1 /* bnx2x_sriov.c: Broadcom Everest network driver.
2  *
3  * Copyright 2009-2013 Broadcom Corporation
4  *
5  * Unless you and Broadcom execute a separate written software license
6  * agreement governing use of this software, this software is licensed to you
7  * under the terms of the GNU General Public License version 2, available
8  * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
9  *
10  * Notwithstanding the above, under no circumstances may you combine this
11  * software in any way with any other Broadcom software provided under a
12  * license other than the GPL, without Broadcom's express prior written
13  * consent.
14  *
15  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
16  * Written by: Shmulik Ravid <shmulikr@broadcom.com>
17  *	       Ariel Elior <ariele@broadcom.com>
18  *
19  */
20 #include "bnx2x.h"
21 #include "bnx2x_init.h"
22 #include "bnx2x_cmn.h"
23 #include "bnx2x_sp.h"
24 #include <linux/crc32.h>
25 #include <linux/if_vlan.h>
26 
27 /* General service functions */
28 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
29 					 u16 pf_id)
30 {
31 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
32 		pf_id);
33 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
34 		pf_id);
35 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
36 		pf_id);
37 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
38 		pf_id);
39 }
40 
41 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
42 					u8 enable)
43 {
44 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
45 		enable);
46 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
47 		enable);
48 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
49 		enable);
50 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
51 		enable);
52 }
53 
54 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
55 {
56 	int idx;
57 
58 	for_each_vf(bp, idx)
59 		if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid)
60 			break;
61 	return idx;
62 }
63 
64 static
65 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
66 {
67 	u16 idx =  (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid);
68 	return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL;
69 }
70 
71 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf,
72 				u8 igu_sb_id, u8 segment, u16 index, u8 op,
73 				u8 update)
74 {
75 	/* acking a VF sb through the PF - use the GRC */
76 	u32 ctl;
77 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
78 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
79 	u32 func_encode = vf->abs_vfid;
80 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id;
81 	struct igu_regular cmd_data = {0};
82 
83 	cmd_data.sb_id_and_flags =
84 			((index << IGU_REGULAR_SB_INDEX_SHIFT) |
85 			 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
86 			 (update << IGU_REGULAR_BUPDATE_SHIFT) |
87 			 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
88 
89 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
90 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
91 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
92 
93 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
94 	   cmd_data.sb_id_and_flags, igu_addr_data);
95 	REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags);
96 	mmiowb();
97 	barrier();
98 
99 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
100 	   ctl, igu_addr_ctl);
101 	REG_WR(bp, igu_addr_ctl, ctl);
102 	mmiowb();
103 	barrier();
104 }
105 
106 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp,
107 				       struct bnx2x_virtf *vf,
108 				       bool print_err)
109 {
110 	if (!bnx2x_leading_vfq(vf, sp_initialized)) {
111 		if (print_err)
112 			BNX2X_ERR("Slowpath objects not yet initialized!\n");
113 		else
114 			DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n");
115 		return false;
116 	}
117 	return true;
118 }
119 
120 /* VFOP operations states */
121 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf,
122 			      struct bnx2x_queue_init_params *init_params,
123 			      struct bnx2x_queue_setup_params *setup_params,
124 			      u16 q_idx, u16 sb_idx)
125 {
126 	DP(BNX2X_MSG_IOV,
127 	   "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
128 	   vf->abs_vfid,
129 	   q_idx,
130 	   sb_idx,
131 	   init_params->tx.sb_cq_index,
132 	   init_params->tx.hc_rate,
133 	   setup_params->flags,
134 	   setup_params->txq_params.traffic_type);
135 }
136 
137 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf,
138 			    struct bnx2x_queue_init_params *init_params,
139 			    struct bnx2x_queue_setup_params *setup_params,
140 			    u16 q_idx, u16 sb_idx)
141 {
142 	struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params;
143 
144 	DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
145 	   "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
146 	   vf->abs_vfid,
147 	   q_idx,
148 	   sb_idx,
149 	   init_params->rx.sb_cq_index,
150 	   init_params->rx.hc_rate,
151 	   setup_params->gen_params.mtu,
152 	   rxq_params->buf_sz,
153 	   rxq_params->sge_buf_sz,
154 	   rxq_params->max_sges_pkt,
155 	   rxq_params->tpa_agg_sz,
156 	   setup_params->flags,
157 	   rxq_params->drop_flags,
158 	   rxq_params->cache_line_log);
159 }
160 
161 void bnx2x_vfop_qctor_prep(struct bnx2x *bp,
162 			   struct bnx2x_virtf *vf,
163 			   struct bnx2x_vf_queue *q,
164 			   struct bnx2x_vf_queue_construct_params *p,
165 			   unsigned long q_type)
166 {
167 	struct bnx2x_queue_init_params *init_p = &p->qstate.params.init;
168 	struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup;
169 
170 	/* INIT */
171 
172 	/* Enable host coalescing in the transition to INIT state */
173 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags))
174 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags);
175 
176 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags))
177 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags);
178 
179 	/* FW SB ID */
180 	init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
181 	init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
182 
183 	/* context */
184 	init_p->cxts[0] = q->cxt;
185 
186 	/* SETUP */
187 
188 	/* Setup-op general parameters */
189 	setup_p->gen_params.spcl_id = vf->sp_cl_id;
190 	setup_p->gen_params.stat_id = vfq_stat_id(vf, q);
191 
192 	/* Setup-op pause params:
193 	 * Nothing to do, the pause thresholds are set by default to 0 which
194 	 * effectively turns off the feature for this queue. We don't want
195 	 * one queue (VF) to interfering with another queue (another VF)
196 	 */
197 	if (vf->cfg_flags & VF_CFG_FW_FC)
198 		BNX2X_ERR("No support for pause to VFs (abs_vfid: %d)\n",
199 			  vf->abs_vfid);
200 	/* Setup-op flags:
201 	 * collect statistics, zero statistics, local-switching, security,
202 	 * OV for Flex10, RSS and MCAST for leading
203 	 */
204 	if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags))
205 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags);
206 
207 	/* for VFs, enable tx switching, bd coherency, and mac address
208 	 * anti-spoofing
209 	 */
210 	__set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags);
211 	__set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags);
212 	__set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
213 
214 	/* Setup-op rx parameters */
215 	if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) {
216 		struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params;
217 
218 		rxq_p->cl_qzone_id = vfq_qzone_id(vf, q);
219 		rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx);
220 		rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid);
221 
222 		if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags))
223 			rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES;
224 	}
225 
226 	/* Setup-op tx parameters */
227 	if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) {
228 		setup_p->txq_params.tss_leading_cl_id = vf->leading_rss;
229 		setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
230 	}
231 }
232 
233 static int bnx2x_vf_queue_create(struct bnx2x *bp,
234 				 struct bnx2x_virtf *vf, int qid,
235 				 struct bnx2x_vf_queue_construct_params *qctor)
236 {
237 	struct bnx2x_queue_state_params *q_params;
238 	int rc = 0;
239 
240 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
241 
242 	/* Prepare ramrod information */
243 	q_params = &qctor->qstate;
244 	q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
245 	set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags);
246 
247 	if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
248 	    BNX2X_Q_LOGICAL_STATE_ACTIVE) {
249 		DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n");
250 		goto out;
251 	}
252 
253 	/* Run Queue 'construction' ramrods */
254 	q_params->cmd = BNX2X_Q_CMD_INIT;
255 	rc = bnx2x_queue_state_change(bp, q_params);
256 	if (rc)
257 		goto out;
258 
259 	memcpy(&q_params->params.setup, &qctor->prep_qsetup,
260 	       sizeof(struct bnx2x_queue_setup_params));
261 	q_params->cmd = BNX2X_Q_CMD_SETUP;
262 	rc = bnx2x_queue_state_change(bp, q_params);
263 	if (rc)
264 		goto out;
265 
266 	/* enable interrupts */
267 	bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)),
268 			    USTORM_ID, 0, IGU_INT_ENABLE, 0);
269 out:
270 	return rc;
271 }
272 
273 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf,
274 				  int qid)
275 {
276 	enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT,
277 				       BNX2X_Q_CMD_TERMINATE,
278 				       BNX2X_Q_CMD_CFC_DEL};
279 	struct bnx2x_queue_state_params q_params;
280 	int rc, i;
281 
282 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
283 
284 	/* Prepare ramrod information */
285 	memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params));
286 	q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
287 	set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
288 
289 	if (bnx2x_get_q_logical_state(bp, q_params.q_obj) ==
290 	    BNX2X_Q_LOGICAL_STATE_STOPPED) {
291 		DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n");
292 		goto out;
293 	}
294 
295 	/* Run Queue 'destruction' ramrods */
296 	for (i = 0; i < ARRAY_SIZE(cmds); i++) {
297 		q_params.cmd = cmds[i];
298 		rc = bnx2x_queue_state_change(bp, &q_params);
299 		if (rc) {
300 			BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]);
301 			return rc;
302 		}
303 	}
304 out:
305 	/* Clean Context */
306 	if (bnx2x_vfq(vf, qid, cxt)) {
307 		bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0;
308 		bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0;
309 	}
310 
311 	return 0;
312 }
313 
314 static void
315 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid)
316 {
317 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
318 	if (vf) {
319 		/* the first igu entry belonging to VFs of this PF */
320 		if (!BP_VFDB(bp)->first_vf_igu_entry)
321 			BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id;
322 
323 		/* the first igu entry belonging to this VF */
324 		if (!vf_sb_count(vf))
325 			vf->igu_base_id = igu_sb_id;
326 
327 		++vf_sb_count(vf);
328 		++vf->sb_count;
329 	}
330 	BP_VFDB(bp)->vf_sbs_pool++;
331 }
332 
333 static inline void bnx2x_vf_vlan_credit(struct bnx2x *bp,
334 					struct bnx2x_vlan_mac_obj *obj,
335 					atomic_t *counter)
336 {
337 	struct list_head *pos;
338 	int read_lock;
339 	int cnt = 0;
340 
341 	read_lock = bnx2x_vlan_mac_h_read_lock(bp, obj);
342 	if (read_lock)
343 		DP(BNX2X_MSG_SP, "Failed to take vlan mac read head; continuing anyway\n");
344 
345 	list_for_each(pos, &obj->head)
346 		cnt++;
347 
348 	if (!read_lock)
349 		bnx2x_vlan_mac_h_read_unlock(bp, obj);
350 
351 	atomic_set(counter, cnt);
352 }
353 
354 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf,
355 				   int qid, bool drv_only, bool mac)
356 {
357 	struct bnx2x_vlan_mac_ramrod_params ramrod;
358 	int rc;
359 
360 	DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid,
361 	   mac ? "MACs" : "VLANs");
362 
363 	/* Prepare ramrod params */
364 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
365 	if (mac) {
366 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
367 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
368 	} else {
369 		set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
370 			&ramrod.user_req.vlan_mac_flags);
371 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
372 	}
373 	ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL;
374 
375 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
376 	if (drv_only)
377 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
378 	else
379 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
380 
381 	/* Start deleting */
382 	rc = ramrod.vlan_mac_obj->delete_all(bp,
383 					     ramrod.vlan_mac_obj,
384 					     &ramrod.user_req.vlan_mac_flags,
385 					     &ramrod.ramrod_flags);
386 	if (rc) {
387 		BNX2X_ERR("Failed to delete all %s\n",
388 			  mac ? "MACs" : "VLANs");
389 		return rc;
390 	}
391 
392 	/* Clear the vlan counters */
393 	if (!mac)
394 		atomic_set(&bnx2x_vfq(vf, qid, vlan_count), 0);
395 
396 	return 0;
397 }
398 
399 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp,
400 				    struct bnx2x_virtf *vf, int qid,
401 				    struct bnx2x_vf_mac_vlan_filter *filter,
402 				    bool drv_only)
403 {
404 	struct bnx2x_vlan_mac_ramrod_params ramrod;
405 	int rc;
406 
407 	DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n",
408 	   vf->abs_vfid, filter->add ? "Adding" : "Deleting",
409 	   filter->type == BNX2X_VF_FILTER_MAC ? "MAC" : "VLAN");
410 
411 	/* Prepare ramrod params */
412 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
413 	if (filter->type == BNX2X_VF_FILTER_VLAN) {
414 		set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
415 			&ramrod.user_req.vlan_mac_flags);
416 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
417 		ramrod.user_req.u.vlan.vlan = filter->vid;
418 	} else {
419 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
420 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
421 		memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
422 	}
423 	ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD :
424 					    BNX2X_VLAN_MAC_DEL;
425 
426 	/* Verify there are available vlan credits */
427 	if (filter->add && filter->type == BNX2X_VF_FILTER_VLAN &&
428 	    (atomic_read(&bnx2x_vfq(vf, qid, vlan_count)) >=
429 	     vf_vlan_rules_cnt(vf))) {
430 		BNX2X_ERR("No credits for vlan [%d >= %d]\n",
431 			  atomic_read(&bnx2x_vfq(vf, qid, vlan_count)),
432 			  vf_vlan_rules_cnt(vf));
433 		return -ENOMEM;
434 	}
435 
436 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
437 	if (drv_only)
438 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
439 	else
440 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
441 
442 	/* Add/Remove the filter */
443 	rc = bnx2x_config_vlan_mac(bp, &ramrod);
444 	if (rc && rc != -EEXIST) {
445 		BNX2X_ERR("Failed to %s %s\n",
446 			  filter->add ? "add" : "delete",
447 			  filter->type == BNX2X_VF_FILTER_MAC ? "MAC" :
448 								"VLAN");
449 		return rc;
450 	}
451 
452 	/* Update the vlan counters */
453 	if (filter->type == BNX2X_VF_FILTER_VLAN)
454 		bnx2x_vf_vlan_credit(bp, ramrod.vlan_mac_obj,
455 				     &bnx2x_vfq(vf, qid, vlan_count));
456 
457 	return 0;
458 }
459 
460 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf,
461 				  struct bnx2x_vf_mac_vlan_filters *filters,
462 				  int qid, bool drv_only)
463 {
464 	int rc = 0, i;
465 
466 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
467 
468 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
469 		return -EINVAL;
470 
471 	/* Prepare ramrod params */
472 	for (i = 0; i < filters->count; i++) {
473 		rc = bnx2x_vf_mac_vlan_config(bp, vf, qid,
474 					      &filters->filters[i], drv_only);
475 		if (rc)
476 			break;
477 	}
478 
479 	/* Rollback if needed */
480 	if (i != filters->count) {
481 		BNX2X_ERR("Managed only %d/%d filters - rolling back\n",
482 			  i, filters->count + 1);
483 		while (--i >= 0) {
484 			filters->filters[i].add = !filters->filters[i].add;
485 			bnx2x_vf_mac_vlan_config(bp, vf, qid,
486 						 &filters->filters[i],
487 						 drv_only);
488 		}
489 	}
490 
491 	/* It's our responsibility to free the filters */
492 	kfree(filters);
493 
494 	return rc;
495 }
496 
497 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid,
498 			 struct bnx2x_vf_queue_construct_params *qctor)
499 {
500 	int rc;
501 
502 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
503 
504 	rc = bnx2x_vf_queue_create(bp, vf, qid, qctor);
505 	if (rc)
506 		goto op_err;
507 
508 	/* Configure vlan0 for leading queue */
509 	if (!qid) {
510 		struct bnx2x_vf_mac_vlan_filter filter;
511 
512 		memset(&filter, 0, sizeof(struct bnx2x_vf_mac_vlan_filter));
513 		filter.type = BNX2X_VF_FILTER_VLAN;
514 		filter.add = true;
515 		filter.vid = 0;
516 		rc = bnx2x_vf_mac_vlan_config(bp, vf, qid, &filter, false);
517 		if (rc)
518 			goto op_err;
519 	}
520 
521 	/* Schedule the configuration of any pending vlan filters */
522 	vf->cfg_flags |= VF_CFG_VLAN;
523 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN,
524 			       BNX2X_MSG_IOV);
525 	return 0;
526 op_err:
527 	BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
528 	return rc;
529 }
530 
531 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf,
532 			       int qid)
533 {
534 	int rc;
535 
536 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
537 
538 	/* If needed, clean the filtering data base */
539 	if ((qid == LEADING_IDX) &&
540 	    bnx2x_validate_vf_sp_objs(bp, vf, false)) {
541 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, false);
542 		if (rc)
543 			goto op_err;
544 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, true);
545 		if (rc)
546 			goto op_err;
547 	}
548 
549 	/* Terminate queue */
550 	if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) {
551 		struct bnx2x_queue_state_params qstate;
552 
553 		memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
554 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
555 		qstate.q_obj->state = BNX2X_Q_STATE_STOPPED;
556 		qstate.cmd = BNX2X_Q_CMD_TERMINATE;
557 		set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
558 		rc = bnx2x_queue_state_change(bp, &qstate);
559 		if (rc)
560 			goto op_err;
561 	}
562 
563 	return 0;
564 op_err:
565 	BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
566 	return rc;
567 }
568 
569 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf,
570 		   bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only)
571 {
572 	struct bnx2x_mcast_list_elem *mc = NULL;
573 	struct bnx2x_mcast_ramrod_params mcast;
574 	int rc, i;
575 
576 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
577 
578 	/* Prepare Multicast command */
579 	memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params));
580 	mcast.mcast_obj = &vf->mcast_obj;
581 	if (drv_only)
582 		set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags);
583 	else
584 		set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags);
585 	if (mc_num) {
586 		mc = kzalloc(mc_num * sizeof(struct bnx2x_mcast_list_elem),
587 			     GFP_KERNEL);
588 		if (!mc) {
589 			BNX2X_ERR("Cannot Configure mulicasts due to lack of memory\n");
590 			return -ENOMEM;
591 		}
592 	}
593 
594 	/* clear existing mcasts */
595 	mcast.mcast_list_len = vf->mcast_list_len;
596 	vf->mcast_list_len = mc_num;
597 	rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL);
598 	if (rc) {
599 		BNX2X_ERR("Failed to remove multicasts\n");
600 		if (mc)
601 			kfree(mc);
602 		return rc;
603 	}
604 
605 	/* update mcast list on the ramrod params */
606 	if (mc_num) {
607 		INIT_LIST_HEAD(&mcast.mcast_list);
608 		for (i = 0; i < mc_num; i++) {
609 			mc[i].mac = mcasts[i];
610 			list_add_tail(&mc[i].link,
611 				      &mcast.mcast_list);
612 		}
613 
614 		/* add new mcasts */
615 		mcast.mcast_list_len = mc_num;
616 		rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_ADD);
617 		if (rc)
618 			BNX2X_ERR("Faled to add multicasts\n");
619 		kfree(mc);
620 	}
621 
622 	return rc;
623 }
624 
625 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid,
626 				  struct bnx2x_rx_mode_ramrod_params *ramrod,
627 				  struct bnx2x_virtf *vf,
628 				  unsigned long accept_flags)
629 {
630 	struct bnx2x_vf_queue *vfq = vfq_get(vf, qid);
631 
632 	memset(ramrod, 0, sizeof(*ramrod));
633 	ramrod->cid = vfq->cid;
634 	ramrod->cl_id = vfq_cl_id(vf, vfq);
635 	ramrod->rx_mode_obj = &bp->rx_mode_obj;
636 	ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid);
637 	ramrod->rx_accept_flags = accept_flags;
638 	ramrod->tx_accept_flags = accept_flags;
639 	ramrod->pstate = &vf->filter_state;
640 	ramrod->state = BNX2X_FILTER_RX_MODE_PENDING;
641 
642 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
643 	set_bit(RAMROD_RX, &ramrod->ramrod_flags);
644 	set_bit(RAMROD_TX, &ramrod->ramrod_flags);
645 
646 	ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2);
647 	ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2);
648 }
649 
650 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf,
651 		    int qid, unsigned long accept_flags)
652 {
653 	struct bnx2x_rx_mode_ramrod_params ramrod;
654 
655 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
656 
657 	bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags);
658 	set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
659 	vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags;
660 	return bnx2x_config_rx_mode(bp, &ramrod);
661 }
662 
663 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid)
664 {
665 	int rc;
666 
667 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
668 
669 	/* Remove all classification configuration for leading queue */
670 	if (qid == LEADING_IDX) {
671 		rc = bnx2x_vf_rxmode(bp, vf, qid, 0);
672 		if (rc)
673 			goto op_err;
674 
675 		/* Remove filtering if feasible */
676 		if (bnx2x_validate_vf_sp_objs(bp, vf, true)) {
677 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
678 						     false, false);
679 			if (rc)
680 				goto op_err;
681 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
682 						     false, true);
683 			if (rc)
684 				goto op_err;
685 			rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false);
686 			if (rc)
687 				goto op_err;
688 		}
689 	}
690 
691 	/* Destroy queue */
692 	rc = bnx2x_vf_queue_destroy(bp, vf, qid);
693 	if (rc)
694 		goto op_err;
695 	return rc;
696 op_err:
697 	BNX2X_ERR("vf[%d:%d] error: rc %d\n",
698 		  vf->abs_vfid, qid, rc);
699 	return rc;
700 }
701 
702 /* VF enable primitives
703  * when pretend is required the caller is responsible
704  * for calling pretend prior to calling these routines
705  */
706 
707 /* internal vf enable - until vf is enabled internally all transactions
708  * are blocked. This routine should always be called last with pretend.
709  */
710 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable)
711 {
712 	REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0);
713 }
714 
715 /* clears vf error in all semi blocks */
716 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid)
717 {
718 	REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid);
719 	REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid);
720 	REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid);
721 	REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid);
722 }
723 
724 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid)
725 {
726 	u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5;
727 	u32 was_err_reg = 0;
728 
729 	switch (was_err_group) {
730 	case 0:
731 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR;
732 	    break;
733 	case 1:
734 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR;
735 	    break;
736 	case 2:
737 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR;
738 	    break;
739 	case 3:
740 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR;
741 	    break;
742 	}
743 	REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f));
744 }
745 
746 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf)
747 {
748 	int i;
749 	u32 val;
750 
751 	/* Set VF masks and configuration - pretend */
752 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
753 
754 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
755 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
756 	REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
757 	REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
758 	REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
759 	REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
760 
761 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
762 	val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN);
763 	if (vf->cfg_flags & VF_CFG_INT_SIMD)
764 		val |= IGU_VF_CONF_SINGLE_ISR_EN;
765 	val &= ~IGU_VF_CONF_PARENT_MASK;
766 	val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT;
767 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
768 
769 	DP(BNX2X_MSG_IOV,
770 	   "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n",
771 	   vf->abs_vfid, val);
772 
773 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
774 
775 	/* iterate over all queues, clear sb consumer */
776 	for (i = 0; i < vf_sb_count(vf); i++) {
777 		u8 igu_sb_id = vf_igu_sb(vf, i);
778 
779 		/* zero prod memory */
780 		REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0);
781 
782 		/* clear sb state machine */
783 		bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id,
784 				       false /* VF */);
785 
786 		/* disable + update */
787 		bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0,
788 				    IGU_INT_DISABLE, 1);
789 	}
790 }
791 
792 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid)
793 {
794 	/* set the VF-PF association in the FW */
795 	storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp));
796 	storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1);
797 
798 	/* clear vf errors*/
799 	bnx2x_vf_semi_clear_err(bp, abs_vfid);
800 	bnx2x_vf_pglue_clear_err(bp, abs_vfid);
801 
802 	/* internal vf-enable - pretend */
803 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid));
804 	DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid);
805 	bnx2x_vf_enable_internal(bp, true);
806 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
807 }
808 
809 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf)
810 {
811 	/* Reset vf in IGU  interrupts are still disabled */
812 	bnx2x_vf_igu_reset(bp, vf);
813 
814 	/* pretend to enable the vf with the PBF */
815 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
816 	REG_WR(bp, PBF_REG_DISABLE_VF, 0);
817 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
818 }
819 
820 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid)
821 {
822 	struct pci_dev *dev;
823 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
824 
825 	if (!vf)
826 		return false;
827 
828 	dev = pci_get_bus_and_slot(vf->bus, vf->devfn);
829 	if (dev)
830 		return bnx2x_is_pcie_pending(dev);
831 	return false;
832 }
833 
834 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid)
835 {
836 	/* Verify no pending pci transactions */
837 	if (bnx2x_vf_is_pcie_pending(bp, abs_vfid))
838 		BNX2X_ERR("PCIE Transactions still pending\n");
839 
840 	return 0;
841 }
842 
843 static void bnx2x_iov_re_set_vlan_filters(struct bnx2x *bp,
844 					  struct bnx2x_virtf *vf,
845 					  int new)
846 {
847 	int num = vf_vlan_rules_cnt(vf);
848 	int diff = new - num;
849 	bool rc = true;
850 
851 	DP(BNX2X_MSG_IOV, "vf[%d] - %d vlan filter credits [previously %d]\n",
852 	   vf->abs_vfid, new, num);
853 
854 	if (diff > 0)
855 		rc = bp->vlans_pool.get(&bp->vlans_pool, diff);
856 	else if (diff < 0)
857 		rc = bp->vlans_pool.put(&bp->vlans_pool, -diff);
858 
859 	if (rc)
860 		vf_vlan_rules_cnt(vf) = new;
861 	else
862 		DP(BNX2X_MSG_IOV, "vf[%d] - Failed to configure vlan filter credits change\n",
863 		   vf->abs_vfid);
864 }
865 
866 /* must be called after the number of PF queues and the number of VFs are
867  * both known
868  */
869 static void
870 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
871 {
872 	struct vf_pf_resc_request *resc = &vf->alloc_resc;
873 	u16 vlan_count = 0;
874 
875 	/* will be set only during VF-ACQUIRE */
876 	resc->num_rxqs = 0;
877 	resc->num_txqs = 0;
878 
879 	/* no credit calculations for macs (just yet) */
880 	resc->num_mac_filters = 1;
881 
882 	/* divvy up vlan rules */
883 	bnx2x_iov_re_set_vlan_filters(bp, vf, 0);
884 	vlan_count = bp->vlans_pool.check(&bp->vlans_pool);
885 	vlan_count = 1 << ilog2(vlan_count);
886 	bnx2x_iov_re_set_vlan_filters(bp, vf,
887 				      vlan_count / BNX2X_NR_VIRTFN(bp));
888 
889 	/* no real limitation */
890 	resc->num_mc_filters = 0;
891 
892 	/* num_sbs already set */
893 	resc->num_sbs = vf->sb_count;
894 }
895 
896 /* FLR routines: */
897 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
898 {
899 	/* reset the state variables */
900 	bnx2x_iov_static_resc(bp, vf);
901 	vf->state = VF_FREE;
902 }
903 
904 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf)
905 {
906 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
907 
908 	/* DQ usage counter */
909 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
910 	bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT,
911 					"DQ VF usage counter timed out",
912 					poll_cnt);
913 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
914 
915 	/* FW cleanup command - poll for the results */
916 	if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid),
917 				   poll_cnt))
918 		BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid);
919 
920 	/* verify TX hw is flushed */
921 	bnx2x_tx_hw_flushed(bp, poll_cnt);
922 }
923 
924 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf)
925 {
926 	int rc, i;
927 
928 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
929 
930 	/* the cleanup operations are valid if and only if the VF
931 	 * was first acquired.
932 	 */
933 	for (i = 0; i < vf_rxq_count(vf); i++) {
934 		rc = bnx2x_vf_queue_flr(bp, vf, i);
935 		if (rc)
936 			goto out;
937 	}
938 
939 	/* remove multicasts */
940 	bnx2x_vf_mcast(bp, vf, NULL, 0, true);
941 
942 	/* dispatch final cleanup and wait for HW queues to flush */
943 	bnx2x_vf_flr_clnup_hw(bp, vf);
944 
945 	/* release VF resources */
946 	bnx2x_vf_free_resc(bp, vf);
947 
948 	/* re-open the mailbox */
949 	bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
950 	return;
951 out:
952 	BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n",
953 		  vf->abs_vfid, i, rc);
954 }
955 
956 static void bnx2x_vf_flr_clnup(struct bnx2x *bp)
957 {
958 	struct bnx2x_virtf *vf;
959 	int i;
960 
961 	for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) {
962 		/* VF should be RESET & in FLR cleanup states */
963 		if (bnx2x_vf(bp, i, state) != VF_RESET ||
964 		    !bnx2x_vf(bp, i, flr_clnup_stage))
965 			continue;
966 
967 		DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n",
968 		   i, BNX2X_NR_VIRTFN(bp));
969 
970 		vf = BP_VF(bp, i);
971 
972 		/* lock the vf pf channel */
973 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
974 
975 		/* invoke the VF FLR SM */
976 		bnx2x_vf_flr(bp, vf);
977 
978 		/* mark the VF to be ACKED and continue */
979 		vf->flr_clnup_stage = false;
980 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
981 	}
982 
983 	/* Acknowledge the handled VFs.
984 	 * we are acknowledge all the vfs which an flr was requested for, even
985 	 * if amongst them there are such that we never opened, since the mcp
986 	 * will interrupt us immediately again if we only ack some of the bits,
987 	 * resulting in an endless loop. This can happen for example in KVM
988 	 * where an 'all ones' flr request is sometimes given by hyper visor
989 	 */
990 	DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
991 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
992 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
993 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i],
994 			  bp->vfdb->flrd_vfs[i]);
995 
996 	bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0);
997 
998 	/* clear the acked bits - better yet if the MCP implemented
999 	 * write to clear semantics
1000 	 */
1001 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
1002 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0);
1003 }
1004 
1005 void bnx2x_vf_handle_flr_event(struct bnx2x *bp)
1006 {
1007 	int i;
1008 
1009 	/* Read FLR'd VFs */
1010 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
1011 		bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]);
1012 
1013 	DP(BNX2X_MSG_MCP,
1014 	   "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
1015 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
1016 
1017 	for_each_vf(bp, i) {
1018 		struct bnx2x_virtf *vf = BP_VF(bp, i);
1019 		u32 reset = 0;
1020 
1021 		if (vf->abs_vfid < 32)
1022 			reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid);
1023 		else
1024 			reset = bp->vfdb->flrd_vfs[1] &
1025 				(1 << (vf->abs_vfid - 32));
1026 
1027 		if (reset) {
1028 			/* set as reset and ready for cleanup */
1029 			vf->state = VF_RESET;
1030 			vf->flr_clnup_stage = true;
1031 
1032 			DP(BNX2X_MSG_IOV,
1033 			   "Initiating Final cleanup for VF %d\n",
1034 			   vf->abs_vfid);
1035 		}
1036 	}
1037 
1038 	/* do the FLR cleanup for all marked VFs*/
1039 	bnx2x_vf_flr_clnup(bp);
1040 }
1041 
1042 /* IOV global initialization routines  */
1043 void bnx2x_iov_init_dq(struct bnx2x *bp)
1044 {
1045 	if (!IS_SRIOV(bp))
1046 		return;
1047 
1048 	/* Set the DQ such that the CID reflect the abs_vfid */
1049 	REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0);
1050 	REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
1051 
1052 	/* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
1053 	 * the PF L2 queues
1054 	 */
1055 	REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
1056 
1057 	/* The VF window size is the log2 of the max number of CIDs per VF */
1058 	REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
1059 
1060 	/* The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
1061 	 * the Pf doorbell size although the 2 are independent.
1062 	 */
1063 	REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3);
1064 
1065 	/* No security checks for now -
1066 	 * configure single rule (out of 16) mask = 0x1, value = 0x0,
1067 	 * CID range 0 - 0x1ffff
1068 	 */
1069 	REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1);
1070 	REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0);
1071 	REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
1072 	REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
1073 
1074 	/* set the VF doorbell threshold */
1075 	REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 4);
1076 }
1077 
1078 void bnx2x_iov_init_dmae(struct bnx2x *bp)
1079 {
1080 	if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV))
1081 		REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0);
1082 }
1083 
1084 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid)
1085 {
1086 	struct pci_dev *dev = bp->pdev;
1087 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1088 
1089 	return dev->bus->number + ((dev->devfn + iov->offset +
1090 				    iov->stride * vfid) >> 8);
1091 }
1092 
1093 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid)
1094 {
1095 	struct pci_dev *dev = bp->pdev;
1096 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1097 
1098 	return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff;
1099 }
1100 
1101 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf)
1102 {
1103 	int i, n;
1104 	struct pci_dev *dev = bp->pdev;
1105 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1106 
1107 	for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) {
1108 		u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i);
1109 		u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i);
1110 
1111 		size /= iov->total;
1112 		vf->bars[n].bar = start + size * vf->abs_vfid;
1113 		vf->bars[n].size = size;
1114 	}
1115 }
1116 
1117 static int bnx2x_ari_enabled(struct pci_dev *dev)
1118 {
1119 	return dev->bus->self && dev->bus->self->ari_enabled;
1120 }
1121 
1122 static void
1123 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp)
1124 {
1125 	int sb_id;
1126 	u32 val;
1127 	u8 fid, current_pf = 0;
1128 
1129 	/* IGU in normal mode - read CAM */
1130 	for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) {
1131 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4);
1132 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
1133 			continue;
1134 		fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID);
1135 		if (fid & IGU_FID_ENCODE_IS_PF)
1136 			current_pf = fid & IGU_FID_PF_NUM_MASK;
1137 		else if (current_pf == BP_FUNC(bp))
1138 			bnx2x_vf_set_igu_info(bp, sb_id,
1139 					      (fid & IGU_FID_VF_NUM_MASK));
1140 		DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n",
1141 		   ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"),
1142 		   ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) :
1143 		   (fid & IGU_FID_VF_NUM_MASK)), sb_id,
1144 		   GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR));
1145 	}
1146 	DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool);
1147 }
1148 
1149 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp)
1150 {
1151 	if (bp->vfdb) {
1152 		kfree(bp->vfdb->vfqs);
1153 		kfree(bp->vfdb->vfs);
1154 		kfree(bp->vfdb);
1155 	}
1156 	bp->vfdb = NULL;
1157 }
1158 
1159 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1160 {
1161 	int pos;
1162 	struct pci_dev *dev = bp->pdev;
1163 
1164 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
1165 	if (!pos) {
1166 		BNX2X_ERR("failed to find SRIOV capability in device\n");
1167 		return -ENODEV;
1168 	}
1169 
1170 	iov->pos = pos;
1171 	DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos);
1172 	pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
1173 	pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total);
1174 	pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial);
1175 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
1176 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
1177 	pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
1178 	pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap);
1179 	pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
1180 
1181 	return 0;
1182 }
1183 
1184 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1185 {
1186 	u32 val;
1187 
1188 	/* read the SRIOV capability structure
1189 	 * The fields can be read via configuration read or
1190 	 * directly from the device (starting at offset PCICFG_OFFSET)
1191 	 */
1192 	if (bnx2x_sriov_pci_cfg_info(bp, iov))
1193 		return -ENODEV;
1194 
1195 	/* get the number of SRIOV bars */
1196 	iov->nres = 0;
1197 
1198 	/* read the first_vfid */
1199 	val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF);
1200 	iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK)
1201 			       * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp));
1202 
1203 	DP(BNX2X_MSG_IOV,
1204 	   "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
1205 	   BP_FUNC(bp),
1206 	   iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total,
1207 	   iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
1208 
1209 	return 0;
1210 }
1211 
1212 /* must be called after PF bars are mapped */
1213 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param,
1214 		       int num_vfs_param)
1215 {
1216 	int err, i;
1217 	struct bnx2x_sriov *iov;
1218 	struct pci_dev *dev = bp->pdev;
1219 
1220 	bp->vfdb = NULL;
1221 
1222 	/* verify is pf */
1223 	if (IS_VF(bp))
1224 		return 0;
1225 
1226 	/* verify sriov capability is present in configuration space */
1227 	if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV))
1228 		return 0;
1229 
1230 	/* verify chip revision */
1231 	if (CHIP_IS_E1x(bp))
1232 		return 0;
1233 
1234 	/* check if SRIOV support is turned off */
1235 	if (!num_vfs_param)
1236 		return 0;
1237 
1238 	/* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
1239 	if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) {
1240 		BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
1241 			  BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID);
1242 		return 0;
1243 	}
1244 
1245 	/* SRIOV can be enabled only with MSIX */
1246 	if (int_mode_param == BNX2X_INT_MODE_MSI ||
1247 	    int_mode_param == BNX2X_INT_MODE_INTX) {
1248 		BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
1249 		return 0;
1250 	}
1251 
1252 	err = -EIO;
1253 	/* verify ari is enabled */
1254 	if (!bnx2x_ari_enabled(bp->pdev)) {
1255 		BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
1256 		return 0;
1257 	}
1258 
1259 	/* verify igu is in normal mode */
1260 	if (CHIP_INT_MODE_IS_BC(bp)) {
1261 		BNX2X_ERR("IGU not normal mode,  SRIOV can not be enabled\n");
1262 		return 0;
1263 	}
1264 
1265 	/* allocate the vfs database */
1266 	bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL);
1267 	if (!bp->vfdb) {
1268 		BNX2X_ERR("failed to allocate vf database\n");
1269 		err = -ENOMEM;
1270 		goto failed;
1271 	}
1272 
1273 	/* get the sriov info - Linux already collected all the pertinent
1274 	 * information, however the sriov structure is for the private use
1275 	 * of the pci module. Also we want this information regardless
1276 	 * of the hyper-visor.
1277 	 */
1278 	iov = &(bp->vfdb->sriov);
1279 	err = bnx2x_sriov_info(bp, iov);
1280 	if (err)
1281 		goto failed;
1282 
1283 	/* SR-IOV capability was enabled but there are no VFs*/
1284 	if (iov->total == 0)
1285 		goto failed;
1286 
1287 	iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param);
1288 
1289 	DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n",
1290 	   num_vfs_param, iov->nr_virtfn);
1291 
1292 	/* allocate the vf array */
1293 	bp->vfdb->vfs = kzalloc(sizeof(struct bnx2x_virtf) *
1294 				BNX2X_NR_VIRTFN(bp), GFP_KERNEL);
1295 	if (!bp->vfdb->vfs) {
1296 		BNX2X_ERR("failed to allocate vf array\n");
1297 		err = -ENOMEM;
1298 		goto failed;
1299 	}
1300 
1301 	/* Initial VF init - index and abs_vfid - nr_virtfn must be set */
1302 	for_each_vf(bp, i) {
1303 		bnx2x_vf(bp, i, index) = i;
1304 		bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i;
1305 		bnx2x_vf(bp, i, state) = VF_FREE;
1306 		mutex_init(&bnx2x_vf(bp, i, op_mutex));
1307 		bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE;
1308 	}
1309 
1310 	/* re-read the IGU CAM for VFs - index and abs_vfid must be set */
1311 	bnx2x_get_vf_igu_cam_info(bp);
1312 
1313 	/* allocate the queue arrays for all VFs */
1314 	bp->vfdb->vfqs = kzalloc(
1315 		BNX2X_MAX_NUM_VF_QUEUES * sizeof(struct bnx2x_vf_queue),
1316 		GFP_KERNEL);
1317 
1318 	DP(BNX2X_MSG_IOV, "bp->vfdb->vfqs was %p\n", bp->vfdb->vfqs);
1319 
1320 	if (!bp->vfdb->vfqs) {
1321 		BNX2X_ERR("failed to allocate vf queue array\n");
1322 		err = -ENOMEM;
1323 		goto failed;
1324 	}
1325 
1326 	/* Prepare the VFs event synchronization mechanism */
1327 	mutex_init(&bp->vfdb->event_mutex);
1328 
1329 	return 0;
1330 failed:
1331 	DP(BNX2X_MSG_IOV, "Failed err=%d\n", err);
1332 	__bnx2x_iov_free_vfdb(bp);
1333 	return err;
1334 }
1335 
1336 void bnx2x_iov_remove_one(struct bnx2x *bp)
1337 {
1338 	int vf_idx;
1339 
1340 	/* if SRIOV is not enabled there's nothing to do */
1341 	if (!IS_SRIOV(bp))
1342 		return;
1343 
1344 	DP(BNX2X_MSG_IOV, "about to call disable sriov\n");
1345 	pci_disable_sriov(bp->pdev);
1346 	DP(BNX2X_MSG_IOV, "sriov disabled\n");
1347 
1348 	/* disable access to all VFs */
1349 	for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) {
1350 		bnx2x_pretend_func(bp,
1351 				   HW_VF_HANDLE(bp,
1352 						bp->vfdb->sriov.first_vf_in_pf +
1353 						vf_idx));
1354 		DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n",
1355 		   bp->vfdb->sriov.first_vf_in_pf + vf_idx);
1356 		bnx2x_vf_enable_internal(bp, 0);
1357 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1358 	}
1359 
1360 	/* free vf database */
1361 	__bnx2x_iov_free_vfdb(bp);
1362 }
1363 
1364 void bnx2x_iov_free_mem(struct bnx2x *bp)
1365 {
1366 	int i;
1367 
1368 	if (!IS_SRIOV(bp))
1369 		return;
1370 
1371 	/* free vfs hw contexts */
1372 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1373 		struct hw_dma *cxt = &bp->vfdb->context[i];
1374 		BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size);
1375 	}
1376 
1377 	BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr,
1378 		       BP_VFDB(bp)->sp_dma.mapping,
1379 		       BP_VFDB(bp)->sp_dma.size);
1380 
1381 	BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr,
1382 		       BP_VF_MBX_DMA(bp)->mapping,
1383 		       BP_VF_MBX_DMA(bp)->size);
1384 
1385 	BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr,
1386 		       BP_VF_BULLETIN_DMA(bp)->mapping,
1387 		       BP_VF_BULLETIN_DMA(bp)->size);
1388 }
1389 
1390 int bnx2x_iov_alloc_mem(struct bnx2x *bp)
1391 {
1392 	size_t tot_size;
1393 	int i, rc = 0;
1394 
1395 	if (!IS_SRIOV(bp))
1396 		return rc;
1397 
1398 	/* allocate vfs hw contexts */
1399 	tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) *
1400 		BNX2X_CIDS_PER_VF * sizeof(union cdu_context);
1401 
1402 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1403 		struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i);
1404 		cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ);
1405 
1406 		if (cxt->size) {
1407 			cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size);
1408 			if (!cxt->addr)
1409 				goto alloc_mem_err;
1410 		} else {
1411 			cxt->addr = NULL;
1412 			cxt->mapping = 0;
1413 		}
1414 		tot_size -= cxt->size;
1415 	}
1416 
1417 	/* allocate vfs ramrods dma memory - client_init and set_mac */
1418 	tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp);
1419 	BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping,
1420 						   tot_size);
1421 	if (!BP_VFDB(bp)->sp_dma.addr)
1422 		goto alloc_mem_err;
1423 	BP_VFDB(bp)->sp_dma.size = tot_size;
1424 
1425 	/* allocate mailboxes */
1426 	tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE;
1427 	BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping,
1428 						  tot_size);
1429 	if (!BP_VF_MBX_DMA(bp)->addr)
1430 		goto alloc_mem_err;
1431 
1432 	BP_VF_MBX_DMA(bp)->size = tot_size;
1433 
1434 	/* allocate local bulletin boards */
1435 	tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE;
1436 	BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping,
1437 						       tot_size);
1438 	if (!BP_VF_BULLETIN_DMA(bp)->addr)
1439 		goto alloc_mem_err;
1440 
1441 	BP_VF_BULLETIN_DMA(bp)->size = tot_size;
1442 
1443 	return 0;
1444 
1445 alloc_mem_err:
1446 	return -ENOMEM;
1447 }
1448 
1449 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf,
1450 			   struct bnx2x_vf_queue *q)
1451 {
1452 	u8 cl_id = vfq_cl_id(vf, q);
1453 	u8 func_id = FW_VF_HANDLE(vf->abs_vfid);
1454 	unsigned long q_type = 0;
1455 
1456 	set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1457 	set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1458 
1459 	/* Queue State object */
1460 	bnx2x_init_queue_obj(bp, &q->sp_obj,
1461 			     cl_id, &q->cid, 1, func_id,
1462 			     bnx2x_vf_sp(bp, vf, q_data),
1463 			     bnx2x_vf_sp_map(bp, vf, q_data),
1464 			     q_type);
1465 
1466 	/* sp indication is set only when vlan/mac/etc. are initialized */
1467 	q->sp_initialized = false;
1468 
1469 	DP(BNX2X_MSG_IOV,
1470 	   "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n",
1471 	   vf->abs_vfid, q->sp_obj.func_id, q->cid);
1472 }
1473 
1474 /* called by bnx2x_nic_load */
1475 int bnx2x_iov_nic_init(struct bnx2x *bp)
1476 {
1477 	int vfid;
1478 
1479 	if (!IS_SRIOV(bp)) {
1480 		DP(BNX2X_MSG_IOV, "vfdb was not allocated\n");
1481 		return 0;
1482 	}
1483 
1484 	DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn);
1485 
1486 	/* let FLR complete ... */
1487 	msleep(100);
1488 
1489 	/* initialize vf database */
1490 	for_each_vf(bp, vfid) {
1491 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1492 
1493 		int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) *
1494 			BNX2X_CIDS_PER_VF;
1495 
1496 		union cdu_context *base_cxt = (union cdu_context *)
1497 			BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1498 			(base_vf_cid & (ILT_PAGE_CIDS-1));
1499 
1500 		DP(BNX2X_MSG_IOV,
1501 		   "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
1502 		   vf->abs_vfid, vf_sb_count(vf), base_vf_cid,
1503 		   BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt);
1504 
1505 		/* init statically provisioned resources */
1506 		bnx2x_iov_static_resc(bp, vf);
1507 
1508 		/* queues are initialized during VF-ACQUIRE */
1509 		vf->filter_state = 0;
1510 		vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id);
1511 
1512 		/*  init mcast object - This object will be re-initialized
1513 		 *  during VF-ACQUIRE with the proper cl_id and cid.
1514 		 *  It needs to be initialized here so that it can be safely
1515 		 *  handled by a subsequent FLR flow.
1516 		 */
1517 		vf->mcast_list_len = 0;
1518 		bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF,
1519 				     0xFF, 0xFF, 0xFF,
1520 				     bnx2x_vf_sp(bp, vf, mcast_rdata),
1521 				     bnx2x_vf_sp_map(bp, vf, mcast_rdata),
1522 				     BNX2X_FILTER_MCAST_PENDING,
1523 				     &vf->filter_state,
1524 				     BNX2X_OBJ_TYPE_RX_TX);
1525 
1526 		/* set the mailbox message addresses */
1527 		BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *)
1528 			(((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid *
1529 			MBX_MSG_ALIGNED_SIZE);
1530 
1531 		BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping +
1532 			vfid * MBX_MSG_ALIGNED_SIZE;
1533 
1534 		/* Enable vf mailbox */
1535 		bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
1536 	}
1537 
1538 	/* Final VF init */
1539 	for_each_vf(bp, vfid) {
1540 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1541 
1542 		/* fill in the BDF and bars */
1543 		vf->bus = bnx2x_vf_bus(bp, vfid);
1544 		vf->devfn = bnx2x_vf_devfn(bp, vfid);
1545 		bnx2x_vf_set_bars(bp, vf);
1546 
1547 		DP(BNX2X_MSG_IOV,
1548 		   "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
1549 		   vf->abs_vfid, vf->bus, vf->devfn,
1550 		   (unsigned)vf->bars[0].bar, vf->bars[0].size,
1551 		   (unsigned)vf->bars[1].bar, vf->bars[1].size,
1552 		   (unsigned)vf->bars[2].bar, vf->bars[2].size);
1553 	}
1554 
1555 	return 0;
1556 }
1557 
1558 /* called by bnx2x_chip_cleanup */
1559 int bnx2x_iov_chip_cleanup(struct bnx2x *bp)
1560 {
1561 	int i;
1562 
1563 	if (!IS_SRIOV(bp))
1564 		return 0;
1565 
1566 	/* release all the VFs */
1567 	for_each_vf(bp, i)
1568 		bnx2x_vf_release(bp, BP_VF(bp, i));
1569 
1570 	return 0;
1571 }
1572 
1573 /* called by bnx2x_init_hw_func, returns the next ilt line */
1574 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line)
1575 {
1576 	int i;
1577 	struct bnx2x_ilt *ilt = BP_ILT(bp);
1578 
1579 	if (!IS_SRIOV(bp))
1580 		return line;
1581 
1582 	/* set vfs ilt lines */
1583 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1584 		struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i);
1585 
1586 		ilt->lines[line+i].page = hw_cxt->addr;
1587 		ilt->lines[line+i].page_mapping = hw_cxt->mapping;
1588 		ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
1589 	}
1590 	return line + i;
1591 }
1592 
1593 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid)
1594 {
1595 	return ((cid >= BNX2X_FIRST_VF_CID) &&
1596 		((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS));
1597 }
1598 
1599 static
1600 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp,
1601 					struct bnx2x_vf_queue *vfq,
1602 					union event_ring_elem *elem)
1603 {
1604 	unsigned long ramrod_flags = 0;
1605 	int rc = 0;
1606 
1607 	/* Always push next commands out, don't wait here */
1608 	set_bit(RAMROD_CONT, &ramrod_flags);
1609 
1610 	switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
1611 	case BNX2X_FILTER_MAC_PENDING:
1612 		rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem,
1613 					   &ramrod_flags);
1614 		break;
1615 	case BNX2X_FILTER_VLAN_PENDING:
1616 		rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem,
1617 					    &ramrod_flags);
1618 		break;
1619 	default:
1620 		BNX2X_ERR("Unsupported classification command: %d\n",
1621 			  elem->message.data.eth_event.echo);
1622 		return;
1623 	}
1624 	if (rc < 0)
1625 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
1626 	else if (rc > 0)
1627 		DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n");
1628 }
1629 
1630 static
1631 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp,
1632 			       struct bnx2x_virtf *vf)
1633 {
1634 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
1635 	int rc;
1636 
1637 	rparam.mcast_obj = &vf->mcast_obj;
1638 	vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw);
1639 
1640 	/* If there are pending mcast commands - send them */
1641 	if (vf->mcast_obj.check_pending(&vf->mcast_obj)) {
1642 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
1643 		if (rc < 0)
1644 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
1645 				  rc);
1646 	}
1647 }
1648 
1649 static
1650 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp,
1651 				 struct bnx2x_virtf *vf)
1652 {
1653 	smp_mb__before_atomic();
1654 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
1655 	smp_mb__after_atomic();
1656 }
1657 
1658 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp,
1659 					   struct bnx2x_virtf *vf)
1660 {
1661 	vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw);
1662 }
1663 
1664 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem)
1665 {
1666 	struct bnx2x_virtf *vf;
1667 	int qidx = 0, abs_vfid;
1668 	u8 opcode;
1669 	u16 cid = 0xffff;
1670 
1671 	if (!IS_SRIOV(bp))
1672 		return 1;
1673 
1674 	/* first get the cid - the only events we handle here are cfc-delete
1675 	 * and set-mac completion
1676 	 */
1677 	opcode = elem->message.opcode;
1678 
1679 	switch (opcode) {
1680 	case EVENT_RING_OPCODE_CFC_DEL:
1681 		cid = SW_CID((__force __le32)
1682 			     elem->message.data.cfc_del_event.cid);
1683 		DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid);
1684 		break;
1685 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1686 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1687 	case EVENT_RING_OPCODE_FILTERS_RULES:
1688 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1689 		cid = (elem->message.data.eth_event.echo &
1690 		       BNX2X_SWCID_MASK);
1691 		DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid);
1692 		break;
1693 	case EVENT_RING_OPCODE_VF_FLR:
1694 		abs_vfid = elem->message.data.vf_flr_event.vf_id;
1695 		DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n",
1696 		   abs_vfid);
1697 		goto get_vf;
1698 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1699 		abs_vfid = elem->message.data.malicious_vf_event.vf_id;
1700 		BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
1701 			  abs_vfid,
1702 			  elem->message.data.malicious_vf_event.err_id);
1703 		goto get_vf;
1704 	default:
1705 		return 1;
1706 	}
1707 
1708 	/* check if the cid is the VF range */
1709 	if (!bnx2x_iov_is_vf_cid(bp, cid)) {
1710 		DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid);
1711 		return 1;
1712 	}
1713 
1714 	/* extract vf and rxq index from vf_cid - relies on the following:
1715 	 * 1. vfid on cid reflects the true abs_vfid
1716 	 * 2. The max number of VFs (per path) is 64
1717 	 */
1718 	qidx = cid & ((1 << BNX2X_VF_CID_WND)-1);
1719 	abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1720 get_vf:
1721 	vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
1722 
1723 	if (!vf) {
1724 		BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
1725 			  cid, abs_vfid);
1726 		return 0;
1727 	}
1728 
1729 	switch (opcode) {
1730 	case EVENT_RING_OPCODE_CFC_DEL:
1731 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n",
1732 		   vf->abs_vfid, qidx);
1733 		vfq_get(vf, qidx)->sp_obj.complete_cmd(bp,
1734 						       &vfq_get(vf,
1735 								qidx)->sp_obj,
1736 						       BNX2X_Q_CMD_CFC_DEL);
1737 		break;
1738 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1739 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n",
1740 		   vf->abs_vfid, qidx);
1741 		bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem);
1742 		break;
1743 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1744 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n",
1745 		   vf->abs_vfid, qidx);
1746 		bnx2x_vf_handle_mcast_eqe(bp, vf);
1747 		break;
1748 	case EVENT_RING_OPCODE_FILTERS_RULES:
1749 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n",
1750 		   vf->abs_vfid, qidx);
1751 		bnx2x_vf_handle_filters_eqe(bp, vf);
1752 		break;
1753 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1754 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n",
1755 		   vf->abs_vfid, qidx);
1756 		bnx2x_vf_handle_rss_update_eqe(bp, vf);
1757 	case EVENT_RING_OPCODE_VF_FLR:
1758 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1759 		/* Do nothing for now */
1760 		return 0;
1761 	}
1762 
1763 	return 0;
1764 }
1765 
1766 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid)
1767 {
1768 	/* extract the vf from vf_cid - relies on the following:
1769 	 * 1. vfid on cid reflects the true abs_vfid
1770 	 * 2. The max number of VFs (per path) is 64
1771 	 */
1772 	int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1773 	return bnx2x_vf_by_abs_fid(bp, abs_vfid);
1774 }
1775 
1776 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid,
1777 				struct bnx2x_queue_sp_obj **q_obj)
1778 {
1779 	struct bnx2x_virtf *vf;
1780 
1781 	if (!IS_SRIOV(bp))
1782 		return;
1783 
1784 	vf = bnx2x_vf_by_cid(bp, vf_cid);
1785 
1786 	if (vf) {
1787 		/* extract queue index from vf_cid - relies on the following:
1788 		 * 1. vfid on cid reflects the true abs_vfid
1789 		 * 2. The max number of VFs (per path) is 64
1790 		 */
1791 		int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1);
1792 		*q_obj = &bnx2x_vfq(vf, q_index, sp_obj);
1793 	} else {
1794 		BNX2X_ERR("No vf matching cid %d\n", vf_cid);
1795 	}
1796 }
1797 
1798 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp)
1799 {
1800 	int i;
1801 	int first_queue_query_index, num_queues_req;
1802 	dma_addr_t cur_data_offset;
1803 	struct stats_query_entry *cur_query_entry;
1804 	u8 stats_count = 0;
1805 	bool is_fcoe = false;
1806 
1807 	if (!IS_SRIOV(bp))
1808 		return;
1809 
1810 	if (!NO_FCOE(bp))
1811 		is_fcoe = true;
1812 
1813 	/* fcoe adds one global request and one queue request */
1814 	num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe;
1815 	first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX -
1816 		(is_fcoe ? 0 : 1);
1817 
1818 	DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1819 	       "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
1820 	       BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index,
1821 	       first_queue_query_index + num_queues_req);
1822 
1823 	cur_data_offset = bp->fw_stats_data_mapping +
1824 		offsetof(struct bnx2x_fw_stats_data, queue_stats) +
1825 		num_queues_req * sizeof(struct per_queue_stats);
1826 
1827 	cur_query_entry = &bp->fw_stats_req->
1828 		query[first_queue_query_index + num_queues_req];
1829 
1830 	for_each_vf(bp, i) {
1831 		int j;
1832 		struct bnx2x_virtf *vf = BP_VF(bp, i);
1833 
1834 		if (vf->state != VF_ENABLED) {
1835 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1836 			       "vf %d not enabled so no stats for it\n",
1837 			       vf->abs_vfid);
1838 			continue;
1839 		}
1840 
1841 		DP(BNX2X_MSG_IOV, "add addresses for vf %d\n", vf->abs_vfid);
1842 		for_each_vfq(vf, j) {
1843 			struct bnx2x_vf_queue *rxq = vfq_get(vf, j);
1844 
1845 			dma_addr_t q_stats_addr =
1846 				vf->fw_stat_map + j * vf->stats_stride;
1847 
1848 			/* collect stats fro active queues only */
1849 			if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) ==
1850 			    BNX2X_Q_LOGICAL_STATE_STOPPED)
1851 				continue;
1852 
1853 			/* create stats query entry for this queue */
1854 			cur_query_entry->kind = STATS_TYPE_QUEUE;
1855 			cur_query_entry->index = vfq_stat_id(vf, rxq);
1856 			cur_query_entry->funcID =
1857 				cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid));
1858 			cur_query_entry->address.hi =
1859 				cpu_to_le32(U64_HI(q_stats_addr));
1860 			cur_query_entry->address.lo =
1861 				cpu_to_le32(U64_LO(q_stats_addr));
1862 			DP(BNX2X_MSG_IOV,
1863 			   "added address %x %x for vf %d queue %d client %d\n",
1864 			   cur_query_entry->address.hi,
1865 			   cur_query_entry->address.lo, cur_query_entry->funcID,
1866 			   j, cur_query_entry->index);
1867 			cur_query_entry++;
1868 			cur_data_offset += sizeof(struct per_queue_stats);
1869 			stats_count++;
1870 
1871 			/* all stats are coalesced to the leading queue */
1872 			if (vf->cfg_flags & VF_CFG_STATS_COALESCE)
1873 				break;
1874 		}
1875 	}
1876 	bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count;
1877 }
1878 
1879 static inline
1880 struct bnx2x_virtf *__vf_from_stat_id(struct bnx2x *bp, u8 stat_id)
1881 {
1882 	int i;
1883 	struct bnx2x_virtf *vf = NULL;
1884 
1885 	for_each_vf(bp, i) {
1886 		vf = BP_VF(bp, i);
1887 		if (stat_id >= vf->igu_base_id &&
1888 		    stat_id < vf->igu_base_id + vf_sb_count(vf))
1889 			break;
1890 	}
1891 	return vf;
1892 }
1893 
1894 /* VF API helpers */
1895 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid,
1896 				u8 enable)
1897 {
1898 	u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4;
1899 	u32 val = enable ? (abs_vfid | (1 << 6)) : 0;
1900 
1901 	REG_WR(bp, reg, val);
1902 }
1903 
1904 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf)
1905 {
1906 	int i;
1907 
1908 	for_each_vfq(vf, i)
1909 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
1910 				    vfq_qzone_id(vf, vfq_get(vf, i)), false);
1911 }
1912 
1913 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf)
1914 {
1915 	u32 val;
1916 
1917 	/* clear the VF configuration - pretend */
1918 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
1919 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
1920 	val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN |
1921 		 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK);
1922 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
1923 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1924 }
1925 
1926 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf)
1927 {
1928 	return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF),
1929 		     BNX2X_VF_MAX_QUEUES);
1930 }
1931 
1932 static
1933 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf,
1934 			    struct vf_pf_resc_request *req_resc)
1935 {
1936 	u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1937 	u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1938 
1939 	/* Save a vlan filter for the Hypervisor */
1940 	return ((req_resc->num_rxqs <= rxq_cnt) &&
1941 		(req_resc->num_txqs <= txq_cnt) &&
1942 		(req_resc->num_sbs <= vf_sb_count(vf))   &&
1943 		(req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) &&
1944 		(req_resc->num_vlan_filters <= vf_vlan_rules_visible_cnt(vf)));
1945 }
1946 
1947 /* CORE VF API */
1948 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf,
1949 		     struct vf_pf_resc_request *resc)
1950 {
1951 	int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) *
1952 		BNX2X_CIDS_PER_VF;
1953 
1954 	union cdu_context *base_cxt = (union cdu_context *)
1955 		BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1956 		(base_vf_cid & (ILT_PAGE_CIDS-1));
1957 	int i;
1958 
1959 	/* if state is 'acquired' the VF was not released or FLR'd, in
1960 	 * this case the returned resources match the acquired already
1961 	 * acquired resources. Verify that the requested numbers do
1962 	 * not exceed the already acquired numbers.
1963 	 */
1964 	if (vf->state == VF_ACQUIRED) {
1965 		DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
1966 		   vf->abs_vfid);
1967 
1968 		if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
1969 			BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
1970 				  vf->abs_vfid);
1971 			return -EINVAL;
1972 		}
1973 		return 0;
1974 	}
1975 
1976 	/* Otherwise vf state must be 'free' or 'reset' */
1977 	if (vf->state != VF_FREE && vf->state != VF_RESET) {
1978 		BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
1979 			  vf->abs_vfid, vf->state);
1980 		return -EINVAL;
1981 	}
1982 
1983 	/* static allocation:
1984 	 * the global maximum number are fixed per VF. Fail the request if
1985 	 * requested number exceed these globals
1986 	 */
1987 	if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
1988 		DP(BNX2X_MSG_IOV,
1989 		   "cannot fulfill vf resource request. Placing maximal available values in response\n");
1990 		/* set the max resource in the vf */
1991 		return -ENOMEM;
1992 	}
1993 
1994 	/* Set resources counters - 0 request means max available */
1995 	vf_sb_count(vf) = resc->num_sbs;
1996 	vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
1997 	vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
1998 	if (resc->num_mac_filters)
1999 		vf_mac_rules_cnt(vf) = resc->num_mac_filters;
2000 	/* Add an additional vlan filter credit for the hypervisor */
2001 	bnx2x_iov_re_set_vlan_filters(bp, vf, resc->num_vlan_filters + 1);
2002 
2003 	DP(BNX2X_MSG_IOV,
2004 	   "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
2005 	   vf_sb_count(vf), vf_rxq_count(vf),
2006 	   vf_txq_count(vf), vf_mac_rules_cnt(vf),
2007 	   vf_vlan_rules_visible_cnt(vf));
2008 
2009 	/* Initialize the queues */
2010 	if (!vf->vfqs) {
2011 		DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n");
2012 		return -EINVAL;
2013 	}
2014 
2015 	for_each_vfq(vf, i) {
2016 		struct bnx2x_vf_queue *q = vfq_get(vf, i);
2017 
2018 		if (!q) {
2019 			BNX2X_ERR("q number %d was not allocated\n", i);
2020 			return -EINVAL;
2021 		}
2022 
2023 		q->index = i;
2024 		q->cxt = &((base_cxt + i)->eth);
2025 		q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i;
2026 
2027 		DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
2028 		   vf->abs_vfid, i, q->index, q->cid, q->cxt);
2029 
2030 		/* init SP objects */
2031 		bnx2x_vfq_init(bp, vf, q);
2032 	}
2033 	vf->state = VF_ACQUIRED;
2034 	return 0;
2035 }
2036 
2037 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map)
2038 {
2039 	struct bnx2x_func_init_params func_init = {0};
2040 	u16 flags = 0;
2041 	int i;
2042 
2043 	/* the sb resources are initialized at this point, do the
2044 	 * FW/HW initializations
2045 	 */
2046 	for_each_vf_sb(vf, i)
2047 		bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true,
2048 			      vf_igu_sb(vf, i), vf_igu_sb(vf, i));
2049 
2050 	/* Sanity checks */
2051 	if (vf->state != VF_ACQUIRED) {
2052 		DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n",
2053 		   vf->abs_vfid, vf->state);
2054 		return -EINVAL;
2055 	}
2056 
2057 	/* let FLR complete ... */
2058 	msleep(100);
2059 
2060 	/* FLR cleanup epilogue */
2061 	if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid))
2062 		return -EBUSY;
2063 
2064 	/* reset IGU VF statistics: MSIX */
2065 	REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0);
2066 
2067 	/* vf init */
2068 	if (vf->cfg_flags & VF_CFG_STATS)
2069 		flags |= (FUNC_FLG_STATS | FUNC_FLG_SPQ);
2070 
2071 	if (vf->cfg_flags & VF_CFG_TPA)
2072 		flags |= FUNC_FLG_TPA;
2073 
2074 	if (is_vf_multi(vf))
2075 		flags |= FUNC_FLG_RSS;
2076 
2077 	/* function setup */
2078 	func_init.func_flgs = flags;
2079 	func_init.pf_id = BP_FUNC(bp);
2080 	func_init.func_id = FW_VF_HANDLE(vf->abs_vfid);
2081 	func_init.fw_stat_map = vf->fw_stat_map;
2082 	func_init.spq_map = vf->spq_map;
2083 	func_init.spq_prod = 0;
2084 	bnx2x_func_init(bp, &func_init);
2085 
2086 	/* Enable the vf */
2087 	bnx2x_vf_enable_access(bp, vf->abs_vfid);
2088 	bnx2x_vf_enable_traffic(bp, vf);
2089 
2090 	/* queue protection table */
2091 	for_each_vfq(vf, i)
2092 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
2093 				    vfq_qzone_id(vf, vfq_get(vf, i)), true);
2094 
2095 	vf->state = VF_ENABLED;
2096 
2097 	/* update vf bulletin board */
2098 	bnx2x_post_vf_bulletin(bp, vf->index);
2099 
2100 	return 0;
2101 }
2102 
2103 struct set_vf_state_cookie {
2104 	struct bnx2x_virtf *vf;
2105 	u8 state;
2106 };
2107 
2108 static void bnx2x_set_vf_state(void *cookie)
2109 {
2110 	struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie;
2111 
2112 	p->vf->state = p->state;
2113 }
2114 
2115 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf)
2116 {
2117 	int rc = 0, i;
2118 
2119 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2120 
2121 	/* Close all queues */
2122 	for (i = 0; i < vf_rxq_count(vf); i++) {
2123 		rc = bnx2x_vf_queue_teardown(bp, vf, i);
2124 		if (rc)
2125 			goto op_err;
2126 	}
2127 
2128 	/* disable the interrupts */
2129 	DP(BNX2X_MSG_IOV, "disabling igu\n");
2130 	bnx2x_vf_igu_disable(bp, vf);
2131 
2132 	/* disable the VF */
2133 	DP(BNX2X_MSG_IOV, "clearing qtbl\n");
2134 	bnx2x_vf_clr_qtbl(bp, vf);
2135 
2136 	/* need to make sure there are no outstanding stats ramrods which may
2137 	 * cause the device to access the VF's stats buffer which it will free
2138 	 * as soon as we return from the close flow.
2139 	 */
2140 	{
2141 		struct set_vf_state_cookie cookie;
2142 
2143 		cookie.vf = vf;
2144 		cookie.state = VF_ACQUIRED;
2145 		bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie);
2146 	}
2147 
2148 	DP(BNX2X_MSG_IOV, "set state to acquired\n");
2149 
2150 	return 0;
2151 op_err:
2152 	BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc);
2153 	return rc;
2154 }
2155 
2156 /* VF release can be called either: 1. The VF was acquired but
2157  * not enabled 2. the vf was enabled or in the process of being
2158  * enabled
2159  */
2160 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf)
2161 {
2162 	int rc;
2163 
2164 	DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid,
2165 	   vf->state == VF_FREE ? "Free" :
2166 	   vf->state == VF_ACQUIRED ? "Acquired" :
2167 	   vf->state == VF_ENABLED ? "Enabled" :
2168 	   vf->state == VF_RESET ? "Reset" :
2169 	   "Unknown");
2170 
2171 	switch (vf->state) {
2172 	case VF_ENABLED:
2173 		rc = bnx2x_vf_close(bp, vf);
2174 		if (rc)
2175 			goto op_err;
2176 		/* Fallthrough to release resources */
2177 	case VF_ACQUIRED:
2178 		DP(BNX2X_MSG_IOV, "about to free resources\n");
2179 		bnx2x_vf_free_resc(bp, vf);
2180 		break;
2181 
2182 	case VF_FREE:
2183 	case VF_RESET:
2184 	default:
2185 		break;
2186 	}
2187 	return 0;
2188 op_err:
2189 	BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc);
2190 	return rc;
2191 }
2192 
2193 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2194 			struct bnx2x_config_rss_params *rss)
2195 {
2196 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2197 	set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags);
2198 	return bnx2x_config_rss(bp, rss);
2199 }
2200 
2201 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2202 			struct vfpf_tpa_tlv *tlv,
2203 			struct bnx2x_queue_update_tpa_params *params)
2204 {
2205 	aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr;
2206 	struct bnx2x_queue_state_params qstate;
2207 	int qid, rc = 0;
2208 
2209 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2210 
2211 	/* Set ramrod params */
2212 	memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
2213 	memcpy(&qstate.params.update_tpa, params,
2214 	       sizeof(struct bnx2x_queue_update_tpa_params));
2215 	qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA;
2216 	set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
2217 
2218 	for (qid = 0; qid < vf_rxq_count(vf); qid++) {
2219 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
2220 		qstate.params.update_tpa.sge_map = sge_addr[qid];
2221 		DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n",
2222 		   vf->abs_vfid, qid, U64_HI(sge_addr[qid]),
2223 		   U64_LO(sge_addr[qid]));
2224 		rc = bnx2x_queue_state_change(bp, &qstate);
2225 		if (rc) {
2226 			BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n",
2227 				  U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]),
2228 				  vf->abs_vfid, qid);
2229 			return rc;
2230 		}
2231 	}
2232 
2233 	return rc;
2234 }
2235 
2236 /* VF release ~ VF close + VF release-resources
2237  * Release is the ultimate SW shutdown and is called whenever an
2238  * irrecoverable error is encountered.
2239  */
2240 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf)
2241 {
2242 	int rc;
2243 
2244 	DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid);
2245 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2246 
2247 	rc = bnx2x_vf_free(bp, vf);
2248 	if (rc)
2249 		WARN(rc,
2250 		     "VF[%d] Failed to allocate resources for release op- rc=%d\n",
2251 		     vf->abs_vfid, rc);
2252 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2253 	return rc;
2254 }
2255 
2256 static inline void bnx2x_vf_get_sbdf(struct bnx2x *bp,
2257 			      struct bnx2x_virtf *vf, u32 *sbdf)
2258 {
2259 	*sbdf = vf->devfn | (vf->bus << 8);
2260 }
2261 
2262 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2263 			      enum channel_tlvs tlv)
2264 {
2265 	/* we don't lock the channel for unsupported tlvs */
2266 	if (!bnx2x_tlv_supported(tlv)) {
2267 		BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n");
2268 		return;
2269 	}
2270 
2271 	/* lock the channel */
2272 	mutex_lock(&vf->op_mutex);
2273 
2274 	/* record the locking op */
2275 	vf->op_current = tlv;
2276 
2277 	/* log the lock */
2278 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n",
2279 	   vf->abs_vfid, tlv);
2280 }
2281 
2282 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2283 				enum channel_tlvs expected_tlv)
2284 {
2285 	enum channel_tlvs current_tlv;
2286 
2287 	if (!vf) {
2288 		BNX2X_ERR("VF was %p\n", vf);
2289 		return;
2290 	}
2291 
2292 	current_tlv = vf->op_current;
2293 
2294 	/* we don't unlock the channel for unsupported tlvs */
2295 	if (!bnx2x_tlv_supported(expected_tlv))
2296 		return;
2297 
2298 	WARN(expected_tlv != vf->op_current,
2299 	     "lock mismatch: expected %d found %d", expected_tlv,
2300 	     vf->op_current);
2301 
2302 	/* record the locking op */
2303 	vf->op_current = CHANNEL_TLV_NONE;
2304 
2305 	/* lock the channel */
2306 	mutex_unlock(&vf->op_mutex);
2307 
2308 	/* log the unlock */
2309 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n",
2310 	   vf->abs_vfid, vf->op_current);
2311 }
2312 
2313 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable)
2314 {
2315 	struct bnx2x_queue_state_params q_params;
2316 	u32 prev_flags;
2317 	int i, rc;
2318 
2319 	/* Verify changes are needed and record current Tx switching state */
2320 	prev_flags = bp->flags;
2321 	if (enable)
2322 		bp->flags |= TX_SWITCHING;
2323 	else
2324 		bp->flags &= ~TX_SWITCHING;
2325 	if (prev_flags == bp->flags)
2326 		return 0;
2327 
2328 	/* Verify state enables the sending of queue ramrods */
2329 	if ((bp->state != BNX2X_STATE_OPEN) ||
2330 	    (bnx2x_get_q_logical_state(bp,
2331 				      &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) !=
2332 	     BNX2X_Q_LOGICAL_STATE_ACTIVE))
2333 		return 0;
2334 
2335 	/* send q. update ramrod to configure Tx switching */
2336 	memset(&q_params, 0, sizeof(q_params));
2337 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2338 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
2339 	__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
2340 		  &q_params.params.update.update_flags);
2341 	if (enable)
2342 		__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2343 			  &q_params.params.update.update_flags);
2344 	else
2345 		__clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2346 			    &q_params.params.update.update_flags);
2347 
2348 	/* send the ramrod on all the queues of the PF */
2349 	for_each_eth_queue(bp, i) {
2350 		struct bnx2x_fastpath *fp = &bp->fp[i];
2351 
2352 		/* Set the appropriate Queue object */
2353 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
2354 
2355 		/* Update the Queue state */
2356 		rc = bnx2x_queue_state_change(bp, &q_params);
2357 		if (rc) {
2358 			BNX2X_ERR("Failed to configure Tx switching\n");
2359 			return rc;
2360 		}
2361 	}
2362 
2363 	DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled");
2364 	return 0;
2365 }
2366 
2367 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param)
2368 {
2369 	struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev));
2370 
2371 	if (!IS_SRIOV(bp)) {
2372 		BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n");
2373 		return -EINVAL;
2374 	}
2375 
2376 	DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
2377 	   num_vfs_param, BNX2X_NR_VIRTFN(bp));
2378 
2379 	/* HW channel is only operational when PF is up */
2380 	if (bp->state != BNX2X_STATE_OPEN) {
2381 		BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
2382 		return -EINVAL;
2383 	}
2384 
2385 	/* we are always bound by the total_vfs in the configuration space */
2386 	if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) {
2387 		BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
2388 			  num_vfs_param, BNX2X_NR_VIRTFN(bp));
2389 		num_vfs_param = BNX2X_NR_VIRTFN(bp);
2390 	}
2391 
2392 	bp->requested_nr_virtfn = num_vfs_param;
2393 	if (num_vfs_param == 0) {
2394 		bnx2x_set_pf_tx_switching(bp, false);
2395 		pci_disable_sriov(dev);
2396 		return 0;
2397 	} else {
2398 		return bnx2x_enable_sriov(bp);
2399 	}
2400 }
2401 
2402 #define IGU_ENTRY_SIZE 4
2403 
2404 int bnx2x_enable_sriov(struct bnx2x *bp)
2405 {
2406 	int rc = 0, req_vfs = bp->requested_nr_virtfn;
2407 	int vf_idx, sb_idx, vfq_idx, qcount, first_vf;
2408 	u32 igu_entry, address;
2409 	u16 num_vf_queues;
2410 
2411 	if (req_vfs == 0)
2412 		return 0;
2413 
2414 	first_vf = bp->vfdb->sriov.first_vf_in_pf;
2415 
2416 	/* statically distribute vf sb pool between VFs */
2417 	num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES,
2418 			      BP_VFDB(bp)->vf_sbs_pool / req_vfs);
2419 
2420 	/* zero previous values learned from igu cam */
2421 	for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) {
2422 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2423 
2424 		vf->sb_count = 0;
2425 		vf_sb_count(BP_VF(bp, vf_idx)) = 0;
2426 	}
2427 	bp->vfdb->vf_sbs_pool = 0;
2428 
2429 	/* prepare IGU cam */
2430 	sb_idx = BP_VFDB(bp)->first_vf_igu_entry;
2431 	address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE;
2432 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2433 		for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) {
2434 			igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT |
2435 				vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT |
2436 				IGU_REG_MAPPING_MEMORY_VALID;
2437 			DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n",
2438 			   sb_idx, vf_idx);
2439 			REG_WR(bp, address, igu_entry);
2440 			sb_idx++;
2441 			address += IGU_ENTRY_SIZE;
2442 		}
2443 	}
2444 
2445 	/* Reinitialize vf database according to igu cam */
2446 	bnx2x_get_vf_igu_cam_info(bp);
2447 
2448 	DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n",
2449 	   BP_VFDB(bp)->vf_sbs_pool, num_vf_queues);
2450 
2451 	qcount = 0;
2452 	for_each_vf(bp, vf_idx) {
2453 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2454 
2455 		/* set local queue arrays */
2456 		vf->vfqs = &bp->vfdb->vfqs[qcount];
2457 		qcount += vf_sb_count(vf);
2458 		bnx2x_iov_static_resc(bp, vf);
2459 	}
2460 
2461 	/* prepare msix vectors in VF configuration space - the value in the
2462 	 * PCI configuration space should be the index of the last entry,
2463 	 * namely one less than the actual size of the table
2464 	 */
2465 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2466 		bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx));
2467 		REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL,
2468 		       num_vf_queues - 1);
2469 		DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n",
2470 		   vf_idx, num_vf_queues - 1);
2471 	}
2472 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
2473 
2474 	/* enable sriov. This will probe all the VFs, and consequentially cause
2475 	 * the "acquire" messages to appear on the VF PF channel.
2476 	 */
2477 	DP(BNX2X_MSG_IOV, "about to call enable sriov\n");
2478 	bnx2x_disable_sriov(bp);
2479 
2480 	rc = bnx2x_set_pf_tx_switching(bp, true);
2481 	if (rc)
2482 		return rc;
2483 
2484 	rc = pci_enable_sriov(bp->pdev, req_vfs);
2485 	if (rc) {
2486 		BNX2X_ERR("pci_enable_sriov failed with %d\n", rc);
2487 		return rc;
2488 	}
2489 	DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs);
2490 	return req_vfs;
2491 }
2492 
2493 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp)
2494 {
2495 	int vfidx;
2496 	struct pf_vf_bulletin_content *bulletin;
2497 
2498 	DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n");
2499 	for_each_vf(bp, vfidx) {
2500 	bulletin = BP_VF_BULLETIN(bp, vfidx);
2501 		if (BP_VF(bp, vfidx)->cfg_flags & VF_CFG_VLAN)
2502 			bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0);
2503 	}
2504 }
2505 
2506 void bnx2x_disable_sriov(struct bnx2x *bp)
2507 {
2508 	pci_disable_sriov(bp->pdev);
2509 }
2510 
2511 static int bnx2x_vf_ndo_prep(struct bnx2x *bp, int vfidx,
2512 			     struct bnx2x_virtf **vf,
2513 			     struct pf_vf_bulletin_content **bulletin)
2514 {
2515 	if (bp->state != BNX2X_STATE_OPEN) {
2516 		BNX2X_ERR("vf ndo called though PF is down\n");
2517 		return -EINVAL;
2518 	}
2519 
2520 	if (!IS_SRIOV(bp)) {
2521 		BNX2X_ERR("vf ndo called though sriov is disabled\n");
2522 		return -EINVAL;
2523 	}
2524 
2525 	if (vfidx >= BNX2X_NR_VIRTFN(bp)) {
2526 		BNX2X_ERR("vf ndo called for uninitialized VF. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
2527 			  vfidx, BNX2X_NR_VIRTFN(bp));
2528 		return -EINVAL;
2529 	}
2530 
2531 	/* init members */
2532 	*vf = BP_VF(bp, vfidx);
2533 	*bulletin = BP_VF_BULLETIN(bp, vfidx);
2534 
2535 	if (!*vf) {
2536 		BNX2X_ERR("vf ndo called but vf struct is null. vfidx was %d\n",
2537 			  vfidx);
2538 		return -EINVAL;
2539 	}
2540 
2541 	if (!(*vf)->vfqs) {
2542 		BNX2X_ERR("vf ndo called but vfqs struct is null. Was ndo invoked before dynamically enabling SR-IOV? vfidx was %d\n",
2543 			  vfidx);
2544 		return -EINVAL;
2545 	}
2546 
2547 	if (!*bulletin) {
2548 		BNX2X_ERR("vf ndo called but Bulletin Board struct is null. vfidx was %d\n",
2549 			  vfidx);
2550 		return -EINVAL;
2551 	}
2552 
2553 	return 0;
2554 }
2555 
2556 int bnx2x_get_vf_config(struct net_device *dev, int vfidx,
2557 			struct ifla_vf_info *ivi)
2558 {
2559 	struct bnx2x *bp = netdev_priv(dev);
2560 	struct bnx2x_virtf *vf = NULL;
2561 	struct pf_vf_bulletin_content *bulletin = NULL;
2562 	struct bnx2x_vlan_mac_obj *mac_obj;
2563 	struct bnx2x_vlan_mac_obj *vlan_obj;
2564 	int rc;
2565 
2566 	/* sanity and init */
2567 	rc = bnx2x_vf_ndo_prep(bp, vfidx, &vf, &bulletin);
2568 	if (rc)
2569 		return rc;
2570 	mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2571 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2572 	if (!mac_obj || !vlan_obj) {
2573 		BNX2X_ERR("VF partially initialized\n");
2574 		return -EINVAL;
2575 	}
2576 
2577 	ivi->vf = vfidx;
2578 	ivi->qos = 0;
2579 	ivi->tx_rate = 10000; /* always 10G. TBA take from link struct */
2580 	ivi->spoofchk = 1; /*always enabled */
2581 	if (vf->state == VF_ENABLED) {
2582 		/* mac and vlan are in vlan_mac objects */
2583 		if (bnx2x_validate_vf_sp_objs(bp, vf, false)) {
2584 			mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac,
2585 						0, ETH_ALEN);
2586 			vlan_obj->get_n_elements(bp, vlan_obj, 1,
2587 						 (u8 *)&ivi->vlan, 0,
2588 						 VLAN_HLEN);
2589 		}
2590 	} else {
2591 		/* mac */
2592 		if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID))
2593 			/* mac configured by ndo so its in bulletin board */
2594 			memcpy(&ivi->mac, bulletin->mac, ETH_ALEN);
2595 		else
2596 			/* function has not been loaded yet. Show mac as 0s */
2597 			memset(&ivi->mac, 0, ETH_ALEN);
2598 
2599 		/* vlan */
2600 		if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2601 			/* vlan configured by ndo so its in bulletin board */
2602 			memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN);
2603 		else
2604 			/* function has not been loaded yet. Show vlans as 0s */
2605 			memset(&ivi->vlan, 0, VLAN_HLEN);
2606 	}
2607 
2608 	return 0;
2609 }
2610 
2611 /* New mac for VF. Consider these cases:
2612  * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
2613  *    supply at acquire.
2614  * 2. VF has already been acquired but has not yet initialized - store in local
2615  *    bulletin board. mac will be posted on VF bulletin board after VF init. VF
2616  *    will configure this mac when it is ready.
2617  * 3. VF has already initialized but has not yet setup a queue - post the new
2618  *    mac on VF's bulletin board right now. VF will configure this mac when it
2619  *    is ready.
2620  * 4. VF has already set a queue - delete any macs already configured for this
2621  *    queue and manually config the new mac.
2622  * In any event, once this function has been called refuse any attempts by the
2623  * VF to configure any mac for itself except for this mac. In case of a race
2624  * where the VF fails to see the new post on its bulletin board before sending a
2625  * mac configuration request, the PF will simply fail the request and VF can try
2626  * again after consulting its bulletin board.
2627  */
2628 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac)
2629 {
2630 	struct bnx2x *bp = netdev_priv(dev);
2631 	int rc, q_logical_state;
2632 	struct bnx2x_virtf *vf = NULL;
2633 	struct pf_vf_bulletin_content *bulletin = NULL;
2634 
2635 	/* sanity and init */
2636 	rc = bnx2x_vf_ndo_prep(bp, vfidx, &vf, &bulletin);
2637 	if (rc)
2638 		return rc;
2639 	if (!is_valid_ether_addr(mac)) {
2640 		BNX2X_ERR("mac address invalid\n");
2641 		return -EINVAL;
2642 	}
2643 
2644 	/* update PF's copy of the VF's bulletin. Will no longer accept mac
2645 	 * configuration requests from vf unless match this mac
2646 	 */
2647 	bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID;
2648 	memcpy(bulletin->mac, mac, ETH_ALEN);
2649 
2650 	/* Post update on VF's bulletin board */
2651 	rc = bnx2x_post_vf_bulletin(bp, vfidx);
2652 	if (rc) {
2653 		BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2654 		return rc;
2655 	}
2656 
2657 	q_logical_state =
2658 		bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj));
2659 	if (vf->state == VF_ENABLED &&
2660 	    q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
2661 		/* configure the mac in device on this vf's queue */
2662 		unsigned long ramrod_flags = 0;
2663 		struct bnx2x_vlan_mac_obj *mac_obj;
2664 
2665 		/* User should be able to see failure reason in system logs */
2666 		if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2667 			return -EINVAL;
2668 
2669 		/* must lock vfpf channel to protect against vf flows */
2670 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2671 
2672 		/* remove existing eth macs */
2673 		mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2674 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true);
2675 		if (rc) {
2676 			BNX2X_ERR("failed to delete eth macs\n");
2677 			rc = -EINVAL;
2678 			goto out;
2679 		}
2680 
2681 		/* remove existing uc list macs */
2682 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true);
2683 		if (rc) {
2684 			BNX2X_ERR("failed to delete uc_list macs\n");
2685 			rc = -EINVAL;
2686 			goto out;
2687 		}
2688 
2689 		/* configure the new mac to device */
2690 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2691 		bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true,
2692 				  BNX2X_ETH_MAC, &ramrod_flags);
2693 
2694 out:
2695 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2696 	}
2697 
2698 	return rc;
2699 }
2700 
2701 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos)
2702 {
2703 	struct bnx2x_queue_state_params q_params = {NULL};
2704 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
2705 	struct bnx2x_queue_update_params *update_params;
2706 	struct pf_vf_bulletin_content *bulletin = NULL;
2707 	struct bnx2x_rx_mode_ramrod_params rx_ramrod;
2708 	struct bnx2x *bp = netdev_priv(dev);
2709 	struct bnx2x_vlan_mac_obj *vlan_obj;
2710 	unsigned long vlan_mac_flags = 0;
2711 	unsigned long ramrod_flags = 0;
2712 	struct bnx2x_virtf *vf = NULL;
2713 	unsigned long accept_flags;
2714 	int rc;
2715 
2716 	/* sanity and init */
2717 	rc = bnx2x_vf_ndo_prep(bp, vfidx, &vf, &bulletin);
2718 	if (rc)
2719 		return rc;
2720 
2721 	if (vlan > 4095) {
2722 		BNX2X_ERR("illegal vlan value %d\n", vlan);
2723 		return -EINVAL;
2724 	}
2725 
2726 	DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n",
2727 	   vfidx, vlan, 0);
2728 
2729 	/* update PF's copy of the VF's bulletin. No point in posting the vlan
2730 	 * to the VF since it doesn't have anything to do with it. But it useful
2731 	 * to store it here in case the VF is not up yet and we can only
2732 	 * configure the vlan later when it does. Treat vlan id 0 as remove the
2733 	 * Host tag.
2734 	 */
2735 	if (vlan > 0)
2736 		bulletin->valid_bitmap |= 1 << VLAN_VALID;
2737 	else
2738 		bulletin->valid_bitmap &= ~(1 << VLAN_VALID);
2739 	bulletin->vlan = vlan;
2740 
2741 	/* is vf initialized and queue set up? */
2742 	if (vf->state != VF_ENABLED ||
2743 	    bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2744 	    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2745 		return rc;
2746 
2747 	/* User should be able to see error in system logs */
2748 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2749 		return -EINVAL;
2750 
2751 	/* must lock vfpf channel to protect against vf flows */
2752 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2753 
2754 	/* remove existing vlans */
2755 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2756 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2757 	rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags,
2758 				  &ramrod_flags);
2759 	if (rc) {
2760 		BNX2X_ERR("failed to delete vlans\n");
2761 		rc = -EINVAL;
2762 		goto out;
2763 	}
2764 
2765 	/* need to remove/add the VF's accept_any_vlan bit */
2766 	accept_flags = bnx2x_leading_vfq(vf, accept_flags);
2767 	if (vlan)
2768 		clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2769 	else
2770 		set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2771 
2772 	bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf,
2773 			      accept_flags);
2774 	bnx2x_leading_vfq(vf, accept_flags) = accept_flags;
2775 	bnx2x_config_rx_mode(bp, &rx_ramrod);
2776 
2777 	/* configure the new vlan to device */
2778 	memset(&ramrod_param, 0, sizeof(ramrod_param));
2779 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2780 	ramrod_param.vlan_mac_obj = vlan_obj;
2781 	ramrod_param.ramrod_flags = ramrod_flags;
2782 	set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
2783 		&ramrod_param.user_req.vlan_mac_flags);
2784 	ramrod_param.user_req.u.vlan.vlan = vlan;
2785 	ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
2786 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
2787 	if (rc) {
2788 		BNX2X_ERR("failed to configure vlan\n");
2789 		rc =  -EINVAL;
2790 		goto out;
2791 	}
2792 
2793 	/* send queue update ramrod to configure default vlan and silent
2794 	 * vlan removal
2795 	 */
2796 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2797 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
2798 	q_params.q_obj = &bnx2x_leading_vfq(vf, sp_obj);
2799 	update_params = &q_params.params.update;
2800 	__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
2801 		  &update_params->update_flags);
2802 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
2803 		  &update_params->update_flags);
2804 	if (vlan == 0) {
2805 		/* if vlan is 0 then we want to leave the VF traffic
2806 		 * untagged, and leave the incoming traffic untouched
2807 		 * (i.e. do not remove any vlan tags).
2808 		 */
2809 		__clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2810 			    &update_params->update_flags);
2811 		__clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2812 			    &update_params->update_flags);
2813 	} else {
2814 		/* configure default vlan to vf queue and set silent
2815 		 * vlan removal (the vf remains unaware of this vlan).
2816 		 */
2817 		__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2818 			  &update_params->update_flags);
2819 		__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2820 			  &update_params->update_flags);
2821 		update_params->def_vlan = vlan;
2822 		update_params->silent_removal_value =
2823 			vlan & VLAN_VID_MASK;
2824 		update_params->silent_removal_mask = VLAN_VID_MASK;
2825 	}
2826 
2827 	/* Update the Queue state */
2828 	rc = bnx2x_queue_state_change(bp, &q_params);
2829 	if (rc) {
2830 		BNX2X_ERR("Failed to configure default VLAN\n");
2831 		goto out;
2832 	}
2833 
2834 
2835 	/* clear the flag indicating that this VF needs its vlan
2836 	 * (will only be set if the HV configured the Vlan before vf was
2837 	 * up and we were called because the VF came up later
2838 	 */
2839 out:
2840 	vf->cfg_flags &= ~VF_CFG_VLAN;
2841 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2842 
2843 	return rc;
2844 }
2845 
2846 /* crc is the first field in the bulletin board. Compute the crc over the
2847  * entire bulletin board excluding the crc field itself. Use the length field
2848  * as the Bulletin Board was posted by a PF with possibly a different version
2849  * from the vf which will sample it. Therefore, the length is computed by the
2850  * PF and the used blindly by the VF.
2851  */
2852 u32 bnx2x_crc_vf_bulletin(struct bnx2x *bp,
2853 			  struct pf_vf_bulletin_content *bulletin)
2854 {
2855 	return crc32(BULLETIN_CRC_SEED,
2856 		 ((u8 *)bulletin) + sizeof(bulletin->crc),
2857 		 bulletin->length - sizeof(bulletin->crc));
2858 }
2859 
2860 /* Check for new posts on the bulletin board */
2861 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp)
2862 {
2863 	struct pf_vf_bulletin_content bulletin = bp->pf2vf_bulletin->content;
2864 	int attempts;
2865 
2866 	/* bulletin board hasn't changed since last sample */
2867 	if (bp->old_bulletin.version == bulletin.version)
2868 		return PFVF_BULLETIN_UNCHANGED;
2869 
2870 	/* validate crc of new bulletin board */
2871 	if (bp->old_bulletin.version != bp->pf2vf_bulletin->content.version) {
2872 		/* sampling structure in mid post may result with corrupted data
2873 		 * validate crc to ensure coherency.
2874 		 */
2875 		for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) {
2876 			bulletin = bp->pf2vf_bulletin->content;
2877 			if (bulletin.crc == bnx2x_crc_vf_bulletin(bp,
2878 								  &bulletin))
2879 				break;
2880 			BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
2881 				  bulletin.crc,
2882 				  bnx2x_crc_vf_bulletin(bp, &bulletin));
2883 		}
2884 		if (attempts >= BULLETIN_ATTEMPTS) {
2885 			BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
2886 				  attempts);
2887 			return PFVF_BULLETIN_CRC_ERR;
2888 		}
2889 	}
2890 
2891 	/* the mac address in bulletin board is valid and is new */
2892 	if (bulletin.valid_bitmap & 1 << MAC_ADDR_VALID &&
2893 	    !ether_addr_equal(bulletin.mac, bp->old_bulletin.mac)) {
2894 		/* update new mac to net device */
2895 		memcpy(bp->dev->dev_addr, bulletin.mac, ETH_ALEN);
2896 	}
2897 
2898 	/* the vlan in bulletin board is valid and is new */
2899 	if (bulletin.valid_bitmap & 1 << VLAN_VALID)
2900 		memcpy(&bulletin.vlan, &bp->old_bulletin.vlan, VLAN_HLEN);
2901 
2902 	/* copy new bulletin board to bp */
2903 	bp->old_bulletin = bulletin;
2904 
2905 	return PFVF_BULLETIN_UPDATED;
2906 }
2907 
2908 void bnx2x_timer_sriov(struct bnx2x *bp)
2909 {
2910 	bnx2x_sample_bulletin(bp);
2911 
2912 	/* if channel is down we need to self destruct */
2913 	if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN)
2914 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
2915 				       BNX2X_MSG_IOV);
2916 }
2917 
2918 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp)
2919 {
2920 	/* vf doorbells are embedded within the regview */
2921 	return bp->regview + PXP_VF_ADDR_DB_START;
2922 }
2923 
2924 void bnx2x_vf_pci_dealloc(struct bnx2x *bp)
2925 {
2926 	BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
2927 		       sizeof(struct bnx2x_vf_mbx_msg));
2928 	BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->pf2vf_bulletin_mapping,
2929 		       sizeof(union pf_vf_bulletin));
2930 }
2931 
2932 int bnx2x_vf_pci_alloc(struct bnx2x *bp)
2933 {
2934 	mutex_init(&bp->vf2pf_mutex);
2935 
2936 	/* allocate vf2pf mailbox for vf to pf channel */
2937 	bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping,
2938 					 sizeof(struct bnx2x_vf_mbx_msg));
2939 	if (!bp->vf2pf_mbox)
2940 		goto alloc_mem_err;
2941 
2942 	/* allocate pf 2 vf bulletin board */
2943 	bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping,
2944 					     sizeof(union pf_vf_bulletin));
2945 	if (!bp->pf2vf_bulletin)
2946 		goto alloc_mem_err;
2947 
2948 	return 0;
2949 
2950 alloc_mem_err:
2951 	bnx2x_vf_pci_dealloc(bp);
2952 	return -ENOMEM;
2953 }
2954 
2955 void bnx2x_iov_channel_down(struct bnx2x *bp)
2956 {
2957 	int vf_idx;
2958 	struct pf_vf_bulletin_content *bulletin;
2959 
2960 	if (!IS_SRIOV(bp))
2961 		return;
2962 
2963 	for_each_vf(bp, vf_idx) {
2964 		/* locate this VFs bulletin board and update the channel down
2965 		 * bit
2966 		 */
2967 		bulletin = BP_VF_BULLETIN(bp, vf_idx);
2968 		bulletin->valid_bitmap |= 1 << CHANNEL_DOWN;
2969 
2970 		/* update vf bulletin board */
2971 		bnx2x_post_vf_bulletin(bp, vf_idx);
2972 	}
2973 }
2974 
2975 void bnx2x_iov_task(struct work_struct *work)
2976 {
2977 	struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work);
2978 
2979 	if (!netif_running(bp->dev))
2980 		return;
2981 
2982 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR,
2983 			       &bp->iov_task_state))
2984 		bnx2x_vf_handle_flr_event(bp);
2985 
2986 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG,
2987 			       &bp->iov_task_state))
2988 		bnx2x_vf_mbx(bp);
2989 }
2990 
2991 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag)
2992 {
2993 	smp_mb__before_atomic();
2994 	set_bit(flag, &bp->iov_task_state);
2995 	smp_mb__after_atomic();
2996 	DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
2997 	queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0);
2998 }
2999