1 /* bnx2x_sriov.c: Broadcom Everest network driver.
2  *
3  * Copyright 2009-2013 Broadcom Corporation
4  *
5  * Unless you and Broadcom execute a separate written software license
6  * agreement governing use of this software, this software is licensed to you
7  * under the terms of the GNU General Public License version 2, available
8  * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
9  *
10  * Notwithstanding the above, under no circumstances may you combine this
11  * software in any way with any other Broadcom software provided under a
12  * license other than the GPL, without Broadcom's express prior written
13  * consent.
14  *
15  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
16  * Written by: Shmulik Ravid
17  *	       Ariel Elior <ariel.elior@qlogic.com>
18  *
19  */
20 #include "bnx2x.h"
21 #include "bnx2x_init.h"
22 #include "bnx2x_cmn.h"
23 #include "bnx2x_sp.h"
24 #include <linux/crc32.h>
25 #include <linux/if_vlan.h>
26 
27 /* General service functions */
28 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
29 					 u16 pf_id)
30 {
31 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
32 		pf_id);
33 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
34 		pf_id);
35 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
36 		pf_id);
37 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
38 		pf_id);
39 }
40 
41 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
42 					u8 enable)
43 {
44 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
45 		enable);
46 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
47 		enable);
48 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
49 		enable);
50 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
51 		enable);
52 }
53 
54 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
55 {
56 	int idx;
57 
58 	for_each_vf(bp, idx)
59 		if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid)
60 			break;
61 	return idx;
62 }
63 
64 static
65 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
66 {
67 	u16 idx =  (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid);
68 	return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL;
69 }
70 
71 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf,
72 				u8 igu_sb_id, u8 segment, u16 index, u8 op,
73 				u8 update)
74 {
75 	/* acking a VF sb through the PF - use the GRC */
76 	u32 ctl;
77 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
78 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
79 	u32 func_encode = vf->abs_vfid;
80 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id;
81 	struct igu_regular cmd_data = {0};
82 
83 	cmd_data.sb_id_and_flags =
84 			((index << IGU_REGULAR_SB_INDEX_SHIFT) |
85 			 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
86 			 (update << IGU_REGULAR_BUPDATE_SHIFT) |
87 			 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
88 
89 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
90 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
91 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
92 
93 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
94 	   cmd_data.sb_id_and_flags, igu_addr_data);
95 	REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags);
96 	mmiowb();
97 	barrier();
98 
99 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
100 	   ctl, igu_addr_ctl);
101 	REG_WR(bp, igu_addr_ctl, ctl);
102 	mmiowb();
103 	barrier();
104 }
105 
106 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp,
107 				       struct bnx2x_virtf *vf,
108 				       bool print_err)
109 {
110 	if (!bnx2x_leading_vfq(vf, sp_initialized)) {
111 		if (print_err)
112 			BNX2X_ERR("Slowpath objects not yet initialized!\n");
113 		else
114 			DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n");
115 		return false;
116 	}
117 	return true;
118 }
119 
120 /* VFOP operations states */
121 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf,
122 			      struct bnx2x_queue_init_params *init_params,
123 			      struct bnx2x_queue_setup_params *setup_params,
124 			      u16 q_idx, u16 sb_idx)
125 {
126 	DP(BNX2X_MSG_IOV,
127 	   "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
128 	   vf->abs_vfid,
129 	   q_idx,
130 	   sb_idx,
131 	   init_params->tx.sb_cq_index,
132 	   init_params->tx.hc_rate,
133 	   setup_params->flags,
134 	   setup_params->txq_params.traffic_type);
135 }
136 
137 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf,
138 			    struct bnx2x_queue_init_params *init_params,
139 			    struct bnx2x_queue_setup_params *setup_params,
140 			    u16 q_idx, u16 sb_idx)
141 {
142 	struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params;
143 
144 	DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
145 	   "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
146 	   vf->abs_vfid,
147 	   q_idx,
148 	   sb_idx,
149 	   init_params->rx.sb_cq_index,
150 	   init_params->rx.hc_rate,
151 	   setup_params->gen_params.mtu,
152 	   rxq_params->buf_sz,
153 	   rxq_params->sge_buf_sz,
154 	   rxq_params->max_sges_pkt,
155 	   rxq_params->tpa_agg_sz,
156 	   setup_params->flags,
157 	   rxq_params->drop_flags,
158 	   rxq_params->cache_line_log);
159 }
160 
161 void bnx2x_vfop_qctor_prep(struct bnx2x *bp,
162 			   struct bnx2x_virtf *vf,
163 			   struct bnx2x_vf_queue *q,
164 			   struct bnx2x_vf_queue_construct_params *p,
165 			   unsigned long q_type)
166 {
167 	struct bnx2x_queue_init_params *init_p = &p->qstate.params.init;
168 	struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup;
169 
170 	/* INIT */
171 
172 	/* Enable host coalescing in the transition to INIT state */
173 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags))
174 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags);
175 
176 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags))
177 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags);
178 
179 	/* FW SB ID */
180 	init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
181 	init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
182 
183 	/* context */
184 	init_p->cxts[0] = q->cxt;
185 
186 	/* SETUP */
187 
188 	/* Setup-op general parameters */
189 	setup_p->gen_params.spcl_id = vf->sp_cl_id;
190 	setup_p->gen_params.stat_id = vfq_stat_id(vf, q);
191 
192 	/* Setup-op pause params:
193 	 * Nothing to do, the pause thresholds are set by default to 0 which
194 	 * effectively turns off the feature for this queue. We don't want
195 	 * one queue (VF) to interfering with another queue (another VF)
196 	 */
197 	if (vf->cfg_flags & VF_CFG_FW_FC)
198 		BNX2X_ERR("No support for pause to VFs (abs_vfid: %d)\n",
199 			  vf->abs_vfid);
200 	/* Setup-op flags:
201 	 * collect statistics, zero statistics, local-switching, security,
202 	 * OV for Flex10, RSS and MCAST for leading
203 	 */
204 	if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags))
205 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags);
206 
207 	/* for VFs, enable tx switching, bd coherency, and mac address
208 	 * anti-spoofing
209 	 */
210 	__set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags);
211 	__set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags);
212 	__set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
213 
214 	/* Setup-op rx parameters */
215 	if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) {
216 		struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params;
217 
218 		rxq_p->cl_qzone_id = vfq_qzone_id(vf, q);
219 		rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx);
220 		rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid);
221 
222 		if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags))
223 			rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES;
224 	}
225 
226 	/* Setup-op tx parameters */
227 	if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) {
228 		setup_p->txq_params.tss_leading_cl_id = vf->leading_rss;
229 		setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
230 	}
231 }
232 
233 static int bnx2x_vf_queue_create(struct bnx2x *bp,
234 				 struct bnx2x_virtf *vf, int qid,
235 				 struct bnx2x_vf_queue_construct_params *qctor)
236 {
237 	struct bnx2x_queue_state_params *q_params;
238 	int rc = 0;
239 
240 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
241 
242 	/* Prepare ramrod information */
243 	q_params = &qctor->qstate;
244 	q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
245 	set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags);
246 
247 	if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
248 	    BNX2X_Q_LOGICAL_STATE_ACTIVE) {
249 		DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n");
250 		goto out;
251 	}
252 
253 	/* Run Queue 'construction' ramrods */
254 	q_params->cmd = BNX2X_Q_CMD_INIT;
255 	rc = bnx2x_queue_state_change(bp, q_params);
256 	if (rc)
257 		goto out;
258 
259 	memcpy(&q_params->params.setup, &qctor->prep_qsetup,
260 	       sizeof(struct bnx2x_queue_setup_params));
261 	q_params->cmd = BNX2X_Q_CMD_SETUP;
262 	rc = bnx2x_queue_state_change(bp, q_params);
263 	if (rc)
264 		goto out;
265 
266 	/* enable interrupts */
267 	bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)),
268 			    USTORM_ID, 0, IGU_INT_ENABLE, 0);
269 out:
270 	return rc;
271 }
272 
273 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf,
274 				  int qid)
275 {
276 	enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT,
277 				       BNX2X_Q_CMD_TERMINATE,
278 				       BNX2X_Q_CMD_CFC_DEL};
279 	struct bnx2x_queue_state_params q_params;
280 	int rc, i;
281 
282 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
283 
284 	/* Prepare ramrod information */
285 	memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params));
286 	q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
287 	set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
288 
289 	if (bnx2x_get_q_logical_state(bp, q_params.q_obj) ==
290 	    BNX2X_Q_LOGICAL_STATE_STOPPED) {
291 		DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n");
292 		goto out;
293 	}
294 
295 	/* Run Queue 'destruction' ramrods */
296 	for (i = 0; i < ARRAY_SIZE(cmds); i++) {
297 		q_params.cmd = cmds[i];
298 		rc = bnx2x_queue_state_change(bp, &q_params);
299 		if (rc) {
300 			BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]);
301 			return rc;
302 		}
303 	}
304 out:
305 	/* Clean Context */
306 	if (bnx2x_vfq(vf, qid, cxt)) {
307 		bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0;
308 		bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0;
309 	}
310 
311 	return 0;
312 }
313 
314 static void
315 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid)
316 {
317 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
318 	if (vf) {
319 		/* the first igu entry belonging to VFs of this PF */
320 		if (!BP_VFDB(bp)->first_vf_igu_entry)
321 			BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id;
322 
323 		/* the first igu entry belonging to this VF */
324 		if (!vf_sb_count(vf))
325 			vf->igu_base_id = igu_sb_id;
326 
327 		++vf_sb_count(vf);
328 		++vf->sb_count;
329 	}
330 	BP_VFDB(bp)->vf_sbs_pool++;
331 }
332 
333 static inline void bnx2x_vf_vlan_credit(struct bnx2x *bp,
334 					struct bnx2x_vlan_mac_obj *obj,
335 					atomic_t *counter)
336 {
337 	struct list_head *pos;
338 	int read_lock;
339 	int cnt = 0;
340 
341 	read_lock = bnx2x_vlan_mac_h_read_lock(bp, obj);
342 	if (read_lock)
343 		DP(BNX2X_MSG_SP, "Failed to take vlan mac read head; continuing anyway\n");
344 
345 	list_for_each(pos, &obj->head)
346 		cnt++;
347 
348 	if (!read_lock)
349 		bnx2x_vlan_mac_h_read_unlock(bp, obj);
350 
351 	atomic_set(counter, cnt);
352 }
353 
354 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf,
355 				   int qid, bool drv_only, bool mac)
356 {
357 	struct bnx2x_vlan_mac_ramrod_params ramrod;
358 	int rc;
359 
360 	DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid,
361 	   mac ? "MACs" : "VLANs");
362 
363 	/* Prepare ramrod params */
364 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
365 	if (mac) {
366 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
367 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
368 	} else {
369 		set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
370 			&ramrod.user_req.vlan_mac_flags);
371 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
372 	}
373 	ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL;
374 
375 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
376 	if (drv_only)
377 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
378 	else
379 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
380 
381 	/* Start deleting */
382 	rc = ramrod.vlan_mac_obj->delete_all(bp,
383 					     ramrod.vlan_mac_obj,
384 					     &ramrod.user_req.vlan_mac_flags,
385 					     &ramrod.ramrod_flags);
386 	if (rc) {
387 		BNX2X_ERR("Failed to delete all %s\n",
388 			  mac ? "MACs" : "VLANs");
389 		return rc;
390 	}
391 
392 	/* Clear the vlan counters */
393 	if (!mac)
394 		atomic_set(&bnx2x_vfq(vf, qid, vlan_count), 0);
395 
396 	return 0;
397 }
398 
399 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp,
400 				    struct bnx2x_virtf *vf, int qid,
401 				    struct bnx2x_vf_mac_vlan_filter *filter,
402 				    bool drv_only)
403 {
404 	struct bnx2x_vlan_mac_ramrod_params ramrod;
405 	int rc;
406 
407 	DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n",
408 	   vf->abs_vfid, filter->add ? "Adding" : "Deleting",
409 	   filter->type == BNX2X_VF_FILTER_MAC ? "MAC" : "VLAN");
410 
411 	/* Prepare ramrod params */
412 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
413 	if (filter->type == BNX2X_VF_FILTER_VLAN) {
414 		set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
415 			&ramrod.user_req.vlan_mac_flags);
416 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
417 		ramrod.user_req.u.vlan.vlan = filter->vid;
418 	} else {
419 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
420 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
421 		memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
422 	}
423 	ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD :
424 					    BNX2X_VLAN_MAC_DEL;
425 
426 	/* Verify there are available vlan credits */
427 	if (filter->add && filter->type == BNX2X_VF_FILTER_VLAN &&
428 	    (atomic_read(&bnx2x_vfq(vf, qid, vlan_count)) >=
429 	     vf_vlan_rules_cnt(vf))) {
430 		BNX2X_ERR("No credits for vlan [%d >= %d]\n",
431 			  atomic_read(&bnx2x_vfq(vf, qid, vlan_count)),
432 			  vf_vlan_rules_cnt(vf));
433 		return -ENOMEM;
434 	}
435 
436 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
437 	if (drv_only)
438 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
439 	else
440 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
441 
442 	/* Add/Remove the filter */
443 	rc = bnx2x_config_vlan_mac(bp, &ramrod);
444 	if (rc && rc != -EEXIST) {
445 		BNX2X_ERR("Failed to %s %s\n",
446 			  filter->add ? "add" : "delete",
447 			  filter->type == BNX2X_VF_FILTER_MAC ? "MAC" :
448 								"VLAN");
449 		return rc;
450 	}
451 
452 	/* Update the vlan counters */
453 	if (filter->type == BNX2X_VF_FILTER_VLAN)
454 		bnx2x_vf_vlan_credit(bp, ramrod.vlan_mac_obj,
455 				     &bnx2x_vfq(vf, qid, vlan_count));
456 
457 	return 0;
458 }
459 
460 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf,
461 				  struct bnx2x_vf_mac_vlan_filters *filters,
462 				  int qid, bool drv_only)
463 {
464 	int rc = 0, i;
465 
466 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
467 
468 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
469 		return -EINVAL;
470 
471 	/* Prepare ramrod params */
472 	for (i = 0; i < filters->count; i++) {
473 		rc = bnx2x_vf_mac_vlan_config(bp, vf, qid,
474 					      &filters->filters[i], drv_only);
475 		if (rc)
476 			break;
477 	}
478 
479 	/* Rollback if needed */
480 	if (i != filters->count) {
481 		BNX2X_ERR("Managed only %d/%d filters - rolling back\n",
482 			  i, filters->count + 1);
483 		while (--i >= 0) {
484 			filters->filters[i].add = !filters->filters[i].add;
485 			bnx2x_vf_mac_vlan_config(bp, vf, qid,
486 						 &filters->filters[i],
487 						 drv_only);
488 		}
489 	}
490 
491 	/* It's our responsibility to free the filters */
492 	kfree(filters);
493 
494 	return rc;
495 }
496 
497 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid,
498 			 struct bnx2x_vf_queue_construct_params *qctor)
499 {
500 	int rc;
501 
502 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
503 
504 	rc = bnx2x_vf_queue_create(bp, vf, qid, qctor);
505 	if (rc)
506 		goto op_err;
507 
508 	/* Configure vlan0 for leading queue */
509 	if (!qid) {
510 		struct bnx2x_vf_mac_vlan_filter filter;
511 
512 		memset(&filter, 0, sizeof(struct bnx2x_vf_mac_vlan_filter));
513 		filter.type = BNX2X_VF_FILTER_VLAN;
514 		filter.add = true;
515 		filter.vid = 0;
516 		rc = bnx2x_vf_mac_vlan_config(bp, vf, qid, &filter, false);
517 		if (rc)
518 			goto op_err;
519 	}
520 
521 	/* Schedule the configuration of any pending vlan filters */
522 	vf->cfg_flags |= VF_CFG_VLAN;
523 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN,
524 			       BNX2X_MSG_IOV);
525 	return 0;
526 op_err:
527 	BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
528 	return rc;
529 }
530 
531 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf,
532 			       int qid)
533 {
534 	int rc;
535 
536 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
537 
538 	/* If needed, clean the filtering data base */
539 	if ((qid == LEADING_IDX) &&
540 	    bnx2x_validate_vf_sp_objs(bp, vf, false)) {
541 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, false);
542 		if (rc)
543 			goto op_err;
544 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, true);
545 		if (rc)
546 			goto op_err;
547 	}
548 
549 	/* Terminate queue */
550 	if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) {
551 		struct bnx2x_queue_state_params qstate;
552 
553 		memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
554 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
555 		qstate.q_obj->state = BNX2X_Q_STATE_STOPPED;
556 		qstate.cmd = BNX2X_Q_CMD_TERMINATE;
557 		set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
558 		rc = bnx2x_queue_state_change(bp, &qstate);
559 		if (rc)
560 			goto op_err;
561 	}
562 
563 	return 0;
564 op_err:
565 	BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
566 	return rc;
567 }
568 
569 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf,
570 		   bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only)
571 {
572 	struct bnx2x_mcast_list_elem *mc = NULL;
573 	struct bnx2x_mcast_ramrod_params mcast;
574 	int rc, i;
575 
576 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
577 
578 	/* Prepare Multicast command */
579 	memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params));
580 	mcast.mcast_obj = &vf->mcast_obj;
581 	if (drv_only)
582 		set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags);
583 	else
584 		set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags);
585 	if (mc_num) {
586 		mc = kzalloc(mc_num * sizeof(struct bnx2x_mcast_list_elem),
587 			     GFP_KERNEL);
588 		if (!mc) {
589 			BNX2X_ERR("Cannot Configure mulicasts due to lack of memory\n");
590 			return -ENOMEM;
591 		}
592 	}
593 
594 	/* clear existing mcasts */
595 	mcast.mcast_list_len = vf->mcast_list_len;
596 	vf->mcast_list_len = mc_num;
597 	rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL);
598 	if (rc) {
599 		BNX2X_ERR("Failed to remove multicasts\n");
600 		kfree(mc);
601 		return rc;
602 	}
603 
604 	/* update mcast list on the ramrod params */
605 	if (mc_num) {
606 		INIT_LIST_HEAD(&mcast.mcast_list);
607 		for (i = 0; i < mc_num; i++) {
608 			mc[i].mac = mcasts[i];
609 			list_add_tail(&mc[i].link,
610 				      &mcast.mcast_list);
611 		}
612 
613 		/* add new mcasts */
614 		mcast.mcast_list_len = mc_num;
615 		rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_ADD);
616 		if (rc)
617 			BNX2X_ERR("Faled to add multicasts\n");
618 		kfree(mc);
619 	}
620 
621 	return rc;
622 }
623 
624 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid,
625 				  struct bnx2x_rx_mode_ramrod_params *ramrod,
626 				  struct bnx2x_virtf *vf,
627 				  unsigned long accept_flags)
628 {
629 	struct bnx2x_vf_queue *vfq = vfq_get(vf, qid);
630 
631 	memset(ramrod, 0, sizeof(*ramrod));
632 	ramrod->cid = vfq->cid;
633 	ramrod->cl_id = vfq_cl_id(vf, vfq);
634 	ramrod->rx_mode_obj = &bp->rx_mode_obj;
635 	ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid);
636 	ramrod->rx_accept_flags = accept_flags;
637 	ramrod->tx_accept_flags = accept_flags;
638 	ramrod->pstate = &vf->filter_state;
639 	ramrod->state = BNX2X_FILTER_RX_MODE_PENDING;
640 
641 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
642 	set_bit(RAMROD_RX, &ramrod->ramrod_flags);
643 	set_bit(RAMROD_TX, &ramrod->ramrod_flags);
644 
645 	ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2);
646 	ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2);
647 }
648 
649 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf,
650 		    int qid, unsigned long accept_flags)
651 {
652 	struct bnx2x_rx_mode_ramrod_params ramrod;
653 
654 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
655 
656 	bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags);
657 	set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
658 	vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags;
659 	return bnx2x_config_rx_mode(bp, &ramrod);
660 }
661 
662 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid)
663 {
664 	int rc;
665 
666 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
667 
668 	/* Remove all classification configuration for leading queue */
669 	if (qid == LEADING_IDX) {
670 		rc = bnx2x_vf_rxmode(bp, vf, qid, 0);
671 		if (rc)
672 			goto op_err;
673 
674 		/* Remove filtering if feasible */
675 		if (bnx2x_validate_vf_sp_objs(bp, vf, true)) {
676 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
677 						     false, false);
678 			if (rc)
679 				goto op_err;
680 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
681 						     false, true);
682 			if (rc)
683 				goto op_err;
684 			rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false);
685 			if (rc)
686 				goto op_err;
687 		}
688 	}
689 
690 	/* Destroy queue */
691 	rc = bnx2x_vf_queue_destroy(bp, vf, qid);
692 	if (rc)
693 		goto op_err;
694 	return rc;
695 op_err:
696 	BNX2X_ERR("vf[%d:%d] error: rc %d\n",
697 		  vf->abs_vfid, qid, rc);
698 	return rc;
699 }
700 
701 /* VF enable primitives
702  * when pretend is required the caller is responsible
703  * for calling pretend prior to calling these routines
704  */
705 
706 /* internal vf enable - until vf is enabled internally all transactions
707  * are blocked. This routine should always be called last with pretend.
708  */
709 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable)
710 {
711 	REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0);
712 }
713 
714 /* clears vf error in all semi blocks */
715 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid)
716 {
717 	REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid);
718 	REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid);
719 	REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid);
720 	REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid);
721 }
722 
723 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid)
724 {
725 	u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5;
726 	u32 was_err_reg = 0;
727 
728 	switch (was_err_group) {
729 	case 0:
730 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR;
731 	    break;
732 	case 1:
733 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR;
734 	    break;
735 	case 2:
736 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR;
737 	    break;
738 	case 3:
739 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR;
740 	    break;
741 	}
742 	REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f));
743 }
744 
745 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf)
746 {
747 	int i;
748 	u32 val;
749 
750 	/* Set VF masks and configuration - pretend */
751 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
752 
753 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
754 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
755 	REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
756 	REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
757 	REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
758 	REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
759 
760 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
761 	val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN);
762 	if (vf->cfg_flags & VF_CFG_INT_SIMD)
763 		val |= IGU_VF_CONF_SINGLE_ISR_EN;
764 	val &= ~IGU_VF_CONF_PARENT_MASK;
765 	val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT;
766 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
767 
768 	DP(BNX2X_MSG_IOV,
769 	   "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n",
770 	   vf->abs_vfid, val);
771 
772 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
773 
774 	/* iterate over all queues, clear sb consumer */
775 	for (i = 0; i < vf_sb_count(vf); i++) {
776 		u8 igu_sb_id = vf_igu_sb(vf, i);
777 
778 		/* zero prod memory */
779 		REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0);
780 
781 		/* clear sb state machine */
782 		bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id,
783 				       false /* VF */);
784 
785 		/* disable + update */
786 		bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0,
787 				    IGU_INT_DISABLE, 1);
788 	}
789 }
790 
791 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid)
792 {
793 	/* set the VF-PF association in the FW */
794 	storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp));
795 	storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1);
796 
797 	/* clear vf errors*/
798 	bnx2x_vf_semi_clear_err(bp, abs_vfid);
799 	bnx2x_vf_pglue_clear_err(bp, abs_vfid);
800 
801 	/* internal vf-enable - pretend */
802 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid));
803 	DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid);
804 	bnx2x_vf_enable_internal(bp, true);
805 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
806 }
807 
808 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf)
809 {
810 	/* Reset vf in IGU  interrupts are still disabled */
811 	bnx2x_vf_igu_reset(bp, vf);
812 
813 	/* pretend to enable the vf with the PBF */
814 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
815 	REG_WR(bp, PBF_REG_DISABLE_VF, 0);
816 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
817 }
818 
819 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid)
820 {
821 	struct pci_dev *dev;
822 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
823 
824 	if (!vf)
825 		return false;
826 
827 	dev = pci_get_bus_and_slot(vf->bus, vf->devfn);
828 	if (dev)
829 		return bnx2x_is_pcie_pending(dev);
830 	return false;
831 }
832 
833 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid)
834 {
835 	/* Verify no pending pci transactions */
836 	if (bnx2x_vf_is_pcie_pending(bp, abs_vfid))
837 		BNX2X_ERR("PCIE Transactions still pending\n");
838 
839 	return 0;
840 }
841 
842 static void bnx2x_iov_re_set_vlan_filters(struct bnx2x *bp,
843 					  struct bnx2x_virtf *vf,
844 					  int new)
845 {
846 	int num = vf_vlan_rules_cnt(vf);
847 	int diff = new - num;
848 	bool rc = true;
849 
850 	DP(BNX2X_MSG_IOV, "vf[%d] - %d vlan filter credits [previously %d]\n",
851 	   vf->abs_vfid, new, num);
852 
853 	if (diff > 0)
854 		rc = bp->vlans_pool.get(&bp->vlans_pool, diff);
855 	else if (diff < 0)
856 		rc = bp->vlans_pool.put(&bp->vlans_pool, -diff);
857 
858 	if (rc)
859 		vf_vlan_rules_cnt(vf) = new;
860 	else
861 		DP(BNX2X_MSG_IOV, "vf[%d] - Failed to configure vlan filter credits change\n",
862 		   vf->abs_vfid);
863 }
864 
865 /* must be called after the number of PF queues and the number of VFs are
866  * both known
867  */
868 static void
869 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
870 {
871 	struct vf_pf_resc_request *resc = &vf->alloc_resc;
872 	u16 vlan_count = 0;
873 
874 	/* will be set only during VF-ACQUIRE */
875 	resc->num_rxqs = 0;
876 	resc->num_txqs = 0;
877 
878 	/* no credit calculations for macs (just yet) */
879 	resc->num_mac_filters = 1;
880 
881 	/* divvy up vlan rules */
882 	bnx2x_iov_re_set_vlan_filters(bp, vf, 0);
883 	vlan_count = bp->vlans_pool.check(&bp->vlans_pool);
884 	vlan_count = 1 << ilog2(vlan_count);
885 	bnx2x_iov_re_set_vlan_filters(bp, vf,
886 				      vlan_count / BNX2X_NR_VIRTFN(bp));
887 
888 	/* no real limitation */
889 	resc->num_mc_filters = 0;
890 
891 	/* num_sbs already set */
892 	resc->num_sbs = vf->sb_count;
893 }
894 
895 /* FLR routines: */
896 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
897 {
898 	/* reset the state variables */
899 	bnx2x_iov_static_resc(bp, vf);
900 	vf->state = VF_FREE;
901 }
902 
903 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf)
904 {
905 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
906 
907 	/* DQ usage counter */
908 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
909 	bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT,
910 					"DQ VF usage counter timed out",
911 					poll_cnt);
912 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
913 
914 	/* FW cleanup command - poll for the results */
915 	if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid),
916 				   poll_cnt))
917 		BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid);
918 
919 	/* verify TX hw is flushed */
920 	bnx2x_tx_hw_flushed(bp, poll_cnt);
921 }
922 
923 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf)
924 {
925 	int rc, i;
926 
927 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
928 
929 	/* the cleanup operations are valid if and only if the VF
930 	 * was first acquired.
931 	 */
932 	for (i = 0; i < vf_rxq_count(vf); i++) {
933 		rc = bnx2x_vf_queue_flr(bp, vf, i);
934 		if (rc)
935 			goto out;
936 	}
937 
938 	/* remove multicasts */
939 	bnx2x_vf_mcast(bp, vf, NULL, 0, true);
940 
941 	/* dispatch final cleanup and wait for HW queues to flush */
942 	bnx2x_vf_flr_clnup_hw(bp, vf);
943 
944 	/* release VF resources */
945 	bnx2x_vf_free_resc(bp, vf);
946 
947 	/* re-open the mailbox */
948 	bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
949 	return;
950 out:
951 	BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n",
952 		  vf->abs_vfid, i, rc);
953 }
954 
955 static void bnx2x_vf_flr_clnup(struct bnx2x *bp)
956 {
957 	struct bnx2x_virtf *vf;
958 	int i;
959 
960 	for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) {
961 		/* VF should be RESET & in FLR cleanup states */
962 		if (bnx2x_vf(bp, i, state) != VF_RESET ||
963 		    !bnx2x_vf(bp, i, flr_clnup_stage))
964 			continue;
965 
966 		DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n",
967 		   i, BNX2X_NR_VIRTFN(bp));
968 
969 		vf = BP_VF(bp, i);
970 
971 		/* lock the vf pf channel */
972 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
973 
974 		/* invoke the VF FLR SM */
975 		bnx2x_vf_flr(bp, vf);
976 
977 		/* mark the VF to be ACKED and continue */
978 		vf->flr_clnup_stage = false;
979 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
980 	}
981 
982 	/* Acknowledge the handled VFs.
983 	 * we are acknowledge all the vfs which an flr was requested for, even
984 	 * if amongst them there are such that we never opened, since the mcp
985 	 * will interrupt us immediately again if we only ack some of the bits,
986 	 * resulting in an endless loop. This can happen for example in KVM
987 	 * where an 'all ones' flr request is sometimes given by hyper visor
988 	 */
989 	DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
990 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
991 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
992 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i],
993 			  bp->vfdb->flrd_vfs[i]);
994 
995 	bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0);
996 
997 	/* clear the acked bits - better yet if the MCP implemented
998 	 * write to clear semantics
999 	 */
1000 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
1001 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0);
1002 }
1003 
1004 void bnx2x_vf_handle_flr_event(struct bnx2x *bp)
1005 {
1006 	int i;
1007 
1008 	/* Read FLR'd VFs */
1009 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
1010 		bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]);
1011 
1012 	DP(BNX2X_MSG_MCP,
1013 	   "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
1014 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
1015 
1016 	for_each_vf(bp, i) {
1017 		struct bnx2x_virtf *vf = BP_VF(bp, i);
1018 		u32 reset = 0;
1019 
1020 		if (vf->abs_vfid < 32)
1021 			reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid);
1022 		else
1023 			reset = bp->vfdb->flrd_vfs[1] &
1024 				(1 << (vf->abs_vfid - 32));
1025 
1026 		if (reset) {
1027 			/* set as reset and ready for cleanup */
1028 			vf->state = VF_RESET;
1029 			vf->flr_clnup_stage = true;
1030 
1031 			DP(BNX2X_MSG_IOV,
1032 			   "Initiating Final cleanup for VF %d\n",
1033 			   vf->abs_vfid);
1034 		}
1035 	}
1036 
1037 	/* do the FLR cleanup for all marked VFs*/
1038 	bnx2x_vf_flr_clnup(bp);
1039 }
1040 
1041 /* IOV global initialization routines  */
1042 void bnx2x_iov_init_dq(struct bnx2x *bp)
1043 {
1044 	if (!IS_SRIOV(bp))
1045 		return;
1046 
1047 	/* Set the DQ such that the CID reflect the abs_vfid */
1048 	REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0);
1049 	REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
1050 
1051 	/* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
1052 	 * the PF L2 queues
1053 	 */
1054 	REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
1055 
1056 	/* The VF window size is the log2 of the max number of CIDs per VF */
1057 	REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
1058 
1059 	/* The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
1060 	 * the Pf doorbell size although the 2 are independent.
1061 	 */
1062 	REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3);
1063 
1064 	/* No security checks for now -
1065 	 * configure single rule (out of 16) mask = 0x1, value = 0x0,
1066 	 * CID range 0 - 0x1ffff
1067 	 */
1068 	REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1);
1069 	REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0);
1070 	REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
1071 	REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
1072 
1073 	/* set the VF doorbell threshold. This threshold represents the amount
1074 	 * of doorbells allowed in the main DORQ fifo for a specific VF.
1075 	 */
1076 	REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64);
1077 }
1078 
1079 void bnx2x_iov_init_dmae(struct bnx2x *bp)
1080 {
1081 	if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV))
1082 		REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0);
1083 }
1084 
1085 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid)
1086 {
1087 	struct pci_dev *dev = bp->pdev;
1088 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1089 
1090 	return dev->bus->number + ((dev->devfn + iov->offset +
1091 				    iov->stride * vfid) >> 8);
1092 }
1093 
1094 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid)
1095 {
1096 	struct pci_dev *dev = bp->pdev;
1097 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1098 
1099 	return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff;
1100 }
1101 
1102 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf)
1103 {
1104 	int i, n;
1105 	struct pci_dev *dev = bp->pdev;
1106 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1107 
1108 	for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) {
1109 		u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i);
1110 		u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i);
1111 
1112 		size /= iov->total;
1113 		vf->bars[n].bar = start + size * vf->abs_vfid;
1114 		vf->bars[n].size = size;
1115 	}
1116 }
1117 
1118 static int bnx2x_ari_enabled(struct pci_dev *dev)
1119 {
1120 	return dev->bus->self && dev->bus->self->ari_enabled;
1121 }
1122 
1123 static void
1124 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp)
1125 {
1126 	int sb_id;
1127 	u32 val;
1128 	u8 fid, current_pf = 0;
1129 
1130 	/* IGU in normal mode - read CAM */
1131 	for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) {
1132 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4);
1133 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
1134 			continue;
1135 		fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID);
1136 		if (fid & IGU_FID_ENCODE_IS_PF)
1137 			current_pf = fid & IGU_FID_PF_NUM_MASK;
1138 		else if (current_pf == BP_FUNC(bp))
1139 			bnx2x_vf_set_igu_info(bp, sb_id,
1140 					      (fid & IGU_FID_VF_NUM_MASK));
1141 		DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n",
1142 		   ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"),
1143 		   ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) :
1144 		   (fid & IGU_FID_VF_NUM_MASK)), sb_id,
1145 		   GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR));
1146 	}
1147 	DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool);
1148 }
1149 
1150 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp)
1151 {
1152 	if (bp->vfdb) {
1153 		kfree(bp->vfdb->vfqs);
1154 		kfree(bp->vfdb->vfs);
1155 		kfree(bp->vfdb);
1156 	}
1157 	bp->vfdb = NULL;
1158 }
1159 
1160 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1161 {
1162 	int pos;
1163 	struct pci_dev *dev = bp->pdev;
1164 
1165 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
1166 	if (!pos) {
1167 		BNX2X_ERR("failed to find SRIOV capability in device\n");
1168 		return -ENODEV;
1169 	}
1170 
1171 	iov->pos = pos;
1172 	DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos);
1173 	pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
1174 	pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total);
1175 	pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial);
1176 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
1177 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
1178 	pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
1179 	pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap);
1180 	pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
1181 
1182 	return 0;
1183 }
1184 
1185 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1186 {
1187 	u32 val;
1188 
1189 	/* read the SRIOV capability structure
1190 	 * The fields can be read via configuration read or
1191 	 * directly from the device (starting at offset PCICFG_OFFSET)
1192 	 */
1193 	if (bnx2x_sriov_pci_cfg_info(bp, iov))
1194 		return -ENODEV;
1195 
1196 	/* get the number of SRIOV bars */
1197 	iov->nres = 0;
1198 
1199 	/* read the first_vfid */
1200 	val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF);
1201 	iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK)
1202 			       * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp));
1203 
1204 	DP(BNX2X_MSG_IOV,
1205 	   "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
1206 	   BP_FUNC(bp),
1207 	   iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total,
1208 	   iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
1209 
1210 	return 0;
1211 }
1212 
1213 /* must be called after PF bars are mapped */
1214 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param,
1215 		       int num_vfs_param)
1216 {
1217 	int err, i;
1218 	struct bnx2x_sriov *iov;
1219 	struct pci_dev *dev = bp->pdev;
1220 
1221 	bp->vfdb = NULL;
1222 
1223 	/* verify is pf */
1224 	if (IS_VF(bp))
1225 		return 0;
1226 
1227 	/* verify sriov capability is present in configuration space */
1228 	if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV))
1229 		return 0;
1230 
1231 	/* verify chip revision */
1232 	if (CHIP_IS_E1x(bp))
1233 		return 0;
1234 
1235 	/* check if SRIOV support is turned off */
1236 	if (!num_vfs_param)
1237 		return 0;
1238 
1239 	/* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
1240 	if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) {
1241 		BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
1242 			  BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID);
1243 		return 0;
1244 	}
1245 
1246 	/* SRIOV can be enabled only with MSIX */
1247 	if (int_mode_param == BNX2X_INT_MODE_MSI ||
1248 	    int_mode_param == BNX2X_INT_MODE_INTX) {
1249 		BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
1250 		return 0;
1251 	}
1252 
1253 	err = -EIO;
1254 	/* verify ari is enabled */
1255 	if (!bnx2x_ari_enabled(bp->pdev)) {
1256 		BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
1257 		return 0;
1258 	}
1259 
1260 	/* verify igu is in normal mode */
1261 	if (CHIP_INT_MODE_IS_BC(bp)) {
1262 		BNX2X_ERR("IGU not normal mode,  SRIOV can not be enabled\n");
1263 		return 0;
1264 	}
1265 
1266 	/* allocate the vfs database */
1267 	bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL);
1268 	if (!bp->vfdb) {
1269 		BNX2X_ERR("failed to allocate vf database\n");
1270 		err = -ENOMEM;
1271 		goto failed;
1272 	}
1273 
1274 	/* get the sriov info - Linux already collected all the pertinent
1275 	 * information, however the sriov structure is for the private use
1276 	 * of the pci module. Also we want this information regardless
1277 	 * of the hyper-visor.
1278 	 */
1279 	iov = &(bp->vfdb->sriov);
1280 	err = bnx2x_sriov_info(bp, iov);
1281 	if (err)
1282 		goto failed;
1283 
1284 	/* SR-IOV capability was enabled but there are no VFs*/
1285 	if (iov->total == 0)
1286 		goto failed;
1287 
1288 	iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param);
1289 
1290 	DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n",
1291 	   num_vfs_param, iov->nr_virtfn);
1292 
1293 	/* allocate the vf array */
1294 	bp->vfdb->vfs = kzalloc(sizeof(struct bnx2x_virtf) *
1295 				BNX2X_NR_VIRTFN(bp), GFP_KERNEL);
1296 	if (!bp->vfdb->vfs) {
1297 		BNX2X_ERR("failed to allocate vf array\n");
1298 		err = -ENOMEM;
1299 		goto failed;
1300 	}
1301 
1302 	/* Initial VF init - index and abs_vfid - nr_virtfn must be set */
1303 	for_each_vf(bp, i) {
1304 		bnx2x_vf(bp, i, index) = i;
1305 		bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i;
1306 		bnx2x_vf(bp, i, state) = VF_FREE;
1307 		mutex_init(&bnx2x_vf(bp, i, op_mutex));
1308 		bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE;
1309 	}
1310 
1311 	/* re-read the IGU CAM for VFs - index and abs_vfid must be set */
1312 	bnx2x_get_vf_igu_cam_info(bp);
1313 
1314 	/* allocate the queue arrays for all VFs */
1315 	bp->vfdb->vfqs = kzalloc(
1316 		BNX2X_MAX_NUM_VF_QUEUES * sizeof(struct bnx2x_vf_queue),
1317 		GFP_KERNEL);
1318 
1319 	DP(BNX2X_MSG_IOV, "bp->vfdb->vfqs was %p\n", bp->vfdb->vfqs);
1320 
1321 	if (!bp->vfdb->vfqs) {
1322 		BNX2X_ERR("failed to allocate vf queue array\n");
1323 		err = -ENOMEM;
1324 		goto failed;
1325 	}
1326 
1327 	/* Prepare the VFs event synchronization mechanism */
1328 	mutex_init(&bp->vfdb->event_mutex);
1329 
1330 	return 0;
1331 failed:
1332 	DP(BNX2X_MSG_IOV, "Failed err=%d\n", err);
1333 	__bnx2x_iov_free_vfdb(bp);
1334 	return err;
1335 }
1336 
1337 void bnx2x_iov_remove_one(struct bnx2x *bp)
1338 {
1339 	int vf_idx;
1340 
1341 	/* if SRIOV is not enabled there's nothing to do */
1342 	if (!IS_SRIOV(bp))
1343 		return;
1344 
1345 	DP(BNX2X_MSG_IOV, "about to call disable sriov\n");
1346 	pci_disable_sriov(bp->pdev);
1347 	DP(BNX2X_MSG_IOV, "sriov disabled\n");
1348 
1349 	/* disable access to all VFs */
1350 	for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) {
1351 		bnx2x_pretend_func(bp,
1352 				   HW_VF_HANDLE(bp,
1353 						bp->vfdb->sriov.first_vf_in_pf +
1354 						vf_idx));
1355 		DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n",
1356 		   bp->vfdb->sriov.first_vf_in_pf + vf_idx);
1357 		bnx2x_vf_enable_internal(bp, 0);
1358 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1359 	}
1360 
1361 	/* free vf database */
1362 	__bnx2x_iov_free_vfdb(bp);
1363 }
1364 
1365 void bnx2x_iov_free_mem(struct bnx2x *bp)
1366 {
1367 	int i;
1368 
1369 	if (!IS_SRIOV(bp))
1370 		return;
1371 
1372 	/* free vfs hw contexts */
1373 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1374 		struct hw_dma *cxt = &bp->vfdb->context[i];
1375 		BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size);
1376 	}
1377 
1378 	BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr,
1379 		       BP_VFDB(bp)->sp_dma.mapping,
1380 		       BP_VFDB(bp)->sp_dma.size);
1381 
1382 	BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr,
1383 		       BP_VF_MBX_DMA(bp)->mapping,
1384 		       BP_VF_MBX_DMA(bp)->size);
1385 
1386 	BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr,
1387 		       BP_VF_BULLETIN_DMA(bp)->mapping,
1388 		       BP_VF_BULLETIN_DMA(bp)->size);
1389 }
1390 
1391 int bnx2x_iov_alloc_mem(struct bnx2x *bp)
1392 {
1393 	size_t tot_size;
1394 	int i, rc = 0;
1395 
1396 	if (!IS_SRIOV(bp))
1397 		return rc;
1398 
1399 	/* allocate vfs hw contexts */
1400 	tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) *
1401 		BNX2X_CIDS_PER_VF * sizeof(union cdu_context);
1402 
1403 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1404 		struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i);
1405 		cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ);
1406 
1407 		if (cxt->size) {
1408 			cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size);
1409 			if (!cxt->addr)
1410 				goto alloc_mem_err;
1411 		} else {
1412 			cxt->addr = NULL;
1413 			cxt->mapping = 0;
1414 		}
1415 		tot_size -= cxt->size;
1416 	}
1417 
1418 	/* allocate vfs ramrods dma memory - client_init and set_mac */
1419 	tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp);
1420 	BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping,
1421 						   tot_size);
1422 	if (!BP_VFDB(bp)->sp_dma.addr)
1423 		goto alloc_mem_err;
1424 	BP_VFDB(bp)->sp_dma.size = tot_size;
1425 
1426 	/* allocate mailboxes */
1427 	tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE;
1428 	BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping,
1429 						  tot_size);
1430 	if (!BP_VF_MBX_DMA(bp)->addr)
1431 		goto alloc_mem_err;
1432 
1433 	BP_VF_MBX_DMA(bp)->size = tot_size;
1434 
1435 	/* allocate local bulletin boards */
1436 	tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE;
1437 	BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping,
1438 						       tot_size);
1439 	if (!BP_VF_BULLETIN_DMA(bp)->addr)
1440 		goto alloc_mem_err;
1441 
1442 	BP_VF_BULLETIN_DMA(bp)->size = tot_size;
1443 
1444 	return 0;
1445 
1446 alloc_mem_err:
1447 	return -ENOMEM;
1448 }
1449 
1450 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf,
1451 			   struct bnx2x_vf_queue *q)
1452 {
1453 	u8 cl_id = vfq_cl_id(vf, q);
1454 	u8 func_id = FW_VF_HANDLE(vf->abs_vfid);
1455 	unsigned long q_type = 0;
1456 
1457 	set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1458 	set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1459 
1460 	/* Queue State object */
1461 	bnx2x_init_queue_obj(bp, &q->sp_obj,
1462 			     cl_id, &q->cid, 1, func_id,
1463 			     bnx2x_vf_sp(bp, vf, q_data),
1464 			     bnx2x_vf_sp_map(bp, vf, q_data),
1465 			     q_type);
1466 
1467 	/* sp indication is set only when vlan/mac/etc. are initialized */
1468 	q->sp_initialized = false;
1469 
1470 	DP(BNX2X_MSG_IOV,
1471 	   "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n",
1472 	   vf->abs_vfid, q->sp_obj.func_id, q->cid);
1473 }
1474 
1475 /* called by bnx2x_nic_load */
1476 int bnx2x_iov_nic_init(struct bnx2x *bp)
1477 {
1478 	int vfid;
1479 
1480 	if (!IS_SRIOV(bp)) {
1481 		DP(BNX2X_MSG_IOV, "vfdb was not allocated\n");
1482 		return 0;
1483 	}
1484 
1485 	DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn);
1486 
1487 	/* let FLR complete ... */
1488 	msleep(100);
1489 
1490 	/* initialize vf database */
1491 	for_each_vf(bp, vfid) {
1492 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1493 
1494 		int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) *
1495 			BNX2X_CIDS_PER_VF;
1496 
1497 		union cdu_context *base_cxt = (union cdu_context *)
1498 			BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1499 			(base_vf_cid & (ILT_PAGE_CIDS-1));
1500 
1501 		DP(BNX2X_MSG_IOV,
1502 		   "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
1503 		   vf->abs_vfid, vf_sb_count(vf), base_vf_cid,
1504 		   BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt);
1505 
1506 		/* init statically provisioned resources */
1507 		bnx2x_iov_static_resc(bp, vf);
1508 
1509 		/* queues are initialized during VF-ACQUIRE */
1510 		vf->filter_state = 0;
1511 		vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id);
1512 
1513 		/*  init mcast object - This object will be re-initialized
1514 		 *  during VF-ACQUIRE with the proper cl_id and cid.
1515 		 *  It needs to be initialized here so that it can be safely
1516 		 *  handled by a subsequent FLR flow.
1517 		 */
1518 		vf->mcast_list_len = 0;
1519 		bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF,
1520 				     0xFF, 0xFF, 0xFF,
1521 				     bnx2x_vf_sp(bp, vf, mcast_rdata),
1522 				     bnx2x_vf_sp_map(bp, vf, mcast_rdata),
1523 				     BNX2X_FILTER_MCAST_PENDING,
1524 				     &vf->filter_state,
1525 				     BNX2X_OBJ_TYPE_RX_TX);
1526 
1527 		/* set the mailbox message addresses */
1528 		BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *)
1529 			(((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid *
1530 			MBX_MSG_ALIGNED_SIZE);
1531 
1532 		BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping +
1533 			vfid * MBX_MSG_ALIGNED_SIZE;
1534 
1535 		/* Enable vf mailbox */
1536 		bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
1537 	}
1538 
1539 	/* Final VF init */
1540 	for_each_vf(bp, vfid) {
1541 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1542 
1543 		/* fill in the BDF and bars */
1544 		vf->bus = bnx2x_vf_bus(bp, vfid);
1545 		vf->devfn = bnx2x_vf_devfn(bp, vfid);
1546 		bnx2x_vf_set_bars(bp, vf);
1547 
1548 		DP(BNX2X_MSG_IOV,
1549 		   "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
1550 		   vf->abs_vfid, vf->bus, vf->devfn,
1551 		   (unsigned)vf->bars[0].bar, vf->bars[0].size,
1552 		   (unsigned)vf->bars[1].bar, vf->bars[1].size,
1553 		   (unsigned)vf->bars[2].bar, vf->bars[2].size);
1554 	}
1555 
1556 	return 0;
1557 }
1558 
1559 /* called by bnx2x_chip_cleanup */
1560 int bnx2x_iov_chip_cleanup(struct bnx2x *bp)
1561 {
1562 	int i;
1563 
1564 	if (!IS_SRIOV(bp))
1565 		return 0;
1566 
1567 	/* release all the VFs */
1568 	for_each_vf(bp, i)
1569 		bnx2x_vf_release(bp, BP_VF(bp, i));
1570 
1571 	return 0;
1572 }
1573 
1574 /* called by bnx2x_init_hw_func, returns the next ilt line */
1575 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line)
1576 {
1577 	int i;
1578 	struct bnx2x_ilt *ilt = BP_ILT(bp);
1579 
1580 	if (!IS_SRIOV(bp))
1581 		return line;
1582 
1583 	/* set vfs ilt lines */
1584 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1585 		struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i);
1586 
1587 		ilt->lines[line+i].page = hw_cxt->addr;
1588 		ilt->lines[line+i].page_mapping = hw_cxt->mapping;
1589 		ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
1590 	}
1591 	return line + i;
1592 }
1593 
1594 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid)
1595 {
1596 	return ((cid >= BNX2X_FIRST_VF_CID) &&
1597 		((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS));
1598 }
1599 
1600 static
1601 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp,
1602 					struct bnx2x_vf_queue *vfq,
1603 					union event_ring_elem *elem)
1604 {
1605 	unsigned long ramrod_flags = 0;
1606 	int rc = 0;
1607 
1608 	/* Always push next commands out, don't wait here */
1609 	set_bit(RAMROD_CONT, &ramrod_flags);
1610 
1611 	switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
1612 	case BNX2X_FILTER_MAC_PENDING:
1613 		rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem,
1614 					   &ramrod_flags);
1615 		break;
1616 	case BNX2X_FILTER_VLAN_PENDING:
1617 		rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem,
1618 					    &ramrod_flags);
1619 		break;
1620 	default:
1621 		BNX2X_ERR("Unsupported classification command: %d\n",
1622 			  elem->message.data.eth_event.echo);
1623 		return;
1624 	}
1625 	if (rc < 0)
1626 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
1627 	else if (rc > 0)
1628 		DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n");
1629 }
1630 
1631 static
1632 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp,
1633 			       struct bnx2x_virtf *vf)
1634 {
1635 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
1636 	int rc;
1637 
1638 	rparam.mcast_obj = &vf->mcast_obj;
1639 	vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw);
1640 
1641 	/* If there are pending mcast commands - send them */
1642 	if (vf->mcast_obj.check_pending(&vf->mcast_obj)) {
1643 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
1644 		if (rc < 0)
1645 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
1646 				  rc);
1647 	}
1648 }
1649 
1650 static
1651 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp,
1652 				 struct bnx2x_virtf *vf)
1653 {
1654 	smp_mb__before_atomic();
1655 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
1656 	smp_mb__after_atomic();
1657 }
1658 
1659 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp,
1660 					   struct bnx2x_virtf *vf)
1661 {
1662 	vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw);
1663 }
1664 
1665 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem)
1666 {
1667 	struct bnx2x_virtf *vf;
1668 	int qidx = 0, abs_vfid;
1669 	u8 opcode;
1670 	u16 cid = 0xffff;
1671 
1672 	if (!IS_SRIOV(bp))
1673 		return 1;
1674 
1675 	/* first get the cid - the only events we handle here are cfc-delete
1676 	 * and set-mac completion
1677 	 */
1678 	opcode = elem->message.opcode;
1679 
1680 	switch (opcode) {
1681 	case EVENT_RING_OPCODE_CFC_DEL:
1682 		cid = SW_CID((__force __le32)
1683 			     elem->message.data.cfc_del_event.cid);
1684 		DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid);
1685 		break;
1686 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1687 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1688 	case EVENT_RING_OPCODE_FILTERS_RULES:
1689 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1690 		cid = (elem->message.data.eth_event.echo &
1691 		       BNX2X_SWCID_MASK);
1692 		DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid);
1693 		break;
1694 	case EVENT_RING_OPCODE_VF_FLR:
1695 		abs_vfid = elem->message.data.vf_flr_event.vf_id;
1696 		DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n",
1697 		   abs_vfid);
1698 		goto get_vf;
1699 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1700 		abs_vfid = elem->message.data.malicious_vf_event.vf_id;
1701 		BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
1702 			  abs_vfid,
1703 			  elem->message.data.malicious_vf_event.err_id);
1704 		goto get_vf;
1705 	default:
1706 		return 1;
1707 	}
1708 
1709 	/* check if the cid is the VF range */
1710 	if (!bnx2x_iov_is_vf_cid(bp, cid)) {
1711 		DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid);
1712 		return 1;
1713 	}
1714 
1715 	/* extract vf and rxq index from vf_cid - relies on the following:
1716 	 * 1. vfid on cid reflects the true abs_vfid
1717 	 * 2. The max number of VFs (per path) is 64
1718 	 */
1719 	qidx = cid & ((1 << BNX2X_VF_CID_WND)-1);
1720 	abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1721 get_vf:
1722 	vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
1723 
1724 	if (!vf) {
1725 		BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
1726 			  cid, abs_vfid);
1727 		return 0;
1728 	}
1729 
1730 	switch (opcode) {
1731 	case EVENT_RING_OPCODE_CFC_DEL:
1732 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n",
1733 		   vf->abs_vfid, qidx);
1734 		vfq_get(vf, qidx)->sp_obj.complete_cmd(bp,
1735 						       &vfq_get(vf,
1736 								qidx)->sp_obj,
1737 						       BNX2X_Q_CMD_CFC_DEL);
1738 		break;
1739 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1740 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n",
1741 		   vf->abs_vfid, qidx);
1742 		bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem);
1743 		break;
1744 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1745 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n",
1746 		   vf->abs_vfid, qidx);
1747 		bnx2x_vf_handle_mcast_eqe(bp, vf);
1748 		break;
1749 	case EVENT_RING_OPCODE_FILTERS_RULES:
1750 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n",
1751 		   vf->abs_vfid, qidx);
1752 		bnx2x_vf_handle_filters_eqe(bp, vf);
1753 		break;
1754 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1755 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n",
1756 		   vf->abs_vfid, qidx);
1757 		bnx2x_vf_handle_rss_update_eqe(bp, vf);
1758 	case EVENT_RING_OPCODE_VF_FLR:
1759 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1760 		/* Do nothing for now */
1761 		return 0;
1762 	}
1763 
1764 	return 0;
1765 }
1766 
1767 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid)
1768 {
1769 	/* extract the vf from vf_cid - relies on the following:
1770 	 * 1. vfid on cid reflects the true abs_vfid
1771 	 * 2. The max number of VFs (per path) is 64
1772 	 */
1773 	int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1774 	return bnx2x_vf_by_abs_fid(bp, abs_vfid);
1775 }
1776 
1777 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid,
1778 				struct bnx2x_queue_sp_obj **q_obj)
1779 {
1780 	struct bnx2x_virtf *vf;
1781 
1782 	if (!IS_SRIOV(bp))
1783 		return;
1784 
1785 	vf = bnx2x_vf_by_cid(bp, vf_cid);
1786 
1787 	if (vf) {
1788 		/* extract queue index from vf_cid - relies on the following:
1789 		 * 1. vfid on cid reflects the true abs_vfid
1790 		 * 2. The max number of VFs (per path) is 64
1791 		 */
1792 		int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1);
1793 		*q_obj = &bnx2x_vfq(vf, q_index, sp_obj);
1794 	} else {
1795 		BNX2X_ERR("No vf matching cid %d\n", vf_cid);
1796 	}
1797 }
1798 
1799 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp)
1800 {
1801 	int i;
1802 	int first_queue_query_index, num_queues_req;
1803 	dma_addr_t cur_data_offset;
1804 	struct stats_query_entry *cur_query_entry;
1805 	u8 stats_count = 0;
1806 	bool is_fcoe = false;
1807 
1808 	if (!IS_SRIOV(bp))
1809 		return;
1810 
1811 	if (!NO_FCOE(bp))
1812 		is_fcoe = true;
1813 
1814 	/* fcoe adds one global request and one queue request */
1815 	num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe;
1816 	first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX -
1817 		(is_fcoe ? 0 : 1);
1818 
1819 	DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1820 	       "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
1821 	       BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index,
1822 	       first_queue_query_index + num_queues_req);
1823 
1824 	cur_data_offset = bp->fw_stats_data_mapping +
1825 		offsetof(struct bnx2x_fw_stats_data, queue_stats) +
1826 		num_queues_req * sizeof(struct per_queue_stats);
1827 
1828 	cur_query_entry = &bp->fw_stats_req->
1829 		query[first_queue_query_index + num_queues_req];
1830 
1831 	for_each_vf(bp, i) {
1832 		int j;
1833 		struct bnx2x_virtf *vf = BP_VF(bp, i);
1834 
1835 		if (vf->state != VF_ENABLED) {
1836 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1837 			       "vf %d not enabled so no stats for it\n",
1838 			       vf->abs_vfid);
1839 			continue;
1840 		}
1841 
1842 		DP(BNX2X_MSG_IOV, "add addresses for vf %d\n", vf->abs_vfid);
1843 		for_each_vfq(vf, j) {
1844 			struct bnx2x_vf_queue *rxq = vfq_get(vf, j);
1845 
1846 			dma_addr_t q_stats_addr =
1847 				vf->fw_stat_map + j * vf->stats_stride;
1848 
1849 			/* collect stats fro active queues only */
1850 			if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) ==
1851 			    BNX2X_Q_LOGICAL_STATE_STOPPED)
1852 				continue;
1853 
1854 			/* create stats query entry for this queue */
1855 			cur_query_entry->kind = STATS_TYPE_QUEUE;
1856 			cur_query_entry->index = vfq_stat_id(vf, rxq);
1857 			cur_query_entry->funcID =
1858 				cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid));
1859 			cur_query_entry->address.hi =
1860 				cpu_to_le32(U64_HI(q_stats_addr));
1861 			cur_query_entry->address.lo =
1862 				cpu_to_le32(U64_LO(q_stats_addr));
1863 			DP(BNX2X_MSG_IOV,
1864 			   "added address %x %x for vf %d queue %d client %d\n",
1865 			   cur_query_entry->address.hi,
1866 			   cur_query_entry->address.lo, cur_query_entry->funcID,
1867 			   j, cur_query_entry->index);
1868 			cur_query_entry++;
1869 			cur_data_offset += sizeof(struct per_queue_stats);
1870 			stats_count++;
1871 
1872 			/* all stats are coalesced to the leading queue */
1873 			if (vf->cfg_flags & VF_CFG_STATS_COALESCE)
1874 				break;
1875 		}
1876 	}
1877 	bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count;
1878 }
1879 
1880 static inline
1881 struct bnx2x_virtf *__vf_from_stat_id(struct bnx2x *bp, u8 stat_id)
1882 {
1883 	int i;
1884 	struct bnx2x_virtf *vf = NULL;
1885 
1886 	for_each_vf(bp, i) {
1887 		vf = BP_VF(bp, i);
1888 		if (stat_id >= vf->igu_base_id &&
1889 		    stat_id < vf->igu_base_id + vf_sb_count(vf))
1890 			break;
1891 	}
1892 	return vf;
1893 }
1894 
1895 /* VF API helpers */
1896 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid,
1897 				u8 enable)
1898 {
1899 	u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4;
1900 	u32 val = enable ? (abs_vfid | (1 << 6)) : 0;
1901 
1902 	REG_WR(bp, reg, val);
1903 }
1904 
1905 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf)
1906 {
1907 	int i;
1908 
1909 	for_each_vfq(vf, i)
1910 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
1911 				    vfq_qzone_id(vf, vfq_get(vf, i)), false);
1912 }
1913 
1914 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf)
1915 {
1916 	u32 val;
1917 
1918 	/* clear the VF configuration - pretend */
1919 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
1920 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
1921 	val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN |
1922 		 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK);
1923 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
1924 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1925 }
1926 
1927 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf)
1928 {
1929 	return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF),
1930 		     BNX2X_VF_MAX_QUEUES);
1931 }
1932 
1933 static
1934 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf,
1935 			    struct vf_pf_resc_request *req_resc)
1936 {
1937 	u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1938 	u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1939 
1940 	/* Save a vlan filter for the Hypervisor */
1941 	return ((req_resc->num_rxqs <= rxq_cnt) &&
1942 		(req_resc->num_txqs <= txq_cnt) &&
1943 		(req_resc->num_sbs <= vf_sb_count(vf))   &&
1944 		(req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) &&
1945 		(req_resc->num_vlan_filters <= vf_vlan_rules_visible_cnt(vf)));
1946 }
1947 
1948 /* CORE VF API */
1949 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf,
1950 		     struct vf_pf_resc_request *resc)
1951 {
1952 	int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) *
1953 		BNX2X_CIDS_PER_VF;
1954 
1955 	union cdu_context *base_cxt = (union cdu_context *)
1956 		BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1957 		(base_vf_cid & (ILT_PAGE_CIDS-1));
1958 	int i;
1959 
1960 	/* if state is 'acquired' the VF was not released or FLR'd, in
1961 	 * this case the returned resources match the acquired already
1962 	 * acquired resources. Verify that the requested numbers do
1963 	 * not exceed the already acquired numbers.
1964 	 */
1965 	if (vf->state == VF_ACQUIRED) {
1966 		DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
1967 		   vf->abs_vfid);
1968 
1969 		if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
1970 			BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
1971 				  vf->abs_vfid);
1972 			return -EINVAL;
1973 		}
1974 		return 0;
1975 	}
1976 
1977 	/* Otherwise vf state must be 'free' or 'reset' */
1978 	if (vf->state != VF_FREE && vf->state != VF_RESET) {
1979 		BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
1980 			  vf->abs_vfid, vf->state);
1981 		return -EINVAL;
1982 	}
1983 
1984 	/* static allocation:
1985 	 * the global maximum number are fixed per VF. Fail the request if
1986 	 * requested number exceed these globals
1987 	 */
1988 	if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
1989 		DP(BNX2X_MSG_IOV,
1990 		   "cannot fulfill vf resource request. Placing maximal available values in response\n");
1991 		/* set the max resource in the vf */
1992 		return -ENOMEM;
1993 	}
1994 
1995 	/* Set resources counters - 0 request means max available */
1996 	vf_sb_count(vf) = resc->num_sbs;
1997 	vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
1998 	vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
1999 	if (resc->num_mac_filters)
2000 		vf_mac_rules_cnt(vf) = resc->num_mac_filters;
2001 	/* Add an additional vlan filter credit for the hypervisor */
2002 	bnx2x_iov_re_set_vlan_filters(bp, vf, resc->num_vlan_filters + 1);
2003 
2004 	DP(BNX2X_MSG_IOV,
2005 	   "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
2006 	   vf_sb_count(vf), vf_rxq_count(vf),
2007 	   vf_txq_count(vf), vf_mac_rules_cnt(vf),
2008 	   vf_vlan_rules_visible_cnt(vf));
2009 
2010 	/* Initialize the queues */
2011 	if (!vf->vfqs) {
2012 		DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n");
2013 		return -EINVAL;
2014 	}
2015 
2016 	for_each_vfq(vf, i) {
2017 		struct bnx2x_vf_queue *q = vfq_get(vf, i);
2018 
2019 		if (!q) {
2020 			BNX2X_ERR("q number %d was not allocated\n", i);
2021 			return -EINVAL;
2022 		}
2023 
2024 		q->index = i;
2025 		q->cxt = &((base_cxt + i)->eth);
2026 		q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i;
2027 
2028 		DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
2029 		   vf->abs_vfid, i, q->index, q->cid, q->cxt);
2030 
2031 		/* init SP objects */
2032 		bnx2x_vfq_init(bp, vf, q);
2033 	}
2034 	vf->state = VF_ACQUIRED;
2035 	return 0;
2036 }
2037 
2038 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map)
2039 {
2040 	struct bnx2x_func_init_params func_init = {0};
2041 	u16 flags = 0;
2042 	int i;
2043 
2044 	/* the sb resources are initialized at this point, do the
2045 	 * FW/HW initializations
2046 	 */
2047 	for_each_vf_sb(vf, i)
2048 		bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true,
2049 			      vf_igu_sb(vf, i), vf_igu_sb(vf, i));
2050 
2051 	/* Sanity checks */
2052 	if (vf->state != VF_ACQUIRED) {
2053 		DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n",
2054 		   vf->abs_vfid, vf->state);
2055 		return -EINVAL;
2056 	}
2057 
2058 	/* let FLR complete ... */
2059 	msleep(100);
2060 
2061 	/* FLR cleanup epilogue */
2062 	if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid))
2063 		return -EBUSY;
2064 
2065 	/* reset IGU VF statistics: MSIX */
2066 	REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0);
2067 
2068 	/* vf init */
2069 	if (vf->cfg_flags & VF_CFG_STATS)
2070 		flags |= (FUNC_FLG_STATS | FUNC_FLG_SPQ);
2071 
2072 	if (vf->cfg_flags & VF_CFG_TPA)
2073 		flags |= FUNC_FLG_TPA;
2074 
2075 	if (is_vf_multi(vf))
2076 		flags |= FUNC_FLG_RSS;
2077 
2078 	/* function setup */
2079 	func_init.func_flgs = flags;
2080 	func_init.pf_id = BP_FUNC(bp);
2081 	func_init.func_id = FW_VF_HANDLE(vf->abs_vfid);
2082 	func_init.fw_stat_map = vf->fw_stat_map;
2083 	func_init.spq_map = vf->spq_map;
2084 	func_init.spq_prod = 0;
2085 	bnx2x_func_init(bp, &func_init);
2086 
2087 	/* Enable the vf */
2088 	bnx2x_vf_enable_access(bp, vf->abs_vfid);
2089 	bnx2x_vf_enable_traffic(bp, vf);
2090 
2091 	/* queue protection table */
2092 	for_each_vfq(vf, i)
2093 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
2094 				    vfq_qzone_id(vf, vfq_get(vf, i)), true);
2095 
2096 	vf->state = VF_ENABLED;
2097 
2098 	/* update vf bulletin board */
2099 	bnx2x_post_vf_bulletin(bp, vf->index);
2100 
2101 	return 0;
2102 }
2103 
2104 struct set_vf_state_cookie {
2105 	struct bnx2x_virtf *vf;
2106 	u8 state;
2107 };
2108 
2109 static void bnx2x_set_vf_state(void *cookie)
2110 {
2111 	struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie;
2112 
2113 	p->vf->state = p->state;
2114 }
2115 
2116 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf)
2117 {
2118 	int rc = 0, i;
2119 
2120 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2121 
2122 	/* Close all queues */
2123 	for (i = 0; i < vf_rxq_count(vf); i++) {
2124 		rc = bnx2x_vf_queue_teardown(bp, vf, i);
2125 		if (rc)
2126 			goto op_err;
2127 	}
2128 
2129 	/* disable the interrupts */
2130 	DP(BNX2X_MSG_IOV, "disabling igu\n");
2131 	bnx2x_vf_igu_disable(bp, vf);
2132 
2133 	/* disable the VF */
2134 	DP(BNX2X_MSG_IOV, "clearing qtbl\n");
2135 	bnx2x_vf_clr_qtbl(bp, vf);
2136 
2137 	/* need to make sure there are no outstanding stats ramrods which may
2138 	 * cause the device to access the VF's stats buffer which it will free
2139 	 * as soon as we return from the close flow.
2140 	 */
2141 	{
2142 		struct set_vf_state_cookie cookie;
2143 
2144 		cookie.vf = vf;
2145 		cookie.state = VF_ACQUIRED;
2146 		bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie);
2147 	}
2148 
2149 	DP(BNX2X_MSG_IOV, "set state to acquired\n");
2150 
2151 	return 0;
2152 op_err:
2153 	BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc);
2154 	return rc;
2155 }
2156 
2157 /* VF release can be called either: 1. The VF was acquired but
2158  * not enabled 2. the vf was enabled or in the process of being
2159  * enabled
2160  */
2161 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf)
2162 {
2163 	int rc;
2164 
2165 	DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid,
2166 	   vf->state == VF_FREE ? "Free" :
2167 	   vf->state == VF_ACQUIRED ? "Acquired" :
2168 	   vf->state == VF_ENABLED ? "Enabled" :
2169 	   vf->state == VF_RESET ? "Reset" :
2170 	   "Unknown");
2171 
2172 	switch (vf->state) {
2173 	case VF_ENABLED:
2174 		rc = bnx2x_vf_close(bp, vf);
2175 		if (rc)
2176 			goto op_err;
2177 		/* Fallthrough to release resources */
2178 	case VF_ACQUIRED:
2179 		DP(BNX2X_MSG_IOV, "about to free resources\n");
2180 		bnx2x_vf_free_resc(bp, vf);
2181 		break;
2182 
2183 	case VF_FREE:
2184 	case VF_RESET:
2185 	default:
2186 		break;
2187 	}
2188 	return 0;
2189 op_err:
2190 	BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc);
2191 	return rc;
2192 }
2193 
2194 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2195 			struct bnx2x_config_rss_params *rss)
2196 {
2197 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2198 	set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags);
2199 	return bnx2x_config_rss(bp, rss);
2200 }
2201 
2202 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2203 			struct vfpf_tpa_tlv *tlv,
2204 			struct bnx2x_queue_update_tpa_params *params)
2205 {
2206 	aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr;
2207 	struct bnx2x_queue_state_params qstate;
2208 	int qid, rc = 0;
2209 
2210 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2211 
2212 	/* Set ramrod params */
2213 	memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
2214 	memcpy(&qstate.params.update_tpa, params,
2215 	       sizeof(struct bnx2x_queue_update_tpa_params));
2216 	qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA;
2217 	set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
2218 
2219 	for (qid = 0; qid < vf_rxq_count(vf); qid++) {
2220 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
2221 		qstate.params.update_tpa.sge_map = sge_addr[qid];
2222 		DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n",
2223 		   vf->abs_vfid, qid, U64_HI(sge_addr[qid]),
2224 		   U64_LO(sge_addr[qid]));
2225 		rc = bnx2x_queue_state_change(bp, &qstate);
2226 		if (rc) {
2227 			BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n",
2228 				  U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]),
2229 				  vf->abs_vfid, qid);
2230 			return rc;
2231 		}
2232 	}
2233 
2234 	return rc;
2235 }
2236 
2237 /* VF release ~ VF close + VF release-resources
2238  * Release is the ultimate SW shutdown and is called whenever an
2239  * irrecoverable error is encountered.
2240  */
2241 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf)
2242 {
2243 	int rc;
2244 
2245 	DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid);
2246 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2247 
2248 	rc = bnx2x_vf_free(bp, vf);
2249 	if (rc)
2250 		WARN(rc,
2251 		     "VF[%d] Failed to allocate resources for release op- rc=%d\n",
2252 		     vf->abs_vfid, rc);
2253 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2254 	return rc;
2255 }
2256 
2257 static inline void bnx2x_vf_get_sbdf(struct bnx2x *bp,
2258 			      struct bnx2x_virtf *vf, u32 *sbdf)
2259 {
2260 	*sbdf = vf->devfn | (vf->bus << 8);
2261 }
2262 
2263 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2264 			      enum channel_tlvs tlv)
2265 {
2266 	/* we don't lock the channel for unsupported tlvs */
2267 	if (!bnx2x_tlv_supported(tlv)) {
2268 		BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n");
2269 		return;
2270 	}
2271 
2272 	/* lock the channel */
2273 	mutex_lock(&vf->op_mutex);
2274 
2275 	/* record the locking op */
2276 	vf->op_current = tlv;
2277 
2278 	/* log the lock */
2279 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n",
2280 	   vf->abs_vfid, tlv);
2281 }
2282 
2283 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2284 				enum channel_tlvs expected_tlv)
2285 {
2286 	enum channel_tlvs current_tlv;
2287 
2288 	if (!vf) {
2289 		BNX2X_ERR("VF was %p\n", vf);
2290 		return;
2291 	}
2292 
2293 	current_tlv = vf->op_current;
2294 
2295 	/* we don't unlock the channel for unsupported tlvs */
2296 	if (!bnx2x_tlv_supported(expected_tlv))
2297 		return;
2298 
2299 	WARN(expected_tlv != vf->op_current,
2300 	     "lock mismatch: expected %d found %d", expected_tlv,
2301 	     vf->op_current);
2302 
2303 	/* record the locking op */
2304 	vf->op_current = CHANNEL_TLV_NONE;
2305 
2306 	/* lock the channel */
2307 	mutex_unlock(&vf->op_mutex);
2308 
2309 	/* log the unlock */
2310 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n",
2311 	   vf->abs_vfid, vf->op_current);
2312 }
2313 
2314 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable)
2315 {
2316 	struct bnx2x_queue_state_params q_params;
2317 	u32 prev_flags;
2318 	int i, rc;
2319 
2320 	/* Verify changes are needed and record current Tx switching state */
2321 	prev_flags = bp->flags;
2322 	if (enable)
2323 		bp->flags |= TX_SWITCHING;
2324 	else
2325 		bp->flags &= ~TX_SWITCHING;
2326 	if (prev_flags == bp->flags)
2327 		return 0;
2328 
2329 	/* Verify state enables the sending of queue ramrods */
2330 	if ((bp->state != BNX2X_STATE_OPEN) ||
2331 	    (bnx2x_get_q_logical_state(bp,
2332 				      &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) !=
2333 	     BNX2X_Q_LOGICAL_STATE_ACTIVE))
2334 		return 0;
2335 
2336 	/* send q. update ramrod to configure Tx switching */
2337 	memset(&q_params, 0, sizeof(q_params));
2338 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2339 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
2340 	__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
2341 		  &q_params.params.update.update_flags);
2342 	if (enable)
2343 		__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2344 			  &q_params.params.update.update_flags);
2345 	else
2346 		__clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2347 			    &q_params.params.update.update_flags);
2348 
2349 	/* send the ramrod on all the queues of the PF */
2350 	for_each_eth_queue(bp, i) {
2351 		struct bnx2x_fastpath *fp = &bp->fp[i];
2352 
2353 		/* Set the appropriate Queue object */
2354 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
2355 
2356 		/* Update the Queue state */
2357 		rc = bnx2x_queue_state_change(bp, &q_params);
2358 		if (rc) {
2359 			BNX2X_ERR("Failed to configure Tx switching\n");
2360 			return rc;
2361 		}
2362 	}
2363 
2364 	DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled");
2365 	return 0;
2366 }
2367 
2368 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param)
2369 {
2370 	struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev));
2371 
2372 	if (!IS_SRIOV(bp)) {
2373 		BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n");
2374 		return -EINVAL;
2375 	}
2376 
2377 	DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
2378 	   num_vfs_param, BNX2X_NR_VIRTFN(bp));
2379 
2380 	/* HW channel is only operational when PF is up */
2381 	if (bp->state != BNX2X_STATE_OPEN) {
2382 		BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
2383 		return -EINVAL;
2384 	}
2385 
2386 	/* we are always bound by the total_vfs in the configuration space */
2387 	if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) {
2388 		BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
2389 			  num_vfs_param, BNX2X_NR_VIRTFN(bp));
2390 		num_vfs_param = BNX2X_NR_VIRTFN(bp);
2391 	}
2392 
2393 	bp->requested_nr_virtfn = num_vfs_param;
2394 	if (num_vfs_param == 0) {
2395 		bnx2x_set_pf_tx_switching(bp, false);
2396 		pci_disable_sriov(dev);
2397 		return 0;
2398 	} else {
2399 		return bnx2x_enable_sriov(bp);
2400 	}
2401 }
2402 
2403 #define IGU_ENTRY_SIZE 4
2404 
2405 int bnx2x_enable_sriov(struct bnx2x *bp)
2406 {
2407 	int rc = 0, req_vfs = bp->requested_nr_virtfn;
2408 	int vf_idx, sb_idx, vfq_idx, qcount, first_vf;
2409 	u32 igu_entry, address;
2410 	u16 num_vf_queues;
2411 
2412 	if (req_vfs == 0)
2413 		return 0;
2414 
2415 	first_vf = bp->vfdb->sriov.first_vf_in_pf;
2416 
2417 	/* statically distribute vf sb pool between VFs */
2418 	num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES,
2419 			      BP_VFDB(bp)->vf_sbs_pool / req_vfs);
2420 
2421 	/* zero previous values learned from igu cam */
2422 	for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) {
2423 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2424 
2425 		vf->sb_count = 0;
2426 		vf_sb_count(BP_VF(bp, vf_idx)) = 0;
2427 	}
2428 	bp->vfdb->vf_sbs_pool = 0;
2429 
2430 	/* prepare IGU cam */
2431 	sb_idx = BP_VFDB(bp)->first_vf_igu_entry;
2432 	address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE;
2433 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2434 		for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) {
2435 			igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT |
2436 				vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT |
2437 				IGU_REG_MAPPING_MEMORY_VALID;
2438 			DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n",
2439 			   sb_idx, vf_idx);
2440 			REG_WR(bp, address, igu_entry);
2441 			sb_idx++;
2442 			address += IGU_ENTRY_SIZE;
2443 		}
2444 	}
2445 
2446 	/* Reinitialize vf database according to igu cam */
2447 	bnx2x_get_vf_igu_cam_info(bp);
2448 
2449 	DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n",
2450 	   BP_VFDB(bp)->vf_sbs_pool, num_vf_queues);
2451 
2452 	qcount = 0;
2453 	for_each_vf(bp, vf_idx) {
2454 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2455 
2456 		/* set local queue arrays */
2457 		vf->vfqs = &bp->vfdb->vfqs[qcount];
2458 		qcount += vf_sb_count(vf);
2459 		bnx2x_iov_static_resc(bp, vf);
2460 	}
2461 
2462 	/* prepare msix vectors in VF configuration space - the value in the
2463 	 * PCI configuration space should be the index of the last entry,
2464 	 * namely one less than the actual size of the table
2465 	 */
2466 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2467 		bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx));
2468 		REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL,
2469 		       num_vf_queues - 1);
2470 		DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n",
2471 		   vf_idx, num_vf_queues - 1);
2472 	}
2473 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
2474 
2475 	/* enable sriov. This will probe all the VFs, and consequentially cause
2476 	 * the "acquire" messages to appear on the VF PF channel.
2477 	 */
2478 	DP(BNX2X_MSG_IOV, "about to call enable sriov\n");
2479 	bnx2x_disable_sriov(bp);
2480 
2481 	rc = bnx2x_set_pf_tx_switching(bp, true);
2482 	if (rc)
2483 		return rc;
2484 
2485 	rc = pci_enable_sriov(bp->pdev, req_vfs);
2486 	if (rc) {
2487 		BNX2X_ERR("pci_enable_sriov failed with %d\n", rc);
2488 		return rc;
2489 	}
2490 	DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs);
2491 	return req_vfs;
2492 }
2493 
2494 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp)
2495 {
2496 	int vfidx;
2497 	struct pf_vf_bulletin_content *bulletin;
2498 
2499 	DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n");
2500 	for_each_vf(bp, vfidx) {
2501 	bulletin = BP_VF_BULLETIN(bp, vfidx);
2502 		if (BP_VF(bp, vfidx)->cfg_flags & VF_CFG_VLAN)
2503 			bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0);
2504 	}
2505 }
2506 
2507 void bnx2x_disable_sriov(struct bnx2x *bp)
2508 {
2509 	pci_disable_sriov(bp->pdev);
2510 }
2511 
2512 static int bnx2x_vf_ndo_prep(struct bnx2x *bp, int vfidx,
2513 			     struct bnx2x_virtf **vf,
2514 			     struct pf_vf_bulletin_content **bulletin)
2515 {
2516 	if (bp->state != BNX2X_STATE_OPEN) {
2517 		BNX2X_ERR("vf ndo called though PF is down\n");
2518 		return -EINVAL;
2519 	}
2520 
2521 	if (!IS_SRIOV(bp)) {
2522 		BNX2X_ERR("vf ndo called though sriov is disabled\n");
2523 		return -EINVAL;
2524 	}
2525 
2526 	if (vfidx >= BNX2X_NR_VIRTFN(bp)) {
2527 		BNX2X_ERR("vf ndo called for uninitialized VF. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
2528 			  vfidx, BNX2X_NR_VIRTFN(bp));
2529 		return -EINVAL;
2530 	}
2531 
2532 	/* init members */
2533 	*vf = BP_VF(bp, vfidx);
2534 	*bulletin = BP_VF_BULLETIN(bp, vfidx);
2535 
2536 	if (!*vf) {
2537 		BNX2X_ERR("vf ndo called but vf struct is null. vfidx was %d\n",
2538 			  vfidx);
2539 		return -EINVAL;
2540 	}
2541 
2542 	if (!(*vf)->vfqs) {
2543 		BNX2X_ERR("vf ndo called but vfqs struct is null. Was ndo invoked before dynamically enabling SR-IOV? vfidx was %d\n",
2544 			  vfidx);
2545 		return -EINVAL;
2546 	}
2547 
2548 	if (!*bulletin) {
2549 		BNX2X_ERR("vf ndo called but Bulletin Board struct is null. vfidx was %d\n",
2550 			  vfidx);
2551 		return -EINVAL;
2552 	}
2553 
2554 	return 0;
2555 }
2556 
2557 int bnx2x_get_vf_config(struct net_device *dev, int vfidx,
2558 			struct ifla_vf_info *ivi)
2559 {
2560 	struct bnx2x *bp = netdev_priv(dev);
2561 	struct bnx2x_virtf *vf = NULL;
2562 	struct pf_vf_bulletin_content *bulletin = NULL;
2563 	struct bnx2x_vlan_mac_obj *mac_obj;
2564 	struct bnx2x_vlan_mac_obj *vlan_obj;
2565 	int rc;
2566 
2567 	/* sanity and init */
2568 	rc = bnx2x_vf_ndo_prep(bp, vfidx, &vf, &bulletin);
2569 	if (rc)
2570 		return rc;
2571 	mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2572 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2573 	if (!mac_obj || !vlan_obj) {
2574 		BNX2X_ERR("VF partially initialized\n");
2575 		return -EINVAL;
2576 	}
2577 
2578 	ivi->vf = vfidx;
2579 	ivi->qos = 0;
2580 	ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */
2581 	ivi->min_tx_rate = 0;
2582 	ivi->spoofchk = 1; /*always enabled */
2583 	if (vf->state == VF_ENABLED) {
2584 		/* mac and vlan are in vlan_mac objects */
2585 		if (bnx2x_validate_vf_sp_objs(bp, vf, false)) {
2586 			mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac,
2587 						0, ETH_ALEN);
2588 			vlan_obj->get_n_elements(bp, vlan_obj, 1,
2589 						 (u8 *)&ivi->vlan, 0,
2590 						 VLAN_HLEN);
2591 		}
2592 	} else {
2593 		/* mac */
2594 		if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID))
2595 			/* mac configured by ndo so its in bulletin board */
2596 			memcpy(&ivi->mac, bulletin->mac, ETH_ALEN);
2597 		else
2598 			/* function has not been loaded yet. Show mac as 0s */
2599 			memset(&ivi->mac, 0, ETH_ALEN);
2600 
2601 		/* vlan */
2602 		if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2603 			/* vlan configured by ndo so its in bulletin board */
2604 			memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN);
2605 		else
2606 			/* function has not been loaded yet. Show vlans as 0s */
2607 			memset(&ivi->vlan, 0, VLAN_HLEN);
2608 	}
2609 
2610 	return 0;
2611 }
2612 
2613 /* New mac for VF. Consider these cases:
2614  * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
2615  *    supply at acquire.
2616  * 2. VF has already been acquired but has not yet initialized - store in local
2617  *    bulletin board. mac will be posted on VF bulletin board after VF init. VF
2618  *    will configure this mac when it is ready.
2619  * 3. VF has already initialized but has not yet setup a queue - post the new
2620  *    mac on VF's bulletin board right now. VF will configure this mac when it
2621  *    is ready.
2622  * 4. VF has already set a queue - delete any macs already configured for this
2623  *    queue and manually config the new mac.
2624  * In any event, once this function has been called refuse any attempts by the
2625  * VF to configure any mac for itself except for this mac. In case of a race
2626  * where the VF fails to see the new post on its bulletin board before sending a
2627  * mac configuration request, the PF will simply fail the request and VF can try
2628  * again after consulting its bulletin board.
2629  */
2630 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac)
2631 {
2632 	struct bnx2x *bp = netdev_priv(dev);
2633 	int rc, q_logical_state;
2634 	struct bnx2x_virtf *vf = NULL;
2635 	struct pf_vf_bulletin_content *bulletin = NULL;
2636 
2637 	/* sanity and init */
2638 	rc = bnx2x_vf_ndo_prep(bp, vfidx, &vf, &bulletin);
2639 	if (rc)
2640 		return rc;
2641 	if (!is_valid_ether_addr(mac)) {
2642 		BNX2X_ERR("mac address invalid\n");
2643 		return -EINVAL;
2644 	}
2645 
2646 	/* update PF's copy of the VF's bulletin. Will no longer accept mac
2647 	 * configuration requests from vf unless match this mac
2648 	 */
2649 	bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID;
2650 	memcpy(bulletin->mac, mac, ETH_ALEN);
2651 
2652 	/* Post update on VF's bulletin board */
2653 	rc = bnx2x_post_vf_bulletin(bp, vfidx);
2654 	if (rc) {
2655 		BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2656 		return rc;
2657 	}
2658 
2659 	q_logical_state =
2660 		bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj));
2661 	if (vf->state == VF_ENABLED &&
2662 	    q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
2663 		/* configure the mac in device on this vf's queue */
2664 		unsigned long ramrod_flags = 0;
2665 		struct bnx2x_vlan_mac_obj *mac_obj;
2666 
2667 		/* User should be able to see failure reason in system logs */
2668 		if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2669 			return -EINVAL;
2670 
2671 		/* must lock vfpf channel to protect against vf flows */
2672 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2673 
2674 		/* remove existing eth macs */
2675 		mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2676 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true);
2677 		if (rc) {
2678 			BNX2X_ERR("failed to delete eth macs\n");
2679 			rc = -EINVAL;
2680 			goto out;
2681 		}
2682 
2683 		/* remove existing uc list macs */
2684 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true);
2685 		if (rc) {
2686 			BNX2X_ERR("failed to delete uc_list macs\n");
2687 			rc = -EINVAL;
2688 			goto out;
2689 		}
2690 
2691 		/* configure the new mac to device */
2692 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2693 		bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true,
2694 				  BNX2X_ETH_MAC, &ramrod_flags);
2695 
2696 out:
2697 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2698 	}
2699 
2700 	return rc;
2701 }
2702 
2703 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos)
2704 {
2705 	struct bnx2x_queue_state_params q_params = {NULL};
2706 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
2707 	struct bnx2x_queue_update_params *update_params;
2708 	struct pf_vf_bulletin_content *bulletin = NULL;
2709 	struct bnx2x_rx_mode_ramrod_params rx_ramrod;
2710 	struct bnx2x *bp = netdev_priv(dev);
2711 	struct bnx2x_vlan_mac_obj *vlan_obj;
2712 	unsigned long vlan_mac_flags = 0;
2713 	unsigned long ramrod_flags = 0;
2714 	struct bnx2x_virtf *vf = NULL;
2715 	unsigned long accept_flags;
2716 	int rc;
2717 
2718 	/* sanity and init */
2719 	rc = bnx2x_vf_ndo_prep(bp, vfidx, &vf, &bulletin);
2720 	if (rc)
2721 		return rc;
2722 
2723 	if (vlan > 4095) {
2724 		BNX2X_ERR("illegal vlan value %d\n", vlan);
2725 		return -EINVAL;
2726 	}
2727 
2728 	DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n",
2729 	   vfidx, vlan, 0);
2730 
2731 	/* update PF's copy of the VF's bulletin. No point in posting the vlan
2732 	 * to the VF since it doesn't have anything to do with it. But it useful
2733 	 * to store it here in case the VF is not up yet and we can only
2734 	 * configure the vlan later when it does. Treat vlan id 0 as remove the
2735 	 * Host tag.
2736 	 */
2737 	if (vlan > 0)
2738 		bulletin->valid_bitmap |= 1 << VLAN_VALID;
2739 	else
2740 		bulletin->valid_bitmap &= ~(1 << VLAN_VALID);
2741 	bulletin->vlan = vlan;
2742 
2743 	/* is vf initialized and queue set up? */
2744 	if (vf->state != VF_ENABLED ||
2745 	    bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2746 	    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2747 		return rc;
2748 
2749 	/* User should be able to see error in system logs */
2750 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2751 		return -EINVAL;
2752 
2753 	/* must lock vfpf channel to protect against vf flows */
2754 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2755 
2756 	/* remove existing vlans */
2757 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2758 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2759 	rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags,
2760 				  &ramrod_flags);
2761 	if (rc) {
2762 		BNX2X_ERR("failed to delete vlans\n");
2763 		rc = -EINVAL;
2764 		goto out;
2765 	}
2766 
2767 	/* need to remove/add the VF's accept_any_vlan bit */
2768 	accept_flags = bnx2x_leading_vfq(vf, accept_flags);
2769 	if (vlan)
2770 		clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2771 	else
2772 		set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2773 
2774 	bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf,
2775 			      accept_flags);
2776 	bnx2x_leading_vfq(vf, accept_flags) = accept_flags;
2777 	bnx2x_config_rx_mode(bp, &rx_ramrod);
2778 
2779 	/* configure the new vlan to device */
2780 	memset(&ramrod_param, 0, sizeof(ramrod_param));
2781 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2782 	ramrod_param.vlan_mac_obj = vlan_obj;
2783 	ramrod_param.ramrod_flags = ramrod_flags;
2784 	set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
2785 		&ramrod_param.user_req.vlan_mac_flags);
2786 	ramrod_param.user_req.u.vlan.vlan = vlan;
2787 	ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
2788 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
2789 	if (rc) {
2790 		BNX2X_ERR("failed to configure vlan\n");
2791 		rc =  -EINVAL;
2792 		goto out;
2793 	}
2794 
2795 	/* send queue update ramrod to configure default vlan and silent
2796 	 * vlan removal
2797 	 */
2798 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2799 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
2800 	q_params.q_obj = &bnx2x_leading_vfq(vf, sp_obj);
2801 	update_params = &q_params.params.update;
2802 	__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
2803 		  &update_params->update_flags);
2804 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
2805 		  &update_params->update_flags);
2806 	if (vlan == 0) {
2807 		/* if vlan is 0 then we want to leave the VF traffic
2808 		 * untagged, and leave the incoming traffic untouched
2809 		 * (i.e. do not remove any vlan tags).
2810 		 */
2811 		__clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2812 			    &update_params->update_flags);
2813 		__clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2814 			    &update_params->update_flags);
2815 	} else {
2816 		/* configure default vlan to vf queue and set silent
2817 		 * vlan removal (the vf remains unaware of this vlan).
2818 		 */
2819 		__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2820 			  &update_params->update_flags);
2821 		__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2822 			  &update_params->update_flags);
2823 		update_params->def_vlan = vlan;
2824 		update_params->silent_removal_value =
2825 			vlan & VLAN_VID_MASK;
2826 		update_params->silent_removal_mask = VLAN_VID_MASK;
2827 	}
2828 
2829 	/* Update the Queue state */
2830 	rc = bnx2x_queue_state_change(bp, &q_params);
2831 	if (rc) {
2832 		BNX2X_ERR("Failed to configure default VLAN\n");
2833 		goto out;
2834 	}
2835 
2836 
2837 	/* clear the flag indicating that this VF needs its vlan
2838 	 * (will only be set if the HV configured the Vlan before vf was
2839 	 * up and we were called because the VF came up later
2840 	 */
2841 out:
2842 	vf->cfg_flags &= ~VF_CFG_VLAN;
2843 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2844 
2845 	return rc;
2846 }
2847 
2848 /* crc is the first field in the bulletin board. Compute the crc over the
2849  * entire bulletin board excluding the crc field itself. Use the length field
2850  * as the Bulletin Board was posted by a PF with possibly a different version
2851  * from the vf which will sample it. Therefore, the length is computed by the
2852  * PF and the used blindly by the VF.
2853  */
2854 u32 bnx2x_crc_vf_bulletin(struct bnx2x *bp,
2855 			  struct pf_vf_bulletin_content *bulletin)
2856 {
2857 	return crc32(BULLETIN_CRC_SEED,
2858 		 ((u8 *)bulletin) + sizeof(bulletin->crc),
2859 		 bulletin->length - sizeof(bulletin->crc));
2860 }
2861 
2862 /* Check for new posts on the bulletin board */
2863 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp)
2864 {
2865 	struct pf_vf_bulletin_content bulletin = bp->pf2vf_bulletin->content;
2866 	int attempts;
2867 
2868 	/* bulletin board hasn't changed since last sample */
2869 	if (bp->old_bulletin.version == bulletin.version)
2870 		return PFVF_BULLETIN_UNCHANGED;
2871 
2872 	/* validate crc of new bulletin board */
2873 	if (bp->old_bulletin.version != bp->pf2vf_bulletin->content.version) {
2874 		/* sampling structure in mid post may result with corrupted data
2875 		 * validate crc to ensure coherency.
2876 		 */
2877 		for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) {
2878 			bulletin = bp->pf2vf_bulletin->content;
2879 			if (bulletin.crc == bnx2x_crc_vf_bulletin(bp,
2880 								  &bulletin))
2881 				break;
2882 			BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
2883 				  bulletin.crc,
2884 				  bnx2x_crc_vf_bulletin(bp, &bulletin));
2885 		}
2886 		if (attempts >= BULLETIN_ATTEMPTS) {
2887 			BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
2888 				  attempts);
2889 			return PFVF_BULLETIN_CRC_ERR;
2890 		}
2891 	}
2892 
2893 	/* the mac address in bulletin board is valid and is new */
2894 	if (bulletin.valid_bitmap & 1 << MAC_ADDR_VALID &&
2895 	    !ether_addr_equal(bulletin.mac, bp->old_bulletin.mac)) {
2896 		/* update new mac to net device */
2897 		memcpy(bp->dev->dev_addr, bulletin.mac, ETH_ALEN);
2898 	}
2899 
2900 	/* the vlan in bulletin board is valid and is new */
2901 	if (bulletin.valid_bitmap & 1 << VLAN_VALID)
2902 		memcpy(&bulletin.vlan, &bp->old_bulletin.vlan, VLAN_HLEN);
2903 
2904 	/* copy new bulletin board to bp */
2905 	bp->old_bulletin = bulletin;
2906 
2907 	return PFVF_BULLETIN_UPDATED;
2908 }
2909 
2910 void bnx2x_timer_sriov(struct bnx2x *bp)
2911 {
2912 	bnx2x_sample_bulletin(bp);
2913 
2914 	/* if channel is down we need to self destruct */
2915 	if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN)
2916 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
2917 				       BNX2X_MSG_IOV);
2918 }
2919 
2920 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp)
2921 {
2922 	/* vf doorbells are embedded within the regview */
2923 	return bp->regview + PXP_VF_ADDR_DB_START;
2924 }
2925 
2926 void bnx2x_vf_pci_dealloc(struct bnx2x *bp)
2927 {
2928 	BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
2929 		       sizeof(struct bnx2x_vf_mbx_msg));
2930 	BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->pf2vf_bulletin_mapping,
2931 		       sizeof(union pf_vf_bulletin));
2932 }
2933 
2934 int bnx2x_vf_pci_alloc(struct bnx2x *bp)
2935 {
2936 	mutex_init(&bp->vf2pf_mutex);
2937 
2938 	/* allocate vf2pf mailbox for vf to pf channel */
2939 	bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping,
2940 					 sizeof(struct bnx2x_vf_mbx_msg));
2941 	if (!bp->vf2pf_mbox)
2942 		goto alloc_mem_err;
2943 
2944 	/* allocate pf 2 vf bulletin board */
2945 	bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping,
2946 					     sizeof(union pf_vf_bulletin));
2947 	if (!bp->pf2vf_bulletin)
2948 		goto alloc_mem_err;
2949 
2950 	return 0;
2951 
2952 alloc_mem_err:
2953 	bnx2x_vf_pci_dealloc(bp);
2954 	return -ENOMEM;
2955 }
2956 
2957 void bnx2x_iov_channel_down(struct bnx2x *bp)
2958 {
2959 	int vf_idx;
2960 	struct pf_vf_bulletin_content *bulletin;
2961 
2962 	if (!IS_SRIOV(bp))
2963 		return;
2964 
2965 	for_each_vf(bp, vf_idx) {
2966 		/* locate this VFs bulletin board and update the channel down
2967 		 * bit
2968 		 */
2969 		bulletin = BP_VF_BULLETIN(bp, vf_idx);
2970 		bulletin->valid_bitmap |= 1 << CHANNEL_DOWN;
2971 
2972 		/* update vf bulletin board */
2973 		bnx2x_post_vf_bulletin(bp, vf_idx);
2974 	}
2975 }
2976 
2977 void bnx2x_iov_task(struct work_struct *work)
2978 {
2979 	struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work);
2980 
2981 	if (!netif_running(bp->dev))
2982 		return;
2983 
2984 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR,
2985 			       &bp->iov_task_state))
2986 		bnx2x_vf_handle_flr_event(bp);
2987 
2988 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG,
2989 			       &bp->iov_task_state))
2990 		bnx2x_vf_mbx(bp);
2991 }
2992 
2993 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag)
2994 {
2995 	smp_mb__before_atomic();
2996 	set_bit(flag, &bp->iov_task_state);
2997 	smp_mb__after_atomic();
2998 	DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
2999 	queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0);
3000 }
3001