1 /* bnx2x_sriov.c: QLogic Everest network driver. 2 * 3 * Copyright 2009-2013 Broadcom Corporation 4 * Copyright 2014 QLogic Corporation 5 * All rights reserved 6 * 7 * Unless you and QLogic execute a separate written software license 8 * agreement governing use of this software, this software is licensed to you 9 * under the terms of the GNU General Public License version 2, available 10 * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL"). 11 * 12 * Notwithstanding the above, under no circumstances may you combine this 13 * software in any way with any other QLogic software provided under a 14 * license other than the GPL, without QLogic's express prior written 15 * consent. 16 * 17 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 18 * Written by: Shmulik Ravid 19 * Ariel Elior <ariel.elior@qlogic.com> 20 * 21 */ 22 #include "bnx2x.h" 23 #include "bnx2x_init.h" 24 #include "bnx2x_cmn.h" 25 #include "bnx2x_sp.h" 26 #include <linux/crc32.h> 27 #include <linux/if_vlan.h> 28 29 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx, 30 struct bnx2x_virtf **vf, 31 struct pf_vf_bulletin_content **bulletin, 32 bool test_queue); 33 34 /* General service functions */ 35 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid, 36 u16 pf_id) 37 { 38 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid), 39 pf_id); 40 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid), 41 pf_id); 42 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid), 43 pf_id); 44 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid), 45 pf_id); 46 } 47 48 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid, 49 u8 enable) 50 { 51 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid), 52 enable); 53 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid), 54 enable); 55 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid), 56 enable); 57 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid), 58 enable); 59 } 60 61 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid) 62 { 63 int idx; 64 65 for_each_vf(bp, idx) 66 if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid) 67 break; 68 return idx; 69 } 70 71 static 72 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid) 73 { 74 u16 idx = (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid); 75 return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL; 76 } 77 78 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf, 79 u8 igu_sb_id, u8 segment, u16 index, u8 op, 80 u8 update) 81 { 82 /* acking a VF sb through the PF - use the GRC */ 83 u32 ctl; 84 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 85 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 86 u32 func_encode = vf->abs_vfid; 87 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id; 88 struct igu_regular cmd_data = {0}; 89 90 cmd_data.sb_id_and_flags = 91 ((index << IGU_REGULAR_SB_INDEX_SHIFT) | 92 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) | 93 (update << IGU_REGULAR_BUPDATE_SHIFT) | 94 (op << IGU_REGULAR_ENABLE_INT_SHIFT)); 95 96 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT | 97 func_encode << IGU_CTRL_REG_FID_SHIFT | 98 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT; 99 100 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 101 cmd_data.sb_id_and_flags, igu_addr_data); 102 REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags); 103 mmiowb(); 104 barrier(); 105 106 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 107 ctl, igu_addr_ctl); 108 REG_WR(bp, igu_addr_ctl, ctl); 109 mmiowb(); 110 barrier(); 111 } 112 113 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp, 114 struct bnx2x_virtf *vf, 115 bool print_err) 116 { 117 if (!bnx2x_leading_vfq(vf, sp_initialized)) { 118 if (print_err) 119 BNX2X_ERR("Slowpath objects not yet initialized!\n"); 120 else 121 DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n"); 122 return false; 123 } 124 return true; 125 } 126 127 /* VFOP operations states */ 128 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf, 129 struct bnx2x_queue_init_params *init_params, 130 struct bnx2x_queue_setup_params *setup_params, 131 u16 q_idx, u16 sb_idx) 132 { 133 DP(BNX2X_MSG_IOV, 134 "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d", 135 vf->abs_vfid, 136 q_idx, 137 sb_idx, 138 init_params->tx.sb_cq_index, 139 init_params->tx.hc_rate, 140 setup_params->flags, 141 setup_params->txq_params.traffic_type); 142 } 143 144 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf, 145 struct bnx2x_queue_init_params *init_params, 146 struct bnx2x_queue_setup_params *setup_params, 147 u16 q_idx, u16 sb_idx) 148 { 149 struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params; 150 151 DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n" 152 "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n", 153 vf->abs_vfid, 154 q_idx, 155 sb_idx, 156 init_params->rx.sb_cq_index, 157 init_params->rx.hc_rate, 158 setup_params->gen_params.mtu, 159 rxq_params->buf_sz, 160 rxq_params->sge_buf_sz, 161 rxq_params->max_sges_pkt, 162 rxq_params->tpa_agg_sz, 163 setup_params->flags, 164 rxq_params->drop_flags, 165 rxq_params->cache_line_log); 166 } 167 168 void bnx2x_vfop_qctor_prep(struct bnx2x *bp, 169 struct bnx2x_virtf *vf, 170 struct bnx2x_vf_queue *q, 171 struct bnx2x_vf_queue_construct_params *p, 172 unsigned long q_type) 173 { 174 struct bnx2x_queue_init_params *init_p = &p->qstate.params.init; 175 struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup; 176 177 /* INIT */ 178 179 /* Enable host coalescing in the transition to INIT state */ 180 if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags)) 181 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags); 182 183 if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags)) 184 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags); 185 186 /* FW SB ID */ 187 init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx); 188 init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx); 189 190 /* context */ 191 init_p->cxts[0] = q->cxt; 192 193 /* SETUP */ 194 195 /* Setup-op general parameters */ 196 setup_p->gen_params.spcl_id = vf->sp_cl_id; 197 setup_p->gen_params.stat_id = vfq_stat_id(vf, q); 198 setup_p->gen_params.fp_hsi = vf->fp_hsi; 199 200 /* Setup-op flags: 201 * collect statistics, zero statistics, local-switching, security, 202 * OV for Flex10, RSS and MCAST for leading 203 */ 204 if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags)) 205 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags); 206 207 /* for VFs, enable tx switching, bd coherency, and mac address 208 * anti-spoofing 209 */ 210 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags); 211 __set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags); 212 __set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags); 213 214 /* Setup-op rx parameters */ 215 if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) { 216 struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params; 217 218 rxq_p->cl_qzone_id = vfq_qzone_id(vf, q); 219 rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx); 220 rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid); 221 222 if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags)) 223 rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES; 224 } 225 226 /* Setup-op tx parameters */ 227 if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) { 228 setup_p->txq_params.tss_leading_cl_id = vf->leading_rss; 229 setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx); 230 } 231 } 232 233 static int bnx2x_vf_queue_create(struct bnx2x *bp, 234 struct bnx2x_virtf *vf, int qid, 235 struct bnx2x_vf_queue_construct_params *qctor) 236 { 237 struct bnx2x_queue_state_params *q_params; 238 int rc = 0; 239 240 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 241 242 /* Prepare ramrod information */ 243 q_params = &qctor->qstate; 244 q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj); 245 set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags); 246 247 if (bnx2x_get_q_logical_state(bp, q_params->q_obj) == 248 BNX2X_Q_LOGICAL_STATE_ACTIVE) { 249 DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n"); 250 goto out; 251 } 252 253 /* Run Queue 'construction' ramrods */ 254 q_params->cmd = BNX2X_Q_CMD_INIT; 255 rc = bnx2x_queue_state_change(bp, q_params); 256 if (rc) 257 goto out; 258 259 memcpy(&q_params->params.setup, &qctor->prep_qsetup, 260 sizeof(struct bnx2x_queue_setup_params)); 261 q_params->cmd = BNX2X_Q_CMD_SETUP; 262 rc = bnx2x_queue_state_change(bp, q_params); 263 if (rc) 264 goto out; 265 266 /* enable interrupts */ 267 bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)), 268 USTORM_ID, 0, IGU_INT_ENABLE, 0); 269 out: 270 return rc; 271 } 272 273 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf, 274 int qid) 275 { 276 enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT, 277 BNX2X_Q_CMD_TERMINATE, 278 BNX2X_Q_CMD_CFC_DEL}; 279 struct bnx2x_queue_state_params q_params; 280 int rc, i; 281 282 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 283 284 /* Prepare ramrod information */ 285 memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params)); 286 q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj); 287 set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 288 289 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) == 290 BNX2X_Q_LOGICAL_STATE_STOPPED) { 291 DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n"); 292 goto out; 293 } 294 295 /* Run Queue 'destruction' ramrods */ 296 for (i = 0; i < ARRAY_SIZE(cmds); i++) { 297 q_params.cmd = cmds[i]; 298 rc = bnx2x_queue_state_change(bp, &q_params); 299 if (rc) { 300 BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]); 301 return rc; 302 } 303 } 304 out: 305 /* Clean Context */ 306 if (bnx2x_vfq(vf, qid, cxt)) { 307 bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0; 308 bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0; 309 } 310 311 return 0; 312 } 313 314 static void 315 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid) 316 { 317 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid); 318 if (vf) { 319 /* the first igu entry belonging to VFs of this PF */ 320 if (!BP_VFDB(bp)->first_vf_igu_entry) 321 BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id; 322 323 /* the first igu entry belonging to this VF */ 324 if (!vf_sb_count(vf)) 325 vf->igu_base_id = igu_sb_id; 326 327 ++vf_sb_count(vf); 328 ++vf->sb_count; 329 } 330 BP_VFDB(bp)->vf_sbs_pool++; 331 } 332 333 static inline void bnx2x_vf_vlan_credit(struct bnx2x *bp, 334 struct bnx2x_vlan_mac_obj *obj, 335 atomic_t *counter) 336 { 337 struct list_head *pos; 338 int read_lock; 339 int cnt = 0; 340 341 read_lock = bnx2x_vlan_mac_h_read_lock(bp, obj); 342 if (read_lock) 343 DP(BNX2X_MSG_SP, "Failed to take vlan mac read head; continuing anyway\n"); 344 345 list_for_each(pos, &obj->head) 346 cnt++; 347 348 if (!read_lock) 349 bnx2x_vlan_mac_h_read_unlock(bp, obj); 350 351 atomic_set(counter, cnt); 352 } 353 354 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf, 355 int qid, bool drv_only, int type) 356 { 357 struct bnx2x_vlan_mac_ramrod_params ramrod; 358 int rc; 359 360 DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid, 361 (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" : 362 (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs"); 363 364 /* Prepare ramrod params */ 365 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params)); 366 if (type == BNX2X_VF_FILTER_VLAN_MAC) { 367 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); 368 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj); 369 } else if (type == BNX2X_VF_FILTER_MAC) { 370 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); 371 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj); 372 } else { 373 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj); 374 } 375 ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL; 376 377 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags); 378 if (drv_only) 379 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags); 380 else 381 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags); 382 383 /* Start deleting */ 384 rc = ramrod.vlan_mac_obj->delete_all(bp, 385 ramrod.vlan_mac_obj, 386 &ramrod.user_req.vlan_mac_flags, 387 &ramrod.ramrod_flags); 388 if (rc) { 389 BNX2X_ERR("Failed to delete all %s\n", 390 (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" : 391 (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs"); 392 return rc; 393 } 394 395 return 0; 396 } 397 398 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp, 399 struct bnx2x_virtf *vf, int qid, 400 struct bnx2x_vf_mac_vlan_filter *filter, 401 bool drv_only) 402 { 403 struct bnx2x_vlan_mac_ramrod_params ramrod; 404 int rc; 405 406 DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n", 407 vf->abs_vfid, filter->add ? "Adding" : "Deleting", 408 (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MAC" : 409 (filter->type == BNX2X_VF_FILTER_MAC) ? "MAC" : "VLAN"); 410 411 /* Prepare ramrod params */ 412 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params)); 413 if (filter->type == BNX2X_VF_FILTER_VLAN_MAC) { 414 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj); 415 ramrod.user_req.u.vlan.vlan = filter->vid; 416 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN); 417 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); 418 } else if (filter->type == BNX2X_VF_FILTER_VLAN) { 419 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj); 420 ramrod.user_req.u.vlan.vlan = filter->vid; 421 } else { 422 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); 423 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj); 424 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN); 425 } 426 ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD : 427 BNX2X_VLAN_MAC_DEL; 428 429 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags); 430 if (drv_only) 431 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags); 432 else 433 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags); 434 435 /* Add/Remove the filter */ 436 rc = bnx2x_config_vlan_mac(bp, &ramrod); 437 if (rc == -EEXIST) 438 return 0; 439 if (rc) { 440 BNX2X_ERR("Failed to %s %s\n", 441 filter->add ? "add" : "delete", 442 (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? 443 "VLAN-MAC" : 444 (filter->type == BNX2X_VF_FILTER_MAC) ? 445 "MAC" : "VLAN"); 446 return rc; 447 } 448 449 filter->applied = true; 450 451 return 0; 452 } 453 454 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf, 455 struct bnx2x_vf_mac_vlan_filters *filters, 456 int qid, bool drv_only) 457 { 458 int rc = 0, i; 459 460 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 461 462 if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) 463 return -EINVAL; 464 465 /* Prepare ramrod params */ 466 for (i = 0; i < filters->count; i++) { 467 rc = bnx2x_vf_mac_vlan_config(bp, vf, qid, 468 &filters->filters[i], drv_only); 469 if (rc) 470 break; 471 } 472 473 /* Rollback if needed */ 474 if (i != filters->count) { 475 BNX2X_ERR("Managed only %d/%d filters - rolling back\n", 476 i, filters->count); 477 while (--i >= 0) { 478 if (!filters->filters[i].applied) 479 continue; 480 filters->filters[i].add = !filters->filters[i].add; 481 bnx2x_vf_mac_vlan_config(bp, vf, qid, 482 &filters->filters[i], 483 drv_only); 484 } 485 } 486 487 /* It's our responsibility to free the filters */ 488 kfree(filters); 489 490 return rc; 491 } 492 493 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid, 494 struct bnx2x_vf_queue_construct_params *qctor) 495 { 496 int rc; 497 498 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 499 500 rc = bnx2x_vf_queue_create(bp, vf, qid, qctor); 501 if (rc) 502 goto op_err; 503 504 /* Schedule the configuration of any pending vlan filters */ 505 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN, 506 BNX2X_MSG_IOV); 507 return 0; 508 op_err: 509 BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc); 510 return rc; 511 } 512 513 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf, 514 int qid) 515 { 516 int rc; 517 518 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 519 520 /* If needed, clean the filtering data base */ 521 if ((qid == LEADING_IDX) && 522 bnx2x_validate_vf_sp_objs(bp, vf, false)) { 523 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, 524 BNX2X_VF_FILTER_VLAN_MAC); 525 if (rc) 526 goto op_err; 527 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, 528 BNX2X_VF_FILTER_VLAN); 529 if (rc) 530 goto op_err; 531 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, 532 BNX2X_VF_FILTER_MAC); 533 if (rc) 534 goto op_err; 535 } 536 537 /* Terminate queue */ 538 if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) { 539 struct bnx2x_queue_state_params qstate; 540 541 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params)); 542 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj); 543 qstate.q_obj->state = BNX2X_Q_STATE_STOPPED; 544 qstate.cmd = BNX2X_Q_CMD_TERMINATE; 545 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags); 546 rc = bnx2x_queue_state_change(bp, &qstate); 547 if (rc) 548 goto op_err; 549 } 550 551 return 0; 552 op_err: 553 BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc); 554 return rc; 555 } 556 557 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf, 558 bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only) 559 { 560 struct bnx2x_mcast_list_elem *mc = NULL; 561 struct bnx2x_mcast_ramrod_params mcast; 562 int rc, i; 563 564 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 565 566 /* Prepare Multicast command */ 567 memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params)); 568 mcast.mcast_obj = &vf->mcast_obj; 569 if (drv_only) 570 set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags); 571 else 572 set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags); 573 if (mc_num) { 574 mc = kzalloc(mc_num * sizeof(struct bnx2x_mcast_list_elem), 575 GFP_KERNEL); 576 if (!mc) { 577 BNX2X_ERR("Cannot Configure multicasts due to lack of memory\n"); 578 return -ENOMEM; 579 } 580 } 581 582 if (mc_num) { 583 INIT_LIST_HEAD(&mcast.mcast_list); 584 for (i = 0; i < mc_num; i++) { 585 mc[i].mac = mcasts[i]; 586 list_add_tail(&mc[i].link, 587 &mcast.mcast_list); 588 } 589 590 /* add new mcasts */ 591 mcast.mcast_list_len = mc_num; 592 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_SET); 593 if (rc) 594 BNX2X_ERR("Failed to set multicasts\n"); 595 } else { 596 /* clear existing mcasts */ 597 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL); 598 if (rc) 599 BNX2X_ERR("Failed to remove multicasts\n"); 600 } 601 602 kfree(mc); 603 604 return rc; 605 } 606 607 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid, 608 struct bnx2x_rx_mode_ramrod_params *ramrod, 609 struct bnx2x_virtf *vf, 610 unsigned long accept_flags) 611 { 612 struct bnx2x_vf_queue *vfq = vfq_get(vf, qid); 613 614 memset(ramrod, 0, sizeof(*ramrod)); 615 ramrod->cid = vfq->cid; 616 ramrod->cl_id = vfq_cl_id(vf, vfq); 617 ramrod->rx_mode_obj = &bp->rx_mode_obj; 618 ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid); 619 ramrod->rx_accept_flags = accept_flags; 620 ramrod->tx_accept_flags = accept_flags; 621 ramrod->pstate = &vf->filter_state; 622 ramrod->state = BNX2X_FILTER_RX_MODE_PENDING; 623 624 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state); 625 set_bit(RAMROD_RX, &ramrod->ramrod_flags); 626 set_bit(RAMROD_TX, &ramrod->ramrod_flags); 627 628 ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2); 629 ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2); 630 } 631 632 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf, 633 int qid, unsigned long accept_flags) 634 { 635 struct bnx2x_rx_mode_ramrod_params ramrod; 636 637 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 638 639 bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags); 640 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags); 641 vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags; 642 return bnx2x_config_rx_mode(bp, &ramrod); 643 } 644 645 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid) 646 { 647 int rc; 648 649 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 650 651 /* Remove all classification configuration for leading queue */ 652 if (qid == LEADING_IDX) { 653 rc = bnx2x_vf_rxmode(bp, vf, qid, 0); 654 if (rc) 655 goto op_err; 656 657 /* Remove filtering if feasible */ 658 if (bnx2x_validate_vf_sp_objs(bp, vf, true)) { 659 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, 660 false, 661 BNX2X_VF_FILTER_VLAN_MAC); 662 if (rc) 663 goto op_err; 664 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, 665 false, 666 BNX2X_VF_FILTER_VLAN); 667 if (rc) 668 goto op_err; 669 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, 670 false, 671 BNX2X_VF_FILTER_MAC); 672 if (rc) 673 goto op_err; 674 rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false); 675 if (rc) 676 goto op_err; 677 } 678 } 679 680 /* Destroy queue */ 681 rc = bnx2x_vf_queue_destroy(bp, vf, qid); 682 if (rc) 683 goto op_err; 684 return rc; 685 op_err: 686 BNX2X_ERR("vf[%d:%d] error: rc %d\n", 687 vf->abs_vfid, qid, rc); 688 return rc; 689 } 690 691 /* VF enable primitives 692 * when pretend is required the caller is responsible 693 * for calling pretend prior to calling these routines 694 */ 695 696 /* internal vf enable - until vf is enabled internally all transactions 697 * are blocked. This routine should always be called last with pretend. 698 */ 699 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable) 700 { 701 REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0); 702 } 703 704 /* clears vf error in all semi blocks */ 705 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid) 706 { 707 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid); 708 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid); 709 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid); 710 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid); 711 } 712 713 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid) 714 { 715 u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5; 716 u32 was_err_reg = 0; 717 718 switch (was_err_group) { 719 case 0: 720 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR; 721 break; 722 case 1: 723 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR; 724 break; 725 case 2: 726 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR; 727 break; 728 case 3: 729 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR; 730 break; 731 } 732 REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f)); 733 } 734 735 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf) 736 { 737 int i; 738 u32 val; 739 740 /* Set VF masks and configuration - pretend */ 741 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 742 743 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 744 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 745 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0); 746 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0); 747 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0); 748 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0); 749 750 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION); 751 val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN); 752 val &= ~IGU_VF_CONF_PARENT_MASK; 753 val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT; 754 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val); 755 756 DP(BNX2X_MSG_IOV, 757 "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n", 758 vf->abs_vfid, val); 759 760 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 761 762 /* iterate over all queues, clear sb consumer */ 763 for (i = 0; i < vf_sb_count(vf); i++) { 764 u8 igu_sb_id = vf_igu_sb(vf, i); 765 766 /* zero prod memory */ 767 REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0); 768 769 /* clear sb state machine */ 770 bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id, 771 false /* VF */); 772 773 /* disable + update */ 774 bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0, 775 IGU_INT_DISABLE, 1); 776 } 777 } 778 779 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid) 780 { 781 /* set the VF-PF association in the FW */ 782 storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp)); 783 storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1); 784 785 /* clear vf errors*/ 786 bnx2x_vf_semi_clear_err(bp, abs_vfid); 787 bnx2x_vf_pglue_clear_err(bp, abs_vfid); 788 789 /* internal vf-enable - pretend */ 790 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid)); 791 DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid); 792 bnx2x_vf_enable_internal(bp, true); 793 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 794 } 795 796 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf) 797 { 798 /* Reset vf in IGU interrupts are still disabled */ 799 bnx2x_vf_igu_reset(bp, vf); 800 801 /* pretend to enable the vf with the PBF */ 802 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 803 REG_WR(bp, PBF_REG_DISABLE_VF, 0); 804 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 805 } 806 807 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid) 808 { 809 struct pci_dev *dev; 810 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid); 811 812 if (!vf) 813 return false; 814 815 dev = pci_get_bus_and_slot(vf->bus, vf->devfn); 816 if (dev) 817 return bnx2x_is_pcie_pending(dev); 818 return false; 819 } 820 821 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid) 822 { 823 /* Verify no pending pci transactions */ 824 if (bnx2x_vf_is_pcie_pending(bp, abs_vfid)) 825 BNX2X_ERR("PCIE Transactions still pending\n"); 826 827 return 0; 828 } 829 830 /* must be called after the number of PF queues and the number of VFs are 831 * both known 832 */ 833 static void 834 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf) 835 { 836 struct vf_pf_resc_request *resc = &vf->alloc_resc; 837 838 /* will be set only during VF-ACQUIRE */ 839 resc->num_rxqs = 0; 840 resc->num_txqs = 0; 841 842 resc->num_mac_filters = VF_MAC_CREDIT_CNT; 843 resc->num_vlan_filters = VF_VLAN_CREDIT_CNT; 844 845 /* no real limitation */ 846 resc->num_mc_filters = 0; 847 848 /* num_sbs already set */ 849 resc->num_sbs = vf->sb_count; 850 } 851 852 /* FLR routines: */ 853 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf) 854 { 855 /* reset the state variables */ 856 bnx2x_iov_static_resc(bp, vf); 857 vf->state = VF_FREE; 858 } 859 860 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf) 861 { 862 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp); 863 864 /* DQ usage counter */ 865 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 866 bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT, 867 "DQ VF usage counter timed out", 868 poll_cnt); 869 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 870 871 /* FW cleanup command - poll for the results */ 872 if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid), 873 poll_cnt)) 874 BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid); 875 876 /* verify TX hw is flushed */ 877 bnx2x_tx_hw_flushed(bp, poll_cnt); 878 } 879 880 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf) 881 { 882 int rc, i; 883 884 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 885 886 /* the cleanup operations are valid if and only if the VF 887 * was first acquired. 888 */ 889 for (i = 0; i < vf_rxq_count(vf); i++) { 890 rc = bnx2x_vf_queue_flr(bp, vf, i); 891 if (rc) 892 goto out; 893 } 894 895 /* remove multicasts */ 896 bnx2x_vf_mcast(bp, vf, NULL, 0, true); 897 898 /* dispatch final cleanup and wait for HW queues to flush */ 899 bnx2x_vf_flr_clnup_hw(bp, vf); 900 901 /* release VF resources */ 902 bnx2x_vf_free_resc(bp, vf); 903 904 /* re-open the mailbox */ 905 bnx2x_vf_enable_mbx(bp, vf->abs_vfid); 906 return; 907 out: 908 BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n", 909 vf->abs_vfid, i, rc); 910 } 911 912 static void bnx2x_vf_flr_clnup(struct bnx2x *bp) 913 { 914 struct bnx2x_virtf *vf; 915 int i; 916 917 for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) { 918 /* VF should be RESET & in FLR cleanup states */ 919 if (bnx2x_vf(bp, i, state) != VF_RESET || 920 !bnx2x_vf(bp, i, flr_clnup_stage)) 921 continue; 922 923 DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n", 924 i, BNX2X_NR_VIRTFN(bp)); 925 926 vf = BP_VF(bp, i); 927 928 /* lock the vf pf channel */ 929 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR); 930 931 /* invoke the VF FLR SM */ 932 bnx2x_vf_flr(bp, vf); 933 934 /* mark the VF to be ACKED and continue */ 935 vf->flr_clnup_stage = false; 936 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR); 937 } 938 939 /* Acknowledge the handled VFs. 940 * we are acknowledge all the vfs which an flr was requested for, even 941 * if amongst them there are such that we never opened, since the mcp 942 * will interrupt us immediately again if we only ack some of the bits, 943 * resulting in an endless loop. This can happen for example in KVM 944 * where an 'all ones' flr request is sometimes given by hyper visor 945 */ 946 DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n", 947 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]); 948 for (i = 0; i < FLRD_VFS_DWORDS; i++) 949 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 950 bp->vfdb->flrd_vfs[i]); 951 952 bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0); 953 954 /* clear the acked bits - better yet if the MCP implemented 955 * write to clear semantics 956 */ 957 for (i = 0; i < FLRD_VFS_DWORDS; i++) 958 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0); 959 } 960 961 void bnx2x_vf_handle_flr_event(struct bnx2x *bp) 962 { 963 int i; 964 965 /* Read FLR'd VFs */ 966 for (i = 0; i < FLRD_VFS_DWORDS; i++) 967 bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]); 968 969 DP(BNX2X_MSG_MCP, 970 "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n", 971 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]); 972 973 for_each_vf(bp, i) { 974 struct bnx2x_virtf *vf = BP_VF(bp, i); 975 u32 reset = 0; 976 977 if (vf->abs_vfid < 32) 978 reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid); 979 else 980 reset = bp->vfdb->flrd_vfs[1] & 981 (1 << (vf->abs_vfid - 32)); 982 983 if (reset) { 984 /* set as reset and ready for cleanup */ 985 vf->state = VF_RESET; 986 vf->flr_clnup_stage = true; 987 988 DP(BNX2X_MSG_IOV, 989 "Initiating Final cleanup for VF %d\n", 990 vf->abs_vfid); 991 } 992 } 993 994 /* do the FLR cleanup for all marked VFs*/ 995 bnx2x_vf_flr_clnup(bp); 996 } 997 998 /* IOV global initialization routines */ 999 void bnx2x_iov_init_dq(struct bnx2x *bp) 1000 { 1001 if (!IS_SRIOV(bp)) 1002 return; 1003 1004 /* Set the DQ such that the CID reflect the abs_vfid */ 1005 REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0); 1006 REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS)); 1007 1008 /* Set VFs starting CID. If its > 0 the preceding CIDs are belong to 1009 * the PF L2 queues 1010 */ 1011 REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID); 1012 1013 /* The VF window size is the log2 of the max number of CIDs per VF */ 1014 REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND); 1015 1016 /* The VF doorbell size 0 - *B, 4 - 128B. We set it here to match 1017 * the Pf doorbell size although the 2 are independent. 1018 */ 1019 REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3); 1020 1021 /* No security checks for now - 1022 * configure single rule (out of 16) mask = 0x1, value = 0x0, 1023 * CID range 0 - 0x1ffff 1024 */ 1025 REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1); 1026 REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0); 1027 REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0); 1028 REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff); 1029 1030 /* set the VF doorbell threshold. This threshold represents the amount 1031 * of doorbells allowed in the main DORQ fifo for a specific VF. 1032 */ 1033 REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64); 1034 } 1035 1036 void bnx2x_iov_init_dmae(struct bnx2x *bp) 1037 { 1038 if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV)) 1039 REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0); 1040 } 1041 1042 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid) 1043 { 1044 struct pci_dev *dev = bp->pdev; 1045 struct bnx2x_sriov *iov = &bp->vfdb->sriov; 1046 1047 return dev->bus->number + ((dev->devfn + iov->offset + 1048 iov->stride * vfid) >> 8); 1049 } 1050 1051 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid) 1052 { 1053 struct pci_dev *dev = bp->pdev; 1054 struct bnx2x_sriov *iov = &bp->vfdb->sriov; 1055 1056 return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff; 1057 } 1058 1059 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf) 1060 { 1061 int i, n; 1062 struct pci_dev *dev = bp->pdev; 1063 struct bnx2x_sriov *iov = &bp->vfdb->sriov; 1064 1065 for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) { 1066 u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i); 1067 u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i); 1068 1069 size /= iov->total; 1070 vf->bars[n].bar = start + size * vf->abs_vfid; 1071 vf->bars[n].size = size; 1072 } 1073 } 1074 1075 static int bnx2x_ari_enabled(struct pci_dev *dev) 1076 { 1077 return dev->bus->self && dev->bus->self->ari_enabled; 1078 } 1079 1080 static int 1081 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp) 1082 { 1083 int sb_id; 1084 u32 val; 1085 u8 fid, current_pf = 0; 1086 1087 /* IGU in normal mode - read CAM */ 1088 for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) { 1089 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4); 1090 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) 1091 continue; 1092 fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID); 1093 if (fid & IGU_FID_ENCODE_IS_PF) 1094 current_pf = fid & IGU_FID_PF_NUM_MASK; 1095 else if (current_pf == BP_FUNC(bp)) 1096 bnx2x_vf_set_igu_info(bp, sb_id, 1097 (fid & IGU_FID_VF_NUM_MASK)); 1098 DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n", 1099 ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"), 1100 ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) : 1101 (fid & IGU_FID_VF_NUM_MASK)), sb_id, 1102 GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)); 1103 } 1104 DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool); 1105 return BP_VFDB(bp)->vf_sbs_pool; 1106 } 1107 1108 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp) 1109 { 1110 if (bp->vfdb) { 1111 kfree(bp->vfdb->vfqs); 1112 kfree(bp->vfdb->vfs); 1113 kfree(bp->vfdb); 1114 } 1115 bp->vfdb = NULL; 1116 } 1117 1118 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov) 1119 { 1120 int pos; 1121 struct pci_dev *dev = bp->pdev; 1122 1123 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV); 1124 if (!pos) { 1125 BNX2X_ERR("failed to find SRIOV capability in device\n"); 1126 return -ENODEV; 1127 } 1128 1129 iov->pos = pos; 1130 DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos); 1131 pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl); 1132 pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total); 1133 pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial); 1134 pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset); 1135 pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride); 1136 pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz); 1137 pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap); 1138 pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link); 1139 1140 return 0; 1141 } 1142 1143 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov) 1144 { 1145 u32 val; 1146 1147 /* read the SRIOV capability structure 1148 * The fields can be read via configuration read or 1149 * directly from the device (starting at offset PCICFG_OFFSET) 1150 */ 1151 if (bnx2x_sriov_pci_cfg_info(bp, iov)) 1152 return -ENODEV; 1153 1154 /* get the number of SRIOV bars */ 1155 iov->nres = 0; 1156 1157 /* read the first_vfid */ 1158 val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF); 1159 iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK) 1160 * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp)); 1161 1162 DP(BNX2X_MSG_IOV, 1163 "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n", 1164 BP_FUNC(bp), 1165 iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total, 1166 iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz); 1167 1168 return 0; 1169 } 1170 1171 /* must be called after PF bars are mapped */ 1172 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param, 1173 int num_vfs_param) 1174 { 1175 int err, i; 1176 struct bnx2x_sriov *iov; 1177 struct pci_dev *dev = bp->pdev; 1178 1179 bp->vfdb = NULL; 1180 1181 /* verify is pf */ 1182 if (IS_VF(bp)) 1183 return 0; 1184 1185 /* verify sriov capability is present in configuration space */ 1186 if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV)) 1187 return 0; 1188 1189 /* verify chip revision */ 1190 if (CHIP_IS_E1x(bp)) 1191 return 0; 1192 1193 /* check if SRIOV support is turned off */ 1194 if (!num_vfs_param) 1195 return 0; 1196 1197 /* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */ 1198 if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) { 1199 BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n", 1200 BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID); 1201 return 0; 1202 } 1203 1204 /* SRIOV can be enabled only with MSIX */ 1205 if (int_mode_param == BNX2X_INT_MODE_MSI || 1206 int_mode_param == BNX2X_INT_MODE_INTX) { 1207 BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n"); 1208 return 0; 1209 } 1210 1211 err = -EIO; 1212 /* verify ari is enabled */ 1213 if (!bnx2x_ari_enabled(bp->pdev)) { 1214 BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n"); 1215 return 0; 1216 } 1217 1218 /* verify igu is in normal mode */ 1219 if (CHIP_INT_MODE_IS_BC(bp)) { 1220 BNX2X_ERR("IGU not normal mode, SRIOV can not be enabled\n"); 1221 return 0; 1222 } 1223 1224 /* allocate the vfs database */ 1225 bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL); 1226 if (!bp->vfdb) { 1227 BNX2X_ERR("failed to allocate vf database\n"); 1228 err = -ENOMEM; 1229 goto failed; 1230 } 1231 1232 /* get the sriov info - Linux already collected all the pertinent 1233 * information, however the sriov structure is for the private use 1234 * of the pci module. Also we want this information regardless 1235 * of the hyper-visor. 1236 */ 1237 iov = &(bp->vfdb->sriov); 1238 err = bnx2x_sriov_info(bp, iov); 1239 if (err) 1240 goto failed; 1241 1242 /* SR-IOV capability was enabled but there are no VFs*/ 1243 if (iov->total == 0) 1244 goto failed; 1245 1246 iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param); 1247 1248 DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n", 1249 num_vfs_param, iov->nr_virtfn); 1250 1251 /* allocate the vf array */ 1252 bp->vfdb->vfs = kzalloc(sizeof(struct bnx2x_virtf) * 1253 BNX2X_NR_VIRTFN(bp), GFP_KERNEL); 1254 if (!bp->vfdb->vfs) { 1255 BNX2X_ERR("failed to allocate vf array\n"); 1256 err = -ENOMEM; 1257 goto failed; 1258 } 1259 1260 /* Initial VF init - index and abs_vfid - nr_virtfn must be set */ 1261 for_each_vf(bp, i) { 1262 bnx2x_vf(bp, i, index) = i; 1263 bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i; 1264 bnx2x_vf(bp, i, state) = VF_FREE; 1265 mutex_init(&bnx2x_vf(bp, i, op_mutex)); 1266 bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE; 1267 } 1268 1269 /* re-read the IGU CAM for VFs - index and abs_vfid must be set */ 1270 if (!bnx2x_get_vf_igu_cam_info(bp)) { 1271 BNX2X_ERR("No entries in IGU CAM for vfs\n"); 1272 err = -EINVAL; 1273 goto failed; 1274 } 1275 1276 /* allocate the queue arrays for all VFs */ 1277 bp->vfdb->vfqs = kzalloc( 1278 BNX2X_MAX_NUM_VF_QUEUES * sizeof(struct bnx2x_vf_queue), 1279 GFP_KERNEL); 1280 1281 if (!bp->vfdb->vfqs) { 1282 BNX2X_ERR("failed to allocate vf queue array\n"); 1283 err = -ENOMEM; 1284 goto failed; 1285 } 1286 1287 /* Prepare the VFs event synchronization mechanism */ 1288 mutex_init(&bp->vfdb->event_mutex); 1289 1290 mutex_init(&bp->vfdb->bulletin_mutex); 1291 1292 if (SHMEM2_HAS(bp, sriov_switch_mode)) 1293 SHMEM2_WR(bp, sriov_switch_mode, SRIOV_SWITCH_MODE_VEB); 1294 1295 return 0; 1296 failed: 1297 DP(BNX2X_MSG_IOV, "Failed err=%d\n", err); 1298 __bnx2x_iov_free_vfdb(bp); 1299 return err; 1300 } 1301 1302 void bnx2x_iov_remove_one(struct bnx2x *bp) 1303 { 1304 int vf_idx; 1305 1306 /* if SRIOV is not enabled there's nothing to do */ 1307 if (!IS_SRIOV(bp)) 1308 return; 1309 1310 bnx2x_disable_sriov(bp); 1311 1312 /* disable access to all VFs */ 1313 for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) { 1314 bnx2x_pretend_func(bp, 1315 HW_VF_HANDLE(bp, 1316 bp->vfdb->sriov.first_vf_in_pf + 1317 vf_idx)); 1318 DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n", 1319 bp->vfdb->sriov.first_vf_in_pf + vf_idx); 1320 bnx2x_vf_enable_internal(bp, 0); 1321 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 1322 } 1323 1324 /* free vf database */ 1325 __bnx2x_iov_free_vfdb(bp); 1326 } 1327 1328 void bnx2x_iov_free_mem(struct bnx2x *bp) 1329 { 1330 int i; 1331 1332 if (!IS_SRIOV(bp)) 1333 return; 1334 1335 /* free vfs hw contexts */ 1336 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) { 1337 struct hw_dma *cxt = &bp->vfdb->context[i]; 1338 BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size); 1339 } 1340 1341 BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr, 1342 BP_VFDB(bp)->sp_dma.mapping, 1343 BP_VFDB(bp)->sp_dma.size); 1344 1345 BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr, 1346 BP_VF_MBX_DMA(bp)->mapping, 1347 BP_VF_MBX_DMA(bp)->size); 1348 1349 BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr, 1350 BP_VF_BULLETIN_DMA(bp)->mapping, 1351 BP_VF_BULLETIN_DMA(bp)->size); 1352 } 1353 1354 int bnx2x_iov_alloc_mem(struct bnx2x *bp) 1355 { 1356 size_t tot_size; 1357 int i, rc = 0; 1358 1359 if (!IS_SRIOV(bp)) 1360 return rc; 1361 1362 /* allocate vfs hw contexts */ 1363 tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) * 1364 BNX2X_CIDS_PER_VF * sizeof(union cdu_context); 1365 1366 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) { 1367 struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i); 1368 cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ); 1369 1370 if (cxt->size) { 1371 cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size); 1372 if (!cxt->addr) 1373 goto alloc_mem_err; 1374 } else { 1375 cxt->addr = NULL; 1376 cxt->mapping = 0; 1377 } 1378 tot_size -= cxt->size; 1379 } 1380 1381 /* allocate vfs ramrods dma memory - client_init and set_mac */ 1382 tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp); 1383 BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping, 1384 tot_size); 1385 if (!BP_VFDB(bp)->sp_dma.addr) 1386 goto alloc_mem_err; 1387 BP_VFDB(bp)->sp_dma.size = tot_size; 1388 1389 /* allocate mailboxes */ 1390 tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE; 1391 BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping, 1392 tot_size); 1393 if (!BP_VF_MBX_DMA(bp)->addr) 1394 goto alloc_mem_err; 1395 1396 BP_VF_MBX_DMA(bp)->size = tot_size; 1397 1398 /* allocate local bulletin boards */ 1399 tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE; 1400 BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping, 1401 tot_size); 1402 if (!BP_VF_BULLETIN_DMA(bp)->addr) 1403 goto alloc_mem_err; 1404 1405 BP_VF_BULLETIN_DMA(bp)->size = tot_size; 1406 1407 return 0; 1408 1409 alloc_mem_err: 1410 return -ENOMEM; 1411 } 1412 1413 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf, 1414 struct bnx2x_vf_queue *q) 1415 { 1416 u8 cl_id = vfq_cl_id(vf, q); 1417 u8 func_id = FW_VF_HANDLE(vf->abs_vfid); 1418 unsigned long q_type = 0; 1419 1420 set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 1421 set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 1422 1423 /* Queue State object */ 1424 bnx2x_init_queue_obj(bp, &q->sp_obj, 1425 cl_id, &q->cid, 1, func_id, 1426 bnx2x_vf_sp(bp, vf, q_data), 1427 bnx2x_vf_sp_map(bp, vf, q_data), 1428 q_type); 1429 1430 /* sp indication is set only when vlan/mac/etc. are initialized */ 1431 q->sp_initialized = false; 1432 1433 DP(BNX2X_MSG_IOV, 1434 "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n", 1435 vf->abs_vfid, q->sp_obj.func_id, q->cid); 1436 } 1437 1438 static int bnx2x_max_speed_cap(struct bnx2x *bp) 1439 { 1440 u32 supported = bp->port.supported[bnx2x_get_link_cfg_idx(bp)]; 1441 1442 if (supported & 1443 (SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full)) 1444 return 20000; 1445 1446 return 10000; /* assume lowest supported speed is 10G */ 1447 } 1448 1449 int bnx2x_iov_link_update_vf(struct bnx2x *bp, int idx) 1450 { 1451 struct bnx2x_link_report_data *state = &bp->last_reported_link; 1452 struct pf_vf_bulletin_content *bulletin; 1453 struct bnx2x_virtf *vf; 1454 bool update = true; 1455 int rc = 0; 1456 1457 /* sanity and init */ 1458 rc = bnx2x_vf_op_prep(bp, idx, &vf, &bulletin, false); 1459 if (rc) 1460 return rc; 1461 1462 mutex_lock(&bp->vfdb->bulletin_mutex); 1463 1464 if (vf->link_cfg == IFLA_VF_LINK_STATE_AUTO) { 1465 bulletin->valid_bitmap |= 1 << LINK_VALID; 1466 1467 bulletin->link_speed = state->line_speed; 1468 bulletin->link_flags = 0; 1469 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1470 &state->link_report_flags)) 1471 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN; 1472 if (test_bit(BNX2X_LINK_REPORT_FD, 1473 &state->link_report_flags)) 1474 bulletin->link_flags |= VFPF_LINK_REPORT_FULL_DUPLEX; 1475 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1476 &state->link_report_flags)) 1477 bulletin->link_flags |= VFPF_LINK_REPORT_RX_FC_ON; 1478 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1479 &state->link_report_flags)) 1480 bulletin->link_flags |= VFPF_LINK_REPORT_TX_FC_ON; 1481 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_DISABLE && 1482 !(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) { 1483 bulletin->valid_bitmap |= 1 << LINK_VALID; 1484 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN; 1485 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_ENABLE && 1486 (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) { 1487 bulletin->valid_bitmap |= 1 << LINK_VALID; 1488 bulletin->link_speed = bnx2x_max_speed_cap(bp); 1489 bulletin->link_flags &= ~VFPF_LINK_REPORT_LINK_DOWN; 1490 } else { 1491 update = false; 1492 } 1493 1494 if (update) { 1495 DP(NETIF_MSG_LINK | BNX2X_MSG_IOV, 1496 "vf %d mode %u speed %d flags %x\n", idx, 1497 vf->link_cfg, bulletin->link_speed, bulletin->link_flags); 1498 1499 /* Post update on VF's bulletin board */ 1500 rc = bnx2x_post_vf_bulletin(bp, idx); 1501 if (rc) { 1502 BNX2X_ERR("failed to update VF[%d] bulletin\n", idx); 1503 goto out; 1504 } 1505 } 1506 1507 out: 1508 mutex_unlock(&bp->vfdb->bulletin_mutex); 1509 return rc; 1510 } 1511 1512 int bnx2x_set_vf_link_state(struct net_device *dev, int idx, int link_state) 1513 { 1514 struct bnx2x *bp = netdev_priv(dev); 1515 struct bnx2x_virtf *vf = BP_VF(bp, idx); 1516 1517 if (!vf) 1518 return -EINVAL; 1519 1520 if (vf->link_cfg == link_state) 1521 return 0; /* nothing todo */ 1522 1523 vf->link_cfg = link_state; 1524 1525 return bnx2x_iov_link_update_vf(bp, idx); 1526 } 1527 1528 void bnx2x_iov_link_update(struct bnx2x *bp) 1529 { 1530 int vfid; 1531 1532 if (!IS_SRIOV(bp)) 1533 return; 1534 1535 for_each_vf(bp, vfid) 1536 bnx2x_iov_link_update_vf(bp, vfid); 1537 } 1538 1539 /* called by bnx2x_nic_load */ 1540 int bnx2x_iov_nic_init(struct bnx2x *bp) 1541 { 1542 int vfid; 1543 1544 if (!IS_SRIOV(bp)) { 1545 DP(BNX2X_MSG_IOV, "vfdb was not allocated\n"); 1546 return 0; 1547 } 1548 1549 DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn); 1550 1551 /* let FLR complete ... */ 1552 msleep(100); 1553 1554 /* initialize vf database */ 1555 for_each_vf(bp, vfid) { 1556 struct bnx2x_virtf *vf = BP_VF(bp, vfid); 1557 1558 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) * 1559 BNX2X_CIDS_PER_VF; 1560 1561 union cdu_context *base_cxt = (union cdu_context *) 1562 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr + 1563 (base_vf_cid & (ILT_PAGE_CIDS-1)); 1564 1565 DP(BNX2X_MSG_IOV, 1566 "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n", 1567 vf->abs_vfid, vf_sb_count(vf), base_vf_cid, 1568 BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt); 1569 1570 /* init statically provisioned resources */ 1571 bnx2x_iov_static_resc(bp, vf); 1572 1573 /* queues are initialized during VF-ACQUIRE */ 1574 vf->filter_state = 0; 1575 vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id); 1576 1577 bnx2x_init_credit_pool(&vf->vf_vlans_pool, 0, 1578 vf_vlan_rules_cnt(vf)); 1579 bnx2x_init_credit_pool(&vf->vf_macs_pool, 0, 1580 vf_mac_rules_cnt(vf)); 1581 1582 /* init mcast object - This object will be re-initialized 1583 * during VF-ACQUIRE with the proper cl_id and cid. 1584 * It needs to be initialized here so that it can be safely 1585 * handled by a subsequent FLR flow. 1586 */ 1587 bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF, 1588 0xFF, 0xFF, 0xFF, 1589 bnx2x_vf_sp(bp, vf, mcast_rdata), 1590 bnx2x_vf_sp_map(bp, vf, mcast_rdata), 1591 BNX2X_FILTER_MCAST_PENDING, 1592 &vf->filter_state, 1593 BNX2X_OBJ_TYPE_RX_TX); 1594 1595 /* set the mailbox message addresses */ 1596 BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *) 1597 (((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid * 1598 MBX_MSG_ALIGNED_SIZE); 1599 1600 BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping + 1601 vfid * MBX_MSG_ALIGNED_SIZE; 1602 1603 /* Enable vf mailbox */ 1604 bnx2x_vf_enable_mbx(bp, vf->abs_vfid); 1605 } 1606 1607 /* Final VF init */ 1608 for_each_vf(bp, vfid) { 1609 struct bnx2x_virtf *vf = BP_VF(bp, vfid); 1610 1611 /* fill in the BDF and bars */ 1612 vf->bus = bnx2x_vf_bus(bp, vfid); 1613 vf->devfn = bnx2x_vf_devfn(bp, vfid); 1614 bnx2x_vf_set_bars(bp, vf); 1615 1616 DP(BNX2X_MSG_IOV, 1617 "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n", 1618 vf->abs_vfid, vf->bus, vf->devfn, 1619 (unsigned)vf->bars[0].bar, vf->bars[0].size, 1620 (unsigned)vf->bars[1].bar, vf->bars[1].size, 1621 (unsigned)vf->bars[2].bar, vf->bars[2].size); 1622 } 1623 1624 return 0; 1625 } 1626 1627 /* called by bnx2x_chip_cleanup */ 1628 int bnx2x_iov_chip_cleanup(struct bnx2x *bp) 1629 { 1630 int i; 1631 1632 if (!IS_SRIOV(bp)) 1633 return 0; 1634 1635 /* release all the VFs */ 1636 for_each_vf(bp, i) 1637 bnx2x_vf_release(bp, BP_VF(bp, i)); 1638 1639 return 0; 1640 } 1641 1642 /* called by bnx2x_init_hw_func, returns the next ilt line */ 1643 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line) 1644 { 1645 int i; 1646 struct bnx2x_ilt *ilt = BP_ILT(bp); 1647 1648 if (!IS_SRIOV(bp)) 1649 return line; 1650 1651 /* set vfs ilt lines */ 1652 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) { 1653 struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i); 1654 1655 ilt->lines[line+i].page = hw_cxt->addr; 1656 ilt->lines[line+i].page_mapping = hw_cxt->mapping; 1657 ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */ 1658 } 1659 return line + i; 1660 } 1661 1662 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid) 1663 { 1664 return ((cid >= BNX2X_FIRST_VF_CID) && 1665 ((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS)); 1666 } 1667 1668 static 1669 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp, 1670 struct bnx2x_vf_queue *vfq, 1671 union event_ring_elem *elem) 1672 { 1673 unsigned long ramrod_flags = 0; 1674 int rc = 0; 1675 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo); 1676 1677 /* Always push next commands out, don't wait here */ 1678 set_bit(RAMROD_CONT, &ramrod_flags); 1679 1680 switch (echo >> BNX2X_SWCID_SHIFT) { 1681 case BNX2X_FILTER_MAC_PENDING: 1682 rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem, 1683 &ramrod_flags); 1684 break; 1685 case BNX2X_FILTER_VLAN_PENDING: 1686 rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem, 1687 &ramrod_flags); 1688 break; 1689 default: 1690 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo); 1691 return; 1692 } 1693 if (rc < 0) 1694 BNX2X_ERR("Failed to schedule new commands: %d\n", rc); 1695 else if (rc > 0) 1696 DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n"); 1697 } 1698 1699 static 1700 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp, 1701 struct bnx2x_virtf *vf) 1702 { 1703 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 1704 int rc; 1705 1706 rparam.mcast_obj = &vf->mcast_obj; 1707 vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw); 1708 1709 /* If there are pending mcast commands - send them */ 1710 if (vf->mcast_obj.check_pending(&vf->mcast_obj)) { 1711 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 1712 if (rc < 0) 1713 BNX2X_ERR("Failed to send pending mcast commands: %d\n", 1714 rc); 1715 } 1716 } 1717 1718 static 1719 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp, 1720 struct bnx2x_virtf *vf) 1721 { 1722 smp_mb__before_atomic(); 1723 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state); 1724 smp_mb__after_atomic(); 1725 } 1726 1727 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp, 1728 struct bnx2x_virtf *vf) 1729 { 1730 vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw); 1731 } 1732 1733 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem) 1734 { 1735 struct bnx2x_virtf *vf; 1736 int qidx = 0, abs_vfid; 1737 u8 opcode; 1738 u16 cid = 0xffff; 1739 1740 if (!IS_SRIOV(bp)) 1741 return 1; 1742 1743 /* first get the cid - the only events we handle here are cfc-delete 1744 * and set-mac completion 1745 */ 1746 opcode = elem->message.opcode; 1747 1748 switch (opcode) { 1749 case EVENT_RING_OPCODE_CFC_DEL: 1750 cid = SW_CID(elem->message.data.cfc_del_event.cid); 1751 DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid); 1752 break; 1753 case EVENT_RING_OPCODE_CLASSIFICATION_RULES: 1754 case EVENT_RING_OPCODE_MULTICAST_RULES: 1755 case EVENT_RING_OPCODE_FILTERS_RULES: 1756 case EVENT_RING_OPCODE_RSS_UPDATE_RULES: 1757 cid = SW_CID(elem->message.data.eth_event.echo); 1758 DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid); 1759 break; 1760 case EVENT_RING_OPCODE_VF_FLR: 1761 abs_vfid = elem->message.data.vf_flr_event.vf_id; 1762 DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n", 1763 abs_vfid); 1764 goto get_vf; 1765 case EVENT_RING_OPCODE_MALICIOUS_VF: 1766 abs_vfid = elem->message.data.malicious_vf_event.vf_id; 1767 BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n", 1768 abs_vfid, 1769 elem->message.data.malicious_vf_event.err_id); 1770 goto get_vf; 1771 default: 1772 return 1; 1773 } 1774 1775 /* check if the cid is the VF range */ 1776 if (!bnx2x_iov_is_vf_cid(bp, cid)) { 1777 DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid); 1778 return 1; 1779 } 1780 1781 /* extract vf and rxq index from vf_cid - relies on the following: 1782 * 1. vfid on cid reflects the true abs_vfid 1783 * 2. The max number of VFs (per path) is 64 1784 */ 1785 qidx = cid & ((1 << BNX2X_VF_CID_WND)-1); 1786 abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1); 1787 get_vf: 1788 vf = bnx2x_vf_by_abs_fid(bp, abs_vfid); 1789 1790 if (!vf) { 1791 BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n", 1792 cid, abs_vfid); 1793 return 0; 1794 } 1795 1796 switch (opcode) { 1797 case EVENT_RING_OPCODE_CFC_DEL: 1798 DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n", 1799 vf->abs_vfid, qidx); 1800 vfq_get(vf, qidx)->sp_obj.complete_cmd(bp, 1801 &vfq_get(vf, 1802 qidx)->sp_obj, 1803 BNX2X_Q_CMD_CFC_DEL); 1804 break; 1805 case EVENT_RING_OPCODE_CLASSIFICATION_RULES: 1806 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n", 1807 vf->abs_vfid, qidx); 1808 bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem); 1809 break; 1810 case EVENT_RING_OPCODE_MULTICAST_RULES: 1811 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n", 1812 vf->abs_vfid, qidx); 1813 bnx2x_vf_handle_mcast_eqe(bp, vf); 1814 break; 1815 case EVENT_RING_OPCODE_FILTERS_RULES: 1816 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n", 1817 vf->abs_vfid, qidx); 1818 bnx2x_vf_handle_filters_eqe(bp, vf); 1819 break; 1820 case EVENT_RING_OPCODE_RSS_UPDATE_RULES: 1821 DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n", 1822 vf->abs_vfid, qidx); 1823 bnx2x_vf_handle_rss_update_eqe(bp, vf); 1824 case EVENT_RING_OPCODE_VF_FLR: 1825 case EVENT_RING_OPCODE_MALICIOUS_VF: 1826 /* Do nothing for now */ 1827 return 0; 1828 } 1829 1830 return 0; 1831 } 1832 1833 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid) 1834 { 1835 /* extract the vf from vf_cid - relies on the following: 1836 * 1. vfid on cid reflects the true abs_vfid 1837 * 2. The max number of VFs (per path) is 64 1838 */ 1839 int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1); 1840 return bnx2x_vf_by_abs_fid(bp, abs_vfid); 1841 } 1842 1843 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid, 1844 struct bnx2x_queue_sp_obj **q_obj) 1845 { 1846 struct bnx2x_virtf *vf; 1847 1848 if (!IS_SRIOV(bp)) 1849 return; 1850 1851 vf = bnx2x_vf_by_cid(bp, vf_cid); 1852 1853 if (vf) { 1854 /* extract queue index from vf_cid - relies on the following: 1855 * 1. vfid on cid reflects the true abs_vfid 1856 * 2. The max number of VFs (per path) is 64 1857 */ 1858 int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1); 1859 *q_obj = &bnx2x_vfq(vf, q_index, sp_obj); 1860 } else { 1861 BNX2X_ERR("No vf matching cid %d\n", vf_cid); 1862 } 1863 } 1864 1865 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp) 1866 { 1867 int i; 1868 int first_queue_query_index, num_queues_req; 1869 dma_addr_t cur_data_offset; 1870 struct stats_query_entry *cur_query_entry; 1871 u8 stats_count = 0; 1872 bool is_fcoe = false; 1873 1874 if (!IS_SRIOV(bp)) 1875 return; 1876 1877 if (!NO_FCOE(bp)) 1878 is_fcoe = true; 1879 1880 /* fcoe adds one global request and one queue request */ 1881 num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe; 1882 first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX - 1883 (is_fcoe ? 0 : 1); 1884 1885 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1886 "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n", 1887 BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index, 1888 first_queue_query_index + num_queues_req); 1889 1890 cur_data_offset = bp->fw_stats_data_mapping + 1891 offsetof(struct bnx2x_fw_stats_data, queue_stats) + 1892 num_queues_req * sizeof(struct per_queue_stats); 1893 1894 cur_query_entry = &bp->fw_stats_req-> 1895 query[first_queue_query_index + num_queues_req]; 1896 1897 for_each_vf(bp, i) { 1898 int j; 1899 struct bnx2x_virtf *vf = BP_VF(bp, i); 1900 1901 if (vf->state != VF_ENABLED) { 1902 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1903 "vf %d not enabled so no stats for it\n", 1904 vf->abs_vfid); 1905 continue; 1906 } 1907 1908 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1909 "add addresses for vf %d\n", vf->abs_vfid); 1910 for_each_vfq(vf, j) { 1911 struct bnx2x_vf_queue *rxq = vfq_get(vf, j); 1912 1913 dma_addr_t q_stats_addr = 1914 vf->fw_stat_map + j * vf->stats_stride; 1915 1916 /* collect stats fro active queues only */ 1917 if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) == 1918 BNX2X_Q_LOGICAL_STATE_STOPPED) 1919 continue; 1920 1921 /* create stats query entry for this queue */ 1922 cur_query_entry->kind = STATS_TYPE_QUEUE; 1923 cur_query_entry->index = vfq_stat_id(vf, rxq); 1924 cur_query_entry->funcID = 1925 cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid)); 1926 cur_query_entry->address.hi = 1927 cpu_to_le32(U64_HI(q_stats_addr)); 1928 cur_query_entry->address.lo = 1929 cpu_to_le32(U64_LO(q_stats_addr)); 1930 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1931 "added address %x %x for vf %d queue %d client %d\n", 1932 cur_query_entry->address.hi, 1933 cur_query_entry->address.lo, 1934 cur_query_entry->funcID, 1935 j, cur_query_entry->index); 1936 cur_query_entry++; 1937 cur_data_offset += sizeof(struct per_queue_stats); 1938 stats_count++; 1939 1940 /* all stats are coalesced to the leading queue */ 1941 if (vf->cfg_flags & VF_CFG_STATS_COALESCE) 1942 break; 1943 } 1944 } 1945 bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count; 1946 } 1947 1948 /* VF API helpers */ 1949 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid, 1950 u8 enable) 1951 { 1952 u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4; 1953 u32 val = enable ? (abs_vfid | (1 << 6)) : 0; 1954 1955 REG_WR(bp, reg, val); 1956 } 1957 1958 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf) 1959 { 1960 int i; 1961 1962 for_each_vfq(vf, i) 1963 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid, 1964 vfq_qzone_id(vf, vfq_get(vf, i)), false); 1965 } 1966 1967 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf) 1968 { 1969 u32 val; 1970 1971 /* clear the VF configuration - pretend */ 1972 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 1973 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION); 1974 val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN | 1975 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK); 1976 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val); 1977 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 1978 } 1979 1980 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf) 1981 { 1982 return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF), 1983 BNX2X_VF_MAX_QUEUES); 1984 } 1985 1986 static 1987 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf, 1988 struct vf_pf_resc_request *req_resc) 1989 { 1990 u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf); 1991 u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf); 1992 1993 return ((req_resc->num_rxqs <= rxq_cnt) && 1994 (req_resc->num_txqs <= txq_cnt) && 1995 (req_resc->num_sbs <= vf_sb_count(vf)) && 1996 (req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) && 1997 (req_resc->num_vlan_filters <= vf_vlan_rules_cnt(vf))); 1998 } 1999 2000 /* CORE VF API */ 2001 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf, 2002 struct vf_pf_resc_request *resc) 2003 { 2004 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) * 2005 BNX2X_CIDS_PER_VF; 2006 2007 union cdu_context *base_cxt = (union cdu_context *) 2008 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr + 2009 (base_vf_cid & (ILT_PAGE_CIDS-1)); 2010 int i; 2011 2012 /* if state is 'acquired' the VF was not released or FLR'd, in 2013 * this case the returned resources match the acquired already 2014 * acquired resources. Verify that the requested numbers do 2015 * not exceed the already acquired numbers. 2016 */ 2017 if (vf->state == VF_ACQUIRED) { 2018 DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n", 2019 vf->abs_vfid); 2020 2021 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) { 2022 BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n", 2023 vf->abs_vfid); 2024 return -EINVAL; 2025 } 2026 return 0; 2027 } 2028 2029 /* Otherwise vf state must be 'free' or 'reset' */ 2030 if (vf->state != VF_FREE && vf->state != VF_RESET) { 2031 BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n", 2032 vf->abs_vfid, vf->state); 2033 return -EINVAL; 2034 } 2035 2036 /* static allocation: 2037 * the global maximum number are fixed per VF. Fail the request if 2038 * requested number exceed these globals 2039 */ 2040 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) { 2041 DP(BNX2X_MSG_IOV, 2042 "cannot fulfill vf resource request. Placing maximal available values in response\n"); 2043 /* set the max resource in the vf */ 2044 return -ENOMEM; 2045 } 2046 2047 /* Set resources counters - 0 request means max available */ 2048 vf_sb_count(vf) = resc->num_sbs; 2049 vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf); 2050 vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf); 2051 2052 DP(BNX2X_MSG_IOV, 2053 "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n", 2054 vf_sb_count(vf), vf_rxq_count(vf), 2055 vf_txq_count(vf), vf_mac_rules_cnt(vf), 2056 vf_vlan_rules_cnt(vf)); 2057 2058 /* Initialize the queues */ 2059 if (!vf->vfqs) { 2060 DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n"); 2061 return -EINVAL; 2062 } 2063 2064 for_each_vfq(vf, i) { 2065 struct bnx2x_vf_queue *q = vfq_get(vf, i); 2066 2067 if (!q) { 2068 BNX2X_ERR("q number %d was not allocated\n", i); 2069 return -EINVAL; 2070 } 2071 2072 q->index = i; 2073 q->cxt = &((base_cxt + i)->eth); 2074 q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i; 2075 2076 DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n", 2077 vf->abs_vfid, i, q->index, q->cid, q->cxt); 2078 2079 /* init SP objects */ 2080 bnx2x_vfq_init(bp, vf, q); 2081 } 2082 vf->state = VF_ACQUIRED; 2083 return 0; 2084 } 2085 2086 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map) 2087 { 2088 struct bnx2x_func_init_params func_init = {0}; 2089 int i; 2090 2091 /* the sb resources are initialized at this point, do the 2092 * FW/HW initializations 2093 */ 2094 for_each_vf_sb(vf, i) 2095 bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true, 2096 vf_igu_sb(vf, i), vf_igu_sb(vf, i)); 2097 2098 /* Sanity checks */ 2099 if (vf->state != VF_ACQUIRED) { 2100 DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n", 2101 vf->abs_vfid, vf->state); 2102 return -EINVAL; 2103 } 2104 2105 /* let FLR complete ... */ 2106 msleep(100); 2107 2108 /* FLR cleanup epilogue */ 2109 if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid)) 2110 return -EBUSY; 2111 2112 /* reset IGU VF statistics: MSIX */ 2113 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0); 2114 2115 /* function setup */ 2116 func_init.pf_id = BP_FUNC(bp); 2117 func_init.func_id = FW_VF_HANDLE(vf->abs_vfid); 2118 bnx2x_func_init(bp, &func_init); 2119 2120 /* Enable the vf */ 2121 bnx2x_vf_enable_access(bp, vf->abs_vfid); 2122 bnx2x_vf_enable_traffic(bp, vf); 2123 2124 /* queue protection table */ 2125 for_each_vfq(vf, i) 2126 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid, 2127 vfq_qzone_id(vf, vfq_get(vf, i)), true); 2128 2129 vf->state = VF_ENABLED; 2130 2131 /* update vf bulletin board */ 2132 bnx2x_post_vf_bulletin(bp, vf->index); 2133 2134 return 0; 2135 } 2136 2137 struct set_vf_state_cookie { 2138 struct bnx2x_virtf *vf; 2139 u8 state; 2140 }; 2141 2142 static void bnx2x_set_vf_state(void *cookie) 2143 { 2144 struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie; 2145 2146 p->vf->state = p->state; 2147 } 2148 2149 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf) 2150 { 2151 int rc = 0, i; 2152 2153 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 2154 2155 /* Close all queues */ 2156 for (i = 0; i < vf_rxq_count(vf); i++) { 2157 rc = bnx2x_vf_queue_teardown(bp, vf, i); 2158 if (rc) 2159 goto op_err; 2160 } 2161 2162 /* disable the interrupts */ 2163 DP(BNX2X_MSG_IOV, "disabling igu\n"); 2164 bnx2x_vf_igu_disable(bp, vf); 2165 2166 /* disable the VF */ 2167 DP(BNX2X_MSG_IOV, "clearing qtbl\n"); 2168 bnx2x_vf_clr_qtbl(bp, vf); 2169 2170 /* need to make sure there are no outstanding stats ramrods which may 2171 * cause the device to access the VF's stats buffer which it will free 2172 * as soon as we return from the close flow. 2173 */ 2174 { 2175 struct set_vf_state_cookie cookie; 2176 2177 cookie.vf = vf; 2178 cookie.state = VF_ACQUIRED; 2179 rc = bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie); 2180 if (rc) 2181 goto op_err; 2182 } 2183 2184 DP(BNX2X_MSG_IOV, "set state to acquired\n"); 2185 2186 return 0; 2187 op_err: 2188 BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc); 2189 return rc; 2190 } 2191 2192 /* VF release can be called either: 1. The VF was acquired but 2193 * not enabled 2. the vf was enabled or in the process of being 2194 * enabled 2195 */ 2196 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf) 2197 { 2198 int rc; 2199 2200 DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid, 2201 vf->state == VF_FREE ? "Free" : 2202 vf->state == VF_ACQUIRED ? "Acquired" : 2203 vf->state == VF_ENABLED ? "Enabled" : 2204 vf->state == VF_RESET ? "Reset" : 2205 "Unknown"); 2206 2207 switch (vf->state) { 2208 case VF_ENABLED: 2209 rc = bnx2x_vf_close(bp, vf); 2210 if (rc) 2211 goto op_err; 2212 /* Fallthrough to release resources */ 2213 case VF_ACQUIRED: 2214 DP(BNX2X_MSG_IOV, "about to free resources\n"); 2215 bnx2x_vf_free_resc(bp, vf); 2216 break; 2217 2218 case VF_FREE: 2219 case VF_RESET: 2220 default: 2221 break; 2222 } 2223 return 0; 2224 op_err: 2225 BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc); 2226 return rc; 2227 } 2228 2229 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf, 2230 struct bnx2x_config_rss_params *rss) 2231 { 2232 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 2233 set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags); 2234 return bnx2x_config_rss(bp, rss); 2235 } 2236 2237 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf, 2238 struct vfpf_tpa_tlv *tlv, 2239 struct bnx2x_queue_update_tpa_params *params) 2240 { 2241 aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr; 2242 struct bnx2x_queue_state_params qstate; 2243 int qid, rc = 0; 2244 2245 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 2246 2247 /* Set ramrod params */ 2248 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params)); 2249 memcpy(&qstate.params.update_tpa, params, 2250 sizeof(struct bnx2x_queue_update_tpa_params)); 2251 qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA; 2252 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags); 2253 2254 for (qid = 0; qid < vf_rxq_count(vf); qid++) { 2255 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj); 2256 qstate.params.update_tpa.sge_map = sge_addr[qid]; 2257 DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n", 2258 vf->abs_vfid, qid, U64_HI(sge_addr[qid]), 2259 U64_LO(sge_addr[qid])); 2260 rc = bnx2x_queue_state_change(bp, &qstate); 2261 if (rc) { 2262 BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n", 2263 U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]), 2264 vf->abs_vfid, qid); 2265 return rc; 2266 } 2267 } 2268 2269 return rc; 2270 } 2271 2272 /* VF release ~ VF close + VF release-resources 2273 * Release is the ultimate SW shutdown and is called whenever an 2274 * irrecoverable error is encountered. 2275 */ 2276 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf) 2277 { 2278 int rc; 2279 2280 DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid); 2281 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF); 2282 2283 rc = bnx2x_vf_free(bp, vf); 2284 if (rc) 2285 WARN(rc, 2286 "VF[%d] Failed to allocate resources for release op- rc=%d\n", 2287 vf->abs_vfid, rc); 2288 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF); 2289 return rc; 2290 } 2291 2292 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf, 2293 enum channel_tlvs tlv) 2294 { 2295 /* we don't lock the channel for unsupported tlvs */ 2296 if (!bnx2x_tlv_supported(tlv)) { 2297 BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n"); 2298 return; 2299 } 2300 2301 /* lock the channel */ 2302 mutex_lock(&vf->op_mutex); 2303 2304 /* record the locking op */ 2305 vf->op_current = tlv; 2306 2307 /* log the lock */ 2308 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n", 2309 vf->abs_vfid, tlv); 2310 } 2311 2312 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf, 2313 enum channel_tlvs expected_tlv) 2314 { 2315 enum channel_tlvs current_tlv; 2316 2317 if (!vf) { 2318 BNX2X_ERR("VF was %p\n", vf); 2319 return; 2320 } 2321 2322 current_tlv = vf->op_current; 2323 2324 /* we don't unlock the channel for unsupported tlvs */ 2325 if (!bnx2x_tlv_supported(expected_tlv)) 2326 return; 2327 2328 WARN(expected_tlv != vf->op_current, 2329 "lock mismatch: expected %d found %d", expected_tlv, 2330 vf->op_current); 2331 2332 /* record the locking op */ 2333 vf->op_current = CHANNEL_TLV_NONE; 2334 2335 /* lock the channel */ 2336 mutex_unlock(&vf->op_mutex); 2337 2338 /* log the unlock */ 2339 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n", 2340 vf->abs_vfid, current_tlv); 2341 } 2342 2343 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable) 2344 { 2345 struct bnx2x_queue_state_params q_params; 2346 u32 prev_flags; 2347 int i, rc; 2348 2349 /* Verify changes are needed and record current Tx switching state */ 2350 prev_flags = bp->flags; 2351 if (enable) 2352 bp->flags |= TX_SWITCHING; 2353 else 2354 bp->flags &= ~TX_SWITCHING; 2355 if (prev_flags == bp->flags) 2356 return 0; 2357 2358 /* Verify state enables the sending of queue ramrods */ 2359 if ((bp->state != BNX2X_STATE_OPEN) || 2360 (bnx2x_get_q_logical_state(bp, 2361 &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) != 2362 BNX2X_Q_LOGICAL_STATE_ACTIVE)) 2363 return 0; 2364 2365 /* send q. update ramrod to configure Tx switching */ 2366 memset(&q_params, 0, sizeof(q_params)); 2367 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 2368 q_params.cmd = BNX2X_Q_CMD_UPDATE; 2369 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG, 2370 &q_params.params.update.update_flags); 2371 if (enable) 2372 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING, 2373 &q_params.params.update.update_flags); 2374 else 2375 __clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING, 2376 &q_params.params.update.update_flags); 2377 2378 /* send the ramrod on all the queues of the PF */ 2379 for_each_eth_queue(bp, i) { 2380 struct bnx2x_fastpath *fp = &bp->fp[i]; 2381 2382 /* Set the appropriate Queue object */ 2383 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 2384 2385 /* Update the Queue state */ 2386 rc = bnx2x_queue_state_change(bp, &q_params); 2387 if (rc) { 2388 BNX2X_ERR("Failed to configure Tx switching\n"); 2389 return rc; 2390 } 2391 } 2392 2393 DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled"); 2394 return 0; 2395 } 2396 2397 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param) 2398 { 2399 struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev)); 2400 2401 if (!IS_SRIOV(bp)) { 2402 BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n"); 2403 return -EINVAL; 2404 } 2405 2406 DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n", 2407 num_vfs_param, BNX2X_NR_VIRTFN(bp)); 2408 2409 /* HW channel is only operational when PF is up */ 2410 if (bp->state != BNX2X_STATE_OPEN) { 2411 BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n"); 2412 return -EINVAL; 2413 } 2414 2415 /* we are always bound by the total_vfs in the configuration space */ 2416 if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) { 2417 BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n", 2418 num_vfs_param, BNX2X_NR_VIRTFN(bp)); 2419 num_vfs_param = BNX2X_NR_VIRTFN(bp); 2420 } 2421 2422 bp->requested_nr_virtfn = num_vfs_param; 2423 if (num_vfs_param == 0) { 2424 bnx2x_set_pf_tx_switching(bp, false); 2425 bnx2x_disable_sriov(bp); 2426 return 0; 2427 } else { 2428 return bnx2x_enable_sriov(bp); 2429 } 2430 } 2431 2432 #define IGU_ENTRY_SIZE 4 2433 2434 int bnx2x_enable_sriov(struct bnx2x *bp) 2435 { 2436 int rc = 0, req_vfs = bp->requested_nr_virtfn; 2437 int vf_idx, sb_idx, vfq_idx, qcount, first_vf; 2438 u32 igu_entry, address; 2439 u16 num_vf_queues; 2440 2441 if (req_vfs == 0) 2442 return 0; 2443 2444 first_vf = bp->vfdb->sriov.first_vf_in_pf; 2445 2446 /* statically distribute vf sb pool between VFs */ 2447 num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES, 2448 BP_VFDB(bp)->vf_sbs_pool / req_vfs); 2449 2450 /* zero previous values learned from igu cam */ 2451 for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) { 2452 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx); 2453 2454 vf->sb_count = 0; 2455 vf_sb_count(BP_VF(bp, vf_idx)) = 0; 2456 } 2457 bp->vfdb->vf_sbs_pool = 0; 2458 2459 /* prepare IGU cam */ 2460 sb_idx = BP_VFDB(bp)->first_vf_igu_entry; 2461 address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE; 2462 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) { 2463 for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) { 2464 igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT | 2465 vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT | 2466 IGU_REG_MAPPING_MEMORY_VALID; 2467 DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n", 2468 sb_idx, vf_idx); 2469 REG_WR(bp, address, igu_entry); 2470 sb_idx++; 2471 address += IGU_ENTRY_SIZE; 2472 } 2473 } 2474 2475 /* Reinitialize vf database according to igu cam */ 2476 bnx2x_get_vf_igu_cam_info(bp); 2477 2478 DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n", 2479 BP_VFDB(bp)->vf_sbs_pool, num_vf_queues); 2480 2481 qcount = 0; 2482 for_each_vf(bp, vf_idx) { 2483 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx); 2484 2485 /* set local queue arrays */ 2486 vf->vfqs = &bp->vfdb->vfqs[qcount]; 2487 qcount += vf_sb_count(vf); 2488 bnx2x_iov_static_resc(bp, vf); 2489 } 2490 2491 /* prepare msix vectors in VF configuration space - the value in the 2492 * PCI configuration space should be the index of the last entry, 2493 * namely one less than the actual size of the table 2494 */ 2495 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) { 2496 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx)); 2497 REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL, 2498 num_vf_queues - 1); 2499 DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n", 2500 vf_idx, num_vf_queues - 1); 2501 } 2502 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 2503 2504 /* enable sriov. This will probe all the VFs, and consequentially cause 2505 * the "acquire" messages to appear on the VF PF channel. 2506 */ 2507 DP(BNX2X_MSG_IOV, "about to call enable sriov\n"); 2508 bnx2x_disable_sriov(bp); 2509 2510 rc = bnx2x_set_pf_tx_switching(bp, true); 2511 if (rc) 2512 return rc; 2513 2514 rc = pci_enable_sriov(bp->pdev, req_vfs); 2515 if (rc) { 2516 BNX2X_ERR("pci_enable_sriov failed with %d\n", rc); 2517 return rc; 2518 } 2519 DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs); 2520 return req_vfs; 2521 } 2522 2523 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp) 2524 { 2525 int vfidx; 2526 struct pf_vf_bulletin_content *bulletin; 2527 2528 DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n"); 2529 for_each_vf(bp, vfidx) { 2530 bulletin = BP_VF_BULLETIN(bp, vfidx); 2531 if (bulletin->valid_bitmap & (1 << VLAN_VALID)) 2532 bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0, 2533 htons(ETH_P_8021Q)); 2534 } 2535 } 2536 2537 void bnx2x_disable_sriov(struct bnx2x *bp) 2538 { 2539 if (pci_vfs_assigned(bp->pdev)) { 2540 DP(BNX2X_MSG_IOV, 2541 "Unloading driver while VFs are assigned - VFs will not be deallocated\n"); 2542 return; 2543 } 2544 2545 pci_disable_sriov(bp->pdev); 2546 } 2547 2548 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx, 2549 struct bnx2x_virtf **vf, 2550 struct pf_vf_bulletin_content **bulletin, 2551 bool test_queue) 2552 { 2553 if (bp->state != BNX2X_STATE_OPEN) { 2554 BNX2X_ERR("PF is down - can't utilize iov-related functionality\n"); 2555 return -EINVAL; 2556 } 2557 2558 if (!IS_SRIOV(bp)) { 2559 BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n"); 2560 return -EINVAL; 2561 } 2562 2563 if (vfidx >= BNX2X_NR_VIRTFN(bp)) { 2564 BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n", 2565 vfidx, BNX2X_NR_VIRTFN(bp)); 2566 return -EINVAL; 2567 } 2568 2569 /* init members */ 2570 *vf = BP_VF(bp, vfidx); 2571 *bulletin = BP_VF_BULLETIN(bp, vfidx); 2572 2573 if (!*vf) { 2574 BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx); 2575 return -EINVAL; 2576 } 2577 2578 if (test_queue && !(*vf)->vfqs) { 2579 BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n", 2580 vfidx); 2581 return -EINVAL; 2582 } 2583 2584 if (!*bulletin) { 2585 BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n", 2586 vfidx); 2587 return -EINVAL; 2588 } 2589 2590 return 0; 2591 } 2592 2593 int bnx2x_get_vf_config(struct net_device *dev, int vfidx, 2594 struct ifla_vf_info *ivi) 2595 { 2596 struct bnx2x *bp = netdev_priv(dev); 2597 struct bnx2x_virtf *vf = NULL; 2598 struct pf_vf_bulletin_content *bulletin = NULL; 2599 struct bnx2x_vlan_mac_obj *mac_obj; 2600 struct bnx2x_vlan_mac_obj *vlan_obj; 2601 int rc; 2602 2603 /* sanity and init */ 2604 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true); 2605 if (rc) 2606 return rc; 2607 2608 mac_obj = &bnx2x_leading_vfq(vf, mac_obj); 2609 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj); 2610 if (!mac_obj || !vlan_obj) { 2611 BNX2X_ERR("VF partially initialized\n"); 2612 return -EINVAL; 2613 } 2614 2615 ivi->vf = vfidx; 2616 ivi->qos = 0; 2617 ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */ 2618 ivi->min_tx_rate = 0; 2619 ivi->spoofchk = 1; /*always enabled */ 2620 if (vf->state == VF_ENABLED) { 2621 /* mac and vlan are in vlan_mac objects */ 2622 if (bnx2x_validate_vf_sp_objs(bp, vf, false)) { 2623 mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac, 2624 0, ETH_ALEN); 2625 vlan_obj->get_n_elements(bp, vlan_obj, 1, 2626 (u8 *)&ivi->vlan, 0, 2627 VLAN_HLEN); 2628 } 2629 } else { 2630 mutex_lock(&bp->vfdb->bulletin_mutex); 2631 /* mac */ 2632 if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID)) 2633 /* mac configured by ndo so its in bulletin board */ 2634 memcpy(&ivi->mac, bulletin->mac, ETH_ALEN); 2635 else 2636 /* function has not been loaded yet. Show mac as 0s */ 2637 eth_zero_addr(ivi->mac); 2638 2639 /* vlan */ 2640 if (bulletin->valid_bitmap & (1 << VLAN_VALID)) 2641 /* vlan configured by ndo so its in bulletin board */ 2642 memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN); 2643 else 2644 /* function has not been loaded yet. Show vlans as 0s */ 2645 memset(&ivi->vlan, 0, VLAN_HLEN); 2646 2647 mutex_unlock(&bp->vfdb->bulletin_mutex); 2648 } 2649 2650 return 0; 2651 } 2652 2653 /* New mac for VF. Consider these cases: 2654 * 1. VF hasn't been acquired yet - save the mac in local bulletin board and 2655 * supply at acquire. 2656 * 2. VF has already been acquired but has not yet initialized - store in local 2657 * bulletin board. mac will be posted on VF bulletin board after VF init. VF 2658 * will configure this mac when it is ready. 2659 * 3. VF has already initialized but has not yet setup a queue - post the new 2660 * mac on VF's bulletin board right now. VF will configure this mac when it 2661 * is ready. 2662 * 4. VF has already set a queue - delete any macs already configured for this 2663 * queue and manually config the new mac. 2664 * In any event, once this function has been called refuse any attempts by the 2665 * VF to configure any mac for itself except for this mac. In case of a race 2666 * where the VF fails to see the new post on its bulletin board before sending a 2667 * mac configuration request, the PF will simply fail the request and VF can try 2668 * again after consulting its bulletin board. 2669 */ 2670 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac) 2671 { 2672 struct bnx2x *bp = netdev_priv(dev); 2673 int rc, q_logical_state; 2674 struct bnx2x_virtf *vf = NULL; 2675 struct pf_vf_bulletin_content *bulletin = NULL; 2676 2677 if (!is_valid_ether_addr(mac)) { 2678 BNX2X_ERR("mac address invalid\n"); 2679 return -EINVAL; 2680 } 2681 2682 /* sanity and init */ 2683 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true); 2684 if (rc) 2685 return rc; 2686 2687 mutex_lock(&bp->vfdb->bulletin_mutex); 2688 2689 /* update PF's copy of the VF's bulletin. Will no longer accept mac 2690 * configuration requests from vf unless match this mac 2691 */ 2692 bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID; 2693 memcpy(bulletin->mac, mac, ETH_ALEN); 2694 2695 /* Post update on VF's bulletin board */ 2696 rc = bnx2x_post_vf_bulletin(bp, vfidx); 2697 2698 /* release lock before checking return code */ 2699 mutex_unlock(&bp->vfdb->bulletin_mutex); 2700 2701 if (rc) { 2702 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx); 2703 return rc; 2704 } 2705 2706 q_logical_state = 2707 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)); 2708 if (vf->state == VF_ENABLED && 2709 q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) { 2710 /* configure the mac in device on this vf's queue */ 2711 unsigned long ramrod_flags = 0; 2712 struct bnx2x_vlan_mac_obj *mac_obj; 2713 2714 /* User should be able to see failure reason in system logs */ 2715 if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) 2716 return -EINVAL; 2717 2718 /* must lock vfpf channel to protect against vf flows */ 2719 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC); 2720 2721 /* remove existing eth macs */ 2722 mac_obj = &bnx2x_leading_vfq(vf, mac_obj); 2723 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true); 2724 if (rc) { 2725 BNX2X_ERR("failed to delete eth macs\n"); 2726 rc = -EINVAL; 2727 goto out; 2728 } 2729 2730 /* remove existing uc list macs */ 2731 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true); 2732 if (rc) { 2733 BNX2X_ERR("failed to delete uc_list macs\n"); 2734 rc = -EINVAL; 2735 goto out; 2736 } 2737 2738 /* configure the new mac to device */ 2739 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2740 bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true, 2741 BNX2X_ETH_MAC, &ramrod_flags); 2742 2743 out: 2744 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC); 2745 } 2746 2747 return rc; 2748 } 2749 2750 static void bnx2x_set_vf_vlan_acceptance(struct bnx2x *bp, 2751 struct bnx2x_virtf *vf, bool accept) 2752 { 2753 struct bnx2x_rx_mode_ramrod_params rx_ramrod; 2754 unsigned long accept_flags; 2755 2756 /* need to remove/add the VF's accept_any_vlan bit */ 2757 accept_flags = bnx2x_leading_vfq(vf, accept_flags); 2758 if (accept) 2759 set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); 2760 else 2761 clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); 2762 2763 bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf, 2764 accept_flags); 2765 bnx2x_leading_vfq(vf, accept_flags) = accept_flags; 2766 bnx2x_config_rx_mode(bp, &rx_ramrod); 2767 } 2768 2769 static int bnx2x_set_vf_vlan_filter(struct bnx2x *bp, struct bnx2x_virtf *vf, 2770 u16 vlan, bool add) 2771 { 2772 struct bnx2x_vlan_mac_ramrod_params ramrod_param; 2773 unsigned long ramrod_flags = 0; 2774 int rc = 0; 2775 2776 /* configure the new vlan to device */ 2777 memset(&ramrod_param, 0, sizeof(ramrod_param)); 2778 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2779 ramrod_param.vlan_mac_obj = &bnx2x_leading_vfq(vf, vlan_obj); 2780 ramrod_param.ramrod_flags = ramrod_flags; 2781 ramrod_param.user_req.u.vlan.vlan = vlan; 2782 ramrod_param.user_req.cmd = add ? BNX2X_VLAN_MAC_ADD 2783 : BNX2X_VLAN_MAC_DEL; 2784 rc = bnx2x_config_vlan_mac(bp, &ramrod_param); 2785 if (rc) { 2786 BNX2X_ERR("failed to configure vlan\n"); 2787 return -EINVAL; 2788 } 2789 2790 return 0; 2791 } 2792 2793 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos, 2794 __be16 vlan_proto) 2795 { 2796 struct pf_vf_bulletin_content *bulletin = NULL; 2797 struct bnx2x *bp = netdev_priv(dev); 2798 struct bnx2x_vlan_mac_obj *vlan_obj; 2799 unsigned long vlan_mac_flags = 0; 2800 unsigned long ramrod_flags = 0; 2801 struct bnx2x_virtf *vf = NULL; 2802 int i, rc; 2803 2804 if (vlan > 4095) { 2805 BNX2X_ERR("illegal vlan value %d\n", vlan); 2806 return -EINVAL; 2807 } 2808 2809 if (vlan_proto != htons(ETH_P_8021Q)) 2810 return -EPROTONOSUPPORT; 2811 2812 DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n", 2813 vfidx, vlan, 0); 2814 2815 /* sanity and init */ 2816 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true); 2817 if (rc) 2818 return rc; 2819 2820 /* update PF's copy of the VF's bulletin. No point in posting the vlan 2821 * to the VF since it doesn't have anything to do with it. But it useful 2822 * to store it here in case the VF is not up yet and we can only 2823 * configure the vlan later when it does. Treat vlan id 0 as remove the 2824 * Host tag. 2825 */ 2826 mutex_lock(&bp->vfdb->bulletin_mutex); 2827 2828 if (vlan > 0) 2829 bulletin->valid_bitmap |= 1 << VLAN_VALID; 2830 else 2831 bulletin->valid_bitmap &= ~(1 << VLAN_VALID); 2832 bulletin->vlan = vlan; 2833 2834 /* Post update on VF's bulletin board */ 2835 rc = bnx2x_post_vf_bulletin(bp, vfidx); 2836 if (rc) 2837 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx); 2838 mutex_unlock(&bp->vfdb->bulletin_mutex); 2839 2840 /* is vf initialized and queue set up? */ 2841 if (vf->state != VF_ENABLED || 2842 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) != 2843 BNX2X_Q_LOGICAL_STATE_ACTIVE) 2844 return rc; 2845 2846 /* User should be able to see error in system logs */ 2847 if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) 2848 return -EINVAL; 2849 2850 /* must lock vfpf channel to protect against vf flows */ 2851 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN); 2852 2853 /* remove existing vlans */ 2854 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2855 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj); 2856 rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags, 2857 &ramrod_flags); 2858 if (rc) { 2859 BNX2X_ERR("failed to delete vlans\n"); 2860 rc = -EINVAL; 2861 goto out; 2862 } 2863 2864 /* clear accept_any_vlan when HV forces vlan, otherwise 2865 * according to VF capabilities 2866 */ 2867 if (vlan || !(vf->cfg_flags & VF_CFG_VLAN_FILTER)) 2868 bnx2x_set_vf_vlan_acceptance(bp, vf, !vlan); 2869 2870 rc = bnx2x_set_vf_vlan_filter(bp, vf, vlan, true); 2871 if (rc) 2872 goto out; 2873 2874 /* send queue update ramrods to configure default vlan and 2875 * silent vlan removal 2876 */ 2877 for_each_vfq(vf, i) { 2878 struct bnx2x_queue_state_params q_params = {NULL}; 2879 struct bnx2x_queue_update_params *update_params; 2880 2881 q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj); 2882 2883 /* validate the Q is UP */ 2884 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) != 2885 BNX2X_Q_LOGICAL_STATE_ACTIVE) 2886 continue; 2887 2888 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 2889 q_params.cmd = BNX2X_Q_CMD_UPDATE; 2890 update_params = &q_params.params.update; 2891 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG, 2892 &update_params->update_flags); 2893 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG, 2894 &update_params->update_flags); 2895 if (vlan == 0) { 2896 /* if vlan is 0 then we want to leave the VF traffic 2897 * untagged, and leave the incoming traffic untouched 2898 * (i.e. do not remove any vlan tags). 2899 */ 2900 __clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, 2901 &update_params->update_flags); 2902 __clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, 2903 &update_params->update_flags); 2904 } else { 2905 /* configure default vlan to vf queue and set silent 2906 * vlan removal (the vf remains unaware of this vlan). 2907 */ 2908 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, 2909 &update_params->update_flags); 2910 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, 2911 &update_params->update_flags); 2912 update_params->def_vlan = vlan; 2913 update_params->silent_removal_value = 2914 vlan & VLAN_VID_MASK; 2915 update_params->silent_removal_mask = VLAN_VID_MASK; 2916 } 2917 2918 /* Update the Queue state */ 2919 rc = bnx2x_queue_state_change(bp, &q_params); 2920 if (rc) { 2921 BNX2X_ERR("Failed to configure default VLAN queue %d\n", 2922 i); 2923 goto out; 2924 } 2925 } 2926 out: 2927 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN); 2928 2929 if (rc) 2930 DP(BNX2X_MSG_IOV, 2931 "updated VF[%d] vlan configuration (vlan = %d)\n", 2932 vfidx, vlan); 2933 2934 return rc; 2935 } 2936 2937 /* crc is the first field in the bulletin board. Compute the crc over the 2938 * entire bulletin board excluding the crc field itself. Use the length field 2939 * as the Bulletin Board was posted by a PF with possibly a different version 2940 * from the vf which will sample it. Therefore, the length is computed by the 2941 * PF and then used blindly by the VF. 2942 */ 2943 u32 bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content *bulletin) 2944 { 2945 return crc32(BULLETIN_CRC_SEED, 2946 ((u8 *)bulletin) + sizeof(bulletin->crc), 2947 bulletin->length - sizeof(bulletin->crc)); 2948 } 2949 2950 /* Check for new posts on the bulletin board */ 2951 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp) 2952 { 2953 struct pf_vf_bulletin_content *bulletin; 2954 int attempts; 2955 2956 /* sampling structure in mid post may result with corrupted data 2957 * validate crc to ensure coherency. 2958 */ 2959 for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) { 2960 u32 crc; 2961 2962 /* sample the bulletin board */ 2963 memcpy(&bp->shadow_bulletin, bp->pf2vf_bulletin, 2964 sizeof(union pf_vf_bulletin)); 2965 2966 crc = bnx2x_crc_vf_bulletin(&bp->shadow_bulletin.content); 2967 2968 if (bp->shadow_bulletin.content.crc == crc) 2969 break; 2970 2971 BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n", 2972 bp->shadow_bulletin.content.crc, crc); 2973 } 2974 2975 if (attempts >= BULLETIN_ATTEMPTS) { 2976 BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n", 2977 attempts); 2978 return PFVF_BULLETIN_CRC_ERR; 2979 } 2980 bulletin = &bp->shadow_bulletin.content; 2981 2982 /* bulletin board hasn't changed since last sample */ 2983 if (bp->old_bulletin.version == bulletin->version) 2984 return PFVF_BULLETIN_UNCHANGED; 2985 2986 /* the mac address in bulletin board is valid and is new */ 2987 if (bulletin->valid_bitmap & 1 << MAC_ADDR_VALID && 2988 !ether_addr_equal(bulletin->mac, bp->old_bulletin.mac)) { 2989 /* update new mac to net device */ 2990 memcpy(bp->dev->dev_addr, bulletin->mac, ETH_ALEN); 2991 } 2992 2993 if (bulletin->valid_bitmap & (1 << LINK_VALID)) { 2994 DP(BNX2X_MSG_IOV, "link update speed %d flags %x\n", 2995 bulletin->link_speed, bulletin->link_flags); 2996 2997 bp->vf_link_vars.line_speed = bulletin->link_speed; 2998 bp->vf_link_vars.link_report_flags = 0; 2999 /* Link is down */ 3000 if (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN) 3001 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 3002 &bp->vf_link_vars.link_report_flags); 3003 /* Full DUPLEX */ 3004 if (bulletin->link_flags & VFPF_LINK_REPORT_FULL_DUPLEX) 3005 __set_bit(BNX2X_LINK_REPORT_FD, 3006 &bp->vf_link_vars.link_report_flags); 3007 /* Rx Flow Control is ON */ 3008 if (bulletin->link_flags & VFPF_LINK_REPORT_RX_FC_ON) 3009 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON, 3010 &bp->vf_link_vars.link_report_flags); 3011 /* Tx Flow Control is ON */ 3012 if (bulletin->link_flags & VFPF_LINK_REPORT_TX_FC_ON) 3013 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON, 3014 &bp->vf_link_vars.link_report_flags); 3015 __bnx2x_link_report(bp); 3016 } 3017 3018 /* copy new bulletin board to bp */ 3019 memcpy(&bp->old_bulletin, bulletin, 3020 sizeof(struct pf_vf_bulletin_content)); 3021 3022 return PFVF_BULLETIN_UPDATED; 3023 } 3024 3025 void bnx2x_timer_sriov(struct bnx2x *bp) 3026 { 3027 bnx2x_sample_bulletin(bp); 3028 3029 /* if channel is down we need to self destruct */ 3030 if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN) 3031 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, 3032 BNX2X_MSG_IOV); 3033 } 3034 3035 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp) 3036 { 3037 /* vf doorbells are embedded within the regview */ 3038 return bp->regview + PXP_VF_ADDR_DB_START; 3039 } 3040 3041 void bnx2x_vf_pci_dealloc(struct bnx2x *bp) 3042 { 3043 BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping, 3044 sizeof(struct bnx2x_vf_mbx_msg)); 3045 BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->pf2vf_bulletin_mapping, 3046 sizeof(union pf_vf_bulletin)); 3047 } 3048 3049 int bnx2x_vf_pci_alloc(struct bnx2x *bp) 3050 { 3051 mutex_init(&bp->vf2pf_mutex); 3052 3053 /* allocate vf2pf mailbox for vf to pf channel */ 3054 bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping, 3055 sizeof(struct bnx2x_vf_mbx_msg)); 3056 if (!bp->vf2pf_mbox) 3057 goto alloc_mem_err; 3058 3059 /* allocate pf 2 vf bulletin board */ 3060 bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping, 3061 sizeof(union pf_vf_bulletin)); 3062 if (!bp->pf2vf_bulletin) 3063 goto alloc_mem_err; 3064 3065 bnx2x_vf_bulletin_finalize(&bp->pf2vf_bulletin->content, true); 3066 3067 return 0; 3068 3069 alloc_mem_err: 3070 bnx2x_vf_pci_dealloc(bp); 3071 return -ENOMEM; 3072 } 3073 3074 void bnx2x_iov_channel_down(struct bnx2x *bp) 3075 { 3076 int vf_idx; 3077 struct pf_vf_bulletin_content *bulletin; 3078 3079 if (!IS_SRIOV(bp)) 3080 return; 3081 3082 for_each_vf(bp, vf_idx) { 3083 /* locate this VFs bulletin board and update the channel down 3084 * bit 3085 */ 3086 bulletin = BP_VF_BULLETIN(bp, vf_idx); 3087 bulletin->valid_bitmap |= 1 << CHANNEL_DOWN; 3088 3089 /* update vf bulletin board */ 3090 bnx2x_post_vf_bulletin(bp, vf_idx); 3091 } 3092 } 3093 3094 void bnx2x_iov_task(struct work_struct *work) 3095 { 3096 struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work); 3097 3098 if (!netif_running(bp->dev)) 3099 return; 3100 3101 if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR, 3102 &bp->iov_task_state)) 3103 bnx2x_vf_handle_flr_event(bp); 3104 3105 if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG, 3106 &bp->iov_task_state)) 3107 bnx2x_vf_mbx(bp); 3108 } 3109 3110 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag) 3111 { 3112 smp_mb__before_atomic(); 3113 set_bit(flag, &bp->iov_task_state); 3114 smp_mb__after_atomic(); 3115 DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag); 3116 queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0); 3117 } 3118