1 /* bnx2x_sriov.c: QLogic Everest network driver.
2  *
3  * Copyright 2009-2013 Broadcom Corporation
4  * Copyright 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * Unless you and QLogic execute a separate written software license
8  * agreement governing use of this software, this software is licensed to you
9  * under the terms of the GNU General Public License version 2, available
10  * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
11  *
12  * Notwithstanding the above, under no circumstances may you combine this
13  * software in any way with any other QLogic software provided under a
14  * license other than the GPL, without QLogic's express prior written
15  * consent.
16  *
17  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
18  * Written by: Shmulik Ravid
19  *	       Ariel Elior <ariel.elior@qlogic.com>
20  *
21  */
22 #include "bnx2x.h"
23 #include "bnx2x_init.h"
24 #include "bnx2x_cmn.h"
25 #include "bnx2x_sp.h"
26 #include <linux/crc32.h>
27 #include <linux/if_vlan.h>
28 
29 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
30 			    struct bnx2x_virtf **vf,
31 			    struct pf_vf_bulletin_content **bulletin,
32 			    bool test_queue);
33 
34 /* General service functions */
35 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
36 					 u16 pf_id)
37 {
38 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
39 		pf_id);
40 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
41 		pf_id);
42 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
43 		pf_id);
44 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
45 		pf_id);
46 }
47 
48 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
49 					u8 enable)
50 {
51 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
52 		enable);
53 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
54 		enable);
55 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
56 		enable);
57 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
58 		enable);
59 }
60 
61 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
62 {
63 	int idx;
64 
65 	for_each_vf(bp, idx)
66 		if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid)
67 			break;
68 	return idx;
69 }
70 
71 static
72 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
73 {
74 	u16 idx =  (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid);
75 	return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL;
76 }
77 
78 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf,
79 				u8 igu_sb_id, u8 segment, u16 index, u8 op,
80 				u8 update)
81 {
82 	/* acking a VF sb through the PF - use the GRC */
83 	u32 ctl;
84 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
85 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
86 	u32 func_encode = vf->abs_vfid;
87 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id;
88 	struct igu_regular cmd_data = {0};
89 
90 	cmd_data.sb_id_and_flags =
91 			((index << IGU_REGULAR_SB_INDEX_SHIFT) |
92 			 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
93 			 (update << IGU_REGULAR_BUPDATE_SHIFT) |
94 			 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
95 
96 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
97 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
98 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
99 
100 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
101 	   cmd_data.sb_id_and_flags, igu_addr_data);
102 	REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags);
103 	barrier();
104 
105 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
106 	   ctl, igu_addr_ctl);
107 	REG_WR(bp, igu_addr_ctl, ctl);
108 	barrier();
109 }
110 
111 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp,
112 				       struct bnx2x_virtf *vf,
113 				       bool print_err)
114 {
115 	if (!bnx2x_leading_vfq(vf, sp_initialized)) {
116 		if (print_err)
117 			BNX2X_ERR("Slowpath objects not yet initialized!\n");
118 		else
119 			DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n");
120 		return false;
121 	}
122 	return true;
123 }
124 
125 /* VFOP operations states */
126 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf,
127 			      struct bnx2x_queue_init_params *init_params,
128 			      struct bnx2x_queue_setup_params *setup_params,
129 			      u16 q_idx, u16 sb_idx)
130 {
131 	DP(BNX2X_MSG_IOV,
132 	   "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
133 	   vf->abs_vfid,
134 	   q_idx,
135 	   sb_idx,
136 	   init_params->tx.sb_cq_index,
137 	   init_params->tx.hc_rate,
138 	   setup_params->flags,
139 	   setup_params->txq_params.traffic_type);
140 }
141 
142 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf,
143 			    struct bnx2x_queue_init_params *init_params,
144 			    struct bnx2x_queue_setup_params *setup_params,
145 			    u16 q_idx, u16 sb_idx)
146 {
147 	struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params;
148 
149 	DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
150 	   "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
151 	   vf->abs_vfid,
152 	   q_idx,
153 	   sb_idx,
154 	   init_params->rx.sb_cq_index,
155 	   init_params->rx.hc_rate,
156 	   setup_params->gen_params.mtu,
157 	   rxq_params->buf_sz,
158 	   rxq_params->sge_buf_sz,
159 	   rxq_params->max_sges_pkt,
160 	   rxq_params->tpa_agg_sz,
161 	   setup_params->flags,
162 	   rxq_params->drop_flags,
163 	   rxq_params->cache_line_log);
164 }
165 
166 void bnx2x_vfop_qctor_prep(struct bnx2x *bp,
167 			   struct bnx2x_virtf *vf,
168 			   struct bnx2x_vf_queue *q,
169 			   struct bnx2x_vf_queue_construct_params *p,
170 			   unsigned long q_type)
171 {
172 	struct bnx2x_queue_init_params *init_p = &p->qstate.params.init;
173 	struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup;
174 
175 	/* INIT */
176 
177 	/* Enable host coalescing in the transition to INIT state */
178 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags))
179 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags);
180 
181 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags))
182 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags);
183 
184 	/* FW SB ID */
185 	init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
186 	init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
187 
188 	/* context */
189 	init_p->cxts[0] = q->cxt;
190 
191 	/* SETUP */
192 
193 	/* Setup-op general parameters */
194 	setup_p->gen_params.spcl_id = vf->sp_cl_id;
195 	setup_p->gen_params.stat_id = vfq_stat_id(vf, q);
196 	setup_p->gen_params.fp_hsi = vf->fp_hsi;
197 
198 	/* Setup-op flags:
199 	 * collect statistics, zero statistics, local-switching, security,
200 	 * OV for Flex10, RSS and MCAST for leading
201 	 */
202 	if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags))
203 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags);
204 
205 	/* for VFs, enable tx switching, bd coherency, and mac address
206 	 * anti-spoofing
207 	 */
208 	__set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags);
209 	__set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags);
210 	if (vf->spoofchk)
211 		__set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
212 	else
213 		__clear_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
214 
215 	/* Setup-op rx parameters */
216 	if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) {
217 		struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params;
218 
219 		rxq_p->cl_qzone_id = vfq_qzone_id(vf, q);
220 		rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx);
221 		rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid);
222 
223 		if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags))
224 			rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES;
225 	}
226 
227 	/* Setup-op tx parameters */
228 	if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) {
229 		setup_p->txq_params.tss_leading_cl_id = vf->leading_rss;
230 		setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
231 	}
232 }
233 
234 static int bnx2x_vf_queue_create(struct bnx2x *bp,
235 				 struct bnx2x_virtf *vf, int qid,
236 				 struct bnx2x_vf_queue_construct_params *qctor)
237 {
238 	struct bnx2x_queue_state_params *q_params;
239 	int rc = 0;
240 
241 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
242 
243 	/* Prepare ramrod information */
244 	q_params = &qctor->qstate;
245 	q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
246 	set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags);
247 
248 	if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
249 	    BNX2X_Q_LOGICAL_STATE_ACTIVE) {
250 		DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n");
251 		goto out;
252 	}
253 
254 	/* Run Queue 'construction' ramrods */
255 	q_params->cmd = BNX2X_Q_CMD_INIT;
256 	rc = bnx2x_queue_state_change(bp, q_params);
257 	if (rc)
258 		goto out;
259 
260 	memcpy(&q_params->params.setup, &qctor->prep_qsetup,
261 	       sizeof(struct bnx2x_queue_setup_params));
262 	q_params->cmd = BNX2X_Q_CMD_SETUP;
263 	rc = bnx2x_queue_state_change(bp, q_params);
264 	if (rc)
265 		goto out;
266 
267 	/* enable interrupts */
268 	bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)),
269 			    USTORM_ID, 0, IGU_INT_ENABLE, 0);
270 out:
271 	return rc;
272 }
273 
274 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf,
275 				  int qid)
276 {
277 	enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT,
278 				       BNX2X_Q_CMD_TERMINATE,
279 				       BNX2X_Q_CMD_CFC_DEL};
280 	struct bnx2x_queue_state_params q_params;
281 	int rc, i;
282 
283 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
284 
285 	/* Prepare ramrod information */
286 	memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params));
287 	q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
288 	set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
289 
290 	if (bnx2x_get_q_logical_state(bp, q_params.q_obj) ==
291 	    BNX2X_Q_LOGICAL_STATE_STOPPED) {
292 		DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n");
293 		goto out;
294 	}
295 
296 	/* Run Queue 'destruction' ramrods */
297 	for (i = 0; i < ARRAY_SIZE(cmds); i++) {
298 		q_params.cmd = cmds[i];
299 		rc = bnx2x_queue_state_change(bp, &q_params);
300 		if (rc) {
301 			BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]);
302 			return rc;
303 		}
304 	}
305 out:
306 	/* Clean Context */
307 	if (bnx2x_vfq(vf, qid, cxt)) {
308 		bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0;
309 		bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0;
310 	}
311 
312 	return 0;
313 }
314 
315 static void
316 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid)
317 {
318 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
319 	if (vf) {
320 		/* the first igu entry belonging to VFs of this PF */
321 		if (!BP_VFDB(bp)->first_vf_igu_entry)
322 			BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id;
323 
324 		/* the first igu entry belonging to this VF */
325 		if (!vf_sb_count(vf))
326 			vf->igu_base_id = igu_sb_id;
327 
328 		++vf_sb_count(vf);
329 		++vf->sb_count;
330 	}
331 	BP_VFDB(bp)->vf_sbs_pool++;
332 }
333 
334 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf,
335 				   int qid, bool drv_only, int type)
336 {
337 	struct bnx2x_vlan_mac_ramrod_params ramrod;
338 	int rc;
339 
340 	DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid,
341 			  (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
342 			  (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
343 
344 	/* Prepare ramrod params */
345 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
346 	if (type == BNX2X_VF_FILTER_VLAN_MAC) {
347 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
348 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
349 	} else if (type == BNX2X_VF_FILTER_MAC) {
350 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
351 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
352 	} else {
353 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
354 	}
355 	ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL;
356 
357 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
358 	if (drv_only)
359 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
360 	else
361 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
362 
363 	/* Start deleting */
364 	rc = ramrod.vlan_mac_obj->delete_all(bp,
365 					     ramrod.vlan_mac_obj,
366 					     &ramrod.user_req.vlan_mac_flags,
367 					     &ramrod.ramrod_flags);
368 	if (rc) {
369 		BNX2X_ERR("Failed to delete all %s\n",
370 			  (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
371 			  (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
372 		return rc;
373 	}
374 
375 	return 0;
376 }
377 
378 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp,
379 				    struct bnx2x_virtf *vf, int qid,
380 				    struct bnx2x_vf_mac_vlan_filter *filter,
381 				    bool drv_only)
382 {
383 	struct bnx2x_vlan_mac_ramrod_params ramrod;
384 	int rc;
385 
386 	DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n",
387 	   vf->abs_vfid, filter->add ? "Adding" : "Deleting",
388 	   (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MAC" :
389 	   (filter->type == BNX2X_VF_FILTER_MAC) ? "MAC" : "VLAN");
390 
391 	/* Prepare ramrod params */
392 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
393 	if (filter->type == BNX2X_VF_FILTER_VLAN_MAC) {
394 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
395 		ramrod.user_req.u.vlan.vlan = filter->vid;
396 		memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
397 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
398 	} else if (filter->type == BNX2X_VF_FILTER_VLAN) {
399 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
400 		ramrod.user_req.u.vlan.vlan = filter->vid;
401 	} else {
402 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
403 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
404 		memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
405 	}
406 	ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD :
407 					    BNX2X_VLAN_MAC_DEL;
408 
409 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
410 	if (drv_only)
411 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
412 	else
413 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
414 
415 	/* Add/Remove the filter */
416 	rc = bnx2x_config_vlan_mac(bp, &ramrod);
417 	if (rc == -EEXIST)
418 		return 0;
419 	if (rc) {
420 		BNX2X_ERR("Failed to %s %s\n",
421 			  filter->add ? "add" : "delete",
422 			  (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ?
423 				"VLAN-MAC" :
424 			  (filter->type == BNX2X_VF_FILTER_MAC) ?
425 				"MAC" : "VLAN");
426 		return rc;
427 	}
428 
429 	filter->applied = true;
430 
431 	return 0;
432 }
433 
434 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf,
435 				  struct bnx2x_vf_mac_vlan_filters *filters,
436 				  int qid, bool drv_only)
437 {
438 	int rc = 0, i;
439 
440 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
441 
442 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
443 		return -EINVAL;
444 
445 	/* Prepare ramrod params */
446 	for (i = 0; i < filters->count; i++) {
447 		rc = bnx2x_vf_mac_vlan_config(bp, vf, qid,
448 					      &filters->filters[i], drv_only);
449 		if (rc)
450 			break;
451 	}
452 
453 	/* Rollback if needed */
454 	if (i != filters->count) {
455 		BNX2X_ERR("Managed only %d/%d filters - rolling back\n",
456 			  i, filters->count);
457 		while (--i >= 0) {
458 			if (!filters->filters[i].applied)
459 				continue;
460 			filters->filters[i].add = !filters->filters[i].add;
461 			bnx2x_vf_mac_vlan_config(bp, vf, qid,
462 						 &filters->filters[i],
463 						 drv_only);
464 		}
465 	}
466 
467 	/* It's our responsibility to free the filters */
468 	kfree(filters);
469 
470 	return rc;
471 }
472 
473 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid,
474 			 struct bnx2x_vf_queue_construct_params *qctor)
475 {
476 	int rc;
477 
478 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
479 
480 	rc = bnx2x_vf_queue_create(bp, vf, qid, qctor);
481 	if (rc)
482 		goto op_err;
483 
484 	/* Schedule the configuration of any pending vlan filters */
485 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN,
486 			       BNX2X_MSG_IOV);
487 	return 0;
488 op_err:
489 	BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
490 	return rc;
491 }
492 
493 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf,
494 			       int qid)
495 {
496 	int rc;
497 
498 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
499 
500 	/* If needed, clean the filtering data base */
501 	if ((qid == LEADING_IDX) &&
502 	    bnx2x_validate_vf_sp_objs(bp, vf, false)) {
503 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
504 					     BNX2X_VF_FILTER_VLAN_MAC);
505 		if (rc)
506 			goto op_err;
507 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
508 					     BNX2X_VF_FILTER_VLAN);
509 		if (rc)
510 			goto op_err;
511 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
512 					     BNX2X_VF_FILTER_MAC);
513 		if (rc)
514 			goto op_err;
515 	}
516 
517 	/* Terminate queue */
518 	if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) {
519 		struct bnx2x_queue_state_params qstate;
520 
521 		memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
522 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
523 		qstate.q_obj->state = BNX2X_Q_STATE_STOPPED;
524 		qstate.cmd = BNX2X_Q_CMD_TERMINATE;
525 		set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
526 		rc = bnx2x_queue_state_change(bp, &qstate);
527 		if (rc)
528 			goto op_err;
529 	}
530 
531 	return 0;
532 op_err:
533 	BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
534 	return rc;
535 }
536 
537 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf,
538 		   bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only)
539 {
540 	struct bnx2x_mcast_list_elem *mc = NULL;
541 	struct bnx2x_mcast_ramrod_params mcast;
542 	int rc, i;
543 
544 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
545 
546 	/* Prepare Multicast command */
547 	memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params));
548 	mcast.mcast_obj = &vf->mcast_obj;
549 	if (drv_only)
550 		set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags);
551 	else
552 		set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags);
553 	if (mc_num) {
554 		mc = kcalloc(mc_num, sizeof(struct bnx2x_mcast_list_elem),
555 			     GFP_KERNEL);
556 		if (!mc) {
557 			BNX2X_ERR("Cannot Configure multicasts due to lack of memory\n");
558 			return -ENOMEM;
559 		}
560 	}
561 
562 	if (mc_num) {
563 		INIT_LIST_HEAD(&mcast.mcast_list);
564 		for (i = 0; i < mc_num; i++) {
565 			mc[i].mac = mcasts[i];
566 			list_add_tail(&mc[i].link,
567 				      &mcast.mcast_list);
568 		}
569 
570 		/* add new mcasts */
571 		mcast.mcast_list_len = mc_num;
572 		rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_SET);
573 		if (rc)
574 			BNX2X_ERR("Failed to set multicasts\n");
575 	} else {
576 		/* clear existing mcasts */
577 		rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL);
578 		if (rc)
579 			BNX2X_ERR("Failed to remove multicasts\n");
580 	}
581 
582 	kfree(mc);
583 
584 	return rc;
585 }
586 
587 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid,
588 				  struct bnx2x_rx_mode_ramrod_params *ramrod,
589 				  struct bnx2x_virtf *vf,
590 				  unsigned long accept_flags)
591 {
592 	struct bnx2x_vf_queue *vfq = vfq_get(vf, qid);
593 
594 	memset(ramrod, 0, sizeof(*ramrod));
595 	ramrod->cid = vfq->cid;
596 	ramrod->cl_id = vfq_cl_id(vf, vfq);
597 	ramrod->rx_mode_obj = &bp->rx_mode_obj;
598 	ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid);
599 	ramrod->rx_accept_flags = accept_flags;
600 	ramrod->tx_accept_flags = accept_flags;
601 	ramrod->pstate = &vf->filter_state;
602 	ramrod->state = BNX2X_FILTER_RX_MODE_PENDING;
603 
604 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
605 	set_bit(RAMROD_RX, &ramrod->ramrod_flags);
606 	set_bit(RAMROD_TX, &ramrod->ramrod_flags);
607 
608 	ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2);
609 	ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2);
610 }
611 
612 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf,
613 		    int qid, unsigned long accept_flags)
614 {
615 	struct bnx2x_rx_mode_ramrod_params ramrod;
616 
617 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
618 
619 	bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags);
620 	set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
621 	vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags;
622 	return bnx2x_config_rx_mode(bp, &ramrod);
623 }
624 
625 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid)
626 {
627 	int rc;
628 
629 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
630 
631 	/* Remove all classification configuration for leading queue */
632 	if (qid == LEADING_IDX) {
633 		rc = bnx2x_vf_rxmode(bp, vf, qid, 0);
634 		if (rc)
635 			goto op_err;
636 
637 		/* Remove filtering if feasible */
638 		if (bnx2x_validate_vf_sp_objs(bp, vf, true)) {
639 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
640 						     false,
641 						     BNX2X_VF_FILTER_VLAN_MAC);
642 			if (rc)
643 				goto op_err;
644 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
645 						     false,
646 						     BNX2X_VF_FILTER_VLAN);
647 			if (rc)
648 				goto op_err;
649 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
650 						     false,
651 						     BNX2X_VF_FILTER_MAC);
652 			if (rc)
653 				goto op_err;
654 			rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false);
655 			if (rc)
656 				goto op_err;
657 		}
658 	}
659 
660 	/* Destroy queue */
661 	rc = bnx2x_vf_queue_destroy(bp, vf, qid);
662 	if (rc)
663 		goto op_err;
664 	return rc;
665 op_err:
666 	BNX2X_ERR("vf[%d:%d] error: rc %d\n",
667 		  vf->abs_vfid, qid, rc);
668 	return rc;
669 }
670 
671 /* VF enable primitives
672  * when pretend is required the caller is responsible
673  * for calling pretend prior to calling these routines
674  */
675 
676 /* internal vf enable - until vf is enabled internally all transactions
677  * are blocked. This routine should always be called last with pretend.
678  */
679 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable)
680 {
681 	REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0);
682 }
683 
684 /* clears vf error in all semi blocks */
685 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid)
686 {
687 	REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid);
688 	REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid);
689 	REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid);
690 	REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid);
691 }
692 
693 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid)
694 {
695 	u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5;
696 	u32 was_err_reg = 0;
697 
698 	switch (was_err_group) {
699 	case 0:
700 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR;
701 	    break;
702 	case 1:
703 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR;
704 	    break;
705 	case 2:
706 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR;
707 	    break;
708 	case 3:
709 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR;
710 	    break;
711 	}
712 	REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f));
713 }
714 
715 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf)
716 {
717 	int i;
718 	u32 val;
719 
720 	/* Set VF masks and configuration - pretend */
721 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
722 
723 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
724 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
725 	REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
726 	REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
727 	REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
728 	REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
729 
730 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
731 	val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN);
732 	val &= ~IGU_VF_CONF_PARENT_MASK;
733 	val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT;
734 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
735 
736 	DP(BNX2X_MSG_IOV,
737 	   "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n",
738 	   vf->abs_vfid, val);
739 
740 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
741 
742 	/* iterate over all queues, clear sb consumer */
743 	for (i = 0; i < vf_sb_count(vf); i++) {
744 		u8 igu_sb_id = vf_igu_sb(vf, i);
745 
746 		/* zero prod memory */
747 		REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0);
748 
749 		/* clear sb state machine */
750 		bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id,
751 				       false /* VF */);
752 
753 		/* disable + update */
754 		bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0,
755 				    IGU_INT_DISABLE, 1);
756 	}
757 }
758 
759 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid)
760 {
761 	u16 abs_fid;
762 
763 	abs_fid = FW_VF_HANDLE(abs_vfid);
764 
765 	/* set the VF-PF association in the FW */
766 	storm_memset_vf_to_pf(bp, abs_fid, BP_FUNC(bp));
767 	storm_memset_func_en(bp, abs_fid, 1);
768 
769 	/* Invalidate fp_hsi version for vfs */
770 	if (bp->fw_cap & FW_CAP_INVALIDATE_VF_FP_HSI)
771 		REG_WR8(bp, BAR_XSTRORM_INTMEM +
772 			    XSTORM_ETH_FUNCTION_INFO_FP_HSI_VALID_E2_OFFSET(abs_fid), 0);
773 
774 	/* clear vf errors*/
775 	bnx2x_vf_semi_clear_err(bp, abs_vfid);
776 	bnx2x_vf_pglue_clear_err(bp, abs_vfid);
777 
778 	/* internal vf-enable - pretend */
779 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid));
780 	DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid);
781 	bnx2x_vf_enable_internal(bp, true);
782 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
783 }
784 
785 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf)
786 {
787 	/* Reset vf in IGU  interrupts are still disabled */
788 	bnx2x_vf_igu_reset(bp, vf);
789 
790 	/* pretend to enable the vf with the PBF */
791 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
792 	REG_WR(bp, PBF_REG_DISABLE_VF, 0);
793 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
794 }
795 
796 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid)
797 {
798 	struct pci_dev *dev;
799 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
800 
801 	if (!vf)
802 		return false;
803 
804 	dev = pci_get_domain_bus_and_slot(vf->domain, vf->bus, vf->devfn);
805 	if (dev)
806 		return bnx2x_is_pcie_pending(dev);
807 	return false;
808 }
809 
810 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid)
811 {
812 	/* Verify no pending pci transactions */
813 	if (bnx2x_vf_is_pcie_pending(bp, abs_vfid))
814 		BNX2X_ERR("PCIE Transactions still pending\n");
815 
816 	return 0;
817 }
818 
819 /* must be called after the number of PF queues and the number of VFs are
820  * both known
821  */
822 static void
823 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
824 {
825 	struct vf_pf_resc_request *resc = &vf->alloc_resc;
826 
827 	/* will be set only during VF-ACQUIRE */
828 	resc->num_rxqs = 0;
829 	resc->num_txqs = 0;
830 
831 	resc->num_mac_filters = VF_MAC_CREDIT_CNT;
832 	resc->num_vlan_filters = VF_VLAN_CREDIT_CNT;
833 
834 	/* no real limitation */
835 	resc->num_mc_filters = 0;
836 
837 	/* num_sbs already set */
838 	resc->num_sbs = vf->sb_count;
839 }
840 
841 /* FLR routines: */
842 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
843 {
844 	/* reset the state variables */
845 	bnx2x_iov_static_resc(bp, vf);
846 	vf->state = VF_FREE;
847 }
848 
849 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf)
850 {
851 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
852 
853 	/* DQ usage counter */
854 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
855 	bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT,
856 					"DQ VF usage counter timed out",
857 					poll_cnt);
858 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
859 
860 	/* FW cleanup command - poll for the results */
861 	if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid),
862 				   poll_cnt))
863 		BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid);
864 
865 	/* verify TX hw is flushed */
866 	bnx2x_tx_hw_flushed(bp, poll_cnt);
867 }
868 
869 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf)
870 {
871 	int rc, i;
872 
873 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
874 
875 	/* the cleanup operations are valid if and only if the VF
876 	 * was first acquired.
877 	 */
878 	for (i = 0; i < vf_rxq_count(vf); i++) {
879 		rc = bnx2x_vf_queue_flr(bp, vf, i);
880 		if (rc)
881 			goto out;
882 	}
883 
884 	/* remove multicasts */
885 	bnx2x_vf_mcast(bp, vf, NULL, 0, true);
886 
887 	/* dispatch final cleanup and wait for HW queues to flush */
888 	bnx2x_vf_flr_clnup_hw(bp, vf);
889 
890 	/* release VF resources */
891 	bnx2x_vf_free_resc(bp, vf);
892 
893 	vf->malicious = false;
894 
895 	/* re-open the mailbox */
896 	bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
897 	return;
898 out:
899 	BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n",
900 		  vf->abs_vfid, i, rc);
901 }
902 
903 static void bnx2x_vf_flr_clnup(struct bnx2x *bp)
904 {
905 	struct bnx2x_virtf *vf;
906 	int i;
907 
908 	for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) {
909 		/* VF should be RESET & in FLR cleanup states */
910 		if (bnx2x_vf(bp, i, state) != VF_RESET ||
911 		    !bnx2x_vf(bp, i, flr_clnup_stage))
912 			continue;
913 
914 		DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n",
915 		   i, BNX2X_NR_VIRTFN(bp));
916 
917 		vf = BP_VF(bp, i);
918 
919 		/* lock the vf pf channel */
920 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
921 
922 		/* invoke the VF FLR SM */
923 		bnx2x_vf_flr(bp, vf);
924 
925 		/* mark the VF to be ACKED and continue */
926 		vf->flr_clnup_stage = false;
927 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
928 	}
929 
930 	/* Acknowledge the handled VFs.
931 	 * we are acknowledge all the vfs which an flr was requested for, even
932 	 * if amongst them there are such that we never opened, since the mcp
933 	 * will interrupt us immediately again if we only ack some of the bits,
934 	 * resulting in an endless loop. This can happen for example in KVM
935 	 * where an 'all ones' flr request is sometimes given by hyper visor
936 	 */
937 	DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
938 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
939 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
940 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i],
941 			  bp->vfdb->flrd_vfs[i]);
942 
943 	bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0);
944 
945 	/* clear the acked bits - better yet if the MCP implemented
946 	 * write to clear semantics
947 	 */
948 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
949 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0);
950 }
951 
952 void bnx2x_vf_handle_flr_event(struct bnx2x *bp)
953 {
954 	int i;
955 
956 	/* Read FLR'd VFs */
957 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
958 		bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]);
959 
960 	DP(BNX2X_MSG_MCP,
961 	   "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
962 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
963 
964 	for_each_vf(bp, i) {
965 		struct bnx2x_virtf *vf = BP_VF(bp, i);
966 		u32 reset = 0;
967 
968 		if (vf->abs_vfid < 32)
969 			reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid);
970 		else
971 			reset = bp->vfdb->flrd_vfs[1] &
972 				(1 << (vf->abs_vfid - 32));
973 
974 		if (reset) {
975 			/* set as reset and ready for cleanup */
976 			vf->state = VF_RESET;
977 			vf->flr_clnup_stage = true;
978 
979 			DP(BNX2X_MSG_IOV,
980 			   "Initiating Final cleanup for VF %d\n",
981 			   vf->abs_vfid);
982 		}
983 	}
984 
985 	/* do the FLR cleanup for all marked VFs*/
986 	bnx2x_vf_flr_clnup(bp);
987 }
988 
989 /* IOV global initialization routines  */
990 void bnx2x_iov_init_dq(struct bnx2x *bp)
991 {
992 	if (!IS_SRIOV(bp))
993 		return;
994 
995 	/* Set the DQ such that the CID reflect the abs_vfid */
996 	REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0);
997 	REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
998 
999 	/* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
1000 	 * the PF L2 queues
1001 	 */
1002 	REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
1003 
1004 	/* The VF window size is the log2 of the max number of CIDs per VF */
1005 	REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
1006 
1007 	/* The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
1008 	 * the Pf doorbell size although the 2 are independent.
1009 	 */
1010 	REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3);
1011 
1012 	/* No security checks for now -
1013 	 * configure single rule (out of 16) mask = 0x1, value = 0x0,
1014 	 * CID range 0 - 0x1ffff
1015 	 */
1016 	REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1);
1017 	REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0);
1018 	REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
1019 	REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
1020 
1021 	/* set the VF doorbell threshold. This threshold represents the amount
1022 	 * of doorbells allowed in the main DORQ fifo for a specific VF.
1023 	 */
1024 	REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64);
1025 }
1026 
1027 void bnx2x_iov_init_dmae(struct bnx2x *bp)
1028 {
1029 	if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV))
1030 		REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0);
1031 }
1032 
1033 static int bnx2x_vf_domain(struct bnx2x *bp, int vfid)
1034 {
1035 	struct pci_dev *dev = bp->pdev;
1036 
1037 	return pci_domain_nr(dev->bus);
1038 }
1039 
1040 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid)
1041 {
1042 	struct pci_dev *dev = bp->pdev;
1043 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1044 
1045 	return dev->bus->number + ((dev->devfn + iov->offset +
1046 				    iov->stride * vfid) >> 8);
1047 }
1048 
1049 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid)
1050 {
1051 	struct pci_dev *dev = bp->pdev;
1052 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1053 
1054 	return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff;
1055 }
1056 
1057 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf)
1058 {
1059 	int i, n;
1060 	struct pci_dev *dev = bp->pdev;
1061 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1062 
1063 	for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) {
1064 		u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i);
1065 		u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i);
1066 
1067 		size /= iov->total;
1068 		vf->bars[n].bar = start + size * vf->abs_vfid;
1069 		vf->bars[n].size = size;
1070 	}
1071 }
1072 
1073 static int
1074 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp)
1075 {
1076 	int sb_id;
1077 	u32 val;
1078 	u8 fid, current_pf = 0;
1079 
1080 	/* IGU in normal mode - read CAM */
1081 	for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) {
1082 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4);
1083 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
1084 			continue;
1085 		fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID);
1086 		if (fid & IGU_FID_ENCODE_IS_PF)
1087 			current_pf = fid & IGU_FID_PF_NUM_MASK;
1088 		else if (current_pf == BP_FUNC(bp))
1089 			bnx2x_vf_set_igu_info(bp, sb_id,
1090 					      (fid & IGU_FID_VF_NUM_MASK));
1091 		DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n",
1092 		   ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"),
1093 		   ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) :
1094 		   (fid & IGU_FID_VF_NUM_MASK)), sb_id,
1095 		   GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR));
1096 	}
1097 	DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool);
1098 	return BP_VFDB(bp)->vf_sbs_pool;
1099 }
1100 
1101 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp)
1102 {
1103 	if (bp->vfdb) {
1104 		kfree(bp->vfdb->vfqs);
1105 		kfree(bp->vfdb->vfs);
1106 		kfree(bp->vfdb);
1107 	}
1108 	bp->vfdb = NULL;
1109 }
1110 
1111 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1112 {
1113 	int pos;
1114 	struct pci_dev *dev = bp->pdev;
1115 
1116 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
1117 	if (!pos) {
1118 		BNX2X_ERR("failed to find SRIOV capability in device\n");
1119 		return -ENODEV;
1120 	}
1121 
1122 	iov->pos = pos;
1123 	DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos);
1124 	pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
1125 	pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total);
1126 	pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial);
1127 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
1128 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
1129 	pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
1130 	pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap);
1131 	pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
1132 
1133 	return 0;
1134 }
1135 
1136 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1137 {
1138 	u32 val;
1139 
1140 	/* read the SRIOV capability structure
1141 	 * The fields can be read via configuration read or
1142 	 * directly from the device (starting at offset PCICFG_OFFSET)
1143 	 */
1144 	if (bnx2x_sriov_pci_cfg_info(bp, iov))
1145 		return -ENODEV;
1146 
1147 	/* get the number of SRIOV bars */
1148 	iov->nres = 0;
1149 
1150 	/* read the first_vfid */
1151 	val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF);
1152 	iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK)
1153 			       * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp));
1154 
1155 	DP(BNX2X_MSG_IOV,
1156 	   "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
1157 	   BP_FUNC(bp),
1158 	   iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total,
1159 	   iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
1160 
1161 	return 0;
1162 }
1163 
1164 /* must be called after PF bars are mapped */
1165 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param,
1166 		       int num_vfs_param)
1167 {
1168 	int err, i;
1169 	struct bnx2x_sriov *iov;
1170 	struct pci_dev *dev = bp->pdev;
1171 
1172 	bp->vfdb = NULL;
1173 
1174 	/* verify is pf */
1175 	if (IS_VF(bp))
1176 		return 0;
1177 
1178 	/* verify sriov capability is present in configuration space */
1179 	if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV))
1180 		return 0;
1181 
1182 	/* verify chip revision */
1183 	if (CHIP_IS_E1x(bp))
1184 		return 0;
1185 
1186 	/* check if SRIOV support is turned off */
1187 	if (!num_vfs_param)
1188 		return 0;
1189 
1190 	/* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
1191 	if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) {
1192 		BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
1193 			  BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID);
1194 		return 0;
1195 	}
1196 
1197 	/* SRIOV can be enabled only with MSIX */
1198 	if (int_mode_param == BNX2X_INT_MODE_MSI ||
1199 	    int_mode_param == BNX2X_INT_MODE_INTX) {
1200 		BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
1201 		return 0;
1202 	}
1203 
1204 	/* verify ari is enabled */
1205 	if (!pci_ari_enabled(bp->pdev->bus)) {
1206 		BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
1207 		return 0;
1208 	}
1209 
1210 	/* verify igu is in normal mode */
1211 	if (CHIP_INT_MODE_IS_BC(bp)) {
1212 		BNX2X_ERR("IGU not normal mode,  SRIOV can not be enabled\n");
1213 		return 0;
1214 	}
1215 
1216 	/* allocate the vfs database */
1217 	bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL);
1218 	if (!bp->vfdb) {
1219 		BNX2X_ERR("failed to allocate vf database\n");
1220 		err = -ENOMEM;
1221 		goto failed;
1222 	}
1223 
1224 	/* get the sriov info - Linux already collected all the pertinent
1225 	 * information, however the sriov structure is for the private use
1226 	 * of the pci module. Also we want this information regardless
1227 	 * of the hyper-visor.
1228 	 */
1229 	iov = &(bp->vfdb->sriov);
1230 	err = bnx2x_sriov_info(bp, iov);
1231 	if (err)
1232 		goto failed;
1233 
1234 	/* SR-IOV capability was enabled but there are no VFs*/
1235 	if (iov->total == 0) {
1236 		err = 0;
1237 		goto failed;
1238 	}
1239 
1240 	iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param);
1241 
1242 	DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n",
1243 	   num_vfs_param, iov->nr_virtfn);
1244 
1245 	/* allocate the vf array */
1246 	bp->vfdb->vfs = kcalloc(BNX2X_NR_VIRTFN(bp),
1247 				sizeof(struct bnx2x_virtf),
1248 				GFP_KERNEL);
1249 	if (!bp->vfdb->vfs) {
1250 		BNX2X_ERR("failed to allocate vf array\n");
1251 		err = -ENOMEM;
1252 		goto failed;
1253 	}
1254 
1255 	/* Initial VF init - index and abs_vfid - nr_virtfn must be set */
1256 	for_each_vf(bp, i) {
1257 		bnx2x_vf(bp, i, index) = i;
1258 		bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i;
1259 		bnx2x_vf(bp, i, state) = VF_FREE;
1260 		mutex_init(&bnx2x_vf(bp, i, op_mutex));
1261 		bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE;
1262 		/* enable spoofchk by default */
1263 		bnx2x_vf(bp, i, spoofchk) = 1;
1264 	}
1265 
1266 	/* re-read the IGU CAM for VFs - index and abs_vfid must be set */
1267 	if (!bnx2x_get_vf_igu_cam_info(bp)) {
1268 		BNX2X_ERR("No entries in IGU CAM for vfs\n");
1269 		err = -EINVAL;
1270 		goto failed;
1271 	}
1272 
1273 	/* allocate the queue arrays for all VFs */
1274 	bp->vfdb->vfqs = kcalloc(BNX2X_MAX_NUM_VF_QUEUES,
1275 				 sizeof(struct bnx2x_vf_queue),
1276 				 GFP_KERNEL);
1277 
1278 	if (!bp->vfdb->vfqs) {
1279 		BNX2X_ERR("failed to allocate vf queue array\n");
1280 		err = -ENOMEM;
1281 		goto failed;
1282 	}
1283 
1284 	/* Prepare the VFs event synchronization mechanism */
1285 	mutex_init(&bp->vfdb->event_mutex);
1286 
1287 	mutex_init(&bp->vfdb->bulletin_mutex);
1288 
1289 	if (SHMEM2_HAS(bp, sriov_switch_mode))
1290 		SHMEM2_WR(bp, sriov_switch_mode, SRIOV_SWITCH_MODE_VEB);
1291 
1292 	return 0;
1293 failed:
1294 	DP(BNX2X_MSG_IOV, "Failed err=%d\n", err);
1295 	__bnx2x_iov_free_vfdb(bp);
1296 	return err;
1297 }
1298 
1299 void bnx2x_iov_remove_one(struct bnx2x *bp)
1300 {
1301 	int vf_idx;
1302 
1303 	/* if SRIOV is not enabled there's nothing to do */
1304 	if (!IS_SRIOV(bp))
1305 		return;
1306 
1307 	bnx2x_disable_sriov(bp);
1308 
1309 	/* disable access to all VFs */
1310 	for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) {
1311 		bnx2x_pretend_func(bp,
1312 				   HW_VF_HANDLE(bp,
1313 						bp->vfdb->sriov.first_vf_in_pf +
1314 						vf_idx));
1315 		DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n",
1316 		   bp->vfdb->sriov.first_vf_in_pf + vf_idx);
1317 		bnx2x_vf_enable_internal(bp, 0);
1318 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1319 	}
1320 
1321 	/* free vf database */
1322 	__bnx2x_iov_free_vfdb(bp);
1323 }
1324 
1325 void bnx2x_iov_free_mem(struct bnx2x *bp)
1326 {
1327 	int i;
1328 
1329 	if (!IS_SRIOV(bp))
1330 		return;
1331 
1332 	/* free vfs hw contexts */
1333 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1334 		struct hw_dma *cxt = &bp->vfdb->context[i];
1335 		BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size);
1336 	}
1337 
1338 	BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr,
1339 		       BP_VFDB(bp)->sp_dma.mapping,
1340 		       BP_VFDB(bp)->sp_dma.size);
1341 
1342 	BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr,
1343 		       BP_VF_MBX_DMA(bp)->mapping,
1344 		       BP_VF_MBX_DMA(bp)->size);
1345 
1346 	BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr,
1347 		       BP_VF_BULLETIN_DMA(bp)->mapping,
1348 		       BP_VF_BULLETIN_DMA(bp)->size);
1349 }
1350 
1351 int bnx2x_iov_alloc_mem(struct bnx2x *bp)
1352 {
1353 	size_t tot_size;
1354 	int i, rc = 0;
1355 
1356 	if (!IS_SRIOV(bp))
1357 		return rc;
1358 
1359 	/* allocate vfs hw contexts */
1360 	tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) *
1361 		BNX2X_CIDS_PER_VF * sizeof(union cdu_context);
1362 
1363 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1364 		struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i);
1365 		cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ);
1366 
1367 		if (cxt->size) {
1368 			cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size);
1369 			if (!cxt->addr)
1370 				goto alloc_mem_err;
1371 		} else {
1372 			cxt->addr = NULL;
1373 			cxt->mapping = 0;
1374 		}
1375 		tot_size -= cxt->size;
1376 	}
1377 
1378 	/* allocate vfs ramrods dma memory - client_init and set_mac */
1379 	tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp);
1380 	BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping,
1381 						   tot_size);
1382 	if (!BP_VFDB(bp)->sp_dma.addr)
1383 		goto alloc_mem_err;
1384 	BP_VFDB(bp)->sp_dma.size = tot_size;
1385 
1386 	/* allocate mailboxes */
1387 	tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE;
1388 	BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping,
1389 						  tot_size);
1390 	if (!BP_VF_MBX_DMA(bp)->addr)
1391 		goto alloc_mem_err;
1392 
1393 	BP_VF_MBX_DMA(bp)->size = tot_size;
1394 
1395 	/* allocate local bulletin boards */
1396 	tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE;
1397 	BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping,
1398 						       tot_size);
1399 	if (!BP_VF_BULLETIN_DMA(bp)->addr)
1400 		goto alloc_mem_err;
1401 
1402 	BP_VF_BULLETIN_DMA(bp)->size = tot_size;
1403 
1404 	return 0;
1405 
1406 alloc_mem_err:
1407 	return -ENOMEM;
1408 }
1409 
1410 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf,
1411 			   struct bnx2x_vf_queue *q)
1412 {
1413 	u8 cl_id = vfq_cl_id(vf, q);
1414 	u8 func_id = FW_VF_HANDLE(vf->abs_vfid);
1415 	unsigned long q_type = 0;
1416 
1417 	set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1418 	set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1419 
1420 	/* Queue State object */
1421 	bnx2x_init_queue_obj(bp, &q->sp_obj,
1422 			     cl_id, &q->cid, 1, func_id,
1423 			     bnx2x_vf_sp(bp, vf, q_data),
1424 			     bnx2x_vf_sp_map(bp, vf, q_data),
1425 			     q_type);
1426 
1427 	/* sp indication is set only when vlan/mac/etc. are initialized */
1428 	q->sp_initialized = false;
1429 
1430 	DP(BNX2X_MSG_IOV,
1431 	   "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n",
1432 	   vf->abs_vfid, q->sp_obj.func_id, q->cid);
1433 }
1434 
1435 static int bnx2x_max_speed_cap(struct bnx2x *bp)
1436 {
1437 	u32 supported = bp->port.supported[bnx2x_get_link_cfg_idx(bp)];
1438 
1439 	if (supported &
1440 	    (SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full))
1441 		return 20000;
1442 
1443 	return 10000; /* assume lowest supported speed is 10G */
1444 }
1445 
1446 int bnx2x_iov_link_update_vf(struct bnx2x *bp, int idx)
1447 {
1448 	struct bnx2x_link_report_data *state = &bp->last_reported_link;
1449 	struct pf_vf_bulletin_content *bulletin;
1450 	struct bnx2x_virtf *vf;
1451 	bool update = true;
1452 	int rc = 0;
1453 
1454 	/* sanity and init */
1455 	rc = bnx2x_vf_op_prep(bp, idx, &vf, &bulletin, false);
1456 	if (rc)
1457 		return rc;
1458 
1459 	mutex_lock(&bp->vfdb->bulletin_mutex);
1460 
1461 	if (vf->link_cfg == IFLA_VF_LINK_STATE_AUTO) {
1462 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1463 
1464 		bulletin->link_speed = state->line_speed;
1465 		bulletin->link_flags = 0;
1466 		if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1467 			     &state->link_report_flags))
1468 			bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1469 		if (test_bit(BNX2X_LINK_REPORT_FD,
1470 			     &state->link_report_flags))
1471 			bulletin->link_flags |= VFPF_LINK_REPORT_FULL_DUPLEX;
1472 		if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1473 			     &state->link_report_flags))
1474 			bulletin->link_flags |= VFPF_LINK_REPORT_RX_FC_ON;
1475 		if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1476 			     &state->link_report_flags))
1477 			bulletin->link_flags |= VFPF_LINK_REPORT_TX_FC_ON;
1478 	} else if (vf->link_cfg == IFLA_VF_LINK_STATE_DISABLE &&
1479 		   !(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1480 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1481 		bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1482 	} else if (vf->link_cfg == IFLA_VF_LINK_STATE_ENABLE &&
1483 		   (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1484 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1485 		bulletin->link_speed = bnx2x_max_speed_cap(bp);
1486 		bulletin->link_flags &= ~VFPF_LINK_REPORT_LINK_DOWN;
1487 	} else {
1488 		update = false;
1489 	}
1490 
1491 	if (update) {
1492 		DP(NETIF_MSG_LINK | BNX2X_MSG_IOV,
1493 		   "vf %d mode %u speed %d flags %x\n", idx,
1494 		   vf->link_cfg, bulletin->link_speed, bulletin->link_flags);
1495 
1496 		/* Post update on VF's bulletin board */
1497 		rc = bnx2x_post_vf_bulletin(bp, idx);
1498 		if (rc) {
1499 			BNX2X_ERR("failed to update VF[%d] bulletin\n", idx);
1500 			goto out;
1501 		}
1502 	}
1503 
1504 out:
1505 	mutex_unlock(&bp->vfdb->bulletin_mutex);
1506 	return rc;
1507 }
1508 
1509 int bnx2x_set_vf_link_state(struct net_device *dev, int idx, int link_state)
1510 {
1511 	struct bnx2x *bp = netdev_priv(dev);
1512 	struct bnx2x_virtf *vf = BP_VF(bp, idx);
1513 
1514 	if (!vf)
1515 		return -EINVAL;
1516 
1517 	if (vf->link_cfg == link_state)
1518 		return 0; /* nothing todo */
1519 
1520 	vf->link_cfg = link_state;
1521 
1522 	return bnx2x_iov_link_update_vf(bp, idx);
1523 }
1524 
1525 void bnx2x_iov_link_update(struct bnx2x *bp)
1526 {
1527 	int vfid;
1528 
1529 	if (!IS_SRIOV(bp))
1530 		return;
1531 
1532 	for_each_vf(bp, vfid)
1533 		bnx2x_iov_link_update_vf(bp, vfid);
1534 }
1535 
1536 /* called by bnx2x_nic_load */
1537 int bnx2x_iov_nic_init(struct bnx2x *bp)
1538 {
1539 	int vfid;
1540 
1541 	if (!IS_SRIOV(bp)) {
1542 		DP(BNX2X_MSG_IOV, "vfdb was not allocated\n");
1543 		return 0;
1544 	}
1545 
1546 	DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn);
1547 
1548 	/* let FLR complete ... */
1549 	msleep(100);
1550 
1551 	/* initialize vf database */
1552 	for_each_vf(bp, vfid) {
1553 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1554 
1555 		int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) *
1556 			BNX2X_CIDS_PER_VF;
1557 
1558 		union cdu_context *base_cxt = (union cdu_context *)
1559 			BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1560 			(base_vf_cid & (ILT_PAGE_CIDS-1));
1561 
1562 		DP(BNX2X_MSG_IOV,
1563 		   "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
1564 		   vf->abs_vfid, vf_sb_count(vf), base_vf_cid,
1565 		   BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt);
1566 
1567 		/* init statically provisioned resources */
1568 		bnx2x_iov_static_resc(bp, vf);
1569 
1570 		/* queues are initialized during VF-ACQUIRE */
1571 		vf->filter_state = 0;
1572 		vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id);
1573 
1574 		bnx2x_init_credit_pool(&vf->vf_vlans_pool, 0,
1575 				       vf_vlan_rules_cnt(vf));
1576 		bnx2x_init_credit_pool(&vf->vf_macs_pool, 0,
1577 				       vf_mac_rules_cnt(vf));
1578 
1579 		/*  init mcast object - This object will be re-initialized
1580 		 *  during VF-ACQUIRE with the proper cl_id and cid.
1581 		 *  It needs to be initialized here so that it can be safely
1582 		 *  handled by a subsequent FLR flow.
1583 		 */
1584 		bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF,
1585 				     0xFF, 0xFF, 0xFF,
1586 				     bnx2x_vf_sp(bp, vf, mcast_rdata),
1587 				     bnx2x_vf_sp_map(bp, vf, mcast_rdata),
1588 				     BNX2X_FILTER_MCAST_PENDING,
1589 				     &vf->filter_state,
1590 				     BNX2X_OBJ_TYPE_RX_TX);
1591 
1592 		/* set the mailbox message addresses */
1593 		BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *)
1594 			(((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid *
1595 			MBX_MSG_ALIGNED_SIZE);
1596 
1597 		BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping +
1598 			vfid * MBX_MSG_ALIGNED_SIZE;
1599 
1600 		/* Enable vf mailbox */
1601 		bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
1602 	}
1603 
1604 	/* Final VF init */
1605 	for_each_vf(bp, vfid) {
1606 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1607 
1608 		/* fill in the BDF and bars */
1609 		vf->domain = bnx2x_vf_domain(bp, vfid);
1610 		vf->bus = bnx2x_vf_bus(bp, vfid);
1611 		vf->devfn = bnx2x_vf_devfn(bp, vfid);
1612 		bnx2x_vf_set_bars(bp, vf);
1613 
1614 		DP(BNX2X_MSG_IOV,
1615 		   "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
1616 		   vf->abs_vfid, vf->bus, vf->devfn,
1617 		   (unsigned)vf->bars[0].bar, vf->bars[0].size,
1618 		   (unsigned)vf->bars[1].bar, vf->bars[1].size,
1619 		   (unsigned)vf->bars[2].bar, vf->bars[2].size);
1620 	}
1621 
1622 	return 0;
1623 }
1624 
1625 /* called by bnx2x_chip_cleanup */
1626 int bnx2x_iov_chip_cleanup(struct bnx2x *bp)
1627 {
1628 	int i;
1629 
1630 	if (!IS_SRIOV(bp))
1631 		return 0;
1632 
1633 	/* release all the VFs */
1634 	for_each_vf(bp, i)
1635 		bnx2x_vf_release(bp, BP_VF(bp, i));
1636 
1637 	return 0;
1638 }
1639 
1640 /* called by bnx2x_init_hw_func, returns the next ilt line */
1641 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line)
1642 {
1643 	int i;
1644 	struct bnx2x_ilt *ilt = BP_ILT(bp);
1645 
1646 	if (!IS_SRIOV(bp))
1647 		return line;
1648 
1649 	/* set vfs ilt lines */
1650 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1651 		struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i);
1652 
1653 		ilt->lines[line+i].page = hw_cxt->addr;
1654 		ilt->lines[line+i].page_mapping = hw_cxt->mapping;
1655 		ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
1656 	}
1657 	return line + i;
1658 }
1659 
1660 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid)
1661 {
1662 	return ((cid >= BNX2X_FIRST_VF_CID) &&
1663 		((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS));
1664 }
1665 
1666 static
1667 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp,
1668 					struct bnx2x_vf_queue *vfq,
1669 					union event_ring_elem *elem)
1670 {
1671 	unsigned long ramrod_flags = 0;
1672 	int rc = 0;
1673 	u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
1674 
1675 	/* Always push next commands out, don't wait here */
1676 	set_bit(RAMROD_CONT, &ramrod_flags);
1677 
1678 	switch (echo >> BNX2X_SWCID_SHIFT) {
1679 	case BNX2X_FILTER_MAC_PENDING:
1680 		rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem,
1681 					   &ramrod_flags);
1682 		break;
1683 	case BNX2X_FILTER_VLAN_PENDING:
1684 		rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem,
1685 					    &ramrod_flags);
1686 		break;
1687 	default:
1688 		BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
1689 		return;
1690 	}
1691 	if (rc < 0)
1692 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
1693 	else if (rc > 0)
1694 		DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n");
1695 }
1696 
1697 static
1698 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp,
1699 			       struct bnx2x_virtf *vf)
1700 {
1701 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
1702 	int rc;
1703 
1704 	rparam.mcast_obj = &vf->mcast_obj;
1705 	vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw);
1706 
1707 	/* If there are pending mcast commands - send them */
1708 	if (vf->mcast_obj.check_pending(&vf->mcast_obj)) {
1709 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
1710 		if (rc < 0)
1711 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
1712 				  rc);
1713 	}
1714 }
1715 
1716 static
1717 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp,
1718 				 struct bnx2x_virtf *vf)
1719 {
1720 	smp_mb__before_atomic();
1721 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
1722 	smp_mb__after_atomic();
1723 }
1724 
1725 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp,
1726 					   struct bnx2x_virtf *vf)
1727 {
1728 	vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw);
1729 }
1730 
1731 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem)
1732 {
1733 	struct bnx2x_virtf *vf;
1734 	int qidx = 0, abs_vfid;
1735 	u8 opcode;
1736 	u16 cid = 0xffff;
1737 
1738 	if (!IS_SRIOV(bp))
1739 		return 1;
1740 
1741 	/* first get the cid - the only events we handle here are cfc-delete
1742 	 * and set-mac completion
1743 	 */
1744 	opcode = elem->message.opcode;
1745 
1746 	switch (opcode) {
1747 	case EVENT_RING_OPCODE_CFC_DEL:
1748 		cid = SW_CID(elem->message.data.cfc_del_event.cid);
1749 		DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid);
1750 		break;
1751 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1752 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1753 	case EVENT_RING_OPCODE_FILTERS_RULES:
1754 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1755 		cid = SW_CID(elem->message.data.eth_event.echo);
1756 		DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid);
1757 		break;
1758 	case EVENT_RING_OPCODE_VF_FLR:
1759 		abs_vfid = elem->message.data.vf_flr_event.vf_id;
1760 		DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n",
1761 		   abs_vfid);
1762 		goto get_vf;
1763 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1764 		abs_vfid = elem->message.data.malicious_vf_event.vf_id;
1765 		BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
1766 			  abs_vfid,
1767 			  elem->message.data.malicious_vf_event.err_id);
1768 		goto get_vf;
1769 	default:
1770 		return 1;
1771 	}
1772 
1773 	/* check if the cid is the VF range */
1774 	if (!bnx2x_iov_is_vf_cid(bp, cid)) {
1775 		DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid);
1776 		return 1;
1777 	}
1778 
1779 	/* extract vf and rxq index from vf_cid - relies on the following:
1780 	 * 1. vfid on cid reflects the true abs_vfid
1781 	 * 2. The max number of VFs (per path) is 64
1782 	 */
1783 	qidx = cid & ((1 << BNX2X_VF_CID_WND)-1);
1784 	abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1785 get_vf:
1786 	vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
1787 
1788 	if (!vf) {
1789 		BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
1790 			  cid, abs_vfid);
1791 		return 0;
1792 	}
1793 
1794 	switch (opcode) {
1795 	case EVENT_RING_OPCODE_CFC_DEL:
1796 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n",
1797 		   vf->abs_vfid, qidx);
1798 		vfq_get(vf, qidx)->sp_obj.complete_cmd(bp,
1799 						       &vfq_get(vf,
1800 								qidx)->sp_obj,
1801 						       BNX2X_Q_CMD_CFC_DEL);
1802 		break;
1803 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1804 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n",
1805 		   vf->abs_vfid, qidx);
1806 		bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem);
1807 		break;
1808 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1809 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n",
1810 		   vf->abs_vfid, qidx);
1811 		bnx2x_vf_handle_mcast_eqe(bp, vf);
1812 		break;
1813 	case EVENT_RING_OPCODE_FILTERS_RULES:
1814 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n",
1815 		   vf->abs_vfid, qidx);
1816 		bnx2x_vf_handle_filters_eqe(bp, vf);
1817 		break;
1818 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1819 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n",
1820 		   vf->abs_vfid, qidx);
1821 		bnx2x_vf_handle_rss_update_eqe(bp, vf);
1822 		fallthrough;
1823 	case EVENT_RING_OPCODE_VF_FLR:
1824 		/* Do nothing for now */
1825 		return 0;
1826 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1827 		vf->malicious = true;
1828 		return 0;
1829 	}
1830 
1831 	return 0;
1832 }
1833 
1834 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid)
1835 {
1836 	/* extract the vf from vf_cid - relies on the following:
1837 	 * 1. vfid on cid reflects the true abs_vfid
1838 	 * 2. The max number of VFs (per path) is 64
1839 	 */
1840 	int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1841 	return bnx2x_vf_by_abs_fid(bp, abs_vfid);
1842 }
1843 
1844 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid,
1845 				struct bnx2x_queue_sp_obj **q_obj)
1846 {
1847 	struct bnx2x_virtf *vf;
1848 
1849 	if (!IS_SRIOV(bp))
1850 		return;
1851 
1852 	vf = bnx2x_vf_by_cid(bp, vf_cid);
1853 
1854 	if (vf) {
1855 		/* extract queue index from vf_cid - relies on the following:
1856 		 * 1. vfid on cid reflects the true abs_vfid
1857 		 * 2. The max number of VFs (per path) is 64
1858 		 */
1859 		int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1);
1860 		*q_obj = &bnx2x_vfq(vf, q_index, sp_obj);
1861 	} else {
1862 		BNX2X_ERR("No vf matching cid %d\n", vf_cid);
1863 	}
1864 }
1865 
1866 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp)
1867 {
1868 	int i;
1869 	int first_queue_query_index, num_queues_req;
1870 	struct stats_query_entry *cur_query_entry;
1871 	u8 stats_count = 0;
1872 	bool is_fcoe = false;
1873 
1874 	if (!IS_SRIOV(bp))
1875 		return;
1876 
1877 	if (!NO_FCOE(bp))
1878 		is_fcoe = true;
1879 
1880 	/* fcoe adds one global request and one queue request */
1881 	num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe;
1882 	first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX -
1883 		(is_fcoe ? 0 : 1);
1884 
1885 	DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1886 	       "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
1887 	       BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index,
1888 	       first_queue_query_index + num_queues_req);
1889 
1890 	cur_query_entry = &bp->fw_stats_req->
1891 		query[first_queue_query_index + num_queues_req];
1892 
1893 	for_each_vf(bp, i) {
1894 		int j;
1895 		struct bnx2x_virtf *vf = BP_VF(bp, i);
1896 
1897 		if (vf->state != VF_ENABLED) {
1898 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1899 			       "vf %d not enabled so no stats for it\n",
1900 			       vf->abs_vfid);
1901 			continue;
1902 		}
1903 
1904 		if (vf->malicious) {
1905 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1906 			       "vf %d malicious so no stats for it\n",
1907 			       vf->abs_vfid);
1908 			continue;
1909 		}
1910 
1911 		DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1912 		       "add addresses for vf %d\n", vf->abs_vfid);
1913 		for_each_vfq(vf, j) {
1914 			struct bnx2x_vf_queue *rxq = vfq_get(vf, j);
1915 
1916 			dma_addr_t q_stats_addr =
1917 				vf->fw_stat_map + j * vf->stats_stride;
1918 
1919 			/* collect stats fro active queues only */
1920 			if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) ==
1921 			    BNX2X_Q_LOGICAL_STATE_STOPPED)
1922 				continue;
1923 
1924 			/* create stats query entry for this queue */
1925 			cur_query_entry->kind = STATS_TYPE_QUEUE;
1926 			cur_query_entry->index = vfq_stat_id(vf, rxq);
1927 			cur_query_entry->funcID =
1928 				cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid));
1929 			cur_query_entry->address.hi =
1930 				cpu_to_le32(U64_HI(q_stats_addr));
1931 			cur_query_entry->address.lo =
1932 				cpu_to_le32(U64_LO(q_stats_addr));
1933 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1934 			       "added address %x %x for vf %d queue %d client %d\n",
1935 			       cur_query_entry->address.hi,
1936 			       cur_query_entry->address.lo,
1937 			       cur_query_entry->funcID,
1938 			       j, cur_query_entry->index);
1939 			cur_query_entry++;
1940 			stats_count++;
1941 
1942 			/* all stats are coalesced to the leading queue */
1943 			if (vf->cfg_flags & VF_CFG_STATS_COALESCE)
1944 				break;
1945 		}
1946 	}
1947 	bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count;
1948 }
1949 
1950 /* VF API helpers */
1951 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid,
1952 				u8 enable)
1953 {
1954 	u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4;
1955 	u32 val = enable ? (abs_vfid | (1 << 6)) : 0;
1956 
1957 	REG_WR(bp, reg, val);
1958 }
1959 
1960 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf)
1961 {
1962 	int i;
1963 
1964 	for_each_vfq(vf, i)
1965 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
1966 				    vfq_qzone_id(vf, vfq_get(vf, i)), false);
1967 }
1968 
1969 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf)
1970 {
1971 	u32 val;
1972 
1973 	/* clear the VF configuration - pretend */
1974 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
1975 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
1976 	val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN |
1977 		 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK);
1978 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
1979 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1980 }
1981 
1982 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf)
1983 {
1984 	return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF),
1985 		     BNX2X_VF_MAX_QUEUES);
1986 }
1987 
1988 static
1989 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf,
1990 			    struct vf_pf_resc_request *req_resc)
1991 {
1992 	u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1993 	u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1994 
1995 	return ((req_resc->num_rxqs <= rxq_cnt) &&
1996 		(req_resc->num_txqs <= txq_cnt) &&
1997 		(req_resc->num_sbs <= vf_sb_count(vf))   &&
1998 		(req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) &&
1999 		(req_resc->num_vlan_filters <= vf_vlan_rules_cnt(vf)));
2000 }
2001 
2002 /* CORE VF API */
2003 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf,
2004 		     struct vf_pf_resc_request *resc)
2005 {
2006 	int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) *
2007 		BNX2X_CIDS_PER_VF;
2008 
2009 	union cdu_context *base_cxt = (union cdu_context *)
2010 		BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
2011 		(base_vf_cid & (ILT_PAGE_CIDS-1));
2012 	int i;
2013 
2014 	/* if state is 'acquired' the VF was not released or FLR'd, in
2015 	 * this case the returned resources match the acquired already
2016 	 * acquired resources. Verify that the requested numbers do
2017 	 * not exceed the already acquired numbers.
2018 	 */
2019 	if (vf->state == VF_ACQUIRED) {
2020 		DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
2021 		   vf->abs_vfid);
2022 
2023 		if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2024 			BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
2025 				  vf->abs_vfid);
2026 			return -EINVAL;
2027 		}
2028 		return 0;
2029 	}
2030 
2031 	/* Otherwise vf state must be 'free' or 'reset' */
2032 	if (vf->state != VF_FREE && vf->state != VF_RESET) {
2033 		BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
2034 			  vf->abs_vfid, vf->state);
2035 		return -EINVAL;
2036 	}
2037 
2038 	/* static allocation:
2039 	 * the global maximum number are fixed per VF. Fail the request if
2040 	 * requested number exceed these globals
2041 	 */
2042 	if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2043 		DP(BNX2X_MSG_IOV,
2044 		   "cannot fulfill vf resource request. Placing maximal available values in response\n");
2045 		/* set the max resource in the vf */
2046 		return -ENOMEM;
2047 	}
2048 
2049 	/* Set resources counters - 0 request means max available */
2050 	vf_sb_count(vf) = resc->num_sbs;
2051 	vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2052 	vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2053 
2054 	DP(BNX2X_MSG_IOV,
2055 	   "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
2056 	   vf_sb_count(vf), vf_rxq_count(vf),
2057 	   vf_txq_count(vf), vf_mac_rules_cnt(vf),
2058 	   vf_vlan_rules_cnt(vf));
2059 
2060 	/* Initialize the queues */
2061 	if (!vf->vfqs) {
2062 		DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n");
2063 		return -EINVAL;
2064 	}
2065 
2066 	for_each_vfq(vf, i) {
2067 		struct bnx2x_vf_queue *q = vfq_get(vf, i);
2068 
2069 		if (!q) {
2070 			BNX2X_ERR("q number %d was not allocated\n", i);
2071 			return -EINVAL;
2072 		}
2073 
2074 		q->index = i;
2075 		q->cxt = &((base_cxt + i)->eth);
2076 		q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i;
2077 
2078 		DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
2079 		   vf->abs_vfid, i, q->index, q->cid, q->cxt);
2080 
2081 		/* init SP objects */
2082 		bnx2x_vfq_init(bp, vf, q);
2083 	}
2084 	vf->state = VF_ACQUIRED;
2085 	return 0;
2086 }
2087 
2088 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map)
2089 {
2090 	struct bnx2x_func_init_params func_init = {0};
2091 	int i;
2092 
2093 	/* the sb resources are initialized at this point, do the
2094 	 * FW/HW initializations
2095 	 */
2096 	for_each_vf_sb(vf, i)
2097 		bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true,
2098 			      vf_igu_sb(vf, i), vf_igu_sb(vf, i));
2099 
2100 	/* Sanity checks */
2101 	if (vf->state != VF_ACQUIRED) {
2102 		DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n",
2103 		   vf->abs_vfid, vf->state);
2104 		return -EINVAL;
2105 	}
2106 
2107 	/* let FLR complete ... */
2108 	msleep(100);
2109 
2110 	/* FLR cleanup epilogue */
2111 	if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid))
2112 		return -EBUSY;
2113 
2114 	/* reset IGU VF statistics: MSIX */
2115 	REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0);
2116 
2117 	/* function setup */
2118 	func_init.pf_id = BP_FUNC(bp);
2119 	func_init.func_id = FW_VF_HANDLE(vf->abs_vfid);
2120 	bnx2x_func_init(bp, &func_init);
2121 
2122 	/* Enable the vf */
2123 	bnx2x_vf_enable_access(bp, vf->abs_vfid);
2124 	bnx2x_vf_enable_traffic(bp, vf);
2125 
2126 	/* queue protection table */
2127 	for_each_vfq(vf, i)
2128 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
2129 				    vfq_qzone_id(vf, vfq_get(vf, i)), true);
2130 
2131 	vf->state = VF_ENABLED;
2132 
2133 	/* update vf bulletin board */
2134 	bnx2x_post_vf_bulletin(bp, vf->index);
2135 
2136 	return 0;
2137 }
2138 
2139 struct set_vf_state_cookie {
2140 	struct bnx2x_virtf *vf;
2141 	u8 state;
2142 };
2143 
2144 static void bnx2x_set_vf_state(void *cookie)
2145 {
2146 	struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie;
2147 
2148 	p->vf->state = p->state;
2149 }
2150 
2151 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf)
2152 {
2153 	int rc = 0, i;
2154 
2155 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2156 
2157 	/* Close all queues */
2158 	for (i = 0; i < vf_rxq_count(vf); i++) {
2159 		rc = bnx2x_vf_queue_teardown(bp, vf, i);
2160 		if (rc)
2161 			goto op_err;
2162 	}
2163 
2164 	/* disable the interrupts */
2165 	DP(BNX2X_MSG_IOV, "disabling igu\n");
2166 	bnx2x_vf_igu_disable(bp, vf);
2167 
2168 	/* disable the VF */
2169 	DP(BNX2X_MSG_IOV, "clearing qtbl\n");
2170 	bnx2x_vf_clr_qtbl(bp, vf);
2171 
2172 	/* need to make sure there are no outstanding stats ramrods which may
2173 	 * cause the device to access the VF's stats buffer which it will free
2174 	 * as soon as we return from the close flow.
2175 	 */
2176 	{
2177 		struct set_vf_state_cookie cookie;
2178 
2179 		cookie.vf = vf;
2180 		cookie.state = VF_ACQUIRED;
2181 		rc = bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie);
2182 		if (rc)
2183 			goto op_err;
2184 	}
2185 
2186 	DP(BNX2X_MSG_IOV, "set state to acquired\n");
2187 
2188 	return 0;
2189 op_err:
2190 	BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc);
2191 	return rc;
2192 }
2193 
2194 /* VF release can be called either: 1. The VF was acquired but
2195  * not enabled 2. the vf was enabled or in the process of being
2196  * enabled
2197  */
2198 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf)
2199 {
2200 	int rc;
2201 
2202 	DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid,
2203 	   vf->state == VF_FREE ? "Free" :
2204 	   vf->state == VF_ACQUIRED ? "Acquired" :
2205 	   vf->state == VF_ENABLED ? "Enabled" :
2206 	   vf->state == VF_RESET ? "Reset" :
2207 	   "Unknown");
2208 
2209 	switch (vf->state) {
2210 	case VF_ENABLED:
2211 		rc = bnx2x_vf_close(bp, vf);
2212 		if (rc)
2213 			goto op_err;
2214 		fallthrough;	/* to release resources */
2215 	case VF_ACQUIRED:
2216 		DP(BNX2X_MSG_IOV, "about to free resources\n");
2217 		bnx2x_vf_free_resc(bp, vf);
2218 		break;
2219 
2220 	case VF_FREE:
2221 	case VF_RESET:
2222 	default:
2223 		break;
2224 	}
2225 	return 0;
2226 op_err:
2227 	BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc);
2228 	return rc;
2229 }
2230 
2231 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2232 			struct bnx2x_config_rss_params *rss)
2233 {
2234 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2235 	set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags);
2236 	return bnx2x_config_rss(bp, rss);
2237 }
2238 
2239 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2240 			struct vfpf_tpa_tlv *tlv,
2241 			struct bnx2x_queue_update_tpa_params *params)
2242 {
2243 	aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr;
2244 	struct bnx2x_queue_state_params qstate;
2245 	int qid, rc = 0;
2246 
2247 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2248 
2249 	/* Set ramrod params */
2250 	memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
2251 	memcpy(&qstate.params.update_tpa, params,
2252 	       sizeof(struct bnx2x_queue_update_tpa_params));
2253 	qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA;
2254 	set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
2255 
2256 	for (qid = 0; qid < vf_rxq_count(vf); qid++) {
2257 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
2258 		qstate.params.update_tpa.sge_map = sge_addr[qid];
2259 		DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n",
2260 		   vf->abs_vfid, qid, U64_HI(sge_addr[qid]),
2261 		   U64_LO(sge_addr[qid]));
2262 		rc = bnx2x_queue_state_change(bp, &qstate);
2263 		if (rc) {
2264 			BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n",
2265 				  U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]),
2266 				  vf->abs_vfid, qid);
2267 			return rc;
2268 		}
2269 	}
2270 
2271 	return rc;
2272 }
2273 
2274 /* VF release ~ VF close + VF release-resources
2275  * Release is the ultimate SW shutdown and is called whenever an
2276  * irrecoverable error is encountered.
2277  */
2278 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf)
2279 {
2280 	int rc;
2281 
2282 	DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid);
2283 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2284 
2285 	rc = bnx2x_vf_free(bp, vf);
2286 	if (rc)
2287 		WARN(rc,
2288 		     "VF[%d] Failed to allocate resources for release op- rc=%d\n",
2289 		     vf->abs_vfid, rc);
2290 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2291 	return rc;
2292 }
2293 
2294 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2295 			      enum channel_tlvs tlv)
2296 {
2297 	/* we don't lock the channel for unsupported tlvs */
2298 	if (!bnx2x_tlv_supported(tlv)) {
2299 		BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n");
2300 		return;
2301 	}
2302 
2303 	/* lock the channel */
2304 	mutex_lock(&vf->op_mutex);
2305 
2306 	/* record the locking op */
2307 	vf->op_current = tlv;
2308 
2309 	/* log the lock */
2310 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n",
2311 	   vf->abs_vfid, tlv);
2312 }
2313 
2314 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2315 				enum channel_tlvs expected_tlv)
2316 {
2317 	enum channel_tlvs current_tlv;
2318 
2319 	if (!vf) {
2320 		BNX2X_ERR("VF was %p\n", vf);
2321 		return;
2322 	}
2323 
2324 	current_tlv = vf->op_current;
2325 
2326 	/* we don't unlock the channel for unsupported tlvs */
2327 	if (!bnx2x_tlv_supported(expected_tlv))
2328 		return;
2329 
2330 	WARN(expected_tlv != vf->op_current,
2331 	     "lock mismatch: expected %d found %d", expected_tlv,
2332 	     vf->op_current);
2333 
2334 	/* record the locking op */
2335 	vf->op_current = CHANNEL_TLV_NONE;
2336 
2337 	/* lock the channel */
2338 	mutex_unlock(&vf->op_mutex);
2339 
2340 	/* log the unlock */
2341 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n",
2342 	   vf->abs_vfid, current_tlv);
2343 }
2344 
2345 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable)
2346 {
2347 	struct bnx2x_queue_state_params q_params;
2348 	u32 prev_flags;
2349 	int i, rc;
2350 
2351 	/* Verify changes are needed and record current Tx switching state */
2352 	prev_flags = bp->flags;
2353 	if (enable)
2354 		bp->flags |= TX_SWITCHING;
2355 	else
2356 		bp->flags &= ~TX_SWITCHING;
2357 	if (prev_flags == bp->flags)
2358 		return 0;
2359 
2360 	/* Verify state enables the sending of queue ramrods */
2361 	if ((bp->state != BNX2X_STATE_OPEN) ||
2362 	    (bnx2x_get_q_logical_state(bp,
2363 				      &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) !=
2364 	     BNX2X_Q_LOGICAL_STATE_ACTIVE))
2365 		return 0;
2366 
2367 	/* send q. update ramrod to configure Tx switching */
2368 	memset(&q_params, 0, sizeof(q_params));
2369 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2370 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
2371 	__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
2372 		  &q_params.params.update.update_flags);
2373 	if (enable)
2374 		__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2375 			  &q_params.params.update.update_flags);
2376 	else
2377 		__clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2378 			    &q_params.params.update.update_flags);
2379 
2380 	/* send the ramrod on all the queues of the PF */
2381 	for_each_eth_queue(bp, i) {
2382 		struct bnx2x_fastpath *fp = &bp->fp[i];
2383 		int tx_idx;
2384 
2385 		/* Set the appropriate Queue object */
2386 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
2387 
2388 		for (tx_idx = FIRST_TX_COS_INDEX;
2389 		     tx_idx < fp->max_cos; tx_idx++) {
2390 			q_params.params.update.cid_index = tx_idx;
2391 
2392 			/* Update the Queue state */
2393 			rc = bnx2x_queue_state_change(bp, &q_params);
2394 			if (rc) {
2395 				BNX2X_ERR("Failed to configure Tx switching\n");
2396 				return rc;
2397 			}
2398 		}
2399 	}
2400 
2401 	DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled");
2402 	return 0;
2403 }
2404 
2405 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param)
2406 {
2407 	struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev));
2408 
2409 	if (!IS_SRIOV(bp)) {
2410 		BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n");
2411 		return -EINVAL;
2412 	}
2413 
2414 	DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
2415 	   num_vfs_param, BNX2X_NR_VIRTFN(bp));
2416 
2417 	/* HW channel is only operational when PF is up */
2418 	if (bp->state != BNX2X_STATE_OPEN) {
2419 		BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
2420 		return -EINVAL;
2421 	}
2422 
2423 	/* we are always bound by the total_vfs in the configuration space */
2424 	if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) {
2425 		BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
2426 			  num_vfs_param, BNX2X_NR_VIRTFN(bp));
2427 		num_vfs_param = BNX2X_NR_VIRTFN(bp);
2428 	}
2429 
2430 	bp->requested_nr_virtfn = num_vfs_param;
2431 	if (num_vfs_param == 0) {
2432 		bnx2x_set_pf_tx_switching(bp, false);
2433 		bnx2x_disable_sriov(bp);
2434 		return 0;
2435 	} else {
2436 		return bnx2x_enable_sriov(bp);
2437 	}
2438 }
2439 
2440 #define IGU_ENTRY_SIZE 4
2441 
2442 int bnx2x_enable_sriov(struct bnx2x *bp)
2443 {
2444 	int rc = 0, req_vfs = bp->requested_nr_virtfn;
2445 	int vf_idx, sb_idx, vfq_idx, qcount, first_vf;
2446 	u32 igu_entry, address;
2447 	u16 num_vf_queues;
2448 
2449 	if (req_vfs == 0)
2450 		return 0;
2451 
2452 	first_vf = bp->vfdb->sriov.first_vf_in_pf;
2453 
2454 	/* statically distribute vf sb pool between VFs */
2455 	num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES,
2456 			      BP_VFDB(bp)->vf_sbs_pool / req_vfs);
2457 
2458 	/* zero previous values learned from igu cam */
2459 	for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) {
2460 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2461 
2462 		vf->sb_count = 0;
2463 		vf_sb_count(BP_VF(bp, vf_idx)) = 0;
2464 	}
2465 	bp->vfdb->vf_sbs_pool = 0;
2466 
2467 	/* prepare IGU cam */
2468 	sb_idx = BP_VFDB(bp)->first_vf_igu_entry;
2469 	address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE;
2470 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2471 		for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) {
2472 			igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT |
2473 				vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT |
2474 				IGU_REG_MAPPING_MEMORY_VALID;
2475 			DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n",
2476 			   sb_idx, vf_idx);
2477 			REG_WR(bp, address, igu_entry);
2478 			sb_idx++;
2479 			address += IGU_ENTRY_SIZE;
2480 		}
2481 	}
2482 
2483 	/* Reinitialize vf database according to igu cam */
2484 	bnx2x_get_vf_igu_cam_info(bp);
2485 
2486 	DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n",
2487 	   BP_VFDB(bp)->vf_sbs_pool, num_vf_queues);
2488 
2489 	qcount = 0;
2490 	for_each_vf(bp, vf_idx) {
2491 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2492 
2493 		/* set local queue arrays */
2494 		vf->vfqs = &bp->vfdb->vfqs[qcount];
2495 		qcount += vf_sb_count(vf);
2496 		bnx2x_iov_static_resc(bp, vf);
2497 	}
2498 
2499 	/* prepare msix vectors in VF configuration space - the value in the
2500 	 * PCI configuration space should be the index of the last entry,
2501 	 * namely one less than the actual size of the table
2502 	 */
2503 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2504 		bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx));
2505 		REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL,
2506 		       num_vf_queues - 1);
2507 		DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n",
2508 		   vf_idx, num_vf_queues - 1);
2509 	}
2510 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
2511 
2512 	/* enable sriov. This will probe all the VFs, and consequentially cause
2513 	 * the "acquire" messages to appear on the VF PF channel.
2514 	 */
2515 	DP(BNX2X_MSG_IOV, "about to call enable sriov\n");
2516 	bnx2x_disable_sriov(bp);
2517 
2518 	rc = bnx2x_set_pf_tx_switching(bp, true);
2519 	if (rc)
2520 		return rc;
2521 
2522 	rc = pci_enable_sriov(bp->pdev, req_vfs);
2523 	if (rc) {
2524 		BNX2X_ERR("pci_enable_sriov failed with %d\n", rc);
2525 		return rc;
2526 	}
2527 	DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs);
2528 	return req_vfs;
2529 }
2530 
2531 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp)
2532 {
2533 	int vfidx;
2534 	struct pf_vf_bulletin_content *bulletin;
2535 
2536 	DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n");
2537 	for_each_vf(bp, vfidx) {
2538 		bulletin = BP_VF_BULLETIN(bp, vfidx);
2539 		if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2540 			bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0,
2541 					  htons(ETH_P_8021Q));
2542 	}
2543 }
2544 
2545 void bnx2x_disable_sriov(struct bnx2x *bp)
2546 {
2547 	if (pci_vfs_assigned(bp->pdev)) {
2548 		DP(BNX2X_MSG_IOV,
2549 		   "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2550 		return;
2551 	}
2552 
2553 	pci_disable_sriov(bp->pdev);
2554 }
2555 
2556 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
2557 			    struct bnx2x_virtf **vf,
2558 			    struct pf_vf_bulletin_content **bulletin,
2559 			    bool test_queue)
2560 {
2561 	if (bp->state != BNX2X_STATE_OPEN) {
2562 		BNX2X_ERR("PF is down - can't utilize iov-related functionality\n");
2563 		return -EINVAL;
2564 	}
2565 
2566 	if (!IS_SRIOV(bp)) {
2567 		BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n");
2568 		return -EINVAL;
2569 	}
2570 
2571 	if (vfidx >= BNX2X_NR_VIRTFN(bp)) {
2572 		BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
2573 			  vfidx, BNX2X_NR_VIRTFN(bp));
2574 		return -EINVAL;
2575 	}
2576 
2577 	/* init members */
2578 	*vf = BP_VF(bp, vfidx);
2579 	*bulletin = BP_VF_BULLETIN(bp, vfidx);
2580 
2581 	if (!*vf) {
2582 		BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx);
2583 		return -EINVAL;
2584 	}
2585 
2586 	if (test_queue && !(*vf)->vfqs) {
2587 		BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n",
2588 			  vfidx);
2589 		return -EINVAL;
2590 	}
2591 
2592 	if (!*bulletin) {
2593 		BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n",
2594 			  vfidx);
2595 		return -EINVAL;
2596 	}
2597 
2598 	return 0;
2599 }
2600 
2601 int bnx2x_get_vf_config(struct net_device *dev, int vfidx,
2602 			struct ifla_vf_info *ivi)
2603 {
2604 	struct bnx2x *bp = netdev_priv(dev);
2605 	struct bnx2x_virtf *vf = NULL;
2606 	struct pf_vf_bulletin_content *bulletin = NULL;
2607 	struct bnx2x_vlan_mac_obj *mac_obj;
2608 	struct bnx2x_vlan_mac_obj *vlan_obj;
2609 	int rc;
2610 
2611 	/* sanity and init */
2612 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2613 	if (rc)
2614 		return rc;
2615 
2616 	mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2617 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2618 	if (!mac_obj || !vlan_obj) {
2619 		BNX2X_ERR("VF partially initialized\n");
2620 		return -EINVAL;
2621 	}
2622 
2623 	ivi->vf = vfidx;
2624 	ivi->qos = 0;
2625 	ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */
2626 	ivi->min_tx_rate = 0;
2627 	ivi->spoofchk = vf->spoofchk ? 1 : 0;
2628 	ivi->linkstate = vf->link_cfg;
2629 	if (vf->state == VF_ENABLED) {
2630 		/* mac and vlan are in vlan_mac objects */
2631 		if (bnx2x_validate_vf_sp_objs(bp, vf, false)) {
2632 			mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac,
2633 						0, ETH_ALEN);
2634 			vlan_obj->get_n_elements(bp, vlan_obj, 1,
2635 						 (u8 *)&ivi->vlan, 0,
2636 						 VLAN_HLEN);
2637 		}
2638 	} else {
2639 		mutex_lock(&bp->vfdb->bulletin_mutex);
2640 		/* mac */
2641 		if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID))
2642 			/* mac configured by ndo so its in bulletin board */
2643 			memcpy(&ivi->mac, bulletin->mac, ETH_ALEN);
2644 		else
2645 			/* function has not been loaded yet. Show mac as 0s */
2646 			eth_zero_addr(ivi->mac);
2647 
2648 		/* vlan */
2649 		if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2650 			/* vlan configured by ndo so its in bulletin board */
2651 			memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN);
2652 		else
2653 			/* function has not been loaded yet. Show vlans as 0s */
2654 			memset(&ivi->vlan, 0, VLAN_HLEN);
2655 
2656 		mutex_unlock(&bp->vfdb->bulletin_mutex);
2657 	}
2658 
2659 	return 0;
2660 }
2661 
2662 /* New mac for VF. Consider these cases:
2663  * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
2664  *    supply at acquire.
2665  * 2. VF has already been acquired but has not yet initialized - store in local
2666  *    bulletin board. mac will be posted on VF bulletin board after VF init. VF
2667  *    will configure this mac when it is ready.
2668  * 3. VF has already initialized but has not yet setup a queue - post the new
2669  *    mac on VF's bulletin board right now. VF will configure this mac when it
2670  *    is ready.
2671  * 4. VF has already set a queue - delete any macs already configured for this
2672  *    queue and manually config the new mac.
2673  * In any event, once this function has been called refuse any attempts by the
2674  * VF to configure any mac for itself except for this mac. In case of a race
2675  * where the VF fails to see the new post on its bulletin board before sending a
2676  * mac configuration request, the PF will simply fail the request and VF can try
2677  * again after consulting its bulletin board.
2678  */
2679 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac)
2680 {
2681 	struct bnx2x *bp = netdev_priv(dev);
2682 	int rc, q_logical_state;
2683 	struct bnx2x_virtf *vf = NULL;
2684 	struct pf_vf_bulletin_content *bulletin = NULL;
2685 
2686 	if (!is_valid_ether_addr(mac)) {
2687 		BNX2X_ERR("mac address invalid\n");
2688 		return -EINVAL;
2689 	}
2690 
2691 	/* sanity and init */
2692 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2693 	if (rc)
2694 		return rc;
2695 
2696 	mutex_lock(&bp->vfdb->bulletin_mutex);
2697 
2698 	/* update PF's copy of the VF's bulletin. Will no longer accept mac
2699 	 * configuration requests from vf unless match this mac
2700 	 */
2701 	bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID;
2702 	memcpy(bulletin->mac, mac, ETH_ALEN);
2703 
2704 	/* Post update on VF's bulletin board */
2705 	rc = bnx2x_post_vf_bulletin(bp, vfidx);
2706 
2707 	/* release lock before checking return code */
2708 	mutex_unlock(&bp->vfdb->bulletin_mutex);
2709 
2710 	if (rc) {
2711 		BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2712 		return rc;
2713 	}
2714 
2715 	q_logical_state =
2716 		bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj));
2717 	if (vf->state == VF_ENABLED &&
2718 	    q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
2719 		/* configure the mac in device on this vf's queue */
2720 		unsigned long ramrod_flags = 0;
2721 		struct bnx2x_vlan_mac_obj *mac_obj;
2722 
2723 		/* User should be able to see failure reason in system logs */
2724 		if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2725 			return -EINVAL;
2726 
2727 		/* must lock vfpf channel to protect against vf flows */
2728 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2729 
2730 		/* remove existing eth macs */
2731 		mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2732 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true);
2733 		if (rc) {
2734 			BNX2X_ERR("failed to delete eth macs\n");
2735 			rc = -EINVAL;
2736 			goto out;
2737 		}
2738 
2739 		/* remove existing uc list macs */
2740 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true);
2741 		if (rc) {
2742 			BNX2X_ERR("failed to delete uc_list macs\n");
2743 			rc = -EINVAL;
2744 			goto out;
2745 		}
2746 
2747 		/* configure the new mac to device */
2748 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2749 		bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true,
2750 				  BNX2X_ETH_MAC, &ramrod_flags);
2751 
2752 out:
2753 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2754 	}
2755 
2756 	return rc;
2757 }
2758 
2759 static void bnx2x_set_vf_vlan_acceptance(struct bnx2x *bp,
2760 					 struct bnx2x_virtf *vf, bool accept)
2761 {
2762 	struct bnx2x_rx_mode_ramrod_params rx_ramrod;
2763 	unsigned long accept_flags;
2764 
2765 	/* need to remove/add the VF's accept_any_vlan bit */
2766 	accept_flags = bnx2x_leading_vfq(vf, accept_flags);
2767 	if (accept)
2768 		set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2769 	else
2770 		clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2771 
2772 	bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf,
2773 			      accept_flags);
2774 	bnx2x_leading_vfq(vf, accept_flags) = accept_flags;
2775 	bnx2x_config_rx_mode(bp, &rx_ramrod);
2776 }
2777 
2778 static int bnx2x_set_vf_vlan_filter(struct bnx2x *bp, struct bnx2x_virtf *vf,
2779 				    u16 vlan, bool add)
2780 {
2781 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
2782 	unsigned long ramrod_flags = 0;
2783 	int rc = 0;
2784 
2785 	/* configure the new vlan to device */
2786 	memset(&ramrod_param, 0, sizeof(ramrod_param));
2787 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2788 	ramrod_param.vlan_mac_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2789 	ramrod_param.ramrod_flags = ramrod_flags;
2790 	ramrod_param.user_req.u.vlan.vlan = vlan;
2791 	ramrod_param.user_req.cmd = add ? BNX2X_VLAN_MAC_ADD
2792 					: BNX2X_VLAN_MAC_DEL;
2793 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
2794 	if (rc) {
2795 		BNX2X_ERR("failed to configure vlan\n");
2796 		return -EINVAL;
2797 	}
2798 
2799 	return 0;
2800 }
2801 
2802 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos,
2803 		      __be16 vlan_proto)
2804 {
2805 	struct pf_vf_bulletin_content *bulletin = NULL;
2806 	struct bnx2x *bp = netdev_priv(dev);
2807 	struct bnx2x_vlan_mac_obj *vlan_obj;
2808 	unsigned long vlan_mac_flags = 0;
2809 	unsigned long ramrod_flags = 0;
2810 	struct bnx2x_virtf *vf = NULL;
2811 	int i, rc;
2812 
2813 	if (vlan > 4095) {
2814 		BNX2X_ERR("illegal vlan value %d\n", vlan);
2815 		return -EINVAL;
2816 	}
2817 
2818 	if (vlan_proto != htons(ETH_P_8021Q))
2819 		return -EPROTONOSUPPORT;
2820 
2821 	DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n",
2822 	   vfidx, vlan, 0);
2823 
2824 	/* sanity and init */
2825 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2826 	if (rc)
2827 		return rc;
2828 
2829 	/* update PF's copy of the VF's bulletin. No point in posting the vlan
2830 	 * to the VF since it doesn't have anything to do with it. But it useful
2831 	 * to store it here in case the VF is not up yet and we can only
2832 	 * configure the vlan later when it does. Treat vlan id 0 as remove the
2833 	 * Host tag.
2834 	 */
2835 	mutex_lock(&bp->vfdb->bulletin_mutex);
2836 
2837 	if (vlan > 0)
2838 		bulletin->valid_bitmap |= 1 << VLAN_VALID;
2839 	else
2840 		bulletin->valid_bitmap &= ~(1 << VLAN_VALID);
2841 	bulletin->vlan = vlan;
2842 
2843 	/* Post update on VF's bulletin board */
2844 	rc = bnx2x_post_vf_bulletin(bp, vfidx);
2845 	if (rc)
2846 		BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2847 	mutex_unlock(&bp->vfdb->bulletin_mutex);
2848 
2849 	/* is vf initialized and queue set up? */
2850 	if (vf->state != VF_ENABLED ||
2851 	    bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2852 	    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2853 		return rc;
2854 
2855 	/* User should be able to see error in system logs */
2856 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2857 		return -EINVAL;
2858 
2859 	/* must lock vfpf channel to protect against vf flows */
2860 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2861 
2862 	/* remove existing vlans */
2863 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2864 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2865 	rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags,
2866 				  &ramrod_flags);
2867 	if (rc) {
2868 		BNX2X_ERR("failed to delete vlans\n");
2869 		rc = -EINVAL;
2870 		goto out;
2871 	}
2872 
2873 	/* clear accept_any_vlan when HV forces vlan, otherwise
2874 	 * according to VF capabilities
2875 	 */
2876 	if (vlan || !(vf->cfg_flags & VF_CFG_VLAN_FILTER))
2877 		bnx2x_set_vf_vlan_acceptance(bp, vf, !vlan);
2878 
2879 	rc = bnx2x_set_vf_vlan_filter(bp, vf, vlan, true);
2880 	if (rc)
2881 		goto out;
2882 
2883 	/* send queue update ramrods to configure default vlan and
2884 	 * silent vlan removal
2885 	 */
2886 	for_each_vfq(vf, i) {
2887 		struct bnx2x_queue_state_params q_params = {NULL};
2888 		struct bnx2x_queue_update_params *update_params;
2889 
2890 		q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj);
2891 
2892 		/* validate the Q is UP */
2893 		if (bnx2x_get_q_logical_state(bp, q_params.q_obj) !=
2894 		    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2895 			continue;
2896 
2897 		__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2898 		q_params.cmd = BNX2X_Q_CMD_UPDATE;
2899 		update_params = &q_params.params.update;
2900 		__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
2901 			  &update_params->update_flags);
2902 		__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
2903 			  &update_params->update_flags);
2904 		if (vlan == 0) {
2905 			/* if vlan is 0 then we want to leave the VF traffic
2906 			 * untagged, and leave the incoming traffic untouched
2907 			 * (i.e. do not remove any vlan tags).
2908 			 */
2909 			__clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2910 				    &update_params->update_flags);
2911 			__clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2912 				    &update_params->update_flags);
2913 		} else {
2914 			/* configure default vlan to vf queue and set silent
2915 			 * vlan removal (the vf remains unaware of this vlan).
2916 			 */
2917 			__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2918 				  &update_params->update_flags);
2919 			__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2920 				  &update_params->update_flags);
2921 			update_params->def_vlan = vlan;
2922 			update_params->silent_removal_value =
2923 				vlan & VLAN_VID_MASK;
2924 			update_params->silent_removal_mask = VLAN_VID_MASK;
2925 		}
2926 
2927 		/* Update the Queue state */
2928 		rc = bnx2x_queue_state_change(bp, &q_params);
2929 		if (rc) {
2930 			BNX2X_ERR("Failed to configure default VLAN queue %d\n",
2931 				  i);
2932 			goto out;
2933 		}
2934 	}
2935 out:
2936 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2937 
2938 	if (rc)
2939 		DP(BNX2X_MSG_IOV,
2940 		   "updated VF[%d] vlan configuration (vlan = %d)\n",
2941 		   vfidx, vlan);
2942 
2943 	return rc;
2944 }
2945 
2946 int bnx2x_set_vf_spoofchk(struct net_device *dev, int idx, bool val)
2947 {
2948 	struct bnx2x *bp = netdev_priv(dev);
2949 	struct bnx2x_virtf *vf;
2950 	int i, rc = 0;
2951 
2952 	vf = BP_VF(bp, idx);
2953 	if (!vf)
2954 		return -EINVAL;
2955 
2956 	/* nothing to do */
2957 	if (vf->spoofchk == val)
2958 		return 0;
2959 
2960 	vf->spoofchk = val ? 1 : 0;
2961 
2962 	DP(BNX2X_MSG_IOV, "%s spoofchk for VF %d\n",
2963 	   val ? "enabling" : "disabling", idx);
2964 
2965 	/* is vf initialized and queue set up? */
2966 	if (vf->state != VF_ENABLED ||
2967 	    bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2968 	    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2969 		return rc;
2970 
2971 	/* User should be able to see error in system logs */
2972 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2973 		return -EINVAL;
2974 
2975 	/* send queue update ramrods to configure spoofchk */
2976 	for_each_vfq(vf, i) {
2977 		struct bnx2x_queue_state_params q_params = {NULL};
2978 		struct bnx2x_queue_update_params *update_params;
2979 
2980 		q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj);
2981 
2982 		/* validate the Q is UP */
2983 		if (bnx2x_get_q_logical_state(bp, q_params.q_obj) !=
2984 		    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2985 			continue;
2986 
2987 		__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2988 		q_params.cmd = BNX2X_Q_CMD_UPDATE;
2989 		update_params = &q_params.params.update;
2990 		__set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG,
2991 			  &update_params->update_flags);
2992 		if (val) {
2993 			__set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF,
2994 				  &update_params->update_flags);
2995 		} else {
2996 			__clear_bit(BNX2X_Q_UPDATE_ANTI_SPOOF,
2997 				    &update_params->update_flags);
2998 		}
2999 
3000 		/* Update the Queue state */
3001 		rc = bnx2x_queue_state_change(bp, &q_params);
3002 		if (rc) {
3003 			BNX2X_ERR("Failed to %s spoofchk on VF %d - vfq %d\n",
3004 				  val ? "enable" : "disable", idx, i);
3005 			goto out;
3006 		}
3007 	}
3008 out:
3009 	if (!rc)
3010 		DP(BNX2X_MSG_IOV,
3011 		   "%s spoofchk for VF[%d]\n", val ? "Enabled" : "Disabled",
3012 		   idx);
3013 
3014 	return rc;
3015 }
3016 
3017 /* crc is the first field in the bulletin board. Compute the crc over the
3018  * entire bulletin board excluding the crc field itself. Use the length field
3019  * as the Bulletin Board was posted by a PF with possibly a different version
3020  * from the vf which will sample it. Therefore, the length is computed by the
3021  * PF and then used blindly by the VF.
3022  */
3023 u32 bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content *bulletin)
3024 {
3025 	return crc32(BULLETIN_CRC_SEED,
3026 		 ((u8 *)bulletin) + sizeof(bulletin->crc),
3027 		 bulletin->length - sizeof(bulletin->crc));
3028 }
3029 
3030 /* Check for new posts on the bulletin board */
3031 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp)
3032 {
3033 	struct pf_vf_bulletin_content *bulletin;
3034 	int attempts;
3035 
3036 	/* sampling structure in mid post may result with corrupted data
3037 	 * validate crc to ensure coherency.
3038 	 */
3039 	for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) {
3040 		u32 crc;
3041 
3042 		/* sample the bulletin board */
3043 		memcpy(&bp->shadow_bulletin, bp->pf2vf_bulletin,
3044 		       sizeof(union pf_vf_bulletin));
3045 
3046 		crc = bnx2x_crc_vf_bulletin(&bp->shadow_bulletin.content);
3047 
3048 		if (bp->shadow_bulletin.content.crc == crc)
3049 			break;
3050 
3051 		BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
3052 			  bp->shadow_bulletin.content.crc, crc);
3053 	}
3054 
3055 	if (attempts >= BULLETIN_ATTEMPTS) {
3056 		BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
3057 			  attempts);
3058 		return PFVF_BULLETIN_CRC_ERR;
3059 	}
3060 	bulletin = &bp->shadow_bulletin.content;
3061 
3062 	/* bulletin board hasn't changed since last sample */
3063 	if (bp->old_bulletin.version == bulletin->version)
3064 		return PFVF_BULLETIN_UNCHANGED;
3065 
3066 	/* the mac address in bulletin board is valid and is new */
3067 	if (bulletin->valid_bitmap & 1 << MAC_ADDR_VALID &&
3068 	    !ether_addr_equal(bulletin->mac, bp->old_bulletin.mac)) {
3069 		/* update new mac to net device */
3070 		memcpy(bp->dev->dev_addr, bulletin->mac, ETH_ALEN);
3071 	}
3072 
3073 	if (bulletin->valid_bitmap & (1 << LINK_VALID)) {
3074 		DP(BNX2X_MSG_IOV, "link update speed %d flags %x\n",
3075 		   bulletin->link_speed, bulletin->link_flags);
3076 
3077 		bp->vf_link_vars.line_speed = bulletin->link_speed;
3078 		bp->vf_link_vars.link_report_flags = 0;
3079 		/* Link is down */
3080 		if (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)
3081 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
3082 				  &bp->vf_link_vars.link_report_flags);
3083 		/* Full DUPLEX */
3084 		if (bulletin->link_flags & VFPF_LINK_REPORT_FULL_DUPLEX)
3085 			__set_bit(BNX2X_LINK_REPORT_FD,
3086 				  &bp->vf_link_vars.link_report_flags);
3087 		/* Rx Flow Control is ON */
3088 		if (bulletin->link_flags & VFPF_LINK_REPORT_RX_FC_ON)
3089 			__set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
3090 				  &bp->vf_link_vars.link_report_flags);
3091 		/* Tx Flow Control is ON */
3092 		if (bulletin->link_flags & VFPF_LINK_REPORT_TX_FC_ON)
3093 			__set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
3094 				  &bp->vf_link_vars.link_report_flags);
3095 		__bnx2x_link_report(bp);
3096 	}
3097 
3098 	/* copy new bulletin board to bp */
3099 	memcpy(&bp->old_bulletin, bulletin,
3100 	       sizeof(struct pf_vf_bulletin_content));
3101 
3102 	return PFVF_BULLETIN_UPDATED;
3103 }
3104 
3105 void bnx2x_timer_sriov(struct bnx2x *bp)
3106 {
3107 	bnx2x_sample_bulletin(bp);
3108 
3109 	/* if channel is down we need to self destruct */
3110 	if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN)
3111 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
3112 				       BNX2X_MSG_IOV);
3113 }
3114 
3115 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp)
3116 {
3117 	/* vf doorbells are embedded within the regview */
3118 	return bp->regview + PXP_VF_ADDR_DB_START;
3119 }
3120 
3121 void bnx2x_vf_pci_dealloc(struct bnx2x *bp)
3122 {
3123 	BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
3124 		       sizeof(struct bnx2x_vf_mbx_msg));
3125 	BNX2X_PCI_FREE(bp->pf2vf_bulletin, bp->pf2vf_bulletin_mapping,
3126 		       sizeof(union pf_vf_bulletin));
3127 }
3128 
3129 int bnx2x_vf_pci_alloc(struct bnx2x *bp)
3130 {
3131 	mutex_init(&bp->vf2pf_mutex);
3132 
3133 	/* allocate vf2pf mailbox for vf to pf channel */
3134 	bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping,
3135 					 sizeof(struct bnx2x_vf_mbx_msg));
3136 	if (!bp->vf2pf_mbox)
3137 		goto alloc_mem_err;
3138 
3139 	/* allocate pf 2 vf bulletin board */
3140 	bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping,
3141 					     sizeof(union pf_vf_bulletin));
3142 	if (!bp->pf2vf_bulletin)
3143 		goto alloc_mem_err;
3144 
3145 	bnx2x_vf_bulletin_finalize(&bp->pf2vf_bulletin->content, true);
3146 
3147 	return 0;
3148 
3149 alloc_mem_err:
3150 	bnx2x_vf_pci_dealloc(bp);
3151 	return -ENOMEM;
3152 }
3153 
3154 void bnx2x_iov_channel_down(struct bnx2x *bp)
3155 {
3156 	int vf_idx;
3157 	struct pf_vf_bulletin_content *bulletin;
3158 
3159 	if (!IS_SRIOV(bp))
3160 		return;
3161 
3162 	for_each_vf(bp, vf_idx) {
3163 		/* locate this VFs bulletin board and update the channel down
3164 		 * bit
3165 		 */
3166 		bulletin = BP_VF_BULLETIN(bp, vf_idx);
3167 		bulletin->valid_bitmap |= 1 << CHANNEL_DOWN;
3168 
3169 		/* update vf bulletin board */
3170 		bnx2x_post_vf_bulletin(bp, vf_idx);
3171 	}
3172 }
3173 
3174 void bnx2x_iov_task(struct work_struct *work)
3175 {
3176 	struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work);
3177 
3178 	if (!netif_running(bp->dev))
3179 		return;
3180 
3181 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR,
3182 			       &bp->iov_task_state))
3183 		bnx2x_vf_handle_flr_event(bp);
3184 
3185 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG,
3186 			       &bp->iov_task_state))
3187 		bnx2x_vf_mbx(bp);
3188 }
3189 
3190 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag)
3191 {
3192 	smp_mb__before_atomic();
3193 	set_bit(flag, &bp->iov_task_state);
3194 	smp_mb__after_atomic();
3195 	DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
3196 	queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0);
3197 }
3198