1 /* bnx2x_sriov.c: QLogic Everest network driver. 2 * 3 * Copyright 2009-2013 Broadcom Corporation 4 * Copyright 2014 QLogic Corporation 5 * All rights reserved 6 * 7 * Unless you and QLogic execute a separate written software license 8 * agreement governing use of this software, this software is licensed to you 9 * under the terms of the GNU General Public License version 2, available 10 * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL"). 11 * 12 * Notwithstanding the above, under no circumstances may you combine this 13 * software in any way with any other QLogic software provided under a 14 * license other than the GPL, without QLogic's express prior written 15 * consent. 16 * 17 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 18 * Written by: Shmulik Ravid 19 * Ariel Elior <ariel.elior@qlogic.com> 20 * 21 */ 22 #include "bnx2x.h" 23 #include "bnx2x_init.h" 24 #include "bnx2x_cmn.h" 25 #include "bnx2x_sp.h" 26 #include <linux/crc32.h> 27 #include <linux/if_vlan.h> 28 29 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx, 30 struct bnx2x_virtf **vf, 31 struct pf_vf_bulletin_content **bulletin, 32 bool test_queue); 33 34 /* General service functions */ 35 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid, 36 u16 pf_id) 37 { 38 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid), 39 pf_id); 40 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid), 41 pf_id); 42 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid), 43 pf_id); 44 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid), 45 pf_id); 46 } 47 48 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid, 49 u8 enable) 50 { 51 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid), 52 enable); 53 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid), 54 enable); 55 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid), 56 enable); 57 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid), 58 enable); 59 } 60 61 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid) 62 { 63 int idx; 64 65 for_each_vf(bp, idx) 66 if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid) 67 break; 68 return idx; 69 } 70 71 static 72 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid) 73 { 74 u16 idx = (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid); 75 return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL; 76 } 77 78 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf, 79 u8 igu_sb_id, u8 segment, u16 index, u8 op, 80 u8 update) 81 { 82 /* acking a VF sb through the PF - use the GRC */ 83 u32 ctl; 84 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 85 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 86 u32 func_encode = vf->abs_vfid; 87 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id; 88 struct igu_regular cmd_data = {0}; 89 90 cmd_data.sb_id_and_flags = 91 ((index << IGU_REGULAR_SB_INDEX_SHIFT) | 92 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) | 93 (update << IGU_REGULAR_BUPDATE_SHIFT) | 94 (op << IGU_REGULAR_ENABLE_INT_SHIFT)); 95 96 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT | 97 func_encode << IGU_CTRL_REG_FID_SHIFT | 98 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT; 99 100 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 101 cmd_data.sb_id_and_flags, igu_addr_data); 102 REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags); 103 barrier(); 104 105 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 106 ctl, igu_addr_ctl); 107 REG_WR(bp, igu_addr_ctl, ctl); 108 barrier(); 109 } 110 111 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp, 112 struct bnx2x_virtf *vf, 113 bool print_err) 114 { 115 if (!bnx2x_leading_vfq(vf, sp_initialized)) { 116 if (print_err) 117 BNX2X_ERR("Slowpath objects not yet initialized!\n"); 118 else 119 DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n"); 120 return false; 121 } 122 return true; 123 } 124 125 /* VFOP operations states */ 126 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf, 127 struct bnx2x_queue_init_params *init_params, 128 struct bnx2x_queue_setup_params *setup_params, 129 u16 q_idx, u16 sb_idx) 130 { 131 DP(BNX2X_MSG_IOV, 132 "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d", 133 vf->abs_vfid, 134 q_idx, 135 sb_idx, 136 init_params->tx.sb_cq_index, 137 init_params->tx.hc_rate, 138 setup_params->flags, 139 setup_params->txq_params.traffic_type); 140 } 141 142 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf, 143 struct bnx2x_queue_init_params *init_params, 144 struct bnx2x_queue_setup_params *setup_params, 145 u16 q_idx, u16 sb_idx) 146 { 147 struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params; 148 149 DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n" 150 "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n", 151 vf->abs_vfid, 152 q_idx, 153 sb_idx, 154 init_params->rx.sb_cq_index, 155 init_params->rx.hc_rate, 156 setup_params->gen_params.mtu, 157 rxq_params->buf_sz, 158 rxq_params->sge_buf_sz, 159 rxq_params->max_sges_pkt, 160 rxq_params->tpa_agg_sz, 161 setup_params->flags, 162 rxq_params->drop_flags, 163 rxq_params->cache_line_log); 164 } 165 166 void bnx2x_vfop_qctor_prep(struct bnx2x *bp, 167 struct bnx2x_virtf *vf, 168 struct bnx2x_vf_queue *q, 169 struct bnx2x_vf_queue_construct_params *p, 170 unsigned long q_type) 171 { 172 struct bnx2x_queue_init_params *init_p = &p->qstate.params.init; 173 struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup; 174 175 /* INIT */ 176 177 /* Enable host coalescing in the transition to INIT state */ 178 if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags)) 179 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags); 180 181 if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags)) 182 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags); 183 184 /* FW SB ID */ 185 init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx); 186 init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx); 187 188 /* context */ 189 init_p->cxts[0] = q->cxt; 190 191 /* SETUP */ 192 193 /* Setup-op general parameters */ 194 setup_p->gen_params.spcl_id = vf->sp_cl_id; 195 setup_p->gen_params.stat_id = vfq_stat_id(vf, q); 196 setup_p->gen_params.fp_hsi = vf->fp_hsi; 197 198 /* Setup-op flags: 199 * collect statistics, zero statistics, local-switching, security, 200 * OV for Flex10, RSS and MCAST for leading 201 */ 202 if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags)) 203 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags); 204 205 /* for VFs, enable tx switching, bd coherency, and mac address 206 * anti-spoofing 207 */ 208 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags); 209 __set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags); 210 if (vf->spoofchk) 211 __set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags); 212 else 213 __clear_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags); 214 215 /* Setup-op rx parameters */ 216 if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) { 217 struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params; 218 219 rxq_p->cl_qzone_id = vfq_qzone_id(vf, q); 220 rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx); 221 rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid); 222 223 if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags)) 224 rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES; 225 } 226 227 /* Setup-op tx parameters */ 228 if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) { 229 setup_p->txq_params.tss_leading_cl_id = vf->leading_rss; 230 setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx); 231 } 232 } 233 234 static int bnx2x_vf_queue_create(struct bnx2x *bp, 235 struct bnx2x_virtf *vf, int qid, 236 struct bnx2x_vf_queue_construct_params *qctor) 237 { 238 struct bnx2x_queue_state_params *q_params; 239 int rc = 0; 240 241 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 242 243 /* Prepare ramrod information */ 244 q_params = &qctor->qstate; 245 q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj); 246 set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags); 247 248 if (bnx2x_get_q_logical_state(bp, q_params->q_obj) == 249 BNX2X_Q_LOGICAL_STATE_ACTIVE) { 250 DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n"); 251 goto out; 252 } 253 254 /* Run Queue 'construction' ramrods */ 255 q_params->cmd = BNX2X_Q_CMD_INIT; 256 rc = bnx2x_queue_state_change(bp, q_params); 257 if (rc) 258 goto out; 259 260 memcpy(&q_params->params.setup, &qctor->prep_qsetup, 261 sizeof(struct bnx2x_queue_setup_params)); 262 q_params->cmd = BNX2X_Q_CMD_SETUP; 263 rc = bnx2x_queue_state_change(bp, q_params); 264 if (rc) 265 goto out; 266 267 /* enable interrupts */ 268 bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)), 269 USTORM_ID, 0, IGU_INT_ENABLE, 0); 270 out: 271 return rc; 272 } 273 274 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf, 275 int qid) 276 { 277 enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT, 278 BNX2X_Q_CMD_TERMINATE, 279 BNX2X_Q_CMD_CFC_DEL}; 280 struct bnx2x_queue_state_params q_params; 281 int rc, i; 282 283 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 284 285 /* Prepare ramrod information */ 286 memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params)); 287 q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj); 288 set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 289 290 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) == 291 BNX2X_Q_LOGICAL_STATE_STOPPED) { 292 DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n"); 293 goto out; 294 } 295 296 /* Run Queue 'destruction' ramrods */ 297 for (i = 0; i < ARRAY_SIZE(cmds); i++) { 298 q_params.cmd = cmds[i]; 299 rc = bnx2x_queue_state_change(bp, &q_params); 300 if (rc) { 301 BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]); 302 return rc; 303 } 304 } 305 out: 306 /* Clean Context */ 307 if (bnx2x_vfq(vf, qid, cxt)) { 308 bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0; 309 bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0; 310 } 311 312 return 0; 313 } 314 315 static void 316 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid) 317 { 318 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid); 319 if (vf) { 320 /* the first igu entry belonging to VFs of this PF */ 321 if (!BP_VFDB(bp)->first_vf_igu_entry) 322 BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id; 323 324 /* the first igu entry belonging to this VF */ 325 if (!vf_sb_count(vf)) 326 vf->igu_base_id = igu_sb_id; 327 328 ++vf_sb_count(vf); 329 ++vf->sb_count; 330 } 331 BP_VFDB(bp)->vf_sbs_pool++; 332 } 333 334 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf, 335 int qid, bool drv_only, int type) 336 { 337 struct bnx2x_vlan_mac_ramrod_params ramrod; 338 int rc; 339 340 DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid, 341 (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" : 342 (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs"); 343 344 /* Prepare ramrod params */ 345 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params)); 346 if (type == BNX2X_VF_FILTER_VLAN_MAC) { 347 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); 348 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj); 349 } else if (type == BNX2X_VF_FILTER_MAC) { 350 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); 351 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj); 352 } else { 353 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj); 354 } 355 ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL; 356 357 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags); 358 if (drv_only) 359 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags); 360 else 361 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags); 362 363 /* Start deleting */ 364 rc = ramrod.vlan_mac_obj->delete_all(bp, 365 ramrod.vlan_mac_obj, 366 &ramrod.user_req.vlan_mac_flags, 367 &ramrod.ramrod_flags); 368 if (rc) { 369 BNX2X_ERR("Failed to delete all %s\n", 370 (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" : 371 (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs"); 372 return rc; 373 } 374 375 return 0; 376 } 377 378 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp, 379 struct bnx2x_virtf *vf, int qid, 380 struct bnx2x_vf_mac_vlan_filter *filter, 381 bool drv_only) 382 { 383 struct bnx2x_vlan_mac_ramrod_params ramrod; 384 int rc; 385 386 DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n", 387 vf->abs_vfid, filter->add ? "Adding" : "Deleting", 388 (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MAC" : 389 (filter->type == BNX2X_VF_FILTER_MAC) ? "MAC" : "VLAN"); 390 391 /* Prepare ramrod params */ 392 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params)); 393 if (filter->type == BNX2X_VF_FILTER_VLAN_MAC) { 394 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj); 395 ramrod.user_req.u.vlan.vlan = filter->vid; 396 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN); 397 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); 398 } else if (filter->type == BNX2X_VF_FILTER_VLAN) { 399 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj); 400 ramrod.user_req.u.vlan.vlan = filter->vid; 401 } else { 402 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); 403 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj); 404 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN); 405 } 406 ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD : 407 BNX2X_VLAN_MAC_DEL; 408 409 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags); 410 if (drv_only) 411 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags); 412 else 413 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags); 414 415 /* Add/Remove the filter */ 416 rc = bnx2x_config_vlan_mac(bp, &ramrod); 417 if (rc == -EEXIST) 418 return 0; 419 if (rc) { 420 BNX2X_ERR("Failed to %s %s\n", 421 filter->add ? "add" : "delete", 422 (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? 423 "VLAN-MAC" : 424 (filter->type == BNX2X_VF_FILTER_MAC) ? 425 "MAC" : "VLAN"); 426 return rc; 427 } 428 429 filter->applied = true; 430 431 return 0; 432 } 433 434 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf, 435 struct bnx2x_vf_mac_vlan_filters *filters, 436 int qid, bool drv_only) 437 { 438 int rc = 0, i; 439 440 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 441 442 if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) 443 return -EINVAL; 444 445 /* Prepare ramrod params */ 446 for (i = 0; i < filters->count; i++) { 447 rc = bnx2x_vf_mac_vlan_config(bp, vf, qid, 448 &filters->filters[i], drv_only); 449 if (rc) 450 break; 451 } 452 453 /* Rollback if needed */ 454 if (i != filters->count) { 455 BNX2X_ERR("Managed only %d/%d filters - rolling back\n", 456 i, filters->count); 457 while (--i >= 0) { 458 if (!filters->filters[i].applied) 459 continue; 460 filters->filters[i].add = !filters->filters[i].add; 461 bnx2x_vf_mac_vlan_config(bp, vf, qid, 462 &filters->filters[i], 463 drv_only); 464 } 465 } 466 467 /* It's our responsibility to free the filters */ 468 kfree(filters); 469 470 return rc; 471 } 472 473 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid, 474 struct bnx2x_vf_queue_construct_params *qctor) 475 { 476 int rc; 477 478 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 479 480 rc = bnx2x_vf_queue_create(bp, vf, qid, qctor); 481 if (rc) 482 goto op_err; 483 484 /* Schedule the configuration of any pending vlan filters */ 485 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN, 486 BNX2X_MSG_IOV); 487 return 0; 488 op_err: 489 BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc); 490 return rc; 491 } 492 493 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf, 494 int qid) 495 { 496 int rc; 497 498 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 499 500 /* If needed, clean the filtering data base */ 501 if ((qid == LEADING_IDX) && 502 bnx2x_validate_vf_sp_objs(bp, vf, false)) { 503 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, 504 BNX2X_VF_FILTER_VLAN_MAC); 505 if (rc) 506 goto op_err; 507 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, 508 BNX2X_VF_FILTER_VLAN); 509 if (rc) 510 goto op_err; 511 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, 512 BNX2X_VF_FILTER_MAC); 513 if (rc) 514 goto op_err; 515 } 516 517 /* Terminate queue */ 518 if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) { 519 struct bnx2x_queue_state_params qstate; 520 521 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params)); 522 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj); 523 qstate.q_obj->state = BNX2X_Q_STATE_STOPPED; 524 qstate.cmd = BNX2X_Q_CMD_TERMINATE; 525 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags); 526 rc = bnx2x_queue_state_change(bp, &qstate); 527 if (rc) 528 goto op_err; 529 } 530 531 return 0; 532 op_err: 533 BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc); 534 return rc; 535 } 536 537 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf, 538 bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only) 539 { 540 struct bnx2x_mcast_list_elem *mc = NULL; 541 struct bnx2x_mcast_ramrod_params mcast; 542 int rc, i; 543 544 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 545 546 /* Prepare Multicast command */ 547 memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params)); 548 mcast.mcast_obj = &vf->mcast_obj; 549 if (drv_only) 550 set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags); 551 else 552 set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags); 553 if (mc_num) { 554 mc = kcalloc(mc_num, sizeof(struct bnx2x_mcast_list_elem), 555 GFP_KERNEL); 556 if (!mc) { 557 BNX2X_ERR("Cannot Configure multicasts due to lack of memory\n"); 558 return -ENOMEM; 559 } 560 } 561 562 if (mc_num) { 563 INIT_LIST_HEAD(&mcast.mcast_list); 564 for (i = 0; i < mc_num; i++) { 565 mc[i].mac = mcasts[i]; 566 list_add_tail(&mc[i].link, 567 &mcast.mcast_list); 568 } 569 570 /* add new mcasts */ 571 mcast.mcast_list_len = mc_num; 572 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_SET); 573 if (rc) 574 BNX2X_ERR("Failed to set multicasts\n"); 575 } else { 576 /* clear existing mcasts */ 577 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL); 578 if (rc) 579 BNX2X_ERR("Failed to remove multicasts\n"); 580 } 581 582 kfree(mc); 583 584 return rc; 585 } 586 587 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid, 588 struct bnx2x_rx_mode_ramrod_params *ramrod, 589 struct bnx2x_virtf *vf, 590 unsigned long accept_flags) 591 { 592 struct bnx2x_vf_queue *vfq = vfq_get(vf, qid); 593 594 memset(ramrod, 0, sizeof(*ramrod)); 595 ramrod->cid = vfq->cid; 596 ramrod->cl_id = vfq_cl_id(vf, vfq); 597 ramrod->rx_mode_obj = &bp->rx_mode_obj; 598 ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid); 599 ramrod->rx_accept_flags = accept_flags; 600 ramrod->tx_accept_flags = accept_flags; 601 ramrod->pstate = &vf->filter_state; 602 ramrod->state = BNX2X_FILTER_RX_MODE_PENDING; 603 604 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state); 605 set_bit(RAMROD_RX, &ramrod->ramrod_flags); 606 set_bit(RAMROD_TX, &ramrod->ramrod_flags); 607 608 ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2); 609 ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2); 610 } 611 612 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf, 613 int qid, unsigned long accept_flags) 614 { 615 struct bnx2x_rx_mode_ramrod_params ramrod; 616 617 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 618 619 bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags); 620 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags); 621 vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags; 622 return bnx2x_config_rx_mode(bp, &ramrod); 623 } 624 625 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid) 626 { 627 int rc; 628 629 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 630 631 /* Remove all classification configuration for leading queue */ 632 if (qid == LEADING_IDX) { 633 rc = bnx2x_vf_rxmode(bp, vf, qid, 0); 634 if (rc) 635 goto op_err; 636 637 /* Remove filtering if feasible */ 638 if (bnx2x_validate_vf_sp_objs(bp, vf, true)) { 639 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, 640 false, 641 BNX2X_VF_FILTER_VLAN_MAC); 642 if (rc) 643 goto op_err; 644 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, 645 false, 646 BNX2X_VF_FILTER_VLAN); 647 if (rc) 648 goto op_err; 649 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, 650 false, 651 BNX2X_VF_FILTER_MAC); 652 if (rc) 653 goto op_err; 654 rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false); 655 if (rc) 656 goto op_err; 657 } 658 } 659 660 /* Destroy queue */ 661 rc = bnx2x_vf_queue_destroy(bp, vf, qid); 662 if (rc) 663 goto op_err; 664 return rc; 665 op_err: 666 BNX2X_ERR("vf[%d:%d] error: rc %d\n", 667 vf->abs_vfid, qid, rc); 668 return rc; 669 } 670 671 /* VF enable primitives 672 * when pretend is required the caller is responsible 673 * for calling pretend prior to calling these routines 674 */ 675 676 /* internal vf enable - until vf is enabled internally all transactions 677 * are blocked. This routine should always be called last with pretend. 678 */ 679 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable) 680 { 681 REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0); 682 } 683 684 /* clears vf error in all semi blocks */ 685 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid) 686 { 687 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid); 688 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid); 689 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid); 690 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid); 691 } 692 693 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid) 694 { 695 u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5; 696 u32 was_err_reg = 0; 697 698 switch (was_err_group) { 699 case 0: 700 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR; 701 break; 702 case 1: 703 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR; 704 break; 705 case 2: 706 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR; 707 break; 708 case 3: 709 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR; 710 break; 711 } 712 REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f)); 713 } 714 715 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf) 716 { 717 int i; 718 u32 val; 719 720 /* Set VF masks and configuration - pretend */ 721 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 722 723 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 724 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 725 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0); 726 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0); 727 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0); 728 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0); 729 730 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION); 731 val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN); 732 val &= ~IGU_VF_CONF_PARENT_MASK; 733 val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT; 734 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val); 735 736 DP(BNX2X_MSG_IOV, 737 "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n", 738 vf->abs_vfid, val); 739 740 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 741 742 /* iterate over all queues, clear sb consumer */ 743 for (i = 0; i < vf_sb_count(vf); i++) { 744 u8 igu_sb_id = vf_igu_sb(vf, i); 745 746 /* zero prod memory */ 747 REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0); 748 749 /* clear sb state machine */ 750 bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id, 751 false /* VF */); 752 753 /* disable + update */ 754 bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0, 755 IGU_INT_DISABLE, 1); 756 } 757 } 758 759 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid) 760 { 761 u16 abs_fid; 762 763 abs_fid = FW_VF_HANDLE(abs_vfid); 764 765 /* set the VF-PF association in the FW */ 766 storm_memset_vf_to_pf(bp, abs_fid, BP_FUNC(bp)); 767 storm_memset_func_en(bp, abs_fid, 1); 768 769 /* Invalidate fp_hsi version for vfs */ 770 if (bp->fw_cap & FW_CAP_INVALIDATE_VF_FP_HSI) 771 REG_WR8(bp, BAR_XSTRORM_INTMEM + 772 XSTORM_ETH_FUNCTION_INFO_FP_HSI_VALID_E2_OFFSET(abs_fid), 0); 773 774 /* clear vf errors*/ 775 bnx2x_vf_semi_clear_err(bp, abs_vfid); 776 bnx2x_vf_pglue_clear_err(bp, abs_vfid); 777 778 /* internal vf-enable - pretend */ 779 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid)); 780 DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid); 781 bnx2x_vf_enable_internal(bp, true); 782 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 783 } 784 785 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf) 786 { 787 /* Reset vf in IGU interrupts are still disabled */ 788 bnx2x_vf_igu_reset(bp, vf); 789 790 /* pretend to enable the vf with the PBF */ 791 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 792 REG_WR(bp, PBF_REG_DISABLE_VF, 0); 793 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 794 } 795 796 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid) 797 { 798 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid); 799 struct pci_dev *dev; 800 bool pending; 801 802 if (!vf) 803 return false; 804 805 dev = pci_get_domain_bus_and_slot(vf->domain, vf->bus, vf->devfn); 806 if (!dev) 807 return false; 808 pending = bnx2x_is_pcie_pending(dev); 809 pci_dev_put(dev); 810 811 return pending; 812 } 813 814 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid) 815 { 816 /* Verify no pending pci transactions */ 817 if (bnx2x_vf_is_pcie_pending(bp, abs_vfid)) 818 BNX2X_ERR("PCIE Transactions still pending\n"); 819 820 return 0; 821 } 822 823 /* must be called after the number of PF queues and the number of VFs are 824 * both known 825 */ 826 static void 827 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf) 828 { 829 struct vf_pf_resc_request *resc = &vf->alloc_resc; 830 831 /* will be set only during VF-ACQUIRE */ 832 resc->num_rxqs = 0; 833 resc->num_txqs = 0; 834 835 resc->num_mac_filters = VF_MAC_CREDIT_CNT; 836 resc->num_vlan_filters = VF_VLAN_CREDIT_CNT; 837 838 /* no real limitation */ 839 resc->num_mc_filters = 0; 840 841 /* num_sbs already set */ 842 resc->num_sbs = vf->sb_count; 843 } 844 845 /* FLR routines: */ 846 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf) 847 { 848 /* reset the state variables */ 849 bnx2x_iov_static_resc(bp, vf); 850 vf->state = VF_FREE; 851 } 852 853 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf) 854 { 855 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp); 856 857 /* DQ usage counter */ 858 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 859 bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT, 860 "DQ VF usage counter timed out", 861 poll_cnt); 862 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 863 864 /* FW cleanup command - poll for the results */ 865 if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid), 866 poll_cnt)) 867 BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid); 868 869 /* verify TX hw is flushed */ 870 bnx2x_tx_hw_flushed(bp, poll_cnt); 871 } 872 873 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf) 874 { 875 int rc, i; 876 877 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 878 879 /* the cleanup operations are valid if and only if the VF 880 * was first acquired. 881 */ 882 for (i = 0; i < vf_rxq_count(vf); i++) { 883 rc = bnx2x_vf_queue_flr(bp, vf, i); 884 if (rc) 885 goto out; 886 } 887 888 /* remove multicasts */ 889 bnx2x_vf_mcast(bp, vf, NULL, 0, true); 890 891 /* dispatch final cleanup and wait for HW queues to flush */ 892 bnx2x_vf_flr_clnup_hw(bp, vf); 893 894 /* release VF resources */ 895 bnx2x_vf_free_resc(bp, vf); 896 897 vf->malicious = false; 898 899 /* re-open the mailbox */ 900 bnx2x_vf_enable_mbx(bp, vf->abs_vfid); 901 return; 902 out: 903 BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n", 904 vf->abs_vfid, i, rc); 905 } 906 907 static void bnx2x_vf_flr_clnup(struct bnx2x *bp) 908 { 909 struct bnx2x_virtf *vf; 910 int i; 911 912 for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) { 913 /* VF should be RESET & in FLR cleanup states */ 914 if (bnx2x_vf(bp, i, state) != VF_RESET || 915 !bnx2x_vf(bp, i, flr_clnup_stage)) 916 continue; 917 918 DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n", 919 i, BNX2X_NR_VIRTFN(bp)); 920 921 vf = BP_VF(bp, i); 922 923 /* lock the vf pf channel */ 924 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR); 925 926 /* invoke the VF FLR SM */ 927 bnx2x_vf_flr(bp, vf); 928 929 /* mark the VF to be ACKED and continue */ 930 vf->flr_clnup_stage = false; 931 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR); 932 } 933 934 /* Acknowledge the handled VFs. 935 * we are acknowledge all the vfs which an flr was requested for, even 936 * if amongst them there are such that we never opened, since the mcp 937 * will interrupt us immediately again if we only ack some of the bits, 938 * resulting in an endless loop. This can happen for example in KVM 939 * where an 'all ones' flr request is sometimes given by hyper visor 940 */ 941 DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n", 942 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]); 943 for (i = 0; i < FLRD_VFS_DWORDS; i++) 944 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 945 bp->vfdb->flrd_vfs[i]); 946 947 bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0); 948 949 /* clear the acked bits - better yet if the MCP implemented 950 * write to clear semantics 951 */ 952 for (i = 0; i < FLRD_VFS_DWORDS; i++) 953 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0); 954 } 955 956 void bnx2x_vf_handle_flr_event(struct bnx2x *bp) 957 { 958 int i; 959 960 /* Read FLR'd VFs */ 961 for (i = 0; i < FLRD_VFS_DWORDS; i++) 962 bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]); 963 964 DP(BNX2X_MSG_MCP, 965 "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n", 966 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]); 967 968 for_each_vf(bp, i) { 969 struct bnx2x_virtf *vf = BP_VF(bp, i); 970 u32 reset = 0; 971 972 if (vf->abs_vfid < 32) 973 reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid); 974 else 975 reset = bp->vfdb->flrd_vfs[1] & 976 (1 << (vf->abs_vfid - 32)); 977 978 if (reset) { 979 /* set as reset and ready for cleanup */ 980 vf->state = VF_RESET; 981 vf->flr_clnup_stage = true; 982 983 DP(BNX2X_MSG_IOV, 984 "Initiating Final cleanup for VF %d\n", 985 vf->abs_vfid); 986 } 987 } 988 989 /* do the FLR cleanup for all marked VFs*/ 990 bnx2x_vf_flr_clnup(bp); 991 } 992 993 /* IOV global initialization routines */ 994 void bnx2x_iov_init_dq(struct bnx2x *bp) 995 { 996 if (!IS_SRIOV(bp)) 997 return; 998 999 /* Set the DQ such that the CID reflect the abs_vfid */ 1000 REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0); 1001 REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS)); 1002 1003 /* Set VFs starting CID. If its > 0 the preceding CIDs are belong to 1004 * the PF L2 queues 1005 */ 1006 REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID); 1007 1008 /* The VF window size is the log2 of the max number of CIDs per VF */ 1009 REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND); 1010 1011 /* The VF doorbell size 0 - *B, 4 - 128B. We set it here to match 1012 * the Pf doorbell size although the 2 are independent. 1013 */ 1014 REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3); 1015 1016 /* No security checks for now - 1017 * configure single rule (out of 16) mask = 0x1, value = 0x0, 1018 * CID range 0 - 0x1ffff 1019 */ 1020 REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1); 1021 REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0); 1022 REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0); 1023 REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff); 1024 1025 /* set the VF doorbell threshold. This threshold represents the amount 1026 * of doorbells allowed in the main DORQ fifo for a specific VF. 1027 */ 1028 REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64); 1029 } 1030 1031 void bnx2x_iov_init_dmae(struct bnx2x *bp) 1032 { 1033 if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV)) 1034 REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0); 1035 } 1036 1037 static int bnx2x_vf_domain(struct bnx2x *bp, int vfid) 1038 { 1039 struct pci_dev *dev = bp->pdev; 1040 1041 return pci_domain_nr(dev->bus); 1042 } 1043 1044 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid) 1045 { 1046 struct pci_dev *dev = bp->pdev; 1047 struct bnx2x_sriov *iov = &bp->vfdb->sriov; 1048 1049 return dev->bus->number + ((dev->devfn + iov->offset + 1050 iov->stride * vfid) >> 8); 1051 } 1052 1053 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid) 1054 { 1055 struct pci_dev *dev = bp->pdev; 1056 struct bnx2x_sriov *iov = &bp->vfdb->sriov; 1057 1058 return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff; 1059 } 1060 1061 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf) 1062 { 1063 int i, n; 1064 struct pci_dev *dev = bp->pdev; 1065 struct bnx2x_sriov *iov = &bp->vfdb->sriov; 1066 1067 for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) { 1068 u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i); 1069 u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i); 1070 1071 size /= iov->total; 1072 vf->bars[n].bar = start + size * vf->abs_vfid; 1073 vf->bars[n].size = size; 1074 } 1075 } 1076 1077 static int 1078 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp) 1079 { 1080 int sb_id; 1081 u32 val; 1082 u8 fid, current_pf = 0; 1083 1084 /* IGU in normal mode - read CAM */ 1085 for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) { 1086 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4); 1087 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) 1088 continue; 1089 fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID); 1090 if (fid & IGU_FID_ENCODE_IS_PF) 1091 current_pf = fid & IGU_FID_PF_NUM_MASK; 1092 else if (current_pf == BP_FUNC(bp)) 1093 bnx2x_vf_set_igu_info(bp, sb_id, 1094 (fid & IGU_FID_VF_NUM_MASK)); 1095 DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n", 1096 ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"), 1097 ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) : 1098 (fid & IGU_FID_VF_NUM_MASK)), sb_id, 1099 GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)); 1100 } 1101 DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool); 1102 return BP_VFDB(bp)->vf_sbs_pool; 1103 } 1104 1105 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp) 1106 { 1107 if (bp->vfdb) { 1108 kfree(bp->vfdb->vfqs); 1109 kfree(bp->vfdb->vfs); 1110 kfree(bp->vfdb); 1111 } 1112 bp->vfdb = NULL; 1113 } 1114 1115 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov) 1116 { 1117 int pos; 1118 struct pci_dev *dev = bp->pdev; 1119 1120 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV); 1121 if (!pos) { 1122 BNX2X_ERR("failed to find SRIOV capability in device\n"); 1123 return -ENODEV; 1124 } 1125 1126 iov->pos = pos; 1127 DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos); 1128 pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl); 1129 pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total); 1130 pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial); 1131 pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset); 1132 pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride); 1133 pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz); 1134 pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap); 1135 pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link); 1136 1137 return 0; 1138 } 1139 1140 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov) 1141 { 1142 u32 val; 1143 1144 /* read the SRIOV capability structure 1145 * The fields can be read via configuration read or 1146 * directly from the device (starting at offset PCICFG_OFFSET) 1147 */ 1148 if (bnx2x_sriov_pci_cfg_info(bp, iov)) 1149 return -ENODEV; 1150 1151 /* get the number of SRIOV bars */ 1152 iov->nres = 0; 1153 1154 /* read the first_vfid */ 1155 val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF); 1156 iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK) 1157 * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp)); 1158 1159 DP(BNX2X_MSG_IOV, 1160 "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n", 1161 BP_FUNC(bp), 1162 iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total, 1163 iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz); 1164 1165 return 0; 1166 } 1167 1168 /* must be called after PF bars are mapped */ 1169 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param, 1170 int num_vfs_param) 1171 { 1172 int err, i; 1173 struct bnx2x_sriov *iov; 1174 struct pci_dev *dev = bp->pdev; 1175 1176 bp->vfdb = NULL; 1177 1178 /* verify is pf */ 1179 if (IS_VF(bp)) 1180 return 0; 1181 1182 /* verify sriov capability is present in configuration space */ 1183 if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV)) 1184 return 0; 1185 1186 /* verify chip revision */ 1187 if (CHIP_IS_E1x(bp)) 1188 return 0; 1189 1190 /* check if SRIOV support is turned off */ 1191 if (!num_vfs_param) 1192 return 0; 1193 1194 /* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */ 1195 if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) { 1196 BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n", 1197 BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID); 1198 return 0; 1199 } 1200 1201 /* SRIOV can be enabled only with MSIX */ 1202 if (int_mode_param == BNX2X_INT_MODE_MSI || 1203 int_mode_param == BNX2X_INT_MODE_INTX) { 1204 BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n"); 1205 return 0; 1206 } 1207 1208 /* verify ari is enabled */ 1209 if (!pci_ari_enabled(bp->pdev->bus)) { 1210 BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n"); 1211 return 0; 1212 } 1213 1214 /* verify igu is in normal mode */ 1215 if (CHIP_INT_MODE_IS_BC(bp)) { 1216 BNX2X_ERR("IGU not normal mode, SRIOV can not be enabled\n"); 1217 return 0; 1218 } 1219 1220 /* allocate the vfs database */ 1221 bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL); 1222 if (!bp->vfdb) { 1223 BNX2X_ERR("failed to allocate vf database\n"); 1224 err = -ENOMEM; 1225 goto failed; 1226 } 1227 1228 /* get the sriov info - Linux already collected all the pertinent 1229 * information, however the sriov structure is for the private use 1230 * of the pci module. Also we want this information regardless 1231 * of the hyper-visor. 1232 */ 1233 iov = &(bp->vfdb->sriov); 1234 err = bnx2x_sriov_info(bp, iov); 1235 if (err) 1236 goto failed; 1237 1238 /* SR-IOV capability was enabled but there are no VFs*/ 1239 if (iov->total == 0) { 1240 err = 0; 1241 goto failed; 1242 } 1243 1244 iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param); 1245 1246 DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n", 1247 num_vfs_param, iov->nr_virtfn); 1248 1249 /* allocate the vf array */ 1250 bp->vfdb->vfs = kcalloc(BNX2X_NR_VIRTFN(bp), 1251 sizeof(struct bnx2x_virtf), 1252 GFP_KERNEL); 1253 if (!bp->vfdb->vfs) { 1254 BNX2X_ERR("failed to allocate vf array\n"); 1255 err = -ENOMEM; 1256 goto failed; 1257 } 1258 1259 /* Initial VF init - index and abs_vfid - nr_virtfn must be set */ 1260 for_each_vf(bp, i) { 1261 bnx2x_vf(bp, i, index) = i; 1262 bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i; 1263 bnx2x_vf(bp, i, state) = VF_FREE; 1264 mutex_init(&bnx2x_vf(bp, i, op_mutex)); 1265 bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE; 1266 /* enable spoofchk by default */ 1267 bnx2x_vf(bp, i, spoofchk) = 1; 1268 } 1269 1270 /* re-read the IGU CAM for VFs - index and abs_vfid must be set */ 1271 if (!bnx2x_get_vf_igu_cam_info(bp)) { 1272 BNX2X_ERR("No entries in IGU CAM for vfs\n"); 1273 err = -EINVAL; 1274 goto failed; 1275 } 1276 1277 /* allocate the queue arrays for all VFs */ 1278 bp->vfdb->vfqs = kcalloc(BNX2X_MAX_NUM_VF_QUEUES, 1279 sizeof(struct bnx2x_vf_queue), 1280 GFP_KERNEL); 1281 1282 if (!bp->vfdb->vfqs) { 1283 BNX2X_ERR("failed to allocate vf queue array\n"); 1284 err = -ENOMEM; 1285 goto failed; 1286 } 1287 1288 /* Prepare the VFs event synchronization mechanism */ 1289 mutex_init(&bp->vfdb->event_mutex); 1290 1291 mutex_init(&bp->vfdb->bulletin_mutex); 1292 1293 if (SHMEM2_HAS(bp, sriov_switch_mode)) 1294 SHMEM2_WR(bp, sriov_switch_mode, SRIOV_SWITCH_MODE_VEB); 1295 1296 return 0; 1297 failed: 1298 DP(BNX2X_MSG_IOV, "Failed err=%d\n", err); 1299 __bnx2x_iov_free_vfdb(bp); 1300 return err; 1301 } 1302 1303 void bnx2x_iov_remove_one(struct bnx2x *bp) 1304 { 1305 int vf_idx; 1306 1307 /* if SRIOV is not enabled there's nothing to do */ 1308 if (!IS_SRIOV(bp)) 1309 return; 1310 1311 bnx2x_disable_sriov(bp); 1312 1313 /* disable access to all VFs */ 1314 for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) { 1315 bnx2x_pretend_func(bp, 1316 HW_VF_HANDLE(bp, 1317 bp->vfdb->sriov.first_vf_in_pf + 1318 vf_idx)); 1319 DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n", 1320 bp->vfdb->sriov.first_vf_in_pf + vf_idx); 1321 bnx2x_vf_enable_internal(bp, 0); 1322 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 1323 } 1324 1325 /* free vf database */ 1326 __bnx2x_iov_free_vfdb(bp); 1327 } 1328 1329 void bnx2x_iov_free_mem(struct bnx2x *bp) 1330 { 1331 int i; 1332 1333 if (!IS_SRIOV(bp)) 1334 return; 1335 1336 /* free vfs hw contexts */ 1337 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) { 1338 struct hw_dma *cxt = &bp->vfdb->context[i]; 1339 BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size); 1340 } 1341 1342 BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr, 1343 BP_VFDB(bp)->sp_dma.mapping, 1344 BP_VFDB(bp)->sp_dma.size); 1345 1346 BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr, 1347 BP_VF_MBX_DMA(bp)->mapping, 1348 BP_VF_MBX_DMA(bp)->size); 1349 1350 BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr, 1351 BP_VF_BULLETIN_DMA(bp)->mapping, 1352 BP_VF_BULLETIN_DMA(bp)->size); 1353 } 1354 1355 int bnx2x_iov_alloc_mem(struct bnx2x *bp) 1356 { 1357 size_t tot_size; 1358 int i, rc = 0; 1359 1360 if (!IS_SRIOV(bp)) 1361 return rc; 1362 1363 /* allocate vfs hw contexts */ 1364 tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) * 1365 BNX2X_CIDS_PER_VF * sizeof(union cdu_context); 1366 1367 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) { 1368 struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i); 1369 cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ); 1370 1371 if (cxt->size) { 1372 cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size); 1373 if (!cxt->addr) 1374 goto alloc_mem_err; 1375 } else { 1376 cxt->addr = NULL; 1377 cxt->mapping = 0; 1378 } 1379 tot_size -= cxt->size; 1380 } 1381 1382 /* allocate vfs ramrods dma memory - client_init and set_mac */ 1383 tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp); 1384 BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping, 1385 tot_size); 1386 if (!BP_VFDB(bp)->sp_dma.addr) 1387 goto alloc_mem_err; 1388 BP_VFDB(bp)->sp_dma.size = tot_size; 1389 1390 /* allocate mailboxes */ 1391 tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE; 1392 BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping, 1393 tot_size); 1394 if (!BP_VF_MBX_DMA(bp)->addr) 1395 goto alloc_mem_err; 1396 1397 BP_VF_MBX_DMA(bp)->size = tot_size; 1398 1399 /* allocate local bulletin boards */ 1400 tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE; 1401 BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping, 1402 tot_size); 1403 if (!BP_VF_BULLETIN_DMA(bp)->addr) 1404 goto alloc_mem_err; 1405 1406 BP_VF_BULLETIN_DMA(bp)->size = tot_size; 1407 1408 return 0; 1409 1410 alloc_mem_err: 1411 return -ENOMEM; 1412 } 1413 1414 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf, 1415 struct bnx2x_vf_queue *q) 1416 { 1417 u8 cl_id = vfq_cl_id(vf, q); 1418 u8 func_id = FW_VF_HANDLE(vf->abs_vfid); 1419 unsigned long q_type = 0; 1420 1421 set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 1422 set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 1423 1424 /* Queue State object */ 1425 bnx2x_init_queue_obj(bp, &q->sp_obj, 1426 cl_id, &q->cid, 1, func_id, 1427 bnx2x_vf_sp(bp, vf, q_data), 1428 bnx2x_vf_sp_map(bp, vf, q_data), 1429 q_type); 1430 1431 /* sp indication is set only when vlan/mac/etc. are initialized */ 1432 q->sp_initialized = false; 1433 1434 DP(BNX2X_MSG_IOV, 1435 "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n", 1436 vf->abs_vfid, q->sp_obj.func_id, q->cid); 1437 } 1438 1439 static int bnx2x_max_speed_cap(struct bnx2x *bp) 1440 { 1441 u32 supported = bp->port.supported[bnx2x_get_link_cfg_idx(bp)]; 1442 1443 if (supported & 1444 (SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full)) 1445 return 20000; 1446 1447 return 10000; /* assume lowest supported speed is 10G */ 1448 } 1449 1450 int bnx2x_iov_link_update_vf(struct bnx2x *bp, int idx) 1451 { 1452 struct bnx2x_link_report_data *state = &bp->last_reported_link; 1453 struct pf_vf_bulletin_content *bulletin; 1454 struct bnx2x_virtf *vf; 1455 bool update = true; 1456 int rc = 0; 1457 1458 /* sanity and init */ 1459 rc = bnx2x_vf_op_prep(bp, idx, &vf, &bulletin, false); 1460 if (rc) 1461 return rc; 1462 1463 mutex_lock(&bp->vfdb->bulletin_mutex); 1464 1465 if (vf->link_cfg == IFLA_VF_LINK_STATE_AUTO) { 1466 bulletin->valid_bitmap |= 1 << LINK_VALID; 1467 1468 bulletin->link_speed = state->line_speed; 1469 bulletin->link_flags = 0; 1470 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1471 &state->link_report_flags)) 1472 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN; 1473 if (test_bit(BNX2X_LINK_REPORT_FD, 1474 &state->link_report_flags)) 1475 bulletin->link_flags |= VFPF_LINK_REPORT_FULL_DUPLEX; 1476 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1477 &state->link_report_flags)) 1478 bulletin->link_flags |= VFPF_LINK_REPORT_RX_FC_ON; 1479 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1480 &state->link_report_flags)) 1481 bulletin->link_flags |= VFPF_LINK_REPORT_TX_FC_ON; 1482 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_DISABLE && 1483 !(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) { 1484 bulletin->valid_bitmap |= 1 << LINK_VALID; 1485 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN; 1486 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_ENABLE && 1487 (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) { 1488 bulletin->valid_bitmap |= 1 << LINK_VALID; 1489 bulletin->link_speed = bnx2x_max_speed_cap(bp); 1490 bulletin->link_flags &= ~VFPF_LINK_REPORT_LINK_DOWN; 1491 } else { 1492 update = false; 1493 } 1494 1495 if (update) { 1496 DP(NETIF_MSG_LINK | BNX2X_MSG_IOV, 1497 "vf %d mode %u speed %d flags %x\n", idx, 1498 vf->link_cfg, bulletin->link_speed, bulletin->link_flags); 1499 1500 /* Post update on VF's bulletin board */ 1501 rc = bnx2x_post_vf_bulletin(bp, idx); 1502 if (rc) { 1503 BNX2X_ERR("failed to update VF[%d] bulletin\n", idx); 1504 goto out; 1505 } 1506 } 1507 1508 out: 1509 mutex_unlock(&bp->vfdb->bulletin_mutex); 1510 return rc; 1511 } 1512 1513 int bnx2x_set_vf_link_state(struct net_device *dev, int idx, int link_state) 1514 { 1515 struct bnx2x *bp = netdev_priv(dev); 1516 struct bnx2x_virtf *vf = BP_VF(bp, idx); 1517 1518 if (!vf) 1519 return -EINVAL; 1520 1521 if (vf->link_cfg == link_state) 1522 return 0; /* nothing todo */ 1523 1524 vf->link_cfg = link_state; 1525 1526 return bnx2x_iov_link_update_vf(bp, idx); 1527 } 1528 1529 void bnx2x_iov_link_update(struct bnx2x *bp) 1530 { 1531 int vfid; 1532 1533 if (!IS_SRIOV(bp)) 1534 return; 1535 1536 for_each_vf(bp, vfid) 1537 bnx2x_iov_link_update_vf(bp, vfid); 1538 } 1539 1540 /* called by bnx2x_nic_load */ 1541 int bnx2x_iov_nic_init(struct bnx2x *bp) 1542 { 1543 int vfid; 1544 1545 if (!IS_SRIOV(bp)) { 1546 DP(BNX2X_MSG_IOV, "vfdb was not allocated\n"); 1547 return 0; 1548 } 1549 1550 DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn); 1551 1552 /* let FLR complete ... */ 1553 msleep(100); 1554 1555 /* initialize vf database */ 1556 for_each_vf(bp, vfid) { 1557 struct bnx2x_virtf *vf = BP_VF(bp, vfid); 1558 1559 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) * 1560 BNX2X_CIDS_PER_VF; 1561 1562 union cdu_context *base_cxt = (union cdu_context *) 1563 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr + 1564 (base_vf_cid & (ILT_PAGE_CIDS-1)); 1565 1566 DP(BNX2X_MSG_IOV, 1567 "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n", 1568 vf->abs_vfid, vf_sb_count(vf), base_vf_cid, 1569 BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt); 1570 1571 /* init statically provisioned resources */ 1572 bnx2x_iov_static_resc(bp, vf); 1573 1574 /* queues are initialized during VF-ACQUIRE */ 1575 vf->filter_state = 0; 1576 vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id); 1577 1578 bnx2x_init_credit_pool(&vf->vf_vlans_pool, 0, 1579 vf_vlan_rules_cnt(vf)); 1580 bnx2x_init_credit_pool(&vf->vf_macs_pool, 0, 1581 vf_mac_rules_cnt(vf)); 1582 1583 /* init mcast object - This object will be re-initialized 1584 * during VF-ACQUIRE with the proper cl_id and cid. 1585 * It needs to be initialized here so that it can be safely 1586 * handled by a subsequent FLR flow. 1587 */ 1588 bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF, 1589 0xFF, 0xFF, 0xFF, 1590 bnx2x_vf_sp(bp, vf, mcast_rdata), 1591 bnx2x_vf_sp_map(bp, vf, mcast_rdata), 1592 BNX2X_FILTER_MCAST_PENDING, 1593 &vf->filter_state, 1594 BNX2X_OBJ_TYPE_RX_TX); 1595 1596 /* set the mailbox message addresses */ 1597 BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *) 1598 (((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid * 1599 MBX_MSG_ALIGNED_SIZE); 1600 1601 BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping + 1602 vfid * MBX_MSG_ALIGNED_SIZE; 1603 1604 /* Enable vf mailbox */ 1605 bnx2x_vf_enable_mbx(bp, vf->abs_vfid); 1606 } 1607 1608 /* Final VF init */ 1609 for_each_vf(bp, vfid) { 1610 struct bnx2x_virtf *vf = BP_VF(bp, vfid); 1611 1612 /* fill in the BDF and bars */ 1613 vf->domain = bnx2x_vf_domain(bp, vfid); 1614 vf->bus = bnx2x_vf_bus(bp, vfid); 1615 vf->devfn = bnx2x_vf_devfn(bp, vfid); 1616 bnx2x_vf_set_bars(bp, vf); 1617 1618 DP(BNX2X_MSG_IOV, 1619 "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n", 1620 vf->abs_vfid, vf->bus, vf->devfn, 1621 (unsigned)vf->bars[0].bar, vf->bars[0].size, 1622 (unsigned)vf->bars[1].bar, vf->bars[1].size, 1623 (unsigned)vf->bars[2].bar, vf->bars[2].size); 1624 } 1625 1626 return 0; 1627 } 1628 1629 /* called by bnx2x_chip_cleanup */ 1630 int bnx2x_iov_chip_cleanup(struct bnx2x *bp) 1631 { 1632 int i; 1633 1634 if (!IS_SRIOV(bp)) 1635 return 0; 1636 1637 /* release all the VFs */ 1638 for_each_vf(bp, i) 1639 bnx2x_vf_release(bp, BP_VF(bp, i)); 1640 1641 return 0; 1642 } 1643 1644 /* called by bnx2x_init_hw_func, returns the next ilt line */ 1645 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line) 1646 { 1647 int i; 1648 struct bnx2x_ilt *ilt = BP_ILT(bp); 1649 1650 if (!IS_SRIOV(bp)) 1651 return line; 1652 1653 /* set vfs ilt lines */ 1654 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) { 1655 struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i); 1656 1657 ilt->lines[line+i].page = hw_cxt->addr; 1658 ilt->lines[line+i].page_mapping = hw_cxt->mapping; 1659 ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */ 1660 } 1661 return line + i; 1662 } 1663 1664 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid) 1665 { 1666 return ((cid >= BNX2X_FIRST_VF_CID) && 1667 ((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS)); 1668 } 1669 1670 static 1671 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp, 1672 struct bnx2x_vf_queue *vfq, 1673 union event_ring_elem *elem) 1674 { 1675 unsigned long ramrod_flags = 0; 1676 int rc = 0; 1677 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo); 1678 1679 /* Always push next commands out, don't wait here */ 1680 set_bit(RAMROD_CONT, &ramrod_flags); 1681 1682 switch (echo >> BNX2X_SWCID_SHIFT) { 1683 case BNX2X_FILTER_MAC_PENDING: 1684 rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem, 1685 &ramrod_flags); 1686 break; 1687 case BNX2X_FILTER_VLAN_PENDING: 1688 rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem, 1689 &ramrod_flags); 1690 break; 1691 default: 1692 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo); 1693 return; 1694 } 1695 if (rc < 0) 1696 BNX2X_ERR("Failed to schedule new commands: %d\n", rc); 1697 else if (rc > 0) 1698 DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n"); 1699 } 1700 1701 static 1702 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp, 1703 struct bnx2x_virtf *vf) 1704 { 1705 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 1706 int rc; 1707 1708 rparam.mcast_obj = &vf->mcast_obj; 1709 vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw); 1710 1711 /* If there are pending mcast commands - send them */ 1712 if (vf->mcast_obj.check_pending(&vf->mcast_obj)) { 1713 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 1714 if (rc < 0) 1715 BNX2X_ERR("Failed to send pending mcast commands: %d\n", 1716 rc); 1717 } 1718 } 1719 1720 static 1721 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp, 1722 struct bnx2x_virtf *vf) 1723 { 1724 smp_mb__before_atomic(); 1725 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state); 1726 smp_mb__after_atomic(); 1727 } 1728 1729 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp, 1730 struct bnx2x_virtf *vf) 1731 { 1732 vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw); 1733 } 1734 1735 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem) 1736 { 1737 struct bnx2x_virtf *vf; 1738 int qidx = 0, abs_vfid; 1739 u8 opcode; 1740 u16 cid = 0xffff; 1741 1742 if (!IS_SRIOV(bp)) 1743 return 1; 1744 1745 /* first get the cid - the only events we handle here are cfc-delete 1746 * and set-mac completion 1747 */ 1748 opcode = elem->message.opcode; 1749 1750 switch (opcode) { 1751 case EVENT_RING_OPCODE_CFC_DEL: 1752 cid = SW_CID(elem->message.data.cfc_del_event.cid); 1753 DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid); 1754 break; 1755 case EVENT_RING_OPCODE_CLASSIFICATION_RULES: 1756 case EVENT_RING_OPCODE_MULTICAST_RULES: 1757 case EVENT_RING_OPCODE_FILTERS_RULES: 1758 case EVENT_RING_OPCODE_RSS_UPDATE_RULES: 1759 cid = SW_CID(elem->message.data.eth_event.echo); 1760 DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid); 1761 break; 1762 case EVENT_RING_OPCODE_VF_FLR: 1763 abs_vfid = elem->message.data.vf_flr_event.vf_id; 1764 DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n", 1765 abs_vfid); 1766 goto get_vf; 1767 case EVENT_RING_OPCODE_MALICIOUS_VF: 1768 abs_vfid = elem->message.data.malicious_vf_event.vf_id; 1769 BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n", 1770 abs_vfid, 1771 elem->message.data.malicious_vf_event.err_id); 1772 goto get_vf; 1773 default: 1774 return 1; 1775 } 1776 1777 /* check if the cid is the VF range */ 1778 if (!bnx2x_iov_is_vf_cid(bp, cid)) { 1779 DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid); 1780 return 1; 1781 } 1782 1783 /* extract vf and rxq index from vf_cid - relies on the following: 1784 * 1. vfid on cid reflects the true abs_vfid 1785 * 2. The max number of VFs (per path) is 64 1786 */ 1787 qidx = cid & ((1 << BNX2X_VF_CID_WND)-1); 1788 abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1); 1789 get_vf: 1790 vf = bnx2x_vf_by_abs_fid(bp, abs_vfid); 1791 1792 if (!vf) { 1793 BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n", 1794 cid, abs_vfid); 1795 return 0; 1796 } 1797 1798 switch (opcode) { 1799 case EVENT_RING_OPCODE_CFC_DEL: 1800 DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n", 1801 vf->abs_vfid, qidx); 1802 vfq_get(vf, qidx)->sp_obj.complete_cmd(bp, 1803 &vfq_get(vf, 1804 qidx)->sp_obj, 1805 BNX2X_Q_CMD_CFC_DEL); 1806 break; 1807 case EVENT_RING_OPCODE_CLASSIFICATION_RULES: 1808 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n", 1809 vf->abs_vfid, qidx); 1810 bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem); 1811 break; 1812 case EVENT_RING_OPCODE_MULTICAST_RULES: 1813 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n", 1814 vf->abs_vfid, qidx); 1815 bnx2x_vf_handle_mcast_eqe(bp, vf); 1816 break; 1817 case EVENT_RING_OPCODE_FILTERS_RULES: 1818 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n", 1819 vf->abs_vfid, qidx); 1820 bnx2x_vf_handle_filters_eqe(bp, vf); 1821 break; 1822 case EVENT_RING_OPCODE_RSS_UPDATE_RULES: 1823 DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n", 1824 vf->abs_vfid, qidx); 1825 bnx2x_vf_handle_rss_update_eqe(bp, vf); 1826 fallthrough; 1827 case EVENT_RING_OPCODE_VF_FLR: 1828 /* Do nothing for now */ 1829 return 0; 1830 case EVENT_RING_OPCODE_MALICIOUS_VF: 1831 vf->malicious = true; 1832 return 0; 1833 } 1834 1835 return 0; 1836 } 1837 1838 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid) 1839 { 1840 /* extract the vf from vf_cid - relies on the following: 1841 * 1. vfid on cid reflects the true abs_vfid 1842 * 2. The max number of VFs (per path) is 64 1843 */ 1844 int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1); 1845 return bnx2x_vf_by_abs_fid(bp, abs_vfid); 1846 } 1847 1848 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid, 1849 struct bnx2x_queue_sp_obj **q_obj) 1850 { 1851 struct bnx2x_virtf *vf; 1852 1853 if (!IS_SRIOV(bp)) 1854 return; 1855 1856 vf = bnx2x_vf_by_cid(bp, vf_cid); 1857 1858 if (vf) { 1859 /* extract queue index from vf_cid - relies on the following: 1860 * 1. vfid on cid reflects the true abs_vfid 1861 * 2. The max number of VFs (per path) is 64 1862 */ 1863 int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1); 1864 *q_obj = &bnx2x_vfq(vf, q_index, sp_obj); 1865 } else { 1866 BNX2X_ERR("No vf matching cid %d\n", vf_cid); 1867 } 1868 } 1869 1870 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp) 1871 { 1872 int i; 1873 int first_queue_query_index, num_queues_req; 1874 struct stats_query_entry *cur_query_entry; 1875 u8 stats_count = 0; 1876 bool is_fcoe = false; 1877 1878 if (!IS_SRIOV(bp)) 1879 return; 1880 1881 if (!NO_FCOE(bp)) 1882 is_fcoe = true; 1883 1884 /* fcoe adds one global request and one queue request */ 1885 num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe; 1886 first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX - 1887 (is_fcoe ? 0 : 1); 1888 1889 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1890 "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n", 1891 BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index, 1892 first_queue_query_index + num_queues_req); 1893 1894 cur_query_entry = &bp->fw_stats_req-> 1895 query[first_queue_query_index + num_queues_req]; 1896 1897 for_each_vf(bp, i) { 1898 int j; 1899 struct bnx2x_virtf *vf = BP_VF(bp, i); 1900 1901 if (vf->state != VF_ENABLED) { 1902 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1903 "vf %d not enabled so no stats for it\n", 1904 vf->abs_vfid); 1905 continue; 1906 } 1907 1908 if (vf->malicious) { 1909 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1910 "vf %d malicious so no stats for it\n", 1911 vf->abs_vfid); 1912 continue; 1913 } 1914 1915 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1916 "add addresses for vf %d\n", vf->abs_vfid); 1917 for_each_vfq(vf, j) { 1918 struct bnx2x_vf_queue *rxq = vfq_get(vf, j); 1919 1920 dma_addr_t q_stats_addr = 1921 vf->fw_stat_map + j * vf->stats_stride; 1922 1923 /* collect stats fro active queues only */ 1924 if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) == 1925 BNX2X_Q_LOGICAL_STATE_STOPPED) 1926 continue; 1927 1928 /* create stats query entry for this queue */ 1929 cur_query_entry->kind = STATS_TYPE_QUEUE; 1930 cur_query_entry->index = vfq_stat_id(vf, rxq); 1931 cur_query_entry->funcID = 1932 cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid)); 1933 cur_query_entry->address.hi = 1934 cpu_to_le32(U64_HI(q_stats_addr)); 1935 cur_query_entry->address.lo = 1936 cpu_to_le32(U64_LO(q_stats_addr)); 1937 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1938 "added address %x %x for vf %d queue %d client %d\n", 1939 cur_query_entry->address.hi, 1940 cur_query_entry->address.lo, 1941 cur_query_entry->funcID, 1942 j, cur_query_entry->index); 1943 cur_query_entry++; 1944 stats_count++; 1945 1946 /* all stats are coalesced to the leading queue */ 1947 if (vf->cfg_flags & VF_CFG_STATS_COALESCE) 1948 break; 1949 } 1950 } 1951 bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count; 1952 } 1953 1954 /* VF API helpers */ 1955 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid, 1956 u8 enable) 1957 { 1958 u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4; 1959 u32 val = enable ? (abs_vfid | (1 << 6)) : 0; 1960 1961 REG_WR(bp, reg, val); 1962 } 1963 1964 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf) 1965 { 1966 int i; 1967 1968 for_each_vfq(vf, i) 1969 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid, 1970 vfq_qzone_id(vf, vfq_get(vf, i)), false); 1971 } 1972 1973 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf) 1974 { 1975 u32 val; 1976 1977 /* clear the VF configuration - pretend */ 1978 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 1979 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION); 1980 val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN | 1981 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK); 1982 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val); 1983 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 1984 } 1985 1986 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf) 1987 { 1988 return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF), 1989 BNX2X_VF_MAX_QUEUES); 1990 } 1991 1992 static 1993 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf, 1994 struct vf_pf_resc_request *req_resc) 1995 { 1996 u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf); 1997 u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf); 1998 1999 return ((req_resc->num_rxqs <= rxq_cnt) && 2000 (req_resc->num_txqs <= txq_cnt) && 2001 (req_resc->num_sbs <= vf_sb_count(vf)) && 2002 (req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) && 2003 (req_resc->num_vlan_filters <= vf_vlan_rules_cnt(vf))); 2004 } 2005 2006 /* CORE VF API */ 2007 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf, 2008 struct vf_pf_resc_request *resc) 2009 { 2010 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) * 2011 BNX2X_CIDS_PER_VF; 2012 2013 union cdu_context *base_cxt = (union cdu_context *) 2014 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr + 2015 (base_vf_cid & (ILT_PAGE_CIDS-1)); 2016 int i; 2017 2018 /* if state is 'acquired' the VF was not released or FLR'd, in 2019 * this case the returned resources match the acquired already 2020 * acquired resources. Verify that the requested numbers do 2021 * not exceed the already acquired numbers. 2022 */ 2023 if (vf->state == VF_ACQUIRED) { 2024 DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n", 2025 vf->abs_vfid); 2026 2027 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) { 2028 BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n", 2029 vf->abs_vfid); 2030 return -EINVAL; 2031 } 2032 return 0; 2033 } 2034 2035 /* Otherwise vf state must be 'free' or 'reset' */ 2036 if (vf->state != VF_FREE && vf->state != VF_RESET) { 2037 BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n", 2038 vf->abs_vfid, vf->state); 2039 return -EINVAL; 2040 } 2041 2042 /* static allocation: 2043 * the global maximum number are fixed per VF. Fail the request if 2044 * requested number exceed these globals 2045 */ 2046 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) { 2047 DP(BNX2X_MSG_IOV, 2048 "cannot fulfill vf resource request. Placing maximal available values in response\n"); 2049 /* set the max resource in the vf */ 2050 return -ENOMEM; 2051 } 2052 2053 /* Set resources counters - 0 request means max available */ 2054 vf_sb_count(vf) = resc->num_sbs; 2055 vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf); 2056 vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf); 2057 2058 DP(BNX2X_MSG_IOV, 2059 "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n", 2060 vf_sb_count(vf), vf_rxq_count(vf), 2061 vf_txq_count(vf), vf_mac_rules_cnt(vf), 2062 vf_vlan_rules_cnt(vf)); 2063 2064 /* Initialize the queues */ 2065 if (!vf->vfqs) { 2066 DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n"); 2067 return -EINVAL; 2068 } 2069 2070 for_each_vfq(vf, i) { 2071 struct bnx2x_vf_queue *q = vfq_get(vf, i); 2072 2073 if (!q) { 2074 BNX2X_ERR("q number %d was not allocated\n", i); 2075 return -EINVAL; 2076 } 2077 2078 q->index = i; 2079 q->cxt = &((base_cxt + i)->eth); 2080 q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i; 2081 2082 DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n", 2083 vf->abs_vfid, i, q->index, q->cid, q->cxt); 2084 2085 /* init SP objects */ 2086 bnx2x_vfq_init(bp, vf, q); 2087 } 2088 vf->state = VF_ACQUIRED; 2089 return 0; 2090 } 2091 2092 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map) 2093 { 2094 struct bnx2x_func_init_params func_init = {0}; 2095 int i; 2096 2097 /* the sb resources are initialized at this point, do the 2098 * FW/HW initializations 2099 */ 2100 for_each_vf_sb(vf, i) 2101 bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true, 2102 vf_igu_sb(vf, i), vf_igu_sb(vf, i)); 2103 2104 /* Sanity checks */ 2105 if (vf->state != VF_ACQUIRED) { 2106 DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n", 2107 vf->abs_vfid, vf->state); 2108 return -EINVAL; 2109 } 2110 2111 /* let FLR complete ... */ 2112 msleep(100); 2113 2114 /* FLR cleanup epilogue */ 2115 if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid)) 2116 return -EBUSY; 2117 2118 /* reset IGU VF statistics: MSIX */ 2119 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0); 2120 2121 /* function setup */ 2122 func_init.pf_id = BP_FUNC(bp); 2123 func_init.func_id = FW_VF_HANDLE(vf->abs_vfid); 2124 bnx2x_func_init(bp, &func_init); 2125 2126 /* Enable the vf */ 2127 bnx2x_vf_enable_access(bp, vf->abs_vfid); 2128 bnx2x_vf_enable_traffic(bp, vf); 2129 2130 /* queue protection table */ 2131 for_each_vfq(vf, i) 2132 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid, 2133 vfq_qzone_id(vf, vfq_get(vf, i)), true); 2134 2135 vf->state = VF_ENABLED; 2136 2137 /* update vf bulletin board */ 2138 bnx2x_post_vf_bulletin(bp, vf->index); 2139 2140 return 0; 2141 } 2142 2143 struct set_vf_state_cookie { 2144 struct bnx2x_virtf *vf; 2145 u8 state; 2146 }; 2147 2148 static void bnx2x_set_vf_state(void *cookie) 2149 { 2150 struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie; 2151 2152 p->vf->state = p->state; 2153 } 2154 2155 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf) 2156 { 2157 int rc = 0, i; 2158 2159 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 2160 2161 /* Close all queues */ 2162 for (i = 0; i < vf_rxq_count(vf); i++) { 2163 rc = bnx2x_vf_queue_teardown(bp, vf, i); 2164 if (rc) 2165 goto op_err; 2166 } 2167 2168 /* disable the interrupts */ 2169 DP(BNX2X_MSG_IOV, "disabling igu\n"); 2170 bnx2x_vf_igu_disable(bp, vf); 2171 2172 /* disable the VF */ 2173 DP(BNX2X_MSG_IOV, "clearing qtbl\n"); 2174 bnx2x_vf_clr_qtbl(bp, vf); 2175 2176 /* need to make sure there are no outstanding stats ramrods which may 2177 * cause the device to access the VF's stats buffer which it will free 2178 * as soon as we return from the close flow. 2179 */ 2180 { 2181 struct set_vf_state_cookie cookie; 2182 2183 cookie.vf = vf; 2184 cookie.state = VF_ACQUIRED; 2185 rc = bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie); 2186 if (rc) 2187 goto op_err; 2188 } 2189 2190 DP(BNX2X_MSG_IOV, "set state to acquired\n"); 2191 2192 return 0; 2193 op_err: 2194 BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc); 2195 return rc; 2196 } 2197 2198 /* VF release can be called either: 1. The VF was acquired but 2199 * not enabled 2. the vf was enabled or in the process of being 2200 * enabled 2201 */ 2202 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf) 2203 { 2204 int rc; 2205 2206 DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid, 2207 vf->state == VF_FREE ? "Free" : 2208 vf->state == VF_ACQUIRED ? "Acquired" : 2209 vf->state == VF_ENABLED ? "Enabled" : 2210 vf->state == VF_RESET ? "Reset" : 2211 "Unknown"); 2212 2213 switch (vf->state) { 2214 case VF_ENABLED: 2215 rc = bnx2x_vf_close(bp, vf); 2216 if (rc) 2217 goto op_err; 2218 fallthrough; /* to release resources */ 2219 case VF_ACQUIRED: 2220 DP(BNX2X_MSG_IOV, "about to free resources\n"); 2221 bnx2x_vf_free_resc(bp, vf); 2222 break; 2223 2224 case VF_FREE: 2225 case VF_RESET: 2226 default: 2227 break; 2228 } 2229 return 0; 2230 op_err: 2231 BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc); 2232 return rc; 2233 } 2234 2235 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf, 2236 struct bnx2x_config_rss_params *rss) 2237 { 2238 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 2239 set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags); 2240 return bnx2x_config_rss(bp, rss); 2241 } 2242 2243 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf, 2244 struct vfpf_tpa_tlv *tlv, 2245 struct bnx2x_queue_update_tpa_params *params) 2246 { 2247 aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr; 2248 struct bnx2x_queue_state_params qstate; 2249 int qid, rc = 0; 2250 2251 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 2252 2253 /* Set ramrod params */ 2254 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params)); 2255 memcpy(&qstate.params.update_tpa, params, 2256 sizeof(struct bnx2x_queue_update_tpa_params)); 2257 qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA; 2258 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags); 2259 2260 for (qid = 0; qid < vf_rxq_count(vf); qid++) { 2261 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj); 2262 qstate.params.update_tpa.sge_map = sge_addr[qid]; 2263 DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n", 2264 vf->abs_vfid, qid, U64_HI(sge_addr[qid]), 2265 U64_LO(sge_addr[qid])); 2266 rc = bnx2x_queue_state_change(bp, &qstate); 2267 if (rc) { 2268 BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n", 2269 U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]), 2270 vf->abs_vfid, qid); 2271 return rc; 2272 } 2273 } 2274 2275 return rc; 2276 } 2277 2278 /* VF release ~ VF close + VF release-resources 2279 * Release is the ultimate SW shutdown and is called whenever an 2280 * irrecoverable error is encountered. 2281 */ 2282 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf) 2283 { 2284 int rc; 2285 2286 DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid); 2287 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF); 2288 2289 rc = bnx2x_vf_free(bp, vf); 2290 if (rc) 2291 WARN(rc, 2292 "VF[%d] Failed to allocate resources for release op- rc=%d\n", 2293 vf->abs_vfid, rc); 2294 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF); 2295 return rc; 2296 } 2297 2298 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf, 2299 enum channel_tlvs tlv) 2300 { 2301 /* we don't lock the channel for unsupported tlvs */ 2302 if (!bnx2x_tlv_supported(tlv)) { 2303 BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n"); 2304 return; 2305 } 2306 2307 /* lock the channel */ 2308 mutex_lock(&vf->op_mutex); 2309 2310 /* record the locking op */ 2311 vf->op_current = tlv; 2312 2313 /* log the lock */ 2314 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n", 2315 vf->abs_vfid, tlv); 2316 } 2317 2318 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf, 2319 enum channel_tlvs expected_tlv) 2320 { 2321 enum channel_tlvs current_tlv; 2322 2323 if (!vf) { 2324 BNX2X_ERR("VF was %p\n", vf); 2325 return; 2326 } 2327 2328 current_tlv = vf->op_current; 2329 2330 /* we don't unlock the channel for unsupported tlvs */ 2331 if (!bnx2x_tlv_supported(expected_tlv)) 2332 return; 2333 2334 WARN(expected_tlv != vf->op_current, 2335 "lock mismatch: expected %d found %d", expected_tlv, 2336 vf->op_current); 2337 2338 /* record the locking op */ 2339 vf->op_current = CHANNEL_TLV_NONE; 2340 2341 /* lock the channel */ 2342 mutex_unlock(&vf->op_mutex); 2343 2344 /* log the unlock */ 2345 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n", 2346 vf->abs_vfid, current_tlv); 2347 } 2348 2349 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable) 2350 { 2351 struct bnx2x_queue_state_params q_params; 2352 u32 prev_flags; 2353 int i, rc; 2354 2355 /* Verify changes are needed and record current Tx switching state */ 2356 prev_flags = bp->flags; 2357 if (enable) 2358 bp->flags |= TX_SWITCHING; 2359 else 2360 bp->flags &= ~TX_SWITCHING; 2361 if (prev_flags == bp->flags) 2362 return 0; 2363 2364 /* Verify state enables the sending of queue ramrods */ 2365 if ((bp->state != BNX2X_STATE_OPEN) || 2366 (bnx2x_get_q_logical_state(bp, 2367 &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) != 2368 BNX2X_Q_LOGICAL_STATE_ACTIVE)) 2369 return 0; 2370 2371 /* send q. update ramrod to configure Tx switching */ 2372 memset(&q_params, 0, sizeof(q_params)); 2373 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 2374 q_params.cmd = BNX2X_Q_CMD_UPDATE; 2375 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG, 2376 &q_params.params.update.update_flags); 2377 if (enable) 2378 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING, 2379 &q_params.params.update.update_flags); 2380 else 2381 __clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING, 2382 &q_params.params.update.update_flags); 2383 2384 /* send the ramrod on all the queues of the PF */ 2385 for_each_eth_queue(bp, i) { 2386 struct bnx2x_fastpath *fp = &bp->fp[i]; 2387 int tx_idx; 2388 2389 /* Set the appropriate Queue object */ 2390 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 2391 2392 for (tx_idx = FIRST_TX_COS_INDEX; 2393 tx_idx < fp->max_cos; tx_idx++) { 2394 q_params.params.update.cid_index = tx_idx; 2395 2396 /* Update the Queue state */ 2397 rc = bnx2x_queue_state_change(bp, &q_params); 2398 if (rc) { 2399 BNX2X_ERR("Failed to configure Tx switching\n"); 2400 return rc; 2401 } 2402 } 2403 } 2404 2405 DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled"); 2406 return 0; 2407 } 2408 2409 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param) 2410 { 2411 struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev)); 2412 2413 if (!IS_SRIOV(bp)) { 2414 BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n"); 2415 return -EINVAL; 2416 } 2417 2418 DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n", 2419 num_vfs_param, BNX2X_NR_VIRTFN(bp)); 2420 2421 /* HW channel is only operational when PF is up */ 2422 if (bp->state != BNX2X_STATE_OPEN) { 2423 BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n"); 2424 return -EINVAL; 2425 } 2426 2427 /* we are always bound by the total_vfs in the configuration space */ 2428 if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) { 2429 BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n", 2430 num_vfs_param, BNX2X_NR_VIRTFN(bp)); 2431 num_vfs_param = BNX2X_NR_VIRTFN(bp); 2432 } 2433 2434 bp->requested_nr_virtfn = num_vfs_param; 2435 if (num_vfs_param == 0) { 2436 bnx2x_set_pf_tx_switching(bp, false); 2437 bnx2x_disable_sriov(bp); 2438 return 0; 2439 } else { 2440 return bnx2x_enable_sriov(bp); 2441 } 2442 } 2443 2444 #define IGU_ENTRY_SIZE 4 2445 2446 int bnx2x_enable_sriov(struct bnx2x *bp) 2447 { 2448 int rc = 0, req_vfs = bp->requested_nr_virtfn; 2449 int vf_idx, sb_idx, vfq_idx, qcount, first_vf; 2450 u32 igu_entry, address; 2451 u16 num_vf_queues; 2452 2453 if (req_vfs == 0) 2454 return 0; 2455 2456 first_vf = bp->vfdb->sriov.first_vf_in_pf; 2457 2458 /* statically distribute vf sb pool between VFs */ 2459 num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES, 2460 BP_VFDB(bp)->vf_sbs_pool / req_vfs); 2461 2462 /* zero previous values learned from igu cam */ 2463 for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) { 2464 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx); 2465 2466 vf->sb_count = 0; 2467 vf_sb_count(BP_VF(bp, vf_idx)) = 0; 2468 } 2469 bp->vfdb->vf_sbs_pool = 0; 2470 2471 /* prepare IGU cam */ 2472 sb_idx = BP_VFDB(bp)->first_vf_igu_entry; 2473 address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE; 2474 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) { 2475 for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) { 2476 igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT | 2477 vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT | 2478 IGU_REG_MAPPING_MEMORY_VALID; 2479 DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n", 2480 sb_idx, vf_idx); 2481 REG_WR(bp, address, igu_entry); 2482 sb_idx++; 2483 address += IGU_ENTRY_SIZE; 2484 } 2485 } 2486 2487 /* Reinitialize vf database according to igu cam */ 2488 bnx2x_get_vf_igu_cam_info(bp); 2489 2490 DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n", 2491 BP_VFDB(bp)->vf_sbs_pool, num_vf_queues); 2492 2493 qcount = 0; 2494 for_each_vf(bp, vf_idx) { 2495 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx); 2496 2497 /* set local queue arrays */ 2498 vf->vfqs = &bp->vfdb->vfqs[qcount]; 2499 qcount += vf_sb_count(vf); 2500 bnx2x_iov_static_resc(bp, vf); 2501 } 2502 2503 /* prepare msix vectors in VF configuration space - the value in the 2504 * PCI configuration space should be the index of the last entry, 2505 * namely one less than the actual size of the table 2506 */ 2507 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) { 2508 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx)); 2509 REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL, 2510 num_vf_queues - 1); 2511 DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n", 2512 vf_idx, num_vf_queues - 1); 2513 } 2514 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 2515 2516 /* enable sriov. This will probe all the VFs, and consequentially cause 2517 * the "acquire" messages to appear on the VF PF channel. 2518 */ 2519 DP(BNX2X_MSG_IOV, "about to call enable sriov\n"); 2520 bnx2x_disable_sriov(bp); 2521 2522 rc = bnx2x_set_pf_tx_switching(bp, true); 2523 if (rc) 2524 return rc; 2525 2526 rc = pci_enable_sriov(bp->pdev, req_vfs); 2527 if (rc) { 2528 BNX2X_ERR("pci_enable_sriov failed with %d\n", rc); 2529 return rc; 2530 } 2531 DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs); 2532 return req_vfs; 2533 } 2534 2535 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp) 2536 { 2537 int vfidx; 2538 struct pf_vf_bulletin_content *bulletin; 2539 2540 DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n"); 2541 for_each_vf(bp, vfidx) { 2542 bulletin = BP_VF_BULLETIN(bp, vfidx); 2543 if (bulletin->valid_bitmap & (1 << VLAN_VALID)) 2544 bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0, 2545 htons(ETH_P_8021Q)); 2546 } 2547 } 2548 2549 void bnx2x_disable_sriov(struct bnx2x *bp) 2550 { 2551 if (pci_vfs_assigned(bp->pdev)) { 2552 DP(BNX2X_MSG_IOV, 2553 "Unloading driver while VFs are assigned - VFs will not be deallocated\n"); 2554 return; 2555 } 2556 2557 pci_disable_sriov(bp->pdev); 2558 } 2559 2560 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx, 2561 struct bnx2x_virtf **vf, 2562 struct pf_vf_bulletin_content **bulletin, 2563 bool test_queue) 2564 { 2565 if (bp->state != BNX2X_STATE_OPEN) { 2566 BNX2X_ERR("PF is down - can't utilize iov-related functionality\n"); 2567 return -EINVAL; 2568 } 2569 2570 if (!IS_SRIOV(bp)) { 2571 BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n"); 2572 return -EINVAL; 2573 } 2574 2575 if (vfidx >= BNX2X_NR_VIRTFN(bp)) { 2576 BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n", 2577 vfidx, BNX2X_NR_VIRTFN(bp)); 2578 return -EINVAL; 2579 } 2580 2581 /* init members */ 2582 *vf = BP_VF(bp, vfidx); 2583 *bulletin = BP_VF_BULLETIN(bp, vfidx); 2584 2585 if (!*vf) { 2586 BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx); 2587 return -EINVAL; 2588 } 2589 2590 if (test_queue && !(*vf)->vfqs) { 2591 BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n", 2592 vfidx); 2593 return -EINVAL; 2594 } 2595 2596 if (!*bulletin) { 2597 BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n", 2598 vfidx); 2599 return -EINVAL; 2600 } 2601 2602 return 0; 2603 } 2604 2605 int bnx2x_get_vf_config(struct net_device *dev, int vfidx, 2606 struct ifla_vf_info *ivi) 2607 { 2608 struct bnx2x *bp = netdev_priv(dev); 2609 struct bnx2x_virtf *vf = NULL; 2610 struct pf_vf_bulletin_content *bulletin = NULL; 2611 struct bnx2x_vlan_mac_obj *mac_obj; 2612 struct bnx2x_vlan_mac_obj *vlan_obj; 2613 int rc; 2614 2615 /* sanity and init */ 2616 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true); 2617 if (rc) 2618 return rc; 2619 2620 mac_obj = &bnx2x_leading_vfq(vf, mac_obj); 2621 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj); 2622 if (!mac_obj || !vlan_obj) { 2623 BNX2X_ERR("VF partially initialized\n"); 2624 return -EINVAL; 2625 } 2626 2627 ivi->vf = vfidx; 2628 ivi->qos = 0; 2629 ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */ 2630 ivi->min_tx_rate = 0; 2631 ivi->spoofchk = vf->spoofchk ? 1 : 0; 2632 ivi->linkstate = vf->link_cfg; 2633 if (vf->state == VF_ENABLED) { 2634 /* mac and vlan are in vlan_mac objects */ 2635 if (bnx2x_validate_vf_sp_objs(bp, vf, false)) { 2636 mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac, 2637 0, ETH_ALEN); 2638 vlan_obj->get_n_elements(bp, vlan_obj, 1, 2639 (u8 *)&ivi->vlan, 0, 2640 VLAN_HLEN); 2641 } 2642 } else { 2643 mutex_lock(&bp->vfdb->bulletin_mutex); 2644 /* mac */ 2645 if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID)) 2646 /* mac configured by ndo so its in bulletin board */ 2647 memcpy(&ivi->mac, bulletin->mac, ETH_ALEN); 2648 else 2649 /* function has not been loaded yet. Show mac as 0s */ 2650 eth_zero_addr(ivi->mac); 2651 2652 /* vlan */ 2653 if (bulletin->valid_bitmap & (1 << VLAN_VALID)) 2654 /* vlan configured by ndo so its in bulletin board */ 2655 memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN); 2656 else 2657 /* function has not been loaded yet. Show vlans as 0s */ 2658 memset(&ivi->vlan, 0, VLAN_HLEN); 2659 2660 mutex_unlock(&bp->vfdb->bulletin_mutex); 2661 } 2662 2663 return 0; 2664 } 2665 2666 /* New mac for VF. Consider these cases: 2667 * 1. VF hasn't been acquired yet - save the mac in local bulletin board and 2668 * supply at acquire. 2669 * 2. VF has already been acquired but has not yet initialized - store in local 2670 * bulletin board. mac will be posted on VF bulletin board after VF init. VF 2671 * will configure this mac when it is ready. 2672 * 3. VF has already initialized but has not yet setup a queue - post the new 2673 * mac on VF's bulletin board right now. VF will configure this mac when it 2674 * is ready. 2675 * 4. VF has already set a queue - delete any macs already configured for this 2676 * queue and manually config the new mac. 2677 * In any event, once this function has been called refuse any attempts by the 2678 * VF to configure any mac for itself except for this mac. In case of a race 2679 * where the VF fails to see the new post on its bulletin board before sending a 2680 * mac configuration request, the PF will simply fail the request and VF can try 2681 * again after consulting its bulletin board. 2682 */ 2683 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac) 2684 { 2685 struct bnx2x *bp = netdev_priv(dev); 2686 int rc, q_logical_state; 2687 struct bnx2x_virtf *vf = NULL; 2688 struct pf_vf_bulletin_content *bulletin = NULL; 2689 2690 if (!is_valid_ether_addr(mac)) { 2691 BNX2X_ERR("mac address invalid\n"); 2692 return -EINVAL; 2693 } 2694 2695 /* sanity and init */ 2696 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true); 2697 if (rc) 2698 return rc; 2699 2700 mutex_lock(&bp->vfdb->bulletin_mutex); 2701 2702 /* update PF's copy of the VF's bulletin. Will no longer accept mac 2703 * configuration requests from vf unless match this mac 2704 */ 2705 bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID; 2706 memcpy(bulletin->mac, mac, ETH_ALEN); 2707 2708 /* Post update on VF's bulletin board */ 2709 rc = bnx2x_post_vf_bulletin(bp, vfidx); 2710 2711 /* release lock before checking return code */ 2712 mutex_unlock(&bp->vfdb->bulletin_mutex); 2713 2714 if (rc) { 2715 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx); 2716 return rc; 2717 } 2718 2719 q_logical_state = 2720 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)); 2721 if (vf->state == VF_ENABLED && 2722 q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) { 2723 /* configure the mac in device on this vf's queue */ 2724 unsigned long ramrod_flags = 0; 2725 struct bnx2x_vlan_mac_obj *mac_obj; 2726 2727 /* User should be able to see failure reason in system logs */ 2728 if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) 2729 return -EINVAL; 2730 2731 /* must lock vfpf channel to protect against vf flows */ 2732 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC); 2733 2734 /* remove existing eth macs */ 2735 mac_obj = &bnx2x_leading_vfq(vf, mac_obj); 2736 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true); 2737 if (rc) { 2738 BNX2X_ERR("failed to delete eth macs\n"); 2739 rc = -EINVAL; 2740 goto out; 2741 } 2742 2743 /* remove existing uc list macs */ 2744 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true); 2745 if (rc) { 2746 BNX2X_ERR("failed to delete uc_list macs\n"); 2747 rc = -EINVAL; 2748 goto out; 2749 } 2750 2751 /* configure the new mac to device */ 2752 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2753 bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true, 2754 BNX2X_ETH_MAC, &ramrod_flags); 2755 2756 out: 2757 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC); 2758 } 2759 2760 return rc; 2761 } 2762 2763 static void bnx2x_set_vf_vlan_acceptance(struct bnx2x *bp, 2764 struct bnx2x_virtf *vf, bool accept) 2765 { 2766 struct bnx2x_rx_mode_ramrod_params rx_ramrod; 2767 unsigned long accept_flags; 2768 2769 /* need to remove/add the VF's accept_any_vlan bit */ 2770 accept_flags = bnx2x_leading_vfq(vf, accept_flags); 2771 if (accept) 2772 set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); 2773 else 2774 clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); 2775 2776 bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf, 2777 accept_flags); 2778 bnx2x_leading_vfq(vf, accept_flags) = accept_flags; 2779 bnx2x_config_rx_mode(bp, &rx_ramrod); 2780 } 2781 2782 static int bnx2x_set_vf_vlan_filter(struct bnx2x *bp, struct bnx2x_virtf *vf, 2783 u16 vlan, bool add) 2784 { 2785 struct bnx2x_vlan_mac_ramrod_params ramrod_param; 2786 unsigned long ramrod_flags = 0; 2787 int rc = 0; 2788 2789 /* configure the new vlan to device */ 2790 memset(&ramrod_param, 0, sizeof(ramrod_param)); 2791 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2792 ramrod_param.vlan_mac_obj = &bnx2x_leading_vfq(vf, vlan_obj); 2793 ramrod_param.ramrod_flags = ramrod_flags; 2794 ramrod_param.user_req.u.vlan.vlan = vlan; 2795 ramrod_param.user_req.cmd = add ? BNX2X_VLAN_MAC_ADD 2796 : BNX2X_VLAN_MAC_DEL; 2797 rc = bnx2x_config_vlan_mac(bp, &ramrod_param); 2798 if (rc) { 2799 BNX2X_ERR("failed to configure vlan\n"); 2800 return -EINVAL; 2801 } 2802 2803 return 0; 2804 } 2805 2806 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos, 2807 __be16 vlan_proto) 2808 { 2809 struct pf_vf_bulletin_content *bulletin = NULL; 2810 struct bnx2x *bp = netdev_priv(dev); 2811 struct bnx2x_vlan_mac_obj *vlan_obj; 2812 unsigned long vlan_mac_flags = 0; 2813 unsigned long ramrod_flags = 0; 2814 struct bnx2x_virtf *vf = NULL; 2815 int i, rc; 2816 2817 if (vlan > 4095) { 2818 BNX2X_ERR("illegal vlan value %d\n", vlan); 2819 return -EINVAL; 2820 } 2821 2822 if (vlan_proto != htons(ETH_P_8021Q)) 2823 return -EPROTONOSUPPORT; 2824 2825 DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n", 2826 vfidx, vlan, 0); 2827 2828 /* sanity and init */ 2829 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true); 2830 if (rc) 2831 return rc; 2832 2833 /* update PF's copy of the VF's bulletin. No point in posting the vlan 2834 * to the VF since it doesn't have anything to do with it. But it useful 2835 * to store it here in case the VF is not up yet and we can only 2836 * configure the vlan later when it does. Treat vlan id 0 as remove the 2837 * Host tag. 2838 */ 2839 mutex_lock(&bp->vfdb->bulletin_mutex); 2840 2841 if (vlan > 0) 2842 bulletin->valid_bitmap |= 1 << VLAN_VALID; 2843 else 2844 bulletin->valid_bitmap &= ~(1 << VLAN_VALID); 2845 bulletin->vlan = vlan; 2846 2847 /* Post update on VF's bulletin board */ 2848 rc = bnx2x_post_vf_bulletin(bp, vfidx); 2849 if (rc) 2850 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx); 2851 mutex_unlock(&bp->vfdb->bulletin_mutex); 2852 2853 /* is vf initialized and queue set up? */ 2854 if (vf->state != VF_ENABLED || 2855 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) != 2856 BNX2X_Q_LOGICAL_STATE_ACTIVE) 2857 return rc; 2858 2859 /* User should be able to see error in system logs */ 2860 if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) 2861 return -EINVAL; 2862 2863 /* must lock vfpf channel to protect against vf flows */ 2864 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN); 2865 2866 /* remove existing vlans */ 2867 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2868 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj); 2869 rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags, 2870 &ramrod_flags); 2871 if (rc) { 2872 BNX2X_ERR("failed to delete vlans\n"); 2873 rc = -EINVAL; 2874 goto out; 2875 } 2876 2877 /* clear accept_any_vlan when HV forces vlan, otherwise 2878 * according to VF capabilities 2879 */ 2880 if (vlan || !(vf->cfg_flags & VF_CFG_VLAN_FILTER)) 2881 bnx2x_set_vf_vlan_acceptance(bp, vf, !vlan); 2882 2883 rc = bnx2x_set_vf_vlan_filter(bp, vf, vlan, true); 2884 if (rc) 2885 goto out; 2886 2887 /* send queue update ramrods to configure default vlan and 2888 * silent vlan removal 2889 */ 2890 for_each_vfq(vf, i) { 2891 struct bnx2x_queue_state_params q_params = {NULL}; 2892 struct bnx2x_queue_update_params *update_params; 2893 2894 q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj); 2895 2896 /* validate the Q is UP */ 2897 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) != 2898 BNX2X_Q_LOGICAL_STATE_ACTIVE) 2899 continue; 2900 2901 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 2902 q_params.cmd = BNX2X_Q_CMD_UPDATE; 2903 update_params = &q_params.params.update; 2904 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG, 2905 &update_params->update_flags); 2906 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG, 2907 &update_params->update_flags); 2908 if (vlan == 0) { 2909 /* if vlan is 0 then we want to leave the VF traffic 2910 * untagged, and leave the incoming traffic untouched 2911 * (i.e. do not remove any vlan tags). 2912 */ 2913 __clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, 2914 &update_params->update_flags); 2915 __clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, 2916 &update_params->update_flags); 2917 } else { 2918 /* configure default vlan to vf queue and set silent 2919 * vlan removal (the vf remains unaware of this vlan). 2920 */ 2921 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, 2922 &update_params->update_flags); 2923 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, 2924 &update_params->update_flags); 2925 update_params->def_vlan = vlan; 2926 update_params->silent_removal_value = 2927 vlan & VLAN_VID_MASK; 2928 update_params->silent_removal_mask = VLAN_VID_MASK; 2929 } 2930 2931 /* Update the Queue state */ 2932 rc = bnx2x_queue_state_change(bp, &q_params); 2933 if (rc) { 2934 BNX2X_ERR("Failed to configure default VLAN queue %d\n", 2935 i); 2936 goto out; 2937 } 2938 } 2939 out: 2940 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN); 2941 2942 if (rc) 2943 DP(BNX2X_MSG_IOV, 2944 "updated VF[%d] vlan configuration (vlan = %d)\n", 2945 vfidx, vlan); 2946 2947 return rc; 2948 } 2949 2950 int bnx2x_set_vf_spoofchk(struct net_device *dev, int idx, bool val) 2951 { 2952 struct bnx2x *bp = netdev_priv(dev); 2953 struct bnx2x_virtf *vf; 2954 int i, rc = 0; 2955 2956 vf = BP_VF(bp, idx); 2957 if (!vf) 2958 return -EINVAL; 2959 2960 /* nothing to do */ 2961 if (vf->spoofchk == val) 2962 return 0; 2963 2964 vf->spoofchk = val ? 1 : 0; 2965 2966 DP(BNX2X_MSG_IOV, "%s spoofchk for VF %d\n", 2967 val ? "enabling" : "disabling", idx); 2968 2969 /* is vf initialized and queue set up? */ 2970 if (vf->state != VF_ENABLED || 2971 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) != 2972 BNX2X_Q_LOGICAL_STATE_ACTIVE) 2973 return rc; 2974 2975 /* User should be able to see error in system logs */ 2976 if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) 2977 return -EINVAL; 2978 2979 /* send queue update ramrods to configure spoofchk */ 2980 for_each_vfq(vf, i) { 2981 struct bnx2x_queue_state_params q_params = {NULL}; 2982 struct bnx2x_queue_update_params *update_params; 2983 2984 q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj); 2985 2986 /* validate the Q is UP */ 2987 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) != 2988 BNX2X_Q_LOGICAL_STATE_ACTIVE) 2989 continue; 2990 2991 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 2992 q_params.cmd = BNX2X_Q_CMD_UPDATE; 2993 update_params = &q_params.params.update; 2994 __set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG, 2995 &update_params->update_flags); 2996 if (val) { 2997 __set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF, 2998 &update_params->update_flags); 2999 } else { 3000 __clear_bit(BNX2X_Q_UPDATE_ANTI_SPOOF, 3001 &update_params->update_flags); 3002 } 3003 3004 /* Update the Queue state */ 3005 rc = bnx2x_queue_state_change(bp, &q_params); 3006 if (rc) { 3007 BNX2X_ERR("Failed to %s spoofchk on VF %d - vfq %d\n", 3008 val ? "enable" : "disable", idx, i); 3009 goto out; 3010 } 3011 } 3012 out: 3013 if (!rc) 3014 DP(BNX2X_MSG_IOV, 3015 "%s spoofchk for VF[%d]\n", val ? "Enabled" : "Disabled", 3016 idx); 3017 3018 return rc; 3019 } 3020 3021 /* crc is the first field in the bulletin board. Compute the crc over the 3022 * entire bulletin board excluding the crc field itself. Use the length field 3023 * as the Bulletin Board was posted by a PF with possibly a different version 3024 * from the vf which will sample it. Therefore, the length is computed by the 3025 * PF and then used blindly by the VF. 3026 */ 3027 u32 bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content *bulletin) 3028 { 3029 return crc32(BULLETIN_CRC_SEED, 3030 ((u8 *)bulletin) + sizeof(bulletin->crc), 3031 bulletin->length - sizeof(bulletin->crc)); 3032 } 3033 3034 /* Check for new posts on the bulletin board */ 3035 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp) 3036 { 3037 struct pf_vf_bulletin_content *bulletin; 3038 int attempts; 3039 3040 /* sampling structure in mid post may result with corrupted data 3041 * validate crc to ensure coherency. 3042 */ 3043 for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) { 3044 u32 crc; 3045 3046 /* sample the bulletin board */ 3047 memcpy(&bp->shadow_bulletin, bp->pf2vf_bulletin, 3048 sizeof(union pf_vf_bulletin)); 3049 3050 crc = bnx2x_crc_vf_bulletin(&bp->shadow_bulletin.content); 3051 3052 if (bp->shadow_bulletin.content.crc == crc) 3053 break; 3054 3055 BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n", 3056 bp->shadow_bulletin.content.crc, crc); 3057 } 3058 3059 if (attempts >= BULLETIN_ATTEMPTS) { 3060 BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n", 3061 attempts); 3062 return PFVF_BULLETIN_CRC_ERR; 3063 } 3064 bulletin = &bp->shadow_bulletin.content; 3065 3066 /* bulletin board hasn't changed since last sample */ 3067 if (bp->old_bulletin.version == bulletin->version) 3068 return PFVF_BULLETIN_UNCHANGED; 3069 3070 /* the mac address in bulletin board is valid and is new */ 3071 if (bulletin->valid_bitmap & 1 << MAC_ADDR_VALID && 3072 !ether_addr_equal(bulletin->mac, bp->old_bulletin.mac)) { 3073 /* update new mac to net device */ 3074 eth_hw_addr_set(bp->dev, bulletin->mac); 3075 } 3076 3077 if (bulletin->valid_bitmap & (1 << LINK_VALID)) { 3078 DP(BNX2X_MSG_IOV, "link update speed %d flags %x\n", 3079 bulletin->link_speed, bulletin->link_flags); 3080 3081 bp->vf_link_vars.line_speed = bulletin->link_speed; 3082 bp->vf_link_vars.link_report_flags = 0; 3083 /* Link is down */ 3084 if (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN) 3085 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 3086 &bp->vf_link_vars.link_report_flags); 3087 /* Full DUPLEX */ 3088 if (bulletin->link_flags & VFPF_LINK_REPORT_FULL_DUPLEX) 3089 __set_bit(BNX2X_LINK_REPORT_FD, 3090 &bp->vf_link_vars.link_report_flags); 3091 /* Rx Flow Control is ON */ 3092 if (bulletin->link_flags & VFPF_LINK_REPORT_RX_FC_ON) 3093 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON, 3094 &bp->vf_link_vars.link_report_flags); 3095 /* Tx Flow Control is ON */ 3096 if (bulletin->link_flags & VFPF_LINK_REPORT_TX_FC_ON) 3097 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON, 3098 &bp->vf_link_vars.link_report_flags); 3099 __bnx2x_link_report(bp); 3100 } 3101 3102 /* copy new bulletin board to bp */ 3103 memcpy(&bp->old_bulletin, bulletin, 3104 sizeof(struct pf_vf_bulletin_content)); 3105 3106 return PFVF_BULLETIN_UPDATED; 3107 } 3108 3109 void bnx2x_timer_sriov(struct bnx2x *bp) 3110 { 3111 bnx2x_sample_bulletin(bp); 3112 3113 /* if channel is down we need to self destruct */ 3114 if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN) 3115 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, 3116 BNX2X_MSG_IOV); 3117 } 3118 3119 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp) 3120 { 3121 /* vf doorbells are embedded within the regview */ 3122 return bp->regview + PXP_VF_ADDR_DB_START; 3123 } 3124 3125 void bnx2x_vf_pci_dealloc(struct bnx2x *bp) 3126 { 3127 BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping, 3128 sizeof(struct bnx2x_vf_mbx_msg)); 3129 BNX2X_PCI_FREE(bp->pf2vf_bulletin, bp->pf2vf_bulletin_mapping, 3130 sizeof(union pf_vf_bulletin)); 3131 } 3132 3133 int bnx2x_vf_pci_alloc(struct bnx2x *bp) 3134 { 3135 mutex_init(&bp->vf2pf_mutex); 3136 3137 /* allocate vf2pf mailbox for vf to pf channel */ 3138 bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping, 3139 sizeof(struct bnx2x_vf_mbx_msg)); 3140 if (!bp->vf2pf_mbox) 3141 goto alloc_mem_err; 3142 3143 /* allocate pf 2 vf bulletin board */ 3144 bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping, 3145 sizeof(union pf_vf_bulletin)); 3146 if (!bp->pf2vf_bulletin) 3147 goto alloc_mem_err; 3148 3149 bnx2x_vf_bulletin_finalize(&bp->pf2vf_bulletin->content, true); 3150 3151 return 0; 3152 3153 alloc_mem_err: 3154 bnx2x_vf_pci_dealloc(bp); 3155 return -ENOMEM; 3156 } 3157 3158 void bnx2x_iov_channel_down(struct bnx2x *bp) 3159 { 3160 int vf_idx; 3161 struct pf_vf_bulletin_content *bulletin; 3162 3163 if (!IS_SRIOV(bp)) 3164 return; 3165 3166 for_each_vf(bp, vf_idx) { 3167 /* locate this VFs bulletin board and update the channel down 3168 * bit 3169 */ 3170 bulletin = BP_VF_BULLETIN(bp, vf_idx); 3171 bulletin->valid_bitmap |= 1 << CHANNEL_DOWN; 3172 3173 /* update vf bulletin board */ 3174 bnx2x_post_vf_bulletin(bp, vf_idx); 3175 } 3176 } 3177 3178 void bnx2x_iov_task(struct work_struct *work) 3179 { 3180 struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work); 3181 3182 if (!netif_running(bp->dev)) 3183 return; 3184 3185 if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR, 3186 &bp->iov_task_state)) 3187 bnx2x_vf_handle_flr_event(bp); 3188 3189 if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG, 3190 &bp->iov_task_state)) 3191 bnx2x_vf_mbx(bp); 3192 } 3193 3194 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag) 3195 { 3196 smp_mb__before_atomic(); 3197 set_bit(flag, &bp->iov_task_state); 3198 smp_mb__after_atomic(); 3199 DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag); 3200 queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0); 3201 } 3202