1 /* bnx2x_sriov.c: Broadcom Everest network driver.
2  *
3  * Copyright 2009-2013 Broadcom Corporation
4  *
5  * Unless you and Broadcom execute a separate written software license
6  * agreement governing use of this software, this software is licensed to you
7  * under the terms of the GNU General Public License version 2, available
8  * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
9  *
10  * Notwithstanding the above, under no circumstances may you combine this
11  * software in any way with any other Broadcom software provided under a
12  * license other than the GPL, without Broadcom's express prior written
13  * consent.
14  *
15  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
16  * Written by: Shmulik Ravid <shmulikr@broadcom.com>
17  *	       Ariel Elior <ariele@broadcom.com>
18  *
19  */
20 #include "bnx2x.h"
21 #include "bnx2x_init.h"
22 #include "bnx2x_cmn.h"
23 #include "bnx2x_sp.h"
24 #include <linux/crc32.h>
25 #include <linux/if_vlan.h>
26 
27 /* General service functions */
28 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
29 					 u16 pf_id)
30 {
31 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
32 		pf_id);
33 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
34 		pf_id);
35 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
36 		pf_id);
37 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
38 		pf_id);
39 }
40 
41 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
42 					u8 enable)
43 {
44 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
45 		enable);
46 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
47 		enable);
48 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
49 		enable);
50 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
51 		enable);
52 }
53 
54 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
55 {
56 	int idx;
57 
58 	for_each_vf(bp, idx)
59 		if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid)
60 			break;
61 	return idx;
62 }
63 
64 static
65 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
66 {
67 	u16 idx =  (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid);
68 	return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL;
69 }
70 
71 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf,
72 				u8 igu_sb_id, u8 segment, u16 index, u8 op,
73 				u8 update)
74 {
75 	/* acking a VF sb through the PF - use the GRC */
76 	u32 ctl;
77 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
78 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
79 	u32 func_encode = vf->abs_vfid;
80 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id;
81 	struct igu_regular cmd_data = {0};
82 
83 	cmd_data.sb_id_and_flags =
84 			((index << IGU_REGULAR_SB_INDEX_SHIFT) |
85 			 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
86 			 (update << IGU_REGULAR_BUPDATE_SHIFT) |
87 			 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
88 
89 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
90 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
91 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
92 
93 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
94 	   cmd_data.sb_id_and_flags, igu_addr_data);
95 	REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags);
96 	mmiowb();
97 	barrier();
98 
99 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
100 	   ctl, igu_addr_ctl);
101 	REG_WR(bp, igu_addr_ctl, ctl);
102 	mmiowb();
103 	barrier();
104 }
105 
106 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp,
107 				       struct bnx2x_virtf *vf,
108 				       bool print_err)
109 {
110 	if (!bnx2x_leading_vfq(vf, sp_initialized)) {
111 		if (print_err)
112 			BNX2X_ERR("Slowpath objects not yet initialized!\n");
113 		else
114 			DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n");
115 		return false;
116 	}
117 	return true;
118 }
119 
120 /* VFOP operations states */
121 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf,
122 			      struct bnx2x_queue_init_params *init_params,
123 			      struct bnx2x_queue_setup_params *setup_params,
124 			      u16 q_idx, u16 sb_idx)
125 {
126 	DP(BNX2X_MSG_IOV,
127 	   "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
128 	   vf->abs_vfid,
129 	   q_idx,
130 	   sb_idx,
131 	   init_params->tx.sb_cq_index,
132 	   init_params->tx.hc_rate,
133 	   setup_params->flags,
134 	   setup_params->txq_params.traffic_type);
135 }
136 
137 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf,
138 			    struct bnx2x_queue_init_params *init_params,
139 			    struct bnx2x_queue_setup_params *setup_params,
140 			    u16 q_idx, u16 sb_idx)
141 {
142 	struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params;
143 
144 	DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
145 	   "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
146 	   vf->abs_vfid,
147 	   q_idx,
148 	   sb_idx,
149 	   init_params->rx.sb_cq_index,
150 	   init_params->rx.hc_rate,
151 	   setup_params->gen_params.mtu,
152 	   rxq_params->buf_sz,
153 	   rxq_params->sge_buf_sz,
154 	   rxq_params->max_sges_pkt,
155 	   rxq_params->tpa_agg_sz,
156 	   setup_params->flags,
157 	   rxq_params->drop_flags,
158 	   rxq_params->cache_line_log);
159 }
160 
161 void bnx2x_vfop_qctor_prep(struct bnx2x *bp,
162 			   struct bnx2x_virtf *vf,
163 			   struct bnx2x_vf_queue *q,
164 			   struct bnx2x_vf_queue_construct_params *p,
165 			   unsigned long q_type)
166 {
167 	struct bnx2x_queue_init_params *init_p = &p->qstate.params.init;
168 	struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup;
169 
170 	/* INIT */
171 
172 	/* Enable host coalescing in the transition to INIT state */
173 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags))
174 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags);
175 
176 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags))
177 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags);
178 
179 	/* FW SB ID */
180 	init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
181 	init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
182 
183 	/* context */
184 	init_p->cxts[0] = q->cxt;
185 
186 	/* SETUP */
187 
188 	/* Setup-op general parameters */
189 	setup_p->gen_params.spcl_id = vf->sp_cl_id;
190 	setup_p->gen_params.stat_id = vfq_stat_id(vf, q);
191 
192 	/* Setup-op pause params:
193 	 * Nothing to do, the pause thresholds are set by default to 0 which
194 	 * effectively turns off the feature for this queue. We don't want
195 	 * one queue (VF) to interfering with another queue (another VF)
196 	 */
197 	if (vf->cfg_flags & VF_CFG_FW_FC)
198 		BNX2X_ERR("No support for pause to VFs (abs_vfid: %d)\n",
199 			  vf->abs_vfid);
200 	/* Setup-op flags:
201 	 * collect statistics, zero statistics, local-switching, security,
202 	 * OV for Flex10, RSS and MCAST for leading
203 	 */
204 	if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags))
205 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags);
206 
207 	/* for VFs, enable tx switching, bd coherency, and mac address
208 	 * anti-spoofing
209 	 */
210 	__set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags);
211 	__set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags);
212 	__set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
213 
214 	/* Setup-op rx parameters */
215 	if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) {
216 		struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params;
217 
218 		rxq_p->cl_qzone_id = vfq_qzone_id(vf, q);
219 		rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx);
220 		rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid);
221 
222 		if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags))
223 			rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES;
224 	}
225 
226 	/* Setup-op tx parameters */
227 	if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) {
228 		setup_p->txq_params.tss_leading_cl_id = vf->leading_rss;
229 		setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
230 	}
231 }
232 
233 static int bnx2x_vf_queue_create(struct bnx2x *bp,
234 				 struct bnx2x_virtf *vf, int qid,
235 				 struct bnx2x_vf_queue_construct_params *qctor)
236 {
237 	struct bnx2x_queue_state_params *q_params;
238 	int rc = 0;
239 
240 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
241 
242 	/* Prepare ramrod information */
243 	q_params = &qctor->qstate;
244 	q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
245 	set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags);
246 
247 	if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
248 	    BNX2X_Q_LOGICAL_STATE_ACTIVE) {
249 		DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n");
250 		goto out;
251 	}
252 
253 	/* Run Queue 'construction' ramrods */
254 	q_params->cmd = BNX2X_Q_CMD_INIT;
255 	rc = bnx2x_queue_state_change(bp, q_params);
256 	if (rc)
257 		goto out;
258 
259 	memcpy(&q_params->params.setup, &qctor->prep_qsetup,
260 	       sizeof(struct bnx2x_queue_setup_params));
261 	q_params->cmd = BNX2X_Q_CMD_SETUP;
262 	rc = bnx2x_queue_state_change(bp, q_params);
263 	if (rc)
264 		goto out;
265 
266 	/* enable interrupts */
267 	bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)),
268 			    USTORM_ID, 0, IGU_INT_ENABLE, 0);
269 out:
270 	return rc;
271 }
272 
273 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf,
274 				  int qid)
275 {
276 	enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT,
277 				       BNX2X_Q_CMD_TERMINATE,
278 				       BNX2X_Q_CMD_CFC_DEL};
279 	struct bnx2x_queue_state_params q_params;
280 	int rc, i;
281 
282 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
283 
284 	/* Prepare ramrod information */
285 	memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params));
286 	q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
287 	set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
288 
289 	if (bnx2x_get_q_logical_state(bp, q_params.q_obj) ==
290 	    BNX2X_Q_LOGICAL_STATE_STOPPED) {
291 		DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n");
292 		goto out;
293 	}
294 
295 	/* Run Queue 'destruction' ramrods */
296 	for (i = 0; i < ARRAY_SIZE(cmds); i++) {
297 		q_params.cmd = cmds[i];
298 		rc = bnx2x_queue_state_change(bp, &q_params);
299 		if (rc) {
300 			BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]);
301 			return rc;
302 		}
303 	}
304 out:
305 	/* Clean Context */
306 	if (bnx2x_vfq(vf, qid, cxt)) {
307 		bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0;
308 		bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0;
309 	}
310 
311 	return 0;
312 }
313 
314 static void
315 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid)
316 {
317 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
318 	if (vf) {
319 		/* the first igu entry belonging to VFs of this PF */
320 		if (!BP_VFDB(bp)->first_vf_igu_entry)
321 			BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id;
322 
323 		/* the first igu entry belonging to this VF */
324 		if (!vf_sb_count(vf))
325 			vf->igu_base_id = igu_sb_id;
326 
327 		++vf_sb_count(vf);
328 		++vf->sb_count;
329 	}
330 	BP_VFDB(bp)->vf_sbs_pool++;
331 }
332 
333 static inline void bnx2x_vf_vlan_credit(struct bnx2x *bp,
334 					struct bnx2x_vlan_mac_obj *obj,
335 					atomic_t *counter)
336 {
337 	struct list_head *pos;
338 	int read_lock;
339 	int cnt = 0;
340 
341 	read_lock = bnx2x_vlan_mac_h_read_lock(bp, obj);
342 	if (read_lock)
343 		DP(BNX2X_MSG_SP, "Failed to take vlan mac read head; continuing anyway\n");
344 
345 	list_for_each(pos, &obj->head)
346 		cnt++;
347 
348 	if (!read_lock)
349 		bnx2x_vlan_mac_h_read_unlock(bp, obj);
350 
351 	atomic_set(counter, cnt);
352 }
353 
354 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf,
355 				   int qid, bool drv_only, bool mac)
356 {
357 	struct bnx2x_vlan_mac_ramrod_params ramrod;
358 	int rc;
359 
360 	DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid,
361 	   mac ? "MACs" : "VLANs");
362 
363 	/* Prepare ramrod params */
364 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
365 	if (mac) {
366 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
367 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
368 	} else {
369 		set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
370 			&ramrod.user_req.vlan_mac_flags);
371 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
372 	}
373 	ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL;
374 
375 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
376 	if (drv_only)
377 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
378 	else
379 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
380 
381 	/* Start deleting */
382 	rc = ramrod.vlan_mac_obj->delete_all(bp,
383 					     ramrod.vlan_mac_obj,
384 					     &ramrod.user_req.vlan_mac_flags,
385 					     &ramrod.ramrod_flags);
386 	if (rc) {
387 		BNX2X_ERR("Failed to delete all %s\n",
388 			  mac ? "MACs" : "VLANs");
389 		return rc;
390 	}
391 
392 	/* Clear the vlan counters */
393 	if (!mac)
394 		atomic_set(&bnx2x_vfq(vf, qid, vlan_count), 0);
395 
396 	return 0;
397 }
398 
399 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp,
400 				    struct bnx2x_virtf *vf, int qid,
401 				    struct bnx2x_vf_mac_vlan_filter *filter,
402 				    bool drv_only)
403 {
404 	struct bnx2x_vlan_mac_ramrod_params ramrod;
405 	int rc;
406 
407 	DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n",
408 	   vf->abs_vfid, filter->add ? "Adding" : "Deleting",
409 	   filter->type == BNX2X_VF_FILTER_MAC ? "MAC" : "VLAN");
410 
411 	/* Prepare ramrod params */
412 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
413 	if (filter->type == BNX2X_VF_FILTER_VLAN) {
414 		set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
415 			&ramrod.user_req.vlan_mac_flags);
416 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
417 		ramrod.user_req.u.vlan.vlan = filter->vid;
418 	} else {
419 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
420 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
421 		memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
422 	}
423 	ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD :
424 					    BNX2X_VLAN_MAC_DEL;
425 
426 	/* Verify there are available vlan credits */
427 	if (filter->add && filter->type == BNX2X_VF_FILTER_VLAN &&
428 	    (atomic_read(&bnx2x_vfq(vf, qid, vlan_count)) >=
429 	     vf_vlan_rules_cnt(vf))) {
430 		BNX2X_ERR("No credits for vlan\n");
431 		return -ENOMEM;
432 	}
433 
434 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
435 	if (drv_only)
436 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
437 	else
438 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
439 
440 	/* Add/Remove the filter */
441 	rc = bnx2x_config_vlan_mac(bp, &ramrod);
442 	if (rc && rc != -EEXIST) {
443 		BNX2X_ERR("Failed to %s %s\n",
444 			  filter->add ? "add" : "delete",
445 			  filter->type == BNX2X_VF_FILTER_MAC ? "MAC" :
446 								"VLAN");
447 		return rc;
448 	}
449 
450 	/* Update the vlan counters */
451 	if (filter->type == BNX2X_VF_FILTER_VLAN)
452 		bnx2x_vf_vlan_credit(bp, ramrod.vlan_mac_obj,
453 				     &bnx2x_vfq(vf, qid, vlan_count));
454 
455 	return 0;
456 }
457 
458 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf,
459 				  struct bnx2x_vf_mac_vlan_filters *filters,
460 				  int qid, bool drv_only)
461 {
462 	int rc = 0, i;
463 
464 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
465 
466 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
467 		return -EINVAL;
468 
469 	/* Prepare ramrod params */
470 	for (i = 0; i < filters->count; i++) {
471 		rc = bnx2x_vf_mac_vlan_config(bp, vf, qid,
472 					      &filters->filters[i], drv_only);
473 		if (rc)
474 			break;
475 	}
476 
477 	/* Rollback if needed */
478 	if (i != filters->count) {
479 		BNX2X_ERR("Managed only %d/%d filters - rolling back\n",
480 			  i, filters->count + 1);
481 		while (--i >= 0) {
482 			filters->filters[i].add = !filters->filters[i].add;
483 			bnx2x_vf_mac_vlan_config(bp, vf, qid,
484 						 &filters->filters[i],
485 						 drv_only);
486 		}
487 	}
488 
489 	/* It's our responsibility to free the filters */
490 	kfree(filters);
491 
492 	return rc;
493 }
494 
495 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid,
496 			 struct bnx2x_vf_queue_construct_params *qctor)
497 {
498 	int rc;
499 
500 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
501 
502 	rc = bnx2x_vf_queue_create(bp, vf, qid, qctor);
503 	if (rc)
504 		goto op_err;
505 
506 	/* Configure vlan0 for leading queue */
507 	if (!qid) {
508 		struct bnx2x_vf_mac_vlan_filter filter;
509 
510 		memset(&filter, 0, sizeof(struct bnx2x_vf_mac_vlan_filter));
511 		filter.type = BNX2X_VF_FILTER_VLAN;
512 		filter.add = true;
513 		filter.vid = 0;
514 		rc = bnx2x_vf_mac_vlan_config(bp, vf, qid, &filter, false);
515 		if (rc)
516 			goto op_err;
517 	}
518 
519 	/* Schedule the configuration of any pending vlan filters */
520 	vf->cfg_flags |= VF_CFG_VLAN;
521 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN,
522 			       BNX2X_MSG_IOV);
523 	return 0;
524 op_err:
525 	BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
526 	return rc;
527 }
528 
529 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf,
530 			       int qid)
531 {
532 	int rc;
533 
534 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
535 
536 	/* If needed, clean the filtering data base */
537 	if ((qid == LEADING_IDX) &&
538 	    bnx2x_validate_vf_sp_objs(bp, vf, false)) {
539 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, false);
540 		if (rc)
541 			goto op_err;
542 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, true);
543 		if (rc)
544 			goto op_err;
545 	}
546 
547 	/* Terminate queue */
548 	if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) {
549 		struct bnx2x_queue_state_params qstate;
550 
551 		memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
552 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
553 		qstate.q_obj->state = BNX2X_Q_STATE_STOPPED;
554 		qstate.cmd = BNX2X_Q_CMD_TERMINATE;
555 		set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
556 		rc = bnx2x_queue_state_change(bp, &qstate);
557 		if (rc)
558 			goto op_err;
559 	}
560 
561 	return 0;
562 op_err:
563 	BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
564 	return rc;
565 }
566 
567 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf,
568 		   bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only)
569 {
570 	struct bnx2x_mcast_list_elem *mc = NULL;
571 	struct bnx2x_mcast_ramrod_params mcast;
572 	int rc, i;
573 
574 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
575 
576 	/* Prepare Multicast command */
577 	memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params));
578 	mcast.mcast_obj = &vf->mcast_obj;
579 	if (drv_only)
580 		set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags);
581 	else
582 		set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags);
583 	if (mc_num) {
584 		mc = kzalloc(mc_num * sizeof(struct bnx2x_mcast_list_elem),
585 			     GFP_KERNEL);
586 		if (!mc) {
587 			BNX2X_ERR("Cannot Configure mulicasts due to lack of memory\n");
588 			return -ENOMEM;
589 		}
590 	}
591 
592 	/* clear existing mcasts */
593 	mcast.mcast_list_len = vf->mcast_list_len;
594 	vf->mcast_list_len = mc_num;
595 	rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL);
596 	if (rc) {
597 		BNX2X_ERR("Failed to remove multicasts\n");
598 		return rc;
599 	}
600 
601 	/* update mcast list on the ramrod params */
602 	if (mc_num) {
603 		INIT_LIST_HEAD(&mcast.mcast_list);
604 		for (i = 0; i < mc_num; i++) {
605 			mc[i].mac = mcasts[i];
606 			list_add_tail(&mc[i].link,
607 				      &mcast.mcast_list);
608 		}
609 
610 		/* add new mcasts */
611 		rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_ADD);
612 		if (rc)
613 			BNX2X_ERR("Faled to add multicasts\n");
614 		kfree(mc);
615 	}
616 
617 	return rc;
618 }
619 
620 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid,
621 				  struct bnx2x_rx_mode_ramrod_params *ramrod,
622 				  struct bnx2x_virtf *vf,
623 				  unsigned long accept_flags)
624 {
625 	struct bnx2x_vf_queue *vfq = vfq_get(vf, qid);
626 
627 	memset(ramrod, 0, sizeof(*ramrod));
628 	ramrod->cid = vfq->cid;
629 	ramrod->cl_id = vfq_cl_id(vf, vfq);
630 	ramrod->rx_mode_obj = &bp->rx_mode_obj;
631 	ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid);
632 	ramrod->rx_accept_flags = accept_flags;
633 	ramrod->tx_accept_flags = accept_flags;
634 	ramrod->pstate = &vf->filter_state;
635 	ramrod->state = BNX2X_FILTER_RX_MODE_PENDING;
636 
637 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
638 	set_bit(RAMROD_RX, &ramrod->ramrod_flags);
639 	set_bit(RAMROD_TX, &ramrod->ramrod_flags);
640 
641 	ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2);
642 	ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2);
643 }
644 
645 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf,
646 		    int qid, unsigned long accept_flags)
647 {
648 	struct bnx2x_rx_mode_ramrod_params ramrod;
649 
650 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
651 
652 	bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags);
653 	set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
654 	vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags;
655 	return bnx2x_config_rx_mode(bp, &ramrod);
656 }
657 
658 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid)
659 {
660 	int rc;
661 
662 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
663 
664 	/* Remove all classification configuration for leading queue */
665 	if (qid == LEADING_IDX) {
666 		rc = bnx2x_vf_rxmode(bp, vf, qid, 0);
667 		if (rc)
668 			goto op_err;
669 
670 		/* Remove filtering if feasible */
671 		if (bnx2x_validate_vf_sp_objs(bp, vf, true)) {
672 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
673 						     false, false);
674 			if (rc)
675 				goto op_err;
676 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
677 						     false, true);
678 			if (rc)
679 				goto op_err;
680 			rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false);
681 			if (rc)
682 				goto op_err;
683 		}
684 	}
685 
686 	/* Destroy queue */
687 	rc = bnx2x_vf_queue_destroy(bp, vf, qid);
688 	if (rc)
689 		goto op_err;
690 	return rc;
691 op_err:
692 	BNX2X_ERR("vf[%d:%d] error: rc %d\n",
693 		  vf->abs_vfid, qid, rc);
694 	return rc;
695 }
696 
697 /* VF enable primitives
698  * when pretend is required the caller is responsible
699  * for calling pretend prior to calling these routines
700  */
701 
702 /* internal vf enable - until vf is enabled internally all transactions
703  * are blocked. This routine should always be called last with pretend.
704  */
705 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable)
706 {
707 	REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0);
708 }
709 
710 /* clears vf error in all semi blocks */
711 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid)
712 {
713 	REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid);
714 	REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid);
715 	REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid);
716 	REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid);
717 }
718 
719 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid)
720 {
721 	u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5;
722 	u32 was_err_reg = 0;
723 
724 	switch (was_err_group) {
725 	case 0:
726 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR;
727 	    break;
728 	case 1:
729 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR;
730 	    break;
731 	case 2:
732 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR;
733 	    break;
734 	case 3:
735 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR;
736 	    break;
737 	}
738 	REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f));
739 }
740 
741 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf)
742 {
743 	int i;
744 	u32 val;
745 
746 	/* Set VF masks and configuration - pretend */
747 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
748 
749 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
750 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
751 	REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
752 	REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
753 	REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
754 	REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
755 
756 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
757 	val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN);
758 	if (vf->cfg_flags & VF_CFG_INT_SIMD)
759 		val |= IGU_VF_CONF_SINGLE_ISR_EN;
760 	val &= ~IGU_VF_CONF_PARENT_MASK;
761 	val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT;
762 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
763 
764 	DP(BNX2X_MSG_IOV,
765 	   "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n",
766 	   vf->abs_vfid, val);
767 
768 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
769 
770 	/* iterate over all queues, clear sb consumer */
771 	for (i = 0; i < vf_sb_count(vf); i++) {
772 		u8 igu_sb_id = vf_igu_sb(vf, i);
773 
774 		/* zero prod memory */
775 		REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0);
776 
777 		/* clear sb state machine */
778 		bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id,
779 				       false /* VF */);
780 
781 		/* disable + update */
782 		bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0,
783 				    IGU_INT_DISABLE, 1);
784 	}
785 }
786 
787 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid)
788 {
789 	/* set the VF-PF association in the FW */
790 	storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp));
791 	storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1);
792 
793 	/* clear vf errors*/
794 	bnx2x_vf_semi_clear_err(bp, abs_vfid);
795 	bnx2x_vf_pglue_clear_err(bp, abs_vfid);
796 
797 	/* internal vf-enable - pretend */
798 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid));
799 	DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid);
800 	bnx2x_vf_enable_internal(bp, true);
801 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
802 }
803 
804 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf)
805 {
806 	/* Reset vf in IGU  interrupts are still disabled */
807 	bnx2x_vf_igu_reset(bp, vf);
808 
809 	/* pretend to enable the vf with the PBF */
810 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
811 	REG_WR(bp, PBF_REG_DISABLE_VF, 0);
812 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
813 }
814 
815 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid)
816 {
817 	struct pci_dev *dev;
818 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
819 
820 	if (!vf)
821 		return false;
822 
823 	dev = pci_get_bus_and_slot(vf->bus, vf->devfn);
824 	if (dev)
825 		return bnx2x_is_pcie_pending(dev);
826 	return false;
827 }
828 
829 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid)
830 {
831 	/* Verify no pending pci transactions */
832 	if (bnx2x_vf_is_pcie_pending(bp, abs_vfid))
833 		BNX2X_ERR("PCIE Transactions still pending\n");
834 
835 	return 0;
836 }
837 
838 /* must be called after the number of PF queues and the number of VFs are
839  * both known
840  */
841 static void
842 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
843 {
844 	struct vf_pf_resc_request *resc = &vf->alloc_resc;
845 	u16 vlan_count = 0;
846 
847 	/* will be set only during VF-ACQUIRE */
848 	resc->num_rxqs = 0;
849 	resc->num_txqs = 0;
850 
851 	/* no credit calculations for macs (just yet) */
852 	resc->num_mac_filters = 1;
853 
854 	/* divvy up vlan rules */
855 	vlan_count = bp->vlans_pool.check(&bp->vlans_pool);
856 	vlan_count = 1 << ilog2(vlan_count);
857 	resc->num_vlan_filters = vlan_count / BNX2X_NR_VIRTFN(bp);
858 
859 	/* no real limitation */
860 	resc->num_mc_filters = 0;
861 
862 	/* num_sbs already set */
863 	resc->num_sbs = vf->sb_count;
864 }
865 
866 /* FLR routines: */
867 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
868 {
869 	/* reset the state variables */
870 	bnx2x_iov_static_resc(bp, vf);
871 	vf->state = VF_FREE;
872 }
873 
874 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf)
875 {
876 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
877 
878 	/* DQ usage counter */
879 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
880 	bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT,
881 					"DQ VF usage counter timed out",
882 					poll_cnt);
883 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
884 
885 	/* FW cleanup command - poll for the results */
886 	if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid),
887 				   poll_cnt))
888 		BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid);
889 
890 	/* verify TX hw is flushed */
891 	bnx2x_tx_hw_flushed(bp, poll_cnt);
892 }
893 
894 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf)
895 {
896 	int rc, i;
897 
898 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
899 
900 	/* the cleanup operations are valid if and only if the VF
901 	 * was first acquired.
902 	 */
903 	for (i = 0; i < vf_rxq_count(vf); i++) {
904 		rc = bnx2x_vf_queue_flr(bp, vf, i);
905 		if (rc)
906 			goto out;
907 	}
908 
909 	/* remove multicasts */
910 	bnx2x_vf_mcast(bp, vf, NULL, 0, true);
911 
912 	/* dispatch final cleanup and wait for HW queues to flush */
913 	bnx2x_vf_flr_clnup_hw(bp, vf);
914 
915 	/* release VF resources */
916 	bnx2x_vf_free_resc(bp, vf);
917 
918 	/* re-open the mailbox */
919 	bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
920 	return;
921 out:
922 	BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n",
923 		  vf->abs_vfid, i, rc);
924 }
925 
926 static void bnx2x_vf_flr_clnup(struct bnx2x *bp)
927 {
928 	struct bnx2x_virtf *vf;
929 	int i;
930 
931 	for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) {
932 		/* VF should be RESET & in FLR cleanup states */
933 		if (bnx2x_vf(bp, i, state) != VF_RESET ||
934 		    !bnx2x_vf(bp, i, flr_clnup_stage))
935 			continue;
936 
937 		DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n",
938 		   i, BNX2X_NR_VIRTFN(bp));
939 
940 		vf = BP_VF(bp, i);
941 
942 		/* lock the vf pf channel */
943 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
944 
945 		/* invoke the VF FLR SM */
946 		bnx2x_vf_flr(bp, vf);
947 
948 		/* mark the VF to be ACKED and continue */
949 		vf->flr_clnup_stage = false;
950 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
951 	}
952 
953 	/* Acknowledge the handled VFs.
954 	 * we are acknowledge all the vfs which an flr was requested for, even
955 	 * if amongst them there are such that we never opened, since the mcp
956 	 * will interrupt us immediately again if we only ack some of the bits,
957 	 * resulting in an endless loop. This can happen for example in KVM
958 	 * where an 'all ones' flr request is sometimes given by hyper visor
959 	 */
960 	DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
961 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
962 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
963 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i],
964 			  bp->vfdb->flrd_vfs[i]);
965 
966 	bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0);
967 
968 	/* clear the acked bits - better yet if the MCP implemented
969 	 * write to clear semantics
970 	 */
971 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
972 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0);
973 }
974 
975 void bnx2x_vf_handle_flr_event(struct bnx2x *bp)
976 {
977 	int i;
978 
979 	/* Read FLR'd VFs */
980 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
981 		bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]);
982 
983 	DP(BNX2X_MSG_MCP,
984 	   "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
985 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
986 
987 	for_each_vf(bp, i) {
988 		struct bnx2x_virtf *vf = BP_VF(bp, i);
989 		u32 reset = 0;
990 
991 		if (vf->abs_vfid < 32)
992 			reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid);
993 		else
994 			reset = bp->vfdb->flrd_vfs[1] &
995 				(1 << (vf->abs_vfid - 32));
996 
997 		if (reset) {
998 			/* set as reset and ready for cleanup */
999 			vf->state = VF_RESET;
1000 			vf->flr_clnup_stage = true;
1001 
1002 			DP(BNX2X_MSG_IOV,
1003 			   "Initiating Final cleanup for VF %d\n",
1004 			   vf->abs_vfid);
1005 		}
1006 	}
1007 
1008 	/* do the FLR cleanup for all marked VFs*/
1009 	bnx2x_vf_flr_clnup(bp);
1010 }
1011 
1012 /* IOV global initialization routines  */
1013 void bnx2x_iov_init_dq(struct bnx2x *bp)
1014 {
1015 	if (!IS_SRIOV(bp))
1016 		return;
1017 
1018 	/* Set the DQ such that the CID reflect the abs_vfid */
1019 	REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0);
1020 	REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
1021 
1022 	/* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
1023 	 * the PF L2 queues
1024 	 */
1025 	REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
1026 
1027 	/* The VF window size is the log2 of the max number of CIDs per VF */
1028 	REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
1029 
1030 	/* The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
1031 	 * the Pf doorbell size although the 2 are independent.
1032 	 */
1033 	REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3);
1034 
1035 	/* No security checks for now -
1036 	 * configure single rule (out of 16) mask = 0x1, value = 0x0,
1037 	 * CID range 0 - 0x1ffff
1038 	 */
1039 	REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1);
1040 	REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0);
1041 	REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
1042 	REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
1043 
1044 	/* set the VF doorbell threshold */
1045 	REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 4);
1046 }
1047 
1048 void bnx2x_iov_init_dmae(struct bnx2x *bp)
1049 {
1050 	if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV))
1051 		REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0);
1052 }
1053 
1054 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid)
1055 {
1056 	struct pci_dev *dev = bp->pdev;
1057 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1058 
1059 	return dev->bus->number + ((dev->devfn + iov->offset +
1060 				    iov->stride * vfid) >> 8);
1061 }
1062 
1063 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid)
1064 {
1065 	struct pci_dev *dev = bp->pdev;
1066 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1067 
1068 	return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff;
1069 }
1070 
1071 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf)
1072 {
1073 	int i, n;
1074 	struct pci_dev *dev = bp->pdev;
1075 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1076 
1077 	for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) {
1078 		u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i);
1079 		u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i);
1080 
1081 		size /= iov->total;
1082 		vf->bars[n].bar = start + size * vf->abs_vfid;
1083 		vf->bars[n].size = size;
1084 	}
1085 }
1086 
1087 static int bnx2x_ari_enabled(struct pci_dev *dev)
1088 {
1089 	return dev->bus->self && dev->bus->self->ari_enabled;
1090 }
1091 
1092 static void
1093 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp)
1094 {
1095 	int sb_id;
1096 	u32 val;
1097 	u8 fid, current_pf = 0;
1098 
1099 	/* IGU in normal mode - read CAM */
1100 	for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) {
1101 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4);
1102 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
1103 			continue;
1104 		fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID);
1105 		if (fid & IGU_FID_ENCODE_IS_PF)
1106 			current_pf = fid & IGU_FID_PF_NUM_MASK;
1107 		else if (current_pf == BP_FUNC(bp))
1108 			bnx2x_vf_set_igu_info(bp, sb_id,
1109 					      (fid & IGU_FID_VF_NUM_MASK));
1110 		DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n",
1111 		   ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"),
1112 		   ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) :
1113 		   (fid & IGU_FID_VF_NUM_MASK)), sb_id,
1114 		   GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR));
1115 	}
1116 	DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool);
1117 }
1118 
1119 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp)
1120 {
1121 	if (bp->vfdb) {
1122 		kfree(bp->vfdb->vfqs);
1123 		kfree(bp->vfdb->vfs);
1124 		kfree(bp->vfdb);
1125 	}
1126 	bp->vfdb = NULL;
1127 }
1128 
1129 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1130 {
1131 	int pos;
1132 	struct pci_dev *dev = bp->pdev;
1133 
1134 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
1135 	if (!pos) {
1136 		BNX2X_ERR("failed to find SRIOV capability in device\n");
1137 		return -ENODEV;
1138 	}
1139 
1140 	iov->pos = pos;
1141 	DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos);
1142 	pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
1143 	pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total);
1144 	pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial);
1145 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
1146 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
1147 	pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
1148 	pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap);
1149 	pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
1150 
1151 	return 0;
1152 }
1153 
1154 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1155 {
1156 	u32 val;
1157 
1158 	/* read the SRIOV capability structure
1159 	 * The fields can be read via configuration read or
1160 	 * directly from the device (starting at offset PCICFG_OFFSET)
1161 	 */
1162 	if (bnx2x_sriov_pci_cfg_info(bp, iov))
1163 		return -ENODEV;
1164 
1165 	/* get the number of SRIOV bars */
1166 	iov->nres = 0;
1167 
1168 	/* read the first_vfid */
1169 	val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF);
1170 	iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK)
1171 			       * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp));
1172 
1173 	DP(BNX2X_MSG_IOV,
1174 	   "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
1175 	   BP_FUNC(bp),
1176 	   iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total,
1177 	   iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
1178 
1179 	return 0;
1180 }
1181 
1182 /* must be called after PF bars are mapped */
1183 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param,
1184 		       int num_vfs_param)
1185 {
1186 	int err, i;
1187 	struct bnx2x_sriov *iov;
1188 	struct pci_dev *dev = bp->pdev;
1189 
1190 	bp->vfdb = NULL;
1191 
1192 	/* verify is pf */
1193 	if (IS_VF(bp))
1194 		return 0;
1195 
1196 	/* verify sriov capability is present in configuration space */
1197 	if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV))
1198 		return 0;
1199 
1200 	/* verify chip revision */
1201 	if (CHIP_IS_E1x(bp))
1202 		return 0;
1203 
1204 	/* check if SRIOV support is turned off */
1205 	if (!num_vfs_param)
1206 		return 0;
1207 
1208 	/* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
1209 	if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) {
1210 		BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
1211 			  BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID);
1212 		return 0;
1213 	}
1214 
1215 	/* SRIOV can be enabled only with MSIX */
1216 	if (int_mode_param == BNX2X_INT_MODE_MSI ||
1217 	    int_mode_param == BNX2X_INT_MODE_INTX) {
1218 		BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
1219 		return 0;
1220 	}
1221 
1222 	err = -EIO;
1223 	/* verify ari is enabled */
1224 	if (!bnx2x_ari_enabled(bp->pdev)) {
1225 		BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
1226 		return 0;
1227 	}
1228 
1229 	/* verify igu is in normal mode */
1230 	if (CHIP_INT_MODE_IS_BC(bp)) {
1231 		BNX2X_ERR("IGU not normal mode,  SRIOV can not be enabled\n");
1232 		return 0;
1233 	}
1234 
1235 	/* allocate the vfs database */
1236 	bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL);
1237 	if (!bp->vfdb) {
1238 		BNX2X_ERR("failed to allocate vf database\n");
1239 		err = -ENOMEM;
1240 		goto failed;
1241 	}
1242 
1243 	/* get the sriov info - Linux already collected all the pertinent
1244 	 * information, however the sriov structure is for the private use
1245 	 * of the pci module. Also we want this information regardless
1246 	 * of the hyper-visor.
1247 	 */
1248 	iov = &(bp->vfdb->sriov);
1249 	err = bnx2x_sriov_info(bp, iov);
1250 	if (err)
1251 		goto failed;
1252 
1253 	/* SR-IOV capability was enabled but there are no VFs*/
1254 	if (iov->total == 0)
1255 		goto failed;
1256 
1257 	iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param);
1258 
1259 	DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n",
1260 	   num_vfs_param, iov->nr_virtfn);
1261 
1262 	/* allocate the vf array */
1263 	bp->vfdb->vfs = kzalloc(sizeof(struct bnx2x_virtf) *
1264 				BNX2X_NR_VIRTFN(bp), GFP_KERNEL);
1265 	if (!bp->vfdb->vfs) {
1266 		BNX2X_ERR("failed to allocate vf array\n");
1267 		err = -ENOMEM;
1268 		goto failed;
1269 	}
1270 
1271 	/* Initial VF init - index and abs_vfid - nr_virtfn must be set */
1272 	for_each_vf(bp, i) {
1273 		bnx2x_vf(bp, i, index) = i;
1274 		bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i;
1275 		bnx2x_vf(bp, i, state) = VF_FREE;
1276 		mutex_init(&bnx2x_vf(bp, i, op_mutex));
1277 		bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE;
1278 	}
1279 
1280 	/* re-read the IGU CAM for VFs - index and abs_vfid must be set */
1281 	bnx2x_get_vf_igu_cam_info(bp);
1282 
1283 	/* allocate the queue arrays for all VFs */
1284 	bp->vfdb->vfqs = kzalloc(
1285 		BNX2X_MAX_NUM_VF_QUEUES * sizeof(struct bnx2x_vf_queue),
1286 		GFP_KERNEL);
1287 
1288 	DP(BNX2X_MSG_IOV, "bp->vfdb->vfqs was %p\n", bp->vfdb->vfqs);
1289 
1290 	if (!bp->vfdb->vfqs) {
1291 		BNX2X_ERR("failed to allocate vf queue array\n");
1292 		err = -ENOMEM;
1293 		goto failed;
1294 	}
1295 
1296 	/* Prepare the VFs event synchronization mechanism */
1297 	mutex_init(&bp->vfdb->event_mutex);
1298 
1299 	return 0;
1300 failed:
1301 	DP(BNX2X_MSG_IOV, "Failed err=%d\n", err);
1302 	__bnx2x_iov_free_vfdb(bp);
1303 	return err;
1304 }
1305 
1306 void bnx2x_iov_remove_one(struct bnx2x *bp)
1307 {
1308 	int vf_idx;
1309 
1310 	/* if SRIOV is not enabled there's nothing to do */
1311 	if (!IS_SRIOV(bp))
1312 		return;
1313 
1314 	DP(BNX2X_MSG_IOV, "about to call disable sriov\n");
1315 	pci_disable_sriov(bp->pdev);
1316 	DP(BNX2X_MSG_IOV, "sriov disabled\n");
1317 
1318 	/* disable access to all VFs */
1319 	for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) {
1320 		bnx2x_pretend_func(bp,
1321 				   HW_VF_HANDLE(bp,
1322 						bp->vfdb->sriov.first_vf_in_pf +
1323 						vf_idx));
1324 		DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n",
1325 		   bp->vfdb->sriov.first_vf_in_pf + vf_idx);
1326 		bnx2x_vf_enable_internal(bp, 0);
1327 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1328 	}
1329 
1330 	/* free vf database */
1331 	__bnx2x_iov_free_vfdb(bp);
1332 }
1333 
1334 void bnx2x_iov_free_mem(struct bnx2x *bp)
1335 {
1336 	int i;
1337 
1338 	if (!IS_SRIOV(bp))
1339 		return;
1340 
1341 	/* free vfs hw contexts */
1342 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1343 		struct hw_dma *cxt = &bp->vfdb->context[i];
1344 		BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size);
1345 	}
1346 
1347 	BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr,
1348 		       BP_VFDB(bp)->sp_dma.mapping,
1349 		       BP_VFDB(bp)->sp_dma.size);
1350 
1351 	BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr,
1352 		       BP_VF_MBX_DMA(bp)->mapping,
1353 		       BP_VF_MBX_DMA(bp)->size);
1354 
1355 	BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr,
1356 		       BP_VF_BULLETIN_DMA(bp)->mapping,
1357 		       BP_VF_BULLETIN_DMA(bp)->size);
1358 }
1359 
1360 int bnx2x_iov_alloc_mem(struct bnx2x *bp)
1361 {
1362 	size_t tot_size;
1363 	int i, rc = 0;
1364 
1365 	if (!IS_SRIOV(bp))
1366 		return rc;
1367 
1368 	/* allocate vfs hw contexts */
1369 	tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) *
1370 		BNX2X_CIDS_PER_VF * sizeof(union cdu_context);
1371 
1372 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1373 		struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i);
1374 		cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ);
1375 
1376 		if (cxt->size) {
1377 			cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size);
1378 			if (!cxt->addr)
1379 				goto alloc_mem_err;
1380 		} else {
1381 			cxt->addr = NULL;
1382 			cxt->mapping = 0;
1383 		}
1384 		tot_size -= cxt->size;
1385 	}
1386 
1387 	/* allocate vfs ramrods dma memory - client_init and set_mac */
1388 	tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp);
1389 	BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping,
1390 						   tot_size);
1391 	if (!BP_VFDB(bp)->sp_dma.addr)
1392 		goto alloc_mem_err;
1393 	BP_VFDB(bp)->sp_dma.size = tot_size;
1394 
1395 	/* allocate mailboxes */
1396 	tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE;
1397 	BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping,
1398 						  tot_size);
1399 	if (!BP_VF_MBX_DMA(bp)->addr)
1400 		goto alloc_mem_err;
1401 
1402 	BP_VF_MBX_DMA(bp)->size = tot_size;
1403 
1404 	/* allocate local bulletin boards */
1405 	tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE;
1406 	BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping,
1407 						       tot_size);
1408 	if (!BP_VF_BULLETIN_DMA(bp)->addr)
1409 		goto alloc_mem_err;
1410 
1411 	BP_VF_BULLETIN_DMA(bp)->size = tot_size;
1412 
1413 	return 0;
1414 
1415 alloc_mem_err:
1416 	return -ENOMEM;
1417 }
1418 
1419 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf,
1420 			   struct bnx2x_vf_queue *q)
1421 {
1422 	u8 cl_id = vfq_cl_id(vf, q);
1423 	u8 func_id = FW_VF_HANDLE(vf->abs_vfid);
1424 	unsigned long q_type = 0;
1425 
1426 	set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1427 	set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1428 
1429 	/* Queue State object */
1430 	bnx2x_init_queue_obj(bp, &q->sp_obj,
1431 			     cl_id, &q->cid, 1, func_id,
1432 			     bnx2x_vf_sp(bp, vf, q_data),
1433 			     bnx2x_vf_sp_map(bp, vf, q_data),
1434 			     q_type);
1435 
1436 	/* sp indication is set only when vlan/mac/etc. are initialized */
1437 	q->sp_initialized = false;
1438 
1439 	DP(BNX2X_MSG_IOV,
1440 	   "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n",
1441 	   vf->abs_vfid, q->sp_obj.func_id, q->cid);
1442 }
1443 
1444 /* called by bnx2x_nic_load */
1445 int bnx2x_iov_nic_init(struct bnx2x *bp)
1446 {
1447 	int vfid;
1448 
1449 	if (!IS_SRIOV(bp)) {
1450 		DP(BNX2X_MSG_IOV, "vfdb was not allocated\n");
1451 		return 0;
1452 	}
1453 
1454 	DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn);
1455 
1456 	/* let FLR complete ... */
1457 	msleep(100);
1458 
1459 	/* initialize vf database */
1460 	for_each_vf(bp, vfid) {
1461 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1462 
1463 		int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) *
1464 			BNX2X_CIDS_PER_VF;
1465 
1466 		union cdu_context *base_cxt = (union cdu_context *)
1467 			BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1468 			(base_vf_cid & (ILT_PAGE_CIDS-1));
1469 
1470 		DP(BNX2X_MSG_IOV,
1471 		   "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
1472 		   vf->abs_vfid, vf_sb_count(vf), base_vf_cid,
1473 		   BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt);
1474 
1475 		/* init statically provisioned resources */
1476 		bnx2x_iov_static_resc(bp, vf);
1477 
1478 		/* queues are initialized during VF-ACQUIRE */
1479 
1480 		/* reserve the vf vlan credit */
1481 		bp->vlans_pool.get(&bp->vlans_pool, vf_vlan_rules_cnt(vf));
1482 
1483 		vf->filter_state = 0;
1484 		vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id);
1485 
1486 		/*  init mcast object - This object will be re-initialized
1487 		 *  during VF-ACQUIRE with the proper cl_id and cid.
1488 		 *  It needs to be initialized here so that it can be safely
1489 		 *  handled by a subsequent FLR flow.
1490 		 */
1491 		vf->mcast_list_len = 0;
1492 		bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF,
1493 				     0xFF, 0xFF, 0xFF,
1494 				     bnx2x_vf_sp(bp, vf, mcast_rdata),
1495 				     bnx2x_vf_sp_map(bp, vf, mcast_rdata),
1496 				     BNX2X_FILTER_MCAST_PENDING,
1497 				     &vf->filter_state,
1498 				     BNX2X_OBJ_TYPE_RX_TX);
1499 
1500 		/* set the mailbox message addresses */
1501 		BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *)
1502 			(((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid *
1503 			MBX_MSG_ALIGNED_SIZE);
1504 
1505 		BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping +
1506 			vfid * MBX_MSG_ALIGNED_SIZE;
1507 
1508 		/* Enable vf mailbox */
1509 		bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
1510 	}
1511 
1512 	/* Final VF init */
1513 	for_each_vf(bp, vfid) {
1514 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1515 
1516 		/* fill in the BDF and bars */
1517 		vf->bus = bnx2x_vf_bus(bp, vfid);
1518 		vf->devfn = bnx2x_vf_devfn(bp, vfid);
1519 		bnx2x_vf_set_bars(bp, vf);
1520 
1521 		DP(BNX2X_MSG_IOV,
1522 		   "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
1523 		   vf->abs_vfid, vf->bus, vf->devfn,
1524 		   (unsigned)vf->bars[0].bar, vf->bars[0].size,
1525 		   (unsigned)vf->bars[1].bar, vf->bars[1].size,
1526 		   (unsigned)vf->bars[2].bar, vf->bars[2].size);
1527 	}
1528 
1529 	return 0;
1530 }
1531 
1532 /* called by bnx2x_chip_cleanup */
1533 int bnx2x_iov_chip_cleanup(struct bnx2x *bp)
1534 {
1535 	int i;
1536 
1537 	if (!IS_SRIOV(bp))
1538 		return 0;
1539 
1540 	/* release all the VFs */
1541 	for_each_vf(bp, i)
1542 		bnx2x_vf_release(bp, BP_VF(bp, i));
1543 
1544 	return 0;
1545 }
1546 
1547 /* called by bnx2x_init_hw_func, returns the next ilt line */
1548 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line)
1549 {
1550 	int i;
1551 	struct bnx2x_ilt *ilt = BP_ILT(bp);
1552 
1553 	if (!IS_SRIOV(bp))
1554 		return line;
1555 
1556 	/* set vfs ilt lines */
1557 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1558 		struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i);
1559 
1560 		ilt->lines[line+i].page = hw_cxt->addr;
1561 		ilt->lines[line+i].page_mapping = hw_cxt->mapping;
1562 		ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
1563 	}
1564 	return line + i;
1565 }
1566 
1567 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid)
1568 {
1569 	return ((cid >= BNX2X_FIRST_VF_CID) &&
1570 		((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS));
1571 }
1572 
1573 static
1574 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp,
1575 					struct bnx2x_vf_queue *vfq,
1576 					union event_ring_elem *elem)
1577 {
1578 	unsigned long ramrod_flags = 0;
1579 	int rc = 0;
1580 
1581 	/* Always push next commands out, don't wait here */
1582 	set_bit(RAMROD_CONT, &ramrod_flags);
1583 
1584 	switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
1585 	case BNX2X_FILTER_MAC_PENDING:
1586 		rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem,
1587 					   &ramrod_flags);
1588 		break;
1589 	case BNX2X_FILTER_VLAN_PENDING:
1590 		rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem,
1591 					    &ramrod_flags);
1592 		break;
1593 	default:
1594 		BNX2X_ERR("Unsupported classification command: %d\n",
1595 			  elem->message.data.eth_event.echo);
1596 		return;
1597 	}
1598 	if (rc < 0)
1599 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
1600 	else if (rc > 0)
1601 		DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n");
1602 }
1603 
1604 static
1605 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp,
1606 			       struct bnx2x_virtf *vf)
1607 {
1608 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
1609 	int rc;
1610 
1611 	rparam.mcast_obj = &vf->mcast_obj;
1612 	vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw);
1613 
1614 	/* If there are pending mcast commands - send them */
1615 	if (vf->mcast_obj.check_pending(&vf->mcast_obj)) {
1616 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
1617 		if (rc < 0)
1618 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
1619 				  rc);
1620 	}
1621 }
1622 
1623 static
1624 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp,
1625 				 struct bnx2x_virtf *vf)
1626 {
1627 	smp_mb__before_clear_bit();
1628 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
1629 	smp_mb__after_clear_bit();
1630 }
1631 
1632 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp,
1633 					   struct bnx2x_virtf *vf)
1634 {
1635 	vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw);
1636 }
1637 
1638 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem)
1639 {
1640 	struct bnx2x_virtf *vf;
1641 	int qidx = 0, abs_vfid;
1642 	u8 opcode;
1643 	u16 cid = 0xffff;
1644 
1645 	if (!IS_SRIOV(bp))
1646 		return 1;
1647 
1648 	/* first get the cid - the only events we handle here are cfc-delete
1649 	 * and set-mac completion
1650 	 */
1651 	opcode = elem->message.opcode;
1652 
1653 	switch (opcode) {
1654 	case EVENT_RING_OPCODE_CFC_DEL:
1655 		cid = SW_CID((__force __le32)
1656 			     elem->message.data.cfc_del_event.cid);
1657 		DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid);
1658 		break;
1659 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1660 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1661 	case EVENT_RING_OPCODE_FILTERS_RULES:
1662 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1663 		cid = (elem->message.data.eth_event.echo &
1664 		       BNX2X_SWCID_MASK);
1665 		DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid);
1666 		break;
1667 	case EVENT_RING_OPCODE_VF_FLR:
1668 		abs_vfid = elem->message.data.vf_flr_event.vf_id;
1669 		DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n",
1670 		   abs_vfid);
1671 		goto get_vf;
1672 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1673 		abs_vfid = elem->message.data.malicious_vf_event.vf_id;
1674 		BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
1675 			  abs_vfid,
1676 			  elem->message.data.malicious_vf_event.err_id);
1677 		goto get_vf;
1678 	default:
1679 		return 1;
1680 	}
1681 
1682 	/* check if the cid is the VF range */
1683 	if (!bnx2x_iov_is_vf_cid(bp, cid)) {
1684 		DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid);
1685 		return 1;
1686 	}
1687 
1688 	/* extract vf and rxq index from vf_cid - relies on the following:
1689 	 * 1. vfid on cid reflects the true abs_vfid
1690 	 * 2. The max number of VFs (per path) is 64
1691 	 */
1692 	qidx = cid & ((1 << BNX2X_VF_CID_WND)-1);
1693 	abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1694 get_vf:
1695 	vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
1696 
1697 	if (!vf) {
1698 		BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
1699 			  cid, abs_vfid);
1700 		return 0;
1701 	}
1702 
1703 	switch (opcode) {
1704 	case EVENT_RING_OPCODE_CFC_DEL:
1705 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n",
1706 		   vf->abs_vfid, qidx);
1707 		vfq_get(vf, qidx)->sp_obj.complete_cmd(bp,
1708 						       &vfq_get(vf,
1709 								qidx)->sp_obj,
1710 						       BNX2X_Q_CMD_CFC_DEL);
1711 		break;
1712 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1713 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n",
1714 		   vf->abs_vfid, qidx);
1715 		bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem);
1716 		break;
1717 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1718 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n",
1719 		   vf->abs_vfid, qidx);
1720 		bnx2x_vf_handle_mcast_eqe(bp, vf);
1721 		break;
1722 	case EVENT_RING_OPCODE_FILTERS_RULES:
1723 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n",
1724 		   vf->abs_vfid, qidx);
1725 		bnx2x_vf_handle_filters_eqe(bp, vf);
1726 		break;
1727 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1728 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n",
1729 		   vf->abs_vfid, qidx);
1730 		bnx2x_vf_handle_rss_update_eqe(bp, vf);
1731 	case EVENT_RING_OPCODE_VF_FLR:
1732 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1733 		/* Do nothing for now */
1734 		return 0;
1735 	}
1736 
1737 	return 0;
1738 }
1739 
1740 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid)
1741 {
1742 	/* extract the vf from vf_cid - relies on the following:
1743 	 * 1. vfid on cid reflects the true abs_vfid
1744 	 * 2. The max number of VFs (per path) is 64
1745 	 */
1746 	int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1747 	return bnx2x_vf_by_abs_fid(bp, abs_vfid);
1748 }
1749 
1750 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid,
1751 				struct bnx2x_queue_sp_obj **q_obj)
1752 {
1753 	struct bnx2x_virtf *vf;
1754 
1755 	if (!IS_SRIOV(bp))
1756 		return;
1757 
1758 	vf = bnx2x_vf_by_cid(bp, vf_cid);
1759 
1760 	if (vf) {
1761 		/* extract queue index from vf_cid - relies on the following:
1762 		 * 1. vfid on cid reflects the true abs_vfid
1763 		 * 2. The max number of VFs (per path) is 64
1764 		 */
1765 		int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1);
1766 		*q_obj = &bnx2x_vfq(vf, q_index, sp_obj);
1767 	} else {
1768 		BNX2X_ERR("No vf matching cid %d\n", vf_cid);
1769 	}
1770 }
1771 
1772 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp)
1773 {
1774 	int i;
1775 	int first_queue_query_index, num_queues_req;
1776 	dma_addr_t cur_data_offset;
1777 	struct stats_query_entry *cur_query_entry;
1778 	u8 stats_count = 0;
1779 	bool is_fcoe = false;
1780 
1781 	if (!IS_SRIOV(bp))
1782 		return;
1783 
1784 	if (!NO_FCOE(bp))
1785 		is_fcoe = true;
1786 
1787 	/* fcoe adds one global request and one queue request */
1788 	num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe;
1789 	first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX -
1790 		(is_fcoe ? 0 : 1);
1791 
1792 	DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1793 	       "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
1794 	       BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index,
1795 	       first_queue_query_index + num_queues_req);
1796 
1797 	cur_data_offset = bp->fw_stats_data_mapping +
1798 		offsetof(struct bnx2x_fw_stats_data, queue_stats) +
1799 		num_queues_req * sizeof(struct per_queue_stats);
1800 
1801 	cur_query_entry = &bp->fw_stats_req->
1802 		query[first_queue_query_index + num_queues_req];
1803 
1804 	for_each_vf(bp, i) {
1805 		int j;
1806 		struct bnx2x_virtf *vf = BP_VF(bp, i);
1807 
1808 		if (vf->state != VF_ENABLED) {
1809 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1810 			       "vf %d not enabled so no stats for it\n",
1811 			       vf->abs_vfid);
1812 			continue;
1813 		}
1814 
1815 		DP(BNX2X_MSG_IOV, "add addresses for vf %d\n", vf->abs_vfid);
1816 		for_each_vfq(vf, j) {
1817 			struct bnx2x_vf_queue *rxq = vfq_get(vf, j);
1818 
1819 			dma_addr_t q_stats_addr =
1820 				vf->fw_stat_map + j * vf->stats_stride;
1821 
1822 			/* collect stats fro active queues only */
1823 			if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) ==
1824 			    BNX2X_Q_LOGICAL_STATE_STOPPED)
1825 				continue;
1826 
1827 			/* create stats query entry for this queue */
1828 			cur_query_entry->kind = STATS_TYPE_QUEUE;
1829 			cur_query_entry->index = vfq_stat_id(vf, rxq);
1830 			cur_query_entry->funcID =
1831 				cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid));
1832 			cur_query_entry->address.hi =
1833 				cpu_to_le32(U64_HI(q_stats_addr));
1834 			cur_query_entry->address.lo =
1835 				cpu_to_le32(U64_LO(q_stats_addr));
1836 			DP(BNX2X_MSG_IOV,
1837 			   "added address %x %x for vf %d queue %d client %d\n",
1838 			   cur_query_entry->address.hi,
1839 			   cur_query_entry->address.lo, cur_query_entry->funcID,
1840 			   j, cur_query_entry->index);
1841 			cur_query_entry++;
1842 			cur_data_offset += sizeof(struct per_queue_stats);
1843 			stats_count++;
1844 
1845 			/* all stats are coalesced to the leading queue */
1846 			if (vf->cfg_flags & VF_CFG_STATS_COALESCE)
1847 				break;
1848 		}
1849 	}
1850 	bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count;
1851 }
1852 
1853 static inline
1854 struct bnx2x_virtf *__vf_from_stat_id(struct bnx2x *bp, u8 stat_id)
1855 {
1856 	int i;
1857 	struct bnx2x_virtf *vf = NULL;
1858 
1859 	for_each_vf(bp, i) {
1860 		vf = BP_VF(bp, i);
1861 		if (stat_id >= vf->igu_base_id &&
1862 		    stat_id < vf->igu_base_id + vf_sb_count(vf))
1863 			break;
1864 	}
1865 	return vf;
1866 }
1867 
1868 /* VF API helpers */
1869 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid,
1870 				u8 enable)
1871 {
1872 	u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4;
1873 	u32 val = enable ? (abs_vfid | (1 << 6)) : 0;
1874 
1875 	REG_WR(bp, reg, val);
1876 }
1877 
1878 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf)
1879 {
1880 	int i;
1881 
1882 	for_each_vfq(vf, i)
1883 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
1884 				    vfq_qzone_id(vf, vfq_get(vf, i)), false);
1885 }
1886 
1887 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf)
1888 {
1889 	u32 val;
1890 
1891 	/* clear the VF configuration - pretend */
1892 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
1893 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
1894 	val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN |
1895 		 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK);
1896 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
1897 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1898 }
1899 
1900 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf)
1901 {
1902 	return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF),
1903 		     BNX2X_VF_MAX_QUEUES);
1904 }
1905 
1906 static
1907 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf,
1908 			    struct vf_pf_resc_request *req_resc)
1909 {
1910 	u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1911 	u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1912 
1913 	return ((req_resc->num_rxqs <= rxq_cnt) &&
1914 		(req_resc->num_txqs <= txq_cnt) &&
1915 		(req_resc->num_sbs <= vf_sb_count(vf))   &&
1916 		(req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) &&
1917 		(req_resc->num_vlan_filters <= vf_vlan_rules_cnt(vf)));
1918 }
1919 
1920 /* CORE VF API */
1921 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf,
1922 		     struct vf_pf_resc_request *resc)
1923 {
1924 	int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) *
1925 		BNX2X_CIDS_PER_VF;
1926 
1927 	union cdu_context *base_cxt = (union cdu_context *)
1928 		BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1929 		(base_vf_cid & (ILT_PAGE_CIDS-1));
1930 	int i;
1931 
1932 	/* if state is 'acquired' the VF was not released or FLR'd, in
1933 	 * this case the returned resources match the acquired already
1934 	 * acquired resources. Verify that the requested numbers do
1935 	 * not exceed the already acquired numbers.
1936 	 */
1937 	if (vf->state == VF_ACQUIRED) {
1938 		DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
1939 		   vf->abs_vfid);
1940 
1941 		if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
1942 			BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
1943 				  vf->abs_vfid);
1944 			return -EINVAL;
1945 		}
1946 		return 0;
1947 	}
1948 
1949 	/* Otherwise vf state must be 'free' or 'reset' */
1950 	if (vf->state != VF_FREE && vf->state != VF_RESET) {
1951 		BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
1952 			  vf->abs_vfid, vf->state);
1953 		return -EINVAL;
1954 	}
1955 
1956 	/* static allocation:
1957 	 * the global maximum number are fixed per VF. Fail the request if
1958 	 * requested number exceed these globals
1959 	 */
1960 	if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
1961 		DP(BNX2X_MSG_IOV,
1962 		   "cannot fulfill vf resource request. Placing maximal available values in response\n");
1963 		/* set the max resource in the vf */
1964 		return -ENOMEM;
1965 	}
1966 
1967 	/* Set resources counters - 0 request means max available */
1968 	vf_sb_count(vf) = resc->num_sbs;
1969 	vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
1970 	vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
1971 	if (resc->num_mac_filters)
1972 		vf_mac_rules_cnt(vf) = resc->num_mac_filters;
1973 	if (resc->num_vlan_filters)
1974 		vf_vlan_rules_cnt(vf) = resc->num_vlan_filters;
1975 
1976 	DP(BNX2X_MSG_IOV,
1977 	   "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
1978 	   vf_sb_count(vf), vf_rxq_count(vf),
1979 	   vf_txq_count(vf), vf_mac_rules_cnt(vf),
1980 	   vf_vlan_rules_cnt(vf));
1981 
1982 	/* Initialize the queues */
1983 	if (!vf->vfqs) {
1984 		DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n");
1985 		return -EINVAL;
1986 	}
1987 
1988 	for_each_vfq(vf, i) {
1989 		struct bnx2x_vf_queue *q = vfq_get(vf, i);
1990 
1991 		if (!q) {
1992 			BNX2X_ERR("q number %d was not allocated\n", i);
1993 			return -EINVAL;
1994 		}
1995 
1996 		q->index = i;
1997 		q->cxt = &((base_cxt + i)->eth);
1998 		q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i;
1999 
2000 		DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
2001 		   vf->abs_vfid, i, q->index, q->cid, q->cxt);
2002 
2003 		/* init SP objects */
2004 		bnx2x_vfq_init(bp, vf, q);
2005 	}
2006 	vf->state = VF_ACQUIRED;
2007 	return 0;
2008 }
2009 
2010 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map)
2011 {
2012 	struct bnx2x_func_init_params func_init = {0};
2013 	u16 flags = 0;
2014 	int i;
2015 
2016 	/* the sb resources are initialized at this point, do the
2017 	 * FW/HW initializations
2018 	 */
2019 	for_each_vf_sb(vf, i)
2020 		bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true,
2021 			      vf_igu_sb(vf, i), vf_igu_sb(vf, i));
2022 
2023 	/* Sanity checks */
2024 	if (vf->state != VF_ACQUIRED) {
2025 		DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n",
2026 		   vf->abs_vfid, vf->state);
2027 		return -EINVAL;
2028 	}
2029 
2030 	/* let FLR complete ... */
2031 	msleep(100);
2032 
2033 	/* FLR cleanup epilogue */
2034 	if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid))
2035 		return -EBUSY;
2036 
2037 	/* reset IGU VF statistics: MSIX */
2038 	REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0);
2039 
2040 	/* vf init */
2041 	if (vf->cfg_flags & VF_CFG_STATS)
2042 		flags |= (FUNC_FLG_STATS | FUNC_FLG_SPQ);
2043 
2044 	if (vf->cfg_flags & VF_CFG_TPA)
2045 		flags |= FUNC_FLG_TPA;
2046 
2047 	if (is_vf_multi(vf))
2048 		flags |= FUNC_FLG_RSS;
2049 
2050 	/* function setup */
2051 	func_init.func_flgs = flags;
2052 	func_init.pf_id = BP_FUNC(bp);
2053 	func_init.func_id = FW_VF_HANDLE(vf->abs_vfid);
2054 	func_init.fw_stat_map = vf->fw_stat_map;
2055 	func_init.spq_map = vf->spq_map;
2056 	func_init.spq_prod = 0;
2057 	bnx2x_func_init(bp, &func_init);
2058 
2059 	/* Enable the vf */
2060 	bnx2x_vf_enable_access(bp, vf->abs_vfid);
2061 	bnx2x_vf_enable_traffic(bp, vf);
2062 
2063 	/* queue protection table */
2064 	for_each_vfq(vf, i)
2065 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
2066 				    vfq_qzone_id(vf, vfq_get(vf, i)), true);
2067 
2068 	vf->state = VF_ENABLED;
2069 
2070 	/* update vf bulletin board */
2071 	bnx2x_post_vf_bulletin(bp, vf->index);
2072 
2073 	return 0;
2074 }
2075 
2076 struct set_vf_state_cookie {
2077 	struct bnx2x_virtf *vf;
2078 	u8 state;
2079 };
2080 
2081 static void bnx2x_set_vf_state(void *cookie)
2082 {
2083 	struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie;
2084 
2085 	p->vf->state = p->state;
2086 }
2087 
2088 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf)
2089 {
2090 	int rc = 0, i;
2091 
2092 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2093 
2094 	/* Close all queues */
2095 	for (i = 0; i < vf_rxq_count(vf); i++) {
2096 		rc = bnx2x_vf_queue_teardown(bp, vf, i);
2097 		if (rc)
2098 			goto op_err;
2099 	}
2100 
2101 	/* disable the interrupts */
2102 	DP(BNX2X_MSG_IOV, "disabling igu\n");
2103 	bnx2x_vf_igu_disable(bp, vf);
2104 
2105 	/* disable the VF */
2106 	DP(BNX2X_MSG_IOV, "clearing qtbl\n");
2107 	bnx2x_vf_clr_qtbl(bp, vf);
2108 
2109 	/* need to make sure there are no outstanding stats ramrods which may
2110 	 * cause the device to access the VF's stats buffer which it will free
2111 	 * as soon as we return from the close flow.
2112 	 */
2113 	{
2114 		struct set_vf_state_cookie cookie;
2115 
2116 		cookie.vf = vf;
2117 		cookie.state = VF_ACQUIRED;
2118 		bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie);
2119 	}
2120 
2121 	DP(BNX2X_MSG_IOV, "set state to acquired\n");
2122 
2123 	return 0;
2124 op_err:
2125 	BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc);
2126 	return rc;
2127 }
2128 
2129 /* VF release can be called either: 1. The VF was acquired but
2130  * not enabled 2. the vf was enabled or in the process of being
2131  * enabled
2132  */
2133 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf)
2134 {
2135 	int rc;
2136 
2137 	DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid,
2138 	   vf->state == VF_FREE ? "Free" :
2139 	   vf->state == VF_ACQUIRED ? "Acquired" :
2140 	   vf->state == VF_ENABLED ? "Enabled" :
2141 	   vf->state == VF_RESET ? "Reset" :
2142 	   "Unknown");
2143 
2144 	switch (vf->state) {
2145 	case VF_ENABLED:
2146 		rc = bnx2x_vf_close(bp, vf);
2147 		if (rc)
2148 			goto op_err;
2149 		/* Fallthrough to release resources */
2150 	case VF_ACQUIRED:
2151 		DP(BNX2X_MSG_IOV, "about to free resources\n");
2152 		bnx2x_vf_free_resc(bp, vf);
2153 		break;
2154 
2155 	case VF_FREE:
2156 	case VF_RESET:
2157 	default:
2158 		break;
2159 	}
2160 	return 0;
2161 op_err:
2162 	BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc);
2163 	return rc;
2164 }
2165 
2166 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2167 			struct bnx2x_config_rss_params *rss)
2168 {
2169 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2170 	set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags);
2171 	return bnx2x_config_rss(bp, rss);
2172 }
2173 
2174 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2175 			struct vfpf_tpa_tlv *tlv,
2176 			struct bnx2x_queue_update_tpa_params *params)
2177 {
2178 	aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr;
2179 	struct bnx2x_queue_state_params qstate;
2180 	int qid, rc = 0;
2181 
2182 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2183 
2184 	/* Set ramrod params */
2185 	memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
2186 	memcpy(&qstate.params.update_tpa, params,
2187 	       sizeof(struct bnx2x_queue_update_tpa_params));
2188 	qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA;
2189 	set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
2190 
2191 	for (qid = 0; qid < vf_rxq_count(vf); qid++) {
2192 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
2193 		qstate.params.update_tpa.sge_map = sge_addr[qid];
2194 		DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n",
2195 		   vf->abs_vfid, qid, U64_HI(sge_addr[qid]),
2196 		   U64_LO(sge_addr[qid]));
2197 		rc = bnx2x_queue_state_change(bp, &qstate);
2198 		if (rc) {
2199 			BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n",
2200 				  U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]),
2201 				  vf->abs_vfid, qid);
2202 			return rc;
2203 		}
2204 	}
2205 
2206 	return rc;
2207 }
2208 
2209 /* VF release ~ VF close + VF release-resources
2210  * Release is the ultimate SW shutdown and is called whenever an
2211  * irrecoverable error is encountered.
2212  */
2213 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf)
2214 {
2215 	int rc;
2216 
2217 	DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid);
2218 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2219 
2220 	rc = bnx2x_vf_free(bp, vf);
2221 	if (rc)
2222 		WARN(rc,
2223 		     "VF[%d] Failed to allocate resources for release op- rc=%d\n",
2224 		     vf->abs_vfid, rc);
2225 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2226 	return rc;
2227 }
2228 
2229 static inline void bnx2x_vf_get_sbdf(struct bnx2x *bp,
2230 			      struct bnx2x_virtf *vf, u32 *sbdf)
2231 {
2232 	*sbdf = vf->devfn | (vf->bus << 8);
2233 }
2234 
2235 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2236 			      enum channel_tlvs tlv)
2237 {
2238 	/* we don't lock the channel for unsupported tlvs */
2239 	if (!bnx2x_tlv_supported(tlv)) {
2240 		BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n");
2241 		return;
2242 	}
2243 
2244 	/* lock the channel */
2245 	mutex_lock(&vf->op_mutex);
2246 
2247 	/* record the locking op */
2248 	vf->op_current = tlv;
2249 
2250 	/* log the lock */
2251 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n",
2252 	   vf->abs_vfid, tlv);
2253 }
2254 
2255 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2256 				enum channel_tlvs expected_tlv)
2257 {
2258 	enum channel_tlvs current_tlv;
2259 
2260 	if (!vf) {
2261 		BNX2X_ERR("VF was %p\n", vf);
2262 		return;
2263 	}
2264 
2265 	current_tlv = vf->op_current;
2266 
2267 	/* we don't unlock the channel for unsupported tlvs */
2268 	if (!bnx2x_tlv_supported(expected_tlv))
2269 		return;
2270 
2271 	WARN(expected_tlv != vf->op_current,
2272 	     "lock mismatch: expected %d found %d", expected_tlv,
2273 	     vf->op_current);
2274 
2275 	/* record the locking op */
2276 	vf->op_current = CHANNEL_TLV_NONE;
2277 
2278 	/* lock the channel */
2279 	mutex_unlock(&vf->op_mutex);
2280 
2281 	/* log the unlock */
2282 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n",
2283 	   vf->abs_vfid, vf->op_current);
2284 }
2285 
2286 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable)
2287 {
2288 	struct bnx2x_queue_state_params q_params;
2289 	u32 prev_flags;
2290 	int i, rc;
2291 
2292 	/* Verify changes are needed and record current Tx switching state */
2293 	prev_flags = bp->flags;
2294 	if (enable)
2295 		bp->flags |= TX_SWITCHING;
2296 	else
2297 		bp->flags &= ~TX_SWITCHING;
2298 	if (prev_flags == bp->flags)
2299 		return 0;
2300 
2301 	/* Verify state enables the sending of queue ramrods */
2302 	if ((bp->state != BNX2X_STATE_OPEN) ||
2303 	    (bnx2x_get_q_logical_state(bp,
2304 				      &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) !=
2305 	     BNX2X_Q_LOGICAL_STATE_ACTIVE))
2306 		return 0;
2307 
2308 	/* send q. update ramrod to configure Tx switching */
2309 	memset(&q_params, 0, sizeof(q_params));
2310 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2311 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
2312 	__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
2313 		  &q_params.params.update.update_flags);
2314 	if (enable)
2315 		__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2316 			  &q_params.params.update.update_flags);
2317 	else
2318 		__clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2319 			    &q_params.params.update.update_flags);
2320 
2321 	/* send the ramrod on all the queues of the PF */
2322 	for_each_eth_queue(bp, i) {
2323 		struct bnx2x_fastpath *fp = &bp->fp[i];
2324 
2325 		/* Set the appropriate Queue object */
2326 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
2327 
2328 		/* Update the Queue state */
2329 		rc = bnx2x_queue_state_change(bp, &q_params);
2330 		if (rc) {
2331 			BNX2X_ERR("Failed to configure Tx switching\n");
2332 			return rc;
2333 		}
2334 	}
2335 
2336 	DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled");
2337 	return 0;
2338 }
2339 
2340 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param)
2341 {
2342 	struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev));
2343 
2344 	if (!IS_SRIOV(bp)) {
2345 		BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n");
2346 		return -EINVAL;
2347 	}
2348 
2349 	DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
2350 	   num_vfs_param, BNX2X_NR_VIRTFN(bp));
2351 
2352 	/* HW channel is only operational when PF is up */
2353 	if (bp->state != BNX2X_STATE_OPEN) {
2354 		BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
2355 		return -EINVAL;
2356 	}
2357 
2358 	/* we are always bound by the total_vfs in the configuration space */
2359 	if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) {
2360 		BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
2361 			  num_vfs_param, BNX2X_NR_VIRTFN(bp));
2362 		num_vfs_param = BNX2X_NR_VIRTFN(bp);
2363 	}
2364 
2365 	bp->requested_nr_virtfn = num_vfs_param;
2366 	if (num_vfs_param == 0) {
2367 		bnx2x_set_pf_tx_switching(bp, false);
2368 		pci_disable_sriov(dev);
2369 		return 0;
2370 	} else {
2371 		return bnx2x_enable_sriov(bp);
2372 	}
2373 }
2374 
2375 #define IGU_ENTRY_SIZE 4
2376 
2377 int bnx2x_enable_sriov(struct bnx2x *bp)
2378 {
2379 	int rc = 0, req_vfs = bp->requested_nr_virtfn;
2380 	int vf_idx, sb_idx, vfq_idx, qcount, first_vf;
2381 	u32 igu_entry, address;
2382 	u16 num_vf_queues;
2383 
2384 	if (req_vfs == 0)
2385 		return 0;
2386 
2387 	first_vf = bp->vfdb->sriov.first_vf_in_pf;
2388 
2389 	/* statically distribute vf sb pool between VFs */
2390 	num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES,
2391 			      BP_VFDB(bp)->vf_sbs_pool / req_vfs);
2392 
2393 	/* zero previous values learned from igu cam */
2394 	for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) {
2395 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2396 
2397 		vf->sb_count = 0;
2398 		vf_sb_count(BP_VF(bp, vf_idx)) = 0;
2399 	}
2400 	bp->vfdb->vf_sbs_pool = 0;
2401 
2402 	/* prepare IGU cam */
2403 	sb_idx = BP_VFDB(bp)->first_vf_igu_entry;
2404 	address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE;
2405 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2406 		for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) {
2407 			igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT |
2408 				vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT |
2409 				IGU_REG_MAPPING_MEMORY_VALID;
2410 			DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n",
2411 			   sb_idx, vf_idx);
2412 			REG_WR(bp, address, igu_entry);
2413 			sb_idx++;
2414 			address += IGU_ENTRY_SIZE;
2415 		}
2416 	}
2417 
2418 	/* Reinitialize vf database according to igu cam */
2419 	bnx2x_get_vf_igu_cam_info(bp);
2420 
2421 	DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n",
2422 	   BP_VFDB(bp)->vf_sbs_pool, num_vf_queues);
2423 
2424 	qcount = 0;
2425 	for_each_vf(bp, vf_idx) {
2426 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2427 
2428 		/* set local queue arrays */
2429 		vf->vfqs = &bp->vfdb->vfqs[qcount];
2430 		qcount += vf_sb_count(vf);
2431 		bnx2x_iov_static_resc(bp, vf);
2432 	}
2433 
2434 	/* prepare msix vectors in VF configuration space - the value in the
2435 	 * PCI configuration space should be the index of the last entry,
2436 	 * namely one less than the actual size of the table
2437 	 */
2438 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2439 		bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx));
2440 		REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL,
2441 		       num_vf_queues - 1);
2442 		DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n",
2443 		   vf_idx, num_vf_queues - 1);
2444 	}
2445 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
2446 
2447 	/* enable sriov. This will probe all the VFs, and consequentially cause
2448 	 * the "acquire" messages to appear on the VF PF channel.
2449 	 */
2450 	DP(BNX2X_MSG_IOV, "about to call enable sriov\n");
2451 	bnx2x_disable_sriov(bp);
2452 
2453 	rc = bnx2x_set_pf_tx_switching(bp, true);
2454 	if (rc)
2455 		return rc;
2456 
2457 	rc = pci_enable_sriov(bp->pdev, req_vfs);
2458 	if (rc) {
2459 		BNX2X_ERR("pci_enable_sriov failed with %d\n", rc);
2460 		return rc;
2461 	}
2462 	DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs);
2463 	return req_vfs;
2464 }
2465 
2466 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp)
2467 {
2468 	int vfidx;
2469 	struct pf_vf_bulletin_content *bulletin;
2470 
2471 	DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n");
2472 	for_each_vf(bp, vfidx) {
2473 	bulletin = BP_VF_BULLETIN(bp, vfidx);
2474 		if (BP_VF(bp, vfidx)->cfg_flags & VF_CFG_VLAN)
2475 			bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0);
2476 	}
2477 }
2478 
2479 void bnx2x_disable_sriov(struct bnx2x *bp)
2480 {
2481 	pci_disable_sriov(bp->pdev);
2482 }
2483 
2484 static int bnx2x_vf_ndo_prep(struct bnx2x *bp, int vfidx,
2485 			     struct bnx2x_virtf **vf,
2486 			     struct pf_vf_bulletin_content **bulletin)
2487 {
2488 	if (bp->state != BNX2X_STATE_OPEN) {
2489 		BNX2X_ERR("vf ndo called though PF is down\n");
2490 		return -EINVAL;
2491 	}
2492 
2493 	if (!IS_SRIOV(bp)) {
2494 		BNX2X_ERR("vf ndo called though sriov is disabled\n");
2495 		return -EINVAL;
2496 	}
2497 
2498 	if (vfidx >= BNX2X_NR_VIRTFN(bp)) {
2499 		BNX2X_ERR("vf ndo called for uninitialized VF. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
2500 			  vfidx, BNX2X_NR_VIRTFN(bp));
2501 		return -EINVAL;
2502 	}
2503 
2504 	/* init members */
2505 	*vf = BP_VF(bp, vfidx);
2506 	*bulletin = BP_VF_BULLETIN(bp, vfidx);
2507 
2508 	if (!*vf) {
2509 		BNX2X_ERR("vf ndo called but vf struct is null. vfidx was %d\n",
2510 			  vfidx);
2511 		return -EINVAL;
2512 	}
2513 
2514 	if (!(*vf)->vfqs) {
2515 		BNX2X_ERR("vf ndo called but vfqs struct is null. Was ndo invoked before dynamically enabling SR-IOV? vfidx was %d\n",
2516 			  vfidx);
2517 		return -EINVAL;
2518 	}
2519 
2520 	if (!*bulletin) {
2521 		BNX2X_ERR("vf ndo called but Bulletin Board struct is null. vfidx was %d\n",
2522 			  vfidx);
2523 		return -EINVAL;
2524 	}
2525 
2526 	return 0;
2527 }
2528 
2529 int bnx2x_get_vf_config(struct net_device *dev, int vfidx,
2530 			struct ifla_vf_info *ivi)
2531 {
2532 	struct bnx2x *bp = netdev_priv(dev);
2533 	struct bnx2x_virtf *vf = NULL;
2534 	struct pf_vf_bulletin_content *bulletin = NULL;
2535 	struct bnx2x_vlan_mac_obj *mac_obj;
2536 	struct bnx2x_vlan_mac_obj *vlan_obj;
2537 	int rc;
2538 
2539 	/* sanity and init */
2540 	rc = bnx2x_vf_ndo_prep(bp, vfidx, &vf, &bulletin);
2541 	if (rc)
2542 		return rc;
2543 	mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2544 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2545 	if (!mac_obj || !vlan_obj) {
2546 		BNX2X_ERR("VF partially initialized\n");
2547 		return -EINVAL;
2548 	}
2549 
2550 	ivi->vf = vfidx;
2551 	ivi->qos = 0;
2552 	ivi->tx_rate = 10000; /* always 10G. TBA take from link struct */
2553 	ivi->spoofchk = 1; /*always enabled */
2554 	if (vf->state == VF_ENABLED) {
2555 		/* mac and vlan are in vlan_mac objects */
2556 		if (bnx2x_validate_vf_sp_objs(bp, vf, false)) {
2557 			mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac,
2558 						0, ETH_ALEN);
2559 			vlan_obj->get_n_elements(bp, vlan_obj, 1,
2560 						 (u8 *)&ivi->vlan, 0,
2561 						 VLAN_HLEN);
2562 		}
2563 	} else {
2564 		/* mac */
2565 		if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID))
2566 			/* mac configured by ndo so its in bulletin board */
2567 			memcpy(&ivi->mac, bulletin->mac, ETH_ALEN);
2568 		else
2569 			/* function has not been loaded yet. Show mac as 0s */
2570 			memset(&ivi->mac, 0, ETH_ALEN);
2571 
2572 		/* vlan */
2573 		if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2574 			/* vlan configured by ndo so its in bulletin board */
2575 			memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN);
2576 		else
2577 			/* function has not been loaded yet. Show vlans as 0s */
2578 			memset(&ivi->vlan, 0, VLAN_HLEN);
2579 	}
2580 
2581 	return 0;
2582 }
2583 
2584 /* New mac for VF. Consider these cases:
2585  * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
2586  *    supply at acquire.
2587  * 2. VF has already been acquired but has not yet initialized - store in local
2588  *    bulletin board. mac will be posted on VF bulletin board after VF init. VF
2589  *    will configure this mac when it is ready.
2590  * 3. VF has already initialized but has not yet setup a queue - post the new
2591  *    mac on VF's bulletin board right now. VF will configure this mac when it
2592  *    is ready.
2593  * 4. VF has already set a queue - delete any macs already configured for this
2594  *    queue and manually config the new mac.
2595  * In any event, once this function has been called refuse any attempts by the
2596  * VF to configure any mac for itself except for this mac. In case of a race
2597  * where the VF fails to see the new post on its bulletin board before sending a
2598  * mac configuration request, the PF will simply fail the request and VF can try
2599  * again after consulting its bulletin board.
2600  */
2601 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac)
2602 {
2603 	struct bnx2x *bp = netdev_priv(dev);
2604 	int rc, q_logical_state;
2605 	struct bnx2x_virtf *vf = NULL;
2606 	struct pf_vf_bulletin_content *bulletin = NULL;
2607 
2608 	/* sanity and init */
2609 	rc = bnx2x_vf_ndo_prep(bp, vfidx, &vf, &bulletin);
2610 	if (rc)
2611 		return rc;
2612 	if (!is_valid_ether_addr(mac)) {
2613 		BNX2X_ERR("mac address invalid\n");
2614 		return -EINVAL;
2615 	}
2616 
2617 	/* update PF's copy of the VF's bulletin. Will no longer accept mac
2618 	 * configuration requests from vf unless match this mac
2619 	 */
2620 	bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID;
2621 	memcpy(bulletin->mac, mac, ETH_ALEN);
2622 
2623 	/* Post update on VF's bulletin board */
2624 	rc = bnx2x_post_vf_bulletin(bp, vfidx);
2625 	if (rc) {
2626 		BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2627 		return rc;
2628 	}
2629 
2630 	q_logical_state =
2631 		bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj));
2632 	if (vf->state == VF_ENABLED &&
2633 	    q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
2634 		/* configure the mac in device on this vf's queue */
2635 		unsigned long ramrod_flags = 0;
2636 		struct bnx2x_vlan_mac_obj *mac_obj;
2637 
2638 		/* User should be able to see failure reason in system logs */
2639 		if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2640 			return -EINVAL;
2641 
2642 		/* must lock vfpf channel to protect against vf flows */
2643 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2644 
2645 		/* remove existing eth macs */
2646 		mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2647 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true);
2648 		if (rc) {
2649 			BNX2X_ERR("failed to delete eth macs\n");
2650 			rc = -EINVAL;
2651 			goto out;
2652 		}
2653 
2654 		/* remove existing uc list macs */
2655 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true);
2656 		if (rc) {
2657 			BNX2X_ERR("failed to delete uc_list macs\n");
2658 			rc = -EINVAL;
2659 			goto out;
2660 		}
2661 
2662 		/* configure the new mac to device */
2663 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2664 		bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true,
2665 				  BNX2X_ETH_MAC, &ramrod_flags);
2666 
2667 out:
2668 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2669 	}
2670 
2671 	return 0;
2672 }
2673 
2674 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos)
2675 {
2676 	struct bnx2x_queue_state_params q_params = {NULL};
2677 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
2678 	struct bnx2x_queue_update_params *update_params;
2679 	struct pf_vf_bulletin_content *bulletin = NULL;
2680 	struct bnx2x_rx_mode_ramrod_params rx_ramrod;
2681 	struct bnx2x *bp = netdev_priv(dev);
2682 	struct bnx2x_vlan_mac_obj *vlan_obj;
2683 	unsigned long vlan_mac_flags = 0;
2684 	unsigned long ramrod_flags = 0;
2685 	struct bnx2x_virtf *vf = NULL;
2686 	unsigned long accept_flags;
2687 	int rc;
2688 
2689 	/* sanity and init */
2690 	rc = bnx2x_vf_ndo_prep(bp, vfidx, &vf, &bulletin);
2691 	if (rc)
2692 		return rc;
2693 
2694 	if (vlan > 4095) {
2695 		BNX2X_ERR("illegal vlan value %d\n", vlan);
2696 		return -EINVAL;
2697 	}
2698 
2699 	DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n",
2700 	   vfidx, vlan, 0);
2701 
2702 	/* update PF's copy of the VF's bulletin. No point in posting the vlan
2703 	 * to the VF since it doesn't have anything to do with it. But it useful
2704 	 * to store it here in case the VF is not up yet and we can only
2705 	 * configure the vlan later when it does. Treat vlan id 0 as remove the
2706 	 * Host tag.
2707 	 */
2708 	if (vlan > 0)
2709 		bulletin->valid_bitmap |= 1 << VLAN_VALID;
2710 	else
2711 		bulletin->valid_bitmap &= ~(1 << VLAN_VALID);
2712 	bulletin->vlan = vlan;
2713 
2714 	/* is vf initialized and queue set up? */
2715 	if (vf->state != VF_ENABLED ||
2716 	    bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2717 	    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2718 		return rc;
2719 
2720 	/* User should be able to see error in system logs */
2721 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2722 		return -EINVAL;
2723 
2724 	/* must lock vfpf channel to protect against vf flows */
2725 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2726 
2727 	/* remove existing vlans */
2728 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2729 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2730 	rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags,
2731 				  &ramrod_flags);
2732 	if (rc) {
2733 		BNX2X_ERR("failed to delete vlans\n");
2734 		rc = -EINVAL;
2735 		goto out;
2736 	}
2737 
2738 	/* need to remove/add the VF's accept_any_vlan bit */
2739 	accept_flags = bnx2x_leading_vfq(vf, accept_flags);
2740 	if (vlan)
2741 		clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2742 	else
2743 		set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2744 
2745 	bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf,
2746 			      accept_flags);
2747 	bnx2x_leading_vfq(vf, accept_flags) = accept_flags;
2748 	bnx2x_config_rx_mode(bp, &rx_ramrod);
2749 
2750 	/* configure the new vlan to device */
2751 	memset(&ramrod_param, 0, sizeof(ramrod_param));
2752 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2753 	ramrod_param.vlan_mac_obj = vlan_obj;
2754 	ramrod_param.ramrod_flags = ramrod_flags;
2755 	set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
2756 		&ramrod_param.user_req.vlan_mac_flags);
2757 	ramrod_param.user_req.u.vlan.vlan = vlan;
2758 	ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
2759 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
2760 	if (rc) {
2761 		BNX2X_ERR("failed to configure vlan\n");
2762 		rc =  -EINVAL;
2763 		goto out;
2764 	}
2765 
2766 	/* send queue update ramrod to configure default vlan and silent
2767 	 * vlan removal
2768 	 */
2769 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2770 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
2771 	q_params.q_obj = &bnx2x_leading_vfq(vf, sp_obj);
2772 	update_params = &q_params.params.update;
2773 	__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
2774 		  &update_params->update_flags);
2775 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
2776 		  &update_params->update_flags);
2777 	if (vlan == 0) {
2778 		/* if vlan is 0 then we want to leave the VF traffic
2779 		 * untagged, and leave the incoming traffic untouched
2780 		 * (i.e. do not remove any vlan tags).
2781 		 */
2782 		__clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2783 			    &update_params->update_flags);
2784 		__clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2785 			    &update_params->update_flags);
2786 	} else {
2787 		/* configure default vlan to vf queue and set silent
2788 		 * vlan removal (the vf remains unaware of this vlan).
2789 		 */
2790 		__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2791 			  &update_params->update_flags);
2792 		__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2793 			  &update_params->update_flags);
2794 		update_params->def_vlan = vlan;
2795 		update_params->silent_removal_value =
2796 			vlan & VLAN_VID_MASK;
2797 		update_params->silent_removal_mask = VLAN_VID_MASK;
2798 	}
2799 
2800 	/* Update the Queue state */
2801 	rc = bnx2x_queue_state_change(bp, &q_params);
2802 	if (rc) {
2803 		BNX2X_ERR("Failed to configure default VLAN\n");
2804 		goto out;
2805 	}
2806 
2807 
2808 	/* clear the flag indicating that this VF needs its vlan
2809 	 * (will only be set if the HV configured the Vlan before vf was
2810 	 * up and we were called because the VF came up later
2811 	 */
2812 out:
2813 	vf->cfg_flags &= ~VF_CFG_VLAN;
2814 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2815 
2816 	return rc;
2817 }
2818 
2819 /* crc is the first field in the bulletin board. Compute the crc over the
2820  * entire bulletin board excluding the crc field itself. Use the length field
2821  * as the Bulletin Board was posted by a PF with possibly a different version
2822  * from the vf which will sample it. Therefore, the length is computed by the
2823  * PF and the used blindly by the VF.
2824  */
2825 u32 bnx2x_crc_vf_bulletin(struct bnx2x *bp,
2826 			  struct pf_vf_bulletin_content *bulletin)
2827 {
2828 	return crc32(BULLETIN_CRC_SEED,
2829 		 ((u8 *)bulletin) + sizeof(bulletin->crc),
2830 		 bulletin->length - sizeof(bulletin->crc));
2831 }
2832 
2833 /* Check for new posts on the bulletin board */
2834 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp)
2835 {
2836 	struct pf_vf_bulletin_content bulletin = bp->pf2vf_bulletin->content;
2837 	int attempts;
2838 
2839 	/* bulletin board hasn't changed since last sample */
2840 	if (bp->old_bulletin.version == bulletin.version)
2841 		return PFVF_BULLETIN_UNCHANGED;
2842 
2843 	/* validate crc of new bulletin board */
2844 	if (bp->old_bulletin.version != bp->pf2vf_bulletin->content.version) {
2845 		/* sampling structure in mid post may result with corrupted data
2846 		 * validate crc to ensure coherency.
2847 		 */
2848 		for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) {
2849 			bulletin = bp->pf2vf_bulletin->content;
2850 			if (bulletin.crc == bnx2x_crc_vf_bulletin(bp,
2851 								  &bulletin))
2852 				break;
2853 			BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
2854 				  bulletin.crc,
2855 				  bnx2x_crc_vf_bulletin(bp, &bulletin));
2856 		}
2857 		if (attempts >= BULLETIN_ATTEMPTS) {
2858 			BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
2859 				  attempts);
2860 			return PFVF_BULLETIN_CRC_ERR;
2861 		}
2862 	}
2863 
2864 	/* the mac address in bulletin board is valid and is new */
2865 	if (bulletin.valid_bitmap & 1 << MAC_ADDR_VALID &&
2866 	    !ether_addr_equal(bulletin.mac, bp->old_bulletin.mac)) {
2867 		/* update new mac to net device */
2868 		memcpy(bp->dev->dev_addr, bulletin.mac, ETH_ALEN);
2869 	}
2870 
2871 	/* the vlan in bulletin board is valid and is new */
2872 	if (bulletin.valid_bitmap & 1 << VLAN_VALID)
2873 		memcpy(&bulletin.vlan, &bp->old_bulletin.vlan, VLAN_HLEN);
2874 
2875 	/* copy new bulletin board to bp */
2876 	bp->old_bulletin = bulletin;
2877 
2878 	return PFVF_BULLETIN_UPDATED;
2879 }
2880 
2881 void bnx2x_timer_sriov(struct bnx2x *bp)
2882 {
2883 	bnx2x_sample_bulletin(bp);
2884 
2885 	/* if channel is down we need to self destruct */
2886 	if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN)
2887 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
2888 				       BNX2X_MSG_IOV);
2889 }
2890 
2891 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp)
2892 {
2893 	/* vf doorbells are embedded within the regview */
2894 	return bp->regview + PXP_VF_ADDR_DB_START;
2895 }
2896 
2897 int bnx2x_vf_pci_alloc(struct bnx2x *bp)
2898 {
2899 	mutex_init(&bp->vf2pf_mutex);
2900 
2901 	/* allocate vf2pf mailbox for vf to pf channel */
2902 	bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping,
2903 					 sizeof(struct bnx2x_vf_mbx_msg));
2904 	if (!bp->vf2pf_mbox)
2905 		goto alloc_mem_err;
2906 
2907 	/* allocate pf 2 vf bulletin board */
2908 	bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping,
2909 					     sizeof(union pf_vf_bulletin));
2910 	if (!bp->pf2vf_bulletin)
2911 		goto alloc_mem_err;
2912 
2913 	return 0;
2914 
2915 alloc_mem_err:
2916 	BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
2917 		       sizeof(struct bnx2x_vf_mbx_msg));
2918 	BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->pf2vf_bulletin_mapping,
2919 		       sizeof(union pf_vf_bulletin));
2920 	return -ENOMEM;
2921 }
2922 
2923 void bnx2x_iov_channel_down(struct bnx2x *bp)
2924 {
2925 	int vf_idx;
2926 	struct pf_vf_bulletin_content *bulletin;
2927 
2928 	if (!IS_SRIOV(bp))
2929 		return;
2930 
2931 	for_each_vf(bp, vf_idx) {
2932 		/* locate this VFs bulletin board and update the channel down
2933 		 * bit
2934 		 */
2935 		bulletin = BP_VF_BULLETIN(bp, vf_idx);
2936 		bulletin->valid_bitmap |= 1 << CHANNEL_DOWN;
2937 
2938 		/* update vf bulletin board */
2939 		bnx2x_post_vf_bulletin(bp, vf_idx);
2940 	}
2941 }
2942 
2943 void bnx2x_iov_task(struct work_struct *work)
2944 {
2945 	struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work);
2946 
2947 	if (!netif_running(bp->dev))
2948 		return;
2949 
2950 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR,
2951 			       &bp->iov_task_state))
2952 		bnx2x_vf_handle_flr_event(bp);
2953 
2954 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG,
2955 			       &bp->iov_task_state))
2956 		bnx2x_vf_mbx(bp);
2957 }
2958 
2959 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag)
2960 {
2961 	smp_mb__before_clear_bit();
2962 	set_bit(flag, &bp->iov_task_state);
2963 	smp_mb__after_clear_bit();
2964 	DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
2965 	queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0);
2966 }
2967