1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/aer.h>
31 #include <linux/init.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/bitops.h>
37 #include <linux/irq.h>
38 #include <linux/delay.h>
39 #include <asm/byteorder.h>
40 #include <linux/time.h>
41 #include <linux/ethtool.h>
42 #include <linux/mii.h>
43 #include <linux/if_vlan.h>
44 #include <net/ip.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/checksum.h>
48 #include <net/ip6_checksum.h>
49 #include <linux/workqueue.h>
50 #include <linux/crc32.h>
51 #include <linux/crc32c.h>
52 #include <linux/prefetch.h>
53 #include <linux/zlib.h>
54 #include <linux/io.h>
55 #include <linux/semaphore.h>
56 #include <linux/stringify.h>
57 #include <linux/vmalloc.h>
58 
59 #include "bnx2x.h"
60 #include "bnx2x_init.h"
61 #include "bnx2x_init_ops.h"
62 #include "bnx2x_cmn.h"
63 #include "bnx2x_vfpf.h"
64 #include "bnx2x_dcb.h"
65 #include "bnx2x_sp.h"
66 
67 #include <linux/firmware.h>
68 #include "bnx2x_fw_file_hdr.h"
69 /* FW files */
70 #define FW_FILE_VERSION					\
71 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
72 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
73 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
74 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
75 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
77 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
78 
79 /* Time in jiffies before concluding the transmitter is hung */
80 #define TX_TIMEOUT		(5*HZ)
81 
82 static char version[] =
83 	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
84 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
85 
86 MODULE_AUTHOR("Eliezer Tamir");
87 MODULE_DESCRIPTION("Broadcom NetXtreme II "
88 		   "BCM57710/57711/57711E/"
89 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
90 		   "57840/57840_MF Driver");
91 MODULE_LICENSE("GPL");
92 MODULE_VERSION(DRV_MODULE_VERSION);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1);
94 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
95 MODULE_FIRMWARE(FW_FILE_NAME_E2);
96 
97 int bnx2x_num_queues;
98 module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
99 MODULE_PARM_DESC(num_queues,
100 		 " Set number of queues (default is as a number of CPUs)");
101 
102 static int disable_tpa;
103 module_param(disable_tpa, int, S_IRUGO);
104 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
105 
106 static int int_mode;
107 module_param(int_mode, int, S_IRUGO);
108 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
109 				"(1 INT#x; 2 MSI)");
110 
111 static int dropless_fc;
112 module_param(dropless_fc, int, S_IRUGO);
113 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
114 
115 static int mrrs = -1;
116 module_param(mrrs, int, S_IRUGO);
117 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
118 
119 static int debug;
120 module_param(debug, int, S_IRUGO);
121 MODULE_PARM_DESC(debug, " Default debug msglevel");
122 
123 struct workqueue_struct *bnx2x_wq;
124 
125 struct bnx2x_mac_vals {
126 	u32 xmac_addr;
127 	u32 xmac_val;
128 	u32 emac_addr;
129 	u32 emac_val;
130 	u32 umac_addr;
131 	u32 umac_val;
132 	u32 bmac_addr;
133 	u32 bmac_val[2];
134 };
135 
136 enum bnx2x_board_type {
137 	BCM57710 = 0,
138 	BCM57711,
139 	BCM57711E,
140 	BCM57712,
141 	BCM57712_MF,
142 	BCM57712_VF,
143 	BCM57800,
144 	BCM57800_MF,
145 	BCM57800_VF,
146 	BCM57810,
147 	BCM57810_MF,
148 	BCM57810_VF,
149 	BCM57840_4_10,
150 	BCM57840_2_20,
151 	BCM57840_MF,
152 	BCM57840_VF,
153 	BCM57811,
154 	BCM57811_MF,
155 	BCM57840_O,
156 	BCM57840_MFO,
157 	BCM57811_VF
158 };
159 
160 /* indexed by board_type, above */
161 static struct {
162 	char *name;
163 } board_info[] = {
164 	[BCM57710]	= { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
165 	[BCM57711]	= { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
166 	[BCM57711E]	= { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
167 	[BCM57712]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
168 	[BCM57712_MF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
169 	[BCM57712_VF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
170 	[BCM57800]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
171 	[BCM57800_MF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
172 	[BCM57800_VF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
173 	[BCM57810]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
174 	[BCM57810_MF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
175 	[BCM57810_VF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
176 	[BCM57840_4_10]	= { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
177 	[BCM57840_2_20]	= { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
178 	[BCM57840_MF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
179 	[BCM57840_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
180 	[BCM57811]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
181 	[BCM57811_MF]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
182 	[BCM57840_O]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
183 	[BCM57840_MFO]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
184 	[BCM57811_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
185 };
186 
187 #ifndef PCI_DEVICE_ID_NX2_57710
188 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
189 #endif
190 #ifndef PCI_DEVICE_ID_NX2_57711
191 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
192 #endif
193 #ifndef PCI_DEVICE_ID_NX2_57711E
194 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
195 #endif
196 #ifndef PCI_DEVICE_ID_NX2_57712
197 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
198 #endif
199 #ifndef PCI_DEVICE_ID_NX2_57712_MF
200 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
201 #endif
202 #ifndef PCI_DEVICE_ID_NX2_57712_VF
203 #define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
204 #endif
205 #ifndef PCI_DEVICE_ID_NX2_57800
206 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
207 #endif
208 #ifndef PCI_DEVICE_ID_NX2_57800_MF
209 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
210 #endif
211 #ifndef PCI_DEVICE_ID_NX2_57800_VF
212 #define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
213 #endif
214 #ifndef PCI_DEVICE_ID_NX2_57810
215 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
216 #endif
217 #ifndef PCI_DEVICE_ID_NX2_57810_MF
218 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
219 #endif
220 #ifndef PCI_DEVICE_ID_NX2_57840_O
221 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
222 #endif
223 #ifndef PCI_DEVICE_ID_NX2_57810_VF
224 #define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
225 #endif
226 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
227 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
228 #endif
229 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
230 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
231 #endif
232 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
233 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
234 #endif
235 #ifndef PCI_DEVICE_ID_NX2_57840_MF
236 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
237 #endif
238 #ifndef PCI_DEVICE_ID_NX2_57840_VF
239 #define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
240 #endif
241 #ifndef PCI_DEVICE_ID_NX2_57811
242 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
243 #endif
244 #ifndef PCI_DEVICE_ID_NX2_57811_MF
245 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
246 #endif
247 #ifndef PCI_DEVICE_ID_NX2_57811_VF
248 #define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
249 #endif
250 
251 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
252 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
253 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
254 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
255 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
256 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
257 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
258 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
259 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
260 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
261 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
262 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
263 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
264 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
265 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
266 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
267 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
268 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
269 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
270 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
271 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
272 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
273 	{ 0 }
274 };
275 
276 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
277 
278 /* Global resources for unloading a previously loaded device */
279 #define BNX2X_PREV_WAIT_NEEDED 1
280 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
281 static LIST_HEAD(bnx2x_prev_list);
282 
283 /* Forward declaration */
284 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
285 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
286 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
287 
288 /****************************************************************************
289 * General service functions
290 ****************************************************************************/
291 
292 static void __storm_memset_dma_mapping(struct bnx2x *bp,
293 				       u32 addr, dma_addr_t mapping)
294 {
295 	REG_WR(bp,  addr, U64_LO(mapping));
296 	REG_WR(bp,  addr + 4, U64_HI(mapping));
297 }
298 
299 static void storm_memset_spq_addr(struct bnx2x *bp,
300 				  dma_addr_t mapping, u16 abs_fid)
301 {
302 	u32 addr = XSEM_REG_FAST_MEMORY +
303 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
304 
305 	__storm_memset_dma_mapping(bp, addr, mapping);
306 }
307 
308 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
309 				  u16 pf_id)
310 {
311 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
312 		pf_id);
313 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
314 		pf_id);
315 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
316 		pf_id);
317 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
318 		pf_id);
319 }
320 
321 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
322 				 u8 enable)
323 {
324 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
325 		enable);
326 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
327 		enable);
328 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
329 		enable);
330 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
331 		enable);
332 }
333 
334 static void storm_memset_eq_data(struct bnx2x *bp,
335 				 struct event_ring_data *eq_data,
336 				u16 pfid)
337 {
338 	size_t size = sizeof(struct event_ring_data);
339 
340 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
341 
342 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
343 }
344 
345 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
346 				 u16 pfid)
347 {
348 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
349 	REG_WR16(bp, addr, eq_prod);
350 }
351 
352 /* used only at init
353  * locking is done by mcp
354  */
355 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
356 {
357 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
358 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
359 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
360 			       PCICFG_VENDOR_ID_OFFSET);
361 }
362 
363 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
364 {
365 	u32 val;
366 
367 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
368 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
369 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
370 			       PCICFG_VENDOR_ID_OFFSET);
371 
372 	return val;
373 }
374 
375 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
376 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
377 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
378 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
379 #define DMAE_DP_DST_NONE	"dst_addr [none]"
380 
381 static void bnx2x_dp_dmae(struct bnx2x *bp,
382 			  struct dmae_command *dmae, int msglvl)
383 {
384 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
385 	int i;
386 
387 	switch (dmae->opcode & DMAE_COMMAND_DST) {
388 	case DMAE_CMD_DST_PCI:
389 		if (src_type == DMAE_CMD_SRC_PCI)
390 			DP(msglvl, "DMAE: opcode 0x%08x\n"
391 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
392 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
393 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
394 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
395 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
396 			   dmae->comp_val);
397 		else
398 			DP(msglvl, "DMAE: opcode 0x%08x\n"
399 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
400 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
401 			   dmae->opcode, dmae->src_addr_lo >> 2,
402 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
403 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
404 			   dmae->comp_val);
405 		break;
406 	case DMAE_CMD_DST_GRC:
407 		if (src_type == DMAE_CMD_SRC_PCI)
408 			DP(msglvl, "DMAE: opcode 0x%08x\n"
409 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
410 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
411 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
412 			   dmae->len, dmae->dst_addr_lo >> 2,
413 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
414 			   dmae->comp_val);
415 		else
416 			DP(msglvl, "DMAE: opcode 0x%08x\n"
417 			   "src [%08x], len [%d*4], dst [%08x]\n"
418 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
419 			   dmae->opcode, dmae->src_addr_lo >> 2,
420 			   dmae->len, dmae->dst_addr_lo >> 2,
421 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
422 			   dmae->comp_val);
423 		break;
424 	default:
425 		if (src_type == DMAE_CMD_SRC_PCI)
426 			DP(msglvl, "DMAE: opcode 0x%08x\n"
427 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
428 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
429 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
430 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
431 			   dmae->comp_val);
432 		else
433 			DP(msglvl, "DMAE: opcode 0x%08x\n"
434 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
435 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
436 			   dmae->opcode, dmae->src_addr_lo >> 2,
437 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
438 			   dmae->comp_val);
439 		break;
440 	}
441 
442 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
443 		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
444 		   i, *(((u32 *)dmae) + i));
445 }
446 
447 /* copy command into DMAE command memory and set DMAE command go */
448 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
449 {
450 	u32 cmd_offset;
451 	int i;
452 
453 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
454 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
455 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
456 	}
457 	REG_WR(bp, dmae_reg_go_c[idx], 1);
458 }
459 
460 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
461 {
462 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
463 			   DMAE_CMD_C_ENABLE);
464 }
465 
466 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
467 {
468 	return opcode & ~DMAE_CMD_SRC_RESET;
469 }
470 
471 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
472 			     bool with_comp, u8 comp_type)
473 {
474 	u32 opcode = 0;
475 
476 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
477 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
478 
479 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
480 
481 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
482 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
483 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
484 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
485 
486 #ifdef __BIG_ENDIAN
487 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
488 #else
489 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
490 #endif
491 	if (with_comp)
492 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
493 	return opcode;
494 }
495 
496 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
497 				      struct dmae_command *dmae,
498 				      u8 src_type, u8 dst_type)
499 {
500 	memset(dmae, 0, sizeof(struct dmae_command));
501 
502 	/* set the opcode */
503 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
504 					 true, DMAE_COMP_PCI);
505 
506 	/* fill in the completion parameters */
507 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
508 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
509 	dmae->comp_val = DMAE_COMP_VAL;
510 }
511 
512 /* issue a dmae command over the init-channel and wait for completion */
513 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
514 			       u32 *comp)
515 {
516 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
517 	int rc = 0;
518 
519 	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
520 
521 	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
522 	 * as long as this code is called both from syscall context and
523 	 * from ndo_set_rx_mode() flow that may be called from BH.
524 	 */
525 	spin_lock_bh(&bp->dmae_lock);
526 
527 	/* reset completion */
528 	*comp = 0;
529 
530 	/* post the command on the channel used for initializations */
531 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
532 
533 	/* wait for completion */
534 	udelay(5);
535 	while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
536 
537 		if (!cnt ||
538 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
539 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
540 			BNX2X_ERR("DMAE timeout!\n");
541 			rc = DMAE_TIMEOUT;
542 			goto unlock;
543 		}
544 		cnt--;
545 		udelay(50);
546 	}
547 	if (*comp & DMAE_PCI_ERR_FLAG) {
548 		BNX2X_ERR("DMAE PCI error!\n");
549 		rc = DMAE_PCI_ERROR;
550 	}
551 
552 unlock:
553 	spin_unlock_bh(&bp->dmae_lock);
554 	return rc;
555 }
556 
557 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
558 		      u32 len32)
559 {
560 	int rc;
561 	struct dmae_command dmae;
562 
563 	if (!bp->dmae_ready) {
564 		u32 *data = bnx2x_sp(bp, wb_data[0]);
565 
566 		if (CHIP_IS_E1(bp))
567 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
568 		else
569 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
570 		return;
571 	}
572 
573 	/* set opcode and fixed command fields */
574 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
575 
576 	/* fill in addresses and len */
577 	dmae.src_addr_lo = U64_LO(dma_addr);
578 	dmae.src_addr_hi = U64_HI(dma_addr);
579 	dmae.dst_addr_lo = dst_addr >> 2;
580 	dmae.dst_addr_hi = 0;
581 	dmae.len = len32;
582 
583 	/* issue the command and wait for completion */
584 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
585 	if (rc) {
586 		BNX2X_ERR("DMAE returned failure %d\n", rc);
587 #ifdef BNX2X_STOP_ON_ERROR
588 		bnx2x_panic();
589 #endif
590 	}
591 }
592 
593 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
594 {
595 	int rc;
596 	struct dmae_command dmae;
597 
598 	if (!bp->dmae_ready) {
599 		u32 *data = bnx2x_sp(bp, wb_data[0]);
600 		int i;
601 
602 		if (CHIP_IS_E1(bp))
603 			for (i = 0; i < len32; i++)
604 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
605 		else
606 			for (i = 0; i < len32; i++)
607 				data[i] = REG_RD(bp, src_addr + i*4);
608 
609 		return;
610 	}
611 
612 	/* set opcode and fixed command fields */
613 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
614 
615 	/* fill in addresses and len */
616 	dmae.src_addr_lo = src_addr >> 2;
617 	dmae.src_addr_hi = 0;
618 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
619 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
620 	dmae.len = len32;
621 
622 	/* issue the command and wait for completion */
623 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
624 	if (rc) {
625 		BNX2X_ERR("DMAE returned failure %d\n", rc);
626 #ifdef BNX2X_STOP_ON_ERROR
627 		bnx2x_panic();
628 #endif
629 	}
630 }
631 
632 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
633 				      u32 addr, u32 len)
634 {
635 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
636 	int offset = 0;
637 
638 	while (len > dmae_wr_max) {
639 		bnx2x_write_dmae(bp, phys_addr + offset,
640 				 addr + offset, dmae_wr_max);
641 		offset += dmae_wr_max * 4;
642 		len -= dmae_wr_max;
643 	}
644 
645 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
646 }
647 
648 static int bnx2x_mc_assert(struct bnx2x *bp)
649 {
650 	char last_idx;
651 	int i, rc = 0;
652 	u32 row0, row1, row2, row3;
653 
654 	/* XSTORM */
655 	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
656 			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
657 	if (last_idx)
658 		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
659 
660 	/* print the asserts */
661 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
662 
663 		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
664 			      XSTORM_ASSERT_LIST_OFFSET(i));
665 		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
666 			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
667 		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
668 			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
669 		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
670 			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
671 
672 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
673 			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
674 				  i, row3, row2, row1, row0);
675 			rc++;
676 		} else {
677 			break;
678 		}
679 	}
680 
681 	/* TSTORM */
682 	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
683 			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
684 	if (last_idx)
685 		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
686 
687 	/* print the asserts */
688 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
689 
690 		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
691 			      TSTORM_ASSERT_LIST_OFFSET(i));
692 		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
693 			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
694 		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
695 			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
696 		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
697 			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
698 
699 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
700 			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
701 				  i, row3, row2, row1, row0);
702 			rc++;
703 		} else {
704 			break;
705 		}
706 	}
707 
708 	/* CSTORM */
709 	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
710 			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
711 	if (last_idx)
712 		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
713 
714 	/* print the asserts */
715 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
716 
717 		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
718 			      CSTORM_ASSERT_LIST_OFFSET(i));
719 		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
720 			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
721 		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
722 			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
723 		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
724 			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
725 
726 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
727 			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
728 				  i, row3, row2, row1, row0);
729 			rc++;
730 		} else {
731 			break;
732 		}
733 	}
734 
735 	/* USTORM */
736 	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
737 			   USTORM_ASSERT_LIST_INDEX_OFFSET);
738 	if (last_idx)
739 		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
740 
741 	/* print the asserts */
742 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
743 
744 		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
745 			      USTORM_ASSERT_LIST_OFFSET(i));
746 		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
747 			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
748 		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
749 			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
750 		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
751 			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
752 
753 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
754 			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
755 				  i, row3, row2, row1, row0);
756 			rc++;
757 		} else {
758 			break;
759 		}
760 	}
761 
762 	return rc;
763 }
764 
765 #define MCPR_TRACE_BUFFER_SIZE	(0x800)
766 #define SCRATCH_BUFFER_SIZE(bp)	\
767 	(CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
768 
769 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
770 {
771 	u32 addr, val;
772 	u32 mark, offset;
773 	__be32 data[9];
774 	int word;
775 	u32 trace_shmem_base;
776 	if (BP_NOMCP(bp)) {
777 		BNX2X_ERR("NO MCP - can not dump\n");
778 		return;
779 	}
780 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
781 		(bp->common.bc_ver & 0xff0000) >> 16,
782 		(bp->common.bc_ver & 0xff00) >> 8,
783 		(bp->common.bc_ver & 0xff));
784 
785 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
786 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
787 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
788 
789 	if (BP_PATH(bp) == 0)
790 		trace_shmem_base = bp->common.shmem_base;
791 	else
792 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
793 
794 	/* sanity */
795 	if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
796 	    trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
797 				SCRATCH_BUFFER_SIZE(bp)) {
798 		BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
799 			  trace_shmem_base);
800 		return;
801 	}
802 
803 	addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
804 
805 	/* validate TRCB signature */
806 	mark = REG_RD(bp, addr);
807 	if (mark != MFW_TRACE_SIGNATURE) {
808 		BNX2X_ERR("Trace buffer signature is missing.");
809 		return ;
810 	}
811 
812 	/* read cyclic buffer pointer */
813 	addr += 4;
814 	mark = REG_RD(bp, addr);
815 	mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
816 	if (mark >= trace_shmem_base || mark < addr + 4) {
817 		BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
818 		return;
819 	}
820 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
821 
822 	printk("%s", lvl);
823 
824 	/* dump buffer after the mark */
825 	for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
826 		for (word = 0; word < 8; word++)
827 			data[word] = htonl(REG_RD(bp, offset + 4*word));
828 		data[8] = 0x0;
829 		pr_cont("%s", (char *)data);
830 	}
831 
832 	/* dump buffer before the mark */
833 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
834 		for (word = 0; word < 8; word++)
835 			data[word] = htonl(REG_RD(bp, offset + 4*word));
836 		data[8] = 0x0;
837 		pr_cont("%s", (char *)data);
838 	}
839 	printk("%s" "end of fw dump\n", lvl);
840 }
841 
842 static void bnx2x_fw_dump(struct bnx2x *bp)
843 {
844 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
845 }
846 
847 static void bnx2x_hc_int_disable(struct bnx2x *bp)
848 {
849 	int port = BP_PORT(bp);
850 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
851 	u32 val = REG_RD(bp, addr);
852 
853 	/* in E1 we must use only PCI configuration space to disable
854 	 * MSI/MSIX capability
855 	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
856 	 */
857 	if (CHIP_IS_E1(bp)) {
858 		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
859 		 * Use mask register to prevent from HC sending interrupts
860 		 * after we exit the function
861 		 */
862 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
863 
864 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
865 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
866 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
867 	} else
868 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
869 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
870 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
871 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
872 
873 	DP(NETIF_MSG_IFDOWN,
874 	   "write %x to HC %d (addr 0x%x)\n",
875 	   val, port, addr);
876 
877 	/* flush all outstanding writes */
878 	mmiowb();
879 
880 	REG_WR(bp, addr, val);
881 	if (REG_RD(bp, addr) != val)
882 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
883 }
884 
885 static void bnx2x_igu_int_disable(struct bnx2x *bp)
886 {
887 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
888 
889 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
890 		 IGU_PF_CONF_INT_LINE_EN |
891 		 IGU_PF_CONF_ATTN_BIT_EN);
892 
893 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
894 
895 	/* flush all outstanding writes */
896 	mmiowb();
897 
898 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
899 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
900 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
901 }
902 
903 static void bnx2x_int_disable(struct bnx2x *bp)
904 {
905 	if (bp->common.int_block == INT_BLOCK_HC)
906 		bnx2x_hc_int_disable(bp);
907 	else
908 		bnx2x_igu_int_disable(bp);
909 }
910 
911 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
912 {
913 	int i;
914 	u16 j;
915 	struct hc_sp_status_block_data sp_sb_data;
916 	int func = BP_FUNC(bp);
917 #ifdef BNX2X_STOP_ON_ERROR
918 	u16 start = 0, end = 0;
919 	u8 cos;
920 #endif
921 	if (disable_int)
922 		bnx2x_int_disable(bp);
923 
924 	bp->stats_state = STATS_STATE_DISABLED;
925 	bp->eth_stats.unrecoverable_error++;
926 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
927 
928 	BNX2X_ERR("begin crash dump -----------------\n");
929 
930 	/* Indices */
931 	/* Common */
932 	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
933 		  bp->def_idx, bp->def_att_idx, bp->attn_state,
934 		  bp->spq_prod_idx, bp->stats_counter);
935 	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
936 		  bp->def_status_blk->atten_status_block.attn_bits,
937 		  bp->def_status_blk->atten_status_block.attn_bits_ack,
938 		  bp->def_status_blk->atten_status_block.status_block_id,
939 		  bp->def_status_blk->atten_status_block.attn_bits_index);
940 	BNX2X_ERR("     def (");
941 	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
942 		pr_cont("0x%x%s",
943 			bp->def_status_blk->sp_sb.index_values[i],
944 			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
945 
946 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
947 		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
948 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
949 			i*sizeof(u32));
950 
951 	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
952 	       sp_sb_data.igu_sb_id,
953 	       sp_sb_data.igu_seg_id,
954 	       sp_sb_data.p_func.pf_id,
955 	       sp_sb_data.p_func.vnic_id,
956 	       sp_sb_data.p_func.vf_id,
957 	       sp_sb_data.p_func.vf_valid,
958 	       sp_sb_data.state);
959 
960 	for_each_eth_queue(bp, i) {
961 		struct bnx2x_fastpath *fp = &bp->fp[i];
962 		int loop;
963 		struct hc_status_block_data_e2 sb_data_e2;
964 		struct hc_status_block_data_e1x sb_data_e1x;
965 		struct hc_status_block_sm  *hc_sm_p =
966 			CHIP_IS_E1x(bp) ?
967 			sb_data_e1x.common.state_machine :
968 			sb_data_e2.common.state_machine;
969 		struct hc_index_data *hc_index_p =
970 			CHIP_IS_E1x(bp) ?
971 			sb_data_e1x.index_data :
972 			sb_data_e2.index_data;
973 		u8 data_size, cos;
974 		u32 *sb_data_p;
975 		struct bnx2x_fp_txdata txdata;
976 
977 		/* Rx */
978 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
979 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
980 			  fp->rx_comp_prod,
981 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
982 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
983 			  fp->rx_sge_prod, fp->last_max_sge,
984 			  le16_to_cpu(fp->fp_hc_idx));
985 
986 		/* Tx */
987 		for_each_cos_in_tx_queue(fp, cos)
988 		{
989 			txdata = *fp->txdata_ptr[cos];
990 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
991 				  i, txdata.tx_pkt_prod,
992 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
993 				  txdata.tx_bd_cons,
994 				  le16_to_cpu(*txdata.tx_cons_sb));
995 		}
996 
997 		loop = CHIP_IS_E1x(bp) ?
998 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
999 
1000 		/* host sb data */
1001 
1002 		if (IS_FCOE_FP(fp))
1003 			continue;
1004 
1005 		BNX2X_ERR("     run indexes (");
1006 		for (j = 0; j < HC_SB_MAX_SM; j++)
1007 			pr_cont("0x%x%s",
1008 			       fp->sb_running_index[j],
1009 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1010 
1011 		BNX2X_ERR("     indexes (");
1012 		for (j = 0; j < loop; j++)
1013 			pr_cont("0x%x%s",
1014 			       fp->sb_index_values[j],
1015 			       (j == loop - 1) ? ")" : " ");
1016 		/* fw sb data */
1017 		data_size = CHIP_IS_E1x(bp) ?
1018 			sizeof(struct hc_status_block_data_e1x) :
1019 			sizeof(struct hc_status_block_data_e2);
1020 		data_size /= sizeof(u32);
1021 		sb_data_p = CHIP_IS_E1x(bp) ?
1022 			(u32 *)&sb_data_e1x :
1023 			(u32 *)&sb_data_e2;
1024 		/* copy sb data in here */
1025 		for (j = 0; j < data_size; j++)
1026 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1027 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1028 				j * sizeof(u32));
1029 
1030 		if (!CHIP_IS_E1x(bp)) {
1031 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1032 				sb_data_e2.common.p_func.pf_id,
1033 				sb_data_e2.common.p_func.vf_id,
1034 				sb_data_e2.common.p_func.vf_valid,
1035 				sb_data_e2.common.p_func.vnic_id,
1036 				sb_data_e2.common.same_igu_sb_1b,
1037 				sb_data_e2.common.state);
1038 		} else {
1039 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1040 				sb_data_e1x.common.p_func.pf_id,
1041 				sb_data_e1x.common.p_func.vf_id,
1042 				sb_data_e1x.common.p_func.vf_valid,
1043 				sb_data_e1x.common.p_func.vnic_id,
1044 				sb_data_e1x.common.same_igu_sb_1b,
1045 				sb_data_e1x.common.state);
1046 		}
1047 
1048 		/* SB_SMs data */
1049 		for (j = 0; j < HC_SB_MAX_SM; j++) {
1050 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1051 				j, hc_sm_p[j].__flags,
1052 				hc_sm_p[j].igu_sb_id,
1053 				hc_sm_p[j].igu_seg_id,
1054 				hc_sm_p[j].time_to_expire,
1055 				hc_sm_p[j].timer_value);
1056 		}
1057 
1058 		/* Indices data */
1059 		for (j = 0; j < loop; j++) {
1060 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1061 			       hc_index_p[j].flags,
1062 			       hc_index_p[j].timeout);
1063 		}
1064 	}
1065 
1066 #ifdef BNX2X_STOP_ON_ERROR
1067 
1068 	/* event queue */
1069 	BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1070 	for (i = 0; i < NUM_EQ_DESC; i++) {
1071 		u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1072 
1073 		BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1074 			  i, bp->eq_ring[i].message.opcode,
1075 			  bp->eq_ring[i].message.error);
1076 		BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]);
1077 	}
1078 
1079 	/* Rings */
1080 	/* Rx */
1081 	for_each_valid_rx_queue(bp, i) {
1082 		struct bnx2x_fastpath *fp = &bp->fp[i];
1083 
1084 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1085 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1086 		for (j = start; j != end; j = RX_BD(j + 1)) {
1087 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1088 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1089 
1090 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1091 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1092 		}
1093 
1094 		start = RX_SGE(fp->rx_sge_prod);
1095 		end = RX_SGE(fp->last_max_sge);
1096 		for (j = start; j != end; j = RX_SGE(j + 1)) {
1097 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1098 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1099 
1100 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1101 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1102 		}
1103 
1104 		start = RCQ_BD(fp->rx_comp_cons - 10);
1105 		end = RCQ_BD(fp->rx_comp_cons + 503);
1106 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1107 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1108 
1109 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1110 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1111 		}
1112 	}
1113 
1114 	/* Tx */
1115 	for_each_valid_tx_queue(bp, i) {
1116 		struct bnx2x_fastpath *fp = &bp->fp[i];
1117 		for_each_cos_in_tx_queue(fp, cos) {
1118 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1119 
1120 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1121 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1122 			for (j = start; j != end; j = TX_BD(j + 1)) {
1123 				struct sw_tx_bd *sw_bd =
1124 					&txdata->tx_buf_ring[j];
1125 
1126 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1127 					  i, cos, j, sw_bd->skb,
1128 					  sw_bd->first_bd);
1129 			}
1130 
1131 			start = TX_BD(txdata->tx_bd_cons - 10);
1132 			end = TX_BD(txdata->tx_bd_cons + 254);
1133 			for (j = start; j != end; j = TX_BD(j + 1)) {
1134 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1135 
1136 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1137 					  i, cos, j, tx_bd[0], tx_bd[1],
1138 					  tx_bd[2], tx_bd[3]);
1139 			}
1140 		}
1141 	}
1142 #endif
1143 	bnx2x_fw_dump(bp);
1144 	bnx2x_mc_assert(bp);
1145 	BNX2X_ERR("end crash dump -----------------\n");
1146 }
1147 
1148 /*
1149  * FLR Support for E2
1150  *
1151  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1152  * initialization.
1153  */
1154 #define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1155 #define FLR_WAIT_INTERVAL	50	/* usec */
1156 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1157 
1158 struct pbf_pN_buf_regs {
1159 	int pN;
1160 	u32 init_crd;
1161 	u32 crd;
1162 	u32 crd_freed;
1163 };
1164 
1165 struct pbf_pN_cmd_regs {
1166 	int pN;
1167 	u32 lines_occup;
1168 	u32 lines_freed;
1169 };
1170 
1171 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1172 				     struct pbf_pN_buf_regs *regs,
1173 				     u32 poll_count)
1174 {
1175 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1176 	u32 cur_cnt = poll_count;
1177 
1178 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1179 	crd = crd_start = REG_RD(bp, regs->crd);
1180 	init_crd = REG_RD(bp, regs->init_crd);
1181 
1182 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1183 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1184 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1185 
1186 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1187 	       (init_crd - crd_start))) {
1188 		if (cur_cnt--) {
1189 			udelay(FLR_WAIT_INTERVAL);
1190 			crd = REG_RD(bp, regs->crd);
1191 			crd_freed = REG_RD(bp, regs->crd_freed);
1192 		} else {
1193 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1194 			   regs->pN);
1195 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1196 			   regs->pN, crd);
1197 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1198 			   regs->pN, crd_freed);
1199 			break;
1200 		}
1201 	}
1202 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1203 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1204 }
1205 
1206 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1207 				     struct pbf_pN_cmd_regs *regs,
1208 				     u32 poll_count)
1209 {
1210 	u32 occup, to_free, freed, freed_start;
1211 	u32 cur_cnt = poll_count;
1212 
1213 	occup = to_free = REG_RD(bp, regs->lines_occup);
1214 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1215 
1216 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1217 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1218 
1219 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1220 		if (cur_cnt--) {
1221 			udelay(FLR_WAIT_INTERVAL);
1222 			occup = REG_RD(bp, regs->lines_occup);
1223 			freed = REG_RD(bp, regs->lines_freed);
1224 		} else {
1225 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1226 			   regs->pN);
1227 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1228 			   regs->pN, occup);
1229 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1230 			   regs->pN, freed);
1231 			break;
1232 		}
1233 	}
1234 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1235 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1236 }
1237 
1238 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1239 				    u32 expected, u32 poll_count)
1240 {
1241 	u32 cur_cnt = poll_count;
1242 	u32 val;
1243 
1244 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1245 		udelay(FLR_WAIT_INTERVAL);
1246 
1247 	return val;
1248 }
1249 
1250 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1251 				    char *msg, u32 poll_cnt)
1252 {
1253 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1254 	if (val != 0) {
1255 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1256 		return 1;
1257 	}
1258 	return 0;
1259 }
1260 
1261 /* Common routines with VF FLR cleanup */
1262 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1263 {
1264 	/* adjust polling timeout */
1265 	if (CHIP_REV_IS_EMUL(bp))
1266 		return FLR_POLL_CNT * 2000;
1267 
1268 	if (CHIP_REV_IS_FPGA(bp))
1269 		return FLR_POLL_CNT * 120;
1270 
1271 	return FLR_POLL_CNT;
1272 }
1273 
1274 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1275 {
1276 	struct pbf_pN_cmd_regs cmd_regs[] = {
1277 		{0, (CHIP_IS_E3B0(bp)) ?
1278 			PBF_REG_TQ_OCCUPANCY_Q0 :
1279 			PBF_REG_P0_TQ_OCCUPANCY,
1280 		    (CHIP_IS_E3B0(bp)) ?
1281 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1282 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1283 		{1, (CHIP_IS_E3B0(bp)) ?
1284 			PBF_REG_TQ_OCCUPANCY_Q1 :
1285 			PBF_REG_P1_TQ_OCCUPANCY,
1286 		    (CHIP_IS_E3B0(bp)) ?
1287 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1288 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1289 		{4, (CHIP_IS_E3B0(bp)) ?
1290 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1291 			PBF_REG_P4_TQ_OCCUPANCY,
1292 		    (CHIP_IS_E3B0(bp)) ?
1293 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1294 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1295 	};
1296 
1297 	struct pbf_pN_buf_regs buf_regs[] = {
1298 		{0, (CHIP_IS_E3B0(bp)) ?
1299 			PBF_REG_INIT_CRD_Q0 :
1300 			PBF_REG_P0_INIT_CRD ,
1301 		    (CHIP_IS_E3B0(bp)) ?
1302 			PBF_REG_CREDIT_Q0 :
1303 			PBF_REG_P0_CREDIT,
1304 		    (CHIP_IS_E3B0(bp)) ?
1305 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1306 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1307 		{1, (CHIP_IS_E3B0(bp)) ?
1308 			PBF_REG_INIT_CRD_Q1 :
1309 			PBF_REG_P1_INIT_CRD,
1310 		    (CHIP_IS_E3B0(bp)) ?
1311 			PBF_REG_CREDIT_Q1 :
1312 			PBF_REG_P1_CREDIT,
1313 		    (CHIP_IS_E3B0(bp)) ?
1314 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1315 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1316 		{4, (CHIP_IS_E3B0(bp)) ?
1317 			PBF_REG_INIT_CRD_LB_Q :
1318 			PBF_REG_P4_INIT_CRD,
1319 		    (CHIP_IS_E3B0(bp)) ?
1320 			PBF_REG_CREDIT_LB_Q :
1321 			PBF_REG_P4_CREDIT,
1322 		    (CHIP_IS_E3B0(bp)) ?
1323 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1324 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1325 	};
1326 
1327 	int i;
1328 
1329 	/* Verify the command queues are flushed P0, P1, P4 */
1330 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1331 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1332 
1333 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1334 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1335 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1336 }
1337 
1338 #define OP_GEN_PARAM(param) \
1339 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1340 
1341 #define OP_GEN_TYPE(type) \
1342 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1343 
1344 #define OP_GEN_AGG_VECT(index) \
1345 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1346 
1347 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1348 {
1349 	u32 op_gen_command = 0;
1350 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1351 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1352 	int ret = 0;
1353 
1354 	if (REG_RD(bp, comp_addr)) {
1355 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1356 		return 1;
1357 	}
1358 
1359 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1360 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1361 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1362 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1363 
1364 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1365 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1366 
1367 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1368 		BNX2X_ERR("FW final cleanup did not succeed\n");
1369 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1370 		   (REG_RD(bp, comp_addr)));
1371 		bnx2x_panic();
1372 		return 1;
1373 	}
1374 	/* Zero completion for next FLR */
1375 	REG_WR(bp, comp_addr, 0);
1376 
1377 	return ret;
1378 }
1379 
1380 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1381 {
1382 	u16 status;
1383 
1384 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1385 	return status & PCI_EXP_DEVSTA_TRPND;
1386 }
1387 
1388 /* PF FLR specific routines
1389 */
1390 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1391 {
1392 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1393 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1394 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1395 			"CFC PF usage counter timed out",
1396 			poll_cnt))
1397 		return 1;
1398 
1399 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1400 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1401 			DORQ_REG_PF_USAGE_CNT,
1402 			"DQ PF usage counter timed out",
1403 			poll_cnt))
1404 		return 1;
1405 
1406 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1407 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1408 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1409 			"QM PF usage counter timed out",
1410 			poll_cnt))
1411 		return 1;
1412 
1413 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1414 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1415 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1416 			"Timers VNIC usage counter timed out",
1417 			poll_cnt))
1418 		return 1;
1419 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1420 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1421 			"Timers NUM_SCANS usage counter timed out",
1422 			poll_cnt))
1423 		return 1;
1424 
1425 	/* Wait DMAE PF usage counter to zero */
1426 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1427 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1428 			"DMAE command register timed out",
1429 			poll_cnt))
1430 		return 1;
1431 
1432 	return 0;
1433 }
1434 
1435 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1436 {
1437 	u32 val;
1438 
1439 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1440 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1441 
1442 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1443 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1444 
1445 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1446 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1447 
1448 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1449 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1450 
1451 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1452 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1453 
1454 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1455 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1456 
1457 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1458 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1459 
1460 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1461 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1462 	   val);
1463 }
1464 
1465 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1466 {
1467 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1468 
1469 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1470 
1471 	/* Re-enable PF target read access */
1472 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1473 
1474 	/* Poll HW usage counters */
1475 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1476 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1477 		return -EBUSY;
1478 
1479 	/* Zero the igu 'trailing edge' and 'leading edge' */
1480 
1481 	/* Send the FW cleanup command */
1482 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1483 		return -EBUSY;
1484 
1485 	/* ATC cleanup */
1486 
1487 	/* Verify TX hw is flushed */
1488 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1489 
1490 	/* Wait 100ms (not adjusted according to platform) */
1491 	msleep(100);
1492 
1493 	/* Verify no pending pci transactions */
1494 	if (bnx2x_is_pcie_pending(bp->pdev))
1495 		BNX2X_ERR("PCIE Transactions still pending\n");
1496 
1497 	/* Debug */
1498 	bnx2x_hw_enable_status(bp);
1499 
1500 	/*
1501 	 * Master enable - Due to WB DMAE writes performed before this
1502 	 * register is re-initialized as part of the regular function init
1503 	 */
1504 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1505 
1506 	return 0;
1507 }
1508 
1509 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1510 {
1511 	int port = BP_PORT(bp);
1512 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1513 	u32 val = REG_RD(bp, addr);
1514 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1515 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1516 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1517 
1518 	if (msix) {
1519 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1520 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1521 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1522 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1523 		if (single_msix)
1524 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1525 	} else if (msi) {
1526 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1527 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1528 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1529 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1530 	} else {
1531 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1532 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1533 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1534 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1535 
1536 		if (!CHIP_IS_E1(bp)) {
1537 			DP(NETIF_MSG_IFUP,
1538 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1539 
1540 			REG_WR(bp, addr, val);
1541 
1542 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1543 		}
1544 	}
1545 
1546 	if (CHIP_IS_E1(bp))
1547 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1548 
1549 	DP(NETIF_MSG_IFUP,
1550 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1551 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1552 
1553 	REG_WR(bp, addr, val);
1554 	/*
1555 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1556 	 */
1557 	mmiowb();
1558 	barrier();
1559 
1560 	if (!CHIP_IS_E1(bp)) {
1561 		/* init leading/trailing edge */
1562 		if (IS_MF(bp)) {
1563 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1564 			if (bp->port.pmf)
1565 				/* enable nig and gpio3 attention */
1566 				val |= 0x1100;
1567 		} else
1568 			val = 0xffff;
1569 
1570 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1571 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1572 	}
1573 
1574 	/* Make sure that interrupts are indeed enabled from here on */
1575 	mmiowb();
1576 }
1577 
1578 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1579 {
1580 	u32 val;
1581 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1582 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1583 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1584 
1585 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1586 
1587 	if (msix) {
1588 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1589 			 IGU_PF_CONF_SINGLE_ISR_EN);
1590 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1591 			IGU_PF_CONF_ATTN_BIT_EN);
1592 
1593 		if (single_msix)
1594 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1595 	} else if (msi) {
1596 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1597 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1598 			IGU_PF_CONF_ATTN_BIT_EN |
1599 			IGU_PF_CONF_SINGLE_ISR_EN);
1600 	} else {
1601 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1602 		val |= (IGU_PF_CONF_INT_LINE_EN |
1603 			IGU_PF_CONF_ATTN_BIT_EN |
1604 			IGU_PF_CONF_SINGLE_ISR_EN);
1605 	}
1606 
1607 	/* Clean previous status - need to configure igu prior to ack*/
1608 	if ((!msix) || single_msix) {
1609 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1610 		bnx2x_ack_int(bp);
1611 	}
1612 
1613 	val |= IGU_PF_CONF_FUNC_EN;
1614 
1615 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1616 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1617 
1618 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1619 
1620 	if (val & IGU_PF_CONF_INT_LINE_EN)
1621 		pci_intx(bp->pdev, true);
1622 
1623 	barrier();
1624 
1625 	/* init leading/trailing edge */
1626 	if (IS_MF(bp)) {
1627 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1628 		if (bp->port.pmf)
1629 			/* enable nig and gpio3 attention */
1630 			val |= 0x1100;
1631 	} else
1632 		val = 0xffff;
1633 
1634 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1635 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1636 
1637 	/* Make sure that interrupts are indeed enabled from here on */
1638 	mmiowb();
1639 }
1640 
1641 void bnx2x_int_enable(struct bnx2x *bp)
1642 {
1643 	if (bp->common.int_block == INT_BLOCK_HC)
1644 		bnx2x_hc_int_enable(bp);
1645 	else
1646 		bnx2x_igu_int_enable(bp);
1647 }
1648 
1649 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1650 {
1651 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1652 	int i, offset;
1653 
1654 	if (disable_hw)
1655 		/* prevent the HW from sending interrupts */
1656 		bnx2x_int_disable(bp);
1657 
1658 	/* make sure all ISRs are done */
1659 	if (msix) {
1660 		synchronize_irq(bp->msix_table[0].vector);
1661 		offset = 1;
1662 		if (CNIC_SUPPORT(bp))
1663 			offset++;
1664 		for_each_eth_queue(bp, i)
1665 			synchronize_irq(bp->msix_table[offset++].vector);
1666 	} else
1667 		synchronize_irq(bp->pdev->irq);
1668 
1669 	/* make sure sp_task is not running */
1670 	cancel_delayed_work(&bp->sp_task);
1671 	cancel_delayed_work(&bp->period_task);
1672 	flush_workqueue(bnx2x_wq);
1673 }
1674 
1675 /* fast path */
1676 
1677 /*
1678  * General service functions
1679  */
1680 
1681 /* Return true if succeeded to acquire the lock */
1682 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1683 {
1684 	u32 lock_status;
1685 	u32 resource_bit = (1 << resource);
1686 	int func = BP_FUNC(bp);
1687 	u32 hw_lock_control_reg;
1688 
1689 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1690 	   "Trying to take a lock on resource %d\n", resource);
1691 
1692 	/* Validating that the resource is within range */
1693 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1694 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1695 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1696 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1697 		return false;
1698 	}
1699 
1700 	if (func <= 5)
1701 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1702 	else
1703 		hw_lock_control_reg =
1704 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1705 
1706 	/* Try to acquire the lock */
1707 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1708 	lock_status = REG_RD(bp, hw_lock_control_reg);
1709 	if (lock_status & resource_bit)
1710 		return true;
1711 
1712 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1713 	   "Failed to get a lock on resource %d\n", resource);
1714 	return false;
1715 }
1716 
1717 /**
1718  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1719  *
1720  * @bp:	driver handle
1721  *
1722  * Returns the recovery leader resource id according to the engine this function
1723  * belongs to. Currently only only 2 engines is supported.
1724  */
1725 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1726 {
1727 	if (BP_PATH(bp))
1728 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1729 	else
1730 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1731 }
1732 
1733 /**
1734  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1735  *
1736  * @bp: driver handle
1737  *
1738  * Tries to acquire a leader lock for current engine.
1739  */
1740 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1741 {
1742 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1743 }
1744 
1745 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1746 
1747 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1748 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1749 {
1750 	/* Set the interrupt occurred bit for the sp-task to recognize it
1751 	 * must ack the interrupt and transition according to the IGU
1752 	 * state machine.
1753 	 */
1754 	atomic_set(&bp->interrupt_occurred, 1);
1755 
1756 	/* The sp_task must execute only after this bit
1757 	 * is set, otherwise we will get out of sync and miss all
1758 	 * further interrupts. Hence, the barrier.
1759 	 */
1760 	smp_wmb();
1761 
1762 	/* schedule sp_task to workqueue */
1763 	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1764 }
1765 
1766 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1767 {
1768 	struct bnx2x *bp = fp->bp;
1769 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1770 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1771 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1772 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1773 
1774 	DP(BNX2X_MSG_SP,
1775 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1776 	   fp->index, cid, command, bp->state,
1777 	   rr_cqe->ramrod_cqe.ramrod_type);
1778 
1779 	/* If cid is within VF range, replace the slowpath object with the
1780 	 * one corresponding to this VF
1781 	 */
1782 	if (cid >= BNX2X_FIRST_VF_CID  &&
1783 	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1784 		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1785 
1786 	switch (command) {
1787 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1788 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1789 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1790 		break;
1791 
1792 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1793 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1794 		drv_cmd = BNX2X_Q_CMD_SETUP;
1795 		break;
1796 
1797 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1798 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1799 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1800 		break;
1801 
1802 	case (RAMROD_CMD_ID_ETH_HALT):
1803 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1804 		drv_cmd = BNX2X_Q_CMD_HALT;
1805 		break;
1806 
1807 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1808 		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1809 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1810 		break;
1811 
1812 	case (RAMROD_CMD_ID_ETH_EMPTY):
1813 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1814 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1815 		break;
1816 
1817 	default:
1818 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1819 			  command, fp->index);
1820 		return;
1821 	}
1822 
1823 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1824 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1825 		/* q_obj->complete_cmd() failure means that this was
1826 		 * an unexpected completion.
1827 		 *
1828 		 * In this case we don't want to increase the bp->spq_left
1829 		 * because apparently we haven't sent this command the first
1830 		 * place.
1831 		 */
1832 #ifdef BNX2X_STOP_ON_ERROR
1833 		bnx2x_panic();
1834 #else
1835 		return;
1836 #endif
1837 	/* SRIOV: reschedule any 'in_progress' operations */
1838 	bnx2x_iov_sp_event(bp, cid, true);
1839 
1840 	smp_mb__before_atomic_inc();
1841 	atomic_inc(&bp->cq_spq_left);
1842 	/* push the change in bp->spq_left and towards the memory */
1843 	smp_mb__after_atomic_inc();
1844 
1845 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1846 
1847 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1848 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1849 		/* if Q update ramrod is completed for last Q in AFEX vif set
1850 		 * flow, then ACK MCP at the end
1851 		 *
1852 		 * mark pending ACK to MCP bit.
1853 		 * prevent case that both bits are cleared.
1854 		 * At the end of load/unload driver checks that
1855 		 * sp_state is cleared, and this order prevents
1856 		 * races
1857 		 */
1858 		smp_mb__before_clear_bit();
1859 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1860 		wmb();
1861 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1862 		smp_mb__after_clear_bit();
1863 
1864 		/* schedule the sp task as mcp ack is required */
1865 		bnx2x_schedule_sp_task(bp);
1866 	}
1867 
1868 	return;
1869 }
1870 
1871 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1872 {
1873 	struct bnx2x *bp = netdev_priv(dev_instance);
1874 	u16 status = bnx2x_ack_int(bp);
1875 	u16 mask;
1876 	int i;
1877 	u8 cos;
1878 
1879 	/* Return here if interrupt is shared and it's not for us */
1880 	if (unlikely(status == 0)) {
1881 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1882 		return IRQ_NONE;
1883 	}
1884 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1885 
1886 #ifdef BNX2X_STOP_ON_ERROR
1887 	if (unlikely(bp->panic))
1888 		return IRQ_HANDLED;
1889 #endif
1890 
1891 	for_each_eth_queue(bp, i) {
1892 		struct bnx2x_fastpath *fp = &bp->fp[i];
1893 
1894 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1895 		if (status & mask) {
1896 			/* Handle Rx or Tx according to SB id */
1897 			for_each_cos_in_tx_queue(fp, cos)
1898 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1899 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1900 			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1901 			status &= ~mask;
1902 		}
1903 	}
1904 
1905 	if (CNIC_SUPPORT(bp)) {
1906 		mask = 0x2;
1907 		if (status & (mask | 0x1)) {
1908 			struct cnic_ops *c_ops = NULL;
1909 
1910 			rcu_read_lock();
1911 			c_ops = rcu_dereference(bp->cnic_ops);
1912 			if (c_ops && (bp->cnic_eth_dev.drv_state &
1913 				      CNIC_DRV_STATE_HANDLES_IRQ))
1914 				c_ops->cnic_handler(bp->cnic_data, NULL);
1915 			rcu_read_unlock();
1916 
1917 			status &= ~mask;
1918 		}
1919 	}
1920 
1921 	if (unlikely(status & 0x1)) {
1922 
1923 		/* schedule sp task to perform default status block work, ack
1924 		 * attentions and enable interrupts.
1925 		 */
1926 		bnx2x_schedule_sp_task(bp);
1927 
1928 		status &= ~0x1;
1929 		if (!status)
1930 			return IRQ_HANDLED;
1931 	}
1932 
1933 	if (unlikely(status))
1934 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1935 		   status);
1936 
1937 	return IRQ_HANDLED;
1938 }
1939 
1940 /* Link */
1941 
1942 /*
1943  * General service functions
1944  */
1945 
1946 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1947 {
1948 	u32 lock_status;
1949 	u32 resource_bit = (1 << resource);
1950 	int func = BP_FUNC(bp);
1951 	u32 hw_lock_control_reg;
1952 	int cnt;
1953 
1954 	/* Validating that the resource is within range */
1955 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1956 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1957 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1958 		return -EINVAL;
1959 	}
1960 
1961 	if (func <= 5) {
1962 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1963 	} else {
1964 		hw_lock_control_reg =
1965 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1966 	}
1967 
1968 	/* Validating that the resource is not already taken */
1969 	lock_status = REG_RD(bp, hw_lock_control_reg);
1970 	if (lock_status & resource_bit) {
1971 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1972 		   lock_status, resource_bit);
1973 		return -EEXIST;
1974 	}
1975 
1976 	/* Try for 5 second every 5ms */
1977 	for (cnt = 0; cnt < 1000; cnt++) {
1978 		/* Try to acquire the lock */
1979 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1980 		lock_status = REG_RD(bp, hw_lock_control_reg);
1981 		if (lock_status & resource_bit)
1982 			return 0;
1983 
1984 		usleep_range(5000, 10000);
1985 	}
1986 	BNX2X_ERR("Timeout\n");
1987 	return -EAGAIN;
1988 }
1989 
1990 int bnx2x_release_leader_lock(struct bnx2x *bp)
1991 {
1992 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1993 }
1994 
1995 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1996 {
1997 	u32 lock_status;
1998 	u32 resource_bit = (1 << resource);
1999 	int func = BP_FUNC(bp);
2000 	u32 hw_lock_control_reg;
2001 
2002 	/* Validating that the resource is within range */
2003 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2004 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2005 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2006 		return -EINVAL;
2007 	}
2008 
2009 	if (func <= 5) {
2010 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2011 	} else {
2012 		hw_lock_control_reg =
2013 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2014 	}
2015 
2016 	/* Validating that the resource is currently taken */
2017 	lock_status = REG_RD(bp, hw_lock_control_reg);
2018 	if (!(lock_status & resource_bit)) {
2019 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2020 			  lock_status, resource_bit);
2021 		return -EFAULT;
2022 	}
2023 
2024 	REG_WR(bp, hw_lock_control_reg, resource_bit);
2025 	return 0;
2026 }
2027 
2028 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2029 {
2030 	/* The GPIO should be swapped if swap register is set and active */
2031 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2032 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2033 	int gpio_shift = gpio_num +
2034 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2035 	u32 gpio_mask = (1 << gpio_shift);
2036 	u32 gpio_reg;
2037 	int value;
2038 
2039 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2040 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2041 		return -EINVAL;
2042 	}
2043 
2044 	/* read GPIO value */
2045 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2046 
2047 	/* get the requested pin value */
2048 	if ((gpio_reg & gpio_mask) == gpio_mask)
2049 		value = 1;
2050 	else
2051 		value = 0;
2052 
2053 	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
2054 
2055 	return value;
2056 }
2057 
2058 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2059 {
2060 	/* The GPIO should be swapped if swap register is set and active */
2061 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2062 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2063 	int gpio_shift = gpio_num +
2064 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2065 	u32 gpio_mask = (1 << gpio_shift);
2066 	u32 gpio_reg;
2067 
2068 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2069 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2070 		return -EINVAL;
2071 	}
2072 
2073 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2074 	/* read GPIO and mask except the float bits */
2075 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2076 
2077 	switch (mode) {
2078 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2079 		DP(NETIF_MSG_LINK,
2080 		   "Set GPIO %d (shift %d) -> output low\n",
2081 		   gpio_num, gpio_shift);
2082 		/* clear FLOAT and set CLR */
2083 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2084 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2085 		break;
2086 
2087 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2088 		DP(NETIF_MSG_LINK,
2089 		   "Set GPIO %d (shift %d) -> output high\n",
2090 		   gpio_num, gpio_shift);
2091 		/* clear FLOAT and set SET */
2092 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2093 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2094 		break;
2095 
2096 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2097 		DP(NETIF_MSG_LINK,
2098 		   "Set GPIO %d (shift %d) -> input\n",
2099 		   gpio_num, gpio_shift);
2100 		/* set FLOAT */
2101 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2102 		break;
2103 
2104 	default:
2105 		break;
2106 	}
2107 
2108 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2109 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2110 
2111 	return 0;
2112 }
2113 
2114 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2115 {
2116 	u32 gpio_reg = 0;
2117 	int rc = 0;
2118 
2119 	/* Any port swapping should be handled by caller. */
2120 
2121 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2122 	/* read GPIO and mask except the float bits */
2123 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2124 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2125 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2126 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2127 
2128 	switch (mode) {
2129 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2130 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2131 		/* set CLR */
2132 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2133 		break;
2134 
2135 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2136 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2137 		/* set SET */
2138 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2139 		break;
2140 
2141 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2142 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2143 		/* set FLOAT */
2144 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2145 		break;
2146 
2147 	default:
2148 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2149 		rc = -EINVAL;
2150 		break;
2151 	}
2152 
2153 	if (rc == 0)
2154 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2155 
2156 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2157 
2158 	return rc;
2159 }
2160 
2161 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2162 {
2163 	/* The GPIO should be swapped if swap register is set and active */
2164 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2165 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2166 	int gpio_shift = gpio_num +
2167 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2168 	u32 gpio_mask = (1 << gpio_shift);
2169 	u32 gpio_reg;
2170 
2171 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2172 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2173 		return -EINVAL;
2174 	}
2175 
2176 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2177 	/* read GPIO int */
2178 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2179 
2180 	switch (mode) {
2181 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2182 		DP(NETIF_MSG_LINK,
2183 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2184 		   gpio_num, gpio_shift);
2185 		/* clear SET and set CLR */
2186 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2187 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2188 		break;
2189 
2190 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2191 		DP(NETIF_MSG_LINK,
2192 		   "Set GPIO INT %d (shift %d) -> output high\n",
2193 		   gpio_num, gpio_shift);
2194 		/* clear CLR and set SET */
2195 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2196 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2197 		break;
2198 
2199 	default:
2200 		break;
2201 	}
2202 
2203 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2204 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2205 
2206 	return 0;
2207 }
2208 
2209 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2210 {
2211 	u32 spio_reg;
2212 
2213 	/* Only 2 SPIOs are configurable */
2214 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2215 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2216 		return -EINVAL;
2217 	}
2218 
2219 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2220 	/* read SPIO and mask except the float bits */
2221 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2222 
2223 	switch (mode) {
2224 	case MISC_SPIO_OUTPUT_LOW:
2225 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2226 		/* clear FLOAT and set CLR */
2227 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2228 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2229 		break;
2230 
2231 	case MISC_SPIO_OUTPUT_HIGH:
2232 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2233 		/* clear FLOAT and set SET */
2234 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2235 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2236 		break;
2237 
2238 	case MISC_SPIO_INPUT_HI_Z:
2239 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2240 		/* set FLOAT */
2241 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2242 		break;
2243 
2244 	default:
2245 		break;
2246 	}
2247 
2248 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2249 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2250 
2251 	return 0;
2252 }
2253 
2254 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2255 {
2256 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2257 	switch (bp->link_vars.ieee_fc &
2258 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2259 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2260 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2261 						   ADVERTISED_Pause);
2262 		break;
2263 
2264 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2265 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2266 						  ADVERTISED_Pause);
2267 		break;
2268 
2269 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2270 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2271 		break;
2272 
2273 	default:
2274 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2275 						   ADVERTISED_Pause);
2276 		break;
2277 	}
2278 }
2279 
2280 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2281 {
2282 	/* Initialize link parameters structure variables
2283 	 * It is recommended to turn off RX FC for jumbo frames
2284 	 *  for better performance
2285 	 */
2286 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2287 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2288 	else
2289 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2290 }
2291 
2292 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2293 {
2294 	u32 pause_enabled = 0;
2295 
2296 	if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2297 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2298 			pause_enabled = 1;
2299 
2300 		REG_WR(bp, BAR_USTRORM_INTMEM +
2301 			   USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2302 		       pause_enabled);
2303 	}
2304 
2305 	DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2306 	   pause_enabled ? "enabled" : "disabled");
2307 }
2308 
2309 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2310 {
2311 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2312 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2313 
2314 	if (!BP_NOMCP(bp)) {
2315 		bnx2x_set_requested_fc(bp);
2316 		bnx2x_acquire_phy_lock(bp);
2317 
2318 		if (load_mode == LOAD_DIAG) {
2319 			struct link_params *lp = &bp->link_params;
2320 			lp->loopback_mode = LOOPBACK_XGXS;
2321 			/* do PHY loopback at 10G speed, if possible */
2322 			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2323 				if (lp->speed_cap_mask[cfx_idx] &
2324 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2325 					lp->req_line_speed[cfx_idx] =
2326 					SPEED_10000;
2327 				else
2328 					lp->req_line_speed[cfx_idx] =
2329 					SPEED_1000;
2330 			}
2331 		}
2332 
2333 		if (load_mode == LOAD_LOOPBACK_EXT) {
2334 			struct link_params *lp = &bp->link_params;
2335 			lp->loopback_mode = LOOPBACK_EXT;
2336 		}
2337 
2338 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2339 
2340 		bnx2x_release_phy_lock(bp);
2341 
2342 		bnx2x_init_dropless_fc(bp);
2343 
2344 		bnx2x_calc_fc_adv(bp);
2345 
2346 		if (bp->link_vars.link_up) {
2347 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2348 			bnx2x_link_report(bp);
2349 		}
2350 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2351 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2352 		return rc;
2353 	}
2354 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2355 	return -EINVAL;
2356 }
2357 
2358 void bnx2x_link_set(struct bnx2x *bp)
2359 {
2360 	if (!BP_NOMCP(bp)) {
2361 		bnx2x_acquire_phy_lock(bp);
2362 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2363 		bnx2x_release_phy_lock(bp);
2364 
2365 		bnx2x_init_dropless_fc(bp);
2366 
2367 		bnx2x_calc_fc_adv(bp);
2368 	} else
2369 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2370 }
2371 
2372 static void bnx2x__link_reset(struct bnx2x *bp)
2373 {
2374 	if (!BP_NOMCP(bp)) {
2375 		bnx2x_acquire_phy_lock(bp);
2376 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2377 		bnx2x_release_phy_lock(bp);
2378 	} else
2379 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2380 }
2381 
2382 void bnx2x_force_link_reset(struct bnx2x *bp)
2383 {
2384 	bnx2x_acquire_phy_lock(bp);
2385 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2386 	bnx2x_release_phy_lock(bp);
2387 }
2388 
2389 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2390 {
2391 	u8 rc = 0;
2392 
2393 	if (!BP_NOMCP(bp)) {
2394 		bnx2x_acquire_phy_lock(bp);
2395 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2396 				     is_serdes);
2397 		bnx2x_release_phy_lock(bp);
2398 	} else
2399 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2400 
2401 	return rc;
2402 }
2403 
2404 /* Calculates the sum of vn_min_rates.
2405    It's needed for further normalizing of the min_rates.
2406    Returns:
2407      sum of vn_min_rates.
2408        or
2409      0 - if all the min_rates are 0.
2410      In the later case fairness algorithm should be deactivated.
2411      If not all min_rates are zero then those that are zeroes will be set to 1.
2412  */
2413 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2414 				      struct cmng_init_input *input)
2415 {
2416 	int all_zero = 1;
2417 	int vn;
2418 
2419 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2420 		u32 vn_cfg = bp->mf_config[vn];
2421 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2422 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2423 
2424 		/* Skip hidden vns */
2425 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2426 			vn_min_rate = 0;
2427 		/* If min rate is zero - set it to 1 */
2428 		else if (!vn_min_rate)
2429 			vn_min_rate = DEF_MIN_RATE;
2430 		else
2431 			all_zero = 0;
2432 
2433 		input->vnic_min_rate[vn] = vn_min_rate;
2434 	}
2435 
2436 	/* if ETS or all min rates are zeros - disable fairness */
2437 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2438 		input->flags.cmng_enables &=
2439 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2440 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2441 	} else if (all_zero) {
2442 		input->flags.cmng_enables &=
2443 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2444 		DP(NETIF_MSG_IFUP,
2445 		   "All MIN values are zeroes fairness will be disabled\n");
2446 	} else
2447 		input->flags.cmng_enables |=
2448 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2449 }
2450 
2451 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2452 				    struct cmng_init_input *input)
2453 {
2454 	u16 vn_max_rate;
2455 	u32 vn_cfg = bp->mf_config[vn];
2456 
2457 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2458 		vn_max_rate = 0;
2459 	else {
2460 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2461 
2462 		if (IS_MF_SI(bp)) {
2463 			/* maxCfg in percents of linkspeed */
2464 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2465 		} else /* SD modes */
2466 			/* maxCfg is absolute in 100Mb units */
2467 			vn_max_rate = maxCfg * 100;
2468 	}
2469 
2470 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2471 
2472 	input->vnic_max_rate[vn] = vn_max_rate;
2473 }
2474 
2475 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2476 {
2477 	if (CHIP_REV_IS_SLOW(bp))
2478 		return CMNG_FNS_NONE;
2479 	if (IS_MF(bp))
2480 		return CMNG_FNS_MINMAX;
2481 
2482 	return CMNG_FNS_NONE;
2483 }
2484 
2485 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2486 {
2487 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2488 
2489 	if (BP_NOMCP(bp))
2490 		return; /* what should be the default value in this case */
2491 
2492 	/* For 2 port configuration the absolute function number formula
2493 	 * is:
2494 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2495 	 *
2496 	 *      and there are 4 functions per port
2497 	 *
2498 	 * For 4 port configuration it is
2499 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2500 	 *
2501 	 *      and there are 2 functions per port
2502 	 */
2503 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2504 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2505 
2506 		if (func >= E1H_FUNC_MAX)
2507 			break;
2508 
2509 		bp->mf_config[vn] =
2510 			MF_CFG_RD(bp, func_mf_config[func].config);
2511 	}
2512 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2513 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2514 		bp->flags |= MF_FUNC_DIS;
2515 	} else {
2516 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2517 		bp->flags &= ~MF_FUNC_DIS;
2518 	}
2519 }
2520 
2521 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2522 {
2523 	struct cmng_init_input input;
2524 	memset(&input, 0, sizeof(struct cmng_init_input));
2525 
2526 	input.port_rate = bp->link_vars.line_speed;
2527 
2528 	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2529 		int vn;
2530 
2531 		/* read mf conf from shmem */
2532 		if (read_cfg)
2533 			bnx2x_read_mf_cfg(bp);
2534 
2535 		/* vn_weight_sum and enable fairness if not 0 */
2536 		bnx2x_calc_vn_min(bp, &input);
2537 
2538 		/* calculate and set min-max rate for each vn */
2539 		if (bp->port.pmf)
2540 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2541 				bnx2x_calc_vn_max(bp, vn, &input);
2542 
2543 		/* always enable rate shaping and fairness */
2544 		input.flags.cmng_enables |=
2545 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2546 
2547 		bnx2x_init_cmng(&input, &bp->cmng);
2548 		return;
2549 	}
2550 
2551 	/* rate shaping and fairness are disabled */
2552 	DP(NETIF_MSG_IFUP,
2553 	   "rate shaping and fairness are disabled\n");
2554 }
2555 
2556 static void storm_memset_cmng(struct bnx2x *bp,
2557 			      struct cmng_init *cmng,
2558 			      u8 port)
2559 {
2560 	int vn;
2561 	size_t size = sizeof(struct cmng_struct_per_port);
2562 
2563 	u32 addr = BAR_XSTRORM_INTMEM +
2564 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2565 
2566 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2567 
2568 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2569 		int func = func_by_vn(bp, vn);
2570 
2571 		addr = BAR_XSTRORM_INTMEM +
2572 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2573 		size = sizeof(struct rate_shaping_vars_per_vn);
2574 		__storm_memset_struct(bp, addr, size,
2575 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2576 
2577 		addr = BAR_XSTRORM_INTMEM +
2578 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2579 		size = sizeof(struct fairness_vars_per_vn);
2580 		__storm_memset_struct(bp, addr, size,
2581 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2582 	}
2583 }
2584 
2585 /* init cmng mode in HW according to local configuration */
2586 void bnx2x_set_local_cmng(struct bnx2x *bp)
2587 {
2588 	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2589 
2590 	if (cmng_fns != CMNG_FNS_NONE) {
2591 		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2592 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2593 	} else {
2594 		/* rate shaping and fairness are disabled */
2595 		DP(NETIF_MSG_IFUP,
2596 		   "single function mode without fairness\n");
2597 	}
2598 }
2599 
2600 /* This function is called upon link interrupt */
2601 static void bnx2x_link_attn(struct bnx2x *bp)
2602 {
2603 	/* Make sure that we are synced with the current statistics */
2604 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2605 
2606 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2607 
2608 	bnx2x_init_dropless_fc(bp);
2609 
2610 	if (bp->link_vars.link_up) {
2611 
2612 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2613 			struct host_port_stats *pstats;
2614 
2615 			pstats = bnx2x_sp(bp, port_stats);
2616 			/* reset old mac stats */
2617 			memset(&(pstats->mac_stx[0]), 0,
2618 			       sizeof(struct mac_stx));
2619 		}
2620 		if (bp->state == BNX2X_STATE_OPEN)
2621 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2622 	}
2623 
2624 	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2625 		bnx2x_set_local_cmng(bp);
2626 
2627 	__bnx2x_link_report(bp);
2628 
2629 	if (IS_MF(bp))
2630 		bnx2x_link_sync_notify(bp);
2631 }
2632 
2633 void bnx2x__link_status_update(struct bnx2x *bp)
2634 {
2635 	if (bp->state != BNX2X_STATE_OPEN)
2636 		return;
2637 
2638 	/* read updated dcb configuration */
2639 	if (IS_PF(bp)) {
2640 		bnx2x_dcbx_pmf_update(bp);
2641 		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2642 		if (bp->link_vars.link_up)
2643 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2644 		else
2645 			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2646 			/* indicate link status */
2647 		bnx2x_link_report(bp);
2648 
2649 	} else { /* VF */
2650 		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2651 					  SUPPORTED_10baseT_Full |
2652 					  SUPPORTED_100baseT_Half |
2653 					  SUPPORTED_100baseT_Full |
2654 					  SUPPORTED_1000baseT_Full |
2655 					  SUPPORTED_2500baseX_Full |
2656 					  SUPPORTED_10000baseT_Full |
2657 					  SUPPORTED_TP |
2658 					  SUPPORTED_FIBRE |
2659 					  SUPPORTED_Autoneg |
2660 					  SUPPORTED_Pause |
2661 					  SUPPORTED_Asym_Pause);
2662 		bp->port.advertising[0] = bp->port.supported[0];
2663 
2664 		bp->link_params.bp = bp;
2665 		bp->link_params.port = BP_PORT(bp);
2666 		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2667 		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2668 		bp->link_params.req_line_speed[0] = SPEED_10000;
2669 		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2670 		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2671 		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2672 		bp->link_vars.line_speed = SPEED_10000;
2673 		bp->link_vars.link_status =
2674 			(LINK_STATUS_LINK_UP |
2675 			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2676 		bp->link_vars.link_up = 1;
2677 		bp->link_vars.duplex = DUPLEX_FULL;
2678 		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2679 		__bnx2x_link_report(bp);
2680 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2681 	}
2682 }
2683 
2684 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2685 				  u16 vlan_val, u8 allowed_prio)
2686 {
2687 	struct bnx2x_func_state_params func_params = {NULL};
2688 	struct bnx2x_func_afex_update_params *f_update_params =
2689 		&func_params.params.afex_update;
2690 
2691 	func_params.f_obj = &bp->func_obj;
2692 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2693 
2694 	/* no need to wait for RAMROD completion, so don't
2695 	 * set RAMROD_COMP_WAIT flag
2696 	 */
2697 
2698 	f_update_params->vif_id = vifid;
2699 	f_update_params->afex_default_vlan = vlan_val;
2700 	f_update_params->allowed_priorities = allowed_prio;
2701 
2702 	/* if ramrod can not be sent, response to MCP immediately */
2703 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2704 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2705 
2706 	return 0;
2707 }
2708 
2709 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2710 					  u16 vif_index, u8 func_bit_map)
2711 {
2712 	struct bnx2x_func_state_params func_params = {NULL};
2713 	struct bnx2x_func_afex_viflists_params *update_params =
2714 		&func_params.params.afex_viflists;
2715 	int rc;
2716 	u32 drv_msg_code;
2717 
2718 	/* validate only LIST_SET and LIST_GET are received from switch */
2719 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2720 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2721 			  cmd_type);
2722 
2723 	func_params.f_obj = &bp->func_obj;
2724 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2725 
2726 	/* set parameters according to cmd_type */
2727 	update_params->afex_vif_list_command = cmd_type;
2728 	update_params->vif_list_index = vif_index;
2729 	update_params->func_bit_map =
2730 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2731 	update_params->func_to_clear = 0;
2732 	drv_msg_code =
2733 		(cmd_type == VIF_LIST_RULE_GET) ?
2734 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2735 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2736 
2737 	/* if ramrod can not be sent, respond to MCP immediately for
2738 	 * SET and GET requests (other are not triggered from MCP)
2739 	 */
2740 	rc = bnx2x_func_state_change(bp, &func_params);
2741 	if (rc < 0)
2742 		bnx2x_fw_command(bp, drv_msg_code, 0);
2743 
2744 	return 0;
2745 }
2746 
2747 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2748 {
2749 	struct afex_stats afex_stats;
2750 	u32 func = BP_ABS_FUNC(bp);
2751 	u32 mf_config;
2752 	u16 vlan_val;
2753 	u32 vlan_prio;
2754 	u16 vif_id;
2755 	u8 allowed_prio;
2756 	u8 vlan_mode;
2757 	u32 addr_to_write, vifid, addrs, stats_type, i;
2758 
2759 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2760 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2761 		DP(BNX2X_MSG_MCP,
2762 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2763 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2764 	}
2765 
2766 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2767 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2768 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2769 		DP(BNX2X_MSG_MCP,
2770 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2771 		   vifid, addrs);
2772 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2773 					       addrs);
2774 	}
2775 
2776 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2777 		addr_to_write = SHMEM2_RD(bp,
2778 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2779 		stats_type = SHMEM2_RD(bp,
2780 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2781 
2782 		DP(BNX2X_MSG_MCP,
2783 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2784 		   addr_to_write);
2785 
2786 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2787 
2788 		/* write response to scratchpad, for MCP */
2789 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2790 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2791 			       *(((u32 *)(&afex_stats))+i));
2792 
2793 		/* send ack message to MCP */
2794 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2795 	}
2796 
2797 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2798 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2799 		bp->mf_config[BP_VN(bp)] = mf_config;
2800 		DP(BNX2X_MSG_MCP,
2801 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2802 		   mf_config);
2803 
2804 		/* if VIF_SET is "enabled" */
2805 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2806 			/* set rate limit directly to internal RAM */
2807 			struct cmng_init_input cmng_input;
2808 			struct rate_shaping_vars_per_vn m_rs_vn;
2809 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2810 			u32 addr = BAR_XSTRORM_INTMEM +
2811 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2812 
2813 			bp->mf_config[BP_VN(bp)] = mf_config;
2814 
2815 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2816 			m_rs_vn.vn_counter.rate =
2817 				cmng_input.vnic_max_rate[BP_VN(bp)];
2818 			m_rs_vn.vn_counter.quota =
2819 				(m_rs_vn.vn_counter.rate *
2820 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2821 
2822 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2823 
2824 			/* read relevant values from mf_cfg struct in shmem */
2825 			vif_id =
2826 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2827 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2828 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2829 			vlan_val =
2830 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2831 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2832 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2833 			vlan_prio = (mf_config &
2834 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2835 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2836 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2837 			vlan_mode =
2838 				(MF_CFG_RD(bp,
2839 					   func_mf_config[func].afex_config) &
2840 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2841 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2842 			allowed_prio =
2843 				(MF_CFG_RD(bp,
2844 					   func_mf_config[func].afex_config) &
2845 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2846 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2847 
2848 			/* send ramrod to FW, return in case of failure */
2849 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2850 						   allowed_prio))
2851 				return;
2852 
2853 			bp->afex_def_vlan_tag = vlan_val;
2854 			bp->afex_vlan_mode = vlan_mode;
2855 		} else {
2856 			/* notify link down because BP->flags is disabled */
2857 			bnx2x_link_report(bp);
2858 
2859 			/* send INVALID VIF ramrod to FW */
2860 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2861 
2862 			/* Reset the default afex VLAN */
2863 			bp->afex_def_vlan_tag = -1;
2864 		}
2865 	}
2866 }
2867 
2868 static void bnx2x_pmf_update(struct bnx2x *bp)
2869 {
2870 	int port = BP_PORT(bp);
2871 	u32 val;
2872 
2873 	bp->port.pmf = 1;
2874 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2875 
2876 	/*
2877 	 * We need the mb() to ensure the ordering between the writing to
2878 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2879 	 */
2880 	smp_mb();
2881 
2882 	/* queue a periodic task */
2883 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2884 
2885 	bnx2x_dcbx_pmf_update(bp);
2886 
2887 	/* enable nig attention */
2888 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2889 	if (bp->common.int_block == INT_BLOCK_HC) {
2890 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2891 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2892 	} else if (!CHIP_IS_E1x(bp)) {
2893 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2894 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2895 	}
2896 
2897 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2898 }
2899 
2900 /* end of Link */
2901 
2902 /* slow path */
2903 
2904 /*
2905  * General service functions
2906  */
2907 
2908 /* send the MCP a request, block until there is a reply */
2909 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2910 {
2911 	int mb_idx = BP_FW_MB_IDX(bp);
2912 	u32 seq;
2913 	u32 rc = 0;
2914 	u32 cnt = 1;
2915 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2916 
2917 	mutex_lock(&bp->fw_mb_mutex);
2918 	seq = ++bp->fw_seq;
2919 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2920 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2921 
2922 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2923 			(command | seq), param);
2924 
2925 	do {
2926 		/* let the FW do it's magic ... */
2927 		msleep(delay);
2928 
2929 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2930 
2931 		/* Give the FW up to 5 second (500*10ms) */
2932 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2933 
2934 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2935 	   cnt*delay, rc, seq);
2936 
2937 	/* is this a reply to our command? */
2938 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2939 		rc &= FW_MSG_CODE_MASK;
2940 	else {
2941 		/* FW BUG! */
2942 		BNX2X_ERR("FW failed to respond!\n");
2943 		bnx2x_fw_dump(bp);
2944 		rc = 0;
2945 	}
2946 	mutex_unlock(&bp->fw_mb_mutex);
2947 
2948 	return rc;
2949 }
2950 
2951 static void storm_memset_func_cfg(struct bnx2x *bp,
2952 				 struct tstorm_eth_function_common_config *tcfg,
2953 				 u16 abs_fid)
2954 {
2955 	size_t size = sizeof(struct tstorm_eth_function_common_config);
2956 
2957 	u32 addr = BAR_TSTRORM_INTMEM +
2958 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2959 
2960 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2961 }
2962 
2963 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2964 {
2965 	if (CHIP_IS_E1x(bp)) {
2966 		struct tstorm_eth_function_common_config tcfg = {0};
2967 
2968 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2969 	}
2970 
2971 	/* Enable the function in the FW */
2972 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2973 	storm_memset_func_en(bp, p->func_id, 1);
2974 
2975 	/* spq */
2976 	if (p->func_flgs & FUNC_FLG_SPQ) {
2977 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2978 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
2979 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2980 	}
2981 }
2982 
2983 /**
2984  * bnx2x_get_common_flags - Return common flags
2985  *
2986  * @bp		device handle
2987  * @fp		queue handle
2988  * @zero_stats	TRUE if statistics zeroing is needed
2989  *
2990  * Return the flags that are common for the Tx-only and not normal connections.
2991  */
2992 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2993 					    struct bnx2x_fastpath *fp,
2994 					    bool zero_stats)
2995 {
2996 	unsigned long flags = 0;
2997 
2998 	/* PF driver will always initialize the Queue to an ACTIVE state */
2999 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3000 
3001 	/* tx only connections collect statistics (on the same index as the
3002 	 * parent connection). The statistics are zeroed when the parent
3003 	 * connection is initialized.
3004 	 */
3005 
3006 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
3007 	if (zero_stats)
3008 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3009 
3010 	if (bp->flags & TX_SWITCHING)
3011 		__set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3012 
3013 	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3014 	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3015 
3016 #ifdef BNX2X_STOP_ON_ERROR
3017 	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3018 #endif
3019 
3020 	return flags;
3021 }
3022 
3023 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3024 				       struct bnx2x_fastpath *fp,
3025 				       bool leading)
3026 {
3027 	unsigned long flags = 0;
3028 
3029 	/* calculate other queue flags */
3030 	if (IS_MF_SD(bp))
3031 		__set_bit(BNX2X_Q_FLG_OV, &flags);
3032 
3033 	if (IS_FCOE_FP(fp)) {
3034 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
3035 		/* For FCoE - force usage of default priority (for afex) */
3036 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3037 	}
3038 
3039 	if (!fp->disable_tpa) {
3040 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3041 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3042 		if (fp->mode == TPA_MODE_GRO)
3043 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3044 	}
3045 
3046 	if (leading) {
3047 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3048 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3049 	}
3050 
3051 	/* Always set HW VLAN stripping */
3052 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3053 
3054 	/* configure silent vlan removal */
3055 	if (IS_MF_AFEX(bp))
3056 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3057 
3058 	return flags | bnx2x_get_common_flags(bp, fp, true);
3059 }
3060 
3061 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3062 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3063 	u8 cos)
3064 {
3065 	gen_init->stat_id = bnx2x_stats_id(fp);
3066 	gen_init->spcl_id = fp->cl_id;
3067 
3068 	/* Always use mini-jumbo MTU for FCoE L2 ring */
3069 	if (IS_FCOE_FP(fp))
3070 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3071 	else
3072 		gen_init->mtu = bp->dev->mtu;
3073 
3074 	gen_init->cos = cos;
3075 }
3076 
3077 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3078 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3079 	struct bnx2x_rxq_setup_params *rxq_init)
3080 {
3081 	u8 max_sge = 0;
3082 	u16 sge_sz = 0;
3083 	u16 tpa_agg_size = 0;
3084 
3085 	if (!fp->disable_tpa) {
3086 		pause->sge_th_lo = SGE_TH_LO(bp);
3087 		pause->sge_th_hi = SGE_TH_HI(bp);
3088 
3089 		/* validate SGE ring has enough to cross high threshold */
3090 		WARN_ON(bp->dropless_fc &&
3091 				pause->sge_th_hi + FW_PREFETCH_CNT >
3092 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3093 
3094 		tpa_agg_size = TPA_AGG_SIZE;
3095 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3096 			SGE_PAGE_SHIFT;
3097 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3098 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3099 		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3100 	}
3101 
3102 	/* pause - not for e1 */
3103 	if (!CHIP_IS_E1(bp)) {
3104 		pause->bd_th_lo = BD_TH_LO(bp);
3105 		pause->bd_th_hi = BD_TH_HI(bp);
3106 
3107 		pause->rcq_th_lo = RCQ_TH_LO(bp);
3108 		pause->rcq_th_hi = RCQ_TH_HI(bp);
3109 		/*
3110 		 * validate that rings have enough entries to cross
3111 		 * high thresholds
3112 		 */
3113 		WARN_ON(bp->dropless_fc &&
3114 				pause->bd_th_hi + FW_PREFETCH_CNT >
3115 				bp->rx_ring_size);
3116 		WARN_ON(bp->dropless_fc &&
3117 				pause->rcq_th_hi + FW_PREFETCH_CNT >
3118 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3119 
3120 		pause->pri_map = 1;
3121 	}
3122 
3123 	/* rxq setup */
3124 	rxq_init->dscr_map = fp->rx_desc_mapping;
3125 	rxq_init->sge_map = fp->rx_sge_mapping;
3126 	rxq_init->rcq_map = fp->rx_comp_mapping;
3127 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3128 
3129 	/* This should be a maximum number of data bytes that may be
3130 	 * placed on the BD (not including paddings).
3131 	 */
3132 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3133 			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3134 
3135 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3136 	rxq_init->tpa_agg_sz = tpa_agg_size;
3137 	rxq_init->sge_buf_sz = sge_sz;
3138 	rxq_init->max_sges_pkt = max_sge;
3139 	rxq_init->rss_engine_id = BP_FUNC(bp);
3140 	rxq_init->mcast_engine_id = BP_FUNC(bp);
3141 
3142 	/* Maximum number or simultaneous TPA aggregation for this Queue.
3143 	 *
3144 	 * For PF Clients it should be the maximum available number.
3145 	 * VF driver(s) may want to define it to a smaller value.
3146 	 */
3147 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3148 
3149 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3150 	rxq_init->fw_sb_id = fp->fw_sb_id;
3151 
3152 	if (IS_FCOE_FP(fp))
3153 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3154 	else
3155 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3156 	/* configure silent vlan removal
3157 	 * if multi function mode is afex, then mask default vlan
3158 	 */
3159 	if (IS_MF_AFEX(bp)) {
3160 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3161 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3162 	}
3163 }
3164 
3165 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3166 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3167 	u8 cos)
3168 {
3169 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3170 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3171 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3172 	txq_init->fw_sb_id = fp->fw_sb_id;
3173 
3174 	/*
3175 	 * set the tss leading client id for TX classification ==
3176 	 * leading RSS client id
3177 	 */
3178 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3179 
3180 	if (IS_FCOE_FP(fp)) {
3181 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3182 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3183 	}
3184 }
3185 
3186 static void bnx2x_pf_init(struct bnx2x *bp)
3187 {
3188 	struct bnx2x_func_init_params func_init = {0};
3189 	struct event_ring_data eq_data = { {0} };
3190 	u16 flags;
3191 
3192 	if (!CHIP_IS_E1x(bp)) {
3193 		/* reset IGU PF statistics: MSIX + ATTN */
3194 		/* PF */
3195 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3196 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3197 			   (CHIP_MODE_IS_4_PORT(bp) ?
3198 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3199 		/* ATTN */
3200 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3201 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3202 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3203 			   (CHIP_MODE_IS_4_PORT(bp) ?
3204 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3205 	}
3206 
3207 	/* function setup flags */
3208 	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3209 
3210 	/* This flag is relevant for E1x only.
3211 	 * E2 doesn't have a TPA configuration in a function level.
3212 	 */
3213 	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3214 
3215 	func_init.func_flgs = flags;
3216 	func_init.pf_id = BP_FUNC(bp);
3217 	func_init.func_id = BP_FUNC(bp);
3218 	func_init.spq_map = bp->spq_mapping;
3219 	func_init.spq_prod = bp->spq_prod_idx;
3220 
3221 	bnx2x_func_init(bp, &func_init);
3222 
3223 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3224 
3225 	/*
3226 	 * Congestion management values depend on the link rate
3227 	 * There is no active link so initial link rate is set to 10 Gbps.
3228 	 * When the link comes up The congestion management values are
3229 	 * re-calculated according to the actual link rate.
3230 	 */
3231 	bp->link_vars.line_speed = SPEED_10000;
3232 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3233 
3234 	/* Only the PMF sets the HW */
3235 	if (bp->port.pmf)
3236 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3237 
3238 	/* init Event Queue - PCI bus guarantees correct endianity*/
3239 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3240 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3241 	eq_data.producer = bp->eq_prod;
3242 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3243 	eq_data.sb_id = DEF_SB_ID;
3244 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3245 }
3246 
3247 static void bnx2x_e1h_disable(struct bnx2x *bp)
3248 {
3249 	int port = BP_PORT(bp);
3250 
3251 	bnx2x_tx_disable(bp);
3252 
3253 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3254 }
3255 
3256 static void bnx2x_e1h_enable(struct bnx2x *bp)
3257 {
3258 	int port = BP_PORT(bp);
3259 
3260 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3261 
3262 	/* Tx queue should be only re-enabled */
3263 	netif_tx_wake_all_queues(bp->dev);
3264 
3265 	/*
3266 	 * Should not call netif_carrier_on since it will be called if the link
3267 	 * is up when checking for link state
3268 	 */
3269 }
3270 
3271 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3272 
3273 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3274 {
3275 	struct eth_stats_info *ether_stat =
3276 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3277 	struct bnx2x_vlan_mac_obj *mac_obj =
3278 		&bp->sp_objs->mac_obj;
3279 	int i;
3280 
3281 	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3282 		ETH_STAT_INFO_VERSION_LEN);
3283 
3284 	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3285 	 * mac_local field in ether_stat struct. The base address is offset by 2
3286 	 * bytes to account for the field being 8 bytes but a mac address is
3287 	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3288 	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3289 	 * allocated by the ether_stat struct, so the macs will land in their
3290 	 * proper positions.
3291 	 */
3292 	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3293 		memset(ether_stat->mac_local + i, 0,
3294 		       sizeof(ether_stat->mac_local[0]));
3295 	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3296 				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3297 				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3298 				ETH_ALEN);
3299 	ether_stat->mtu_size = bp->dev->mtu;
3300 	if (bp->dev->features & NETIF_F_RXCSUM)
3301 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3302 	if (bp->dev->features & NETIF_F_TSO)
3303 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3304 	ether_stat->feature_flags |= bp->common.boot_mode;
3305 
3306 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3307 
3308 	ether_stat->txq_size = bp->tx_ring_size;
3309 	ether_stat->rxq_size = bp->rx_ring_size;
3310 
3311 #ifdef CONFIG_BNX2X_SRIOV
3312 	ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3313 #endif
3314 }
3315 
3316 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3317 {
3318 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3319 	struct fcoe_stats_info *fcoe_stat =
3320 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3321 
3322 	if (!CNIC_LOADED(bp))
3323 		return;
3324 
3325 	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3326 
3327 	fcoe_stat->qos_priority =
3328 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3329 
3330 	/* insert FCoE stats from ramrod response */
3331 	if (!NO_FCOE(bp)) {
3332 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3333 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3334 			tstorm_queue_statistics;
3335 
3336 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3337 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3338 			xstorm_queue_statistics;
3339 
3340 		struct fcoe_statistics_params *fw_fcoe_stat =
3341 			&bp->fw_stats_data->fcoe;
3342 
3343 		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3344 			  fcoe_stat->rx_bytes_lo,
3345 			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3346 
3347 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3348 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3349 			  fcoe_stat->rx_bytes_lo,
3350 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3351 
3352 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3353 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3354 			  fcoe_stat->rx_bytes_lo,
3355 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3356 
3357 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3358 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3359 			  fcoe_stat->rx_bytes_lo,
3360 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3361 
3362 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3363 			  fcoe_stat->rx_frames_lo,
3364 			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3365 
3366 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3367 			  fcoe_stat->rx_frames_lo,
3368 			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3369 
3370 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3371 			  fcoe_stat->rx_frames_lo,
3372 			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3373 
3374 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3375 			  fcoe_stat->rx_frames_lo,
3376 			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3377 
3378 		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3379 			  fcoe_stat->tx_bytes_lo,
3380 			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3381 
3382 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3383 			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3384 			  fcoe_stat->tx_bytes_lo,
3385 			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3386 
3387 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3388 			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3389 			  fcoe_stat->tx_bytes_lo,
3390 			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3391 
3392 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3393 			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3394 			  fcoe_stat->tx_bytes_lo,
3395 			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3396 
3397 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3398 			  fcoe_stat->tx_frames_lo,
3399 			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3400 
3401 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3402 			  fcoe_stat->tx_frames_lo,
3403 			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3404 
3405 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3406 			  fcoe_stat->tx_frames_lo,
3407 			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3408 
3409 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3410 			  fcoe_stat->tx_frames_lo,
3411 			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3412 	}
3413 
3414 	/* ask L5 driver to add data to the struct */
3415 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3416 }
3417 
3418 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3419 {
3420 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3421 	struct iscsi_stats_info *iscsi_stat =
3422 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3423 
3424 	if (!CNIC_LOADED(bp))
3425 		return;
3426 
3427 	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3428 	       ETH_ALEN);
3429 
3430 	iscsi_stat->qos_priority =
3431 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3432 
3433 	/* ask L5 driver to add data to the struct */
3434 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3435 }
3436 
3437 /* called due to MCP event (on pmf):
3438  *	reread new bandwidth configuration
3439  *	configure FW
3440  *	notify others function about the change
3441  */
3442 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3443 {
3444 	if (bp->link_vars.link_up) {
3445 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3446 		bnx2x_link_sync_notify(bp);
3447 	}
3448 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3449 }
3450 
3451 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3452 {
3453 	bnx2x_config_mf_bw(bp);
3454 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3455 }
3456 
3457 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3458 {
3459 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3460 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3461 }
3462 
3463 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3464 {
3465 	enum drv_info_opcode op_code;
3466 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3467 
3468 	/* if drv_info version supported by MFW doesn't match - send NACK */
3469 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3470 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3471 		return;
3472 	}
3473 
3474 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3475 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3476 
3477 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3478 	       sizeof(union drv_info_to_mcp));
3479 
3480 	switch (op_code) {
3481 	case ETH_STATS_OPCODE:
3482 		bnx2x_drv_info_ether_stat(bp);
3483 		break;
3484 	case FCOE_STATS_OPCODE:
3485 		bnx2x_drv_info_fcoe_stat(bp);
3486 		break;
3487 	case ISCSI_STATS_OPCODE:
3488 		bnx2x_drv_info_iscsi_stat(bp);
3489 		break;
3490 	default:
3491 		/* if op code isn't supported - send NACK */
3492 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3493 		return;
3494 	}
3495 
3496 	/* if we got drv_info attn from MFW then these fields are defined in
3497 	 * shmem2 for sure
3498 	 */
3499 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3500 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3501 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3502 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3503 
3504 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3505 }
3506 
3507 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3508 {
3509 	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3510 
3511 	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3512 
3513 		/*
3514 		 * This is the only place besides the function initialization
3515 		 * where the bp->flags can change so it is done without any
3516 		 * locks
3517 		 */
3518 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3519 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3520 			bp->flags |= MF_FUNC_DIS;
3521 
3522 			bnx2x_e1h_disable(bp);
3523 		} else {
3524 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3525 			bp->flags &= ~MF_FUNC_DIS;
3526 
3527 			bnx2x_e1h_enable(bp);
3528 		}
3529 		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3530 	}
3531 	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3532 		bnx2x_config_mf_bw(bp);
3533 		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3534 	}
3535 
3536 	/* Report results to MCP */
3537 	if (dcc_event)
3538 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3539 	else
3540 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3541 }
3542 
3543 /* must be called under the spq lock */
3544 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3545 {
3546 	struct eth_spe *next_spe = bp->spq_prod_bd;
3547 
3548 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3549 		bp->spq_prod_bd = bp->spq;
3550 		bp->spq_prod_idx = 0;
3551 		DP(BNX2X_MSG_SP, "end of spq\n");
3552 	} else {
3553 		bp->spq_prod_bd++;
3554 		bp->spq_prod_idx++;
3555 	}
3556 	return next_spe;
3557 }
3558 
3559 /* must be called under the spq lock */
3560 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3561 {
3562 	int func = BP_FUNC(bp);
3563 
3564 	/*
3565 	 * Make sure that BD data is updated before writing the producer:
3566 	 * BD data is written to the memory, the producer is read from the
3567 	 * memory, thus we need a full memory barrier to ensure the ordering.
3568 	 */
3569 	mb();
3570 
3571 	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3572 		 bp->spq_prod_idx);
3573 	mmiowb();
3574 }
3575 
3576 /**
3577  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3578  *
3579  * @cmd:	command to check
3580  * @cmd_type:	command type
3581  */
3582 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3583 {
3584 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3585 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3586 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3587 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3588 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3589 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3590 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3591 		return true;
3592 	else
3593 		return false;
3594 }
3595 
3596 /**
3597  * bnx2x_sp_post - place a single command on an SP ring
3598  *
3599  * @bp:		driver handle
3600  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3601  * @cid:	SW CID the command is related to
3602  * @data_hi:	command private data address (high 32 bits)
3603  * @data_lo:	command private data address (low 32 bits)
3604  * @cmd_type:	command type (e.g. NONE, ETH)
3605  *
3606  * SP data is handled as if it's always an address pair, thus data fields are
3607  * not swapped to little endian in upper functions. Instead this function swaps
3608  * data as if it's two u32 fields.
3609  */
3610 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3611 		  u32 data_hi, u32 data_lo, int cmd_type)
3612 {
3613 	struct eth_spe *spe;
3614 	u16 type;
3615 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3616 
3617 #ifdef BNX2X_STOP_ON_ERROR
3618 	if (unlikely(bp->panic)) {
3619 		BNX2X_ERR("Can't post SP when there is panic\n");
3620 		return -EIO;
3621 	}
3622 #endif
3623 
3624 	spin_lock_bh(&bp->spq_lock);
3625 
3626 	if (common) {
3627 		if (!atomic_read(&bp->eq_spq_left)) {
3628 			BNX2X_ERR("BUG! EQ ring full!\n");
3629 			spin_unlock_bh(&bp->spq_lock);
3630 			bnx2x_panic();
3631 			return -EBUSY;
3632 		}
3633 	} else if (!atomic_read(&bp->cq_spq_left)) {
3634 			BNX2X_ERR("BUG! SPQ ring full!\n");
3635 			spin_unlock_bh(&bp->spq_lock);
3636 			bnx2x_panic();
3637 			return -EBUSY;
3638 	}
3639 
3640 	spe = bnx2x_sp_get_next(bp);
3641 
3642 	/* CID needs port number to be encoded int it */
3643 	spe->hdr.conn_and_cmd_data =
3644 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3645 				    HW_CID(bp, cid));
3646 
3647 	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3648 
3649 	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3650 		 SPE_HDR_FUNCTION_ID);
3651 
3652 	spe->hdr.type = cpu_to_le16(type);
3653 
3654 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3655 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3656 
3657 	/*
3658 	 * It's ok if the actual decrement is issued towards the memory
3659 	 * somewhere between the spin_lock and spin_unlock. Thus no
3660 	 * more explicit memory barrier is needed.
3661 	 */
3662 	if (common)
3663 		atomic_dec(&bp->eq_spq_left);
3664 	else
3665 		atomic_dec(&bp->cq_spq_left);
3666 
3667 	DP(BNX2X_MSG_SP,
3668 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3669 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3670 	   (u32)(U64_LO(bp->spq_mapping) +
3671 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3672 	   HW_CID(bp, cid), data_hi, data_lo, type,
3673 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3674 
3675 	bnx2x_sp_prod_update(bp);
3676 	spin_unlock_bh(&bp->spq_lock);
3677 	return 0;
3678 }
3679 
3680 /* acquire split MCP access lock register */
3681 static int bnx2x_acquire_alr(struct bnx2x *bp)
3682 {
3683 	u32 j, val;
3684 	int rc = 0;
3685 
3686 	might_sleep();
3687 	for (j = 0; j < 1000; j++) {
3688 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3689 		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3690 		if (val & MCPR_ACCESS_LOCK_LOCK)
3691 			break;
3692 
3693 		usleep_range(5000, 10000);
3694 	}
3695 	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3696 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3697 		rc = -EBUSY;
3698 	}
3699 
3700 	return rc;
3701 }
3702 
3703 /* release split MCP access lock register */
3704 static void bnx2x_release_alr(struct bnx2x *bp)
3705 {
3706 	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3707 }
3708 
3709 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3710 #define BNX2X_DEF_SB_IDX	0x0002
3711 
3712 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3713 {
3714 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3715 	u16 rc = 0;
3716 
3717 	barrier(); /* status block is written to by the chip */
3718 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3719 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3720 		rc |= BNX2X_DEF_SB_ATT_IDX;
3721 	}
3722 
3723 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3724 		bp->def_idx = def_sb->sp_sb.running_index;
3725 		rc |= BNX2X_DEF_SB_IDX;
3726 	}
3727 
3728 	/* Do not reorder: indices reading should complete before handling */
3729 	barrier();
3730 	return rc;
3731 }
3732 
3733 /*
3734  * slow path service functions
3735  */
3736 
3737 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3738 {
3739 	int port = BP_PORT(bp);
3740 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3741 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3742 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3743 				       NIG_REG_MASK_INTERRUPT_PORT0;
3744 	u32 aeu_mask;
3745 	u32 nig_mask = 0;
3746 	u32 reg_addr;
3747 
3748 	if (bp->attn_state & asserted)
3749 		BNX2X_ERR("IGU ERROR\n");
3750 
3751 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3752 	aeu_mask = REG_RD(bp, aeu_addr);
3753 
3754 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3755 	   aeu_mask, asserted);
3756 	aeu_mask &= ~(asserted & 0x3ff);
3757 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3758 
3759 	REG_WR(bp, aeu_addr, aeu_mask);
3760 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3761 
3762 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3763 	bp->attn_state |= asserted;
3764 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3765 
3766 	if (asserted & ATTN_HARD_WIRED_MASK) {
3767 		if (asserted & ATTN_NIG_FOR_FUNC) {
3768 
3769 			bnx2x_acquire_phy_lock(bp);
3770 
3771 			/* save nig interrupt mask */
3772 			nig_mask = REG_RD(bp, nig_int_mask_addr);
3773 
3774 			/* If nig_mask is not set, no need to call the update
3775 			 * function.
3776 			 */
3777 			if (nig_mask) {
3778 				REG_WR(bp, nig_int_mask_addr, 0);
3779 
3780 				bnx2x_link_attn(bp);
3781 			}
3782 
3783 			/* handle unicore attn? */
3784 		}
3785 		if (asserted & ATTN_SW_TIMER_4_FUNC)
3786 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3787 
3788 		if (asserted & GPIO_2_FUNC)
3789 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3790 
3791 		if (asserted & GPIO_3_FUNC)
3792 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3793 
3794 		if (asserted & GPIO_4_FUNC)
3795 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3796 
3797 		if (port == 0) {
3798 			if (asserted & ATTN_GENERAL_ATTN_1) {
3799 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3800 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3801 			}
3802 			if (asserted & ATTN_GENERAL_ATTN_2) {
3803 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3804 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3805 			}
3806 			if (asserted & ATTN_GENERAL_ATTN_3) {
3807 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3808 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3809 			}
3810 		} else {
3811 			if (asserted & ATTN_GENERAL_ATTN_4) {
3812 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3813 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3814 			}
3815 			if (asserted & ATTN_GENERAL_ATTN_5) {
3816 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3817 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3818 			}
3819 			if (asserted & ATTN_GENERAL_ATTN_6) {
3820 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3821 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3822 			}
3823 		}
3824 
3825 	} /* if hardwired */
3826 
3827 	if (bp->common.int_block == INT_BLOCK_HC)
3828 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3829 			    COMMAND_REG_ATTN_BITS_SET);
3830 	else
3831 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3832 
3833 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3834 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3835 	REG_WR(bp, reg_addr, asserted);
3836 
3837 	/* now set back the mask */
3838 	if (asserted & ATTN_NIG_FOR_FUNC) {
3839 		/* Verify that IGU ack through BAR was written before restoring
3840 		 * NIG mask. This loop should exit after 2-3 iterations max.
3841 		 */
3842 		if (bp->common.int_block != INT_BLOCK_HC) {
3843 			u32 cnt = 0, igu_acked;
3844 			do {
3845 				igu_acked = REG_RD(bp,
3846 						   IGU_REG_ATTENTION_ACK_BITS);
3847 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3848 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
3849 			if (!igu_acked)
3850 				DP(NETIF_MSG_HW,
3851 				   "Failed to verify IGU ack on time\n");
3852 			barrier();
3853 		}
3854 		REG_WR(bp, nig_int_mask_addr, nig_mask);
3855 		bnx2x_release_phy_lock(bp);
3856 	}
3857 }
3858 
3859 static void bnx2x_fan_failure(struct bnx2x *bp)
3860 {
3861 	int port = BP_PORT(bp);
3862 	u32 ext_phy_config;
3863 	/* mark the failure */
3864 	ext_phy_config =
3865 		SHMEM_RD(bp,
3866 			 dev_info.port_hw_config[port].external_phy_config);
3867 
3868 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3869 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3870 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3871 		 ext_phy_config);
3872 
3873 	/* log the failure */
3874 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3875 			    "Please contact OEM Support for assistance\n");
3876 
3877 	/* Schedule device reset (unload)
3878 	 * This is due to some boards consuming sufficient power when driver is
3879 	 * up to overheat if fan fails.
3880 	 */
3881 	smp_mb__before_clear_bit();
3882 	set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3883 	smp_mb__after_clear_bit();
3884 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
3885 }
3886 
3887 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3888 {
3889 	int port = BP_PORT(bp);
3890 	int reg_offset;
3891 	u32 val;
3892 
3893 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3894 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3895 
3896 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3897 
3898 		val = REG_RD(bp, reg_offset);
3899 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3900 		REG_WR(bp, reg_offset, val);
3901 
3902 		BNX2X_ERR("SPIO5 hw attention\n");
3903 
3904 		/* Fan failure attention */
3905 		bnx2x_hw_reset_phy(&bp->link_params);
3906 		bnx2x_fan_failure(bp);
3907 	}
3908 
3909 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3910 		bnx2x_acquire_phy_lock(bp);
3911 		bnx2x_handle_module_detect_int(&bp->link_params);
3912 		bnx2x_release_phy_lock(bp);
3913 	}
3914 
3915 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
3916 
3917 		val = REG_RD(bp, reg_offset);
3918 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3919 		REG_WR(bp, reg_offset, val);
3920 
3921 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3922 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3923 		bnx2x_panic();
3924 	}
3925 }
3926 
3927 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3928 {
3929 	u32 val;
3930 
3931 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3932 
3933 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3934 		BNX2X_ERR("DB hw attention 0x%x\n", val);
3935 		/* DORQ discard attention */
3936 		if (val & 0x2)
3937 			BNX2X_ERR("FATAL error from DORQ\n");
3938 	}
3939 
3940 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
3941 
3942 		int port = BP_PORT(bp);
3943 		int reg_offset;
3944 
3945 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3946 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3947 
3948 		val = REG_RD(bp, reg_offset);
3949 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3950 		REG_WR(bp, reg_offset, val);
3951 
3952 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3953 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3954 		bnx2x_panic();
3955 	}
3956 }
3957 
3958 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3959 {
3960 	u32 val;
3961 
3962 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3963 
3964 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3965 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
3966 		/* CFC error attention */
3967 		if (val & 0x2)
3968 			BNX2X_ERR("FATAL error from CFC\n");
3969 	}
3970 
3971 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3972 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3973 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3974 		/* RQ_USDMDP_FIFO_OVERFLOW */
3975 		if (val & 0x18000)
3976 			BNX2X_ERR("FATAL error from PXP\n");
3977 
3978 		if (!CHIP_IS_E1x(bp)) {
3979 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3980 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3981 		}
3982 	}
3983 
3984 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
3985 
3986 		int port = BP_PORT(bp);
3987 		int reg_offset;
3988 
3989 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3990 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3991 
3992 		val = REG_RD(bp, reg_offset);
3993 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3994 		REG_WR(bp, reg_offset, val);
3995 
3996 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3997 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3998 		bnx2x_panic();
3999 	}
4000 }
4001 
4002 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4003 {
4004 	u32 val;
4005 
4006 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4007 
4008 		if (attn & BNX2X_PMF_LINK_ASSERT) {
4009 			int func = BP_FUNC(bp);
4010 
4011 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4012 			bnx2x_read_mf_cfg(bp);
4013 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4014 					func_mf_config[BP_ABS_FUNC(bp)].config);
4015 			val = SHMEM_RD(bp,
4016 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4017 			if (val & DRV_STATUS_DCC_EVENT_MASK)
4018 				bnx2x_dcc_event(bp,
4019 					    (val & DRV_STATUS_DCC_EVENT_MASK));
4020 
4021 			if (val & DRV_STATUS_SET_MF_BW)
4022 				bnx2x_set_mf_bw(bp);
4023 
4024 			if (val & DRV_STATUS_DRV_INFO_REQ)
4025 				bnx2x_handle_drv_info_req(bp);
4026 
4027 			if (val & DRV_STATUS_VF_DISABLED)
4028 				bnx2x_vf_handle_flr_event(bp);
4029 
4030 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4031 				bnx2x_pmf_update(bp);
4032 
4033 			if (bp->port.pmf &&
4034 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4035 				bp->dcbx_enabled > 0)
4036 				/* start dcbx state machine */
4037 				bnx2x_dcbx_set_params(bp,
4038 					BNX2X_DCBX_STATE_NEG_RECEIVED);
4039 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
4040 				bnx2x_handle_afex_cmd(bp,
4041 					val & DRV_STATUS_AFEX_EVENT_MASK);
4042 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4043 				bnx2x_handle_eee_event(bp);
4044 			if (bp->link_vars.periodic_flags &
4045 			    PERIODIC_FLAGS_LINK_EVENT) {
4046 				/*  sync with link */
4047 				bnx2x_acquire_phy_lock(bp);
4048 				bp->link_vars.periodic_flags &=
4049 					~PERIODIC_FLAGS_LINK_EVENT;
4050 				bnx2x_release_phy_lock(bp);
4051 				if (IS_MF(bp))
4052 					bnx2x_link_sync_notify(bp);
4053 				bnx2x_link_report(bp);
4054 			}
4055 			/* Always call it here: bnx2x_link_report() will
4056 			 * prevent the link indication duplication.
4057 			 */
4058 			bnx2x__link_status_update(bp);
4059 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4060 
4061 			BNX2X_ERR("MC assert!\n");
4062 			bnx2x_mc_assert(bp);
4063 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4064 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4065 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4066 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4067 			bnx2x_panic();
4068 
4069 		} else if (attn & BNX2X_MCP_ASSERT) {
4070 
4071 			BNX2X_ERR("MCP assert!\n");
4072 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4073 			bnx2x_fw_dump(bp);
4074 
4075 		} else
4076 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4077 	}
4078 
4079 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4080 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4081 		if (attn & BNX2X_GRC_TIMEOUT) {
4082 			val = CHIP_IS_E1(bp) ? 0 :
4083 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4084 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4085 		}
4086 		if (attn & BNX2X_GRC_RSV) {
4087 			val = CHIP_IS_E1(bp) ? 0 :
4088 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4089 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4090 		}
4091 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4092 	}
4093 }
4094 
4095 /*
4096  * Bits map:
4097  * 0-7   - Engine0 load counter.
4098  * 8-15  - Engine1 load counter.
4099  * 16    - Engine0 RESET_IN_PROGRESS bit.
4100  * 17    - Engine1 RESET_IN_PROGRESS bit.
4101  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4102  *         on the engine
4103  * 19    - Engine1 ONE_IS_LOADED.
4104  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4105  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4106  *         just the one belonging to its engine).
4107  *
4108  */
4109 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4110 
4111 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4112 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4113 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4114 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4115 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4116 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4117 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
4118 
4119 /*
4120  * Set the GLOBAL_RESET bit.
4121  *
4122  * Should be run under rtnl lock
4123  */
4124 void bnx2x_set_reset_global(struct bnx2x *bp)
4125 {
4126 	u32 val;
4127 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4128 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4129 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4130 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4131 }
4132 
4133 /*
4134  * Clear the GLOBAL_RESET bit.
4135  *
4136  * Should be run under rtnl lock
4137  */
4138 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4139 {
4140 	u32 val;
4141 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4142 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4143 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4144 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4145 }
4146 
4147 /*
4148  * Checks the GLOBAL_RESET bit.
4149  *
4150  * should be run under rtnl lock
4151  */
4152 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4153 {
4154 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4155 
4156 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4157 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4158 }
4159 
4160 /*
4161  * Clear RESET_IN_PROGRESS bit for the current engine.
4162  *
4163  * Should be run under rtnl lock
4164  */
4165 static void bnx2x_set_reset_done(struct bnx2x *bp)
4166 {
4167 	u32 val;
4168 	u32 bit = BP_PATH(bp) ?
4169 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4170 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4171 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4172 
4173 	/* Clear the bit */
4174 	val &= ~bit;
4175 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4176 
4177 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4178 }
4179 
4180 /*
4181  * Set RESET_IN_PROGRESS for the current engine.
4182  *
4183  * should be run under rtnl lock
4184  */
4185 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4186 {
4187 	u32 val;
4188 	u32 bit = BP_PATH(bp) ?
4189 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4190 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4191 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4192 
4193 	/* Set the bit */
4194 	val |= bit;
4195 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4196 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4197 }
4198 
4199 /*
4200  * Checks the RESET_IN_PROGRESS bit for the given engine.
4201  * should be run under rtnl lock
4202  */
4203 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4204 {
4205 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4206 	u32 bit = engine ?
4207 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4208 
4209 	/* return false if bit is set */
4210 	return (val & bit) ? false : true;
4211 }
4212 
4213 /*
4214  * set pf load for the current pf.
4215  *
4216  * should be run under rtnl lock
4217  */
4218 void bnx2x_set_pf_load(struct bnx2x *bp)
4219 {
4220 	u32 val1, val;
4221 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4222 			     BNX2X_PATH0_LOAD_CNT_MASK;
4223 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4224 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4225 
4226 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4227 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4228 
4229 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4230 
4231 	/* get the current counter value */
4232 	val1 = (val & mask) >> shift;
4233 
4234 	/* set bit of that PF */
4235 	val1 |= (1 << bp->pf_num);
4236 
4237 	/* clear the old value */
4238 	val &= ~mask;
4239 
4240 	/* set the new one */
4241 	val |= ((val1 << shift) & mask);
4242 
4243 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4244 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4245 }
4246 
4247 /**
4248  * bnx2x_clear_pf_load - clear pf load mark
4249  *
4250  * @bp:		driver handle
4251  *
4252  * Should be run under rtnl lock.
4253  * Decrements the load counter for the current engine. Returns
4254  * whether other functions are still loaded
4255  */
4256 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4257 {
4258 	u32 val1, val;
4259 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4260 			     BNX2X_PATH0_LOAD_CNT_MASK;
4261 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4262 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4263 
4264 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4265 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4266 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4267 
4268 	/* get the current counter value */
4269 	val1 = (val & mask) >> shift;
4270 
4271 	/* clear bit of that PF */
4272 	val1 &= ~(1 << bp->pf_num);
4273 
4274 	/* clear the old value */
4275 	val &= ~mask;
4276 
4277 	/* set the new one */
4278 	val |= ((val1 << shift) & mask);
4279 
4280 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4281 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4282 	return val1 != 0;
4283 }
4284 
4285 /*
4286  * Read the load status for the current engine.
4287  *
4288  * should be run under rtnl lock
4289  */
4290 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4291 {
4292 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4293 			     BNX2X_PATH0_LOAD_CNT_MASK);
4294 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4295 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4296 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4297 
4298 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4299 
4300 	val = (val & mask) >> shift;
4301 
4302 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4303 	   engine, val);
4304 
4305 	return val != 0;
4306 }
4307 
4308 static void _print_parity(struct bnx2x *bp, u32 reg)
4309 {
4310 	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4311 }
4312 
4313 static void _print_next_block(int idx, const char *blk)
4314 {
4315 	pr_cont("%s%s", idx ? ", " : "", blk);
4316 }
4317 
4318 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4319 					    int *par_num, bool print)
4320 {
4321 	u32 cur_bit;
4322 	bool res;
4323 	int i;
4324 
4325 	res = false;
4326 
4327 	for (i = 0; sig; i++) {
4328 		cur_bit = (0x1UL << i);
4329 		if (sig & cur_bit) {
4330 			res |= true; /* Each bit is real error! */
4331 
4332 			if (print) {
4333 				switch (cur_bit) {
4334 				case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4335 					_print_next_block((*par_num)++, "BRB");
4336 					_print_parity(bp,
4337 						      BRB1_REG_BRB1_PRTY_STS);
4338 					break;
4339 				case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4340 					_print_next_block((*par_num)++,
4341 							  "PARSER");
4342 					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4343 					break;
4344 				case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4345 					_print_next_block((*par_num)++, "TSDM");
4346 					_print_parity(bp,
4347 						      TSDM_REG_TSDM_PRTY_STS);
4348 					break;
4349 				case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4350 					_print_next_block((*par_num)++,
4351 							  "SEARCHER");
4352 					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4353 					break;
4354 				case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4355 					_print_next_block((*par_num)++, "TCM");
4356 					_print_parity(bp, TCM_REG_TCM_PRTY_STS);
4357 					break;
4358 				case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4359 					_print_next_block((*par_num)++,
4360 							  "TSEMI");
4361 					_print_parity(bp,
4362 						      TSEM_REG_TSEM_PRTY_STS_0);
4363 					_print_parity(bp,
4364 						      TSEM_REG_TSEM_PRTY_STS_1);
4365 					break;
4366 				case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4367 					_print_next_block((*par_num)++, "XPB");
4368 					_print_parity(bp, GRCBASE_XPB +
4369 							  PB_REG_PB_PRTY_STS);
4370 					break;
4371 				}
4372 			}
4373 
4374 			/* Clear the bit */
4375 			sig &= ~cur_bit;
4376 		}
4377 	}
4378 
4379 	return res;
4380 }
4381 
4382 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4383 					    int *par_num, bool *global,
4384 					    bool print)
4385 {
4386 	u32 cur_bit;
4387 	bool res;
4388 	int i;
4389 
4390 	res = false;
4391 
4392 	for (i = 0; sig; i++) {
4393 		cur_bit = (0x1UL << i);
4394 		if (sig & cur_bit) {
4395 			res |= true; /* Each bit is real error! */
4396 			switch (cur_bit) {
4397 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4398 				if (print) {
4399 					_print_next_block((*par_num)++, "PBF");
4400 					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4401 				}
4402 				break;
4403 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4404 				if (print) {
4405 					_print_next_block((*par_num)++, "QM");
4406 					_print_parity(bp, QM_REG_QM_PRTY_STS);
4407 				}
4408 				break;
4409 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4410 				if (print) {
4411 					_print_next_block((*par_num)++, "TM");
4412 					_print_parity(bp, TM_REG_TM_PRTY_STS);
4413 				}
4414 				break;
4415 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4416 				if (print) {
4417 					_print_next_block((*par_num)++, "XSDM");
4418 					_print_parity(bp,
4419 						      XSDM_REG_XSDM_PRTY_STS);
4420 				}
4421 				break;
4422 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4423 				if (print) {
4424 					_print_next_block((*par_num)++, "XCM");
4425 					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4426 				}
4427 				break;
4428 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4429 				if (print) {
4430 					_print_next_block((*par_num)++,
4431 							  "XSEMI");
4432 					_print_parity(bp,
4433 						      XSEM_REG_XSEM_PRTY_STS_0);
4434 					_print_parity(bp,
4435 						      XSEM_REG_XSEM_PRTY_STS_1);
4436 				}
4437 				break;
4438 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4439 				if (print) {
4440 					_print_next_block((*par_num)++,
4441 							  "DOORBELLQ");
4442 					_print_parity(bp,
4443 						      DORQ_REG_DORQ_PRTY_STS);
4444 				}
4445 				break;
4446 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4447 				if (print) {
4448 					_print_next_block((*par_num)++, "NIG");
4449 					if (CHIP_IS_E1x(bp)) {
4450 						_print_parity(bp,
4451 							NIG_REG_NIG_PRTY_STS);
4452 					} else {
4453 						_print_parity(bp,
4454 							NIG_REG_NIG_PRTY_STS_0);
4455 						_print_parity(bp,
4456 							NIG_REG_NIG_PRTY_STS_1);
4457 					}
4458 				}
4459 				break;
4460 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4461 				if (print)
4462 					_print_next_block((*par_num)++,
4463 							  "VAUX PCI CORE");
4464 				*global = true;
4465 				break;
4466 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4467 				if (print) {
4468 					_print_next_block((*par_num)++,
4469 							  "DEBUG");
4470 					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4471 				}
4472 				break;
4473 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4474 				if (print) {
4475 					_print_next_block((*par_num)++, "USDM");
4476 					_print_parity(bp,
4477 						      USDM_REG_USDM_PRTY_STS);
4478 				}
4479 				break;
4480 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4481 				if (print) {
4482 					_print_next_block((*par_num)++, "UCM");
4483 					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4484 				}
4485 				break;
4486 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4487 				if (print) {
4488 					_print_next_block((*par_num)++,
4489 							  "USEMI");
4490 					_print_parity(bp,
4491 						      USEM_REG_USEM_PRTY_STS_0);
4492 					_print_parity(bp,
4493 						      USEM_REG_USEM_PRTY_STS_1);
4494 				}
4495 				break;
4496 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4497 				if (print) {
4498 					_print_next_block((*par_num)++, "UPB");
4499 					_print_parity(bp, GRCBASE_UPB +
4500 							  PB_REG_PB_PRTY_STS);
4501 				}
4502 				break;
4503 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4504 				if (print) {
4505 					_print_next_block((*par_num)++, "CSDM");
4506 					_print_parity(bp,
4507 						      CSDM_REG_CSDM_PRTY_STS);
4508 				}
4509 				break;
4510 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4511 				if (print) {
4512 					_print_next_block((*par_num)++, "CCM");
4513 					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4514 				}
4515 				break;
4516 			}
4517 
4518 			/* Clear the bit */
4519 			sig &= ~cur_bit;
4520 		}
4521 	}
4522 
4523 	return res;
4524 }
4525 
4526 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4527 					    int *par_num, bool print)
4528 {
4529 	u32 cur_bit;
4530 	bool res;
4531 	int i;
4532 
4533 	res = false;
4534 
4535 	for (i = 0; sig; i++) {
4536 		cur_bit = (0x1UL << i);
4537 		if (sig & cur_bit) {
4538 			res |= true; /* Each bit is real error! */
4539 			if (print) {
4540 				switch (cur_bit) {
4541 				case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4542 					_print_next_block((*par_num)++,
4543 							  "CSEMI");
4544 					_print_parity(bp,
4545 						      CSEM_REG_CSEM_PRTY_STS_0);
4546 					_print_parity(bp,
4547 						      CSEM_REG_CSEM_PRTY_STS_1);
4548 					break;
4549 				case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4550 					_print_next_block((*par_num)++, "PXP");
4551 					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4552 					_print_parity(bp,
4553 						      PXP2_REG_PXP2_PRTY_STS_0);
4554 					_print_parity(bp,
4555 						      PXP2_REG_PXP2_PRTY_STS_1);
4556 					break;
4557 				case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4558 					_print_next_block((*par_num)++,
4559 							  "PXPPCICLOCKCLIENT");
4560 					break;
4561 				case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4562 					_print_next_block((*par_num)++, "CFC");
4563 					_print_parity(bp,
4564 						      CFC_REG_CFC_PRTY_STS);
4565 					break;
4566 				case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4567 					_print_next_block((*par_num)++, "CDU");
4568 					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4569 					break;
4570 				case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4571 					_print_next_block((*par_num)++, "DMAE");
4572 					_print_parity(bp,
4573 						      DMAE_REG_DMAE_PRTY_STS);
4574 					break;
4575 				case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4576 					_print_next_block((*par_num)++, "IGU");
4577 					if (CHIP_IS_E1x(bp))
4578 						_print_parity(bp,
4579 							HC_REG_HC_PRTY_STS);
4580 					else
4581 						_print_parity(bp,
4582 							IGU_REG_IGU_PRTY_STS);
4583 					break;
4584 				case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4585 					_print_next_block((*par_num)++, "MISC");
4586 					_print_parity(bp,
4587 						      MISC_REG_MISC_PRTY_STS);
4588 					break;
4589 				}
4590 			}
4591 
4592 			/* Clear the bit */
4593 			sig &= ~cur_bit;
4594 		}
4595 	}
4596 
4597 	return res;
4598 }
4599 
4600 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4601 					    int *par_num, bool *global,
4602 					    bool print)
4603 {
4604 	bool res = false;
4605 	u32 cur_bit;
4606 	int i;
4607 
4608 	for (i = 0; sig; i++) {
4609 		cur_bit = (0x1UL << i);
4610 		if (sig & cur_bit) {
4611 			switch (cur_bit) {
4612 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4613 				if (print)
4614 					_print_next_block((*par_num)++,
4615 							  "MCP ROM");
4616 				*global = true;
4617 				res |= true;
4618 				break;
4619 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4620 				if (print)
4621 					_print_next_block((*par_num)++,
4622 							  "MCP UMP RX");
4623 				*global = true;
4624 				res |= true;
4625 				break;
4626 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4627 				if (print)
4628 					_print_next_block((*par_num)++,
4629 							  "MCP UMP TX");
4630 				*global = true;
4631 				res |= true;
4632 				break;
4633 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4634 				if (print)
4635 					_print_next_block((*par_num)++,
4636 							  "MCP SCPAD");
4637 				/* clear latched SCPAD PATIRY from MCP */
4638 				REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4639 				       1UL << 10);
4640 				break;
4641 			}
4642 
4643 			/* Clear the bit */
4644 			sig &= ~cur_bit;
4645 		}
4646 	}
4647 
4648 	return res;
4649 }
4650 
4651 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4652 					    int *par_num, bool print)
4653 {
4654 	u32 cur_bit;
4655 	bool res;
4656 	int i;
4657 
4658 	res = false;
4659 
4660 	for (i = 0; sig; i++) {
4661 		cur_bit = (0x1UL << i);
4662 		if (sig & cur_bit) {
4663 			res |= true; /* Each bit is real error! */
4664 			if (print) {
4665 				switch (cur_bit) {
4666 				case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4667 					_print_next_block((*par_num)++,
4668 							  "PGLUE_B");
4669 					_print_parity(bp,
4670 						      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4671 					break;
4672 				case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4673 					_print_next_block((*par_num)++, "ATC");
4674 					_print_parity(bp,
4675 						      ATC_REG_ATC_PRTY_STS);
4676 					break;
4677 				}
4678 			}
4679 			/* Clear the bit */
4680 			sig &= ~cur_bit;
4681 		}
4682 	}
4683 
4684 	return res;
4685 }
4686 
4687 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4688 			      u32 *sig)
4689 {
4690 	bool res = false;
4691 
4692 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4693 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4694 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4695 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4696 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4697 		int par_num = 0;
4698 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4699 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4700 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4701 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4702 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4703 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4704 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4705 		if (print)
4706 			netdev_err(bp->dev,
4707 				   "Parity errors detected in blocks: ");
4708 		res |= bnx2x_check_blocks_with_parity0(bp,
4709 			sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4710 		res |= bnx2x_check_blocks_with_parity1(bp,
4711 			sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4712 		res |= bnx2x_check_blocks_with_parity2(bp,
4713 			sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4714 		res |= bnx2x_check_blocks_with_parity3(bp,
4715 			sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4716 		res |= bnx2x_check_blocks_with_parity4(bp,
4717 			sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4718 
4719 		if (print)
4720 			pr_cont("\n");
4721 	}
4722 
4723 	return res;
4724 }
4725 
4726 /**
4727  * bnx2x_chk_parity_attn - checks for parity attentions.
4728  *
4729  * @bp:		driver handle
4730  * @global:	true if there was a global attention
4731  * @print:	show parity attention in syslog
4732  */
4733 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4734 {
4735 	struct attn_route attn = { {0} };
4736 	int port = BP_PORT(bp);
4737 
4738 	attn.sig[0] = REG_RD(bp,
4739 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4740 			     port*4);
4741 	attn.sig[1] = REG_RD(bp,
4742 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4743 			     port*4);
4744 	attn.sig[2] = REG_RD(bp,
4745 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4746 			     port*4);
4747 	attn.sig[3] = REG_RD(bp,
4748 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4749 			     port*4);
4750 	/* Since MCP attentions can't be disabled inside the block, we need to
4751 	 * read AEU registers to see whether they're currently disabled
4752 	 */
4753 	attn.sig[3] &= ((REG_RD(bp,
4754 				!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
4755 				      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
4756 			 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
4757 			~MISC_AEU_ENABLE_MCP_PRTY_BITS);
4758 
4759 	if (!CHIP_IS_E1x(bp))
4760 		attn.sig[4] = REG_RD(bp,
4761 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4762 				     port*4);
4763 
4764 	return bnx2x_parity_attn(bp, global, print, attn.sig);
4765 }
4766 
4767 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4768 {
4769 	u32 val;
4770 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4771 
4772 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4773 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4774 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4775 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4776 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4777 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4778 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4779 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4780 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4781 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4782 		if (val &
4783 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4784 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4785 		if (val &
4786 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4787 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4788 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4789 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4790 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4791 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4792 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4793 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4794 	}
4795 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4796 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4797 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4798 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4799 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4800 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4801 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4802 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4803 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4804 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4805 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4806 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4807 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4808 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4809 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4810 	}
4811 
4812 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4813 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4814 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4815 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4816 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4817 	}
4818 }
4819 
4820 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4821 {
4822 	struct attn_route attn, *group_mask;
4823 	int port = BP_PORT(bp);
4824 	int index;
4825 	u32 reg_addr;
4826 	u32 val;
4827 	u32 aeu_mask;
4828 	bool global = false;
4829 
4830 	/* need to take HW lock because MCP or other port might also
4831 	   try to handle this event */
4832 	bnx2x_acquire_alr(bp);
4833 
4834 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4835 #ifndef BNX2X_STOP_ON_ERROR
4836 		bp->recovery_state = BNX2X_RECOVERY_INIT;
4837 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4838 		/* Disable HW interrupts */
4839 		bnx2x_int_disable(bp);
4840 		/* In case of parity errors don't handle attentions so that
4841 		 * other function would "see" parity errors.
4842 		 */
4843 #else
4844 		bnx2x_panic();
4845 #endif
4846 		bnx2x_release_alr(bp);
4847 		return;
4848 	}
4849 
4850 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4851 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4852 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4853 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4854 	if (!CHIP_IS_E1x(bp))
4855 		attn.sig[4] =
4856 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4857 	else
4858 		attn.sig[4] = 0;
4859 
4860 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4861 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4862 
4863 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4864 		if (deasserted & (1 << index)) {
4865 			group_mask = &bp->attn_group[index];
4866 
4867 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4868 			   index,
4869 			   group_mask->sig[0], group_mask->sig[1],
4870 			   group_mask->sig[2], group_mask->sig[3],
4871 			   group_mask->sig[4]);
4872 
4873 			bnx2x_attn_int_deasserted4(bp,
4874 					attn.sig[4] & group_mask->sig[4]);
4875 			bnx2x_attn_int_deasserted3(bp,
4876 					attn.sig[3] & group_mask->sig[3]);
4877 			bnx2x_attn_int_deasserted1(bp,
4878 					attn.sig[1] & group_mask->sig[1]);
4879 			bnx2x_attn_int_deasserted2(bp,
4880 					attn.sig[2] & group_mask->sig[2]);
4881 			bnx2x_attn_int_deasserted0(bp,
4882 					attn.sig[0] & group_mask->sig[0]);
4883 		}
4884 	}
4885 
4886 	bnx2x_release_alr(bp);
4887 
4888 	if (bp->common.int_block == INT_BLOCK_HC)
4889 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4890 			    COMMAND_REG_ATTN_BITS_CLR);
4891 	else
4892 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4893 
4894 	val = ~deasserted;
4895 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4896 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4897 	REG_WR(bp, reg_addr, val);
4898 
4899 	if (~bp->attn_state & deasserted)
4900 		BNX2X_ERR("IGU ERROR\n");
4901 
4902 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4903 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
4904 
4905 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4906 	aeu_mask = REG_RD(bp, reg_addr);
4907 
4908 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4909 	   aeu_mask, deasserted);
4910 	aeu_mask |= (deasserted & 0x3ff);
4911 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4912 
4913 	REG_WR(bp, reg_addr, aeu_mask);
4914 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4915 
4916 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4917 	bp->attn_state &= ~deasserted;
4918 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4919 }
4920 
4921 static void bnx2x_attn_int(struct bnx2x *bp)
4922 {
4923 	/* read local copy of bits */
4924 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4925 								attn_bits);
4926 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4927 								attn_bits_ack);
4928 	u32 attn_state = bp->attn_state;
4929 
4930 	/* look for changed bits */
4931 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4932 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4933 
4934 	DP(NETIF_MSG_HW,
4935 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4936 	   attn_bits, attn_ack, asserted, deasserted);
4937 
4938 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4939 		BNX2X_ERR("BAD attention state\n");
4940 
4941 	/* handle bits that were raised */
4942 	if (asserted)
4943 		bnx2x_attn_int_asserted(bp, asserted);
4944 
4945 	if (deasserted)
4946 		bnx2x_attn_int_deasserted(bp, deasserted);
4947 }
4948 
4949 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4950 		      u16 index, u8 op, u8 update)
4951 {
4952 	u32 igu_addr = bp->igu_base_addr;
4953 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4954 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4955 			     igu_addr);
4956 }
4957 
4958 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4959 {
4960 	/* No memory barriers */
4961 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4962 	mmiowb(); /* keep prod updates ordered */
4963 }
4964 
4965 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4966 				      union event_ring_elem *elem)
4967 {
4968 	u8 err = elem->message.error;
4969 
4970 	if (!bp->cnic_eth_dev.starting_cid  ||
4971 	    (cid < bp->cnic_eth_dev.starting_cid &&
4972 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
4973 		return 1;
4974 
4975 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4976 
4977 	if (unlikely(err)) {
4978 
4979 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4980 			  cid);
4981 		bnx2x_panic_dump(bp, false);
4982 	}
4983 	bnx2x_cnic_cfc_comp(bp, cid, err);
4984 	return 0;
4985 }
4986 
4987 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4988 {
4989 	struct bnx2x_mcast_ramrod_params rparam;
4990 	int rc;
4991 
4992 	memset(&rparam, 0, sizeof(rparam));
4993 
4994 	rparam.mcast_obj = &bp->mcast_obj;
4995 
4996 	netif_addr_lock_bh(bp->dev);
4997 
4998 	/* Clear pending state for the last command */
4999 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5000 
5001 	/* If there are pending mcast commands - send them */
5002 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5003 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5004 		if (rc < 0)
5005 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5006 				  rc);
5007 	}
5008 
5009 	netif_addr_unlock_bh(bp->dev);
5010 }
5011 
5012 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5013 					    union event_ring_elem *elem)
5014 {
5015 	unsigned long ramrod_flags = 0;
5016 	int rc = 0;
5017 	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
5018 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5019 
5020 	/* Always push next commands out, don't wait here */
5021 	__set_bit(RAMROD_CONT, &ramrod_flags);
5022 
5023 	switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
5024 			    >> BNX2X_SWCID_SHIFT) {
5025 	case BNX2X_FILTER_MAC_PENDING:
5026 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5027 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5028 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5029 		else
5030 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5031 
5032 		break;
5033 	case BNX2X_FILTER_MCAST_PENDING:
5034 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5035 		/* This is only relevant for 57710 where multicast MACs are
5036 		 * configured as unicast MACs using the same ramrod.
5037 		 */
5038 		bnx2x_handle_mcast_eqe(bp);
5039 		return;
5040 	default:
5041 		BNX2X_ERR("Unsupported classification command: %d\n",
5042 			  elem->message.data.eth_event.echo);
5043 		return;
5044 	}
5045 
5046 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5047 
5048 	if (rc < 0)
5049 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5050 	else if (rc > 0)
5051 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5052 }
5053 
5054 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5055 
5056 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5057 {
5058 	netif_addr_lock_bh(bp->dev);
5059 
5060 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5061 
5062 	/* Send rx_mode command again if was requested */
5063 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5064 		bnx2x_set_storm_rx_mode(bp);
5065 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5066 				    &bp->sp_state))
5067 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5068 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5069 				    &bp->sp_state))
5070 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5071 
5072 	netif_addr_unlock_bh(bp->dev);
5073 }
5074 
5075 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5076 					      union event_ring_elem *elem)
5077 {
5078 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5079 		DP(BNX2X_MSG_SP,
5080 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5081 		   elem->message.data.vif_list_event.func_bit_map);
5082 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5083 			elem->message.data.vif_list_event.func_bit_map);
5084 	} else if (elem->message.data.vif_list_event.echo ==
5085 		   VIF_LIST_RULE_SET) {
5086 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5087 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5088 	}
5089 }
5090 
5091 /* called with rtnl_lock */
5092 static void bnx2x_after_function_update(struct bnx2x *bp)
5093 {
5094 	int q, rc;
5095 	struct bnx2x_fastpath *fp;
5096 	struct bnx2x_queue_state_params queue_params = {NULL};
5097 	struct bnx2x_queue_update_params *q_update_params =
5098 		&queue_params.params.update;
5099 
5100 	/* Send Q update command with afex vlan removal values for all Qs */
5101 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5102 
5103 	/* set silent vlan removal values according to vlan mode */
5104 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5105 		  &q_update_params->update_flags);
5106 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5107 		  &q_update_params->update_flags);
5108 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5109 
5110 	/* in access mode mark mask and value are 0 to strip all vlans */
5111 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5112 		q_update_params->silent_removal_value = 0;
5113 		q_update_params->silent_removal_mask = 0;
5114 	} else {
5115 		q_update_params->silent_removal_value =
5116 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5117 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5118 	}
5119 
5120 	for_each_eth_queue(bp, q) {
5121 		/* Set the appropriate Queue object */
5122 		fp = &bp->fp[q];
5123 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5124 
5125 		/* send the ramrod */
5126 		rc = bnx2x_queue_state_change(bp, &queue_params);
5127 		if (rc < 0)
5128 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5129 				  q);
5130 	}
5131 
5132 	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5133 		fp = &bp->fp[FCOE_IDX(bp)];
5134 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5135 
5136 		/* clear pending completion bit */
5137 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5138 
5139 		/* mark latest Q bit */
5140 		smp_mb__before_clear_bit();
5141 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5142 		smp_mb__after_clear_bit();
5143 
5144 		/* send Q update ramrod for FCoE Q */
5145 		rc = bnx2x_queue_state_change(bp, &queue_params);
5146 		if (rc < 0)
5147 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5148 				  q);
5149 	} else {
5150 		/* If no FCoE ring - ACK MCP now */
5151 		bnx2x_link_report(bp);
5152 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5153 	}
5154 }
5155 
5156 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5157 	struct bnx2x *bp, u32 cid)
5158 {
5159 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5160 
5161 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5162 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5163 	else
5164 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5165 }
5166 
5167 static void bnx2x_eq_int(struct bnx2x *bp)
5168 {
5169 	u16 hw_cons, sw_cons, sw_prod;
5170 	union event_ring_elem *elem;
5171 	u8 echo;
5172 	u32 cid;
5173 	u8 opcode;
5174 	int rc, spqe_cnt = 0;
5175 	struct bnx2x_queue_sp_obj *q_obj;
5176 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5177 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5178 
5179 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5180 
5181 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5182 	 * when we get the next-page we need to adjust so the loop
5183 	 * condition below will be met. The next element is the size of a
5184 	 * regular element and hence incrementing by 1
5185 	 */
5186 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5187 		hw_cons++;
5188 
5189 	/* This function may never run in parallel with itself for a
5190 	 * specific bp, thus there is no need in "paired" read memory
5191 	 * barrier here.
5192 	 */
5193 	sw_cons = bp->eq_cons;
5194 	sw_prod = bp->eq_prod;
5195 
5196 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5197 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5198 
5199 	for (; sw_cons != hw_cons;
5200 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5201 
5202 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5203 
5204 		rc = bnx2x_iov_eq_sp_event(bp, elem);
5205 		if (!rc) {
5206 			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5207 			   rc);
5208 			goto next_spqe;
5209 		}
5210 
5211 		/* elem CID originates from FW; actually LE */
5212 		cid = SW_CID((__force __le32)
5213 			     elem->message.data.cfc_del_event.cid);
5214 		opcode = elem->message.opcode;
5215 
5216 		/* handle eq element */
5217 		switch (opcode) {
5218 		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5219 			DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n");
5220 			bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event);
5221 			continue;
5222 
5223 		case EVENT_RING_OPCODE_STAT_QUERY:
5224 			DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
5225 			   "got statistics comp event %d\n",
5226 			   bp->stats_comp++);
5227 			/* nothing to do with stats comp */
5228 			goto next_spqe;
5229 
5230 		case EVENT_RING_OPCODE_CFC_DEL:
5231 			/* handle according to cid range */
5232 			/*
5233 			 * we may want to verify here that the bp state is
5234 			 * HALTING
5235 			 */
5236 			DP(BNX2X_MSG_SP,
5237 			   "got delete ramrod for MULTI[%d]\n", cid);
5238 
5239 			if (CNIC_LOADED(bp) &&
5240 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5241 				goto next_spqe;
5242 
5243 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5244 
5245 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5246 				break;
5247 
5248 			goto next_spqe;
5249 
5250 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5251 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5252 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5253 			if (f_obj->complete_cmd(bp, f_obj,
5254 						BNX2X_F_CMD_TX_STOP))
5255 				break;
5256 			goto next_spqe;
5257 
5258 		case EVENT_RING_OPCODE_START_TRAFFIC:
5259 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5260 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5261 			if (f_obj->complete_cmd(bp, f_obj,
5262 						BNX2X_F_CMD_TX_START))
5263 				break;
5264 			goto next_spqe;
5265 
5266 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5267 			echo = elem->message.data.function_update_event.echo;
5268 			if (echo == SWITCH_UPDATE) {
5269 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5270 				   "got FUNC_SWITCH_UPDATE ramrod\n");
5271 				if (f_obj->complete_cmd(
5272 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5273 					break;
5274 
5275 			} else {
5276 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5277 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5278 				f_obj->complete_cmd(bp, f_obj,
5279 						    BNX2X_F_CMD_AFEX_UPDATE);
5280 
5281 				/* We will perform the Queues update from
5282 				 * sp_rtnl task as all Queue SP operations
5283 				 * should run under rtnl_lock.
5284 				 */
5285 				smp_mb__before_clear_bit();
5286 				set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
5287 					&bp->sp_rtnl_state);
5288 				smp_mb__after_clear_bit();
5289 
5290 				schedule_delayed_work(&bp->sp_rtnl_task, 0);
5291 			}
5292 
5293 			goto next_spqe;
5294 
5295 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5296 			f_obj->complete_cmd(bp, f_obj,
5297 					    BNX2X_F_CMD_AFEX_VIFLISTS);
5298 			bnx2x_after_afex_vif_lists(bp, elem);
5299 			goto next_spqe;
5300 		case EVENT_RING_OPCODE_FUNCTION_START:
5301 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5302 			   "got FUNC_START ramrod\n");
5303 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5304 				break;
5305 
5306 			goto next_spqe;
5307 
5308 		case EVENT_RING_OPCODE_FUNCTION_STOP:
5309 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5310 			   "got FUNC_STOP ramrod\n");
5311 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5312 				break;
5313 
5314 			goto next_spqe;
5315 		}
5316 
5317 		switch (opcode | bp->state) {
5318 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5319 		      BNX2X_STATE_OPEN):
5320 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5321 		      BNX2X_STATE_OPENING_WAIT4_PORT):
5322 			cid = elem->message.data.eth_event.echo &
5323 				BNX2X_SWCID_MASK;
5324 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5325 			   cid);
5326 			rss_raw->clear_pending(rss_raw);
5327 			break;
5328 
5329 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5330 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5331 		case (EVENT_RING_OPCODE_SET_MAC |
5332 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5333 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5334 		      BNX2X_STATE_OPEN):
5335 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5336 		      BNX2X_STATE_DIAG):
5337 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5338 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5339 			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5340 			bnx2x_handle_classification_eqe(bp, elem);
5341 			break;
5342 
5343 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5344 		      BNX2X_STATE_OPEN):
5345 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5346 		      BNX2X_STATE_DIAG):
5347 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5348 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5349 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5350 			bnx2x_handle_mcast_eqe(bp);
5351 			break;
5352 
5353 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5354 		      BNX2X_STATE_OPEN):
5355 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5356 		      BNX2X_STATE_DIAG):
5357 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5358 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5359 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5360 			bnx2x_handle_rx_mode_eqe(bp);
5361 			break;
5362 		default:
5363 			/* unknown event log error and continue */
5364 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5365 				  elem->message.opcode, bp->state);
5366 		}
5367 next_spqe:
5368 		spqe_cnt++;
5369 	} /* for */
5370 
5371 	smp_mb__before_atomic_inc();
5372 	atomic_add(spqe_cnt, &bp->eq_spq_left);
5373 
5374 	bp->eq_cons = sw_cons;
5375 	bp->eq_prod = sw_prod;
5376 	/* Make sure that above mem writes were issued towards the memory */
5377 	smp_wmb();
5378 
5379 	/* update producer */
5380 	bnx2x_update_eq_prod(bp, bp->eq_prod);
5381 }
5382 
5383 static void bnx2x_sp_task(struct work_struct *work)
5384 {
5385 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5386 
5387 	DP(BNX2X_MSG_SP, "sp task invoked\n");
5388 
5389 	/* make sure the atomic interrupt_occurred has been written */
5390 	smp_rmb();
5391 	if (atomic_read(&bp->interrupt_occurred)) {
5392 
5393 		/* what work needs to be performed? */
5394 		u16 status = bnx2x_update_dsb_idx(bp);
5395 
5396 		DP(BNX2X_MSG_SP, "status %x\n", status);
5397 		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5398 		atomic_set(&bp->interrupt_occurred, 0);
5399 
5400 		/* HW attentions */
5401 		if (status & BNX2X_DEF_SB_ATT_IDX) {
5402 			bnx2x_attn_int(bp);
5403 			status &= ~BNX2X_DEF_SB_ATT_IDX;
5404 		}
5405 
5406 		/* SP events: STAT_QUERY and others */
5407 		if (status & BNX2X_DEF_SB_IDX) {
5408 			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5409 
5410 		if (FCOE_INIT(bp) &&
5411 			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5412 				/* Prevent local bottom-halves from running as
5413 				 * we are going to change the local NAPI list.
5414 				 */
5415 				local_bh_disable();
5416 				napi_schedule(&bnx2x_fcoe(bp, napi));
5417 				local_bh_enable();
5418 			}
5419 
5420 			/* Handle EQ completions */
5421 			bnx2x_eq_int(bp);
5422 			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5423 				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5424 
5425 			status &= ~BNX2X_DEF_SB_IDX;
5426 		}
5427 
5428 		/* if status is non zero then perhaps something went wrong */
5429 		if (unlikely(status))
5430 			DP(BNX2X_MSG_SP,
5431 			   "got an unknown interrupt! (status 0x%x)\n", status);
5432 
5433 		/* ack status block only if something was actually handled */
5434 		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5435 			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5436 	}
5437 
5438 	/* must be called after the EQ processing (since eq leads to sriov
5439 	 * ramrod completion flows).
5440 	 * This flow may have been scheduled by the arrival of a ramrod
5441 	 * completion, or by the sriov code rescheduling itself.
5442 	 */
5443 	bnx2x_iov_sp_task(bp);
5444 
5445 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5446 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5447 			       &bp->sp_state)) {
5448 		bnx2x_link_report(bp);
5449 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5450 	}
5451 }
5452 
5453 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5454 {
5455 	struct net_device *dev = dev_instance;
5456 	struct bnx2x *bp = netdev_priv(dev);
5457 
5458 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5459 		     IGU_INT_DISABLE, 0);
5460 
5461 #ifdef BNX2X_STOP_ON_ERROR
5462 	if (unlikely(bp->panic))
5463 		return IRQ_HANDLED;
5464 #endif
5465 
5466 	if (CNIC_LOADED(bp)) {
5467 		struct cnic_ops *c_ops;
5468 
5469 		rcu_read_lock();
5470 		c_ops = rcu_dereference(bp->cnic_ops);
5471 		if (c_ops)
5472 			c_ops->cnic_handler(bp->cnic_data, NULL);
5473 		rcu_read_unlock();
5474 	}
5475 
5476 	/* schedule sp task to perform default status block work, ack
5477 	 * attentions and enable interrupts.
5478 	 */
5479 	bnx2x_schedule_sp_task(bp);
5480 
5481 	return IRQ_HANDLED;
5482 }
5483 
5484 /* end of slow path */
5485 
5486 void bnx2x_drv_pulse(struct bnx2x *bp)
5487 {
5488 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5489 		 bp->fw_drv_pulse_wr_seq);
5490 }
5491 
5492 static void bnx2x_timer(unsigned long data)
5493 {
5494 	struct bnx2x *bp = (struct bnx2x *) data;
5495 
5496 	if (!netif_running(bp->dev))
5497 		return;
5498 
5499 	if (IS_PF(bp) &&
5500 	    !BP_NOMCP(bp)) {
5501 		int mb_idx = BP_FW_MB_IDX(bp);
5502 		u16 drv_pulse;
5503 		u16 mcp_pulse;
5504 
5505 		++bp->fw_drv_pulse_wr_seq;
5506 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5507 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5508 		bnx2x_drv_pulse(bp);
5509 
5510 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5511 			     MCP_PULSE_SEQ_MASK);
5512 		/* The delta between driver pulse and mcp response
5513 		 * should not get too big. If the MFW is more than 5 pulses
5514 		 * behind, we should worry about it enough to generate an error
5515 		 * log.
5516 		 */
5517 		if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5518 			BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5519 				  drv_pulse, mcp_pulse);
5520 	}
5521 
5522 	if (bp->state == BNX2X_STATE_OPEN)
5523 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5524 
5525 	/* sample pf vf bulletin board for new posts from pf */
5526 	if (IS_VF(bp))
5527 		bnx2x_timer_sriov(bp);
5528 
5529 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5530 }
5531 
5532 /* end of Statistics */
5533 
5534 /* nic init */
5535 
5536 /*
5537  * nic init service functions
5538  */
5539 
5540 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5541 {
5542 	u32 i;
5543 	if (!(len%4) && !(addr%4))
5544 		for (i = 0; i < len; i += 4)
5545 			REG_WR(bp, addr + i, fill);
5546 	else
5547 		for (i = 0; i < len; i++)
5548 			REG_WR8(bp, addr + i, fill);
5549 }
5550 
5551 /* helper: writes FP SP data to FW - data_size in dwords */
5552 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5553 				int fw_sb_id,
5554 				u32 *sb_data_p,
5555 				u32 data_size)
5556 {
5557 	int index;
5558 	for (index = 0; index < data_size; index++)
5559 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5560 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5561 			sizeof(u32)*index,
5562 			*(sb_data_p + index));
5563 }
5564 
5565 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5566 {
5567 	u32 *sb_data_p;
5568 	u32 data_size = 0;
5569 	struct hc_status_block_data_e2 sb_data_e2;
5570 	struct hc_status_block_data_e1x sb_data_e1x;
5571 
5572 	/* disable the function first */
5573 	if (!CHIP_IS_E1x(bp)) {
5574 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5575 		sb_data_e2.common.state = SB_DISABLED;
5576 		sb_data_e2.common.p_func.vf_valid = false;
5577 		sb_data_p = (u32 *)&sb_data_e2;
5578 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5579 	} else {
5580 		memset(&sb_data_e1x, 0,
5581 		       sizeof(struct hc_status_block_data_e1x));
5582 		sb_data_e1x.common.state = SB_DISABLED;
5583 		sb_data_e1x.common.p_func.vf_valid = false;
5584 		sb_data_p = (u32 *)&sb_data_e1x;
5585 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5586 	}
5587 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5588 
5589 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5590 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5591 			CSTORM_STATUS_BLOCK_SIZE);
5592 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5593 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5594 			CSTORM_SYNC_BLOCK_SIZE);
5595 }
5596 
5597 /* helper:  writes SP SB data to FW */
5598 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5599 		struct hc_sp_status_block_data *sp_sb_data)
5600 {
5601 	int func = BP_FUNC(bp);
5602 	int i;
5603 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5604 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5605 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5606 			i*sizeof(u32),
5607 			*((u32 *)sp_sb_data + i));
5608 }
5609 
5610 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5611 {
5612 	int func = BP_FUNC(bp);
5613 	struct hc_sp_status_block_data sp_sb_data;
5614 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5615 
5616 	sp_sb_data.state = SB_DISABLED;
5617 	sp_sb_data.p_func.vf_valid = false;
5618 
5619 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5620 
5621 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5622 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5623 			CSTORM_SP_STATUS_BLOCK_SIZE);
5624 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5625 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5626 			CSTORM_SP_SYNC_BLOCK_SIZE);
5627 }
5628 
5629 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5630 					   int igu_sb_id, int igu_seg_id)
5631 {
5632 	hc_sm->igu_sb_id = igu_sb_id;
5633 	hc_sm->igu_seg_id = igu_seg_id;
5634 	hc_sm->timer_value = 0xFF;
5635 	hc_sm->time_to_expire = 0xFFFFFFFF;
5636 }
5637 
5638 /* allocates state machine ids. */
5639 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5640 {
5641 	/* zero out state machine indices */
5642 	/* rx indices */
5643 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5644 
5645 	/* tx indices */
5646 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5647 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5648 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5649 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5650 
5651 	/* map indices */
5652 	/* rx indices */
5653 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5654 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5655 
5656 	/* tx indices */
5657 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5658 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5659 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5660 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5661 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5662 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5663 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5664 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5665 }
5666 
5667 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5668 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5669 {
5670 	int igu_seg_id;
5671 
5672 	struct hc_status_block_data_e2 sb_data_e2;
5673 	struct hc_status_block_data_e1x sb_data_e1x;
5674 	struct hc_status_block_sm  *hc_sm_p;
5675 	int data_size;
5676 	u32 *sb_data_p;
5677 
5678 	if (CHIP_INT_MODE_IS_BC(bp))
5679 		igu_seg_id = HC_SEG_ACCESS_NORM;
5680 	else
5681 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5682 
5683 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5684 
5685 	if (!CHIP_IS_E1x(bp)) {
5686 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5687 		sb_data_e2.common.state = SB_ENABLED;
5688 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5689 		sb_data_e2.common.p_func.vf_id = vfid;
5690 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5691 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5692 		sb_data_e2.common.same_igu_sb_1b = true;
5693 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5694 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5695 		hc_sm_p = sb_data_e2.common.state_machine;
5696 		sb_data_p = (u32 *)&sb_data_e2;
5697 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5698 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5699 	} else {
5700 		memset(&sb_data_e1x, 0,
5701 		       sizeof(struct hc_status_block_data_e1x));
5702 		sb_data_e1x.common.state = SB_ENABLED;
5703 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5704 		sb_data_e1x.common.p_func.vf_id = 0xff;
5705 		sb_data_e1x.common.p_func.vf_valid = false;
5706 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5707 		sb_data_e1x.common.same_igu_sb_1b = true;
5708 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5709 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5710 		hc_sm_p = sb_data_e1x.common.state_machine;
5711 		sb_data_p = (u32 *)&sb_data_e1x;
5712 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5713 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5714 	}
5715 
5716 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5717 				       igu_sb_id, igu_seg_id);
5718 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5719 				       igu_sb_id, igu_seg_id);
5720 
5721 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5722 
5723 	/* write indices to HW - PCI guarantees endianity of regpairs */
5724 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5725 }
5726 
5727 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5728 				     u16 tx_usec, u16 rx_usec)
5729 {
5730 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5731 				    false, rx_usec);
5732 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5733 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5734 				       tx_usec);
5735 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5736 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5737 				       tx_usec);
5738 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5739 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5740 				       tx_usec);
5741 }
5742 
5743 static void bnx2x_init_def_sb(struct bnx2x *bp)
5744 {
5745 	struct host_sp_status_block *def_sb = bp->def_status_blk;
5746 	dma_addr_t mapping = bp->def_status_blk_mapping;
5747 	int igu_sp_sb_index;
5748 	int igu_seg_id;
5749 	int port = BP_PORT(bp);
5750 	int func = BP_FUNC(bp);
5751 	int reg_offset, reg_offset_en5;
5752 	u64 section;
5753 	int index;
5754 	struct hc_sp_status_block_data sp_sb_data;
5755 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5756 
5757 	if (CHIP_INT_MODE_IS_BC(bp)) {
5758 		igu_sp_sb_index = DEF_SB_IGU_ID;
5759 		igu_seg_id = HC_SEG_ACCESS_DEF;
5760 	} else {
5761 		igu_sp_sb_index = bp->igu_dsb_id;
5762 		igu_seg_id = IGU_SEG_ACCESS_DEF;
5763 	}
5764 
5765 	/* ATTN */
5766 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5767 					    atten_status_block);
5768 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5769 
5770 	bp->attn_state = 0;
5771 
5772 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5773 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5774 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5775 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5776 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5777 		int sindex;
5778 		/* take care of sig[0]..sig[4] */
5779 		for (sindex = 0; sindex < 4; sindex++)
5780 			bp->attn_group[index].sig[sindex] =
5781 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5782 
5783 		if (!CHIP_IS_E1x(bp))
5784 			/*
5785 			 * enable5 is separate from the rest of the registers,
5786 			 * and therefore the address skip is 4
5787 			 * and not 16 between the different groups
5788 			 */
5789 			bp->attn_group[index].sig[4] = REG_RD(bp,
5790 					reg_offset_en5 + 0x4*index);
5791 		else
5792 			bp->attn_group[index].sig[4] = 0;
5793 	}
5794 
5795 	if (bp->common.int_block == INT_BLOCK_HC) {
5796 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5797 				     HC_REG_ATTN_MSG0_ADDR_L);
5798 
5799 		REG_WR(bp, reg_offset, U64_LO(section));
5800 		REG_WR(bp, reg_offset + 4, U64_HI(section));
5801 	} else if (!CHIP_IS_E1x(bp)) {
5802 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5803 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5804 	}
5805 
5806 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5807 					    sp_sb);
5808 
5809 	bnx2x_zero_sp_sb(bp);
5810 
5811 	/* PCI guarantees endianity of regpairs */
5812 	sp_sb_data.state		= SB_ENABLED;
5813 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
5814 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
5815 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
5816 	sp_sb_data.igu_seg_id		= igu_seg_id;
5817 	sp_sb_data.p_func.pf_id		= func;
5818 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
5819 	sp_sb_data.p_func.vf_id		= 0xff;
5820 
5821 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5822 
5823 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5824 }
5825 
5826 void bnx2x_update_coalesce(struct bnx2x *bp)
5827 {
5828 	int i;
5829 
5830 	for_each_eth_queue(bp, i)
5831 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5832 					 bp->tx_ticks, bp->rx_ticks);
5833 }
5834 
5835 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5836 {
5837 	spin_lock_init(&bp->spq_lock);
5838 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5839 
5840 	bp->spq_prod_idx = 0;
5841 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5842 	bp->spq_prod_bd = bp->spq;
5843 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5844 }
5845 
5846 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5847 {
5848 	int i;
5849 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5850 		union event_ring_elem *elem =
5851 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5852 
5853 		elem->next_page.addr.hi =
5854 			cpu_to_le32(U64_HI(bp->eq_mapping +
5855 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5856 		elem->next_page.addr.lo =
5857 			cpu_to_le32(U64_LO(bp->eq_mapping +
5858 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5859 	}
5860 	bp->eq_cons = 0;
5861 	bp->eq_prod = NUM_EQ_DESC;
5862 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5863 	/* we want a warning message before it gets wrought... */
5864 	atomic_set(&bp->eq_spq_left,
5865 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5866 }
5867 
5868 /* called with netif_addr_lock_bh() */
5869 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5870 			       unsigned long rx_mode_flags,
5871 			       unsigned long rx_accept_flags,
5872 			       unsigned long tx_accept_flags,
5873 			       unsigned long ramrod_flags)
5874 {
5875 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
5876 	int rc;
5877 
5878 	memset(&ramrod_param, 0, sizeof(ramrod_param));
5879 
5880 	/* Prepare ramrod parameters */
5881 	ramrod_param.cid = 0;
5882 	ramrod_param.cl_id = cl_id;
5883 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5884 	ramrod_param.func_id = BP_FUNC(bp);
5885 
5886 	ramrod_param.pstate = &bp->sp_state;
5887 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5888 
5889 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5890 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5891 
5892 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5893 
5894 	ramrod_param.ramrod_flags = ramrod_flags;
5895 	ramrod_param.rx_mode_flags = rx_mode_flags;
5896 
5897 	ramrod_param.rx_accept_flags = rx_accept_flags;
5898 	ramrod_param.tx_accept_flags = tx_accept_flags;
5899 
5900 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5901 	if (rc < 0) {
5902 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5903 		return rc;
5904 	}
5905 
5906 	return 0;
5907 }
5908 
5909 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
5910 				   unsigned long *rx_accept_flags,
5911 				   unsigned long *tx_accept_flags)
5912 {
5913 	/* Clear the flags first */
5914 	*rx_accept_flags = 0;
5915 	*tx_accept_flags = 0;
5916 
5917 	switch (rx_mode) {
5918 	case BNX2X_RX_MODE_NONE:
5919 		/*
5920 		 * 'drop all' supersedes any accept flags that may have been
5921 		 * passed to the function.
5922 		 */
5923 		break;
5924 	case BNX2X_RX_MODE_NORMAL:
5925 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5926 		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
5927 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5928 
5929 		/* internal switching mode */
5930 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5931 		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
5932 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5933 
5934 		break;
5935 	case BNX2X_RX_MODE_ALLMULTI:
5936 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5937 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5938 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5939 
5940 		/* internal switching mode */
5941 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5942 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5943 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5944 
5945 		break;
5946 	case BNX2X_RX_MODE_PROMISC:
5947 		/* According to definition of SI mode, iface in promisc mode
5948 		 * should receive matched and unmatched (in resolution of port)
5949 		 * unicast packets.
5950 		 */
5951 		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
5952 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5953 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5954 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5955 
5956 		/* internal switching mode */
5957 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5958 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5959 
5960 		if (IS_MF_SI(bp))
5961 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
5962 		else
5963 			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5964 
5965 		break;
5966 	default:
5967 		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
5968 		return -EINVAL;
5969 	}
5970 
5971 	/* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
5972 	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5973 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
5974 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
5975 	}
5976 
5977 	return 0;
5978 }
5979 
5980 /* called with netif_addr_lock_bh() */
5981 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5982 {
5983 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5984 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5985 	int rc;
5986 
5987 	if (!NO_FCOE(bp))
5988 		/* Configure rx_mode of FCoE Queue */
5989 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5990 
5991 	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
5992 				     &tx_accept_flags);
5993 	if (rc)
5994 		return rc;
5995 
5996 	__set_bit(RAMROD_RX, &ramrod_flags);
5997 	__set_bit(RAMROD_TX, &ramrod_flags);
5998 
5999 	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6000 				   rx_accept_flags, tx_accept_flags,
6001 				   ramrod_flags);
6002 }
6003 
6004 static void bnx2x_init_internal_common(struct bnx2x *bp)
6005 {
6006 	int i;
6007 
6008 	if (IS_MF_SI(bp))
6009 		/*
6010 		 * In switch independent mode, the TSTORM needs to accept
6011 		 * packets that failed classification, since approximate match
6012 		 * mac addresses aren't written to NIG LLH
6013 		 */
6014 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
6015 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
6016 	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
6017 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
6018 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
6019 
6020 	/* Zero this manually as its initialization is
6021 	   currently missing in the initTool */
6022 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6023 		REG_WR(bp, BAR_USTRORM_INTMEM +
6024 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6025 	if (!CHIP_IS_E1x(bp)) {
6026 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6027 			CHIP_INT_MODE_IS_BC(bp) ?
6028 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6029 	}
6030 }
6031 
6032 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6033 {
6034 	switch (load_code) {
6035 	case FW_MSG_CODE_DRV_LOAD_COMMON:
6036 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6037 		bnx2x_init_internal_common(bp);
6038 		/* no break */
6039 
6040 	case FW_MSG_CODE_DRV_LOAD_PORT:
6041 		/* nothing to do */
6042 		/* no break */
6043 
6044 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6045 		/* internal memory per function is
6046 		   initialized inside bnx2x_pf_init */
6047 		break;
6048 
6049 	default:
6050 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6051 		break;
6052 	}
6053 }
6054 
6055 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6056 {
6057 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6058 }
6059 
6060 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6061 {
6062 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6063 }
6064 
6065 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6066 {
6067 	if (CHIP_IS_E1x(fp->bp))
6068 		return BP_L_ID(fp->bp) + fp->index;
6069 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6070 		return bnx2x_fp_igu_sb_id(fp);
6071 }
6072 
6073 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6074 {
6075 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6076 	u8 cos;
6077 	unsigned long q_type = 0;
6078 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6079 	fp->rx_queue = fp_idx;
6080 	fp->cid = fp_idx;
6081 	fp->cl_id = bnx2x_fp_cl_id(fp);
6082 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6083 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6084 	/* qZone id equals to FW (per path) client id */
6085 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6086 
6087 	/* init shortcut */
6088 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6089 
6090 	/* Setup SB indices */
6091 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6092 
6093 	/* Configure Queue State object */
6094 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6095 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6096 
6097 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6098 
6099 	/* init tx data */
6100 	for_each_cos_in_tx_queue(fp, cos) {
6101 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6102 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6103 				  FP_COS_TO_TXQ(fp, cos, bp),
6104 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6105 		cids[cos] = fp->txdata_ptr[cos]->cid;
6106 	}
6107 
6108 	/* nothing more for vf to do here */
6109 	if (IS_VF(bp))
6110 		return;
6111 
6112 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6113 		      fp->fw_sb_id, fp->igu_sb_id);
6114 	bnx2x_update_fpsb_idx(fp);
6115 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6116 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6117 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6118 
6119 	/**
6120 	 * Configure classification DBs: Always enable Tx switching
6121 	 */
6122 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6123 
6124 	DP(NETIF_MSG_IFUP,
6125 	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6126 	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6127 	   fp->igu_sb_id);
6128 }
6129 
6130 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6131 {
6132 	int i;
6133 
6134 	for (i = 1; i <= NUM_TX_RINGS; i++) {
6135 		struct eth_tx_next_bd *tx_next_bd =
6136 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6137 
6138 		tx_next_bd->addr_hi =
6139 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6140 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6141 		tx_next_bd->addr_lo =
6142 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6143 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6144 	}
6145 
6146 	*txdata->tx_cons_sb = cpu_to_le16(0);
6147 
6148 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6149 	txdata->tx_db.data.zero_fill1 = 0;
6150 	txdata->tx_db.data.prod = 0;
6151 
6152 	txdata->tx_pkt_prod = 0;
6153 	txdata->tx_pkt_cons = 0;
6154 	txdata->tx_bd_prod = 0;
6155 	txdata->tx_bd_cons = 0;
6156 	txdata->tx_pkt = 0;
6157 }
6158 
6159 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6160 {
6161 	int i;
6162 
6163 	for_each_tx_queue_cnic(bp, i)
6164 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6165 }
6166 
6167 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6168 {
6169 	int i;
6170 	u8 cos;
6171 
6172 	for_each_eth_queue(bp, i)
6173 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6174 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6175 }
6176 
6177 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6178 {
6179 	struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6180 	unsigned long q_type = 0;
6181 
6182 	bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6183 	bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6184 						     BNX2X_FCOE_ETH_CL_ID_IDX);
6185 	bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6186 	bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6187 	bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6188 	bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6189 	bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6190 			  fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6191 			  fp);
6192 
6193 	DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6194 
6195 	/* qZone id equals to FW (per path) client id */
6196 	bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6197 	/* init shortcut */
6198 	bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6199 		bnx2x_rx_ustorm_prods_offset(fp);
6200 
6201 	/* Configure Queue State object */
6202 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6203 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6204 
6205 	/* No multi-CoS for FCoE L2 client */
6206 	BUG_ON(fp->max_cos != 1);
6207 
6208 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6209 			     &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6210 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6211 
6212 	DP(NETIF_MSG_IFUP,
6213 	   "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6214 	   fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6215 	   fp->igu_sb_id);
6216 }
6217 
6218 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6219 {
6220 	if (!NO_FCOE(bp))
6221 		bnx2x_init_fcoe_fp(bp);
6222 
6223 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6224 		      BNX2X_VF_ID_INVALID, false,
6225 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6226 
6227 	/* ensure status block indices were read */
6228 	rmb();
6229 	bnx2x_init_rx_rings_cnic(bp);
6230 	bnx2x_init_tx_rings_cnic(bp);
6231 
6232 	/* flush all */
6233 	mb();
6234 	mmiowb();
6235 }
6236 
6237 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6238 {
6239 	int i;
6240 
6241 	/* Setup NIC internals and enable interrupts */
6242 	for_each_eth_queue(bp, i)
6243 		bnx2x_init_eth_fp(bp, i);
6244 
6245 	/* ensure status block indices were read */
6246 	rmb();
6247 	bnx2x_init_rx_rings(bp);
6248 	bnx2x_init_tx_rings(bp);
6249 
6250 	if (IS_PF(bp)) {
6251 		/* Initialize MOD_ABS interrupts */
6252 		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6253 				       bp->common.shmem_base,
6254 				       bp->common.shmem2_base, BP_PORT(bp));
6255 
6256 		/* initialize the default status block and sp ring */
6257 		bnx2x_init_def_sb(bp);
6258 		bnx2x_update_dsb_idx(bp);
6259 		bnx2x_init_sp_ring(bp);
6260 	} else {
6261 		bnx2x_memset_stats(bp);
6262 	}
6263 }
6264 
6265 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6266 {
6267 	bnx2x_init_eq_ring(bp);
6268 	bnx2x_init_internal(bp, load_code);
6269 	bnx2x_pf_init(bp);
6270 	bnx2x_stats_init(bp);
6271 
6272 	/* flush all before enabling interrupts */
6273 	mb();
6274 	mmiowb();
6275 
6276 	bnx2x_int_enable(bp);
6277 
6278 	/* Check for SPIO5 */
6279 	bnx2x_attn_int_deasserted0(bp,
6280 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6281 				   AEU_INPUTS_ATTN_BITS_SPIO5);
6282 }
6283 
6284 /* gzip service functions */
6285 static int bnx2x_gunzip_init(struct bnx2x *bp)
6286 {
6287 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6288 					    &bp->gunzip_mapping, GFP_KERNEL);
6289 	if (bp->gunzip_buf  == NULL)
6290 		goto gunzip_nomem1;
6291 
6292 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6293 	if (bp->strm  == NULL)
6294 		goto gunzip_nomem2;
6295 
6296 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6297 	if (bp->strm->workspace == NULL)
6298 		goto gunzip_nomem3;
6299 
6300 	return 0;
6301 
6302 gunzip_nomem3:
6303 	kfree(bp->strm);
6304 	bp->strm = NULL;
6305 
6306 gunzip_nomem2:
6307 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6308 			  bp->gunzip_mapping);
6309 	bp->gunzip_buf = NULL;
6310 
6311 gunzip_nomem1:
6312 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6313 	return -ENOMEM;
6314 }
6315 
6316 static void bnx2x_gunzip_end(struct bnx2x *bp)
6317 {
6318 	if (bp->strm) {
6319 		vfree(bp->strm->workspace);
6320 		kfree(bp->strm);
6321 		bp->strm = NULL;
6322 	}
6323 
6324 	if (bp->gunzip_buf) {
6325 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6326 				  bp->gunzip_mapping);
6327 		bp->gunzip_buf = NULL;
6328 	}
6329 }
6330 
6331 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6332 {
6333 	int n, rc;
6334 
6335 	/* check gzip header */
6336 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6337 		BNX2X_ERR("Bad gzip header\n");
6338 		return -EINVAL;
6339 	}
6340 
6341 	n = 10;
6342 
6343 #define FNAME				0x8
6344 
6345 	if (zbuf[3] & FNAME)
6346 		while ((zbuf[n++] != 0) && (n < len));
6347 
6348 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6349 	bp->strm->avail_in = len - n;
6350 	bp->strm->next_out = bp->gunzip_buf;
6351 	bp->strm->avail_out = FW_BUF_SIZE;
6352 
6353 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6354 	if (rc != Z_OK)
6355 		return rc;
6356 
6357 	rc = zlib_inflate(bp->strm, Z_FINISH);
6358 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6359 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6360 			   bp->strm->msg);
6361 
6362 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6363 	if (bp->gunzip_outlen & 0x3)
6364 		netdev_err(bp->dev,
6365 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6366 				bp->gunzip_outlen);
6367 	bp->gunzip_outlen >>= 2;
6368 
6369 	zlib_inflateEnd(bp->strm);
6370 
6371 	if (rc == Z_STREAM_END)
6372 		return 0;
6373 
6374 	return rc;
6375 }
6376 
6377 /* nic load/unload */
6378 
6379 /*
6380  * General service functions
6381  */
6382 
6383 /* send a NIG loopback debug packet */
6384 static void bnx2x_lb_pckt(struct bnx2x *bp)
6385 {
6386 	u32 wb_write[3];
6387 
6388 	/* Ethernet source and destination addresses */
6389 	wb_write[0] = 0x55555555;
6390 	wb_write[1] = 0x55555555;
6391 	wb_write[2] = 0x20;		/* SOP */
6392 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6393 
6394 	/* NON-IP protocol */
6395 	wb_write[0] = 0x09000000;
6396 	wb_write[1] = 0x55555555;
6397 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6398 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6399 }
6400 
6401 /* some of the internal memories
6402  * are not directly readable from the driver
6403  * to test them we send debug packets
6404  */
6405 static int bnx2x_int_mem_test(struct bnx2x *bp)
6406 {
6407 	int factor;
6408 	int count, i;
6409 	u32 val = 0;
6410 
6411 	if (CHIP_REV_IS_FPGA(bp))
6412 		factor = 120;
6413 	else if (CHIP_REV_IS_EMUL(bp))
6414 		factor = 200;
6415 	else
6416 		factor = 1;
6417 
6418 	/* Disable inputs of parser neighbor blocks */
6419 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6420 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6421 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6422 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6423 
6424 	/*  Write 0 to parser credits for CFC search request */
6425 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6426 
6427 	/* send Ethernet packet */
6428 	bnx2x_lb_pckt(bp);
6429 
6430 	/* TODO do i reset NIG statistic? */
6431 	/* Wait until NIG register shows 1 packet of size 0x10 */
6432 	count = 1000 * factor;
6433 	while (count) {
6434 
6435 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6436 		val = *bnx2x_sp(bp, wb_data[0]);
6437 		if (val == 0x10)
6438 			break;
6439 
6440 		usleep_range(10000, 20000);
6441 		count--;
6442 	}
6443 	if (val != 0x10) {
6444 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6445 		return -1;
6446 	}
6447 
6448 	/* Wait until PRS register shows 1 packet */
6449 	count = 1000 * factor;
6450 	while (count) {
6451 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6452 		if (val == 1)
6453 			break;
6454 
6455 		usleep_range(10000, 20000);
6456 		count--;
6457 	}
6458 	if (val != 0x1) {
6459 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6460 		return -2;
6461 	}
6462 
6463 	/* Reset and init BRB, PRS */
6464 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6465 	msleep(50);
6466 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6467 	msleep(50);
6468 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6469 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6470 
6471 	DP(NETIF_MSG_HW, "part2\n");
6472 
6473 	/* Disable inputs of parser neighbor blocks */
6474 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6475 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6476 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6477 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6478 
6479 	/* Write 0 to parser credits for CFC search request */
6480 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6481 
6482 	/* send 10 Ethernet packets */
6483 	for (i = 0; i < 10; i++)
6484 		bnx2x_lb_pckt(bp);
6485 
6486 	/* Wait until NIG register shows 10 + 1
6487 	   packets of size 11*0x10 = 0xb0 */
6488 	count = 1000 * factor;
6489 	while (count) {
6490 
6491 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6492 		val = *bnx2x_sp(bp, wb_data[0]);
6493 		if (val == 0xb0)
6494 			break;
6495 
6496 		usleep_range(10000, 20000);
6497 		count--;
6498 	}
6499 	if (val != 0xb0) {
6500 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6501 		return -3;
6502 	}
6503 
6504 	/* Wait until PRS register shows 2 packets */
6505 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6506 	if (val != 2)
6507 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6508 
6509 	/* Write 1 to parser credits for CFC search request */
6510 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6511 
6512 	/* Wait until PRS register shows 3 packets */
6513 	msleep(10 * factor);
6514 	/* Wait until NIG register shows 1 packet of size 0x10 */
6515 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6516 	if (val != 3)
6517 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6518 
6519 	/* clear NIG EOP FIFO */
6520 	for (i = 0; i < 11; i++)
6521 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6522 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6523 	if (val != 1) {
6524 		BNX2X_ERR("clear of NIG failed\n");
6525 		return -4;
6526 	}
6527 
6528 	/* Reset and init BRB, PRS, NIG */
6529 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6530 	msleep(50);
6531 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6532 	msleep(50);
6533 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6534 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6535 	if (!CNIC_SUPPORT(bp))
6536 		/* set NIC mode */
6537 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6538 
6539 	/* Enable inputs of parser neighbor blocks */
6540 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6541 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6542 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6543 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6544 
6545 	DP(NETIF_MSG_HW, "done\n");
6546 
6547 	return 0; /* OK */
6548 }
6549 
6550 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6551 {
6552 	u32 val;
6553 
6554 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6555 	if (!CHIP_IS_E1x(bp))
6556 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6557 	else
6558 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6559 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6560 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6561 	/*
6562 	 * mask read length error interrupts in brb for parser
6563 	 * (parsing unit and 'checksum and crc' unit)
6564 	 * these errors are legal (PU reads fixed length and CAC can cause
6565 	 * read length error on truncated packets)
6566 	 */
6567 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6568 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6569 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6570 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6571 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6572 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6573 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6574 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6575 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6576 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6577 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6578 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6579 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6580 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6581 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6582 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6583 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6584 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6585 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6586 
6587 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6588 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6589 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6590 	if (!CHIP_IS_E1x(bp))
6591 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6592 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6593 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6594 
6595 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6596 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6597 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6598 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6599 
6600 	if (!CHIP_IS_E1x(bp))
6601 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6602 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6603 
6604 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6605 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6606 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6607 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6608 }
6609 
6610 static void bnx2x_reset_common(struct bnx2x *bp)
6611 {
6612 	u32 val = 0x1400;
6613 
6614 	/* reset_common */
6615 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6616 	       0xd3ffff7f);
6617 
6618 	if (CHIP_IS_E3(bp)) {
6619 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6620 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6621 	}
6622 
6623 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6624 }
6625 
6626 static void bnx2x_setup_dmae(struct bnx2x *bp)
6627 {
6628 	bp->dmae_ready = 0;
6629 	spin_lock_init(&bp->dmae_lock);
6630 }
6631 
6632 static void bnx2x_init_pxp(struct bnx2x *bp)
6633 {
6634 	u16 devctl;
6635 	int r_order, w_order;
6636 
6637 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6638 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6639 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6640 	if (bp->mrrs == -1)
6641 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6642 	else {
6643 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6644 		r_order = bp->mrrs;
6645 	}
6646 
6647 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6648 }
6649 
6650 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6651 {
6652 	int is_required;
6653 	u32 val;
6654 	int port;
6655 
6656 	if (BP_NOMCP(bp))
6657 		return;
6658 
6659 	is_required = 0;
6660 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6661 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6662 
6663 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6664 		is_required = 1;
6665 
6666 	/*
6667 	 * The fan failure mechanism is usually related to the PHY type since
6668 	 * the power consumption of the board is affected by the PHY. Currently,
6669 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6670 	 */
6671 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6672 		for (port = PORT_0; port < PORT_MAX; port++) {
6673 			is_required |=
6674 				bnx2x_fan_failure_det_req(
6675 					bp,
6676 					bp->common.shmem_base,
6677 					bp->common.shmem2_base,
6678 					port);
6679 		}
6680 
6681 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6682 
6683 	if (is_required == 0)
6684 		return;
6685 
6686 	/* Fan failure is indicated by SPIO 5 */
6687 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6688 
6689 	/* set to active low mode */
6690 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6691 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6692 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6693 
6694 	/* enable interrupt to signal the IGU */
6695 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6696 	val |= MISC_SPIO_SPIO5;
6697 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6698 }
6699 
6700 void bnx2x_pf_disable(struct bnx2x *bp)
6701 {
6702 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6703 	val &= ~IGU_PF_CONF_FUNC_EN;
6704 
6705 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6706 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6707 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6708 }
6709 
6710 static void bnx2x__common_init_phy(struct bnx2x *bp)
6711 {
6712 	u32 shmem_base[2], shmem2_base[2];
6713 	/* Avoid common init in case MFW supports LFA */
6714 	if (SHMEM2_RD(bp, size) >
6715 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6716 		return;
6717 	shmem_base[0] =  bp->common.shmem_base;
6718 	shmem2_base[0] = bp->common.shmem2_base;
6719 	if (!CHIP_IS_E1x(bp)) {
6720 		shmem_base[1] =
6721 			SHMEM2_RD(bp, other_shmem_base_addr);
6722 		shmem2_base[1] =
6723 			SHMEM2_RD(bp, other_shmem2_base_addr);
6724 	}
6725 	bnx2x_acquire_phy_lock(bp);
6726 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6727 			      bp->common.chip_id);
6728 	bnx2x_release_phy_lock(bp);
6729 }
6730 
6731 /**
6732  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6733  *
6734  * @bp:		driver handle
6735  */
6736 static int bnx2x_init_hw_common(struct bnx2x *bp)
6737 {
6738 	u32 val;
6739 
6740 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6741 
6742 	/*
6743 	 * take the RESET lock to protect undi_unload flow from accessing
6744 	 * registers while we're resetting the chip
6745 	 */
6746 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6747 
6748 	bnx2x_reset_common(bp);
6749 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6750 
6751 	val = 0xfffc;
6752 	if (CHIP_IS_E3(bp)) {
6753 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6754 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6755 	}
6756 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6757 
6758 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6759 
6760 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6761 
6762 	if (!CHIP_IS_E1x(bp)) {
6763 		u8 abs_func_id;
6764 
6765 		/**
6766 		 * 4-port mode or 2-port mode we need to turn of master-enable
6767 		 * for everyone, after that, turn it back on for self.
6768 		 * so, we disregard multi-function or not, and always disable
6769 		 * for all functions on the given path, this means 0,2,4,6 for
6770 		 * path 0 and 1,3,5,7 for path 1
6771 		 */
6772 		for (abs_func_id = BP_PATH(bp);
6773 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6774 			if (abs_func_id == BP_ABS_FUNC(bp)) {
6775 				REG_WR(bp,
6776 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6777 				    1);
6778 				continue;
6779 			}
6780 
6781 			bnx2x_pretend_func(bp, abs_func_id);
6782 			/* clear pf enable */
6783 			bnx2x_pf_disable(bp);
6784 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6785 		}
6786 	}
6787 
6788 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6789 	if (CHIP_IS_E1(bp)) {
6790 		/* enable HW interrupt from PXP on USDM overflow
6791 		   bit 16 on INT_MASK_0 */
6792 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6793 	}
6794 
6795 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6796 	bnx2x_init_pxp(bp);
6797 
6798 #ifdef __BIG_ENDIAN
6799 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6800 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6801 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6802 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6803 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6804 	/* make sure this value is 0 */
6805 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6806 
6807 /*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6808 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6809 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6810 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6811 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6812 #endif
6813 
6814 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
6815 
6816 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6817 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6818 
6819 	/* let the HW do it's magic ... */
6820 	msleep(100);
6821 	/* finish PXP init */
6822 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6823 	if (val != 1) {
6824 		BNX2X_ERR("PXP2 CFG failed\n");
6825 		return -EBUSY;
6826 	}
6827 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6828 	if (val != 1) {
6829 		BNX2X_ERR("PXP2 RD_INIT failed\n");
6830 		return -EBUSY;
6831 	}
6832 
6833 	/* Timers bug workaround E2 only. We need to set the entire ILT to
6834 	 * have entries with value "0" and valid bit on.
6835 	 * This needs to be done by the first PF that is loaded in a path
6836 	 * (i.e. common phase)
6837 	 */
6838 	if (!CHIP_IS_E1x(bp)) {
6839 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6840  * (i.e. vnic3) to start even if it is marked as "scan-off".
6841  * This occurs when a different function (func2,3) is being marked
6842  * as "scan-off". Real-life scenario for example: if a driver is being
6843  * load-unloaded while func6,7 are down. This will cause the timer to access
6844  * the ilt, translate to a logical address and send a request to read/write.
6845  * Since the ilt for the function that is down is not valid, this will cause
6846  * a translation error which is unrecoverable.
6847  * The Workaround is intended to make sure that when this happens nothing fatal
6848  * will occur. The workaround:
6849  *	1.  First PF driver which loads on a path will:
6850  *		a.  After taking the chip out of reset, by using pretend,
6851  *		    it will write "0" to the following registers of
6852  *		    the other vnics.
6853  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6854  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6855  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6856  *		    And for itself it will write '1' to
6857  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6858  *		    dmae-operations (writing to pram for example.)
6859  *		    note: can be done for only function 6,7 but cleaner this
6860  *			  way.
6861  *		b.  Write zero+valid to the entire ILT.
6862  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6863  *		    VNIC3 (of that port). The range allocated will be the
6864  *		    entire ILT. This is needed to prevent  ILT range error.
6865  *	2.  Any PF driver load flow:
6866  *		a.  ILT update with the physical addresses of the allocated
6867  *		    logical pages.
6868  *		b.  Wait 20msec. - note that this timeout is needed to make
6869  *		    sure there are no requests in one of the PXP internal
6870  *		    queues with "old" ILT addresses.
6871  *		c.  PF enable in the PGLC.
6872  *		d.  Clear the was_error of the PF in the PGLC. (could have
6873  *		    occurred while driver was down)
6874  *		e.  PF enable in the CFC (WEAK + STRONG)
6875  *		f.  Timers scan enable
6876  *	3.  PF driver unload flow:
6877  *		a.  Clear the Timers scan_en.
6878  *		b.  Polling for scan_on=0 for that PF.
6879  *		c.  Clear the PF enable bit in the PXP.
6880  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
6881  *		e.  Write zero+valid to all ILT entries (The valid bit must
6882  *		    stay set)
6883  *		f.  If this is VNIC 3 of a port then also init
6884  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
6885  *		    to the last entry in the ILT.
6886  *
6887  *	Notes:
6888  *	Currently the PF error in the PGLC is non recoverable.
6889  *	In the future the there will be a recovery routine for this error.
6890  *	Currently attention is masked.
6891  *	Having an MCP lock on the load/unload process does not guarantee that
6892  *	there is no Timer disable during Func6/7 enable. This is because the
6893  *	Timers scan is currently being cleared by the MCP on FLR.
6894  *	Step 2.d can be done only for PF6/7 and the driver can also check if
6895  *	there is error before clearing it. But the flow above is simpler and
6896  *	more general.
6897  *	All ILT entries are written by zero+valid and not just PF6/7
6898  *	ILT entries since in the future the ILT entries allocation for
6899  *	PF-s might be dynamic.
6900  */
6901 		struct ilt_client_info ilt_cli;
6902 		struct bnx2x_ilt ilt;
6903 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6904 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6905 
6906 		/* initialize dummy TM client */
6907 		ilt_cli.start = 0;
6908 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6909 		ilt_cli.client_num = ILT_CLIENT_TM;
6910 
6911 		/* Step 1: set zeroes to all ilt page entries with valid bit on
6912 		 * Step 2: set the timers first/last ilt entry to point
6913 		 * to the entire range to prevent ILT range error for 3rd/4th
6914 		 * vnic	(this code assumes existence of the vnic)
6915 		 *
6916 		 * both steps performed by call to bnx2x_ilt_client_init_op()
6917 		 * with dummy TM client
6918 		 *
6919 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6920 		 * and his brother are split registers
6921 		 */
6922 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6923 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6924 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6925 
6926 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6927 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6928 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6929 	}
6930 
6931 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6932 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6933 
6934 	if (!CHIP_IS_E1x(bp)) {
6935 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6936 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6937 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6938 
6939 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6940 
6941 		/* let the HW do it's magic ... */
6942 		do {
6943 			msleep(200);
6944 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6945 		} while (factor-- && (val != 1));
6946 
6947 		if (val != 1) {
6948 			BNX2X_ERR("ATC_INIT failed\n");
6949 			return -EBUSY;
6950 		}
6951 	}
6952 
6953 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6954 
6955 	bnx2x_iov_init_dmae(bp);
6956 
6957 	/* clean the DMAE memory */
6958 	bp->dmae_ready = 1;
6959 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6960 
6961 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6962 
6963 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6964 
6965 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6966 
6967 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6968 
6969 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6970 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6971 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6972 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6973 
6974 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6975 
6976 	/* QM queues pointers table */
6977 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6978 
6979 	/* soft reset pulse */
6980 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
6981 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
6982 
6983 	if (CNIC_SUPPORT(bp))
6984 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6985 
6986 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6987 
6988 	if (!CHIP_REV_IS_SLOW(bp))
6989 		/* enable hw interrupt from doorbell Q */
6990 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6991 
6992 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6993 
6994 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6995 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6996 
6997 	if (!CHIP_IS_E1(bp))
6998 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6999 
7000 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7001 		if (IS_MF_AFEX(bp)) {
7002 			/* configure that VNTag and VLAN headers must be
7003 			 * received in afex mode
7004 			 */
7005 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7006 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7007 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7008 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7009 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7010 		} else {
7011 			/* Bit-map indicating which L2 hdrs may appear
7012 			 * after the basic Ethernet header
7013 			 */
7014 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7015 			       bp->path_has_ovlan ? 7 : 6);
7016 		}
7017 	}
7018 
7019 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7020 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7021 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7022 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7023 
7024 	if (!CHIP_IS_E1x(bp)) {
7025 		/* reset VFC memories */
7026 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7027 			   VFC_MEMORIES_RST_REG_CAM_RST |
7028 			   VFC_MEMORIES_RST_REG_RAM_RST);
7029 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7030 			   VFC_MEMORIES_RST_REG_CAM_RST |
7031 			   VFC_MEMORIES_RST_REG_RAM_RST);
7032 
7033 		msleep(20);
7034 	}
7035 
7036 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7037 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7038 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7039 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7040 
7041 	/* sync semi rtc */
7042 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7043 	       0x80000000);
7044 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7045 	       0x80000000);
7046 
7047 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7048 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7049 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7050 
7051 	if (!CHIP_IS_E1x(bp)) {
7052 		if (IS_MF_AFEX(bp)) {
7053 			/* configure that VNTag and VLAN headers must be
7054 			 * sent in afex mode
7055 			 */
7056 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7057 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7058 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7059 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7060 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7061 		} else {
7062 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7063 			       bp->path_has_ovlan ? 7 : 6);
7064 		}
7065 	}
7066 
7067 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
7068 
7069 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7070 
7071 	if (CNIC_SUPPORT(bp)) {
7072 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7073 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7074 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7075 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7076 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7077 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7078 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7079 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7080 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7081 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7082 	}
7083 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
7084 
7085 	if (sizeof(union cdu_context) != 1024)
7086 		/* we currently assume that a context is 1024 bytes */
7087 		dev_alert(&bp->pdev->dev,
7088 			  "please adjust the size of cdu_context(%ld)\n",
7089 			  (long)sizeof(union cdu_context));
7090 
7091 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7092 	val = (4 << 24) + (0 << 12) + 1024;
7093 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7094 
7095 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7096 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7097 	/* enable context validation interrupt from CFC */
7098 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7099 
7100 	/* set the thresholds to prevent CFC/CDU race */
7101 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7102 
7103 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7104 
7105 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7106 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7107 
7108 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7109 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7110 
7111 	/* Reset PCIE errors for debug */
7112 	REG_WR(bp, 0x2814, 0xffffffff);
7113 	REG_WR(bp, 0x3820, 0xffffffff);
7114 
7115 	if (!CHIP_IS_E1x(bp)) {
7116 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7117 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7118 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7119 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7120 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7121 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7122 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7123 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7124 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7125 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7126 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7127 	}
7128 
7129 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7130 	if (!CHIP_IS_E1(bp)) {
7131 		/* in E3 this done in per-port section */
7132 		if (!CHIP_IS_E3(bp))
7133 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7134 	}
7135 	if (CHIP_IS_E1H(bp))
7136 		/* not applicable for E2 (and above ...) */
7137 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7138 
7139 	if (CHIP_REV_IS_SLOW(bp))
7140 		msleep(200);
7141 
7142 	/* finish CFC init */
7143 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7144 	if (val != 1) {
7145 		BNX2X_ERR("CFC LL_INIT failed\n");
7146 		return -EBUSY;
7147 	}
7148 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7149 	if (val != 1) {
7150 		BNX2X_ERR("CFC AC_INIT failed\n");
7151 		return -EBUSY;
7152 	}
7153 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7154 	if (val != 1) {
7155 		BNX2X_ERR("CFC CAM_INIT failed\n");
7156 		return -EBUSY;
7157 	}
7158 	REG_WR(bp, CFC_REG_DEBUG0, 0);
7159 
7160 	if (CHIP_IS_E1(bp)) {
7161 		/* read NIG statistic
7162 		   to see if this is our first up since powerup */
7163 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7164 		val = *bnx2x_sp(bp, wb_data[0]);
7165 
7166 		/* do internal memory self test */
7167 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7168 			BNX2X_ERR("internal mem self test failed\n");
7169 			return -EBUSY;
7170 		}
7171 	}
7172 
7173 	bnx2x_setup_fan_failure_detection(bp);
7174 
7175 	/* clear PXP2 attentions */
7176 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7177 
7178 	bnx2x_enable_blocks_attention(bp);
7179 	bnx2x_enable_blocks_parity(bp);
7180 
7181 	if (!BP_NOMCP(bp)) {
7182 		if (CHIP_IS_E1x(bp))
7183 			bnx2x__common_init_phy(bp);
7184 	} else
7185 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7186 
7187 	return 0;
7188 }
7189 
7190 /**
7191  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7192  *
7193  * @bp:		driver handle
7194  */
7195 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7196 {
7197 	int rc = bnx2x_init_hw_common(bp);
7198 
7199 	if (rc)
7200 		return rc;
7201 
7202 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7203 	if (!BP_NOMCP(bp))
7204 		bnx2x__common_init_phy(bp);
7205 
7206 	return 0;
7207 }
7208 
7209 static int bnx2x_init_hw_port(struct bnx2x *bp)
7210 {
7211 	int port = BP_PORT(bp);
7212 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7213 	u32 low, high;
7214 	u32 val, reg;
7215 
7216 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7217 
7218 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7219 
7220 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7221 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7222 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7223 
7224 	/* Timers bug workaround: disables the pf_master bit in pglue at
7225 	 * common phase, we need to enable it here before any dmae access are
7226 	 * attempted. Therefore we manually added the enable-master to the
7227 	 * port phase (it also happens in the function phase)
7228 	 */
7229 	if (!CHIP_IS_E1x(bp))
7230 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7231 
7232 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7233 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7234 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7235 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7236 
7237 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7238 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7239 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7240 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7241 
7242 	/* QM cid (connection) count */
7243 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7244 
7245 	if (CNIC_SUPPORT(bp)) {
7246 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7247 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7248 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7249 	}
7250 
7251 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7252 
7253 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7254 
7255 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7256 
7257 		if (IS_MF(bp))
7258 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7259 		else if (bp->dev->mtu > 4096) {
7260 			if (bp->flags & ONE_PORT_FLAG)
7261 				low = 160;
7262 			else {
7263 				val = bp->dev->mtu;
7264 				/* (24*1024 + val*4)/256 */
7265 				low = 96 + (val/64) +
7266 						((val % 64) ? 1 : 0);
7267 			}
7268 		} else
7269 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7270 		high = low + 56;	/* 14*1024/256 */
7271 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7272 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7273 	}
7274 
7275 	if (CHIP_MODE_IS_4_PORT(bp))
7276 		REG_WR(bp, (BP_PORT(bp) ?
7277 			    BRB1_REG_MAC_GUARANTIED_1 :
7278 			    BRB1_REG_MAC_GUARANTIED_0), 40);
7279 
7280 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7281 	if (CHIP_IS_E3B0(bp)) {
7282 		if (IS_MF_AFEX(bp)) {
7283 			/* configure headers for AFEX mode */
7284 			REG_WR(bp, BP_PORT(bp) ?
7285 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7286 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7287 			REG_WR(bp, BP_PORT(bp) ?
7288 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7289 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7290 			REG_WR(bp, BP_PORT(bp) ?
7291 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7292 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7293 		} else {
7294 			/* Ovlan exists only if we are in multi-function +
7295 			 * switch-dependent mode, in switch-independent there
7296 			 * is no ovlan headers
7297 			 */
7298 			REG_WR(bp, BP_PORT(bp) ?
7299 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7300 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7301 			       (bp->path_has_ovlan ? 7 : 6));
7302 		}
7303 	}
7304 
7305 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7306 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7307 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7308 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7309 
7310 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7311 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7312 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7313 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7314 
7315 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7316 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7317 
7318 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7319 
7320 	if (CHIP_IS_E1x(bp)) {
7321 		/* configure PBF to work without PAUSE mtu 9000 */
7322 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7323 
7324 		/* update threshold */
7325 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7326 		/* update init credit */
7327 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7328 
7329 		/* probe changes */
7330 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7331 		udelay(50);
7332 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7333 	}
7334 
7335 	if (CNIC_SUPPORT(bp))
7336 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7337 
7338 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7339 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7340 
7341 	if (CHIP_IS_E1(bp)) {
7342 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7343 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7344 	}
7345 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7346 
7347 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7348 
7349 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7350 	/* init aeu_mask_attn_func_0/1:
7351 	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7352 	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7353 	 *             bits 4-7 are used for "per vn group attention" */
7354 	val = IS_MF(bp) ? 0xF7 : 0x7;
7355 	/* Enable DCBX attention for all but E1 */
7356 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7357 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7358 
7359 	/* SCPAD_PARITY should NOT trigger close the gates */
7360 	reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7361 	REG_WR(bp, reg,
7362 	       REG_RD(bp, reg) &
7363 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7364 
7365 	reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7366 	REG_WR(bp, reg,
7367 	       REG_RD(bp, reg) &
7368 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7369 
7370 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7371 
7372 	if (!CHIP_IS_E1x(bp)) {
7373 		/* Bit-map indicating which L2 hdrs may appear after the
7374 		 * basic Ethernet header
7375 		 */
7376 		if (IS_MF_AFEX(bp))
7377 			REG_WR(bp, BP_PORT(bp) ?
7378 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7379 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7380 		else
7381 			REG_WR(bp, BP_PORT(bp) ?
7382 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7383 			       NIG_REG_P0_HDRS_AFTER_BASIC,
7384 			       IS_MF_SD(bp) ? 7 : 6);
7385 
7386 		if (CHIP_IS_E3(bp))
7387 			REG_WR(bp, BP_PORT(bp) ?
7388 				   NIG_REG_LLH1_MF_MODE :
7389 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7390 	}
7391 	if (!CHIP_IS_E3(bp))
7392 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7393 
7394 	if (!CHIP_IS_E1(bp)) {
7395 		/* 0x2 disable mf_ov, 0x1 enable */
7396 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7397 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7398 
7399 		if (!CHIP_IS_E1x(bp)) {
7400 			val = 0;
7401 			switch (bp->mf_mode) {
7402 			case MULTI_FUNCTION_SD:
7403 				val = 1;
7404 				break;
7405 			case MULTI_FUNCTION_SI:
7406 			case MULTI_FUNCTION_AFEX:
7407 				val = 2;
7408 				break;
7409 			}
7410 
7411 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7412 						  NIG_REG_LLH0_CLS_TYPE), val);
7413 		}
7414 		{
7415 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7416 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7417 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7418 		}
7419 	}
7420 
7421 	/* If SPIO5 is set to generate interrupts, enable it for this port */
7422 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7423 	if (val & MISC_SPIO_SPIO5) {
7424 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7425 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7426 		val = REG_RD(bp, reg_addr);
7427 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7428 		REG_WR(bp, reg_addr, val);
7429 	}
7430 
7431 	return 0;
7432 }
7433 
7434 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7435 {
7436 	int reg;
7437 	u32 wb_write[2];
7438 
7439 	if (CHIP_IS_E1(bp))
7440 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7441 	else
7442 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7443 
7444 	wb_write[0] = ONCHIP_ADDR1(addr);
7445 	wb_write[1] = ONCHIP_ADDR2(addr);
7446 	REG_WR_DMAE(bp, reg, wb_write, 2);
7447 }
7448 
7449 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7450 {
7451 	u32 data, ctl, cnt = 100;
7452 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7453 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7454 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7455 	u32 sb_bit =  1 << (idu_sb_id%32);
7456 	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7457 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7458 
7459 	/* Not supported in BC mode */
7460 	if (CHIP_INT_MODE_IS_BC(bp))
7461 		return;
7462 
7463 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7464 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7465 		IGU_REGULAR_CLEANUP_SET				|
7466 		IGU_REGULAR_BCLEANUP;
7467 
7468 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7469 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7470 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7471 
7472 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7473 			 data, igu_addr_data);
7474 	REG_WR(bp, igu_addr_data, data);
7475 	mmiowb();
7476 	barrier();
7477 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7478 			  ctl, igu_addr_ctl);
7479 	REG_WR(bp, igu_addr_ctl, ctl);
7480 	mmiowb();
7481 	barrier();
7482 
7483 	/* wait for clean up to finish */
7484 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7485 		msleep(20);
7486 
7487 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7488 		DP(NETIF_MSG_HW,
7489 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7490 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7491 	}
7492 }
7493 
7494 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7495 {
7496 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7497 }
7498 
7499 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7500 {
7501 	u32 i, base = FUNC_ILT_BASE(func);
7502 	for (i = base; i < base + ILT_PER_FUNC; i++)
7503 		bnx2x_ilt_wr(bp, i, 0);
7504 }
7505 
7506 static void bnx2x_init_searcher(struct bnx2x *bp)
7507 {
7508 	int port = BP_PORT(bp);
7509 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7510 	/* T1 hash bits value determines the T1 number of entries */
7511 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7512 }
7513 
7514 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7515 {
7516 	int rc;
7517 	struct bnx2x_func_state_params func_params = {NULL};
7518 	struct bnx2x_func_switch_update_params *switch_update_params =
7519 		&func_params.params.switch_update;
7520 
7521 	/* Prepare parameters for function state transitions */
7522 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7523 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7524 
7525 	func_params.f_obj = &bp->func_obj;
7526 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7527 
7528 	/* Function parameters */
7529 	switch_update_params->suspend = suspend;
7530 
7531 	rc = bnx2x_func_state_change(bp, &func_params);
7532 
7533 	return rc;
7534 }
7535 
7536 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7537 {
7538 	int rc, i, port = BP_PORT(bp);
7539 	int vlan_en = 0, mac_en[NUM_MACS];
7540 
7541 	/* Close input from network */
7542 	if (bp->mf_mode == SINGLE_FUNCTION) {
7543 		bnx2x_set_rx_filter(&bp->link_params, 0);
7544 	} else {
7545 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7546 				   NIG_REG_LLH0_FUNC_EN);
7547 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7548 			  NIG_REG_LLH0_FUNC_EN, 0);
7549 		for (i = 0; i < NUM_MACS; i++) {
7550 			mac_en[i] = REG_RD(bp, port ?
7551 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7552 					      4 * i) :
7553 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7554 					      4 * i));
7555 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7556 					      4 * i) :
7557 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7558 		}
7559 	}
7560 
7561 	/* Close BMC to host */
7562 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7563 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7564 
7565 	/* Suspend Tx switching to the PF. Completion of this ramrod
7566 	 * further guarantees that all the packets of that PF / child
7567 	 * VFs in BRB were processed by the Parser, so it is safe to
7568 	 * change the NIC_MODE register.
7569 	 */
7570 	rc = bnx2x_func_switch_update(bp, 1);
7571 	if (rc) {
7572 		BNX2X_ERR("Can't suspend tx-switching!\n");
7573 		return rc;
7574 	}
7575 
7576 	/* Change NIC_MODE register */
7577 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7578 
7579 	/* Open input from network */
7580 	if (bp->mf_mode == SINGLE_FUNCTION) {
7581 		bnx2x_set_rx_filter(&bp->link_params, 1);
7582 	} else {
7583 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7584 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7585 		for (i = 0; i < NUM_MACS; i++) {
7586 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7587 					      4 * i) :
7588 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7589 				  mac_en[i]);
7590 		}
7591 	}
7592 
7593 	/* Enable BMC to host */
7594 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7595 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7596 
7597 	/* Resume Tx switching to the PF */
7598 	rc = bnx2x_func_switch_update(bp, 0);
7599 	if (rc) {
7600 		BNX2X_ERR("Can't resume tx-switching!\n");
7601 		return rc;
7602 	}
7603 
7604 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7605 	return 0;
7606 }
7607 
7608 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7609 {
7610 	int rc;
7611 
7612 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7613 
7614 	if (CONFIGURE_NIC_MODE(bp)) {
7615 		/* Configure searcher as part of function hw init */
7616 		bnx2x_init_searcher(bp);
7617 
7618 		/* Reset NIC mode */
7619 		rc = bnx2x_reset_nic_mode(bp);
7620 		if (rc)
7621 			BNX2X_ERR("Can't change NIC mode!\n");
7622 		return rc;
7623 	}
7624 
7625 	return 0;
7626 }
7627 
7628 static int bnx2x_init_hw_func(struct bnx2x *bp)
7629 {
7630 	int port = BP_PORT(bp);
7631 	int func = BP_FUNC(bp);
7632 	int init_phase = PHASE_PF0 + func;
7633 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7634 	u16 cdu_ilt_start;
7635 	u32 addr, val;
7636 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7637 	int i, main_mem_width, rc;
7638 
7639 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7640 
7641 	/* FLR cleanup - hmmm */
7642 	if (!CHIP_IS_E1x(bp)) {
7643 		rc = bnx2x_pf_flr_clnup(bp);
7644 		if (rc) {
7645 			bnx2x_fw_dump(bp);
7646 			return rc;
7647 		}
7648 	}
7649 
7650 	/* set MSI reconfigure capability */
7651 	if (bp->common.int_block == INT_BLOCK_HC) {
7652 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7653 		val = REG_RD(bp, addr);
7654 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7655 		REG_WR(bp, addr, val);
7656 	}
7657 
7658 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7659 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7660 
7661 	ilt = BP_ILT(bp);
7662 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7663 
7664 	if (IS_SRIOV(bp))
7665 		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7666 	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7667 
7668 	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7669 	 * those of the VFs, so start line should be reset
7670 	 */
7671 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7672 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7673 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7674 		ilt->lines[cdu_ilt_start + i].page_mapping =
7675 			bp->context[i].cxt_mapping;
7676 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7677 	}
7678 
7679 	bnx2x_ilt_init_op(bp, INITOP_SET);
7680 
7681 	if (!CONFIGURE_NIC_MODE(bp)) {
7682 		bnx2x_init_searcher(bp);
7683 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
7684 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7685 	} else {
7686 		/* Set NIC mode */
7687 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
7688 		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7689 	}
7690 
7691 	if (!CHIP_IS_E1x(bp)) {
7692 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7693 
7694 		/* Turn on a single ISR mode in IGU if driver is going to use
7695 		 * INT#x or MSI
7696 		 */
7697 		if (!(bp->flags & USING_MSIX_FLAG))
7698 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7699 		/*
7700 		 * Timers workaround bug: function init part.
7701 		 * Need to wait 20msec after initializing ILT,
7702 		 * needed to make sure there are no requests in
7703 		 * one of the PXP internal queues with "old" ILT addresses
7704 		 */
7705 		msleep(20);
7706 		/*
7707 		 * Master enable - Due to WB DMAE writes performed before this
7708 		 * register is re-initialized as part of the regular function
7709 		 * init
7710 		 */
7711 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7712 		/* Enable the function in IGU */
7713 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7714 	}
7715 
7716 	bp->dmae_ready = 1;
7717 
7718 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7719 
7720 	if (!CHIP_IS_E1x(bp))
7721 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7722 
7723 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7724 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7725 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7726 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7727 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7728 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7729 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7730 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7731 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7732 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7733 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7734 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7735 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7736 
7737 	if (!CHIP_IS_E1x(bp))
7738 		REG_WR(bp, QM_REG_PF_EN, 1);
7739 
7740 	if (!CHIP_IS_E1x(bp)) {
7741 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7742 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7743 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7744 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7745 	}
7746 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7747 
7748 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
7749 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7750 	REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
7751 
7752 	bnx2x_iov_init_dq(bp);
7753 
7754 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7755 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7756 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7757 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7758 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7759 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7760 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7761 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7762 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7763 	if (!CHIP_IS_E1x(bp))
7764 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7765 
7766 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7767 
7768 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7769 
7770 	if (!CHIP_IS_E1x(bp))
7771 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7772 
7773 	if (IS_MF(bp)) {
7774 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7775 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7776 	}
7777 
7778 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7779 
7780 	/* HC init per function */
7781 	if (bp->common.int_block == INT_BLOCK_HC) {
7782 		if (CHIP_IS_E1H(bp)) {
7783 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7784 
7785 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7786 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7787 		}
7788 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
7789 
7790 	} else {
7791 		int num_segs, sb_idx, prod_offset;
7792 
7793 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7794 
7795 		if (!CHIP_IS_E1x(bp)) {
7796 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7797 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7798 		}
7799 
7800 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7801 
7802 		if (!CHIP_IS_E1x(bp)) {
7803 			int dsb_idx = 0;
7804 			/**
7805 			 * Producer memory:
7806 			 * E2 mode: address 0-135 match to the mapping memory;
7807 			 * 136 - PF0 default prod; 137 - PF1 default prod;
7808 			 * 138 - PF2 default prod; 139 - PF3 default prod;
7809 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
7810 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
7811 			 * 144-147 reserved.
7812 			 *
7813 			 * E1.5 mode - In backward compatible mode;
7814 			 * for non default SB; each even line in the memory
7815 			 * holds the U producer and each odd line hold
7816 			 * the C producer. The first 128 producers are for
7817 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7818 			 * producers are for the DSB for each PF.
7819 			 * Each PF has five segments: (the order inside each
7820 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7821 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7822 			 * 144-147 attn prods;
7823 			 */
7824 			/* non-default-status-blocks */
7825 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7826 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7827 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7828 				prod_offset = (bp->igu_base_sb + sb_idx) *
7829 					num_segs;
7830 
7831 				for (i = 0; i < num_segs; i++) {
7832 					addr = IGU_REG_PROD_CONS_MEMORY +
7833 							(prod_offset + i) * 4;
7834 					REG_WR(bp, addr, 0);
7835 				}
7836 				/* send consumer update with value 0 */
7837 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7838 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7839 				bnx2x_igu_clear_sb(bp,
7840 						   bp->igu_base_sb + sb_idx);
7841 			}
7842 
7843 			/* default-status-blocks */
7844 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7845 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7846 
7847 			if (CHIP_MODE_IS_4_PORT(bp))
7848 				dsb_idx = BP_FUNC(bp);
7849 			else
7850 				dsb_idx = BP_VN(bp);
7851 
7852 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7853 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
7854 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
7855 
7856 			/*
7857 			 * igu prods come in chunks of E1HVN_MAX (4) -
7858 			 * does not matters what is the current chip mode
7859 			 */
7860 			for (i = 0; i < (num_segs * E1HVN_MAX);
7861 			     i += E1HVN_MAX) {
7862 				addr = IGU_REG_PROD_CONS_MEMORY +
7863 							(prod_offset + i)*4;
7864 				REG_WR(bp, addr, 0);
7865 			}
7866 			/* send consumer update with 0 */
7867 			if (CHIP_INT_MODE_IS_BC(bp)) {
7868 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7869 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7870 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7871 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
7872 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7873 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
7874 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7875 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
7876 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7877 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7878 			} else {
7879 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7880 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7881 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7882 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7883 			}
7884 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7885 
7886 			/* !!! These should become driver const once
7887 			   rf-tool supports split-68 const */
7888 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7889 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7890 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7891 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7892 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7893 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7894 		}
7895 	}
7896 
7897 	/* Reset PCIE errors for debug */
7898 	REG_WR(bp, 0x2114, 0xffffffff);
7899 	REG_WR(bp, 0x2120, 0xffffffff);
7900 
7901 	if (CHIP_IS_E1x(bp)) {
7902 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7903 		main_mem_base = HC_REG_MAIN_MEMORY +
7904 				BP_PORT(bp) * (main_mem_size * 4);
7905 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7906 		main_mem_width = 8;
7907 
7908 		val = REG_RD(bp, main_mem_prty_clr);
7909 		if (val)
7910 			DP(NETIF_MSG_HW,
7911 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7912 			   val);
7913 
7914 		/* Clear "false" parity errors in MSI-X table */
7915 		for (i = main_mem_base;
7916 		     i < main_mem_base + main_mem_size * 4;
7917 		     i += main_mem_width) {
7918 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
7919 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7920 					 i, main_mem_width / 4);
7921 		}
7922 		/* Clear HC parity attention */
7923 		REG_RD(bp, main_mem_prty_clr);
7924 	}
7925 
7926 #ifdef BNX2X_STOP_ON_ERROR
7927 	/* Enable STORMs SP logging */
7928 	REG_WR8(bp, BAR_USTRORM_INTMEM +
7929 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7930 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
7931 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7932 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7933 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7934 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
7935 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7936 #endif
7937 
7938 	bnx2x_phy_probe(&bp->link_params);
7939 
7940 	return 0;
7941 }
7942 
7943 void bnx2x_free_mem_cnic(struct bnx2x *bp)
7944 {
7945 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
7946 
7947 	if (!CHIP_IS_E1x(bp))
7948 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7949 			       sizeof(struct host_hc_status_block_e2));
7950 	else
7951 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7952 			       sizeof(struct host_hc_status_block_e1x));
7953 
7954 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7955 }
7956 
7957 void bnx2x_free_mem(struct bnx2x *bp)
7958 {
7959 	int i;
7960 
7961 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7962 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7963 
7964 	if (IS_VF(bp))
7965 		return;
7966 
7967 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7968 		       sizeof(struct host_sp_status_block));
7969 
7970 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7971 		       sizeof(struct bnx2x_slowpath));
7972 
7973 	for (i = 0; i < L2_ILT_LINES(bp); i++)
7974 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7975 			       bp->context[i].size);
7976 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7977 
7978 	BNX2X_FREE(bp->ilt->lines);
7979 
7980 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7981 
7982 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7983 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
7984 
7985 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7986 
7987 	bnx2x_iov_free_mem(bp);
7988 }
7989 
7990 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
7991 {
7992 	if (!CHIP_IS_E1x(bp))
7993 		/* size = the status block + ramrod buffers */
7994 		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7995 				sizeof(struct host_hc_status_block_e2));
7996 	else
7997 		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
7998 				&bp->cnic_sb_mapping,
7999 				sizeof(struct
8000 				       host_hc_status_block_e1x));
8001 
8002 	if (CONFIGURE_NIC_MODE(bp) && !bp->t2)
8003 		/* allocate searcher T2 table, as it wasn't allocated before */
8004 		BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
8005 
8006 	/* write address to which L5 should insert its values */
8007 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
8008 		&bp->slowpath->drv_info_to_mcp;
8009 
8010 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8011 		goto alloc_mem_err;
8012 
8013 	return 0;
8014 
8015 alloc_mem_err:
8016 	bnx2x_free_mem_cnic(bp);
8017 	BNX2X_ERR("Can't allocate memory\n");
8018 	return -ENOMEM;
8019 }
8020 
8021 int bnx2x_alloc_mem(struct bnx2x *bp)
8022 {
8023 	int i, allocated, context_size;
8024 
8025 	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2)
8026 		/* allocate searcher T2 table */
8027 		BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
8028 
8029 	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
8030 			sizeof(struct host_sp_status_block));
8031 
8032 	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
8033 			sizeof(struct bnx2x_slowpath));
8034 
8035 	/* Allocate memory for CDU context:
8036 	 * This memory is allocated separately and not in the generic ILT
8037 	 * functions because CDU differs in few aspects:
8038 	 * 1. There are multiple entities allocating memory for context -
8039 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8040 	 * its own ILT lines.
8041 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
8042 	 * for the other ILT clients), to be efficient we want to support
8043 	 * allocation of sub-page-size in the last entry.
8044 	 * 3. Context pointers are used by the driver to pass to FW / update
8045 	 * the context (for the other ILT clients the pointers are used just to
8046 	 * free the memory during unload).
8047 	 */
8048 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8049 
8050 	for (i = 0, allocated = 0; allocated < context_size; i++) {
8051 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8052 					  (context_size - allocated));
8053 		BNX2X_PCI_ALLOC(bp->context[i].vcxt,
8054 				&bp->context[i].cxt_mapping,
8055 				bp->context[i].size);
8056 		allocated += bp->context[i].size;
8057 	}
8058 	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
8059 
8060 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8061 		goto alloc_mem_err;
8062 
8063 	if (bnx2x_iov_alloc_mem(bp))
8064 		goto alloc_mem_err;
8065 
8066 	/* Slow path ring */
8067 	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
8068 
8069 	/* EQ */
8070 	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
8071 			BCM_PAGE_SIZE * NUM_EQ_PAGES);
8072 
8073 	return 0;
8074 
8075 alloc_mem_err:
8076 	bnx2x_free_mem(bp);
8077 	BNX2X_ERR("Can't allocate memory\n");
8078 	return -ENOMEM;
8079 }
8080 
8081 /*
8082  * Init service functions
8083  */
8084 
8085 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8086 		      struct bnx2x_vlan_mac_obj *obj, bool set,
8087 		      int mac_type, unsigned long *ramrod_flags)
8088 {
8089 	int rc;
8090 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8091 
8092 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8093 
8094 	/* Fill general parameters */
8095 	ramrod_param.vlan_mac_obj = obj;
8096 	ramrod_param.ramrod_flags = *ramrod_flags;
8097 
8098 	/* Fill a user request section if needed */
8099 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8100 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8101 
8102 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8103 
8104 		/* Set the command: ADD or DEL */
8105 		if (set)
8106 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8107 		else
8108 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8109 	}
8110 
8111 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8112 
8113 	if (rc == -EEXIST) {
8114 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8115 		/* do not treat adding same MAC as error */
8116 		rc = 0;
8117 	} else if (rc < 0)
8118 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8119 
8120 	return rc;
8121 }
8122 
8123 int bnx2x_del_all_macs(struct bnx2x *bp,
8124 		       struct bnx2x_vlan_mac_obj *mac_obj,
8125 		       int mac_type, bool wait_for_comp)
8126 {
8127 	int rc;
8128 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8129 
8130 	/* Wait for completion of requested */
8131 	if (wait_for_comp)
8132 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8133 
8134 	/* Set the mac type of addresses we want to clear */
8135 	__set_bit(mac_type, &vlan_mac_flags);
8136 
8137 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8138 	if (rc < 0)
8139 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8140 
8141 	return rc;
8142 }
8143 
8144 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8145 {
8146 	if (is_zero_ether_addr(bp->dev->dev_addr) &&
8147 	    (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
8148 		DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
8149 		   "Ignoring Zero MAC for STORAGE SD mode\n");
8150 		return 0;
8151 	}
8152 
8153 	if (IS_PF(bp)) {
8154 		unsigned long ramrod_flags = 0;
8155 
8156 		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8157 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8158 		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8159 					 &bp->sp_objs->mac_obj, set,
8160 					 BNX2X_ETH_MAC, &ramrod_flags);
8161 	} else { /* vf */
8162 		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8163 					     bp->fp->index, true);
8164 	}
8165 }
8166 
8167 int bnx2x_setup_leading(struct bnx2x *bp)
8168 {
8169 	if (IS_PF(bp))
8170 		return bnx2x_setup_queue(bp, &bp->fp[0], true);
8171 	else /* VF */
8172 		return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8173 }
8174 
8175 /**
8176  * bnx2x_set_int_mode - configure interrupt mode
8177  *
8178  * @bp:		driver handle
8179  *
8180  * In case of MSI-X it will also try to enable MSI-X.
8181  */
8182 int bnx2x_set_int_mode(struct bnx2x *bp)
8183 {
8184 	int rc = 0;
8185 
8186 	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8187 		BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8188 		return -EINVAL;
8189 	}
8190 
8191 	switch (int_mode) {
8192 	case BNX2X_INT_MODE_MSIX:
8193 		/* attempt to enable msix */
8194 		rc = bnx2x_enable_msix(bp);
8195 
8196 		/* msix attained */
8197 		if (!rc)
8198 			return 0;
8199 
8200 		/* vfs use only msix */
8201 		if (rc && IS_VF(bp))
8202 			return rc;
8203 
8204 		/* failed to enable multiple MSI-X */
8205 		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8206 			       bp->num_queues,
8207 			       1 + bp->num_cnic_queues);
8208 
8209 		/* falling through... */
8210 	case BNX2X_INT_MODE_MSI:
8211 		bnx2x_enable_msi(bp);
8212 
8213 		/* falling through... */
8214 	case BNX2X_INT_MODE_INTX:
8215 		bp->num_ethernet_queues = 1;
8216 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8217 		BNX2X_DEV_INFO("set number of queues to 1\n");
8218 		break;
8219 	default:
8220 		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8221 		return -EINVAL;
8222 	}
8223 	return 0;
8224 }
8225 
8226 /* must be called prior to any HW initializations */
8227 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8228 {
8229 	if (IS_SRIOV(bp))
8230 		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8231 	return L2_ILT_LINES(bp);
8232 }
8233 
8234 void bnx2x_ilt_set_info(struct bnx2x *bp)
8235 {
8236 	struct ilt_client_info *ilt_client;
8237 	struct bnx2x_ilt *ilt = BP_ILT(bp);
8238 	u16 line = 0;
8239 
8240 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8241 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8242 
8243 	/* CDU */
8244 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8245 	ilt_client->client_num = ILT_CLIENT_CDU;
8246 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8247 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8248 	ilt_client->start = line;
8249 	line += bnx2x_cid_ilt_lines(bp);
8250 
8251 	if (CNIC_SUPPORT(bp))
8252 		line += CNIC_ILT_LINES;
8253 	ilt_client->end = line - 1;
8254 
8255 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8256 	   ilt_client->start,
8257 	   ilt_client->end,
8258 	   ilt_client->page_size,
8259 	   ilt_client->flags,
8260 	   ilog2(ilt_client->page_size >> 12));
8261 
8262 	/* QM */
8263 	if (QM_INIT(bp->qm_cid_count)) {
8264 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8265 		ilt_client->client_num = ILT_CLIENT_QM;
8266 		ilt_client->page_size = QM_ILT_PAGE_SZ;
8267 		ilt_client->flags = 0;
8268 		ilt_client->start = line;
8269 
8270 		/* 4 bytes for each cid */
8271 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8272 							 QM_ILT_PAGE_SZ);
8273 
8274 		ilt_client->end = line - 1;
8275 
8276 		DP(NETIF_MSG_IFUP,
8277 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8278 		   ilt_client->start,
8279 		   ilt_client->end,
8280 		   ilt_client->page_size,
8281 		   ilt_client->flags,
8282 		   ilog2(ilt_client->page_size >> 12));
8283 	}
8284 
8285 	if (CNIC_SUPPORT(bp)) {
8286 		/* SRC */
8287 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8288 		ilt_client->client_num = ILT_CLIENT_SRC;
8289 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8290 		ilt_client->flags = 0;
8291 		ilt_client->start = line;
8292 		line += SRC_ILT_LINES;
8293 		ilt_client->end = line - 1;
8294 
8295 		DP(NETIF_MSG_IFUP,
8296 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8297 		   ilt_client->start,
8298 		   ilt_client->end,
8299 		   ilt_client->page_size,
8300 		   ilt_client->flags,
8301 		   ilog2(ilt_client->page_size >> 12));
8302 
8303 		/* TM */
8304 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8305 		ilt_client->client_num = ILT_CLIENT_TM;
8306 		ilt_client->page_size = TM_ILT_PAGE_SZ;
8307 		ilt_client->flags = 0;
8308 		ilt_client->start = line;
8309 		line += TM_ILT_LINES;
8310 		ilt_client->end = line - 1;
8311 
8312 		DP(NETIF_MSG_IFUP,
8313 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8314 		   ilt_client->start,
8315 		   ilt_client->end,
8316 		   ilt_client->page_size,
8317 		   ilt_client->flags,
8318 		   ilog2(ilt_client->page_size >> 12));
8319 	}
8320 
8321 	BUG_ON(line > ILT_MAX_LINES);
8322 }
8323 
8324 /**
8325  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8326  *
8327  * @bp:			driver handle
8328  * @fp:			pointer to fastpath
8329  * @init_params:	pointer to parameters structure
8330  *
8331  * parameters configured:
8332  *      - HC configuration
8333  *      - Queue's CDU context
8334  */
8335 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8336 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8337 {
8338 	u8 cos;
8339 	int cxt_index, cxt_offset;
8340 
8341 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8342 	if (!IS_FCOE_FP(fp)) {
8343 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8344 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8345 
8346 		/* If HC is supported, enable host coalescing in the transition
8347 		 * to INIT state.
8348 		 */
8349 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8350 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8351 
8352 		/* HC rate */
8353 		init_params->rx.hc_rate = bp->rx_ticks ?
8354 			(1000000 / bp->rx_ticks) : 0;
8355 		init_params->tx.hc_rate = bp->tx_ticks ?
8356 			(1000000 / bp->tx_ticks) : 0;
8357 
8358 		/* FW SB ID */
8359 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8360 			fp->fw_sb_id;
8361 
8362 		/*
8363 		 * CQ index among the SB indices: FCoE clients uses the default
8364 		 * SB, therefore it's different.
8365 		 */
8366 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8367 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8368 	}
8369 
8370 	/* set maximum number of COSs supported by this queue */
8371 	init_params->max_cos = fp->max_cos;
8372 
8373 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8374 	    fp->index, init_params->max_cos);
8375 
8376 	/* set the context pointers queue object */
8377 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8378 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8379 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8380 				ILT_PAGE_CIDS);
8381 		init_params->cxts[cos] =
8382 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8383 	}
8384 }
8385 
8386 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8387 			struct bnx2x_queue_state_params *q_params,
8388 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8389 			int tx_index, bool leading)
8390 {
8391 	memset(tx_only_params, 0, sizeof(*tx_only_params));
8392 
8393 	/* Set the command */
8394 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8395 
8396 	/* Set tx-only QUEUE flags: don't zero statistics */
8397 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8398 
8399 	/* choose the index of the cid to send the slow path on */
8400 	tx_only_params->cid_index = tx_index;
8401 
8402 	/* Set general TX_ONLY_SETUP parameters */
8403 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8404 
8405 	/* Set Tx TX_ONLY_SETUP parameters */
8406 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8407 
8408 	DP(NETIF_MSG_IFUP,
8409 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8410 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8411 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8412 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8413 
8414 	/* send the ramrod */
8415 	return bnx2x_queue_state_change(bp, q_params);
8416 }
8417 
8418 /**
8419  * bnx2x_setup_queue - setup queue
8420  *
8421  * @bp:		driver handle
8422  * @fp:		pointer to fastpath
8423  * @leading:	is leading
8424  *
8425  * This function performs 2 steps in a Queue state machine
8426  *      actually: 1) RESET->INIT 2) INIT->SETUP
8427  */
8428 
8429 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8430 		       bool leading)
8431 {
8432 	struct bnx2x_queue_state_params q_params = {NULL};
8433 	struct bnx2x_queue_setup_params *setup_params =
8434 						&q_params.params.setup;
8435 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8436 						&q_params.params.tx_only;
8437 	int rc;
8438 	u8 tx_index;
8439 
8440 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8441 
8442 	/* reset IGU state skip FCoE L2 queue */
8443 	if (!IS_FCOE_FP(fp))
8444 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8445 			     IGU_INT_ENABLE, 0);
8446 
8447 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8448 	/* We want to wait for completion in this context */
8449 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8450 
8451 	/* Prepare the INIT parameters */
8452 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8453 
8454 	/* Set the command */
8455 	q_params.cmd = BNX2X_Q_CMD_INIT;
8456 
8457 	/* Change the state to INIT */
8458 	rc = bnx2x_queue_state_change(bp, &q_params);
8459 	if (rc) {
8460 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8461 		return rc;
8462 	}
8463 
8464 	DP(NETIF_MSG_IFUP, "init complete\n");
8465 
8466 	/* Now move the Queue to the SETUP state... */
8467 	memset(setup_params, 0, sizeof(*setup_params));
8468 
8469 	/* Set QUEUE flags */
8470 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8471 
8472 	/* Set general SETUP parameters */
8473 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8474 				FIRST_TX_COS_INDEX);
8475 
8476 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8477 			    &setup_params->rxq_params);
8478 
8479 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8480 			   FIRST_TX_COS_INDEX);
8481 
8482 	/* Set the command */
8483 	q_params.cmd = BNX2X_Q_CMD_SETUP;
8484 
8485 	if (IS_FCOE_FP(fp))
8486 		bp->fcoe_init = true;
8487 
8488 	/* Change the state to SETUP */
8489 	rc = bnx2x_queue_state_change(bp, &q_params);
8490 	if (rc) {
8491 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8492 		return rc;
8493 	}
8494 
8495 	/* loop through the relevant tx-only indices */
8496 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8497 	      tx_index < fp->max_cos;
8498 	      tx_index++) {
8499 
8500 		/* prepare and send tx-only ramrod*/
8501 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8502 					  tx_only_params, tx_index, leading);
8503 		if (rc) {
8504 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8505 				  fp->index, tx_index);
8506 			return rc;
8507 		}
8508 	}
8509 
8510 	return rc;
8511 }
8512 
8513 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8514 {
8515 	struct bnx2x_fastpath *fp = &bp->fp[index];
8516 	struct bnx2x_fp_txdata *txdata;
8517 	struct bnx2x_queue_state_params q_params = {NULL};
8518 	int rc, tx_index;
8519 
8520 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8521 
8522 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8523 	/* We want to wait for completion in this context */
8524 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8525 
8526 	/* close tx-only connections */
8527 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8528 	     tx_index < fp->max_cos;
8529 	     tx_index++){
8530 
8531 		/* ascertain this is a normal queue*/
8532 		txdata = fp->txdata_ptr[tx_index];
8533 
8534 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8535 							txdata->txq_index);
8536 
8537 		/* send halt terminate on tx-only connection */
8538 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8539 		memset(&q_params.params.terminate, 0,
8540 		       sizeof(q_params.params.terminate));
8541 		q_params.params.terminate.cid_index = tx_index;
8542 
8543 		rc = bnx2x_queue_state_change(bp, &q_params);
8544 		if (rc)
8545 			return rc;
8546 
8547 		/* send halt terminate on tx-only connection */
8548 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8549 		memset(&q_params.params.cfc_del, 0,
8550 		       sizeof(q_params.params.cfc_del));
8551 		q_params.params.cfc_del.cid_index = tx_index;
8552 		rc = bnx2x_queue_state_change(bp, &q_params);
8553 		if (rc)
8554 			return rc;
8555 	}
8556 	/* Stop the primary connection: */
8557 	/* ...halt the connection */
8558 	q_params.cmd = BNX2X_Q_CMD_HALT;
8559 	rc = bnx2x_queue_state_change(bp, &q_params);
8560 	if (rc)
8561 		return rc;
8562 
8563 	/* ...terminate the connection */
8564 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8565 	memset(&q_params.params.terminate, 0,
8566 	       sizeof(q_params.params.terminate));
8567 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8568 	rc = bnx2x_queue_state_change(bp, &q_params);
8569 	if (rc)
8570 		return rc;
8571 	/* ...delete cfc entry */
8572 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8573 	memset(&q_params.params.cfc_del, 0,
8574 	       sizeof(q_params.params.cfc_del));
8575 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8576 	return bnx2x_queue_state_change(bp, &q_params);
8577 }
8578 
8579 static void bnx2x_reset_func(struct bnx2x *bp)
8580 {
8581 	int port = BP_PORT(bp);
8582 	int func = BP_FUNC(bp);
8583 	int i;
8584 
8585 	/* Disable the function in the FW */
8586 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8587 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8588 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8589 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8590 
8591 	/* FP SBs */
8592 	for_each_eth_queue(bp, i) {
8593 		struct bnx2x_fastpath *fp = &bp->fp[i];
8594 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8595 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8596 			   SB_DISABLED);
8597 	}
8598 
8599 	if (CNIC_LOADED(bp))
8600 		/* CNIC SB */
8601 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8602 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8603 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8604 
8605 	/* SP SB */
8606 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8607 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8608 		SB_DISABLED);
8609 
8610 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8611 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8612 		       0);
8613 
8614 	/* Configure IGU */
8615 	if (bp->common.int_block == INT_BLOCK_HC) {
8616 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8617 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8618 	} else {
8619 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8620 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8621 	}
8622 
8623 	if (CNIC_LOADED(bp)) {
8624 		/* Disable Timer scan */
8625 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8626 		/*
8627 		 * Wait for at least 10ms and up to 2 second for the timers
8628 		 * scan to complete
8629 		 */
8630 		for (i = 0; i < 200; i++) {
8631 			usleep_range(10000, 20000);
8632 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8633 				break;
8634 		}
8635 	}
8636 	/* Clear ILT */
8637 	bnx2x_clear_func_ilt(bp, func);
8638 
8639 	/* Timers workaround bug for E2: if this is vnic-3,
8640 	 * we need to set the entire ilt range for this timers.
8641 	 */
8642 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8643 		struct ilt_client_info ilt_cli;
8644 		/* use dummy TM client */
8645 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8646 		ilt_cli.start = 0;
8647 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8648 		ilt_cli.client_num = ILT_CLIENT_TM;
8649 
8650 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8651 	}
8652 
8653 	/* this assumes that reset_port() called before reset_func()*/
8654 	if (!CHIP_IS_E1x(bp))
8655 		bnx2x_pf_disable(bp);
8656 
8657 	bp->dmae_ready = 0;
8658 }
8659 
8660 static void bnx2x_reset_port(struct bnx2x *bp)
8661 {
8662 	int port = BP_PORT(bp);
8663 	u32 val;
8664 
8665 	/* Reset physical Link */
8666 	bnx2x__link_reset(bp);
8667 
8668 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8669 
8670 	/* Do not rcv packets to BRB */
8671 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8672 	/* Do not direct rcv packets that are not for MCP to the BRB */
8673 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8674 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8675 
8676 	/* Configure AEU */
8677 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8678 
8679 	msleep(100);
8680 	/* Check for BRB port occupancy */
8681 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8682 	if (val)
8683 		DP(NETIF_MSG_IFDOWN,
8684 		   "BRB1 is not empty  %d blocks are occupied\n", val);
8685 
8686 	/* TODO: Close Doorbell port? */
8687 }
8688 
8689 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8690 {
8691 	struct bnx2x_func_state_params func_params = {NULL};
8692 
8693 	/* Prepare parameters for function state transitions */
8694 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8695 
8696 	func_params.f_obj = &bp->func_obj;
8697 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
8698 
8699 	func_params.params.hw_init.load_phase = load_code;
8700 
8701 	return bnx2x_func_state_change(bp, &func_params);
8702 }
8703 
8704 static int bnx2x_func_stop(struct bnx2x *bp)
8705 {
8706 	struct bnx2x_func_state_params func_params = {NULL};
8707 	int rc;
8708 
8709 	/* Prepare parameters for function state transitions */
8710 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8711 	func_params.f_obj = &bp->func_obj;
8712 	func_params.cmd = BNX2X_F_CMD_STOP;
8713 
8714 	/*
8715 	 * Try to stop the function the 'good way'. If fails (in case
8716 	 * of a parity error during bnx2x_chip_cleanup()) and we are
8717 	 * not in a debug mode, perform a state transaction in order to
8718 	 * enable further HW_RESET transaction.
8719 	 */
8720 	rc = bnx2x_func_state_change(bp, &func_params);
8721 	if (rc) {
8722 #ifdef BNX2X_STOP_ON_ERROR
8723 		return rc;
8724 #else
8725 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8726 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8727 		return bnx2x_func_state_change(bp, &func_params);
8728 #endif
8729 	}
8730 
8731 	return 0;
8732 }
8733 
8734 /**
8735  * bnx2x_send_unload_req - request unload mode from the MCP.
8736  *
8737  * @bp:			driver handle
8738  * @unload_mode:	requested function's unload mode
8739  *
8740  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8741  */
8742 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8743 {
8744 	u32 reset_code = 0;
8745 	int port = BP_PORT(bp);
8746 
8747 	/* Select the UNLOAD request mode */
8748 	if (unload_mode == UNLOAD_NORMAL)
8749 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8750 
8751 	else if (bp->flags & NO_WOL_FLAG)
8752 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8753 
8754 	else if (bp->wol) {
8755 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8756 		u8 *mac_addr = bp->dev->dev_addr;
8757 		struct pci_dev *pdev = bp->pdev;
8758 		u32 val;
8759 		u16 pmc;
8760 
8761 		/* The mac address is written to entries 1-4 to
8762 		 * preserve entry 0 which is used by the PMF
8763 		 */
8764 		u8 entry = (BP_VN(bp) + 1)*8;
8765 
8766 		val = (mac_addr[0] << 8) | mac_addr[1];
8767 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8768 
8769 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8770 		      (mac_addr[4] << 8) | mac_addr[5];
8771 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8772 
8773 		/* Enable the PME and clear the status */
8774 		pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
8775 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8776 		pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
8777 
8778 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8779 
8780 	} else
8781 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8782 
8783 	/* Send the request to the MCP */
8784 	if (!BP_NOMCP(bp))
8785 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
8786 	else {
8787 		int path = BP_PATH(bp);
8788 
8789 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8790 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
8791 		   bnx2x_load_count[path][2]);
8792 		bnx2x_load_count[path][0]--;
8793 		bnx2x_load_count[path][1 + port]--;
8794 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8795 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
8796 		   bnx2x_load_count[path][2]);
8797 		if (bnx2x_load_count[path][0] == 0)
8798 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8799 		else if (bnx2x_load_count[path][1 + port] == 0)
8800 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8801 		else
8802 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8803 	}
8804 
8805 	return reset_code;
8806 }
8807 
8808 /**
8809  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8810  *
8811  * @bp:		driver handle
8812  * @keep_link:		true iff link should be kept up
8813  */
8814 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8815 {
8816 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8817 
8818 	/* Report UNLOAD_DONE to MCP */
8819 	if (!BP_NOMCP(bp))
8820 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8821 }
8822 
8823 static int bnx2x_func_wait_started(struct bnx2x *bp)
8824 {
8825 	int tout = 50;
8826 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8827 
8828 	if (!bp->port.pmf)
8829 		return 0;
8830 
8831 	/*
8832 	 * (assumption: No Attention from MCP at this stage)
8833 	 * PMF probably in the middle of TX disable/enable transaction
8834 	 * 1. Sync IRS for default SB
8835 	 * 2. Sync SP queue - this guarantees us that attention handling started
8836 	 * 3. Wait, that TX disable/enable transaction completes
8837 	 *
8838 	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
8839 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
8840 	 * received completion for the transaction the state is TX_STOPPED.
8841 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
8842 	 * transaction.
8843 	 */
8844 
8845 	/* make sure default SB ISR is done */
8846 	if (msix)
8847 		synchronize_irq(bp->msix_table[0].vector);
8848 	else
8849 		synchronize_irq(bp->pdev->irq);
8850 
8851 	flush_workqueue(bnx2x_wq);
8852 
8853 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8854 				BNX2X_F_STATE_STARTED && tout--)
8855 		msleep(20);
8856 
8857 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8858 						BNX2X_F_STATE_STARTED) {
8859 #ifdef BNX2X_STOP_ON_ERROR
8860 		BNX2X_ERR("Wrong function state\n");
8861 		return -EBUSY;
8862 #else
8863 		/*
8864 		 * Failed to complete the transaction in a "good way"
8865 		 * Force both transactions with CLR bit
8866 		 */
8867 		struct bnx2x_func_state_params func_params = {NULL};
8868 
8869 		DP(NETIF_MSG_IFDOWN,
8870 		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8871 
8872 		func_params.f_obj = &bp->func_obj;
8873 		__set_bit(RAMROD_DRV_CLR_ONLY,
8874 					&func_params.ramrod_flags);
8875 
8876 		/* STARTED-->TX_ST0PPED */
8877 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
8878 		bnx2x_func_state_change(bp, &func_params);
8879 
8880 		/* TX_ST0PPED-->STARTED */
8881 		func_params.cmd = BNX2X_F_CMD_TX_START;
8882 		return bnx2x_func_state_change(bp, &func_params);
8883 #endif
8884 	}
8885 
8886 	return 0;
8887 }
8888 
8889 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8890 {
8891 	int port = BP_PORT(bp);
8892 	int i, rc = 0;
8893 	u8 cos;
8894 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
8895 	u32 reset_code;
8896 
8897 	/* Wait until tx fastpath tasks complete */
8898 	for_each_tx_queue(bp, i) {
8899 		struct bnx2x_fastpath *fp = &bp->fp[i];
8900 
8901 		for_each_cos_in_tx_queue(fp, cos)
8902 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8903 #ifdef BNX2X_STOP_ON_ERROR
8904 		if (rc)
8905 			return;
8906 #endif
8907 	}
8908 
8909 	/* Give HW time to discard old tx messages */
8910 	usleep_range(1000, 2000);
8911 
8912 	/* Clean all ETH MACs */
8913 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8914 				false);
8915 	if (rc < 0)
8916 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8917 
8918 	/* Clean up UC list  */
8919 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8920 				true);
8921 	if (rc < 0)
8922 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8923 			  rc);
8924 
8925 	/* Disable LLH */
8926 	if (!CHIP_IS_E1(bp))
8927 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8928 
8929 	/* Set "drop all" (stop Rx).
8930 	 * We need to take a netif_addr_lock() here in order to prevent
8931 	 * a race between the completion code and this code.
8932 	 */
8933 	netif_addr_lock_bh(bp->dev);
8934 	/* Schedule the rx_mode command */
8935 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8936 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8937 	else
8938 		bnx2x_set_storm_rx_mode(bp);
8939 
8940 	/* Cleanup multicast configuration */
8941 	rparam.mcast_obj = &bp->mcast_obj;
8942 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8943 	if (rc < 0)
8944 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8945 
8946 	netif_addr_unlock_bh(bp->dev);
8947 
8948 	bnx2x_iov_chip_cleanup(bp);
8949 
8950 	/*
8951 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
8952 	 * this function should perform FUNC, PORT or COMMON HW
8953 	 * reset.
8954 	 */
8955 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
8956 
8957 	/*
8958 	 * (assumption: No Attention from MCP at this stage)
8959 	 * PMF probably in the middle of TX disable/enable transaction
8960 	 */
8961 	rc = bnx2x_func_wait_started(bp);
8962 	if (rc) {
8963 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
8964 #ifdef BNX2X_STOP_ON_ERROR
8965 		return;
8966 #endif
8967 	}
8968 
8969 	/* Close multi and leading connections
8970 	 * Completions for ramrods are collected in a synchronous way
8971 	 */
8972 	for_each_eth_queue(bp, i)
8973 		if (bnx2x_stop_queue(bp, i))
8974 #ifdef BNX2X_STOP_ON_ERROR
8975 			return;
8976 #else
8977 			goto unload_error;
8978 #endif
8979 
8980 	if (CNIC_LOADED(bp)) {
8981 		for_each_cnic_queue(bp, i)
8982 			if (bnx2x_stop_queue(bp, i))
8983 #ifdef BNX2X_STOP_ON_ERROR
8984 				return;
8985 #else
8986 				goto unload_error;
8987 #endif
8988 	}
8989 
8990 	/* If SP settings didn't get completed so far - something
8991 	 * very wrong has happen.
8992 	 */
8993 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8994 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8995 
8996 #ifndef BNX2X_STOP_ON_ERROR
8997 unload_error:
8998 #endif
8999 	rc = bnx2x_func_stop(bp);
9000 	if (rc) {
9001 		BNX2X_ERR("Function stop failed!\n");
9002 #ifdef BNX2X_STOP_ON_ERROR
9003 		return;
9004 #endif
9005 	}
9006 
9007 	/* Disable HW interrupts, NAPI */
9008 	bnx2x_netif_stop(bp, 1);
9009 	/* Delete all NAPI objects */
9010 	bnx2x_del_all_napi(bp);
9011 	if (CNIC_LOADED(bp))
9012 		bnx2x_del_all_napi_cnic(bp);
9013 
9014 	/* Release IRQs */
9015 	bnx2x_free_irq(bp);
9016 
9017 	/* Reset the chip */
9018 	rc = bnx2x_reset_hw(bp, reset_code);
9019 	if (rc)
9020 		BNX2X_ERR("HW_RESET failed\n");
9021 
9022 	/* Report UNLOAD_DONE to MCP */
9023 	bnx2x_send_unload_done(bp, keep_link);
9024 }
9025 
9026 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9027 {
9028 	u32 val;
9029 
9030 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9031 
9032 	if (CHIP_IS_E1(bp)) {
9033 		int port = BP_PORT(bp);
9034 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9035 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
9036 
9037 		val = REG_RD(bp, addr);
9038 		val &= ~(0x300);
9039 		REG_WR(bp, addr, val);
9040 	} else {
9041 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9042 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9043 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9044 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9045 	}
9046 }
9047 
9048 /* Close gates #2, #3 and #4: */
9049 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9050 {
9051 	u32 val;
9052 
9053 	/* Gates #2 and #4a are closed/opened for "not E1" only */
9054 	if (!CHIP_IS_E1(bp)) {
9055 		/* #4 */
9056 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9057 		/* #2 */
9058 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9059 	}
9060 
9061 	/* #3 */
9062 	if (CHIP_IS_E1x(bp)) {
9063 		/* Prevent interrupts from HC on both ports */
9064 		val = REG_RD(bp, HC_REG_CONFIG_1);
9065 		REG_WR(bp, HC_REG_CONFIG_1,
9066 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9067 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9068 
9069 		val = REG_RD(bp, HC_REG_CONFIG_0);
9070 		REG_WR(bp, HC_REG_CONFIG_0,
9071 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9072 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9073 	} else {
9074 		/* Prevent incoming interrupts in IGU */
9075 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9076 
9077 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9078 		       (!close) ?
9079 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9080 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9081 	}
9082 
9083 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9084 		close ? "closing" : "opening");
9085 	mmiowb();
9086 }
9087 
9088 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9089 
9090 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9091 {
9092 	/* Do some magic... */
9093 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9094 	*magic_val = val & SHARED_MF_CLP_MAGIC;
9095 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9096 }
9097 
9098 /**
9099  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9100  *
9101  * @bp:		driver handle
9102  * @magic_val:	old value of the `magic' bit.
9103  */
9104 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9105 {
9106 	/* Restore the `magic' bit value... */
9107 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9108 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
9109 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9110 }
9111 
9112 /**
9113  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9114  *
9115  * @bp:		driver handle
9116  * @magic_val:	old value of 'magic' bit.
9117  *
9118  * Takes care of CLP configurations.
9119  */
9120 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9121 {
9122 	u32 shmem;
9123 	u32 validity_offset;
9124 
9125 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9126 
9127 	/* Set `magic' bit in order to save MF config */
9128 	if (!CHIP_IS_E1(bp))
9129 		bnx2x_clp_reset_prep(bp, magic_val);
9130 
9131 	/* Get shmem offset */
9132 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9133 	validity_offset =
9134 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9135 
9136 	/* Clear validity map flags */
9137 	if (shmem > 0)
9138 		REG_WR(bp, shmem + validity_offset, 0);
9139 }
9140 
9141 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9142 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9143 
9144 /**
9145  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9146  *
9147  * @bp:	driver handle
9148  */
9149 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9150 {
9151 	/* special handling for emulation and FPGA,
9152 	   wait 10 times longer */
9153 	if (CHIP_REV_IS_SLOW(bp))
9154 		msleep(MCP_ONE_TIMEOUT*10);
9155 	else
9156 		msleep(MCP_ONE_TIMEOUT);
9157 }
9158 
9159 /*
9160  * initializes bp->common.shmem_base and waits for validity signature to appear
9161  */
9162 static int bnx2x_init_shmem(struct bnx2x *bp)
9163 {
9164 	int cnt = 0;
9165 	u32 val = 0;
9166 
9167 	do {
9168 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9169 		if (bp->common.shmem_base) {
9170 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9171 			if (val & SHR_MEM_VALIDITY_MB)
9172 				return 0;
9173 		}
9174 
9175 		bnx2x_mcp_wait_one(bp);
9176 
9177 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9178 
9179 	BNX2X_ERR("BAD MCP validity signature\n");
9180 
9181 	return -ENODEV;
9182 }
9183 
9184 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9185 {
9186 	int rc = bnx2x_init_shmem(bp);
9187 
9188 	/* Restore the `magic' bit value */
9189 	if (!CHIP_IS_E1(bp))
9190 		bnx2x_clp_reset_done(bp, magic_val);
9191 
9192 	return rc;
9193 }
9194 
9195 static void bnx2x_pxp_prep(struct bnx2x *bp)
9196 {
9197 	if (!CHIP_IS_E1(bp)) {
9198 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9199 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9200 		mmiowb();
9201 	}
9202 }
9203 
9204 /*
9205  * Reset the whole chip except for:
9206  *      - PCIE core
9207  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9208  *              one reset bit)
9209  *      - IGU
9210  *      - MISC (including AEU)
9211  *      - GRC
9212  *      - RBCN, RBCP
9213  */
9214 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9215 {
9216 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9217 	u32 global_bits2, stay_reset2;
9218 
9219 	/*
9220 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9221 	 * (per chip) blocks.
9222 	 */
9223 	global_bits2 =
9224 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9225 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9226 
9227 	/* Don't reset the following blocks.
9228 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9229 	 *            reset, as in 4 port device they might still be owned
9230 	 *            by the MCP (there is only one leader per path).
9231 	 */
9232 	not_reset_mask1 =
9233 		MISC_REGISTERS_RESET_REG_1_RST_HC |
9234 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9235 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9236 
9237 	not_reset_mask2 =
9238 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9239 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9240 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9241 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9242 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9243 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9244 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9245 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9246 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9247 		MISC_REGISTERS_RESET_REG_2_PGLC |
9248 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9249 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9250 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9251 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9252 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9253 		MISC_REGISTERS_RESET_REG_2_UMAC1;
9254 
9255 	/*
9256 	 * Keep the following blocks in reset:
9257 	 *  - all xxMACs are handled by the bnx2x_link code.
9258 	 */
9259 	stay_reset2 =
9260 		MISC_REGISTERS_RESET_REG_2_XMAC |
9261 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9262 
9263 	/* Full reset masks according to the chip */
9264 	reset_mask1 = 0xffffffff;
9265 
9266 	if (CHIP_IS_E1(bp))
9267 		reset_mask2 = 0xffff;
9268 	else if (CHIP_IS_E1H(bp))
9269 		reset_mask2 = 0x1ffff;
9270 	else if (CHIP_IS_E2(bp))
9271 		reset_mask2 = 0xfffff;
9272 	else /* CHIP_IS_E3 */
9273 		reset_mask2 = 0x3ffffff;
9274 
9275 	/* Don't reset global blocks unless we need to */
9276 	if (!global)
9277 		reset_mask2 &= ~global_bits2;
9278 
9279 	/*
9280 	 * In case of attention in the QM, we need to reset PXP
9281 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9282 	 * because otherwise QM reset would release 'close the gates' shortly
9283 	 * before resetting the PXP, then the PSWRQ would send a write
9284 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9285 	 * read the payload data from PSWWR, but PSWWR would not
9286 	 * respond. The write queue in PGLUE would stuck, dmae commands
9287 	 * would not return. Therefore it's important to reset the second
9288 	 * reset register (containing the
9289 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9290 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9291 	 * bit).
9292 	 */
9293 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9294 	       reset_mask2 & (~not_reset_mask2));
9295 
9296 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9297 	       reset_mask1 & (~not_reset_mask1));
9298 
9299 	barrier();
9300 	mmiowb();
9301 
9302 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9303 	       reset_mask2 & (~stay_reset2));
9304 
9305 	barrier();
9306 	mmiowb();
9307 
9308 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9309 	mmiowb();
9310 }
9311 
9312 /**
9313  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9314  * It should get cleared in no more than 1s.
9315  *
9316  * @bp:	driver handle
9317  *
9318  * It should get cleared in no more than 1s. Returns 0 if
9319  * pending writes bit gets cleared.
9320  */
9321 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9322 {
9323 	u32 cnt = 1000;
9324 	u32 pend_bits = 0;
9325 
9326 	do {
9327 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9328 
9329 		if (pend_bits == 0)
9330 			break;
9331 
9332 		usleep_range(1000, 2000);
9333 	} while (cnt-- > 0);
9334 
9335 	if (cnt <= 0) {
9336 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9337 			  pend_bits);
9338 		return -EBUSY;
9339 	}
9340 
9341 	return 0;
9342 }
9343 
9344 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9345 {
9346 	int cnt = 1000;
9347 	u32 val = 0;
9348 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9349 	u32 tags_63_32 = 0;
9350 
9351 	/* Empty the Tetris buffer, wait for 1s */
9352 	do {
9353 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9354 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9355 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9356 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9357 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9358 		if (CHIP_IS_E3(bp))
9359 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9360 
9361 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9362 		    ((port_is_idle_0 & 0x1) == 0x1) &&
9363 		    ((port_is_idle_1 & 0x1) == 0x1) &&
9364 		    (pgl_exp_rom2 == 0xffffffff) &&
9365 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9366 			break;
9367 		usleep_range(1000, 2000);
9368 	} while (cnt-- > 0);
9369 
9370 	if (cnt <= 0) {
9371 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9372 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9373 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9374 			  pgl_exp_rom2);
9375 		return -EAGAIN;
9376 	}
9377 
9378 	barrier();
9379 
9380 	/* Close gates #2, #3 and #4 */
9381 	bnx2x_set_234_gates(bp, true);
9382 
9383 	/* Poll for IGU VQs for 57712 and newer chips */
9384 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9385 		return -EAGAIN;
9386 
9387 	/* TBD: Indicate that "process kill" is in progress to MCP */
9388 
9389 	/* Clear "unprepared" bit */
9390 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9391 	barrier();
9392 
9393 	/* Make sure all is written to the chip before the reset */
9394 	mmiowb();
9395 
9396 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9397 	 * PSWHST, GRC and PSWRD Tetris buffer.
9398 	 */
9399 	usleep_range(1000, 2000);
9400 
9401 	/* Prepare to chip reset: */
9402 	/* MCP */
9403 	if (global)
9404 		bnx2x_reset_mcp_prep(bp, &val);
9405 
9406 	/* PXP */
9407 	bnx2x_pxp_prep(bp);
9408 	barrier();
9409 
9410 	/* reset the chip */
9411 	bnx2x_process_kill_chip_reset(bp, global);
9412 	barrier();
9413 
9414 	/* clear errors in PGB */
9415 	if (!CHIP_IS_E1x(bp))
9416 		REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9417 
9418 	/* Recover after reset: */
9419 	/* MCP */
9420 	if (global && bnx2x_reset_mcp_comp(bp, val))
9421 		return -EAGAIN;
9422 
9423 	/* TBD: Add resetting the NO_MCP mode DB here */
9424 
9425 	/* Open the gates #2, #3 and #4 */
9426 	bnx2x_set_234_gates(bp, false);
9427 
9428 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9429 	 * reset state, re-enable attentions. */
9430 
9431 	return 0;
9432 }
9433 
9434 static int bnx2x_leader_reset(struct bnx2x *bp)
9435 {
9436 	int rc = 0;
9437 	bool global = bnx2x_reset_is_global(bp);
9438 	u32 load_code;
9439 
9440 	/* if not going to reset MCP - load "fake" driver to reset HW while
9441 	 * driver is owner of the HW
9442 	 */
9443 	if (!global && !BP_NOMCP(bp)) {
9444 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9445 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9446 		if (!load_code) {
9447 			BNX2X_ERR("MCP response failure, aborting\n");
9448 			rc = -EAGAIN;
9449 			goto exit_leader_reset;
9450 		}
9451 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9452 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9453 			BNX2X_ERR("MCP unexpected resp, aborting\n");
9454 			rc = -EAGAIN;
9455 			goto exit_leader_reset2;
9456 		}
9457 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9458 		if (!load_code) {
9459 			BNX2X_ERR("MCP response failure, aborting\n");
9460 			rc = -EAGAIN;
9461 			goto exit_leader_reset2;
9462 		}
9463 	}
9464 
9465 	/* Try to recover after the failure */
9466 	if (bnx2x_process_kill(bp, global)) {
9467 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9468 			  BP_PATH(bp));
9469 		rc = -EAGAIN;
9470 		goto exit_leader_reset2;
9471 	}
9472 
9473 	/*
9474 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9475 	 * state.
9476 	 */
9477 	bnx2x_set_reset_done(bp);
9478 	if (global)
9479 		bnx2x_clear_reset_global(bp);
9480 
9481 exit_leader_reset2:
9482 	/* unload "fake driver" if it was loaded */
9483 	if (!global && !BP_NOMCP(bp)) {
9484 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9485 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9486 	}
9487 exit_leader_reset:
9488 	bp->is_leader = 0;
9489 	bnx2x_release_leader_lock(bp);
9490 	smp_mb();
9491 	return rc;
9492 }
9493 
9494 static void bnx2x_recovery_failed(struct bnx2x *bp)
9495 {
9496 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9497 
9498 	/* Disconnect this device */
9499 	netif_device_detach(bp->dev);
9500 
9501 	/*
9502 	 * Block ifup for all function on this engine until "process kill"
9503 	 * or power cycle.
9504 	 */
9505 	bnx2x_set_reset_in_progress(bp);
9506 
9507 	/* Shut down the power */
9508 	bnx2x_set_power_state(bp, PCI_D3hot);
9509 
9510 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9511 
9512 	smp_mb();
9513 }
9514 
9515 /*
9516  * Assumption: runs under rtnl lock. This together with the fact
9517  * that it's called only from bnx2x_sp_rtnl() ensure that it
9518  * will never be called when netif_running(bp->dev) is false.
9519  */
9520 static void bnx2x_parity_recover(struct bnx2x *bp)
9521 {
9522 	bool global = false;
9523 	u32 error_recovered, error_unrecovered;
9524 	bool is_parity;
9525 
9526 	DP(NETIF_MSG_HW, "Handling parity\n");
9527 	while (1) {
9528 		switch (bp->recovery_state) {
9529 		case BNX2X_RECOVERY_INIT:
9530 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9531 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9532 			WARN_ON(!is_parity);
9533 
9534 			/* Try to get a LEADER_LOCK HW lock */
9535 			if (bnx2x_trylock_leader_lock(bp)) {
9536 				bnx2x_set_reset_in_progress(bp);
9537 				/*
9538 				 * Check if there is a global attention and if
9539 				 * there was a global attention, set the global
9540 				 * reset bit.
9541 				 */
9542 
9543 				if (global)
9544 					bnx2x_set_reset_global(bp);
9545 
9546 				bp->is_leader = 1;
9547 			}
9548 
9549 			/* Stop the driver */
9550 			/* If interface has been removed - break */
9551 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9552 				return;
9553 
9554 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
9555 
9556 			/* Ensure "is_leader", MCP command sequence and
9557 			 * "recovery_state" update values are seen on other
9558 			 * CPUs.
9559 			 */
9560 			smp_mb();
9561 			break;
9562 
9563 		case BNX2X_RECOVERY_WAIT:
9564 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9565 			if (bp->is_leader) {
9566 				int other_engine = BP_PATH(bp) ? 0 : 1;
9567 				bool other_load_status =
9568 					bnx2x_get_load_status(bp, other_engine);
9569 				bool load_status =
9570 					bnx2x_get_load_status(bp, BP_PATH(bp));
9571 				global = bnx2x_reset_is_global(bp);
9572 
9573 				/*
9574 				 * In case of a parity in a global block, let
9575 				 * the first leader that performs a
9576 				 * leader_reset() reset the global blocks in
9577 				 * order to clear global attentions. Otherwise
9578 				 * the gates will remain closed for that
9579 				 * engine.
9580 				 */
9581 				if (load_status ||
9582 				    (global && other_load_status)) {
9583 					/* Wait until all other functions get
9584 					 * down.
9585 					 */
9586 					schedule_delayed_work(&bp->sp_rtnl_task,
9587 								HZ/10);
9588 					return;
9589 				} else {
9590 					/* If all other functions got down -
9591 					 * try to bring the chip back to
9592 					 * normal. In any case it's an exit
9593 					 * point for a leader.
9594 					 */
9595 					if (bnx2x_leader_reset(bp)) {
9596 						bnx2x_recovery_failed(bp);
9597 						return;
9598 					}
9599 
9600 					/* If we are here, means that the
9601 					 * leader has succeeded and doesn't
9602 					 * want to be a leader any more. Try
9603 					 * to continue as a none-leader.
9604 					 */
9605 					break;
9606 				}
9607 			} else { /* non-leader */
9608 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9609 					/* Try to get a LEADER_LOCK HW lock as
9610 					 * long as a former leader may have
9611 					 * been unloaded by the user or
9612 					 * released a leadership by another
9613 					 * reason.
9614 					 */
9615 					if (bnx2x_trylock_leader_lock(bp)) {
9616 						/* I'm a leader now! Restart a
9617 						 * switch case.
9618 						 */
9619 						bp->is_leader = 1;
9620 						break;
9621 					}
9622 
9623 					schedule_delayed_work(&bp->sp_rtnl_task,
9624 								HZ/10);
9625 					return;
9626 
9627 				} else {
9628 					/*
9629 					 * If there was a global attention, wait
9630 					 * for it to be cleared.
9631 					 */
9632 					if (bnx2x_reset_is_global(bp)) {
9633 						schedule_delayed_work(
9634 							&bp->sp_rtnl_task,
9635 							HZ/10);
9636 						return;
9637 					}
9638 
9639 					error_recovered =
9640 					  bp->eth_stats.recoverable_error;
9641 					error_unrecovered =
9642 					  bp->eth_stats.unrecoverable_error;
9643 					bp->recovery_state =
9644 						BNX2X_RECOVERY_NIC_LOADING;
9645 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9646 						error_unrecovered++;
9647 						netdev_err(bp->dev,
9648 							   "Recovery failed. Power cycle needed\n");
9649 						/* Disconnect this device */
9650 						netif_device_detach(bp->dev);
9651 						/* Shut down the power */
9652 						bnx2x_set_power_state(
9653 							bp, PCI_D3hot);
9654 						smp_mb();
9655 					} else {
9656 						bp->recovery_state =
9657 							BNX2X_RECOVERY_DONE;
9658 						error_recovered++;
9659 						smp_mb();
9660 					}
9661 					bp->eth_stats.recoverable_error =
9662 						error_recovered;
9663 					bp->eth_stats.unrecoverable_error =
9664 						error_unrecovered;
9665 
9666 					return;
9667 				}
9668 			}
9669 		default:
9670 			return;
9671 		}
9672 	}
9673 }
9674 
9675 static int bnx2x_close(struct net_device *dev);
9676 
9677 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9678  * scheduled on a general queue in order to prevent a dead lock.
9679  */
9680 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9681 {
9682 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9683 
9684 	rtnl_lock();
9685 
9686 	if (!netif_running(bp->dev)) {
9687 		rtnl_unlock();
9688 		return;
9689 	}
9690 
9691 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9692 #ifdef BNX2X_STOP_ON_ERROR
9693 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9694 			  "you will need to reboot when done\n");
9695 		goto sp_rtnl_not_reset;
9696 #endif
9697 		/*
9698 		 * Clear all pending SP commands as we are going to reset the
9699 		 * function anyway.
9700 		 */
9701 		bp->sp_rtnl_state = 0;
9702 		smp_mb();
9703 
9704 		bnx2x_parity_recover(bp);
9705 
9706 		rtnl_unlock();
9707 		return;
9708 	}
9709 
9710 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9711 #ifdef BNX2X_STOP_ON_ERROR
9712 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9713 			  "you will need to reboot when done\n");
9714 		goto sp_rtnl_not_reset;
9715 #endif
9716 
9717 		/*
9718 		 * Clear all pending SP commands as we are going to reset the
9719 		 * function anyway.
9720 		 */
9721 		bp->sp_rtnl_state = 0;
9722 		smp_mb();
9723 
9724 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9725 		bnx2x_nic_load(bp, LOAD_NORMAL);
9726 
9727 		rtnl_unlock();
9728 		return;
9729 	}
9730 #ifdef BNX2X_STOP_ON_ERROR
9731 sp_rtnl_not_reset:
9732 #endif
9733 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9734 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9735 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9736 		bnx2x_after_function_update(bp);
9737 	/*
9738 	 * in case of fan failure we need to reset id if the "stop on error"
9739 	 * debug flag is set, since we trying to prevent permanent overheating
9740 	 * damage
9741 	 */
9742 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9743 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9744 		netif_device_detach(bp->dev);
9745 		bnx2x_close(bp->dev);
9746 		rtnl_unlock();
9747 		return;
9748 	}
9749 
9750 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9751 		DP(BNX2X_MSG_SP,
9752 		   "sending set mcast vf pf channel message from rtnl sp-task\n");
9753 		bnx2x_vfpf_set_mcast(bp->dev);
9754 	}
9755 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
9756 			       &bp->sp_rtnl_state)){
9757 		if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
9758 			bnx2x_tx_disable(bp);
9759 			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
9760 		}
9761 	}
9762 
9763 	if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
9764 		DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
9765 		bnx2x_set_rx_mode_inner(bp);
9766 	}
9767 
9768 	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
9769 			       &bp->sp_rtnl_state))
9770 		bnx2x_pf_set_vfs_vlan(bp);
9771 
9772 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
9773 		bnx2x_dcbx_stop_hw_tx(bp);
9774 		bnx2x_dcbx_resume_hw_tx(bp);
9775 	}
9776 
9777 	/* work which needs rtnl lock not-taken (as it takes the lock itself and
9778 	 * can be called from other contexts as well)
9779 	 */
9780 	rtnl_unlock();
9781 
9782 	/* enable SR-IOV if applicable */
9783 	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
9784 					       &bp->sp_rtnl_state)) {
9785 		bnx2x_disable_sriov(bp);
9786 		bnx2x_enable_sriov(bp);
9787 	}
9788 }
9789 
9790 static void bnx2x_period_task(struct work_struct *work)
9791 {
9792 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9793 
9794 	if (!netif_running(bp->dev))
9795 		goto period_task_exit;
9796 
9797 	if (CHIP_REV_IS_SLOW(bp)) {
9798 		BNX2X_ERR("period task called on emulation, ignoring\n");
9799 		goto period_task_exit;
9800 	}
9801 
9802 	bnx2x_acquire_phy_lock(bp);
9803 	/*
9804 	 * The barrier is needed to ensure the ordering between the writing to
9805 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9806 	 * the reading here.
9807 	 */
9808 	smp_mb();
9809 	if (bp->port.pmf) {
9810 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
9811 
9812 		/* Re-queue task in 1 sec */
9813 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9814 	}
9815 
9816 	bnx2x_release_phy_lock(bp);
9817 period_task_exit:
9818 	return;
9819 }
9820 
9821 /*
9822  * Init service functions
9823  */
9824 
9825 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9826 {
9827 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9828 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9829 	return base + (BP_ABS_FUNC(bp)) * stride;
9830 }
9831 
9832 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9833 					struct bnx2x_mac_vals *vals)
9834 {
9835 	u32 val, base_addr, offset, mask, reset_reg;
9836 	bool mac_stopped = false;
9837 	u8 port = BP_PORT(bp);
9838 
9839 	/* reset addresses as they also mark which values were changed */
9840 	vals->bmac_addr = 0;
9841 	vals->umac_addr = 0;
9842 	vals->xmac_addr = 0;
9843 	vals->emac_addr = 0;
9844 
9845 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9846 
9847 	if (!CHIP_IS_E3(bp)) {
9848 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9849 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9850 		if ((mask & reset_reg) && val) {
9851 			u32 wb_data[2];
9852 			BNX2X_DEV_INFO("Disable bmac Rx\n");
9853 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9854 						: NIG_REG_INGRESS_BMAC0_MEM;
9855 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9856 						: BIGMAC_REGISTER_BMAC_CONTROL;
9857 
9858 			/*
9859 			 * use rd/wr since we cannot use dmae. This is safe
9860 			 * since MCP won't access the bus due to the request
9861 			 * to unload, and no function on the path can be
9862 			 * loaded at this time.
9863 			 */
9864 			wb_data[0] = REG_RD(bp, base_addr + offset);
9865 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9866 			vals->bmac_addr = base_addr + offset;
9867 			vals->bmac_val[0] = wb_data[0];
9868 			vals->bmac_val[1] = wb_data[1];
9869 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9870 			REG_WR(bp, vals->bmac_addr, wb_data[0]);
9871 			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
9872 		}
9873 		BNX2X_DEV_INFO("Disable emac Rx\n");
9874 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
9875 		vals->emac_val = REG_RD(bp, vals->emac_addr);
9876 		REG_WR(bp, vals->emac_addr, 0);
9877 		mac_stopped = true;
9878 	} else {
9879 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9880 			BNX2X_DEV_INFO("Disable xmac Rx\n");
9881 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9882 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9883 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9884 			       val & ~(1 << 1));
9885 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9886 			       val | (1 << 1));
9887 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9888 			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
9889 			REG_WR(bp, vals->xmac_addr, 0);
9890 			mac_stopped = true;
9891 		}
9892 		mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9893 		if (mask & reset_reg) {
9894 			BNX2X_DEV_INFO("Disable umac Rx\n");
9895 			base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9896 			vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9897 			vals->umac_val = REG_RD(bp, vals->umac_addr);
9898 			REG_WR(bp, vals->umac_addr, 0);
9899 			mac_stopped = true;
9900 		}
9901 	}
9902 
9903 	if (mac_stopped)
9904 		msleep(20);
9905 }
9906 
9907 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9908 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
9909 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
9910 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
9911 
9912 #define BCM_5710_UNDI_FW_MF_MAJOR	(0x07)
9913 #define BCM_5710_UNDI_FW_MF_MINOR	(0x08)
9914 #define BCM_5710_UNDI_FW_MF_VERS	(0x05)
9915 #define BNX2X_PREV_UNDI_MF_PORT(p)	(0x1a150c + ((p) << 4))
9916 #define BNX2X_PREV_UNDI_MF_FUNC(f)	(0x1a184c + ((f) << 4))
9917 static bool bnx2x_prev_unload_undi_fw_supports_mf(struct bnx2x *bp)
9918 {
9919 	u8 major, minor, version;
9920 	u32 fw;
9921 
9922 	/* Must check that FW is loaded */
9923 	if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
9924 	     MISC_REGISTERS_RESET_REG_1_RST_XSEM)) {
9925 		BNX2X_DEV_INFO("XSEM is reset - UNDI MF FW is not loaded\n");
9926 		return false;
9927 	}
9928 
9929 	/* Read Currently loaded FW version */
9930 	fw = REG_RD(bp, XSEM_REG_PRAM);
9931 	major = fw & 0xff;
9932 	minor = (fw >> 0x8) & 0xff;
9933 	version = (fw >> 0x10) & 0xff;
9934 	BNX2X_DEV_INFO("Loaded FW: 0x%08x: Major 0x%02x Minor 0x%02x Version 0x%02x\n",
9935 		       fw, major, minor, version);
9936 
9937 	if (major > BCM_5710_UNDI_FW_MF_MAJOR)
9938 		return true;
9939 
9940 	if ((major == BCM_5710_UNDI_FW_MF_MAJOR) &&
9941 	    (minor > BCM_5710_UNDI_FW_MF_MINOR))
9942 		return true;
9943 
9944 	if ((major == BCM_5710_UNDI_FW_MF_MAJOR) &&
9945 	    (minor == BCM_5710_UNDI_FW_MF_MINOR) &&
9946 	    (version >= BCM_5710_UNDI_FW_MF_VERS))
9947 		return true;
9948 
9949 	return false;
9950 }
9951 
9952 static void bnx2x_prev_unload_undi_mf(struct bnx2x *bp)
9953 {
9954 	int i;
9955 
9956 	/* Due to legacy (FW) code, the first function on each engine has a
9957 	 * different offset macro from the rest of the functions.
9958 	 * Setting this for all 8 functions is harmless regardless of whether
9959 	 * this is actually a multi-function device.
9960 	 */
9961 	for (i = 0; i < 2; i++)
9962 		REG_WR(bp, BNX2X_PREV_UNDI_MF_PORT(i), 1);
9963 
9964 	for (i = 2; i < 8; i++)
9965 		REG_WR(bp, BNX2X_PREV_UNDI_MF_FUNC(i - 2), 1);
9966 
9967 	BNX2X_DEV_INFO("UNDI FW (MF) set to discard\n");
9968 }
9969 
9970 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
9971 {
9972 	u16 rcq, bd;
9973 	u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9974 
9975 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9976 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9977 
9978 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9979 	REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9980 
9981 	BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9982 		       port, bd, rcq);
9983 }
9984 
9985 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
9986 {
9987 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9988 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9989 	if (!rc) {
9990 		BNX2X_ERR("MCP response failure, aborting\n");
9991 		return -EBUSY;
9992 	}
9993 
9994 	return 0;
9995 }
9996 
9997 static struct bnx2x_prev_path_list *
9998 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
9999 {
10000 	struct bnx2x_prev_path_list *tmp_list;
10001 
10002 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10003 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10004 		    bp->pdev->bus->number == tmp_list->bus &&
10005 		    BP_PATH(bp) == tmp_list->path)
10006 			return tmp_list;
10007 
10008 	return NULL;
10009 }
10010 
10011 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10012 {
10013 	struct bnx2x_prev_path_list *tmp_list;
10014 	int rc;
10015 
10016 	rc = down_interruptible(&bnx2x_prev_sem);
10017 	if (rc) {
10018 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10019 		return rc;
10020 	}
10021 
10022 	tmp_list = bnx2x_prev_path_get_entry(bp);
10023 	if (tmp_list) {
10024 		tmp_list->aer = 1;
10025 		rc = 0;
10026 	} else {
10027 		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10028 			  BP_PATH(bp));
10029 	}
10030 
10031 	up(&bnx2x_prev_sem);
10032 
10033 	return rc;
10034 }
10035 
10036 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10037 {
10038 	struct bnx2x_prev_path_list *tmp_list;
10039 	bool rc = false;
10040 
10041 	if (down_trylock(&bnx2x_prev_sem))
10042 		return false;
10043 
10044 	tmp_list = bnx2x_prev_path_get_entry(bp);
10045 	if (tmp_list) {
10046 		if (tmp_list->aer) {
10047 			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10048 			   BP_PATH(bp));
10049 		} else {
10050 			rc = true;
10051 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10052 				       BP_PATH(bp));
10053 		}
10054 	}
10055 
10056 	up(&bnx2x_prev_sem);
10057 
10058 	return rc;
10059 }
10060 
10061 bool bnx2x_port_after_undi(struct bnx2x *bp)
10062 {
10063 	struct bnx2x_prev_path_list *entry;
10064 	bool val;
10065 
10066 	down(&bnx2x_prev_sem);
10067 
10068 	entry = bnx2x_prev_path_get_entry(bp);
10069 	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10070 
10071 	up(&bnx2x_prev_sem);
10072 
10073 	return val;
10074 }
10075 
10076 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10077 {
10078 	struct bnx2x_prev_path_list *tmp_list;
10079 	int rc;
10080 
10081 	rc = down_interruptible(&bnx2x_prev_sem);
10082 	if (rc) {
10083 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10084 		return rc;
10085 	}
10086 
10087 	/* Check whether the entry for this path already exists */
10088 	tmp_list = bnx2x_prev_path_get_entry(bp);
10089 	if (tmp_list) {
10090 		if (!tmp_list->aer) {
10091 			BNX2X_ERR("Re-Marking the path.\n");
10092 		} else {
10093 			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10094 			   BP_PATH(bp));
10095 			tmp_list->aer = 0;
10096 		}
10097 		up(&bnx2x_prev_sem);
10098 		return 0;
10099 	}
10100 	up(&bnx2x_prev_sem);
10101 
10102 	/* Create an entry for this path and add it */
10103 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10104 	if (!tmp_list) {
10105 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10106 		return -ENOMEM;
10107 	}
10108 
10109 	tmp_list->bus = bp->pdev->bus->number;
10110 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10111 	tmp_list->path = BP_PATH(bp);
10112 	tmp_list->aer = 0;
10113 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10114 
10115 	rc = down_interruptible(&bnx2x_prev_sem);
10116 	if (rc) {
10117 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10118 		kfree(tmp_list);
10119 	} else {
10120 		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10121 		   BP_PATH(bp));
10122 		list_add(&tmp_list->list, &bnx2x_prev_list);
10123 		up(&bnx2x_prev_sem);
10124 	}
10125 
10126 	return rc;
10127 }
10128 
10129 static int bnx2x_do_flr(struct bnx2x *bp)
10130 {
10131 	struct pci_dev *dev = bp->pdev;
10132 
10133 	if (CHIP_IS_E1x(bp)) {
10134 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10135 		return -EINVAL;
10136 	}
10137 
10138 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10139 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10140 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10141 			  bp->common.bc_ver);
10142 		return -EINVAL;
10143 	}
10144 
10145 	if (!pci_wait_for_pending_transaction(dev))
10146 		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10147 
10148 	BNX2X_DEV_INFO("Initiating FLR\n");
10149 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10150 
10151 	return 0;
10152 }
10153 
10154 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10155 {
10156 	int rc;
10157 
10158 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
10159 
10160 	/* Test if previous unload process was already finished for this path */
10161 	if (bnx2x_prev_is_path_marked(bp))
10162 		return bnx2x_prev_mcp_done(bp);
10163 
10164 	BNX2X_DEV_INFO("Path is unmarked\n");
10165 
10166 	/* If function has FLR capabilities, and existing FW version matches
10167 	 * the one required, then FLR will be sufficient to clean any residue
10168 	 * left by previous driver
10169 	 */
10170 	rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10171 
10172 	if (!rc) {
10173 		/* fw version is good */
10174 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10175 		rc = bnx2x_do_flr(bp);
10176 	}
10177 
10178 	if (!rc) {
10179 		/* FLR was performed */
10180 		BNX2X_DEV_INFO("FLR successful\n");
10181 		return 0;
10182 	}
10183 
10184 	BNX2X_DEV_INFO("Could not FLR\n");
10185 
10186 	/* Close the MCP request, return failure*/
10187 	rc = bnx2x_prev_mcp_done(bp);
10188 	if (!rc)
10189 		rc = BNX2X_PREV_WAIT_NEEDED;
10190 
10191 	return rc;
10192 }
10193 
10194 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10195 {
10196 	u32 reset_reg, tmp_reg = 0, rc;
10197 	bool prev_undi = false;
10198 	struct bnx2x_mac_vals mac_vals;
10199 
10200 	/* It is possible a previous function received 'common' answer,
10201 	 * but hasn't loaded yet, therefore creating a scenario of
10202 	 * multiple functions receiving 'common' on the same path.
10203 	 */
10204 	BNX2X_DEV_INFO("Common unload Flow\n");
10205 
10206 	memset(&mac_vals, 0, sizeof(mac_vals));
10207 
10208 	if (bnx2x_prev_is_path_marked(bp))
10209 		return bnx2x_prev_mcp_done(bp);
10210 
10211 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10212 
10213 	/* Reset should be performed after BRB is emptied */
10214 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10215 		u32 timer_count = 1000;
10216 
10217 		/* Close the MAC Rx to prevent BRB from filling up */
10218 		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10219 
10220 		/* close LLH filters towards the BRB */
10221 		bnx2x_set_rx_filter(&bp->link_params, 0);
10222 
10223 		/* Check if the UNDI driver was previously loaded
10224 		 * UNDI driver initializes CID offset for normal bell to 0x7
10225 		 */
10226 		if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
10227 			tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
10228 			if (tmp_reg == 0x7) {
10229 				BNX2X_DEV_INFO("UNDI previously loaded\n");
10230 				prev_undi = true;
10231 				/* clear the UNDI indication */
10232 				REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10233 				/* clear possible idle check errors */
10234 				REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10235 			}
10236 		}
10237 		if (!CHIP_IS_E1x(bp))
10238 			/* block FW from writing to host */
10239 			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10240 
10241 		/* wait until BRB is empty */
10242 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10243 		while (timer_count) {
10244 			u32 prev_brb = tmp_reg;
10245 
10246 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10247 			if (!tmp_reg)
10248 				break;
10249 
10250 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10251 
10252 			/* reset timer as long as BRB actually gets emptied */
10253 			if (prev_brb > tmp_reg)
10254 				timer_count = 1000;
10255 			else
10256 				timer_count--;
10257 
10258 			/* New UNDI FW supports MF and contains better
10259 			 * cleaning methods - might be redundant but harmless.
10260 			 */
10261 			if (bnx2x_prev_unload_undi_fw_supports_mf(bp)) {
10262 				bnx2x_prev_unload_undi_mf(bp);
10263 			} else if (prev_undi) {
10264 				/* If UNDI resides in memory,
10265 				 * manually increment it
10266 				 */
10267 				bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
10268 			}
10269 			udelay(10);
10270 		}
10271 
10272 		if (!timer_count)
10273 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10274 	}
10275 
10276 	/* No packets are in the pipeline, path is ready for reset */
10277 	bnx2x_reset_common(bp);
10278 
10279 	if (mac_vals.xmac_addr)
10280 		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10281 	if (mac_vals.umac_addr)
10282 		REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10283 	if (mac_vals.emac_addr)
10284 		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10285 	if (mac_vals.bmac_addr) {
10286 		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10287 		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10288 	}
10289 
10290 	rc = bnx2x_prev_mark_path(bp, prev_undi);
10291 	if (rc) {
10292 		bnx2x_prev_mcp_done(bp);
10293 		return rc;
10294 	}
10295 
10296 	return bnx2x_prev_mcp_done(bp);
10297 }
10298 
10299 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
10300  * and boot began, or when kdump kernel was loaded. Either case would invalidate
10301  * the addresses of the transaction, resulting in was-error bit set in the pci
10302  * causing all hw-to-host pcie transactions to timeout. If this happened we want
10303  * to clear the interrupt which detected this from the pglueb and the was done
10304  * bit
10305  */
10306 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10307 {
10308 	if (!CHIP_IS_E1x(bp)) {
10309 		u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10310 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10311 			DP(BNX2X_MSG_SP,
10312 			   "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10313 			REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10314 			       1 << BP_FUNC(bp));
10315 		}
10316 	}
10317 }
10318 
10319 static int bnx2x_prev_unload(struct bnx2x *bp)
10320 {
10321 	int time_counter = 10;
10322 	u32 rc, fw, hw_lock_reg, hw_lock_val;
10323 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10324 
10325 	/* clear hw from errors which may have resulted from an interrupted
10326 	 * dmae transaction.
10327 	 */
10328 	bnx2x_prev_interrupted_dmae(bp);
10329 
10330 	/* Release previously held locks */
10331 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10332 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10333 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10334 
10335 	hw_lock_val = REG_RD(bp, hw_lock_reg);
10336 	if (hw_lock_val) {
10337 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10338 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10339 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10340 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10341 		}
10342 
10343 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10344 		REG_WR(bp, hw_lock_reg, 0xffffffff);
10345 	} else
10346 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10347 
10348 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10349 		BNX2X_DEV_INFO("Release previously held alr\n");
10350 		bnx2x_release_alr(bp);
10351 	}
10352 
10353 	do {
10354 		int aer = 0;
10355 		/* Lock MCP using an unload request */
10356 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10357 		if (!fw) {
10358 			BNX2X_ERR("MCP response failure, aborting\n");
10359 			rc = -EBUSY;
10360 			break;
10361 		}
10362 
10363 		rc = down_interruptible(&bnx2x_prev_sem);
10364 		if (rc) {
10365 			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10366 				  rc);
10367 		} else {
10368 			/* If Path is marked by EEH, ignore unload status */
10369 			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10370 				 bnx2x_prev_path_get_entry(bp)->aer);
10371 			up(&bnx2x_prev_sem);
10372 		}
10373 
10374 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10375 			rc = bnx2x_prev_unload_common(bp);
10376 			break;
10377 		}
10378 
10379 		/* non-common reply from MCP might require looping */
10380 		rc = bnx2x_prev_unload_uncommon(bp);
10381 		if (rc != BNX2X_PREV_WAIT_NEEDED)
10382 			break;
10383 
10384 		msleep(20);
10385 	} while (--time_counter);
10386 
10387 	if (!time_counter || rc) {
10388 		BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10389 		rc = -EPROBE_DEFER;
10390 	}
10391 
10392 	/* Mark function if its port was used to boot from SAN */
10393 	if (bnx2x_port_after_undi(bp))
10394 		bp->link_params.feature_config_flags |=
10395 			FEATURE_CONFIG_BOOT_FROM_SAN;
10396 
10397 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10398 
10399 	return rc;
10400 }
10401 
10402 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10403 {
10404 	u32 val, val2, val3, val4, id, boot_mode;
10405 	u16 pmc;
10406 
10407 	/* Get the chip revision id and number. */
10408 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10409 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10410 	id = ((val & 0xffff) << 16);
10411 	val = REG_RD(bp, MISC_REG_CHIP_REV);
10412 	id |= ((val & 0xf) << 12);
10413 
10414 	/* Metal is read from PCI regs, but we can't access >=0x400 from
10415 	 * the configuration space (so we need to reg_rd)
10416 	 */
10417 	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10418 	id |= (((val >> 24) & 0xf) << 4);
10419 	val = REG_RD(bp, MISC_REG_BOND_ID);
10420 	id |= (val & 0xf);
10421 	bp->common.chip_id = id;
10422 
10423 	/* force 57811 according to MISC register */
10424 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10425 		if (CHIP_IS_57810(bp))
10426 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10427 				(bp->common.chip_id & 0x0000FFFF);
10428 		else if (CHIP_IS_57810_MF(bp))
10429 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10430 				(bp->common.chip_id & 0x0000FFFF);
10431 		bp->common.chip_id |= 0x1;
10432 	}
10433 
10434 	/* Set doorbell size */
10435 	bp->db_size = (1 << BNX2X_DB_SHIFT);
10436 
10437 	if (!CHIP_IS_E1x(bp)) {
10438 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10439 		if ((val & 1) == 0)
10440 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10441 		else
10442 			val = (val >> 1) & 1;
10443 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10444 						       "2_PORT_MODE");
10445 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10446 						 CHIP_2_PORT_MODE;
10447 
10448 		if (CHIP_MODE_IS_4_PORT(bp))
10449 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10450 		else
10451 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10452 	} else {
10453 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10454 		bp->pfid = bp->pf_num;			/* 0..7 */
10455 	}
10456 
10457 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10458 
10459 	bp->link_params.chip_id = bp->common.chip_id;
10460 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10461 
10462 	val = (REG_RD(bp, 0x2874) & 0x55);
10463 	if ((bp->common.chip_id & 0x1) ||
10464 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10465 		bp->flags |= ONE_PORT_FLAG;
10466 		BNX2X_DEV_INFO("single port device\n");
10467 	}
10468 
10469 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10470 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10471 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10472 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10473 		       bp->common.flash_size, bp->common.flash_size);
10474 
10475 	bnx2x_init_shmem(bp);
10476 
10477 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10478 					MISC_REG_GENERIC_CR_1 :
10479 					MISC_REG_GENERIC_CR_0));
10480 
10481 	bp->link_params.shmem_base = bp->common.shmem_base;
10482 	bp->link_params.shmem2_base = bp->common.shmem2_base;
10483 	if (SHMEM2_RD(bp, size) >
10484 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10485 		bp->link_params.lfa_base =
10486 		REG_RD(bp, bp->common.shmem2_base +
10487 		       (u32)offsetof(struct shmem2_region,
10488 				     lfa_host_addr[BP_PORT(bp)]));
10489 	else
10490 		bp->link_params.lfa_base = 0;
10491 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10492 		       bp->common.shmem_base, bp->common.shmem2_base);
10493 
10494 	if (!bp->common.shmem_base) {
10495 		BNX2X_DEV_INFO("MCP not active\n");
10496 		bp->flags |= NO_MCP_FLAG;
10497 		return;
10498 	}
10499 
10500 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10501 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10502 
10503 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
10504 					SHARED_HW_CFG_LED_MODE_MASK) >>
10505 				       SHARED_HW_CFG_LED_MODE_SHIFT);
10506 
10507 	bp->link_params.feature_config_flags = 0;
10508 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10509 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10510 		bp->link_params.feature_config_flags |=
10511 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10512 	else
10513 		bp->link_params.feature_config_flags &=
10514 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10515 
10516 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10517 	bp->common.bc_ver = val;
10518 	BNX2X_DEV_INFO("bc_ver %X\n", val);
10519 	if (val < BNX2X_BC_VER) {
10520 		/* for now only warn
10521 		 * later we might need to enforce this */
10522 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10523 			  BNX2X_BC_VER, val);
10524 	}
10525 	bp->link_params.feature_config_flags |=
10526 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10527 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10528 
10529 	bp->link_params.feature_config_flags |=
10530 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10531 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10532 	bp->link_params.feature_config_flags |=
10533 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10534 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10535 	bp->link_params.feature_config_flags |=
10536 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10537 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10538 
10539 	bp->link_params.feature_config_flags |=
10540 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10541 		FEATURE_CONFIG_MT_SUPPORT : 0;
10542 
10543 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10544 			BC_SUPPORTS_PFC_STATS : 0;
10545 
10546 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10547 			BC_SUPPORTS_FCOE_FEATURES : 0;
10548 
10549 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10550 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10551 
10552 	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10553 			BC_SUPPORTS_RMMOD_CMD : 0;
10554 
10555 	boot_mode = SHMEM_RD(bp,
10556 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10557 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10558 	switch (boot_mode) {
10559 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10560 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10561 		break;
10562 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10563 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10564 		break;
10565 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10566 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10567 		break;
10568 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10569 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10570 		break;
10571 	}
10572 
10573 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
10574 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10575 
10576 	BNX2X_DEV_INFO("%sWoL capable\n",
10577 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
10578 
10579 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10580 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10581 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10582 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10583 
10584 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10585 		 val, val2, val3, val4);
10586 }
10587 
10588 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10589 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10590 
10591 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10592 {
10593 	int pfid = BP_FUNC(bp);
10594 	int igu_sb_id;
10595 	u32 val;
10596 	u8 fid, igu_sb_cnt = 0;
10597 
10598 	bp->igu_base_sb = 0xff;
10599 	if (CHIP_INT_MODE_IS_BC(bp)) {
10600 		int vn = BP_VN(bp);
10601 		igu_sb_cnt = bp->igu_sb_cnt;
10602 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10603 			FP_SB_MAX_E1x;
10604 
10605 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10606 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10607 
10608 		return 0;
10609 	}
10610 
10611 	/* IGU in normal mode - read CAM */
10612 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10613 	     igu_sb_id++) {
10614 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10615 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10616 			continue;
10617 		fid = IGU_FID(val);
10618 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
10619 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10620 				continue;
10621 			if (IGU_VEC(val) == 0)
10622 				/* default status block */
10623 				bp->igu_dsb_id = igu_sb_id;
10624 			else {
10625 				if (bp->igu_base_sb == 0xff)
10626 					bp->igu_base_sb = igu_sb_id;
10627 				igu_sb_cnt++;
10628 			}
10629 		}
10630 	}
10631 
10632 #ifdef CONFIG_PCI_MSI
10633 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
10634 	 * optional that number of CAM entries will not be equal to the value
10635 	 * advertised in PCI.
10636 	 * Driver should use the minimal value of both as the actual status
10637 	 * block count
10638 	 */
10639 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10640 #endif
10641 
10642 	if (igu_sb_cnt == 0) {
10643 		BNX2X_ERR("CAM configuration error\n");
10644 		return -EINVAL;
10645 	}
10646 
10647 	return 0;
10648 }
10649 
10650 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10651 {
10652 	int cfg_size = 0, idx, port = BP_PORT(bp);
10653 
10654 	/* Aggregation of supported attributes of all external phys */
10655 	bp->port.supported[0] = 0;
10656 	bp->port.supported[1] = 0;
10657 	switch (bp->link_params.num_phys) {
10658 	case 1:
10659 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10660 		cfg_size = 1;
10661 		break;
10662 	case 2:
10663 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10664 		cfg_size = 1;
10665 		break;
10666 	case 3:
10667 		if (bp->link_params.multi_phy_config &
10668 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10669 			bp->port.supported[1] =
10670 				bp->link_params.phy[EXT_PHY1].supported;
10671 			bp->port.supported[0] =
10672 				bp->link_params.phy[EXT_PHY2].supported;
10673 		} else {
10674 			bp->port.supported[0] =
10675 				bp->link_params.phy[EXT_PHY1].supported;
10676 			bp->port.supported[1] =
10677 				bp->link_params.phy[EXT_PHY2].supported;
10678 		}
10679 		cfg_size = 2;
10680 		break;
10681 	}
10682 
10683 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
10684 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10685 			   SHMEM_RD(bp,
10686 			   dev_info.port_hw_config[port].external_phy_config),
10687 			   SHMEM_RD(bp,
10688 			   dev_info.port_hw_config[port].external_phy_config2));
10689 			return;
10690 	}
10691 
10692 	if (CHIP_IS_E3(bp))
10693 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10694 	else {
10695 		switch (switch_cfg) {
10696 		case SWITCH_CFG_1G:
10697 			bp->port.phy_addr = REG_RD(
10698 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10699 			break;
10700 		case SWITCH_CFG_10G:
10701 			bp->port.phy_addr = REG_RD(
10702 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10703 			break;
10704 		default:
10705 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10706 				  bp->port.link_config[0]);
10707 			return;
10708 		}
10709 	}
10710 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10711 	/* mask what we support according to speed_cap_mask per configuration */
10712 	for (idx = 0; idx < cfg_size; idx++) {
10713 		if (!(bp->link_params.speed_cap_mask[idx] &
10714 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10715 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10716 
10717 		if (!(bp->link_params.speed_cap_mask[idx] &
10718 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10719 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10720 
10721 		if (!(bp->link_params.speed_cap_mask[idx] &
10722 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10723 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10724 
10725 		if (!(bp->link_params.speed_cap_mask[idx] &
10726 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10727 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10728 
10729 		if (!(bp->link_params.speed_cap_mask[idx] &
10730 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10731 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10732 						     SUPPORTED_1000baseT_Full);
10733 
10734 		if (!(bp->link_params.speed_cap_mask[idx] &
10735 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10736 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10737 
10738 		if (!(bp->link_params.speed_cap_mask[idx] &
10739 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10740 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10741 
10742 		if (!(bp->link_params.speed_cap_mask[idx] &
10743 					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
10744 			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
10745 	}
10746 
10747 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10748 		       bp->port.supported[1]);
10749 }
10750 
10751 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10752 {
10753 	u32 link_config, idx, cfg_size = 0;
10754 	bp->port.advertising[0] = 0;
10755 	bp->port.advertising[1] = 0;
10756 	switch (bp->link_params.num_phys) {
10757 	case 1:
10758 	case 2:
10759 		cfg_size = 1;
10760 		break;
10761 	case 3:
10762 		cfg_size = 2;
10763 		break;
10764 	}
10765 	for (idx = 0; idx < cfg_size; idx++) {
10766 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10767 		link_config = bp->port.link_config[idx];
10768 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10769 		case PORT_FEATURE_LINK_SPEED_AUTO:
10770 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10771 				bp->link_params.req_line_speed[idx] =
10772 					SPEED_AUTO_NEG;
10773 				bp->port.advertising[idx] |=
10774 					bp->port.supported[idx];
10775 				if (bp->link_params.phy[EXT_PHY1].type ==
10776 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10777 					bp->port.advertising[idx] |=
10778 					(SUPPORTED_100baseT_Half |
10779 					 SUPPORTED_100baseT_Full);
10780 			} else {
10781 				/* force 10G, no AN */
10782 				bp->link_params.req_line_speed[idx] =
10783 					SPEED_10000;
10784 				bp->port.advertising[idx] |=
10785 					(ADVERTISED_10000baseT_Full |
10786 					 ADVERTISED_FIBRE);
10787 				continue;
10788 			}
10789 			break;
10790 
10791 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
10792 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10793 				bp->link_params.req_line_speed[idx] =
10794 					SPEED_10;
10795 				bp->port.advertising[idx] |=
10796 					(ADVERTISED_10baseT_Full |
10797 					 ADVERTISED_TP);
10798 			} else {
10799 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10800 					    link_config,
10801 				    bp->link_params.speed_cap_mask[idx]);
10802 				return;
10803 			}
10804 			break;
10805 
10806 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
10807 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10808 				bp->link_params.req_line_speed[idx] =
10809 					SPEED_10;
10810 				bp->link_params.req_duplex[idx] =
10811 					DUPLEX_HALF;
10812 				bp->port.advertising[idx] |=
10813 					(ADVERTISED_10baseT_Half |
10814 					 ADVERTISED_TP);
10815 			} else {
10816 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10817 					    link_config,
10818 					  bp->link_params.speed_cap_mask[idx]);
10819 				return;
10820 			}
10821 			break;
10822 
10823 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
10824 			if (bp->port.supported[idx] &
10825 			    SUPPORTED_100baseT_Full) {
10826 				bp->link_params.req_line_speed[idx] =
10827 					SPEED_100;
10828 				bp->port.advertising[idx] |=
10829 					(ADVERTISED_100baseT_Full |
10830 					 ADVERTISED_TP);
10831 			} else {
10832 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10833 					    link_config,
10834 					  bp->link_params.speed_cap_mask[idx]);
10835 				return;
10836 			}
10837 			break;
10838 
10839 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
10840 			if (bp->port.supported[idx] &
10841 			    SUPPORTED_100baseT_Half) {
10842 				bp->link_params.req_line_speed[idx] =
10843 								SPEED_100;
10844 				bp->link_params.req_duplex[idx] =
10845 								DUPLEX_HALF;
10846 				bp->port.advertising[idx] |=
10847 					(ADVERTISED_100baseT_Half |
10848 					 ADVERTISED_TP);
10849 			} else {
10850 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10851 				    link_config,
10852 				    bp->link_params.speed_cap_mask[idx]);
10853 				return;
10854 			}
10855 			break;
10856 
10857 		case PORT_FEATURE_LINK_SPEED_1G:
10858 			if (bp->port.supported[idx] &
10859 			    SUPPORTED_1000baseT_Full) {
10860 				bp->link_params.req_line_speed[idx] =
10861 					SPEED_1000;
10862 				bp->port.advertising[idx] |=
10863 					(ADVERTISED_1000baseT_Full |
10864 					 ADVERTISED_TP);
10865 			} else {
10866 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10867 				    link_config,
10868 				    bp->link_params.speed_cap_mask[idx]);
10869 				return;
10870 			}
10871 			break;
10872 
10873 		case PORT_FEATURE_LINK_SPEED_2_5G:
10874 			if (bp->port.supported[idx] &
10875 			    SUPPORTED_2500baseX_Full) {
10876 				bp->link_params.req_line_speed[idx] =
10877 					SPEED_2500;
10878 				bp->port.advertising[idx] |=
10879 					(ADVERTISED_2500baseX_Full |
10880 						ADVERTISED_TP);
10881 			} else {
10882 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10883 				    link_config,
10884 				    bp->link_params.speed_cap_mask[idx]);
10885 				return;
10886 			}
10887 			break;
10888 
10889 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
10890 			if (bp->port.supported[idx] &
10891 			    SUPPORTED_10000baseT_Full) {
10892 				bp->link_params.req_line_speed[idx] =
10893 					SPEED_10000;
10894 				bp->port.advertising[idx] |=
10895 					(ADVERTISED_10000baseT_Full |
10896 						ADVERTISED_FIBRE);
10897 			} else {
10898 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10899 				    link_config,
10900 				    bp->link_params.speed_cap_mask[idx]);
10901 				return;
10902 			}
10903 			break;
10904 		case PORT_FEATURE_LINK_SPEED_20G:
10905 			bp->link_params.req_line_speed[idx] = SPEED_20000;
10906 
10907 			break;
10908 		default:
10909 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10910 				  link_config);
10911 				bp->link_params.req_line_speed[idx] =
10912 							SPEED_AUTO_NEG;
10913 				bp->port.advertising[idx] =
10914 						bp->port.supported[idx];
10915 			break;
10916 		}
10917 
10918 		bp->link_params.req_flow_ctrl[idx] = (link_config &
10919 					 PORT_FEATURE_FLOW_CONTROL_MASK);
10920 		if (bp->link_params.req_flow_ctrl[idx] ==
10921 		    BNX2X_FLOW_CTRL_AUTO) {
10922 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
10923 				bp->link_params.req_flow_ctrl[idx] =
10924 							BNX2X_FLOW_CTRL_NONE;
10925 			else
10926 				bnx2x_set_requested_fc(bp);
10927 		}
10928 
10929 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10930 			       bp->link_params.req_line_speed[idx],
10931 			       bp->link_params.req_duplex[idx],
10932 			       bp->link_params.req_flow_ctrl[idx],
10933 			       bp->port.advertising[idx]);
10934 	}
10935 }
10936 
10937 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10938 {
10939 	__be16 mac_hi_be = cpu_to_be16(mac_hi);
10940 	__be32 mac_lo_be = cpu_to_be32(mac_lo);
10941 	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
10942 	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
10943 }
10944 
10945 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
10946 {
10947 	int port = BP_PORT(bp);
10948 	u32 config;
10949 	u32 ext_phy_type, ext_phy_config, eee_mode;
10950 
10951 	bp->link_params.bp = bp;
10952 	bp->link_params.port = port;
10953 
10954 	bp->link_params.lane_config =
10955 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10956 
10957 	bp->link_params.speed_cap_mask[0] =
10958 		SHMEM_RD(bp,
10959 			 dev_info.port_hw_config[port].speed_capability_mask) &
10960 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10961 	bp->link_params.speed_cap_mask[1] =
10962 		SHMEM_RD(bp,
10963 			 dev_info.port_hw_config[port].speed_capability_mask2) &
10964 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10965 	bp->port.link_config[0] =
10966 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10967 
10968 	bp->port.link_config[1] =
10969 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10970 
10971 	bp->link_params.multi_phy_config =
10972 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10973 	/* If the device is capable of WoL, set the default state according
10974 	 * to the HW
10975 	 */
10976 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10977 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10978 		   (config & PORT_FEATURE_WOL_ENABLED));
10979 
10980 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10981 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
10982 		bp->flags |= NO_ISCSI_FLAG;
10983 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10984 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
10985 		bp->flags |= NO_FCOE_FLAG;
10986 
10987 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
10988 		       bp->link_params.lane_config,
10989 		       bp->link_params.speed_cap_mask[0],
10990 		       bp->port.link_config[0]);
10991 
10992 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
10993 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
10994 	bnx2x_phy_probe(&bp->link_params);
10995 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10996 
10997 	bnx2x_link_settings_requested(bp);
10998 
10999 	/*
11000 	 * If connected directly, work with the internal PHY, otherwise, work
11001 	 * with the external PHY
11002 	 */
11003 	ext_phy_config =
11004 		SHMEM_RD(bp,
11005 			 dev_info.port_hw_config[port].external_phy_config);
11006 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11007 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11008 		bp->mdio.prtad = bp->port.phy_addr;
11009 
11010 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11011 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11012 		bp->mdio.prtad =
11013 			XGXS_EXT_PHY_ADDR(ext_phy_config);
11014 
11015 	/* Configure link feature according to nvram value */
11016 	eee_mode = (((SHMEM_RD(bp, dev_info.
11017 		      port_feature_config[port].eee_power_mode)) &
11018 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11019 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11020 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11021 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11022 					   EEE_MODE_ENABLE_LPI |
11023 					   EEE_MODE_OUTPUT_TIME;
11024 	} else {
11025 		bp->link_params.eee_mode = 0;
11026 	}
11027 }
11028 
11029 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11030 {
11031 	u32 no_flags = NO_ISCSI_FLAG;
11032 	int port = BP_PORT(bp);
11033 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11034 				drv_lic_key[port].max_iscsi_conn);
11035 
11036 	if (!CNIC_SUPPORT(bp)) {
11037 		bp->flags |= no_flags;
11038 		return;
11039 	}
11040 
11041 	/* Get the number of maximum allowed iSCSI connections */
11042 	bp->cnic_eth_dev.max_iscsi_conn =
11043 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11044 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11045 
11046 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11047 		       bp->cnic_eth_dev.max_iscsi_conn);
11048 
11049 	/*
11050 	 * If maximum allowed number of connections is zero -
11051 	 * disable the feature.
11052 	 */
11053 	if (!bp->cnic_eth_dev.max_iscsi_conn)
11054 		bp->flags |= no_flags;
11055 }
11056 
11057 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11058 {
11059 	/* Port info */
11060 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11061 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11062 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11063 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11064 
11065 	/* Node info */
11066 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11067 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11068 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11069 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11070 }
11071 
11072 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11073 {
11074 	u8 count = 0;
11075 
11076 	if (IS_MF(bp)) {
11077 		u8 fid;
11078 
11079 		/* iterate over absolute function ids for this path: */
11080 		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11081 			if (IS_MF_SD(bp)) {
11082 				u32 cfg = MF_CFG_RD(bp,
11083 						    func_mf_config[fid].config);
11084 
11085 				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11086 				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11087 					    FUNC_MF_CFG_PROTOCOL_FCOE))
11088 					count++;
11089 			} else {
11090 				u32 cfg = MF_CFG_RD(bp,
11091 						    func_ext_config[fid].
11092 								      func_cfg);
11093 
11094 				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11095 				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11096 					count++;
11097 			}
11098 		}
11099 	} else { /* SF */
11100 		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11101 
11102 		for (port = 0; port < port_cnt; port++) {
11103 			u32 lic = SHMEM_RD(bp,
11104 					   drv_lic_key[port].max_fcoe_conn) ^
11105 				  FW_ENCODE_32BIT_PATTERN;
11106 			if (lic)
11107 				count++;
11108 		}
11109 	}
11110 
11111 	return count;
11112 }
11113 
11114 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11115 {
11116 	int port = BP_PORT(bp);
11117 	int func = BP_ABS_FUNC(bp);
11118 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11119 				drv_lic_key[port].max_fcoe_conn);
11120 	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11121 
11122 	if (!CNIC_SUPPORT(bp)) {
11123 		bp->flags |= NO_FCOE_FLAG;
11124 		return;
11125 	}
11126 
11127 	/* Get the number of maximum allowed FCoE connections */
11128 	bp->cnic_eth_dev.max_fcoe_conn =
11129 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11130 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11131 
11132 	/* Calculate the number of maximum allowed FCoE tasks */
11133 	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11134 
11135 	/* check if FCoE resources must be shared between different functions */
11136 	if (num_fcoe_func)
11137 		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11138 
11139 	/* Read the WWN: */
11140 	if (!IS_MF(bp)) {
11141 		/* Port info */
11142 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11143 			SHMEM_RD(bp,
11144 				 dev_info.port_hw_config[port].
11145 				 fcoe_wwn_port_name_upper);
11146 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11147 			SHMEM_RD(bp,
11148 				 dev_info.port_hw_config[port].
11149 				 fcoe_wwn_port_name_lower);
11150 
11151 		/* Node info */
11152 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11153 			SHMEM_RD(bp,
11154 				 dev_info.port_hw_config[port].
11155 				 fcoe_wwn_node_name_upper);
11156 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11157 			SHMEM_RD(bp,
11158 				 dev_info.port_hw_config[port].
11159 				 fcoe_wwn_node_name_lower);
11160 	} else if (!IS_MF_SD(bp)) {
11161 		/*
11162 		 * Read the WWN info only if the FCoE feature is enabled for
11163 		 * this function.
11164 		 */
11165 		if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11166 			bnx2x_get_ext_wwn_info(bp, func);
11167 
11168 	} else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
11169 		bnx2x_get_ext_wwn_info(bp, func);
11170 	}
11171 
11172 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11173 
11174 	/*
11175 	 * If maximum allowed number of connections is zero -
11176 	 * disable the feature.
11177 	 */
11178 	if (!bp->cnic_eth_dev.max_fcoe_conn)
11179 		bp->flags |= NO_FCOE_FLAG;
11180 }
11181 
11182 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11183 {
11184 	/*
11185 	 * iSCSI may be dynamically disabled but reading
11186 	 * info here we will decrease memory usage by driver
11187 	 * if the feature is disabled for good
11188 	 */
11189 	bnx2x_get_iscsi_info(bp);
11190 	bnx2x_get_fcoe_info(bp);
11191 }
11192 
11193 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11194 {
11195 	u32 val, val2;
11196 	int func = BP_ABS_FUNC(bp);
11197 	int port = BP_PORT(bp);
11198 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11199 	u8 *fip_mac = bp->fip_mac;
11200 
11201 	if (IS_MF(bp)) {
11202 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11203 		 * FCoE MAC then the appropriate feature should be disabled.
11204 		 * In non SD mode features configuration comes from struct
11205 		 * func_ext_config.
11206 		 */
11207 		if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
11208 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11209 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11210 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11211 						 iscsi_mac_addr_upper);
11212 				val = MF_CFG_RD(bp, func_ext_config[func].
11213 						iscsi_mac_addr_lower);
11214 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11215 				BNX2X_DEV_INFO
11216 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11217 			} else {
11218 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11219 			}
11220 
11221 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11222 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11223 						 fcoe_mac_addr_upper);
11224 				val = MF_CFG_RD(bp, func_ext_config[func].
11225 						fcoe_mac_addr_lower);
11226 				bnx2x_set_mac_buf(fip_mac, val, val2);
11227 				BNX2X_DEV_INFO
11228 					("Read FCoE L2 MAC: %pM\n", fip_mac);
11229 			} else {
11230 				bp->flags |= NO_FCOE_FLAG;
11231 			}
11232 
11233 			bp->mf_ext_config = cfg;
11234 
11235 		} else { /* SD MODE */
11236 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11237 				/* use primary mac as iscsi mac */
11238 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11239 
11240 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11241 				BNX2X_DEV_INFO
11242 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11243 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11244 				/* use primary mac as fip mac */
11245 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11246 				BNX2X_DEV_INFO("SD FCoE MODE\n");
11247 				BNX2X_DEV_INFO
11248 					("Read FIP MAC: %pM\n", fip_mac);
11249 			}
11250 		}
11251 
11252 		/* If this is a storage-only interface, use SAN mac as
11253 		 * primary MAC. Notice that for SD this is already the case,
11254 		 * as the SAN mac was copied from the primary MAC.
11255 		 */
11256 		if (IS_MF_FCOE_AFEX(bp))
11257 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11258 	} else {
11259 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11260 				iscsi_mac_upper);
11261 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11262 			       iscsi_mac_lower);
11263 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11264 
11265 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11266 				fcoe_fip_mac_upper);
11267 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11268 			       fcoe_fip_mac_lower);
11269 		bnx2x_set_mac_buf(fip_mac, val, val2);
11270 	}
11271 
11272 	/* Disable iSCSI OOO if MAC configuration is invalid. */
11273 	if (!is_valid_ether_addr(iscsi_mac)) {
11274 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11275 		memset(iscsi_mac, 0, ETH_ALEN);
11276 	}
11277 
11278 	/* Disable FCoE if MAC configuration is invalid. */
11279 	if (!is_valid_ether_addr(fip_mac)) {
11280 		bp->flags |= NO_FCOE_FLAG;
11281 		memset(bp->fip_mac, 0, ETH_ALEN);
11282 	}
11283 }
11284 
11285 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11286 {
11287 	u32 val, val2;
11288 	int func = BP_ABS_FUNC(bp);
11289 	int port = BP_PORT(bp);
11290 
11291 	/* Zero primary MAC configuration */
11292 	memset(bp->dev->dev_addr, 0, ETH_ALEN);
11293 
11294 	if (BP_NOMCP(bp)) {
11295 		BNX2X_ERROR("warning: random MAC workaround active\n");
11296 		eth_hw_addr_random(bp->dev);
11297 	} else if (IS_MF(bp)) {
11298 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11299 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11300 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11301 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11302 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11303 
11304 		if (CNIC_SUPPORT(bp))
11305 			bnx2x_get_cnic_mac_hwinfo(bp);
11306 	} else {
11307 		/* in SF read MACs from port configuration */
11308 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11309 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11310 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11311 
11312 		if (CNIC_SUPPORT(bp))
11313 			bnx2x_get_cnic_mac_hwinfo(bp);
11314 	}
11315 
11316 	if (!BP_NOMCP(bp)) {
11317 		/* Read physical port identifier from shmem */
11318 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11319 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11320 		bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11321 		bp->flags |= HAS_PHYS_PORT_ID;
11322 	}
11323 
11324 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11325 
11326 	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
11327 		dev_err(&bp->pdev->dev,
11328 			"bad Ethernet MAC address configuration: %pM\n"
11329 			"change it manually before bringing up the appropriate network interface\n",
11330 			bp->dev->dev_addr);
11331 }
11332 
11333 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11334 {
11335 	int tmp;
11336 	u32 cfg;
11337 
11338 	if (IS_VF(bp))
11339 		return 0;
11340 
11341 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11342 		/* Take function: tmp = func */
11343 		tmp = BP_ABS_FUNC(bp);
11344 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11345 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11346 	} else {
11347 		/* Take port: tmp = port */
11348 		tmp = BP_PORT(bp);
11349 		cfg = SHMEM_RD(bp,
11350 			       dev_info.port_hw_config[tmp].generic_features);
11351 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11352 	}
11353 	return cfg;
11354 }
11355 
11356 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11357 {
11358 	int /*abs*/func = BP_ABS_FUNC(bp);
11359 	int vn;
11360 	u32 val = 0;
11361 	int rc = 0;
11362 
11363 	bnx2x_get_common_hwinfo(bp);
11364 
11365 	/*
11366 	 * initialize IGU parameters
11367 	 */
11368 	if (CHIP_IS_E1x(bp)) {
11369 		bp->common.int_block = INT_BLOCK_HC;
11370 
11371 		bp->igu_dsb_id = DEF_SB_IGU_ID;
11372 		bp->igu_base_sb = 0;
11373 	} else {
11374 		bp->common.int_block = INT_BLOCK_IGU;
11375 
11376 		/* do not allow device reset during IGU info processing */
11377 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11378 
11379 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11380 
11381 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11382 			int tout = 5000;
11383 
11384 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11385 
11386 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11387 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11388 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11389 
11390 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11391 				tout--;
11392 				usleep_range(1000, 2000);
11393 			}
11394 
11395 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11396 				dev_err(&bp->pdev->dev,
11397 					"FORCING Normal Mode failed!!!\n");
11398 				bnx2x_release_hw_lock(bp,
11399 						      HW_LOCK_RESOURCE_RESET);
11400 				return -EPERM;
11401 			}
11402 		}
11403 
11404 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11405 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11406 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11407 		} else
11408 			BNX2X_DEV_INFO("IGU Normal Mode\n");
11409 
11410 		rc = bnx2x_get_igu_cam_info(bp);
11411 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11412 		if (rc)
11413 			return rc;
11414 	}
11415 
11416 	/*
11417 	 * set base FW non-default (fast path) status block id, this value is
11418 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
11419 	 * determine the id used by the FW.
11420 	 */
11421 	if (CHIP_IS_E1x(bp))
11422 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11423 	else /*
11424 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11425 	      * the same queue are indicated on the same IGU SB). So we prefer
11426 	      * FW and IGU SBs to be the same value.
11427 	      */
11428 		bp->base_fw_ndsb = bp->igu_base_sb;
11429 
11430 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11431 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11432 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
11433 
11434 	/*
11435 	 * Initialize MF configuration
11436 	 */
11437 
11438 	bp->mf_ov = 0;
11439 	bp->mf_mode = 0;
11440 	vn = BP_VN(bp);
11441 
11442 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11443 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11444 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
11445 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11446 
11447 		if (SHMEM2_HAS(bp, mf_cfg_addr))
11448 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11449 		else
11450 			bp->common.mf_cfg_base = bp->common.shmem_base +
11451 				offsetof(struct shmem_region, func_mb) +
11452 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11453 		/*
11454 		 * get mf configuration:
11455 		 * 1. Existence of MF configuration
11456 		 * 2. MAC address must be legal (check only upper bytes)
11457 		 *    for  Switch-Independent mode;
11458 		 *    OVLAN must be legal for Switch-Dependent mode
11459 		 * 3. SF_MODE configures specific MF mode
11460 		 */
11461 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11462 			/* get mf configuration */
11463 			val = SHMEM_RD(bp,
11464 				       dev_info.shared_feature_config.config);
11465 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11466 
11467 			switch (val) {
11468 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11469 				val = MF_CFG_RD(bp, func_mf_config[func].
11470 						mac_upper);
11471 				/* check for legal mac (upper bytes)*/
11472 				if (val != 0xffff) {
11473 					bp->mf_mode = MULTI_FUNCTION_SI;
11474 					bp->mf_config[vn] = MF_CFG_RD(bp,
11475 						   func_mf_config[func].config);
11476 				} else
11477 					BNX2X_DEV_INFO("illegal MAC address for SI\n");
11478 				break;
11479 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11480 				if ((!CHIP_IS_E1x(bp)) &&
11481 				    (MF_CFG_RD(bp, func_mf_config[func].
11482 					       mac_upper) != 0xffff) &&
11483 				    (SHMEM2_HAS(bp,
11484 						afex_driver_support))) {
11485 					bp->mf_mode = MULTI_FUNCTION_AFEX;
11486 					bp->mf_config[vn] = MF_CFG_RD(bp,
11487 						func_mf_config[func].config);
11488 				} else {
11489 					BNX2X_DEV_INFO("can not configure afex mode\n");
11490 				}
11491 				break;
11492 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11493 				/* get OV configuration */
11494 				val = MF_CFG_RD(bp,
11495 					func_mf_config[FUNC_0].e1hov_tag);
11496 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11497 
11498 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11499 					bp->mf_mode = MULTI_FUNCTION_SD;
11500 					bp->mf_config[vn] = MF_CFG_RD(bp,
11501 						func_mf_config[func].config);
11502 				} else
11503 					BNX2X_DEV_INFO("illegal OV for SD\n");
11504 				break;
11505 			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11506 				bp->mf_config[vn] = 0;
11507 				break;
11508 			default:
11509 				/* Unknown configuration: reset mf_config */
11510 				bp->mf_config[vn] = 0;
11511 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11512 			}
11513 		}
11514 
11515 		BNX2X_DEV_INFO("%s function mode\n",
11516 			       IS_MF(bp) ? "multi" : "single");
11517 
11518 		switch (bp->mf_mode) {
11519 		case MULTI_FUNCTION_SD:
11520 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11521 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
11522 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11523 				bp->mf_ov = val;
11524 				bp->path_has_ovlan = true;
11525 
11526 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11527 					       func, bp->mf_ov, bp->mf_ov);
11528 			} else {
11529 				dev_err(&bp->pdev->dev,
11530 					"No valid MF OV for func %d, aborting\n",
11531 					func);
11532 				return -EPERM;
11533 			}
11534 			break;
11535 		case MULTI_FUNCTION_AFEX:
11536 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11537 			break;
11538 		case MULTI_FUNCTION_SI:
11539 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11540 				       func);
11541 			break;
11542 		default:
11543 			if (vn) {
11544 				dev_err(&bp->pdev->dev,
11545 					"VN %d is in a single function mode, aborting\n",
11546 					vn);
11547 				return -EPERM;
11548 			}
11549 			break;
11550 		}
11551 
11552 		/* check if other port on the path needs ovlan:
11553 		 * Since MF configuration is shared between ports
11554 		 * Possible mixed modes are only
11555 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11556 		 */
11557 		if (CHIP_MODE_IS_4_PORT(bp) &&
11558 		    !bp->path_has_ovlan &&
11559 		    !IS_MF(bp) &&
11560 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11561 			u8 other_port = !BP_PORT(bp);
11562 			u8 other_func = BP_PATH(bp) + 2*other_port;
11563 			val = MF_CFG_RD(bp,
11564 					func_mf_config[other_func].e1hov_tag);
11565 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11566 				bp->path_has_ovlan = true;
11567 		}
11568 	}
11569 
11570 	/* adjust igu_sb_cnt to MF for E1H */
11571 	if (CHIP_IS_E1H(bp) && IS_MF(bp))
11572 		bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
11573 
11574 	/* port info */
11575 	bnx2x_get_port_hwinfo(bp);
11576 
11577 	/* Get MAC addresses */
11578 	bnx2x_get_mac_hwinfo(bp);
11579 
11580 	bnx2x_get_cnic_info(bp);
11581 
11582 	return rc;
11583 }
11584 
11585 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11586 {
11587 	int cnt, i, block_end, rodi;
11588 	char vpd_start[BNX2X_VPD_LEN+1];
11589 	char str_id_reg[VENDOR_ID_LEN+1];
11590 	char str_id_cap[VENDOR_ID_LEN+1];
11591 	char *vpd_data;
11592 	char *vpd_extended_data = NULL;
11593 	u8 len;
11594 
11595 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11596 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11597 
11598 	if (cnt < BNX2X_VPD_LEN)
11599 		goto out_not_found;
11600 
11601 	/* VPD RO tag should be first tag after identifier string, hence
11602 	 * we should be able to find it in first BNX2X_VPD_LEN chars
11603 	 */
11604 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11605 			     PCI_VPD_LRDT_RO_DATA);
11606 	if (i < 0)
11607 		goto out_not_found;
11608 
11609 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11610 		    pci_vpd_lrdt_size(&vpd_start[i]);
11611 
11612 	i += PCI_VPD_LRDT_TAG_SIZE;
11613 
11614 	if (block_end > BNX2X_VPD_LEN) {
11615 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11616 		if (vpd_extended_data  == NULL)
11617 			goto out_not_found;
11618 
11619 		/* read rest of vpd image into vpd_extended_data */
11620 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11621 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11622 				   block_end - BNX2X_VPD_LEN,
11623 				   vpd_extended_data + BNX2X_VPD_LEN);
11624 		if (cnt < (block_end - BNX2X_VPD_LEN))
11625 			goto out_not_found;
11626 		vpd_data = vpd_extended_data;
11627 	} else
11628 		vpd_data = vpd_start;
11629 
11630 	/* now vpd_data holds full vpd content in both cases */
11631 
11632 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11633 				   PCI_VPD_RO_KEYWORD_MFR_ID);
11634 	if (rodi < 0)
11635 		goto out_not_found;
11636 
11637 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
11638 
11639 	if (len != VENDOR_ID_LEN)
11640 		goto out_not_found;
11641 
11642 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11643 
11644 	/* vendor specific info */
11645 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11646 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11647 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11648 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11649 
11650 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11651 						PCI_VPD_RO_KEYWORD_VENDOR0);
11652 		if (rodi >= 0) {
11653 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
11654 
11655 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11656 
11657 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11658 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
11659 				bp->fw_ver[len] = ' ';
11660 			}
11661 		}
11662 		kfree(vpd_extended_data);
11663 		return;
11664 	}
11665 out_not_found:
11666 	kfree(vpd_extended_data);
11667 	return;
11668 }
11669 
11670 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11671 {
11672 	u32 flags = 0;
11673 
11674 	if (CHIP_REV_IS_FPGA(bp))
11675 		SET_FLAGS(flags, MODE_FPGA);
11676 	else if (CHIP_REV_IS_EMUL(bp))
11677 		SET_FLAGS(flags, MODE_EMUL);
11678 	else
11679 		SET_FLAGS(flags, MODE_ASIC);
11680 
11681 	if (CHIP_MODE_IS_4_PORT(bp))
11682 		SET_FLAGS(flags, MODE_PORT4);
11683 	else
11684 		SET_FLAGS(flags, MODE_PORT2);
11685 
11686 	if (CHIP_IS_E2(bp))
11687 		SET_FLAGS(flags, MODE_E2);
11688 	else if (CHIP_IS_E3(bp)) {
11689 		SET_FLAGS(flags, MODE_E3);
11690 		if (CHIP_REV(bp) == CHIP_REV_Ax)
11691 			SET_FLAGS(flags, MODE_E3_A0);
11692 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11693 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11694 	}
11695 
11696 	if (IS_MF(bp)) {
11697 		SET_FLAGS(flags, MODE_MF);
11698 		switch (bp->mf_mode) {
11699 		case MULTI_FUNCTION_SD:
11700 			SET_FLAGS(flags, MODE_MF_SD);
11701 			break;
11702 		case MULTI_FUNCTION_SI:
11703 			SET_FLAGS(flags, MODE_MF_SI);
11704 			break;
11705 		case MULTI_FUNCTION_AFEX:
11706 			SET_FLAGS(flags, MODE_MF_AFEX);
11707 			break;
11708 		}
11709 	} else
11710 		SET_FLAGS(flags, MODE_SF);
11711 
11712 #if defined(__LITTLE_ENDIAN)
11713 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11714 #else /*(__BIG_ENDIAN)*/
11715 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
11716 #endif
11717 	INIT_MODE_FLAGS(bp) = flags;
11718 }
11719 
11720 static int bnx2x_init_bp(struct bnx2x *bp)
11721 {
11722 	int func;
11723 	int rc;
11724 
11725 	mutex_init(&bp->port.phy_mutex);
11726 	mutex_init(&bp->fw_mb_mutex);
11727 	spin_lock_init(&bp->stats_lock);
11728 	sema_init(&bp->stats_sema, 1);
11729 
11730 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11731 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11732 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11733 	if (IS_PF(bp)) {
11734 		rc = bnx2x_get_hwinfo(bp);
11735 		if (rc)
11736 			return rc;
11737 	} else {
11738 		eth_zero_addr(bp->dev->dev_addr);
11739 	}
11740 
11741 	bnx2x_set_modes_bitmap(bp);
11742 
11743 	rc = bnx2x_alloc_mem_bp(bp);
11744 	if (rc)
11745 		return rc;
11746 
11747 	bnx2x_read_fwinfo(bp);
11748 
11749 	func = BP_FUNC(bp);
11750 
11751 	/* need to reset chip if undi was active */
11752 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
11753 		/* init fw_seq */
11754 		bp->fw_seq =
11755 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11756 							DRV_MSG_SEQ_NUMBER_MASK;
11757 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11758 
11759 		rc = bnx2x_prev_unload(bp);
11760 		if (rc) {
11761 			bnx2x_free_mem_bp(bp);
11762 			return rc;
11763 		}
11764 	}
11765 
11766 	if (CHIP_REV_IS_FPGA(bp))
11767 		dev_err(&bp->pdev->dev, "FPGA detected\n");
11768 
11769 	if (BP_NOMCP(bp) && (func == 0))
11770 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11771 
11772 	bp->disable_tpa = disable_tpa;
11773 	bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11774 
11775 	/* Set TPA flags */
11776 	if (bp->disable_tpa) {
11777 		bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11778 		bp->dev->features &= ~NETIF_F_LRO;
11779 	} else {
11780 		bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11781 		bp->dev->features |= NETIF_F_LRO;
11782 	}
11783 
11784 	if (CHIP_IS_E1(bp))
11785 		bp->dropless_fc = 0;
11786 	else
11787 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11788 
11789 	bp->mrrs = mrrs;
11790 
11791 	bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11792 	if (IS_VF(bp))
11793 		bp->rx_ring_size = MAX_RX_AVAIL;
11794 
11795 	/* make sure that the numbers are in the right granularity */
11796 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11797 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11798 
11799 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11800 
11801 	init_timer(&bp->timer);
11802 	bp->timer.expires = jiffies + bp->current_interval;
11803 	bp->timer.data = (unsigned long) bp;
11804 	bp->timer.function = bnx2x_timer;
11805 
11806 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11807 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11808 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11809 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11810 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11811 		bnx2x_dcbx_init_params(bp);
11812 	} else {
11813 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11814 	}
11815 
11816 	if (CHIP_IS_E1x(bp))
11817 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11818 	else
11819 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
11820 
11821 	/* multiple tx priority */
11822 	if (IS_VF(bp))
11823 		bp->max_cos = 1;
11824 	else if (CHIP_IS_E1x(bp))
11825 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11826 	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11827 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11828 	else if (CHIP_IS_E3B0(bp))
11829 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11830 	else
11831 		BNX2X_ERR("unknown chip %x revision %x\n",
11832 			  CHIP_NUM(bp), CHIP_REV(bp));
11833 	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
11834 
11835 	/* We need at least one default status block for slow-path events,
11836 	 * second status block for the L2 queue, and a third status block for
11837 	 * CNIC if supported.
11838 	 */
11839 	if (IS_VF(bp))
11840 		bp->min_msix_vec_cnt = 1;
11841 	else if (CNIC_SUPPORT(bp))
11842 		bp->min_msix_vec_cnt = 3;
11843 	else /* PF w/o cnic */
11844 		bp->min_msix_vec_cnt = 2;
11845 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11846 
11847 	bp->dump_preset_idx = 1;
11848 
11849 	return rc;
11850 }
11851 
11852 /****************************************************************************
11853 * General service functions
11854 ****************************************************************************/
11855 
11856 /*
11857  * net_device service functions
11858  */
11859 
11860 /* called with rtnl_lock */
11861 static int bnx2x_open(struct net_device *dev)
11862 {
11863 	struct bnx2x *bp = netdev_priv(dev);
11864 	int rc;
11865 
11866 	bp->stats_init = true;
11867 
11868 	netif_carrier_off(dev);
11869 
11870 	bnx2x_set_power_state(bp, PCI_D0);
11871 
11872 	/* If parity had happen during the unload, then attentions
11873 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11874 	 * want the first function loaded on the current engine to
11875 	 * complete the recovery.
11876 	 * Parity recovery is only relevant for PF driver.
11877 	 */
11878 	if (IS_PF(bp)) {
11879 		int other_engine = BP_PATH(bp) ? 0 : 1;
11880 		bool other_load_status, load_status;
11881 		bool global = false;
11882 
11883 		other_load_status = bnx2x_get_load_status(bp, other_engine);
11884 		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
11885 		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
11886 		    bnx2x_chk_parity_attn(bp, &global, true)) {
11887 			do {
11888 				/* If there are attentions and they are in a
11889 				 * global blocks, set the GLOBAL_RESET bit
11890 				 * regardless whether it will be this function
11891 				 * that will complete the recovery or not.
11892 				 */
11893 				if (global)
11894 					bnx2x_set_reset_global(bp);
11895 
11896 				/* Only the first function on the current
11897 				 * engine should try to recover in open. In case
11898 				 * of attentions in global blocks only the first
11899 				 * in the chip should try to recover.
11900 				 */
11901 				if ((!load_status &&
11902 				     (!global || !other_load_status)) &&
11903 				      bnx2x_trylock_leader_lock(bp) &&
11904 				      !bnx2x_leader_reset(bp)) {
11905 					netdev_info(bp->dev,
11906 						    "Recovered in open\n");
11907 					break;
11908 				}
11909 
11910 				/* recovery has failed... */
11911 				bnx2x_set_power_state(bp, PCI_D3hot);
11912 				bp->recovery_state = BNX2X_RECOVERY_FAILED;
11913 
11914 				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11915 					  "If you still see this message after a few retries then power cycle is required.\n");
11916 
11917 				return -EAGAIN;
11918 			} while (0);
11919 		}
11920 	}
11921 
11922 	bp->recovery_state = BNX2X_RECOVERY_DONE;
11923 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
11924 	if (rc)
11925 		return rc;
11926 	return 0;
11927 }
11928 
11929 /* called with rtnl_lock */
11930 static int bnx2x_close(struct net_device *dev)
11931 {
11932 	struct bnx2x *bp = netdev_priv(dev);
11933 
11934 	/* Unload the driver, release IRQs */
11935 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11936 
11937 	return 0;
11938 }
11939 
11940 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11941 				      struct bnx2x_mcast_ramrod_params *p)
11942 {
11943 	int mc_count = netdev_mc_count(bp->dev);
11944 	struct bnx2x_mcast_list_elem *mc_mac =
11945 		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11946 	struct netdev_hw_addr *ha;
11947 
11948 	if (!mc_mac)
11949 		return -ENOMEM;
11950 
11951 	INIT_LIST_HEAD(&p->mcast_list);
11952 
11953 	netdev_for_each_mc_addr(ha, bp->dev) {
11954 		mc_mac->mac = bnx2x_mc_addr(ha);
11955 		list_add_tail(&mc_mac->link, &p->mcast_list);
11956 		mc_mac++;
11957 	}
11958 
11959 	p->mcast_list_len = mc_count;
11960 
11961 	return 0;
11962 }
11963 
11964 static void bnx2x_free_mcast_macs_list(
11965 	struct bnx2x_mcast_ramrod_params *p)
11966 {
11967 	struct bnx2x_mcast_list_elem *mc_mac =
11968 		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11969 				 link);
11970 
11971 	WARN_ON(!mc_mac);
11972 	kfree(mc_mac);
11973 }
11974 
11975 /**
11976  * bnx2x_set_uc_list - configure a new unicast MACs list.
11977  *
11978  * @bp: driver handle
11979  *
11980  * We will use zero (0) as a MAC type for these MACs.
11981  */
11982 static int bnx2x_set_uc_list(struct bnx2x *bp)
11983 {
11984 	int rc;
11985 	struct net_device *dev = bp->dev;
11986 	struct netdev_hw_addr *ha;
11987 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11988 	unsigned long ramrod_flags = 0;
11989 
11990 	/* First schedule a cleanup up of old configuration */
11991 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11992 	if (rc < 0) {
11993 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11994 		return rc;
11995 	}
11996 
11997 	netdev_for_each_uc_addr(ha, dev) {
11998 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11999 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
12000 		if (rc == -EEXIST) {
12001 			DP(BNX2X_MSG_SP,
12002 			   "Failed to schedule ADD operations: %d\n", rc);
12003 			/* do not treat adding same MAC as error */
12004 			rc = 0;
12005 
12006 		} else if (rc < 0) {
12007 
12008 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12009 				  rc);
12010 			return rc;
12011 		}
12012 	}
12013 
12014 	/* Execute the pending commands */
12015 	__set_bit(RAMROD_CONT, &ramrod_flags);
12016 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12017 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
12018 }
12019 
12020 static int bnx2x_set_mc_list(struct bnx2x *bp)
12021 {
12022 	struct net_device *dev = bp->dev;
12023 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12024 	int rc = 0;
12025 
12026 	rparam.mcast_obj = &bp->mcast_obj;
12027 
12028 	/* first, clear all configured multicast MACs */
12029 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12030 	if (rc < 0) {
12031 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12032 		return rc;
12033 	}
12034 
12035 	/* then, configure a new MACs list */
12036 	if (netdev_mc_count(dev)) {
12037 		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
12038 		if (rc) {
12039 			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
12040 				  rc);
12041 			return rc;
12042 		}
12043 
12044 		/* Now add the new MACs */
12045 		rc = bnx2x_config_mcast(bp, &rparam,
12046 					BNX2X_MCAST_CMD_ADD);
12047 		if (rc < 0)
12048 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12049 				  rc);
12050 
12051 		bnx2x_free_mcast_macs_list(&rparam);
12052 	}
12053 
12054 	return rc;
12055 }
12056 
12057 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12058 static void bnx2x_set_rx_mode(struct net_device *dev)
12059 {
12060 	struct bnx2x *bp = netdev_priv(dev);
12061 
12062 	if (bp->state != BNX2X_STATE_OPEN) {
12063 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12064 		return;
12065 	} else {
12066 		/* Schedule an SP task to handle rest of change */
12067 		DP(NETIF_MSG_IFUP, "Scheduling an Rx mode change\n");
12068 		smp_mb__before_clear_bit();
12069 		set_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state);
12070 		smp_mb__after_clear_bit();
12071 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
12072 	}
12073 }
12074 
12075 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12076 {
12077 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12078 
12079 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12080 
12081 	netif_addr_lock_bh(bp->dev);
12082 
12083 	if (bp->dev->flags & IFF_PROMISC) {
12084 		rx_mode = BNX2X_RX_MODE_PROMISC;
12085 	} else if ((bp->dev->flags & IFF_ALLMULTI) ||
12086 		   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12087 		    CHIP_IS_E1(bp))) {
12088 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
12089 	} else {
12090 		if (IS_PF(bp)) {
12091 			/* some multicasts */
12092 			if (bnx2x_set_mc_list(bp) < 0)
12093 				rx_mode = BNX2X_RX_MODE_ALLMULTI;
12094 
12095 			/* release bh lock, as bnx2x_set_uc_list might sleep */
12096 			netif_addr_unlock_bh(bp->dev);
12097 			if (bnx2x_set_uc_list(bp) < 0)
12098 				rx_mode = BNX2X_RX_MODE_PROMISC;
12099 			netif_addr_lock_bh(bp->dev);
12100 		} else {
12101 			/* configuring mcast to a vf involves sleeping (when we
12102 			 * wait for the pf's response).
12103 			 */
12104 			smp_mb__before_clear_bit();
12105 			set_bit(BNX2X_SP_RTNL_VFPF_MCAST,
12106 				&bp->sp_rtnl_state);
12107 			smp_mb__after_clear_bit();
12108 			schedule_delayed_work(&bp->sp_rtnl_task, 0);
12109 		}
12110 	}
12111 
12112 	bp->rx_mode = rx_mode;
12113 	/* handle ISCSI SD mode */
12114 	if (IS_MF_ISCSI_SD(bp))
12115 		bp->rx_mode = BNX2X_RX_MODE_NONE;
12116 
12117 	/* Schedule the rx_mode command */
12118 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12119 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12120 		netif_addr_unlock_bh(bp->dev);
12121 		return;
12122 	}
12123 
12124 	if (IS_PF(bp)) {
12125 		bnx2x_set_storm_rx_mode(bp);
12126 		netif_addr_unlock_bh(bp->dev);
12127 	} else {
12128 		/* VF will need to request the PF to make this change, and so
12129 		 * the VF needs to release the bottom-half lock prior to the
12130 		 * request (as it will likely require sleep on the VF side)
12131 		 */
12132 		netif_addr_unlock_bh(bp->dev);
12133 		bnx2x_vfpf_storm_rx_mode(bp);
12134 	}
12135 }
12136 
12137 /* called with rtnl_lock */
12138 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12139 			   int devad, u16 addr)
12140 {
12141 	struct bnx2x *bp = netdev_priv(netdev);
12142 	u16 value;
12143 	int rc;
12144 
12145 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12146 	   prtad, devad, addr);
12147 
12148 	/* The HW expects different devad if CL22 is used */
12149 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12150 
12151 	bnx2x_acquire_phy_lock(bp);
12152 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12153 	bnx2x_release_phy_lock(bp);
12154 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12155 
12156 	if (!rc)
12157 		rc = value;
12158 	return rc;
12159 }
12160 
12161 /* called with rtnl_lock */
12162 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12163 			    u16 addr, u16 value)
12164 {
12165 	struct bnx2x *bp = netdev_priv(netdev);
12166 	int rc;
12167 
12168 	DP(NETIF_MSG_LINK,
12169 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12170 	   prtad, devad, addr, value);
12171 
12172 	/* The HW expects different devad if CL22 is used */
12173 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12174 
12175 	bnx2x_acquire_phy_lock(bp);
12176 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12177 	bnx2x_release_phy_lock(bp);
12178 	return rc;
12179 }
12180 
12181 /* called with rtnl_lock */
12182 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12183 {
12184 	struct bnx2x *bp = netdev_priv(dev);
12185 	struct mii_ioctl_data *mdio = if_mii(ifr);
12186 
12187 	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12188 	   mdio->phy_id, mdio->reg_num, mdio->val_in);
12189 
12190 	if (!netif_running(dev))
12191 		return -EAGAIN;
12192 
12193 	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12194 }
12195 
12196 #ifdef CONFIG_NET_POLL_CONTROLLER
12197 static void poll_bnx2x(struct net_device *dev)
12198 {
12199 	struct bnx2x *bp = netdev_priv(dev);
12200 	int i;
12201 
12202 	for_each_eth_queue(bp, i) {
12203 		struct bnx2x_fastpath *fp = &bp->fp[i];
12204 		napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12205 	}
12206 }
12207 #endif
12208 
12209 static int bnx2x_validate_addr(struct net_device *dev)
12210 {
12211 	struct bnx2x *bp = netdev_priv(dev);
12212 
12213 	/* query the bulletin board for mac address configured by the PF */
12214 	if (IS_VF(bp))
12215 		bnx2x_sample_bulletin(bp);
12216 
12217 	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
12218 		BNX2X_ERR("Non-valid Ethernet address\n");
12219 		return -EADDRNOTAVAIL;
12220 	}
12221 	return 0;
12222 }
12223 
12224 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12225 				  struct netdev_phys_port_id *ppid)
12226 {
12227 	struct bnx2x *bp = netdev_priv(netdev);
12228 
12229 	if (!(bp->flags & HAS_PHYS_PORT_ID))
12230 		return -EOPNOTSUPP;
12231 
12232 	ppid->id_len = sizeof(bp->phys_port_id);
12233 	memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12234 
12235 	return 0;
12236 }
12237 
12238 static const struct net_device_ops bnx2x_netdev_ops = {
12239 	.ndo_open		= bnx2x_open,
12240 	.ndo_stop		= bnx2x_close,
12241 	.ndo_start_xmit		= bnx2x_start_xmit,
12242 	.ndo_select_queue	= bnx2x_select_queue,
12243 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
12244 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
12245 	.ndo_validate_addr	= bnx2x_validate_addr,
12246 	.ndo_do_ioctl		= bnx2x_ioctl,
12247 	.ndo_change_mtu		= bnx2x_change_mtu,
12248 	.ndo_fix_features	= bnx2x_fix_features,
12249 	.ndo_set_features	= bnx2x_set_features,
12250 	.ndo_tx_timeout		= bnx2x_tx_timeout,
12251 #ifdef CONFIG_NET_POLL_CONTROLLER
12252 	.ndo_poll_controller	= poll_bnx2x,
12253 #endif
12254 	.ndo_setup_tc		= bnx2x_setup_tc,
12255 #ifdef CONFIG_BNX2X_SRIOV
12256 	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
12257 	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
12258 	.ndo_get_vf_config	= bnx2x_get_vf_config,
12259 #endif
12260 #ifdef NETDEV_FCOE_WWNN
12261 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
12262 #endif
12263 
12264 #ifdef CONFIG_NET_RX_BUSY_POLL
12265 	.ndo_busy_poll		= bnx2x_low_latency_recv,
12266 #endif
12267 	.ndo_get_phys_port_id	= bnx2x_get_phys_port_id,
12268 };
12269 
12270 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12271 {
12272 	struct device *dev = &bp->pdev->dev;
12273 
12274 	if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
12275 	    dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
12276 		dev_err(dev, "System does not support DMA, aborting\n");
12277 		return -EIO;
12278 	}
12279 
12280 	return 0;
12281 }
12282 
12283 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
12284 {
12285 	if (bp->flags & AER_ENABLED) {
12286 		pci_disable_pcie_error_reporting(bp->pdev);
12287 		bp->flags &= ~AER_ENABLED;
12288 	}
12289 }
12290 
12291 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12292 			  struct net_device *dev, unsigned long board_type)
12293 {
12294 	int rc;
12295 	u32 pci_cfg_dword;
12296 	bool chip_is_e1x = (board_type == BCM57710 ||
12297 			    board_type == BCM57711 ||
12298 			    board_type == BCM57711E);
12299 
12300 	SET_NETDEV_DEV(dev, &pdev->dev);
12301 
12302 	bp->dev = dev;
12303 	bp->pdev = pdev;
12304 
12305 	rc = pci_enable_device(pdev);
12306 	if (rc) {
12307 		dev_err(&bp->pdev->dev,
12308 			"Cannot enable PCI device, aborting\n");
12309 		goto err_out;
12310 	}
12311 
12312 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12313 		dev_err(&bp->pdev->dev,
12314 			"Cannot find PCI device base address, aborting\n");
12315 		rc = -ENODEV;
12316 		goto err_out_disable;
12317 	}
12318 
12319 	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12320 		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12321 		rc = -ENODEV;
12322 		goto err_out_disable;
12323 	}
12324 
12325 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12326 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12327 	    PCICFG_REVESION_ID_ERROR_VAL) {
12328 		pr_err("PCI device error, probably due to fan failure, aborting\n");
12329 		rc = -ENODEV;
12330 		goto err_out_disable;
12331 	}
12332 
12333 	if (atomic_read(&pdev->enable_cnt) == 1) {
12334 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12335 		if (rc) {
12336 			dev_err(&bp->pdev->dev,
12337 				"Cannot obtain PCI resources, aborting\n");
12338 			goto err_out_disable;
12339 		}
12340 
12341 		pci_set_master(pdev);
12342 		pci_save_state(pdev);
12343 	}
12344 
12345 	if (IS_PF(bp)) {
12346 		if (!pdev->pm_cap) {
12347 			dev_err(&bp->pdev->dev,
12348 				"Cannot find power management capability, aborting\n");
12349 			rc = -EIO;
12350 			goto err_out_release;
12351 		}
12352 	}
12353 
12354 	if (!pci_is_pcie(pdev)) {
12355 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12356 		rc = -EIO;
12357 		goto err_out_release;
12358 	}
12359 
12360 	rc = bnx2x_set_coherency_mask(bp);
12361 	if (rc)
12362 		goto err_out_release;
12363 
12364 	dev->mem_start = pci_resource_start(pdev, 0);
12365 	dev->base_addr = dev->mem_start;
12366 	dev->mem_end = pci_resource_end(pdev, 0);
12367 
12368 	dev->irq = pdev->irq;
12369 
12370 	bp->regview = pci_ioremap_bar(pdev, 0);
12371 	if (!bp->regview) {
12372 		dev_err(&bp->pdev->dev,
12373 			"Cannot map register space, aborting\n");
12374 		rc = -ENOMEM;
12375 		goto err_out_release;
12376 	}
12377 
12378 	/* In E1/E1H use pci device function given by kernel.
12379 	 * In E2/E3 read physical function from ME register since these chips
12380 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
12381 	 * (depending on hypervisor).
12382 	 */
12383 	if (chip_is_e1x) {
12384 		bp->pf_num = PCI_FUNC(pdev->devfn);
12385 	} else {
12386 		/* chip is E2/3*/
12387 		pci_read_config_dword(bp->pdev,
12388 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
12389 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12390 				  ME_REG_ABS_PF_NUM_SHIFT);
12391 	}
12392 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12393 
12394 	/* clean indirect addresses */
12395 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12396 			       PCICFG_VENDOR_ID_OFFSET);
12397 
12398 	/* AER (Advanced Error reporting) configuration */
12399 	rc = pci_enable_pcie_error_reporting(pdev);
12400 	if (!rc)
12401 		bp->flags |= AER_ENABLED;
12402 	else
12403 		BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
12404 
12405 	/*
12406 	 * Clean the following indirect addresses for all functions since it
12407 	 * is not used by the driver.
12408 	 */
12409 	if (IS_PF(bp)) {
12410 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12411 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12412 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12413 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12414 
12415 		if (chip_is_e1x) {
12416 			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12417 			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12418 			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12419 			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12420 		}
12421 
12422 		/* Enable internal target-read (in case we are probed after PF
12423 		 * FLR). Must be done prior to any BAR read access. Only for
12424 		 * 57712 and up
12425 		 */
12426 		if (!chip_is_e1x)
12427 			REG_WR(bp,
12428 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12429 	}
12430 
12431 	dev->watchdog_timeo = TX_TIMEOUT;
12432 
12433 	dev->netdev_ops = &bnx2x_netdev_ops;
12434 	bnx2x_set_ethtool_ops(bp, dev);
12435 
12436 	dev->priv_flags |= IFF_UNICAST_FLT;
12437 
12438 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12439 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12440 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12441 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12442 	if (!CHIP_IS_E1x(bp)) {
12443 		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
12444 				    NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
12445 		dev->hw_enc_features =
12446 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12447 			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12448 			NETIF_F_GSO_IPIP |
12449 			NETIF_F_GSO_SIT |
12450 			NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12451 	}
12452 
12453 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12454 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12455 
12456 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12457 	dev->features |= NETIF_F_HIGHDMA;
12458 
12459 	/* Add Loopback capability to the device */
12460 	dev->hw_features |= NETIF_F_LOOPBACK;
12461 
12462 #ifdef BCM_DCBNL
12463 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12464 #endif
12465 
12466 	/* get_port_hwinfo() will set prtad and mmds properly */
12467 	bp->mdio.prtad = MDIO_PRTAD_NONE;
12468 	bp->mdio.mmds = 0;
12469 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12470 	bp->mdio.dev = dev;
12471 	bp->mdio.mdio_read = bnx2x_mdio_read;
12472 	bp->mdio.mdio_write = bnx2x_mdio_write;
12473 
12474 	return 0;
12475 
12476 err_out_release:
12477 	if (atomic_read(&pdev->enable_cnt) == 1)
12478 		pci_release_regions(pdev);
12479 
12480 err_out_disable:
12481 	pci_disable_device(pdev);
12482 
12483 err_out:
12484 	return rc;
12485 }
12486 
12487 static int bnx2x_check_firmware(struct bnx2x *bp)
12488 {
12489 	const struct firmware *firmware = bp->firmware;
12490 	struct bnx2x_fw_file_hdr *fw_hdr;
12491 	struct bnx2x_fw_file_section *sections;
12492 	u32 offset, len, num_ops;
12493 	__be16 *ops_offsets;
12494 	int i;
12495 	const u8 *fw_ver;
12496 
12497 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12498 		BNX2X_ERR("Wrong FW size\n");
12499 		return -EINVAL;
12500 	}
12501 
12502 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12503 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
12504 
12505 	/* Make sure none of the offsets and sizes make us read beyond
12506 	 * the end of the firmware data */
12507 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12508 		offset = be32_to_cpu(sections[i].offset);
12509 		len = be32_to_cpu(sections[i].len);
12510 		if (offset + len > firmware->size) {
12511 			BNX2X_ERR("Section %d length is out of bounds\n", i);
12512 			return -EINVAL;
12513 		}
12514 	}
12515 
12516 	/* Likewise for the init_ops offsets */
12517 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12518 	ops_offsets = (__force __be16 *)(firmware->data + offset);
12519 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12520 
12521 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12522 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12523 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
12524 			return -EINVAL;
12525 		}
12526 	}
12527 
12528 	/* Check FW version */
12529 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
12530 	fw_ver = firmware->data + offset;
12531 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12532 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12533 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12534 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12535 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12536 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12537 		       BCM_5710_FW_MAJOR_VERSION,
12538 		       BCM_5710_FW_MINOR_VERSION,
12539 		       BCM_5710_FW_REVISION_VERSION,
12540 		       BCM_5710_FW_ENGINEERING_VERSION);
12541 		return -EINVAL;
12542 	}
12543 
12544 	return 0;
12545 }
12546 
12547 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12548 {
12549 	const __be32 *source = (const __be32 *)_source;
12550 	u32 *target = (u32 *)_target;
12551 	u32 i;
12552 
12553 	for (i = 0; i < n/4; i++)
12554 		target[i] = be32_to_cpu(source[i]);
12555 }
12556 
12557 /*
12558    Ops array is stored in the following format:
12559    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12560  */
12561 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12562 {
12563 	const __be32 *source = (const __be32 *)_source;
12564 	struct raw_op *target = (struct raw_op *)_target;
12565 	u32 i, j, tmp;
12566 
12567 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
12568 		tmp = be32_to_cpu(source[j]);
12569 		target[i].op = (tmp >> 24) & 0xff;
12570 		target[i].offset = tmp & 0xffffff;
12571 		target[i].raw_data = be32_to_cpu(source[j + 1]);
12572 	}
12573 }
12574 
12575 /* IRO array is stored in the following format:
12576  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12577  */
12578 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12579 {
12580 	const __be32 *source = (const __be32 *)_source;
12581 	struct iro *target = (struct iro *)_target;
12582 	u32 i, j, tmp;
12583 
12584 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12585 		target[i].base = be32_to_cpu(source[j]);
12586 		j++;
12587 		tmp = be32_to_cpu(source[j]);
12588 		target[i].m1 = (tmp >> 16) & 0xffff;
12589 		target[i].m2 = tmp & 0xffff;
12590 		j++;
12591 		tmp = be32_to_cpu(source[j]);
12592 		target[i].m3 = (tmp >> 16) & 0xffff;
12593 		target[i].size = tmp & 0xffff;
12594 		j++;
12595 	}
12596 }
12597 
12598 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12599 {
12600 	const __be16 *source = (const __be16 *)_source;
12601 	u16 *target = (u16 *)_target;
12602 	u32 i;
12603 
12604 	for (i = 0; i < n/2; i++)
12605 		target[i] = be16_to_cpu(source[i]);
12606 }
12607 
12608 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
12609 do {									\
12610 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
12611 	bp->arr = kmalloc(len, GFP_KERNEL);				\
12612 	if (!bp->arr)							\
12613 		goto lbl;						\
12614 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
12615 	     (u8 *)bp->arr, len);					\
12616 } while (0)
12617 
12618 static int bnx2x_init_firmware(struct bnx2x *bp)
12619 {
12620 	const char *fw_file_name;
12621 	struct bnx2x_fw_file_hdr *fw_hdr;
12622 	int rc;
12623 
12624 	if (bp->firmware)
12625 		return 0;
12626 
12627 	if (CHIP_IS_E1(bp))
12628 		fw_file_name = FW_FILE_NAME_E1;
12629 	else if (CHIP_IS_E1H(bp))
12630 		fw_file_name = FW_FILE_NAME_E1H;
12631 	else if (!CHIP_IS_E1x(bp))
12632 		fw_file_name = FW_FILE_NAME_E2;
12633 	else {
12634 		BNX2X_ERR("Unsupported chip revision\n");
12635 		return -EINVAL;
12636 	}
12637 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12638 
12639 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12640 	if (rc) {
12641 		BNX2X_ERR("Can't load firmware file %s\n",
12642 			  fw_file_name);
12643 		goto request_firmware_exit;
12644 	}
12645 
12646 	rc = bnx2x_check_firmware(bp);
12647 	if (rc) {
12648 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12649 		goto request_firmware_exit;
12650 	}
12651 
12652 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12653 
12654 	/* Initialize the pointers to the init arrays */
12655 	/* Blob */
12656 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12657 
12658 	/* Opcodes */
12659 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12660 
12661 	/* Offsets */
12662 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12663 			    be16_to_cpu_n);
12664 
12665 	/* STORMs firmware */
12666 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12667 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12668 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
12669 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12670 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12671 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12672 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
12673 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
12674 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12675 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12676 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
12677 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12678 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12679 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12680 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
12681 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
12682 	/* IRO */
12683 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12684 
12685 	return 0;
12686 
12687 iro_alloc_err:
12688 	kfree(bp->init_ops_offsets);
12689 init_offsets_alloc_err:
12690 	kfree(bp->init_ops);
12691 init_ops_alloc_err:
12692 	kfree(bp->init_data);
12693 request_firmware_exit:
12694 	release_firmware(bp->firmware);
12695 	bp->firmware = NULL;
12696 
12697 	return rc;
12698 }
12699 
12700 static void bnx2x_release_firmware(struct bnx2x *bp)
12701 {
12702 	kfree(bp->init_ops_offsets);
12703 	kfree(bp->init_ops);
12704 	kfree(bp->init_data);
12705 	release_firmware(bp->firmware);
12706 	bp->firmware = NULL;
12707 }
12708 
12709 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12710 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12711 	.init_hw_cmn      = bnx2x_init_hw_common,
12712 	.init_hw_port     = bnx2x_init_hw_port,
12713 	.init_hw_func     = bnx2x_init_hw_func,
12714 
12715 	.reset_hw_cmn     = bnx2x_reset_common,
12716 	.reset_hw_port    = bnx2x_reset_port,
12717 	.reset_hw_func    = bnx2x_reset_func,
12718 
12719 	.gunzip_init      = bnx2x_gunzip_init,
12720 	.gunzip_end       = bnx2x_gunzip_end,
12721 
12722 	.init_fw          = bnx2x_init_firmware,
12723 	.release_fw       = bnx2x_release_firmware,
12724 };
12725 
12726 void bnx2x__init_func_obj(struct bnx2x *bp)
12727 {
12728 	/* Prepare DMAE related driver resources */
12729 	bnx2x_setup_dmae(bp);
12730 
12731 	bnx2x_init_func_obj(bp, &bp->func_obj,
12732 			    bnx2x_sp(bp, func_rdata),
12733 			    bnx2x_sp_mapping(bp, func_rdata),
12734 			    bnx2x_sp(bp, func_afex_rdata),
12735 			    bnx2x_sp_mapping(bp, func_afex_rdata),
12736 			    &bnx2x_func_sp_drv);
12737 }
12738 
12739 /* must be called after sriov-enable */
12740 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12741 {
12742 	int cid_count = BNX2X_L2_MAX_CID(bp);
12743 
12744 	if (IS_SRIOV(bp))
12745 		cid_count += BNX2X_VF_CIDS;
12746 
12747 	if (CNIC_SUPPORT(bp))
12748 		cid_count += CNIC_CID_MAX;
12749 
12750 	return roundup(cid_count, QM_CID_ROUND);
12751 }
12752 
12753 /**
12754  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12755  *
12756  * @dev:	pci device
12757  *
12758  */
12759 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
12760 {
12761 	int index;
12762 	u16 control = 0;
12763 
12764 	/*
12765 	 * If MSI-X is not supported - return number of SBs needed to support
12766 	 * one fast path queue: one FP queue + SB for CNIC
12767 	 */
12768 	if (!pdev->msix_cap) {
12769 		dev_info(&pdev->dev, "no msix capability found\n");
12770 		return 1 + cnic_cnt;
12771 	}
12772 	dev_info(&pdev->dev, "msix capability found\n");
12773 
12774 	/*
12775 	 * The value in the PCI configuration space is the index of the last
12776 	 * entry, namely one less than the actual size of the table, which is
12777 	 * exactly what we want to return from this function: number of all SBs
12778 	 * without the default SB.
12779 	 * For VFs there is no default SB, then we return (index+1).
12780 	 */
12781 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSI_FLAGS, &control);
12782 
12783 	index = control & PCI_MSIX_FLAGS_QSIZE;
12784 
12785 	return index;
12786 }
12787 
12788 static int set_max_cos_est(int chip_id)
12789 {
12790 	switch (chip_id) {
12791 	case BCM57710:
12792 	case BCM57711:
12793 	case BCM57711E:
12794 		return BNX2X_MULTI_TX_COS_E1X;
12795 	case BCM57712:
12796 	case BCM57712_MF:
12797 		return BNX2X_MULTI_TX_COS_E2_E3A0;
12798 	case BCM57800:
12799 	case BCM57800_MF:
12800 	case BCM57810:
12801 	case BCM57810_MF:
12802 	case BCM57840_4_10:
12803 	case BCM57840_2_20:
12804 	case BCM57840_O:
12805 	case BCM57840_MFO:
12806 	case BCM57840_MF:
12807 	case BCM57811:
12808 	case BCM57811_MF:
12809 		return BNX2X_MULTI_TX_COS_E3B0;
12810 	case BCM57712_VF:
12811 	case BCM57800_VF:
12812 	case BCM57810_VF:
12813 	case BCM57840_VF:
12814 	case BCM57811_VF:
12815 		return 1;
12816 	default:
12817 		pr_err("Unknown board_type (%d), aborting\n", chip_id);
12818 		return -ENODEV;
12819 	}
12820 }
12821 
12822 static int set_is_vf(int chip_id)
12823 {
12824 	switch (chip_id) {
12825 	case BCM57712_VF:
12826 	case BCM57800_VF:
12827 	case BCM57810_VF:
12828 	case BCM57840_VF:
12829 	case BCM57811_VF:
12830 		return true;
12831 	default:
12832 		return false;
12833 	}
12834 }
12835 
12836 static int bnx2x_init_one(struct pci_dev *pdev,
12837 				    const struct pci_device_id *ent)
12838 {
12839 	struct net_device *dev = NULL;
12840 	struct bnx2x *bp;
12841 	enum pcie_link_width pcie_width;
12842 	enum pci_bus_speed pcie_speed;
12843 	int rc, max_non_def_sbs;
12844 	int rx_count, tx_count, rss_count, doorbell_size;
12845 	int max_cos_est;
12846 	bool is_vf;
12847 	int cnic_cnt;
12848 
12849 	/* An estimated maximum supported CoS number according to the chip
12850 	 * version.
12851 	 * We will try to roughly estimate the maximum number of CoSes this chip
12852 	 * may support in order to minimize the memory allocated for Tx
12853 	 * netdev_queue's. This number will be accurately calculated during the
12854 	 * initialization of bp->max_cos based on the chip versions AND chip
12855 	 * revision in the bnx2x_init_bp().
12856 	 */
12857 	max_cos_est = set_max_cos_est(ent->driver_data);
12858 	if (max_cos_est < 0)
12859 		return max_cos_est;
12860 	is_vf = set_is_vf(ent->driver_data);
12861 	cnic_cnt = is_vf ? 0 : 1;
12862 
12863 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
12864 
12865 	/* add another SB for VF as it has no default SB */
12866 	max_non_def_sbs += is_vf ? 1 : 0;
12867 
12868 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
12869 	rss_count = max_non_def_sbs - cnic_cnt;
12870 
12871 	if (rss_count < 1)
12872 		return -EINVAL;
12873 
12874 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12875 	rx_count = rss_count + cnic_cnt;
12876 
12877 	/* Maximum number of netdev Tx queues:
12878 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
12879 	 */
12880 	tx_count = rss_count * max_cos_est + cnic_cnt;
12881 
12882 	/* dev zeroed in init_etherdev */
12883 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
12884 	if (!dev)
12885 		return -ENOMEM;
12886 
12887 	bp = netdev_priv(dev);
12888 
12889 	bp->flags = 0;
12890 	if (is_vf)
12891 		bp->flags |= IS_VF_FLAG;
12892 
12893 	bp->igu_sb_cnt = max_non_def_sbs;
12894 	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
12895 	bp->msg_enable = debug;
12896 	bp->cnic_support = cnic_cnt;
12897 	bp->cnic_probe = bnx2x_cnic_probe;
12898 
12899 	pci_set_drvdata(pdev, dev);
12900 
12901 	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
12902 	if (rc < 0) {
12903 		free_netdev(dev);
12904 		return rc;
12905 	}
12906 
12907 	BNX2X_DEV_INFO("This is a %s function\n",
12908 		       IS_PF(bp) ? "physical" : "virtual");
12909 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
12910 	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
12911 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12912 		       tx_count, rx_count);
12913 
12914 	rc = bnx2x_init_bp(bp);
12915 	if (rc)
12916 		goto init_one_exit;
12917 
12918 	/* Map doorbells here as we need the real value of bp->max_cos which
12919 	 * is initialized in bnx2x_init_bp() to determine the number of
12920 	 * l2 connections.
12921 	 */
12922 	if (IS_VF(bp)) {
12923 		bp->doorbells = bnx2x_vf_doorbells(bp);
12924 		rc = bnx2x_vf_pci_alloc(bp);
12925 		if (rc)
12926 			goto init_one_exit;
12927 	} else {
12928 		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
12929 		if (doorbell_size > pci_resource_len(pdev, 2)) {
12930 			dev_err(&bp->pdev->dev,
12931 				"Cannot map doorbells, bar size too small, aborting\n");
12932 			rc = -ENOMEM;
12933 			goto init_one_exit;
12934 		}
12935 		bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
12936 						doorbell_size);
12937 	}
12938 	if (!bp->doorbells) {
12939 		dev_err(&bp->pdev->dev,
12940 			"Cannot map doorbell space, aborting\n");
12941 		rc = -ENOMEM;
12942 		goto init_one_exit;
12943 	}
12944 
12945 	if (IS_VF(bp)) {
12946 		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
12947 		if (rc)
12948 			goto init_one_exit;
12949 	}
12950 
12951 	/* Enable SRIOV if capability found in configuration space */
12952 	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
12953 	if (rc)
12954 		goto init_one_exit;
12955 
12956 	/* calc qm_cid_count */
12957 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
12958 	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
12959 
12960 	/* disable FCOE L2 queue for E1x*/
12961 	if (CHIP_IS_E1x(bp))
12962 		bp->flags |= NO_FCOE_FLAG;
12963 
12964 	/* Set bp->num_queues for MSI-X mode*/
12965 	bnx2x_set_num_queues(bp);
12966 
12967 	/* Configure interrupt mode: try to enable MSI-X/MSI if
12968 	 * needed.
12969 	 */
12970 	rc = bnx2x_set_int_mode(bp);
12971 	if (rc) {
12972 		dev_err(&pdev->dev, "Cannot set interrupts\n");
12973 		goto init_one_exit;
12974 	}
12975 	BNX2X_DEV_INFO("set interrupts successfully\n");
12976 
12977 	/* register the net device */
12978 	rc = register_netdev(dev);
12979 	if (rc) {
12980 		dev_err(&pdev->dev, "Cannot register net device\n");
12981 		goto init_one_exit;
12982 	}
12983 	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
12984 
12985 	if (!NO_FCOE(bp)) {
12986 		/* Add storage MAC address */
12987 		rtnl_lock();
12988 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12989 		rtnl_unlock();
12990 	}
12991 	if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
12992 	    pcie_speed == PCI_SPEED_UNKNOWN ||
12993 	    pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
12994 		BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
12995 	else
12996 		BNX2X_DEV_INFO(
12997 		       "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12998 		       board_info[ent->driver_data].name,
12999 		       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13000 		       pcie_width,
13001 		       pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
13002 		       pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
13003 		       pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
13004 		       "Unknown",
13005 		       dev->base_addr, bp->pdev->irq, dev->dev_addr);
13006 
13007 	return 0;
13008 
13009 init_one_exit:
13010 	bnx2x_disable_pcie_error_reporting(bp);
13011 
13012 	if (bp->regview)
13013 		iounmap(bp->regview);
13014 
13015 	if (IS_PF(bp) && bp->doorbells)
13016 		iounmap(bp->doorbells);
13017 
13018 	free_netdev(dev);
13019 
13020 	if (atomic_read(&pdev->enable_cnt) == 1)
13021 		pci_release_regions(pdev);
13022 
13023 	pci_disable_device(pdev);
13024 
13025 	return rc;
13026 }
13027 
13028 static void __bnx2x_remove(struct pci_dev *pdev,
13029 			   struct net_device *dev,
13030 			   struct bnx2x *bp,
13031 			   bool remove_netdev)
13032 {
13033 	/* Delete storage MAC address */
13034 	if (!NO_FCOE(bp)) {
13035 		rtnl_lock();
13036 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13037 		rtnl_unlock();
13038 	}
13039 
13040 #ifdef BCM_DCBNL
13041 	/* Delete app tlvs from dcbnl */
13042 	bnx2x_dcbnl_update_applist(bp, true);
13043 #endif
13044 
13045 	if (IS_PF(bp) &&
13046 	    !BP_NOMCP(bp) &&
13047 	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
13048 		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
13049 
13050 	/* Close the interface - either directly or implicitly */
13051 	if (remove_netdev) {
13052 		unregister_netdev(dev);
13053 	} else {
13054 		rtnl_lock();
13055 		dev_close(dev);
13056 		rtnl_unlock();
13057 	}
13058 
13059 	bnx2x_iov_remove_one(bp);
13060 
13061 	/* Power on: we can't let PCI layer write to us while we are in D3 */
13062 	if (IS_PF(bp))
13063 		bnx2x_set_power_state(bp, PCI_D0);
13064 
13065 	/* Disable MSI/MSI-X */
13066 	bnx2x_disable_msi(bp);
13067 
13068 	/* Power off */
13069 	if (IS_PF(bp))
13070 		bnx2x_set_power_state(bp, PCI_D3hot);
13071 
13072 	/* Make sure RESET task is not scheduled before continuing */
13073 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
13074 
13075 	/* send message via vfpf channel to release the resources of this vf */
13076 	if (IS_VF(bp))
13077 		bnx2x_vfpf_release(bp);
13078 
13079 	/* Assumes no further PCIe PM changes will occur */
13080 	if (system_state == SYSTEM_POWER_OFF) {
13081 		pci_wake_from_d3(pdev, bp->wol);
13082 		pci_set_power_state(pdev, PCI_D3hot);
13083 	}
13084 
13085 	bnx2x_disable_pcie_error_reporting(bp);
13086 	if (remove_netdev) {
13087 		if (bp->regview)
13088 			iounmap(bp->regview);
13089 
13090 		/* For vfs, doorbells are part of the regview and were unmapped
13091 		 * along with it. FW is only loaded by PF.
13092 		 */
13093 		if (IS_PF(bp)) {
13094 			if (bp->doorbells)
13095 				iounmap(bp->doorbells);
13096 
13097 			bnx2x_release_firmware(bp);
13098 		}
13099 		bnx2x_free_mem_bp(bp);
13100 
13101 		free_netdev(dev);
13102 
13103 		if (atomic_read(&pdev->enable_cnt) == 1)
13104 			pci_release_regions(pdev);
13105 
13106 		pci_disable_device(pdev);
13107 	}
13108 }
13109 
13110 static void bnx2x_remove_one(struct pci_dev *pdev)
13111 {
13112 	struct net_device *dev = pci_get_drvdata(pdev);
13113 	struct bnx2x *bp;
13114 
13115 	if (!dev) {
13116 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
13117 		return;
13118 	}
13119 	bp = netdev_priv(dev);
13120 
13121 	__bnx2x_remove(pdev, dev, bp, true);
13122 }
13123 
13124 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
13125 {
13126 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
13127 
13128 	bp->rx_mode = BNX2X_RX_MODE_NONE;
13129 
13130 	if (CNIC_LOADED(bp))
13131 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
13132 
13133 	/* Stop Tx */
13134 	bnx2x_tx_disable(bp);
13135 	/* Delete all NAPI objects */
13136 	bnx2x_del_all_napi(bp);
13137 	if (CNIC_LOADED(bp))
13138 		bnx2x_del_all_napi_cnic(bp);
13139 	netdev_reset_tc(bp->dev);
13140 
13141 	del_timer_sync(&bp->timer);
13142 	cancel_delayed_work(&bp->sp_task);
13143 	cancel_delayed_work(&bp->period_task);
13144 
13145 	spin_lock_bh(&bp->stats_lock);
13146 	bp->stats_state = STATS_STATE_DISABLED;
13147 	spin_unlock_bh(&bp->stats_lock);
13148 
13149 	bnx2x_save_statistics(bp);
13150 
13151 	netif_carrier_off(bp->dev);
13152 
13153 	return 0;
13154 }
13155 
13156 /**
13157  * bnx2x_io_error_detected - called when PCI error is detected
13158  * @pdev: Pointer to PCI device
13159  * @state: The current pci connection state
13160  *
13161  * This function is called after a PCI bus error affecting
13162  * this device has been detected.
13163  */
13164 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
13165 						pci_channel_state_t state)
13166 {
13167 	struct net_device *dev = pci_get_drvdata(pdev);
13168 	struct bnx2x *bp = netdev_priv(dev);
13169 
13170 	rtnl_lock();
13171 
13172 	BNX2X_ERR("IO error detected\n");
13173 
13174 	netif_device_detach(dev);
13175 
13176 	if (state == pci_channel_io_perm_failure) {
13177 		rtnl_unlock();
13178 		return PCI_ERS_RESULT_DISCONNECT;
13179 	}
13180 
13181 	if (netif_running(dev))
13182 		bnx2x_eeh_nic_unload(bp);
13183 
13184 	bnx2x_prev_path_mark_eeh(bp);
13185 
13186 	pci_disable_device(pdev);
13187 
13188 	rtnl_unlock();
13189 
13190 	/* Request a slot reset */
13191 	return PCI_ERS_RESULT_NEED_RESET;
13192 }
13193 
13194 /**
13195  * bnx2x_io_slot_reset - called after the PCI bus has been reset
13196  * @pdev: Pointer to PCI device
13197  *
13198  * Restart the card from scratch, as if from a cold-boot.
13199  */
13200 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
13201 {
13202 	struct net_device *dev = pci_get_drvdata(pdev);
13203 	struct bnx2x *bp = netdev_priv(dev);
13204 	int i;
13205 
13206 	rtnl_lock();
13207 	BNX2X_ERR("IO slot reset initializing...\n");
13208 	if (pci_enable_device(pdev)) {
13209 		dev_err(&pdev->dev,
13210 			"Cannot re-enable PCI device after reset\n");
13211 		rtnl_unlock();
13212 		return PCI_ERS_RESULT_DISCONNECT;
13213 	}
13214 
13215 	pci_set_master(pdev);
13216 	pci_restore_state(pdev);
13217 	pci_save_state(pdev);
13218 
13219 	if (netif_running(dev))
13220 		bnx2x_set_power_state(bp, PCI_D0);
13221 
13222 	if (netif_running(dev)) {
13223 		BNX2X_ERR("IO slot reset --> driver unload\n");
13224 
13225 		/* MCP should have been reset; Need to wait for validity */
13226 		bnx2x_init_shmem(bp);
13227 
13228 		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13229 			u32 v;
13230 
13231 			v = SHMEM2_RD(bp,
13232 				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13233 			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13234 				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13235 		}
13236 		bnx2x_drain_tx_queues(bp);
13237 		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13238 		bnx2x_netif_stop(bp, 1);
13239 		bnx2x_free_irq(bp);
13240 
13241 		/* Report UNLOAD_DONE to MCP */
13242 		bnx2x_send_unload_done(bp, true);
13243 
13244 		bp->sp_state = 0;
13245 		bp->port.pmf = 0;
13246 
13247 		bnx2x_prev_unload(bp);
13248 
13249 		/* We should have reseted the engine, so It's fair to
13250 		 * assume the FW will no longer write to the bnx2x driver.
13251 		 */
13252 		bnx2x_squeeze_objects(bp);
13253 		bnx2x_free_skbs(bp);
13254 		for_each_rx_queue(bp, i)
13255 			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13256 		bnx2x_free_fp_mem(bp);
13257 		bnx2x_free_mem(bp);
13258 
13259 		bp->state = BNX2X_STATE_CLOSED;
13260 	}
13261 
13262 	rtnl_unlock();
13263 
13264 	/* If AER, perform cleanup of the PCIe registers */
13265 	if (bp->flags & AER_ENABLED) {
13266 		if (pci_cleanup_aer_uncorrect_error_status(pdev))
13267 			BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
13268 		else
13269 			DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
13270 	}
13271 
13272 	return PCI_ERS_RESULT_RECOVERED;
13273 }
13274 
13275 /**
13276  * bnx2x_io_resume - called when traffic can start flowing again
13277  * @pdev: Pointer to PCI device
13278  *
13279  * This callback is called when the error recovery driver tells us that
13280  * its OK to resume normal operation.
13281  */
13282 static void bnx2x_io_resume(struct pci_dev *pdev)
13283 {
13284 	struct net_device *dev = pci_get_drvdata(pdev);
13285 	struct bnx2x *bp = netdev_priv(dev);
13286 
13287 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13288 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13289 		return;
13290 	}
13291 
13292 	rtnl_lock();
13293 
13294 	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13295 							DRV_MSG_SEQ_NUMBER_MASK;
13296 
13297 	if (netif_running(dev))
13298 		bnx2x_nic_load(bp, LOAD_NORMAL);
13299 
13300 	netif_device_attach(dev);
13301 
13302 	rtnl_unlock();
13303 }
13304 
13305 static const struct pci_error_handlers bnx2x_err_handler = {
13306 	.error_detected = bnx2x_io_error_detected,
13307 	.slot_reset     = bnx2x_io_slot_reset,
13308 	.resume         = bnx2x_io_resume,
13309 };
13310 
13311 static void bnx2x_shutdown(struct pci_dev *pdev)
13312 {
13313 	struct net_device *dev = pci_get_drvdata(pdev);
13314 	struct bnx2x *bp;
13315 
13316 	if (!dev)
13317 		return;
13318 
13319 	bp = netdev_priv(dev);
13320 	if (!bp)
13321 		return;
13322 
13323 	rtnl_lock();
13324 	netif_device_detach(dev);
13325 	rtnl_unlock();
13326 
13327 	/* Don't remove the netdevice, as there are scenarios which will cause
13328 	 * the kernel to hang, e.g., when trying to remove bnx2i while the
13329 	 * rootfs is mounted from SAN.
13330 	 */
13331 	__bnx2x_remove(pdev, dev, bp, false);
13332 }
13333 
13334 static struct pci_driver bnx2x_pci_driver = {
13335 	.name        = DRV_MODULE_NAME,
13336 	.id_table    = bnx2x_pci_tbl,
13337 	.probe       = bnx2x_init_one,
13338 	.remove      = bnx2x_remove_one,
13339 	.suspend     = bnx2x_suspend,
13340 	.resume      = bnx2x_resume,
13341 	.err_handler = &bnx2x_err_handler,
13342 #ifdef CONFIG_BNX2X_SRIOV
13343 	.sriov_configure = bnx2x_sriov_configure,
13344 #endif
13345 	.shutdown    = bnx2x_shutdown,
13346 };
13347 
13348 static int __init bnx2x_init(void)
13349 {
13350 	int ret;
13351 
13352 	pr_info("%s", version);
13353 
13354 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
13355 	if (bnx2x_wq == NULL) {
13356 		pr_err("Cannot create workqueue\n");
13357 		return -ENOMEM;
13358 	}
13359 
13360 	ret = pci_register_driver(&bnx2x_pci_driver);
13361 	if (ret) {
13362 		pr_err("Cannot register driver\n");
13363 		destroy_workqueue(bnx2x_wq);
13364 	}
13365 	return ret;
13366 }
13367 
13368 static void __exit bnx2x_cleanup(void)
13369 {
13370 	struct list_head *pos, *q;
13371 
13372 	pci_unregister_driver(&bnx2x_pci_driver);
13373 
13374 	destroy_workqueue(bnx2x_wq);
13375 
13376 	/* Free globally allocated resources */
13377 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
13378 		struct bnx2x_prev_path_list *tmp =
13379 			list_entry(pos, struct bnx2x_prev_path_list, list);
13380 		list_del(pos);
13381 		kfree(tmp);
13382 	}
13383 }
13384 
13385 void bnx2x_notify_link_changed(struct bnx2x *bp)
13386 {
13387 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13388 }
13389 
13390 module_init(bnx2x_init);
13391 module_exit(bnx2x_cleanup);
13392 
13393 /**
13394  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13395  *
13396  * @bp:		driver handle
13397  * @set:	set or clear the CAM entry
13398  *
13399  * This function will wait until the ramrod completion returns.
13400  * Return 0 if success, -ENODEV if ramrod doesn't return.
13401  */
13402 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13403 {
13404 	unsigned long ramrod_flags = 0;
13405 
13406 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13407 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13408 				 &bp->iscsi_l2_mac_obj, true,
13409 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13410 }
13411 
13412 /* count denotes the number of new completions we have seen */
13413 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13414 {
13415 	struct eth_spe *spe;
13416 	int cxt_index, cxt_offset;
13417 
13418 #ifdef BNX2X_STOP_ON_ERROR
13419 	if (unlikely(bp->panic))
13420 		return;
13421 #endif
13422 
13423 	spin_lock_bh(&bp->spq_lock);
13424 	BUG_ON(bp->cnic_spq_pending < count);
13425 	bp->cnic_spq_pending -= count;
13426 
13427 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13428 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13429 				& SPE_HDR_CONN_TYPE) >>
13430 				SPE_HDR_CONN_TYPE_SHIFT;
13431 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13432 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13433 
13434 		/* Set validation for iSCSI L2 client before sending SETUP
13435 		 *  ramrod
13436 		 */
13437 		if (type == ETH_CONNECTION_TYPE) {
13438 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13439 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13440 					ILT_PAGE_CIDS;
13441 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13442 					(cxt_index * ILT_PAGE_CIDS);
13443 				bnx2x_set_ctx_validation(bp,
13444 					&bp->context[cxt_index].
13445 							 vcxt[cxt_offset].eth,
13446 					BNX2X_ISCSI_ETH_CID(bp));
13447 			}
13448 		}
13449 
13450 		/*
13451 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
13452 		 * and in the air. We also check that number of outstanding
13453 		 * COMMON ramrods is not more than the EQ and SPQ can
13454 		 * accommodate.
13455 		 */
13456 		if (type == ETH_CONNECTION_TYPE) {
13457 			if (!atomic_read(&bp->cq_spq_left))
13458 				break;
13459 			else
13460 				atomic_dec(&bp->cq_spq_left);
13461 		} else if (type == NONE_CONNECTION_TYPE) {
13462 			if (!atomic_read(&bp->eq_spq_left))
13463 				break;
13464 			else
13465 				atomic_dec(&bp->eq_spq_left);
13466 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
13467 			   (type == FCOE_CONNECTION_TYPE)) {
13468 			if (bp->cnic_spq_pending >=
13469 			    bp->cnic_eth_dev.max_kwqe_pending)
13470 				break;
13471 			else
13472 				bp->cnic_spq_pending++;
13473 		} else {
13474 			BNX2X_ERR("Unknown SPE type: %d\n", type);
13475 			bnx2x_panic();
13476 			break;
13477 		}
13478 
13479 		spe = bnx2x_sp_get_next(bp);
13480 		*spe = *bp->cnic_kwq_cons;
13481 
13482 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
13483 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
13484 
13485 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
13486 			bp->cnic_kwq_cons = bp->cnic_kwq;
13487 		else
13488 			bp->cnic_kwq_cons++;
13489 	}
13490 	bnx2x_sp_prod_update(bp);
13491 	spin_unlock_bh(&bp->spq_lock);
13492 }
13493 
13494 static int bnx2x_cnic_sp_queue(struct net_device *dev,
13495 			       struct kwqe_16 *kwqes[], u32 count)
13496 {
13497 	struct bnx2x *bp = netdev_priv(dev);
13498 	int i;
13499 
13500 #ifdef BNX2X_STOP_ON_ERROR
13501 	if (unlikely(bp->panic)) {
13502 		BNX2X_ERR("Can't post to SP queue while panic\n");
13503 		return -EIO;
13504 	}
13505 #endif
13506 
13507 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
13508 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
13509 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
13510 		return -EAGAIN;
13511 	}
13512 
13513 	spin_lock_bh(&bp->spq_lock);
13514 
13515 	for (i = 0; i < count; i++) {
13516 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
13517 
13518 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
13519 			break;
13520 
13521 		*bp->cnic_kwq_prod = *spe;
13522 
13523 		bp->cnic_kwq_pending++;
13524 
13525 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
13526 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
13527 		   spe->data.update_data_addr.hi,
13528 		   spe->data.update_data_addr.lo,
13529 		   bp->cnic_kwq_pending);
13530 
13531 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
13532 			bp->cnic_kwq_prod = bp->cnic_kwq;
13533 		else
13534 			bp->cnic_kwq_prod++;
13535 	}
13536 
13537 	spin_unlock_bh(&bp->spq_lock);
13538 
13539 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
13540 		bnx2x_cnic_sp_post(bp, 0);
13541 
13542 	return i;
13543 }
13544 
13545 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13546 {
13547 	struct cnic_ops *c_ops;
13548 	int rc = 0;
13549 
13550 	mutex_lock(&bp->cnic_mutex);
13551 	c_ops = rcu_dereference_protected(bp->cnic_ops,
13552 					  lockdep_is_held(&bp->cnic_mutex));
13553 	if (c_ops)
13554 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13555 	mutex_unlock(&bp->cnic_mutex);
13556 
13557 	return rc;
13558 }
13559 
13560 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13561 {
13562 	struct cnic_ops *c_ops;
13563 	int rc = 0;
13564 
13565 	rcu_read_lock();
13566 	c_ops = rcu_dereference(bp->cnic_ops);
13567 	if (c_ops)
13568 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13569 	rcu_read_unlock();
13570 
13571 	return rc;
13572 }
13573 
13574 /*
13575  * for commands that have no data
13576  */
13577 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
13578 {
13579 	struct cnic_ctl_info ctl = {0};
13580 
13581 	ctl.cmd = cmd;
13582 
13583 	return bnx2x_cnic_ctl_send(bp, &ctl);
13584 }
13585 
13586 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
13587 {
13588 	struct cnic_ctl_info ctl = {0};
13589 
13590 	/* first we tell CNIC and only then we count this as a completion */
13591 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
13592 	ctl.data.comp.cid = cid;
13593 	ctl.data.comp.error = err;
13594 
13595 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
13596 	bnx2x_cnic_sp_post(bp, 0);
13597 }
13598 
13599 /* Called with netif_addr_lock_bh() taken.
13600  * Sets an rx_mode config for an iSCSI ETH client.
13601  * Doesn't block.
13602  * Completion should be checked outside.
13603  */
13604 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
13605 {
13606 	unsigned long accept_flags = 0, ramrod_flags = 0;
13607 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13608 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
13609 
13610 	if (start) {
13611 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
13612 		 * because it's the only way for UIO Queue to accept
13613 		 * multicasts (in non-promiscuous mode only one Queue per
13614 		 * function will receive multicast packets (leading in our
13615 		 * case).
13616 		 */
13617 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
13618 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
13619 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
13620 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
13621 
13622 		/* Clear STOP_PENDING bit if START is requested */
13623 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
13624 
13625 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
13626 	} else
13627 		/* Clear START_PENDING bit if STOP is requested */
13628 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
13629 
13630 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
13631 		set_bit(sched_state, &bp->sp_state);
13632 	else {
13633 		__set_bit(RAMROD_RX, &ramrod_flags);
13634 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
13635 				    ramrod_flags);
13636 	}
13637 }
13638 
13639 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
13640 {
13641 	struct bnx2x *bp = netdev_priv(dev);
13642 	int rc = 0;
13643 
13644 	switch (ctl->cmd) {
13645 	case DRV_CTL_CTXTBL_WR_CMD: {
13646 		u32 index = ctl->data.io.offset;
13647 		dma_addr_t addr = ctl->data.io.dma_addr;
13648 
13649 		bnx2x_ilt_wr(bp, index, addr);
13650 		break;
13651 	}
13652 
13653 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
13654 		int count = ctl->data.credit.credit_count;
13655 
13656 		bnx2x_cnic_sp_post(bp, count);
13657 		break;
13658 	}
13659 
13660 	/* rtnl_lock is held.  */
13661 	case DRV_CTL_START_L2_CMD: {
13662 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13663 		unsigned long sp_bits = 0;
13664 
13665 		/* Configure the iSCSI classification object */
13666 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
13667 				   cp->iscsi_l2_client_id,
13668 				   cp->iscsi_l2_cid, BP_FUNC(bp),
13669 				   bnx2x_sp(bp, mac_rdata),
13670 				   bnx2x_sp_mapping(bp, mac_rdata),
13671 				   BNX2X_FILTER_MAC_PENDING,
13672 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
13673 				   &bp->macs_pool);
13674 
13675 		/* Set iSCSI MAC address */
13676 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
13677 		if (rc)
13678 			break;
13679 
13680 		mmiowb();
13681 		barrier();
13682 
13683 		/* Start accepting on iSCSI L2 ring */
13684 
13685 		netif_addr_lock_bh(dev);
13686 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
13687 		netif_addr_unlock_bh(dev);
13688 
13689 		/* bits to wait on */
13690 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13691 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
13692 
13693 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
13694 			BNX2X_ERR("rx_mode completion timed out!\n");
13695 
13696 		break;
13697 	}
13698 
13699 	/* rtnl_lock is held.  */
13700 	case DRV_CTL_STOP_L2_CMD: {
13701 		unsigned long sp_bits = 0;
13702 
13703 		/* Stop accepting on iSCSI L2 ring */
13704 		netif_addr_lock_bh(dev);
13705 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
13706 		netif_addr_unlock_bh(dev);
13707 
13708 		/* bits to wait on */
13709 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13710 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13711 
13712 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
13713 			BNX2X_ERR("rx_mode completion timed out!\n");
13714 
13715 		mmiowb();
13716 		barrier();
13717 
13718 		/* Unset iSCSI L2 MAC */
13719 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13720 					BNX2X_ISCSI_ETH_MAC, true);
13721 		break;
13722 	}
13723 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13724 		int count = ctl->data.credit.credit_count;
13725 
13726 		smp_mb__before_atomic_inc();
13727 		atomic_add(count, &bp->cq_spq_left);
13728 		smp_mb__after_atomic_inc();
13729 		break;
13730 	}
13731 	case DRV_CTL_ULP_REGISTER_CMD: {
13732 		int ulp_type = ctl->data.register_data.ulp_type;
13733 
13734 		if (CHIP_IS_E3(bp)) {
13735 			int idx = BP_FW_MB_IDX(bp);
13736 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13737 			int path = BP_PATH(bp);
13738 			int port = BP_PORT(bp);
13739 			int i;
13740 			u32 scratch_offset;
13741 			u32 *host_addr;
13742 
13743 			/* first write capability to shmem2 */
13744 			if (ulp_type == CNIC_ULP_ISCSI)
13745 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13746 			else if (ulp_type == CNIC_ULP_FCOE)
13747 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13748 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13749 
13750 			if ((ulp_type != CNIC_ULP_FCOE) ||
13751 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13752 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
13753 				break;
13754 
13755 			/* if reached here - should write fcoe capabilities */
13756 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13757 			if (!scratch_offset)
13758 				break;
13759 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
13760 						   fcoe_features[path][port]);
13761 			host_addr = (u32 *) &(ctl->data.register_data.
13762 					      fcoe_features);
13763 			for (i = 0; i < sizeof(struct fcoe_capabilities);
13764 			     i += 4)
13765 				REG_WR(bp, scratch_offset + i,
13766 				       *(host_addr + i/4));
13767 		}
13768 		break;
13769 	}
13770 
13771 	case DRV_CTL_ULP_UNREGISTER_CMD: {
13772 		int ulp_type = ctl->data.ulp_type;
13773 
13774 		if (CHIP_IS_E3(bp)) {
13775 			int idx = BP_FW_MB_IDX(bp);
13776 			u32 cap;
13777 
13778 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13779 			if (ulp_type == CNIC_ULP_ISCSI)
13780 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13781 			else if (ulp_type == CNIC_ULP_FCOE)
13782 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13783 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13784 		}
13785 		break;
13786 	}
13787 
13788 	default:
13789 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
13790 		rc = -EINVAL;
13791 	}
13792 
13793 	return rc;
13794 }
13795 
13796 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13797 {
13798 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13799 
13800 	if (bp->flags & USING_MSIX_FLAG) {
13801 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13802 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13803 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
13804 	} else {
13805 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13806 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13807 	}
13808 	if (!CHIP_IS_E1x(bp))
13809 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13810 	else
13811 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13812 
13813 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
13814 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13815 	cp->irq_arr[1].status_blk = bp->def_status_blk;
13816 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
13817 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
13818 
13819 	cp->num_irq = 2;
13820 }
13821 
13822 void bnx2x_setup_cnic_info(struct bnx2x *bp)
13823 {
13824 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13825 
13826 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13827 			     bnx2x_cid_ilt_lines(bp);
13828 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13829 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13830 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13831 
13832 	DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
13833 	   BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
13834 	   cp->iscsi_l2_cid);
13835 
13836 	if (NO_ISCSI_OOO(bp))
13837 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13838 }
13839 
13840 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
13841 			       void *data)
13842 {
13843 	struct bnx2x *bp = netdev_priv(dev);
13844 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13845 	int rc;
13846 
13847 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
13848 
13849 	if (ops == NULL) {
13850 		BNX2X_ERR("NULL ops received\n");
13851 		return -EINVAL;
13852 	}
13853 
13854 	if (!CNIC_SUPPORT(bp)) {
13855 		BNX2X_ERR("Can't register CNIC when not supported\n");
13856 		return -EOPNOTSUPP;
13857 	}
13858 
13859 	if (!CNIC_LOADED(bp)) {
13860 		rc = bnx2x_load_cnic(bp);
13861 		if (rc) {
13862 			BNX2X_ERR("CNIC-related load failed\n");
13863 			return rc;
13864 		}
13865 	}
13866 
13867 	bp->cnic_enabled = true;
13868 
13869 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
13870 	if (!bp->cnic_kwq)
13871 		return -ENOMEM;
13872 
13873 	bp->cnic_kwq_cons = bp->cnic_kwq;
13874 	bp->cnic_kwq_prod = bp->cnic_kwq;
13875 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
13876 
13877 	bp->cnic_spq_pending = 0;
13878 	bp->cnic_kwq_pending = 0;
13879 
13880 	bp->cnic_data = data;
13881 
13882 	cp->num_irq = 0;
13883 	cp->drv_state |= CNIC_DRV_STATE_REGD;
13884 	cp->iro_arr = bp->iro_arr;
13885 
13886 	bnx2x_setup_cnic_irq_info(bp);
13887 
13888 	rcu_assign_pointer(bp->cnic_ops, ops);
13889 
13890 	return 0;
13891 }
13892 
13893 static int bnx2x_unregister_cnic(struct net_device *dev)
13894 {
13895 	struct bnx2x *bp = netdev_priv(dev);
13896 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13897 
13898 	mutex_lock(&bp->cnic_mutex);
13899 	cp->drv_state = 0;
13900 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
13901 	mutex_unlock(&bp->cnic_mutex);
13902 	synchronize_rcu();
13903 	bp->cnic_enabled = false;
13904 	kfree(bp->cnic_kwq);
13905 	bp->cnic_kwq = NULL;
13906 
13907 	return 0;
13908 }
13909 
13910 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
13911 {
13912 	struct bnx2x *bp = netdev_priv(dev);
13913 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13914 
13915 	/* If both iSCSI and FCoE are disabled - return NULL in
13916 	 * order to indicate CNIC that it should not try to work
13917 	 * with this device.
13918 	 */
13919 	if (NO_ISCSI(bp) && NO_FCOE(bp))
13920 		return NULL;
13921 
13922 	cp->drv_owner = THIS_MODULE;
13923 	cp->chip_id = CHIP_ID(bp);
13924 	cp->pdev = bp->pdev;
13925 	cp->io_base = bp->regview;
13926 	cp->io_base2 = bp->doorbells;
13927 	cp->max_kwqe_pending = 8;
13928 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
13929 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13930 			     bnx2x_cid_ilt_lines(bp);
13931 	cp->ctx_tbl_len = CNIC_ILT_LINES;
13932 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13933 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
13934 	cp->drv_ctl = bnx2x_drv_ctl;
13935 	cp->drv_register_cnic = bnx2x_register_cnic;
13936 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
13937 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13938 	cp->iscsi_l2_client_id =
13939 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13940 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13941 
13942 	if (NO_ISCSI_OOO(bp))
13943 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13944 
13945 	if (NO_ISCSI(bp))
13946 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
13947 
13948 	if (NO_FCOE(bp))
13949 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
13950 
13951 	BNX2X_DEV_INFO(
13952 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
13953 	   cp->ctx_blk_size,
13954 	   cp->ctx_tbl_offset,
13955 	   cp->ctx_tbl_len,
13956 	   cp->starting_cid);
13957 	return cp;
13958 }
13959 
13960 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
13961 {
13962 	struct bnx2x *bp = fp->bp;
13963 	u32 offset = BAR_USTRORM_INTMEM;
13964 
13965 	if (IS_VF(bp))
13966 		return bnx2x_vf_ustorm_prods_offset(bp, fp);
13967 	else if (!CHIP_IS_E1x(bp))
13968 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
13969 	else
13970 		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
13971 
13972 	return offset;
13973 }
13974 
13975 /* called only on E1H or E2.
13976  * When pretending to be PF, the pretend value is the function number 0...7
13977  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
13978  * combination
13979  */
13980 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
13981 {
13982 	u32 pretend_reg;
13983 
13984 	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
13985 		return -1;
13986 
13987 	/* get my own pretend register */
13988 	pretend_reg = bnx2x_get_pretend_reg(bp);
13989 	REG_WR(bp, pretend_reg, pretend_func_val);
13990 	REG_RD(bp, pretend_reg);
13991 	return 0;
13992 }
13993