1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/crc32c.h>
51 #include <linux/prefetch.h>
52 #include <linux/zlib.h>
53 #include <linux/io.h>
54 #include <linux/semaphore.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57 
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_vfpf.h"
63 #include "bnx2x_dcb.h"
64 #include "bnx2x_sp.h"
65 
66 #include <linux/firmware.h>
67 #include "bnx2x_fw_file_hdr.h"
68 /* FW files */
69 #define FW_FILE_VERSION					\
70 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
71 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
72 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
73 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
74 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
77 
78 /* Time in jiffies before concluding the transmitter is hung */
79 #define TX_TIMEOUT		(5*HZ)
80 
81 static char version[] =
82 	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
83 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
84 
85 MODULE_AUTHOR("Eliezer Tamir");
86 MODULE_DESCRIPTION("Broadcom NetXtreme II "
87 		   "BCM57710/57711/57711E/"
88 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
89 		   "57840/57840_MF Driver");
90 MODULE_LICENSE("GPL");
91 MODULE_VERSION(DRV_MODULE_VERSION);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
94 MODULE_FIRMWARE(FW_FILE_NAME_E2);
95 
96 int num_queues;
97 module_param(num_queues, int, 0);
98 MODULE_PARM_DESC(num_queues,
99 		 " Set number of queues (default is as a number of CPUs)");
100 
101 static int disable_tpa;
102 module_param(disable_tpa, int, 0);
103 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
104 
105 int int_mode;
106 module_param(int_mode, int, 0);
107 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
108 				"(1 INT#x; 2 MSI)");
109 
110 static int dropless_fc;
111 module_param(dropless_fc, int, 0);
112 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
113 
114 static int mrrs = -1;
115 module_param(mrrs, int, 0);
116 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
117 
118 static int debug;
119 module_param(debug, int, 0);
120 MODULE_PARM_DESC(debug, " Default debug msglevel");
121 
122 struct workqueue_struct *bnx2x_wq;
123 
124 struct bnx2x_mac_vals {
125 	u32 xmac_addr;
126 	u32 xmac_val;
127 	u32 emac_addr;
128 	u32 emac_val;
129 	u32 umac_addr;
130 	u32 umac_val;
131 	u32 bmac_addr;
132 	u32 bmac_val[2];
133 };
134 
135 enum bnx2x_board_type {
136 	BCM57710 = 0,
137 	BCM57711,
138 	BCM57711E,
139 	BCM57712,
140 	BCM57712_MF,
141 	BCM57712_VF,
142 	BCM57800,
143 	BCM57800_MF,
144 	BCM57800_VF,
145 	BCM57810,
146 	BCM57810_MF,
147 	BCM57810_VF,
148 	BCM57840_4_10,
149 	BCM57840_2_20,
150 	BCM57840_MF,
151 	BCM57840_VF,
152 	BCM57811,
153 	BCM57811_MF,
154 	BCM57840_O,
155 	BCM57840_MFO,
156 	BCM57811_VF
157 };
158 
159 /* indexed by board_type, above */
160 static struct {
161 	char *name;
162 } board_info[] = {
163 	[BCM57710]	= { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
164 	[BCM57711]	= { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
165 	[BCM57711E]	= { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
166 	[BCM57712]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
167 	[BCM57712_MF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
168 	[BCM57712_VF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
169 	[BCM57800]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
170 	[BCM57800_MF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
171 	[BCM57800_VF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
172 	[BCM57810]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
173 	[BCM57810_MF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
174 	[BCM57810_VF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
175 	[BCM57840_4_10]	= { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
176 	[BCM57840_2_20]	= { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
177 	[BCM57840_MF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
178 	[BCM57840_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
179 	[BCM57811]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
180 	[BCM57811_MF]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
181 	[BCM57840_O]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
182 	[BCM57840_MFO]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
183 	[BCM57811_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
184 };
185 
186 #ifndef PCI_DEVICE_ID_NX2_57710
187 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57711
190 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57711E
193 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57712
196 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57712_MF
199 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57712_VF
202 #define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57800
205 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57800_MF
208 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57800_VF
211 #define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57810
214 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57810_MF
217 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
218 #endif
219 #ifndef PCI_DEVICE_ID_NX2_57840_O
220 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
221 #endif
222 #ifndef PCI_DEVICE_ID_NX2_57810_VF
223 #define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
224 #endif
225 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
226 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
227 #endif
228 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
229 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
230 #endif
231 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
232 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
233 #endif
234 #ifndef PCI_DEVICE_ID_NX2_57840_MF
235 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
236 #endif
237 #ifndef PCI_DEVICE_ID_NX2_57840_VF
238 #define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
239 #endif
240 #ifndef PCI_DEVICE_ID_NX2_57811
241 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
242 #endif
243 #ifndef PCI_DEVICE_ID_NX2_57811_MF
244 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
245 #endif
246 #ifndef PCI_DEVICE_ID_NX2_57811_VF
247 #define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
248 #endif
249 
250 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
251 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
252 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
253 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
254 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
255 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
256 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
257 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
258 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
259 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
260 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
261 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
262 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
263 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
264 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
265 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
266 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
267 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
268 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
269 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
270 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
271 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
272 	{ 0 }
273 };
274 
275 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
276 
277 /* Global resources for unloading a previously loaded device */
278 #define BNX2X_PREV_WAIT_NEEDED 1
279 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
280 static LIST_HEAD(bnx2x_prev_list);
281 /****************************************************************************
282 * General service functions
283 ****************************************************************************/
284 
285 static void __storm_memset_dma_mapping(struct bnx2x *bp,
286 				       u32 addr, dma_addr_t mapping)
287 {
288 	REG_WR(bp,  addr, U64_LO(mapping));
289 	REG_WR(bp,  addr + 4, U64_HI(mapping));
290 }
291 
292 static void storm_memset_spq_addr(struct bnx2x *bp,
293 				  dma_addr_t mapping, u16 abs_fid)
294 {
295 	u32 addr = XSEM_REG_FAST_MEMORY +
296 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
297 
298 	__storm_memset_dma_mapping(bp, addr, mapping);
299 }
300 
301 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
302 				  u16 pf_id)
303 {
304 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
305 		pf_id);
306 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
307 		pf_id);
308 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
309 		pf_id);
310 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
311 		pf_id);
312 }
313 
314 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
315 				 u8 enable)
316 {
317 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
318 		enable);
319 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
320 		enable);
321 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
322 		enable);
323 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
324 		enable);
325 }
326 
327 static void storm_memset_eq_data(struct bnx2x *bp,
328 				 struct event_ring_data *eq_data,
329 				u16 pfid)
330 {
331 	size_t size = sizeof(struct event_ring_data);
332 
333 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
334 
335 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
336 }
337 
338 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
339 				 u16 pfid)
340 {
341 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
342 	REG_WR16(bp, addr, eq_prod);
343 }
344 
345 /* used only at init
346  * locking is done by mcp
347  */
348 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
349 {
350 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
351 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
352 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
353 			       PCICFG_VENDOR_ID_OFFSET);
354 }
355 
356 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
357 {
358 	u32 val;
359 
360 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
361 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
362 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
363 			       PCICFG_VENDOR_ID_OFFSET);
364 
365 	return val;
366 }
367 
368 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
369 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
370 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
371 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
372 #define DMAE_DP_DST_NONE	"dst_addr [none]"
373 
374 static void bnx2x_dp_dmae(struct bnx2x *bp,
375 			  struct dmae_command *dmae, int msglvl)
376 {
377 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
378 	int i;
379 
380 	switch (dmae->opcode & DMAE_COMMAND_DST) {
381 	case DMAE_CMD_DST_PCI:
382 		if (src_type == DMAE_CMD_SRC_PCI)
383 			DP(msglvl, "DMAE: opcode 0x%08x\n"
384 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
385 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
386 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
387 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
388 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
389 			   dmae->comp_val);
390 		else
391 			DP(msglvl, "DMAE: opcode 0x%08x\n"
392 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
393 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
394 			   dmae->opcode, dmae->src_addr_lo >> 2,
395 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
396 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
397 			   dmae->comp_val);
398 		break;
399 	case DMAE_CMD_DST_GRC:
400 		if (src_type == DMAE_CMD_SRC_PCI)
401 			DP(msglvl, "DMAE: opcode 0x%08x\n"
402 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
403 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
404 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
405 			   dmae->len, dmae->dst_addr_lo >> 2,
406 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
407 			   dmae->comp_val);
408 		else
409 			DP(msglvl, "DMAE: opcode 0x%08x\n"
410 			   "src [%08x], len [%d*4], dst [%08x]\n"
411 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
412 			   dmae->opcode, dmae->src_addr_lo >> 2,
413 			   dmae->len, dmae->dst_addr_lo >> 2,
414 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
415 			   dmae->comp_val);
416 		break;
417 	default:
418 		if (src_type == DMAE_CMD_SRC_PCI)
419 			DP(msglvl, "DMAE: opcode 0x%08x\n"
420 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
421 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
422 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
423 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
424 			   dmae->comp_val);
425 		else
426 			DP(msglvl, "DMAE: opcode 0x%08x\n"
427 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
428 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
429 			   dmae->opcode, dmae->src_addr_lo >> 2,
430 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
431 			   dmae->comp_val);
432 		break;
433 	}
434 
435 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
436 		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
437 		   i, *(((u32 *)dmae) + i));
438 }
439 
440 /* copy command into DMAE command memory and set DMAE command go */
441 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
442 {
443 	u32 cmd_offset;
444 	int i;
445 
446 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
447 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
448 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
449 	}
450 	REG_WR(bp, dmae_reg_go_c[idx], 1);
451 }
452 
453 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
454 {
455 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
456 			   DMAE_CMD_C_ENABLE);
457 }
458 
459 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
460 {
461 	return opcode & ~DMAE_CMD_SRC_RESET;
462 }
463 
464 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
465 			     bool with_comp, u8 comp_type)
466 {
467 	u32 opcode = 0;
468 
469 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
470 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
471 
472 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
473 
474 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
475 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
476 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
477 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
478 
479 #ifdef __BIG_ENDIAN
480 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
481 #else
482 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
483 #endif
484 	if (with_comp)
485 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
486 	return opcode;
487 }
488 
489 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
490 				      struct dmae_command *dmae,
491 				      u8 src_type, u8 dst_type)
492 {
493 	memset(dmae, 0, sizeof(struct dmae_command));
494 
495 	/* set the opcode */
496 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
497 					 true, DMAE_COMP_PCI);
498 
499 	/* fill in the completion parameters */
500 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
501 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
502 	dmae->comp_val = DMAE_COMP_VAL;
503 }
504 
505 /* issue a dmae command over the init-channel and wait for completion */
506 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
507 			       u32 *comp)
508 {
509 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
510 	int rc = 0;
511 
512 	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
513 
514 	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
515 	 * as long as this code is called both from syscall context and
516 	 * from ndo_set_rx_mode() flow that may be called from BH.
517 	 */
518 	spin_lock_bh(&bp->dmae_lock);
519 
520 	/* reset completion */
521 	*comp = 0;
522 
523 	/* post the command on the channel used for initializations */
524 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
525 
526 	/* wait for completion */
527 	udelay(5);
528 	while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
529 
530 		if (!cnt ||
531 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
532 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
533 			BNX2X_ERR("DMAE timeout!\n");
534 			rc = DMAE_TIMEOUT;
535 			goto unlock;
536 		}
537 		cnt--;
538 		udelay(50);
539 	}
540 	if (*comp & DMAE_PCI_ERR_FLAG) {
541 		BNX2X_ERR("DMAE PCI error!\n");
542 		rc = DMAE_PCI_ERROR;
543 	}
544 
545 unlock:
546 	spin_unlock_bh(&bp->dmae_lock);
547 	return rc;
548 }
549 
550 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
551 		      u32 len32)
552 {
553 	int rc;
554 	struct dmae_command dmae;
555 
556 	if (!bp->dmae_ready) {
557 		u32 *data = bnx2x_sp(bp, wb_data[0]);
558 
559 		if (CHIP_IS_E1(bp))
560 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
561 		else
562 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
563 		return;
564 	}
565 
566 	/* set opcode and fixed command fields */
567 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
568 
569 	/* fill in addresses and len */
570 	dmae.src_addr_lo = U64_LO(dma_addr);
571 	dmae.src_addr_hi = U64_HI(dma_addr);
572 	dmae.dst_addr_lo = dst_addr >> 2;
573 	dmae.dst_addr_hi = 0;
574 	dmae.len = len32;
575 
576 	/* issue the command and wait for completion */
577 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
578 	if (rc) {
579 		BNX2X_ERR("DMAE returned failure %d\n", rc);
580 		bnx2x_panic();
581 	}
582 }
583 
584 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
585 {
586 	int rc;
587 	struct dmae_command dmae;
588 
589 	if (!bp->dmae_ready) {
590 		u32 *data = bnx2x_sp(bp, wb_data[0]);
591 		int i;
592 
593 		if (CHIP_IS_E1(bp))
594 			for (i = 0; i < len32; i++)
595 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
596 		else
597 			for (i = 0; i < len32; i++)
598 				data[i] = REG_RD(bp, src_addr + i*4);
599 
600 		return;
601 	}
602 
603 	/* set opcode and fixed command fields */
604 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
605 
606 	/* fill in addresses and len */
607 	dmae.src_addr_lo = src_addr >> 2;
608 	dmae.src_addr_hi = 0;
609 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
610 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
611 	dmae.len = len32;
612 
613 	/* issue the command and wait for completion */
614 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
615 	if (rc) {
616 		BNX2X_ERR("DMAE returned failure %d\n", rc);
617 		bnx2x_panic();
618 	}
619 }
620 
621 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
622 				      u32 addr, u32 len)
623 {
624 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
625 	int offset = 0;
626 
627 	while (len > dmae_wr_max) {
628 		bnx2x_write_dmae(bp, phys_addr + offset,
629 				 addr + offset, dmae_wr_max);
630 		offset += dmae_wr_max * 4;
631 		len -= dmae_wr_max;
632 	}
633 
634 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
635 }
636 
637 static int bnx2x_mc_assert(struct bnx2x *bp)
638 {
639 	char last_idx;
640 	int i, rc = 0;
641 	u32 row0, row1, row2, row3;
642 
643 	/* XSTORM */
644 	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
645 			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
646 	if (last_idx)
647 		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
648 
649 	/* print the asserts */
650 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
651 
652 		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
653 			      XSTORM_ASSERT_LIST_OFFSET(i));
654 		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
655 			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
656 		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
657 			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
658 		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
659 			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
660 
661 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
662 			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
663 				  i, row3, row2, row1, row0);
664 			rc++;
665 		} else {
666 			break;
667 		}
668 	}
669 
670 	/* TSTORM */
671 	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
672 			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
673 	if (last_idx)
674 		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
675 
676 	/* print the asserts */
677 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
678 
679 		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
680 			      TSTORM_ASSERT_LIST_OFFSET(i));
681 		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
682 			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
683 		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
684 			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
685 		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
686 			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
687 
688 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
689 			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
690 				  i, row3, row2, row1, row0);
691 			rc++;
692 		} else {
693 			break;
694 		}
695 	}
696 
697 	/* CSTORM */
698 	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
699 			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
700 	if (last_idx)
701 		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
702 
703 	/* print the asserts */
704 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
705 
706 		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
707 			      CSTORM_ASSERT_LIST_OFFSET(i));
708 		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
709 			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
710 		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
711 			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
712 		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
713 			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
714 
715 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
716 			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
717 				  i, row3, row2, row1, row0);
718 			rc++;
719 		} else {
720 			break;
721 		}
722 	}
723 
724 	/* USTORM */
725 	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
726 			   USTORM_ASSERT_LIST_INDEX_OFFSET);
727 	if (last_idx)
728 		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
729 
730 	/* print the asserts */
731 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
732 
733 		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
734 			      USTORM_ASSERT_LIST_OFFSET(i));
735 		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
736 			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
737 		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
738 			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
739 		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
740 			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
741 
742 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
743 			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
744 				  i, row3, row2, row1, row0);
745 			rc++;
746 		} else {
747 			break;
748 		}
749 	}
750 
751 	return rc;
752 }
753 
754 #define MCPR_TRACE_BUFFER_SIZE	(0x800)
755 #define SCRATCH_BUFFER_SIZE(bp)	\
756 	(CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
757 
758 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
759 {
760 	u32 addr, val;
761 	u32 mark, offset;
762 	__be32 data[9];
763 	int word;
764 	u32 trace_shmem_base;
765 	if (BP_NOMCP(bp)) {
766 		BNX2X_ERR("NO MCP - can not dump\n");
767 		return;
768 	}
769 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
770 		(bp->common.bc_ver & 0xff0000) >> 16,
771 		(bp->common.bc_ver & 0xff00) >> 8,
772 		(bp->common.bc_ver & 0xff));
773 
774 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
775 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
776 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
777 
778 	if (BP_PATH(bp) == 0)
779 		trace_shmem_base = bp->common.shmem_base;
780 	else
781 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
782 
783 	/* sanity */
784 	if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
785 	    trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
786 				SCRATCH_BUFFER_SIZE(bp)) {
787 		BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
788 			  trace_shmem_base);
789 		return;
790 	}
791 
792 	addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
793 
794 	/* validate TRCB signature */
795 	mark = REG_RD(bp, addr);
796 	if (mark != MFW_TRACE_SIGNATURE) {
797 		BNX2X_ERR("Trace buffer signature is missing.");
798 		return ;
799 	}
800 
801 	/* read cyclic buffer pointer */
802 	addr += 4;
803 	mark = REG_RD(bp, addr);
804 	mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
805 	if (mark >= trace_shmem_base || mark < addr + 4) {
806 		BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
807 		return;
808 	}
809 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
810 
811 	printk("%s", lvl);
812 
813 	/* dump buffer after the mark */
814 	for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
815 		for (word = 0; word < 8; word++)
816 			data[word] = htonl(REG_RD(bp, offset + 4*word));
817 		data[8] = 0x0;
818 		pr_cont("%s", (char *)data);
819 	}
820 
821 	/* dump buffer before the mark */
822 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
823 		for (word = 0; word < 8; word++)
824 			data[word] = htonl(REG_RD(bp, offset + 4*word));
825 		data[8] = 0x0;
826 		pr_cont("%s", (char *)data);
827 	}
828 	printk("%s" "end of fw dump\n", lvl);
829 }
830 
831 static void bnx2x_fw_dump(struct bnx2x *bp)
832 {
833 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
834 }
835 
836 static void bnx2x_hc_int_disable(struct bnx2x *bp)
837 {
838 	int port = BP_PORT(bp);
839 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
840 	u32 val = REG_RD(bp, addr);
841 
842 	/* in E1 we must use only PCI configuration space to disable
843 	 * MSI/MSIX capability
844 	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
845 	 */
846 	if (CHIP_IS_E1(bp)) {
847 		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
848 		 * Use mask register to prevent from HC sending interrupts
849 		 * after we exit the function
850 		 */
851 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
852 
853 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
854 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
855 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
856 	} else
857 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
858 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
859 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
860 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
861 
862 	DP(NETIF_MSG_IFDOWN,
863 	   "write %x to HC %d (addr 0x%x)\n",
864 	   val, port, addr);
865 
866 	/* flush all outstanding writes */
867 	mmiowb();
868 
869 	REG_WR(bp, addr, val);
870 	if (REG_RD(bp, addr) != val)
871 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
872 }
873 
874 static void bnx2x_igu_int_disable(struct bnx2x *bp)
875 {
876 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
877 
878 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
879 		 IGU_PF_CONF_INT_LINE_EN |
880 		 IGU_PF_CONF_ATTN_BIT_EN);
881 
882 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
883 
884 	/* flush all outstanding writes */
885 	mmiowb();
886 
887 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
888 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
889 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
890 }
891 
892 static void bnx2x_int_disable(struct bnx2x *bp)
893 {
894 	if (bp->common.int_block == INT_BLOCK_HC)
895 		bnx2x_hc_int_disable(bp);
896 	else
897 		bnx2x_igu_int_disable(bp);
898 }
899 
900 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
901 {
902 	int i;
903 	u16 j;
904 	struct hc_sp_status_block_data sp_sb_data;
905 	int func = BP_FUNC(bp);
906 #ifdef BNX2X_STOP_ON_ERROR
907 	u16 start = 0, end = 0;
908 	u8 cos;
909 #endif
910 	if (disable_int)
911 		bnx2x_int_disable(bp);
912 
913 	bp->stats_state = STATS_STATE_DISABLED;
914 	bp->eth_stats.unrecoverable_error++;
915 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
916 
917 	BNX2X_ERR("begin crash dump -----------------\n");
918 
919 	/* Indices */
920 	/* Common */
921 	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
922 		  bp->def_idx, bp->def_att_idx, bp->attn_state,
923 		  bp->spq_prod_idx, bp->stats_counter);
924 	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
925 		  bp->def_status_blk->atten_status_block.attn_bits,
926 		  bp->def_status_blk->atten_status_block.attn_bits_ack,
927 		  bp->def_status_blk->atten_status_block.status_block_id,
928 		  bp->def_status_blk->atten_status_block.attn_bits_index);
929 	BNX2X_ERR("     def (");
930 	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
931 		pr_cont("0x%x%s",
932 			bp->def_status_blk->sp_sb.index_values[i],
933 			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
934 
935 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
936 		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
937 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
938 			i*sizeof(u32));
939 
940 	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
941 	       sp_sb_data.igu_sb_id,
942 	       sp_sb_data.igu_seg_id,
943 	       sp_sb_data.p_func.pf_id,
944 	       sp_sb_data.p_func.vnic_id,
945 	       sp_sb_data.p_func.vf_id,
946 	       sp_sb_data.p_func.vf_valid,
947 	       sp_sb_data.state);
948 
949 	for_each_eth_queue(bp, i) {
950 		struct bnx2x_fastpath *fp = &bp->fp[i];
951 		int loop;
952 		struct hc_status_block_data_e2 sb_data_e2;
953 		struct hc_status_block_data_e1x sb_data_e1x;
954 		struct hc_status_block_sm  *hc_sm_p =
955 			CHIP_IS_E1x(bp) ?
956 			sb_data_e1x.common.state_machine :
957 			sb_data_e2.common.state_machine;
958 		struct hc_index_data *hc_index_p =
959 			CHIP_IS_E1x(bp) ?
960 			sb_data_e1x.index_data :
961 			sb_data_e2.index_data;
962 		u8 data_size, cos;
963 		u32 *sb_data_p;
964 		struct bnx2x_fp_txdata txdata;
965 
966 		/* Rx */
967 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
968 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
969 			  fp->rx_comp_prod,
970 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
971 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
972 			  fp->rx_sge_prod, fp->last_max_sge,
973 			  le16_to_cpu(fp->fp_hc_idx));
974 
975 		/* Tx */
976 		for_each_cos_in_tx_queue(fp, cos)
977 		{
978 			txdata = *fp->txdata_ptr[cos];
979 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
980 				  i, txdata.tx_pkt_prod,
981 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
982 				  txdata.tx_bd_cons,
983 				  le16_to_cpu(*txdata.tx_cons_sb));
984 		}
985 
986 		loop = CHIP_IS_E1x(bp) ?
987 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
988 
989 		/* host sb data */
990 
991 		if (IS_FCOE_FP(fp))
992 			continue;
993 
994 		BNX2X_ERR("     run indexes (");
995 		for (j = 0; j < HC_SB_MAX_SM; j++)
996 			pr_cont("0x%x%s",
997 			       fp->sb_running_index[j],
998 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
999 
1000 		BNX2X_ERR("     indexes (");
1001 		for (j = 0; j < loop; j++)
1002 			pr_cont("0x%x%s",
1003 			       fp->sb_index_values[j],
1004 			       (j == loop - 1) ? ")" : " ");
1005 		/* fw sb data */
1006 		data_size = CHIP_IS_E1x(bp) ?
1007 			sizeof(struct hc_status_block_data_e1x) :
1008 			sizeof(struct hc_status_block_data_e2);
1009 		data_size /= sizeof(u32);
1010 		sb_data_p = CHIP_IS_E1x(bp) ?
1011 			(u32 *)&sb_data_e1x :
1012 			(u32 *)&sb_data_e2;
1013 		/* copy sb data in here */
1014 		for (j = 0; j < data_size; j++)
1015 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1016 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1017 				j * sizeof(u32));
1018 
1019 		if (!CHIP_IS_E1x(bp)) {
1020 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1021 				sb_data_e2.common.p_func.pf_id,
1022 				sb_data_e2.common.p_func.vf_id,
1023 				sb_data_e2.common.p_func.vf_valid,
1024 				sb_data_e2.common.p_func.vnic_id,
1025 				sb_data_e2.common.same_igu_sb_1b,
1026 				sb_data_e2.common.state);
1027 		} else {
1028 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1029 				sb_data_e1x.common.p_func.pf_id,
1030 				sb_data_e1x.common.p_func.vf_id,
1031 				sb_data_e1x.common.p_func.vf_valid,
1032 				sb_data_e1x.common.p_func.vnic_id,
1033 				sb_data_e1x.common.same_igu_sb_1b,
1034 				sb_data_e1x.common.state);
1035 		}
1036 
1037 		/* SB_SMs data */
1038 		for (j = 0; j < HC_SB_MAX_SM; j++) {
1039 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1040 				j, hc_sm_p[j].__flags,
1041 				hc_sm_p[j].igu_sb_id,
1042 				hc_sm_p[j].igu_seg_id,
1043 				hc_sm_p[j].time_to_expire,
1044 				hc_sm_p[j].timer_value);
1045 		}
1046 
1047 		/* Indices data */
1048 		for (j = 0; j < loop; j++) {
1049 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1050 			       hc_index_p[j].flags,
1051 			       hc_index_p[j].timeout);
1052 		}
1053 	}
1054 
1055 #ifdef BNX2X_STOP_ON_ERROR
1056 
1057 	/* event queue */
1058 	BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1059 	for (i = 0; i < NUM_EQ_DESC; i++) {
1060 		u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1061 
1062 		BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1063 			  i, bp->eq_ring[i].message.opcode,
1064 			  bp->eq_ring[i].message.error);
1065 		BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]);
1066 	}
1067 
1068 	/* Rings */
1069 	/* Rx */
1070 	for_each_valid_rx_queue(bp, i) {
1071 		struct bnx2x_fastpath *fp = &bp->fp[i];
1072 
1073 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1074 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1075 		for (j = start; j != end; j = RX_BD(j + 1)) {
1076 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1077 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1078 
1079 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1080 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1081 		}
1082 
1083 		start = RX_SGE(fp->rx_sge_prod);
1084 		end = RX_SGE(fp->last_max_sge);
1085 		for (j = start; j != end; j = RX_SGE(j + 1)) {
1086 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1087 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1088 
1089 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1090 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1091 		}
1092 
1093 		start = RCQ_BD(fp->rx_comp_cons - 10);
1094 		end = RCQ_BD(fp->rx_comp_cons + 503);
1095 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1096 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1097 
1098 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1099 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1100 		}
1101 	}
1102 
1103 	/* Tx */
1104 	for_each_valid_tx_queue(bp, i) {
1105 		struct bnx2x_fastpath *fp = &bp->fp[i];
1106 		for_each_cos_in_tx_queue(fp, cos) {
1107 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1108 
1109 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1110 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1111 			for (j = start; j != end; j = TX_BD(j + 1)) {
1112 				struct sw_tx_bd *sw_bd =
1113 					&txdata->tx_buf_ring[j];
1114 
1115 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1116 					  i, cos, j, sw_bd->skb,
1117 					  sw_bd->first_bd);
1118 			}
1119 
1120 			start = TX_BD(txdata->tx_bd_cons - 10);
1121 			end = TX_BD(txdata->tx_bd_cons + 254);
1122 			for (j = start; j != end; j = TX_BD(j + 1)) {
1123 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1124 
1125 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1126 					  i, cos, j, tx_bd[0], tx_bd[1],
1127 					  tx_bd[2], tx_bd[3]);
1128 			}
1129 		}
1130 	}
1131 #endif
1132 	bnx2x_fw_dump(bp);
1133 	bnx2x_mc_assert(bp);
1134 	BNX2X_ERR("end crash dump -----------------\n");
1135 }
1136 
1137 /*
1138  * FLR Support for E2
1139  *
1140  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1141  * initialization.
1142  */
1143 #define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1144 #define FLR_WAIT_INTERVAL	50	/* usec */
1145 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1146 
1147 struct pbf_pN_buf_regs {
1148 	int pN;
1149 	u32 init_crd;
1150 	u32 crd;
1151 	u32 crd_freed;
1152 };
1153 
1154 struct pbf_pN_cmd_regs {
1155 	int pN;
1156 	u32 lines_occup;
1157 	u32 lines_freed;
1158 };
1159 
1160 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1161 				     struct pbf_pN_buf_regs *regs,
1162 				     u32 poll_count)
1163 {
1164 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1165 	u32 cur_cnt = poll_count;
1166 
1167 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1168 	crd = crd_start = REG_RD(bp, regs->crd);
1169 	init_crd = REG_RD(bp, regs->init_crd);
1170 
1171 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1172 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1173 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1174 
1175 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1176 	       (init_crd - crd_start))) {
1177 		if (cur_cnt--) {
1178 			udelay(FLR_WAIT_INTERVAL);
1179 			crd = REG_RD(bp, regs->crd);
1180 			crd_freed = REG_RD(bp, regs->crd_freed);
1181 		} else {
1182 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1183 			   regs->pN);
1184 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1185 			   regs->pN, crd);
1186 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1187 			   regs->pN, crd_freed);
1188 			break;
1189 		}
1190 	}
1191 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1192 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1193 }
1194 
1195 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1196 				     struct pbf_pN_cmd_regs *regs,
1197 				     u32 poll_count)
1198 {
1199 	u32 occup, to_free, freed, freed_start;
1200 	u32 cur_cnt = poll_count;
1201 
1202 	occup = to_free = REG_RD(bp, regs->lines_occup);
1203 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1204 
1205 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1206 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1207 
1208 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1209 		if (cur_cnt--) {
1210 			udelay(FLR_WAIT_INTERVAL);
1211 			occup = REG_RD(bp, regs->lines_occup);
1212 			freed = REG_RD(bp, regs->lines_freed);
1213 		} else {
1214 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1215 			   regs->pN);
1216 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1217 			   regs->pN, occup);
1218 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1219 			   regs->pN, freed);
1220 			break;
1221 		}
1222 	}
1223 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1224 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1225 }
1226 
1227 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1228 				    u32 expected, u32 poll_count)
1229 {
1230 	u32 cur_cnt = poll_count;
1231 	u32 val;
1232 
1233 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1234 		udelay(FLR_WAIT_INTERVAL);
1235 
1236 	return val;
1237 }
1238 
1239 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1240 				    char *msg, u32 poll_cnt)
1241 {
1242 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1243 	if (val != 0) {
1244 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1245 		return 1;
1246 	}
1247 	return 0;
1248 }
1249 
1250 /* Common routines with VF FLR cleanup */
1251 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1252 {
1253 	/* adjust polling timeout */
1254 	if (CHIP_REV_IS_EMUL(bp))
1255 		return FLR_POLL_CNT * 2000;
1256 
1257 	if (CHIP_REV_IS_FPGA(bp))
1258 		return FLR_POLL_CNT * 120;
1259 
1260 	return FLR_POLL_CNT;
1261 }
1262 
1263 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1264 {
1265 	struct pbf_pN_cmd_regs cmd_regs[] = {
1266 		{0, (CHIP_IS_E3B0(bp)) ?
1267 			PBF_REG_TQ_OCCUPANCY_Q0 :
1268 			PBF_REG_P0_TQ_OCCUPANCY,
1269 		    (CHIP_IS_E3B0(bp)) ?
1270 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1271 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1272 		{1, (CHIP_IS_E3B0(bp)) ?
1273 			PBF_REG_TQ_OCCUPANCY_Q1 :
1274 			PBF_REG_P1_TQ_OCCUPANCY,
1275 		    (CHIP_IS_E3B0(bp)) ?
1276 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1277 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1278 		{4, (CHIP_IS_E3B0(bp)) ?
1279 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1280 			PBF_REG_P4_TQ_OCCUPANCY,
1281 		    (CHIP_IS_E3B0(bp)) ?
1282 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1283 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1284 	};
1285 
1286 	struct pbf_pN_buf_regs buf_regs[] = {
1287 		{0, (CHIP_IS_E3B0(bp)) ?
1288 			PBF_REG_INIT_CRD_Q0 :
1289 			PBF_REG_P0_INIT_CRD ,
1290 		    (CHIP_IS_E3B0(bp)) ?
1291 			PBF_REG_CREDIT_Q0 :
1292 			PBF_REG_P0_CREDIT,
1293 		    (CHIP_IS_E3B0(bp)) ?
1294 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1295 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1296 		{1, (CHIP_IS_E3B0(bp)) ?
1297 			PBF_REG_INIT_CRD_Q1 :
1298 			PBF_REG_P1_INIT_CRD,
1299 		    (CHIP_IS_E3B0(bp)) ?
1300 			PBF_REG_CREDIT_Q1 :
1301 			PBF_REG_P1_CREDIT,
1302 		    (CHIP_IS_E3B0(bp)) ?
1303 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1304 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1305 		{4, (CHIP_IS_E3B0(bp)) ?
1306 			PBF_REG_INIT_CRD_LB_Q :
1307 			PBF_REG_P4_INIT_CRD,
1308 		    (CHIP_IS_E3B0(bp)) ?
1309 			PBF_REG_CREDIT_LB_Q :
1310 			PBF_REG_P4_CREDIT,
1311 		    (CHIP_IS_E3B0(bp)) ?
1312 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1313 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1314 	};
1315 
1316 	int i;
1317 
1318 	/* Verify the command queues are flushed P0, P1, P4 */
1319 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1320 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1321 
1322 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1323 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1324 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1325 }
1326 
1327 #define OP_GEN_PARAM(param) \
1328 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1329 
1330 #define OP_GEN_TYPE(type) \
1331 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1332 
1333 #define OP_GEN_AGG_VECT(index) \
1334 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1335 
1336 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1337 {
1338 	u32 op_gen_command = 0;
1339 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1340 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1341 	int ret = 0;
1342 
1343 	if (REG_RD(bp, comp_addr)) {
1344 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1345 		return 1;
1346 	}
1347 
1348 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1349 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1350 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1351 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1352 
1353 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1354 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1355 
1356 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1357 		BNX2X_ERR("FW final cleanup did not succeed\n");
1358 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1359 		   (REG_RD(bp, comp_addr)));
1360 		bnx2x_panic();
1361 		return 1;
1362 	}
1363 	/* Zero completion for next FLR */
1364 	REG_WR(bp, comp_addr, 0);
1365 
1366 	return ret;
1367 }
1368 
1369 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1370 {
1371 	u16 status;
1372 
1373 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1374 	return status & PCI_EXP_DEVSTA_TRPND;
1375 }
1376 
1377 /* PF FLR specific routines
1378 */
1379 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1380 {
1381 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1382 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1383 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1384 			"CFC PF usage counter timed out",
1385 			poll_cnt))
1386 		return 1;
1387 
1388 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1389 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1390 			DORQ_REG_PF_USAGE_CNT,
1391 			"DQ PF usage counter timed out",
1392 			poll_cnt))
1393 		return 1;
1394 
1395 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1396 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1397 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1398 			"QM PF usage counter timed out",
1399 			poll_cnt))
1400 		return 1;
1401 
1402 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1403 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1404 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1405 			"Timers VNIC usage counter timed out",
1406 			poll_cnt))
1407 		return 1;
1408 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1409 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1410 			"Timers NUM_SCANS usage counter timed out",
1411 			poll_cnt))
1412 		return 1;
1413 
1414 	/* Wait DMAE PF usage counter to zero */
1415 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1416 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1417 			"DMAE command register timed out",
1418 			poll_cnt))
1419 		return 1;
1420 
1421 	return 0;
1422 }
1423 
1424 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1425 {
1426 	u32 val;
1427 
1428 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1429 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1430 
1431 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1432 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1433 
1434 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1435 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1436 
1437 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1438 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1439 
1440 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1441 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1442 
1443 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1444 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1445 
1446 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1447 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1448 
1449 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1450 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1451 	   val);
1452 }
1453 
1454 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1455 {
1456 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1457 
1458 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1459 
1460 	/* Re-enable PF target read access */
1461 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1462 
1463 	/* Poll HW usage counters */
1464 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1465 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1466 		return -EBUSY;
1467 
1468 	/* Zero the igu 'trailing edge' and 'leading edge' */
1469 
1470 	/* Send the FW cleanup command */
1471 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1472 		return -EBUSY;
1473 
1474 	/* ATC cleanup */
1475 
1476 	/* Verify TX hw is flushed */
1477 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1478 
1479 	/* Wait 100ms (not adjusted according to platform) */
1480 	msleep(100);
1481 
1482 	/* Verify no pending pci transactions */
1483 	if (bnx2x_is_pcie_pending(bp->pdev))
1484 		BNX2X_ERR("PCIE Transactions still pending\n");
1485 
1486 	/* Debug */
1487 	bnx2x_hw_enable_status(bp);
1488 
1489 	/*
1490 	 * Master enable - Due to WB DMAE writes performed before this
1491 	 * register is re-initialized as part of the regular function init
1492 	 */
1493 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1494 
1495 	return 0;
1496 }
1497 
1498 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1499 {
1500 	int port = BP_PORT(bp);
1501 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1502 	u32 val = REG_RD(bp, addr);
1503 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1504 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1505 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1506 
1507 	if (msix) {
1508 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1509 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1510 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1511 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1512 		if (single_msix)
1513 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1514 	} else if (msi) {
1515 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1516 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1517 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1518 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1519 	} else {
1520 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1521 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1522 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1523 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1524 
1525 		if (!CHIP_IS_E1(bp)) {
1526 			DP(NETIF_MSG_IFUP,
1527 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1528 
1529 			REG_WR(bp, addr, val);
1530 
1531 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1532 		}
1533 	}
1534 
1535 	if (CHIP_IS_E1(bp))
1536 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1537 
1538 	DP(NETIF_MSG_IFUP,
1539 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1540 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1541 
1542 	REG_WR(bp, addr, val);
1543 	/*
1544 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1545 	 */
1546 	mmiowb();
1547 	barrier();
1548 
1549 	if (!CHIP_IS_E1(bp)) {
1550 		/* init leading/trailing edge */
1551 		if (IS_MF(bp)) {
1552 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1553 			if (bp->port.pmf)
1554 				/* enable nig and gpio3 attention */
1555 				val |= 0x1100;
1556 		} else
1557 			val = 0xffff;
1558 
1559 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1560 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1561 	}
1562 
1563 	/* Make sure that interrupts are indeed enabled from here on */
1564 	mmiowb();
1565 }
1566 
1567 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1568 {
1569 	u32 val;
1570 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1571 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1572 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1573 
1574 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1575 
1576 	if (msix) {
1577 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1578 			 IGU_PF_CONF_SINGLE_ISR_EN);
1579 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1580 			IGU_PF_CONF_ATTN_BIT_EN);
1581 
1582 		if (single_msix)
1583 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1584 	} else if (msi) {
1585 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1586 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1587 			IGU_PF_CONF_ATTN_BIT_EN |
1588 			IGU_PF_CONF_SINGLE_ISR_EN);
1589 	} else {
1590 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1591 		val |= (IGU_PF_CONF_INT_LINE_EN |
1592 			IGU_PF_CONF_ATTN_BIT_EN |
1593 			IGU_PF_CONF_SINGLE_ISR_EN);
1594 	}
1595 
1596 	/* Clean previous status - need to configure igu prior to ack*/
1597 	if ((!msix) || single_msix) {
1598 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1599 		bnx2x_ack_int(bp);
1600 	}
1601 
1602 	val |= IGU_PF_CONF_FUNC_EN;
1603 
1604 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1605 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1606 
1607 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1608 
1609 	if (val & IGU_PF_CONF_INT_LINE_EN)
1610 		pci_intx(bp->pdev, true);
1611 
1612 	barrier();
1613 
1614 	/* init leading/trailing edge */
1615 	if (IS_MF(bp)) {
1616 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1617 		if (bp->port.pmf)
1618 			/* enable nig and gpio3 attention */
1619 			val |= 0x1100;
1620 	} else
1621 		val = 0xffff;
1622 
1623 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1624 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1625 
1626 	/* Make sure that interrupts are indeed enabled from here on */
1627 	mmiowb();
1628 }
1629 
1630 void bnx2x_int_enable(struct bnx2x *bp)
1631 {
1632 	if (bp->common.int_block == INT_BLOCK_HC)
1633 		bnx2x_hc_int_enable(bp);
1634 	else
1635 		bnx2x_igu_int_enable(bp);
1636 }
1637 
1638 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1639 {
1640 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1641 	int i, offset;
1642 
1643 	if (disable_hw)
1644 		/* prevent the HW from sending interrupts */
1645 		bnx2x_int_disable(bp);
1646 
1647 	/* make sure all ISRs are done */
1648 	if (msix) {
1649 		synchronize_irq(bp->msix_table[0].vector);
1650 		offset = 1;
1651 		if (CNIC_SUPPORT(bp))
1652 			offset++;
1653 		for_each_eth_queue(bp, i)
1654 			synchronize_irq(bp->msix_table[offset++].vector);
1655 	} else
1656 		synchronize_irq(bp->pdev->irq);
1657 
1658 	/* make sure sp_task is not running */
1659 	cancel_delayed_work(&bp->sp_task);
1660 	cancel_delayed_work(&bp->period_task);
1661 	flush_workqueue(bnx2x_wq);
1662 }
1663 
1664 /* fast path */
1665 
1666 /*
1667  * General service functions
1668  */
1669 
1670 /* Return true if succeeded to acquire the lock */
1671 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1672 {
1673 	u32 lock_status;
1674 	u32 resource_bit = (1 << resource);
1675 	int func = BP_FUNC(bp);
1676 	u32 hw_lock_control_reg;
1677 
1678 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1679 	   "Trying to take a lock on resource %d\n", resource);
1680 
1681 	/* Validating that the resource is within range */
1682 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1683 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1684 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1685 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1686 		return false;
1687 	}
1688 
1689 	if (func <= 5)
1690 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1691 	else
1692 		hw_lock_control_reg =
1693 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1694 
1695 	/* Try to acquire the lock */
1696 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1697 	lock_status = REG_RD(bp, hw_lock_control_reg);
1698 	if (lock_status & resource_bit)
1699 		return true;
1700 
1701 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1702 	   "Failed to get a lock on resource %d\n", resource);
1703 	return false;
1704 }
1705 
1706 /**
1707  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1708  *
1709  * @bp:	driver handle
1710  *
1711  * Returns the recovery leader resource id according to the engine this function
1712  * belongs to. Currently only only 2 engines is supported.
1713  */
1714 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1715 {
1716 	if (BP_PATH(bp))
1717 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1718 	else
1719 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1720 }
1721 
1722 /**
1723  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1724  *
1725  * @bp: driver handle
1726  *
1727  * Tries to acquire a leader lock for current engine.
1728  */
1729 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1730 {
1731 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1732 }
1733 
1734 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1735 
1736 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1737 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1738 {
1739 	/* Set the interrupt occurred bit for the sp-task to recognize it
1740 	 * must ack the interrupt and transition according to the IGU
1741 	 * state machine.
1742 	 */
1743 	atomic_set(&bp->interrupt_occurred, 1);
1744 
1745 	/* The sp_task must execute only after this bit
1746 	 * is set, otherwise we will get out of sync and miss all
1747 	 * further interrupts. Hence, the barrier.
1748 	 */
1749 	smp_wmb();
1750 
1751 	/* schedule sp_task to workqueue */
1752 	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1753 }
1754 
1755 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1756 {
1757 	struct bnx2x *bp = fp->bp;
1758 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1759 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1760 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1761 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1762 
1763 	DP(BNX2X_MSG_SP,
1764 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1765 	   fp->index, cid, command, bp->state,
1766 	   rr_cqe->ramrod_cqe.ramrod_type);
1767 
1768 	/* If cid is within VF range, replace the slowpath object with the
1769 	 * one corresponding to this VF
1770 	 */
1771 	if (cid >= BNX2X_FIRST_VF_CID  &&
1772 	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1773 		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1774 
1775 	switch (command) {
1776 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1777 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1778 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1779 		break;
1780 
1781 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1782 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1783 		drv_cmd = BNX2X_Q_CMD_SETUP;
1784 		break;
1785 
1786 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1787 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1788 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1789 		break;
1790 
1791 	case (RAMROD_CMD_ID_ETH_HALT):
1792 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1793 		drv_cmd = BNX2X_Q_CMD_HALT;
1794 		break;
1795 
1796 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1797 		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1798 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1799 		break;
1800 
1801 	case (RAMROD_CMD_ID_ETH_EMPTY):
1802 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1803 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1804 		break;
1805 
1806 	default:
1807 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1808 			  command, fp->index);
1809 		return;
1810 	}
1811 
1812 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1813 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1814 		/* q_obj->complete_cmd() failure means that this was
1815 		 * an unexpected completion.
1816 		 *
1817 		 * In this case we don't want to increase the bp->spq_left
1818 		 * because apparently we haven't sent this command the first
1819 		 * place.
1820 		 */
1821 #ifdef BNX2X_STOP_ON_ERROR
1822 		bnx2x_panic();
1823 #else
1824 		return;
1825 #endif
1826 	/* SRIOV: reschedule any 'in_progress' operations */
1827 	bnx2x_iov_sp_event(bp, cid, true);
1828 
1829 	smp_mb__before_atomic_inc();
1830 	atomic_inc(&bp->cq_spq_left);
1831 	/* push the change in bp->spq_left and towards the memory */
1832 	smp_mb__after_atomic_inc();
1833 
1834 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1835 
1836 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1837 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1838 		/* if Q update ramrod is completed for last Q in AFEX vif set
1839 		 * flow, then ACK MCP at the end
1840 		 *
1841 		 * mark pending ACK to MCP bit.
1842 		 * prevent case that both bits are cleared.
1843 		 * At the end of load/unload driver checks that
1844 		 * sp_state is cleared, and this order prevents
1845 		 * races
1846 		 */
1847 		smp_mb__before_clear_bit();
1848 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1849 		wmb();
1850 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1851 		smp_mb__after_clear_bit();
1852 
1853 		/* schedule the sp task as mcp ack is required */
1854 		bnx2x_schedule_sp_task(bp);
1855 	}
1856 
1857 	return;
1858 }
1859 
1860 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1861 {
1862 	struct bnx2x *bp = netdev_priv(dev_instance);
1863 	u16 status = bnx2x_ack_int(bp);
1864 	u16 mask;
1865 	int i;
1866 	u8 cos;
1867 
1868 	/* Return here if interrupt is shared and it's not for us */
1869 	if (unlikely(status == 0)) {
1870 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1871 		return IRQ_NONE;
1872 	}
1873 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1874 
1875 #ifdef BNX2X_STOP_ON_ERROR
1876 	if (unlikely(bp->panic))
1877 		return IRQ_HANDLED;
1878 #endif
1879 
1880 	for_each_eth_queue(bp, i) {
1881 		struct bnx2x_fastpath *fp = &bp->fp[i];
1882 
1883 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1884 		if (status & mask) {
1885 			/* Handle Rx or Tx according to SB id */
1886 			for_each_cos_in_tx_queue(fp, cos)
1887 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1888 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1889 			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1890 			status &= ~mask;
1891 		}
1892 	}
1893 
1894 	if (CNIC_SUPPORT(bp)) {
1895 		mask = 0x2;
1896 		if (status & (mask | 0x1)) {
1897 			struct cnic_ops *c_ops = NULL;
1898 
1899 			rcu_read_lock();
1900 			c_ops = rcu_dereference(bp->cnic_ops);
1901 			if (c_ops && (bp->cnic_eth_dev.drv_state &
1902 				      CNIC_DRV_STATE_HANDLES_IRQ))
1903 				c_ops->cnic_handler(bp->cnic_data, NULL);
1904 			rcu_read_unlock();
1905 
1906 			status &= ~mask;
1907 		}
1908 	}
1909 
1910 	if (unlikely(status & 0x1)) {
1911 
1912 		/* schedule sp task to perform default status block work, ack
1913 		 * attentions and enable interrupts.
1914 		 */
1915 		bnx2x_schedule_sp_task(bp);
1916 
1917 		status &= ~0x1;
1918 		if (!status)
1919 			return IRQ_HANDLED;
1920 	}
1921 
1922 	if (unlikely(status))
1923 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1924 		   status);
1925 
1926 	return IRQ_HANDLED;
1927 }
1928 
1929 /* Link */
1930 
1931 /*
1932  * General service functions
1933  */
1934 
1935 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1936 {
1937 	u32 lock_status;
1938 	u32 resource_bit = (1 << resource);
1939 	int func = BP_FUNC(bp);
1940 	u32 hw_lock_control_reg;
1941 	int cnt;
1942 
1943 	/* Validating that the resource is within range */
1944 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1945 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1946 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1947 		return -EINVAL;
1948 	}
1949 
1950 	if (func <= 5) {
1951 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1952 	} else {
1953 		hw_lock_control_reg =
1954 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1955 	}
1956 
1957 	/* Validating that the resource is not already taken */
1958 	lock_status = REG_RD(bp, hw_lock_control_reg);
1959 	if (lock_status & resource_bit) {
1960 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1961 		   lock_status, resource_bit);
1962 		return -EEXIST;
1963 	}
1964 
1965 	/* Try for 5 second every 5ms */
1966 	for (cnt = 0; cnt < 1000; cnt++) {
1967 		/* Try to acquire the lock */
1968 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1969 		lock_status = REG_RD(bp, hw_lock_control_reg);
1970 		if (lock_status & resource_bit)
1971 			return 0;
1972 
1973 		usleep_range(5000, 10000);
1974 	}
1975 	BNX2X_ERR("Timeout\n");
1976 	return -EAGAIN;
1977 }
1978 
1979 int bnx2x_release_leader_lock(struct bnx2x *bp)
1980 {
1981 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1982 }
1983 
1984 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1985 {
1986 	u32 lock_status;
1987 	u32 resource_bit = (1 << resource);
1988 	int func = BP_FUNC(bp);
1989 	u32 hw_lock_control_reg;
1990 
1991 	/* Validating that the resource is within range */
1992 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1993 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1994 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1995 		return -EINVAL;
1996 	}
1997 
1998 	if (func <= 5) {
1999 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2000 	} else {
2001 		hw_lock_control_reg =
2002 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2003 	}
2004 
2005 	/* Validating that the resource is currently taken */
2006 	lock_status = REG_RD(bp, hw_lock_control_reg);
2007 	if (!(lock_status & resource_bit)) {
2008 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2009 			  lock_status, resource_bit);
2010 		return -EFAULT;
2011 	}
2012 
2013 	REG_WR(bp, hw_lock_control_reg, resource_bit);
2014 	return 0;
2015 }
2016 
2017 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2018 {
2019 	/* The GPIO should be swapped if swap register is set and active */
2020 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2021 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2022 	int gpio_shift = gpio_num +
2023 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2024 	u32 gpio_mask = (1 << gpio_shift);
2025 	u32 gpio_reg;
2026 	int value;
2027 
2028 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2029 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2030 		return -EINVAL;
2031 	}
2032 
2033 	/* read GPIO value */
2034 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2035 
2036 	/* get the requested pin value */
2037 	if ((gpio_reg & gpio_mask) == gpio_mask)
2038 		value = 1;
2039 	else
2040 		value = 0;
2041 
2042 	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
2043 
2044 	return value;
2045 }
2046 
2047 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2048 {
2049 	/* The GPIO should be swapped if swap register is set and active */
2050 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2051 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2052 	int gpio_shift = gpio_num +
2053 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2054 	u32 gpio_mask = (1 << gpio_shift);
2055 	u32 gpio_reg;
2056 
2057 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2058 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2059 		return -EINVAL;
2060 	}
2061 
2062 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2063 	/* read GPIO and mask except the float bits */
2064 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2065 
2066 	switch (mode) {
2067 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2068 		DP(NETIF_MSG_LINK,
2069 		   "Set GPIO %d (shift %d) -> output low\n",
2070 		   gpio_num, gpio_shift);
2071 		/* clear FLOAT and set CLR */
2072 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2073 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2074 		break;
2075 
2076 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2077 		DP(NETIF_MSG_LINK,
2078 		   "Set GPIO %d (shift %d) -> output high\n",
2079 		   gpio_num, gpio_shift);
2080 		/* clear FLOAT and set SET */
2081 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2082 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2083 		break;
2084 
2085 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2086 		DP(NETIF_MSG_LINK,
2087 		   "Set GPIO %d (shift %d) -> input\n",
2088 		   gpio_num, gpio_shift);
2089 		/* set FLOAT */
2090 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2091 		break;
2092 
2093 	default:
2094 		break;
2095 	}
2096 
2097 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2098 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2099 
2100 	return 0;
2101 }
2102 
2103 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2104 {
2105 	u32 gpio_reg = 0;
2106 	int rc = 0;
2107 
2108 	/* Any port swapping should be handled by caller. */
2109 
2110 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2111 	/* read GPIO and mask except the float bits */
2112 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2113 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2114 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2115 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2116 
2117 	switch (mode) {
2118 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2119 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2120 		/* set CLR */
2121 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2122 		break;
2123 
2124 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2125 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2126 		/* set SET */
2127 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2128 		break;
2129 
2130 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2131 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2132 		/* set FLOAT */
2133 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2134 		break;
2135 
2136 	default:
2137 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2138 		rc = -EINVAL;
2139 		break;
2140 	}
2141 
2142 	if (rc == 0)
2143 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2144 
2145 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2146 
2147 	return rc;
2148 }
2149 
2150 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2151 {
2152 	/* The GPIO should be swapped if swap register is set and active */
2153 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2154 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2155 	int gpio_shift = gpio_num +
2156 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2157 	u32 gpio_mask = (1 << gpio_shift);
2158 	u32 gpio_reg;
2159 
2160 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2161 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2162 		return -EINVAL;
2163 	}
2164 
2165 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2166 	/* read GPIO int */
2167 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2168 
2169 	switch (mode) {
2170 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2171 		DP(NETIF_MSG_LINK,
2172 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2173 		   gpio_num, gpio_shift);
2174 		/* clear SET and set CLR */
2175 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2176 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2177 		break;
2178 
2179 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2180 		DP(NETIF_MSG_LINK,
2181 		   "Set GPIO INT %d (shift %d) -> output high\n",
2182 		   gpio_num, gpio_shift);
2183 		/* clear CLR and set SET */
2184 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2185 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2186 		break;
2187 
2188 	default:
2189 		break;
2190 	}
2191 
2192 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2193 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2194 
2195 	return 0;
2196 }
2197 
2198 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2199 {
2200 	u32 spio_reg;
2201 
2202 	/* Only 2 SPIOs are configurable */
2203 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2204 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2205 		return -EINVAL;
2206 	}
2207 
2208 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2209 	/* read SPIO and mask except the float bits */
2210 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2211 
2212 	switch (mode) {
2213 	case MISC_SPIO_OUTPUT_LOW:
2214 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2215 		/* clear FLOAT and set CLR */
2216 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2217 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2218 		break;
2219 
2220 	case MISC_SPIO_OUTPUT_HIGH:
2221 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2222 		/* clear FLOAT and set SET */
2223 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2224 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2225 		break;
2226 
2227 	case MISC_SPIO_INPUT_HI_Z:
2228 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2229 		/* set FLOAT */
2230 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2231 		break;
2232 
2233 	default:
2234 		break;
2235 	}
2236 
2237 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2238 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2239 
2240 	return 0;
2241 }
2242 
2243 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2244 {
2245 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2246 	switch (bp->link_vars.ieee_fc &
2247 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2248 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2249 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2250 						   ADVERTISED_Pause);
2251 		break;
2252 
2253 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2254 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2255 						  ADVERTISED_Pause);
2256 		break;
2257 
2258 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2259 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2260 		break;
2261 
2262 	default:
2263 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2264 						   ADVERTISED_Pause);
2265 		break;
2266 	}
2267 }
2268 
2269 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2270 {
2271 	/* Initialize link parameters structure variables
2272 	 * It is recommended to turn off RX FC for jumbo frames
2273 	 *  for better performance
2274 	 */
2275 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2276 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2277 	else
2278 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2279 }
2280 
2281 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2282 {
2283 	u32 pause_enabled = 0;
2284 
2285 	if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2286 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2287 			pause_enabled = 1;
2288 
2289 		REG_WR(bp, BAR_USTRORM_INTMEM +
2290 			   USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2291 		       pause_enabled);
2292 	}
2293 
2294 	DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2295 	   pause_enabled ? "enabled" : "disabled");
2296 }
2297 
2298 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2299 {
2300 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2301 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2302 
2303 	if (!BP_NOMCP(bp)) {
2304 		bnx2x_set_requested_fc(bp);
2305 		bnx2x_acquire_phy_lock(bp);
2306 
2307 		if (load_mode == LOAD_DIAG) {
2308 			struct link_params *lp = &bp->link_params;
2309 			lp->loopback_mode = LOOPBACK_XGXS;
2310 			/* do PHY loopback at 10G speed, if possible */
2311 			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2312 				if (lp->speed_cap_mask[cfx_idx] &
2313 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2314 					lp->req_line_speed[cfx_idx] =
2315 					SPEED_10000;
2316 				else
2317 					lp->req_line_speed[cfx_idx] =
2318 					SPEED_1000;
2319 			}
2320 		}
2321 
2322 		if (load_mode == LOAD_LOOPBACK_EXT) {
2323 			struct link_params *lp = &bp->link_params;
2324 			lp->loopback_mode = LOOPBACK_EXT;
2325 		}
2326 
2327 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2328 
2329 		bnx2x_release_phy_lock(bp);
2330 
2331 		bnx2x_init_dropless_fc(bp);
2332 
2333 		bnx2x_calc_fc_adv(bp);
2334 
2335 		if (bp->link_vars.link_up) {
2336 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2337 			bnx2x_link_report(bp);
2338 		}
2339 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2340 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2341 		return rc;
2342 	}
2343 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2344 	return -EINVAL;
2345 }
2346 
2347 void bnx2x_link_set(struct bnx2x *bp)
2348 {
2349 	if (!BP_NOMCP(bp)) {
2350 		bnx2x_acquire_phy_lock(bp);
2351 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2352 		bnx2x_release_phy_lock(bp);
2353 
2354 		bnx2x_init_dropless_fc(bp);
2355 
2356 		bnx2x_calc_fc_adv(bp);
2357 	} else
2358 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2359 }
2360 
2361 static void bnx2x__link_reset(struct bnx2x *bp)
2362 {
2363 	if (!BP_NOMCP(bp)) {
2364 		bnx2x_acquire_phy_lock(bp);
2365 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2366 		bnx2x_release_phy_lock(bp);
2367 	} else
2368 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2369 }
2370 
2371 void bnx2x_force_link_reset(struct bnx2x *bp)
2372 {
2373 	bnx2x_acquire_phy_lock(bp);
2374 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2375 	bnx2x_release_phy_lock(bp);
2376 }
2377 
2378 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2379 {
2380 	u8 rc = 0;
2381 
2382 	if (!BP_NOMCP(bp)) {
2383 		bnx2x_acquire_phy_lock(bp);
2384 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2385 				     is_serdes);
2386 		bnx2x_release_phy_lock(bp);
2387 	} else
2388 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2389 
2390 	return rc;
2391 }
2392 
2393 /* Calculates the sum of vn_min_rates.
2394    It's needed for further normalizing of the min_rates.
2395    Returns:
2396      sum of vn_min_rates.
2397        or
2398      0 - if all the min_rates are 0.
2399      In the later case fairness algorithm should be deactivated.
2400      If not all min_rates are zero then those that are zeroes will be set to 1.
2401  */
2402 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2403 				      struct cmng_init_input *input)
2404 {
2405 	int all_zero = 1;
2406 	int vn;
2407 
2408 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2409 		u32 vn_cfg = bp->mf_config[vn];
2410 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2411 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2412 
2413 		/* Skip hidden vns */
2414 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2415 			vn_min_rate = 0;
2416 		/* If min rate is zero - set it to 1 */
2417 		else if (!vn_min_rate)
2418 			vn_min_rate = DEF_MIN_RATE;
2419 		else
2420 			all_zero = 0;
2421 
2422 		input->vnic_min_rate[vn] = vn_min_rate;
2423 	}
2424 
2425 	/* if ETS or all min rates are zeros - disable fairness */
2426 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2427 		input->flags.cmng_enables &=
2428 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2429 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2430 	} else if (all_zero) {
2431 		input->flags.cmng_enables &=
2432 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2433 		DP(NETIF_MSG_IFUP,
2434 		   "All MIN values are zeroes fairness will be disabled\n");
2435 	} else
2436 		input->flags.cmng_enables |=
2437 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2438 }
2439 
2440 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2441 				    struct cmng_init_input *input)
2442 {
2443 	u16 vn_max_rate;
2444 	u32 vn_cfg = bp->mf_config[vn];
2445 
2446 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2447 		vn_max_rate = 0;
2448 	else {
2449 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2450 
2451 		if (IS_MF_SI(bp)) {
2452 			/* maxCfg in percents of linkspeed */
2453 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2454 		} else /* SD modes */
2455 			/* maxCfg is absolute in 100Mb units */
2456 			vn_max_rate = maxCfg * 100;
2457 	}
2458 
2459 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2460 
2461 	input->vnic_max_rate[vn] = vn_max_rate;
2462 }
2463 
2464 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2465 {
2466 	if (CHIP_REV_IS_SLOW(bp))
2467 		return CMNG_FNS_NONE;
2468 	if (IS_MF(bp))
2469 		return CMNG_FNS_MINMAX;
2470 
2471 	return CMNG_FNS_NONE;
2472 }
2473 
2474 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2475 {
2476 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2477 
2478 	if (BP_NOMCP(bp))
2479 		return; /* what should be the default value in this case */
2480 
2481 	/* For 2 port configuration the absolute function number formula
2482 	 * is:
2483 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2484 	 *
2485 	 *      and there are 4 functions per port
2486 	 *
2487 	 * For 4 port configuration it is
2488 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2489 	 *
2490 	 *      and there are 2 functions per port
2491 	 */
2492 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2493 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2494 
2495 		if (func >= E1H_FUNC_MAX)
2496 			break;
2497 
2498 		bp->mf_config[vn] =
2499 			MF_CFG_RD(bp, func_mf_config[func].config);
2500 	}
2501 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2502 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2503 		bp->flags |= MF_FUNC_DIS;
2504 	} else {
2505 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2506 		bp->flags &= ~MF_FUNC_DIS;
2507 	}
2508 }
2509 
2510 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2511 {
2512 	struct cmng_init_input input;
2513 	memset(&input, 0, sizeof(struct cmng_init_input));
2514 
2515 	input.port_rate = bp->link_vars.line_speed;
2516 
2517 	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2518 		int vn;
2519 
2520 		/* read mf conf from shmem */
2521 		if (read_cfg)
2522 			bnx2x_read_mf_cfg(bp);
2523 
2524 		/* vn_weight_sum and enable fairness if not 0 */
2525 		bnx2x_calc_vn_min(bp, &input);
2526 
2527 		/* calculate and set min-max rate for each vn */
2528 		if (bp->port.pmf)
2529 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2530 				bnx2x_calc_vn_max(bp, vn, &input);
2531 
2532 		/* always enable rate shaping and fairness */
2533 		input.flags.cmng_enables |=
2534 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2535 
2536 		bnx2x_init_cmng(&input, &bp->cmng);
2537 		return;
2538 	}
2539 
2540 	/* rate shaping and fairness are disabled */
2541 	DP(NETIF_MSG_IFUP,
2542 	   "rate shaping and fairness are disabled\n");
2543 }
2544 
2545 static void storm_memset_cmng(struct bnx2x *bp,
2546 			      struct cmng_init *cmng,
2547 			      u8 port)
2548 {
2549 	int vn;
2550 	size_t size = sizeof(struct cmng_struct_per_port);
2551 
2552 	u32 addr = BAR_XSTRORM_INTMEM +
2553 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2554 
2555 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2556 
2557 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2558 		int func = func_by_vn(bp, vn);
2559 
2560 		addr = BAR_XSTRORM_INTMEM +
2561 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2562 		size = sizeof(struct rate_shaping_vars_per_vn);
2563 		__storm_memset_struct(bp, addr, size,
2564 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2565 
2566 		addr = BAR_XSTRORM_INTMEM +
2567 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2568 		size = sizeof(struct fairness_vars_per_vn);
2569 		__storm_memset_struct(bp, addr, size,
2570 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2571 	}
2572 }
2573 
2574 /* init cmng mode in HW according to local configuration */
2575 void bnx2x_set_local_cmng(struct bnx2x *bp)
2576 {
2577 	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2578 
2579 	if (cmng_fns != CMNG_FNS_NONE) {
2580 		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2581 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2582 	} else {
2583 		/* rate shaping and fairness are disabled */
2584 		DP(NETIF_MSG_IFUP,
2585 		   "single function mode without fairness\n");
2586 	}
2587 }
2588 
2589 /* This function is called upon link interrupt */
2590 static void bnx2x_link_attn(struct bnx2x *bp)
2591 {
2592 	/* Make sure that we are synced with the current statistics */
2593 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2594 
2595 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2596 
2597 	bnx2x_init_dropless_fc(bp);
2598 
2599 	if (bp->link_vars.link_up) {
2600 
2601 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2602 			struct host_port_stats *pstats;
2603 
2604 			pstats = bnx2x_sp(bp, port_stats);
2605 			/* reset old mac stats */
2606 			memset(&(pstats->mac_stx[0]), 0,
2607 			       sizeof(struct mac_stx));
2608 		}
2609 		if (bp->state == BNX2X_STATE_OPEN)
2610 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2611 	}
2612 
2613 	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2614 		bnx2x_set_local_cmng(bp);
2615 
2616 	__bnx2x_link_report(bp);
2617 
2618 	if (IS_MF(bp))
2619 		bnx2x_link_sync_notify(bp);
2620 }
2621 
2622 void bnx2x__link_status_update(struct bnx2x *bp)
2623 {
2624 	if (bp->state != BNX2X_STATE_OPEN)
2625 		return;
2626 
2627 	/* read updated dcb configuration */
2628 	if (IS_PF(bp)) {
2629 		bnx2x_dcbx_pmf_update(bp);
2630 		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2631 		if (bp->link_vars.link_up)
2632 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2633 		else
2634 			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2635 			/* indicate link status */
2636 		bnx2x_link_report(bp);
2637 
2638 	} else { /* VF */
2639 		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2640 					  SUPPORTED_10baseT_Full |
2641 					  SUPPORTED_100baseT_Half |
2642 					  SUPPORTED_100baseT_Full |
2643 					  SUPPORTED_1000baseT_Full |
2644 					  SUPPORTED_2500baseX_Full |
2645 					  SUPPORTED_10000baseT_Full |
2646 					  SUPPORTED_TP |
2647 					  SUPPORTED_FIBRE |
2648 					  SUPPORTED_Autoneg |
2649 					  SUPPORTED_Pause |
2650 					  SUPPORTED_Asym_Pause);
2651 		bp->port.advertising[0] = bp->port.supported[0];
2652 
2653 		bp->link_params.bp = bp;
2654 		bp->link_params.port = BP_PORT(bp);
2655 		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2656 		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2657 		bp->link_params.req_line_speed[0] = SPEED_10000;
2658 		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2659 		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2660 		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2661 		bp->link_vars.line_speed = SPEED_10000;
2662 		bp->link_vars.link_status =
2663 			(LINK_STATUS_LINK_UP |
2664 			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2665 		bp->link_vars.link_up = 1;
2666 		bp->link_vars.duplex = DUPLEX_FULL;
2667 		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2668 		__bnx2x_link_report(bp);
2669 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2670 	}
2671 }
2672 
2673 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2674 				  u16 vlan_val, u8 allowed_prio)
2675 {
2676 	struct bnx2x_func_state_params func_params = {NULL};
2677 	struct bnx2x_func_afex_update_params *f_update_params =
2678 		&func_params.params.afex_update;
2679 
2680 	func_params.f_obj = &bp->func_obj;
2681 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2682 
2683 	/* no need to wait for RAMROD completion, so don't
2684 	 * set RAMROD_COMP_WAIT flag
2685 	 */
2686 
2687 	f_update_params->vif_id = vifid;
2688 	f_update_params->afex_default_vlan = vlan_val;
2689 	f_update_params->allowed_priorities = allowed_prio;
2690 
2691 	/* if ramrod can not be sent, response to MCP immediately */
2692 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2693 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2694 
2695 	return 0;
2696 }
2697 
2698 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2699 					  u16 vif_index, u8 func_bit_map)
2700 {
2701 	struct bnx2x_func_state_params func_params = {NULL};
2702 	struct bnx2x_func_afex_viflists_params *update_params =
2703 		&func_params.params.afex_viflists;
2704 	int rc;
2705 	u32 drv_msg_code;
2706 
2707 	/* validate only LIST_SET and LIST_GET are received from switch */
2708 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2709 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2710 			  cmd_type);
2711 
2712 	func_params.f_obj = &bp->func_obj;
2713 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2714 
2715 	/* set parameters according to cmd_type */
2716 	update_params->afex_vif_list_command = cmd_type;
2717 	update_params->vif_list_index = vif_index;
2718 	update_params->func_bit_map =
2719 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2720 	update_params->func_to_clear = 0;
2721 	drv_msg_code =
2722 		(cmd_type == VIF_LIST_RULE_GET) ?
2723 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2724 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2725 
2726 	/* if ramrod can not be sent, respond to MCP immediately for
2727 	 * SET and GET requests (other are not triggered from MCP)
2728 	 */
2729 	rc = bnx2x_func_state_change(bp, &func_params);
2730 	if (rc < 0)
2731 		bnx2x_fw_command(bp, drv_msg_code, 0);
2732 
2733 	return 0;
2734 }
2735 
2736 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2737 {
2738 	struct afex_stats afex_stats;
2739 	u32 func = BP_ABS_FUNC(bp);
2740 	u32 mf_config;
2741 	u16 vlan_val;
2742 	u32 vlan_prio;
2743 	u16 vif_id;
2744 	u8 allowed_prio;
2745 	u8 vlan_mode;
2746 	u32 addr_to_write, vifid, addrs, stats_type, i;
2747 
2748 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2749 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2750 		DP(BNX2X_MSG_MCP,
2751 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2752 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2753 	}
2754 
2755 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2756 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2757 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2758 		DP(BNX2X_MSG_MCP,
2759 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2760 		   vifid, addrs);
2761 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2762 					       addrs);
2763 	}
2764 
2765 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2766 		addr_to_write = SHMEM2_RD(bp,
2767 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2768 		stats_type = SHMEM2_RD(bp,
2769 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2770 
2771 		DP(BNX2X_MSG_MCP,
2772 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2773 		   addr_to_write);
2774 
2775 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2776 
2777 		/* write response to scratchpad, for MCP */
2778 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2779 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2780 			       *(((u32 *)(&afex_stats))+i));
2781 
2782 		/* send ack message to MCP */
2783 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2784 	}
2785 
2786 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2787 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2788 		bp->mf_config[BP_VN(bp)] = mf_config;
2789 		DP(BNX2X_MSG_MCP,
2790 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2791 		   mf_config);
2792 
2793 		/* if VIF_SET is "enabled" */
2794 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2795 			/* set rate limit directly to internal RAM */
2796 			struct cmng_init_input cmng_input;
2797 			struct rate_shaping_vars_per_vn m_rs_vn;
2798 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2799 			u32 addr = BAR_XSTRORM_INTMEM +
2800 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2801 
2802 			bp->mf_config[BP_VN(bp)] = mf_config;
2803 
2804 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2805 			m_rs_vn.vn_counter.rate =
2806 				cmng_input.vnic_max_rate[BP_VN(bp)];
2807 			m_rs_vn.vn_counter.quota =
2808 				(m_rs_vn.vn_counter.rate *
2809 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2810 
2811 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2812 
2813 			/* read relevant values from mf_cfg struct in shmem */
2814 			vif_id =
2815 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2816 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2817 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2818 			vlan_val =
2819 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2820 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2821 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2822 			vlan_prio = (mf_config &
2823 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2824 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2825 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2826 			vlan_mode =
2827 				(MF_CFG_RD(bp,
2828 					   func_mf_config[func].afex_config) &
2829 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2830 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2831 			allowed_prio =
2832 				(MF_CFG_RD(bp,
2833 					   func_mf_config[func].afex_config) &
2834 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2835 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2836 
2837 			/* send ramrod to FW, return in case of failure */
2838 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2839 						   allowed_prio))
2840 				return;
2841 
2842 			bp->afex_def_vlan_tag = vlan_val;
2843 			bp->afex_vlan_mode = vlan_mode;
2844 		} else {
2845 			/* notify link down because BP->flags is disabled */
2846 			bnx2x_link_report(bp);
2847 
2848 			/* send INVALID VIF ramrod to FW */
2849 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2850 
2851 			/* Reset the default afex VLAN */
2852 			bp->afex_def_vlan_tag = -1;
2853 		}
2854 	}
2855 }
2856 
2857 static void bnx2x_pmf_update(struct bnx2x *bp)
2858 {
2859 	int port = BP_PORT(bp);
2860 	u32 val;
2861 
2862 	bp->port.pmf = 1;
2863 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2864 
2865 	/*
2866 	 * We need the mb() to ensure the ordering between the writing to
2867 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2868 	 */
2869 	smp_mb();
2870 
2871 	/* queue a periodic task */
2872 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2873 
2874 	bnx2x_dcbx_pmf_update(bp);
2875 
2876 	/* enable nig attention */
2877 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2878 	if (bp->common.int_block == INT_BLOCK_HC) {
2879 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2880 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2881 	} else if (!CHIP_IS_E1x(bp)) {
2882 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2883 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2884 	}
2885 
2886 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2887 }
2888 
2889 /* end of Link */
2890 
2891 /* slow path */
2892 
2893 /*
2894  * General service functions
2895  */
2896 
2897 /* send the MCP a request, block until there is a reply */
2898 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2899 {
2900 	int mb_idx = BP_FW_MB_IDX(bp);
2901 	u32 seq;
2902 	u32 rc = 0;
2903 	u32 cnt = 1;
2904 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2905 
2906 	mutex_lock(&bp->fw_mb_mutex);
2907 	seq = ++bp->fw_seq;
2908 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2909 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2910 
2911 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2912 			(command | seq), param);
2913 
2914 	do {
2915 		/* let the FW do it's magic ... */
2916 		msleep(delay);
2917 
2918 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2919 
2920 		/* Give the FW up to 5 second (500*10ms) */
2921 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2922 
2923 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2924 	   cnt*delay, rc, seq);
2925 
2926 	/* is this a reply to our command? */
2927 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2928 		rc &= FW_MSG_CODE_MASK;
2929 	else {
2930 		/* FW BUG! */
2931 		BNX2X_ERR("FW failed to respond!\n");
2932 		bnx2x_fw_dump(bp);
2933 		rc = 0;
2934 	}
2935 	mutex_unlock(&bp->fw_mb_mutex);
2936 
2937 	return rc;
2938 }
2939 
2940 static void storm_memset_func_cfg(struct bnx2x *bp,
2941 				 struct tstorm_eth_function_common_config *tcfg,
2942 				 u16 abs_fid)
2943 {
2944 	size_t size = sizeof(struct tstorm_eth_function_common_config);
2945 
2946 	u32 addr = BAR_TSTRORM_INTMEM +
2947 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2948 
2949 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2950 }
2951 
2952 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2953 {
2954 	if (CHIP_IS_E1x(bp)) {
2955 		struct tstorm_eth_function_common_config tcfg = {0};
2956 
2957 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2958 	}
2959 
2960 	/* Enable the function in the FW */
2961 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2962 	storm_memset_func_en(bp, p->func_id, 1);
2963 
2964 	/* spq */
2965 	if (p->func_flgs & FUNC_FLG_SPQ) {
2966 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2967 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
2968 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2969 	}
2970 }
2971 
2972 /**
2973  * bnx2x_get_common_flags - Return common flags
2974  *
2975  * @bp		device handle
2976  * @fp		queue handle
2977  * @zero_stats	TRUE if statistics zeroing is needed
2978  *
2979  * Return the flags that are common for the Tx-only and not normal connections.
2980  */
2981 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2982 					    struct bnx2x_fastpath *fp,
2983 					    bool zero_stats)
2984 {
2985 	unsigned long flags = 0;
2986 
2987 	/* PF driver will always initialize the Queue to an ACTIVE state */
2988 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2989 
2990 	/* tx only connections collect statistics (on the same index as the
2991 	 * parent connection). The statistics are zeroed when the parent
2992 	 * connection is initialized.
2993 	 */
2994 
2995 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
2996 	if (zero_stats)
2997 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2998 
2999 	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3000 	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3001 
3002 #ifdef BNX2X_STOP_ON_ERROR
3003 	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3004 #endif
3005 
3006 	return flags;
3007 }
3008 
3009 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3010 				       struct bnx2x_fastpath *fp,
3011 				       bool leading)
3012 {
3013 	unsigned long flags = 0;
3014 
3015 	/* calculate other queue flags */
3016 	if (IS_MF_SD(bp))
3017 		__set_bit(BNX2X_Q_FLG_OV, &flags);
3018 
3019 	if (IS_FCOE_FP(fp)) {
3020 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
3021 		/* For FCoE - force usage of default priority (for afex) */
3022 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3023 	}
3024 
3025 	if (!fp->disable_tpa) {
3026 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3027 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3028 		if (fp->mode == TPA_MODE_GRO)
3029 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3030 	}
3031 
3032 	if (leading) {
3033 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3034 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3035 	}
3036 
3037 	/* Always set HW VLAN stripping */
3038 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3039 
3040 	/* configure silent vlan removal */
3041 	if (IS_MF_AFEX(bp))
3042 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3043 
3044 	return flags | bnx2x_get_common_flags(bp, fp, true);
3045 }
3046 
3047 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3048 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3049 	u8 cos)
3050 {
3051 	gen_init->stat_id = bnx2x_stats_id(fp);
3052 	gen_init->spcl_id = fp->cl_id;
3053 
3054 	/* Always use mini-jumbo MTU for FCoE L2 ring */
3055 	if (IS_FCOE_FP(fp))
3056 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3057 	else
3058 		gen_init->mtu = bp->dev->mtu;
3059 
3060 	gen_init->cos = cos;
3061 }
3062 
3063 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3064 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3065 	struct bnx2x_rxq_setup_params *rxq_init)
3066 {
3067 	u8 max_sge = 0;
3068 	u16 sge_sz = 0;
3069 	u16 tpa_agg_size = 0;
3070 
3071 	if (!fp->disable_tpa) {
3072 		pause->sge_th_lo = SGE_TH_LO(bp);
3073 		pause->sge_th_hi = SGE_TH_HI(bp);
3074 
3075 		/* validate SGE ring has enough to cross high threshold */
3076 		WARN_ON(bp->dropless_fc &&
3077 				pause->sge_th_hi + FW_PREFETCH_CNT >
3078 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3079 
3080 		tpa_agg_size = TPA_AGG_SIZE;
3081 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3082 			SGE_PAGE_SHIFT;
3083 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3084 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3085 		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3086 	}
3087 
3088 	/* pause - not for e1 */
3089 	if (!CHIP_IS_E1(bp)) {
3090 		pause->bd_th_lo = BD_TH_LO(bp);
3091 		pause->bd_th_hi = BD_TH_HI(bp);
3092 
3093 		pause->rcq_th_lo = RCQ_TH_LO(bp);
3094 		pause->rcq_th_hi = RCQ_TH_HI(bp);
3095 		/*
3096 		 * validate that rings have enough entries to cross
3097 		 * high thresholds
3098 		 */
3099 		WARN_ON(bp->dropless_fc &&
3100 				pause->bd_th_hi + FW_PREFETCH_CNT >
3101 				bp->rx_ring_size);
3102 		WARN_ON(bp->dropless_fc &&
3103 				pause->rcq_th_hi + FW_PREFETCH_CNT >
3104 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3105 
3106 		pause->pri_map = 1;
3107 	}
3108 
3109 	/* rxq setup */
3110 	rxq_init->dscr_map = fp->rx_desc_mapping;
3111 	rxq_init->sge_map = fp->rx_sge_mapping;
3112 	rxq_init->rcq_map = fp->rx_comp_mapping;
3113 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3114 
3115 	/* This should be a maximum number of data bytes that may be
3116 	 * placed on the BD (not including paddings).
3117 	 */
3118 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3119 			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3120 
3121 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3122 	rxq_init->tpa_agg_sz = tpa_agg_size;
3123 	rxq_init->sge_buf_sz = sge_sz;
3124 	rxq_init->max_sges_pkt = max_sge;
3125 	rxq_init->rss_engine_id = BP_FUNC(bp);
3126 	rxq_init->mcast_engine_id = BP_FUNC(bp);
3127 
3128 	/* Maximum number or simultaneous TPA aggregation for this Queue.
3129 	 *
3130 	 * For PF Clients it should be the maximum available number.
3131 	 * VF driver(s) may want to define it to a smaller value.
3132 	 */
3133 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3134 
3135 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3136 	rxq_init->fw_sb_id = fp->fw_sb_id;
3137 
3138 	if (IS_FCOE_FP(fp))
3139 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3140 	else
3141 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3142 	/* configure silent vlan removal
3143 	 * if multi function mode is afex, then mask default vlan
3144 	 */
3145 	if (IS_MF_AFEX(bp)) {
3146 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3147 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3148 	}
3149 }
3150 
3151 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3152 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3153 	u8 cos)
3154 {
3155 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3156 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3157 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3158 	txq_init->fw_sb_id = fp->fw_sb_id;
3159 
3160 	/*
3161 	 * set the tss leading client id for TX classification ==
3162 	 * leading RSS client id
3163 	 */
3164 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3165 
3166 	if (IS_FCOE_FP(fp)) {
3167 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3168 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3169 	}
3170 }
3171 
3172 static void bnx2x_pf_init(struct bnx2x *bp)
3173 {
3174 	struct bnx2x_func_init_params func_init = {0};
3175 	struct event_ring_data eq_data = { {0} };
3176 	u16 flags;
3177 
3178 	if (!CHIP_IS_E1x(bp)) {
3179 		/* reset IGU PF statistics: MSIX + ATTN */
3180 		/* PF */
3181 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3182 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3183 			   (CHIP_MODE_IS_4_PORT(bp) ?
3184 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3185 		/* ATTN */
3186 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3187 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3188 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3189 			   (CHIP_MODE_IS_4_PORT(bp) ?
3190 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3191 	}
3192 
3193 	/* function setup flags */
3194 	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3195 
3196 	/* This flag is relevant for E1x only.
3197 	 * E2 doesn't have a TPA configuration in a function level.
3198 	 */
3199 	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3200 
3201 	func_init.func_flgs = flags;
3202 	func_init.pf_id = BP_FUNC(bp);
3203 	func_init.func_id = BP_FUNC(bp);
3204 	func_init.spq_map = bp->spq_mapping;
3205 	func_init.spq_prod = bp->spq_prod_idx;
3206 
3207 	bnx2x_func_init(bp, &func_init);
3208 
3209 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3210 
3211 	/*
3212 	 * Congestion management values depend on the link rate
3213 	 * There is no active link so initial link rate is set to 10 Gbps.
3214 	 * When the link comes up The congestion management values are
3215 	 * re-calculated according to the actual link rate.
3216 	 */
3217 	bp->link_vars.line_speed = SPEED_10000;
3218 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3219 
3220 	/* Only the PMF sets the HW */
3221 	if (bp->port.pmf)
3222 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3223 
3224 	/* init Event Queue - PCI bus guarantees correct endianity*/
3225 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3226 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3227 	eq_data.producer = bp->eq_prod;
3228 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3229 	eq_data.sb_id = DEF_SB_ID;
3230 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3231 }
3232 
3233 static void bnx2x_e1h_disable(struct bnx2x *bp)
3234 {
3235 	int port = BP_PORT(bp);
3236 
3237 	bnx2x_tx_disable(bp);
3238 
3239 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3240 }
3241 
3242 static void bnx2x_e1h_enable(struct bnx2x *bp)
3243 {
3244 	int port = BP_PORT(bp);
3245 
3246 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3247 
3248 	/* Tx queue should be only re-enabled */
3249 	netif_tx_wake_all_queues(bp->dev);
3250 
3251 	/*
3252 	 * Should not call netif_carrier_on since it will be called if the link
3253 	 * is up when checking for link state
3254 	 */
3255 }
3256 
3257 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3258 
3259 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3260 {
3261 	struct eth_stats_info *ether_stat =
3262 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3263 	struct bnx2x_vlan_mac_obj *mac_obj =
3264 		&bp->sp_objs->mac_obj;
3265 	int i;
3266 
3267 	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3268 		ETH_STAT_INFO_VERSION_LEN);
3269 
3270 	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3271 	 * mac_local field in ether_stat struct. The base address is offset by 2
3272 	 * bytes to account for the field being 8 bytes but a mac address is
3273 	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3274 	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3275 	 * allocated by the ether_stat struct, so the macs will land in their
3276 	 * proper positions.
3277 	 */
3278 	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3279 		memset(ether_stat->mac_local + i, 0,
3280 		       sizeof(ether_stat->mac_local[0]));
3281 	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3282 				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3283 				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3284 				ETH_ALEN);
3285 	ether_stat->mtu_size = bp->dev->mtu;
3286 	if (bp->dev->features & NETIF_F_RXCSUM)
3287 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3288 	if (bp->dev->features & NETIF_F_TSO)
3289 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3290 	ether_stat->feature_flags |= bp->common.boot_mode;
3291 
3292 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3293 
3294 	ether_stat->txq_size = bp->tx_ring_size;
3295 	ether_stat->rxq_size = bp->rx_ring_size;
3296 }
3297 
3298 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3299 {
3300 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3301 	struct fcoe_stats_info *fcoe_stat =
3302 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3303 
3304 	if (!CNIC_LOADED(bp))
3305 		return;
3306 
3307 	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3308 
3309 	fcoe_stat->qos_priority =
3310 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3311 
3312 	/* insert FCoE stats from ramrod response */
3313 	if (!NO_FCOE(bp)) {
3314 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3315 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3316 			tstorm_queue_statistics;
3317 
3318 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3319 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3320 			xstorm_queue_statistics;
3321 
3322 		struct fcoe_statistics_params *fw_fcoe_stat =
3323 			&bp->fw_stats_data->fcoe;
3324 
3325 		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3326 			  fcoe_stat->rx_bytes_lo,
3327 			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3328 
3329 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3330 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3331 			  fcoe_stat->rx_bytes_lo,
3332 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3333 
3334 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3335 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3336 			  fcoe_stat->rx_bytes_lo,
3337 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3338 
3339 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3340 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3341 			  fcoe_stat->rx_bytes_lo,
3342 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3343 
3344 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3345 			  fcoe_stat->rx_frames_lo,
3346 			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3347 
3348 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3349 			  fcoe_stat->rx_frames_lo,
3350 			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3351 
3352 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3353 			  fcoe_stat->rx_frames_lo,
3354 			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3355 
3356 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3357 			  fcoe_stat->rx_frames_lo,
3358 			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3359 
3360 		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3361 			  fcoe_stat->tx_bytes_lo,
3362 			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3363 
3364 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3365 			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3366 			  fcoe_stat->tx_bytes_lo,
3367 			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3368 
3369 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3370 			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3371 			  fcoe_stat->tx_bytes_lo,
3372 			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3373 
3374 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3375 			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3376 			  fcoe_stat->tx_bytes_lo,
3377 			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3378 
3379 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3380 			  fcoe_stat->tx_frames_lo,
3381 			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3382 
3383 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3384 			  fcoe_stat->tx_frames_lo,
3385 			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3386 
3387 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3388 			  fcoe_stat->tx_frames_lo,
3389 			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3390 
3391 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3392 			  fcoe_stat->tx_frames_lo,
3393 			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3394 	}
3395 
3396 	/* ask L5 driver to add data to the struct */
3397 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3398 }
3399 
3400 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3401 {
3402 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3403 	struct iscsi_stats_info *iscsi_stat =
3404 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3405 
3406 	if (!CNIC_LOADED(bp))
3407 		return;
3408 
3409 	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3410 	       ETH_ALEN);
3411 
3412 	iscsi_stat->qos_priority =
3413 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3414 
3415 	/* ask L5 driver to add data to the struct */
3416 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3417 }
3418 
3419 /* called due to MCP event (on pmf):
3420  *	reread new bandwidth configuration
3421  *	configure FW
3422  *	notify others function about the change
3423  */
3424 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3425 {
3426 	if (bp->link_vars.link_up) {
3427 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3428 		bnx2x_link_sync_notify(bp);
3429 	}
3430 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3431 }
3432 
3433 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3434 {
3435 	bnx2x_config_mf_bw(bp);
3436 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3437 }
3438 
3439 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3440 {
3441 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3442 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3443 }
3444 
3445 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3446 {
3447 	enum drv_info_opcode op_code;
3448 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3449 
3450 	/* if drv_info version supported by MFW doesn't match - send NACK */
3451 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3452 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3453 		return;
3454 	}
3455 
3456 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3457 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3458 
3459 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3460 	       sizeof(union drv_info_to_mcp));
3461 
3462 	switch (op_code) {
3463 	case ETH_STATS_OPCODE:
3464 		bnx2x_drv_info_ether_stat(bp);
3465 		break;
3466 	case FCOE_STATS_OPCODE:
3467 		bnx2x_drv_info_fcoe_stat(bp);
3468 		break;
3469 	case ISCSI_STATS_OPCODE:
3470 		bnx2x_drv_info_iscsi_stat(bp);
3471 		break;
3472 	default:
3473 		/* if op code isn't supported - send NACK */
3474 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3475 		return;
3476 	}
3477 
3478 	/* if we got drv_info attn from MFW then these fields are defined in
3479 	 * shmem2 for sure
3480 	 */
3481 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3482 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3483 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3484 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3485 
3486 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3487 }
3488 
3489 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3490 {
3491 	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3492 
3493 	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3494 
3495 		/*
3496 		 * This is the only place besides the function initialization
3497 		 * where the bp->flags can change so it is done without any
3498 		 * locks
3499 		 */
3500 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3501 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3502 			bp->flags |= MF_FUNC_DIS;
3503 
3504 			bnx2x_e1h_disable(bp);
3505 		} else {
3506 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3507 			bp->flags &= ~MF_FUNC_DIS;
3508 
3509 			bnx2x_e1h_enable(bp);
3510 		}
3511 		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3512 	}
3513 	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3514 		bnx2x_config_mf_bw(bp);
3515 		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3516 	}
3517 
3518 	/* Report results to MCP */
3519 	if (dcc_event)
3520 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3521 	else
3522 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3523 }
3524 
3525 /* must be called under the spq lock */
3526 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3527 {
3528 	struct eth_spe *next_spe = bp->spq_prod_bd;
3529 
3530 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3531 		bp->spq_prod_bd = bp->spq;
3532 		bp->spq_prod_idx = 0;
3533 		DP(BNX2X_MSG_SP, "end of spq\n");
3534 	} else {
3535 		bp->spq_prod_bd++;
3536 		bp->spq_prod_idx++;
3537 	}
3538 	return next_spe;
3539 }
3540 
3541 /* must be called under the spq lock */
3542 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3543 {
3544 	int func = BP_FUNC(bp);
3545 
3546 	/*
3547 	 * Make sure that BD data is updated before writing the producer:
3548 	 * BD data is written to the memory, the producer is read from the
3549 	 * memory, thus we need a full memory barrier to ensure the ordering.
3550 	 */
3551 	mb();
3552 
3553 	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3554 		 bp->spq_prod_idx);
3555 	mmiowb();
3556 }
3557 
3558 /**
3559  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3560  *
3561  * @cmd:	command to check
3562  * @cmd_type:	command type
3563  */
3564 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3565 {
3566 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3567 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3568 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3569 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3570 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3571 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3572 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3573 		return true;
3574 	else
3575 		return false;
3576 }
3577 
3578 /**
3579  * bnx2x_sp_post - place a single command on an SP ring
3580  *
3581  * @bp:		driver handle
3582  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3583  * @cid:	SW CID the command is related to
3584  * @data_hi:	command private data address (high 32 bits)
3585  * @data_lo:	command private data address (low 32 bits)
3586  * @cmd_type:	command type (e.g. NONE, ETH)
3587  *
3588  * SP data is handled as if it's always an address pair, thus data fields are
3589  * not swapped to little endian in upper functions. Instead this function swaps
3590  * data as if it's two u32 fields.
3591  */
3592 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3593 		  u32 data_hi, u32 data_lo, int cmd_type)
3594 {
3595 	struct eth_spe *spe;
3596 	u16 type;
3597 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3598 
3599 #ifdef BNX2X_STOP_ON_ERROR
3600 	if (unlikely(bp->panic)) {
3601 		BNX2X_ERR("Can't post SP when there is panic\n");
3602 		return -EIO;
3603 	}
3604 #endif
3605 
3606 	spin_lock_bh(&bp->spq_lock);
3607 
3608 	if (common) {
3609 		if (!atomic_read(&bp->eq_spq_left)) {
3610 			BNX2X_ERR("BUG! EQ ring full!\n");
3611 			spin_unlock_bh(&bp->spq_lock);
3612 			bnx2x_panic();
3613 			return -EBUSY;
3614 		}
3615 	} else if (!atomic_read(&bp->cq_spq_left)) {
3616 			BNX2X_ERR("BUG! SPQ ring full!\n");
3617 			spin_unlock_bh(&bp->spq_lock);
3618 			bnx2x_panic();
3619 			return -EBUSY;
3620 	}
3621 
3622 	spe = bnx2x_sp_get_next(bp);
3623 
3624 	/* CID needs port number to be encoded int it */
3625 	spe->hdr.conn_and_cmd_data =
3626 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3627 				    HW_CID(bp, cid));
3628 
3629 	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3630 
3631 	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3632 		 SPE_HDR_FUNCTION_ID);
3633 
3634 	spe->hdr.type = cpu_to_le16(type);
3635 
3636 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3637 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3638 
3639 	/*
3640 	 * It's ok if the actual decrement is issued towards the memory
3641 	 * somewhere between the spin_lock and spin_unlock. Thus no
3642 	 * more explicit memory barrier is needed.
3643 	 */
3644 	if (common)
3645 		atomic_dec(&bp->eq_spq_left);
3646 	else
3647 		atomic_dec(&bp->cq_spq_left);
3648 
3649 	DP(BNX2X_MSG_SP,
3650 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3651 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3652 	   (u32)(U64_LO(bp->spq_mapping) +
3653 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3654 	   HW_CID(bp, cid), data_hi, data_lo, type,
3655 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3656 
3657 	bnx2x_sp_prod_update(bp);
3658 	spin_unlock_bh(&bp->spq_lock);
3659 	return 0;
3660 }
3661 
3662 /* acquire split MCP access lock register */
3663 static int bnx2x_acquire_alr(struct bnx2x *bp)
3664 {
3665 	u32 j, val;
3666 	int rc = 0;
3667 
3668 	might_sleep();
3669 	for (j = 0; j < 1000; j++) {
3670 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3671 		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3672 		if (val & MCPR_ACCESS_LOCK_LOCK)
3673 			break;
3674 
3675 		usleep_range(5000, 10000);
3676 	}
3677 	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3678 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3679 		rc = -EBUSY;
3680 	}
3681 
3682 	return rc;
3683 }
3684 
3685 /* release split MCP access lock register */
3686 static void bnx2x_release_alr(struct bnx2x *bp)
3687 {
3688 	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3689 }
3690 
3691 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3692 #define BNX2X_DEF_SB_IDX	0x0002
3693 
3694 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3695 {
3696 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3697 	u16 rc = 0;
3698 
3699 	barrier(); /* status block is written to by the chip */
3700 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3701 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3702 		rc |= BNX2X_DEF_SB_ATT_IDX;
3703 	}
3704 
3705 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3706 		bp->def_idx = def_sb->sp_sb.running_index;
3707 		rc |= BNX2X_DEF_SB_IDX;
3708 	}
3709 
3710 	/* Do not reorder: indices reading should complete before handling */
3711 	barrier();
3712 	return rc;
3713 }
3714 
3715 /*
3716  * slow path service functions
3717  */
3718 
3719 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3720 {
3721 	int port = BP_PORT(bp);
3722 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3723 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3724 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3725 				       NIG_REG_MASK_INTERRUPT_PORT0;
3726 	u32 aeu_mask;
3727 	u32 nig_mask = 0;
3728 	u32 reg_addr;
3729 
3730 	if (bp->attn_state & asserted)
3731 		BNX2X_ERR("IGU ERROR\n");
3732 
3733 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3734 	aeu_mask = REG_RD(bp, aeu_addr);
3735 
3736 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3737 	   aeu_mask, asserted);
3738 	aeu_mask &= ~(asserted & 0x3ff);
3739 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3740 
3741 	REG_WR(bp, aeu_addr, aeu_mask);
3742 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3743 
3744 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3745 	bp->attn_state |= asserted;
3746 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3747 
3748 	if (asserted & ATTN_HARD_WIRED_MASK) {
3749 		if (asserted & ATTN_NIG_FOR_FUNC) {
3750 
3751 			bnx2x_acquire_phy_lock(bp);
3752 
3753 			/* save nig interrupt mask */
3754 			nig_mask = REG_RD(bp, nig_int_mask_addr);
3755 
3756 			/* If nig_mask is not set, no need to call the update
3757 			 * function.
3758 			 */
3759 			if (nig_mask) {
3760 				REG_WR(bp, nig_int_mask_addr, 0);
3761 
3762 				bnx2x_link_attn(bp);
3763 			}
3764 
3765 			/* handle unicore attn? */
3766 		}
3767 		if (asserted & ATTN_SW_TIMER_4_FUNC)
3768 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3769 
3770 		if (asserted & GPIO_2_FUNC)
3771 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3772 
3773 		if (asserted & GPIO_3_FUNC)
3774 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3775 
3776 		if (asserted & GPIO_4_FUNC)
3777 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3778 
3779 		if (port == 0) {
3780 			if (asserted & ATTN_GENERAL_ATTN_1) {
3781 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3782 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3783 			}
3784 			if (asserted & ATTN_GENERAL_ATTN_2) {
3785 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3786 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3787 			}
3788 			if (asserted & ATTN_GENERAL_ATTN_3) {
3789 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3790 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3791 			}
3792 		} else {
3793 			if (asserted & ATTN_GENERAL_ATTN_4) {
3794 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3795 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3796 			}
3797 			if (asserted & ATTN_GENERAL_ATTN_5) {
3798 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3799 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3800 			}
3801 			if (asserted & ATTN_GENERAL_ATTN_6) {
3802 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3803 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3804 			}
3805 		}
3806 
3807 	} /* if hardwired */
3808 
3809 	if (bp->common.int_block == INT_BLOCK_HC)
3810 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3811 			    COMMAND_REG_ATTN_BITS_SET);
3812 	else
3813 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3814 
3815 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3816 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3817 	REG_WR(bp, reg_addr, asserted);
3818 
3819 	/* now set back the mask */
3820 	if (asserted & ATTN_NIG_FOR_FUNC) {
3821 		/* Verify that IGU ack through BAR was written before restoring
3822 		 * NIG mask. This loop should exit after 2-3 iterations max.
3823 		 */
3824 		if (bp->common.int_block != INT_BLOCK_HC) {
3825 			u32 cnt = 0, igu_acked;
3826 			do {
3827 				igu_acked = REG_RD(bp,
3828 						   IGU_REG_ATTENTION_ACK_BITS);
3829 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3830 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
3831 			if (!igu_acked)
3832 				DP(NETIF_MSG_HW,
3833 				   "Failed to verify IGU ack on time\n");
3834 			barrier();
3835 		}
3836 		REG_WR(bp, nig_int_mask_addr, nig_mask);
3837 		bnx2x_release_phy_lock(bp);
3838 	}
3839 }
3840 
3841 static void bnx2x_fan_failure(struct bnx2x *bp)
3842 {
3843 	int port = BP_PORT(bp);
3844 	u32 ext_phy_config;
3845 	/* mark the failure */
3846 	ext_phy_config =
3847 		SHMEM_RD(bp,
3848 			 dev_info.port_hw_config[port].external_phy_config);
3849 
3850 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3851 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3852 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3853 		 ext_phy_config);
3854 
3855 	/* log the failure */
3856 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3857 			    "Please contact OEM Support for assistance\n");
3858 
3859 	/* Schedule device reset (unload)
3860 	 * This is due to some boards consuming sufficient power when driver is
3861 	 * up to overheat if fan fails.
3862 	 */
3863 	smp_mb__before_clear_bit();
3864 	set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3865 	smp_mb__after_clear_bit();
3866 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
3867 }
3868 
3869 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3870 {
3871 	int port = BP_PORT(bp);
3872 	int reg_offset;
3873 	u32 val;
3874 
3875 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3876 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3877 
3878 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3879 
3880 		val = REG_RD(bp, reg_offset);
3881 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3882 		REG_WR(bp, reg_offset, val);
3883 
3884 		BNX2X_ERR("SPIO5 hw attention\n");
3885 
3886 		/* Fan failure attention */
3887 		bnx2x_hw_reset_phy(&bp->link_params);
3888 		bnx2x_fan_failure(bp);
3889 	}
3890 
3891 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3892 		bnx2x_acquire_phy_lock(bp);
3893 		bnx2x_handle_module_detect_int(&bp->link_params);
3894 		bnx2x_release_phy_lock(bp);
3895 	}
3896 
3897 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
3898 
3899 		val = REG_RD(bp, reg_offset);
3900 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3901 		REG_WR(bp, reg_offset, val);
3902 
3903 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3904 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3905 		bnx2x_panic();
3906 	}
3907 }
3908 
3909 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3910 {
3911 	u32 val;
3912 
3913 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3914 
3915 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3916 		BNX2X_ERR("DB hw attention 0x%x\n", val);
3917 		/* DORQ discard attention */
3918 		if (val & 0x2)
3919 			BNX2X_ERR("FATAL error from DORQ\n");
3920 	}
3921 
3922 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
3923 
3924 		int port = BP_PORT(bp);
3925 		int reg_offset;
3926 
3927 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3928 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3929 
3930 		val = REG_RD(bp, reg_offset);
3931 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3932 		REG_WR(bp, reg_offset, val);
3933 
3934 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3935 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3936 		bnx2x_panic();
3937 	}
3938 }
3939 
3940 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3941 {
3942 	u32 val;
3943 
3944 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3945 
3946 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3947 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
3948 		/* CFC error attention */
3949 		if (val & 0x2)
3950 			BNX2X_ERR("FATAL error from CFC\n");
3951 	}
3952 
3953 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3954 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3955 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3956 		/* RQ_USDMDP_FIFO_OVERFLOW */
3957 		if (val & 0x18000)
3958 			BNX2X_ERR("FATAL error from PXP\n");
3959 
3960 		if (!CHIP_IS_E1x(bp)) {
3961 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3962 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3963 		}
3964 	}
3965 
3966 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
3967 
3968 		int port = BP_PORT(bp);
3969 		int reg_offset;
3970 
3971 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3972 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3973 
3974 		val = REG_RD(bp, reg_offset);
3975 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3976 		REG_WR(bp, reg_offset, val);
3977 
3978 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3979 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3980 		bnx2x_panic();
3981 	}
3982 }
3983 
3984 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3985 {
3986 	u32 val;
3987 
3988 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3989 
3990 		if (attn & BNX2X_PMF_LINK_ASSERT) {
3991 			int func = BP_FUNC(bp);
3992 
3993 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3994 			bnx2x_read_mf_cfg(bp);
3995 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3996 					func_mf_config[BP_ABS_FUNC(bp)].config);
3997 			val = SHMEM_RD(bp,
3998 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
3999 			if (val & DRV_STATUS_DCC_EVENT_MASK)
4000 				bnx2x_dcc_event(bp,
4001 					    (val & DRV_STATUS_DCC_EVENT_MASK));
4002 
4003 			if (val & DRV_STATUS_SET_MF_BW)
4004 				bnx2x_set_mf_bw(bp);
4005 
4006 			if (val & DRV_STATUS_DRV_INFO_REQ)
4007 				bnx2x_handle_drv_info_req(bp);
4008 
4009 			if (val & DRV_STATUS_VF_DISABLED)
4010 				bnx2x_vf_handle_flr_event(bp);
4011 
4012 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4013 				bnx2x_pmf_update(bp);
4014 
4015 			if (bp->port.pmf &&
4016 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4017 				bp->dcbx_enabled > 0)
4018 				/* start dcbx state machine */
4019 				bnx2x_dcbx_set_params(bp,
4020 					BNX2X_DCBX_STATE_NEG_RECEIVED);
4021 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
4022 				bnx2x_handle_afex_cmd(bp,
4023 					val & DRV_STATUS_AFEX_EVENT_MASK);
4024 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4025 				bnx2x_handle_eee_event(bp);
4026 			if (bp->link_vars.periodic_flags &
4027 			    PERIODIC_FLAGS_LINK_EVENT) {
4028 				/*  sync with link */
4029 				bnx2x_acquire_phy_lock(bp);
4030 				bp->link_vars.periodic_flags &=
4031 					~PERIODIC_FLAGS_LINK_EVENT;
4032 				bnx2x_release_phy_lock(bp);
4033 				if (IS_MF(bp))
4034 					bnx2x_link_sync_notify(bp);
4035 				bnx2x_link_report(bp);
4036 			}
4037 			/* Always call it here: bnx2x_link_report() will
4038 			 * prevent the link indication duplication.
4039 			 */
4040 			bnx2x__link_status_update(bp);
4041 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4042 
4043 			BNX2X_ERR("MC assert!\n");
4044 			bnx2x_mc_assert(bp);
4045 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4046 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4047 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4048 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4049 			bnx2x_panic();
4050 
4051 		} else if (attn & BNX2X_MCP_ASSERT) {
4052 
4053 			BNX2X_ERR("MCP assert!\n");
4054 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4055 			bnx2x_fw_dump(bp);
4056 
4057 		} else
4058 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4059 	}
4060 
4061 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4062 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4063 		if (attn & BNX2X_GRC_TIMEOUT) {
4064 			val = CHIP_IS_E1(bp) ? 0 :
4065 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4066 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4067 		}
4068 		if (attn & BNX2X_GRC_RSV) {
4069 			val = CHIP_IS_E1(bp) ? 0 :
4070 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4071 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4072 		}
4073 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4074 	}
4075 }
4076 
4077 /*
4078  * Bits map:
4079  * 0-7   - Engine0 load counter.
4080  * 8-15  - Engine1 load counter.
4081  * 16    - Engine0 RESET_IN_PROGRESS bit.
4082  * 17    - Engine1 RESET_IN_PROGRESS bit.
4083  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4084  *         on the engine
4085  * 19    - Engine1 ONE_IS_LOADED.
4086  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4087  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4088  *         just the one belonging to its engine).
4089  *
4090  */
4091 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4092 
4093 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4094 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4095 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4096 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4097 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4098 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4099 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
4100 
4101 /*
4102  * Set the GLOBAL_RESET bit.
4103  *
4104  * Should be run under rtnl lock
4105  */
4106 void bnx2x_set_reset_global(struct bnx2x *bp)
4107 {
4108 	u32 val;
4109 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4110 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4111 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4112 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4113 }
4114 
4115 /*
4116  * Clear the GLOBAL_RESET bit.
4117  *
4118  * Should be run under rtnl lock
4119  */
4120 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4121 {
4122 	u32 val;
4123 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4124 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4125 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4126 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4127 }
4128 
4129 /*
4130  * Checks the GLOBAL_RESET bit.
4131  *
4132  * should be run under rtnl lock
4133  */
4134 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4135 {
4136 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4137 
4138 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4139 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4140 }
4141 
4142 /*
4143  * Clear RESET_IN_PROGRESS bit for the current engine.
4144  *
4145  * Should be run under rtnl lock
4146  */
4147 static void bnx2x_set_reset_done(struct bnx2x *bp)
4148 {
4149 	u32 val;
4150 	u32 bit = BP_PATH(bp) ?
4151 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4152 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4153 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4154 
4155 	/* Clear the bit */
4156 	val &= ~bit;
4157 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4158 
4159 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4160 }
4161 
4162 /*
4163  * Set RESET_IN_PROGRESS for the current engine.
4164  *
4165  * should be run under rtnl lock
4166  */
4167 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4168 {
4169 	u32 val;
4170 	u32 bit = BP_PATH(bp) ?
4171 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4172 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4173 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4174 
4175 	/* Set the bit */
4176 	val |= bit;
4177 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4178 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4179 }
4180 
4181 /*
4182  * Checks the RESET_IN_PROGRESS bit for the given engine.
4183  * should be run under rtnl lock
4184  */
4185 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4186 {
4187 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4188 	u32 bit = engine ?
4189 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4190 
4191 	/* return false if bit is set */
4192 	return (val & bit) ? false : true;
4193 }
4194 
4195 /*
4196  * set pf load for the current pf.
4197  *
4198  * should be run under rtnl lock
4199  */
4200 void bnx2x_set_pf_load(struct bnx2x *bp)
4201 {
4202 	u32 val1, val;
4203 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4204 			     BNX2X_PATH0_LOAD_CNT_MASK;
4205 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4206 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4207 
4208 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4209 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4210 
4211 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4212 
4213 	/* get the current counter value */
4214 	val1 = (val & mask) >> shift;
4215 
4216 	/* set bit of that PF */
4217 	val1 |= (1 << bp->pf_num);
4218 
4219 	/* clear the old value */
4220 	val &= ~mask;
4221 
4222 	/* set the new one */
4223 	val |= ((val1 << shift) & mask);
4224 
4225 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4226 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4227 }
4228 
4229 /**
4230  * bnx2x_clear_pf_load - clear pf load mark
4231  *
4232  * @bp:		driver handle
4233  *
4234  * Should be run under rtnl lock.
4235  * Decrements the load counter for the current engine. Returns
4236  * whether other functions are still loaded
4237  */
4238 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4239 {
4240 	u32 val1, val;
4241 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4242 			     BNX2X_PATH0_LOAD_CNT_MASK;
4243 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4244 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4245 
4246 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4247 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4248 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4249 
4250 	/* get the current counter value */
4251 	val1 = (val & mask) >> shift;
4252 
4253 	/* clear bit of that PF */
4254 	val1 &= ~(1 << bp->pf_num);
4255 
4256 	/* clear the old value */
4257 	val &= ~mask;
4258 
4259 	/* set the new one */
4260 	val |= ((val1 << shift) & mask);
4261 
4262 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4263 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4264 	return val1 != 0;
4265 }
4266 
4267 /*
4268  * Read the load status for the current engine.
4269  *
4270  * should be run under rtnl lock
4271  */
4272 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4273 {
4274 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4275 			     BNX2X_PATH0_LOAD_CNT_MASK);
4276 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4277 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4278 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4279 
4280 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4281 
4282 	val = (val & mask) >> shift;
4283 
4284 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4285 	   engine, val);
4286 
4287 	return val != 0;
4288 }
4289 
4290 static void _print_parity(struct bnx2x *bp, u32 reg)
4291 {
4292 	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4293 }
4294 
4295 static void _print_next_block(int idx, const char *blk)
4296 {
4297 	pr_cont("%s%s", idx ? ", " : "", blk);
4298 }
4299 
4300 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4301 					    int *par_num, bool print)
4302 {
4303 	u32 cur_bit;
4304 	bool res;
4305 	int i;
4306 
4307 	res = false;
4308 
4309 	for (i = 0; sig; i++) {
4310 		cur_bit = (0x1UL << i);
4311 		if (sig & cur_bit) {
4312 			res |= true; /* Each bit is real error! */
4313 
4314 			if (print) {
4315 				switch (cur_bit) {
4316 				case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4317 					_print_next_block((*par_num)++, "BRB");
4318 					_print_parity(bp,
4319 						      BRB1_REG_BRB1_PRTY_STS);
4320 					break;
4321 				case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4322 					_print_next_block((*par_num)++,
4323 							  "PARSER");
4324 					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4325 					break;
4326 				case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4327 					_print_next_block((*par_num)++, "TSDM");
4328 					_print_parity(bp,
4329 						      TSDM_REG_TSDM_PRTY_STS);
4330 					break;
4331 				case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4332 					_print_next_block((*par_num)++,
4333 							  "SEARCHER");
4334 					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4335 					break;
4336 				case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4337 					_print_next_block((*par_num)++, "TCM");
4338 					_print_parity(bp, TCM_REG_TCM_PRTY_STS);
4339 					break;
4340 				case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4341 					_print_next_block((*par_num)++,
4342 							  "TSEMI");
4343 					_print_parity(bp,
4344 						      TSEM_REG_TSEM_PRTY_STS_0);
4345 					_print_parity(bp,
4346 						      TSEM_REG_TSEM_PRTY_STS_1);
4347 					break;
4348 				case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4349 					_print_next_block((*par_num)++, "XPB");
4350 					_print_parity(bp, GRCBASE_XPB +
4351 							  PB_REG_PB_PRTY_STS);
4352 					break;
4353 				}
4354 			}
4355 
4356 			/* Clear the bit */
4357 			sig &= ~cur_bit;
4358 		}
4359 	}
4360 
4361 	return res;
4362 }
4363 
4364 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4365 					    int *par_num, bool *global,
4366 					    bool print)
4367 {
4368 	u32 cur_bit;
4369 	bool res;
4370 	int i;
4371 
4372 	res = false;
4373 
4374 	for (i = 0; sig; i++) {
4375 		cur_bit = (0x1UL << i);
4376 		if (sig & cur_bit) {
4377 			res |= true; /* Each bit is real error! */
4378 			switch (cur_bit) {
4379 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4380 				if (print) {
4381 					_print_next_block((*par_num)++, "PBF");
4382 					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4383 				}
4384 				break;
4385 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4386 				if (print) {
4387 					_print_next_block((*par_num)++, "QM");
4388 					_print_parity(bp, QM_REG_QM_PRTY_STS);
4389 				}
4390 				break;
4391 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4392 				if (print) {
4393 					_print_next_block((*par_num)++, "TM");
4394 					_print_parity(bp, TM_REG_TM_PRTY_STS);
4395 				}
4396 				break;
4397 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4398 				if (print) {
4399 					_print_next_block((*par_num)++, "XSDM");
4400 					_print_parity(bp,
4401 						      XSDM_REG_XSDM_PRTY_STS);
4402 				}
4403 				break;
4404 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4405 				if (print) {
4406 					_print_next_block((*par_num)++, "XCM");
4407 					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4408 				}
4409 				break;
4410 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4411 				if (print) {
4412 					_print_next_block((*par_num)++,
4413 							  "XSEMI");
4414 					_print_parity(bp,
4415 						      XSEM_REG_XSEM_PRTY_STS_0);
4416 					_print_parity(bp,
4417 						      XSEM_REG_XSEM_PRTY_STS_1);
4418 				}
4419 				break;
4420 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4421 				if (print) {
4422 					_print_next_block((*par_num)++,
4423 							  "DOORBELLQ");
4424 					_print_parity(bp,
4425 						      DORQ_REG_DORQ_PRTY_STS);
4426 				}
4427 				break;
4428 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4429 				if (print) {
4430 					_print_next_block((*par_num)++, "NIG");
4431 					if (CHIP_IS_E1x(bp)) {
4432 						_print_parity(bp,
4433 							NIG_REG_NIG_PRTY_STS);
4434 					} else {
4435 						_print_parity(bp,
4436 							NIG_REG_NIG_PRTY_STS_0);
4437 						_print_parity(bp,
4438 							NIG_REG_NIG_PRTY_STS_1);
4439 					}
4440 				}
4441 				break;
4442 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4443 				if (print)
4444 					_print_next_block((*par_num)++,
4445 							  "VAUX PCI CORE");
4446 				*global = true;
4447 				break;
4448 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4449 				if (print) {
4450 					_print_next_block((*par_num)++,
4451 							  "DEBUG");
4452 					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4453 				}
4454 				break;
4455 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4456 				if (print) {
4457 					_print_next_block((*par_num)++, "USDM");
4458 					_print_parity(bp,
4459 						      USDM_REG_USDM_PRTY_STS);
4460 				}
4461 				break;
4462 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4463 				if (print) {
4464 					_print_next_block((*par_num)++, "UCM");
4465 					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4466 				}
4467 				break;
4468 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4469 				if (print) {
4470 					_print_next_block((*par_num)++,
4471 							  "USEMI");
4472 					_print_parity(bp,
4473 						      USEM_REG_USEM_PRTY_STS_0);
4474 					_print_parity(bp,
4475 						      USEM_REG_USEM_PRTY_STS_1);
4476 				}
4477 				break;
4478 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4479 				if (print) {
4480 					_print_next_block((*par_num)++, "UPB");
4481 					_print_parity(bp, GRCBASE_UPB +
4482 							  PB_REG_PB_PRTY_STS);
4483 				}
4484 				break;
4485 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4486 				if (print) {
4487 					_print_next_block((*par_num)++, "CSDM");
4488 					_print_parity(bp,
4489 						      CSDM_REG_CSDM_PRTY_STS);
4490 				}
4491 				break;
4492 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4493 				if (print) {
4494 					_print_next_block((*par_num)++, "CCM");
4495 					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4496 				}
4497 				break;
4498 			}
4499 
4500 			/* Clear the bit */
4501 			sig &= ~cur_bit;
4502 		}
4503 	}
4504 
4505 	return res;
4506 }
4507 
4508 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4509 					    int *par_num, bool print)
4510 {
4511 	u32 cur_bit;
4512 	bool res;
4513 	int i;
4514 
4515 	res = false;
4516 
4517 	for (i = 0; sig; i++) {
4518 		cur_bit = (0x1UL << i);
4519 		if (sig & cur_bit) {
4520 			res |= true; /* Each bit is real error! */
4521 			if (print) {
4522 				switch (cur_bit) {
4523 				case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4524 					_print_next_block((*par_num)++,
4525 							  "CSEMI");
4526 					_print_parity(bp,
4527 						      CSEM_REG_CSEM_PRTY_STS_0);
4528 					_print_parity(bp,
4529 						      CSEM_REG_CSEM_PRTY_STS_1);
4530 					break;
4531 				case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4532 					_print_next_block((*par_num)++, "PXP");
4533 					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4534 					_print_parity(bp,
4535 						      PXP2_REG_PXP2_PRTY_STS_0);
4536 					_print_parity(bp,
4537 						      PXP2_REG_PXP2_PRTY_STS_1);
4538 					break;
4539 				case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4540 					_print_next_block((*par_num)++,
4541 							  "PXPPCICLOCKCLIENT");
4542 					break;
4543 				case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4544 					_print_next_block((*par_num)++, "CFC");
4545 					_print_parity(bp,
4546 						      CFC_REG_CFC_PRTY_STS);
4547 					break;
4548 				case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4549 					_print_next_block((*par_num)++, "CDU");
4550 					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4551 					break;
4552 				case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4553 					_print_next_block((*par_num)++, "DMAE");
4554 					_print_parity(bp,
4555 						      DMAE_REG_DMAE_PRTY_STS);
4556 					break;
4557 				case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4558 					_print_next_block((*par_num)++, "IGU");
4559 					if (CHIP_IS_E1x(bp))
4560 						_print_parity(bp,
4561 							HC_REG_HC_PRTY_STS);
4562 					else
4563 						_print_parity(bp,
4564 							IGU_REG_IGU_PRTY_STS);
4565 					break;
4566 				case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4567 					_print_next_block((*par_num)++, "MISC");
4568 					_print_parity(bp,
4569 						      MISC_REG_MISC_PRTY_STS);
4570 					break;
4571 				}
4572 			}
4573 
4574 			/* Clear the bit */
4575 			sig &= ~cur_bit;
4576 		}
4577 	}
4578 
4579 	return res;
4580 }
4581 
4582 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4583 					    int *par_num, bool *global,
4584 					    bool print)
4585 {
4586 	bool res = false;
4587 	u32 cur_bit;
4588 	int i;
4589 
4590 	for (i = 0; sig; i++) {
4591 		cur_bit = (0x1UL << i);
4592 		if (sig & cur_bit) {
4593 			switch (cur_bit) {
4594 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4595 				if (print)
4596 					_print_next_block((*par_num)++,
4597 							  "MCP ROM");
4598 				*global = true;
4599 				res |= true;
4600 				break;
4601 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4602 				if (print)
4603 					_print_next_block((*par_num)++,
4604 							  "MCP UMP RX");
4605 				*global = true;
4606 				res |= true;
4607 				break;
4608 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4609 				if (print)
4610 					_print_next_block((*par_num)++,
4611 							  "MCP UMP TX");
4612 				*global = true;
4613 				res |= true;
4614 				break;
4615 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4616 				if (print)
4617 					_print_next_block((*par_num)++,
4618 							  "MCP SCPAD");
4619 				/* clear latched SCPAD PATIRY from MCP */
4620 				REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4621 				       1UL << 10);
4622 				break;
4623 			}
4624 
4625 			/* Clear the bit */
4626 			sig &= ~cur_bit;
4627 		}
4628 	}
4629 
4630 	return res;
4631 }
4632 
4633 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4634 					    int *par_num, bool print)
4635 {
4636 	u32 cur_bit;
4637 	bool res;
4638 	int i;
4639 
4640 	res = false;
4641 
4642 	for (i = 0; sig; i++) {
4643 		cur_bit = (0x1UL << i);
4644 		if (sig & cur_bit) {
4645 			res |= true; /* Each bit is real error! */
4646 			if (print) {
4647 				switch (cur_bit) {
4648 				case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4649 					_print_next_block((*par_num)++,
4650 							  "PGLUE_B");
4651 					_print_parity(bp,
4652 						      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4653 					break;
4654 				case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4655 					_print_next_block((*par_num)++, "ATC");
4656 					_print_parity(bp,
4657 						      ATC_REG_ATC_PRTY_STS);
4658 					break;
4659 				}
4660 			}
4661 			/* Clear the bit */
4662 			sig &= ~cur_bit;
4663 		}
4664 	}
4665 
4666 	return res;
4667 }
4668 
4669 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4670 			      u32 *sig)
4671 {
4672 	bool res = false;
4673 
4674 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4675 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4676 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4677 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4678 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4679 		int par_num = 0;
4680 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4681 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4682 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4683 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4684 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4685 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4686 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4687 		if (print)
4688 			netdev_err(bp->dev,
4689 				   "Parity errors detected in blocks: ");
4690 		res |= bnx2x_check_blocks_with_parity0(bp,
4691 			sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4692 		res |= bnx2x_check_blocks_with_parity1(bp,
4693 			sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4694 		res |= bnx2x_check_blocks_with_parity2(bp,
4695 			sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4696 		res |= bnx2x_check_blocks_with_parity3(bp,
4697 			sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4698 		res |= bnx2x_check_blocks_with_parity4(bp,
4699 			sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4700 
4701 		if (print)
4702 			pr_cont("\n");
4703 	}
4704 
4705 	return res;
4706 }
4707 
4708 /**
4709  * bnx2x_chk_parity_attn - checks for parity attentions.
4710  *
4711  * @bp:		driver handle
4712  * @global:	true if there was a global attention
4713  * @print:	show parity attention in syslog
4714  */
4715 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4716 {
4717 	struct attn_route attn = { {0} };
4718 	int port = BP_PORT(bp);
4719 
4720 	attn.sig[0] = REG_RD(bp,
4721 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4722 			     port*4);
4723 	attn.sig[1] = REG_RD(bp,
4724 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4725 			     port*4);
4726 	attn.sig[2] = REG_RD(bp,
4727 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4728 			     port*4);
4729 	attn.sig[3] = REG_RD(bp,
4730 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4731 			     port*4);
4732 	/* Since MCP attentions can't be disabled inside the block, we need to
4733 	 * read AEU registers to see whether they're currently disabled
4734 	 */
4735 	attn.sig[3] &= ((REG_RD(bp,
4736 				!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
4737 				      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
4738 			 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
4739 			~MISC_AEU_ENABLE_MCP_PRTY_BITS);
4740 
4741 	if (!CHIP_IS_E1x(bp))
4742 		attn.sig[4] = REG_RD(bp,
4743 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4744 				     port*4);
4745 
4746 	return bnx2x_parity_attn(bp, global, print, attn.sig);
4747 }
4748 
4749 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4750 {
4751 	u32 val;
4752 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4753 
4754 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4755 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4756 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4757 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4758 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4759 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4760 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4761 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4762 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4763 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4764 		if (val &
4765 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4766 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4767 		if (val &
4768 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4769 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4770 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4771 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4772 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4773 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4774 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4775 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4776 	}
4777 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4778 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4779 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4780 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4781 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4782 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4783 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4784 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4785 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4786 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4787 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4788 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4789 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4790 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4791 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4792 	}
4793 
4794 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4795 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4796 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4797 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4798 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4799 	}
4800 }
4801 
4802 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4803 {
4804 	struct attn_route attn, *group_mask;
4805 	int port = BP_PORT(bp);
4806 	int index;
4807 	u32 reg_addr;
4808 	u32 val;
4809 	u32 aeu_mask;
4810 	bool global = false;
4811 
4812 	/* need to take HW lock because MCP or other port might also
4813 	   try to handle this event */
4814 	bnx2x_acquire_alr(bp);
4815 
4816 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4817 #ifndef BNX2X_STOP_ON_ERROR
4818 		bp->recovery_state = BNX2X_RECOVERY_INIT;
4819 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4820 		/* Disable HW interrupts */
4821 		bnx2x_int_disable(bp);
4822 		/* In case of parity errors don't handle attentions so that
4823 		 * other function would "see" parity errors.
4824 		 */
4825 #else
4826 		bnx2x_panic();
4827 #endif
4828 		bnx2x_release_alr(bp);
4829 		return;
4830 	}
4831 
4832 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4833 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4834 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4835 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4836 	if (!CHIP_IS_E1x(bp))
4837 		attn.sig[4] =
4838 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4839 	else
4840 		attn.sig[4] = 0;
4841 
4842 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4843 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4844 
4845 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4846 		if (deasserted & (1 << index)) {
4847 			group_mask = &bp->attn_group[index];
4848 
4849 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4850 			   index,
4851 			   group_mask->sig[0], group_mask->sig[1],
4852 			   group_mask->sig[2], group_mask->sig[3],
4853 			   group_mask->sig[4]);
4854 
4855 			bnx2x_attn_int_deasserted4(bp,
4856 					attn.sig[4] & group_mask->sig[4]);
4857 			bnx2x_attn_int_deasserted3(bp,
4858 					attn.sig[3] & group_mask->sig[3]);
4859 			bnx2x_attn_int_deasserted1(bp,
4860 					attn.sig[1] & group_mask->sig[1]);
4861 			bnx2x_attn_int_deasserted2(bp,
4862 					attn.sig[2] & group_mask->sig[2]);
4863 			bnx2x_attn_int_deasserted0(bp,
4864 					attn.sig[0] & group_mask->sig[0]);
4865 		}
4866 	}
4867 
4868 	bnx2x_release_alr(bp);
4869 
4870 	if (bp->common.int_block == INT_BLOCK_HC)
4871 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4872 			    COMMAND_REG_ATTN_BITS_CLR);
4873 	else
4874 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4875 
4876 	val = ~deasserted;
4877 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4878 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4879 	REG_WR(bp, reg_addr, val);
4880 
4881 	if (~bp->attn_state & deasserted)
4882 		BNX2X_ERR("IGU ERROR\n");
4883 
4884 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4885 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
4886 
4887 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4888 	aeu_mask = REG_RD(bp, reg_addr);
4889 
4890 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4891 	   aeu_mask, deasserted);
4892 	aeu_mask |= (deasserted & 0x3ff);
4893 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4894 
4895 	REG_WR(bp, reg_addr, aeu_mask);
4896 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4897 
4898 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4899 	bp->attn_state &= ~deasserted;
4900 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4901 }
4902 
4903 static void bnx2x_attn_int(struct bnx2x *bp)
4904 {
4905 	/* read local copy of bits */
4906 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4907 								attn_bits);
4908 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4909 								attn_bits_ack);
4910 	u32 attn_state = bp->attn_state;
4911 
4912 	/* look for changed bits */
4913 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4914 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4915 
4916 	DP(NETIF_MSG_HW,
4917 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4918 	   attn_bits, attn_ack, asserted, deasserted);
4919 
4920 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4921 		BNX2X_ERR("BAD attention state\n");
4922 
4923 	/* handle bits that were raised */
4924 	if (asserted)
4925 		bnx2x_attn_int_asserted(bp, asserted);
4926 
4927 	if (deasserted)
4928 		bnx2x_attn_int_deasserted(bp, deasserted);
4929 }
4930 
4931 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4932 		      u16 index, u8 op, u8 update)
4933 {
4934 	u32 igu_addr = bp->igu_base_addr;
4935 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4936 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4937 			     igu_addr);
4938 }
4939 
4940 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4941 {
4942 	/* No memory barriers */
4943 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4944 	mmiowb(); /* keep prod updates ordered */
4945 }
4946 
4947 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4948 				      union event_ring_elem *elem)
4949 {
4950 	u8 err = elem->message.error;
4951 
4952 	if (!bp->cnic_eth_dev.starting_cid  ||
4953 	    (cid < bp->cnic_eth_dev.starting_cid &&
4954 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
4955 		return 1;
4956 
4957 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4958 
4959 	if (unlikely(err)) {
4960 
4961 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4962 			  cid);
4963 		bnx2x_panic_dump(bp, false);
4964 	}
4965 	bnx2x_cnic_cfc_comp(bp, cid, err);
4966 	return 0;
4967 }
4968 
4969 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4970 {
4971 	struct bnx2x_mcast_ramrod_params rparam;
4972 	int rc;
4973 
4974 	memset(&rparam, 0, sizeof(rparam));
4975 
4976 	rparam.mcast_obj = &bp->mcast_obj;
4977 
4978 	netif_addr_lock_bh(bp->dev);
4979 
4980 	/* Clear pending state for the last command */
4981 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4982 
4983 	/* If there are pending mcast commands - send them */
4984 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4985 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4986 		if (rc < 0)
4987 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4988 				  rc);
4989 	}
4990 
4991 	netif_addr_unlock_bh(bp->dev);
4992 }
4993 
4994 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4995 					    union event_ring_elem *elem)
4996 {
4997 	unsigned long ramrod_flags = 0;
4998 	int rc = 0;
4999 	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
5000 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5001 
5002 	/* Always push next commands out, don't wait here */
5003 	__set_bit(RAMROD_CONT, &ramrod_flags);
5004 
5005 	switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
5006 			    >> BNX2X_SWCID_SHIFT) {
5007 	case BNX2X_FILTER_MAC_PENDING:
5008 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5009 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5010 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5011 		else
5012 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5013 
5014 		break;
5015 	case BNX2X_FILTER_MCAST_PENDING:
5016 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5017 		/* This is only relevant for 57710 where multicast MACs are
5018 		 * configured as unicast MACs using the same ramrod.
5019 		 */
5020 		bnx2x_handle_mcast_eqe(bp);
5021 		return;
5022 	default:
5023 		BNX2X_ERR("Unsupported classification command: %d\n",
5024 			  elem->message.data.eth_event.echo);
5025 		return;
5026 	}
5027 
5028 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5029 
5030 	if (rc < 0)
5031 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5032 	else if (rc > 0)
5033 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5034 }
5035 
5036 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5037 
5038 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5039 {
5040 	netif_addr_lock_bh(bp->dev);
5041 
5042 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5043 
5044 	/* Send rx_mode command again if was requested */
5045 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5046 		bnx2x_set_storm_rx_mode(bp);
5047 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5048 				    &bp->sp_state))
5049 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5050 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5051 				    &bp->sp_state))
5052 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5053 
5054 	netif_addr_unlock_bh(bp->dev);
5055 }
5056 
5057 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5058 					      union event_ring_elem *elem)
5059 {
5060 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5061 		DP(BNX2X_MSG_SP,
5062 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5063 		   elem->message.data.vif_list_event.func_bit_map);
5064 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5065 			elem->message.data.vif_list_event.func_bit_map);
5066 	} else if (elem->message.data.vif_list_event.echo ==
5067 		   VIF_LIST_RULE_SET) {
5068 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5069 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5070 	}
5071 }
5072 
5073 /* called with rtnl_lock */
5074 static void bnx2x_after_function_update(struct bnx2x *bp)
5075 {
5076 	int q, rc;
5077 	struct bnx2x_fastpath *fp;
5078 	struct bnx2x_queue_state_params queue_params = {NULL};
5079 	struct bnx2x_queue_update_params *q_update_params =
5080 		&queue_params.params.update;
5081 
5082 	/* Send Q update command with afex vlan removal values for all Qs */
5083 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5084 
5085 	/* set silent vlan removal values according to vlan mode */
5086 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5087 		  &q_update_params->update_flags);
5088 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5089 		  &q_update_params->update_flags);
5090 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5091 
5092 	/* in access mode mark mask and value are 0 to strip all vlans */
5093 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5094 		q_update_params->silent_removal_value = 0;
5095 		q_update_params->silent_removal_mask = 0;
5096 	} else {
5097 		q_update_params->silent_removal_value =
5098 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5099 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5100 	}
5101 
5102 	for_each_eth_queue(bp, q) {
5103 		/* Set the appropriate Queue object */
5104 		fp = &bp->fp[q];
5105 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5106 
5107 		/* send the ramrod */
5108 		rc = bnx2x_queue_state_change(bp, &queue_params);
5109 		if (rc < 0)
5110 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5111 				  q);
5112 	}
5113 
5114 	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5115 		fp = &bp->fp[FCOE_IDX(bp)];
5116 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5117 
5118 		/* clear pending completion bit */
5119 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5120 
5121 		/* mark latest Q bit */
5122 		smp_mb__before_clear_bit();
5123 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5124 		smp_mb__after_clear_bit();
5125 
5126 		/* send Q update ramrod for FCoE Q */
5127 		rc = bnx2x_queue_state_change(bp, &queue_params);
5128 		if (rc < 0)
5129 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5130 				  q);
5131 	} else {
5132 		/* If no FCoE ring - ACK MCP now */
5133 		bnx2x_link_report(bp);
5134 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5135 	}
5136 }
5137 
5138 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5139 	struct bnx2x *bp, u32 cid)
5140 {
5141 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5142 
5143 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5144 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5145 	else
5146 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5147 }
5148 
5149 static void bnx2x_eq_int(struct bnx2x *bp)
5150 {
5151 	u16 hw_cons, sw_cons, sw_prod;
5152 	union event_ring_elem *elem;
5153 	u8 echo;
5154 	u32 cid;
5155 	u8 opcode;
5156 	int rc, spqe_cnt = 0;
5157 	struct bnx2x_queue_sp_obj *q_obj;
5158 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5159 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5160 
5161 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5162 
5163 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5164 	 * when we get the next-page we need to adjust so the loop
5165 	 * condition below will be met. The next element is the size of a
5166 	 * regular element and hence incrementing by 1
5167 	 */
5168 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5169 		hw_cons++;
5170 
5171 	/* This function may never run in parallel with itself for a
5172 	 * specific bp, thus there is no need in "paired" read memory
5173 	 * barrier here.
5174 	 */
5175 	sw_cons = bp->eq_cons;
5176 	sw_prod = bp->eq_prod;
5177 
5178 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5179 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5180 
5181 	for (; sw_cons != hw_cons;
5182 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5183 
5184 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5185 
5186 		rc = bnx2x_iov_eq_sp_event(bp, elem);
5187 		if (!rc) {
5188 			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5189 			   rc);
5190 			goto next_spqe;
5191 		}
5192 
5193 		/* elem CID originates from FW; actually LE */
5194 		cid = SW_CID((__force __le32)
5195 			     elem->message.data.cfc_del_event.cid);
5196 		opcode = elem->message.opcode;
5197 
5198 		/* handle eq element */
5199 		switch (opcode) {
5200 		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5201 			DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n");
5202 			bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event);
5203 			continue;
5204 
5205 		case EVENT_RING_OPCODE_STAT_QUERY:
5206 			DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
5207 			   "got statistics comp event %d\n",
5208 			   bp->stats_comp++);
5209 			/* nothing to do with stats comp */
5210 			goto next_spqe;
5211 
5212 		case EVENT_RING_OPCODE_CFC_DEL:
5213 			/* handle according to cid range */
5214 			/*
5215 			 * we may want to verify here that the bp state is
5216 			 * HALTING
5217 			 */
5218 			DP(BNX2X_MSG_SP,
5219 			   "got delete ramrod for MULTI[%d]\n", cid);
5220 
5221 			if (CNIC_LOADED(bp) &&
5222 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5223 				goto next_spqe;
5224 
5225 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5226 
5227 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5228 				break;
5229 
5230 			goto next_spqe;
5231 
5232 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5233 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5234 			if (f_obj->complete_cmd(bp, f_obj,
5235 						BNX2X_F_CMD_TX_STOP))
5236 				break;
5237 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5238 			goto next_spqe;
5239 
5240 		case EVENT_RING_OPCODE_START_TRAFFIC:
5241 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5242 			if (f_obj->complete_cmd(bp, f_obj,
5243 						BNX2X_F_CMD_TX_START))
5244 				break;
5245 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5246 			goto next_spqe;
5247 
5248 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5249 			echo = elem->message.data.function_update_event.echo;
5250 			if (echo == SWITCH_UPDATE) {
5251 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5252 				   "got FUNC_SWITCH_UPDATE ramrod\n");
5253 				if (f_obj->complete_cmd(
5254 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5255 					break;
5256 
5257 			} else {
5258 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5259 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5260 				f_obj->complete_cmd(bp, f_obj,
5261 						    BNX2X_F_CMD_AFEX_UPDATE);
5262 
5263 				/* We will perform the Queues update from
5264 				 * sp_rtnl task as all Queue SP operations
5265 				 * should run under rtnl_lock.
5266 				 */
5267 				smp_mb__before_clear_bit();
5268 				set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
5269 					&bp->sp_rtnl_state);
5270 				smp_mb__after_clear_bit();
5271 
5272 				schedule_delayed_work(&bp->sp_rtnl_task, 0);
5273 			}
5274 
5275 			goto next_spqe;
5276 
5277 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5278 			f_obj->complete_cmd(bp, f_obj,
5279 					    BNX2X_F_CMD_AFEX_VIFLISTS);
5280 			bnx2x_after_afex_vif_lists(bp, elem);
5281 			goto next_spqe;
5282 		case EVENT_RING_OPCODE_FUNCTION_START:
5283 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5284 			   "got FUNC_START ramrod\n");
5285 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5286 				break;
5287 
5288 			goto next_spqe;
5289 
5290 		case EVENT_RING_OPCODE_FUNCTION_STOP:
5291 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5292 			   "got FUNC_STOP ramrod\n");
5293 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5294 				break;
5295 
5296 			goto next_spqe;
5297 		}
5298 
5299 		switch (opcode | bp->state) {
5300 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5301 		      BNX2X_STATE_OPEN):
5302 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5303 		      BNX2X_STATE_OPENING_WAIT4_PORT):
5304 			cid = elem->message.data.eth_event.echo &
5305 				BNX2X_SWCID_MASK;
5306 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5307 			   cid);
5308 			rss_raw->clear_pending(rss_raw);
5309 			break;
5310 
5311 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5312 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5313 		case (EVENT_RING_OPCODE_SET_MAC |
5314 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5315 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5316 		      BNX2X_STATE_OPEN):
5317 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5318 		      BNX2X_STATE_DIAG):
5319 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5320 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5321 			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5322 			bnx2x_handle_classification_eqe(bp, elem);
5323 			break;
5324 
5325 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5326 		      BNX2X_STATE_OPEN):
5327 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5328 		      BNX2X_STATE_DIAG):
5329 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5330 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5331 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5332 			bnx2x_handle_mcast_eqe(bp);
5333 			break;
5334 
5335 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5336 		      BNX2X_STATE_OPEN):
5337 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5338 		      BNX2X_STATE_DIAG):
5339 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5340 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5341 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5342 			bnx2x_handle_rx_mode_eqe(bp);
5343 			break;
5344 		default:
5345 			/* unknown event log error and continue */
5346 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5347 				  elem->message.opcode, bp->state);
5348 		}
5349 next_spqe:
5350 		spqe_cnt++;
5351 	} /* for */
5352 
5353 	smp_mb__before_atomic_inc();
5354 	atomic_add(spqe_cnt, &bp->eq_spq_left);
5355 
5356 	bp->eq_cons = sw_cons;
5357 	bp->eq_prod = sw_prod;
5358 	/* Make sure that above mem writes were issued towards the memory */
5359 	smp_wmb();
5360 
5361 	/* update producer */
5362 	bnx2x_update_eq_prod(bp, bp->eq_prod);
5363 }
5364 
5365 static void bnx2x_sp_task(struct work_struct *work)
5366 {
5367 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5368 
5369 	DP(BNX2X_MSG_SP, "sp task invoked\n");
5370 
5371 	/* make sure the atomic interrupt_occurred has been written */
5372 	smp_rmb();
5373 	if (atomic_read(&bp->interrupt_occurred)) {
5374 
5375 		/* what work needs to be performed? */
5376 		u16 status = bnx2x_update_dsb_idx(bp);
5377 
5378 		DP(BNX2X_MSG_SP, "status %x\n", status);
5379 		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5380 		atomic_set(&bp->interrupt_occurred, 0);
5381 
5382 		/* HW attentions */
5383 		if (status & BNX2X_DEF_SB_ATT_IDX) {
5384 			bnx2x_attn_int(bp);
5385 			status &= ~BNX2X_DEF_SB_ATT_IDX;
5386 		}
5387 
5388 		/* SP events: STAT_QUERY and others */
5389 		if (status & BNX2X_DEF_SB_IDX) {
5390 			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5391 
5392 		if (FCOE_INIT(bp) &&
5393 			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5394 				/* Prevent local bottom-halves from running as
5395 				 * we are going to change the local NAPI list.
5396 				 */
5397 				local_bh_disable();
5398 				napi_schedule(&bnx2x_fcoe(bp, napi));
5399 				local_bh_enable();
5400 			}
5401 
5402 			/* Handle EQ completions */
5403 			bnx2x_eq_int(bp);
5404 			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5405 				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5406 
5407 			status &= ~BNX2X_DEF_SB_IDX;
5408 		}
5409 
5410 		/* if status is non zero then perhaps something went wrong */
5411 		if (unlikely(status))
5412 			DP(BNX2X_MSG_SP,
5413 			   "got an unknown interrupt! (status 0x%x)\n", status);
5414 
5415 		/* ack status block only if something was actually handled */
5416 		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5417 			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5418 	}
5419 
5420 	/* must be called after the EQ processing (since eq leads to sriov
5421 	 * ramrod completion flows).
5422 	 * This flow may have been scheduled by the arrival of a ramrod
5423 	 * completion, or by the sriov code rescheduling itself.
5424 	 */
5425 	bnx2x_iov_sp_task(bp);
5426 
5427 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5428 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5429 			       &bp->sp_state)) {
5430 		bnx2x_link_report(bp);
5431 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5432 	}
5433 }
5434 
5435 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5436 {
5437 	struct net_device *dev = dev_instance;
5438 	struct bnx2x *bp = netdev_priv(dev);
5439 
5440 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5441 		     IGU_INT_DISABLE, 0);
5442 
5443 #ifdef BNX2X_STOP_ON_ERROR
5444 	if (unlikely(bp->panic))
5445 		return IRQ_HANDLED;
5446 #endif
5447 
5448 	if (CNIC_LOADED(bp)) {
5449 		struct cnic_ops *c_ops;
5450 
5451 		rcu_read_lock();
5452 		c_ops = rcu_dereference(bp->cnic_ops);
5453 		if (c_ops)
5454 			c_ops->cnic_handler(bp->cnic_data, NULL);
5455 		rcu_read_unlock();
5456 	}
5457 
5458 	/* schedule sp task to perform default status block work, ack
5459 	 * attentions and enable interrupts.
5460 	 */
5461 	bnx2x_schedule_sp_task(bp);
5462 
5463 	return IRQ_HANDLED;
5464 }
5465 
5466 /* end of slow path */
5467 
5468 void bnx2x_drv_pulse(struct bnx2x *bp)
5469 {
5470 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5471 		 bp->fw_drv_pulse_wr_seq);
5472 }
5473 
5474 static void bnx2x_timer(unsigned long data)
5475 {
5476 	struct bnx2x *bp = (struct bnx2x *) data;
5477 
5478 	if (!netif_running(bp->dev))
5479 		return;
5480 
5481 	if (IS_PF(bp) &&
5482 	    !BP_NOMCP(bp)) {
5483 		int mb_idx = BP_FW_MB_IDX(bp);
5484 		u16 drv_pulse;
5485 		u16 mcp_pulse;
5486 
5487 		++bp->fw_drv_pulse_wr_seq;
5488 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5489 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5490 		bnx2x_drv_pulse(bp);
5491 
5492 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5493 			     MCP_PULSE_SEQ_MASK);
5494 		/* The delta between driver pulse and mcp response
5495 		 * should not get too big. If the MFW is more than 5 pulses
5496 		 * behind, we should worry about it enough to generate an error
5497 		 * log.
5498 		 */
5499 		if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5500 			BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5501 				  drv_pulse, mcp_pulse);
5502 	}
5503 
5504 	if (bp->state == BNX2X_STATE_OPEN)
5505 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5506 
5507 	/* sample pf vf bulletin board for new posts from pf */
5508 	if (IS_VF(bp))
5509 		bnx2x_timer_sriov(bp);
5510 
5511 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5512 }
5513 
5514 /* end of Statistics */
5515 
5516 /* nic init */
5517 
5518 /*
5519  * nic init service functions
5520  */
5521 
5522 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5523 {
5524 	u32 i;
5525 	if (!(len%4) && !(addr%4))
5526 		for (i = 0; i < len; i += 4)
5527 			REG_WR(bp, addr + i, fill);
5528 	else
5529 		for (i = 0; i < len; i++)
5530 			REG_WR8(bp, addr + i, fill);
5531 }
5532 
5533 /* helper: writes FP SP data to FW - data_size in dwords */
5534 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5535 				int fw_sb_id,
5536 				u32 *sb_data_p,
5537 				u32 data_size)
5538 {
5539 	int index;
5540 	for (index = 0; index < data_size; index++)
5541 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5542 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5543 			sizeof(u32)*index,
5544 			*(sb_data_p + index));
5545 }
5546 
5547 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5548 {
5549 	u32 *sb_data_p;
5550 	u32 data_size = 0;
5551 	struct hc_status_block_data_e2 sb_data_e2;
5552 	struct hc_status_block_data_e1x sb_data_e1x;
5553 
5554 	/* disable the function first */
5555 	if (!CHIP_IS_E1x(bp)) {
5556 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5557 		sb_data_e2.common.state = SB_DISABLED;
5558 		sb_data_e2.common.p_func.vf_valid = false;
5559 		sb_data_p = (u32 *)&sb_data_e2;
5560 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5561 	} else {
5562 		memset(&sb_data_e1x, 0,
5563 		       sizeof(struct hc_status_block_data_e1x));
5564 		sb_data_e1x.common.state = SB_DISABLED;
5565 		sb_data_e1x.common.p_func.vf_valid = false;
5566 		sb_data_p = (u32 *)&sb_data_e1x;
5567 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5568 	}
5569 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5570 
5571 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5572 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5573 			CSTORM_STATUS_BLOCK_SIZE);
5574 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5575 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5576 			CSTORM_SYNC_BLOCK_SIZE);
5577 }
5578 
5579 /* helper:  writes SP SB data to FW */
5580 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5581 		struct hc_sp_status_block_data *sp_sb_data)
5582 {
5583 	int func = BP_FUNC(bp);
5584 	int i;
5585 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5586 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5587 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5588 			i*sizeof(u32),
5589 			*((u32 *)sp_sb_data + i));
5590 }
5591 
5592 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5593 {
5594 	int func = BP_FUNC(bp);
5595 	struct hc_sp_status_block_data sp_sb_data;
5596 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5597 
5598 	sp_sb_data.state = SB_DISABLED;
5599 	sp_sb_data.p_func.vf_valid = false;
5600 
5601 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5602 
5603 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5604 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5605 			CSTORM_SP_STATUS_BLOCK_SIZE);
5606 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5607 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5608 			CSTORM_SP_SYNC_BLOCK_SIZE);
5609 }
5610 
5611 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5612 					   int igu_sb_id, int igu_seg_id)
5613 {
5614 	hc_sm->igu_sb_id = igu_sb_id;
5615 	hc_sm->igu_seg_id = igu_seg_id;
5616 	hc_sm->timer_value = 0xFF;
5617 	hc_sm->time_to_expire = 0xFFFFFFFF;
5618 }
5619 
5620 /* allocates state machine ids. */
5621 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5622 {
5623 	/* zero out state machine indices */
5624 	/* rx indices */
5625 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5626 
5627 	/* tx indices */
5628 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5629 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5630 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5631 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5632 
5633 	/* map indices */
5634 	/* rx indices */
5635 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5636 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5637 
5638 	/* tx indices */
5639 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5640 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5641 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5642 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5643 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5644 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5645 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5646 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5647 }
5648 
5649 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5650 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5651 {
5652 	int igu_seg_id;
5653 
5654 	struct hc_status_block_data_e2 sb_data_e2;
5655 	struct hc_status_block_data_e1x sb_data_e1x;
5656 	struct hc_status_block_sm  *hc_sm_p;
5657 	int data_size;
5658 	u32 *sb_data_p;
5659 
5660 	if (CHIP_INT_MODE_IS_BC(bp))
5661 		igu_seg_id = HC_SEG_ACCESS_NORM;
5662 	else
5663 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5664 
5665 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5666 
5667 	if (!CHIP_IS_E1x(bp)) {
5668 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5669 		sb_data_e2.common.state = SB_ENABLED;
5670 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5671 		sb_data_e2.common.p_func.vf_id = vfid;
5672 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5673 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5674 		sb_data_e2.common.same_igu_sb_1b = true;
5675 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5676 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5677 		hc_sm_p = sb_data_e2.common.state_machine;
5678 		sb_data_p = (u32 *)&sb_data_e2;
5679 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5680 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5681 	} else {
5682 		memset(&sb_data_e1x, 0,
5683 		       sizeof(struct hc_status_block_data_e1x));
5684 		sb_data_e1x.common.state = SB_ENABLED;
5685 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5686 		sb_data_e1x.common.p_func.vf_id = 0xff;
5687 		sb_data_e1x.common.p_func.vf_valid = false;
5688 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5689 		sb_data_e1x.common.same_igu_sb_1b = true;
5690 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5691 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5692 		hc_sm_p = sb_data_e1x.common.state_machine;
5693 		sb_data_p = (u32 *)&sb_data_e1x;
5694 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5695 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5696 	}
5697 
5698 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5699 				       igu_sb_id, igu_seg_id);
5700 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5701 				       igu_sb_id, igu_seg_id);
5702 
5703 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5704 
5705 	/* write indices to HW - PCI guarantees endianity of regpairs */
5706 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5707 }
5708 
5709 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5710 				     u16 tx_usec, u16 rx_usec)
5711 {
5712 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5713 				    false, rx_usec);
5714 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5715 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5716 				       tx_usec);
5717 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5718 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5719 				       tx_usec);
5720 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5721 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5722 				       tx_usec);
5723 }
5724 
5725 static void bnx2x_init_def_sb(struct bnx2x *bp)
5726 {
5727 	struct host_sp_status_block *def_sb = bp->def_status_blk;
5728 	dma_addr_t mapping = bp->def_status_blk_mapping;
5729 	int igu_sp_sb_index;
5730 	int igu_seg_id;
5731 	int port = BP_PORT(bp);
5732 	int func = BP_FUNC(bp);
5733 	int reg_offset, reg_offset_en5;
5734 	u64 section;
5735 	int index;
5736 	struct hc_sp_status_block_data sp_sb_data;
5737 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5738 
5739 	if (CHIP_INT_MODE_IS_BC(bp)) {
5740 		igu_sp_sb_index = DEF_SB_IGU_ID;
5741 		igu_seg_id = HC_SEG_ACCESS_DEF;
5742 	} else {
5743 		igu_sp_sb_index = bp->igu_dsb_id;
5744 		igu_seg_id = IGU_SEG_ACCESS_DEF;
5745 	}
5746 
5747 	/* ATTN */
5748 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5749 					    atten_status_block);
5750 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5751 
5752 	bp->attn_state = 0;
5753 
5754 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5755 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5756 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5757 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5758 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5759 		int sindex;
5760 		/* take care of sig[0]..sig[4] */
5761 		for (sindex = 0; sindex < 4; sindex++)
5762 			bp->attn_group[index].sig[sindex] =
5763 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5764 
5765 		if (!CHIP_IS_E1x(bp))
5766 			/*
5767 			 * enable5 is separate from the rest of the registers,
5768 			 * and therefore the address skip is 4
5769 			 * and not 16 between the different groups
5770 			 */
5771 			bp->attn_group[index].sig[4] = REG_RD(bp,
5772 					reg_offset_en5 + 0x4*index);
5773 		else
5774 			bp->attn_group[index].sig[4] = 0;
5775 	}
5776 
5777 	if (bp->common.int_block == INT_BLOCK_HC) {
5778 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5779 				     HC_REG_ATTN_MSG0_ADDR_L);
5780 
5781 		REG_WR(bp, reg_offset, U64_LO(section));
5782 		REG_WR(bp, reg_offset + 4, U64_HI(section));
5783 	} else if (!CHIP_IS_E1x(bp)) {
5784 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5785 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5786 	}
5787 
5788 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5789 					    sp_sb);
5790 
5791 	bnx2x_zero_sp_sb(bp);
5792 
5793 	/* PCI guarantees endianity of regpairs */
5794 	sp_sb_data.state		= SB_ENABLED;
5795 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
5796 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
5797 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
5798 	sp_sb_data.igu_seg_id		= igu_seg_id;
5799 	sp_sb_data.p_func.pf_id		= func;
5800 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
5801 	sp_sb_data.p_func.vf_id		= 0xff;
5802 
5803 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5804 
5805 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5806 }
5807 
5808 void bnx2x_update_coalesce(struct bnx2x *bp)
5809 {
5810 	int i;
5811 
5812 	for_each_eth_queue(bp, i)
5813 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5814 					 bp->tx_ticks, bp->rx_ticks);
5815 }
5816 
5817 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5818 {
5819 	spin_lock_init(&bp->spq_lock);
5820 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5821 
5822 	bp->spq_prod_idx = 0;
5823 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5824 	bp->spq_prod_bd = bp->spq;
5825 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5826 }
5827 
5828 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5829 {
5830 	int i;
5831 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5832 		union event_ring_elem *elem =
5833 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5834 
5835 		elem->next_page.addr.hi =
5836 			cpu_to_le32(U64_HI(bp->eq_mapping +
5837 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5838 		elem->next_page.addr.lo =
5839 			cpu_to_le32(U64_LO(bp->eq_mapping +
5840 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5841 	}
5842 	bp->eq_cons = 0;
5843 	bp->eq_prod = NUM_EQ_DESC;
5844 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5845 	/* we want a warning message before it gets wrought... */
5846 	atomic_set(&bp->eq_spq_left,
5847 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5848 }
5849 
5850 /* called with netif_addr_lock_bh() */
5851 int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5852 			unsigned long rx_mode_flags,
5853 			unsigned long rx_accept_flags,
5854 			unsigned long tx_accept_flags,
5855 			unsigned long ramrod_flags)
5856 {
5857 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
5858 	int rc;
5859 
5860 	memset(&ramrod_param, 0, sizeof(ramrod_param));
5861 
5862 	/* Prepare ramrod parameters */
5863 	ramrod_param.cid = 0;
5864 	ramrod_param.cl_id = cl_id;
5865 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5866 	ramrod_param.func_id = BP_FUNC(bp);
5867 
5868 	ramrod_param.pstate = &bp->sp_state;
5869 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5870 
5871 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5872 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5873 
5874 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5875 
5876 	ramrod_param.ramrod_flags = ramrod_flags;
5877 	ramrod_param.rx_mode_flags = rx_mode_flags;
5878 
5879 	ramrod_param.rx_accept_flags = rx_accept_flags;
5880 	ramrod_param.tx_accept_flags = tx_accept_flags;
5881 
5882 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5883 	if (rc < 0) {
5884 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5885 		return rc;
5886 	}
5887 
5888 	return 0;
5889 }
5890 
5891 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
5892 				   unsigned long *rx_accept_flags,
5893 				   unsigned long *tx_accept_flags)
5894 {
5895 	/* Clear the flags first */
5896 	*rx_accept_flags = 0;
5897 	*tx_accept_flags = 0;
5898 
5899 	switch (rx_mode) {
5900 	case BNX2X_RX_MODE_NONE:
5901 		/*
5902 		 * 'drop all' supersedes any accept flags that may have been
5903 		 * passed to the function.
5904 		 */
5905 		break;
5906 	case BNX2X_RX_MODE_NORMAL:
5907 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5908 		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
5909 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5910 
5911 		/* internal switching mode */
5912 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5913 		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
5914 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5915 
5916 		break;
5917 	case BNX2X_RX_MODE_ALLMULTI:
5918 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5919 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5920 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5921 
5922 		/* internal switching mode */
5923 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5924 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5925 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5926 
5927 		break;
5928 	case BNX2X_RX_MODE_PROMISC:
5929 		/* According to definition of SI mode, iface in promisc mode
5930 		 * should receive matched and unmatched (in resolution of port)
5931 		 * unicast packets.
5932 		 */
5933 		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
5934 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5935 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5936 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5937 
5938 		/* internal switching mode */
5939 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5940 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5941 
5942 		if (IS_MF_SI(bp))
5943 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
5944 		else
5945 			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5946 
5947 		break;
5948 	default:
5949 		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
5950 		return -EINVAL;
5951 	}
5952 
5953 	/* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
5954 	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5955 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
5956 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
5957 	}
5958 
5959 	return 0;
5960 }
5961 
5962 /* called with netif_addr_lock_bh() */
5963 int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5964 {
5965 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5966 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5967 	int rc;
5968 
5969 	if (!NO_FCOE(bp))
5970 		/* Configure rx_mode of FCoE Queue */
5971 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5972 
5973 	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
5974 				     &tx_accept_flags);
5975 	if (rc)
5976 		return rc;
5977 
5978 	__set_bit(RAMROD_RX, &ramrod_flags);
5979 	__set_bit(RAMROD_TX, &ramrod_flags);
5980 
5981 	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
5982 				   rx_accept_flags, tx_accept_flags,
5983 				   ramrod_flags);
5984 }
5985 
5986 static void bnx2x_init_internal_common(struct bnx2x *bp)
5987 {
5988 	int i;
5989 
5990 	if (IS_MF_SI(bp))
5991 		/*
5992 		 * In switch independent mode, the TSTORM needs to accept
5993 		 * packets that failed classification, since approximate match
5994 		 * mac addresses aren't written to NIG LLH
5995 		 */
5996 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5997 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5998 	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5999 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
6000 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
6001 
6002 	/* Zero this manually as its initialization is
6003 	   currently missing in the initTool */
6004 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6005 		REG_WR(bp, BAR_USTRORM_INTMEM +
6006 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6007 	if (!CHIP_IS_E1x(bp)) {
6008 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6009 			CHIP_INT_MODE_IS_BC(bp) ?
6010 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6011 	}
6012 }
6013 
6014 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6015 {
6016 	switch (load_code) {
6017 	case FW_MSG_CODE_DRV_LOAD_COMMON:
6018 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6019 		bnx2x_init_internal_common(bp);
6020 		/* no break */
6021 
6022 	case FW_MSG_CODE_DRV_LOAD_PORT:
6023 		/* nothing to do */
6024 		/* no break */
6025 
6026 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6027 		/* internal memory per function is
6028 		   initialized inside bnx2x_pf_init */
6029 		break;
6030 
6031 	default:
6032 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6033 		break;
6034 	}
6035 }
6036 
6037 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6038 {
6039 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6040 }
6041 
6042 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6043 {
6044 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6045 }
6046 
6047 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6048 {
6049 	if (CHIP_IS_E1x(fp->bp))
6050 		return BP_L_ID(fp->bp) + fp->index;
6051 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6052 		return bnx2x_fp_igu_sb_id(fp);
6053 }
6054 
6055 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6056 {
6057 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6058 	u8 cos;
6059 	unsigned long q_type = 0;
6060 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6061 	fp->rx_queue = fp_idx;
6062 	fp->cid = fp_idx;
6063 	fp->cl_id = bnx2x_fp_cl_id(fp);
6064 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6065 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6066 	/* qZone id equals to FW (per path) client id */
6067 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6068 
6069 	/* init shortcut */
6070 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6071 
6072 	/* Setup SB indices */
6073 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6074 
6075 	/* Configure Queue State object */
6076 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6077 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6078 
6079 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6080 
6081 	/* init tx data */
6082 	for_each_cos_in_tx_queue(fp, cos) {
6083 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6084 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6085 				  FP_COS_TO_TXQ(fp, cos, bp),
6086 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6087 		cids[cos] = fp->txdata_ptr[cos]->cid;
6088 	}
6089 
6090 	/* nothing more for vf to do here */
6091 	if (IS_VF(bp))
6092 		return;
6093 
6094 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6095 		      fp->fw_sb_id, fp->igu_sb_id);
6096 	bnx2x_update_fpsb_idx(fp);
6097 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6098 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6099 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6100 
6101 	/**
6102 	 * Configure classification DBs: Always enable Tx switching
6103 	 */
6104 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6105 
6106 	DP(NETIF_MSG_IFUP,
6107 	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6108 	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6109 	   fp->igu_sb_id);
6110 }
6111 
6112 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6113 {
6114 	int i;
6115 
6116 	for (i = 1; i <= NUM_TX_RINGS; i++) {
6117 		struct eth_tx_next_bd *tx_next_bd =
6118 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6119 
6120 		tx_next_bd->addr_hi =
6121 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6122 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6123 		tx_next_bd->addr_lo =
6124 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6125 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6126 	}
6127 
6128 	*txdata->tx_cons_sb = cpu_to_le16(0);
6129 
6130 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6131 	txdata->tx_db.data.zero_fill1 = 0;
6132 	txdata->tx_db.data.prod = 0;
6133 
6134 	txdata->tx_pkt_prod = 0;
6135 	txdata->tx_pkt_cons = 0;
6136 	txdata->tx_bd_prod = 0;
6137 	txdata->tx_bd_cons = 0;
6138 	txdata->tx_pkt = 0;
6139 }
6140 
6141 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6142 {
6143 	int i;
6144 
6145 	for_each_tx_queue_cnic(bp, i)
6146 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6147 }
6148 
6149 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6150 {
6151 	int i;
6152 	u8 cos;
6153 
6154 	for_each_eth_queue(bp, i)
6155 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6156 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6157 }
6158 
6159 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6160 {
6161 	if (!NO_FCOE(bp))
6162 		bnx2x_init_fcoe_fp(bp);
6163 
6164 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6165 		      BNX2X_VF_ID_INVALID, false,
6166 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6167 
6168 	/* ensure status block indices were read */
6169 	rmb();
6170 	bnx2x_init_rx_rings_cnic(bp);
6171 	bnx2x_init_tx_rings_cnic(bp);
6172 
6173 	/* flush all */
6174 	mb();
6175 	mmiowb();
6176 }
6177 
6178 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6179 {
6180 	int i;
6181 
6182 	/* Setup NIC internals and enable interrupts */
6183 	for_each_eth_queue(bp, i)
6184 		bnx2x_init_eth_fp(bp, i);
6185 
6186 	/* ensure status block indices were read */
6187 	rmb();
6188 	bnx2x_init_rx_rings(bp);
6189 	bnx2x_init_tx_rings(bp);
6190 
6191 	if (IS_PF(bp)) {
6192 		/* Initialize MOD_ABS interrupts */
6193 		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6194 				       bp->common.shmem_base,
6195 				       bp->common.shmem2_base, BP_PORT(bp));
6196 
6197 		/* initialize the default status block and sp ring */
6198 		bnx2x_init_def_sb(bp);
6199 		bnx2x_update_dsb_idx(bp);
6200 		bnx2x_init_sp_ring(bp);
6201 	} else {
6202 		bnx2x_memset_stats(bp);
6203 	}
6204 }
6205 
6206 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6207 {
6208 	bnx2x_init_eq_ring(bp);
6209 	bnx2x_init_internal(bp, load_code);
6210 	bnx2x_pf_init(bp);
6211 	bnx2x_stats_init(bp);
6212 
6213 	/* flush all before enabling interrupts */
6214 	mb();
6215 	mmiowb();
6216 
6217 	bnx2x_int_enable(bp);
6218 
6219 	/* Check for SPIO5 */
6220 	bnx2x_attn_int_deasserted0(bp,
6221 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6222 				   AEU_INPUTS_ATTN_BITS_SPIO5);
6223 }
6224 
6225 /* gzip service functions */
6226 static int bnx2x_gunzip_init(struct bnx2x *bp)
6227 {
6228 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6229 					    &bp->gunzip_mapping, GFP_KERNEL);
6230 	if (bp->gunzip_buf  == NULL)
6231 		goto gunzip_nomem1;
6232 
6233 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6234 	if (bp->strm  == NULL)
6235 		goto gunzip_nomem2;
6236 
6237 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6238 	if (bp->strm->workspace == NULL)
6239 		goto gunzip_nomem3;
6240 
6241 	return 0;
6242 
6243 gunzip_nomem3:
6244 	kfree(bp->strm);
6245 	bp->strm = NULL;
6246 
6247 gunzip_nomem2:
6248 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6249 			  bp->gunzip_mapping);
6250 	bp->gunzip_buf = NULL;
6251 
6252 gunzip_nomem1:
6253 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6254 	return -ENOMEM;
6255 }
6256 
6257 static void bnx2x_gunzip_end(struct bnx2x *bp)
6258 {
6259 	if (bp->strm) {
6260 		vfree(bp->strm->workspace);
6261 		kfree(bp->strm);
6262 		bp->strm = NULL;
6263 	}
6264 
6265 	if (bp->gunzip_buf) {
6266 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6267 				  bp->gunzip_mapping);
6268 		bp->gunzip_buf = NULL;
6269 	}
6270 }
6271 
6272 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6273 {
6274 	int n, rc;
6275 
6276 	/* check gzip header */
6277 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6278 		BNX2X_ERR("Bad gzip header\n");
6279 		return -EINVAL;
6280 	}
6281 
6282 	n = 10;
6283 
6284 #define FNAME				0x8
6285 
6286 	if (zbuf[3] & FNAME)
6287 		while ((zbuf[n++] != 0) && (n < len));
6288 
6289 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6290 	bp->strm->avail_in = len - n;
6291 	bp->strm->next_out = bp->gunzip_buf;
6292 	bp->strm->avail_out = FW_BUF_SIZE;
6293 
6294 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6295 	if (rc != Z_OK)
6296 		return rc;
6297 
6298 	rc = zlib_inflate(bp->strm, Z_FINISH);
6299 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6300 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6301 			   bp->strm->msg);
6302 
6303 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6304 	if (bp->gunzip_outlen & 0x3)
6305 		netdev_err(bp->dev,
6306 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6307 				bp->gunzip_outlen);
6308 	bp->gunzip_outlen >>= 2;
6309 
6310 	zlib_inflateEnd(bp->strm);
6311 
6312 	if (rc == Z_STREAM_END)
6313 		return 0;
6314 
6315 	return rc;
6316 }
6317 
6318 /* nic load/unload */
6319 
6320 /*
6321  * General service functions
6322  */
6323 
6324 /* send a NIG loopback debug packet */
6325 static void bnx2x_lb_pckt(struct bnx2x *bp)
6326 {
6327 	u32 wb_write[3];
6328 
6329 	/* Ethernet source and destination addresses */
6330 	wb_write[0] = 0x55555555;
6331 	wb_write[1] = 0x55555555;
6332 	wb_write[2] = 0x20;		/* SOP */
6333 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6334 
6335 	/* NON-IP protocol */
6336 	wb_write[0] = 0x09000000;
6337 	wb_write[1] = 0x55555555;
6338 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6339 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6340 }
6341 
6342 /* some of the internal memories
6343  * are not directly readable from the driver
6344  * to test them we send debug packets
6345  */
6346 static int bnx2x_int_mem_test(struct bnx2x *bp)
6347 {
6348 	int factor;
6349 	int count, i;
6350 	u32 val = 0;
6351 
6352 	if (CHIP_REV_IS_FPGA(bp))
6353 		factor = 120;
6354 	else if (CHIP_REV_IS_EMUL(bp))
6355 		factor = 200;
6356 	else
6357 		factor = 1;
6358 
6359 	/* Disable inputs of parser neighbor blocks */
6360 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6361 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6362 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6363 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6364 
6365 	/*  Write 0 to parser credits for CFC search request */
6366 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6367 
6368 	/* send Ethernet packet */
6369 	bnx2x_lb_pckt(bp);
6370 
6371 	/* TODO do i reset NIG statistic? */
6372 	/* Wait until NIG register shows 1 packet of size 0x10 */
6373 	count = 1000 * factor;
6374 	while (count) {
6375 
6376 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6377 		val = *bnx2x_sp(bp, wb_data[0]);
6378 		if (val == 0x10)
6379 			break;
6380 
6381 		usleep_range(10000, 20000);
6382 		count--;
6383 	}
6384 	if (val != 0x10) {
6385 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6386 		return -1;
6387 	}
6388 
6389 	/* Wait until PRS register shows 1 packet */
6390 	count = 1000 * factor;
6391 	while (count) {
6392 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6393 		if (val == 1)
6394 			break;
6395 
6396 		usleep_range(10000, 20000);
6397 		count--;
6398 	}
6399 	if (val != 0x1) {
6400 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6401 		return -2;
6402 	}
6403 
6404 	/* Reset and init BRB, PRS */
6405 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6406 	msleep(50);
6407 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6408 	msleep(50);
6409 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6410 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6411 
6412 	DP(NETIF_MSG_HW, "part2\n");
6413 
6414 	/* Disable inputs of parser neighbor blocks */
6415 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6416 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6417 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6418 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6419 
6420 	/* Write 0 to parser credits for CFC search request */
6421 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6422 
6423 	/* send 10 Ethernet packets */
6424 	for (i = 0; i < 10; i++)
6425 		bnx2x_lb_pckt(bp);
6426 
6427 	/* Wait until NIG register shows 10 + 1
6428 	   packets of size 11*0x10 = 0xb0 */
6429 	count = 1000 * factor;
6430 	while (count) {
6431 
6432 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6433 		val = *bnx2x_sp(bp, wb_data[0]);
6434 		if (val == 0xb0)
6435 			break;
6436 
6437 		usleep_range(10000, 20000);
6438 		count--;
6439 	}
6440 	if (val != 0xb0) {
6441 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6442 		return -3;
6443 	}
6444 
6445 	/* Wait until PRS register shows 2 packets */
6446 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6447 	if (val != 2)
6448 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6449 
6450 	/* Write 1 to parser credits for CFC search request */
6451 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6452 
6453 	/* Wait until PRS register shows 3 packets */
6454 	msleep(10 * factor);
6455 	/* Wait until NIG register shows 1 packet of size 0x10 */
6456 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6457 	if (val != 3)
6458 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6459 
6460 	/* clear NIG EOP FIFO */
6461 	for (i = 0; i < 11; i++)
6462 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6463 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6464 	if (val != 1) {
6465 		BNX2X_ERR("clear of NIG failed\n");
6466 		return -4;
6467 	}
6468 
6469 	/* Reset and init BRB, PRS, NIG */
6470 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6471 	msleep(50);
6472 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6473 	msleep(50);
6474 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6475 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6476 	if (!CNIC_SUPPORT(bp))
6477 		/* set NIC mode */
6478 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6479 
6480 	/* Enable inputs of parser neighbor blocks */
6481 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6482 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6483 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6484 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6485 
6486 	DP(NETIF_MSG_HW, "done\n");
6487 
6488 	return 0; /* OK */
6489 }
6490 
6491 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6492 {
6493 	u32 val;
6494 
6495 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6496 	if (!CHIP_IS_E1x(bp))
6497 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6498 	else
6499 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6500 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6501 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6502 	/*
6503 	 * mask read length error interrupts in brb for parser
6504 	 * (parsing unit and 'checksum and crc' unit)
6505 	 * these errors are legal (PU reads fixed length and CAC can cause
6506 	 * read length error on truncated packets)
6507 	 */
6508 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6509 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6510 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6511 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6512 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6513 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6514 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6515 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6516 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6517 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6518 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6519 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6520 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6521 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6522 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6523 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6524 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6525 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6526 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6527 
6528 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6529 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6530 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6531 	if (!CHIP_IS_E1x(bp))
6532 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6533 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6534 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6535 
6536 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6537 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6538 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6539 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6540 
6541 	if (!CHIP_IS_E1x(bp))
6542 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6543 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6544 
6545 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6546 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6547 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6548 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6549 }
6550 
6551 static void bnx2x_reset_common(struct bnx2x *bp)
6552 {
6553 	u32 val = 0x1400;
6554 
6555 	/* reset_common */
6556 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6557 	       0xd3ffff7f);
6558 
6559 	if (CHIP_IS_E3(bp)) {
6560 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6561 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6562 	}
6563 
6564 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6565 }
6566 
6567 static void bnx2x_setup_dmae(struct bnx2x *bp)
6568 {
6569 	bp->dmae_ready = 0;
6570 	spin_lock_init(&bp->dmae_lock);
6571 }
6572 
6573 static void bnx2x_init_pxp(struct bnx2x *bp)
6574 {
6575 	u16 devctl;
6576 	int r_order, w_order;
6577 
6578 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6579 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6580 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6581 	if (bp->mrrs == -1)
6582 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6583 	else {
6584 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6585 		r_order = bp->mrrs;
6586 	}
6587 
6588 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6589 }
6590 
6591 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6592 {
6593 	int is_required;
6594 	u32 val;
6595 	int port;
6596 
6597 	if (BP_NOMCP(bp))
6598 		return;
6599 
6600 	is_required = 0;
6601 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6602 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6603 
6604 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6605 		is_required = 1;
6606 
6607 	/*
6608 	 * The fan failure mechanism is usually related to the PHY type since
6609 	 * the power consumption of the board is affected by the PHY. Currently,
6610 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6611 	 */
6612 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6613 		for (port = PORT_0; port < PORT_MAX; port++) {
6614 			is_required |=
6615 				bnx2x_fan_failure_det_req(
6616 					bp,
6617 					bp->common.shmem_base,
6618 					bp->common.shmem2_base,
6619 					port);
6620 		}
6621 
6622 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6623 
6624 	if (is_required == 0)
6625 		return;
6626 
6627 	/* Fan failure is indicated by SPIO 5 */
6628 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6629 
6630 	/* set to active low mode */
6631 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6632 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6633 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6634 
6635 	/* enable interrupt to signal the IGU */
6636 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6637 	val |= MISC_SPIO_SPIO5;
6638 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6639 }
6640 
6641 void bnx2x_pf_disable(struct bnx2x *bp)
6642 {
6643 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6644 	val &= ~IGU_PF_CONF_FUNC_EN;
6645 
6646 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6647 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6648 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6649 }
6650 
6651 static void bnx2x__common_init_phy(struct bnx2x *bp)
6652 {
6653 	u32 shmem_base[2], shmem2_base[2];
6654 	/* Avoid common init in case MFW supports LFA */
6655 	if (SHMEM2_RD(bp, size) >
6656 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6657 		return;
6658 	shmem_base[0] =  bp->common.shmem_base;
6659 	shmem2_base[0] = bp->common.shmem2_base;
6660 	if (!CHIP_IS_E1x(bp)) {
6661 		shmem_base[1] =
6662 			SHMEM2_RD(bp, other_shmem_base_addr);
6663 		shmem2_base[1] =
6664 			SHMEM2_RD(bp, other_shmem2_base_addr);
6665 	}
6666 	bnx2x_acquire_phy_lock(bp);
6667 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6668 			      bp->common.chip_id);
6669 	bnx2x_release_phy_lock(bp);
6670 }
6671 
6672 /**
6673  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6674  *
6675  * @bp:		driver handle
6676  */
6677 static int bnx2x_init_hw_common(struct bnx2x *bp)
6678 {
6679 	u32 val;
6680 
6681 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6682 
6683 	/*
6684 	 * take the RESET lock to protect undi_unload flow from accessing
6685 	 * registers while we're resetting the chip
6686 	 */
6687 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6688 
6689 	bnx2x_reset_common(bp);
6690 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6691 
6692 	val = 0xfffc;
6693 	if (CHIP_IS_E3(bp)) {
6694 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6695 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6696 	}
6697 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6698 
6699 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6700 
6701 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6702 
6703 	if (!CHIP_IS_E1x(bp)) {
6704 		u8 abs_func_id;
6705 
6706 		/**
6707 		 * 4-port mode or 2-port mode we need to turn of master-enable
6708 		 * for everyone, after that, turn it back on for self.
6709 		 * so, we disregard multi-function or not, and always disable
6710 		 * for all functions on the given path, this means 0,2,4,6 for
6711 		 * path 0 and 1,3,5,7 for path 1
6712 		 */
6713 		for (abs_func_id = BP_PATH(bp);
6714 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6715 			if (abs_func_id == BP_ABS_FUNC(bp)) {
6716 				REG_WR(bp,
6717 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6718 				    1);
6719 				continue;
6720 			}
6721 
6722 			bnx2x_pretend_func(bp, abs_func_id);
6723 			/* clear pf enable */
6724 			bnx2x_pf_disable(bp);
6725 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6726 		}
6727 	}
6728 
6729 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6730 	if (CHIP_IS_E1(bp)) {
6731 		/* enable HW interrupt from PXP on USDM overflow
6732 		   bit 16 on INT_MASK_0 */
6733 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6734 	}
6735 
6736 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6737 	bnx2x_init_pxp(bp);
6738 
6739 #ifdef __BIG_ENDIAN
6740 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6741 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6742 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6743 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6744 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6745 	/* make sure this value is 0 */
6746 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6747 
6748 /*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6749 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6750 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6751 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6752 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6753 #endif
6754 
6755 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
6756 
6757 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6758 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6759 
6760 	/* let the HW do it's magic ... */
6761 	msleep(100);
6762 	/* finish PXP init */
6763 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6764 	if (val != 1) {
6765 		BNX2X_ERR("PXP2 CFG failed\n");
6766 		return -EBUSY;
6767 	}
6768 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6769 	if (val != 1) {
6770 		BNX2X_ERR("PXP2 RD_INIT failed\n");
6771 		return -EBUSY;
6772 	}
6773 
6774 	/* Timers bug workaround E2 only. We need to set the entire ILT to
6775 	 * have entries with value "0" and valid bit on.
6776 	 * This needs to be done by the first PF that is loaded in a path
6777 	 * (i.e. common phase)
6778 	 */
6779 	if (!CHIP_IS_E1x(bp)) {
6780 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6781  * (i.e. vnic3) to start even if it is marked as "scan-off".
6782  * This occurs when a different function (func2,3) is being marked
6783  * as "scan-off". Real-life scenario for example: if a driver is being
6784  * load-unloaded while func6,7 are down. This will cause the timer to access
6785  * the ilt, translate to a logical address and send a request to read/write.
6786  * Since the ilt for the function that is down is not valid, this will cause
6787  * a translation error which is unrecoverable.
6788  * The Workaround is intended to make sure that when this happens nothing fatal
6789  * will occur. The workaround:
6790  *	1.  First PF driver which loads on a path will:
6791  *		a.  After taking the chip out of reset, by using pretend,
6792  *		    it will write "0" to the following registers of
6793  *		    the other vnics.
6794  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6795  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6796  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6797  *		    And for itself it will write '1' to
6798  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6799  *		    dmae-operations (writing to pram for example.)
6800  *		    note: can be done for only function 6,7 but cleaner this
6801  *			  way.
6802  *		b.  Write zero+valid to the entire ILT.
6803  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6804  *		    VNIC3 (of that port). The range allocated will be the
6805  *		    entire ILT. This is needed to prevent  ILT range error.
6806  *	2.  Any PF driver load flow:
6807  *		a.  ILT update with the physical addresses of the allocated
6808  *		    logical pages.
6809  *		b.  Wait 20msec. - note that this timeout is needed to make
6810  *		    sure there are no requests in one of the PXP internal
6811  *		    queues with "old" ILT addresses.
6812  *		c.  PF enable in the PGLC.
6813  *		d.  Clear the was_error of the PF in the PGLC. (could have
6814  *		    occurred while driver was down)
6815  *		e.  PF enable in the CFC (WEAK + STRONG)
6816  *		f.  Timers scan enable
6817  *	3.  PF driver unload flow:
6818  *		a.  Clear the Timers scan_en.
6819  *		b.  Polling for scan_on=0 for that PF.
6820  *		c.  Clear the PF enable bit in the PXP.
6821  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
6822  *		e.  Write zero+valid to all ILT entries (The valid bit must
6823  *		    stay set)
6824  *		f.  If this is VNIC 3 of a port then also init
6825  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
6826  *		    to the last entry in the ILT.
6827  *
6828  *	Notes:
6829  *	Currently the PF error in the PGLC is non recoverable.
6830  *	In the future the there will be a recovery routine for this error.
6831  *	Currently attention is masked.
6832  *	Having an MCP lock on the load/unload process does not guarantee that
6833  *	there is no Timer disable during Func6/7 enable. This is because the
6834  *	Timers scan is currently being cleared by the MCP on FLR.
6835  *	Step 2.d can be done only for PF6/7 and the driver can also check if
6836  *	there is error before clearing it. But the flow above is simpler and
6837  *	more general.
6838  *	All ILT entries are written by zero+valid and not just PF6/7
6839  *	ILT entries since in the future the ILT entries allocation for
6840  *	PF-s might be dynamic.
6841  */
6842 		struct ilt_client_info ilt_cli;
6843 		struct bnx2x_ilt ilt;
6844 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6845 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6846 
6847 		/* initialize dummy TM client */
6848 		ilt_cli.start = 0;
6849 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6850 		ilt_cli.client_num = ILT_CLIENT_TM;
6851 
6852 		/* Step 1: set zeroes to all ilt page entries with valid bit on
6853 		 * Step 2: set the timers first/last ilt entry to point
6854 		 * to the entire range to prevent ILT range error for 3rd/4th
6855 		 * vnic	(this code assumes existence of the vnic)
6856 		 *
6857 		 * both steps performed by call to bnx2x_ilt_client_init_op()
6858 		 * with dummy TM client
6859 		 *
6860 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6861 		 * and his brother are split registers
6862 		 */
6863 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6864 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6865 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6866 
6867 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6868 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6869 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6870 	}
6871 
6872 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6873 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6874 
6875 	if (!CHIP_IS_E1x(bp)) {
6876 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6877 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6878 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6879 
6880 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6881 
6882 		/* let the HW do it's magic ... */
6883 		do {
6884 			msleep(200);
6885 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6886 		} while (factor-- && (val != 1));
6887 
6888 		if (val != 1) {
6889 			BNX2X_ERR("ATC_INIT failed\n");
6890 			return -EBUSY;
6891 		}
6892 	}
6893 
6894 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6895 
6896 	bnx2x_iov_init_dmae(bp);
6897 
6898 	/* clean the DMAE memory */
6899 	bp->dmae_ready = 1;
6900 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6901 
6902 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6903 
6904 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6905 
6906 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6907 
6908 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6909 
6910 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6911 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6912 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6913 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6914 
6915 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6916 
6917 	/* QM queues pointers table */
6918 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6919 
6920 	/* soft reset pulse */
6921 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
6922 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
6923 
6924 	if (CNIC_SUPPORT(bp))
6925 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6926 
6927 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6928 
6929 	if (!CHIP_REV_IS_SLOW(bp))
6930 		/* enable hw interrupt from doorbell Q */
6931 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6932 
6933 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6934 
6935 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6936 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6937 
6938 	if (!CHIP_IS_E1(bp))
6939 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6940 
6941 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
6942 		if (IS_MF_AFEX(bp)) {
6943 			/* configure that VNTag and VLAN headers must be
6944 			 * received in afex mode
6945 			 */
6946 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
6947 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
6948 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
6949 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
6950 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
6951 		} else {
6952 			/* Bit-map indicating which L2 hdrs may appear
6953 			 * after the basic Ethernet header
6954 			 */
6955 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6956 			       bp->path_has_ovlan ? 7 : 6);
6957 		}
6958 	}
6959 
6960 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6961 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6962 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6963 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6964 
6965 	if (!CHIP_IS_E1x(bp)) {
6966 		/* reset VFC memories */
6967 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6968 			   VFC_MEMORIES_RST_REG_CAM_RST |
6969 			   VFC_MEMORIES_RST_REG_RAM_RST);
6970 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6971 			   VFC_MEMORIES_RST_REG_CAM_RST |
6972 			   VFC_MEMORIES_RST_REG_RAM_RST);
6973 
6974 		msleep(20);
6975 	}
6976 
6977 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6978 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6979 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6980 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6981 
6982 	/* sync semi rtc */
6983 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6984 	       0x80000000);
6985 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6986 	       0x80000000);
6987 
6988 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6989 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6990 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6991 
6992 	if (!CHIP_IS_E1x(bp)) {
6993 		if (IS_MF_AFEX(bp)) {
6994 			/* configure that VNTag and VLAN headers must be
6995 			 * sent in afex mode
6996 			 */
6997 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
6998 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
6999 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7000 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7001 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7002 		} else {
7003 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7004 			       bp->path_has_ovlan ? 7 : 6);
7005 		}
7006 	}
7007 
7008 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
7009 
7010 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7011 
7012 	if (CNIC_SUPPORT(bp)) {
7013 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7014 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7015 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7016 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7017 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7018 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7019 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7020 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7021 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7022 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7023 	}
7024 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
7025 
7026 	if (sizeof(union cdu_context) != 1024)
7027 		/* we currently assume that a context is 1024 bytes */
7028 		dev_alert(&bp->pdev->dev,
7029 			  "please adjust the size of cdu_context(%ld)\n",
7030 			  (long)sizeof(union cdu_context));
7031 
7032 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7033 	val = (4 << 24) + (0 << 12) + 1024;
7034 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7035 
7036 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7037 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7038 	/* enable context validation interrupt from CFC */
7039 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7040 
7041 	/* set the thresholds to prevent CFC/CDU race */
7042 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7043 
7044 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7045 
7046 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7047 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7048 
7049 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7050 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7051 
7052 	/* Reset PCIE errors for debug */
7053 	REG_WR(bp, 0x2814, 0xffffffff);
7054 	REG_WR(bp, 0x3820, 0xffffffff);
7055 
7056 	if (!CHIP_IS_E1x(bp)) {
7057 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7058 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7059 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7060 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7061 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7062 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7063 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7064 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7065 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7066 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7067 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7068 	}
7069 
7070 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7071 	if (!CHIP_IS_E1(bp)) {
7072 		/* in E3 this done in per-port section */
7073 		if (!CHIP_IS_E3(bp))
7074 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7075 	}
7076 	if (CHIP_IS_E1H(bp))
7077 		/* not applicable for E2 (and above ...) */
7078 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7079 
7080 	if (CHIP_REV_IS_SLOW(bp))
7081 		msleep(200);
7082 
7083 	/* finish CFC init */
7084 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7085 	if (val != 1) {
7086 		BNX2X_ERR("CFC LL_INIT failed\n");
7087 		return -EBUSY;
7088 	}
7089 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7090 	if (val != 1) {
7091 		BNX2X_ERR("CFC AC_INIT failed\n");
7092 		return -EBUSY;
7093 	}
7094 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7095 	if (val != 1) {
7096 		BNX2X_ERR("CFC CAM_INIT failed\n");
7097 		return -EBUSY;
7098 	}
7099 	REG_WR(bp, CFC_REG_DEBUG0, 0);
7100 
7101 	if (CHIP_IS_E1(bp)) {
7102 		/* read NIG statistic
7103 		   to see if this is our first up since powerup */
7104 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7105 		val = *bnx2x_sp(bp, wb_data[0]);
7106 
7107 		/* do internal memory self test */
7108 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7109 			BNX2X_ERR("internal mem self test failed\n");
7110 			return -EBUSY;
7111 		}
7112 	}
7113 
7114 	bnx2x_setup_fan_failure_detection(bp);
7115 
7116 	/* clear PXP2 attentions */
7117 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7118 
7119 	bnx2x_enable_blocks_attention(bp);
7120 	bnx2x_enable_blocks_parity(bp);
7121 
7122 	if (!BP_NOMCP(bp)) {
7123 		if (CHIP_IS_E1x(bp))
7124 			bnx2x__common_init_phy(bp);
7125 	} else
7126 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7127 
7128 	return 0;
7129 }
7130 
7131 /**
7132  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7133  *
7134  * @bp:		driver handle
7135  */
7136 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7137 {
7138 	int rc = bnx2x_init_hw_common(bp);
7139 
7140 	if (rc)
7141 		return rc;
7142 
7143 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7144 	if (!BP_NOMCP(bp))
7145 		bnx2x__common_init_phy(bp);
7146 
7147 	return 0;
7148 }
7149 
7150 static int bnx2x_init_hw_port(struct bnx2x *bp)
7151 {
7152 	int port = BP_PORT(bp);
7153 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7154 	u32 low, high;
7155 	u32 val, reg;
7156 
7157 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7158 
7159 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7160 
7161 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7162 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7163 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7164 
7165 	/* Timers bug workaround: disables the pf_master bit in pglue at
7166 	 * common phase, we need to enable it here before any dmae access are
7167 	 * attempted. Therefore we manually added the enable-master to the
7168 	 * port phase (it also happens in the function phase)
7169 	 */
7170 	if (!CHIP_IS_E1x(bp))
7171 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7172 
7173 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7174 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7175 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7176 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7177 
7178 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7179 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7180 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7181 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7182 
7183 	/* QM cid (connection) count */
7184 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7185 
7186 	if (CNIC_SUPPORT(bp)) {
7187 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7188 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7189 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7190 	}
7191 
7192 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7193 
7194 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7195 
7196 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7197 
7198 		if (IS_MF(bp))
7199 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7200 		else if (bp->dev->mtu > 4096) {
7201 			if (bp->flags & ONE_PORT_FLAG)
7202 				low = 160;
7203 			else {
7204 				val = bp->dev->mtu;
7205 				/* (24*1024 + val*4)/256 */
7206 				low = 96 + (val/64) +
7207 						((val % 64) ? 1 : 0);
7208 			}
7209 		} else
7210 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7211 		high = low + 56;	/* 14*1024/256 */
7212 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7213 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7214 	}
7215 
7216 	if (CHIP_MODE_IS_4_PORT(bp))
7217 		REG_WR(bp, (BP_PORT(bp) ?
7218 			    BRB1_REG_MAC_GUARANTIED_1 :
7219 			    BRB1_REG_MAC_GUARANTIED_0), 40);
7220 
7221 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7222 	if (CHIP_IS_E3B0(bp)) {
7223 		if (IS_MF_AFEX(bp)) {
7224 			/* configure headers for AFEX mode */
7225 			REG_WR(bp, BP_PORT(bp) ?
7226 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7227 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7228 			REG_WR(bp, BP_PORT(bp) ?
7229 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7230 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7231 			REG_WR(bp, BP_PORT(bp) ?
7232 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7233 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7234 		} else {
7235 			/* Ovlan exists only if we are in multi-function +
7236 			 * switch-dependent mode, in switch-independent there
7237 			 * is no ovlan headers
7238 			 */
7239 			REG_WR(bp, BP_PORT(bp) ?
7240 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7241 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7242 			       (bp->path_has_ovlan ? 7 : 6));
7243 		}
7244 	}
7245 
7246 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7247 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7248 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7249 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7250 
7251 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7252 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7253 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7254 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7255 
7256 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7257 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7258 
7259 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7260 
7261 	if (CHIP_IS_E1x(bp)) {
7262 		/* configure PBF to work without PAUSE mtu 9000 */
7263 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7264 
7265 		/* update threshold */
7266 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7267 		/* update init credit */
7268 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7269 
7270 		/* probe changes */
7271 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7272 		udelay(50);
7273 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7274 	}
7275 
7276 	if (CNIC_SUPPORT(bp))
7277 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7278 
7279 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7280 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7281 
7282 	if (CHIP_IS_E1(bp)) {
7283 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7284 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7285 	}
7286 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7287 
7288 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7289 
7290 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7291 	/* init aeu_mask_attn_func_0/1:
7292 	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7293 	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7294 	 *             bits 4-7 are used for "per vn group attention" */
7295 	val = IS_MF(bp) ? 0xF7 : 0x7;
7296 	/* Enable DCBX attention for all but E1 */
7297 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7298 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7299 
7300 	/* SCPAD_PARITY should NOT trigger close the gates */
7301 	reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7302 	REG_WR(bp, reg,
7303 	       REG_RD(bp, reg) &
7304 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7305 
7306 	reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7307 	REG_WR(bp, reg,
7308 	       REG_RD(bp, reg) &
7309 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7310 
7311 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7312 
7313 	if (!CHIP_IS_E1x(bp)) {
7314 		/* Bit-map indicating which L2 hdrs may appear after the
7315 		 * basic Ethernet header
7316 		 */
7317 		if (IS_MF_AFEX(bp))
7318 			REG_WR(bp, BP_PORT(bp) ?
7319 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7320 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7321 		else
7322 			REG_WR(bp, BP_PORT(bp) ?
7323 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7324 			       NIG_REG_P0_HDRS_AFTER_BASIC,
7325 			       IS_MF_SD(bp) ? 7 : 6);
7326 
7327 		if (CHIP_IS_E3(bp))
7328 			REG_WR(bp, BP_PORT(bp) ?
7329 				   NIG_REG_LLH1_MF_MODE :
7330 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7331 	}
7332 	if (!CHIP_IS_E3(bp))
7333 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7334 
7335 	if (!CHIP_IS_E1(bp)) {
7336 		/* 0x2 disable mf_ov, 0x1 enable */
7337 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7338 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7339 
7340 		if (!CHIP_IS_E1x(bp)) {
7341 			val = 0;
7342 			switch (bp->mf_mode) {
7343 			case MULTI_FUNCTION_SD:
7344 				val = 1;
7345 				break;
7346 			case MULTI_FUNCTION_SI:
7347 			case MULTI_FUNCTION_AFEX:
7348 				val = 2;
7349 				break;
7350 			}
7351 
7352 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7353 						  NIG_REG_LLH0_CLS_TYPE), val);
7354 		}
7355 		{
7356 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7357 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7358 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7359 		}
7360 	}
7361 
7362 	/* If SPIO5 is set to generate interrupts, enable it for this port */
7363 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7364 	if (val & MISC_SPIO_SPIO5) {
7365 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7366 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7367 		val = REG_RD(bp, reg_addr);
7368 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7369 		REG_WR(bp, reg_addr, val);
7370 	}
7371 
7372 	return 0;
7373 }
7374 
7375 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7376 {
7377 	int reg;
7378 	u32 wb_write[2];
7379 
7380 	if (CHIP_IS_E1(bp))
7381 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7382 	else
7383 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7384 
7385 	wb_write[0] = ONCHIP_ADDR1(addr);
7386 	wb_write[1] = ONCHIP_ADDR2(addr);
7387 	REG_WR_DMAE(bp, reg, wb_write, 2);
7388 }
7389 
7390 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7391 {
7392 	u32 data, ctl, cnt = 100;
7393 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7394 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7395 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7396 	u32 sb_bit =  1 << (idu_sb_id%32);
7397 	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7398 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7399 
7400 	/* Not supported in BC mode */
7401 	if (CHIP_INT_MODE_IS_BC(bp))
7402 		return;
7403 
7404 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7405 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7406 		IGU_REGULAR_CLEANUP_SET				|
7407 		IGU_REGULAR_BCLEANUP;
7408 
7409 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7410 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7411 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7412 
7413 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7414 			 data, igu_addr_data);
7415 	REG_WR(bp, igu_addr_data, data);
7416 	mmiowb();
7417 	barrier();
7418 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7419 			  ctl, igu_addr_ctl);
7420 	REG_WR(bp, igu_addr_ctl, ctl);
7421 	mmiowb();
7422 	barrier();
7423 
7424 	/* wait for clean up to finish */
7425 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7426 		msleep(20);
7427 
7428 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7429 		DP(NETIF_MSG_HW,
7430 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7431 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7432 	}
7433 }
7434 
7435 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7436 {
7437 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7438 }
7439 
7440 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7441 {
7442 	u32 i, base = FUNC_ILT_BASE(func);
7443 	for (i = base; i < base + ILT_PER_FUNC; i++)
7444 		bnx2x_ilt_wr(bp, i, 0);
7445 }
7446 
7447 static void bnx2x_init_searcher(struct bnx2x *bp)
7448 {
7449 	int port = BP_PORT(bp);
7450 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7451 	/* T1 hash bits value determines the T1 number of entries */
7452 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7453 }
7454 
7455 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7456 {
7457 	int rc;
7458 	struct bnx2x_func_state_params func_params = {NULL};
7459 	struct bnx2x_func_switch_update_params *switch_update_params =
7460 		&func_params.params.switch_update;
7461 
7462 	/* Prepare parameters for function state transitions */
7463 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7464 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7465 
7466 	func_params.f_obj = &bp->func_obj;
7467 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7468 
7469 	/* Function parameters */
7470 	switch_update_params->suspend = suspend;
7471 
7472 	rc = bnx2x_func_state_change(bp, &func_params);
7473 
7474 	return rc;
7475 }
7476 
7477 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7478 {
7479 	int rc, i, port = BP_PORT(bp);
7480 	int vlan_en = 0, mac_en[NUM_MACS];
7481 
7482 	/* Close input from network */
7483 	if (bp->mf_mode == SINGLE_FUNCTION) {
7484 		bnx2x_set_rx_filter(&bp->link_params, 0);
7485 	} else {
7486 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7487 				   NIG_REG_LLH0_FUNC_EN);
7488 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7489 			  NIG_REG_LLH0_FUNC_EN, 0);
7490 		for (i = 0; i < NUM_MACS; i++) {
7491 			mac_en[i] = REG_RD(bp, port ?
7492 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7493 					      4 * i) :
7494 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7495 					      4 * i));
7496 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7497 					      4 * i) :
7498 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7499 		}
7500 	}
7501 
7502 	/* Close BMC to host */
7503 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7504 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7505 
7506 	/* Suspend Tx switching to the PF. Completion of this ramrod
7507 	 * further guarantees that all the packets of that PF / child
7508 	 * VFs in BRB were processed by the Parser, so it is safe to
7509 	 * change the NIC_MODE register.
7510 	 */
7511 	rc = bnx2x_func_switch_update(bp, 1);
7512 	if (rc) {
7513 		BNX2X_ERR("Can't suspend tx-switching!\n");
7514 		return rc;
7515 	}
7516 
7517 	/* Change NIC_MODE register */
7518 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7519 
7520 	/* Open input from network */
7521 	if (bp->mf_mode == SINGLE_FUNCTION) {
7522 		bnx2x_set_rx_filter(&bp->link_params, 1);
7523 	} else {
7524 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7525 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7526 		for (i = 0; i < NUM_MACS; i++) {
7527 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7528 					      4 * i) :
7529 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7530 				  mac_en[i]);
7531 		}
7532 	}
7533 
7534 	/* Enable BMC to host */
7535 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7536 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7537 
7538 	/* Resume Tx switching to the PF */
7539 	rc = bnx2x_func_switch_update(bp, 0);
7540 	if (rc) {
7541 		BNX2X_ERR("Can't resume tx-switching!\n");
7542 		return rc;
7543 	}
7544 
7545 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7546 	return 0;
7547 }
7548 
7549 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7550 {
7551 	int rc;
7552 
7553 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7554 
7555 	if (CONFIGURE_NIC_MODE(bp)) {
7556 		/* Configure searcher as part of function hw init */
7557 		bnx2x_init_searcher(bp);
7558 
7559 		/* Reset NIC mode */
7560 		rc = bnx2x_reset_nic_mode(bp);
7561 		if (rc)
7562 			BNX2X_ERR("Can't change NIC mode!\n");
7563 		return rc;
7564 	}
7565 
7566 	return 0;
7567 }
7568 
7569 static int bnx2x_init_hw_func(struct bnx2x *bp)
7570 {
7571 	int port = BP_PORT(bp);
7572 	int func = BP_FUNC(bp);
7573 	int init_phase = PHASE_PF0 + func;
7574 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7575 	u16 cdu_ilt_start;
7576 	u32 addr, val;
7577 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7578 	int i, main_mem_width, rc;
7579 
7580 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7581 
7582 	/* FLR cleanup - hmmm */
7583 	if (!CHIP_IS_E1x(bp)) {
7584 		rc = bnx2x_pf_flr_clnup(bp);
7585 		if (rc) {
7586 			bnx2x_fw_dump(bp);
7587 			return rc;
7588 		}
7589 	}
7590 
7591 	/* set MSI reconfigure capability */
7592 	if (bp->common.int_block == INT_BLOCK_HC) {
7593 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7594 		val = REG_RD(bp, addr);
7595 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7596 		REG_WR(bp, addr, val);
7597 	}
7598 
7599 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7600 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7601 
7602 	ilt = BP_ILT(bp);
7603 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7604 
7605 	if (IS_SRIOV(bp))
7606 		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7607 	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7608 
7609 	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7610 	 * those of the VFs, so start line should be reset
7611 	 */
7612 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7613 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7614 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7615 		ilt->lines[cdu_ilt_start + i].page_mapping =
7616 			bp->context[i].cxt_mapping;
7617 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7618 	}
7619 
7620 	bnx2x_ilt_init_op(bp, INITOP_SET);
7621 
7622 	if (!CONFIGURE_NIC_MODE(bp)) {
7623 		bnx2x_init_searcher(bp);
7624 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
7625 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7626 	} else {
7627 		/* Set NIC mode */
7628 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
7629 		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7630 	}
7631 
7632 	if (!CHIP_IS_E1x(bp)) {
7633 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7634 
7635 		/* Turn on a single ISR mode in IGU if driver is going to use
7636 		 * INT#x or MSI
7637 		 */
7638 		if (!(bp->flags & USING_MSIX_FLAG))
7639 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7640 		/*
7641 		 * Timers workaround bug: function init part.
7642 		 * Need to wait 20msec after initializing ILT,
7643 		 * needed to make sure there are no requests in
7644 		 * one of the PXP internal queues with "old" ILT addresses
7645 		 */
7646 		msleep(20);
7647 		/*
7648 		 * Master enable - Due to WB DMAE writes performed before this
7649 		 * register is re-initialized as part of the regular function
7650 		 * init
7651 		 */
7652 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7653 		/* Enable the function in IGU */
7654 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7655 	}
7656 
7657 	bp->dmae_ready = 1;
7658 
7659 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7660 
7661 	if (!CHIP_IS_E1x(bp))
7662 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7663 
7664 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7665 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7666 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7667 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7668 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7669 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7670 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7671 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7672 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7673 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7674 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7675 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7676 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7677 
7678 	if (!CHIP_IS_E1x(bp))
7679 		REG_WR(bp, QM_REG_PF_EN, 1);
7680 
7681 	if (!CHIP_IS_E1x(bp)) {
7682 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7683 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7684 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7685 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7686 	}
7687 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7688 
7689 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
7690 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7691 	REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
7692 
7693 	bnx2x_iov_init_dq(bp);
7694 
7695 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7696 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7697 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7698 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7699 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7700 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7701 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7702 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7703 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7704 	if (!CHIP_IS_E1x(bp))
7705 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7706 
7707 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7708 
7709 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7710 
7711 	if (!CHIP_IS_E1x(bp))
7712 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7713 
7714 	if (IS_MF(bp)) {
7715 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7716 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7717 	}
7718 
7719 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7720 
7721 	/* HC init per function */
7722 	if (bp->common.int_block == INT_BLOCK_HC) {
7723 		if (CHIP_IS_E1H(bp)) {
7724 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7725 
7726 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7727 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7728 		}
7729 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
7730 
7731 	} else {
7732 		int num_segs, sb_idx, prod_offset;
7733 
7734 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7735 
7736 		if (!CHIP_IS_E1x(bp)) {
7737 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7738 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7739 		}
7740 
7741 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7742 
7743 		if (!CHIP_IS_E1x(bp)) {
7744 			int dsb_idx = 0;
7745 			/**
7746 			 * Producer memory:
7747 			 * E2 mode: address 0-135 match to the mapping memory;
7748 			 * 136 - PF0 default prod; 137 - PF1 default prod;
7749 			 * 138 - PF2 default prod; 139 - PF3 default prod;
7750 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
7751 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
7752 			 * 144-147 reserved.
7753 			 *
7754 			 * E1.5 mode - In backward compatible mode;
7755 			 * for non default SB; each even line in the memory
7756 			 * holds the U producer and each odd line hold
7757 			 * the C producer. The first 128 producers are for
7758 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7759 			 * producers are for the DSB for each PF.
7760 			 * Each PF has five segments: (the order inside each
7761 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7762 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7763 			 * 144-147 attn prods;
7764 			 */
7765 			/* non-default-status-blocks */
7766 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7767 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7768 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7769 				prod_offset = (bp->igu_base_sb + sb_idx) *
7770 					num_segs;
7771 
7772 				for (i = 0; i < num_segs; i++) {
7773 					addr = IGU_REG_PROD_CONS_MEMORY +
7774 							(prod_offset + i) * 4;
7775 					REG_WR(bp, addr, 0);
7776 				}
7777 				/* send consumer update with value 0 */
7778 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7779 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7780 				bnx2x_igu_clear_sb(bp,
7781 						   bp->igu_base_sb + sb_idx);
7782 			}
7783 
7784 			/* default-status-blocks */
7785 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7786 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7787 
7788 			if (CHIP_MODE_IS_4_PORT(bp))
7789 				dsb_idx = BP_FUNC(bp);
7790 			else
7791 				dsb_idx = BP_VN(bp);
7792 
7793 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7794 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
7795 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
7796 
7797 			/*
7798 			 * igu prods come in chunks of E1HVN_MAX (4) -
7799 			 * does not matters what is the current chip mode
7800 			 */
7801 			for (i = 0; i < (num_segs * E1HVN_MAX);
7802 			     i += E1HVN_MAX) {
7803 				addr = IGU_REG_PROD_CONS_MEMORY +
7804 							(prod_offset + i)*4;
7805 				REG_WR(bp, addr, 0);
7806 			}
7807 			/* send consumer update with 0 */
7808 			if (CHIP_INT_MODE_IS_BC(bp)) {
7809 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7810 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7811 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7812 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
7813 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7814 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
7815 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7816 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
7817 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7818 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7819 			} else {
7820 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7821 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7822 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7823 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7824 			}
7825 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7826 
7827 			/* !!! These should become driver const once
7828 			   rf-tool supports split-68 const */
7829 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7830 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7831 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7832 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7833 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7834 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7835 		}
7836 	}
7837 
7838 	/* Reset PCIE errors for debug */
7839 	REG_WR(bp, 0x2114, 0xffffffff);
7840 	REG_WR(bp, 0x2120, 0xffffffff);
7841 
7842 	if (CHIP_IS_E1x(bp)) {
7843 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7844 		main_mem_base = HC_REG_MAIN_MEMORY +
7845 				BP_PORT(bp) * (main_mem_size * 4);
7846 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7847 		main_mem_width = 8;
7848 
7849 		val = REG_RD(bp, main_mem_prty_clr);
7850 		if (val)
7851 			DP(NETIF_MSG_HW,
7852 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7853 			   val);
7854 
7855 		/* Clear "false" parity errors in MSI-X table */
7856 		for (i = main_mem_base;
7857 		     i < main_mem_base + main_mem_size * 4;
7858 		     i += main_mem_width) {
7859 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
7860 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7861 					 i, main_mem_width / 4);
7862 		}
7863 		/* Clear HC parity attention */
7864 		REG_RD(bp, main_mem_prty_clr);
7865 	}
7866 
7867 #ifdef BNX2X_STOP_ON_ERROR
7868 	/* Enable STORMs SP logging */
7869 	REG_WR8(bp, BAR_USTRORM_INTMEM +
7870 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7871 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
7872 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7873 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7874 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7875 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
7876 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7877 #endif
7878 
7879 	bnx2x_phy_probe(&bp->link_params);
7880 
7881 	return 0;
7882 }
7883 
7884 void bnx2x_free_mem_cnic(struct bnx2x *bp)
7885 {
7886 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
7887 
7888 	if (!CHIP_IS_E1x(bp))
7889 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7890 			       sizeof(struct host_hc_status_block_e2));
7891 	else
7892 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7893 			       sizeof(struct host_hc_status_block_e1x));
7894 
7895 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7896 }
7897 
7898 void bnx2x_free_mem(struct bnx2x *bp)
7899 {
7900 	int i;
7901 
7902 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7903 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7904 
7905 	if (IS_VF(bp))
7906 		return;
7907 
7908 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7909 		       sizeof(struct host_sp_status_block));
7910 
7911 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7912 		       sizeof(struct bnx2x_slowpath));
7913 
7914 	for (i = 0; i < L2_ILT_LINES(bp); i++)
7915 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7916 			       bp->context[i].size);
7917 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7918 
7919 	BNX2X_FREE(bp->ilt->lines);
7920 
7921 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7922 
7923 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7924 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
7925 
7926 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7927 
7928 	bnx2x_iov_free_mem(bp);
7929 }
7930 
7931 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
7932 {
7933 	if (!CHIP_IS_E1x(bp))
7934 		/* size = the status block + ramrod buffers */
7935 		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7936 				sizeof(struct host_hc_status_block_e2));
7937 	else
7938 		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
7939 				&bp->cnic_sb_mapping,
7940 				sizeof(struct
7941 				       host_hc_status_block_e1x));
7942 
7943 	if (CONFIGURE_NIC_MODE(bp) && !bp->t2)
7944 		/* allocate searcher T2 table, as it wasn't allocated before */
7945 		BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7946 
7947 	/* write address to which L5 should insert its values */
7948 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
7949 		&bp->slowpath->drv_info_to_mcp;
7950 
7951 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
7952 		goto alloc_mem_err;
7953 
7954 	return 0;
7955 
7956 alloc_mem_err:
7957 	bnx2x_free_mem_cnic(bp);
7958 	BNX2X_ERR("Can't allocate memory\n");
7959 	return -ENOMEM;
7960 }
7961 
7962 int bnx2x_alloc_mem(struct bnx2x *bp)
7963 {
7964 	int i, allocated, context_size;
7965 
7966 	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2)
7967 		/* allocate searcher T2 table */
7968 		BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7969 
7970 	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7971 			sizeof(struct host_sp_status_block));
7972 
7973 	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7974 			sizeof(struct bnx2x_slowpath));
7975 
7976 	/* Allocate memory for CDU context:
7977 	 * This memory is allocated separately and not in the generic ILT
7978 	 * functions because CDU differs in few aspects:
7979 	 * 1. There are multiple entities allocating memory for context -
7980 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
7981 	 * its own ILT lines.
7982 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
7983 	 * for the other ILT clients), to be efficient we want to support
7984 	 * allocation of sub-page-size in the last entry.
7985 	 * 3. Context pointers are used by the driver to pass to FW / update
7986 	 * the context (for the other ILT clients the pointers are used just to
7987 	 * free the memory during unload).
7988 	 */
7989 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7990 
7991 	for (i = 0, allocated = 0; allocated < context_size; i++) {
7992 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
7993 					  (context_size - allocated));
7994 		BNX2X_PCI_ALLOC(bp->context[i].vcxt,
7995 				&bp->context[i].cxt_mapping,
7996 				bp->context[i].size);
7997 		allocated += bp->context[i].size;
7998 	}
7999 	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
8000 
8001 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8002 		goto alloc_mem_err;
8003 
8004 	if (bnx2x_iov_alloc_mem(bp))
8005 		goto alloc_mem_err;
8006 
8007 	/* Slow path ring */
8008 	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
8009 
8010 	/* EQ */
8011 	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
8012 			BCM_PAGE_SIZE * NUM_EQ_PAGES);
8013 
8014 	return 0;
8015 
8016 alloc_mem_err:
8017 	bnx2x_free_mem(bp);
8018 	BNX2X_ERR("Can't allocate memory\n");
8019 	return -ENOMEM;
8020 }
8021 
8022 /*
8023  * Init service functions
8024  */
8025 
8026 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8027 		      struct bnx2x_vlan_mac_obj *obj, bool set,
8028 		      int mac_type, unsigned long *ramrod_flags)
8029 {
8030 	int rc;
8031 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8032 
8033 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8034 
8035 	/* Fill general parameters */
8036 	ramrod_param.vlan_mac_obj = obj;
8037 	ramrod_param.ramrod_flags = *ramrod_flags;
8038 
8039 	/* Fill a user request section if needed */
8040 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8041 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8042 
8043 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8044 
8045 		/* Set the command: ADD or DEL */
8046 		if (set)
8047 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8048 		else
8049 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8050 	}
8051 
8052 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8053 
8054 	if (rc == -EEXIST) {
8055 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8056 		/* do not treat adding same MAC as error */
8057 		rc = 0;
8058 	} else if (rc < 0)
8059 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8060 
8061 	return rc;
8062 }
8063 
8064 int bnx2x_del_all_macs(struct bnx2x *bp,
8065 		       struct bnx2x_vlan_mac_obj *mac_obj,
8066 		       int mac_type, bool wait_for_comp)
8067 {
8068 	int rc;
8069 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8070 
8071 	/* Wait for completion of requested */
8072 	if (wait_for_comp)
8073 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8074 
8075 	/* Set the mac type of addresses we want to clear */
8076 	__set_bit(mac_type, &vlan_mac_flags);
8077 
8078 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8079 	if (rc < 0)
8080 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8081 
8082 	return rc;
8083 }
8084 
8085 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8086 {
8087 	if (is_zero_ether_addr(bp->dev->dev_addr) &&
8088 	    (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
8089 		DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
8090 		   "Ignoring Zero MAC for STORAGE SD mode\n");
8091 		return 0;
8092 	}
8093 
8094 	if (IS_PF(bp)) {
8095 		unsigned long ramrod_flags = 0;
8096 
8097 		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8098 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8099 		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8100 					 &bp->sp_objs->mac_obj, set,
8101 					 BNX2X_ETH_MAC, &ramrod_flags);
8102 	} else { /* vf */
8103 		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8104 					     bp->fp->index, true);
8105 	}
8106 }
8107 
8108 int bnx2x_setup_leading(struct bnx2x *bp)
8109 {
8110 	if (IS_PF(bp))
8111 		return bnx2x_setup_queue(bp, &bp->fp[0], true);
8112 	else /* VF */
8113 		return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8114 }
8115 
8116 /**
8117  * bnx2x_set_int_mode - configure interrupt mode
8118  *
8119  * @bp:		driver handle
8120  *
8121  * In case of MSI-X it will also try to enable MSI-X.
8122  */
8123 int bnx2x_set_int_mode(struct bnx2x *bp)
8124 {
8125 	int rc = 0;
8126 
8127 	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8128 		BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8129 		return -EINVAL;
8130 	}
8131 
8132 	switch (int_mode) {
8133 	case BNX2X_INT_MODE_MSIX:
8134 		/* attempt to enable msix */
8135 		rc = bnx2x_enable_msix(bp);
8136 
8137 		/* msix attained */
8138 		if (!rc)
8139 			return 0;
8140 
8141 		/* vfs use only msix */
8142 		if (rc && IS_VF(bp))
8143 			return rc;
8144 
8145 		/* failed to enable multiple MSI-X */
8146 		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8147 			       bp->num_queues,
8148 			       1 + bp->num_cnic_queues);
8149 
8150 		/* falling through... */
8151 	case BNX2X_INT_MODE_MSI:
8152 		bnx2x_enable_msi(bp);
8153 
8154 		/* falling through... */
8155 	case BNX2X_INT_MODE_INTX:
8156 		bp->num_ethernet_queues = 1;
8157 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8158 		BNX2X_DEV_INFO("set number of queues to 1\n");
8159 		break;
8160 	default:
8161 		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8162 		return -EINVAL;
8163 	}
8164 	return 0;
8165 }
8166 
8167 /* must be called prior to any HW initializations */
8168 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8169 {
8170 	if (IS_SRIOV(bp))
8171 		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8172 	return L2_ILT_LINES(bp);
8173 }
8174 
8175 void bnx2x_ilt_set_info(struct bnx2x *bp)
8176 {
8177 	struct ilt_client_info *ilt_client;
8178 	struct bnx2x_ilt *ilt = BP_ILT(bp);
8179 	u16 line = 0;
8180 
8181 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8182 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8183 
8184 	/* CDU */
8185 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8186 	ilt_client->client_num = ILT_CLIENT_CDU;
8187 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8188 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8189 	ilt_client->start = line;
8190 	line += bnx2x_cid_ilt_lines(bp);
8191 
8192 	if (CNIC_SUPPORT(bp))
8193 		line += CNIC_ILT_LINES;
8194 	ilt_client->end = line - 1;
8195 
8196 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8197 	   ilt_client->start,
8198 	   ilt_client->end,
8199 	   ilt_client->page_size,
8200 	   ilt_client->flags,
8201 	   ilog2(ilt_client->page_size >> 12));
8202 
8203 	/* QM */
8204 	if (QM_INIT(bp->qm_cid_count)) {
8205 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8206 		ilt_client->client_num = ILT_CLIENT_QM;
8207 		ilt_client->page_size = QM_ILT_PAGE_SZ;
8208 		ilt_client->flags = 0;
8209 		ilt_client->start = line;
8210 
8211 		/* 4 bytes for each cid */
8212 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8213 							 QM_ILT_PAGE_SZ);
8214 
8215 		ilt_client->end = line - 1;
8216 
8217 		DP(NETIF_MSG_IFUP,
8218 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8219 		   ilt_client->start,
8220 		   ilt_client->end,
8221 		   ilt_client->page_size,
8222 		   ilt_client->flags,
8223 		   ilog2(ilt_client->page_size >> 12));
8224 	}
8225 
8226 	if (CNIC_SUPPORT(bp)) {
8227 		/* SRC */
8228 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8229 		ilt_client->client_num = ILT_CLIENT_SRC;
8230 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8231 		ilt_client->flags = 0;
8232 		ilt_client->start = line;
8233 		line += SRC_ILT_LINES;
8234 		ilt_client->end = line - 1;
8235 
8236 		DP(NETIF_MSG_IFUP,
8237 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8238 		   ilt_client->start,
8239 		   ilt_client->end,
8240 		   ilt_client->page_size,
8241 		   ilt_client->flags,
8242 		   ilog2(ilt_client->page_size >> 12));
8243 
8244 		/* TM */
8245 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8246 		ilt_client->client_num = ILT_CLIENT_TM;
8247 		ilt_client->page_size = TM_ILT_PAGE_SZ;
8248 		ilt_client->flags = 0;
8249 		ilt_client->start = line;
8250 		line += TM_ILT_LINES;
8251 		ilt_client->end = line - 1;
8252 
8253 		DP(NETIF_MSG_IFUP,
8254 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8255 		   ilt_client->start,
8256 		   ilt_client->end,
8257 		   ilt_client->page_size,
8258 		   ilt_client->flags,
8259 		   ilog2(ilt_client->page_size >> 12));
8260 	}
8261 
8262 	BUG_ON(line > ILT_MAX_LINES);
8263 }
8264 
8265 /**
8266  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8267  *
8268  * @bp:			driver handle
8269  * @fp:			pointer to fastpath
8270  * @init_params:	pointer to parameters structure
8271  *
8272  * parameters configured:
8273  *      - HC configuration
8274  *      - Queue's CDU context
8275  */
8276 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8277 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8278 {
8279 	u8 cos;
8280 	int cxt_index, cxt_offset;
8281 
8282 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8283 	if (!IS_FCOE_FP(fp)) {
8284 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8285 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8286 
8287 		/* If HC is supported, enable host coalescing in the transition
8288 		 * to INIT state.
8289 		 */
8290 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8291 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8292 
8293 		/* HC rate */
8294 		init_params->rx.hc_rate = bp->rx_ticks ?
8295 			(1000000 / bp->rx_ticks) : 0;
8296 		init_params->tx.hc_rate = bp->tx_ticks ?
8297 			(1000000 / bp->tx_ticks) : 0;
8298 
8299 		/* FW SB ID */
8300 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8301 			fp->fw_sb_id;
8302 
8303 		/*
8304 		 * CQ index among the SB indices: FCoE clients uses the default
8305 		 * SB, therefore it's different.
8306 		 */
8307 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8308 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8309 	}
8310 
8311 	/* set maximum number of COSs supported by this queue */
8312 	init_params->max_cos = fp->max_cos;
8313 
8314 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8315 	    fp->index, init_params->max_cos);
8316 
8317 	/* set the context pointers queue object */
8318 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8319 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8320 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8321 				ILT_PAGE_CIDS);
8322 		init_params->cxts[cos] =
8323 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8324 	}
8325 }
8326 
8327 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8328 			struct bnx2x_queue_state_params *q_params,
8329 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8330 			int tx_index, bool leading)
8331 {
8332 	memset(tx_only_params, 0, sizeof(*tx_only_params));
8333 
8334 	/* Set the command */
8335 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8336 
8337 	/* Set tx-only QUEUE flags: don't zero statistics */
8338 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8339 
8340 	/* choose the index of the cid to send the slow path on */
8341 	tx_only_params->cid_index = tx_index;
8342 
8343 	/* Set general TX_ONLY_SETUP parameters */
8344 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8345 
8346 	/* Set Tx TX_ONLY_SETUP parameters */
8347 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8348 
8349 	DP(NETIF_MSG_IFUP,
8350 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8351 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8352 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8353 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8354 
8355 	/* send the ramrod */
8356 	return bnx2x_queue_state_change(bp, q_params);
8357 }
8358 
8359 /**
8360  * bnx2x_setup_queue - setup queue
8361  *
8362  * @bp:		driver handle
8363  * @fp:		pointer to fastpath
8364  * @leading:	is leading
8365  *
8366  * This function performs 2 steps in a Queue state machine
8367  *      actually: 1) RESET->INIT 2) INIT->SETUP
8368  */
8369 
8370 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8371 		       bool leading)
8372 {
8373 	struct bnx2x_queue_state_params q_params = {NULL};
8374 	struct bnx2x_queue_setup_params *setup_params =
8375 						&q_params.params.setup;
8376 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8377 						&q_params.params.tx_only;
8378 	int rc;
8379 	u8 tx_index;
8380 
8381 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8382 
8383 	/* reset IGU state skip FCoE L2 queue */
8384 	if (!IS_FCOE_FP(fp))
8385 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8386 			     IGU_INT_ENABLE, 0);
8387 
8388 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8389 	/* We want to wait for completion in this context */
8390 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8391 
8392 	/* Prepare the INIT parameters */
8393 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8394 
8395 	/* Set the command */
8396 	q_params.cmd = BNX2X_Q_CMD_INIT;
8397 
8398 	/* Change the state to INIT */
8399 	rc = bnx2x_queue_state_change(bp, &q_params);
8400 	if (rc) {
8401 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8402 		return rc;
8403 	}
8404 
8405 	DP(NETIF_MSG_IFUP, "init complete\n");
8406 
8407 	/* Now move the Queue to the SETUP state... */
8408 	memset(setup_params, 0, sizeof(*setup_params));
8409 
8410 	/* Set QUEUE flags */
8411 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8412 
8413 	/* Set general SETUP parameters */
8414 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8415 				FIRST_TX_COS_INDEX);
8416 
8417 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8418 			    &setup_params->rxq_params);
8419 
8420 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8421 			   FIRST_TX_COS_INDEX);
8422 
8423 	/* Set the command */
8424 	q_params.cmd = BNX2X_Q_CMD_SETUP;
8425 
8426 	if (IS_FCOE_FP(fp))
8427 		bp->fcoe_init = true;
8428 
8429 	/* Change the state to SETUP */
8430 	rc = bnx2x_queue_state_change(bp, &q_params);
8431 	if (rc) {
8432 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8433 		return rc;
8434 	}
8435 
8436 	/* loop through the relevant tx-only indices */
8437 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8438 	      tx_index < fp->max_cos;
8439 	      tx_index++) {
8440 
8441 		/* prepare and send tx-only ramrod*/
8442 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8443 					  tx_only_params, tx_index, leading);
8444 		if (rc) {
8445 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8446 				  fp->index, tx_index);
8447 			return rc;
8448 		}
8449 	}
8450 
8451 	return rc;
8452 }
8453 
8454 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8455 {
8456 	struct bnx2x_fastpath *fp = &bp->fp[index];
8457 	struct bnx2x_fp_txdata *txdata;
8458 	struct bnx2x_queue_state_params q_params = {NULL};
8459 	int rc, tx_index;
8460 
8461 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8462 
8463 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8464 	/* We want to wait for completion in this context */
8465 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8466 
8467 	/* close tx-only connections */
8468 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8469 	     tx_index < fp->max_cos;
8470 	     tx_index++){
8471 
8472 		/* ascertain this is a normal queue*/
8473 		txdata = fp->txdata_ptr[tx_index];
8474 
8475 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8476 							txdata->txq_index);
8477 
8478 		/* send halt terminate on tx-only connection */
8479 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8480 		memset(&q_params.params.terminate, 0,
8481 		       sizeof(q_params.params.terminate));
8482 		q_params.params.terminate.cid_index = tx_index;
8483 
8484 		rc = bnx2x_queue_state_change(bp, &q_params);
8485 		if (rc)
8486 			return rc;
8487 
8488 		/* send halt terminate on tx-only connection */
8489 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8490 		memset(&q_params.params.cfc_del, 0,
8491 		       sizeof(q_params.params.cfc_del));
8492 		q_params.params.cfc_del.cid_index = tx_index;
8493 		rc = bnx2x_queue_state_change(bp, &q_params);
8494 		if (rc)
8495 			return rc;
8496 	}
8497 	/* Stop the primary connection: */
8498 	/* ...halt the connection */
8499 	q_params.cmd = BNX2X_Q_CMD_HALT;
8500 	rc = bnx2x_queue_state_change(bp, &q_params);
8501 	if (rc)
8502 		return rc;
8503 
8504 	/* ...terminate the connection */
8505 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8506 	memset(&q_params.params.terminate, 0,
8507 	       sizeof(q_params.params.terminate));
8508 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8509 	rc = bnx2x_queue_state_change(bp, &q_params);
8510 	if (rc)
8511 		return rc;
8512 	/* ...delete cfc entry */
8513 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8514 	memset(&q_params.params.cfc_del, 0,
8515 	       sizeof(q_params.params.cfc_del));
8516 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8517 	return bnx2x_queue_state_change(bp, &q_params);
8518 }
8519 
8520 static void bnx2x_reset_func(struct bnx2x *bp)
8521 {
8522 	int port = BP_PORT(bp);
8523 	int func = BP_FUNC(bp);
8524 	int i;
8525 
8526 	/* Disable the function in the FW */
8527 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8528 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8529 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8530 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8531 
8532 	/* FP SBs */
8533 	for_each_eth_queue(bp, i) {
8534 		struct bnx2x_fastpath *fp = &bp->fp[i];
8535 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8536 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8537 			   SB_DISABLED);
8538 	}
8539 
8540 	if (CNIC_LOADED(bp))
8541 		/* CNIC SB */
8542 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8543 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8544 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8545 
8546 	/* SP SB */
8547 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8548 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8549 		SB_DISABLED);
8550 
8551 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8552 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8553 		       0);
8554 
8555 	/* Configure IGU */
8556 	if (bp->common.int_block == INT_BLOCK_HC) {
8557 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8558 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8559 	} else {
8560 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8561 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8562 	}
8563 
8564 	if (CNIC_LOADED(bp)) {
8565 		/* Disable Timer scan */
8566 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8567 		/*
8568 		 * Wait for at least 10ms and up to 2 second for the timers
8569 		 * scan to complete
8570 		 */
8571 		for (i = 0; i < 200; i++) {
8572 			usleep_range(10000, 20000);
8573 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8574 				break;
8575 		}
8576 	}
8577 	/* Clear ILT */
8578 	bnx2x_clear_func_ilt(bp, func);
8579 
8580 	/* Timers workaround bug for E2: if this is vnic-3,
8581 	 * we need to set the entire ilt range for this timers.
8582 	 */
8583 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8584 		struct ilt_client_info ilt_cli;
8585 		/* use dummy TM client */
8586 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8587 		ilt_cli.start = 0;
8588 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8589 		ilt_cli.client_num = ILT_CLIENT_TM;
8590 
8591 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8592 	}
8593 
8594 	/* this assumes that reset_port() called before reset_func()*/
8595 	if (!CHIP_IS_E1x(bp))
8596 		bnx2x_pf_disable(bp);
8597 
8598 	bp->dmae_ready = 0;
8599 }
8600 
8601 static void bnx2x_reset_port(struct bnx2x *bp)
8602 {
8603 	int port = BP_PORT(bp);
8604 	u32 val;
8605 
8606 	/* Reset physical Link */
8607 	bnx2x__link_reset(bp);
8608 
8609 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8610 
8611 	/* Do not rcv packets to BRB */
8612 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8613 	/* Do not direct rcv packets that are not for MCP to the BRB */
8614 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8615 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8616 
8617 	/* Configure AEU */
8618 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8619 
8620 	msleep(100);
8621 	/* Check for BRB port occupancy */
8622 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8623 	if (val)
8624 		DP(NETIF_MSG_IFDOWN,
8625 		   "BRB1 is not empty  %d blocks are occupied\n", val);
8626 
8627 	/* TODO: Close Doorbell port? */
8628 }
8629 
8630 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8631 {
8632 	struct bnx2x_func_state_params func_params = {NULL};
8633 
8634 	/* Prepare parameters for function state transitions */
8635 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8636 
8637 	func_params.f_obj = &bp->func_obj;
8638 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
8639 
8640 	func_params.params.hw_init.load_phase = load_code;
8641 
8642 	return bnx2x_func_state_change(bp, &func_params);
8643 }
8644 
8645 static int bnx2x_func_stop(struct bnx2x *bp)
8646 {
8647 	struct bnx2x_func_state_params func_params = {NULL};
8648 	int rc;
8649 
8650 	/* Prepare parameters for function state transitions */
8651 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8652 	func_params.f_obj = &bp->func_obj;
8653 	func_params.cmd = BNX2X_F_CMD_STOP;
8654 
8655 	/*
8656 	 * Try to stop the function the 'good way'. If fails (in case
8657 	 * of a parity error during bnx2x_chip_cleanup()) and we are
8658 	 * not in a debug mode, perform a state transaction in order to
8659 	 * enable further HW_RESET transaction.
8660 	 */
8661 	rc = bnx2x_func_state_change(bp, &func_params);
8662 	if (rc) {
8663 #ifdef BNX2X_STOP_ON_ERROR
8664 		return rc;
8665 #else
8666 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8667 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8668 		return bnx2x_func_state_change(bp, &func_params);
8669 #endif
8670 	}
8671 
8672 	return 0;
8673 }
8674 
8675 /**
8676  * bnx2x_send_unload_req - request unload mode from the MCP.
8677  *
8678  * @bp:			driver handle
8679  * @unload_mode:	requested function's unload mode
8680  *
8681  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8682  */
8683 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8684 {
8685 	u32 reset_code = 0;
8686 	int port = BP_PORT(bp);
8687 
8688 	/* Select the UNLOAD request mode */
8689 	if (unload_mode == UNLOAD_NORMAL)
8690 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8691 
8692 	else if (bp->flags & NO_WOL_FLAG)
8693 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8694 
8695 	else if (bp->wol) {
8696 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8697 		u8 *mac_addr = bp->dev->dev_addr;
8698 		struct pci_dev *pdev = bp->pdev;
8699 		u32 val;
8700 		u16 pmc;
8701 
8702 		/* The mac address is written to entries 1-4 to
8703 		 * preserve entry 0 which is used by the PMF
8704 		 */
8705 		u8 entry = (BP_VN(bp) + 1)*8;
8706 
8707 		val = (mac_addr[0] << 8) | mac_addr[1];
8708 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8709 
8710 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8711 		      (mac_addr[4] << 8) | mac_addr[5];
8712 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8713 
8714 		/* Enable the PME and clear the status */
8715 		pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
8716 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8717 		pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
8718 
8719 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8720 
8721 	} else
8722 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8723 
8724 	/* Send the request to the MCP */
8725 	if (!BP_NOMCP(bp))
8726 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
8727 	else {
8728 		int path = BP_PATH(bp);
8729 
8730 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8731 		   path, load_count[path][0], load_count[path][1],
8732 		   load_count[path][2]);
8733 		load_count[path][0]--;
8734 		load_count[path][1 + port]--;
8735 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8736 		   path, load_count[path][0], load_count[path][1],
8737 		   load_count[path][2]);
8738 		if (load_count[path][0] == 0)
8739 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8740 		else if (load_count[path][1 + port] == 0)
8741 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8742 		else
8743 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8744 	}
8745 
8746 	return reset_code;
8747 }
8748 
8749 /**
8750  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8751  *
8752  * @bp:		driver handle
8753  * @keep_link:		true iff link should be kept up
8754  */
8755 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8756 {
8757 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8758 
8759 	/* Report UNLOAD_DONE to MCP */
8760 	if (!BP_NOMCP(bp))
8761 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8762 }
8763 
8764 static int bnx2x_func_wait_started(struct bnx2x *bp)
8765 {
8766 	int tout = 50;
8767 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8768 
8769 	if (!bp->port.pmf)
8770 		return 0;
8771 
8772 	/*
8773 	 * (assumption: No Attention from MCP at this stage)
8774 	 * PMF probably in the middle of TX disable/enable transaction
8775 	 * 1. Sync IRS for default SB
8776 	 * 2. Sync SP queue - this guarantees us that attention handling started
8777 	 * 3. Wait, that TX disable/enable transaction completes
8778 	 *
8779 	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
8780 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
8781 	 * received completion for the transaction the state is TX_STOPPED.
8782 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
8783 	 * transaction.
8784 	 */
8785 
8786 	/* make sure default SB ISR is done */
8787 	if (msix)
8788 		synchronize_irq(bp->msix_table[0].vector);
8789 	else
8790 		synchronize_irq(bp->pdev->irq);
8791 
8792 	flush_workqueue(bnx2x_wq);
8793 
8794 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8795 				BNX2X_F_STATE_STARTED && tout--)
8796 		msleep(20);
8797 
8798 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8799 						BNX2X_F_STATE_STARTED) {
8800 #ifdef BNX2X_STOP_ON_ERROR
8801 		BNX2X_ERR("Wrong function state\n");
8802 		return -EBUSY;
8803 #else
8804 		/*
8805 		 * Failed to complete the transaction in a "good way"
8806 		 * Force both transactions with CLR bit
8807 		 */
8808 		struct bnx2x_func_state_params func_params = {NULL};
8809 
8810 		DP(NETIF_MSG_IFDOWN,
8811 		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8812 
8813 		func_params.f_obj = &bp->func_obj;
8814 		__set_bit(RAMROD_DRV_CLR_ONLY,
8815 					&func_params.ramrod_flags);
8816 
8817 		/* STARTED-->TX_ST0PPED */
8818 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
8819 		bnx2x_func_state_change(bp, &func_params);
8820 
8821 		/* TX_ST0PPED-->STARTED */
8822 		func_params.cmd = BNX2X_F_CMD_TX_START;
8823 		return bnx2x_func_state_change(bp, &func_params);
8824 #endif
8825 	}
8826 
8827 	return 0;
8828 }
8829 
8830 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8831 {
8832 	int port = BP_PORT(bp);
8833 	int i, rc = 0;
8834 	u8 cos;
8835 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
8836 	u32 reset_code;
8837 
8838 	/* Wait until tx fastpath tasks complete */
8839 	for_each_tx_queue(bp, i) {
8840 		struct bnx2x_fastpath *fp = &bp->fp[i];
8841 
8842 		for_each_cos_in_tx_queue(fp, cos)
8843 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8844 #ifdef BNX2X_STOP_ON_ERROR
8845 		if (rc)
8846 			return;
8847 #endif
8848 	}
8849 
8850 	/* Give HW time to discard old tx messages */
8851 	usleep_range(1000, 2000);
8852 
8853 	/* Clean all ETH MACs */
8854 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8855 				false);
8856 	if (rc < 0)
8857 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8858 
8859 	/* Clean up UC list  */
8860 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8861 				true);
8862 	if (rc < 0)
8863 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8864 			  rc);
8865 
8866 	/* Disable LLH */
8867 	if (!CHIP_IS_E1(bp))
8868 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8869 
8870 	/* Set "drop all" (stop Rx).
8871 	 * We need to take a netif_addr_lock() here in order to prevent
8872 	 * a race between the completion code and this code.
8873 	 */
8874 	netif_addr_lock_bh(bp->dev);
8875 	/* Schedule the rx_mode command */
8876 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8877 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8878 	else
8879 		bnx2x_set_storm_rx_mode(bp);
8880 
8881 	/* Cleanup multicast configuration */
8882 	rparam.mcast_obj = &bp->mcast_obj;
8883 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8884 	if (rc < 0)
8885 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8886 
8887 	netif_addr_unlock_bh(bp->dev);
8888 
8889 	bnx2x_iov_chip_cleanup(bp);
8890 
8891 	/*
8892 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
8893 	 * this function should perform FUNC, PORT or COMMON HW
8894 	 * reset.
8895 	 */
8896 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
8897 
8898 	/*
8899 	 * (assumption: No Attention from MCP at this stage)
8900 	 * PMF probably in the middle of TX disable/enable transaction
8901 	 */
8902 	rc = bnx2x_func_wait_started(bp);
8903 	if (rc) {
8904 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
8905 #ifdef BNX2X_STOP_ON_ERROR
8906 		return;
8907 #endif
8908 	}
8909 
8910 	/* Close multi and leading connections
8911 	 * Completions for ramrods are collected in a synchronous way
8912 	 */
8913 	for_each_eth_queue(bp, i)
8914 		if (bnx2x_stop_queue(bp, i))
8915 #ifdef BNX2X_STOP_ON_ERROR
8916 			return;
8917 #else
8918 			goto unload_error;
8919 #endif
8920 
8921 	if (CNIC_LOADED(bp)) {
8922 		for_each_cnic_queue(bp, i)
8923 			if (bnx2x_stop_queue(bp, i))
8924 #ifdef BNX2X_STOP_ON_ERROR
8925 				return;
8926 #else
8927 				goto unload_error;
8928 #endif
8929 	}
8930 
8931 	/* If SP settings didn't get completed so far - something
8932 	 * very wrong has happen.
8933 	 */
8934 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8935 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8936 
8937 #ifndef BNX2X_STOP_ON_ERROR
8938 unload_error:
8939 #endif
8940 	rc = bnx2x_func_stop(bp);
8941 	if (rc) {
8942 		BNX2X_ERR("Function stop failed!\n");
8943 #ifdef BNX2X_STOP_ON_ERROR
8944 		return;
8945 #endif
8946 	}
8947 
8948 	/* Disable HW interrupts, NAPI */
8949 	bnx2x_netif_stop(bp, 1);
8950 	/* Delete all NAPI objects */
8951 	bnx2x_del_all_napi(bp);
8952 	if (CNIC_LOADED(bp))
8953 		bnx2x_del_all_napi_cnic(bp);
8954 
8955 	/* Release IRQs */
8956 	bnx2x_free_irq(bp);
8957 
8958 	/* Reset the chip */
8959 	rc = bnx2x_reset_hw(bp, reset_code);
8960 	if (rc)
8961 		BNX2X_ERR("HW_RESET failed\n");
8962 
8963 	/* Report UNLOAD_DONE to MCP */
8964 	bnx2x_send_unload_done(bp, keep_link);
8965 }
8966 
8967 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8968 {
8969 	u32 val;
8970 
8971 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8972 
8973 	if (CHIP_IS_E1(bp)) {
8974 		int port = BP_PORT(bp);
8975 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8976 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
8977 
8978 		val = REG_RD(bp, addr);
8979 		val &= ~(0x300);
8980 		REG_WR(bp, addr, val);
8981 	} else {
8982 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8983 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8984 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8985 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8986 	}
8987 }
8988 
8989 /* Close gates #2, #3 and #4: */
8990 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8991 {
8992 	u32 val;
8993 
8994 	/* Gates #2 and #4a are closed/opened for "not E1" only */
8995 	if (!CHIP_IS_E1(bp)) {
8996 		/* #4 */
8997 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8998 		/* #2 */
8999 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9000 	}
9001 
9002 	/* #3 */
9003 	if (CHIP_IS_E1x(bp)) {
9004 		/* Prevent interrupts from HC on both ports */
9005 		val = REG_RD(bp, HC_REG_CONFIG_1);
9006 		REG_WR(bp, HC_REG_CONFIG_1,
9007 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9008 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9009 
9010 		val = REG_RD(bp, HC_REG_CONFIG_0);
9011 		REG_WR(bp, HC_REG_CONFIG_0,
9012 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9013 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9014 	} else {
9015 		/* Prevent incoming interrupts in IGU */
9016 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9017 
9018 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9019 		       (!close) ?
9020 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9021 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9022 	}
9023 
9024 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9025 		close ? "closing" : "opening");
9026 	mmiowb();
9027 }
9028 
9029 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9030 
9031 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9032 {
9033 	/* Do some magic... */
9034 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9035 	*magic_val = val & SHARED_MF_CLP_MAGIC;
9036 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9037 }
9038 
9039 /**
9040  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9041  *
9042  * @bp:		driver handle
9043  * @magic_val:	old value of the `magic' bit.
9044  */
9045 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9046 {
9047 	/* Restore the `magic' bit value... */
9048 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9049 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
9050 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9051 }
9052 
9053 /**
9054  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9055  *
9056  * @bp:		driver handle
9057  * @magic_val:	old value of 'magic' bit.
9058  *
9059  * Takes care of CLP configurations.
9060  */
9061 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9062 {
9063 	u32 shmem;
9064 	u32 validity_offset;
9065 
9066 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9067 
9068 	/* Set `magic' bit in order to save MF config */
9069 	if (!CHIP_IS_E1(bp))
9070 		bnx2x_clp_reset_prep(bp, magic_val);
9071 
9072 	/* Get shmem offset */
9073 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9074 	validity_offset =
9075 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9076 
9077 	/* Clear validity map flags */
9078 	if (shmem > 0)
9079 		REG_WR(bp, shmem + validity_offset, 0);
9080 }
9081 
9082 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9083 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9084 
9085 /**
9086  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9087  *
9088  * @bp:	driver handle
9089  */
9090 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9091 {
9092 	/* special handling for emulation and FPGA,
9093 	   wait 10 times longer */
9094 	if (CHIP_REV_IS_SLOW(bp))
9095 		msleep(MCP_ONE_TIMEOUT*10);
9096 	else
9097 		msleep(MCP_ONE_TIMEOUT);
9098 }
9099 
9100 /*
9101  * initializes bp->common.shmem_base and waits for validity signature to appear
9102  */
9103 static int bnx2x_init_shmem(struct bnx2x *bp)
9104 {
9105 	int cnt = 0;
9106 	u32 val = 0;
9107 
9108 	do {
9109 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9110 		if (bp->common.shmem_base) {
9111 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9112 			if (val & SHR_MEM_VALIDITY_MB)
9113 				return 0;
9114 		}
9115 
9116 		bnx2x_mcp_wait_one(bp);
9117 
9118 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9119 
9120 	BNX2X_ERR("BAD MCP validity signature\n");
9121 
9122 	return -ENODEV;
9123 }
9124 
9125 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9126 {
9127 	int rc = bnx2x_init_shmem(bp);
9128 
9129 	/* Restore the `magic' bit value */
9130 	if (!CHIP_IS_E1(bp))
9131 		bnx2x_clp_reset_done(bp, magic_val);
9132 
9133 	return rc;
9134 }
9135 
9136 static void bnx2x_pxp_prep(struct bnx2x *bp)
9137 {
9138 	if (!CHIP_IS_E1(bp)) {
9139 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9140 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9141 		mmiowb();
9142 	}
9143 }
9144 
9145 /*
9146  * Reset the whole chip except for:
9147  *      - PCIE core
9148  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9149  *              one reset bit)
9150  *      - IGU
9151  *      - MISC (including AEU)
9152  *      - GRC
9153  *      - RBCN, RBCP
9154  */
9155 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9156 {
9157 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9158 	u32 global_bits2, stay_reset2;
9159 
9160 	/*
9161 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9162 	 * (per chip) blocks.
9163 	 */
9164 	global_bits2 =
9165 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9166 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9167 
9168 	/* Don't reset the following blocks.
9169 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9170 	 *            reset, as in 4 port device they might still be owned
9171 	 *            by the MCP (there is only one leader per path).
9172 	 */
9173 	not_reset_mask1 =
9174 		MISC_REGISTERS_RESET_REG_1_RST_HC |
9175 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9176 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9177 
9178 	not_reset_mask2 =
9179 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9180 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9181 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9182 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9183 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9184 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9185 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9186 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9187 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9188 		MISC_REGISTERS_RESET_REG_2_PGLC |
9189 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9190 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9191 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9192 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9193 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9194 		MISC_REGISTERS_RESET_REG_2_UMAC1;
9195 
9196 	/*
9197 	 * Keep the following blocks in reset:
9198 	 *  - all xxMACs are handled by the bnx2x_link code.
9199 	 */
9200 	stay_reset2 =
9201 		MISC_REGISTERS_RESET_REG_2_XMAC |
9202 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9203 
9204 	/* Full reset masks according to the chip */
9205 	reset_mask1 = 0xffffffff;
9206 
9207 	if (CHIP_IS_E1(bp))
9208 		reset_mask2 = 0xffff;
9209 	else if (CHIP_IS_E1H(bp))
9210 		reset_mask2 = 0x1ffff;
9211 	else if (CHIP_IS_E2(bp))
9212 		reset_mask2 = 0xfffff;
9213 	else /* CHIP_IS_E3 */
9214 		reset_mask2 = 0x3ffffff;
9215 
9216 	/* Don't reset global blocks unless we need to */
9217 	if (!global)
9218 		reset_mask2 &= ~global_bits2;
9219 
9220 	/*
9221 	 * In case of attention in the QM, we need to reset PXP
9222 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9223 	 * because otherwise QM reset would release 'close the gates' shortly
9224 	 * before resetting the PXP, then the PSWRQ would send a write
9225 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9226 	 * read the payload data from PSWWR, but PSWWR would not
9227 	 * respond. The write queue in PGLUE would stuck, dmae commands
9228 	 * would not return. Therefore it's important to reset the second
9229 	 * reset register (containing the
9230 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9231 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9232 	 * bit).
9233 	 */
9234 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9235 	       reset_mask2 & (~not_reset_mask2));
9236 
9237 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9238 	       reset_mask1 & (~not_reset_mask1));
9239 
9240 	barrier();
9241 	mmiowb();
9242 
9243 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9244 	       reset_mask2 & (~stay_reset2));
9245 
9246 	barrier();
9247 	mmiowb();
9248 
9249 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9250 	mmiowb();
9251 }
9252 
9253 /**
9254  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9255  * It should get cleared in no more than 1s.
9256  *
9257  * @bp:	driver handle
9258  *
9259  * It should get cleared in no more than 1s. Returns 0 if
9260  * pending writes bit gets cleared.
9261  */
9262 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9263 {
9264 	u32 cnt = 1000;
9265 	u32 pend_bits = 0;
9266 
9267 	do {
9268 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9269 
9270 		if (pend_bits == 0)
9271 			break;
9272 
9273 		usleep_range(1000, 2000);
9274 	} while (cnt-- > 0);
9275 
9276 	if (cnt <= 0) {
9277 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9278 			  pend_bits);
9279 		return -EBUSY;
9280 	}
9281 
9282 	return 0;
9283 }
9284 
9285 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9286 {
9287 	int cnt = 1000;
9288 	u32 val = 0;
9289 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9290 	u32 tags_63_32 = 0;
9291 
9292 	/* Empty the Tetris buffer, wait for 1s */
9293 	do {
9294 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9295 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9296 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9297 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9298 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9299 		if (CHIP_IS_E3(bp))
9300 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9301 
9302 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9303 		    ((port_is_idle_0 & 0x1) == 0x1) &&
9304 		    ((port_is_idle_1 & 0x1) == 0x1) &&
9305 		    (pgl_exp_rom2 == 0xffffffff) &&
9306 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9307 			break;
9308 		usleep_range(1000, 2000);
9309 	} while (cnt-- > 0);
9310 
9311 	if (cnt <= 0) {
9312 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9313 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9314 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9315 			  pgl_exp_rom2);
9316 		return -EAGAIN;
9317 	}
9318 
9319 	barrier();
9320 
9321 	/* Close gates #2, #3 and #4 */
9322 	bnx2x_set_234_gates(bp, true);
9323 
9324 	/* Poll for IGU VQs for 57712 and newer chips */
9325 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9326 		return -EAGAIN;
9327 
9328 	/* TBD: Indicate that "process kill" is in progress to MCP */
9329 
9330 	/* Clear "unprepared" bit */
9331 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9332 	barrier();
9333 
9334 	/* Make sure all is written to the chip before the reset */
9335 	mmiowb();
9336 
9337 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9338 	 * PSWHST, GRC and PSWRD Tetris buffer.
9339 	 */
9340 	usleep_range(1000, 2000);
9341 
9342 	/* Prepare to chip reset: */
9343 	/* MCP */
9344 	if (global)
9345 		bnx2x_reset_mcp_prep(bp, &val);
9346 
9347 	/* PXP */
9348 	bnx2x_pxp_prep(bp);
9349 	barrier();
9350 
9351 	/* reset the chip */
9352 	bnx2x_process_kill_chip_reset(bp, global);
9353 	barrier();
9354 
9355 	/* Recover after reset: */
9356 	/* MCP */
9357 	if (global && bnx2x_reset_mcp_comp(bp, val))
9358 		return -EAGAIN;
9359 
9360 	/* TBD: Add resetting the NO_MCP mode DB here */
9361 
9362 	/* Open the gates #2, #3 and #4 */
9363 	bnx2x_set_234_gates(bp, false);
9364 
9365 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9366 	 * reset state, re-enable attentions. */
9367 
9368 	return 0;
9369 }
9370 
9371 static int bnx2x_leader_reset(struct bnx2x *bp)
9372 {
9373 	int rc = 0;
9374 	bool global = bnx2x_reset_is_global(bp);
9375 	u32 load_code;
9376 
9377 	/* if not going to reset MCP - load "fake" driver to reset HW while
9378 	 * driver is owner of the HW
9379 	 */
9380 	if (!global && !BP_NOMCP(bp)) {
9381 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9382 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9383 		if (!load_code) {
9384 			BNX2X_ERR("MCP response failure, aborting\n");
9385 			rc = -EAGAIN;
9386 			goto exit_leader_reset;
9387 		}
9388 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9389 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9390 			BNX2X_ERR("MCP unexpected resp, aborting\n");
9391 			rc = -EAGAIN;
9392 			goto exit_leader_reset2;
9393 		}
9394 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9395 		if (!load_code) {
9396 			BNX2X_ERR("MCP response failure, aborting\n");
9397 			rc = -EAGAIN;
9398 			goto exit_leader_reset2;
9399 		}
9400 	}
9401 
9402 	/* Try to recover after the failure */
9403 	if (bnx2x_process_kill(bp, global)) {
9404 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9405 			  BP_PATH(bp));
9406 		rc = -EAGAIN;
9407 		goto exit_leader_reset2;
9408 	}
9409 
9410 	/*
9411 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9412 	 * state.
9413 	 */
9414 	bnx2x_set_reset_done(bp);
9415 	if (global)
9416 		bnx2x_clear_reset_global(bp);
9417 
9418 exit_leader_reset2:
9419 	/* unload "fake driver" if it was loaded */
9420 	if (!global && !BP_NOMCP(bp)) {
9421 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9422 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9423 	}
9424 exit_leader_reset:
9425 	bp->is_leader = 0;
9426 	bnx2x_release_leader_lock(bp);
9427 	smp_mb();
9428 	return rc;
9429 }
9430 
9431 static void bnx2x_recovery_failed(struct bnx2x *bp)
9432 {
9433 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9434 
9435 	/* Disconnect this device */
9436 	netif_device_detach(bp->dev);
9437 
9438 	/*
9439 	 * Block ifup for all function on this engine until "process kill"
9440 	 * or power cycle.
9441 	 */
9442 	bnx2x_set_reset_in_progress(bp);
9443 
9444 	/* Shut down the power */
9445 	bnx2x_set_power_state(bp, PCI_D3hot);
9446 
9447 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9448 
9449 	smp_mb();
9450 }
9451 
9452 /*
9453  * Assumption: runs under rtnl lock. This together with the fact
9454  * that it's called only from bnx2x_sp_rtnl() ensure that it
9455  * will never be called when netif_running(bp->dev) is false.
9456  */
9457 static void bnx2x_parity_recover(struct bnx2x *bp)
9458 {
9459 	bool global = false;
9460 	u32 error_recovered, error_unrecovered;
9461 	bool is_parity;
9462 
9463 	DP(NETIF_MSG_HW, "Handling parity\n");
9464 	while (1) {
9465 		switch (bp->recovery_state) {
9466 		case BNX2X_RECOVERY_INIT:
9467 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9468 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9469 			WARN_ON(!is_parity);
9470 
9471 			/* Try to get a LEADER_LOCK HW lock */
9472 			if (bnx2x_trylock_leader_lock(bp)) {
9473 				bnx2x_set_reset_in_progress(bp);
9474 				/*
9475 				 * Check if there is a global attention and if
9476 				 * there was a global attention, set the global
9477 				 * reset bit.
9478 				 */
9479 
9480 				if (global)
9481 					bnx2x_set_reset_global(bp);
9482 
9483 				bp->is_leader = 1;
9484 			}
9485 
9486 			/* Stop the driver */
9487 			/* If interface has been removed - break */
9488 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9489 				return;
9490 
9491 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
9492 
9493 			/* Ensure "is_leader", MCP command sequence and
9494 			 * "recovery_state" update values are seen on other
9495 			 * CPUs.
9496 			 */
9497 			smp_mb();
9498 			break;
9499 
9500 		case BNX2X_RECOVERY_WAIT:
9501 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9502 			if (bp->is_leader) {
9503 				int other_engine = BP_PATH(bp) ? 0 : 1;
9504 				bool other_load_status =
9505 					bnx2x_get_load_status(bp, other_engine);
9506 				bool load_status =
9507 					bnx2x_get_load_status(bp, BP_PATH(bp));
9508 				global = bnx2x_reset_is_global(bp);
9509 
9510 				/*
9511 				 * In case of a parity in a global block, let
9512 				 * the first leader that performs a
9513 				 * leader_reset() reset the global blocks in
9514 				 * order to clear global attentions. Otherwise
9515 				 * the gates will remain closed for that
9516 				 * engine.
9517 				 */
9518 				if (load_status ||
9519 				    (global && other_load_status)) {
9520 					/* Wait until all other functions get
9521 					 * down.
9522 					 */
9523 					schedule_delayed_work(&bp->sp_rtnl_task,
9524 								HZ/10);
9525 					return;
9526 				} else {
9527 					/* If all other functions got down -
9528 					 * try to bring the chip back to
9529 					 * normal. In any case it's an exit
9530 					 * point for a leader.
9531 					 */
9532 					if (bnx2x_leader_reset(bp)) {
9533 						bnx2x_recovery_failed(bp);
9534 						return;
9535 					}
9536 
9537 					/* If we are here, means that the
9538 					 * leader has succeeded and doesn't
9539 					 * want to be a leader any more. Try
9540 					 * to continue as a none-leader.
9541 					 */
9542 					break;
9543 				}
9544 			} else { /* non-leader */
9545 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9546 					/* Try to get a LEADER_LOCK HW lock as
9547 					 * long as a former leader may have
9548 					 * been unloaded by the user or
9549 					 * released a leadership by another
9550 					 * reason.
9551 					 */
9552 					if (bnx2x_trylock_leader_lock(bp)) {
9553 						/* I'm a leader now! Restart a
9554 						 * switch case.
9555 						 */
9556 						bp->is_leader = 1;
9557 						break;
9558 					}
9559 
9560 					schedule_delayed_work(&bp->sp_rtnl_task,
9561 								HZ/10);
9562 					return;
9563 
9564 				} else {
9565 					/*
9566 					 * If there was a global attention, wait
9567 					 * for it to be cleared.
9568 					 */
9569 					if (bnx2x_reset_is_global(bp)) {
9570 						schedule_delayed_work(
9571 							&bp->sp_rtnl_task,
9572 							HZ/10);
9573 						return;
9574 					}
9575 
9576 					error_recovered =
9577 					  bp->eth_stats.recoverable_error;
9578 					error_unrecovered =
9579 					  bp->eth_stats.unrecoverable_error;
9580 					bp->recovery_state =
9581 						BNX2X_RECOVERY_NIC_LOADING;
9582 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9583 						error_unrecovered++;
9584 						netdev_err(bp->dev,
9585 							   "Recovery failed. Power cycle needed\n");
9586 						/* Disconnect this device */
9587 						netif_device_detach(bp->dev);
9588 						/* Shut down the power */
9589 						bnx2x_set_power_state(
9590 							bp, PCI_D3hot);
9591 						smp_mb();
9592 					} else {
9593 						bp->recovery_state =
9594 							BNX2X_RECOVERY_DONE;
9595 						error_recovered++;
9596 						smp_mb();
9597 					}
9598 					bp->eth_stats.recoverable_error =
9599 						error_recovered;
9600 					bp->eth_stats.unrecoverable_error =
9601 						error_unrecovered;
9602 
9603 					return;
9604 				}
9605 			}
9606 		default:
9607 			return;
9608 		}
9609 	}
9610 }
9611 
9612 static int bnx2x_close(struct net_device *dev);
9613 
9614 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9615  * scheduled on a general queue in order to prevent a dead lock.
9616  */
9617 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9618 {
9619 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9620 
9621 	rtnl_lock();
9622 
9623 	if (!netif_running(bp->dev)) {
9624 		rtnl_unlock();
9625 		return;
9626 	}
9627 
9628 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9629 #ifdef BNX2X_STOP_ON_ERROR
9630 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9631 			  "you will need to reboot when done\n");
9632 		goto sp_rtnl_not_reset;
9633 #endif
9634 		/*
9635 		 * Clear all pending SP commands as we are going to reset the
9636 		 * function anyway.
9637 		 */
9638 		bp->sp_rtnl_state = 0;
9639 		smp_mb();
9640 
9641 		bnx2x_parity_recover(bp);
9642 
9643 		rtnl_unlock();
9644 		return;
9645 	}
9646 
9647 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9648 #ifdef BNX2X_STOP_ON_ERROR
9649 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9650 			  "you will need to reboot when done\n");
9651 		goto sp_rtnl_not_reset;
9652 #endif
9653 
9654 		/*
9655 		 * Clear all pending SP commands as we are going to reset the
9656 		 * function anyway.
9657 		 */
9658 		bp->sp_rtnl_state = 0;
9659 		smp_mb();
9660 
9661 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9662 		bnx2x_nic_load(bp, LOAD_NORMAL);
9663 
9664 		rtnl_unlock();
9665 		return;
9666 	}
9667 #ifdef BNX2X_STOP_ON_ERROR
9668 sp_rtnl_not_reset:
9669 #endif
9670 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9671 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9672 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9673 		bnx2x_after_function_update(bp);
9674 	/*
9675 	 * in case of fan failure we need to reset id if the "stop on error"
9676 	 * debug flag is set, since we trying to prevent permanent overheating
9677 	 * damage
9678 	 */
9679 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9680 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9681 		netif_device_detach(bp->dev);
9682 		bnx2x_close(bp->dev);
9683 		rtnl_unlock();
9684 		return;
9685 	}
9686 
9687 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9688 		DP(BNX2X_MSG_SP,
9689 		   "sending set mcast vf pf channel message from rtnl sp-task\n");
9690 		bnx2x_vfpf_set_mcast(bp->dev);
9691 	}
9692 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
9693 			       &bp->sp_rtnl_state)){
9694 		if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
9695 			bnx2x_tx_disable(bp);
9696 			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
9697 		}
9698 	}
9699 
9700 	if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
9701 		DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
9702 		bnx2x_set_rx_mode_inner(bp);
9703 	}
9704 
9705 	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
9706 			       &bp->sp_rtnl_state))
9707 		bnx2x_pf_set_vfs_vlan(bp);
9708 
9709 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state))
9710 		bnx2x_dcbx_stop_hw_tx(bp);
9711 
9712 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_RESUME, &bp->sp_rtnl_state))
9713 		bnx2x_dcbx_resume_hw_tx(bp);
9714 
9715 	/* work which needs rtnl lock not-taken (as it takes the lock itself and
9716 	 * can be called from other contexts as well)
9717 	 */
9718 	rtnl_unlock();
9719 
9720 	/* enable SR-IOV if applicable */
9721 	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
9722 					       &bp->sp_rtnl_state)) {
9723 		bnx2x_disable_sriov(bp);
9724 		bnx2x_enable_sriov(bp);
9725 	}
9726 }
9727 
9728 static void bnx2x_period_task(struct work_struct *work)
9729 {
9730 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9731 
9732 	if (!netif_running(bp->dev))
9733 		goto period_task_exit;
9734 
9735 	if (CHIP_REV_IS_SLOW(bp)) {
9736 		BNX2X_ERR("period task called on emulation, ignoring\n");
9737 		goto period_task_exit;
9738 	}
9739 
9740 	bnx2x_acquire_phy_lock(bp);
9741 	/*
9742 	 * The barrier is needed to ensure the ordering between the writing to
9743 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9744 	 * the reading here.
9745 	 */
9746 	smp_mb();
9747 	if (bp->port.pmf) {
9748 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
9749 
9750 		/* Re-queue task in 1 sec */
9751 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9752 	}
9753 
9754 	bnx2x_release_phy_lock(bp);
9755 period_task_exit:
9756 	return;
9757 }
9758 
9759 /*
9760  * Init service functions
9761  */
9762 
9763 u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9764 {
9765 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9766 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9767 	return base + (BP_ABS_FUNC(bp)) * stride;
9768 }
9769 
9770 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9771 					struct bnx2x_mac_vals *vals)
9772 {
9773 	u32 val, base_addr, offset, mask, reset_reg;
9774 	bool mac_stopped = false;
9775 	u8 port = BP_PORT(bp);
9776 
9777 	/* reset addresses as they also mark which values were changed */
9778 	vals->bmac_addr = 0;
9779 	vals->umac_addr = 0;
9780 	vals->xmac_addr = 0;
9781 	vals->emac_addr = 0;
9782 
9783 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9784 
9785 	if (!CHIP_IS_E3(bp)) {
9786 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9787 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9788 		if ((mask & reset_reg) && val) {
9789 			u32 wb_data[2];
9790 			BNX2X_DEV_INFO("Disable bmac Rx\n");
9791 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9792 						: NIG_REG_INGRESS_BMAC0_MEM;
9793 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9794 						: BIGMAC_REGISTER_BMAC_CONTROL;
9795 
9796 			/*
9797 			 * use rd/wr since we cannot use dmae. This is safe
9798 			 * since MCP won't access the bus due to the request
9799 			 * to unload, and no function on the path can be
9800 			 * loaded at this time.
9801 			 */
9802 			wb_data[0] = REG_RD(bp, base_addr + offset);
9803 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9804 			vals->bmac_addr = base_addr + offset;
9805 			vals->bmac_val[0] = wb_data[0];
9806 			vals->bmac_val[1] = wb_data[1];
9807 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9808 			REG_WR(bp, vals->bmac_addr, wb_data[0]);
9809 			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
9810 		}
9811 		BNX2X_DEV_INFO("Disable emac Rx\n");
9812 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
9813 		vals->emac_val = REG_RD(bp, vals->emac_addr);
9814 		REG_WR(bp, vals->emac_addr, 0);
9815 		mac_stopped = true;
9816 	} else {
9817 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9818 			BNX2X_DEV_INFO("Disable xmac Rx\n");
9819 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9820 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9821 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9822 			       val & ~(1 << 1));
9823 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9824 			       val | (1 << 1));
9825 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9826 			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
9827 			REG_WR(bp, vals->xmac_addr, 0);
9828 			mac_stopped = true;
9829 		}
9830 		mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9831 		if (mask & reset_reg) {
9832 			BNX2X_DEV_INFO("Disable umac Rx\n");
9833 			base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9834 			vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9835 			vals->umac_val = REG_RD(bp, vals->umac_addr);
9836 			REG_WR(bp, vals->umac_addr, 0);
9837 			mac_stopped = true;
9838 		}
9839 	}
9840 
9841 	if (mac_stopped)
9842 		msleep(20);
9843 }
9844 
9845 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9846 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
9847 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
9848 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
9849 
9850 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
9851 {
9852 	u16 rcq, bd;
9853 	u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9854 
9855 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9856 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9857 
9858 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9859 	REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9860 
9861 	BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9862 		       port, bd, rcq);
9863 }
9864 
9865 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
9866 {
9867 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9868 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9869 	if (!rc) {
9870 		BNX2X_ERR("MCP response failure, aborting\n");
9871 		return -EBUSY;
9872 	}
9873 
9874 	return 0;
9875 }
9876 
9877 static struct bnx2x_prev_path_list *
9878 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
9879 {
9880 	struct bnx2x_prev_path_list *tmp_list;
9881 
9882 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
9883 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9884 		    bp->pdev->bus->number == tmp_list->bus &&
9885 		    BP_PATH(bp) == tmp_list->path)
9886 			return tmp_list;
9887 
9888 	return NULL;
9889 }
9890 
9891 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
9892 {
9893 	struct bnx2x_prev_path_list *tmp_list;
9894 	int rc;
9895 
9896 	rc = down_interruptible(&bnx2x_prev_sem);
9897 	if (rc) {
9898 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
9899 		return rc;
9900 	}
9901 
9902 	tmp_list = bnx2x_prev_path_get_entry(bp);
9903 	if (tmp_list) {
9904 		tmp_list->aer = 1;
9905 		rc = 0;
9906 	} else {
9907 		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
9908 			  BP_PATH(bp));
9909 	}
9910 
9911 	up(&bnx2x_prev_sem);
9912 
9913 	return rc;
9914 }
9915 
9916 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
9917 {
9918 	struct bnx2x_prev_path_list *tmp_list;
9919 	int rc = false;
9920 
9921 	if (down_trylock(&bnx2x_prev_sem))
9922 		return false;
9923 
9924 	tmp_list = bnx2x_prev_path_get_entry(bp);
9925 	if (tmp_list) {
9926 		if (tmp_list->aer) {
9927 			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
9928 			   BP_PATH(bp));
9929 		} else {
9930 			rc = true;
9931 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
9932 				       BP_PATH(bp));
9933 		}
9934 	}
9935 
9936 	up(&bnx2x_prev_sem);
9937 
9938 	return rc;
9939 }
9940 
9941 bool bnx2x_port_after_undi(struct bnx2x *bp)
9942 {
9943 	struct bnx2x_prev_path_list *entry;
9944 	bool val;
9945 
9946 	down(&bnx2x_prev_sem);
9947 
9948 	entry = bnx2x_prev_path_get_entry(bp);
9949 	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
9950 
9951 	up(&bnx2x_prev_sem);
9952 
9953 	return val;
9954 }
9955 
9956 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
9957 {
9958 	struct bnx2x_prev_path_list *tmp_list;
9959 	int rc;
9960 
9961 	rc = down_interruptible(&bnx2x_prev_sem);
9962 	if (rc) {
9963 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
9964 		return rc;
9965 	}
9966 
9967 	/* Check whether the entry for this path already exists */
9968 	tmp_list = bnx2x_prev_path_get_entry(bp);
9969 	if (tmp_list) {
9970 		if (!tmp_list->aer) {
9971 			BNX2X_ERR("Re-Marking the path.\n");
9972 		} else {
9973 			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
9974 			   BP_PATH(bp));
9975 			tmp_list->aer = 0;
9976 		}
9977 		up(&bnx2x_prev_sem);
9978 		return 0;
9979 	}
9980 	up(&bnx2x_prev_sem);
9981 
9982 	/* Create an entry for this path and add it */
9983 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
9984 	if (!tmp_list) {
9985 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
9986 		return -ENOMEM;
9987 	}
9988 
9989 	tmp_list->bus = bp->pdev->bus->number;
9990 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
9991 	tmp_list->path = BP_PATH(bp);
9992 	tmp_list->aer = 0;
9993 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
9994 
9995 	rc = down_interruptible(&bnx2x_prev_sem);
9996 	if (rc) {
9997 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
9998 		kfree(tmp_list);
9999 	} else {
10000 		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10001 		   BP_PATH(bp));
10002 		list_add(&tmp_list->list, &bnx2x_prev_list);
10003 		up(&bnx2x_prev_sem);
10004 	}
10005 
10006 	return rc;
10007 }
10008 
10009 static int bnx2x_do_flr(struct bnx2x *bp)
10010 {
10011 	struct pci_dev *dev = bp->pdev;
10012 
10013 	if (CHIP_IS_E1x(bp)) {
10014 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10015 		return -EINVAL;
10016 	}
10017 
10018 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10019 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10020 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10021 			  bp->common.bc_ver);
10022 		return -EINVAL;
10023 	}
10024 
10025 	if (!pci_wait_for_pending_transaction(dev))
10026 		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10027 
10028 	BNX2X_DEV_INFO("Initiating FLR\n");
10029 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10030 
10031 	return 0;
10032 }
10033 
10034 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10035 {
10036 	int rc;
10037 
10038 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
10039 
10040 	/* Test if previous unload process was already finished for this path */
10041 	if (bnx2x_prev_is_path_marked(bp))
10042 		return bnx2x_prev_mcp_done(bp);
10043 
10044 	BNX2X_DEV_INFO("Path is unmarked\n");
10045 
10046 	/* If function has FLR capabilities, and existing FW version matches
10047 	 * the one required, then FLR will be sufficient to clean any residue
10048 	 * left by previous driver
10049 	 */
10050 	rc = bnx2x_nic_load_analyze_req(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION);
10051 
10052 	if (!rc) {
10053 		/* fw version is good */
10054 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10055 		rc = bnx2x_do_flr(bp);
10056 	}
10057 
10058 	if (!rc) {
10059 		/* FLR was performed */
10060 		BNX2X_DEV_INFO("FLR successful\n");
10061 		return 0;
10062 	}
10063 
10064 	BNX2X_DEV_INFO("Could not FLR\n");
10065 
10066 	/* Close the MCP request, return failure*/
10067 	rc = bnx2x_prev_mcp_done(bp);
10068 	if (!rc)
10069 		rc = BNX2X_PREV_WAIT_NEEDED;
10070 
10071 	return rc;
10072 }
10073 
10074 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10075 {
10076 	u32 reset_reg, tmp_reg = 0, rc;
10077 	bool prev_undi = false;
10078 	struct bnx2x_mac_vals mac_vals;
10079 
10080 	/* It is possible a previous function received 'common' answer,
10081 	 * but hasn't loaded yet, therefore creating a scenario of
10082 	 * multiple functions receiving 'common' on the same path.
10083 	 */
10084 	BNX2X_DEV_INFO("Common unload Flow\n");
10085 
10086 	memset(&mac_vals, 0, sizeof(mac_vals));
10087 
10088 	if (bnx2x_prev_is_path_marked(bp))
10089 		return bnx2x_prev_mcp_done(bp);
10090 
10091 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10092 
10093 	/* Reset should be performed after BRB is emptied */
10094 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10095 		u32 timer_count = 1000;
10096 
10097 		/* Close the MAC Rx to prevent BRB from filling up */
10098 		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10099 
10100 		/* close LLH filters towards the BRB */
10101 		bnx2x_set_rx_filter(&bp->link_params, 0);
10102 
10103 		/* Check if the UNDI driver was previously loaded
10104 		 * UNDI driver initializes CID offset for normal bell to 0x7
10105 		 */
10106 		if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
10107 			tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
10108 			if (tmp_reg == 0x7) {
10109 				BNX2X_DEV_INFO("UNDI previously loaded\n");
10110 				prev_undi = true;
10111 				/* clear the UNDI indication */
10112 				REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10113 				/* clear possible idle check errors */
10114 				REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10115 			}
10116 		}
10117 		if (!CHIP_IS_E1x(bp))
10118 			/* block FW from writing to host */
10119 			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10120 
10121 		/* wait until BRB is empty */
10122 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10123 		while (timer_count) {
10124 			u32 prev_brb = tmp_reg;
10125 
10126 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10127 			if (!tmp_reg)
10128 				break;
10129 
10130 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10131 
10132 			/* reset timer as long as BRB actually gets emptied */
10133 			if (prev_brb > tmp_reg)
10134 				timer_count = 1000;
10135 			else
10136 				timer_count--;
10137 
10138 			/* If UNDI resides in memory, manually increment it */
10139 			if (prev_undi)
10140 				bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
10141 
10142 			udelay(10);
10143 		}
10144 
10145 		if (!timer_count)
10146 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10147 	}
10148 
10149 	/* No packets are in the pipeline, path is ready for reset */
10150 	bnx2x_reset_common(bp);
10151 
10152 	if (mac_vals.xmac_addr)
10153 		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10154 	if (mac_vals.umac_addr)
10155 		REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10156 	if (mac_vals.emac_addr)
10157 		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10158 	if (mac_vals.bmac_addr) {
10159 		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10160 		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10161 	}
10162 
10163 	rc = bnx2x_prev_mark_path(bp, prev_undi);
10164 	if (rc) {
10165 		bnx2x_prev_mcp_done(bp);
10166 		return rc;
10167 	}
10168 
10169 	return bnx2x_prev_mcp_done(bp);
10170 }
10171 
10172 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
10173  * and boot began, or when kdump kernel was loaded. Either case would invalidate
10174  * the addresses of the transaction, resulting in was-error bit set in the pci
10175  * causing all hw-to-host pcie transactions to timeout. If this happened we want
10176  * to clear the interrupt which detected this from the pglueb and the was done
10177  * bit
10178  */
10179 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10180 {
10181 	if (!CHIP_IS_E1x(bp)) {
10182 		u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10183 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10184 			DP(BNX2X_MSG_SP,
10185 			   "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10186 			REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10187 			       1 << BP_FUNC(bp));
10188 		}
10189 	}
10190 }
10191 
10192 static int bnx2x_prev_unload(struct bnx2x *bp)
10193 {
10194 	int time_counter = 10;
10195 	u32 rc, fw, hw_lock_reg, hw_lock_val;
10196 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10197 
10198 	/* clear hw from errors which may have resulted from an interrupted
10199 	 * dmae transaction.
10200 	 */
10201 	bnx2x_prev_interrupted_dmae(bp);
10202 
10203 	/* Release previously held locks */
10204 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10205 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10206 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10207 
10208 	hw_lock_val = REG_RD(bp, hw_lock_reg);
10209 	if (hw_lock_val) {
10210 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10211 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10212 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10213 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10214 		}
10215 
10216 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10217 		REG_WR(bp, hw_lock_reg, 0xffffffff);
10218 	} else
10219 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10220 
10221 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10222 		BNX2X_DEV_INFO("Release previously held alr\n");
10223 		bnx2x_release_alr(bp);
10224 	}
10225 
10226 	do {
10227 		int aer = 0;
10228 		/* Lock MCP using an unload request */
10229 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10230 		if (!fw) {
10231 			BNX2X_ERR("MCP response failure, aborting\n");
10232 			rc = -EBUSY;
10233 			break;
10234 		}
10235 
10236 		rc = down_interruptible(&bnx2x_prev_sem);
10237 		if (rc) {
10238 			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10239 				  rc);
10240 		} else {
10241 			/* If Path is marked by EEH, ignore unload status */
10242 			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10243 				 bnx2x_prev_path_get_entry(bp)->aer);
10244 			up(&bnx2x_prev_sem);
10245 		}
10246 
10247 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10248 			rc = bnx2x_prev_unload_common(bp);
10249 			break;
10250 		}
10251 
10252 		/* non-common reply from MCP might require looping */
10253 		rc = bnx2x_prev_unload_uncommon(bp);
10254 		if (rc != BNX2X_PREV_WAIT_NEEDED)
10255 			break;
10256 
10257 		msleep(20);
10258 	} while (--time_counter);
10259 
10260 	if (!time_counter || rc) {
10261 		BNX2X_ERR("Failed unloading previous driver, aborting\n");
10262 		rc = -EBUSY;
10263 	}
10264 
10265 	/* Mark function if its port was used to boot from SAN */
10266 	if (bnx2x_port_after_undi(bp))
10267 		bp->link_params.feature_config_flags |=
10268 			FEATURE_CONFIG_BOOT_FROM_SAN;
10269 
10270 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10271 
10272 	return rc;
10273 }
10274 
10275 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10276 {
10277 	u32 val, val2, val3, val4, id, boot_mode;
10278 	u16 pmc;
10279 
10280 	/* Get the chip revision id and number. */
10281 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10282 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10283 	id = ((val & 0xffff) << 16);
10284 	val = REG_RD(bp, MISC_REG_CHIP_REV);
10285 	id |= ((val & 0xf) << 12);
10286 
10287 	/* Metal is read from PCI regs, but we can't access >=0x400 from
10288 	 * the configuration space (so we need to reg_rd)
10289 	 */
10290 	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10291 	id |= (((val >> 24) & 0xf) << 4);
10292 	val = REG_RD(bp, MISC_REG_BOND_ID);
10293 	id |= (val & 0xf);
10294 	bp->common.chip_id = id;
10295 
10296 	/* force 57811 according to MISC register */
10297 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10298 		if (CHIP_IS_57810(bp))
10299 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10300 				(bp->common.chip_id & 0x0000FFFF);
10301 		else if (CHIP_IS_57810_MF(bp))
10302 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10303 				(bp->common.chip_id & 0x0000FFFF);
10304 		bp->common.chip_id |= 0x1;
10305 	}
10306 
10307 	/* Set doorbell size */
10308 	bp->db_size = (1 << BNX2X_DB_SHIFT);
10309 
10310 	if (!CHIP_IS_E1x(bp)) {
10311 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10312 		if ((val & 1) == 0)
10313 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10314 		else
10315 			val = (val >> 1) & 1;
10316 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10317 						       "2_PORT_MODE");
10318 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10319 						 CHIP_2_PORT_MODE;
10320 
10321 		if (CHIP_MODE_IS_4_PORT(bp))
10322 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10323 		else
10324 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10325 	} else {
10326 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10327 		bp->pfid = bp->pf_num;			/* 0..7 */
10328 	}
10329 
10330 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10331 
10332 	bp->link_params.chip_id = bp->common.chip_id;
10333 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10334 
10335 	val = (REG_RD(bp, 0x2874) & 0x55);
10336 	if ((bp->common.chip_id & 0x1) ||
10337 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10338 		bp->flags |= ONE_PORT_FLAG;
10339 		BNX2X_DEV_INFO("single port device\n");
10340 	}
10341 
10342 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10343 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10344 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10345 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10346 		       bp->common.flash_size, bp->common.flash_size);
10347 
10348 	bnx2x_init_shmem(bp);
10349 
10350 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10351 					MISC_REG_GENERIC_CR_1 :
10352 					MISC_REG_GENERIC_CR_0));
10353 
10354 	bp->link_params.shmem_base = bp->common.shmem_base;
10355 	bp->link_params.shmem2_base = bp->common.shmem2_base;
10356 	if (SHMEM2_RD(bp, size) >
10357 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10358 		bp->link_params.lfa_base =
10359 		REG_RD(bp, bp->common.shmem2_base +
10360 		       (u32)offsetof(struct shmem2_region,
10361 				     lfa_host_addr[BP_PORT(bp)]));
10362 	else
10363 		bp->link_params.lfa_base = 0;
10364 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10365 		       bp->common.shmem_base, bp->common.shmem2_base);
10366 
10367 	if (!bp->common.shmem_base) {
10368 		BNX2X_DEV_INFO("MCP not active\n");
10369 		bp->flags |= NO_MCP_FLAG;
10370 		return;
10371 	}
10372 
10373 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10374 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10375 
10376 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
10377 					SHARED_HW_CFG_LED_MODE_MASK) >>
10378 				       SHARED_HW_CFG_LED_MODE_SHIFT);
10379 
10380 	bp->link_params.feature_config_flags = 0;
10381 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10382 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10383 		bp->link_params.feature_config_flags |=
10384 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10385 	else
10386 		bp->link_params.feature_config_flags &=
10387 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10388 
10389 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10390 	bp->common.bc_ver = val;
10391 	BNX2X_DEV_INFO("bc_ver %X\n", val);
10392 	if (val < BNX2X_BC_VER) {
10393 		/* for now only warn
10394 		 * later we might need to enforce this */
10395 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10396 			  BNX2X_BC_VER, val);
10397 	}
10398 	bp->link_params.feature_config_flags |=
10399 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10400 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10401 
10402 	bp->link_params.feature_config_flags |=
10403 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10404 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10405 	bp->link_params.feature_config_flags |=
10406 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10407 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10408 	bp->link_params.feature_config_flags |=
10409 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10410 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10411 
10412 	bp->link_params.feature_config_flags |=
10413 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10414 		FEATURE_CONFIG_MT_SUPPORT : 0;
10415 
10416 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10417 			BC_SUPPORTS_PFC_STATS : 0;
10418 
10419 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10420 			BC_SUPPORTS_FCOE_FEATURES : 0;
10421 
10422 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10423 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10424 
10425 	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10426 			BC_SUPPORTS_RMMOD_CMD : 0;
10427 
10428 	boot_mode = SHMEM_RD(bp,
10429 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10430 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10431 	switch (boot_mode) {
10432 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10433 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10434 		break;
10435 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10436 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10437 		break;
10438 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10439 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10440 		break;
10441 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10442 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10443 		break;
10444 	}
10445 
10446 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
10447 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10448 
10449 	BNX2X_DEV_INFO("%sWoL capable\n",
10450 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
10451 
10452 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10453 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10454 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10455 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10456 
10457 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10458 		 val, val2, val3, val4);
10459 }
10460 
10461 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10462 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10463 
10464 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10465 {
10466 	int pfid = BP_FUNC(bp);
10467 	int igu_sb_id;
10468 	u32 val;
10469 	u8 fid, igu_sb_cnt = 0;
10470 
10471 	bp->igu_base_sb = 0xff;
10472 	if (CHIP_INT_MODE_IS_BC(bp)) {
10473 		int vn = BP_VN(bp);
10474 		igu_sb_cnt = bp->igu_sb_cnt;
10475 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10476 			FP_SB_MAX_E1x;
10477 
10478 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10479 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10480 
10481 		return 0;
10482 	}
10483 
10484 	/* IGU in normal mode - read CAM */
10485 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10486 	     igu_sb_id++) {
10487 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10488 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10489 			continue;
10490 		fid = IGU_FID(val);
10491 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
10492 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10493 				continue;
10494 			if (IGU_VEC(val) == 0)
10495 				/* default status block */
10496 				bp->igu_dsb_id = igu_sb_id;
10497 			else {
10498 				if (bp->igu_base_sb == 0xff)
10499 					bp->igu_base_sb = igu_sb_id;
10500 				igu_sb_cnt++;
10501 			}
10502 		}
10503 	}
10504 
10505 #ifdef CONFIG_PCI_MSI
10506 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
10507 	 * optional that number of CAM entries will not be equal to the value
10508 	 * advertised in PCI.
10509 	 * Driver should use the minimal value of both as the actual status
10510 	 * block count
10511 	 */
10512 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10513 #endif
10514 
10515 	if (igu_sb_cnt == 0) {
10516 		BNX2X_ERR("CAM configuration error\n");
10517 		return -EINVAL;
10518 	}
10519 
10520 	return 0;
10521 }
10522 
10523 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10524 {
10525 	int cfg_size = 0, idx, port = BP_PORT(bp);
10526 
10527 	/* Aggregation of supported attributes of all external phys */
10528 	bp->port.supported[0] = 0;
10529 	bp->port.supported[1] = 0;
10530 	switch (bp->link_params.num_phys) {
10531 	case 1:
10532 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10533 		cfg_size = 1;
10534 		break;
10535 	case 2:
10536 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10537 		cfg_size = 1;
10538 		break;
10539 	case 3:
10540 		if (bp->link_params.multi_phy_config &
10541 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10542 			bp->port.supported[1] =
10543 				bp->link_params.phy[EXT_PHY1].supported;
10544 			bp->port.supported[0] =
10545 				bp->link_params.phy[EXT_PHY2].supported;
10546 		} else {
10547 			bp->port.supported[0] =
10548 				bp->link_params.phy[EXT_PHY1].supported;
10549 			bp->port.supported[1] =
10550 				bp->link_params.phy[EXT_PHY2].supported;
10551 		}
10552 		cfg_size = 2;
10553 		break;
10554 	}
10555 
10556 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
10557 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10558 			   SHMEM_RD(bp,
10559 			   dev_info.port_hw_config[port].external_phy_config),
10560 			   SHMEM_RD(bp,
10561 			   dev_info.port_hw_config[port].external_phy_config2));
10562 			return;
10563 	}
10564 
10565 	if (CHIP_IS_E3(bp))
10566 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10567 	else {
10568 		switch (switch_cfg) {
10569 		case SWITCH_CFG_1G:
10570 			bp->port.phy_addr = REG_RD(
10571 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10572 			break;
10573 		case SWITCH_CFG_10G:
10574 			bp->port.phy_addr = REG_RD(
10575 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10576 			break;
10577 		default:
10578 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10579 				  bp->port.link_config[0]);
10580 			return;
10581 		}
10582 	}
10583 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10584 	/* mask what we support according to speed_cap_mask per configuration */
10585 	for (idx = 0; idx < cfg_size; idx++) {
10586 		if (!(bp->link_params.speed_cap_mask[idx] &
10587 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10588 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10589 
10590 		if (!(bp->link_params.speed_cap_mask[idx] &
10591 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10592 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10593 
10594 		if (!(bp->link_params.speed_cap_mask[idx] &
10595 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10596 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10597 
10598 		if (!(bp->link_params.speed_cap_mask[idx] &
10599 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10600 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10601 
10602 		if (!(bp->link_params.speed_cap_mask[idx] &
10603 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10604 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10605 						     SUPPORTED_1000baseT_Full);
10606 
10607 		if (!(bp->link_params.speed_cap_mask[idx] &
10608 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10609 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10610 
10611 		if (!(bp->link_params.speed_cap_mask[idx] &
10612 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10613 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10614 
10615 		if (!(bp->link_params.speed_cap_mask[idx] &
10616 					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
10617 			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
10618 	}
10619 
10620 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10621 		       bp->port.supported[1]);
10622 }
10623 
10624 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10625 {
10626 	u32 link_config, idx, cfg_size = 0;
10627 	bp->port.advertising[0] = 0;
10628 	bp->port.advertising[1] = 0;
10629 	switch (bp->link_params.num_phys) {
10630 	case 1:
10631 	case 2:
10632 		cfg_size = 1;
10633 		break;
10634 	case 3:
10635 		cfg_size = 2;
10636 		break;
10637 	}
10638 	for (idx = 0; idx < cfg_size; idx++) {
10639 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10640 		link_config = bp->port.link_config[idx];
10641 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10642 		case PORT_FEATURE_LINK_SPEED_AUTO:
10643 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10644 				bp->link_params.req_line_speed[idx] =
10645 					SPEED_AUTO_NEG;
10646 				bp->port.advertising[idx] |=
10647 					bp->port.supported[idx];
10648 				if (bp->link_params.phy[EXT_PHY1].type ==
10649 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10650 					bp->port.advertising[idx] |=
10651 					(SUPPORTED_100baseT_Half |
10652 					 SUPPORTED_100baseT_Full);
10653 			} else {
10654 				/* force 10G, no AN */
10655 				bp->link_params.req_line_speed[idx] =
10656 					SPEED_10000;
10657 				bp->port.advertising[idx] |=
10658 					(ADVERTISED_10000baseT_Full |
10659 					 ADVERTISED_FIBRE);
10660 				continue;
10661 			}
10662 			break;
10663 
10664 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
10665 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10666 				bp->link_params.req_line_speed[idx] =
10667 					SPEED_10;
10668 				bp->port.advertising[idx] |=
10669 					(ADVERTISED_10baseT_Full |
10670 					 ADVERTISED_TP);
10671 			} else {
10672 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10673 					    link_config,
10674 				    bp->link_params.speed_cap_mask[idx]);
10675 				return;
10676 			}
10677 			break;
10678 
10679 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
10680 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10681 				bp->link_params.req_line_speed[idx] =
10682 					SPEED_10;
10683 				bp->link_params.req_duplex[idx] =
10684 					DUPLEX_HALF;
10685 				bp->port.advertising[idx] |=
10686 					(ADVERTISED_10baseT_Half |
10687 					 ADVERTISED_TP);
10688 			} else {
10689 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10690 					    link_config,
10691 					  bp->link_params.speed_cap_mask[idx]);
10692 				return;
10693 			}
10694 			break;
10695 
10696 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
10697 			if (bp->port.supported[idx] &
10698 			    SUPPORTED_100baseT_Full) {
10699 				bp->link_params.req_line_speed[idx] =
10700 					SPEED_100;
10701 				bp->port.advertising[idx] |=
10702 					(ADVERTISED_100baseT_Full |
10703 					 ADVERTISED_TP);
10704 			} else {
10705 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10706 					    link_config,
10707 					  bp->link_params.speed_cap_mask[idx]);
10708 				return;
10709 			}
10710 			break;
10711 
10712 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
10713 			if (bp->port.supported[idx] &
10714 			    SUPPORTED_100baseT_Half) {
10715 				bp->link_params.req_line_speed[idx] =
10716 								SPEED_100;
10717 				bp->link_params.req_duplex[idx] =
10718 								DUPLEX_HALF;
10719 				bp->port.advertising[idx] |=
10720 					(ADVERTISED_100baseT_Half |
10721 					 ADVERTISED_TP);
10722 			} else {
10723 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10724 				    link_config,
10725 				    bp->link_params.speed_cap_mask[idx]);
10726 				return;
10727 			}
10728 			break;
10729 
10730 		case PORT_FEATURE_LINK_SPEED_1G:
10731 			if (bp->port.supported[idx] &
10732 			    SUPPORTED_1000baseT_Full) {
10733 				bp->link_params.req_line_speed[idx] =
10734 					SPEED_1000;
10735 				bp->port.advertising[idx] |=
10736 					(ADVERTISED_1000baseT_Full |
10737 					 ADVERTISED_TP);
10738 			} else {
10739 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10740 				    link_config,
10741 				    bp->link_params.speed_cap_mask[idx]);
10742 				return;
10743 			}
10744 			break;
10745 
10746 		case PORT_FEATURE_LINK_SPEED_2_5G:
10747 			if (bp->port.supported[idx] &
10748 			    SUPPORTED_2500baseX_Full) {
10749 				bp->link_params.req_line_speed[idx] =
10750 					SPEED_2500;
10751 				bp->port.advertising[idx] |=
10752 					(ADVERTISED_2500baseX_Full |
10753 						ADVERTISED_TP);
10754 			} else {
10755 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10756 				    link_config,
10757 				    bp->link_params.speed_cap_mask[idx]);
10758 				return;
10759 			}
10760 			break;
10761 
10762 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
10763 			if (bp->port.supported[idx] &
10764 			    SUPPORTED_10000baseT_Full) {
10765 				bp->link_params.req_line_speed[idx] =
10766 					SPEED_10000;
10767 				bp->port.advertising[idx] |=
10768 					(ADVERTISED_10000baseT_Full |
10769 						ADVERTISED_FIBRE);
10770 			} else {
10771 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10772 				    link_config,
10773 				    bp->link_params.speed_cap_mask[idx]);
10774 				return;
10775 			}
10776 			break;
10777 		case PORT_FEATURE_LINK_SPEED_20G:
10778 			bp->link_params.req_line_speed[idx] = SPEED_20000;
10779 
10780 			break;
10781 		default:
10782 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10783 				  link_config);
10784 				bp->link_params.req_line_speed[idx] =
10785 							SPEED_AUTO_NEG;
10786 				bp->port.advertising[idx] =
10787 						bp->port.supported[idx];
10788 			break;
10789 		}
10790 
10791 		bp->link_params.req_flow_ctrl[idx] = (link_config &
10792 					 PORT_FEATURE_FLOW_CONTROL_MASK);
10793 		if (bp->link_params.req_flow_ctrl[idx] ==
10794 		    BNX2X_FLOW_CTRL_AUTO) {
10795 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
10796 				bp->link_params.req_flow_ctrl[idx] =
10797 							BNX2X_FLOW_CTRL_NONE;
10798 			else
10799 				bnx2x_set_requested_fc(bp);
10800 		}
10801 
10802 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10803 			       bp->link_params.req_line_speed[idx],
10804 			       bp->link_params.req_duplex[idx],
10805 			       bp->link_params.req_flow_ctrl[idx],
10806 			       bp->port.advertising[idx]);
10807 	}
10808 }
10809 
10810 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10811 {
10812 	__be16 mac_hi_be = cpu_to_be16(mac_hi);
10813 	__be32 mac_lo_be = cpu_to_be32(mac_lo);
10814 	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
10815 	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
10816 }
10817 
10818 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
10819 {
10820 	int port = BP_PORT(bp);
10821 	u32 config;
10822 	u32 ext_phy_type, ext_phy_config, eee_mode;
10823 
10824 	bp->link_params.bp = bp;
10825 	bp->link_params.port = port;
10826 
10827 	bp->link_params.lane_config =
10828 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10829 
10830 	bp->link_params.speed_cap_mask[0] =
10831 		SHMEM_RD(bp,
10832 			 dev_info.port_hw_config[port].speed_capability_mask) &
10833 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10834 	bp->link_params.speed_cap_mask[1] =
10835 		SHMEM_RD(bp,
10836 			 dev_info.port_hw_config[port].speed_capability_mask2) &
10837 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10838 	bp->port.link_config[0] =
10839 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10840 
10841 	bp->port.link_config[1] =
10842 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10843 
10844 	bp->link_params.multi_phy_config =
10845 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10846 	/* If the device is capable of WoL, set the default state according
10847 	 * to the HW
10848 	 */
10849 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10850 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10851 		   (config & PORT_FEATURE_WOL_ENABLED));
10852 
10853 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10854 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
10855 		bp->flags |= NO_ISCSI_FLAG;
10856 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10857 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
10858 		bp->flags |= NO_FCOE_FLAG;
10859 
10860 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
10861 		       bp->link_params.lane_config,
10862 		       bp->link_params.speed_cap_mask[0],
10863 		       bp->port.link_config[0]);
10864 
10865 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
10866 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
10867 	bnx2x_phy_probe(&bp->link_params);
10868 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10869 
10870 	bnx2x_link_settings_requested(bp);
10871 
10872 	/*
10873 	 * If connected directly, work with the internal PHY, otherwise, work
10874 	 * with the external PHY
10875 	 */
10876 	ext_phy_config =
10877 		SHMEM_RD(bp,
10878 			 dev_info.port_hw_config[port].external_phy_config);
10879 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
10880 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
10881 		bp->mdio.prtad = bp->port.phy_addr;
10882 
10883 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
10884 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
10885 		bp->mdio.prtad =
10886 			XGXS_EXT_PHY_ADDR(ext_phy_config);
10887 
10888 	/* Configure link feature according to nvram value */
10889 	eee_mode = (((SHMEM_RD(bp, dev_info.
10890 		      port_feature_config[port].eee_power_mode)) &
10891 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
10892 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
10893 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
10894 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
10895 					   EEE_MODE_ENABLE_LPI |
10896 					   EEE_MODE_OUTPUT_TIME;
10897 	} else {
10898 		bp->link_params.eee_mode = 0;
10899 	}
10900 }
10901 
10902 void bnx2x_get_iscsi_info(struct bnx2x *bp)
10903 {
10904 	u32 no_flags = NO_ISCSI_FLAG;
10905 	int port = BP_PORT(bp);
10906 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10907 				drv_lic_key[port].max_iscsi_conn);
10908 
10909 	if (!CNIC_SUPPORT(bp)) {
10910 		bp->flags |= no_flags;
10911 		return;
10912 	}
10913 
10914 	/* Get the number of maximum allowed iSCSI connections */
10915 	bp->cnic_eth_dev.max_iscsi_conn =
10916 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
10917 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
10918 
10919 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
10920 		       bp->cnic_eth_dev.max_iscsi_conn);
10921 
10922 	/*
10923 	 * If maximum allowed number of connections is zero -
10924 	 * disable the feature.
10925 	 */
10926 	if (!bp->cnic_eth_dev.max_iscsi_conn)
10927 		bp->flags |= no_flags;
10928 }
10929 
10930 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
10931 {
10932 	/* Port info */
10933 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10934 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
10935 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10936 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
10937 
10938 	/* Node info */
10939 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10940 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
10941 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10942 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
10943 }
10944 
10945 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
10946 {
10947 	u8 count = 0;
10948 
10949 	if (IS_MF(bp)) {
10950 		u8 fid;
10951 
10952 		/* iterate over absolute function ids for this path: */
10953 		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
10954 			if (IS_MF_SD(bp)) {
10955 				u32 cfg = MF_CFG_RD(bp,
10956 						    func_mf_config[fid].config);
10957 
10958 				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
10959 				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
10960 					    FUNC_MF_CFG_PROTOCOL_FCOE))
10961 					count++;
10962 			} else {
10963 				u32 cfg = MF_CFG_RD(bp,
10964 						    func_ext_config[fid].
10965 								      func_cfg);
10966 
10967 				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
10968 				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
10969 					count++;
10970 			}
10971 		}
10972 	} else { /* SF */
10973 		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
10974 
10975 		for (port = 0; port < port_cnt; port++) {
10976 			u32 lic = SHMEM_RD(bp,
10977 					   drv_lic_key[port].max_fcoe_conn) ^
10978 				  FW_ENCODE_32BIT_PATTERN;
10979 			if (lic)
10980 				count++;
10981 		}
10982 	}
10983 
10984 	return count;
10985 }
10986 
10987 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
10988 {
10989 	int port = BP_PORT(bp);
10990 	int func = BP_ABS_FUNC(bp);
10991 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10992 				drv_lic_key[port].max_fcoe_conn);
10993 	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
10994 
10995 	if (!CNIC_SUPPORT(bp)) {
10996 		bp->flags |= NO_FCOE_FLAG;
10997 		return;
10998 	}
10999 
11000 	/* Get the number of maximum allowed FCoE connections */
11001 	bp->cnic_eth_dev.max_fcoe_conn =
11002 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11003 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11004 
11005 	/* Calculate the number of maximum allowed FCoE tasks */
11006 	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11007 
11008 	/* check if FCoE resources must be shared between different functions */
11009 	if (num_fcoe_func)
11010 		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11011 
11012 	/* Read the WWN: */
11013 	if (!IS_MF(bp)) {
11014 		/* Port info */
11015 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11016 			SHMEM_RD(bp,
11017 				 dev_info.port_hw_config[port].
11018 				 fcoe_wwn_port_name_upper);
11019 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11020 			SHMEM_RD(bp,
11021 				 dev_info.port_hw_config[port].
11022 				 fcoe_wwn_port_name_lower);
11023 
11024 		/* Node info */
11025 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11026 			SHMEM_RD(bp,
11027 				 dev_info.port_hw_config[port].
11028 				 fcoe_wwn_node_name_upper);
11029 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11030 			SHMEM_RD(bp,
11031 				 dev_info.port_hw_config[port].
11032 				 fcoe_wwn_node_name_lower);
11033 	} else if (!IS_MF_SD(bp)) {
11034 		/*
11035 		 * Read the WWN info only if the FCoE feature is enabled for
11036 		 * this function.
11037 		 */
11038 		if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11039 			bnx2x_get_ext_wwn_info(bp, func);
11040 
11041 	} else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
11042 		bnx2x_get_ext_wwn_info(bp, func);
11043 	}
11044 
11045 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11046 
11047 	/*
11048 	 * If maximum allowed number of connections is zero -
11049 	 * disable the feature.
11050 	 */
11051 	if (!bp->cnic_eth_dev.max_fcoe_conn)
11052 		bp->flags |= NO_FCOE_FLAG;
11053 }
11054 
11055 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11056 {
11057 	/*
11058 	 * iSCSI may be dynamically disabled but reading
11059 	 * info here we will decrease memory usage by driver
11060 	 * if the feature is disabled for good
11061 	 */
11062 	bnx2x_get_iscsi_info(bp);
11063 	bnx2x_get_fcoe_info(bp);
11064 }
11065 
11066 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11067 {
11068 	u32 val, val2;
11069 	int func = BP_ABS_FUNC(bp);
11070 	int port = BP_PORT(bp);
11071 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11072 	u8 *fip_mac = bp->fip_mac;
11073 
11074 	if (IS_MF(bp)) {
11075 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11076 		 * FCoE MAC then the appropriate feature should be disabled.
11077 		 * In non SD mode features configuration comes from struct
11078 		 * func_ext_config.
11079 		 */
11080 		if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
11081 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11082 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11083 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11084 						 iscsi_mac_addr_upper);
11085 				val = MF_CFG_RD(bp, func_ext_config[func].
11086 						iscsi_mac_addr_lower);
11087 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11088 				BNX2X_DEV_INFO
11089 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11090 			} else {
11091 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11092 			}
11093 
11094 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11095 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11096 						 fcoe_mac_addr_upper);
11097 				val = MF_CFG_RD(bp, func_ext_config[func].
11098 						fcoe_mac_addr_lower);
11099 				bnx2x_set_mac_buf(fip_mac, val, val2);
11100 				BNX2X_DEV_INFO
11101 					("Read FCoE L2 MAC: %pM\n", fip_mac);
11102 			} else {
11103 				bp->flags |= NO_FCOE_FLAG;
11104 			}
11105 
11106 			bp->mf_ext_config = cfg;
11107 
11108 		} else { /* SD MODE */
11109 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11110 				/* use primary mac as iscsi mac */
11111 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11112 
11113 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11114 				BNX2X_DEV_INFO
11115 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11116 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11117 				/* use primary mac as fip mac */
11118 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11119 				BNX2X_DEV_INFO("SD FCoE MODE\n");
11120 				BNX2X_DEV_INFO
11121 					("Read FIP MAC: %pM\n", fip_mac);
11122 			}
11123 		}
11124 
11125 		/* If this is a storage-only interface, use SAN mac as
11126 		 * primary MAC. Notice that for SD this is already the case,
11127 		 * as the SAN mac was copied from the primary MAC.
11128 		 */
11129 		if (IS_MF_FCOE_AFEX(bp))
11130 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11131 	} else {
11132 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11133 				iscsi_mac_upper);
11134 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11135 			       iscsi_mac_lower);
11136 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11137 
11138 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11139 				fcoe_fip_mac_upper);
11140 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11141 			       fcoe_fip_mac_lower);
11142 		bnx2x_set_mac_buf(fip_mac, val, val2);
11143 	}
11144 
11145 	/* Disable iSCSI OOO if MAC configuration is invalid. */
11146 	if (!is_valid_ether_addr(iscsi_mac)) {
11147 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11148 		memset(iscsi_mac, 0, ETH_ALEN);
11149 	}
11150 
11151 	/* Disable FCoE if MAC configuration is invalid. */
11152 	if (!is_valid_ether_addr(fip_mac)) {
11153 		bp->flags |= NO_FCOE_FLAG;
11154 		memset(bp->fip_mac, 0, ETH_ALEN);
11155 	}
11156 }
11157 
11158 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11159 {
11160 	u32 val, val2;
11161 	int func = BP_ABS_FUNC(bp);
11162 	int port = BP_PORT(bp);
11163 
11164 	/* Zero primary MAC configuration */
11165 	memset(bp->dev->dev_addr, 0, ETH_ALEN);
11166 
11167 	if (BP_NOMCP(bp)) {
11168 		BNX2X_ERROR("warning: random MAC workaround active\n");
11169 		eth_hw_addr_random(bp->dev);
11170 	} else if (IS_MF(bp)) {
11171 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11172 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11173 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11174 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11175 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11176 
11177 		if (CNIC_SUPPORT(bp))
11178 			bnx2x_get_cnic_mac_hwinfo(bp);
11179 	} else {
11180 		/* in SF read MACs from port configuration */
11181 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11182 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11183 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11184 
11185 		if (CNIC_SUPPORT(bp))
11186 			bnx2x_get_cnic_mac_hwinfo(bp);
11187 	}
11188 
11189 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11190 
11191 	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
11192 		dev_err(&bp->pdev->dev,
11193 			"bad Ethernet MAC address configuration: %pM\n"
11194 			"change it manually before bringing up the appropriate network interface\n",
11195 			bp->dev->dev_addr);
11196 }
11197 
11198 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11199 {
11200 	int tmp;
11201 	u32 cfg;
11202 
11203 	if (IS_VF(bp))
11204 		return 0;
11205 
11206 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11207 		/* Take function: tmp = func */
11208 		tmp = BP_ABS_FUNC(bp);
11209 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11210 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11211 	} else {
11212 		/* Take port: tmp = port */
11213 		tmp = BP_PORT(bp);
11214 		cfg = SHMEM_RD(bp,
11215 			       dev_info.port_hw_config[tmp].generic_features);
11216 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11217 	}
11218 	return cfg;
11219 }
11220 
11221 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11222 {
11223 	int /*abs*/func = BP_ABS_FUNC(bp);
11224 	int vn;
11225 	u32 val = 0;
11226 	int rc = 0;
11227 
11228 	bnx2x_get_common_hwinfo(bp);
11229 
11230 	/*
11231 	 * initialize IGU parameters
11232 	 */
11233 	if (CHIP_IS_E1x(bp)) {
11234 		bp->common.int_block = INT_BLOCK_HC;
11235 
11236 		bp->igu_dsb_id = DEF_SB_IGU_ID;
11237 		bp->igu_base_sb = 0;
11238 	} else {
11239 		bp->common.int_block = INT_BLOCK_IGU;
11240 
11241 		/* do not allow device reset during IGU info processing */
11242 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11243 
11244 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11245 
11246 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11247 			int tout = 5000;
11248 
11249 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11250 
11251 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11252 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11253 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11254 
11255 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11256 				tout--;
11257 				usleep_range(1000, 2000);
11258 			}
11259 
11260 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11261 				dev_err(&bp->pdev->dev,
11262 					"FORCING Normal Mode failed!!!\n");
11263 				bnx2x_release_hw_lock(bp,
11264 						      HW_LOCK_RESOURCE_RESET);
11265 				return -EPERM;
11266 			}
11267 		}
11268 
11269 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11270 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11271 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11272 		} else
11273 			BNX2X_DEV_INFO("IGU Normal Mode\n");
11274 
11275 		rc = bnx2x_get_igu_cam_info(bp);
11276 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11277 		if (rc)
11278 			return rc;
11279 	}
11280 
11281 	/*
11282 	 * set base FW non-default (fast path) status block id, this value is
11283 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
11284 	 * determine the id used by the FW.
11285 	 */
11286 	if (CHIP_IS_E1x(bp))
11287 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11288 	else /*
11289 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11290 	      * the same queue are indicated on the same IGU SB). So we prefer
11291 	      * FW and IGU SBs to be the same value.
11292 	      */
11293 		bp->base_fw_ndsb = bp->igu_base_sb;
11294 
11295 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11296 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11297 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
11298 
11299 	/*
11300 	 * Initialize MF configuration
11301 	 */
11302 
11303 	bp->mf_ov = 0;
11304 	bp->mf_mode = 0;
11305 	vn = BP_VN(bp);
11306 
11307 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11308 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11309 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
11310 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11311 
11312 		if (SHMEM2_HAS(bp, mf_cfg_addr))
11313 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11314 		else
11315 			bp->common.mf_cfg_base = bp->common.shmem_base +
11316 				offsetof(struct shmem_region, func_mb) +
11317 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11318 		/*
11319 		 * get mf configuration:
11320 		 * 1. Existence of MF configuration
11321 		 * 2. MAC address must be legal (check only upper bytes)
11322 		 *    for  Switch-Independent mode;
11323 		 *    OVLAN must be legal for Switch-Dependent mode
11324 		 * 3. SF_MODE configures specific MF mode
11325 		 */
11326 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11327 			/* get mf configuration */
11328 			val = SHMEM_RD(bp,
11329 				       dev_info.shared_feature_config.config);
11330 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11331 
11332 			switch (val) {
11333 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11334 				val = MF_CFG_RD(bp, func_mf_config[func].
11335 						mac_upper);
11336 				/* check for legal mac (upper bytes)*/
11337 				if (val != 0xffff) {
11338 					bp->mf_mode = MULTI_FUNCTION_SI;
11339 					bp->mf_config[vn] = MF_CFG_RD(bp,
11340 						   func_mf_config[func].config);
11341 				} else
11342 					BNX2X_DEV_INFO("illegal MAC address for SI\n");
11343 				break;
11344 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11345 				if ((!CHIP_IS_E1x(bp)) &&
11346 				    (MF_CFG_RD(bp, func_mf_config[func].
11347 					       mac_upper) != 0xffff) &&
11348 				    (SHMEM2_HAS(bp,
11349 						afex_driver_support))) {
11350 					bp->mf_mode = MULTI_FUNCTION_AFEX;
11351 					bp->mf_config[vn] = MF_CFG_RD(bp,
11352 						func_mf_config[func].config);
11353 				} else {
11354 					BNX2X_DEV_INFO("can not configure afex mode\n");
11355 				}
11356 				break;
11357 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11358 				/* get OV configuration */
11359 				val = MF_CFG_RD(bp,
11360 					func_mf_config[FUNC_0].e1hov_tag);
11361 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11362 
11363 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11364 					bp->mf_mode = MULTI_FUNCTION_SD;
11365 					bp->mf_config[vn] = MF_CFG_RD(bp,
11366 						func_mf_config[func].config);
11367 				} else
11368 					BNX2X_DEV_INFO("illegal OV for SD\n");
11369 				break;
11370 			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11371 				bp->mf_config[vn] = 0;
11372 				break;
11373 			default:
11374 				/* Unknown configuration: reset mf_config */
11375 				bp->mf_config[vn] = 0;
11376 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11377 			}
11378 		}
11379 
11380 		BNX2X_DEV_INFO("%s function mode\n",
11381 			       IS_MF(bp) ? "multi" : "single");
11382 
11383 		switch (bp->mf_mode) {
11384 		case MULTI_FUNCTION_SD:
11385 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11386 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
11387 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11388 				bp->mf_ov = val;
11389 				bp->path_has_ovlan = true;
11390 
11391 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11392 					       func, bp->mf_ov, bp->mf_ov);
11393 			} else {
11394 				dev_err(&bp->pdev->dev,
11395 					"No valid MF OV for func %d, aborting\n",
11396 					func);
11397 				return -EPERM;
11398 			}
11399 			break;
11400 		case MULTI_FUNCTION_AFEX:
11401 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11402 			break;
11403 		case MULTI_FUNCTION_SI:
11404 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11405 				       func);
11406 			break;
11407 		default:
11408 			if (vn) {
11409 				dev_err(&bp->pdev->dev,
11410 					"VN %d is in a single function mode, aborting\n",
11411 					vn);
11412 				return -EPERM;
11413 			}
11414 			break;
11415 		}
11416 
11417 		/* check if other port on the path needs ovlan:
11418 		 * Since MF configuration is shared between ports
11419 		 * Possible mixed modes are only
11420 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11421 		 */
11422 		if (CHIP_MODE_IS_4_PORT(bp) &&
11423 		    !bp->path_has_ovlan &&
11424 		    !IS_MF(bp) &&
11425 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11426 			u8 other_port = !BP_PORT(bp);
11427 			u8 other_func = BP_PATH(bp) + 2*other_port;
11428 			val = MF_CFG_RD(bp,
11429 					func_mf_config[other_func].e1hov_tag);
11430 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11431 				bp->path_has_ovlan = true;
11432 		}
11433 	}
11434 
11435 	/* adjust igu_sb_cnt to MF for E1x */
11436 	if (CHIP_IS_E1x(bp) && IS_MF(bp))
11437 		bp->igu_sb_cnt /= E1HVN_MAX;
11438 
11439 	/* port info */
11440 	bnx2x_get_port_hwinfo(bp);
11441 
11442 	/* Get MAC addresses */
11443 	bnx2x_get_mac_hwinfo(bp);
11444 
11445 	bnx2x_get_cnic_info(bp);
11446 
11447 	return rc;
11448 }
11449 
11450 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11451 {
11452 	int cnt, i, block_end, rodi;
11453 	char vpd_start[BNX2X_VPD_LEN+1];
11454 	char str_id_reg[VENDOR_ID_LEN+1];
11455 	char str_id_cap[VENDOR_ID_LEN+1];
11456 	char *vpd_data;
11457 	char *vpd_extended_data = NULL;
11458 	u8 len;
11459 
11460 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11461 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11462 
11463 	if (cnt < BNX2X_VPD_LEN)
11464 		goto out_not_found;
11465 
11466 	/* VPD RO tag should be first tag after identifier string, hence
11467 	 * we should be able to find it in first BNX2X_VPD_LEN chars
11468 	 */
11469 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11470 			     PCI_VPD_LRDT_RO_DATA);
11471 	if (i < 0)
11472 		goto out_not_found;
11473 
11474 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11475 		    pci_vpd_lrdt_size(&vpd_start[i]);
11476 
11477 	i += PCI_VPD_LRDT_TAG_SIZE;
11478 
11479 	if (block_end > BNX2X_VPD_LEN) {
11480 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11481 		if (vpd_extended_data  == NULL)
11482 			goto out_not_found;
11483 
11484 		/* read rest of vpd image into vpd_extended_data */
11485 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11486 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11487 				   block_end - BNX2X_VPD_LEN,
11488 				   vpd_extended_data + BNX2X_VPD_LEN);
11489 		if (cnt < (block_end - BNX2X_VPD_LEN))
11490 			goto out_not_found;
11491 		vpd_data = vpd_extended_data;
11492 	} else
11493 		vpd_data = vpd_start;
11494 
11495 	/* now vpd_data holds full vpd content in both cases */
11496 
11497 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11498 				   PCI_VPD_RO_KEYWORD_MFR_ID);
11499 	if (rodi < 0)
11500 		goto out_not_found;
11501 
11502 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
11503 
11504 	if (len != VENDOR_ID_LEN)
11505 		goto out_not_found;
11506 
11507 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11508 
11509 	/* vendor specific info */
11510 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11511 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11512 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11513 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11514 
11515 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11516 						PCI_VPD_RO_KEYWORD_VENDOR0);
11517 		if (rodi >= 0) {
11518 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
11519 
11520 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11521 
11522 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11523 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
11524 				bp->fw_ver[len] = ' ';
11525 			}
11526 		}
11527 		kfree(vpd_extended_data);
11528 		return;
11529 	}
11530 out_not_found:
11531 	kfree(vpd_extended_data);
11532 	return;
11533 }
11534 
11535 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11536 {
11537 	u32 flags = 0;
11538 
11539 	if (CHIP_REV_IS_FPGA(bp))
11540 		SET_FLAGS(flags, MODE_FPGA);
11541 	else if (CHIP_REV_IS_EMUL(bp))
11542 		SET_FLAGS(flags, MODE_EMUL);
11543 	else
11544 		SET_FLAGS(flags, MODE_ASIC);
11545 
11546 	if (CHIP_MODE_IS_4_PORT(bp))
11547 		SET_FLAGS(flags, MODE_PORT4);
11548 	else
11549 		SET_FLAGS(flags, MODE_PORT2);
11550 
11551 	if (CHIP_IS_E2(bp))
11552 		SET_FLAGS(flags, MODE_E2);
11553 	else if (CHIP_IS_E3(bp)) {
11554 		SET_FLAGS(flags, MODE_E3);
11555 		if (CHIP_REV(bp) == CHIP_REV_Ax)
11556 			SET_FLAGS(flags, MODE_E3_A0);
11557 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11558 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11559 	}
11560 
11561 	if (IS_MF(bp)) {
11562 		SET_FLAGS(flags, MODE_MF);
11563 		switch (bp->mf_mode) {
11564 		case MULTI_FUNCTION_SD:
11565 			SET_FLAGS(flags, MODE_MF_SD);
11566 			break;
11567 		case MULTI_FUNCTION_SI:
11568 			SET_FLAGS(flags, MODE_MF_SI);
11569 			break;
11570 		case MULTI_FUNCTION_AFEX:
11571 			SET_FLAGS(flags, MODE_MF_AFEX);
11572 			break;
11573 		}
11574 	} else
11575 		SET_FLAGS(flags, MODE_SF);
11576 
11577 #if defined(__LITTLE_ENDIAN)
11578 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11579 #else /*(__BIG_ENDIAN)*/
11580 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
11581 #endif
11582 	INIT_MODE_FLAGS(bp) = flags;
11583 }
11584 
11585 static int bnx2x_init_bp(struct bnx2x *bp)
11586 {
11587 	int func;
11588 	int rc;
11589 
11590 	mutex_init(&bp->port.phy_mutex);
11591 	mutex_init(&bp->fw_mb_mutex);
11592 	spin_lock_init(&bp->stats_lock);
11593 	sema_init(&bp->stats_sema, 1);
11594 
11595 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11596 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11597 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11598 	if (IS_PF(bp)) {
11599 		rc = bnx2x_get_hwinfo(bp);
11600 		if (rc)
11601 			return rc;
11602 	} else {
11603 		eth_zero_addr(bp->dev->dev_addr);
11604 	}
11605 
11606 	bnx2x_set_modes_bitmap(bp);
11607 
11608 	rc = bnx2x_alloc_mem_bp(bp);
11609 	if (rc)
11610 		return rc;
11611 
11612 	bnx2x_read_fwinfo(bp);
11613 
11614 	func = BP_FUNC(bp);
11615 
11616 	/* need to reset chip if undi was active */
11617 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
11618 		/* init fw_seq */
11619 		bp->fw_seq =
11620 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11621 							DRV_MSG_SEQ_NUMBER_MASK;
11622 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11623 
11624 		bnx2x_prev_unload(bp);
11625 	}
11626 
11627 	if (CHIP_REV_IS_FPGA(bp))
11628 		dev_err(&bp->pdev->dev, "FPGA detected\n");
11629 
11630 	if (BP_NOMCP(bp) && (func == 0))
11631 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11632 
11633 	bp->disable_tpa = disable_tpa;
11634 	bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11635 
11636 	/* Set TPA flags */
11637 	if (bp->disable_tpa) {
11638 		bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11639 		bp->dev->features &= ~NETIF_F_LRO;
11640 	} else {
11641 		bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11642 		bp->dev->features |= NETIF_F_LRO;
11643 	}
11644 
11645 	if (CHIP_IS_E1(bp))
11646 		bp->dropless_fc = 0;
11647 	else
11648 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11649 
11650 	bp->mrrs = mrrs;
11651 
11652 	bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11653 	if (IS_VF(bp))
11654 		bp->rx_ring_size = MAX_RX_AVAIL;
11655 
11656 	/* make sure that the numbers are in the right granularity */
11657 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11658 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11659 
11660 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11661 
11662 	init_timer(&bp->timer);
11663 	bp->timer.expires = jiffies + bp->current_interval;
11664 	bp->timer.data = (unsigned long) bp;
11665 	bp->timer.function = bnx2x_timer;
11666 
11667 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11668 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11669 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11670 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11671 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11672 		bnx2x_dcbx_init_params(bp);
11673 	} else {
11674 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11675 	}
11676 
11677 	if (CHIP_IS_E1x(bp))
11678 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11679 	else
11680 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
11681 
11682 	/* multiple tx priority */
11683 	if (IS_VF(bp))
11684 		bp->max_cos = 1;
11685 	else if (CHIP_IS_E1x(bp))
11686 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11687 	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11688 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11689 	else if (CHIP_IS_E3B0(bp))
11690 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11691 	else
11692 		BNX2X_ERR("unknown chip %x revision %x\n",
11693 			  CHIP_NUM(bp), CHIP_REV(bp));
11694 	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
11695 
11696 	/* We need at least one default status block for slow-path events,
11697 	 * second status block for the L2 queue, and a third status block for
11698 	 * CNIC if supported.
11699 	 */
11700 	if (IS_VF(bp))
11701 		bp->min_msix_vec_cnt = 1;
11702 	else if (CNIC_SUPPORT(bp))
11703 		bp->min_msix_vec_cnt = 3;
11704 	else /* PF w/o cnic */
11705 		bp->min_msix_vec_cnt = 2;
11706 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11707 
11708 	bp->dump_preset_idx = 1;
11709 
11710 	return rc;
11711 }
11712 
11713 /****************************************************************************
11714 * General service functions
11715 ****************************************************************************/
11716 
11717 /*
11718  * net_device service functions
11719  */
11720 
11721 /* called with rtnl_lock */
11722 static int bnx2x_open(struct net_device *dev)
11723 {
11724 	struct bnx2x *bp = netdev_priv(dev);
11725 	int rc;
11726 
11727 	bp->stats_init = true;
11728 
11729 	netif_carrier_off(dev);
11730 
11731 	bnx2x_set_power_state(bp, PCI_D0);
11732 
11733 	/* If parity had happen during the unload, then attentions
11734 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11735 	 * want the first function loaded on the current engine to
11736 	 * complete the recovery.
11737 	 * Parity recovery is only relevant for PF driver.
11738 	 */
11739 	if (IS_PF(bp)) {
11740 		int other_engine = BP_PATH(bp) ? 0 : 1;
11741 		bool other_load_status, load_status;
11742 		bool global = false;
11743 
11744 		other_load_status = bnx2x_get_load_status(bp, other_engine);
11745 		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
11746 		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
11747 		    bnx2x_chk_parity_attn(bp, &global, true)) {
11748 			do {
11749 				/* If there are attentions and they are in a
11750 				 * global blocks, set the GLOBAL_RESET bit
11751 				 * regardless whether it will be this function
11752 				 * that will complete the recovery or not.
11753 				 */
11754 				if (global)
11755 					bnx2x_set_reset_global(bp);
11756 
11757 				/* Only the first function on the current
11758 				 * engine should try to recover in open. In case
11759 				 * of attentions in global blocks only the first
11760 				 * in the chip should try to recover.
11761 				 */
11762 				if ((!load_status &&
11763 				     (!global || !other_load_status)) &&
11764 				      bnx2x_trylock_leader_lock(bp) &&
11765 				      !bnx2x_leader_reset(bp)) {
11766 					netdev_info(bp->dev,
11767 						    "Recovered in open\n");
11768 					break;
11769 				}
11770 
11771 				/* recovery has failed... */
11772 				bnx2x_set_power_state(bp, PCI_D3hot);
11773 				bp->recovery_state = BNX2X_RECOVERY_FAILED;
11774 
11775 				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11776 					  "If you still see this message after a few retries then power cycle is required.\n");
11777 
11778 				return -EAGAIN;
11779 			} while (0);
11780 		}
11781 	}
11782 
11783 	bp->recovery_state = BNX2X_RECOVERY_DONE;
11784 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
11785 	if (rc)
11786 		return rc;
11787 	return bnx2x_open_epilog(bp);
11788 }
11789 
11790 /* called with rtnl_lock */
11791 static int bnx2x_close(struct net_device *dev)
11792 {
11793 	struct bnx2x *bp = netdev_priv(dev);
11794 
11795 	/* Unload the driver, release IRQs */
11796 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11797 
11798 	return 0;
11799 }
11800 
11801 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11802 				      struct bnx2x_mcast_ramrod_params *p)
11803 {
11804 	int mc_count = netdev_mc_count(bp->dev);
11805 	struct bnx2x_mcast_list_elem *mc_mac =
11806 		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11807 	struct netdev_hw_addr *ha;
11808 
11809 	if (!mc_mac)
11810 		return -ENOMEM;
11811 
11812 	INIT_LIST_HEAD(&p->mcast_list);
11813 
11814 	netdev_for_each_mc_addr(ha, bp->dev) {
11815 		mc_mac->mac = bnx2x_mc_addr(ha);
11816 		list_add_tail(&mc_mac->link, &p->mcast_list);
11817 		mc_mac++;
11818 	}
11819 
11820 	p->mcast_list_len = mc_count;
11821 
11822 	return 0;
11823 }
11824 
11825 static void bnx2x_free_mcast_macs_list(
11826 	struct bnx2x_mcast_ramrod_params *p)
11827 {
11828 	struct bnx2x_mcast_list_elem *mc_mac =
11829 		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11830 				 link);
11831 
11832 	WARN_ON(!mc_mac);
11833 	kfree(mc_mac);
11834 }
11835 
11836 /**
11837  * bnx2x_set_uc_list - configure a new unicast MACs list.
11838  *
11839  * @bp: driver handle
11840  *
11841  * We will use zero (0) as a MAC type for these MACs.
11842  */
11843 static int bnx2x_set_uc_list(struct bnx2x *bp)
11844 {
11845 	int rc;
11846 	struct net_device *dev = bp->dev;
11847 	struct netdev_hw_addr *ha;
11848 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11849 	unsigned long ramrod_flags = 0;
11850 
11851 	/* First schedule a cleanup up of old configuration */
11852 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11853 	if (rc < 0) {
11854 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11855 		return rc;
11856 	}
11857 
11858 	netdev_for_each_uc_addr(ha, dev) {
11859 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11860 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
11861 		if (rc == -EEXIST) {
11862 			DP(BNX2X_MSG_SP,
11863 			   "Failed to schedule ADD operations: %d\n", rc);
11864 			/* do not treat adding same MAC as error */
11865 			rc = 0;
11866 
11867 		} else if (rc < 0) {
11868 
11869 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
11870 				  rc);
11871 			return rc;
11872 		}
11873 	}
11874 
11875 	/* Execute the pending commands */
11876 	__set_bit(RAMROD_CONT, &ramrod_flags);
11877 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
11878 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
11879 }
11880 
11881 static int bnx2x_set_mc_list(struct bnx2x *bp)
11882 {
11883 	struct net_device *dev = bp->dev;
11884 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
11885 	int rc = 0;
11886 
11887 	rparam.mcast_obj = &bp->mcast_obj;
11888 
11889 	/* first, clear all configured multicast MACs */
11890 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
11891 	if (rc < 0) {
11892 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
11893 		return rc;
11894 	}
11895 
11896 	/* then, configure a new MACs list */
11897 	if (netdev_mc_count(dev)) {
11898 		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
11899 		if (rc) {
11900 			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
11901 				  rc);
11902 			return rc;
11903 		}
11904 
11905 		/* Now add the new MACs */
11906 		rc = bnx2x_config_mcast(bp, &rparam,
11907 					BNX2X_MCAST_CMD_ADD);
11908 		if (rc < 0)
11909 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
11910 				  rc);
11911 
11912 		bnx2x_free_mcast_macs_list(&rparam);
11913 	}
11914 
11915 	return rc;
11916 }
11917 
11918 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
11919 void bnx2x_set_rx_mode(struct net_device *dev)
11920 {
11921 	struct bnx2x *bp = netdev_priv(dev);
11922 
11923 	if (bp->state != BNX2X_STATE_OPEN) {
11924 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
11925 		return;
11926 	} else {
11927 		/* Schedule an SP task to handle rest of change */
11928 		DP(NETIF_MSG_IFUP, "Scheduling an Rx mode change\n");
11929 		smp_mb__before_clear_bit();
11930 		set_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state);
11931 		smp_mb__after_clear_bit();
11932 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
11933 	}
11934 }
11935 
11936 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
11937 {
11938 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
11939 
11940 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
11941 
11942 	netif_addr_lock_bh(bp->dev);
11943 
11944 	if (bp->dev->flags & IFF_PROMISC) {
11945 		rx_mode = BNX2X_RX_MODE_PROMISC;
11946 	} else if ((bp->dev->flags & IFF_ALLMULTI) ||
11947 		   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
11948 		    CHIP_IS_E1(bp))) {
11949 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
11950 	} else {
11951 		if (IS_PF(bp)) {
11952 			/* some multicasts */
11953 			if (bnx2x_set_mc_list(bp) < 0)
11954 				rx_mode = BNX2X_RX_MODE_ALLMULTI;
11955 
11956 			/* release bh lock, as bnx2x_set_uc_list might sleep */
11957 			netif_addr_unlock_bh(bp->dev);
11958 			if (bnx2x_set_uc_list(bp) < 0)
11959 				rx_mode = BNX2X_RX_MODE_PROMISC;
11960 			netif_addr_lock_bh(bp->dev);
11961 		} else {
11962 			/* configuring mcast to a vf involves sleeping (when we
11963 			 * wait for the pf's response).
11964 			 */
11965 			smp_mb__before_clear_bit();
11966 			set_bit(BNX2X_SP_RTNL_VFPF_MCAST,
11967 				&bp->sp_rtnl_state);
11968 			smp_mb__after_clear_bit();
11969 			schedule_delayed_work(&bp->sp_rtnl_task, 0);
11970 		}
11971 	}
11972 
11973 	bp->rx_mode = rx_mode;
11974 	/* handle ISCSI SD mode */
11975 	if (IS_MF_ISCSI_SD(bp))
11976 		bp->rx_mode = BNX2X_RX_MODE_NONE;
11977 
11978 	/* Schedule the rx_mode command */
11979 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
11980 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
11981 		netif_addr_unlock_bh(bp->dev);
11982 		return;
11983 	}
11984 
11985 	if (IS_PF(bp)) {
11986 		bnx2x_set_storm_rx_mode(bp);
11987 		netif_addr_unlock_bh(bp->dev);
11988 	} else {
11989 		/* VF will need to request the PF to make this change, and so
11990 		 * the VF needs to release the bottom-half lock prior to the
11991 		 * request (as it will likely require sleep on the VF side)
11992 		 */
11993 		netif_addr_unlock_bh(bp->dev);
11994 		bnx2x_vfpf_storm_rx_mode(bp);
11995 	}
11996 }
11997 
11998 /* called with rtnl_lock */
11999 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12000 			   int devad, u16 addr)
12001 {
12002 	struct bnx2x *bp = netdev_priv(netdev);
12003 	u16 value;
12004 	int rc;
12005 
12006 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12007 	   prtad, devad, addr);
12008 
12009 	/* The HW expects different devad if CL22 is used */
12010 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12011 
12012 	bnx2x_acquire_phy_lock(bp);
12013 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12014 	bnx2x_release_phy_lock(bp);
12015 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12016 
12017 	if (!rc)
12018 		rc = value;
12019 	return rc;
12020 }
12021 
12022 /* called with rtnl_lock */
12023 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12024 			    u16 addr, u16 value)
12025 {
12026 	struct bnx2x *bp = netdev_priv(netdev);
12027 	int rc;
12028 
12029 	DP(NETIF_MSG_LINK,
12030 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12031 	   prtad, devad, addr, value);
12032 
12033 	/* The HW expects different devad if CL22 is used */
12034 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12035 
12036 	bnx2x_acquire_phy_lock(bp);
12037 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12038 	bnx2x_release_phy_lock(bp);
12039 	return rc;
12040 }
12041 
12042 /* called with rtnl_lock */
12043 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12044 {
12045 	struct bnx2x *bp = netdev_priv(dev);
12046 	struct mii_ioctl_data *mdio = if_mii(ifr);
12047 
12048 	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12049 	   mdio->phy_id, mdio->reg_num, mdio->val_in);
12050 
12051 	if (!netif_running(dev))
12052 		return -EAGAIN;
12053 
12054 	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12055 }
12056 
12057 #ifdef CONFIG_NET_POLL_CONTROLLER
12058 static void poll_bnx2x(struct net_device *dev)
12059 {
12060 	struct bnx2x *bp = netdev_priv(dev);
12061 	int i;
12062 
12063 	for_each_eth_queue(bp, i) {
12064 		struct bnx2x_fastpath *fp = &bp->fp[i];
12065 		napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12066 	}
12067 }
12068 #endif
12069 
12070 static int bnx2x_validate_addr(struct net_device *dev)
12071 {
12072 	struct bnx2x *bp = netdev_priv(dev);
12073 
12074 	/* query the bulletin board for mac address configured by the PF */
12075 	if (IS_VF(bp))
12076 		bnx2x_sample_bulletin(bp);
12077 
12078 	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
12079 		BNX2X_ERR("Non-valid Ethernet address\n");
12080 		return -EADDRNOTAVAIL;
12081 	}
12082 	return 0;
12083 }
12084 
12085 static const struct net_device_ops bnx2x_netdev_ops = {
12086 	.ndo_open		= bnx2x_open,
12087 	.ndo_stop		= bnx2x_close,
12088 	.ndo_start_xmit		= bnx2x_start_xmit,
12089 	.ndo_select_queue	= bnx2x_select_queue,
12090 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
12091 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
12092 	.ndo_validate_addr	= bnx2x_validate_addr,
12093 	.ndo_do_ioctl		= bnx2x_ioctl,
12094 	.ndo_change_mtu		= bnx2x_change_mtu,
12095 	.ndo_fix_features	= bnx2x_fix_features,
12096 	.ndo_set_features	= bnx2x_set_features,
12097 	.ndo_tx_timeout		= bnx2x_tx_timeout,
12098 #ifdef CONFIG_NET_POLL_CONTROLLER
12099 	.ndo_poll_controller	= poll_bnx2x,
12100 #endif
12101 	.ndo_setup_tc		= bnx2x_setup_tc,
12102 #ifdef CONFIG_BNX2X_SRIOV
12103 	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
12104 	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
12105 	.ndo_get_vf_config	= bnx2x_get_vf_config,
12106 #endif
12107 #ifdef NETDEV_FCOE_WWNN
12108 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
12109 #endif
12110 
12111 #ifdef CONFIG_NET_RX_BUSY_POLL
12112 	.ndo_busy_poll		= bnx2x_low_latency_recv,
12113 #endif
12114 };
12115 
12116 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12117 {
12118 	struct device *dev = &bp->pdev->dev;
12119 
12120 	if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
12121 		if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
12122 			dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
12123 			return -EIO;
12124 		}
12125 	} else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
12126 		dev_err(dev, "System does not support DMA, aborting\n");
12127 		return -EIO;
12128 	}
12129 
12130 	return 0;
12131 }
12132 
12133 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12134 			  struct net_device *dev, unsigned long board_type)
12135 {
12136 	int rc;
12137 	u32 pci_cfg_dword;
12138 	bool chip_is_e1x = (board_type == BCM57710 ||
12139 			    board_type == BCM57711 ||
12140 			    board_type == BCM57711E);
12141 
12142 	SET_NETDEV_DEV(dev, &pdev->dev);
12143 
12144 	bp->dev = dev;
12145 	bp->pdev = pdev;
12146 
12147 	rc = pci_enable_device(pdev);
12148 	if (rc) {
12149 		dev_err(&bp->pdev->dev,
12150 			"Cannot enable PCI device, aborting\n");
12151 		goto err_out;
12152 	}
12153 
12154 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12155 		dev_err(&bp->pdev->dev,
12156 			"Cannot find PCI device base address, aborting\n");
12157 		rc = -ENODEV;
12158 		goto err_out_disable;
12159 	}
12160 
12161 	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12162 		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12163 		rc = -ENODEV;
12164 		goto err_out_disable;
12165 	}
12166 
12167 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12168 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12169 	    PCICFG_REVESION_ID_ERROR_VAL) {
12170 		pr_err("PCI device error, probably due to fan failure, aborting\n");
12171 		rc = -ENODEV;
12172 		goto err_out_disable;
12173 	}
12174 
12175 	if (atomic_read(&pdev->enable_cnt) == 1) {
12176 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12177 		if (rc) {
12178 			dev_err(&bp->pdev->dev,
12179 				"Cannot obtain PCI resources, aborting\n");
12180 			goto err_out_disable;
12181 		}
12182 
12183 		pci_set_master(pdev);
12184 		pci_save_state(pdev);
12185 	}
12186 
12187 	if (IS_PF(bp)) {
12188 		if (!pdev->pm_cap) {
12189 			dev_err(&bp->pdev->dev,
12190 				"Cannot find power management capability, aborting\n");
12191 			rc = -EIO;
12192 			goto err_out_release;
12193 		}
12194 	}
12195 
12196 	if (!pci_is_pcie(pdev)) {
12197 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12198 		rc = -EIO;
12199 		goto err_out_release;
12200 	}
12201 
12202 	rc = bnx2x_set_coherency_mask(bp);
12203 	if (rc)
12204 		goto err_out_release;
12205 
12206 	dev->mem_start = pci_resource_start(pdev, 0);
12207 	dev->base_addr = dev->mem_start;
12208 	dev->mem_end = pci_resource_end(pdev, 0);
12209 
12210 	dev->irq = pdev->irq;
12211 
12212 	bp->regview = pci_ioremap_bar(pdev, 0);
12213 	if (!bp->regview) {
12214 		dev_err(&bp->pdev->dev,
12215 			"Cannot map register space, aborting\n");
12216 		rc = -ENOMEM;
12217 		goto err_out_release;
12218 	}
12219 
12220 	/* In E1/E1H use pci device function given by kernel.
12221 	 * In E2/E3 read physical function from ME register since these chips
12222 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
12223 	 * (depending on hypervisor).
12224 	 */
12225 	if (chip_is_e1x) {
12226 		bp->pf_num = PCI_FUNC(pdev->devfn);
12227 	} else {
12228 		/* chip is E2/3*/
12229 		pci_read_config_dword(bp->pdev,
12230 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
12231 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12232 				  ME_REG_ABS_PF_NUM_SHIFT);
12233 	}
12234 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12235 
12236 	/* clean indirect addresses */
12237 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12238 			       PCICFG_VENDOR_ID_OFFSET);
12239 	/*
12240 	 * Clean the following indirect addresses for all functions since it
12241 	 * is not used by the driver.
12242 	 */
12243 	if (IS_PF(bp)) {
12244 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12245 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12246 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12247 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12248 
12249 		if (chip_is_e1x) {
12250 			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12251 			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12252 			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12253 			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12254 		}
12255 
12256 		/* Enable internal target-read (in case we are probed after PF
12257 		 * FLR). Must be done prior to any BAR read access. Only for
12258 		 * 57712 and up
12259 		 */
12260 		if (!chip_is_e1x)
12261 			REG_WR(bp,
12262 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12263 	}
12264 
12265 	dev->watchdog_timeo = TX_TIMEOUT;
12266 
12267 	dev->netdev_ops = &bnx2x_netdev_ops;
12268 	bnx2x_set_ethtool_ops(bp, dev);
12269 
12270 	dev->priv_flags |= IFF_UNICAST_FLT;
12271 
12272 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12273 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12274 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12275 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12276 	if (!CHIP_IS_E1x(bp)) {
12277 		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12278 		dev->hw_enc_features =
12279 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12280 			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12281 			NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12282 	}
12283 
12284 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12285 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12286 
12287 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12288 	dev->features |= NETIF_F_HIGHDMA;
12289 
12290 	/* Add Loopback capability to the device */
12291 	dev->hw_features |= NETIF_F_LOOPBACK;
12292 
12293 #ifdef BCM_DCBNL
12294 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12295 #endif
12296 
12297 	/* get_port_hwinfo() will set prtad and mmds properly */
12298 	bp->mdio.prtad = MDIO_PRTAD_NONE;
12299 	bp->mdio.mmds = 0;
12300 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12301 	bp->mdio.dev = dev;
12302 	bp->mdio.mdio_read = bnx2x_mdio_read;
12303 	bp->mdio.mdio_write = bnx2x_mdio_write;
12304 
12305 	return 0;
12306 
12307 err_out_release:
12308 	if (atomic_read(&pdev->enable_cnt) == 1)
12309 		pci_release_regions(pdev);
12310 
12311 err_out_disable:
12312 	pci_disable_device(pdev);
12313 	pci_set_drvdata(pdev, NULL);
12314 
12315 err_out:
12316 	return rc;
12317 }
12318 
12319 static void bnx2x_get_pcie_width_speed(struct bnx2x *bp, int *width,
12320 				       enum bnx2x_pci_bus_speed *speed)
12321 {
12322 	u32 link_speed, val = 0;
12323 
12324 	pci_read_config_dword(bp->pdev, PCICFG_LINK_CONTROL, &val);
12325 	*width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
12326 
12327 	link_speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
12328 
12329 	switch (link_speed) {
12330 	case 3:
12331 		*speed = BNX2X_PCI_LINK_SPEED_8000;
12332 		break;
12333 	case 2:
12334 		*speed = BNX2X_PCI_LINK_SPEED_5000;
12335 		break;
12336 	default:
12337 		*speed = BNX2X_PCI_LINK_SPEED_2500;
12338 	}
12339 }
12340 
12341 static int bnx2x_check_firmware(struct bnx2x *bp)
12342 {
12343 	const struct firmware *firmware = bp->firmware;
12344 	struct bnx2x_fw_file_hdr *fw_hdr;
12345 	struct bnx2x_fw_file_section *sections;
12346 	u32 offset, len, num_ops;
12347 	__be16 *ops_offsets;
12348 	int i;
12349 	const u8 *fw_ver;
12350 
12351 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12352 		BNX2X_ERR("Wrong FW size\n");
12353 		return -EINVAL;
12354 	}
12355 
12356 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12357 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
12358 
12359 	/* Make sure none of the offsets and sizes make us read beyond
12360 	 * the end of the firmware data */
12361 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12362 		offset = be32_to_cpu(sections[i].offset);
12363 		len = be32_to_cpu(sections[i].len);
12364 		if (offset + len > firmware->size) {
12365 			BNX2X_ERR("Section %d length is out of bounds\n", i);
12366 			return -EINVAL;
12367 		}
12368 	}
12369 
12370 	/* Likewise for the init_ops offsets */
12371 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12372 	ops_offsets = (__force __be16 *)(firmware->data + offset);
12373 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12374 
12375 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12376 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12377 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
12378 			return -EINVAL;
12379 		}
12380 	}
12381 
12382 	/* Check FW version */
12383 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
12384 	fw_ver = firmware->data + offset;
12385 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12386 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12387 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12388 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12389 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12390 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12391 		       BCM_5710_FW_MAJOR_VERSION,
12392 		       BCM_5710_FW_MINOR_VERSION,
12393 		       BCM_5710_FW_REVISION_VERSION,
12394 		       BCM_5710_FW_ENGINEERING_VERSION);
12395 		return -EINVAL;
12396 	}
12397 
12398 	return 0;
12399 }
12400 
12401 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12402 {
12403 	const __be32 *source = (const __be32 *)_source;
12404 	u32 *target = (u32 *)_target;
12405 	u32 i;
12406 
12407 	for (i = 0; i < n/4; i++)
12408 		target[i] = be32_to_cpu(source[i]);
12409 }
12410 
12411 /*
12412    Ops array is stored in the following format:
12413    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12414  */
12415 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12416 {
12417 	const __be32 *source = (const __be32 *)_source;
12418 	struct raw_op *target = (struct raw_op *)_target;
12419 	u32 i, j, tmp;
12420 
12421 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
12422 		tmp = be32_to_cpu(source[j]);
12423 		target[i].op = (tmp >> 24) & 0xff;
12424 		target[i].offset = tmp & 0xffffff;
12425 		target[i].raw_data = be32_to_cpu(source[j + 1]);
12426 	}
12427 }
12428 
12429 /* IRO array is stored in the following format:
12430  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12431  */
12432 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12433 {
12434 	const __be32 *source = (const __be32 *)_source;
12435 	struct iro *target = (struct iro *)_target;
12436 	u32 i, j, tmp;
12437 
12438 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12439 		target[i].base = be32_to_cpu(source[j]);
12440 		j++;
12441 		tmp = be32_to_cpu(source[j]);
12442 		target[i].m1 = (tmp >> 16) & 0xffff;
12443 		target[i].m2 = tmp & 0xffff;
12444 		j++;
12445 		tmp = be32_to_cpu(source[j]);
12446 		target[i].m3 = (tmp >> 16) & 0xffff;
12447 		target[i].size = tmp & 0xffff;
12448 		j++;
12449 	}
12450 }
12451 
12452 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12453 {
12454 	const __be16 *source = (const __be16 *)_source;
12455 	u16 *target = (u16 *)_target;
12456 	u32 i;
12457 
12458 	for (i = 0; i < n/2; i++)
12459 		target[i] = be16_to_cpu(source[i]);
12460 }
12461 
12462 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
12463 do {									\
12464 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
12465 	bp->arr = kmalloc(len, GFP_KERNEL);				\
12466 	if (!bp->arr)							\
12467 		goto lbl;						\
12468 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
12469 	     (u8 *)bp->arr, len);					\
12470 } while (0)
12471 
12472 static int bnx2x_init_firmware(struct bnx2x *bp)
12473 {
12474 	const char *fw_file_name;
12475 	struct bnx2x_fw_file_hdr *fw_hdr;
12476 	int rc;
12477 
12478 	if (bp->firmware)
12479 		return 0;
12480 
12481 	if (CHIP_IS_E1(bp))
12482 		fw_file_name = FW_FILE_NAME_E1;
12483 	else if (CHIP_IS_E1H(bp))
12484 		fw_file_name = FW_FILE_NAME_E1H;
12485 	else if (!CHIP_IS_E1x(bp))
12486 		fw_file_name = FW_FILE_NAME_E2;
12487 	else {
12488 		BNX2X_ERR("Unsupported chip revision\n");
12489 		return -EINVAL;
12490 	}
12491 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12492 
12493 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12494 	if (rc) {
12495 		BNX2X_ERR("Can't load firmware file %s\n",
12496 			  fw_file_name);
12497 		goto request_firmware_exit;
12498 	}
12499 
12500 	rc = bnx2x_check_firmware(bp);
12501 	if (rc) {
12502 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12503 		goto request_firmware_exit;
12504 	}
12505 
12506 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12507 
12508 	/* Initialize the pointers to the init arrays */
12509 	/* Blob */
12510 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12511 
12512 	/* Opcodes */
12513 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12514 
12515 	/* Offsets */
12516 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12517 			    be16_to_cpu_n);
12518 
12519 	/* STORMs firmware */
12520 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12521 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12522 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
12523 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12524 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12525 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12526 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
12527 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
12528 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12529 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12530 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
12531 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12532 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12533 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12534 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
12535 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
12536 	/* IRO */
12537 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12538 
12539 	return 0;
12540 
12541 iro_alloc_err:
12542 	kfree(bp->init_ops_offsets);
12543 init_offsets_alloc_err:
12544 	kfree(bp->init_ops);
12545 init_ops_alloc_err:
12546 	kfree(bp->init_data);
12547 request_firmware_exit:
12548 	release_firmware(bp->firmware);
12549 	bp->firmware = NULL;
12550 
12551 	return rc;
12552 }
12553 
12554 static void bnx2x_release_firmware(struct bnx2x *bp)
12555 {
12556 	kfree(bp->init_ops_offsets);
12557 	kfree(bp->init_ops);
12558 	kfree(bp->init_data);
12559 	release_firmware(bp->firmware);
12560 	bp->firmware = NULL;
12561 }
12562 
12563 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12564 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12565 	.init_hw_cmn      = bnx2x_init_hw_common,
12566 	.init_hw_port     = bnx2x_init_hw_port,
12567 	.init_hw_func     = bnx2x_init_hw_func,
12568 
12569 	.reset_hw_cmn     = bnx2x_reset_common,
12570 	.reset_hw_port    = bnx2x_reset_port,
12571 	.reset_hw_func    = bnx2x_reset_func,
12572 
12573 	.gunzip_init      = bnx2x_gunzip_init,
12574 	.gunzip_end       = bnx2x_gunzip_end,
12575 
12576 	.init_fw          = bnx2x_init_firmware,
12577 	.release_fw       = bnx2x_release_firmware,
12578 };
12579 
12580 void bnx2x__init_func_obj(struct bnx2x *bp)
12581 {
12582 	/* Prepare DMAE related driver resources */
12583 	bnx2x_setup_dmae(bp);
12584 
12585 	bnx2x_init_func_obj(bp, &bp->func_obj,
12586 			    bnx2x_sp(bp, func_rdata),
12587 			    bnx2x_sp_mapping(bp, func_rdata),
12588 			    bnx2x_sp(bp, func_afex_rdata),
12589 			    bnx2x_sp_mapping(bp, func_afex_rdata),
12590 			    &bnx2x_func_sp_drv);
12591 }
12592 
12593 /* must be called after sriov-enable */
12594 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12595 {
12596 	int cid_count = BNX2X_L2_MAX_CID(bp);
12597 
12598 	if (IS_SRIOV(bp))
12599 		cid_count += BNX2X_VF_CIDS;
12600 
12601 	if (CNIC_SUPPORT(bp))
12602 		cid_count += CNIC_CID_MAX;
12603 
12604 	return roundup(cid_count, QM_CID_ROUND);
12605 }
12606 
12607 /**
12608  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12609  *
12610  * @dev:	pci device
12611  *
12612  */
12613 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
12614 {
12615 	int index;
12616 	u16 control = 0;
12617 
12618 	/*
12619 	 * If MSI-X is not supported - return number of SBs needed to support
12620 	 * one fast path queue: one FP queue + SB for CNIC
12621 	 */
12622 	if (!pdev->msix_cap) {
12623 		dev_info(&pdev->dev, "no msix capability found\n");
12624 		return 1 + cnic_cnt;
12625 	}
12626 	dev_info(&pdev->dev, "msix capability found\n");
12627 
12628 	/*
12629 	 * The value in the PCI configuration space is the index of the last
12630 	 * entry, namely one less than the actual size of the table, which is
12631 	 * exactly what we want to return from this function: number of all SBs
12632 	 * without the default SB.
12633 	 * For VFs there is no default SB, then we return (index+1).
12634 	 */
12635 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSI_FLAGS, &control);
12636 
12637 	index = control & PCI_MSIX_FLAGS_QSIZE;
12638 
12639 	return index;
12640 }
12641 
12642 static int set_max_cos_est(int chip_id)
12643 {
12644 	switch (chip_id) {
12645 	case BCM57710:
12646 	case BCM57711:
12647 	case BCM57711E:
12648 		return BNX2X_MULTI_TX_COS_E1X;
12649 	case BCM57712:
12650 	case BCM57712_MF:
12651 		return BNX2X_MULTI_TX_COS_E2_E3A0;
12652 	case BCM57800:
12653 	case BCM57800_MF:
12654 	case BCM57810:
12655 	case BCM57810_MF:
12656 	case BCM57840_4_10:
12657 	case BCM57840_2_20:
12658 	case BCM57840_O:
12659 	case BCM57840_MFO:
12660 	case BCM57840_MF:
12661 	case BCM57811:
12662 	case BCM57811_MF:
12663 		return BNX2X_MULTI_TX_COS_E3B0;
12664 	case BCM57712_VF:
12665 	case BCM57800_VF:
12666 	case BCM57810_VF:
12667 	case BCM57840_VF:
12668 	case BCM57811_VF:
12669 		return 1;
12670 	default:
12671 		pr_err("Unknown board_type (%d), aborting\n", chip_id);
12672 		return -ENODEV;
12673 	}
12674 }
12675 
12676 static int set_is_vf(int chip_id)
12677 {
12678 	switch (chip_id) {
12679 	case BCM57712_VF:
12680 	case BCM57800_VF:
12681 	case BCM57810_VF:
12682 	case BCM57840_VF:
12683 	case BCM57811_VF:
12684 		return true;
12685 	default:
12686 		return false;
12687 	}
12688 }
12689 
12690 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
12691 
12692 static int bnx2x_init_one(struct pci_dev *pdev,
12693 				    const struct pci_device_id *ent)
12694 {
12695 	struct net_device *dev = NULL;
12696 	struct bnx2x *bp;
12697 	int pcie_width;
12698 	enum bnx2x_pci_bus_speed pcie_speed;
12699 	int rc, max_non_def_sbs;
12700 	int rx_count, tx_count, rss_count, doorbell_size;
12701 	int max_cos_est;
12702 	bool is_vf;
12703 	int cnic_cnt;
12704 
12705 	/* An estimated maximum supported CoS number according to the chip
12706 	 * version.
12707 	 * We will try to roughly estimate the maximum number of CoSes this chip
12708 	 * may support in order to minimize the memory allocated for Tx
12709 	 * netdev_queue's. This number will be accurately calculated during the
12710 	 * initialization of bp->max_cos based on the chip versions AND chip
12711 	 * revision in the bnx2x_init_bp().
12712 	 */
12713 	max_cos_est = set_max_cos_est(ent->driver_data);
12714 	if (max_cos_est < 0)
12715 		return max_cos_est;
12716 	is_vf = set_is_vf(ent->driver_data);
12717 	cnic_cnt = is_vf ? 0 : 1;
12718 
12719 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
12720 
12721 	/* add another SB for VF as it has no default SB */
12722 	max_non_def_sbs += is_vf ? 1 : 0;
12723 
12724 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
12725 	rss_count = max_non_def_sbs - cnic_cnt;
12726 
12727 	if (rss_count < 1)
12728 		return -EINVAL;
12729 
12730 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12731 	rx_count = rss_count + cnic_cnt;
12732 
12733 	/* Maximum number of netdev Tx queues:
12734 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
12735 	 */
12736 	tx_count = rss_count * max_cos_est + cnic_cnt;
12737 
12738 	/* dev zeroed in init_etherdev */
12739 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
12740 	if (!dev)
12741 		return -ENOMEM;
12742 
12743 	bp = netdev_priv(dev);
12744 
12745 	bp->flags = 0;
12746 	if (is_vf)
12747 		bp->flags |= IS_VF_FLAG;
12748 
12749 	bp->igu_sb_cnt = max_non_def_sbs;
12750 	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
12751 	bp->msg_enable = debug;
12752 	bp->cnic_support = cnic_cnt;
12753 	bp->cnic_probe = bnx2x_cnic_probe;
12754 
12755 	pci_set_drvdata(pdev, dev);
12756 
12757 	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
12758 	if (rc < 0) {
12759 		free_netdev(dev);
12760 		return rc;
12761 	}
12762 
12763 	BNX2X_DEV_INFO("This is a %s function\n",
12764 		       IS_PF(bp) ? "physical" : "virtual");
12765 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
12766 	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
12767 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12768 		       tx_count, rx_count);
12769 
12770 	rc = bnx2x_init_bp(bp);
12771 	if (rc)
12772 		goto init_one_exit;
12773 
12774 	/* Map doorbells here as we need the real value of bp->max_cos which
12775 	 * is initialized in bnx2x_init_bp() to determine the number of
12776 	 * l2 connections.
12777 	 */
12778 	if (IS_VF(bp)) {
12779 		bp->doorbells = bnx2x_vf_doorbells(bp);
12780 		rc = bnx2x_vf_pci_alloc(bp);
12781 		if (rc)
12782 			goto init_one_exit;
12783 	} else {
12784 		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
12785 		if (doorbell_size > pci_resource_len(pdev, 2)) {
12786 			dev_err(&bp->pdev->dev,
12787 				"Cannot map doorbells, bar size too small, aborting\n");
12788 			rc = -ENOMEM;
12789 			goto init_one_exit;
12790 		}
12791 		bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
12792 						doorbell_size);
12793 	}
12794 	if (!bp->doorbells) {
12795 		dev_err(&bp->pdev->dev,
12796 			"Cannot map doorbell space, aborting\n");
12797 		rc = -ENOMEM;
12798 		goto init_one_exit;
12799 	}
12800 
12801 	if (IS_VF(bp)) {
12802 		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
12803 		if (rc)
12804 			goto init_one_exit;
12805 	}
12806 
12807 	/* Enable SRIOV if capability found in configuration space */
12808 	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
12809 	if (rc)
12810 		goto init_one_exit;
12811 
12812 	/* calc qm_cid_count */
12813 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
12814 	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
12815 
12816 	/* disable FCOE L2 queue for E1x*/
12817 	if (CHIP_IS_E1x(bp))
12818 		bp->flags |= NO_FCOE_FLAG;
12819 
12820 	/* Set bp->num_queues for MSI-X mode*/
12821 	bnx2x_set_num_queues(bp);
12822 
12823 	/* Configure interrupt mode: try to enable MSI-X/MSI if
12824 	 * needed.
12825 	 */
12826 	rc = bnx2x_set_int_mode(bp);
12827 	if (rc) {
12828 		dev_err(&pdev->dev, "Cannot set interrupts\n");
12829 		goto init_one_exit;
12830 	}
12831 	BNX2X_DEV_INFO("set interrupts successfully\n");
12832 
12833 	/* register the net device */
12834 	rc = register_netdev(dev);
12835 	if (rc) {
12836 		dev_err(&pdev->dev, "Cannot register net device\n");
12837 		goto init_one_exit;
12838 	}
12839 	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
12840 
12841 	if (!NO_FCOE(bp)) {
12842 		/* Add storage MAC address */
12843 		rtnl_lock();
12844 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12845 		rtnl_unlock();
12846 	}
12847 
12848 	bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
12849 	BNX2X_DEV_INFO("got pcie width %d and speed %d\n",
12850 		       pcie_width, pcie_speed);
12851 
12852 	BNX2X_DEV_INFO("%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12853 		       board_info[ent->driver_data].name,
12854 		       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
12855 		       pcie_width,
12856 		       pcie_speed == BNX2X_PCI_LINK_SPEED_2500 ? "2.5GHz" :
12857 		       pcie_speed == BNX2X_PCI_LINK_SPEED_5000 ? "5.0GHz" :
12858 		       pcie_speed == BNX2X_PCI_LINK_SPEED_8000 ? "8.0GHz" :
12859 		       "Unknown",
12860 		       dev->base_addr, bp->pdev->irq, dev->dev_addr);
12861 
12862 	return 0;
12863 
12864 init_one_exit:
12865 	if (bp->regview)
12866 		iounmap(bp->regview);
12867 
12868 	if (IS_PF(bp) && bp->doorbells)
12869 		iounmap(bp->doorbells);
12870 
12871 	free_netdev(dev);
12872 
12873 	if (atomic_read(&pdev->enable_cnt) == 1)
12874 		pci_release_regions(pdev);
12875 
12876 	pci_disable_device(pdev);
12877 	pci_set_drvdata(pdev, NULL);
12878 
12879 	return rc;
12880 }
12881 
12882 static void __bnx2x_remove(struct pci_dev *pdev,
12883 			   struct net_device *dev,
12884 			   struct bnx2x *bp,
12885 			   bool remove_netdev)
12886 {
12887 	/* Delete storage MAC address */
12888 	if (!NO_FCOE(bp)) {
12889 		rtnl_lock();
12890 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12891 		rtnl_unlock();
12892 	}
12893 
12894 #ifdef BCM_DCBNL
12895 	/* Delete app tlvs from dcbnl */
12896 	bnx2x_dcbnl_update_applist(bp, true);
12897 #endif
12898 
12899 	if (IS_PF(bp) &&
12900 	    !BP_NOMCP(bp) &&
12901 	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
12902 		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
12903 
12904 	/* Close the interface - either directly or implicitly */
12905 	if (remove_netdev) {
12906 		unregister_netdev(dev);
12907 	} else {
12908 		rtnl_lock();
12909 		dev_close(dev);
12910 		rtnl_unlock();
12911 	}
12912 
12913 	bnx2x_iov_remove_one(bp);
12914 
12915 	/* Power on: we can't let PCI layer write to us while we are in D3 */
12916 	if (IS_PF(bp))
12917 		bnx2x_set_power_state(bp, PCI_D0);
12918 
12919 	/* Disable MSI/MSI-X */
12920 	bnx2x_disable_msi(bp);
12921 
12922 	/* Power off */
12923 	if (IS_PF(bp))
12924 		bnx2x_set_power_state(bp, PCI_D3hot);
12925 
12926 	/* Make sure RESET task is not scheduled before continuing */
12927 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
12928 
12929 	/* send message via vfpf channel to release the resources of this vf */
12930 	if (IS_VF(bp))
12931 		bnx2x_vfpf_release(bp);
12932 
12933 	/* Assumes no further PCIe PM changes will occur */
12934 	if (system_state == SYSTEM_POWER_OFF) {
12935 		pci_wake_from_d3(pdev, bp->wol);
12936 		pci_set_power_state(pdev, PCI_D3hot);
12937 	}
12938 
12939 	if (bp->regview)
12940 		iounmap(bp->regview);
12941 
12942 	/* for vf doorbells are part of the regview and were unmapped along with
12943 	 * it. FW is only loaded by PF.
12944 	 */
12945 	if (IS_PF(bp)) {
12946 		if (bp->doorbells)
12947 			iounmap(bp->doorbells);
12948 
12949 		bnx2x_release_firmware(bp);
12950 	}
12951 	bnx2x_free_mem_bp(bp);
12952 
12953 	if (remove_netdev)
12954 		free_netdev(dev);
12955 
12956 	if (atomic_read(&pdev->enable_cnt) == 1)
12957 		pci_release_regions(pdev);
12958 
12959 	pci_disable_device(pdev);
12960 	pci_set_drvdata(pdev, NULL);
12961 }
12962 
12963 static void bnx2x_remove_one(struct pci_dev *pdev)
12964 {
12965 	struct net_device *dev = pci_get_drvdata(pdev);
12966 	struct bnx2x *bp;
12967 
12968 	if (!dev) {
12969 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
12970 		return;
12971 	}
12972 	bp = netdev_priv(dev);
12973 
12974 	__bnx2x_remove(pdev, dev, bp, true);
12975 }
12976 
12977 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
12978 {
12979 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
12980 
12981 	bp->rx_mode = BNX2X_RX_MODE_NONE;
12982 
12983 	if (CNIC_LOADED(bp))
12984 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
12985 
12986 	/* Stop Tx */
12987 	bnx2x_tx_disable(bp);
12988 	/* Delete all NAPI objects */
12989 	bnx2x_del_all_napi(bp);
12990 	if (CNIC_LOADED(bp))
12991 		bnx2x_del_all_napi_cnic(bp);
12992 	netdev_reset_tc(bp->dev);
12993 
12994 	del_timer_sync(&bp->timer);
12995 	cancel_delayed_work(&bp->sp_task);
12996 	cancel_delayed_work(&bp->period_task);
12997 
12998 	spin_lock_bh(&bp->stats_lock);
12999 	bp->stats_state = STATS_STATE_DISABLED;
13000 	spin_unlock_bh(&bp->stats_lock);
13001 
13002 	bnx2x_save_statistics(bp);
13003 
13004 	netif_carrier_off(bp->dev);
13005 
13006 	return 0;
13007 }
13008 
13009 /**
13010  * bnx2x_io_error_detected - called when PCI error is detected
13011  * @pdev: Pointer to PCI device
13012  * @state: The current pci connection state
13013  *
13014  * This function is called after a PCI bus error affecting
13015  * this device has been detected.
13016  */
13017 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
13018 						pci_channel_state_t state)
13019 {
13020 	struct net_device *dev = pci_get_drvdata(pdev);
13021 	struct bnx2x *bp = netdev_priv(dev);
13022 
13023 	rtnl_lock();
13024 
13025 	BNX2X_ERR("IO error detected\n");
13026 
13027 	netif_device_detach(dev);
13028 
13029 	if (state == pci_channel_io_perm_failure) {
13030 		rtnl_unlock();
13031 		return PCI_ERS_RESULT_DISCONNECT;
13032 	}
13033 
13034 	if (netif_running(dev))
13035 		bnx2x_eeh_nic_unload(bp);
13036 
13037 	bnx2x_prev_path_mark_eeh(bp);
13038 
13039 	pci_disable_device(pdev);
13040 
13041 	rtnl_unlock();
13042 
13043 	/* Request a slot reset */
13044 	return PCI_ERS_RESULT_NEED_RESET;
13045 }
13046 
13047 /**
13048  * bnx2x_io_slot_reset - called after the PCI bus has been reset
13049  * @pdev: Pointer to PCI device
13050  *
13051  * Restart the card from scratch, as if from a cold-boot.
13052  */
13053 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
13054 {
13055 	struct net_device *dev = pci_get_drvdata(pdev);
13056 	struct bnx2x *bp = netdev_priv(dev);
13057 	int i;
13058 
13059 	rtnl_lock();
13060 	BNX2X_ERR("IO slot reset initializing...\n");
13061 	if (pci_enable_device(pdev)) {
13062 		dev_err(&pdev->dev,
13063 			"Cannot re-enable PCI device after reset\n");
13064 		rtnl_unlock();
13065 		return PCI_ERS_RESULT_DISCONNECT;
13066 	}
13067 
13068 	pci_set_master(pdev);
13069 	pci_restore_state(pdev);
13070 	pci_save_state(pdev);
13071 
13072 	if (netif_running(dev))
13073 		bnx2x_set_power_state(bp, PCI_D0);
13074 
13075 	if (netif_running(dev)) {
13076 		BNX2X_ERR("IO slot reset --> driver unload\n");
13077 
13078 		/* MCP should have been reset; Need to wait for validity */
13079 		bnx2x_init_shmem(bp);
13080 
13081 		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13082 			u32 v;
13083 
13084 			v = SHMEM2_RD(bp,
13085 				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13086 			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13087 				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13088 		}
13089 		bnx2x_drain_tx_queues(bp);
13090 		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13091 		bnx2x_netif_stop(bp, 1);
13092 		bnx2x_free_irq(bp);
13093 
13094 		/* Report UNLOAD_DONE to MCP */
13095 		bnx2x_send_unload_done(bp, true);
13096 
13097 		bp->sp_state = 0;
13098 		bp->port.pmf = 0;
13099 
13100 		bnx2x_prev_unload(bp);
13101 
13102 		/* We should have reseted the engine, so It's fair to
13103 		 * assume the FW will no longer write to the bnx2x driver.
13104 		 */
13105 		bnx2x_squeeze_objects(bp);
13106 		bnx2x_free_skbs(bp);
13107 		for_each_rx_queue(bp, i)
13108 			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13109 		bnx2x_free_fp_mem(bp);
13110 		bnx2x_free_mem(bp);
13111 
13112 		bp->state = BNX2X_STATE_CLOSED;
13113 	}
13114 
13115 	rtnl_unlock();
13116 
13117 	return PCI_ERS_RESULT_RECOVERED;
13118 }
13119 
13120 /**
13121  * bnx2x_io_resume - called when traffic can start flowing again
13122  * @pdev: Pointer to PCI device
13123  *
13124  * This callback is called when the error recovery driver tells us that
13125  * its OK to resume normal operation.
13126  */
13127 static void bnx2x_io_resume(struct pci_dev *pdev)
13128 {
13129 	struct net_device *dev = pci_get_drvdata(pdev);
13130 	struct bnx2x *bp = netdev_priv(dev);
13131 
13132 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13133 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13134 		return;
13135 	}
13136 
13137 	rtnl_lock();
13138 
13139 	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13140 							DRV_MSG_SEQ_NUMBER_MASK;
13141 
13142 	if (netif_running(dev))
13143 		bnx2x_nic_load(bp, LOAD_NORMAL);
13144 
13145 	netif_device_attach(dev);
13146 
13147 	rtnl_unlock();
13148 }
13149 
13150 static const struct pci_error_handlers bnx2x_err_handler = {
13151 	.error_detected = bnx2x_io_error_detected,
13152 	.slot_reset     = bnx2x_io_slot_reset,
13153 	.resume         = bnx2x_io_resume,
13154 };
13155 
13156 static void bnx2x_shutdown(struct pci_dev *pdev)
13157 {
13158 	struct net_device *dev = pci_get_drvdata(pdev);
13159 	struct bnx2x *bp;
13160 
13161 	if (!dev)
13162 		return;
13163 
13164 	bp = netdev_priv(dev);
13165 	if (!bp)
13166 		return;
13167 
13168 	rtnl_lock();
13169 	netif_device_detach(dev);
13170 	rtnl_unlock();
13171 
13172 	/* Don't remove the netdevice, as there are scenarios which will cause
13173 	 * the kernel to hang, e.g., when trying to remove bnx2i while the
13174 	 * rootfs is mounted from SAN.
13175 	 */
13176 	__bnx2x_remove(pdev, dev, bp, false);
13177 }
13178 
13179 static struct pci_driver bnx2x_pci_driver = {
13180 	.name        = DRV_MODULE_NAME,
13181 	.id_table    = bnx2x_pci_tbl,
13182 	.probe       = bnx2x_init_one,
13183 	.remove      = bnx2x_remove_one,
13184 	.suspend     = bnx2x_suspend,
13185 	.resume      = bnx2x_resume,
13186 	.err_handler = &bnx2x_err_handler,
13187 #ifdef CONFIG_BNX2X_SRIOV
13188 	.sriov_configure = bnx2x_sriov_configure,
13189 #endif
13190 	.shutdown    = bnx2x_shutdown,
13191 };
13192 
13193 static int __init bnx2x_init(void)
13194 {
13195 	int ret;
13196 
13197 	pr_info("%s", version);
13198 
13199 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
13200 	if (bnx2x_wq == NULL) {
13201 		pr_err("Cannot create workqueue\n");
13202 		return -ENOMEM;
13203 	}
13204 
13205 	ret = pci_register_driver(&bnx2x_pci_driver);
13206 	if (ret) {
13207 		pr_err("Cannot register driver\n");
13208 		destroy_workqueue(bnx2x_wq);
13209 	}
13210 	return ret;
13211 }
13212 
13213 static void __exit bnx2x_cleanup(void)
13214 {
13215 	struct list_head *pos, *q;
13216 
13217 	pci_unregister_driver(&bnx2x_pci_driver);
13218 
13219 	destroy_workqueue(bnx2x_wq);
13220 
13221 	/* Free globally allocated resources */
13222 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
13223 		struct bnx2x_prev_path_list *tmp =
13224 			list_entry(pos, struct bnx2x_prev_path_list, list);
13225 		list_del(pos);
13226 		kfree(tmp);
13227 	}
13228 }
13229 
13230 void bnx2x_notify_link_changed(struct bnx2x *bp)
13231 {
13232 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13233 }
13234 
13235 module_init(bnx2x_init);
13236 module_exit(bnx2x_cleanup);
13237 
13238 /**
13239  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13240  *
13241  * @bp:		driver handle
13242  * @set:	set or clear the CAM entry
13243  *
13244  * This function will wait until the ramrod completion returns.
13245  * Return 0 if success, -ENODEV if ramrod doesn't return.
13246  */
13247 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13248 {
13249 	unsigned long ramrod_flags = 0;
13250 
13251 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13252 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13253 				 &bp->iscsi_l2_mac_obj, true,
13254 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13255 }
13256 
13257 /* count denotes the number of new completions we have seen */
13258 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13259 {
13260 	struct eth_spe *spe;
13261 	int cxt_index, cxt_offset;
13262 
13263 #ifdef BNX2X_STOP_ON_ERROR
13264 	if (unlikely(bp->panic))
13265 		return;
13266 #endif
13267 
13268 	spin_lock_bh(&bp->spq_lock);
13269 	BUG_ON(bp->cnic_spq_pending < count);
13270 	bp->cnic_spq_pending -= count;
13271 
13272 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13273 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13274 				& SPE_HDR_CONN_TYPE) >>
13275 				SPE_HDR_CONN_TYPE_SHIFT;
13276 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13277 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13278 
13279 		/* Set validation for iSCSI L2 client before sending SETUP
13280 		 *  ramrod
13281 		 */
13282 		if (type == ETH_CONNECTION_TYPE) {
13283 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13284 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13285 					ILT_PAGE_CIDS;
13286 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13287 					(cxt_index * ILT_PAGE_CIDS);
13288 				bnx2x_set_ctx_validation(bp,
13289 					&bp->context[cxt_index].
13290 							 vcxt[cxt_offset].eth,
13291 					BNX2X_ISCSI_ETH_CID(bp));
13292 			}
13293 		}
13294 
13295 		/*
13296 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
13297 		 * and in the air. We also check that number of outstanding
13298 		 * COMMON ramrods is not more than the EQ and SPQ can
13299 		 * accommodate.
13300 		 */
13301 		if (type == ETH_CONNECTION_TYPE) {
13302 			if (!atomic_read(&bp->cq_spq_left))
13303 				break;
13304 			else
13305 				atomic_dec(&bp->cq_spq_left);
13306 		} else if (type == NONE_CONNECTION_TYPE) {
13307 			if (!atomic_read(&bp->eq_spq_left))
13308 				break;
13309 			else
13310 				atomic_dec(&bp->eq_spq_left);
13311 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
13312 			   (type == FCOE_CONNECTION_TYPE)) {
13313 			if (bp->cnic_spq_pending >=
13314 			    bp->cnic_eth_dev.max_kwqe_pending)
13315 				break;
13316 			else
13317 				bp->cnic_spq_pending++;
13318 		} else {
13319 			BNX2X_ERR("Unknown SPE type: %d\n", type);
13320 			bnx2x_panic();
13321 			break;
13322 		}
13323 
13324 		spe = bnx2x_sp_get_next(bp);
13325 		*spe = *bp->cnic_kwq_cons;
13326 
13327 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
13328 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
13329 
13330 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
13331 			bp->cnic_kwq_cons = bp->cnic_kwq;
13332 		else
13333 			bp->cnic_kwq_cons++;
13334 	}
13335 	bnx2x_sp_prod_update(bp);
13336 	spin_unlock_bh(&bp->spq_lock);
13337 }
13338 
13339 static int bnx2x_cnic_sp_queue(struct net_device *dev,
13340 			       struct kwqe_16 *kwqes[], u32 count)
13341 {
13342 	struct bnx2x *bp = netdev_priv(dev);
13343 	int i;
13344 
13345 #ifdef BNX2X_STOP_ON_ERROR
13346 	if (unlikely(bp->panic)) {
13347 		BNX2X_ERR("Can't post to SP queue while panic\n");
13348 		return -EIO;
13349 	}
13350 #endif
13351 
13352 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
13353 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
13354 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
13355 		return -EAGAIN;
13356 	}
13357 
13358 	spin_lock_bh(&bp->spq_lock);
13359 
13360 	for (i = 0; i < count; i++) {
13361 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
13362 
13363 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
13364 			break;
13365 
13366 		*bp->cnic_kwq_prod = *spe;
13367 
13368 		bp->cnic_kwq_pending++;
13369 
13370 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
13371 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
13372 		   spe->data.update_data_addr.hi,
13373 		   spe->data.update_data_addr.lo,
13374 		   bp->cnic_kwq_pending);
13375 
13376 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
13377 			bp->cnic_kwq_prod = bp->cnic_kwq;
13378 		else
13379 			bp->cnic_kwq_prod++;
13380 	}
13381 
13382 	spin_unlock_bh(&bp->spq_lock);
13383 
13384 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
13385 		bnx2x_cnic_sp_post(bp, 0);
13386 
13387 	return i;
13388 }
13389 
13390 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13391 {
13392 	struct cnic_ops *c_ops;
13393 	int rc = 0;
13394 
13395 	mutex_lock(&bp->cnic_mutex);
13396 	c_ops = rcu_dereference_protected(bp->cnic_ops,
13397 					  lockdep_is_held(&bp->cnic_mutex));
13398 	if (c_ops)
13399 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13400 	mutex_unlock(&bp->cnic_mutex);
13401 
13402 	return rc;
13403 }
13404 
13405 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13406 {
13407 	struct cnic_ops *c_ops;
13408 	int rc = 0;
13409 
13410 	rcu_read_lock();
13411 	c_ops = rcu_dereference(bp->cnic_ops);
13412 	if (c_ops)
13413 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13414 	rcu_read_unlock();
13415 
13416 	return rc;
13417 }
13418 
13419 /*
13420  * for commands that have no data
13421  */
13422 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
13423 {
13424 	struct cnic_ctl_info ctl = {0};
13425 
13426 	ctl.cmd = cmd;
13427 
13428 	return bnx2x_cnic_ctl_send(bp, &ctl);
13429 }
13430 
13431 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
13432 {
13433 	struct cnic_ctl_info ctl = {0};
13434 
13435 	/* first we tell CNIC and only then we count this as a completion */
13436 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
13437 	ctl.data.comp.cid = cid;
13438 	ctl.data.comp.error = err;
13439 
13440 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
13441 	bnx2x_cnic_sp_post(bp, 0);
13442 }
13443 
13444 /* Called with netif_addr_lock_bh() taken.
13445  * Sets an rx_mode config for an iSCSI ETH client.
13446  * Doesn't block.
13447  * Completion should be checked outside.
13448  */
13449 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
13450 {
13451 	unsigned long accept_flags = 0, ramrod_flags = 0;
13452 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13453 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
13454 
13455 	if (start) {
13456 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
13457 		 * because it's the only way for UIO Queue to accept
13458 		 * multicasts (in non-promiscuous mode only one Queue per
13459 		 * function will receive multicast packets (leading in our
13460 		 * case).
13461 		 */
13462 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
13463 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
13464 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
13465 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
13466 
13467 		/* Clear STOP_PENDING bit if START is requested */
13468 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
13469 
13470 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
13471 	} else
13472 		/* Clear START_PENDING bit if STOP is requested */
13473 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
13474 
13475 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
13476 		set_bit(sched_state, &bp->sp_state);
13477 	else {
13478 		__set_bit(RAMROD_RX, &ramrod_flags);
13479 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
13480 				    ramrod_flags);
13481 	}
13482 }
13483 
13484 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
13485 {
13486 	struct bnx2x *bp = netdev_priv(dev);
13487 	int rc = 0;
13488 
13489 	switch (ctl->cmd) {
13490 	case DRV_CTL_CTXTBL_WR_CMD: {
13491 		u32 index = ctl->data.io.offset;
13492 		dma_addr_t addr = ctl->data.io.dma_addr;
13493 
13494 		bnx2x_ilt_wr(bp, index, addr);
13495 		break;
13496 	}
13497 
13498 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
13499 		int count = ctl->data.credit.credit_count;
13500 
13501 		bnx2x_cnic_sp_post(bp, count);
13502 		break;
13503 	}
13504 
13505 	/* rtnl_lock is held.  */
13506 	case DRV_CTL_START_L2_CMD: {
13507 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13508 		unsigned long sp_bits = 0;
13509 
13510 		/* Configure the iSCSI classification object */
13511 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
13512 				   cp->iscsi_l2_client_id,
13513 				   cp->iscsi_l2_cid, BP_FUNC(bp),
13514 				   bnx2x_sp(bp, mac_rdata),
13515 				   bnx2x_sp_mapping(bp, mac_rdata),
13516 				   BNX2X_FILTER_MAC_PENDING,
13517 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
13518 				   &bp->macs_pool);
13519 
13520 		/* Set iSCSI MAC address */
13521 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
13522 		if (rc)
13523 			break;
13524 
13525 		mmiowb();
13526 		barrier();
13527 
13528 		/* Start accepting on iSCSI L2 ring */
13529 
13530 		netif_addr_lock_bh(dev);
13531 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
13532 		netif_addr_unlock_bh(dev);
13533 
13534 		/* bits to wait on */
13535 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13536 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
13537 
13538 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
13539 			BNX2X_ERR("rx_mode completion timed out!\n");
13540 
13541 		break;
13542 	}
13543 
13544 	/* rtnl_lock is held.  */
13545 	case DRV_CTL_STOP_L2_CMD: {
13546 		unsigned long sp_bits = 0;
13547 
13548 		/* Stop accepting on iSCSI L2 ring */
13549 		netif_addr_lock_bh(dev);
13550 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
13551 		netif_addr_unlock_bh(dev);
13552 
13553 		/* bits to wait on */
13554 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13555 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13556 
13557 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
13558 			BNX2X_ERR("rx_mode completion timed out!\n");
13559 
13560 		mmiowb();
13561 		barrier();
13562 
13563 		/* Unset iSCSI L2 MAC */
13564 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13565 					BNX2X_ISCSI_ETH_MAC, true);
13566 		break;
13567 	}
13568 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13569 		int count = ctl->data.credit.credit_count;
13570 
13571 		smp_mb__before_atomic_inc();
13572 		atomic_add(count, &bp->cq_spq_left);
13573 		smp_mb__after_atomic_inc();
13574 		break;
13575 	}
13576 	case DRV_CTL_ULP_REGISTER_CMD: {
13577 		int ulp_type = ctl->data.register_data.ulp_type;
13578 
13579 		if (CHIP_IS_E3(bp)) {
13580 			int idx = BP_FW_MB_IDX(bp);
13581 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13582 			int path = BP_PATH(bp);
13583 			int port = BP_PORT(bp);
13584 			int i;
13585 			u32 scratch_offset;
13586 			u32 *host_addr;
13587 
13588 			/* first write capability to shmem2 */
13589 			if (ulp_type == CNIC_ULP_ISCSI)
13590 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13591 			else if (ulp_type == CNIC_ULP_FCOE)
13592 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13593 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13594 
13595 			if ((ulp_type != CNIC_ULP_FCOE) ||
13596 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13597 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
13598 				break;
13599 
13600 			/* if reached here - should write fcoe capabilities */
13601 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13602 			if (!scratch_offset)
13603 				break;
13604 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
13605 						   fcoe_features[path][port]);
13606 			host_addr = (u32 *) &(ctl->data.register_data.
13607 					      fcoe_features);
13608 			for (i = 0; i < sizeof(struct fcoe_capabilities);
13609 			     i += 4)
13610 				REG_WR(bp, scratch_offset + i,
13611 				       *(host_addr + i/4));
13612 		}
13613 		break;
13614 	}
13615 
13616 	case DRV_CTL_ULP_UNREGISTER_CMD: {
13617 		int ulp_type = ctl->data.ulp_type;
13618 
13619 		if (CHIP_IS_E3(bp)) {
13620 			int idx = BP_FW_MB_IDX(bp);
13621 			u32 cap;
13622 
13623 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13624 			if (ulp_type == CNIC_ULP_ISCSI)
13625 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13626 			else if (ulp_type == CNIC_ULP_FCOE)
13627 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13628 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13629 		}
13630 		break;
13631 	}
13632 
13633 	default:
13634 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
13635 		rc = -EINVAL;
13636 	}
13637 
13638 	return rc;
13639 }
13640 
13641 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13642 {
13643 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13644 
13645 	if (bp->flags & USING_MSIX_FLAG) {
13646 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13647 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13648 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
13649 	} else {
13650 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13651 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13652 	}
13653 	if (!CHIP_IS_E1x(bp))
13654 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13655 	else
13656 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13657 
13658 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
13659 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13660 	cp->irq_arr[1].status_blk = bp->def_status_blk;
13661 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
13662 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
13663 
13664 	cp->num_irq = 2;
13665 }
13666 
13667 void bnx2x_setup_cnic_info(struct bnx2x *bp)
13668 {
13669 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13670 
13671 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13672 			     bnx2x_cid_ilt_lines(bp);
13673 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13674 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13675 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13676 
13677 	DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
13678 	   BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
13679 	   cp->iscsi_l2_cid);
13680 
13681 	if (NO_ISCSI_OOO(bp))
13682 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13683 }
13684 
13685 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
13686 			       void *data)
13687 {
13688 	struct bnx2x *bp = netdev_priv(dev);
13689 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13690 	int rc;
13691 
13692 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
13693 
13694 	if (ops == NULL) {
13695 		BNX2X_ERR("NULL ops received\n");
13696 		return -EINVAL;
13697 	}
13698 
13699 	if (!CNIC_SUPPORT(bp)) {
13700 		BNX2X_ERR("Can't register CNIC when not supported\n");
13701 		return -EOPNOTSUPP;
13702 	}
13703 
13704 	if (!CNIC_LOADED(bp)) {
13705 		rc = bnx2x_load_cnic(bp);
13706 		if (rc) {
13707 			BNX2X_ERR("CNIC-related load failed\n");
13708 			return rc;
13709 		}
13710 	}
13711 
13712 	bp->cnic_enabled = true;
13713 
13714 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
13715 	if (!bp->cnic_kwq)
13716 		return -ENOMEM;
13717 
13718 	bp->cnic_kwq_cons = bp->cnic_kwq;
13719 	bp->cnic_kwq_prod = bp->cnic_kwq;
13720 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
13721 
13722 	bp->cnic_spq_pending = 0;
13723 	bp->cnic_kwq_pending = 0;
13724 
13725 	bp->cnic_data = data;
13726 
13727 	cp->num_irq = 0;
13728 	cp->drv_state |= CNIC_DRV_STATE_REGD;
13729 	cp->iro_arr = bp->iro_arr;
13730 
13731 	bnx2x_setup_cnic_irq_info(bp);
13732 
13733 	rcu_assign_pointer(bp->cnic_ops, ops);
13734 
13735 	return 0;
13736 }
13737 
13738 static int bnx2x_unregister_cnic(struct net_device *dev)
13739 {
13740 	struct bnx2x *bp = netdev_priv(dev);
13741 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13742 
13743 	mutex_lock(&bp->cnic_mutex);
13744 	cp->drv_state = 0;
13745 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
13746 	mutex_unlock(&bp->cnic_mutex);
13747 	synchronize_rcu();
13748 	bp->cnic_enabled = false;
13749 	kfree(bp->cnic_kwq);
13750 	bp->cnic_kwq = NULL;
13751 
13752 	return 0;
13753 }
13754 
13755 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
13756 {
13757 	struct bnx2x *bp = netdev_priv(dev);
13758 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13759 
13760 	/* If both iSCSI and FCoE are disabled - return NULL in
13761 	 * order to indicate CNIC that it should not try to work
13762 	 * with this device.
13763 	 */
13764 	if (NO_ISCSI(bp) && NO_FCOE(bp))
13765 		return NULL;
13766 
13767 	cp->drv_owner = THIS_MODULE;
13768 	cp->chip_id = CHIP_ID(bp);
13769 	cp->pdev = bp->pdev;
13770 	cp->io_base = bp->regview;
13771 	cp->io_base2 = bp->doorbells;
13772 	cp->max_kwqe_pending = 8;
13773 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
13774 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13775 			     bnx2x_cid_ilt_lines(bp);
13776 	cp->ctx_tbl_len = CNIC_ILT_LINES;
13777 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13778 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
13779 	cp->drv_ctl = bnx2x_drv_ctl;
13780 	cp->drv_register_cnic = bnx2x_register_cnic;
13781 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
13782 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13783 	cp->iscsi_l2_client_id =
13784 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13785 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13786 
13787 	if (NO_ISCSI_OOO(bp))
13788 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13789 
13790 	if (NO_ISCSI(bp))
13791 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
13792 
13793 	if (NO_FCOE(bp))
13794 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
13795 
13796 	BNX2X_DEV_INFO(
13797 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
13798 	   cp->ctx_blk_size,
13799 	   cp->ctx_tbl_offset,
13800 	   cp->ctx_tbl_len,
13801 	   cp->starting_cid);
13802 	return cp;
13803 }
13804 
13805 u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
13806 {
13807 	struct bnx2x *bp = fp->bp;
13808 	u32 offset = BAR_USTRORM_INTMEM;
13809 
13810 	if (IS_VF(bp))
13811 		return bnx2x_vf_ustorm_prods_offset(bp, fp);
13812 	else if (!CHIP_IS_E1x(bp))
13813 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
13814 	else
13815 		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
13816 
13817 	return offset;
13818 }
13819 
13820 /* called only on E1H or E2.
13821  * When pretending to be PF, the pretend value is the function number 0...7
13822  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
13823  * combination
13824  */
13825 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
13826 {
13827 	u32 pretend_reg;
13828 
13829 	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
13830 		return -1;
13831 
13832 	/* get my own pretend register */
13833 	pretend_reg = bnx2x_get_pretend_reg(bp);
13834 	REG_WR(bp, pretend_reg, pretend_func_val);
13835 	REG_RD(bp, pretend_reg);
13836 	return 0;
13837 }
13838