1 /* bnx2x_sriov.c: QLogic Everest network driver. 2 * 3 * Copyright 2009-2013 Broadcom Corporation 4 * Copyright 2014 QLogic Corporation 5 * All rights reserved 6 * 7 * Unless you and QLogic execute a separate written software license 8 * agreement governing use of this software, this software is licensed to you 9 * under the terms of the GNU General Public License version 2, available 10 * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL"). 11 * 12 * Notwithstanding the above, under no circumstances may you combine this 13 * software in any way with any other QLogic software provided under a 14 * license other than the GPL, without QLogic's express prior written 15 * consent. 16 * 17 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 18 * Written by: Shmulik Ravid 19 * Ariel Elior <ariel.elior@qlogic.com> 20 * 21 */ 22 #include "bnx2x.h" 23 #include "bnx2x_init.h" 24 #include "bnx2x_cmn.h" 25 #include "bnx2x_sp.h" 26 #include <linux/crc32.h> 27 #include <linux/if_vlan.h> 28 29 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx, 30 struct bnx2x_virtf **vf, 31 struct pf_vf_bulletin_content **bulletin, 32 bool test_queue); 33 34 /* General service functions */ 35 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid, 36 u16 pf_id) 37 { 38 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid), 39 pf_id); 40 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid), 41 pf_id); 42 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid), 43 pf_id); 44 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid), 45 pf_id); 46 } 47 48 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid, 49 u8 enable) 50 { 51 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid), 52 enable); 53 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid), 54 enable); 55 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid), 56 enable); 57 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid), 58 enable); 59 } 60 61 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid) 62 { 63 int idx; 64 65 for_each_vf(bp, idx) 66 if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid) 67 break; 68 return idx; 69 } 70 71 static 72 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid) 73 { 74 u16 idx = (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid); 75 return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL; 76 } 77 78 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf, 79 u8 igu_sb_id, u8 segment, u16 index, u8 op, 80 u8 update) 81 { 82 /* acking a VF sb through the PF - use the GRC */ 83 u32 ctl; 84 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 85 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 86 u32 func_encode = vf->abs_vfid; 87 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id; 88 struct igu_regular cmd_data = {0}; 89 90 cmd_data.sb_id_and_flags = 91 ((index << IGU_REGULAR_SB_INDEX_SHIFT) | 92 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) | 93 (update << IGU_REGULAR_BUPDATE_SHIFT) | 94 (op << IGU_REGULAR_ENABLE_INT_SHIFT)); 95 96 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT | 97 func_encode << IGU_CTRL_REG_FID_SHIFT | 98 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT; 99 100 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 101 cmd_data.sb_id_and_flags, igu_addr_data); 102 REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags); 103 mmiowb(); 104 barrier(); 105 106 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 107 ctl, igu_addr_ctl); 108 REG_WR(bp, igu_addr_ctl, ctl); 109 mmiowb(); 110 barrier(); 111 } 112 113 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp, 114 struct bnx2x_virtf *vf, 115 bool print_err) 116 { 117 if (!bnx2x_leading_vfq(vf, sp_initialized)) { 118 if (print_err) 119 BNX2X_ERR("Slowpath objects not yet initialized!\n"); 120 else 121 DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n"); 122 return false; 123 } 124 return true; 125 } 126 127 /* VFOP operations states */ 128 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf, 129 struct bnx2x_queue_init_params *init_params, 130 struct bnx2x_queue_setup_params *setup_params, 131 u16 q_idx, u16 sb_idx) 132 { 133 DP(BNX2X_MSG_IOV, 134 "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d", 135 vf->abs_vfid, 136 q_idx, 137 sb_idx, 138 init_params->tx.sb_cq_index, 139 init_params->tx.hc_rate, 140 setup_params->flags, 141 setup_params->txq_params.traffic_type); 142 } 143 144 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf, 145 struct bnx2x_queue_init_params *init_params, 146 struct bnx2x_queue_setup_params *setup_params, 147 u16 q_idx, u16 sb_idx) 148 { 149 struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params; 150 151 DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n" 152 "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n", 153 vf->abs_vfid, 154 q_idx, 155 sb_idx, 156 init_params->rx.sb_cq_index, 157 init_params->rx.hc_rate, 158 setup_params->gen_params.mtu, 159 rxq_params->buf_sz, 160 rxq_params->sge_buf_sz, 161 rxq_params->max_sges_pkt, 162 rxq_params->tpa_agg_sz, 163 setup_params->flags, 164 rxq_params->drop_flags, 165 rxq_params->cache_line_log); 166 } 167 168 void bnx2x_vfop_qctor_prep(struct bnx2x *bp, 169 struct bnx2x_virtf *vf, 170 struct bnx2x_vf_queue *q, 171 struct bnx2x_vf_queue_construct_params *p, 172 unsigned long q_type) 173 { 174 struct bnx2x_queue_init_params *init_p = &p->qstate.params.init; 175 struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup; 176 177 /* INIT */ 178 179 /* Enable host coalescing in the transition to INIT state */ 180 if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags)) 181 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags); 182 183 if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags)) 184 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags); 185 186 /* FW SB ID */ 187 init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx); 188 init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx); 189 190 /* context */ 191 init_p->cxts[0] = q->cxt; 192 193 /* SETUP */ 194 195 /* Setup-op general parameters */ 196 setup_p->gen_params.spcl_id = vf->sp_cl_id; 197 setup_p->gen_params.stat_id = vfq_stat_id(vf, q); 198 setup_p->gen_params.fp_hsi = vf->fp_hsi; 199 200 /* Setup-op flags: 201 * collect statistics, zero statistics, local-switching, security, 202 * OV for Flex10, RSS and MCAST for leading 203 */ 204 if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags)) 205 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags); 206 207 /* for VFs, enable tx switching, bd coherency, and mac address 208 * anti-spoofing 209 */ 210 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags); 211 __set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags); 212 __set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags); 213 214 /* Setup-op rx parameters */ 215 if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) { 216 struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params; 217 218 rxq_p->cl_qzone_id = vfq_qzone_id(vf, q); 219 rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx); 220 rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid); 221 222 if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags)) 223 rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES; 224 } 225 226 /* Setup-op tx parameters */ 227 if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) { 228 setup_p->txq_params.tss_leading_cl_id = vf->leading_rss; 229 setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx); 230 } 231 } 232 233 static int bnx2x_vf_queue_create(struct bnx2x *bp, 234 struct bnx2x_virtf *vf, int qid, 235 struct bnx2x_vf_queue_construct_params *qctor) 236 { 237 struct bnx2x_queue_state_params *q_params; 238 int rc = 0; 239 240 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 241 242 /* Prepare ramrod information */ 243 q_params = &qctor->qstate; 244 q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj); 245 set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags); 246 247 if (bnx2x_get_q_logical_state(bp, q_params->q_obj) == 248 BNX2X_Q_LOGICAL_STATE_ACTIVE) { 249 DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n"); 250 goto out; 251 } 252 253 /* Run Queue 'construction' ramrods */ 254 q_params->cmd = BNX2X_Q_CMD_INIT; 255 rc = bnx2x_queue_state_change(bp, q_params); 256 if (rc) 257 goto out; 258 259 memcpy(&q_params->params.setup, &qctor->prep_qsetup, 260 sizeof(struct bnx2x_queue_setup_params)); 261 q_params->cmd = BNX2X_Q_CMD_SETUP; 262 rc = bnx2x_queue_state_change(bp, q_params); 263 if (rc) 264 goto out; 265 266 /* enable interrupts */ 267 bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)), 268 USTORM_ID, 0, IGU_INT_ENABLE, 0); 269 out: 270 return rc; 271 } 272 273 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf, 274 int qid) 275 { 276 enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT, 277 BNX2X_Q_CMD_TERMINATE, 278 BNX2X_Q_CMD_CFC_DEL}; 279 struct bnx2x_queue_state_params q_params; 280 int rc, i; 281 282 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 283 284 /* Prepare ramrod information */ 285 memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params)); 286 q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj); 287 set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 288 289 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) == 290 BNX2X_Q_LOGICAL_STATE_STOPPED) { 291 DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n"); 292 goto out; 293 } 294 295 /* Run Queue 'destruction' ramrods */ 296 for (i = 0; i < ARRAY_SIZE(cmds); i++) { 297 q_params.cmd = cmds[i]; 298 rc = bnx2x_queue_state_change(bp, &q_params); 299 if (rc) { 300 BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]); 301 return rc; 302 } 303 } 304 out: 305 /* Clean Context */ 306 if (bnx2x_vfq(vf, qid, cxt)) { 307 bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0; 308 bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0; 309 } 310 311 return 0; 312 } 313 314 static void 315 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid) 316 { 317 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid); 318 if (vf) { 319 /* the first igu entry belonging to VFs of this PF */ 320 if (!BP_VFDB(bp)->first_vf_igu_entry) 321 BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id; 322 323 /* the first igu entry belonging to this VF */ 324 if (!vf_sb_count(vf)) 325 vf->igu_base_id = igu_sb_id; 326 327 ++vf_sb_count(vf); 328 ++vf->sb_count; 329 } 330 BP_VFDB(bp)->vf_sbs_pool++; 331 } 332 333 static inline void bnx2x_vf_vlan_credit(struct bnx2x *bp, 334 struct bnx2x_vlan_mac_obj *obj, 335 atomic_t *counter) 336 { 337 struct list_head *pos; 338 int read_lock; 339 int cnt = 0; 340 341 read_lock = bnx2x_vlan_mac_h_read_lock(bp, obj); 342 if (read_lock) 343 DP(BNX2X_MSG_SP, "Failed to take vlan mac read head; continuing anyway\n"); 344 345 list_for_each(pos, &obj->head) 346 cnt++; 347 348 if (!read_lock) 349 bnx2x_vlan_mac_h_read_unlock(bp, obj); 350 351 atomic_set(counter, cnt); 352 } 353 354 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf, 355 int qid, bool drv_only, int type) 356 { 357 struct bnx2x_vlan_mac_ramrod_params ramrod; 358 int rc; 359 360 DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid, 361 (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" : 362 (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs"); 363 364 /* Prepare ramrod params */ 365 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params)); 366 if (type == BNX2X_VF_FILTER_VLAN_MAC) { 367 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); 368 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj); 369 } else if (type == BNX2X_VF_FILTER_MAC) { 370 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); 371 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj); 372 } else { 373 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj); 374 } 375 ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL; 376 377 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags); 378 if (drv_only) 379 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags); 380 else 381 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags); 382 383 /* Start deleting */ 384 rc = ramrod.vlan_mac_obj->delete_all(bp, 385 ramrod.vlan_mac_obj, 386 &ramrod.user_req.vlan_mac_flags, 387 &ramrod.ramrod_flags); 388 if (rc) { 389 BNX2X_ERR("Failed to delete all %s\n", 390 (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" : 391 (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs"); 392 return rc; 393 } 394 395 return 0; 396 } 397 398 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp, 399 struct bnx2x_virtf *vf, int qid, 400 struct bnx2x_vf_mac_vlan_filter *filter, 401 bool drv_only) 402 { 403 struct bnx2x_vlan_mac_ramrod_params ramrod; 404 int rc; 405 406 DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n", 407 vf->abs_vfid, filter->add ? "Adding" : "Deleting", 408 (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MAC" : 409 (filter->type == BNX2X_VF_FILTER_MAC) ? "MAC" : "VLAN"); 410 411 /* Prepare ramrod params */ 412 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params)); 413 if (filter->type == BNX2X_VF_FILTER_VLAN_MAC) { 414 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj); 415 ramrod.user_req.u.vlan.vlan = filter->vid; 416 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN); 417 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); 418 } else if (filter->type == BNX2X_VF_FILTER_VLAN) { 419 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj); 420 ramrod.user_req.u.vlan.vlan = filter->vid; 421 } else { 422 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); 423 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj); 424 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN); 425 } 426 ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD : 427 BNX2X_VLAN_MAC_DEL; 428 429 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags); 430 if (drv_only) 431 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags); 432 else 433 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags); 434 435 /* Add/Remove the filter */ 436 rc = bnx2x_config_vlan_mac(bp, &ramrod); 437 if (rc && rc != -EEXIST) { 438 BNX2X_ERR("Failed to %s %s\n", 439 filter->add ? "add" : "delete", 440 (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? 441 "VLAN-MAC" : 442 (filter->type == BNX2X_VF_FILTER_MAC) ? 443 "MAC" : "VLAN"); 444 return rc; 445 } 446 447 return 0; 448 } 449 450 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf, 451 struct bnx2x_vf_mac_vlan_filters *filters, 452 int qid, bool drv_only) 453 { 454 int rc = 0, i; 455 456 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 457 458 if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) 459 return -EINVAL; 460 461 /* Prepare ramrod params */ 462 for (i = 0; i < filters->count; i++) { 463 rc = bnx2x_vf_mac_vlan_config(bp, vf, qid, 464 &filters->filters[i], drv_only); 465 if (rc) 466 break; 467 } 468 469 /* Rollback if needed */ 470 if (i != filters->count) { 471 BNX2X_ERR("Managed only %d/%d filters - rolling back\n", 472 i, filters->count + 1); 473 while (--i >= 0) { 474 filters->filters[i].add = !filters->filters[i].add; 475 bnx2x_vf_mac_vlan_config(bp, vf, qid, 476 &filters->filters[i], 477 drv_only); 478 } 479 } 480 481 /* It's our responsibility to free the filters */ 482 kfree(filters); 483 484 return rc; 485 } 486 487 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid, 488 struct bnx2x_vf_queue_construct_params *qctor) 489 { 490 int rc; 491 492 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 493 494 rc = bnx2x_vf_queue_create(bp, vf, qid, qctor); 495 if (rc) 496 goto op_err; 497 498 /* Schedule the configuration of any pending vlan filters */ 499 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN, 500 BNX2X_MSG_IOV); 501 return 0; 502 op_err: 503 BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc); 504 return rc; 505 } 506 507 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf, 508 int qid) 509 { 510 int rc; 511 512 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 513 514 /* If needed, clean the filtering data base */ 515 if ((qid == LEADING_IDX) && 516 bnx2x_validate_vf_sp_objs(bp, vf, false)) { 517 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, 518 BNX2X_VF_FILTER_VLAN_MAC); 519 if (rc) 520 goto op_err; 521 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, 522 BNX2X_VF_FILTER_VLAN); 523 if (rc) 524 goto op_err; 525 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, 526 BNX2X_VF_FILTER_MAC); 527 if (rc) 528 goto op_err; 529 } 530 531 /* Terminate queue */ 532 if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) { 533 struct bnx2x_queue_state_params qstate; 534 535 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params)); 536 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj); 537 qstate.q_obj->state = BNX2X_Q_STATE_STOPPED; 538 qstate.cmd = BNX2X_Q_CMD_TERMINATE; 539 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags); 540 rc = bnx2x_queue_state_change(bp, &qstate); 541 if (rc) 542 goto op_err; 543 } 544 545 return 0; 546 op_err: 547 BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc); 548 return rc; 549 } 550 551 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf, 552 bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only) 553 { 554 struct bnx2x_mcast_list_elem *mc = NULL; 555 struct bnx2x_mcast_ramrod_params mcast; 556 int rc, i; 557 558 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 559 560 /* Prepare Multicast command */ 561 memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params)); 562 mcast.mcast_obj = &vf->mcast_obj; 563 if (drv_only) 564 set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags); 565 else 566 set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags); 567 if (mc_num) { 568 mc = kzalloc(mc_num * sizeof(struct bnx2x_mcast_list_elem), 569 GFP_KERNEL); 570 if (!mc) { 571 BNX2X_ERR("Cannot Configure multicasts due to lack of memory\n"); 572 return -ENOMEM; 573 } 574 } 575 576 if (mc_num) { 577 INIT_LIST_HEAD(&mcast.mcast_list); 578 for (i = 0; i < mc_num; i++) { 579 mc[i].mac = mcasts[i]; 580 list_add_tail(&mc[i].link, 581 &mcast.mcast_list); 582 } 583 584 /* add new mcasts */ 585 mcast.mcast_list_len = mc_num; 586 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_SET); 587 if (rc) 588 BNX2X_ERR("Failed to set multicasts\n"); 589 } else { 590 /* clear existing mcasts */ 591 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL); 592 if (rc) 593 BNX2X_ERR("Failed to remove multicasts\n"); 594 } 595 596 kfree(mc); 597 598 return rc; 599 } 600 601 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid, 602 struct bnx2x_rx_mode_ramrod_params *ramrod, 603 struct bnx2x_virtf *vf, 604 unsigned long accept_flags) 605 { 606 struct bnx2x_vf_queue *vfq = vfq_get(vf, qid); 607 608 memset(ramrod, 0, sizeof(*ramrod)); 609 ramrod->cid = vfq->cid; 610 ramrod->cl_id = vfq_cl_id(vf, vfq); 611 ramrod->rx_mode_obj = &bp->rx_mode_obj; 612 ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid); 613 ramrod->rx_accept_flags = accept_flags; 614 ramrod->tx_accept_flags = accept_flags; 615 ramrod->pstate = &vf->filter_state; 616 ramrod->state = BNX2X_FILTER_RX_MODE_PENDING; 617 618 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state); 619 set_bit(RAMROD_RX, &ramrod->ramrod_flags); 620 set_bit(RAMROD_TX, &ramrod->ramrod_flags); 621 622 ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2); 623 ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2); 624 } 625 626 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf, 627 int qid, unsigned long accept_flags) 628 { 629 struct bnx2x_rx_mode_ramrod_params ramrod; 630 631 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 632 633 bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags); 634 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags); 635 vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags; 636 return bnx2x_config_rx_mode(bp, &ramrod); 637 } 638 639 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid) 640 { 641 int rc; 642 643 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 644 645 /* Remove all classification configuration for leading queue */ 646 if (qid == LEADING_IDX) { 647 rc = bnx2x_vf_rxmode(bp, vf, qid, 0); 648 if (rc) 649 goto op_err; 650 651 /* Remove filtering if feasible */ 652 if (bnx2x_validate_vf_sp_objs(bp, vf, true)) { 653 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, 654 false, 655 BNX2X_VF_FILTER_VLAN_MAC); 656 if (rc) 657 goto op_err; 658 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, 659 false, 660 BNX2X_VF_FILTER_VLAN); 661 if (rc) 662 goto op_err; 663 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, 664 false, 665 BNX2X_VF_FILTER_MAC); 666 if (rc) 667 goto op_err; 668 rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false); 669 if (rc) 670 goto op_err; 671 } 672 } 673 674 /* Destroy queue */ 675 rc = bnx2x_vf_queue_destroy(bp, vf, qid); 676 if (rc) 677 goto op_err; 678 return rc; 679 op_err: 680 BNX2X_ERR("vf[%d:%d] error: rc %d\n", 681 vf->abs_vfid, qid, rc); 682 return rc; 683 } 684 685 /* VF enable primitives 686 * when pretend is required the caller is responsible 687 * for calling pretend prior to calling these routines 688 */ 689 690 /* internal vf enable - until vf is enabled internally all transactions 691 * are blocked. This routine should always be called last with pretend. 692 */ 693 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable) 694 { 695 REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0); 696 } 697 698 /* clears vf error in all semi blocks */ 699 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid) 700 { 701 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid); 702 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid); 703 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid); 704 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid); 705 } 706 707 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid) 708 { 709 u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5; 710 u32 was_err_reg = 0; 711 712 switch (was_err_group) { 713 case 0: 714 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR; 715 break; 716 case 1: 717 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR; 718 break; 719 case 2: 720 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR; 721 break; 722 case 3: 723 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR; 724 break; 725 } 726 REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f)); 727 } 728 729 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf) 730 { 731 int i; 732 u32 val; 733 734 /* Set VF masks and configuration - pretend */ 735 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 736 737 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 738 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 739 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0); 740 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0); 741 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0); 742 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0); 743 744 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION); 745 val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN); 746 val &= ~IGU_VF_CONF_PARENT_MASK; 747 val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT; 748 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val); 749 750 DP(BNX2X_MSG_IOV, 751 "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n", 752 vf->abs_vfid, val); 753 754 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 755 756 /* iterate over all queues, clear sb consumer */ 757 for (i = 0; i < vf_sb_count(vf); i++) { 758 u8 igu_sb_id = vf_igu_sb(vf, i); 759 760 /* zero prod memory */ 761 REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0); 762 763 /* clear sb state machine */ 764 bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id, 765 false /* VF */); 766 767 /* disable + update */ 768 bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0, 769 IGU_INT_DISABLE, 1); 770 } 771 } 772 773 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid) 774 { 775 /* set the VF-PF association in the FW */ 776 storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp)); 777 storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1); 778 779 /* clear vf errors*/ 780 bnx2x_vf_semi_clear_err(bp, abs_vfid); 781 bnx2x_vf_pglue_clear_err(bp, abs_vfid); 782 783 /* internal vf-enable - pretend */ 784 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid)); 785 DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid); 786 bnx2x_vf_enable_internal(bp, true); 787 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 788 } 789 790 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf) 791 { 792 /* Reset vf in IGU interrupts are still disabled */ 793 bnx2x_vf_igu_reset(bp, vf); 794 795 /* pretend to enable the vf with the PBF */ 796 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 797 REG_WR(bp, PBF_REG_DISABLE_VF, 0); 798 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 799 } 800 801 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid) 802 { 803 struct pci_dev *dev; 804 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid); 805 806 if (!vf) 807 return false; 808 809 dev = pci_get_bus_and_slot(vf->bus, vf->devfn); 810 if (dev) 811 return bnx2x_is_pcie_pending(dev); 812 return false; 813 } 814 815 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid) 816 { 817 /* Verify no pending pci transactions */ 818 if (bnx2x_vf_is_pcie_pending(bp, abs_vfid)) 819 BNX2X_ERR("PCIE Transactions still pending\n"); 820 821 return 0; 822 } 823 824 /* must be called after the number of PF queues and the number of VFs are 825 * both known 826 */ 827 static void 828 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf) 829 { 830 struct vf_pf_resc_request *resc = &vf->alloc_resc; 831 832 /* will be set only during VF-ACQUIRE */ 833 resc->num_rxqs = 0; 834 resc->num_txqs = 0; 835 836 resc->num_mac_filters = VF_MAC_CREDIT_CNT; 837 resc->num_vlan_filters = VF_VLAN_CREDIT_CNT; 838 839 /* no real limitation */ 840 resc->num_mc_filters = 0; 841 842 /* num_sbs already set */ 843 resc->num_sbs = vf->sb_count; 844 } 845 846 /* FLR routines: */ 847 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf) 848 { 849 /* reset the state variables */ 850 bnx2x_iov_static_resc(bp, vf); 851 vf->state = VF_FREE; 852 } 853 854 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf) 855 { 856 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp); 857 858 /* DQ usage counter */ 859 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 860 bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT, 861 "DQ VF usage counter timed out", 862 poll_cnt); 863 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 864 865 /* FW cleanup command - poll for the results */ 866 if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid), 867 poll_cnt)) 868 BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid); 869 870 /* verify TX hw is flushed */ 871 bnx2x_tx_hw_flushed(bp, poll_cnt); 872 } 873 874 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf) 875 { 876 int rc, i; 877 878 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 879 880 /* the cleanup operations are valid if and only if the VF 881 * was first acquired. 882 */ 883 for (i = 0; i < vf_rxq_count(vf); i++) { 884 rc = bnx2x_vf_queue_flr(bp, vf, i); 885 if (rc) 886 goto out; 887 } 888 889 /* remove multicasts */ 890 bnx2x_vf_mcast(bp, vf, NULL, 0, true); 891 892 /* dispatch final cleanup and wait for HW queues to flush */ 893 bnx2x_vf_flr_clnup_hw(bp, vf); 894 895 /* release VF resources */ 896 bnx2x_vf_free_resc(bp, vf); 897 898 /* re-open the mailbox */ 899 bnx2x_vf_enable_mbx(bp, vf->abs_vfid); 900 return; 901 out: 902 BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n", 903 vf->abs_vfid, i, rc); 904 } 905 906 static void bnx2x_vf_flr_clnup(struct bnx2x *bp) 907 { 908 struct bnx2x_virtf *vf; 909 int i; 910 911 for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) { 912 /* VF should be RESET & in FLR cleanup states */ 913 if (bnx2x_vf(bp, i, state) != VF_RESET || 914 !bnx2x_vf(bp, i, flr_clnup_stage)) 915 continue; 916 917 DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n", 918 i, BNX2X_NR_VIRTFN(bp)); 919 920 vf = BP_VF(bp, i); 921 922 /* lock the vf pf channel */ 923 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR); 924 925 /* invoke the VF FLR SM */ 926 bnx2x_vf_flr(bp, vf); 927 928 /* mark the VF to be ACKED and continue */ 929 vf->flr_clnup_stage = false; 930 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR); 931 } 932 933 /* Acknowledge the handled VFs. 934 * we are acknowledge all the vfs which an flr was requested for, even 935 * if amongst them there are such that we never opened, since the mcp 936 * will interrupt us immediately again if we only ack some of the bits, 937 * resulting in an endless loop. This can happen for example in KVM 938 * where an 'all ones' flr request is sometimes given by hyper visor 939 */ 940 DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n", 941 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]); 942 for (i = 0; i < FLRD_VFS_DWORDS; i++) 943 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 944 bp->vfdb->flrd_vfs[i]); 945 946 bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0); 947 948 /* clear the acked bits - better yet if the MCP implemented 949 * write to clear semantics 950 */ 951 for (i = 0; i < FLRD_VFS_DWORDS; i++) 952 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0); 953 } 954 955 void bnx2x_vf_handle_flr_event(struct bnx2x *bp) 956 { 957 int i; 958 959 /* Read FLR'd VFs */ 960 for (i = 0; i < FLRD_VFS_DWORDS; i++) 961 bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]); 962 963 DP(BNX2X_MSG_MCP, 964 "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n", 965 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]); 966 967 for_each_vf(bp, i) { 968 struct bnx2x_virtf *vf = BP_VF(bp, i); 969 u32 reset = 0; 970 971 if (vf->abs_vfid < 32) 972 reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid); 973 else 974 reset = bp->vfdb->flrd_vfs[1] & 975 (1 << (vf->abs_vfid - 32)); 976 977 if (reset) { 978 /* set as reset and ready for cleanup */ 979 vf->state = VF_RESET; 980 vf->flr_clnup_stage = true; 981 982 DP(BNX2X_MSG_IOV, 983 "Initiating Final cleanup for VF %d\n", 984 vf->abs_vfid); 985 } 986 } 987 988 /* do the FLR cleanup for all marked VFs*/ 989 bnx2x_vf_flr_clnup(bp); 990 } 991 992 /* IOV global initialization routines */ 993 void bnx2x_iov_init_dq(struct bnx2x *bp) 994 { 995 if (!IS_SRIOV(bp)) 996 return; 997 998 /* Set the DQ such that the CID reflect the abs_vfid */ 999 REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0); 1000 REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS)); 1001 1002 /* Set VFs starting CID. If its > 0 the preceding CIDs are belong to 1003 * the PF L2 queues 1004 */ 1005 REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID); 1006 1007 /* The VF window size is the log2 of the max number of CIDs per VF */ 1008 REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND); 1009 1010 /* The VF doorbell size 0 - *B, 4 - 128B. We set it here to match 1011 * the Pf doorbell size although the 2 are independent. 1012 */ 1013 REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3); 1014 1015 /* No security checks for now - 1016 * configure single rule (out of 16) mask = 0x1, value = 0x0, 1017 * CID range 0 - 0x1ffff 1018 */ 1019 REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1); 1020 REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0); 1021 REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0); 1022 REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff); 1023 1024 /* set the VF doorbell threshold. This threshold represents the amount 1025 * of doorbells allowed in the main DORQ fifo for a specific VF. 1026 */ 1027 REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64); 1028 } 1029 1030 void bnx2x_iov_init_dmae(struct bnx2x *bp) 1031 { 1032 if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV)) 1033 REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0); 1034 } 1035 1036 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid) 1037 { 1038 struct pci_dev *dev = bp->pdev; 1039 struct bnx2x_sriov *iov = &bp->vfdb->sriov; 1040 1041 return dev->bus->number + ((dev->devfn + iov->offset + 1042 iov->stride * vfid) >> 8); 1043 } 1044 1045 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid) 1046 { 1047 struct pci_dev *dev = bp->pdev; 1048 struct bnx2x_sriov *iov = &bp->vfdb->sriov; 1049 1050 return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff; 1051 } 1052 1053 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf) 1054 { 1055 int i, n; 1056 struct pci_dev *dev = bp->pdev; 1057 struct bnx2x_sriov *iov = &bp->vfdb->sriov; 1058 1059 for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) { 1060 u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i); 1061 u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i); 1062 1063 size /= iov->total; 1064 vf->bars[n].bar = start + size * vf->abs_vfid; 1065 vf->bars[n].size = size; 1066 } 1067 } 1068 1069 static int bnx2x_ari_enabled(struct pci_dev *dev) 1070 { 1071 return dev->bus->self && dev->bus->self->ari_enabled; 1072 } 1073 1074 static int 1075 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp) 1076 { 1077 int sb_id; 1078 u32 val; 1079 u8 fid, current_pf = 0; 1080 1081 /* IGU in normal mode - read CAM */ 1082 for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) { 1083 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4); 1084 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) 1085 continue; 1086 fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID); 1087 if (fid & IGU_FID_ENCODE_IS_PF) 1088 current_pf = fid & IGU_FID_PF_NUM_MASK; 1089 else if (current_pf == BP_FUNC(bp)) 1090 bnx2x_vf_set_igu_info(bp, sb_id, 1091 (fid & IGU_FID_VF_NUM_MASK)); 1092 DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n", 1093 ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"), 1094 ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) : 1095 (fid & IGU_FID_VF_NUM_MASK)), sb_id, 1096 GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)); 1097 } 1098 DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool); 1099 return BP_VFDB(bp)->vf_sbs_pool; 1100 } 1101 1102 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp) 1103 { 1104 if (bp->vfdb) { 1105 kfree(bp->vfdb->vfqs); 1106 kfree(bp->vfdb->vfs); 1107 kfree(bp->vfdb); 1108 } 1109 bp->vfdb = NULL; 1110 } 1111 1112 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov) 1113 { 1114 int pos; 1115 struct pci_dev *dev = bp->pdev; 1116 1117 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV); 1118 if (!pos) { 1119 BNX2X_ERR("failed to find SRIOV capability in device\n"); 1120 return -ENODEV; 1121 } 1122 1123 iov->pos = pos; 1124 DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos); 1125 pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl); 1126 pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total); 1127 pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial); 1128 pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset); 1129 pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride); 1130 pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz); 1131 pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap); 1132 pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link); 1133 1134 return 0; 1135 } 1136 1137 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov) 1138 { 1139 u32 val; 1140 1141 /* read the SRIOV capability structure 1142 * The fields can be read via configuration read or 1143 * directly from the device (starting at offset PCICFG_OFFSET) 1144 */ 1145 if (bnx2x_sriov_pci_cfg_info(bp, iov)) 1146 return -ENODEV; 1147 1148 /* get the number of SRIOV bars */ 1149 iov->nres = 0; 1150 1151 /* read the first_vfid */ 1152 val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF); 1153 iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK) 1154 * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp)); 1155 1156 DP(BNX2X_MSG_IOV, 1157 "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n", 1158 BP_FUNC(bp), 1159 iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total, 1160 iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz); 1161 1162 return 0; 1163 } 1164 1165 /* must be called after PF bars are mapped */ 1166 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param, 1167 int num_vfs_param) 1168 { 1169 int err, i; 1170 struct bnx2x_sriov *iov; 1171 struct pci_dev *dev = bp->pdev; 1172 1173 bp->vfdb = NULL; 1174 1175 /* verify is pf */ 1176 if (IS_VF(bp)) 1177 return 0; 1178 1179 /* verify sriov capability is present in configuration space */ 1180 if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV)) 1181 return 0; 1182 1183 /* verify chip revision */ 1184 if (CHIP_IS_E1x(bp)) 1185 return 0; 1186 1187 /* check if SRIOV support is turned off */ 1188 if (!num_vfs_param) 1189 return 0; 1190 1191 /* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */ 1192 if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) { 1193 BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n", 1194 BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID); 1195 return 0; 1196 } 1197 1198 /* SRIOV can be enabled only with MSIX */ 1199 if (int_mode_param == BNX2X_INT_MODE_MSI || 1200 int_mode_param == BNX2X_INT_MODE_INTX) { 1201 BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n"); 1202 return 0; 1203 } 1204 1205 err = -EIO; 1206 /* verify ari is enabled */ 1207 if (!bnx2x_ari_enabled(bp->pdev)) { 1208 BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n"); 1209 return 0; 1210 } 1211 1212 /* verify igu is in normal mode */ 1213 if (CHIP_INT_MODE_IS_BC(bp)) { 1214 BNX2X_ERR("IGU not normal mode, SRIOV can not be enabled\n"); 1215 return 0; 1216 } 1217 1218 /* allocate the vfs database */ 1219 bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL); 1220 if (!bp->vfdb) { 1221 BNX2X_ERR("failed to allocate vf database\n"); 1222 err = -ENOMEM; 1223 goto failed; 1224 } 1225 1226 /* get the sriov info - Linux already collected all the pertinent 1227 * information, however the sriov structure is for the private use 1228 * of the pci module. Also we want this information regardless 1229 * of the hyper-visor. 1230 */ 1231 iov = &(bp->vfdb->sriov); 1232 err = bnx2x_sriov_info(bp, iov); 1233 if (err) 1234 goto failed; 1235 1236 /* SR-IOV capability was enabled but there are no VFs*/ 1237 if (iov->total == 0) 1238 goto failed; 1239 1240 iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param); 1241 1242 DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n", 1243 num_vfs_param, iov->nr_virtfn); 1244 1245 /* allocate the vf array */ 1246 bp->vfdb->vfs = kzalloc(sizeof(struct bnx2x_virtf) * 1247 BNX2X_NR_VIRTFN(bp), GFP_KERNEL); 1248 if (!bp->vfdb->vfs) { 1249 BNX2X_ERR("failed to allocate vf array\n"); 1250 err = -ENOMEM; 1251 goto failed; 1252 } 1253 1254 /* Initial VF init - index and abs_vfid - nr_virtfn must be set */ 1255 for_each_vf(bp, i) { 1256 bnx2x_vf(bp, i, index) = i; 1257 bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i; 1258 bnx2x_vf(bp, i, state) = VF_FREE; 1259 mutex_init(&bnx2x_vf(bp, i, op_mutex)); 1260 bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE; 1261 } 1262 1263 /* re-read the IGU CAM for VFs - index and abs_vfid must be set */ 1264 if (!bnx2x_get_vf_igu_cam_info(bp)) { 1265 BNX2X_ERR("No entries in IGU CAM for vfs\n"); 1266 err = -EINVAL; 1267 goto failed; 1268 } 1269 1270 /* allocate the queue arrays for all VFs */ 1271 bp->vfdb->vfqs = kzalloc( 1272 BNX2X_MAX_NUM_VF_QUEUES * sizeof(struct bnx2x_vf_queue), 1273 GFP_KERNEL); 1274 1275 if (!bp->vfdb->vfqs) { 1276 BNX2X_ERR("failed to allocate vf queue array\n"); 1277 err = -ENOMEM; 1278 goto failed; 1279 } 1280 1281 /* Prepare the VFs event synchronization mechanism */ 1282 mutex_init(&bp->vfdb->event_mutex); 1283 1284 mutex_init(&bp->vfdb->bulletin_mutex); 1285 1286 if (SHMEM2_HAS(bp, sriov_switch_mode)) 1287 SHMEM2_WR(bp, sriov_switch_mode, SRIOV_SWITCH_MODE_VEB); 1288 1289 return 0; 1290 failed: 1291 DP(BNX2X_MSG_IOV, "Failed err=%d\n", err); 1292 __bnx2x_iov_free_vfdb(bp); 1293 return err; 1294 } 1295 1296 void bnx2x_iov_remove_one(struct bnx2x *bp) 1297 { 1298 int vf_idx; 1299 1300 /* if SRIOV is not enabled there's nothing to do */ 1301 if (!IS_SRIOV(bp)) 1302 return; 1303 1304 bnx2x_disable_sriov(bp); 1305 1306 /* disable access to all VFs */ 1307 for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) { 1308 bnx2x_pretend_func(bp, 1309 HW_VF_HANDLE(bp, 1310 bp->vfdb->sriov.first_vf_in_pf + 1311 vf_idx)); 1312 DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n", 1313 bp->vfdb->sriov.first_vf_in_pf + vf_idx); 1314 bnx2x_vf_enable_internal(bp, 0); 1315 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 1316 } 1317 1318 /* free vf database */ 1319 __bnx2x_iov_free_vfdb(bp); 1320 } 1321 1322 void bnx2x_iov_free_mem(struct bnx2x *bp) 1323 { 1324 int i; 1325 1326 if (!IS_SRIOV(bp)) 1327 return; 1328 1329 /* free vfs hw contexts */ 1330 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) { 1331 struct hw_dma *cxt = &bp->vfdb->context[i]; 1332 BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size); 1333 } 1334 1335 BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr, 1336 BP_VFDB(bp)->sp_dma.mapping, 1337 BP_VFDB(bp)->sp_dma.size); 1338 1339 BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr, 1340 BP_VF_MBX_DMA(bp)->mapping, 1341 BP_VF_MBX_DMA(bp)->size); 1342 1343 BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr, 1344 BP_VF_BULLETIN_DMA(bp)->mapping, 1345 BP_VF_BULLETIN_DMA(bp)->size); 1346 } 1347 1348 int bnx2x_iov_alloc_mem(struct bnx2x *bp) 1349 { 1350 size_t tot_size; 1351 int i, rc = 0; 1352 1353 if (!IS_SRIOV(bp)) 1354 return rc; 1355 1356 /* allocate vfs hw contexts */ 1357 tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) * 1358 BNX2X_CIDS_PER_VF * sizeof(union cdu_context); 1359 1360 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) { 1361 struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i); 1362 cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ); 1363 1364 if (cxt->size) { 1365 cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size); 1366 if (!cxt->addr) 1367 goto alloc_mem_err; 1368 } else { 1369 cxt->addr = NULL; 1370 cxt->mapping = 0; 1371 } 1372 tot_size -= cxt->size; 1373 } 1374 1375 /* allocate vfs ramrods dma memory - client_init and set_mac */ 1376 tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp); 1377 BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping, 1378 tot_size); 1379 if (!BP_VFDB(bp)->sp_dma.addr) 1380 goto alloc_mem_err; 1381 BP_VFDB(bp)->sp_dma.size = tot_size; 1382 1383 /* allocate mailboxes */ 1384 tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE; 1385 BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping, 1386 tot_size); 1387 if (!BP_VF_MBX_DMA(bp)->addr) 1388 goto alloc_mem_err; 1389 1390 BP_VF_MBX_DMA(bp)->size = tot_size; 1391 1392 /* allocate local bulletin boards */ 1393 tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE; 1394 BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping, 1395 tot_size); 1396 if (!BP_VF_BULLETIN_DMA(bp)->addr) 1397 goto alloc_mem_err; 1398 1399 BP_VF_BULLETIN_DMA(bp)->size = tot_size; 1400 1401 return 0; 1402 1403 alloc_mem_err: 1404 return -ENOMEM; 1405 } 1406 1407 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf, 1408 struct bnx2x_vf_queue *q) 1409 { 1410 u8 cl_id = vfq_cl_id(vf, q); 1411 u8 func_id = FW_VF_HANDLE(vf->abs_vfid); 1412 unsigned long q_type = 0; 1413 1414 set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 1415 set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 1416 1417 /* Queue State object */ 1418 bnx2x_init_queue_obj(bp, &q->sp_obj, 1419 cl_id, &q->cid, 1, func_id, 1420 bnx2x_vf_sp(bp, vf, q_data), 1421 bnx2x_vf_sp_map(bp, vf, q_data), 1422 q_type); 1423 1424 /* sp indication is set only when vlan/mac/etc. are initialized */ 1425 q->sp_initialized = false; 1426 1427 DP(BNX2X_MSG_IOV, 1428 "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n", 1429 vf->abs_vfid, q->sp_obj.func_id, q->cid); 1430 } 1431 1432 static int bnx2x_max_speed_cap(struct bnx2x *bp) 1433 { 1434 u32 supported = bp->port.supported[bnx2x_get_link_cfg_idx(bp)]; 1435 1436 if (supported & 1437 (SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full)) 1438 return 20000; 1439 1440 return 10000; /* assume lowest supported speed is 10G */ 1441 } 1442 1443 int bnx2x_iov_link_update_vf(struct bnx2x *bp, int idx) 1444 { 1445 struct bnx2x_link_report_data *state = &bp->last_reported_link; 1446 struct pf_vf_bulletin_content *bulletin; 1447 struct bnx2x_virtf *vf; 1448 bool update = true; 1449 int rc = 0; 1450 1451 /* sanity and init */ 1452 rc = bnx2x_vf_op_prep(bp, idx, &vf, &bulletin, false); 1453 if (rc) 1454 return rc; 1455 1456 mutex_lock(&bp->vfdb->bulletin_mutex); 1457 1458 if (vf->link_cfg == IFLA_VF_LINK_STATE_AUTO) { 1459 bulletin->valid_bitmap |= 1 << LINK_VALID; 1460 1461 bulletin->link_speed = state->line_speed; 1462 bulletin->link_flags = 0; 1463 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1464 &state->link_report_flags)) 1465 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN; 1466 if (test_bit(BNX2X_LINK_REPORT_FD, 1467 &state->link_report_flags)) 1468 bulletin->link_flags |= VFPF_LINK_REPORT_FULL_DUPLEX; 1469 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1470 &state->link_report_flags)) 1471 bulletin->link_flags |= VFPF_LINK_REPORT_RX_FC_ON; 1472 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1473 &state->link_report_flags)) 1474 bulletin->link_flags |= VFPF_LINK_REPORT_TX_FC_ON; 1475 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_DISABLE && 1476 !(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) { 1477 bulletin->valid_bitmap |= 1 << LINK_VALID; 1478 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN; 1479 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_ENABLE && 1480 (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) { 1481 bulletin->valid_bitmap |= 1 << LINK_VALID; 1482 bulletin->link_speed = bnx2x_max_speed_cap(bp); 1483 bulletin->link_flags &= ~VFPF_LINK_REPORT_LINK_DOWN; 1484 } else { 1485 update = false; 1486 } 1487 1488 if (update) { 1489 DP(NETIF_MSG_LINK | BNX2X_MSG_IOV, 1490 "vf %d mode %u speed %d flags %x\n", idx, 1491 vf->link_cfg, bulletin->link_speed, bulletin->link_flags); 1492 1493 /* Post update on VF's bulletin board */ 1494 rc = bnx2x_post_vf_bulletin(bp, idx); 1495 if (rc) { 1496 BNX2X_ERR("failed to update VF[%d] bulletin\n", idx); 1497 goto out; 1498 } 1499 } 1500 1501 out: 1502 mutex_unlock(&bp->vfdb->bulletin_mutex); 1503 return rc; 1504 } 1505 1506 int bnx2x_set_vf_link_state(struct net_device *dev, int idx, int link_state) 1507 { 1508 struct bnx2x *bp = netdev_priv(dev); 1509 struct bnx2x_virtf *vf = BP_VF(bp, idx); 1510 1511 if (!vf) 1512 return -EINVAL; 1513 1514 if (vf->link_cfg == link_state) 1515 return 0; /* nothing todo */ 1516 1517 vf->link_cfg = link_state; 1518 1519 return bnx2x_iov_link_update_vf(bp, idx); 1520 } 1521 1522 void bnx2x_iov_link_update(struct bnx2x *bp) 1523 { 1524 int vfid; 1525 1526 if (!IS_SRIOV(bp)) 1527 return; 1528 1529 for_each_vf(bp, vfid) 1530 bnx2x_iov_link_update_vf(bp, vfid); 1531 } 1532 1533 /* called by bnx2x_nic_load */ 1534 int bnx2x_iov_nic_init(struct bnx2x *bp) 1535 { 1536 int vfid; 1537 1538 if (!IS_SRIOV(bp)) { 1539 DP(BNX2X_MSG_IOV, "vfdb was not allocated\n"); 1540 return 0; 1541 } 1542 1543 DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn); 1544 1545 /* let FLR complete ... */ 1546 msleep(100); 1547 1548 /* initialize vf database */ 1549 for_each_vf(bp, vfid) { 1550 struct bnx2x_virtf *vf = BP_VF(bp, vfid); 1551 1552 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) * 1553 BNX2X_CIDS_PER_VF; 1554 1555 union cdu_context *base_cxt = (union cdu_context *) 1556 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr + 1557 (base_vf_cid & (ILT_PAGE_CIDS-1)); 1558 1559 DP(BNX2X_MSG_IOV, 1560 "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n", 1561 vf->abs_vfid, vf_sb_count(vf), base_vf_cid, 1562 BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt); 1563 1564 /* init statically provisioned resources */ 1565 bnx2x_iov_static_resc(bp, vf); 1566 1567 /* queues are initialized during VF-ACQUIRE */ 1568 vf->filter_state = 0; 1569 vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id); 1570 1571 bnx2x_init_credit_pool(&vf->vf_vlans_pool, 0, 1572 vf_vlan_rules_cnt(vf)); 1573 bnx2x_init_credit_pool(&vf->vf_macs_pool, 0, 1574 vf_mac_rules_cnt(vf)); 1575 1576 /* init mcast object - This object will be re-initialized 1577 * during VF-ACQUIRE with the proper cl_id and cid. 1578 * It needs to be initialized here so that it can be safely 1579 * handled by a subsequent FLR flow. 1580 */ 1581 bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF, 1582 0xFF, 0xFF, 0xFF, 1583 bnx2x_vf_sp(bp, vf, mcast_rdata), 1584 bnx2x_vf_sp_map(bp, vf, mcast_rdata), 1585 BNX2X_FILTER_MCAST_PENDING, 1586 &vf->filter_state, 1587 BNX2X_OBJ_TYPE_RX_TX); 1588 1589 /* set the mailbox message addresses */ 1590 BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *) 1591 (((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid * 1592 MBX_MSG_ALIGNED_SIZE); 1593 1594 BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping + 1595 vfid * MBX_MSG_ALIGNED_SIZE; 1596 1597 /* Enable vf mailbox */ 1598 bnx2x_vf_enable_mbx(bp, vf->abs_vfid); 1599 } 1600 1601 /* Final VF init */ 1602 for_each_vf(bp, vfid) { 1603 struct bnx2x_virtf *vf = BP_VF(bp, vfid); 1604 1605 /* fill in the BDF and bars */ 1606 vf->bus = bnx2x_vf_bus(bp, vfid); 1607 vf->devfn = bnx2x_vf_devfn(bp, vfid); 1608 bnx2x_vf_set_bars(bp, vf); 1609 1610 DP(BNX2X_MSG_IOV, 1611 "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n", 1612 vf->abs_vfid, vf->bus, vf->devfn, 1613 (unsigned)vf->bars[0].bar, vf->bars[0].size, 1614 (unsigned)vf->bars[1].bar, vf->bars[1].size, 1615 (unsigned)vf->bars[2].bar, vf->bars[2].size); 1616 } 1617 1618 return 0; 1619 } 1620 1621 /* called by bnx2x_chip_cleanup */ 1622 int bnx2x_iov_chip_cleanup(struct bnx2x *bp) 1623 { 1624 int i; 1625 1626 if (!IS_SRIOV(bp)) 1627 return 0; 1628 1629 /* release all the VFs */ 1630 for_each_vf(bp, i) 1631 bnx2x_vf_release(bp, BP_VF(bp, i)); 1632 1633 return 0; 1634 } 1635 1636 /* called by bnx2x_init_hw_func, returns the next ilt line */ 1637 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line) 1638 { 1639 int i; 1640 struct bnx2x_ilt *ilt = BP_ILT(bp); 1641 1642 if (!IS_SRIOV(bp)) 1643 return line; 1644 1645 /* set vfs ilt lines */ 1646 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) { 1647 struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i); 1648 1649 ilt->lines[line+i].page = hw_cxt->addr; 1650 ilt->lines[line+i].page_mapping = hw_cxt->mapping; 1651 ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */ 1652 } 1653 return line + i; 1654 } 1655 1656 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid) 1657 { 1658 return ((cid >= BNX2X_FIRST_VF_CID) && 1659 ((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS)); 1660 } 1661 1662 static 1663 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp, 1664 struct bnx2x_vf_queue *vfq, 1665 union event_ring_elem *elem) 1666 { 1667 unsigned long ramrod_flags = 0; 1668 int rc = 0; 1669 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo); 1670 1671 /* Always push next commands out, don't wait here */ 1672 set_bit(RAMROD_CONT, &ramrod_flags); 1673 1674 switch (echo >> BNX2X_SWCID_SHIFT) { 1675 case BNX2X_FILTER_MAC_PENDING: 1676 rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem, 1677 &ramrod_flags); 1678 break; 1679 case BNX2X_FILTER_VLAN_PENDING: 1680 rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem, 1681 &ramrod_flags); 1682 break; 1683 default: 1684 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo); 1685 return; 1686 } 1687 if (rc < 0) 1688 BNX2X_ERR("Failed to schedule new commands: %d\n", rc); 1689 else if (rc > 0) 1690 DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n"); 1691 } 1692 1693 static 1694 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp, 1695 struct bnx2x_virtf *vf) 1696 { 1697 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 1698 int rc; 1699 1700 rparam.mcast_obj = &vf->mcast_obj; 1701 vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw); 1702 1703 /* If there are pending mcast commands - send them */ 1704 if (vf->mcast_obj.check_pending(&vf->mcast_obj)) { 1705 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 1706 if (rc < 0) 1707 BNX2X_ERR("Failed to send pending mcast commands: %d\n", 1708 rc); 1709 } 1710 } 1711 1712 static 1713 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp, 1714 struct bnx2x_virtf *vf) 1715 { 1716 smp_mb__before_atomic(); 1717 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state); 1718 smp_mb__after_atomic(); 1719 } 1720 1721 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp, 1722 struct bnx2x_virtf *vf) 1723 { 1724 vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw); 1725 } 1726 1727 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem) 1728 { 1729 struct bnx2x_virtf *vf; 1730 int qidx = 0, abs_vfid; 1731 u8 opcode; 1732 u16 cid = 0xffff; 1733 1734 if (!IS_SRIOV(bp)) 1735 return 1; 1736 1737 /* first get the cid - the only events we handle here are cfc-delete 1738 * and set-mac completion 1739 */ 1740 opcode = elem->message.opcode; 1741 1742 switch (opcode) { 1743 case EVENT_RING_OPCODE_CFC_DEL: 1744 cid = SW_CID(elem->message.data.cfc_del_event.cid); 1745 DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid); 1746 break; 1747 case EVENT_RING_OPCODE_CLASSIFICATION_RULES: 1748 case EVENT_RING_OPCODE_MULTICAST_RULES: 1749 case EVENT_RING_OPCODE_FILTERS_RULES: 1750 case EVENT_RING_OPCODE_RSS_UPDATE_RULES: 1751 cid = SW_CID(elem->message.data.eth_event.echo); 1752 DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid); 1753 break; 1754 case EVENT_RING_OPCODE_VF_FLR: 1755 abs_vfid = elem->message.data.vf_flr_event.vf_id; 1756 DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n", 1757 abs_vfid); 1758 goto get_vf; 1759 case EVENT_RING_OPCODE_MALICIOUS_VF: 1760 abs_vfid = elem->message.data.malicious_vf_event.vf_id; 1761 BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n", 1762 abs_vfid, 1763 elem->message.data.malicious_vf_event.err_id); 1764 goto get_vf; 1765 default: 1766 return 1; 1767 } 1768 1769 /* check if the cid is the VF range */ 1770 if (!bnx2x_iov_is_vf_cid(bp, cid)) { 1771 DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid); 1772 return 1; 1773 } 1774 1775 /* extract vf and rxq index from vf_cid - relies on the following: 1776 * 1. vfid on cid reflects the true abs_vfid 1777 * 2. The max number of VFs (per path) is 64 1778 */ 1779 qidx = cid & ((1 << BNX2X_VF_CID_WND)-1); 1780 abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1); 1781 get_vf: 1782 vf = bnx2x_vf_by_abs_fid(bp, abs_vfid); 1783 1784 if (!vf) { 1785 BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n", 1786 cid, abs_vfid); 1787 return 0; 1788 } 1789 1790 switch (opcode) { 1791 case EVENT_RING_OPCODE_CFC_DEL: 1792 DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n", 1793 vf->abs_vfid, qidx); 1794 vfq_get(vf, qidx)->sp_obj.complete_cmd(bp, 1795 &vfq_get(vf, 1796 qidx)->sp_obj, 1797 BNX2X_Q_CMD_CFC_DEL); 1798 break; 1799 case EVENT_RING_OPCODE_CLASSIFICATION_RULES: 1800 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n", 1801 vf->abs_vfid, qidx); 1802 bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem); 1803 break; 1804 case EVENT_RING_OPCODE_MULTICAST_RULES: 1805 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n", 1806 vf->abs_vfid, qidx); 1807 bnx2x_vf_handle_mcast_eqe(bp, vf); 1808 break; 1809 case EVENT_RING_OPCODE_FILTERS_RULES: 1810 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n", 1811 vf->abs_vfid, qidx); 1812 bnx2x_vf_handle_filters_eqe(bp, vf); 1813 break; 1814 case EVENT_RING_OPCODE_RSS_UPDATE_RULES: 1815 DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n", 1816 vf->abs_vfid, qidx); 1817 bnx2x_vf_handle_rss_update_eqe(bp, vf); 1818 case EVENT_RING_OPCODE_VF_FLR: 1819 case EVENT_RING_OPCODE_MALICIOUS_VF: 1820 /* Do nothing for now */ 1821 return 0; 1822 } 1823 1824 return 0; 1825 } 1826 1827 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid) 1828 { 1829 /* extract the vf from vf_cid - relies on the following: 1830 * 1. vfid on cid reflects the true abs_vfid 1831 * 2. The max number of VFs (per path) is 64 1832 */ 1833 int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1); 1834 return bnx2x_vf_by_abs_fid(bp, abs_vfid); 1835 } 1836 1837 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid, 1838 struct bnx2x_queue_sp_obj **q_obj) 1839 { 1840 struct bnx2x_virtf *vf; 1841 1842 if (!IS_SRIOV(bp)) 1843 return; 1844 1845 vf = bnx2x_vf_by_cid(bp, vf_cid); 1846 1847 if (vf) { 1848 /* extract queue index from vf_cid - relies on the following: 1849 * 1. vfid on cid reflects the true abs_vfid 1850 * 2. The max number of VFs (per path) is 64 1851 */ 1852 int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1); 1853 *q_obj = &bnx2x_vfq(vf, q_index, sp_obj); 1854 } else { 1855 BNX2X_ERR("No vf matching cid %d\n", vf_cid); 1856 } 1857 } 1858 1859 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp) 1860 { 1861 int i; 1862 int first_queue_query_index, num_queues_req; 1863 dma_addr_t cur_data_offset; 1864 struct stats_query_entry *cur_query_entry; 1865 u8 stats_count = 0; 1866 bool is_fcoe = false; 1867 1868 if (!IS_SRIOV(bp)) 1869 return; 1870 1871 if (!NO_FCOE(bp)) 1872 is_fcoe = true; 1873 1874 /* fcoe adds one global request and one queue request */ 1875 num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe; 1876 first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX - 1877 (is_fcoe ? 0 : 1); 1878 1879 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1880 "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n", 1881 BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index, 1882 first_queue_query_index + num_queues_req); 1883 1884 cur_data_offset = bp->fw_stats_data_mapping + 1885 offsetof(struct bnx2x_fw_stats_data, queue_stats) + 1886 num_queues_req * sizeof(struct per_queue_stats); 1887 1888 cur_query_entry = &bp->fw_stats_req-> 1889 query[first_queue_query_index + num_queues_req]; 1890 1891 for_each_vf(bp, i) { 1892 int j; 1893 struct bnx2x_virtf *vf = BP_VF(bp, i); 1894 1895 if (vf->state != VF_ENABLED) { 1896 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1897 "vf %d not enabled so no stats for it\n", 1898 vf->abs_vfid); 1899 continue; 1900 } 1901 1902 DP(BNX2X_MSG_IOV, "add addresses for vf %d\n", vf->abs_vfid); 1903 for_each_vfq(vf, j) { 1904 struct bnx2x_vf_queue *rxq = vfq_get(vf, j); 1905 1906 dma_addr_t q_stats_addr = 1907 vf->fw_stat_map + j * vf->stats_stride; 1908 1909 /* collect stats fro active queues only */ 1910 if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) == 1911 BNX2X_Q_LOGICAL_STATE_STOPPED) 1912 continue; 1913 1914 /* create stats query entry for this queue */ 1915 cur_query_entry->kind = STATS_TYPE_QUEUE; 1916 cur_query_entry->index = vfq_stat_id(vf, rxq); 1917 cur_query_entry->funcID = 1918 cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid)); 1919 cur_query_entry->address.hi = 1920 cpu_to_le32(U64_HI(q_stats_addr)); 1921 cur_query_entry->address.lo = 1922 cpu_to_le32(U64_LO(q_stats_addr)); 1923 DP(BNX2X_MSG_IOV, 1924 "added address %x %x for vf %d queue %d client %d\n", 1925 cur_query_entry->address.hi, 1926 cur_query_entry->address.lo, cur_query_entry->funcID, 1927 j, cur_query_entry->index); 1928 cur_query_entry++; 1929 cur_data_offset += sizeof(struct per_queue_stats); 1930 stats_count++; 1931 1932 /* all stats are coalesced to the leading queue */ 1933 if (vf->cfg_flags & VF_CFG_STATS_COALESCE) 1934 break; 1935 } 1936 } 1937 bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count; 1938 } 1939 1940 /* VF API helpers */ 1941 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid, 1942 u8 enable) 1943 { 1944 u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4; 1945 u32 val = enable ? (abs_vfid | (1 << 6)) : 0; 1946 1947 REG_WR(bp, reg, val); 1948 } 1949 1950 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf) 1951 { 1952 int i; 1953 1954 for_each_vfq(vf, i) 1955 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid, 1956 vfq_qzone_id(vf, vfq_get(vf, i)), false); 1957 } 1958 1959 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf) 1960 { 1961 u32 val; 1962 1963 /* clear the VF configuration - pretend */ 1964 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 1965 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION); 1966 val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN | 1967 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK); 1968 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val); 1969 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 1970 } 1971 1972 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf) 1973 { 1974 return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF), 1975 BNX2X_VF_MAX_QUEUES); 1976 } 1977 1978 static 1979 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf, 1980 struct vf_pf_resc_request *req_resc) 1981 { 1982 u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf); 1983 u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf); 1984 1985 return ((req_resc->num_rxqs <= rxq_cnt) && 1986 (req_resc->num_txqs <= txq_cnt) && 1987 (req_resc->num_sbs <= vf_sb_count(vf)) && 1988 (req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) && 1989 (req_resc->num_vlan_filters <= vf_vlan_rules_cnt(vf))); 1990 } 1991 1992 /* CORE VF API */ 1993 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf, 1994 struct vf_pf_resc_request *resc) 1995 { 1996 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) * 1997 BNX2X_CIDS_PER_VF; 1998 1999 union cdu_context *base_cxt = (union cdu_context *) 2000 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr + 2001 (base_vf_cid & (ILT_PAGE_CIDS-1)); 2002 int i; 2003 2004 /* if state is 'acquired' the VF was not released or FLR'd, in 2005 * this case the returned resources match the acquired already 2006 * acquired resources. Verify that the requested numbers do 2007 * not exceed the already acquired numbers. 2008 */ 2009 if (vf->state == VF_ACQUIRED) { 2010 DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n", 2011 vf->abs_vfid); 2012 2013 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) { 2014 BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n", 2015 vf->abs_vfid); 2016 return -EINVAL; 2017 } 2018 return 0; 2019 } 2020 2021 /* Otherwise vf state must be 'free' or 'reset' */ 2022 if (vf->state != VF_FREE && vf->state != VF_RESET) { 2023 BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n", 2024 vf->abs_vfid, vf->state); 2025 return -EINVAL; 2026 } 2027 2028 /* static allocation: 2029 * the global maximum number are fixed per VF. Fail the request if 2030 * requested number exceed these globals 2031 */ 2032 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) { 2033 DP(BNX2X_MSG_IOV, 2034 "cannot fulfill vf resource request. Placing maximal available values in response\n"); 2035 /* set the max resource in the vf */ 2036 return -ENOMEM; 2037 } 2038 2039 /* Set resources counters - 0 request means max available */ 2040 vf_sb_count(vf) = resc->num_sbs; 2041 vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf); 2042 vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf); 2043 2044 DP(BNX2X_MSG_IOV, 2045 "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n", 2046 vf_sb_count(vf), vf_rxq_count(vf), 2047 vf_txq_count(vf), vf_mac_rules_cnt(vf), 2048 vf_vlan_rules_cnt(vf)); 2049 2050 /* Initialize the queues */ 2051 if (!vf->vfqs) { 2052 DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n"); 2053 return -EINVAL; 2054 } 2055 2056 for_each_vfq(vf, i) { 2057 struct bnx2x_vf_queue *q = vfq_get(vf, i); 2058 2059 if (!q) { 2060 BNX2X_ERR("q number %d was not allocated\n", i); 2061 return -EINVAL; 2062 } 2063 2064 q->index = i; 2065 q->cxt = &((base_cxt + i)->eth); 2066 q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i; 2067 2068 DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n", 2069 vf->abs_vfid, i, q->index, q->cid, q->cxt); 2070 2071 /* init SP objects */ 2072 bnx2x_vfq_init(bp, vf, q); 2073 } 2074 vf->state = VF_ACQUIRED; 2075 return 0; 2076 } 2077 2078 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map) 2079 { 2080 struct bnx2x_func_init_params func_init = {0}; 2081 int i; 2082 2083 /* the sb resources are initialized at this point, do the 2084 * FW/HW initializations 2085 */ 2086 for_each_vf_sb(vf, i) 2087 bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true, 2088 vf_igu_sb(vf, i), vf_igu_sb(vf, i)); 2089 2090 /* Sanity checks */ 2091 if (vf->state != VF_ACQUIRED) { 2092 DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n", 2093 vf->abs_vfid, vf->state); 2094 return -EINVAL; 2095 } 2096 2097 /* let FLR complete ... */ 2098 msleep(100); 2099 2100 /* FLR cleanup epilogue */ 2101 if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid)) 2102 return -EBUSY; 2103 2104 /* reset IGU VF statistics: MSIX */ 2105 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0); 2106 2107 /* function setup */ 2108 func_init.pf_id = BP_FUNC(bp); 2109 func_init.func_id = FW_VF_HANDLE(vf->abs_vfid); 2110 bnx2x_func_init(bp, &func_init); 2111 2112 /* Enable the vf */ 2113 bnx2x_vf_enable_access(bp, vf->abs_vfid); 2114 bnx2x_vf_enable_traffic(bp, vf); 2115 2116 /* queue protection table */ 2117 for_each_vfq(vf, i) 2118 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid, 2119 vfq_qzone_id(vf, vfq_get(vf, i)), true); 2120 2121 vf->state = VF_ENABLED; 2122 2123 /* update vf bulletin board */ 2124 bnx2x_post_vf_bulletin(bp, vf->index); 2125 2126 return 0; 2127 } 2128 2129 struct set_vf_state_cookie { 2130 struct bnx2x_virtf *vf; 2131 u8 state; 2132 }; 2133 2134 static void bnx2x_set_vf_state(void *cookie) 2135 { 2136 struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie; 2137 2138 p->vf->state = p->state; 2139 } 2140 2141 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf) 2142 { 2143 int rc = 0, i; 2144 2145 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 2146 2147 /* Close all queues */ 2148 for (i = 0; i < vf_rxq_count(vf); i++) { 2149 rc = bnx2x_vf_queue_teardown(bp, vf, i); 2150 if (rc) 2151 goto op_err; 2152 } 2153 2154 /* disable the interrupts */ 2155 DP(BNX2X_MSG_IOV, "disabling igu\n"); 2156 bnx2x_vf_igu_disable(bp, vf); 2157 2158 /* disable the VF */ 2159 DP(BNX2X_MSG_IOV, "clearing qtbl\n"); 2160 bnx2x_vf_clr_qtbl(bp, vf); 2161 2162 /* need to make sure there are no outstanding stats ramrods which may 2163 * cause the device to access the VF's stats buffer which it will free 2164 * as soon as we return from the close flow. 2165 */ 2166 { 2167 struct set_vf_state_cookie cookie; 2168 2169 cookie.vf = vf; 2170 cookie.state = VF_ACQUIRED; 2171 rc = bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie); 2172 if (rc) 2173 goto op_err; 2174 } 2175 2176 DP(BNX2X_MSG_IOV, "set state to acquired\n"); 2177 2178 return 0; 2179 op_err: 2180 BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc); 2181 return rc; 2182 } 2183 2184 /* VF release can be called either: 1. The VF was acquired but 2185 * not enabled 2. the vf was enabled or in the process of being 2186 * enabled 2187 */ 2188 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf) 2189 { 2190 int rc; 2191 2192 DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid, 2193 vf->state == VF_FREE ? "Free" : 2194 vf->state == VF_ACQUIRED ? "Acquired" : 2195 vf->state == VF_ENABLED ? "Enabled" : 2196 vf->state == VF_RESET ? "Reset" : 2197 "Unknown"); 2198 2199 switch (vf->state) { 2200 case VF_ENABLED: 2201 rc = bnx2x_vf_close(bp, vf); 2202 if (rc) 2203 goto op_err; 2204 /* Fallthrough to release resources */ 2205 case VF_ACQUIRED: 2206 DP(BNX2X_MSG_IOV, "about to free resources\n"); 2207 bnx2x_vf_free_resc(bp, vf); 2208 break; 2209 2210 case VF_FREE: 2211 case VF_RESET: 2212 default: 2213 break; 2214 } 2215 return 0; 2216 op_err: 2217 BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc); 2218 return rc; 2219 } 2220 2221 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf, 2222 struct bnx2x_config_rss_params *rss) 2223 { 2224 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 2225 set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags); 2226 return bnx2x_config_rss(bp, rss); 2227 } 2228 2229 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf, 2230 struct vfpf_tpa_tlv *tlv, 2231 struct bnx2x_queue_update_tpa_params *params) 2232 { 2233 aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr; 2234 struct bnx2x_queue_state_params qstate; 2235 int qid, rc = 0; 2236 2237 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 2238 2239 /* Set ramrod params */ 2240 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params)); 2241 memcpy(&qstate.params.update_tpa, params, 2242 sizeof(struct bnx2x_queue_update_tpa_params)); 2243 qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA; 2244 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags); 2245 2246 for (qid = 0; qid < vf_rxq_count(vf); qid++) { 2247 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj); 2248 qstate.params.update_tpa.sge_map = sge_addr[qid]; 2249 DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n", 2250 vf->abs_vfid, qid, U64_HI(sge_addr[qid]), 2251 U64_LO(sge_addr[qid])); 2252 rc = bnx2x_queue_state_change(bp, &qstate); 2253 if (rc) { 2254 BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n", 2255 U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]), 2256 vf->abs_vfid, qid); 2257 return rc; 2258 } 2259 } 2260 2261 return rc; 2262 } 2263 2264 /* VF release ~ VF close + VF release-resources 2265 * Release is the ultimate SW shutdown and is called whenever an 2266 * irrecoverable error is encountered. 2267 */ 2268 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf) 2269 { 2270 int rc; 2271 2272 DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid); 2273 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF); 2274 2275 rc = bnx2x_vf_free(bp, vf); 2276 if (rc) 2277 WARN(rc, 2278 "VF[%d] Failed to allocate resources for release op- rc=%d\n", 2279 vf->abs_vfid, rc); 2280 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF); 2281 return rc; 2282 } 2283 2284 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf, 2285 enum channel_tlvs tlv) 2286 { 2287 /* we don't lock the channel for unsupported tlvs */ 2288 if (!bnx2x_tlv_supported(tlv)) { 2289 BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n"); 2290 return; 2291 } 2292 2293 /* lock the channel */ 2294 mutex_lock(&vf->op_mutex); 2295 2296 /* record the locking op */ 2297 vf->op_current = tlv; 2298 2299 /* log the lock */ 2300 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n", 2301 vf->abs_vfid, tlv); 2302 } 2303 2304 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf, 2305 enum channel_tlvs expected_tlv) 2306 { 2307 enum channel_tlvs current_tlv; 2308 2309 if (!vf) { 2310 BNX2X_ERR("VF was %p\n", vf); 2311 return; 2312 } 2313 2314 current_tlv = vf->op_current; 2315 2316 /* we don't unlock the channel for unsupported tlvs */ 2317 if (!bnx2x_tlv_supported(expected_tlv)) 2318 return; 2319 2320 WARN(expected_tlv != vf->op_current, 2321 "lock mismatch: expected %d found %d", expected_tlv, 2322 vf->op_current); 2323 2324 /* record the locking op */ 2325 vf->op_current = CHANNEL_TLV_NONE; 2326 2327 /* lock the channel */ 2328 mutex_unlock(&vf->op_mutex); 2329 2330 /* log the unlock */ 2331 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n", 2332 vf->abs_vfid, current_tlv); 2333 } 2334 2335 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable) 2336 { 2337 struct bnx2x_queue_state_params q_params; 2338 u32 prev_flags; 2339 int i, rc; 2340 2341 /* Verify changes are needed and record current Tx switching state */ 2342 prev_flags = bp->flags; 2343 if (enable) 2344 bp->flags |= TX_SWITCHING; 2345 else 2346 bp->flags &= ~TX_SWITCHING; 2347 if (prev_flags == bp->flags) 2348 return 0; 2349 2350 /* Verify state enables the sending of queue ramrods */ 2351 if ((bp->state != BNX2X_STATE_OPEN) || 2352 (bnx2x_get_q_logical_state(bp, 2353 &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) != 2354 BNX2X_Q_LOGICAL_STATE_ACTIVE)) 2355 return 0; 2356 2357 /* send q. update ramrod to configure Tx switching */ 2358 memset(&q_params, 0, sizeof(q_params)); 2359 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 2360 q_params.cmd = BNX2X_Q_CMD_UPDATE; 2361 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG, 2362 &q_params.params.update.update_flags); 2363 if (enable) 2364 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING, 2365 &q_params.params.update.update_flags); 2366 else 2367 __clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING, 2368 &q_params.params.update.update_flags); 2369 2370 /* send the ramrod on all the queues of the PF */ 2371 for_each_eth_queue(bp, i) { 2372 struct bnx2x_fastpath *fp = &bp->fp[i]; 2373 2374 /* Set the appropriate Queue object */ 2375 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 2376 2377 /* Update the Queue state */ 2378 rc = bnx2x_queue_state_change(bp, &q_params); 2379 if (rc) { 2380 BNX2X_ERR("Failed to configure Tx switching\n"); 2381 return rc; 2382 } 2383 } 2384 2385 DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled"); 2386 return 0; 2387 } 2388 2389 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param) 2390 { 2391 struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev)); 2392 2393 if (!IS_SRIOV(bp)) { 2394 BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n"); 2395 return -EINVAL; 2396 } 2397 2398 DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n", 2399 num_vfs_param, BNX2X_NR_VIRTFN(bp)); 2400 2401 /* HW channel is only operational when PF is up */ 2402 if (bp->state != BNX2X_STATE_OPEN) { 2403 BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n"); 2404 return -EINVAL; 2405 } 2406 2407 /* we are always bound by the total_vfs in the configuration space */ 2408 if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) { 2409 BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n", 2410 num_vfs_param, BNX2X_NR_VIRTFN(bp)); 2411 num_vfs_param = BNX2X_NR_VIRTFN(bp); 2412 } 2413 2414 bp->requested_nr_virtfn = num_vfs_param; 2415 if (num_vfs_param == 0) { 2416 bnx2x_set_pf_tx_switching(bp, false); 2417 bnx2x_disable_sriov(bp); 2418 return 0; 2419 } else { 2420 return bnx2x_enable_sriov(bp); 2421 } 2422 } 2423 2424 #define IGU_ENTRY_SIZE 4 2425 2426 int bnx2x_enable_sriov(struct bnx2x *bp) 2427 { 2428 int rc = 0, req_vfs = bp->requested_nr_virtfn; 2429 int vf_idx, sb_idx, vfq_idx, qcount, first_vf; 2430 u32 igu_entry, address; 2431 u16 num_vf_queues; 2432 2433 if (req_vfs == 0) 2434 return 0; 2435 2436 first_vf = bp->vfdb->sriov.first_vf_in_pf; 2437 2438 /* statically distribute vf sb pool between VFs */ 2439 num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES, 2440 BP_VFDB(bp)->vf_sbs_pool / req_vfs); 2441 2442 /* zero previous values learned from igu cam */ 2443 for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) { 2444 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx); 2445 2446 vf->sb_count = 0; 2447 vf_sb_count(BP_VF(bp, vf_idx)) = 0; 2448 } 2449 bp->vfdb->vf_sbs_pool = 0; 2450 2451 /* prepare IGU cam */ 2452 sb_idx = BP_VFDB(bp)->first_vf_igu_entry; 2453 address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE; 2454 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) { 2455 for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) { 2456 igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT | 2457 vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT | 2458 IGU_REG_MAPPING_MEMORY_VALID; 2459 DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n", 2460 sb_idx, vf_idx); 2461 REG_WR(bp, address, igu_entry); 2462 sb_idx++; 2463 address += IGU_ENTRY_SIZE; 2464 } 2465 } 2466 2467 /* Reinitialize vf database according to igu cam */ 2468 bnx2x_get_vf_igu_cam_info(bp); 2469 2470 DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n", 2471 BP_VFDB(bp)->vf_sbs_pool, num_vf_queues); 2472 2473 qcount = 0; 2474 for_each_vf(bp, vf_idx) { 2475 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx); 2476 2477 /* set local queue arrays */ 2478 vf->vfqs = &bp->vfdb->vfqs[qcount]; 2479 qcount += vf_sb_count(vf); 2480 bnx2x_iov_static_resc(bp, vf); 2481 } 2482 2483 /* prepare msix vectors in VF configuration space - the value in the 2484 * PCI configuration space should be the index of the last entry, 2485 * namely one less than the actual size of the table 2486 */ 2487 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) { 2488 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx)); 2489 REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL, 2490 num_vf_queues - 1); 2491 DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n", 2492 vf_idx, num_vf_queues - 1); 2493 } 2494 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 2495 2496 /* enable sriov. This will probe all the VFs, and consequentially cause 2497 * the "acquire" messages to appear on the VF PF channel. 2498 */ 2499 DP(BNX2X_MSG_IOV, "about to call enable sriov\n"); 2500 bnx2x_disable_sriov(bp); 2501 2502 rc = bnx2x_set_pf_tx_switching(bp, true); 2503 if (rc) 2504 return rc; 2505 2506 rc = pci_enable_sriov(bp->pdev, req_vfs); 2507 if (rc) { 2508 BNX2X_ERR("pci_enable_sriov failed with %d\n", rc); 2509 return rc; 2510 } 2511 DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs); 2512 return req_vfs; 2513 } 2514 2515 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp) 2516 { 2517 int vfidx; 2518 struct pf_vf_bulletin_content *bulletin; 2519 2520 DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n"); 2521 for_each_vf(bp, vfidx) { 2522 bulletin = BP_VF_BULLETIN(bp, vfidx); 2523 if (bulletin->valid_bitmap & (1 << VLAN_VALID)) 2524 bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0, 2525 htons(ETH_P_8021Q)); 2526 } 2527 } 2528 2529 void bnx2x_disable_sriov(struct bnx2x *bp) 2530 { 2531 if (pci_vfs_assigned(bp->pdev)) { 2532 DP(BNX2X_MSG_IOV, 2533 "Unloading driver while VFs are assigned - VFs will not be deallocated\n"); 2534 return; 2535 } 2536 2537 pci_disable_sriov(bp->pdev); 2538 } 2539 2540 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx, 2541 struct bnx2x_virtf **vf, 2542 struct pf_vf_bulletin_content **bulletin, 2543 bool test_queue) 2544 { 2545 if (bp->state != BNX2X_STATE_OPEN) { 2546 BNX2X_ERR("PF is down - can't utilize iov-related functionality\n"); 2547 return -EINVAL; 2548 } 2549 2550 if (!IS_SRIOV(bp)) { 2551 BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n"); 2552 return -EINVAL; 2553 } 2554 2555 if (vfidx >= BNX2X_NR_VIRTFN(bp)) { 2556 BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n", 2557 vfidx, BNX2X_NR_VIRTFN(bp)); 2558 return -EINVAL; 2559 } 2560 2561 /* init members */ 2562 *vf = BP_VF(bp, vfidx); 2563 *bulletin = BP_VF_BULLETIN(bp, vfidx); 2564 2565 if (!*vf) { 2566 BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx); 2567 return -EINVAL; 2568 } 2569 2570 if (test_queue && !(*vf)->vfqs) { 2571 BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n", 2572 vfidx); 2573 return -EINVAL; 2574 } 2575 2576 if (!*bulletin) { 2577 BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n", 2578 vfidx); 2579 return -EINVAL; 2580 } 2581 2582 return 0; 2583 } 2584 2585 int bnx2x_get_vf_config(struct net_device *dev, int vfidx, 2586 struct ifla_vf_info *ivi) 2587 { 2588 struct bnx2x *bp = netdev_priv(dev); 2589 struct bnx2x_virtf *vf = NULL; 2590 struct pf_vf_bulletin_content *bulletin = NULL; 2591 struct bnx2x_vlan_mac_obj *mac_obj; 2592 struct bnx2x_vlan_mac_obj *vlan_obj; 2593 int rc; 2594 2595 /* sanity and init */ 2596 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true); 2597 if (rc) 2598 return rc; 2599 2600 mac_obj = &bnx2x_leading_vfq(vf, mac_obj); 2601 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj); 2602 if (!mac_obj || !vlan_obj) { 2603 BNX2X_ERR("VF partially initialized\n"); 2604 return -EINVAL; 2605 } 2606 2607 ivi->vf = vfidx; 2608 ivi->qos = 0; 2609 ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */ 2610 ivi->min_tx_rate = 0; 2611 ivi->spoofchk = 1; /*always enabled */ 2612 if (vf->state == VF_ENABLED) { 2613 /* mac and vlan are in vlan_mac objects */ 2614 if (bnx2x_validate_vf_sp_objs(bp, vf, false)) { 2615 mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac, 2616 0, ETH_ALEN); 2617 vlan_obj->get_n_elements(bp, vlan_obj, 1, 2618 (u8 *)&ivi->vlan, 0, 2619 VLAN_HLEN); 2620 } 2621 } else { 2622 mutex_lock(&bp->vfdb->bulletin_mutex); 2623 /* mac */ 2624 if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID)) 2625 /* mac configured by ndo so its in bulletin board */ 2626 memcpy(&ivi->mac, bulletin->mac, ETH_ALEN); 2627 else 2628 /* function has not been loaded yet. Show mac as 0s */ 2629 eth_zero_addr(ivi->mac); 2630 2631 /* vlan */ 2632 if (bulletin->valid_bitmap & (1 << VLAN_VALID)) 2633 /* vlan configured by ndo so its in bulletin board */ 2634 memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN); 2635 else 2636 /* function has not been loaded yet. Show vlans as 0s */ 2637 memset(&ivi->vlan, 0, VLAN_HLEN); 2638 2639 mutex_unlock(&bp->vfdb->bulletin_mutex); 2640 } 2641 2642 return 0; 2643 } 2644 2645 /* New mac for VF. Consider these cases: 2646 * 1. VF hasn't been acquired yet - save the mac in local bulletin board and 2647 * supply at acquire. 2648 * 2. VF has already been acquired but has not yet initialized - store in local 2649 * bulletin board. mac will be posted on VF bulletin board after VF init. VF 2650 * will configure this mac when it is ready. 2651 * 3. VF has already initialized but has not yet setup a queue - post the new 2652 * mac on VF's bulletin board right now. VF will configure this mac when it 2653 * is ready. 2654 * 4. VF has already set a queue - delete any macs already configured for this 2655 * queue and manually config the new mac. 2656 * In any event, once this function has been called refuse any attempts by the 2657 * VF to configure any mac for itself except for this mac. In case of a race 2658 * where the VF fails to see the new post on its bulletin board before sending a 2659 * mac configuration request, the PF will simply fail the request and VF can try 2660 * again after consulting its bulletin board. 2661 */ 2662 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac) 2663 { 2664 struct bnx2x *bp = netdev_priv(dev); 2665 int rc, q_logical_state; 2666 struct bnx2x_virtf *vf = NULL; 2667 struct pf_vf_bulletin_content *bulletin = NULL; 2668 2669 if (!is_valid_ether_addr(mac)) { 2670 BNX2X_ERR("mac address invalid\n"); 2671 return -EINVAL; 2672 } 2673 2674 /* sanity and init */ 2675 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true); 2676 if (rc) 2677 return rc; 2678 2679 mutex_lock(&bp->vfdb->bulletin_mutex); 2680 2681 /* update PF's copy of the VF's bulletin. Will no longer accept mac 2682 * configuration requests from vf unless match this mac 2683 */ 2684 bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID; 2685 memcpy(bulletin->mac, mac, ETH_ALEN); 2686 2687 /* Post update on VF's bulletin board */ 2688 rc = bnx2x_post_vf_bulletin(bp, vfidx); 2689 2690 /* release lock before checking return code */ 2691 mutex_unlock(&bp->vfdb->bulletin_mutex); 2692 2693 if (rc) { 2694 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx); 2695 return rc; 2696 } 2697 2698 q_logical_state = 2699 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)); 2700 if (vf->state == VF_ENABLED && 2701 q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) { 2702 /* configure the mac in device on this vf's queue */ 2703 unsigned long ramrod_flags = 0; 2704 struct bnx2x_vlan_mac_obj *mac_obj; 2705 2706 /* User should be able to see failure reason in system logs */ 2707 if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) 2708 return -EINVAL; 2709 2710 /* must lock vfpf channel to protect against vf flows */ 2711 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC); 2712 2713 /* remove existing eth macs */ 2714 mac_obj = &bnx2x_leading_vfq(vf, mac_obj); 2715 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true); 2716 if (rc) { 2717 BNX2X_ERR("failed to delete eth macs\n"); 2718 rc = -EINVAL; 2719 goto out; 2720 } 2721 2722 /* remove existing uc list macs */ 2723 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true); 2724 if (rc) { 2725 BNX2X_ERR("failed to delete uc_list macs\n"); 2726 rc = -EINVAL; 2727 goto out; 2728 } 2729 2730 /* configure the new mac to device */ 2731 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2732 bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true, 2733 BNX2X_ETH_MAC, &ramrod_flags); 2734 2735 out: 2736 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC); 2737 } 2738 2739 return rc; 2740 } 2741 2742 static void bnx2x_set_vf_vlan_acceptance(struct bnx2x *bp, 2743 struct bnx2x_virtf *vf, bool accept) 2744 { 2745 struct bnx2x_rx_mode_ramrod_params rx_ramrod; 2746 unsigned long accept_flags; 2747 2748 /* need to remove/add the VF's accept_any_vlan bit */ 2749 accept_flags = bnx2x_leading_vfq(vf, accept_flags); 2750 if (accept) 2751 set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); 2752 else 2753 clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); 2754 2755 bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf, 2756 accept_flags); 2757 bnx2x_leading_vfq(vf, accept_flags) = accept_flags; 2758 bnx2x_config_rx_mode(bp, &rx_ramrod); 2759 } 2760 2761 static int bnx2x_set_vf_vlan_filter(struct bnx2x *bp, struct bnx2x_virtf *vf, 2762 u16 vlan, bool add) 2763 { 2764 struct bnx2x_vlan_mac_ramrod_params ramrod_param; 2765 unsigned long ramrod_flags = 0; 2766 int rc = 0; 2767 2768 /* configure the new vlan to device */ 2769 memset(&ramrod_param, 0, sizeof(ramrod_param)); 2770 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2771 ramrod_param.vlan_mac_obj = &bnx2x_leading_vfq(vf, vlan_obj); 2772 ramrod_param.ramrod_flags = ramrod_flags; 2773 ramrod_param.user_req.u.vlan.vlan = vlan; 2774 ramrod_param.user_req.cmd = add ? BNX2X_VLAN_MAC_ADD 2775 : BNX2X_VLAN_MAC_DEL; 2776 rc = bnx2x_config_vlan_mac(bp, &ramrod_param); 2777 if (rc) { 2778 BNX2X_ERR("failed to configure vlan\n"); 2779 return -EINVAL; 2780 } 2781 2782 return 0; 2783 } 2784 2785 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos, 2786 __be16 vlan_proto) 2787 { 2788 struct pf_vf_bulletin_content *bulletin = NULL; 2789 struct bnx2x *bp = netdev_priv(dev); 2790 struct bnx2x_vlan_mac_obj *vlan_obj; 2791 unsigned long vlan_mac_flags = 0; 2792 unsigned long ramrod_flags = 0; 2793 struct bnx2x_virtf *vf = NULL; 2794 int i, rc; 2795 2796 if (vlan > 4095) { 2797 BNX2X_ERR("illegal vlan value %d\n", vlan); 2798 return -EINVAL; 2799 } 2800 2801 if (vlan_proto != htons(ETH_P_8021Q)) 2802 return -EPROTONOSUPPORT; 2803 2804 DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n", 2805 vfidx, vlan, 0); 2806 2807 /* sanity and init */ 2808 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true); 2809 if (rc) 2810 return rc; 2811 2812 /* update PF's copy of the VF's bulletin. No point in posting the vlan 2813 * to the VF since it doesn't have anything to do with it. But it useful 2814 * to store it here in case the VF is not up yet and we can only 2815 * configure the vlan later when it does. Treat vlan id 0 as remove the 2816 * Host tag. 2817 */ 2818 mutex_lock(&bp->vfdb->bulletin_mutex); 2819 2820 if (vlan > 0) 2821 bulletin->valid_bitmap |= 1 << VLAN_VALID; 2822 else 2823 bulletin->valid_bitmap &= ~(1 << VLAN_VALID); 2824 bulletin->vlan = vlan; 2825 2826 /* Post update on VF's bulletin board */ 2827 rc = bnx2x_post_vf_bulletin(bp, vfidx); 2828 if (rc) 2829 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx); 2830 mutex_unlock(&bp->vfdb->bulletin_mutex); 2831 2832 /* is vf initialized and queue set up? */ 2833 if (vf->state != VF_ENABLED || 2834 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) != 2835 BNX2X_Q_LOGICAL_STATE_ACTIVE) 2836 return rc; 2837 2838 /* User should be able to see error in system logs */ 2839 if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) 2840 return -EINVAL; 2841 2842 /* must lock vfpf channel to protect against vf flows */ 2843 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN); 2844 2845 /* remove existing vlans */ 2846 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2847 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj); 2848 rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags, 2849 &ramrod_flags); 2850 if (rc) { 2851 BNX2X_ERR("failed to delete vlans\n"); 2852 rc = -EINVAL; 2853 goto out; 2854 } 2855 2856 /* clear accept_any_vlan when HV forces vlan, otherwise 2857 * according to VF capabilities 2858 */ 2859 if (vlan || !(vf->cfg_flags & VF_CFG_VLAN_FILTER)) 2860 bnx2x_set_vf_vlan_acceptance(bp, vf, !vlan); 2861 2862 rc = bnx2x_set_vf_vlan_filter(bp, vf, vlan, true); 2863 if (rc) 2864 goto out; 2865 2866 /* send queue update ramrods to configure default vlan and 2867 * silent vlan removal 2868 */ 2869 for_each_vfq(vf, i) { 2870 struct bnx2x_queue_state_params q_params = {NULL}; 2871 struct bnx2x_queue_update_params *update_params; 2872 2873 q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj); 2874 2875 /* validate the Q is UP */ 2876 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) != 2877 BNX2X_Q_LOGICAL_STATE_ACTIVE) 2878 continue; 2879 2880 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 2881 q_params.cmd = BNX2X_Q_CMD_UPDATE; 2882 update_params = &q_params.params.update; 2883 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG, 2884 &update_params->update_flags); 2885 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG, 2886 &update_params->update_flags); 2887 if (vlan == 0) { 2888 /* if vlan is 0 then we want to leave the VF traffic 2889 * untagged, and leave the incoming traffic untouched 2890 * (i.e. do not remove any vlan tags). 2891 */ 2892 __clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, 2893 &update_params->update_flags); 2894 __clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, 2895 &update_params->update_flags); 2896 } else { 2897 /* configure default vlan to vf queue and set silent 2898 * vlan removal (the vf remains unaware of this vlan). 2899 */ 2900 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, 2901 &update_params->update_flags); 2902 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, 2903 &update_params->update_flags); 2904 update_params->def_vlan = vlan; 2905 update_params->silent_removal_value = 2906 vlan & VLAN_VID_MASK; 2907 update_params->silent_removal_mask = VLAN_VID_MASK; 2908 } 2909 2910 /* Update the Queue state */ 2911 rc = bnx2x_queue_state_change(bp, &q_params); 2912 if (rc) { 2913 BNX2X_ERR("Failed to configure default VLAN queue %d\n", 2914 i); 2915 goto out; 2916 } 2917 } 2918 out: 2919 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN); 2920 2921 if (rc) 2922 DP(BNX2X_MSG_IOV, 2923 "updated VF[%d] vlan configuration (vlan = %d)\n", 2924 vfidx, vlan); 2925 2926 return rc; 2927 } 2928 2929 /* crc is the first field in the bulletin board. Compute the crc over the 2930 * entire bulletin board excluding the crc field itself. Use the length field 2931 * as the Bulletin Board was posted by a PF with possibly a different version 2932 * from the vf which will sample it. Therefore, the length is computed by the 2933 * PF and then used blindly by the VF. 2934 */ 2935 u32 bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content *bulletin) 2936 { 2937 return crc32(BULLETIN_CRC_SEED, 2938 ((u8 *)bulletin) + sizeof(bulletin->crc), 2939 bulletin->length - sizeof(bulletin->crc)); 2940 } 2941 2942 /* Check for new posts on the bulletin board */ 2943 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp) 2944 { 2945 struct pf_vf_bulletin_content *bulletin; 2946 int attempts; 2947 2948 /* sampling structure in mid post may result with corrupted data 2949 * validate crc to ensure coherency. 2950 */ 2951 for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) { 2952 u32 crc; 2953 2954 /* sample the bulletin board */ 2955 memcpy(&bp->shadow_bulletin, bp->pf2vf_bulletin, 2956 sizeof(union pf_vf_bulletin)); 2957 2958 crc = bnx2x_crc_vf_bulletin(&bp->shadow_bulletin.content); 2959 2960 if (bp->shadow_bulletin.content.crc == crc) 2961 break; 2962 2963 BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n", 2964 bp->shadow_bulletin.content.crc, crc); 2965 } 2966 2967 if (attempts >= BULLETIN_ATTEMPTS) { 2968 BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n", 2969 attempts); 2970 return PFVF_BULLETIN_CRC_ERR; 2971 } 2972 bulletin = &bp->shadow_bulletin.content; 2973 2974 /* bulletin board hasn't changed since last sample */ 2975 if (bp->old_bulletin.version == bulletin->version) 2976 return PFVF_BULLETIN_UNCHANGED; 2977 2978 /* the mac address in bulletin board is valid and is new */ 2979 if (bulletin->valid_bitmap & 1 << MAC_ADDR_VALID && 2980 !ether_addr_equal(bulletin->mac, bp->old_bulletin.mac)) { 2981 /* update new mac to net device */ 2982 memcpy(bp->dev->dev_addr, bulletin->mac, ETH_ALEN); 2983 } 2984 2985 if (bulletin->valid_bitmap & (1 << LINK_VALID)) { 2986 DP(BNX2X_MSG_IOV, "link update speed %d flags %x\n", 2987 bulletin->link_speed, bulletin->link_flags); 2988 2989 bp->vf_link_vars.line_speed = bulletin->link_speed; 2990 bp->vf_link_vars.link_report_flags = 0; 2991 /* Link is down */ 2992 if (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN) 2993 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 2994 &bp->vf_link_vars.link_report_flags); 2995 /* Full DUPLEX */ 2996 if (bulletin->link_flags & VFPF_LINK_REPORT_FULL_DUPLEX) 2997 __set_bit(BNX2X_LINK_REPORT_FD, 2998 &bp->vf_link_vars.link_report_flags); 2999 /* Rx Flow Control is ON */ 3000 if (bulletin->link_flags & VFPF_LINK_REPORT_RX_FC_ON) 3001 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON, 3002 &bp->vf_link_vars.link_report_flags); 3003 /* Tx Flow Control is ON */ 3004 if (bulletin->link_flags & VFPF_LINK_REPORT_TX_FC_ON) 3005 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON, 3006 &bp->vf_link_vars.link_report_flags); 3007 __bnx2x_link_report(bp); 3008 } 3009 3010 /* copy new bulletin board to bp */ 3011 memcpy(&bp->old_bulletin, bulletin, 3012 sizeof(struct pf_vf_bulletin_content)); 3013 3014 return PFVF_BULLETIN_UPDATED; 3015 } 3016 3017 void bnx2x_timer_sriov(struct bnx2x *bp) 3018 { 3019 bnx2x_sample_bulletin(bp); 3020 3021 /* if channel is down we need to self destruct */ 3022 if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN) 3023 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, 3024 BNX2X_MSG_IOV); 3025 } 3026 3027 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp) 3028 { 3029 /* vf doorbells are embedded within the regview */ 3030 return bp->regview + PXP_VF_ADDR_DB_START; 3031 } 3032 3033 void bnx2x_vf_pci_dealloc(struct bnx2x *bp) 3034 { 3035 BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping, 3036 sizeof(struct bnx2x_vf_mbx_msg)); 3037 BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->pf2vf_bulletin_mapping, 3038 sizeof(union pf_vf_bulletin)); 3039 } 3040 3041 int bnx2x_vf_pci_alloc(struct bnx2x *bp) 3042 { 3043 mutex_init(&bp->vf2pf_mutex); 3044 3045 /* allocate vf2pf mailbox for vf to pf channel */ 3046 bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping, 3047 sizeof(struct bnx2x_vf_mbx_msg)); 3048 if (!bp->vf2pf_mbox) 3049 goto alloc_mem_err; 3050 3051 /* allocate pf 2 vf bulletin board */ 3052 bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping, 3053 sizeof(union pf_vf_bulletin)); 3054 if (!bp->pf2vf_bulletin) 3055 goto alloc_mem_err; 3056 3057 bnx2x_vf_bulletin_finalize(&bp->pf2vf_bulletin->content, true); 3058 3059 return 0; 3060 3061 alloc_mem_err: 3062 bnx2x_vf_pci_dealloc(bp); 3063 return -ENOMEM; 3064 } 3065 3066 void bnx2x_iov_channel_down(struct bnx2x *bp) 3067 { 3068 int vf_idx; 3069 struct pf_vf_bulletin_content *bulletin; 3070 3071 if (!IS_SRIOV(bp)) 3072 return; 3073 3074 for_each_vf(bp, vf_idx) { 3075 /* locate this VFs bulletin board and update the channel down 3076 * bit 3077 */ 3078 bulletin = BP_VF_BULLETIN(bp, vf_idx); 3079 bulletin->valid_bitmap |= 1 << CHANNEL_DOWN; 3080 3081 /* update vf bulletin board */ 3082 bnx2x_post_vf_bulletin(bp, vf_idx); 3083 } 3084 } 3085 3086 void bnx2x_iov_task(struct work_struct *work) 3087 { 3088 struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work); 3089 3090 if (!netif_running(bp->dev)) 3091 return; 3092 3093 if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR, 3094 &bp->iov_task_state)) 3095 bnx2x_vf_handle_flr_event(bp); 3096 3097 if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG, 3098 &bp->iov_task_state)) 3099 bnx2x_vf_mbx(bp); 3100 } 3101 3102 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag) 3103 { 3104 smp_mb__before_atomic(); 3105 set_bit(flag, &bp->iov_task_state); 3106 smp_mb__after_atomic(); 3107 DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag); 3108 queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0); 3109 } 3110