1 /* bnx2x_sriov.c: QLogic Everest network driver.
2  *
3  * Copyright 2009-2013 Broadcom Corporation
4  * Copyright 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * Unless you and QLogic execute a separate written software license
8  * agreement governing use of this software, this software is licensed to you
9  * under the terms of the GNU General Public License version 2, available
10  * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
11  *
12  * Notwithstanding the above, under no circumstances may you combine this
13  * software in any way with any other QLogic software provided under a
14  * license other than the GPL, without QLogic's express prior written
15  * consent.
16  *
17  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
18  * Written by: Shmulik Ravid
19  *	       Ariel Elior <ariel.elior@qlogic.com>
20  *
21  */
22 #include "bnx2x.h"
23 #include "bnx2x_init.h"
24 #include "bnx2x_cmn.h"
25 #include "bnx2x_sp.h"
26 #include <linux/crc32.h>
27 #include <linux/if_vlan.h>
28 
29 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
30 			    struct bnx2x_virtf **vf,
31 			    struct pf_vf_bulletin_content **bulletin,
32 			    bool test_queue);
33 
34 /* General service functions */
35 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
36 					 u16 pf_id)
37 {
38 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
39 		pf_id);
40 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
41 		pf_id);
42 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
43 		pf_id);
44 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
45 		pf_id);
46 }
47 
48 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
49 					u8 enable)
50 {
51 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
52 		enable);
53 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
54 		enable);
55 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
56 		enable);
57 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
58 		enable);
59 }
60 
61 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
62 {
63 	int idx;
64 
65 	for_each_vf(bp, idx)
66 		if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid)
67 			break;
68 	return idx;
69 }
70 
71 static
72 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
73 {
74 	u16 idx =  (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid);
75 	return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL;
76 }
77 
78 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf,
79 				u8 igu_sb_id, u8 segment, u16 index, u8 op,
80 				u8 update)
81 {
82 	/* acking a VF sb through the PF - use the GRC */
83 	u32 ctl;
84 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
85 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
86 	u32 func_encode = vf->abs_vfid;
87 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id;
88 	struct igu_regular cmd_data = {0};
89 
90 	cmd_data.sb_id_and_flags =
91 			((index << IGU_REGULAR_SB_INDEX_SHIFT) |
92 			 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
93 			 (update << IGU_REGULAR_BUPDATE_SHIFT) |
94 			 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
95 
96 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
97 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
98 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
99 
100 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
101 	   cmd_data.sb_id_and_flags, igu_addr_data);
102 	REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags);
103 	mmiowb();
104 	barrier();
105 
106 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
107 	   ctl, igu_addr_ctl);
108 	REG_WR(bp, igu_addr_ctl, ctl);
109 	mmiowb();
110 	barrier();
111 }
112 
113 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp,
114 				       struct bnx2x_virtf *vf,
115 				       bool print_err)
116 {
117 	if (!bnx2x_leading_vfq(vf, sp_initialized)) {
118 		if (print_err)
119 			BNX2X_ERR("Slowpath objects not yet initialized!\n");
120 		else
121 			DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n");
122 		return false;
123 	}
124 	return true;
125 }
126 
127 /* VFOP operations states */
128 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf,
129 			      struct bnx2x_queue_init_params *init_params,
130 			      struct bnx2x_queue_setup_params *setup_params,
131 			      u16 q_idx, u16 sb_idx)
132 {
133 	DP(BNX2X_MSG_IOV,
134 	   "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
135 	   vf->abs_vfid,
136 	   q_idx,
137 	   sb_idx,
138 	   init_params->tx.sb_cq_index,
139 	   init_params->tx.hc_rate,
140 	   setup_params->flags,
141 	   setup_params->txq_params.traffic_type);
142 }
143 
144 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf,
145 			    struct bnx2x_queue_init_params *init_params,
146 			    struct bnx2x_queue_setup_params *setup_params,
147 			    u16 q_idx, u16 sb_idx)
148 {
149 	struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params;
150 
151 	DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
152 	   "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
153 	   vf->abs_vfid,
154 	   q_idx,
155 	   sb_idx,
156 	   init_params->rx.sb_cq_index,
157 	   init_params->rx.hc_rate,
158 	   setup_params->gen_params.mtu,
159 	   rxq_params->buf_sz,
160 	   rxq_params->sge_buf_sz,
161 	   rxq_params->max_sges_pkt,
162 	   rxq_params->tpa_agg_sz,
163 	   setup_params->flags,
164 	   rxq_params->drop_flags,
165 	   rxq_params->cache_line_log);
166 }
167 
168 void bnx2x_vfop_qctor_prep(struct bnx2x *bp,
169 			   struct bnx2x_virtf *vf,
170 			   struct bnx2x_vf_queue *q,
171 			   struct bnx2x_vf_queue_construct_params *p,
172 			   unsigned long q_type)
173 {
174 	struct bnx2x_queue_init_params *init_p = &p->qstate.params.init;
175 	struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup;
176 
177 	/* INIT */
178 
179 	/* Enable host coalescing in the transition to INIT state */
180 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags))
181 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags);
182 
183 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags))
184 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags);
185 
186 	/* FW SB ID */
187 	init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
188 	init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
189 
190 	/* context */
191 	init_p->cxts[0] = q->cxt;
192 
193 	/* SETUP */
194 
195 	/* Setup-op general parameters */
196 	setup_p->gen_params.spcl_id = vf->sp_cl_id;
197 	setup_p->gen_params.stat_id = vfq_stat_id(vf, q);
198 	setup_p->gen_params.fp_hsi = vf->fp_hsi;
199 
200 	/* Setup-op flags:
201 	 * collect statistics, zero statistics, local-switching, security,
202 	 * OV for Flex10, RSS and MCAST for leading
203 	 */
204 	if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags))
205 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags);
206 
207 	/* for VFs, enable tx switching, bd coherency, and mac address
208 	 * anti-spoofing
209 	 */
210 	__set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags);
211 	__set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags);
212 	__set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
213 
214 	/* Setup-op rx parameters */
215 	if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) {
216 		struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params;
217 
218 		rxq_p->cl_qzone_id = vfq_qzone_id(vf, q);
219 		rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx);
220 		rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid);
221 
222 		if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags))
223 			rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES;
224 	}
225 
226 	/* Setup-op tx parameters */
227 	if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) {
228 		setup_p->txq_params.tss_leading_cl_id = vf->leading_rss;
229 		setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
230 	}
231 }
232 
233 static int bnx2x_vf_queue_create(struct bnx2x *bp,
234 				 struct bnx2x_virtf *vf, int qid,
235 				 struct bnx2x_vf_queue_construct_params *qctor)
236 {
237 	struct bnx2x_queue_state_params *q_params;
238 	int rc = 0;
239 
240 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
241 
242 	/* Prepare ramrod information */
243 	q_params = &qctor->qstate;
244 	q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
245 	set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags);
246 
247 	if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
248 	    BNX2X_Q_LOGICAL_STATE_ACTIVE) {
249 		DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n");
250 		goto out;
251 	}
252 
253 	/* Run Queue 'construction' ramrods */
254 	q_params->cmd = BNX2X_Q_CMD_INIT;
255 	rc = bnx2x_queue_state_change(bp, q_params);
256 	if (rc)
257 		goto out;
258 
259 	memcpy(&q_params->params.setup, &qctor->prep_qsetup,
260 	       sizeof(struct bnx2x_queue_setup_params));
261 	q_params->cmd = BNX2X_Q_CMD_SETUP;
262 	rc = bnx2x_queue_state_change(bp, q_params);
263 	if (rc)
264 		goto out;
265 
266 	/* enable interrupts */
267 	bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)),
268 			    USTORM_ID, 0, IGU_INT_ENABLE, 0);
269 out:
270 	return rc;
271 }
272 
273 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf,
274 				  int qid)
275 {
276 	enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT,
277 				       BNX2X_Q_CMD_TERMINATE,
278 				       BNX2X_Q_CMD_CFC_DEL};
279 	struct bnx2x_queue_state_params q_params;
280 	int rc, i;
281 
282 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
283 
284 	/* Prepare ramrod information */
285 	memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params));
286 	q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
287 	set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
288 
289 	if (bnx2x_get_q_logical_state(bp, q_params.q_obj) ==
290 	    BNX2X_Q_LOGICAL_STATE_STOPPED) {
291 		DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n");
292 		goto out;
293 	}
294 
295 	/* Run Queue 'destruction' ramrods */
296 	for (i = 0; i < ARRAY_SIZE(cmds); i++) {
297 		q_params.cmd = cmds[i];
298 		rc = bnx2x_queue_state_change(bp, &q_params);
299 		if (rc) {
300 			BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]);
301 			return rc;
302 		}
303 	}
304 out:
305 	/* Clean Context */
306 	if (bnx2x_vfq(vf, qid, cxt)) {
307 		bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0;
308 		bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0;
309 	}
310 
311 	return 0;
312 }
313 
314 static void
315 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid)
316 {
317 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
318 	if (vf) {
319 		/* the first igu entry belonging to VFs of this PF */
320 		if (!BP_VFDB(bp)->first_vf_igu_entry)
321 			BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id;
322 
323 		/* the first igu entry belonging to this VF */
324 		if (!vf_sb_count(vf))
325 			vf->igu_base_id = igu_sb_id;
326 
327 		++vf_sb_count(vf);
328 		++vf->sb_count;
329 	}
330 	BP_VFDB(bp)->vf_sbs_pool++;
331 }
332 
333 static inline void bnx2x_vf_vlan_credit(struct bnx2x *bp,
334 					struct bnx2x_vlan_mac_obj *obj,
335 					atomic_t *counter)
336 {
337 	struct list_head *pos;
338 	int read_lock;
339 	int cnt = 0;
340 
341 	read_lock = bnx2x_vlan_mac_h_read_lock(bp, obj);
342 	if (read_lock)
343 		DP(BNX2X_MSG_SP, "Failed to take vlan mac read head; continuing anyway\n");
344 
345 	list_for_each(pos, &obj->head)
346 		cnt++;
347 
348 	if (!read_lock)
349 		bnx2x_vlan_mac_h_read_unlock(bp, obj);
350 
351 	atomic_set(counter, cnt);
352 }
353 
354 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf,
355 				   int qid, bool drv_only, int type)
356 {
357 	struct bnx2x_vlan_mac_ramrod_params ramrod;
358 	int rc;
359 
360 	DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid,
361 			  (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
362 			  (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
363 
364 	/* Prepare ramrod params */
365 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
366 	if (type == BNX2X_VF_FILTER_VLAN_MAC) {
367 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
368 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
369 	} else if (type == BNX2X_VF_FILTER_MAC) {
370 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
371 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
372 	} else {
373 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
374 	}
375 	ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL;
376 
377 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
378 	if (drv_only)
379 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
380 	else
381 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
382 
383 	/* Start deleting */
384 	rc = ramrod.vlan_mac_obj->delete_all(bp,
385 					     ramrod.vlan_mac_obj,
386 					     &ramrod.user_req.vlan_mac_flags,
387 					     &ramrod.ramrod_flags);
388 	if (rc) {
389 		BNX2X_ERR("Failed to delete all %s\n",
390 			  (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
391 			  (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
392 		return rc;
393 	}
394 
395 	return 0;
396 }
397 
398 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp,
399 				    struct bnx2x_virtf *vf, int qid,
400 				    struct bnx2x_vf_mac_vlan_filter *filter,
401 				    bool drv_only)
402 {
403 	struct bnx2x_vlan_mac_ramrod_params ramrod;
404 	int rc;
405 
406 	DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n",
407 	   vf->abs_vfid, filter->add ? "Adding" : "Deleting",
408 	   (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MAC" :
409 	   (filter->type == BNX2X_VF_FILTER_MAC) ? "MAC" : "VLAN");
410 
411 	/* Prepare ramrod params */
412 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
413 	if (filter->type == BNX2X_VF_FILTER_VLAN_MAC) {
414 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
415 		ramrod.user_req.u.vlan.vlan = filter->vid;
416 		memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
417 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
418 	} else if (filter->type == BNX2X_VF_FILTER_VLAN) {
419 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
420 		ramrod.user_req.u.vlan.vlan = filter->vid;
421 	} else {
422 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
423 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
424 		memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
425 	}
426 	ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD :
427 					    BNX2X_VLAN_MAC_DEL;
428 
429 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
430 	if (drv_only)
431 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
432 	else
433 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
434 
435 	/* Add/Remove the filter */
436 	rc = bnx2x_config_vlan_mac(bp, &ramrod);
437 	if (rc && rc != -EEXIST) {
438 		BNX2X_ERR("Failed to %s %s\n",
439 			  filter->add ? "add" : "delete",
440 			  (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ?
441 				"VLAN-MAC" :
442 			  (filter->type == BNX2X_VF_FILTER_MAC) ?
443 				"MAC" : "VLAN");
444 		return rc;
445 	}
446 
447 	return 0;
448 }
449 
450 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf,
451 				  struct bnx2x_vf_mac_vlan_filters *filters,
452 				  int qid, bool drv_only)
453 {
454 	int rc = 0, i;
455 
456 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
457 
458 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
459 		return -EINVAL;
460 
461 	/* Prepare ramrod params */
462 	for (i = 0; i < filters->count; i++) {
463 		rc = bnx2x_vf_mac_vlan_config(bp, vf, qid,
464 					      &filters->filters[i], drv_only);
465 		if (rc)
466 			break;
467 	}
468 
469 	/* Rollback if needed */
470 	if (i != filters->count) {
471 		BNX2X_ERR("Managed only %d/%d filters - rolling back\n",
472 			  i, filters->count + 1);
473 		while (--i >= 0) {
474 			filters->filters[i].add = !filters->filters[i].add;
475 			bnx2x_vf_mac_vlan_config(bp, vf, qid,
476 						 &filters->filters[i],
477 						 drv_only);
478 		}
479 	}
480 
481 	/* It's our responsibility to free the filters */
482 	kfree(filters);
483 
484 	return rc;
485 }
486 
487 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid,
488 			 struct bnx2x_vf_queue_construct_params *qctor)
489 {
490 	int rc;
491 
492 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
493 
494 	rc = bnx2x_vf_queue_create(bp, vf, qid, qctor);
495 	if (rc)
496 		goto op_err;
497 
498 	/* Schedule the configuration of any pending vlan filters */
499 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN,
500 			       BNX2X_MSG_IOV);
501 	return 0;
502 op_err:
503 	BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
504 	return rc;
505 }
506 
507 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf,
508 			       int qid)
509 {
510 	int rc;
511 
512 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
513 
514 	/* If needed, clean the filtering data base */
515 	if ((qid == LEADING_IDX) &&
516 	    bnx2x_validate_vf_sp_objs(bp, vf, false)) {
517 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
518 					     BNX2X_VF_FILTER_VLAN_MAC);
519 		if (rc)
520 			goto op_err;
521 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
522 					     BNX2X_VF_FILTER_VLAN);
523 		if (rc)
524 			goto op_err;
525 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
526 					     BNX2X_VF_FILTER_MAC);
527 		if (rc)
528 			goto op_err;
529 	}
530 
531 	/* Terminate queue */
532 	if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) {
533 		struct bnx2x_queue_state_params qstate;
534 
535 		memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
536 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
537 		qstate.q_obj->state = BNX2X_Q_STATE_STOPPED;
538 		qstate.cmd = BNX2X_Q_CMD_TERMINATE;
539 		set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
540 		rc = bnx2x_queue_state_change(bp, &qstate);
541 		if (rc)
542 			goto op_err;
543 	}
544 
545 	return 0;
546 op_err:
547 	BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
548 	return rc;
549 }
550 
551 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf,
552 		   bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only)
553 {
554 	struct bnx2x_mcast_list_elem *mc = NULL;
555 	struct bnx2x_mcast_ramrod_params mcast;
556 	int rc, i;
557 
558 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
559 
560 	/* Prepare Multicast command */
561 	memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params));
562 	mcast.mcast_obj = &vf->mcast_obj;
563 	if (drv_only)
564 		set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags);
565 	else
566 		set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags);
567 	if (mc_num) {
568 		mc = kzalloc(mc_num * sizeof(struct bnx2x_mcast_list_elem),
569 			     GFP_KERNEL);
570 		if (!mc) {
571 			BNX2X_ERR("Cannot Configure multicasts due to lack of memory\n");
572 			return -ENOMEM;
573 		}
574 	}
575 
576 	if (mc_num) {
577 		INIT_LIST_HEAD(&mcast.mcast_list);
578 		for (i = 0; i < mc_num; i++) {
579 			mc[i].mac = mcasts[i];
580 			list_add_tail(&mc[i].link,
581 				      &mcast.mcast_list);
582 		}
583 
584 		/* add new mcasts */
585 		mcast.mcast_list_len = mc_num;
586 		rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_SET);
587 		if (rc)
588 			BNX2X_ERR("Faled to set multicasts\n");
589 	} else {
590 		/* clear existing mcasts */
591 		rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL);
592 		if (rc)
593 			BNX2X_ERR("Failed to remove multicasts\n");
594 	}
595 
596 	kfree(mc);
597 
598 	return rc;
599 }
600 
601 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid,
602 				  struct bnx2x_rx_mode_ramrod_params *ramrod,
603 				  struct bnx2x_virtf *vf,
604 				  unsigned long accept_flags)
605 {
606 	struct bnx2x_vf_queue *vfq = vfq_get(vf, qid);
607 
608 	memset(ramrod, 0, sizeof(*ramrod));
609 	ramrod->cid = vfq->cid;
610 	ramrod->cl_id = vfq_cl_id(vf, vfq);
611 	ramrod->rx_mode_obj = &bp->rx_mode_obj;
612 	ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid);
613 	ramrod->rx_accept_flags = accept_flags;
614 	ramrod->tx_accept_flags = accept_flags;
615 	ramrod->pstate = &vf->filter_state;
616 	ramrod->state = BNX2X_FILTER_RX_MODE_PENDING;
617 
618 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
619 	set_bit(RAMROD_RX, &ramrod->ramrod_flags);
620 	set_bit(RAMROD_TX, &ramrod->ramrod_flags);
621 
622 	ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2);
623 	ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2);
624 }
625 
626 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf,
627 		    int qid, unsigned long accept_flags)
628 {
629 	struct bnx2x_rx_mode_ramrod_params ramrod;
630 
631 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
632 
633 	bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags);
634 	set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
635 	vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags;
636 	return bnx2x_config_rx_mode(bp, &ramrod);
637 }
638 
639 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid)
640 {
641 	int rc;
642 
643 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
644 
645 	/* Remove all classification configuration for leading queue */
646 	if (qid == LEADING_IDX) {
647 		rc = bnx2x_vf_rxmode(bp, vf, qid, 0);
648 		if (rc)
649 			goto op_err;
650 
651 		/* Remove filtering if feasible */
652 		if (bnx2x_validate_vf_sp_objs(bp, vf, true)) {
653 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
654 						     false,
655 						     BNX2X_VF_FILTER_VLAN_MAC);
656 			if (rc)
657 				goto op_err;
658 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
659 						     false,
660 						     BNX2X_VF_FILTER_VLAN);
661 			if (rc)
662 				goto op_err;
663 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
664 						     false,
665 						     BNX2X_VF_FILTER_MAC);
666 			if (rc)
667 				goto op_err;
668 			rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false);
669 			if (rc)
670 				goto op_err;
671 		}
672 	}
673 
674 	/* Destroy queue */
675 	rc = bnx2x_vf_queue_destroy(bp, vf, qid);
676 	if (rc)
677 		goto op_err;
678 	return rc;
679 op_err:
680 	BNX2X_ERR("vf[%d:%d] error: rc %d\n",
681 		  vf->abs_vfid, qid, rc);
682 	return rc;
683 }
684 
685 /* VF enable primitives
686  * when pretend is required the caller is responsible
687  * for calling pretend prior to calling these routines
688  */
689 
690 /* internal vf enable - until vf is enabled internally all transactions
691  * are blocked. This routine should always be called last with pretend.
692  */
693 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable)
694 {
695 	REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0);
696 }
697 
698 /* clears vf error in all semi blocks */
699 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid)
700 {
701 	REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid);
702 	REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid);
703 	REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid);
704 	REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid);
705 }
706 
707 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid)
708 {
709 	u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5;
710 	u32 was_err_reg = 0;
711 
712 	switch (was_err_group) {
713 	case 0:
714 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR;
715 	    break;
716 	case 1:
717 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR;
718 	    break;
719 	case 2:
720 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR;
721 	    break;
722 	case 3:
723 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR;
724 	    break;
725 	}
726 	REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f));
727 }
728 
729 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf)
730 {
731 	int i;
732 	u32 val;
733 
734 	/* Set VF masks and configuration - pretend */
735 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
736 
737 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
738 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
739 	REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
740 	REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
741 	REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
742 	REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
743 
744 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
745 	val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN);
746 	val &= ~IGU_VF_CONF_PARENT_MASK;
747 	val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT;
748 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
749 
750 	DP(BNX2X_MSG_IOV,
751 	   "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n",
752 	   vf->abs_vfid, val);
753 
754 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
755 
756 	/* iterate over all queues, clear sb consumer */
757 	for (i = 0; i < vf_sb_count(vf); i++) {
758 		u8 igu_sb_id = vf_igu_sb(vf, i);
759 
760 		/* zero prod memory */
761 		REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0);
762 
763 		/* clear sb state machine */
764 		bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id,
765 				       false /* VF */);
766 
767 		/* disable + update */
768 		bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0,
769 				    IGU_INT_DISABLE, 1);
770 	}
771 }
772 
773 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid)
774 {
775 	/* set the VF-PF association in the FW */
776 	storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp));
777 	storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1);
778 
779 	/* clear vf errors*/
780 	bnx2x_vf_semi_clear_err(bp, abs_vfid);
781 	bnx2x_vf_pglue_clear_err(bp, abs_vfid);
782 
783 	/* internal vf-enable - pretend */
784 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid));
785 	DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid);
786 	bnx2x_vf_enable_internal(bp, true);
787 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
788 }
789 
790 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf)
791 {
792 	/* Reset vf in IGU  interrupts are still disabled */
793 	bnx2x_vf_igu_reset(bp, vf);
794 
795 	/* pretend to enable the vf with the PBF */
796 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
797 	REG_WR(bp, PBF_REG_DISABLE_VF, 0);
798 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
799 }
800 
801 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid)
802 {
803 	struct pci_dev *dev;
804 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
805 
806 	if (!vf)
807 		return false;
808 
809 	dev = pci_get_bus_and_slot(vf->bus, vf->devfn);
810 	if (dev)
811 		return bnx2x_is_pcie_pending(dev);
812 	return false;
813 }
814 
815 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid)
816 {
817 	/* Verify no pending pci transactions */
818 	if (bnx2x_vf_is_pcie_pending(bp, abs_vfid))
819 		BNX2X_ERR("PCIE Transactions still pending\n");
820 
821 	return 0;
822 }
823 
824 /* must be called after the number of PF queues and the number of VFs are
825  * both known
826  */
827 static void
828 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
829 {
830 	struct vf_pf_resc_request *resc = &vf->alloc_resc;
831 
832 	/* will be set only during VF-ACQUIRE */
833 	resc->num_rxqs = 0;
834 	resc->num_txqs = 0;
835 
836 	resc->num_mac_filters = VF_MAC_CREDIT_CNT;
837 	resc->num_vlan_filters = VF_VLAN_CREDIT_CNT;
838 
839 	/* no real limitation */
840 	resc->num_mc_filters = 0;
841 
842 	/* num_sbs already set */
843 	resc->num_sbs = vf->sb_count;
844 }
845 
846 /* FLR routines: */
847 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
848 {
849 	/* reset the state variables */
850 	bnx2x_iov_static_resc(bp, vf);
851 	vf->state = VF_FREE;
852 }
853 
854 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf)
855 {
856 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
857 
858 	/* DQ usage counter */
859 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
860 	bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT,
861 					"DQ VF usage counter timed out",
862 					poll_cnt);
863 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
864 
865 	/* FW cleanup command - poll for the results */
866 	if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid),
867 				   poll_cnt))
868 		BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid);
869 
870 	/* verify TX hw is flushed */
871 	bnx2x_tx_hw_flushed(bp, poll_cnt);
872 }
873 
874 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf)
875 {
876 	int rc, i;
877 
878 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
879 
880 	/* the cleanup operations are valid if and only if the VF
881 	 * was first acquired.
882 	 */
883 	for (i = 0; i < vf_rxq_count(vf); i++) {
884 		rc = bnx2x_vf_queue_flr(bp, vf, i);
885 		if (rc)
886 			goto out;
887 	}
888 
889 	/* remove multicasts */
890 	bnx2x_vf_mcast(bp, vf, NULL, 0, true);
891 
892 	/* dispatch final cleanup and wait for HW queues to flush */
893 	bnx2x_vf_flr_clnup_hw(bp, vf);
894 
895 	/* release VF resources */
896 	bnx2x_vf_free_resc(bp, vf);
897 
898 	/* re-open the mailbox */
899 	bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
900 	return;
901 out:
902 	BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n",
903 		  vf->abs_vfid, i, rc);
904 }
905 
906 static void bnx2x_vf_flr_clnup(struct bnx2x *bp)
907 {
908 	struct bnx2x_virtf *vf;
909 	int i;
910 
911 	for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) {
912 		/* VF should be RESET & in FLR cleanup states */
913 		if (bnx2x_vf(bp, i, state) != VF_RESET ||
914 		    !bnx2x_vf(bp, i, flr_clnup_stage))
915 			continue;
916 
917 		DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n",
918 		   i, BNX2X_NR_VIRTFN(bp));
919 
920 		vf = BP_VF(bp, i);
921 
922 		/* lock the vf pf channel */
923 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
924 
925 		/* invoke the VF FLR SM */
926 		bnx2x_vf_flr(bp, vf);
927 
928 		/* mark the VF to be ACKED and continue */
929 		vf->flr_clnup_stage = false;
930 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
931 	}
932 
933 	/* Acknowledge the handled VFs.
934 	 * we are acknowledge all the vfs which an flr was requested for, even
935 	 * if amongst them there are such that we never opened, since the mcp
936 	 * will interrupt us immediately again if we only ack some of the bits,
937 	 * resulting in an endless loop. This can happen for example in KVM
938 	 * where an 'all ones' flr request is sometimes given by hyper visor
939 	 */
940 	DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
941 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
942 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
943 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i],
944 			  bp->vfdb->flrd_vfs[i]);
945 
946 	bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0);
947 
948 	/* clear the acked bits - better yet if the MCP implemented
949 	 * write to clear semantics
950 	 */
951 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
952 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0);
953 }
954 
955 void bnx2x_vf_handle_flr_event(struct bnx2x *bp)
956 {
957 	int i;
958 
959 	/* Read FLR'd VFs */
960 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
961 		bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]);
962 
963 	DP(BNX2X_MSG_MCP,
964 	   "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
965 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
966 
967 	for_each_vf(bp, i) {
968 		struct bnx2x_virtf *vf = BP_VF(bp, i);
969 		u32 reset = 0;
970 
971 		if (vf->abs_vfid < 32)
972 			reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid);
973 		else
974 			reset = bp->vfdb->flrd_vfs[1] &
975 				(1 << (vf->abs_vfid - 32));
976 
977 		if (reset) {
978 			/* set as reset and ready for cleanup */
979 			vf->state = VF_RESET;
980 			vf->flr_clnup_stage = true;
981 
982 			DP(BNX2X_MSG_IOV,
983 			   "Initiating Final cleanup for VF %d\n",
984 			   vf->abs_vfid);
985 		}
986 	}
987 
988 	/* do the FLR cleanup for all marked VFs*/
989 	bnx2x_vf_flr_clnup(bp);
990 }
991 
992 /* IOV global initialization routines  */
993 void bnx2x_iov_init_dq(struct bnx2x *bp)
994 {
995 	if (!IS_SRIOV(bp))
996 		return;
997 
998 	/* Set the DQ such that the CID reflect the abs_vfid */
999 	REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0);
1000 	REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
1001 
1002 	/* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
1003 	 * the PF L2 queues
1004 	 */
1005 	REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
1006 
1007 	/* The VF window size is the log2 of the max number of CIDs per VF */
1008 	REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
1009 
1010 	/* The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
1011 	 * the Pf doorbell size although the 2 are independent.
1012 	 */
1013 	REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3);
1014 
1015 	/* No security checks for now -
1016 	 * configure single rule (out of 16) mask = 0x1, value = 0x0,
1017 	 * CID range 0 - 0x1ffff
1018 	 */
1019 	REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1);
1020 	REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0);
1021 	REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
1022 	REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
1023 
1024 	/* set the VF doorbell threshold. This threshold represents the amount
1025 	 * of doorbells allowed in the main DORQ fifo for a specific VF.
1026 	 */
1027 	REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64);
1028 }
1029 
1030 void bnx2x_iov_init_dmae(struct bnx2x *bp)
1031 {
1032 	if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV))
1033 		REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0);
1034 }
1035 
1036 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid)
1037 {
1038 	struct pci_dev *dev = bp->pdev;
1039 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1040 
1041 	return dev->bus->number + ((dev->devfn + iov->offset +
1042 				    iov->stride * vfid) >> 8);
1043 }
1044 
1045 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid)
1046 {
1047 	struct pci_dev *dev = bp->pdev;
1048 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1049 
1050 	return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff;
1051 }
1052 
1053 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf)
1054 {
1055 	int i, n;
1056 	struct pci_dev *dev = bp->pdev;
1057 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1058 
1059 	for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) {
1060 		u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i);
1061 		u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i);
1062 
1063 		size /= iov->total;
1064 		vf->bars[n].bar = start + size * vf->abs_vfid;
1065 		vf->bars[n].size = size;
1066 	}
1067 }
1068 
1069 static int bnx2x_ari_enabled(struct pci_dev *dev)
1070 {
1071 	return dev->bus->self && dev->bus->self->ari_enabled;
1072 }
1073 
1074 static int
1075 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp)
1076 {
1077 	int sb_id;
1078 	u32 val;
1079 	u8 fid, current_pf = 0;
1080 
1081 	/* IGU in normal mode - read CAM */
1082 	for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) {
1083 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4);
1084 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
1085 			continue;
1086 		fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID);
1087 		if (fid & IGU_FID_ENCODE_IS_PF)
1088 			current_pf = fid & IGU_FID_PF_NUM_MASK;
1089 		else if (current_pf == BP_FUNC(bp))
1090 			bnx2x_vf_set_igu_info(bp, sb_id,
1091 					      (fid & IGU_FID_VF_NUM_MASK));
1092 		DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n",
1093 		   ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"),
1094 		   ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) :
1095 		   (fid & IGU_FID_VF_NUM_MASK)), sb_id,
1096 		   GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR));
1097 	}
1098 	DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool);
1099 	return BP_VFDB(bp)->vf_sbs_pool;
1100 }
1101 
1102 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp)
1103 {
1104 	if (bp->vfdb) {
1105 		kfree(bp->vfdb->vfqs);
1106 		kfree(bp->vfdb->vfs);
1107 		kfree(bp->vfdb);
1108 	}
1109 	bp->vfdb = NULL;
1110 }
1111 
1112 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1113 {
1114 	int pos;
1115 	struct pci_dev *dev = bp->pdev;
1116 
1117 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
1118 	if (!pos) {
1119 		BNX2X_ERR("failed to find SRIOV capability in device\n");
1120 		return -ENODEV;
1121 	}
1122 
1123 	iov->pos = pos;
1124 	DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos);
1125 	pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
1126 	pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total);
1127 	pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial);
1128 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
1129 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
1130 	pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
1131 	pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap);
1132 	pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
1133 
1134 	return 0;
1135 }
1136 
1137 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1138 {
1139 	u32 val;
1140 
1141 	/* read the SRIOV capability structure
1142 	 * The fields can be read via configuration read or
1143 	 * directly from the device (starting at offset PCICFG_OFFSET)
1144 	 */
1145 	if (bnx2x_sriov_pci_cfg_info(bp, iov))
1146 		return -ENODEV;
1147 
1148 	/* get the number of SRIOV bars */
1149 	iov->nres = 0;
1150 
1151 	/* read the first_vfid */
1152 	val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF);
1153 	iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK)
1154 			       * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp));
1155 
1156 	DP(BNX2X_MSG_IOV,
1157 	   "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
1158 	   BP_FUNC(bp),
1159 	   iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total,
1160 	   iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
1161 
1162 	return 0;
1163 }
1164 
1165 /* must be called after PF bars are mapped */
1166 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param,
1167 		       int num_vfs_param)
1168 {
1169 	int err, i;
1170 	struct bnx2x_sriov *iov;
1171 	struct pci_dev *dev = bp->pdev;
1172 
1173 	bp->vfdb = NULL;
1174 
1175 	/* verify is pf */
1176 	if (IS_VF(bp))
1177 		return 0;
1178 
1179 	/* verify sriov capability is present in configuration space */
1180 	if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV))
1181 		return 0;
1182 
1183 	/* verify chip revision */
1184 	if (CHIP_IS_E1x(bp))
1185 		return 0;
1186 
1187 	/* check if SRIOV support is turned off */
1188 	if (!num_vfs_param)
1189 		return 0;
1190 
1191 	/* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
1192 	if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) {
1193 		BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
1194 			  BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID);
1195 		return 0;
1196 	}
1197 
1198 	/* SRIOV can be enabled only with MSIX */
1199 	if (int_mode_param == BNX2X_INT_MODE_MSI ||
1200 	    int_mode_param == BNX2X_INT_MODE_INTX) {
1201 		BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
1202 		return 0;
1203 	}
1204 
1205 	err = -EIO;
1206 	/* verify ari is enabled */
1207 	if (!bnx2x_ari_enabled(bp->pdev)) {
1208 		BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
1209 		return 0;
1210 	}
1211 
1212 	/* verify igu is in normal mode */
1213 	if (CHIP_INT_MODE_IS_BC(bp)) {
1214 		BNX2X_ERR("IGU not normal mode,  SRIOV can not be enabled\n");
1215 		return 0;
1216 	}
1217 
1218 	/* allocate the vfs database */
1219 	bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL);
1220 	if (!bp->vfdb) {
1221 		BNX2X_ERR("failed to allocate vf database\n");
1222 		err = -ENOMEM;
1223 		goto failed;
1224 	}
1225 
1226 	/* get the sriov info - Linux already collected all the pertinent
1227 	 * information, however the sriov structure is for the private use
1228 	 * of the pci module. Also we want this information regardless
1229 	 * of the hyper-visor.
1230 	 */
1231 	iov = &(bp->vfdb->sriov);
1232 	err = bnx2x_sriov_info(bp, iov);
1233 	if (err)
1234 		goto failed;
1235 
1236 	/* SR-IOV capability was enabled but there are no VFs*/
1237 	if (iov->total == 0)
1238 		goto failed;
1239 
1240 	iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param);
1241 
1242 	DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n",
1243 	   num_vfs_param, iov->nr_virtfn);
1244 
1245 	/* allocate the vf array */
1246 	bp->vfdb->vfs = kzalloc(sizeof(struct bnx2x_virtf) *
1247 				BNX2X_NR_VIRTFN(bp), GFP_KERNEL);
1248 	if (!bp->vfdb->vfs) {
1249 		BNX2X_ERR("failed to allocate vf array\n");
1250 		err = -ENOMEM;
1251 		goto failed;
1252 	}
1253 
1254 	/* Initial VF init - index and abs_vfid - nr_virtfn must be set */
1255 	for_each_vf(bp, i) {
1256 		bnx2x_vf(bp, i, index) = i;
1257 		bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i;
1258 		bnx2x_vf(bp, i, state) = VF_FREE;
1259 		mutex_init(&bnx2x_vf(bp, i, op_mutex));
1260 		bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE;
1261 	}
1262 
1263 	/* re-read the IGU CAM for VFs - index and abs_vfid must be set */
1264 	if (!bnx2x_get_vf_igu_cam_info(bp)) {
1265 		BNX2X_ERR("No entries in IGU CAM for vfs\n");
1266 		err = -EINVAL;
1267 		goto failed;
1268 	}
1269 
1270 	/* allocate the queue arrays for all VFs */
1271 	bp->vfdb->vfqs = kzalloc(
1272 		BNX2X_MAX_NUM_VF_QUEUES * sizeof(struct bnx2x_vf_queue),
1273 		GFP_KERNEL);
1274 
1275 	if (!bp->vfdb->vfqs) {
1276 		BNX2X_ERR("failed to allocate vf queue array\n");
1277 		err = -ENOMEM;
1278 		goto failed;
1279 	}
1280 
1281 	/* Prepare the VFs event synchronization mechanism */
1282 	mutex_init(&bp->vfdb->event_mutex);
1283 
1284 	mutex_init(&bp->vfdb->bulletin_mutex);
1285 
1286 	if (SHMEM2_HAS(bp, sriov_switch_mode))
1287 		SHMEM2_WR(bp, sriov_switch_mode, SRIOV_SWITCH_MODE_VEB);
1288 
1289 	return 0;
1290 failed:
1291 	DP(BNX2X_MSG_IOV, "Failed err=%d\n", err);
1292 	__bnx2x_iov_free_vfdb(bp);
1293 	return err;
1294 }
1295 
1296 void bnx2x_iov_remove_one(struct bnx2x *bp)
1297 {
1298 	int vf_idx;
1299 
1300 	/* if SRIOV is not enabled there's nothing to do */
1301 	if (!IS_SRIOV(bp))
1302 		return;
1303 
1304 	bnx2x_disable_sriov(bp);
1305 
1306 	/* disable access to all VFs */
1307 	for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) {
1308 		bnx2x_pretend_func(bp,
1309 				   HW_VF_HANDLE(bp,
1310 						bp->vfdb->sriov.first_vf_in_pf +
1311 						vf_idx));
1312 		DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n",
1313 		   bp->vfdb->sriov.first_vf_in_pf + vf_idx);
1314 		bnx2x_vf_enable_internal(bp, 0);
1315 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1316 	}
1317 
1318 	/* free vf database */
1319 	__bnx2x_iov_free_vfdb(bp);
1320 }
1321 
1322 void bnx2x_iov_free_mem(struct bnx2x *bp)
1323 {
1324 	int i;
1325 
1326 	if (!IS_SRIOV(bp))
1327 		return;
1328 
1329 	/* free vfs hw contexts */
1330 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1331 		struct hw_dma *cxt = &bp->vfdb->context[i];
1332 		BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size);
1333 	}
1334 
1335 	BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr,
1336 		       BP_VFDB(bp)->sp_dma.mapping,
1337 		       BP_VFDB(bp)->sp_dma.size);
1338 
1339 	BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr,
1340 		       BP_VF_MBX_DMA(bp)->mapping,
1341 		       BP_VF_MBX_DMA(bp)->size);
1342 
1343 	BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr,
1344 		       BP_VF_BULLETIN_DMA(bp)->mapping,
1345 		       BP_VF_BULLETIN_DMA(bp)->size);
1346 }
1347 
1348 int bnx2x_iov_alloc_mem(struct bnx2x *bp)
1349 {
1350 	size_t tot_size;
1351 	int i, rc = 0;
1352 
1353 	if (!IS_SRIOV(bp))
1354 		return rc;
1355 
1356 	/* allocate vfs hw contexts */
1357 	tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) *
1358 		BNX2X_CIDS_PER_VF * sizeof(union cdu_context);
1359 
1360 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1361 		struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i);
1362 		cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ);
1363 
1364 		if (cxt->size) {
1365 			cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size);
1366 			if (!cxt->addr)
1367 				goto alloc_mem_err;
1368 		} else {
1369 			cxt->addr = NULL;
1370 			cxt->mapping = 0;
1371 		}
1372 		tot_size -= cxt->size;
1373 	}
1374 
1375 	/* allocate vfs ramrods dma memory - client_init and set_mac */
1376 	tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp);
1377 	BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping,
1378 						   tot_size);
1379 	if (!BP_VFDB(bp)->sp_dma.addr)
1380 		goto alloc_mem_err;
1381 	BP_VFDB(bp)->sp_dma.size = tot_size;
1382 
1383 	/* allocate mailboxes */
1384 	tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE;
1385 	BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping,
1386 						  tot_size);
1387 	if (!BP_VF_MBX_DMA(bp)->addr)
1388 		goto alloc_mem_err;
1389 
1390 	BP_VF_MBX_DMA(bp)->size = tot_size;
1391 
1392 	/* allocate local bulletin boards */
1393 	tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE;
1394 	BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping,
1395 						       tot_size);
1396 	if (!BP_VF_BULLETIN_DMA(bp)->addr)
1397 		goto alloc_mem_err;
1398 
1399 	BP_VF_BULLETIN_DMA(bp)->size = tot_size;
1400 
1401 	return 0;
1402 
1403 alloc_mem_err:
1404 	return -ENOMEM;
1405 }
1406 
1407 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf,
1408 			   struct bnx2x_vf_queue *q)
1409 {
1410 	u8 cl_id = vfq_cl_id(vf, q);
1411 	u8 func_id = FW_VF_HANDLE(vf->abs_vfid);
1412 	unsigned long q_type = 0;
1413 
1414 	set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1415 	set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1416 
1417 	/* Queue State object */
1418 	bnx2x_init_queue_obj(bp, &q->sp_obj,
1419 			     cl_id, &q->cid, 1, func_id,
1420 			     bnx2x_vf_sp(bp, vf, q_data),
1421 			     bnx2x_vf_sp_map(bp, vf, q_data),
1422 			     q_type);
1423 
1424 	/* sp indication is set only when vlan/mac/etc. are initialized */
1425 	q->sp_initialized = false;
1426 
1427 	DP(BNX2X_MSG_IOV,
1428 	   "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n",
1429 	   vf->abs_vfid, q->sp_obj.func_id, q->cid);
1430 }
1431 
1432 static int bnx2x_max_speed_cap(struct bnx2x *bp)
1433 {
1434 	u32 supported = bp->port.supported[bnx2x_get_link_cfg_idx(bp)];
1435 
1436 	if (supported &
1437 	    (SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full))
1438 		return 20000;
1439 
1440 	return 10000; /* assume lowest supported speed is 10G */
1441 }
1442 
1443 int bnx2x_iov_link_update_vf(struct bnx2x *bp, int idx)
1444 {
1445 	struct bnx2x_link_report_data *state = &bp->last_reported_link;
1446 	struct pf_vf_bulletin_content *bulletin;
1447 	struct bnx2x_virtf *vf;
1448 	bool update = true;
1449 	int rc = 0;
1450 
1451 	/* sanity and init */
1452 	rc = bnx2x_vf_op_prep(bp, idx, &vf, &bulletin, false);
1453 	if (rc)
1454 		return rc;
1455 
1456 	mutex_lock(&bp->vfdb->bulletin_mutex);
1457 
1458 	if (vf->link_cfg == IFLA_VF_LINK_STATE_AUTO) {
1459 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1460 
1461 		bulletin->link_speed = state->line_speed;
1462 		bulletin->link_flags = 0;
1463 		if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1464 			     &state->link_report_flags))
1465 			bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1466 		if (test_bit(BNX2X_LINK_REPORT_FD,
1467 			     &state->link_report_flags))
1468 			bulletin->link_flags |= VFPF_LINK_REPORT_FULL_DUPLEX;
1469 		if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1470 			     &state->link_report_flags))
1471 			bulletin->link_flags |= VFPF_LINK_REPORT_RX_FC_ON;
1472 		if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1473 			     &state->link_report_flags))
1474 			bulletin->link_flags |= VFPF_LINK_REPORT_TX_FC_ON;
1475 	} else if (vf->link_cfg == IFLA_VF_LINK_STATE_DISABLE &&
1476 		   !(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1477 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1478 		bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1479 	} else if (vf->link_cfg == IFLA_VF_LINK_STATE_ENABLE &&
1480 		   (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1481 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1482 		bulletin->link_speed = bnx2x_max_speed_cap(bp);
1483 		bulletin->link_flags &= ~VFPF_LINK_REPORT_LINK_DOWN;
1484 	} else {
1485 		update = false;
1486 	}
1487 
1488 	if (update) {
1489 		DP(NETIF_MSG_LINK | BNX2X_MSG_IOV,
1490 		   "vf %d mode %u speed %d flags %x\n", idx,
1491 		   vf->link_cfg, bulletin->link_speed, bulletin->link_flags);
1492 
1493 		/* Post update on VF's bulletin board */
1494 		rc = bnx2x_post_vf_bulletin(bp, idx);
1495 		if (rc) {
1496 			BNX2X_ERR("failed to update VF[%d] bulletin\n", idx);
1497 			goto out;
1498 		}
1499 	}
1500 
1501 out:
1502 	mutex_unlock(&bp->vfdb->bulletin_mutex);
1503 	return rc;
1504 }
1505 
1506 int bnx2x_set_vf_link_state(struct net_device *dev, int idx, int link_state)
1507 {
1508 	struct bnx2x *bp = netdev_priv(dev);
1509 	struct bnx2x_virtf *vf = BP_VF(bp, idx);
1510 
1511 	if (!vf)
1512 		return -EINVAL;
1513 
1514 	if (vf->link_cfg == link_state)
1515 		return 0; /* nothing todo */
1516 
1517 	vf->link_cfg = link_state;
1518 
1519 	return bnx2x_iov_link_update_vf(bp, idx);
1520 }
1521 
1522 void bnx2x_iov_link_update(struct bnx2x *bp)
1523 {
1524 	int vfid;
1525 
1526 	if (!IS_SRIOV(bp))
1527 		return;
1528 
1529 	for_each_vf(bp, vfid)
1530 		bnx2x_iov_link_update_vf(bp, vfid);
1531 }
1532 
1533 /* called by bnx2x_nic_load */
1534 int bnx2x_iov_nic_init(struct bnx2x *bp)
1535 {
1536 	int vfid;
1537 
1538 	if (!IS_SRIOV(bp)) {
1539 		DP(BNX2X_MSG_IOV, "vfdb was not allocated\n");
1540 		return 0;
1541 	}
1542 
1543 	DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn);
1544 
1545 	/* let FLR complete ... */
1546 	msleep(100);
1547 
1548 	/* initialize vf database */
1549 	for_each_vf(bp, vfid) {
1550 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1551 
1552 		int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) *
1553 			BNX2X_CIDS_PER_VF;
1554 
1555 		union cdu_context *base_cxt = (union cdu_context *)
1556 			BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1557 			(base_vf_cid & (ILT_PAGE_CIDS-1));
1558 
1559 		DP(BNX2X_MSG_IOV,
1560 		   "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
1561 		   vf->abs_vfid, vf_sb_count(vf), base_vf_cid,
1562 		   BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt);
1563 
1564 		/* init statically provisioned resources */
1565 		bnx2x_iov_static_resc(bp, vf);
1566 
1567 		/* queues are initialized during VF-ACQUIRE */
1568 		vf->filter_state = 0;
1569 		vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id);
1570 
1571 		bnx2x_init_credit_pool(&vf->vf_vlans_pool, 0,
1572 				       vf_vlan_rules_cnt(vf));
1573 		bnx2x_init_credit_pool(&vf->vf_macs_pool, 0,
1574 				       vf_mac_rules_cnt(vf));
1575 
1576 		/*  init mcast object - This object will be re-initialized
1577 		 *  during VF-ACQUIRE with the proper cl_id and cid.
1578 		 *  It needs to be initialized here so that it can be safely
1579 		 *  handled by a subsequent FLR flow.
1580 		 */
1581 		bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF,
1582 				     0xFF, 0xFF, 0xFF,
1583 				     bnx2x_vf_sp(bp, vf, mcast_rdata),
1584 				     bnx2x_vf_sp_map(bp, vf, mcast_rdata),
1585 				     BNX2X_FILTER_MCAST_PENDING,
1586 				     &vf->filter_state,
1587 				     BNX2X_OBJ_TYPE_RX_TX);
1588 
1589 		/* set the mailbox message addresses */
1590 		BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *)
1591 			(((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid *
1592 			MBX_MSG_ALIGNED_SIZE);
1593 
1594 		BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping +
1595 			vfid * MBX_MSG_ALIGNED_SIZE;
1596 
1597 		/* Enable vf mailbox */
1598 		bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
1599 	}
1600 
1601 	/* Final VF init */
1602 	for_each_vf(bp, vfid) {
1603 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1604 
1605 		/* fill in the BDF and bars */
1606 		vf->bus = bnx2x_vf_bus(bp, vfid);
1607 		vf->devfn = bnx2x_vf_devfn(bp, vfid);
1608 		bnx2x_vf_set_bars(bp, vf);
1609 
1610 		DP(BNX2X_MSG_IOV,
1611 		   "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
1612 		   vf->abs_vfid, vf->bus, vf->devfn,
1613 		   (unsigned)vf->bars[0].bar, vf->bars[0].size,
1614 		   (unsigned)vf->bars[1].bar, vf->bars[1].size,
1615 		   (unsigned)vf->bars[2].bar, vf->bars[2].size);
1616 	}
1617 
1618 	return 0;
1619 }
1620 
1621 /* called by bnx2x_chip_cleanup */
1622 int bnx2x_iov_chip_cleanup(struct bnx2x *bp)
1623 {
1624 	int i;
1625 
1626 	if (!IS_SRIOV(bp))
1627 		return 0;
1628 
1629 	/* release all the VFs */
1630 	for_each_vf(bp, i)
1631 		bnx2x_vf_release(bp, BP_VF(bp, i));
1632 
1633 	return 0;
1634 }
1635 
1636 /* called by bnx2x_init_hw_func, returns the next ilt line */
1637 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line)
1638 {
1639 	int i;
1640 	struct bnx2x_ilt *ilt = BP_ILT(bp);
1641 
1642 	if (!IS_SRIOV(bp))
1643 		return line;
1644 
1645 	/* set vfs ilt lines */
1646 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1647 		struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i);
1648 
1649 		ilt->lines[line+i].page = hw_cxt->addr;
1650 		ilt->lines[line+i].page_mapping = hw_cxt->mapping;
1651 		ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
1652 	}
1653 	return line + i;
1654 }
1655 
1656 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid)
1657 {
1658 	return ((cid >= BNX2X_FIRST_VF_CID) &&
1659 		((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS));
1660 }
1661 
1662 static
1663 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp,
1664 					struct bnx2x_vf_queue *vfq,
1665 					union event_ring_elem *elem)
1666 {
1667 	unsigned long ramrod_flags = 0;
1668 	int rc = 0;
1669 	u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
1670 
1671 	/* Always push next commands out, don't wait here */
1672 	set_bit(RAMROD_CONT, &ramrod_flags);
1673 
1674 	switch (echo >> BNX2X_SWCID_SHIFT) {
1675 	case BNX2X_FILTER_MAC_PENDING:
1676 		rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem,
1677 					   &ramrod_flags);
1678 		break;
1679 	case BNX2X_FILTER_VLAN_PENDING:
1680 		rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem,
1681 					    &ramrod_flags);
1682 		break;
1683 	default:
1684 		BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
1685 		return;
1686 	}
1687 	if (rc < 0)
1688 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
1689 	else if (rc > 0)
1690 		DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n");
1691 }
1692 
1693 static
1694 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp,
1695 			       struct bnx2x_virtf *vf)
1696 {
1697 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
1698 	int rc;
1699 
1700 	rparam.mcast_obj = &vf->mcast_obj;
1701 	vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw);
1702 
1703 	/* If there are pending mcast commands - send them */
1704 	if (vf->mcast_obj.check_pending(&vf->mcast_obj)) {
1705 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
1706 		if (rc < 0)
1707 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
1708 				  rc);
1709 	}
1710 }
1711 
1712 static
1713 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp,
1714 				 struct bnx2x_virtf *vf)
1715 {
1716 	smp_mb__before_atomic();
1717 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
1718 	smp_mb__after_atomic();
1719 }
1720 
1721 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp,
1722 					   struct bnx2x_virtf *vf)
1723 {
1724 	vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw);
1725 }
1726 
1727 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem)
1728 {
1729 	struct bnx2x_virtf *vf;
1730 	int qidx = 0, abs_vfid;
1731 	u8 opcode;
1732 	u16 cid = 0xffff;
1733 
1734 	if (!IS_SRIOV(bp))
1735 		return 1;
1736 
1737 	/* first get the cid - the only events we handle here are cfc-delete
1738 	 * and set-mac completion
1739 	 */
1740 	opcode = elem->message.opcode;
1741 
1742 	switch (opcode) {
1743 	case EVENT_RING_OPCODE_CFC_DEL:
1744 		cid = SW_CID(elem->message.data.cfc_del_event.cid);
1745 		DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid);
1746 		break;
1747 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1748 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1749 	case EVENT_RING_OPCODE_FILTERS_RULES:
1750 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1751 		cid = SW_CID(elem->message.data.eth_event.echo);
1752 		DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid);
1753 		break;
1754 	case EVENT_RING_OPCODE_VF_FLR:
1755 		abs_vfid = elem->message.data.vf_flr_event.vf_id;
1756 		DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n",
1757 		   abs_vfid);
1758 		goto get_vf;
1759 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1760 		abs_vfid = elem->message.data.malicious_vf_event.vf_id;
1761 		BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
1762 			  abs_vfid,
1763 			  elem->message.data.malicious_vf_event.err_id);
1764 		goto get_vf;
1765 	default:
1766 		return 1;
1767 	}
1768 
1769 	/* check if the cid is the VF range */
1770 	if (!bnx2x_iov_is_vf_cid(bp, cid)) {
1771 		DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid);
1772 		return 1;
1773 	}
1774 
1775 	/* extract vf and rxq index from vf_cid - relies on the following:
1776 	 * 1. vfid on cid reflects the true abs_vfid
1777 	 * 2. The max number of VFs (per path) is 64
1778 	 */
1779 	qidx = cid & ((1 << BNX2X_VF_CID_WND)-1);
1780 	abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1781 get_vf:
1782 	vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
1783 
1784 	if (!vf) {
1785 		BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
1786 			  cid, abs_vfid);
1787 		return 0;
1788 	}
1789 
1790 	switch (opcode) {
1791 	case EVENT_RING_OPCODE_CFC_DEL:
1792 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n",
1793 		   vf->abs_vfid, qidx);
1794 		vfq_get(vf, qidx)->sp_obj.complete_cmd(bp,
1795 						       &vfq_get(vf,
1796 								qidx)->sp_obj,
1797 						       BNX2X_Q_CMD_CFC_DEL);
1798 		break;
1799 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1800 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n",
1801 		   vf->abs_vfid, qidx);
1802 		bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem);
1803 		break;
1804 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1805 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n",
1806 		   vf->abs_vfid, qidx);
1807 		bnx2x_vf_handle_mcast_eqe(bp, vf);
1808 		break;
1809 	case EVENT_RING_OPCODE_FILTERS_RULES:
1810 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n",
1811 		   vf->abs_vfid, qidx);
1812 		bnx2x_vf_handle_filters_eqe(bp, vf);
1813 		break;
1814 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1815 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n",
1816 		   vf->abs_vfid, qidx);
1817 		bnx2x_vf_handle_rss_update_eqe(bp, vf);
1818 	case EVENT_RING_OPCODE_VF_FLR:
1819 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1820 		/* Do nothing for now */
1821 		return 0;
1822 	}
1823 
1824 	return 0;
1825 }
1826 
1827 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid)
1828 {
1829 	/* extract the vf from vf_cid - relies on the following:
1830 	 * 1. vfid on cid reflects the true abs_vfid
1831 	 * 2. The max number of VFs (per path) is 64
1832 	 */
1833 	int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1834 	return bnx2x_vf_by_abs_fid(bp, abs_vfid);
1835 }
1836 
1837 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid,
1838 				struct bnx2x_queue_sp_obj **q_obj)
1839 {
1840 	struct bnx2x_virtf *vf;
1841 
1842 	if (!IS_SRIOV(bp))
1843 		return;
1844 
1845 	vf = bnx2x_vf_by_cid(bp, vf_cid);
1846 
1847 	if (vf) {
1848 		/* extract queue index from vf_cid - relies on the following:
1849 		 * 1. vfid on cid reflects the true abs_vfid
1850 		 * 2. The max number of VFs (per path) is 64
1851 		 */
1852 		int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1);
1853 		*q_obj = &bnx2x_vfq(vf, q_index, sp_obj);
1854 	} else {
1855 		BNX2X_ERR("No vf matching cid %d\n", vf_cid);
1856 	}
1857 }
1858 
1859 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp)
1860 {
1861 	int i;
1862 	int first_queue_query_index, num_queues_req;
1863 	dma_addr_t cur_data_offset;
1864 	struct stats_query_entry *cur_query_entry;
1865 	u8 stats_count = 0;
1866 	bool is_fcoe = false;
1867 
1868 	if (!IS_SRIOV(bp))
1869 		return;
1870 
1871 	if (!NO_FCOE(bp))
1872 		is_fcoe = true;
1873 
1874 	/* fcoe adds one global request and one queue request */
1875 	num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe;
1876 	first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX -
1877 		(is_fcoe ? 0 : 1);
1878 
1879 	DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1880 	       "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
1881 	       BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index,
1882 	       first_queue_query_index + num_queues_req);
1883 
1884 	cur_data_offset = bp->fw_stats_data_mapping +
1885 		offsetof(struct bnx2x_fw_stats_data, queue_stats) +
1886 		num_queues_req * sizeof(struct per_queue_stats);
1887 
1888 	cur_query_entry = &bp->fw_stats_req->
1889 		query[first_queue_query_index + num_queues_req];
1890 
1891 	for_each_vf(bp, i) {
1892 		int j;
1893 		struct bnx2x_virtf *vf = BP_VF(bp, i);
1894 
1895 		if (vf->state != VF_ENABLED) {
1896 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1897 			       "vf %d not enabled so no stats for it\n",
1898 			       vf->abs_vfid);
1899 			continue;
1900 		}
1901 
1902 		DP(BNX2X_MSG_IOV, "add addresses for vf %d\n", vf->abs_vfid);
1903 		for_each_vfq(vf, j) {
1904 			struct bnx2x_vf_queue *rxq = vfq_get(vf, j);
1905 
1906 			dma_addr_t q_stats_addr =
1907 				vf->fw_stat_map + j * vf->stats_stride;
1908 
1909 			/* collect stats fro active queues only */
1910 			if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) ==
1911 			    BNX2X_Q_LOGICAL_STATE_STOPPED)
1912 				continue;
1913 
1914 			/* create stats query entry for this queue */
1915 			cur_query_entry->kind = STATS_TYPE_QUEUE;
1916 			cur_query_entry->index = vfq_stat_id(vf, rxq);
1917 			cur_query_entry->funcID =
1918 				cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid));
1919 			cur_query_entry->address.hi =
1920 				cpu_to_le32(U64_HI(q_stats_addr));
1921 			cur_query_entry->address.lo =
1922 				cpu_to_le32(U64_LO(q_stats_addr));
1923 			DP(BNX2X_MSG_IOV,
1924 			   "added address %x %x for vf %d queue %d client %d\n",
1925 			   cur_query_entry->address.hi,
1926 			   cur_query_entry->address.lo, cur_query_entry->funcID,
1927 			   j, cur_query_entry->index);
1928 			cur_query_entry++;
1929 			cur_data_offset += sizeof(struct per_queue_stats);
1930 			stats_count++;
1931 
1932 			/* all stats are coalesced to the leading queue */
1933 			if (vf->cfg_flags & VF_CFG_STATS_COALESCE)
1934 				break;
1935 		}
1936 	}
1937 	bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count;
1938 }
1939 
1940 /* VF API helpers */
1941 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid,
1942 				u8 enable)
1943 {
1944 	u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4;
1945 	u32 val = enable ? (abs_vfid | (1 << 6)) : 0;
1946 
1947 	REG_WR(bp, reg, val);
1948 }
1949 
1950 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf)
1951 {
1952 	int i;
1953 
1954 	for_each_vfq(vf, i)
1955 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
1956 				    vfq_qzone_id(vf, vfq_get(vf, i)), false);
1957 }
1958 
1959 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf)
1960 {
1961 	u32 val;
1962 
1963 	/* clear the VF configuration - pretend */
1964 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
1965 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
1966 	val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN |
1967 		 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK);
1968 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
1969 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1970 }
1971 
1972 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf)
1973 {
1974 	return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF),
1975 		     BNX2X_VF_MAX_QUEUES);
1976 }
1977 
1978 static
1979 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf,
1980 			    struct vf_pf_resc_request *req_resc)
1981 {
1982 	u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1983 	u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1984 
1985 	return ((req_resc->num_rxqs <= rxq_cnt) &&
1986 		(req_resc->num_txqs <= txq_cnt) &&
1987 		(req_resc->num_sbs <= vf_sb_count(vf))   &&
1988 		(req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) &&
1989 		(req_resc->num_vlan_filters <= vf_vlan_rules_cnt(vf)));
1990 }
1991 
1992 /* CORE VF API */
1993 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf,
1994 		     struct vf_pf_resc_request *resc)
1995 {
1996 	int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) *
1997 		BNX2X_CIDS_PER_VF;
1998 
1999 	union cdu_context *base_cxt = (union cdu_context *)
2000 		BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
2001 		(base_vf_cid & (ILT_PAGE_CIDS-1));
2002 	int i;
2003 
2004 	/* if state is 'acquired' the VF was not released or FLR'd, in
2005 	 * this case the returned resources match the acquired already
2006 	 * acquired resources. Verify that the requested numbers do
2007 	 * not exceed the already acquired numbers.
2008 	 */
2009 	if (vf->state == VF_ACQUIRED) {
2010 		DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
2011 		   vf->abs_vfid);
2012 
2013 		if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2014 			BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
2015 				  vf->abs_vfid);
2016 			return -EINVAL;
2017 		}
2018 		return 0;
2019 	}
2020 
2021 	/* Otherwise vf state must be 'free' or 'reset' */
2022 	if (vf->state != VF_FREE && vf->state != VF_RESET) {
2023 		BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
2024 			  vf->abs_vfid, vf->state);
2025 		return -EINVAL;
2026 	}
2027 
2028 	/* static allocation:
2029 	 * the global maximum number are fixed per VF. Fail the request if
2030 	 * requested number exceed these globals
2031 	 */
2032 	if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2033 		DP(BNX2X_MSG_IOV,
2034 		   "cannot fulfill vf resource request. Placing maximal available values in response\n");
2035 		/* set the max resource in the vf */
2036 		return -ENOMEM;
2037 	}
2038 
2039 	/* Set resources counters - 0 request means max available */
2040 	vf_sb_count(vf) = resc->num_sbs;
2041 	vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2042 	vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2043 
2044 	DP(BNX2X_MSG_IOV,
2045 	   "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
2046 	   vf_sb_count(vf), vf_rxq_count(vf),
2047 	   vf_txq_count(vf), vf_mac_rules_cnt(vf),
2048 	   vf_vlan_rules_cnt(vf));
2049 
2050 	/* Initialize the queues */
2051 	if (!vf->vfqs) {
2052 		DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n");
2053 		return -EINVAL;
2054 	}
2055 
2056 	for_each_vfq(vf, i) {
2057 		struct bnx2x_vf_queue *q = vfq_get(vf, i);
2058 
2059 		if (!q) {
2060 			BNX2X_ERR("q number %d was not allocated\n", i);
2061 			return -EINVAL;
2062 		}
2063 
2064 		q->index = i;
2065 		q->cxt = &((base_cxt + i)->eth);
2066 		q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i;
2067 
2068 		DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
2069 		   vf->abs_vfid, i, q->index, q->cid, q->cxt);
2070 
2071 		/* init SP objects */
2072 		bnx2x_vfq_init(bp, vf, q);
2073 	}
2074 	vf->state = VF_ACQUIRED;
2075 	return 0;
2076 }
2077 
2078 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map)
2079 {
2080 	struct bnx2x_func_init_params func_init = {0};
2081 	int i;
2082 
2083 	/* the sb resources are initialized at this point, do the
2084 	 * FW/HW initializations
2085 	 */
2086 	for_each_vf_sb(vf, i)
2087 		bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true,
2088 			      vf_igu_sb(vf, i), vf_igu_sb(vf, i));
2089 
2090 	/* Sanity checks */
2091 	if (vf->state != VF_ACQUIRED) {
2092 		DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n",
2093 		   vf->abs_vfid, vf->state);
2094 		return -EINVAL;
2095 	}
2096 
2097 	/* let FLR complete ... */
2098 	msleep(100);
2099 
2100 	/* FLR cleanup epilogue */
2101 	if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid))
2102 		return -EBUSY;
2103 
2104 	/* reset IGU VF statistics: MSIX */
2105 	REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0);
2106 
2107 	/* function setup */
2108 	func_init.pf_id = BP_FUNC(bp);
2109 	func_init.func_id = FW_VF_HANDLE(vf->abs_vfid);
2110 	bnx2x_func_init(bp, &func_init);
2111 
2112 	/* Enable the vf */
2113 	bnx2x_vf_enable_access(bp, vf->abs_vfid);
2114 	bnx2x_vf_enable_traffic(bp, vf);
2115 
2116 	/* queue protection table */
2117 	for_each_vfq(vf, i)
2118 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
2119 				    vfq_qzone_id(vf, vfq_get(vf, i)), true);
2120 
2121 	vf->state = VF_ENABLED;
2122 
2123 	/* update vf bulletin board */
2124 	bnx2x_post_vf_bulletin(bp, vf->index);
2125 
2126 	return 0;
2127 }
2128 
2129 struct set_vf_state_cookie {
2130 	struct bnx2x_virtf *vf;
2131 	u8 state;
2132 };
2133 
2134 static void bnx2x_set_vf_state(void *cookie)
2135 {
2136 	struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie;
2137 
2138 	p->vf->state = p->state;
2139 }
2140 
2141 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf)
2142 {
2143 	int rc = 0, i;
2144 
2145 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2146 
2147 	/* Close all queues */
2148 	for (i = 0; i < vf_rxq_count(vf); i++) {
2149 		rc = bnx2x_vf_queue_teardown(bp, vf, i);
2150 		if (rc)
2151 			goto op_err;
2152 	}
2153 
2154 	/* disable the interrupts */
2155 	DP(BNX2X_MSG_IOV, "disabling igu\n");
2156 	bnx2x_vf_igu_disable(bp, vf);
2157 
2158 	/* disable the VF */
2159 	DP(BNX2X_MSG_IOV, "clearing qtbl\n");
2160 	bnx2x_vf_clr_qtbl(bp, vf);
2161 
2162 	/* need to make sure there are no outstanding stats ramrods which may
2163 	 * cause the device to access the VF's stats buffer which it will free
2164 	 * as soon as we return from the close flow.
2165 	 */
2166 	{
2167 		struct set_vf_state_cookie cookie;
2168 
2169 		cookie.vf = vf;
2170 		cookie.state = VF_ACQUIRED;
2171 		rc = bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie);
2172 		if (rc)
2173 			goto op_err;
2174 	}
2175 
2176 	DP(BNX2X_MSG_IOV, "set state to acquired\n");
2177 
2178 	return 0;
2179 op_err:
2180 	BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc);
2181 	return rc;
2182 }
2183 
2184 /* VF release can be called either: 1. The VF was acquired but
2185  * not enabled 2. the vf was enabled or in the process of being
2186  * enabled
2187  */
2188 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf)
2189 {
2190 	int rc;
2191 
2192 	DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid,
2193 	   vf->state == VF_FREE ? "Free" :
2194 	   vf->state == VF_ACQUIRED ? "Acquired" :
2195 	   vf->state == VF_ENABLED ? "Enabled" :
2196 	   vf->state == VF_RESET ? "Reset" :
2197 	   "Unknown");
2198 
2199 	switch (vf->state) {
2200 	case VF_ENABLED:
2201 		rc = bnx2x_vf_close(bp, vf);
2202 		if (rc)
2203 			goto op_err;
2204 		/* Fallthrough to release resources */
2205 	case VF_ACQUIRED:
2206 		DP(BNX2X_MSG_IOV, "about to free resources\n");
2207 		bnx2x_vf_free_resc(bp, vf);
2208 		break;
2209 
2210 	case VF_FREE:
2211 	case VF_RESET:
2212 	default:
2213 		break;
2214 	}
2215 	return 0;
2216 op_err:
2217 	BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc);
2218 	return rc;
2219 }
2220 
2221 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2222 			struct bnx2x_config_rss_params *rss)
2223 {
2224 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2225 	set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags);
2226 	return bnx2x_config_rss(bp, rss);
2227 }
2228 
2229 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2230 			struct vfpf_tpa_tlv *tlv,
2231 			struct bnx2x_queue_update_tpa_params *params)
2232 {
2233 	aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr;
2234 	struct bnx2x_queue_state_params qstate;
2235 	int qid, rc = 0;
2236 
2237 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2238 
2239 	/* Set ramrod params */
2240 	memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
2241 	memcpy(&qstate.params.update_tpa, params,
2242 	       sizeof(struct bnx2x_queue_update_tpa_params));
2243 	qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA;
2244 	set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
2245 
2246 	for (qid = 0; qid < vf_rxq_count(vf); qid++) {
2247 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
2248 		qstate.params.update_tpa.sge_map = sge_addr[qid];
2249 		DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n",
2250 		   vf->abs_vfid, qid, U64_HI(sge_addr[qid]),
2251 		   U64_LO(sge_addr[qid]));
2252 		rc = bnx2x_queue_state_change(bp, &qstate);
2253 		if (rc) {
2254 			BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n",
2255 				  U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]),
2256 				  vf->abs_vfid, qid);
2257 			return rc;
2258 		}
2259 	}
2260 
2261 	return rc;
2262 }
2263 
2264 /* VF release ~ VF close + VF release-resources
2265  * Release is the ultimate SW shutdown and is called whenever an
2266  * irrecoverable error is encountered.
2267  */
2268 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf)
2269 {
2270 	int rc;
2271 
2272 	DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid);
2273 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2274 
2275 	rc = bnx2x_vf_free(bp, vf);
2276 	if (rc)
2277 		WARN(rc,
2278 		     "VF[%d] Failed to allocate resources for release op- rc=%d\n",
2279 		     vf->abs_vfid, rc);
2280 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2281 	return rc;
2282 }
2283 
2284 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2285 			      enum channel_tlvs tlv)
2286 {
2287 	/* we don't lock the channel for unsupported tlvs */
2288 	if (!bnx2x_tlv_supported(tlv)) {
2289 		BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n");
2290 		return;
2291 	}
2292 
2293 	/* lock the channel */
2294 	mutex_lock(&vf->op_mutex);
2295 
2296 	/* record the locking op */
2297 	vf->op_current = tlv;
2298 
2299 	/* log the lock */
2300 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n",
2301 	   vf->abs_vfid, tlv);
2302 }
2303 
2304 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2305 				enum channel_tlvs expected_tlv)
2306 {
2307 	enum channel_tlvs current_tlv;
2308 
2309 	if (!vf) {
2310 		BNX2X_ERR("VF was %p\n", vf);
2311 		return;
2312 	}
2313 
2314 	current_tlv = vf->op_current;
2315 
2316 	/* we don't unlock the channel for unsupported tlvs */
2317 	if (!bnx2x_tlv_supported(expected_tlv))
2318 		return;
2319 
2320 	WARN(expected_tlv != vf->op_current,
2321 	     "lock mismatch: expected %d found %d", expected_tlv,
2322 	     vf->op_current);
2323 
2324 	/* record the locking op */
2325 	vf->op_current = CHANNEL_TLV_NONE;
2326 
2327 	/* lock the channel */
2328 	mutex_unlock(&vf->op_mutex);
2329 
2330 	/* log the unlock */
2331 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n",
2332 	   vf->abs_vfid, current_tlv);
2333 }
2334 
2335 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable)
2336 {
2337 	struct bnx2x_queue_state_params q_params;
2338 	u32 prev_flags;
2339 	int i, rc;
2340 
2341 	/* Verify changes are needed and record current Tx switching state */
2342 	prev_flags = bp->flags;
2343 	if (enable)
2344 		bp->flags |= TX_SWITCHING;
2345 	else
2346 		bp->flags &= ~TX_SWITCHING;
2347 	if (prev_flags == bp->flags)
2348 		return 0;
2349 
2350 	/* Verify state enables the sending of queue ramrods */
2351 	if ((bp->state != BNX2X_STATE_OPEN) ||
2352 	    (bnx2x_get_q_logical_state(bp,
2353 				      &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) !=
2354 	     BNX2X_Q_LOGICAL_STATE_ACTIVE))
2355 		return 0;
2356 
2357 	/* send q. update ramrod to configure Tx switching */
2358 	memset(&q_params, 0, sizeof(q_params));
2359 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2360 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
2361 	__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
2362 		  &q_params.params.update.update_flags);
2363 	if (enable)
2364 		__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2365 			  &q_params.params.update.update_flags);
2366 	else
2367 		__clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2368 			    &q_params.params.update.update_flags);
2369 
2370 	/* send the ramrod on all the queues of the PF */
2371 	for_each_eth_queue(bp, i) {
2372 		struct bnx2x_fastpath *fp = &bp->fp[i];
2373 
2374 		/* Set the appropriate Queue object */
2375 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
2376 
2377 		/* Update the Queue state */
2378 		rc = bnx2x_queue_state_change(bp, &q_params);
2379 		if (rc) {
2380 			BNX2X_ERR("Failed to configure Tx switching\n");
2381 			return rc;
2382 		}
2383 	}
2384 
2385 	DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled");
2386 	return 0;
2387 }
2388 
2389 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param)
2390 {
2391 	struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev));
2392 
2393 	if (!IS_SRIOV(bp)) {
2394 		BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n");
2395 		return -EINVAL;
2396 	}
2397 
2398 	DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
2399 	   num_vfs_param, BNX2X_NR_VIRTFN(bp));
2400 
2401 	/* HW channel is only operational when PF is up */
2402 	if (bp->state != BNX2X_STATE_OPEN) {
2403 		BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
2404 		return -EINVAL;
2405 	}
2406 
2407 	/* we are always bound by the total_vfs in the configuration space */
2408 	if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) {
2409 		BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
2410 			  num_vfs_param, BNX2X_NR_VIRTFN(bp));
2411 		num_vfs_param = BNX2X_NR_VIRTFN(bp);
2412 	}
2413 
2414 	bp->requested_nr_virtfn = num_vfs_param;
2415 	if (num_vfs_param == 0) {
2416 		bnx2x_set_pf_tx_switching(bp, false);
2417 		bnx2x_disable_sriov(bp);
2418 		return 0;
2419 	} else {
2420 		return bnx2x_enable_sriov(bp);
2421 	}
2422 }
2423 
2424 #define IGU_ENTRY_SIZE 4
2425 
2426 int bnx2x_enable_sriov(struct bnx2x *bp)
2427 {
2428 	int rc = 0, req_vfs = bp->requested_nr_virtfn;
2429 	int vf_idx, sb_idx, vfq_idx, qcount, first_vf;
2430 	u32 igu_entry, address;
2431 	u16 num_vf_queues;
2432 
2433 	if (req_vfs == 0)
2434 		return 0;
2435 
2436 	first_vf = bp->vfdb->sriov.first_vf_in_pf;
2437 
2438 	/* statically distribute vf sb pool between VFs */
2439 	num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES,
2440 			      BP_VFDB(bp)->vf_sbs_pool / req_vfs);
2441 
2442 	/* zero previous values learned from igu cam */
2443 	for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) {
2444 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2445 
2446 		vf->sb_count = 0;
2447 		vf_sb_count(BP_VF(bp, vf_idx)) = 0;
2448 	}
2449 	bp->vfdb->vf_sbs_pool = 0;
2450 
2451 	/* prepare IGU cam */
2452 	sb_idx = BP_VFDB(bp)->first_vf_igu_entry;
2453 	address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE;
2454 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2455 		for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) {
2456 			igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT |
2457 				vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT |
2458 				IGU_REG_MAPPING_MEMORY_VALID;
2459 			DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n",
2460 			   sb_idx, vf_idx);
2461 			REG_WR(bp, address, igu_entry);
2462 			sb_idx++;
2463 			address += IGU_ENTRY_SIZE;
2464 		}
2465 	}
2466 
2467 	/* Reinitialize vf database according to igu cam */
2468 	bnx2x_get_vf_igu_cam_info(bp);
2469 
2470 	DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n",
2471 	   BP_VFDB(bp)->vf_sbs_pool, num_vf_queues);
2472 
2473 	qcount = 0;
2474 	for_each_vf(bp, vf_idx) {
2475 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2476 
2477 		/* set local queue arrays */
2478 		vf->vfqs = &bp->vfdb->vfqs[qcount];
2479 		qcount += vf_sb_count(vf);
2480 		bnx2x_iov_static_resc(bp, vf);
2481 	}
2482 
2483 	/* prepare msix vectors in VF configuration space - the value in the
2484 	 * PCI configuration space should be the index of the last entry,
2485 	 * namely one less than the actual size of the table
2486 	 */
2487 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2488 		bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx));
2489 		REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL,
2490 		       num_vf_queues - 1);
2491 		DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n",
2492 		   vf_idx, num_vf_queues - 1);
2493 	}
2494 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
2495 
2496 	/* enable sriov. This will probe all the VFs, and consequentially cause
2497 	 * the "acquire" messages to appear on the VF PF channel.
2498 	 */
2499 	DP(BNX2X_MSG_IOV, "about to call enable sriov\n");
2500 	bnx2x_disable_sriov(bp);
2501 
2502 	rc = bnx2x_set_pf_tx_switching(bp, true);
2503 	if (rc)
2504 		return rc;
2505 
2506 	rc = pci_enable_sriov(bp->pdev, req_vfs);
2507 	if (rc) {
2508 		BNX2X_ERR("pci_enable_sriov failed with %d\n", rc);
2509 		return rc;
2510 	}
2511 	DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs);
2512 	return req_vfs;
2513 }
2514 
2515 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp)
2516 {
2517 	int vfidx;
2518 	struct pf_vf_bulletin_content *bulletin;
2519 
2520 	DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n");
2521 	for_each_vf(bp, vfidx) {
2522 		bulletin = BP_VF_BULLETIN(bp, vfidx);
2523 		if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2524 			bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0,
2525 					  htons(ETH_P_8021Q));
2526 	}
2527 }
2528 
2529 void bnx2x_disable_sriov(struct bnx2x *bp)
2530 {
2531 	if (pci_vfs_assigned(bp->pdev)) {
2532 		DP(BNX2X_MSG_IOV,
2533 		   "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2534 		return;
2535 	}
2536 
2537 	pci_disable_sriov(bp->pdev);
2538 }
2539 
2540 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
2541 			    struct bnx2x_virtf **vf,
2542 			    struct pf_vf_bulletin_content **bulletin,
2543 			    bool test_queue)
2544 {
2545 	if (bp->state != BNX2X_STATE_OPEN) {
2546 		BNX2X_ERR("PF is down - can't utilize iov-related functionality\n");
2547 		return -EINVAL;
2548 	}
2549 
2550 	if (!IS_SRIOV(bp)) {
2551 		BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n");
2552 		return -EINVAL;
2553 	}
2554 
2555 	if (vfidx >= BNX2X_NR_VIRTFN(bp)) {
2556 		BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
2557 			  vfidx, BNX2X_NR_VIRTFN(bp));
2558 		return -EINVAL;
2559 	}
2560 
2561 	/* init members */
2562 	*vf = BP_VF(bp, vfidx);
2563 	*bulletin = BP_VF_BULLETIN(bp, vfidx);
2564 
2565 	if (!*vf) {
2566 		BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx);
2567 		return -EINVAL;
2568 	}
2569 
2570 	if (test_queue && !(*vf)->vfqs) {
2571 		BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n",
2572 			  vfidx);
2573 		return -EINVAL;
2574 	}
2575 
2576 	if (!*bulletin) {
2577 		BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n",
2578 			  vfidx);
2579 		return -EINVAL;
2580 	}
2581 
2582 	return 0;
2583 }
2584 
2585 int bnx2x_get_vf_config(struct net_device *dev, int vfidx,
2586 			struct ifla_vf_info *ivi)
2587 {
2588 	struct bnx2x *bp = netdev_priv(dev);
2589 	struct bnx2x_virtf *vf = NULL;
2590 	struct pf_vf_bulletin_content *bulletin = NULL;
2591 	struct bnx2x_vlan_mac_obj *mac_obj;
2592 	struct bnx2x_vlan_mac_obj *vlan_obj;
2593 	int rc;
2594 
2595 	/* sanity and init */
2596 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2597 	if (rc)
2598 		return rc;
2599 
2600 	mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2601 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2602 	if (!mac_obj || !vlan_obj) {
2603 		BNX2X_ERR("VF partially initialized\n");
2604 		return -EINVAL;
2605 	}
2606 
2607 	ivi->vf = vfidx;
2608 	ivi->qos = 0;
2609 	ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */
2610 	ivi->min_tx_rate = 0;
2611 	ivi->spoofchk = 1; /*always enabled */
2612 	if (vf->state == VF_ENABLED) {
2613 		/* mac and vlan are in vlan_mac objects */
2614 		if (bnx2x_validate_vf_sp_objs(bp, vf, false)) {
2615 			mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac,
2616 						0, ETH_ALEN);
2617 			vlan_obj->get_n_elements(bp, vlan_obj, 1,
2618 						 (u8 *)&ivi->vlan, 0,
2619 						 VLAN_HLEN);
2620 		}
2621 	} else {
2622 		mutex_lock(&bp->vfdb->bulletin_mutex);
2623 		/* mac */
2624 		if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID))
2625 			/* mac configured by ndo so its in bulletin board */
2626 			memcpy(&ivi->mac, bulletin->mac, ETH_ALEN);
2627 		else
2628 			/* function has not been loaded yet. Show mac as 0s */
2629 			eth_zero_addr(ivi->mac);
2630 
2631 		/* vlan */
2632 		if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2633 			/* vlan configured by ndo so its in bulletin board */
2634 			memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN);
2635 		else
2636 			/* function has not been loaded yet. Show vlans as 0s */
2637 			memset(&ivi->vlan, 0, VLAN_HLEN);
2638 
2639 		mutex_unlock(&bp->vfdb->bulletin_mutex);
2640 	}
2641 
2642 	return 0;
2643 }
2644 
2645 /* New mac for VF. Consider these cases:
2646  * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
2647  *    supply at acquire.
2648  * 2. VF has already been acquired but has not yet initialized - store in local
2649  *    bulletin board. mac will be posted on VF bulletin board after VF init. VF
2650  *    will configure this mac when it is ready.
2651  * 3. VF has already initialized but has not yet setup a queue - post the new
2652  *    mac on VF's bulletin board right now. VF will configure this mac when it
2653  *    is ready.
2654  * 4. VF has already set a queue - delete any macs already configured for this
2655  *    queue and manually config the new mac.
2656  * In any event, once this function has been called refuse any attempts by the
2657  * VF to configure any mac for itself except for this mac. In case of a race
2658  * where the VF fails to see the new post on its bulletin board before sending a
2659  * mac configuration request, the PF will simply fail the request and VF can try
2660  * again after consulting its bulletin board.
2661  */
2662 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac)
2663 {
2664 	struct bnx2x *bp = netdev_priv(dev);
2665 	int rc, q_logical_state;
2666 	struct bnx2x_virtf *vf = NULL;
2667 	struct pf_vf_bulletin_content *bulletin = NULL;
2668 
2669 	if (!is_valid_ether_addr(mac)) {
2670 		BNX2X_ERR("mac address invalid\n");
2671 		return -EINVAL;
2672 	}
2673 
2674 	/* sanity and init */
2675 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2676 	if (rc)
2677 		return rc;
2678 
2679 	mutex_lock(&bp->vfdb->bulletin_mutex);
2680 
2681 	/* update PF's copy of the VF's bulletin. Will no longer accept mac
2682 	 * configuration requests from vf unless match this mac
2683 	 */
2684 	bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID;
2685 	memcpy(bulletin->mac, mac, ETH_ALEN);
2686 
2687 	/* Post update on VF's bulletin board */
2688 	rc = bnx2x_post_vf_bulletin(bp, vfidx);
2689 
2690 	/* release lock before checking return code */
2691 	mutex_unlock(&bp->vfdb->bulletin_mutex);
2692 
2693 	if (rc) {
2694 		BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2695 		return rc;
2696 	}
2697 
2698 	q_logical_state =
2699 		bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj));
2700 	if (vf->state == VF_ENABLED &&
2701 	    q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
2702 		/* configure the mac in device on this vf's queue */
2703 		unsigned long ramrod_flags = 0;
2704 		struct bnx2x_vlan_mac_obj *mac_obj;
2705 
2706 		/* User should be able to see failure reason in system logs */
2707 		if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2708 			return -EINVAL;
2709 
2710 		/* must lock vfpf channel to protect against vf flows */
2711 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2712 
2713 		/* remove existing eth macs */
2714 		mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2715 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true);
2716 		if (rc) {
2717 			BNX2X_ERR("failed to delete eth macs\n");
2718 			rc = -EINVAL;
2719 			goto out;
2720 		}
2721 
2722 		/* remove existing uc list macs */
2723 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true);
2724 		if (rc) {
2725 			BNX2X_ERR("failed to delete uc_list macs\n");
2726 			rc = -EINVAL;
2727 			goto out;
2728 		}
2729 
2730 		/* configure the new mac to device */
2731 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2732 		bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true,
2733 				  BNX2X_ETH_MAC, &ramrod_flags);
2734 
2735 out:
2736 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2737 	}
2738 
2739 	return rc;
2740 }
2741 
2742 static void bnx2x_set_vf_vlan_acceptance(struct bnx2x *bp,
2743 					 struct bnx2x_virtf *vf, bool accept)
2744 {
2745 	struct bnx2x_rx_mode_ramrod_params rx_ramrod;
2746 	unsigned long accept_flags;
2747 
2748 	/* need to remove/add the VF's accept_any_vlan bit */
2749 	accept_flags = bnx2x_leading_vfq(vf, accept_flags);
2750 	if (accept)
2751 		set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2752 	else
2753 		clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2754 
2755 	bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf,
2756 			      accept_flags);
2757 	bnx2x_leading_vfq(vf, accept_flags) = accept_flags;
2758 	bnx2x_config_rx_mode(bp, &rx_ramrod);
2759 }
2760 
2761 static int bnx2x_set_vf_vlan_filter(struct bnx2x *bp, struct bnx2x_virtf *vf,
2762 				    u16 vlan, bool add)
2763 {
2764 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
2765 	unsigned long ramrod_flags = 0;
2766 	int rc = 0;
2767 
2768 	/* configure the new vlan to device */
2769 	memset(&ramrod_param, 0, sizeof(ramrod_param));
2770 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2771 	ramrod_param.vlan_mac_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2772 	ramrod_param.ramrod_flags = ramrod_flags;
2773 	ramrod_param.user_req.u.vlan.vlan = vlan;
2774 	ramrod_param.user_req.cmd = add ? BNX2X_VLAN_MAC_ADD
2775 					: BNX2X_VLAN_MAC_DEL;
2776 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
2777 	if (rc) {
2778 		BNX2X_ERR("failed to configure vlan\n");
2779 		return -EINVAL;
2780 	}
2781 
2782 	return 0;
2783 }
2784 
2785 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos,
2786 		      __be16 vlan_proto)
2787 {
2788 	struct pf_vf_bulletin_content *bulletin = NULL;
2789 	struct bnx2x *bp = netdev_priv(dev);
2790 	struct bnx2x_vlan_mac_obj *vlan_obj;
2791 	unsigned long vlan_mac_flags = 0;
2792 	unsigned long ramrod_flags = 0;
2793 	struct bnx2x_virtf *vf = NULL;
2794 	int i, rc;
2795 
2796 	if (vlan > 4095) {
2797 		BNX2X_ERR("illegal vlan value %d\n", vlan);
2798 		return -EINVAL;
2799 	}
2800 
2801 	if (vlan_proto != htons(ETH_P_8021Q))
2802 		return -EPROTONOSUPPORT;
2803 
2804 	DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n",
2805 	   vfidx, vlan, 0);
2806 
2807 	/* sanity and init */
2808 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2809 	if (rc)
2810 		return rc;
2811 
2812 	/* update PF's copy of the VF's bulletin. No point in posting the vlan
2813 	 * to the VF since it doesn't have anything to do with it. But it useful
2814 	 * to store it here in case the VF is not up yet and we can only
2815 	 * configure the vlan later when it does. Treat vlan id 0 as remove the
2816 	 * Host tag.
2817 	 */
2818 	mutex_lock(&bp->vfdb->bulletin_mutex);
2819 
2820 	if (vlan > 0)
2821 		bulletin->valid_bitmap |= 1 << VLAN_VALID;
2822 	else
2823 		bulletin->valid_bitmap &= ~(1 << VLAN_VALID);
2824 	bulletin->vlan = vlan;
2825 
2826 	/* Post update on VF's bulletin board */
2827 	rc = bnx2x_post_vf_bulletin(bp, vfidx);
2828 	if (rc)
2829 		BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2830 	mutex_unlock(&bp->vfdb->bulletin_mutex);
2831 
2832 	/* is vf initialized and queue set up? */
2833 	if (vf->state != VF_ENABLED ||
2834 	    bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2835 	    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2836 		return rc;
2837 
2838 	/* User should be able to see error in system logs */
2839 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2840 		return -EINVAL;
2841 
2842 	/* must lock vfpf channel to protect against vf flows */
2843 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2844 
2845 	/* remove existing vlans */
2846 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2847 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2848 	rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags,
2849 				  &ramrod_flags);
2850 	if (rc) {
2851 		BNX2X_ERR("failed to delete vlans\n");
2852 		rc = -EINVAL;
2853 		goto out;
2854 	}
2855 
2856 	/* clear accept_any_vlan when HV forces vlan, otherwise
2857 	 * according to VF capabilities
2858 	 */
2859 	if (vlan || !(vf->cfg_flags & VF_CFG_VLAN_FILTER))
2860 		bnx2x_set_vf_vlan_acceptance(bp, vf, !vlan);
2861 
2862 	rc = bnx2x_set_vf_vlan_filter(bp, vf, vlan, true);
2863 	if (rc)
2864 		goto out;
2865 
2866 	/* send queue update ramrods to configure default vlan and
2867 	 * silent vlan removal
2868 	 */
2869 	for_each_vfq(vf, i) {
2870 		struct bnx2x_queue_state_params q_params = {NULL};
2871 		struct bnx2x_queue_update_params *update_params;
2872 
2873 		q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj);
2874 
2875 		/* validate the Q is UP */
2876 		if (bnx2x_get_q_logical_state(bp, q_params.q_obj) !=
2877 		    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2878 			continue;
2879 
2880 		__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2881 		q_params.cmd = BNX2X_Q_CMD_UPDATE;
2882 		update_params = &q_params.params.update;
2883 		__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
2884 			  &update_params->update_flags);
2885 		__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
2886 			  &update_params->update_flags);
2887 		if (vlan == 0) {
2888 			/* if vlan is 0 then we want to leave the VF traffic
2889 			 * untagged, and leave the incoming traffic untouched
2890 			 * (i.e. do not remove any vlan tags).
2891 			 */
2892 			__clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2893 				    &update_params->update_flags);
2894 			__clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2895 				    &update_params->update_flags);
2896 		} else {
2897 			/* configure default vlan to vf queue and set silent
2898 			 * vlan removal (the vf remains unaware of this vlan).
2899 			 */
2900 			__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2901 				  &update_params->update_flags);
2902 			__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2903 				  &update_params->update_flags);
2904 			update_params->def_vlan = vlan;
2905 			update_params->silent_removal_value =
2906 				vlan & VLAN_VID_MASK;
2907 			update_params->silent_removal_mask = VLAN_VID_MASK;
2908 		}
2909 
2910 		/* Update the Queue state */
2911 		rc = bnx2x_queue_state_change(bp, &q_params);
2912 		if (rc) {
2913 			BNX2X_ERR("Failed to configure default VLAN queue %d\n",
2914 				  i);
2915 			goto out;
2916 		}
2917 	}
2918 out:
2919 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2920 
2921 	if (rc)
2922 		DP(BNX2X_MSG_IOV,
2923 		   "updated VF[%d] vlan configuration (vlan = %d)\n",
2924 		   vfidx, vlan);
2925 
2926 	return rc;
2927 }
2928 
2929 /* crc is the first field in the bulletin board. Compute the crc over the
2930  * entire bulletin board excluding the crc field itself. Use the length field
2931  * as the Bulletin Board was posted by a PF with possibly a different version
2932  * from the vf which will sample it. Therefore, the length is computed by the
2933  * PF and then used blindly by the VF.
2934  */
2935 u32 bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content *bulletin)
2936 {
2937 	return crc32(BULLETIN_CRC_SEED,
2938 		 ((u8 *)bulletin) + sizeof(bulletin->crc),
2939 		 bulletin->length - sizeof(bulletin->crc));
2940 }
2941 
2942 /* Check for new posts on the bulletin board */
2943 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp)
2944 {
2945 	struct pf_vf_bulletin_content *bulletin;
2946 	int attempts;
2947 
2948 	/* sampling structure in mid post may result with corrupted data
2949 	 * validate crc to ensure coherency.
2950 	 */
2951 	for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) {
2952 		u32 crc;
2953 
2954 		/* sample the bulletin board */
2955 		memcpy(&bp->shadow_bulletin, bp->pf2vf_bulletin,
2956 		       sizeof(union pf_vf_bulletin));
2957 
2958 		crc = bnx2x_crc_vf_bulletin(&bp->shadow_bulletin.content);
2959 
2960 		if (bp->shadow_bulletin.content.crc == crc)
2961 			break;
2962 
2963 		BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
2964 			  bp->shadow_bulletin.content.crc, crc);
2965 	}
2966 
2967 	if (attempts >= BULLETIN_ATTEMPTS) {
2968 		BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
2969 			  attempts);
2970 		return PFVF_BULLETIN_CRC_ERR;
2971 	}
2972 	bulletin = &bp->shadow_bulletin.content;
2973 
2974 	/* bulletin board hasn't changed since last sample */
2975 	if (bp->old_bulletin.version == bulletin->version)
2976 		return PFVF_BULLETIN_UNCHANGED;
2977 
2978 	/* the mac address in bulletin board is valid and is new */
2979 	if (bulletin->valid_bitmap & 1 << MAC_ADDR_VALID &&
2980 	    !ether_addr_equal(bulletin->mac, bp->old_bulletin.mac)) {
2981 		/* update new mac to net device */
2982 		memcpy(bp->dev->dev_addr, bulletin->mac, ETH_ALEN);
2983 	}
2984 
2985 	if (bulletin->valid_bitmap & (1 << LINK_VALID)) {
2986 		DP(BNX2X_MSG_IOV, "link update speed %d flags %x\n",
2987 		   bulletin->link_speed, bulletin->link_flags);
2988 
2989 		bp->vf_link_vars.line_speed = bulletin->link_speed;
2990 		bp->vf_link_vars.link_report_flags = 0;
2991 		/* Link is down */
2992 		if (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)
2993 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2994 				  &bp->vf_link_vars.link_report_flags);
2995 		/* Full DUPLEX */
2996 		if (bulletin->link_flags & VFPF_LINK_REPORT_FULL_DUPLEX)
2997 			__set_bit(BNX2X_LINK_REPORT_FD,
2998 				  &bp->vf_link_vars.link_report_flags);
2999 		/* Rx Flow Control is ON */
3000 		if (bulletin->link_flags & VFPF_LINK_REPORT_RX_FC_ON)
3001 			__set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
3002 				  &bp->vf_link_vars.link_report_flags);
3003 		/* Tx Flow Control is ON */
3004 		if (bulletin->link_flags & VFPF_LINK_REPORT_TX_FC_ON)
3005 			__set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
3006 				  &bp->vf_link_vars.link_report_flags);
3007 		__bnx2x_link_report(bp);
3008 	}
3009 
3010 	/* copy new bulletin board to bp */
3011 	memcpy(&bp->old_bulletin, bulletin,
3012 	       sizeof(struct pf_vf_bulletin_content));
3013 
3014 	return PFVF_BULLETIN_UPDATED;
3015 }
3016 
3017 void bnx2x_timer_sriov(struct bnx2x *bp)
3018 {
3019 	bnx2x_sample_bulletin(bp);
3020 
3021 	/* if channel is down we need to self destruct */
3022 	if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN)
3023 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
3024 				       BNX2X_MSG_IOV);
3025 }
3026 
3027 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp)
3028 {
3029 	/* vf doorbells are embedded within the regview */
3030 	return bp->regview + PXP_VF_ADDR_DB_START;
3031 }
3032 
3033 void bnx2x_vf_pci_dealloc(struct bnx2x *bp)
3034 {
3035 	BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
3036 		       sizeof(struct bnx2x_vf_mbx_msg));
3037 	BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->pf2vf_bulletin_mapping,
3038 		       sizeof(union pf_vf_bulletin));
3039 }
3040 
3041 int bnx2x_vf_pci_alloc(struct bnx2x *bp)
3042 {
3043 	mutex_init(&bp->vf2pf_mutex);
3044 
3045 	/* allocate vf2pf mailbox for vf to pf channel */
3046 	bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping,
3047 					 sizeof(struct bnx2x_vf_mbx_msg));
3048 	if (!bp->vf2pf_mbox)
3049 		goto alloc_mem_err;
3050 
3051 	/* allocate pf 2 vf bulletin board */
3052 	bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping,
3053 					     sizeof(union pf_vf_bulletin));
3054 	if (!bp->pf2vf_bulletin)
3055 		goto alloc_mem_err;
3056 
3057 	bnx2x_vf_bulletin_finalize(&bp->pf2vf_bulletin->content, true);
3058 
3059 	return 0;
3060 
3061 alloc_mem_err:
3062 	bnx2x_vf_pci_dealloc(bp);
3063 	return -ENOMEM;
3064 }
3065 
3066 void bnx2x_iov_channel_down(struct bnx2x *bp)
3067 {
3068 	int vf_idx;
3069 	struct pf_vf_bulletin_content *bulletin;
3070 
3071 	if (!IS_SRIOV(bp))
3072 		return;
3073 
3074 	for_each_vf(bp, vf_idx) {
3075 		/* locate this VFs bulletin board and update the channel down
3076 		 * bit
3077 		 */
3078 		bulletin = BP_VF_BULLETIN(bp, vf_idx);
3079 		bulletin->valid_bitmap |= 1 << CHANNEL_DOWN;
3080 
3081 		/* update vf bulletin board */
3082 		bnx2x_post_vf_bulletin(bp, vf_idx);
3083 	}
3084 }
3085 
3086 void bnx2x_iov_task(struct work_struct *work)
3087 {
3088 	struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work);
3089 
3090 	if (!netif_running(bp->dev))
3091 		return;
3092 
3093 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR,
3094 			       &bp->iov_task_state))
3095 		bnx2x_vf_handle_flr_event(bp);
3096 
3097 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG,
3098 			       &bp->iov_task_state))
3099 		bnx2x_vf_mbx(bp);
3100 }
3101 
3102 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag)
3103 {
3104 	smp_mb__before_atomic();
3105 	set_bit(flag, &bp->iov_task_state);
3106 	smp_mb__after_atomic();
3107 	DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
3108 	queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0);
3109 }
3110