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i],
952 			  bp->vfdb->flrd_vfs[i]);
953 
954 	bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0);
955 
956 	/* clear the acked bits - better yet if the MCP implemented
957 	 * write to clear semantics
958 	 */
959 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
960 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0);
961 }
962 
963 void bnx2x_vf_handle_flr_event(struct bnx2x *bp)
964 {
965 	int i;
966 
967 	/* Read FLR'd VFs */
968 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
969 		bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]);
970 
971 	DP(BNX2X_MSG_MCP,
972 	   "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
973 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
974 
975 	for_each_vf(bp, i) {
976 		struct bnx2x_virtf *vf = BP_VF(bp, i);
977 		u32 reset = 0;
978 
979 		if (vf->abs_vfid < 32)
980 			reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid);
981 		else
982 			reset = bp->vfdb->flrd_vfs[1] &
983 				(1 << (vf->abs_vfid - 32));
984 
985 		if (reset) {
986 			/* set as reset and ready for cleanup */
987 			vf->state = VF_RESET;
988 			vf->flr_clnup_stage = true;
989 
990 			DP(BNX2X_MSG_IOV,
991 			   "Initiating Final cleanup for VF %d\n",
992 			   vf->abs_vfid);
993 		}
994 	}
995 
996 	/* do the FLR cleanup for all marked VFs*/
997 	bnx2x_vf_flr_clnup(bp);
998 }
999 
1000 /* IOV global initialization routines  */
1001 void bnx2x_iov_init_dq(struct bnx2x *bp)
1002 {
1003 	if (!IS_SRIOV(bp))
1004 		return;
1005 
1006 	/* Set the DQ such that the CID reflect the abs_vfid */
1007 	REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0);
1008 	REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
1009 
1010 	/* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
1011 	 * the PF L2 queues
1012 	 */
1013 	REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
1014 
1015 	/* The VF window size is the log2 of the max number of CIDs per VF */
1016 	REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
1017 
1018 	/* The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
1019 	 * the Pf doorbell size although the 2 are independent.
1020 	 */
1021 	REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3);
1022 
1023 	/* No security checks for now -
1024 	 * configure single rule (out of 16) mask = 0x1, value = 0x0,
1025 	 * CID range 0 - 0x1ffff
1026 	 */
1027 	REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1);
1028 	REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0);
1029 	REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
1030 	REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
1031 
1032 	/* set the VF doorbell threshold. This threshold represents the amount
1033 	 * of doorbells allowed in the main DORQ fifo for a specific VF.
1034 	 */
1035 	REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64);
1036 }
1037 
1038 void bnx2x_iov_init_dmae(struct bnx2x *bp)
1039 {
1040 	if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV))
1041 		REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0);
1042 }
1043 
1044 static int bnx2x_vf_domain(struct bnx2x *bp, int vfid)
1045 {
1046 	struct pci_dev *dev = bp->pdev;
1047 
1048 	return pci_domain_nr(dev->bus);
1049 }
1050 
1051 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid)
1052 {
1053 	struct pci_dev *dev = bp->pdev;
1054 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1055 
1056 	return dev->bus->number + ((dev->devfn + iov->offset +
1057 				    iov->stride * vfid) >> 8);
1058 }
1059 
1060 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid)
1061 {
1062 	struct pci_dev *dev = bp->pdev;
1063 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1064 
1065 	return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff;
1066 }
1067 
1068 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf)
1069 {
1070 	int i, n;
1071 	struct pci_dev *dev = bp->pdev;
1072 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1073 
1074 	for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) {
1075 		u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i);
1076 		u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i);
1077 
1078 		size /= iov->total;
1079 		vf->bars[n].bar = start + size * vf->abs_vfid;
1080 		vf->bars[n].size = size;
1081 	}
1082 }
1083 
1084 static int
1085 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp)
1086 {
1087 	int sb_id;
1088 	u32 val;
1089 	u8 fid, current_pf = 0;
1090 
1091 	/* IGU in normal mode - read CAM */
1092 	for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) {
1093 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4);
1094 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
1095 			continue;
1096 		fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID);
1097 		if (fid & IGU_FID_ENCODE_IS_PF)
1098 			current_pf = fid & IGU_FID_PF_NUM_MASK;
1099 		else if (current_pf == BP_FUNC(bp))
1100 			bnx2x_vf_set_igu_info(bp, sb_id,
1101 					      (fid & IGU_FID_VF_NUM_MASK));
1102 		DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n",
1103 		   ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"),
1104 		   ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) :
1105 		   (fid & IGU_FID_VF_NUM_MASK)), sb_id,
1106 		   GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR));
1107 	}
1108 	DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool);
1109 	return BP_VFDB(bp)->vf_sbs_pool;
1110 }
1111 
1112 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp)
1113 {
1114 	if (bp->vfdb) {
1115 		kfree(bp->vfdb->vfqs);
1116 		kfree(bp->vfdb->vfs);
1117 		kfree(bp->vfdb);
1118 	}
1119 	bp->vfdb = NULL;
1120 }
1121 
1122 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1123 {
1124 	int pos;
1125 	struct pci_dev *dev = bp->pdev;
1126 
1127 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
1128 	if (!pos) {
1129 		BNX2X_ERR("failed to find SRIOV capability in device\n");
1130 		return -ENODEV;
1131 	}
1132 
1133 	iov->pos = pos;
1134 	DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos);
1135 	pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
1136 	pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total);
1137 	pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial);
1138 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
1139 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
1140 	pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
1141 	pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap);
1142 	pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
1143 
1144 	return 0;
1145 }
1146 
1147 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1148 {
1149 	u32 val;
1150 
1151 	/* read the SRIOV capability structure
1152 	 * The fields can be read via configuration read or
1153 	 * directly from the device (starting at offset PCICFG_OFFSET)
1154 	 */
1155 	if (bnx2x_sriov_pci_cfg_info(bp, iov))
1156 		return -ENODEV;
1157 
1158 	/* get the number of SRIOV bars */
1159 	iov->nres = 0;
1160 
1161 	/* read the first_vfid */
1162 	val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF);
1163 	iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK)
1164 			       * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp));
1165 
1166 	DP(BNX2X_MSG_IOV,
1167 	   "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
1168 	   BP_FUNC(bp),
1169 	   iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total,
1170 	   iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
1171 
1172 	return 0;
1173 }
1174 
1175 /* must be called after PF bars are mapped */
1176 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param,
1177 		       int num_vfs_param)
1178 {
1179 	int err, i;
1180 	struct bnx2x_sriov *iov;
1181 	struct pci_dev *dev = bp->pdev;
1182 
1183 	bp->vfdb = NULL;
1184 
1185 	/* verify is pf */
1186 	if (IS_VF(bp))
1187 		return 0;
1188 
1189 	/* verify sriov capability is present in configuration space */
1190 	if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV))
1191 		return 0;
1192 
1193 	/* verify chip revision */
1194 	if (CHIP_IS_E1x(bp))
1195 		return 0;
1196 
1197 	/* check if SRIOV support is turned off */
1198 	if (!num_vfs_param)
1199 		return 0;
1200 
1201 	/* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
1202 	if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) {
1203 		BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
1204 			  BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID);
1205 		return 0;
1206 	}
1207 
1208 	/* SRIOV can be enabled only with MSIX */
1209 	if (int_mode_param == BNX2X_INT_MODE_MSI ||
1210 	    int_mode_param == BNX2X_INT_MODE_INTX) {
1211 		BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
1212 		return 0;
1213 	}
1214 
1215 	err = -EIO;
1216 	/* verify ari is enabled */
1217 	if (!pci_ari_enabled(bp->pdev->bus)) {
1218 		BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
1219 		return 0;
1220 	}
1221 
1222 	/* verify igu is in normal mode */
1223 	if (CHIP_INT_MODE_IS_BC(bp)) {
1224 		BNX2X_ERR("IGU not normal mode,  SRIOV can not be enabled\n");
1225 		return 0;
1226 	}
1227 
1228 	/* allocate the vfs database */
1229 	bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL);
1230 	if (!bp->vfdb) {
1231 		BNX2X_ERR("failed to allocate vf database\n");
1232 		err = -ENOMEM;
1233 		goto failed;
1234 	}
1235 
1236 	/* get the sriov info - Linux already collected all the pertinent
1237 	 * information, however the sriov structure is for the private use
1238 	 * of the pci module. Also we want this information regardless
1239 	 * of the hyper-visor.
1240 	 */
1241 	iov = &(bp->vfdb->sriov);
1242 	err = bnx2x_sriov_info(bp, iov);
1243 	if (err)
1244 		goto failed;
1245 
1246 	/* SR-IOV capability was enabled but there are no VFs*/
1247 	if (iov->total == 0)
1248 		goto failed;
1249 
1250 	iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param);
1251 
1252 	DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n",
1253 	   num_vfs_param, iov->nr_virtfn);
1254 
1255 	/* allocate the vf array */
1256 	bp->vfdb->vfs = kzalloc(sizeof(struct bnx2x_virtf) *
1257 				BNX2X_NR_VIRTFN(bp), GFP_KERNEL);
1258 	if (!bp->vfdb->vfs) {
1259 		BNX2X_ERR("failed to allocate vf array\n");
1260 		err = -ENOMEM;
1261 		goto failed;
1262 	}
1263 
1264 	/* Initial VF init - index and abs_vfid - nr_virtfn must be set */
1265 	for_each_vf(bp, i) {
1266 		bnx2x_vf(bp, i, index) = i;
1267 		bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i;
1268 		bnx2x_vf(bp, i, state) = VF_FREE;
1269 		mutex_init(&bnx2x_vf(bp, i, op_mutex));
1270 		bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE;
1271 	}
1272 
1273 	/* re-read the IGU CAM for VFs - index and abs_vfid must be set */
1274 	if (!bnx2x_get_vf_igu_cam_info(bp)) {
1275 		BNX2X_ERR("No entries in IGU CAM for vfs\n");
1276 		err = -EINVAL;
1277 		goto failed;
1278 	}
1279 
1280 	/* allocate the queue arrays for all VFs */
1281 	bp->vfdb->vfqs = kzalloc(
1282 		BNX2X_MAX_NUM_VF_QUEUES * sizeof(struct bnx2x_vf_queue),
1283 		GFP_KERNEL);
1284 
1285 	if (!bp->vfdb->vfqs) {
1286 		BNX2X_ERR("failed to allocate vf queue array\n");
1287 		err = -ENOMEM;
1288 		goto failed;
1289 	}
1290 
1291 	/* Prepare the VFs event synchronization mechanism */
1292 	mutex_init(&bp->vfdb->event_mutex);
1293 
1294 	mutex_init(&bp->vfdb->bulletin_mutex);
1295 
1296 	if (SHMEM2_HAS(bp, sriov_switch_mode))
1297 		SHMEM2_WR(bp, sriov_switch_mode, SRIOV_SWITCH_MODE_VEB);
1298 
1299 	return 0;
1300 failed:
1301 	DP(BNX2X_MSG_IOV, "Failed err=%d\n", err);
1302 	__bnx2x_iov_free_vfdb(bp);
1303 	return err;
1304 }
1305 
1306 void bnx2x_iov_remove_one(struct bnx2x *bp)
1307 {
1308 	int vf_idx;
1309 
1310 	/* if SRIOV is not enabled there's nothing to do */
1311 	if (!IS_SRIOV(bp))
1312 		return;
1313 
1314 	bnx2x_disable_sriov(bp);
1315 
1316 	/* disable access to all VFs */
1317 	for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) {
1318 		bnx2x_pretend_func(bp,
1319 				   HW_VF_HANDLE(bp,
1320 						bp->vfdb->sriov.first_vf_in_pf +
1321 						vf_idx));
1322 		DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n",
1323 		   bp->vfdb->sriov.first_vf_in_pf + vf_idx);
1324 		bnx2x_vf_enable_internal(bp, 0);
1325 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1326 	}
1327 
1328 	/* free vf database */
1329 	__bnx2x_iov_free_vfdb(bp);
1330 }
1331 
1332 void bnx2x_iov_free_mem(struct bnx2x *bp)
1333 {
1334 	int i;
1335 
1336 	if (!IS_SRIOV(bp))
1337 		return;
1338 
1339 	/* free vfs hw contexts */
1340 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1341 		struct hw_dma *cxt = &bp->vfdb->context[i];
1342 		BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size);
1343 	}
1344 
1345 	BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr,
1346 		       BP_VFDB(bp)->sp_dma.mapping,
1347 		       BP_VFDB(bp)->sp_dma.size);
1348 
1349 	BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr,
1350 		       BP_VF_MBX_DMA(bp)->mapping,
1351 		       BP_VF_MBX_DMA(bp)->size);
1352 
1353 	BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr,
1354 		       BP_VF_BULLETIN_DMA(bp)->mapping,
1355 		       BP_VF_BULLETIN_DMA(bp)->size);
1356 }
1357 
1358 int bnx2x_iov_alloc_mem(struct bnx2x *bp)
1359 {
1360 	size_t tot_size;
1361 	int i, rc = 0;
1362 
1363 	if (!IS_SRIOV(bp))
1364 		return rc;
1365 
1366 	/* allocate vfs hw contexts */
1367 	tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) *
1368 		BNX2X_CIDS_PER_VF * sizeof(union cdu_context);
1369 
1370 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1371 		struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i);
1372 		cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ);
1373 
1374 		if (cxt->size) {
1375 			cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size);
1376 			if (!cxt->addr)
1377 				goto alloc_mem_err;
1378 		} else {
1379 			cxt->addr = NULL;
1380 			cxt->mapping = 0;
1381 		}
1382 		tot_size -= cxt->size;
1383 	}
1384 
1385 	/* allocate vfs ramrods dma memory - client_init and set_mac */
1386 	tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp);
1387 	BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping,
1388 						   tot_size);
1389 	if (!BP_VFDB(bp)->sp_dma.addr)
1390 		goto alloc_mem_err;
1391 	BP_VFDB(bp)->sp_dma.size = tot_size;
1392 
1393 	/* allocate mailboxes */
1394 	tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE;
1395 	BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping,
1396 						  tot_size);
1397 	if (!BP_VF_MBX_DMA(bp)->addr)
1398 		goto alloc_mem_err;
1399 
1400 	BP_VF_MBX_DMA(bp)->size = tot_size;
1401 
1402 	/* allocate local bulletin boards */
1403 	tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE;
1404 	BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping,
1405 						       tot_size);
1406 	if (!BP_VF_BULLETIN_DMA(bp)->addr)
1407 		goto alloc_mem_err;
1408 
1409 	BP_VF_BULLETIN_DMA(bp)->size = tot_size;
1410 
1411 	return 0;
1412 
1413 alloc_mem_err:
1414 	return -ENOMEM;
1415 }
1416 
1417 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf,
1418 			   struct bnx2x_vf_queue *q)
1419 {
1420 	u8 cl_id = vfq_cl_id(vf, q);
1421 	u8 func_id = FW_VF_HANDLE(vf->abs_vfid);
1422 	unsigned long q_type = 0;
1423 
1424 	set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1425 	set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1426 
1427 	/* Queue State object */
1428 	bnx2x_init_queue_obj(bp, &q->sp_obj,
1429 			     cl_id, &q->cid, 1, func_id,
1430 			     bnx2x_vf_sp(bp, vf, q_data),
1431 			     bnx2x_vf_sp_map(bp, vf, q_data),
1432 			     q_type);
1433 
1434 	/* sp indication is set only when vlan/mac/etc. are initialized */
1435 	q->sp_initialized = false;
1436 
1437 	DP(BNX2X_MSG_IOV,
1438 	   "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n",
1439 	   vf->abs_vfid, q->sp_obj.func_id, q->cid);
1440 }
1441 
1442 static int bnx2x_max_speed_cap(struct bnx2x *bp)
1443 {
1444 	u32 supported = bp->port.supported[bnx2x_get_link_cfg_idx(bp)];
1445 
1446 	if (supported &
1447 	    (SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full))
1448 		return 20000;
1449 
1450 	return 10000; /* assume lowest supported speed is 10G */
1451 }
1452 
1453 int bnx2x_iov_link_update_vf(struct bnx2x *bp, int idx)
1454 {
1455 	struct bnx2x_link_report_data *state = &bp->last_reported_link;
1456 	struct pf_vf_bulletin_content *bulletin;
1457 	struct bnx2x_virtf *vf;
1458 	bool update = true;
1459 	int rc = 0;
1460 
1461 	/* sanity and init */
1462 	rc = bnx2x_vf_op_prep(bp, idx, &vf, &bulletin, false);
1463 	if (rc)
1464 		return rc;
1465 
1466 	mutex_lock(&bp->vfdb->bulletin_mutex);
1467 
1468 	if (vf->link_cfg == IFLA_VF_LINK_STATE_AUTO) {
1469 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1470 
1471 		bulletin->link_speed = state->line_speed;
1472 		bulletin->link_flags = 0;
1473 		if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1474 			     &state->link_report_flags))
1475 			bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1476 		if (test_bit(BNX2X_LINK_REPORT_FD,
1477 			     &state->link_report_flags))
1478 			bulletin->link_flags |= VFPF_LINK_REPORT_FULL_DUPLEX;
1479 		if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1480 			     &state->link_report_flags))
1481 			bulletin->link_flags |= VFPF_LINK_REPORT_RX_FC_ON;
1482 		if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1483 			     &state->link_report_flags))
1484 			bulletin->link_flags |= VFPF_LINK_REPORT_TX_FC_ON;
1485 	} else if (vf->link_cfg == IFLA_VF_LINK_STATE_DISABLE &&
1486 		   !(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1487 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1488 		bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1489 	} else if (vf->link_cfg == IFLA_VF_LINK_STATE_ENABLE &&
1490 		   (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1491 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1492 		bulletin->link_speed = bnx2x_max_speed_cap(bp);
1493 		bulletin->link_flags &= ~VFPF_LINK_REPORT_LINK_DOWN;
1494 	} else {
1495 		update = false;
1496 	}
1497 
1498 	if (update) {
1499 		DP(NETIF_MSG_LINK | BNX2X_MSG_IOV,
1500 		   "vf %d mode %u speed %d flags %x\n", idx,
1501 		   vf->link_cfg, bulletin->link_speed, bulletin->link_flags);
1502 
1503 		/* Post update on VF's bulletin board */
1504 		rc = bnx2x_post_vf_bulletin(bp, idx);
1505 		if (rc) {
1506 			BNX2X_ERR("failed to update VF[%d] bulletin\n", idx);
1507 			goto out;
1508 		}
1509 	}
1510 
1511 out:
1512 	mutex_unlock(&bp->vfdb->bulletin_mutex);
1513 	return rc;
1514 }
1515 
1516 int bnx2x_set_vf_link_state(struct net_device *dev, int idx, int link_state)
1517 {
1518 	struct bnx2x *bp = netdev_priv(dev);
1519 	struct bnx2x_virtf *vf = BP_VF(bp, idx);
1520 
1521 	if (!vf)
1522 		return -EINVAL;
1523 
1524 	if (vf->link_cfg == link_state)
1525 		return 0; /* nothing todo */
1526 
1527 	vf->link_cfg = link_state;
1528 
1529 	return bnx2x_iov_link_update_vf(bp, idx);
1530 }
1531 
1532 void bnx2x_iov_link_update(struct bnx2x *bp)
1533 {
1534 	int vfid;
1535 
1536 	if (!IS_SRIOV(bp))
1537 		return;
1538 
1539 	for_each_vf(bp, vfid)
1540 		bnx2x_iov_link_update_vf(bp, vfid);
1541 }
1542 
1543 /* called by bnx2x_nic_load */
1544 int bnx2x_iov_nic_init(struct bnx2x *bp)
1545 {
1546 	int vfid;
1547 
1548 	if (!IS_SRIOV(bp)) {
1549 		DP(BNX2X_MSG_IOV, "vfdb was not allocated\n");
1550 		return 0;
1551 	}
1552 
1553 	DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn);
1554 
1555 	/* let FLR complete ... */
1556 	msleep(100);
1557 
1558 	/* initialize vf database */
1559 	for_each_vf(bp, vfid) {
1560 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1561 
1562 		int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) *
1563 			BNX2X_CIDS_PER_VF;
1564 
1565 		union cdu_context *base_cxt = (union cdu_context *)
1566 			BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1567 			(base_vf_cid & (ILT_PAGE_CIDS-1));
1568 
1569 		DP(BNX2X_MSG_IOV,
1570 		   "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
1571 		   vf->abs_vfid, vf_sb_count(vf), base_vf_cid,
1572 		   BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt);
1573 
1574 		/* init statically provisioned resources */
1575 		bnx2x_iov_static_resc(bp, vf);
1576 
1577 		/* queues are initialized during VF-ACQUIRE */
1578 		vf->filter_state = 0;
1579 		vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id);
1580 
1581 		bnx2x_init_credit_pool(&vf->vf_vlans_pool, 0,
1582 				       vf_vlan_rules_cnt(vf));
1583 		bnx2x_init_credit_pool(&vf->vf_macs_pool, 0,
1584 				       vf_mac_rules_cnt(vf));
1585 
1586 		/*  init mcast object - This object will be re-initialized
1587 		 *  during VF-ACQUIRE with the proper cl_id and cid.
1588 		 *  It needs to be initialized here so that it can be safely
1589 		 *  handled by a subsequent FLR flow.
1590 		 */
1591 		bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF,
1592 				     0xFF, 0xFF, 0xFF,
1593 				     bnx2x_vf_sp(bp, vf, mcast_rdata),
1594 				     bnx2x_vf_sp_map(bp, vf, mcast_rdata),
1595 				     BNX2X_FILTER_MCAST_PENDING,
1596 				     &vf->filter_state,
1597 				     BNX2X_OBJ_TYPE_RX_TX);
1598 
1599 		/* set the mailbox message addresses */
1600 		BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *)
1601 			(((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid *
1602 			MBX_MSG_ALIGNED_SIZE);
1603 
1604 		BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping +
1605 			vfid * MBX_MSG_ALIGNED_SIZE;
1606 
1607 		/* Enable vf mailbox */
1608 		bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
1609 	}
1610 
1611 	/* Final VF init */
1612 	for_each_vf(bp, vfid) {
1613 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1614 
1615 		/* fill in the BDF and bars */
1616 		vf->domain = bnx2x_vf_domain(bp, vfid);
1617 		vf->bus = bnx2x_vf_bus(bp, vfid);
1618 		vf->devfn = bnx2x_vf_devfn(bp, vfid);
1619 		bnx2x_vf_set_bars(bp, vf);
1620 
1621 		DP(BNX2X_MSG_IOV,
1622 		   "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
1623 		   vf->abs_vfid, vf->bus, vf->devfn,
1624 		   (unsigned)vf->bars[0].bar, vf->bars[0].size,
1625 		   (unsigned)vf->bars[1].bar, vf->bars[1].size,
1626 		   (unsigned)vf->bars[2].bar, vf->bars[2].size);
1627 	}
1628 
1629 	return 0;
1630 }
1631 
1632 /* called by bnx2x_chip_cleanup */
1633 int bnx2x_iov_chip_cleanup(struct bnx2x *bp)
1634 {
1635 	int i;
1636 
1637 	if (!IS_SRIOV(bp))
1638 		return 0;
1639 
1640 	/* release all the VFs */
1641 	for_each_vf(bp, i)
1642 		bnx2x_vf_release(bp, BP_VF(bp, i));
1643 
1644 	return 0;
1645 }
1646 
1647 /* called by bnx2x_init_hw_func, returns the next ilt line */
1648 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line)
1649 {
1650 	int i;
1651 	struct bnx2x_ilt *ilt = BP_ILT(bp);
1652 
1653 	if (!IS_SRIOV(bp))
1654 		return line;
1655 
1656 	/* set vfs ilt lines */
1657 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1658 		struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i);
1659 
1660 		ilt->lines[line+i].page = hw_cxt->addr;
1661 		ilt->lines[line+i].page_mapping = hw_cxt->mapping;
1662 		ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
1663 	}
1664 	return line + i;
1665 }
1666 
1667 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid)
1668 {
1669 	return ((cid >= BNX2X_FIRST_VF_CID) &&
1670 		((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS));
1671 }
1672 
1673 static
1674 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp,
1675 					struct bnx2x_vf_queue *vfq,
1676 					union event_ring_elem *elem)
1677 {
1678 	unsigned long ramrod_flags = 0;
1679 	int rc = 0;
1680 	u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
1681 
1682 	/* Always push next commands out, don't wait here */
1683 	set_bit(RAMROD_CONT, &ramrod_flags);
1684 
1685 	switch (echo >> BNX2X_SWCID_SHIFT) {
1686 	case BNX2X_FILTER_MAC_PENDING:
1687 		rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem,
1688 					   &ramrod_flags);
1689 		break;
1690 	case BNX2X_FILTER_VLAN_PENDING:
1691 		rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem,
1692 					    &ramrod_flags);
1693 		break;
1694 	default:
1695 		BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
1696 		return;
1697 	}
1698 	if (rc < 0)
1699 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
1700 	else if (rc > 0)
1701 		DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n");
1702 }
1703 
1704 static
1705 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp,
1706 			       struct bnx2x_virtf *vf)
1707 {
1708 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
1709 	int rc;
1710 
1711 	rparam.mcast_obj = &vf->mcast_obj;
1712 	vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw);
1713 
1714 	/* If there are pending mcast commands - send them */
1715 	if (vf->mcast_obj.check_pending(&vf->mcast_obj)) {
1716 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
1717 		if (rc < 0)
1718 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
1719 				  rc);
1720 	}
1721 }
1722 
1723 static
1724 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp,
1725 				 struct bnx2x_virtf *vf)
1726 {
1727 	smp_mb__before_atomic();
1728 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
1729 	smp_mb__after_atomic();
1730 }
1731 
1732 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp,
1733 					   struct bnx2x_virtf *vf)
1734 {
1735 	vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw);
1736 }
1737 
1738 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem)
1739 {
1740 	struct bnx2x_virtf *vf;
1741 	int qidx = 0, abs_vfid;
1742 	u8 opcode;
1743 	u16 cid = 0xffff;
1744 
1745 	if (!IS_SRIOV(bp))
1746 		return 1;
1747 
1748 	/* first get the cid - the only events we handle here are cfc-delete
1749 	 * and set-mac completion
1750 	 */
1751 	opcode = elem->message.opcode;
1752 
1753 	switch (opcode) {
1754 	case EVENT_RING_OPCODE_CFC_DEL:
1755 		cid = SW_CID(elem->message.data.cfc_del_event.cid);
1756 		DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid);
1757 		break;
1758 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1759 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1760 	case EVENT_RING_OPCODE_FILTERS_RULES:
1761 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1762 		cid = SW_CID(elem->message.data.eth_event.echo);
1763 		DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid);
1764 		break;
1765 	case EVENT_RING_OPCODE_VF_FLR:
1766 		abs_vfid = elem->message.data.vf_flr_event.vf_id;
1767 		DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n",
1768 		   abs_vfid);
1769 		goto get_vf;
1770 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1771 		abs_vfid = elem->message.data.malicious_vf_event.vf_id;
1772 		BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
1773 			  abs_vfid,
1774 			  elem->message.data.malicious_vf_event.err_id);
1775 		goto get_vf;
1776 	default:
1777 		return 1;
1778 	}
1779 
1780 	/* check if the cid is the VF range */
1781 	if (!bnx2x_iov_is_vf_cid(bp, cid)) {
1782 		DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid);
1783 		return 1;
1784 	}
1785 
1786 	/* extract vf and rxq index from vf_cid - relies on the following:
1787 	 * 1. vfid on cid reflects the true abs_vfid
1788 	 * 2. The max number of VFs (per path) is 64
1789 	 */
1790 	qidx = cid & ((1 << BNX2X_VF_CID_WND)-1);
1791 	abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1792 get_vf:
1793 	vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
1794 
1795 	if (!vf) {
1796 		BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
1797 			  cid, abs_vfid);
1798 		return 0;
1799 	}
1800 
1801 	switch (opcode) {
1802 	case EVENT_RING_OPCODE_CFC_DEL:
1803 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n",
1804 		   vf->abs_vfid, qidx);
1805 		vfq_get(vf, qidx)->sp_obj.complete_cmd(bp,
1806 						       &vfq_get(vf,
1807 								qidx)->sp_obj,
1808 						       BNX2X_Q_CMD_CFC_DEL);
1809 		break;
1810 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1811 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n",
1812 		   vf->abs_vfid, qidx);
1813 		bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem);
1814 		break;
1815 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1816 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n",
1817 		   vf->abs_vfid, qidx);
1818 		bnx2x_vf_handle_mcast_eqe(bp, vf);
1819 		break;
1820 	case EVENT_RING_OPCODE_FILTERS_RULES:
1821 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n",
1822 		   vf->abs_vfid, qidx);
1823 		bnx2x_vf_handle_filters_eqe(bp, vf);
1824 		break;
1825 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1826 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n",
1827 		   vf->abs_vfid, qidx);
1828 		bnx2x_vf_handle_rss_update_eqe(bp, vf);
1829 	case EVENT_RING_OPCODE_VF_FLR:
1830 		/* Do nothing for now */
1831 		return 0;
1832 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1833 		vf->malicious = true;
1834 		return 0;
1835 	}
1836 
1837 	return 0;
1838 }
1839 
1840 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid)
1841 {
1842 	/* extract the vf from vf_cid - relies on the following:
1843 	 * 1. vfid on cid reflects the true abs_vfid
1844 	 * 2. The max number of VFs (per path) is 64
1845 	 */
1846 	int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1847 	return bnx2x_vf_by_abs_fid(bp, abs_vfid);
1848 }
1849 
1850 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid,
1851 				struct bnx2x_queue_sp_obj **q_obj)
1852 {
1853 	struct bnx2x_virtf *vf;
1854 
1855 	if (!IS_SRIOV(bp))
1856 		return;
1857 
1858 	vf = bnx2x_vf_by_cid(bp, vf_cid);
1859 
1860 	if (vf) {
1861 		/* extract queue index from vf_cid - relies on the following:
1862 		 * 1. vfid on cid reflects the true abs_vfid
1863 		 * 2. The max number of VFs (per path) is 64
1864 		 */
1865 		int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1);
1866 		*q_obj = &bnx2x_vfq(vf, q_index, sp_obj);
1867 	} else {
1868 		BNX2X_ERR("No vf matching cid %d\n", vf_cid);
1869 	}
1870 }
1871 
1872 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp)
1873 {
1874 	int i;
1875 	int first_queue_query_index, num_queues_req;
1876 	dma_addr_t cur_data_offset;
1877 	struct stats_query_entry *cur_query_entry;
1878 	u8 stats_count = 0;
1879 	bool is_fcoe = false;
1880 
1881 	if (!IS_SRIOV(bp))
1882 		return;
1883 
1884 	if (!NO_FCOE(bp))
1885 		is_fcoe = true;
1886 
1887 	/* fcoe adds one global request and one queue request */
1888 	num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe;
1889 	first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX -
1890 		(is_fcoe ? 0 : 1);
1891 
1892 	DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1893 	       "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
1894 	       BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index,
1895 	       first_queue_query_index + num_queues_req);
1896 
1897 	cur_data_offset = bp->fw_stats_data_mapping +
1898 		offsetof(struct bnx2x_fw_stats_data, queue_stats) +
1899 		num_queues_req * sizeof(struct per_queue_stats);
1900 
1901 	cur_query_entry = &bp->fw_stats_req->
1902 		query[first_queue_query_index + num_queues_req];
1903 
1904 	for_each_vf(bp, i) {
1905 		int j;
1906 		struct bnx2x_virtf *vf = BP_VF(bp, i);
1907 
1908 		if (vf->state != VF_ENABLED) {
1909 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1910 			       "vf %d not enabled so no stats for it\n",
1911 			       vf->abs_vfid);
1912 			continue;
1913 		}
1914 
1915 		if (vf->malicious) {
1916 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1917 			       "vf %d malicious so no stats for it\n",
1918 			       vf->abs_vfid);
1919 			continue;
1920 		}
1921 
1922 		DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1923 		       "add addresses for vf %d\n", vf->abs_vfid);
1924 		for_each_vfq(vf, j) {
1925 			struct bnx2x_vf_queue *rxq = vfq_get(vf, j);
1926 
1927 			dma_addr_t q_stats_addr =
1928 				vf->fw_stat_map + j * vf->stats_stride;
1929 
1930 			/* collect stats fro active queues only */
1931 			if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) ==
1932 			    BNX2X_Q_LOGICAL_STATE_STOPPED)
1933 				continue;
1934 
1935 			/* create stats query entry for this queue */
1936 			cur_query_entry->kind = STATS_TYPE_QUEUE;
1937 			cur_query_entry->index = vfq_stat_id(vf, rxq);
1938 			cur_query_entry->funcID =
1939 				cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid));
1940 			cur_query_entry->address.hi =
1941 				cpu_to_le32(U64_HI(q_stats_addr));
1942 			cur_query_entry->address.lo =
1943 				cpu_to_le32(U64_LO(q_stats_addr));
1944 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1945 			       "added address %x %x for vf %d queue %d client %d\n",
1946 			       cur_query_entry->address.hi,
1947 			       cur_query_entry->address.lo,
1948 			       cur_query_entry->funcID,
1949 			       j, cur_query_entry->index);
1950 			cur_query_entry++;
1951 			cur_data_offset += sizeof(struct per_queue_stats);
1952 			stats_count++;
1953 
1954 			/* all stats are coalesced to the leading queue */
1955 			if (vf->cfg_flags & VF_CFG_STATS_COALESCE)
1956 				break;
1957 		}
1958 	}
1959 	bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count;
1960 }
1961 
1962 /* VF API helpers */
1963 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid,
1964 				u8 enable)
1965 {
1966 	u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4;
1967 	u32 val = enable ? (abs_vfid | (1 << 6)) : 0;
1968 
1969 	REG_WR(bp, reg, val);
1970 }
1971 
1972 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf)
1973 {
1974 	int i;
1975 
1976 	for_each_vfq(vf, i)
1977 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
1978 				    vfq_qzone_id(vf, vfq_get(vf, i)), false);
1979 }
1980 
1981 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf)
1982 {
1983 	u32 val;
1984 
1985 	/* clear the VF configuration - pretend */
1986 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
1987 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
1988 	val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN |
1989 		 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK);
1990 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
1991 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1992 }
1993 
1994 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf)
1995 {
1996 	return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF),
1997 		     BNX2X_VF_MAX_QUEUES);
1998 }
1999 
2000 static
2001 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf,
2002 			    struct vf_pf_resc_request *req_resc)
2003 {
2004 	u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
2005 	u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
2006 
2007 	return ((req_resc->num_rxqs <= rxq_cnt) &&
2008 		(req_resc->num_txqs <= txq_cnt) &&
2009 		(req_resc->num_sbs <= vf_sb_count(vf))   &&
2010 		(req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) &&
2011 		(req_resc->num_vlan_filters <= vf_vlan_rules_cnt(vf)));
2012 }
2013 
2014 /* CORE VF API */
2015 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf,
2016 		     struct vf_pf_resc_request *resc)
2017 {
2018 	int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) *
2019 		BNX2X_CIDS_PER_VF;
2020 
2021 	union cdu_context *base_cxt = (union cdu_context *)
2022 		BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
2023 		(base_vf_cid & (ILT_PAGE_CIDS-1));
2024 	int i;
2025 
2026 	/* if state is 'acquired' the VF was not released or FLR'd, in
2027 	 * this case the returned resources match the acquired already
2028 	 * acquired resources. Verify that the requested numbers do
2029 	 * not exceed the already acquired numbers.
2030 	 */
2031 	if (vf->state == VF_ACQUIRED) {
2032 		DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
2033 		   vf->abs_vfid);
2034 
2035 		if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2036 			BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
2037 				  vf->abs_vfid);
2038 			return -EINVAL;
2039 		}
2040 		return 0;
2041 	}
2042 
2043 	/* Otherwise vf state must be 'free' or 'reset' */
2044 	if (vf->state != VF_FREE && vf->state != VF_RESET) {
2045 		BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
2046 			  vf->abs_vfid, vf->state);
2047 		return -EINVAL;
2048 	}
2049 
2050 	/* static allocation:
2051 	 * the global maximum number are fixed per VF. Fail the request if
2052 	 * requested number exceed these globals
2053 	 */
2054 	if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2055 		DP(BNX2X_MSG_IOV,
2056 		   "cannot fulfill vf resource request. Placing maximal available values in response\n");
2057 		/* set the max resource in the vf */
2058 		return -ENOMEM;
2059 	}
2060 
2061 	/* Set resources counters - 0 request means max available */
2062 	vf_sb_count(vf) = resc->num_sbs;
2063 	vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2064 	vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2065 
2066 	DP(BNX2X_MSG_IOV,
2067 	   "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
2068 	   vf_sb_count(vf), vf_rxq_count(vf),
2069 	   vf_txq_count(vf), vf_mac_rules_cnt(vf),
2070 	   vf_vlan_rules_cnt(vf));
2071 
2072 	/* Initialize the queues */
2073 	if (!vf->vfqs) {
2074 		DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n");
2075 		return -EINVAL;
2076 	}
2077 
2078 	for_each_vfq(vf, i) {
2079 		struct bnx2x_vf_queue *q = vfq_get(vf, i);
2080 
2081 		if (!q) {
2082 			BNX2X_ERR("q number %d was not allocated\n", i);
2083 			return -EINVAL;
2084 		}
2085 
2086 		q->index = i;
2087 		q->cxt = &((base_cxt + i)->eth);
2088 		q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i;
2089 
2090 		DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
2091 		   vf->abs_vfid, i, q->index, q->cid, q->cxt);
2092 
2093 		/* init SP objects */
2094 		bnx2x_vfq_init(bp, vf, q);
2095 	}
2096 	vf->state = VF_ACQUIRED;
2097 	return 0;
2098 }
2099 
2100 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map)
2101 {
2102 	struct bnx2x_func_init_params func_init = {0};
2103 	int i;
2104 
2105 	/* the sb resources are initialized at this point, do the
2106 	 * FW/HW initializations
2107 	 */
2108 	for_each_vf_sb(vf, i)
2109 		bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true,
2110 			      vf_igu_sb(vf, i), vf_igu_sb(vf, i));
2111 
2112 	/* Sanity checks */
2113 	if (vf->state != VF_ACQUIRED) {
2114 		DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n",
2115 		   vf->abs_vfid, vf->state);
2116 		return -EINVAL;
2117 	}
2118 
2119 	/* let FLR complete ... */
2120 	msleep(100);
2121 
2122 	/* FLR cleanup epilogue */
2123 	if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid))
2124 		return -EBUSY;
2125 
2126 	/* reset IGU VF statistics: MSIX */
2127 	REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0);
2128 
2129 	/* function setup */
2130 	func_init.pf_id = BP_FUNC(bp);
2131 	func_init.func_id = FW_VF_HANDLE(vf->abs_vfid);
2132 	bnx2x_func_init(bp, &func_init);
2133 
2134 	/* Enable the vf */
2135 	bnx2x_vf_enable_access(bp, vf->abs_vfid);
2136 	bnx2x_vf_enable_traffic(bp, vf);
2137 
2138 	/* queue protection table */
2139 	for_each_vfq(vf, i)
2140 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
2141 				    vfq_qzone_id(vf, vfq_get(vf, i)), true);
2142 
2143 	vf->state = VF_ENABLED;
2144 
2145 	/* update vf bulletin board */
2146 	bnx2x_post_vf_bulletin(bp, vf->index);
2147 
2148 	return 0;
2149 }
2150 
2151 struct set_vf_state_cookie {
2152 	struct bnx2x_virtf *vf;
2153 	u8 state;
2154 };
2155 
2156 static void bnx2x_set_vf_state(void *cookie)
2157 {
2158 	struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie;
2159 
2160 	p->vf->state = p->state;
2161 }
2162 
2163 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf)
2164 {
2165 	int rc = 0, i;
2166 
2167 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2168 
2169 	/* Close all queues */
2170 	for (i = 0; i < vf_rxq_count(vf); i++) {
2171 		rc = bnx2x_vf_queue_teardown(bp, vf, i);
2172 		if (rc)
2173 			goto op_err;
2174 	}
2175 
2176 	/* disable the interrupts */
2177 	DP(BNX2X_MSG_IOV, "disabling igu\n");
2178 	bnx2x_vf_igu_disable(bp, vf);
2179 
2180 	/* disable the VF */
2181 	DP(BNX2X_MSG_IOV, "clearing qtbl\n");
2182 	bnx2x_vf_clr_qtbl(bp, vf);
2183 
2184 	/* need to make sure there are no outstanding stats ramrods which may
2185 	 * cause the device to access the VF's stats buffer which it will free
2186 	 * as soon as we return from the close flow.
2187 	 */
2188 	{
2189 		struct set_vf_state_cookie cookie;
2190 
2191 		cookie.vf = vf;
2192 		cookie.state = VF_ACQUIRED;
2193 		rc = bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie);
2194 		if (rc)
2195 			goto op_err;
2196 	}
2197 
2198 	DP(BNX2X_MSG_IOV, "set state to acquired\n");
2199 
2200 	return 0;
2201 op_err:
2202 	BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc);
2203 	return rc;
2204 }
2205 
2206 /* VF release can be called either: 1. The VF was acquired but
2207  * not enabled 2. the vf was enabled or in the process of being
2208  * enabled
2209  */
2210 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf)
2211 {
2212 	int rc;
2213 
2214 	DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid,
2215 	   vf->state == VF_FREE ? "Free" :
2216 	   vf->state == VF_ACQUIRED ? "Acquired" :
2217 	   vf->state == VF_ENABLED ? "Enabled" :
2218 	   vf->state == VF_RESET ? "Reset" :
2219 	   "Unknown");
2220 
2221 	switch (vf->state) {
2222 	case VF_ENABLED:
2223 		rc = bnx2x_vf_close(bp, vf);
2224 		if (rc)
2225 			goto op_err;
2226 		/* Fallthrough to release resources */
2227 	case VF_ACQUIRED:
2228 		DP(BNX2X_MSG_IOV, "about to free resources\n");
2229 		bnx2x_vf_free_resc(bp, vf);
2230 		break;
2231 
2232 	case VF_FREE:
2233 	case VF_RESET:
2234 	default:
2235 		break;
2236 	}
2237 	return 0;
2238 op_err:
2239 	BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc);
2240 	return rc;
2241 }
2242 
2243 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2244 			struct bnx2x_config_rss_params *rss)
2245 {
2246 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2247 	set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags);
2248 	return bnx2x_config_rss(bp, rss);
2249 }
2250 
2251 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2252 			struct vfpf_tpa_tlv *tlv,
2253 			struct bnx2x_queue_update_tpa_params *params)
2254 {
2255 	aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr;
2256 	struct bnx2x_queue_state_params qstate;
2257 	int qid, rc = 0;
2258 
2259 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2260 
2261 	/* Set ramrod params */
2262 	memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
2263 	memcpy(&qstate.params.update_tpa, params,
2264 	       sizeof(struct bnx2x_queue_update_tpa_params));
2265 	qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA;
2266 	set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
2267 
2268 	for (qid = 0; qid < vf_rxq_count(vf); qid++) {
2269 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
2270 		qstate.params.update_tpa.sge_map = sge_addr[qid];
2271 		DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n",
2272 		   vf->abs_vfid, qid, U64_HI(sge_addr[qid]),
2273 		   U64_LO(sge_addr[qid]));
2274 		rc = bnx2x_queue_state_change(bp, &qstate);
2275 		if (rc) {
2276 			BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n",
2277 				  U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]),
2278 				  vf->abs_vfid, qid);
2279 			return rc;
2280 		}
2281 	}
2282 
2283 	return rc;
2284 }
2285 
2286 /* VF release ~ VF close + VF release-resources
2287  * Release is the ultimate SW shutdown and is called whenever an
2288  * irrecoverable error is encountered.
2289  */
2290 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf)
2291 {
2292 	int rc;
2293 
2294 	DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid);
2295 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2296 
2297 	rc = bnx2x_vf_free(bp, vf);
2298 	if (rc)
2299 		WARN(rc,
2300 		     "VF[%d] Failed to allocate resources for release op- rc=%d\n",
2301 		     vf->abs_vfid, rc);
2302 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2303 	return rc;
2304 }
2305 
2306 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2307 			      enum channel_tlvs tlv)
2308 {
2309 	/* we don't lock the channel for unsupported tlvs */
2310 	if (!bnx2x_tlv_supported(tlv)) {
2311 		BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n");
2312 		return;
2313 	}
2314 
2315 	/* lock the channel */
2316 	mutex_lock(&vf->op_mutex);
2317 
2318 	/* record the locking op */
2319 	vf->op_current = tlv;
2320 
2321 	/* log the lock */
2322 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n",
2323 	   vf->abs_vfid, tlv);
2324 }
2325 
2326 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2327 				enum channel_tlvs expected_tlv)
2328 {
2329 	enum channel_tlvs current_tlv;
2330 
2331 	if (!vf) {
2332 		BNX2X_ERR("VF was %p\n", vf);
2333 		return;
2334 	}
2335 
2336 	current_tlv = vf->op_current;
2337 
2338 	/* we don't unlock the channel for unsupported tlvs */
2339 	if (!bnx2x_tlv_supported(expected_tlv))
2340 		return;
2341 
2342 	WARN(expected_tlv != vf->op_current,
2343 	     "lock mismatch: expected %d found %d", expected_tlv,
2344 	     vf->op_current);
2345 
2346 	/* record the locking op */
2347 	vf->op_current = CHANNEL_TLV_NONE;
2348 
2349 	/* lock the channel */
2350 	mutex_unlock(&vf->op_mutex);
2351 
2352 	/* log the unlock */
2353 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n",
2354 	   vf->abs_vfid, current_tlv);
2355 }
2356 
2357 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable)
2358 {
2359 	struct bnx2x_queue_state_params q_params;
2360 	u32 prev_flags;
2361 	int i, rc;
2362 
2363 	/* Verify changes are needed and record current Tx switching state */
2364 	prev_flags = bp->flags;
2365 	if (enable)
2366 		bp->flags |= TX_SWITCHING;
2367 	else
2368 		bp->flags &= ~TX_SWITCHING;
2369 	if (prev_flags == bp->flags)
2370 		return 0;
2371 
2372 	/* Verify state enables the sending of queue ramrods */
2373 	if ((bp->state != BNX2X_STATE_OPEN) ||
2374 	    (bnx2x_get_q_logical_state(bp,
2375 				      &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) !=
2376 	     BNX2X_Q_LOGICAL_STATE_ACTIVE))
2377 		return 0;
2378 
2379 	/* send q. update ramrod to configure Tx switching */
2380 	memset(&q_params, 0, sizeof(q_params));
2381 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2382 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
2383 	__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
2384 		  &q_params.params.update.update_flags);
2385 	if (enable)
2386 		__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2387 			  &q_params.params.update.update_flags);
2388 	else
2389 		__clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2390 			    &q_params.params.update.update_flags);
2391 
2392 	/* send the ramrod on all the queues of the PF */
2393 	for_each_eth_queue(bp, i) {
2394 		struct bnx2x_fastpath *fp = &bp->fp[i];
2395 
2396 		/* Set the appropriate Queue object */
2397 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
2398 
2399 		/* Update the Queue state */
2400 		rc = bnx2x_queue_state_change(bp, &q_params);
2401 		if (rc) {
2402 			BNX2X_ERR("Failed to configure Tx switching\n");
2403 			return rc;
2404 		}
2405 	}
2406 
2407 	DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled");
2408 	return 0;
2409 }
2410 
2411 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param)
2412 {
2413 	struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev));
2414 
2415 	if (!IS_SRIOV(bp)) {
2416 		BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n");
2417 		return -EINVAL;
2418 	}
2419 
2420 	DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
2421 	   num_vfs_param, BNX2X_NR_VIRTFN(bp));
2422 
2423 	/* HW channel is only operational when PF is up */
2424 	if (bp->state != BNX2X_STATE_OPEN) {
2425 		BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
2426 		return -EINVAL;
2427 	}
2428 
2429 	/* we are always bound by the total_vfs in the configuration space */
2430 	if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) {
2431 		BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
2432 			  num_vfs_param, BNX2X_NR_VIRTFN(bp));
2433 		num_vfs_param = BNX2X_NR_VIRTFN(bp);
2434 	}
2435 
2436 	bp->requested_nr_virtfn = num_vfs_param;
2437 	if (num_vfs_param == 0) {
2438 		bnx2x_set_pf_tx_switching(bp, false);
2439 		bnx2x_disable_sriov(bp);
2440 		return 0;
2441 	} else {
2442 		return bnx2x_enable_sriov(bp);
2443 	}
2444 }
2445 
2446 #define IGU_ENTRY_SIZE 4
2447 
2448 int bnx2x_enable_sriov(struct bnx2x *bp)
2449 {
2450 	int rc = 0, req_vfs = bp->requested_nr_virtfn;
2451 	int vf_idx, sb_idx, vfq_idx, qcount, first_vf;
2452 	u32 igu_entry, address;
2453 	u16 num_vf_queues;
2454 
2455 	if (req_vfs == 0)
2456 		return 0;
2457 
2458 	first_vf = bp->vfdb->sriov.first_vf_in_pf;
2459 
2460 	/* statically distribute vf sb pool between VFs */
2461 	num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES,
2462 			      BP_VFDB(bp)->vf_sbs_pool / req_vfs);
2463 
2464 	/* zero previous values learned from igu cam */
2465 	for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) {
2466 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2467 
2468 		vf->sb_count = 0;
2469 		vf_sb_count(BP_VF(bp, vf_idx)) = 0;
2470 	}
2471 	bp->vfdb->vf_sbs_pool = 0;
2472 
2473 	/* prepare IGU cam */
2474 	sb_idx = BP_VFDB(bp)->first_vf_igu_entry;
2475 	address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE;
2476 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2477 		for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) {
2478 			igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT |
2479 				vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT |
2480 				IGU_REG_MAPPING_MEMORY_VALID;
2481 			DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n",
2482 			   sb_idx, vf_idx);
2483 			REG_WR(bp, address, igu_entry);
2484 			sb_idx++;
2485 			address += IGU_ENTRY_SIZE;
2486 		}
2487 	}
2488 
2489 	/* Reinitialize vf database according to igu cam */
2490 	bnx2x_get_vf_igu_cam_info(bp);
2491 
2492 	DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n",
2493 	   BP_VFDB(bp)->vf_sbs_pool, num_vf_queues);
2494 
2495 	qcount = 0;
2496 	for_each_vf(bp, vf_idx) {
2497 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2498 
2499 		/* set local queue arrays */
2500 		vf->vfqs = &bp->vfdb->vfqs[qcount];
2501 		qcount += vf_sb_count(vf);
2502 		bnx2x_iov_static_resc(bp, vf);
2503 	}
2504 
2505 	/* prepare msix vectors in VF configuration space - the value in the
2506 	 * PCI configuration space should be the index of the last entry,
2507 	 * namely one less than the actual size of the table
2508 	 */
2509 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2510 		bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx));
2511 		REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL,
2512 		       num_vf_queues - 1);
2513 		DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n",
2514 		   vf_idx, num_vf_queues - 1);
2515 	}
2516 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
2517 
2518 	/* enable sriov. This will probe all the VFs, and consequentially cause
2519 	 * the "acquire" messages to appear on the VF PF channel.
2520 	 */
2521 	DP(BNX2X_MSG_IOV, "about to call enable sriov\n");
2522 	bnx2x_disable_sriov(bp);
2523 
2524 	rc = bnx2x_set_pf_tx_switching(bp, true);
2525 	if (rc)
2526 		return rc;
2527 
2528 	rc = pci_enable_sriov(bp->pdev, req_vfs);
2529 	if (rc) {
2530 		BNX2X_ERR("pci_enable_sriov failed with %d\n", rc);
2531 		return rc;
2532 	}
2533 	DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs);
2534 	return req_vfs;
2535 }
2536 
2537 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp)
2538 {
2539 	int vfidx;
2540 	struct pf_vf_bulletin_content *bulletin;
2541 
2542 	DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n");
2543 	for_each_vf(bp, vfidx) {
2544 		bulletin = BP_VF_BULLETIN(bp, vfidx);
2545 		if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2546 			bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0,
2547 					  htons(ETH_P_8021Q));
2548 	}
2549 }
2550 
2551 void bnx2x_disable_sriov(struct bnx2x *bp)
2552 {
2553 	if (pci_vfs_assigned(bp->pdev)) {
2554 		DP(BNX2X_MSG_IOV,
2555 		   "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2556 		return;
2557 	}
2558 
2559 	pci_disable_sriov(bp->pdev);
2560 }
2561 
2562 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
2563 			    struct bnx2x_virtf **vf,
2564 			    struct pf_vf_bulletin_content **bulletin,
2565 			    bool test_queue)
2566 {
2567 	if (bp->state != BNX2X_STATE_OPEN) {
2568 		BNX2X_ERR("PF is down - can't utilize iov-related functionality\n");
2569 		return -EINVAL;
2570 	}
2571 
2572 	if (!IS_SRIOV(bp)) {
2573 		BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n");
2574 		return -EINVAL;
2575 	}
2576 
2577 	if (vfidx >= BNX2X_NR_VIRTFN(bp)) {
2578 		BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
2579 			  vfidx, BNX2X_NR_VIRTFN(bp));
2580 		return -EINVAL;
2581 	}
2582 
2583 	/* init members */
2584 	*vf = BP_VF(bp, vfidx);
2585 	*bulletin = BP_VF_BULLETIN(bp, vfidx);
2586 
2587 	if (!*vf) {
2588 		BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx);
2589 		return -EINVAL;
2590 	}
2591 
2592 	if (test_queue && !(*vf)->vfqs) {
2593 		BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n",
2594 			  vfidx);
2595 		return -EINVAL;
2596 	}
2597 
2598 	if (!*bulletin) {
2599 		BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n",
2600 			  vfidx);
2601 		return -EINVAL;
2602 	}
2603 
2604 	return 0;
2605 }
2606 
2607 int bnx2x_get_vf_config(struct net_device *dev, int vfidx,
2608 			struct ifla_vf_info *ivi)
2609 {
2610 	struct bnx2x *bp = netdev_priv(dev);
2611 	struct bnx2x_virtf *vf = NULL;
2612 	struct pf_vf_bulletin_content *bulletin = NULL;
2613 	struct bnx2x_vlan_mac_obj *mac_obj;
2614 	struct bnx2x_vlan_mac_obj *vlan_obj;
2615 	int rc;
2616 
2617 	/* sanity and init */
2618 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2619 	if (rc)
2620 		return rc;
2621 
2622 	mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2623 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2624 	if (!mac_obj || !vlan_obj) {
2625 		BNX2X_ERR("VF partially initialized\n");
2626 		return -EINVAL;
2627 	}
2628 
2629 	ivi->vf = vfidx;
2630 	ivi->qos = 0;
2631 	ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */
2632 	ivi->min_tx_rate = 0;
2633 	ivi->spoofchk = 1; /*always enabled */
2634 	if (vf->state == VF_ENABLED) {
2635 		/* mac and vlan are in vlan_mac objects */
2636 		if (bnx2x_validate_vf_sp_objs(bp, vf, false)) {
2637 			mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac,
2638 						0, ETH_ALEN);
2639 			vlan_obj->get_n_elements(bp, vlan_obj, 1,
2640 						 (u8 *)&ivi->vlan, 0,
2641 						 VLAN_HLEN);
2642 		}
2643 	} else {
2644 		mutex_lock(&bp->vfdb->bulletin_mutex);
2645 		/* mac */
2646 		if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID))
2647 			/* mac configured by ndo so its in bulletin board */
2648 			memcpy(&ivi->mac, bulletin->mac, ETH_ALEN);
2649 		else
2650 			/* function has not been loaded yet. Show mac as 0s */
2651 			eth_zero_addr(ivi->mac);
2652 
2653 		/* vlan */
2654 		if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2655 			/* vlan configured by ndo so its in bulletin board */
2656 			memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN);
2657 		else
2658 			/* function has not been loaded yet. Show vlans as 0s */
2659 			memset(&ivi->vlan, 0, VLAN_HLEN);
2660 
2661 		mutex_unlock(&bp->vfdb->bulletin_mutex);
2662 	}
2663 
2664 	return 0;
2665 }
2666 
2667 /* New mac for VF. Consider these cases:
2668  * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
2669  *    supply at acquire.
2670  * 2. VF has already been acquired but has not yet initialized - store in local
2671  *    bulletin board. mac will be posted on VF bulletin board after VF init. VF
2672  *    will configure this mac when it is ready.
2673  * 3. VF has already initialized but has not yet setup a queue - post the new
2674  *    mac on VF's bulletin board right now. VF will configure this mac when it
2675  *    is ready.
2676  * 4. VF has already set a queue - delete any macs already configured for this
2677  *    queue and manually config the new mac.
2678  * In any event, once this function has been called refuse any attempts by the
2679  * VF to configure any mac for itself except for this mac. In case of a race
2680  * where the VF fails to see the new post on its bulletin board before sending a
2681  * mac configuration request, the PF will simply fail the request and VF can try
2682  * again after consulting its bulletin board.
2683  */
2684 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac)
2685 {
2686 	struct bnx2x *bp = netdev_priv(dev);
2687 	int rc, q_logical_state;
2688 	struct bnx2x_virtf *vf = NULL;
2689 	struct pf_vf_bulletin_content *bulletin = NULL;
2690 
2691 	if (!is_valid_ether_addr(mac)) {
2692 		BNX2X_ERR("mac address invalid\n");
2693 		return -EINVAL;
2694 	}
2695 
2696 	/* sanity and init */
2697 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2698 	if (rc)
2699 		return rc;
2700 
2701 	mutex_lock(&bp->vfdb->bulletin_mutex);
2702 
2703 	/* update PF's copy of the VF's bulletin. Will no longer accept mac
2704 	 * configuration requests from vf unless match this mac
2705 	 */
2706 	bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID;
2707 	memcpy(bulletin->mac, mac, ETH_ALEN);
2708 
2709 	/* Post update on VF's bulletin board */
2710 	rc = bnx2x_post_vf_bulletin(bp, vfidx);
2711 
2712 	/* release lock before checking return code */
2713 	mutex_unlock(&bp->vfdb->bulletin_mutex);
2714 
2715 	if (rc) {
2716 		BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2717 		return rc;
2718 	}
2719 
2720 	q_logical_state =
2721 		bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj));
2722 	if (vf->state == VF_ENABLED &&
2723 	    q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
2724 		/* configure the mac in device on this vf's queue */
2725 		unsigned long ramrod_flags = 0;
2726 		struct bnx2x_vlan_mac_obj *mac_obj;
2727 
2728 		/* User should be able to see failure reason in system logs */
2729 		if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2730 			return -EINVAL;
2731 
2732 		/* must lock vfpf channel to protect against vf flows */
2733 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2734 
2735 		/* remove existing eth macs */
2736 		mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2737 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true);
2738 		if (rc) {
2739 			BNX2X_ERR("failed to delete eth macs\n");
2740 			rc = -EINVAL;
2741 			goto out;
2742 		}
2743 
2744 		/* remove existing uc list macs */
2745 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true);
2746 		if (rc) {
2747 			BNX2X_ERR("failed to delete uc_list macs\n");
2748 			rc = -EINVAL;
2749 			goto out;
2750 		}
2751 
2752 		/* configure the new mac to device */
2753 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2754 		bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true,
2755 				  BNX2X_ETH_MAC, &ramrod_flags);
2756 
2757 out:
2758 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2759 	}
2760 
2761 	return rc;
2762 }
2763 
2764 static void bnx2x_set_vf_vlan_acceptance(struct bnx2x *bp,
2765 					 struct bnx2x_virtf *vf, bool accept)
2766 {
2767 	struct bnx2x_rx_mode_ramrod_params rx_ramrod;
2768 	unsigned long accept_flags;
2769 
2770 	/* need to remove/add the VF's accept_any_vlan bit */
2771 	accept_flags = bnx2x_leading_vfq(vf, accept_flags);
2772 	if (accept)
2773 		set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2774 	else
2775 		clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2776 
2777 	bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf,
2778 			      accept_flags);
2779 	bnx2x_leading_vfq(vf, accept_flags) = accept_flags;
2780 	bnx2x_config_rx_mode(bp, &rx_ramrod);
2781 }
2782 
2783 static int bnx2x_set_vf_vlan_filter(struct bnx2x *bp, struct bnx2x_virtf *vf,
2784 				    u16 vlan, bool add)
2785 {
2786 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
2787 	unsigned long ramrod_flags = 0;
2788 	int rc = 0;
2789 
2790 	/* configure the new vlan to device */
2791 	memset(&ramrod_param, 0, sizeof(ramrod_param));
2792 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2793 	ramrod_param.vlan_mac_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2794 	ramrod_param.ramrod_flags = ramrod_flags;
2795 	ramrod_param.user_req.u.vlan.vlan = vlan;
2796 	ramrod_param.user_req.cmd = add ? BNX2X_VLAN_MAC_ADD
2797 					: BNX2X_VLAN_MAC_DEL;
2798 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
2799 	if (rc) {
2800 		BNX2X_ERR("failed to configure vlan\n");
2801 		return -EINVAL;
2802 	}
2803 
2804 	return 0;
2805 }
2806 
2807 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos,
2808 		      __be16 vlan_proto)
2809 {
2810 	struct pf_vf_bulletin_content *bulletin = NULL;
2811 	struct bnx2x *bp = netdev_priv(dev);
2812 	struct bnx2x_vlan_mac_obj *vlan_obj;
2813 	unsigned long vlan_mac_flags = 0;
2814 	unsigned long ramrod_flags = 0;
2815 	struct bnx2x_virtf *vf = NULL;
2816 	int i, rc;
2817 
2818 	if (vlan > 4095) {
2819 		BNX2X_ERR("illegal vlan value %d\n", vlan);
2820 		return -EINVAL;
2821 	}
2822 
2823 	if (vlan_proto != htons(ETH_P_8021Q))
2824 		return -EPROTONOSUPPORT;
2825 
2826 	DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n",
2827 	   vfidx, vlan, 0);
2828 
2829 	/* sanity and init */
2830 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2831 	if (rc)
2832 		return rc;
2833 
2834 	/* update PF's copy of the VF's bulletin. No point in posting the vlan
2835 	 * to the VF since it doesn't have anything to do with it. But it useful
2836 	 * to store it here in case the VF is not up yet and we can only
2837 	 * configure the vlan later when it does. Treat vlan id 0 as remove the
2838 	 * Host tag.
2839 	 */
2840 	mutex_lock(&bp->vfdb->bulletin_mutex);
2841 
2842 	if (vlan > 0)
2843 		bulletin->valid_bitmap |= 1 << VLAN_VALID;
2844 	else
2845 		bulletin->valid_bitmap &= ~(1 << VLAN_VALID);
2846 	bulletin->vlan = vlan;
2847 
2848 	/* Post update on VF's bulletin board */
2849 	rc = bnx2x_post_vf_bulletin(bp, vfidx);
2850 	if (rc)
2851 		BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2852 	mutex_unlock(&bp->vfdb->bulletin_mutex);
2853 
2854 	/* is vf initialized and queue set up? */
2855 	if (vf->state != VF_ENABLED ||
2856 	    bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2857 	    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2858 		return rc;
2859 
2860 	/* User should be able to see error in system logs */
2861 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2862 		return -EINVAL;
2863 
2864 	/* must lock vfpf channel to protect against vf flows */
2865 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2866 
2867 	/* remove existing vlans */
2868 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2869 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2870 	rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags,
2871 				  &ramrod_flags);
2872 	if (rc) {
2873 		BNX2X_ERR("failed to delete vlans\n");
2874 		rc = -EINVAL;
2875 		goto out;
2876 	}
2877 
2878 	/* clear accept_any_vlan when HV forces vlan, otherwise
2879 	 * according to VF capabilities
2880 	 */
2881 	if (vlan || !(vf->cfg_flags & VF_CFG_VLAN_FILTER))
2882 		bnx2x_set_vf_vlan_acceptance(bp, vf, !vlan);
2883 
2884 	rc = bnx2x_set_vf_vlan_filter(bp, vf, vlan, true);
2885 	if (rc)
2886 		goto out;
2887 
2888 	/* send queue update ramrods to configure default vlan and
2889 	 * silent vlan removal
2890 	 */
2891 	for_each_vfq(vf, i) {
2892 		struct bnx2x_queue_state_params q_params = {NULL};
2893 		struct bnx2x_queue_update_params *update_params;
2894 
2895 		q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj);
2896 
2897 		/* validate the Q is UP */
2898 		if (bnx2x_get_q_logical_state(bp, q_params.q_obj) !=
2899 		    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2900 			continue;
2901 
2902 		__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2903 		q_params.cmd = BNX2X_Q_CMD_UPDATE;
2904 		update_params = &q_params.params.update;
2905 		__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
2906 			  &update_params->update_flags);
2907 		__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
2908 			  &update_params->update_flags);
2909 		if (vlan == 0) {
2910 			/* if vlan is 0 then we want to leave the VF traffic
2911 			 * untagged, and leave the incoming traffic untouched
2912 			 * (i.e. do not remove any vlan tags).
2913 			 */
2914 			__clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2915 				    &update_params->update_flags);
2916 			__clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2917 				    &update_params->update_flags);
2918 		} else {
2919 			/* configure default vlan to vf queue and set silent
2920 			 * vlan removal (the vf remains unaware of this vlan).
2921 			 */
2922 			__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2923 				  &update_params->update_flags);
2924 			__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2925 				  &update_params->update_flags);
2926 			update_params->def_vlan = vlan;
2927 			update_params->silent_removal_value =
2928 				vlan & VLAN_VID_MASK;
2929 			update_params->silent_removal_mask = VLAN_VID_MASK;
2930 		}
2931 
2932 		/* Update the Queue state */
2933 		rc = bnx2x_queue_state_change(bp, &q_params);
2934 		if (rc) {
2935 			BNX2X_ERR("Failed to configure default VLAN queue %d\n",
2936 				  i);
2937 			goto out;
2938 		}
2939 	}
2940 out:
2941 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2942 
2943 	if (rc)
2944 		DP(BNX2X_MSG_IOV,
2945 		   "updated VF[%d] vlan configuration (vlan = %d)\n",
2946 		   vfidx, vlan);
2947 
2948 	return rc;
2949 }
2950 
2951 /* crc is the first field in the bulletin board. Compute the crc over the
2952  * entire bulletin board excluding the crc field itself. Use the length field
2953  * as the Bulletin Board was posted by a PF with possibly a different version
2954  * from the vf which will sample it. Therefore, the length is computed by the
2955  * PF and then used blindly by the VF.
2956  */
2957 u32 bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content *bulletin)
2958 {
2959 	return crc32(BULLETIN_CRC_SEED,
2960 		 ((u8 *)bulletin) + sizeof(bulletin->crc),
2961 		 bulletin->length - sizeof(bulletin->crc));
2962 }
2963 
2964 /* Check for new posts on the bulletin board */
2965 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp)
2966 {
2967 	struct pf_vf_bulletin_content *bulletin;
2968 	int attempts;
2969 
2970 	/* sampling structure in mid post may result with corrupted data
2971 	 * validate crc to ensure coherency.
2972 	 */
2973 	for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) {
2974 		u32 crc;
2975 
2976 		/* sample the bulletin board */
2977 		memcpy(&bp->shadow_bulletin, bp->pf2vf_bulletin,
2978 		       sizeof(union pf_vf_bulletin));
2979 
2980 		crc = bnx2x_crc_vf_bulletin(&bp->shadow_bulletin.content);
2981 
2982 		if (bp->shadow_bulletin.content.crc == crc)
2983 			break;
2984 
2985 		BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
2986 			  bp->shadow_bulletin.content.crc, crc);
2987 	}
2988 
2989 	if (attempts >= BULLETIN_ATTEMPTS) {
2990 		BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
2991 			  attempts);
2992 		return PFVF_BULLETIN_CRC_ERR;
2993 	}
2994 	bulletin = &bp->shadow_bulletin.content;
2995 
2996 	/* bulletin board hasn't changed since last sample */
2997 	if (bp->old_bulletin.version == bulletin->version)
2998 		return PFVF_BULLETIN_UNCHANGED;
2999 
3000 	/* the mac address in bulletin board is valid and is new */
3001 	if (bulletin->valid_bitmap & 1 << MAC_ADDR_VALID &&
3002 	    !ether_addr_equal(bulletin->mac, bp->old_bulletin.mac)) {
3003 		/* update new mac to net device */
3004 		memcpy(bp->dev->dev_addr, bulletin->mac, ETH_ALEN);
3005 	}
3006 
3007 	if (bulletin->valid_bitmap & (1 << LINK_VALID)) {
3008 		DP(BNX2X_MSG_IOV, "link update speed %d flags %x\n",
3009 		   bulletin->link_speed, bulletin->link_flags);
3010 
3011 		bp->vf_link_vars.line_speed = bulletin->link_speed;
3012 		bp->vf_link_vars.link_report_flags = 0;
3013 		/* Link is down */
3014 		if (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)
3015 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
3016 				  &bp->vf_link_vars.link_report_flags);
3017 		/* Full DUPLEX */
3018 		if (bulletin->link_flags & VFPF_LINK_REPORT_FULL_DUPLEX)
3019 			__set_bit(BNX2X_LINK_REPORT_FD,
3020 				  &bp->vf_link_vars.link_report_flags);
3021 		/* Rx Flow Control is ON */
3022 		if (bulletin->link_flags & VFPF_LINK_REPORT_RX_FC_ON)
3023 			__set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
3024 				  &bp->vf_link_vars.link_report_flags);
3025 		/* Tx Flow Control is ON */
3026 		if (bulletin->link_flags & VFPF_LINK_REPORT_TX_FC_ON)
3027 			__set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
3028 				  &bp->vf_link_vars.link_report_flags);
3029 		__bnx2x_link_report(bp);
3030 	}
3031 
3032 	/* copy new bulletin board to bp */
3033 	memcpy(&bp->old_bulletin, bulletin,
3034 	       sizeof(struct pf_vf_bulletin_content));
3035 
3036 	return PFVF_BULLETIN_UPDATED;
3037 }
3038 
3039 void bnx2x_timer_sriov(struct bnx2x *bp)
3040 {
3041 	bnx2x_sample_bulletin(bp);
3042 
3043 	/* if channel is down we need to self destruct */
3044 	if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN)
3045 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
3046 				       BNX2X_MSG_IOV);
3047 }
3048 
3049 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp)
3050 {
3051 	/* vf doorbells are embedded within the regview */
3052 	return bp->regview + PXP_VF_ADDR_DB_START;
3053 }
3054 
3055 void bnx2x_vf_pci_dealloc(struct bnx2x *bp)
3056 {
3057 	BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
3058 		       sizeof(struct bnx2x_vf_mbx_msg));
3059 	BNX2X_PCI_FREE(bp->pf2vf_bulletin, bp->pf2vf_bulletin_mapping,
3060 		       sizeof(union pf_vf_bulletin));
3061 }
3062 
3063 int bnx2x_vf_pci_alloc(struct bnx2x *bp)
3064 {
3065 	mutex_init(&bp->vf2pf_mutex);
3066 
3067 	/* allocate vf2pf mailbox for vf to pf channel */
3068 	bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping,
3069 					 sizeof(struct bnx2x_vf_mbx_msg));
3070 	if (!bp->vf2pf_mbox)
3071 		goto alloc_mem_err;
3072 
3073 	/* allocate pf 2 vf bulletin board */
3074 	bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping,
3075 					     sizeof(union pf_vf_bulletin));
3076 	if (!bp->pf2vf_bulletin)
3077 		goto alloc_mem_err;
3078 
3079 	bnx2x_vf_bulletin_finalize(&bp->pf2vf_bulletin->content, true);
3080 
3081 	return 0;
3082 
3083 alloc_mem_err:
3084 	bnx2x_vf_pci_dealloc(bp);
3085 	return -ENOMEM;
3086 }
3087 
3088 void bnx2x_iov_channel_down(struct bnx2x *bp)
3089 {
3090 	int vf_idx;
3091 	struct pf_vf_bulletin_content *bulletin;
3092 
3093 	if (!IS_SRIOV(bp))
3094 		return;
3095 
3096 	for_each_vf(bp, vf_idx) {
3097 		/* locate this VFs bulletin board and update the channel down
3098 		 * bit
3099 		 */
3100 		bulletin = BP_VF_BULLETIN(bp, vf_idx);
3101 		bulletin->valid_bitmap |= 1 << CHANNEL_DOWN;
3102 
3103 		/* update vf bulletin board */
3104 		bnx2x_post_vf_bulletin(bp, vf_idx);
3105 	}
3106 }
3107 
3108 void bnx2x_iov_task(struct work_struct *work)
3109 {
3110 	struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work);
3111 
3112 	if (!netif_running(bp->dev))
3113 		return;
3114 
3115 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR,
3116 			       &bp->iov_task_state))
3117 		bnx2x_vf_handle_flr_event(bp);
3118 
3119 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG,
3120 			       &bp->iov_task_state))
3121 		bnx2x_vf_mbx(bp);
3122 }
3123 
3124 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag)
3125 {
3126 	smp_mb__before_atomic();
3127 	set_bit(flag, &bp->iov_task_state);
3128 	smp_mb__after_atomic();
3129 	DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
3130 	queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0);
3131 }
3132