1 /* bnx2x_sriov.c: Broadcom Everest network driver.
2  *
3  * Copyright 2009-2013 Broadcom Corporation
4  *
5  * Unless you and Broadcom execute a separate written software license
6  * agreement governing use of this software, this software is licensed to you
7  * under the terms of the GNU General Public License version 2, available
8  * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
9  *
10  * Notwithstanding the above, under no circumstances may you combine this
11  * software in any way with any other Broadcom software provided under a
12  * license other than the GPL, without Broadcom's express prior written
13  * consent.
14  *
15  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
16  * Written by: Shmulik Ravid <shmulikr@broadcom.com>
17  *	       Ariel Elior <ariele@broadcom.com>
18  *
19  */
20 #include "bnx2x.h"
21 #include "bnx2x_init.h"
22 #include "bnx2x_cmn.h"
23 #include "bnx2x_sp.h"
24 #include <linux/crc32.h>
25 #include <linux/if_vlan.h>
26 
27 /* General service functions */
28 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
29 					 u16 pf_id)
30 {
31 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
32 		pf_id);
33 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
34 		pf_id);
35 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
36 		pf_id);
37 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
38 		pf_id);
39 }
40 
41 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
42 					u8 enable)
43 {
44 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
45 		enable);
46 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
47 		enable);
48 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
49 		enable);
50 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
51 		enable);
52 }
53 
54 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
55 {
56 	int idx;
57 
58 	for_each_vf(bp, idx)
59 		if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid)
60 			break;
61 	return idx;
62 }
63 
64 static
65 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
66 {
67 	u16 idx =  (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid);
68 	return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL;
69 }
70 
71 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf,
72 				u8 igu_sb_id, u8 segment, u16 index, u8 op,
73 				u8 update)
74 {
75 	/* acking a VF sb through the PF - use the GRC */
76 	u32 ctl;
77 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
78 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
79 	u32 func_encode = vf->abs_vfid;
80 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id;
81 	struct igu_regular cmd_data = {0};
82 
83 	cmd_data.sb_id_and_flags =
84 			((index << IGU_REGULAR_SB_INDEX_SHIFT) |
85 			 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
86 			 (update << IGU_REGULAR_BUPDATE_SHIFT) |
87 			 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
88 
89 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
90 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
91 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
92 
93 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
94 	   cmd_data.sb_id_and_flags, igu_addr_data);
95 	REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags);
96 	mmiowb();
97 	barrier();
98 
99 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
100 	   ctl, igu_addr_ctl);
101 	REG_WR(bp, igu_addr_ctl, ctl);
102 	mmiowb();
103 	barrier();
104 }
105 
106 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp,
107 				       struct bnx2x_virtf *vf,
108 				       bool print_err)
109 {
110 	if (!bnx2x_leading_vfq(vf, sp_initialized)) {
111 		if (print_err)
112 			BNX2X_ERR("Slowpath objects not yet initialized!\n");
113 		else
114 			DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n");
115 		return false;
116 	}
117 	return true;
118 }
119 
120 /* VFOP operations states */
121 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf,
122 			      struct bnx2x_queue_init_params *init_params,
123 			      struct bnx2x_queue_setup_params *setup_params,
124 			      u16 q_idx, u16 sb_idx)
125 {
126 	DP(BNX2X_MSG_IOV,
127 	   "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
128 	   vf->abs_vfid,
129 	   q_idx,
130 	   sb_idx,
131 	   init_params->tx.sb_cq_index,
132 	   init_params->tx.hc_rate,
133 	   setup_params->flags,
134 	   setup_params->txq_params.traffic_type);
135 }
136 
137 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf,
138 			    struct bnx2x_queue_init_params *init_params,
139 			    struct bnx2x_queue_setup_params *setup_params,
140 			    u16 q_idx, u16 sb_idx)
141 {
142 	struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params;
143 
144 	DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
145 	   "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
146 	   vf->abs_vfid,
147 	   q_idx,
148 	   sb_idx,
149 	   init_params->rx.sb_cq_index,
150 	   init_params->rx.hc_rate,
151 	   setup_params->gen_params.mtu,
152 	   rxq_params->buf_sz,
153 	   rxq_params->sge_buf_sz,
154 	   rxq_params->max_sges_pkt,
155 	   rxq_params->tpa_agg_sz,
156 	   setup_params->flags,
157 	   rxq_params->drop_flags,
158 	   rxq_params->cache_line_log);
159 }
160 
161 void bnx2x_vfop_qctor_prep(struct bnx2x *bp,
162 			   struct bnx2x_virtf *vf,
163 			   struct bnx2x_vf_queue *q,
164 			   struct bnx2x_vf_queue_construct_params *p,
165 			   unsigned long q_type)
166 {
167 	struct bnx2x_queue_init_params *init_p = &p->qstate.params.init;
168 	struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup;
169 
170 	/* INIT */
171 
172 	/* Enable host coalescing in the transition to INIT state */
173 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags))
174 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags);
175 
176 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags))
177 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags);
178 
179 	/* FW SB ID */
180 	init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
181 	init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
182 
183 	/* context */
184 	init_p->cxts[0] = q->cxt;
185 
186 	/* SETUP */
187 
188 	/* Setup-op general parameters */
189 	setup_p->gen_params.spcl_id = vf->sp_cl_id;
190 	setup_p->gen_params.stat_id = vfq_stat_id(vf, q);
191 
192 	/* Setup-op pause params:
193 	 * Nothing to do, the pause thresholds are set by default to 0 which
194 	 * effectively turns off the feature for this queue. We don't want
195 	 * one queue (VF) to interfering with another queue (another VF)
196 	 */
197 	if (vf->cfg_flags & VF_CFG_FW_FC)
198 		BNX2X_ERR("No support for pause to VFs (abs_vfid: %d)\n",
199 			  vf->abs_vfid);
200 	/* Setup-op flags:
201 	 * collect statistics, zero statistics, local-switching, security,
202 	 * OV for Flex10, RSS and MCAST for leading
203 	 */
204 	if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags))
205 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags);
206 
207 	/* for VFs, enable tx switching, bd coherency, and mac address
208 	 * anti-spoofing
209 	 */
210 	__set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags);
211 	__set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags);
212 	__set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
213 
214 	/* Setup-op rx parameters */
215 	if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) {
216 		struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params;
217 
218 		rxq_p->cl_qzone_id = vfq_qzone_id(vf, q);
219 		rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx);
220 		rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid);
221 
222 		if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags))
223 			rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES;
224 	}
225 
226 	/* Setup-op tx parameters */
227 	if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) {
228 		setup_p->txq_params.tss_leading_cl_id = vf->leading_rss;
229 		setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
230 	}
231 }
232 
233 static int bnx2x_vf_queue_create(struct bnx2x *bp,
234 				 struct bnx2x_virtf *vf, int qid,
235 				 struct bnx2x_vf_queue_construct_params *qctor)
236 {
237 	struct bnx2x_queue_state_params *q_params;
238 	int rc = 0;
239 
240 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
241 
242 	/* Prepare ramrod information */
243 	q_params = &qctor->qstate;
244 	q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
245 	set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags);
246 
247 	if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
248 	    BNX2X_Q_LOGICAL_STATE_ACTIVE) {
249 		DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n");
250 		goto out;
251 	}
252 
253 	/* Run Queue 'construction' ramrods */
254 	q_params->cmd = BNX2X_Q_CMD_INIT;
255 	rc = bnx2x_queue_state_change(bp, q_params);
256 	if (rc)
257 		goto out;
258 
259 	memcpy(&q_params->params.setup, &qctor->prep_qsetup,
260 	       sizeof(struct bnx2x_queue_setup_params));
261 	q_params->cmd = BNX2X_Q_CMD_SETUP;
262 	rc = bnx2x_queue_state_change(bp, q_params);
263 	if (rc)
264 		goto out;
265 
266 	/* enable interrupts */
267 	bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)),
268 			    USTORM_ID, 0, IGU_INT_ENABLE, 0);
269 out:
270 	return rc;
271 }
272 
273 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf,
274 				  int qid)
275 {
276 	enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT,
277 				       BNX2X_Q_CMD_TERMINATE,
278 				       BNX2X_Q_CMD_CFC_DEL};
279 	struct bnx2x_queue_state_params q_params;
280 	int rc, i;
281 
282 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
283 
284 	/* Prepare ramrod information */
285 	memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params));
286 	q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
287 	set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
288 
289 	if (bnx2x_get_q_logical_state(bp, q_params.q_obj) ==
290 	    BNX2X_Q_LOGICAL_STATE_STOPPED) {
291 		DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n");
292 		goto out;
293 	}
294 
295 	/* Run Queue 'destruction' ramrods */
296 	for (i = 0; i < ARRAY_SIZE(cmds); i++) {
297 		q_params.cmd = cmds[i];
298 		rc = bnx2x_queue_state_change(bp, &q_params);
299 		if (rc) {
300 			BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]);
301 			return rc;
302 		}
303 	}
304 out:
305 	/* Clean Context */
306 	if (bnx2x_vfq(vf, qid, cxt)) {
307 		bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0;
308 		bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0;
309 	}
310 
311 	return 0;
312 }
313 
314 static void
315 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid)
316 {
317 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
318 	if (vf) {
319 		/* the first igu entry belonging to VFs of this PF */
320 		if (!BP_VFDB(bp)->first_vf_igu_entry)
321 			BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id;
322 
323 		/* the first igu entry belonging to this VF */
324 		if (!vf_sb_count(vf))
325 			vf->igu_base_id = igu_sb_id;
326 
327 		++vf_sb_count(vf);
328 		++vf->sb_count;
329 	}
330 	BP_VFDB(bp)->vf_sbs_pool++;
331 }
332 
333 static inline void bnx2x_vf_vlan_credit(struct bnx2x *bp,
334 					struct bnx2x_vlan_mac_obj *obj,
335 					atomic_t *counter)
336 {
337 	struct list_head *pos;
338 	int read_lock;
339 	int cnt = 0;
340 
341 	read_lock = bnx2x_vlan_mac_h_read_lock(bp, obj);
342 	if (read_lock)
343 		DP(BNX2X_MSG_SP, "Failed to take vlan mac read head; continuing anyway\n");
344 
345 	list_for_each(pos, &obj->head)
346 		cnt++;
347 
348 	if (!read_lock)
349 		bnx2x_vlan_mac_h_read_unlock(bp, obj);
350 
351 	atomic_set(counter, cnt);
352 }
353 
354 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf,
355 				   int qid, bool drv_only, bool mac)
356 {
357 	struct bnx2x_vlan_mac_ramrod_params ramrod;
358 	int rc;
359 
360 	DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid,
361 	   mac ? "MACs" : "VLANs");
362 
363 	/* Prepare ramrod params */
364 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
365 	if (mac) {
366 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
367 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
368 	} else {
369 		set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
370 			&ramrod.user_req.vlan_mac_flags);
371 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
372 	}
373 	ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL;
374 
375 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
376 	if (drv_only)
377 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
378 	else
379 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
380 
381 	/* Start deleting */
382 	rc = ramrod.vlan_mac_obj->delete_all(bp,
383 					     ramrod.vlan_mac_obj,
384 					     &ramrod.user_req.vlan_mac_flags,
385 					     &ramrod.ramrod_flags);
386 	if (rc) {
387 		BNX2X_ERR("Failed to delete all %s\n",
388 			  mac ? "MACs" : "VLANs");
389 		return rc;
390 	}
391 
392 	/* Clear the vlan counters */
393 	if (!mac)
394 		atomic_set(&bnx2x_vfq(vf, qid, vlan_count), 0);
395 
396 	return 0;
397 }
398 
399 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp,
400 				    struct bnx2x_virtf *vf, int qid,
401 				    struct bnx2x_vf_mac_vlan_filter *filter,
402 				    bool drv_only)
403 {
404 	struct bnx2x_vlan_mac_ramrod_params ramrod;
405 	int rc;
406 
407 	DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n",
408 	   vf->abs_vfid, filter->add ? "Adding" : "Deleting",
409 	   filter->type == BNX2X_VF_FILTER_MAC ? "MAC" : "VLAN");
410 
411 	/* Prepare ramrod params */
412 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
413 	if (filter->type == BNX2X_VF_FILTER_VLAN) {
414 		set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
415 			&ramrod.user_req.vlan_mac_flags);
416 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
417 		ramrod.user_req.u.vlan.vlan = filter->vid;
418 	} else {
419 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
420 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
421 		memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
422 	}
423 	ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD :
424 					    BNX2X_VLAN_MAC_DEL;
425 
426 	/* Verify there are available vlan credits */
427 	if (filter->add && filter->type == BNX2X_VF_FILTER_VLAN &&
428 	    (atomic_read(&bnx2x_vfq(vf, qid, vlan_count)) >=
429 	     vf_vlan_rules_cnt(vf))) {
430 		BNX2X_ERR("No credits for vlan [%d >= %d]\n",
431 			  atomic_read(&bnx2x_vfq(vf, qid, vlan_count)),
432 			  vf_vlan_rules_cnt(vf));
433 		return -ENOMEM;
434 	}
435 
436 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
437 	if (drv_only)
438 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
439 	else
440 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
441 
442 	/* Add/Remove the filter */
443 	rc = bnx2x_config_vlan_mac(bp, &ramrod);
444 	if (rc && rc != -EEXIST) {
445 		BNX2X_ERR("Failed to %s %s\n",
446 			  filter->add ? "add" : "delete",
447 			  filter->type == BNX2X_VF_FILTER_MAC ? "MAC" :
448 								"VLAN");
449 		return rc;
450 	}
451 
452 	/* Update the vlan counters */
453 	if (filter->type == BNX2X_VF_FILTER_VLAN)
454 		bnx2x_vf_vlan_credit(bp, ramrod.vlan_mac_obj,
455 				     &bnx2x_vfq(vf, qid, vlan_count));
456 
457 	return 0;
458 }
459 
460 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf,
461 				  struct bnx2x_vf_mac_vlan_filters *filters,
462 				  int qid, bool drv_only)
463 {
464 	int rc = 0, i;
465 
466 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
467 
468 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
469 		return -EINVAL;
470 
471 	/* Prepare ramrod params */
472 	for (i = 0; i < filters->count; i++) {
473 		rc = bnx2x_vf_mac_vlan_config(bp, vf, qid,
474 					      &filters->filters[i], drv_only);
475 		if (rc)
476 			break;
477 	}
478 
479 	/* Rollback if needed */
480 	if (i != filters->count) {
481 		BNX2X_ERR("Managed only %d/%d filters - rolling back\n",
482 			  i, filters->count + 1);
483 		while (--i >= 0) {
484 			filters->filters[i].add = !filters->filters[i].add;
485 			bnx2x_vf_mac_vlan_config(bp, vf, qid,
486 						 &filters->filters[i],
487 						 drv_only);
488 		}
489 	}
490 
491 	/* It's our responsibility to free the filters */
492 	kfree(filters);
493 
494 	return rc;
495 }
496 
497 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid,
498 			 struct bnx2x_vf_queue_construct_params *qctor)
499 {
500 	int rc;
501 
502 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
503 
504 	rc = bnx2x_vf_queue_create(bp, vf, qid, qctor);
505 	if (rc)
506 		goto op_err;
507 
508 	/* Configure vlan0 for leading queue */
509 	if (!qid) {
510 		struct bnx2x_vf_mac_vlan_filter filter;
511 
512 		memset(&filter, 0, sizeof(struct bnx2x_vf_mac_vlan_filter));
513 		filter.type = BNX2X_VF_FILTER_VLAN;
514 		filter.add = true;
515 		filter.vid = 0;
516 		rc = bnx2x_vf_mac_vlan_config(bp, vf, qid, &filter, false);
517 		if (rc)
518 			goto op_err;
519 	}
520 
521 	/* Schedule the configuration of any pending vlan filters */
522 	vf->cfg_flags |= VF_CFG_VLAN;
523 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN,
524 			       BNX2X_MSG_IOV);
525 	return 0;
526 op_err:
527 	BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
528 	return rc;
529 }
530 
531 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf,
532 			       int qid)
533 {
534 	int rc;
535 
536 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
537 
538 	/* If needed, clean the filtering data base */
539 	if ((qid == LEADING_IDX) &&
540 	    bnx2x_validate_vf_sp_objs(bp, vf, false)) {
541 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, false);
542 		if (rc)
543 			goto op_err;
544 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, true);
545 		if (rc)
546 			goto op_err;
547 	}
548 
549 	/* Terminate queue */
550 	if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) {
551 		struct bnx2x_queue_state_params qstate;
552 
553 		memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
554 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
555 		qstate.q_obj->state = BNX2X_Q_STATE_STOPPED;
556 		qstate.cmd = BNX2X_Q_CMD_TERMINATE;
557 		set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
558 		rc = bnx2x_queue_state_change(bp, &qstate);
559 		if (rc)
560 			goto op_err;
561 	}
562 
563 	return 0;
564 op_err:
565 	BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
566 	return rc;
567 }
568 
569 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf,
570 		   bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only)
571 {
572 	struct bnx2x_mcast_list_elem *mc = NULL;
573 	struct bnx2x_mcast_ramrod_params mcast;
574 	int rc, i;
575 
576 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
577 
578 	/* Prepare Multicast command */
579 	memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params));
580 	mcast.mcast_obj = &vf->mcast_obj;
581 	if (drv_only)
582 		set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags);
583 	else
584 		set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags);
585 	if (mc_num) {
586 		mc = kzalloc(mc_num * sizeof(struct bnx2x_mcast_list_elem),
587 			     GFP_KERNEL);
588 		if (!mc) {
589 			BNX2X_ERR("Cannot Configure mulicasts due to lack of memory\n");
590 			return -ENOMEM;
591 		}
592 	}
593 
594 	/* clear existing mcasts */
595 	mcast.mcast_list_len = vf->mcast_list_len;
596 	vf->mcast_list_len = mc_num;
597 	rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL);
598 	if (rc) {
599 		BNX2X_ERR("Failed to remove multicasts\n");
600 		if (mc)
601 			kfree(mc);
602 		return rc;
603 	}
604 
605 	/* update mcast list on the ramrod params */
606 	if (mc_num) {
607 		INIT_LIST_HEAD(&mcast.mcast_list);
608 		for (i = 0; i < mc_num; i++) {
609 			mc[i].mac = mcasts[i];
610 			list_add_tail(&mc[i].link,
611 				      &mcast.mcast_list);
612 		}
613 
614 		/* add new mcasts */
615 		rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_ADD);
616 		if (rc)
617 			BNX2X_ERR("Faled to add multicasts\n");
618 		kfree(mc);
619 	}
620 
621 	return rc;
622 }
623 
624 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid,
625 				  struct bnx2x_rx_mode_ramrod_params *ramrod,
626 				  struct bnx2x_virtf *vf,
627 				  unsigned long accept_flags)
628 {
629 	struct bnx2x_vf_queue *vfq = vfq_get(vf, qid);
630 
631 	memset(ramrod, 0, sizeof(*ramrod));
632 	ramrod->cid = vfq->cid;
633 	ramrod->cl_id = vfq_cl_id(vf, vfq);
634 	ramrod->rx_mode_obj = &bp->rx_mode_obj;
635 	ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid);
636 	ramrod->rx_accept_flags = accept_flags;
637 	ramrod->tx_accept_flags = accept_flags;
638 	ramrod->pstate = &vf->filter_state;
639 	ramrod->state = BNX2X_FILTER_RX_MODE_PENDING;
640 
641 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
642 	set_bit(RAMROD_RX, &ramrod->ramrod_flags);
643 	set_bit(RAMROD_TX, &ramrod->ramrod_flags);
644 
645 	ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2);
646 	ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2);
647 }
648 
649 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf,
650 		    int qid, unsigned long accept_flags)
651 {
652 	struct bnx2x_rx_mode_ramrod_params ramrod;
653 
654 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
655 
656 	bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags);
657 	set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
658 	vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags;
659 	return bnx2x_config_rx_mode(bp, &ramrod);
660 }
661 
662 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid)
663 {
664 	int rc;
665 
666 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
667 
668 	/* Remove all classification configuration for leading queue */
669 	if (qid == LEADING_IDX) {
670 		rc = bnx2x_vf_rxmode(bp, vf, qid, 0);
671 		if (rc)
672 			goto op_err;
673 
674 		/* Remove filtering if feasible */
675 		if (bnx2x_validate_vf_sp_objs(bp, vf, true)) {
676 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
677 						     false, false);
678 			if (rc)
679 				goto op_err;
680 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
681 						     false, true);
682 			if (rc)
683 				goto op_err;
684 			rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false);
685 			if (rc)
686 				goto op_err;
687 		}
688 	}
689 
690 	/* Destroy queue */
691 	rc = bnx2x_vf_queue_destroy(bp, vf, qid);
692 	if (rc)
693 		goto op_err;
694 	return rc;
695 op_err:
696 	BNX2X_ERR("vf[%d:%d] error: rc %d\n",
697 		  vf->abs_vfid, qid, rc);
698 	return rc;
699 }
700 
701 /* VF enable primitives
702  * when pretend is required the caller is responsible
703  * for calling pretend prior to calling these routines
704  */
705 
706 /* internal vf enable - until vf is enabled internally all transactions
707  * are blocked. This routine should always be called last with pretend.
708  */
709 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable)
710 {
711 	REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0);
712 }
713 
714 /* clears vf error in all semi blocks */
715 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid)
716 {
717 	REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid);
718 	REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid);
719 	REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid);
720 	REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid);
721 }
722 
723 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid)
724 {
725 	u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5;
726 	u32 was_err_reg = 0;
727 
728 	switch (was_err_group) {
729 	case 0:
730 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR;
731 	    break;
732 	case 1:
733 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR;
734 	    break;
735 	case 2:
736 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR;
737 	    break;
738 	case 3:
739 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR;
740 	    break;
741 	}
742 	REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f));
743 }
744 
745 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf)
746 {
747 	int i;
748 	u32 val;
749 
750 	/* Set VF masks and configuration - pretend */
751 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
752 
753 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
754 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
755 	REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
756 	REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
757 	REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
758 	REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
759 
760 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
761 	val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN);
762 	if (vf->cfg_flags & VF_CFG_INT_SIMD)
763 		val |= IGU_VF_CONF_SINGLE_ISR_EN;
764 	val &= ~IGU_VF_CONF_PARENT_MASK;
765 	val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT;
766 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
767 
768 	DP(BNX2X_MSG_IOV,
769 	   "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n",
770 	   vf->abs_vfid, val);
771 
772 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
773 
774 	/* iterate over all queues, clear sb consumer */
775 	for (i = 0; i < vf_sb_count(vf); i++) {
776 		u8 igu_sb_id = vf_igu_sb(vf, i);
777 
778 		/* zero prod memory */
779 		REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0);
780 
781 		/* clear sb state machine */
782 		bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id,
783 				       false /* VF */);
784 
785 		/* disable + update */
786 		bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0,
787 				    IGU_INT_DISABLE, 1);
788 	}
789 }
790 
791 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid)
792 {
793 	/* set the VF-PF association in the FW */
794 	storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp));
795 	storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1);
796 
797 	/* clear vf errors*/
798 	bnx2x_vf_semi_clear_err(bp, abs_vfid);
799 	bnx2x_vf_pglue_clear_err(bp, abs_vfid);
800 
801 	/* internal vf-enable - pretend */
802 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid));
803 	DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid);
804 	bnx2x_vf_enable_internal(bp, true);
805 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
806 }
807 
808 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf)
809 {
810 	/* Reset vf in IGU  interrupts are still disabled */
811 	bnx2x_vf_igu_reset(bp, vf);
812 
813 	/* pretend to enable the vf with the PBF */
814 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
815 	REG_WR(bp, PBF_REG_DISABLE_VF, 0);
816 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
817 }
818 
819 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid)
820 {
821 	struct pci_dev *dev;
822 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
823 
824 	if (!vf)
825 		return false;
826 
827 	dev = pci_get_bus_and_slot(vf->bus, vf->devfn);
828 	if (dev)
829 		return bnx2x_is_pcie_pending(dev);
830 	return false;
831 }
832 
833 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid)
834 {
835 	/* Verify no pending pci transactions */
836 	if (bnx2x_vf_is_pcie_pending(bp, abs_vfid))
837 		BNX2X_ERR("PCIE Transactions still pending\n");
838 
839 	return 0;
840 }
841 
842 static void bnx2x_iov_re_set_vlan_filters(struct bnx2x *bp,
843 					  struct bnx2x_virtf *vf,
844 					  int new)
845 {
846 	int num = vf_vlan_rules_cnt(vf);
847 	int diff = new - num;
848 	bool rc = true;
849 
850 	DP(BNX2X_MSG_IOV, "vf[%d] - %d vlan filter credits [previously %d]\n",
851 	   vf->abs_vfid, new, num);
852 
853 	if (diff > 0)
854 		rc = bp->vlans_pool.get(&bp->vlans_pool, diff);
855 	else if (diff < 0)
856 		rc = bp->vlans_pool.put(&bp->vlans_pool, -diff);
857 
858 	if (rc)
859 		vf_vlan_rules_cnt(vf) = new;
860 	else
861 		DP(BNX2X_MSG_IOV, "vf[%d] - Failed to configure vlan filter credits change\n",
862 		   vf->abs_vfid);
863 }
864 
865 /* must be called after the number of PF queues and the number of VFs are
866  * both known
867  */
868 static void
869 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
870 {
871 	struct vf_pf_resc_request *resc = &vf->alloc_resc;
872 	u16 vlan_count = 0;
873 
874 	/* will be set only during VF-ACQUIRE */
875 	resc->num_rxqs = 0;
876 	resc->num_txqs = 0;
877 
878 	/* no credit calculations for macs (just yet) */
879 	resc->num_mac_filters = 1;
880 
881 	/* divvy up vlan rules */
882 	bnx2x_iov_re_set_vlan_filters(bp, vf, 0);
883 	vlan_count = bp->vlans_pool.check(&bp->vlans_pool);
884 	vlan_count = 1 << ilog2(vlan_count);
885 	bnx2x_iov_re_set_vlan_filters(bp, vf,
886 				      vlan_count / BNX2X_NR_VIRTFN(bp));
887 
888 	/* no real limitation */
889 	resc->num_mc_filters = 0;
890 
891 	/* num_sbs already set */
892 	resc->num_sbs = vf->sb_count;
893 }
894 
895 /* FLR routines: */
896 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
897 {
898 	/* reset the state variables */
899 	bnx2x_iov_static_resc(bp, vf);
900 	vf->state = VF_FREE;
901 }
902 
903 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf)
904 {
905 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
906 
907 	/* DQ usage counter */
908 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
909 	bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT,
910 					"DQ VF usage counter timed out",
911 					poll_cnt);
912 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
913 
914 	/* FW cleanup command - poll for the results */
915 	if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid),
916 				   poll_cnt))
917 		BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid);
918 
919 	/* verify TX hw is flushed */
920 	bnx2x_tx_hw_flushed(bp, poll_cnt);
921 }
922 
923 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf)
924 {
925 	int rc, i;
926 
927 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
928 
929 	/* the cleanup operations are valid if and only if the VF
930 	 * was first acquired.
931 	 */
932 	for (i = 0; i < vf_rxq_count(vf); i++) {
933 		rc = bnx2x_vf_queue_flr(bp, vf, i);
934 		if (rc)
935 			goto out;
936 	}
937 
938 	/* remove multicasts */
939 	bnx2x_vf_mcast(bp, vf, NULL, 0, true);
940 
941 	/* dispatch final cleanup and wait for HW queues to flush */
942 	bnx2x_vf_flr_clnup_hw(bp, vf);
943 
944 	/* release VF resources */
945 	bnx2x_vf_free_resc(bp, vf);
946 
947 	/* re-open the mailbox */
948 	bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
949 	return;
950 out:
951 	BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n",
952 		  vf->abs_vfid, i, rc);
953 }
954 
955 static void bnx2x_vf_flr_clnup(struct bnx2x *bp)
956 {
957 	struct bnx2x_virtf *vf;
958 	int i;
959 
960 	for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) {
961 		/* VF should be RESET & in FLR cleanup states */
962 		if (bnx2x_vf(bp, i, state) != VF_RESET ||
963 		    !bnx2x_vf(bp, i, flr_clnup_stage))
964 			continue;
965 
966 		DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n",
967 		   i, BNX2X_NR_VIRTFN(bp));
968 
969 		vf = BP_VF(bp, i);
970 
971 		/* lock the vf pf channel */
972 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
973 
974 		/* invoke the VF FLR SM */
975 		bnx2x_vf_flr(bp, vf);
976 
977 		/* mark the VF to be ACKED and continue */
978 		vf->flr_clnup_stage = false;
979 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
980 	}
981 
982 	/* Acknowledge the handled VFs.
983 	 * we are acknowledge all the vfs which an flr was requested for, even
984 	 * if amongst them there are such that we never opened, since the mcp
985 	 * will interrupt us immediately again if we only ack some of the bits,
986 	 * resulting in an endless loop. This can happen for example in KVM
987 	 * where an 'all ones' flr request is sometimes given by hyper visor
988 	 */
989 	DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
990 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
991 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
992 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i],
993 			  bp->vfdb->flrd_vfs[i]);
994 
995 	bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0);
996 
997 	/* clear the acked bits - better yet if the MCP implemented
998 	 * write to clear semantics
999 	 */
1000 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
1001 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0);
1002 }
1003 
1004 void bnx2x_vf_handle_flr_event(struct bnx2x *bp)
1005 {
1006 	int i;
1007 
1008 	/* Read FLR'd VFs */
1009 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
1010 		bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]);
1011 
1012 	DP(BNX2X_MSG_MCP,
1013 	   "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
1014 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
1015 
1016 	for_each_vf(bp, i) {
1017 		struct bnx2x_virtf *vf = BP_VF(bp, i);
1018 		u32 reset = 0;
1019 
1020 		if (vf->abs_vfid < 32)
1021 			reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid);
1022 		else
1023 			reset = bp->vfdb->flrd_vfs[1] &
1024 				(1 << (vf->abs_vfid - 32));
1025 
1026 		if (reset) {
1027 			/* set as reset and ready for cleanup */
1028 			vf->state = VF_RESET;
1029 			vf->flr_clnup_stage = true;
1030 
1031 			DP(BNX2X_MSG_IOV,
1032 			   "Initiating Final cleanup for VF %d\n",
1033 			   vf->abs_vfid);
1034 		}
1035 	}
1036 
1037 	/* do the FLR cleanup for all marked VFs*/
1038 	bnx2x_vf_flr_clnup(bp);
1039 }
1040 
1041 /* IOV global initialization routines  */
1042 void bnx2x_iov_init_dq(struct bnx2x *bp)
1043 {
1044 	if (!IS_SRIOV(bp))
1045 		return;
1046 
1047 	/* Set the DQ such that the CID reflect the abs_vfid */
1048 	REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0);
1049 	REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
1050 
1051 	/* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
1052 	 * the PF L2 queues
1053 	 */
1054 	REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
1055 
1056 	/* The VF window size is the log2 of the max number of CIDs per VF */
1057 	REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
1058 
1059 	/* The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
1060 	 * the Pf doorbell size although the 2 are independent.
1061 	 */
1062 	REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3);
1063 
1064 	/* No security checks for now -
1065 	 * configure single rule (out of 16) mask = 0x1, value = 0x0,
1066 	 * CID range 0 - 0x1ffff
1067 	 */
1068 	REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1);
1069 	REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0);
1070 	REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
1071 	REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
1072 
1073 	/* set the VF doorbell threshold */
1074 	REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 4);
1075 }
1076 
1077 void bnx2x_iov_init_dmae(struct bnx2x *bp)
1078 {
1079 	if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV))
1080 		REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0);
1081 }
1082 
1083 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid)
1084 {
1085 	struct pci_dev *dev = bp->pdev;
1086 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1087 
1088 	return dev->bus->number + ((dev->devfn + iov->offset +
1089 				    iov->stride * vfid) >> 8);
1090 }
1091 
1092 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid)
1093 {
1094 	struct pci_dev *dev = bp->pdev;
1095 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1096 
1097 	return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff;
1098 }
1099 
1100 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf)
1101 {
1102 	int i, n;
1103 	struct pci_dev *dev = bp->pdev;
1104 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1105 
1106 	for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) {
1107 		u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i);
1108 		u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i);
1109 
1110 		size /= iov->total;
1111 		vf->bars[n].bar = start + size * vf->abs_vfid;
1112 		vf->bars[n].size = size;
1113 	}
1114 }
1115 
1116 static int bnx2x_ari_enabled(struct pci_dev *dev)
1117 {
1118 	return dev->bus->self && dev->bus->self->ari_enabled;
1119 }
1120 
1121 static void
1122 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp)
1123 {
1124 	int sb_id;
1125 	u32 val;
1126 	u8 fid, current_pf = 0;
1127 
1128 	/* IGU in normal mode - read CAM */
1129 	for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) {
1130 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4);
1131 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
1132 			continue;
1133 		fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID);
1134 		if (fid & IGU_FID_ENCODE_IS_PF)
1135 			current_pf = fid & IGU_FID_PF_NUM_MASK;
1136 		else if (current_pf == BP_FUNC(bp))
1137 			bnx2x_vf_set_igu_info(bp, sb_id,
1138 					      (fid & IGU_FID_VF_NUM_MASK));
1139 		DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n",
1140 		   ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"),
1141 		   ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) :
1142 		   (fid & IGU_FID_VF_NUM_MASK)), sb_id,
1143 		   GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR));
1144 	}
1145 	DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool);
1146 }
1147 
1148 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp)
1149 {
1150 	if (bp->vfdb) {
1151 		kfree(bp->vfdb->vfqs);
1152 		kfree(bp->vfdb->vfs);
1153 		kfree(bp->vfdb);
1154 	}
1155 	bp->vfdb = NULL;
1156 }
1157 
1158 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1159 {
1160 	int pos;
1161 	struct pci_dev *dev = bp->pdev;
1162 
1163 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
1164 	if (!pos) {
1165 		BNX2X_ERR("failed to find SRIOV capability in device\n");
1166 		return -ENODEV;
1167 	}
1168 
1169 	iov->pos = pos;
1170 	DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos);
1171 	pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
1172 	pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total);
1173 	pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial);
1174 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
1175 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
1176 	pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
1177 	pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap);
1178 	pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
1179 
1180 	return 0;
1181 }
1182 
1183 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1184 {
1185 	u32 val;
1186 
1187 	/* read the SRIOV capability structure
1188 	 * The fields can be read via configuration read or
1189 	 * directly from the device (starting at offset PCICFG_OFFSET)
1190 	 */
1191 	if (bnx2x_sriov_pci_cfg_info(bp, iov))
1192 		return -ENODEV;
1193 
1194 	/* get the number of SRIOV bars */
1195 	iov->nres = 0;
1196 
1197 	/* read the first_vfid */
1198 	val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF);
1199 	iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK)
1200 			       * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp));
1201 
1202 	DP(BNX2X_MSG_IOV,
1203 	   "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
1204 	   BP_FUNC(bp),
1205 	   iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total,
1206 	   iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
1207 
1208 	return 0;
1209 }
1210 
1211 /* must be called after PF bars are mapped */
1212 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param,
1213 		       int num_vfs_param)
1214 {
1215 	int err, i;
1216 	struct bnx2x_sriov *iov;
1217 	struct pci_dev *dev = bp->pdev;
1218 
1219 	bp->vfdb = NULL;
1220 
1221 	/* verify is pf */
1222 	if (IS_VF(bp))
1223 		return 0;
1224 
1225 	/* verify sriov capability is present in configuration space */
1226 	if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV))
1227 		return 0;
1228 
1229 	/* verify chip revision */
1230 	if (CHIP_IS_E1x(bp))
1231 		return 0;
1232 
1233 	/* check if SRIOV support is turned off */
1234 	if (!num_vfs_param)
1235 		return 0;
1236 
1237 	/* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
1238 	if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) {
1239 		BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
1240 			  BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID);
1241 		return 0;
1242 	}
1243 
1244 	/* SRIOV can be enabled only with MSIX */
1245 	if (int_mode_param == BNX2X_INT_MODE_MSI ||
1246 	    int_mode_param == BNX2X_INT_MODE_INTX) {
1247 		BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
1248 		return 0;
1249 	}
1250 
1251 	err = -EIO;
1252 	/* verify ari is enabled */
1253 	if (!bnx2x_ari_enabled(bp->pdev)) {
1254 		BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
1255 		return 0;
1256 	}
1257 
1258 	/* verify igu is in normal mode */
1259 	if (CHIP_INT_MODE_IS_BC(bp)) {
1260 		BNX2X_ERR("IGU not normal mode,  SRIOV can not be enabled\n");
1261 		return 0;
1262 	}
1263 
1264 	/* allocate the vfs database */
1265 	bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL);
1266 	if (!bp->vfdb) {
1267 		BNX2X_ERR("failed to allocate vf database\n");
1268 		err = -ENOMEM;
1269 		goto failed;
1270 	}
1271 
1272 	/* get the sriov info - Linux already collected all the pertinent
1273 	 * information, however the sriov structure is for the private use
1274 	 * of the pci module. Also we want this information regardless
1275 	 * of the hyper-visor.
1276 	 */
1277 	iov = &(bp->vfdb->sriov);
1278 	err = bnx2x_sriov_info(bp, iov);
1279 	if (err)
1280 		goto failed;
1281 
1282 	/* SR-IOV capability was enabled but there are no VFs*/
1283 	if (iov->total == 0)
1284 		goto failed;
1285 
1286 	iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param);
1287 
1288 	DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n",
1289 	   num_vfs_param, iov->nr_virtfn);
1290 
1291 	/* allocate the vf array */
1292 	bp->vfdb->vfs = kzalloc(sizeof(struct bnx2x_virtf) *
1293 				BNX2X_NR_VIRTFN(bp), GFP_KERNEL);
1294 	if (!bp->vfdb->vfs) {
1295 		BNX2X_ERR("failed to allocate vf array\n");
1296 		err = -ENOMEM;
1297 		goto failed;
1298 	}
1299 
1300 	/* Initial VF init - index and abs_vfid - nr_virtfn must be set */
1301 	for_each_vf(bp, i) {
1302 		bnx2x_vf(bp, i, index) = i;
1303 		bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i;
1304 		bnx2x_vf(bp, i, state) = VF_FREE;
1305 		mutex_init(&bnx2x_vf(bp, i, op_mutex));
1306 		bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE;
1307 	}
1308 
1309 	/* re-read the IGU CAM for VFs - index and abs_vfid must be set */
1310 	bnx2x_get_vf_igu_cam_info(bp);
1311 
1312 	/* allocate the queue arrays for all VFs */
1313 	bp->vfdb->vfqs = kzalloc(
1314 		BNX2X_MAX_NUM_VF_QUEUES * sizeof(struct bnx2x_vf_queue),
1315 		GFP_KERNEL);
1316 
1317 	DP(BNX2X_MSG_IOV, "bp->vfdb->vfqs was %p\n", bp->vfdb->vfqs);
1318 
1319 	if (!bp->vfdb->vfqs) {
1320 		BNX2X_ERR("failed to allocate vf queue array\n");
1321 		err = -ENOMEM;
1322 		goto failed;
1323 	}
1324 
1325 	/* Prepare the VFs event synchronization mechanism */
1326 	mutex_init(&bp->vfdb->event_mutex);
1327 
1328 	return 0;
1329 failed:
1330 	DP(BNX2X_MSG_IOV, "Failed err=%d\n", err);
1331 	__bnx2x_iov_free_vfdb(bp);
1332 	return err;
1333 }
1334 
1335 void bnx2x_iov_remove_one(struct bnx2x *bp)
1336 {
1337 	int vf_idx;
1338 
1339 	/* if SRIOV is not enabled there's nothing to do */
1340 	if (!IS_SRIOV(bp))
1341 		return;
1342 
1343 	DP(BNX2X_MSG_IOV, "about to call disable sriov\n");
1344 	pci_disable_sriov(bp->pdev);
1345 	DP(BNX2X_MSG_IOV, "sriov disabled\n");
1346 
1347 	/* disable access to all VFs */
1348 	for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) {
1349 		bnx2x_pretend_func(bp,
1350 				   HW_VF_HANDLE(bp,
1351 						bp->vfdb->sriov.first_vf_in_pf +
1352 						vf_idx));
1353 		DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n",
1354 		   bp->vfdb->sriov.first_vf_in_pf + vf_idx);
1355 		bnx2x_vf_enable_internal(bp, 0);
1356 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1357 	}
1358 
1359 	/* free vf database */
1360 	__bnx2x_iov_free_vfdb(bp);
1361 }
1362 
1363 void bnx2x_iov_free_mem(struct bnx2x *bp)
1364 {
1365 	int i;
1366 
1367 	if (!IS_SRIOV(bp))
1368 		return;
1369 
1370 	/* free vfs hw contexts */
1371 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1372 		struct hw_dma *cxt = &bp->vfdb->context[i];
1373 		BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size);
1374 	}
1375 
1376 	BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr,
1377 		       BP_VFDB(bp)->sp_dma.mapping,
1378 		       BP_VFDB(bp)->sp_dma.size);
1379 
1380 	BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr,
1381 		       BP_VF_MBX_DMA(bp)->mapping,
1382 		       BP_VF_MBX_DMA(bp)->size);
1383 
1384 	BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr,
1385 		       BP_VF_BULLETIN_DMA(bp)->mapping,
1386 		       BP_VF_BULLETIN_DMA(bp)->size);
1387 }
1388 
1389 int bnx2x_iov_alloc_mem(struct bnx2x *bp)
1390 {
1391 	size_t tot_size;
1392 	int i, rc = 0;
1393 
1394 	if (!IS_SRIOV(bp))
1395 		return rc;
1396 
1397 	/* allocate vfs hw contexts */
1398 	tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) *
1399 		BNX2X_CIDS_PER_VF * sizeof(union cdu_context);
1400 
1401 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1402 		struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i);
1403 		cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ);
1404 
1405 		if (cxt->size) {
1406 			cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size);
1407 			if (!cxt->addr)
1408 				goto alloc_mem_err;
1409 		} else {
1410 			cxt->addr = NULL;
1411 			cxt->mapping = 0;
1412 		}
1413 		tot_size -= cxt->size;
1414 	}
1415 
1416 	/* allocate vfs ramrods dma memory - client_init and set_mac */
1417 	tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp);
1418 	BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping,
1419 						   tot_size);
1420 	if (!BP_VFDB(bp)->sp_dma.addr)
1421 		goto alloc_mem_err;
1422 	BP_VFDB(bp)->sp_dma.size = tot_size;
1423 
1424 	/* allocate mailboxes */
1425 	tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE;
1426 	BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping,
1427 						  tot_size);
1428 	if (!BP_VF_MBX_DMA(bp)->addr)
1429 		goto alloc_mem_err;
1430 
1431 	BP_VF_MBX_DMA(bp)->size = tot_size;
1432 
1433 	/* allocate local bulletin boards */
1434 	tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE;
1435 	BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping,
1436 						       tot_size);
1437 	if (!BP_VF_BULLETIN_DMA(bp)->addr)
1438 		goto alloc_mem_err;
1439 
1440 	BP_VF_BULLETIN_DMA(bp)->size = tot_size;
1441 
1442 	return 0;
1443 
1444 alloc_mem_err:
1445 	return -ENOMEM;
1446 }
1447 
1448 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf,
1449 			   struct bnx2x_vf_queue *q)
1450 {
1451 	u8 cl_id = vfq_cl_id(vf, q);
1452 	u8 func_id = FW_VF_HANDLE(vf->abs_vfid);
1453 	unsigned long q_type = 0;
1454 
1455 	set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1456 	set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1457 
1458 	/* Queue State object */
1459 	bnx2x_init_queue_obj(bp, &q->sp_obj,
1460 			     cl_id, &q->cid, 1, func_id,
1461 			     bnx2x_vf_sp(bp, vf, q_data),
1462 			     bnx2x_vf_sp_map(bp, vf, q_data),
1463 			     q_type);
1464 
1465 	/* sp indication is set only when vlan/mac/etc. are initialized */
1466 	q->sp_initialized = false;
1467 
1468 	DP(BNX2X_MSG_IOV,
1469 	   "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n",
1470 	   vf->abs_vfid, q->sp_obj.func_id, q->cid);
1471 }
1472 
1473 /* called by bnx2x_nic_load */
1474 int bnx2x_iov_nic_init(struct bnx2x *bp)
1475 {
1476 	int vfid;
1477 
1478 	if (!IS_SRIOV(bp)) {
1479 		DP(BNX2X_MSG_IOV, "vfdb was not allocated\n");
1480 		return 0;
1481 	}
1482 
1483 	DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn);
1484 
1485 	/* let FLR complete ... */
1486 	msleep(100);
1487 
1488 	/* initialize vf database */
1489 	for_each_vf(bp, vfid) {
1490 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1491 
1492 		int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) *
1493 			BNX2X_CIDS_PER_VF;
1494 
1495 		union cdu_context *base_cxt = (union cdu_context *)
1496 			BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1497 			(base_vf_cid & (ILT_PAGE_CIDS-1));
1498 
1499 		DP(BNX2X_MSG_IOV,
1500 		   "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
1501 		   vf->abs_vfid, vf_sb_count(vf), base_vf_cid,
1502 		   BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt);
1503 
1504 		/* init statically provisioned resources */
1505 		bnx2x_iov_static_resc(bp, vf);
1506 
1507 		/* queues are initialized during VF-ACQUIRE */
1508 		vf->filter_state = 0;
1509 		vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id);
1510 
1511 		/*  init mcast object - This object will be re-initialized
1512 		 *  during VF-ACQUIRE with the proper cl_id and cid.
1513 		 *  It needs to be initialized here so that it can be safely
1514 		 *  handled by a subsequent FLR flow.
1515 		 */
1516 		vf->mcast_list_len = 0;
1517 		bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF,
1518 				     0xFF, 0xFF, 0xFF,
1519 				     bnx2x_vf_sp(bp, vf, mcast_rdata),
1520 				     bnx2x_vf_sp_map(bp, vf, mcast_rdata),
1521 				     BNX2X_FILTER_MCAST_PENDING,
1522 				     &vf->filter_state,
1523 				     BNX2X_OBJ_TYPE_RX_TX);
1524 
1525 		/* set the mailbox message addresses */
1526 		BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *)
1527 			(((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid *
1528 			MBX_MSG_ALIGNED_SIZE);
1529 
1530 		BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping +
1531 			vfid * MBX_MSG_ALIGNED_SIZE;
1532 
1533 		/* Enable vf mailbox */
1534 		bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
1535 	}
1536 
1537 	/* Final VF init */
1538 	for_each_vf(bp, vfid) {
1539 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1540 
1541 		/* fill in the BDF and bars */
1542 		vf->bus = bnx2x_vf_bus(bp, vfid);
1543 		vf->devfn = bnx2x_vf_devfn(bp, vfid);
1544 		bnx2x_vf_set_bars(bp, vf);
1545 
1546 		DP(BNX2X_MSG_IOV,
1547 		   "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
1548 		   vf->abs_vfid, vf->bus, vf->devfn,
1549 		   (unsigned)vf->bars[0].bar, vf->bars[0].size,
1550 		   (unsigned)vf->bars[1].bar, vf->bars[1].size,
1551 		   (unsigned)vf->bars[2].bar, vf->bars[2].size);
1552 	}
1553 
1554 	return 0;
1555 }
1556 
1557 /* called by bnx2x_chip_cleanup */
1558 int bnx2x_iov_chip_cleanup(struct bnx2x *bp)
1559 {
1560 	int i;
1561 
1562 	if (!IS_SRIOV(bp))
1563 		return 0;
1564 
1565 	/* release all the VFs */
1566 	for_each_vf(bp, i)
1567 		bnx2x_vf_release(bp, BP_VF(bp, i));
1568 
1569 	return 0;
1570 }
1571 
1572 /* called by bnx2x_init_hw_func, returns the next ilt line */
1573 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line)
1574 {
1575 	int i;
1576 	struct bnx2x_ilt *ilt = BP_ILT(bp);
1577 
1578 	if (!IS_SRIOV(bp))
1579 		return line;
1580 
1581 	/* set vfs ilt lines */
1582 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1583 		struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i);
1584 
1585 		ilt->lines[line+i].page = hw_cxt->addr;
1586 		ilt->lines[line+i].page_mapping = hw_cxt->mapping;
1587 		ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
1588 	}
1589 	return line + i;
1590 }
1591 
1592 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid)
1593 {
1594 	return ((cid >= BNX2X_FIRST_VF_CID) &&
1595 		((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS));
1596 }
1597 
1598 static
1599 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp,
1600 					struct bnx2x_vf_queue *vfq,
1601 					union event_ring_elem *elem)
1602 {
1603 	unsigned long ramrod_flags = 0;
1604 	int rc = 0;
1605 
1606 	/* Always push next commands out, don't wait here */
1607 	set_bit(RAMROD_CONT, &ramrod_flags);
1608 
1609 	switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
1610 	case BNX2X_FILTER_MAC_PENDING:
1611 		rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem,
1612 					   &ramrod_flags);
1613 		break;
1614 	case BNX2X_FILTER_VLAN_PENDING:
1615 		rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem,
1616 					    &ramrod_flags);
1617 		break;
1618 	default:
1619 		BNX2X_ERR("Unsupported classification command: %d\n",
1620 			  elem->message.data.eth_event.echo);
1621 		return;
1622 	}
1623 	if (rc < 0)
1624 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
1625 	else if (rc > 0)
1626 		DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n");
1627 }
1628 
1629 static
1630 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp,
1631 			       struct bnx2x_virtf *vf)
1632 {
1633 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
1634 	int rc;
1635 
1636 	rparam.mcast_obj = &vf->mcast_obj;
1637 	vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw);
1638 
1639 	/* If there are pending mcast commands - send them */
1640 	if (vf->mcast_obj.check_pending(&vf->mcast_obj)) {
1641 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
1642 		if (rc < 0)
1643 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
1644 				  rc);
1645 	}
1646 }
1647 
1648 static
1649 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp,
1650 				 struct bnx2x_virtf *vf)
1651 {
1652 	smp_mb__before_clear_bit();
1653 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
1654 	smp_mb__after_clear_bit();
1655 }
1656 
1657 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp,
1658 					   struct bnx2x_virtf *vf)
1659 {
1660 	vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw);
1661 }
1662 
1663 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem)
1664 {
1665 	struct bnx2x_virtf *vf;
1666 	int qidx = 0, abs_vfid;
1667 	u8 opcode;
1668 	u16 cid = 0xffff;
1669 
1670 	if (!IS_SRIOV(bp))
1671 		return 1;
1672 
1673 	/* first get the cid - the only events we handle here are cfc-delete
1674 	 * and set-mac completion
1675 	 */
1676 	opcode = elem->message.opcode;
1677 
1678 	switch (opcode) {
1679 	case EVENT_RING_OPCODE_CFC_DEL:
1680 		cid = SW_CID((__force __le32)
1681 			     elem->message.data.cfc_del_event.cid);
1682 		DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid);
1683 		break;
1684 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1685 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1686 	case EVENT_RING_OPCODE_FILTERS_RULES:
1687 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1688 		cid = (elem->message.data.eth_event.echo &
1689 		       BNX2X_SWCID_MASK);
1690 		DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid);
1691 		break;
1692 	case EVENT_RING_OPCODE_VF_FLR:
1693 		abs_vfid = elem->message.data.vf_flr_event.vf_id;
1694 		DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n",
1695 		   abs_vfid);
1696 		goto get_vf;
1697 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1698 		abs_vfid = elem->message.data.malicious_vf_event.vf_id;
1699 		BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
1700 			  abs_vfid,
1701 			  elem->message.data.malicious_vf_event.err_id);
1702 		goto get_vf;
1703 	default:
1704 		return 1;
1705 	}
1706 
1707 	/* check if the cid is the VF range */
1708 	if (!bnx2x_iov_is_vf_cid(bp, cid)) {
1709 		DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid);
1710 		return 1;
1711 	}
1712 
1713 	/* extract vf and rxq index from vf_cid - relies on the following:
1714 	 * 1. vfid on cid reflects the true abs_vfid
1715 	 * 2. The max number of VFs (per path) is 64
1716 	 */
1717 	qidx = cid & ((1 << BNX2X_VF_CID_WND)-1);
1718 	abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1719 get_vf:
1720 	vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
1721 
1722 	if (!vf) {
1723 		BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
1724 			  cid, abs_vfid);
1725 		return 0;
1726 	}
1727 
1728 	switch (opcode) {
1729 	case EVENT_RING_OPCODE_CFC_DEL:
1730 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n",
1731 		   vf->abs_vfid, qidx);
1732 		vfq_get(vf, qidx)->sp_obj.complete_cmd(bp,
1733 						       &vfq_get(vf,
1734 								qidx)->sp_obj,
1735 						       BNX2X_Q_CMD_CFC_DEL);
1736 		break;
1737 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1738 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n",
1739 		   vf->abs_vfid, qidx);
1740 		bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem);
1741 		break;
1742 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1743 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n",
1744 		   vf->abs_vfid, qidx);
1745 		bnx2x_vf_handle_mcast_eqe(bp, vf);
1746 		break;
1747 	case EVENT_RING_OPCODE_FILTERS_RULES:
1748 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n",
1749 		   vf->abs_vfid, qidx);
1750 		bnx2x_vf_handle_filters_eqe(bp, vf);
1751 		break;
1752 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1753 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n",
1754 		   vf->abs_vfid, qidx);
1755 		bnx2x_vf_handle_rss_update_eqe(bp, vf);
1756 	case EVENT_RING_OPCODE_VF_FLR:
1757 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1758 		/* Do nothing for now */
1759 		return 0;
1760 	}
1761 
1762 	return 0;
1763 }
1764 
1765 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid)
1766 {
1767 	/* extract the vf from vf_cid - relies on the following:
1768 	 * 1. vfid on cid reflects the true abs_vfid
1769 	 * 2. The max number of VFs (per path) is 64
1770 	 */
1771 	int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1772 	return bnx2x_vf_by_abs_fid(bp, abs_vfid);
1773 }
1774 
1775 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid,
1776 				struct bnx2x_queue_sp_obj **q_obj)
1777 {
1778 	struct bnx2x_virtf *vf;
1779 
1780 	if (!IS_SRIOV(bp))
1781 		return;
1782 
1783 	vf = bnx2x_vf_by_cid(bp, vf_cid);
1784 
1785 	if (vf) {
1786 		/* extract queue index from vf_cid - relies on the following:
1787 		 * 1. vfid on cid reflects the true abs_vfid
1788 		 * 2. The max number of VFs (per path) is 64
1789 		 */
1790 		int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1);
1791 		*q_obj = &bnx2x_vfq(vf, q_index, sp_obj);
1792 	} else {
1793 		BNX2X_ERR("No vf matching cid %d\n", vf_cid);
1794 	}
1795 }
1796 
1797 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp)
1798 {
1799 	int i;
1800 	int first_queue_query_index, num_queues_req;
1801 	dma_addr_t cur_data_offset;
1802 	struct stats_query_entry *cur_query_entry;
1803 	u8 stats_count = 0;
1804 	bool is_fcoe = false;
1805 
1806 	if (!IS_SRIOV(bp))
1807 		return;
1808 
1809 	if (!NO_FCOE(bp))
1810 		is_fcoe = true;
1811 
1812 	/* fcoe adds one global request and one queue request */
1813 	num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe;
1814 	first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX -
1815 		(is_fcoe ? 0 : 1);
1816 
1817 	DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1818 	       "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
1819 	       BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index,
1820 	       first_queue_query_index + num_queues_req);
1821 
1822 	cur_data_offset = bp->fw_stats_data_mapping +
1823 		offsetof(struct bnx2x_fw_stats_data, queue_stats) +
1824 		num_queues_req * sizeof(struct per_queue_stats);
1825 
1826 	cur_query_entry = &bp->fw_stats_req->
1827 		query[first_queue_query_index + num_queues_req];
1828 
1829 	for_each_vf(bp, i) {
1830 		int j;
1831 		struct bnx2x_virtf *vf = BP_VF(bp, i);
1832 
1833 		if (vf->state != VF_ENABLED) {
1834 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1835 			       "vf %d not enabled so no stats for it\n",
1836 			       vf->abs_vfid);
1837 			continue;
1838 		}
1839 
1840 		DP(BNX2X_MSG_IOV, "add addresses for vf %d\n", vf->abs_vfid);
1841 		for_each_vfq(vf, j) {
1842 			struct bnx2x_vf_queue *rxq = vfq_get(vf, j);
1843 
1844 			dma_addr_t q_stats_addr =
1845 				vf->fw_stat_map + j * vf->stats_stride;
1846 
1847 			/* collect stats fro active queues only */
1848 			if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) ==
1849 			    BNX2X_Q_LOGICAL_STATE_STOPPED)
1850 				continue;
1851 
1852 			/* create stats query entry for this queue */
1853 			cur_query_entry->kind = STATS_TYPE_QUEUE;
1854 			cur_query_entry->index = vfq_stat_id(vf, rxq);
1855 			cur_query_entry->funcID =
1856 				cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid));
1857 			cur_query_entry->address.hi =
1858 				cpu_to_le32(U64_HI(q_stats_addr));
1859 			cur_query_entry->address.lo =
1860 				cpu_to_le32(U64_LO(q_stats_addr));
1861 			DP(BNX2X_MSG_IOV,
1862 			   "added address %x %x for vf %d queue %d client %d\n",
1863 			   cur_query_entry->address.hi,
1864 			   cur_query_entry->address.lo, cur_query_entry->funcID,
1865 			   j, cur_query_entry->index);
1866 			cur_query_entry++;
1867 			cur_data_offset += sizeof(struct per_queue_stats);
1868 			stats_count++;
1869 
1870 			/* all stats are coalesced to the leading queue */
1871 			if (vf->cfg_flags & VF_CFG_STATS_COALESCE)
1872 				break;
1873 		}
1874 	}
1875 	bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count;
1876 }
1877 
1878 static inline
1879 struct bnx2x_virtf *__vf_from_stat_id(struct bnx2x *bp, u8 stat_id)
1880 {
1881 	int i;
1882 	struct bnx2x_virtf *vf = NULL;
1883 
1884 	for_each_vf(bp, i) {
1885 		vf = BP_VF(bp, i);
1886 		if (stat_id >= vf->igu_base_id &&
1887 		    stat_id < vf->igu_base_id + vf_sb_count(vf))
1888 			break;
1889 	}
1890 	return vf;
1891 }
1892 
1893 /* VF API helpers */
1894 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid,
1895 				u8 enable)
1896 {
1897 	u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4;
1898 	u32 val = enable ? (abs_vfid | (1 << 6)) : 0;
1899 
1900 	REG_WR(bp, reg, val);
1901 }
1902 
1903 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf)
1904 {
1905 	int i;
1906 
1907 	for_each_vfq(vf, i)
1908 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
1909 				    vfq_qzone_id(vf, vfq_get(vf, i)), false);
1910 }
1911 
1912 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf)
1913 {
1914 	u32 val;
1915 
1916 	/* clear the VF configuration - pretend */
1917 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
1918 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
1919 	val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN |
1920 		 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK);
1921 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
1922 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1923 }
1924 
1925 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf)
1926 {
1927 	return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF),
1928 		     BNX2X_VF_MAX_QUEUES);
1929 }
1930 
1931 static
1932 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf,
1933 			    struct vf_pf_resc_request *req_resc)
1934 {
1935 	u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1936 	u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1937 
1938 	/* Save a vlan filter for the Hypervisor */
1939 	return ((req_resc->num_rxqs <= rxq_cnt) &&
1940 		(req_resc->num_txqs <= txq_cnt) &&
1941 		(req_resc->num_sbs <= vf_sb_count(vf))   &&
1942 		(req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) &&
1943 		(req_resc->num_vlan_filters <= vf_vlan_rules_visible_cnt(vf)));
1944 }
1945 
1946 /* CORE VF API */
1947 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf,
1948 		     struct vf_pf_resc_request *resc)
1949 {
1950 	int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) *
1951 		BNX2X_CIDS_PER_VF;
1952 
1953 	union cdu_context *base_cxt = (union cdu_context *)
1954 		BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1955 		(base_vf_cid & (ILT_PAGE_CIDS-1));
1956 	int i;
1957 
1958 	/* if state is 'acquired' the VF was not released or FLR'd, in
1959 	 * this case the returned resources match the acquired already
1960 	 * acquired resources. Verify that the requested numbers do
1961 	 * not exceed the already acquired numbers.
1962 	 */
1963 	if (vf->state == VF_ACQUIRED) {
1964 		DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
1965 		   vf->abs_vfid);
1966 
1967 		if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
1968 			BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
1969 				  vf->abs_vfid);
1970 			return -EINVAL;
1971 		}
1972 		return 0;
1973 	}
1974 
1975 	/* Otherwise vf state must be 'free' or 'reset' */
1976 	if (vf->state != VF_FREE && vf->state != VF_RESET) {
1977 		BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
1978 			  vf->abs_vfid, vf->state);
1979 		return -EINVAL;
1980 	}
1981 
1982 	/* static allocation:
1983 	 * the global maximum number are fixed per VF. Fail the request if
1984 	 * requested number exceed these globals
1985 	 */
1986 	if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
1987 		DP(BNX2X_MSG_IOV,
1988 		   "cannot fulfill vf resource request. Placing maximal available values in response\n");
1989 		/* set the max resource in the vf */
1990 		return -ENOMEM;
1991 	}
1992 
1993 	/* Set resources counters - 0 request means max available */
1994 	vf_sb_count(vf) = resc->num_sbs;
1995 	vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
1996 	vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
1997 	if (resc->num_mac_filters)
1998 		vf_mac_rules_cnt(vf) = resc->num_mac_filters;
1999 	/* Add an additional vlan filter credit for the hypervisor */
2000 	bnx2x_iov_re_set_vlan_filters(bp, vf, resc->num_vlan_filters + 1);
2001 
2002 	DP(BNX2X_MSG_IOV,
2003 	   "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
2004 	   vf_sb_count(vf), vf_rxq_count(vf),
2005 	   vf_txq_count(vf), vf_mac_rules_cnt(vf),
2006 	   vf_vlan_rules_visible_cnt(vf));
2007 
2008 	/* Initialize the queues */
2009 	if (!vf->vfqs) {
2010 		DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n");
2011 		return -EINVAL;
2012 	}
2013 
2014 	for_each_vfq(vf, i) {
2015 		struct bnx2x_vf_queue *q = vfq_get(vf, i);
2016 
2017 		if (!q) {
2018 			BNX2X_ERR("q number %d was not allocated\n", i);
2019 			return -EINVAL;
2020 		}
2021 
2022 		q->index = i;
2023 		q->cxt = &((base_cxt + i)->eth);
2024 		q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i;
2025 
2026 		DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
2027 		   vf->abs_vfid, i, q->index, q->cid, q->cxt);
2028 
2029 		/* init SP objects */
2030 		bnx2x_vfq_init(bp, vf, q);
2031 	}
2032 	vf->state = VF_ACQUIRED;
2033 	return 0;
2034 }
2035 
2036 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map)
2037 {
2038 	struct bnx2x_func_init_params func_init = {0};
2039 	u16 flags = 0;
2040 	int i;
2041 
2042 	/* the sb resources are initialized at this point, do the
2043 	 * FW/HW initializations
2044 	 */
2045 	for_each_vf_sb(vf, i)
2046 		bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true,
2047 			      vf_igu_sb(vf, i), vf_igu_sb(vf, i));
2048 
2049 	/* Sanity checks */
2050 	if (vf->state != VF_ACQUIRED) {
2051 		DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n",
2052 		   vf->abs_vfid, vf->state);
2053 		return -EINVAL;
2054 	}
2055 
2056 	/* let FLR complete ... */
2057 	msleep(100);
2058 
2059 	/* FLR cleanup epilogue */
2060 	if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid))
2061 		return -EBUSY;
2062 
2063 	/* reset IGU VF statistics: MSIX */
2064 	REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0);
2065 
2066 	/* vf init */
2067 	if (vf->cfg_flags & VF_CFG_STATS)
2068 		flags |= (FUNC_FLG_STATS | FUNC_FLG_SPQ);
2069 
2070 	if (vf->cfg_flags & VF_CFG_TPA)
2071 		flags |= FUNC_FLG_TPA;
2072 
2073 	if (is_vf_multi(vf))
2074 		flags |= FUNC_FLG_RSS;
2075 
2076 	/* function setup */
2077 	func_init.func_flgs = flags;
2078 	func_init.pf_id = BP_FUNC(bp);
2079 	func_init.func_id = FW_VF_HANDLE(vf->abs_vfid);
2080 	func_init.fw_stat_map = vf->fw_stat_map;
2081 	func_init.spq_map = vf->spq_map;
2082 	func_init.spq_prod = 0;
2083 	bnx2x_func_init(bp, &func_init);
2084 
2085 	/* Enable the vf */
2086 	bnx2x_vf_enable_access(bp, vf->abs_vfid);
2087 	bnx2x_vf_enable_traffic(bp, vf);
2088 
2089 	/* queue protection table */
2090 	for_each_vfq(vf, i)
2091 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
2092 				    vfq_qzone_id(vf, vfq_get(vf, i)), true);
2093 
2094 	vf->state = VF_ENABLED;
2095 
2096 	/* update vf bulletin board */
2097 	bnx2x_post_vf_bulletin(bp, vf->index);
2098 
2099 	return 0;
2100 }
2101 
2102 struct set_vf_state_cookie {
2103 	struct bnx2x_virtf *vf;
2104 	u8 state;
2105 };
2106 
2107 static void bnx2x_set_vf_state(void *cookie)
2108 {
2109 	struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie;
2110 
2111 	p->vf->state = p->state;
2112 }
2113 
2114 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf)
2115 {
2116 	int rc = 0, i;
2117 
2118 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2119 
2120 	/* Close all queues */
2121 	for (i = 0; i < vf_rxq_count(vf); i++) {
2122 		rc = bnx2x_vf_queue_teardown(bp, vf, i);
2123 		if (rc)
2124 			goto op_err;
2125 	}
2126 
2127 	/* disable the interrupts */
2128 	DP(BNX2X_MSG_IOV, "disabling igu\n");
2129 	bnx2x_vf_igu_disable(bp, vf);
2130 
2131 	/* disable the VF */
2132 	DP(BNX2X_MSG_IOV, "clearing qtbl\n");
2133 	bnx2x_vf_clr_qtbl(bp, vf);
2134 
2135 	/* need to make sure there are no outstanding stats ramrods which may
2136 	 * cause the device to access the VF's stats buffer which it will free
2137 	 * as soon as we return from the close flow.
2138 	 */
2139 	{
2140 		struct set_vf_state_cookie cookie;
2141 
2142 		cookie.vf = vf;
2143 		cookie.state = VF_ACQUIRED;
2144 		bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie);
2145 	}
2146 
2147 	DP(BNX2X_MSG_IOV, "set state to acquired\n");
2148 
2149 	return 0;
2150 op_err:
2151 	BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc);
2152 	return rc;
2153 }
2154 
2155 /* VF release can be called either: 1. The VF was acquired but
2156  * not enabled 2. the vf was enabled or in the process of being
2157  * enabled
2158  */
2159 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf)
2160 {
2161 	int rc;
2162 
2163 	DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid,
2164 	   vf->state == VF_FREE ? "Free" :
2165 	   vf->state == VF_ACQUIRED ? "Acquired" :
2166 	   vf->state == VF_ENABLED ? "Enabled" :
2167 	   vf->state == VF_RESET ? "Reset" :
2168 	   "Unknown");
2169 
2170 	switch (vf->state) {
2171 	case VF_ENABLED:
2172 		rc = bnx2x_vf_close(bp, vf);
2173 		if (rc)
2174 			goto op_err;
2175 		/* Fallthrough to release resources */
2176 	case VF_ACQUIRED:
2177 		DP(BNX2X_MSG_IOV, "about to free resources\n");
2178 		bnx2x_vf_free_resc(bp, vf);
2179 		break;
2180 
2181 	case VF_FREE:
2182 	case VF_RESET:
2183 	default:
2184 		break;
2185 	}
2186 	return 0;
2187 op_err:
2188 	BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc);
2189 	return rc;
2190 }
2191 
2192 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2193 			struct bnx2x_config_rss_params *rss)
2194 {
2195 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2196 	set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags);
2197 	return bnx2x_config_rss(bp, rss);
2198 }
2199 
2200 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2201 			struct vfpf_tpa_tlv *tlv,
2202 			struct bnx2x_queue_update_tpa_params *params)
2203 {
2204 	aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr;
2205 	struct bnx2x_queue_state_params qstate;
2206 	int qid, rc = 0;
2207 
2208 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2209 
2210 	/* Set ramrod params */
2211 	memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
2212 	memcpy(&qstate.params.update_tpa, params,
2213 	       sizeof(struct bnx2x_queue_update_tpa_params));
2214 	qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA;
2215 	set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
2216 
2217 	for (qid = 0; qid < vf_rxq_count(vf); qid++) {
2218 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
2219 		qstate.params.update_tpa.sge_map = sge_addr[qid];
2220 		DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n",
2221 		   vf->abs_vfid, qid, U64_HI(sge_addr[qid]),
2222 		   U64_LO(sge_addr[qid]));
2223 		rc = bnx2x_queue_state_change(bp, &qstate);
2224 		if (rc) {
2225 			BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n",
2226 				  U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]),
2227 				  vf->abs_vfid, qid);
2228 			return rc;
2229 		}
2230 	}
2231 
2232 	return rc;
2233 }
2234 
2235 /* VF release ~ VF close + VF release-resources
2236  * Release is the ultimate SW shutdown and is called whenever an
2237  * irrecoverable error is encountered.
2238  */
2239 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf)
2240 {
2241 	int rc;
2242 
2243 	DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid);
2244 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2245 
2246 	rc = bnx2x_vf_free(bp, vf);
2247 	if (rc)
2248 		WARN(rc,
2249 		     "VF[%d] Failed to allocate resources for release op- rc=%d\n",
2250 		     vf->abs_vfid, rc);
2251 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2252 	return rc;
2253 }
2254 
2255 static inline void bnx2x_vf_get_sbdf(struct bnx2x *bp,
2256 			      struct bnx2x_virtf *vf, u32 *sbdf)
2257 {
2258 	*sbdf = vf->devfn | (vf->bus << 8);
2259 }
2260 
2261 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2262 			      enum channel_tlvs tlv)
2263 {
2264 	/* we don't lock the channel for unsupported tlvs */
2265 	if (!bnx2x_tlv_supported(tlv)) {
2266 		BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n");
2267 		return;
2268 	}
2269 
2270 	/* lock the channel */
2271 	mutex_lock(&vf->op_mutex);
2272 
2273 	/* record the locking op */
2274 	vf->op_current = tlv;
2275 
2276 	/* log the lock */
2277 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n",
2278 	   vf->abs_vfid, tlv);
2279 }
2280 
2281 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2282 				enum channel_tlvs expected_tlv)
2283 {
2284 	enum channel_tlvs current_tlv;
2285 
2286 	if (!vf) {
2287 		BNX2X_ERR("VF was %p\n", vf);
2288 		return;
2289 	}
2290 
2291 	current_tlv = vf->op_current;
2292 
2293 	/* we don't unlock the channel for unsupported tlvs */
2294 	if (!bnx2x_tlv_supported(expected_tlv))
2295 		return;
2296 
2297 	WARN(expected_tlv != vf->op_current,
2298 	     "lock mismatch: expected %d found %d", expected_tlv,
2299 	     vf->op_current);
2300 
2301 	/* record the locking op */
2302 	vf->op_current = CHANNEL_TLV_NONE;
2303 
2304 	/* lock the channel */
2305 	mutex_unlock(&vf->op_mutex);
2306 
2307 	/* log the unlock */
2308 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n",
2309 	   vf->abs_vfid, vf->op_current);
2310 }
2311 
2312 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable)
2313 {
2314 	struct bnx2x_queue_state_params q_params;
2315 	u32 prev_flags;
2316 	int i, rc;
2317 
2318 	/* Verify changes are needed and record current Tx switching state */
2319 	prev_flags = bp->flags;
2320 	if (enable)
2321 		bp->flags |= TX_SWITCHING;
2322 	else
2323 		bp->flags &= ~TX_SWITCHING;
2324 	if (prev_flags == bp->flags)
2325 		return 0;
2326 
2327 	/* Verify state enables the sending of queue ramrods */
2328 	if ((bp->state != BNX2X_STATE_OPEN) ||
2329 	    (bnx2x_get_q_logical_state(bp,
2330 				      &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) !=
2331 	     BNX2X_Q_LOGICAL_STATE_ACTIVE))
2332 		return 0;
2333 
2334 	/* send q. update ramrod to configure Tx switching */
2335 	memset(&q_params, 0, sizeof(q_params));
2336 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2337 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
2338 	__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
2339 		  &q_params.params.update.update_flags);
2340 	if (enable)
2341 		__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2342 			  &q_params.params.update.update_flags);
2343 	else
2344 		__clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2345 			    &q_params.params.update.update_flags);
2346 
2347 	/* send the ramrod on all the queues of the PF */
2348 	for_each_eth_queue(bp, i) {
2349 		struct bnx2x_fastpath *fp = &bp->fp[i];
2350 
2351 		/* Set the appropriate Queue object */
2352 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
2353 
2354 		/* Update the Queue state */
2355 		rc = bnx2x_queue_state_change(bp, &q_params);
2356 		if (rc) {
2357 			BNX2X_ERR("Failed to configure Tx switching\n");
2358 			return rc;
2359 		}
2360 	}
2361 
2362 	DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled");
2363 	return 0;
2364 }
2365 
2366 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param)
2367 {
2368 	struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev));
2369 
2370 	if (!IS_SRIOV(bp)) {
2371 		BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n");
2372 		return -EINVAL;
2373 	}
2374 
2375 	DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
2376 	   num_vfs_param, BNX2X_NR_VIRTFN(bp));
2377 
2378 	/* HW channel is only operational when PF is up */
2379 	if (bp->state != BNX2X_STATE_OPEN) {
2380 		BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
2381 		return -EINVAL;
2382 	}
2383 
2384 	/* we are always bound by the total_vfs in the configuration space */
2385 	if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) {
2386 		BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
2387 			  num_vfs_param, BNX2X_NR_VIRTFN(bp));
2388 		num_vfs_param = BNX2X_NR_VIRTFN(bp);
2389 	}
2390 
2391 	bp->requested_nr_virtfn = num_vfs_param;
2392 	if (num_vfs_param == 0) {
2393 		bnx2x_set_pf_tx_switching(bp, false);
2394 		pci_disable_sriov(dev);
2395 		return 0;
2396 	} else {
2397 		return bnx2x_enable_sriov(bp);
2398 	}
2399 }
2400 
2401 #define IGU_ENTRY_SIZE 4
2402 
2403 int bnx2x_enable_sriov(struct bnx2x *bp)
2404 {
2405 	int rc = 0, req_vfs = bp->requested_nr_virtfn;
2406 	int vf_idx, sb_idx, vfq_idx, qcount, first_vf;
2407 	u32 igu_entry, address;
2408 	u16 num_vf_queues;
2409 
2410 	if (req_vfs == 0)
2411 		return 0;
2412 
2413 	first_vf = bp->vfdb->sriov.first_vf_in_pf;
2414 
2415 	/* statically distribute vf sb pool between VFs */
2416 	num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES,
2417 			      BP_VFDB(bp)->vf_sbs_pool / req_vfs);
2418 
2419 	/* zero previous values learned from igu cam */
2420 	for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) {
2421 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2422 
2423 		vf->sb_count = 0;
2424 		vf_sb_count(BP_VF(bp, vf_idx)) = 0;
2425 	}
2426 	bp->vfdb->vf_sbs_pool = 0;
2427 
2428 	/* prepare IGU cam */
2429 	sb_idx = BP_VFDB(bp)->first_vf_igu_entry;
2430 	address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE;
2431 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2432 		for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) {
2433 			igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT |
2434 				vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT |
2435 				IGU_REG_MAPPING_MEMORY_VALID;
2436 			DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n",
2437 			   sb_idx, vf_idx);
2438 			REG_WR(bp, address, igu_entry);
2439 			sb_idx++;
2440 			address += IGU_ENTRY_SIZE;
2441 		}
2442 	}
2443 
2444 	/* Reinitialize vf database according to igu cam */
2445 	bnx2x_get_vf_igu_cam_info(bp);
2446 
2447 	DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n",
2448 	   BP_VFDB(bp)->vf_sbs_pool, num_vf_queues);
2449 
2450 	qcount = 0;
2451 	for_each_vf(bp, vf_idx) {
2452 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2453 
2454 		/* set local queue arrays */
2455 		vf->vfqs = &bp->vfdb->vfqs[qcount];
2456 		qcount += vf_sb_count(vf);
2457 		bnx2x_iov_static_resc(bp, vf);
2458 	}
2459 
2460 	/* prepare msix vectors in VF configuration space - the value in the
2461 	 * PCI configuration space should be the index of the last entry,
2462 	 * namely one less than the actual size of the table
2463 	 */
2464 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2465 		bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx));
2466 		REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL,
2467 		       num_vf_queues - 1);
2468 		DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n",
2469 		   vf_idx, num_vf_queues - 1);
2470 	}
2471 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
2472 
2473 	/* enable sriov. This will probe all the VFs, and consequentially cause
2474 	 * the "acquire" messages to appear on the VF PF channel.
2475 	 */
2476 	DP(BNX2X_MSG_IOV, "about to call enable sriov\n");
2477 	bnx2x_disable_sriov(bp);
2478 
2479 	rc = bnx2x_set_pf_tx_switching(bp, true);
2480 	if (rc)
2481 		return rc;
2482 
2483 	rc = pci_enable_sriov(bp->pdev, req_vfs);
2484 	if (rc) {
2485 		BNX2X_ERR("pci_enable_sriov failed with %d\n", rc);
2486 		return rc;
2487 	}
2488 	DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs);
2489 	return req_vfs;
2490 }
2491 
2492 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp)
2493 {
2494 	int vfidx;
2495 	struct pf_vf_bulletin_content *bulletin;
2496 
2497 	DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n");
2498 	for_each_vf(bp, vfidx) {
2499 	bulletin = BP_VF_BULLETIN(bp, vfidx);
2500 		if (BP_VF(bp, vfidx)->cfg_flags & VF_CFG_VLAN)
2501 			bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0);
2502 	}
2503 }
2504 
2505 void bnx2x_disable_sriov(struct bnx2x *bp)
2506 {
2507 	pci_disable_sriov(bp->pdev);
2508 }
2509 
2510 static int bnx2x_vf_ndo_prep(struct bnx2x *bp, int vfidx,
2511 			     struct bnx2x_virtf **vf,
2512 			     struct pf_vf_bulletin_content **bulletin)
2513 {
2514 	if (bp->state != BNX2X_STATE_OPEN) {
2515 		BNX2X_ERR("vf ndo called though PF is down\n");
2516 		return -EINVAL;
2517 	}
2518 
2519 	if (!IS_SRIOV(bp)) {
2520 		BNX2X_ERR("vf ndo called though sriov is disabled\n");
2521 		return -EINVAL;
2522 	}
2523 
2524 	if (vfidx >= BNX2X_NR_VIRTFN(bp)) {
2525 		BNX2X_ERR("vf ndo called for uninitialized VF. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
2526 			  vfidx, BNX2X_NR_VIRTFN(bp));
2527 		return -EINVAL;
2528 	}
2529 
2530 	/* init members */
2531 	*vf = BP_VF(bp, vfidx);
2532 	*bulletin = BP_VF_BULLETIN(bp, vfidx);
2533 
2534 	if (!*vf) {
2535 		BNX2X_ERR("vf ndo called but vf struct is null. vfidx was %d\n",
2536 			  vfidx);
2537 		return -EINVAL;
2538 	}
2539 
2540 	if (!(*vf)->vfqs) {
2541 		BNX2X_ERR("vf ndo called but vfqs struct is null. Was ndo invoked before dynamically enabling SR-IOV? vfidx was %d\n",
2542 			  vfidx);
2543 		return -EINVAL;
2544 	}
2545 
2546 	if (!*bulletin) {
2547 		BNX2X_ERR("vf ndo called but Bulletin Board struct is null. vfidx was %d\n",
2548 			  vfidx);
2549 		return -EINVAL;
2550 	}
2551 
2552 	return 0;
2553 }
2554 
2555 int bnx2x_get_vf_config(struct net_device *dev, int vfidx,
2556 			struct ifla_vf_info *ivi)
2557 {
2558 	struct bnx2x *bp = netdev_priv(dev);
2559 	struct bnx2x_virtf *vf = NULL;
2560 	struct pf_vf_bulletin_content *bulletin = NULL;
2561 	struct bnx2x_vlan_mac_obj *mac_obj;
2562 	struct bnx2x_vlan_mac_obj *vlan_obj;
2563 	int rc;
2564 
2565 	/* sanity and init */
2566 	rc = bnx2x_vf_ndo_prep(bp, vfidx, &vf, &bulletin);
2567 	if (rc)
2568 		return rc;
2569 	mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2570 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2571 	if (!mac_obj || !vlan_obj) {
2572 		BNX2X_ERR("VF partially initialized\n");
2573 		return -EINVAL;
2574 	}
2575 
2576 	ivi->vf = vfidx;
2577 	ivi->qos = 0;
2578 	ivi->tx_rate = 10000; /* always 10G. TBA take from link struct */
2579 	ivi->spoofchk = 1; /*always enabled */
2580 	if (vf->state == VF_ENABLED) {
2581 		/* mac and vlan are in vlan_mac objects */
2582 		if (bnx2x_validate_vf_sp_objs(bp, vf, false)) {
2583 			mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac,
2584 						0, ETH_ALEN);
2585 			vlan_obj->get_n_elements(bp, vlan_obj, 1,
2586 						 (u8 *)&ivi->vlan, 0,
2587 						 VLAN_HLEN);
2588 		}
2589 	} else {
2590 		/* mac */
2591 		if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID))
2592 			/* mac configured by ndo so its in bulletin board */
2593 			memcpy(&ivi->mac, bulletin->mac, ETH_ALEN);
2594 		else
2595 			/* function has not been loaded yet. Show mac as 0s */
2596 			memset(&ivi->mac, 0, ETH_ALEN);
2597 
2598 		/* vlan */
2599 		if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2600 			/* vlan configured by ndo so its in bulletin board */
2601 			memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN);
2602 		else
2603 			/* function has not been loaded yet. Show vlans as 0s */
2604 			memset(&ivi->vlan, 0, VLAN_HLEN);
2605 	}
2606 
2607 	return 0;
2608 }
2609 
2610 /* New mac for VF. Consider these cases:
2611  * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
2612  *    supply at acquire.
2613  * 2. VF has already been acquired but has not yet initialized - store in local
2614  *    bulletin board. mac will be posted on VF bulletin board after VF init. VF
2615  *    will configure this mac when it is ready.
2616  * 3. VF has already initialized but has not yet setup a queue - post the new
2617  *    mac on VF's bulletin board right now. VF will configure this mac when it
2618  *    is ready.
2619  * 4. VF has already set a queue - delete any macs already configured for this
2620  *    queue and manually config the new mac.
2621  * In any event, once this function has been called refuse any attempts by the
2622  * VF to configure any mac for itself except for this mac. In case of a race
2623  * where the VF fails to see the new post on its bulletin board before sending a
2624  * mac configuration request, the PF will simply fail the request and VF can try
2625  * again after consulting its bulletin board.
2626  */
2627 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac)
2628 {
2629 	struct bnx2x *bp = netdev_priv(dev);
2630 	int rc, q_logical_state;
2631 	struct bnx2x_virtf *vf = NULL;
2632 	struct pf_vf_bulletin_content *bulletin = NULL;
2633 
2634 	/* sanity and init */
2635 	rc = bnx2x_vf_ndo_prep(bp, vfidx, &vf, &bulletin);
2636 	if (rc)
2637 		return rc;
2638 	if (!is_valid_ether_addr(mac)) {
2639 		BNX2X_ERR("mac address invalid\n");
2640 		return -EINVAL;
2641 	}
2642 
2643 	/* update PF's copy of the VF's bulletin. Will no longer accept mac
2644 	 * configuration requests from vf unless match this mac
2645 	 */
2646 	bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID;
2647 	memcpy(bulletin->mac, mac, ETH_ALEN);
2648 
2649 	/* Post update on VF's bulletin board */
2650 	rc = bnx2x_post_vf_bulletin(bp, vfidx);
2651 	if (rc) {
2652 		BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2653 		return rc;
2654 	}
2655 
2656 	q_logical_state =
2657 		bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj));
2658 	if (vf->state == VF_ENABLED &&
2659 	    q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
2660 		/* configure the mac in device on this vf's queue */
2661 		unsigned long ramrod_flags = 0;
2662 		struct bnx2x_vlan_mac_obj *mac_obj;
2663 
2664 		/* User should be able to see failure reason in system logs */
2665 		if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2666 			return -EINVAL;
2667 
2668 		/* must lock vfpf channel to protect against vf flows */
2669 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2670 
2671 		/* remove existing eth macs */
2672 		mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2673 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true);
2674 		if (rc) {
2675 			BNX2X_ERR("failed to delete eth macs\n");
2676 			rc = -EINVAL;
2677 			goto out;
2678 		}
2679 
2680 		/* remove existing uc list macs */
2681 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true);
2682 		if (rc) {
2683 			BNX2X_ERR("failed to delete uc_list macs\n");
2684 			rc = -EINVAL;
2685 			goto out;
2686 		}
2687 
2688 		/* configure the new mac to device */
2689 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2690 		bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true,
2691 				  BNX2X_ETH_MAC, &ramrod_flags);
2692 
2693 out:
2694 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2695 	}
2696 
2697 	return 0;
2698 }
2699 
2700 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos)
2701 {
2702 	struct bnx2x_queue_state_params q_params = {NULL};
2703 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
2704 	struct bnx2x_queue_update_params *update_params;
2705 	struct pf_vf_bulletin_content *bulletin = NULL;
2706 	struct bnx2x_rx_mode_ramrod_params rx_ramrod;
2707 	struct bnx2x *bp = netdev_priv(dev);
2708 	struct bnx2x_vlan_mac_obj *vlan_obj;
2709 	unsigned long vlan_mac_flags = 0;
2710 	unsigned long ramrod_flags = 0;
2711 	struct bnx2x_virtf *vf = NULL;
2712 	unsigned long accept_flags;
2713 	int rc;
2714 
2715 	/* sanity and init */
2716 	rc = bnx2x_vf_ndo_prep(bp, vfidx, &vf, &bulletin);
2717 	if (rc)
2718 		return rc;
2719 
2720 	if (vlan > 4095) {
2721 		BNX2X_ERR("illegal vlan value %d\n", vlan);
2722 		return -EINVAL;
2723 	}
2724 
2725 	DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n",
2726 	   vfidx, vlan, 0);
2727 
2728 	/* update PF's copy of the VF's bulletin. No point in posting the vlan
2729 	 * to the VF since it doesn't have anything to do with it. But it useful
2730 	 * to store it here in case the VF is not up yet and we can only
2731 	 * configure the vlan later when it does. Treat vlan id 0 as remove the
2732 	 * Host tag.
2733 	 */
2734 	if (vlan > 0)
2735 		bulletin->valid_bitmap |= 1 << VLAN_VALID;
2736 	else
2737 		bulletin->valid_bitmap &= ~(1 << VLAN_VALID);
2738 	bulletin->vlan = vlan;
2739 
2740 	/* is vf initialized and queue set up? */
2741 	if (vf->state != VF_ENABLED ||
2742 	    bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2743 	    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2744 		return rc;
2745 
2746 	/* User should be able to see error in system logs */
2747 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2748 		return -EINVAL;
2749 
2750 	/* must lock vfpf channel to protect against vf flows */
2751 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2752 
2753 	/* remove existing vlans */
2754 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2755 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2756 	rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags,
2757 				  &ramrod_flags);
2758 	if (rc) {
2759 		BNX2X_ERR("failed to delete vlans\n");
2760 		rc = -EINVAL;
2761 		goto out;
2762 	}
2763 
2764 	/* need to remove/add the VF's accept_any_vlan bit */
2765 	accept_flags = bnx2x_leading_vfq(vf, accept_flags);
2766 	if (vlan)
2767 		clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2768 	else
2769 		set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2770 
2771 	bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf,
2772 			      accept_flags);
2773 	bnx2x_leading_vfq(vf, accept_flags) = accept_flags;
2774 	bnx2x_config_rx_mode(bp, &rx_ramrod);
2775 
2776 	/* configure the new vlan to device */
2777 	memset(&ramrod_param, 0, sizeof(ramrod_param));
2778 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2779 	ramrod_param.vlan_mac_obj = vlan_obj;
2780 	ramrod_param.ramrod_flags = ramrod_flags;
2781 	set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
2782 		&ramrod_param.user_req.vlan_mac_flags);
2783 	ramrod_param.user_req.u.vlan.vlan = vlan;
2784 	ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
2785 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
2786 	if (rc) {
2787 		BNX2X_ERR("failed to configure vlan\n");
2788 		rc =  -EINVAL;
2789 		goto out;
2790 	}
2791 
2792 	/* send queue update ramrod to configure default vlan and silent
2793 	 * vlan removal
2794 	 */
2795 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2796 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
2797 	q_params.q_obj = &bnx2x_leading_vfq(vf, sp_obj);
2798 	update_params = &q_params.params.update;
2799 	__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
2800 		  &update_params->update_flags);
2801 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
2802 		  &update_params->update_flags);
2803 	if (vlan == 0) {
2804 		/* if vlan is 0 then we want to leave the VF traffic
2805 		 * untagged, and leave the incoming traffic untouched
2806 		 * (i.e. do not remove any vlan tags).
2807 		 */
2808 		__clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2809 			    &update_params->update_flags);
2810 		__clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2811 			    &update_params->update_flags);
2812 	} else {
2813 		/* configure default vlan to vf queue and set silent
2814 		 * vlan removal (the vf remains unaware of this vlan).
2815 		 */
2816 		__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2817 			  &update_params->update_flags);
2818 		__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2819 			  &update_params->update_flags);
2820 		update_params->def_vlan = vlan;
2821 		update_params->silent_removal_value =
2822 			vlan & VLAN_VID_MASK;
2823 		update_params->silent_removal_mask = VLAN_VID_MASK;
2824 	}
2825 
2826 	/* Update the Queue state */
2827 	rc = bnx2x_queue_state_change(bp, &q_params);
2828 	if (rc) {
2829 		BNX2X_ERR("Failed to configure default VLAN\n");
2830 		goto out;
2831 	}
2832 
2833 
2834 	/* clear the flag indicating that this VF needs its vlan
2835 	 * (will only be set if the HV configured the Vlan before vf was
2836 	 * up and we were called because the VF came up later
2837 	 */
2838 out:
2839 	vf->cfg_flags &= ~VF_CFG_VLAN;
2840 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2841 
2842 	return rc;
2843 }
2844 
2845 /* crc is the first field in the bulletin board. Compute the crc over the
2846  * entire bulletin board excluding the crc field itself. Use the length field
2847  * as the Bulletin Board was posted by a PF with possibly a different version
2848  * from the vf which will sample it. Therefore, the length is computed by the
2849  * PF and the used blindly by the VF.
2850  */
2851 u32 bnx2x_crc_vf_bulletin(struct bnx2x *bp,
2852 			  struct pf_vf_bulletin_content *bulletin)
2853 {
2854 	return crc32(BULLETIN_CRC_SEED,
2855 		 ((u8 *)bulletin) + sizeof(bulletin->crc),
2856 		 bulletin->length - sizeof(bulletin->crc));
2857 }
2858 
2859 /* Check for new posts on the bulletin board */
2860 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp)
2861 {
2862 	struct pf_vf_bulletin_content bulletin = bp->pf2vf_bulletin->content;
2863 	int attempts;
2864 
2865 	/* bulletin board hasn't changed since last sample */
2866 	if (bp->old_bulletin.version == bulletin.version)
2867 		return PFVF_BULLETIN_UNCHANGED;
2868 
2869 	/* validate crc of new bulletin board */
2870 	if (bp->old_bulletin.version != bp->pf2vf_bulletin->content.version) {
2871 		/* sampling structure in mid post may result with corrupted data
2872 		 * validate crc to ensure coherency.
2873 		 */
2874 		for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) {
2875 			bulletin = bp->pf2vf_bulletin->content;
2876 			if (bulletin.crc == bnx2x_crc_vf_bulletin(bp,
2877 								  &bulletin))
2878 				break;
2879 			BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
2880 				  bulletin.crc,
2881 				  bnx2x_crc_vf_bulletin(bp, &bulletin));
2882 		}
2883 		if (attempts >= BULLETIN_ATTEMPTS) {
2884 			BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
2885 				  attempts);
2886 			return PFVF_BULLETIN_CRC_ERR;
2887 		}
2888 	}
2889 
2890 	/* the mac address in bulletin board is valid and is new */
2891 	if (bulletin.valid_bitmap & 1 << MAC_ADDR_VALID &&
2892 	    !ether_addr_equal(bulletin.mac, bp->old_bulletin.mac)) {
2893 		/* update new mac to net device */
2894 		memcpy(bp->dev->dev_addr, bulletin.mac, ETH_ALEN);
2895 	}
2896 
2897 	/* the vlan in bulletin board is valid and is new */
2898 	if (bulletin.valid_bitmap & 1 << VLAN_VALID)
2899 		memcpy(&bulletin.vlan, &bp->old_bulletin.vlan, VLAN_HLEN);
2900 
2901 	/* copy new bulletin board to bp */
2902 	bp->old_bulletin = bulletin;
2903 
2904 	return PFVF_BULLETIN_UPDATED;
2905 }
2906 
2907 void bnx2x_timer_sriov(struct bnx2x *bp)
2908 {
2909 	bnx2x_sample_bulletin(bp);
2910 
2911 	/* if channel is down we need to self destruct */
2912 	if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN)
2913 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
2914 				       BNX2X_MSG_IOV);
2915 }
2916 
2917 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp)
2918 {
2919 	/* vf doorbells are embedded within the regview */
2920 	return bp->regview + PXP_VF_ADDR_DB_START;
2921 }
2922 
2923 void bnx2x_vf_pci_dealloc(struct bnx2x *bp)
2924 {
2925 	BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
2926 		       sizeof(struct bnx2x_vf_mbx_msg));
2927 	BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->pf2vf_bulletin_mapping,
2928 		       sizeof(union pf_vf_bulletin));
2929 }
2930 
2931 int bnx2x_vf_pci_alloc(struct bnx2x *bp)
2932 {
2933 	mutex_init(&bp->vf2pf_mutex);
2934 
2935 	/* allocate vf2pf mailbox for vf to pf channel */
2936 	bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping,
2937 					 sizeof(struct bnx2x_vf_mbx_msg));
2938 	if (!bp->vf2pf_mbox)
2939 		goto alloc_mem_err;
2940 
2941 	/* allocate pf 2 vf bulletin board */
2942 	bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping,
2943 					     sizeof(union pf_vf_bulletin));
2944 	if (!bp->pf2vf_bulletin)
2945 		goto alloc_mem_err;
2946 
2947 	return 0;
2948 
2949 alloc_mem_err:
2950 	bnx2x_vf_pci_dealloc(bp);
2951 	return -ENOMEM;
2952 }
2953 
2954 void bnx2x_iov_channel_down(struct bnx2x *bp)
2955 {
2956 	int vf_idx;
2957 	struct pf_vf_bulletin_content *bulletin;
2958 
2959 	if (!IS_SRIOV(bp))
2960 		return;
2961 
2962 	for_each_vf(bp, vf_idx) {
2963 		/* locate this VFs bulletin board and update the channel down
2964 		 * bit
2965 		 */
2966 		bulletin = BP_VF_BULLETIN(bp, vf_idx);
2967 		bulletin->valid_bitmap |= 1 << CHANNEL_DOWN;
2968 
2969 		/* update vf bulletin board */
2970 		bnx2x_post_vf_bulletin(bp, vf_idx);
2971 	}
2972 }
2973 
2974 void bnx2x_iov_task(struct work_struct *work)
2975 {
2976 	struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work);
2977 
2978 	if (!netif_running(bp->dev))
2979 		return;
2980 
2981 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR,
2982 			       &bp->iov_task_state))
2983 		bnx2x_vf_handle_flr_event(bp);
2984 
2985 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG,
2986 			       &bp->iov_task_state))
2987 		bnx2x_vf_mbx(bp);
2988 }
2989 
2990 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag)
2991 {
2992 	smp_mb__before_clear_bit();
2993 	set_bit(flag, &bp->iov_task_state);
2994 	smp_mb__after_clear_bit();
2995 	DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
2996 	queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0);
2997 }
2998