1 /* bnx2x_sriov.c: QLogic Everest network driver. 2 * 3 * Copyright 2009-2013 Broadcom Corporation 4 * Copyright 2014 QLogic Corporation 5 * All rights reserved 6 * 7 * Unless you and QLogic execute a separate written software license 8 * agreement governing use of this software, this software is licensed to you 9 * under the terms of the GNU General Public License version 2, available 10 * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL"). 11 * 12 * Notwithstanding the above, under no circumstances may you combine this 13 * software in any way with any other QLogic software provided under a 14 * license other than the GPL, without QLogic's express prior written 15 * consent. 16 * 17 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 18 * Written by: Shmulik Ravid 19 * Ariel Elior <ariel.elior@qlogic.com> 20 * 21 */ 22 #include "bnx2x.h" 23 #include "bnx2x_init.h" 24 #include "bnx2x_cmn.h" 25 #include "bnx2x_sp.h" 26 #include <linux/crc32.h> 27 #include <linux/if_vlan.h> 28 29 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx, 30 struct bnx2x_virtf **vf, 31 struct pf_vf_bulletin_content **bulletin, 32 bool test_queue); 33 34 /* General service functions */ 35 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid, 36 u16 pf_id) 37 { 38 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid), 39 pf_id); 40 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid), 41 pf_id); 42 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid), 43 pf_id); 44 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid), 45 pf_id); 46 } 47 48 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid, 49 u8 enable) 50 { 51 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid), 52 enable); 53 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid), 54 enable); 55 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid), 56 enable); 57 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid), 58 enable); 59 } 60 61 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid) 62 { 63 int idx; 64 65 for_each_vf(bp, idx) 66 if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid) 67 break; 68 return idx; 69 } 70 71 static 72 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid) 73 { 74 u16 idx = (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid); 75 return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL; 76 } 77 78 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf, 79 u8 igu_sb_id, u8 segment, u16 index, u8 op, 80 u8 update) 81 { 82 /* acking a VF sb through the PF - use the GRC */ 83 u32 ctl; 84 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 85 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 86 u32 func_encode = vf->abs_vfid; 87 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id; 88 struct igu_regular cmd_data = {0}; 89 90 cmd_data.sb_id_and_flags = 91 ((index << IGU_REGULAR_SB_INDEX_SHIFT) | 92 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) | 93 (update << IGU_REGULAR_BUPDATE_SHIFT) | 94 (op << IGU_REGULAR_ENABLE_INT_SHIFT)); 95 96 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT | 97 func_encode << IGU_CTRL_REG_FID_SHIFT | 98 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT; 99 100 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 101 cmd_data.sb_id_and_flags, igu_addr_data); 102 REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags); 103 barrier(); 104 105 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 106 ctl, igu_addr_ctl); 107 REG_WR(bp, igu_addr_ctl, ctl); 108 barrier(); 109 } 110 111 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp, 112 struct bnx2x_virtf *vf, 113 bool print_err) 114 { 115 if (!bnx2x_leading_vfq(vf, sp_initialized)) { 116 if (print_err) 117 BNX2X_ERR("Slowpath objects not yet initialized!\n"); 118 else 119 DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n"); 120 return false; 121 } 122 return true; 123 } 124 125 /* VFOP operations states */ 126 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf, 127 struct bnx2x_queue_init_params *init_params, 128 struct bnx2x_queue_setup_params *setup_params, 129 u16 q_idx, u16 sb_idx) 130 { 131 DP(BNX2X_MSG_IOV, 132 "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d", 133 vf->abs_vfid, 134 q_idx, 135 sb_idx, 136 init_params->tx.sb_cq_index, 137 init_params->tx.hc_rate, 138 setup_params->flags, 139 setup_params->txq_params.traffic_type); 140 } 141 142 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf, 143 struct bnx2x_queue_init_params *init_params, 144 struct bnx2x_queue_setup_params *setup_params, 145 u16 q_idx, u16 sb_idx) 146 { 147 struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params; 148 149 DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n" 150 "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n", 151 vf->abs_vfid, 152 q_idx, 153 sb_idx, 154 init_params->rx.sb_cq_index, 155 init_params->rx.hc_rate, 156 setup_params->gen_params.mtu, 157 rxq_params->buf_sz, 158 rxq_params->sge_buf_sz, 159 rxq_params->max_sges_pkt, 160 rxq_params->tpa_agg_sz, 161 setup_params->flags, 162 rxq_params->drop_flags, 163 rxq_params->cache_line_log); 164 } 165 166 void bnx2x_vfop_qctor_prep(struct bnx2x *bp, 167 struct bnx2x_virtf *vf, 168 struct bnx2x_vf_queue *q, 169 struct bnx2x_vf_queue_construct_params *p, 170 unsigned long q_type) 171 { 172 struct bnx2x_queue_init_params *init_p = &p->qstate.params.init; 173 struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup; 174 175 /* INIT */ 176 177 /* Enable host coalescing in the transition to INIT state */ 178 if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags)) 179 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags); 180 181 if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags)) 182 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags); 183 184 /* FW SB ID */ 185 init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx); 186 init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx); 187 188 /* context */ 189 init_p->cxts[0] = q->cxt; 190 191 /* SETUP */ 192 193 /* Setup-op general parameters */ 194 setup_p->gen_params.spcl_id = vf->sp_cl_id; 195 setup_p->gen_params.stat_id = vfq_stat_id(vf, q); 196 setup_p->gen_params.fp_hsi = vf->fp_hsi; 197 198 /* Setup-op flags: 199 * collect statistics, zero statistics, local-switching, security, 200 * OV for Flex10, RSS and MCAST for leading 201 */ 202 if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags)) 203 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags); 204 205 /* for VFs, enable tx switching, bd coherency, and mac address 206 * anti-spoofing 207 */ 208 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags); 209 __set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags); 210 if (vf->spoofchk) 211 __set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags); 212 else 213 __clear_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags); 214 215 /* Setup-op rx parameters */ 216 if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) { 217 struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params; 218 219 rxq_p->cl_qzone_id = vfq_qzone_id(vf, q); 220 rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx); 221 rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid); 222 223 if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags)) 224 rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES; 225 } 226 227 /* Setup-op tx parameters */ 228 if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) { 229 setup_p->txq_params.tss_leading_cl_id = vf->leading_rss; 230 setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx); 231 } 232 } 233 234 static int bnx2x_vf_queue_create(struct bnx2x *bp, 235 struct bnx2x_virtf *vf, int qid, 236 struct bnx2x_vf_queue_construct_params *qctor) 237 { 238 struct bnx2x_queue_state_params *q_params; 239 int rc = 0; 240 241 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 242 243 /* Prepare ramrod information */ 244 q_params = &qctor->qstate; 245 q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj); 246 set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags); 247 248 if (bnx2x_get_q_logical_state(bp, q_params->q_obj) == 249 BNX2X_Q_LOGICAL_STATE_ACTIVE) { 250 DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n"); 251 goto out; 252 } 253 254 /* Run Queue 'construction' ramrods */ 255 q_params->cmd = BNX2X_Q_CMD_INIT; 256 rc = bnx2x_queue_state_change(bp, q_params); 257 if (rc) 258 goto out; 259 260 memcpy(&q_params->params.setup, &qctor->prep_qsetup, 261 sizeof(struct bnx2x_queue_setup_params)); 262 q_params->cmd = BNX2X_Q_CMD_SETUP; 263 rc = bnx2x_queue_state_change(bp, q_params); 264 if (rc) 265 goto out; 266 267 /* enable interrupts */ 268 bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)), 269 USTORM_ID, 0, IGU_INT_ENABLE, 0); 270 out: 271 return rc; 272 } 273 274 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf, 275 int qid) 276 { 277 enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT, 278 BNX2X_Q_CMD_TERMINATE, 279 BNX2X_Q_CMD_CFC_DEL}; 280 struct bnx2x_queue_state_params q_params; 281 int rc, i; 282 283 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 284 285 /* Prepare ramrod information */ 286 memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params)); 287 q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj); 288 set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 289 290 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) == 291 BNX2X_Q_LOGICAL_STATE_STOPPED) { 292 DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n"); 293 goto out; 294 } 295 296 /* Run Queue 'destruction' ramrods */ 297 for (i = 0; i < ARRAY_SIZE(cmds); i++) { 298 q_params.cmd = cmds[i]; 299 rc = bnx2x_queue_state_change(bp, &q_params); 300 if (rc) { 301 BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]); 302 return rc; 303 } 304 } 305 out: 306 /* Clean Context */ 307 if (bnx2x_vfq(vf, qid, cxt)) { 308 bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0; 309 bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0; 310 } 311 312 return 0; 313 } 314 315 static void 316 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid) 317 { 318 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid); 319 if (vf) { 320 /* the first igu entry belonging to VFs of this PF */ 321 if (!BP_VFDB(bp)->first_vf_igu_entry) 322 BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id; 323 324 /* the first igu entry belonging to this VF */ 325 if (!vf_sb_count(vf)) 326 vf->igu_base_id = igu_sb_id; 327 328 ++vf_sb_count(vf); 329 ++vf->sb_count; 330 } 331 BP_VFDB(bp)->vf_sbs_pool++; 332 } 333 334 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf, 335 int qid, bool drv_only, int type) 336 { 337 struct bnx2x_vlan_mac_ramrod_params ramrod; 338 int rc; 339 340 DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid, 341 (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" : 342 (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs"); 343 344 /* Prepare ramrod params */ 345 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params)); 346 if (type == BNX2X_VF_FILTER_VLAN_MAC) { 347 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); 348 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj); 349 } else if (type == BNX2X_VF_FILTER_MAC) { 350 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); 351 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj); 352 } else { 353 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj); 354 } 355 ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL; 356 357 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags); 358 if (drv_only) 359 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags); 360 else 361 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags); 362 363 /* Start deleting */ 364 rc = ramrod.vlan_mac_obj->delete_all(bp, 365 ramrod.vlan_mac_obj, 366 &ramrod.user_req.vlan_mac_flags, 367 &ramrod.ramrod_flags); 368 if (rc) { 369 BNX2X_ERR("Failed to delete all %s\n", 370 (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" : 371 (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs"); 372 return rc; 373 } 374 375 return 0; 376 } 377 378 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp, 379 struct bnx2x_virtf *vf, int qid, 380 struct bnx2x_vf_mac_vlan_filter *filter, 381 bool drv_only) 382 { 383 struct bnx2x_vlan_mac_ramrod_params ramrod; 384 int rc; 385 386 DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n", 387 vf->abs_vfid, filter->add ? "Adding" : "Deleting", 388 (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MAC" : 389 (filter->type == BNX2X_VF_FILTER_MAC) ? "MAC" : "VLAN"); 390 391 /* Prepare ramrod params */ 392 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params)); 393 if (filter->type == BNX2X_VF_FILTER_VLAN_MAC) { 394 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj); 395 ramrod.user_req.u.vlan.vlan = filter->vid; 396 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN); 397 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); 398 } else if (filter->type == BNX2X_VF_FILTER_VLAN) { 399 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj); 400 ramrod.user_req.u.vlan.vlan = filter->vid; 401 } else { 402 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); 403 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj); 404 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN); 405 } 406 ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD : 407 BNX2X_VLAN_MAC_DEL; 408 409 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags); 410 if (drv_only) 411 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags); 412 else 413 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags); 414 415 /* Add/Remove the filter */ 416 rc = bnx2x_config_vlan_mac(bp, &ramrod); 417 if (rc == -EEXIST) 418 return 0; 419 if (rc) { 420 BNX2X_ERR("Failed to %s %s\n", 421 filter->add ? "add" : "delete", 422 (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? 423 "VLAN-MAC" : 424 (filter->type == BNX2X_VF_FILTER_MAC) ? 425 "MAC" : "VLAN"); 426 return rc; 427 } 428 429 filter->applied = true; 430 431 return 0; 432 } 433 434 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf, 435 struct bnx2x_vf_mac_vlan_filters *filters, 436 int qid, bool drv_only) 437 { 438 int rc = 0, i; 439 440 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 441 442 if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) 443 return -EINVAL; 444 445 /* Prepare ramrod params */ 446 for (i = 0; i < filters->count; i++) { 447 rc = bnx2x_vf_mac_vlan_config(bp, vf, qid, 448 &filters->filters[i], drv_only); 449 if (rc) 450 break; 451 } 452 453 /* Rollback if needed */ 454 if (i != filters->count) { 455 BNX2X_ERR("Managed only %d/%d filters - rolling back\n", 456 i, filters->count); 457 while (--i >= 0) { 458 if (!filters->filters[i].applied) 459 continue; 460 filters->filters[i].add = !filters->filters[i].add; 461 bnx2x_vf_mac_vlan_config(bp, vf, qid, 462 &filters->filters[i], 463 drv_only); 464 } 465 } 466 467 /* It's our responsibility to free the filters */ 468 kfree(filters); 469 470 return rc; 471 } 472 473 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid, 474 struct bnx2x_vf_queue_construct_params *qctor) 475 { 476 int rc; 477 478 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 479 480 rc = bnx2x_vf_queue_create(bp, vf, qid, qctor); 481 if (rc) 482 goto op_err; 483 484 /* Schedule the configuration of any pending vlan filters */ 485 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN, 486 BNX2X_MSG_IOV); 487 return 0; 488 op_err: 489 BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc); 490 return rc; 491 } 492 493 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf, 494 int qid) 495 { 496 int rc; 497 498 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 499 500 /* If needed, clean the filtering data base */ 501 if ((qid == LEADING_IDX) && 502 bnx2x_validate_vf_sp_objs(bp, vf, false)) { 503 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, 504 BNX2X_VF_FILTER_VLAN_MAC); 505 if (rc) 506 goto op_err; 507 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, 508 BNX2X_VF_FILTER_VLAN); 509 if (rc) 510 goto op_err; 511 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, 512 BNX2X_VF_FILTER_MAC); 513 if (rc) 514 goto op_err; 515 } 516 517 /* Terminate queue */ 518 if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) { 519 struct bnx2x_queue_state_params qstate; 520 521 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params)); 522 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj); 523 qstate.q_obj->state = BNX2X_Q_STATE_STOPPED; 524 qstate.cmd = BNX2X_Q_CMD_TERMINATE; 525 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags); 526 rc = bnx2x_queue_state_change(bp, &qstate); 527 if (rc) 528 goto op_err; 529 } 530 531 return 0; 532 op_err: 533 BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc); 534 return rc; 535 } 536 537 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf, 538 bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only) 539 { 540 struct bnx2x_mcast_list_elem *mc = NULL; 541 struct bnx2x_mcast_ramrod_params mcast; 542 int rc, i; 543 544 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 545 546 /* Prepare Multicast command */ 547 memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params)); 548 mcast.mcast_obj = &vf->mcast_obj; 549 if (drv_only) 550 set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags); 551 else 552 set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags); 553 if (mc_num) { 554 mc = kcalloc(mc_num, sizeof(struct bnx2x_mcast_list_elem), 555 GFP_KERNEL); 556 if (!mc) { 557 BNX2X_ERR("Cannot Configure multicasts due to lack of memory\n"); 558 return -ENOMEM; 559 } 560 } 561 562 if (mc_num) { 563 INIT_LIST_HEAD(&mcast.mcast_list); 564 for (i = 0; i < mc_num; i++) { 565 mc[i].mac = mcasts[i]; 566 list_add_tail(&mc[i].link, 567 &mcast.mcast_list); 568 } 569 570 /* add new mcasts */ 571 mcast.mcast_list_len = mc_num; 572 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_SET); 573 if (rc) 574 BNX2X_ERR("Failed to set multicasts\n"); 575 } else { 576 /* clear existing mcasts */ 577 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL); 578 if (rc) 579 BNX2X_ERR("Failed to remove multicasts\n"); 580 } 581 582 kfree(mc); 583 584 return rc; 585 } 586 587 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid, 588 struct bnx2x_rx_mode_ramrod_params *ramrod, 589 struct bnx2x_virtf *vf, 590 unsigned long accept_flags) 591 { 592 struct bnx2x_vf_queue *vfq = vfq_get(vf, qid); 593 594 memset(ramrod, 0, sizeof(*ramrod)); 595 ramrod->cid = vfq->cid; 596 ramrod->cl_id = vfq_cl_id(vf, vfq); 597 ramrod->rx_mode_obj = &bp->rx_mode_obj; 598 ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid); 599 ramrod->rx_accept_flags = accept_flags; 600 ramrod->tx_accept_flags = accept_flags; 601 ramrod->pstate = &vf->filter_state; 602 ramrod->state = BNX2X_FILTER_RX_MODE_PENDING; 603 604 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state); 605 set_bit(RAMROD_RX, &ramrod->ramrod_flags); 606 set_bit(RAMROD_TX, &ramrod->ramrod_flags); 607 608 ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2); 609 ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2); 610 } 611 612 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf, 613 int qid, unsigned long accept_flags) 614 { 615 struct bnx2x_rx_mode_ramrod_params ramrod; 616 617 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 618 619 bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags); 620 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags); 621 vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags; 622 return bnx2x_config_rx_mode(bp, &ramrod); 623 } 624 625 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid) 626 { 627 int rc; 628 629 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 630 631 /* Remove all classification configuration for leading queue */ 632 if (qid == LEADING_IDX) { 633 rc = bnx2x_vf_rxmode(bp, vf, qid, 0); 634 if (rc) 635 goto op_err; 636 637 /* Remove filtering if feasible */ 638 if (bnx2x_validate_vf_sp_objs(bp, vf, true)) { 639 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, 640 false, 641 BNX2X_VF_FILTER_VLAN_MAC); 642 if (rc) 643 goto op_err; 644 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, 645 false, 646 BNX2X_VF_FILTER_VLAN); 647 if (rc) 648 goto op_err; 649 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, 650 false, 651 BNX2X_VF_FILTER_MAC); 652 if (rc) 653 goto op_err; 654 rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false); 655 if (rc) 656 goto op_err; 657 } 658 } 659 660 /* Destroy queue */ 661 rc = bnx2x_vf_queue_destroy(bp, vf, qid); 662 if (rc) 663 goto op_err; 664 return rc; 665 op_err: 666 BNX2X_ERR("vf[%d:%d] error: rc %d\n", 667 vf->abs_vfid, qid, rc); 668 return rc; 669 } 670 671 /* VF enable primitives 672 * when pretend is required the caller is responsible 673 * for calling pretend prior to calling these routines 674 */ 675 676 /* internal vf enable - until vf is enabled internally all transactions 677 * are blocked. This routine should always be called last with pretend. 678 */ 679 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable) 680 { 681 REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0); 682 } 683 684 /* clears vf error in all semi blocks */ 685 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid) 686 { 687 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid); 688 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid); 689 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid); 690 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid); 691 } 692 693 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid) 694 { 695 u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5; 696 u32 was_err_reg = 0; 697 698 switch (was_err_group) { 699 case 0: 700 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR; 701 break; 702 case 1: 703 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR; 704 break; 705 case 2: 706 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR; 707 break; 708 case 3: 709 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR; 710 break; 711 } 712 REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f)); 713 } 714 715 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf) 716 { 717 int i; 718 u32 val; 719 720 /* Set VF masks and configuration - pretend */ 721 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 722 723 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 724 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 725 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0); 726 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0); 727 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0); 728 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0); 729 730 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION); 731 val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN); 732 val &= ~IGU_VF_CONF_PARENT_MASK; 733 val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT; 734 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val); 735 736 DP(BNX2X_MSG_IOV, 737 "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n", 738 vf->abs_vfid, val); 739 740 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 741 742 /* iterate over all queues, clear sb consumer */ 743 for (i = 0; i < vf_sb_count(vf); i++) { 744 u8 igu_sb_id = vf_igu_sb(vf, i); 745 746 /* zero prod memory */ 747 REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0); 748 749 /* clear sb state machine */ 750 bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id, 751 false /* VF */); 752 753 /* disable + update */ 754 bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0, 755 IGU_INT_DISABLE, 1); 756 } 757 } 758 759 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid) 760 { 761 /* set the VF-PF association in the FW */ 762 storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp)); 763 storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1); 764 765 /* clear vf errors*/ 766 bnx2x_vf_semi_clear_err(bp, abs_vfid); 767 bnx2x_vf_pglue_clear_err(bp, abs_vfid); 768 769 /* internal vf-enable - pretend */ 770 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid)); 771 DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid); 772 bnx2x_vf_enable_internal(bp, true); 773 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 774 } 775 776 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf) 777 { 778 /* Reset vf in IGU interrupts are still disabled */ 779 bnx2x_vf_igu_reset(bp, vf); 780 781 /* pretend to enable the vf with the PBF */ 782 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 783 REG_WR(bp, PBF_REG_DISABLE_VF, 0); 784 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 785 } 786 787 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid) 788 { 789 struct pci_dev *dev; 790 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid); 791 792 if (!vf) 793 return false; 794 795 dev = pci_get_domain_bus_and_slot(vf->domain, vf->bus, vf->devfn); 796 if (dev) 797 return bnx2x_is_pcie_pending(dev); 798 return false; 799 } 800 801 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid) 802 { 803 /* Verify no pending pci transactions */ 804 if (bnx2x_vf_is_pcie_pending(bp, abs_vfid)) 805 BNX2X_ERR("PCIE Transactions still pending\n"); 806 807 return 0; 808 } 809 810 /* must be called after the number of PF queues and the number of VFs are 811 * both known 812 */ 813 static void 814 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf) 815 { 816 struct vf_pf_resc_request *resc = &vf->alloc_resc; 817 818 /* will be set only during VF-ACQUIRE */ 819 resc->num_rxqs = 0; 820 resc->num_txqs = 0; 821 822 resc->num_mac_filters = VF_MAC_CREDIT_CNT; 823 resc->num_vlan_filters = VF_VLAN_CREDIT_CNT; 824 825 /* no real limitation */ 826 resc->num_mc_filters = 0; 827 828 /* num_sbs already set */ 829 resc->num_sbs = vf->sb_count; 830 } 831 832 /* FLR routines: */ 833 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf) 834 { 835 /* reset the state variables */ 836 bnx2x_iov_static_resc(bp, vf); 837 vf->state = VF_FREE; 838 } 839 840 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf) 841 { 842 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp); 843 844 /* DQ usage counter */ 845 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 846 bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT, 847 "DQ VF usage counter timed out", 848 poll_cnt); 849 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 850 851 /* FW cleanup command - poll for the results */ 852 if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid), 853 poll_cnt)) 854 BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid); 855 856 /* verify TX hw is flushed */ 857 bnx2x_tx_hw_flushed(bp, poll_cnt); 858 } 859 860 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf) 861 { 862 int rc, i; 863 864 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 865 866 /* the cleanup operations are valid if and only if the VF 867 * was first acquired. 868 */ 869 for (i = 0; i < vf_rxq_count(vf); i++) { 870 rc = bnx2x_vf_queue_flr(bp, vf, i); 871 if (rc) 872 goto out; 873 } 874 875 /* remove multicasts */ 876 bnx2x_vf_mcast(bp, vf, NULL, 0, true); 877 878 /* dispatch final cleanup and wait for HW queues to flush */ 879 bnx2x_vf_flr_clnup_hw(bp, vf); 880 881 /* release VF resources */ 882 bnx2x_vf_free_resc(bp, vf); 883 884 vf->malicious = false; 885 886 /* re-open the mailbox */ 887 bnx2x_vf_enable_mbx(bp, vf->abs_vfid); 888 return; 889 out: 890 BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n", 891 vf->abs_vfid, i, rc); 892 } 893 894 static void bnx2x_vf_flr_clnup(struct bnx2x *bp) 895 { 896 struct bnx2x_virtf *vf; 897 int i; 898 899 for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) { 900 /* VF should be RESET & in FLR cleanup states */ 901 if (bnx2x_vf(bp, i, state) != VF_RESET || 902 !bnx2x_vf(bp, i, flr_clnup_stage)) 903 continue; 904 905 DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n", 906 i, BNX2X_NR_VIRTFN(bp)); 907 908 vf = BP_VF(bp, i); 909 910 /* lock the vf pf channel */ 911 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR); 912 913 /* invoke the VF FLR SM */ 914 bnx2x_vf_flr(bp, vf); 915 916 /* mark the VF to be ACKED and continue */ 917 vf->flr_clnup_stage = false; 918 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR); 919 } 920 921 /* Acknowledge the handled VFs. 922 * we are acknowledge all the vfs which an flr was requested for, even 923 * if amongst them there are such that we never opened, since the mcp 924 * will interrupt us immediately again if we only ack some of the bits, 925 * resulting in an endless loop. This can happen for example in KVM 926 * where an 'all ones' flr request is sometimes given by hyper visor 927 */ 928 DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n", 929 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]); 930 for (i = 0; i < FLRD_VFS_DWORDS; i++) 931 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 932 bp->vfdb->flrd_vfs[i]); 933 934 bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0); 935 936 /* clear the acked bits - better yet if the MCP implemented 937 * write to clear semantics 938 */ 939 for (i = 0; i < FLRD_VFS_DWORDS; i++) 940 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0); 941 } 942 943 void bnx2x_vf_handle_flr_event(struct bnx2x *bp) 944 { 945 int i; 946 947 /* Read FLR'd VFs */ 948 for (i = 0; i < FLRD_VFS_DWORDS; i++) 949 bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]); 950 951 DP(BNX2X_MSG_MCP, 952 "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n", 953 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]); 954 955 for_each_vf(bp, i) { 956 struct bnx2x_virtf *vf = BP_VF(bp, i); 957 u32 reset = 0; 958 959 if (vf->abs_vfid < 32) 960 reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid); 961 else 962 reset = bp->vfdb->flrd_vfs[1] & 963 (1 << (vf->abs_vfid - 32)); 964 965 if (reset) { 966 /* set as reset and ready for cleanup */ 967 vf->state = VF_RESET; 968 vf->flr_clnup_stage = true; 969 970 DP(BNX2X_MSG_IOV, 971 "Initiating Final cleanup for VF %d\n", 972 vf->abs_vfid); 973 } 974 } 975 976 /* do the FLR cleanup for all marked VFs*/ 977 bnx2x_vf_flr_clnup(bp); 978 } 979 980 /* IOV global initialization routines */ 981 void bnx2x_iov_init_dq(struct bnx2x *bp) 982 { 983 if (!IS_SRIOV(bp)) 984 return; 985 986 /* Set the DQ such that the CID reflect the abs_vfid */ 987 REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0); 988 REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS)); 989 990 /* Set VFs starting CID. If its > 0 the preceding CIDs are belong to 991 * the PF L2 queues 992 */ 993 REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID); 994 995 /* The VF window size is the log2 of the max number of CIDs per VF */ 996 REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND); 997 998 /* The VF doorbell size 0 - *B, 4 - 128B. We set it here to match 999 * the Pf doorbell size although the 2 are independent. 1000 */ 1001 REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3); 1002 1003 /* No security checks for now - 1004 * configure single rule (out of 16) mask = 0x1, value = 0x0, 1005 * CID range 0 - 0x1ffff 1006 */ 1007 REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1); 1008 REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0); 1009 REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0); 1010 REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff); 1011 1012 /* set the VF doorbell threshold. This threshold represents the amount 1013 * of doorbells allowed in the main DORQ fifo for a specific VF. 1014 */ 1015 REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64); 1016 } 1017 1018 void bnx2x_iov_init_dmae(struct bnx2x *bp) 1019 { 1020 if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV)) 1021 REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0); 1022 } 1023 1024 static int bnx2x_vf_domain(struct bnx2x *bp, int vfid) 1025 { 1026 struct pci_dev *dev = bp->pdev; 1027 1028 return pci_domain_nr(dev->bus); 1029 } 1030 1031 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid) 1032 { 1033 struct pci_dev *dev = bp->pdev; 1034 struct bnx2x_sriov *iov = &bp->vfdb->sriov; 1035 1036 return dev->bus->number + ((dev->devfn + iov->offset + 1037 iov->stride * vfid) >> 8); 1038 } 1039 1040 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid) 1041 { 1042 struct pci_dev *dev = bp->pdev; 1043 struct bnx2x_sriov *iov = &bp->vfdb->sriov; 1044 1045 return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff; 1046 } 1047 1048 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf) 1049 { 1050 int i, n; 1051 struct pci_dev *dev = bp->pdev; 1052 struct bnx2x_sriov *iov = &bp->vfdb->sriov; 1053 1054 for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) { 1055 u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i); 1056 u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i); 1057 1058 size /= iov->total; 1059 vf->bars[n].bar = start + size * vf->abs_vfid; 1060 vf->bars[n].size = size; 1061 } 1062 } 1063 1064 static int 1065 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp) 1066 { 1067 int sb_id; 1068 u32 val; 1069 u8 fid, current_pf = 0; 1070 1071 /* IGU in normal mode - read CAM */ 1072 for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) { 1073 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4); 1074 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) 1075 continue; 1076 fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID); 1077 if (fid & IGU_FID_ENCODE_IS_PF) 1078 current_pf = fid & IGU_FID_PF_NUM_MASK; 1079 else if (current_pf == BP_FUNC(bp)) 1080 bnx2x_vf_set_igu_info(bp, sb_id, 1081 (fid & IGU_FID_VF_NUM_MASK)); 1082 DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n", 1083 ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"), 1084 ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) : 1085 (fid & IGU_FID_VF_NUM_MASK)), sb_id, 1086 GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)); 1087 } 1088 DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool); 1089 return BP_VFDB(bp)->vf_sbs_pool; 1090 } 1091 1092 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp) 1093 { 1094 if (bp->vfdb) { 1095 kfree(bp->vfdb->vfqs); 1096 kfree(bp->vfdb->vfs); 1097 kfree(bp->vfdb); 1098 } 1099 bp->vfdb = NULL; 1100 } 1101 1102 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov) 1103 { 1104 int pos; 1105 struct pci_dev *dev = bp->pdev; 1106 1107 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV); 1108 if (!pos) { 1109 BNX2X_ERR("failed to find SRIOV capability in device\n"); 1110 return -ENODEV; 1111 } 1112 1113 iov->pos = pos; 1114 DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos); 1115 pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl); 1116 pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total); 1117 pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial); 1118 pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset); 1119 pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride); 1120 pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz); 1121 pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap); 1122 pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link); 1123 1124 return 0; 1125 } 1126 1127 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov) 1128 { 1129 u32 val; 1130 1131 /* read the SRIOV capability structure 1132 * The fields can be read via configuration read or 1133 * directly from the device (starting at offset PCICFG_OFFSET) 1134 */ 1135 if (bnx2x_sriov_pci_cfg_info(bp, iov)) 1136 return -ENODEV; 1137 1138 /* get the number of SRIOV bars */ 1139 iov->nres = 0; 1140 1141 /* read the first_vfid */ 1142 val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF); 1143 iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK) 1144 * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp)); 1145 1146 DP(BNX2X_MSG_IOV, 1147 "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n", 1148 BP_FUNC(bp), 1149 iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total, 1150 iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz); 1151 1152 return 0; 1153 } 1154 1155 /* must be called after PF bars are mapped */ 1156 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param, 1157 int num_vfs_param) 1158 { 1159 int err, i; 1160 struct bnx2x_sriov *iov; 1161 struct pci_dev *dev = bp->pdev; 1162 1163 bp->vfdb = NULL; 1164 1165 /* verify is pf */ 1166 if (IS_VF(bp)) 1167 return 0; 1168 1169 /* verify sriov capability is present in configuration space */ 1170 if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV)) 1171 return 0; 1172 1173 /* verify chip revision */ 1174 if (CHIP_IS_E1x(bp)) 1175 return 0; 1176 1177 /* check if SRIOV support is turned off */ 1178 if (!num_vfs_param) 1179 return 0; 1180 1181 /* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */ 1182 if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) { 1183 BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n", 1184 BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID); 1185 return 0; 1186 } 1187 1188 /* SRIOV can be enabled only with MSIX */ 1189 if (int_mode_param == BNX2X_INT_MODE_MSI || 1190 int_mode_param == BNX2X_INT_MODE_INTX) { 1191 BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n"); 1192 return 0; 1193 } 1194 1195 /* verify ari is enabled */ 1196 if (!pci_ari_enabled(bp->pdev->bus)) { 1197 BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n"); 1198 return 0; 1199 } 1200 1201 /* verify igu is in normal mode */ 1202 if (CHIP_INT_MODE_IS_BC(bp)) { 1203 BNX2X_ERR("IGU not normal mode, SRIOV can not be enabled\n"); 1204 return 0; 1205 } 1206 1207 /* allocate the vfs database */ 1208 bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL); 1209 if (!bp->vfdb) { 1210 BNX2X_ERR("failed to allocate vf database\n"); 1211 err = -ENOMEM; 1212 goto failed; 1213 } 1214 1215 /* get the sriov info - Linux already collected all the pertinent 1216 * information, however the sriov structure is for the private use 1217 * of the pci module. Also we want this information regardless 1218 * of the hyper-visor. 1219 */ 1220 iov = &(bp->vfdb->sriov); 1221 err = bnx2x_sriov_info(bp, iov); 1222 if (err) 1223 goto failed; 1224 1225 /* SR-IOV capability was enabled but there are no VFs*/ 1226 if (iov->total == 0) { 1227 err = 0; 1228 goto failed; 1229 } 1230 1231 iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param); 1232 1233 DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n", 1234 num_vfs_param, iov->nr_virtfn); 1235 1236 /* allocate the vf array */ 1237 bp->vfdb->vfs = kcalloc(BNX2X_NR_VIRTFN(bp), 1238 sizeof(struct bnx2x_virtf), 1239 GFP_KERNEL); 1240 if (!bp->vfdb->vfs) { 1241 BNX2X_ERR("failed to allocate vf array\n"); 1242 err = -ENOMEM; 1243 goto failed; 1244 } 1245 1246 /* Initial VF init - index and abs_vfid - nr_virtfn must be set */ 1247 for_each_vf(bp, i) { 1248 bnx2x_vf(bp, i, index) = i; 1249 bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i; 1250 bnx2x_vf(bp, i, state) = VF_FREE; 1251 mutex_init(&bnx2x_vf(bp, i, op_mutex)); 1252 bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE; 1253 /* enable spoofchk by default */ 1254 bnx2x_vf(bp, i, spoofchk) = 1; 1255 } 1256 1257 /* re-read the IGU CAM for VFs - index and abs_vfid must be set */ 1258 if (!bnx2x_get_vf_igu_cam_info(bp)) { 1259 BNX2X_ERR("No entries in IGU CAM for vfs\n"); 1260 err = -EINVAL; 1261 goto failed; 1262 } 1263 1264 /* allocate the queue arrays for all VFs */ 1265 bp->vfdb->vfqs = kcalloc(BNX2X_MAX_NUM_VF_QUEUES, 1266 sizeof(struct bnx2x_vf_queue), 1267 GFP_KERNEL); 1268 1269 if (!bp->vfdb->vfqs) { 1270 BNX2X_ERR("failed to allocate vf queue array\n"); 1271 err = -ENOMEM; 1272 goto failed; 1273 } 1274 1275 /* Prepare the VFs event synchronization mechanism */ 1276 mutex_init(&bp->vfdb->event_mutex); 1277 1278 mutex_init(&bp->vfdb->bulletin_mutex); 1279 1280 if (SHMEM2_HAS(bp, sriov_switch_mode)) 1281 SHMEM2_WR(bp, sriov_switch_mode, SRIOV_SWITCH_MODE_VEB); 1282 1283 return 0; 1284 failed: 1285 DP(BNX2X_MSG_IOV, "Failed err=%d\n", err); 1286 __bnx2x_iov_free_vfdb(bp); 1287 return err; 1288 } 1289 1290 void bnx2x_iov_remove_one(struct bnx2x *bp) 1291 { 1292 int vf_idx; 1293 1294 /* if SRIOV is not enabled there's nothing to do */ 1295 if (!IS_SRIOV(bp)) 1296 return; 1297 1298 bnx2x_disable_sriov(bp); 1299 1300 /* disable access to all VFs */ 1301 for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) { 1302 bnx2x_pretend_func(bp, 1303 HW_VF_HANDLE(bp, 1304 bp->vfdb->sriov.first_vf_in_pf + 1305 vf_idx)); 1306 DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n", 1307 bp->vfdb->sriov.first_vf_in_pf + vf_idx); 1308 bnx2x_vf_enable_internal(bp, 0); 1309 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 1310 } 1311 1312 /* free vf database */ 1313 __bnx2x_iov_free_vfdb(bp); 1314 } 1315 1316 void bnx2x_iov_free_mem(struct bnx2x *bp) 1317 { 1318 int i; 1319 1320 if (!IS_SRIOV(bp)) 1321 return; 1322 1323 /* free vfs hw contexts */ 1324 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) { 1325 struct hw_dma *cxt = &bp->vfdb->context[i]; 1326 BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size); 1327 } 1328 1329 BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr, 1330 BP_VFDB(bp)->sp_dma.mapping, 1331 BP_VFDB(bp)->sp_dma.size); 1332 1333 BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr, 1334 BP_VF_MBX_DMA(bp)->mapping, 1335 BP_VF_MBX_DMA(bp)->size); 1336 1337 BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr, 1338 BP_VF_BULLETIN_DMA(bp)->mapping, 1339 BP_VF_BULLETIN_DMA(bp)->size); 1340 } 1341 1342 int bnx2x_iov_alloc_mem(struct bnx2x *bp) 1343 { 1344 size_t tot_size; 1345 int i, rc = 0; 1346 1347 if (!IS_SRIOV(bp)) 1348 return rc; 1349 1350 /* allocate vfs hw contexts */ 1351 tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) * 1352 BNX2X_CIDS_PER_VF * sizeof(union cdu_context); 1353 1354 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) { 1355 struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i); 1356 cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ); 1357 1358 if (cxt->size) { 1359 cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size); 1360 if (!cxt->addr) 1361 goto alloc_mem_err; 1362 } else { 1363 cxt->addr = NULL; 1364 cxt->mapping = 0; 1365 } 1366 tot_size -= cxt->size; 1367 } 1368 1369 /* allocate vfs ramrods dma memory - client_init and set_mac */ 1370 tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp); 1371 BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping, 1372 tot_size); 1373 if (!BP_VFDB(bp)->sp_dma.addr) 1374 goto alloc_mem_err; 1375 BP_VFDB(bp)->sp_dma.size = tot_size; 1376 1377 /* allocate mailboxes */ 1378 tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE; 1379 BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping, 1380 tot_size); 1381 if (!BP_VF_MBX_DMA(bp)->addr) 1382 goto alloc_mem_err; 1383 1384 BP_VF_MBX_DMA(bp)->size = tot_size; 1385 1386 /* allocate local bulletin boards */ 1387 tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE; 1388 BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping, 1389 tot_size); 1390 if (!BP_VF_BULLETIN_DMA(bp)->addr) 1391 goto alloc_mem_err; 1392 1393 BP_VF_BULLETIN_DMA(bp)->size = tot_size; 1394 1395 return 0; 1396 1397 alloc_mem_err: 1398 return -ENOMEM; 1399 } 1400 1401 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf, 1402 struct bnx2x_vf_queue *q) 1403 { 1404 u8 cl_id = vfq_cl_id(vf, q); 1405 u8 func_id = FW_VF_HANDLE(vf->abs_vfid); 1406 unsigned long q_type = 0; 1407 1408 set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 1409 set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 1410 1411 /* Queue State object */ 1412 bnx2x_init_queue_obj(bp, &q->sp_obj, 1413 cl_id, &q->cid, 1, func_id, 1414 bnx2x_vf_sp(bp, vf, q_data), 1415 bnx2x_vf_sp_map(bp, vf, q_data), 1416 q_type); 1417 1418 /* sp indication is set only when vlan/mac/etc. are initialized */ 1419 q->sp_initialized = false; 1420 1421 DP(BNX2X_MSG_IOV, 1422 "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n", 1423 vf->abs_vfid, q->sp_obj.func_id, q->cid); 1424 } 1425 1426 static int bnx2x_max_speed_cap(struct bnx2x *bp) 1427 { 1428 u32 supported = bp->port.supported[bnx2x_get_link_cfg_idx(bp)]; 1429 1430 if (supported & 1431 (SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full)) 1432 return 20000; 1433 1434 return 10000; /* assume lowest supported speed is 10G */ 1435 } 1436 1437 int bnx2x_iov_link_update_vf(struct bnx2x *bp, int idx) 1438 { 1439 struct bnx2x_link_report_data *state = &bp->last_reported_link; 1440 struct pf_vf_bulletin_content *bulletin; 1441 struct bnx2x_virtf *vf; 1442 bool update = true; 1443 int rc = 0; 1444 1445 /* sanity and init */ 1446 rc = bnx2x_vf_op_prep(bp, idx, &vf, &bulletin, false); 1447 if (rc) 1448 return rc; 1449 1450 mutex_lock(&bp->vfdb->bulletin_mutex); 1451 1452 if (vf->link_cfg == IFLA_VF_LINK_STATE_AUTO) { 1453 bulletin->valid_bitmap |= 1 << LINK_VALID; 1454 1455 bulletin->link_speed = state->line_speed; 1456 bulletin->link_flags = 0; 1457 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1458 &state->link_report_flags)) 1459 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN; 1460 if (test_bit(BNX2X_LINK_REPORT_FD, 1461 &state->link_report_flags)) 1462 bulletin->link_flags |= VFPF_LINK_REPORT_FULL_DUPLEX; 1463 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1464 &state->link_report_flags)) 1465 bulletin->link_flags |= VFPF_LINK_REPORT_RX_FC_ON; 1466 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1467 &state->link_report_flags)) 1468 bulletin->link_flags |= VFPF_LINK_REPORT_TX_FC_ON; 1469 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_DISABLE && 1470 !(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) { 1471 bulletin->valid_bitmap |= 1 << LINK_VALID; 1472 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN; 1473 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_ENABLE && 1474 (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) { 1475 bulletin->valid_bitmap |= 1 << LINK_VALID; 1476 bulletin->link_speed = bnx2x_max_speed_cap(bp); 1477 bulletin->link_flags &= ~VFPF_LINK_REPORT_LINK_DOWN; 1478 } else { 1479 update = false; 1480 } 1481 1482 if (update) { 1483 DP(NETIF_MSG_LINK | BNX2X_MSG_IOV, 1484 "vf %d mode %u speed %d flags %x\n", idx, 1485 vf->link_cfg, bulletin->link_speed, bulletin->link_flags); 1486 1487 /* Post update on VF's bulletin board */ 1488 rc = bnx2x_post_vf_bulletin(bp, idx); 1489 if (rc) { 1490 BNX2X_ERR("failed to update VF[%d] bulletin\n", idx); 1491 goto out; 1492 } 1493 } 1494 1495 out: 1496 mutex_unlock(&bp->vfdb->bulletin_mutex); 1497 return rc; 1498 } 1499 1500 int bnx2x_set_vf_link_state(struct net_device *dev, int idx, int link_state) 1501 { 1502 struct bnx2x *bp = netdev_priv(dev); 1503 struct bnx2x_virtf *vf = BP_VF(bp, idx); 1504 1505 if (!vf) 1506 return -EINVAL; 1507 1508 if (vf->link_cfg == link_state) 1509 return 0; /* nothing todo */ 1510 1511 vf->link_cfg = link_state; 1512 1513 return bnx2x_iov_link_update_vf(bp, idx); 1514 } 1515 1516 void bnx2x_iov_link_update(struct bnx2x *bp) 1517 { 1518 int vfid; 1519 1520 if (!IS_SRIOV(bp)) 1521 return; 1522 1523 for_each_vf(bp, vfid) 1524 bnx2x_iov_link_update_vf(bp, vfid); 1525 } 1526 1527 /* called by bnx2x_nic_load */ 1528 int bnx2x_iov_nic_init(struct bnx2x *bp) 1529 { 1530 int vfid; 1531 1532 if (!IS_SRIOV(bp)) { 1533 DP(BNX2X_MSG_IOV, "vfdb was not allocated\n"); 1534 return 0; 1535 } 1536 1537 DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn); 1538 1539 /* let FLR complete ... */ 1540 msleep(100); 1541 1542 /* initialize vf database */ 1543 for_each_vf(bp, vfid) { 1544 struct bnx2x_virtf *vf = BP_VF(bp, vfid); 1545 1546 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) * 1547 BNX2X_CIDS_PER_VF; 1548 1549 union cdu_context *base_cxt = (union cdu_context *) 1550 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr + 1551 (base_vf_cid & (ILT_PAGE_CIDS-1)); 1552 1553 DP(BNX2X_MSG_IOV, 1554 "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n", 1555 vf->abs_vfid, vf_sb_count(vf), base_vf_cid, 1556 BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt); 1557 1558 /* init statically provisioned resources */ 1559 bnx2x_iov_static_resc(bp, vf); 1560 1561 /* queues are initialized during VF-ACQUIRE */ 1562 vf->filter_state = 0; 1563 vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id); 1564 1565 bnx2x_init_credit_pool(&vf->vf_vlans_pool, 0, 1566 vf_vlan_rules_cnt(vf)); 1567 bnx2x_init_credit_pool(&vf->vf_macs_pool, 0, 1568 vf_mac_rules_cnt(vf)); 1569 1570 /* init mcast object - This object will be re-initialized 1571 * during VF-ACQUIRE with the proper cl_id and cid. 1572 * It needs to be initialized here so that it can be safely 1573 * handled by a subsequent FLR flow. 1574 */ 1575 bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF, 1576 0xFF, 0xFF, 0xFF, 1577 bnx2x_vf_sp(bp, vf, mcast_rdata), 1578 bnx2x_vf_sp_map(bp, vf, mcast_rdata), 1579 BNX2X_FILTER_MCAST_PENDING, 1580 &vf->filter_state, 1581 BNX2X_OBJ_TYPE_RX_TX); 1582 1583 /* set the mailbox message addresses */ 1584 BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *) 1585 (((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid * 1586 MBX_MSG_ALIGNED_SIZE); 1587 1588 BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping + 1589 vfid * MBX_MSG_ALIGNED_SIZE; 1590 1591 /* Enable vf mailbox */ 1592 bnx2x_vf_enable_mbx(bp, vf->abs_vfid); 1593 } 1594 1595 /* Final VF init */ 1596 for_each_vf(bp, vfid) { 1597 struct bnx2x_virtf *vf = BP_VF(bp, vfid); 1598 1599 /* fill in the BDF and bars */ 1600 vf->domain = bnx2x_vf_domain(bp, vfid); 1601 vf->bus = bnx2x_vf_bus(bp, vfid); 1602 vf->devfn = bnx2x_vf_devfn(bp, vfid); 1603 bnx2x_vf_set_bars(bp, vf); 1604 1605 DP(BNX2X_MSG_IOV, 1606 "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n", 1607 vf->abs_vfid, vf->bus, vf->devfn, 1608 (unsigned)vf->bars[0].bar, vf->bars[0].size, 1609 (unsigned)vf->bars[1].bar, vf->bars[1].size, 1610 (unsigned)vf->bars[2].bar, vf->bars[2].size); 1611 } 1612 1613 return 0; 1614 } 1615 1616 /* called by bnx2x_chip_cleanup */ 1617 int bnx2x_iov_chip_cleanup(struct bnx2x *bp) 1618 { 1619 int i; 1620 1621 if (!IS_SRIOV(bp)) 1622 return 0; 1623 1624 /* release all the VFs */ 1625 for_each_vf(bp, i) 1626 bnx2x_vf_release(bp, BP_VF(bp, i)); 1627 1628 return 0; 1629 } 1630 1631 /* called by bnx2x_init_hw_func, returns the next ilt line */ 1632 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line) 1633 { 1634 int i; 1635 struct bnx2x_ilt *ilt = BP_ILT(bp); 1636 1637 if (!IS_SRIOV(bp)) 1638 return line; 1639 1640 /* set vfs ilt lines */ 1641 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) { 1642 struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i); 1643 1644 ilt->lines[line+i].page = hw_cxt->addr; 1645 ilt->lines[line+i].page_mapping = hw_cxt->mapping; 1646 ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */ 1647 } 1648 return line + i; 1649 } 1650 1651 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid) 1652 { 1653 return ((cid >= BNX2X_FIRST_VF_CID) && 1654 ((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS)); 1655 } 1656 1657 static 1658 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp, 1659 struct bnx2x_vf_queue *vfq, 1660 union event_ring_elem *elem) 1661 { 1662 unsigned long ramrod_flags = 0; 1663 int rc = 0; 1664 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo); 1665 1666 /* Always push next commands out, don't wait here */ 1667 set_bit(RAMROD_CONT, &ramrod_flags); 1668 1669 switch (echo >> BNX2X_SWCID_SHIFT) { 1670 case BNX2X_FILTER_MAC_PENDING: 1671 rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem, 1672 &ramrod_flags); 1673 break; 1674 case BNX2X_FILTER_VLAN_PENDING: 1675 rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem, 1676 &ramrod_flags); 1677 break; 1678 default: 1679 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo); 1680 return; 1681 } 1682 if (rc < 0) 1683 BNX2X_ERR("Failed to schedule new commands: %d\n", rc); 1684 else if (rc > 0) 1685 DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n"); 1686 } 1687 1688 static 1689 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp, 1690 struct bnx2x_virtf *vf) 1691 { 1692 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 1693 int rc; 1694 1695 rparam.mcast_obj = &vf->mcast_obj; 1696 vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw); 1697 1698 /* If there are pending mcast commands - send them */ 1699 if (vf->mcast_obj.check_pending(&vf->mcast_obj)) { 1700 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 1701 if (rc < 0) 1702 BNX2X_ERR("Failed to send pending mcast commands: %d\n", 1703 rc); 1704 } 1705 } 1706 1707 static 1708 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp, 1709 struct bnx2x_virtf *vf) 1710 { 1711 smp_mb__before_atomic(); 1712 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state); 1713 smp_mb__after_atomic(); 1714 } 1715 1716 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp, 1717 struct bnx2x_virtf *vf) 1718 { 1719 vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw); 1720 } 1721 1722 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem) 1723 { 1724 struct bnx2x_virtf *vf; 1725 int qidx = 0, abs_vfid; 1726 u8 opcode; 1727 u16 cid = 0xffff; 1728 1729 if (!IS_SRIOV(bp)) 1730 return 1; 1731 1732 /* first get the cid - the only events we handle here are cfc-delete 1733 * and set-mac completion 1734 */ 1735 opcode = elem->message.opcode; 1736 1737 switch (opcode) { 1738 case EVENT_RING_OPCODE_CFC_DEL: 1739 cid = SW_CID(elem->message.data.cfc_del_event.cid); 1740 DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid); 1741 break; 1742 case EVENT_RING_OPCODE_CLASSIFICATION_RULES: 1743 case EVENT_RING_OPCODE_MULTICAST_RULES: 1744 case EVENT_RING_OPCODE_FILTERS_RULES: 1745 case EVENT_RING_OPCODE_RSS_UPDATE_RULES: 1746 cid = SW_CID(elem->message.data.eth_event.echo); 1747 DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid); 1748 break; 1749 case EVENT_RING_OPCODE_VF_FLR: 1750 abs_vfid = elem->message.data.vf_flr_event.vf_id; 1751 DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n", 1752 abs_vfid); 1753 goto get_vf; 1754 case EVENT_RING_OPCODE_MALICIOUS_VF: 1755 abs_vfid = elem->message.data.malicious_vf_event.vf_id; 1756 BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n", 1757 abs_vfid, 1758 elem->message.data.malicious_vf_event.err_id); 1759 goto get_vf; 1760 default: 1761 return 1; 1762 } 1763 1764 /* check if the cid is the VF range */ 1765 if (!bnx2x_iov_is_vf_cid(bp, cid)) { 1766 DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid); 1767 return 1; 1768 } 1769 1770 /* extract vf and rxq index from vf_cid - relies on the following: 1771 * 1. vfid on cid reflects the true abs_vfid 1772 * 2. The max number of VFs (per path) is 64 1773 */ 1774 qidx = cid & ((1 << BNX2X_VF_CID_WND)-1); 1775 abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1); 1776 get_vf: 1777 vf = bnx2x_vf_by_abs_fid(bp, abs_vfid); 1778 1779 if (!vf) { 1780 BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n", 1781 cid, abs_vfid); 1782 return 0; 1783 } 1784 1785 switch (opcode) { 1786 case EVENT_RING_OPCODE_CFC_DEL: 1787 DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n", 1788 vf->abs_vfid, qidx); 1789 vfq_get(vf, qidx)->sp_obj.complete_cmd(bp, 1790 &vfq_get(vf, 1791 qidx)->sp_obj, 1792 BNX2X_Q_CMD_CFC_DEL); 1793 break; 1794 case EVENT_RING_OPCODE_CLASSIFICATION_RULES: 1795 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n", 1796 vf->abs_vfid, qidx); 1797 bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem); 1798 break; 1799 case EVENT_RING_OPCODE_MULTICAST_RULES: 1800 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n", 1801 vf->abs_vfid, qidx); 1802 bnx2x_vf_handle_mcast_eqe(bp, vf); 1803 break; 1804 case EVENT_RING_OPCODE_FILTERS_RULES: 1805 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n", 1806 vf->abs_vfid, qidx); 1807 bnx2x_vf_handle_filters_eqe(bp, vf); 1808 break; 1809 case EVENT_RING_OPCODE_RSS_UPDATE_RULES: 1810 DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n", 1811 vf->abs_vfid, qidx); 1812 bnx2x_vf_handle_rss_update_eqe(bp, vf); 1813 fallthrough; 1814 case EVENT_RING_OPCODE_VF_FLR: 1815 /* Do nothing for now */ 1816 return 0; 1817 case EVENT_RING_OPCODE_MALICIOUS_VF: 1818 vf->malicious = true; 1819 return 0; 1820 } 1821 1822 return 0; 1823 } 1824 1825 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid) 1826 { 1827 /* extract the vf from vf_cid - relies on the following: 1828 * 1. vfid on cid reflects the true abs_vfid 1829 * 2. The max number of VFs (per path) is 64 1830 */ 1831 int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1); 1832 return bnx2x_vf_by_abs_fid(bp, abs_vfid); 1833 } 1834 1835 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid, 1836 struct bnx2x_queue_sp_obj **q_obj) 1837 { 1838 struct bnx2x_virtf *vf; 1839 1840 if (!IS_SRIOV(bp)) 1841 return; 1842 1843 vf = bnx2x_vf_by_cid(bp, vf_cid); 1844 1845 if (vf) { 1846 /* extract queue index from vf_cid - relies on the following: 1847 * 1. vfid on cid reflects the true abs_vfid 1848 * 2. The max number of VFs (per path) is 64 1849 */ 1850 int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1); 1851 *q_obj = &bnx2x_vfq(vf, q_index, sp_obj); 1852 } else { 1853 BNX2X_ERR("No vf matching cid %d\n", vf_cid); 1854 } 1855 } 1856 1857 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp) 1858 { 1859 int i; 1860 int first_queue_query_index, num_queues_req; 1861 struct stats_query_entry *cur_query_entry; 1862 u8 stats_count = 0; 1863 bool is_fcoe = false; 1864 1865 if (!IS_SRIOV(bp)) 1866 return; 1867 1868 if (!NO_FCOE(bp)) 1869 is_fcoe = true; 1870 1871 /* fcoe adds one global request and one queue request */ 1872 num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe; 1873 first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX - 1874 (is_fcoe ? 0 : 1); 1875 1876 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1877 "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n", 1878 BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index, 1879 first_queue_query_index + num_queues_req); 1880 1881 cur_query_entry = &bp->fw_stats_req-> 1882 query[first_queue_query_index + num_queues_req]; 1883 1884 for_each_vf(bp, i) { 1885 int j; 1886 struct bnx2x_virtf *vf = BP_VF(bp, i); 1887 1888 if (vf->state != VF_ENABLED) { 1889 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1890 "vf %d not enabled so no stats for it\n", 1891 vf->abs_vfid); 1892 continue; 1893 } 1894 1895 if (vf->malicious) { 1896 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1897 "vf %d malicious so no stats for it\n", 1898 vf->abs_vfid); 1899 continue; 1900 } 1901 1902 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1903 "add addresses for vf %d\n", vf->abs_vfid); 1904 for_each_vfq(vf, j) { 1905 struct bnx2x_vf_queue *rxq = vfq_get(vf, j); 1906 1907 dma_addr_t q_stats_addr = 1908 vf->fw_stat_map + j * vf->stats_stride; 1909 1910 /* collect stats fro active queues only */ 1911 if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) == 1912 BNX2X_Q_LOGICAL_STATE_STOPPED) 1913 continue; 1914 1915 /* create stats query entry for this queue */ 1916 cur_query_entry->kind = STATS_TYPE_QUEUE; 1917 cur_query_entry->index = vfq_stat_id(vf, rxq); 1918 cur_query_entry->funcID = 1919 cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid)); 1920 cur_query_entry->address.hi = 1921 cpu_to_le32(U64_HI(q_stats_addr)); 1922 cur_query_entry->address.lo = 1923 cpu_to_le32(U64_LO(q_stats_addr)); 1924 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1925 "added address %x %x for vf %d queue %d client %d\n", 1926 cur_query_entry->address.hi, 1927 cur_query_entry->address.lo, 1928 cur_query_entry->funcID, 1929 j, cur_query_entry->index); 1930 cur_query_entry++; 1931 stats_count++; 1932 1933 /* all stats are coalesced to the leading queue */ 1934 if (vf->cfg_flags & VF_CFG_STATS_COALESCE) 1935 break; 1936 } 1937 } 1938 bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count; 1939 } 1940 1941 /* VF API helpers */ 1942 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid, 1943 u8 enable) 1944 { 1945 u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4; 1946 u32 val = enable ? (abs_vfid | (1 << 6)) : 0; 1947 1948 REG_WR(bp, reg, val); 1949 } 1950 1951 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf) 1952 { 1953 int i; 1954 1955 for_each_vfq(vf, i) 1956 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid, 1957 vfq_qzone_id(vf, vfq_get(vf, i)), false); 1958 } 1959 1960 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf) 1961 { 1962 u32 val; 1963 1964 /* clear the VF configuration - pretend */ 1965 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 1966 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION); 1967 val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN | 1968 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK); 1969 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val); 1970 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 1971 } 1972 1973 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf) 1974 { 1975 return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF), 1976 BNX2X_VF_MAX_QUEUES); 1977 } 1978 1979 static 1980 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf, 1981 struct vf_pf_resc_request *req_resc) 1982 { 1983 u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf); 1984 u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf); 1985 1986 return ((req_resc->num_rxqs <= rxq_cnt) && 1987 (req_resc->num_txqs <= txq_cnt) && 1988 (req_resc->num_sbs <= vf_sb_count(vf)) && 1989 (req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) && 1990 (req_resc->num_vlan_filters <= vf_vlan_rules_cnt(vf))); 1991 } 1992 1993 /* CORE VF API */ 1994 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf, 1995 struct vf_pf_resc_request *resc) 1996 { 1997 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) * 1998 BNX2X_CIDS_PER_VF; 1999 2000 union cdu_context *base_cxt = (union cdu_context *) 2001 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr + 2002 (base_vf_cid & (ILT_PAGE_CIDS-1)); 2003 int i; 2004 2005 /* if state is 'acquired' the VF was not released or FLR'd, in 2006 * this case the returned resources match the acquired already 2007 * acquired resources. Verify that the requested numbers do 2008 * not exceed the already acquired numbers. 2009 */ 2010 if (vf->state == VF_ACQUIRED) { 2011 DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n", 2012 vf->abs_vfid); 2013 2014 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) { 2015 BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n", 2016 vf->abs_vfid); 2017 return -EINVAL; 2018 } 2019 return 0; 2020 } 2021 2022 /* Otherwise vf state must be 'free' or 'reset' */ 2023 if (vf->state != VF_FREE && vf->state != VF_RESET) { 2024 BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n", 2025 vf->abs_vfid, vf->state); 2026 return -EINVAL; 2027 } 2028 2029 /* static allocation: 2030 * the global maximum number are fixed per VF. Fail the request if 2031 * requested number exceed these globals 2032 */ 2033 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) { 2034 DP(BNX2X_MSG_IOV, 2035 "cannot fulfill vf resource request. Placing maximal available values in response\n"); 2036 /* set the max resource in the vf */ 2037 return -ENOMEM; 2038 } 2039 2040 /* Set resources counters - 0 request means max available */ 2041 vf_sb_count(vf) = resc->num_sbs; 2042 vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf); 2043 vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf); 2044 2045 DP(BNX2X_MSG_IOV, 2046 "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n", 2047 vf_sb_count(vf), vf_rxq_count(vf), 2048 vf_txq_count(vf), vf_mac_rules_cnt(vf), 2049 vf_vlan_rules_cnt(vf)); 2050 2051 /* Initialize the queues */ 2052 if (!vf->vfqs) { 2053 DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n"); 2054 return -EINVAL; 2055 } 2056 2057 for_each_vfq(vf, i) { 2058 struct bnx2x_vf_queue *q = vfq_get(vf, i); 2059 2060 if (!q) { 2061 BNX2X_ERR("q number %d was not allocated\n", i); 2062 return -EINVAL; 2063 } 2064 2065 q->index = i; 2066 q->cxt = &((base_cxt + i)->eth); 2067 q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i; 2068 2069 DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n", 2070 vf->abs_vfid, i, q->index, q->cid, q->cxt); 2071 2072 /* init SP objects */ 2073 bnx2x_vfq_init(bp, vf, q); 2074 } 2075 vf->state = VF_ACQUIRED; 2076 return 0; 2077 } 2078 2079 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map) 2080 { 2081 struct bnx2x_func_init_params func_init = {0}; 2082 int i; 2083 2084 /* the sb resources are initialized at this point, do the 2085 * FW/HW initializations 2086 */ 2087 for_each_vf_sb(vf, i) 2088 bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true, 2089 vf_igu_sb(vf, i), vf_igu_sb(vf, i)); 2090 2091 /* Sanity checks */ 2092 if (vf->state != VF_ACQUIRED) { 2093 DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n", 2094 vf->abs_vfid, vf->state); 2095 return -EINVAL; 2096 } 2097 2098 /* let FLR complete ... */ 2099 msleep(100); 2100 2101 /* FLR cleanup epilogue */ 2102 if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid)) 2103 return -EBUSY; 2104 2105 /* reset IGU VF statistics: MSIX */ 2106 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0); 2107 2108 /* function setup */ 2109 func_init.pf_id = BP_FUNC(bp); 2110 func_init.func_id = FW_VF_HANDLE(vf->abs_vfid); 2111 bnx2x_func_init(bp, &func_init); 2112 2113 /* Enable the vf */ 2114 bnx2x_vf_enable_access(bp, vf->abs_vfid); 2115 bnx2x_vf_enable_traffic(bp, vf); 2116 2117 /* queue protection table */ 2118 for_each_vfq(vf, i) 2119 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid, 2120 vfq_qzone_id(vf, vfq_get(vf, i)), true); 2121 2122 vf->state = VF_ENABLED; 2123 2124 /* update vf bulletin board */ 2125 bnx2x_post_vf_bulletin(bp, vf->index); 2126 2127 return 0; 2128 } 2129 2130 struct set_vf_state_cookie { 2131 struct bnx2x_virtf *vf; 2132 u8 state; 2133 }; 2134 2135 static void bnx2x_set_vf_state(void *cookie) 2136 { 2137 struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie; 2138 2139 p->vf->state = p->state; 2140 } 2141 2142 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf) 2143 { 2144 int rc = 0, i; 2145 2146 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 2147 2148 /* Close all queues */ 2149 for (i = 0; i < vf_rxq_count(vf); i++) { 2150 rc = bnx2x_vf_queue_teardown(bp, vf, i); 2151 if (rc) 2152 goto op_err; 2153 } 2154 2155 /* disable the interrupts */ 2156 DP(BNX2X_MSG_IOV, "disabling igu\n"); 2157 bnx2x_vf_igu_disable(bp, vf); 2158 2159 /* disable the VF */ 2160 DP(BNX2X_MSG_IOV, "clearing qtbl\n"); 2161 bnx2x_vf_clr_qtbl(bp, vf); 2162 2163 /* need to make sure there are no outstanding stats ramrods which may 2164 * cause the device to access the VF's stats buffer which it will free 2165 * as soon as we return from the close flow. 2166 */ 2167 { 2168 struct set_vf_state_cookie cookie; 2169 2170 cookie.vf = vf; 2171 cookie.state = VF_ACQUIRED; 2172 rc = bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie); 2173 if (rc) 2174 goto op_err; 2175 } 2176 2177 DP(BNX2X_MSG_IOV, "set state to acquired\n"); 2178 2179 return 0; 2180 op_err: 2181 BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc); 2182 return rc; 2183 } 2184 2185 /* VF release can be called either: 1. The VF was acquired but 2186 * not enabled 2. the vf was enabled or in the process of being 2187 * enabled 2188 */ 2189 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf) 2190 { 2191 int rc; 2192 2193 DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid, 2194 vf->state == VF_FREE ? "Free" : 2195 vf->state == VF_ACQUIRED ? "Acquired" : 2196 vf->state == VF_ENABLED ? "Enabled" : 2197 vf->state == VF_RESET ? "Reset" : 2198 "Unknown"); 2199 2200 switch (vf->state) { 2201 case VF_ENABLED: 2202 rc = bnx2x_vf_close(bp, vf); 2203 if (rc) 2204 goto op_err; 2205 fallthrough; /* to release resources */ 2206 case VF_ACQUIRED: 2207 DP(BNX2X_MSG_IOV, "about to free resources\n"); 2208 bnx2x_vf_free_resc(bp, vf); 2209 break; 2210 2211 case VF_FREE: 2212 case VF_RESET: 2213 default: 2214 break; 2215 } 2216 return 0; 2217 op_err: 2218 BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc); 2219 return rc; 2220 } 2221 2222 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf, 2223 struct bnx2x_config_rss_params *rss) 2224 { 2225 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 2226 set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags); 2227 return bnx2x_config_rss(bp, rss); 2228 } 2229 2230 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf, 2231 struct vfpf_tpa_tlv *tlv, 2232 struct bnx2x_queue_update_tpa_params *params) 2233 { 2234 aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr; 2235 struct bnx2x_queue_state_params qstate; 2236 int qid, rc = 0; 2237 2238 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 2239 2240 /* Set ramrod params */ 2241 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params)); 2242 memcpy(&qstate.params.update_tpa, params, 2243 sizeof(struct bnx2x_queue_update_tpa_params)); 2244 qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA; 2245 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags); 2246 2247 for (qid = 0; qid < vf_rxq_count(vf); qid++) { 2248 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj); 2249 qstate.params.update_tpa.sge_map = sge_addr[qid]; 2250 DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n", 2251 vf->abs_vfid, qid, U64_HI(sge_addr[qid]), 2252 U64_LO(sge_addr[qid])); 2253 rc = bnx2x_queue_state_change(bp, &qstate); 2254 if (rc) { 2255 BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n", 2256 U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]), 2257 vf->abs_vfid, qid); 2258 return rc; 2259 } 2260 } 2261 2262 return rc; 2263 } 2264 2265 /* VF release ~ VF close + VF release-resources 2266 * Release is the ultimate SW shutdown and is called whenever an 2267 * irrecoverable error is encountered. 2268 */ 2269 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf) 2270 { 2271 int rc; 2272 2273 DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid); 2274 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF); 2275 2276 rc = bnx2x_vf_free(bp, vf); 2277 if (rc) 2278 WARN(rc, 2279 "VF[%d] Failed to allocate resources for release op- rc=%d\n", 2280 vf->abs_vfid, rc); 2281 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF); 2282 return rc; 2283 } 2284 2285 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf, 2286 enum channel_tlvs tlv) 2287 { 2288 /* we don't lock the channel for unsupported tlvs */ 2289 if (!bnx2x_tlv_supported(tlv)) { 2290 BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n"); 2291 return; 2292 } 2293 2294 /* lock the channel */ 2295 mutex_lock(&vf->op_mutex); 2296 2297 /* record the locking op */ 2298 vf->op_current = tlv; 2299 2300 /* log the lock */ 2301 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n", 2302 vf->abs_vfid, tlv); 2303 } 2304 2305 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf, 2306 enum channel_tlvs expected_tlv) 2307 { 2308 enum channel_tlvs current_tlv; 2309 2310 if (!vf) { 2311 BNX2X_ERR("VF was %p\n", vf); 2312 return; 2313 } 2314 2315 current_tlv = vf->op_current; 2316 2317 /* we don't unlock the channel for unsupported tlvs */ 2318 if (!bnx2x_tlv_supported(expected_tlv)) 2319 return; 2320 2321 WARN(expected_tlv != vf->op_current, 2322 "lock mismatch: expected %d found %d", expected_tlv, 2323 vf->op_current); 2324 2325 /* record the locking op */ 2326 vf->op_current = CHANNEL_TLV_NONE; 2327 2328 /* lock the channel */ 2329 mutex_unlock(&vf->op_mutex); 2330 2331 /* log the unlock */ 2332 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n", 2333 vf->abs_vfid, current_tlv); 2334 } 2335 2336 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable) 2337 { 2338 struct bnx2x_queue_state_params q_params; 2339 u32 prev_flags; 2340 int i, rc; 2341 2342 /* Verify changes are needed and record current Tx switching state */ 2343 prev_flags = bp->flags; 2344 if (enable) 2345 bp->flags |= TX_SWITCHING; 2346 else 2347 bp->flags &= ~TX_SWITCHING; 2348 if (prev_flags == bp->flags) 2349 return 0; 2350 2351 /* Verify state enables the sending of queue ramrods */ 2352 if ((bp->state != BNX2X_STATE_OPEN) || 2353 (bnx2x_get_q_logical_state(bp, 2354 &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) != 2355 BNX2X_Q_LOGICAL_STATE_ACTIVE)) 2356 return 0; 2357 2358 /* send q. update ramrod to configure Tx switching */ 2359 memset(&q_params, 0, sizeof(q_params)); 2360 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 2361 q_params.cmd = BNX2X_Q_CMD_UPDATE; 2362 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG, 2363 &q_params.params.update.update_flags); 2364 if (enable) 2365 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING, 2366 &q_params.params.update.update_flags); 2367 else 2368 __clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING, 2369 &q_params.params.update.update_flags); 2370 2371 /* send the ramrod on all the queues of the PF */ 2372 for_each_eth_queue(bp, i) { 2373 struct bnx2x_fastpath *fp = &bp->fp[i]; 2374 int tx_idx; 2375 2376 /* Set the appropriate Queue object */ 2377 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 2378 2379 for (tx_idx = FIRST_TX_COS_INDEX; 2380 tx_idx < fp->max_cos; tx_idx++) { 2381 q_params.params.update.cid_index = tx_idx; 2382 2383 /* Update the Queue state */ 2384 rc = bnx2x_queue_state_change(bp, &q_params); 2385 if (rc) { 2386 BNX2X_ERR("Failed to configure Tx switching\n"); 2387 return rc; 2388 } 2389 } 2390 } 2391 2392 DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled"); 2393 return 0; 2394 } 2395 2396 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param) 2397 { 2398 struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev)); 2399 2400 if (!IS_SRIOV(bp)) { 2401 BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n"); 2402 return -EINVAL; 2403 } 2404 2405 DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n", 2406 num_vfs_param, BNX2X_NR_VIRTFN(bp)); 2407 2408 /* HW channel is only operational when PF is up */ 2409 if (bp->state != BNX2X_STATE_OPEN) { 2410 BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n"); 2411 return -EINVAL; 2412 } 2413 2414 /* we are always bound by the total_vfs in the configuration space */ 2415 if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) { 2416 BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n", 2417 num_vfs_param, BNX2X_NR_VIRTFN(bp)); 2418 num_vfs_param = BNX2X_NR_VIRTFN(bp); 2419 } 2420 2421 bp->requested_nr_virtfn = num_vfs_param; 2422 if (num_vfs_param == 0) { 2423 bnx2x_set_pf_tx_switching(bp, false); 2424 bnx2x_disable_sriov(bp); 2425 return 0; 2426 } else { 2427 return bnx2x_enable_sriov(bp); 2428 } 2429 } 2430 2431 #define IGU_ENTRY_SIZE 4 2432 2433 int bnx2x_enable_sriov(struct bnx2x *bp) 2434 { 2435 int rc = 0, req_vfs = bp->requested_nr_virtfn; 2436 int vf_idx, sb_idx, vfq_idx, qcount, first_vf; 2437 u32 igu_entry, address; 2438 u16 num_vf_queues; 2439 2440 if (req_vfs == 0) 2441 return 0; 2442 2443 first_vf = bp->vfdb->sriov.first_vf_in_pf; 2444 2445 /* statically distribute vf sb pool between VFs */ 2446 num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES, 2447 BP_VFDB(bp)->vf_sbs_pool / req_vfs); 2448 2449 /* zero previous values learned from igu cam */ 2450 for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) { 2451 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx); 2452 2453 vf->sb_count = 0; 2454 vf_sb_count(BP_VF(bp, vf_idx)) = 0; 2455 } 2456 bp->vfdb->vf_sbs_pool = 0; 2457 2458 /* prepare IGU cam */ 2459 sb_idx = BP_VFDB(bp)->first_vf_igu_entry; 2460 address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE; 2461 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) { 2462 for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) { 2463 igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT | 2464 vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT | 2465 IGU_REG_MAPPING_MEMORY_VALID; 2466 DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n", 2467 sb_idx, vf_idx); 2468 REG_WR(bp, address, igu_entry); 2469 sb_idx++; 2470 address += IGU_ENTRY_SIZE; 2471 } 2472 } 2473 2474 /* Reinitialize vf database according to igu cam */ 2475 bnx2x_get_vf_igu_cam_info(bp); 2476 2477 DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n", 2478 BP_VFDB(bp)->vf_sbs_pool, num_vf_queues); 2479 2480 qcount = 0; 2481 for_each_vf(bp, vf_idx) { 2482 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx); 2483 2484 /* set local queue arrays */ 2485 vf->vfqs = &bp->vfdb->vfqs[qcount]; 2486 qcount += vf_sb_count(vf); 2487 bnx2x_iov_static_resc(bp, vf); 2488 } 2489 2490 /* prepare msix vectors in VF configuration space - the value in the 2491 * PCI configuration space should be the index of the last entry, 2492 * namely one less than the actual size of the table 2493 */ 2494 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) { 2495 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx)); 2496 REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL, 2497 num_vf_queues - 1); 2498 DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n", 2499 vf_idx, num_vf_queues - 1); 2500 } 2501 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 2502 2503 /* enable sriov. This will probe all the VFs, and consequentially cause 2504 * the "acquire" messages to appear on the VF PF channel. 2505 */ 2506 DP(BNX2X_MSG_IOV, "about to call enable sriov\n"); 2507 bnx2x_disable_sriov(bp); 2508 2509 rc = bnx2x_set_pf_tx_switching(bp, true); 2510 if (rc) 2511 return rc; 2512 2513 rc = pci_enable_sriov(bp->pdev, req_vfs); 2514 if (rc) { 2515 BNX2X_ERR("pci_enable_sriov failed with %d\n", rc); 2516 return rc; 2517 } 2518 DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs); 2519 return req_vfs; 2520 } 2521 2522 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp) 2523 { 2524 int vfidx; 2525 struct pf_vf_bulletin_content *bulletin; 2526 2527 DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n"); 2528 for_each_vf(bp, vfidx) { 2529 bulletin = BP_VF_BULLETIN(bp, vfidx); 2530 if (bulletin->valid_bitmap & (1 << VLAN_VALID)) 2531 bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0, 2532 htons(ETH_P_8021Q)); 2533 } 2534 } 2535 2536 void bnx2x_disable_sriov(struct bnx2x *bp) 2537 { 2538 if (pci_vfs_assigned(bp->pdev)) { 2539 DP(BNX2X_MSG_IOV, 2540 "Unloading driver while VFs are assigned - VFs will not be deallocated\n"); 2541 return; 2542 } 2543 2544 pci_disable_sriov(bp->pdev); 2545 } 2546 2547 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx, 2548 struct bnx2x_virtf **vf, 2549 struct pf_vf_bulletin_content **bulletin, 2550 bool test_queue) 2551 { 2552 if (bp->state != BNX2X_STATE_OPEN) { 2553 BNX2X_ERR("PF is down - can't utilize iov-related functionality\n"); 2554 return -EINVAL; 2555 } 2556 2557 if (!IS_SRIOV(bp)) { 2558 BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n"); 2559 return -EINVAL; 2560 } 2561 2562 if (vfidx >= BNX2X_NR_VIRTFN(bp)) { 2563 BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n", 2564 vfidx, BNX2X_NR_VIRTFN(bp)); 2565 return -EINVAL; 2566 } 2567 2568 /* init members */ 2569 *vf = BP_VF(bp, vfidx); 2570 *bulletin = BP_VF_BULLETIN(bp, vfidx); 2571 2572 if (!*vf) { 2573 BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx); 2574 return -EINVAL; 2575 } 2576 2577 if (test_queue && !(*vf)->vfqs) { 2578 BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n", 2579 vfidx); 2580 return -EINVAL; 2581 } 2582 2583 if (!*bulletin) { 2584 BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n", 2585 vfidx); 2586 return -EINVAL; 2587 } 2588 2589 return 0; 2590 } 2591 2592 int bnx2x_get_vf_config(struct net_device *dev, int vfidx, 2593 struct ifla_vf_info *ivi) 2594 { 2595 struct bnx2x *bp = netdev_priv(dev); 2596 struct bnx2x_virtf *vf = NULL; 2597 struct pf_vf_bulletin_content *bulletin = NULL; 2598 struct bnx2x_vlan_mac_obj *mac_obj; 2599 struct bnx2x_vlan_mac_obj *vlan_obj; 2600 int rc; 2601 2602 /* sanity and init */ 2603 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true); 2604 if (rc) 2605 return rc; 2606 2607 mac_obj = &bnx2x_leading_vfq(vf, mac_obj); 2608 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj); 2609 if (!mac_obj || !vlan_obj) { 2610 BNX2X_ERR("VF partially initialized\n"); 2611 return -EINVAL; 2612 } 2613 2614 ivi->vf = vfidx; 2615 ivi->qos = 0; 2616 ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */ 2617 ivi->min_tx_rate = 0; 2618 ivi->spoofchk = vf->spoofchk ? 1 : 0; 2619 ivi->linkstate = vf->link_cfg; 2620 if (vf->state == VF_ENABLED) { 2621 /* mac and vlan are in vlan_mac objects */ 2622 if (bnx2x_validate_vf_sp_objs(bp, vf, false)) { 2623 mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac, 2624 0, ETH_ALEN); 2625 vlan_obj->get_n_elements(bp, vlan_obj, 1, 2626 (u8 *)&ivi->vlan, 0, 2627 VLAN_HLEN); 2628 } 2629 } else { 2630 mutex_lock(&bp->vfdb->bulletin_mutex); 2631 /* mac */ 2632 if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID)) 2633 /* mac configured by ndo so its in bulletin board */ 2634 memcpy(&ivi->mac, bulletin->mac, ETH_ALEN); 2635 else 2636 /* function has not been loaded yet. Show mac as 0s */ 2637 eth_zero_addr(ivi->mac); 2638 2639 /* vlan */ 2640 if (bulletin->valid_bitmap & (1 << VLAN_VALID)) 2641 /* vlan configured by ndo so its in bulletin board */ 2642 memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN); 2643 else 2644 /* function has not been loaded yet. Show vlans as 0s */ 2645 memset(&ivi->vlan, 0, VLAN_HLEN); 2646 2647 mutex_unlock(&bp->vfdb->bulletin_mutex); 2648 } 2649 2650 return 0; 2651 } 2652 2653 /* New mac for VF. Consider these cases: 2654 * 1. VF hasn't been acquired yet - save the mac in local bulletin board and 2655 * supply at acquire. 2656 * 2. VF has already been acquired but has not yet initialized - store in local 2657 * bulletin board. mac will be posted on VF bulletin board after VF init. VF 2658 * will configure this mac when it is ready. 2659 * 3. VF has already initialized but has not yet setup a queue - post the new 2660 * mac on VF's bulletin board right now. VF will configure this mac when it 2661 * is ready. 2662 * 4. VF has already set a queue - delete any macs already configured for this 2663 * queue and manually config the new mac. 2664 * In any event, once this function has been called refuse any attempts by the 2665 * VF to configure any mac for itself except for this mac. In case of a race 2666 * where the VF fails to see the new post on its bulletin board before sending a 2667 * mac configuration request, the PF will simply fail the request and VF can try 2668 * again after consulting its bulletin board. 2669 */ 2670 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac) 2671 { 2672 struct bnx2x *bp = netdev_priv(dev); 2673 int rc, q_logical_state; 2674 struct bnx2x_virtf *vf = NULL; 2675 struct pf_vf_bulletin_content *bulletin = NULL; 2676 2677 if (!is_valid_ether_addr(mac)) { 2678 BNX2X_ERR("mac address invalid\n"); 2679 return -EINVAL; 2680 } 2681 2682 /* sanity and init */ 2683 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true); 2684 if (rc) 2685 return rc; 2686 2687 mutex_lock(&bp->vfdb->bulletin_mutex); 2688 2689 /* update PF's copy of the VF's bulletin. Will no longer accept mac 2690 * configuration requests from vf unless match this mac 2691 */ 2692 bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID; 2693 memcpy(bulletin->mac, mac, ETH_ALEN); 2694 2695 /* Post update on VF's bulletin board */ 2696 rc = bnx2x_post_vf_bulletin(bp, vfidx); 2697 2698 /* release lock before checking return code */ 2699 mutex_unlock(&bp->vfdb->bulletin_mutex); 2700 2701 if (rc) { 2702 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx); 2703 return rc; 2704 } 2705 2706 q_logical_state = 2707 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)); 2708 if (vf->state == VF_ENABLED && 2709 q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) { 2710 /* configure the mac in device on this vf's queue */ 2711 unsigned long ramrod_flags = 0; 2712 struct bnx2x_vlan_mac_obj *mac_obj; 2713 2714 /* User should be able to see failure reason in system logs */ 2715 if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) 2716 return -EINVAL; 2717 2718 /* must lock vfpf channel to protect against vf flows */ 2719 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC); 2720 2721 /* remove existing eth macs */ 2722 mac_obj = &bnx2x_leading_vfq(vf, mac_obj); 2723 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true); 2724 if (rc) { 2725 BNX2X_ERR("failed to delete eth macs\n"); 2726 rc = -EINVAL; 2727 goto out; 2728 } 2729 2730 /* remove existing uc list macs */ 2731 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true); 2732 if (rc) { 2733 BNX2X_ERR("failed to delete uc_list macs\n"); 2734 rc = -EINVAL; 2735 goto out; 2736 } 2737 2738 /* configure the new mac to device */ 2739 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2740 bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true, 2741 BNX2X_ETH_MAC, &ramrod_flags); 2742 2743 out: 2744 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC); 2745 } 2746 2747 return rc; 2748 } 2749 2750 static void bnx2x_set_vf_vlan_acceptance(struct bnx2x *bp, 2751 struct bnx2x_virtf *vf, bool accept) 2752 { 2753 struct bnx2x_rx_mode_ramrod_params rx_ramrod; 2754 unsigned long accept_flags; 2755 2756 /* need to remove/add the VF's accept_any_vlan bit */ 2757 accept_flags = bnx2x_leading_vfq(vf, accept_flags); 2758 if (accept) 2759 set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); 2760 else 2761 clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); 2762 2763 bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf, 2764 accept_flags); 2765 bnx2x_leading_vfq(vf, accept_flags) = accept_flags; 2766 bnx2x_config_rx_mode(bp, &rx_ramrod); 2767 } 2768 2769 static int bnx2x_set_vf_vlan_filter(struct bnx2x *bp, struct bnx2x_virtf *vf, 2770 u16 vlan, bool add) 2771 { 2772 struct bnx2x_vlan_mac_ramrod_params ramrod_param; 2773 unsigned long ramrod_flags = 0; 2774 int rc = 0; 2775 2776 /* configure the new vlan to device */ 2777 memset(&ramrod_param, 0, sizeof(ramrod_param)); 2778 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2779 ramrod_param.vlan_mac_obj = &bnx2x_leading_vfq(vf, vlan_obj); 2780 ramrod_param.ramrod_flags = ramrod_flags; 2781 ramrod_param.user_req.u.vlan.vlan = vlan; 2782 ramrod_param.user_req.cmd = add ? BNX2X_VLAN_MAC_ADD 2783 : BNX2X_VLAN_MAC_DEL; 2784 rc = bnx2x_config_vlan_mac(bp, &ramrod_param); 2785 if (rc) { 2786 BNX2X_ERR("failed to configure vlan\n"); 2787 return -EINVAL; 2788 } 2789 2790 return 0; 2791 } 2792 2793 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos, 2794 __be16 vlan_proto) 2795 { 2796 struct pf_vf_bulletin_content *bulletin = NULL; 2797 struct bnx2x *bp = netdev_priv(dev); 2798 struct bnx2x_vlan_mac_obj *vlan_obj; 2799 unsigned long vlan_mac_flags = 0; 2800 unsigned long ramrod_flags = 0; 2801 struct bnx2x_virtf *vf = NULL; 2802 int i, rc; 2803 2804 if (vlan > 4095) { 2805 BNX2X_ERR("illegal vlan value %d\n", vlan); 2806 return -EINVAL; 2807 } 2808 2809 if (vlan_proto != htons(ETH_P_8021Q)) 2810 return -EPROTONOSUPPORT; 2811 2812 DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n", 2813 vfidx, vlan, 0); 2814 2815 /* sanity and init */ 2816 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true); 2817 if (rc) 2818 return rc; 2819 2820 /* update PF's copy of the VF's bulletin. No point in posting the vlan 2821 * to the VF since it doesn't have anything to do with it. But it useful 2822 * to store it here in case the VF is not up yet and we can only 2823 * configure the vlan later when it does. Treat vlan id 0 as remove the 2824 * Host tag. 2825 */ 2826 mutex_lock(&bp->vfdb->bulletin_mutex); 2827 2828 if (vlan > 0) 2829 bulletin->valid_bitmap |= 1 << VLAN_VALID; 2830 else 2831 bulletin->valid_bitmap &= ~(1 << VLAN_VALID); 2832 bulletin->vlan = vlan; 2833 2834 /* Post update on VF's bulletin board */ 2835 rc = bnx2x_post_vf_bulletin(bp, vfidx); 2836 if (rc) 2837 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx); 2838 mutex_unlock(&bp->vfdb->bulletin_mutex); 2839 2840 /* is vf initialized and queue set up? */ 2841 if (vf->state != VF_ENABLED || 2842 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) != 2843 BNX2X_Q_LOGICAL_STATE_ACTIVE) 2844 return rc; 2845 2846 /* User should be able to see error in system logs */ 2847 if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) 2848 return -EINVAL; 2849 2850 /* must lock vfpf channel to protect against vf flows */ 2851 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN); 2852 2853 /* remove existing vlans */ 2854 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2855 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj); 2856 rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags, 2857 &ramrod_flags); 2858 if (rc) { 2859 BNX2X_ERR("failed to delete vlans\n"); 2860 rc = -EINVAL; 2861 goto out; 2862 } 2863 2864 /* clear accept_any_vlan when HV forces vlan, otherwise 2865 * according to VF capabilities 2866 */ 2867 if (vlan || !(vf->cfg_flags & VF_CFG_VLAN_FILTER)) 2868 bnx2x_set_vf_vlan_acceptance(bp, vf, !vlan); 2869 2870 rc = bnx2x_set_vf_vlan_filter(bp, vf, vlan, true); 2871 if (rc) 2872 goto out; 2873 2874 /* send queue update ramrods to configure default vlan and 2875 * silent vlan removal 2876 */ 2877 for_each_vfq(vf, i) { 2878 struct bnx2x_queue_state_params q_params = {NULL}; 2879 struct bnx2x_queue_update_params *update_params; 2880 2881 q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj); 2882 2883 /* validate the Q is UP */ 2884 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) != 2885 BNX2X_Q_LOGICAL_STATE_ACTIVE) 2886 continue; 2887 2888 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 2889 q_params.cmd = BNX2X_Q_CMD_UPDATE; 2890 update_params = &q_params.params.update; 2891 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG, 2892 &update_params->update_flags); 2893 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG, 2894 &update_params->update_flags); 2895 if (vlan == 0) { 2896 /* if vlan is 0 then we want to leave the VF traffic 2897 * untagged, and leave the incoming traffic untouched 2898 * (i.e. do not remove any vlan tags). 2899 */ 2900 __clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, 2901 &update_params->update_flags); 2902 __clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, 2903 &update_params->update_flags); 2904 } else { 2905 /* configure default vlan to vf queue and set silent 2906 * vlan removal (the vf remains unaware of this vlan). 2907 */ 2908 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, 2909 &update_params->update_flags); 2910 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, 2911 &update_params->update_flags); 2912 update_params->def_vlan = vlan; 2913 update_params->silent_removal_value = 2914 vlan & VLAN_VID_MASK; 2915 update_params->silent_removal_mask = VLAN_VID_MASK; 2916 } 2917 2918 /* Update the Queue state */ 2919 rc = bnx2x_queue_state_change(bp, &q_params); 2920 if (rc) { 2921 BNX2X_ERR("Failed to configure default VLAN queue %d\n", 2922 i); 2923 goto out; 2924 } 2925 } 2926 out: 2927 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN); 2928 2929 if (rc) 2930 DP(BNX2X_MSG_IOV, 2931 "updated VF[%d] vlan configuration (vlan = %d)\n", 2932 vfidx, vlan); 2933 2934 return rc; 2935 } 2936 2937 int bnx2x_set_vf_spoofchk(struct net_device *dev, int idx, bool val) 2938 { 2939 struct bnx2x *bp = netdev_priv(dev); 2940 struct bnx2x_virtf *vf; 2941 int i, rc = 0; 2942 2943 vf = BP_VF(bp, idx); 2944 if (!vf) 2945 return -EINVAL; 2946 2947 /* nothing to do */ 2948 if (vf->spoofchk == val) 2949 return 0; 2950 2951 vf->spoofchk = val ? 1 : 0; 2952 2953 DP(BNX2X_MSG_IOV, "%s spoofchk for VF %d\n", 2954 val ? "enabling" : "disabling", idx); 2955 2956 /* is vf initialized and queue set up? */ 2957 if (vf->state != VF_ENABLED || 2958 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) != 2959 BNX2X_Q_LOGICAL_STATE_ACTIVE) 2960 return rc; 2961 2962 /* User should be able to see error in system logs */ 2963 if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) 2964 return -EINVAL; 2965 2966 /* send queue update ramrods to configure spoofchk */ 2967 for_each_vfq(vf, i) { 2968 struct bnx2x_queue_state_params q_params = {NULL}; 2969 struct bnx2x_queue_update_params *update_params; 2970 2971 q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj); 2972 2973 /* validate the Q is UP */ 2974 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) != 2975 BNX2X_Q_LOGICAL_STATE_ACTIVE) 2976 continue; 2977 2978 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 2979 q_params.cmd = BNX2X_Q_CMD_UPDATE; 2980 update_params = &q_params.params.update; 2981 __set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG, 2982 &update_params->update_flags); 2983 if (val) { 2984 __set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF, 2985 &update_params->update_flags); 2986 } else { 2987 __clear_bit(BNX2X_Q_UPDATE_ANTI_SPOOF, 2988 &update_params->update_flags); 2989 } 2990 2991 /* Update the Queue state */ 2992 rc = bnx2x_queue_state_change(bp, &q_params); 2993 if (rc) { 2994 BNX2X_ERR("Failed to %s spoofchk on VF %d - vfq %d\n", 2995 val ? "enable" : "disable", idx, i); 2996 goto out; 2997 } 2998 } 2999 out: 3000 if (!rc) 3001 DP(BNX2X_MSG_IOV, 3002 "%s spoofchk for VF[%d]\n", val ? "Enabled" : "Disabled", 3003 idx); 3004 3005 return rc; 3006 } 3007 3008 /* crc is the first field in the bulletin board. Compute the crc over the 3009 * entire bulletin board excluding the crc field itself. Use the length field 3010 * as the Bulletin Board was posted by a PF with possibly a different version 3011 * from the vf which will sample it. Therefore, the length is computed by the 3012 * PF and then used blindly by the VF. 3013 */ 3014 u32 bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content *bulletin) 3015 { 3016 return crc32(BULLETIN_CRC_SEED, 3017 ((u8 *)bulletin) + sizeof(bulletin->crc), 3018 bulletin->length - sizeof(bulletin->crc)); 3019 } 3020 3021 /* Check for new posts on the bulletin board */ 3022 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp) 3023 { 3024 struct pf_vf_bulletin_content *bulletin; 3025 int attempts; 3026 3027 /* sampling structure in mid post may result with corrupted data 3028 * validate crc to ensure coherency. 3029 */ 3030 for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) { 3031 u32 crc; 3032 3033 /* sample the bulletin board */ 3034 memcpy(&bp->shadow_bulletin, bp->pf2vf_bulletin, 3035 sizeof(union pf_vf_bulletin)); 3036 3037 crc = bnx2x_crc_vf_bulletin(&bp->shadow_bulletin.content); 3038 3039 if (bp->shadow_bulletin.content.crc == crc) 3040 break; 3041 3042 BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n", 3043 bp->shadow_bulletin.content.crc, crc); 3044 } 3045 3046 if (attempts >= BULLETIN_ATTEMPTS) { 3047 BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n", 3048 attempts); 3049 return PFVF_BULLETIN_CRC_ERR; 3050 } 3051 bulletin = &bp->shadow_bulletin.content; 3052 3053 /* bulletin board hasn't changed since last sample */ 3054 if (bp->old_bulletin.version == bulletin->version) 3055 return PFVF_BULLETIN_UNCHANGED; 3056 3057 /* the mac address in bulletin board is valid and is new */ 3058 if (bulletin->valid_bitmap & 1 << MAC_ADDR_VALID && 3059 !ether_addr_equal(bulletin->mac, bp->old_bulletin.mac)) { 3060 /* update new mac to net device */ 3061 memcpy(bp->dev->dev_addr, bulletin->mac, ETH_ALEN); 3062 } 3063 3064 if (bulletin->valid_bitmap & (1 << LINK_VALID)) { 3065 DP(BNX2X_MSG_IOV, "link update speed %d flags %x\n", 3066 bulletin->link_speed, bulletin->link_flags); 3067 3068 bp->vf_link_vars.line_speed = bulletin->link_speed; 3069 bp->vf_link_vars.link_report_flags = 0; 3070 /* Link is down */ 3071 if (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN) 3072 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 3073 &bp->vf_link_vars.link_report_flags); 3074 /* Full DUPLEX */ 3075 if (bulletin->link_flags & VFPF_LINK_REPORT_FULL_DUPLEX) 3076 __set_bit(BNX2X_LINK_REPORT_FD, 3077 &bp->vf_link_vars.link_report_flags); 3078 /* Rx Flow Control is ON */ 3079 if (bulletin->link_flags & VFPF_LINK_REPORT_RX_FC_ON) 3080 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON, 3081 &bp->vf_link_vars.link_report_flags); 3082 /* Tx Flow Control is ON */ 3083 if (bulletin->link_flags & VFPF_LINK_REPORT_TX_FC_ON) 3084 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON, 3085 &bp->vf_link_vars.link_report_flags); 3086 __bnx2x_link_report(bp); 3087 } 3088 3089 /* copy new bulletin board to bp */ 3090 memcpy(&bp->old_bulletin, bulletin, 3091 sizeof(struct pf_vf_bulletin_content)); 3092 3093 return PFVF_BULLETIN_UPDATED; 3094 } 3095 3096 void bnx2x_timer_sriov(struct bnx2x *bp) 3097 { 3098 bnx2x_sample_bulletin(bp); 3099 3100 /* if channel is down we need to self destruct */ 3101 if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN) 3102 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, 3103 BNX2X_MSG_IOV); 3104 } 3105 3106 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp) 3107 { 3108 /* vf doorbells are embedded within the regview */ 3109 return bp->regview + PXP_VF_ADDR_DB_START; 3110 } 3111 3112 void bnx2x_vf_pci_dealloc(struct bnx2x *bp) 3113 { 3114 BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping, 3115 sizeof(struct bnx2x_vf_mbx_msg)); 3116 BNX2X_PCI_FREE(bp->pf2vf_bulletin, bp->pf2vf_bulletin_mapping, 3117 sizeof(union pf_vf_bulletin)); 3118 } 3119 3120 int bnx2x_vf_pci_alloc(struct bnx2x *bp) 3121 { 3122 mutex_init(&bp->vf2pf_mutex); 3123 3124 /* allocate vf2pf mailbox for vf to pf channel */ 3125 bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping, 3126 sizeof(struct bnx2x_vf_mbx_msg)); 3127 if (!bp->vf2pf_mbox) 3128 goto alloc_mem_err; 3129 3130 /* allocate pf 2 vf bulletin board */ 3131 bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping, 3132 sizeof(union pf_vf_bulletin)); 3133 if (!bp->pf2vf_bulletin) 3134 goto alloc_mem_err; 3135 3136 bnx2x_vf_bulletin_finalize(&bp->pf2vf_bulletin->content, true); 3137 3138 return 0; 3139 3140 alloc_mem_err: 3141 bnx2x_vf_pci_dealloc(bp); 3142 return -ENOMEM; 3143 } 3144 3145 void bnx2x_iov_channel_down(struct bnx2x *bp) 3146 { 3147 int vf_idx; 3148 struct pf_vf_bulletin_content *bulletin; 3149 3150 if (!IS_SRIOV(bp)) 3151 return; 3152 3153 for_each_vf(bp, vf_idx) { 3154 /* locate this VFs bulletin board and update the channel down 3155 * bit 3156 */ 3157 bulletin = BP_VF_BULLETIN(bp, vf_idx); 3158 bulletin->valid_bitmap |= 1 << CHANNEL_DOWN; 3159 3160 /* update vf bulletin board */ 3161 bnx2x_post_vf_bulletin(bp, vf_idx); 3162 } 3163 } 3164 3165 void bnx2x_iov_task(struct work_struct *work) 3166 { 3167 struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work); 3168 3169 if (!netif_running(bp->dev)) 3170 return; 3171 3172 if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR, 3173 &bp->iov_task_state)) 3174 bnx2x_vf_handle_flr_event(bp); 3175 3176 if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG, 3177 &bp->iov_task_state)) 3178 bnx2x_vf_mbx(bp); 3179 } 3180 3181 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag) 3182 { 3183 smp_mb__before_atomic(); 3184 set_bit(flag, &bp->iov_task_state); 3185 smp_mb__after_atomic(); 3186 DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag); 3187 queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0); 3188 } 3189