1 /* bnx2x_sriov.c: Broadcom Everest network driver.
2  *
3  * Copyright 2009-2013 Broadcom Corporation
4  *
5  * Unless you and Broadcom execute a separate written software license
6  * agreement governing use of this software, this software is licensed to you
7  * under the terms of the GNU General Public License version 2, available
8  * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
9  *
10  * Notwithstanding the above, under no circumstances may you combine this
11  * software in any way with any other Broadcom software provided under a
12  * license other than the GPL, without Broadcom's express prior written
13  * consent.
14  *
15  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
16  * Written by: Shmulik Ravid
17  *	       Ariel Elior <ariel.elior@qlogic.com>
18  *
19  */
20 #include "bnx2x.h"
21 #include "bnx2x_init.h"
22 #include "bnx2x_cmn.h"
23 #include "bnx2x_sp.h"
24 #include <linux/crc32.h>
25 #include <linux/if_vlan.h>
26 
27 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
28 			    struct bnx2x_virtf **vf,
29 			    struct pf_vf_bulletin_content **bulletin,
30 			    bool test_queue);
31 
32 /* General service functions */
33 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
34 					 u16 pf_id)
35 {
36 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
37 		pf_id);
38 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
39 		pf_id);
40 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
41 		pf_id);
42 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
43 		pf_id);
44 }
45 
46 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
47 					u8 enable)
48 {
49 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
50 		enable);
51 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
52 		enable);
53 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
54 		enable);
55 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
56 		enable);
57 }
58 
59 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
60 {
61 	int idx;
62 
63 	for_each_vf(bp, idx)
64 		if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid)
65 			break;
66 	return idx;
67 }
68 
69 static
70 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
71 {
72 	u16 idx =  (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid);
73 	return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL;
74 }
75 
76 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf,
77 				u8 igu_sb_id, u8 segment, u16 index, u8 op,
78 				u8 update)
79 {
80 	/* acking a VF sb through the PF - use the GRC */
81 	u32 ctl;
82 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
83 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
84 	u32 func_encode = vf->abs_vfid;
85 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id;
86 	struct igu_regular cmd_data = {0};
87 
88 	cmd_data.sb_id_and_flags =
89 			((index << IGU_REGULAR_SB_INDEX_SHIFT) |
90 			 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
91 			 (update << IGU_REGULAR_BUPDATE_SHIFT) |
92 			 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
93 
94 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
95 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
96 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
97 
98 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
99 	   cmd_data.sb_id_and_flags, igu_addr_data);
100 	REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags);
101 	mmiowb();
102 	barrier();
103 
104 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
105 	   ctl, igu_addr_ctl);
106 	REG_WR(bp, igu_addr_ctl, ctl);
107 	mmiowb();
108 	barrier();
109 }
110 
111 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp,
112 				       struct bnx2x_virtf *vf,
113 				       bool print_err)
114 {
115 	if (!bnx2x_leading_vfq(vf, sp_initialized)) {
116 		if (print_err)
117 			BNX2X_ERR("Slowpath objects not yet initialized!\n");
118 		else
119 			DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n");
120 		return false;
121 	}
122 	return true;
123 }
124 
125 /* VFOP operations states */
126 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf,
127 			      struct bnx2x_queue_init_params *init_params,
128 			      struct bnx2x_queue_setup_params *setup_params,
129 			      u16 q_idx, u16 sb_idx)
130 {
131 	DP(BNX2X_MSG_IOV,
132 	   "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
133 	   vf->abs_vfid,
134 	   q_idx,
135 	   sb_idx,
136 	   init_params->tx.sb_cq_index,
137 	   init_params->tx.hc_rate,
138 	   setup_params->flags,
139 	   setup_params->txq_params.traffic_type);
140 }
141 
142 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf,
143 			    struct bnx2x_queue_init_params *init_params,
144 			    struct bnx2x_queue_setup_params *setup_params,
145 			    u16 q_idx, u16 sb_idx)
146 {
147 	struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params;
148 
149 	DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
150 	   "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
151 	   vf->abs_vfid,
152 	   q_idx,
153 	   sb_idx,
154 	   init_params->rx.sb_cq_index,
155 	   init_params->rx.hc_rate,
156 	   setup_params->gen_params.mtu,
157 	   rxq_params->buf_sz,
158 	   rxq_params->sge_buf_sz,
159 	   rxq_params->max_sges_pkt,
160 	   rxq_params->tpa_agg_sz,
161 	   setup_params->flags,
162 	   rxq_params->drop_flags,
163 	   rxq_params->cache_line_log);
164 }
165 
166 void bnx2x_vfop_qctor_prep(struct bnx2x *bp,
167 			   struct bnx2x_virtf *vf,
168 			   struct bnx2x_vf_queue *q,
169 			   struct bnx2x_vf_queue_construct_params *p,
170 			   unsigned long q_type)
171 {
172 	struct bnx2x_queue_init_params *init_p = &p->qstate.params.init;
173 	struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup;
174 
175 	/* INIT */
176 
177 	/* Enable host coalescing in the transition to INIT state */
178 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags))
179 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags);
180 
181 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags))
182 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags);
183 
184 	/* FW SB ID */
185 	init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
186 	init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
187 
188 	/* context */
189 	init_p->cxts[0] = q->cxt;
190 
191 	/* SETUP */
192 
193 	/* Setup-op general parameters */
194 	setup_p->gen_params.spcl_id = vf->sp_cl_id;
195 	setup_p->gen_params.stat_id = vfq_stat_id(vf, q);
196 
197 	/* Setup-op pause params:
198 	 * Nothing to do, the pause thresholds are set by default to 0 which
199 	 * effectively turns off the feature for this queue. We don't want
200 	 * one queue (VF) to interfering with another queue (another VF)
201 	 */
202 	if (vf->cfg_flags & VF_CFG_FW_FC)
203 		BNX2X_ERR("No support for pause to VFs (abs_vfid: %d)\n",
204 			  vf->abs_vfid);
205 	/* Setup-op flags:
206 	 * collect statistics, zero statistics, local-switching, security,
207 	 * OV for Flex10, RSS and MCAST for leading
208 	 */
209 	if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags))
210 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags);
211 
212 	/* for VFs, enable tx switching, bd coherency, and mac address
213 	 * anti-spoofing
214 	 */
215 	__set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags);
216 	__set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags);
217 	__set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
218 
219 	/* Setup-op rx parameters */
220 	if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) {
221 		struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params;
222 
223 		rxq_p->cl_qzone_id = vfq_qzone_id(vf, q);
224 		rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx);
225 		rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid);
226 
227 		if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags))
228 			rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES;
229 	}
230 
231 	/* Setup-op tx parameters */
232 	if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) {
233 		setup_p->txq_params.tss_leading_cl_id = vf->leading_rss;
234 		setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
235 	}
236 }
237 
238 static int bnx2x_vf_queue_create(struct bnx2x *bp,
239 				 struct bnx2x_virtf *vf, int qid,
240 				 struct bnx2x_vf_queue_construct_params *qctor)
241 {
242 	struct bnx2x_queue_state_params *q_params;
243 	int rc = 0;
244 
245 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
246 
247 	/* Prepare ramrod information */
248 	q_params = &qctor->qstate;
249 	q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
250 	set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags);
251 
252 	if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
253 	    BNX2X_Q_LOGICAL_STATE_ACTIVE) {
254 		DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n");
255 		goto out;
256 	}
257 
258 	/* Run Queue 'construction' ramrods */
259 	q_params->cmd = BNX2X_Q_CMD_INIT;
260 	rc = bnx2x_queue_state_change(bp, q_params);
261 	if (rc)
262 		goto out;
263 
264 	memcpy(&q_params->params.setup, &qctor->prep_qsetup,
265 	       sizeof(struct bnx2x_queue_setup_params));
266 	q_params->cmd = BNX2X_Q_CMD_SETUP;
267 	rc = bnx2x_queue_state_change(bp, q_params);
268 	if (rc)
269 		goto out;
270 
271 	/* enable interrupts */
272 	bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)),
273 			    USTORM_ID, 0, IGU_INT_ENABLE, 0);
274 out:
275 	return rc;
276 }
277 
278 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf,
279 				  int qid)
280 {
281 	enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT,
282 				       BNX2X_Q_CMD_TERMINATE,
283 				       BNX2X_Q_CMD_CFC_DEL};
284 	struct bnx2x_queue_state_params q_params;
285 	int rc, i;
286 
287 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
288 
289 	/* Prepare ramrod information */
290 	memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params));
291 	q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
292 	set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
293 
294 	if (bnx2x_get_q_logical_state(bp, q_params.q_obj) ==
295 	    BNX2X_Q_LOGICAL_STATE_STOPPED) {
296 		DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n");
297 		goto out;
298 	}
299 
300 	/* Run Queue 'destruction' ramrods */
301 	for (i = 0; i < ARRAY_SIZE(cmds); i++) {
302 		q_params.cmd = cmds[i];
303 		rc = bnx2x_queue_state_change(bp, &q_params);
304 		if (rc) {
305 			BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]);
306 			return rc;
307 		}
308 	}
309 out:
310 	/* Clean Context */
311 	if (bnx2x_vfq(vf, qid, cxt)) {
312 		bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0;
313 		bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0;
314 	}
315 
316 	return 0;
317 }
318 
319 static void
320 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid)
321 {
322 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
323 	if (vf) {
324 		/* the first igu entry belonging to VFs of this PF */
325 		if (!BP_VFDB(bp)->first_vf_igu_entry)
326 			BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id;
327 
328 		/* the first igu entry belonging to this VF */
329 		if (!vf_sb_count(vf))
330 			vf->igu_base_id = igu_sb_id;
331 
332 		++vf_sb_count(vf);
333 		++vf->sb_count;
334 	}
335 	BP_VFDB(bp)->vf_sbs_pool++;
336 }
337 
338 static inline void bnx2x_vf_vlan_credit(struct bnx2x *bp,
339 					struct bnx2x_vlan_mac_obj *obj,
340 					atomic_t *counter)
341 {
342 	struct list_head *pos;
343 	int read_lock;
344 	int cnt = 0;
345 
346 	read_lock = bnx2x_vlan_mac_h_read_lock(bp, obj);
347 	if (read_lock)
348 		DP(BNX2X_MSG_SP, "Failed to take vlan mac read head; continuing anyway\n");
349 
350 	list_for_each(pos, &obj->head)
351 		cnt++;
352 
353 	if (!read_lock)
354 		bnx2x_vlan_mac_h_read_unlock(bp, obj);
355 
356 	atomic_set(counter, cnt);
357 }
358 
359 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf,
360 				   int qid, bool drv_only, bool mac)
361 {
362 	struct bnx2x_vlan_mac_ramrod_params ramrod;
363 	int rc;
364 
365 	DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid,
366 	   mac ? "MACs" : "VLANs");
367 
368 	/* Prepare ramrod params */
369 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
370 	if (mac) {
371 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
372 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
373 	} else {
374 		set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
375 			&ramrod.user_req.vlan_mac_flags);
376 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
377 	}
378 	ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL;
379 
380 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
381 	if (drv_only)
382 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
383 	else
384 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
385 
386 	/* Start deleting */
387 	rc = ramrod.vlan_mac_obj->delete_all(bp,
388 					     ramrod.vlan_mac_obj,
389 					     &ramrod.user_req.vlan_mac_flags,
390 					     &ramrod.ramrod_flags);
391 	if (rc) {
392 		BNX2X_ERR("Failed to delete all %s\n",
393 			  mac ? "MACs" : "VLANs");
394 		return rc;
395 	}
396 
397 	/* Clear the vlan counters */
398 	if (!mac)
399 		atomic_set(&bnx2x_vfq(vf, qid, vlan_count), 0);
400 
401 	return 0;
402 }
403 
404 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp,
405 				    struct bnx2x_virtf *vf, int qid,
406 				    struct bnx2x_vf_mac_vlan_filter *filter,
407 				    bool drv_only)
408 {
409 	struct bnx2x_vlan_mac_ramrod_params ramrod;
410 	int rc;
411 
412 	DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n",
413 	   vf->abs_vfid, filter->add ? "Adding" : "Deleting",
414 	   filter->type == BNX2X_VF_FILTER_MAC ? "MAC" : "VLAN");
415 
416 	/* Prepare ramrod params */
417 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
418 	if (filter->type == BNX2X_VF_FILTER_VLAN) {
419 		set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
420 			&ramrod.user_req.vlan_mac_flags);
421 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
422 		ramrod.user_req.u.vlan.vlan = filter->vid;
423 	} else {
424 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
425 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
426 		memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
427 	}
428 	ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD :
429 					    BNX2X_VLAN_MAC_DEL;
430 
431 	/* Verify there are available vlan credits */
432 	if (filter->add && filter->type == BNX2X_VF_FILTER_VLAN &&
433 	    (atomic_read(&bnx2x_vfq(vf, qid, vlan_count)) >=
434 	     vf_vlan_rules_cnt(vf))) {
435 		BNX2X_ERR("No credits for vlan [%d >= %d]\n",
436 			  atomic_read(&bnx2x_vfq(vf, qid, vlan_count)),
437 			  vf_vlan_rules_cnt(vf));
438 		return -ENOMEM;
439 	}
440 
441 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
442 	if (drv_only)
443 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
444 	else
445 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
446 
447 	/* Add/Remove the filter */
448 	rc = bnx2x_config_vlan_mac(bp, &ramrod);
449 	if (rc && rc != -EEXIST) {
450 		BNX2X_ERR("Failed to %s %s\n",
451 			  filter->add ? "add" : "delete",
452 			  filter->type == BNX2X_VF_FILTER_MAC ? "MAC" :
453 								"VLAN");
454 		return rc;
455 	}
456 
457 	/* Update the vlan counters */
458 	if (filter->type == BNX2X_VF_FILTER_VLAN)
459 		bnx2x_vf_vlan_credit(bp, ramrod.vlan_mac_obj,
460 				     &bnx2x_vfq(vf, qid, vlan_count));
461 
462 	return 0;
463 }
464 
465 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf,
466 				  struct bnx2x_vf_mac_vlan_filters *filters,
467 				  int qid, bool drv_only)
468 {
469 	int rc = 0, i;
470 
471 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
472 
473 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
474 		return -EINVAL;
475 
476 	/* Prepare ramrod params */
477 	for (i = 0; i < filters->count; i++) {
478 		rc = bnx2x_vf_mac_vlan_config(bp, vf, qid,
479 					      &filters->filters[i], drv_only);
480 		if (rc)
481 			break;
482 	}
483 
484 	/* Rollback if needed */
485 	if (i != filters->count) {
486 		BNX2X_ERR("Managed only %d/%d filters - rolling back\n",
487 			  i, filters->count + 1);
488 		while (--i >= 0) {
489 			filters->filters[i].add = !filters->filters[i].add;
490 			bnx2x_vf_mac_vlan_config(bp, vf, qid,
491 						 &filters->filters[i],
492 						 drv_only);
493 		}
494 	}
495 
496 	/* It's our responsibility to free the filters */
497 	kfree(filters);
498 
499 	return rc;
500 }
501 
502 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid,
503 			 struct bnx2x_vf_queue_construct_params *qctor)
504 {
505 	int rc;
506 
507 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
508 
509 	rc = bnx2x_vf_queue_create(bp, vf, qid, qctor);
510 	if (rc)
511 		goto op_err;
512 
513 	/* Configure vlan0 for leading queue */
514 	if (!qid) {
515 		struct bnx2x_vf_mac_vlan_filter filter;
516 
517 		memset(&filter, 0, sizeof(struct bnx2x_vf_mac_vlan_filter));
518 		filter.type = BNX2X_VF_FILTER_VLAN;
519 		filter.add = true;
520 		filter.vid = 0;
521 		rc = bnx2x_vf_mac_vlan_config(bp, vf, qid, &filter, false);
522 		if (rc)
523 			goto op_err;
524 	}
525 
526 	/* Schedule the configuration of any pending vlan filters */
527 	vf->cfg_flags |= VF_CFG_VLAN;
528 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN,
529 			       BNX2X_MSG_IOV);
530 	return 0;
531 op_err:
532 	BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
533 	return rc;
534 }
535 
536 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf,
537 			       int qid)
538 {
539 	int rc;
540 
541 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
542 
543 	/* If needed, clean the filtering data base */
544 	if ((qid == LEADING_IDX) &&
545 	    bnx2x_validate_vf_sp_objs(bp, vf, false)) {
546 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, false);
547 		if (rc)
548 			goto op_err;
549 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, true);
550 		if (rc)
551 			goto op_err;
552 	}
553 
554 	/* Terminate queue */
555 	if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) {
556 		struct bnx2x_queue_state_params qstate;
557 
558 		memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
559 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
560 		qstate.q_obj->state = BNX2X_Q_STATE_STOPPED;
561 		qstate.cmd = BNX2X_Q_CMD_TERMINATE;
562 		set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
563 		rc = bnx2x_queue_state_change(bp, &qstate);
564 		if (rc)
565 			goto op_err;
566 	}
567 
568 	return 0;
569 op_err:
570 	BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
571 	return rc;
572 }
573 
574 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf,
575 		   bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only)
576 {
577 	struct bnx2x_mcast_list_elem *mc = NULL;
578 	struct bnx2x_mcast_ramrod_params mcast;
579 	int rc, i;
580 
581 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
582 
583 	/* Prepare Multicast command */
584 	memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params));
585 	mcast.mcast_obj = &vf->mcast_obj;
586 	if (drv_only)
587 		set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags);
588 	else
589 		set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags);
590 	if (mc_num) {
591 		mc = kzalloc(mc_num * sizeof(struct bnx2x_mcast_list_elem),
592 			     GFP_KERNEL);
593 		if (!mc) {
594 			BNX2X_ERR("Cannot Configure mulicasts due to lack of memory\n");
595 			return -ENOMEM;
596 		}
597 	}
598 
599 	/* clear existing mcasts */
600 	mcast.mcast_list_len = vf->mcast_list_len;
601 	vf->mcast_list_len = mc_num;
602 	rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL);
603 	if (rc) {
604 		BNX2X_ERR("Failed to remove multicasts\n");
605 		kfree(mc);
606 		return rc;
607 	}
608 
609 	/* update mcast list on the ramrod params */
610 	if (mc_num) {
611 		INIT_LIST_HEAD(&mcast.mcast_list);
612 		for (i = 0; i < mc_num; i++) {
613 			mc[i].mac = mcasts[i];
614 			list_add_tail(&mc[i].link,
615 				      &mcast.mcast_list);
616 		}
617 
618 		/* add new mcasts */
619 		mcast.mcast_list_len = mc_num;
620 		rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_ADD);
621 		if (rc)
622 			BNX2X_ERR("Faled to add multicasts\n");
623 		kfree(mc);
624 	}
625 
626 	return rc;
627 }
628 
629 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid,
630 				  struct bnx2x_rx_mode_ramrod_params *ramrod,
631 				  struct bnx2x_virtf *vf,
632 				  unsigned long accept_flags)
633 {
634 	struct bnx2x_vf_queue *vfq = vfq_get(vf, qid);
635 
636 	memset(ramrod, 0, sizeof(*ramrod));
637 	ramrod->cid = vfq->cid;
638 	ramrod->cl_id = vfq_cl_id(vf, vfq);
639 	ramrod->rx_mode_obj = &bp->rx_mode_obj;
640 	ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid);
641 	ramrod->rx_accept_flags = accept_flags;
642 	ramrod->tx_accept_flags = accept_flags;
643 	ramrod->pstate = &vf->filter_state;
644 	ramrod->state = BNX2X_FILTER_RX_MODE_PENDING;
645 
646 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
647 	set_bit(RAMROD_RX, &ramrod->ramrod_flags);
648 	set_bit(RAMROD_TX, &ramrod->ramrod_flags);
649 
650 	ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2);
651 	ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2);
652 }
653 
654 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf,
655 		    int qid, unsigned long accept_flags)
656 {
657 	struct bnx2x_rx_mode_ramrod_params ramrod;
658 
659 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
660 
661 	bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags);
662 	set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
663 	vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags;
664 	return bnx2x_config_rx_mode(bp, &ramrod);
665 }
666 
667 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid)
668 {
669 	int rc;
670 
671 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
672 
673 	/* Remove all classification configuration for leading queue */
674 	if (qid == LEADING_IDX) {
675 		rc = bnx2x_vf_rxmode(bp, vf, qid, 0);
676 		if (rc)
677 			goto op_err;
678 
679 		/* Remove filtering if feasible */
680 		if (bnx2x_validate_vf_sp_objs(bp, vf, true)) {
681 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
682 						     false, false);
683 			if (rc)
684 				goto op_err;
685 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
686 						     false, true);
687 			if (rc)
688 				goto op_err;
689 			rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false);
690 			if (rc)
691 				goto op_err;
692 		}
693 	}
694 
695 	/* Destroy queue */
696 	rc = bnx2x_vf_queue_destroy(bp, vf, qid);
697 	if (rc)
698 		goto op_err;
699 	return rc;
700 op_err:
701 	BNX2X_ERR("vf[%d:%d] error: rc %d\n",
702 		  vf->abs_vfid, qid, rc);
703 	return rc;
704 }
705 
706 /* VF enable primitives
707  * when pretend is required the caller is responsible
708  * for calling pretend prior to calling these routines
709  */
710 
711 /* internal vf enable - until vf is enabled internally all transactions
712  * are blocked. This routine should always be called last with pretend.
713  */
714 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable)
715 {
716 	REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0);
717 }
718 
719 /* clears vf error in all semi blocks */
720 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid)
721 {
722 	REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid);
723 	REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid);
724 	REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid);
725 	REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid);
726 }
727 
728 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid)
729 {
730 	u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5;
731 	u32 was_err_reg = 0;
732 
733 	switch (was_err_group) {
734 	case 0:
735 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR;
736 	    break;
737 	case 1:
738 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR;
739 	    break;
740 	case 2:
741 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR;
742 	    break;
743 	case 3:
744 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR;
745 	    break;
746 	}
747 	REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f));
748 }
749 
750 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf)
751 {
752 	int i;
753 	u32 val;
754 
755 	/* Set VF masks and configuration - pretend */
756 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
757 
758 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
759 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
760 	REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
761 	REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
762 	REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
763 	REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
764 
765 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
766 	val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN);
767 	if (vf->cfg_flags & VF_CFG_INT_SIMD)
768 		val |= IGU_VF_CONF_SINGLE_ISR_EN;
769 	val &= ~IGU_VF_CONF_PARENT_MASK;
770 	val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT;
771 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
772 
773 	DP(BNX2X_MSG_IOV,
774 	   "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n",
775 	   vf->abs_vfid, val);
776 
777 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
778 
779 	/* iterate over all queues, clear sb consumer */
780 	for (i = 0; i < vf_sb_count(vf); i++) {
781 		u8 igu_sb_id = vf_igu_sb(vf, i);
782 
783 		/* zero prod memory */
784 		REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0);
785 
786 		/* clear sb state machine */
787 		bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id,
788 				       false /* VF */);
789 
790 		/* disable + update */
791 		bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0,
792 				    IGU_INT_DISABLE, 1);
793 	}
794 }
795 
796 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid)
797 {
798 	/* set the VF-PF association in the FW */
799 	storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp));
800 	storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1);
801 
802 	/* clear vf errors*/
803 	bnx2x_vf_semi_clear_err(bp, abs_vfid);
804 	bnx2x_vf_pglue_clear_err(bp, abs_vfid);
805 
806 	/* internal vf-enable - pretend */
807 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid));
808 	DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid);
809 	bnx2x_vf_enable_internal(bp, true);
810 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
811 }
812 
813 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf)
814 {
815 	/* Reset vf in IGU  interrupts are still disabled */
816 	bnx2x_vf_igu_reset(bp, vf);
817 
818 	/* pretend to enable the vf with the PBF */
819 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
820 	REG_WR(bp, PBF_REG_DISABLE_VF, 0);
821 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
822 }
823 
824 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid)
825 {
826 	struct pci_dev *dev;
827 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
828 
829 	if (!vf)
830 		return false;
831 
832 	dev = pci_get_bus_and_slot(vf->bus, vf->devfn);
833 	if (dev)
834 		return bnx2x_is_pcie_pending(dev);
835 	return false;
836 }
837 
838 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid)
839 {
840 	/* Verify no pending pci transactions */
841 	if (bnx2x_vf_is_pcie_pending(bp, abs_vfid))
842 		BNX2X_ERR("PCIE Transactions still pending\n");
843 
844 	return 0;
845 }
846 
847 static void bnx2x_iov_re_set_vlan_filters(struct bnx2x *bp,
848 					  struct bnx2x_virtf *vf,
849 					  int new)
850 {
851 	int num = vf_vlan_rules_cnt(vf);
852 	int diff = new - num;
853 	bool rc = true;
854 
855 	DP(BNX2X_MSG_IOV, "vf[%d] - %d vlan filter credits [previously %d]\n",
856 	   vf->abs_vfid, new, num);
857 
858 	if (diff > 0)
859 		rc = bp->vlans_pool.get(&bp->vlans_pool, diff);
860 	else if (diff < 0)
861 		rc = bp->vlans_pool.put(&bp->vlans_pool, -diff);
862 
863 	if (rc)
864 		vf_vlan_rules_cnt(vf) = new;
865 	else
866 		DP(BNX2X_MSG_IOV, "vf[%d] - Failed to configure vlan filter credits change\n",
867 		   vf->abs_vfid);
868 }
869 
870 /* must be called after the number of PF queues and the number of VFs are
871  * both known
872  */
873 static void
874 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
875 {
876 	struct vf_pf_resc_request *resc = &vf->alloc_resc;
877 	u16 vlan_count = 0;
878 
879 	/* will be set only during VF-ACQUIRE */
880 	resc->num_rxqs = 0;
881 	resc->num_txqs = 0;
882 
883 	/* no credit calculations for macs (just yet) */
884 	resc->num_mac_filters = 1;
885 
886 	/* divvy up vlan rules */
887 	bnx2x_iov_re_set_vlan_filters(bp, vf, 0);
888 	vlan_count = bp->vlans_pool.check(&bp->vlans_pool);
889 	vlan_count = 1 << ilog2(vlan_count);
890 	bnx2x_iov_re_set_vlan_filters(bp, vf,
891 				      vlan_count / BNX2X_NR_VIRTFN(bp));
892 
893 	/* no real limitation */
894 	resc->num_mc_filters = 0;
895 
896 	/* num_sbs already set */
897 	resc->num_sbs = vf->sb_count;
898 }
899 
900 /* FLR routines: */
901 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
902 {
903 	/* reset the state variables */
904 	bnx2x_iov_static_resc(bp, vf);
905 	vf->state = VF_FREE;
906 }
907 
908 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf)
909 {
910 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
911 
912 	/* DQ usage counter */
913 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
914 	bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT,
915 					"DQ VF usage counter timed out",
916 					poll_cnt);
917 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
918 
919 	/* FW cleanup command - poll for the results */
920 	if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid),
921 				   poll_cnt))
922 		BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid);
923 
924 	/* verify TX hw is flushed */
925 	bnx2x_tx_hw_flushed(bp, poll_cnt);
926 }
927 
928 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf)
929 {
930 	int rc, i;
931 
932 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
933 
934 	/* the cleanup operations are valid if and only if the VF
935 	 * was first acquired.
936 	 */
937 	for (i = 0; i < vf_rxq_count(vf); i++) {
938 		rc = bnx2x_vf_queue_flr(bp, vf, i);
939 		if (rc)
940 			goto out;
941 	}
942 
943 	/* remove multicasts */
944 	bnx2x_vf_mcast(bp, vf, NULL, 0, true);
945 
946 	/* dispatch final cleanup and wait for HW queues to flush */
947 	bnx2x_vf_flr_clnup_hw(bp, vf);
948 
949 	/* release VF resources */
950 	bnx2x_vf_free_resc(bp, vf);
951 
952 	/* re-open the mailbox */
953 	bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
954 	return;
955 out:
956 	BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n",
957 		  vf->abs_vfid, i, rc);
958 }
959 
960 static void bnx2x_vf_flr_clnup(struct bnx2x *bp)
961 {
962 	struct bnx2x_virtf *vf;
963 	int i;
964 
965 	for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) {
966 		/* VF should be RESET & in FLR cleanup states */
967 		if (bnx2x_vf(bp, i, state) != VF_RESET ||
968 		    !bnx2x_vf(bp, i, flr_clnup_stage))
969 			continue;
970 
971 		DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n",
972 		   i, BNX2X_NR_VIRTFN(bp));
973 
974 		vf = BP_VF(bp, i);
975 
976 		/* lock the vf pf channel */
977 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
978 
979 		/* invoke the VF FLR SM */
980 		bnx2x_vf_flr(bp, vf);
981 
982 		/* mark the VF to be ACKED and continue */
983 		vf->flr_clnup_stage = false;
984 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
985 	}
986 
987 	/* Acknowledge the handled VFs.
988 	 * we are acknowledge all the vfs which an flr was requested for, even
989 	 * if amongst them there are such that we never opened, since the mcp
990 	 * will interrupt us immediately again if we only ack some of the bits,
991 	 * resulting in an endless loop. This can happen for example in KVM
992 	 * where an 'all ones' flr request is sometimes given by hyper visor
993 	 */
994 	DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
995 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
996 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
997 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i],
998 			  bp->vfdb->flrd_vfs[i]);
999 
1000 	bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0);
1001 
1002 	/* clear the acked bits - better yet if the MCP implemented
1003 	 * write to clear semantics
1004 	 */
1005 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
1006 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0);
1007 }
1008 
1009 void bnx2x_vf_handle_flr_event(struct bnx2x *bp)
1010 {
1011 	int i;
1012 
1013 	/* Read FLR'd VFs */
1014 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
1015 		bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]);
1016 
1017 	DP(BNX2X_MSG_MCP,
1018 	   "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
1019 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
1020 
1021 	for_each_vf(bp, i) {
1022 		struct bnx2x_virtf *vf = BP_VF(bp, i);
1023 		u32 reset = 0;
1024 
1025 		if (vf->abs_vfid < 32)
1026 			reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid);
1027 		else
1028 			reset = bp->vfdb->flrd_vfs[1] &
1029 				(1 << (vf->abs_vfid - 32));
1030 
1031 		if (reset) {
1032 			/* set as reset and ready for cleanup */
1033 			vf->state = VF_RESET;
1034 			vf->flr_clnup_stage = true;
1035 
1036 			DP(BNX2X_MSG_IOV,
1037 			   "Initiating Final cleanup for VF %d\n",
1038 			   vf->abs_vfid);
1039 		}
1040 	}
1041 
1042 	/* do the FLR cleanup for all marked VFs*/
1043 	bnx2x_vf_flr_clnup(bp);
1044 }
1045 
1046 /* IOV global initialization routines  */
1047 void bnx2x_iov_init_dq(struct bnx2x *bp)
1048 {
1049 	if (!IS_SRIOV(bp))
1050 		return;
1051 
1052 	/* Set the DQ such that the CID reflect the abs_vfid */
1053 	REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0);
1054 	REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
1055 
1056 	/* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
1057 	 * the PF L2 queues
1058 	 */
1059 	REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
1060 
1061 	/* The VF window size is the log2 of the max number of CIDs per VF */
1062 	REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
1063 
1064 	/* The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
1065 	 * the Pf doorbell size although the 2 are independent.
1066 	 */
1067 	REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3);
1068 
1069 	/* No security checks for now -
1070 	 * configure single rule (out of 16) mask = 0x1, value = 0x0,
1071 	 * CID range 0 - 0x1ffff
1072 	 */
1073 	REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1);
1074 	REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0);
1075 	REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
1076 	REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
1077 
1078 	/* set the VF doorbell threshold. This threshold represents the amount
1079 	 * of doorbells allowed in the main DORQ fifo for a specific VF.
1080 	 */
1081 	REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64);
1082 }
1083 
1084 void bnx2x_iov_init_dmae(struct bnx2x *bp)
1085 {
1086 	if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV))
1087 		REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0);
1088 }
1089 
1090 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid)
1091 {
1092 	struct pci_dev *dev = bp->pdev;
1093 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1094 
1095 	return dev->bus->number + ((dev->devfn + iov->offset +
1096 				    iov->stride * vfid) >> 8);
1097 }
1098 
1099 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid)
1100 {
1101 	struct pci_dev *dev = bp->pdev;
1102 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1103 
1104 	return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff;
1105 }
1106 
1107 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf)
1108 {
1109 	int i, n;
1110 	struct pci_dev *dev = bp->pdev;
1111 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1112 
1113 	for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) {
1114 		u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i);
1115 		u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i);
1116 
1117 		size /= iov->total;
1118 		vf->bars[n].bar = start + size * vf->abs_vfid;
1119 		vf->bars[n].size = size;
1120 	}
1121 }
1122 
1123 static int bnx2x_ari_enabled(struct pci_dev *dev)
1124 {
1125 	return dev->bus->self && dev->bus->self->ari_enabled;
1126 }
1127 
1128 static void
1129 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp)
1130 {
1131 	int sb_id;
1132 	u32 val;
1133 	u8 fid, current_pf = 0;
1134 
1135 	/* IGU in normal mode - read CAM */
1136 	for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) {
1137 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4);
1138 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
1139 			continue;
1140 		fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID);
1141 		if (fid & IGU_FID_ENCODE_IS_PF)
1142 			current_pf = fid & IGU_FID_PF_NUM_MASK;
1143 		else if (current_pf == BP_FUNC(bp))
1144 			bnx2x_vf_set_igu_info(bp, sb_id,
1145 					      (fid & IGU_FID_VF_NUM_MASK));
1146 		DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n",
1147 		   ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"),
1148 		   ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) :
1149 		   (fid & IGU_FID_VF_NUM_MASK)), sb_id,
1150 		   GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR));
1151 	}
1152 	DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool);
1153 }
1154 
1155 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp)
1156 {
1157 	if (bp->vfdb) {
1158 		kfree(bp->vfdb->vfqs);
1159 		kfree(bp->vfdb->vfs);
1160 		kfree(bp->vfdb);
1161 	}
1162 	bp->vfdb = NULL;
1163 }
1164 
1165 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1166 {
1167 	int pos;
1168 	struct pci_dev *dev = bp->pdev;
1169 
1170 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
1171 	if (!pos) {
1172 		BNX2X_ERR("failed to find SRIOV capability in device\n");
1173 		return -ENODEV;
1174 	}
1175 
1176 	iov->pos = pos;
1177 	DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos);
1178 	pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
1179 	pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total);
1180 	pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial);
1181 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
1182 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
1183 	pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
1184 	pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap);
1185 	pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
1186 
1187 	return 0;
1188 }
1189 
1190 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1191 {
1192 	u32 val;
1193 
1194 	/* read the SRIOV capability structure
1195 	 * The fields can be read via configuration read or
1196 	 * directly from the device (starting at offset PCICFG_OFFSET)
1197 	 */
1198 	if (bnx2x_sriov_pci_cfg_info(bp, iov))
1199 		return -ENODEV;
1200 
1201 	/* get the number of SRIOV bars */
1202 	iov->nres = 0;
1203 
1204 	/* read the first_vfid */
1205 	val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF);
1206 	iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK)
1207 			       * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp));
1208 
1209 	DP(BNX2X_MSG_IOV,
1210 	   "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
1211 	   BP_FUNC(bp),
1212 	   iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total,
1213 	   iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
1214 
1215 	return 0;
1216 }
1217 
1218 /* must be called after PF bars are mapped */
1219 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param,
1220 		       int num_vfs_param)
1221 {
1222 	int err, i;
1223 	struct bnx2x_sriov *iov;
1224 	struct pci_dev *dev = bp->pdev;
1225 
1226 	bp->vfdb = NULL;
1227 
1228 	/* verify is pf */
1229 	if (IS_VF(bp))
1230 		return 0;
1231 
1232 	/* verify sriov capability is present in configuration space */
1233 	if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV))
1234 		return 0;
1235 
1236 	/* verify chip revision */
1237 	if (CHIP_IS_E1x(bp))
1238 		return 0;
1239 
1240 	/* check if SRIOV support is turned off */
1241 	if (!num_vfs_param)
1242 		return 0;
1243 
1244 	/* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
1245 	if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) {
1246 		BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
1247 			  BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID);
1248 		return 0;
1249 	}
1250 
1251 	/* SRIOV can be enabled only with MSIX */
1252 	if (int_mode_param == BNX2X_INT_MODE_MSI ||
1253 	    int_mode_param == BNX2X_INT_MODE_INTX) {
1254 		BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
1255 		return 0;
1256 	}
1257 
1258 	err = -EIO;
1259 	/* verify ari is enabled */
1260 	if (!bnx2x_ari_enabled(bp->pdev)) {
1261 		BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
1262 		return 0;
1263 	}
1264 
1265 	/* verify igu is in normal mode */
1266 	if (CHIP_INT_MODE_IS_BC(bp)) {
1267 		BNX2X_ERR("IGU not normal mode,  SRIOV can not be enabled\n");
1268 		return 0;
1269 	}
1270 
1271 	/* allocate the vfs database */
1272 	bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL);
1273 	if (!bp->vfdb) {
1274 		BNX2X_ERR("failed to allocate vf database\n");
1275 		err = -ENOMEM;
1276 		goto failed;
1277 	}
1278 
1279 	/* get the sriov info - Linux already collected all the pertinent
1280 	 * information, however the sriov structure is for the private use
1281 	 * of the pci module. Also we want this information regardless
1282 	 * of the hyper-visor.
1283 	 */
1284 	iov = &(bp->vfdb->sriov);
1285 	err = bnx2x_sriov_info(bp, iov);
1286 	if (err)
1287 		goto failed;
1288 
1289 	/* SR-IOV capability was enabled but there are no VFs*/
1290 	if (iov->total == 0)
1291 		goto failed;
1292 
1293 	iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param);
1294 
1295 	DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n",
1296 	   num_vfs_param, iov->nr_virtfn);
1297 
1298 	/* allocate the vf array */
1299 	bp->vfdb->vfs = kzalloc(sizeof(struct bnx2x_virtf) *
1300 				BNX2X_NR_VIRTFN(bp), GFP_KERNEL);
1301 	if (!bp->vfdb->vfs) {
1302 		BNX2X_ERR("failed to allocate vf array\n");
1303 		err = -ENOMEM;
1304 		goto failed;
1305 	}
1306 
1307 	/* Initial VF init - index and abs_vfid - nr_virtfn must be set */
1308 	for_each_vf(bp, i) {
1309 		bnx2x_vf(bp, i, index) = i;
1310 		bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i;
1311 		bnx2x_vf(bp, i, state) = VF_FREE;
1312 		mutex_init(&bnx2x_vf(bp, i, op_mutex));
1313 		bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE;
1314 	}
1315 
1316 	/* re-read the IGU CAM for VFs - index and abs_vfid must be set */
1317 	bnx2x_get_vf_igu_cam_info(bp);
1318 
1319 	/* allocate the queue arrays for all VFs */
1320 	bp->vfdb->vfqs = kzalloc(
1321 		BNX2X_MAX_NUM_VF_QUEUES * sizeof(struct bnx2x_vf_queue),
1322 		GFP_KERNEL);
1323 
1324 	if (!bp->vfdb->vfqs) {
1325 		BNX2X_ERR("failed to allocate vf queue array\n");
1326 		err = -ENOMEM;
1327 		goto failed;
1328 	}
1329 
1330 	/* Prepare the VFs event synchronization mechanism */
1331 	mutex_init(&bp->vfdb->event_mutex);
1332 
1333 	mutex_init(&bp->vfdb->bulletin_mutex);
1334 
1335 	return 0;
1336 failed:
1337 	DP(BNX2X_MSG_IOV, "Failed err=%d\n", err);
1338 	__bnx2x_iov_free_vfdb(bp);
1339 	return err;
1340 }
1341 
1342 void bnx2x_iov_remove_one(struct bnx2x *bp)
1343 {
1344 	int vf_idx;
1345 
1346 	/* if SRIOV is not enabled there's nothing to do */
1347 	if (!IS_SRIOV(bp))
1348 		return;
1349 
1350 	DP(BNX2X_MSG_IOV, "about to call disable sriov\n");
1351 	pci_disable_sriov(bp->pdev);
1352 	DP(BNX2X_MSG_IOV, "sriov disabled\n");
1353 
1354 	/* disable access to all VFs */
1355 	for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) {
1356 		bnx2x_pretend_func(bp,
1357 				   HW_VF_HANDLE(bp,
1358 						bp->vfdb->sriov.first_vf_in_pf +
1359 						vf_idx));
1360 		DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n",
1361 		   bp->vfdb->sriov.first_vf_in_pf + vf_idx);
1362 		bnx2x_vf_enable_internal(bp, 0);
1363 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1364 	}
1365 
1366 	/* free vf database */
1367 	__bnx2x_iov_free_vfdb(bp);
1368 }
1369 
1370 void bnx2x_iov_free_mem(struct bnx2x *bp)
1371 {
1372 	int i;
1373 
1374 	if (!IS_SRIOV(bp))
1375 		return;
1376 
1377 	/* free vfs hw contexts */
1378 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1379 		struct hw_dma *cxt = &bp->vfdb->context[i];
1380 		BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size);
1381 	}
1382 
1383 	BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr,
1384 		       BP_VFDB(bp)->sp_dma.mapping,
1385 		       BP_VFDB(bp)->sp_dma.size);
1386 
1387 	BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr,
1388 		       BP_VF_MBX_DMA(bp)->mapping,
1389 		       BP_VF_MBX_DMA(bp)->size);
1390 
1391 	BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr,
1392 		       BP_VF_BULLETIN_DMA(bp)->mapping,
1393 		       BP_VF_BULLETIN_DMA(bp)->size);
1394 }
1395 
1396 int bnx2x_iov_alloc_mem(struct bnx2x *bp)
1397 {
1398 	size_t tot_size;
1399 	int i, rc = 0;
1400 
1401 	if (!IS_SRIOV(bp))
1402 		return rc;
1403 
1404 	/* allocate vfs hw contexts */
1405 	tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) *
1406 		BNX2X_CIDS_PER_VF * sizeof(union cdu_context);
1407 
1408 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1409 		struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i);
1410 		cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ);
1411 
1412 		if (cxt->size) {
1413 			cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size);
1414 			if (!cxt->addr)
1415 				goto alloc_mem_err;
1416 		} else {
1417 			cxt->addr = NULL;
1418 			cxt->mapping = 0;
1419 		}
1420 		tot_size -= cxt->size;
1421 	}
1422 
1423 	/* allocate vfs ramrods dma memory - client_init and set_mac */
1424 	tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp);
1425 	BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping,
1426 						   tot_size);
1427 	if (!BP_VFDB(bp)->sp_dma.addr)
1428 		goto alloc_mem_err;
1429 	BP_VFDB(bp)->sp_dma.size = tot_size;
1430 
1431 	/* allocate mailboxes */
1432 	tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE;
1433 	BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping,
1434 						  tot_size);
1435 	if (!BP_VF_MBX_DMA(bp)->addr)
1436 		goto alloc_mem_err;
1437 
1438 	BP_VF_MBX_DMA(bp)->size = tot_size;
1439 
1440 	/* allocate local bulletin boards */
1441 	tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE;
1442 	BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping,
1443 						       tot_size);
1444 	if (!BP_VF_BULLETIN_DMA(bp)->addr)
1445 		goto alloc_mem_err;
1446 
1447 	BP_VF_BULLETIN_DMA(bp)->size = tot_size;
1448 
1449 	return 0;
1450 
1451 alloc_mem_err:
1452 	return -ENOMEM;
1453 }
1454 
1455 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf,
1456 			   struct bnx2x_vf_queue *q)
1457 {
1458 	u8 cl_id = vfq_cl_id(vf, q);
1459 	u8 func_id = FW_VF_HANDLE(vf->abs_vfid);
1460 	unsigned long q_type = 0;
1461 
1462 	set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1463 	set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1464 
1465 	/* Queue State object */
1466 	bnx2x_init_queue_obj(bp, &q->sp_obj,
1467 			     cl_id, &q->cid, 1, func_id,
1468 			     bnx2x_vf_sp(bp, vf, q_data),
1469 			     bnx2x_vf_sp_map(bp, vf, q_data),
1470 			     q_type);
1471 
1472 	/* sp indication is set only when vlan/mac/etc. are initialized */
1473 	q->sp_initialized = false;
1474 
1475 	DP(BNX2X_MSG_IOV,
1476 	   "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n",
1477 	   vf->abs_vfid, q->sp_obj.func_id, q->cid);
1478 }
1479 
1480 static int bnx2x_max_speed_cap(struct bnx2x *bp)
1481 {
1482 	u32 supported = bp->port.supported[bnx2x_get_link_cfg_idx(bp)];
1483 
1484 	if (supported &
1485 	    (SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full))
1486 		return 20000;
1487 
1488 	return 10000; /* assume lowest supported speed is 10G */
1489 }
1490 
1491 int bnx2x_iov_link_update_vf(struct bnx2x *bp, int idx)
1492 {
1493 	struct bnx2x_link_report_data *state = &bp->last_reported_link;
1494 	struct pf_vf_bulletin_content *bulletin;
1495 	struct bnx2x_virtf *vf;
1496 	bool update = true;
1497 	int rc = 0;
1498 
1499 	/* sanity and init */
1500 	rc = bnx2x_vf_op_prep(bp, idx, &vf, &bulletin, false);
1501 	if (rc)
1502 		return rc;
1503 
1504 	mutex_lock(&bp->vfdb->bulletin_mutex);
1505 
1506 	if (vf->link_cfg == IFLA_VF_LINK_STATE_AUTO) {
1507 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1508 
1509 		bulletin->link_speed = state->line_speed;
1510 		bulletin->link_flags = 0;
1511 		if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1512 			     &state->link_report_flags))
1513 			bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1514 		if (test_bit(BNX2X_LINK_REPORT_FD,
1515 			     &state->link_report_flags))
1516 			bulletin->link_flags |= VFPF_LINK_REPORT_FULL_DUPLEX;
1517 		if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1518 			     &state->link_report_flags))
1519 			bulletin->link_flags |= VFPF_LINK_REPORT_RX_FC_ON;
1520 		if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1521 			     &state->link_report_flags))
1522 			bulletin->link_flags |= VFPF_LINK_REPORT_TX_FC_ON;
1523 	} else if (vf->link_cfg == IFLA_VF_LINK_STATE_DISABLE &&
1524 		   !(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1525 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1526 		bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1527 	} else if (vf->link_cfg == IFLA_VF_LINK_STATE_ENABLE &&
1528 		   (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1529 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1530 		bulletin->link_speed = bnx2x_max_speed_cap(bp);
1531 		bulletin->link_flags &= ~VFPF_LINK_REPORT_LINK_DOWN;
1532 	} else {
1533 		update = false;
1534 	}
1535 
1536 	if (update) {
1537 		DP(NETIF_MSG_LINK | BNX2X_MSG_IOV,
1538 		   "vf %d mode %u speed %d flags %x\n", idx,
1539 		   vf->link_cfg, bulletin->link_speed, bulletin->link_flags);
1540 
1541 		/* Post update on VF's bulletin board */
1542 		rc = bnx2x_post_vf_bulletin(bp, idx);
1543 		if (rc) {
1544 			BNX2X_ERR("failed to update VF[%d] bulletin\n", idx);
1545 			goto out;
1546 		}
1547 	}
1548 
1549 out:
1550 	mutex_unlock(&bp->vfdb->bulletin_mutex);
1551 	return rc;
1552 }
1553 
1554 int bnx2x_set_vf_link_state(struct net_device *dev, int idx, int link_state)
1555 {
1556 	struct bnx2x *bp = netdev_priv(dev);
1557 	struct bnx2x_virtf *vf = BP_VF(bp, idx);
1558 
1559 	if (!vf)
1560 		return -EINVAL;
1561 
1562 	if (vf->link_cfg == link_state)
1563 		return 0; /* nothing todo */
1564 
1565 	vf->link_cfg = link_state;
1566 
1567 	return bnx2x_iov_link_update_vf(bp, idx);
1568 }
1569 
1570 void bnx2x_iov_link_update(struct bnx2x *bp)
1571 {
1572 	int vfid;
1573 
1574 	if (!IS_SRIOV(bp))
1575 		return;
1576 
1577 	for_each_vf(bp, vfid)
1578 		bnx2x_iov_link_update_vf(bp, vfid);
1579 }
1580 
1581 /* called by bnx2x_nic_load */
1582 int bnx2x_iov_nic_init(struct bnx2x *bp)
1583 {
1584 	int vfid;
1585 
1586 	if (!IS_SRIOV(bp)) {
1587 		DP(BNX2X_MSG_IOV, "vfdb was not allocated\n");
1588 		return 0;
1589 	}
1590 
1591 	DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn);
1592 
1593 	/* let FLR complete ... */
1594 	msleep(100);
1595 
1596 	/* initialize vf database */
1597 	for_each_vf(bp, vfid) {
1598 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1599 
1600 		int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) *
1601 			BNX2X_CIDS_PER_VF;
1602 
1603 		union cdu_context *base_cxt = (union cdu_context *)
1604 			BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1605 			(base_vf_cid & (ILT_PAGE_CIDS-1));
1606 
1607 		DP(BNX2X_MSG_IOV,
1608 		   "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
1609 		   vf->abs_vfid, vf_sb_count(vf), base_vf_cid,
1610 		   BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt);
1611 
1612 		/* init statically provisioned resources */
1613 		bnx2x_iov_static_resc(bp, vf);
1614 
1615 		/* queues are initialized during VF-ACQUIRE */
1616 		vf->filter_state = 0;
1617 		vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id);
1618 
1619 		/*  init mcast object - This object will be re-initialized
1620 		 *  during VF-ACQUIRE with the proper cl_id and cid.
1621 		 *  It needs to be initialized here so that it can be safely
1622 		 *  handled by a subsequent FLR flow.
1623 		 */
1624 		vf->mcast_list_len = 0;
1625 		bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF,
1626 				     0xFF, 0xFF, 0xFF,
1627 				     bnx2x_vf_sp(bp, vf, mcast_rdata),
1628 				     bnx2x_vf_sp_map(bp, vf, mcast_rdata),
1629 				     BNX2X_FILTER_MCAST_PENDING,
1630 				     &vf->filter_state,
1631 				     BNX2X_OBJ_TYPE_RX_TX);
1632 
1633 		/* set the mailbox message addresses */
1634 		BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *)
1635 			(((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid *
1636 			MBX_MSG_ALIGNED_SIZE);
1637 
1638 		BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping +
1639 			vfid * MBX_MSG_ALIGNED_SIZE;
1640 
1641 		/* Enable vf mailbox */
1642 		bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
1643 	}
1644 
1645 	/* Final VF init */
1646 	for_each_vf(bp, vfid) {
1647 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1648 
1649 		/* fill in the BDF and bars */
1650 		vf->bus = bnx2x_vf_bus(bp, vfid);
1651 		vf->devfn = bnx2x_vf_devfn(bp, vfid);
1652 		bnx2x_vf_set_bars(bp, vf);
1653 
1654 		DP(BNX2X_MSG_IOV,
1655 		   "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
1656 		   vf->abs_vfid, vf->bus, vf->devfn,
1657 		   (unsigned)vf->bars[0].bar, vf->bars[0].size,
1658 		   (unsigned)vf->bars[1].bar, vf->bars[1].size,
1659 		   (unsigned)vf->bars[2].bar, vf->bars[2].size);
1660 	}
1661 
1662 	return 0;
1663 }
1664 
1665 /* called by bnx2x_chip_cleanup */
1666 int bnx2x_iov_chip_cleanup(struct bnx2x *bp)
1667 {
1668 	int i;
1669 
1670 	if (!IS_SRIOV(bp))
1671 		return 0;
1672 
1673 	/* release all the VFs */
1674 	for_each_vf(bp, i)
1675 		bnx2x_vf_release(bp, BP_VF(bp, i));
1676 
1677 	return 0;
1678 }
1679 
1680 /* called by bnx2x_init_hw_func, returns the next ilt line */
1681 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line)
1682 {
1683 	int i;
1684 	struct bnx2x_ilt *ilt = BP_ILT(bp);
1685 
1686 	if (!IS_SRIOV(bp))
1687 		return line;
1688 
1689 	/* set vfs ilt lines */
1690 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1691 		struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i);
1692 
1693 		ilt->lines[line+i].page = hw_cxt->addr;
1694 		ilt->lines[line+i].page_mapping = hw_cxt->mapping;
1695 		ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
1696 	}
1697 	return line + i;
1698 }
1699 
1700 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid)
1701 {
1702 	return ((cid >= BNX2X_FIRST_VF_CID) &&
1703 		((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS));
1704 }
1705 
1706 static
1707 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp,
1708 					struct bnx2x_vf_queue *vfq,
1709 					union event_ring_elem *elem)
1710 {
1711 	unsigned long ramrod_flags = 0;
1712 	int rc = 0;
1713 
1714 	/* Always push next commands out, don't wait here */
1715 	set_bit(RAMROD_CONT, &ramrod_flags);
1716 
1717 	switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
1718 	case BNX2X_FILTER_MAC_PENDING:
1719 		rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem,
1720 					   &ramrod_flags);
1721 		break;
1722 	case BNX2X_FILTER_VLAN_PENDING:
1723 		rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem,
1724 					    &ramrod_flags);
1725 		break;
1726 	default:
1727 		BNX2X_ERR("Unsupported classification command: %d\n",
1728 			  elem->message.data.eth_event.echo);
1729 		return;
1730 	}
1731 	if (rc < 0)
1732 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
1733 	else if (rc > 0)
1734 		DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n");
1735 }
1736 
1737 static
1738 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp,
1739 			       struct bnx2x_virtf *vf)
1740 {
1741 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
1742 	int rc;
1743 
1744 	rparam.mcast_obj = &vf->mcast_obj;
1745 	vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw);
1746 
1747 	/* If there are pending mcast commands - send them */
1748 	if (vf->mcast_obj.check_pending(&vf->mcast_obj)) {
1749 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
1750 		if (rc < 0)
1751 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
1752 				  rc);
1753 	}
1754 }
1755 
1756 static
1757 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp,
1758 				 struct bnx2x_virtf *vf)
1759 {
1760 	smp_mb__before_atomic();
1761 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
1762 	smp_mb__after_atomic();
1763 }
1764 
1765 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp,
1766 					   struct bnx2x_virtf *vf)
1767 {
1768 	vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw);
1769 }
1770 
1771 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem)
1772 {
1773 	struct bnx2x_virtf *vf;
1774 	int qidx = 0, abs_vfid;
1775 	u8 opcode;
1776 	u16 cid = 0xffff;
1777 
1778 	if (!IS_SRIOV(bp))
1779 		return 1;
1780 
1781 	/* first get the cid - the only events we handle here are cfc-delete
1782 	 * and set-mac completion
1783 	 */
1784 	opcode = elem->message.opcode;
1785 
1786 	switch (opcode) {
1787 	case EVENT_RING_OPCODE_CFC_DEL:
1788 		cid = SW_CID((__force __le32)
1789 			     elem->message.data.cfc_del_event.cid);
1790 		DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid);
1791 		break;
1792 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1793 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1794 	case EVENT_RING_OPCODE_FILTERS_RULES:
1795 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1796 		cid = (elem->message.data.eth_event.echo &
1797 		       BNX2X_SWCID_MASK);
1798 		DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid);
1799 		break;
1800 	case EVENT_RING_OPCODE_VF_FLR:
1801 		abs_vfid = elem->message.data.vf_flr_event.vf_id;
1802 		DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n",
1803 		   abs_vfid);
1804 		goto get_vf;
1805 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1806 		abs_vfid = elem->message.data.malicious_vf_event.vf_id;
1807 		BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
1808 			  abs_vfid,
1809 			  elem->message.data.malicious_vf_event.err_id);
1810 		goto get_vf;
1811 	default:
1812 		return 1;
1813 	}
1814 
1815 	/* check if the cid is the VF range */
1816 	if (!bnx2x_iov_is_vf_cid(bp, cid)) {
1817 		DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid);
1818 		return 1;
1819 	}
1820 
1821 	/* extract vf and rxq index from vf_cid - relies on the following:
1822 	 * 1. vfid on cid reflects the true abs_vfid
1823 	 * 2. The max number of VFs (per path) is 64
1824 	 */
1825 	qidx = cid & ((1 << BNX2X_VF_CID_WND)-1);
1826 	abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1827 get_vf:
1828 	vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
1829 
1830 	if (!vf) {
1831 		BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
1832 			  cid, abs_vfid);
1833 		return 0;
1834 	}
1835 
1836 	switch (opcode) {
1837 	case EVENT_RING_OPCODE_CFC_DEL:
1838 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n",
1839 		   vf->abs_vfid, qidx);
1840 		vfq_get(vf, qidx)->sp_obj.complete_cmd(bp,
1841 						       &vfq_get(vf,
1842 								qidx)->sp_obj,
1843 						       BNX2X_Q_CMD_CFC_DEL);
1844 		break;
1845 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1846 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n",
1847 		   vf->abs_vfid, qidx);
1848 		bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem);
1849 		break;
1850 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1851 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n",
1852 		   vf->abs_vfid, qidx);
1853 		bnx2x_vf_handle_mcast_eqe(bp, vf);
1854 		break;
1855 	case EVENT_RING_OPCODE_FILTERS_RULES:
1856 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n",
1857 		   vf->abs_vfid, qidx);
1858 		bnx2x_vf_handle_filters_eqe(bp, vf);
1859 		break;
1860 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1861 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n",
1862 		   vf->abs_vfid, qidx);
1863 		bnx2x_vf_handle_rss_update_eqe(bp, vf);
1864 	case EVENT_RING_OPCODE_VF_FLR:
1865 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1866 		/* Do nothing for now */
1867 		return 0;
1868 	}
1869 
1870 	return 0;
1871 }
1872 
1873 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid)
1874 {
1875 	/* extract the vf from vf_cid - relies on the following:
1876 	 * 1. vfid on cid reflects the true abs_vfid
1877 	 * 2. The max number of VFs (per path) is 64
1878 	 */
1879 	int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1880 	return bnx2x_vf_by_abs_fid(bp, abs_vfid);
1881 }
1882 
1883 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid,
1884 				struct bnx2x_queue_sp_obj **q_obj)
1885 {
1886 	struct bnx2x_virtf *vf;
1887 
1888 	if (!IS_SRIOV(bp))
1889 		return;
1890 
1891 	vf = bnx2x_vf_by_cid(bp, vf_cid);
1892 
1893 	if (vf) {
1894 		/* extract queue index from vf_cid - relies on the following:
1895 		 * 1. vfid on cid reflects the true abs_vfid
1896 		 * 2. The max number of VFs (per path) is 64
1897 		 */
1898 		int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1);
1899 		*q_obj = &bnx2x_vfq(vf, q_index, sp_obj);
1900 	} else {
1901 		BNX2X_ERR("No vf matching cid %d\n", vf_cid);
1902 	}
1903 }
1904 
1905 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp)
1906 {
1907 	int i;
1908 	int first_queue_query_index, num_queues_req;
1909 	dma_addr_t cur_data_offset;
1910 	struct stats_query_entry *cur_query_entry;
1911 	u8 stats_count = 0;
1912 	bool is_fcoe = false;
1913 
1914 	if (!IS_SRIOV(bp))
1915 		return;
1916 
1917 	if (!NO_FCOE(bp))
1918 		is_fcoe = true;
1919 
1920 	/* fcoe adds one global request and one queue request */
1921 	num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe;
1922 	first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX -
1923 		(is_fcoe ? 0 : 1);
1924 
1925 	DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1926 	       "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
1927 	       BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index,
1928 	       first_queue_query_index + num_queues_req);
1929 
1930 	cur_data_offset = bp->fw_stats_data_mapping +
1931 		offsetof(struct bnx2x_fw_stats_data, queue_stats) +
1932 		num_queues_req * sizeof(struct per_queue_stats);
1933 
1934 	cur_query_entry = &bp->fw_stats_req->
1935 		query[first_queue_query_index + num_queues_req];
1936 
1937 	for_each_vf(bp, i) {
1938 		int j;
1939 		struct bnx2x_virtf *vf = BP_VF(bp, i);
1940 
1941 		if (vf->state != VF_ENABLED) {
1942 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1943 			       "vf %d not enabled so no stats for it\n",
1944 			       vf->abs_vfid);
1945 			continue;
1946 		}
1947 
1948 		DP(BNX2X_MSG_IOV, "add addresses for vf %d\n", vf->abs_vfid);
1949 		for_each_vfq(vf, j) {
1950 			struct bnx2x_vf_queue *rxq = vfq_get(vf, j);
1951 
1952 			dma_addr_t q_stats_addr =
1953 				vf->fw_stat_map + j * vf->stats_stride;
1954 
1955 			/* collect stats fro active queues only */
1956 			if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) ==
1957 			    BNX2X_Q_LOGICAL_STATE_STOPPED)
1958 				continue;
1959 
1960 			/* create stats query entry for this queue */
1961 			cur_query_entry->kind = STATS_TYPE_QUEUE;
1962 			cur_query_entry->index = vfq_stat_id(vf, rxq);
1963 			cur_query_entry->funcID =
1964 				cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid));
1965 			cur_query_entry->address.hi =
1966 				cpu_to_le32(U64_HI(q_stats_addr));
1967 			cur_query_entry->address.lo =
1968 				cpu_to_le32(U64_LO(q_stats_addr));
1969 			DP(BNX2X_MSG_IOV,
1970 			   "added address %x %x for vf %d queue %d client %d\n",
1971 			   cur_query_entry->address.hi,
1972 			   cur_query_entry->address.lo, cur_query_entry->funcID,
1973 			   j, cur_query_entry->index);
1974 			cur_query_entry++;
1975 			cur_data_offset += sizeof(struct per_queue_stats);
1976 			stats_count++;
1977 
1978 			/* all stats are coalesced to the leading queue */
1979 			if (vf->cfg_flags & VF_CFG_STATS_COALESCE)
1980 				break;
1981 		}
1982 	}
1983 	bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count;
1984 }
1985 
1986 /* VF API helpers */
1987 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid,
1988 				u8 enable)
1989 {
1990 	u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4;
1991 	u32 val = enable ? (abs_vfid | (1 << 6)) : 0;
1992 
1993 	REG_WR(bp, reg, val);
1994 }
1995 
1996 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf)
1997 {
1998 	int i;
1999 
2000 	for_each_vfq(vf, i)
2001 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
2002 				    vfq_qzone_id(vf, vfq_get(vf, i)), false);
2003 }
2004 
2005 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf)
2006 {
2007 	u32 val;
2008 
2009 	/* clear the VF configuration - pretend */
2010 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
2011 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
2012 	val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN |
2013 		 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK);
2014 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
2015 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
2016 }
2017 
2018 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf)
2019 {
2020 	return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF),
2021 		     BNX2X_VF_MAX_QUEUES);
2022 }
2023 
2024 static
2025 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf,
2026 			    struct vf_pf_resc_request *req_resc)
2027 {
2028 	u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
2029 	u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
2030 
2031 	/* Save a vlan filter for the Hypervisor */
2032 	return ((req_resc->num_rxqs <= rxq_cnt) &&
2033 		(req_resc->num_txqs <= txq_cnt) &&
2034 		(req_resc->num_sbs <= vf_sb_count(vf))   &&
2035 		(req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) &&
2036 		(req_resc->num_vlan_filters <= vf_vlan_rules_visible_cnt(vf)));
2037 }
2038 
2039 /* CORE VF API */
2040 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf,
2041 		     struct vf_pf_resc_request *resc)
2042 {
2043 	int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) *
2044 		BNX2X_CIDS_PER_VF;
2045 
2046 	union cdu_context *base_cxt = (union cdu_context *)
2047 		BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
2048 		(base_vf_cid & (ILT_PAGE_CIDS-1));
2049 	int i;
2050 
2051 	/* if state is 'acquired' the VF was not released or FLR'd, in
2052 	 * this case the returned resources match the acquired already
2053 	 * acquired resources. Verify that the requested numbers do
2054 	 * not exceed the already acquired numbers.
2055 	 */
2056 	if (vf->state == VF_ACQUIRED) {
2057 		DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
2058 		   vf->abs_vfid);
2059 
2060 		if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2061 			BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
2062 				  vf->abs_vfid);
2063 			return -EINVAL;
2064 		}
2065 		return 0;
2066 	}
2067 
2068 	/* Otherwise vf state must be 'free' or 'reset' */
2069 	if (vf->state != VF_FREE && vf->state != VF_RESET) {
2070 		BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
2071 			  vf->abs_vfid, vf->state);
2072 		return -EINVAL;
2073 	}
2074 
2075 	/* static allocation:
2076 	 * the global maximum number are fixed per VF. Fail the request if
2077 	 * requested number exceed these globals
2078 	 */
2079 	if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2080 		DP(BNX2X_MSG_IOV,
2081 		   "cannot fulfill vf resource request. Placing maximal available values in response\n");
2082 		/* set the max resource in the vf */
2083 		return -ENOMEM;
2084 	}
2085 
2086 	/* Set resources counters - 0 request means max available */
2087 	vf_sb_count(vf) = resc->num_sbs;
2088 	vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2089 	vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2090 	if (resc->num_mac_filters)
2091 		vf_mac_rules_cnt(vf) = resc->num_mac_filters;
2092 	/* Add an additional vlan filter credit for the hypervisor */
2093 	bnx2x_iov_re_set_vlan_filters(bp, vf, resc->num_vlan_filters + 1);
2094 
2095 	DP(BNX2X_MSG_IOV,
2096 	   "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
2097 	   vf_sb_count(vf), vf_rxq_count(vf),
2098 	   vf_txq_count(vf), vf_mac_rules_cnt(vf),
2099 	   vf_vlan_rules_visible_cnt(vf));
2100 
2101 	/* Initialize the queues */
2102 	if (!vf->vfqs) {
2103 		DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n");
2104 		return -EINVAL;
2105 	}
2106 
2107 	for_each_vfq(vf, i) {
2108 		struct bnx2x_vf_queue *q = vfq_get(vf, i);
2109 
2110 		if (!q) {
2111 			BNX2X_ERR("q number %d was not allocated\n", i);
2112 			return -EINVAL;
2113 		}
2114 
2115 		q->index = i;
2116 		q->cxt = &((base_cxt + i)->eth);
2117 		q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i;
2118 
2119 		DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
2120 		   vf->abs_vfid, i, q->index, q->cid, q->cxt);
2121 
2122 		/* init SP objects */
2123 		bnx2x_vfq_init(bp, vf, q);
2124 	}
2125 	vf->state = VF_ACQUIRED;
2126 	return 0;
2127 }
2128 
2129 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map)
2130 {
2131 	struct bnx2x_func_init_params func_init = {0};
2132 	u16 flags = 0;
2133 	int i;
2134 
2135 	/* the sb resources are initialized at this point, do the
2136 	 * FW/HW initializations
2137 	 */
2138 	for_each_vf_sb(vf, i)
2139 		bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true,
2140 			      vf_igu_sb(vf, i), vf_igu_sb(vf, i));
2141 
2142 	/* Sanity checks */
2143 	if (vf->state != VF_ACQUIRED) {
2144 		DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n",
2145 		   vf->abs_vfid, vf->state);
2146 		return -EINVAL;
2147 	}
2148 
2149 	/* let FLR complete ... */
2150 	msleep(100);
2151 
2152 	/* FLR cleanup epilogue */
2153 	if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid))
2154 		return -EBUSY;
2155 
2156 	/* reset IGU VF statistics: MSIX */
2157 	REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0);
2158 
2159 	/* vf init */
2160 	if (vf->cfg_flags & VF_CFG_STATS)
2161 		flags |= (FUNC_FLG_STATS | FUNC_FLG_SPQ);
2162 
2163 	if (vf->cfg_flags & VF_CFG_TPA)
2164 		flags |= FUNC_FLG_TPA;
2165 
2166 	if (is_vf_multi(vf))
2167 		flags |= FUNC_FLG_RSS;
2168 
2169 	/* function setup */
2170 	func_init.func_flgs = flags;
2171 	func_init.pf_id = BP_FUNC(bp);
2172 	func_init.func_id = FW_VF_HANDLE(vf->abs_vfid);
2173 	func_init.fw_stat_map = vf->fw_stat_map;
2174 	func_init.spq_map = vf->spq_map;
2175 	func_init.spq_prod = 0;
2176 	bnx2x_func_init(bp, &func_init);
2177 
2178 	/* Enable the vf */
2179 	bnx2x_vf_enable_access(bp, vf->abs_vfid);
2180 	bnx2x_vf_enable_traffic(bp, vf);
2181 
2182 	/* queue protection table */
2183 	for_each_vfq(vf, i)
2184 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
2185 				    vfq_qzone_id(vf, vfq_get(vf, i)), true);
2186 
2187 	vf->state = VF_ENABLED;
2188 
2189 	/* update vf bulletin board */
2190 	bnx2x_post_vf_bulletin(bp, vf->index);
2191 
2192 	return 0;
2193 }
2194 
2195 struct set_vf_state_cookie {
2196 	struct bnx2x_virtf *vf;
2197 	u8 state;
2198 };
2199 
2200 static void bnx2x_set_vf_state(void *cookie)
2201 {
2202 	struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie;
2203 
2204 	p->vf->state = p->state;
2205 }
2206 
2207 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf)
2208 {
2209 	int rc = 0, i;
2210 
2211 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2212 
2213 	/* Close all queues */
2214 	for (i = 0; i < vf_rxq_count(vf); i++) {
2215 		rc = bnx2x_vf_queue_teardown(bp, vf, i);
2216 		if (rc)
2217 			goto op_err;
2218 	}
2219 
2220 	/* disable the interrupts */
2221 	DP(BNX2X_MSG_IOV, "disabling igu\n");
2222 	bnx2x_vf_igu_disable(bp, vf);
2223 
2224 	/* disable the VF */
2225 	DP(BNX2X_MSG_IOV, "clearing qtbl\n");
2226 	bnx2x_vf_clr_qtbl(bp, vf);
2227 
2228 	/* need to make sure there are no outstanding stats ramrods which may
2229 	 * cause the device to access the VF's stats buffer which it will free
2230 	 * as soon as we return from the close flow.
2231 	 */
2232 	{
2233 		struct set_vf_state_cookie cookie;
2234 
2235 		cookie.vf = vf;
2236 		cookie.state = VF_ACQUIRED;
2237 		bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie);
2238 	}
2239 
2240 	DP(BNX2X_MSG_IOV, "set state to acquired\n");
2241 
2242 	return 0;
2243 op_err:
2244 	BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc);
2245 	return rc;
2246 }
2247 
2248 /* VF release can be called either: 1. The VF was acquired but
2249  * not enabled 2. the vf was enabled or in the process of being
2250  * enabled
2251  */
2252 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf)
2253 {
2254 	int rc;
2255 
2256 	DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid,
2257 	   vf->state == VF_FREE ? "Free" :
2258 	   vf->state == VF_ACQUIRED ? "Acquired" :
2259 	   vf->state == VF_ENABLED ? "Enabled" :
2260 	   vf->state == VF_RESET ? "Reset" :
2261 	   "Unknown");
2262 
2263 	switch (vf->state) {
2264 	case VF_ENABLED:
2265 		rc = bnx2x_vf_close(bp, vf);
2266 		if (rc)
2267 			goto op_err;
2268 		/* Fallthrough to release resources */
2269 	case VF_ACQUIRED:
2270 		DP(BNX2X_MSG_IOV, "about to free resources\n");
2271 		bnx2x_vf_free_resc(bp, vf);
2272 		break;
2273 
2274 	case VF_FREE:
2275 	case VF_RESET:
2276 	default:
2277 		break;
2278 	}
2279 	return 0;
2280 op_err:
2281 	BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc);
2282 	return rc;
2283 }
2284 
2285 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2286 			struct bnx2x_config_rss_params *rss)
2287 {
2288 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2289 	set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags);
2290 	return bnx2x_config_rss(bp, rss);
2291 }
2292 
2293 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2294 			struct vfpf_tpa_tlv *tlv,
2295 			struct bnx2x_queue_update_tpa_params *params)
2296 {
2297 	aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr;
2298 	struct bnx2x_queue_state_params qstate;
2299 	int qid, rc = 0;
2300 
2301 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2302 
2303 	/* Set ramrod params */
2304 	memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
2305 	memcpy(&qstate.params.update_tpa, params,
2306 	       sizeof(struct bnx2x_queue_update_tpa_params));
2307 	qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA;
2308 	set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
2309 
2310 	for (qid = 0; qid < vf_rxq_count(vf); qid++) {
2311 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
2312 		qstate.params.update_tpa.sge_map = sge_addr[qid];
2313 		DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n",
2314 		   vf->abs_vfid, qid, U64_HI(sge_addr[qid]),
2315 		   U64_LO(sge_addr[qid]));
2316 		rc = bnx2x_queue_state_change(bp, &qstate);
2317 		if (rc) {
2318 			BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n",
2319 				  U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]),
2320 				  vf->abs_vfid, qid);
2321 			return rc;
2322 		}
2323 	}
2324 
2325 	return rc;
2326 }
2327 
2328 /* VF release ~ VF close + VF release-resources
2329  * Release is the ultimate SW shutdown and is called whenever an
2330  * irrecoverable error is encountered.
2331  */
2332 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf)
2333 {
2334 	int rc;
2335 
2336 	DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid);
2337 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2338 
2339 	rc = bnx2x_vf_free(bp, vf);
2340 	if (rc)
2341 		WARN(rc,
2342 		     "VF[%d] Failed to allocate resources for release op- rc=%d\n",
2343 		     vf->abs_vfid, rc);
2344 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2345 	return rc;
2346 }
2347 
2348 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2349 			      enum channel_tlvs tlv)
2350 {
2351 	/* we don't lock the channel for unsupported tlvs */
2352 	if (!bnx2x_tlv_supported(tlv)) {
2353 		BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n");
2354 		return;
2355 	}
2356 
2357 	/* lock the channel */
2358 	mutex_lock(&vf->op_mutex);
2359 
2360 	/* record the locking op */
2361 	vf->op_current = tlv;
2362 
2363 	/* log the lock */
2364 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n",
2365 	   vf->abs_vfid, tlv);
2366 }
2367 
2368 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2369 				enum channel_tlvs expected_tlv)
2370 {
2371 	enum channel_tlvs current_tlv;
2372 
2373 	if (!vf) {
2374 		BNX2X_ERR("VF was %p\n", vf);
2375 		return;
2376 	}
2377 
2378 	current_tlv = vf->op_current;
2379 
2380 	/* we don't unlock the channel for unsupported tlvs */
2381 	if (!bnx2x_tlv_supported(expected_tlv))
2382 		return;
2383 
2384 	WARN(expected_tlv != vf->op_current,
2385 	     "lock mismatch: expected %d found %d", expected_tlv,
2386 	     vf->op_current);
2387 
2388 	/* record the locking op */
2389 	vf->op_current = CHANNEL_TLV_NONE;
2390 
2391 	/* lock the channel */
2392 	mutex_unlock(&vf->op_mutex);
2393 
2394 	/* log the unlock */
2395 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n",
2396 	   vf->abs_vfid, current_tlv);
2397 }
2398 
2399 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable)
2400 {
2401 	struct bnx2x_queue_state_params q_params;
2402 	u32 prev_flags;
2403 	int i, rc;
2404 
2405 	/* Verify changes are needed and record current Tx switching state */
2406 	prev_flags = bp->flags;
2407 	if (enable)
2408 		bp->flags |= TX_SWITCHING;
2409 	else
2410 		bp->flags &= ~TX_SWITCHING;
2411 	if (prev_flags == bp->flags)
2412 		return 0;
2413 
2414 	/* Verify state enables the sending of queue ramrods */
2415 	if ((bp->state != BNX2X_STATE_OPEN) ||
2416 	    (bnx2x_get_q_logical_state(bp,
2417 				      &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) !=
2418 	     BNX2X_Q_LOGICAL_STATE_ACTIVE))
2419 		return 0;
2420 
2421 	/* send q. update ramrod to configure Tx switching */
2422 	memset(&q_params, 0, sizeof(q_params));
2423 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2424 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
2425 	__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
2426 		  &q_params.params.update.update_flags);
2427 	if (enable)
2428 		__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2429 			  &q_params.params.update.update_flags);
2430 	else
2431 		__clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2432 			    &q_params.params.update.update_flags);
2433 
2434 	/* send the ramrod on all the queues of the PF */
2435 	for_each_eth_queue(bp, i) {
2436 		struct bnx2x_fastpath *fp = &bp->fp[i];
2437 
2438 		/* Set the appropriate Queue object */
2439 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
2440 
2441 		/* Update the Queue state */
2442 		rc = bnx2x_queue_state_change(bp, &q_params);
2443 		if (rc) {
2444 			BNX2X_ERR("Failed to configure Tx switching\n");
2445 			return rc;
2446 		}
2447 	}
2448 
2449 	DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled");
2450 	return 0;
2451 }
2452 
2453 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param)
2454 {
2455 	struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev));
2456 
2457 	if (!IS_SRIOV(bp)) {
2458 		BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n");
2459 		return -EINVAL;
2460 	}
2461 
2462 	DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
2463 	   num_vfs_param, BNX2X_NR_VIRTFN(bp));
2464 
2465 	/* HW channel is only operational when PF is up */
2466 	if (bp->state != BNX2X_STATE_OPEN) {
2467 		BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
2468 		return -EINVAL;
2469 	}
2470 
2471 	/* we are always bound by the total_vfs in the configuration space */
2472 	if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) {
2473 		BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
2474 			  num_vfs_param, BNX2X_NR_VIRTFN(bp));
2475 		num_vfs_param = BNX2X_NR_VIRTFN(bp);
2476 	}
2477 
2478 	bp->requested_nr_virtfn = num_vfs_param;
2479 	if (num_vfs_param == 0) {
2480 		bnx2x_set_pf_tx_switching(bp, false);
2481 		pci_disable_sriov(dev);
2482 		return 0;
2483 	} else {
2484 		return bnx2x_enable_sriov(bp);
2485 	}
2486 }
2487 
2488 #define IGU_ENTRY_SIZE 4
2489 
2490 int bnx2x_enable_sriov(struct bnx2x *bp)
2491 {
2492 	int rc = 0, req_vfs = bp->requested_nr_virtfn;
2493 	int vf_idx, sb_idx, vfq_idx, qcount, first_vf;
2494 	u32 igu_entry, address;
2495 	u16 num_vf_queues;
2496 
2497 	if (req_vfs == 0)
2498 		return 0;
2499 
2500 	first_vf = bp->vfdb->sriov.first_vf_in_pf;
2501 
2502 	/* statically distribute vf sb pool between VFs */
2503 	num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES,
2504 			      BP_VFDB(bp)->vf_sbs_pool / req_vfs);
2505 
2506 	/* zero previous values learned from igu cam */
2507 	for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) {
2508 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2509 
2510 		vf->sb_count = 0;
2511 		vf_sb_count(BP_VF(bp, vf_idx)) = 0;
2512 	}
2513 	bp->vfdb->vf_sbs_pool = 0;
2514 
2515 	/* prepare IGU cam */
2516 	sb_idx = BP_VFDB(bp)->first_vf_igu_entry;
2517 	address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE;
2518 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2519 		for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) {
2520 			igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT |
2521 				vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT |
2522 				IGU_REG_MAPPING_MEMORY_VALID;
2523 			DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n",
2524 			   sb_idx, vf_idx);
2525 			REG_WR(bp, address, igu_entry);
2526 			sb_idx++;
2527 			address += IGU_ENTRY_SIZE;
2528 		}
2529 	}
2530 
2531 	/* Reinitialize vf database according to igu cam */
2532 	bnx2x_get_vf_igu_cam_info(bp);
2533 
2534 	DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n",
2535 	   BP_VFDB(bp)->vf_sbs_pool, num_vf_queues);
2536 
2537 	qcount = 0;
2538 	for_each_vf(bp, vf_idx) {
2539 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2540 
2541 		/* set local queue arrays */
2542 		vf->vfqs = &bp->vfdb->vfqs[qcount];
2543 		qcount += vf_sb_count(vf);
2544 		bnx2x_iov_static_resc(bp, vf);
2545 	}
2546 
2547 	/* prepare msix vectors in VF configuration space - the value in the
2548 	 * PCI configuration space should be the index of the last entry,
2549 	 * namely one less than the actual size of the table
2550 	 */
2551 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2552 		bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx));
2553 		REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL,
2554 		       num_vf_queues - 1);
2555 		DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n",
2556 		   vf_idx, num_vf_queues - 1);
2557 	}
2558 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
2559 
2560 	/* enable sriov. This will probe all the VFs, and consequentially cause
2561 	 * the "acquire" messages to appear on the VF PF channel.
2562 	 */
2563 	DP(BNX2X_MSG_IOV, "about to call enable sriov\n");
2564 	bnx2x_disable_sriov(bp);
2565 
2566 	rc = bnx2x_set_pf_tx_switching(bp, true);
2567 	if (rc)
2568 		return rc;
2569 
2570 	rc = pci_enable_sriov(bp->pdev, req_vfs);
2571 	if (rc) {
2572 		BNX2X_ERR("pci_enable_sriov failed with %d\n", rc);
2573 		return rc;
2574 	}
2575 	DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs);
2576 	return req_vfs;
2577 }
2578 
2579 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp)
2580 {
2581 	int vfidx;
2582 	struct pf_vf_bulletin_content *bulletin;
2583 
2584 	DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n");
2585 	for_each_vf(bp, vfidx) {
2586 	bulletin = BP_VF_BULLETIN(bp, vfidx);
2587 		if (BP_VF(bp, vfidx)->cfg_flags & VF_CFG_VLAN)
2588 			bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0);
2589 	}
2590 }
2591 
2592 void bnx2x_disable_sriov(struct bnx2x *bp)
2593 {
2594 	pci_disable_sriov(bp->pdev);
2595 }
2596 
2597 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
2598 			    struct bnx2x_virtf **vf,
2599 			    struct pf_vf_bulletin_content **bulletin,
2600 			    bool test_queue)
2601 {
2602 	if (bp->state != BNX2X_STATE_OPEN) {
2603 		BNX2X_ERR("PF is down - can't utilize iov-related functionality\n");
2604 		return -EINVAL;
2605 	}
2606 
2607 	if (!IS_SRIOV(bp)) {
2608 		BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n");
2609 		return -EINVAL;
2610 	}
2611 
2612 	if (vfidx >= BNX2X_NR_VIRTFN(bp)) {
2613 		BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
2614 			  vfidx, BNX2X_NR_VIRTFN(bp));
2615 		return -EINVAL;
2616 	}
2617 
2618 	/* init members */
2619 	*vf = BP_VF(bp, vfidx);
2620 	*bulletin = BP_VF_BULLETIN(bp, vfidx);
2621 
2622 	if (!*vf) {
2623 		BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx);
2624 		return -EINVAL;
2625 	}
2626 
2627 	if (test_queue && !(*vf)->vfqs) {
2628 		BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n",
2629 			  vfidx);
2630 		return -EINVAL;
2631 	}
2632 
2633 	if (!*bulletin) {
2634 		BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n",
2635 			  vfidx);
2636 		return -EINVAL;
2637 	}
2638 
2639 	return 0;
2640 }
2641 
2642 int bnx2x_get_vf_config(struct net_device *dev, int vfidx,
2643 			struct ifla_vf_info *ivi)
2644 {
2645 	struct bnx2x *bp = netdev_priv(dev);
2646 	struct bnx2x_virtf *vf = NULL;
2647 	struct pf_vf_bulletin_content *bulletin = NULL;
2648 	struct bnx2x_vlan_mac_obj *mac_obj;
2649 	struct bnx2x_vlan_mac_obj *vlan_obj;
2650 	int rc;
2651 
2652 	/* sanity and init */
2653 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2654 	if (rc)
2655 		return rc;
2656 
2657 	mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2658 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2659 	if (!mac_obj || !vlan_obj) {
2660 		BNX2X_ERR("VF partially initialized\n");
2661 		return -EINVAL;
2662 	}
2663 
2664 	ivi->vf = vfidx;
2665 	ivi->qos = 0;
2666 	ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */
2667 	ivi->min_tx_rate = 0;
2668 	ivi->spoofchk = 1; /*always enabled */
2669 	if (vf->state == VF_ENABLED) {
2670 		/* mac and vlan are in vlan_mac objects */
2671 		if (bnx2x_validate_vf_sp_objs(bp, vf, false)) {
2672 			mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac,
2673 						0, ETH_ALEN);
2674 			vlan_obj->get_n_elements(bp, vlan_obj, 1,
2675 						 (u8 *)&ivi->vlan, 0,
2676 						 VLAN_HLEN);
2677 		}
2678 	} else {
2679 		mutex_lock(&bp->vfdb->bulletin_mutex);
2680 		/* mac */
2681 		if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID))
2682 			/* mac configured by ndo so its in bulletin board */
2683 			memcpy(&ivi->mac, bulletin->mac, ETH_ALEN);
2684 		else
2685 			/* function has not been loaded yet. Show mac as 0s */
2686 			memset(&ivi->mac, 0, ETH_ALEN);
2687 
2688 		/* vlan */
2689 		if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2690 			/* vlan configured by ndo so its in bulletin board */
2691 			memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN);
2692 		else
2693 			/* function has not been loaded yet. Show vlans as 0s */
2694 			memset(&ivi->vlan, 0, VLAN_HLEN);
2695 
2696 		mutex_unlock(&bp->vfdb->bulletin_mutex);
2697 	}
2698 
2699 	return 0;
2700 }
2701 
2702 /* New mac for VF. Consider these cases:
2703  * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
2704  *    supply at acquire.
2705  * 2. VF has already been acquired but has not yet initialized - store in local
2706  *    bulletin board. mac will be posted on VF bulletin board after VF init. VF
2707  *    will configure this mac when it is ready.
2708  * 3. VF has already initialized but has not yet setup a queue - post the new
2709  *    mac on VF's bulletin board right now. VF will configure this mac when it
2710  *    is ready.
2711  * 4. VF has already set a queue - delete any macs already configured for this
2712  *    queue and manually config the new mac.
2713  * In any event, once this function has been called refuse any attempts by the
2714  * VF to configure any mac for itself except for this mac. In case of a race
2715  * where the VF fails to see the new post on its bulletin board before sending a
2716  * mac configuration request, the PF will simply fail the request and VF can try
2717  * again after consulting its bulletin board.
2718  */
2719 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac)
2720 {
2721 	struct bnx2x *bp = netdev_priv(dev);
2722 	int rc, q_logical_state;
2723 	struct bnx2x_virtf *vf = NULL;
2724 	struct pf_vf_bulletin_content *bulletin = NULL;
2725 
2726 	if (!is_valid_ether_addr(mac)) {
2727 		BNX2X_ERR("mac address invalid\n");
2728 		return -EINVAL;
2729 	}
2730 
2731 	/* sanity and init */
2732 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2733 	if (rc)
2734 		return rc;
2735 
2736 	mutex_lock(&bp->vfdb->bulletin_mutex);
2737 
2738 	/* update PF's copy of the VF's bulletin. Will no longer accept mac
2739 	 * configuration requests from vf unless match this mac
2740 	 */
2741 	bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID;
2742 	memcpy(bulletin->mac, mac, ETH_ALEN);
2743 
2744 	/* Post update on VF's bulletin board */
2745 	rc = bnx2x_post_vf_bulletin(bp, vfidx);
2746 
2747 	/* release lock before checking return code */
2748 	mutex_unlock(&bp->vfdb->bulletin_mutex);
2749 
2750 	if (rc) {
2751 		BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2752 		return rc;
2753 	}
2754 
2755 	q_logical_state =
2756 		bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj));
2757 	if (vf->state == VF_ENABLED &&
2758 	    q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
2759 		/* configure the mac in device on this vf's queue */
2760 		unsigned long ramrod_flags = 0;
2761 		struct bnx2x_vlan_mac_obj *mac_obj;
2762 
2763 		/* User should be able to see failure reason in system logs */
2764 		if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2765 			return -EINVAL;
2766 
2767 		/* must lock vfpf channel to protect against vf flows */
2768 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2769 
2770 		/* remove existing eth macs */
2771 		mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2772 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true);
2773 		if (rc) {
2774 			BNX2X_ERR("failed to delete eth macs\n");
2775 			rc = -EINVAL;
2776 			goto out;
2777 		}
2778 
2779 		/* remove existing uc list macs */
2780 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true);
2781 		if (rc) {
2782 			BNX2X_ERR("failed to delete uc_list macs\n");
2783 			rc = -EINVAL;
2784 			goto out;
2785 		}
2786 
2787 		/* configure the new mac to device */
2788 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2789 		bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true,
2790 				  BNX2X_ETH_MAC, &ramrod_flags);
2791 
2792 out:
2793 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2794 	}
2795 
2796 	return rc;
2797 }
2798 
2799 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos)
2800 {
2801 	struct bnx2x_queue_state_params q_params = {NULL};
2802 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
2803 	struct bnx2x_queue_update_params *update_params;
2804 	struct pf_vf_bulletin_content *bulletin = NULL;
2805 	struct bnx2x_rx_mode_ramrod_params rx_ramrod;
2806 	struct bnx2x *bp = netdev_priv(dev);
2807 	struct bnx2x_vlan_mac_obj *vlan_obj;
2808 	unsigned long vlan_mac_flags = 0;
2809 	unsigned long ramrod_flags = 0;
2810 	struct bnx2x_virtf *vf = NULL;
2811 	unsigned long accept_flags;
2812 	int rc;
2813 
2814 	if (vlan > 4095) {
2815 		BNX2X_ERR("illegal vlan value %d\n", vlan);
2816 		return -EINVAL;
2817 	}
2818 
2819 	DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n",
2820 	   vfidx, vlan, 0);
2821 
2822 	/* sanity and init */
2823 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2824 	if (rc)
2825 		return rc;
2826 
2827 	/* update PF's copy of the VF's bulletin. No point in posting the vlan
2828 	 * to the VF since it doesn't have anything to do with it. But it useful
2829 	 * to store it here in case the VF is not up yet and we can only
2830 	 * configure the vlan later when it does. Treat vlan id 0 as remove the
2831 	 * Host tag.
2832 	 */
2833 	mutex_lock(&bp->vfdb->bulletin_mutex);
2834 
2835 	if (vlan > 0)
2836 		bulletin->valid_bitmap |= 1 << VLAN_VALID;
2837 	else
2838 		bulletin->valid_bitmap &= ~(1 << VLAN_VALID);
2839 	bulletin->vlan = vlan;
2840 
2841 	mutex_unlock(&bp->vfdb->bulletin_mutex);
2842 
2843 	/* is vf initialized and queue set up? */
2844 	if (vf->state != VF_ENABLED ||
2845 	    bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2846 	    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2847 		return rc;
2848 
2849 	/* User should be able to see error in system logs */
2850 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2851 		return -EINVAL;
2852 
2853 	/* must lock vfpf channel to protect against vf flows */
2854 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2855 
2856 	/* remove existing vlans */
2857 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2858 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2859 	rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags,
2860 				  &ramrod_flags);
2861 	if (rc) {
2862 		BNX2X_ERR("failed to delete vlans\n");
2863 		rc = -EINVAL;
2864 		goto out;
2865 	}
2866 
2867 	/* need to remove/add the VF's accept_any_vlan bit */
2868 	accept_flags = bnx2x_leading_vfq(vf, accept_flags);
2869 	if (vlan)
2870 		clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2871 	else
2872 		set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2873 
2874 	bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf,
2875 			      accept_flags);
2876 	bnx2x_leading_vfq(vf, accept_flags) = accept_flags;
2877 	bnx2x_config_rx_mode(bp, &rx_ramrod);
2878 
2879 	/* configure the new vlan to device */
2880 	memset(&ramrod_param, 0, sizeof(ramrod_param));
2881 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2882 	ramrod_param.vlan_mac_obj = vlan_obj;
2883 	ramrod_param.ramrod_flags = ramrod_flags;
2884 	set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
2885 		&ramrod_param.user_req.vlan_mac_flags);
2886 	ramrod_param.user_req.u.vlan.vlan = vlan;
2887 	ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
2888 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
2889 	if (rc) {
2890 		BNX2X_ERR("failed to configure vlan\n");
2891 		rc =  -EINVAL;
2892 		goto out;
2893 	}
2894 
2895 	/* send queue update ramrod to configure default vlan and silent
2896 	 * vlan removal
2897 	 */
2898 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2899 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
2900 	q_params.q_obj = &bnx2x_leading_vfq(vf, sp_obj);
2901 	update_params = &q_params.params.update;
2902 	__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
2903 		  &update_params->update_flags);
2904 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
2905 		  &update_params->update_flags);
2906 	if (vlan == 0) {
2907 		/* if vlan is 0 then we want to leave the VF traffic
2908 		 * untagged, and leave the incoming traffic untouched
2909 		 * (i.e. do not remove any vlan tags).
2910 		 */
2911 		__clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2912 			    &update_params->update_flags);
2913 		__clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2914 			    &update_params->update_flags);
2915 	} else {
2916 		/* configure default vlan to vf queue and set silent
2917 		 * vlan removal (the vf remains unaware of this vlan).
2918 		 */
2919 		__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2920 			  &update_params->update_flags);
2921 		__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2922 			  &update_params->update_flags);
2923 		update_params->def_vlan = vlan;
2924 		update_params->silent_removal_value =
2925 			vlan & VLAN_VID_MASK;
2926 		update_params->silent_removal_mask = VLAN_VID_MASK;
2927 	}
2928 
2929 	/* Update the Queue state */
2930 	rc = bnx2x_queue_state_change(bp, &q_params);
2931 	if (rc) {
2932 		BNX2X_ERR("Failed to configure default VLAN\n");
2933 		goto out;
2934 	}
2935 
2936 
2937 	/* clear the flag indicating that this VF needs its vlan
2938 	 * (will only be set if the HV configured the Vlan before vf was
2939 	 * up and we were called because the VF came up later
2940 	 */
2941 out:
2942 	vf->cfg_flags &= ~VF_CFG_VLAN;
2943 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2944 
2945 	return rc;
2946 }
2947 
2948 /* crc is the first field in the bulletin board. Compute the crc over the
2949  * entire bulletin board excluding the crc field itself. Use the length field
2950  * as the Bulletin Board was posted by a PF with possibly a different version
2951  * from the vf which will sample it. Therefore, the length is computed by the
2952  * PF and then used blindly by the VF.
2953  */
2954 u32 bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content *bulletin)
2955 {
2956 	return crc32(BULLETIN_CRC_SEED,
2957 		 ((u8 *)bulletin) + sizeof(bulletin->crc),
2958 		 bulletin->length - sizeof(bulletin->crc));
2959 }
2960 
2961 /* Check for new posts on the bulletin board */
2962 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp)
2963 {
2964 	struct pf_vf_bulletin_content *bulletin;
2965 	int attempts;
2966 
2967 	/* sampling structure in mid post may result with corrupted data
2968 	 * validate crc to ensure coherency.
2969 	 */
2970 	for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) {
2971 		u32 crc;
2972 
2973 		/* sample the bulletin board */
2974 		memcpy(&bp->shadow_bulletin, bp->pf2vf_bulletin,
2975 		       sizeof(union pf_vf_bulletin));
2976 
2977 		crc = bnx2x_crc_vf_bulletin(&bp->shadow_bulletin.content);
2978 
2979 		if (bp->shadow_bulletin.content.crc == crc)
2980 			break;
2981 
2982 		BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
2983 			  bp->shadow_bulletin.content.crc, crc);
2984 	}
2985 
2986 	if (attempts >= BULLETIN_ATTEMPTS) {
2987 		BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
2988 			  attempts);
2989 		return PFVF_BULLETIN_CRC_ERR;
2990 	}
2991 	bulletin = &bp->shadow_bulletin.content;
2992 
2993 	/* bulletin board hasn't changed since last sample */
2994 	if (bp->old_bulletin.version == bulletin->version)
2995 		return PFVF_BULLETIN_UNCHANGED;
2996 
2997 	/* the mac address in bulletin board is valid and is new */
2998 	if (bulletin->valid_bitmap & 1 << MAC_ADDR_VALID &&
2999 	    !ether_addr_equal(bulletin->mac, bp->old_bulletin.mac)) {
3000 		/* update new mac to net device */
3001 		memcpy(bp->dev->dev_addr, bulletin->mac, ETH_ALEN);
3002 	}
3003 
3004 	if (bulletin->valid_bitmap & (1 << LINK_VALID)) {
3005 		DP(BNX2X_MSG_IOV, "link update speed %d flags %x\n",
3006 		   bulletin->link_speed, bulletin->link_flags);
3007 
3008 		bp->vf_link_vars.line_speed = bulletin->link_speed;
3009 		bp->vf_link_vars.link_report_flags = 0;
3010 		/* Link is down */
3011 		if (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)
3012 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
3013 				  &bp->vf_link_vars.link_report_flags);
3014 		/* Full DUPLEX */
3015 		if (bulletin->link_flags & VFPF_LINK_REPORT_FULL_DUPLEX)
3016 			__set_bit(BNX2X_LINK_REPORT_FD,
3017 				  &bp->vf_link_vars.link_report_flags);
3018 		/* Rx Flow Control is ON */
3019 		if (bulletin->link_flags & VFPF_LINK_REPORT_RX_FC_ON)
3020 			__set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
3021 				  &bp->vf_link_vars.link_report_flags);
3022 		/* Tx Flow Control is ON */
3023 		if (bulletin->link_flags & VFPF_LINK_REPORT_TX_FC_ON)
3024 			__set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
3025 				  &bp->vf_link_vars.link_report_flags);
3026 		__bnx2x_link_report(bp);
3027 	}
3028 
3029 	/* copy new bulletin board to bp */
3030 	memcpy(&bp->old_bulletin, bulletin,
3031 	       sizeof(struct pf_vf_bulletin_content));
3032 
3033 	return PFVF_BULLETIN_UPDATED;
3034 }
3035 
3036 void bnx2x_timer_sriov(struct bnx2x *bp)
3037 {
3038 	bnx2x_sample_bulletin(bp);
3039 
3040 	/* if channel is down we need to self destruct */
3041 	if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN)
3042 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
3043 				       BNX2X_MSG_IOV);
3044 }
3045 
3046 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp)
3047 {
3048 	/* vf doorbells are embedded within the regview */
3049 	return bp->regview + PXP_VF_ADDR_DB_START;
3050 }
3051 
3052 void bnx2x_vf_pci_dealloc(struct bnx2x *bp)
3053 {
3054 	BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
3055 		       sizeof(struct bnx2x_vf_mbx_msg));
3056 	BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->pf2vf_bulletin_mapping,
3057 		       sizeof(union pf_vf_bulletin));
3058 }
3059 
3060 int bnx2x_vf_pci_alloc(struct bnx2x *bp)
3061 {
3062 	mutex_init(&bp->vf2pf_mutex);
3063 
3064 	/* allocate vf2pf mailbox for vf to pf channel */
3065 	bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping,
3066 					 sizeof(struct bnx2x_vf_mbx_msg));
3067 	if (!bp->vf2pf_mbox)
3068 		goto alloc_mem_err;
3069 
3070 	/* allocate pf 2 vf bulletin board */
3071 	bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping,
3072 					     sizeof(union pf_vf_bulletin));
3073 	if (!bp->pf2vf_bulletin)
3074 		goto alloc_mem_err;
3075 
3076 	bnx2x_vf_bulletin_finalize(&bp->pf2vf_bulletin->content, true);
3077 
3078 	return 0;
3079 
3080 alloc_mem_err:
3081 	bnx2x_vf_pci_dealloc(bp);
3082 	return -ENOMEM;
3083 }
3084 
3085 void bnx2x_iov_channel_down(struct bnx2x *bp)
3086 {
3087 	int vf_idx;
3088 	struct pf_vf_bulletin_content *bulletin;
3089 
3090 	if (!IS_SRIOV(bp))
3091 		return;
3092 
3093 	for_each_vf(bp, vf_idx) {
3094 		/* locate this VFs bulletin board and update the channel down
3095 		 * bit
3096 		 */
3097 		bulletin = BP_VF_BULLETIN(bp, vf_idx);
3098 		bulletin->valid_bitmap |= 1 << CHANNEL_DOWN;
3099 
3100 		/* update vf bulletin board */
3101 		bnx2x_post_vf_bulletin(bp, vf_idx);
3102 	}
3103 }
3104 
3105 void bnx2x_iov_task(struct work_struct *work)
3106 {
3107 	struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work);
3108 
3109 	if (!netif_running(bp->dev))
3110 		return;
3111 
3112 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR,
3113 			       &bp->iov_task_state))
3114 		bnx2x_vf_handle_flr_event(bp);
3115 
3116 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG,
3117 			       &bp->iov_task_state))
3118 		bnx2x_vf_mbx(bp);
3119 }
3120 
3121 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag)
3122 {
3123 	smp_mb__before_atomic();
3124 	set_bit(flag, &bp->iov_task_state);
3125 	smp_mb__after_atomic();
3126 	DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
3127 	queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0);
3128 }
3129