1 /* bnx2x_sriov.c: QLogic Everest network driver.
2  *
3  * Copyright 2009-2013 Broadcom Corporation
4  * Copyright 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * Unless you and QLogic execute a separate written software license
8  * agreement governing use of this software, this software is licensed to you
9  * under the terms of the GNU General Public License version 2, available
10  * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
11  *
12  * Notwithstanding the above, under no circumstances may you combine this
13  * software in any way with any other QLogic software provided under a
14  * license other than the GPL, without QLogic's express prior written
15  * consent.
16  *
17  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
18  * Written by: Shmulik Ravid
19  *	       Ariel Elior <ariel.elior@qlogic.com>
20  *
21  */
22 #include "bnx2x.h"
23 #include "bnx2x_init.h"
24 #include "bnx2x_cmn.h"
25 #include "bnx2x_sp.h"
26 #include <linux/crc32.h>
27 #include <linux/if_vlan.h>
28 
29 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
30 			    struct bnx2x_virtf **vf,
31 			    struct pf_vf_bulletin_content **bulletin,
32 			    bool test_queue);
33 
34 /* General service functions */
35 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
36 					 u16 pf_id)
37 {
38 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
39 		pf_id);
40 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
41 		pf_id);
42 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
43 		pf_id);
44 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
45 		pf_id);
46 }
47 
48 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
49 					u8 enable)
50 {
51 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
52 		enable);
53 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
54 		enable);
55 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
56 		enable);
57 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
58 		enable);
59 }
60 
61 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
62 {
63 	int idx;
64 
65 	for_each_vf(bp, idx)
66 		if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid)
67 			break;
68 	return idx;
69 }
70 
71 static
72 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
73 {
74 	u16 idx =  (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid);
75 	return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL;
76 }
77 
78 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf,
79 				u8 igu_sb_id, u8 segment, u16 index, u8 op,
80 				u8 update)
81 {
82 	/* acking a VF sb through the PF - use the GRC */
83 	u32 ctl;
84 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
85 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
86 	u32 func_encode = vf->abs_vfid;
87 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id;
88 	struct igu_regular cmd_data = {0};
89 
90 	cmd_data.sb_id_and_flags =
91 			((index << IGU_REGULAR_SB_INDEX_SHIFT) |
92 			 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
93 			 (update << IGU_REGULAR_BUPDATE_SHIFT) |
94 			 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
95 
96 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
97 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
98 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
99 
100 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
101 	   cmd_data.sb_id_and_flags, igu_addr_data);
102 	REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags);
103 	mmiowb();
104 	barrier();
105 
106 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
107 	   ctl, igu_addr_ctl);
108 	REG_WR(bp, igu_addr_ctl, ctl);
109 	mmiowb();
110 	barrier();
111 }
112 
113 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp,
114 				       struct bnx2x_virtf *vf,
115 				       bool print_err)
116 {
117 	if (!bnx2x_leading_vfq(vf, sp_initialized)) {
118 		if (print_err)
119 			BNX2X_ERR("Slowpath objects not yet initialized!\n");
120 		else
121 			DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n");
122 		return false;
123 	}
124 	return true;
125 }
126 
127 /* VFOP operations states */
128 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf,
129 			      struct bnx2x_queue_init_params *init_params,
130 			      struct bnx2x_queue_setup_params *setup_params,
131 			      u16 q_idx, u16 sb_idx)
132 {
133 	DP(BNX2X_MSG_IOV,
134 	   "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
135 	   vf->abs_vfid,
136 	   q_idx,
137 	   sb_idx,
138 	   init_params->tx.sb_cq_index,
139 	   init_params->tx.hc_rate,
140 	   setup_params->flags,
141 	   setup_params->txq_params.traffic_type);
142 }
143 
144 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf,
145 			    struct bnx2x_queue_init_params *init_params,
146 			    struct bnx2x_queue_setup_params *setup_params,
147 			    u16 q_idx, u16 sb_idx)
148 {
149 	struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params;
150 
151 	DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
152 	   "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
153 	   vf->abs_vfid,
154 	   q_idx,
155 	   sb_idx,
156 	   init_params->rx.sb_cq_index,
157 	   init_params->rx.hc_rate,
158 	   setup_params->gen_params.mtu,
159 	   rxq_params->buf_sz,
160 	   rxq_params->sge_buf_sz,
161 	   rxq_params->max_sges_pkt,
162 	   rxq_params->tpa_agg_sz,
163 	   setup_params->flags,
164 	   rxq_params->drop_flags,
165 	   rxq_params->cache_line_log);
166 }
167 
168 void bnx2x_vfop_qctor_prep(struct bnx2x *bp,
169 			   struct bnx2x_virtf *vf,
170 			   struct bnx2x_vf_queue *q,
171 			   struct bnx2x_vf_queue_construct_params *p,
172 			   unsigned long q_type)
173 {
174 	struct bnx2x_queue_init_params *init_p = &p->qstate.params.init;
175 	struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup;
176 
177 	/* INIT */
178 
179 	/* Enable host coalescing in the transition to INIT state */
180 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags))
181 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags);
182 
183 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags))
184 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags);
185 
186 	/* FW SB ID */
187 	init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
188 	init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
189 
190 	/* context */
191 	init_p->cxts[0] = q->cxt;
192 
193 	/* SETUP */
194 
195 	/* Setup-op general parameters */
196 	setup_p->gen_params.spcl_id = vf->sp_cl_id;
197 	setup_p->gen_params.stat_id = vfq_stat_id(vf, q);
198 	setup_p->gen_params.fp_hsi = vf->fp_hsi;
199 
200 	/* Setup-op pause params:
201 	 * Nothing to do, the pause thresholds are set by default to 0 which
202 	 * effectively turns off the feature for this queue. We don't want
203 	 * one queue (VF) to interfering with another queue (another VF)
204 	 */
205 	if (vf->cfg_flags & VF_CFG_FW_FC)
206 		BNX2X_ERR("No support for pause to VFs (abs_vfid: %d)\n",
207 			  vf->abs_vfid);
208 	/* Setup-op flags:
209 	 * collect statistics, zero statistics, local-switching, security,
210 	 * OV for Flex10, RSS and MCAST for leading
211 	 */
212 	if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags))
213 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags);
214 
215 	/* for VFs, enable tx switching, bd coherency, and mac address
216 	 * anti-spoofing
217 	 */
218 	__set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags);
219 	__set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags);
220 	__set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
221 
222 	/* Setup-op rx parameters */
223 	if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) {
224 		struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params;
225 
226 		rxq_p->cl_qzone_id = vfq_qzone_id(vf, q);
227 		rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx);
228 		rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid);
229 
230 		if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags))
231 			rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES;
232 	}
233 
234 	/* Setup-op tx parameters */
235 	if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) {
236 		setup_p->txq_params.tss_leading_cl_id = vf->leading_rss;
237 		setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
238 	}
239 }
240 
241 static int bnx2x_vf_queue_create(struct bnx2x *bp,
242 				 struct bnx2x_virtf *vf, int qid,
243 				 struct bnx2x_vf_queue_construct_params *qctor)
244 {
245 	struct bnx2x_queue_state_params *q_params;
246 	int rc = 0;
247 
248 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
249 
250 	/* Prepare ramrod information */
251 	q_params = &qctor->qstate;
252 	q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
253 	set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags);
254 
255 	if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
256 	    BNX2X_Q_LOGICAL_STATE_ACTIVE) {
257 		DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n");
258 		goto out;
259 	}
260 
261 	/* Run Queue 'construction' ramrods */
262 	q_params->cmd = BNX2X_Q_CMD_INIT;
263 	rc = bnx2x_queue_state_change(bp, q_params);
264 	if (rc)
265 		goto out;
266 
267 	memcpy(&q_params->params.setup, &qctor->prep_qsetup,
268 	       sizeof(struct bnx2x_queue_setup_params));
269 	q_params->cmd = BNX2X_Q_CMD_SETUP;
270 	rc = bnx2x_queue_state_change(bp, q_params);
271 	if (rc)
272 		goto out;
273 
274 	/* enable interrupts */
275 	bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)),
276 			    USTORM_ID, 0, IGU_INT_ENABLE, 0);
277 out:
278 	return rc;
279 }
280 
281 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf,
282 				  int qid)
283 {
284 	enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT,
285 				       BNX2X_Q_CMD_TERMINATE,
286 				       BNX2X_Q_CMD_CFC_DEL};
287 	struct bnx2x_queue_state_params q_params;
288 	int rc, i;
289 
290 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
291 
292 	/* Prepare ramrod information */
293 	memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params));
294 	q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
295 	set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
296 
297 	if (bnx2x_get_q_logical_state(bp, q_params.q_obj) ==
298 	    BNX2X_Q_LOGICAL_STATE_STOPPED) {
299 		DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n");
300 		goto out;
301 	}
302 
303 	/* Run Queue 'destruction' ramrods */
304 	for (i = 0; i < ARRAY_SIZE(cmds); i++) {
305 		q_params.cmd = cmds[i];
306 		rc = bnx2x_queue_state_change(bp, &q_params);
307 		if (rc) {
308 			BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]);
309 			return rc;
310 		}
311 	}
312 out:
313 	/* Clean Context */
314 	if (bnx2x_vfq(vf, qid, cxt)) {
315 		bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0;
316 		bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0;
317 	}
318 
319 	return 0;
320 }
321 
322 static void
323 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid)
324 {
325 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
326 	if (vf) {
327 		/* the first igu entry belonging to VFs of this PF */
328 		if (!BP_VFDB(bp)->first_vf_igu_entry)
329 			BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id;
330 
331 		/* the first igu entry belonging to this VF */
332 		if (!vf_sb_count(vf))
333 			vf->igu_base_id = igu_sb_id;
334 
335 		++vf_sb_count(vf);
336 		++vf->sb_count;
337 	}
338 	BP_VFDB(bp)->vf_sbs_pool++;
339 }
340 
341 static inline void bnx2x_vf_vlan_credit(struct bnx2x *bp,
342 					struct bnx2x_vlan_mac_obj *obj,
343 					atomic_t *counter)
344 {
345 	struct list_head *pos;
346 	int read_lock;
347 	int cnt = 0;
348 
349 	read_lock = bnx2x_vlan_mac_h_read_lock(bp, obj);
350 	if (read_lock)
351 		DP(BNX2X_MSG_SP, "Failed to take vlan mac read head; continuing anyway\n");
352 
353 	list_for_each(pos, &obj->head)
354 		cnt++;
355 
356 	if (!read_lock)
357 		bnx2x_vlan_mac_h_read_unlock(bp, obj);
358 
359 	atomic_set(counter, cnt);
360 }
361 
362 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf,
363 				   int qid, bool drv_only, bool mac)
364 {
365 	struct bnx2x_vlan_mac_ramrod_params ramrod;
366 	int rc;
367 
368 	DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid,
369 	   mac ? "MACs" : "VLANs");
370 
371 	/* Prepare ramrod params */
372 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
373 	if (mac) {
374 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
375 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
376 	} else {
377 		set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
378 			&ramrod.user_req.vlan_mac_flags);
379 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
380 	}
381 	ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL;
382 
383 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
384 	if (drv_only)
385 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
386 	else
387 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
388 
389 	/* Start deleting */
390 	rc = ramrod.vlan_mac_obj->delete_all(bp,
391 					     ramrod.vlan_mac_obj,
392 					     &ramrod.user_req.vlan_mac_flags,
393 					     &ramrod.ramrod_flags);
394 	if (rc) {
395 		BNX2X_ERR("Failed to delete all %s\n",
396 			  mac ? "MACs" : "VLANs");
397 		return rc;
398 	}
399 
400 	/* Clear the vlan counters */
401 	if (!mac)
402 		atomic_set(&bnx2x_vfq(vf, qid, vlan_count), 0);
403 
404 	return 0;
405 }
406 
407 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp,
408 				    struct bnx2x_virtf *vf, int qid,
409 				    struct bnx2x_vf_mac_vlan_filter *filter,
410 				    bool drv_only)
411 {
412 	struct bnx2x_vlan_mac_ramrod_params ramrod;
413 	int rc;
414 
415 	DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n",
416 	   vf->abs_vfid, filter->add ? "Adding" : "Deleting",
417 	   filter->type == BNX2X_VF_FILTER_MAC ? "MAC" : "VLAN");
418 
419 	/* Prepare ramrod params */
420 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
421 	if (filter->type == BNX2X_VF_FILTER_VLAN) {
422 		set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
423 			&ramrod.user_req.vlan_mac_flags);
424 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
425 		ramrod.user_req.u.vlan.vlan = filter->vid;
426 	} else {
427 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
428 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
429 		memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
430 	}
431 	ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD :
432 					    BNX2X_VLAN_MAC_DEL;
433 
434 	/* Verify there are available vlan credits */
435 	if (filter->add && filter->type == BNX2X_VF_FILTER_VLAN &&
436 	    (atomic_read(&bnx2x_vfq(vf, qid, vlan_count)) >=
437 	     vf_vlan_rules_cnt(vf))) {
438 		BNX2X_ERR("No credits for vlan [%d >= %d]\n",
439 			  atomic_read(&bnx2x_vfq(vf, qid, vlan_count)),
440 			  vf_vlan_rules_cnt(vf));
441 		return -ENOMEM;
442 	}
443 
444 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
445 	if (drv_only)
446 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
447 	else
448 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
449 
450 	/* Add/Remove the filter */
451 	rc = bnx2x_config_vlan_mac(bp, &ramrod);
452 	if (rc && rc != -EEXIST) {
453 		BNX2X_ERR("Failed to %s %s\n",
454 			  filter->add ? "add" : "delete",
455 			  filter->type == BNX2X_VF_FILTER_MAC ? "MAC" :
456 								"VLAN");
457 		return rc;
458 	}
459 
460 	/* Update the vlan counters */
461 	if (filter->type == BNX2X_VF_FILTER_VLAN)
462 		bnx2x_vf_vlan_credit(bp, ramrod.vlan_mac_obj,
463 				     &bnx2x_vfq(vf, qid, vlan_count));
464 
465 	return 0;
466 }
467 
468 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf,
469 				  struct bnx2x_vf_mac_vlan_filters *filters,
470 				  int qid, bool drv_only)
471 {
472 	int rc = 0, i;
473 
474 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
475 
476 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
477 		return -EINVAL;
478 
479 	/* Prepare ramrod params */
480 	for (i = 0; i < filters->count; i++) {
481 		rc = bnx2x_vf_mac_vlan_config(bp, vf, qid,
482 					      &filters->filters[i], drv_only);
483 		if (rc)
484 			break;
485 	}
486 
487 	/* Rollback if needed */
488 	if (i != filters->count) {
489 		BNX2X_ERR("Managed only %d/%d filters - rolling back\n",
490 			  i, filters->count + 1);
491 		while (--i >= 0) {
492 			filters->filters[i].add = !filters->filters[i].add;
493 			bnx2x_vf_mac_vlan_config(bp, vf, qid,
494 						 &filters->filters[i],
495 						 drv_only);
496 		}
497 	}
498 
499 	/* It's our responsibility to free the filters */
500 	kfree(filters);
501 
502 	return rc;
503 }
504 
505 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid,
506 			 struct bnx2x_vf_queue_construct_params *qctor)
507 {
508 	int rc;
509 
510 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
511 
512 	rc = bnx2x_vf_queue_create(bp, vf, qid, qctor);
513 	if (rc)
514 		goto op_err;
515 
516 	/* Configure vlan0 for leading queue */
517 	if (!qid) {
518 		struct bnx2x_vf_mac_vlan_filter filter;
519 
520 		memset(&filter, 0, sizeof(struct bnx2x_vf_mac_vlan_filter));
521 		filter.type = BNX2X_VF_FILTER_VLAN;
522 		filter.add = true;
523 		filter.vid = 0;
524 		rc = bnx2x_vf_mac_vlan_config(bp, vf, qid, &filter, false);
525 		if (rc)
526 			goto op_err;
527 	}
528 
529 	/* Schedule the configuration of any pending vlan filters */
530 	vf->cfg_flags |= VF_CFG_VLAN;
531 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN,
532 			       BNX2X_MSG_IOV);
533 	return 0;
534 op_err:
535 	BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
536 	return rc;
537 }
538 
539 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf,
540 			       int qid)
541 {
542 	int rc;
543 
544 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
545 
546 	/* If needed, clean the filtering data base */
547 	if ((qid == LEADING_IDX) &&
548 	    bnx2x_validate_vf_sp_objs(bp, vf, false)) {
549 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, false);
550 		if (rc)
551 			goto op_err;
552 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, true);
553 		if (rc)
554 			goto op_err;
555 	}
556 
557 	/* Terminate queue */
558 	if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) {
559 		struct bnx2x_queue_state_params qstate;
560 
561 		memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
562 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
563 		qstate.q_obj->state = BNX2X_Q_STATE_STOPPED;
564 		qstate.cmd = BNX2X_Q_CMD_TERMINATE;
565 		set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
566 		rc = bnx2x_queue_state_change(bp, &qstate);
567 		if (rc)
568 			goto op_err;
569 	}
570 
571 	return 0;
572 op_err:
573 	BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
574 	return rc;
575 }
576 
577 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf,
578 		   bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only)
579 {
580 	struct bnx2x_mcast_list_elem *mc = NULL;
581 	struct bnx2x_mcast_ramrod_params mcast;
582 	int rc, i;
583 
584 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
585 
586 	/* Prepare Multicast command */
587 	memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params));
588 	mcast.mcast_obj = &vf->mcast_obj;
589 	if (drv_only)
590 		set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags);
591 	else
592 		set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags);
593 	if (mc_num) {
594 		mc = kzalloc(mc_num * sizeof(struct bnx2x_mcast_list_elem),
595 			     GFP_KERNEL);
596 		if (!mc) {
597 			BNX2X_ERR("Cannot Configure multicasts due to lack of memory\n");
598 			return -ENOMEM;
599 		}
600 	}
601 
602 	/* clear existing mcasts */
603 	mcast.mcast_list_len = vf->mcast_list_len;
604 	vf->mcast_list_len = mc_num;
605 	rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL);
606 	if (rc) {
607 		BNX2X_ERR("Failed to remove multicasts\n");
608 		kfree(mc);
609 		return rc;
610 	}
611 
612 	/* update mcast list on the ramrod params */
613 	if (mc_num) {
614 		INIT_LIST_HEAD(&mcast.mcast_list);
615 		for (i = 0; i < mc_num; i++) {
616 			mc[i].mac = mcasts[i];
617 			list_add_tail(&mc[i].link,
618 				      &mcast.mcast_list);
619 		}
620 
621 		/* add new mcasts */
622 		mcast.mcast_list_len = mc_num;
623 		rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_ADD);
624 		if (rc)
625 			BNX2X_ERR("Faled to add multicasts\n");
626 		kfree(mc);
627 	}
628 
629 	return rc;
630 }
631 
632 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid,
633 				  struct bnx2x_rx_mode_ramrod_params *ramrod,
634 				  struct bnx2x_virtf *vf,
635 				  unsigned long accept_flags)
636 {
637 	struct bnx2x_vf_queue *vfq = vfq_get(vf, qid);
638 
639 	memset(ramrod, 0, sizeof(*ramrod));
640 	ramrod->cid = vfq->cid;
641 	ramrod->cl_id = vfq_cl_id(vf, vfq);
642 	ramrod->rx_mode_obj = &bp->rx_mode_obj;
643 	ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid);
644 	ramrod->rx_accept_flags = accept_flags;
645 	ramrod->tx_accept_flags = accept_flags;
646 	ramrod->pstate = &vf->filter_state;
647 	ramrod->state = BNX2X_FILTER_RX_MODE_PENDING;
648 
649 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
650 	set_bit(RAMROD_RX, &ramrod->ramrod_flags);
651 	set_bit(RAMROD_TX, &ramrod->ramrod_flags);
652 
653 	ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2);
654 	ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2);
655 }
656 
657 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf,
658 		    int qid, unsigned long accept_flags)
659 {
660 	struct bnx2x_rx_mode_ramrod_params ramrod;
661 
662 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
663 
664 	bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags);
665 	set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
666 	vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags;
667 	return bnx2x_config_rx_mode(bp, &ramrod);
668 }
669 
670 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid)
671 {
672 	int rc;
673 
674 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
675 
676 	/* Remove all classification configuration for leading queue */
677 	if (qid == LEADING_IDX) {
678 		rc = bnx2x_vf_rxmode(bp, vf, qid, 0);
679 		if (rc)
680 			goto op_err;
681 
682 		/* Remove filtering if feasible */
683 		if (bnx2x_validate_vf_sp_objs(bp, vf, true)) {
684 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
685 						     false, false);
686 			if (rc)
687 				goto op_err;
688 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
689 						     false, true);
690 			if (rc)
691 				goto op_err;
692 			rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false);
693 			if (rc)
694 				goto op_err;
695 		}
696 	}
697 
698 	/* Destroy queue */
699 	rc = bnx2x_vf_queue_destroy(bp, vf, qid);
700 	if (rc)
701 		goto op_err;
702 	return rc;
703 op_err:
704 	BNX2X_ERR("vf[%d:%d] error: rc %d\n",
705 		  vf->abs_vfid, qid, rc);
706 	return rc;
707 }
708 
709 /* VF enable primitives
710  * when pretend is required the caller is responsible
711  * for calling pretend prior to calling these routines
712  */
713 
714 /* internal vf enable - until vf is enabled internally all transactions
715  * are blocked. This routine should always be called last with pretend.
716  */
717 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable)
718 {
719 	REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0);
720 }
721 
722 /* clears vf error in all semi blocks */
723 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid)
724 {
725 	REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid);
726 	REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid);
727 	REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid);
728 	REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid);
729 }
730 
731 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid)
732 {
733 	u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5;
734 	u32 was_err_reg = 0;
735 
736 	switch (was_err_group) {
737 	case 0:
738 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR;
739 	    break;
740 	case 1:
741 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR;
742 	    break;
743 	case 2:
744 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR;
745 	    break;
746 	case 3:
747 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR;
748 	    break;
749 	}
750 	REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f));
751 }
752 
753 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf)
754 {
755 	int i;
756 	u32 val;
757 
758 	/* Set VF masks and configuration - pretend */
759 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
760 
761 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
762 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
763 	REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
764 	REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
765 	REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
766 	REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
767 
768 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
769 	val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN);
770 	if (vf->cfg_flags & VF_CFG_INT_SIMD)
771 		val |= IGU_VF_CONF_SINGLE_ISR_EN;
772 	val &= ~IGU_VF_CONF_PARENT_MASK;
773 	val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT;
774 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
775 
776 	DP(BNX2X_MSG_IOV,
777 	   "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n",
778 	   vf->abs_vfid, val);
779 
780 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
781 
782 	/* iterate over all queues, clear sb consumer */
783 	for (i = 0; i < vf_sb_count(vf); i++) {
784 		u8 igu_sb_id = vf_igu_sb(vf, i);
785 
786 		/* zero prod memory */
787 		REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0);
788 
789 		/* clear sb state machine */
790 		bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id,
791 				       false /* VF */);
792 
793 		/* disable + update */
794 		bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0,
795 				    IGU_INT_DISABLE, 1);
796 	}
797 }
798 
799 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid)
800 {
801 	/* set the VF-PF association in the FW */
802 	storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp));
803 	storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1);
804 
805 	/* clear vf errors*/
806 	bnx2x_vf_semi_clear_err(bp, abs_vfid);
807 	bnx2x_vf_pglue_clear_err(bp, abs_vfid);
808 
809 	/* internal vf-enable - pretend */
810 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid));
811 	DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid);
812 	bnx2x_vf_enable_internal(bp, true);
813 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
814 }
815 
816 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf)
817 {
818 	/* Reset vf in IGU  interrupts are still disabled */
819 	bnx2x_vf_igu_reset(bp, vf);
820 
821 	/* pretend to enable the vf with the PBF */
822 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
823 	REG_WR(bp, PBF_REG_DISABLE_VF, 0);
824 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
825 }
826 
827 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid)
828 {
829 	struct pci_dev *dev;
830 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
831 
832 	if (!vf)
833 		return false;
834 
835 	dev = pci_get_bus_and_slot(vf->bus, vf->devfn);
836 	if (dev)
837 		return bnx2x_is_pcie_pending(dev);
838 	return false;
839 }
840 
841 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid)
842 {
843 	/* Verify no pending pci transactions */
844 	if (bnx2x_vf_is_pcie_pending(bp, abs_vfid))
845 		BNX2X_ERR("PCIE Transactions still pending\n");
846 
847 	return 0;
848 }
849 
850 static void bnx2x_iov_re_set_vlan_filters(struct bnx2x *bp,
851 					  struct bnx2x_virtf *vf,
852 					  int new)
853 {
854 	int num = vf_vlan_rules_cnt(vf);
855 	int diff = new - num;
856 	bool rc = true;
857 
858 	DP(BNX2X_MSG_IOV, "vf[%d] - %d vlan filter credits [previously %d]\n",
859 	   vf->abs_vfid, new, num);
860 
861 	if (diff > 0)
862 		rc = bp->vlans_pool.get(&bp->vlans_pool, diff);
863 	else if (diff < 0)
864 		rc = bp->vlans_pool.put(&bp->vlans_pool, -diff);
865 
866 	if (rc)
867 		vf_vlan_rules_cnt(vf) = new;
868 	else
869 		DP(BNX2X_MSG_IOV, "vf[%d] - Failed to configure vlan filter credits change\n",
870 		   vf->abs_vfid);
871 }
872 
873 /* must be called after the number of PF queues and the number of VFs are
874  * both known
875  */
876 static void
877 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
878 {
879 	struct vf_pf_resc_request *resc = &vf->alloc_resc;
880 	u16 vlan_count = 0;
881 
882 	/* will be set only during VF-ACQUIRE */
883 	resc->num_rxqs = 0;
884 	resc->num_txqs = 0;
885 
886 	/* no credit calculations for macs (just yet) */
887 	resc->num_mac_filters = 1;
888 
889 	/* divvy up vlan rules */
890 	bnx2x_iov_re_set_vlan_filters(bp, vf, 0);
891 	vlan_count = bp->vlans_pool.check(&bp->vlans_pool);
892 	vlan_count = 1 << ilog2(vlan_count);
893 	bnx2x_iov_re_set_vlan_filters(bp, vf,
894 				      vlan_count / BNX2X_NR_VIRTFN(bp));
895 
896 	/* no real limitation */
897 	resc->num_mc_filters = 0;
898 
899 	/* num_sbs already set */
900 	resc->num_sbs = vf->sb_count;
901 }
902 
903 /* FLR routines: */
904 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
905 {
906 	/* reset the state variables */
907 	bnx2x_iov_static_resc(bp, vf);
908 	vf->state = VF_FREE;
909 }
910 
911 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf)
912 {
913 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
914 
915 	/* DQ usage counter */
916 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
917 	bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT,
918 					"DQ VF usage counter timed out",
919 					poll_cnt);
920 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
921 
922 	/* FW cleanup command - poll for the results */
923 	if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid),
924 				   poll_cnt))
925 		BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid);
926 
927 	/* verify TX hw is flushed */
928 	bnx2x_tx_hw_flushed(bp, poll_cnt);
929 }
930 
931 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf)
932 {
933 	int rc, i;
934 
935 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
936 
937 	/* the cleanup operations are valid if and only if the VF
938 	 * was first acquired.
939 	 */
940 	for (i = 0; i < vf_rxq_count(vf); i++) {
941 		rc = bnx2x_vf_queue_flr(bp, vf, i);
942 		if (rc)
943 			goto out;
944 	}
945 
946 	/* remove multicasts */
947 	bnx2x_vf_mcast(bp, vf, NULL, 0, true);
948 
949 	/* dispatch final cleanup and wait for HW queues to flush */
950 	bnx2x_vf_flr_clnup_hw(bp, vf);
951 
952 	/* release VF resources */
953 	bnx2x_vf_free_resc(bp, vf);
954 
955 	/* re-open the mailbox */
956 	bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
957 	return;
958 out:
959 	BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n",
960 		  vf->abs_vfid, i, rc);
961 }
962 
963 static void bnx2x_vf_flr_clnup(struct bnx2x *bp)
964 {
965 	struct bnx2x_virtf *vf;
966 	int i;
967 
968 	for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) {
969 		/* VF should be RESET & in FLR cleanup states */
970 		if (bnx2x_vf(bp, i, state) != VF_RESET ||
971 		    !bnx2x_vf(bp, i, flr_clnup_stage))
972 			continue;
973 
974 		DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n",
975 		   i, BNX2X_NR_VIRTFN(bp));
976 
977 		vf = BP_VF(bp, i);
978 
979 		/* lock the vf pf channel */
980 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
981 
982 		/* invoke the VF FLR SM */
983 		bnx2x_vf_flr(bp, vf);
984 
985 		/* mark the VF to be ACKED and continue */
986 		vf->flr_clnup_stage = false;
987 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
988 	}
989 
990 	/* Acknowledge the handled VFs.
991 	 * we are acknowledge all the vfs which an flr was requested for, even
992 	 * if amongst them there are such that we never opened, since the mcp
993 	 * will interrupt us immediately again if we only ack some of the bits,
994 	 * resulting in an endless loop. This can happen for example in KVM
995 	 * where an 'all ones' flr request is sometimes given by hyper visor
996 	 */
997 	DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
998 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
999 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
1000 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i],
1001 			  bp->vfdb->flrd_vfs[i]);
1002 
1003 	bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0);
1004 
1005 	/* clear the acked bits - better yet if the MCP implemented
1006 	 * write to clear semantics
1007 	 */
1008 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
1009 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0);
1010 }
1011 
1012 void bnx2x_vf_handle_flr_event(struct bnx2x *bp)
1013 {
1014 	int i;
1015 
1016 	/* Read FLR'd VFs */
1017 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
1018 		bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]);
1019 
1020 	DP(BNX2X_MSG_MCP,
1021 	   "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
1022 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
1023 
1024 	for_each_vf(bp, i) {
1025 		struct bnx2x_virtf *vf = BP_VF(bp, i);
1026 		u32 reset = 0;
1027 
1028 		if (vf->abs_vfid < 32)
1029 			reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid);
1030 		else
1031 			reset = bp->vfdb->flrd_vfs[1] &
1032 				(1 << (vf->abs_vfid - 32));
1033 
1034 		if (reset) {
1035 			/* set as reset and ready for cleanup */
1036 			vf->state = VF_RESET;
1037 			vf->flr_clnup_stage = true;
1038 
1039 			DP(BNX2X_MSG_IOV,
1040 			   "Initiating Final cleanup for VF %d\n",
1041 			   vf->abs_vfid);
1042 		}
1043 	}
1044 
1045 	/* do the FLR cleanup for all marked VFs*/
1046 	bnx2x_vf_flr_clnup(bp);
1047 }
1048 
1049 /* IOV global initialization routines  */
1050 void bnx2x_iov_init_dq(struct bnx2x *bp)
1051 {
1052 	if (!IS_SRIOV(bp))
1053 		return;
1054 
1055 	/* Set the DQ such that the CID reflect the abs_vfid */
1056 	REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0);
1057 	REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
1058 
1059 	/* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
1060 	 * the PF L2 queues
1061 	 */
1062 	REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
1063 
1064 	/* The VF window size is the log2 of the max number of CIDs per VF */
1065 	REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
1066 
1067 	/* The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
1068 	 * the Pf doorbell size although the 2 are independent.
1069 	 */
1070 	REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3);
1071 
1072 	/* No security checks for now -
1073 	 * configure single rule (out of 16) mask = 0x1, value = 0x0,
1074 	 * CID range 0 - 0x1ffff
1075 	 */
1076 	REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1);
1077 	REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0);
1078 	REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
1079 	REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
1080 
1081 	/* set the VF doorbell threshold. This threshold represents the amount
1082 	 * of doorbells allowed in the main DORQ fifo for a specific VF.
1083 	 */
1084 	REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64);
1085 }
1086 
1087 void bnx2x_iov_init_dmae(struct bnx2x *bp)
1088 {
1089 	if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV))
1090 		REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0);
1091 }
1092 
1093 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid)
1094 {
1095 	struct pci_dev *dev = bp->pdev;
1096 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1097 
1098 	return dev->bus->number + ((dev->devfn + iov->offset +
1099 				    iov->stride * vfid) >> 8);
1100 }
1101 
1102 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid)
1103 {
1104 	struct pci_dev *dev = bp->pdev;
1105 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1106 
1107 	return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff;
1108 }
1109 
1110 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf)
1111 {
1112 	int i, n;
1113 	struct pci_dev *dev = bp->pdev;
1114 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1115 
1116 	for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) {
1117 		u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i);
1118 		u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i);
1119 
1120 		size /= iov->total;
1121 		vf->bars[n].bar = start + size * vf->abs_vfid;
1122 		vf->bars[n].size = size;
1123 	}
1124 }
1125 
1126 static int bnx2x_ari_enabled(struct pci_dev *dev)
1127 {
1128 	return dev->bus->self && dev->bus->self->ari_enabled;
1129 }
1130 
1131 static int
1132 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp)
1133 {
1134 	int sb_id;
1135 	u32 val;
1136 	u8 fid, current_pf = 0;
1137 
1138 	/* IGU in normal mode - read CAM */
1139 	for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) {
1140 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4);
1141 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
1142 			continue;
1143 		fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID);
1144 		if (fid & IGU_FID_ENCODE_IS_PF)
1145 			current_pf = fid & IGU_FID_PF_NUM_MASK;
1146 		else if (current_pf == BP_FUNC(bp))
1147 			bnx2x_vf_set_igu_info(bp, sb_id,
1148 					      (fid & IGU_FID_VF_NUM_MASK));
1149 		DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n",
1150 		   ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"),
1151 		   ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) :
1152 		   (fid & IGU_FID_VF_NUM_MASK)), sb_id,
1153 		   GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR));
1154 	}
1155 	DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool);
1156 	return BP_VFDB(bp)->vf_sbs_pool;
1157 }
1158 
1159 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp)
1160 {
1161 	if (bp->vfdb) {
1162 		kfree(bp->vfdb->vfqs);
1163 		kfree(bp->vfdb->vfs);
1164 		kfree(bp->vfdb);
1165 	}
1166 	bp->vfdb = NULL;
1167 }
1168 
1169 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1170 {
1171 	int pos;
1172 	struct pci_dev *dev = bp->pdev;
1173 
1174 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
1175 	if (!pos) {
1176 		BNX2X_ERR("failed to find SRIOV capability in device\n");
1177 		return -ENODEV;
1178 	}
1179 
1180 	iov->pos = pos;
1181 	DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos);
1182 	pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
1183 	pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total);
1184 	pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial);
1185 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
1186 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
1187 	pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
1188 	pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap);
1189 	pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
1190 
1191 	return 0;
1192 }
1193 
1194 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1195 {
1196 	u32 val;
1197 
1198 	/* read the SRIOV capability structure
1199 	 * The fields can be read via configuration read or
1200 	 * directly from the device (starting at offset PCICFG_OFFSET)
1201 	 */
1202 	if (bnx2x_sriov_pci_cfg_info(bp, iov))
1203 		return -ENODEV;
1204 
1205 	/* get the number of SRIOV bars */
1206 	iov->nres = 0;
1207 
1208 	/* read the first_vfid */
1209 	val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF);
1210 	iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK)
1211 			       * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp));
1212 
1213 	DP(BNX2X_MSG_IOV,
1214 	   "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
1215 	   BP_FUNC(bp),
1216 	   iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total,
1217 	   iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
1218 
1219 	return 0;
1220 }
1221 
1222 /* must be called after PF bars are mapped */
1223 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param,
1224 		       int num_vfs_param)
1225 {
1226 	int err, i;
1227 	struct bnx2x_sriov *iov;
1228 	struct pci_dev *dev = bp->pdev;
1229 
1230 	bp->vfdb = NULL;
1231 
1232 	/* verify is pf */
1233 	if (IS_VF(bp))
1234 		return 0;
1235 
1236 	/* verify sriov capability is present in configuration space */
1237 	if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV))
1238 		return 0;
1239 
1240 	/* verify chip revision */
1241 	if (CHIP_IS_E1x(bp))
1242 		return 0;
1243 
1244 	/* check if SRIOV support is turned off */
1245 	if (!num_vfs_param)
1246 		return 0;
1247 
1248 	/* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
1249 	if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) {
1250 		BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
1251 			  BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID);
1252 		return 0;
1253 	}
1254 
1255 	/* SRIOV can be enabled only with MSIX */
1256 	if (int_mode_param == BNX2X_INT_MODE_MSI ||
1257 	    int_mode_param == BNX2X_INT_MODE_INTX) {
1258 		BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
1259 		return 0;
1260 	}
1261 
1262 	err = -EIO;
1263 	/* verify ari is enabled */
1264 	if (!bnx2x_ari_enabled(bp->pdev)) {
1265 		BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
1266 		return 0;
1267 	}
1268 
1269 	/* verify igu is in normal mode */
1270 	if (CHIP_INT_MODE_IS_BC(bp)) {
1271 		BNX2X_ERR("IGU not normal mode,  SRIOV can not be enabled\n");
1272 		return 0;
1273 	}
1274 
1275 	/* allocate the vfs database */
1276 	bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL);
1277 	if (!bp->vfdb) {
1278 		BNX2X_ERR("failed to allocate vf database\n");
1279 		err = -ENOMEM;
1280 		goto failed;
1281 	}
1282 
1283 	/* get the sriov info - Linux already collected all the pertinent
1284 	 * information, however the sriov structure is for the private use
1285 	 * of the pci module. Also we want this information regardless
1286 	 * of the hyper-visor.
1287 	 */
1288 	iov = &(bp->vfdb->sriov);
1289 	err = bnx2x_sriov_info(bp, iov);
1290 	if (err)
1291 		goto failed;
1292 
1293 	/* SR-IOV capability was enabled but there are no VFs*/
1294 	if (iov->total == 0)
1295 		goto failed;
1296 
1297 	iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param);
1298 
1299 	DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n",
1300 	   num_vfs_param, iov->nr_virtfn);
1301 
1302 	/* allocate the vf array */
1303 	bp->vfdb->vfs = kzalloc(sizeof(struct bnx2x_virtf) *
1304 				BNX2X_NR_VIRTFN(bp), GFP_KERNEL);
1305 	if (!bp->vfdb->vfs) {
1306 		BNX2X_ERR("failed to allocate vf array\n");
1307 		err = -ENOMEM;
1308 		goto failed;
1309 	}
1310 
1311 	/* Initial VF init - index and abs_vfid - nr_virtfn must be set */
1312 	for_each_vf(bp, i) {
1313 		bnx2x_vf(bp, i, index) = i;
1314 		bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i;
1315 		bnx2x_vf(bp, i, state) = VF_FREE;
1316 		mutex_init(&bnx2x_vf(bp, i, op_mutex));
1317 		bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE;
1318 	}
1319 
1320 	/* re-read the IGU CAM for VFs - index and abs_vfid must be set */
1321 	if (!bnx2x_get_vf_igu_cam_info(bp)) {
1322 		BNX2X_ERR("No entries in IGU CAM for vfs\n");
1323 		err = -EINVAL;
1324 		goto failed;
1325 	}
1326 
1327 	/* allocate the queue arrays for all VFs */
1328 	bp->vfdb->vfqs = kzalloc(
1329 		BNX2X_MAX_NUM_VF_QUEUES * sizeof(struct bnx2x_vf_queue),
1330 		GFP_KERNEL);
1331 
1332 	if (!bp->vfdb->vfqs) {
1333 		BNX2X_ERR("failed to allocate vf queue array\n");
1334 		err = -ENOMEM;
1335 		goto failed;
1336 	}
1337 
1338 	/* Prepare the VFs event synchronization mechanism */
1339 	mutex_init(&bp->vfdb->event_mutex);
1340 
1341 	mutex_init(&bp->vfdb->bulletin_mutex);
1342 
1343 	if (SHMEM2_HAS(bp, sriov_switch_mode))
1344 		SHMEM2_WR(bp, sriov_switch_mode, SRIOV_SWITCH_MODE_VEB);
1345 
1346 	return 0;
1347 failed:
1348 	DP(BNX2X_MSG_IOV, "Failed err=%d\n", err);
1349 	__bnx2x_iov_free_vfdb(bp);
1350 	return err;
1351 }
1352 
1353 void bnx2x_iov_remove_one(struct bnx2x *bp)
1354 {
1355 	int vf_idx;
1356 
1357 	/* if SRIOV is not enabled there's nothing to do */
1358 	if (!IS_SRIOV(bp))
1359 		return;
1360 
1361 	bnx2x_disable_sriov(bp);
1362 
1363 	/* disable access to all VFs */
1364 	for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) {
1365 		bnx2x_pretend_func(bp,
1366 				   HW_VF_HANDLE(bp,
1367 						bp->vfdb->sriov.first_vf_in_pf +
1368 						vf_idx));
1369 		DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n",
1370 		   bp->vfdb->sriov.first_vf_in_pf + vf_idx);
1371 		bnx2x_vf_enable_internal(bp, 0);
1372 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1373 	}
1374 
1375 	/* free vf database */
1376 	__bnx2x_iov_free_vfdb(bp);
1377 }
1378 
1379 void bnx2x_iov_free_mem(struct bnx2x *bp)
1380 {
1381 	int i;
1382 
1383 	if (!IS_SRIOV(bp))
1384 		return;
1385 
1386 	/* free vfs hw contexts */
1387 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1388 		struct hw_dma *cxt = &bp->vfdb->context[i];
1389 		BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size);
1390 	}
1391 
1392 	BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr,
1393 		       BP_VFDB(bp)->sp_dma.mapping,
1394 		       BP_VFDB(bp)->sp_dma.size);
1395 
1396 	BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr,
1397 		       BP_VF_MBX_DMA(bp)->mapping,
1398 		       BP_VF_MBX_DMA(bp)->size);
1399 
1400 	BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr,
1401 		       BP_VF_BULLETIN_DMA(bp)->mapping,
1402 		       BP_VF_BULLETIN_DMA(bp)->size);
1403 }
1404 
1405 int bnx2x_iov_alloc_mem(struct bnx2x *bp)
1406 {
1407 	size_t tot_size;
1408 	int i, rc = 0;
1409 
1410 	if (!IS_SRIOV(bp))
1411 		return rc;
1412 
1413 	/* allocate vfs hw contexts */
1414 	tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) *
1415 		BNX2X_CIDS_PER_VF * sizeof(union cdu_context);
1416 
1417 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1418 		struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i);
1419 		cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ);
1420 
1421 		if (cxt->size) {
1422 			cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size);
1423 			if (!cxt->addr)
1424 				goto alloc_mem_err;
1425 		} else {
1426 			cxt->addr = NULL;
1427 			cxt->mapping = 0;
1428 		}
1429 		tot_size -= cxt->size;
1430 	}
1431 
1432 	/* allocate vfs ramrods dma memory - client_init and set_mac */
1433 	tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp);
1434 	BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping,
1435 						   tot_size);
1436 	if (!BP_VFDB(bp)->sp_dma.addr)
1437 		goto alloc_mem_err;
1438 	BP_VFDB(bp)->sp_dma.size = tot_size;
1439 
1440 	/* allocate mailboxes */
1441 	tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE;
1442 	BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping,
1443 						  tot_size);
1444 	if (!BP_VF_MBX_DMA(bp)->addr)
1445 		goto alloc_mem_err;
1446 
1447 	BP_VF_MBX_DMA(bp)->size = tot_size;
1448 
1449 	/* allocate local bulletin boards */
1450 	tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE;
1451 	BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping,
1452 						       tot_size);
1453 	if (!BP_VF_BULLETIN_DMA(bp)->addr)
1454 		goto alloc_mem_err;
1455 
1456 	BP_VF_BULLETIN_DMA(bp)->size = tot_size;
1457 
1458 	return 0;
1459 
1460 alloc_mem_err:
1461 	return -ENOMEM;
1462 }
1463 
1464 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf,
1465 			   struct bnx2x_vf_queue *q)
1466 {
1467 	u8 cl_id = vfq_cl_id(vf, q);
1468 	u8 func_id = FW_VF_HANDLE(vf->abs_vfid);
1469 	unsigned long q_type = 0;
1470 
1471 	set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1472 	set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1473 
1474 	/* Queue State object */
1475 	bnx2x_init_queue_obj(bp, &q->sp_obj,
1476 			     cl_id, &q->cid, 1, func_id,
1477 			     bnx2x_vf_sp(bp, vf, q_data),
1478 			     bnx2x_vf_sp_map(bp, vf, q_data),
1479 			     q_type);
1480 
1481 	/* sp indication is set only when vlan/mac/etc. are initialized */
1482 	q->sp_initialized = false;
1483 
1484 	DP(BNX2X_MSG_IOV,
1485 	   "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n",
1486 	   vf->abs_vfid, q->sp_obj.func_id, q->cid);
1487 }
1488 
1489 static int bnx2x_max_speed_cap(struct bnx2x *bp)
1490 {
1491 	u32 supported = bp->port.supported[bnx2x_get_link_cfg_idx(bp)];
1492 
1493 	if (supported &
1494 	    (SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full))
1495 		return 20000;
1496 
1497 	return 10000; /* assume lowest supported speed is 10G */
1498 }
1499 
1500 int bnx2x_iov_link_update_vf(struct bnx2x *bp, int idx)
1501 {
1502 	struct bnx2x_link_report_data *state = &bp->last_reported_link;
1503 	struct pf_vf_bulletin_content *bulletin;
1504 	struct bnx2x_virtf *vf;
1505 	bool update = true;
1506 	int rc = 0;
1507 
1508 	/* sanity and init */
1509 	rc = bnx2x_vf_op_prep(bp, idx, &vf, &bulletin, false);
1510 	if (rc)
1511 		return rc;
1512 
1513 	mutex_lock(&bp->vfdb->bulletin_mutex);
1514 
1515 	if (vf->link_cfg == IFLA_VF_LINK_STATE_AUTO) {
1516 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1517 
1518 		bulletin->link_speed = state->line_speed;
1519 		bulletin->link_flags = 0;
1520 		if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1521 			     &state->link_report_flags))
1522 			bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1523 		if (test_bit(BNX2X_LINK_REPORT_FD,
1524 			     &state->link_report_flags))
1525 			bulletin->link_flags |= VFPF_LINK_REPORT_FULL_DUPLEX;
1526 		if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1527 			     &state->link_report_flags))
1528 			bulletin->link_flags |= VFPF_LINK_REPORT_RX_FC_ON;
1529 		if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1530 			     &state->link_report_flags))
1531 			bulletin->link_flags |= VFPF_LINK_REPORT_TX_FC_ON;
1532 	} else if (vf->link_cfg == IFLA_VF_LINK_STATE_DISABLE &&
1533 		   !(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1534 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1535 		bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1536 	} else if (vf->link_cfg == IFLA_VF_LINK_STATE_ENABLE &&
1537 		   (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1538 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1539 		bulletin->link_speed = bnx2x_max_speed_cap(bp);
1540 		bulletin->link_flags &= ~VFPF_LINK_REPORT_LINK_DOWN;
1541 	} else {
1542 		update = false;
1543 	}
1544 
1545 	if (update) {
1546 		DP(NETIF_MSG_LINK | BNX2X_MSG_IOV,
1547 		   "vf %d mode %u speed %d flags %x\n", idx,
1548 		   vf->link_cfg, bulletin->link_speed, bulletin->link_flags);
1549 
1550 		/* Post update on VF's bulletin board */
1551 		rc = bnx2x_post_vf_bulletin(bp, idx);
1552 		if (rc) {
1553 			BNX2X_ERR("failed to update VF[%d] bulletin\n", idx);
1554 			goto out;
1555 		}
1556 	}
1557 
1558 out:
1559 	mutex_unlock(&bp->vfdb->bulletin_mutex);
1560 	return rc;
1561 }
1562 
1563 int bnx2x_set_vf_link_state(struct net_device *dev, int idx, int link_state)
1564 {
1565 	struct bnx2x *bp = netdev_priv(dev);
1566 	struct bnx2x_virtf *vf = BP_VF(bp, idx);
1567 
1568 	if (!vf)
1569 		return -EINVAL;
1570 
1571 	if (vf->link_cfg == link_state)
1572 		return 0; /* nothing todo */
1573 
1574 	vf->link_cfg = link_state;
1575 
1576 	return bnx2x_iov_link_update_vf(bp, idx);
1577 }
1578 
1579 void bnx2x_iov_link_update(struct bnx2x *bp)
1580 {
1581 	int vfid;
1582 
1583 	if (!IS_SRIOV(bp))
1584 		return;
1585 
1586 	for_each_vf(bp, vfid)
1587 		bnx2x_iov_link_update_vf(bp, vfid);
1588 }
1589 
1590 /* called by bnx2x_nic_load */
1591 int bnx2x_iov_nic_init(struct bnx2x *bp)
1592 {
1593 	int vfid;
1594 
1595 	if (!IS_SRIOV(bp)) {
1596 		DP(BNX2X_MSG_IOV, "vfdb was not allocated\n");
1597 		return 0;
1598 	}
1599 
1600 	DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn);
1601 
1602 	/* let FLR complete ... */
1603 	msleep(100);
1604 
1605 	/* initialize vf database */
1606 	for_each_vf(bp, vfid) {
1607 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1608 
1609 		int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) *
1610 			BNX2X_CIDS_PER_VF;
1611 
1612 		union cdu_context *base_cxt = (union cdu_context *)
1613 			BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1614 			(base_vf_cid & (ILT_PAGE_CIDS-1));
1615 
1616 		DP(BNX2X_MSG_IOV,
1617 		   "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
1618 		   vf->abs_vfid, vf_sb_count(vf), base_vf_cid,
1619 		   BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt);
1620 
1621 		/* init statically provisioned resources */
1622 		bnx2x_iov_static_resc(bp, vf);
1623 
1624 		/* queues are initialized during VF-ACQUIRE */
1625 		vf->filter_state = 0;
1626 		vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id);
1627 
1628 		/*  init mcast object - This object will be re-initialized
1629 		 *  during VF-ACQUIRE with the proper cl_id and cid.
1630 		 *  It needs to be initialized here so that it can be safely
1631 		 *  handled by a subsequent FLR flow.
1632 		 */
1633 		vf->mcast_list_len = 0;
1634 		bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF,
1635 				     0xFF, 0xFF, 0xFF,
1636 				     bnx2x_vf_sp(bp, vf, mcast_rdata),
1637 				     bnx2x_vf_sp_map(bp, vf, mcast_rdata),
1638 				     BNX2X_FILTER_MCAST_PENDING,
1639 				     &vf->filter_state,
1640 				     BNX2X_OBJ_TYPE_RX_TX);
1641 
1642 		/* set the mailbox message addresses */
1643 		BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *)
1644 			(((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid *
1645 			MBX_MSG_ALIGNED_SIZE);
1646 
1647 		BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping +
1648 			vfid * MBX_MSG_ALIGNED_SIZE;
1649 
1650 		/* Enable vf mailbox */
1651 		bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
1652 	}
1653 
1654 	/* Final VF init */
1655 	for_each_vf(bp, vfid) {
1656 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1657 
1658 		/* fill in the BDF and bars */
1659 		vf->bus = bnx2x_vf_bus(bp, vfid);
1660 		vf->devfn = bnx2x_vf_devfn(bp, vfid);
1661 		bnx2x_vf_set_bars(bp, vf);
1662 
1663 		DP(BNX2X_MSG_IOV,
1664 		   "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
1665 		   vf->abs_vfid, vf->bus, vf->devfn,
1666 		   (unsigned)vf->bars[0].bar, vf->bars[0].size,
1667 		   (unsigned)vf->bars[1].bar, vf->bars[1].size,
1668 		   (unsigned)vf->bars[2].bar, vf->bars[2].size);
1669 	}
1670 
1671 	return 0;
1672 }
1673 
1674 /* called by bnx2x_chip_cleanup */
1675 int bnx2x_iov_chip_cleanup(struct bnx2x *bp)
1676 {
1677 	int i;
1678 
1679 	if (!IS_SRIOV(bp))
1680 		return 0;
1681 
1682 	/* release all the VFs */
1683 	for_each_vf(bp, i)
1684 		bnx2x_vf_release(bp, BP_VF(bp, i));
1685 
1686 	return 0;
1687 }
1688 
1689 /* called by bnx2x_init_hw_func, returns the next ilt line */
1690 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line)
1691 {
1692 	int i;
1693 	struct bnx2x_ilt *ilt = BP_ILT(bp);
1694 
1695 	if (!IS_SRIOV(bp))
1696 		return line;
1697 
1698 	/* set vfs ilt lines */
1699 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1700 		struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i);
1701 
1702 		ilt->lines[line+i].page = hw_cxt->addr;
1703 		ilt->lines[line+i].page_mapping = hw_cxt->mapping;
1704 		ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
1705 	}
1706 	return line + i;
1707 }
1708 
1709 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid)
1710 {
1711 	return ((cid >= BNX2X_FIRST_VF_CID) &&
1712 		((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS));
1713 }
1714 
1715 static
1716 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp,
1717 					struct bnx2x_vf_queue *vfq,
1718 					union event_ring_elem *elem)
1719 {
1720 	unsigned long ramrod_flags = 0;
1721 	int rc = 0;
1722 
1723 	/* Always push next commands out, don't wait here */
1724 	set_bit(RAMROD_CONT, &ramrod_flags);
1725 
1726 	switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
1727 	case BNX2X_FILTER_MAC_PENDING:
1728 		rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem,
1729 					   &ramrod_flags);
1730 		break;
1731 	case BNX2X_FILTER_VLAN_PENDING:
1732 		rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem,
1733 					    &ramrod_flags);
1734 		break;
1735 	default:
1736 		BNX2X_ERR("Unsupported classification command: %d\n",
1737 			  elem->message.data.eth_event.echo);
1738 		return;
1739 	}
1740 	if (rc < 0)
1741 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
1742 	else if (rc > 0)
1743 		DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n");
1744 }
1745 
1746 static
1747 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp,
1748 			       struct bnx2x_virtf *vf)
1749 {
1750 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
1751 	int rc;
1752 
1753 	rparam.mcast_obj = &vf->mcast_obj;
1754 	vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw);
1755 
1756 	/* If there are pending mcast commands - send them */
1757 	if (vf->mcast_obj.check_pending(&vf->mcast_obj)) {
1758 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
1759 		if (rc < 0)
1760 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
1761 				  rc);
1762 	}
1763 }
1764 
1765 static
1766 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp,
1767 				 struct bnx2x_virtf *vf)
1768 {
1769 	smp_mb__before_atomic();
1770 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
1771 	smp_mb__after_atomic();
1772 }
1773 
1774 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp,
1775 					   struct bnx2x_virtf *vf)
1776 {
1777 	vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw);
1778 }
1779 
1780 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem)
1781 {
1782 	struct bnx2x_virtf *vf;
1783 	int qidx = 0, abs_vfid;
1784 	u8 opcode;
1785 	u16 cid = 0xffff;
1786 
1787 	if (!IS_SRIOV(bp))
1788 		return 1;
1789 
1790 	/* first get the cid - the only events we handle here are cfc-delete
1791 	 * and set-mac completion
1792 	 */
1793 	opcode = elem->message.opcode;
1794 
1795 	switch (opcode) {
1796 	case EVENT_RING_OPCODE_CFC_DEL:
1797 		cid = SW_CID((__force __le32)
1798 			     elem->message.data.cfc_del_event.cid);
1799 		DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid);
1800 		break;
1801 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1802 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1803 	case EVENT_RING_OPCODE_FILTERS_RULES:
1804 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1805 		cid = (elem->message.data.eth_event.echo &
1806 		       BNX2X_SWCID_MASK);
1807 		DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid);
1808 		break;
1809 	case EVENT_RING_OPCODE_VF_FLR:
1810 		abs_vfid = elem->message.data.vf_flr_event.vf_id;
1811 		DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n",
1812 		   abs_vfid);
1813 		goto get_vf;
1814 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1815 		abs_vfid = elem->message.data.malicious_vf_event.vf_id;
1816 		BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
1817 			  abs_vfid,
1818 			  elem->message.data.malicious_vf_event.err_id);
1819 		goto get_vf;
1820 	default:
1821 		return 1;
1822 	}
1823 
1824 	/* check if the cid is the VF range */
1825 	if (!bnx2x_iov_is_vf_cid(bp, cid)) {
1826 		DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid);
1827 		return 1;
1828 	}
1829 
1830 	/* extract vf and rxq index from vf_cid - relies on the following:
1831 	 * 1. vfid on cid reflects the true abs_vfid
1832 	 * 2. The max number of VFs (per path) is 64
1833 	 */
1834 	qidx = cid & ((1 << BNX2X_VF_CID_WND)-1);
1835 	abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1836 get_vf:
1837 	vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
1838 
1839 	if (!vf) {
1840 		BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
1841 			  cid, abs_vfid);
1842 		return 0;
1843 	}
1844 
1845 	switch (opcode) {
1846 	case EVENT_RING_OPCODE_CFC_DEL:
1847 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n",
1848 		   vf->abs_vfid, qidx);
1849 		vfq_get(vf, qidx)->sp_obj.complete_cmd(bp,
1850 						       &vfq_get(vf,
1851 								qidx)->sp_obj,
1852 						       BNX2X_Q_CMD_CFC_DEL);
1853 		break;
1854 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1855 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n",
1856 		   vf->abs_vfid, qidx);
1857 		bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem);
1858 		break;
1859 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1860 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n",
1861 		   vf->abs_vfid, qidx);
1862 		bnx2x_vf_handle_mcast_eqe(bp, vf);
1863 		break;
1864 	case EVENT_RING_OPCODE_FILTERS_RULES:
1865 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n",
1866 		   vf->abs_vfid, qidx);
1867 		bnx2x_vf_handle_filters_eqe(bp, vf);
1868 		break;
1869 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1870 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n",
1871 		   vf->abs_vfid, qidx);
1872 		bnx2x_vf_handle_rss_update_eqe(bp, vf);
1873 	case EVENT_RING_OPCODE_VF_FLR:
1874 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1875 		/* Do nothing for now */
1876 		return 0;
1877 	}
1878 
1879 	return 0;
1880 }
1881 
1882 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid)
1883 {
1884 	/* extract the vf from vf_cid - relies on the following:
1885 	 * 1. vfid on cid reflects the true abs_vfid
1886 	 * 2. The max number of VFs (per path) is 64
1887 	 */
1888 	int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1889 	return bnx2x_vf_by_abs_fid(bp, abs_vfid);
1890 }
1891 
1892 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid,
1893 				struct bnx2x_queue_sp_obj **q_obj)
1894 {
1895 	struct bnx2x_virtf *vf;
1896 
1897 	if (!IS_SRIOV(bp))
1898 		return;
1899 
1900 	vf = bnx2x_vf_by_cid(bp, vf_cid);
1901 
1902 	if (vf) {
1903 		/* extract queue index from vf_cid - relies on the following:
1904 		 * 1. vfid on cid reflects the true abs_vfid
1905 		 * 2. The max number of VFs (per path) is 64
1906 		 */
1907 		int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1);
1908 		*q_obj = &bnx2x_vfq(vf, q_index, sp_obj);
1909 	} else {
1910 		BNX2X_ERR("No vf matching cid %d\n", vf_cid);
1911 	}
1912 }
1913 
1914 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp)
1915 {
1916 	int i;
1917 	int first_queue_query_index, num_queues_req;
1918 	dma_addr_t cur_data_offset;
1919 	struct stats_query_entry *cur_query_entry;
1920 	u8 stats_count = 0;
1921 	bool is_fcoe = false;
1922 
1923 	if (!IS_SRIOV(bp))
1924 		return;
1925 
1926 	if (!NO_FCOE(bp))
1927 		is_fcoe = true;
1928 
1929 	/* fcoe adds one global request and one queue request */
1930 	num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe;
1931 	first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX -
1932 		(is_fcoe ? 0 : 1);
1933 
1934 	DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1935 	       "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
1936 	       BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index,
1937 	       first_queue_query_index + num_queues_req);
1938 
1939 	cur_data_offset = bp->fw_stats_data_mapping +
1940 		offsetof(struct bnx2x_fw_stats_data, queue_stats) +
1941 		num_queues_req * sizeof(struct per_queue_stats);
1942 
1943 	cur_query_entry = &bp->fw_stats_req->
1944 		query[first_queue_query_index + num_queues_req];
1945 
1946 	for_each_vf(bp, i) {
1947 		int j;
1948 		struct bnx2x_virtf *vf = BP_VF(bp, i);
1949 
1950 		if (vf->state != VF_ENABLED) {
1951 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1952 			       "vf %d not enabled so no stats for it\n",
1953 			       vf->abs_vfid);
1954 			continue;
1955 		}
1956 
1957 		DP(BNX2X_MSG_IOV, "add addresses for vf %d\n", vf->abs_vfid);
1958 		for_each_vfq(vf, j) {
1959 			struct bnx2x_vf_queue *rxq = vfq_get(vf, j);
1960 
1961 			dma_addr_t q_stats_addr =
1962 				vf->fw_stat_map + j * vf->stats_stride;
1963 
1964 			/* collect stats fro active queues only */
1965 			if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) ==
1966 			    BNX2X_Q_LOGICAL_STATE_STOPPED)
1967 				continue;
1968 
1969 			/* create stats query entry for this queue */
1970 			cur_query_entry->kind = STATS_TYPE_QUEUE;
1971 			cur_query_entry->index = vfq_stat_id(vf, rxq);
1972 			cur_query_entry->funcID =
1973 				cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid));
1974 			cur_query_entry->address.hi =
1975 				cpu_to_le32(U64_HI(q_stats_addr));
1976 			cur_query_entry->address.lo =
1977 				cpu_to_le32(U64_LO(q_stats_addr));
1978 			DP(BNX2X_MSG_IOV,
1979 			   "added address %x %x for vf %d queue %d client %d\n",
1980 			   cur_query_entry->address.hi,
1981 			   cur_query_entry->address.lo, cur_query_entry->funcID,
1982 			   j, cur_query_entry->index);
1983 			cur_query_entry++;
1984 			cur_data_offset += sizeof(struct per_queue_stats);
1985 			stats_count++;
1986 
1987 			/* all stats are coalesced to the leading queue */
1988 			if (vf->cfg_flags & VF_CFG_STATS_COALESCE)
1989 				break;
1990 		}
1991 	}
1992 	bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count;
1993 }
1994 
1995 /* VF API helpers */
1996 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid,
1997 				u8 enable)
1998 {
1999 	u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4;
2000 	u32 val = enable ? (abs_vfid | (1 << 6)) : 0;
2001 
2002 	REG_WR(bp, reg, val);
2003 }
2004 
2005 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf)
2006 {
2007 	int i;
2008 
2009 	for_each_vfq(vf, i)
2010 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
2011 				    vfq_qzone_id(vf, vfq_get(vf, i)), false);
2012 }
2013 
2014 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf)
2015 {
2016 	u32 val;
2017 
2018 	/* clear the VF configuration - pretend */
2019 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
2020 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
2021 	val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN |
2022 		 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK);
2023 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
2024 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
2025 }
2026 
2027 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf)
2028 {
2029 	return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF),
2030 		     BNX2X_VF_MAX_QUEUES);
2031 }
2032 
2033 static
2034 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf,
2035 			    struct vf_pf_resc_request *req_resc)
2036 {
2037 	u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
2038 	u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
2039 
2040 	/* Save a vlan filter for the Hypervisor */
2041 	return ((req_resc->num_rxqs <= rxq_cnt) &&
2042 		(req_resc->num_txqs <= txq_cnt) &&
2043 		(req_resc->num_sbs <= vf_sb_count(vf))   &&
2044 		(req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) &&
2045 		(req_resc->num_vlan_filters <= vf_vlan_rules_visible_cnt(vf)));
2046 }
2047 
2048 /* CORE VF API */
2049 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf,
2050 		     struct vf_pf_resc_request *resc)
2051 {
2052 	int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) *
2053 		BNX2X_CIDS_PER_VF;
2054 
2055 	union cdu_context *base_cxt = (union cdu_context *)
2056 		BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
2057 		(base_vf_cid & (ILT_PAGE_CIDS-1));
2058 	int i;
2059 
2060 	/* if state is 'acquired' the VF was not released or FLR'd, in
2061 	 * this case the returned resources match the acquired already
2062 	 * acquired resources. Verify that the requested numbers do
2063 	 * not exceed the already acquired numbers.
2064 	 */
2065 	if (vf->state == VF_ACQUIRED) {
2066 		DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
2067 		   vf->abs_vfid);
2068 
2069 		if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2070 			BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
2071 				  vf->abs_vfid);
2072 			return -EINVAL;
2073 		}
2074 		return 0;
2075 	}
2076 
2077 	/* Otherwise vf state must be 'free' or 'reset' */
2078 	if (vf->state != VF_FREE && vf->state != VF_RESET) {
2079 		BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
2080 			  vf->abs_vfid, vf->state);
2081 		return -EINVAL;
2082 	}
2083 
2084 	/* static allocation:
2085 	 * the global maximum number are fixed per VF. Fail the request if
2086 	 * requested number exceed these globals
2087 	 */
2088 	if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2089 		DP(BNX2X_MSG_IOV,
2090 		   "cannot fulfill vf resource request. Placing maximal available values in response\n");
2091 		/* set the max resource in the vf */
2092 		return -ENOMEM;
2093 	}
2094 
2095 	/* Set resources counters - 0 request means max available */
2096 	vf_sb_count(vf) = resc->num_sbs;
2097 	vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2098 	vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2099 	if (resc->num_mac_filters)
2100 		vf_mac_rules_cnt(vf) = resc->num_mac_filters;
2101 	/* Add an additional vlan filter credit for the hypervisor */
2102 	bnx2x_iov_re_set_vlan_filters(bp, vf, resc->num_vlan_filters + 1);
2103 
2104 	DP(BNX2X_MSG_IOV,
2105 	   "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
2106 	   vf_sb_count(vf), vf_rxq_count(vf),
2107 	   vf_txq_count(vf), vf_mac_rules_cnt(vf),
2108 	   vf_vlan_rules_visible_cnt(vf));
2109 
2110 	/* Initialize the queues */
2111 	if (!vf->vfqs) {
2112 		DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n");
2113 		return -EINVAL;
2114 	}
2115 
2116 	for_each_vfq(vf, i) {
2117 		struct bnx2x_vf_queue *q = vfq_get(vf, i);
2118 
2119 		if (!q) {
2120 			BNX2X_ERR("q number %d was not allocated\n", i);
2121 			return -EINVAL;
2122 		}
2123 
2124 		q->index = i;
2125 		q->cxt = &((base_cxt + i)->eth);
2126 		q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i;
2127 
2128 		DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
2129 		   vf->abs_vfid, i, q->index, q->cid, q->cxt);
2130 
2131 		/* init SP objects */
2132 		bnx2x_vfq_init(bp, vf, q);
2133 	}
2134 	vf->state = VF_ACQUIRED;
2135 	return 0;
2136 }
2137 
2138 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map)
2139 {
2140 	struct bnx2x_func_init_params func_init = {0};
2141 	u16 flags = 0;
2142 	int i;
2143 
2144 	/* the sb resources are initialized at this point, do the
2145 	 * FW/HW initializations
2146 	 */
2147 	for_each_vf_sb(vf, i)
2148 		bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true,
2149 			      vf_igu_sb(vf, i), vf_igu_sb(vf, i));
2150 
2151 	/* Sanity checks */
2152 	if (vf->state != VF_ACQUIRED) {
2153 		DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n",
2154 		   vf->abs_vfid, vf->state);
2155 		return -EINVAL;
2156 	}
2157 
2158 	/* let FLR complete ... */
2159 	msleep(100);
2160 
2161 	/* FLR cleanup epilogue */
2162 	if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid))
2163 		return -EBUSY;
2164 
2165 	/* reset IGU VF statistics: MSIX */
2166 	REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0);
2167 
2168 	/* vf init */
2169 	if (vf->cfg_flags & VF_CFG_STATS)
2170 		flags |= (FUNC_FLG_STATS | FUNC_FLG_SPQ);
2171 
2172 	if (vf->cfg_flags & VF_CFG_TPA)
2173 		flags |= FUNC_FLG_TPA;
2174 
2175 	if (is_vf_multi(vf))
2176 		flags |= FUNC_FLG_RSS;
2177 
2178 	/* function setup */
2179 	func_init.func_flgs = flags;
2180 	func_init.pf_id = BP_FUNC(bp);
2181 	func_init.func_id = FW_VF_HANDLE(vf->abs_vfid);
2182 	func_init.fw_stat_map = vf->fw_stat_map;
2183 	func_init.spq_map = vf->spq_map;
2184 	func_init.spq_prod = 0;
2185 	bnx2x_func_init(bp, &func_init);
2186 
2187 	/* Enable the vf */
2188 	bnx2x_vf_enable_access(bp, vf->abs_vfid);
2189 	bnx2x_vf_enable_traffic(bp, vf);
2190 
2191 	/* queue protection table */
2192 	for_each_vfq(vf, i)
2193 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
2194 				    vfq_qzone_id(vf, vfq_get(vf, i)), true);
2195 
2196 	vf->state = VF_ENABLED;
2197 
2198 	/* update vf bulletin board */
2199 	bnx2x_post_vf_bulletin(bp, vf->index);
2200 
2201 	return 0;
2202 }
2203 
2204 struct set_vf_state_cookie {
2205 	struct bnx2x_virtf *vf;
2206 	u8 state;
2207 };
2208 
2209 static void bnx2x_set_vf_state(void *cookie)
2210 {
2211 	struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie;
2212 
2213 	p->vf->state = p->state;
2214 }
2215 
2216 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf)
2217 {
2218 	int rc = 0, i;
2219 
2220 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2221 
2222 	/* Close all queues */
2223 	for (i = 0; i < vf_rxq_count(vf); i++) {
2224 		rc = bnx2x_vf_queue_teardown(bp, vf, i);
2225 		if (rc)
2226 			goto op_err;
2227 	}
2228 
2229 	/* disable the interrupts */
2230 	DP(BNX2X_MSG_IOV, "disabling igu\n");
2231 	bnx2x_vf_igu_disable(bp, vf);
2232 
2233 	/* disable the VF */
2234 	DP(BNX2X_MSG_IOV, "clearing qtbl\n");
2235 	bnx2x_vf_clr_qtbl(bp, vf);
2236 
2237 	/* need to make sure there are no outstanding stats ramrods which may
2238 	 * cause the device to access the VF's stats buffer which it will free
2239 	 * as soon as we return from the close flow.
2240 	 */
2241 	{
2242 		struct set_vf_state_cookie cookie;
2243 
2244 		cookie.vf = vf;
2245 		cookie.state = VF_ACQUIRED;
2246 		rc = bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie);
2247 		if (rc)
2248 			goto op_err;
2249 	}
2250 
2251 	DP(BNX2X_MSG_IOV, "set state to acquired\n");
2252 
2253 	return 0;
2254 op_err:
2255 	BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc);
2256 	return rc;
2257 }
2258 
2259 /* VF release can be called either: 1. The VF was acquired but
2260  * not enabled 2. the vf was enabled or in the process of being
2261  * enabled
2262  */
2263 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf)
2264 {
2265 	int rc;
2266 
2267 	DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid,
2268 	   vf->state == VF_FREE ? "Free" :
2269 	   vf->state == VF_ACQUIRED ? "Acquired" :
2270 	   vf->state == VF_ENABLED ? "Enabled" :
2271 	   vf->state == VF_RESET ? "Reset" :
2272 	   "Unknown");
2273 
2274 	switch (vf->state) {
2275 	case VF_ENABLED:
2276 		rc = bnx2x_vf_close(bp, vf);
2277 		if (rc)
2278 			goto op_err;
2279 		/* Fallthrough to release resources */
2280 	case VF_ACQUIRED:
2281 		DP(BNX2X_MSG_IOV, "about to free resources\n");
2282 		bnx2x_vf_free_resc(bp, vf);
2283 		break;
2284 
2285 	case VF_FREE:
2286 	case VF_RESET:
2287 	default:
2288 		break;
2289 	}
2290 	return 0;
2291 op_err:
2292 	BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc);
2293 	return rc;
2294 }
2295 
2296 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2297 			struct bnx2x_config_rss_params *rss)
2298 {
2299 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2300 	set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags);
2301 	return bnx2x_config_rss(bp, rss);
2302 }
2303 
2304 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2305 			struct vfpf_tpa_tlv *tlv,
2306 			struct bnx2x_queue_update_tpa_params *params)
2307 {
2308 	aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr;
2309 	struct bnx2x_queue_state_params qstate;
2310 	int qid, rc = 0;
2311 
2312 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2313 
2314 	/* Set ramrod params */
2315 	memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
2316 	memcpy(&qstate.params.update_tpa, params,
2317 	       sizeof(struct bnx2x_queue_update_tpa_params));
2318 	qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA;
2319 	set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
2320 
2321 	for (qid = 0; qid < vf_rxq_count(vf); qid++) {
2322 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
2323 		qstate.params.update_tpa.sge_map = sge_addr[qid];
2324 		DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n",
2325 		   vf->abs_vfid, qid, U64_HI(sge_addr[qid]),
2326 		   U64_LO(sge_addr[qid]));
2327 		rc = bnx2x_queue_state_change(bp, &qstate);
2328 		if (rc) {
2329 			BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n",
2330 				  U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]),
2331 				  vf->abs_vfid, qid);
2332 			return rc;
2333 		}
2334 	}
2335 
2336 	return rc;
2337 }
2338 
2339 /* VF release ~ VF close + VF release-resources
2340  * Release is the ultimate SW shutdown and is called whenever an
2341  * irrecoverable error is encountered.
2342  */
2343 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf)
2344 {
2345 	int rc;
2346 
2347 	DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid);
2348 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2349 
2350 	rc = bnx2x_vf_free(bp, vf);
2351 	if (rc)
2352 		WARN(rc,
2353 		     "VF[%d] Failed to allocate resources for release op- rc=%d\n",
2354 		     vf->abs_vfid, rc);
2355 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2356 	return rc;
2357 }
2358 
2359 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2360 			      enum channel_tlvs tlv)
2361 {
2362 	/* we don't lock the channel for unsupported tlvs */
2363 	if (!bnx2x_tlv_supported(tlv)) {
2364 		BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n");
2365 		return;
2366 	}
2367 
2368 	/* lock the channel */
2369 	mutex_lock(&vf->op_mutex);
2370 
2371 	/* record the locking op */
2372 	vf->op_current = tlv;
2373 
2374 	/* log the lock */
2375 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n",
2376 	   vf->abs_vfid, tlv);
2377 }
2378 
2379 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2380 				enum channel_tlvs expected_tlv)
2381 {
2382 	enum channel_tlvs current_tlv;
2383 
2384 	if (!vf) {
2385 		BNX2X_ERR("VF was %p\n", vf);
2386 		return;
2387 	}
2388 
2389 	current_tlv = vf->op_current;
2390 
2391 	/* we don't unlock the channel for unsupported tlvs */
2392 	if (!bnx2x_tlv_supported(expected_tlv))
2393 		return;
2394 
2395 	WARN(expected_tlv != vf->op_current,
2396 	     "lock mismatch: expected %d found %d", expected_tlv,
2397 	     vf->op_current);
2398 
2399 	/* record the locking op */
2400 	vf->op_current = CHANNEL_TLV_NONE;
2401 
2402 	/* lock the channel */
2403 	mutex_unlock(&vf->op_mutex);
2404 
2405 	/* log the unlock */
2406 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n",
2407 	   vf->abs_vfid, current_tlv);
2408 }
2409 
2410 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable)
2411 {
2412 	struct bnx2x_queue_state_params q_params;
2413 	u32 prev_flags;
2414 	int i, rc;
2415 
2416 	/* Verify changes are needed and record current Tx switching state */
2417 	prev_flags = bp->flags;
2418 	if (enable)
2419 		bp->flags |= TX_SWITCHING;
2420 	else
2421 		bp->flags &= ~TX_SWITCHING;
2422 	if (prev_flags == bp->flags)
2423 		return 0;
2424 
2425 	/* Verify state enables the sending of queue ramrods */
2426 	if ((bp->state != BNX2X_STATE_OPEN) ||
2427 	    (bnx2x_get_q_logical_state(bp,
2428 				      &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) !=
2429 	     BNX2X_Q_LOGICAL_STATE_ACTIVE))
2430 		return 0;
2431 
2432 	/* send q. update ramrod to configure Tx switching */
2433 	memset(&q_params, 0, sizeof(q_params));
2434 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2435 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
2436 	__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
2437 		  &q_params.params.update.update_flags);
2438 	if (enable)
2439 		__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2440 			  &q_params.params.update.update_flags);
2441 	else
2442 		__clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2443 			    &q_params.params.update.update_flags);
2444 
2445 	/* send the ramrod on all the queues of the PF */
2446 	for_each_eth_queue(bp, i) {
2447 		struct bnx2x_fastpath *fp = &bp->fp[i];
2448 
2449 		/* Set the appropriate Queue object */
2450 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
2451 
2452 		/* Update the Queue state */
2453 		rc = bnx2x_queue_state_change(bp, &q_params);
2454 		if (rc) {
2455 			BNX2X_ERR("Failed to configure Tx switching\n");
2456 			return rc;
2457 		}
2458 	}
2459 
2460 	DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled");
2461 	return 0;
2462 }
2463 
2464 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param)
2465 {
2466 	struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev));
2467 
2468 	if (!IS_SRIOV(bp)) {
2469 		BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n");
2470 		return -EINVAL;
2471 	}
2472 
2473 	DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
2474 	   num_vfs_param, BNX2X_NR_VIRTFN(bp));
2475 
2476 	/* HW channel is only operational when PF is up */
2477 	if (bp->state != BNX2X_STATE_OPEN) {
2478 		BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
2479 		return -EINVAL;
2480 	}
2481 
2482 	/* we are always bound by the total_vfs in the configuration space */
2483 	if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) {
2484 		BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
2485 			  num_vfs_param, BNX2X_NR_VIRTFN(bp));
2486 		num_vfs_param = BNX2X_NR_VIRTFN(bp);
2487 	}
2488 
2489 	bp->requested_nr_virtfn = num_vfs_param;
2490 	if (num_vfs_param == 0) {
2491 		bnx2x_set_pf_tx_switching(bp, false);
2492 		bnx2x_disable_sriov(bp);
2493 		return 0;
2494 	} else {
2495 		return bnx2x_enable_sriov(bp);
2496 	}
2497 }
2498 
2499 #define IGU_ENTRY_SIZE 4
2500 
2501 int bnx2x_enable_sriov(struct bnx2x *bp)
2502 {
2503 	int rc = 0, req_vfs = bp->requested_nr_virtfn;
2504 	int vf_idx, sb_idx, vfq_idx, qcount, first_vf;
2505 	u32 igu_entry, address;
2506 	u16 num_vf_queues;
2507 
2508 	if (req_vfs == 0)
2509 		return 0;
2510 
2511 	first_vf = bp->vfdb->sriov.first_vf_in_pf;
2512 
2513 	/* statically distribute vf sb pool between VFs */
2514 	num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES,
2515 			      BP_VFDB(bp)->vf_sbs_pool / req_vfs);
2516 
2517 	/* zero previous values learned from igu cam */
2518 	for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) {
2519 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2520 
2521 		vf->sb_count = 0;
2522 		vf_sb_count(BP_VF(bp, vf_idx)) = 0;
2523 	}
2524 	bp->vfdb->vf_sbs_pool = 0;
2525 
2526 	/* prepare IGU cam */
2527 	sb_idx = BP_VFDB(bp)->first_vf_igu_entry;
2528 	address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE;
2529 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2530 		for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) {
2531 			igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT |
2532 				vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT |
2533 				IGU_REG_MAPPING_MEMORY_VALID;
2534 			DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n",
2535 			   sb_idx, vf_idx);
2536 			REG_WR(bp, address, igu_entry);
2537 			sb_idx++;
2538 			address += IGU_ENTRY_SIZE;
2539 		}
2540 	}
2541 
2542 	/* Reinitialize vf database according to igu cam */
2543 	bnx2x_get_vf_igu_cam_info(bp);
2544 
2545 	DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n",
2546 	   BP_VFDB(bp)->vf_sbs_pool, num_vf_queues);
2547 
2548 	qcount = 0;
2549 	for_each_vf(bp, vf_idx) {
2550 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2551 
2552 		/* set local queue arrays */
2553 		vf->vfqs = &bp->vfdb->vfqs[qcount];
2554 		qcount += vf_sb_count(vf);
2555 		bnx2x_iov_static_resc(bp, vf);
2556 	}
2557 
2558 	/* prepare msix vectors in VF configuration space - the value in the
2559 	 * PCI configuration space should be the index of the last entry,
2560 	 * namely one less than the actual size of the table
2561 	 */
2562 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2563 		bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx));
2564 		REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL,
2565 		       num_vf_queues - 1);
2566 		DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n",
2567 		   vf_idx, num_vf_queues - 1);
2568 	}
2569 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
2570 
2571 	/* enable sriov. This will probe all the VFs, and consequentially cause
2572 	 * the "acquire" messages to appear on the VF PF channel.
2573 	 */
2574 	DP(BNX2X_MSG_IOV, "about to call enable sriov\n");
2575 	bnx2x_disable_sriov(bp);
2576 
2577 	rc = bnx2x_set_pf_tx_switching(bp, true);
2578 	if (rc)
2579 		return rc;
2580 
2581 	rc = pci_enable_sriov(bp->pdev, req_vfs);
2582 	if (rc) {
2583 		BNX2X_ERR("pci_enable_sriov failed with %d\n", rc);
2584 		return rc;
2585 	}
2586 	DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs);
2587 	return req_vfs;
2588 }
2589 
2590 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp)
2591 {
2592 	int vfidx;
2593 	struct pf_vf_bulletin_content *bulletin;
2594 
2595 	DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n");
2596 	for_each_vf(bp, vfidx) {
2597 	bulletin = BP_VF_BULLETIN(bp, vfidx);
2598 		if (BP_VF(bp, vfidx)->cfg_flags & VF_CFG_VLAN)
2599 			bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0);
2600 	}
2601 }
2602 
2603 void bnx2x_disable_sriov(struct bnx2x *bp)
2604 {
2605 	if (pci_vfs_assigned(bp->pdev)) {
2606 		DP(BNX2X_MSG_IOV,
2607 		   "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2608 		return;
2609 	}
2610 
2611 	pci_disable_sriov(bp->pdev);
2612 }
2613 
2614 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
2615 			    struct bnx2x_virtf **vf,
2616 			    struct pf_vf_bulletin_content **bulletin,
2617 			    bool test_queue)
2618 {
2619 	if (bp->state != BNX2X_STATE_OPEN) {
2620 		BNX2X_ERR("PF is down - can't utilize iov-related functionality\n");
2621 		return -EINVAL;
2622 	}
2623 
2624 	if (!IS_SRIOV(bp)) {
2625 		BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n");
2626 		return -EINVAL;
2627 	}
2628 
2629 	if (vfidx >= BNX2X_NR_VIRTFN(bp)) {
2630 		BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
2631 			  vfidx, BNX2X_NR_VIRTFN(bp));
2632 		return -EINVAL;
2633 	}
2634 
2635 	/* init members */
2636 	*vf = BP_VF(bp, vfidx);
2637 	*bulletin = BP_VF_BULLETIN(bp, vfidx);
2638 
2639 	if (!*vf) {
2640 		BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx);
2641 		return -EINVAL;
2642 	}
2643 
2644 	if (test_queue && !(*vf)->vfqs) {
2645 		BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n",
2646 			  vfidx);
2647 		return -EINVAL;
2648 	}
2649 
2650 	if (!*bulletin) {
2651 		BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n",
2652 			  vfidx);
2653 		return -EINVAL;
2654 	}
2655 
2656 	return 0;
2657 }
2658 
2659 int bnx2x_get_vf_config(struct net_device *dev, int vfidx,
2660 			struct ifla_vf_info *ivi)
2661 {
2662 	struct bnx2x *bp = netdev_priv(dev);
2663 	struct bnx2x_virtf *vf = NULL;
2664 	struct pf_vf_bulletin_content *bulletin = NULL;
2665 	struct bnx2x_vlan_mac_obj *mac_obj;
2666 	struct bnx2x_vlan_mac_obj *vlan_obj;
2667 	int rc;
2668 
2669 	/* sanity and init */
2670 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2671 	if (rc)
2672 		return rc;
2673 
2674 	mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2675 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2676 	if (!mac_obj || !vlan_obj) {
2677 		BNX2X_ERR("VF partially initialized\n");
2678 		return -EINVAL;
2679 	}
2680 
2681 	ivi->vf = vfidx;
2682 	ivi->qos = 0;
2683 	ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */
2684 	ivi->min_tx_rate = 0;
2685 	ivi->spoofchk = 1; /*always enabled */
2686 	if (vf->state == VF_ENABLED) {
2687 		/* mac and vlan are in vlan_mac objects */
2688 		if (bnx2x_validate_vf_sp_objs(bp, vf, false)) {
2689 			mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac,
2690 						0, ETH_ALEN);
2691 			vlan_obj->get_n_elements(bp, vlan_obj, 1,
2692 						 (u8 *)&ivi->vlan, 0,
2693 						 VLAN_HLEN);
2694 		}
2695 	} else {
2696 		mutex_lock(&bp->vfdb->bulletin_mutex);
2697 		/* mac */
2698 		if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID))
2699 			/* mac configured by ndo so its in bulletin board */
2700 			memcpy(&ivi->mac, bulletin->mac, ETH_ALEN);
2701 		else
2702 			/* function has not been loaded yet. Show mac as 0s */
2703 			eth_zero_addr(ivi->mac);
2704 
2705 		/* vlan */
2706 		if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2707 			/* vlan configured by ndo so its in bulletin board */
2708 			memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN);
2709 		else
2710 			/* function has not been loaded yet. Show vlans as 0s */
2711 			memset(&ivi->vlan, 0, VLAN_HLEN);
2712 
2713 		mutex_unlock(&bp->vfdb->bulletin_mutex);
2714 	}
2715 
2716 	return 0;
2717 }
2718 
2719 /* New mac for VF. Consider these cases:
2720  * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
2721  *    supply at acquire.
2722  * 2. VF has already been acquired but has not yet initialized - store in local
2723  *    bulletin board. mac will be posted on VF bulletin board after VF init. VF
2724  *    will configure this mac when it is ready.
2725  * 3. VF has already initialized but has not yet setup a queue - post the new
2726  *    mac on VF's bulletin board right now. VF will configure this mac when it
2727  *    is ready.
2728  * 4. VF has already set a queue - delete any macs already configured for this
2729  *    queue and manually config the new mac.
2730  * In any event, once this function has been called refuse any attempts by the
2731  * VF to configure any mac for itself except for this mac. In case of a race
2732  * where the VF fails to see the new post on its bulletin board before sending a
2733  * mac configuration request, the PF will simply fail the request and VF can try
2734  * again after consulting its bulletin board.
2735  */
2736 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac)
2737 {
2738 	struct bnx2x *bp = netdev_priv(dev);
2739 	int rc, q_logical_state;
2740 	struct bnx2x_virtf *vf = NULL;
2741 	struct pf_vf_bulletin_content *bulletin = NULL;
2742 
2743 	if (!is_valid_ether_addr(mac)) {
2744 		BNX2X_ERR("mac address invalid\n");
2745 		return -EINVAL;
2746 	}
2747 
2748 	/* sanity and init */
2749 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2750 	if (rc)
2751 		return rc;
2752 
2753 	mutex_lock(&bp->vfdb->bulletin_mutex);
2754 
2755 	/* update PF's copy of the VF's bulletin. Will no longer accept mac
2756 	 * configuration requests from vf unless match this mac
2757 	 */
2758 	bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID;
2759 	memcpy(bulletin->mac, mac, ETH_ALEN);
2760 
2761 	/* Post update on VF's bulletin board */
2762 	rc = bnx2x_post_vf_bulletin(bp, vfidx);
2763 
2764 	/* release lock before checking return code */
2765 	mutex_unlock(&bp->vfdb->bulletin_mutex);
2766 
2767 	if (rc) {
2768 		BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2769 		return rc;
2770 	}
2771 
2772 	q_logical_state =
2773 		bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj));
2774 	if (vf->state == VF_ENABLED &&
2775 	    q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
2776 		/* configure the mac in device on this vf's queue */
2777 		unsigned long ramrod_flags = 0;
2778 		struct bnx2x_vlan_mac_obj *mac_obj;
2779 
2780 		/* User should be able to see failure reason in system logs */
2781 		if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2782 			return -EINVAL;
2783 
2784 		/* must lock vfpf channel to protect against vf flows */
2785 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2786 
2787 		/* remove existing eth macs */
2788 		mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2789 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true);
2790 		if (rc) {
2791 			BNX2X_ERR("failed to delete eth macs\n");
2792 			rc = -EINVAL;
2793 			goto out;
2794 		}
2795 
2796 		/* remove existing uc list macs */
2797 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true);
2798 		if (rc) {
2799 			BNX2X_ERR("failed to delete uc_list macs\n");
2800 			rc = -EINVAL;
2801 			goto out;
2802 		}
2803 
2804 		/* configure the new mac to device */
2805 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2806 		bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true,
2807 				  BNX2X_ETH_MAC, &ramrod_flags);
2808 
2809 out:
2810 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2811 	}
2812 
2813 	return rc;
2814 }
2815 
2816 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos)
2817 {
2818 	struct bnx2x_queue_state_params q_params = {NULL};
2819 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
2820 	struct bnx2x_queue_update_params *update_params;
2821 	struct pf_vf_bulletin_content *bulletin = NULL;
2822 	struct bnx2x_rx_mode_ramrod_params rx_ramrod;
2823 	struct bnx2x *bp = netdev_priv(dev);
2824 	struct bnx2x_vlan_mac_obj *vlan_obj;
2825 	unsigned long vlan_mac_flags = 0;
2826 	unsigned long ramrod_flags = 0;
2827 	struct bnx2x_virtf *vf = NULL;
2828 	unsigned long accept_flags;
2829 	int rc;
2830 
2831 	if (vlan > 4095) {
2832 		BNX2X_ERR("illegal vlan value %d\n", vlan);
2833 		return -EINVAL;
2834 	}
2835 
2836 	DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n",
2837 	   vfidx, vlan, 0);
2838 
2839 	/* sanity and init */
2840 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2841 	if (rc)
2842 		return rc;
2843 
2844 	/* update PF's copy of the VF's bulletin. No point in posting the vlan
2845 	 * to the VF since it doesn't have anything to do with it. But it useful
2846 	 * to store it here in case the VF is not up yet and we can only
2847 	 * configure the vlan later when it does. Treat vlan id 0 as remove the
2848 	 * Host tag.
2849 	 */
2850 	mutex_lock(&bp->vfdb->bulletin_mutex);
2851 
2852 	if (vlan > 0)
2853 		bulletin->valid_bitmap |= 1 << VLAN_VALID;
2854 	else
2855 		bulletin->valid_bitmap &= ~(1 << VLAN_VALID);
2856 	bulletin->vlan = vlan;
2857 
2858 	mutex_unlock(&bp->vfdb->bulletin_mutex);
2859 
2860 	/* is vf initialized and queue set up? */
2861 	if (vf->state != VF_ENABLED ||
2862 	    bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2863 	    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2864 		return rc;
2865 
2866 	/* User should be able to see error in system logs */
2867 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2868 		return -EINVAL;
2869 
2870 	/* must lock vfpf channel to protect against vf flows */
2871 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2872 
2873 	/* remove existing vlans */
2874 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2875 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2876 	rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags,
2877 				  &ramrod_flags);
2878 	if (rc) {
2879 		BNX2X_ERR("failed to delete vlans\n");
2880 		rc = -EINVAL;
2881 		goto out;
2882 	}
2883 
2884 	/* need to remove/add the VF's accept_any_vlan bit */
2885 	accept_flags = bnx2x_leading_vfq(vf, accept_flags);
2886 	if (vlan)
2887 		clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2888 	else
2889 		set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2890 
2891 	bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf,
2892 			      accept_flags);
2893 	bnx2x_leading_vfq(vf, accept_flags) = accept_flags;
2894 	bnx2x_config_rx_mode(bp, &rx_ramrod);
2895 
2896 	/* configure the new vlan to device */
2897 	memset(&ramrod_param, 0, sizeof(ramrod_param));
2898 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2899 	ramrod_param.vlan_mac_obj = vlan_obj;
2900 	ramrod_param.ramrod_flags = ramrod_flags;
2901 	set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
2902 		&ramrod_param.user_req.vlan_mac_flags);
2903 	ramrod_param.user_req.u.vlan.vlan = vlan;
2904 	ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
2905 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
2906 	if (rc) {
2907 		BNX2X_ERR("failed to configure vlan\n");
2908 		rc =  -EINVAL;
2909 		goto out;
2910 	}
2911 
2912 	/* send queue update ramrod to configure default vlan and silent
2913 	 * vlan removal
2914 	 */
2915 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2916 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
2917 	q_params.q_obj = &bnx2x_leading_vfq(vf, sp_obj);
2918 	update_params = &q_params.params.update;
2919 	__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
2920 		  &update_params->update_flags);
2921 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
2922 		  &update_params->update_flags);
2923 	if (vlan == 0) {
2924 		/* if vlan is 0 then we want to leave the VF traffic
2925 		 * untagged, and leave the incoming traffic untouched
2926 		 * (i.e. do not remove any vlan tags).
2927 		 */
2928 		__clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2929 			    &update_params->update_flags);
2930 		__clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2931 			    &update_params->update_flags);
2932 	} else {
2933 		/* configure default vlan to vf queue and set silent
2934 		 * vlan removal (the vf remains unaware of this vlan).
2935 		 */
2936 		__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2937 			  &update_params->update_flags);
2938 		__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2939 			  &update_params->update_flags);
2940 		update_params->def_vlan = vlan;
2941 		update_params->silent_removal_value =
2942 			vlan & VLAN_VID_MASK;
2943 		update_params->silent_removal_mask = VLAN_VID_MASK;
2944 	}
2945 
2946 	/* Update the Queue state */
2947 	rc = bnx2x_queue_state_change(bp, &q_params);
2948 	if (rc) {
2949 		BNX2X_ERR("Failed to configure default VLAN\n");
2950 		goto out;
2951 	}
2952 
2953 
2954 	/* clear the flag indicating that this VF needs its vlan
2955 	 * (will only be set if the HV configured the Vlan before vf was
2956 	 * up and we were called because the VF came up later
2957 	 */
2958 out:
2959 	vf->cfg_flags &= ~VF_CFG_VLAN;
2960 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2961 
2962 	return rc;
2963 }
2964 
2965 /* crc is the first field in the bulletin board. Compute the crc over the
2966  * entire bulletin board excluding the crc field itself. Use the length field
2967  * as the Bulletin Board was posted by a PF with possibly a different version
2968  * from the vf which will sample it. Therefore, the length is computed by the
2969  * PF and then used blindly by the VF.
2970  */
2971 u32 bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content *bulletin)
2972 {
2973 	return crc32(BULLETIN_CRC_SEED,
2974 		 ((u8 *)bulletin) + sizeof(bulletin->crc),
2975 		 bulletin->length - sizeof(bulletin->crc));
2976 }
2977 
2978 /* Check for new posts on the bulletin board */
2979 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp)
2980 {
2981 	struct pf_vf_bulletin_content *bulletin;
2982 	int attempts;
2983 
2984 	/* sampling structure in mid post may result with corrupted data
2985 	 * validate crc to ensure coherency.
2986 	 */
2987 	for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) {
2988 		u32 crc;
2989 
2990 		/* sample the bulletin board */
2991 		memcpy(&bp->shadow_bulletin, bp->pf2vf_bulletin,
2992 		       sizeof(union pf_vf_bulletin));
2993 
2994 		crc = bnx2x_crc_vf_bulletin(&bp->shadow_bulletin.content);
2995 
2996 		if (bp->shadow_bulletin.content.crc == crc)
2997 			break;
2998 
2999 		BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
3000 			  bp->shadow_bulletin.content.crc, crc);
3001 	}
3002 
3003 	if (attempts >= BULLETIN_ATTEMPTS) {
3004 		BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
3005 			  attempts);
3006 		return PFVF_BULLETIN_CRC_ERR;
3007 	}
3008 	bulletin = &bp->shadow_bulletin.content;
3009 
3010 	/* bulletin board hasn't changed since last sample */
3011 	if (bp->old_bulletin.version == bulletin->version)
3012 		return PFVF_BULLETIN_UNCHANGED;
3013 
3014 	/* the mac address in bulletin board is valid and is new */
3015 	if (bulletin->valid_bitmap & 1 << MAC_ADDR_VALID &&
3016 	    !ether_addr_equal(bulletin->mac, bp->old_bulletin.mac)) {
3017 		/* update new mac to net device */
3018 		memcpy(bp->dev->dev_addr, bulletin->mac, ETH_ALEN);
3019 	}
3020 
3021 	if (bulletin->valid_bitmap & (1 << LINK_VALID)) {
3022 		DP(BNX2X_MSG_IOV, "link update speed %d flags %x\n",
3023 		   bulletin->link_speed, bulletin->link_flags);
3024 
3025 		bp->vf_link_vars.line_speed = bulletin->link_speed;
3026 		bp->vf_link_vars.link_report_flags = 0;
3027 		/* Link is down */
3028 		if (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)
3029 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
3030 				  &bp->vf_link_vars.link_report_flags);
3031 		/* Full DUPLEX */
3032 		if (bulletin->link_flags & VFPF_LINK_REPORT_FULL_DUPLEX)
3033 			__set_bit(BNX2X_LINK_REPORT_FD,
3034 				  &bp->vf_link_vars.link_report_flags);
3035 		/* Rx Flow Control is ON */
3036 		if (bulletin->link_flags & VFPF_LINK_REPORT_RX_FC_ON)
3037 			__set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
3038 				  &bp->vf_link_vars.link_report_flags);
3039 		/* Tx Flow Control is ON */
3040 		if (bulletin->link_flags & VFPF_LINK_REPORT_TX_FC_ON)
3041 			__set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
3042 				  &bp->vf_link_vars.link_report_flags);
3043 		__bnx2x_link_report(bp);
3044 	}
3045 
3046 	/* copy new bulletin board to bp */
3047 	memcpy(&bp->old_bulletin, bulletin,
3048 	       sizeof(struct pf_vf_bulletin_content));
3049 
3050 	return PFVF_BULLETIN_UPDATED;
3051 }
3052 
3053 void bnx2x_timer_sriov(struct bnx2x *bp)
3054 {
3055 	bnx2x_sample_bulletin(bp);
3056 
3057 	/* if channel is down we need to self destruct */
3058 	if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN)
3059 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
3060 				       BNX2X_MSG_IOV);
3061 }
3062 
3063 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp)
3064 {
3065 	/* vf doorbells are embedded within the regview */
3066 	return bp->regview + PXP_VF_ADDR_DB_START;
3067 }
3068 
3069 void bnx2x_vf_pci_dealloc(struct bnx2x *bp)
3070 {
3071 	BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
3072 		       sizeof(struct bnx2x_vf_mbx_msg));
3073 	BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->pf2vf_bulletin_mapping,
3074 		       sizeof(union pf_vf_bulletin));
3075 }
3076 
3077 int bnx2x_vf_pci_alloc(struct bnx2x *bp)
3078 {
3079 	mutex_init(&bp->vf2pf_mutex);
3080 
3081 	/* allocate vf2pf mailbox for vf to pf channel */
3082 	bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping,
3083 					 sizeof(struct bnx2x_vf_mbx_msg));
3084 	if (!bp->vf2pf_mbox)
3085 		goto alloc_mem_err;
3086 
3087 	/* allocate pf 2 vf bulletin board */
3088 	bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping,
3089 					     sizeof(union pf_vf_bulletin));
3090 	if (!bp->pf2vf_bulletin)
3091 		goto alloc_mem_err;
3092 
3093 	bnx2x_vf_bulletin_finalize(&bp->pf2vf_bulletin->content, true);
3094 
3095 	return 0;
3096 
3097 alloc_mem_err:
3098 	bnx2x_vf_pci_dealloc(bp);
3099 	return -ENOMEM;
3100 }
3101 
3102 void bnx2x_iov_channel_down(struct bnx2x *bp)
3103 {
3104 	int vf_idx;
3105 	struct pf_vf_bulletin_content *bulletin;
3106 
3107 	if (!IS_SRIOV(bp))
3108 		return;
3109 
3110 	for_each_vf(bp, vf_idx) {
3111 		/* locate this VFs bulletin board and update the channel down
3112 		 * bit
3113 		 */
3114 		bulletin = BP_VF_BULLETIN(bp, vf_idx);
3115 		bulletin->valid_bitmap |= 1 << CHANNEL_DOWN;
3116 
3117 		/* update vf bulletin board */
3118 		bnx2x_post_vf_bulletin(bp, vf_idx);
3119 	}
3120 }
3121 
3122 void bnx2x_iov_task(struct work_struct *work)
3123 {
3124 	struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work);
3125 
3126 	if (!netif_running(bp->dev))
3127 		return;
3128 
3129 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR,
3130 			       &bp->iov_task_state))
3131 		bnx2x_vf_handle_flr_event(bp);
3132 
3133 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG,
3134 			       &bp->iov_task_state))
3135 		bnx2x_vf_mbx(bp);
3136 }
3137 
3138 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag)
3139 {
3140 	smp_mb__before_atomic();
3141 	set_bit(flag, &bp->iov_task_state);
3142 	smp_mb__after_atomic();
3143 	DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
3144 	queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0);
3145 }
3146