xref: /openbmc/linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_sriov.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 /* bnx2x_sriov.c: QLogic Everest network driver.
2  *
3  * Copyright 2009-2013 Broadcom Corporation
4  * Copyright 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * Unless you and QLogic execute a separate written software license
8  * agreement governing use of this software, this software is licensed to you
9  * under the terms of the GNU General Public License version 2, available
10  * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
11  *
12  * Notwithstanding the above, under no circumstances may you combine this
13  * software in any way with any other QLogic software provided under a
14  * license other than the GPL, without QLogic's express prior written
15  * consent.
16  *
17  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
18  * Written by: Shmulik Ravid
19  *	       Ariel Elior <ariel.elior@qlogic.com>
20  *
21  */
22 #include "bnx2x.h"
23 #include "bnx2x_init.h"
24 #include "bnx2x_cmn.h"
25 #include "bnx2x_sp.h"
26 #include <linux/crc32.h>
27 #include <linux/if_vlan.h>
28 
29 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
30 			    struct bnx2x_virtf **vf,
31 			    struct pf_vf_bulletin_content **bulletin,
32 			    bool test_queue);
33 
34 /* General service functions */
35 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
36 					 u16 pf_id)
37 {
38 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
39 		pf_id);
40 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
41 		pf_id);
42 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
43 		pf_id);
44 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
45 		pf_id);
46 }
47 
48 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
49 					u8 enable)
50 {
51 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
52 		enable);
53 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
54 		enable);
55 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
56 		enable);
57 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
58 		enable);
59 }
60 
61 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
62 {
63 	int idx;
64 
65 	for_each_vf(bp, idx)
66 		if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid)
67 			break;
68 	return idx;
69 }
70 
71 static
72 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
73 {
74 	u16 idx =  (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid);
75 	return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL;
76 }
77 
78 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf,
79 				u8 igu_sb_id, u8 segment, u16 index, u8 op,
80 				u8 update)
81 {
82 	/* acking a VF sb through the PF - use the GRC */
83 	u32 ctl;
84 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
85 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
86 	u32 func_encode = vf->abs_vfid;
87 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id;
88 	struct igu_regular cmd_data = {0};
89 
90 	cmd_data.sb_id_and_flags =
91 			((index << IGU_REGULAR_SB_INDEX_SHIFT) |
92 			 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
93 			 (update << IGU_REGULAR_BUPDATE_SHIFT) |
94 			 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
95 
96 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
97 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
98 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
99 
100 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
101 	   cmd_data.sb_id_and_flags, igu_addr_data);
102 	REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags);
103 	barrier();
104 
105 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
106 	   ctl, igu_addr_ctl);
107 	REG_WR(bp, igu_addr_ctl, ctl);
108 	barrier();
109 }
110 
111 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp,
112 				       struct bnx2x_virtf *vf,
113 				       bool print_err)
114 {
115 	if (!bnx2x_leading_vfq(vf, sp_initialized)) {
116 		if (print_err)
117 			BNX2X_ERR("Slowpath objects not yet initialized!\n");
118 		else
119 			DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n");
120 		return false;
121 	}
122 	return true;
123 }
124 
125 /* VFOP operations states */
126 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf,
127 			      struct bnx2x_queue_init_params *init_params,
128 			      struct bnx2x_queue_setup_params *setup_params,
129 			      u16 q_idx, u16 sb_idx)
130 {
131 	DP(BNX2X_MSG_IOV,
132 	   "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
133 	   vf->abs_vfid,
134 	   q_idx,
135 	   sb_idx,
136 	   init_params->tx.sb_cq_index,
137 	   init_params->tx.hc_rate,
138 	   setup_params->flags,
139 	   setup_params->txq_params.traffic_type);
140 }
141 
142 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf,
143 			    struct bnx2x_queue_init_params *init_params,
144 			    struct bnx2x_queue_setup_params *setup_params,
145 			    u16 q_idx, u16 sb_idx)
146 {
147 	struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params;
148 
149 	DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
150 	   "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
151 	   vf->abs_vfid,
152 	   q_idx,
153 	   sb_idx,
154 	   init_params->rx.sb_cq_index,
155 	   init_params->rx.hc_rate,
156 	   setup_params->gen_params.mtu,
157 	   rxq_params->buf_sz,
158 	   rxq_params->sge_buf_sz,
159 	   rxq_params->max_sges_pkt,
160 	   rxq_params->tpa_agg_sz,
161 	   setup_params->flags,
162 	   rxq_params->drop_flags,
163 	   rxq_params->cache_line_log);
164 }
165 
166 void bnx2x_vfop_qctor_prep(struct bnx2x *bp,
167 			   struct bnx2x_virtf *vf,
168 			   struct bnx2x_vf_queue *q,
169 			   struct bnx2x_vf_queue_construct_params *p,
170 			   unsigned long q_type)
171 {
172 	struct bnx2x_queue_init_params *init_p = &p->qstate.params.init;
173 	struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup;
174 
175 	/* INIT */
176 
177 	/* Enable host coalescing in the transition to INIT state */
178 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags))
179 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags);
180 
181 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags))
182 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags);
183 
184 	/* FW SB ID */
185 	init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
186 	init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
187 
188 	/* context */
189 	init_p->cxts[0] = q->cxt;
190 
191 	/* SETUP */
192 
193 	/* Setup-op general parameters */
194 	setup_p->gen_params.spcl_id = vf->sp_cl_id;
195 	setup_p->gen_params.stat_id = vfq_stat_id(vf, q);
196 	setup_p->gen_params.fp_hsi = vf->fp_hsi;
197 
198 	/* Setup-op flags:
199 	 * collect statistics, zero statistics, local-switching, security,
200 	 * OV for Flex10, RSS and MCAST for leading
201 	 */
202 	if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags))
203 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags);
204 
205 	/* for VFs, enable tx switching, bd coherency, and mac address
206 	 * anti-spoofing
207 	 */
208 	__set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags);
209 	__set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags);
210 	if (vf->spoofchk)
211 		__set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
212 	else
213 		__clear_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
214 
215 	/* Setup-op rx parameters */
216 	if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) {
217 		struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params;
218 
219 		rxq_p->cl_qzone_id = vfq_qzone_id(vf, q);
220 		rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx);
221 		rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid);
222 
223 		if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags))
224 			rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES;
225 	}
226 
227 	/* Setup-op tx parameters */
228 	if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) {
229 		setup_p->txq_params.tss_leading_cl_id = vf->leading_rss;
230 		setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
231 	}
232 }
233 
234 static int bnx2x_vf_queue_create(struct bnx2x *bp,
235 				 struct bnx2x_virtf *vf, int qid,
236 				 struct bnx2x_vf_queue_construct_params *qctor)
237 {
238 	struct bnx2x_queue_state_params *q_params;
239 	int rc = 0;
240 
241 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
242 
243 	/* Prepare ramrod information */
244 	q_params = &qctor->qstate;
245 	q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
246 	set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags);
247 
248 	if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
249 	    BNX2X_Q_LOGICAL_STATE_ACTIVE) {
250 		DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n");
251 		goto out;
252 	}
253 
254 	/* Run Queue 'construction' ramrods */
255 	q_params->cmd = BNX2X_Q_CMD_INIT;
256 	rc = bnx2x_queue_state_change(bp, q_params);
257 	if (rc)
258 		goto out;
259 
260 	memcpy(&q_params->params.setup, &qctor->prep_qsetup,
261 	       sizeof(struct bnx2x_queue_setup_params));
262 	q_params->cmd = BNX2X_Q_CMD_SETUP;
263 	rc = bnx2x_queue_state_change(bp, q_params);
264 	if (rc)
265 		goto out;
266 
267 	/* enable interrupts */
268 	bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)),
269 			    USTORM_ID, 0, IGU_INT_ENABLE, 0);
270 out:
271 	return rc;
272 }
273 
274 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf,
275 				  int qid)
276 {
277 	enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT,
278 				       BNX2X_Q_CMD_TERMINATE,
279 				       BNX2X_Q_CMD_CFC_DEL};
280 	struct bnx2x_queue_state_params q_params;
281 	int rc, i;
282 
283 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
284 
285 	/* Prepare ramrod information */
286 	memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params));
287 	q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
288 	set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
289 
290 	if (bnx2x_get_q_logical_state(bp, q_params.q_obj) ==
291 	    BNX2X_Q_LOGICAL_STATE_STOPPED) {
292 		DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n");
293 		goto out;
294 	}
295 
296 	/* Run Queue 'destruction' ramrods */
297 	for (i = 0; i < ARRAY_SIZE(cmds); i++) {
298 		q_params.cmd = cmds[i];
299 		rc = bnx2x_queue_state_change(bp, &q_params);
300 		if (rc) {
301 			BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]);
302 			return rc;
303 		}
304 	}
305 out:
306 	/* Clean Context */
307 	if (bnx2x_vfq(vf, qid, cxt)) {
308 		bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0;
309 		bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0;
310 	}
311 
312 	return 0;
313 }
314 
315 static void
316 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid)
317 {
318 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
319 	if (vf) {
320 		/* the first igu entry belonging to VFs of this PF */
321 		if (!BP_VFDB(bp)->first_vf_igu_entry)
322 			BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id;
323 
324 		/* the first igu entry belonging to this VF */
325 		if (!vf_sb_count(vf))
326 			vf->igu_base_id = igu_sb_id;
327 
328 		++vf_sb_count(vf);
329 		++vf->sb_count;
330 	}
331 	BP_VFDB(bp)->vf_sbs_pool++;
332 }
333 
334 static inline void bnx2x_vf_vlan_credit(struct bnx2x *bp,
335 					struct bnx2x_vlan_mac_obj *obj,
336 					atomic_t *counter)
337 {
338 	struct list_head *pos;
339 	int read_lock;
340 	int cnt = 0;
341 
342 	read_lock = bnx2x_vlan_mac_h_read_lock(bp, obj);
343 	if (read_lock)
344 		DP(BNX2X_MSG_SP, "Failed to take vlan mac read head; continuing anyway\n");
345 
346 	list_for_each(pos, &obj->head)
347 		cnt++;
348 
349 	if (!read_lock)
350 		bnx2x_vlan_mac_h_read_unlock(bp, obj);
351 
352 	atomic_set(counter, cnt);
353 }
354 
355 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf,
356 				   int qid, bool drv_only, int type)
357 {
358 	struct bnx2x_vlan_mac_ramrod_params ramrod;
359 	int rc;
360 
361 	DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid,
362 			  (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
363 			  (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
364 
365 	/* Prepare ramrod params */
366 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
367 	if (type == BNX2X_VF_FILTER_VLAN_MAC) {
368 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
369 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
370 	} else if (type == BNX2X_VF_FILTER_MAC) {
371 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
372 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
373 	} else {
374 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
375 	}
376 	ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL;
377 
378 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
379 	if (drv_only)
380 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
381 	else
382 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
383 
384 	/* Start deleting */
385 	rc = ramrod.vlan_mac_obj->delete_all(bp,
386 					     ramrod.vlan_mac_obj,
387 					     &ramrod.user_req.vlan_mac_flags,
388 					     &ramrod.ramrod_flags);
389 	if (rc) {
390 		BNX2X_ERR("Failed to delete all %s\n",
391 			  (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
392 			  (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
393 		return rc;
394 	}
395 
396 	return 0;
397 }
398 
399 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp,
400 				    struct bnx2x_virtf *vf, int qid,
401 				    struct bnx2x_vf_mac_vlan_filter *filter,
402 				    bool drv_only)
403 {
404 	struct bnx2x_vlan_mac_ramrod_params ramrod;
405 	int rc;
406 
407 	DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n",
408 	   vf->abs_vfid, filter->add ? "Adding" : "Deleting",
409 	   (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MAC" :
410 	   (filter->type == BNX2X_VF_FILTER_MAC) ? "MAC" : "VLAN");
411 
412 	/* Prepare ramrod params */
413 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
414 	if (filter->type == BNX2X_VF_FILTER_VLAN_MAC) {
415 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
416 		ramrod.user_req.u.vlan.vlan = filter->vid;
417 		memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
418 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
419 	} else if (filter->type == BNX2X_VF_FILTER_VLAN) {
420 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
421 		ramrod.user_req.u.vlan.vlan = filter->vid;
422 	} else {
423 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
424 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
425 		memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
426 	}
427 	ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD :
428 					    BNX2X_VLAN_MAC_DEL;
429 
430 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
431 	if (drv_only)
432 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
433 	else
434 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
435 
436 	/* Add/Remove the filter */
437 	rc = bnx2x_config_vlan_mac(bp, &ramrod);
438 	if (rc == -EEXIST)
439 		return 0;
440 	if (rc) {
441 		BNX2X_ERR("Failed to %s %s\n",
442 			  filter->add ? "add" : "delete",
443 			  (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ?
444 				"VLAN-MAC" :
445 			  (filter->type == BNX2X_VF_FILTER_MAC) ?
446 				"MAC" : "VLAN");
447 		return rc;
448 	}
449 
450 	filter->applied = true;
451 
452 	return 0;
453 }
454 
455 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf,
456 				  struct bnx2x_vf_mac_vlan_filters *filters,
457 				  int qid, bool drv_only)
458 {
459 	int rc = 0, i;
460 
461 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
462 
463 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
464 		return -EINVAL;
465 
466 	/* Prepare ramrod params */
467 	for (i = 0; i < filters->count; i++) {
468 		rc = bnx2x_vf_mac_vlan_config(bp, vf, qid,
469 					      &filters->filters[i], drv_only);
470 		if (rc)
471 			break;
472 	}
473 
474 	/* Rollback if needed */
475 	if (i != filters->count) {
476 		BNX2X_ERR("Managed only %d/%d filters - rolling back\n",
477 			  i, filters->count);
478 		while (--i >= 0) {
479 			if (!filters->filters[i].applied)
480 				continue;
481 			filters->filters[i].add = !filters->filters[i].add;
482 			bnx2x_vf_mac_vlan_config(bp, vf, qid,
483 						 &filters->filters[i],
484 						 drv_only);
485 		}
486 	}
487 
488 	/* It's our responsibility to free the filters */
489 	kfree(filters);
490 
491 	return rc;
492 }
493 
494 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid,
495 			 struct bnx2x_vf_queue_construct_params *qctor)
496 {
497 	int rc;
498 
499 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
500 
501 	rc = bnx2x_vf_queue_create(bp, vf, qid, qctor);
502 	if (rc)
503 		goto op_err;
504 
505 	/* Schedule the configuration of any pending vlan filters */
506 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN,
507 			       BNX2X_MSG_IOV);
508 	return 0;
509 op_err:
510 	BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
511 	return rc;
512 }
513 
514 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf,
515 			       int qid)
516 {
517 	int rc;
518 
519 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
520 
521 	/* If needed, clean the filtering data base */
522 	if ((qid == LEADING_IDX) &&
523 	    bnx2x_validate_vf_sp_objs(bp, vf, false)) {
524 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
525 					     BNX2X_VF_FILTER_VLAN_MAC);
526 		if (rc)
527 			goto op_err;
528 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
529 					     BNX2X_VF_FILTER_VLAN);
530 		if (rc)
531 			goto op_err;
532 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
533 					     BNX2X_VF_FILTER_MAC);
534 		if (rc)
535 			goto op_err;
536 	}
537 
538 	/* Terminate queue */
539 	if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) {
540 		struct bnx2x_queue_state_params qstate;
541 
542 		memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
543 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
544 		qstate.q_obj->state = BNX2X_Q_STATE_STOPPED;
545 		qstate.cmd = BNX2X_Q_CMD_TERMINATE;
546 		set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
547 		rc = bnx2x_queue_state_change(bp, &qstate);
548 		if (rc)
549 			goto op_err;
550 	}
551 
552 	return 0;
553 op_err:
554 	BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
555 	return rc;
556 }
557 
558 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf,
559 		   bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only)
560 {
561 	struct bnx2x_mcast_list_elem *mc = NULL;
562 	struct bnx2x_mcast_ramrod_params mcast;
563 	int rc, i;
564 
565 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
566 
567 	/* Prepare Multicast command */
568 	memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params));
569 	mcast.mcast_obj = &vf->mcast_obj;
570 	if (drv_only)
571 		set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags);
572 	else
573 		set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags);
574 	if (mc_num) {
575 		mc = kcalloc(mc_num, sizeof(struct bnx2x_mcast_list_elem),
576 			     GFP_KERNEL);
577 		if (!mc) {
578 			BNX2X_ERR("Cannot Configure multicasts due to lack of memory\n");
579 			return -ENOMEM;
580 		}
581 	}
582 
583 	if (mc_num) {
584 		INIT_LIST_HEAD(&mcast.mcast_list);
585 		for (i = 0; i < mc_num; i++) {
586 			mc[i].mac = mcasts[i];
587 			list_add_tail(&mc[i].link,
588 				      &mcast.mcast_list);
589 		}
590 
591 		/* add new mcasts */
592 		mcast.mcast_list_len = mc_num;
593 		rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_SET);
594 		if (rc)
595 			BNX2X_ERR("Failed to set multicasts\n");
596 	} else {
597 		/* clear existing mcasts */
598 		rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL);
599 		if (rc)
600 			BNX2X_ERR("Failed to remove multicasts\n");
601 	}
602 
603 	kfree(mc);
604 
605 	return rc;
606 }
607 
608 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid,
609 				  struct bnx2x_rx_mode_ramrod_params *ramrod,
610 				  struct bnx2x_virtf *vf,
611 				  unsigned long accept_flags)
612 {
613 	struct bnx2x_vf_queue *vfq = vfq_get(vf, qid);
614 
615 	memset(ramrod, 0, sizeof(*ramrod));
616 	ramrod->cid = vfq->cid;
617 	ramrod->cl_id = vfq_cl_id(vf, vfq);
618 	ramrod->rx_mode_obj = &bp->rx_mode_obj;
619 	ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid);
620 	ramrod->rx_accept_flags = accept_flags;
621 	ramrod->tx_accept_flags = accept_flags;
622 	ramrod->pstate = &vf->filter_state;
623 	ramrod->state = BNX2X_FILTER_RX_MODE_PENDING;
624 
625 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
626 	set_bit(RAMROD_RX, &ramrod->ramrod_flags);
627 	set_bit(RAMROD_TX, &ramrod->ramrod_flags);
628 
629 	ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2);
630 	ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2);
631 }
632 
633 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf,
634 		    int qid, unsigned long accept_flags)
635 {
636 	struct bnx2x_rx_mode_ramrod_params ramrod;
637 
638 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
639 
640 	bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags);
641 	set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
642 	vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags;
643 	return bnx2x_config_rx_mode(bp, &ramrod);
644 }
645 
646 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid)
647 {
648 	int rc;
649 
650 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
651 
652 	/* Remove all classification configuration for leading queue */
653 	if (qid == LEADING_IDX) {
654 		rc = bnx2x_vf_rxmode(bp, vf, qid, 0);
655 		if (rc)
656 			goto op_err;
657 
658 		/* Remove filtering if feasible */
659 		if (bnx2x_validate_vf_sp_objs(bp, vf, true)) {
660 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
661 						     false,
662 						     BNX2X_VF_FILTER_VLAN_MAC);
663 			if (rc)
664 				goto op_err;
665 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
666 						     false,
667 						     BNX2X_VF_FILTER_VLAN);
668 			if (rc)
669 				goto op_err;
670 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
671 						     false,
672 						     BNX2X_VF_FILTER_MAC);
673 			if (rc)
674 				goto op_err;
675 			rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false);
676 			if (rc)
677 				goto op_err;
678 		}
679 	}
680 
681 	/* Destroy queue */
682 	rc = bnx2x_vf_queue_destroy(bp, vf, qid);
683 	if (rc)
684 		goto op_err;
685 	return rc;
686 op_err:
687 	BNX2X_ERR("vf[%d:%d] error: rc %d\n",
688 		  vf->abs_vfid, qid, rc);
689 	return rc;
690 }
691 
692 /* VF enable primitives
693  * when pretend is required the caller is responsible
694  * for calling pretend prior to calling these routines
695  */
696 
697 /* internal vf enable - until vf is enabled internally all transactions
698  * are blocked. This routine should always be called last with pretend.
699  */
700 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable)
701 {
702 	REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0);
703 }
704 
705 /* clears vf error in all semi blocks */
706 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid)
707 {
708 	REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid);
709 	REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid);
710 	REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid);
711 	REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid);
712 }
713 
714 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid)
715 {
716 	u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5;
717 	u32 was_err_reg = 0;
718 
719 	switch (was_err_group) {
720 	case 0:
721 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR;
722 	    break;
723 	case 1:
724 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR;
725 	    break;
726 	case 2:
727 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR;
728 	    break;
729 	case 3:
730 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR;
731 	    break;
732 	}
733 	REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f));
734 }
735 
736 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf)
737 {
738 	int i;
739 	u32 val;
740 
741 	/* Set VF masks and configuration - pretend */
742 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
743 
744 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
745 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
746 	REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
747 	REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
748 	REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
749 	REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
750 
751 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
752 	val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN);
753 	val &= ~IGU_VF_CONF_PARENT_MASK;
754 	val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT;
755 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
756 
757 	DP(BNX2X_MSG_IOV,
758 	   "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n",
759 	   vf->abs_vfid, val);
760 
761 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
762 
763 	/* iterate over all queues, clear sb consumer */
764 	for (i = 0; i < vf_sb_count(vf); i++) {
765 		u8 igu_sb_id = vf_igu_sb(vf, i);
766 
767 		/* zero prod memory */
768 		REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0);
769 
770 		/* clear sb state machine */
771 		bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id,
772 				       false /* VF */);
773 
774 		/* disable + update */
775 		bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0,
776 				    IGU_INT_DISABLE, 1);
777 	}
778 }
779 
780 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid)
781 {
782 	/* set the VF-PF association in the FW */
783 	storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp));
784 	storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1);
785 
786 	/* clear vf errors*/
787 	bnx2x_vf_semi_clear_err(bp, abs_vfid);
788 	bnx2x_vf_pglue_clear_err(bp, abs_vfid);
789 
790 	/* internal vf-enable - pretend */
791 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid));
792 	DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid);
793 	bnx2x_vf_enable_internal(bp, true);
794 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
795 }
796 
797 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf)
798 {
799 	/* Reset vf in IGU  interrupts are still disabled */
800 	bnx2x_vf_igu_reset(bp, vf);
801 
802 	/* pretend to enable the vf with the PBF */
803 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
804 	REG_WR(bp, PBF_REG_DISABLE_VF, 0);
805 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
806 }
807 
808 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid)
809 {
810 	struct pci_dev *dev;
811 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
812 
813 	if (!vf)
814 		return false;
815 
816 	dev = pci_get_domain_bus_and_slot(vf->domain, vf->bus, vf->devfn);
817 	if (dev)
818 		return bnx2x_is_pcie_pending(dev);
819 	return false;
820 }
821 
822 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid)
823 {
824 	/* Verify no pending pci transactions */
825 	if (bnx2x_vf_is_pcie_pending(bp, abs_vfid))
826 		BNX2X_ERR("PCIE Transactions still pending\n");
827 
828 	return 0;
829 }
830 
831 /* must be called after the number of PF queues and the number of VFs are
832  * both known
833  */
834 static void
835 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
836 {
837 	struct vf_pf_resc_request *resc = &vf->alloc_resc;
838 
839 	/* will be set only during VF-ACQUIRE */
840 	resc->num_rxqs = 0;
841 	resc->num_txqs = 0;
842 
843 	resc->num_mac_filters = VF_MAC_CREDIT_CNT;
844 	resc->num_vlan_filters = VF_VLAN_CREDIT_CNT;
845 
846 	/* no real limitation */
847 	resc->num_mc_filters = 0;
848 
849 	/* num_sbs already set */
850 	resc->num_sbs = vf->sb_count;
851 }
852 
853 /* FLR routines: */
854 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
855 {
856 	/* reset the state variables */
857 	bnx2x_iov_static_resc(bp, vf);
858 	vf->state = VF_FREE;
859 }
860 
861 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf)
862 {
863 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
864 
865 	/* DQ usage counter */
866 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
867 	bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT,
868 					"DQ VF usage counter timed out",
869 					poll_cnt);
870 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
871 
872 	/* FW cleanup command - poll for the results */
873 	if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid),
874 				   poll_cnt))
875 		BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid);
876 
877 	/* verify TX hw is flushed */
878 	bnx2x_tx_hw_flushed(bp, poll_cnt);
879 }
880 
881 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf)
882 {
883 	int rc, i;
884 
885 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
886 
887 	/* the cleanup operations are valid if and only if the VF
888 	 * was first acquired.
889 	 */
890 	for (i = 0; i < vf_rxq_count(vf); i++) {
891 		rc = bnx2x_vf_queue_flr(bp, vf, i);
892 		if (rc)
893 			goto out;
894 	}
895 
896 	/* remove multicasts */
897 	bnx2x_vf_mcast(bp, vf, NULL, 0, true);
898 
899 	/* dispatch final cleanup and wait for HW queues to flush */
900 	bnx2x_vf_flr_clnup_hw(bp, vf);
901 
902 	/* release VF resources */
903 	bnx2x_vf_free_resc(bp, vf);
904 
905 	vf->malicious = false;
906 
907 	/* re-open the mailbox */
908 	bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
909 	return;
910 out:
911 	BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n",
912 		  vf->abs_vfid, i, rc);
913 }
914 
915 static void bnx2x_vf_flr_clnup(struct bnx2x *bp)
916 {
917 	struct bnx2x_virtf *vf;
918 	int i;
919 
920 	for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) {
921 		/* VF should be RESET & in FLR cleanup states */
922 		if (bnx2x_vf(bp, i, state) != VF_RESET ||
923 		    !bnx2x_vf(bp, i, flr_clnup_stage))
924 			continue;
925 
926 		DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n",
927 		   i, BNX2X_NR_VIRTFN(bp));
928 
929 		vf = BP_VF(bp, i);
930 
931 		/* lock the vf pf channel */
932 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
933 
934 		/* invoke the VF FLR SM */
935 		bnx2x_vf_flr(bp, vf);
936 
937 		/* mark the VF to be ACKED and continue */
938 		vf->flr_clnup_stage = false;
939 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
940 	}
941 
942 	/* Acknowledge the handled VFs.
943 	 * we are acknowledge all the vfs which an flr was requested for, even
944 	 * if amongst them there are such that we never opened, since the mcp
945 	 * will interrupt us immediately again if we only ack some of the bits,
946 	 * resulting in an endless loop. This can happen for example in KVM
947 	 * where an 'all ones' flr request is sometimes given by hyper visor
948 	 */
949 	DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
950 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
951 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
952 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i],
953 			  bp->vfdb->flrd_vfs[i]);
954 
955 	bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0);
956 
957 	/* clear the acked bits - better yet if the MCP implemented
958 	 * write to clear semantics
959 	 */
960 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
961 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0);
962 }
963 
964 void bnx2x_vf_handle_flr_event(struct bnx2x *bp)
965 {
966 	int i;
967 
968 	/* Read FLR'd VFs */
969 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
970 		bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]);
971 
972 	DP(BNX2X_MSG_MCP,
973 	   "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
974 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
975 
976 	for_each_vf(bp, i) {
977 		struct bnx2x_virtf *vf = BP_VF(bp, i);
978 		u32 reset = 0;
979 
980 		if (vf->abs_vfid < 32)
981 			reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid);
982 		else
983 			reset = bp->vfdb->flrd_vfs[1] &
984 				(1 << (vf->abs_vfid - 32));
985 
986 		if (reset) {
987 			/* set as reset and ready for cleanup */
988 			vf->state = VF_RESET;
989 			vf->flr_clnup_stage = true;
990 
991 			DP(BNX2X_MSG_IOV,
992 			   "Initiating Final cleanup for VF %d\n",
993 			   vf->abs_vfid);
994 		}
995 	}
996 
997 	/* do the FLR cleanup for all marked VFs*/
998 	bnx2x_vf_flr_clnup(bp);
999 }
1000 
1001 /* IOV global initialization routines  */
1002 void bnx2x_iov_init_dq(struct bnx2x *bp)
1003 {
1004 	if (!IS_SRIOV(bp))
1005 		return;
1006 
1007 	/* Set the DQ such that the CID reflect the abs_vfid */
1008 	REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0);
1009 	REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
1010 
1011 	/* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
1012 	 * the PF L2 queues
1013 	 */
1014 	REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
1015 
1016 	/* The VF window size is the log2 of the max number of CIDs per VF */
1017 	REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
1018 
1019 	/* The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
1020 	 * the Pf doorbell size although the 2 are independent.
1021 	 */
1022 	REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3);
1023 
1024 	/* No security checks for now -
1025 	 * configure single rule (out of 16) mask = 0x1, value = 0x0,
1026 	 * CID range 0 - 0x1ffff
1027 	 */
1028 	REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1);
1029 	REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0);
1030 	REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
1031 	REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
1032 
1033 	/* set the VF doorbell threshold. This threshold represents the amount
1034 	 * of doorbells allowed in the main DORQ fifo for a specific VF.
1035 	 */
1036 	REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64);
1037 }
1038 
1039 void bnx2x_iov_init_dmae(struct bnx2x *bp)
1040 {
1041 	if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV))
1042 		REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0);
1043 }
1044 
1045 static int bnx2x_vf_domain(struct bnx2x *bp, int vfid)
1046 {
1047 	struct pci_dev *dev = bp->pdev;
1048 
1049 	return pci_domain_nr(dev->bus);
1050 }
1051 
1052 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid)
1053 {
1054 	struct pci_dev *dev = bp->pdev;
1055 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1056 
1057 	return dev->bus->number + ((dev->devfn + iov->offset +
1058 				    iov->stride * vfid) >> 8);
1059 }
1060 
1061 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid)
1062 {
1063 	struct pci_dev *dev = bp->pdev;
1064 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1065 
1066 	return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff;
1067 }
1068 
1069 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf)
1070 {
1071 	int i, n;
1072 	struct pci_dev *dev = bp->pdev;
1073 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1074 
1075 	for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) {
1076 		u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i);
1077 		u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i);
1078 
1079 		size /= iov->total;
1080 		vf->bars[n].bar = start + size * vf->abs_vfid;
1081 		vf->bars[n].size = size;
1082 	}
1083 }
1084 
1085 static int
1086 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp)
1087 {
1088 	int sb_id;
1089 	u32 val;
1090 	u8 fid, current_pf = 0;
1091 
1092 	/* IGU in normal mode - read CAM */
1093 	for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) {
1094 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4);
1095 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
1096 			continue;
1097 		fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID);
1098 		if (fid & IGU_FID_ENCODE_IS_PF)
1099 			current_pf = fid & IGU_FID_PF_NUM_MASK;
1100 		else if (current_pf == BP_FUNC(bp))
1101 			bnx2x_vf_set_igu_info(bp, sb_id,
1102 					      (fid & IGU_FID_VF_NUM_MASK));
1103 		DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n",
1104 		   ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"),
1105 		   ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) :
1106 		   (fid & IGU_FID_VF_NUM_MASK)), sb_id,
1107 		   GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR));
1108 	}
1109 	DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool);
1110 	return BP_VFDB(bp)->vf_sbs_pool;
1111 }
1112 
1113 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp)
1114 {
1115 	if (bp->vfdb) {
1116 		kfree(bp->vfdb->vfqs);
1117 		kfree(bp->vfdb->vfs);
1118 		kfree(bp->vfdb);
1119 	}
1120 	bp->vfdb = NULL;
1121 }
1122 
1123 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1124 {
1125 	int pos;
1126 	struct pci_dev *dev = bp->pdev;
1127 
1128 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
1129 	if (!pos) {
1130 		BNX2X_ERR("failed to find SRIOV capability in device\n");
1131 		return -ENODEV;
1132 	}
1133 
1134 	iov->pos = pos;
1135 	DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos);
1136 	pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
1137 	pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total);
1138 	pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial);
1139 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
1140 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
1141 	pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
1142 	pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap);
1143 	pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
1144 
1145 	return 0;
1146 }
1147 
1148 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1149 {
1150 	u32 val;
1151 
1152 	/* read the SRIOV capability structure
1153 	 * The fields can be read via configuration read or
1154 	 * directly from the device (starting at offset PCICFG_OFFSET)
1155 	 */
1156 	if (bnx2x_sriov_pci_cfg_info(bp, iov))
1157 		return -ENODEV;
1158 
1159 	/* get the number of SRIOV bars */
1160 	iov->nres = 0;
1161 
1162 	/* read the first_vfid */
1163 	val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF);
1164 	iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK)
1165 			       * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp));
1166 
1167 	DP(BNX2X_MSG_IOV,
1168 	   "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
1169 	   BP_FUNC(bp),
1170 	   iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total,
1171 	   iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
1172 
1173 	return 0;
1174 }
1175 
1176 /* must be called after PF bars are mapped */
1177 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param,
1178 		       int num_vfs_param)
1179 {
1180 	int err, i;
1181 	struct bnx2x_sriov *iov;
1182 	struct pci_dev *dev = bp->pdev;
1183 
1184 	bp->vfdb = NULL;
1185 
1186 	/* verify is pf */
1187 	if (IS_VF(bp))
1188 		return 0;
1189 
1190 	/* verify sriov capability is present in configuration space */
1191 	if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV))
1192 		return 0;
1193 
1194 	/* verify chip revision */
1195 	if (CHIP_IS_E1x(bp))
1196 		return 0;
1197 
1198 	/* check if SRIOV support is turned off */
1199 	if (!num_vfs_param)
1200 		return 0;
1201 
1202 	/* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
1203 	if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) {
1204 		BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
1205 			  BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID);
1206 		return 0;
1207 	}
1208 
1209 	/* SRIOV can be enabled only with MSIX */
1210 	if (int_mode_param == BNX2X_INT_MODE_MSI ||
1211 	    int_mode_param == BNX2X_INT_MODE_INTX) {
1212 		BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
1213 		return 0;
1214 	}
1215 
1216 	err = -EIO;
1217 	/* verify ari is enabled */
1218 	if (!pci_ari_enabled(bp->pdev->bus)) {
1219 		BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
1220 		return 0;
1221 	}
1222 
1223 	/* verify igu is in normal mode */
1224 	if (CHIP_INT_MODE_IS_BC(bp)) {
1225 		BNX2X_ERR("IGU not normal mode,  SRIOV can not be enabled\n");
1226 		return 0;
1227 	}
1228 
1229 	/* allocate the vfs database */
1230 	bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL);
1231 	if (!bp->vfdb) {
1232 		BNX2X_ERR("failed to allocate vf database\n");
1233 		err = -ENOMEM;
1234 		goto failed;
1235 	}
1236 
1237 	/* get the sriov info - Linux already collected all the pertinent
1238 	 * information, however the sriov structure is for the private use
1239 	 * of the pci module. Also we want this information regardless
1240 	 * of the hyper-visor.
1241 	 */
1242 	iov = &(bp->vfdb->sriov);
1243 	err = bnx2x_sriov_info(bp, iov);
1244 	if (err)
1245 		goto failed;
1246 
1247 	/* SR-IOV capability was enabled but there are no VFs*/
1248 	if (iov->total == 0)
1249 		goto failed;
1250 
1251 	iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param);
1252 
1253 	DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n",
1254 	   num_vfs_param, iov->nr_virtfn);
1255 
1256 	/* allocate the vf array */
1257 	bp->vfdb->vfs = kcalloc(BNX2X_NR_VIRTFN(bp),
1258 				sizeof(struct bnx2x_virtf),
1259 				GFP_KERNEL);
1260 	if (!bp->vfdb->vfs) {
1261 		BNX2X_ERR("failed to allocate vf array\n");
1262 		err = -ENOMEM;
1263 		goto failed;
1264 	}
1265 
1266 	/* Initial VF init - index and abs_vfid - nr_virtfn must be set */
1267 	for_each_vf(bp, i) {
1268 		bnx2x_vf(bp, i, index) = i;
1269 		bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i;
1270 		bnx2x_vf(bp, i, state) = VF_FREE;
1271 		mutex_init(&bnx2x_vf(bp, i, op_mutex));
1272 		bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE;
1273 		/* enable spoofchk by default */
1274 		bnx2x_vf(bp, i, spoofchk) = 1;
1275 	}
1276 
1277 	/* re-read the IGU CAM for VFs - index and abs_vfid must be set */
1278 	if (!bnx2x_get_vf_igu_cam_info(bp)) {
1279 		BNX2X_ERR("No entries in IGU CAM for vfs\n");
1280 		err = -EINVAL;
1281 		goto failed;
1282 	}
1283 
1284 	/* allocate the queue arrays for all VFs */
1285 	bp->vfdb->vfqs = kcalloc(BNX2X_MAX_NUM_VF_QUEUES,
1286 				 sizeof(struct bnx2x_vf_queue),
1287 				 GFP_KERNEL);
1288 
1289 	if (!bp->vfdb->vfqs) {
1290 		BNX2X_ERR("failed to allocate vf queue array\n");
1291 		err = -ENOMEM;
1292 		goto failed;
1293 	}
1294 
1295 	/* Prepare the VFs event synchronization mechanism */
1296 	mutex_init(&bp->vfdb->event_mutex);
1297 
1298 	mutex_init(&bp->vfdb->bulletin_mutex);
1299 
1300 	if (SHMEM2_HAS(bp, sriov_switch_mode))
1301 		SHMEM2_WR(bp, sriov_switch_mode, SRIOV_SWITCH_MODE_VEB);
1302 
1303 	return 0;
1304 failed:
1305 	DP(BNX2X_MSG_IOV, "Failed err=%d\n", err);
1306 	__bnx2x_iov_free_vfdb(bp);
1307 	return err;
1308 }
1309 
1310 void bnx2x_iov_remove_one(struct bnx2x *bp)
1311 {
1312 	int vf_idx;
1313 
1314 	/* if SRIOV is not enabled there's nothing to do */
1315 	if (!IS_SRIOV(bp))
1316 		return;
1317 
1318 	bnx2x_disable_sriov(bp);
1319 
1320 	/* disable access to all VFs */
1321 	for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) {
1322 		bnx2x_pretend_func(bp,
1323 				   HW_VF_HANDLE(bp,
1324 						bp->vfdb->sriov.first_vf_in_pf +
1325 						vf_idx));
1326 		DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n",
1327 		   bp->vfdb->sriov.first_vf_in_pf + vf_idx);
1328 		bnx2x_vf_enable_internal(bp, 0);
1329 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1330 	}
1331 
1332 	/* free vf database */
1333 	__bnx2x_iov_free_vfdb(bp);
1334 }
1335 
1336 void bnx2x_iov_free_mem(struct bnx2x *bp)
1337 {
1338 	int i;
1339 
1340 	if (!IS_SRIOV(bp))
1341 		return;
1342 
1343 	/* free vfs hw contexts */
1344 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1345 		struct hw_dma *cxt = &bp->vfdb->context[i];
1346 		BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size);
1347 	}
1348 
1349 	BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr,
1350 		       BP_VFDB(bp)->sp_dma.mapping,
1351 		       BP_VFDB(bp)->sp_dma.size);
1352 
1353 	BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr,
1354 		       BP_VF_MBX_DMA(bp)->mapping,
1355 		       BP_VF_MBX_DMA(bp)->size);
1356 
1357 	BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr,
1358 		       BP_VF_BULLETIN_DMA(bp)->mapping,
1359 		       BP_VF_BULLETIN_DMA(bp)->size);
1360 }
1361 
1362 int bnx2x_iov_alloc_mem(struct bnx2x *bp)
1363 {
1364 	size_t tot_size;
1365 	int i, rc = 0;
1366 
1367 	if (!IS_SRIOV(bp))
1368 		return rc;
1369 
1370 	/* allocate vfs hw contexts */
1371 	tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) *
1372 		BNX2X_CIDS_PER_VF * sizeof(union cdu_context);
1373 
1374 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1375 		struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i);
1376 		cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ);
1377 
1378 		if (cxt->size) {
1379 			cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size);
1380 			if (!cxt->addr)
1381 				goto alloc_mem_err;
1382 		} else {
1383 			cxt->addr = NULL;
1384 			cxt->mapping = 0;
1385 		}
1386 		tot_size -= cxt->size;
1387 	}
1388 
1389 	/* allocate vfs ramrods dma memory - client_init and set_mac */
1390 	tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp);
1391 	BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping,
1392 						   tot_size);
1393 	if (!BP_VFDB(bp)->sp_dma.addr)
1394 		goto alloc_mem_err;
1395 	BP_VFDB(bp)->sp_dma.size = tot_size;
1396 
1397 	/* allocate mailboxes */
1398 	tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE;
1399 	BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping,
1400 						  tot_size);
1401 	if (!BP_VF_MBX_DMA(bp)->addr)
1402 		goto alloc_mem_err;
1403 
1404 	BP_VF_MBX_DMA(bp)->size = tot_size;
1405 
1406 	/* allocate local bulletin boards */
1407 	tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE;
1408 	BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping,
1409 						       tot_size);
1410 	if (!BP_VF_BULLETIN_DMA(bp)->addr)
1411 		goto alloc_mem_err;
1412 
1413 	BP_VF_BULLETIN_DMA(bp)->size = tot_size;
1414 
1415 	return 0;
1416 
1417 alloc_mem_err:
1418 	return -ENOMEM;
1419 }
1420 
1421 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf,
1422 			   struct bnx2x_vf_queue *q)
1423 {
1424 	u8 cl_id = vfq_cl_id(vf, q);
1425 	u8 func_id = FW_VF_HANDLE(vf->abs_vfid);
1426 	unsigned long q_type = 0;
1427 
1428 	set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1429 	set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1430 
1431 	/* Queue State object */
1432 	bnx2x_init_queue_obj(bp, &q->sp_obj,
1433 			     cl_id, &q->cid, 1, func_id,
1434 			     bnx2x_vf_sp(bp, vf, q_data),
1435 			     bnx2x_vf_sp_map(bp, vf, q_data),
1436 			     q_type);
1437 
1438 	/* sp indication is set only when vlan/mac/etc. are initialized */
1439 	q->sp_initialized = false;
1440 
1441 	DP(BNX2X_MSG_IOV,
1442 	   "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n",
1443 	   vf->abs_vfid, q->sp_obj.func_id, q->cid);
1444 }
1445 
1446 static int bnx2x_max_speed_cap(struct bnx2x *bp)
1447 {
1448 	u32 supported = bp->port.supported[bnx2x_get_link_cfg_idx(bp)];
1449 
1450 	if (supported &
1451 	    (SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full))
1452 		return 20000;
1453 
1454 	return 10000; /* assume lowest supported speed is 10G */
1455 }
1456 
1457 int bnx2x_iov_link_update_vf(struct bnx2x *bp, int idx)
1458 {
1459 	struct bnx2x_link_report_data *state = &bp->last_reported_link;
1460 	struct pf_vf_bulletin_content *bulletin;
1461 	struct bnx2x_virtf *vf;
1462 	bool update = true;
1463 	int rc = 0;
1464 
1465 	/* sanity and init */
1466 	rc = bnx2x_vf_op_prep(bp, idx, &vf, &bulletin, false);
1467 	if (rc)
1468 		return rc;
1469 
1470 	mutex_lock(&bp->vfdb->bulletin_mutex);
1471 
1472 	if (vf->link_cfg == IFLA_VF_LINK_STATE_AUTO) {
1473 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1474 
1475 		bulletin->link_speed = state->line_speed;
1476 		bulletin->link_flags = 0;
1477 		if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1478 			     &state->link_report_flags))
1479 			bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1480 		if (test_bit(BNX2X_LINK_REPORT_FD,
1481 			     &state->link_report_flags))
1482 			bulletin->link_flags |= VFPF_LINK_REPORT_FULL_DUPLEX;
1483 		if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1484 			     &state->link_report_flags))
1485 			bulletin->link_flags |= VFPF_LINK_REPORT_RX_FC_ON;
1486 		if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1487 			     &state->link_report_flags))
1488 			bulletin->link_flags |= VFPF_LINK_REPORT_TX_FC_ON;
1489 	} else if (vf->link_cfg == IFLA_VF_LINK_STATE_DISABLE &&
1490 		   !(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1491 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1492 		bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1493 	} else if (vf->link_cfg == IFLA_VF_LINK_STATE_ENABLE &&
1494 		   (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1495 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1496 		bulletin->link_speed = bnx2x_max_speed_cap(bp);
1497 		bulletin->link_flags &= ~VFPF_LINK_REPORT_LINK_DOWN;
1498 	} else {
1499 		update = false;
1500 	}
1501 
1502 	if (update) {
1503 		DP(NETIF_MSG_LINK | BNX2X_MSG_IOV,
1504 		   "vf %d mode %u speed %d flags %x\n", idx,
1505 		   vf->link_cfg, bulletin->link_speed, bulletin->link_flags);
1506 
1507 		/* Post update on VF's bulletin board */
1508 		rc = bnx2x_post_vf_bulletin(bp, idx);
1509 		if (rc) {
1510 			BNX2X_ERR("failed to update VF[%d] bulletin\n", idx);
1511 			goto out;
1512 		}
1513 	}
1514 
1515 out:
1516 	mutex_unlock(&bp->vfdb->bulletin_mutex);
1517 	return rc;
1518 }
1519 
1520 int bnx2x_set_vf_link_state(struct net_device *dev, int idx, int link_state)
1521 {
1522 	struct bnx2x *bp = netdev_priv(dev);
1523 	struct bnx2x_virtf *vf = BP_VF(bp, idx);
1524 
1525 	if (!vf)
1526 		return -EINVAL;
1527 
1528 	if (vf->link_cfg == link_state)
1529 		return 0; /* nothing todo */
1530 
1531 	vf->link_cfg = link_state;
1532 
1533 	return bnx2x_iov_link_update_vf(bp, idx);
1534 }
1535 
1536 void bnx2x_iov_link_update(struct bnx2x *bp)
1537 {
1538 	int vfid;
1539 
1540 	if (!IS_SRIOV(bp))
1541 		return;
1542 
1543 	for_each_vf(bp, vfid)
1544 		bnx2x_iov_link_update_vf(bp, vfid);
1545 }
1546 
1547 /* called by bnx2x_nic_load */
1548 int bnx2x_iov_nic_init(struct bnx2x *bp)
1549 {
1550 	int vfid;
1551 
1552 	if (!IS_SRIOV(bp)) {
1553 		DP(BNX2X_MSG_IOV, "vfdb was not allocated\n");
1554 		return 0;
1555 	}
1556 
1557 	DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn);
1558 
1559 	/* let FLR complete ... */
1560 	msleep(100);
1561 
1562 	/* initialize vf database */
1563 	for_each_vf(bp, vfid) {
1564 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1565 
1566 		int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) *
1567 			BNX2X_CIDS_PER_VF;
1568 
1569 		union cdu_context *base_cxt = (union cdu_context *)
1570 			BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1571 			(base_vf_cid & (ILT_PAGE_CIDS-1));
1572 
1573 		DP(BNX2X_MSG_IOV,
1574 		   "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
1575 		   vf->abs_vfid, vf_sb_count(vf), base_vf_cid,
1576 		   BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt);
1577 
1578 		/* init statically provisioned resources */
1579 		bnx2x_iov_static_resc(bp, vf);
1580 
1581 		/* queues are initialized during VF-ACQUIRE */
1582 		vf->filter_state = 0;
1583 		vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id);
1584 
1585 		bnx2x_init_credit_pool(&vf->vf_vlans_pool, 0,
1586 				       vf_vlan_rules_cnt(vf));
1587 		bnx2x_init_credit_pool(&vf->vf_macs_pool, 0,
1588 				       vf_mac_rules_cnt(vf));
1589 
1590 		/*  init mcast object - This object will be re-initialized
1591 		 *  during VF-ACQUIRE with the proper cl_id and cid.
1592 		 *  It needs to be initialized here so that it can be safely
1593 		 *  handled by a subsequent FLR flow.
1594 		 */
1595 		bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF,
1596 				     0xFF, 0xFF, 0xFF,
1597 				     bnx2x_vf_sp(bp, vf, mcast_rdata),
1598 				     bnx2x_vf_sp_map(bp, vf, mcast_rdata),
1599 				     BNX2X_FILTER_MCAST_PENDING,
1600 				     &vf->filter_state,
1601 				     BNX2X_OBJ_TYPE_RX_TX);
1602 
1603 		/* set the mailbox message addresses */
1604 		BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *)
1605 			(((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid *
1606 			MBX_MSG_ALIGNED_SIZE);
1607 
1608 		BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping +
1609 			vfid * MBX_MSG_ALIGNED_SIZE;
1610 
1611 		/* Enable vf mailbox */
1612 		bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
1613 	}
1614 
1615 	/* Final VF init */
1616 	for_each_vf(bp, vfid) {
1617 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1618 
1619 		/* fill in the BDF and bars */
1620 		vf->domain = bnx2x_vf_domain(bp, vfid);
1621 		vf->bus = bnx2x_vf_bus(bp, vfid);
1622 		vf->devfn = bnx2x_vf_devfn(bp, vfid);
1623 		bnx2x_vf_set_bars(bp, vf);
1624 
1625 		DP(BNX2X_MSG_IOV,
1626 		   "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
1627 		   vf->abs_vfid, vf->bus, vf->devfn,
1628 		   (unsigned)vf->bars[0].bar, vf->bars[0].size,
1629 		   (unsigned)vf->bars[1].bar, vf->bars[1].size,
1630 		   (unsigned)vf->bars[2].bar, vf->bars[2].size);
1631 	}
1632 
1633 	return 0;
1634 }
1635 
1636 /* called by bnx2x_chip_cleanup */
1637 int bnx2x_iov_chip_cleanup(struct bnx2x *bp)
1638 {
1639 	int i;
1640 
1641 	if (!IS_SRIOV(bp))
1642 		return 0;
1643 
1644 	/* release all the VFs */
1645 	for_each_vf(bp, i)
1646 		bnx2x_vf_release(bp, BP_VF(bp, i));
1647 
1648 	return 0;
1649 }
1650 
1651 /* called by bnx2x_init_hw_func, returns the next ilt line */
1652 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line)
1653 {
1654 	int i;
1655 	struct bnx2x_ilt *ilt = BP_ILT(bp);
1656 
1657 	if (!IS_SRIOV(bp))
1658 		return line;
1659 
1660 	/* set vfs ilt lines */
1661 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1662 		struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i);
1663 
1664 		ilt->lines[line+i].page = hw_cxt->addr;
1665 		ilt->lines[line+i].page_mapping = hw_cxt->mapping;
1666 		ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
1667 	}
1668 	return line + i;
1669 }
1670 
1671 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid)
1672 {
1673 	return ((cid >= BNX2X_FIRST_VF_CID) &&
1674 		((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS));
1675 }
1676 
1677 static
1678 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp,
1679 					struct bnx2x_vf_queue *vfq,
1680 					union event_ring_elem *elem)
1681 {
1682 	unsigned long ramrod_flags = 0;
1683 	int rc = 0;
1684 	u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
1685 
1686 	/* Always push next commands out, don't wait here */
1687 	set_bit(RAMROD_CONT, &ramrod_flags);
1688 
1689 	switch (echo >> BNX2X_SWCID_SHIFT) {
1690 	case BNX2X_FILTER_MAC_PENDING:
1691 		rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem,
1692 					   &ramrod_flags);
1693 		break;
1694 	case BNX2X_FILTER_VLAN_PENDING:
1695 		rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem,
1696 					    &ramrod_flags);
1697 		break;
1698 	default:
1699 		BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
1700 		return;
1701 	}
1702 	if (rc < 0)
1703 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
1704 	else if (rc > 0)
1705 		DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n");
1706 }
1707 
1708 static
1709 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp,
1710 			       struct bnx2x_virtf *vf)
1711 {
1712 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
1713 	int rc;
1714 
1715 	rparam.mcast_obj = &vf->mcast_obj;
1716 	vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw);
1717 
1718 	/* If there are pending mcast commands - send them */
1719 	if (vf->mcast_obj.check_pending(&vf->mcast_obj)) {
1720 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
1721 		if (rc < 0)
1722 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
1723 				  rc);
1724 	}
1725 }
1726 
1727 static
1728 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp,
1729 				 struct bnx2x_virtf *vf)
1730 {
1731 	smp_mb__before_atomic();
1732 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
1733 	smp_mb__after_atomic();
1734 }
1735 
1736 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp,
1737 					   struct bnx2x_virtf *vf)
1738 {
1739 	vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw);
1740 }
1741 
1742 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem)
1743 {
1744 	struct bnx2x_virtf *vf;
1745 	int qidx = 0, abs_vfid;
1746 	u8 opcode;
1747 	u16 cid = 0xffff;
1748 
1749 	if (!IS_SRIOV(bp))
1750 		return 1;
1751 
1752 	/* first get the cid - the only events we handle here are cfc-delete
1753 	 * and set-mac completion
1754 	 */
1755 	opcode = elem->message.opcode;
1756 
1757 	switch (opcode) {
1758 	case EVENT_RING_OPCODE_CFC_DEL:
1759 		cid = SW_CID(elem->message.data.cfc_del_event.cid);
1760 		DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid);
1761 		break;
1762 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1763 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1764 	case EVENT_RING_OPCODE_FILTERS_RULES:
1765 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1766 		cid = SW_CID(elem->message.data.eth_event.echo);
1767 		DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid);
1768 		break;
1769 	case EVENT_RING_OPCODE_VF_FLR:
1770 		abs_vfid = elem->message.data.vf_flr_event.vf_id;
1771 		DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n",
1772 		   abs_vfid);
1773 		goto get_vf;
1774 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1775 		abs_vfid = elem->message.data.malicious_vf_event.vf_id;
1776 		BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
1777 			  abs_vfid,
1778 			  elem->message.data.malicious_vf_event.err_id);
1779 		goto get_vf;
1780 	default:
1781 		return 1;
1782 	}
1783 
1784 	/* check if the cid is the VF range */
1785 	if (!bnx2x_iov_is_vf_cid(bp, cid)) {
1786 		DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid);
1787 		return 1;
1788 	}
1789 
1790 	/* extract vf and rxq index from vf_cid - relies on the following:
1791 	 * 1. vfid on cid reflects the true abs_vfid
1792 	 * 2. The max number of VFs (per path) is 64
1793 	 */
1794 	qidx = cid & ((1 << BNX2X_VF_CID_WND)-1);
1795 	abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1796 get_vf:
1797 	vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
1798 
1799 	if (!vf) {
1800 		BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
1801 			  cid, abs_vfid);
1802 		return 0;
1803 	}
1804 
1805 	switch (opcode) {
1806 	case EVENT_RING_OPCODE_CFC_DEL:
1807 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n",
1808 		   vf->abs_vfid, qidx);
1809 		vfq_get(vf, qidx)->sp_obj.complete_cmd(bp,
1810 						       &vfq_get(vf,
1811 								qidx)->sp_obj,
1812 						       BNX2X_Q_CMD_CFC_DEL);
1813 		break;
1814 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1815 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n",
1816 		   vf->abs_vfid, qidx);
1817 		bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem);
1818 		break;
1819 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1820 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n",
1821 		   vf->abs_vfid, qidx);
1822 		bnx2x_vf_handle_mcast_eqe(bp, vf);
1823 		break;
1824 	case EVENT_RING_OPCODE_FILTERS_RULES:
1825 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n",
1826 		   vf->abs_vfid, qidx);
1827 		bnx2x_vf_handle_filters_eqe(bp, vf);
1828 		break;
1829 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1830 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n",
1831 		   vf->abs_vfid, qidx);
1832 		bnx2x_vf_handle_rss_update_eqe(bp, vf);
1833 		/* fall through */
1834 	case EVENT_RING_OPCODE_VF_FLR:
1835 		/* Do nothing for now */
1836 		return 0;
1837 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1838 		vf->malicious = true;
1839 		return 0;
1840 	}
1841 
1842 	return 0;
1843 }
1844 
1845 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid)
1846 {
1847 	/* extract the vf from vf_cid - relies on the following:
1848 	 * 1. vfid on cid reflects the true abs_vfid
1849 	 * 2. The max number of VFs (per path) is 64
1850 	 */
1851 	int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1852 	return bnx2x_vf_by_abs_fid(bp, abs_vfid);
1853 }
1854 
1855 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid,
1856 				struct bnx2x_queue_sp_obj **q_obj)
1857 {
1858 	struct bnx2x_virtf *vf;
1859 
1860 	if (!IS_SRIOV(bp))
1861 		return;
1862 
1863 	vf = bnx2x_vf_by_cid(bp, vf_cid);
1864 
1865 	if (vf) {
1866 		/* extract queue index from vf_cid - relies on the following:
1867 		 * 1. vfid on cid reflects the true abs_vfid
1868 		 * 2. The max number of VFs (per path) is 64
1869 		 */
1870 		int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1);
1871 		*q_obj = &bnx2x_vfq(vf, q_index, sp_obj);
1872 	} else {
1873 		BNX2X_ERR("No vf matching cid %d\n", vf_cid);
1874 	}
1875 }
1876 
1877 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp)
1878 {
1879 	int i;
1880 	int first_queue_query_index, num_queues_req;
1881 	dma_addr_t cur_data_offset;
1882 	struct stats_query_entry *cur_query_entry;
1883 	u8 stats_count = 0;
1884 	bool is_fcoe = false;
1885 
1886 	if (!IS_SRIOV(bp))
1887 		return;
1888 
1889 	if (!NO_FCOE(bp))
1890 		is_fcoe = true;
1891 
1892 	/* fcoe adds one global request and one queue request */
1893 	num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe;
1894 	first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX -
1895 		(is_fcoe ? 0 : 1);
1896 
1897 	DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1898 	       "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
1899 	       BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index,
1900 	       first_queue_query_index + num_queues_req);
1901 
1902 	cur_data_offset = bp->fw_stats_data_mapping +
1903 		offsetof(struct bnx2x_fw_stats_data, queue_stats) +
1904 		num_queues_req * sizeof(struct per_queue_stats);
1905 
1906 	cur_query_entry = &bp->fw_stats_req->
1907 		query[first_queue_query_index + num_queues_req];
1908 
1909 	for_each_vf(bp, i) {
1910 		int j;
1911 		struct bnx2x_virtf *vf = BP_VF(bp, i);
1912 
1913 		if (vf->state != VF_ENABLED) {
1914 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1915 			       "vf %d not enabled so no stats for it\n",
1916 			       vf->abs_vfid);
1917 			continue;
1918 		}
1919 
1920 		if (vf->malicious) {
1921 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1922 			       "vf %d malicious so no stats for it\n",
1923 			       vf->abs_vfid);
1924 			continue;
1925 		}
1926 
1927 		DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1928 		       "add addresses for vf %d\n", vf->abs_vfid);
1929 		for_each_vfq(vf, j) {
1930 			struct bnx2x_vf_queue *rxq = vfq_get(vf, j);
1931 
1932 			dma_addr_t q_stats_addr =
1933 				vf->fw_stat_map + j * vf->stats_stride;
1934 
1935 			/* collect stats fro active queues only */
1936 			if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) ==
1937 			    BNX2X_Q_LOGICAL_STATE_STOPPED)
1938 				continue;
1939 
1940 			/* create stats query entry for this queue */
1941 			cur_query_entry->kind = STATS_TYPE_QUEUE;
1942 			cur_query_entry->index = vfq_stat_id(vf, rxq);
1943 			cur_query_entry->funcID =
1944 				cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid));
1945 			cur_query_entry->address.hi =
1946 				cpu_to_le32(U64_HI(q_stats_addr));
1947 			cur_query_entry->address.lo =
1948 				cpu_to_le32(U64_LO(q_stats_addr));
1949 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1950 			       "added address %x %x for vf %d queue %d client %d\n",
1951 			       cur_query_entry->address.hi,
1952 			       cur_query_entry->address.lo,
1953 			       cur_query_entry->funcID,
1954 			       j, cur_query_entry->index);
1955 			cur_query_entry++;
1956 			cur_data_offset += sizeof(struct per_queue_stats);
1957 			stats_count++;
1958 
1959 			/* all stats are coalesced to the leading queue */
1960 			if (vf->cfg_flags & VF_CFG_STATS_COALESCE)
1961 				break;
1962 		}
1963 	}
1964 	bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count;
1965 }
1966 
1967 /* VF API helpers */
1968 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid,
1969 				u8 enable)
1970 {
1971 	u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4;
1972 	u32 val = enable ? (abs_vfid | (1 << 6)) : 0;
1973 
1974 	REG_WR(bp, reg, val);
1975 }
1976 
1977 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf)
1978 {
1979 	int i;
1980 
1981 	for_each_vfq(vf, i)
1982 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
1983 				    vfq_qzone_id(vf, vfq_get(vf, i)), false);
1984 }
1985 
1986 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf)
1987 {
1988 	u32 val;
1989 
1990 	/* clear the VF configuration - pretend */
1991 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
1992 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
1993 	val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN |
1994 		 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK);
1995 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
1996 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1997 }
1998 
1999 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf)
2000 {
2001 	return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF),
2002 		     BNX2X_VF_MAX_QUEUES);
2003 }
2004 
2005 static
2006 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf,
2007 			    struct vf_pf_resc_request *req_resc)
2008 {
2009 	u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
2010 	u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
2011 
2012 	return ((req_resc->num_rxqs <= rxq_cnt) &&
2013 		(req_resc->num_txqs <= txq_cnt) &&
2014 		(req_resc->num_sbs <= vf_sb_count(vf))   &&
2015 		(req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) &&
2016 		(req_resc->num_vlan_filters <= vf_vlan_rules_cnt(vf)));
2017 }
2018 
2019 /* CORE VF API */
2020 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf,
2021 		     struct vf_pf_resc_request *resc)
2022 {
2023 	int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) *
2024 		BNX2X_CIDS_PER_VF;
2025 
2026 	union cdu_context *base_cxt = (union cdu_context *)
2027 		BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
2028 		(base_vf_cid & (ILT_PAGE_CIDS-1));
2029 	int i;
2030 
2031 	/* if state is 'acquired' the VF was not released or FLR'd, in
2032 	 * this case the returned resources match the acquired already
2033 	 * acquired resources. Verify that the requested numbers do
2034 	 * not exceed the already acquired numbers.
2035 	 */
2036 	if (vf->state == VF_ACQUIRED) {
2037 		DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
2038 		   vf->abs_vfid);
2039 
2040 		if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2041 			BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
2042 				  vf->abs_vfid);
2043 			return -EINVAL;
2044 		}
2045 		return 0;
2046 	}
2047 
2048 	/* Otherwise vf state must be 'free' or 'reset' */
2049 	if (vf->state != VF_FREE && vf->state != VF_RESET) {
2050 		BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
2051 			  vf->abs_vfid, vf->state);
2052 		return -EINVAL;
2053 	}
2054 
2055 	/* static allocation:
2056 	 * the global maximum number are fixed per VF. Fail the request if
2057 	 * requested number exceed these globals
2058 	 */
2059 	if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2060 		DP(BNX2X_MSG_IOV,
2061 		   "cannot fulfill vf resource request. Placing maximal available values in response\n");
2062 		/* set the max resource in the vf */
2063 		return -ENOMEM;
2064 	}
2065 
2066 	/* Set resources counters - 0 request means max available */
2067 	vf_sb_count(vf) = resc->num_sbs;
2068 	vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2069 	vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2070 
2071 	DP(BNX2X_MSG_IOV,
2072 	   "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
2073 	   vf_sb_count(vf), vf_rxq_count(vf),
2074 	   vf_txq_count(vf), vf_mac_rules_cnt(vf),
2075 	   vf_vlan_rules_cnt(vf));
2076 
2077 	/* Initialize the queues */
2078 	if (!vf->vfqs) {
2079 		DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n");
2080 		return -EINVAL;
2081 	}
2082 
2083 	for_each_vfq(vf, i) {
2084 		struct bnx2x_vf_queue *q = vfq_get(vf, i);
2085 
2086 		if (!q) {
2087 			BNX2X_ERR("q number %d was not allocated\n", i);
2088 			return -EINVAL;
2089 		}
2090 
2091 		q->index = i;
2092 		q->cxt = &((base_cxt + i)->eth);
2093 		q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i;
2094 
2095 		DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
2096 		   vf->abs_vfid, i, q->index, q->cid, q->cxt);
2097 
2098 		/* init SP objects */
2099 		bnx2x_vfq_init(bp, vf, q);
2100 	}
2101 	vf->state = VF_ACQUIRED;
2102 	return 0;
2103 }
2104 
2105 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map)
2106 {
2107 	struct bnx2x_func_init_params func_init = {0};
2108 	int i;
2109 
2110 	/* the sb resources are initialized at this point, do the
2111 	 * FW/HW initializations
2112 	 */
2113 	for_each_vf_sb(vf, i)
2114 		bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true,
2115 			      vf_igu_sb(vf, i), vf_igu_sb(vf, i));
2116 
2117 	/* Sanity checks */
2118 	if (vf->state != VF_ACQUIRED) {
2119 		DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n",
2120 		   vf->abs_vfid, vf->state);
2121 		return -EINVAL;
2122 	}
2123 
2124 	/* let FLR complete ... */
2125 	msleep(100);
2126 
2127 	/* FLR cleanup epilogue */
2128 	if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid))
2129 		return -EBUSY;
2130 
2131 	/* reset IGU VF statistics: MSIX */
2132 	REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0);
2133 
2134 	/* function setup */
2135 	func_init.pf_id = BP_FUNC(bp);
2136 	func_init.func_id = FW_VF_HANDLE(vf->abs_vfid);
2137 	bnx2x_func_init(bp, &func_init);
2138 
2139 	/* Enable the vf */
2140 	bnx2x_vf_enable_access(bp, vf->abs_vfid);
2141 	bnx2x_vf_enable_traffic(bp, vf);
2142 
2143 	/* queue protection table */
2144 	for_each_vfq(vf, i)
2145 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
2146 				    vfq_qzone_id(vf, vfq_get(vf, i)), true);
2147 
2148 	vf->state = VF_ENABLED;
2149 
2150 	/* update vf bulletin board */
2151 	bnx2x_post_vf_bulletin(bp, vf->index);
2152 
2153 	return 0;
2154 }
2155 
2156 struct set_vf_state_cookie {
2157 	struct bnx2x_virtf *vf;
2158 	u8 state;
2159 };
2160 
2161 static void bnx2x_set_vf_state(void *cookie)
2162 {
2163 	struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie;
2164 
2165 	p->vf->state = p->state;
2166 }
2167 
2168 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf)
2169 {
2170 	int rc = 0, i;
2171 
2172 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2173 
2174 	/* Close all queues */
2175 	for (i = 0; i < vf_rxq_count(vf); i++) {
2176 		rc = bnx2x_vf_queue_teardown(bp, vf, i);
2177 		if (rc)
2178 			goto op_err;
2179 	}
2180 
2181 	/* disable the interrupts */
2182 	DP(BNX2X_MSG_IOV, "disabling igu\n");
2183 	bnx2x_vf_igu_disable(bp, vf);
2184 
2185 	/* disable the VF */
2186 	DP(BNX2X_MSG_IOV, "clearing qtbl\n");
2187 	bnx2x_vf_clr_qtbl(bp, vf);
2188 
2189 	/* need to make sure there are no outstanding stats ramrods which may
2190 	 * cause the device to access the VF's stats buffer which it will free
2191 	 * as soon as we return from the close flow.
2192 	 */
2193 	{
2194 		struct set_vf_state_cookie cookie;
2195 
2196 		cookie.vf = vf;
2197 		cookie.state = VF_ACQUIRED;
2198 		rc = bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie);
2199 		if (rc)
2200 			goto op_err;
2201 	}
2202 
2203 	DP(BNX2X_MSG_IOV, "set state to acquired\n");
2204 
2205 	return 0;
2206 op_err:
2207 	BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc);
2208 	return rc;
2209 }
2210 
2211 /* VF release can be called either: 1. The VF was acquired but
2212  * not enabled 2. the vf was enabled or in the process of being
2213  * enabled
2214  */
2215 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf)
2216 {
2217 	int rc;
2218 
2219 	DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid,
2220 	   vf->state == VF_FREE ? "Free" :
2221 	   vf->state == VF_ACQUIRED ? "Acquired" :
2222 	   vf->state == VF_ENABLED ? "Enabled" :
2223 	   vf->state == VF_RESET ? "Reset" :
2224 	   "Unknown");
2225 
2226 	switch (vf->state) {
2227 	case VF_ENABLED:
2228 		rc = bnx2x_vf_close(bp, vf);
2229 		if (rc)
2230 			goto op_err;
2231 		/* Fall through - to release resources */
2232 	case VF_ACQUIRED:
2233 		DP(BNX2X_MSG_IOV, "about to free resources\n");
2234 		bnx2x_vf_free_resc(bp, vf);
2235 		break;
2236 
2237 	case VF_FREE:
2238 	case VF_RESET:
2239 	default:
2240 		break;
2241 	}
2242 	return 0;
2243 op_err:
2244 	BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc);
2245 	return rc;
2246 }
2247 
2248 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2249 			struct bnx2x_config_rss_params *rss)
2250 {
2251 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2252 	set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags);
2253 	return bnx2x_config_rss(bp, rss);
2254 }
2255 
2256 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2257 			struct vfpf_tpa_tlv *tlv,
2258 			struct bnx2x_queue_update_tpa_params *params)
2259 {
2260 	aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr;
2261 	struct bnx2x_queue_state_params qstate;
2262 	int qid, rc = 0;
2263 
2264 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2265 
2266 	/* Set ramrod params */
2267 	memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
2268 	memcpy(&qstate.params.update_tpa, params,
2269 	       sizeof(struct bnx2x_queue_update_tpa_params));
2270 	qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA;
2271 	set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
2272 
2273 	for (qid = 0; qid < vf_rxq_count(vf); qid++) {
2274 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
2275 		qstate.params.update_tpa.sge_map = sge_addr[qid];
2276 		DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n",
2277 		   vf->abs_vfid, qid, U64_HI(sge_addr[qid]),
2278 		   U64_LO(sge_addr[qid]));
2279 		rc = bnx2x_queue_state_change(bp, &qstate);
2280 		if (rc) {
2281 			BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n",
2282 				  U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]),
2283 				  vf->abs_vfid, qid);
2284 			return rc;
2285 		}
2286 	}
2287 
2288 	return rc;
2289 }
2290 
2291 /* VF release ~ VF close + VF release-resources
2292  * Release is the ultimate SW shutdown and is called whenever an
2293  * irrecoverable error is encountered.
2294  */
2295 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf)
2296 {
2297 	int rc;
2298 
2299 	DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid);
2300 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2301 
2302 	rc = bnx2x_vf_free(bp, vf);
2303 	if (rc)
2304 		WARN(rc,
2305 		     "VF[%d] Failed to allocate resources for release op- rc=%d\n",
2306 		     vf->abs_vfid, rc);
2307 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2308 	return rc;
2309 }
2310 
2311 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2312 			      enum channel_tlvs tlv)
2313 {
2314 	/* we don't lock the channel for unsupported tlvs */
2315 	if (!bnx2x_tlv_supported(tlv)) {
2316 		BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n");
2317 		return;
2318 	}
2319 
2320 	/* lock the channel */
2321 	mutex_lock(&vf->op_mutex);
2322 
2323 	/* record the locking op */
2324 	vf->op_current = tlv;
2325 
2326 	/* log the lock */
2327 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n",
2328 	   vf->abs_vfid, tlv);
2329 }
2330 
2331 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2332 				enum channel_tlvs expected_tlv)
2333 {
2334 	enum channel_tlvs current_tlv;
2335 
2336 	if (!vf) {
2337 		BNX2X_ERR("VF was %p\n", vf);
2338 		return;
2339 	}
2340 
2341 	current_tlv = vf->op_current;
2342 
2343 	/* we don't unlock the channel for unsupported tlvs */
2344 	if (!bnx2x_tlv_supported(expected_tlv))
2345 		return;
2346 
2347 	WARN(expected_tlv != vf->op_current,
2348 	     "lock mismatch: expected %d found %d", expected_tlv,
2349 	     vf->op_current);
2350 
2351 	/* record the locking op */
2352 	vf->op_current = CHANNEL_TLV_NONE;
2353 
2354 	/* lock the channel */
2355 	mutex_unlock(&vf->op_mutex);
2356 
2357 	/* log the unlock */
2358 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n",
2359 	   vf->abs_vfid, current_tlv);
2360 }
2361 
2362 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable)
2363 {
2364 	struct bnx2x_queue_state_params q_params;
2365 	u32 prev_flags;
2366 	int i, rc;
2367 
2368 	/* Verify changes are needed and record current Tx switching state */
2369 	prev_flags = bp->flags;
2370 	if (enable)
2371 		bp->flags |= TX_SWITCHING;
2372 	else
2373 		bp->flags &= ~TX_SWITCHING;
2374 	if (prev_flags == bp->flags)
2375 		return 0;
2376 
2377 	/* Verify state enables the sending of queue ramrods */
2378 	if ((bp->state != BNX2X_STATE_OPEN) ||
2379 	    (bnx2x_get_q_logical_state(bp,
2380 				      &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) !=
2381 	     BNX2X_Q_LOGICAL_STATE_ACTIVE))
2382 		return 0;
2383 
2384 	/* send q. update ramrod to configure Tx switching */
2385 	memset(&q_params, 0, sizeof(q_params));
2386 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2387 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
2388 	__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
2389 		  &q_params.params.update.update_flags);
2390 	if (enable)
2391 		__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2392 			  &q_params.params.update.update_flags);
2393 	else
2394 		__clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2395 			    &q_params.params.update.update_flags);
2396 
2397 	/* send the ramrod on all the queues of the PF */
2398 	for_each_eth_queue(bp, i) {
2399 		struct bnx2x_fastpath *fp = &bp->fp[i];
2400 
2401 		/* Set the appropriate Queue object */
2402 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
2403 
2404 		/* Update the Queue state */
2405 		rc = bnx2x_queue_state_change(bp, &q_params);
2406 		if (rc) {
2407 			BNX2X_ERR("Failed to configure Tx switching\n");
2408 			return rc;
2409 		}
2410 	}
2411 
2412 	DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled");
2413 	return 0;
2414 }
2415 
2416 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param)
2417 {
2418 	struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev));
2419 
2420 	if (!IS_SRIOV(bp)) {
2421 		BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n");
2422 		return -EINVAL;
2423 	}
2424 
2425 	DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
2426 	   num_vfs_param, BNX2X_NR_VIRTFN(bp));
2427 
2428 	/* HW channel is only operational when PF is up */
2429 	if (bp->state != BNX2X_STATE_OPEN) {
2430 		BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
2431 		return -EINVAL;
2432 	}
2433 
2434 	/* we are always bound by the total_vfs in the configuration space */
2435 	if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) {
2436 		BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
2437 			  num_vfs_param, BNX2X_NR_VIRTFN(bp));
2438 		num_vfs_param = BNX2X_NR_VIRTFN(bp);
2439 	}
2440 
2441 	bp->requested_nr_virtfn = num_vfs_param;
2442 	if (num_vfs_param == 0) {
2443 		bnx2x_set_pf_tx_switching(bp, false);
2444 		bnx2x_disable_sriov(bp);
2445 		return 0;
2446 	} else {
2447 		return bnx2x_enable_sriov(bp);
2448 	}
2449 }
2450 
2451 #define IGU_ENTRY_SIZE 4
2452 
2453 int bnx2x_enable_sriov(struct bnx2x *bp)
2454 {
2455 	int rc = 0, req_vfs = bp->requested_nr_virtfn;
2456 	int vf_idx, sb_idx, vfq_idx, qcount, first_vf;
2457 	u32 igu_entry, address;
2458 	u16 num_vf_queues;
2459 
2460 	if (req_vfs == 0)
2461 		return 0;
2462 
2463 	first_vf = bp->vfdb->sriov.first_vf_in_pf;
2464 
2465 	/* statically distribute vf sb pool between VFs */
2466 	num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES,
2467 			      BP_VFDB(bp)->vf_sbs_pool / req_vfs);
2468 
2469 	/* zero previous values learned from igu cam */
2470 	for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) {
2471 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2472 
2473 		vf->sb_count = 0;
2474 		vf_sb_count(BP_VF(bp, vf_idx)) = 0;
2475 	}
2476 	bp->vfdb->vf_sbs_pool = 0;
2477 
2478 	/* prepare IGU cam */
2479 	sb_idx = BP_VFDB(bp)->first_vf_igu_entry;
2480 	address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE;
2481 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2482 		for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) {
2483 			igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT |
2484 				vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT |
2485 				IGU_REG_MAPPING_MEMORY_VALID;
2486 			DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n",
2487 			   sb_idx, vf_idx);
2488 			REG_WR(bp, address, igu_entry);
2489 			sb_idx++;
2490 			address += IGU_ENTRY_SIZE;
2491 		}
2492 	}
2493 
2494 	/* Reinitialize vf database according to igu cam */
2495 	bnx2x_get_vf_igu_cam_info(bp);
2496 
2497 	DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n",
2498 	   BP_VFDB(bp)->vf_sbs_pool, num_vf_queues);
2499 
2500 	qcount = 0;
2501 	for_each_vf(bp, vf_idx) {
2502 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2503 
2504 		/* set local queue arrays */
2505 		vf->vfqs = &bp->vfdb->vfqs[qcount];
2506 		qcount += vf_sb_count(vf);
2507 		bnx2x_iov_static_resc(bp, vf);
2508 	}
2509 
2510 	/* prepare msix vectors in VF configuration space - the value in the
2511 	 * PCI configuration space should be the index of the last entry,
2512 	 * namely one less than the actual size of the table
2513 	 */
2514 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2515 		bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx));
2516 		REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL,
2517 		       num_vf_queues - 1);
2518 		DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n",
2519 		   vf_idx, num_vf_queues - 1);
2520 	}
2521 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
2522 
2523 	/* enable sriov. This will probe all the VFs, and consequentially cause
2524 	 * the "acquire" messages to appear on the VF PF channel.
2525 	 */
2526 	DP(BNX2X_MSG_IOV, "about to call enable sriov\n");
2527 	bnx2x_disable_sriov(bp);
2528 
2529 	rc = bnx2x_set_pf_tx_switching(bp, true);
2530 	if (rc)
2531 		return rc;
2532 
2533 	rc = pci_enable_sriov(bp->pdev, req_vfs);
2534 	if (rc) {
2535 		BNX2X_ERR("pci_enable_sriov failed with %d\n", rc);
2536 		return rc;
2537 	}
2538 	DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs);
2539 	return req_vfs;
2540 }
2541 
2542 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp)
2543 {
2544 	int vfidx;
2545 	struct pf_vf_bulletin_content *bulletin;
2546 
2547 	DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n");
2548 	for_each_vf(bp, vfidx) {
2549 		bulletin = BP_VF_BULLETIN(bp, vfidx);
2550 		if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2551 			bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0,
2552 					  htons(ETH_P_8021Q));
2553 	}
2554 }
2555 
2556 void bnx2x_disable_sriov(struct bnx2x *bp)
2557 {
2558 	if (pci_vfs_assigned(bp->pdev)) {
2559 		DP(BNX2X_MSG_IOV,
2560 		   "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2561 		return;
2562 	}
2563 
2564 	pci_disable_sriov(bp->pdev);
2565 }
2566 
2567 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
2568 			    struct bnx2x_virtf **vf,
2569 			    struct pf_vf_bulletin_content **bulletin,
2570 			    bool test_queue)
2571 {
2572 	if (bp->state != BNX2X_STATE_OPEN) {
2573 		BNX2X_ERR("PF is down - can't utilize iov-related functionality\n");
2574 		return -EINVAL;
2575 	}
2576 
2577 	if (!IS_SRIOV(bp)) {
2578 		BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n");
2579 		return -EINVAL;
2580 	}
2581 
2582 	if (vfidx >= BNX2X_NR_VIRTFN(bp)) {
2583 		BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
2584 			  vfidx, BNX2X_NR_VIRTFN(bp));
2585 		return -EINVAL;
2586 	}
2587 
2588 	/* init members */
2589 	*vf = BP_VF(bp, vfidx);
2590 	*bulletin = BP_VF_BULLETIN(bp, vfidx);
2591 
2592 	if (!*vf) {
2593 		BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx);
2594 		return -EINVAL;
2595 	}
2596 
2597 	if (test_queue && !(*vf)->vfqs) {
2598 		BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n",
2599 			  vfidx);
2600 		return -EINVAL;
2601 	}
2602 
2603 	if (!*bulletin) {
2604 		BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n",
2605 			  vfidx);
2606 		return -EINVAL;
2607 	}
2608 
2609 	return 0;
2610 }
2611 
2612 int bnx2x_get_vf_config(struct net_device *dev, int vfidx,
2613 			struct ifla_vf_info *ivi)
2614 {
2615 	struct bnx2x *bp = netdev_priv(dev);
2616 	struct bnx2x_virtf *vf = NULL;
2617 	struct pf_vf_bulletin_content *bulletin = NULL;
2618 	struct bnx2x_vlan_mac_obj *mac_obj;
2619 	struct bnx2x_vlan_mac_obj *vlan_obj;
2620 	int rc;
2621 
2622 	/* sanity and init */
2623 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2624 	if (rc)
2625 		return rc;
2626 
2627 	mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2628 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2629 	if (!mac_obj || !vlan_obj) {
2630 		BNX2X_ERR("VF partially initialized\n");
2631 		return -EINVAL;
2632 	}
2633 
2634 	ivi->vf = vfidx;
2635 	ivi->qos = 0;
2636 	ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */
2637 	ivi->min_tx_rate = 0;
2638 	ivi->spoofchk = vf->spoofchk ? 1 : 0;
2639 	ivi->linkstate = vf->link_cfg;
2640 	if (vf->state == VF_ENABLED) {
2641 		/* mac and vlan are in vlan_mac objects */
2642 		if (bnx2x_validate_vf_sp_objs(bp, vf, false)) {
2643 			mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac,
2644 						0, ETH_ALEN);
2645 			vlan_obj->get_n_elements(bp, vlan_obj, 1,
2646 						 (u8 *)&ivi->vlan, 0,
2647 						 VLAN_HLEN);
2648 		}
2649 	} else {
2650 		mutex_lock(&bp->vfdb->bulletin_mutex);
2651 		/* mac */
2652 		if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID))
2653 			/* mac configured by ndo so its in bulletin board */
2654 			memcpy(&ivi->mac, bulletin->mac, ETH_ALEN);
2655 		else
2656 			/* function has not been loaded yet. Show mac as 0s */
2657 			eth_zero_addr(ivi->mac);
2658 
2659 		/* vlan */
2660 		if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2661 			/* vlan configured by ndo so its in bulletin board */
2662 			memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN);
2663 		else
2664 			/* function has not been loaded yet. Show vlans as 0s */
2665 			memset(&ivi->vlan, 0, VLAN_HLEN);
2666 
2667 		mutex_unlock(&bp->vfdb->bulletin_mutex);
2668 	}
2669 
2670 	return 0;
2671 }
2672 
2673 /* New mac for VF. Consider these cases:
2674  * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
2675  *    supply at acquire.
2676  * 2. VF has already been acquired but has not yet initialized - store in local
2677  *    bulletin board. mac will be posted on VF bulletin board after VF init. VF
2678  *    will configure this mac when it is ready.
2679  * 3. VF has already initialized but has not yet setup a queue - post the new
2680  *    mac on VF's bulletin board right now. VF will configure this mac when it
2681  *    is ready.
2682  * 4. VF has already set a queue - delete any macs already configured for this
2683  *    queue and manually config the new mac.
2684  * In any event, once this function has been called refuse any attempts by the
2685  * VF to configure any mac for itself except for this mac. In case of a race
2686  * where the VF fails to see the new post on its bulletin board before sending a
2687  * mac configuration request, the PF will simply fail the request and VF can try
2688  * again after consulting its bulletin board.
2689  */
2690 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac)
2691 {
2692 	struct bnx2x *bp = netdev_priv(dev);
2693 	int rc, q_logical_state;
2694 	struct bnx2x_virtf *vf = NULL;
2695 	struct pf_vf_bulletin_content *bulletin = NULL;
2696 
2697 	if (!is_valid_ether_addr(mac)) {
2698 		BNX2X_ERR("mac address invalid\n");
2699 		return -EINVAL;
2700 	}
2701 
2702 	/* sanity and init */
2703 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2704 	if (rc)
2705 		return rc;
2706 
2707 	mutex_lock(&bp->vfdb->bulletin_mutex);
2708 
2709 	/* update PF's copy of the VF's bulletin. Will no longer accept mac
2710 	 * configuration requests from vf unless match this mac
2711 	 */
2712 	bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID;
2713 	memcpy(bulletin->mac, mac, ETH_ALEN);
2714 
2715 	/* Post update on VF's bulletin board */
2716 	rc = bnx2x_post_vf_bulletin(bp, vfidx);
2717 
2718 	/* release lock before checking return code */
2719 	mutex_unlock(&bp->vfdb->bulletin_mutex);
2720 
2721 	if (rc) {
2722 		BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2723 		return rc;
2724 	}
2725 
2726 	q_logical_state =
2727 		bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj));
2728 	if (vf->state == VF_ENABLED &&
2729 	    q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
2730 		/* configure the mac in device on this vf's queue */
2731 		unsigned long ramrod_flags = 0;
2732 		struct bnx2x_vlan_mac_obj *mac_obj;
2733 
2734 		/* User should be able to see failure reason in system logs */
2735 		if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2736 			return -EINVAL;
2737 
2738 		/* must lock vfpf channel to protect against vf flows */
2739 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2740 
2741 		/* remove existing eth macs */
2742 		mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2743 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true);
2744 		if (rc) {
2745 			BNX2X_ERR("failed to delete eth macs\n");
2746 			rc = -EINVAL;
2747 			goto out;
2748 		}
2749 
2750 		/* remove existing uc list macs */
2751 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true);
2752 		if (rc) {
2753 			BNX2X_ERR("failed to delete uc_list macs\n");
2754 			rc = -EINVAL;
2755 			goto out;
2756 		}
2757 
2758 		/* configure the new mac to device */
2759 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2760 		bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true,
2761 				  BNX2X_ETH_MAC, &ramrod_flags);
2762 
2763 out:
2764 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2765 	}
2766 
2767 	return rc;
2768 }
2769 
2770 static void bnx2x_set_vf_vlan_acceptance(struct bnx2x *bp,
2771 					 struct bnx2x_virtf *vf, bool accept)
2772 {
2773 	struct bnx2x_rx_mode_ramrod_params rx_ramrod;
2774 	unsigned long accept_flags;
2775 
2776 	/* need to remove/add the VF's accept_any_vlan bit */
2777 	accept_flags = bnx2x_leading_vfq(vf, accept_flags);
2778 	if (accept)
2779 		set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2780 	else
2781 		clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2782 
2783 	bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf,
2784 			      accept_flags);
2785 	bnx2x_leading_vfq(vf, accept_flags) = accept_flags;
2786 	bnx2x_config_rx_mode(bp, &rx_ramrod);
2787 }
2788 
2789 static int bnx2x_set_vf_vlan_filter(struct bnx2x *bp, struct bnx2x_virtf *vf,
2790 				    u16 vlan, bool add)
2791 {
2792 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
2793 	unsigned long ramrod_flags = 0;
2794 	int rc = 0;
2795 
2796 	/* configure the new vlan to device */
2797 	memset(&ramrod_param, 0, sizeof(ramrod_param));
2798 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2799 	ramrod_param.vlan_mac_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2800 	ramrod_param.ramrod_flags = ramrod_flags;
2801 	ramrod_param.user_req.u.vlan.vlan = vlan;
2802 	ramrod_param.user_req.cmd = add ? BNX2X_VLAN_MAC_ADD
2803 					: BNX2X_VLAN_MAC_DEL;
2804 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
2805 	if (rc) {
2806 		BNX2X_ERR("failed to configure vlan\n");
2807 		return -EINVAL;
2808 	}
2809 
2810 	return 0;
2811 }
2812 
2813 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos,
2814 		      __be16 vlan_proto)
2815 {
2816 	struct pf_vf_bulletin_content *bulletin = NULL;
2817 	struct bnx2x *bp = netdev_priv(dev);
2818 	struct bnx2x_vlan_mac_obj *vlan_obj;
2819 	unsigned long vlan_mac_flags = 0;
2820 	unsigned long ramrod_flags = 0;
2821 	struct bnx2x_virtf *vf = NULL;
2822 	int i, rc;
2823 
2824 	if (vlan > 4095) {
2825 		BNX2X_ERR("illegal vlan value %d\n", vlan);
2826 		return -EINVAL;
2827 	}
2828 
2829 	if (vlan_proto != htons(ETH_P_8021Q))
2830 		return -EPROTONOSUPPORT;
2831 
2832 	DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n",
2833 	   vfidx, vlan, 0);
2834 
2835 	/* sanity and init */
2836 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2837 	if (rc)
2838 		return rc;
2839 
2840 	/* update PF's copy of the VF's bulletin. No point in posting the vlan
2841 	 * to the VF since it doesn't have anything to do with it. But it useful
2842 	 * to store it here in case the VF is not up yet and we can only
2843 	 * configure the vlan later when it does. Treat vlan id 0 as remove the
2844 	 * Host tag.
2845 	 */
2846 	mutex_lock(&bp->vfdb->bulletin_mutex);
2847 
2848 	if (vlan > 0)
2849 		bulletin->valid_bitmap |= 1 << VLAN_VALID;
2850 	else
2851 		bulletin->valid_bitmap &= ~(1 << VLAN_VALID);
2852 	bulletin->vlan = vlan;
2853 
2854 	/* Post update on VF's bulletin board */
2855 	rc = bnx2x_post_vf_bulletin(bp, vfidx);
2856 	if (rc)
2857 		BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2858 	mutex_unlock(&bp->vfdb->bulletin_mutex);
2859 
2860 	/* is vf initialized and queue set up? */
2861 	if (vf->state != VF_ENABLED ||
2862 	    bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2863 	    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2864 		return rc;
2865 
2866 	/* User should be able to see error in system logs */
2867 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2868 		return -EINVAL;
2869 
2870 	/* must lock vfpf channel to protect against vf flows */
2871 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2872 
2873 	/* remove existing vlans */
2874 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2875 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2876 	rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags,
2877 				  &ramrod_flags);
2878 	if (rc) {
2879 		BNX2X_ERR("failed to delete vlans\n");
2880 		rc = -EINVAL;
2881 		goto out;
2882 	}
2883 
2884 	/* clear accept_any_vlan when HV forces vlan, otherwise
2885 	 * according to VF capabilities
2886 	 */
2887 	if (vlan || !(vf->cfg_flags & VF_CFG_VLAN_FILTER))
2888 		bnx2x_set_vf_vlan_acceptance(bp, vf, !vlan);
2889 
2890 	rc = bnx2x_set_vf_vlan_filter(bp, vf, vlan, true);
2891 	if (rc)
2892 		goto out;
2893 
2894 	/* send queue update ramrods to configure default vlan and
2895 	 * silent vlan removal
2896 	 */
2897 	for_each_vfq(vf, i) {
2898 		struct bnx2x_queue_state_params q_params = {NULL};
2899 		struct bnx2x_queue_update_params *update_params;
2900 
2901 		q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj);
2902 
2903 		/* validate the Q is UP */
2904 		if (bnx2x_get_q_logical_state(bp, q_params.q_obj) !=
2905 		    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2906 			continue;
2907 
2908 		__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2909 		q_params.cmd = BNX2X_Q_CMD_UPDATE;
2910 		update_params = &q_params.params.update;
2911 		__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
2912 			  &update_params->update_flags);
2913 		__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
2914 			  &update_params->update_flags);
2915 		if (vlan == 0) {
2916 			/* if vlan is 0 then we want to leave the VF traffic
2917 			 * untagged, and leave the incoming traffic untouched
2918 			 * (i.e. do not remove any vlan tags).
2919 			 */
2920 			__clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2921 				    &update_params->update_flags);
2922 			__clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2923 				    &update_params->update_flags);
2924 		} else {
2925 			/* configure default vlan to vf queue and set silent
2926 			 * vlan removal (the vf remains unaware of this vlan).
2927 			 */
2928 			__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2929 				  &update_params->update_flags);
2930 			__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2931 				  &update_params->update_flags);
2932 			update_params->def_vlan = vlan;
2933 			update_params->silent_removal_value =
2934 				vlan & VLAN_VID_MASK;
2935 			update_params->silent_removal_mask = VLAN_VID_MASK;
2936 		}
2937 
2938 		/* Update the Queue state */
2939 		rc = bnx2x_queue_state_change(bp, &q_params);
2940 		if (rc) {
2941 			BNX2X_ERR("Failed to configure default VLAN queue %d\n",
2942 				  i);
2943 			goto out;
2944 		}
2945 	}
2946 out:
2947 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2948 
2949 	if (rc)
2950 		DP(BNX2X_MSG_IOV,
2951 		   "updated VF[%d] vlan configuration (vlan = %d)\n",
2952 		   vfidx, vlan);
2953 
2954 	return rc;
2955 }
2956 
2957 int bnx2x_set_vf_spoofchk(struct net_device *dev, int idx, bool val)
2958 {
2959 	struct bnx2x *bp = netdev_priv(dev);
2960 	struct bnx2x_virtf *vf;
2961 	int i, rc = 0;
2962 
2963 	vf = BP_VF(bp, idx);
2964 	if (!vf)
2965 		return -EINVAL;
2966 
2967 	/* nothing to do */
2968 	if (vf->spoofchk == val)
2969 		return 0;
2970 
2971 	vf->spoofchk = val ? 1 : 0;
2972 
2973 	DP(BNX2X_MSG_IOV, "%s spoofchk for VF %d\n",
2974 	   val ? "enabling" : "disabling", idx);
2975 
2976 	/* is vf initialized and queue set up? */
2977 	if (vf->state != VF_ENABLED ||
2978 	    bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2979 	    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2980 		return rc;
2981 
2982 	/* User should be able to see error in system logs */
2983 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2984 		return -EINVAL;
2985 
2986 	/* send queue update ramrods to configure spoofchk */
2987 	for_each_vfq(vf, i) {
2988 		struct bnx2x_queue_state_params q_params = {NULL};
2989 		struct bnx2x_queue_update_params *update_params;
2990 
2991 		q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj);
2992 
2993 		/* validate the Q is UP */
2994 		if (bnx2x_get_q_logical_state(bp, q_params.q_obj) !=
2995 		    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2996 			continue;
2997 
2998 		__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2999 		q_params.cmd = BNX2X_Q_CMD_UPDATE;
3000 		update_params = &q_params.params.update;
3001 		__set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG,
3002 			  &update_params->update_flags);
3003 		if (val) {
3004 			__set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF,
3005 				  &update_params->update_flags);
3006 		} else {
3007 			__clear_bit(BNX2X_Q_UPDATE_ANTI_SPOOF,
3008 				    &update_params->update_flags);
3009 		}
3010 
3011 		/* Update the Queue state */
3012 		rc = bnx2x_queue_state_change(bp, &q_params);
3013 		if (rc) {
3014 			BNX2X_ERR("Failed to %s spoofchk on VF %d - vfq %d\n",
3015 				  val ? "enable" : "disable", idx, i);
3016 			goto out;
3017 		}
3018 	}
3019 out:
3020 	if (!rc)
3021 		DP(BNX2X_MSG_IOV,
3022 		   "%s spoofchk for VF[%d]\n", val ? "Enabled" : "Disabled",
3023 		   idx);
3024 
3025 	return rc;
3026 }
3027 
3028 /* crc is the first field in the bulletin board. Compute the crc over the
3029  * entire bulletin board excluding the crc field itself. Use the length field
3030  * as the Bulletin Board was posted by a PF with possibly a different version
3031  * from the vf which will sample it. Therefore, the length is computed by the
3032  * PF and then used blindly by the VF.
3033  */
3034 u32 bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content *bulletin)
3035 {
3036 	return crc32(BULLETIN_CRC_SEED,
3037 		 ((u8 *)bulletin) + sizeof(bulletin->crc),
3038 		 bulletin->length - sizeof(bulletin->crc));
3039 }
3040 
3041 /* Check for new posts on the bulletin board */
3042 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp)
3043 {
3044 	struct pf_vf_bulletin_content *bulletin;
3045 	int attempts;
3046 
3047 	/* sampling structure in mid post may result with corrupted data
3048 	 * validate crc to ensure coherency.
3049 	 */
3050 	for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) {
3051 		u32 crc;
3052 
3053 		/* sample the bulletin board */
3054 		memcpy(&bp->shadow_bulletin, bp->pf2vf_bulletin,
3055 		       sizeof(union pf_vf_bulletin));
3056 
3057 		crc = bnx2x_crc_vf_bulletin(&bp->shadow_bulletin.content);
3058 
3059 		if (bp->shadow_bulletin.content.crc == crc)
3060 			break;
3061 
3062 		BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
3063 			  bp->shadow_bulletin.content.crc, crc);
3064 	}
3065 
3066 	if (attempts >= BULLETIN_ATTEMPTS) {
3067 		BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
3068 			  attempts);
3069 		return PFVF_BULLETIN_CRC_ERR;
3070 	}
3071 	bulletin = &bp->shadow_bulletin.content;
3072 
3073 	/* bulletin board hasn't changed since last sample */
3074 	if (bp->old_bulletin.version == bulletin->version)
3075 		return PFVF_BULLETIN_UNCHANGED;
3076 
3077 	/* the mac address in bulletin board is valid and is new */
3078 	if (bulletin->valid_bitmap & 1 << MAC_ADDR_VALID &&
3079 	    !ether_addr_equal(bulletin->mac, bp->old_bulletin.mac)) {
3080 		/* update new mac to net device */
3081 		memcpy(bp->dev->dev_addr, bulletin->mac, ETH_ALEN);
3082 	}
3083 
3084 	if (bulletin->valid_bitmap & (1 << LINK_VALID)) {
3085 		DP(BNX2X_MSG_IOV, "link update speed %d flags %x\n",
3086 		   bulletin->link_speed, bulletin->link_flags);
3087 
3088 		bp->vf_link_vars.line_speed = bulletin->link_speed;
3089 		bp->vf_link_vars.link_report_flags = 0;
3090 		/* Link is down */
3091 		if (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)
3092 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
3093 				  &bp->vf_link_vars.link_report_flags);
3094 		/* Full DUPLEX */
3095 		if (bulletin->link_flags & VFPF_LINK_REPORT_FULL_DUPLEX)
3096 			__set_bit(BNX2X_LINK_REPORT_FD,
3097 				  &bp->vf_link_vars.link_report_flags);
3098 		/* Rx Flow Control is ON */
3099 		if (bulletin->link_flags & VFPF_LINK_REPORT_RX_FC_ON)
3100 			__set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
3101 				  &bp->vf_link_vars.link_report_flags);
3102 		/* Tx Flow Control is ON */
3103 		if (bulletin->link_flags & VFPF_LINK_REPORT_TX_FC_ON)
3104 			__set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
3105 				  &bp->vf_link_vars.link_report_flags);
3106 		__bnx2x_link_report(bp);
3107 	}
3108 
3109 	/* copy new bulletin board to bp */
3110 	memcpy(&bp->old_bulletin, bulletin,
3111 	       sizeof(struct pf_vf_bulletin_content));
3112 
3113 	return PFVF_BULLETIN_UPDATED;
3114 }
3115 
3116 void bnx2x_timer_sriov(struct bnx2x *bp)
3117 {
3118 	bnx2x_sample_bulletin(bp);
3119 
3120 	/* if channel is down we need to self destruct */
3121 	if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN)
3122 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
3123 				       BNX2X_MSG_IOV);
3124 }
3125 
3126 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp)
3127 {
3128 	/* vf doorbells are embedded within the regview */
3129 	return bp->regview + PXP_VF_ADDR_DB_START;
3130 }
3131 
3132 void bnx2x_vf_pci_dealloc(struct bnx2x *bp)
3133 {
3134 	BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
3135 		       sizeof(struct bnx2x_vf_mbx_msg));
3136 	BNX2X_PCI_FREE(bp->pf2vf_bulletin, bp->pf2vf_bulletin_mapping,
3137 		       sizeof(union pf_vf_bulletin));
3138 }
3139 
3140 int bnx2x_vf_pci_alloc(struct bnx2x *bp)
3141 {
3142 	mutex_init(&bp->vf2pf_mutex);
3143 
3144 	/* allocate vf2pf mailbox for vf to pf channel */
3145 	bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping,
3146 					 sizeof(struct bnx2x_vf_mbx_msg));
3147 	if (!bp->vf2pf_mbox)
3148 		goto alloc_mem_err;
3149 
3150 	/* allocate pf 2 vf bulletin board */
3151 	bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping,
3152 					     sizeof(union pf_vf_bulletin));
3153 	if (!bp->pf2vf_bulletin)
3154 		goto alloc_mem_err;
3155 
3156 	bnx2x_vf_bulletin_finalize(&bp->pf2vf_bulletin->content, true);
3157 
3158 	return 0;
3159 
3160 alloc_mem_err:
3161 	bnx2x_vf_pci_dealloc(bp);
3162 	return -ENOMEM;
3163 }
3164 
3165 void bnx2x_iov_channel_down(struct bnx2x *bp)
3166 {
3167 	int vf_idx;
3168 	struct pf_vf_bulletin_content *bulletin;
3169 
3170 	if (!IS_SRIOV(bp))
3171 		return;
3172 
3173 	for_each_vf(bp, vf_idx) {
3174 		/* locate this VFs bulletin board and update the channel down
3175 		 * bit
3176 		 */
3177 		bulletin = BP_VF_BULLETIN(bp, vf_idx);
3178 		bulletin->valid_bitmap |= 1 << CHANNEL_DOWN;
3179 
3180 		/* update vf bulletin board */
3181 		bnx2x_post_vf_bulletin(bp, vf_idx);
3182 	}
3183 }
3184 
3185 void bnx2x_iov_task(struct work_struct *work)
3186 {
3187 	struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work);
3188 
3189 	if (!netif_running(bp->dev))
3190 		return;
3191 
3192 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR,
3193 			       &bp->iov_task_state))
3194 		bnx2x_vf_handle_flr_event(bp);
3195 
3196 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG,
3197 			       &bp->iov_task_state))
3198 		bnx2x_vf_mbx(bp);
3199 }
3200 
3201 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag)
3202 {
3203 	smp_mb__before_atomic();
3204 	set_bit(flag, &bp->iov_task_state);
3205 	smp_mb__after_atomic();
3206 	DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
3207 	queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0);
3208 }
3209