xref: /openbmc/linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c (revision f8a11425075ff11b4b5784f077cb84f3d2dfb3f0)
1 /* bnx2x_main.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h>  /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/aer.h>
33 #include <linux/init.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/bitops.h>
39 #include <linux/irq.h>
40 #include <linux/delay.h>
41 #include <asm/byteorder.h>
42 #include <linux/time.h>
43 #include <linux/ethtool.h>
44 #include <linux/mii.h>
45 #include <linux/if_vlan.h>
46 #include <linux/crash_dump.h>
47 #include <net/ip.h>
48 #include <net/ipv6.h>
49 #include <net/tcp.h>
50 #include <net/vxlan.h>
51 #include <net/checksum.h>
52 #include <net/ip6_checksum.h>
53 #include <linux/workqueue.h>
54 #include <linux/crc32.h>
55 #include <linux/crc32c.h>
56 #include <linux/prefetch.h>
57 #include <linux/zlib.h>
58 #include <linux/io.h>
59 #include <linux/semaphore.h>
60 #include <linux/stringify.h>
61 #include <linux/vmalloc.h>
62 #include "bnx2x.h"
63 #include "bnx2x_init.h"
64 #include "bnx2x_init_ops.h"
65 #include "bnx2x_cmn.h"
66 #include "bnx2x_vfpf.h"
67 #include "bnx2x_dcb.h"
68 #include "bnx2x_sp.h"
69 #include <linux/firmware.h>
70 #include "bnx2x_fw_file_hdr.h"
71 /* FW files */
72 #define FW_FILE_VERSION					\
73 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
74 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
75 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
76 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
77 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
78 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
79 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
80 
81 /* Time in jiffies before concluding the transmitter is hung */
82 #define TX_TIMEOUT		(5*HZ)
83 
84 MODULE_AUTHOR("Eliezer Tamir");
85 MODULE_DESCRIPTION("QLogic "
86 		   "BCM57710/57711/57711E/"
87 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
88 		   "57840/57840_MF Driver");
89 MODULE_LICENSE("GPL");
90 MODULE_FIRMWARE(FW_FILE_NAME_E1);
91 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
92 MODULE_FIRMWARE(FW_FILE_NAME_E2);
93 
94 int bnx2x_num_queues;
95 module_param_named(num_queues, bnx2x_num_queues, int, 0444);
96 MODULE_PARM_DESC(num_queues,
97 		 " Set number of queues (default is as a number of CPUs)");
98 
99 static int disable_tpa;
100 module_param(disable_tpa, int, 0444);
101 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
102 
103 static int int_mode;
104 module_param(int_mode, int, 0444);
105 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
106 				"(1 INT#x; 2 MSI)");
107 
108 static int dropless_fc;
109 module_param(dropless_fc, int, 0444);
110 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
111 
112 static int mrrs = -1;
113 module_param(mrrs, int, 0444);
114 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
115 
116 static int debug;
117 module_param(debug, int, 0444);
118 MODULE_PARM_DESC(debug, " Default debug msglevel");
119 
120 static struct workqueue_struct *bnx2x_wq;
121 struct workqueue_struct *bnx2x_iov_wq;
122 
123 struct bnx2x_mac_vals {
124 	u32 xmac_addr;
125 	u32 xmac_val;
126 	u32 emac_addr;
127 	u32 emac_val;
128 	u32 umac_addr[2];
129 	u32 umac_val[2];
130 	u32 bmac_addr;
131 	u32 bmac_val[2];
132 };
133 
134 enum bnx2x_board_type {
135 	BCM57710 = 0,
136 	BCM57711,
137 	BCM57711E,
138 	BCM57712,
139 	BCM57712_MF,
140 	BCM57712_VF,
141 	BCM57800,
142 	BCM57800_MF,
143 	BCM57800_VF,
144 	BCM57810,
145 	BCM57810_MF,
146 	BCM57810_VF,
147 	BCM57840_4_10,
148 	BCM57840_2_20,
149 	BCM57840_MF,
150 	BCM57840_VF,
151 	BCM57811,
152 	BCM57811_MF,
153 	BCM57840_O,
154 	BCM57840_MFO,
155 	BCM57811_VF
156 };
157 
158 /* indexed by board_type, above */
159 static struct {
160 	char *name;
161 } board_info[] = {
162 	[BCM57710]	= { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
163 	[BCM57711]	= { "QLogic BCM57711 10 Gigabit PCIe" },
164 	[BCM57711E]	= { "QLogic BCM57711E 10 Gigabit PCIe" },
165 	[BCM57712]	= { "QLogic BCM57712 10 Gigabit Ethernet" },
166 	[BCM57712_MF]	= { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
167 	[BCM57712_VF]	= { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
168 	[BCM57800]	= { "QLogic BCM57800 10 Gigabit Ethernet" },
169 	[BCM57800_MF]	= { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
170 	[BCM57800_VF]	= { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
171 	[BCM57810]	= { "QLogic BCM57810 10 Gigabit Ethernet" },
172 	[BCM57810_MF]	= { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
173 	[BCM57810_VF]	= { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
174 	[BCM57840_4_10]	= { "QLogic BCM57840 10 Gigabit Ethernet" },
175 	[BCM57840_2_20]	= { "QLogic BCM57840 20 Gigabit Ethernet" },
176 	[BCM57840_MF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
177 	[BCM57840_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
178 	[BCM57811]	= { "QLogic BCM57811 10 Gigabit Ethernet" },
179 	[BCM57811_MF]	= { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
180 	[BCM57840_O]	= { "QLogic BCM57840 10/20 Gigabit Ethernet" },
181 	[BCM57840_MFO]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
182 	[BCM57811_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
183 };
184 
185 #ifndef PCI_DEVICE_ID_NX2_57710
186 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
187 #endif
188 #ifndef PCI_DEVICE_ID_NX2_57711
189 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
190 #endif
191 #ifndef PCI_DEVICE_ID_NX2_57711E
192 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
193 #endif
194 #ifndef PCI_DEVICE_ID_NX2_57712
195 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
196 #endif
197 #ifndef PCI_DEVICE_ID_NX2_57712_MF
198 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
199 #endif
200 #ifndef PCI_DEVICE_ID_NX2_57712_VF
201 #define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
202 #endif
203 #ifndef PCI_DEVICE_ID_NX2_57800
204 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
205 #endif
206 #ifndef PCI_DEVICE_ID_NX2_57800_MF
207 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
208 #endif
209 #ifndef PCI_DEVICE_ID_NX2_57800_VF
210 #define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
211 #endif
212 #ifndef PCI_DEVICE_ID_NX2_57810
213 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
214 #endif
215 #ifndef PCI_DEVICE_ID_NX2_57810_MF
216 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
217 #endif
218 #ifndef PCI_DEVICE_ID_NX2_57840_O
219 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
220 #endif
221 #ifndef PCI_DEVICE_ID_NX2_57810_VF
222 #define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
223 #endif
224 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
225 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
226 #endif
227 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
228 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
229 #endif
230 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
231 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
232 #endif
233 #ifndef PCI_DEVICE_ID_NX2_57840_MF
234 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
235 #endif
236 #ifndef PCI_DEVICE_ID_NX2_57840_VF
237 #define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
238 #endif
239 #ifndef PCI_DEVICE_ID_NX2_57811
240 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
241 #endif
242 #ifndef PCI_DEVICE_ID_NX2_57811_MF
243 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
244 #endif
245 #ifndef PCI_DEVICE_ID_NX2_57811_VF
246 #define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
247 #endif
248 
249 static const struct pci_device_id bnx2x_pci_tbl[] = {
250 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
251 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
252 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
253 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
254 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
255 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
256 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
257 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
258 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
259 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
260 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
261 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
262 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
263 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
264 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
265 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
266 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
267 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
268 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
269 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
270 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
271 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
272 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
273 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
274 	{ 0 }
275 };
276 
277 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
278 
279 const u32 dmae_reg_go_c[] = {
280 	DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
281 	DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
282 	DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
283 	DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
284 };
285 
286 /* Global resources for unloading a previously loaded device */
287 #define BNX2X_PREV_WAIT_NEEDED 1
288 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
289 static LIST_HEAD(bnx2x_prev_list);
290 
291 /* Forward declaration */
292 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
293 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
294 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
295 
296 /****************************************************************************
297 * General service functions
298 ****************************************************************************/
299 
300 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
301 
302 static void __storm_memset_dma_mapping(struct bnx2x *bp,
303 				       u32 addr, dma_addr_t mapping)
304 {
305 	REG_WR(bp,  addr, U64_LO(mapping));
306 	REG_WR(bp,  addr + 4, U64_HI(mapping));
307 }
308 
309 static void storm_memset_spq_addr(struct bnx2x *bp,
310 				  dma_addr_t mapping, u16 abs_fid)
311 {
312 	u32 addr = XSEM_REG_FAST_MEMORY +
313 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
314 
315 	__storm_memset_dma_mapping(bp, addr, mapping);
316 }
317 
318 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
319 				  u16 pf_id)
320 {
321 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
322 		pf_id);
323 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
324 		pf_id);
325 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
326 		pf_id);
327 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
328 		pf_id);
329 }
330 
331 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
332 				 u8 enable)
333 {
334 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
335 		enable);
336 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
337 		enable);
338 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
339 		enable);
340 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
341 		enable);
342 }
343 
344 static void storm_memset_eq_data(struct bnx2x *bp,
345 				 struct event_ring_data *eq_data,
346 				u16 pfid)
347 {
348 	size_t size = sizeof(struct event_ring_data);
349 
350 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
351 
352 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
353 }
354 
355 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
356 				 u16 pfid)
357 {
358 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
359 	REG_WR16(bp, addr, eq_prod);
360 }
361 
362 /* used only at init
363  * locking is done by mcp
364  */
365 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
366 {
367 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
368 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
369 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
370 			       PCICFG_VENDOR_ID_OFFSET);
371 }
372 
373 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
374 {
375 	u32 val;
376 
377 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
378 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
379 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
380 			       PCICFG_VENDOR_ID_OFFSET);
381 
382 	return val;
383 }
384 
385 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
386 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
387 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
388 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
389 #define DMAE_DP_DST_NONE	"dst_addr [none]"
390 
391 static void bnx2x_dp_dmae(struct bnx2x *bp,
392 			  struct dmae_command *dmae, int msglvl)
393 {
394 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
395 	int i;
396 
397 	switch (dmae->opcode & DMAE_COMMAND_DST) {
398 	case DMAE_CMD_DST_PCI:
399 		if (src_type == DMAE_CMD_SRC_PCI)
400 			DP(msglvl, "DMAE: opcode 0x%08x\n"
401 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
402 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
403 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
404 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
405 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
406 			   dmae->comp_val);
407 		else
408 			DP(msglvl, "DMAE: opcode 0x%08x\n"
409 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
410 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
411 			   dmae->opcode, dmae->src_addr_lo >> 2,
412 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
413 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
414 			   dmae->comp_val);
415 		break;
416 	case DMAE_CMD_DST_GRC:
417 		if (src_type == DMAE_CMD_SRC_PCI)
418 			DP(msglvl, "DMAE: opcode 0x%08x\n"
419 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
420 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
421 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
422 			   dmae->len, dmae->dst_addr_lo >> 2,
423 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
424 			   dmae->comp_val);
425 		else
426 			DP(msglvl, "DMAE: opcode 0x%08x\n"
427 			   "src [%08x], len [%d*4], dst [%08x]\n"
428 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
429 			   dmae->opcode, dmae->src_addr_lo >> 2,
430 			   dmae->len, dmae->dst_addr_lo >> 2,
431 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
432 			   dmae->comp_val);
433 		break;
434 	default:
435 		if (src_type == DMAE_CMD_SRC_PCI)
436 			DP(msglvl, "DMAE: opcode 0x%08x\n"
437 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
438 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
439 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
440 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
441 			   dmae->comp_val);
442 		else
443 			DP(msglvl, "DMAE: opcode 0x%08x\n"
444 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
445 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
446 			   dmae->opcode, dmae->src_addr_lo >> 2,
447 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
448 			   dmae->comp_val);
449 		break;
450 	}
451 
452 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
453 		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
454 		   i, *(((u32 *)dmae) + i));
455 }
456 
457 /* copy command into DMAE command memory and set DMAE command go */
458 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
459 {
460 	u32 cmd_offset;
461 	int i;
462 
463 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
464 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
465 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
466 	}
467 	REG_WR(bp, dmae_reg_go_c[idx], 1);
468 }
469 
470 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
471 {
472 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
473 			   DMAE_CMD_C_ENABLE);
474 }
475 
476 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
477 {
478 	return opcode & ~DMAE_CMD_SRC_RESET;
479 }
480 
481 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
482 			     bool with_comp, u8 comp_type)
483 {
484 	u32 opcode = 0;
485 
486 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
487 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
488 
489 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
490 
491 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
492 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
493 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
494 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
495 
496 #ifdef __BIG_ENDIAN
497 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
498 #else
499 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
500 #endif
501 	if (with_comp)
502 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
503 	return opcode;
504 }
505 
506 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
507 				      struct dmae_command *dmae,
508 				      u8 src_type, u8 dst_type)
509 {
510 	memset(dmae, 0, sizeof(struct dmae_command));
511 
512 	/* set the opcode */
513 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
514 					 true, DMAE_COMP_PCI);
515 
516 	/* fill in the completion parameters */
517 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
518 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
519 	dmae->comp_val = DMAE_COMP_VAL;
520 }
521 
522 /* issue a dmae command over the init-channel and wait for completion */
523 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
524 			       u32 *comp)
525 {
526 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
527 	int rc = 0;
528 
529 	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
530 
531 	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
532 	 * as long as this code is called both from syscall context and
533 	 * from ndo_set_rx_mode() flow that may be called from BH.
534 	 */
535 
536 	spin_lock_bh(&bp->dmae_lock);
537 
538 	/* reset completion */
539 	*comp = 0;
540 
541 	/* post the command on the channel used for initializations */
542 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
543 
544 	/* wait for completion */
545 	udelay(5);
546 	while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
547 
548 		if (!cnt ||
549 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
550 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
551 			BNX2X_ERR("DMAE timeout!\n");
552 			rc = DMAE_TIMEOUT;
553 			goto unlock;
554 		}
555 		cnt--;
556 		udelay(50);
557 	}
558 	if (*comp & DMAE_PCI_ERR_FLAG) {
559 		BNX2X_ERR("DMAE PCI error!\n");
560 		rc = DMAE_PCI_ERROR;
561 	}
562 
563 unlock:
564 
565 	spin_unlock_bh(&bp->dmae_lock);
566 
567 	return rc;
568 }
569 
570 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
571 		      u32 len32)
572 {
573 	int rc;
574 	struct dmae_command dmae;
575 
576 	if (!bp->dmae_ready) {
577 		u32 *data = bnx2x_sp(bp, wb_data[0]);
578 
579 		if (CHIP_IS_E1(bp))
580 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
581 		else
582 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
583 		return;
584 	}
585 
586 	/* set opcode and fixed command fields */
587 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
588 
589 	/* fill in addresses and len */
590 	dmae.src_addr_lo = U64_LO(dma_addr);
591 	dmae.src_addr_hi = U64_HI(dma_addr);
592 	dmae.dst_addr_lo = dst_addr >> 2;
593 	dmae.dst_addr_hi = 0;
594 	dmae.len = len32;
595 
596 	/* issue the command and wait for completion */
597 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
598 	if (rc) {
599 		BNX2X_ERR("DMAE returned failure %d\n", rc);
600 #ifdef BNX2X_STOP_ON_ERROR
601 		bnx2x_panic();
602 #endif
603 	}
604 }
605 
606 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
607 {
608 	int rc;
609 	struct dmae_command dmae;
610 
611 	if (!bp->dmae_ready) {
612 		u32 *data = bnx2x_sp(bp, wb_data[0]);
613 		int i;
614 
615 		if (CHIP_IS_E1(bp))
616 			for (i = 0; i < len32; i++)
617 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
618 		else
619 			for (i = 0; i < len32; i++)
620 				data[i] = REG_RD(bp, src_addr + i*4);
621 
622 		return;
623 	}
624 
625 	/* set opcode and fixed command fields */
626 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
627 
628 	/* fill in addresses and len */
629 	dmae.src_addr_lo = src_addr >> 2;
630 	dmae.src_addr_hi = 0;
631 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
632 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
633 	dmae.len = len32;
634 
635 	/* issue the command and wait for completion */
636 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
637 	if (rc) {
638 		BNX2X_ERR("DMAE returned failure %d\n", rc);
639 #ifdef BNX2X_STOP_ON_ERROR
640 		bnx2x_panic();
641 #endif
642 	}
643 }
644 
645 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
646 				      u32 addr, u32 len)
647 {
648 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
649 	int offset = 0;
650 
651 	while (len > dmae_wr_max) {
652 		bnx2x_write_dmae(bp, phys_addr + offset,
653 				 addr + offset, dmae_wr_max);
654 		offset += dmae_wr_max * 4;
655 		len -= dmae_wr_max;
656 	}
657 
658 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
659 }
660 
661 enum storms {
662 	   XSTORM,
663 	   TSTORM,
664 	   CSTORM,
665 	   USTORM,
666 	   MAX_STORMS
667 };
668 
669 #define STORMS_NUM 4
670 #define REGS_IN_ENTRY 4
671 
672 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
673 					      enum storms storm,
674 					      int entry)
675 {
676 	switch (storm) {
677 	case XSTORM:
678 		return XSTORM_ASSERT_LIST_OFFSET(entry);
679 	case TSTORM:
680 		return TSTORM_ASSERT_LIST_OFFSET(entry);
681 	case CSTORM:
682 		return CSTORM_ASSERT_LIST_OFFSET(entry);
683 	case USTORM:
684 		return USTORM_ASSERT_LIST_OFFSET(entry);
685 	case MAX_STORMS:
686 	default:
687 		BNX2X_ERR("unknown storm\n");
688 	}
689 	return -EINVAL;
690 }
691 
692 static int bnx2x_mc_assert(struct bnx2x *bp)
693 {
694 	char last_idx;
695 	int i, j, rc = 0;
696 	enum storms storm;
697 	u32 regs[REGS_IN_ENTRY];
698 	u32 bar_storm_intmem[STORMS_NUM] = {
699 		BAR_XSTRORM_INTMEM,
700 		BAR_TSTRORM_INTMEM,
701 		BAR_CSTRORM_INTMEM,
702 		BAR_USTRORM_INTMEM
703 	};
704 	u32 storm_assert_list_index[STORMS_NUM] = {
705 		XSTORM_ASSERT_LIST_INDEX_OFFSET,
706 		TSTORM_ASSERT_LIST_INDEX_OFFSET,
707 		CSTORM_ASSERT_LIST_INDEX_OFFSET,
708 		USTORM_ASSERT_LIST_INDEX_OFFSET
709 	};
710 	char *storms_string[STORMS_NUM] = {
711 		"XSTORM",
712 		"TSTORM",
713 		"CSTORM",
714 		"USTORM"
715 	};
716 
717 	for (storm = XSTORM; storm < MAX_STORMS; storm++) {
718 		last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
719 				   storm_assert_list_index[storm]);
720 		if (last_idx)
721 			BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
722 				  storms_string[storm], last_idx);
723 
724 		/* print the asserts */
725 		for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
726 			/* read a single assert entry */
727 			for (j = 0; j < REGS_IN_ENTRY; j++)
728 				regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
729 					  bnx2x_get_assert_list_entry(bp,
730 								      storm,
731 								      i) +
732 					  sizeof(u32) * j);
733 
734 			/* log entry if it contains a valid assert */
735 			if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
736 				BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
737 					  storms_string[storm], i, regs[3],
738 					  regs[2], regs[1], regs[0]);
739 				rc++;
740 			} else {
741 				break;
742 			}
743 		}
744 	}
745 
746 	BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
747 		  CHIP_IS_E1(bp) ? "everest1" :
748 		  CHIP_IS_E1H(bp) ? "everest1h" :
749 		  CHIP_IS_E2(bp) ? "everest2" : "everest3",
750 		  BCM_5710_FW_MAJOR_VERSION,
751 		  BCM_5710_FW_MINOR_VERSION,
752 		  BCM_5710_FW_REVISION_VERSION);
753 
754 	return rc;
755 }
756 
757 #define MCPR_TRACE_BUFFER_SIZE	(0x800)
758 #define SCRATCH_BUFFER_SIZE(bp)	\
759 	(CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
760 
761 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
762 {
763 	u32 addr, val;
764 	u32 mark, offset;
765 	__be32 data[9];
766 	int word;
767 	u32 trace_shmem_base;
768 	if (BP_NOMCP(bp)) {
769 		BNX2X_ERR("NO MCP - can not dump\n");
770 		return;
771 	}
772 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
773 		(bp->common.bc_ver & 0xff0000) >> 16,
774 		(bp->common.bc_ver & 0xff00) >> 8,
775 		(bp->common.bc_ver & 0xff));
776 
777 	if (pci_channel_offline(bp->pdev)) {
778 		BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
779 		return;
780 	}
781 
782 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
783 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
784 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
785 
786 	if (BP_PATH(bp) == 0)
787 		trace_shmem_base = bp->common.shmem_base;
788 	else
789 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
790 
791 	/* sanity */
792 	if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
793 	    trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
794 				SCRATCH_BUFFER_SIZE(bp)) {
795 		BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
796 			  trace_shmem_base);
797 		return;
798 	}
799 
800 	addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
801 
802 	/* validate TRCB signature */
803 	mark = REG_RD(bp, addr);
804 	if (mark != MFW_TRACE_SIGNATURE) {
805 		BNX2X_ERR("Trace buffer signature is missing.");
806 		return ;
807 	}
808 
809 	/* read cyclic buffer pointer */
810 	addr += 4;
811 	mark = REG_RD(bp, addr);
812 	mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
813 	if (mark >= trace_shmem_base || mark < addr + 4) {
814 		BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
815 		return;
816 	}
817 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
818 
819 	printk("%s", lvl);
820 
821 	/* dump buffer after the mark */
822 	for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
823 		for (word = 0; word < 8; word++)
824 			data[word] = htonl(REG_RD(bp, offset + 4*word));
825 		data[8] = 0x0;
826 		pr_cont("%s", (char *)data);
827 	}
828 
829 	/* dump buffer before the mark */
830 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
831 		for (word = 0; word < 8; word++)
832 			data[word] = htonl(REG_RD(bp, offset + 4*word));
833 		data[8] = 0x0;
834 		pr_cont("%s", (char *)data);
835 	}
836 	printk("%s" "end of fw dump\n", lvl);
837 }
838 
839 static void bnx2x_fw_dump(struct bnx2x *bp)
840 {
841 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
842 }
843 
844 static void bnx2x_hc_int_disable(struct bnx2x *bp)
845 {
846 	int port = BP_PORT(bp);
847 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
848 	u32 val = REG_RD(bp, addr);
849 
850 	/* in E1 we must use only PCI configuration space to disable
851 	 * MSI/MSIX capability
852 	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
853 	 */
854 	if (CHIP_IS_E1(bp)) {
855 		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
856 		 * Use mask register to prevent from HC sending interrupts
857 		 * after we exit the function
858 		 */
859 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
860 
861 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
862 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
863 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
864 	} else
865 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
866 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
867 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
868 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
869 
870 	DP(NETIF_MSG_IFDOWN,
871 	   "write %x to HC %d (addr 0x%x)\n",
872 	   val, port, addr);
873 
874 	REG_WR(bp, addr, val);
875 	if (REG_RD(bp, addr) != val)
876 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
877 }
878 
879 static void bnx2x_igu_int_disable(struct bnx2x *bp)
880 {
881 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
882 
883 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
884 		 IGU_PF_CONF_INT_LINE_EN |
885 		 IGU_PF_CONF_ATTN_BIT_EN);
886 
887 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
888 
889 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
890 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
891 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
892 }
893 
894 static void bnx2x_int_disable(struct bnx2x *bp)
895 {
896 	if (bp->common.int_block == INT_BLOCK_HC)
897 		bnx2x_hc_int_disable(bp);
898 	else
899 		bnx2x_igu_int_disable(bp);
900 }
901 
902 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
903 {
904 	int i;
905 	u16 j;
906 	struct hc_sp_status_block_data sp_sb_data;
907 	int func = BP_FUNC(bp);
908 #ifdef BNX2X_STOP_ON_ERROR
909 	u16 start = 0, end = 0;
910 	u8 cos;
911 #endif
912 	if (IS_PF(bp) && disable_int)
913 		bnx2x_int_disable(bp);
914 
915 	bp->stats_state = STATS_STATE_DISABLED;
916 	bp->eth_stats.unrecoverable_error++;
917 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
918 
919 	BNX2X_ERR("begin crash dump -----------------\n");
920 
921 	/* Indices */
922 	/* Common */
923 	if (IS_PF(bp)) {
924 		struct host_sp_status_block *def_sb = bp->def_status_blk;
925 		int data_size, cstorm_offset;
926 
927 		BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
928 			  bp->def_idx, bp->def_att_idx, bp->attn_state,
929 			  bp->spq_prod_idx, bp->stats_counter);
930 		BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
931 			  def_sb->atten_status_block.attn_bits,
932 			  def_sb->atten_status_block.attn_bits_ack,
933 			  def_sb->atten_status_block.status_block_id,
934 			  def_sb->atten_status_block.attn_bits_index);
935 		BNX2X_ERR("     def (");
936 		for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
937 			pr_cont("0x%x%s",
938 				def_sb->sp_sb.index_values[i],
939 				(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
940 
941 		data_size = sizeof(struct hc_sp_status_block_data) /
942 			    sizeof(u32);
943 		cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
944 		for (i = 0; i < data_size; i++)
945 			*((u32 *)&sp_sb_data + i) =
946 				REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
947 					   i * sizeof(u32));
948 
949 		pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
950 			sp_sb_data.igu_sb_id,
951 			sp_sb_data.igu_seg_id,
952 			sp_sb_data.p_func.pf_id,
953 			sp_sb_data.p_func.vnic_id,
954 			sp_sb_data.p_func.vf_id,
955 			sp_sb_data.p_func.vf_valid,
956 			sp_sb_data.state);
957 	}
958 
959 	for_each_eth_queue(bp, i) {
960 		struct bnx2x_fastpath *fp = &bp->fp[i];
961 		int loop;
962 		struct hc_status_block_data_e2 sb_data_e2;
963 		struct hc_status_block_data_e1x sb_data_e1x;
964 		struct hc_status_block_sm  *hc_sm_p =
965 			CHIP_IS_E1x(bp) ?
966 			sb_data_e1x.common.state_machine :
967 			sb_data_e2.common.state_machine;
968 		struct hc_index_data *hc_index_p =
969 			CHIP_IS_E1x(bp) ?
970 			sb_data_e1x.index_data :
971 			sb_data_e2.index_data;
972 		u8 data_size, cos;
973 		u32 *sb_data_p;
974 		struct bnx2x_fp_txdata txdata;
975 
976 		if (!bp->fp)
977 			break;
978 
979 		if (!fp->rx_cons_sb)
980 			continue;
981 
982 		/* Rx */
983 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
984 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
985 			  fp->rx_comp_prod,
986 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
987 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
988 			  fp->rx_sge_prod, fp->last_max_sge,
989 			  le16_to_cpu(fp->fp_hc_idx));
990 
991 		/* Tx */
992 		for_each_cos_in_tx_queue(fp, cos)
993 		{
994 			if (!fp->txdata_ptr[cos])
995 				break;
996 
997 			txdata = *fp->txdata_ptr[cos];
998 
999 			if (!txdata.tx_cons_sb)
1000 				continue;
1001 
1002 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1003 				  i, txdata.tx_pkt_prod,
1004 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
1005 				  txdata.tx_bd_cons,
1006 				  le16_to_cpu(*txdata.tx_cons_sb));
1007 		}
1008 
1009 		loop = CHIP_IS_E1x(bp) ?
1010 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1011 
1012 		/* host sb data */
1013 
1014 		if (IS_FCOE_FP(fp))
1015 			continue;
1016 
1017 		BNX2X_ERR("     run indexes (");
1018 		for (j = 0; j < HC_SB_MAX_SM; j++)
1019 			pr_cont("0x%x%s",
1020 			       fp->sb_running_index[j],
1021 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1022 
1023 		BNX2X_ERR("     indexes (");
1024 		for (j = 0; j < loop; j++)
1025 			pr_cont("0x%x%s",
1026 			       fp->sb_index_values[j],
1027 			       (j == loop - 1) ? ")" : " ");
1028 
1029 		/* VF cannot access FW refelection for status block */
1030 		if (IS_VF(bp))
1031 			continue;
1032 
1033 		/* fw sb data */
1034 		data_size = CHIP_IS_E1x(bp) ?
1035 			sizeof(struct hc_status_block_data_e1x) :
1036 			sizeof(struct hc_status_block_data_e2);
1037 		data_size /= sizeof(u32);
1038 		sb_data_p = CHIP_IS_E1x(bp) ?
1039 			(u32 *)&sb_data_e1x :
1040 			(u32 *)&sb_data_e2;
1041 		/* copy sb data in here */
1042 		for (j = 0; j < data_size; j++)
1043 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1044 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1045 				j * sizeof(u32));
1046 
1047 		if (!CHIP_IS_E1x(bp)) {
1048 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1049 				sb_data_e2.common.p_func.pf_id,
1050 				sb_data_e2.common.p_func.vf_id,
1051 				sb_data_e2.common.p_func.vf_valid,
1052 				sb_data_e2.common.p_func.vnic_id,
1053 				sb_data_e2.common.same_igu_sb_1b,
1054 				sb_data_e2.common.state);
1055 		} else {
1056 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1057 				sb_data_e1x.common.p_func.pf_id,
1058 				sb_data_e1x.common.p_func.vf_id,
1059 				sb_data_e1x.common.p_func.vf_valid,
1060 				sb_data_e1x.common.p_func.vnic_id,
1061 				sb_data_e1x.common.same_igu_sb_1b,
1062 				sb_data_e1x.common.state);
1063 		}
1064 
1065 		/* SB_SMs data */
1066 		for (j = 0; j < HC_SB_MAX_SM; j++) {
1067 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1068 				j, hc_sm_p[j].__flags,
1069 				hc_sm_p[j].igu_sb_id,
1070 				hc_sm_p[j].igu_seg_id,
1071 				hc_sm_p[j].time_to_expire,
1072 				hc_sm_p[j].timer_value);
1073 		}
1074 
1075 		/* Indices data */
1076 		for (j = 0; j < loop; j++) {
1077 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1078 			       hc_index_p[j].flags,
1079 			       hc_index_p[j].timeout);
1080 		}
1081 	}
1082 
1083 #ifdef BNX2X_STOP_ON_ERROR
1084 	if (IS_PF(bp)) {
1085 		/* event queue */
1086 		BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1087 		for (i = 0; i < NUM_EQ_DESC; i++) {
1088 			u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1089 
1090 			BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1091 				  i, bp->eq_ring[i].message.opcode,
1092 				  bp->eq_ring[i].message.error);
1093 			BNX2X_ERR("data: %x %x %x\n",
1094 				  data[0], data[1], data[2]);
1095 		}
1096 	}
1097 
1098 	/* Rings */
1099 	/* Rx */
1100 	for_each_valid_rx_queue(bp, i) {
1101 		struct bnx2x_fastpath *fp = &bp->fp[i];
1102 
1103 		if (!bp->fp)
1104 			break;
1105 
1106 		if (!fp->rx_cons_sb)
1107 			continue;
1108 
1109 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1110 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1111 		for (j = start; j != end; j = RX_BD(j + 1)) {
1112 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1113 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1114 
1115 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1116 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1117 		}
1118 
1119 		start = RX_SGE(fp->rx_sge_prod);
1120 		end = RX_SGE(fp->last_max_sge);
1121 		for (j = start; j != end; j = RX_SGE(j + 1)) {
1122 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1123 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1124 
1125 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1126 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1127 		}
1128 
1129 		start = RCQ_BD(fp->rx_comp_cons - 10);
1130 		end = RCQ_BD(fp->rx_comp_cons + 503);
1131 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1132 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1133 
1134 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1135 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1136 		}
1137 	}
1138 
1139 	/* Tx */
1140 	for_each_valid_tx_queue(bp, i) {
1141 		struct bnx2x_fastpath *fp = &bp->fp[i];
1142 
1143 		if (!bp->fp)
1144 			break;
1145 
1146 		for_each_cos_in_tx_queue(fp, cos) {
1147 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1148 
1149 			if (!fp->txdata_ptr[cos])
1150 				break;
1151 
1152 			if (!txdata->tx_cons_sb)
1153 				continue;
1154 
1155 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1156 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1157 			for (j = start; j != end; j = TX_BD(j + 1)) {
1158 				struct sw_tx_bd *sw_bd =
1159 					&txdata->tx_buf_ring[j];
1160 
1161 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1162 					  i, cos, j, sw_bd->skb,
1163 					  sw_bd->first_bd);
1164 			}
1165 
1166 			start = TX_BD(txdata->tx_bd_cons - 10);
1167 			end = TX_BD(txdata->tx_bd_cons + 254);
1168 			for (j = start; j != end; j = TX_BD(j + 1)) {
1169 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1170 
1171 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1172 					  i, cos, j, tx_bd[0], tx_bd[1],
1173 					  tx_bd[2], tx_bd[3]);
1174 			}
1175 		}
1176 	}
1177 #endif
1178 	if (IS_PF(bp)) {
1179 		int tmp_msg_en = bp->msg_enable;
1180 
1181 		bnx2x_fw_dump(bp);
1182 		bp->msg_enable |= NETIF_MSG_HW;
1183 		BNX2X_ERR("Idle check (1st round) ----------\n");
1184 		bnx2x_idle_chk(bp);
1185 		BNX2X_ERR("Idle check (2nd round) ----------\n");
1186 		bnx2x_idle_chk(bp);
1187 		bp->msg_enable = tmp_msg_en;
1188 		bnx2x_mc_assert(bp);
1189 	}
1190 
1191 	BNX2X_ERR("end crash dump -----------------\n");
1192 }
1193 
1194 /*
1195  * FLR Support for E2
1196  *
1197  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1198  * initialization.
1199  */
1200 #define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1201 #define FLR_WAIT_INTERVAL	50	/* usec */
1202 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1203 
1204 struct pbf_pN_buf_regs {
1205 	int pN;
1206 	u32 init_crd;
1207 	u32 crd;
1208 	u32 crd_freed;
1209 };
1210 
1211 struct pbf_pN_cmd_regs {
1212 	int pN;
1213 	u32 lines_occup;
1214 	u32 lines_freed;
1215 };
1216 
1217 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1218 				     struct pbf_pN_buf_regs *regs,
1219 				     u32 poll_count)
1220 {
1221 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1222 	u32 cur_cnt = poll_count;
1223 
1224 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1225 	crd = crd_start = REG_RD(bp, regs->crd);
1226 	init_crd = REG_RD(bp, regs->init_crd);
1227 
1228 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1229 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1230 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1231 
1232 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1233 	       (init_crd - crd_start))) {
1234 		if (cur_cnt--) {
1235 			udelay(FLR_WAIT_INTERVAL);
1236 			crd = REG_RD(bp, regs->crd);
1237 			crd_freed = REG_RD(bp, regs->crd_freed);
1238 		} else {
1239 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1240 			   regs->pN);
1241 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1242 			   regs->pN, crd);
1243 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1244 			   regs->pN, crd_freed);
1245 			break;
1246 		}
1247 	}
1248 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1249 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1250 }
1251 
1252 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1253 				     struct pbf_pN_cmd_regs *regs,
1254 				     u32 poll_count)
1255 {
1256 	u32 occup, to_free, freed, freed_start;
1257 	u32 cur_cnt = poll_count;
1258 
1259 	occup = to_free = REG_RD(bp, regs->lines_occup);
1260 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1261 
1262 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1263 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1264 
1265 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1266 		if (cur_cnt--) {
1267 			udelay(FLR_WAIT_INTERVAL);
1268 			occup = REG_RD(bp, regs->lines_occup);
1269 			freed = REG_RD(bp, regs->lines_freed);
1270 		} else {
1271 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1272 			   regs->pN);
1273 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1274 			   regs->pN, occup);
1275 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1276 			   regs->pN, freed);
1277 			break;
1278 		}
1279 	}
1280 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1281 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1282 }
1283 
1284 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1285 				    u32 expected, u32 poll_count)
1286 {
1287 	u32 cur_cnt = poll_count;
1288 	u32 val;
1289 
1290 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1291 		udelay(FLR_WAIT_INTERVAL);
1292 
1293 	return val;
1294 }
1295 
1296 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1297 				    char *msg, u32 poll_cnt)
1298 {
1299 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1300 	if (val != 0) {
1301 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1302 		return 1;
1303 	}
1304 	return 0;
1305 }
1306 
1307 /* Common routines with VF FLR cleanup */
1308 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1309 {
1310 	/* adjust polling timeout */
1311 	if (CHIP_REV_IS_EMUL(bp))
1312 		return FLR_POLL_CNT * 2000;
1313 
1314 	if (CHIP_REV_IS_FPGA(bp))
1315 		return FLR_POLL_CNT * 120;
1316 
1317 	return FLR_POLL_CNT;
1318 }
1319 
1320 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1321 {
1322 	struct pbf_pN_cmd_regs cmd_regs[] = {
1323 		{0, (CHIP_IS_E3B0(bp)) ?
1324 			PBF_REG_TQ_OCCUPANCY_Q0 :
1325 			PBF_REG_P0_TQ_OCCUPANCY,
1326 		    (CHIP_IS_E3B0(bp)) ?
1327 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1328 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1329 		{1, (CHIP_IS_E3B0(bp)) ?
1330 			PBF_REG_TQ_OCCUPANCY_Q1 :
1331 			PBF_REG_P1_TQ_OCCUPANCY,
1332 		    (CHIP_IS_E3B0(bp)) ?
1333 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1334 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1335 		{4, (CHIP_IS_E3B0(bp)) ?
1336 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1337 			PBF_REG_P4_TQ_OCCUPANCY,
1338 		    (CHIP_IS_E3B0(bp)) ?
1339 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1340 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1341 	};
1342 
1343 	struct pbf_pN_buf_regs buf_regs[] = {
1344 		{0, (CHIP_IS_E3B0(bp)) ?
1345 			PBF_REG_INIT_CRD_Q0 :
1346 			PBF_REG_P0_INIT_CRD ,
1347 		    (CHIP_IS_E3B0(bp)) ?
1348 			PBF_REG_CREDIT_Q0 :
1349 			PBF_REG_P0_CREDIT,
1350 		    (CHIP_IS_E3B0(bp)) ?
1351 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1352 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1353 		{1, (CHIP_IS_E3B0(bp)) ?
1354 			PBF_REG_INIT_CRD_Q1 :
1355 			PBF_REG_P1_INIT_CRD,
1356 		    (CHIP_IS_E3B0(bp)) ?
1357 			PBF_REG_CREDIT_Q1 :
1358 			PBF_REG_P1_CREDIT,
1359 		    (CHIP_IS_E3B0(bp)) ?
1360 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1361 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1362 		{4, (CHIP_IS_E3B0(bp)) ?
1363 			PBF_REG_INIT_CRD_LB_Q :
1364 			PBF_REG_P4_INIT_CRD,
1365 		    (CHIP_IS_E3B0(bp)) ?
1366 			PBF_REG_CREDIT_LB_Q :
1367 			PBF_REG_P4_CREDIT,
1368 		    (CHIP_IS_E3B0(bp)) ?
1369 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1370 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1371 	};
1372 
1373 	int i;
1374 
1375 	/* Verify the command queues are flushed P0, P1, P4 */
1376 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1377 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1378 
1379 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1380 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1381 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1382 }
1383 
1384 #define OP_GEN_PARAM(param) \
1385 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1386 
1387 #define OP_GEN_TYPE(type) \
1388 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1389 
1390 #define OP_GEN_AGG_VECT(index) \
1391 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1392 
1393 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1394 {
1395 	u32 op_gen_command = 0;
1396 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1397 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1398 
1399 	if (REG_RD(bp, comp_addr)) {
1400 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1401 		return 1;
1402 	}
1403 
1404 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1405 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1406 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1407 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1408 
1409 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1410 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1411 
1412 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1413 		BNX2X_ERR("FW final cleanup did not succeed\n");
1414 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1415 		   (REG_RD(bp, comp_addr)));
1416 		bnx2x_panic();
1417 		return 1;
1418 	}
1419 	/* Zero completion for next FLR */
1420 	REG_WR(bp, comp_addr, 0);
1421 
1422 	return 0;
1423 }
1424 
1425 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1426 {
1427 	u16 status;
1428 
1429 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1430 	return status & PCI_EXP_DEVSTA_TRPND;
1431 }
1432 
1433 /* PF FLR specific routines
1434 */
1435 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1436 {
1437 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1438 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1439 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1440 			"CFC PF usage counter timed out",
1441 			poll_cnt))
1442 		return 1;
1443 
1444 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1445 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1446 			DORQ_REG_PF_USAGE_CNT,
1447 			"DQ PF usage counter timed out",
1448 			poll_cnt))
1449 		return 1;
1450 
1451 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1452 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1453 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1454 			"QM PF usage counter timed out",
1455 			poll_cnt))
1456 		return 1;
1457 
1458 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1459 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1460 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1461 			"Timers VNIC usage counter timed out",
1462 			poll_cnt))
1463 		return 1;
1464 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1465 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1466 			"Timers NUM_SCANS usage counter timed out",
1467 			poll_cnt))
1468 		return 1;
1469 
1470 	/* Wait DMAE PF usage counter to zero */
1471 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1472 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1473 			"DMAE command register timed out",
1474 			poll_cnt))
1475 		return 1;
1476 
1477 	return 0;
1478 }
1479 
1480 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1481 {
1482 	u32 val;
1483 
1484 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1485 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1486 
1487 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1488 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1489 
1490 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1491 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1492 
1493 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1494 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1495 
1496 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1497 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1498 
1499 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1500 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1501 
1502 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1503 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1504 
1505 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1506 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1507 	   val);
1508 }
1509 
1510 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1511 {
1512 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1513 
1514 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1515 
1516 	/* Re-enable PF target read access */
1517 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1518 
1519 	/* Poll HW usage counters */
1520 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1521 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1522 		return -EBUSY;
1523 
1524 	/* Zero the igu 'trailing edge' and 'leading edge' */
1525 
1526 	/* Send the FW cleanup command */
1527 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1528 		return -EBUSY;
1529 
1530 	/* ATC cleanup */
1531 
1532 	/* Verify TX hw is flushed */
1533 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1534 
1535 	/* Wait 100ms (not adjusted according to platform) */
1536 	msleep(100);
1537 
1538 	/* Verify no pending pci transactions */
1539 	if (bnx2x_is_pcie_pending(bp->pdev))
1540 		BNX2X_ERR("PCIE Transactions still pending\n");
1541 
1542 	/* Debug */
1543 	bnx2x_hw_enable_status(bp);
1544 
1545 	/*
1546 	 * Master enable - Due to WB DMAE writes performed before this
1547 	 * register is re-initialized as part of the regular function init
1548 	 */
1549 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1550 
1551 	return 0;
1552 }
1553 
1554 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1555 {
1556 	int port = BP_PORT(bp);
1557 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1558 	u32 val = REG_RD(bp, addr);
1559 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1560 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1561 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1562 
1563 	if (msix) {
1564 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1565 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1566 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1567 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1568 		if (single_msix)
1569 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1570 	} else if (msi) {
1571 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1572 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1573 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1574 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1575 	} else {
1576 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1577 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1578 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1579 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1580 
1581 		if (!CHIP_IS_E1(bp)) {
1582 			DP(NETIF_MSG_IFUP,
1583 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1584 
1585 			REG_WR(bp, addr, val);
1586 
1587 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1588 		}
1589 	}
1590 
1591 	if (CHIP_IS_E1(bp))
1592 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1593 
1594 	DP(NETIF_MSG_IFUP,
1595 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1596 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1597 
1598 	REG_WR(bp, addr, val);
1599 	/*
1600 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1601 	 */
1602 	barrier();
1603 
1604 	if (!CHIP_IS_E1(bp)) {
1605 		/* init leading/trailing edge */
1606 		if (IS_MF(bp)) {
1607 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1608 			if (bp->port.pmf)
1609 				/* enable nig and gpio3 attention */
1610 				val |= 0x1100;
1611 		} else
1612 			val = 0xffff;
1613 
1614 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1615 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1616 	}
1617 }
1618 
1619 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1620 {
1621 	u32 val;
1622 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1623 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1624 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1625 
1626 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1627 
1628 	if (msix) {
1629 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1630 			 IGU_PF_CONF_SINGLE_ISR_EN);
1631 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1632 			IGU_PF_CONF_ATTN_BIT_EN);
1633 
1634 		if (single_msix)
1635 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1636 	} else if (msi) {
1637 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1638 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1639 			IGU_PF_CONF_ATTN_BIT_EN |
1640 			IGU_PF_CONF_SINGLE_ISR_EN);
1641 	} else {
1642 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1643 		val |= (IGU_PF_CONF_INT_LINE_EN |
1644 			IGU_PF_CONF_ATTN_BIT_EN |
1645 			IGU_PF_CONF_SINGLE_ISR_EN);
1646 	}
1647 
1648 	/* Clean previous status - need to configure igu prior to ack*/
1649 	if ((!msix) || single_msix) {
1650 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1651 		bnx2x_ack_int(bp);
1652 	}
1653 
1654 	val |= IGU_PF_CONF_FUNC_EN;
1655 
1656 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1657 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1658 
1659 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1660 
1661 	if (val & IGU_PF_CONF_INT_LINE_EN)
1662 		pci_intx(bp->pdev, true);
1663 
1664 	barrier();
1665 
1666 	/* init leading/trailing edge */
1667 	if (IS_MF(bp)) {
1668 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1669 		if (bp->port.pmf)
1670 			/* enable nig and gpio3 attention */
1671 			val |= 0x1100;
1672 	} else
1673 		val = 0xffff;
1674 
1675 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1676 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1677 }
1678 
1679 void bnx2x_int_enable(struct bnx2x *bp)
1680 {
1681 	if (bp->common.int_block == INT_BLOCK_HC)
1682 		bnx2x_hc_int_enable(bp);
1683 	else
1684 		bnx2x_igu_int_enable(bp);
1685 }
1686 
1687 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1688 {
1689 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1690 	int i, offset;
1691 
1692 	if (disable_hw)
1693 		/* prevent the HW from sending interrupts */
1694 		bnx2x_int_disable(bp);
1695 
1696 	/* make sure all ISRs are done */
1697 	if (msix) {
1698 		synchronize_irq(bp->msix_table[0].vector);
1699 		offset = 1;
1700 		if (CNIC_SUPPORT(bp))
1701 			offset++;
1702 		for_each_eth_queue(bp, i)
1703 			synchronize_irq(bp->msix_table[offset++].vector);
1704 	} else
1705 		synchronize_irq(bp->pdev->irq);
1706 
1707 	/* make sure sp_task is not running */
1708 	cancel_delayed_work(&bp->sp_task);
1709 	cancel_delayed_work(&bp->period_task);
1710 	flush_workqueue(bnx2x_wq);
1711 }
1712 
1713 /* fast path */
1714 
1715 /*
1716  * General service functions
1717  */
1718 
1719 /* Return true if succeeded to acquire the lock */
1720 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1721 {
1722 	u32 lock_status;
1723 	u32 resource_bit = (1 << resource);
1724 	int func = BP_FUNC(bp);
1725 	u32 hw_lock_control_reg;
1726 
1727 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1728 	   "Trying to take a lock on resource %d\n", resource);
1729 
1730 	/* Validating that the resource is within range */
1731 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1732 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1733 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1734 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1735 		return false;
1736 	}
1737 
1738 	if (func <= 5)
1739 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1740 	else
1741 		hw_lock_control_reg =
1742 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1743 
1744 	/* Try to acquire the lock */
1745 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1746 	lock_status = REG_RD(bp, hw_lock_control_reg);
1747 	if (lock_status & resource_bit)
1748 		return true;
1749 
1750 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1751 	   "Failed to get a lock on resource %d\n", resource);
1752 	return false;
1753 }
1754 
1755 /**
1756  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1757  *
1758  * @bp:	driver handle
1759  *
1760  * Returns the recovery leader resource id according to the engine this function
1761  * belongs to. Currently only only 2 engines is supported.
1762  */
1763 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1764 {
1765 	if (BP_PATH(bp))
1766 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1767 	else
1768 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1769 }
1770 
1771 /**
1772  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1773  *
1774  * @bp: driver handle
1775  *
1776  * Tries to acquire a leader lock for current engine.
1777  */
1778 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1779 {
1780 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1781 }
1782 
1783 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1784 
1785 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1786 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1787 {
1788 	/* Set the interrupt occurred bit for the sp-task to recognize it
1789 	 * must ack the interrupt and transition according to the IGU
1790 	 * state machine.
1791 	 */
1792 	atomic_set(&bp->interrupt_occurred, 1);
1793 
1794 	/* The sp_task must execute only after this bit
1795 	 * is set, otherwise we will get out of sync and miss all
1796 	 * further interrupts. Hence, the barrier.
1797 	 */
1798 	smp_wmb();
1799 
1800 	/* schedule sp_task to workqueue */
1801 	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1802 }
1803 
1804 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1805 {
1806 	struct bnx2x *bp = fp->bp;
1807 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1808 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1809 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1810 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1811 
1812 	DP(BNX2X_MSG_SP,
1813 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1814 	   fp->index, cid, command, bp->state,
1815 	   rr_cqe->ramrod_cqe.ramrod_type);
1816 
1817 	/* If cid is within VF range, replace the slowpath object with the
1818 	 * one corresponding to this VF
1819 	 */
1820 	if (cid >= BNX2X_FIRST_VF_CID  &&
1821 	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1822 		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1823 
1824 	switch (command) {
1825 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1826 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1827 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1828 		break;
1829 
1830 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1831 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1832 		drv_cmd = BNX2X_Q_CMD_SETUP;
1833 		break;
1834 
1835 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1836 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1837 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1838 		break;
1839 
1840 	case (RAMROD_CMD_ID_ETH_HALT):
1841 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1842 		drv_cmd = BNX2X_Q_CMD_HALT;
1843 		break;
1844 
1845 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1846 		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1847 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1848 		break;
1849 
1850 	case (RAMROD_CMD_ID_ETH_EMPTY):
1851 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1852 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1853 		break;
1854 
1855 	case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1856 		DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1857 		drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1858 		break;
1859 
1860 	default:
1861 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1862 			  command, fp->index);
1863 		return;
1864 	}
1865 
1866 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1867 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1868 		/* q_obj->complete_cmd() failure means that this was
1869 		 * an unexpected completion.
1870 		 *
1871 		 * In this case we don't want to increase the bp->spq_left
1872 		 * because apparently we haven't sent this command the first
1873 		 * place.
1874 		 */
1875 #ifdef BNX2X_STOP_ON_ERROR
1876 		bnx2x_panic();
1877 #else
1878 		return;
1879 #endif
1880 
1881 	smp_mb__before_atomic();
1882 	atomic_inc(&bp->cq_spq_left);
1883 	/* push the change in bp->spq_left and towards the memory */
1884 	smp_mb__after_atomic();
1885 
1886 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1887 
1888 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1889 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1890 		/* if Q update ramrod is completed for last Q in AFEX vif set
1891 		 * flow, then ACK MCP at the end
1892 		 *
1893 		 * mark pending ACK to MCP bit.
1894 		 * prevent case that both bits are cleared.
1895 		 * At the end of load/unload driver checks that
1896 		 * sp_state is cleared, and this order prevents
1897 		 * races
1898 		 */
1899 		smp_mb__before_atomic();
1900 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1901 		wmb();
1902 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1903 		smp_mb__after_atomic();
1904 
1905 		/* schedule the sp task as mcp ack is required */
1906 		bnx2x_schedule_sp_task(bp);
1907 	}
1908 
1909 	return;
1910 }
1911 
1912 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1913 {
1914 	struct bnx2x *bp = netdev_priv(dev_instance);
1915 	u16 status = bnx2x_ack_int(bp);
1916 	u16 mask;
1917 	int i;
1918 	u8 cos;
1919 
1920 	/* Return here if interrupt is shared and it's not for us */
1921 	if (unlikely(status == 0)) {
1922 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1923 		return IRQ_NONE;
1924 	}
1925 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1926 
1927 #ifdef BNX2X_STOP_ON_ERROR
1928 	if (unlikely(bp->panic))
1929 		return IRQ_HANDLED;
1930 #endif
1931 
1932 	for_each_eth_queue(bp, i) {
1933 		struct bnx2x_fastpath *fp = &bp->fp[i];
1934 
1935 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1936 		if (status & mask) {
1937 			/* Handle Rx or Tx according to SB id */
1938 			for_each_cos_in_tx_queue(fp, cos)
1939 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1940 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1941 			napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1942 			status &= ~mask;
1943 		}
1944 	}
1945 
1946 	if (CNIC_SUPPORT(bp)) {
1947 		mask = 0x2;
1948 		if (status & (mask | 0x1)) {
1949 			struct cnic_ops *c_ops = NULL;
1950 
1951 			rcu_read_lock();
1952 			c_ops = rcu_dereference(bp->cnic_ops);
1953 			if (c_ops && (bp->cnic_eth_dev.drv_state &
1954 				      CNIC_DRV_STATE_HANDLES_IRQ))
1955 				c_ops->cnic_handler(bp->cnic_data, NULL);
1956 			rcu_read_unlock();
1957 
1958 			status &= ~mask;
1959 		}
1960 	}
1961 
1962 	if (unlikely(status & 0x1)) {
1963 
1964 		/* schedule sp task to perform default status block work, ack
1965 		 * attentions and enable interrupts.
1966 		 */
1967 		bnx2x_schedule_sp_task(bp);
1968 
1969 		status &= ~0x1;
1970 		if (!status)
1971 			return IRQ_HANDLED;
1972 	}
1973 
1974 	if (unlikely(status))
1975 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1976 		   status);
1977 
1978 	return IRQ_HANDLED;
1979 }
1980 
1981 /* Link */
1982 
1983 /*
1984  * General service functions
1985  */
1986 
1987 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1988 {
1989 	u32 lock_status;
1990 	u32 resource_bit = (1 << resource);
1991 	int func = BP_FUNC(bp);
1992 	u32 hw_lock_control_reg;
1993 	int cnt;
1994 
1995 	/* Validating that the resource is within range */
1996 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1997 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1998 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1999 		return -EINVAL;
2000 	}
2001 
2002 	if (func <= 5) {
2003 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2004 	} else {
2005 		hw_lock_control_reg =
2006 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2007 	}
2008 
2009 	/* Validating that the resource is not already taken */
2010 	lock_status = REG_RD(bp, hw_lock_control_reg);
2011 	if (lock_status & resource_bit) {
2012 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2013 		   lock_status, resource_bit);
2014 		return -EEXIST;
2015 	}
2016 
2017 	/* Try for 5 second every 5ms */
2018 	for (cnt = 0; cnt < 1000; cnt++) {
2019 		/* Try to acquire the lock */
2020 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2021 		lock_status = REG_RD(bp, hw_lock_control_reg);
2022 		if (lock_status & resource_bit)
2023 			return 0;
2024 
2025 		usleep_range(5000, 10000);
2026 	}
2027 	BNX2X_ERR("Timeout\n");
2028 	return -EAGAIN;
2029 }
2030 
2031 int bnx2x_release_leader_lock(struct bnx2x *bp)
2032 {
2033 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2034 }
2035 
2036 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2037 {
2038 	u32 lock_status;
2039 	u32 resource_bit = (1 << resource);
2040 	int func = BP_FUNC(bp);
2041 	u32 hw_lock_control_reg;
2042 
2043 	/* Validating that the resource is within range */
2044 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2045 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2046 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2047 		return -EINVAL;
2048 	}
2049 
2050 	if (func <= 5) {
2051 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2052 	} else {
2053 		hw_lock_control_reg =
2054 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2055 	}
2056 
2057 	/* Validating that the resource is currently taken */
2058 	lock_status = REG_RD(bp, hw_lock_control_reg);
2059 	if (!(lock_status & resource_bit)) {
2060 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2061 			  lock_status, resource_bit);
2062 		return -EFAULT;
2063 	}
2064 
2065 	REG_WR(bp, hw_lock_control_reg, resource_bit);
2066 	return 0;
2067 }
2068 
2069 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2070 {
2071 	/* The GPIO should be swapped if swap register is set and active */
2072 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2073 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2074 	int gpio_shift = gpio_num +
2075 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2076 	u32 gpio_mask = (1 << gpio_shift);
2077 	u32 gpio_reg;
2078 	int value;
2079 
2080 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2081 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2082 		return -EINVAL;
2083 	}
2084 
2085 	/* read GPIO value */
2086 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2087 
2088 	/* get the requested pin value */
2089 	if ((gpio_reg & gpio_mask) == gpio_mask)
2090 		value = 1;
2091 	else
2092 		value = 0;
2093 
2094 	return value;
2095 }
2096 
2097 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2098 {
2099 	/* The GPIO should be swapped if swap register is set and active */
2100 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2101 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2102 	int gpio_shift = gpio_num +
2103 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2104 	u32 gpio_mask = (1 << gpio_shift);
2105 	u32 gpio_reg;
2106 
2107 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2108 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2109 		return -EINVAL;
2110 	}
2111 
2112 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2113 	/* read GPIO and mask except the float bits */
2114 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2115 
2116 	switch (mode) {
2117 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2118 		DP(NETIF_MSG_LINK,
2119 		   "Set GPIO %d (shift %d) -> output low\n",
2120 		   gpio_num, gpio_shift);
2121 		/* clear FLOAT and set CLR */
2122 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2123 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2124 		break;
2125 
2126 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2127 		DP(NETIF_MSG_LINK,
2128 		   "Set GPIO %d (shift %d) -> output high\n",
2129 		   gpio_num, gpio_shift);
2130 		/* clear FLOAT and set SET */
2131 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2132 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2133 		break;
2134 
2135 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2136 		DP(NETIF_MSG_LINK,
2137 		   "Set GPIO %d (shift %d) -> input\n",
2138 		   gpio_num, gpio_shift);
2139 		/* set FLOAT */
2140 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2141 		break;
2142 
2143 	default:
2144 		break;
2145 	}
2146 
2147 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2148 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2149 
2150 	return 0;
2151 }
2152 
2153 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2154 {
2155 	u32 gpio_reg = 0;
2156 	int rc = 0;
2157 
2158 	/* Any port swapping should be handled by caller. */
2159 
2160 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2161 	/* read GPIO and mask except the float bits */
2162 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2163 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2164 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2165 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2166 
2167 	switch (mode) {
2168 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2169 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2170 		/* set CLR */
2171 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2172 		break;
2173 
2174 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2175 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2176 		/* set SET */
2177 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2178 		break;
2179 
2180 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2181 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2182 		/* set FLOAT */
2183 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2184 		break;
2185 
2186 	default:
2187 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2188 		rc = -EINVAL;
2189 		break;
2190 	}
2191 
2192 	if (rc == 0)
2193 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2194 
2195 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2196 
2197 	return rc;
2198 }
2199 
2200 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2201 {
2202 	/* The GPIO should be swapped if swap register is set and active */
2203 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2204 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2205 	int gpio_shift = gpio_num +
2206 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2207 	u32 gpio_mask = (1 << gpio_shift);
2208 	u32 gpio_reg;
2209 
2210 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2211 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2212 		return -EINVAL;
2213 	}
2214 
2215 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2216 	/* read GPIO int */
2217 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2218 
2219 	switch (mode) {
2220 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2221 		DP(NETIF_MSG_LINK,
2222 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2223 		   gpio_num, gpio_shift);
2224 		/* clear SET and set CLR */
2225 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2226 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2227 		break;
2228 
2229 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2230 		DP(NETIF_MSG_LINK,
2231 		   "Set GPIO INT %d (shift %d) -> output high\n",
2232 		   gpio_num, gpio_shift);
2233 		/* clear CLR and set SET */
2234 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2235 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2236 		break;
2237 
2238 	default:
2239 		break;
2240 	}
2241 
2242 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2243 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2244 
2245 	return 0;
2246 }
2247 
2248 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2249 {
2250 	u32 spio_reg;
2251 
2252 	/* Only 2 SPIOs are configurable */
2253 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2254 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2255 		return -EINVAL;
2256 	}
2257 
2258 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2259 	/* read SPIO and mask except the float bits */
2260 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2261 
2262 	switch (mode) {
2263 	case MISC_SPIO_OUTPUT_LOW:
2264 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2265 		/* clear FLOAT and set CLR */
2266 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2267 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2268 		break;
2269 
2270 	case MISC_SPIO_OUTPUT_HIGH:
2271 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2272 		/* clear FLOAT and set SET */
2273 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2274 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2275 		break;
2276 
2277 	case MISC_SPIO_INPUT_HI_Z:
2278 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2279 		/* set FLOAT */
2280 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2281 		break;
2282 
2283 	default:
2284 		break;
2285 	}
2286 
2287 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2288 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2289 
2290 	return 0;
2291 }
2292 
2293 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2294 {
2295 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2296 
2297 	bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2298 					   ADVERTISED_Pause);
2299 	switch (bp->link_vars.ieee_fc &
2300 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2301 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2302 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2303 						  ADVERTISED_Pause);
2304 		break;
2305 
2306 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2307 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2308 		break;
2309 
2310 	default:
2311 		break;
2312 	}
2313 }
2314 
2315 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2316 {
2317 	/* Initialize link parameters structure variables
2318 	 * It is recommended to turn off RX FC for jumbo frames
2319 	 *  for better performance
2320 	 */
2321 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2322 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2323 	else
2324 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2325 }
2326 
2327 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2328 {
2329 	u32 pause_enabled = 0;
2330 
2331 	if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2332 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2333 			pause_enabled = 1;
2334 
2335 		REG_WR(bp, BAR_USTRORM_INTMEM +
2336 			   USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2337 		       pause_enabled);
2338 	}
2339 
2340 	DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2341 	   pause_enabled ? "enabled" : "disabled");
2342 }
2343 
2344 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2345 {
2346 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2347 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2348 
2349 	if (!BP_NOMCP(bp)) {
2350 		bnx2x_set_requested_fc(bp);
2351 		bnx2x_acquire_phy_lock(bp);
2352 
2353 		if (load_mode == LOAD_DIAG) {
2354 			struct link_params *lp = &bp->link_params;
2355 			lp->loopback_mode = LOOPBACK_XGXS;
2356 			/* Prefer doing PHY loopback at highest speed */
2357 			if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2358 				if (lp->speed_cap_mask[cfx_idx] &
2359 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2360 					lp->req_line_speed[cfx_idx] =
2361 					SPEED_20000;
2362 				else if (lp->speed_cap_mask[cfx_idx] &
2363 					    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2364 						lp->req_line_speed[cfx_idx] =
2365 						SPEED_10000;
2366 				else
2367 					lp->req_line_speed[cfx_idx] =
2368 					SPEED_1000;
2369 			}
2370 		}
2371 
2372 		if (load_mode == LOAD_LOOPBACK_EXT) {
2373 			struct link_params *lp = &bp->link_params;
2374 			lp->loopback_mode = LOOPBACK_EXT;
2375 		}
2376 
2377 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2378 
2379 		bnx2x_release_phy_lock(bp);
2380 
2381 		bnx2x_init_dropless_fc(bp);
2382 
2383 		bnx2x_calc_fc_adv(bp);
2384 
2385 		if (bp->link_vars.link_up) {
2386 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2387 			bnx2x_link_report(bp);
2388 		}
2389 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2390 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2391 		return rc;
2392 	}
2393 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2394 	return -EINVAL;
2395 }
2396 
2397 void bnx2x_link_set(struct bnx2x *bp)
2398 {
2399 	if (!BP_NOMCP(bp)) {
2400 		bnx2x_acquire_phy_lock(bp);
2401 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2402 		bnx2x_release_phy_lock(bp);
2403 
2404 		bnx2x_init_dropless_fc(bp);
2405 
2406 		bnx2x_calc_fc_adv(bp);
2407 	} else
2408 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2409 }
2410 
2411 static void bnx2x__link_reset(struct bnx2x *bp)
2412 {
2413 	if (!BP_NOMCP(bp)) {
2414 		bnx2x_acquire_phy_lock(bp);
2415 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2416 		bnx2x_release_phy_lock(bp);
2417 	} else
2418 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2419 }
2420 
2421 void bnx2x_force_link_reset(struct bnx2x *bp)
2422 {
2423 	bnx2x_acquire_phy_lock(bp);
2424 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2425 	bnx2x_release_phy_lock(bp);
2426 }
2427 
2428 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2429 {
2430 	u8 rc = 0;
2431 
2432 	if (!BP_NOMCP(bp)) {
2433 		bnx2x_acquire_phy_lock(bp);
2434 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2435 				     is_serdes);
2436 		bnx2x_release_phy_lock(bp);
2437 	} else
2438 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2439 
2440 	return rc;
2441 }
2442 
2443 /* Calculates the sum of vn_min_rates.
2444    It's needed for further normalizing of the min_rates.
2445    Returns:
2446      sum of vn_min_rates.
2447        or
2448      0 - if all the min_rates are 0.
2449      In the later case fairness algorithm should be deactivated.
2450      If not all min_rates are zero then those that are zeroes will be set to 1.
2451  */
2452 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2453 				      struct cmng_init_input *input)
2454 {
2455 	int all_zero = 1;
2456 	int vn;
2457 
2458 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2459 		u32 vn_cfg = bp->mf_config[vn];
2460 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2461 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2462 
2463 		/* Skip hidden vns */
2464 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2465 			vn_min_rate = 0;
2466 		/* If min rate is zero - set it to 1 */
2467 		else if (!vn_min_rate)
2468 			vn_min_rate = DEF_MIN_RATE;
2469 		else
2470 			all_zero = 0;
2471 
2472 		input->vnic_min_rate[vn] = vn_min_rate;
2473 	}
2474 
2475 	/* if ETS or all min rates are zeros - disable fairness */
2476 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2477 		input->flags.cmng_enables &=
2478 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2479 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2480 	} else if (all_zero) {
2481 		input->flags.cmng_enables &=
2482 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2483 		DP(NETIF_MSG_IFUP,
2484 		   "All MIN values are zeroes fairness will be disabled\n");
2485 	} else
2486 		input->flags.cmng_enables |=
2487 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2488 }
2489 
2490 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2491 				    struct cmng_init_input *input)
2492 {
2493 	u16 vn_max_rate;
2494 	u32 vn_cfg = bp->mf_config[vn];
2495 
2496 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2497 		vn_max_rate = 0;
2498 	else {
2499 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2500 
2501 		if (IS_MF_PERCENT_BW(bp)) {
2502 			/* maxCfg in percents of linkspeed */
2503 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2504 		} else /* SD modes */
2505 			/* maxCfg is absolute in 100Mb units */
2506 			vn_max_rate = maxCfg * 100;
2507 	}
2508 
2509 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2510 
2511 	input->vnic_max_rate[vn] = vn_max_rate;
2512 }
2513 
2514 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2515 {
2516 	if (CHIP_REV_IS_SLOW(bp))
2517 		return CMNG_FNS_NONE;
2518 	if (IS_MF(bp))
2519 		return CMNG_FNS_MINMAX;
2520 
2521 	return CMNG_FNS_NONE;
2522 }
2523 
2524 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2525 {
2526 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2527 
2528 	if (BP_NOMCP(bp))
2529 		return; /* what should be the default value in this case */
2530 
2531 	/* For 2 port configuration the absolute function number formula
2532 	 * is:
2533 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2534 	 *
2535 	 *      and there are 4 functions per port
2536 	 *
2537 	 * For 4 port configuration it is
2538 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2539 	 *
2540 	 *      and there are 2 functions per port
2541 	 */
2542 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2543 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2544 
2545 		if (func >= E1H_FUNC_MAX)
2546 			break;
2547 
2548 		bp->mf_config[vn] =
2549 			MF_CFG_RD(bp, func_mf_config[func].config);
2550 	}
2551 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2552 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2553 		bp->flags |= MF_FUNC_DIS;
2554 	} else {
2555 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2556 		bp->flags &= ~MF_FUNC_DIS;
2557 	}
2558 }
2559 
2560 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2561 {
2562 	struct cmng_init_input input;
2563 	memset(&input, 0, sizeof(struct cmng_init_input));
2564 
2565 	input.port_rate = bp->link_vars.line_speed;
2566 
2567 	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2568 		int vn;
2569 
2570 		/* read mf conf from shmem */
2571 		if (read_cfg)
2572 			bnx2x_read_mf_cfg(bp);
2573 
2574 		/* vn_weight_sum and enable fairness if not 0 */
2575 		bnx2x_calc_vn_min(bp, &input);
2576 
2577 		/* calculate and set min-max rate for each vn */
2578 		if (bp->port.pmf)
2579 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2580 				bnx2x_calc_vn_max(bp, vn, &input);
2581 
2582 		/* always enable rate shaping and fairness */
2583 		input.flags.cmng_enables |=
2584 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2585 
2586 		bnx2x_init_cmng(&input, &bp->cmng);
2587 		return;
2588 	}
2589 
2590 	/* rate shaping and fairness are disabled */
2591 	DP(NETIF_MSG_IFUP,
2592 	   "rate shaping and fairness are disabled\n");
2593 }
2594 
2595 static void storm_memset_cmng(struct bnx2x *bp,
2596 			      struct cmng_init *cmng,
2597 			      u8 port)
2598 {
2599 	int vn;
2600 	size_t size = sizeof(struct cmng_struct_per_port);
2601 
2602 	u32 addr = BAR_XSTRORM_INTMEM +
2603 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2604 
2605 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2606 
2607 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2608 		int func = func_by_vn(bp, vn);
2609 
2610 		addr = BAR_XSTRORM_INTMEM +
2611 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2612 		size = sizeof(struct rate_shaping_vars_per_vn);
2613 		__storm_memset_struct(bp, addr, size,
2614 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2615 
2616 		addr = BAR_XSTRORM_INTMEM +
2617 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2618 		size = sizeof(struct fairness_vars_per_vn);
2619 		__storm_memset_struct(bp, addr, size,
2620 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2621 	}
2622 }
2623 
2624 /* init cmng mode in HW according to local configuration */
2625 void bnx2x_set_local_cmng(struct bnx2x *bp)
2626 {
2627 	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2628 
2629 	if (cmng_fns != CMNG_FNS_NONE) {
2630 		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2631 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2632 	} else {
2633 		/* rate shaping and fairness are disabled */
2634 		DP(NETIF_MSG_IFUP,
2635 		   "single function mode without fairness\n");
2636 	}
2637 }
2638 
2639 /* This function is called upon link interrupt */
2640 static void bnx2x_link_attn(struct bnx2x *bp)
2641 {
2642 	/* Make sure that we are synced with the current statistics */
2643 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2644 
2645 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2646 
2647 	bnx2x_init_dropless_fc(bp);
2648 
2649 	if (bp->link_vars.link_up) {
2650 
2651 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2652 			struct host_port_stats *pstats;
2653 
2654 			pstats = bnx2x_sp(bp, port_stats);
2655 			/* reset old mac stats */
2656 			memset(&(pstats->mac_stx[0]), 0,
2657 			       sizeof(struct mac_stx));
2658 		}
2659 		if (bp->state == BNX2X_STATE_OPEN)
2660 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2661 	}
2662 
2663 	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2664 		bnx2x_set_local_cmng(bp);
2665 
2666 	__bnx2x_link_report(bp);
2667 
2668 	if (IS_MF(bp))
2669 		bnx2x_link_sync_notify(bp);
2670 }
2671 
2672 void bnx2x__link_status_update(struct bnx2x *bp)
2673 {
2674 	if (bp->state != BNX2X_STATE_OPEN)
2675 		return;
2676 
2677 	/* read updated dcb configuration */
2678 	if (IS_PF(bp)) {
2679 		bnx2x_dcbx_pmf_update(bp);
2680 		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2681 		if (bp->link_vars.link_up)
2682 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2683 		else
2684 			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2685 			/* indicate link status */
2686 		bnx2x_link_report(bp);
2687 
2688 	} else { /* VF */
2689 		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2690 					  SUPPORTED_10baseT_Full |
2691 					  SUPPORTED_100baseT_Half |
2692 					  SUPPORTED_100baseT_Full |
2693 					  SUPPORTED_1000baseT_Full |
2694 					  SUPPORTED_2500baseX_Full |
2695 					  SUPPORTED_10000baseT_Full |
2696 					  SUPPORTED_TP |
2697 					  SUPPORTED_FIBRE |
2698 					  SUPPORTED_Autoneg |
2699 					  SUPPORTED_Pause |
2700 					  SUPPORTED_Asym_Pause);
2701 		bp->port.advertising[0] = bp->port.supported[0];
2702 
2703 		bp->link_params.bp = bp;
2704 		bp->link_params.port = BP_PORT(bp);
2705 		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2706 		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2707 		bp->link_params.req_line_speed[0] = SPEED_10000;
2708 		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2709 		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2710 		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2711 		bp->link_vars.line_speed = SPEED_10000;
2712 		bp->link_vars.link_status =
2713 			(LINK_STATUS_LINK_UP |
2714 			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2715 		bp->link_vars.link_up = 1;
2716 		bp->link_vars.duplex = DUPLEX_FULL;
2717 		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2718 		__bnx2x_link_report(bp);
2719 
2720 		bnx2x_sample_bulletin(bp);
2721 
2722 		/* if bulletin board did not have an update for link status
2723 		 * __bnx2x_link_report will report current status
2724 		 * but it will NOT duplicate report in case of already reported
2725 		 * during sampling bulletin board.
2726 		 */
2727 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2728 	}
2729 }
2730 
2731 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2732 				  u16 vlan_val, u8 allowed_prio)
2733 {
2734 	struct bnx2x_func_state_params func_params = {NULL};
2735 	struct bnx2x_func_afex_update_params *f_update_params =
2736 		&func_params.params.afex_update;
2737 
2738 	func_params.f_obj = &bp->func_obj;
2739 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2740 
2741 	/* no need to wait for RAMROD completion, so don't
2742 	 * set RAMROD_COMP_WAIT flag
2743 	 */
2744 
2745 	f_update_params->vif_id = vifid;
2746 	f_update_params->afex_default_vlan = vlan_val;
2747 	f_update_params->allowed_priorities = allowed_prio;
2748 
2749 	/* if ramrod can not be sent, response to MCP immediately */
2750 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2751 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2752 
2753 	return 0;
2754 }
2755 
2756 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2757 					  u16 vif_index, u8 func_bit_map)
2758 {
2759 	struct bnx2x_func_state_params func_params = {NULL};
2760 	struct bnx2x_func_afex_viflists_params *update_params =
2761 		&func_params.params.afex_viflists;
2762 	int rc;
2763 	u32 drv_msg_code;
2764 
2765 	/* validate only LIST_SET and LIST_GET are received from switch */
2766 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2767 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2768 			  cmd_type);
2769 
2770 	func_params.f_obj = &bp->func_obj;
2771 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2772 
2773 	/* set parameters according to cmd_type */
2774 	update_params->afex_vif_list_command = cmd_type;
2775 	update_params->vif_list_index = vif_index;
2776 	update_params->func_bit_map =
2777 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2778 	update_params->func_to_clear = 0;
2779 	drv_msg_code =
2780 		(cmd_type == VIF_LIST_RULE_GET) ?
2781 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2782 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2783 
2784 	/* if ramrod can not be sent, respond to MCP immediately for
2785 	 * SET and GET requests (other are not triggered from MCP)
2786 	 */
2787 	rc = bnx2x_func_state_change(bp, &func_params);
2788 	if (rc < 0)
2789 		bnx2x_fw_command(bp, drv_msg_code, 0);
2790 
2791 	return 0;
2792 }
2793 
2794 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2795 {
2796 	struct afex_stats afex_stats;
2797 	u32 func = BP_ABS_FUNC(bp);
2798 	u32 mf_config;
2799 	u16 vlan_val;
2800 	u32 vlan_prio;
2801 	u16 vif_id;
2802 	u8 allowed_prio;
2803 	u8 vlan_mode;
2804 	u32 addr_to_write, vifid, addrs, stats_type, i;
2805 
2806 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2807 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2808 		DP(BNX2X_MSG_MCP,
2809 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2810 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2811 	}
2812 
2813 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2814 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2815 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2816 		DP(BNX2X_MSG_MCP,
2817 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2818 		   vifid, addrs);
2819 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2820 					       addrs);
2821 	}
2822 
2823 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2824 		addr_to_write = SHMEM2_RD(bp,
2825 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2826 		stats_type = SHMEM2_RD(bp,
2827 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2828 
2829 		DP(BNX2X_MSG_MCP,
2830 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2831 		   addr_to_write);
2832 
2833 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2834 
2835 		/* write response to scratchpad, for MCP */
2836 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2837 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2838 			       *(((u32 *)(&afex_stats))+i));
2839 
2840 		/* send ack message to MCP */
2841 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2842 	}
2843 
2844 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2845 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2846 		bp->mf_config[BP_VN(bp)] = mf_config;
2847 		DP(BNX2X_MSG_MCP,
2848 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2849 		   mf_config);
2850 
2851 		/* if VIF_SET is "enabled" */
2852 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2853 			/* set rate limit directly to internal RAM */
2854 			struct cmng_init_input cmng_input;
2855 			struct rate_shaping_vars_per_vn m_rs_vn;
2856 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2857 			u32 addr = BAR_XSTRORM_INTMEM +
2858 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2859 
2860 			bp->mf_config[BP_VN(bp)] = mf_config;
2861 
2862 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2863 			m_rs_vn.vn_counter.rate =
2864 				cmng_input.vnic_max_rate[BP_VN(bp)];
2865 			m_rs_vn.vn_counter.quota =
2866 				(m_rs_vn.vn_counter.rate *
2867 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2868 
2869 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2870 
2871 			/* read relevant values from mf_cfg struct in shmem */
2872 			vif_id =
2873 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2874 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2875 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2876 			vlan_val =
2877 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2878 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2879 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2880 			vlan_prio = (mf_config &
2881 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2882 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2883 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2884 			vlan_mode =
2885 				(MF_CFG_RD(bp,
2886 					   func_mf_config[func].afex_config) &
2887 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2888 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2889 			allowed_prio =
2890 				(MF_CFG_RD(bp,
2891 					   func_mf_config[func].afex_config) &
2892 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2893 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2894 
2895 			/* send ramrod to FW, return in case of failure */
2896 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2897 						   allowed_prio))
2898 				return;
2899 
2900 			bp->afex_def_vlan_tag = vlan_val;
2901 			bp->afex_vlan_mode = vlan_mode;
2902 		} else {
2903 			/* notify link down because BP->flags is disabled */
2904 			bnx2x_link_report(bp);
2905 
2906 			/* send INVALID VIF ramrod to FW */
2907 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2908 
2909 			/* Reset the default afex VLAN */
2910 			bp->afex_def_vlan_tag = -1;
2911 		}
2912 	}
2913 }
2914 
2915 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2916 {
2917 	struct bnx2x_func_switch_update_params *switch_update_params;
2918 	struct bnx2x_func_state_params func_params;
2919 
2920 	memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2921 	switch_update_params = &func_params.params.switch_update;
2922 	func_params.f_obj = &bp->func_obj;
2923 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2924 
2925 	/* Prepare parameters for function state transitions */
2926 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2927 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
2928 
2929 	if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2930 		int func = BP_ABS_FUNC(bp);
2931 		u32 val;
2932 
2933 		/* Re-learn the S-tag from shmem */
2934 		val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2935 				FUNC_MF_CFG_E1HOV_TAG_MASK;
2936 		if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2937 			bp->mf_ov = val;
2938 		} else {
2939 			BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2940 			goto fail;
2941 		}
2942 
2943 		/* Configure new S-tag in LLH */
2944 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2945 		       bp->mf_ov);
2946 
2947 		/* Send Ramrod to update FW of change */
2948 		__set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2949 			  &switch_update_params->changes);
2950 		switch_update_params->vlan = bp->mf_ov;
2951 
2952 		if (bnx2x_func_state_change(bp, &func_params) < 0) {
2953 			BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2954 				  bp->mf_ov);
2955 			goto fail;
2956 		} else {
2957 			DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2958 			   bp->mf_ov);
2959 		}
2960 	} else {
2961 		goto fail;
2962 	}
2963 
2964 	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2965 	return;
2966 fail:
2967 	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2968 }
2969 
2970 static void bnx2x_pmf_update(struct bnx2x *bp)
2971 {
2972 	int port = BP_PORT(bp);
2973 	u32 val;
2974 
2975 	bp->port.pmf = 1;
2976 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2977 
2978 	/*
2979 	 * We need the mb() to ensure the ordering between the writing to
2980 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2981 	 */
2982 	smp_mb();
2983 
2984 	/* queue a periodic task */
2985 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2986 
2987 	bnx2x_dcbx_pmf_update(bp);
2988 
2989 	/* enable nig attention */
2990 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2991 	if (bp->common.int_block == INT_BLOCK_HC) {
2992 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2993 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2994 	} else if (!CHIP_IS_E1x(bp)) {
2995 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2996 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2997 	}
2998 
2999 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
3000 }
3001 
3002 /* end of Link */
3003 
3004 /* slow path */
3005 
3006 /*
3007  * General service functions
3008  */
3009 
3010 /* send the MCP a request, block until there is a reply */
3011 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3012 {
3013 	int mb_idx = BP_FW_MB_IDX(bp);
3014 	u32 seq;
3015 	u32 rc = 0;
3016 	u32 cnt = 1;
3017 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3018 
3019 	mutex_lock(&bp->fw_mb_mutex);
3020 	seq = ++bp->fw_seq;
3021 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3022 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3023 
3024 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3025 			(command | seq), param);
3026 
3027 	do {
3028 		/* let the FW do it's magic ... */
3029 		msleep(delay);
3030 
3031 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3032 
3033 		/* Give the FW up to 5 second (500*10ms) */
3034 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3035 
3036 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3037 	   cnt*delay, rc, seq);
3038 
3039 	/* is this a reply to our command? */
3040 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3041 		rc &= FW_MSG_CODE_MASK;
3042 	else {
3043 		/* FW BUG! */
3044 		BNX2X_ERR("FW failed to respond!\n");
3045 		bnx2x_fw_dump(bp);
3046 		rc = 0;
3047 	}
3048 	mutex_unlock(&bp->fw_mb_mutex);
3049 
3050 	return rc;
3051 }
3052 
3053 static void storm_memset_func_cfg(struct bnx2x *bp,
3054 				 struct tstorm_eth_function_common_config *tcfg,
3055 				 u16 abs_fid)
3056 {
3057 	size_t size = sizeof(struct tstorm_eth_function_common_config);
3058 
3059 	u32 addr = BAR_TSTRORM_INTMEM +
3060 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3061 
3062 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3063 }
3064 
3065 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3066 {
3067 	if (CHIP_IS_E1x(bp)) {
3068 		struct tstorm_eth_function_common_config tcfg = {0};
3069 
3070 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
3071 	}
3072 
3073 	/* Enable the function in the FW */
3074 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3075 	storm_memset_func_en(bp, p->func_id, 1);
3076 
3077 	/* spq */
3078 	if (p->spq_active) {
3079 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3080 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
3081 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3082 	}
3083 }
3084 
3085 /**
3086  * bnx2x_get_common_flags - Return common flags
3087  *
3088  * @bp:		device handle
3089  * @fp:		queue handle
3090  * @zero_stats:	TRUE if statistics zeroing is needed
3091  *
3092  * Return the flags that are common for the Tx-only and not normal connections.
3093  */
3094 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3095 					    struct bnx2x_fastpath *fp,
3096 					    bool zero_stats)
3097 {
3098 	unsigned long flags = 0;
3099 
3100 	/* PF driver will always initialize the Queue to an ACTIVE state */
3101 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3102 
3103 	/* tx only connections collect statistics (on the same index as the
3104 	 * parent connection). The statistics are zeroed when the parent
3105 	 * connection is initialized.
3106 	 */
3107 
3108 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
3109 	if (zero_stats)
3110 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3111 
3112 	if (bp->flags & TX_SWITCHING)
3113 		__set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3114 
3115 	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3116 	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3117 
3118 #ifdef BNX2X_STOP_ON_ERROR
3119 	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3120 #endif
3121 
3122 	return flags;
3123 }
3124 
3125 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3126 				       struct bnx2x_fastpath *fp,
3127 				       bool leading)
3128 {
3129 	unsigned long flags = 0;
3130 
3131 	/* calculate other queue flags */
3132 	if (IS_MF_SD(bp))
3133 		__set_bit(BNX2X_Q_FLG_OV, &flags);
3134 
3135 	if (IS_FCOE_FP(fp)) {
3136 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
3137 		/* For FCoE - force usage of default priority (for afex) */
3138 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3139 	}
3140 
3141 	if (fp->mode != TPA_MODE_DISABLED) {
3142 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3143 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3144 		if (fp->mode == TPA_MODE_GRO)
3145 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3146 	}
3147 
3148 	if (leading) {
3149 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3150 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3151 	}
3152 
3153 	/* Always set HW VLAN stripping */
3154 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3155 
3156 	/* configure silent vlan removal */
3157 	if (IS_MF_AFEX(bp))
3158 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3159 
3160 	return flags | bnx2x_get_common_flags(bp, fp, true);
3161 }
3162 
3163 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3164 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3165 	u8 cos)
3166 {
3167 	gen_init->stat_id = bnx2x_stats_id(fp);
3168 	gen_init->spcl_id = fp->cl_id;
3169 
3170 	/* Always use mini-jumbo MTU for FCoE L2 ring */
3171 	if (IS_FCOE_FP(fp))
3172 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3173 	else
3174 		gen_init->mtu = bp->dev->mtu;
3175 
3176 	gen_init->cos = cos;
3177 
3178 	gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3179 }
3180 
3181 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3182 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3183 	struct bnx2x_rxq_setup_params *rxq_init)
3184 {
3185 	u8 max_sge = 0;
3186 	u16 sge_sz = 0;
3187 	u16 tpa_agg_size = 0;
3188 
3189 	if (fp->mode != TPA_MODE_DISABLED) {
3190 		pause->sge_th_lo = SGE_TH_LO(bp);
3191 		pause->sge_th_hi = SGE_TH_HI(bp);
3192 
3193 		/* validate SGE ring has enough to cross high threshold */
3194 		WARN_ON(bp->dropless_fc &&
3195 				pause->sge_th_hi + FW_PREFETCH_CNT >
3196 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3197 
3198 		tpa_agg_size = TPA_AGG_SIZE;
3199 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3200 			SGE_PAGE_SHIFT;
3201 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3202 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3203 		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3204 	}
3205 
3206 	/* pause - not for e1 */
3207 	if (!CHIP_IS_E1(bp)) {
3208 		pause->bd_th_lo = BD_TH_LO(bp);
3209 		pause->bd_th_hi = BD_TH_HI(bp);
3210 
3211 		pause->rcq_th_lo = RCQ_TH_LO(bp);
3212 		pause->rcq_th_hi = RCQ_TH_HI(bp);
3213 		/*
3214 		 * validate that rings have enough entries to cross
3215 		 * high thresholds
3216 		 */
3217 		WARN_ON(bp->dropless_fc &&
3218 				pause->bd_th_hi + FW_PREFETCH_CNT >
3219 				bp->rx_ring_size);
3220 		WARN_ON(bp->dropless_fc &&
3221 				pause->rcq_th_hi + FW_PREFETCH_CNT >
3222 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3223 
3224 		pause->pri_map = 1;
3225 	}
3226 
3227 	/* rxq setup */
3228 	rxq_init->dscr_map = fp->rx_desc_mapping;
3229 	rxq_init->sge_map = fp->rx_sge_mapping;
3230 	rxq_init->rcq_map = fp->rx_comp_mapping;
3231 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3232 
3233 	/* This should be a maximum number of data bytes that may be
3234 	 * placed on the BD (not including paddings).
3235 	 */
3236 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3237 			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3238 
3239 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3240 	rxq_init->tpa_agg_sz = tpa_agg_size;
3241 	rxq_init->sge_buf_sz = sge_sz;
3242 	rxq_init->max_sges_pkt = max_sge;
3243 	rxq_init->rss_engine_id = BP_FUNC(bp);
3244 	rxq_init->mcast_engine_id = BP_FUNC(bp);
3245 
3246 	/* Maximum number or simultaneous TPA aggregation for this Queue.
3247 	 *
3248 	 * For PF Clients it should be the maximum available number.
3249 	 * VF driver(s) may want to define it to a smaller value.
3250 	 */
3251 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3252 
3253 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3254 	rxq_init->fw_sb_id = fp->fw_sb_id;
3255 
3256 	if (IS_FCOE_FP(fp))
3257 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3258 	else
3259 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3260 	/* configure silent vlan removal
3261 	 * if multi function mode is afex, then mask default vlan
3262 	 */
3263 	if (IS_MF_AFEX(bp)) {
3264 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3265 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3266 	}
3267 }
3268 
3269 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3270 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3271 	u8 cos)
3272 {
3273 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3274 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3275 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3276 	txq_init->fw_sb_id = fp->fw_sb_id;
3277 
3278 	/*
3279 	 * set the tss leading client id for TX classification ==
3280 	 * leading RSS client id
3281 	 */
3282 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3283 
3284 	if (IS_FCOE_FP(fp)) {
3285 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3286 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3287 	}
3288 }
3289 
3290 static void bnx2x_pf_init(struct bnx2x *bp)
3291 {
3292 	struct bnx2x_func_init_params func_init = {0};
3293 	struct event_ring_data eq_data = { {0} };
3294 
3295 	if (!CHIP_IS_E1x(bp)) {
3296 		/* reset IGU PF statistics: MSIX + ATTN */
3297 		/* PF */
3298 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3299 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3300 			   (CHIP_MODE_IS_4_PORT(bp) ?
3301 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3302 		/* ATTN */
3303 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3304 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3305 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3306 			   (CHIP_MODE_IS_4_PORT(bp) ?
3307 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3308 	}
3309 
3310 	func_init.spq_active = true;
3311 	func_init.pf_id = BP_FUNC(bp);
3312 	func_init.func_id = BP_FUNC(bp);
3313 	func_init.spq_map = bp->spq_mapping;
3314 	func_init.spq_prod = bp->spq_prod_idx;
3315 
3316 	bnx2x_func_init(bp, &func_init);
3317 
3318 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3319 
3320 	/*
3321 	 * Congestion management values depend on the link rate
3322 	 * There is no active link so initial link rate is set to 10 Gbps.
3323 	 * When the link comes up The congestion management values are
3324 	 * re-calculated according to the actual link rate.
3325 	 */
3326 	bp->link_vars.line_speed = SPEED_10000;
3327 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3328 
3329 	/* Only the PMF sets the HW */
3330 	if (bp->port.pmf)
3331 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3332 
3333 	/* init Event Queue - PCI bus guarantees correct endianity*/
3334 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3335 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3336 	eq_data.producer = bp->eq_prod;
3337 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3338 	eq_data.sb_id = DEF_SB_ID;
3339 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3340 }
3341 
3342 static void bnx2x_e1h_disable(struct bnx2x *bp)
3343 {
3344 	int port = BP_PORT(bp);
3345 
3346 	bnx2x_tx_disable(bp);
3347 
3348 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3349 }
3350 
3351 static void bnx2x_e1h_enable(struct bnx2x *bp)
3352 {
3353 	int port = BP_PORT(bp);
3354 
3355 	if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3356 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3357 
3358 	/* Tx queue should be only re-enabled */
3359 	netif_tx_wake_all_queues(bp->dev);
3360 
3361 	/*
3362 	 * Should not call netif_carrier_on since it will be called if the link
3363 	 * is up when checking for link state
3364 	 */
3365 }
3366 
3367 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3368 
3369 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3370 {
3371 	struct eth_stats_info *ether_stat =
3372 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3373 	struct bnx2x_vlan_mac_obj *mac_obj =
3374 		&bp->sp_objs->mac_obj;
3375 	int i;
3376 
3377 	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3378 		ETH_STAT_INFO_VERSION_LEN);
3379 
3380 	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3381 	 * mac_local field in ether_stat struct. The base address is offset by 2
3382 	 * bytes to account for the field being 8 bytes but a mac address is
3383 	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3384 	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3385 	 * allocated by the ether_stat struct, so the macs will land in their
3386 	 * proper positions.
3387 	 */
3388 	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3389 		memset(ether_stat->mac_local + i, 0,
3390 		       sizeof(ether_stat->mac_local[0]));
3391 	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3392 				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3393 				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3394 				ETH_ALEN);
3395 	ether_stat->mtu_size = bp->dev->mtu;
3396 	if (bp->dev->features & NETIF_F_RXCSUM)
3397 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3398 	if (bp->dev->features & NETIF_F_TSO)
3399 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3400 	ether_stat->feature_flags |= bp->common.boot_mode;
3401 
3402 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3403 
3404 	ether_stat->txq_size = bp->tx_ring_size;
3405 	ether_stat->rxq_size = bp->rx_ring_size;
3406 
3407 #ifdef CONFIG_BNX2X_SRIOV
3408 	ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3409 #endif
3410 }
3411 
3412 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3413 {
3414 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3415 	struct fcoe_stats_info *fcoe_stat =
3416 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3417 
3418 	if (!CNIC_LOADED(bp))
3419 		return;
3420 
3421 	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3422 
3423 	fcoe_stat->qos_priority =
3424 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3425 
3426 	/* insert FCoE stats from ramrod response */
3427 	if (!NO_FCOE(bp)) {
3428 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3429 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3430 			tstorm_queue_statistics;
3431 
3432 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3433 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3434 			xstorm_queue_statistics;
3435 
3436 		struct fcoe_statistics_params *fw_fcoe_stat =
3437 			&bp->fw_stats_data->fcoe;
3438 
3439 		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3440 			  fcoe_stat->rx_bytes_lo,
3441 			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3442 
3443 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3444 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3445 			  fcoe_stat->rx_bytes_lo,
3446 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3447 
3448 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3449 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3450 			  fcoe_stat->rx_bytes_lo,
3451 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3452 
3453 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3454 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3455 			  fcoe_stat->rx_bytes_lo,
3456 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3457 
3458 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3459 			  fcoe_stat->rx_frames_lo,
3460 			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3461 
3462 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3463 			  fcoe_stat->rx_frames_lo,
3464 			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3465 
3466 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3467 			  fcoe_stat->rx_frames_lo,
3468 			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3469 
3470 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3471 			  fcoe_stat->rx_frames_lo,
3472 			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3473 
3474 		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3475 			  fcoe_stat->tx_bytes_lo,
3476 			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3477 
3478 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3479 			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3480 			  fcoe_stat->tx_bytes_lo,
3481 			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3482 
3483 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3484 			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3485 			  fcoe_stat->tx_bytes_lo,
3486 			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3487 
3488 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3489 			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3490 			  fcoe_stat->tx_bytes_lo,
3491 			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3492 
3493 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3494 			  fcoe_stat->tx_frames_lo,
3495 			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3496 
3497 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3498 			  fcoe_stat->tx_frames_lo,
3499 			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3500 
3501 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3502 			  fcoe_stat->tx_frames_lo,
3503 			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3504 
3505 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3506 			  fcoe_stat->tx_frames_lo,
3507 			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3508 	}
3509 
3510 	/* ask L5 driver to add data to the struct */
3511 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3512 }
3513 
3514 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3515 {
3516 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3517 	struct iscsi_stats_info *iscsi_stat =
3518 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3519 
3520 	if (!CNIC_LOADED(bp))
3521 		return;
3522 
3523 	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3524 	       ETH_ALEN);
3525 
3526 	iscsi_stat->qos_priority =
3527 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3528 
3529 	/* ask L5 driver to add data to the struct */
3530 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3531 }
3532 
3533 /* called due to MCP event (on pmf):
3534  *	reread new bandwidth configuration
3535  *	configure FW
3536  *	notify others function about the change
3537  */
3538 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3539 {
3540 	/* Workaround for MFW bug.
3541 	 * MFW is not supposed to generate BW attention in
3542 	 * single function mode.
3543 	 */
3544 	if (!IS_MF(bp)) {
3545 		DP(BNX2X_MSG_MCP,
3546 		   "Ignoring MF BW config in single function mode\n");
3547 		return;
3548 	}
3549 
3550 	if (bp->link_vars.link_up) {
3551 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3552 		bnx2x_link_sync_notify(bp);
3553 	}
3554 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3555 }
3556 
3557 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3558 {
3559 	bnx2x_config_mf_bw(bp);
3560 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3561 }
3562 
3563 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3564 {
3565 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3566 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3567 }
3568 
3569 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH	(20)
3570 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT		(25)
3571 
3572 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3573 {
3574 	enum drv_info_opcode op_code;
3575 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3576 	bool release = false;
3577 	int wait;
3578 
3579 	/* if drv_info version supported by MFW doesn't match - send NACK */
3580 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3581 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3582 		return;
3583 	}
3584 
3585 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3586 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3587 
3588 	/* Must prevent other flows from accessing drv_info_to_mcp */
3589 	mutex_lock(&bp->drv_info_mutex);
3590 
3591 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3592 	       sizeof(union drv_info_to_mcp));
3593 
3594 	switch (op_code) {
3595 	case ETH_STATS_OPCODE:
3596 		bnx2x_drv_info_ether_stat(bp);
3597 		break;
3598 	case FCOE_STATS_OPCODE:
3599 		bnx2x_drv_info_fcoe_stat(bp);
3600 		break;
3601 	case ISCSI_STATS_OPCODE:
3602 		bnx2x_drv_info_iscsi_stat(bp);
3603 		break;
3604 	default:
3605 		/* if op code isn't supported - send NACK */
3606 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3607 		goto out;
3608 	}
3609 
3610 	/* if we got drv_info attn from MFW then these fields are defined in
3611 	 * shmem2 for sure
3612 	 */
3613 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3614 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3615 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3616 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3617 
3618 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3619 
3620 	/* Since possible management wants both this and get_driver_version
3621 	 * need to wait until management notifies us it finished utilizing
3622 	 * the buffer.
3623 	 */
3624 	if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3625 		DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3626 	} else if (!bp->drv_info_mng_owner) {
3627 		u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3628 
3629 		for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3630 			u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3631 
3632 			/* Management is done; need to clear indication */
3633 			if (indication & bit) {
3634 				SHMEM2_WR(bp, mfw_drv_indication,
3635 					  indication & ~bit);
3636 				release = true;
3637 				break;
3638 			}
3639 
3640 			msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3641 		}
3642 	}
3643 	if (!release) {
3644 		DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3645 		bp->drv_info_mng_owner = true;
3646 	}
3647 
3648 out:
3649 	mutex_unlock(&bp->drv_info_mutex);
3650 }
3651 
3652 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3653 {
3654 	u8 vals[4];
3655 	int i = 0;
3656 
3657 	if (bnx2x_format) {
3658 		i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3659 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3660 		if (i > 0)
3661 			vals[0] -= '0';
3662 	} else {
3663 		i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3664 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3665 	}
3666 
3667 	while (i < 4)
3668 		vals[i++] = 0;
3669 
3670 	return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3671 }
3672 
3673 void bnx2x_update_mng_version(struct bnx2x *bp)
3674 {
3675 	u32 iscsiver = DRV_VER_NOT_LOADED;
3676 	u32 fcoever = DRV_VER_NOT_LOADED;
3677 	u32 ethver = DRV_VER_NOT_LOADED;
3678 	int idx = BP_FW_MB_IDX(bp);
3679 	u8 *version;
3680 
3681 	if (!SHMEM2_HAS(bp, func_os_drv_ver))
3682 		return;
3683 
3684 	mutex_lock(&bp->drv_info_mutex);
3685 	/* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3686 	if (bp->drv_info_mng_owner)
3687 		goto out;
3688 
3689 	if (bp->state != BNX2X_STATE_OPEN)
3690 		goto out;
3691 
3692 	/* Parse ethernet driver version */
3693 	ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3694 	if (!CNIC_LOADED(bp))
3695 		goto out;
3696 
3697 	/* Try getting storage driver version via cnic */
3698 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3699 	       sizeof(union drv_info_to_mcp));
3700 	bnx2x_drv_info_iscsi_stat(bp);
3701 	version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3702 	iscsiver = bnx2x_update_mng_version_utility(version, false);
3703 
3704 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3705 	       sizeof(union drv_info_to_mcp));
3706 	bnx2x_drv_info_fcoe_stat(bp);
3707 	version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3708 	fcoever = bnx2x_update_mng_version_utility(version, false);
3709 
3710 out:
3711 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3712 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3713 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3714 
3715 	mutex_unlock(&bp->drv_info_mutex);
3716 
3717 	DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3718 	   ethver, iscsiver, fcoever);
3719 }
3720 
3721 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3722 {
3723 	u32 drv_ver;
3724 	u32 valid_dump;
3725 
3726 	if (!SHMEM2_HAS(bp, drv_info))
3727 		return;
3728 
3729 	/* Update Driver load time, possibly broken in y2038 */
3730 	SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3731 
3732 	drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3733 	SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3734 
3735 	SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3736 
3737 	/* Check & notify On-Chip dump. */
3738 	valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3739 
3740 	if (valid_dump & FIRST_DUMP_VALID)
3741 		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3742 
3743 	if (valid_dump & SECOND_DUMP_VALID)
3744 		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3745 }
3746 
3747 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3748 {
3749 	u32 cmd_ok, cmd_fail;
3750 
3751 	/* sanity */
3752 	if (event & DRV_STATUS_DCC_EVENT_MASK &&
3753 	    event & DRV_STATUS_OEM_EVENT_MASK) {
3754 		BNX2X_ERR("Received simultaneous events %08x\n", event);
3755 		return;
3756 	}
3757 
3758 	if (event & DRV_STATUS_DCC_EVENT_MASK) {
3759 		cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3760 		cmd_ok = DRV_MSG_CODE_DCC_OK;
3761 	} else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3762 		cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3763 		cmd_ok = DRV_MSG_CODE_OEM_OK;
3764 	}
3765 
3766 	DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3767 
3768 	if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3769 		     DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3770 		/* This is the only place besides the function initialization
3771 		 * where the bp->flags can change so it is done without any
3772 		 * locks
3773 		 */
3774 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3775 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3776 			bp->flags |= MF_FUNC_DIS;
3777 
3778 			bnx2x_e1h_disable(bp);
3779 		} else {
3780 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3781 			bp->flags &= ~MF_FUNC_DIS;
3782 
3783 			bnx2x_e1h_enable(bp);
3784 		}
3785 		event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3786 			   DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3787 	}
3788 
3789 	if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3790 		     DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3791 		bnx2x_config_mf_bw(bp);
3792 		event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3793 			   DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3794 	}
3795 
3796 	/* Report results to MCP */
3797 	if (event)
3798 		bnx2x_fw_command(bp, cmd_fail, 0);
3799 	else
3800 		bnx2x_fw_command(bp, cmd_ok, 0);
3801 }
3802 
3803 /* must be called under the spq lock */
3804 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3805 {
3806 	struct eth_spe *next_spe = bp->spq_prod_bd;
3807 
3808 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3809 		bp->spq_prod_bd = bp->spq;
3810 		bp->spq_prod_idx = 0;
3811 		DP(BNX2X_MSG_SP, "end of spq\n");
3812 	} else {
3813 		bp->spq_prod_bd++;
3814 		bp->spq_prod_idx++;
3815 	}
3816 	return next_spe;
3817 }
3818 
3819 /* must be called under the spq lock */
3820 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3821 {
3822 	int func = BP_FUNC(bp);
3823 
3824 	/*
3825 	 * Make sure that BD data is updated before writing the producer:
3826 	 * BD data is written to the memory, the producer is read from the
3827 	 * memory, thus we need a full memory barrier to ensure the ordering.
3828 	 */
3829 	mb();
3830 
3831 	REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3832 			 bp->spq_prod_idx);
3833 }
3834 
3835 /**
3836  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3837  *
3838  * @cmd:	command to check
3839  * @cmd_type:	command type
3840  */
3841 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3842 {
3843 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3844 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3845 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3846 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3847 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3848 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3849 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3850 		return true;
3851 	else
3852 		return false;
3853 }
3854 
3855 /**
3856  * bnx2x_sp_post - place a single command on an SP ring
3857  *
3858  * @bp:		driver handle
3859  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3860  * @cid:	SW CID the command is related to
3861  * @data_hi:	command private data address (high 32 bits)
3862  * @data_lo:	command private data address (low 32 bits)
3863  * @cmd_type:	command type (e.g. NONE, ETH)
3864  *
3865  * SP data is handled as if it's always an address pair, thus data fields are
3866  * not swapped to little endian in upper functions. Instead this function swaps
3867  * data as if it's two u32 fields.
3868  */
3869 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3870 		  u32 data_hi, u32 data_lo, int cmd_type)
3871 {
3872 	struct eth_spe *spe;
3873 	u16 type;
3874 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3875 
3876 #ifdef BNX2X_STOP_ON_ERROR
3877 	if (unlikely(bp->panic)) {
3878 		BNX2X_ERR("Can't post SP when there is panic\n");
3879 		return -EIO;
3880 	}
3881 #endif
3882 
3883 	spin_lock_bh(&bp->spq_lock);
3884 
3885 	if (common) {
3886 		if (!atomic_read(&bp->eq_spq_left)) {
3887 			BNX2X_ERR("BUG! EQ ring full!\n");
3888 			spin_unlock_bh(&bp->spq_lock);
3889 			bnx2x_panic();
3890 			return -EBUSY;
3891 		}
3892 	} else if (!atomic_read(&bp->cq_spq_left)) {
3893 			BNX2X_ERR("BUG! SPQ ring full!\n");
3894 			spin_unlock_bh(&bp->spq_lock);
3895 			bnx2x_panic();
3896 			return -EBUSY;
3897 	}
3898 
3899 	spe = bnx2x_sp_get_next(bp);
3900 
3901 	/* CID needs port number to be encoded int it */
3902 	spe->hdr.conn_and_cmd_data =
3903 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3904 				    HW_CID(bp, cid));
3905 
3906 	/* In some cases, type may already contain the func-id
3907 	 * mainly in SRIOV related use cases, so we add it here only
3908 	 * if it's not already set.
3909 	 */
3910 	if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3911 		type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3912 			SPE_HDR_CONN_TYPE;
3913 		type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3914 			 SPE_HDR_FUNCTION_ID);
3915 	} else {
3916 		type = cmd_type;
3917 	}
3918 
3919 	spe->hdr.type = cpu_to_le16(type);
3920 
3921 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3922 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3923 
3924 	/*
3925 	 * It's ok if the actual decrement is issued towards the memory
3926 	 * somewhere between the spin_lock and spin_unlock. Thus no
3927 	 * more explicit memory barrier is needed.
3928 	 */
3929 	if (common)
3930 		atomic_dec(&bp->eq_spq_left);
3931 	else
3932 		atomic_dec(&bp->cq_spq_left);
3933 
3934 	DP(BNX2X_MSG_SP,
3935 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3936 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3937 	   (u32)(U64_LO(bp->spq_mapping) +
3938 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3939 	   HW_CID(bp, cid), data_hi, data_lo, type,
3940 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3941 
3942 	bnx2x_sp_prod_update(bp);
3943 	spin_unlock_bh(&bp->spq_lock);
3944 	return 0;
3945 }
3946 
3947 /* acquire split MCP access lock register */
3948 static int bnx2x_acquire_alr(struct bnx2x *bp)
3949 {
3950 	u32 j, val;
3951 	int rc = 0;
3952 
3953 	might_sleep();
3954 	for (j = 0; j < 1000; j++) {
3955 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3956 		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3957 		if (val & MCPR_ACCESS_LOCK_LOCK)
3958 			break;
3959 
3960 		usleep_range(5000, 10000);
3961 	}
3962 	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3963 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3964 		rc = -EBUSY;
3965 	}
3966 
3967 	return rc;
3968 }
3969 
3970 /* release split MCP access lock register */
3971 static void bnx2x_release_alr(struct bnx2x *bp)
3972 {
3973 	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3974 }
3975 
3976 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3977 #define BNX2X_DEF_SB_IDX	0x0002
3978 
3979 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3980 {
3981 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3982 	u16 rc = 0;
3983 
3984 	barrier(); /* status block is written to by the chip */
3985 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3986 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3987 		rc |= BNX2X_DEF_SB_ATT_IDX;
3988 	}
3989 
3990 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3991 		bp->def_idx = def_sb->sp_sb.running_index;
3992 		rc |= BNX2X_DEF_SB_IDX;
3993 	}
3994 
3995 	/* Do not reorder: indices reading should complete before handling */
3996 	barrier();
3997 	return rc;
3998 }
3999 
4000 /*
4001  * slow path service functions
4002  */
4003 
4004 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
4005 {
4006 	int port = BP_PORT(bp);
4007 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4008 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
4009 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
4010 				       NIG_REG_MASK_INTERRUPT_PORT0;
4011 	u32 aeu_mask;
4012 	u32 nig_mask = 0;
4013 	u32 reg_addr;
4014 
4015 	if (bp->attn_state & asserted)
4016 		BNX2X_ERR("IGU ERROR\n");
4017 
4018 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4019 	aeu_mask = REG_RD(bp, aeu_addr);
4020 
4021 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
4022 	   aeu_mask, asserted);
4023 	aeu_mask &= ~(asserted & 0x3ff);
4024 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4025 
4026 	REG_WR(bp, aeu_addr, aeu_mask);
4027 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4028 
4029 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4030 	bp->attn_state |= asserted;
4031 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4032 
4033 	if (asserted & ATTN_HARD_WIRED_MASK) {
4034 		if (asserted & ATTN_NIG_FOR_FUNC) {
4035 
4036 			bnx2x_acquire_phy_lock(bp);
4037 
4038 			/* save nig interrupt mask */
4039 			nig_mask = REG_RD(bp, nig_int_mask_addr);
4040 
4041 			/* If nig_mask is not set, no need to call the update
4042 			 * function.
4043 			 */
4044 			if (nig_mask) {
4045 				REG_WR(bp, nig_int_mask_addr, 0);
4046 
4047 				bnx2x_link_attn(bp);
4048 			}
4049 
4050 			/* handle unicore attn? */
4051 		}
4052 		if (asserted & ATTN_SW_TIMER_4_FUNC)
4053 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4054 
4055 		if (asserted & GPIO_2_FUNC)
4056 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4057 
4058 		if (asserted & GPIO_3_FUNC)
4059 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4060 
4061 		if (asserted & GPIO_4_FUNC)
4062 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4063 
4064 		if (port == 0) {
4065 			if (asserted & ATTN_GENERAL_ATTN_1) {
4066 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4067 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4068 			}
4069 			if (asserted & ATTN_GENERAL_ATTN_2) {
4070 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4071 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4072 			}
4073 			if (asserted & ATTN_GENERAL_ATTN_3) {
4074 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4075 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4076 			}
4077 		} else {
4078 			if (asserted & ATTN_GENERAL_ATTN_4) {
4079 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4080 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4081 			}
4082 			if (asserted & ATTN_GENERAL_ATTN_5) {
4083 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4084 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4085 			}
4086 			if (asserted & ATTN_GENERAL_ATTN_6) {
4087 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4088 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4089 			}
4090 		}
4091 
4092 	} /* if hardwired */
4093 
4094 	if (bp->common.int_block == INT_BLOCK_HC)
4095 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4096 			    COMMAND_REG_ATTN_BITS_SET);
4097 	else
4098 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4099 
4100 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4101 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4102 	REG_WR(bp, reg_addr, asserted);
4103 
4104 	/* now set back the mask */
4105 	if (asserted & ATTN_NIG_FOR_FUNC) {
4106 		/* Verify that IGU ack through BAR was written before restoring
4107 		 * NIG mask. This loop should exit after 2-3 iterations max.
4108 		 */
4109 		if (bp->common.int_block != INT_BLOCK_HC) {
4110 			u32 cnt = 0, igu_acked;
4111 			do {
4112 				igu_acked = REG_RD(bp,
4113 						   IGU_REG_ATTENTION_ACK_BITS);
4114 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4115 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
4116 			if (!igu_acked)
4117 				DP(NETIF_MSG_HW,
4118 				   "Failed to verify IGU ack on time\n");
4119 			barrier();
4120 		}
4121 		REG_WR(bp, nig_int_mask_addr, nig_mask);
4122 		bnx2x_release_phy_lock(bp);
4123 	}
4124 }
4125 
4126 static void bnx2x_fan_failure(struct bnx2x *bp)
4127 {
4128 	int port = BP_PORT(bp);
4129 	u32 ext_phy_config;
4130 	/* mark the failure */
4131 	ext_phy_config =
4132 		SHMEM_RD(bp,
4133 			 dev_info.port_hw_config[port].external_phy_config);
4134 
4135 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4136 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4137 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4138 		 ext_phy_config);
4139 
4140 	/* log the failure */
4141 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4142 			    "Please contact OEM Support for assistance\n");
4143 
4144 	/* Schedule device reset (unload)
4145 	 * This is due to some boards consuming sufficient power when driver is
4146 	 * up to overheat if fan fails.
4147 	 */
4148 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4149 }
4150 
4151 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4152 {
4153 	int port = BP_PORT(bp);
4154 	int reg_offset;
4155 	u32 val;
4156 
4157 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4158 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4159 
4160 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4161 
4162 		val = REG_RD(bp, reg_offset);
4163 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4164 		REG_WR(bp, reg_offset, val);
4165 
4166 		BNX2X_ERR("SPIO5 hw attention\n");
4167 
4168 		/* Fan failure attention */
4169 		bnx2x_hw_reset_phy(&bp->link_params);
4170 		bnx2x_fan_failure(bp);
4171 	}
4172 
4173 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4174 		bnx2x_acquire_phy_lock(bp);
4175 		bnx2x_handle_module_detect_int(&bp->link_params);
4176 		bnx2x_release_phy_lock(bp);
4177 	}
4178 
4179 	if (attn & HW_INTERRUPT_ASSERT_SET_0) {
4180 
4181 		val = REG_RD(bp, reg_offset);
4182 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0);
4183 		REG_WR(bp, reg_offset, val);
4184 
4185 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4186 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_0));
4187 		bnx2x_panic();
4188 	}
4189 }
4190 
4191 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4192 {
4193 	u32 val;
4194 
4195 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4196 
4197 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4198 		BNX2X_ERR("DB hw attention 0x%x\n", val);
4199 		/* DORQ discard attention */
4200 		if (val & 0x2)
4201 			BNX2X_ERR("FATAL error from DORQ\n");
4202 	}
4203 
4204 	if (attn & HW_INTERRUPT_ASSERT_SET_1) {
4205 
4206 		int port = BP_PORT(bp);
4207 		int reg_offset;
4208 
4209 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4210 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4211 
4212 		val = REG_RD(bp, reg_offset);
4213 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1);
4214 		REG_WR(bp, reg_offset, val);
4215 
4216 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4217 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_1));
4218 		bnx2x_panic();
4219 	}
4220 }
4221 
4222 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4223 {
4224 	u32 val;
4225 
4226 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4227 
4228 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4229 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
4230 		/* CFC error attention */
4231 		if (val & 0x2)
4232 			BNX2X_ERR("FATAL error from CFC\n");
4233 	}
4234 
4235 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4236 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4237 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4238 		/* RQ_USDMDP_FIFO_OVERFLOW */
4239 		if (val & 0x18000)
4240 			BNX2X_ERR("FATAL error from PXP\n");
4241 
4242 		if (!CHIP_IS_E1x(bp)) {
4243 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4244 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4245 		}
4246 	}
4247 
4248 	if (attn & HW_INTERRUPT_ASSERT_SET_2) {
4249 
4250 		int port = BP_PORT(bp);
4251 		int reg_offset;
4252 
4253 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4254 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4255 
4256 		val = REG_RD(bp, reg_offset);
4257 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2);
4258 		REG_WR(bp, reg_offset, val);
4259 
4260 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4261 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_2));
4262 		bnx2x_panic();
4263 	}
4264 }
4265 
4266 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4267 {
4268 	u32 val;
4269 
4270 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4271 
4272 		if (attn & BNX2X_PMF_LINK_ASSERT) {
4273 			int func = BP_FUNC(bp);
4274 
4275 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4276 			bnx2x_read_mf_cfg(bp);
4277 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4278 					func_mf_config[BP_ABS_FUNC(bp)].config);
4279 			val = SHMEM_RD(bp,
4280 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4281 
4282 			if (val & (DRV_STATUS_DCC_EVENT_MASK |
4283 				   DRV_STATUS_OEM_EVENT_MASK))
4284 				bnx2x_oem_event(bp,
4285 					(val & (DRV_STATUS_DCC_EVENT_MASK |
4286 						DRV_STATUS_OEM_EVENT_MASK)));
4287 
4288 			if (val & DRV_STATUS_SET_MF_BW)
4289 				bnx2x_set_mf_bw(bp);
4290 
4291 			if (val & DRV_STATUS_DRV_INFO_REQ)
4292 				bnx2x_handle_drv_info_req(bp);
4293 
4294 			if (val & DRV_STATUS_VF_DISABLED)
4295 				bnx2x_schedule_iov_task(bp,
4296 							BNX2X_IOV_HANDLE_FLR);
4297 
4298 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4299 				bnx2x_pmf_update(bp);
4300 
4301 			if (bp->port.pmf &&
4302 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4303 				bp->dcbx_enabled > 0)
4304 				/* start dcbx state machine */
4305 				bnx2x_dcbx_set_params(bp,
4306 					BNX2X_DCBX_STATE_NEG_RECEIVED);
4307 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
4308 				bnx2x_handle_afex_cmd(bp,
4309 					val & DRV_STATUS_AFEX_EVENT_MASK);
4310 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4311 				bnx2x_handle_eee_event(bp);
4312 
4313 			if (val & DRV_STATUS_OEM_UPDATE_SVID)
4314 				bnx2x_schedule_sp_rtnl(bp,
4315 					BNX2X_SP_RTNL_UPDATE_SVID, 0);
4316 
4317 			if (bp->link_vars.periodic_flags &
4318 			    PERIODIC_FLAGS_LINK_EVENT) {
4319 				/*  sync with link */
4320 				bnx2x_acquire_phy_lock(bp);
4321 				bp->link_vars.periodic_flags &=
4322 					~PERIODIC_FLAGS_LINK_EVENT;
4323 				bnx2x_release_phy_lock(bp);
4324 				if (IS_MF(bp))
4325 					bnx2x_link_sync_notify(bp);
4326 				bnx2x_link_report(bp);
4327 			}
4328 			/* Always call it here: bnx2x_link_report() will
4329 			 * prevent the link indication duplication.
4330 			 */
4331 			bnx2x__link_status_update(bp);
4332 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4333 
4334 			BNX2X_ERR("MC assert!\n");
4335 			bnx2x_mc_assert(bp);
4336 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4337 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4338 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4339 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4340 			bnx2x_panic();
4341 
4342 		} else if (attn & BNX2X_MCP_ASSERT) {
4343 
4344 			BNX2X_ERR("MCP assert!\n");
4345 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4346 			bnx2x_fw_dump(bp);
4347 
4348 		} else
4349 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4350 	}
4351 
4352 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4353 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4354 		if (attn & BNX2X_GRC_TIMEOUT) {
4355 			val = CHIP_IS_E1(bp) ? 0 :
4356 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4357 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4358 		}
4359 		if (attn & BNX2X_GRC_RSV) {
4360 			val = CHIP_IS_E1(bp) ? 0 :
4361 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4362 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4363 		}
4364 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4365 	}
4366 }
4367 
4368 /*
4369  * Bits map:
4370  * 0-7   - Engine0 load counter.
4371  * 8-15  - Engine1 load counter.
4372  * 16    - Engine0 RESET_IN_PROGRESS bit.
4373  * 17    - Engine1 RESET_IN_PROGRESS bit.
4374  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4375  *         on the engine
4376  * 19    - Engine1 ONE_IS_LOADED.
4377  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4378  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4379  *         just the one belonging to its engine).
4380  *
4381  */
4382 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4383 
4384 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4385 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4386 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4387 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4388 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4389 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4390 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
4391 
4392 /*
4393  * Set the GLOBAL_RESET bit.
4394  *
4395  * Should be run under rtnl lock
4396  */
4397 void bnx2x_set_reset_global(struct bnx2x *bp)
4398 {
4399 	u32 val;
4400 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4401 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4402 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4403 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4404 }
4405 
4406 /*
4407  * Clear the GLOBAL_RESET bit.
4408  *
4409  * Should be run under rtnl lock
4410  */
4411 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4412 {
4413 	u32 val;
4414 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4415 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4416 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4417 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4418 }
4419 
4420 /*
4421  * Checks the GLOBAL_RESET bit.
4422  *
4423  * should be run under rtnl lock
4424  */
4425 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4426 {
4427 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4428 
4429 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4430 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4431 }
4432 
4433 /*
4434  * Clear RESET_IN_PROGRESS bit for the current engine.
4435  *
4436  * Should be run under rtnl lock
4437  */
4438 static void bnx2x_set_reset_done(struct bnx2x *bp)
4439 {
4440 	u32 val;
4441 	u32 bit = BP_PATH(bp) ?
4442 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4443 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4444 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4445 
4446 	/* Clear the bit */
4447 	val &= ~bit;
4448 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4449 
4450 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4451 }
4452 
4453 /*
4454  * Set RESET_IN_PROGRESS for the current engine.
4455  *
4456  * should be run under rtnl lock
4457  */
4458 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4459 {
4460 	u32 val;
4461 	u32 bit = BP_PATH(bp) ?
4462 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4463 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4464 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4465 
4466 	/* Set the bit */
4467 	val |= bit;
4468 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4469 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4470 }
4471 
4472 /*
4473  * Checks the RESET_IN_PROGRESS bit for the given engine.
4474  * should be run under rtnl lock
4475  */
4476 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4477 {
4478 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4479 	u32 bit = engine ?
4480 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4481 
4482 	/* return false if bit is set */
4483 	return (val & bit) ? false : true;
4484 }
4485 
4486 /*
4487  * set pf load for the current pf.
4488  *
4489  * should be run under rtnl lock
4490  */
4491 void bnx2x_set_pf_load(struct bnx2x *bp)
4492 {
4493 	u32 val1, val;
4494 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4495 			     BNX2X_PATH0_LOAD_CNT_MASK;
4496 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4497 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4498 
4499 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4500 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4501 
4502 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4503 
4504 	/* get the current counter value */
4505 	val1 = (val & mask) >> shift;
4506 
4507 	/* set bit of that PF */
4508 	val1 |= (1 << bp->pf_num);
4509 
4510 	/* clear the old value */
4511 	val &= ~mask;
4512 
4513 	/* set the new one */
4514 	val |= ((val1 << shift) & mask);
4515 
4516 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4517 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4518 }
4519 
4520 /**
4521  * bnx2x_clear_pf_load - clear pf load mark
4522  *
4523  * @bp:		driver handle
4524  *
4525  * Should be run under rtnl lock.
4526  * Decrements the load counter for the current engine. Returns
4527  * whether other functions are still loaded
4528  */
4529 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4530 {
4531 	u32 val1, val;
4532 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4533 			     BNX2X_PATH0_LOAD_CNT_MASK;
4534 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4535 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4536 
4537 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4538 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4539 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4540 
4541 	/* get the current counter value */
4542 	val1 = (val & mask) >> shift;
4543 
4544 	/* clear bit of that PF */
4545 	val1 &= ~(1 << bp->pf_num);
4546 
4547 	/* clear the old value */
4548 	val &= ~mask;
4549 
4550 	/* set the new one */
4551 	val |= ((val1 << shift) & mask);
4552 
4553 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4554 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4555 	return val1 != 0;
4556 }
4557 
4558 /*
4559  * Read the load status for the current engine.
4560  *
4561  * should be run under rtnl lock
4562  */
4563 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4564 {
4565 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4566 			     BNX2X_PATH0_LOAD_CNT_MASK);
4567 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4568 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4569 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4570 
4571 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4572 
4573 	val = (val & mask) >> shift;
4574 
4575 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4576 	   engine, val);
4577 
4578 	return val != 0;
4579 }
4580 
4581 static void _print_parity(struct bnx2x *bp, u32 reg)
4582 {
4583 	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4584 }
4585 
4586 static void _print_next_block(int idx, const char *blk)
4587 {
4588 	pr_cont("%s%s", idx ? ", " : "", blk);
4589 }
4590 
4591 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4592 					    int *par_num, bool print)
4593 {
4594 	u32 cur_bit;
4595 	bool res;
4596 	int i;
4597 
4598 	res = false;
4599 
4600 	for (i = 0; sig; i++) {
4601 		cur_bit = (0x1UL << i);
4602 		if (sig & cur_bit) {
4603 			res |= true; /* Each bit is real error! */
4604 
4605 			if (print) {
4606 				switch (cur_bit) {
4607 				case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4608 					_print_next_block((*par_num)++, "BRB");
4609 					_print_parity(bp,
4610 						      BRB1_REG_BRB1_PRTY_STS);
4611 					break;
4612 				case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4613 					_print_next_block((*par_num)++,
4614 							  "PARSER");
4615 					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4616 					break;
4617 				case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4618 					_print_next_block((*par_num)++, "TSDM");
4619 					_print_parity(bp,
4620 						      TSDM_REG_TSDM_PRTY_STS);
4621 					break;
4622 				case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4623 					_print_next_block((*par_num)++,
4624 							  "SEARCHER");
4625 					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4626 					break;
4627 				case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4628 					_print_next_block((*par_num)++, "TCM");
4629 					_print_parity(bp, TCM_REG_TCM_PRTY_STS);
4630 					break;
4631 				case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4632 					_print_next_block((*par_num)++,
4633 							  "TSEMI");
4634 					_print_parity(bp,
4635 						      TSEM_REG_TSEM_PRTY_STS_0);
4636 					_print_parity(bp,
4637 						      TSEM_REG_TSEM_PRTY_STS_1);
4638 					break;
4639 				case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4640 					_print_next_block((*par_num)++, "XPB");
4641 					_print_parity(bp, GRCBASE_XPB +
4642 							  PB_REG_PB_PRTY_STS);
4643 					break;
4644 				}
4645 			}
4646 
4647 			/* Clear the bit */
4648 			sig &= ~cur_bit;
4649 		}
4650 	}
4651 
4652 	return res;
4653 }
4654 
4655 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4656 					    int *par_num, bool *global,
4657 					    bool print)
4658 {
4659 	u32 cur_bit;
4660 	bool res;
4661 	int i;
4662 
4663 	res = false;
4664 
4665 	for (i = 0; sig; i++) {
4666 		cur_bit = (0x1UL << i);
4667 		if (sig & cur_bit) {
4668 			res |= true; /* Each bit is real error! */
4669 			switch (cur_bit) {
4670 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4671 				if (print) {
4672 					_print_next_block((*par_num)++, "PBF");
4673 					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4674 				}
4675 				break;
4676 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4677 				if (print) {
4678 					_print_next_block((*par_num)++, "QM");
4679 					_print_parity(bp, QM_REG_QM_PRTY_STS);
4680 				}
4681 				break;
4682 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4683 				if (print) {
4684 					_print_next_block((*par_num)++, "TM");
4685 					_print_parity(bp, TM_REG_TM_PRTY_STS);
4686 				}
4687 				break;
4688 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4689 				if (print) {
4690 					_print_next_block((*par_num)++, "XSDM");
4691 					_print_parity(bp,
4692 						      XSDM_REG_XSDM_PRTY_STS);
4693 				}
4694 				break;
4695 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4696 				if (print) {
4697 					_print_next_block((*par_num)++, "XCM");
4698 					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4699 				}
4700 				break;
4701 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4702 				if (print) {
4703 					_print_next_block((*par_num)++,
4704 							  "XSEMI");
4705 					_print_parity(bp,
4706 						      XSEM_REG_XSEM_PRTY_STS_0);
4707 					_print_parity(bp,
4708 						      XSEM_REG_XSEM_PRTY_STS_1);
4709 				}
4710 				break;
4711 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4712 				if (print) {
4713 					_print_next_block((*par_num)++,
4714 							  "DOORBELLQ");
4715 					_print_parity(bp,
4716 						      DORQ_REG_DORQ_PRTY_STS);
4717 				}
4718 				break;
4719 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4720 				if (print) {
4721 					_print_next_block((*par_num)++, "NIG");
4722 					if (CHIP_IS_E1x(bp)) {
4723 						_print_parity(bp,
4724 							NIG_REG_NIG_PRTY_STS);
4725 					} else {
4726 						_print_parity(bp,
4727 							NIG_REG_NIG_PRTY_STS_0);
4728 						_print_parity(bp,
4729 							NIG_REG_NIG_PRTY_STS_1);
4730 					}
4731 				}
4732 				break;
4733 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4734 				if (print)
4735 					_print_next_block((*par_num)++,
4736 							  "VAUX PCI CORE");
4737 				*global = true;
4738 				break;
4739 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4740 				if (print) {
4741 					_print_next_block((*par_num)++,
4742 							  "DEBUG");
4743 					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4744 				}
4745 				break;
4746 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4747 				if (print) {
4748 					_print_next_block((*par_num)++, "USDM");
4749 					_print_parity(bp,
4750 						      USDM_REG_USDM_PRTY_STS);
4751 				}
4752 				break;
4753 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4754 				if (print) {
4755 					_print_next_block((*par_num)++, "UCM");
4756 					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4757 				}
4758 				break;
4759 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4760 				if (print) {
4761 					_print_next_block((*par_num)++,
4762 							  "USEMI");
4763 					_print_parity(bp,
4764 						      USEM_REG_USEM_PRTY_STS_0);
4765 					_print_parity(bp,
4766 						      USEM_REG_USEM_PRTY_STS_1);
4767 				}
4768 				break;
4769 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4770 				if (print) {
4771 					_print_next_block((*par_num)++, "UPB");
4772 					_print_parity(bp, GRCBASE_UPB +
4773 							  PB_REG_PB_PRTY_STS);
4774 				}
4775 				break;
4776 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4777 				if (print) {
4778 					_print_next_block((*par_num)++, "CSDM");
4779 					_print_parity(bp,
4780 						      CSDM_REG_CSDM_PRTY_STS);
4781 				}
4782 				break;
4783 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4784 				if (print) {
4785 					_print_next_block((*par_num)++, "CCM");
4786 					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4787 				}
4788 				break;
4789 			}
4790 
4791 			/* Clear the bit */
4792 			sig &= ~cur_bit;
4793 		}
4794 	}
4795 
4796 	return res;
4797 }
4798 
4799 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4800 					    int *par_num, bool print)
4801 {
4802 	u32 cur_bit;
4803 	bool res;
4804 	int i;
4805 
4806 	res = false;
4807 
4808 	for (i = 0; sig; i++) {
4809 		cur_bit = (0x1UL << i);
4810 		if (sig & cur_bit) {
4811 			res = true; /* Each bit is real error! */
4812 			if (print) {
4813 				switch (cur_bit) {
4814 				case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4815 					_print_next_block((*par_num)++,
4816 							  "CSEMI");
4817 					_print_parity(bp,
4818 						      CSEM_REG_CSEM_PRTY_STS_0);
4819 					_print_parity(bp,
4820 						      CSEM_REG_CSEM_PRTY_STS_1);
4821 					break;
4822 				case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4823 					_print_next_block((*par_num)++, "PXP");
4824 					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4825 					_print_parity(bp,
4826 						      PXP2_REG_PXP2_PRTY_STS_0);
4827 					_print_parity(bp,
4828 						      PXP2_REG_PXP2_PRTY_STS_1);
4829 					break;
4830 				case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4831 					_print_next_block((*par_num)++,
4832 							  "PXPPCICLOCKCLIENT");
4833 					break;
4834 				case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4835 					_print_next_block((*par_num)++, "CFC");
4836 					_print_parity(bp,
4837 						      CFC_REG_CFC_PRTY_STS);
4838 					break;
4839 				case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4840 					_print_next_block((*par_num)++, "CDU");
4841 					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4842 					break;
4843 				case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4844 					_print_next_block((*par_num)++, "DMAE");
4845 					_print_parity(bp,
4846 						      DMAE_REG_DMAE_PRTY_STS);
4847 					break;
4848 				case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4849 					_print_next_block((*par_num)++, "IGU");
4850 					if (CHIP_IS_E1x(bp))
4851 						_print_parity(bp,
4852 							HC_REG_HC_PRTY_STS);
4853 					else
4854 						_print_parity(bp,
4855 							IGU_REG_IGU_PRTY_STS);
4856 					break;
4857 				case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4858 					_print_next_block((*par_num)++, "MISC");
4859 					_print_parity(bp,
4860 						      MISC_REG_MISC_PRTY_STS);
4861 					break;
4862 				}
4863 			}
4864 
4865 			/* Clear the bit */
4866 			sig &= ~cur_bit;
4867 		}
4868 	}
4869 
4870 	return res;
4871 }
4872 
4873 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4874 					    int *par_num, bool *global,
4875 					    bool print)
4876 {
4877 	bool res = false;
4878 	u32 cur_bit;
4879 	int i;
4880 
4881 	for (i = 0; sig; i++) {
4882 		cur_bit = (0x1UL << i);
4883 		if (sig & cur_bit) {
4884 			switch (cur_bit) {
4885 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4886 				if (print)
4887 					_print_next_block((*par_num)++,
4888 							  "MCP ROM");
4889 				*global = true;
4890 				res = true;
4891 				break;
4892 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4893 				if (print)
4894 					_print_next_block((*par_num)++,
4895 							  "MCP UMP RX");
4896 				*global = true;
4897 				res = true;
4898 				break;
4899 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4900 				if (print)
4901 					_print_next_block((*par_num)++,
4902 							  "MCP UMP TX");
4903 				*global = true;
4904 				res = true;
4905 				break;
4906 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4907 				(*par_num)++;
4908 				/* clear latched SCPAD PATIRY from MCP */
4909 				REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4910 				       1UL << 10);
4911 				break;
4912 			}
4913 
4914 			/* Clear the bit */
4915 			sig &= ~cur_bit;
4916 		}
4917 	}
4918 
4919 	return res;
4920 }
4921 
4922 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4923 					    int *par_num, bool print)
4924 {
4925 	u32 cur_bit;
4926 	bool res;
4927 	int i;
4928 
4929 	res = false;
4930 
4931 	for (i = 0; sig; i++) {
4932 		cur_bit = (0x1UL << i);
4933 		if (sig & cur_bit) {
4934 			res = true; /* Each bit is real error! */
4935 			if (print) {
4936 				switch (cur_bit) {
4937 				case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4938 					_print_next_block((*par_num)++,
4939 							  "PGLUE_B");
4940 					_print_parity(bp,
4941 						      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4942 					break;
4943 				case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4944 					_print_next_block((*par_num)++, "ATC");
4945 					_print_parity(bp,
4946 						      ATC_REG_ATC_PRTY_STS);
4947 					break;
4948 				}
4949 			}
4950 			/* Clear the bit */
4951 			sig &= ~cur_bit;
4952 		}
4953 	}
4954 
4955 	return res;
4956 }
4957 
4958 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4959 			      u32 *sig)
4960 {
4961 	bool res = false;
4962 
4963 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4964 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4965 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4966 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4967 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4968 		int par_num = 0;
4969 
4970 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4971 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4972 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4973 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4974 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4975 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4976 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4977 		if (print) {
4978 			if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4979 			     (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4980 			     (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4981 			     (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4982 			     (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4983 				netdev_err(bp->dev,
4984 					   "Parity errors detected in blocks: ");
4985 			} else {
4986 				print = false;
4987 			}
4988 		}
4989 		res |= bnx2x_check_blocks_with_parity0(bp,
4990 			sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4991 		res |= bnx2x_check_blocks_with_parity1(bp,
4992 			sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4993 		res |= bnx2x_check_blocks_with_parity2(bp,
4994 			sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4995 		res |= bnx2x_check_blocks_with_parity3(bp,
4996 			sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4997 		res |= bnx2x_check_blocks_with_parity4(bp,
4998 			sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4999 
5000 		if (print)
5001 			pr_cont("\n");
5002 	}
5003 
5004 	return res;
5005 }
5006 
5007 /**
5008  * bnx2x_chk_parity_attn - checks for parity attentions.
5009  *
5010  * @bp:		driver handle
5011  * @global:	true if there was a global attention
5012  * @print:	show parity attention in syslog
5013  */
5014 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5015 {
5016 	struct attn_route attn = { {0} };
5017 	int port = BP_PORT(bp);
5018 
5019 	attn.sig[0] = REG_RD(bp,
5020 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5021 			     port*4);
5022 	attn.sig[1] = REG_RD(bp,
5023 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5024 			     port*4);
5025 	attn.sig[2] = REG_RD(bp,
5026 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5027 			     port*4);
5028 	attn.sig[3] = REG_RD(bp,
5029 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5030 			     port*4);
5031 	/* Since MCP attentions can't be disabled inside the block, we need to
5032 	 * read AEU registers to see whether they're currently disabled
5033 	 */
5034 	attn.sig[3] &= ((REG_RD(bp,
5035 				!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5036 				      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5037 			 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5038 			~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5039 
5040 	if (!CHIP_IS_E1x(bp))
5041 		attn.sig[4] = REG_RD(bp,
5042 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5043 				     port*4);
5044 
5045 	return bnx2x_parity_attn(bp, global, print, attn.sig);
5046 }
5047 
5048 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5049 {
5050 	u32 val;
5051 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5052 
5053 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5054 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5055 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5056 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5057 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5058 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5059 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5060 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5061 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5062 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5063 		if (val &
5064 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5065 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5066 		if (val &
5067 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5068 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5069 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5070 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5071 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5072 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5073 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5074 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5075 	}
5076 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5077 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5078 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
5079 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5080 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5081 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5082 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5083 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5084 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5085 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5086 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5087 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5088 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5089 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5090 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5091 	}
5092 
5093 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5094 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5095 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5096 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5097 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5098 	}
5099 }
5100 
5101 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5102 {
5103 	struct attn_route attn, *group_mask;
5104 	int port = BP_PORT(bp);
5105 	int index;
5106 	u32 reg_addr;
5107 	u32 val;
5108 	u32 aeu_mask;
5109 	bool global = false;
5110 
5111 	/* need to take HW lock because MCP or other port might also
5112 	   try to handle this event */
5113 	bnx2x_acquire_alr(bp);
5114 
5115 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
5116 #ifndef BNX2X_STOP_ON_ERROR
5117 		bp->recovery_state = BNX2X_RECOVERY_INIT;
5118 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
5119 		/* Disable HW interrupts */
5120 		bnx2x_int_disable(bp);
5121 		/* In case of parity errors don't handle attentions so that
5122 		 * other function would "see" parity errors.
5123 		 */
5124 #else
5125 		bnx2x_panic();
5126 #endif
5127 		bnx2x_release_alr(bp);
5128 		return;
5129 	}
5130 
5131 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5132 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5133 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5134 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5135 	if (!CHIP_IS_E1x(bp))
5136 		attn.sig[4] =
5137 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5138 	else
5139 		attn.sig[4] = 0;
5140 
5141 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5142 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5143 
5144 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5145 		if (deasserted & (1 << index)) {
5146 			group_mask = &bp->attn_group[index];
5147 
5148 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5149 			   index,
5150 			   group_mask->sig[0], group_mask->sig[1],
5151 			   group_mask->sig[2], group_mask->sig[3],
5152 			   group_mask->sig[4]);
5153 
5154 			bnx2x_attn_int_deasserted4(bp,
5155 					attn.sig[4] & group_mask->sig[4]);
5156 			bnx2x_attn_int_deasserted3(bp,
5157 					attn.sig[3] & group_mask->sig[3]);
5158 			bnx2x_attn_int_deasserted1(bp,
5159 					attn.sig[1] & group_mask->sig[1]);
5160 			bnx2x_attn_int_deasserted2(bp,
5161 					attn.sig[2] & group_mask->sig[2]);
5162 			bnx2x_attn_int_deasserted0(bp,
5163 					attn.sig[0] & group_mask->sig[0]);
5164 		}
5165 	}
5166 
5167 	bnx2x_release_alr(bp);
5168 
5169 	if (bp->common.int_block == INT_BLOCK_HC)
5170 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
5171 			    COMMAND_REG_ATTN_BITS_CLR);
5172 	else
5173 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5174 
5175 	val = ~deasserted;
5176 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5177 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5178 	REG_WR(bp, reg_addr, val);
5179 
5180 	if (~bp->attn_state & deasserted)
5181 		BNX2X_ERR("IGU ERROR\n");
5182 
5183 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5184 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
5185 
5186 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5187 	aeu_mask = REG_RD(bp, reg_addr);
5188 
5189 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5190 	   aeu_mask, deasserted);
5191 	aeu_mask |= (deasserted & 0x3ff);
5192 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5193 
5194 	REG_WR(bp, reg_addr, aeu_mask);
5195 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5196 
5197 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5198 	bp->attn_state &= ~deasserted;
5199 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5200 }
5201 
5202 static void bnx2x_attn_int(struct bnx2x *bp)
5203 {
5204 	/* read local copy of bits */
5205 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5206 								attn_bits);
5207 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5208 								attn_bits_ack);
5209 	u32 attn_state = bp->attn_state;
5210 
5211 	/* look for changed bits */
5212 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5213 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5214 
5215 	DP(NETIF_MSG_HW,
5216 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5217 	   attn_bits, attn_ack, asserted, deasserted);
5218 
5219 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5220 		BNX2X_ERR("BAD attention state\n");
5221 
5222 	/* handle bits that were raised */
5223 	if (asserted)
5224 		bnx2x_attn_int_asserted(bp, asserted);
5225 
5226 	if (deasserted)
5227 		bnx2x_attn_int_deasserted(bp, deasserted);
5228 }
5229 
5230 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5231 		      u16 index, u8 op, u8 update)
5232 {
5233 	u32 igu_addr = bp->igu_base_addr;
5234 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5235 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5236 			     igu_addr);
5237 }
5238 
5239 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5240 {
5241 	/* No memory barriers */
5242 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5243 }
5244 
5245 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5246 				      union event_ring_elem *elem)
5247 {
5248 	u8 err = elem->message.error;
5249 
5250 	if (!bp->cnic_eth_dev.starting_cid  ||
5251 	    (cid < bp->cnic_eth_dev.starting_cid &&
5252 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
5253 		return 1;
5254 
5255 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5256 
5257 	if (unlikely(err)) {
5258 
5259 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5260 			  cid);
5261 		bnx2x_panic_dump(bp, false);
5262 	}
5263 	bnx2x_cnic_cfc_comp(bp, cid, err);
5264 	return 0;
5265 }
5266 
5267 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5268 {
5269 	struct bnx2x_mcast_ramrod_params rparam;
5270 	int rc;
5271 
5272 	memset(&rparam, 0, sizeof(rparam));
5273 
5274 	rparam.mcast_obj = &bp->mcast_obj;
5275 
5276 	netif_addr_lock_bh(bp->dev);
5277 
5278 	/* Clear pending state for the last command */
5279 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5280 
5281 	/* If there are pending mcast commands - send them */
5282 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5283 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5284 		if (rc < 0)
5285 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5286 				  rc);
5287 	}
5288 
5289 	netif_addr_unlock_bh(bp->dev);
5290 }
5291 
5292 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5293 					    union event_ring_elem *elem)
5294 {
5295 	unsigned long ramrod_flags = 0;
5296 	int rc = 0;
5297 	u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5298 	u32 cid = echo & BNX2X_SWCID_MASK;
5299 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5300 
5301 	/* Always push next commands out, don't wait here */
5302 	__set_bit(RAMROD_CONT, &ramrod_flags);
5303 
5304 	switch (echo >> BNX2X_SWCID_SHIFT) {
5305 	case BNX2X_FILTER_MAC_PENDING:
5306 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5307 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5308 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5309 		else
5310 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5311 
5312 		break;
5313 	case BNX2X_FILTER_VLAN_PENDING:
5314 		DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5315 		vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5316 		break;
5317 	case BNX2X_FILTER_MCAST_PENDING:
5318 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5319 		/* This is only relevant for 57710 where multicast MACs are
5320 		 * configured as unicast MACs using the same ramrod.
5321 		 */
5322 		bnx2x_handle_mcast_eqe(bp);
5323 		return;
5324 	default:
5325 		BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5326 		return;
5327 	}
5328 
5329 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5330 
5331 	if (rc < 0)
5332 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5333 	else if (rc > 0)
5334 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5335 }
5336 
5337 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5338 
5339 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5340 {
5341 	netif_addr_lock_bh(bp->dev);
5342 
5343 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5344 
5345 	/* Send rx_mode command again if was requested */
5346 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5347 		bnx2x_set_storm_rx_mode(bp);
5348 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5349 				    &bp->sp_state))
5350 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5351 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5352 				    &bp->sp_state))
5353 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5354 
5355 	netif_addr_unlock_bh(bp->dev);
5356 }
5357 
5358 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5359 					      union event_ring_elem *elem)
5360 {
5361 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5362 		DP(BNX2X_MSG_SP,
5363 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5364 		   elem->message.data.vif_list_event.func_bit_map);
5365 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5366 			elem->message.data.vif_list_event.func_bit_map);
5367 	} else if (elem->message.data.vif_list_event.echo ==
5368 		   VIF_LIST_RULE_SET) {
5369 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5370 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5371 	}
5372 }
5373 
5374 /* called with rtnl_lock */
5375 static void bnx2x_after_function_update(struct bnx2x *bp)
5376 {
5377 	int q, rc;
5378 	struct bnx2x_fastpath *fp;
5379 	struct bnx2x_queue_state_params queue_params = {NULL};
5380 	struct bnx2x_queue_update_params *q_update_params =
5381 		&queue_params.params.update;
5382 
5383 	/* Send Q update command with afex vlan removal values for all Qs */
5384 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5385 
5386 	/* set silent vlan removal values according to vlan mode */
5387 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5388 		  &q_update_params->update_flags);
5389 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5390 		  &q_update_params->update_flags);
5391 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5392 
5393 	/* in access mode mark mask and value are 0 to strip all vlans */
5394 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5395 		q_update_params->silent_removal_value = 0;
5396 		q_update_params->silent_removal_mask = 0;
5397 	} else {
5398 		q_update_params->silent_removal_value =
5399 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5400 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5401 	}
5402 
5403 	for_each_eth_queue(bp, q) {
5404 		/* Set the appropriate Queue object */
5405 		fp = &bp->fp[q];
5406 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5407 
5408 		/* send the ramrod */
5409 		rc = bnx2x_queue_state_change(bp, &queue_params);
5410 		if (rc < 0)
5411 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5412 				  q);
5413 	}
5414 
5415 	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5416 		fp = &bp->fp[FCOE_IDX(bp)];
5417 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5418 
5419 		/* clear pending completion bit */
5420 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5421 
5422 		/* mark latest Q bit */
5423 		smp_mb__before_atomic();
5424 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5425 		smp_mb__after_atomic();
5426 
5427 		/* send Q update ramrod for FCoE Q */
5428 		rc = bnx2x_queue_state_change(bp, &queue_params);
5429 		if (rc < 0)
5430 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5431 				  q);
5432 	} else {
5433 		/* If no FCoE ring - ACK MCP now */
5434 		bnx2x_link_report(bp);
5435 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5436 	}
5437 }
5438 
5439 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5440 	struct bnx2x *bp, u32 cid)
5441 {
5442 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5443 
5444 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5445 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5446 	else
5447 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5448 }
5449 
5450 static void bnx2x_eq_int(struct bnx2x *bp)
5451 {
5452 	u16 hw_cons, sw_cons, sw_prod;
5453 	union event_ring_elem *elem;
5454 	u8 echo;
5455 	u32 cid;
5456 	u8 opcode;
5457 	int rc, spqe_cnt = 0;
5458 	struct bnx2x_queue_sp_obj *q_obj;
5459 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5460 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5461 
5462 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5463 
5464 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5465 	 * when we get the next-page we need to adjust so the loop
5466 	 * condition below will be met. The next element is the size of a
5467 	 * regular element and hence incrementing by 1
5468 	 */
5469 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5470 		hw_cons++;
5471 
5472 	/* This function may never run in parallel with itself for a
5473 	 * specific bp, thus there is no need in "paired" read memory
5474 	 * barrier here.
5475 	 */
5476 	sw_cons = bp->eq_cons;
5477 	sw_prod = bp->eq_prod;
5478 
5479 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5480 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5481 
5482 	for (; sw_cons != hw_cons;
5483 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5484 
5485 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5486 
5487 		rc = bnx2x_iov_eq_sp_event(bp, elem);
5488 		if (!rc) {
5489 			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5490 			   rc);
5491 			goto next_spqe;
5492 		}
5493 
5494 		opcode = elem->message.opcode;
5495 
5496 		/* handle eq element */
5497 		switch (opcode) {
5498 		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5499 			bnx2x_vf_mbx_schedule(bp,
5500 					      &elem->message.data.vf_pf_event);
5501 			continue;
5502 
5503 		case EVENT_RING_OPCODE_STAT_QUERY:
5504 			DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5505 			       "got statistics comp event %d\n",
5506 			       bp->stats_comp++);
5507 			/* nothing to do with stats comp */
5508 			goto next_spqe;
5509 
5510 		case EVENT_RING_OPCODE_CFC_DEL:
5511 			/* handle according to cid range */
5512 			/*
5513 			 * we may want to verify here that the bp state is
5514 			 * HALTING
5515 			 */
5516 
5517 			/* elem CID originates from FW; actually LE */
5518 			cid = SW_CID(elem->message.data.cfc_del_event.cid);
5519 
5520 			DP(BNX2X_MSG_SP,
5521 			   "got delete ramrod for MULTI[%d]\n", cid);
5522 
5523 			if (CNIC_LOADED(bp) &&
5524 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5525 				goto next_spqe;
5526 
5527 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5528 
5529 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5530 				break;
5531 
5532 			goto next_spqe;
5533 
5534 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5535 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5536 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5537 			if (f_obj->complete_cmd(bp, f_obj,
5538 						BNX2X_F_CMD_TX_STOP))
5539 				break;
5540 			goto next_spqe;
5541 
5542 		case EVENT_RING_OPCODE_START_TRAFFIC:
5543 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5544 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5545 			if (f_obj->complete_cmd(bp, f_obj,
5546 						BNX2X_F_CMD_TX_START))
5547 				break;
5548 			goto next_spqe;
5549 
5550 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5551 			echo = elem->message.data.function_update_event.echo;
5552 			if (echo == SWITCH_UPDATE) {
5553 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5554 				   "got FUNC_SWITCH_UPDATE ramrod\n");
5555 				if (f_obj->complete_cmd(
5556 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5557 					break;
5558 
5559 			} else {
5560 				int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5561 
5562 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5563 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5564 				f_obj->complete_cmd(bp, f_obj,
5565 						    BNX2X_F_CMD_AFEX_UPDATE);
5566 
5567 				/* We will perform the Queues update from
5568 				 * sp_rtnl task as all Queue SP operations
5569 				 * should run under rtnl_lock.
5570 				 */
5571 				bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5572 			}
5573 
5574 			goto next_spqe;
5575 
5576 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5577 			f_obj->complete_cmd(bp, f_obj,
5578 					    BNX2X_F_CMD_AFEX_VIFLISTS);
5579 			bnx2x_after_afex_vif_lists(bp, elem);
5580 			goto next_spqe;
5581 		case EVENT_RING_OPCODE_FUNCTION_START:
5582 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5583 			   "got FUNC_START ramrod\n");
5584 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5585 				break;
5586 
5587 			goto next_spqe;
5588 
5589 		case EVENT_RING_OPCODE_FUNCTION_STOP:
5590 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5591 			   "got FUNC_STOP ramrod\n");
5592 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5593 				break;
5594 
5595 			goto next_spqe;
5596 
5597 		case EVENT_RING_OPCODE_SET_TIMESYNC:
5598 			DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5599 			   "got set_timesync ramrod completion\n");
5600 			if (f_obj->complete_cmd(bp, f_obj,
5601 						BNX2X_F_CMD_SET_TIMESYNC))
5602 				break;
5603 			goto next_spqe;
5604 		}
5605 
5606 		switch (opcode | bp->state) {
5607 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5608 		      BNX2X_STATE_OPEN):
5609 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5610 		      BNX2X_STATE_OPENING_WAIT4_PORT):
5611 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5612 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5613 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5614 			   SW_CID(elem->message.data.eth_event.echo));
5615 			rss_raw->clear_pending(rss_raw);
5616 			break;
5617 
5618 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5619 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5620 		case (EVENT_RING_OPCODE_SET_MAC |
5621 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5622 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5623 		      BNX2X_STATE_OPEN):
5624 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5625 		      BNX2X_STATE_DIAG):
5626 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5627 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5628 			DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5629 			bnx2x_handle_classification_eqe(bp, elem);
5630 			break;
5631 
5632 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5633 		      BNX2X_STATE_OPEN):
5634 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5635 		      BNX2X_STATE_DIAG):
5636 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5637 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5638 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5639 			bnx2x_handle_mcast_eqe(bp);
5640 			break;
5641 
5642 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5643 		      BNX2X_STATE_OPEN):
5644 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5645 		      BNX2X_STATE_DIAG):
5646 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5647 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5648 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5649 			bnx2x_handle_rx_mode_eqe(bp);
5650 			break;
5651 		default:
5652 			/* unknown event log error and continue */
5653 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5654 				  elem->message.opcode, bp->state);
5655 		}
5656 next_spqe:
5657 		spqe_cnt++;
5658 	} /* for */
5659 
5660 	smp_mb__before_atomic();
5661 	atomic_add(spqe_cnt, &bp->eq_spq_left);
5662 
5663 	bp->eq_cons = sw_cons;
5664 	bp->eq_prod = sw_prod;
5665 	/* Make sure that above mem writes were issued towards the memory */
5666 	smp_wmb();
5667 
5668 	/* update producer */
5669 	bnx2x_update_eq_prod(bp, bp->eq_prod);
5670 }
5671 
5672 static void bnx2x_sp_task(struct work_struct *work)
5673 {
5674 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5675 
5676 	DP(BNX2X_MSG_SP, "sp task invoked\n");
5677 
5678 	/* make sure the atomic interrupt_occurred has been written */
5679 	smp_rmb();
5680 	if (atomic_read(&bp->interrupt_occurred)) {
5681 
5682 		/* what work needs to be performed? */
5683 		u16 status = bnx2x_update_dsb_idx(bp);
5684 
5685 		DP(BNX2X_MSG_SP, "status %x\n", status);
5686 		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5687 		atomic_set(&bp->interrupt_occurred, 0);
5688 
5689 		/* HW attentions */
5690 		if (status & BNX2X_DEF_SB_ATT_IDX) {
5691 			bnx2x_attn_int(bp);
5692 			status &= ~BNX2X_DEF_SB_ATT_IDX;
5693 		}
5694 
5695 		/* SP events: STAT_QUERY and others */
5696 		if (status & BNX2X_DEF_SB_IDX) {
5697 			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5698 
5699 			if (FCOE_INIT(bp) &&
5700 			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5701 				/* Prevent local bottom-halves from running as
5702 				 * we are going to change the local NAPI list.
5703 				 */
5704 				local_bh_disable();
5705 				napi_schedule(&bnx2x_fcoe(bp, napi));
5706 				local_bh_enable();
5707 			}
5708 
5709 			/* Handle EQ completions */
5710 			bnx2x_eq_int(bp);
5711 			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5712 				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5713 
5714 			status &= ~BNX2X_DEF_SB_IDX;
5715 		}
5716 
5717 		/* if status is non zero then perhaps something went wrong */
5718 		if (unlikely(status))
5719 			DP(BNX2X_MSG_SP,
5720 			   "got an unknown interrupt! (status 0x%x)\n", status);
5721 
5722 		/* ack status block only if something was actually handled */
5723 		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5724 			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5725 	}
5726 
5727 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5728 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5729 			       &bp->sp_state)) {
5730 		bnx2x_link_report(bp);
5731 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5732 	}
5733 }
5734 
5735 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5736 {
5737 	struct net_device *dev = dev_instance;
5738 	struct bnx2x *bp = netdev_priv(dev);
5739 
5740 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5741 		     IGU_INT_DISABLE, 0);
5742 
5743 #ifdef BNX2X_STOP_ON_ERROR
5744 	if (unlikely(bp->panic))
5745 		return IRQ_HANDLED;
5746 #endif
5747 
5748 	if (CNIC_LOADED(bp)) {
5749 		struct cnic_ops *c_ops;
5750 
5751 		rcu_read_lock();
5752 		c_ops = rcu_dereference(bp->cnic_ops);
5753 		if (c_ops)
5754 			c_ops->cnic_handler(bp->cnic_data, NULL);
5755 		rcu_read_unlock();
5756 	}
5757 
5758 	/* schedule sp task to perform default status block work, ack
5759 	 * attentions and enable interrupts.
5760 	 */
5761 	bnx2x_schedule_sp_task(bp);
5762 
5763 	return IRQ_HANDLED;
5764 }
5765 
5766 /* end of slow path */
5767 
5768 void bnx2x_drv_pulse(struct bnx2x *bp)
5769 {
5770 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5771 		 bp->fw_drv_pulse_wr_seq);
5772 }
5773 
5774 static void bnx2x_timer(struct timer_list *t)
5775 {
5776 	struct bnx2x *bp = from_timer(bp, t, timer);
5777 
5778 	if (!netif_running(bp->dev))
5779 		return;
5780 
5781 	if (IS_PF(bp) &&
5782 	    !BP_NOMCP(bp)) {
5783 		int mb_idx = BP_FW_MB_IDX(bp);
5784 		u16 drv_pulse;
5785 		u16 mcp_pulse;
5786 
5787 		++bp->fw_drv_pulse_wr_seq;
5788 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5789 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5790 		bnx2x_drv_pulse(bp);
5791 
5792 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5793 			     MCP_PULSE_SEQ_MASK);
5794 		/* The delta between driver pulse and mcp response
5795 		 * should not get too big. If the MFW is more than 5 pulses
5796 		 * behind, we should worry about it enough to generate an error
5797 		 * log.
5798 		 */
5799 		if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5800 			BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5801 				  drv_pulse, mcp_pulse);
5802 	}
5803 
5804 	if (bp->state == BNX2X_STATE_OPEN)
5805 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5806 
5807 	/* sample pf vf bulletin board for new posts from pf */
5808 	if (IS_VF(bp))
5809 		bnx2x_timer_sriov(bp);
5810 
5811 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5812 }
5813 
5814 /* end of Statistics */
5815 
5816 /* nic init */
5817 
5818 /*
5819  * nic init service functions
5820  */
5821 
5822 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5823 {
5824 	u32 i;
5825 	if (!(len%4) && !(addr%4))
5826 		for (i = 0; i < len; i += 4)
5827 			REG_WR(bp, addr + i, fill);
5828 	else
5829 		for (i = 0; i < len; i++)
5830 			REG_WR8(bp, addr + i, fill);
5831 }
5832 
5833 /* helper: writes FP SP data to FW - data_size in dwords */
5834 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5835 				int fw_sb_id,
5836 				u32 *sb_data_p,
5837 				u32 data_size)
5838 {
5839 	int index;
5840 	for (index = 0; index < data_size; index++)
5841 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5842 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5843 			sizeof(u32)*index,
5844 			*(sb_data_p + index));
5845 }
5846 
5847 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5848 {
5849 	u32 *sb_data_p;
5850 	u32 data_size = 0;
5851 	struct hc_status_block_data_e2 sb_data_e2;
5852 	struct hc_status_block_data_e1x sb_data_e1x;
5853 
5854 	/* disable the function first */
5855 	if (!CHIP_IS_E1x(bp)) {
5856 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5857 		sb_data_e2.common.state = SB_DISABLED;
5858 		sb_data_e2.common.p_func.vf_valid = false;
5859 		sb_data_p = (u32 *)&sb_data_e2;
5860 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5861 	} else {
5862 		memset(&sb_data_e1x, 0,
5863 		       sizeof(struct hc_status_block_data_e1x));
5864 		sb_data_e1x.common.state = SB_DISABLED;
5865 		sb_data_e1x.common.p_func.vf_valid = false;
5866 		sb_data_p = (u32 *)&sb_data_e1x;
5867 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5868 	}
5869 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5870 
5871 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5872 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5873 			CSTORM_STATUS_BLOCK_SIZE);
5874 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5875 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5876 			CSTORM_SYNC_BLOCK_SIZE);
5877 }
5878 
5879 /* helper:  writes SP SB data to FW */
5880 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5881 		struct hc_sp_status_block_data *sp_sb_data)
5882 {
5883 	int func = BP_FUNC(bp);
5884 	int i;
5885 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5886 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5887 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5888 			i*sizeof(u32),
5889 			*((u32 *)sp_sb_data + i));
5890 }
5891 
5892 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5893 {
5894 	int func = BP_FUNC(bp);
5895 	struct hc_sp_status_block_data sp_sb_data;
5896 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5897 
5898 	sp_sb_data.state = SB_DISABLED;
5899 	sp_sb_data.p_func.vf_valid = false;
5900 
5901 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5902 
5903 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5904 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5905 			CSTORM_SP_STATUS_BLOCK_SIZE);
5906 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5907 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5908 			CSTORM_SP_SYNC_BLOCK_SIZE);
5909 }
5910 
5911 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5912 					   int igu_sb_id, int igu_seg_id)
5913 {
5914 	hc_sm->igu_sb_id = igu_sb_id;
5915 	hc_sm->igu_seg_id = igu_seg_id;
5916 	hc_sm->timer_value = 0xFF;
5917 	hc_sm->time_to_expire = 0xFFFFFFFF;
5918 }
5919 
5920 /* allocates state machine ids. */
5921 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5922 {
5923 	/* zero out state machine indices */
5924 	/* rx indices */
5925 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5926 
5927 	/* tx indices */
5928 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5929 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5930 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5931 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5932 
5933 	/* map indices */
5934 	/* rx indices */
5935 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5936 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5937 
5938 	/* tx indices */
5939 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5940 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5941 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5942 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5943 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5944 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5945 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5946 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5947 }
5948 
5949 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5950 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5951 {
5952 	int igu_seg_id;
5953 
5954 	struct hc_status_block_data_e2 sb_data_e2;
5955 	struct hc_status_block_data_e1x sb_data_e1x;
5956 	struct hc_status_block_sm  *hc_sm_p;
5957 	int data_size;
5958 	u32 *sb_data_p;
5959 
5960 	if (CHIP_INT_MODE_IS_BC(bp))
5961 		igu_seg_id = HC_SEG_ACCESS_NORM;
5962 	else
5963 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5964 
5965 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5966 
5967 	if (!CHIP_IS_E1x(bp)) {
5968 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5969 		sb_data_e2.common.state = SB_ENABLED;
5970 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5971 		sb_data_e2.common.p_func.vf_id = vfid;
5972 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5973 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5974 		sb_data_e2.common.same_igu_sb_1b = true;
5975 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5976 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5977 		hc_sm_p = sb_data_e2.common.state_machine;
5978 		sb_data_p = (u32 *)&sb_data_e2;
5979 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5980 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5981 	} else {
5982 		memset(&sb_data_e1x, 0,
5983 		       sizeof(struct hc_status_block_data_e1x));
5984 		sb_data_e1x.common.state = SB_ENABLED;
5985 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5986 		sb_data_e1x.common.p_func.vf_id = 0xff;
5987 		sb_data_e1x.common.p_func.vf_valid = false;
5988 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5989 		sb_data_e1x.common.same_igu_sb_1b = true;
5990 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5991 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5992 		hc_sm_p = sb_data_e1x.common.state_machine;
5993 		sb_data_p = (u32 *)&sb_data_e1x;
5994 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5995 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5996 	}
5997 
5998 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5999 				       igu_sb_id, igu_seg_id);
6000 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
6001 				       igu_sb_id, igu_seg_id);
6002 
6003 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
6004 
6005 	/* write indices to HW - PCI guarantees endianity of regpairs */
6006 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
6007 }
6008 
6009 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6010 				     u16 tx_usec, u16 rx_usec)
6011 {
6012 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6013 				    false, rx_usec);
6014 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6015 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6016 				       tx_usec);
6017 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6018 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6019 				       tx_usec);
6020 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6021 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6022 				       tx_usec);
6023 }
6024 
6025 static void bnx2x_init_def_sb(struct bnx2x *bp)
6026 {
6027 	struct host_sp_status_block *def_sb = bp->def_status_blk;
6028 	dma_addr_t mapping = bp->def_status_blk_mapping;
6029 	int igu_sp_sb_index;
6030 	int igu_seg_id;
6031 	int port = BP_PORT(bp);
6032 	int func = BP_FUNC(bp);
6033 	int reg_offset, reg_offset_en5;
6034 	u64 section;
6035 	int index;
6036 	struct hc_sp_status_block_data sp_sb_data;
6037 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6038 
6039 	if (CHIP_INT_MODE_IS_BC(bp)) {
6040 		igu_sp_sb_index = DEF_SB_IGU_ID;
6041 		igu_seg_id = HC_SEG_ACCESS_DEF;
6042 	} else {
6043 		igu_sp_sb_index = bp->igu_dsb_id;
6044 		igu_seg_id = IGU_SEG_ACCESS_DEF;
6045 	}
6046 
6047 	/* ATTN */
6048 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6049 					    atten_status_block);
6050 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6051 
6052 	bp->attn_state = 0;
6053 
6054 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6055 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6056 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6057 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6058 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6059 		int sindex;
6060 		/* take care of sig[0]..sig[4] */
6061 		for (sindex = 0; sindex < 4; sindex++)
6062 			bp->attn_group[index].sig[sindex] =
6063 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6064 
6065 		if (!CHIP_IS_E1x(bp))
6066 			/*
6067 			 * enable5 is separate from the rest of the registers,
6068 			 * and therefore the address skip is 4
6069 			 * and not 16 between the different groups
6070 			 */
6071 			bp->attn_group[index].sig[4] = REG_RD(bp,
6072 					reg_offset_en5 + 0x4*index);
6073 		else
6074 			bp->attn_group[index].sig[4] = 0;
6075 	}
6076 
6077 	if (bp->common.int_block == INT_BLOCK_HC) {
6078 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6079 				     HC_REG_ATTN_MSG0_ADDR_L);
6080 
6081 		REG_WR(bp, reg_offset, U64_LO(section));
6082 		REG_WR(bp, reg_offset + 4, U64_HI(section));
6083 	} else if (!CHIP_IS_E1x(bp)) {
6084 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6085 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6086 	}
6087 
6088 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6089 					    sp_sb);
6090 
6091 	bnx2x_zero_sp_sb(bp);
6092 
6093 	/* PCI guarantees endianity of regpairs */
6094 	sp_sb_data.state		= SB_ENABLED;
6095 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
6096 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
6097 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
6098 	sp_sb_data.igu_seg_id		= igu_seg_id;
6099 	sp_sb_data.p_func.pf_id		= func;
6100 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
6101 	sp_sb_data.p_func.vf_id		= 0xff;
6102 
6103 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6104 
6105 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6106 }
6107 
6108 void bnx2x_update_coalesce(struct bnx2x *bp)
6109 {
6110 	int i;
6111 
6112 	for_each_eth_queue(bp, i)
6113 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6114 					 bp->tx_ticks, bp->rx_ticks);
6115 }
6116 
6117 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6118 {
6119 	spin_lock_init(&bp->spq_lock);
6120 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6121 
6122 	bp->spq_prod_idx = 0;
6123 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6124 	bp->spq_prod_bd = bp->spq;
6125 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6126 }
6127 
6128 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6129 {
6130 	int i;
6131 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
6132 		union event_ring_elem *elem =
6133 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6134 
6135 		elem->next_page.addr.hi =
6136 			cpu_to_le32(U64_HI(bp->eq_mapping +
6137 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6138 		elem->next_page.addr.lo =
6139 			cpu_to_le32(U64_LO(bp->eq_mapping +
6140 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6141 	}
6142 	bp->eq_cons = 0;
6143 	bp->eq_prod = NUM_EQ_DESC;
6144 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
6145 	/* we want a warning message before it gets wrought... */
6146 	atomic_set(&bp->eq_spq_left,
6147 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6148 }
6149 
6150 /* called with netif_addr_lock_bh() */
6151 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6152 			       unsigned long rx_mode_flags,
6153 			       unsigned long rx_accept_flags,
6154 			       unsigned long tx_accept_flags,
6155 			       unsigned long ramrod_flags)
6156 {
6157 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
6158 	int rc;
6159 
6160 	memset(&ramrod_param, 0, sizeof(ramrod_param));
6161 
6162 	/* Prepare ramrod parameters */
6163 	ramrod_param.cid = 0;
6164 	ramrod_param.cl_id = cl_id;
6165 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6166 	ramrod_param.func_id = BP_FUNC(bp);
6167 
6168 	ramrod_param.pstate = &bp->sp_state;
6169 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6170 
6171 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6172 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6173 
6174 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6175 
6176 	ramrod_param.ramrod_flags = ramrod_flags;
6177 	ramrod_param.rx_mode_flags = rx_mode_flags;
6178 
6179 	ramrod_param.rx_accept_flags = rx_accept_flags;
6180 	ramrod_param.tx_accept_flags = tx_accept_flags;
6181 
6182 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6183 	if (rc < 0) {
6184 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6185 		return rc;
6186 	}
6187 
6188 	return 0;
6189 }
6190 
6191 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6192 				   unsigned long *rx_accept_flags,
6193 				   unsigned long *tx_accept_flags)
6194 {
6195 	/* Clear the flags first */
6196 	*rx_accept_flags = 0;
6197 	*tx_accept_flags = 0;
6198 
6199 	switch (rx_mode) {
6200 	case BNX2X_RX_MODE_NONE:
6201 		/*
6202 		 * 'drop all' supersedes any accept flags that may have been
6203 		 * passed to the function.
6204 		 */
6205 		break;
6206 	case BNX2X_RX_MODE_NORMAL:
6207 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6208 		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6209 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6210 
6211 		/* internal switching mode */
6212 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6213 		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6214 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6215 
6216 		if (bp->accept_any_vlan) {
6217 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6218 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6219 		}
6220 
6221 		break;
6222 	case BNX2X_RX_MODE_ALLMULTI:
6223 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6224 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6225 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6226 
6227 		/* internal switching mode */
6228 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6229 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6230 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6231 
6232 		if (bp->accept_any_vlan) {
6233 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6234 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6235 		}
6236 
6237 		break;
6238 	case BNX2X_RX_MODE_PROMISC:
6239 		/* According to definition of SI mode, iface in promisc mode
6240 		 * should receive matched and unmatched (in resolution of port)
6241 		 * unicast packets.
6242 		 */
6243 		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6244 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6245 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6246 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6247 
6248 		/* internal switching mode */
6249 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6250 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6251 
6252 		if (IS_MF_SI(bp))
6253 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6254 		else
6255 			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6256 
6257 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6258 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6259 
6260 		break;
6261 	default:
6262 		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6263 		return -EINVAL;
6264 	}
6265 
6266 	return 0;
6267 }
6268 
6269 /* called with netif_addr_lock_bh() */
6270 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6271 {
6272 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6273 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6274 	int rc;
6275 
6276 	if (!NO_FCOE(bp))
6277 		/* Configure rx_mode of FCoE Queue */
6278 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6279 
6280 	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6281 				     &tx_accept_flags);
6282 	if (rc)
6283 		return rc;
6284 
6285 	__set_bit(RAMROD_RX, &ramrod_flags);
6286 	__set_bit(RAMROD_TX, &ramrod_flags);
6287 
6288 	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6289 				   rx_accept_flags, tx_accept_flags,
6290 				   ramrod_flags);
6291 }
6292 
6293 static void bnx2x_init_internal_common(struct bnx2x *bp)
6294 {
6295 	int i;
6296 
6297 	/* Zero this manually as its initialization is
6298 	   currently missing in the initTool */
6299 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6300 		REG_WR(bp, BAR_USTRORM_INTMEM +
6301 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6302 	if (!CHIP_IS_E1x(bp)) {
6303 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6304 			CHIP_INT_MODE_IS_BC(bp) ?
6305 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6306 	}
6307 }
6308 
6309 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6310 {
6311 	switch (load_code) {
6312 	case FW_MSG_CODE_DRV_LOAD_COMMON:
6313 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6314 		bnx2x_init_internal_common(bp);
6315 		fallthrough;
6316 
6317 	case FW_MSG_CODE_DRV_LOAD_PORT:
6318 		/* nothing to do */
6319 		fallthrough;
6320 
6321 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6322 		/* internal memory per function is
6323 		   initialized inside bnx2x_pf_init */
6324 		break;
6325 
6326 	default:
6327 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6328 		break;
6329 	}
6330 }
6331 
6332 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6333 {
6334 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6335 }
6336 
6337 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6338 {
6339 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6340 }
6341 
6342 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6343 {
6344 	if (CHIP_IS_E1x(fp->bp))
6345 		return BP_L_ID(fp->bp) + fp->index;
6346 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6347 		return bnx2x_fp_igu_sb_id(fp);
6348 }
6349 
6350 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6351 {
6352 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6353 	u8 cos;
6354 	unsigned long q_type = 0;
6355 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6356 	fp->rx_queue = fp_idx;
6357 	fp->cid = fp_idx;
6358 	fp->cl_id = bnx2x_fp_cl_id(fp);
6359 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6360 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6361 	/* qZone id equals to FW (per path) client id */
6362 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6363 
6364 	/* init shortcut */
6365 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6366 
6367 	/* Setup SB indices */
6368 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6369 
6370 	/* Configure Queue State object */
6371 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6372 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6373 
6374 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6375 
6376 	/* init tx data */
6377 	for_each_cos_in_tx_queue(fp, cos) {
6378 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6379 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6380 				  FP_COS_TO_TXQ(fp, cos, bp),
6381 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6382 		cids[cos] = fp->txdata_ptr[cos]->cid;
6383 	}
6384 
6385 	/* nothing more for vf to do here */
6386 	if (IS_VF(bp))
6387 		return;
6388 
6389 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6390 		      fp->fw_sb_id, fp->igu_sb_id);
6391 	bnx2x_update_fpsb_idx(fp);
6392 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6393 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6394 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6395 
6396 	/**
6397 	 * Configure classification DBs: Always enable Tx switching
6398 	 */
6399 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6400 
6401 	DP(NETIF_MSG_IFUP,
6402 	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6403 	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6404 	   fp->igu_sb_id);
6405 }
6406 
6407 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6408 {
6409 	int i;
6410 
6411 	for (i = 1; i <= NUM_TX_RINGS; i++) {
6412 		struct eth_tx_next_bd *tx_next_bd =
6413 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6414 
6415 		tx_next_bd->addr_hi =
6416 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6417 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6418 		tx_next_bd->addr_lo =
6419 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6420 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6421 	}
6422 
6423 	*txdata->tx_cons_sb = cpu_to_le16(0);
6424 
6425 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6426 	txdata->tx_db.data.zero_fill1 = 0;
6427 	txdata->tx_db.data.prod = 0;
6428 
6429 	txdata->tx_pkt_prod = 0;
6430 	txdata->tx_pkt_cons = 0;
6431 	txdata->tx_bd_prod = 0;
6432 	txdata->tx_bd_cons = 0;
6433 	txdata->tx_pkt = 0;
6434 }
6435 
6436 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6437 {
6438 	int i;
6439 
6440 	for_each_tx_queue_cnic(bp, i)
6441 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6442 }
6443 
6444 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6445 {
6446 	int i;
6447 	u8 cos;
6448 
6449 	for_each_eth_queue(bp, i)
6450 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6451 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6452 }
6453 
6454 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6455 {
6456 	struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6457 	unsigned long q_type = 0;
6458 
6459 	bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6460 	bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6461 						     BNX2X_FCOE_ETH_CL_ID_IDX);
6462 	bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6463 	bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6464 	bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6465 	bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6466 	bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6467 			  fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6468 			  fp);
6469 
6470 	DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6471 
6472 	/* qZone id equals to FW (per path) client id */
6473 	bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6474 	/* init shortcut */
6475 	bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6476 		bnx2x_rx_ustorm_prods_offset(fp);
6477 
6478 	/* Configure Queue State object */
6479 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6480 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6481 
6482 	/* No multi-CoS for FCoE L2 client */
6483 	BUG_ON(fp->max_cos != 1);
6484 
6485 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6486 			     &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6487 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6488 
6489 	DP(NETIF_MSG_IFUP,
6490 	   "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6491 	   fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6492 	   fp->igu_sb_id);
6493 }
6494 
6495 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6496 {
6497 	if (!NO_FCOE(bp))
6498 		bnx2x_init_fcoe_fp(bp);
6499 
6500 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6501 		      BNX2X_VF_ID_INVALID, false,
6502 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6503 
6504 	/* ensure status block indices were read */
6505 	rmb();
6506 	bnx2x_init_rx_rings_cnic(bp);
6507 	bnx2x_init_tx_rings_cnic(bp);
6508 
6509 	/* flush all */
6510 	mb();
6511 }
6512 
6513 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6514 {
6515 	int i;
6516 
6517 	/* Setup NIC internals and enable interrupts */
6518 	for_each_eth_queue(bp, i)
6519 		bnx2x_init_eth_fp(bp, i);
6520 
6521 	/* ensure status block indices were read */
6522 	rmb();
6523 	bnx2x_init_rx_rings(bp);
6524 	bnx2x_init_tx_rings(bp);
6525 
6526 	if (IS_PF(bp)) {
6527 		/* Initialize MOD_ABS interrupts */
6528 		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6529 				       bp->common.shmem_base,
6530 				       bp->common.shmem2_base, BP_PORT(bp));
6531 
6532 		/* initialize the default status block and sp ring */
6533 		bnx2x_init_def_sb(bp);
6534 		bnx2x_update_dsb_idx(bp);
6535 		bnx2x_init_sp_ring(bp);
6536 	} else {
6537 		bnx2x_memset_stats(bp);
6538 	}
6539 }
6540 
6541 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6542 {
6543 	bnx2x_init_eq_ring(bp);
6544 	bnx2x_init_internal(bp, load_code);
6545 	bnx2x_pf_init(bp);
6546 	bnx2x_stats_init(bp);
6547 
6548 	/* flush all before enabling interrupts */
6549 	mb();
6550 
6551 	bnx2x_int_enable(bp);
6552 
6553 	/* Check for SPIO5 */
6554 	bnx2x_attn_int_deasserted0(bp,
6555 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6556 				   AEU_INPUTS_ATTN_BITS_SPIO5);
6557 }
6558 
6559 /* gzip service functions */
6560 static int bnx2x_gunzip_init(struct bnx2x *bp)
6561 {
6562 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6563 					    &bp->gunzip_mapping, GFP_KERNEL);
6564 	if (bp->gunzip_buf  == NULL)
6565 		goto gunzip_nomem1;
6566 
6567 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6568 	if (bp->strm  == NULL)
6569 		goto gunzip_nomem2;
6570 
6571 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6572 	if (bp->strm->workspace == NULL)
6573 		goto gunzip_nomem3;
6574 
6575 	return 0;
6576 
6577 gunzip_nomem3:
6578 	kfree(bp->strm);
6579 	bp->strm = NULL;
6580 
6581 gunzip_nomem2:
6582 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6583 			  bp->gunzip_mapping);
6584 	bp->gunzip_buf = NULL;
6585 
6586 gunzip_nomem1:
6587 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6588 	return -ENOMEM;
6589 }
6590 
6591 static void bnx2x_gunzip_end(struct bnx2x *bp)
6592 {
6593 	if (bp->strm) {
6594 		vfree(bp->strm->workspace);
6595 		kfree(bp->strm);
6596 		bp->strm = NULL;
6597 	}
6598 
6599 	if (bp->gunzip_buf) {
6600 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6601 				  bp->gunzip_mapping);
6602 		bp->gunzip_buf = NULL;
6603 	}
6604 }
6605 
6606 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6607 {
6608 	int n, rc;
6609 
6610 	/* check gzip header */
6611 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6612 		BNX2X_ERR("Bad gzip header\n");
6613 		return -EINVAL;
6614 	}
6615 
6616 	n = 10;
6617 
6618 #define FNAME				0x8
6619 
6620 	if (zbuf[3] & FNAME)
6621 		while ((zbuf[n++] != 0) && (n < len));
6622 
6623 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6624 	bp->strm->avail_in = len - n;
6625 	bp->strm->next_out = bp->gunzip_buf;
6626 	bp->strm->avail_out = FW_BUF_SIZE;
6627 
6628 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6629 	if (rc != Z_OK)
6630 		return rc;
6631 
6632 	rc = zlib_inflate(bp->strm, Z_FINISH);
6633 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6634 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6635 			   bp->strm->msg);
6636 
6637 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6638 	if (bp->gunzip_outlen & 0x3)
6639 		netdev_err(bp->dev,
6640 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6641 				bp->gunzip_outlen);
6642 	bp->gunzip_outlen >>= 2;
6643 
6644 	zlib_inflateEnd(bp->strm);
6645 
6646 	if (rc == Z_STREAM_END)
6647 		return 0;
6648 
6649 	return rc;
6650 }
6651 
6652 /* nic load/unload */
6653 
6654 /*
6655  * General service functions
6656  */
6657 
6658 /* send a NIG loopback debug packet */
6659 static void bnx2x_lb_pckt(struct bnx2x *bp)
6660 {
6661 	u32 wb_write[3];
6662 
6663 	/* Ethernet source and destination addresses */
6664 	wb_write[0] = 0x55555555;
6665 	wb_write[1] = 0x55555555;
6666 	wb_write[2] = 0x20;		/* SOP */
6667 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6668 
6669 	/* NON-IP protocol */
6670 	wb_write[0] = 0x09000000;
6671 	wb_write[1] = 0x55555555;
6672 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6673 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6674 }
6675 
6676 /* some of the internal memories
6677  * are not directly readable from the driver
6678  * to test them we send debug packets
6679  */
6680 static int bnx2x_int_mem_test(struct bnx2x *bp)
6681 {
6682 	int factor;
6683 	int count, i;
6684 	u32 val = 0;
6685 
6686 	if (CHIP_REV_IS_FPGA(bp))
6687 		factor = 120;
6688 	else if (CHIP_REV_IS_EMUL(bp))
6689 		factor = 200;
6690 	else
6691 		factor = 1;
6692 
6693 	/* Disable inputs of parser neighbor blocks */
6694 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6695 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6696 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6697 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6698 
6699 	/*  Write 0 to parser credits for CFC search request */
6700 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6701 
6702 	/* send Ethernet packet */
6703 	bnx2x_lb_pckt(bp);
6704 
6705 	/* TODO do i reset NIG statistic? */
6706 	/* Wait until NIG register shows 1 packet of size 0x10 */
6707 	count = 1000 * factor;
6708 	while (count) {
6709 
6710 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6711 		val = *bnx2x_sp(bp, wb_data[0]);
6712 		if (val == 0x10)
6713 			break;
6714 
6715 		usleep_range(10000, 20000);
6716 		count--;
6717 	}
6718 	if (val != 0x10) {
6719 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6720 		return -1;
6721 	}
6722 
6723 	/* Wait until PRS register shows 1 packet */
6724 	count = 1000 * factor;
6725 	while (count) {
6726 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6727 		if (val == 1)
6728 			break;
6729 
6730 		usleep_range(10000, 20000);
6731 		count--;
6732 	}
6733 	if (val != 0x1) {
6734 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6735 		return -2;
6736 	}
6737 
6738 	/* Reset and init BRB, PRS */
6739 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6740 	msleep(50);
6741 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6742 	msleep(50);
6743 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6744 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6745 
6746 	DP(NETIF_MSG_HW, "part2\n");
6747 
6748 	/* Disable inputs of parser neighbor blocks */
6749 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6750 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6751 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6752 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6753 
6754 	/* Write 0 to parser credits for CFC search request */
6755 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6756 
6757 	/* send 10 Ethernet packets */
6758 	for (i = 0; i < 10; i++)
6759 		bnx2x_lb_pckt(bp);
6760 
6761 	/* Wait until NIG register shows 10 + 1
6762 	   packets of size 11*0x10 = 0xb0 */
6763 	count = 1000 * factor;
6764 	while (count) {
6765 
6766 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6767 		val = *bnx2x_sp(bp, wb_data[0]);
6768 		if (val == 0xb0)
6769 			break;
6770 
6771 		usleep_range(10000, 20000);
6772 		count--;
6773 	}
6774 	if (val != 0xb0) {
6775 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6776 		return -3;
6777 	}
6778 
6779 	/* Wait until PRS register shows 2 packets */
6780 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6781 	if (val != 2)
6782 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6783 
6784 	/* Write 1 to parser credits for CFC search request */
6785 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6786 
6787 	/* Wait until PRS register shows 3 packets */
6788 	msleep(10 * factor);
6789 	/* Wait until NIG register shows 1 packet of size 0x10 */
6790 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6791 	if (val != 3)
6792 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6793 
6794 	/* clear NIG EOP FIFO */
6795 	for (i = 0; i < 11; i++)
6796 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6797 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6798 	if (val != 1) {
6799 		BNX2X_ERR("clear of NIG failed\n");
6800 		return -4;
6801 	}
6802 
6803 	/* Reset and init BRB, PRS, NIG */
6804 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6805 	msleep(50);
6806 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6807 	msleep(50);
6808 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6809 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6810 	if (!CNIC_SUPPORT(bp))
6811 		/* set NIC mode */
6812 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6813 
6814 	/* Enable inputs of parser neighbor blocks */
6815 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6816 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6817 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6818 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6819 
6820 	DP(NETIF_MSG_HW, "done\n");
6821 
6822 	return 0; /* OK */
6823 }
6824 
6825 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6826 {
6827 	u32 val;
6828 
6829 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6830 	if (!CHIP_IS_E1x(bp))
6831 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6832 	else
6833 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6834 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6835 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6836 	/*
6837 	 * mask read length error interrupts in brb for parser
6838 	 * (parsing unit and 'checksum and crc' unit)
6839 	 * these errors are legal (PU reads fixed length and CAC can cause
6840 	 * read length error on truncated packets)
6841 	 */
6842 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6843 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6844 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6845 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6846 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6847 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6848 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6849 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6850 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6851 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6852 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6853 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6854 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6855 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6856 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6857 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6858 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6859 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6860 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6861 
6862 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6863 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6864 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6865 	if (!CHIP_IS_E1x(bp))
6866 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6867 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6868 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6869 
6870 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6871 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6872 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6873 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6874 
6875 	if (!CHIP_IS_E1x(bp))
6876 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6877 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6878 
6879 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6880 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6881 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6882 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6883 }
6884 
6885 static void bnx2x_reset_common(struct bnx2x *bp)
6886 {
6887 	u32 val = 0x1400;
6888 
6889 	/* reset_common */
6890 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6891 	       0xd3ffff7f);
6892 
6893 	if (CHIP_IS_E3(bp)) {
6894 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6895 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6896 	}
6897 
6898 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6899 }
6900 
6901 static void bnx2x_setup_dmae(struct bnx2x *bp)
6902 {
6903 	bp->dmae_ready = 0;
6904 	spin_lock_init(&bp->dmae_lock);
6905 }
6906 
6907 static void bnx2x_init_pxp(struct bnx2x *bp)
6908 {
6909 	u16 devctl;
6910 	int r_order, w_order;
6911 
6912 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6913 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6914 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6915 	if (bp->mrrs == -1)
6916 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6917 	else {
6918 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6919 		r_order = bp->mrrs;
6920 	}
6921 
6922 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6923 }
6924 
6925 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6926 {
6927 	int is_required;
6928 	u32 val;
6929 	int port;
6930 
6931 	if (BP_NOMCP(bp))
6932 		return;
6933 
6934 	is_required = 0;
6935 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6936 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6937 
6938 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6939 		is_required = 1;
6940 
6941 	/*
6942 	 * The fan failure mechanism is usually related to the PHY type since
6943 	 * the power consumption of the board is affected by the PHY. Currently,
6944 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6945 	 */
6946 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6947 		for (port = PORT_0; port < PORT_MAX; port++) {
6948 			is_required |=
6949 				bnx2x_fan_failure_det_req(
6950 					bp,
6951 					bp->common.shmem_base,
6952 					bp->common.shmem2_base,
6953 					port);
6954 		}
6955 
6956 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6957 
6958 	if (is_required == 0)
6959 		return;
6960 
6961 	/* Fan failure is indicated by SPIO 5 */
6962 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6963 
6964 	/* set to active low mode */
6965 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6966 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6967 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6968 
6969 	/* enable interrupt to signal the IGU */
6970 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6971 	val |= MISC_SPIO_SPIO5;
6972 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6973 }
6974 
6975 void bnx2x_pf_disable(struct bnx2x *bp)
6976 {
6977 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6978 	val &= ~IGU_PF_CONF_FUNC_EN;
6979 
6980 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6981 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6982 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6983 }
6984 
6985 static void bnx2x__common_init_phy(struct bnx2x *bp)
6986 {
6987 	u32 shmem_base[2], shmem2_base[2];
6988 	/* Avoid common init in case MFW supports LFA */
6989 	if (SHMEM2_RD(bp, size) >
6990 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6991 		return;
6992 	shmem_base[0] =  bp->common.shmem_base;
6993 	shmem2_base[0] = bp->common.shmem2_base;
6994 	if (!CHIP_IS_E1x(bp)) {
6995 		shmem_base[1] =
6996 			SHMEM2_RD(bp, other_shmem_base_addr);
6997 		shmem2_base[1] =
6998 			SHMEM2_RD(bp, other_shmem2_base_addr);
6999 	}
7000 	bnx2x_acquire_phy_lock(bp);
7001 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
7002 			      bp->common.chip_id);
7003 	bnx2x_release_phy_lock(bp);
7004 }
7005 
7006 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
7007 {
7008 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
7009 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7010 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7011 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7012 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7013 
7014 	/* make sure this value is 0 */
7015 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7016 
7017 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7018 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7019 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7020 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7021 }
7022 
7023 static void bnx2x_set_endianity(struct bnx2x *bp)
7024 {
7025 #ifdef __BIG_ENDIAN
7026 	bnx2x_config_endianity(bp, 1);
7027 #else
7028 	bnx2x_config_endianity(bp, 0);
7029 #endif
7030 }
7031 
7032 static void bnx2x_reset_endianity(struct bnx2x *bp)
7033 {
7034 	bnx2x_config_endianity(bp, 0);
7035 }
7036 
7037 /**
7038  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7039  *
7040  * @bp:		driver handle
7041  */
7042 static int bnx2x_init_hw_common(struct bnx2x *bp)
7043 {
7044 	u32 val;
7045 
7046 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7047 
7048 	/*
7049 	 * take the RESET lock to protect undi_unload flow from accessing
7050 	 * registers while we're resetting the chip
7051 	 */
7052 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7053 
7054 	bnx2x_reset_common(bp);
7055 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7056 
7057 	val = 0xfffc;
7058 	if (CHIP_IS_E3(bp)) {
7059 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7060 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7061 	}
7062 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7063 
7064 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7065 
7066 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7067 
7068 	if (!CHIP_IS_E1x(bp)) {
7069 		u8 abs_func_id;
7070 
7071 		/**
7072 		 * 4-port mode or 2-port mode we need to turn of master-enable
7073 		 * for everyone, after that, turn it back on for self.
7074 		 * so, we disregard multi-function or not, and always disable
7075 		 * for all functions on the given path, this means 0,2,4,6 for
7076 		 * path 0 and 1,3,5,7 for path 1
7077 		 */
7078 		for (abs_func_id = BP_PATH(bp);
7079 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7080 			if (abs_func_id == BP_ABS_FUNC(bp)) {
7081 				REG_WR(bp,
7082 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7083 				    1);
7084 				continue;
7085 			}
7086 
7087 			bnx2x_pretend_func(bp, abs_func_id);
7088 			/* clear pf enable */
7089 			bnx2x_pf_disable(bp);
7090 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7091 		}
7092 	}
7093 
7094 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7095 	if (CHIP_IS_E1(bp)) {
7096 		/* enable HW interrupt from PXP on USDM overflow
7097 		   bit 16 on INT_MASK_0 */
7098 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7099 	}
7100 
7101 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7102 	bnx2x_init_pxp(bp);
7103 	bnx2x_set_endianity(bp);
7104 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
7105 
7106 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7107 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7108 
7109 	/* let the HW do it's magic ... */
7110 	msleep(100);
7111 	/* finish PXP init */
7112 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7113 	if (val != 1) {
7114 		BNX2X_ERR("PXP2 CFG failed\n");
7115 		return -EBUSY;
7116 	}
7117 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7118 	if (val != 1) {
7119 		BNX2X_ERR("PXP2 RD_INIT failed\n");
7120 		return -EBUSY;
7121 	}
7122 
7123 	/* Timers bug workaround E2 only. We need to set the entire ILT to
7124 	 * have entries with value "0" and valid bit on.
7125 	 * This needs to be done by the first PF that is loaded in a path
7126 	 * (i.e. common phase)
7127 	 */
7128 	if (!CHIP_IS_E1x(bp)) {
7129 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7130  * (i.e. vnic3) to start even if it is marked as "scan-off".
7131  * This occurs when a different function (func2,3) is being marked
7132  * as "scan-off". Real-life scenario for example: if a driver is being
7133  * load-unloaded while func6,7 are down. This will cause the timer to access
7134  * the ilt, translate to a logical address and send a request to read/write.
7135  * Since the ilt for the function that is down is not valid, this will cause
7136  * a translation error which is unrecoverable.
7137  * The Workaround is intended to make sure that when this happens nothing fatal
7138  * will occur. The workaround:
7139  *	1.  First PF driver which loads on a path will:
7140  *		a.  After taking the chip out of reset, by using pretend,
7141  *		    it will write "0" to the following registers of
7142  *		    the other vnics.
7143  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7144  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7145  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7146  *		    And for itself it will write '1' to
7147  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7148  *		    dmae-operations (writing to pram for example.)
7149  *		    note: can be done for only function 6,7 but cleaner this
7150  *			  way.
7151  *		b.  Write zero+valid to the entire ILT.
7152  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7153  *		    VNIC3 (of that port). The range allocated will be the
7154  *		    entire ILT. This is needed to prevent  ILT range error.
7155  *	2.  Any PF driver load flow:
7156  *		a.  ILT update with the physical addresses of the allocated
7157  *		    logical pages.
7158  *		b.  Wait 20msec. - note that this timeout is needed to make
7159  *		    sure there are no requests in one of the PXP internal
7160  *		    queues with "old" ILT addresses.
7161  *		c.  PF enable in the PGLC.
7162  *		d.  Clear the was_error of the PF in the PGLC. (could have
7163  *		    occurred while driver was down)
7164  *		e.  PF enable in the CFC (WEAK + STRONG)
7165  *		f.  Timers scan enable
7166  *	3.  PF driver unload flow:
7167  *		a.  Clear the Timers scan_en.
7168  *		b.  Polling for scan_on=0 for that PF.
7169  *		c.  Clear the PF enable bit in the PXP.
7170  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
7171  *		e.  Write zero+valid to all ILT entries (The valid bit must
7172  *		    stay set)
7173  *		f.  If this is VNIC 3 of a port then also init
7174  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
7175  *		    to the last entry in the ILT.
7176  *
7177  *	Notes:
7178  *	Currently the PF error in the PGLC is non recoverable.
7179  *	In the future the there will be a recovery routine for this error.
7180  *	Currently attention is masked.
7181  *	Having an MCP lock on the load/unload process does not guarantee that
7182  *	there is no Timer disable during Func6/7 enable. This is because the
7183  *	Timers scan is currently being cleared by the MCP on FLR.
7184  *	Step 2.d can be done only for PF6/7 and the driver can also check if
7185  *	there is error before clearing it. But the flow above is simpler and
7186  *	more general.
7187  *	All ILT entries are written by zero+valid and not just PF6/7
7188  *	ILT entries since in the future the ILT entries allocation for
7189  *	PF-s might be dynamic.
7190  */
7191 		struct ilt_client_info ilt_cli;
7192 		struct bnx2x_ilt ilt;
7193 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7194 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7195 
7196 		/* initialize dummy TM client */
7197 		ilt_cli.start = 0;
7198 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7199 		ilt_cli.client_num = ILT_CLIENT_TM;
7200 
7201 		/* Step 1: set zeroes to all ilt page entries with valid bit on
7202 		 * Step 2: set the timers first/last ilt entry to point
7203 		 * to the entire range to prevent ILT range error for 3rd/4th
7204 		 * vnic	(this code assumes existence of the vnic)
7205 		 *
7206 		 * both steps performed by call to bnx2x_ilt_client_init_op()
7207 		 * with dummy TM client
7208 		 *
7209 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7210 		 * and his brother are split registers
7211 		 */
7212 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7213 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7214 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7215 
7216 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7217 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7218 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7219 	}
7220 
7221 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7222 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7223 
7224 	if (!CHIP_IS_E1x(bp)) {
7225 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7226 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7227 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7228 
7229 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7230 
7231 		/* let the HW do it's magic ... */
7232 		do {
7233 			msleep(200);
7234 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7235 		} while (factor-- && (val != 1));
7236 
7237 		if (val != 1) {
7238 			BNX2X_ERR("ATC_INIT failed\n");
7239 			return -EBUSY;
7240 		}
7241 	}
7242 
7243 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7244 
7245 	bnx2x_iov_init_dmae(bp);
7246 
7247 	/* clean the DMAE memory */
7248 	bp->dmae_ready = 1;
7249 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7250 
7251 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7252 
7253 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7254 
7255 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7256 
7257 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7258 
7259 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7260 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7261 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7262 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7263 
7264 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7265 
7266 	/* QM queues pointers table */
7267 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7268 
7269 	/* soft reset pulse */
7270 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
7271 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
7272 
7273 	if (CNIC_SUPPORT(bp))
7274 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7275 
7276 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7277 
7278 	if (!CHIP_REV_IS_SLOW(bp))
7279 		/* enable hw interrupt from doorbell Q */
7280 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7281 
7282 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7283 
7284 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7285 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7286 
7287 	if (!CHIP_IS_E1(bp))
7288 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7289 
7290 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7291 		if (IS_MF_AFEX(bp)) {
7292 			/* configure that VNTag and VLAN headers must be
7293 			 * received in afex mode
7294 			 */
7295 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7296 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7297 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7298 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7299 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7300 		} else {
7301 			/* Bit-map indicating which L2 hdrs may appear
7302 			 * after the basic Ethernet header
7303 			 */
7304 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7305 			       bp->path_has_ovlan ? 7 : 6);
7306 		}
7307 	}
7308 
7309 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7310 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7311 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7312 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7313 
7314 	if (!CHIP_IS_E1x(bp)) {
7315 		/* reset VFC memories */
7316 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7317 			   VFC_MEMORIES_RST_REG_CAM_RST |
7318 			   VFC_MEMORIES_RST_REG_RAM_RST);
7319 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7320 			   VFC_MEMORIES_RST_REG_CAM_RST |
7321 			   VFC_MEMORIES_RST_REG_RAM_RST);
7322 
7323 		msleep(20);
7324 	}
7325 
7326 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7327 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7328 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7329 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7330 
7331 	/* sync semi rtc */
7332 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7333 	       0x80000000);
7334 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7335 	       0x80000000);
7336 
7337 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7338 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7339 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7340 
7341 	if (!CHIP_IS_E1x(bp)) {
7342 		if (IS_MF_AFEX(bp)) {
7343 			/* configure that VNTag and VLAN headers must be
7344 			 * sent in afex mode
7345 			 */
7346 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7347 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7348 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7349 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7350 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7351 		} else {
7352 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7353 			       bp->path_has_ovlan ? 7 : 6);
7354 		}
7355 	}
7356 
7357 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
7358 
7359 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7360 
7361 	if (CNIC_SUPPORT(bp)) {
7362 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7363 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7364 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7365 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7366 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7367 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7368 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7369 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7370 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7371 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7372 	}
7373 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
7374 
7375 	if (sizeof(union cdu_context) != 1024)
7376 		/* we currently assume that a context is 1024 bytes */
7377 		dev_alert(&bp->pdev->dev,
7378 			  "please adjust the size of cdu_context(%ld)\n",
7379 			  (long)sizeof(union cdu_context));
7380 
7381 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7382 	val = (4 << 24) + (0 << 12) + 1024;
7383 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7384 
7385 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7386 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7387 	/* enable context validation interrupt from CFC */
7388 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7389 
7390 	/* set the thresholds to prevent CFC/CDU race */
7391 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7392 
7393 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7394 
7395 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7396 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7397 
7398 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7399 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7400 
7401 	/* Reset PCIE errors for debug */
7402 	REG_WR(bp, 0x2814, 0xffffffff);
7403 	REG_WR(bp, 0x3820, 0xffffffff);
7404 
7405 	if (!CHIP_IS_E1x(bp)) {
7406 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7407 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7408 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7409 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7410 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7411 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7412 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7413 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7414 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7415 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7416 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7417 	}
7418 
7419 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7420 	if (!CHIP_IS_E1(bp)) {
7421 		/* in E3 this done in per-port section */
7422 		if (!CHIP_IS_E3(bp))
7423 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7424 	}
7425 	if (CHIP_IS_E1H(bp))
7426 		/* not applicable for E2 (and above ...) */
7427 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7428 
7429 	if (CHIP_REV_IS_SLOW(bp))
7430 		msleep(200);
7431 
7432 	/* finish CFC init */
7433 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7434 	if (val != 1) {
7435 		BNX2X_ERR("CFC LL_INIT failed\n");
7436 		return -EBUSY;
7437 	}
7438 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7439 	if (val != 1) {
7440 		BNX2X_ERR("CFC AC_INIT failed\n");
7441 		return -EBUSY;
7442 	}
7443 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7444 	if (val != 1) {
7445 		BNX2X_ERR("CFC CAM_INIT failed\n");
7446 		return -EBUSY;
7447 	}
7448 	REG_WR(bp, CFC_REG_DEBUG0, 0);
7449 
7450 	if (CHIP_IS_E1(bp)) {
7451 		/* read NIG statistic
7452 		   to see if this is our first up since powerup */
7453 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7454 		val = *bnx2x_sp(bp, wb_data[0]);
7455 
7456 		/* do internal memory self test */
7457 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7458 			BNX2X_ERR("internal mem self test failed\n");
7459 			return -EBUSY;
7460 		}
7461 	}
7462 
7463 	bnx2x_setup_fan_failure_detection(bp);
7464 
7465 	/* clear PXP2 attentions */
7466 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7467 
7468 	bnx2x_enable_blocks_attention(bp);
7469 	bnx2x_enable_blocks_parity(bp);
7470 
7471 	if (!BP_NOMCP(bp)) {
7472 		if (CHIP_IS_E1x(bp))
7473 			bnx2x__common_init_phy(bp);
7474 	} else
7475 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7476 
7477 	if (SHMEM2_HAS(bp, netproc_fw_ver))
7478 		SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7479 
7480 	return 0;
7481 }
7482 
7483 /**
7484  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7485  *
7486  * @bp:		driver handle
7487  */
7488 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7489 {
7490 	int rc = bnx2x_init_hw_common(bp);
7491 
7492 	if (rc)
7493 		return rc;
7494 
7495 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7496 	if (!BP_NOMCP(bp))
7497 		bnx2x__common_init_phy(bp);
7498 
7499 	return 0;
7500 }
7501 
7502 static int bnx2x_init_hw_port(struct bnx2x *bp)
7503 {
7504 	int port = BP_PORT(bp);
7505 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7506 	u32 low, high;
7507 	u32 val, reg;
7508 
7509 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7510 
7511 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7512 
7513 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7514 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7515 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7516 
7517 	/* Timers bug workaround: disables the pf_master bit in pglue at
7518 	 * common phase, we need to enable it here before any dmae access are
7519 	 * attempted. Therefore we manually added the enable-master to the
7520 	 * port phase (it also happens in the function phase)
7521 	 */
7522 	if (!CHIP_IS_E1x(bp))
7523 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7524 
7525 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7526 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7527 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7528 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7529 
7530 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7531 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7532 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7533 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7534 
7535 	/* QM cid (connection) count */
7536 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7537 
7538 	if (CNIC_SUPPORT(bp)) {
7539 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7540 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7541 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7542 	}
7543 
7544 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7545 
7546 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7547 
7548 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7549 
7550 		if (IS_MF(bp))
7551 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7552 		else if (bp->dev->mtu > 4096) {
7553 			if (bp->flags & ONE_PORT_FLAG)
7554 				low = 160;
7555 			else {
7556 				val = bp->dev->mtu;
7557 				/* (24*1024 + val*4)/256 */
7558 				low = 96 + (val/64) +
7559 						((val % 64) ? 1 : 0);
7560 			}
7561 		} else
7562 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7563 		high = low + 56;	/* 14*1024/256 */
7564 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7565 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7566 	}
7567 
7568 	if (CHIP_MODE_IS_4_PORT(bp))
7569 		REG_WR(bp, (BP_PORT(bp) ?
7570 			    BRB1_REG_MAC_GUARANTIED_1 :
7571 			    BRB1_REG_MAC_GUARANTIED_0), 40);
7572 
7573 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7574 	if (CHIP_IS_E3B0(bp)) {
7575 		if (IS_MF_AFEX(bp)) {
7576 			/* configure headers for AFEX mode */
7577 			REG_WR(bp, BP_PORT(bp) ?
7578 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7579 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7580 			REG_WR(bp, BP_PORT(bp) ?
7581 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7582 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7583 			REG_WR(bp, BP_PORT(bp) ?
7584 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7585 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7586 		} else {
7587 			/* Ovlan exists only if we are in multi-function +
7588 			 * switch-dependent mode, in switch-independent there
7589 			 * is no ovlan headers
7590 			 */
7591 			REG_WR(bp, BP_PORT(bp) ?
7592 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7593 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7594 			       (bp->path_has_ovlan ? 7 : 6));
7595 		}
7596 	}
7597 
7598 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7599 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7600 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7601 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7602 
7603 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7604 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7605 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7606 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7607 
7608 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7609 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7610 
7611 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7612 
7613 	if (CHIP_IS_E1x(bp)) {
7614 		/* configure PBF to work without PAUSE mtu 9000 */
7615 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7616 
7617 		/* update threshold */
7618 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7619 		/* update init credit */
7620 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7621 
7622 		/* probe changes */
7623 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7624 		udelay(50);
7625 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7626 	}
7627 
7628 	if (CNIC_SUPPORT(bp))
7629 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7630 
7631 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7632 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7633 
7634 	if (CHIP_IS_E1(bp)) {
7635 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7636 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7637 	}
7638 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7639 
7640 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7641 
7642 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7643 	/* init aeu_mask_attn_func_0/1:
7644 	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7645 	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7646 	 *             bits 4-7 are used for "per vn group attention" */
7647 	val = IS_MF(bp) ? 0xF7 : 0x7;
7648 	/* Enable DCBX attention for all but E1 */
7649 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7650 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7651 
7652 	/* SCPAD_PARITY should NOT trigger close the gates */
7653 	reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7654 	REG_WR(bp, reg,
7655 	       REG_RD(bp, reg) &
7656 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7657 
7658 	reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7659 	REG_WR(bp, reg,
7660 	       REG_RD(bp, reg) &
7661 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7662 
7663 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7664 
7665 	if (!CHIP_IS_E1x(bp)) {
7666 		/* Bit-map indicating which L2 hdrs may appear after the
7667 		 * basic Ethernet header
7668 		 */
7669 		if (IS_MF_AFEX(bp))
7670 			REG_WR(bp, BP_PORT(bp) ?
7671 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7672 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7673 		else
7674 			REG_WR(bp, BP_PORT(bp) ?
7675 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7676 			       NIG_REG_P0_HDRS_AFTER_BASIC,
7677 			       IS_MF_SD(bp) ? 7 : 6);
7678 
7679 		if (CHIP_IS_E3(bp))
7680 			REG_WR(bp, BP_PORT(bp) ?
7681 				   NIG_REG_LLH1_MF_MODE :
7682 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7683 	}
7684 	if (!CHIP_IS_E3(bp))
7685 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7686 
7687 	if (!CHIP_IS_E1(bp)) {
7688 		/* 0x2 disable mf_ov, 0x1 enable */
7689 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7690 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7691 
7692 		if (!CHIP_IS_E1x(bp)) {
7693 			val = 0;
7694 			switch (bp->mf_mode) {
7695 			case MULTI_FUNCTION_SD:
7696 				val = 1;
7697 				break;
7698 			case MULTI_FUNCTION_SI:
7699 			case MULTI_FUNCTION_AFEX:
7700 				val = 2;
7701 				break;
7702 			}
7703 
7704 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7705 						  NIG_REG_LLH0_CLS_TYPE), val);
7706 		}
7707 		{
7708 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7709 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7710 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7711 		}
7712 	}
7713 
7714 	/* If SPIO5 is set to generate interrupts, enable it for this port */
7715 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7716 	if (val & MISC_SPIO_SPIO5) {
7717 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7718 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7719 		val = REG_RD(bp, reg_addr);
7720 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7721 		REG_WR(bp, reg_addr, val);
7722 	}
7723 
7724 	if (CHIP_IS_E3B0(bp))
7725 		bp->flags |= PTP_SUPPORTED;
7726 
7727 	return 0;
7728 }
7729 
7730 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7731 {
7732 	int reg;
7733 	u32 wb_write[2];
7734 
7735 	if (CHIP_IS_E1(bp))
7736 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7737 	else
7738 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7739 
7740 	wb_write[0] = ONCHIP_ADDR1(addr);
7741 	wb_write[1] = ONCHIP_ADDR2(addr);
7742 	REG_WR_DMAE(bp, reg, wb_write, 2);
7743 }
7744 
7745 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7746 {
7747 	u32 data, ctl, cnt = 100;
7748 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7749 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7750 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7751 	u32 sb_bit =  1 << (idu_sb_id%32);
7752 	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7753 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7754 
7755 	/* Not supported in BC mode */
7756 	if (CHIP_INT_MODE_IS_BC(bp))
7757 		return;
7758 
7759 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7760 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7761 		IGU_REGULAR_CLEANUP_SET				|
7762 		IGU_REGULAR_BCLEANUP;
7763 
7764 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7765 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7766 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7767 
7768 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7769 			 data, igu_addr_data);
7770 	REG_WR(bp, igu_addr_data, data);
7771 	barrier();
7772 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7773 			  ctl, igu_addr_ctl);
7774 	REG_WR(bp, igu_addr_ctl, ctl);
7775 	barrier();
7776 
7777 	/* wait for clean up to finish */
7778 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7779 		msleep(20);
7780 
7781 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7782 		DP(NETIF_MSG_HW,
7783 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7784 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7785 	}
7786 }
7787 
7788 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7789 {
7790 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7791 }
7792 
7793 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7794 {
7795 	u32 i, base = FUNC_ILT_BASE(func);
7796 	for (i = base; i < base + ILT_PER_FUNC; i++)
7797 		bnx2x_ilt_wr(bp, i, 0);
7798 }
7799 
7800 static void bnx2x_init_searcher(struct bnx2x *bp)
7801 {
7802 	int port = BP_PORT(bp);
7803 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7804 	/* T1 hash bits value determines the T1 number of entries */
7805 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7806 }
7807 
7808 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7809 {
7810 	int rc;
7811 	struct bnx2x_func_state_params func_params = {NULL};
7812 	struct bnx2x_func_switch_update_params *switch_update_params =
7813 		&func_params.params.switch_update;
7814 
7815 	/* Prepare parameters for function state transitions */
7816 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7817 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7818 
7819 	func_params.f_obj = &bp->func_obj;
7820 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7821 
7822 	/* Function parameters */
7823 	__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7824 		  &switch_update_params->changes);
7825 	if (suspend)
7826 		__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7827 			  &switch_update_params->changes);
7828 
7829 	rc = bnx2x_func_state_change(bp, &func_params);
7830 
7831 	return rc;
7832 }
7833 
7834 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7835 {
7836 	int rc, i, port = BP_PORT(bp);
7837 	int vlan_en = 0, mac_en[NUM_MACS];
7838 
7839 	/* Close input from network */
7840 	if (bp->mf_mode == SINGLE_FUNCTION) {
7841 		bnx2x_set_rx_filter(&bp->link_params, 0);
7842 	} else {
7843 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7844 				   NIG_REG_LLH0_FUNC_EN);
7845 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7846 			  NIG_REG_LLH0_FUNC_EN, 0);
7847 		for (i = 0; i < NUM_MACS; i++) {
7848 			mac_en[i] = REG_RD(bp, port ?
7849 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7850 					      4 * i) :
7851 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7852 					      4 * i));
7853 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7854 					      4 * i) :
7855 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7856 		}
7857 	}
7858 
7859 	/* Close BMC to host */
7860 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7861 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7862 
7863 	/* Suspend Tx switching to the PF. Completion of this ramrod
7864 	 * further guarantees that all the packets of that PF / child
7865 	 * VFs in BRB were processed by the Parser, so it is safe to
7866 	 * change the NIC_MODE register.
7867 	 */
7868 	rc = bnx2x_func_switch_update(bp, 1);
7869 	if (rc) {
7870 		BNX2X_ERR("Can't suspend tx-switching!\n");
7871 		return rc;
7872 	}
7873 
7874 	/* Change NIC_MODE register */
7875 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7876 
7877 	/* Open input from network */
7878 	if (bp->mf_mode == SINGLE_FUNCTION) {
7879 		bnx2x_set_rx_filter(&bp->link_params, 1);
7880 	} else {
7881 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7882 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7883 		for (i = 0; i < NUM_MACS; i++) {
7884 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7885 					      4 * i) :
7886 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7887 				  mac_en[i]);
7888 		}
7889 	}
7890 
7891 	/* Enable BMC to host */
7892 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7893 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7894 
7895 	/* Resume Tx switching to the PF */
7896 	rc = bnx2x_func_switch_update(bp, 0);
7897 	if (rc) {
7898 		BNX2X_ERR("Can't resume tx-switching!\n");
7899 		return rc;
7900 	}
7901 
7902 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7903 	return 0;
7904 }
7905 
7906 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7907 {
7908 	int rc;
7909 
7910 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7911 
7912 	if (CONFIGURE_NIC_MODE(bp)) {
7913 		/* Configure searcher as part of function hw init */
7914 		bnx2x_init_searcher(bp);
7915 
7916 		/* Reset NIC mode */
7917 		rc = bnx2x_reset_nic_mode(bp);
7918 		if (rc)
7919 			BNX2X_ERR("Can't change NIC mode!\n");
7920 		return rc;
7921 	}
7922 
7923 	return 0;
7924 }
7925 
7926 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7927  * and boot began, or when kdump kernel was loaded. Either case would invalidate
7928  * the addresses of the transaction, resulting in was-error bit set in the pci
7929  * causing all hw-to-host pcie transactions to timeout. If this happened we want
7930  * to clear the interrupt which detected this from the pglueb and the was done
7931  * bit
7932  */
7933 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7934 {
7935 	if (!CHIP_IS_E1x(bp))
7936 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7937 		       1 << BP_ABS_FUNC(bp));
7938 }
7939 
7940 static int bnx2x_init_hw_func(struct bnx2x *bp)
7941 {
7942 	int port = BP_PORT(bp);
7943 	int func = BP_FUNC(bp);
7944 	int init_phase = PHASE_PF0 + func;
7945 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7946 	u16 cdu_ilt_start;
7947 	u32 addr, val;
7948 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7949 	int i, main_mem_width, rc;
7950 
7951 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7952 
7953 	/* FLR cleanup - hmmm */
7954 	if (!CHIP_IS_E1x(bp)) {
7955 		rc = bnx2x_pf_flr_clnup(bp);
7956 		if (rc) {
7957 			bnx2x_fw_dump(bp);
7958 			return rc;
7959 		}
7960 	}
7961 
7962 	/* set MSI reconfigure capability */
7963 	if (bp->common.int_block == INT_BLOCK_HC) {
7964 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7965 		val = REG_RD(bp, addr);
7966 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7967 		REG_WR(bp, addr, val);
7968 	}
7969 
7970 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7971 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7972 
7973 	ilt = BP_ILT(bp);
7974 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7975 
7976 	if (IS_SRIOV(bp))
7977 		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7978 	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7979 
7980 	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7981 	 * those of the VFs, so start line should be reset
7982 	 */
7983 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7984 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7985 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7986 		ilt->lines[cdu_ilt_start + i].page_mapping =
7987 			bp->context[i].cxt_mapping;
7988 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7989 	}
7990 
7991 	bnx2x_ilt_init_op(bp, INITOP_SET);
7992 
7993 	if (!CONFIGURE_NIC_MODE(bp)) {
7994 		bnx2x_init_searcher(bp);
7995 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
7996 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7997 	} else {
7998 		/* Set NIC mode */
7999 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
8000 		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
8001 	}
8002 
8003 	if (!CHIP_IS_E1x(bp)) {
8004 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
8005 
8006 		/* Turn on a single ISR mode in IGU if driver is going to use
8007 		 * INT#x or MSI
8008 		 */
8009 		if (!(bp->flags & USING_MSIX_FLAG))
8010 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8011 		/*
8012 		 * Timers workaround bug: function init part.
8013 		 * Need to wait 20msec after initializing ILT,
8014 		 * needed to make sure there are no requests in
8015 		 * one of the PXP internal queues with "old" ILT addresses
8016 		 */
8017 		msleep(20);
8018 		/*
8019 		 * Master enable - Due to WB DMAE writes performed before this
8020 		 * register is re-initialized as part of the regular function
8021 		 * init
8022 		 */
8023 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8024 		/* Enable the function in IGU */
8025 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8026 	}
8027 
8028 	bp->dmae_ready = 1;
8029 
8030 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8031 
8032 	bnx2x_clean_pglue_errors(bp);
8033 
8034 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8035 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8036 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8037 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8038 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8039 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8040 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8041 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8042 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8043 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8044 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8045 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8046 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8047 
8048 	if (!CHIP_IS_E1x(bp))
8049 		REG_WR(bp, QM_REG_PF_EN, 1);
8050 
8051 	if (!CHIP_IS_E1x(bp)) {
8052 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8053 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8054 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8055 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8056 	}
8057 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
8058 
8059 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
8060 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8061 	REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8062 
8063 	bnx2x_iov_init_dq(bp);
8064 
8065 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8066 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8067 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8068 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8069 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8070 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8071 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8072 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8073 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8074 	if (!CHIP_IS_E1x(bp))
8075 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8076 
8077 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8078 
8079 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8080 
8081 	if (!CHIP_IS_E1x(bp))
8082 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8083 
8084 	if (IS_MF(bp)) {
8085 		if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8086 			REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8087 			REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8088 			       bp->mf_ov);
8089 		}
8090 	}
8091 
8092 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8093 
8094 	/* HC init per function */
8095 	if (bp->common.int_block == INT_BLOCK_HC) {
8096 		if (CHIP_IS_E1H(bp)) {
8097 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8098 
8099 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8100 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8101 		}
8102 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
8103 
8104 	} else {
8105 		int num_segs, sb_idx, prod_offset;
8106 
8107 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8108 
8109 		if (!CHIP_IS_E1x(bp)) {
8110 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8111 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8112 		}
8113 
8114 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8115 
8116 		if (!CHIP_IS_E1x(bp)) {
8117 			int dsb_idx = 0;
8118 			/**
8119 			 * Producer memory:
8120 			 * E2 mode: address 0-135 match to the mapping memory;
8121 			 * 136 - PF0 default prod; 137 - PF1 default prod;
8122 			 * 138 - PF2 default prod; 139 - PF3 default prod;
8123 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
8124 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
8125 			 * 144-147 reserved.
8126 			 *
8127 			 * E1.5 mode - In backward compatible mode;
8128 			 * for non default SB; each even line in the memory
8129 			 * holds the U producer and each odd line hold
8130 			 * the C producer. The first 128 producers are for
8131 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8132 			 * producers are for the DSB for each PF.
8133 			 * Each PF has five segments: (the order inside each
8134 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8135 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8136 			 * 144-147 attn prods;
8137 			 */
8138 			/* non-default-status-blocks */
8139 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8140 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8141 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8142 				prod_offset = (bp->igu_base_sb + sb_idx) *
8143 					num_segs;
8144 
8145 				for (i = 0; i < num_segs; i++) {
8146 					addr = IGU_REG_PROD_CONS_MEMORY +
8147 							(prod_offset + i) * 4;
8148 					REG_WR(bp, addr, 0);
8149 				}
8150 				/* send consumer update with value 0 */
8151 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8152 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8153 				bnx2x_igu_clear_sb(bp,
8154 						   bp->igu_base_sb + sb_idx);
8155 			}
8156 
8157 			/* default-status-blocks */
8158 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8159 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8160 
8161 			if (CHIP_MODE_IS_4_PORT(bp))
8162 				dsb_idx = BP_FUNC(bp);
8163 			else
8164 				dsb_idx = BP_VN(bp);
8165 
8166 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8167 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
8168 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
8169 
8170 			/*
8171 			 * igu prods come in chunks of E1HVN_MAX (4) -
8172 			 * does not matters what is the current chip mode
8173 			 */
8174 			for (i = 0; i < (num_segs * E1HVN_MAX);
8175 			     i += E1HVN_MAX) {
8176 				addr = IGU_REG_PROD_CONS_MEMORY +
8177 							(prod_offset + i)*4;
8178 				REG_WR(bp, addr, 0);
8179 			}
8180 			/* send consumer update with 0 */
8181 			if (CHIP_INT_MODE_IS_BC(bp)) {
8182 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8183 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8184 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8185 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
8186 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8187 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
8188 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8189 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
8190 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8191 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8192 			} else {
8193 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8194 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8195 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8196 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8197 			}
8198 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8199 
8200 			/* !!! These should become driver const once
8201 			   rf-tool supports split-68 const */
8202 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8203 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8204 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8205 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8206 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8207 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8208 		}
8209 	}
8210 
8211 	/* Reset PCIE errors for debug */
8212 	REG_WR(bp, 0x2114, 0xffffffff);
8213 	REG_WR(bp, 0x2120, 0xffffffff);
8214 
8215 	if (CHIP_IS_E1x(bp)) {
8216 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8217 		main_mem_base = HC_REG_MAIN_MEMORY +
8218 				BP_PORT(bp) * (main_mem_size * 4);
8219 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8220 		main_mem_width = 8;
8221 
8222 		val = REG_RD(bp, main_mem_prty_clr);
8223 		if (val)
8224 			DP(NETIF_MSG_HW,
8225 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8226 			   val);
8227 
8228 		/* Clear "false" parity errors in MSI-X table */
8229 		for (i = main_mem_base;
8230 		     i < main_mem_base + main_mem_size * 4;
8231 		     i += main_mem_width) {
8232 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
8233 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8234 					 i, main_mem_width / 4);
8235 		}
8236 		/* Clear HC parity attention */
8237 		REG_RD(bp, main_mem_prty_clr);
8238 	}
8239 
8240 #ifdef BNX2X_STOP_ON_ERROR
8241 	/* Enable STORMs SP logging */
8242 	REG_WR8(bp, BAR_USTRORM_INTMEM +
8243 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8244 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
8245 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8246 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8247 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8248 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
8249 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8250 #endif
8251 
8252 	bnx2x_phy_probe(&bp->link_params);
8253 
8254 	return 0;
8255 }
8256 
8257 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8258 {
8259 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8260 
8261 	if (!CHIP_IS_E1x(bp))
8262 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8263 			       sizeof(struct host_hc_status_block_e2));
8264 	else
8265 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8266 			       sizeof(struct host_hc_status_block_e1x));
8267 
8268 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8269 }
8270 
8271 void bnx2x_free_mem(struct bnx2x *bp)
8272 {
8273 	int i;
8274 
8275 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8276 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8277 
8278 	if (IS_VF(bp))
8279 		return;
8280 
8281 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8282 		       sizeof(struct host_sp_status_block));
8283 
8284 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8285 		       sizeof(struct bnx2x_slowpath));
8286 
8287 	for (i = 0; i < L2_ILT_LINES(bp); i++)
8288 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8289 			       bp->context[i].size);
8290 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8291 
8292 	BNX2X_FREE(bp->ilt->lines);
8293 
8294 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8295 
8296 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8297 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8298 
8299 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8300 
8301 	bnx2x_iov_free_mem(bp);
8302 }
8303 
8304 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8305 {
8306 	if (!CHIP_IS_E1x(bp)) {
8307 		/* size = the status block + ramrod buffers */
8308 		bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8309 						    sizeof(struct host_hc_status_block_e2));
8310 		if (!bp->cnic_sb.e2_sb)
8311 			goto alloc_mem_err;
8312 	} else {
8313 		bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8314 						     sizeof(struct host_hc_status_block_e1x));
8315 		if (!bp->cnic_sb.e1x_sb)
8316 			goto alloc_mem_err;
8317 	}
8318 
8319 	if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8320 		/* allocate searcher T2 table, as it wasn't allocated before */
8321 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8322 		if (!bp->t2)
8323 			goto alloc_mem_err;
8324 	}
8325 
8326 	/* write address to which L5 should insert its values */
8327 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
8328 		&bp->slowpath->drv_info_to_mcp;
8329 
8330 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8331 		goto alloc_mem_err;
8332 
8333 	return 0;
8334 
8335 alloc_mem_err:
8336 	bnx2x_free_mem_cnic(bp);
8337 	BNX2X_ERR("Can't allocate memory\n");
8338 	return -ENOMEM;
8339 }
8340 
8341 int bnx2x_alloc_mem(struct bnx2x *bp)
8342 {
8343 	int i, allocated, context_size;
8344 
8345 	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8346 		/* allocate searcher T2 table */
8347 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8348 		if (!bp->t2)
8349 			goto alloc_mem_err;
8350 	}
8351 
8352 	bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8353 					     sizeof(struct host_sp_status_block));
8354 	if (!bp->def_status_blk)
8355 		goto alloc_mem_err;
8356 
8357 	bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8358 				       sizeof(struct bnx2x_slowpath));
8359 	if (!bp->slowpath)
8360 		goto alloc_mem_err;
8361 
8362 	/* Allocate memory for CDU context:
8363 	 * This memory is allocated separately and not in the generic ILT
8364 	 * functions because CDU differs in few aspects:
8365 	 * 1. There are multiple entities allocating memory for context -
8366 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8367 	 * its own ILT lines.
8368 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
8369 	 * for the other ILT clients), to be efficient we want to support
8370 	 * allocation of sub-page-size in the last entry.
8371 	 * 3. Context pointers are used by the driver to pass to FW / update
8372 	 * the context (for the other ILT clients the pointers are used just to
8373 	 * free the memory during unload).
8374 	 */
8375 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8376 
8377 	for (i = 0, allocated = 0; allocated < context_size; i++) {
8378 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8379 					  (context_size - allocated));
8380 		bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8381 						      bp->context[i].size);
8382 		if (!bp->context[i].vcxt)
8383 			goto alloc_mem_err;
8384 		allocated += bp->context[i].size;
8385 	}
8386 	bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8387 				 GFP_KERNEL);
8388 	if (!bp->ilt->lines)
8389 		goto alloc_mem_err;
8390 
8391 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8392 		goto alloc_mem_err;
8393 
8394 	if (bnx2x_iov_alloc_mem(bp))
8395 		goto alloc_mem_err;
8396 
8397 	/* Slow path ring */
8398 	bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8399 	if (!bp->spq)
8400 		goto alloc_mem_err;
8401 
8402 	/* EQ */
8403 	bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8404 				      BCM_PAGE_SIZE * NUM_EQ_PAGES);
8405 	if (!bp->eq_ring)
8406 		goto alloc_mem_err;
8407 
8408 	return 0;
8409 
8410 alloc_mem_err:
8411 	bnx2x_free_mem(bp);
8412 	BNX2X_ERR("Can't allocate memory\n");
8413 	return -ENOMEM;
8414 }
8415 
8416 /*
8417  * Init service functions
8418  */
8419 
8420 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8421 		      struct bnx2x_vlan_mac_obj *obj, bool set,
8422 		      int mac_type, unsigned long *ramrod_flags)
8423 {
8424 	int rc;
8425 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8426 
8427 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8428 
8429 	/* Fill general parameters */
8430 	ramrod_param.vlan_mac_obj = obj;
8431 	ramrod_param.ramrod_flags = *ramrod_flags;
8432 
8433 	/* Fill a user request section if needed */
8434 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8435 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8436 
8437 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8438 
8439 		/* Set the command: ADD or DEL */
8440 		if (set)
8441 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8442 		else
8443 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8444 	}
8445 
8446 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8447 
8448 	if (rc == -EEXIST) {
8449 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8450 		/* do not treat adding same MAC as error */
8451 		rc = 0;
8452 	} else if (rc < 0)
8453 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8454 
8455 	return rc;
8456 }
8457 
8458 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8459 		       struct bnx2x_vlan_mac_obj *obj, bool set,
8460 		       unsigned long *ramrod_flags)
8461 {
8462 	int rc;
8463 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8464 
8465 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8466 
8467 	/* Fill general parameters */
8468 	ramrod_param.vlan_mac_obj = obj;
8469 	ramrod_param.ramrod_flags = *ramrod_flags;
8470 
8471 	/* Fill a user request section if needed */
8472 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8473 		ramrod_param.user_req.u.vlan.vlan = vlan;
8474 		__set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags);
8475 		/* Set the command: ADD or DEL */
8476 		if (set)
8477 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8478 		else
8479 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8480 	}
8481 
8482 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8483 
8484 	if (rc == -EEXIST) {
8485 		/* Do not treat adding same vlan as error. */
8486 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8487 		rc = 0;
8488 	} else if (rc < 0) {
8489 		BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8490 	}
8491 
8492 	return rc;
8493 }
8494 
8495 void bnx2x_clear_vlan_info(struct bnx2x *bp)
8496 {
8497 	struct bnx2x_vlan_entry *vlan;
8498 
8499 	/* Mark that hw forgot all entries */
8500 	list_for_each_entry(vlan, &bp->vlan_reg, link)
8501 		vlan->hw = false;
8502 
8503 	bp->vlan_cnt = 0;
8504 }
8505 
8506 static int bnx2x_del_all_vlans(struct bnx2x *bp)
8507 {
8508 	struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj;
8509 	unsigned long ramrod_flags = 0, vlan_flags = 0;
8510 	int rc;
8511 
8512 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8513 	__set_bit(BNX2X_VLAN, &vlan_flags);
8514 	rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags);
8515 	if (rc)
8516 		return rc;
8517 
8518 	bnx2x_clear_vlan_info(bp);
8519 
8520 	return 0;
8521 }
8522 
8523 int bnx2x_del_all_macs(struct bnx2x *bp,
8524 		       struct bnx2x_vlan_mac_obj *mac_obj,
8525 		       int mac_type, bool wait_for_comp)
8526 {
8527 	int rc;
8528 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8529 
8530 	/* Wait for completion of requested */
8531 	if (wait_for_comp)
8532 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8533 
8534 	/* Set the mac type of addresses we want to clear */
8535 	__set_bit(mac_type, &vlan_mac_flags);
8536 
8537 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8538 	if (rc < 0)
8539 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8540 
8541 	return rc;
8542 }
8543 
8544 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8545 {
8546 	if (IS_PF(bp)) {
8547 		unsigned long ramrod_flags = 0;
8548 
8549 		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8550 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8551 		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8552 					 &bp->sp_objs->mac_obj, set,
8553 					 BNX2X_ETH_MAC, &ramrod_flags);
8554 	} else { /* vf */
8555 		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8556 					     bp->fp->index, set);
8557 	}
8558 }
8559 
8560 int bnx2x_setup_leading(struct bnx2x *bp)
8561 {
8562 	if (IS_PF(bp))
8563 		return bnx2x_setup_queue(bp, &bp->fp[0], true);
8564 	else /* VF */
8565 		return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8566 }
8567 
8568 /**
8569  * bnx2x_set_int_mode - configure interrupt mode
8570  *
8571  * @bp:		driver handle
8572  *
8573  * In case of MSI-X it will also try to enable MSI-X.
8574  */
8575 int bnx2x_set_int_mode(struct bnx2x *bp)
8576 {
8577 	int rc = 0;
8578 
8579 	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8580 		BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8581 		return -EINVAL;
8582 	}
8583 
8584 	switch (int_mode) {
8585 	case BNX2X_INT_MODE_MSIX:
8586 		/* attempt to enable msix */
8587 		rc = bnx2x_enable_msix(bp);
8588 
8589 		/* msix attained */
8590 		if (!rc)
8591 			return 0;
8592 
8593 		/* vfs use only msix */
8594 		if (rc && IS_VF(bp))
8595 			return rc;
8596 
8597 		/* failed to enable multiple MSI-X */
8598 		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8599 			       bp->num_queues,
8600 			       1 + bp->num_cnic_queues);
8601 
8602 		fallthrough;
8603 	case BNX2X_INT_MODE_MSI:
8604 		bnx2x_enable_msi(bp);
8605 
8606 		fallthrough;
8607 	case BNX2X_INT_MODE_INTX:
8608 		bp->num_ethernet_queues = 1;
8609 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8610 		BNX2X_DEV_INFO("set number of queues to 1\n");
8611 		break;
8612 	default:
8613 		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8614 		return -EINVAL;
8615 	}
8616 	return 0;
8617 }
8618 
8619 /* must be called prior to any HW initializations */
8620 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8621 {
8622 	if (IS_SRIOV(bp))
8623 		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8624 	return L2_ILT_LINES(bp);
8625 }
8626 
8627 void bnx2x_ilt_set_info(struct bnx2x *bp)
8628 {
8629 	struct ilt_client_info *ilt_client;
8630 	struct bnx2x_ilt *ilt = BP_ILT(bp);
8631 	u16 line = 0;
8632 
8633 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8634 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8635 
8636 	/* CDU */
8637 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8638 	ilt_client->client_num = ILT_CLIENT_CDU;
8639 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8640 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8641 	ilt_client->start = line;
8642 	line += bnx2x_cid_ilt_lines(bp);
8643 
8644 	if (CNIC_SUPPORT(bp))
8645 		line += CNIC_ILT_LINES;
8646 	ilt_client->end = line - 1;
8647 
8648 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8649 	   ilt_client->start,
8650 	   ilt_client->end,
8651 	   ilt_client->page_size,
8652 	   ilt_client->flags,
8653 	   ilog2(ilt_client->page_size >> 12));
8654 
8655 	/* QM */
8656 	if (QM_INIT(bp->qm_cid_count)) {
8657 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8658 		ilt_client->client_num = ILT_CLIENT_QM;
8659 		ilt_client->page_size = QM_ILT_PAGE_SZ;
8660 		ilt_client->flags = 0;
8661 		ilt_client->start = line;
8662 
8663 		/* 4 bytes for each cid */
8664 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8665 							 QM_ILT_PAGE_SZ);
8666 
8667 		ilt_client->end = line - 1;
8668 
8669 		DP(NETIF_MSG_IFUP,
8670 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8671 		   ilt_client->start,
8672 		   ilt_client->end,
8673 		   ilt_client->page_size,
8674 		   ilt_client->flags,
8675 		   ilog2(ilt_client->page_size >> 12));
8676 	}
8677 
8678 	if (CNIC_SUPPORT(bp)) {
8679 		/* SRC */
8680 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8681 		ilt_client->client_num = ILT_CLIENT_SRC;
8682 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8683 		ilt_client->flags = 0;
8684 		ilt_client->start = line;
8685 		line += SRC_ILT_LINES;
8686 		ilt_client->end = line - 1;
8687 
8688 		DP(NETIF_MSG_IFUP,
8689 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8690 		   ilt_client->start,
8691 		   ilt_client->end,
8692 		   ilt_client->page_size,
8693 		   ilt_client->flags,
8694 		   ilog2(ilt_client->page_size >> 12));
8695 
8696 		/* TM */
8697 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8698 		ilt_client->client_num = ILT_CLIENT_TM;
8699 		ilt_client->page_size = TM_ILT_PAGE_SZ;
8700 		ilt_client->flags = 0;
8701 		ilt_client->start = line;
8702 		line += TM_ILT_LINES;
8703 		ilt_client->end = line - 1;
8704 
8705 		DP(NETIF_MSG_IFUP,
8706 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8707 		   ilt_client->start,
8708 		   ilt_client->end,
8709 		   ilt_client->page_size,
8710 		   ilt_client->flags,
8711 		   ilog2(ilt_client->page_size >> 12));
8712 	}
8713 
8714 	BUG_ON(line > ILT_MAX_LINES);
8715 }
8716 
8717 /**
8718  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8719  *
8720  * @bp:			driver handle
8721  * @fp:			pointer to fastpath
8722  * @init_params:	pointer to parameters structure
8723  *
8724  * parameters configured:
8725  *      - HC configuration
8726  *      - Queue's CDU context
8727  */
8728 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8729 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8730 {
8731 	u8 cos;
8732 	int cxt_index, cxt_offset;
8733 
8734 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8735 	if (!IS_FCOE_FP(fp)) {
8736 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8737 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8738 
8739 		/* If HC is supported, enable host coalescing in the transition
8740 		 * to INIT state.
8741 		 */
8742 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8743 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8744 
8745 		/* HC rate */
8746 		init_params->rx.hc_rate = bp->rx_ticks ?
8747 			(1000000 / bp->rx_ticks) : 0;
8748 		init_params->tx.hc_rate = bp->tx_ticks ?
8749 			(1000000 / bp->tx_ticks) : 0;
8750 
8751 		/* FW SB ID */
8752 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8753 			fp->fw_sb_id;
8754 
8755 		/*
8756 		 * CQ index among the SB indices: FCoE clients uses the default
8757 		 * SB, therefore it's different.
8758 		 */
8759 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8760 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8761 	}
8762 
8763 	/* set maximum number of COSs supported by this queue */
8764 	init_params->max_cos = fp->max_cos;
8765 
8766 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8767 	    fp->index, init_params->max_cos);
8768 
8769 	/* set the context pointers queue object */
8770 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8771 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8772 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8773 				ILT_PAGE_CIDS);
8774 		init_params->cxts[cos] =
8775 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8776 	}
8777 }
8778 
8779 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8780 			struct bnx2x_queue_state_params *q_params,
8781 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8782 			int tx_index, bool leading)
8783 {
8784 	memset(tx_only_params, 0, sizeof(*tx_only_params));
8785 
8786 	/* Set the command */
8787 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8788 
8789 	/* Set tx-only QUEUE flags: don't zero statistics */
8790 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8791 
8792 	/* choose the index of the cid to send the slow path on */
8793 	tx_only_params->cid_index = tx_index;
8794 
8795 	/* Set general TX_ONLY_SETUP parameters */
8796 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8797 
8798 	/* Set Tx TX_ONLY_SETUP parameters */
8799 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8800 
8801 	DP(NETIF_MSG_IFUP,
8802 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8803 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8804 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8805 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8806 
8807 	/* send the ramrod */
8808 	return bnx2x_queue_state_change(bp, q_params);
8809 }
8810 
8811 /**
8812  * bnx2x_setup_queue - setup queue
8813  *
8814  * @bp:		driver handle
8815  * @fp:		pointer to fastpath
8816  * @leading:	is leading
8817  *
8818  * This function performs 2 steps in a Queue state machine
8819  *      actually: 1) RESET->INIT 2) INIT->SETUP
8820  */
8821 
8822 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8823 		       bool leading)
8824 {
8825 	struct bnx2x_queue_state_params q_params = {NULL};
8826 	struct bnx2x_queue_setup_params *setup_params =
8827 						&q_params.params.setup;
8828 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8829 						&q_params.params.tx_only;
8830 	int rc;
8831 	u8 tx_index;
8832 
8833 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8834 
8835 	/* reset IGU state skip FCoE L2 queue */
8836 	if (!IS_FCOE_FP(fp))
8837 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8838 			     IGU_INT_ENABLE, 0);
8839 
8840 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8841 	/* We want to wait for completion in this context */
8842 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8843 
8844 	/* Prepare the INIT parameters */
8845 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8846 
8847 	/* Set the command */
8848 	q_params.cmd = BNX2X_Q_CMD_INIT;
8849 
8850 	/* Change the state to INIT */
8851 	rc = bnx2x_queue_state_change(bp, &q_params);
8852 	if (rc) {
8853 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8854 		return rc;
8855 	}
8856 
8857 	DP(NETIF_MSG_IFUP, "init complete\n");
8858 
8859 	/* Now move the Queue to the SETUP state... */
8860 	memset(setup_params, 0, sizeof(*setup_params));
8861 
8862 	/* Set QUEUE flags */
8863 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8864 
8865 	/* Set general SETUP parameters */
8866 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8867 				FIRST_TX_COS_INDEX);
8868 
8869 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8870 			    &setup_params->rxq_params);
8871 
8872 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8873 			   FIRST_TX_COS_INDEX);
8874 
8875 	/* Set the command */
8876 	q_params.cmd = BNX2X_Q_CMD_SETUP;
8877 
8878 	if (IS_FCOE_FP(fp))
8879 		bp->fcoe_init = true;
8880 
8881 	/* Change the state to SETUP */
8882 	rc = bnx2x_queue_state_change(bp, &q_params);
8883 	if (rc) {
8884 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8885 		return rc;
8886 	}
8887 
8888 	/* loop through the relevant tx-only indices */
8889 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8890 	      tx_index < fp->max_cos;
8891 	      tx_index++) {
8892 
8893 		/* prepare and send tx-only ramrod*/
8894 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8895 					  tx_only_params, tx_index, leading);
8896 		if (rc) {
8897 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8898 				  fp->index, tx_index);
8899 			return rc;
8900 		}
8901 	}
8902 
8903 	return rc;
8904 }
8905 
8906 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8907 {
8908 	struct bnx2x_fastpath *fp = &bp->fp[index];
8909 	struct bnx2x_fp_txdata *txdata;
8910 	struct bnx2x_queue_state_params q_params = {NULL};
8911 	int rc, tx_index;
8912 
8913 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8914 
8915 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8916 	/* We want to wait for completion in this context */
8917 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8918 
8919 	/* close tx-only connections */
8920 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8921 	     tx_index < fp->max_cos;
8922 	     tx_index++){
8923 
8924 		/* ascertain this is a normal queue*/
8925 		txdata = fp->txdata_ptr[tx_index];
8926 
8927 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8928 							txdata->txq_index);
8929 
8930 		/* send halt terminate on tx-only connection */
8931 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8932 		memset(&q_params.params.terminate, 0,
8933 		       sizeof(q_params.params.terminate));
8934 		q_params.params.terminate.cid_index = tx_index;
8935 
8936 		rc = bnx2x_queue_state_change(bp, &q_params);
8937 		if (rc)
8938 			return rc;
8939 
8940 		/* send halt terminate on tx-only connection */
8941 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8942 		memset(&q_params.params.cfc_del, 0,
8943 		       sizeof(q_params.params.cfc_del));
8944 		q_params.params.cfc_del.cid_index = tx_index;
8945 		rc = bnx2x_queue_state_change(bp, &q_params);
8946 		if (rc)
8947 			return rc;
8948 	}
8949 	/* Stop the primary connection: */
8950 	/* ...halt the connection */
8951 	q_params.cmd = BNX2X_Q_CMD_HALT;
8952 	rc = bnx2x_queue_state_change(bp, &q_params);
8953 	if (rc)
8954 		return rc;
8955 
8956 	/* ...terminate the connection */
8957 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8958 	memset(&q_params.params.terminate, 0,
8959 	       sizeof(q_params.params.terminate));
8960 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8961 	rc = bnx2x_queue_state_change(bp, &q_params);
8962 	if (rc)
8963 		return rc;
8964 	/* ...delete cfc entry */
8965 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8966 	memset(&q_params.params.cfc_del, 0,
8967 	       sizeof(q_params.params.cfc_del));
8968 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8969 	return bnx2x_queue_state_change(bp, &q_params);
8970 }
8971 
8972 static void bnx2x_reset_func(struct bnx2x *bp)
8973 {
8974 	int port = BP_PORT(bp);
8975 	int func = BP_FUNC(bp);
8976 	int i;
8977 
8978 	/* Disable the function in the FW */
8979 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8980 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8981 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8982 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8983 
8984 	/* FP SBs */
8985 	for_each_eth_queue(bp, i) {
8986 		struct bnx2x_fastpath *fp = &bp->fp[i];
8987 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8988 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8989 			   SB_DISABLED);
8990 	}
8991 
8992 	if (CNIC_LOADED(bp))
8993 		/* CNIC SB */
8994 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8995 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8996 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8997 
8998 	/* SP SB */
8999 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
9000 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
9001 		SB_DISABLED);
9002 
9003 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
9004 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
9005 		       0);
9006 
9007 	/* Configure IGU */
9008 	if (bp->common.int_block == INT_BLOCK_HC) {
9009 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
9010 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
9011 	} else {
9012 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
9013 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
9014 	}
9015 
9016 	if (CNIC_LOADED(bp)) {
9017 		/* Disable Timer scan */
9018 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
9019 		/*
9020 		 * Wait for at least 10ms and up to 2 second for the timers
9021 		 * scan to complete
9022 		 */
9023 		for (i = 0; i < 200; i++) {
9024 			usleep_range(10000, 20000);
9025 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
9026 				break;
9027 		}
9028 	}
9029 	/* Clear ILT */
9030 	bnx2x_clear_func_ilt(bp, func);
9031 
9032 	/* Timers workaround bug for E2: if this is vnic-3,
9033 	 * we need to set the entire ilt range for this timers.
9034 	 */
9035 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
9036 		struct ilt_client_info ilt_cli;
9037 		/* use dummy TM client */
9038 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9039 		ilt_cli.start = 0;
9040 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9041 		ilt_cli.client_num = ILT_CLIENT_TM;
9042 
9043 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9044 	}
9045 
9046 	/* this assumes that reset_port() called before reset_func()*/
9047 	if (!CHIP_IS_E1x(bp))
9048 		bnx2x_pf_disable(bp);
9049 
9050 	bp->dmae_ready = 0;
9051 }
9052 
9053 static void bnx2x_reset_port(struct bnx2x *bp)
9054 {
9055 	int port = BP_PORT(bp);
9056 	u32 val;
9057 
9058 	/* Reset physical Link */
9059 	bnx2x__link_reset(bp);
9060 
9061 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9062 
9063 	/* Do not rcv packets to BRB */
9064 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9065 	/* Do not direct rcv packets that are not for MCP to the BRB */
9066 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9067 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9068 
9069 	/* Configure AEU */
9070 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9071 
9072 	msleep(100);
9073 	/* Check for BRB port occupancy */
9074 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9075 	if (val)
9076 		DP(NETIF_MSG_IFDOWN,
9077 		   "BRB1 is not empty  %d blocks are occupied\n", val);
9078 
9079 	/* TODO: Close Doorbell port? */
9080 }
9081 
9082 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9083 {
9084 	struct bnx2x_func_state_params func_params = {NULL};
9085 
9086 	/* Prepare parameters for function state transitions */
9087 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9088 
9089 	func_params.f_obj = &bp->func_obj;
9090 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
9091 
9092 	func_params.params.hw_init.load_phase = load_code;
9093 
9094 	return bnx2x_func_state_change(bp, &func_params);
9095 }
9096 
9097 static int bnx2x_func_stop(struct bnx2x *bp)
9098 {
9099 	struct bnx2x_func_state_params func_params = {NULL};
9100 	int rc;
9101 
9102 	/* Prepare parameters for function state transitions */
9103 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9104 	func_params.f_obj = &bp->func_obj;
9105 	func_params.cmd = BNX2X_F_CMD_STOP;
9106 
9107 	/*
9108 	 * Try to stop the function the 'good way'. If fails (in case
9109 	 * of a parity error during bnx2x_chip_cleanup()) and we are
9110 	 * not in a debug mode, perform a state transaction in order to
9111 	 * enable further HW_RESET transaction.
9112 	 */
9113 	rc = bnx2x_func_state_change(bp, &func_params);
9114 	if (rc) {
9115 #ifdef BNX2X_STOP_ON_ERROR
9116 		return rc;
9117 #else
9118 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9119 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9120 		return bnx2x_func_state_change(bp, &func_params);
9121 #endif
9122 	}
9123 
9124 	return 0;
9125 }
9126 
9127 /**
9128  * bnx2x_send_unload_req - request unload mode from the MCP.
9129  *
9130  * @bp:			driver handle
9131  * @unload_mode:	requested function's unload mode
9132  *
9133  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9134  */
9135 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9136 {
9137 	u32 reset_code = 0;
9138 	int port = BP_PORT(bp);
9139 
9140 	/* Select the UNLOAD request mode */
9141 	if (unload_mode == UNLOAD_NORMAL)
9142 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9143 
9144 	else if (bp->flags & NO_WOL_FLAG)
9145 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9146 
9147 	else if (bp->wol) {
9148 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9149 		u8 *mac_addr = bp->dev->dev_addr;
9150 		struct pci_dev *pdev = bp->pdev;
9151 		u32 val;
9152 		u16 pmc;
9153 
9154 		/* The mac address is written to entries 1-4 to
9155 		 * preserve entry 0 which is used by the PMF
9156 		 */
9157 		u8 entry = (BP_VN(bp) + 1)*8;
9158 
9159 		val = (mac_addr[0] << 8) | mac_addr[1];
9160 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9161 
9162 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9163 		      (mac_addr[4] << 8) | mac_addr[5];
9164 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9165 
9166 		/* Enable the PME and clear the status */
9167 		pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9168 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9169 		pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9170 
9171 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9172 
9173 	} else
9174 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9175 
9176 	/* Send the request to the MCP */
9177 	if (!BP_NOMCP(bp))
9178 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
9179 	else {
9180 		int path = BP_PATH(bp);
9181 
9182 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9183 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9184 		   bnx2x_load_count[path][2]);
9185 		bnx2x_load_count[path][0]--;
9186 		bnx2x_load_count[path][1 + port]--;
9187 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9188 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9189 		   bnx2x_load_count[path][2]);
9190 		if (bnx2x_load_count[path][0] == 0)
9191 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9192 		else if (bnx2x_load_count[path][1 + port] == 0)
9193 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9194 		else
9195 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9196 	}
9197 
9198 	return reset_code;
9199 }
9200 
9201 /**
9202  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9203  *
9204  * @bp:		driver handle
9205  * @keep_link:		true iff link should be kept up
9206  */
9207 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9208 {
9209 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9210 
9211 	/* Report UNLOAD_DONE to MCP */
9212 	if (!BP_NOMCP(bp))
9213 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9214 }
9215 
9216 static int bnx2x_func_wait_started(struct bnx2x *bp)
9217 {
9218 	int tout = 50;
9219 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9220 
9221 	if (!bp->port.pmf)
9222 		return 0;
9223 
9224 	/*
9225 	 * (assumption: No Attention from MCP at this stage)
9226 	 * PMF probably in the middle of TX disable/enable transaction
9227 	 * 1. Sync IRS for default SB
9228 	 * 2. Sync SP queue - this guarantees us that attention handling started
9229 	 * 3. Wait, that TX disable/enable transaction completes
9230 	 *
9231 	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9232 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9233 	 * received completion for the transaction the state is TX_STOPPED.
9234 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9235 	 * transaction.
9236 	 */
9237 
9238 	/* make sure default SB ISR is done */
9239 	if (msix)
9240 		synchronize_irq(bp->msix_table[0].vector);
9241 	else
9242 		synchronize_irq(bp->pdev->irq);
9243 
9244 	flush_workqueue(bnx2x_wq);
9245 	flush_workqueue(bnx2x_iov_wq);
9246 
9247 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9248 				BNX2X_F_STATE_STARTED && tout--)
9249 		msleep(20);
9250 
9251 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9252 						BNX2X_F_STATE_STARTED) {
9253 #ifdef BNX2X_STOP_ON_ERROR
9254 		BNX2X_ERR("Wrong function state\n");
9255 		return -EBUSY;
9256 #else
9257 		/*
9258 		 * Failed to complete the transaction in a "good way"
9259 		 * Force both transactions with CLR bit
9260 		 */
9261 		struct bnx2x_func_state_params func_params = {NULL};
9262 
9263 		DP(NETIF_MSG_IFDOWN,
9264 		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9265 
9266 		func_params.f_obj = &bp->func_obj;
9267 		__set_bit(RAMROD_DRV_CLR_ONLY,
9268 					&func_params.ramrod_flags);
9269 
9270 		/* STARTED-->TX_ST0PPED */
9271 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
9272 		bnx2x_func_state_change(bp, &func_params);
9273 
9274 		/* TX_ST0PPED-->STARTED */
9275 		func_params.cmd = BNX2X_F_CMD_TX_START;
9276 		return bnx2x_func_state_change(bp, &func_params);
9277 #endif
9278 	}
9279 
9280 	return 0;
9281 }
9282 
9283 static void bnx2x_disable_ptp(struct bnx2x *bp)
9284 {
9285 	int port = BP_PORT(bp);
9286 
9287 	/* Disable sending PTP packets to host */
9288 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9289 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9290 
9291 	/* Reset PTP event detection rules */
9292 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9293 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9294 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9295 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9296 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9297 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9298 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9299 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9300 
9301 	/* Disable the PTP feature */
9302 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9303 	       NIG_REG_P0_PTP_EN, 0x0);
9304 }
9305 
9306 /* Called during unload, to stop PTP-related stuff */
9307 static void bnx2x_stop_ptp(struct bnx2x *bp)
9308 {
9309 	/* Cancel PTP work queue. Should be done after the Tx queues are
9310 	 * drained to prevent additional scheduling.
9311 	 */
9312 	cancel_work_sync(&bp->ptp_task);
9313 
9314 	if (bp->ptp_tx_skb) {
9315 		dev_kfree_skb_any(bp->ptp_tx_skb);
9316 		bp->ptp_tx_skb = NULL;
9317 	}
9318 
9319 	/* Disable PTP in HW */
9320 	bnx2x_disable_ptp(bp);
9321 
9322 	DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9323 }
9324 
9325 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9326 {
9327 	int port = BP_PORT(bp);
9328 	int i, rc = 0;
9329 	u8 cos;
9330 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
9331 	u32 reset_code;
9332 
9333 	/* Wait until tx fastpath tasks complete */
9334 	for_each_tx_queue(bp, i) {
9335 		struct bnx2x_fastpath *fp = &bp->fp[i];
9336 
9337 		for_each_cos_in_tx_queue(fp, cos)
9338 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9339 #ifdef BNX2X_STOP_ON_ERROR
9340 		if (rc)
9341 			return;
9342 #endif
9343 	}
9344 
9345 	/* Give HW time to discard old tx messages */
9346 	usleep_range(1000, 2000);
9347 
9348 	/* Clean all ETH MACs */
9349 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9350 				false);
9351 	if (rc < 0)
9352 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9353 
9354 	/* Clean up UC list  */
9355 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9356 				true);
9357 	if (rc < 0)
9358 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9359 			  rc);
9360 
9361 	/* The whole *vlan_obj structure may be not initialized if VLAN
9362 	 * filtering offload is not supported by hardware. Currently this is
9363 	 * true for all hardware covered by CHIP_IS_E1x().
9364 	 */
9365 	if (!CHIP_IS_E1x(bp)) {
9366 		/* Remove all currently configured VLANs */
9367 		rc = bnx2x_del_all_vlans(bp);
9368 		if (rc < 0)
9369 			BNX2X_ERR("Failed to delete all VLANs\n");
9370 	}
9371 
9372 	/* Disable LLH */
9373 	if (!CHIP_IS_E1(bp))
9374 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9375 
9376 	/* Set "drop all" (stop Rx).
9377 	 * We need to take a netif_addr_lock() here in order to prevent
9378 	 * a race between the completion code and this code.
9379 	 */
9380 	netif_addr_lock_bh(bp->dev);
9381 	/* Schedule the rx_mode command */
9382 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9383 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9384 	else if (bp->slowpath)
9385 		bnx2x_set_storm_rx_mode(bp);
9386 
9387 	/* Cleanup multicast configuration */
9388 	rparam.mcast_obj = &bp->mcast_obj;
9389 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9390 	if (rc < 0)
9391 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9392 
9393 	netif_addr_unlock_bh(bp->dev);
9394 
9395 	bnx2x_iov_chip_cleanup(bp);
9396 
9397 	/*
9398 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
9399 	 * this function should perform FUNC, PORT or COMMON HW
9400 	 * reset.
9401 	 */
9402 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
9403 
9404 	/*
9405 	 * (assumption: No Attention from MCP at this stage)
9406 	 * PMF probably in the middle of TX disable/enable transaction
9407 	 */
9408 	rc = bnx2x_func_wait_started(bp);
9409 	if (rc) {
9410 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
9411 #ifdef BNX2X_STOP_ON_ERROR
9412 		return;
9413 #endif
9414 	}
9415 
9416 	/* Close multi and leading connections
9417 	 * Completions for ramrods are collected in a synchronous way
9418 	 */
9419 	for_each_eth_queue(bp, i)
9420 		if (bnx2x_stop_queue(bp, i))
9421 #ifdef BNX2X_STOP_ON_ERROR
9422 			return;
9423 #else
9424 			goto unload_error;
9425 #endif
9426 
9427 	if (CNIC_LOADED(bp)) {
9428 		for_each_cnic_queue(bp, i)
9429 			if (bnx2x_stop_queue(bp, i))
9430 #ifdef BNX2X_STOP_ON_ERROR
9431 				return;
9432 #else
9433 				goto unload_error;
9434 #endif
9435 	}
9436 
9437 	/* If SP settings didn't get completed so far - something
9438 	 * very wrong has happen.
9439 	 */
9440 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9441 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9442 
9443 #ifndef BNX2X_STOP_ON_ERROR
9444 unload_error:
9445 #endif
9446 	rc = bnx2x_func_stop(bp);
9447 	if (rc) {
9448 		BNX2X_ERR("Function stop failed!\n");
9449 #ifdef BNX2X_STOP_ON_ERROR
9450 		return;
9451 #endif
9452 	}
9453 
9454 	/* stop_ptp should be after the Tx queues are drained to prevent
9455 	 * scheduling to the cancelled PTP work queue. It should also be after
9456 	 * function stop ramrod is sent, since as part of this ramrod FW access
9457 	 * PTP registers.
9458 	 */
9459 	if (bp->flags & PTP_SUPPORTED) {
9460 		bnx2x_stop_ptp(bp);
9461 		if (bp->ptp_clock) {
9462 			ptp_clock_unregister(bp->ptp_clock);
9463 			bp->ptp_clock = NULL;
9464 		}
9465 	}
9466 
9467 	/* Disable HW interrupts, NAPI */
9468 	bnx2x_netif_stop(bp, 1);
9469 	/* Delete all NAPI objects */
9470 	bnx2x_del_all_napi(bp);
9471 	if (CNIC_LOADED(bp))
9472 		bnx2x_del_all_napi_cnic(bp);
9473 
9474 	/* Release IRQs */
9475 	bnx2x_free_irq(bp);
9476 
9477 	/* Reset the chip, unless PCI function is offline. If we reach this
9478 	 * point following a PCI error handling, it means device is really
9479 	 * in a bad state and we're about to remove it, so reset the chip
9480 	 * is not a good idea.
9481 	 */
9482 	if (!pci_channel_offline(bp->pdev)) {
9483 		rc = bnx2x_reset_hw(bp, reset_code);
9484 		if (rc)
9485 			BNX2X_ERR("HW_RESET failed\n");
9486 	}
9487 
9488 	/* Report UNLOAD_DONE to MCP */
9489 	bnx2x_send_unload_done(bp, keep_link);
9490 }
9491 
9492 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9493 {
9494 	u32 val;
9495 
9496 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9497 
9498 	if (CHIP_IS_E1(bp)) {
9499 		int port = BP_PORT(bp);
9500 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9501 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
9502 
9503 		val = REG_RD(bp, addr);
9504 		val &= ~(0x300);
9505 		REG_WR(bp, addr, val);
9506 	} else {
9507 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9508 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9509 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9510 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9511 	}
9512 }
9513 
9514 /* Close gates #2, #3 and #4: */
9515 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9516 {
9517 	u32 val;
9518 
9519 	/* Gates #2 and #4a are closed/opened for "not E1" only */
9520 	if (!CHIP_IS_E1(bp)) {
9521 		/* #4 */
9522 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9523 		/* #2 */
9524 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9525 	}
9526 
9527 	/* #3 */
9528 	if (CHIP_IS_E1x(bp)) {
9529 		/* Prevent interrupts from HC on both ports */
9530 		val = REG_RD(bp, HC_REG_CONFIG_1);
9531 		REG_WR(bp, HC_REG_CONFIG_1,
9532 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9533 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9534 
9535 		val = REG_RD(bp, HC_REG_CONFIG_0);
9536 		REG_WR(bp, HC_REG_CONFIG_0,
9537 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9538 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9539 	} else {
9540 		/* Prevent incoming interrupts in IGU */
9541 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9542 
9543 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9544 		       (!close) ?
9545 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9546 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9547 	}
9548 
9549 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9550 		close ? "closing" : "opening");
9551 }
9552 
9553 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9554 
9555 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9556 {
9557 	/* Do some magic... */
9558 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9559 	*magic_val = val & SHARED_MF_CLP_MAGIC;
9560 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9561 }
9562 
9563 /**
9564  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9565  *
9566  * @bp:		driver handle
9567  * @magic_val:	old value of the `magic' bit.
9568  */
9569 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9570 {
9571 	/* Restore the `magic' bit value... */
9572 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9573 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
9574 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9575 }
9576 
9577 /**
9578  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9579  *
9580  * @bp:		driver handle
9581  * @magic_val:	old value of 'magic' bit.
9582  *
9583  * Takes care of CLP configurations.
9584  */
9585 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9586 {
9587 	u32 shmem;
9588 	u32 validity_offset;
9589 
9590 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9591 
9592 	/* Set `magic' bit in order to save MF config */
9593 	if (!CHIP_IS_E1(bp))
9594 		bnx2x_clp_reset_prep(bp, magic_val);
9595 
9596 	/* Get shmem offset */
9597 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9598 	validity_offset =
9599 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9600 
9601 	/* Clear validity map flags */
9602 	if (shmem > 0)
9603 		REG_WR(bp, shmem + validity_offset, 0);
9604 }
9605 
9606 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9607 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9608 
9609 /**
9610  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9611  *
9612  * @bp:	driver handle
9613  */
9614 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9615 {
9616 	/* special handling for emulation and FPGA,
9617 	   wait 10 times longer */
9618 	if (CHIP_REV_IS_SLOW(bp))
9619 		msleep(MCP_ONE_TIMEOUT*10);
9620 	else
9621 		msleep(MCP_ONE_TIMEOUT);
9622 }
9623 
9624 /*
9625  * initializes bp->common.shmem_base and waits for validity signature to appear
9626  */
9627 static int bnx2x_init_shmem(struct bnx2x *bp)
9628 {
9629 	int cnt = 0;
9630 	u32 val = 0;
9631 
9632 	do {
9633 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9634 
9635 		/* If we read all 0xFFs, means we are in PCI error state and
9636 		 * should bail out to avoid crashes on adapter's FW reads.
9637 		 */
9638 		if (bp->common.shmem_base == 0xFFFFFFFF) {
9639 			bp->flags |= NO_MCP_FLAG;
9640 			return -ENODEV;
9641 		}
9642 
9643 		if (bp->common.shmem_base) {
9644 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9645 			if (val & SHR_MEM_VALIDITY_MB)
9646 				return 0;
9647 		}
9648 
9649 		bnx2x_mcp_wait_one(bp);
9650 
9651 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9652 
9653 	BNX2X_ERR("BAD MCP validity signature\n");
9654 
9655 	return -ENODEV;
9656 }
9657 
9658 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9659 {
9660 	int rc = bnx2x_init_shmem(bp);
9661 
9662 	/* Restore the `magic' bit value */
9663 	if (!CHIP_IS_E1(bp))
9664 		bnx2x_clp_reset_done(bp, magic_val);
9665 
9666 	return rc;
9667 }
9668 
9669 static void bnx2x_pxp_prep(struct bnx2x *bp)
9670 {
9671 	if (!CHIP_IS_E1(bp)) {
9672 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9673 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9674 	}
9675 }
9676 
9677 /*
9678  * Reset the whole chip except for:
9679  *      - PCIE core
9680  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9681  *              one reset bit)
9682  *      - IGU
9683  *      - MISC (including AEU)
9684  *      - GRC
9685  *      - RBCN, RBCP
9686  */
9687 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9688 {
9689 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9690 	u32 global_bits2, stay_reset2;
9691 
9692 	/*
9693 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9694 	 * (per chip) blocks.
9695 	 */
9696 	global_bits2 =
9697 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9698 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9699 
9700 	/* Don't reset the following blocks.
9701 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9702 	 *            reset, as in 4 port device they might still be owned
9703 	 *            by the MCP (there is only one leader per path).
9704 	 */
9705 	not_reset_mask1 =
9706 		MISC_REGISTERS_RESET_REG_1_RST_HC |
9707 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9708 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9709 
9710 	not_reset_mask2 =
9711 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9712 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9713 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9714 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9715 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9716 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9717 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9718 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9719 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9720 		MISC_REGISTERS_RESET_REG_2_PGLC |
9721 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9722 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9723 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9724 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9725 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9726 		MISC_REGISTERS_RESET_REG_2_UMAC1;
9727 
9728 	/*
9729 	 * Keep the following blocks in reset:
9730 	 *  - all xxMACs are handled by the bnx2x_link code.
9731 	 */
9732 	stay_reset2 =
9733 		MISC_REGISTERS_RESET_REG_2_XMAC |
9734 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9735 
9736 	/* Full reset masks according to the chip */
9737 	reset_mask1 = 0xffffffff;
9738 
9739 	if (CHIP_IS_E1(bp))
9740 		reset_mask2 = 0xffff;
9741 	else if (CHIP_IS_E1H(bp))
9742 		reset_mask2 = 0x1ffff;
9743 	else if (CHIP_IS_E2(bp))
9744 		reset_mask2 = 0xfffff;
9745 	else /* CHIP_IS_E3 */
9746 		reset_mask2 = 0x3ffffff;
9747 
9748 	/* Don't reset global blocks unless we need to */
9749 	if (!global)
9750 		reset_mask2 &= ~global_bits2;
9751 
9752 	/*
9753 	 * In case of attention in the QM, we need to reset PXP
9754 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9755 	 * because otherwise QM reset would release 'close the gates' shortly
9756 	 * before resetting the PXP, then the PSWRQ would send a write
9757 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9758 	 * read the payload data from PSWWR, but PSWWR would not
9759 	 * respond. The write queue in PGLUE would stuck, dmae commands
9760 	 * would not return. Therefore it's important to reset the second
9761 	 * reset register (containing the
9762 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9763 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9764 	 * bit).
9765 	 */
9766 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9767 	       reset_mask2 & (~not_reset_mask2));
9768 
9769 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9770 	       reset_mask1 & (~not_reset_mask1));
9771 
9772 	barrier();
9773 
9774 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9775 	       reset_mask2 & (~stay_reset2));
9776 
9777 	barrier();
9778 
9779 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9780 }
9781 
9782 /**
9783  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9784  * It should get cleared in no more than 1s.
9785  *
9786  * @bp:	driver handle
9787  *
9788  * It should get cleared in no more than 1s. Returns 0 if
9789  * pending writes bit gets cleared.
9790  */
9791 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9792 {
9793 	u32 cnt = 1000;
9794 	u32 pend_bits = 0;
9795 
9796 	do {
9797 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9798 
9799 		if (pend_bits == 0)
9800 			break;
9801 
9802 		usleep_range(1000, 2000);
9803 	} while (cnt-- > 0);
9804 
9805 	if (cnt <= 0) {
9806 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9807 			  pend_bits);
9808 		return -EBUSY;
9809 	}
9810 
9811 	return 0;
9812 }
9813 
9814 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9815 {
9816 	int cnt = 1000;
9817 	u32 val = 0;
9818 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9819 	u32 tags_63_32 = 0;
9820 
9821 	/* Empty the Tetris buffer, wait for 1s */
9822 	do {
9823 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9824 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9825 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9826 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9827 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9828 		if (CHIP_IS_E3(bp))
9829 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9830 
9831 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9832 		    ((port_is_idle_0 & 0x1) == 0x1) &&
9833 		    ((port_is_idle_1 & 0x1) == 0x1) &&
9834 		    (pgl_exp_rom2 == 0xffffffff) &&
9835 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9836 			break;
9837 		usleep_range(1000, 2000);
9838 	} while (cnt-- > 0);
9839 
9840 	if (cnt <= 0) {
9841 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9842 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9843 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9844 			  pgl_exp_rom2);
9845 		return -EAGAIN;
9846 	}
9847 
9848 	barrier();
9849 
9850 	/* Close gates #2, #3 and #4 */
9851 	bnx2x_set_234_gates(bp, true);
9852 
9853 	/* Poll for IGU VQs for 57712 and newer chips */
9854 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9855 		return -EAGAIN;
9856 
9857 	/* TBD: Indicate that "process kill" is in progress to MCP */
9858 
9859 	/* Clear "unprepared" bit */
9860 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9861 	barrier();
9862 
9863 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9864 	 * PSWHST, GRC and PSWRD Tetris buffer.
9865 	 */
9866 	usleep_range(1000, 2000);
9867 
9868 	/* Prepare to chip reset: */
9869 	/* MCP */
9870 	if (global)
9871 		bnx2x_reset_mcp_prep(bp, &val);
9872 
9873 	/* PXP */
9874 	bnx2x_pxp_prep(bp);
9875 	barrier();
9876 
9877 	/* reset the chip */
9878 	bnx2x_process_kill_chip_reset(bp, global);
9879 	barrier();
9880 
9881 	/* clear errors in PGB */
9882 	if (!CHIP_IS_E1x(bp))
9883 		REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9884 
9885 	/* Recover after reset: */
9886 	/* MCP */
9887 	if (global && bnx2x_reset_mcp_comp(bp, val))
9888 		return -EAGAIN;
9889 
9890 	/* TBD: Add resetting the NO_MCP mode DB here */
9891 
9892 	/* Open the gates #2, #3 and #4 */
9893 	bnx2x_set_234_gates(bp, false);
9894 
9895 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9896 	 * reset state, re-enable attentions. */
9897 
9898 	return 0;
9899 }
9900 
9901 static int bnx2x_leader_reset(struct bnx2x *bp)
9902 {
9903 	int rc = 0;
9904 	bool global = bnx2x_reset_is_global(bp);
9905 	u32 load_code;
9906 
9907 	/* if not going to reset MCP - load "fake" driver to reset HW while
9908 	 * driver is owner of the HW
9909 	 */
9910 	if (!global && !BP_NOMCP(bp)) {
9911 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9912 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9913 		if (!load_code) {
9914 			BNX2X_ERR("MCP response failure, aborting\n");
9915 			rc = -EAGAIN;
9916 			goto exit_leader_reset;
9917 		}
9918 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9919 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9920 			BNX2X_ERR("MCP unexpected resp, aborting\n");
9921 			rc = -EAGAIN;
9922 			goto exit_leader_reset2;
9923 		}
9924 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9925 		if (!load_code) {
9926 			BNX2X_ERR("MCP response failure, aborting\n");
9927 			rc = -EAGAIN;
9928 			goto exit_leader_reset2;
9929 		}
9930 	}
9931 
9932 	/* Try to recover after the failure */
9933 	if (bnx2x_process_kill(bp, global)) {
9934 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9935 			  BP_PATH(bp));
9936 		rc = -EAGAIN;
9937 		goto exit_leader_reset2;
9938 	}
9939 
9940 	/*
9941 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9942 	 * state.
9943 	 */
9944 	bnx2x_set_reset_done(bp);
9945 	if (global)
9946 		bnx2x_clear_reset_global(bp);
9947 
9948 exit_leader_reset2:
9949 	/* unload "fake driver" if it was loaded */
9950 	if (!global && !BP_NOMCP(bp)) {
9951 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9952 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9953 	}
9954 exit_leader_reset:
9955 	bp->is_leader = 0;
9956 	bnx2x_release_leader_lock(bp);
9957 	smp_mb();
9958 	return rc;
9959 }
9960 
9961 static void bnx2x_recovery_failed(struct bnx2x *bp)
9962 {
9963 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9964 
9965 	/* Disconnect this device */
9966 	netif_device_detach(bp->dev);
9967 
9968 	/*
9969 	 * Block ifup for all function on this engine until "process kill"
9970 	 * or power cycle.
9971 	 */
9972 	bnx2x_set_reset_in_progress(bp);
9973 
9974 	/* Shut down the power */
9975 	bnx2x_set_power_state(bp, PCI_D3hot);
9976 
9977 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9978 
9979 	smp_mb();
9980 }
9981 
9982 /*
9983  * Assumption: runs under rtnl lock. This together with the fact
9984  * that it's called only from bnx2x_sp_rtnl() ensure that it
9985  * will never be called when netif_running(bp->dev) is false.
9986  */
9987 static void bnx2x_parity_recover(struct bnx2x *bp)
9988 {
9989 	u32 error_recovered, error_unrecovered;
9990 	bool is_parity, global = false;
9991 #ifdef CONFIG_BNX2X_SRIOV
9992 	int vf_idx;
9993 
9994 	for (vf_idx = 0; vf_idx < bp->requested_nr_virtfn; vf_idx++) {
9995 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
9996 
9997 		if (vf)
9998 			vf->state = VF_LOST;
9999 	}
10000 #endif
10001 	DP(NETIF_MSG_HW, "Handling parity\n");
10002 	while (1) {
10003 		switch (bp->recovery_state) {
10004 		case BNX2X_RECOVERY_INIT:
10005 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
10006 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
10007 			WARN_ON(!is_parity);
10008 
10009 			/* Try to get a LEADER_LOCK HW lock */
10010 			if (bnx2x_trylock_leader_lock(bp)) {
10011 				bnx2x_set_reset_in_progress(bp);
10012 				/*
10013 				 * Check if there is a global attention and if
10014 				 * there was a global attention, set the global
10015 				 * reset bit.
10016 				 */
10017 
10018 				if (global)
10019 					bnx2x_set_reset_global(bp);
10020 
10021 				bp->is_leader = 1;
10022 			}
10023 
10024 			/* Stop the driver */
10025 			/* If interface has been removed - break */
10026 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
10027 				return;
10028 
10029 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
10030 
10031 			/* Ensure "is_leader", MCP command sequence and
10032 			 * "recovery_state" update values are seen on other
10033 			 * CPUs.
10034 			 */
10035 			smp_mb();
10036 			break;
10037 
10038 		case BNX2X_RECOVERY_WAIT:
10039 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
10040 			if (bp->is_leader) {
10041 				int other_engine = BP_PATH(bp) ? 0 : 1;
10042 				bool other_load_status =
10043 					bnx2x_get_load_status(bp, other_engine);
10044 				bool load_status =
10045 					bnx2x_get_load_status(bp, BP_PATH(bp));
10046 				global = bnx2x_reset_is_global(bp);
10047 
10048 				/*
10049 				 * In case of a parity in a global block, let
10050 				 * the first leader that performs a
10051 				 * leader_reset() reset the global blocks in
10052 				 * order to clear global attentions. Otherwise
10053 				 * the gates will remain closed for that
10054 				 * engine.
10055 				 */
10056 				if (load_status ||
10057 				    (global && other_load_status)) {
10058 					/* Wait until all other functions get
10059 					 * down.
10060 					 */
10061 					schedule_delayed_work(&bp->sp_rtnl_task,
10062 								HZ/10);
10063 					return;
10064 				} else {
10065 					/* If all other functions got down -
10066 					 * try to bring the chip back to
10067 					 * normal. In any case it's an exit
10068 					 * point for a leader.
10069 					 */
10070 					if (bnx2x_leader_reset(bp)) {
10071 						bnx2x_recovery_failed(bp);
10072 						return;
10073 					}
10074 
10075 					/* If we are here, means that the
10076 					 * leader has succeeded and doesn't
10077 					 * want to be a leader any more. Try
10078 					 * to continue as a none-leader.
10079 					 */
10080 					break;
10081 				}
10082 			} else { /* non-leader */
10083 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10084 					/* Try to get a LEADER_LOCK HW lock as
10085 					 * long as a former leader may have
10086 					 * been unloaded by the user or
10087 					 * released a leadership by another
10088 					 * reason.
10089 					 */
10090 					if (bnx2x_trylock_leader_lock(bp)) {
10091 						/* I'm a leader now! Restart a
10092 						 * switch case.
10093 						 */
10094 						bp->is_leader = 1;
10095 						break;
10096 					}
10097 
10098 					schedule_delayed_work(&bp->sp_rtnl_task,
10099 								HZ/10);
10100 					return;
10101 
10102 				} else {
10103 					/*
10104 					 * If there was a global attention, wait
10105 					 * for it to be cleared.
10106 					 */
10107 					if (bnx2x_reset_is_global(bp)) {
10108 						schedule_delayed_work(
10109 							&bp->sp_rtnl_task,
10110 							HZ/10);
10111 						return;
10112 					}
10113 
10114 					error_recovered =
10115 					  bp->eth_stats.recoverable_error;
10116 					error_unrecovered =
10117 					  bp->eth_stats.unrecoverable_error;
10118 					bp->recovery_state =
10119 						BNX2X_RECOVERY_NIC_LOADING;
10120 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10121 						error_unrecovered++;
10122 						netdev_err(bp->dev,
10123 							   "Recovery failed. Power cycle needed\n");
10124 						/* Disconnect this device */
10125 						netif_device_detach(bp->dev);
10126 						/* Shut down the power */
10127 						bnx2x_set_power_state(
10128 							bp, PCI_D3hot);
10129 						smp_mb();
10130 					} else {
10131 						bp->recovery_state =
10132 							BNX2X_RECOVERY_DONE;
10133 						error_recovered++;
10134 						smp_mb();
10135 					}
10136 					bp->eth_stats.recoverable_error =
10137 						error_recovered;
10138 					bp->eth_stats.unrecoverable_error =
10139 						error_unrecovered;
10140 
10141 					return;
10142 				}
10143 			}
10144 		default:
10145 			return;
10146 		}
10147 	}
10148 }
10149 
10150 static int bnx2x_udp_port_update(struct bnx2x *bp)
10151 {
10152 	struct bnx2x_func_switch_update_params *switch_update_params;
10153 	struct bnx2x_func_state_params func_params = {NULL};
10154 	u16 vxlan_port = 0, geneve_port = 0;
10155 	int rc;
10156 
10157 	switch_update_params = &func_params.params.switch_update;
10158 
10159 	/* Prepare parameters for function state transitions */
10160 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10161 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10162 
10163 	func_params.f_obj = &bp->func_obj;
10164 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10165 
10166 	/* Function parameters */
10167 	__set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10168 		  &switch_update_params->changes);
10169 
10170 	if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE]) {
10171 		geneve_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10172 		switch_update_params->geneve_dst_port = geneve_port;
10173 	}
10174 
10175 	if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN]) {
10176 		vxlan_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10177 		switch_update_params->vxlan_dst_port = vxlan_port;
10178 	}
10179 
10180 	/* Re-enable inner-rss for the offloaded UDP tunnels */
10181 	__set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10182 		  &switch_update_params->changes);
10183 
10184 	rc = bnx2x_func_state_change(bp, &func_params);
10185 	if (rc)
10186 		BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10187 			  vxlan_port, geneve_port, rc);
10188 	else
10189 		DP(BNX2X_MSG_SP,
10190 		   "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10191 		   vxlan_port, geneve_port);
10192 
10193 	return rc;
10194 }
10195 
10196 static int bnx2x_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
10197 {
10198 	struct bnx2x *bp = netdev_priv(netdev);
10199 	struct udp_tunnel_info ti;
10200 
10201 	udp_tunnel_nic_get_port(netdev, table, 0, &ti);
10202 	bp->udp_tunnel_ports[table] = be16_to_cpu(ti.port);
10203 
10204 	return bnx2x_udp_port_update(bp);
10205 }
10206 
10207 static const struct udp_tunnel_nic_info bnx2x_udp_tunnels = {
10208 	.sync_table	= bnx2x_udp_tunnel_sync,
10209 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
10210 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
10211 	.tables		= {
10212 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
10213 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
10214 	},
10215 };
10216 
10217 static int bnx2x_close(struct net_device *dev);
10218 
10219 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10220  * scheduled on a general queue in order to prevent a dead lock.
10221  */
10222 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10223 {
10224 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10225 
10226 	rtnl_lock();
10227 
10228 	if (!netif_running(bp->dev)) {
10229 		rtnl_unlock();
10230 		return;
10231 	}
10232 
10233 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10234 #ifdef BNX2X_STOP_ON_ERROR
10235 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10236 			  "you will need to reboot when done\n");
10237 		goto sp_rtnl_not_reset;
10238 #endif
10239 		/*
10240 		 * Clear all pending SP commands as we are going to reset the
10241 		 * function anyway.
10242 		 */
10243 		bp->sp_rtnl_state = 0;
10244 		smp_mb();
10245 
10246 		bnx2x_parity_recover(bp);
10247 
10248 		rtnl_unlock();
10249 		return;
10250 	}
10251 
10252 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10253 #ifdef BNX2X_STOP_ON_ERROR
10254 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10255 			  "you will need to reboot when done\n");
10256 		goto sp_rtnl_not_reset;
10257 #endif
10258 
10259 		/*
10260 		 * Clear all pending SP commands as we are going to reset the
10261 		 * function anyway.
10262 		 */
10263 		bp->sp_rtnl_state = 0;
10264 		smp_mb();
10265 
10266 		/* Immediately indicate link as down */
10267 		bp->link_vars.link_up = 0;
10268 		bp->force_link_down = true;
10269 		netif_carrier_off(bp->dev);
10270 		BNX2X_ERR("Indicating link is down due to Tx-timeout\n");
10271 
10272 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10273 		/* When ret value shows failure of allocation failure,
10274 		 * the nic is rebooted again. If open still fails, a error
10275 		 * message to notify the user.
10276 		 */
10277 		if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) {
10278 			bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10279 			if (bnx2x_nic_load(bp, LOAD_NORMAL))
10280 				BNX2X_ERR("Open the NIC fails again!\n");
10281 		}
10282 		rtnl_unlock();
10283 		return;
10284 	}
10285 #ifdef BNX2X_STOP_ON_ERROR
10286 sp_rtnl_not_reset:
10287 #endif
10288 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10289 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10290 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10291 		bnx2x_after_function_update(bp);
10292 	/*
10293 	 * in case of fan failure we need to reset id if the "stop on error"
10294 	 * debug flag is set, since we trying to prevent permanent overheating
10295 	 * damage
10296 	 */
10297 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10298 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10299 		netif_device_detach(bp->dev);
10300 		bnx2x_close(bp->dev);
10301 		rtnl_unlock();
10302 		return;
10303 	}
10304 
10305 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10306 		DP(BNX2X_MSG_SP,
10307 		   "sending set mcast vf pf channel message from rtnl sp-task\n");
10308 		bnx2x_vfpf_set_mcast(bp->dev);
10309 	}
10310 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10311 			       &bp->sp_rtnl_state)){
10312 		if (netif_carrier_ok(bp->dev)) {
10313 			bnx2x_tx_disable(bp);
10314 			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10315 		}
10316 	}
10317 
10318 	if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10319 		DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10320 		bnx2x_set_rx_mode_inner(bp);
10321 	}
10322 
10323 	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10324 			       &bp->sp_rtnl_state))
10325 		bnx2x_pf_set_vfs_vlan(bp);
10326 
10327 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10328 		bnx2x_dcbx_stop_hw_tx(bp);
10329 		bnx2x_dcbx_resume_hw_tx(bp);
10330 	}
10331 
10332 	if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10333 			       &bp->sp_rtnl_state))
10334 		bnx2x_update_mng_version(bp);
10335 
10336 	if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state))
10337 		bnx2x_handle_update_svid_cmd(bp);
10338 
10339 	/* work which needs rtnl lock not-taken (as it takes the lock itself and
10340 	 * can be called from other contexts as well)
10341 	 */
10342 	rtnl_unlock();
10343 
10344 	/* enable SR-IOV if applicable */
10345 	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10346 					       &bp->sp_rtnl_state)) {
10347 		bnx2x_disable_sriov(bp);
10348 		bnx2x_enable_sriov(bp);
10349 	}
10350 }
10351 
10352 static void bnx2x_period_task(struct work_struct *work)
10353 {
10354 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10355 
10356 	if (!netif_running(bp->dev))
10357 		goto period_task_exit;
10358 
10359 	if (CHIP_REV_IS_SLOW(bp)) {
10360 		BNX2X_ERR("period task called on emulation, ignoring\n");
10361 		goto period_task_exit;
10362 	}
10363 
10364 	bnx2x_acquire_phy_lock(bp);
10365 	/*
10366 	 * The barrier is needed to ensure the ordering between the writing to
10367 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10368 	 * the reading here.
10369 	 */
10370 	smp_mb();
10371 	if (bp->port.pmf) {
10372 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
10373 
10374 		/* Re-queue task in 1 sec */
10375 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10376 	}
10377 
10378 	bnx2x_release_phy_lock(bp);
10379 period_task_exit:
10380 	return;
10381 }
10382 
10383 /*
10384  * Init service functions
10385  */
10386 
10387 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10388 {
10389 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10390 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10391 	return base + (BP_ABS_FUNC(bp)) * stride;
10392 }
10393 
10394 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10395 					 u8 port, u32 reset_reg,
10396 					 struct bnx2x_mac_vals *vals)
10397 {
10398 	u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10399 	u32 base_addr;
10400 
10401 	if (!(mask & reset_reg))
10402 		return false;
10403 
10404 	BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10405 	base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10406 	vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10407 	vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10408 	REG_WR(bp, vals->umac_addr[port], 0);
10409 
10410 	return true;
10411 }
10412 
10413 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10414 					struct bnx2x_mac_vals *vals)
10415 {
10416 	u32 val, base_addr, offset, mask, reset_reg;
10417 	bool mac_stopped = false;
10418 	u8 port = BP_PORT(bp);
10419 
10420 	/* reset addresses as they also mark which values were changed */
10421 	memset(vals, 0, sizeof(*vals));
10422 
10423 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10424 
10425 	if (!CHIP_IS_E3(bp)) {
10426 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10427 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10428 		if ((mask & reset_reg) && val) {
10429 			u32 wb_data[2];
10430 			BNX2X_DEV_INFO("Disable bmac Rx\n");
10431 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10432 						: NIG_REG_INGRESS_BMAC0_MEM;
10433 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10434 						: BIGMAC_REGISTER_BMAC_CONTROL;
10435 
10436 			/*
10437 			 * use rd/wr since we cannot use dmae. This is safe
10438 			 * since MCP won't access the bus due to the request
10439 			 * to unload, and no function on the path can be
10440 			 * loaded at this time.
10441 			 */
10442 			wb_data[0] = REG_RD(bp, base_addr + offset);
10443 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10444 			vals->bmac_addr = base_addr + offset;
10445 			vals->bmac_val[0] = wb_data[0];
10446 			vals->bmac_val[1] = wb_data[1];
10447 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10448 			REG_WR(bp, vals->bmac_addr, wb_data[0]);
10449 			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10450 		}
10451 		BNX2X_DEV_INFO("Disable emac Rx\n");
10452 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10453 		vals->emac_val = REG_RD(bp, vals->emac_addr);
10454 		REG_WR(bp, vals->emac_addr, 0);
10455 		mac_stopped = true;
10456 	} else {
10457 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10458 			BNX2X_DEV_INFO("Disable xmac Rx\n");
10459 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10460 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10461 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10462 			       val & ~(1 << 1));
10463 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10464 			       val | (1 << 1));
10465 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10466 			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10467 			REG_WR(bp, vals->xmac_addr, 0);
10468 			mac_stopped = true;
10469 		}
10470 
10471 		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10472 							    reset_reg, vals);
10473 		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10474 							    reset_reg, vals);
10475 	}
10476 
10477 	if (mac_stopped)
10478 		msleep(20);
10479 }
10480 
10481 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10482 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10483 					0x1848 + ((f) << 4))
10484 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
10485 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
10486 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
10487 
10488 #define BCM_5710_UNDI_FW_MF_MAJOR	(0x07)
10489 #define BCM_5710_UNDI_FW_MF_MINOR	(0x08)
10490 #define BCM_5710_UNDI_FW_MF_VERS	(0x05)
10491 
10492 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10493 {
10494 	/* UNDI marks its presence in DORQ -
10495 	 * it initializes CID offset for normal bell to 0x7
10496 	 */
10497 	if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10498 	    MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10499 		return false;
10500 
10501 	if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10502 		BNX2X_DEV_INFO("UNDI previously loaded\n");
10503 		return true;
10504 	}
10505 
10506 	return false;
10507 }
10508 
10509 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10510 {
10511 	u16 rcq, bd;
10512 	u32 addr, tmp_reg;
10513 
10514 	if (BP_FUNC(bp) < 2)
10515 		addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10516 	else
10517 		addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10518 
10519 	tmp_reg = REG_RD(bp, addr);
10520 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10521 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10522 
10523 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10524 	REG_WR(bp, addr, tmp_reg);
10525 
10526 	BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10527 		       BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10528 }
10529 
10530 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10531 {
10532 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10533 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10534 	if (!rc) {
10535 		BNX2X_ERR("MCP response failure, aborting\n");
10536 		return -EBUSY;
10537 	}
10538 
10539 	return 0;
10540 }
10541 
10542 static struct bnx2x_prev_path_list *
10543 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
10544 {
10545 	struct bnx2x_prev_path_list *tmp_list;
10546 
10547 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10548 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10549 		    bp->pdev->bus->number == tmp_list->bus &&
10550 		    BP_PATH(bp) == tmp_list->path)
10551 			return tmp_list;
10552 
10553 	return NULL;
10554 }
10555 
10556 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10557 {
10558 	struct bnx2x_prev_path_list *tmp_list;
10559 	int rc;
10560 
10561 	rc = down_interruptible(&bnx2x_prev_sem);
10562 	if (rc) {
10563 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10564 		return rc;
10565 	}
10566 
10567 	tmp_list = bnx2x_prev_path_get_entry(bp);
10568 	if (tmp_list) {
10569 		tmp_list->aer = 1;
10570 		rc = 0;
10571 	} else {
10572 		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10573 			  BP_PATH(bp));
10574 	}
10575 
10576 	up(&bnx2x_prev_sem);
10577 
10578 	return rc;
10579 }
10580 
10581 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10582 {
10583 	struct bnx2x_prev_path_list *tmp_list;
10584 	bool rc = false;
10585 
10586 	if (down_trylock(&bnx2x_prev_sem))
10587 		return false;
10588 
10589 	tmp_list = bnx2x_prev_path_get_entry(bp);
10590 	if (tmp_list) {
10591 		if (tmp_list->aer) {
10592 			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10593 			   BP_PATH(bp));
10594 		} else {
10595 			rc = true;
10596 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10597 				       BP_PATH(bp));
10598 		}
10599 	}
10600 
10601 	up(&bnx2x_prev_sem);
10602 
10603 	return rc;
10604 }
10605 
10606 bool bnx2x_port_after_undi(struct bnx2x *bp)
10607 {
10608 	struct bnx2x_prev_path_list *entry;
10609 	bool val;
10610 
10611 	down(&bnx2x_prev_sem);
10612 
10613 	entry = bnx2x_prev_path_get_entry(bp);
10614 	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10615 
10616 	up(&bnx2x_prev_sem);
10617 
10618 	return val;
10619 }
10620 
10621 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10622 {
10623 	struct bnx2x_prev_path_list *tmp_list;
10624 	int rc;
10625 
10626 	rc = down_interruptible(&bnx2x_prev_sem);
10627 	if (rc) {
10628 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10629 		return rc;
10630 	}
10631 
10632 	/* Check whether the entry for this path already exists */
10633 	tmp_list = bnx2x_prev_path_get_entry(bp);
10634 	if (tmp_list) {
10635 		if (!tmp_list->aer) {
10636 			BNX2X_ERR("Re-Marking the path.\n");
10637 		} else {
10638 			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10639 			   BP_PATH(bp));
10640 			tmp_list->aer = 0;
10641 		}
10642 		up(&bnx2x_prev_sem);
10643 		return 0;
10644 	}
10645 	up(&bnx2x_prev_sem);
10646 
10647 	/* Create an entry for this path and add it */
10648 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10649 	if (!tmp_list) {
10650 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10651 		return -ENOMEM;
10652 	}
10653 
10654 	tmp_list->bus = bp->pdev->bus->number;
10655 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10656 	tmp_list->path = BP_PATH(bp);
10657 	tmp_list->aer = 0;
10658 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10659 
10660 	rc = down_interruptible(&bnx2x_prev_sem);
10661 	if (rc) {
10662 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10663 		kfree(tmp_list);
10664 	} else {
10665 		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10666 		   BP_PATH(bp));
10667 		list_add(&tmp_list->list, &bnx2x_prev_list);
10668 		up(&bnx2x_prev_sem);
10669 	}
10670 
10671 	return rc;
10672 }
10673 
10674 static int bnx2x_do_flr(struct bnx2x *bp)
10675 {
10676 	struct pci_dev *dev = bp->pdev;
10677 
10678 	if (CHIP_IS_E1x(bp)) {
10679 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10680 		return -EINVAL;
10681 	}
10682 
10683 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10684 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10685 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10686 			  bp->common.bc_ver);
10687 		return -EINVAL;
10688 	}
10689 
10690 	if (!pci_wait_for_pending_transaction(dev))
10691 		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10692 
10693 	BNX2X_DEV_INFO("Initiating FLR\n");
10694 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10695 
10696 	return 0;
10697 }
10698 
10699 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10700 {
10701 	int rc;
10702 
10703 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
10704 
10705 	/* Test if previous unload process was already finished for this path */
10706 	if (bnx2x_prev_is_path_marked(bp))
10707 		return bnx2x_prev_mcp_done(bp);
10708 
10709 	BNX2X_DEV_INFO("Path is unmarked\n");
10710 
10711 	/* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10712 	if (bnx2x_prev_is_after_undi(bp))
10713 		goto out;
10714 
10715 	/* If function has FLR capabilities, and existing FW version matches
10716 	 * the one required, then FLR will be sufficient to clean any residue
10717 	 * left by previous driver
10718 	 */
10719 	rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10720 
10721 	if (!rc) {
10722 		/* fw version is good */
10723 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10724 		rc = bnx2x_do_flr(bp);
10725 	}
10726 
10727 	if (!rc) {
10728 		/* FLR was performed */
10729 		BNX2X_DEV_INFO("FLR successful\n");
10730 		return 0;
10731 	}
10732 
10733 	BNX2X_DEV_INFO("Could not FLR\n");
10734 
10735 out:
10736 	/* Close the MCP request, return failure*/
10737 	rc = bnx2x_prev_mcp_done(bp);
10738 	if (!rc)
10739 		rc = BNX2X_PREV_WAIT_NEEDED;
10740 
10741 	return rc;
10742 }
10743 
10744 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10745 {
10746 	u32 reset_reg, tmp_reg = 0, rc;
10747 	bool prev_undi = false;
10748 	struct bnx2x_mac_vals mac_vals;
10749 
10750 	/* It is possible a previous function received 'common' answer,
10751 	 * but hasn't loaded yet, therefore creating a scenario of
10752 	 * multiple functions receiving 'common' on the same path.
10753 	 */
10754 	BNX2X_DEV_INFO("Common unload Flow\n");
10755 
10756 	memset(&mac_vals, 0, sizeof(mac_vals));
10757 
10758 	if (bnx2x_prev_is_path_marked(bp))
10759 		return bnx2x_prev_mcp_done(bp);
10760 
10761 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10762 
10763 	/* Reset should be performed after BRB is emptied */
10764 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10765 		u32 timer_count = 1000;
10766 
10767 		/* Close the MAC Rx to prevent BRB from filling up */
10768 		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10769 
10770 		/* close LLH filters for both ports towards the BRB */
10771 		bnx2x_set_rx_filter(&bp->link_params, 0);
10772 		bp->link_params.port ^= 1;
10773 		bnx2x_set_rx_filter(&bp->link_params, 0);
10774 		bp->link_params.port ^= 1;
10775 
10776 		/* Check if the UNDI driver was previously loaded */
10777 		if (bnx2x_prev_is_after_undi(bp)) {
10778 			prev_undi = true;
10779 			/* clear the UNDI indication */
10780 			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10781 			/* clear possible idle check errors */
10782 			REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10783 		}
10784 		if (!CHIP_IS_E1x(bp))
10785 			/* block FW from writing to host */
10786 			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10787 
10788 		/* wait until BRB is empty */
10789 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10790 		while (timer_count) {
10791 			u32 prev_brb = tmp_reg;
10792 
10793 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10794 			if (!tmp_reg)
10795 				break;
10796 
10797 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10798 
10799 			/* reset timer as long as BRB actually gets emptied */
10800 			if (prev_brb > tmp_reg)
10801 				timer_count = 1000;
10802 			else
10803 				timer_count--;
10804 
10805 			/* If UNDI resides in memory, manually increment it */
10806 			if (prev_undi)
10807 				bnx2x_prev_unload_undi_inc(bp, 1);
10808 
10809 			udelay(10);
10810 		}
10811 
10812 		if (!timer_count)
10813 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10814 	}
10815 
10816 	/* No packets are in the pipeline, path is ready for reset */
10817 	bnx2x_reset_common(bp);
10818 
10819 	if (mac_vals.xmac_addr)
10820 		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10821 	if (mac_vals.umac_addr[0])
10822 		REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10823 	if (mac_vals.umac_addr[1])
10824 		REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10825 	if (mac_vals.emac_addr)
10826 		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10827 	if (mac_vals.bmac_addr) {
10828 		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10829 		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10830 	}
10831 
10832 	rc = bnx2x_prev_mark_path(bp, prev_undi);
10833 	if (rc) {
10834 		bnx2x_prev_mcp_done(bp);
10835 		return rc;
10836 	}
10837 
10838 	return bnx2x_prev_mcp_done(bp);
10839 }
10840 
10841 static int bnx2x_prev_unload(struct bnx2x *bp)
10842 {
10843 	int time_counter = 10;
10844 	u32 rc, fw, hw_lock_reg, hw_lock_val;
10845 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10846 
10847 	/* clear hw from errors which may have resulted from an interrupted
10848 	 * dmae transaction.
10849 	 */
10850 	bnx2x_clean_pglue_errors(bp);
10851 
10852 	/* Release previously held locks */
10853 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10854 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10855 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10856 
10857 	hw_lock_val = REG_RD(bp, hw_lock_reg);
10858 	if (hw_lock_val) {
10859 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10860 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10861 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10862 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10863 		}
10864 
10865 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10866 		REG_WR(bp, hw_lock_reg, 0xffffffff);
10867 	} else
10868 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10869 
10870 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10871 		BNX2X_DEV_INFO("Release previously held alr\n");
10872 		bnx2x_release_alr(bp);
10873 	}
10874 
10875 	do {
10876 		int aer = 0;
10877 		/* Lock MCP using an unload request */
10878 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10879 		if (!fw) {
10880 			BNX2X_ERR("MCP response failure, aborting\n");
10881 			rc = -EBUSY;
10882 			break;
10883 		}
10884 
10885 		rc = down_interruptible(&bnx2x_prev_sem);
10886 		if (rc) {
10887 			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10888 				  rc);
10889 		} else {
10890 			/* If Path is marked by EEH, ignore unload status */
10891 			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10892 				 bnx2x_prev_path_get_entry(bp)->aer);
10893 			up(&bnx2x_prev_sem);
10894 		}
10895 
10896 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10897 			rc = bnx2x_prev_unload_common(bp);
10898 			break;
10899 		}
10900 
10901 		/* non-common reply from MCP might require looping */
10902 		rc = bnx2x_prev_unload_uncommon(bp);
10903 		if (rc != BNX2X_PREV_WAIT_NEEDED)
10904 			break;
10905 
10906 		msleep(20);
10907 	} while (--time_counter);
10908 
10909 	if (!time_counter || rc) {
10910 		BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10911 		rc = -EPROBE_DEFER;
10912 	}
10913 
10914 	/* Mark function if its port was used to boot from SAN */
10915 	if (bnx2x_port_after_undi(bp))
10916 		bp->link_params.feature_config_flags |=
10917 			FEATURE_CONFIG_BOOT_FROM_SAN;
10918 
10919 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10920 
10921 	return rc;
10922 }
10923 
10924 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10925 {
10926 	u32 val, val2, val3, val4, id, boot_mode;
10927 	u16 pmc;
10928 
10929 	/* Get the chip revision id and number. */
10930 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10931 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10932 	id = ((val & 0xffff) << 16);
10933 	val = REG_RD(bp, MISC_REG_CHIP_REV);
10934 	id |= ((val & 0xf) << 12);
10935 
10936 	/* Metal is read from PCI regs, but we can't access >=0x400 from
10937 	 * the configuration space (so we need to reg_rd)
10938 	 */
10939 	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10940 	id |= (((val >> 24) & 0xf) << 4);
10941 	val = REG_RD(bp, MISC_REG_BOND_ID);
10942 	id |= (val & 0xf);
10943 	bp->common.chip_id = id;
10944 
10945 	/* force 57811 according to MISC register */
10946 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10947 		if (CHIP_IS_57810(bp))
10948 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10949 				(bp->common.chip_id & 0x0000FFFF);
10950 		else if (CHIP_IS_57810_MF(bp))
10951 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10952 				(bp->common.chip_id & 0x0000FFFF);
10953 		bp->common.chip_id |= 0x1;
10954 	}
10955 
10956 	/* Set doorbell size */
10957 	bp->db_size = (1 << BNX2X_DB_SHIFT);
10958 
10959 	if (!CHIP_IS_E1x(bp)) {
10960 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10961 		if ((val & 1) == 0)
10962 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10963 		else
10964 			val = (val >> 1) & 1;
10965 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10966 						       "2_PORT_MODE");
10967 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10968 						 CHIP_2_PORT_MODE;
10969 
10970 		if (CHIP_MODE_IS_4_PORT(bp))
10971 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10972 		else
10973 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10974 	} else {
10975 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10976 		bp->pfid = bp->pf_num;			/* 0..7 */
10977 	}
10978 
10979 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10980 
10981 	bp->link_params.chip_id = bp->common.chip_id;
10982 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10983 
10984 	val = (REG_RD(bp, 0x2874) & 0x55);
10985 	if ((bp->common.chip_id & 0x1) ||
10986 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10987 		bp->flags |= ONE_PORT_FLAG;
10988 		BNX2X_DEV_INFO("single port device\n");
10989 	}
10990 
10991 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10992 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10993 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10994 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10995 		       bp->common.flash_size, bp->common.flash_size);
10996 
10997 	bnx2x_init_shmem(bp);
10998 
10999 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11000 					MISC_REG_GENERIC_CR_1 :
11001 					MISC_REG_GENERIC_CR_0));
11002 
11003 	bp->link_params.shmem_base = bp->common.shmem_base;
11004 	bp->link_params.shmem2_base = bp->common.shmem2_base;
11005 	if (SHMEM2_RD(bp, size) >
11006 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11007 		bp->link_params.lfa_base =
11008 		REG_RD(bp, bp->common.shmem2_base +
11009 		       (u32)offsetof(struct shmem2_region,
11010 				     lfa_host_addr[BP_PORT(bp)]));
11011 	else
11012 		bp->link_params.lfa_base = 0;
11013 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
11014 		       bp->common.shmem_base, bp->common.shmem2_base);
11015 
11016 	if (!bp->common.shmem_base) {
11017 		BNX2X_DEV_INFO("MCP not active\n");
11018 		bp->flags |= NO_MCP_FLAG;
11019 		return;
11020 	}
11021 
11022 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11023 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11024 
11025 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
11026 					SHARED_HW_CFG_LED_MODE_MASK) >>
11027 				       SHARED_HW_CFG_LED_MODE_SHIFT);
11028 
11029 	bp->link_params.feature_config_flags = 0;
11030 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11031 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11032 		bp->link_params.feature_config_flags |=
11033 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11034 	else
11035 		bp->link_params.feature_config_flags &=
11036 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11037 
11038 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11039 	bp->common.bc_ver = val;
11040 	BNX2X_DEV_INFO("bc_ver %X\n", val);
11041 	if (val < BNX2X_BC_VER) {
11042 		/* for now only warn
11043 		 * later we might need to enforce this */
11044 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11045 			  BNX2X_BC_VER, val);
11046 	}
11047 	bp->link_params.feature_config_flags |=
11048 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11049 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11050 
11051 	bp->link_params.feature_config_flags |=
11052 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11053 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11054 	bp->link_params.feature_config_flags |=
11055 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11056 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11057 	bp->link_params.feature_config_flags |=
11058 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11059 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11060 
11061 	bp->link_params.feature_config_flags |=
11062 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11063 		FEATURE_CONFIG_MT_SUPPORT : 0;
11064 
11065 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11066 			BC_SUPPORTS_PFC_STATS : 0;
11067 
11068 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11069 			BC_SUPPORTS_FCOE_FEATURES : 0;
11070 
11071 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11072 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11073 
11074 	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11075 			BC_SUPPORTS_RMMOD_CMD : 0;
11076 
11077 	boot_mode = SHMEM_RD(bp,
11078 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11079 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11080 	switch (boot_mode) {
11081 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11082 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11083 		break;
11084 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11085 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11086 		break;
11087 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11088 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11089 		break;
11090 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11091 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11092 		break;
11093 	}
11094 
11095 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11096 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11097 
11098 	BNX2X_DEV_INFO("%sWoL capable\n",
11099 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
11100 
11101 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11102 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11103 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11104 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11105 
11106 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11107 		 val, val2, val3, val4);
11108 }
11109 
11110 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11111 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11112 
11113 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11114 {
11115 	int pfid = BP_FUNC(bp);
11116 	int igu_sb_id;
11117 	u32 val;
11118 	u8 fid, igu_sb_cnt = 0;
11119 
11120 	bp->igu_base_sb = 0xff;
11121 	if (CHIP_INT_MODE_IS_BC(bp)) {
11122 		int vn = BP_VN(bp);
11123 		igu_sb_cnt = bp->igu_sb_cnt;
11124 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11125 			FP_SB_MAX_E1x;
11126 
11127 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
11128 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11129 
11130 		return 0;
11131 	}
11132 
11133 	/* IGU in normal mode - read CAM */
11134 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11135 	     igu_sb_id++) {
11136 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11137 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11138 			continue;
11139 		fid = IGU_FID(val);
11140 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
11141 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11142 				continue;
11143 			if (IGU_VEC(val) == 0)
11144 				/* default status block */
11145 				bp->igu_dsb_id = igu_sb_id;
11146 			else {
11147 				if (bp->igu_base_sb == 0xff)
11148 					bp->igu_base_sb = igu_sb_id;
11149 				igu_sb_cnt++;
11150 			}
11151 		}
11152 	}
11153 
11154 #ifdef CONFIG_PCI_MSI
11155 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
11156 	 * optional that number of CAM entries will not be equal to the value
11157 	 * advertised in PCI.
11158 	 * Driver should use the minimal value of both as the actual status
11159 	 * block count
11160 	 */
11161 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11162 #endif
11163 
11164 	if (igu_sb_cnt == 0) {
11165 		BNX2X_ERR("CAM configuration error\n");
11166 		return -EINVAL;
11167 	}
11168 
11169 	return 0;
11170 }
11171 
11172 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11173 {
11174 	int cfg_size = 0, idx, port = BP_PORT(bp);
11175 
11176 	/* Aggregation of supported attributes of all external phys */
11177 	bp->port.supported[0] = 0;
11178 	bp->port.supported[1] = 0;
11179 	switch (bp->link_params.num_phys) {
11180 	case 1:
11181 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11182 		cfg_size = 1;
11183 		break;
11184 	case 2:
11185 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11186 		cfg_size = 1;
11187 		break;
11188 	case 3:
11189 		if (bp->link_params.multi_phy_config &
11190 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11191 			bp->port.supported[1] =
11192 				bp->link_params.phy[EXT_PHY1].supported;
11193 			bp->port.supported[0] =
11194 				bp->link_params.phy[EXT_PHY2].supported;
11195 		} else {
11196 			bp->port.supported[0] =
11197 				bp->link_params.phy[EXT_PHY1].supported;
11198 			bp->port.supported[1] =
11199 				bp->link_params.phy[EXT_PHY2].supported;
11200 		}
11201 		cfg_size = 2;
11202 		break;
11203 	}
11204 
11205 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
11206 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11207 			   SHMEM_RD(bp,
11208 			   dev_info.port_hw_config[port].external_phy_config),
11209 			   SHMEM_RD(bp,
11210 			   dev_info.port_hw_config[port].external_phy_config2));
11211 		return;
11212 	}
11213 
11214 	if (CHIP_IS_E3(bp))
11215 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11216 	else {
11217 		switch (switch_cfg) {
11218 		case SWITCH_CFG_1G:
11219 			bp->port.phy_addr = REG_RD(
11220 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11221 			break;
11222 		case SWITCH_CFG_10G:
11223 			bp->port.phy_addr = REG_RD(
11224 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11225 			break;
11226 		default:
11227 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11228 				  bp->port.link_config[0]);
11229 			return;
11230 		}
11231 	}
11232 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11233 	/* mask what we support according to speed_cap_mask per configuration */
11234 	for (idx = 0; idx < cfg_size; idx++) {
11235 		if (!(bp->link_params.speed_cap_mask[idx] &
11236 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11237 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11238 
11239 		if (!(bp->link_params.speed_cap_mask[idx] &
11240 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11241 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11242 
11243 		if (!(bp->link_params.speed_cap_mask[idx] &
11244 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11245 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11246 
11247 		if (!(bp->link_params.speed_cap_mask[idx] &
11248 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11249 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11250 
11251 		if (!(bp->link_params.speed_cap_mask[idx] &
11252 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11253 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11254 						     SUPPORTED_1000baseT_Full);
11255 
11256 		if (!(bp->link_params.speed_cap_mask[idx] &
11257 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11258 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11259 
11260 		if (!(bp->link_params.speed_cap_mask[idx] &
11261 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11262 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11263 
11264 		if (!(bp->link_params.speed_cap_mask[idx] &
11265 					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11266 			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11267 	}
11268 
11269 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11270 		       bp->port.supported[1]);
11271 }
11272 
11273 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11274 {
11275 	u32 link_config, idx, cfg_size = 0;
11276 	bp->port.advertising[0] = 0;
11277 	bp->port.advertising[1] = 0;
11278 	switch (bp->link_params.num_phys) {
11279 	case 1:
11280 	case 2:
11281 		cfg_size = 1;
11282 		break;
11283 	case 3:
11284 		cfg_size = 2;
11285 		break;
11286 	}
11287 	for (idx = 0; idx < cfg_size; idx++) {
11288 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11289 		link_config = bp->port.link_config[idx];
11290 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11291 		case PORT_FEATURE_LINK_SPEED_AUTO:
11292 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11293 				bp->link_params.req_line_speed[idx] =
11294 					SPEED_AUTO_NEG;
11295 				bp->port.advertising[idx] |=
11296 					bp->port.supported[idx];
11297 				if (bp->link_params.phy[EXT_PHY1].type ==
11298 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11299 					bp->port.advertising[idx] |=
11300 					(SUPPORTED_100baseT_Half |
11301 					 SUPPORTED_100baseT_Full);
11302 			} else {
11303 				/* force 10G, no AN */
11304 				bp->link_params.req_line_speed[idx] =
11305 					SPEED_10000;
11306 				bp->port.advertising[idx] |=
11307 					(ADVERTISED_10000baseT_Full |
11308 					 ADVERTISED_FIBRE);
11309 				continue;
11310 			}
11311 			break;
11312 
11313 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
11314 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11315 				bp->link_params.req_line_speed[idx] =
11316 					SPEED_10;
11317 				bp->port.advertising[idx] |=
11318 					(ADVERTISED_10baseT_Full |
11319 					 ADVERTISED_TP);
11320 			} else {
11321 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11322 					    link_config,
11323 				    bp->link_params.speed_cap_mask[idx]);
11324 				return;
11325 			}
11326 			break;
11327 
11328 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
11329 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11330 				bp->link_params.req_line_speed[idx] =
11331 					SPEED_10;
11332 				bp->link_params.req_duplex[idx] =
11333 					DUPLEX_HALF;
11334 				bp->port.advertising[idx] |=
11335 					(ADVERTISED_10baseT_Half |
11336 					 ADVERTISED_TP);
11337 			} else {
11338 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11339 					    link_config,
11340 					  bp->link_params.speed_cap_mask[idx]);
11341 				return;
11342 			}
11343 			break;
11344 
11345 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
11346 			if (bp->port.supported[idx] &
11347 			    SUPPORTED_100baseT_Full) {
11348 				bp->link_params.req_line_speed[idx] =
11349 					SPEED_100;
11350 				bp->port.advertising[idx] |=
11351 					(ADVERTISED_100baseT_Full |
11352 					 ADVERTISED_TP);
11353 			} else {
11354 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11355 					    link_config,
11356 					  bp->link_params.speed_cap_mask[idx]);
11357 				return;
11358 			}
11359 			break;
11360 
11361 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
11362 			if (bp->port.supported[idx] &
11363 			    SUPPORTED_100baseT_Half) {
11364 				bp->link_params.req_line_speed[idx] =
11365 								SPEED_100;
11366 				bp->link_params.req_duplex[idx] =
11367 								DUPLEX_HALF;
11368 				bp->port.advertising[idx] |=
11369 					(ADVERTISED_100baseT_Half |
11370 					 ADVERTISED_TP);
11371 			} else {
11372 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11373 				    link_config,
11374 				    bp->link_params.speed_cap_mask[idx]);
11375 				return;
11376 			}
11377 			break;
11378 
11379 		case PORT_FEATURE_LINK_SPEED_1G:
11380 			if (bp->port.supported[idx] &
11381 			    SUPPORTED_1000baseT_Full) {
11382 				bp->link_params.req_line_speed[idx] =
11383 					SPEED_1000;
11384 				bp->port.advertising[idx] |=
11385 					(ADVERTISED_1000baseT_Full |
11386 					 ADVERTISED_TP);
11387 			} else if (bp->port.supported[idx] &
11388 				   SUPPORTED_1000baseKX_Full) {
11389 				bp->link_params.req_line_speed[idx] =
11390 					SPEED_1000;
11391 				bp->port.advertising[idx] |=
11392 					ADVERTISED_1000baseKX_Full;
11393 			} else {
11394 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11395 				    link_config,
11396 				    bp->link_params.speed_cap_mask[idx]);
11397 				return;
11398 			}
11399 			break;
11400 
11401 		case PORT_FEATURE_LINK_SPEED_2_5G:
11402 			if (bp->port.supported[idx] &
11403 			    SUPPORTED_2500baseX_Full) {
11404 				bp->link_params.req_line_speed[idx] =
11405 					SPEED_2500;
11406 				bp->port.advertising[idx] |=
11407 					(ADVERTISED_2500baseX_Full |
11408 						ADVERTISED_TP);
11409 			} else {
11410 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11411 				    link_config,
11412 				    bp->link_params.speed_cap_mask[idx]);
11413 				return;
11414 			}
11415 			break;
11416 
11417 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
11418 			if (bp->port.supported[idx] &
11419 			    SUPPORTED_10000baseT_Full) {
11420 				bp->link_params.req_line_speed[idx] =
11421 					SPEED_10000;
11422 				bp->port.advertising[idx] |=
11423 					(ADVERTISED_10000baseT_Full |
11424 						ADVERTISED_FIBRE);
11425 			} else if (bp->port.supported[idx] &
11426 				   SUPPORTED_10000baseKR_Full) {
11427 				bp->link_params.req_line_speed[idx] =
11428 					SPEED_10000;
11429 				bp->port.advertising[idx] |=
11430 					(ADVERTISED_10000baseKR_Full |
11431 						ADVERTISED_FIBRE);
11432 			} else {
11433 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11434 				    link_config,
11435 				    bp->link_params.speed_cap_mask[idx]);
11436 				return;
11437 			}
11438 			break;
11439 		case PORT_FEATURE_LINK_SPEED_20G:
11440 			bp->link_params.req_line_speed[idx] = SPEED_20000;
11441 
11442 			break;
11443 		default:
11444 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11445 				  link_config);
11446 				bp->link_params.req_line_speed[idx] =
11447 							SPEED_AUTO_NEG;
11448 				bp->port.advertising[idx] =
11449 						bp->port.supported[idx];
11450 			break;
11451 		}
11452 
11453 		bp->link_params.req_flow_ctrl[idx] = (link_config &
11454 					 PORT_FEATURE_FLOW_CONTROL_MASK);
11455 		if (bp->link_params.req_flow_ctrl[idx] ==
11456 		    BNX2X_FLOW_CTRL_AUTO) {
11457 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11458 				bp->link_params.req_flow_ctrl[idx] =
11459 							BNX2X_FLOW_CTRL_NONE;
11460 			else
11461 				bnx2x_set_requested_fc(bp);
11462 		}
11463 
11464 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11465 			       bp->link_params.req_line_speed[idx],
11466 			       bp->link_params.req_duplex[idx],
11467 			       bp->link_params.req_flow_ctrl[idx],
11468 			       bp->port.advertising[idx]);
11469 	}
11470 }
11471 
11472 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11473 {
11474 	__be16 mac_hi_be = cpu_to_be16(mac_hi);
11475 	__be32 mac_lo_be = cpu_to_be32(mac_lo);
11476 	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11477 	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11478 }
11479 
11480 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11481 {
11482 	int port = BP_PORT(bp);
11483 	u32 config;
11484 	u32 ext_phy_type, ext_phy_config, eee_mode;
11485 
11486 	bp->link_params.bp = bp;
11487 	bp->link_params.port = port;
11488 
11489 	bp->link_params.lane_config =
11490 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11491 
11492 	bp->link_params.speed_cap_mask[0] =
11493 		SHMEM_RD(bp,
11494 			 dev_info.port_hw_config[port].speed_capability_mask) &
11495 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11496 	bp->link_params.speed_cap_mask[1] =
11497 		SHMEM_RD(bp,
11498 			 dev_info.port_hw_config[port].speed_capability_mask2) &
11499 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11500 	bp->port.link_config[0] =
11501 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11502 
11503 	bp->port.link_config[1] =
11504 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11505 
11506 	bp->link_params.multi_phy_config =
11507 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11508 	/* If the device is capable of WoL, set the default state according
11509 	 * to the HW
11510 	 */
11511 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11512 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11513 		   (config & PORT_FEATURE_WOL_ENABLED));
11514 
11515 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11516 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11517 		bp->flags |= NO_ISCSI_FLAG;
11518 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11519 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11520 		bp->flags |= NO_FCOE_FLAG;
11521 
11522 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11523 		       bp->link_params.lane_config,
11524 		       bp->link_params.speed_cap_mask[0],
11525 		       bp->port.link_config[0]);
11526 
11527 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
11528 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
11529 	bnx2x_phy_probe(&bp->link_params);
11530 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11531 
11532 	bnx2x_link_settings_requested(bp);
11533 
11534 	/*
11535 	 * If connected directly, work with the internal PHY, otherwise, work
11536 	 * with the external PHY
11537 	 */
11538 	ext_phy_config =
11539 		SHMEM_RD(bp,
11540 			 dev_info.port_hw_config[port].external_phy_config);
11541 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11542 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11543 		bp->mdio.prtad = bp->port.phy_addr;
11544 
11545 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11546 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11547 		bp->mdio.prtad =
11548 			XGXS_EXT_PHY_ADDR(ext_phy_config);
11549 
11550 	/* Configure link feature according to nvram value */
11551 	eee_mode = (((SHMEM_RD(bp, dev_info.
11552 		      port_feature_config[port].eee_power_mode)) &
11553 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11554 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11555 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11556 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11557 					   EEE_MODE_ENABLE_LPI |
11558 					   EEE_MODE_OUTPUT_TIME;
11559 	} else {
11560 		bp->link_params.eee_mode = 0;
11561 	}
11562 }
11563 
11564 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11565 {
11566 	u32 no_flags = NO_ISCSI_FLAG;
11567 	int port = BP_PORT(bp);
11568 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11569 				drv_lic_key[port].max_iscsi_conn);
11570 
11571 	if (!CNIC_SUPPORT(bp)) {
11572 		bp->flags |= no_flags;
11573 		return;
11574 	}
11575 
11576 	/* Get the number of maximum allowed iSCSI connections */
11577 	bp->cnic_eth_dev.max_iscsi_conn =
11578 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11579 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11580 
11581 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11582 		       bp->cnic_eth_dev.max_iscsi_conn);
11583 
11584 	/*
11585 	 * If maximum allowed number of connections is zero -
11586 	 * disable the feature.
11587 	 */
11588 	if (!bp->cnic_eth_dev.max_iscsi_conn)
11589 		bp->flags |= no_flags;
11590 }
11591 
11592 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11593 {
11594 	/* Port info */
11595 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11596 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11597 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11598 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11599 
11600 	/* Node info */
11601 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11602 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11603 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11604 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11605 }
11606 
11607 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11608 {
11609 	u8 count = 0;
11610 
11611 	if (IS_MF(bp)) {
11612 		u8 fid;
11613 
11614 		/* iterate over absolute function ids for this path: */
11615 		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11616 			if (IS_MF_SD(bp)) {
11617 				u32 cfg = MF_CFG_RD(bp,
11618 						    func_mf_config[fid].config);
11619 
11620 				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11621 				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11622 					    FUNC_MF_CFG_PROTOCOL_FCOE))
11623 					count++;
11624 			} else {
11625 				u32 cfg = MF_CFG_RD(bp,
11626 						    func_ext_config[fid].
11627 								      func_cfg);
11628 
11629 				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11630 				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11631 					count++;
11632 			}
11633 		}
11634 	} else { /* SF */
11635 		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11636 
11637 		for (port = 0; port < port_cnt; port++) {
11638 			u32 lic = SHMEM_RD(bp,
11639 					   drv_lic_key[port].max_fcoe_conn) ^
11640 				  FW_ENCODE_32BIT_PATTERN;
11641 			if (lic)
11642 				count++;
11643 		}
11644 	}
11645 
11646 	return count;
11647 }
11648 
11649 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11650 {
11651 	int port = BP_PORT(bp);
11652 	int func = BP_ABS_FUNC(bp);
11653 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11654 				drv_lic_key[port].max_fcoe_conn);
11655 	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11656 
11657 	if (!CNIC_SUPPORT(bp)) {
11658 		bp->flags |= NO_FCOE_FLAG;
11659 		return;
11660 	}
11661 
11662 	/* Get the number of maximum allowed FCoE connections */
11663 	bp->cnic_eth_dev.max_fcoe_conn =
11664 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11665 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11666 
11667 	/* Calculate the number of maximum allowed FCoE tasks */
11668 	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11669 
11670 	/* check if FCoE resources must be shared between different functions */
11671 	if (num_fcoe_func)
11672 		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11673 
11674 	/* Read the WWN: */
11675 	if (!IS_MF(bp)) {
11676 		/* Port info */
11677 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11678 			SHMEM_RD(bp,
11679 				 dev_info.port_hw_config[port].
11680 				 fcoe_wwn_port_name_upper);
11681 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11682 			SHMEM_RD(bp,
11683 				 dev_info.port_hw_config[port].
11684 				 fcoe_wwn_port_name_lower);
11685 
11686 		/* Node info */
11687 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11688 			SHMEM_RD(bp,
11689 				 dev_info.port_hw_config[port].
11690 				 fcoe_wwn_node_name_upper);
11691 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11692 			SHMEM_RD(bp,
11693 				 dev_info.port_hw_config[port].
11694 				 fcoe_wwn_node_name_lower);
11695 	} else if (!IS_MF_SD(bp)) {
11696 		/* Read the WWN info only if the FCoE feature is enabled for
11697 		 * this function.
11698 		 */
11699 		if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11700 			bnx2x_get_ext_wwn_info(bp, func);
11701 	} else {
11702 		if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11703 			bnx2x_get_ext_wwn_info(bp, func);
11704 	}
11705 
11706 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11707 
11708 	/*
11709 	 * If maximum allowed number of connections is zero -
11710 	 * disable the feature.
11711 	 */
11712 	if (!bp->cnic_eth_dev.max_fcoe_conn) {
11713 		bp->flags |= NO_FCOE_FLAG;
11714 		eth_zero_addr(bp->fip_mac);
11715 	}
11716 }
11717 
11718 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11719 {
11720 	/*
11721 	 * iSCSI may be dynamically disabled but reading
11722 	 * info here we will decrease memory usage by driver
11723 	 * if the feature is disabled for good
11724 	 */
11725 	bnx2x_get_iscsi_info(bp);
11726 	bnx2x_get_fcoe_info(bp);
11727 }
11728 
11729 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11730 {
11731 	u32 val, val2;
11732 	int func = BP_ABS_FUNC(bp);
11733 	int port = BP_PORT(bp);
11734 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11735 	u8 *fip_mac = bp->fip_mac;
11736 
11737 	if (IS_MF(bp)) {
11738 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11739 		 * FCoE MAC then the appropriate feature should be disabled.
11740 		 * In non SD mode features configuration comes from struct
11741 		 * func_ext_config.
11742 		 */
11743 		if (!IS_MF_SD(bp)) {
11744 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11745 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11746 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11747 						 iscsi_mac_addr_upper);
11748 				val = MF_CFG_RD(bp, func_ext_config[func].
11749 						iscsi_mac_addr_lower);
11750 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11751 				BNX2X_DEV_INFO
11752 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11753 			} else {
11754 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11755 			}
11756 
11757 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11758 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11759 						 fcoe_mac_addr_upper);
11760 				val = MF_CFG_RD(bp, func_ext_config[func].
11761 						fcoe_mac_addr_lower);
11762 				bnx2x_set_mac_buf(fip_mac, val, val2);
11763 				BNX2X_DEV_INFO
11764 					("Read FCoE L2 MAC: %pM\n", fip_mac);
11765 			} else {
11766 				bp->flags |= NO_FCOE_FLAG;
11767 			}
11768 
11769 			bp->mf_ext_config = cfg;
11770 
11771 		} else { /* SD MODE */
11772 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11773 				/* use primary mac as iscsi mac */
11774 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11775 
11776 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11777 				BNX2X_DEV_INFO
11778 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11779 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11780 				/* use primary mac as fip mac */
11781 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11782 				BNX2X_DEV_INFO("SD FCoE MODE\n");
11783 				BNX2X_DEV_INFO
11784 					("Read FIP MAC: %pM\n", fip_mac);
11785 			}
11786 		}
11787 
11788 		/* If this is a storage-only interface, use SAN mac as
11789 		 * primary MAC. Notice that for SD this is already the case,
11790 		 * as the SAN mac was copied from the primary MAC.
11791 		 */
11792 		if (IS_MF_FCOE_AFEX(bp))
11793 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11794 	} else {
11795 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11796 				iscsi_mac_upper);
11797 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11798 			       iscsi_mac_lower);
11799 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11800 
11801 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11802 				fcoe_fip_mac_upper);
11803 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11804 			       fcoe_fip_mac_lower);
11805 		bnx2x_set_mac_buf(fip_mac, val, val2);
11806 	}
11807 
11808 	/* Disable iSCSI OOO if MAC configuration is invalid. */
11809 	if (!is_valid_ether_addr(iscsi_mac)) {
11810 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11811 		eth_zero_addr(iscsi_mac);
11812 	}
11813 
11814 	/* Disable FCoE if MAC configuration is invalid. */
11815 	if (!is_valid_ether_addr(fip_mac)) {
11816 		bp->flags |= NO_FCOE_FLAG;
11817 		eth_zero_addr(bp->fip_mac);
11818 	}
11819 }
11820 
11821 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11822 {
11823 	u32 val, val2;
11824 	int func = BP_ABS_FUNC(bp);
11825 	int port = BP_PORT(bp);
11826 
11827 	/* Zero primary MAC configuration */
11828 	eth_zero_addr(bp->dev->dev_addr);
11829 
11830 	if (BP_NOMCP(bp)) {
11831 		BNX2X_ERROR("warning: random MAC workaround active\n");
11832 		eth_hw_addr_random(bp->dev);
11833 	} else if (IS_MF(bp)) {
11834 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11835 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11836 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11837 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11838 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11839 
11840 		if (CNIC_SUPPORT(bp))
11841 			bnx2x_get_cnic_mac_hwinfo(bp);
11842 	} else {
11843 		/* in SF read MACs from port configuration */
11844 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11845 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11846 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11847 
11848 		if (CNIC_SUPPORT(bp))
11849 			bnx2x_get_cnic_mac_hwinfo(bp);
11850 	}
11851 
11852 	if (!BP_NOMCP(bp)) {
11853 		/* Read physical port identifier from shmem */
11854 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11855 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11856 		bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11857 		bp->flags |= HAS_PHYS_PORT_ID;
11858 	}
11859 
11860 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11861 
11862 	if (!is_valid_ether_addr(bp->dev->dev_addr))
11863 		dev_err(&bp->pdev->dev,
11864 			"bad Ethernet MAC address configuration: %pM\n"
11865 			"change it manually before bringing up the appropriate network interface\n",
11866 			bp->dev->dev_addr);
11867 }
11868 
11869 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11870 {
11871 	int tmp;
11872 	u32 cfg;
11873 
11874 	if (IS_VF(bp))
11875 		return false;
11876 
11877 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11878 		/* Take function: tmp = func */
11879 		tmp = BP_ABS_FUNC(bp);
11880 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11881 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11882 	} else {
11883 		/* Take port: tmp = port */
11884 		tmp = BP_PORT(bp);
11885 		cfg = SHMEM_RD(bp,
11886 			       dev_info.port_hw_config[tmp].generic_features);
11887 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11888 	}
11889 	return cfg;
11890 }
11891 
11892 static void validate_set_si_mode(struct bnx2x *bp)
11893 {
11894 	u8 func = BP_ABS_FUNC(bp);
11895 	u32 val;
11896 
11897 	val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11898 
11899 	/* check for legal mac (upper bytes) */
11900 	if (val != 0xffff) {
11901 		bp->mf_mode = MULTI_FUNCTION_SI;
11902 		bp->mf_config[BP_VN(bp)] =
11903 			MF_CFG_RD(bp, func_mf_config[func].config);
11904 	} else
11905 		BNX2X_DEV_INFO("illegal MAC address for SI\n");
11906 }
11907 
11908 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11909 {
11910 	int /*abs*/func = BP_ABS_FUNC(bp);
11911 	int vn;
11912 	u32 val = 0, val2 = 0;
11913 	int rc = 0;
11914 
11915 	/* Validate that chip access is feasible */
11916 	if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11917 		dev_err(&bp->pdev->dev,
11918 			"Chip read returns all Fs. Preventing probe from continuing\n");
11919 		return -EINVAL;
11920 	}
11921 
11922 	bnx2x_get_common_hwinfo(bp);
11923 
11924 	/*
11925 	 * initialize IGU parameters
11926 	 */
11927 	if (CHIP_IS_E1x(bp)) {
11928 		bp->common.int_block = INT_BLOCK_HC;
11929 
11930 		bp->igu_dsb_id = DEF_SB_IGU_ID;
11931 		bp->igu_base_sb = 0;
11932 	} else {
11933 		bp->common.int_block = INT_BLOCK_IGU;
11934 
11935 		/* do not allow device reset during IGU info processing */
11936 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11937 
11938 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11939 
11940 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11941 			int tout = 5000;
11942 
11943 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11944 
11945 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11946 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11947 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11948 
11949 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11950 				tout--;
11951 				usleep_range(1000, 2000);
11952 			}
11953 
11954 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11955 				dev_err(&bp->pdev->dev,
11956 					"FORCING Normal Mode failed!!!\n");
11957 				bnx2x_release_hw_lock(bp,
11958 						      HW_LOCK_RESOURCE_RESET);
11959 				return -EPERM;
11960 			}
11961 		}
11962 
11963 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11964 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11965 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11966 		} else
11967 			BNX2X_DEV_INFO("IGU Normal Mode\n");
11968 
11969 		rc = bnx2x_get_igu_cam_info(bp);
11970 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11971 		if (rc)
11972 			return rc;
11973 	}
11974 
11975 	/*
11976 	 * set base FW non-default (fast path) status block id, this value is
11977 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
11978 	 * determine the id used by the FW.
11979 	 */
11980 	if (CHIP_IS_E1x(bp))
11981 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11982 	else /*
11983 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11984 	      * the same queue are indicated on the same IGU SB). So we prefer
11985 	      * FW and IGU SBs to be the same value.
11986 	      */
11987 		bp->base_fw_ndsb = bp->igu_base_sb;
11988 
11989 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11990 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11991 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
11992 
11993 	/*
11994 	 * Initialize MF configuration
11995 	 */
11996 	bp->mf_ov = 0;
11997 	bp->mf_mode = 0;
11998 	bp->mf_sub_mode = 0;
11999 	vn = BP_VN(bp);
12000 
12001 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12002 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12003 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
12004 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12005 
12006 		if (SHMEM2_HAS(bp, mf_cfg_addr))
12007 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12008 		else
12009 			bp->common.mf_cfg_base = bp->common.shmem_base +
12010 				offsetof(struct shmem_region, func_mb) +
12011 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12012 		/*
12013 		 * get mf configuration:
12014 		 * 1. Existence of MF configuration
12015 		 * 2. MAC address must be legal (check only upper bytes)
12016 		 *    for  Switch-Independent mode;
12017 		 *    OVLAN must be legal for Switch-Dependent mode
12018 		 * 3. SF_MODE configures specific MF mode
12019 		 */
12020 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12021 			/* get mf configuration */
12022 			val = SHMEM_RD(bp,
12023 				       dev_info.shared_feature_config.config);
12024 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12025 
12026 			switch (val) {
12027 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12028 				validate_set_si_mode(bp);
12029 				break;
12030 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12031 				if ((!CHIP_IS_E1x(bp)) &&
12032 				    (MF_CFG_RD(bp, func_mf_config[func].
12033 					       mac_upper) != 0xffff) &&
12034 				    (SHMEM2_HAS(bp,
12035 						afex_driver_support))) {
12036 					bp->mf_mode = MULTI_FUNCTION_AFEX;
12037 					bp->mf_config[vn] = MF_CFG_RD(bp,
12038 						func_mf_config[func].config);
12039 				} else {
12040 					BNX2X_DEV_INFO("can not configure afex mode\n");
12041 				}
12042 				break;
12043 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12044 				/* get OV configuration */
12045 				val = MF_CFG_RD(bp,
12046 					func_mf_config[FUNC_0].e1hov_tag);
12047 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12048 
12049 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12050 					bp->mf_mode = MULTI_FUNCTION_SD;
12051 					bp->mf_config[vn] = MF_CFG_RD(bp,
12052 						func_mf_config[func].config);
12053 				} else
12054 					BNX2X_DEV_INFO("illegal OV for SD\n");
12055 				break;
12056 			case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12057 				bp->mf_mode = MULTI_FUNCTION_SD;
12058 				bp->mf_sub_mode = SUB_MF_MODE_BD;
12059 				bp->mf_config[vn] =
12060 					MF_CFG_RD(bp,
12061 						  func_mf_config[func].config);
12062 
12063 				if (SHMEM2_HAS(bp, mtu_size)) {
12064 					int mtu_idx = BP_FW_MB_IDX(bp);
12065 					u16 mtu_size;
12066 					u32 mtu;
12067 
12068 					mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12069 					mtu_size = (u16)mtu;
12070 					DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12071 					   mtu_size, mtu);
12072 
12073 					/* if valid: update device mtu */
12074 					if ((mtu_size >= ETH_MIN_PACKET_SIZE) &&
12075 					    (mtu_size <=
12076 					     ETH_MAX_JUMBO_PACKET_SIZE))
12077 						bp->dev->mtu = mtu_size;
12078 				}
12079 				break;
12080 			case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12081 				bp->mf_mode = MULTI_FUNCTION_SD;
12082 				bp->mf_sub_mode = SUB_MF_MODE_UFP;
12083 				bp->mf_config[vn] =
12084 					MF_CFG_RD(bp,
12085 						  func_mf_config[func].config);
12086 				break;
12087 			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12088 				bp->mf_config[vn] = 0;
12089 				break;
12090 			case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12091 				val2 = SHMEM_RD(bp,
12092 					dev_info.shared_hw_config.config_3);
12093 				val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12094 				switch (val2) {
12095 				case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12096 					validate_set_si_mode(bp);
12097 					bp->mf_sub_mode =
12098 							SUB_MF_MODE_NPAR1_DOT_5;
12099 					break;
12100 				default:
12101 					/* Unknown configuration */
12102 					bp->mf_config[vn] = 0;
12103 					BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12104 						       val);
12105 				}
12106 				break;
12107 			default:
12108 				/* Unknown configuration: reset mf_config */
12109 				bp->mf_config[vn] = 0;
12110 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12111 			}
12112 		}
12113 
12114 		BNX2X_DEV_INFO("%s function mode\n",
12115 			       IS_MF(bp) ? "multi" : "single");
12116 
12117 		switch (bp->mf_mode) {
12118 		case MULTI_FUNCTION_SD:
12119 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12120 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
12121 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12122 				bp->mf_ov = val;
12123 				bp->path_has_ovlan = true;
12124 
12125 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12126 					       func, bp->mf_ov, bp->mf_ov);
12127 			} else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12128 				   (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12129 				dev_err(&bp->pdev->dev,
12130 					"Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12131 					func);
12132 				bp->path_has_ovlan = true;
12133 			} else {
12134 				dev_err(&bp->pdev->dev,
12135 					"No valid MF OV for func %d, aborting\n",
12136 					func);
12137 				return -EPERM;
12138 			}
12139 			break;
12140 		case MULTI_FUNCTION_AFEX:
12141 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12142 			break;
12143 		case MULTI_FUNCTION_SI:
12144 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12145 				       func);
12146 			break;
12147 		default:
12148 			if (vn) {
12149 				dev_err(&bp->pdev->dev,
12150 					"VN %d is in a single function mode, aborting\n",
12151 					vn);
12152 				return -EPERM;
12153 			}
12154 			break;
12155 		}
12156 
12157 		/* check if other port on the path needs ovlan:
12158 		 * Since MF configuration is shared between ports
12159 		 * Possible mixed modes are only
12160 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12161 		 */
12162 		if (CHIP_MODE_IS_4_PORT(bp) &&
12163 		    !bp->path_has_ovlan &&
12164 		    !IS_MF(bp) &&
12165 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12166 			u8 other_port = !BP_PORT(bp);
12167 			u8 other_func = BP_PATH(bp) + 2*other_port;
12168 			val = MF_CFG_RD(bp,
12169 					func_mf_config[other_func].e1hov_tag);
12170 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12171 				bp->path_has_ovlan = true;
12172 		}
12173 	}
12174 
12175 	/* adjust igu_sb_cnt to MF for E1H */
12176 	if (CHIP_IS_E1H(bp) && IS_MF(bp))
12177 		bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12178 
12179 	/* port info */
12180 	bnx2x_get_port_hwinfo(bp);
12181 
12182 	/* Get MAC addresses */
12183 	bnx2x_get_mac_hwinfo(bp);
12184 
12185 	bnx2x_get_cnic_info(bp);
12186 
12187 	return rc;
12188 }
12189 
12190 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12191 {
12192 	int cnt, i, block_end, rodi;
12193 	char vpd_start[BNX2X_VPD_LEN+1];
12194 	char str_id_reg[VENDOR_ID_LEN+1];
12195 	char str_id_cap[VENDOR_ID_LEN+1];
12196 	char *vpd_data;
12197 	char *vpd_extended_data = NULL;
12198 	u8 len;
12199 
12200 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
12201 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12202 
12203 	if (cnt < BNX2X_VPD_LEN)
12204 		goto out_not_found;
12205 
12206 	/* VPD RO tag should be first tag after identifier string, hence
12207 	 * we should be able to find it in first BNX2X_VPD_LEN chars
12208 	 */
12209 	i = pci_vpd_find_tag(vpd_start, BNX2X_VPD_LEN, PCI_VPD_LRDT_RO_DATA);
12210 	if (i < 0)
12211 		goto out_not_found;
12212 
12213 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
12214 		    pci_vpd_lrdt_size(&vpd_start[i]);
12215 
12216 	i += PCI_VPD_LRDT_TAG_SIZE;
12217 
12218 	if (block_end > BNX2X_VPD_LEN) {
12219 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
12220 		if (vpd_extended_data  == NULL)
12221 			goto out_not_found;
12222 
12223 		/* read rest of vpd image into vpd_extended_data */
12224 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
12225 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
12226 				   block_end - BNX2X_VPD_LEN,
12227 				   vpd_extended_data + BNX2X_VPD_LEN);
12228 		if (cnt < (block_end - BNX2X_VPD_LEN))
12229 			goto out_not_found;
12230 		vpd_data = vpd_extended_data;
12231 	} else
12232 		vpd_data = vpd_start;
12233 
12234 	/* now vpd_data holds full vpd content in both cases */
12235 
12236 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12237 				   PCI_VPD_RO_KEYWORD_MFR_ID);
12238 	if (rodi < 0)
12239 		goto out_not_found;
12240 
12241 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
12242 
12243 	if (len != VENDOR_ID_LEN)
12244 		goto out_not_found;
12245 
12246 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12247 
12248 	/* vendor specific info */
12249 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12250 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
12251 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
12252 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12253 
12254 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12255 						PCI_VPD_RO_KEYWORD_VENDOR0);
12256 		if (rodi >= 0) {
12257 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
12258 
12259 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12260 
12261 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12262 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
12263 				bp->fw_ver[len] = ' ';
12264 			}
12265 		}
12266 		kfree(vpd_extended_data);
12267 		return;
12268 	}
12269 out_not_found:
12270 	kfree(vpd_extended_data);
12271 	return;
12272 }
12273 
12274 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12275 {
12276 	u32 flags = 0;
12277 
12278 	if (CHIP_REV_IS_FPGA(bp))
12279 		SET_FLAGS(flags, MODE_FPGA);
12280 	else if (CHIP_REV_IS_EMUL(bp))
12281 		SET_FLAGS(flags, MODE_EMUL);
12282 	else
12283 		SET_FLAGS(flags, MODE_ASIC);
12284 
12285 	if (CHIP_MODE_IS_4_PORT(bp))
12286 		SET_FLAGS(flags, MODE_PORT4);
12287 	else
12288 		SET_FLAGS(flags, MODE_PORT2);
12289 
12290 	if (CHIP_IS_E2(bp))
12291 		SET_FLAGS(flags, MODE_E2);
12292 	else if (CHIP_IS_E3(bp)) {
12293 		SET_FLAGS(flags, MODE_E3);
12294 		if (CHIP_REV(bp) == CHIP_REV_Ax)
12295 			SET_FLAGS(flags, MODE_E3_A0);
12296 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12297 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12298 	}
12299 
12300 	if (IS_MF(bp)) {
12301 		SET_FLAGS(flags, MODE_MF);
12302 		switch (bp->mf_mode) {
12303 		case MULTI_FUNCTION_SD:
12304 			SET_FLAGS(flags, MODE_MF_SD);
12305 			break;
12306 		case MULTI_FUNCTION_SI:
12307 			SET_FLAGS(flags, MODE_MF_SI);
12308 			break;
12309 		case MULTI_FUNCTION_AFEX:
12310 			SET_FLAGS(flags, MODE_MF_AFEX);
12311 			break;
12312 		}
12313 	} else
12314 		SET_FLAGS(flags, MODE_SF);
12315 
12316 #if defined(__LITTLE_ENDIAN)
12317 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12318 #else /*(__BIG_ENDIAN)*/
12319 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
12320 #endif
12321 	INIT_MODE_FLAGS(bp) = flags;
12322 }
12323 
12324 static int bnx2x_init_bp(struct bnx2x *bp)
12325 {
12326 	int func;
12327 	int rc;
12328 
12329 	mutex_init(&bp->port.phy_mutex);
12330 	mutex_init(&bp->fw_mb_mutex);
12331 	mutex_init(&bp->drv_info_mutex);
12332 	sema_init(&bp->stats_lock, 1);
12333 	bp->drv_info_mng_owner = false;
12334 	INIT_LIST_HEAD(&bp->vlan_reg);
12335 
12336 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12337 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12338 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12339 	INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12340 	if (IS_PF(bp)) {
12341 		rc = bnx2x_get_hwinfo(bp);
12342 		if (rc)
12343 			return rc;
12344 	} else {
12345 		eth_zero_addr(bp->dev->dev_addr);
12346 	}
12347 
12348 	bnx2x_set_modes_bitmap(bp);
12349 
12350 	rc = bnx2x_alloc_mem_bp(bp);
12351 	if (rc)
12352 		return rc;
12353 
12354 	bnx2x_read_fwinfo(bp);
12355 
12356 	func = BP_FUNC(bp);
12357 
12358 	/* need to reset chip if undi was active */
12359 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
12360 		/* init fw_seq */
12361 		bp->fw_seq =
12362 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12363 							DRV_MSG_SEQ_NUMBER_MASK;
12364 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12365 
12366 		rc = bnx2x_prev_unload(bp);
12367 		if (rc) {
12368 			bnx2x_free_mem_bp(bp);
12369 			return rc;
12370 		}
12371 	}
12372 
12373 	if (CHIP_REV_IS_FPGA(bp))
12374 		dev_err(&bp->pdev->dev, "FPGA detected\n");
12375 
12376 	if (BP_NOMCP(bp) && (func == 0))
12377 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12378 
12379 	bp->disable_tpa = disable_tpa;
12380 	bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12381 	/* Reduce memory usage in kdump environment by disabling TPA */
12382 	bp->disable_tpa |= is_kdump_kernel();
12383 
12384 	/* Set TPA flags */
12385 	if (bp->disable_tpa) {
12386 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12387 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12388 	}
12389 
12390 	if (CHIP_IS_E1(bp))
12391 		bp->dropless_fc = false;
12392 	else
12393 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12394 
12395 	bp->mrrs = mrrs;
12396 
12397 	bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12398 	if (IS_VF(bp))
12399 		bp->rx_ring_size = MAX_RX_AVAIL;
12400 
12401 	/* make sure that the numbers are in the right granularity */
12402 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12403 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12404 
12405 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12406 
12407 	timer_setup(&bp->timer, bnx2x_timer, 0);
12408 	bp->timer.expires = jiffies + bp->current_interval;
12409 
12410 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12411 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12412 	    SHMEM2_HAS(bp, dcbx_en) &&
12413 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12414 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12415 	    SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12416 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12417 		bnx2x_dcbx_init_params(bp);
12418 	} else {
12419 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12420 	}
12421 
12422 	if (CHIP_IS_E1x(bp))
12423 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12424 	else
12425 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
12426 
12427 	/* multiple tx priority */
12428 	if (IS_VF(bp))
12429 		bp->max_cos = 1;
12430 	else if (CHIP_IS_E1x(bp))
12431 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12432 	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12433 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12434 	else if (CHIP_IS_E3B0(bp))
12435 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12436 	else
12437 		BNX2X_ERR("unknown chip %x revision %x\n",
12438 			  CHIP_NUM(bp), CHIP_REV(bp));
12439 	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12440 
12441 	/* We need at least one default status block for slow-path events,
12442 	 * second status block for the L2 queue, and a third status block for
12443 	 * CNIC if supported.
12444 	 */
12445 	if (IS_VF(bp))
12446 		bp->min_msix_vec_cnt = 1;
12447 	else if (CNIC_SUPPORT(bp))
12448 		bp->min_msix_vec_cnt = 3;
12449 	else /* PF w/o cnic */
12450 		bp->min_msix_vec_cnt = 2;
12451 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12452 
12453 	bp->dump_preset_idx = 1;
12454 
12455 	return rc;
12456 }
12457 
12458 /****************************************************************************
12459 * General service functions
12460 ****************************************************************************/
12461 
12462 /*
12463  * net_device service functions
12464  */
12465 
12466 /* called with rtnl_lock */
12467 static int bnx2x_open(struct net_device *dev)
12468 {
12469 	struct bnx2x *bp = netdev_priv(dev);
12470 	int rc;
12471 
12472 	bp->stats_init = true;
12473 
12474 	netif_carrier_off(dev);
12475 
12476 	bnx2x_set_power_state(bp, PCI_D0);
12477 
12478 	/* If parity had happen during the unload, then attentions
12479 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12480 	 * want the first function loaded on the current engine to
12481 	 * complete the recovery.
12482 	 * Parity recovery is only relevant for PF driver.
12483 	 */
12484 	if (IS_PF(bp)) {
12485 		int other_engine = BP_PATH(bp) ? 0 : 1;
12486 		bool other_load_status, load_status;
12487 		bool global = false;
12488 
12489 		other_load_status = bnx2x_get_load_status(bp, other_engine);
12490 		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12491 		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12492 		    bnx2x_chk_parity_attn(bp, &global, true)) {
12493 			do {
12494 				/* If there are attentions and they are in a
12495 				 * global blocks, set the GLOBAL_RESET bit
12496 				 * regardless whether it will be this function
12497 				 * that will complete the recovery or not.
12498 				 */
12499 				if (global)
12500 					bnx2x_set_reset_global(bp);
12501 
12502 				/* Only the first function on the current
12503 				 * engine should try to recover in open. In case
12504 				 * of attentions in global blocks only the first
12505 				 * in the chip should try to recover.
12506 				 */
12507 				if ((!load_status &&
12508 				     (!global || !other_load_status)) &&
12509 				      bnx2x_trylock_leader_lock(bp) &&
12510 				      !bnx2x_leader_reset(bp)) {
12511 					netdev_info(bp->dev,
12512 						    "Recovered in open\n");
12513 					break;
12514 				}
12515 
12516 				/* recovery has failed... */
12517 				bnx2x_set_power_state(bp, PCI_D3hot);
12518 				bp->recovery_state = BNX2X_RECOVERY_FAILED;
12519 
12520 				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12521 					  "If you still see this message after a few retries then power cycle is required.\n");
12522 
12523 				return -EAGAIN;
12524 			} while (0);
12525 		}
12526 	}
12527 
12528 	bp->recovery_state = BNX2X_RECOVERY_DONE;
12529 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
12530 	if (rc)
12531 		return rc;
12532 
12533 	return 0;
12534 }
12535 
12536 /* called with rtnl_lock */
12537 static int bnx2x_close(struct net_device *dev)
12538 {
12539 	struct bnx2x *bp = netdev_priv(dev);
12540 
12541 	/* Unload the driver, release IRQs */
12542 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12543 
12544 	return 0;
12545 }
12546 
12547 struct bnx2x_mcast_list_elem_group
12548 {
12549 	struct list_head mcast_group_link;
12550 	struct bnx2x_mcast_list_elem mcast_elems[];
12551 };
12552 
12553 #define MCAST_ELEMS_PER_PG \
12554 	((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12555 	sizeof(struct bnx2x_mcast_list_elem))
12556 
12557 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
12558 {
12559 	struct bnx2x_mcast_list_elem_group *current_mcast_group;
12560 
12561 	while (!list_empty(mcast_group_list)) {
12562 		current_mcast_group = list_first_entry(mcast_group_list,
12563 				      struct bnx2x_mcast_list_elem_group,
12564 				      mcast_group_link);
12565 		list_del(&current_mcast_group->mcast_group_link);
12566 		free_page((unsigned long)current_mcast_group);
12567 	}
12568 }
12569 
12570 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12571 				      struct bnx2x_mcast_ramrod_params *p,
12572 				      struct list_head *mcast_group_list)
12573 {
12574 	struct bnx2x_mcast_list_elem *mc_mac;
12575 	struct netdev_hw_addr *ha;
12576 	struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
12577 	int mc_count = netdev_mc_count(bp->dev);
12578 	int offset = 0;
12579 
12580 	INIT_LIST_HEAD(&p->mcast_list);
12581 	netdev_for_each_mc_addr(ha, bp->dev) {
12582 		if (!offset) {
12583 			current_mcast_group =
12584 				(struct bnx2x_mcast_list_elem_group *)
12585 				__get_free_page(GFP_ATOMIC);
12586 			if (!current_mcast_group) {
12587 				bnx2x_free_mcast_macs_list(mcast_group_list);
12588 				BNX2X_ERR("Failed to allocate mc MAC list\n");
12589 				return -ENOMEM;
12590 			}
12591 			list_add(&current_mcast_group->mcast_group_link,
12592 				 mcast_group_list);
12593 		}
12594 		mc_mac = &current_mcast_group->mcast_elems[offset];
12595 		mc_mac->mac = bnx2x_mc_addr(ha);
12596 		list_add_tail(&mc_mac->link, &p->mcast_list);
12597 		offset++;
12598 		if (offset == MCAST_ELEMS_PER_PG)
12599 			offset = 0;
12600 	}
12601 	p->mcast_list_len = mc_count;
12602 	return 0;
12603 }
12604 
12605 /**
12606  * bnx2x_set_uc_list - configure a new unicast MACs list.
12607  *
12608  * @bp: driver handle
12609  *
12610  * We will use zero (0) as a MAC type for these MACs.
12611  */
12612 static int bnx2x_set_uc_list(struct bnx2x *bp)
12613 {
12614 	int rc;
12615 	struct net_device *dev = bp->dev;
12616 	struct netdev_hw_addr *ha;
12617 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12618 	unsigned long ramrod_flags = 0;
12619 
12620 	/* First schedule a cleanup up of old configuration */
12621 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12622 	if (rc < 0) {
12623 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12624 		return rc;
12625 	}
12626 
12627 	netdev_for_each_uc_addr(ha, dev) {
12628 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12629 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
12630 		if (rc == -EEXIST) {
12631 			DP(BNX2X_MSG_SP,
12632 			   "Failed to schedule ADD operations: %d\n", rc);
12633 			/* do not treat adding same MAC as error */
12634 			rc = 0;
12635 
12636 		} else if (rc < 0) {
12637 
12638 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12639 				  rc);
12640 			return rc;
12641 		}
12642 	}
12643 
12644 	/* Execute the pending commands */
12645 	__set_bit(RAMROD_CONT, &ramrod_flags);
12646 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12647 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
12648 }
12649 
12650 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
12651 {
12652 	LIST_HEAD(mcast_group_list);
12653 	struct net_device *dev = bp->dev;
12654 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12655 	int rc = 0;
12656 
12657 	rparam.mcast_obj = &bp->mcast_obj;
12658 
12659 	/* first, clear all configured multicast MACs */
12660 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12661 	if (rc < 0) {
12662 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12663 		return rc;
12664 	}
12665 
12666 	/* then, configure a new MACs list */
12667 	if (netdev_mc_count(dev)) {
12668 		rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12669 		if (rc)
12670 			return rc;
12671 
12672 		/* Now add the new MACs */
12673 		rc = bnx2x_config_mcast(bp, &rparam,
12674 					BNX2X_MCAST_CMD_ADD);
12675 		if (rc < 0)
12676 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12677 				  rc);
12678 
12679 		bnx2x_free_mcast_macs_list(&mcast_group_list);
12680 	}
12681 
12682 	return rc;
12683 }
12684 
12685 static int bnx2x_set_mc_list(struct bnx2x *bp)
12686 {
12687 	LIST_HEAD(mcast_group_list);
12688 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12689 	struct net_device *dev = bp->dev;
12690 	int rc = 0;
12691 
12692 	/* On older adapters, we need to flush and re-add filters */
12693 	if (CHIP_IS_E1x(bp))
12694 		return bnx2x_set_mc_list_e1x(bp);
12695 
12696 	rparam.mcast_obj = &bp->mcast_obj;
12697 
12698 	if (netdev_mc_count(dev)) {
12699 		rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12700 		if (rc)
12701 			return rc;
12702 
12703 		/* Override the curently configured set of mc filters */
12704 		rc = bnx2x_config_mcast(bp, &rparam,
12705 					BNX2X_MCAST_CMD_SET);
12706 		if (rc < 0)
12707 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12708 				  rc);
12709 
12710 		bnx2x_free_mcast_macs_list(&mcast_group_list);
12711 	} else {
12712 		/* If no mc addresses are required, flush the configuration */
12713 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12714 		if (rc < 0)
12715 			BNX2X_ERR("Failed to clear multicast configuration %d\n",
12716 				  rc);
12717 	}
12718 
12719 	return rc;
12720 }
12721 
12722 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12723 static void bnx2x_set_rx_mode(struct net_device *dev)
12724 {
12725 	struct bnx2x *bp = netdev_priv(dev);
12726 
12727 	if (bp->state != BNX2X_STATE_OPEN) {
12728 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12729 		return;
12730 	} else {
12731 		/* Schedule an SP task to handle rest of change */
12732 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12733 				       NETIF_MSG_IFUP);
12734 	}
12735 }
12736 
12737 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12738 {
12739 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12740 
12741 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12742 
12743 	netif_addr_lock_bh(bp->dev);
12744 
12745 	if (bp->dev->flags & IFF_PROMISC) {
12746 		rx_mode = BNX2X_RX_MODE_PROMISC;
12747 	} else if ((bp->dev->flags & IFF_ALLMULTI) ||
12748 		   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12749 		    CHIP_IS_E1(bp))) {
12750 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
12751 	} else {
12752 		if (IS_PF(bp)) {
12753 			/* some multicasts */
12754 			if (bnx2x_set_mc_list(bp) < 0)
12755 				rx_mode = BNX2X_RX_MODE_ALLMULTI;
12756 
12757 			/* release bh lock, as bnx2x_set_uc_list might sleep */
12758 			netif_addr_unlock_bh(bp->dev);
12759 			if (bnx2x_set_uc_list(bp) < 0)
12760 				rx_mode = BNX2X_RX_MODE_PROMISC;
12761 			netif_addr_lock_bh(bp->dev);
12762 		} else {
12763 			/* configuring mcast to a vf involves sleeping (when we
12764 			 * wait for the pf's response).
12765 			 */
12766 			bnx2x_schedule_sp_rtnl(bp,
12767 					       BNX2X_SP_RTNL_VFPF_MCAST, 0);
12768 		}
12769 	}
12770 
12771 	bp->rx_mode = rx_mode;
12772 	/* handle ISCSI SD mode */
12773 	if (IS_MF_ISCSI_ONLY(bp))
12774 		bp->rx_mode = BNX2X_RX_MODE_NONE;
12775 
12776 	/* Schedule the rx_mode command */
12777 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12778 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12779 		netif_addr_unlock_bh(bp->dev);
12780 		return;
12781 	}
12782 
12783 	if (IS_PF(bp)) {
12784 		bnx2x_set_storm_rx_mode(bp);
12785 		netif_addr_unlock_bh(bp->dev);
12786 	} else {
12787 		/* VF will need to request the PF to make this change, and so
12788 		 * the VF needs to release the bottom-half lock prior to the
12789 		 * request (as it will likely require sleep on the VF side)
12790 		 */
12791 		netif_addr_unlock_bh(bp->dev);
12792 		bnx2x_vfpf_storm_rx_mode(bp);
12793 	}
12794 }
12795 
12796 /* called with rtnl_lock */
12797 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12798 			   int devad, u16 addr)
12799 {
12800 	struct bnx2x *bp = netdev_priv(netdev);
12801 	u16 value;
12802 	int rc;
12803 
12804 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12805 	   prtad, devad, addr);
12806 
12807 	/* The HW expects different devad if CL22 is used */
12808 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12809 
12810 	bnx2x_acquire_phy_lock(bp);
12811 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12812 	bnx2x_release_phy_lock(bp);
12813 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12814 
12815 	if (!rc)
12816 		rc = value;
12817 	return rc;
12818 }
12819 
12820 /* called with rtnl_lock */
12821 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12822 			    u16 addr, u16 value)
12823 {
12824 	struct bnx2x *bp = netdev_priv(netdev);
12825 	int rc;
12826 
12827 	DP(NETIF_MSG_LINK,
12828 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12829 	   prtad, devad, addr, value);
12830 
12831 	/* The HW expects different devad if CL22 is used */
12832 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12833 
12834 	bnx2x_acquire_phy_lock(bp);
12835 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12836 	bnx2x_release_phy_lock(bp);
12837 	return rc;
12838 }
12839 
12840 /* called with rtnl_lock */
12841 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12842 {
12843 	struct bnx2x *bp = netdev_priv(dev);
12844 	struct mii_ioctl_data *mdio = if_mii(ifr);
12845 
12846 	if (!netif_running(dev))
12847 		return -EAGAIN;
12848 
12849 	switch (cmd) {
12850 	case SIOCSHWTSTAMP:
12851 		return bnx2x_hwtstamp_ioctl(bp, ifr);
12852 	default:
12853 		DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12854 		   mdio->phy_id, mdio->reg_num, mdio->val_in);
12855 		return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12856 	}
12857 }
12858 
12859 static int bnx2x_validate_addr(struct net_device *dev)
12860 {
12861 	struct bnx2x *bp = netdev_priv(dev);
12862 
12863 	/* query the bulletin board for mac address configured by the PF */
12864 	if (IS_VF(bp))
12865 		bnx2x_sample_bulletin(bp);
12866 
12867 	if (!is_valid_ether_addr(dev->dev_addr)) {
12868 		BNX2X_ERR("Non-valid Ethernet address\n");
12869 		return -EADDRNOTAVAIL;
12870 	}
12871 	return 0;
12872 }
12873 
12874 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12875 				  struct netdev_phys_item_id *ppid)
12876 {
12877 	struct bnx2x *bp = netdev_priv(netdev);
12878 
12879 	if (!(bp->flags & HAS_PHYS_PORT_ID))
12880 		return -EOPNOTSUPP;
12881 
12882 	ppid->id_len = sizeof(bp->phys_port_id);
12883 	memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12884 
12885 	return 0;
12886 }
12887 
12888 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12889 					      struct net_device *dev,
12890 					      netdev_features_t features)
12891 {
12892 	/*
12893 	 * A skb with gso_size + header length > 9700 will cause a
12894 	 * firmware panic. Drop GSO support.
12895 	 *
12896 	 * Eventually the upper layer should not pass these packets down.
12897 	 *
12898 	 * For speed, if the gso_size is <= 9000, assume there will
12899 	 * not be 700 bytes of headers and pass it through. Only do a
12900 	 * full (slow) validation if the gso_size is > 9000.
12901 	 *
12902 	 * (Due to the way SKB_BY_FRAGS works this will also do a full
12903 	 * validation in that case.)
12904 	 */
12905 	if (unlikely(skb_is_gso(skb) &&
12906 		     (skb_shinfo(skb)->gso_size > 9000) &&
12907 		     !skb_gso_validate_mac_len(skb, 9700)))
12908 		features &= ~NETIF_F_GSO_MASK;
12909 
12910 	features = vlan_features_check(skb, features);
12911 	return vxlan_features_check(skb, features);
12912 }
12913 
12914 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12915 {
12916 	int rc;
12917 
12918 	if (IS_PF(bp)) {
12919 		unsigned long ramrod_flags = 0;
12920 
12921 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12922 		rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12923 					add, &ramrod_flags);
12924 	} else {
12925 		rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12926 	}
12927 
12928 	return rc;
12929 }
12930 
12931 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
12932 {
12933 	struct bnx2x_vlan_entry *vlan;
12934 	int rc = 0;
12935 
12936 	/* Configure all non-configured entries */
12937 	list_for_each_entry(vlan, &bp->vlan_reg, link) {
12938 		if (vlan->hw)
12939 			continue;
12940 
12941 		if (bp->vlan_cnt >= bp->vlan_credit)
12942 			return -ENOBUFS;
12943 
12944 		rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12945 		if (rc) {
12946 			BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
12947 			return rc;
12948 		}
12949 
12950 		DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
12951 		vlan->hw = true;
12952 		bp->vlan_cnt++;
12953 	}
12954 
12955 	return 0;
12956 }
12957 
12958 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
12959 {
12960 	bool need_accept_any_vlan;
12961 
12962 	need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
12963 
12964 	if (bp->accept_any_vlan != need_accept_any_vlan) {
12965 		bp->accept_any_vlan = need_accept_any_vlan;
12966 		DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
12967 		   bp->accept_any_vlan ? "raised" : "cleared");
12968 		if (set_rx_mode) {
12969 			if (IS_PF(bp))
12970 				bnx2x_set_rx_mode_inner(bp);
12971 			else
12972 				bnx2x_vfpf_storm_rx_mode(bp);
12973 		}
12974 	}
12975 }
12976 
12977 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12978 {
12979 	/* Don't set rx mode here. Our caller will do it. */
12980 	bnx2x_vlan_configure(bp, false);
12981 
12982 	return 0;
12983 }
12984 
12985 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
12986 {
12987 	struct bnx2x *bp = netdev_priv(dev);
12988 	struct bnx2x_vlan_entry *vlan;
12989 
12990 	DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
12991 
12992 	vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
12993 	if (!vlan)
12994 		return -ENOMEM;
12995 
12996 	vlan->vid = vid;
12997 	vlan->hw = false;
12998 	list_add_tail(&vlan->link, &bp->vlan_reg);
12999 
13000 	if (netif_running(dev))
13001 		bnx2x_vlan_configure(bp, true);
13002 
13003 	return 0;
13004 }
13005 
13006 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
13007 {
13008 	struct bnx2x *bp = netdev_priv(dev);
13009 	struct bnx2x_vlan_entry *vlan;
13010 	bool found = false;
13011 	int rc = 0;
13012 
13013 	DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
13014 
13015 	list_for_each_entry(vlan, &bp->vlan_reg, link)
13016 		if (vlan->vid == vid) {
13017 			found = true;
13018 			break;
13019 		}
13020 
13021 	if (!found) {
13022 		BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
13023 		return -EINVAL;
13024 	}
13025 
13026 	if (netif_running(dev) && vlan->hw) {
13027 		rc = __bnx2x_vlan_configure_vid(bp, vid, false);
13028 		DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
13029 		bp->vlan_cnt--;
13030 	}
13031 
13032 	list_del(&vlan->link);
13033 	kfree(vlan);
13034 
13035 	if (netif_running(dev))
13036 		bnx2x_vlan_configure(bp, true);
13037 
13038 	DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13039 
13040 	return rc;
13041 }
13042 
13043 static const struct net_device_ops bnx2x_netdev_ops = {
13044 	.ndo_open		= bnx2x_open,
13045 	.ndo_stop		= bnx2x_close,
13046 	.ndo_start_xmit		= bnx2x_start_xmit,
13047 	.ndo_select_queue	= bnx2x_select_queue,
13048 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
13049 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
13050 	.ndo_validate_addr	= bnx2x_validate_addr,
13051 	.ndo_do_ioctl		= bnx2x_ioctl,
13052 	.ndo_change_mtu		= bnx2x_change_mtu,
13053 	.ndo_fix_features	= bnx2x_fix_features,
13054 	.ndo_set_features	= bnx2x_set_features,
13055 	.ndo_tx_timeout		= bnx2x_tx_timeout,
13056 	.ndo_vlan_rx_add_vid	= bnx2x_vlan_rx_add_vid,
13057 	.ndo_vlan_rx_kill_vid	= bnx2x_vlan_rx_kill_vid,
13058 	.ndo_setup_tc		= __bnx2x_setup_tc,
13059 #ifdef CONFIG_BNX2X_SRIOV
13060 	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
13061 	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
13062 	.ndo_get_vf_config	= bnx2x_get_vf_config,
13063 	.ndo_set_vf_spoofchk	= bnx2x_set_vf_spoofchk,
13064 #endif
13065 #ifdef NETDEV_FCOE_WWNN
13066 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
13067 #endif
13068 
13069 	.ndo_get_phys_port_id	= bnx2x_get_phys_port_id,
13070 	.ndo_set_vf_link_state	= bnx2x_set_vf_link_state,
13071 	.ndo_features_check	= bnx2x_features_check,
13072 };
13073 
13074 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
13075 {
13076 	struct device *dev = &bp->pdev->dev;
13077 
13078 	if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
13079 	    dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
13080 		dev_err(dev, "System does not support DMA, aborting\n");
13081 		return -EIO;
13082 	}
13083 
13084 	return 0;
13085 }
13086 
13087 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13088 {
13089 	if (bp->flags & AER_ENABLED) {
13090 		pci_disable_pcie_error_reporting(bp->pdev);
13091 		bp->flags &= ~AER_ENABLED;
13092 	}
13093 }
13094 
13095 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13096 			  struct net_device *dev, unsigned long board_type)
13097 {
13098 	int rc;
13099 	u32 pci_cfg_dword;
13100 	bool chip_is_e1x = (board_type == BCM57710 ||
13101 			    board_type == BCM57711 ||
13102 			    board_type == BCM57711E);
13103 
13104 	SET_NETDEV_DEV(dev, &pdev->dev);
13105 
13106 	bp->dev = dev;
13107 	bp->pdev = pdev;
13108 
13109 	rc = pci_enable_device(pdev);
13110 	if (rc) {
13111 		dev_err(&bp->pdev->dev,
13112 			"Cannot enable PCI device, aborting\n");
13113 		goto err_out;
13114 	}
13115 
13116 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13117 		dev_err(&bp->pdev->dev,
13118 			"Cannot find PCI device base address, aborting\n");
13119 		rc = -ENODEV;
13120 		goto err_out_disable;
13121 	}
13122 
13123 	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13124 		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13125 		rc = -ENODEV;
13126 		goto err_out_disable;
13127 	}
13128 
13129 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13130 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13131 	    PCICFG_REVESION_ID_ERROR_VAL) {
13132 		pr_err("PCI device error, probably due to fan failure, aborting\n");
13133 		rc = -ENODEV;
13134 		goto err_out_disable;
13135 	}
13136 
13137 	if (atomic_read(&pdev->enable_cnt) == 1) {
13138 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13139 		if (rc) {
13140 			dev_err(&bp->pdev->dev,
13141 				"Cannot obtain PCI resources, aborting\n");
13142 			goto err_out_disable;
13143 		}
13144 
13145 		pci_set_master(pdev);
13146 		pci_save_state(pdev);
13147 	}
13148 
13149 	if (IS_PF(bp)) {
13150 		if (!pdev->pm_cap) {
13151 			dev_err(&bp->pdev->dev,
13152 				"Cannot find power management capability, aborting\n");
13153 			rc = -EIO;
13154 			goto err_out_release;
13155 		}
13156 	}
13157 
13158 	if (!pci_is_pcie(pdev)) {
13159 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13160 		rc = -EIO;
13161 		goto err_out_release;
13162 	}
13163 
13164 	rc = bnx2x_set_coherency_mask(bp);
13165 	if (rc)
13166 		goto err_out_release;
13167 
13168 	dev->mem_start = pci_resource_start(pdev, 0);
13169 	dev->base_addr = dev->mem_start;
13170 	dev->mem_end = pci_resource_end(pdev, 0);
13171 
13172 	dev->irq = pdev->irq;
13173 
13174 	bp->regview = pci_ioremap_bar(pdev, 0);
13175 	if (!bp->regview) {
13176 		dev_err(&bp->pdev->dev,
13177 			"Cannot map register space, aborting\n");
13178 		rc = -ENOMEM;
13179 		goto err_out_release;
13180 	}
13181 
13182 	/* In E1/E1H use pci device function given by kernel.
13183 	 * In E2/E3 read physical function from ME register since these chips
13184 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
13185 	 * (depending on hypervisor).
13186 	 */
13187 	if (chip_is_e1x) {
13188 		bp->pf_num = PCI_FUNC(pdev->devfn);
13189 	} else {
13190 		/* chip is E2/3*/
13191 		pci_read_config_dword(bp->pdev,
13192 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
13193 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13194 				  ME_REG_ABS_PF_NUM_SHIFT);
13195 	}
13196 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13197 
13198 	/* clean indirect addresses */
13199 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13200 			       PCICFG_VENDOR_ID_OFFSET);
13201 
13202 	/* Set PCIe reset type to fundamental for EEH recovery */
13203 	pdev->needs_freset = 1;
13204 
13205 	/* AER (Advanced Error reporting) configuration */
13206 	rc = pci_enable_pcie_error_reporting(pdev);
13207 	if (!rc)
13208 		bp->flags |= AER_ENABLED;
13209 	else
13210 		BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13211 
13212 	/*
13213 	 * Clean the following indirect addresses for all functions since it
13214 	 * is not used by the driver.
13215 	 */
13216 	if (IS_PF(bp)) {
13217 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13218 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13219 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13220 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13221 
13222 		if (chip_is_e1x) {
13223 			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13224 			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13225 			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13226 			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13227 		}
13228 
13229 		/* Enable internal target-read (in case we are probed after PF
13230 		 * FLR). Must be done prior to any BAR read access. Only for
13231 		 * 57712 and up
13232 		 */
13233 		if (!chip_is_e1x)
13234 			REG_WR(bp,
13235 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13236 	}
13237 
13238 	dev->watchdog_timeo = TX_TIMEOUT;
13239 
13240 	dev->netdev_ops = &bnx2x_netdev_ops;
13241 	bnx2x_set_ethtool_ops(bp, dev);
13242 
13243 	dev->priv_flags |= IFF_UNICAST_FLT;
13244 
13245 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13246 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13247 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW |
13248 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13249 	if (!chip_is_e1x) {
13250 		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13251 				    NETIF_F_GSO_IPXIP4 |
13252 				    NETIF_F_GSO_UDP_TUNNEL |
13253 				    NETIF_F_GSO_UDP_TUNNEL_CSUM |
13254 				    NETIF_F_GSO_PARTIAL;
13255 
13256 		dev->hw_enc_features =
13257 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13258 			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13259 			NETIF_F_GSO_IPXIP4 |
13260 			NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13261 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
13262 			NETIF_F_GSO_PARTIAL;
13263 
13264 		dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
13265 					    NETIF_F_GSO_UDP_TUNNEL_CSUM;
13266 
13267 		if (IS_PF(bp))
13268 			dev->udp_tunnel_nic_info = &bnx2x_udp_tunnels;
13269 	}
13270 
13271 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13272 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13273 
13274 	if (IS_PF(bp)) {
13275 		if (chip_is_e1x)
13276 			bp->accept_any_vlan = true;
13277 		else
13278 			dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13279 	}
13280 	/* For VF we'll know whether to enable VLAN filtering after
13281 	 * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13282 	 */
13283 
13284 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13285 	dev->features |= NETIF_F_HIGHDMA;
13286 	if (dev->features & NETIF_F_LRO)
13287 		dev->features &= ~NETIF_F_GRO_HW;
13288 
13289 	/* Add Loopback capability to the device */
13290 	dev->hw_features |= NETIF_F_LOOPBACK;
13291 
13292 #ifdef BCM_DCBNL
13293 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13294 #endif
13295 
13296 	/* MTU range, 46 - 9600 */
13297 	dev->min_mtu = ETH_MIN_PACKET_SIZE;
13298 	dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE;
13299 
13300 	/* get_port_hwinfo() will set prtad and mmds properly */
13301 	bp->mdio.prtad = MDIO_PRTAD_NONE;
13302 	bp->mdio.mmds = 0;
13303 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13304 	bp->mdio.dev = dev;
13305 	bp->mdio.mdio_read = bnx2x_mdio_read;
13306 	bp->mdio.mdio_write = bnx2x_mdio_write;
13307 
13308 	return 0;
13309 
13310 err_out_release:
13311 	if (atomic_read(&pdev->enable_cnt) == 1)
13312 		pci_release_regions(pdev);
13313 
13314 err_out_disable:
13315 	pci_disable_device(pdev);
13316 
13317 err_out:
13318 	return rc;
13319 }
13320 
13321 static int bnx2x_check_firmware(struct bnx2x *bp)
13322 {
13323 	const struct firmware *firmware = bp->firmware;
13324 	struct bnx2x_fw_file_hdr *fw_hdr;
13325 	struct bnx2x_fw_file_section *sections;
13326 	u32 offset, len, num_ops;
13327 	__be16 *ops_offsets;
13328 	int i;
13329 	const u8 *fw_ver;
13330 
13331 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13332 		BNX2X_ERR("Wrong FW size\n");
13333 		return -EINVAL;
13334 	}
13335 
13336 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13337 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
13338 
13339 	/* Make sure none of the offsets and sizes make us read beyond
13340 	 * the end of the firmware data */
13341 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13342 		offset = be32_to_cpu(sections[i].offset);
13343 		len = be32_to_cpu(sections[i].len);
13344 		if (offset + len > firmware->size) {
13345 			BNX2X_ERR("Section %d length is out of bounds\n", i);
13346 			return -EINVAL;
13347 		}
13348 	}
13349 
13350 	/* Likewise for the init_ops offsets */
13351 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13352 	ops_offsets = (__force __be16 *)(firmware->data + offset);
13353 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13354 
13355 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13356 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13357 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
13358 			return -EINVAL;
13359 		}
13360 	}
13361 
13362 	/* Check FW version */
13363 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
13364 	fw_ver = firmware->data + offset;
13365 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
13366 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
13367 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
13368 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
13369 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13370 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13371 		       BCM_5710_FW_MAJOR_VERSION,
13372 		       BCM_5710_FW_MINOR_VERSION,
13373 		       BCM_5710_FW_REVISION_VERSION,
13374 		       BCM_5710_FW_ENGINEERING_VERSION);
13375 		return -EINVAL;
13376 	}
13377 
13378 	return 0;
13379 }
13380 
13381 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13382 {
13383 	const __be32 *source = (const __be32 *)_source;
13384 	u32 *target = (u32 *)_target;
13385 	u32 i;
13386 
13387 	for (i = 0; i < n/4; i++)
13388 		target[i] = be32_to_cpu(source[i]);
13389 }
13390 
13391 /*
13392    Ops array is stored in the following format:
13393    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13394  */
13395 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13396 {
13397 	const __be32 *source = (const __be32 *)_source;
13398 	struct raw_op *target = (struct raw_op *)_target;
13399 	u32 i, j, tmp;
13400 
13401 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
13402 		tmp = be32_to_cpu(source[j]);
13403 		target[i].op = (tmp >> 24) & 0xff;
13404 		target[i].offset = tmp & 0xffffff;
13405 		target[i].raw_data = be32_to_cpu(source[j + 1]);
13406 	}
13407 }
13408 
13409 /* IRO array is stored in the following format:
13410  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13411  */
13412 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13413 {
13414 	const __be32 *source = (const __be32 *)_source;
13415 	struct iro *target = (struct iro *)_target;
13416 	u32 i, j, tmp;
13417 
13418 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13419 		target[i].base = be32_to_cpu(source[j]);
13420 		j++;
13421 		tmp = be32_to_cpu(source[j]);
13422 		target[i].m1 = (tmp >> 16) & 0xffff;
13423 		target[i].m2 = tmp & 0xffff;
13424 		j++;
13425 		tmp = be32_to_cpu(source[j]);
13426 		target[i].m3 = (tmp >> 16) & 0xffff;
13427 		target[i].size = tmp & 0xffff;
13428 		j++;
13429 	}
13430 }
13431 
13432 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13433 {
13434 	const __be16 *source = (const __be16 *)_source;
13435 	u16 *target = (u16 *)_target;
13436 	u32 i;
13437 
13438 	for (i = 0; i < n/2; i++)
13439 		target[i] = be16_to_cpu(source[i]);
13440 }
13441 
13442 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
13443 do {									\
13444 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
13445 	bp->arr = kmalloc(len, GFP_KERNEL);				\
13446 	if (!bp->arr)							\
13447 		goto lbl;						\
13448 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
13449 	     (u8 *)bp->arr, len);					\
13450 } while (0)
13451 
13452 static int bnx2x_init_firmware(struct bnx2x *bp)
13453 {
13454 	const char *fw_file_name;
13455 	struct bnx2x_fw_file_hdr *fw_hdr;
13456 	int rc;
13457 
13458 	if (bp->firmware)
13459 		return 0;
13460 
13461 	if (CHIP_IS_E1(bp))
13462 		fw_file_name = FW_FILE_NAME_E1;
13463 	else if (CHIP_IS_E1H(bp))
13464 		fw_file_name = FW_FILE_NAME_E1H;
13465 	else if (!CHIP_IS_E1x(bp))
13466 		fw_file_name = FW_FILE_NAME_E2;
13467 	else {
13468 		BNX2X_ERR("Unsupported chip revision\n");
13469 		return -EINVAL;
13470 	}
13471 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13472 
13473 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13474 	if (rc) {
13475 		BNX2X_ERR("Can't load firmware file %s\n",
13476 			  fw_file_name);
13477 		goto request_firmware_exit;
13478 	}
13479 
13480 	rc = bnx2x_check_firmware(bp);
13481 	if (rc) {
13482 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13483 		goto request_firmware_exit;
13484 	}
13485 
13486 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13487 
13488 	/* Initialize the pointers to the init arrays */
13489 	/* Blob */
13490 	rc = -ENOMEM;
13491 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13492 
13493 	/* Opcodes */
13494 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13495 
13496 	/* Offsets */
13497 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13498 			    be16_to_cpu_n);
13499 
13500 	/* STORMs firmware */
13501 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13502 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13503 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13504 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13505 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13506 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13507 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13508 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
13509 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13510 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13511 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13512 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13513 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13514 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13515 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13516 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
13517 	/* IRO */
13518 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13519 
13520 	return 0;
13521 
13522 iro_alloc_err:
13523 	kfree(bp->init_ops_offsets);
13524 init_offsets_alloc_err:
13525 	kfree(bp->init_ops);
13526 init_ops_alloc_err:
13527 	kfree(bp->init_data);
13528 request_firmware_exit:
13529 	release_firmware(bp->firmware);
13530 	bp->firmware = NULL;
13531 
13532 	return rc;
13533 }
13534 
13535 static void bnx2x_release_firmware(struct bnx2x *bp)
13536 {
13537 	kfree(bp->init_ops_offsets);
13538 	kfree(bp->init_ops);
13539 	kfree(bp->init_data);
13540 	release_firmware(bp->firmware);
13541 	bp->firmware = NULL;
13542 }
13543 
13544 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13545 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13546 	.init_hw_cmn      = bnx2x_init_hw_common,
13547 	.init_hw_port     = bnx2x_init_hw_port,
13548 	.init_hw_func     = bnx2x_init_hw_func,
13549 
13550 	.reset_hw_cmn     = bnx2x_reset_common,
13551 	.reset_hw_port    = bnx2x_reset_port,
13552 	.reset_hw_func    = bnx2x_reset_func,
13553 
13554 	.gunzip_init      = bnx2x_gunzip_init,
13555 	.gunzip_end       = bnx2x_gunzip_end,
13556 
13557 	.init_fw          = bnx2x_init_firmware,
13558 	.release_fw       = bnx2x_release_firmware,
13559 };
13560 
13561 void bnx2x__init_func_obj(struct bnx2x *bp)
13562 {
13563 	/* Prepare DMAE related driver resources */
13564 	bnx2x_setup_dmae(bp);
13565 
13566 	bnx2x_init_func_obj(bp, &bp->func_obj,
13567 			    bnx2x_sp(bp, func_rdata),
13568 			    bnx2x_sp_mapping(bp, func_rdata),
13569 			    bnx2x_sp(bp, func_afex_rdata),
13570 			    bnx2x_sp_mapping(bp, func_afex_rdata),
13571 			    &bnx2x_func_sp_drv);
13572 }
13573 
13574 /* must be called after sriov-enable */
13575 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13576 {
13577 	int cid_count = BNX2X_L2_MAX_CID(bp);
13578 
13579 	if (IS_SRIOV(bp))
13580 		cid_count += BNX2X_VF_CIDS;
13581 
13582 	if (CNIC_SUPPORT(bp))
13583 		cid_count += CNIC_CID_MAX;
13584 
13585 	return roundup(cid_count, QM_CID_ROUND);
13586 }
13587 
13588 /**
13589  * bnx2x_get_num_non_def_sbs - return the number of none default SBs
13590  * @pdev: pci device
13591  * @cnic_cnt: count
13592  *
13593  */
13594 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13595 {
13596 	int index;
13597 	u16 control = 0;
13598 
13599 	/*
13600 	 * If MSI-X is not supported - return number of SBs needed to support
13601 	 * one fast path queue: one FP queue + SB for CNIC
13602 	 */
13603 	if (!pdev->msix_cap) {
13604 		dev_info(&pdev->dev, "no msix capability found\n");
13605 		return 1 + cnic_cnt;
13606 	}
13607 	dev_info(&pdev->dev, "msix capability found\n");
13608 
13609 	/*
13610 	 * The value in the PCI configuration space is the index of the last
13611 	 * entry, namely one less than the actual size of the table, which is
13612 	 * exactly what we want to return from this function: number of all SBs
13613 	 * without the default SB.
13614 	 * For VFs there is no default SB, then we return (index+1).
13615 	 */
13616 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13617 
13618 	index = control & PCI_MSIX_FLAGS_QSIZE;
13619 
13620 	return index;
13621 }
13622 
13623 static int set_max_cos_est(int chip_id)
13624 {
13625 	switch (chip_id) {
13626 	case BCM57710:
13627 	case BCM57711:
13628 	case BCM57711E:
13629 		return BNX2X_MULTI_TX_COS_E1X;
13630 	case BCM57712:
13631 	case BCM57712_MF:
13632 		return BNX2X_MULTI_TX_COS_E2_E3A0;
13633 	case BCM57800:
13634 	case BCM57800_MF:
13635 	case BCM57810:
13636 	case BCM57810_MF:
13637 	case BCM57840_4_10:
13638 	case BCM57840_2_20:
13639 	case BCM57840_O:
13640 	case BCM57840_MFO:
13641 	case BCM57840_MF:
13642 	case BCM57811:
13643 	case BCM57811_MF:
13644 		return BNX2X_MULTI_TX_COS_E3B0;
13645 	case BCM57712_VF:
13646 	case BCM57800_VF:
13647 	case BCM57810_VF:
13648 	case BCM57840_VF:
13649 	case BCM57811_VF:
13650 		return 1;
13651 	default:
13652 		pr_err("Unknown board_type (%d), aborting\n", chip_id);
13653 		return -ENODEV;
13654 	}
13655 }
13656 
13657 static int set_is_vf(int chip_id)
13658 {
13659 	switch (chip_id) {
13660 	case BCM57712_VF:
13661 	case BCM57800_VF:
13662 	case BCM57810_VF:
13663 	case BCM57840_VF:
13664 	case BCM57811_VF:
13665 		return true;
13666 	default:
13667 		return false;
13668 	}
13669 }
13670 
13671 /* nig_tsgen registers relative address */
13672 #define tsgen_ctrl 0x0
13673 #define tsgen_freecount 0x10
13674 #define tsgen_synctime_t0 0x20
13675 #define tsgen_offset_t0 0x28
13676 #define tsgen_drift_t0 0x30
13677 #define tsgen_synctime_t1 0x58
13678 #define tsgen_offset_t1 0x60
13679 #define tsgen_drift_t1 0x68
13680 
13681 /* FW workaround for setting drift */
13682 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13683 					  int best_val, int best_period)
13684 {
13685 	struct bnx2x_func_state_params func_params = {NULL};
13686 	struct bnx2x_func_set_timesync_params *set_timesync_params =
13687 		&func_params.params.set_timesync;
13688 
13689 	/* Prepare parameters for function state transitions */
13690 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13691 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13692 
13693 	func_params.f_obj = &bp->func_obj;
13694 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13695 
13696 	/* Function parameters */
13697 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13698 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13699 	set_timesync_params->add_sub_drift_adjust_value =
13700 		drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13701 	set_timesync_params->drift_adjust_value = best_val;
13702 	set_timesync_params->drift_adjust_period = best_period;
13703 
13704 	return bnx2x_func_state_change(bp, &func_params);
13705 }
13706 
13707 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13708 {
13709 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13710 	int rc;
13711 	int drift_dir = 1;
13712 	int val, period, period1, period2, dif, dif1, dif2;
13713 	int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13714 
13715 	DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13716 
13717 	if (!netif_running(bp->dev)) {
13718 		DP(BNX2X_MSG_PTP,
13719 		   "PTP adjfreq called while the interface is down\n");
13720 		return -ENETDOWN;
13721 	}
13722 
13723 	if (ppb < 0) {
13724 		ppb = -ppb;
13725 		drift_dir = 0;
13726 	}
13727 
13728 	if (ppb == 0) {
13729 		best_val = 1;
13730 		best_period = 0x1FFFFFF;
13731 	} else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13732 		best_val = 31;
13733 		best_period = 1;
13734 	} else {
13735 		/* Changed not to allow val = 8, 16, 24 as these values
13736 		 * are not supported in workaround.
13737 		 */
13738 		for (val = 0; val <= 31; val++) {
13739 			if ((val & 0x7) == 0)
13740 				continue;
13741 			period1 = val * 1000000 / ppb;
13742 			period2 = period1 + 1;
13743 			if (period1 != 0)
13744 				dif1 = ppb - (val * 1000000 / period1);
13745 			else
13746 				dif1 = BNX2X_MAX_PHC_DRIFT;
13747 			if (dif1 < 0)
13748 				dif1 = -dif1;
13749 			dif2 = ppb - (val * 1000000 / period2);
13750 			if (dif2 < 0)
13751 				dif2 = -dif2;
13752 			dif = (dif1 < dif2) ? dif1 : dif2;
13753 			period = (dif1 < dif2) ? period1 : period2;
13754 			if (dif < best_dif) {
13755 				best_dif = dif;
13756 				best_val = val;
13757 				best_period = period;
13758 			}
13759 		}
13760 	}
13761 
13762 	rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13763 					    best_period);
13764 	if (rc) {
13765 		BNX2X_ERR("Failed to set drift\n");
13766 		return -EFAULT;
13767 	}
13768 
13769 	DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13770 	   best_period);
13771 
13772 	return 0;
13773 }
13774 
13775 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13776 {
13777 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13778 
13779 	if (!netif_running(bp->dev)) {
13780 		DP(BNX2X_MSG_PTP,
13781 		   "PTP adjtime called while the interface is down\n");
13782 		return -ENETDOWN;
13783 	}
13784 
13785 	DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13786 
13787 	timecounter_adjtime(&bp->timecounter, delta);
13788 
13789 	return 0;
13790 }
13791 
13792 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13793 {
13794 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13795 	u64 ns;
13796 
13797 	if (!netif_running(bp->dev)) {
13798 		DP(BNX2X_MSG_PTP,
13799 		   "PTP gettime called while the interface is down\n");
13800 		return -ENETDOWN;
13801 	}
13802 
13803 	ns = timecounter_read(&bp->timecounter);
13804 
13805 	DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13806 
13807 	*ts = ns_to_timespec64(ns);
13808 
13809 	return 0;
13810 }
13811 
13812 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13813 			     const struct timespec64 *ts)
13814 {
13815 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13816 	u64 ns;
13817 
13818 	if (!netif_running(bp->dev)) {
13819 		DP(BNX2X_MSG_PTP,
13820 		   "PTP settime called while the interface is down\n");
13821 		return -ENETDOWN;
13822 	}
13823 
13824 	ns = timespec64_to_ns(ts);
13825 
13826 	DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13827 
13828 	/* Re-init the timecounter */
13829 	timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13830 
13831 	return 0;
13832 }
13833 
13834 /* Enable (or disable) ancillary features of the phc subsystem */
13835 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13836 			    struct ptp_clock_request *rq, int on)
13837 {
13838 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13839 
13840 	BNX2X_ERR("PHC ancillary features are not supported\n");
13841 	return -ENOTSUPP;
13842 }
13843 
13844 void bnx2x_register_phc(struct bnx2x *bp)
13845 {
13846 	/* Fill the ptp_clock_info struct and register PTP clock*/
13847 	bp->ptp_clock_info.owner = THIS_MODULE;
13848 	snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13849 	bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13850 	bp->ptp_clock_info.n_alarm = 0;
13851 	bp->ptp_clock_info.n_ext_ts = 0;
13852 	bp->ptp_clock_info.n_per_out = 0;
13853 	bp->ptp_clock_info.pps = 0;
13854 	bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13855 	bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13856 	bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13857 	bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13858 	bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13859 
13860 	bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13861 	if (IS_ERR(bp->ptp_clock)) {
13862 		bp->ptp_clock = NULL;
13863 		BNX2X_ERR("PTP clock registration failed\n");
13864 	}
13865 }
13866 
13867 static int bnx2x_init_one(struct pci_dev *pdev,
13868 				    const struct pci_device_id *ent)
13869 {
13870 	struct net_device *dev = NULL;
13871 	struct bnx2x *bp;
13872 	int rc, max_non_def_sbs;
13873 	int rx_count, tx_count, rss_count, doorbell_size;
13874 	int max_cos_est;
13875 	bool is_vf;
13876 	int cnic_cnt;
13877 
13878 	/* Management FW 'remembers' living interfaces. Allow it some time
13879 	 * to forget previously living interfaces, allowing a proper re-load.
13880 	 */
13881 	if (is_kdump_kernel()) {
13882 		ktime_t now = ktime_get_boottime();
13883 		ktime_t fw_ready_time = ktime_set(5, 0);
13884 
13885 		if (ktime_before(now, fw_ready_time))
13886 			msleep(ktime_ms_delta(fw_ready_time, now));
13887 	}
13888 
13889 	/* An estimated maximum supported CoS number according to the chip
13890 	 * version.
13891 	 * We will try to roughly estimate the maximum number of CoSes this chip
13892 	 * may support in order to minimize the memory allocated for Tx
13893 	 * netdev_queue's. This number will be accurately calculated during the
13894 	 * initialization of bp->max_cos based on the chip versions AND chip
13895 	 * revision in the bnx2x_init_bp().
13896 	 */
13897 	max_cos_est = set_max_cos_est(ent->driver_data);
13898 	if (max_cos_est < 0)
13899 		return max_cos_est;
13900 	is_vf = set_is_vf(ent->driver_data);
13901 	cnic_cnt = is_vf ? 0 : 1;
13902 
13903 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13904 
13905 	/* add another SB for VF as it has no default SB */
13906 	max_non_def_sbs += is_vf ? 1 : 0;
13907 
13908 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
13909 	rss_count = max_non_def_sbs - cnic_cnt;
13910 
13911 	if (rss_count < 1)
13912 		return -EINVAL;
13913 
13914 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13915 	rx_count = rss_count + cnic_cnt;
13916 
13917 	/* Maximum number of netdev Tx queues:
13918 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13919 	 */
13920 	tx_count = rss_count * max_cos_est + cnic_cnt;
13921 
13922 	/* dev zeroed in init_etherdev */
13923 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13924 	if (!dev)
13925 		return -ENOMEM;
13926 
13927 	bp = netdev_priv(dev);
13928 
13929 	bp->flags = 0;
13930 	if (is_vf)
13931 		bp->flags |= IS_VF_FLAG;
13932 
13933 	bp->igu_sb_cnt = max_non_def_sbs;
13934 	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13935 	bp->msg_enable = debug;
13936 	bp->cnic_support = cnic_cnt;
13937 	bp->cnic_probe = bnx2x_cnic_probe;
13938 
13939 	pci_set_drvdata(pdev, dev);
13940 
13941 	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13942 	if (rc < 0) {
13943 		free_netdev(dev);
13944 		return rc;
13945 	}
13946 
13947 	BNX2X_DEV_INFO("This is a %s function\n",
13948 		       IS_PF(bp) ? "physical" : "virtual");
13949 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13950 	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13951 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13952 		       tx_count, rx_count);
13953 
13954 	rc = bnx2x_init_bp(bp);
13955 	if (rc)
13956 		goto init_one_exit;
13957 
13958 	/* Map doorbells here as we need the real value of bp->max_cos which
13959 	 * is initialized in bnx2x_init_bp() to determine the number of
13960 	 * l2 connections.
13961 	 */
13962 	if (IS_VF(bp)) {
13963 		bp->doorbells = bnx2x_vf_doorbells(bp);
13964 		rc = bnx2x_vf_pci_alloc(bp);
13965 		if (rc)
13966 			goto init_one_freemem;
13967 	} else {
13968 		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13969 		if (doorbell_size > pci_resource_len(pdev, 2)) {
13970 			dev_err(&bp->pdev->dev,
13971 				"Cannot map doorbells, bar size too small, aborting\n");
13972 			rc = -ENOMEM;
13973 			goto init_one_freemem;
13974 		}
13975 		bp->doorbells = ioremap(pci_resource_start(pdev, 2),
13976 						doorbell_size);
13977 	}
13978 	if (!bp->doorbells) {
13979 		dev_err(&bp->pdev->dev,
13980 			"Cannot map doorbell space, aborting\n");
13981 		rc = -ENOMEM;
13982 		goto init_one_freemem;
13983 	}
13984 
13985 	if (IS_VF(bp)) {
13986 		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13987 		if (rc)
13988 			goto init_one_freemem;
13989 
13990 #ifdef CONFIG_BNX2X_SRIOV
13991 		/* VF with OLD Hypervisor or old PF do not support filtering */
13992 		if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
13993 			dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13994 			dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13995 		}
13996 #endif
13997 	}
13998 
13999 	/* Enable SRIOV if capability found in configuration space */
14000 	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
14001 	if (rc)
14002 		goto init_one_freemem;
14003 
14004 	/* calc qm_cid_count */
14005 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
14006 	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
14007 
14008 	/* disable FCOE L2 queue for E1x*/
14009 	if (CHIP_IS_E1x(bp))
14010 		bp->flags |= NO_FCOE_FLAG;
14011 
14012 	/* Set bp->num_queues for MSI-X mode*/
14013 	bnx2x_set_num_queues(bp);
14014 
14015 	/* Configure interrupt mode: try to enable MSI-X/MSI if
14016 	 * needed.
14017 	 */
14018 	rc = bnx2x_set_int_mode(bp);
14019 	if (rc) {
14020 		dev_err(&pdev->dev, "Cannot set interrupts\n");
14021 		goto init_one_freemem;
14022 	}
14023 	BNX2X_DEV_INFO("set interrupts successfully\n");
14024 
14025 	/* register the net device */
14026 	rc = register_netdev(dev);
14027 	if (rc) {
14028 		dev_err(&pdev->dev, "Cannot register net device\n");
14029 		goto init_one_freemem;
14030 	}
14031 	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
14032 
14033 	if (!NO_FCOE(bp)) {
14034 		/* Add storage MAC address */
14035 		rtnl_lock();
14036 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14037 		rtnl_unlock();
14038 	}
14039 	BNX2X_DEV_INFO(
14040 	       "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n",
14041 	       board_info[ent->driver_data].name,
14042 	       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
14043 	       dev->base_addr, bp->pdev->irq, dev->dev_addr);
14044 	pcie_print_link_status(bp->pdev);
14045 
14046 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
14047 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14048 
14049 	return 0;
14050 
14051 init_one_freemem:
14052 	bnx2x_free_mem_bp(bp);
14053 
14054 init_one_exit:
14055 	bnx2x_disable_pcie_error_reporting(bp);
14056 
14057 	if (bp->regview)
14058 		iounmap(bp->regview);
14059 
14060 	if (IS_PF(bp) && bp->doorbells)
14061 		iounmap(bp->doorbells);
14062 
14063 	free_netdev(dev);
14064 
14065 	if (atomic_read(&pdev->enable_cnt) == 1)
14066 		pci_release_regions(pdev);
14067 
14068 	pci_disable_device(pdev);
14069 
14070 	return rc;
14071 }
14072 
14073 static void __bnx2x_remove(struct pci_dev *pdev,
14074 			   struct net_device *dev,
14075 			   struct bnx2x *bp,
14076 			   bool remove_netdev)
14077 {
14078 	/* Delete storage MAC address */
14079 	if (!NO_FCOE(bp)) {
14080 		rtnl_lock();
14081 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14082 		rtnl_unlock();
14083 	}
14084 
14085 #ifdef BCM_DCBNL
14086 	/* Delete app tlvs from dcbnl */
14087 	bnx2x_dcbnl_update_applist(bp, true);
14088 #endif
14089 
14090 	if (IS_PF(bp) &&
14091 	    !BP_NOMCP(bp) &&
14092 	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14093 		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14094 
14095 	/* Close the interface - either directly or implicitly */
14096 	if (remove_netdev) {
14097 		unregister_netdev(dev);
14098 	} else {
14099 		rtnl_lock();
14100 		dev_close(dev);
14101 		rtnl_unlock();
14102 	}
14103 
14104 	bnx2x_iov_remove_one(bp);
14105 
14106 	/* Power on: we can't let PCI layer write to us while we are in D3 */
14107 	if (IS_PF(bp)) {
14108 		bnx2x_set_power_state(bp, PCI_D0);
14109 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14110 
14111 		/* Set endianity registers to reset values in case next driver
14112 		 * boots in different endianty environment.
14113 		 */
14114 		bnx2x_reset_endianity(bp);
14115 	}
14116 
14117 	/* Disable MSI/MSI-X */
14118 	bnx2x_disable_msi(bp);
14119 
14120 	/* Power off */
14121 	if (IS_PF(bp))
14122 		bnx2x_set_power_state(bp, PCI_D3hot);
14123 
14124 	/* Make sure RESET task is not scheduled before continuing */
14125 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
14126 
14127 	/* send message via vfpf channel to release the resources of this vf */
14128 	if (IS_VF(bp))
14129 		bnx2x_vfpf_release(bp);
14130 
14131 	/* Assumes no further PCIe PM changes will occur */
14132 	if (system_state == SYSTEM_POWER_OFF) {
14133 		pci_wake_from_d3(pdev, bp->wol);
14134 		pci_set_power_state(pdev, PCI_D3hot);
14135 	}
14136 
14137 	bnx2x_disable_pcie_error_reporting(bp);
14138 	if (remove_netdev) {
14139 		if (bp->regview)
14140 			iounmap(bp->regview);
14141 
14142 		/* For vfs, doorbells are part of the regview and were unmapped
14143 		 * along with it. FW is only loaded by PF.
14144 		 */
14145 		if (IS_PF(bp)) {
14146 			if (bp->doorbells)
14147 				iounmap(bp->doorbells);
14148 
14149 			bnx2x_release_firmware(bp);
14150 		} else {
14151 			bnx2x_vf_pci_dealloc(bp);
14152 		}
14153 		bnx2x_free_mem_bp(bp);
14154 
14155 		free_netdev(dev);
14156 
14157 		if (atomic_read(&pdev->enable_cnt) == 1)
14158 			pci_release_regions(pdev);
14159 
14160 		pci_disable_device(pdev);
14161 	}
14162 }
14163 
14164 static void bnx2x_remove_one(struct pci_dev *pdev)
14165 {
14166 	struct net_device *dev = pci_get_drvdata(pdev);
14167 	struct bnx2x *bp;
14168 
14169 	if (!dev) {
14170 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14171 		return;
14172 	}
14173 	bp = netdev_priv(dev);
14174 
14175 	__bnx2x_remove(pdev, dev, bp, true);
14176 }
14177 
14178 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14179 {
14180 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14181 
14182 	bp->rx_mode = BNX2X_RX_MODE_NONE;
14183 
14184 	if (CNIC_LOADED(bp))
14185 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14186 
14187 	/* Stop Tx */
14188 	bnx2x_tx_disable(bp);
14189 	/* Delete all NAPI objects */
14190 	bnx2x_del_all_napi(bp);
14191 	if (CNIC_LOADED(bp))
14192 		bnx2x_del_all_napi_cnic(bp);
14193 	netdev_reset_tc(bp->dev);
14194 
14195 	del_timer_sync(&bp->timer);
14196 	cancel_delayed_work_sync(&bp->sp_task);
14197 	cancel_delayed_work_sync(&bp->period_task);
14198 
14199 	if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14200 		bp->stats_state = STATS_STATE_DISABLED;
14201 		up(&bp->stats_lock);
14202 	}
14203 
14204 	bnx2x_save_statistics(bp);
14205 
14206 	netif_carrier_off(bp->dev);
14207 
14208 	return 0;
14209 }
14210 
14211 /**
14212  * bnx2x_io_error_detected - called when PCI error is detected
14213  * @pdev: Pointer to PCI device
14214  * @state: The current pci connection state
14215  *
14216  * This function is called after a PCI bus error affecting
14217  * this device has been detected.
14218  */
14219 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14220 						pci_channel_state_t state)
14221 {
14222 	struct net_device *dev = pci_get_drvdata(pdev);
14223 	struct bnx2x *bp = netdev_priv(dev);
14224 
14225 	rtnl_lock();
14226 
14227 	BNX2X_ERR("IO error detected\n");
14228 
14229 	netif_device_detach(dev);
14230 
14231 	if (state == pci_channel_io_perm_failure) {
14232 		rtnl_unlock();
14233 		return PCI_ERS_RESULT_DISCONNECT;
14234 	}
14235 
14236 	if (netif_running(dev))
14237 		bnx2x_eeh_nic_unload(bp);
14238 
14239 	bnx2x_prev_path_mark_eeh(bp);
14240 
14241 	pci_disable_device(pdev);
14242 
14243 	rtnl_unlock();
14244 
14245 	/* Request a slot reset */
14246 	return PCI_ERS_RESULT_NEED_RESET;
14247 }
14248 
14249 /**
14250  * bnx2x_io_slot_reset - called after the PCI bus has been reset
14251  * @pdev: Pointer to PCI device
14252  *
14253  * Restart the card from scratch, as if from a cold-boot.
14254  */
14255 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14256 {
14257 	struct net_device *dev = pci_get_drvdata(pdev);
14258 	struct bnx2x *bp = netdev_priv(dev);
14259 	int i;
14260 
14261 	rtnl_lock();
14262 	BNX2X_ERR("IO slot reset initializing...\n");
14263 	if (pci_enable_device(pdev)) {
14264 		dev_err(&pdev->dev,
14265 			"Cannot re-enable PCI device after reset\n");
14266 		rtnl_unlock();
14267 		return PCI_ERS_RESULT_DISCONNECT;
14268 	}
14269 
14270 	pci_set_master(pdev);
14271 	pci_restore_state(pdev);
14272 	pci_save_state(pdev);
14273 
14274 	if (netif_running(dev))
14275 		bnx2x_set_power_state(bp, PCI_D0);
14276 
14277 	if (netif_running(dev)) {
14278 		BNX2X_ERR("IO slot reset --> driver unload\n");
14279 
14280 		/* MCP should have been reset; Need to wait for validity */
14281 		if (bnx2x_init_shmem(bp)) {
14282 			rtnl_unlock();
14283 			return PCI_ERS_RESULT_DISCONNECT;
14284 		}
14285 
14286 		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14287 			u32 v;
14288 
14289 			v = SHMEM2_RD(bp,
14290 				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14291 			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14292 				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14293 		}
14294 		bnx2x_drain_tx_queues(bp);
14295 		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14296 		bnx2x_netif_stop(bp, 1);
14297 		bnx2x_free_irq(bp);
14298 
14299 		/* Report UNLOAD_DONE to MCP */
14300 		bnx2x_send_unload_done(bp, true);
14301 
14302 		bp->sp_state = 0;
14303 		bp->port.pmf = 0;
14304 
14305 		bnx2x_prev_unload(bp);
14306 
14307 		/* We should have reseted the engine, so It's fair to
14308 		 * assume the FW will no longer write to the bnx2x driver.
14309 		 */
14310 		bnx2x_squeeze_objects(bp);
14311 		bnx2x_free_skbs(bp);
14312 		for_each_rx_queue(bp, i)
14313 			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14314 		bnx2x_free_fp_mem(bp);
14315 		bnx2x_free_mem(bp);
14316 
14317 		bp->state = BNX2X_STATE_CLOSED;
14318 	}
14319 
14320 	rtnl_unlock();
14321 
14322 	return PCI_ERS_RESULT_RECOVERED;
14323 }
14324 
14325 /**
14326  * bnx2x_io_resume - called when traffic can start flowing again
14327  * @pdev: Pointer to PCI device
14328  *
14329  * This callback is called when the error recovery driver tells us that
14330  * its OK to resume normal operation.
14331  */
14332 static void bnx2x_io_resume(struct pci_dev *pdev)
14333 {
14334 	struct net_device *dev = pci_get_drvdata(pdev);
14335 	struct bnx2x *bp = netdev_priv(dev);
14336 
14337 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14338 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14339 		return;
14340 	}
14341 
14342 	rtnl_lock();
14343 
14344 	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14345 							DRV_MSG_SEQ_NUMBER_MASK;
14346 
14347 	if (netif_running(dev))
14348 		bnx2x_nic_load(bp, LOAD_NORMAL);
14349 
14350 	netif_device_attach(dev);
14351 
14352 	rtnl_unlock();
14353 }
14354 
14355 static const struct pci_error_handlers bnx2x_err_handler = {
14356 	.error_detected = bnx2x_io_error_detected,
14357 	.slot_reset     = bnx2x_io_slot_reset,
14358 	.resume         = bnx2x_io_resume,
14359 };
14360 
14361 static void bnx2x_shutdown(struct pci_dev *pdev)
14362 {
14363 	struct net_device *dev = pci_get_drvdata(pdev);
14364 	struct bnx2x *bp;
14365 
14366 	if (!dev)
14367 		return;
14368 
14369 	bp = netdev_priv(dev);
14370 	if (!bp)
14371 		return;
14372 
14373 	rtnl_lock();
14374 	netif_device_detach(dev);
14375 	rtnl_unlock();
14376 
14377 	/* Don't remove the netdevice, as there are scenarios which will cause
14378 	 * the kernel to hang, e.g., when trying to remove bnx2i while the
14379 	 * rootfs is mounted from SAN.
14380 	 */
14381 	__bnx2x_remove(pdev, dev, bp, false);
14382 }
14383 
14384 static struct pci_driver bnx2x_pci_driver = {
14385 	.name        = DRV_MODULE_NAME,
14386 	.id_table    = bnx2x_pci_tbl,
14387 	.probe       = bnx2x_init_one,
14388 	.remove      = bnx2x_remove_one,
14389 	.driver.pm   = &bnx2x_pm_ops,
14390 	.err_handler = &bnx2x_err_handler,
14391 #ifdef CONFIG_BNX2X_SRIOV
14392 	.sriov_configure = bnx2x_sriov_configure,
14393 #endif
14394 	.shutdown    = bnx2x_shutdown,
14395 };
14396 
14397 static int __init bnx2x_init(void)
14398 {
14399 	int ret;
14400 
14401 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
14402 	if (bnx2x_wq == NULL) {
14403 		pr_err("Cannot create workqueue\n");
14404 		return -ENOMEM;
14405 	}
14406 	bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14407 	if (!bnx2x_iov_wq) {
14408 		pr_err("Cannot create iov workqueue\n");
14409 		destroy_workqueue(bnx2x_wq);
14410 		return -ENOMEM;
14411 	}
14412 
14413 	ret = pci_register_driver(&bnx2x_pci_driver);
14414 	if (ret) {
14415 		pr_err("Cannot register driver\n");
14416 		destroy_workqueue(bnx2x_wq);
14417 		destroy_workqueue(bnx2x_iov_wq);
14418 	}
14419 	return ret;
14420 }
14421 
14422 static void __exit bnx2x_cleanup(void)
14423 {
14424 	struct list_head *pos, *q;
14425 
14426 	pci_unregister_driver(&bnx2x_pci_driver);
14427 
14428 	destroy_workqueue(bnx2x_wq);
14429 	destroy_workqueue(bnx2x_iov_wq);
14430 
14431 	/* Free globally allocated resources */
14432 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
14433 		struct bnx2x_prev_path_list *tmp =
14434 			list_entry(pos, struct bnx2x_prev_path_list, list);
14435 		list_del(pos);
14436 		kfree(tmp);
14437 	}
14438 }
14439 
14440 void bnx2x_notify_link_changed(struct bnx2x *bp)
14441 {
14442 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14443 }
14444 
14445 module_init(bnx2x_init);
14446 module_exit(bnx2x_cleanup);
14447 
14448 /**
14449  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14450  * @bp:		driver handle
14451  *
14452  * This function will wait until the ramrod completion returns.
14453  * Return 0 if success, -ENODEV if ramrod doesn't return.
14454  */
14455 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14456 {
14457 	unsigned long ramrod_flags = 0;
14458 
14459 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14460 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14461 				 &bp->iscsi_l2_mac_obj, true,
14462 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14463 }
14464 
14465 /* count denotes the number of new completions we have seen */
14466 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14467 {
14468 	struct eth_spe *spe;
14469 	int cxt_index, cxt_offset;
14470 
14471 #ifdef BNX2X_STOP_ON_ERROR
14472 	if (unlikely(bp->panic))
14473 		return;
14474 #endif
14475 
14476 	spin_lock_bh(&bp->spq_lock);
14477 	BUG_ON(bp->cnic_spq_pending < count);
14478 	bp->cnic_spq_pending -= count;
14479 
14480 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14481 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14482 				& SPE_HDR_CONN_TYPE) >>
14483 				SPE_HDR_CONN_TYPE_SHIFT;
14484 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14485 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14486 
14487 		/* Set validation for iSCSI L2 client before sending SETUP
14488 		 *  ramrod
14489 		 */
14490 		if (type == ETH_CONNECTION_TYPE) {
14491 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14492 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14493 					ILT_PAGE_CIDS;
14494 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14495 					(cxt_index * ILT_PAGE_CIDS);
14496 				bnx2x_set_ctx_validation(bp,
14497 					&bp->context[cxt_index].
14498 							 vcxt[cxt_offset].eth,
14499 					BNX2X_ISCSI_ETH_CID(bp));
14500 			}
14501 		}
14502 
14503 		/*
14504 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
14505 		 * and in the air. We also check that number of outstanding
14506 		 * COMMON ramrods is not more than the EQ and SPQ can
14507 		 * accommodate.
14508 		 */
14509 		if (type == ETH_CONNECTION_TYPE) {
14510 			if (!atomic_read(&bp->cq_spq_left))
14511 				break;
14512 			else
14513 				atomic_dec(&bp->cq_spq_left);
14514 		} else if (type == NONE_CONNECTION_TYPE) {
14515 			if (!atomic_read(&bp->eq_spq_left))
14516 				break;
14517 			else
14518 				atomic_dec(&bp->eq_spq_left);
14519 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
14520 			   (type == FCOE_CONNECTION_TYPE)) {
14521 			if (bp->cnic_spq_pending >=
14522 			    bp->cnic_eth_dev.max_kwqe_pending)
14523 				break;
14524 			else
14525 				bp->cnic_spq_pending++;
14526 		} else {
14527 			BNX2X_ERR("Unknown SPE type: %d\n", type);
14528 			bnx2x_panic();
14529 			break;
14530 		}
14531 
14532 		spe = bnx2x_sp_get_next(bp);
14533 		*spe = *bp->cnic_kwq_cons;
14534 
14535 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14536 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14537 
14538 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14539 			bp->cnic_kwq_cons = bp->cnic_kwq;
14540 		else
14541 			bp->cnic_kwq_cons++;
14542 	}
14543 	bnx2x_sp_prod_update(bp);
14544 	spin_unlock_bh(&bp->spq_lock);
14545 }
14546 
14547 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14548 			       struct kwqe_16 *kwqes[], u32 count)
14549 {
14550 	struct bnx2x *bp = netdev_priv(dev);
14551 	int i;
14552 
14553 #ifdef BNX2X_STOP_ON_ERROR
14554 	if (unlikely(bp->panic)) {
14555 		BNX2X_ERR("Can't post to SP queue while panic\n");
14556 		return -EIO;
14557 	}
14558 #endif
14559 
14560 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14561 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14562 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
14563 		return -EAGAIN;
14564 	}
14565 
14566 	spin_lock_bh(&bp->spq_lock);
14567 
14568 	for (i = 0; i < count; i++) {
14569 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14570 
14571 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14572 			break;
14573 
14574 		*bp->cnic_kwq_prod = *spe;
14575 
14576 		bp->cnic_kwq_pending++;
14577 
14578 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14579 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
14580 		   spe->data.update_data_addr.hi,
14581 		   spe->data.update_data_addr.lo,
14582 		   bp->cnic_kwq_pending);
14583 
14584 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14585 			bp->cnic_kwq_prod = bp->cnic_kwq;
14586 		else
14587 			bp->cnic_kwq_prod++;
14588 	}
14589 
14590 	spin_unlock_bh(&bp->spq_lock);
14591 
14592 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14593 		bnx2x_cnic_sp_post(bp, 0);
14594 
14595 	return i;
14596 }
14597 
14598 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14599 {
14600 	struct cnic_ops *c_ops;
14601 	int rc = 0;
14602 
14603 	mutex_lock(&bp->cnic_mutex);
14604 	c_ops = rcu_dereference_protected(bp->cnic_ops,
14605 					  lockdep_is_held(&bp->cnic_mutex));
14606 	if (c_ops)
14607 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14608 	mutex_unlock(&bp->cnic_mutex);
14609 
14610 	return rc;
14611 }
14612 
14613 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14614 {
14615 	struct cnic_ops *c_ops;
14616 	int rc = 0;
14617 
14618 	rcu_read_lock();
14619 	c_ops = rcu_dereference(bp->cnic_ops);
14620 	if (c_ops)
14621 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14622 	rcu_read_unlock();
14623 
14624 	return rc;
14625 }
14626 
14627 /*
14628  * for commands that have no data
14629  */
14630 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14631 {
14632 	struct cnic_ctl_info ctl = {0};
14633 
14634 	ctl.cmd = cmd;
14635 
14636 	return bnx2x_cnic_ctl_send(bp, &ctl);
14637 }
14638 
14639 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14640 {
14641 	struct cnic_ctl_info ctl = {0};
14642 
14643 	/* first we tell CNIC and only then we count this as a completion */
14644 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14645 	ctl.data.comp.cid = cid;
14646 	ctl.data.comp.error = err;
14647 
14648 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
14649 	bnx2x_cnic_sp_post(bp, 0);
14650 }
14651 
14652 /* Called with netif_addr_lock_bh() taken.
14653  * Sets an rx_mode config for an iSCSI ETH client.
14654  * Doesn't block.
14655  * Completion should be checked outside.
14656  */
14657 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14658 {
14659 	unsigned long accept_flags = 0, ramrod_flags = 0;
14660 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14661 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14662 
14663 	if (start) {
14664 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
14665 		 * because it's the only way for UIO Queue to accept
14666 		 * multicasts (in non-promiscuous mode only one Queue per
14667 		 * function will receive multicast packets (leading in our
14668 		 * case).
14669 		 */
14670 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14671 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14672 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14673 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14674 
14675 		/* Clear STOP_PENDING bit if START is requested */
14676 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14677 
14678 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14679 	} else
14680 		/* Clear START_PENDING bit if STOP is requested */
14681 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14682 
14683 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14684 		set_bit(sched_state, &bp->sp_state);
14685 	else {
14686 		__set_bit(RAMROD_RX, &ramrod_flags);
14687 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14688 				    ramrod_flags);
14689 	}
14690 }
14691 
14692 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14693 {
14694 	struct bnx2x *bp = netdev_priv(dev);
14695 	int rc = 0;
14696 
14697 	switch (ctl->cmd) {
14698 	case DRV_CTL_CTXTBL_WR_CMD: {
14699 		u32 index = ctl->data.io.offset;
14700 		dma_addr_t addr = ctl->data.io.dma_addr;
14701 
14702 		bnx2x_ilt_wr(bp, index, addr);
14703 		break;
14704 	}
14705 
14706 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14707 		int count = ctl->data.credit.credit_count;
14708 
14709 		bnx2x_cnic_sp_post(bp, count);
14710 		break;
14711 	}
14712 
14713 	/* rtnl_lock is held.  */
14714 	case DRV_CTL_START_L2_CMD: {
14715 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14716 		unsigned long sp_bits = 0;
14717 
14718 		/* Configure the iSCSI classification object */
14719 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14720 				   cp->iscsi_l2_client_id,
14721 				   cp->iscsi_l2_cid, BP_FUNC(bp),
14722 				   bnx2x_sp(bp, mac_rdata),
14723 				   bnx2x_sp_mapping(bp, mac_rdata),
14724 				   BNX2X_FILTER_MAC_PENDING,
14725 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14726 				   &bp->macs_pool);
14727 
14728 		/* Set iSCSI MAC address */
14729 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14730 		if (rc)
14731 			break;
14732 
14733 		barrier();
14734 
14735 		/* Start accepting on iSCSI L2 ring */
14736 
14737 		netif_addr_lock_bh(dev);
14738 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
14739 		netif_addr_unlock_bh(dev);
14740 
14741 		/* bits to wait on */
14742 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14743 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14744 
14745 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14746 			BNX2X_ERR("rx_mode completion timed out!\n");
14747 
14748 		break;
14749 	}
14750 
14751 	/* rtnl_lock is held.  */
14752 	case DRV_CTL_STOP_L2_CMD: {
14753 		unsigned long sp_bits = 0;
14754 
14755 		/* Stop accepting on iSCSI L2 ring */
14756 		netif_addr_lock_bh(dev);
14757 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
14758 		netif_addr_unlock_bh(dev);
14759 
14760 		/* bits to wait on */
14761 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14762 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14763 
14764 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14765 			BNX2X_ERR("rx_mode completion timed out!\n");
14766 
14767 		barrier();
14768 
14769 		/* Unset iSCSI L2 MAC */
14770 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14771 					BNX2X_ISCSI_ETH_MAC, true);
14772 		break;
14773 	}
14774 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14775 		int count = ctl->data.credit.credit_count;
14776 
14777 		smp_mb__before_atomic();
14778 		atomic_add(count, &bp->cq_spq_left);
14779 		smp_mb__after_atomic();
14780 		break;
14781 	}
14782 	case DRV_CTL_ULP_REGISTER_CMD: {
14783 		int ulp_type = ctl->data.register_data.ulp_type;
14784 
14785 		if (CHIP_IS_E3(bp)) {
14786 			int idx = BP_FW_MB_IDX(bp);
14787 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14788 			int path = BP_PATH(bp);
14789 			int port = BP_PORT(bp);
14790 			int i;
14791 			u32 scratch_offset;
14792 			u32 *host_addr;
14793 
14794 			/* first write capability to shmem2 */
14795 			if (ulp_type == CNIC_ULP_ISCSI)
14796 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14797 			else if (ulp_type == CNIC_ULP_FCOE)
14798 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14799 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14800 
14801 			if ((ulp_type != CNIC_ULP_FCOE) ||
14802 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14803 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14804 				break;
14805 
14806 			/* if reached here - should write fcoe capabilities */
14807 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14808 			if (!scratch_offset)
14809 				break;
14810 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
14811 						   fcoe_features[path][port]);
14812 			host_addr = (u32 *) &(ctl->data.register_data.
14813 					      fcoe_features);
14814 			for (i = 0; i < sizeof(struct fcoe_capabilities);
14815 			     i += 4)
14816 				REG_WR(bp, scratch_offset + i,
14817 				       *(host_addr + i/4));
14818 		}
14819 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14820 		break;
14821 	}
14822 
14823 	case DRV_CTL_ULP_UNREGISTER_CMD: {
14824 		int ulp_type = ctl->data.ulp_type;
14825 
14826 		if (CHIP_IS_E3(bp)) {
14827 			int idx = BP_FW_MB_IDX(bp);
14828 			u32 cap;
14829 
14830 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14831 			if (ulp_type == CNIC_ULP_ISCSI)
14832 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14833 			else if (ulp_type == CNIC_ULP_FCOE)
14834 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14835 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14836 		}
14837 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14838 		break;
14839 	}
14840 
14841 	default:
14842 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
14843 		rc = -EINVAL;
14844 	}
14845 
14846 	/* For storage-only interfaces, change driver state */
14847 	if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14848 		switch (ctl->drv_state) {
14849 		case DRV_NOP:
14850 			break;
14851 		case DRV_ACTIVE:
14852 			bnx2x_set_os_driver_state(bp,
14853 						  OS_DRIVER_STATE_ACTIVE);
14854 			break;
14855 		case DRV_INACTIVE:
14856 			bnx2x_set_os_driver_state(bp,
14857 						  OS_DRIVER_STATE_DISABLED);
14858 			break;
14859 		case DRV_UNLOADED:
14860 			bnx2x_set_os_driver_state(bp,
14861 						  OS_DRIVER_STATE_NOT_LOADED);
14862 			break;
14863 		default:
14864 		BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14865 		}
14866 	}
14867 
14868 	return rc;
14869 }
14870 
14871 static int bnx2x_get_fc_npiv(struct net_device *dev,
14872 			     struct cnic_fc_npiv_tbl *cnic_tbl)
14873 {
14874 	struct bnx2x *bp = netdev_priv(dev);
14875 	struct bdn_fc_npiv_tbl *tbl = NULL;
14876 	u32 offset, entries;
14877 	int rc = -EINVAL;
14878 	int i;
14879 
14880 	if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14881 		goto out;
14882 
14883 	DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14884 
14885 	tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14886 	if (!tbl) {
14887 		BNX2X_ERR("Failed to allocate fc_npiv table\n");
14888 		goto out;
14889 	}
14890 
14891 	offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14892 	if (!offset) {
14893 		DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14894 		goto out;
14895 	}
14896 	DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14897 
14898 	/* Read the table contents from nvram */
14899 	if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14900 		BNX2X_ERR("Failed to read FC-NPIV table\n");
14901 		goto out;
14902 	}
14903 
14904 	/* Since bnx2x_nvram_read() returns data in be32, we need to convert
14905 	 * the number of entries back to cpu endianness.
14906 	 */
14907 	entries = tbl->fc_npiv_cfg.num_of_npiv;
14908 	entries = (__force u32)be32_to_cpu((__force __be32)entries);
14909 	tbl->fc_npiv_cfg.num_of_npiv = entries;
14910 
14911 	if (!tbl->fc_npiv_cfg.num_of_npiv) {
14912 		DP(BNX2X_MSG_MCP,
14913 		   "No FC-NPIV table [valid, simply not present]\n");
14914 		goto out;
14915 	} else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14916 		BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14917 			  tbl->fc_npiv_cfg.num_of_npiv);
14918 		goto out;
14919 	} else {
14920 		DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14921 		   tbl->fc_npiv_cfg.num_of_npiv);
14922 	}
14923 
14924 	/* Copy the data into cnic-provided struct */
14925 	cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14926 	for (i = 0; i < cnic_tbl->count; i++) {
14927 		memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14928 		memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14929 	}
14930 
14931 	rc = 0;
14932 out:
14933 	kfree(tbl);
14934 	return rc;
14935 }
14936 
14937 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14938 {
14939 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14940 
14941 	if (bp->flags & USING_MSIX_FLAG) {
14942 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14943 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14944 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
14945 	} else {
14946 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14947 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14948 	}
14949 	if (!CHIP_IS_E1x(bp))
14950 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14951 	else
14952 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14953 
14954 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14955 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14956 	cp->irq_arr[1].status_blk = bp->def_status_blk;
14957 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14958 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14959 
14960 	cp->num_irq = 2;
14961 }
14962 
14963 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14964 {
14965 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14966 
14967 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14968 			     bnx2x_cid_ilt_lines(bp);
14969 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14970 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14971 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14972 
14973 	DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14974 	   BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14975 	   cp->iscsi_l2_cid);
14976 
14977 	if (NO_ISCSI_OOO(bp))
14978 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14979 }
14980 
14981 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14982 			       void *data)
14983 {
14984 	struct bnx2x *bp = netdev_priv(dev);
14985 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14986 	int rc;
14987 
14988 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14989 
14990 	if (ops == NULL) {
14991 		BNX2X_ERR("NULL ops received\n");
14992 		return -EINVAL;
14993 	}
14994 
14995 	if (!CNIC_SUPPORT(bp)) {
14996 		BNX2X_ERR("Can't register CNIC when not supported\n");
14997 		return -EOPNOTSUPP;
14998 	}
14999 
15000 	if (!CNIC_LOADED(bp)) {
15001 		rc = bnx2x_load_cnic(bp);
15002 		if (rc) {
15003 			BNX2X_ERR("CNIC-related load failed\n");
15004 			return rc;
15005 		}
15006 	}
15007 
15008 	bp->cnic_enabled = true;
15009 
15010 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
15011 	if (!bp->cnic_kwq)
15012 		return -ENOMEM;
15013 
15014 	bp->cnic_kwq_cons = bp->cnic_kwq;
15015 	bp->cnic_kwq_prod = bp->cnic_kwq;
15016 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
15017 
15018 	bp->cnic_spq_pending = 0;
15019 	bp->cnic_kwq_pending = 0;
15020 
15021 	bp->cnic_data = data;
15022 
15023 	cp->num_irq = 0;
15024 	cp->drv_state |= CNIC_DRV_STATE_REGD;
15025 	cp->iro_arr = bp->iro_arr;
15026 
15027 	bnx2x_setup_cnic_irq_info(bp);
15028 
15029 	rcu_assign_pointer(bp->cnic_ops, ops);
15030 
15031 	/* Schedule driver to read CNIC driver versions */
15032 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
15033 
15034 	return 0;
15035 }
15036 
15037 static int bnx2x_unregister_cnic(struct net_device *dev)
15038 {
15039 	struct bnx2x *bp = netdev_priv(dev);
15040 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15041 
15042 	mutex_lock(&bp->cnic_mutex);
15043 	cp->drv_state = 0;
15044 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
15045 	mutex_unlock(&bp->cnic_mutex);
15046 	synchronize_rcu();
15047 	bp->cnic_enabled = false;
15048 	kfree(bp->cnic_kwq);
15049 	bp->cnic_kwq = NULL;
15050 
15051 	return 0;
15052 }
15053 
15054 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15055 {
15056 	struct bnx2x *bp = netdev_priv(dev);
15057 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15058 
15059 	/* If both iSCSI and FCoE are disabled - return NULL in
15060 	 * order to indicate CNIC that it should not try to work
15061 	 * with this device.
15062 	 */
15063 	if (NO_ISCSI(bp) && NO_FCOE(bp))
15064 		return NULL;
15065 
15066 	cp->drv_owner = THIS_MODULE;
15067 	cp->chip_id = CHIP_ID(bp);
15068 	cp->pdev = bp->pdev;
15069 	cp->io_base = bp->regview;
15070 	cp->io_base2 = bp->doorbells;
15071 	cp->max_kwqe_pending = 8;
15072 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15073 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15074 			     bnx2x_cid_ilt_lines(bp);
15075 	cp->ctx_tbl_len = CNIC_ILT_LINES;
15076 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15077 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15078 	cp->drv_ctl = bnx2x_drv_ctl;
15079 	cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15080 	cp->drv_register_cnic = bnx2x_register_cnic;
15081 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15082 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15083 	cp->iscsi_l2_client_id =
15084 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15085 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15086 
15087 	if (NO_ISCSI_OOO(bp))
15088 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15089 
15090 	if (NO_ISCSI(bp))
15091 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15092 
15093 	if (NO_FCOE(bp))
15094 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15095 
15096 	BNX2X_DEV_INFO(
15097 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15098 	   cp->ctx_blk_size,
15099 	   cp->ctx_tbl_offset,
15100 	   cp->ctx_tbl_len,
15101 	   cp->starting_cid);
15102 	return cp;
15103 }
15104 
15105 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15106 {
15107 	struct bnx2x *bp = fp->bp;
15108 	u32 offset = BAR_USTRORM_INTMEM;
15109 
15110 	if (IS_VF(bp))
15111 		return bnx2x_vf_ustorm_prods_offset(bp, fp);
15112 	else if (!CHIP_IS_E1x(bp))
15113 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15114 	else
15115 		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15116 
15117 	return offset;
15118 }
15119 
15120 /* called only on E1H or E2.
15121  * When pretending to be PF, the pretend value is the function number 0...7
15122  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15123  * combination
15124  */
15125 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15126 {
15127 	u32 pretend_reg;
15128 
15129 	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15130 		return -1;
15131 
15132 	/* get my own pretend register */
15133 	pretend_reg = bnx2x_get_pretend_reg(bp);
15134 	REG_WR(bp, pretend_reg, pretend_func_val);
15135 	REG_RD(bp, pretend_reg);
15136 	return 0;
15137 }
15138 
15139 static void bnx2x_ptp_task(struct work_struct *work)
15140 {
15141 	struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15142 	int port = BP_PORT(bp);
15143 	u32 val_seq;
15144 	u64 timestamp, ns;
15145 	struct skb_shared_hwtstamps shhwtstamps;
15146 	bool bail = true;
15147 	int i;
15148 
15149 	/* FW may take a while to complete timestamping; try a bit and if it's
15150 	 * still not complete, may indicate an error state - bail out then.
15151 	 */
15152 	for (i = 0; i < 10; i++) {
15153 		/* Read Tx timestamp registers */
15154 		val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15155 				 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15156 		if (val_seq & 0x10000) {
15157 			bail = false;
15158 			break;
15159 		}
15160 		msleep(1 << i);
15161 	}
15162 
15163 	if (!bail) {
15164 		/* There is a valid timestamp value */
15165 		timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15166 				   NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15167 		timestamp <<= 32;
15168 		timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15169 				    NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15170 		/* Reset timestamp register to allow new timestamp */
15171 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15172 		       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15173 		ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15174 
15175 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15176 		shhwtstamps.hwtstamp = ns_to_ktime(ns);
15177 		skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15178 
15179 		DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15180 		   timestamp, ns);
15181 	} else {
15182 		DP(BNX2X_MSG_PTP,
15183 		   "Tx timestamp is not recorded (register read=%u)\n",
15184 		   val_seq);
15185 		bp->eth_stats.ptp_skip_tx_ts++;
15186 	}
15187 
15188 	dev_kfree_skb_any(bp->ptp_tx_skb);
15189 	bp->ptp_tx_skb = NULL;
15190 }
15191 
15192 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15193 {
15194 	int port = BP_PORT(bp);
15195 	u64 timestamp, ns;
15196 
15197 	timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15198 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15199 	timestamp <<= 32;
15200 	timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15201 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15202 
15203 	/* Reset timestamp register to allow new timestamp */
15204 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15205 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15206 
15207 	ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15208 
15209 	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15210 
15211 	DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15212 	   timestamp, ns);
15213 }
15214 
15215 /* Read the PHC */
15216 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15217 {
15218 	struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15219 	int port = BP_PORT(bp);
15220 	u32 wb_data[2];
15221 	u64 phc_cycles;
15222 
15223 	REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15224 		    NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15225 	phc_cycles = wb_data[1];
15226 	phc_cycles = (phc_cycles << 32) + wb_data[0];
15227 
15228 	DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15229 
15230 	return phc_cycles;
15231 }
15232 
15233 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15234 {
15235 	memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15236 	bp->cyclecounter.read = bnx2x_cyclecounter_read;
15237 	bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15238 	bp->cyclecounter.shift = 0;
15239 	bp->cyclecounter.mult = 1;
15240 }
15241 
15242 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15243 {
15244 	struct bnx2x_func_state_params func_params = {NULL};
15245 	struct bnx2x_func_set_timesync_params *set_timesync_params =
15246 		&func_params.params.set_timesync;
15247 
15248 	/* Prepare parameters for function state transitions */
15249 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15250 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15251 
15252 	func_params.f_obj = &bp->func_obj;
15253 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15254 
15255 	/* Function parameters */
15256 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15257 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15258 
15259 	return bnx2x_func_state_change(bp, &func_params);
15260 }
15261 
15262 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15263 {
15264 	struct bnx2x_queue_state_params q_params;
15265 	int rc, i;
15266 
15267 	/* send queue update ramrod to enable PTP packets */
15268 	memset(&q_params, 0, sizeof(q_params));
15269 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15270 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
15271 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15272 		  &q_params.params.update.update_flags);
15273 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15274 		  &q_params.params.update.update_flags);
15275 
15276 	/* send the ramrod on all the queues of the PF */
15277 	for_each_eth_queue(bp, i) {
15278 		struct bnx2x_fastpath *fp = &bp->fp[i];
15279 
15280 		/* Set the appropriate Queue object */
15281 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15282 
15283 		/* Update the Queue state */
15284 		rc = bnx2x_queue_state_change(bp, &q_params);
15285 		if (rc) {
15286 			BNX2X_ERR("Failed to enable PTP packets\n");
15287 			return rc;
15288 		}
15289 	}
15290 
15291 	return 0;
15292 }
15293 
15294 #define BNX2X_P2P_DETECT_PARAM_MASK 0x5F5
15295 #define BNX2X_P2P_DETECT_RULE_MASK 0x3DBB
15296 #define BNX2X_PTP_TX_ON_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15297 #define BNX2X_PTP_TX_ON_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15298 #define BNX2X_PTP_V1_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EE)
15299 #define BNX2X_PTP_V1_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FFE)
15300 #define BNX2X_PTP_V2_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EA)
15301 #define BNX2X_PTP_V2_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FEE)
15302 #define BNX2X_PTP_V2_L2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6BF)
15303 #define BNX2X_PTP_V2_L2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EFF)
15304 #define BNX2X_PTP_V2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15305 #define BNX2X_PTP_V2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15306 
15307 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15308 {
15309 	int port = BP_PORT(bp);
15310 	u32 param, rule;
15311 	int rc;
15312 
15313 	if (!bp->hwtstamp_ioctl_called)
15314 		return 0;
15315 
15316 	param = port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15317 		NIG_REG_P0_TLLH_PTP_PARAM_MASK;
15318 	rule = port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15319 		NIG_REG_P0_TLLH_PTP_RULE_MASK;
15320 	switch (bp->tx_type) {
15321 	case HWTSTAMP_TX_ON:
15322 		bp->flags |= TX_TIMESTAMPING_EN;
15323 		REG_WR(bp, param, BNX2X_PTP_TX_ON_PARAM_MASK);
15324 		REG_WR(bp, rule, BNX2X_PTP_TX_ON_RULE_MASK);
15325 		break;
15326 	case HWTSTAMP_TX_ONESTEP_SYNC:
15327 	case HWTSTAMP_TX_ONESTEP_P2P:
15328 		BNX2X_ERR("One-step timestamping is not supported\n");
15329 		return -ERANGE;
15330 	}
15331 
15332 	param = port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15333 		NIG_REG_P0_LLH_PTP_PARAM_MASK;
15334 	rule = port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15335 		NIG_REG_P0_LLH_PTP_RULE_MASK;
15336 	switch (bp->rx_filter) {
15337 	case HWTSTAMP_FILTER_NONE:
15338 		break;
15339 	case HWTSTAMP_FILTER_ALL:
15340 	case HWTSTAMP_FILTER_SOME:
15341 	case HWTSTAMP_FILTER_NTP_ALL:
15342 		bp->rx_filter = HWTSTAMP_FILTER_NONE;
15343 		break;
15344 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15345 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15346 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15347 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15348 		/* Initialize PTP detection for UDP/IPv4 events */
15349 		REG_WR(bp, param, BNX2X_PTP_V1_L4_PARAM_MASK);
15350 		REG_WR(bp, rule, BNX2X_PTP_V1_L4_RULE_MASK);
15351 		break;
15352 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15353 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15354 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15355 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15356 		/* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15357 		REG_WR(bp, param, BNX2X_PTP_V2_L4_PARAM_MASK);
15358 		REG_WR(bp, rule, BNX2X_PTP_V2_L4_RULE_MASK);
15359 		break;
15360 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15361 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15362 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15363 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15364 		/* Initialize PTP detection L2 events */
15365 		REG_WR(bp, param, BNX2X_PTP_V2_L2_PARAM_MASK);
15366 		REG_WR(bp, rule, BNX2X_PTP_V2_L2_RULE_MASK);
15367 
15368 		break;
15369 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
15370 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
15371 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15372 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15373 		/* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15374 		REG_WR(bp, param, BNX2X_PTP_V2_PARAM_MASK);
15375 		REG_WR(bp, rule, BNX2X_PTP_V2_RULE_MASK);
15376 		break;
15377 	}
15378 
15379 	/* Indicate to FW that this PF expects recorded PTP packets */
15380 	rc = bnx2x_enable_ptp_packets(bp);
15381 	if (rc)
15382 		return rc;
15383 
15384 	/* Enable sending PTP packets to host */
15385 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15386 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15387 
15388 	return 0;
15389 }
15390 
15391 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15392 {
15393 	struct hwtstamp_config config;
15394 	int rc;
15395 
15396 	DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15397 
15398 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15399 		return -EFAULT;
15400 
15401 	DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15402 	   config.tx_type, config.rx_filter);
15403 
15404 	if (config.flags) {
15405 		BNX2X_ERR("config.flags is reserved for future use\n");
15406 		return -EINVAL;
15407 	}
15408 
15409 	bp->hwtstamp_ioctl_called = true;
15410 	bp->tx_type = config.tx_type;
15411 	bp->rx_filter = config.rx_filter;
15412 
15413 	rc = bnx2x_configure_ptp_filters(bp);
15414 	if (rc)
15415 		return rc;
15416 
15417 	config.rx_filter = bp->rx_filter;
15418 
15419 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15420 		-EFAULT : 0;
15421 }
15422 
15423 /* Configures HW for PTP */
15424 static int bnx2x_configure_ptp(struct bnx2x *bp)
15425 {
15426 	int rc, port = BP_PORT(bp);
15427 	u32 wb_data[2];
15428 
15429 	/* Reset PTP event detection rules - will be configured in the IOCTL */
15430 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15431 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15432 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15433 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15434 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15435 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15436 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15437 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15438 
15439 	/* Disable PTP packets to host - will be configured in the IOCTL*/
15440 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15441 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15442 
15443 	/* Enable the PTP feature */
15444 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15445 	       NIG_REG_P0_PTP_EN, 0x3F);
15446 
15447 	/* Enable the free-running counter */
15448 	wb_data[0] = 0;
15449 	wb_data[1] = 0;
15450 	REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15451 
15452 	/* Reset drift register (offset register is not reset) */
15453 	rc = bnx2x_send_reset_timesync_ramrod(bp);
15454 	if (rc) {
15455 		BNX2X_ERR("Failed to reset PHC drift register\n");
15456 		return -EFAULT;
15457 	}
15458 
15459 	/* Reset possibly old timestamps */
15460 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15461 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15462 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15463 	       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15464 
15465 	return 0;
15466 }
15467 
15468 /* Called during load, to initialize PTP-related stuff */
15469 void bnx2x_init_ptp(struct bnx2x *bp)
15470 {
15471 	int rc;
15472 
15473 	/* Configure PTP in HW */
15474 	rc = bnx2x_configure_ptp(bp);
15475 	if (rc) {
15476 		BNX2X_ERR("Stopping PTP initialization\n");
15477 		return;
15478 	}
15479 
15480 	/* Init work queue for Tx timestamping */
15481 	INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15482 
15483 	/* Init cyclecounter and timecounter. This is done only in the first
15484 	 * load. If done in every load, PTP application will fail when doing
15485 	 * unload / load (e.g. MTU change) while it is running.
15486 	 */
15487 	if (!bp->timecounter_init_done) {
15488 		bnx2x_init_cyclecounter(bp);
15489 		timecounter_init(&bp->timecounter, &bp->cyclecounter,
15490 				 ktime_to_ns(ktime_get_real()));
15491 		bp->timecounter_init_done = true;
15492 	}
15493 
15494 	DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15495 }
15496