1 /* bnx2x_main.c: QLogic Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * Copyright (c) 2014 QLogic Corporation 5 * All rights reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation. 10 * 11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 12 * Written by: Eliezer Tamir 13 * Based on code from Michael Chan's bnx2 driver 14 * UDP CSUM errata workaround by Arik Gendelman 15 * Slowpath and fastpath rework by Vladislav Zolotarov 16 * Statistics and Link management by Yitchak Gertner 17 * 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/module.h> 23 #include <linux/moduleparam.h> 24 #include <linux/kernel.h> 25 #include <linux/device.h> /* for dev_info() */ 26 #include <linux/timer.h> 27 #include <linux/errno.h> 28 #include <linux/ioport.h> 29 #include <linux/slab.h> 30 #include <linux/interrupt.h> 31 #include <linux/pci.h> 32 #include <linux/aer.h> 33 #include <linux/init.h> 34 #include <linux/netdevice.h> 35 #include <linux/etherdevice.h> 36 #include <linux/skbuff.h> 37 #include <linux/dma-mapping.h> 38 #include <linux/bitops.h> 39 #include <linux/irq.h> 40 #include <linux/delay.h> 41 #include <asm/byteorder.h> 42 #include <linux/time.h> 43 #include <linux/ethtool.h> 44 #include <linux/mii.h> 45 #include <linux/if_vlan.h> 46 #include <linux/crash_dump.h> 47 #include <net/ip.h> 48 #include <net/ipv6.h> 49 #include <net/tcp.h> 50 #include <net/vxlan.h> 51 #include <net/checksum.h> 52 #include <net/ip6_checksum.h> 53 #include <linux/workqueue.h> 54 #include <linux/crc32.h> 55 #include <linux/crc32c.h> 56 #include <linux/prefetch.h> 57 #include <linux/zlib.h> 58 #include <linux/io.h> 59 #include <linux/semaphore.h> 60 #include <linux/stringify.h> 61 #include <linux/vmalloc.h> 62 #include "bnx2x.h" 63 #include "bnx2x_init.h" 64 #include "bnx2x_init_ops.h" 65 #include "bnx2x_cmn.h" 66 #include "bnx2x_vfpf.h" 67 #include "bnx2x_dcb.h" 68 #include "bnx2x_sp.h" 69 #include <linux/firmware.h> 70 #include "bnx2x_fw_file_hdr.h" 71 /* FW files */ 72 #define FW_FILE_VERSION \ 73 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \ 74 __stringify(BCM_5710_FW_MINOR_VERSION) "." \ 75 __stringify(BCM_5710_FW_REVISION_VERSION) "." \ 76 __stringify(BCM_5710_FW_ENGINEERING_VERSION) 77 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw" 78 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw" 79 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw" 80 81 /* Time in jiffies before concluding the transmitter is hung */ 82 #define TX_TIMEOUT (5*HZ) 83 84 MODULE_AUTHOR("Eliezer Tamir"); 85 MODULE_DESCRIPTION("QLogic " 86 "BCM57710/57711/57711E/" 87 "57712/57712_MF/57800/57800_MF/57810/57810_MF/" 88 "57840/57840_MF Driver"); 89 MODULE_LICENSE("GPL"); 90 MODULE_FIRMWARE(FW_FILE_NAME_E1); 91 MODULE_FIRMWARE(FW_FILE_NAME_E1H); 92 MODULE_FIRMWARE(FW_FILE_NAME_E2); 93 94 int bnx2x_num_queues; 95 module_param_named(num_queues, bnx2x_num_queues, int, 0444); 96 MODULE_PARM_DESC(num_queues, 97 " Set number of queues (default is as a number of CPUs)"); 98 99 static int disable_tpa; 100 module_param(disable_tpa, int, 0444); 101 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature"); 102 103 static int int_mode; 104 module_param(int_mode, int, 0444); 105 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X " 106 "(1 INT#x; 2 MSI)"); 107 108 static int dropless_fc; 109 module_param(dropless_fc, int, 0444); 110 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring"); 111 112 static int mrrs = -1; 113 module_param(mrrs, int, 0444); 114 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)"); 115 116 static int debug; 117 module_param(debug, int, 0444); 118 MODULE_PARM_DESC(debug, " Default debug msglevel"); 119 120 static struct workqueue_struct *bnx2x_wq; 121 struct workqueue_struct *bnx2x_iov_wq; 122 123 struct bnx2x_mac_vals { 124 u32 xmac_addr; 125 u32 xmac_val; 126 u32 emac_addr; 127 u32 emac_val; 128 u32 umac_addr[2]; 129 u32 umac_val[2]; 130 u32 bmac_addr; 131 u32 bmac_val[2]; 132 }; 133 134 enum bnx2x_board_type { 135 BCM57710 = 0, 136 BCM57711, 137 BCM57711E, 138 BCM57712, 139 BCM57712_MF, 140 BCM57712_VF, 141 BCM57800, 142 BCM57800_MF, 143 BCM57800_VF, 144 BCM57810, 145 BCM57810_MF, 146 BCM57810_VF, 147 BCM57840_4_10, 148 BCM57840_2_20, 149 BCM57840_MF, 150 BCM57840_VF, 151 BCM57811, 152 BCM57811_MF, 153 BCM57840_O, 154 BCM57840_MFO, 155 BCM57811_VF 156 }; 157 158 /* indexed by board_type, above */ 159 static struct { 160 char *name; 161 } board_info[] = { 162 [BCM57710] = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" }, 163 [BCM57711] = { "QLogic BCM57711 10 Gigabit PCIe" }, 164 [BCM57711E] = { "QLogic BCM57711E 10 Gigabit PCIe" }, 165 [BCM57712] = { "QLogic BCM57712 10 Gigabit Ethernet" }, 166 [BCM57712_MF] = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" }, 167 [BCM57712_VF] = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" }, 168 [BCM57800] = { "QLogic BCM57800 10 Gigabit Ethernet" }, 169 [BCM57800_MF] = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" }, 170 [BCM57800_VF] = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" }, 171 [BCM57810] = { "QLogic BCM57810 10 Gigabit Ethernet" }, 172 [BCM57810_MF] = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" }, 173 [BCM57810_VF] = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" }, 174 [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" }, 175 [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" }, 176 [BCM57840_MF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" }, 177 [BCM57840_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }, 178 [BCM57811] = { "QLogic BCM57811 10 Gigabit Ethernet" }, 179 [BCM57811_MF] = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" }, 180 [BCM57840_O] = { "QLogic BCM57840 10/20 Gigabit Ethernet" }, 181 [BCM57840_MFO] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" }, 182 [BCM57811_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" } 183 }; 184 185 #ifndef PCI_DEVICE_ID_NX2_57710 186 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710 187 #endif 188 #ifndef PCI_DEVICE_ID_NX2_57711 189 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711 190 #endif 191 #ifndef PCI_DEVICE_ID_NX2_57711E 192 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E 193 #endif 194 #ifndef PCI_DEVICE_ID_NX2_57712 195 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712 196 #endif 197 #ifndef PCI_DEVICE_ID_NX2_57712_MF 198 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF 199 #endif 200 #ifndef PCI_DEVICE_ID_NX2_57712_VF 201 #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF 202 #endif 203 #ifndef PCI_DEVICE_ID_NX2_57800 204 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800 205 #endif 206 #ifndef PCI_DEVICE_ID_NX2_57800_MF 207 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF 208 #endif 209 #ifndef PCI_DEVICE_ID_NX2_57800_VF 210 #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF 211 #endif 212 #ifndef PCI_DEVICE_ID_NX2_57810 213 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810 214 #endif 215 #ifndef PCI_DEVICE_ID_NX2_57810_MF 216 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF 217 #endif 218 #ifndef PCI_DEVICE_ID_NX2_57840_O 219 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE 220 #endif 221 #ifndef PCI_DEVICE_ID_NX2_57810_VF 222 #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF 223 #endif 224 #ifndef PCI_DEVICE_ID_NX2_57840_4_10 225 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10 226 #endif 227 #ifndef PCI_DEVICE_ID_NX2_57840_2_20 228 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20 229 #endif 230 #ifndef PCI_DEVICE_ID_NX2_57840_MFO 231 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE 232 #endif 233 #ifndef PCI_DEVICE_ID_NX2_57840_MF 234 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF 235 #endif 236 #ifndef PCI_DEVICE_ID_NX2_57840_VF 237 #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF 238 #endif 239 #ifndef PCI_DEVICE_ID_NX2_57811 240 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811 241 #endif 242 #ifndef PCI_DEVICE_ID_NX2_57811_MF 243 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF 244 #endif 245 #ifndef PCI_DEVICE_ID_NX2_57811_VF 246 #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF 247 #endif 248 249 static const struct pci_device_id bnx2x_pci_tbl[] = { 250 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 }, 251 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 }, 252 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E }, 253 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 }, 254 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF }, 255 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF }, 256 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 }, 257 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF }, 258 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF }, 259 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 }, 260 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF }, 261 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O }, 262 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 }, 263 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 }, 264 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 }, 265 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF }, 266 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO }, 267 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF }, 268 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF }, 269 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF }, 270 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF }, 271 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 }, 272 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF }, 273 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF }, 274 { 0 } 275 }; 276 277 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl); 278 279 const u32 dmae_reg_go_c[] = { 280 DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3, 281 DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7, 282 DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11, 283 DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15 284 }; 285 286 /* Global resources for unloading a previously loaded device */ 287 #define BNX2X_PREV_WAIT_NEEDED 1 288 static DEFINE_SEMAPHORE(bnx2x_prev_sem); 289 static LIST_HEAD(bnx2x_prev_list); 290 291 /* Forward declaration */ 292 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev); 293 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp); 294 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp); 295 296 /**************************************************************************** 297 * General service functions 298 ****************************************************************************/ 299 300 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr); 301 302 static void __storm_memset_dma_mapping(struct bnx2x *bp, 303 u32 addr, dma_addr_t mapping) 304 { 305 REG_WR(bp, addr, U64_LO(mapping)); 306 REG_WR(bp, addr + 4, U64_HI(mapping)); 307 } 308 309 static void storm_memset_spq_addr(struct bnx2x *bp, 310 dma_addr_t mapping, u16 abs_fid) 311 { 312 u32 addr = XSEM_REG_FAST_MEMORY + 313 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid); 314 315 __storm_memset_dma_mapping(bp, addr, mapping); 316 } 317 318 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid, 319 u16 pf_id) 320 { 321 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid), 322 pf_id); 323 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid), 324 pf_id); 325 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid), 326 pf_id); 327 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid), 328 pf_id); 329 } 330 331 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid, 332 u8 enable) 333 { 334 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid), 335 enable); 336 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid), 337 enable); 338 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid), 339 enable); 340 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid), 341 enable); 342 } 343 344 static void storm_memset_eq_data(struct bnx2x *bp, 345 struct event_ring_data *eq_data, 346 u16 pfid) 347 { 348 size_t size = sizeof(struct event_ring_data); 349 350 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid); 351 352 __storm_memset_struct(bp, addr, size, (u32 *)eq_data); 353 } 354 355 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod, 356 u16 pfid) 357 { 358 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid); 359 REG_WR16(bp, addr, eq_prod); 360 } 361 362 /* used only at init 363 * locking is done by mcp 364 */ 365 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val) 366 { 367 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); 368 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val); 369 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 370 PCICFG_VENDOR_ID_OFFSET); 371 } 372 373 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr) 374 { 375 u32 val; 376 377 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); 378 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val); 379 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 380 PCICFG_VENDOR_ID_OFFSET); 381 382 return val; 383 } 384 385 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]" 386 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]" 387 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]" 388 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]" 389 #define DMAE_DP_DST_NONE "dst_addr [none]" 390 391 static void bnx2x_dp_dmae(struct bnx2x *bp, 392 struct dmae_command *dmae, int msglvl) 393 { 394 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC; 395 int i; 396 397 switch (dmae->opcode & DMAE_COMMAND_DST) { 398 case DMAE_CMD_DST_PCI: 399 if (src_type == DMAE_CMD_SRC_PCI) 400 DP(msglvl, "DMAE: opcode 0x%08x\n" 401 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n" 402 "comp_addr [%x:%08x], comp_val 0x%08x\n", 403 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 404 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 405 dmae->comp_addr_hi, dmae->comp_addr_lo, 406 dmae->comp_val); 407 else 408 DP(msglvl, "DMAE: opcode 0x%08x\n" 409 "src [%08x], len [%d*4], dst [%x:%08x]\n" 410 "comp_addr [%x:%08x], comp_val 0x%08x\n", 411 dmae->opcode, dmae->src_addr_lo >> 2, 412 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 413 dmae->comp_addr_hi, dmae->comp_addr_lo, 414 dmae->comp_val); 415 break; 416 case DMAE_CMD_DST_GRC: 417 if (src_type == DMAE_CMD_SRC_PCI) 418 DP(msglvl, "DMAE: opcode 0x%08x\n" 419 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n" 420 "comp_addr [%x:%08x], comp_val 0x%08x\n", 421 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 422 dmae->len, dmae->dst_addr_lo >> 2, 423 dmae->comp_addr_hi, dmae->comp_addr_lo, 424 dmae->comp_val); 425 else 426 DP(msglvl, "DMAE: opcode 0x%08x\n" 427 "src [%08x], len [%d*4], dst [%08x]\n" 428 "comp_addr [%x:%08x], comp_val 0x%08x\n", 429 dmae->opcode, dmae->src_addr_lo >> 2, 430 dmae->len, dmae->dst_addr_lo >> 2, 431 dmae->comp_addr_hi, dmae->comp_addr_lo, 432 dmae->comp_val); 433 break; 434 default: 435 if (src_type == DMAE_CMD_SRC_PCI) 436 DP(msglvl, "DMAE: opcode 0x%08x\n" 437 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n" 438 "comp_addr [%x:%08x] comp_val 0x%08x\n", 439 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 440 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 441 dmae->comp_val); 442 else 443 DP(msglvl, "DMAE: opcode 0x%08x\n" 444 "src_addr [%08x] len [%d * 4] dst_addr [none]\n" 445 "comp_addr [%x:%08x] comp_val 0x%08x\n", 446 dmae->opcode, dmae->src_addr_lo >> 2, 447 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 448 dmae->comp_val); 449 break; 450 } 451 452 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) 453 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n", 454 i, *(((u32 *)dmae) + i)); 455 } 456 457 /* copy command into DMAE command memory and set DMAE command go */ 458 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx) 459 { 460 u32 cmd_offset; 461 int i; 462 463 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx); 464 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) { 465 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i)); 466 } 467 REG_WR(bp, dmae_reg_go_c[idx], 1); 468 } 469 470 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type) 471 { 472 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) | 473 DMAE_CMD_C_ENABLE); 474 } 475 476 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode) 477 { 478 return opcode & ~DMAE_CMD_SRC_RESET; 479 } 480 481 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type, 482 bool with_comp, u8 comp_type) 483 { 484 u32 opcode = 0; 485 486 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) | 487 (dst_type << DMAE_COMMAND_DST_SHIFT)); 488 489 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); 490 491 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 492 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) | 493 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT)); 494 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT); 495 496 #ifdef __BIG_ENDIAN 497 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 498 #else 499 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 500 #endif 501 if (with_comp) 502 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type); 503 return opcode; 504 } 505 506 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, 507 struct dmae_command *dmae, 508 u8 src_type, u8 dst_type) 509 { 510 memset(dmae, 0, sizeof(struct dmae_command)); 511 512 /* set the opcode */ 513 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type, 514 true, DMAE_COMP_PCI); 515 516 /* fill in the completion parameters */ 517 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp)); 518 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp)); 519 dmae->comp_val = DMAE_COMP_VAL; 520 } 521 522 /* issue a dmae command over the init-channel and wait for completion */ 523 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae, 524 u32 *comp) 525 { 526 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000; 527 int rc = 0; 528 529 bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE); 530 531 /* Lock the dmae channel. Disable BHs to prevent a dead-lock 532 * as long as this code is called both from syscall context and 533 * from ndo_set_rx_mode() flow that may be called from BH. 534 */ 535 536 spin_lock_bh(&bp->dmae_lock); 537 538 /* reset completion */ 539 *comp = 0; 540 541 /* post the command on the channel used for initializations */ 542 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp)); 543 544 /* wait for completion */ 545 udelay(5); 546 while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 547 548 if (!cnt || 549 (bp->recovery_state != BNX2X_RECOVERY_DONE && 550 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { 551 BNX2X_ERR("DMAE timeout!\n"); 552 rc = DMAE_TIMEOUT; 553 goto unlock; 554 } 555 cnt--; 556 udelay(50); 557 } 558 if (*comp & DMAE_PCI_ERR_FLAG) { 559 BNX2X_ERR("DMAE PCI error!\n"); 560 rc = DMAE_PCI_ERROR; 561 } 562 563 unlock: 564 565 spin_unlock_bh(&bp->dmae_lock); 566 567 return rc; 568 } 569 570 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr, 571 u32 len32) 572 { 573 int rc; 574 struct dmae_command dmae; 575 576 if (!bp->dmae_ready) { 577 u32 *data = bnx2x_sp(bp, wb_data[0]); 578 579 if (CHIP_IS_E1(bp)) 580 bnx2x_init_ind_wr(bp, dst_addr, data, len32); 581 else 582 bnx2x_init_str_wr(bp, dst_addr, data, len32); 583 return; 584 } 585 586 /* set opcode and fixed command fields */ 587 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 588 589 /* fill in addresses and len */ 590 dmae.src_addr_lo = U64_LO(dma_addr); 591 dmae.src_addr_hi = U64_HI(dma_addr); 592 dmae.dst_addr_lo = dst_addr >> 2; 593 dmae.dst_addr_hi = 0; 594 dmae.len = len32; 595 596 /* issue the command and wait for completion */ 597 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp)); 598 if (rc) { 599 BNX2X_ERR("DMAE returned failure %d\n", rc); 600 #ifdef BNX2X_STOP_ON_ERROR 601 bnx2x_panic(); 602 #endif 603 } 604 } 605 606 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32) 607 { 608 int rc; 609 struct dmae_command dmae; 610 611 if (!bp->dmae_ready) { 612 u32 *data = bnx2x_sp(bp, wb_data[0]); 613 int i; 614 615 if (CHIP_IS_E1(bp)) 616 for (i = 0; i < len32; i++) 617 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4); 618 else 619 for (i = 0; i < len32; i++) 620 data[i] = REG_RD(bp, src_addr + i*4); 621 622 return; 623 } 624 625 /* set opcode and fixed command fields */ 626 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 627 628 /* fill in addresses and len */ 629 dmae.src_addr_lo = src_addr >> 2; 630 dmae.src_addr_hi = 0; 631 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data)); 632 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data)); 633 dmae.len = len32; 634 635 /* issue the command and wait for completion */ 636 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp)); 637 if (rc) { 638 BNX2X_ERR("DMAE returned failure %d\n", rc); 639 #ifdef BNX2X_STOP_ON_ERROR 640 bnx2x_panic(); 641 #endif 642 } 643 } 644 645 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr, 646 u32 addr, u32 len) 647 { 648 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp); 649 int offset = 0; 650 651 while (len > dmae_wr_max) { 652 bnx2x_write_dmae(bp, phys_addr + offset, 653 addr + offset, dmae_wr_max); 654 offset += dmae_wr_max * 4; 655 len -= dmae_wr_max; 656 } 657 658 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len); 659 } 660 661 enum storms { 662 XSTORM, 663 TSTORM, 664 CSTORM, 665 USTORM, 666 MAX_STORMS 667 }; 668 669 #define STORMS_NUM 4 670 #define REGS_IN_ENTRY 4 671 672 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp, 673 enum storms storm, 674 int entry) 675 { 676 switch (storm) { 677 case XSTORM: 678 return XSTORM_ASSERT_LIST_OFFSET(entry); 679 case TSTORM: 680 return TSTORM_ASSERT_LIST_OFFSET(entry); 681 case CSTORM: 682 return CSTORM_ASSERT_LIST_OFFSET(entry); 683 case USTORM: 684 return USTORM_ASSERT_LIST_OFFSET(entry); 685 case MAX_STORMS: 686 default: 687 BNX2X_ERR("unknown storm\n"); 688 } 689 return -EINVAL; 690 } 691 692 static int bnx2x_mc_assert(struct bnx2x *bp) 693 { 694 char last_idx; 695 int i, j, rc = 0; 696 enum storms storm; 697 u32 regs[REGS_IN_ENTRY]; 698 u32 bar_storm_intmem[STORMS_NUM] = { 699 BAR_XSTRORM_INTMEM, 700 BAR_TSTRORM_INTMEM, 701 BAR_CSTRORM_INTMEM, 702 BAR_USTRORM_INTMEM 703 }; 704 u32 storm_assert_list_index[STORMS_NUM] = { 705 XSTORM_ASSERT_LIST_INDEX_OFFSET, 706 TSTORM_ASSERT_LIST_INDEX_OFFSET, 707 CSTORM_ASSERT_LIST_INDEX_OFFSET, 708 USTORM_ASSERT_LIST_INDEX_OFFSET 709 }; 710 char *storms_string[STORMS_NUM] = { 711 "XSTORM", 712 "TSTORM", 713 "CSTORM", 714 "USTORM" 715 }; 716 717 for (storm = XSTORM; storm < MAX_STORMS; storm++) { 718 last_idx = REG_RD8(bp, bar_storm_intmem[storm] + 719 storm_assert_list_index[storm]); 720 if (last_idx) 721 BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n", 722 storms_string[storm], last_idx); 723 724 /* print the asserts */ 725 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { 726 /* read a single assert entry */ 727 for (j = 0; j < REGS_IN_ENTRY; j++) 728 regs[j] = REG_RD(bp, bar_storm_intmem[storm] + 729 bnx2x_get_assert_list_entry(bp, 730 storm, 731 i) + 732 sizeof(u32) * j); 733 734 /* log entry if it contains a valid assert */ 735 if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) { 736 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 737 storms_string[storm], i, regs[3], 738 regs[2], regs[1], regs[0]); 739 rc++; 740 } else { 741 break; 742 } 743 } 744 } 745 746 BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n", 747 CHIP_IS_E1(bp) ? "everest1" : 748 CHIP_IS_E1H(bp) ? "everest1h" : 749 CHIP_IS_E2(bp) ? "everest2" : "everest3", 750 BCM_5710_FW_MAJOR_VERSION, 751 BCM_5710_FW_MINOR_VERSION, 752 BCM_5710_FW_REVISION_VERSION); 753 754 return rc; 755 } 756 757 #define MCPR_TRACE_BUFFER_SIZE (0x800) 758 #define SCRATCH_BUFFER_SIZE(bp) \ 759 (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000)) 760 761 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl) 762 { 763 u32 addr, val; 764 u32 mark, offset; 765 __be32 data[9]; 766 int word; 767 u32 trace_shmem_base; 768 if (BP_NOMCP(bp)) { 769 BNX2X_ERR("NO MCP - can not dump\n"); 770 return; 771 } 772 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n", 773 (bp->common.bc_ver & 0xff0000) >> 16, 774 (bp->common.bc_ver & 0xff00) >> 8, 775 (bp->common.bc_ver & 0xff)); 776 777 if (pci_channel_offline(bp->pdev)) { 778 BNX2X_ERR("Cannot dump MCP info while in PCI error\n"); 779 return; 780 } 781 782 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER); 783 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER)) 784 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val); 785 786 if (BP_PATH(bp) == 0) 787 trace_shmem_base = bp->common.shmem_base; 788 else 789 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr); 790 791 /* sanity */ 792 if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE || 793 trace_shmem_base >= MCPR_SCRATCH_BASE(bp) + 794 SCRATCH_BUFFER_SIZE(bp)) { 795 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n", 796 trace_shmem_base); 797 return; 798 } 799 800 addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE; 801 802 /* validate TRCB signature */ 803 mark = REG_RD(bp, addr); 804 if (mark != MFW_TRACE_SIGNATURE) { 805 BNX2X_ERR("Trace buffer signature is missing."); 806 return ; 807 } 808 809 /* read cyclic buffer pointer */ 810 addr += 4; 811 mark = REG_RD(bp, addr); 812 mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000; 813 if (mark >= trace_shmem_base || mark < addr + 4) { 814 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n"); 815 return; 816 } 817 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark); 818 819 printk("%s", lvl); 820 821 /* dump buffer after the mark */ 822 for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) { 823 for (word = 0; word < 8; word++) 824 data[word] = htonl(REG_RD(bp, offset + 4*word)); 825 data[8] = 0x0; 826 pr_cont("%s", (char *)data); 827 } 828 829 /* dump buffer before the mark */ 830 for (offset = addr + 4; offset <= mark; offset += 0x8*4) { 831 for (word = 0; word < 8; word++) 832 data[word] = htonl(REG_RD(bp, offset + 4*word)); 833 data[8] = 0x0; 834 pr_cont("%s", (char *)data); 835 } 836 printk("%s" "end of fw dump\n", lvl); 837 } 838 839 static void bnx2x_fw_dump(struct bnx2x *bp) 840 { 841 bnx2x_fw_dump_lvl(bp, KERN_ERR); 842 } 843 844 static void bnx2x_hc_int_disable(struct bnx2x *bp) 845 { 846 int port = BP_PORT(bp); 847 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 848 u32 val = REG_RD(bp, addr); 849 850 /* in E1 we must use only PCI configuration space to disable 851 * MSI/MSIX capability 852 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block 853 */ 854 if (CHIP_IS_E1(bp)) { 855 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on 856 * Use mask register to prevent from HC sending interrupts 857 * after we exit the function 858 */ 859 REG_WR(bp, HC_REG_INT_MASK + port*4, 0); 860 861 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 862 HC_CONFIG_0_REG_INT_LINE_EN_0 | 863 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 864 } else 865 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 866 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 867 HC_CONFIG_0_REG_INT_LINE_EN_0 | 868 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 869 870 DP(NETIF_MSG_IFDOWN, 871 "write %x to HC %d (addr 0x%x)\n", 872 val, port, addr); 873 874 REG_WR(bp, addr, val); 875 if (REG_RD(bp, addr) != val) 876 BNX2X_ERR("BUG! Proper val not read from IGU!\n"); 877 } 878 879 static void bnx2x_igu_int_disable(struct bnx2x *bp) 880 { 881 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 882 883 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 884 IGU_PF_CONF_INT_LINE_EN | 885 IGU_PF_CONF_ATTN_BIT_EN); 886 887 DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val); 888 889 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 890 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val) 891 BNX2X_ERR("BUG! Proper val not read from IGU!\n"); 892 } 893 894 static void bnx2x_int_disable(struct bnx2x *bp) 895 { 896 if (bp->common.int_block == INT_BLOCK_HC) 897 bnx2x_hc_int_disable(bp); 898 else 899 bnx2x_igu_int_disable(bp); 900 } 901 902 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int) 903 { 904 int i; 905 u16 j; 906 struct hc_sp_status_block_data sp_sb_data; 907 int func = BP_FUNC(bp); 908 #ifdef BNX2X_STOP_ON_ERROR 909 u16 start = 0, end = 0; 910 u8 cos; 911 #endif 912 if (IS_PF(bp) && disable_int) 913 bnx2x_int_disable(bp); 914 915 bp->stats_state = STATS_STATE_DISABLED; 916 bp->eth_stats.unrecoverable_error++; 917 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n"); 918 919 BNX2X_ERR("begin crash dump -----------------\n"); 920 921 /* Indices */ 922 /* Common */ 923 if (IS_PF(bp)) { 924 struct host_sp_status_block *def_sb = bp->def_status_blk; 925 int data_size, cstorm_offset; 926 927 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n", 928 bp->def_idx, bp->def_att_idx, bp->attn_state, 929 bp->spq_prod_idx, bp->stats_counter); 930 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n", 931 def_sb->atten_status_block.attn_bits, 932 def_sb->atten_status_block.attn_bits_ack, 933 def_sb->atten_status_block.status_block_id, 934 def_sb->atten_status_block.attn_bits_index); 935 BNX2X_ERR(" def ("); 936 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++) 937 pr_cont("0x%x%s", 938 def_sb->sp_sb.index_values[i], 939 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " "); 940 941 data_size = sizeof(struct hc_sp_status_block_data) / 942 sizeof(u32); 943 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func); 944 for (i = 0; i < data_size; i++) 945 *((u32 *)&sp_sb_data + i) = 946 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset + 947 i * sizeof(u32)); 948 949 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n", 950 sp_sb_data.igu_sb_id, 951 sp_sb_data.igu_seg_id, 952 sp_sb_data.p_func.pf_id, 953 sp_sb_data.p_func.vnic_id, 954 sp_sb_data.p_func.vf_id, 955 sp_sb_data.p_func.vf_valid, 956 sp_sb_data.state); 957 } 958 959 for_each_eth_queue(bp, i) { 960 struct bnx2x_fastpath *fp = &bp->fp[i]; 961 int loop; 962 struct hc_status_block_data_e2 sb_data_e2; 963 struct hc_status_block_data_e1x sb_data_e1x; 964 struct hc_status_block_sm *hc_sm_p = 965 CHIP_IS_E1x(bp) ? 966 sb_data_e1x.common.state_machine : 967 sb_data_e2.common.state_machine; 968 struct hc_index_data *hc_index_p = 969 CHIP_IS_E1x(bp) ? 970 sb_data_e1x.index_data : 971 sb_data_e2.index_data; 972 u8 data_size, cos; 973 u32 *sb_data_p; 974 struct bnx2x_fp_txdata txdata; 975 976 if (!bp->fp) 977 break; 978 979 if (!fp->rx_cons_sb) 980 continue; 981 982 /* Rx */ 983 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n", 984 i, fp->rx_bd_prod, fp->rx_bd_cons, 985 fp->rx_comp_prod, 986 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb)); 987 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n", 988 fp->rx_sge_prod, fp->last_max_sge, 989 le16_to_cpu(fp->fp_hc_idx)); 990 991 /* Tx */ 992 for_each_cos_in_tx_queue(fp, cos) 993 { 994 if (!fp->txdata_ptr[cos]) 995 break; 996 997 txdata = *fp->txdata_ptr[cos]; 998 999 if (!txdata.tx_cons_sb) 1000 continue; 1001 1002 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n", 1003 i, txdata.tx_pkt_prod, 1004 txdata.tx_pkt_cons, txdata.tx_bd_prod, 1005 txdata.tx_bd_cons, 1006 le16_to_cpu(*txdata.tx_cons_sb)); 1007 } 1008 1009 loop = CHIP_IS_E1x(bp) ? 1010 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2; 1011 1012 /* host sb data */ 1013 1014 if (IS_FCOE_FP(fp)) 1015 continue; 1016 1017 BNX2X_ERR(" run indexes ("); 1018 for (j = 0; j < HC_SB_MAX_SM; j++) 1019 pr_cont("0x%x%s", 1020 fp->sb_running_index[j], 1021 (j == HC_SB_MAX_SM - 1) ? ")" : " "); 1022 1023 BNX2X_ERR(" indexes ("); 1024 for (j = 0; j < loop; j++) 1025 pr_cont("0x%x%s", 1026 fp->sb_index_values[j], 1027 (j == loop - 1) ? ")" : " "); 1028 1029 /* VF cannot access FW refelection for status block */ 1030 if (IS_VF(bp)) 1031 continue; 1032 1033 /* fw sb data */ 1034 data_size = CHIP_IS_E1x(bp) ? 1035 sizeof(struct hc_status_block_data_e1x) : 1036 sizeof(struct hc_status_block_data_e2); 1037 data_size /= sizeof(u32); 1038 sb_data_p = CHIP_IS_E1x(bp) ? 1039 (u32 *)&sb_data_e1x : 1040 (u32 *)&sb_data_e2; 1041 /* copy sb data in here */ 1042 for (j = 0; j < data_size; j++) 1043 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM + 1044 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) + 1045 j * sizeof(u32)); 1046 1047 if (!CHIP_IS_E1x(bp)) { 1048 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n", 1049 sb_data_e2.common.p_func.pf_id, 1050 sb_data_e2.common.p_func.vf_id, 1051 sb_data_e2.common.p_func.vf_valid, 1052 sb_data_e2.common.p_func.vnic_id, 1053 sb_data_e2.common.same_igu_sb_1b, 1054 sb_data_e2.common.state); 1055 } else { 1056 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n", 1057 sb_data_e1x.common.p_func.pf_id, 1058 sb_data_e1x.common.p_func.vf_id, 1059 sb_data_e1x.common.p_func.vf_valid, 1060 sb_data_e1x.common.p_func.vnic_id, 1061 sb_data_e1x.common.same_igu_sb_1b, 1062 sb_data_e1x.common.state); 1063 } 1064 1065 /* SB_SMs data */ 1066 for (j = 0; j < HC_SB_MAX_SM; j++) { 1067 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n", 1068 j, hc_sm_p[j].__flags, 1069 hc_sm_p[j].igu_sb_id, 1070 hc_sm_p[j].igu_seg_id, 1071 hc_sm_p[j].time_to_expire, 1072 hc_sm_p[j].timer_value); 1073 } 1074 1075 /* Indices data */ 1076 for (j = 0; j < loop; j++) { 1077 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j, 1078 hc_index_p[j].flags, 1079 hc_index_p[j].timeout); 1080 } 1081 } 1082 1083 #ifdef BNX2X_STOP_ON_ERROR 1084 if (IS_PF(bp)) { 1085 /* event queue */ 1086 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod); 1087 for (i = 0; i < NUM_EQ_DESC; i++) { 1088 u32 *data = (u32 *)&bp->eq_ring[i].message.data; 1089 1090 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n", 1091 i, bp->eq_ring[i].message.opcode, 1092 bp->eq_ring[i].message.error); 1093 BNX2X_ERR("data: %x %x %x\n", 1094 data[0], data[1], data[2]); 1095 } 1096 } 1097 1098 /* Rings */ 1099 /* Rx */ 1100 for_each_valid_rx_queue(bp, i) { 1101 struct bnx2x_fastpath *fp = &bp->fp[i]; 1102 1103 if (!bp->fp) 1104 break; 1105 1106 if (!fp->rx_cons_sb) 1107 continue; 1108 1109 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10); 1110 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503); 1111 for (j = start; j != end; j = RX_BD(j + 1)) { 1112 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j]; 1113 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j]; 1114 1115 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n", 1116 i, j, rx_bd[1], rx_bd[0], sw_bd->data); 1117 } 1118 1119 start = RX_SGE(fp->rx_sge_prod); 1120 end = RX_SGE(fp->last_max_sge); 1121 for (j = start; j != end; j = RX_SGE(j + 1)) { 1122 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j]; 1123 struct sw_rx_page *sw_page = &fp->rx_page_ring[j]; 1124 1125 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n", 1126 i, j, rx_sge[1], rx_sge[0], sw_page->page); 1127 } 1128 1129 start = RCQ_BD(fp->rx_comp_cons - 10); 1130 end = RCQ_BD(fp->rx_comp_cons + 503); 1131 for (j = start; j != end; j = RCQ_BD(j + 1)) { 1132 u32 *cqe = (u32 *)&fp->rx_comp_ring[j]; 1133 1134 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n", 1135 i, j, cqe[0], cqe[1], cqe[2], cqe[3]); 1136 } 1137 } 1138 1139 /* Tx */ 1140 for_each_valid_tx_queue(bp, i) { 1141 struct bnx2x_fastpath *fp = &bp->fp[i]; 1142 1143 if (!bp->fp) 1144 break; 1145 1146 for_each_cos_in_tx_queue(fp, cos) { 1147 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 1148 1149 if (!fp->txdata_ptr[cos]) 1150 break; 1151 1152 if (!txdata->tx_cons_sb) 1153 continue; 1154 1155 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10); 1156 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245); 1157 for (j = start; j != end; j = TX_BD(j + 1)) { 1158 struct sw_tx_bd *sw_bd = 1159 &txdata->tx_buf_ring[j]; 1160 1161 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n", 1162 i, cos, j, sw_bd->skb, 1163 sw_bd->first_bd); 1164 } 1165 1166 start = TX_BD(txdata->tx_bd_cons - 10); 1167 end = TX_BD(txdata->tx_bd_cons + 254); 1168 for (j = start; j != end; j = TX_BD(j + 1)) { 1169 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j]; 1170 1171 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n", 1172 i, cos, j, tx_bd[0], tx_bd[1], 1173 tx_bd[2], tx_bd[3]); 1174 } 1175 } 1176 } 1177 #endif 1178 if (IS_PF(bp)) { 1179 int tmp_msg_en = bp->msg_enable; 1180 1181 bnx2x_fw_dump(bp); 1182 bp->msg_enable |= NETIF_MSG_HW; 1183 BNX2X_ERR("Idle check (1st round) ----------\n"); 1184 bnx2x_idle_chk(bp); 1185 BNX2X_ERR("Idle check (2nd round) ----------\n"); 1186 bnx2x_idle_chk(bp); 1187 bp->msg_enable = tmp_msg_en; 1188 bnx2x_mc_assert(bp); 1189 } 1190 1191 BNX2X_ERR("end crash dump -----------------\n"); 1192 } 1193 1194 /* 1195 * FLR Support for E2 1196 * 1197 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW 1198 * initialization. 1199 */ 1200 #define FLR_WAIT_USEC 10000 /* 10 milliseconds */ 1201 #define FLR_WAIT_INTERVAL 50 /* usec */ 1202 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */ 1203 1204 struct pbf_pN_buf_regs { 1205 int pN; 1206 u32 init_crd; 1207 u32 crd; 1208 u32 crd_freed; 1209 }; 1210 1211 struct pbf_pN_cmd_regs { 1212 int pN; 1213 u32 lines_occup; 1214 u32 lines_freed; 1215 }; 1216 1217 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp, 1218 struct pbf_pN_buf_regs *regs, 1219 u32 poll_count) 1220 { 1221 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start; 1222 u32 cur_cnt = poll_count; 1223 1224 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed); 1225 crd = crd_start = REG_RD(bp, regs->crd); 1226 init_crd = REG_RD(bp, regs->init_crd); 1227 1228 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 1229 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd); 1230 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 1231 1232 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) < 1233 (init_crd - crd_start))) { 1234 if (cur_cnt--) { 1235 udelay(FLR_WAIT_INTERVAL); 1236 crd = REG_RD(bp, regs->crd); 1237 crd_freed = REG_RD(bp, regs->crd_freed); 1238 } else { 1239 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n", 1240 regs->pN); 1241 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n", 1242 regs->pN, crd); 1243 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n", 1244 regs->pN, crd_freed); 1245 break; 1246 } 1247 } 1248 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n", 1249 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 1250 } 1251 1252 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp, 1253 struct pbf_pN_cmd_regs *regs, 1254 u32 poll_count) 1255 { 1256 u32 occup, to_free, freed, freed_start; 1257 u32 cur_cnt = poll_count; 1258 1259 occup = to_free = REG_RD(bp, regs->lines_occup); 1260 freed = freed_start = REG_RD(bp, regs->lines_freed); 1261 1262 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 1263 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 1264 1265 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) { 1266 if (cur_cnt--) { 1267 udelay(FLR_WAIT_INTERVAL); 1268 occup = REG_RD(bp, regs->lines_occup); 1269 freed = REG_RD(bp, regs->lines_freed); 1270 } else { 1271 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n", 1272 regs->pN); 1273 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", 1274 regs->pN, occup); 1275 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", 1276 regs->pN, freed); 1277 break; 1278 } 1279 } 1280 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n", 1281 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 1282 } 1283 1284 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg, 1285 u32 expected, u32 poll_count) 1286 { 1287 u32 cur_cnt = poll_count; 1288 u32 val; 1289 1290 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--) 1291 udelay(FLR_WAIT_INTERVAL); 1292 1293 return val; 1294 } 1295 1296 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg, 1297 char *msg, u32 poll_cnt) 1298 { 1299 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt); 1300 if (val != 0) { 1301 BNX2X_ERR("%s usage count=%d\n", msg, val); 1302 return 1; 1303 } 1304 return 0; 1305 } 1306 1307 /* Common routines with VF FLR cleanup */ 1308 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp) 1309 { 1310 /* adjust polling timeout */ 1311 if (CHIP_REV_IS_EMUL(bp)) 1312 return FLR_POLL_CNT * 2000; 1313 1314 if (CHIP_REV_IS_FPGA(bp)) 1315 return FLR_POLL_CNT * 120; 1316 1317 return FLR_POLL_CNT; 1318 } 1319 1320 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count) 1321 { 1322 struct pbf_pN_cmd_regs cmd_regs[] = { 1323 {0, (CHIP_IS_E3B0(bp)) ? 1324 PBF_REG_TQ_OCCUPANCY_Q0 : 1325 PBF_REG_P0_TQ_OCCUPANCY, 1326 (CHIP_IS_E3B0(bp)) ? 1327 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 1328 PBF_REG_P0_TQ_LINES_FREED_CNT}, 1329 {1, (CHIP_IS_E3B0(bp)) ? 1330 PBF_REG_TQ_OCCUPANCY_Q1 : 1331 PBF_REG_P1_TQ_OCCUPANCY, 1332 (CHIP_IS_E3B0(bp)) ? 1333 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 1334 PBF_REG_P1_TQ_LINES_FREED_CNT}, 1335 {4, (CHIP_IS_E3B0(bp)) ? 1336 PBF_REG_TQ_OCCUPANCY_LB_Q : 1337 PBF_REG_P4_TQ_OCCUPANCY, 1338 (CHIP_IS_E3B0(bp)) ? 1339 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 1340 PBF_REG_P4_TQ_LINES_FREED_CNT} 1341 }; 1342 1343 struct pbf_pN_buf_regs buf_regs[] = { 1344 {0, (CHIP_IS_E3B0(bp)) ? 1345 PBF_REG_INIT_CRD_Q0 : 1346 PBF_REG_P0_INIT_CRD , 1347 (CHIP_IS_E3B0(bp)) ? 1348 PBF_REG_CREDIT_Q0 : 1349 PBF_REG_P0_CREDIT, 1350 (CHIP_IS_E3B0(bp)) ? 1351 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 1352 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 1353 {1, (CHIP_IS_E3B0(bp)) ? 1354 PBF_REG_INIT_CRD_Q1 : 1355 PBF_REG_P1_INIT_CRD, 1356 (CHIP_IS_E3B0(bp)) ? 1357 PBF_REG_CREDIT_Q1 : 1358 PBF_REG_P1_CREDIT, 1359 (CHIP_IS_E3B0(bp)) ? 1360 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 1361 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 1362 {4, (CHIP_IS_E3B0(bp)) ? 1363 PBF_REG_INIT_CRD_LB_Q : 1364 PBF_REG_P4_INIT_CRD, 1365 (CHIP_IS_E3B0(bp)) ? 1366 PBF_REG_CREDIT_LB_Q : 1367 PBF_REG_P4_CREDIT, 1368 (CHIP_IS_E3B0(bp)) ? 1369 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 1370 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 1371 }; 1372 1373 int i; 1374 1375 /* Verify the command queues are flushed P0, P1, P4 */ 1376 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) 1377 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count); 1378 1379 /* Verify the transmission buffers are flushed P0, P1, P4 */ 1380 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) 1381 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count); 1382 } 1383 1384 #define OP_GEN_PARAM(param) \ 1385 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 1386 1387 #define OP_GEN_TYPE(type) \ 1388 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 1389 1390 #define OP_GEN_AGG_VECT(index) \ 1391 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 1392 1393 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt) 1394 { 1395 u32 op_gen_command = 0; 1396 u32 comp_addr = BAR_CSTRORM_INTMEM + 1397 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func); 1398 int ret = 0; 1399 1400 if (REG_RD(bp, comp_addr)) { 1401 BNX2X_ERR("Cleanup complete was not 0 before sending\n"); 1402 return 1; 1403 } 1404 1405 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 1406 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 1407 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 1408 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 1409 1410 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n"); 1411 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command); 1412 1413 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) { 1414 BNX2X_ERR("FW final cleanup did not succeed\n"); 1415 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n", 1416 (REG_RD(bp, comp_addr))); 1417 bnx2x_panic(); 1418 return 1; 1419 } 1420 /* Zero completion for next FLR */ 1421 REG_WR(bp, comp_addr, 0); 1422 1423 return ret; 1424 } 1425 1426 u8 bnx2x_is_pcie_pending(struct pci_dev *dev) 1427 { 1428 u16 status; 1429 1430 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status); 1431 return status & PCI_EXP_DEVSTA_TRPND; 1432 } 1433 1434 /* PF FLR specific routines 1435 */ 1436 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt) 1437 { 1438 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 1439 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1440 CFC_REG_NUM_LCIDS_INSIDE_PF, 1441 "CFC PF usage counter timed out", 1442 poll_cnt)) 1443 return 1; 1444 1445 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 1446 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1447 DORQ_REG_PF_USAGE_CNT, 1448 "DQ PF usage counter timed out", 1449 poll_cnt)) 1450 return 1; 1451 1452 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 1453 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1454 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp), 1455 "QM PF usage counter timed out", 1456 poll_cnt)) 1457 return 1; 1458 1459 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 1460 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1461 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp), 1462 "Timers VNIC usage counter timed out", 1463 poll_cnt)) 1464 return 1; 1465 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1466 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp), 1467 "Timers NUM_SCANS usage counter timed out", 1468 poll_cnt)) 1469 return 1; 1470 1471 /* Wait DMAE PF usage counter to zero */ 1472 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1473 dmae_reg_go_c[INIT_DMAE_C(bp)], 1474 "DMAE command register timed out", 1475 poll_cnt)) 1476 return 1; 1477 1478 return 0; 1479 } 1480 1481 static void bnx2x_hw_enable_status(struct bnx2x *bp) 1482 { 1483 u32 val; 1484 1485 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF); 1486 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 1487 1488 val = REG_RD(bp, PBF_REG_DISABLE_PF); 1489 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val); 1490 1491 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN); 1492 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 1493 1494 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN); 1495 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 1496 1497 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 1498 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 1499 1500 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 1501 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 1502 1503 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 1504 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 1505 1506 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 1507 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", 1508 val); 1509 } 1510 1511 static int bnx2x_pf_flr_clnup(struct bnx2x *bp) 1512 { 1513 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp); 1514 1515 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp)); 1516 1517 /* Re-enable PF target read access */ 1518 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 1519 1520 /* Poll HW usage counters */ 1521 DP(BNX2X_MSG_SP, "Polling usage counters\n"); 1522 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt)) 1523 return -EBUSY; 1524 1525 /* Zero the igu 'trailing edge' and 'leading edge' */ 1526 1527 /* Send the FW cleanup command */ 1528 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt)) 1529 return -EBUSY; 1530 1531 /* ATC cleanup */ 1532 1533 /* Verify TX hw is flushed */ 1534 bnx2x_tx_hw_flushed(bp, poll_cnt); 1535 1536 /* Wait 100ms (not adjusted according to platform) */ 1537 msleep(100); 1538 1539 /* Verify no pending pci transactions */ 1540 if (bnx2x_is_pcie_pending(bp->pdev)) 1541 BNX2X_ERR("PCIE Transactions still pending\n"); 1542 1543 /* Debug */ 1544 bnx2x_hw_enable_status(bp); 1545 1546 /* 1547 * Master enable - Due to WB DMAE writes performed before this 1548 * register is re-initialized as part of the regular function init 1549 */ 1550 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 1551 1552 return 0; 1553 } 1554 1555 static void bnx2x_hc_int_enable(struct bnx2x *bp) 1556 { 1557 int port = BP_PORT(bp); 1558 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 1559 u32 val = REG_RD(bp, addr); 1560 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; 1561 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; 1562 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; 1563 1564 if (msix) { 1565 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1566 HC_CONFIG_0_REG_INT_LINE_EN_0); 1567 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1568 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1569 if (single_msix) 1570 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 1571 } else if (msi) { 1572 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 1573 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1574 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1575 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1576 } else { 1577 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1578 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1579 HC_CONFIG_0_REG_INT_LINE_EN_0 | 1580 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1581 1582 if (!CHIP_IS_E1(bp)) { 1583 DP(NETIF_MSG_IFUP, 1584 "write %x to HC %d (addr 0x%x)\n", val, port, addr); 1585 1586 REG_WR(bp, addr, val); 1587 1588 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 1589 } 1590 } 1591 1592 if (CHIP_IS_E1(bp)) 1593 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF); 1594 1595 DP(NETIF_MSG_IFUP, 1596 "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr, 1597 (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); 1598 1599 REG_WR(bp, addr, val); 1600 /* 1601 * Ensure that HC_CONFIG is written before leading/trailing edge config 1602 */ 1603 barrier(); 1604 1605 if (!CHIP_IS_E1(bp)) { 1606 /* init leading/trailing edge */ 1607 if (IS_MF(bp)) { 1608 val = (0xee0f | (1 << (BP_VN(bp) + 4))); 1609 if (bp->port.pmf) 1610 /* enable nig and gpio3 attention */ 1611 val |= 0x1100; 1612 } else 1613 val = 0xffff; 1614 1615 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); 1616 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); 1617 } 1618 } 1619 1620 static void bnx2x_igu_int_enable(struct bnx2x *bp) 1621 { 1622 u32 val; 1623 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; 1624 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; 1625 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; 1626 1627 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 1628 1629 if (msix) { 1630 val &= ~(IGU_PF_CONF_INT_LINE_EN | 1631 IGU_PF_CONF_SINGLE_ISR_EN); 1632 val |= (IGU_PF_CONF_MSI_MSIX_EN | 1633 IGU_PF_CONF_ATTN_BIT_EN); 1634 1635 if (single_msix) 1636 val |= IGU_PF_CONF_SINGLE_ISR_EN; 1637 } else if (msi) { 1638 val &= ~IGU_PF_CONF_INT_LINE_EN; 1639 val |= (IGU_PF_CONF_MSI_MSIX_EN | 1640 IGU_PF_CONF_ATTN_BIT_EN | 1641 IGU_PF_CONF_SINGLE_ISR_EN); 1642 } else { 1643 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 1644 val |= (IGU_PF_CONF_INT_LINE_EN | 1645 IGU_PF_CONF_ATTN_BIT_EN | 1646 IGU_PF_CONF_SINGLE_ISR_EN); 1647 } 1648 1649 /* Clean previous status - need to configure igu prior to ack*/ 1650 if ((!msix) || single_msix) { 1651 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 1652 bnx2x_ack_int(bp); 1653 } 1654 1655 val |= IGU_PF_CONF_FUNC_EN; 1656 1657 DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n", 1658 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); 1659 1660 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 1661 1662 if (val & IGU_PF_CONF_INT_LINE_EN) 1663 pci_intx(bp->pdev, true); 1664 1665 barrier(); 1666 1667 /* init leading/trailing edge */ 1668 if (IS_MF(bp)) { 1669 val = (0xee0f | (1 << (BP_VN(bp) + 4))); 1670 if (bp->port.pmf) 1671 /* enable nig and gpio3 attention */ 1672 val |= 0x1100; 1673 } else 1674 val = 0xffff; 1675 1676 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); 1677 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); 1678 } 1679 1680 void bnx2x_int_enable(struct bnx2x *bp) 1681 { 1682 if (bp->common.int_block == INT_BLOCK_HC) 1683 bnx2x_hc_int_enable(bp); 1684 else 1685 bnx2x_igu_int_enable(bp); 1686 } 1687 1688 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw) 1689 { 1690 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; 1691 int i, offset; 1692 1693 if (disable_hw) 1694 /* prevent the HW from sending interrupts */ 1695 bnx2x_int_disable(bp); 1696 1697 /* make sure all ISRs are done */ 1698 if (msix) { 1699 synchronize_irq(bp->msix_table[0].vector); 1700 offset = 1; 1701 if (CNIC_SUPPORT(bp)) 1702 offset++; 1703 for_each_eth_queue(bp, i) 1704 synchronize_irq(bp->msix_table[offset++].vector); 1705 } else 1706 synchronize_irq(bp->pdev->irq); 1707 1708 /* make sure sp_task is not running */ 1709 cancel_delayed_work(&bp->sp_task); 1710 cancel_delayed_work(&bp->period_task); 1711 flush_workqueue(bnx2x_wq); 1712 } 1713 1714 /* fast path */ 1715 1716 /* 1717 * General service functions 1718 */ 1719 1720 /* Return true if succeeded to acquire the lock */ 1721 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource) 1722 { 1723 u32 lock_status; 1724 u32 resource_bit = (1 << resource); 1725 int func = BP_FUNC(bp); 1726 u32 hw_lock_control_reg; 1727 1728 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1729 "Trying to take a lock on resource %d\n", resource); 1730 1731 /* Validating that the resource is within range */ 1732 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1733 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1734 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 1735 resource, HW_LOCK_MAX_RESOURCE_VALUE); 1736 return false; 1737 } 1738 1739 if (func <= 5) 1740 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 1741 else 1742 hw_lock_control_reg = 1743 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 1744 1745 /* Try to acquire the lock */ 1746 REG_WR(bp, hw_lock_control_reg + 4, resource_bit); 1747 lock_status = REG_RD(bp, hw_lock_control_reg); 1748 if (lock_status & resource_bit) 1749 return true; 1750 1751 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1752 "Failed to get a lock on resource %d\n", resource); 1753 return false; 1754 } 1755 1756 /** 1757 * bnx2x_get_leader_lock_resource - get the recovery leader resource id 1758 * 1759 * @bp: driver handle 1760 * 1761 * Returns the recovery leader resource id according to the engine this function 1762 * belongs to. Currently only only 2 engines is supported. 1763 */ 1764 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp) 1765 { 1766 if (BP_PATH(bp)) 1767 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1; 1768 else 1769 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0; 1770 } 1771 1772 /** 1773 * bnx2x_trylock_leader_lock- try to acquire a leader lock. 1774 * 1775 * @bp: driver handle 1776 * 1777 * Tries to acquire a leader lock for current engine. 1778 */ 1779 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp) 1780 { 1781 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); 1782 } 1783 1784 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err); 1785 1786 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */ 1787 static int bnx2x_schedule_sp_task(struct bnx2x *bp) 1788 { 1789 /* Set the interrupt occurred bit for the sp-task to recognize it 1790 * must ack the interrupt and transition according to the IGU 1791 * state machine. 1792 */ 1793 atomic_set(&bp->interrupt_occurred, 1); 1794 1795 /* The sp_task must execute only after this bit 1796 * is set, otherwise we will get out of sync and miss all 1797 * further interrupts. Hence, the barrier. 1798 */ 1799 smp_wmb(); 1800 1801 /* schedule sp_task to workqueue */ 1802 return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0); 1803 } 1804 1805 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe) 1806 { 1807 struct bnx2x *bp = fp->bp; 1808 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 1809 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 1810 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX; 1811 struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 1812 1813 DP(BNX2X_MSG_SP, 1814 "fp %d cid %d got ramrod #%d state is %x type is %d\n", 1815 fp->index, cid, command, bp->state, 1816 rr_cqe->ramrod_cqe.ramrod_type); 1817 1818 /* If cid is within VF range, replace the slowpath object with the 1819 * one corresponding to this VF 1820 */ 1821 if (cid >= BNX2X_FIRST_VF_CID && 1822 cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS) 1823 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj); 1824 1825 switch (command) { 1826 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 1827 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid); 1828 drv_cmd = BNX2X_Q_CMD_UPDATE; 1829 break; 1830 1831 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 1832 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid); 1833 drv_cmd = BNX2X_Q_CMD_SETUP; 1834 break; 1835 1836 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 1837 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 1838 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; 1839 break; 1840 1841 case (RAMROD_CMD_ID_ETH_HALT): 1842 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid); 1843 drv_cmd = BNX2X_Q_CMD_HALT; 1844 break; 1845 1846 case (RAMROD_CMD_ID_ETH_TERMINATE): 1847 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid); 1848 drv_cmd = BNX2X_Q_CMD_TERMINATE; 1849 break; 1850 1851 case (RAMROD_CMD_ID_ETH_EMPTY): 1852 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid); 1853 drv_cmd = BNX2X_Q_CMD_EMPTY; 1854 break; 1855 1856 case (RAMROD_CMD_ID_ETH_TPA_UPDATE): 1857 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid); 1858 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA; 1859 break; 1860 1861 default: 1862 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n", 1863 command, fp->index); 1864 return; 1865 } 1866 1867 if ((drv_cmd != BNX2X_Q_CMD_MAX) && 1868 q_obj->complete_cmd(bp, q_obj, drv_cmd)) 1869 /* q_obj->complete_cmd() failure means that this was 1870 * an unexpected completion. 1871 * 1872 * In this case we don't want to increase the bp->spq_left 1873 * because apparently we haven't sent this command the first 1874 * place. 1875 */ 1876 #ifdef BNX2X_STOP_ON_ERROR 1877 bnx2x_panic(); 1878 #else 1879 return; 1880 #endif 1881 1882 smp_mb__before_atomic(); 1883 atomic_inc(&bp->cq_spq_left); 1884 /* push the change in bp->spq_left and towards the memory */ 1885 smp_mb__after_atomic(); 1886 1887 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left)); 1888 1889 if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) && 1890 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) { 1891 /* if Q update ramrod is completed for last Q in AFEX vif set 1892 * flow, then ACK MCP at the end 1893 * 1894 * mark pending ACK to MCP bit. 1895 * prevent case that both bits are cleared. 1896 * At the end of load/unload driver checks that 1897 * sp_state is cleared, and this order prevents 1898 * races 1899 */ 1900 smp_mb__before_atomic(); 1901 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state); 1902 wmb(); 1903 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); 1904 smp_mb__after_atomic(); 1905 1906 /* schedule the sp task as mcp ack is required */ 1907 bnx2x_schedule_sp_task(bp); 1908 } 1909 1910 return; 1911 } 1912 1913 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance) 1914 { 1915 struct bnx2x *bp = netdev_priv(dev_instance); 1916 u16 status = bnx2x_ack_int(bp); 1917 u16 mask; 1918 int i; 1919 u8 cos; 1920 1921 /* Return here if interrupt is shared and it's not for us */ 1922 if (unlikely(status == 0)) { 1923 DP(NETIF_MSG_INTR, "not our interrupt!\n"); 1924 return IRQ_NONE; 1925 } 1926 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status); 1927 1928 #ifdef BNX2X_STOP_ON_ERROR 1929 if (unlikely(bp->panic)) 1930 return IRQ_HANDLED; 1931 #endif 1932 1933 for_each_eth_queue(bp, i) { 1934 struct bnx2x_fastpath *fp = &bp->fp[i]; 1935 1936 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp)); 1937 if (status & mask) { 1938 /* Handle Rx or Tx according to SB id */ 1939 for_each_cos_in_tx_queue(fp, cos) 1940 prefetch(fp->txdata_ptr[cos]->tx_cons_sb); 1941 prefetch(&fp->sb_running_index[SM_RX_ID]); 1942 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi)); 1943 status &= ~mask; 1944 } 1945 } 1946 1947 if (CNIC_SUPPORT(bp)) { 1948 mask = 0x2; 1949 if (status & (mask | 0x1)) { 1950 struct cnic_ops *c_ops = NULL; 1951 1952 rcu_read_lock(); 1953 c_ops = rcu_dereference(bp->cnic_ops); 1954 if (c_ops && (bp->cnic_eth_dev.drv_state & 1955 CNIC_DRV_STATE_HANDLES_IRQ)) 1956 c_ops->cnic_handler(bp->cnic_data, NULL); 1957 rcu_read_unlock(); 1958 1959 status &= ~mask; 1960 } 1961 } 1962 1963 if (unlikely(status & 0x1)) { 1964 1965 /* schedule sp task to perform default status block work, ack 1966 * attentions and enable interrupts. 1967 */ 1968 bnx2x_schedule_sp_task(bp); 1969 1970 status &= ~0x1; 1971 if (!status) 1972 return IRQ_HANDLED; 1973 } 1974 1975 if (unlikely(status)) 1976 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n", 1977 status); 1978 1979 return IRQ_HANDLED; 1980 } 1981 1982 /* Link */ 1983 1984 /* 1985 * General service functions 1986 */ 1987 1988 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource) 1989 { 1990 u32 lock_status; 1991 u32 resource_bit = (1 << resource); 1992 int func = BP_FUNC(bp); 1993 u32 hw_lock_control_reg; 1994 int cnt; 1995 1996 /* Validating that the resource is within range */ 1997 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1998 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 1999 resource, HW_LOCK_MAX_RESOURCE_VALUE); 2000 return -EINVAL; 2001 } 2002 2003 if (func <= 5) { 2004 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 2005 } else { 2006 hw_lock_control_reg = 2007 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 2008 } 2009 2010 /* Validating that the resource is not already taken */ 2011 lock_status = REG_RD(bp, hw_lock_control_reg); 2012 if (lock_status & resource_bit) { 2013 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n", 2014 lock_status, resource_bit); 2015 return -EEXIST; 2016 } 2017 2018 /* Try for 5 second every 5ms */ 2019 for (cnt = 0; cnt < 1000; cnt++) { 2020 /* Try to acquire the lock */ 2021 REG_WR(bp, hw_lock_control_reg + 4, resource_bit); 2022 lock_status = REG_RD(bp, hw_lock_control_reg); 2023 if (lock_status & resource_bit) 2024 return 0; 2025 2026 usleep_range(5000, 10000); 2027 } 2028 BNX2X_ERR("Timeout\n"); 2029 return -EAGAIN; 2030 } 2031 2032 int bnx2x_release_leader_lock(struct bnx2x *bp) 2033 { 2034 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); 2035 } 2036 2037 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource) 2038 { 2039 u32 lock_status; 2040 u32 resource_bit = (1 << resource); 2041 int func = BP_FUNC(bp); 2042 u32 hw_lock_control_reg; 2043 2044 /* Validating that the resource is within range */ 2045 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 2046 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 2047 resource, HW_LOCK_MAX_RESOURCE_VALUE); 2048 return -EINVAL; 2049 } 2050 2051 if (func <= 5) { 2052 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 2053 } else { 2054 hw_lock_control_reg = 2055 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 2056 } 2057 2058 /* Validating that the resource is currently taken */ 2059 lock_status = REG_RD(bp, hw_lock_control_reg); 2060 if (!(lock_status & resource_bit)) { 2061 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n", 2062 lock_status, resource_bit); 2063 return -EFAULT; 2064 } 2065 2066 REG_WR(bp, hw_lock_control_reg, resource_bit); 2067 return 0; 2068 } 2069 2070 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port) 2071 { 2072 /* The GPIO should be swapped if swap register is set and active */ 2073 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2074 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2075 int gpio_shift = gpio_num + 2076 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2077 u32 gpio_mask = (1 << gpio_shift); 2078 u32 gpio_reg; 2079 int value; 2080 2081 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2082 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2083 return -EINVAL; 2084 } 2085 2086 /* read GPIO value */ 2087 gpio_reg = REG_RD(bp, MISC_REG_GPIO); 2088 2089 /* get the requested pin value */ 2090 if ((gpio_reg & gpio_mask) == gpio_mask) 2091 value = 1; 2092 else 2093 value = 0; 2094 2095 return value; 2096 } 2097 2098 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) 2099 { 2100 /* The GPIO should be swapped if swap register is set and active */ 2101 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2102 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2103 int gpio_shift = gpio_num + 2104 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2105 u32 gpio_mask = (1 << gpio_shift); 2106 u32 gpio_reg; 2107 2108 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2109 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2110 return -EINVAL; 2111 } 2112 2113 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2114 /* read GPIO and mask except the float bits */ 2115 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 2116 2117 switch (mode) { 2118 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2119 DP(NETIF_MSG_LINK, 2120 "Set GPIO %d (shift %d) -> output low\n", 2121 gpio_num, gpio_shift); 2122 /* clear FLOAT and set CLR */ 2123 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2124 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 2125 break; 2126 2127 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2128 DP(NETIF_MSG_LINK, 2129 "Set GPIO %d (shift %d) -> output high\n", 2130 gpio_num, gpio_shift); 2131 /* clear FLOAT and set SET */ 2132 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2133 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 2134 break; 2135 2136 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2137 DP(NETIF_MSG_LINK, 2138 "Set GPIO %d (shift %d) -> input\n", 2139 gpio_num, gpio_shift); 2140 /* set FLOAT */ 2141 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2142 break; 2143 2144 default: 2145 break; 2146 } 2147 2148 REG_WR(bp, MISC_REG_GPIO, gpio_reg); 2149 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2150 2151 return 0; 2152 } 2153 2154 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode) 2155 { 2156 u32 gpio_reg = 0; 2157 int rc = 0; 2158 2159 /* Any port swapping should be handled by caller. */ 2160 2161 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2162 /* read GPIO and mask except the float bits */ 2163 gpio_reg = REG_RD(bp, MISC_REG_GPIO); 2164 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2165 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 2166 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 2167 2168 switch (mode) { 2169 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2170 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins); 2171 /* set CLR */ 2172 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 2173 break; 2174 2175 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2176 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins); 2177 /* set SET */ 2178 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2179 break; 2180 2181 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2182 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins); 2183 /* set FLOAT */ 2184 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2185 break; 2186 2187 default: 2188 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode); 2189 rc = -EINVAL; 2190 break; 2191 } 2192 2193 if (rc == 0) 2194 REG_WR(bp, MISC_REG_GPIO, gpio_reg); 2195 2196 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2197 2198 return rc; 2199 } 2200 2201 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) 2202 { 2203 /* The GPIO should be swapped if swap register is set and active */ 2204 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2205 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2206 int gpio_shift = gpio_num + 2207 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2208 u32 gpio_mask = (1 << gpio_shift); 2209 u32 gpio_reg; 2210 2211 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2212 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2213 return -EINVAL; 2214 } 2215 2216 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2217 /* read GPIO int */ 2218 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT); 2219 2220 switch (mode) { 2221 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2222 DP(NETIF_MSG_LINK, 2223 "Clear GPIO INT %d (shift %d) -> output low\n", 2224 gpio_num, gpio_shift); 2225 /* clear SET and set CLR */ 2226 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2227 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2228 break; 2229 2230 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2231 DP(NETIF_MSG_LINK, 2232 "Set GPIO INT %d (shift %d) -> output high\n", 2233 gpio_num, gpio_shift); 2234 /* clear CLR and set SET */ 2235 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2236 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2237 break; 2238 2239 default: 2240 break; 2241 } 2242 2243 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg); 2244 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2245 2246 return 0; 2247 } 2248 2249 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode) 2250 { 2251 u32 spio_reg; 2252 2253 /* Only 2 SPIOs are configurable */ 2254 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 2255 BNX2X_ERR("Invalid SPIO 0x%x\n", spio); 2256 return -EINVAL; 2257 } 2258 2259 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); 2260 /* read SPIO and mask except the float bits */ 2261 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 2262 2263 switch (mode) { 2264 case MISC_SPIO_OUTPUT_LOW: 2265 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio); 2266 /* clear FLOAT and set CLR */ 2267 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 2268 spio_reg |= (spio << MISC_SPIO_CLR_POS); 2269 break; 2270 2271 case MISC_SPIO_OUTPUT_HIGH: 2272 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio); 2273 /* clear FLOAT and set SET */ 2274 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 2275 spio_reg |= (spio << MISC_SPIO_SET_POS); 2276 break; 2277 2278 case MISC_SPIO_INPUT_HI_Z: 2279 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio); 2280 /* set FLOAT */ 2281 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 2282 break; 2283 2284 default: 2285 break; 2286 } 2287 2288 REG_WR(bp, MISC_REG_SPIO, spio_reg); 2289 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); 2290 2291 return 0; 2292 } 2293 2294 void bnx2x_calc_fc_adv(struct bnx2x *bp) 2295 { 2296 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp); 2297 2298 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 2299 ADVERTISED_Pause); 2300 switch (bp->link_vars.ieee_fc & 2301 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 2302 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 2303 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 2304 ADVERTISED_Pause); 2305 break; 2306 2307 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 2308 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 2309 break; 2310 2311 default: 2312 break; 2313 } 2314 } 2315 2316 static void bnx2x_set_requested_fc(struct bnx2x *bp) 2317 { 2318 /* Initialize link parameters structure variables 2319 * It is recommended to turn off RX FC for jumbo frames 2320 * for better performance 2321 */ 2322 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000)) 2323 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX; 2324 else 2325 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH; 2326 } 2327 2328 static void bnx2x_init_dropless_fc(struct bnx2x *bp) 2329 { 2330 u32 pause_enabled = 0; 2331 2332 if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) { 2333 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) 2334 pause_enabled = 1; 2335 2336 REG_WR(bp, BAR_USTRORM_INTMEM + 2337 USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)), 2338 pause_enabled); 2339 } 2340 2341 DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n", 2342 pause_enabled ? "enabled" : "disabled"); 2343 } 2344 2345 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode) 2346 { 2347 int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp); 2348 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx]; 2349 2350 if (!BP_NOMCP(bp)) { 2351 bnx2x_set_requested_fc(bp); 2352 bnx2x_acquire_phy_lock(bp); 2353 2354 if (load_mode == LOAD_DIAG) { 2355 struct link_params *lp = &bp->link_params; 2356 lp->loopback_mode = LOOPBACK_XGXS; 2357 /* Prefer doing PHY loopback at highest speed */ 2358 if (lp->req_line_speed[cfx_idx] < SPEED_20000) { 2359 if (lp->speed_cap_mask[cfx_idx] & 2360 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G) 2361 lp->req_line_speed[cfx_idx] = 2362 SPEED_20000; 2363 else if (lp->speed_cap_mask[cfx_idx] & 2364 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) 2365 lp->req_line_speed[cfx_idx] = 2366 SPEED_10000; 2367 else 2368 lp->req_line_speed[cfx_idx] = 2369 SPEED_1000; 2370 } 2371 } 2372 2373 if (load_mode == LOAD_LOOPBACK_EXT) { 2374 struct link_params *lp = &bp->link_params; 2375 lp->loopback_mode = LOOPBACK_EXT; 2376 } 2377 2378 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars); 2379 2380 bnx2x_release_phy_lock(bp); 2381 2382 bnx2x_init_dropless_fc(bp); 2383 2384 bnx2x_calc_fc_adv(bp); 2385 2386 if (bp->link_vars.link_up) { 2387 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2388 bnx2x_link_report(bp); 2389 } 2390 queue_delayed_work(bnx2x_wq, &bp->period_task, 0); 2391 bp->link_params.req_line_speed[cfx_idx] = req_line_speed; 2392 return rc; 2393 } 2394 BNX2X_ERR("Bootcode is missing - can not initialize link\n"); 2395 return -EINVAL; 2396 } 2397 2398 void bnx2x_link_set(struct bnx2x *bp) 2399 { 2400 if (!BP_NOMCP(bp)) { 2401 bnx2x_acquire_phy_lock(bp); 2402 bnx2x_phy_init(&bp->link_params, &bp->link_vars); 2403 bnx2x_release_phy_lock(bp); 2404 2405 bnx2x_init_dropless_fc(bp); 2406 2407 bnx2x_calc_fc_adv(bp); 2408 } else 2409 BNX2X_ERR("Bootcode is missing - can not set link\n"); 2410 } 2411 2412 static void bnx2x__link_reset(struct bnx2x *bp) 2413 { 2414 if (!BP_NOMCP(bp)) { 2415 bnx2x_acquire_phy_lock(bp); 2416 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars); 2417 bnx2x_release_phy_lock(bp); 2418 } else 2419 BNX2X_ERR("Bootcode is missing - can not reset link\n"); 2420 } 2421 2422 void bnx2x_force_link_reset(struct bnx2x *bp) 2423 { 2424 bnx2x_acquire_phy_lock(bp); 2425 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1); 2426 bnx2x_release_phy_lock(bp); 2427 } 2428 2429 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes) 2430 { 2431 u8 rc = 0; 2432 2433 if (!BP_NOMCP(bp)) { 2434 bnx2x_acquire_phy_lock(bp); 2435 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars, 2436 is_serdes); 2437 bnx2x_release_phy_lock(bp); 2438 } else 2439 BNX2X_ERR("Bootcode is missing - can not test link\n"); 2440 2441 return rc; 2442 } 2443 2444 /* Calculates the sum of vn_min_rates. 2445 It's needed for further normalizing of the min_rates. 2446 Returns: 2447 sum of vn_min_rates. 2448 or 2449 0 - if all the min_rates are 0. 2450 In the later case fairness algorithm should be deactivated. 2451 If not all min_rates are zero then those that are zeroes will be set to 1. 2452 */ 2453 static void bnx2x_calc_vn_min(struct bnx2x *bp, 2454 struct cmng_init_input *input) 2455 { 2456 int all_zero = 1; 2457 int vn; 2458 2459 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2460 u32 vn_cfg = bp->mf_config[vn]; 2461 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 2462 FUNC_MF_CFG_MIN_BW_SHIFT) * 100; 2463 2464 /* Skip hidden vns */ 2465 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) 2466 vn_min_rate = 0; 2467 /* If min rate is zero - set it to 1 */ 2468 else if (!vn_min_rate) 2469 vn_min_rate = DEF_MIN_RATE; 2470 else 2471 all_zero = 0; 2472 2473 input->vnic_min_rate[vn] = vn_min_rate; 2474 } 2475 2476 /* if ETS or all min rates are zeros - disable fairness */ 2477 if (BNX2X_IS_ETS_ENABLED(bp)) { 2478 input->flags.cmng_enables &= 2479 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2480 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n"); 2481 } else if (all_zero) { 2482 input->flags.cmng_enables &= 2483 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2484 DP(NETIF_MSG_IFUP, 2485 "All MIN values are zeroes fairness will be disabled\n"); 2486 } else 2487 input->flags.cmng_enables |= 2488 CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2489 } 2490 2491 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn, 2492 struct cmng_init_input *input) 2493 { 2494 u16 vn_max_rate; 2495 u32 vn_cfg = bp->mf_config[vn]; 2496 2497 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) 2498 vn_max_rate = 0; 2499 else { 2500 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg); 2501 2502 if (IS_MF_PERCENT_BW(bp)) { 2503 /* maxCfg in percents of linkspeed */ 2504 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100; 2505 } else /* SD modes */ 2506 /* maxCfg is absolute in 100Mb units */ 2507 vn_max_rate = maxCfg * 100; 2508 } 2509 2510 DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 2511 2512 input->vnic_max_rate[vn] = vn_max_rate; 2513 } 2514 2515 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp) 2516 { 2517 if (CHIP_REV_IS_SLOW(bp)) 2518 return CMNG_FNS_NONE; 2519 if (IS_MF(bp)) 2520 return CMNG_FNS_MINMAX; 2521 2522 return CMNG_FNS_NONE; 2523 } 2524 2525 void bnx2x_read_mf_cfg(struct bnx2x *bp) 2526 { 2527 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1); 2528 2529 if (BP_NOMCP(bp)) 2530 return; /* what should be the default value in this case */ 2531 2532 /* For 2 port configuration the absolute function number formula 2533 * is: 2534 * abs_func = 2 * vn + BP_PORT + BP_PATH 2535 * 2536 * and there are 4 functions per port 2537 * 2538 * For 4 port configuration it is 2539 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH 2540 * 2541 * and there are 2 functions per port 2542 */ 2543 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2544 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp); 2545 2546 if (func >= E1H_FUNC_MAX) 2547 break; 2548 2549 bp->mf_config[vn] = 2550 MF_CFG_RD(bp, func_mf_config[func].config); 2551 } 2552 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { 2553 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n"); 2554 bp->flags |= MF_FUNC_DIS; 2555 } else { 2556 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n"); 2557 bp->flags &= ~MF_FUNC_DIS; 2558 } 2559 } 2560 2561 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type) 2562 { 2563 struct cmng_init_input input; 2564 memset(&input, 0, sizeof(struct cmng_init_input)); 2565 2566 input.port_rate = bp->link_vars.line_speed; 2567 2568 if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) { 2569 int vn; 2570 2571 /* read mf conf from shmem */ 2572 if (read_cfg) 2573 bnx2x_read_mf_cfg(bp); 2574 2575 /* vn_weight_sum and enable fairness if not 0 */ 2576 bnx2x_calc_vn_min(bp, &input); 2577 2578 /* calculate and set min-max rate for each vn */ 2579 if (bp->port.pmf) 2580 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) 2581 bnx2x_calc_vn_max(bp, vn, &input); 2582 2583 /* always enable rate shaping and fairness */ 2584 input.flags.cmng_enables |= 2585 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 2586 2587 bnx2x_init_cmng(&input, &bp->cmng); 2588 return; 2589 } 2590 2591 /* rate shaping and fairness are disabled */ 2592 DP(NETIF_MSG_IFUP, 2593 "rate shaping and fairness are disabled\n"); 2594 } 2595 2596 static void storm_memset_cmng(struct bnx2x *bp, 2597 struct cmng_init *cmng, 2598 u8 port) 2599 { 2600 int vn; 2601 size_t size = sizeof(struct cmng_struct_per_port); 2602 2603 u32 addr = BAR_XSTRORM_INTMEM + 2604 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port); 2605 2606 __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port); 2607 2608 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2609 int func = func_by_vn(bp, vn); 2610 2611 addr = BAR_XSTRORM_INTMEM + 2612 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func); 2613 size = sizeof(struct rate_shaping_vars_per_vn); 2614 __storm_memset_struct(bp, addr, size, 2615 (u32 *)&cmng->vnic.vnic_max_rate[vn]); 2616 2617 addr = BAR_XSTRORM_INTMEM + 2618 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func); 2619 size = sizeof(struct fairness_vars_per_vn); 2620 __storm_memset_struct(bp, addr, size, 2621 (u32 *)&cmng->vnic.vnic_min_rate[vn]); 2622 } 2623 } 2624 2625 /* init cmng mode in HW according to local configuration */ 2626 void bnx2x_set_local_cmng(struct bnx2x *bp) 2627 { 2628 int cmng_fns = bnx2x_get_cmng_fns_mode(bp); 2629 2630 if (cmng_fns != CMNG_FNS_NONE) { 2631 bnx2x_cmng_fns_init(bp, false, cmng_fns); 2632 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 2633 } else { 2634 /* rate shaping and fairness are disabled */ 2635 DP(NETIF_MSG_IFUP, 2636 "single function mode without fairness\n"); 2637 } 2638 } 2639 2640 /* This function is called upon link interrupt */ 2641 static void bnx2x_link_attn(struct bnx2x *bp) 2642 { 2643 /* Make sure that we are synced with the current statistics */ 2644 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 2645 2646 bnx2x_link_update(&bp->link_params, &bp->link_vars); 2647 2648 bnx2x_init_dropless_fc(bp); 2649 2650 if (bp->link_vars.link_up) { 2651 2652 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) { 2653 struct host_port_stats *pstats; 2654 2655 pstats = bnx2x_sp(bp, port_stats); 2656 /* reset old mac stats */ 2657 memset(&(pstats->mac_stx[0]), 0, 2658 sizeof(struct mac_stx)); 2659 } 2660 if (bp->state == BNX2X_STATE_OPEN) 2661 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2662 } 2663 2664 if (bp->link_vars.link_up && bp->link_vars.line_speed) 2665 bnx2x_set_local_cmng(bp); 2666 2667 __bnx2x_link_report(bp); 2668 2669 if (IS_MF(bp)) 2670 bnx2x_link_sync_notify(bp); 2671 } 2672 2673 void bnx2x__link_status_update(struct bnx2x *bp) 2674 { 2675 if (bp->state != BNX2X_STATE_OPEN) 2676 return; 2677 2678 /* read updated dcb configuration */ 2679 if (IS_PF(bp)) { 2680 bnx2x_dcbx_pmf_update(bp); 2681 bnx2x_link_status_update(&bp->link_params, &bp->link_vars); 2682 if (bp->link_vars.link_up) 2683 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2684 else 2685 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 2686 /* indicate link status */ 2687 bnx2x_link_report(bp); 2688 2689 } else { /* VF */ 2690 bp->port.supported[0] |= (SUPPORTED_10baseT_Half | 2691 SUPPORTED_10baseT_Full | 2692 SUPPORTED_100baseT_Half | 2693 SUPPORTED_100baseT_Full | 2694 SUPPORTED_1000baseT_Full | 2695 SUPPORTED_2500baseX_Full | 2696 SUPPORTED_10000baseT_Full | 2697 SUPPORTED_TP | 2698 SUPPORTED_FIBRE | 2699 SUPPORTED_Autoneg | 2700 SUPPORTED_Pause | 2701 SUPPORTED_Asym_Pause); 2702 bp->port.advertising[0] = bp->port.supported[0]; 2703 2704 bp->link_params.bp = bp; 2705 bp->link_params.port = BP_PORT(bp); 2706 bp->link_params.req_duplex[0] = DUPLEX_FULL; 2707 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE; 2708 bp->link_params.req_line_speed[0] = SPEED_10000; 2709 bp->link_params.speed_cap_mask[0] = 0x7f0000; 2710 bp->link_params.switch_cfg = SWITCH_CFG_10G; 2711 bp->link_vars.mac_type = MAC_TYPE_BMAC; 2712 bp->link_vars.line_speed = SPEED_10000; 2713 bp->link_vars.link_status = 2714 (LINK_STATUS_LINK_UP | 2715 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 2716 bp->link_vars.link_up = 1; 2717 bp->link_vars.duplex = DUPLEX_FULL; 2718 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE; 2719 __bnx2x_link_report(bp); 2720 2721 bnx2x_sample_bulletin(bp); 2722 2723 /* if bulletin board did not have an update for link status 2724 * __bnx2x_link_report will report current status 2725 * but it will NOT duplicate report in case of already reported 2726 * during sampling bulletin board. 2727 */ 2728 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2729 } 2730 } 2731 2732 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid, 2733 u16 vlan_val, u8 allowed_prio) 2734 { 2735 struct bnx2x_func_state_params func_params = {NULL}; 2736 struct bnx2x_func_afex_update_params *f_update_params = 2737 &func_params.params.afex_update; 2738 2739 func_params.f_obj = &bp->func_obj; 2740 func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE; 2741 2742 /* no need to wait for RAMROD completion, so don't 2743 * set RAMROD_COMP_WAIT flag 2744 */ 2745 2746 f_update_params->vif_id = vifid; 2747 f_update_params->afex_default_vlan = vlan_val; 2748 f_update_params->allowed_priorities = allowed_prio; 2749 2750 /* if ramrod can not be sent, response to MCP immediately */ 2751 if (bnx2x_func_state_change(bp, &func_params) < 0) 2752 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 2753 2754 return 0; 2755 } 2756 2757 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type, 2758 u16 vif_index, u8 func_bit_map) 2759 { 2760 struct bnx2x_func_state_params func_params = {NULL}; 2761 struct bnx2x_func_afex_viflists_params *update_params = 2762 &func_params.params.afex_viflists; 2763 int rc; 2764 u32 drv_msg_code; 2765 2766 /* validate only LIST_SET and LIST_GET are received from switch */ 2767 if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET)) 2768 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n", 2769 cmd_type); 2770 2771 func_params.f_obj = &bp->func_obj; 2772 func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS; 2773 2774 /* set parameters according to cmd_type */ 2775 update_params->afex_vif_list_command = cmd_type; 2776 update_params->vif_list_index = vif_index; 2777 update_params->func_bit_map = 2778 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map; 2779 update_params->func_to_clear = 0; 2780 drv_msg_code = 2781 (cmd_type == VIF_LIST_RULE_GET) ? 2782 DRV_MSG_CODE_AFEX_LISTGET_ACK : 2783 DRV_MSG_CODE_AFEX_LISTSET_ACK; 2784 2785 /* if ramrod can not be sent, respond to MCP immediately for 2786 * SET and GET requests (other are not triggered from MCP) 2787 */ 2788 rc = bnx2x_func_state_change(bp, &func_params); 2789 if (rc < 0) 2790 bnx2x_fw_command(bp, drv_msg_code, 0); 2791 2792 return 0; 2793 } 2794 2795 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd) 2796 { 2797 struct afex_stats afex_stats; 2798 u32 func = BP_ABS_FUNC(bp); 2799 u32 mf_config; 2800 u16 vlan_val; 2801 u32 vlan_prio; 2802 u16 vif_id; 2803 u8 allowed_prio; 2804 u8 vlan_mode; 2805 u32 addr_to_write, vifid, addrs, stats_type, i; 2806 2807 if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) { 2808 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2809 DP(BNX2X_MSG_MCP, 2810 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid); 2811 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0); 2812 } 2813 2814 if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) { 2815 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2816 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]); 2817 DP(BNX2X_MSG_MCP, 2818 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n", 2819 vifid, addrs); 2820 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid, 2821 addrs); 2822 } 2823 2824 if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) { 2825 addr_to_write = SHMEM2_RD(bp, 2826 afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]); 2827 stats_type = SHMEM2_RD(bp, 2828 afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2829 2830 DP(BNX2X_MSG_MCP, 2831 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n", 2832 addr_to_write); 2833 2834 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type); 2835 2836 /* write response to scratchpad, for MCP */ 2837 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++) 2838 REG_WR(bp, addr_to_write + i*sizeof(u32), 2839 *(((u32 *)(&afex_stats))+i)); 2840 2841 /* send ack message to MCP */ 2842 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0); 2843 } 2844 2845 if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) { 2846 mf_config = MF_CFG_RD(bp, func_mf_config[func].config); 2847 bp->mf_config[BP_VN(bp)] = mf_config; 2848 DP(BNX2X_MSG_MCP, 2849 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n", 2850 mf_config); 2851 2852 /* if VIF_SET is "enabled" */ 2853 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) { 2854 /* set rate limit directly to internal RAM */ 2855 struct cmng_init_input cmng_input; 2856 struct rate_shaping_vars_per_vn m_rs_vn; 2857 size_t size = sizeof(struct rate_shaping_vars_per_vn); 2858 u32 addr = BAR_XSTRORM_INTMEM + 2859 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp)); 2860 2861 bp->mf_config[BP_VN(bp)] = mf_config; 2862 2863 bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input); 2864 m_rs_vn.vn_counter.rate = 2865 cmng_input.vnic_max_rate[BP_VN(bp)]; 2866 m_rs_vn.vn_counter.quota = 2867 (m_rs_vn.vn_counter.rate * 2868 RS_PERIODIC_TIMEOUT_USEC) / 8; 2869 2870 __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn); 2871 2872 /* read relevant values from mf_cfg struct in shmem */ 2873 vif_id = 2874 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2875 FUNC_MF_CFG_E1HOV_TAG_MASK) >> 2876 FUNC_MF_CFG_E1HOV_TAG_SHIFT; 2877 vlan_val = 2878 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2879 FUNC_MF_CFG_AFEX_VLAN_MASK) >> 2880 FUNC_MF_CFG_AFEX_VLAN_SHIFT; 2881 vlan_prio = (mf_config & 2882 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 2883 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT; 2884 vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT); 2885 vlan_mode = 2886 (MF_CFG_RD(bp, 2887 func_mf_config[func].afex_config) & 2888 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 2889 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT; 2890 allowed_prio = 2891 (MF_CFG_RD(bp, 2892 func_mf_config[func].afex_config) & 2893 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 2894 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT; 2895 2896 /* send ramrod to FW, return in case of failure */ 2897 if (bnx2x_afex_func_update(bp, vif_id, vlan_val, 2898 allowed_prio)) 2899 return; 2900 2901 bp->afex_def_vlan_tag = vlan_val; 2902 bp->afex_vlan_mode = vlan_mode; 2903 } else { 2904 /* notify link down because BP->flags is disabled */ 2905 bnx2x_link_report(bp); 2906 2907 /* send INVALID VIF ramrod to FW */ 2908 bnx2x_afex_func_update(bp, 0xFFFF, 0, 0); 2909 2910 /* Reset the default afex VLAN */ 2911 bp->afex_def_vlan_tag = -1; 2912 } 2913 } 2914 } 2915 2916 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp) 2917 { 2918 struct bnx2x_func_switch_update_params *switch_update_params; 2919 struct bnx2x_func_state_params func_params; 2920 2921 memset(&func_params, 0, sizeof(struct bnx2x_func_state_params)); 2922 switch_update_params = &func_params.params.switch_update; 2923 func_params.f_obj = &bp->func_obj; 2924 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 2925 2926 /* Prepare parameters for function state transitions */ 2927 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 2928 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 2929 2930 if (IS_MF_UFP(bp) || IS_MF_BD(bp)) { 2931 int func = BP_ABS_FUNC(bp); 2932 u32 val; 2933 2934 /* Re-learn the S-tag from shmem */ 2935 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2936 FUNC_MF_CFG_E1HOV_TAG_MASK; 2937 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 2938 bp->mf_ov = val; 2939 } else { 2940 BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n"); 2941 goto fail; 2942 } 2943 2944 /* Configure new S-tag in LLH */ 2945 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8, 2946 bp->mf_ov); 2947 2948 /* Send Ramrod to update FW of change */ 2949 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG, 2950 &switch_update_params->changes); 2951 switch_update_params->vlan = bp->mf_ov; 2952 2953 if (bnx2x_func_state_change(bp, &func_params) < 0) { 2954 BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n", 2955 bp->mf_ov); 2956 goto fail; 2957 } else { 2958 DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n", 2959 bp->mf_ov); 2960 } 2961 } else { 2962 goto fail; 2963 } 2964 2965 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0); 2966 return; 2967 fail: 2968 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0); 2969 } 2970 2971 static void bnx2x_pmf_update(struct bnx2x *bp) 2972 { 2973 int port = BP_PORT(bp); 2974 u32 val; 2975 2976 bp->port.pmf = 1; 2977 DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf); 2978 2979 /* 2980 * We need the mb() to ensure the ordering between the writing to 2981 * bp->port.pmf here and reading it from the bnx2x_periodic_task(). 2982 */ 2983 smp_mb(); 2984 2985 /* queue a periodic task */ 2986 queue_delayed_work(bnx2x_wq, &bp->period_task, 0); 2987 2988 bnx2x_dcbx_pmf_update(bp); 2989 2990 /* enable nig attention */ 2991 val = (0xff0f | (1 << (BP_VN(bp) + 4))); 2992 if (bp->common.int_block == INT_BLOCK_HC) { 2993 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); 2994 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); 2995 } else if (!CHIP_IS_E1x(bp)) { 2996 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); 2997 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); 2998 } 2999 3000 bnx2x_stats_handle(bp, STATS_EVENT_PMF); 3001 } 3002 3003 /* end of Link */ 3004 3005 /* slow path */ 3006 3007 /* 3008 * General service functions 3009 */ 3010 3011 /* send the MCP a request, block until there is a reply */ 3012 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param) 3013 { 3014 int mb_idx = BP_FW_MB_IDX(bp); 3015 u32 seq; 3016 u32 rc = 0; 3017 u32 cnt = 1; 3018 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10; 3019 3020 mutex_lock(&bp->fw_mb_mutex); 3021 seq = ++bp->fw_seq; 3022 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param); 3023 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq)); 3024 3025 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n", 3026 (command | seq), param); 3027 3028 do { 3029 /* let the FW do it's magic ... */ 3030 msleep(delay); 3031 3032 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header); 3033 3034 /* Give the FW up to 5 second (500*10ms) */ 3035 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 3036 3037 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n", 3038 cnt*delay, rc, seq); 3039 3040 /* is this a reply to our command? */ 3041 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) 3042 rc &= FW_MSG_CODE_MASK; 3043 else { 3044 /* FW BUG! */ 3045 BNX2X_ERR("FW failed to respond!\n"); 3046 bnx2x_fw_dump(bp); 3047 rc = 0; 3048 } 3049 mutex_unlock(&bp->fw_mb_mutex); 3050 3051 return rc; 3052 } 3053 3054 static void storm_memset_func_cfg(struct bnx2x *bp, 3055 struct tstorm_eth_function_common_config *tcfg, 3056 u16 abs_fid) 3057 { 3058 size_t size = sizeof(struct tstorm_eth_function_common_config); 3059 3060 u32 addr = BAR_TSTRORM_INTMEM + 3061 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid); 3062 3063 __storm_memset_struct(bp, addr, size, (u32 *)tcfg); 3064 } 3065 3066 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p) 3067 { 3068 if (CHIP_IS_E1x(bp)) { 3069 struct tstorm_eth_function_common_config tcfg = {0}; 3070 3071 storm_memset_func_cfg(bp, &tcfg, p->func_id); 3072 } 3073 3074 /* Enable the function in the FW */ 3075 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id); 3076 storm_memset_func_en(bp, p->func_id, 1); 3077 3078 /* spq */ 3079 if (p->spq_active) { 3080 storm_memset_spq_addr(bp, p->spq_map, p->func_id); 3081 REG_WR(bp, XSEM_REG_FAST_MEMORY + 3082 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod); 3083 } 3084 } 3085 3086 /** 3087 * bnx2x_get_common_flags - Return common flags 3088 * 3089 * @bp: device handle 3090 * @fp: queue handle 3091 * @zero_stats: TRUE if statistics zeroing is needed 3092 * 3093 * Return the flags that are common for the Tx-only and not normal connections. 3094 */ 3095 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp, 3096 struct bnx2x_fastpath *fp, 3097 bool zero_stats) 3098 { 3099 unsigned long flags = 0; 3100 3101 /* PF driver will always initialize the Queue to an ACTIVE state */ 3102 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags); 3103 3104 /* tx only connections collect statistics (on the same index as the 3105 * parent connection). The statistics are zeroed when the parent 3106 * connection is initialized. 3107 */ 3108 3109 __set_bit(BNX2X_Q_FLG_STATS, &flags); 3110 if (zero_stats) 3111 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags); 3112 3113 if (bp->flags & TX_SWITCHING) 3114 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags); 3115 3116 __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags); 3117 __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags); 3118 3119 #ifdef BNX2X_STOP_ON_ERROR 3120 __set_bit(BNX2X_Q_FLG_TX_SEC, &flags); 3121 #endif 3122 3123 return flags; 3124 } 3125 3126 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp, 3127 struct bnx2x_fastpath *fp, 3128 bool leading) 3129 { 3130 unsigned long flags = 0; 3131 3132 /* calculate other queue flags */ 3133 if (IS_MF_SD(bp)) 3134 __set_bit(BNX2X_Q_FLG_OV, &flags); 3135 3136 if (IS_FCOE_FP(fp)) { 3137 __set_bit(BNX2X_Q_FLG_FCOE, &flags); 3138 /* For FCoE - force usage of default priority (for afex) */ 3139 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags); 3140 } 3141 3142 if (fp->mode != TPA_MODE_DISABLED) { 3143 __set_bit(BNX2X_Q_FLG_TPA, &flags); 3144 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags); 3145 if (fp->mode == TPA_MODE_GRO) 3146 __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags); 3147 } 3148 3149 if (leading) { 3150 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags); 3151 __set_bit(BNX2X_Q_FLG_MCAST, &flags); 3152 } 3153 3154 /* Always set HW VLAN stripping */ 3155 __set_bit(BNX2X_Q_FLG_VLAN, &flags); 3156 3157 /* configure silent vlan removal */ 3158 if (IS_MF_AFEX(bp)) 3159 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags); 3160 3161 return flags | bnx2x_get_common_flags(bp, fp, true); 3162 } 3163 3164 static void bnx2x_pf_q_prep_general(struct bnx2x *bp, 3165 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init, 3166 u8 cos) 3167 { 3168 gen_init->stat_id = bnx2x_stats_id(fp); 3169 gen_init->spcl_id = fp->cl_id; 3170 3171 /* Always use mini-jumbo MTU for FCoE L2 ring */ 3172 if (IS_FCOE_FP(fp)) 3173 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU; 3174 else 3175 gen_init->mtu = bp->dev->mtu; 3176 3177 gen_init->cos = cos; 3178 3179 gen_init->fp_hsi = ETH_FP_HSI_VERSION; 3180 } 3181 3182 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp, 3183 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause, 3184 struct bnx2x_rxq_setup_params *rxq_init) 3185 { 3186 u8 max_sge = 0; 3187 u16 sge_sz = 0; 3188 u16 tpa_agg_size = 0; 3189 3190 if (fp->mode != TPA_MODE_DISABLED) { 3191 pause->sge_th_lo = SGE_TH_LO(bp); 3192 pause->sge_th_hi = SGE_TH_HI(bp); 3193 3194 /* validate SGE ring has enough to cross high threshold */ 3195 WARN_ON(bp->dropless_fc && 3196 pause->sge_th_hi + FW_PREFETCH_CNT > 3197 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES); 3198 3199 tpa_agg_size = TPA_AGG_SIZE; 3200 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >> 3201 SGE_PAGE_SHIFT; 3202 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 3203 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT; 3204 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff); 3205 } 3206 3207 /* pause - not for e1 */ 3208 if (!CHIP_IS_E1(bp)) { 3209 pause->bd_th_lo = BD_TH_LO(bp); 3210 pause->bd_th_hi = BD_TH_HI(bp); 3211 3212 pause->rcq_th_lo = RCQ_TH_LO(bp); 3213 pause->rcq_th_hi = RCQ_TH_HI(bp); 3214 /* 3215 * validate that rings have enough entries to cross 3216 * high thresholds 3217 */ 3218 WARN_ON(bp->dropless_fc && 3219 pause->bd_th_hi + FW_PREFETCH_CNT > 3220 bp->rx_ring_size); 3221 WARN_ON(bp->dropless_fc && 3222 pause->rcq_th_hi + FW_PREFETCH_CNT > 3223 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT); 3224 3225 pause->pri_map = 1; 3226 } 3227 3228 /* rxq setup */ 3229 rxq_init->dscr_map = fp->rx_desc_mapping; 3230 rxq_init->sge_map = fp->rx_sge_mapping; 3231 rxq_init->rcq_map = fp->rx_comp_mapping; 3232 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE; 3233 3234 /* This should be a maximum number of data bytes that may be 3235 * placed on the BD (not including paddings). 3236 */ 3237 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START - 3238 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING; 3239 3240 rxq_init->cl_qzone_id = fp->cl_qzone_id; 3241 rxq_init->tpa_agg_sz = tpa_agg_size; 3242 rxq_init->sge_buf_sz = sge_sz; 3243 rxq_init->max_sges_pkt = max_sge; 3244 rxq_init->rss_engine_id = BP_FUNC(bp); 3245 rxq_init->mcast_engine_id = BP_FUNC(bp); 3246 3247 /* Maximum number or simultaneous TPA aggregation for this Queue. 3248 * 3249 * For PF Clients it should be the maximum available number. 3250 * VF driver(s) may want to define it to a smaller value. 3251 */ 3252 rxq_init->max_tpa_queues = MAX_AGG_QS(bp); 3253 3254 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT; 3255 rxq_init->fw_sb_id = fp->fw_sb_id; 3256 3257 if (IS_FCOE_FP(fp)) 3258 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS; 3259 else 3260 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 3261 /* configure silent vlan removal 3262 * if multi function mode is afex, then mask default vlan 3263 */ 3264 if (IS_MF_AFEX(bp)) { 3265 rxq_init->silent_removal_value = bp->afex_def_vlan_tag; 3266 rxq_init->silent_removal_mask = VLAN_VID_MASK; 3267 } 3268 } 3269 3270 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp, 3271 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init, 3272 u8 cos) 3273 { 3274 txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping; 3275 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 3276 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 3277 txq_init->fw_sb_id = fp->fw_sb_id; 3278 3279 /* 3280 * set the tss leading client id for TX classification == 3281 * leading RSS client id 3282 */ 3283 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id); 3284 3285 if (IS_FCOE_FP(fp)) { 3286 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS; 3287 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE; 3288 } 3289 } 3290 3291 static void bnx2x_pf_init(struct bnx2x *bp) 3292 { 3293 struct bnx2x_func_init_params func_init = {0}; 3294 struct event_ring_data eq_data = { {0} }; 3295 3296 if (!CHIP_IS_E1x(bp)) { 3297 /* reset IGU PF statistics: MSIX + ATTN */ 3298 /* PF */ 3299 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 3300 BNX2X_IGU_STAS_MSG_VF_CNT*4 + 3301 (CHIP_MODE_IS_4_PORT(bp) ? 3302 BP_FUNC(bp) : BP_VN(bp))*4, 0); 3303 /* ATTN */ 3304 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 3305 BNX2X_IGU_STAS_MSG_VF_CNT*4 + 3306 BNX2X_IGU_STAS_MSG_PF_CNT*4 + 3307 (CHIP_MODE_IS_4_PORT(bp) ? 3308 BP_FUNC(bp) : BP_VN(bp))*4, 0); 3309 } 3310 3311 func_init.spq_active = true; 3312 func_init.pf_id = BP_FUNC(bp); 3313 func_init.func_id = BP_FUNC(bp); 3314 func_init.spq_map = bp->spq_mapping; 3315 func_init.spq_prod = bp->spq_prod_idx; 3316 3317 bnx2x_func_init(bp, &func_init); 3318 3319 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port)); 3320 3321 /* 3322 * Congestion management values depend on the link rate 3323 * There is no active link so initial link rate is set to 10 Gbps. 3324 * When the link comes up The congestion management values are 3325 * re-calculated according to the actual link rate. 3326 */ 3327 bp->link_vars.line_speed = SPEED_10000; 3328 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp)); 3329 3330 /* Only the PMF sets the HW */ 3331 if (bp->port.pmf) 3332 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 3333 3334 /* init Event Queue - PCI bus guarantees correct endianity*/ 3335 eq_data.base_addr.hi = U64_HI(bp->eq_mapping); 3336 eq_data.base_addr.lo = U64_LO(bp->eq_mapping); 3337 eq_data.producer = bp->eq_prod; 3338 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 3339 eq_data.sb_id = DEF_SB_ID; 3340 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp)); 3341 } 3342 3343 static void bnx2x_e1h_disable(struct bnx2x *bp) 3344 { 3345 int port = BP_PORT(bp); 3346 3347 bnx2x_tx_disable(bp); 3348 3349 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); 3350 } 3351 3352 static void bnx2x_e1h_enable(struct bnx2x *bp) 3353 { 3354 int port = BP_PORT(bp); 3355 3356 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) 3357 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1); 3358 3359 /* Tx queue should be only re-enabled */ 3360 netif_tx_wake_all_queues(bp->dev); 3361 3362 /* 3363 * Should not call netif_carrier_on since it will be called if the link 3364 * is up when checking for link state 3365 */ 3366 } 3367 3368 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 3369 3370 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp) 3371 { 3372 struct eth_stats_info *ether_stat = 3373 &bp->slowpath->drv_info_to_mcp.ether_stat; 3374 struct bnx2x_vlan_mac_obj *mac_obj = 3375 &bp->sp_objs->mac_obj; 3376 int i; 3377 3378 strlcpy(ether_stat->version, DRV_MODULE_VERSION, 3379 ETH_STAT_INFO_VERSION_LEN); 3380 3381 /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the 3382 * mac_local field in ether_stat struct. The base address is offset by 2 3383 * bytes to account for the field being 8 bytes but a mac address is 3384 * only 6 bytes. Likewise, the stride for the get_n_elements function is 3385 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes 3386 * allocated by the ether_stat struct, so the macs will land in their 3387 * proper positions. 3388 */ 3389 for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++) 3390 memset(ether_stat->mac_local + i, 0, 3391 sizeof(ether_stat->mac_local[0])); 3392 mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj, 3393 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 3394 ether_stat->mac_local + MAC_PAD, MAC_PAD, 3395 ETH_ALEN); 3396 ether_stat->mtu_size = bp->dev->mtu; 3397 if (bp->dev->features & NETIF_F_RXCSUM) 3398 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 3399 if (bp->dev->features & NETIF_F_TSO) 3400 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 3401 ether_stat->feature_flags |= bp->common.boot_mode; 3402 3403 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0; 3404 3405 ether_stat->txq_size = bp->tx_ring_size; 3406 ether_stat->rxq_size = bp->rx_ring_size; 3407 3408 #ifdef CONFIG_BNX2X_SRIOV 3409 ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0; 3410 #endif 3411 } 3412 3413 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp) 3414 { 3415 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; 3416 struct fcoe_stats_info *fcoe_stat = 3417 &bp->slowpath->drv_info_to_mcp.fcoe_stat; 3418 3419 if (!CNIC_LOADED(bp)) 3420 return; 3421 3422 memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN); 3423 3424 fcoe_stat->qos_priority = 3425 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE]; 3426 3427 /* insert FCoE stats from ramrod response */ 3428 if (!NO_FCOE(bp)) { 3429 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats = 3430 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. 3431 tstorm_queue_statistics; 3432 3433 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats = 3434 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. 3435 xstorm_queue_statistics; 3436 3437 struct fcoe_statistics_params *fw_fcoe_stat = 3438 &bp->fw_stats_data->fcoe; 3439 3440 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0, 3441 fcoe_stat->rx_bytes_lo, 3442 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt); 3443 3444 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3445 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi, 3446 fcoe_stat->rx_bytes_lo, 3447 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo); 3448 3449 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3450 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi, 3451 fcoe_stat->rx_bytes_lo, 3452 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo); 3453 3454 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3455 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi, 3456 fcoe_stat->rx_bytes_lo, 3457 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo); 3458 3459 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3460 fcoe_stat->rx_frames_lo, 3461 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt); 3462 3463 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3464 fcoe_stat->rx_frames_lo, 3465 fcoe_q_tstorm_stats->rcv_ucast_pkts); 3466 3467 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3468 fcoe_stat->rx_frames_lo, 3469 fcoe_q_tstorm_stats->rcv_bcast_pkts); 3470 3471 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3472 fcoe_stat->rx_frames_lo, 3473 fcoe_q_tstorm_stats->rcv_mcast_pkts); 3474 3475 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0, 3476 fcoe_stat->tx_bytes_lo, 3477 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt); 3478 3479 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3480 fcoe_q_xstorm_stats->ucast_bytes_sent.hi, 3481 fcoe_stat->tx_bytes_lo, 3482 fcoe_q_xstorm_stats->ucast_bytes_sent.lo); 3483 3484 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3485 fcoe_q_xstorm_stats->bcast_bytes_sent.hi, 3486 fcoe_stat->tx_bytes_lo, 3487 fcoe_q_xstorm_stats->bcast_bytes_sent.lo); 3488 3489 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3490 fcoe_q_xstorm_stats->mcast_bytes_sent.hi, 3491 fcoe_stat->tx_bytes_lo, 3492 fcoe_q_xstorm_stats->mcast_bytes_sent.lo); 3493 3494 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3495 fcoe_stat->tx_frames_lo, 3496 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt); 3497 3498 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3499 fcoe_stat->tx_frames_lo, 3500 fcoe_q_xstorm_stats->ucast_pkts_sent); 3501 3502 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3503 fcoe_stat->tx_frames_lo, 3504 fcoe_q_xstorm_stats->bcast_pkts_sent); 3505 3506 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3507 fcoe_stat->tx_frames_lo, 3508 fcoe_q_xstorm_stats->mcast_pkts_sent); 3509 } 3510 3511 /* ask L5 driver to add data to the struct */ 3512 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD); 3513 } 3514 3515 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp) 3516 { 3517 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; 3518 struct iscsi_stats_info *iscsi_stat = 3519 &bp->slowpath->drv_info_to_mcp.iscsi_stat; 3520 3521 if (!CNIC_LOADED(bp)) 3522 return; 3523 3524 memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac, 3525 ETH_ALEN); 3526 3527 iscsi_stat->qos_priority = 3528 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI]; 3529 3530 /* ask L5 driver to add data to the struct */ 3531 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD); 3532 } 3533 3534 /* called due to MCP event (on pmf): 3535 * reread new bandwidth configuration 3536 * configure FW 3537 * notify others function about the change 3538 */ 3539 static void bnx2x_config_mf_bw(struct bnx2x *bp) 3540 { 3541 /* Workaround for MFW bug. 3542 * MFW is not supposed to generate BW attention in 3543 * single function mode. 3544 */ 3545 if (!IS_MF(bp)) { 3546 DP(BNX2X_MSG_MCP, 3547 "Ignoring MF BW config in single function mode\n"); 3548 return; 3549 } 3550 3551 if (bp->link_vars.link_up) { 3552 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX); 3553 bnx2x_link_sync_notify(bp); 3554 } 3555 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 3556 } 3557 3558 static void bnx2x_set_mf_bw(struct bnx2x *bp) 3559 { 3560 bnx2x_config_mf_bw(bp); 3561 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 3562 } 3563 3564 static void bnx2x_handle_eee_event(struct bnx2x *bp) 3565 { 3566 DP(BNX2X_MSG_MCP, "EEE - LLDP event\n"); 3567 bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 3568 } 3569 3570 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH (20) 3571 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT (25) 3572 3573 static void bnx2x_handle_drv_info_req(struct bnx2x *bp) 3574 { 3575 enum drv_info_opcode op_code; 3576 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control); 3577 bool release = false; 3578 int wait; 3579 3580 /* if drv_info version supported by MFW doesn't match - send NACK */ 3581 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 3582 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); 3583 return; 3584 } 3585 3586 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 3587 DRV_INFO_CONTROL_OP_CODE_SHIFT; 3588 3589 /* Must prevent other flows from accessing drv_info_to_mcp */ 3590 mutex_lock(&bp->drv_info_mutex); 3591 3592 memset(&bp->slowpath->drv_info_to_mcp, 0, 3593 sizeof(union drv_info_to_mcp)); 3594 3595 switch (op_code) { 3596 case ETH_STATS_OPCODE: 3597 bnx2x_drv_info_ether_stat(bp); 3598 break; 3599 case FCOE_STATS_OPCODE: 3600 bnx2x_drv_info_fcoe_stat(bp); 3601 break; 3602 case ISCSI_STATS_OPCODE: 3603 bnx2x_drv_info_iscsi_stat(bp); 3604 break; 3605 default: 3606 /* if op code isn't supported - send NACK */ 3607 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); 3608 goto out; 3609 } 3610 3611 /* if we got drv_info attn from MFW then these fields are defined in 3612 * shmem2 for sure 3613 */ 3614 SHMEM2_WR(bp, drv_info_host_addr_lo, 3615 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp))); 3616 SHMEM2_WR(bp, drv_info_host_addr_hi, 3617 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp))); 3618 3619 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0); 3620 3621 /* Since possible management wants both this and get_driver_version 3622 * need to wait until management notifies us it finished utilizing 3623 * the buffer. 3624 */ 3625 if (!SHMEM2_HAS(bp, mfw_drv_indication)) { 3626 DP(BNX2X_MSG_MCP, "Management does not support indication\n"); 3627 } else if (!bp->drv_info_mng_owner) { 3628 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1)); 3629 3630 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) { 3631 u32 indication = SHMEM2_RD(bp, mfw_drv_indication); 3632 3633 /* Management is done; need to clear indication */ 3634 if (indication & bit) { 3635 SHMEM2_WR(bp, mfw_drv_indication, 3636 indication & ~bit); 3637 release = true; 3638 break; 3639 } 3640 3641 msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH); 3642 } 3643 } 3644 if (!release) { 3645 DP(BNX2X_MSG_MCP, "Management did not release indication\n"); 3646 bp->drv_info_mng_owner = true; 3647 } 3648 3649 out: 3650 mutex_unlock(&bp->drv_info_mutex); 3651 } 3652 3653 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format) 3654 { 3655 u8 vals[4]; 3656 int i = 0; 3657 3658 if (bnx2x_format) { 3659 i = sscanf(version, "1.%c%hhd.%hhd.%hhd", 3660 &vals[0], &vals[1], &vals[2], &vals[3]); 3661 if (i > 0) 3662 vals[0] -= '0'; 3663 } else { 3664 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd", 3665 &vals[0], &vals[1], &vals[2], &vals[3]); 3666 } 3667 3668 while (i < 4) 3669 vals[i++] = 0; 3670 3671 return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3]; 3672 } 3673 3674 void bnx2x_update_mng_version(struct bnx2x *bp) 3675 { 3676 u32 iscsiver = DRV_VER_NOT_LOADED; 3677 u32 fcoever = DRV_VER_NOT_LOADED; 3678 u32 ethver = DRV_VER_NOT_LOADED; 3679 int idx = BP_FW_MB_IDX(bp); 3680 u8 *version; 3681 3682 if (!SHMEM2_HAS(bp, func_os_drv_ver)) 3683 return; 3684 3685 mutex_lock(&bp->drv_info_mutex); 3686 /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */ 3687 if (bp->drv_info_mng_owner) 3688 goto out; 3689 3690 if (bp->state != BNX2X_STATE_OPEN) 3691 goto out; 3692 3693 /* Parse ethernet driver version */ 3694 ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true); 3695 if (!CNIC_LOADED(bp)) 3696 goto out; 3697 3698 /* Try getting storage driver version via cnic */ 3699 memset(&bp->slowpath->drv_info_to_mcp, 0, 3700 sizeof(union drv_info_to_mcp)); 3701 bnx2x_drv_info_iscsi_stat(bp); 3702 version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version; 3703 iscsiver = bnx2x_update_mng_version_utility(version, false); 3704 3705 memset(&bp->slowpath->drv_info_to_mcp, 0, 3706 sizeof(union drv_info_to_mcp)); 3707 bnx2x_drv_info_fcoe_stat(bp); 3708 version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version; 3709 fcoever = bnx2x_update_mng_version_utility(version, false); 3710 3711 out: 3712 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver); 3713 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver); 3714 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever); 3715 3716 mutex_unlock(&bp->drv_info_mutex); 3717 3718 DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n", 3719 ethver, iscsiver, fcoever); 3720 } 3721 3722 void bnx2x_update_mfw_dump(struct bnx2x *bp) 3723 { 3724 u32 drv_ver; 3725 u32 valid_dump; 3726 3727 if (!SHMEM2_HAS(bp, drv_info)) 3728 return; 3729 3730 /* Update Driver load time, possibly broken in y2038 */ 3731 SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds()); 3732 3733 drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true); 3734 SHMEM2_WR(bp, drv_info.drv_ver, drv_ver); 3735 3736 SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM)); 3737 3738 /* Check & notify On-Chip dump. */ 3739 valid_dump = SHMEM2_RD(bp, drv_info.valid_dump); 3740 3741 if (valid_dump & FIRST_DUMP_VALID) 3742 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n"); 3743 3744 if (valid_dump & SECOND_DUMP_VALID) 3745 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n"); 3746 } 3747 3748 static void bnx2x_oem_event(struct bnx2x *bp, u32 event) 3749 { 3750 u32 cmd_ok, cmd_fail; 3751 3752 /* sanity */ 3753 if (event & DRV_STATUS_DCC_EVENT_MASK && 3754 event & DRV_STATUS_OEM_EVENT_MASK) { 3755 BNX2X_ERR("Received simultaneous events %08x\n", event); 3756 return; 3757 } 3758 3759 if (event & DRV_STATUS_DCC_EVENT_MASK) { 3760 cmd_fail = DRV_MSG_CODE_DCC_FAILURE; 3761 cmd_ok = DRV_MSG_CODE_DCC_OK; 3762 } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ { 3763 cmd_fail = DRV_MSG_CODE_OEM_FAILURE; 3764 cmd_ok = DRV_MSG_CODE_OEM_OK; 3765 } 3766 3767 DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event); 3768 3769 if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF | 3770 DRV_STATUS_OEM_DISABLE_ENABLE_PF)) { 3771 /* This is the only place besides the function initialization 3772 * where the bp->flags can change so it is done without any 3773 * locks 3774 */ 3775 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { 3776 DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n"); 3777 bp->flags |= MF_FUNC_DIS; 3778 3779 bnx2x_e1h_disable(bp); 3780 } else { 3781 DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n"); 3782 bp->flags &= ~MF_FUNC_DIS; 3783 3784 bnx2x_e1h_enable(bp); 3785 } 3786 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF | 3787 DRV_STATUS_OEM_DISABLE_ENABLE_PF); 3788 } 3789 3790 if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION | 3791 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) { 3792 bnx2x_config_mf_bw(bp); 3793 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION | 3794 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION); 3795 } 3796 3797 /* Report results to MCP */ 3798 if (event) 3799 bnx2x_fw_command(bp, cmd_fail, 0); 3800 else 3801 bnx2x_fw_command(bp, cmd_ok, 0); 3802 } 3803 3804 /* must be called under the spq lock */ 3805 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp) 3806 { 3807 struct eth_spe *next_spe = bp->spq_prod_bd; 3808 3809 if (bp->spq_prod_bd == bp->spq_last_bd) { 3810 bp->spq_prod_bd = bp->spq; 3811 bp->spq_prod_idx = 0; 3812 DP(BNX2X_MSG_SP, "end of spq\n"); 3813 } else { 3814 bp->spq_prod_bd++; 3815 bp->spq_prod_idx++; 3816 } 3817 return next_spe; 3818 } 3819 3820 /* must be called under the spq lock */ 3821 static void bnx2x_sp_prod_update(struct bnx2x *bp) 3822 { 3823 int func = BP_FUNC(bp); 3824 3825 /* 3826 * Make sure that BD data is updated before writing the producer: 3827 * BD data is written to the memory, the producer is read from the 3828 * memory, thus we need a full memory barrier to ensure the ordering. 3829 */ 3830 mb(); 3831 3832 REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func), 3833 bp->spq_prod_idx); 3834 } 3835 3836 /** 3837 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ 3838 * 3839 * @cmd: command to check 3840 * @cmd_type: command type 3841 */ 3842 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type) 3843 { 3844 if ((cmd_type == NONE_CONNECTION_TYPE) || 3845 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 3846 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 3847 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 3848 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 3849 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 3850 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) 3851 return true; 3852 else 3853 return false; 3854 } 3855 3856 /** 3857 * bnx2x_sp_post - place a single command on an SP ring 3858 * 3859 * @bp: driver handle 3860 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 3861 * @cid: SW CID the command is related to 3862 * @data_hi: command private data address (high 32 bits) 3863 * @data_lo: command private data address (low 32 bits) 3864 * @cmd_type: command type (e.g. NONE, ETH) 3865 * 3866 * SP data is handled as if it's always an address pair, thus data fields are 3867 * not swapped to little endian in upper functions. Instead this function swaps 3868 * data as if it's two u32 fields. 3869 */ 3870 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid, 3871 u32 data_hi, u32 data_lo, int cmd_type) 3872 { 3873 struct eth_spe *spe; 3874 u16 type; 3875 bool common = bnx2x_is_contextless_ramrod(command, cmd_type); 3876 3877 #ifdef BNX2X_STOP_ON_ERROR 3878 if (unlikely(bp->panic)) { 3879 BNX2X_ERR("Can't post SP when there is panic\n"); 3880 return -EIO; 3881 } 3882 #endif 3883 3884 spin_lock_bh(&bp->spq_lock); 3885 3886 if (common) { 3887 if (!atomic_read(&bp->eq_spq_left)) { 3888 BNX2X_ERR("BUG! EQ ring full!\n"); 3889 spin_unlock_bh(&bp->spq_lock); 3890 bnx2x_panic(); 3891 return -EBUSY; 3892 } 3893 } else if (!atomic_read(&bp->cq_spq_left)) { 3894 BNX2X_ERR("BUG! SPQ ring full!\n"); 3895 spin_unlock_bh(&bp->spq_lock); 3896 bnx2x_panic(); 3897 return -EBUSY; 3898 } 3899 3900 spe = bnx2x_sp_get_next(bp); 3901 3902 /* CID needs port number to be encoded int it */ 3903 spe->hdr.conn_and_cmd_data = 3904 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) | 3905 HW_CID(bp, cid)); 3906 3907 /* In some cases, type may already contain the func-id 3908 * mainly in SRIOV related use cases, so we add it here only 3909 * if it's not already set. 3910 */ 3911 if (!(cmd_type & SPE_HDR_FUNCTION_ID)) { 3912 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & 3913 SPE_HDR_CONN_TYPE; 3914 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) & 3915 SPE_HDR_FUNCTION_ID); 3916 } else { 3917 type = cmd_type; 3918 } 3919 3920 spe->hdr.type = cpu_to_le16(type); 3921 3922 spe->data.update_data_addr.hi = cpu_to_le32(data_hi); 3923 spe->data.update_data_addr.lo = cpu_to_le32(data_lo); 3924 3925 /* 3926 * It's ok if the actual decrement is issued towards the memory 3927 * somewhere between the spin_lock and spin_unlock. Thus no 3928 * more explicit memory barrier is needed. 3929 */ 3930 if (common) 3931 atomic_dec(&bp->eq_spq_left); 3932 else 3933 atomic_dec(&bp->cq_spq_left); 3934 3935 DP(BNX2X_MSG_SP, 3936 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n", 3937 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping), 3938 (u32)(U64_LO(bp->spq_mapping) + 3939 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common, 3940 HW_CID(bp, cid), data_hi, data_lo, type, 3941 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left)); 3942 3943 bnx2x_sp_prod_update(bp); 3944 spin_unlock_bh(&bp->spq_lock); 3945 return 0; 3946 } 3947 3948 /* acquire split MCP access lock register */ 3949 static int bnx2x_acquire_alr(struct bnx2x *bp) 3950 { 3951 u32 j, val; 3952 int rc = 0; 3953 3954 might_sleep(); 3955 for (j = 0; j < 1000; j++) { 3956 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK); 3957 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK); 3958 if (val & MCPR_ACCESS_LOCK_LOCK) 3959 break; 3960 3961 usleep_range(5000, 10000); 3962 } 3963 if (!(val & MCPR_ACCESS_LOCK_LOCK)) { 3964 BNX2X_ERR("Cannot acquire MCP access lock register\n"); 3965 rc = -EBUSY; 3966 } 3967 3968 return rc; 3969 } 3970 3971 /* release split MCP access lock register */ 3972 static void bnx2x_release_alr(struct bnx2x *bp) 3973 { 3974 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0); 3975 } 3976 3977 #define BNX2X_DEF_SB_ATT_IDX 0x0001 3978 #define BNX2X_DEF_SB_IDX 0x0002 3979 3980 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp) 3981 { 3982 struct host_sp_status_block *def_sb = bp->def_status_blk; 3983 u16 rc = 0; 3984 3985 barrier(); /* status block is written to by the chip */ 3986 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 3987 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index; 3988 rc |= BNX2X_DEF_SB_ATT_IDX; 3989 } 3990 3991 if (bp->def_idx != def_sb->sp_sb.running_index) { 3992 bp->def_idx = def_sb->sp_sb.running_index; 3993 rc |= BNX2X_DEF_SB_IDX; 3994 } 3995 3996 /* Do not reorder: indices reading should complete before handling */ 3997 barrier(); 3998 return rc; 3999 } 4000 4001 /* 4002 * slow path service functions 4003 */ 4004 4005 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted) 4006 { 4007 int port = BP_PORT(bp); 4008 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4009 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4010 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 4011 NIG_REG_MASK_INTERRUPT_PORT0; 4012 u32 aeu_mask; 4013 u32 nig_mask = 0; 4014 u32 reg_addr; 4015 4016 if (bp->attn_state & asserted) 4017 BNX2X_ERR("IGU ERROR\n"); 4018 4019 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 4020 aeu_mask = REG_RD(bp, aeu_addr); 4021 4022 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n", 4023 aeu_mask, asserted); 4024 aeu_mask &= ~(asserted & 0x3ff); 4025 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); 4026 4027 REG_WR(bp, aeu_addr, aeu_mask); 4028 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 4029 4030 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); 4031 bp->attn_state |= asserted; 4032 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); 4033 4034 if (asserted & ATTN_HARD_WIRED_MASK) { 4035 if (asserted & ATTN_NIG_FOR_FUNC) { 4036 4037 bnx2x_acquire_phy_lock(bp); 4038 4039 /* save nig interrupt mask */ 4040 nig_mask = REG_RD(bp, nig_int_mask_addr); 4041 4042 /* If nig_mask is not set, no need to call the update 4043 * function. 4044 */ 4045 if (nig_mask) { 4046 REG_WR(bp, nig_int_mask_addr, 0); 4047 4048 bnx2x_link_attn(bp); 4049 } 4050 4051 /* handle unicore attn? */ 4052 } 4053 if (asserted & ATTN_SW_TIMER_4_FUNC) 4054 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n"); 4055 4056 if (asserted & GPIO_2_FUNC) 4057 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n"); 4058 4059 if (asserted & GPIO_3_FUNC) 4060 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n"); 4061 4062 if (asserted & GPIO_4_FUNC) 4063 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n"); 4064 4065 if (port == 0) { 4066 if (asserted & ATTN_GENERAL_ATTN_1) { 4067 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n"); 4068 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 4069 } 4070 if (asserted & ATTN_GENERAL_ATTN_2) { 4071 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n"); 4072 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 4073 } 4074 if (asserted & ATTN_GENERAL_ATTN_3) { 4075 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n"); 4076 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 4077 } 4078 } else { 4079 if (asserted & ATTN_GENERAL_ATTN_4) { 4080 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n"); 4081 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 4082 } 4083 if (asserted & ATTN_GENERAL_ATTN_5) { 4084 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n"); 4085 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 4086 } 4087 if (asserted & ATTN_GENERAL_ATTN_6) { 4088 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n"); 4089 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 4090 } 4091 } 4092 4093 } /* if hardwired */ 4094 4095 if (bp->common.int_block == INT_BLOCK_HC) 4096 reg_addr = (HC_REG_COMMAND_REG + port*32 + 4097 COMMAND_REG_ATTN_BITS_SET); 4098 else 4099 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 4100 4101 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted, 4102 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 4103 REG_WR(bp, reg_addr, asserted); 4104 4105 /* now set back the mask */ 4106 if (asserted & ATTN_NIG_FOR_FUNC) { 4107 /* Verify that IGU ack through BAR was written before restoring 4108 * NIG mask. This loop should exit after 2-3 iterations max. 4109 */ 4110 if (bp->common.int_block != INT_BLOCK_HC) { 4111 u32 cnt = 0, igu_acked; 4112 do { 4113 igu_acked = REG_RD(bp, 4114 IGU_REG_ATTENTION_ACK_BITS); 4115 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 4116 (++cnt < MAX_IGU_ATTN_ACK_TO)); 4117 if (!igu_acked) 4118 DP(NETIF_MSG_HW, 4119 "Failed to verify IGU ack on time\n"); 4120 barrier(); 4121 } 4122 REG_WR(bp, nig_int_mask_addr, nig_mask); 4123 bnx2x_release_phy_lock(bp); 4124 } 4125 } 4126 4127 static void bnx2x_fan_failure(struct bnx2x *bp) 4128 { 4129 int port = BP_PORT(bp); 4130 u32 ext_phy_config; 4131 /* mark the failure */ 4132 ext_phy_config = 4133 SHMEM_RD(bp, 4134 dev_info.port_hw_config[port].external_phy_config); 4135 4136 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 4137 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 4138 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config, 4139 ext_phy_config); 4140 4141 /* log the failure */ 4142 netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n" 4143 "Please contact OEM Support for assistance\n"); 4144 4145 /* Schedule device reset (unload) 4146 * This is due to some boards consuming sufficient power when driver is 4147 * up to overheat if fan fails. 4148 */ 4149 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0); 4150 } 4151 4152 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn) 4153 { 4154 int port = BP_PORT(bp); 4155 int reg_offset; 4156 u32 val; 4157 4158 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 4159 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 4160 4161 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 4162 4163 val = REG_RD(bp, reg_offset); 4164 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 4165 REG_WR(bp, reg_offset, val); 4166 4167 BNX2X_ERR("SPIO5 hw attention\n"); 4168 4169 /* Fan failure attention */ 4170 bnx2x_hw_reset_phy(&bp->link_params); 4171 bnx2x_fan_failure(bp); 4172 } 4173 4174 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) { 4175 bnx2x_acquire_phy_lock(bp); 4176 bnx2x_handle_module_detect_int(&bp->link_params); 4177 bnx2x_release_phy_lock(bp); 4178 } 4179 4180 if (attn & HW_INTERRUPT_ASSERT_SET_0) { 4181 4182 val = REG_RD(bp, reg_offset); 4183 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0); 4184 REG_WR(bp, reg_offset, val); 4185 4186 BNX2X_ERR("FATAL HW block attention set0 0x%x\n", 4187 (u32)(attn & HW_INTERRUPT_ASSERT_SET_0)); 4188 bnx2x_panic(); 4189 } 4190 } 4191 4192 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn) 4193 { 4194 u32 val; 4195 4196 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 4197 4198 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR); 4199 BNX2X_ERR("DB hw attention 0x%x\n", val); 4200 /* DORQ discard attention */ 4201 if (val & 0x2) 4202 BNX2X_ERR("FATAL error from DORQ\n"); 4203 } 4204 4205 if (attn & HW_INTERRUPT_ASSERT_SET_1) { 4206 4207 int port = BP_PORT(bp); 4208 int reg_offset; 4209 4210 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 4211 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 4212 4213 val = REG_RD(bp, reg_offset); 4214 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1); 4215 REG_WR(bp, reg_offset, val); 4216 4217 BNX2X_ERR("FATAL HW block attention set1 0x%x\n", 4218 (u32)(attn & HW_INTERRUPT_ASSERT_SET_1)); 4219 bnx2x_panic(); 4220 } 4221 } 4222 4223 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn) 4224 { 4225 u32 val; 4226 4227 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 4228 4229 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR); 4230 BNX2X_ERR("CFC hw attention 0x%x\n", val); 4231 /* CFC error attention */ 4232 if (val & 0x2) 4233 BNX2X_ERR("FATAL error from CFC\n"); 4234 } 4235 4236 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 4237 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0); 4238 BNX2X_ERR("PXP hw attention-0 0x%x\n", val); 4239 /* RQ_USDMDP_FIFO_OVERFLOW */ 4240 if (val & 0x18000) 4241 BNX2X_ERR("FATAL error from PXP\n"); 4242 4243 if (!CHIP_IS_E1x(bp)) { 4244 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1); 4245 BNX2X_ERR("PXP hw attention-1 0x%x\n", val); 4246 } 4247 } 4248 4249 if (attn & HW_INTERRUPT_ASSERT_SET_2) { 4250 4251 int port = BP_PORT(bp); 4252 int reg_offset; 4253 4254 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 4255 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 4256 4257 val = REG_RD(bp, reg_offset); 4258 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2); 4259 REG_WR(bp, reg_offset, val); 4260 4261 BNX2X_ERR("FATAL HW block attention set2 0x%x\n", 4262 (u32)(attn & HW_INTERRUPT_ASSERT_SET_2)); 4263 bnx2x_panic(); 4264 } 4265 } 4266 4267 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn) 4268 { 4269 u32 val; 4270 4271 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 4272 4273 if (attn & BNX2X_PMF_LINK_ASSERT) { 4274 int func = BP_FUNC(bp); 4275 4276 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 4277 bnx2x_read_mf_cfg(bp); 4278 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp, 4279 func_mf_config[BP_ABS_FUNC(bp)].config); 4280 val = SHMEM_RD(bp, 4281 func_mb[BP_FW_MB_IDX(bp)].drv_status); 4282 4283 if (val & (DRV_STATUS_DCC_EVENT_MASK | 4284 DRV_STATUS_OEM_EVENT_MASK)) 4285 bnx2x_oem_event(bp, 4286 (val & (DRV_STATUS_DCC_EVENT_MASK | 4287 DRV_STATUS_OEM_EVENT_MASK))); 4288 4289 if (val & DRV_STATUS_SET_MF_BW) 4290 bnx2x_set_mf_bw(bp); 4291 4292 if (val & DRV_STATUS_DRV_INFO_REQ) 4293 bnx2x_handle_drv_info_req(bp); 4294 4295 if (val & DRV_STATUS_VF_DISABLED) 4296 bnx2x_schedule_iov_task(bp, 4297 BNX2X_IOV_HANDLE_FLR); 4298 4299 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF)) 4300 bnx2x_pmf_update(bp); 4301 4302 if (bp->port.pmf && 4303 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) && 4304 bp->dcbx_enabled > 0) 4305 /* start dcbx state machine */ 4306 bnx2x_dcbx_set_params(bp, 4307 BNX2X_DCBX_STATE_NEG_RECEIVED); 4308 if (val & DRV_STATUS_AFEX_EVENT_MASK) 4309 bnx2x_handle_afex_cmd(bp, 4310 val & DRV_STATUS_AFEX_EVENT_MASK); 4311 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 4312 bnx2x_handle_eee_event(bp); 4313 4314 if (val & DRV_STATUS_OEM_UPDATE_SVID) 4315 bnx2x_schedule_sp_rtnl(bp, 4316 BNX2X_SP_RTNL_UPDATE_SVID, 0); 4317 4318 if (bp->link_vars.periodic_flags & 4319 PERIODIC_FLAGS_LINK_EVENT) { 4320 /* sync with link */ 4321 bnx2x_acquire_phy_lock(bp); 4322 bp->link_vars.periodic_flags &= 4323 ~PERIODIC_FLAGS_LINK_EVENT; 4324 bnx2x_release_phy_lock(bp); 4325 if (IS_MF(bp)) 4326 bnx2x_link_sync_notify(bp); 4327 bnx2x_link_report(bp); 4328 } 4329 /* Always call it here: bnx2x_link_report() will 4330 * prevent the link indication duplication. 4331 */ 4332 bnx2x__link_status_update(bp); 4333 } else if (attn & BNX2X_MC_ASSERT_BITS) { 4334 4335 BNX2X_ERR("MC assert!\n"); 4336 bnx2x_mc_assert(bp); 4337 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0); 4338 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0); 4339 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0); 4340 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0); 4341 bnx2x_panic(); 4342 4343 } else if (attn & BNX2X_MCP_ASSERT) { 4344 4345 BNX2X_ERR("MCP assert!\n"); 4346 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0); 4347 bnx2x_fw_dump(bp); 4348 4349 } else 4350 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn); 4351 } 4352 4353 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 4354 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn); 4355 if (attn & BNX2X_GRC_TIMEOUT) { 4356 val = CHIP_IS_E1(bp) ? 0 : 4357 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN); 4358 BNX2X_ERR("GRC time-out 0x%08x\n", val); 4359 } 4360 if (attn & BNX2X_GRC_RSV) { 4361 val = CHIP_IS_E1(bp) ? 0 : 4362 REG_RD(bp, MISC_REG_GRC_RSV_ATTN); 4363 BNX2X_ERR("GRC reserved 0x%08x\n", val); 4364 } 4365 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 4366 } 4367 } 4368 4369 /* 4370 * Bits map: 4371 * 0-7 - Engine0 load counter. 4372 * 8-15 - Engine1 load counter. 4373 * 16 - Engine0 RESET_IN_PROGRESS bit. 4374 * 17 - Engine1 RESET_IN_PROGRESS bit. 4375 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function 4376 * on the engine 4377 * 19 - Engine1 ONE_IS_LOADED. 4378 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 4379 * leader to complete (check for both RESET_IN_PROGRESS bits and not for 4380 * just the one belonging to its engine). 4381 * 4382 */ 4383 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 4384 4385 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff 4386 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0 4387 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00 4388 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8 4389 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000 4390 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000 4391 #define BNX2X_GLOBAL_RESET_BIT 0x00040000 4392 4393 /* 4394 * Set the GLOBAL_RESET bit. 4395 * 4396 * Should be run under rtnl lock 4397 */ 4398 void bnx2x_set_reset_global(struct bnx2x *bp) 4399 { 4400 u32 val; 4401 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4402 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4403 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT); 4404 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4405 } 4406 4407 /* 4408 * Clear the GLOBAL_RESET bit. 4409 * 4410 * Should be run under rtnl lock 4411 */ 4412 static void bnx2x_clear_reset_global(struct bnx2x *bp) 4413 { 4414 u32 val; 4415 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4416 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4417 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT)); 4418 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4419 } 4420 4421 /* 4422 * Checks the GLOBAL_RESET bit. 4423 * 4424 * should be run under rtnl lock 4425 */ 4426 static bool bnx2x_reset_is_global(struct bnx2x *bp) 4427 { 4428 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4429 4430 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val); 4431 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false; 4432 } 4433 4434 /* 4435 * Clear RESET_IN_PROGRESS bit for the current engine. 4436 * 4437 * Should be run under rtnl lock 4438 */ 4439 static void bnx2x_set_reset_done(struct bnx2x *bp) 4440 { 4441 u32 val; 4442 u32 bit = BP_PATH(bp) ? 4443 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4444 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4445 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4446 4447 /* Clear the bit */ 4448 val &= ~bit; 4449 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4450 4451 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4452 } 4453 4454 /* 4455 * Set RESET_IN_PROGRESS for the current engine. 4456 * 4457 * should be run under rtnl lock 4458 */ 4459 void bnx2x_set_reset_in_progress(struct bnx2x *bp) 4460 { 4461 u32 val; 4462 u32 bit = BP_PATH(bp) ? 4463 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4464 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4465 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4466 4467 /* Set the bit */ 4468 val |= bit; 4469 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4470 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4471 } 4472 4473 /* 4474 * Checks the RESET_IN_PROGRESS bit for the given engine. 4475 * should be run under rtnl lock 4476 */ 4477 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine) 4478 { 4479 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4480 u32 bit = engine ? 4481 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4482 4483 /* return false if bit is set */ 4484 return (val & bit) ? false : true; 4485 } 4486 4487 /* 4488 * set pf load for the current pf. 4489 * 4490 * should be run under rtnl lock 4491 */ 4492 void bnx2x_set_pf_load(struct bnx2x *bp) 4493 { 4494 u32 val1, val; 4495 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : 4496 BNX2X_PATH0_LOAD_CNT_MASK; 4497 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4498 BNX2X_PATH0_LOAD_CNT_SHIFT; 4499 4500 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4501 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4502 4503 DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val); 4504 4505 /* get the current counter value */ 4506 val1 = (val & mask) >> shift; 4507 4508 /* set bit of that PF */ 4509 val1 |= (1 << bp->pf_num); 4510 4511 /* clear the old value */ 4512 val &= ~mask; 4513 4514 /* set the new one */ 4515 val |= ((val1 << shift) & mask); 4516 4517 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4518 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4519 } 4520 4521 /** 4522 * bnx2x_clear_pf_load - clear pf load mark 4523 * 4524 * @bp: driver handle 4525 * 4526 * Should be run under rtnl lock. 4527 * Decrements the load counter for the current engine. Returns 4528 * whether other functions are still loaded 4529 */ 4530 bool bnx2x_clear_pf_load(struct bnx2x *bp) 4531 { 4532 u32 val1, val; 4533 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : 4534 BNX2X_PATH0_LOAD_CNT_MASK; 4535 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4536 BNX2X_PATH0_LOAD_CNT_SHIFT; 4537 4538 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4539 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4540 DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val); 4541 4542 /* get the current counter value */ 4543 val1 = (val & mask) >> shift; 4544 4545 /* clear bit of that PF */ 4546 val1 &= ~(1 << bp->pf_num); 4547 4548 /* clear the old value */ 4549 val &= ~mask; 4550 4551 /* set the new one */ 4552 val |= ((val1 << shift) & mask); 4553 4554 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4555 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4556 return val1 != 0; 4557 } 4558 4559 /* 4560 * Read the load status for the current engine. 4561 * 4562 * should be run under rtnl lock 4563 */ 4564 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine) 4565 { 4566 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK : 4567 BNX2X_PATH0_LOAD_CNT_MASK); 4568 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4569 BNX2X_PATH0_LOAD_CNT_SHIFT); 4570 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4571 4572 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val); 4573 4574 val = (val & mask) >> shift; 4575 4576 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n", 4577 engine, val); 4578 4579 return val != 0; 4580 } 4581 4582 static void _print_parity(struct bnx2x *bp, u32 reg) 4583 { 4584 pr_cont(" [0x%08x] ", REG_RD(bp, reg)); 4585 } 4586 4587 static void _print_next_block(int idx, const char *blk) 4588 { 4589 pr_cont("%s%s", idx ? ", " : "", blk); 4590 } 4591 4592 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig, 4593 int *par_num, bool print) 4594 { 4595 u32 cur_bit; 4596 bool res; 4597 int i; 4598 4599 res = false; 4600 4601 for (i = 0; sig; i++) { 4602 cur_bit = (0x1UL << i); 4603 if (sig & cur_bit) { 4604 res |= true; /* Each bit is real error! */ 4605 4606 if (print) { 4607 switch (cur_bit) { 4608 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 4609 _print_next_block((*par_num)++, "BRB"); 4610 _print_parity(bp, 4611 BRB1_REG_BRB1_PRTY_STS); 4612 break; 4613 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 4614 _print_next_block((*par_num)++, 4615 "PARSER"); 4616 _print_parity(bp, PRS_REG_PRS_PRTY_STS); 4617 break; 4618 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 4619 _print_next_block((*par_num)++, "TSDM"); 4620 _print_parity(bp, 4621 TSDM_REG_TSDM_PRTY_STS); 4622 break; 4623 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 4624 _print_next_block((*par_num)++, 4625 "SEARCHER"); 4626 _print_parity(bp, SRC_REG_SRC_PRTY_STS); 4627 break; 4628 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 4629 _print_next_block((*par_num)++, "TCM"); 4630 _print_parity(bp, TCM_REG_TCM_PRTY_STS); 4631 break; 4632 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 4633 _print_next_block((*par_num)++, 4634 "TSEMI"); 4635 _print_parity(bp, 4636 TSEM_REG_TSEM_PRTY_STS_0); 4637 _print_parity(bp, 4638 TSEM_REG_TSEM_PRTY_STS_1); 4639 break; 4640 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 4641 _print_next_block((*par_num)++, "XPB"); 4642 _print_parity(bp, GRCBASE_XPB + 4643 PB_REG_PB_PRTY_STS); 4644 break; 4645 } 4646 } 4647 4648 /* Clear the bit */ 4649 sig &= ~cur_bit; 4650 } 4651 } 4652 4653 return res; 4654 } 4655 4656 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig, 4657 int *par_num, bool *global, 4658 bool print) 4659 { 4660 u32 cur_bit; 4661 bool res; 4662 int i; 4663 4664 res = false; 4665 4666 for (i = 0; sig; i++) { 4667 cur_bit = (0x1UL << i); 4668 if (sig & cur_bit) { 4669 res |= true; /* Each bit is real error! */ 4670 switch (cur_bit) { 4671 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 4672 if (print) { 4673 _print_next_block((*par_num)++, "PBF"); 4674 _print_parity(bp, PBF_REG_PBF_PRTY_STS); 4675 } 4676 break; 4677 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 4678 if (print) { 4679 _print_next_block((*par_num)++, "QM"); 4680 _print_parity(bp, QM_REG_QM_PRTY_STS); 4681 } 4682 break; 4683 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 4684 if (print) { 4685 _print_next_block((*par_num)++, "TM"); 4686 _print_parity(bp, TM_REG_TM_PRTY_STS); 4687 } 4688 break; 4689 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 4690 if (print) { 4691 _print_next_block((*par_num)++, "XSDM"); 4692 _print_parity(bp, 4693 XSDM_REG_XSDM_PRTY_STS); 4694 } 4695 break; 4696 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 4697 if (print) { 4698 _print_next_block((*par_num)++, "XCM"); 4699 _print_parity(bp, XCM_REG_XCM_PRTY_STS); 4700 } 4701 break; 4702 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 4703 if (print) { 4704 _print_next_block((*par_num)++, 4705 "XSEMI"); 4706 _print_parity(bp, 4707 XSEM_REG_XSEM_PRTY_STS_0); 4708 _print_parity(bp, 4709 XSEM_REG_XSEM_PRTY_STS_1); 4710 } 4711 break; 4712 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 4713 if (print) { 4714 _print_next_block((*par_num)++, 4715 "DOORBELLQ"); 4716 _print_parity(bp, 4717 DORQ_REG_DORQ_PRTY_STS); 4718 } 4719 break; 4720 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 4721 if (print) { 4722 _print_next_block((*par_num)++, "NIG"); 4723 if (CHIP_IS_E1x(bp)) { 4724 _print_parity(bp, 4725 NIG_REG_NIG_PRTY_STS); 4726 } else { 4727 _print_parity(bp, 4728 NIG_REG_NIG_PRTY_STS_0); 4729 _print_parity(bp, 4730 NIG_REG_NIG_PRTY_STS_1); 4731 } 4732 } 4733 break; 4734 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 4735 if (print) 4736 _print_next_block((*par_num)++, 4737 "VAUX PCI CORE"); 4738 *global = true; 4739 break; 4740 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 4741 if (print) { 4742 _print_next_block((*par_num)++, 4743 "DEBUG"); 4744 _print_parity(bp, DBG_REG_DBG_PRTY_STS); 4745 } 4746 break; 4747 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 4748 if (print) { 4749 _print_next_block((*par_num)++, "USDM"); 4750 _print_parity(bp, 4751 USDM_REG_USDM_PRTY_STS); 4752 } 4753 break; 4754 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 4755 if (print) { 4756 _print_next_block((*par_num)++, "UCM"); 4757 _print_parity(bp, UCM_REG_UCM_PRTY_STS); 4758 } 4759 break; 4760 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 4761 if (print) { 4762 _print_next_block((*par_num)++, 4763 "USEMI"); 4764 _print_parity(bp, 4765 USEM_REG_USEM_PRTY_STS_0); 4766 _print_parity(bp, 4767 USEM_REG_USEM_PRTY_STS_1); 4768 } 4769 break; 4770 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 4771 if (print) { 4772 _print_next_block((*par_num)++, "UPB"); 4773 _print_parity(bp, GRCBASE_UPB + 4774 PB_REG_PB_PRTY_STS); 4775 } 4776 break; 4777 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 4778 if (print) { 4779 _print_next_block((*par_num)++, "CSDM"); 4780 _print_parity(bp, 4781 CSDM_REG_CSDM_PRTY_STS); 4782 } 4783 break; 4784 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 4785 if (print) { 4786 _print_next_block((*par_num)++, "CCM"); 4787 _print_parity(bp, CCM_REG_CCM_PRTY_STS); 4788 } 4789 break; 4790 } 4791 4792 /* Clear the bit */ 4793 sig &= ~cur_bit; 4794 } 4795 } 4796 4797 return res; 4798 } 4799 4800 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig, 4801 int *par_num, bool print) 4802 { 4803 u32 cur_bit; 4804 bool res; 4805 int i; 4806 4807 res = false; 4808 4809 for (i = 0; sig; i++) { 4810 cur_bit = (0x1UL << i); 4811 if (sig & cur_bit) { 4812 res = true; /* Each bit is real error! */ 4813 if (print) { 4814 switch (cur_bit) { 4815 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 4816 _print_next_block((*par_num)++, 4817 "CSEMI"); 4818 _print_parity(bp, 4819 CSEM_REG_CSEM_PRTY_STS_0); 4820 _print_parity(bp, 4821 CSEM_REG_CSEM_PRTY_STS_1); 4822 break; 4823 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 4824 _print_next_block((*par_num)++, "PXP"); 4825 _print_parity(bp, PXP_REG_PXP_PRTY_STS); 4826 _print_parity(bp, 4827 PXP2_REG_PXP2_PRTY_STS_0); 4828 _print_parity(bp, 4829 PXP2_REG_PXP2_PRTY_STS_1); 4830 break; 4831 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 4832 _print_next_block((*par_num)++, 4833 "PXPPCICLOCKCLIENT"); 4834 break; 4835 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 4836 _print_next_block((*par_num)++, "CFC"); 4837 _print_parity(bp, 4838 CFC_REG_CFC_PRTY_STS); 4839 break; 4840 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 4841 _print_next_block((*par_num)++, "CDU"); 4842 _print_parity(bp, CDU_REG_CDU_PRTY_STS); 4843 break; 4844 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 4845 _print_next_block((*par_num)++, "DMAE"); 4846 _print_parity(bp, 4847 DMAE_REG_DMAE_PRTY_STS); 4848 break; 4849 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 4850 _print_next_block((*par_num)++, "IGU"); 4851 if (CHIP_IS_E1x(bp)) 4852 _print_parity(bp, 4853 HC_REG_HC_PRTY_STS); 4854 else 4855 _print_parity(bp, 4856 IGU_REG_IGU_PRTY_STS); 4857 break; 4858 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 4859 _print_next_block((*par_num)++, "MISC"); 4860 _print_parity(bp, 4861 MISC_REG_MISC_PRTY_STS); 4862 break; 4863 } 4864 } 4865 4866 /* Clear the bit */ 4867 sig &= ~cur_bit; 4868 } 4869 } 4870 4871 return res; 4872 } 4873 4874 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig, 4875 int *par_num, bool *global, 4876 bool print) 4877 { 4878 bool res = false; 4879 u32 cur_bit; 4880 int i; 4881 4882 for (i = 0; sig; i++) { 4883 cur_bit = (0x1UL << i); 4884 if (sig & cur_bit) { 4885 switch (cur_bit) { 4886 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 4887 if (print) 4888 _print_next_block((*par_num)++, 4889 "MCP ROM"); 4890 *global = true; 4891 res = true; 4892 break; 4893 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 4894 if (print) 4895 _print_next_block((*par_num)++, 4896 "MCP UMP RX"); 4897 *global = true; 4898 res = true; 4899 break; 4900 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 4901 if (print) 4902 _print_next_block((*par_num)++, 4903 "MCP UMP TX"); 4904 *global = true; 4905 res = true; 4906 break; 4907 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 4908 (*par_num)++; 4909 /* clear latched SCPAD PATIRY from MCP */ 4910 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 4911 1UL << 10); 4912 break; 4913 } 4914 4915 /* Clear the bit */ 4916 sig &= ~cur_bit; 4917 } 4918 } 4919 4920 return res; 4921 } 4922 4923 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig, 4924 int *par_num, bool print) 4925 { 4926 u32 cur_bit; 4927 bool res; 4928 int i; 4929 4930 res = false; 4931 4932 for (i = 0; sig; i++) { 4933 cur_bit = (0x1UL << i); 4934 if (sig & cur_bit) { 4935 res = true; /* Each bit is real error! */ 4936 if (print) { 4937 switch (cur_bit) { 4938 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 4939 _print_next_block((*par_num)++, 4940 "PGLUE_B"); 4941 _print_parity(bp, 4942 PGLUE_B_REG_PGLUE_B_PRTY_STS); 4943 break; 4944 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 4945 _print_next_block((*par_num)++, "ATC"); 4946 _print_parity(bp, 4947 ATC_REG_ATC_PRTY_STS); 4948 break; 4949 } 4950 } 4951 /* Clear the bit */ 4952 sig &= ~cur_bit; 4953 } 4954 } 4955 4956 return res; 4957 } 4958 4959 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print, 4960 u32 *sig) 4961 { 4962 bool res = false; 4963 4964 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 4965 (sig[1] & HW_PRTY_ASSERT_SET_1) || 4966 (sig[2] & HW_PRTY_ASSERT_SET_2) || 4967 (sig[3] & HW_PRTY_ASSERT_SET_3) || 4968 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 4969 int par_num = 0; 4970 4971 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n" 4972 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 4973 sig[0] & HW_PRTY_ASSERT_SET_0, 4974 sig[1] & HW_PRTY_ASSERT_SET_1, 4975 sig[2] & HW_PRTY_ASSERT_SET_2, 4976 sig[3] & HW_PRTY_ASSERT_SET_3, 4977 sig[4] & HW_PRTY_ASSERT_SET_4); 4978 if (print) { 4979 if (((sig[0] & HW_PRTY_ASSERT_SET_0) || 4980 (sig[1] & HW_PRTY_ASSERT_SET_1) || 4981 (sig[2] & HW_PRTY_ASSERT_SET_2) || 4982 (sig[4] & HW_PRTY_ASSERT_SET_4)) || 4983 (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) { 4984 netdev_err(bp->dev, 4985 "Parity errors detected in blocks: "); 4986 } else { 4987 print = false; 4988 } 4989 } 4990 res |= bnx2x_check_blocks_with_parity0(bp, 4991 sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print); 4992 res |= bnx2x_check_blocks_with_parity1(bp, 4993 sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print); 4994 res |= bnx2x_check_blocks_with_parity2(bp, 4995 sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print); 4996 res |= bnx2x_check_blocks_with_parity3(bp, 4997 sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print); 4998 res |= bnx2x_check_blocks_with_parity4(bp, 4999 sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print); 5000 5001 if (print) 5002 pr_cont("\n"); 5003 } 5004 5005 return res; 5006 } 5007 5008 /** 5009 * bnx2x_chk_parity_attn - checks for parity attentions. 5010 * 5011 * @bp: driver handle 5012 * @global: true if there was a global attention 5013 * @print: show parity attention in syslog 5014 */ 5015 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print) 5016 { 5017 struct attn_route attn = { {0} }; 5018 int port = BP_PORT(bp); 5019 5020 attn.sig[0] = REG_RD(bp, 5021 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 5022 port*4); 5023 attn.sig[1] = REG_RD(bp, 5024 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + 5025 port*4); 5026 attn.sig[2] = REG_RD(bp, 5027 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + 5028 port*4); 5029 attn.sig[3] = REG_RD(bp, 5030 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + 5031 port*4); 5032 /* Since MCP attentions can't be disabled inside the block, we need to 5033 * read AEU registers to see whether they're currently disabled 5034 */ 5035 attn.sig[3] &= ((REG_RD(bp, 5036 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0 5037 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) & 5038 MISC_AEU_ENABLE_MCP_PRTY_BITS) | 5039 ~MISC_AEU_ENABLE_MCP_PRTY_BITS); 5040 5041 if (!CHIP_IS_E1x(bp)) 5042 attn.sig[4] = REG_RD(bp, 5043 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + 5044 port*4); 5045 5046 return bnx2x_parity_attn(bp, global, print, attn.sig); 5047 } 5048 5049 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn) 5050 { 5051 u32 val; 5052 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 5053 5054 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 5055 BNX2X_ERR("PGLUE hw attention 0x%x\n", val); 5056 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 5057 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 5058 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 5059 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 5060 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 5061 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 5062 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 5063 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 5064 if (val & 5065 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 5066 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 5067 if (val & 5068 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 5069 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 5070 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 5071 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 5072 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 5073 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 5074 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 5075 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 5076 } 5077 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 5078 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR); 5079 BNX2X_ERR("ATC hw attention 0x%x\n", val); 5080 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 5081 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 5082 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 5083 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 5084 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 5085 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 5086 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 5087 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 5088 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 5089 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 5090 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 5091 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 5092 } 5093 5094 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 5095 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 5096 BNX2X_ERR("FATAL parity attention set4 0x%x\n", 5097 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 5098 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 5099 } 5100 } 5101 5102 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted) 5103 { 5104 struct attn_route attn, *group_mask; 5105 int port = BP_PORT(bp); 5106 int index; 5107 u32 reg_addr; 5108 u32 val; 5109 u32 aeu_mask; 5110 bool global = false; 5111 5112 /* need to take HW lock because MCP or other port might also 5113 try to handle this event */ 5114 bnx2x_acquire_alr(bp); 5115 5116 if (bnx2x_chk_parity_attn(bp, &global, true)) { 5117 #ifndef BNX2X_STOP_ON_ERROR 5118 bp->recovery_state = BNX2X_RECOVERY_INIT; 5119 schedule_delayed_work(&bp->sp_rtnl_task, 0); 5120 /* Disable HW interrupts */ 5121 bnx2x_int_disable(bp); 5122 /* In case of parity errors don't handle attentions so that 5123 * other function would "see" parity errors. 5124 */ 5125 #else 5126 bnx2x_panic(); 5127 #endif 5128 bnx2x_release_alr(bp); 5129 return; 5130 } 5131 5132 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 5133 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 5134 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 5135 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 5136 if (!CHIP_IS_E1x(bp)) 5137 attn.sig[4] = 5138 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 5139 else 5140 attn.sig[4] = 0; 5141 5142 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n", 5143 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 5144 5145 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 5146 if (deasserted & (1 << index)) { 5147 group_mask = &bp->attn_group[index]; 5148 5149 DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n", 5150 index, 5151 group_mask->sig[0], group_mask->sig[1], 5152 group_mask->sig[2], group_mask->sig[3], 5153 group_mask->sig[4]); 5154 5155 bnx2x_attn_int_deasserted4(bp, 5156 attn.sig[4] & group_mask->sig[4]); 5157 bnx2x_attn_int_deasserted3(bp, 5158 attn.sig[3] & group_mask->sig[3]); 5159 bnx2x_attn_int_deasserted1(bp, 5160 attn.sig[1] & group_mask->sig[1]); 5161 bnx2x_attn_int_deasserted2(bp, 5162 attn.sig[2] & group_mask->sig[2]); 5163 bnx2x_attn_int_deasserted0(bp, 5164 attn.sig[0] & group_mask->sig[0]); 5165 } 5166 } 5167 5168 bnx2x_release_alr(bp); 5169 5170 if (bp->common.int_block == INT_BLOCK_HC) 5171 reg_addr = (HC_REG_COMMAND_REG + port*32 + 5172 COMMAND_REG_ATTN_BITS_CLR); 5173 else 5174 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 5175 5176 val = ~deasserted; 5177 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val, 5178 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 5179 REG_WR(bp, reg_addr, val); 5180 5181 if (~bp->attn_state & deasserted) 5182 BNX2X_ERR("IGU ERROR\n"); 5183 5184 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 5185 MISC_REG_AEU_MASK_ATTN_FUNC_0; 5186 5187 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 5188 aeu_mask = REG_RD(bp, reg_addr); 5189 5190 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n", 5191 aeu_mask, deasserted); 5192 aeu_mask |= (deasserted & 0x3ff); 5193 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); 5194 5195 REG_WR(bp, reg_addr, aeu_mask); 5196 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 5197 5198 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); 5199 bp->attn_state &= ~deasserted; 5200 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); 5201 } 5202 5203 static void bnx2x_attn_int(struct bnx2x *bp) 5204 { 5205 /* read local copy of bits */ 5206 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block. 5207 attn_bits); 5208 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block. 5209 attn_bits_ack); 5210 u32 attn_state = bp->attn_state; 5211 5212 /* look for changed bits */ 5213 u32 asserted = attn_bits & ~attn_ack & ~attn_state; 5214 u32 deasserted = ~attn_bits & attn_ack & attn_state; 5215 5216 DP(NETIF_MSG_HW, 5217 "attn_bits %x attn_ack %x asserted %x deasserted %x\n", 5218 attn_bits, attn_ack, asserted, deasserted); 5219 5220 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) 5221 BNX2X_ERR("BAD attention state\n"); 5222 5223 /* handle bits that were raised */ 5224 if (asserted) 5225 bnx2x_attn_int_asserted(bp, asserted); 5226 5227 if (deasserted) 5228 bnx2x_attn_int_deasserted(bp, deasserted); 5229 } 5230 5231 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment, 5232 u16 index, u8 op, u8 update) 5233 { 5234 u32 igu_addr = bp->igu_base_addr; 5235 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 5236 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update, 5237 igu_addr); 5238 } 5239 5240 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod) 5241 { 5242 /* No memory barriers */ 5243 storm_memset_eq_prod(bp, prod, BP_FUNC(bp)); 5244 } 5245 5246 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid, 5247 union event_ring_elem *elem) 5248 { 5249 u8 err = elem->message.error; 5250 5251 if (!bp->cnic_eth_dev.starting_cid || 5252 (cid < bp->cnic_eth_dev.starting_cid && 5253 cid != bp->cnic_eth_dev.iscsi_l2_cid)) 5254 return 1; 5255 5256 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid); 5257 5258 if (unlikely(err)) { 5259 5260 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n", 5261 cid); 5262 bnx2x_panic_dump(bp, false); 5263 } 5264 bnx2x_cnic_cfc_comp(bp, cid, err); 5265 return 0; 5266 } 5267 5268 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp) 5269 { 5270 struct bnx2x_mcast_ramrod_params rparam; 5271 int rc; 5272 5273 memset(&rparam, 0, sizeof(rparam)); 5274 5275 rparam.mcast_obj = &bp->mcast_obj; 5276 5277 netif_addr_lock_bh(bp->dev); 5278 5279 /* Clear pending state for the last command */ 5280 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw); 5281 5282 /* If there are pending mcast commands - send them */ 5283 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) { 5284 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 5285 if (rc < 0) 5286 BNX2X_ERR("Failed to send pending mcast commands: %d\n", 5287 rc); 5288 } 5289 5290 netif_addr_unlock_bh(bp->dev); 5291 } 5292 5293 static void bnx2x_handle_classification_eqe(struct bnx2x *bp, 5294 union event_ring_elem *elem) 5295 { 5296 unsigned long ramrod_flags = 0; 5297 int rc = 0; 5298 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo); 5299 u32 cid = echo & BNX2X_SWCID_MASK; 5300 struct bnx2x_vlan_mac_obj *vlan_mac_obj; 5301 5302 /* Always push next commands out, don't wait here */ 5303 __set_bit(RAMROD_CONT, &ramrod_flags); 5304 5305 switch (echo >> BNX2X_SWCID_SHIFT) { 5306 case BNX2X_FILTER_MAC_PENDING: 5307 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n"); 5308 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp))) 5309 vlan_mac_obj = &bp->iscsi_l2_mac_obj; 5310 else 5311 vlan_mac_obj = &bp->sp_objs[cid].mac_obj; 5312 5313 break; 5314 case BNX2X_FILTER_VLAN_PENDING: 5315 DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n"); 5316 vlan_mac_obj = &bp->sp_objs[cid].vlan_obj; 5317 break; 5318 case BNX2X_FILTER_MCAST_PENDING: 5319 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n"); 5320 /* This is only relevant for 57710 where multicast MACs are 5321 * configured as unicast MACs using the same ramrod. 5322 */ 5323 bnx2x_handle_mcast_eqe(bp); 5324 return; 5325 default: 5326 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo); 5327 return; 5328 } 5329 5330 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags); 5331 5332 if (rc < 0) 5333 BNX2X_ERR("Failed to schedule new commands: %d\n", rc); 5334 else if (rc > 0) 5335 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n"); 5336 } 5337 5338 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start); 5339 5340 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp) 5341 { 5342 netif_addr_lock_bh(bp->dev); 5343 5344 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); 5345 5346 /* Send rx_mode command again if was requested */ 5347 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state)) 5348 bnx2x_set_storm_rx_mode(bp); 5349 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, 5350 &bp->sp_state)) 5351 bnx2x_set_iscsi_eth_rx_mode(bp, true); 5352 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, 5353 &bp->sp_state)) 5354 bnx2x_set_iscsi_eth_rx_mode(bp, false); 5355 5356 netif_addr_unlock_bh(bp->dev); 5357 } 5358 5359 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp, 5360 union event_ring_elem *elem) 5361 { 5362 if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) { 5363 DP(BNX2X_MSG_SP, 5364 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n", 5365 elem->message.data.vif_list_event.func_bit_map); 5366 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK, 5367 elem->message.data.vif_list_event.func_bit_map); 5368 } else if (elem->message.data.vif_list_event.echo == 5369 VIF_LIST_RULE_SET) { 5370 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n"); 5371 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0); 5372 } 5373 } 5374 5375 /* called with rtnl_lock */ 5376 static void bnx2x_after_function_update(struct bnx2x *bp) 5377 { 5378 int q, rc; 5379 struct bnx2x_fastpath *fp; 5380 struct bnx2x_queue_state_params queue_params = {NULL}; 5381 struct bnx2x_queue_update_params *q_update_params = 5382 &queue_params.params.update; 5383 5384 /* Send Q update command with afex vlan removal values for all Qs */ 5385 queue_params.cmd = BNX2X_Q_CMD_UPDATE; 5386 5387 /* set silent vlan removal values according to vlan mode */ 5388 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG, 5389 &q_update_params->update_flags); 5390 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, 5391 &q_update_params->update_flags); 5392 __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); 5393 5394 /* in access mode mark mask and value are 0 to strip all vlans */ 5395 if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) { 5396 q_update_params->silent_removal_value = 0; 5397 q_update_params->silent_removal_mask = 0; 5398 } else { 5399 q_update_params->silent_removal_value = 5400 (bp->afex_def_vlan_tag & VLAN_VID_MASK); 5401 q_update_params->silent_removal_mask = VLAN_VID_MASK; 5402 } 5403 5404 for_each_eth_queue(bp, q) { 5405 /* Set the appropriate Queue object */ 5406 fp = &bp->fp[q]; 5407 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 5408 5409 /* send the ramrod */ 5410 rc = bnx2x_queue_state_change(bp, &queue_params); 5411 if (rc < 0) 5412 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", 5413 q); 5414 } 5415 5416 if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) { 5417 fp = &bp->fp[FCOE_IDX(bp)]; 5418 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 5419 5420 /* clear pending completion bit */ 5421 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); 5422 5423 /* mark latest Q bit */ 5424 smp_mb__before_atomic(); 5425 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); 5426 smp_mb__after_atomic(); 5427 5428 /* send Q update ramrod for FCoE Q */ 5429 rc = bnx2x_queue_state_change(bp, &queue_params); 5430 if (rc < 0) 5431 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", 5432 q); 5433 } else { 5434 /* If no FCoE ring - ACK MCP now */ 5435 bnx2x_link_report(bp); 5436 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 5437 } 5438 } 5439 5440 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj( 5441 struct bnx2x *bp, u32 cid) 5442 { 5443 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid); 5444 5445 if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp))) 5446 return &bnx2x_fcoe_sp_obj(bp, q_obj); 5447 else 5448 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj; 5449 } 5450 5451 static void bnx2x_eq_int(struct bnx2x *bp) 5452 { 5453 u16 hw_cons, sw_cons, sw_prod; 5454 union event_ring_elem *elem; 5455 u8 echo; 5456 u32 cid; 5457 u8 opcode; 5458 int rc, spqe_cnt = 0; 5459 struct bnx2x_queue_sp_obj *q_obj; 5460 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj; 5461 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw; 5462 5463 hw_cons = le16_to_cpu(*bp->eq_cons_sb); 5464 5465 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256. 5466 * when we get the next-page we need to adjust so the loop 5467 * condition below will be met. The next element is the size of a 5468 * regular element and hence incrementing by 1 5469 */ 5470 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) 5471 hw_cons++; 5472 5473 /* This function may never run in parallel with itself for a 5474 * specific bp, thus there is no need in "paired" read memory 5475 * barrier here. 5476 */ 5477 sw_cons = bp->eq_cons; 5478 sw_prod = bp->eq_prod; 5479 5480 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n", 5481 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left)); 5482 5483 for (; sw_cons != hw_cons; 5484 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 5485 5486 elem = &bp->eq_ring[EQ_DESC(sw_cons)]; 5487 5488 rc = bnx2x_iov_eq_sp_event(bp, elem); 5489 if (!rc) { 5490 DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n", 5491 rc); 5492 goto next_spqe; 5493 } 5494 5495 opcode = elem->message.opcode; 5496 5497 /* handle eq element */ 5498 switch (opcode) { 5499 case EVENT_RING_OPCODE_VF_PF_CHANNEL: 5500 bnx2x_vf_mbx_schedule(bp, 5501 &elem->message.data.vf_pf_event); 5502 continue; 5503 5504 case EVENT_RING_OPCODE_STAT_QUERY: 5505 DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS), 5506 "got statistics comp event %d\n", 5507 bp->stats_comp++); 5508 /* nothing to do with stats comp */ 5509 goto next_spqe; 5510 5511 case EVENT_RING_OPCODE_CFC_DEL: 5512 /* handle according to cid range */ 5513 /* 5514 * we may want to verify here that the bp state is 5515 * HALTING 5516 */ 5517 5518 /* elem CID originates from FW; actually LE */ 5519 cid = SW_CID(elem->message.data.cfc_del_event.cid); 5520 5521 DP(BNX2X_MSG_SP, 5522 "got delete ramrod for MULTI[%d]\n", cid); 5523 5524 if (CNIC_LOADED(bp) && 5525 !bnx2x_cnic_handle_cfc_del(bp, cid, elem)) 5526 goto next_spqe; 5527 5528 q_obj = bnx2x_cid_to_q_obj(bp, cid); 5529 5530 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL)) 5531 break; 5532 5533 goto next_spqe; 5534 5535 case EVENT_RING_OPCODE_STOP_TRAFFIC: 5536 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n"); 5537 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED); 5538 if (f_obj->complete_cmd(bp, f_obj, 5539 BNX2X_F_CMD_TX_STOP)) 5540 break; 5541 goto next_spqe; 5542 5543 case EVENT_RING_OPCODE_START_TRAFFIC: 5544 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n"); 5545 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED); 5546 if (f_obj->complete_cmd(bp, f_obj, 5547 BNX2X_F_CMD_TX_START)) 5548 break; 5549 goto next_spqe; 5550 5551 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 5552 echo = elem->message.data.function_update_event.echo; 5553 if (echo == SWITCH_UPDATE) { 5554 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5555 "got FUNC_SWITCH_UPDATE ramrod\n"); 5556 if (f_obj->complete_cmd( 5557 bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE)) 5558 break; 5559 5560 } else { 5561 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE; 5562 5563 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP, 5564 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 5565 f_obj->complete_cmd(bp, f_obj, 5566 BNX2X_F_CMD_AFEX_UPDATE); 5567 5568 /* We will perform the Queues update from 5569 * sp_rtnl task as all Queue SP operations 5570 * should run under rtnl_lock. 5571 */ 5572 bnx2x_schedule_sp_rtnl(bp, cmd, 0); 5573 } 5574 5575 goto next_spqe; 5576 5577 case EVENT_RING_OPCODE_AFEX_VIF_LISTS: 5578 f_obj->complete_cmd(bp, f_obj, 5579 BNX2X_F_CMD_AFEX_VIFLISTS); 5580 bnx2x_after_afex_vif_lists(bp, elem); 5581 goto next_spqe; 5582 case EVENT_RING_OPCODE_FUNCTION_START: 5583 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5584 "got FUNC_START ramrod\n"); 5585 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START)) 5586 break; 5587 5588 goto next_spqe; 5589 5590 case EVENT_RING_OPCODE_FUNCTION_STOP: 5591 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5592 "got FUNC_STOP ramrod\n"); 5593 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP)) 5594 break; 5595 5596 goto next_spqe; 5597 5598 case EVENT_RING_OPCODE_SET_TIMESYNC: 5599 DP(BNX2X_MSG_SP | BNX2X_MSG_PTP, 5600 "got set_timesync ramrod completion\n"); 5601 if (f_obj->complete_cmd(bp, f_obj, 5602 BNX2X_F_CMD_SET_TIMESYNC)) 5603 break; 5604 goto next_spqe; 5605 } 5606 5607 switch (opcode | bp->state) { 5608 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5609 BNX2X_STATE_OPEN): 5610 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5611 BNX2X_STATE_OPENING_WAIT4_PORT): 5612 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5613 BNX2X_STATE_CLOSING_WAIT4_HALT): 5614 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n", 5615 SW_CID(elem->message.data.eth_event.echo)); 5616 rss_raw->clear_pending(rss_raw); 5617 break; 5618 5619 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN): 5620 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG): 5621 case (EVENT_RING_OPCODE_SET_MAC | 5622 BNX2X_STATE_CLOSING_WAIT4_HALT): 5623 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5624 BNX2X_STATE_OPEN): 5625 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5626 BNX2X_STATE_DIAG): 5627 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5628 BNX2X_STATE_CLOSING_WAIT4_HALT): 5629 DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n"); 5630 bnx2x_handle_classification_eqe(bp, elem); 5631 break; 5632 5633 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5634 BNX2X_STATE_OPEN): 5635 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5636 BNX2X_STATE_DIAG): 5637 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5638 BNX2X_STATE_CLOSING_WAIT4_HALT): 5639 DP(BNX2X_MSG_SP, "got mcast ramrod\n"); 5640 bnx2x_handle_mcast_eqe(bp); 5641 break; 5642 5643 case (EVENT_RING_OPCODE_FILTERS_RULES | 5644 BNX2X_STATE_OPEN): 5645 case (EVENT_RING_OPCODE_FILTERS_RULES | 5646 BNX2X_STATE_DIAG): 5647 case (EVENT_RING_OPCODE_FILTERS_RULES | 5648 BNX2X_STATE_CLOSING_WAIT4_HALT): 5649 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n"); 5650 bnx2x_handle_rx_mode_eqe(bp); 5651 break; 5652 default: 5653 /* unknown event log error and continue */ 5654 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n", 5655 elem->message.opcode, bp->state); 5656 } 5657 next_spqe: 5658 spqe_cnt++; 5659 } /* for */ 5660 5661 smp_mb__before_atomic(); 5662 atomic_add(spqe_cnt, &bp->eq_spq_left); 5663 5664 bp->eq_cons = sw_cons; 5665 bp->eq_prod = sw_prod; 5666 /* Make sure that above mem writes were issued towards the memory */ 5667 smp_wmb(); 5668 5669 /* update producer */ 5670 bnx2x_update_eq_prod(bp, bp->eq_prod); 5671 } 5672 5673 static void bnx2x_sp_task(struct work_struct *work) 5674 { 5675 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work); 5676 5677 DP(BNX2X_MSG_SP, "sp task invoked\n"); 5678 5679 /* make sure the atomic interrupt_occurred has been written */ 5680 smp_rmb(); 5681 if (atomic_read(&bp->interrupt_occurred)) { 5682 5683 /* what work needs to be performed? */ 5684 u16 status = bnx2x_update_dsb_idx(bp); 5685 5686 DP(BNX2X_MSG_SP, "status %x\n", status); 5687 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n"); 5688 atomic_set(&bp->interrupt_occurred, 0); 5689 5690 /* HW attentions */ 5691 if (status & BNX2X_DEF_SB_ATT_IDX) { 5692 bnx2x_attn_int(bp); 5693 status &= ~BNX2X_DEF_SB_ATT_IDX; 5694 } 5695 5696 /* SP events: STAT_QUERY and others */ 5697 if (status & BNX2X_DEF_SB_IDX) { 5698 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp); 5699 5700 if (FCOE_INIT(bp) && 5701 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 5702 /* Prevent local bottom-halves from running as 5703 * we are going to change the local NAPI list. 5704 */ 5705 local_bh_disable(); 5706 napi_schedule(&bnx2x_fcoe(bp, napi)); 5707 local_bh_enable(); 5708 } 5709 5710 /* Handle EQ completions */ 5711 bnx2x_eq_int(bp); 5712 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 5713 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1); 5714 5715 status &= ~BNX2X_DEF_SB_IDX; 5716 } 5717 5718 /* if status is non zero then perhaps something went wrong */ 5719 if (unlikely(status)) 5720 DP(BNX2X_MSG_SP, 5721 "got an unknown interrupt! (status 0x%x)\n", status); 5722 5723 /* ack status block only if something was actually handled */ 5724 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID, 5725 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1); 5726 } 5727 5728 /* afex - poll to check if VIFSET_ACK should be sent to MFW */ 5729 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, 5730 &bp->sp_state)) { 5731 bnx2x_link_report(bp); 5732 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 5733 } 5734 } 5735 5736 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance) 5737 { 5738 struct net_device *dev = dev_instance; 5739 struct bnx2x *bp = netdev_priv(dev); 5740 5741 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, 5742 IGU_INT_DISABLE, 0); 5743 5744 #ifdef BNX2X_STOP_ON_ERROR 5745 if (unlikely(bp->panic)) 5746 return IRQ_HANDLED; 5747 #endif 5748 5749 if (CNIC_LOADED(bp)) { 5750 struct cnic_ops *c_ops; 5751 5752 rcu_read_lock(); 5753 c_ops = rcu_dereference(bp->cnic_ops); 5754 if (c_ops) 5755 c_ops->cnic_handler(bp->cnic_data, NULL); 5756 rcu_read_unlock(); 5757 } 5758 5759 /* schedule sp task to perform default status block work, ack 5760 * attentions and enable interrupts. 5761 */ 5762 bnx2x_schedule_sp_task(bp); 5763 5764 return IRQ_HANDLED; 5765 } 5766 5767 /* end of slow path */ 5768 5769 void bnx2x_drv_pulse(struct bnx2x *bp) 5770 { 5771 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb, 5772 bp->fw_drv_pulse_wr_seq); 5773 } 5774 5775 static void bnx2x_timer(struct timer_list *t) 5776 { 5777 struct bnx2x *bp = from_timer(bp, t, timer); 5778 5779 if (!netif_running(bp->dev)) 5780 return; 5781 5782 if (IS_PF(bp) && 5783 !BP_NOMCP(bp)) { 5784 int mb_idx = BP_FW_MB_IDX(bp); 5785 u16 drv_pulse; 5786 u16 mcp_pulse; 5787 5788 ++bp->fw_drv_pulse_wr_seq; 5789 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 5790 drv_pulse = bp->fw_drv_pulse_wr_seq; 5791 bnx2x_drv_pulse(bp); 5792 5793 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) & 5794 MCP_PULSE_SEQ_MASK); 5795 /* The delta between driver pulse and mcp response 5796 * should not get too big. If the MFW is more than 5 pulses 5797 * behind, we should worry about it enough to generate an error 5798 * log. 5799 */ 5800 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5) 5801 BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 5802 drv_pulse, mcp_pulse); 5803 } 5804 5805 if (bp->state == BNX2X_STATE_OPEN) 5806 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE); 5807 5808 /* sample pf vf bulletin board for new posts from pf */ 5809 if (IS_VF(bp)) 5810 bnx2x_timer_sriov(bp); 5811 5812 mod_timer(&bp->timer, jiffies + bp->current_interval); 5813 } 5814 5815 /* end of Statistics */ 5816 5817 /* nic init */ 5818 5819 /* 5820 * nic init service functions 5821 */ 5822 5823 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len) 5824 { 5825 u32 i; 5826 if (!(len%4) && !(addr%4)) 5827 for (i = 0; i < len; i += 4) 5828 REG_WR(bp, addr + i, fill); 5829 else 5830 for (i = 0; i < len; i++) 5831 REG_WR8(bp, addr + i, fill); 5832 } 5833 5834 /* helper: writes FP SP data to FW - data_size in dwords */ 5835 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp, 5836 int fw_sb_id, 5837 u32 *sb_data_p, 5838 u32 data_size) 5839 { 5840 int index; 5841 for (index = 0; index < data_size; index++) 5842 REG_WR(bp, BAR_CSTRORM_INTMEM + 5843 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 5844 sizeof(u32)*index, 5845 *(sb_data_p + index)); 5846 } 5847 5848 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id) 5849 { 5850 u32 *sb_data_p; 5851 u32 data_size = 0; 5852 struct hc_status_block_data_e2 sb_data_e2; 5853 struct hc_status_block_data_e1x sb_data_e1x; 5854 5855 /* disable the function first */ 5856 if (!CHIP_IS_E1x(bp)) { 5857 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 5858 sb_data_e2.common.state = SB_DISABLED; 5859 sb_data_e2.common.p_func.vf_valid = false; 5860 sb_data_p = (u32 *)&sb_data_e2; 5861 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); 5862 } else { 5863 memset(&sb_data_e1x, 0, 5864 sizeof(struct hc_status_block_data_e1x)); 5865 sb_data_e1x.common.state = SB_DISABLED; 5866 sb_data_e1x.common.p_func.vf_valid = false; 5867 sb_data_p = (u32 *)&sb_data_e1x; 5868 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); 5869 } 5870 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); 5871 5872 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5873 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0, 5874 CSTORM_STATUS_BLOCK_SIZE); 5875 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5876 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0, 5877 CSTORM_SYNC_BLOCK_SIZE); 5878 } 5879 5880 /* helper: writes SP SB data to FW */ 5881 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp, 5882 struct hc_sp_status_block_data *sp_sb_data) 5883 { 5884 int func = BP_FUNC(bp); 5885 int i; 5886 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++) 5887 REG_WR(bp, BAR_CSTRORM_INTMEM + 5888 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) + 5889 i*sizeof(u32), 5890 *((u32 *)sp_sb_data + i)); 5891 } 5892 5893 static void bnx2x_zero_sp_sb(struct bnx2x *bp) 5894 { 5895 int func = BP_FUNC(bp); 5896 struct hc_sp_status_block_data sp_sb_data; 5897 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 5898 5899 sp_sb_data.state = SB_DISABLED; 5900 sp_sb_data.p_func.vf_valid = false; 5901 5902 bnx2x_wr_sp_sb_data(bp, &sp_sb_data); 5903 5904 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5905 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0, 5906 CSTORM_SP_STATUS_BLOCK_SIZE); 5907 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5908 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0, 5909 CSTORM_SP_SYNC_BLOCK_SIZE); 5910 } 5911 5912 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 5913 int igu_sb_id, int igu_seg_id) 5914 { 5915 hc_sm->igu_sb_id = igu_sb_id; 5916 hc_sm->igu_seg_id = igu_seg_id; 5917 hc_sm->timer_value = 0xFF; 5918 hc_sm->time_to_expire = 0xFFFFFFFF; 5919 } 5920 5921 /* allocates state machine ids. */ 5922 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data) 5923 { 5924 /* zero out state machine indices */ 5925 /* rx indices */ 5926 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 5927 5928 /* tx indices */ 5929 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 5930 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 5931 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 5932 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 5933 5934 /* map indices */ 5935 /* rx indices */ 5936 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 5937 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5938 5939 /* tx indices */ 5940 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 5941 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5942 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 5943 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5944 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 5945 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5946 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 5947 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5948 } 5949 5950 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid, 5951 u8 vf_valid, int fw_sb_id, int igu_sb_id) 5952 { 5953 int igu_seg_id; 5954 5955 struct hc_status_block_data_e2 sb_data_e2; 5956 struct hc_status_block_data_e1x sb_data_e1x; 5957 struct hc_status_block_sm *hc_sm_p; 5958 int data_size; 5959 u32 *sb_data_p; 5960 5961 if (CHIP_INT_MODE_IS_BC(bp)) 5962 igu_seg_id = HC_SEG_ACCESS_NORM; 5963 else 5964 igu_seg_id = IGU_SEG_ACCESS_NORM; 5965 5966 bnx2x_zero_fp_sb(bp, fw_sb_id); 5967 5968 if (!CHIP_IS_E1x(bp)) { 5969 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 5970 sb_data_e2.common.state = SB_ENABLED; 5971 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp); 5972 sb_data_e2.common.p_func.vf_id = vfid; 5973 sb_data_e2.common.p_func.vf_valid = vf_valid; 5974 sb_data_e2.common.p_func.vnic_id = BP_VN(bp); 5975 sb_data_e2.common.same_igu_sb_1b = true; 5976 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping); 5977 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping); 5978 hc_sm_p = sb_data_e2.common.state_machine; 5979 sb_data_p = (u32 *)&sb_data_e2; 5980 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); 5981 bnx2x_map_sb_state_machines(sb_data_e2.index_data); 5982 } else { 5983 memset(&sb_data_e1x, 0, 5984 sizeof(struct hc_status_block_data_e1x)); 5985 sb_data_e1x.common.state = SB_ENABLED; 5986 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp); 5987 sb_data_e1x.common.p_func.vf_id = 0xff; 5988 sb_data_e1x.common.p_func.vf_valid = false; 5989 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp); 5990 sb_data_e1x.common.same_igu_sb_1b = true; 5991 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping); 5992 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping); 5993 hc_sm_p = sb_data_e1x.common.state_machine; 5994 sb_data_p = (u32 *)&sb_data_e1x; 5995 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); 5996 bnx2x_map_sb_state_machines(sb_data_e1x.index_data); 5997 } 5998 5999 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], 6000 igu_sb_id, igu_seg_id); 6001 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], 6002 igu_sb_id, igu_seg_id); 6003 6004 DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id); 6005 6006 /* write indices to HW - PCI guarantees endianity of regpairs */ 6007 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); 6008 } 6009 6010 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id, 6011 u16 tx_usec, u16 rx_usec) 6012 { 6013 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS, 6014 false, rx_usec); 6015 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 6016 HC_INDEX_ETH_TX_CQ_CONS_COS0, false, 6017 tx_usec); 6018 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 6019 HC_INDEX_ETH_TX_CQ_CONS_COS1, false, 6020 tx_usec); 6021 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 6022 HC_INDEX_ETH_TX_CQ_CONS_COS2, false, 6023 tx_usec); 6024 } 6025 6026 static void bnx2x_init_def_sb(struct bnx2x *bp) 6027 { 6028 struct host_sp_status_block *def_sb = bp->def_status_blk; 6029 dma_addr_t mapping = bp->def_status_blk_mapping; 6030 int igu_sp_sb_index; 6031 int igu_seg_id; 6032 int port = BP_PORT(bp); 6033 int func = BP_FUNC(bp); 6034 int reg_offset, reg_offset_en5; 6035 u64 section; 6036 int index; 6037 struct hc_sp_status_block_data sp_sb_data; 6038 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 6039 6040 if (CHIP_INT_MODE_IS_BC(bp)) { 6041 igu_sp_sb_index = DEF_SB_IGU_ID; 6042 igu_seg_id = HC_SEG_ACCESS_DEF; 6043 } else { 6044 igu_sp_sb_index = bp->igu_dsb_id; 6045 igu_seg_id = IGU_SEG_ACCESS_DEF; 6046 } 6047 6048 /* ATTN */ 6049 section = ((u64)mapping) + offsetof(struct host_sp_status_block, 6050 atten_status_block); 6051 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 6052 6053 bp->attn_state = 0; 6054 6055 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 6056 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 6057 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 6058 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0); 6059 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 6060 int sindex; 6061 /* take care of sig[0]..sig[4] */ 6062 for (sindex = 0; sindex < 4; sindex++) 6063 bp->attn_group[index].sig[sindex] = 6064 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index); 6065 6066 if (!CHIP_IS_E1x(bp)) 6067 /* 6068 * enable5 is separate from the rest of the registers, 6069 * and therefore the address skip is 4 6070 * and not 16 between the different groups 6071 */ 6072 bp->attn_group[index].sig[4] = REG_RD(bp, 6073 reg_offset_en5 + 0x4*index); 6074 else 6075 bp->attn_group[index].sig[4] = 0; 6076 } 6077 6078 if (bp->common.int_block == INT_BLOCK_HC) { 6079 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L : 6080 HC_REG_ATTN_MSG0_ADDR_L); 6081 6082 REG_WR(bp, reg_offset, U64_LO(section)); 6083 REG_WR(bp, reg_offset + 4, U64_HI(section)); 6084 } else if (!CHIP_IS_E1x(bp)) { 6085 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 6086 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 6087 } 6088 6089 section = ((u64)mapping) + offsetof(struct host_sp_status_block, 6090 sp_sb); 6091 6092 bnx2x_zero_sp_sb(bp); 6093 6094 /* PCI guarantees endianity of regpairs */ 6095 sp_sb_data.state = SB_ENABLED; 6096 sp_sb_data.host_sb_addr.lo = U64_LO(section); 6097 sp_sb_data.host_sb_addr.hi = U64_HI(section); 6098 sp_sb_data.igu_sb_id = igu_sp_sb_index; 6099 sp_sb_data.igu_seg_id = igu_seg_id; 6100 sp_sb_data.p_func.pf_id = func; 6101 sp_sb_data.p_func.vnic_id = BP_VN(bp); 6102 sp_sb_data.p_func.vf_id = 0xff; 6103 6104 bnx2x_wr_sp_sb_data(bp, &sp_sb_data); 6105 6106 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 6107 } 6108 6109 void bnx2x_update_coalesce(struct bnx2x *bp) 6110 { 6111 int i; 6112 6113 for_each_eth_queue(bp, i) 6114 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id, 6115 bp->tx_ticks, bp->rx_ticks); 6116 } 6117 6118 static void bnx2x_init_sp_ring(struct bnx2x *bp) 6119 { 6120 spin_lock_init(&bp->spq_lock); 6121 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING); 6122 6123 bp->spq_prod_idx = 0; 6124 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX; 6125 bp->spq_prod_bd = bp->spq; 6126 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT; 6127 } 6128 6129 static void bnx2x_init_eq_ring(struct bnx2x *bp) 6130 { 6131 int i; 6132 for (i = 1; i <= NUM_EQ_PAGES; i++) { 6133 union event_ring_elem *elem = 6134 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1]; 6135 6136 elem->next_page.addr.hi = 6137 cpu_to_le32(U64_HI(bp->eq_mapping + 6138 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES))); 6139 elem->next_page.addr.lo = 6140 cpu_to_le32(U64_LO(bp->eq_mapping + 6141 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES))); 6142 } 6143 bp->eq_cons = 0; 6144 bp->eq_prod = NUM_EQ_DESC; 6145 bp->eq_cons_sb = BNX2X_EQ_INDEX; 6146 /* we want a warning message before it gets wrought... */ 6147 atomic_set(&bp->eq_spq_left, 6148 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1); 6149 } 6150 6151 /* called with netif_addr_lock_bh() */ 6152 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id, 6153 unsigned long rx_mode_flags, 6154 unsigned long rx_accept_flags, 6155 unsigned long tx_accept_flags, 6156 unsigned long ramrod_flags) 6157 { 6158 struct bnx2x_rx_mode_ramrod_params ramrod_param; 6159 int rc; 6160 6161 memset(&ramrod_param, 0, sizeof(ramrod_param)); 6162 6163 /* Prepare ramrod parameters */ 6164 ramrod_param.cid = 0; 6165 ramrod_param.cl_id = cl_id; 6166 ramrod_param.rx_mode_obj = &bp->rx_mode_obj; 6167 ramrod_param.func_id = BP_FUNC(bp); 6168 6169 ramrod_param.pstate = &bp->sp_state; 6170 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING; 6171 6172 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata); 6173 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata); 6174 6175 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); 6176 6177 ramrod_param.ramrod_flags = ramrod_flags; 6178 ramrod_param.rx_mode_flags = rx_mode_flags; 6179 6180 ramrod_param.rx_accept_flags = rx_accept_flags; 6181 ramrod_param.tx_accept_flags = tx_accept_flags; 6182 6183 rc = bnx2x_config_rx_mode(bp, &ramrod_param); 6184 if (rc < 0) { 6185 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode); 6186 return rc; 6187 } 6188 6189 return 0; 6190 } 6191 6192 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode, 6193 unsigned long *rx_accept_flags, 6194 unsigned long *tx_accept_flags) 6195 { 6196 /* Clear the flags first */ 6197 *rx_accept_flags = 0; 6198 *tx_accept_flags = 0; 6199 6200 switch (rx_mode) { 6201 case BNX2X_RX_MODE_NONE: 6202 /* 6203 * 'drop all' supersedes any accept flags that may have been 6204 * passed to the function. 6205 */ 6206 break; 6207 case BNX2X_RX_MODE_NORMAL: 6208 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 6209 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags); 6210 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 6211 6212 /* internal switching mode */ 6213 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 6214 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags); 6215 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 6216 6217 if (bp->accept_any_vlan) { 6218 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 6219 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 6220 } 6221 6222 break; 6223 case BNX2X_RX_MODE_ALLMULTI: 6224 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 6225 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); 6226 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 6227 6228 /* internal switching mode */ 6229 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 6230 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); 6231 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 6232 6233 if (bp->accept_any_vlan) { 6234 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 6235 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 6236 } 6237 6238 break; 6239 case BNX2X_RX_MODE_PROMISC: 6240 /* According to definition of SI mode, iface in promisc mode 6241 * should receive matched and unmatched (in resolution of port) 6242 * unicast packets. 6243 */ 6244 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags); 6245 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 6246 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); 6247 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 6248 6249 /* internal switching mode */ 6250 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); 6251 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 6252 6253 if (IS_MF_SI(bp)) 6254 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags); 6255 else 6256 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 6257 6258 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 6259 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 6260 6261 break; 6262 default: 6263 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode); 6264 return -EINVAL; 6265 } 6266 6267 return 0; 6268 } 6269 6270 /* called with netif_addr_lock_bh() */ 6271 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp) 6272 { 6273 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 6274 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 6275 int rc; 6276 6277 if (!NO_FCOE(bp)) 6278 /* Configure rx_mode of FCoE Queue */ 6279 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags); 6280 6281 rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags, 6282 &tx_accept_flags); 6283 if (rc) 6284 return rc; 6285 6286 __set_bit(RAMROD_RX, &ramrod_flags); 6287 __set_bit(RAMROD_TX, &ramrod_flags); 6288 6289 return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, 6290 rx_accept_flags, tx_accept_flags, 6291 ramrod_flags); 6292 } 6293 6294 static void bnx2x_init_internal_common(struct bnx2x *bp) 6295 { 6296 int i; 6297 6298 /* Zero this manually as its initialization is 6299 currently missing in the initTool */ 6300 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) 6301 REG_WR(bp, BAR_USTRORM_INTMEM + 6302 USTORM_AGG_DATA_OFFSET + i * 4, 0); 6303 if (!CHIP_IS_E1x(bp)) { 6304 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET, 6305 CHIP_INT_MODE_IS_BC(bp) ? 6306 HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 6307 } 6308 } 6309 6310 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code) 6311 { 6312 switch (load_code) { 6313 case FW_MSG_CODE_DRV_LOAD_COMMON: 6314 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 6315 bnx2x_init_internal_common(bp); 6316 fallthrough; 6317 6318 case FW_MSG_CODE_DRV_LOAD_PORT: 6319 /* nothing to do */ 6320 fallthrough; 6321 6322 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 6323 /* internal memory per function is 6324 initialized inside bnx2x_pf_init */ 6325 break; 6326 6327 default: 6328 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code); 6329 break; 6330 } 6331 } 6332 6333 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp) 6334 { 6335 return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp); 6336 } 6337 6338 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp) 6339 { 6340 return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp); 6341 } 6342 6343 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp) 6344 { 6345 if (CHIP_IS_E1x(fp->bp)) 6346 return BP_L_ID(fp->bp) + fp->index; 6347 else /* We want Client ID to be the same as IGU SB ID for 57712 */ 6348 return bnx2x_fp_igu_sb_id(fp); 6349 } 6350 6351 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx) 6352 { 6353 struct bnx2x_fastpath *fp = &bp->fp[fp_idx]; 6354 u8 cos; 6355 unsigned long q_type = 0; 6356 u32 cids[BNX2X_MULTI_TX_COS] = { 0 }; 6357 fp->rx_queue = fp_idx; 6358 fp->cid = fp_idx; 6359 fp->cl_id = bnx2x_fp_cl_id(fp); 6360 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp); 6361 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp); 6362 /* qZone id equals to FW (per path) client id */ 6363 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp); 6364 6365 /* init shortcut */ 6366 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp); 6367 6368 /* Setup SB indices */ 6369 fp->rx_cons_sb = BNX2X_RX_SB_INDEX; 6370 6371 /* Configure Queue State object */ 6372 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 6373 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 6374 6375 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS); 6376 6377 /* init tx data */ 6378 for_each_cos_in_tx_queue(fp, cos) { 6379 bnx2x_init_txdata(bp, fp->txdata_ptr[cos], 6380 CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp), 6381 FP_COS_TO_TXQ(fp, cos, bp), 6382 BNX2X_TX_SB_INDEX_BASE + cos, fp); 6383 cids[cos] = fp->txdata_ptr[cos]->cid; 6384 } 6385 6386 /* nothing more for vf to do here */ 6387 if (IS_VF(bp)) 6388 return; 6389 6390 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false, 6391 fp->fw_sb_id, fp->igu_sb_id); 6392 bnx2x_update_fpsb_idx(fp); 6393 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids, 6394 fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata), 6395 bnx2x_sp_mapping(bp, q_rdata), q_type); 6396 6397 /** 6398 * Configure classification DBs: Always enable Tx switching 6399 */ 6400 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX); 6401 6402 DP(NETIF_MSG_IFUP, 6403 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n", 6404 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id, 6405 fp->igu_sb_id); 6406 } 6407 6408 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata) 6409 { 6410 int i; 6411 6412 for (i = 1; i <= NUM_TX_RINGS; i++) { 6413 struct eth_tx_next_bd *tx_next_bd = 6414 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd; 6415 6416 tx_next_bd->addr_hi = 6417 cpu_to_le32(U64_HI(txdata->tx_desc_mapping + 6418 BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); 6419 tx_next_bd->addr_lo = 6420 cpu_to_le32(U64_LO(txdata->tx_desc_mapping + 6421 BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); 6422 } 6423 6424 *txdata->tx_cons_sb = cpu_to_le16(0); 6425 6426 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1); 6427 txdata->tx_db.data.zero_fill1 = 0; 6428 txdata->tx_db.data.prod = 0; 6429 6430 txdata->tx_pkt_prod = 0; 6431 txdata->tx_pkt_cons = 0; 6432 txdata->tx_bd_prod = 0; 6433 txdata->tx_bd_cons = 0; 6434 txdata->tx_pkt = 0; 6435 } 6436 6437 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp) 6438 { 6439 int i; 6440 6441 for_each_tx_queue_cnic(bp, i) 6442 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]); 6443 } 6444 6445 static void bnx2x_init_tx_rings(struct bnx2x *bp) 6446 { 6447 int i; 6448 u8 cos; 6449 6450 for_each_eth_queue(bp, i) 6451 for_each_cos_in_tx_queue(&bp->fp[i], cos) 6452 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]); 6453 } 6454 6455 static void bnx2x_init_fcoe_fp(struct bnx2x *bp) 6456 { 6457 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp); 6458 unsigned long q_type = 0; 6459 6460 bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp); 6461 bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp, 6462 BNX2X_FCOE_ETH_CL_ID_IDX); 6463 bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp); 6464 bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID; 6465 bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id; 6466 bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX; 6467 bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]), 6468 fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX, 6469 fp); 6470 6471 DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index); 6472 6473 /* qZone id equals to FW (per path) client id */ 6474 bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp); 6475 /* init shortcut */ 6476 bnx2x_fcoe(bp, ustorm_rx_prods_offset) = 6477 bnx2x_rx_ustorm_prods_offset(fp); 6478 6479 /* Configure Queue State object */ 6480 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 6481 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 6482 6483 /* No multi-CoS for FCoE L2 client */ 6484 BUG_ON(fp->max_cos != 1); 6485 6486 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, 6487 &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata), 6488 bnx2x_sp_mapping(bp, q_rdata), q_type); 6489 6490 DP(NETIF_MSG_IFUP, 6491 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n", 6492 fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id, 6493 fp->igu_sb_id); 6494 } 6495 6496 void bnx2x_nic_init_cnic(struct bnx2x *bp) 6497 { 6498 if (!NO_FCOE(bp)) 6499 bnx2x_init_fcoe_fp(bp); 6500 6501 bnx2x_init_sb(bp, bp->cnic_sb_mapping, 6502 BNX2X_VF_ID_INVALID, false, 6503 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp)); 6504 6505 /* ensure status block indices were read */ 6506 rmb(); 6507 bnx2x_init_rx_rings_cnic(bp); 6508 bnx2x_init_tx_rings_cnic(bp); 6509 6510 /* flush all */ 6511 mb(); 6512 } 6513 6514 void bnx2x_pre_irq_nic_init(struct bnx2x *bp) 6515 { 6516 int i; 6517 6518 /* Setup NIC internals and enable interrupts */ 6519 for_each_eth_queue(bp, i) 6520 bnx2x_init_eth_fp(bp, i); 6521 6522 /* ensure status block indices were read */ 6523 rmb(); 6524 bnx2x_init_rx_rings(bp); 6525 bnx2x_init_tx_rings(bp); 6526 6527 if (IS_PF(bp)) { 6528 /* Initialize MOD_ABS interrupts */ 6529 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id, 6530 bp->common.shmem_base, 6531 bp->common.shmem2_base, BP_PORT(bp)); 6532 6533 /* initialize the default status block and sp ring */ 6534 bnx2x_init_def_sb(bp); 6535 bnx2x_update_dsb_idx(bp); 6536 bnx2x_init_sp_ring(bp); 6537 } else { 6538 bnx2x_memset_stats(bp); 6539 } 6540 } 6541 6542 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code) 6543 { 6544 bnx2x_init_eq_ring(bp); 6545 bnx2x_init_internal(bp, load_code); 6546 bnx2x_pf_init(bp); 6547 bnx2x_stats_init(bp); 6548 6549 /* flush all before enabling interrupts */ 6550 mb(); 6551 6552 bnx2x_int_enable(bp); 6553 6554 /* Check for SPIO5 */ 6555 bnx2x_attn_int_deasserted0(bp, 6556 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) & 6557 AEU_INPUTS_ATTN_BITS_SPIO5); 6558 } 6559 6560 /* gzip service functions */ 6561 static int bnx2x_gunzip_init(struct bnx2x *bp) 6562 { 6563 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE, 6564 &bp->gunzip_mapping, GFP_KERNEL); 6565 if (bp->gunzip_buf == NULL) 6566 goto gunzip_nomem1; 6567 6568 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL); 6569 if (bp->strm == NULL) 6570 goto gunzip_nomem2; 6571 6572 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize()); 6573 if (bp->strm->workspace == NULL) 6574 goto gunzip_nomem3; 6575 6576 return 0; 6577 6578 gunzip_nomem3: 6579 kfree(bp->strm); 6580 bp->strm = NULL; 6581 6582 gunzip_nomem2: 6583 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, 6584 bp->gunzip_mapping); 6585 bp->gunzip_buf = NULL; 6586 6587 gunzip_nomem1: 6588 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n"); 6589 return -ENOMEM; 6590 } 6591 6592 static void bnx2x_gunzip_end(struct bnx2x *bp) 6593 { 6594 if (bp->strm) { 6595 vfree(bp->strm->workspace); 6596 kfree(bp->strm); 6597 bp->strm = NULL; 6598 } 6599 6600 if (bp->gunzip_buf) { 6601 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, 6602 bp->gunzip_mapping); 6603 bp->gunzip_buf = NULL; 6604 } 6605 } 6606 6607 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len) 6608 { 6609 int n, rc; 6610 6611 /* check gzip header */ 6612 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) { 6613 BNX2X_ERR("Bad gzip header\n"); 6614 return -EINVAL; 6615 } 6616 6617 n = 10; 6618 6619 #define FNAME 0x8 6620 6621 if (zbuf[3] & FNAME) 6622 while ((zbuf[n++] != 0) && (n < len)); 6623 6624 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n; 6625 bp->strm->avail_in = len - n; 6626 bp->strm->next_out = bp->gunzip_buf; 6627 bp->strm->avail_out = FW_BUF_SIZE; 6628 6629 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS); 6630 if (rc != Z_OK) 6631 return rc; 6632 6633 rc = zlib_inflate(bp->strm, Z_FINISH); 6634 if ((rc != Z_OK) && (rc != Z_STREAM_END)) 6635 netdev_err(bp->dev, "Firmware decompression error: %s\n", 6636 bp->strm->msg); 6637 6638 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out); 6639 if (bp->gunzip_outlen & 0x3) 6640 netdev_err(bp->dev, 6641 "Firmware decompression error: gunzip_outlen (%d) not aligned\n", 6642 bp->gunzip_outlen); 6643 bp->gunzip_outlen >>= 2; 6644 6645 zlib_inflateEnd(bp->strm); 6646 6647 if (rc == Z_STREAM_END) 6648 return 0; 6649 6650 return rc; 6651 } 6652 6653 /* nic load/unload */ 6654 6655 /* 6656 * General service functions 6657 */ 6658 6659 /* send a NIG loopback debug packet */ 6660 static void bnx2x_lb_pckt(struct bnx2x *bp) 6661 { 6662 u32 wb_write[3]; 6663 6664 /* Ethernet source and destination addresses */ 6665 wb_write[0] = 0x55555555; 6666 wb_write[1] = 0x55555555; 6667 wb_write[2] = 0x20; /* SOP */ 6668 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 6669 6670 /* NON-IP protocol */ 6671 wb_write[0] = 0x09000000; 6672 wb_write[1] = 0x55555555; 6673 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 6674 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 6675 } 6676 6677 /* some of the internal memories 6678 * are not directly readable from the driver 6679 * to test them we send debug packets 6680 */ 6681 static int bnx2x_int_mem_test(struct bnx2x *bp) 6682 { 6683 int factor; 6684 int count, i; 6685 u32 val = 0; 6686 6687 if (CHIP_REV_IS_FPGA(bp)) 6688 factor = 120; 6689 else if (CHIP_REV_IS_EMUL(bp)) 6690 factor = 200; 6691 else 6692 factor = 1; 6693 6694 /* Disable inputs of parser neighbor blocks */ 6695 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); 6696 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); 6697 REG_WR(bp, CFC_REG_DEBUG0, 0x1); 6698 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); 6699 6700 /* Write 0 to parser credits for CFC search request */ 6701 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 6702 6703 /* send Ethernet packet */ 6704 bnx2x_lb_pckt(bp); 6705 6706 /* TODO do i reset NIG statistic? */ 6707 /* Wait until NIG register shows 1 packet of size 0x10 */ 6708 count = 1000 * factor; 6709 while (count) { 6710 6711 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 6712 val = *bnx2x_sp(bp, wb_data[0]); 6713 if (val == 0x10) 6714 break; 6715 6716 usleep_range(10000, 20000); 6717 count--; 6718 } 6719 if (val != 0x10) { 6720 BNX2X_ERR("NIG timeout val = 0x%x\n", val); 6721 return -1; 6722 } 6723 6724 /* Wait until PRS register shows 1 packet */ 6725 count = 1000 * factor; 6726 while (count) { 6727 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6728 if (val == 1) 6729 break; 6730 6731 usleep_range(10000, 20000); 6732 count--; 6733 } 6734 if (val != 0x1) { 6735 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6736 return -2; 6737 } 6738 6739 /* Reset and init BRB, PRS */ 6740 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 6741 msleep(50); 6742 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 6743 msleep(50); 6744 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 6745 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 6746 6747 DP(NETIF_MSG_HW, "part2\n"); 6748 6749 /* Disable inputs of parser neighbor blocks */ 6750 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); 6751 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); 6752 REG_WR(bp, CFC_REG_DEBUG0, 0x1); 6753 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); 6754 6755 /* Write 0 to parser credits for CFC search request */ 6756 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 6757 6758 /* send 10 Ethernet packets */ 6759 for (i = 0; i < 10; i++) 6760 bnx2x_lb_pckt(bp); 6761 6762 /* Wait until NIG register shows 10 + 1 6763 packets of size 11*0x10 = 0xb0 */ 6764 count = 1000 * factor; 6765 while (count) { 6766 6767 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 6768 val = *bnx2x_sp(bp, wb_data[0]); 6769 if (val == 0xb0) 6770 break; 6771 6772 usleep_range(10000, 20000); 6773 count--; 6774 } 6775 if (val != 0xb0) { 6776 BNX2X_ERR("NIG timeout val = 0x%x\n", val); 6777 return -3; 6778 } 6779 6780 /* Wait until PRS register shows 2 packets */ 6781 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6782 if (val != 2) 6783 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6784 6785 /* Write 1 to parser credits for CFC search request */ 6786 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 6787 6788 /* Wait until PRS register shows 3 packets */ 6789 msleep(10 * factor); 6790 /* Wait until NIG register shows 1 packet of size 0x10 */ 6791 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6792 if (val != 3) 6793 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6794 6795 /* clear NIG EOP FIFO */ 6796 for (i = 0; i < 11; i++) 6797 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO); 6798 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY); 6799 if (val != 1) { 6800 BNX2X_ERR("clear of NIG failed\n"); 6801 return -4; 6802 } 6803 6804 /* Reset and init BRB, PRS, NIG */ 6805 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 6806 msleep(50); 6807 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 6808 msleep(50); 6809 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 6810 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 6811 if (!CNIC_SUPPORT(bp)) 6812 /* set NIC mode */ 6813 REG_WR(bp, PRS_REG_NIC_MODE, 1); 6814 6815 /* Enable inputs of parser neighbor blocks */ 6816 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff); 6817 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1); 6818 REG_WR(bp, CFC_REG_DEBUG0, 0x0); 6819 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1); 6820 6821 DP(NETIF_MSG_HW, "done\n"); 6822 6823 return 0; /* OK */ 6824 } 6825 6826 static void bnx2x_enable_blocks_attention(struct bnx2x *bp) 6827 { 6828 u32 val; 6829 6830 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); 6831 if (!CHIP_IS_E1x(bp)) 6832 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40); 6833 else 6834 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0); 6835 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); 6836 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); 6837 /* 6838 * mask read length error interrupts in brb for parser 6839 * (parsing unit and 'checksum and crc' unit) 6840 * these errors are legal (PU reads fixed length and CAC can cause 6841 * read length error on truncated packets) 6842 */ 6843 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00); 6844 REG_WR(bp, QM_REG_QM_INT_MASK, 0); 6845 REG_WR(bp, TM_REG_TM_INT_MASK, 0); 6846 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0); 6847 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0); 6848 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0); 6849 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */ 6850 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */ 6851 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0); 6852 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0); 6853 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0); 6854 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */ 6855 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */ 6856 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 6857 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0); 6858 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0); 6859 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0); 6860 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */ 6861 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */ 6862 6863 val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 6864 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 6865 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN; 6866 if (!CHIP_IS_E1x(bp)) 6867 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 6868 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED; 6869 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val); 6870 6871 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0); 6872 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0); 6873 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0); 6874 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */ 6875 6876 if (!CHIP_IS_E1x(bp)) 6877 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 6878 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 6879 6880 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0); 6881 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0); 6882 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */ 6883 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 6884 } 6885 6886 static void bnx2x_reset_common(struct bnx2x *bp) 6887 { 6888 u32 val = 0x1400; 6889 6890 /* reset_common */ 6891 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 6892 0xd3ffff7f); 6893 6894 if (CHIP_IS_E3(bp)) { 6895 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 6896 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 6897 } 6898 6899 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val); 6900 } 6901 6902 static void bnx2x_setup_dmae(struct bnx2x *bp) 6903 { 6904 bp->dmae_ready = 0; 6905 spin_lock_init(&bp->dmae_lock); 6906 } 6907 6908 static void bnx2x_init_pxp(struct bnx2x *bp) 6909 { 6910 u16 devctl; 6911 int r_order, w_order; 6912 6913 pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl); 6914 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl); 6915 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 6916 if (bp->mrrs == -1) 6917 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12); 6918 else { 6919 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs); 6920 r_order = bp->mrrs; 6921 } 6922 6923 bnx2x_init_pxp_arb(bp, r_order, w_order); 6924 } 6925 6926 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp) 6927 { 6928 int is_required; 6929 u32 val; 6930 int port; 6931 6932 if (BP_NOMCP(bp)) 6933 return; 6934 6935 is_required = 0; 6936 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) & 6937 SHARED_HW_CFG_FAN_FAILURE_MASK; 6938 6939 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) 6940 is_required = 1; 6941 6942 /* 6943 * The fan failure mechanism is usually related to the PHY type since 6944 * the power consumption of the board is affected by the PHY. Currently, 6945 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 6946 */ 6947 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) 6948 for (port = PORT_0; port < PORT_MAX; port++) { 6949 is_required |= 6950 bnx2x_fan_failure_det_req( 6951 bp, 6952 bp->common.shmem_base, 6953 bp->common.shmem2_base, 6954 port); 6955 } 6956 6957 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required); 6958 6959 if (is_required == 0) 6960 return; 6961 6962 /* Fan failure is indicated by SPIO 5 */ 6963 bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 6964 6965 /* set to active low mode */ 6966 val = REG_RD(bp, MISC_REG_SPIO_INT); 6967 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 6968 REG_WR(bp, MISC_REG_SPIO_INT, val); 6969 6970 /* enable interrupt to signal the IGU */ 6971 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); 6972 val |= MISC_SPIO_SPIO5; 6973 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val); 6974 } 6975 6976 void bnx2x_pf_disable(struct bnx2x *bp) 6977 { 6978 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 6979 val &= ~IGU_PF_CONF_FUNC_EN; 6980 6981 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 6982 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 6983 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0); 6984 } 6985 6986 static void bnx2x__common_init_phy(struct bnx2x *bp) 6987 { 6988 u32 shmem_base[2], shmem2_base[2]; 6989 /* Avoid common init in case MFW supports LFA */ 6990 if (SHMEM2_RD(bp, size) > 6991 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) 6992 return; 6993 shmem_base[0] = bp->common.shmem_base; 6994 shmem2_base[0] = bp->common.shmem2_base; 6995 if (!CHIP_IS_E1x(bp)) { 6996 shmem_base[1] = 6997 SHMEM2_RD(bp, other_shmem_base_addr); 6998 shmem2_base[1] = 6999 SHMEM2_RD(bp, other_shmem2_base_addr); 7000 } 7001 bnx2x_acquire_phy_lock(bp); 7002 bnx2x_common_init_phy(bp, shmem_base, shmem2_base, 7003 bp->common.chip_id); 7004 bnx2x_release_phy_lock(bp); 7005 } 7006 7007 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val) 7008 { 7009 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val); 7010 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val); 7011 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val); 7012 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val); 7013 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val); 7014 7015 /* make sure this value is 0 */ 7016 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0); 7017 7018 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val); 7019 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val); 7020 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val); 7021 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val); 7022 } 7023 7024 static void bnx2x_set_endianity(struct bnx2x *bp) 7025 { 7026 #ifdef __BIG_ENDIAN 7027 bnx2x_config_endianity(bp, 1); 7028 #else 7029 bnx2x_config_endianity(bp, 0); 7030 #endif 7031 } 7032 7033 static void bnx2x_reset_endianity(struct bnx2x *bp) 7034 { 7035 bnx2x_config_endianity(bp, 0); 7036 } 7037 7038 /** 7039 * bnx2x_init_hw_common - initialize the HW at the COMMON phase. 7040 * 7041 * @bp: driver handle 7042 */ 7043 static int bnx2x_init_hw_common(struct bnx2x *bp) 7044 { 7045 u32 val; 7046 7047 DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp)); 7048 7049 /* 7050 * take the RESET lock to protect undi_unload flow from accessing 7051 * registers while we're resetting the chip 7052 */ 7053 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 7054 7055 bnx2x_reset_common(bp); 7056 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff); 7057 7058 val = 0xfffc; 7059 if (CHIP_IS_E3(bp)) { 7060 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 7061 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 7062 } 7063 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val); 7064 7065 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 7066 7067 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON); 7068 7069 if (!CHIP_IS_E1x(bp)) { 7070 u8 abs_func_id; 7071 7072 /** 7073 * 4-port mode or 2-port mode we need to turn of master-enable 7074 * for everyone, after that, turn it back on for self. 7075 * so, we disregard multi-function or not, and always disable 7076 * for all functions on the given path, this means 0,2,4,6 for 7077 * path 0 and 1,3,5,7 for path 1 7078 */ 7079 for (abs_func_id = BP_PATH(bp); 7080 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) { 7081 if (abs_func_id == BP_ABS_FUNC(bp)) { 7082 REG_WR(bp, 7083 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 7084 1); 7085 continue; 7086 } 7087 7088 bnx2x_pretend_func(bp, abs_func_id); 7089 /* clear pf enable */ 7090 bnx2x_pf_disable(bp); 7091 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 7092 } 7093 } 7094 7095 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON); 7096 if (CHIP_IS_E1(bp)) { 7097 /* enable HW interrupt from PXP on USDM overflow 7098 bit 16 on INT_MASK_0 */ 7099 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); 7100 } 7101 7102 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON); 7103 bnx2x_init_pxp(bp); 7104 bnx2x_set_endianity(bp); 7105 bnx2x_ilt_init_page_size(bp, INITOP_SET); 7106 7107 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp)) 7108 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 7109 7110 /* let the HW do it's magic ... */ 7111 msleep(100); 7112 /* finish PXP init */ 7113 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE); 7114 if (val != 1) { 7115 BNX2X_ERR("PXP2 CFG failed\n"); 7116 return -EBUSY; 7117 } 7118 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE); 7119 if (val != 1) { 7120 BNX2X_ERR("PXP2 RD_INIT failed\n"); 7121 return -EBUSY; 7122 } 7123 7124 /* Timers bug workaround E2 only. We need to set the entire ILT to 7125 * have entries with value "0" and valid bit on. 7126 * This needs to be done by the first PF that is loaded in a path 7127 * (i.e. common phase) 7128 */ 7129 if (!CHIP_IS_E1x(bp)) { 7130 /* In E2 there is a bug in the timers block that can cause function 6 / 7 7131 * (i.e. vnic3) to start even if it is marked as "scan-off". 7132 * This occurs when a different function (func2,3) is being marked 7133 * as "scan-off". Real-life scenario for example: if a driver is being 7134 * load-unloaded while func6,7 are down. This will cause the timer to access 7135 * the ilt, translate to a logical address and send a request to read/write. 7136 * Since the ilt for the function that is down is not valid, this will cause 7137 * a translation error which is unrecoverable. 7138 * The Workaround is intended to make sure that when this happens nothing fatal 7139 * will occur. The workaround: 7140 * 1. First PF driver which loads on a path will: 7141 * a. After taking the chip out of reset, by using pretend, 7142 * it will write "0" to the following registers of 7143 * the other vnics. 7144 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 7145 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 7146 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 7147 * And for itself it will write '1' to 7148 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 7149 * dmae-operations (writing to pram for example.) 7150 * note: can be done for only function 6,7 but cleaner this 7151 * way. 7152 * b. Write zero+valid to the entire ILT. 7153 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 7154 * VNIC3 (of that port). The range allocated will be the 7155 * entire ILT. This is needed to prevent ILT range error. 7156 * 2. Any PF driver load flow: 7157 * a. ILT update with the physical addresses of the allocated 7158 * logical pages. 7159 * b. Wait 20msec. - note that this timeout is needed to make 7160 * sure there are no requests in one of the PXP internal 7161 * queues with "old" ILT addresses. 7162 * c. PF enable in the PGLC. 7163 * d. Clear the was_error of the PF in the PGLC. (could have 7164 * occurred while driver was down) 7165 * e. PF enable in the CFC (WEAK + STRONG) 7166 * f. Timers scan enable 7167 * 3. PF driver unload flow: 7168 * a. Clear the Timers scan_en. 7169 * b. Polling for scan_on=0 for that PF. 7170 * c. Clear the PF enable bit in the PXP. 7171 * d. Clear the PF enable in the CFC (WEAK + STRONG) 7172 * e. Write zero+valid to all ILT entries (The valid bit must 7173 * stay set) 7174 * f. If this is VNIC 3 of a port then also init 7175 * first_timers_ilt_entry to zero and last_timers_ilt_entry 7176 * to the last entry in the ILT. 7177 * 7178 * Notes: 7179 * Currently the PF error in the PGLC is non recoverable. 7180 * In the future the there will be a recovery routine for this error. 7181 * Currently attention is masked. 7182 * Having an MCP lock on the load/unload process does not guarantee that 7183 * there is no Timer disable during Func6/7 enable. This is because the 7184 * Timers scan is currently being cleared by the MCP on FLR. 7185 * Step 2.d can be done only for PF6/7 and the driver can also check if 7186 * there is error before clearing it. But the flow above is simpler and 7187 * more general. 7188 * All ILT entries are written by zero+valid and not just PF6/7 7189 * ILT entries since in the future the ILT entries allocation for 7190 * PF-s might be dynamic. 7191 */ 7192 struct ilt_client_info ilt_cli; 7193 struct bnx2x_ilt ilt; 7194 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 7195 memset(&ilt, 0, sizeof(struct bnx2x_ilt)); 7196 7197 /* initialize dummy TM client */ 7198 ilt_cli.start = 0; 7199 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 7200 ilt_cli.client_num = ILT_CLIENT_TM; 7201 7202 /* Step 1: set zeroes to all ilt page entries with valid bit on 7203 * Step 2: set the timers first/last ilt entry to point 7204 * to the entire range to prevent ILT range error for 3rd/4th 7205 * vnic (this code assumes existence of the vnic) 7206 * 7207 * both steps performed by call to bnx2x_ilt_client_init_op() 7208 * with dummy TM client 7209 * 7210 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 7211 * and his brother are split registers 7212 */ 7213 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6)); 7214 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR); 7215 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 7216 7217 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN); 7218 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN); 7219 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 7220 } 7221 7222 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0); 7223 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0); 7224 7225 if (!CHIP_IS_E1x(bp)) { 7226 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 : 7227 (CHIP_REV_IS_FPGA(bp) ? 400 : 0); 7228 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON); 7229 7230 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON); 7231 7232 /* let the HW do it's magic ... */ 7233 do { 7234 msleep(200); 7235 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE); 7236 } while (factor-- && (val != 1)); 7237 7238 if (val != 1) { 7239 BNX2X_ERR("ATC_INIT failed\n"); 7240 return -EBUSY; 7241 } 7242 } 7243 7244 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON); 7245 7246 bnx2x_iov_init_dmae(bp); 7247 7248 /* clean the DMAE memory */ 7249 bp->dmae_ready = 1; 7250 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1); 7251 7252 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON); 7253 7254 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON); 7255 7256 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON); 7257 7258 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON); 7259 7260 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3); 7261 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3); 7262 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3); 7263 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3); 7264 7265 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON); 7266 7267 /* QM queues pointers table */ 7268 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET); 7269 7270 /* soft reset pulse */ 7271 REG_WR(bp, QM_REG_SOFT_RESET, 1); 7272 REG_WR(bp, QM_REG_SOFT_RESET, 0); 7273 7274 if (CNIC_SUPPORT(bp)) 7275 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON); 7276 7277 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON); 7278 7279 if (!CHIP_REV_IS_SLOW(bp)) 7280 /* enable hw interrupt from doorbell Q */ 7281 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); 7282 7283 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 7284 7285 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 7286 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf); 7287 7288 if (!CHIP_IS_E1(bp)) 7289 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan); 7290 7291 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) { 7292 if (IS_MF_AFEX(bp)) { 7293 /* configure that VNTag and VLAN headers must be 7294 * received in afex mode 7295 */ 7296 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE); 7297 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA); 7298 REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 7299 REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 7300 REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4); 7301 } else { 7302 /* Bit-map indicating which L2 hdrs may appear 7303 * after the basic Ethernet header 7304 */ 7305 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 7306 bp->path_has_ovlan ? 7 : 6); 7307 } 7308 } 7309 7310 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON); 7311 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON); 7312 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON); 7313 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON); 7314 7315 if (!CHIP_IS_E1x(bp)) { 7316 /* reset VFC memories */ 7317 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 7318 VFC_MEMORIES_RST_REG_CAM_RST | 7319 VFC_MEMORIES_RST_REG_RAM_RST); 7320 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 7321 VFC_MEMORIES_RST_REG_CAM_RST | 7322 VFC_MEMORIES_RST_REG_RAM_RST); 7323 7324 msleep(20); 7325 } 7326 7327 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON); 7328 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON); 7329 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON); 7330 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON); 7331 7332 /* sync semi rtc */ 7333 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 7334 0x80000000); 7335 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 7336 0x80000000); 7337 7338 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON); 7339 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON); 7340 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON); 7341 7342 if (!CHIP_IS_E1x(bp)) { 7343 if (IS_MF_AFEX(bp)) { 7344 /* configure that VNTag and VLAN headers must be 7345 * sent in afex mode 7346 */ 7347 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE); 7348 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA); 7349 REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 7350 REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 7351 REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4); 7352 } else { 7353 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 7354 bp->path_has_ovlan ? 7 : 6); 7355 } 7356 } 7357 7358 REG_WR(bp, SRC_REG_SOFT_RST, 1); 7359 7360 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON); 7361 7362 if (CNIC_SUPPORT(bp)) { 7363 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672); 7364 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 7365 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b); 7366 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a); 7367 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116); 7368 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 7369 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf); 7370 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 7371 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f); 7372 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7); 7373 } 7374 REG_WR(bp, SRC_REG_SOFT_RST, 0); 7375 7376 if (sizeof(union cdu_context) != 1024) 7377 /* we currently assume that a context is 1024 bytes */ 7378 dev_alert(&bp->pdev->dev, 7379 "please adjust the size of cdu_context(%ld)\n", 7380 (long)sizeof(union cdu_context)); 7381 7382 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON); 7383 val = (4 << 24) + (0 << 12) + 1024; 7384 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val); 7385 7386 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON); 7387 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF); 7388 /* enable context validation interrupt from CFC */ 7389 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); 7390 7391 /* set the thresholds to prevent CFC/CDU race */ 7392 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000); 7393 7394 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON); 7395 7396 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp)) 7397 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36); 7398 7399 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON); 7400 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON); 7401 7402 /* Reset PCIE errors for debug */ 7403 REG_WR(bp, 0x2814, 0xffffffff); 7404 REG_WR(bp, 0x3820, 0xffffffff); 7405 7406 if (!CHIP_IS_E1x(bp)) { 7407 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 7408 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 7409 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 7410 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 7411 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 7412 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 7413 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 7414 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 7415 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 7416 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 7417 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 7418 } 7419 7420 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON); 7421 if (!CHIP_IS_E1(bp)) { 7422 /* in E3 this done in per-port section */ 7423 if (!CHIP_IS_E3(bp)) 7424 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp)); 7425 } 7426 if (CHIP_IS_E1H(bp)) 7427 /* not applicable for E2 (and above ...) */ 7428 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp)); 7429 7430 if (CHIP_REV_IS_SLOW(bp)) 7431 msleep(200); 7432 7433 /* finish CFC init */ 7434 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10); 7435 if (val != 1) { 7436 BNX2X_ERR("CFC LL_INIT failed\n"); 7437 return -EBUSY; 7438 } 7439 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10); 7440 if (val != 1) { 7441 BNX2X_ERR("CFC AC_INIT failed\n"); 7442 return -EBUSY; 7443 } 7444 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 7445 if (val != 1) { 7446 BNX2X_ERR("CFC CAM_INIT failed\n"); 7447 return -EBUSY; 7448 } 7449 REG_WR(bp, CFC_REG_DEBUG0, 0); 7450 7451 if (CHIP_IS_E1(bp)) { 7452 /* read NIG statistic 7453 to see if this is our first up since powerup */ 7454 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 7455 val = *bnx2x_sp(bp, wb_data[0]); 7456 7457 /* do internal memory self test */ 7458 if ((val == 0) && bnx2x_int_mem_test(bp)) { 7459 BNX2X_ERR("internal mem self test failed\n"); 7460 return -EBUSY; 7461 } 7462 } 7463 7464 bnx2x_setup_fan_failure_detection(bp); 7465 7466 /* clear PXP2 attentions */ 7467 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0); 7468 7469 bnx2x_enable_blocks_attention(bp); 7470 bnx2x_enable_blocks_parity(bp); 7471 7472 if (!BP_NOMCP(bp)) { 7473 if (CHIP_IS_E1x(bp)) 7474 bnx2x__common_init_phy(bp); 7475 } else 7476 BNX2X_ERR("Bootcode is missing - can not initialize link\n"); 7477 7478 if (SHMEM2_HAS(bp, netproc_fw_ver)) 7479 SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM)); 7480 7481 return 0; 7482 } 7483 7484 /** 7485 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase. 7486 * 7487 * @bp: driver handle 7488 */ 7489 static int bnx2x_init_hw_common_chip(struct bnx2x *bp) 7490 { 7491 int rc = bnx2x_init_hw_common(bp); 7492 7493 if (rc) 7494 return rc; 7495 7496 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 7497 if (!BP_NOMCP(bp)) 7498 bnx2x__common_init_phy(bp); 7499 7500 return 0; 7501 } 7502 7503 static int bnx2x_init_hw_port(struct bnx2x *bp) 7504 { 7505 int port = BP_PORT(bp); 7506 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 7507 u32 low, high; 7508 u32 val, reg; 7509 7510 DP(NETIF_MSG_HW, "starting port init port %d\n", port); 7511 7512 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 7513 7514 bnx2x_init_block(bp, BLOCK_MISC, init_phase); 7515 bnx2x_init_block(bp, BLOCK_PXP, init_phase); 7516 bnx2x_init_block(bp, BLOCK_PXP2, init_phase); 7517 7518 /* Timers bug workaround: disables the pf_master bit in pglue at 7519 * common phase, we need to enable it here before any dmae access are 7520 * attempted. Therefore we manually added the enable-master to the 7521 * port phase (it also happens in the function phase) 7522 */ 7523 if (!CHIP_IS_E1x(bp)) 7524 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 7525 7526 bnx2x_init_block(bp, BLOCK_ATC, init_phase); 7527 bnx2x_init_block(bp, BLOCK_DMAE, init_phase); 7528 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); 7529 bnx2x_init_block(bp, BLOCK_QM, init_phase); 7530 7531 bnx2x_init_block(bp, BLOCK_TCM, init_phase); 7532 bnx2x_init_block(bp, BLOCK_UCM, init_phase); 7533 bnx2x_init_block(bp, BLOCK_CCM, init_phase); 7534 bnx2x_init_block(bp, BLOCK_XCM, init_phase); 7535 7536 /* QM cid (connection) count */ 7537 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET); 7538 7539 if (CNIC_SUPPORT(bp)) { 7540 bnx2x_init_block(bp, BLOCK_TM, init_phase); 7541 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20); 7542 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 7543 } 7544 7545 bnx2x_init_block(bp, BLOCK_DORQ, init_phase); 7546 7547 bnx2x_init_block(bp, BLOCK_BRB1, init_phase); 7548 7549 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) { 7550 7551 if (IS_MF(bp)) 7552 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246); 7553 else if (bp->dev->mtu > 4096) { 7554 if (bp->flags & ONE_PORT_FLAG) 7555 low = 160; 7556 else { 7557 val = bp->dev->mtu; 7558 /* (24*1024 + val*4)/256 */ 7559 low = 96 + (val/64) + 7560 ((val % 64) ? 1 : 0); 7561 } 7562 } else 7563 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160); 7564 high = low + 56; /* 14*1024/256 */ 7565 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 7566 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 7567 } 7568 7569 if (CHIP_MODE_IS_4_PORT(bp)) 7570 REG_WR(bp, (BP_PORT(bp) ? 7571 BRB1_REG_MAC_GUARANTIED_1 : 7572 BRB1_REG_MAC_GUARANTIED_0), 40); 7573 7574 bnx2x_init_block(bp, BLOCK_PRS, init_phase); 7575 if (CHIP_IS_E3B0(bp)) { 7576 if (IS_MF_AFEX(bp)) { 7577 /* configure headers for AFEX mode */ 7578 REG_WR(bp, BP_PORT(bp) ? 7579 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 7580 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 7581 REG_WR(bp, BP_PORT(bp) ? 7582 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 7583 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 7584 REG_WR(bp, BP_PORT(bp) ? 7585 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 7586 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 7587 } else { 7588 /* Ovlan exists only if we are in multi-function + 7589 * switch-dependent mode, in switch-independent there 7590 * is no ovlan headers 7591 */ 7592 REG_WR(bp, BP_PORT(bp) ? 7593 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 7594 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 7595 (bp->path_has_ovlan ? 7 : 6)); 7596 } 7597 } 7598 7599 bnx2x_init_block(bp, BLOCK_TSDM, init_phase); 7600 bnx2x_init_block(bp, BLOCK_CSDM, init_phase); 7601 bnx2x_init_block(bp, BLOCK_USDM, init_phase); 7602 bnx2x_init_block(bp, BLOCK_XSDM, init_phase); 7603 7604 bnx2x_init_block(bp, BLOCK_TSEM, init_phase); 7605 bnx2x_init_block(bp, BLOCK_USEM, init_phase); 7606 bnx2x_init_block(bp, BLOCK_CSEM, init_phase); 7607 bnx2x_init_block(bp, BLOCK_XSEM, init_phase); 7608 7609 bnx2x_init_block(bp, BLOCK_UPB, init_phase); 7610 bnx2x_init_block(bp, BLOCK_XPB, init_phase); 7611 7612 bnx2x_init_block(bp, BLOCK_PBF, init_phase); 7613 7614 if (CHIP_IS_E1x(bp)) { 7615 /* configure PBF to work without PAUSE mtu 9000 */ 7616 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 7617 7618 /* update threshold */ 7619 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 7620 /* update init credit */ 7621 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 7622 7623 /* probe changes */ 7624 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1); 7625 udelay(50); 7626 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0); 7627 } 7628 7629 if (CNIC_SUPPORT(bp)) 7630 bnx2x_init_block(bp, BLOCK_SRC, init_phase); 7631 7632 bnx2x_init_block(bp, BLOCK_CDU, init_phase); 7633 bnx2x_init_block(bp, BLOCK_CFC, init_phase); 7634 7635 if (CHIP_IS_E1(bp)) { 7636 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 7637 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 7638 } 7639 bnx2x_init_block(bp, BLOCK_HC, init_phase); 7640 7641 bnx2x_init_block(bp, BLOCK_IGU, init_phase); 7642 7643 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); 7644 /* init aeu_mask_attn_func_0/1: 7645 * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use 7646 * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF 7647 * bits 4-7 are used for "per vn group attention" */ 7648 val = IS_MF(bp) ? 0xF7 : 0x7; 7649 /* Enable DCBX attention for all but E1 */ 7650 val |= CHIP_IS_E1(bp) ? 0 : 0x10; 7651 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 7652 7653 /* SCPAD_PARITY should NOT trigger close the gates */ 7654 reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0; 7655 REG_WR(bp, reg, 7656 REG_RD(bp, reg) & 7657 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY); 7658 7659 reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0; 7660 REG_WR(bp, reg, 7661 REG_RD(bp, reg) & 7662 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY); 7663 7664 bnx2x_init_block(bp, BLOCK_NIG, init_phase); 7665 7666 if (!CHIP_IS_E1x(bp)) { 7667 /* Bit-map indicating which L2 hdrs may appear after the 7668 * basic Ethernet header 7669 */ 7670 if (IS_MF_AFEX(bp)) 7671 REG_WR(bp, BP_PORT(bp) ? 7672 NIG_REG_P1_HDRS_AFTER_BASIC : 7673 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 7674 else 7675 REG_WR(bp, BP_PORT(bp) ? 7676 NIG_REG_P1_HDRS_AFTER_BASIC : 7677 NIG_REG_P0_HDRS_AFTER_BASIC, 7678 IS_MF_SD(bp) ? 7 : 6); 7679 7680 if (CHIP_IS_E3(bp)) 7681 REG_WR(bp, BP_PORT(bp) ? 7682 NIG_REG_LLH1_MF_MODE : 7683 NIG_REG_LLH_MF_MODE, IS_MF(bp)); 7684 } 7685 if (!CHIP_IS_E3(bp)) 7686 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 7687 7688 if (!CHIP_IS_E1(bp)) { 7689 /* 0x2 disable mf_ov, 0x1 enable */ 7690 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 7691 (IS_MF_SD(bp) ? 0x1 : 0x2)); 7692 7693 if (!CHIP_IS_E1x(bp)) { 7694 val = 0; 7695 switch (bp->mf_mode) { 7696 case MULTI_FUNCTION_SD: 7697 val = 1; 7698 break; 7699 case MULTI_FUNCTION_SI: 7700 case MULTI_FUNCTION_AFEX: 7701 val = 2; 7702 break; 7703 } 7704 7705 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE : 7706 NIG_REG_LLH0_CLS_TYPE), val); 7707 } 7708 { 7709 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 7710 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 7711 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 7712 } 7713 } 7714 7715 /* If SPIO5 is set to generate interrupts, enable it for this port */ 7716 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); 7717 if (val & MISC_SPIO_SPIO5) { 7718 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 7719 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 7720 val = REG_RD(bp, reg_addr); 7721 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 7722 REG_WR(bp, reg_addr, val); 7723 } 7724 7725 if (CHIP_IS_E3B0(bp)) 7726 bp->flags |= PTP_SUPPORTED; 7727 7728 return 0; 7729 } 7730 7731 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr) 7732 { 7733 int reg; 7734 u32 wb_write[2]; 7735 7736 if (CHIP_IS_E1(bp)) 7737 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 7738 else 7739 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 7740 7741 wb_write[0] = ONCHIP_ADDR1(addr); 7742 wb_write[1] = ONCHIP_ADDR2(addr); 7743 REG_WR_DMAE(bp, reg, wb_write, 2); 7744 } 7745 7746 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf) 7747 { 7748 u32 data, ctl, cnt = 100; 7749 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 7750 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 7751 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 7752 u32 sb_bit = 1 << (idu_sb_id%32); 7753 u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 7754 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 7755 7756 /* Not supported in BC mode */ 7757 if (CHIP_INT_MODE_IS_BC(bp)) 7758 return; 7759 7760 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup 7761 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 7762 IGU_REGULAR_CLEANUP_SET | 7763 IGU_REGULAR_BCLEANUP; 7764 7765 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT | 7766 func_encode << IGU_CTRL_REG_FID_SHIFT | 7767 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT; 7768 7769 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 7770 data, igu_addr_data); 7771 REG_WR(bp, igu_addr_data, data); 7772 barrier(); 7773 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 7774 ctl, igu_addr_ctl); 7775 REG_WR(bp, igu_addr_ctl, ctl); 7776 barrier(); 7777 7778 /* wait for clean up to finish */ 7779 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt) 7780 msleep(20); 7781 7782 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) { 7783 DP(NETIF_MSG_HW, 7784 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n", 7785 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 7786 } 7787 } 7788 7789 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id) 7790 { 7791 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/); 7792 } 7793 7794 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func) 7795 { 7796 u32 i, base = FUNC_ILT_BASE(func); 7797 for (i = base; i < base + ILT_PER_FUNC; i++) 7798 bnx2x_ilt_wr(bp, i, 0); 7799 } 7800 7801 static void bnx2x_init_searcher(struct bnx2x *bp) 7802 { 7803 int port = BP_PORT(bp); 7804 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM); 7805 /* T1 hash bits value determines the T1 number of entries */ 7806 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS); 7807 } 7808 7809 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend) 7810 { 7811 int rc; 7812 struct bnx2x_func_state_params func_params = {NULL}; 7813 struct bnx2x_func_switch_update_params *switch_update_params = 7814 &func_params.params.switch_update; 7815 7816 /* Prepare parameters for function state transitions */ 7817 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 7818 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 7819 7820 func_params.f_obj = &bp->func_obj; 7821 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 7822 7823 /* Function parameters */ 7824 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG, 7825 &switch_update_params->changes); 7826 if (suspend) 7827 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND, 7828 &switch_update_params->changes); 7829 7830 rc = bnx2x_func_state_change(bp, &func_params); 7831 7832 return rc; 7833 } 7834 7835 static int bnx2x_reset_nic_mode(struct bnx2x *bp) 7836 { 7837 int rc, i, port = BP_PORT(bp); 7838 int vlan_en = 0, mac_en[NUM_MACS]; 7839 7840 /* Close input from network */ 7841 if (bp->mf_mode == SINGLE_FUNCTION) { 7842 bnx2x_set_rx_filter(&bp->link_params, 0); 7843 } else { 7844 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN : 7845 NIG_REG_LLH0_FUNC_EN); 7846 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : 7847 NIG_REG_LLH0_FUNC_EN, 0); 7848 for (i = 0; i < NUM_MACS; i++) { 7849 mac_en[i] = REG_RD(bp, port ? 7850 (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7851 4 * i) : 7852 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 7853 4 * i)); 7854 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7855 4 * i) : 7856 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0); 7857 } 7858 } 7859 7860 /* Close BMC to host */ 7861 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : 7862 NIG_REG_P1_TX_MNG_HOST_ENABLE, 0); 7863 7864 /* Suspend Tx switching to the PF. Completion of this ramrod 7865 * further guarantees that all the packets of that PF / child 7866 * VFs in BRB were processed by the Parser, so it is safe to 7867 * change the NIC_MODE register. 7868 */ 7869 rc = bnx2x_func_switch_update(bp, 1); 7870 if (rc) { 7871 BNX2X_ERR("Can't suspend tx-switching!\n"); 7872 return rc; 7873 } 7874 7875 /* Change NIC_MODE register */ 7876 REG_WR(bp, PRS_REG_NIC_MODE, 0); 7877 7878 /* Open input from network */ 7879 if (bp->mf_mode == SINGLE_FUNCTION) { 7880 bnx2x_set_rx_filter(&bp->link_params, 1); 7881 } else { 7882 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : 7883 NIG_REG_LLH0_FUNC_EN, vlan_en); 7884 for (i = 0; i < NUM_MACS; i++) { 7885 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7886 4 * i) : 7887 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 7888 mac_en[i]); 7889 } 7890 } 7891 7892 /* Enable BMC to host */ 7893 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : 7894 NIG_REG_P1_TX_MNG_HOST_ENABLE, 1); 7895 7896 /* Resume Tx switching to the PF */ 7897 rc = bnx2x_func_switch_update(bp, 0); 7898 if (rc) { 7899 BNX2X_ERR("Can't resume tx-switching!\n"); 7900 return rc; 7901 } 7902 7903 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); 7904 return 0; 7905 } 7906 7907 int bnx2x_init_hw_func_cnic(struct bnx2x *bp) 7908 { 7909 int rc; 7910 7911 bnx2x_ilt_init_op_cnic(bp, INITOP_SET); 7912 7913 if (CONFIGURE_NIC_MODE(bp)) { 7914 /* Configure searcher as part of function hw init */ 7915 bnx2x_init_searcher(bp); 7916 7917 /* Reset NIC mode */ 7918 rc = bnx2x_reset_nic_mode(bp); 7919 if (rc) 7920 BNX2X_ERR("Can't change NIC mode!\n"); 7921 return rc; 7922 } 7923 7924 return 0; 7925 } 7926 7927 /* previous driver DMAE transaction may have occurred when pre-boot stage ended 7928 * and boot began, or when kdump kernel was loaded. Either case would invalidate 7929 * the addresses of the transaction, resulting in was-error bit set in the pci 7930 * causing all hw-to-host pcie transactions to timeout. If this happened we want 7931 * to clear the interrupt which detected this from the pglueb and the was done 7932 * bit 7933 */ 7934 static void bnx2x_clean_pglue_errors(struct bnx2x *bp) 7935 { 7936 if (!CHIP_IS_E1x(bp)) 7937 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 7938 1 << BP_ABS_FUNC(bp)); 7939 } 7940 7941 static int bnx2x_init_hw_func(struct bnx2x *bp) 7942 { 7943 int port = BP_PORT(bp); 7944 int func = BP_FUNC(bp); 7945 int init_phase = PHASE_PF0 + func; 7946 struct bnx2x_ilt *ilt = BP_ILT(bp); 7947 u16 cdu_ilt_start; 7948 u32 addr, val; 7949 u32 main_mem_base, main_mem_size, main_mem_prty_clr; 7950 int i, main_mem_width, rc; 7951 7952 DP(NETIF_MSG_HW, "starting func init func %d\n", func); 7953 7954 /* FLR cleanup - hmmm */ 7955 if (!CHIP_IS_E1x(bp)) { 7956 rc = bnx2x_pf_flr_clnup(bp); 7957 if (rc) { 7958 bnx2x_fw_dump(bp); 7959 return rc; 7960 } 7961 } 7962 7963 /* set MSI reconfigure capability */ 7964 if (bp->common.int_block == INT_BLOCK_HC) { 7965 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 7966 val = REG_RD(bp, addr); 7967 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 7968 REG_WR(bp, addr, val); 7969 } 7970 7971 bnx2x_init_block(bp, BLOCK_PXP, init_phase); 7972 bnx2x_init_block(bp, BLOCK_PXP2, init_phase); 7973 7974 ilt = BP_ILT(bp); 7975 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 7976 7977 if (IS_SRIOV(bp)) 7978 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS; 7979 cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start); 7980 7981 /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes 7982 * those of the VFs, so start line should be reset 7983 */ 7984 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 7985 for (i = 0; i < L2_ILT_LINES(bp); i++) { 7986 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt; 7987 ilt->lines[cdu_ilt_start + i].page_mapping = 7988 bp->context[i].cxt_mapping; 7989 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size; 7990 } 7991 7992 bnx2x_ilt_init_op(bp, INITOP_SET); 7993 7994 if (!CONFIGURE_NIC_MODE(bp)) { 7995 bnx2x_init_searcher(bp); 7996 REG_WR(bp, PRS_REG_NIC_MODE, 0); 7997 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); 7998 } else { 7999 /* Set NIC mode */ 8000 REG_WR(bp, PRS_REG_NIC_MODE, 1); 8001 DP(NETIF_MSG_IFUP, "NIC MODE configured\n"); 8002 } 8003 8004 if (!CHIP_IS_E1x(bp)) { 8005 u32 pf_conf = IGU_PF_CONF_FUNC_EN; 8006 8007 /* Turn on a single ISR mode in IGU if driver is going to use 8008 * INT#x or MSI 8009 */ 8010 if (!(bp->flags & USING_MSIX_FLAG)) 8011 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 8012 /* 8013 * Timers workaround bug: function init part. 8014 * Need to wait 20msec after initializing ILT, 8015 * needed to make sure there are no requests in 8016 * one of the PXP internal queues with "old" ILT addresses 8017 */ 8018 msleep(20); 8019 /* 8020 * Master enable - Due to WB DMAE writes performed before this 8021 * register is re-initialized as part of the regular function 8022 * init 8023 */ 8024 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 8025 /* Enable the function in IGU */ 8026 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf); 8027 } 8028 8029 bp->dmae_ready = 1; 8030 8031 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); 8032 8033 bnx2x_clean_pglue_errors(bp); 8034 8035 bnx2x_init_block(bp, BLOCK_ATC, init_phase); 8036 bnx2x_init_block(bp, BLOCK_DMAE, init_phase); 8037 bnx2x_init_block(bp, BLOCK_NIG, init_phase); 8038 bnx2x_init_block(bp, BLOCK_SRC, init_phase); 8039 bnx2x_init_block(bp, BLOCK_MISC, init_phase); 8040 bnx2x_init_block(bp, BLOCK_TCM, init_phase); 8041 bnx2x_init_block(bp, BLOCK_UCM, init_phase); 8042 bnx2x_init_block(bp, BLOCK_CCM, init_phase); 8043 bnx2x_init_block(bp, BLOCK_XCM, init_phase); 8044 bnx2x_init_block(bp, BLOCK_TSEM, init_phase); 8045 bnx2x_init_block(bp, BLOCK_USEM, init_phase); 8046 bnx2x_init_block(bp, BLOCK_CSEM, init_phase); 8047 bnx2x_init_block(bp, BLOCK_XSEM, init_phase); 8048 8049 if (!CHIP_IS_E1x(bp)) 8050 REG_WR(bp, QM_REG_PF_EN, 1); 8051 8052 if (!CHIP_IS_E1x(bp)) { 8053 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8054 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8055 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8056 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8057 } 8058 bnx2x_init_block(bp, BLOCK_QM, init_phase); 8059 8060 bnx2x_init_block(bp, BLOCK_TM, init_phase); 8061 bnx2x_init_block(bp, BLOCK_DORQ, init_phase); 8062 REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */ 8063 8064 bnx2x_iov_init_dq(bp); 8065 8066 bnx2x_init_block(bp, BLOCK_BRB1, init_phase); 8067 bnx2x_init_block(bp, BLOCK_PRS, init_phase); 8068 bnx2x_init_block(bp, BLOCK_TSDM, init_phase); 8069 bnx2x_init_block(bp, BLOCK_CSDM, init_phase); 8070 bnx2x_init_block(bp, BLOCK_USDM, init_phase); 8071 bnx2x_init_block(bp, BLOCK_XSDM, init_phase); 8072 bnx2x_init_block(bp, BLOCK_UPB, init_phase); 8073 bnx2x_init_block(bp, BLOCK_XPB, init_phase); 8074 bnx2x_init_block(bp, BLOCK_PBF, init_phase); 8075 if (!CHIP_IS_E1x(bp)) 8076 REG_WR(bp, PBF_REG_DISABLE_PF, 0); 8077 8078 bnx2x_init_block(bp, BLOCK_CDU, init_phase); 8079 8080 bnx2x_init_block(bp, BLOCK_CFC, init_phase); 8081 8082 if (!CHIP_IS_E1x(bp)) 8083 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1); 8084 8085 if (IS_MF(bp)) { 8086 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) { 8087 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1); 8088 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8, 8089 bp->mf_ov); 8090 } 8091 } 8092 8093 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); 8094 8095 /* HC init per function */ 8096 if (bp->common.int_block == INT_BLOCK_HC) { 8097 if (CHIP_IS_E1H(bp)) { 8098 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8099 8100 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 8101 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 8102 } 8103 bnx2x_init_block(bp, BLOCK_HC, init_phase); 8104 8105 } else { 8106 int num_segs, sb_idx, prod_offset; 8107 8108 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8109 8110 if (!CHIP_IS_E1x(bp)) { 8111 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); 8112 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); 8113 } 8114 8115 bnx2x_init_block(bp, BLOCK_IGU, init_phase); 8116 8117 if (!CHIP_IS_E1x(bp)) { 8118 int dsb_idx = 0; 8119 /** 8120 * Producer memory: 8121 * E2 mode: address 0-135 match to the mapping memory; 8122 * 136 - PF0 default prod; 137 - PF1 default prod; 8123 * 138 - PF2 default prod; 139 - PF3 default prod; 8124 * 140 - PF0 attn prod; 141 - PF1 attn prod; 8125 * 142 - PF2 attn prod; 143 - PF3 attn prod; 8126 * 144-147 reserved. 8127 * 8128 * E1.5 mode - In backward compatible mode; 8129 * for non default SB; each even line in the memory 8130 * holds the U producer and each odd line hold 8131 * the C producer. The first 128 producers are for 8132 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 8133 * producers are for the DSB for each PF. 8134 * Each PF has five segments: (the order inside each 8135 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 8136 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 8137 * 144-147 attn prods; 8138 */ 8139 /* non-default-status-blocks */ 8140 num_segs = CHIP_INT_MODE_IS_BC(bp) ? 8141 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 8142 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) { 8143 prod_offset = (bp->igu_base_sb + sb_idx) * 8144 num_segs; 8145 8146 for (i = 0; i < num_segs; i++) { 8147 addr = IGU_REG_PROD_CONS_MEMORY + 8148 (prod_offset + i) * 4; 8149 REG_WR(bp, addr, 0); 8150 } 8151 /* send consumer update with value 0 */ 8152 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx, 8153 USTORM_ID, 0, IGU_INT_NOP, 1); 8154 bnx2x_igu_clear_sb(bp, 8155 bp->igu_base_sb + sb_idx); 8156 } 8157 8158 /* default-status-blocks */ 8159 num_segs = CHIP_INT_MODE_IS_BC(bp) ? 8160 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 8161 8162 if (CHIP_MODE_IS_4_PORT(bp)) 8163 dsb_idx = BP_FUNC(bp); 8164 else 8165 dsb_idx = BP_VN(bp); 8166 8167 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ? 8168 IGU_BC_BASE_DSB_PROD + dsb_idx : 8169 IGU_NORM_BASE_DSB_PROD + dsb_idx); 8170 8171 /* 8172 * igu prods come in chunks of E1HVN_MAX (4) - 8173 * does not matters what is the current chip mode 8174 */ 8175 for (i = 0; i < (num_segs * E1HVN_MAX); 8176 i += E1HVN_MAX) { 8177 addr = IGU_REG_PROD_CONS_MEMORY + 8178 (prod_offset + i)*4; 8179 REG_WR(bp, addr, 0); 8180 } 8181 /* send consumer update with 0 */ 8182 if (CHIP_INT_MODE_IS_BC(bp)) { 8183 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8184 USTORM_ID, 0, IGU_INT_NOP, 1); 8185 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8186 CSTORM_ID, 0, IGU_INT_NOP, 1); 8187 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8188 XSTORM_ID, 0, IGU_INT_NOP, 1); 8189 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8190 TSTORM_ID, 0, IGU_INT_NOP, 1); 8191 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8192 ATTENTION_ID, 0, IGU_INT_NOP, 1); 8193 } else { 8194 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8195 USTORM_ID, 0, IGU_INT_NOP, 1); 8196 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8197 ATTENTION_ID, 0, IGU_INT_NOP, 1); 8198 } 8199 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id); 8200 8201 /* !!! These should become driver const once 8202 rf-tool supports split-68 const */ 8203 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 8204 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 8205 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0); 8206 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0); 8207 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0); 8208 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0); 8209 } 8210 } 8211 8212 /* Reset PCIE errors for debug */ 8213 REG_WR(bp, 0x2114, 0xffffffff); 8214 REG_WR(bp, 0x2120, 0xffffffff); 8215 8216 if (CHIP_IS_E1x(bp)) { 8217 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 8218 main_mem_base = HC_REG_MAIN_MEMORY + 8219 BP_PORT(bp) * (main_mem_size * 4); 8220 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 8221 main_mem_width = 8; 8222 8223 val = REG_RD(bp, main_mem_prty_clr); 8224 if (val) 8225 DP(NETIF_MSG_HW, 8226 "Hmmm... Parity errors in HC block during function init (0x%x)!\n", 8227 val); 8228 8229 /* Clear "false" parity errors in MSI-X table */ 8230 for (i = main_mem_base; 8231 i < main_mem_base + main_mem_size * 4; 8232 i += main_mem_width) { 8233 bnx2x_read_dmae(bp, i, main_mem_width / 4); 8234 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), 8235 i, main_mem_width / 4); 8236 } 8237 /* Clear HC parity attention */ 8238 REG_RD(bp, main_mem_prty_clr); 8239 } 8240 8241 #ifdef BNX2X_STOP_ON_ERROR 8242 /* Enable STORMs SP logging */ 8243 REG_WR8(bp, BAR_USTRORM_INTMEM + 8244 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8245 REG_WR8(bp, BAR_TSTRORM_INTMEM + 8246 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8247 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8248 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8249 REG_WR8(bp, BAR_XSTRORM_INTMEM + 8250 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8251 #endif 8252 8253 bnx2x_phy_probe(&bp->link_params); 8254 8255 return 0; 8256 } 8257 8258 void bnx2x_free_mem_cnic(struct bnx2x *bp) 8259 { 8260 bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE); 8261 8262 if (!CHIP_IS_E1x(bp)) 8263 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping, 8264 sizeof(struct host_hc_status_block_e2)); 8265 else 8266 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping, 8267 sizeof(struct host_hc_status_block_e1x)); 8268 8269 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); 8270 } 8271 8272 void bnx2x_free_mem(struct bnx2x *bp) 8273 { 8274 int i; 8275 8276 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, 8277 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 8278 8279 if (IS_VF(bp)) 8280 return; 8281 8282 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping, 8283 sizeof(struct host_sp_status_block)); 8284 8285 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping, 8286 sizeof(struct bnx2x_slowpath)); 8287 8288 for (i = 0; i < L2_ILT_LINES(bp); i++) 8289 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping, 8290 bp->context[i].size); 8291 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE); 8292 8293 BNX2X_FREE(bp->ilt->lines); 8294 8295 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE); 8296 8297 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping, 8298 BCM_PAGE_SIZE * NUM_EQ_PAGES); 8299 8300 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); 8301 8302 bnx2x_iov_free_mem(bp); 8303 } 8304 8305 int bnx2x_alloc_mem_cnic(struct bnx2x *bp) 8306 { 8307 if (!CHIP_IS_E1x(bp)) { 8308 /* size = the status block + ramrod buffers */ 8309 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping, 8310 sizeof(struct host_hc_status_block_e2)); 8311 if (!bp->cnic_sb.e2_sb) 8312 goto alloc_mem_err; 8313 } else { 8314 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping, 8315 sizeof(struct host_hc_status_block_e1x)); 8316 if (!bp->cnic_sb.e1x_sb) 8317 goto alloc_mem_err; 8318 } 8319 8320 if (CONFIGURE_NIC_MODE(bp) && !bp->t2) { 8321 /* allocate searcher T2 table, as it wasn't allocated before */ 8322 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ); 8323 if (!bp->t2) 8324 goto alloc_mem_err; 8325 } 8326 8327 /* write address to which L5 should insert its values */ 8328 bp->cnic_eth_dev.addr_drv_info_to_mcp = 8329 &bp->slowpath->drv_info_to_mcp; 8330 8331 if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC)) 8332 goto alloc_mem_err; 8333 8334 return 0; 8335 8336 alloc_mem_err: 8337 bnx2x_free_mem_cnic(bp); 8338 BNX2X_ERR("Can't allocate memory\n"); 8339 return -ENOMEM; 8340 } 8341 8342 int bnx2x_alloc_mem(struct bnx2x *bp) 8343 { 8344 int i, allocated, context_size; 8345 8346 if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) { 8347 /* allocate searcher T2 table */ 8348 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ); 8349 if (!bp->t2) 8350 goto alloc_mem_err; 8351 } 8352 8353 bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping, 8354 sizeof(struct host_sp_status_block)); 8355 if (!bp->def_status_blk) 8356 goto alloc_mem_err; 8357 8358 bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping, 8359 sizeof(struct bnx2x_slowpath)); 8360 if (!bp->slowpath) 8361 goto alloc_mem_err; 8362 8363 /* Allocate memory for CDU context: 8364 * This memory is allocated separately and not in the generic ILT 8365 * functions because CDU differs in few aspects: 8366 * 1. There are multiple entities allocating memory for context - 8367 * 'regular' driver, CNIC and SRIOV driver. Each separately controls 8368 * its own ILT lines. 8369 * 2. Since CDU page-size is not a single 4KB page (which is the case 8370 * for the other ILT clients), to be efficient we want to support 8371 * allocation of sub-page-size in the last entry. 8372 * 3. Context pointers are used by the driver to pass to FW / update 8373 * the context (for the other ILT clients the pointers are used just to 8374 * free the memory during unload). 8375 */ 8376 context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp); 8377 8378 for (i = 0, allocated = 0; allocated < context_size; i++) { 8379 bp->context[i].size = min(CDU_ILT_PAGE_SZ, 8380 (context_size - allocated)); 8381 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping, 8382 bp->context[i].size); 8383 if (!bp->context[i].vcxt) 8384 goto alloc_mem_err; 8385 allocated += bp->context[i].size; 8386 } 8387 bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line), 8388 GFP_KERNEL); 8389 if (!bp->ilt->lines) 8390 goto alloc_mem_err; 8391 8392 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC)) 8393 goto alloc_mem_err; 8394 8395 if (bnx2x_iov_alloc_mem(bp)) 8396 goto alloc_mem_err; 8397 8398 /* Slow path ring */ 8399 bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE); 8400 if (!bp->spq) 8401 goto alloc_mem_err; 8402 8403 /* EQ */ 8404 bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping, 8405 BCM_PAGE_SIZE * NUM_EQ_PAGES); 8406 if (!bp->eq_ring) 8407 goto alloc_mem_err; 8408 8409 return 0; 8410 8411 alloc_mem_err: 8412 bnx2x_free_mem(bp); 8413 BNX2X_ERR("Can't allocate memory\n"); 8414 return -ENOMEM; 8415 } 8416 8417 /* 8418 * Init service functions 8419 */ 8420 8421 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac, 8422 struct bnx2x_vlan_mac_obj *obj, bool set, 8423 int mac_type, unsigned long *ramrod_flags) 8424 { 8425 int rc; 8426 struct bnx2x_vlan_mac_ramrod_params ramrod_param; 8427 8428 memset(&ramrod_param, 0, sizeof(ramrod_param)); 8429 8430 /* Fill general parameters */ 8431 ramrod_param.vlan_mac_obj = obj; 8432 ramrod_param.ramrod_flags = *ramrod_flags; 8433 8434 /* Fill a user request section if needed */ 8435 if (!test_bit(RAMROD_CONT, ramrod_flags)) { 8436 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 8437 8438 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 8439 8440 /* Set the command: ADD or DEL */ 8441 if (set) 8442 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD; 8443 else 8444 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL; 8445 } 8446 8447 rc = bnx2x_config_vlan_mac(bp, &ramrod_param); 8448 8449 if (rc == -EEXIST) { 8450 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc); 8451 /* do not treat adding same MAC as error */ 8452 rc = 0; 8453 } else if (rc < 0) 8454 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del")); 8455 8456 return rc; 8457 } 8458 8459 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan, 8460 struct bnx2x_vlan_mac_obj *obj, bool set, 8461 unsigned long *ramrod_flags) 8462 { 8463 int rc; 8464 struct bnx2x_vlan_mac_ramrod_params ramrod_param; 8465 8466 memset(&ramrod_param, 0, sizeof(ramrod_param)); 8467 8468 /* Fill general parameters */ 8469 ramrod_param.vlan_mac_obj = obj; 8470 ramrod_param.ramrod_flags = *ramrod_flags; 8471 8472 /* Fill a user request section if needed */ 8473 if (!test_bit(RAMROD_CONT, ramrod_flags)) { 8474 ramrod_param.user_req.u.vlan.vlan = vlan; 8475 __set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags); 8476 /* Set the command: ADD or DEL */ 8477 if (set) 8478 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD; 8479 else 8480 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL; 8481 } 8482 8483 rc = bnx2x_config_vlan_mac(bp, &ramrod_param); 8484 8485 if (rc == -EEXIST) { 8486 /* Do not treat adding same vlan as error. */ 8487 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc); 8488 rc = 0; 8489 } else if (rc < 0) { 8490 BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del")); 8491 } 8492 8493 return rc; 8494 } 8495 8496 void bnx2x_clear_vlan_info(struct bnx2x *bp) 8497 { 8498 struct bnx2x_vlan_entry *vlan; 8499 8500 /* Mark that hw forgot all entries */ 8501 list_for_each_entry(vlan, &bp->vlan_reg, link) 8502 vlan->hw = false; 8503 8504 bp->vlan_cnt = 0; 8505 } 8506 8507 static int bnx2x_del_all_vlans(struct bnx2x *bp) 8508 { 8509 struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj; 8510 unsigned long ramrod_flags = 0, vlan_flags = 0; 8511 int rc; 8512 8513 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 8514 __set_bit(BNX2X_VLAN, &vlan_flags); 8515 rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags); 8516 if (rc) 8517 return rc; 8518 8519 bnx2x_clear_vlan_info(bp); 8520 8521 return 0; 8522 } 8523 8524 int bnx2x_del_all_macs(struct bnx2x *bp, 8525 struct bnx2x_vlan_mac_obj *mac_obj, 8526 int mac_type, bool wait_for_comp) 8527 { 8528 int rc; 8529 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 8530 8531 /* Wait for completion of requested */ 8532 if (wait_for_comp) 8533 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 8534 8535 /* Set the mac type of addresses we want to clear */ 8536 __set_bit(mac_type, &vlan_mac_flags); 8537 8538 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags); 8539 if (rc < 0) 8540 BNX2X_ERR("Failed to delete MACs: %d\n", rc); 8541 8542 return rc; 8543 } 8544 8545 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set) 8546 { 8547 if (IS_PF(bp)) { 8548 unsigned long ramrod_flags = 0; 8549 8550 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n"); 8551 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 8552 return bnx2x_set_mac_one(bp, bp->dev->dev_addr, 8553 &bp->sp_objs->mac_obj, set, 8554 BNX2X_ETH_MAC, &ramrod_flags); 8555 } else { /* vf */ 8556 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, 8557 bp->fp->index, set); 8558 } 8559 } 8560 8561 int bnx2x_setup_leading(struct bnx2x *bp) 8562 { 8563 if (IS_PF(bp)) 8564 return bnx2x_setup_queue(bp, &bp->fp[0], true); 8565 else /* VF */ 8566 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true); 8567 } 8568 8569 /** 8570 * bnx2x_set_int_mode - configure interrupt mode 8571 * 8572 * @bp: driver handle 8573 * 8574 * In case of MSI-X it will also try to enable MSI-X. 8575 */ 8576 int bnx2x_set_int_mode(struct bnx2x *bp) 8577 { 8578 int rc = 0; 8579 8580 if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) { 8581 BNX2X_ERR("VF not loaded since interrupt mode not msix\n"); 8582 return -EINVAL; 8583 } 8584 8585 switch (int_mode) { 8586 case BNX2X_INT_MODE_MSIX: 8587 /* attempt to enable msix */ 8588 rc = bnx2x_enable_msix(bp); 8589 8590 /* msix attained */ 8591 if (!rc) 8592 return 0; 8593 8594 /* vfs use only msix */ 8595 if (rc && IS_VF(bp)) 8596 return rc; 8597 8598 /* failed to enable multiple MSI-X */ 8599 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n", 8600 bp->num_queues, 8601 1 + bp->num_cnic_queues); 8602 8603 fallthrough; 8604 case BNX2X_INT_MODE_MSI: 8605 bnx2x_enable_msi(bp); 8606 8607 fallthrough; 8608 case BNX2X_INT_MODE_INTX: 8609 bp->num_ethernet_queues = 1; 8610 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 8611 BNX2X_DEV_INFO("set number of queues to 1\n"); 8612 break; 8613 default: 8614 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n"); 8615 return -EINVAL; 8616 } 8617 return 0; 8618 } 8619 8620 /* must be called prior to any HW initializations */ 8621 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp) 8622 { 8623 if (IS_SRIOV(bp)) 8624 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS; 8625 return L2_ILT_LINES(bp); 8626 } 8627 8628 void bnx2x_ilt_set_info(struct bnx2x *bp) 8629 { 8630 struct ilt_client_info *ilt_client; 8631 struct bnx2x_ilt *ilt = BP_ILT(bp); 8632 u16 line = 0; 8633 8634 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp)); 8635 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line); 8636 8637 /* CDU */ 8638 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 8639 ilt_client->client_num = ILT_CLIENT_CDU; 8640 ilt_client->page_size = CDU_ILT_PAGE_SZ; 8641 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 8642 ilt_client->start = line; 8643 line += bnx2x_cid_ilt_lines(bp); 8644 8645 if (CNIC_SUPPORT(bp)) 8646 line += CNIC_ILT_LINES; 8647 ilt_client->end = line - 1; 8648 8649 DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8650 ilt_client->start, 8651 ilt_client->end, 8652 ilt_client->page_size, 8653 ilt_client->flags, 8654 ilog2(ilt_client->page_size >> 12)); 8655 8656 /* QM */ 8657 if (QM_INIT(bp->qm_cid_count)) { 8658 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 8659 ilt_client->client_num = ILT_CLIENT_QM; 8660 ilt_client->page_size = QM_ILT_PAGE_SZ; 8661 ilt_client->flags = 0; 8662 ilt_client->start = line; 8663 8664 /* 4 bytes for each cid */ 8665 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 8666 QM_ILT_PAGE_SZ); 8667 8668 ilt_client->end = line - 1; 8669 8670 DP(NETIF_MSG_IFUP, 8671 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8672 ilt_client->start, 8673 ilt_client->end, 8674 ilt_client->page_size, 8675 ilt_client->flags, 8676 ilog2(ilt_client->page_size >> 12)); 8677 } 8678 8679 if (CNIC_SUPPORT(bp)) { 8680 /* SRC */ 8681 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 8682 ilt_client->client_num = ILT_CLIENT_SRC; 8683 ilt_client->page_size = SRC_ILT_PAGE_SZ; 8684 ilt_client->flags = 0; 8685 ilt_client->start = line; 8686 line += SRC_ILT_LINES; 8687 ilt_client->end = line - 1; 8688 8689 DP(NETIF_MSG_IFUP, 8690 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8691 ilt_client->start, 8692 ilt_client->end, 8693 ilt_client->page_size, 8694 ilt_client->flags, 8695 ilog2(ilt_client->page_size >> 12)); 8696 8697 /* TM */ 8698 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 8699 ilt_client->client_num = ILT_CLIENT_TM; 8700 ilt_client->page_size = TM_ILT_PAGE_SZ; 8701 ilt_client->flags = 0; 8702 ilt_client->start = line; 8703 line += TM_ILT_LINES; 8704 ilt_client->end = line - 1; 8705 8706 DP(NETIF_MSG_IFUP, 8707 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8708 ilt_client->start, 8709 ilt_client->end, 8710 ilt_client->page_size, 8711 ilt_client->flags, 8712 ilog2(ilt_client->page_size >> 12)); 8713 } 8714 8715 BUG_ON(line > ILT_MAX_LINES); 8716 } 8717 8718 /** 8719 * bnx2x_pf_q_prep_init - prepare INIT transition parameters 8720 * 8721 * @bp: driver handle 8722 * @fp: pointer to fastpath 8723 * @init_params: pointer to parameters structure 8724 * 8725 * parameters configured: 8726 * - HC configuration 8727 * - Queue's CDU context 8728 */ 8729 static void bnx2x_pf_q_prep_init(struct bnx2x *bp, 8730 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params) 8731 { 8732 u8 cos; 8733 int cxt_index, cxt_offset; 8734 8735 /* FCoE Queue uses Default SB, thus has no HC capabilities */ 8736 if (!IS_FCOE_FP(fp)) { 8737 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags); 8738 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags); 8739 8740 /* If HC is supported, enable host coalescing in the transition 8741 * to INIT state. 8742 */ 8743 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags); 8744 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags); 8745 8746 /* HC rate */ 8747 init_params->rx.hc_rate = bp->rx_ticks ? 8748 (1000000 / bp->rx_ticks) : 0; 8749 init_params->tx.hc_rate = bp->tx_ticks ? 8750 (1000000 / bp->tx_ticks) : 0; 8751 8752 /* FW SB ID */ 8753 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = 8754 fp->fw_sb_id; 8755 8756 /* 8757 * CQ index among the SB indices: FCoE clients uses the default 8758 * SB, therefore it's different. 8759 */ 8760 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 8761 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 8762 } 8763 8764 /* set maximum number of COSs supported by this queue */ 8765 init_params->max_cos = fp->max_cos; 8766 8767 DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n", 8768 fp->index, init_params->max_cos); 8769 8770 /* set the context pointers queue object */ 8771 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 8772 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS; 8773 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index * 8774 ILT_PAGE_CIDS); 8775 init_params->cxts[cos] = 8776 &bp->context[cxt_index].vcxt[cxt_offset].eth; 8777 } 8778 } 8779 8780 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp, 8781 struct bnx2x_queue_state_params *q_params, 8782 struct bnx2x_queue_setup_tx_only_params *tx_only_params, 8783 int tx_index, bool leading) 8784 { 8785 memset(tx_only_params, 0, sizeof(*tx_only_params)); 8786 8787 /* Set the command */ 8788 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; 8789 8790 /* Set tx-only QUEUE flags: don't zero statistics */ 8791 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false); 8792 8793 /* choose the index of the cid to send the slow path on */ 8794 tx_only_params->cid_index = tx_index; 8795 8796 /* Set general TX_ONLY_SETUP parameters */ 8797 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index); 8798 8799 /* Set Tx TX_ONLY_SETUP parameters */ 8800 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index); 8801 8802 DP(NETIF_MSG_IFUP, 8803 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n", 8804 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX], 8805 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id, 8806 tx_only_params->gen_params.spcl_id, tx_only_params->flags); 8807 8808 /* send the ramrod */ 8809 return bnx2x_queue_state_change(bp, q_params); 8810 } 8811 8812 /** 8813 * bnx2x_setup_queue - setup queue 8814 * 8815 * @bp: driver handle 8816 * @fp: pointer to fastpath 8817 * @leading: is leading 8818 * 8819 * This function performs 2 steps in a Queue state machine 8820 * actually: 1) RESET->INIT 2) INIT->SETUP 8821 */ 8822 8823 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp, 8824 bool leading) 8825 { 8826 struct bnx2x_queue_state_params q_params = {NULL}; 8827 struct bnx2x_queue_setup_params *setup_params = 8828 &q_params.params.setup; 8829 struct bnx2x_queue_setup_tx_only_params *tx_only_params = 8830 &q_params.params.tx_only; 8831 int rc; 8832 u8 tx_index; 8833 8834 DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index); 8835 8836 /* reset IGU state skip FCoE L2 queue */ 8837 if (!IS_FCOE_FP(fp)) 8838 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, 8839 IGU_INT_ENABLE, 0); 8840 8841 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 8842 /* We want to wait for completion in this context */ 8843 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 8844 8845 /* Prepare the INIT parameters */ 8846 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init); 8847 8848 /* Set the command */ 8849 q_params.cmd = BNX2X_Q_CMD_INIT; 8850 8851 /* Change the state to INIT */ 8852 rc = bnx2x_queue_state_change(bp, &q_params); 8853 if (rc) { 8854 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index); 8855 return rc; 8856 } 8857 8858 DP(NETIF_MSG_IFUP, "init complete\n"); 8859 8860 /* Now move the Queue to the SETUP state... */ 8861 memset(setup_params, 0, sizeof(*setup_params)); 8862 8863 /* Set QUEUE flags */ 8864 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading); 8865 8866 /* Set general SETUP parameters */ 8867 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params, 8868 FIRST_TX_COS_INDEX); 8869 8870 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params, 8871 &setup_params->rxq_params); 8872 8873 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params, 8874 FIRST_TX_COS_INDEX); 8875 8876 /* Set the command */ 8877 q_params.cmd = BNX2X_Q_CMD_SETUP; 8878 8879 if (IS_FCOE_FP(fp)) 8880 bp->fcoe_init = true; 8881 8882 /* Change the state to SETUP */ 8883 rc = bnx2x_queue_state_change(bp, &q_params); 8884 if (rc) { 8885 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index); 8886 return rc; 8887 } 8888 8889 /* loop through the relevant tx-only indices */ 8890 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 8891 tx_index < fp->max_cos; 8892 tx_index++) { 8893 8894 /* prepare and send tx-only ramrod*/ 8895 rc = bnx2x_setup_tx_only(bp, fp, &q_params, 8896 tx_only_params, tx_index, leading); 8897 if (rc) { 8898 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n", 8899 fp->index, tx_index); 8900 return rc; 8901 } 8902 } 8903 8904 return rc; 8905 } 8906 8907 static int bnx2x_stop_queue(struct bnx2x *bp, int index) 8908 { 8909 struct bnx2x_fastpath *fp = &bp->fp[index]; 8910 struct bnx2x_fp_txdata *txdata; 8911 struct bnx2x_queue_state_params q_params = {NULL}; 8912 int rc, tx_index; 8913 8914 DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid); 8915 8916 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 8917 /* We want to wait for completion in this context */ 8918 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 8919 8920 /* close tx-only connections */ 8921 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 8922 tx_index < fp->max_cos; 8923 tx_index++){ 8924 8925 /* ascertain this is a normal queue*/ 8926 txdata = fp->txdata_ptr[tx_index]; 8927 8928 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n", 8929 txdata->txq_index); 8930 8931 /* send halt terminate on tx-only connection */ 8932 q_params.cmd = BNX2X_Q_CMD_TERMINATE; 8933 memset(&q_params.params.terminate, 0, 8934 sizeof(q_params.params.terminate)); 8935 q_params.params.terminate.cid_index = tx_index; 8936 8937 rc = bnx2x_queue_state_change(bp, &q_params); 8938 if (rc) 8939 return rc; 8940 8941 /* send halt terminate on tx-only connection */ 8942 q_params.cmd = BNX2X_Q_CMD_CFC_DEL; 8943 memset(&q_params.params.cfc_del, 0, 8944 sizeof(q_params.params.cfc_del)); 8945 q_params.params.cfc_del.cid_index = tx_index; 8946 rc = bnx2x_queue_state_change(bp, &q_params); 8947 if (rc) 8948 return rc; 8949 } 8950 /* Stop the primary connection: */ 8951 /* ...halt the connection */ 8952 q_params.cmd = BNX2X_Q_CMD_HALT; 8953 rc = bnx2x_queue_state_change(bp, &q_params); 8954 if (rc) 8955 return rc; 8956 8957 /* ...terminate the connection */ 8958 q_params.cmd = BNX2X_Q_CMD_TERMINATE; 8959 memset(&q_params.params.terminate, 0, 8960 sizeof(q_params.params.terminate)); 8961 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 8962 rc = bnx2x_queue_state_change(bp, &q_params); 8963 if (rc) 8964 return rc; 8965 /* ...delete cfc entry */ 8966 q_params.cmd = BNX2X_Q_CMD_CFC_DEL; 8967 memset(&q_params.params.cfc_del, 0, 8968 sizeof(q_params.params.cfc_del)); 8969 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 8970 return bnx2x_queue_state_change(bp, &q_params); 8971 } 8972 8973 static void bnx2x_reset_func(struct bnx2x *bp) 8974 { 8975 int port = BP_PORT(bp); 8976 int func = BP_FUNC(bp); 8977 int i; 8978 8979 /* Disable the function in the FW */ 8980 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 8981 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 8982 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 8983 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 8984 8985 /* FP SBs */ 8986 for_each_eth_queue(bp, i) { 8987 struct bnx2x_fastpath *fp = &bp->fp[i]; 8988 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8989 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 8990 SB_DISABLED); 8991 } 8992 8993 if (CNIC_LOADED(bp)) 8994 /* CNIC SB */ 8995 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8996 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET 8997 (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED); 8998 8999 /* SP SB */ 9000 REG_WR8(bp, BAR_CSTRORM_INTMEM + 9001 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 9002 SB_DISABLED); 9003 9004 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) 9005 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 9006 0); 9007 9008 /* Configure IGU */ 9009 if (bp->common.int_block == INT_BLOCK_HC) { 9010 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 9011 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 9012 } else { 9013 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); 9014 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); 9015 } 9016 9017 if (CNIC_LOADED(bp)) { 9018 /* Disable Timer scan */ 9019 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 9020 /* 9021 * Wait for at least 10ms and up to 2 second for the timers 9022 * scan to complete 9023 */ 9024 for (i = 0; i < 200; i++) { 9025 usleep_range(10000, 20000); 9026 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4)) 9027 break; 9028 } 9029 } 9030 /* Clear ILT */ 9031 bnx2x_clear_func_ilt(bp, func); 9032 9033 /* Timers workaround bug for E2: if this is vnic-3, 9034 * we need to set the entire ilt range for this timers. 9035 */ 9036 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) { 9037 struct ilt_client_info ilt_cli; 9038 /* use dummy TM client */ 9039 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 9040 ilt_cli.start = 0; 9041 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 9042 ilt_cli.client_num = ILT_CLIENT_TM; 9043 9044 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR); 9045 } 9046 9047 /* this assumes that reset_port() called before reset_func()*/ 9048 if (!CHIP_IS_E1x(bp)) 9049 bnx2x_pf_disable(bp); 9050 9051 bp->dmae_ready = 0; 9052 } 9053 9054 static void bnx2x_reset_port(struct bnx2x *bp) 9055 { 9056 int port = BP_PORT(bp); 9057 u32 val; 9058 9059 /* Reset physical Link */ 9060 bnx2x__link_reset(bp); 9061 9062 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 9063 9064 /* Do not rcv packets to BRB */ 9065 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 9066 /* Do not direct rcv packets that are not for MCP to the BRB */ 9067 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 9068 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 9069 9070 /* Configure AEU */ 9071 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 9072 9073 msleep(100); 9074 /* Check for BRB port occupancy */ 9075 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 9076 if (val) 9077 DP(NETIF_MSG_IFDOWN, 9078 "BRB1 is not empty %d blocks are occupied\n", val); 9079 9080 /* TODO: Close Doorbell port? */ 9081 } 9082 9083 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code) 9084 { 9085 struct bnx2x_func_state_params func_params = {NULL}; 9086 9087 /* Prepare parameters for function state transitions */ 9088 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 9089 9090 func_params.f_obj = &bp->func_obj; 9091 func_params.cmd = BNX2X_F_CMD_HW_RESET; 9092 9093 func_params.params.hw_init.load_phase = load_code; 9094 9095 return bnx2x_func_state_change(bp, &func_params); 9096 } 9097 9098 static int bnx2x_func_stop(struct bnx2x *bp) 9099 { 9100 struct bnx2x_func_state_params func_params = {NULL}; 9101 int rc; 9102 9103 /* Prepare parameters for function state transitions */ 9104 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 9105 func_params.f_obj = &bp->func_obj; 9106 func_params.cmd = BNX2X_F_CMD_STOP; 9107 9108 /* 9109 * Try to stop the function the 'good way'. If fails (in case 9110 * of a parity error during bnx2x_chip_cleanup()) and we are 9111 * not in a debug mode, perform a state transaction in order to 9112 * enable further HW_RESET transaction. 9113 */ 9114 rc = bnx2x_func_state_change(bp, &func_params); 9115 if (rc) { 9116 #ifdef BNX2X_STOP_ON_ERROR 9117 return rc; 9118 #else 9119 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n"); 9120 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 9121 return bnx2x_func_state_change(bp, &func_params); 9122 #endif 9123 } 9124 9125 return 0; 9126 } 9127 9128 /** 9129 * bnx2x_send_unload_req - request unload mode from the MCP. 9130 * 9131 * @bp: driver handle 9132 * @unload_mode: requested function's unload mode 9133 * 9134 * Return unload mode returned by the MCP: COMMON, PORT or FUNC. 9135 */ 9136 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode) 9137 { 9138 u32 reset_code = 0; 9139 int port = BP_PORT(bp); 9140 9141 /* Select the UNLOAD request mode */ 9142 if (unload_mode == UNLOAD_NORMAL) 9143 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 9144 9145 else if (bp->flags & NO_WOL_FLAG) 9146 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP; 9147 9148 else if (bp->wol) { 9149 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; 9150 u8 *mac_addr = bp->dev->dev_addr; 9151 struct pci_dev *pdev = bp->pdev; 9152 u32 val; 9153 u16 pmc; 9154 9155 /* The mac address is written to entries 1-4 to 9156 * preserve entry 0 which is used by the PMF 9157 */ 9158 u8 entry = (BP_VN(bp) + 1)*8; 9159 9160 val = (mac_addr[0] << 8) | mac_addr[1]; 9161 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val); 9162 9163 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 9164 (mac_addr[4] << 8) | mac_addr[5]; 9165 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val); 9166 9167 /* Enable the PME and clear the status */ 9168 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc); 9169 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS; 9170 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc); 9171 9172 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN; 9173 9174 } else 9175 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 9176 9177 /* Send the request to the MCP */ 9178 if (!BP_NOMCP(bp)) 9179 reset_code = bnx2x_fw_command(bp, reset_code, 0); 9180 else { 9181 int path = BP_PATH(bp); 9182 9183 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n", 9184 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 9185 bnx2x_load_count[path][2]); 9186 bnx2x_load_count[path][0]--; 9187 bnx2x_load_count[path][1 + port]--; 9188 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n", 9189 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 9190 bnx2x_load_count[path][2]); 9191 if (bnx2x_load_count[path][0] == 0) 9192 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON; 9193 else if (bnx2x_load_count[path][1 + port] == 0) 9194 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT; 9195 else 9196 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION; 9197 } 9198 9199 return reset_code; 9200 } 9201 9202 /** 9203 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP. 9204 * 9205 * @bp: driver handle 9206 * @keep_link: true iff link should be kept up 9207 */ 9208 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link) 9209 { 9210 u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 9211 9212 /* Report UNLOAD_DONE to MCP */ 9213 if (!BP_NOMCP(bp)) 9214 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 9215 } 9216 9217 static int bnx2x_func_wait_started(struct bnx2x *bp) 9218 { 9219 int tout = 50; 9220 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; 9221 9222 if (!bp->port.pmf) 9223 return 0; 9224 9225 /* 9226 * (assumption: No Attention from MCP at this stage) 9227 * PMF probably in the middle of TX disable/enable transaction 9228 * 1. Sync IRS for default SB 9229 * 2. Sync SP queue - this guarantees us that attention handling started 9230 * 3. Wait, that TX disable/enable transaction completes 9231 * 9232 * 1+2 guarantee that if DCBx attention was scheduled it already changed 9233 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 9234 * received completion for the transaction the state is TX_STOPPED. 9235 * State will return to STARTED after completion of TX_STOPPED-->STARTED 9236 * transaction. 9237 */ 9238 9239 /* make sure default SB ISR is done */ 9240 if (msix) 9241 synchronize_irq(bp->msix_table[0].vector); 9242 else 9243 synchronize_irq(bp->pdev->irq); 9244 9245 flush_workqueue(bnx2x_wq); 9246 flush_workqueue(bnx2x_iov_wq); 9247 9248 while (bnx2x_func_get_state(bp, &bp->func_obj) != 9249 BNX2X_F_STATE_STARTED && tout--) 9250 msleep(20); 9251 9252 if (bnx2x_func_get_state(bp, &bp->func_obj) != 9253 BNX2X_F_STATE_STARTED) { 9254 #ifdef BNX2X_STOP_ON_ERROR 9255 BNX2X_ERR("Wrong function state\n"); 9256 return -EBUSY; 9257 #else 9258 /* 9259 * Failed to complete the transaction in a "good way" 9260 * Force both transactions with CLR bit 9261 */ 9262 struct bnx2x_func_state_params func_params = {NULL}; 9263 9264 DP(NETIF_MSG_IFDOWN, 9265 "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n"); 9266 9267 func_params.f_obj = &bp->func_obj; 9268 __set_bit(RAMROD_DRV_CLR_ONLY, 9269 &func_params.ramrod_flags); 9270 9271 /* STARTED-->TX_ST0PPED */ 9272 func_params.cmd = BNX2X_F_CMD_TX_STOP; 9273 bnx2x_func_state_change(bp, &func_params); 9274 9275 /* TX_ST0PPED-->STARTED */ 9276 func_params.cmd = BNX2X_F_CMD_TX_START; 9277 return bnx2x_func_state_change(bp, &func_params); 9278 #endif 9279 } 9280 9281 return 0; 9282 } 9283 9284 static void bnx2x_disable_ptp(struct bnx2x *bp) 9285 { 9286 int port = BP_PORT(bp); 9287 9288 /* Disable sending PTP packets to host */ 9289 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST : 9290 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0); 9291 9292 /* Reset PTP event detection rules */ 9293 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 9294 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF); 9295 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 9296 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF); 9297 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK : 9298 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF); 9299 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK : 9300 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF); 9301 9302 /* Disable the PTP feature */ 9303 REG_WR(bp, port ? NIG_REG_P1_PTP_EN : 9304 NIG_REG_P0_PTP_EN, 0x0); 9305 } 9306 9307 /* Called during unload, to stop PTP-related stuff */ 9308 static void bnx2x_stop_ptp(struct bnx2x *bp) 9309 { 9310 /* Cancel PTP work queue. Should be done after the Tx queues are 9311 * drained to prevent additional scheduling. 9312 */ 9313 cancel_work_sync(&bp->ptp_task); 9314 9315 if (bp->ptp_tx_skb) { 9316 dev_kfree_skb_any(bp->ptp_tx_skb); 9317 bp->ptp_tx_skb = NULL; 9318 } 9319 9320 /* Disable PTP in HW */ 9321 bnx2x_disable_ptp(bp); 9322 9323 DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n"); 9324 } 9325 9326 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link) 9327 { 9328 int port = BP_PORT(bp); 9329 int i, rc = 0; 9330 u8 cos; 9331 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 9332 u32 reset_code; 9333 9334 /* Wait until tx fastpath tasks complete */ 9335 for_each_tx_queue(bp, i) { 9336 struct bnx2x_fastpath *fp = &bp->fp[i]; 9337 9338 for_each_cos_in_tx_queue(fp, cos) 9339 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); 9340 #ifdef BNX2X_STOP_ON_ERROR 9341 if (rc) 9342 return; 9343 #endif 9344 } 9345 9346 /* Give HW time to discard old tx messages */ 9347 usleep_range(1000, 2000); 9348 9349 /* Clean all ETH MACs */ 9350 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC, 9351 false); 9352 if (rc < 0) 9353 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc); 9354 9355 /* Clean up UC list */ 9356 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC, 9357 true); 9358 if (rc < 0) 9359 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n", 9360 rc); 9361 9362 /* The whole *vlan_obj structure may be not initialized if VLAN 9363 * filtering offload is not supported by hardware. Currently this is 9364 * true for all hardware covered by CHIP_IS_E1x(). 9365 */ 9366 if (!CHIP_IS_E1x(bp)) { 9367 /* Remove all currently configured VLANs */ 9368 rc = bnx2x_del_all_vlans(bp); 9369 if (rc < 0) 9370 BNX2X_ERR("Failed to delete all VLANs\n"); 9371 } 9372 9373 /* Disable LLH */ 9374 if (!CHIP_IS_E1(bp)) 9375 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); 9376 9377 /* Set "drop all" (stop Rx). 9378 * We need to take a netif_addr_lock() here in order to prevent 9379 * a race between the completion code and this code. 9380 */ 9381 netif_addr_lock_bh(bp->dev); 9382 /* Schedule the rx_mode command */ 9383 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) 9384 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); 9385 else if (bp->slowpath) 9386 bnx2x_set_storm_rx_mode(bp); 9387 9388 /* Cleanup multicast configuration */ 9389 rparam.mcast_obj = &bp->mcast_obj; 9390 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 9391 if (rc < 0) 9392 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc); 9393 9394 netif_addr_unlock_bh(bp->dev); 9395 9396 bnx2x_iov_chip_cleanup(bp); 9397 9398 /* 9399 * Send the UNLOAD_REQUEST to the MCP. This will return if 9400 * this function should perform FUNC, PORT or COMMON HW 9401 * reset. 9402 */ 9403 reset_code = bnx2x_send_unload_req(bp, unload_mode); 9404 9405 /* 9406 * (assumption: No Attention from MCP at this stage) 9407 * PMF probably in the middle of TX disable/enable transaction 9408 */ 9409 rc = bnx2x_func_wait_started(bp); 9410 if (rc) { 9411 BNX2X_ERR("bnx2x_func_wait_started failed\n"); 9412 #ifdef BNX2X_STOP_ON_ERROR 9413 return; 9414 #endif 9415 } 9416 9417 /* Close multi and leading connections 9418 * Completions for ramrods are collected in a synchronous way 9419 */ 9420 for_each_eth_queue(bp, i) 9421 if (bnx2x_stop_queue(bp, i)) 9422 #ifdef BNX2X_STOP_ON_ERROR 9423 return; 9424 #else 9425 goto unload_error; 9426 #endif 9427 9428 if (CNIC_LOADED(bp)) { 9429 for_each_cnic_queue(bp, i) 9430 if (bnx2x_stop_queue(bp, i)) 9431 #ifdef BNX2X_STOP_ON_ERROR 9432 return; 9433 #else 9434 goto unload_error; 9435 #endif 9436 } 9437 9438 /* If SP settings didn't get completed so far - something 9439 * very wrong has happen. 9440 */ 9441 if (!bnx2x_wait_sp_comp(bp, ~0x0UL)) 9442 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n"); 9443 9444 #ifndef BNX2X_STOP_ON_ERROR 9445 unload_error: 9446 #endif 9447 rc = bnx2x_func_stop(bp); 9448 if (rc) { 9449 BNX2X_ERR("Function stop failed!\n"); 9450 #ifdef BNX2X_STOP_ON_ERROR 9451 return; 9452 #endif 9453 } 9454 9455 /* stop_ptp should be after the Tx queues are drained to prevent 9456 * scheduling to the cancelled PTP work queue. It should also be after 9457 * function stop ramrod is sent, since as part of this ramrod FW access 9458 * PTP registers. 9459 */ 9460 if (bp->flags & PTP_SUPPORTED) { 9461 bnx2x_stop_ptp(bp); 9462 if (bp->ptp_clock) { 9463 ptp_clock_unregister(bp->ptp_clock); 9464 bp->ptp_clock = NULL; 9465 } 9466 } 9467 9468 /* Disable HW interrupts, NAPI */ 9469 bnx2x_netif_stop(bp, 1); 9470 /* Delete all NAPI objects */ 9471 bnx2x_del_all_napi(bp); 9472 if (CNIC_LOADED(bp)) 9473 bnx2x_del_all_napi_cnic(bp); 9474 9475 /* Release IRQs */ 9476 bnx2x_free_irq(bp); 9477 9478 /* Reset the chip, unless PCI function is offline. If we reach this 9479 * point following a PCI error handling, it means device is really 9480 * in a bad state and we're about to remove it, so reset the chip 9481 * is not a good idea. 9482 */ 9483 if (!pci_channel_offline(bp->pdev)) { 9484 rc = bnx2x_reset_hw(bp, reset_code); 9485 if (rc) 9486 BNX2X_ERR("HW_RESET failed\n"); 9487 } 9488 9489 /* Report UNLOAD_DONE to MCP */ 9490 bnx2x_send_unload_done(bp, keep_link); 9491 } 9492 9493 void bnx2x_disable_close_the_gate(struct bnx2x *bp) 9494 { 9495 u32 val; 9496 9497 DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n"); 9498 9499 if (CHIP_IS_E1(bp)) { 9500 int port = BP_PORT(bp); 9501 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 9502 MISC_REG_AEU_MASK_ATTN_FUNC_0; 9503 9504 val = REG_RD(bp, addr); 9505 val &= ~(0x300); 9506 REG_WR(bp, addr, val); 9507 } else { 9508 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK); 9509 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 9510 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 9511 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val); 9512 } 9513 } 9514 9515 /* Close gates #2, #3 and #4: */ 9516 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close) 9517 { 9518 u32 val; 9519 9520 /* Gates #2 and #4a are closed/opened for "not E1" only */ 9521 if (!CHIP_IS_E1(bp)) { 9522 /* #4 */ 9523 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 9524 /* #2 */ 9525 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 9526 } 9527 9528 /* #3 */ 9529 if (CHIP_IS_E1x(bp)) { 9530 /* Prevent interrupts from HC on both ports */ 9531 val = REG_RD(bp, HC_REG_CONFIG_1); 9532 REG_WR(bp, HC_REG_CONFIG_1, 9533 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 9534 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 9535 9536 val = REG_RD(bp, HC_REG_CONFIG_0); 9537 REG_WR(bp, HC_REG_CONFIG_0, 9538 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 9539 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 9540 } else { 9541 /* Prevent incoming interrupts in IGU */ 9542 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); 9543 9544 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, 9545 (!close) ? 9546 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 9547 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 9548 } 9549 9550 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n", 9551 close ? "closing" : "opening"); 9552 } 9553 9554 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */ 9555 9556 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val) 9557 { 9558 /* Do some magic... */ 9559 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); 9560 *magic_val = val & SHARED_MF_CLP_MAGIC; 9561 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 9562 } 9563 9564 /** 9565 * bnx2x_clp_reset_done - restore the value of the `magic' bit. 9566 * 9567 * @bp: driver handle 9568 * @magic_val: old value of the `magic' bit. 9569 */ 9570 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val) 9571 { 9572 /* Restore the `magic' bit value... */ 9573 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); 9574 MF_CFG_WR(bp, shared_mf_config.clp_mb, 9575 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 9576 } 9577 9578 /** 9579 * bnx2x_reset_mcp_prep - prepare for MCP reset. 9580 * 9581 * @bp: driver handle 9582 * @magic_val: old value of 'magic' bit. 9583 * 9584 * Takes care of CLP configurations. 9585 */ 9586 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val) 9587 { 9588 u32 shmem; 9589 u32 validity_offset; 9590 9591 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n"); 9592 9593 /* Set `magic' bit in order to save MF config */ 9594 if (!CHIP_IS_E1(bp)) 9595 bnx2x_clp_reset_prep(bp, magic_val); 9596 9597 /* Get shmem offset */ 9598 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); 9599 validity_offset = 9600 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]); 9601 9602 /* Clear validity map flags */ 9603 if (shmem > 0) 9604 REG_WR(bp, shmem + validity_offset, 0); 9605 } 9606 9607 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 9608 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 9609 9610 /** 9611 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT 9612 * 9613 * @bp: driver handle 9614 */ 9615 static void bnx2x_mcp_wait_one(struct bnx2x *bp) 9616 { 9617 /* special handling for emulation and FPGA, 9618 wait 10 times longer */ 9619 if (CHIP_REV_IS_SLOW(bp)) 9620 msleep(MCP_ONE_TIMEOUT*10); 9621 else 9622 msleep(MCP_ONE_TIMEOUT); 9623 } 9624 9625 /* 9626 * initializes bp->common.shmem_base and waits for validity signature to appear 9627 */ 9628 static int bnx2x_init_shmem(struct bnx2x *bp) 9629 { 9630 int cnt = 0; 9631 u32 val = 0; 9632 9633 do { 9634 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); 9635 9636 /* If we read all 0xFFs, means we are in PCI error state and 9637 * should bail out to avoid crashes on adapter's FW reads. 9638 */ 9639 if (bp->common.shmem_base == 0xFFFFFFFF) { 9640 bp->flags |= NO_MCP_FLAG; 9641 return -ENODEV; 9642 } 9643 9644 if (bp->common.shmem_base) { 9645 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]); 9646 if (val & SHR_MEM_VALIDITY_MB) 9647 return 0; 9648 } 9649 9650 bnx2x_mcp_wait_one(bp); 9651 9652 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 9653 9654 BNX2X_ERR("BAD MCP validity signature\n"); 9655 9656 return -ENODEV; 9657 } 9658 9659 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val) 9660 { 9661 int rc = bnx2x_init_shmem(bp); 9662 9663 /* Restore the `magic' bit value */ 9664 if (!CHIP_IS_E1(bp)) 9665 bnx2x_clp_reset_done(bp, magic_val); 9666 9667 return rc; 9668 } 9669 9670 static void bnx2x_pxp_prep(struct bnx2x *bp) 9671 { 9672 if (!CHIP_IS_E1(bp)) { 9673 REG_WR(bp, PXP2_REG_RD_START_INIT, 0); 9674 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0); 9675 } 9676 } 9677 9678 /* 9679 * Reset the whole chip except for: 9680 * - PCIE core 9681 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by 9682 * one reset bit) 9683 * - IGU 9684 * - MISC (including AEU) 9685 * - GRC 9686 * - RBCN, RBCP 9687 */ 9688 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global) 9689 { 9690 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 9691 u32 global_bits2, stay_reset2; 9692 9693 /* 9694 * Bits that have to be set in reset_mask2 if we want to reset 'global' 9695 * (per chip) blocks. 9696 */ 9697 global_bits2 = 9698 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 9699 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 9700 9701 /* Don't reset the following blocks. 9702 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 9703 * reset, as in 4 port device they might still be owned 9704 * by the MCP (there is only one leader per path). 9705 */ 9706 not_reset_mask1 = 9707 MISC_REGISTERS_RESET_REG_1_RST_HC | 9708 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 9709 MISC_REGISTERS_RESET_REG_1_RST_PXP; 9710 9711 not_reset_mask2 = 9712 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 9713 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 9714 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 9715 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 9716 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 9717 MISC_REGISTERS_RESET_REG_2_RST_GRC | 9718 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 9719 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 9720 MISC_REGISTERS_RESET_REG_2_RST_ATC | 9721 MISC_REGISTERS_RESET_REG_2_PGLC | 9722 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 9723 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 9724 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 9725 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 9726 MISC_REGISTERS_RESET_REG_2_UMAC0 | 9727 MISC_REGISTERS_RESET_REG_2_UMAC1; 9728 9729 /* 9730 * Keep the following blocks in reset: 9731 * - all xxMACs are handled by the bnx2x_link code. 9732 */ 9733 stay_reset2 = 9734 MISC_REGISTERS_RESET_REG_2_XMAC | 9735 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 9736 9737 /* Full reset masks according to the chip */ 9738 reset_mask1 = 0xffffffff; 9739 9740 if (CHIP_IS_E1(bp)) 9741 reset_mask2 = 0xffff; 9742 else if (CHIP_IS_E1H(bp)) 9743 reset_mask2 = 0x1ffff; 9744 else if (CHIP_IS_E2(bp)) 9745 reset_mask2 = 0xfffff; 9746 else /* CHIP_IS_E3 */ 9747 reset_mask2 = 0x3ffffff; 9748 9749 /* Don't reset global blocks unless we need to */ 9750 if (!global) 9751 reset_mask2 &= ~global_bits2; 9752 9753 /* 9754 * In case of attention in the QM, we need to reset PXP 9755 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 9756 * because otherwise QM reset would release 'close the gates' shortly 9757 * before resetting the PXP, then the PSWRQ would send a write 9758 * request to PGLUE. Then when PXP is reset, PGLUE would try to 9759 * read the payload data from PSWWR, but PSWWR would not 9760 * respond. The write queue in PGLUE would stuck, dmae commands 9761 * would not return. Therefore it's important to reset the second 9762 * reset register (containing the 9763 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 9764 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 9765 * bit). 9766 */ 9767 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 9768 reset_mask2 & (~not_reset_mask2)); 9769 9770 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 9771 reset_mask1 & (~not_reset_mask1)); 9772 9773 barrier(); 9774 9775 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 9776 reset_mask2 & (~stay_reset2)); 9777 9778 barrier(); 9779 9780 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 9781 } 9782 9783 /** 9784 * bnx2x_er_poll_igu_vq - poll for pending writes bit. 9785 * It should get cleared in no more than 1s. 9786 * 9787 * @bp: driver handle 9788 * 9789 * It should get cleared in no more than 1s. Returns 0 if 9790 * pending writes bit gets cleared. 9791 */ 9792 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp) 9793 { 9794 u32 cnt = 1000; 9795 u32 pend_bits = 0; 9796 9797 do { 9798 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS); 9799 9800 if (pend_bits == 0) 9801 break; 9802 9803 usleep_range(1000, 2000); 9804 } while (cnt-- > 0); 9805 9806 if (cnt <= 0) { 9807 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n", 9808 pend_bits); 9809 return -EBUSY; 9810 } 9811 9812 return 0; 9813 } 9814 9815 static int bnx2x_process_kill(struct bnx2x *bp, bool global) 9816 { 9817 int cnt = 1000; 9818 u32 val = 0; 9819 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 9820 u32 tags_63_32 = 0; 9821 9822 /* Empty the Tetris buffer, wait for 1s */ 9823 do { 9824 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT); 9825 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT); 9826 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0); 9827 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1); 9828 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2); 9829 if (CHIP_IS_E3(bp)) 9830 tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32); 9831 9832 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 9833 ((port_is_idle_0 & 0x1) == 0x1) && 9834 ((port_is_idle_1 & 0x1) == 0x1) && 9835 (pgl_exp_rom2 == 0xffffffff) && 9836 (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff))) 9837 break; 9838 usleep_range(1000, 2000); 9839 } while (cnt-- > 0); 9840 9841 if (cnt <= 0) { 9842 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n"); 9843 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 9844 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, 9845 pgl_exp_rom2); 9846 return -EAGAIN; 9847 } 9848 9849 barrier(); 9850 9851 /* Close gates #2, #3 and #4 */ 9852 bnx2x_set_234_gates(bp, true); 9853 9854 /* Poll for IGU VQs for 57712 and newer chips */ 9855 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp)) 9856 return -EAGAIN; 9857 9858 /* TBD: Indicate that "process kill" is in progress to MCP */ 9859 9860 /* Clear "unprepared" bit */ 9861 REG_WR(bp, MISC_REG_UNPREPARED, 0); 9862 barrier(); 9863 9864 /* Wait for 1ms to empty GLUE and PCI-E core queues, 9865 * PSWHST, GRC and PSWRD Tetris buffer. 9866 */ 9867 usleep_range(1000, 2000); 9868 9869 /* Prepare to chip reset: */ 9870 /* MCP */ 9871 if (global) 9872 bnx2x_reset_mcp_prep(bp, &val); 9873 9874 /* PXP */ 9875 bnx2x_pxp_prep(bp); 9876 barrier(); 9877 9878 /* reset the chip */ 9879 bnx2x_process_kill_chip_reset(bp, global); 9880 barrier(); 9881 9882 /* clear errors in PGB */ 9883 if (!CHIP_IS_E1x(bp)) 9884 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 9885 9886 /* Recover after reset: */ 9887 /* MCP */ 9888 if (global && bnx2x_reset_mcp_comp(bp, val)) 9889 return -EAGAIN; 9890 9891 /* TBD: Add resetting the NO_MCP mode DB here */ 9892 9893 /* Open the gates #2, #3 and #4 */ 9894 bnx2x_set_234_gates(bp, false); 9895 9896 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a 9897 * reset state, re-enable attentions. */ 9898 9899 return 0; 9900 } 9901 9902 static int bnx2x_leader_reset(struct bnx2x *bp) 9903 { 9904 int rc = 0; 9905 bool global = bnx2x_reset_is_global(bp); 9906 u32 load_code; 9907 9908 /* if not going to reset MCP - load "fake" driver to reset HW while 9909 * driver is owner of the HW 9910 */ 9911 if (!global && !BP_NOMCP(bp)) { 9912 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, 9913 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 9914 if (!load_code) { 9915 BNX2X_ERR("MCP response failure, aborting\n"); 9916 rc = -EAGAIN; 9917 goto exit_leader_reset; 9918 } 9919 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 9920 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 9921 BNX2X_ERR("MCP unexpected resp, aborting\n"); 9922 rc = -EAGAIN; 9923 goto exit_leader_reset2; 9924 } 9925 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 9926 if (!load_code) { 9927 BNX2X_ERR("MCP response failure, aborting\n"); 9928 rc = -EAGAIN; 9929 goto exit_leader_reset2; 9930 } 9931 } 9932 9933 /* Try to recover after the failure */ 9934 if (bnx2x_process_kill(bp, global)) { 9935 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n", 9936 BP_PATH(bp)); 9937 rc = -EAGAIN; 9938 goto exit_leader_reset2; 9939 } 9940 9941 /* 9942 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver 9943 * state. 9944 */ 9945 bnx2x_set_reset_done(bp); 9946 if (global) 9947 bnx2x_clear_reset_global(bp); 9948 9949 exit_leader_reset2: 9950 /* unload "fake driver" if it was loaded */ 9951 if (!global && !BP_NOMCP(bp)) { 9952 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 9953 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); 9954 } 9955 exit_leader_reset: 9956 bp->is_leader = 0; 9957 bnx2x_release_leader_lock(bp); 9958 smp_mb(); 9959 return rc; 9960 } 9961 9962 static void bnx2x_recovery_failed(struct bnx2x *bp) 9963 { 9964 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n"); 9965 9966 /* Disconnect this device */ 9967 netif_device_detach(bp->dev); 9968 9969 /* 9970 * Block ifup for all function on this engine until "process kill" 9971 * or power cycle. 9972 */ 9973 bnx2x_set_reset_in_progress(bp); 9974 9975 /* Shut down the power */ 9976 bnx2x_set_power_state(bp, PCI_D3hot); 9977 9978 bp->recovery_state = BNX2X_RECOVERY_FAILED; 9979 9980 smp_mb(); 9981 } 9982 9983 /* 9984 * Assumption: runs under rtnl lock. This together with the fact 9985 * that it's called only from bnx2x_sp_rtnl() ensure that it 9986 * will never be called when netif_running(bp->dev) is false. 9987 */ 9988 static void bnx2x_parity_recover(struct bnx2x *bp) 9989 { 9990 u32 error_recovered, error_unrecovered; 9991 bool is_parity, global = false; 9992 #ifdef CONFIG_BNX2X_SRIOV 9993 int vf_idx; 9994 9995 for (vf_idx = 0; vf_idx < bp->requested_nr_virtfn; vf_idx++) { 9996 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx); 9997 9998 if (vf) 9999 vf->state = VF_LOST; 10000 } 10001 #endif 10002 DP(NETIF_MSG_HW, "Handling parity\n"); 10003 while (1) { 10004 switch (bp->recovery_state) { 10005 case BNX2X_RECOVERY_INIT: 10006 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n"); 10007 is_parity = bnx2x_chk_parity_attn(bp, &global, false); 10008 WARN_ON(!is_parity); 10009 10010 /* Try to get a LEADER_LOCK HW lock */ 10011 if (bnx2x_trylock_leader_lock(bp)) { 10012 bnx2x_set_reset_in_progress(bp); 10013 /* 10014 * Check if there is a global attention and if 10015 * there was a global attention, set the global 10016 * reset bit. 10017 */ 10018 10019 if (global) 10020 bnx2x_set_reset_global(bp); 10021 10022 bp->is_leader = 1; 10023 } 10024 10025 /* Stop the driver */ 10026 /* If interface has been removed - break */ 10027 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false)) 10028 return; 10029 10030 bp->recovery_state = BNX2X_RECOVERY_WAIT; 10031 10032 /* Ensure "is_leader", MCP command sequence and 10033 * "recovery_state" update values are seen on other 10034 * CPUs. 10035 */ 10036 smp_mb(); 10037 break; 10038 10039 case BNX2X_RECOVERY_WAIT: 10040 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n"); 10041 if (bp->is_leader) { 10042 int other_engine = BP_PATH(bp) ? 0 : 1; 10043 bool other_load_status = 10044 bnx2x_get_load_status(bp, other_engine); 10045 bool load_status = 10046 bnx2x_get_load_status(bp, BP_PATH(bp)); 10047 global = bnx2x_reset_is_global(bp); 10048 10049 /* 10050 * In case of a parity in a global block, let 10051 * the first leader that performs a 10052 * leader_reset() reset the global blocks in 10053 * order to clear global attentions. Otherwise 10054 * the gates will remain closed for that 10055 * engine. 10056 */ 10057 if (load_status || 10058 (global && other_load_status)) { 10059 /* Wait until all other functions get 10060 * down. 10061 */ 10062 schedule_delayed_work(&bp->sp_rtnl_task, 10063 HZ/10); 10064 return; 10065 } else { 10066 /* If all other functions got down - 10067 * try to bring the chip back to 10068 * normal. In any case it's an exit 10069 * point for a leader. 10070 */ 10071 if (bnx2x_leader_reset(bp)) { 10072 bnx2x_recovery_failed(bp); 10073 return; 10074 } 10075 10076 /* If we are here, means that the 10077 * leader has succeeded and doesn't 10078 * want to be a leader any more. Try 10079 * to continue as a none-leader. 10080 */ 10081 break; 10082 } 10083 } else { /* non-leader */ 10084 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) { 10085 /* Try to get a LEADER_LOCK HW lock as 10086 * long as a former leader may have 10087 * been unloaded by the user or 10088 * released a leadership by another 10089 * reason. 10090 */ 10091 if (bnx2x_trylock_leader_lock(bp)) { 10092 /* I'm a leader now! Restart a 10093 * switch case. 10094 */ 10095 bp->is_leader = 1; 10096 break; 10097 } 10098 10099 schedule_delayed_work(&bp->sp_rtnl_task, 10100 HZ/10); 10101 return; 10102 10103 } else { 10104 /* 10105 * If there was a global attention, wait 10106 * for it to be cleared. 10107 */ 10108 if (bnx2x_reset_is_global(bp)) { 10109 schedule_delayed_work( 10110 &bp->sp_rtnl_task, 10111 HZ/10); 10112 return; 10113 } 10114 10115 error_recovered = 10116 bp->eth_stats.recoverable_error; 10117 error_unrecovered = 10118 bp->eth_stats.unrecoverable_error; 10119 bp->recovery_state = 10120 BNX2X_RECOVERY_NIC_LOADING; 10121 if (bnx2x_nic_load(bp, LOAD_NORMAL)) { 10122 error_unrecovered++; 10123 netdev_err(bp->dev, 10124 "Recovery failed. Power cycle needed\n"); 10125 /* Disconnect this device */ 10126 netif_device_detach(bp->dev); 10127 /* Shut down the power */ 10128 bnx2x_set_power_state( 10129 bp, PCI_D3hot); 10130 smp_mb(); 10131 } else { 10132 bp->recovery_state = 10133 BNX2X_RECOVERY_DONE; 10134 error_recovered++; 10135 smp_mb(); 10136 } 10137 bp->eth_stats.recoverable_error = 10138 error_recovered; 10139 bp->eth_stats.unrecoverable_error = 10140 error_unrecovered; 10141 10142 return; 10143 } 10144 } 10145 default: 10146 return; 10147 } 10148 } 10149 } 10150 10151 static int bnx2x_udp_port_update(struct bnx2x *bp) 10152 { 10153 struct bnx2x_func_switch_update_params *switch_update_params; 10154 struct bnx2x_func_state_params func_params = {NULL}; 10155 u16 vxlan_port = 0, geneve_port = 0; 10156 int rc; 10157 10158 switch_update_params = &func_params.params.switch_update; 10159 10160 /* Prepare parameters for function state transitions */ 10161 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 10162 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 10163 10164 func_params.f_obj = &bp->func_obj; 10165 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 10166 10167 /* Function parameters */ 10168 __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG, 10169 &switch_update_params->changes); 10170 10171 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE]) { 10172 geneve_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE]; 10173 switch_update_params->geneve_dst_port = geneve_port; 10174 } 10175 10176 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN]) { 10177 vxlan_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN]; 10178 switch_update_params->vxlan_dst_port = vxlan_port; 10179 } 10180 10181 /* Re-enable inner-rss for the offloaded UDP tunnels */ 10182 __set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS, 10183 &switch_update_params->changes); 10184 10185 rc = bnx2x_func_state_change(bp, &func_params); 10186 if (rc) 10187 BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n", 10188 vxlan_port, geneve_port, rc); 10189 else 10190 DP(BNX2X_MSG_SP, 10191 "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n", 10192 vxlan_port, geneve_port); 10193 10194 return rc; 10195 } 10196 10197 static int bnx2x_udp_tunnel_sync(struct net_device *netdev, unsigned int table) 10198 { 10199 struct bnx2x *bp = netdev_priv(netdev); 10200 struct udp_tunnel_info ti; 10201 10202 udp_tunnel_nic_get_port(netdev, table, 0, &ti); 10203 bp->udp_tunnel_ports[table] = be16_to_cpu(ti.port); 10204 10205 return bnx2x_udp_port_update(bp); 10206 } 10207 10208 static const struct udp_tunnel_nic_info bnx2x_udp_tunnels = { 10209 .sync_table = bnx2x_udp_tunnel_sync, 10210 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 10211 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 10212 .tables = { 10213 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 10214 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 10215 }, 10216 }; 10217 10218 static int bnx2x_close(struct net_device *dev); 10219 10220 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is 10221 * scheduled on a general queue in order to prevent a dead lock. 10222 */ 10223 static void bnx2x_sp_rtnl_task(struct work_struct *work) 10224 { 10225 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work); 10226 10227 rtnl_lock(); 10228 10229 if (!netif_running(bp->dev)) { 10230 rtnl_unlock(); 10231 return; 10232 } 10233 10234 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) { 10235 #ifdef BNX2X_STOP_ON_ERROR 10236 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" 10237 "you will need to reboot when done\n"); 10238 goto sp_rtnl_not_reset; 10239 #endif 10240 /* 10241 * Clear all pending SP commands as we are going to reset the 10242 * function anyway. 10243 */ 10244 bp->sp_rtnl_state = 0; 10245 smp_mb(); 10246 10247 bnx2x_parity_recover(bp); 10248 10249 rtnl_unlock(); 10250 return; 10251 } 10252 10253 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) { 10254 #ifdef BNX2X_STOP_ON_ERROR 10255 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" 10256 "you will need to reboot when done\n"); 10257 goto sp_rtnl_not_reset; 10258 #endif 10259 10260 /* 10261 * Clear all pending SP commands as we are going to reset the 10262 * function anyway. 10263 */ 10264 bp->sp_rtnl_state = 0; 10265 smp_mb(); 10266 10267 /* Immediately indicate link as down */ 10268 bp->link_vars.link_up = 0; 10269 bp->force_link_down = true; 10270 netif_carrier_off(bp->dev); 10271 BNX2X_ERR("Indicating link is down due to Tx-timeout\n"); 10272 10273 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 10274 /* When ret value shows failure of allocation failure, 10275 * the nic is rebooted again. If open still fails, a error 10276 * message to notify the user. 10277 */ 10278 if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) { 10279 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 10280 if (bnx2x_nic_load(bp, LOAD_NORMAL)) 10281 BNX2X_ERR("Open the NIC fails again!\n"); 10282 } 10283 rtnl_unlock(); 10284 return; 10285 } 10286 #ifdef BNX2X_STOP_ON_ERROR 10287 sp_rtnl_not_reset: 10288 #endif 10289 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state)) 10290 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos); 10291 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state)) 10292 bnx2x_after_function_update(bp); 10293 /* 10294 * in case of fan failure we need to reset id if the "stop on error" 10295 * debug flag is set, since we trying to prevent permanent overheating 10296 * damage 10297 */ 10298 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) { 10299 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n"); 10300 netif_device_detach(bp->dev); 10301 bnx2x_close(bp->dev); 10302 rtnl_unlock(); 10303 return; 10304 } 10305 10306 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) { 10307 DP(BNX2X_MSG_SP, 10308 "sending set mcast vf pf channel message from rtnl sp-task\n"); 10309 bnx2x_vfpf_set_mcast(bp->dev); 10310 } 10311 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, 10312 &bp->sp_rtnl_state)){ 10313 if (netif_carrier_ok(bp->dev)) { 10314 bnx2x_tx_disable(bp); 10315 BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n"); 10316 } 10317 } 10318 10319 if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) { 10320 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n"); 10321 bnx2x_set_rx_mode_inner(bp); 10322 } 10323 10324 if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN, 10325 &bp->sp_rtnl_state)) 10326 bnx2x_pf_set_vfs_vlan(bp); 10327 10328 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) { 10329 bnx2x_dcbx_stop_hw_tx(bp); 10330 bnx2x_dcbx_resume_hw_tx(bp); 10331 } 10332 10333 if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION, 10334 &bp->sp_rtnl_state)) 10335 bnx2x_update_mng_version(bp); 10336 10337 if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state)) 10338 bnx2x_handle_update_svid_cmd(bp); 10339 10340 /* work which needs rtnl lock not-taken (as it takes the lock itself and 10341 * can be called from other contexts as well) 10342 */ 10343 rtnl_unlock(); 10344 10345 /* enable SR-IOV if applicable */ 10346 if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV, 10347 &bp->sp_rtnl_state)) { 10348 bnx2x_disable_sriov(bp); 10349 bnx2x_enable_sriov(bp); 10350 } 10351 } 10352 10353 static void bnx2x_period_task(struct work_struct *work) 10354 { 10355 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work); 10356 10357 if (!netif_running(bp->dev)) 10358 goto period_task_exit; 10359 10360 if (CHIP_REV_IS_SLOW(bp)) { 10361 BNX2X_ERR("period task called on emulation, ignoring\n"); 10362 goto period_task_exit; 10363 } 10364 10365 bnx2x_acquire_phy_lock(bp); 10366 /* 10367 * The barrier is needed to ensure the ordering between the writing to 10368 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and 10369 * the reading here. 10370 */ 10371 smp_mb(); 10372 if (bp->port.pmf) { 10373 bnx2x_period_func(&bp->link_params, &bp->link_vars); 10374 10375 /* Re-queue task in 1 sec */ 10376 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ); 10377 } 10378 10379 bnx2x_release_phy_lock(bp); 10380 period_task_exit: 10381 return; 10382 } 10383 10384 /* 10385 * Init service functions 10386 */ 10387 10388 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp) 10389 { 10390 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0; 10391 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base; 10392 return base + (BP_ABS_FUNC(bp)) * stride; 10393 } 10394 10395 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp, 10396 u8 port, u32 reset_reg, 10397 struct bnx2x_mac_vals *vals) 10398 { 10399 u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 10400 u32 base_addr; 10401 10402 if (!(mask & reset_reg)) 10403 return false; 10404 10405 BNX2X_DEV_INFO("Disable umac Rx %02x\n", port); 10406 base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 10407 vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG; 10408 vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]); 10409 REG_WR(bp, vals->umac_addr[port], 0); 10410 10411 return true; 10412 } 10413 10414 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp, 10415 struct bnx2x_mac_vals *vals) 10416 { 10417 u32 val, base_addr, offset, mask, reset_reg; 10418 bool mac_stopped = false; 10419 u8 port = BP_PORT(bp); 10420 10421 /* reset addresses as they also mark which values were changed */ 10422 memset(vals, 0, sizeof(*vals)); 10423 10424 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2); 10425 10426 if (!CHIP_IS_E3(bp)) { 10427 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 10428 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 10429 if ((mask & reset_reg) && val) { 10430 u32 wb_data[2]; 10431 BNX2X_DEV_INFO("Disable bmac Rx\n"); 10432 base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM 10433 : NIG_REG_INGRESS_BMAC0_MEM; 10434 offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL 10435 : BIGMAC_REGISTER_BMAC_CONTROL; 10436 10437 /* 10438 * use rd/wr since we cannot use dmae. This is safe 10439 * since MCP won't access the bus due to the request 10440 * to unload, and no function on the path can be 10441 * loaded at this time. 10442 */ 10443 wb_data[0] = REG_RD(bp, base_addr + offset); 10444 wb_data[1] = REG_RD(bp, base_addr + offset + 0x4); 10445 vals->bmac_addr = base_addr + offset; 10446 vals->bmac_val[0] = wb_data[0]; 10447 vals->bmac_val[1] = wb_data[1]; 10448 wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE; 10449 REG_WR(bp, vals->bmac_addr, wb_data[0]); 10450 REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]); 10451 } 10452 BNX2X_DEV_INFO("Disable emac Rx\n"); 10453 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4; 10454 vals->emac_val = REG_RD(bp, vals->emac_addr); 10455 REG_WR(bp, vals->emac_addr, 0); 10456 mac_stopped = true; 10457 } else { 10458 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 10459 BNX2X_DEV_INFO("Disable xmac Rx\n"); 10460 base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 10461 val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI); 10462 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, 10463 val & ~(1 << 1)); 10464 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, 10465 val | (1 << 1)); 10466 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 10467 vals->xmac_val = REG_RD(bp, vals->xmac_addr); 10468 REG_WR(bp, vals->xmac_addr, 0); 10469 mac_stopped = true; 10470 } 10471 10472 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0, 10473 reset_reg, vals); 10474 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1, 10475 reset_reg, vals); 10476 } 10477 10478 if (mac_stopped) 10479 msleep(20); 10480 } 10481 10482 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 10483 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \ 10484 0x1848 + ((f) << 4)) 10485 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff) 10486 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 10487 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 10488 10489 #define BCM_5710_UNDI_FW_MF_MAJOR (0x07) 10490 #define BCM_5710_UNDI_FW_MF_MINOR (0x08) 10491 #define BCM_5710_UNDI_FW_MF_VERS (0x05) 10492 10493 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp) 10494 { 10495 /* UNDI marks its presence in DORQ - 10496 * it initializes CID offset for normal bell to 0x7 10497 */ 10498 if (!(REG_RD(bp, MISC_REG_RESET_REG_1) & 10499 MISC_REGISTERS_RESET_REG_1_RST_DORQ)) 10500 return false; 10501 10502 if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) { 10503 BNX2X_DEV_INFO("UNDI previously loaded\n"); 10504 return true; 10505 } 10506 10507 return false; 10508 } 10509 10510 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc) 10511 { 10512 u16 rcq, bd; 10513 u32 addr, tmp_reg; 10514 10515 if (BP_FUNC(bp) < 2) 10516 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp)); 10517 else 10518 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2); 10519 10520 tmp_reg = REG_RD(bp, addr); 10521 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc; 10522 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc; 10523 10524 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd); 10525 REG_WR(bp, addr, tmp_reg); 10526 10527 BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n", 10528 BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq); 10529 } 10530 10531 static int bnx2x_prev_mcp_done(struct bnx2x *bp) 10532 { 10533 u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 10534 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 10535 if (!rc) { 10536 BNX2X_ERR("MCP response failure, aborting\n"); 10537 return -EBUSY; 10538 } 10539 10540 return 0; 10541 } 10542 10543 static struct bnx2x_prev_path_list * 10544 bnx2x_prev_path_get_entry(struct bnx2x *bp) 10545 { 10546 struct bnx2x_prev_path_list *tmp_list; 10547 10548 list_for_each_entry(tmp_list, &bnx2x_prev_list, list) 10549 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot && 10550 bp->pdev->bus->number == tmp_list->bus && 10551 BP_PATH(bp) == tmp_list->path) 10552 return tmp_list; 10553 10554 return NULL; 10555 } 10556 10557 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp) 10558 { 10559 struct bnx2x_prev_path_list *tmp_list; 10560 int rc; 10561 10562 rc = down_interruptible(&bnx2x_prev_sem); 10563 if (rc) { 10564 BNX2X_ERR("Received %d when tried to take lock\n", rc); 10565 return rc; 10566 } 10567 10568 tmp_list = bnx2x_prev_path_get_entry(bp); 10569 if (tmp_list) { 10570 tmp_list->aer = 1; 10571 rc = 0; 10572 } else { 10573 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n", 10574 BP_PATH(bp)); 10575 } 10576 10577 up(&bnx2x_prev_sem); 10578 10579 return rc; 10580 } 10581 10582 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp) 10583 { 10584 struct bnx2x_prev_path_list *tmp_list; 10585 bool rc = false; 10586 10587 if (down_trylock(&bnx2x_prev_sem)) 10588 return false; 10589 10590 tmp_list = bnx2x_prev_path_get_entry(bp); 10591 if (tmp_list) { 10592 if (tmp_list->aer) { 10593 DP(NETIF_MSG_HW, "Path %d was marked by AER\n", 10594 BP_PATH(bp)); 10595 } else { 10596 rc = true; 10597 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n", 10598 BP_PATH(bp)); 10599 } 10600 } 10601 10602 up(&bnx2x_prev_sem); 10603 10604 return rc; 10605 } 10606 10607 bool bnx2x_port_after_undi(struct bnx2x *bp) 10608 { 10609 struct bnx2x_prev_path_list *entry; 10610 bool val; 10611 10612 down(&bnx2x_prev_sem); 10613 10614 entry = bnx2x_prev_path_get_entry(bp); 10615 val = !!(entry && (entry->undi & (1 << BP_PORT(bp)))); 10616 10617 up(&bnx2x_prev_sem); 10618 10619 return val; 10620 } 10621 10622 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi) 10623 { 10624 struct bnx2x_prev_path_list *tmp_list; 10625 int rc; 10626 10627 rc = down_interruptible(&bnx2x_prev_sem); 10628 if (rc) { 10629 BNX2X_ERR("Received %d when tried to take lock\n", rc); 10630 return rc; 10631 } 10632 10633 /* Check whether the entry for this path already exists */ 10634 tmp_list = bnx2x_prev_path_get_entry(bp); 10635 if (tmp_list) { 10636 if (!tmp_list->aer) { 10637 BNX2X_ERR("Re-Marking the path.\n"); 10638 } else { 10639 DP(NETIF_MSG_HW, "Removing AER indication from path %d\n", 10640 BP_PATH(bp)); 10641 tmp_list->aer = 0; 10642 } 10643 up(&bnx2x_prev_sem); 10644 return 0; 10645 } 10646 up(&bnx2x_prev_sem); 10647 10648 /* Create an entry for this path and add it */ 10649 tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL); 10650 if (!tmp_list) { 10651 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n"); 10652 return -ENOMEM; 10653 } 10654 10655 tmp_list->bus = bp->pdev->bus->number; 10656 tmp_list->slot = PCI_SLOT(bp->pdev->devfn); 10657 tmp_list->path = BP_PATH(bp); 10658 tmp_list->aer = 0; 10659 tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0; 10660 10661 rc = down_interruptible(&bnx2x_prev_sem); 10662 if (rc) { 10663 BNX2X_ERR("Received %d when tried to take lock\n", rc); 10664 kfree(tmp_list); 10665 } else { 10666 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n", 10667 BP_PATH(bp)); 10668 list_add(&tmp_list->list, &bnx2x_prev_list); 10669 up(&bnx2x_prev_sem); 10670 } 10671 10672 return rc; 10673 } 10674 10675 static int bnx2x_do_flr(struct bnx2x *bp) 10676 { 10677 struct pci_dev *dev = bp->pdev; 10678 10679 if (CHIP_IS_E1x(bp)) { 10680 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n"); 10681 return -EINVAL; 10682 } 10683 10684 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 10685 if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 10686 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n", 10687 bp->common.bc_ver); 10688 return -EINVAL; 10689 } 10690 10691 if (!pci_wait_for_pending_transaction(dev)) 10692 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n"); 10693 10694 BNX2X_DEV_INFO("Initiating FLR\n"); 10695 bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0); 10696 10697 return 0; 10698 } 10699 10700 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp) 10701 { 10702 int rc; 10703 10704 BNX2X_DEV_INFO("Uncommon unload Flow\n"); 10705 10706 /* Test if previous unload process was already finished for this path */ 10707 if (bnx2x_prev_is_path_marked(bp)) 10708 return bnx2x_prev_mcp_done(bp); 10709 10710 BNX2X_DEV_INFO("Path is unmarked\n"); 10711 10712 /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */ 10713 if (bnx2x_prev_is_after_undi(bp)) 10714 goto out; 10715 10716 /* If function has FLR capabilities, and existing FW version matches 10717 * the one required, then FLR will be sufficient to clean any residue 10718 * left by previous driver 10719 */ 10720 rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false); 10721 10722 if (!rc) { 10723 /* fw version is good */ 10724 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n"); 10725 rc = bnx2x_do_flr(bp); 10726 } 10727 10728 if (!rc) { 10729 /* FLR was performed */ 10730 BNX2X_DEV_INFO("FLR successful\n"); 10731 return 0; 10732 } 10733 10734 BNX2X_DEV_INFO("Could not FLR\n"); 10735 10736 out: 10737 /* Close the MCP request, return failure*/ 10738 rc = bnx2x_prev_mcp_done(bp); 10739 if (!rc) 10740 rc = BNX2X_PREV_WAIT_NEEDED; 10741 10742 return rc; 10743 } 10744 10745 static int bnx2x_prev_unload_common(struct bnx2x *bp) 10746 { 10747 u32 reset_reg, tmp_reg = 0, rc; 10748 bool prev_undi = false; 10749 struct bnx2x_mac_vals mac_vals; 10750 10751 /* It is possible a previous function received 'common' answer, 10752 * but hasn't loaded yet, therefore creating a scenario of 10753 * multiple functions receiving 'common' on the same path. 10754 */ 10755 BNX2X_DEV_INFO("Common unload Flow\n"); 10756 10757 memset(&mac_vals, 0, sizeof(mac_vals)); 10758 10759 if (bnx2x_prev_is_path_marked(bp)) 10760 return bnx2x_prev_mcp_done(bp); 10761 10762 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1); 10763 10764 /* Reset should be performed after BRB is emptied */ 10765 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 10766 u32 timer_count = 1000; 10767 10768 /* Close the MAC Rx to prevent BRB from filling up */ 10769 bnx2x_prev_unload_close_mac(bp, &mac_vals); 10770 10771 /* close LLH filters for both ports towards the BRB */ 10772 bnx2x_set_rx_filter(&bp->link_params, 0); 10773 bp->link_params.port ^= 1; 10774 bnx2x_set_rx_filter(&bp->link_params, 0); 10775 bp->link_params.port ^= 1; 10776 10777 /* Check if the UNDI driver was previously loaded */ 10778 if (bnx2x_prev_is_after_undi(bp)) { 10779 prev_undi = true; 10780 /* clear the UNDI indication */ 10781 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0); 10782 /* clear possible idle check errors */ 10783 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0); 10784 } 10785 if (!CHIP_IS_E1x(bp)) 10786 /* block FW from writing to host */ 10787 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 10788 10789 /* wait until BRB is empty */ 10790 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); 10791 while (timer_count) { 10792 u32 prev_brb = tmp_reg; 10793 10794 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); 10795 if (!tmp_reg) 10796 break; 10797 10798 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg); 10799 10800 /* reset timer as long as BRB actually gets emptied */ 10801 if (prev_brb > tmp_reg) 10802 timer_count = 1000; 10803 else 10804 timer_count--; 10805 10806 /* If UNDI resides in memory, manually increment it */ 10807 if (prev_undi) 10808 bnx2x_prev_unload_undi_inc(bp, 1); 10809 10810 udelay(10); 10811 } 10812 10813 if (!timer_count) 10814 BNX2X_ERR("Failed to empty BRB, hope for the best\n"); 10815 } 10816 10817 /* No packets are in the pipeline, path is ready for reset */ 10818 bnx2x_reset_common(bp); 10819 10820 if (mac_vals.xmac_addr) 10821 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val); 10822 if (mac_vals.umac_addr[0]) 10823 REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]); 10824 if (mac_vals.umac_addr[1]) 10825 REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]); 10826 if (mac_vals.emac_addr) 10827 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val); 10828 if (mac_vals.bmac_addr) { 10829 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 10830 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 10831 } 10832 10833 rc = bnx2x_prev_mark_path(bp, prev_undi); 10834 if (rc) { 10835 bnx2x_prev_mcp_done(bp); 10836 return rc; 10837 } 10838 10839 return bnx2x_prev_mcp_done(bp); 10840 } 10841 10842 static int bnx2x_prev_unload(struct bnx2x *bp) 10843 { 10844 int time_counter = 10; 10845 u32 rc, fw, hw_lock_reg, hw_lock_val; 10846 BNX2X_DEV_INFO("Entering Previous Unload Flow\n"); 10847 10848 /* clear hw from errors which may have resulted from an interrupted 10849 * dmae transaction. 10850 */ 10851 bnx2x_clean_pglue_errors(bp); 10852 10853 /* Release previously held locks */ 10854 hw_lock_reg = (BP_FUNC(bp) <= 5) ? 10855 (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) : 10856 (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8); 10857 10858 hw_lock_val = REG_RD(bp, hw_lock_reg); 10859 if (hw_lock_val) { 10860 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 10861 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n"); 10862 REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB, 10863 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp))); 10864 } 10865 10866 BNX2X_DEV_INFO("Release Previously held hw lock\n"); 10867 REG_WR(bp, hw_lock_reg, 0xffffffff); 10868 } else 10869 BNX2X_DEV_INFO("No need to release hw/nvram locks\n"); 10870 10871 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) { 10872 BNX2X_DEV_INFO("Release previously held alr\n"); 10873 bnx2x_release_alr(bp); 10874 } 10875 10876 do { 10877 int aer = 0; 10878 /* Lock MCP using an unload request */ 10879 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 10880 if (!fw) { 10881 BNX2X_ERR("MCP response failure, aborting\n"); 10882 rc = -EBUSY; 10883 break; 10884 } 10885 10886 rc = down_interruptible(&bnx2x_prev_sem); 10887 if (rc) { 10888 BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n", 10889 rc); 10890 } else { 10891 /* If Path is marked by EEH, ignore unload status */ 10892 aer = !!(bnx2x_prev_path_get_entry(bp) && 10893 bnx2x_prev_path_get_entry(bp)->aer); 10894 up(&bnx2x_prev_sem); 10895 } 10896 10897 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) { 10898 rc = bnx2x_prev_unload_common(bp); 10899 break; 10900 } 10901 10902 /* non-common reply from MCP might require looping */ 10903 rc = bnx2x_prev_unload_uncommon(bp); 10904 if (rc != BNX2X_PREV_WAIT_NEEDED) 10905 break; 10906 10907 msleep(20); 10908 } while (--time_counter); 10909 10910 if (!time_counter || rc) { 10911 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n"); 10912 rc = -EPROBE_DEFER; 10913 } 10914 10915 /* Mark function if its port was used to boot from SAN */ 10916 if (bnx2x_port_after_undi(bp)) 10917 bp->link_params.feature_config_flags |= 10918 FEATURE_CONFIG_BOOT_FROM_SAN; 10919 10920 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc); 10921 10922 return rc; 10923 } 10924 10925 static void bnx2x_get_common_hwinfo(struct bnx2x *bp) 10926 { 10927 u32 val, val2, val3, val4, id, boot_mode; 10928 u16 pmc; 10929 10930 /* Get the chip revision id and number. */ 10931 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */ 10932 val = REG_RD(bp, MISC_REG_CHIP_NUM); 10933 id = ((val & 0xffff) << 16); 10934 val = REG_RD(bp, MISC_REG_CHIP_REV); 10935 id |= ((val & 0xf) << 12); 10936 10937 /* Metal is read from PCI regs, but we can't access >=0x400 from 10938 * the configuration space (so we need to reg_rd) 10939 */ 10940 val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3); 10941 id |= (((val >> 24) & 0xf) << 4); 10942 val = REG_RD(bp, MISC_REG_BOND_ID); 10943 id |= (val & 0xf); 10944 bp->common.chip_id = id; 10945 10946 /* force 57811 according to MISC register */ 10947 if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 10948 if (CHIP_IS_57810(bp)) 10949 bp->common.chip_id = (CHIP_NUM_57811 << 16) | 10950 (bp->common.chip_id & 0x0000FFFF); 10951 else if (CHIP_IS_57810_MF(bp)) 10952 bp->common.chip_id = (CHIP_NUM_57811_MF << 16) | 10953 (bp->common.chip_id & 0x0000FFFF); 10954 bp->common.chip_id |= 0x1; 10955 } 10956 10957 /* Set doorbell size */ 10958 bp->db_size = (1 << BNX2X_DB_SHIFT); 10959 10960 if (!CHIP_IS_E1x(bp)) { 10961 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR); 10962 if ((val & 1) == 0) 10963 val = REG_RD(bp, MISC_REG_PORT4MODE_EN); 10964 else 10965 val = (val >> 1) & 1; 10966 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" : 10967 "2_PORT_MODE"); 10968 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE : 10969 CHIP_2_PORT_MODE; 10970 10971 if (CHIP_MODE_IS_4_PORT(bp)) 10972 bp->pfid = (bp->pf_num >> 1); /* 0..3 */ 10973 else 10974 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */ 10975 } else { 10976 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */ 10977 bp->pfid = bp->pf_num; /* 0..7 */ 10978 } 10979 10980 BNX2X_DEV_INFO("pf_id: %x", bp->pfid); 10981 10982 bp->link_params.chip_id = bp->common.chip_id; 10983 BNX2X_DEV_INFO("chip ID is 0x%x\n", id); 10984 10985 val = (REG_RD(bp, 0x2874) & 0x55); 10986 if ((bp->common.chip_id & 0x1) || 10987 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) { 10988 bp->flags |= ONE_PORT_FLAG; 10989 BNX2X_DEV_INFO("single port device\n"); 10990 } 10991 10992 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4); 10993 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE << 10994 (val & MCPR_NVM_CFG4_FLASH_SIZE)); 10995 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n", 10996 bp->common.flash_size, bp->common.flash_size); 10997 10998 bnx2x_init_shmem(bp); 10999 11000 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ? 11001 MISC_REG_GENERIC_CR_1 : 11002 MISC_REG_GENERIC_CR_0)); 11003 11004 bp->link_params.shmem_base = bp->common.shmem_base; 11005 bp->link_params.shmem2_base = bp->common.shmem2_base; 11006 if (SHMEM2_RD(bp, size) > 11007 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) 11008 bp->link_params.lfa_base = 11009 REG_RD(bp, bp->common.shmem2_base + 11010 (u32)offsetof(struct shmem2_region, 11011 lfa_host_addr[BP_PORT(bp)])); 11012 else 11013 bp->link_params.lfa_base = 0; 11014 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n", 11015 bp->common.shmem_base, bp->common.shmem2_base); 11016 11017 if (!bp->common.shmem_base) { 11018 BNX2X_DEV_INFO("MCP not active\n"); 11019 bp->flags |= NO_MCP_FLAG; 11020 return; 11021 } 11022 11023 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config); 11024 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config); 11025 11026 bp->link_params.hw_led_mode = ((bp->common.hw_config & 11027 SHARED_HW_CFG_LED_MODE_MASK) >> 11028 SHARED_HW_CFG_LED_MODE_SHIFT); 11029 11030 bp->link_params.feature_config_flags = 0; 11031 val = SHMEM_RD(bp, dev_info.shared_feature_config.config); 11032 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) 11033 bp->link_params.feature_config_flags |= 11034 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 11035 else 11036 bp->link_params.feature_config_flags &= 11037 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 11038 11039 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8; 11040 bp->common.bc_ver = val; 11041 BNX2X_DEV_INFO("bc_ver %X\n", val); 11042 if (val < BNX2X_BC_VER) { 11043 /* for now only warn 11044 * later we might need to enforce this */ 11045 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n", 11046 BNX2X_BC_VER, val); 11047 } 11048 bp->link_params.feature_config_flags |= 11049 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ? 11050 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0; 11051 11052 bp->link_params.feature_config_flags |= 11053 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ? 11054 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0; 11055 bp->link_params.feature_config_flags |= 11056 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ? 11057 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0; 11058 bp->link_params.feature_config_flags |= 11059 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ? 11060 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0; 11061 11062 bp->link_params.feature_config_flags |= 11063 (val >= REQ_BC_VER_4_MT_SUPPORTED) ? 11064 FEATURE_CONFIG_MT_SUPPORT : 0; 11065 11066 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ? 11067 BC_SUPPORTS_PFC_STATS : 0; 11068 11069 bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ? 11070 BC_SUPPORTS_FCOE_FEATURES : 0; 11071 11072 bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ? 11073 BC_SUPPORTS_DCBX_MSG_NON_PMF : 0; 11074 11075 bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ? 11076 BC_SUPPORTS_RMMOD_CMD : 0; 11077 11078 boot_mode = SHMEM_RD(bp, 11079 dev_info.port_feature_config[BP_PORT(bp)].mba_config) & 11080 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK; 11081 switch (boot_mode) { 11082 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE: 11083 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE; 11084 break; 11085 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB: 11086 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI; 11087 break; 11088 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT: 11089 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE; 11090 break; 11091 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE: 11092 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE; 11093 break; 11094 } 11095 11096 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc); 11097 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG; 11098 11099 BNX2X_DEV_INFO("%sWoL capable\n", 11100 (bp->flags & NO_WOL_FLAG) ? "not " : ""); 11101 11102 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num); 11103 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]); 11104 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]); 11105 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]); 11106 11107 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n", 11108 val, val2, val3, val4); 11109 } 11110 11111 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 11112 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 11113 11114 static int bnx2x_get_igu_cam_info(struct bnx2x *bp) 11115 { 11116 int pfid = BP_FUNC(bp); 11117 int igu_sb_id; 11118 u32 val; 11119 u8 fid, igu_sb_cnt = 0; 11120 11121 bp->igu_base_sb = 0xff; 11122 if (CHIP_INT_MODE_IS_BC(bp)) { 11123 int vn = BP_VN(bp); 11124 igu_sb_cnt = bp->igu_sb_cnt; 11125 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) * 11126 FP_SB_MAX_E1x; 11127 11128 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x + 11129 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn); 11130 11131 return 0; 11132 } 11133 11134 /* IGU in normal mode - read CAM */ 11135 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 11136 igu_sb_id++) { 11137 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 11138 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) 11139 continue; 11140 fid = IGU_FID(val); 11141 if ((fid & IGU_FID_ENCODE_IS_PF)) { 11142 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) 11143 continue; 11144 if (IGU_VEC(val) == 0) 11145 /* default status block */ 11146 bp->igu_dsb_id = igu_sb_id; 11147 else { 11148 if (bp->igu_base_sb == 0xff) 11149 bp->igu_base_sb = igu_sb_id; 11150 igu_sb_cnt++; 11151 } 11152 } 11153 } 11154 11155 #ifdef CONFIG_PCI_MSI 11156 /* Due to new PF resource allocation by MFW T7.4 and above, it's 11157 * optional that number of CAM entries will not be equal to the value 11158 * advertised in PCI. 11159 * Driver should use the minimal value of both as the actual status 11160 * block count 11161 */ 11162 bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt); 11163 #endif 11164 11165 if (igu_sb_cnt == 0) { 11166 BNX2X_ERR("CAM configuration error\n"); 11167 return -EINVAL; 11168 } 11169 11170 return 0; 11171 } 11172 11173 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg) 11174 { 11175 int cfg_size = 0, idx, port = BP_PORT(bp); 11176 11177 /* Aggregation of supported attributes of all external phys */ 11178 bp->port.supported[0] = 0; 11179 bp->port.supported[1] = 0; 11180 switch (bp->link_params.num_phys) { 11181 case 1: 11182 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported; 11183 cfg_size = 1; 11184 break; 11185 case 2: 11186 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported; 11187 cfg_size = 1; 11188 break; 11189 case 3: 11190 if (bp->link_params.multi_phy_config & 11191 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 11192 bp->port.supported[1] = 11193 bp->link_params.phy[EXT_PHY1].supported; 11194 bp->port.supported[0] = 11195 bp->link_params.phy[EXT_PHY2].supported; 11196 } else { 11197 bp->port.supported[0] = 11198 bp->link_params.phy[EXT_PHY1].supported; 11199 bp->port.supported[1] = 11200 bp->link_params.phy[EXT_PHY2].supported; 11201 } 11202 cfg_size = 2; 11203 break; 11204 } 11205 11206 if (!(bp->port.supported[0] || bp->port.supported[1])) { 11207 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n", 11208 SHMEM_RD(bp, 11209 dev_info.port_hw_config[port].external_phy_config), 11210 SHMEM_RD(bp, 11211 dev_info.port_hw_config[port].external_phy_config2)); 11212 return; 11213 } 11214 11215 if (CHIP_IS_E3(bp)) 11216 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR); 11217 else { 11218 switch (switch_cfg) { 11219 case SWITCH_CFG_1G: 11220 bp->port.phy_addr = REG_RD( 11221 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 11222 break; 11223 case SWITCH_CFG_10G: 11224 bp->port.phy_addr = REG_RD( 11225 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 11226 break; 11227 default: 11228 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n", 11229 bp->port.link_config[0]); 11230 return; 11231 } 11232 } 11233 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr); 11234 /* mask what we support according to speed_cap_mask per configuration */ 11235 for (idx = 0; idx < cfg_size; idx++) { 11236 if (!(bp->link_params.speed_cap_mask[idx] & 11237 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) 11238 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half; 11239 11240 if (!(bp->link_params.speed_cap_mask[idx] & 11241 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) 11242 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full; 11243 11244 if (!(bp->link_params.speed_cap_mask[idx] & 11245 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) 11246 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half; 11247 11248 if (!(bp->link_params.speed_cap_mask[idx] & 11249 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) 11250 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full; 11251 11252 if (!(bp->link_params.speed_cap_mask[idx] & 11253 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) 11254 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half | 11255 SUPPORTED_1000baseT_Full); 11256 11257 if (!(bp->link_params.speed_cap_mask[idx] & 11258 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) 11259 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full; 11260 11261 if (!(bp->link_params.speed_cap_mask[idx] & 11262 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) 11263 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full; 11264 11265 if (!(bp->link_params.speed_cap_mask[idx] & 11266 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) 11267 bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full; 11268 } 11269 11270 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0], 11271 bp->port.supported[1]); 11272 } 11273 11274 static void bnx2x_link_settings_requested(struct bnx2x *bp) 11275 { 11276 u32 link_config, idx, cfg_size = 0; 11277 bp->port.advertising[0] = 0; 11278 bp->port.advertising[1] = 0; 11279 switch (bp->link_params.num_phys) { 11280 case 1: 11281 case 2: 11282 cfg_size = 1; 11283 break; 11284 case 3: 11285 cfg_size = 2; 11286 break; 11287 } 11288 for (idx = 0; idx < cfg_size; idx++) { 11289 bp->link_params.req_duplex[idx] = DUPLEX_FULL; 11290 link_config = bp->port.link_config[idx]; 11291 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 11292 case PORT_FEATURE_LINK_SPEED_AUTO: 11293 if (bp->port.supported[idx] & SUPPORTED_Autoneg) { 11294 bp->link_params.req_line_speed[idx] = 11295 SPEED_AUTO_NEG; 11296 bp->port.advertising[idx] |= 11297 bp->port.supported[idx]; 11298 if (bp->link_params.phy[EXT_PHY1].type == 11299 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 11300 bp->port.advertising[idx] |= 11301 (SUPPORTED_100baseT_Half | 11302 SUPPORTED_100baseT_Full); 11303 } else { 11304 /* force 10G, no AN */ 11305 bp->link_params.req_line_speed[idx] = 11306 SPEED_10000; 11307 bp->port.advertising[idx] |= 11308 (ADVERTISED_10000baseT_Full | 11309 ADVERTISED_FIBRE); 11310 continue; 11311 } 11312 break; 11313 11314 case PORT_FEATURE_LINK_SPEED_10M_FULL: 11315 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) { 11316 bp->link_params.req_line_speed[idx] = 11317 SPEED_10; 11318 bp->port.advertising[idx] |= 11319 (ADVERTISED_10baseT_Full | 11320 ADVERTISED_TP); 11321 } else { 11322 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11323 link_config, 11324 bp->link_params.speed_cap_mask[idx]); 11325 return; 11326 } 11327 break; 11328 11329 case PORT_FEATURE_LINK_SPEED_10M_HALF: 11330 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) { 11331 bp->link_params.req_line_speed[idx] = 11332 SPEED_10; 11333 bp->link_params.req_duplex[idx] = 11334 DUPLEX_HALF; 11335 bp->port.advertising[idx] |= 11336 (ADVERTISED_10baseT_Half | 11337 ADVERTISED_TP); 11338 } else { 11339 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11340 link_config, 11341 bp->link_params.speed_cap_mask[idx]); 11342 return; 11343 } 11344 break; 11345 11346 case PORT_FEATURE_LINK_SPEED_100M_FULL: 11347 if (bp->port.supported[idx] & 11348 SUPPORTED_100baseT_Full) { 11349 bp->link_params.req_line_speed[idx] = 11350 SPEED_100; 11351 bp->port.advertising[idx] |= 11352 (ADVERTISED_100baseT_Full | 11353 ADVERTISED_TP); 11354 } else { 11355 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11356 link_config, 11357 bp->link_params.speed_cap_mask[idx]); 11358 return; 11359 } 11360 break; 11361 11362 case PORT_FEATURE_LINK_SPEED_100M_HALF: 11363 if (bp->port.supported[idx] & 11364 SUPPORTED_100baseT_Half) { 11365 bp->link_params.req_line_speed[idx] = 11366 SPEED_100; 11367 bp->link_params.req_duplex[idx] = 11368 DUPLEX_HALF; 11369 bp->port.advertising[idx] |= 11370 (ADVERTISED_100baseT_Half | 11371 ADVERTISED_TP); 11372 } else { 11373 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11374 link_config, 11375 bp->link_params.speed_cap_mask[idx]); 11376 return; 11377 } 11378 break; 11379 11380 case PORT_FEATURE_LINK_SPEED_1G: 11381 if (bp->port.supported[idx] & 11382 SUPPORTED_1000baseT_Full) { 11383 bp->link_params.req_line_speed[idx] = 11384 SPEED_1000; 11385 bp->port.advertising[idx] |= 11386 (ADVERTISED_1000baseT_Full | 11387 ADVERTISED_TP); 11388 } else if (bp->port.supported[idx] & 11389 SUPPORTED_1000baseKX_Full) { 11390 bp->link_params.req_line_speed[idx] = 11391 SPEED_1000; 11392 bp->port.advertising[idx] |= 11393 ADVERTISED_1000baseKX_Full; 11394 } else { 11395 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11396 link_config, 11397 bp->link_params.speed_cap_mask[idx]); 11398 return; 11399 } 11400 break; 11401 11402 case PORT_FEATURE_LINK_SPEED_2_5G: 11403 if (bp->port.supported[idx] & 11404 SUPPORTED_2500baseX_Full) { 11405 bp->link_params.req_line_speed[idx] = 11406 SPEED_2500; 11407 bp->port.advertising[idx] |= 11408 (ADVERTISED_2500baseX_Full | 11409 ADVERTISED_TP); 11410 } else { 11411 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11412 link_config, 11413 bp->link_params.speed_cap_mask[idx]); 11414 return; 11415 } 11416 break; 11417 11418 case PORT_FEATURE_LINK_SPEED_10G_CX4: 11419 if (bp->port.supported[idx] & 11420 SUPPORTED_10000baseT_Full) { 11421 bp->link_params.req_line_speed[idx] = 11422 SPEED_10000; 11423 bp->port.advertising[idx] |= 11424 (ADVERTISED_10000baseT_Full | 11425 ADVERTISED_FIBRE); 11426 } else if (bp->port.supported[idx] & 11427 SUPPORTED_10000baseKR_Full) { 11428 bp->link_params.req_line_speed[idx] = 11429 SPEED_10000; 11430 bp->port.advertising[idx] |= 11431 (ADVERTISED_10000baseKR_Full | 11432 ADVERTISED_FIBRE); 11433 } else { 11434 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11435 link_config, 11436 bp->link_params.speed_cap_mask[idx]); 11437 return; 11438 } 11439 break; 11440 case PORT_FEATURE_LINK_SPEED_20G: 11441 bp->link_params.req_line_speed[idx] = SPEED_20000; 11442 11443 break; 11444 default: 11445 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n", 11446 link_config); 11447 bp->link_params.req_line_speed[idx] = 11448 SPEED_AUTO_NEG; 11449 bp->port.advertising[idx] = 11450 bp->port.supported[idx]; 11451 break; 11452 } 11453 11454 bp->link_params.req_flow_ctrl[idx] = (link_config & 11455 PORT_FEATURE_FLOW_CONTROL_MASK); 11456 if (bp->link_params.req_flow_ctrl[idx] == 11457 BNX2X_FLOW_CTRL_AUTO) { 11458 if (!(bp->port.supported[idx] & SUPPORTED_Autoneg)) 11459 bp->link_params.req_flow_ctrl[idx] = 11460 BNX2X_FLOW_CTRL_NONE; 11461 else 11462 bnx2x_set_requested_fc(bp); 11463 } 11464 11465 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n", 11466 bp->link_params.req_line_speed[idx], 11467 bp->link_params.req_duplex[idx], 11468 bp->link_params.req_flow_ctrl[idx], 11469 bp->port.advertising[idx]); 11470 } 11471 } 11472 11473 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi) 11474 { 11475 __be16 mac_hi_be = cpu_to_be16(mac_hi); 11476 __be32 mac_lo_be = cpu_to_be32(mac_lo); 11477 memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be)); 11478 memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be)); 11479 } 11480 11481 static void bnx2x_get_port_hwinfo(struct bnx2x *bp) 11482 { 11483 int port = BP_PORT(bp); 11484 u32 config; 11485 u32 ext_phy_type, ext_phy_config, eee_mode; 11486 11487 bp->link_params.bp = bp; 11488 bp->link_params.port = port; 11489 11490 bp->link_params.lane_config = 11491 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config); 11492 11493 bp->link_params.speed_cap_mask[0] = 11494 SHMEM_RD(bp, 11495 dev_info.port_hw_config[port].speed_capability_mask) & 11496 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; 11497 bp->link_params.speed_cap_mask[1] = 11498 SHMEM_RD(bp, 11499 dev_info.port_hw_config[port].speed_capability_mask2) & 11500 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; 11501 bp->port.link_config[0] = 11502 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config); 11503 11504 bp->port.link_config[1] = 11505 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2); 11506 11507 bp->link_params.multi_phy_config = 11508 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config); 11509 /* If the device is capable of WoL, set the default state according 11510 * to the HW 11511 */ 11512 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config); 11513 bp->wol = (!(bp->flags & NO_WOL_FLAG) && 11514 (config & PORT_FEATURE_WOL_ENABLED)); 11515 11516 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 11517 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp)) 11518 bp->flags |= NO_ISCSI_FLAG; 11519 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 11520 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp))) 11521 bp->flags |= NO_FCOE_FLAG; 11522 11523 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n", 11524 bp->link_params.lane_config, 11525 bp->link_params.speed_cap_mask[0], 11526 bp->port.link_config[0]); 11527 11528 bp->link_params.switch_cfg = (bp->port.link_config[0] & 11529 PORT_FEATURE_CONNECTED_SWITCH_MASK); 11530 bnx2x_phy_probe(&bp->link_params); 11531 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg); 11532 11533 bnx2x_link_settings_requested(bp); 11534 11535 /* 11536 * If connected directly, work with the internal PHY, otherwise, work 11537 * with the external PHY 11538 */ 11539 ext_phy_config = 11540 SHMEM_RD(bp, 11541 dev_info.port_hw_config[port].external_phy_config); 11542 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config); 11543 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) 11544 bp->mdio.prtad = bp->port.phy_addr; 11545 11546 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && 11547 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) 11548 bp->mdio.prtad = 11549 XGXS_EXT_PHY_ADDR(ext_phy_config); 11550 11551 /* Configure link feature according to nvram value */ 11552 eee_mode = (((SHMEM_RD(bp, dev_info. 11553 port_feature_config[port].eee_power_mode)) & 11554 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 11555 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 11556 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 11557 bp->link_params.eee_mode = EEE_MODE_ADV_LPI | 11558 EEE_MODE_ENABLE_LPI | 11559 EEE_MODE_OUTPUT_TIME; 11560 } else { 11561 bp->link_params.eee_mode = 0; 11562 } 11563 } 11564 11565 void bnx2x_get_iscsi_info(struct bnx2x *bp) 11566 { 11567 u32 no_flags = NO_ISCSI_FLAG; 11568 int port = BP_PORT(bp); 11569 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, 11570 drv_lic_key[port].max_iscsi_conn); 11571 11572 if (!CNIC_SUPPORT(bp)) { 11573 bp->flags |= no_flags; 11574 return; 11575 } 11576 11577 /* Get the number of maximum allowed iSCSI connections */ 11578 bp->cnic_eth_dev.max_iscsi_conn = 11579 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >> 11580 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT; 11581 11582 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n", 11583 bp->cnic_eth_dev.max_iscsi_conn); 11584 11585 /* 11586 * If maximum allowed number of connections is zero - 11587 * disable the feature. 11588 */ 11589 if (!bp->cnic_eth_dev.max_iscsi_conn) 11590 bp->flags |= no_flags; 11591 } 11592 11593 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func) 11594 { 11595 /* Port info */ 11596 bp->cnic_eth_dev.fcoe_wwn_port_name_hi = 11597 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper); 11598 bp->cnic_eth_dev.fcoe_wwn_port_name_lo = 11599 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower); 11600 11601 /* Node info */ 11602 bp->cnic_eth_dev.fcoe_wwn_node_name_hi = 11603 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper); 11604 bp->cnic_eth_dev.fcoe_wwn_node_name_lo = 11605 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower); 11606 } 11607 11608 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp) 11609 { 11610 u8 count = 0; 11611 11612 if (IS_MF(bp)) { 11613 u8 fid; 11614 11615 /* iterate over absolute function ids for this path: */ 11616 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) { 11617 if (IS_MF_SD(bp)) { 11618 u32 cfg = MF_CFG_RD(bp, 11619 func_mf_config[fid].config); 11620 11621 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) && 11622 ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) == 11623 FUNC_MF_CFG_PROTOCOL_FCOE)) 11624 count++; 11625 } else { 11626 u32 cfg = MF_CFG_RD(bp, 11627 func_ext_config[fid]. 11628 func_cfg); 11629 11630 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) && 11631 (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)) 11632 count++; 11633 } 11634 } 11635 } else { /* SF */ 11636 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1; 11637 11638 for (port = 0; port < port_cnt; port++) { 11639 u32 lic = SHMEM_RD(bp, 11640 drv_lic_key[port].max_fcoe_conn) ^ 11641 FW_ENCODE_32BIT_PATTERN; 11642 if (lic) 11643 count++; 11644 } 11645 } 11646 11647 return count; 11648 } 11649 11650 static void bnx2x_get_fcoe_info(struct bnx2x *bp) 11651 { 11652 int port = BP_PORT(bp); 11653 int func = BP_ABS_FUNC(bp); 11654 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, 11655 drv_lic_key[port].max_fcoe_conn); 11656 u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp); 11657 11658 if (!CNIC_SUPPORT(bp)) { 11659 bp->flags |= NO_FCOE_FLAG; 11660 return; 11661 } 11662 11663 /* Get the number of maximum allowed FCoE connections */ 11664 bp->cnic_eth_dev.max_fcoe_conn = 11665 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >> 11666 BNX2X_MAX_FCOE_INIT_CONN_SHIFT; 11667 11668 /* Calculate the number of maximum allowed FCoE tasks */ 11669 bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE; 11670 11671 /* check if FCoE resources must be shared between different functions */ 11672 if (num_fcoe_func) 11673 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func; 11674 11675 /* Read the WWN: */ 11676 if (!IS_MF(bp)) { 11677 /* Port info */ 11678 bp->cnic_eth_dev.fcoe_wwn_port_name_hi = 11679 SHMEM_RD(bp, 11680 dev_info.port_hw_config[port]. 11681 fcoe_wwn_port_name_upper); 11682 bp->cnic_eth_dev.fcoe_wwn_port_name_lo = 11683 SHMEM_RD(bp, 11684 dev_info.port_hw_config[port]. 11685 fcoe_wwn_port_name_lower); 11686 11687 /* Node info */ 11688 bp->cnic_eth_dev.fcoe_wwn_node_name_hi = 11689 SHMEM_RD(bp, 11690 dev_info.port_hw_config[port]. 11691 fcoe_wwn_node_name_upper); 11692 bp->cnic_eth_dev.fcoe_wwn_node_name_lo = 11693 SHMEM_RD(bp, 11694 dev_info.port_hw_config[port]. 11695 fcoe_wwn_node_name_lower); 11696 } else if (!IS_MF_SD(bp)) { 11697 /* Read the WWN info only if the FCoE feature is enabled for 11698 * this function. 11699 */ 11700 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp)) 11701 bnx2x_get_ext_wwn_info(bp, func); 11702 } else { 11703 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp)) 11704 bnx2x_get_ext_wwn_info(bp, func); 11705 } 11706 11707 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn); 11708 11709 /* 11710 * If maximum allowed number of connections is zero - 11711 * disable the feature. 11712 */ 11713 if (!bp->cnic_eth_dev.max_fcoe_conn) { 11714 bp->flags |= NO_FCOE_FLAG; 11715 eth_zero_addr(bp->fip_mac); 11716 } 11717 } 11718 11719 static void bnx2x_get_cnic_info(struct bnx2x *bp) 11720 { 11721 /* 11722 * iSCSI may be dynamically disabled but reading 11723 * info here we will decrease memory usage by driver 11724 * if the feature is disabled for good 11725 */ 11726 bnx2x_get_iscsi_info(bp); 11727 bnx2x_get_fcoe_info(bp); 11728 } 11729 11730 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp) 11731 { 11732 u32 val, val2; 11733 int func = BP_ABS_FUNC(bp); 11734 int port = BP_PORT(bp); 11735 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac; 11736 u8 *fip_mac = bp->fip_mac; 11737 11738 if (IS_MF(bp)) { 11739 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or 11740 * FCoE MAC then the appropriate feature should be disabled. 11741 * In non SD mode features configuration comes from struct 11742 * func_ext_config. 11743 */ 11744 if (!IS_MF_SD(bp)) { 11745 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg); 11746 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 11747 val2 = MF_CFG_RD(bp, func_ext_config[func]. 11748 iscsi_mac_addr_upper); 11749 val = MF_CFG_RD(bp, func_ext_config[func]. 11750 iscsi_mac_addr_lower); 11751 bnx2x_set_mac_buf(iscsi_mac, val, val2); 11752 BNX2X_DEV_INFO 11753 ("Read iSCSI MAC: %pM\n", iscsi_mac); 11754 } else { 11755 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; 11756 } 11757 11758 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 11759 val2 = MF_CFG_RD(bp, func_ext_config[func]. 11760 fcoe_mac_addr_upper); 11761 val = MF_CFG_RD(bp, func_ext_config[func]. 11762 fcoe_mac_addr_lower); 11763 bnx2x_set_mac_buf(fip_mac, val, val2); 11764 BNX2X_DEV_INFO 11765 ("Read FCoE L2 MAC: %pM\n", fip_mac); 11766 } else { 11767 bp->flags |= NO_FCOE_FLAG; 11768 } 11769 11770 bp->mf_ext_config = cfg; 11771 11772 } else { /* SD MODE */ 11773 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) { 11774 /* use primary mac as iscsi mac */ 11775 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN); 11776 11777 BNX2X_DEV_INFO("SD ISCSI MODE\n"); 11778 BNX2X_DEV_INFO 11779 ("Read iSCSI MAC: %pM\n", iscsi_mac); 11780 } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) { 11781 /* use primary mac as fip mac */ 11782 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN); 11783 BNX2X_DEV_INFO("SD FCoE MODE\n"); 11784 BNX2X_DEV_INFO 11785 ("Read FIP MAC: %pM\n", fip_mac); 11786 } 11787 } 11788 11789 /* If this is a storage-only interface, use SAN mac as 11790 * primary MAC. Notice that for SD this is already the case, 11791 * as the SAN mac was copied from the primary MAC. 11792 */ 11793 if (IS_MF_FCOE_AFEX(bp)) 11794 memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN); 11795 } else { 11796 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11797 iscsi_mac_upper); 11798 val = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11799 iscsi_mac_lower); 11800 bnx2x_set_mac_buf(iscsi_mac, val, val2); 11801 11802 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11803 fcoe_fip_mac_upper); 11804 val = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11805 fcoe_fip_mac_lower); 11806 bnx2x_set_mac_buf(fip_mac, val, val2); 11807 } 11808 11809 /* Disable iSCSI OOO if MAC configuration is invalid. */ 11810 if (!is_valid_ether_addr(iscsi_mac)) { 11811 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; 11812 eth_zero_addr(iscsi_mac); 11813 } 11814 11815 /* Disable FCoE if MAC configuration is invalid. */ 11816 if (!is_valid_ether_addr(fip_mac)) { 11817 bp->flags |= NO_FCOE_FLAG; 11818 eth_zero_addr(bp->fip_mac); 11819 } 11820 } 11821 11822 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp) 11823 { 11824 u32 val, val2; 11825 int func = BP_ABS_FUNC(bp); 11826 int port = BP_PORT(bp); 11827 11828 /* Zero primary MAC configuration */ 11829 eth_zero_addr(bp->dev->dev_addr); 11830 11831 if (BP_NOMCP(bp)) { 11832 BNX2X_ERROR("warning: random MAC workaround active\n"); 11833 eth_hw_addr_random(bp->dev); 11834 } else if (IS_MF(bp)) { 11835 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper); 11836 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower); 11837 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) && 11838 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT)) 11839 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2); 11840 11841 if (CNIC_SUPPORT(bp)) 11842 bnx2x_get_cnic_mac_hwinfo(bp); 11843 } else { 11844 /* in SF read MACs from port configuration */ 11845 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper); 11846 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower); 11847 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2); 11848 11849 if (CNIC_SUPPORT(bp)) 11850 bnx2x_get_cnic_mac_hwinfo(bp); 11851 } 11852 11853 if (!BP_NOMCP(bp)) { 11854 /* Read physical port identifier from shmem */ 11855 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper); 11856 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower); 11857 bnx2x_set_mac_buf(bp->phys_port_id, val, val2); 11858 bp->flags |= HAS_PHYS_PORT_ID; 11859 } 11860 11861 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN); 11862 11863 if (!is_valid_ether_addr(bp->dev->dev_addr)) 11864 dev_err(&bp->pdev->dev, 11865 "bad Ethernet MAC address configuration: %pM\n" 11866 "change it manually before bringing up the appropriate network interface\n", 11867 bp->dev->dev_addr); 11868 } 11869 11870 static bool bnx2x_get_dropless_info(struct bnx2x *bp) 11871 { 11872 int tmp; 11873 u32 cfg; 11874 11875 if (IS_VF(bp)) 11876 return false; 11877 11878 if (IS_MF(bp) && !CHIP_IS_E1x(bp)) { 11879 /* Take function: tmp = func */ 11880 tmp = BP_ABS_FUNC(bp); 11881 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg); 11882 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING); 11883 } else { 11884 /* Take port: tmp = port */ 11885 tmp = BP_PORT(bp); 11886 cfg = SHMEM_RD(bp, 11887 dev_info.port_hw_config[tmp].generic_features); 11888 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED); 11889 } 11890 return cfg; 11891 } 11892 11893 static void validate_set_si_mode(struct bnx2x *bp) 11894 { 11895 u8 func = BP_ABS_FUNC(bp); 11896 u32 val; 11897 11898 val = MF_CFG_RD(bp, func_mf_config[func].mac_upper); 11899 11900 /* check for legal mac (upper bytes) */ 11901 if (val != 0xffff) { 11902 bp->mf_mode = MULTI_FUNCTION_SI; 11903 bp->mf_config[BP_VN(bp)] = 11904 MF_CFG_RD(bp, func_mf_config[func].config); 11905 } else 11906 BNX2X_DEV_INFO("illegal MAC address for SI\n"); 11907 } 11908 11909 static int bnx2x_get_hwinfo(struct bnx2x *bp) 11910 { 11911 int /*abs*/func = BP_ABS_FUNC(bp); 11912 int vn; 11913 u32 val = 0, val2 = 0; 11914 int rc = 0; 11915 11916 /* Validate that chip access is feasible */ 11917 if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) { 11918 dev_err(&bp->pdev->dev, 11919 "Chip read returns all Fs. Preventing probe from continuing\n"); 11920 return -EINVAL; 11921 } 11922 11923 bnx2x_get_common_hwinfo(bp); 11924 11925 /* 11926 * initialize IGU parameters 11927 */ 11928 if (CHIP_IS_E1x(bp)) { 11929 bp->common.int_block = INT_BLOCK_HC; 11930 11931 bp->igu_dsb_id = DEF_SB_IGU_ID; 11932 bp->igu_base_sb = 0; 11933 } else { 11934 bp->common.int_block = INT_BLOCK_IGU; 11935 11936 /* do not allow device reset during IGU info processing */ 11937 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 11938 11939 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); 11940 11941 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 11942 int tout = 5000; 11943 11944 BNX2X_DEV_INFO("FORCING Normal Mode\n"); 11945 11946 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 11947 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val); 11948 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f); 11949 11950 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) { 11951 tout--; 11952 usleep_range(1000, 2000); 11953 } 11954 11955 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) { 11956 dev_err(&bp->pdev->dev, 11957 "FORCING Normal Mode failed!!!\n"); 11958 bnx2x_release_hw_lock(bp, 11959 HW_LOCK_RESOURCE_RESET); 11960 return -EPERM; 11961 } 11962 } 11963 11964 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 11965 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n"); 11966 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP; 11967 } else 11968 BNX2X_DEV_INFO("IGU Normal Mode\n"); 11969 11970 rc = bnx2x_get_igu_cam_info(bp); 11971 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 11972 if (rc) 11973 return rc; 11974 } 11975 11976 /* 11977 * set base FW non-default (fast path) status block id, this value is 11978 * used to initialize the fw_sb_id saved on the fp/queue structure to 11979 * determine the id used by the FW. 11980 */ 11981 if (CHIP_IS_E1x(bp)) 11982 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp); 11983 else /* 11984 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of 11985 * the same queue are indicated on the same IGU SB). So we prefer 11986 * FW and IGU SBs to be the same value. 11987 */ 11988 bp->base_fw_ndsb = bp->igu_base_sb; 11989 11990 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n" 11991 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb, 11992 bp->igu_sb_cnt, bp->base_fw_ndsb); 11993 11994 /* 11995 * Initialize MF configuration 11996 */ 11997 bp->mf_ov = 0; 11998 bp->mf_mode = 0; 11999 bp->mf_sub_mode = 0; 12000 vn = BP_VN(bp); 12001 12002 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) { 12003 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n", 12004 bp->common.shmem2_base, SHMEM2_RD(bp, size), 12005 (u32)offsetof(struct shmem2_region, mf_cfg_addr)); 12006 12007 if (SHMEM2_HAS(bp, mf_cfg_addr)) 12008 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr); 12009 else 12010 bp->common.mf_cfg_base = bp->common.shmem_base + 12011 offsetof(struct shmem_region, func_mb) + 12012 E1H_FUNC_MAX * sizeof(struct drv_func_mb); 12013 /* 12014 * get mf configuration: 12015 * 1. Existence of MF configuration 12016 * 2. MAC address must be legal (check only upper bytes) 12017 * for Switch-Independent mode; 12018 * OVLAN must be legal for Switch-Dependent mode 12019 * 3. SF_MODE configures specific MF mode 12020 */ 12021 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { 12022 /* get mf configuration */ 12023 val = SHMEM_RD(bp, 12024 dev_info.shared_feature_config.config); 12025 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK; 12026 12027 switch (val) { 12028 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 12029 validate_set_si_mode(bp); 12030 break; 12031 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 12032 if ((!CHIP_IS_E1x(bp)) && 12033 (MF_CFG_RD(bp, func_mf_config[func]. 12034 mac_upper) != 0xffff) && 12035 (SHMEM2_HAS(bp, 12036 afex_driver_support))) { 12037 bp->mf_mode = MULTI_FUNCTION_AFEX; 12038 bp->mf_config[vn] = MF_CFG_RD(bp, 12039 func_mf_config[func].config); 12040 } else { 12041 BNX2X_DEV_INFO("can not configure afex mode\n"); 12042 } 12043 break; 12044 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 12045 /* get OV configuration */ 12046 val = MF_CFG_RD(bp, 12047 func_mf_config[FUNC_0].e1hov_tag); 12048 val &= FUNC_MF_CFG_E1HOV_TAG_MASK; 12049 12050 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 12051 bp->mf_mode = MULTI_FUNCTION_SD; 12052 bp->mf_config[vn] = MF_CFG_RD(bp, 12053 func_mf_config[func].config); 12054 } else 12055 BNX2X_DEV_INFO("illegal OV for SD\n"); 12056 break; 12057 case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE: 12058 bp->mf_mode = MULTI_FUNCTION_SD; 12059 bp->mf_sub_mode = SUB_MF_MODE_BD; 12060 bp->mf_config[vn] = 12061 MF_CFG_RD(bp, 12062 func_mf_config[func].config); 12063 12064 if (SHMEM2_HAS(bp, mtu_size)) { 12065 int mtu_idx = BP_FW_MB_IDX(bp); 12066 u16 mtu_size; 12067 u32 mtu; 12068 12069 mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]); 12070 mtu_size = (u16)mtu; 12071 DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n", 12072 mtu_size, mtu); 12073 12074 /* if valid: update device mtu */ 12075 if ((mtu_size >= ETH_MIN_PACKET_SIZE) && 12076 (mtu_size <= 12077 ETH_MAX_JUMBO_PACKET_SIZE)) 12078 bp->dev->mtu = mtu_size; 12079 } 12080 break; 12081 case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE: 12082 bp->mf_mode = MULTI_FUNCTION_SD; 12083 bp->mf_sub_mode = SUB_MF_MODE_UFP; 12084 bp->mf_config[vn] = 12085 MF_CFG_RD(bp, 12086 func_mf_config[func].config); 12087 break; 12088 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 12089 bp->mf_config[vn] = 0; 12090 break; 12091 case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE: 12092 val2 = SHMEM_RD(bp, 12093 dev_info.shared_hw_config.config_3); 12094 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK; 12095 switch (val2) { 12096 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5: 12097 validate_set_si_mode(bp); 12098 bp->mf_sub_mode = 12099 SUB_MF_MODE_NPAR1_DOT_5; 12100 break; 12101 default: 12102 /* Unknown configuration */ 12103 bp->mf_config[vn] = 0; 12104 BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n", 12105 val); 12106 } 12107 break; 12108 default: 12109 /* Unknown configuration: reset mf_config */ 12110 bp->mf_config[vn] = 0; 12111 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val); 12112 } 12113 } 12114 12115 BNX2X_DEV_INFO("%s function mode\n", 12116 IS_MF(bp) ? "multi" : "single"); 12117 12118 switch (bp->mf_mode) { 12119 case MULTI_FUNCTION_SD: 12120 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 12121 FUNC_MF_CFG_E1HOV_TAG_MASK; 12122 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 12123 bp->mf_ov = val; 12124 bp->path_has_ovlan = true; 12125 12126 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n", 12127 func, bp->mf_ov, bp->mf_ov); 12128 } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) || 12129 (bp->mf_sub_mode == SUB_MF_MODE_BD)) { 12130 dev_err(&bp->pdev->dev, 12131 "Unexpected - no valid MF OV for func %d in UFP/BD mode\n", 12132 func); 12133 bp->path_has_ovlan = true; 12134 } else { 12135 dev_err(&bp->pdev->dev, 12136 "No valid MF OV for func %d, aborting\n", 12137 func); 12138 return -EPERM; 12139 } 12140 break; 12141 case MULTI_FUNCTION_AFEX: 12142 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func); 12143 break; 12144 case MULTI_FUNCTION_SI: 12145 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n", 12146 func); 12147 break; 12148 default: 12149 if (vn) { 12150 dev_err(&bp->pdev->dev, 12151 "VN %d is in a single function mode, aborting\n", 12152 vn); 12153 return -EPERM; 12154 } 12155 break; 12156 } 12157 12158 /* check if other port on the path needs ovlan: 12159 * Since MF configuration is shared between ports 12160 * Possible mixed modes are only 12161 * {SF, SI} {SF, SD} {SD, SF} {SI, SF} 12162 */ 12163 if (CHIP_MODE_IS_4_PORT(bp) && 12164 !bp->path_has_ovlan && 12165 !IS_MF(bp) && 12166 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { 12167 u8 other_port = !BP_PORT(bp); 12168 u8 other_func = BP_PATH(bp) + 2*other_port; 12169 val = MF_CFG_RD(bp, 12170 func_mf_config[other_func].e1hov_tag); 12171 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) 12172 bp->path_has_ovlan = true; 12173 } 12174 } 12175 12176 /* adjust igu_sb_cnt to MF for E1H */ 12177 if (CHIP_IS_E1H(bp) && IS_MF(bp)) 12178 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT); 12179 12180 /* port info */ 12181 bnx2x_get_port_hwinfo(bp); 12182 12183 /* Get MAC addresses */ 12184 bnx2x_get_mac_hwinfo(bp); 12185 12186 bnx2x_get_cnic_info(bp); 12187 12188 return rc; 12189 } 12190 12191 static void bnx2x_read_fwinfo(struct bnx2x *bp) 12192 { 12193 int cnt, i, block_end, rodi; 12194 char vpd_start[BNX2X_VPD_LEN+1]; 12195 char str_id_reg[VENDOR_ID_LEN+1]; 12196 char str_id_cap[VENDOR_ID_LEN+1]; 12197 char *vpd_data; 12198 char *vpd_extended_data = NULL; 12199 u8 len; 12200 12201 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start); 12202 memset(bp->fw_ver, 0, sizeof(bp->fw_ver)); 12203 12204 if (cnt < BNX2X_VPD_LEN) 12205 goto out_not_found; 12206 12207 /* VPD RO tag should be first tag after identifier string, hence 12208 * we should be able to find it in first BNX2X_VPD_LEN chars 12209 */ 12210 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN, 12211 PCI_VPD_LRDT_RO_DATA); 12212 if (i < 0) 12213 goto out_not_found; 12214 12215 block_end = i + PCI_VPD_LRDT_TAG_SIZE + 12216 pci_vpd_lrdt_size(&vpd_start[i]); 12217 12218 i += PCI_VPD_LRDT_TAG_SIZE; 12219 12220 if (block_end > BNX2X_VPD_LEN) { 12221 vpd_extended_data = kmalloc(block_end, GFP_KERNEL); 12222 if (vpd_extended_data == NULL) 12223 goto out_not_found; 12224 12225 /* read rest of vpd image into vpd_extended_data */ 12226 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN); 12227 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN, 12228 block_end - BNX2X_VPD_LEN, 12229 vpd_extended_data + BNX2X_VPD_LEN); 12230 if (cnt < (block_end - BNX2X_VPD_LEN)) 12231 goto out_not_found; 12232 vpd_data = vpd_extended_data; 12233 } else 12234 vpd_data = vpd_start; 12235 12236 /* now vpd_data holds full vpd content in both cases */ 12237 12238 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, 12239 PCI_VPD_RO_KEYWORD_MFR_ID); 12240 if (rodi < 0) 12241 goto out_not_found; 12242 12243 len = pci_vpd_info_field_size(&vpd_data[rodi]); 12244 12245 if (len != VENDOR_ID_LEN) 12246 goto out_not_found; 12247 12248 rodi += PCI_VPD_INFO_FLD_HDR_SIZE; 12249 12250 /* vendor specific info */ 12251 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL); 12252 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL); 12253 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) || 12254 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) { 12255 12256 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, 12257 PCI_VPD_RO_KEYWORD_VENDOR0); 12258 if (rodi >= 0) { 12259 len = pci_vpd_info_field_size(&vpd_data[rodi]); 12260 12261 rodi += PCI_VPD_INFO_FLD_HDR_SIZE; 12262 12263 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) { 12264 memcpy(bp->fw_ver, &vpd_data[rodi], len); 12265 bp->fw_ver[len] = ' '; 12266 } 12267 } 12268 kfree(vpd_extended_data); 12269 return; 12270 } 12271 out_not_found: 12272 kfree(vpd_extended_data); 12273 return; 12274 } 12275 12276 static void bnx2x_set_modes_bitmap(struct bnx2x *bp) 12277 { 12278 u32 flags = 0; 12279 12280 if (CHIP_REV_IS_FPGA(bp)) 12281 SET_FLAGS(flags, MODE_FPGA); 12282 else if (CHIP_REV_IS_EMUL(bp)) 12283 SET_FLAGS(flags, MODE_EMUL); 12284 else 12285 SET_FLAGS(flags, MODE_ASIC); 12286 12287 if (CHIP_MODE_IS_4_PORT(bp)) 12288 SET_FLAGS(flags, MODE_PORT4); 12289 else 12290 SET_FLAGS(flags, MODE_PORT2); 12291 12292 if (CHIP_IS_E2(bp)) 12293 SET_FLAGS(flags, MODE_E2); 12294 else if (CHIP_IS_E3(bp)) { 12295 SET_FLAGS(flags, MODE_E3); 12296 if (CHIP_REV(bp) == CHIP_REV_Ax) 12297 SET_FLAGS(flags, MODE_E3_A0); 12298 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/ 12299 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 12300 } 12301 12302 if (IS_MF(bp)) { 12303 SET_FLAGS(flags, MODE_MF); 12304 switch (bp->mf_mode) { 12305 case MULTI_FUNCTION_SD: 12306 SET_FLAGS(flags, MODE_MF_SD); 12307 break; 12308 case MULTI_FUNCTION_SI: 12309 SET_FLAGS(flags, MODE_MF_SI); 12310 break; 12311 case MULTI_FUNCTION_AFEX: 12312 SET_FLAGS(flags, MODE_MF_AFEX); 12313 break; 12314 } 12315 } else 12316 SET_FLAGS(flags, MODE_SF); 12317 12318 #if defined(__LITTLE_ENDIAN) 12319 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 12320 #else /*(__BIG_ENDIAN)*/ 12321 SET_FLAGS(flags, MODE_BIG_ENDIAN); 12322 #endif 12323 INIT_MODE_FLAGS(bp) = flags; 12324 } 12325 12326 static int bnx2x_init_bp(struct bnx2x *bp) 12327 { 12328 int func; 12329 int rc; 12330 12331 mutex_init(&bp->port.phy_mutex); 12332 mutex_init(&bp->fw_mb_mutex); 12333 mutex_init(&bp->drv_info_mutex); 12334 sema_init(&bp->stats_lock, 1); 12335 bp->drv_info_mng_owner = false; 12336 INIT_LIST_HEAD(&bp->vlan_reg); 12337 12338 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task); 12339 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task); 12340 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task); 12341 INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task); 12342 if (IS_PF(bp)) { 12343 rc = bnx2x_get_hwinfo(bp); 12344 if (rc) 12345 return rc; 12346 } else { 12347 eth_zero_addr(bp->dev->dev_addr); 12348 } 12349 12350 bnx2x_set_modes_bitmap(bp); 12351 12352 rc = bnx2x_alloc_mem_bp(bp); 12353 if (rc) 12354 return rc; 12355 12356 bnx2x_read_fwinfo(bp); 12357 12358 func = BP_FUNC(bp); 12359 12360 /* need to reset chip if undi was active */ 12361 if (IS_PF(bp) && !BP_NOMCP(bp)) { 12362 /* init fw_seq */ 12363 bp->fw_seq = 12364 SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 12365 DRV_MSG_SEQ_NUMBER_MASK; 12366 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); 12367 12368 rc = bnx2x_prev_unload(bp); 12369 if (rc) { 12370 bnx2x_free_mem_bp(bp); 12371 return rc; 12372 } 12373 } 12374 12375 if (CHIP_REV_IS_FPGA(bp)) 12376 dev_err(&bp->pdev->dev, "FPGA detected\n"); 12377 12378 if (BP_NOMCP(bp) && (func == 0)) 12379 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n"); 12380 12381 bp->disable_tpa = disable_tpa; 12382 bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp); 12383 /* Reduce memory usage in kdump environment by disabling TPA */ 12384 bp->disable_tpa |= is_kdump_kernel(); 12385 12386 /* Set TPA flags */ 12387 if (bp->disable_tpa) { 12388 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12389 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12390 } 12391 12392 if (CHIP_IS_E1(bp)) 12393 bp->dropless_fc = false; 12394 else 12395 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp); 12396 12397 bp->mrrs = mrrs; 12398 12399 bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL; 12400 if (IS_VF(bp)) 12401 bp->rx_ring_size = MAX_RX_AVAIL; 12402 12403 /* make sure that the numbers are in the right granularity */ 12404 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR; 12405 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR; 12406 12407 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ; 12408 12409 timer_setup(&bp->timer, bnx2x_timer, 0); 12410 bp->timer.expires = jiffies + bp->current_interval; 12411 12412 if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) && 12413 SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) && 12414 SHMEM2_HAS(bp, dcbx_en) && 12415 SHMEM2_RD(bp, dcbx_lldp_params_offset) && 12416 SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) && 12417 SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) { 12418 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON); 12419 bnx2x_dcbx_init_params(bp); 12420 } else { 12421 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF); 12422 } 12423 12424 if (CHIP_IS_E1x(bp)) 12425 bp->cnic_base_cl_id = FP_SB_MAX_E1x; 12426 else 12427 bp->cnic_base_cl_id = FP_SB_MAX_E2; 12428 12429 /* multiple tx priority */ 12430 if (IS_VF(bp)) 12431 bp->max_cos = 1; 12432 else if (CHIP_IS_E1x(bp)) 12433 bp->max_cos = BNX2X_MULTI_TX_COS_E1X; 12434 else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp)) 12435 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0; 12436 else if (CHIP_IS_E3B0(bp)) 12437 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0; 12438 else 12439 BNX2X_ERR("unknown chip %x revision %x\n", 12440 CHIP_NUM(bp), CHIP_REV(bp)); 12441 BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos); 12442 12443 /* We need at least one default status block for slow-path events, 12444 * second status block for the L2 queue, and a third status block for 12445 * CNIC if supported. 12446 */ 12447 if (IS_VF(bp)) 12448 bp->min_msix_vec_cnt = 1; 12449 else if (CNIC_SUPPORT(bp)) 12450 bp->min_msix_vec_cnt = 3; 12451 else /* PF w/o cnic */ 12452 bp->min_msix_vec_cnt = 2; 12453 BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt); 12454 12455 bp->dump_preset_idx = 1; 12456 12457 return rc; 12458 } 12459 12460 /**************************************************************************** 12461 * General service functions 12462 ****************************************************************************/ 12463 12464 /* 12465 * net_device service functions 12466 */ 12467 12468 /* called with rtnl_lock */ 12469 static int bnx2x_open(struct net_device *dev) 12470 { 12471 struct bnx2x *bp = netdev_priv(dev); 12472 int rc; 12473 12474 bp->stats_init = true; 12475 12476 netif_carrier_off(dev); 12477 12478 bnx2x_set_power_state(bp, PCI_D0); 12479 12480 /* If parity had happen during the unload, then attentions 12481 * and/or RECOVERY_IN_PROGRES may still be set. In this case we 12482 * want the first function loaded on the current engine to 12483 * complete the recovery. 12484 * Parity recovery is only relevant for PF driver. 12485 */ 12486 if (IS_PF(bp)) { 12487 int other_engine = BP_PATH(bp) ? 0 : 1; 12488 bool other_load_status, load_status; 12489 bool global = false; 12490 12491 other_load_status = bnx2x_get_load_status(bp, other_engine); 12492 load_status = bnx2x_get_load_status(bp, BP_PATH(bp)); 12493 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) || 12494 bnx2x_chk_parity_attn(bp, &global, true)) { 12495 do { 12496 /* If there are attentions and they are in a 12497 * global blocks, set the GLOBAL_RESET bit 12498 * regardless whether it will be this function 12499 * that will complete the recovery or not. 12500 */ 12501 if (global) 12502 bnx2x_set_reset_global(bp); 12503 12504 /* Only the first function on the current 12505 * engine should try to recover in open. In case 12506 * of attentions in global blocks only the first 12507 * in the chip should try to recover. 12508 */ 12509 if ((!load_status && 12510 (!global || !other_load_status)) && 12511 bnx2x_trylock_leader_lock(bp) && 12512 !bnx2x_leader_reset(bp)) { 12513 netdev_info(bp->dev, 12514 "Recovered in open\n"); 12515 break; 12516 } 12517 12518 /* recovery has failed... */ 12519 bnx2x_set_power_state(bp, PCI_D3hot); 12520 bp->recovery_state = BNX2X_RECOVERY_FAILED; 12521 12522 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n" 12523 "If you still see this message after a few retries then power cycle is required.\n"); 12524 12525 return -EAGAIN; 12526 } while (0); 12527 } 12528 } 12529 12530 bp->recovery_state = BNX2X_RECOVERY_DONE; 12531 rc = bnx2x_nic_load(bp, LOAD_OPEN); 12532 if (rc) 12533 return rc; 12534 12535 return 0; 12536 } 12537 12538 /* called with rtnl_lock */ 12539 static int bnx2x_close(struct net_device *dev) 12540 { 12541 struct bnx2x *bp = netdev_priv(dev); 12542 12543 /* Unload the driver, release IRQs */ 12544 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 12545 12546 return 0; 12547 } 12548 12549 struct bnx2x_mcast_list_elem_group 12550 { 12551 struct list_head mcast_group_link; 12552 struct bnx2x_mcast_list_elem mcast_elems[]; 12553 }; 12554 12555 #define MCAST_ELEMS_PER_PG \ 12556 ((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \ 12557 sizeof(struct bnx2x_mcast_list_elem)) 12558 12559 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list) 12560 { 12561 struct bnx2x_mcast_list_elem_group *current_mcast_group; 12562 12563 while (!list_empty(mcast_group_list)) { 12564 current_mcast_group = list_first_entry(mcast_group_list, 12565 struct bnx2x_mcast_list_elem_group, 12566 mcast_group_link); 12567 list_del(¤t_mcast_group->mcast_group_link); 12568 free_page((unsigned long)current_mcast_group); 12569 } 12570 } 12571 12572 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp, 12573 struct bnx2x_mcast_ramrod_params *p, 12574 struct list_head *mcast_group_list) 12575 { 12576 struct bnx2x_mcast_list_elem *mc_mac; 12577 struct netdev_hw_addr *ha; 12578 struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL; 12579 int mc_count = netdev_mc_count(bp->dev); 12580 int offset = 0; 12581 12582 INIT_LIST_HEAD(&p->mcast_list); 12583 netdev_for_each_mc_addr(ha, bp->dev) { 12584 if (!offset) { 12585 current_mcast_group = 12586 (struct bnx2x_mcast_list_elem_group *) 12587 __get_free_page(GFP_ATOMIC); 12588 if (!current_mcast_group) { 12589 bnx2x_free_mcast_macs_list(mcast_group_list); 12590 BNX2X_ERR("Failed to allocate mc MAC list\n"); 12591 return -ENOMEM; 12592 } 12593 list_add(¤t_mcast_group->mcast_group_link, 12594 mcast_group_list); 12595 } 12596 mc_mac = ¤t_mcast_group->mcast_elems[offset]; 12597 mc_mac->mac = bnx2x_mc_addr(ha); 12598 list_add_tail(&mc_mac->link, &p->mcast_list); 12599 offset++; 12600 if (offset == MCAST_ELEMS_PER_PG) 12601 offset = 0; 12602 } 12603 p->mcast_list_len = mc_count; 12604 return 0; 12605 } 12606 12607 /** 12608 * bnx2x_set_uc_list - configure a new unicast MACs list. 12609 * 12610 * @bp: driver handle 12611 * 12612 * We will use zero (0) as a MAC type for these MACs. 12613 */ 12614 static int bnx2x_set_uc_list(struct bnx2x *bp) 12615 { 12616 int rc; 12617 struct net_device *dev = bp->dev; 12618 struct netdev_hw_addr *ha; 12619 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; 12620 unsigned long ramrod_flags = 0; 12621 12622 /* First schedule a cleanup up of old configuration */ 12623 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false); 12624 if (rc < 0) { 12625 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc); 12626 return rc; 12627 } 12628 12629 netdev_for_each_uc_addr(ha, dev) { 12630 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true, 12631 BNX2X_UC_LIST_MAC, &ramrod_flags); 12632 if (rc == -EEXIST) { 12633 DP(BNX2X_MSG_SP, 12634 "Failed to schedule ADD operations: %d\n", rc); 12635 /* do not treat adding same MAC as error */ 12636 rc = 0; 12637 12638 } else if (rc < 0) { 12639 12640 BNX2X_ERR("Failed to schedule ADD operations: %d\n", 12641 rc); 12642 return rc; 12643 } 12644 } 12645 12646 /* Execute the pending commands */ 12647 __set_bit(RAMROD_CONT, &ramrod_flags); 12648 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */, 12649 BNX2X_UC_LIST_MAC, &ramrod_flags); 12650 } 12651 12652 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp) 12653 { 12654 LIST_HEAD(mcast_group_list); 12655 struct net_device *dev = bp->dev; 12656 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 12657 int rc = 0; 12658 12659 rparam.mcast_obj = &bp->mcast_obj; 12660 12661 /* first, clear all configured multicast MACs */ 12662 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 12663 if (rc < 0) { 12664 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc); 12665 return rc; 12666 } 12667 12668 /* then, configure a new MACs list */ 12669 if (netdev_mc_count(dev)) { 12670 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list); 12671 if (rc) 12672 return rc; 12673 12674 /* Now add the new MACs */ 12675 rc = bnx2x_config_mcast(bp, &rparam, 12676 BNX2X_MCAST_CMD_ADD); 12677 if (rc < 0) 12678 BNX2X_ERR("Failed to set a new multicast configuration: %d\n", 12679 rc); 12680 12681 bnx2x_free_mcast_macs_list(&mcast_group_list); 12682 } 12683 12684 return rc; 12685 } 12686 12687 static int bnx2x_set_mc_list(struct bnx2x *bp) 12688 { 12689 LIST_HEAD(mcast_group_list); 12690 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 12691 struct net_device *dev = bp->dev; 12692 int rc = 0; 12693 12694 /* On older adapters, we need to flush and re-add filters */ 12695 if (CHIP_IS_E1x(bp)) 12696 return bnx2x_set_mc_list_e1x(bp); 12697 12698 rparam.mcast_obj = &bp->mcast_obj; 12699 12700 if (netdev_mc_count(dev)) { 12701 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list); 12702 if (rc) 12703 return rc; 12704 12705 /* Override the curently configured set of mc filters */ 12706 rc = bnx2x_config_mcast(bp, &rparam, 12707 BNX2X_MCAST_CMD_SET); 12708 if (rc < 0) 12709 BNX2X_ERR("Failed to set a new multicast configuration: %d\n", 12710 rc); 12711 12712 bnx2x_free_mcast_macs_list(&mcast_group_list); 12713 } else { 12714 /* If no mc addresses are required, flush the configuration */ 12715 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 12716 if (rc < 0) 12717 BNX2X_ERR("Failed to clear multicast configuration %d\n", 12718 rc); 12719 } 12720 12721 return rc; 12722 } 12723 12724 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */ 12725 static void bnx2x_set_rx_mode(struct net_device *dev) 12726 { 12727 struct bnx2x *bp = netdev_priv(dev); 12728 12729 if (bp->state != BNX2X_STATE_OPEN) { 12730 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state); 12731 return; 12732 } else { 12733 /* Schedule an SP task to handle rest of change */ 12734 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE, 12735 NETIF_MSG_IFUP); 12736 } 12737 } 12738 12739 void bnx2x_set_rx_mode_inner(struct bnx2x *bp) 12740 { 12741 u32 rx_mode = BNX2X_RX_MODE_NORMAL; 12742 12743 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags); 12744 12745 netif_addr_lock_bh(bp->dev); 12746 12747 if (bp->dev->flags & IFF_PROMISC) { 12748 rx_mode = BNX2X_RX_MODE_PROMISC; 12749 } else if ((bp->dev->flags & IFF_ALLMULTI) || 12750 ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) && 12751 CHIP_IS_E1(bp))) { 12752 rx_mode = BNX2X_RX_MODE_ALLMULTI; 12753 } else { 12754 if (IS_PF(bp)) { 12755 /* some multicasts */ 12756 if (bnx2x_set_mc_list(bp) < 0) 12757 rx_mode = BNX2X_RX_MODE_ALLMULTI; 12758 12759 /* release bh lock, as bnx2x_set_uc_list might sleep */ 12760 netif_addr_unlock_bh(bp->dev); 12761 if (bnx2x_set_uc_list(bp) < 0) 12762 rx_mode = BNX2X_RX_MODE_PROMISC; 12763 netif_addr_lock_bh(bp->dev); 12764 } else { 12765 /* configuring mcast to a vf involves sleeping (when we 12766 * wait for the pf's response). 12767 */ 12768 bnx2x_schedule_sp_rtnl(bp, 12769 BNX2X_SP_RTNL_VFPF_MCAST, 0); 12770 } 12771 } 12772 12773 bp->rx_mode = rx_mode; 12774 /* handle ISCSI SD mode */ 12775 if (IS_MF_ISCSI_ONLY(bp)) 12776 bp->rx_mode = BNX2X_RX_MODE_NONE; 12777 12778 /* Schedule the rx_mode command */ 12779 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) { 12780 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); 12781 netif_addr_unlock_bh(bp->dev); 12782 return; 12783 } 12784 12785 if (IS_PF(bp)) { 12786 bnx2x_set_storm_rx_mode(bp); 12787 netif_addr_unlock_bh(bp->dev); 12788 } else { 12789 /* VF will need to request the PF to make this change, and so 12790 * the VF needs to release the bottom-half lock prior to the 12791 * request (as it will likely require sleep on the VF side) 12792 */ 12793 netif_addr_unlock_bh(bp->dev); 12794 bnx2x_vfpf_storm_rx_mode(bp); 12795 } 12796 } 12797 12798 /* called with rtnl_lock */ 12799 static int bnx2x_mdio_read(struct net_device *netdev, int prtad, 12800 int devad, u16 addr) 12801 { 12802 struct bnx2x *bp = netdev_priv(netdev); 12803 u16 value; 12804 int rc; 12805 12806 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n", 12807 prtad, devad, addr); 12808 12809 /* The HW expects different devad if CL22 is used */ 12810 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; 12811 12812 bnx2x_acquire_phy_lock(bp); 12813 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value); 12814 bnx2x_release_phy_lock(bp); 12815 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc); 12816 12817 if (!rc) 12818 rc = value; 12819 return rc; 12820 } 12821 12822 /* called with rtnl_lock */ 12823 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad, 12824 u16 addr, u16 value) 12825 { 12826 struct bnx2x *bp = netdev_priv(netdev); 12827 int rc; 12828 12829 DP(NETIF_MSG_LINK, 12830 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n", 12831 prtad, devad, addr, value); 12832 12833 /* The HW expects different devad if CL22 is used */ 12834 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; 12835 12836 bnx2x_acquire_phy_lock(bp); 12837 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value); 12838 bnx2x_release_phy_lock(bp); 12839 return rc; 12840 } 12841 12842 /* called with rtnl_lock */ 12843 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 12844 { 12845 struct bnx2x *bp = netdev_priv(dev); 12846 struct mii_ioctl_data *mdio = if_mii(ifr); 12847 12848 if (!netif_running(dev)) 12849 return -EAGAIN; 12850 12851 switch (cmd) { 12852 case SIOCSHWTSTAMP: 12853 return bnx2x_hwtstamp_ioctl(bp, ifr); 12854 default: 12855 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n", 12856 mdio->phy_id, mdio->reg_num, mdio->val_in); 12857 return mdio_mii_ioctl(&bp->mdio, mdio, cmd); 12858 } 12859 } 12860 12861 static int bnx2x_validate_addr(struct net_device *dev) 12862 { 12863 struct bnx2x *bp = netdev_priv(dev); 12864 12865 /* query the bulletin board for mac address configured by the PF */ 12866 if (IS_VF(bp)) 12867 bnx2x_sample_bulletin(bp); 12868 12869 if (!is_valid_ether_addr(dev->dev_addr)) { 12870 BNX2X_ERR("Non-valid Ethernet address\n"); 12871 return -EADDRNOTAVAIL; 12872 } 12873 return 0; 12874 } 12875 12876 static int bnx2x_get_phys_port_id(struct net_device *netdev, 12877 struct netdev_phys_item_id *ppid) 12878 { 12879 struct bnx2x *bp = netdev_priv(netdev); 12880 12881 if (!(bp->flags & HAS_PHYS_PORT_ID)) 12882 return -EOPNOTSUPP; 12883 12884 ppid->id_len = sizeof(bp->phys_port_id); 12885 memcpy(ppid->id, bp->phys_port_id, ppid->id_len); 12886 12887 return 0; 12888 } 12889 12890 static netdev_features_t bnx2x_features_check(struct sk_buff *skb, 12891 struct net_device *dev, 12892 netdev_features_t features) 12893 { 12894 /* 12895 * A skb with gso_size + header length > 9700 will cause a 12896 * firmware panic. Drop GSO support. 12897 * 12898 * Eventually the upper layer should not pass these packets down. 12899 * 12900 * For speed, if the gso_size is <= 9000, assume there will 12901 * not be 700 bytes of headers and pass it through. Only do a 12902 * full (slow) validation if the gso_size is > 9000. 12903 * 12904 * (Due to the way SKB_BY_FRAGS works this will also do a full 12905 * validation in that case.) 12906 */ 12907 if (unlikely(skb_is_gso(skb) && 12908 (skb_shinfo(skb)->gso_size > 9000) && 12909 !skb_gso_validate_mac_len(skb, 9700))) 12910 features &= ~NETIF_F_GSO_MASK; 12911 12912 features = vlan_features_check(skb, features); 12913 return vxlan_features_check(skb, features); 12914 } 12915 12916 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add) 12917 { 12918 int rc; 12919 12920 if (IS_PF(bp)) { 12921 unsigned long ramrod_flags = 0; 12922 12923 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 12924 rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj, 12925 add, &ramrod_flags); 12926 } else { 12927 rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add); 12928 } 12929 12930 return rc; 12931 } 12932 12933 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp) 12934 { 12935 struct bnx2x_vlan_entry *vlan; 12936 int rc = 0; 12937 12938 /* Configure all non-configured entries */ 12939 list_for_each_entry(vlan, &bp->vlan_reg, link) { 12940 if (vlan->hw) 12941 continue; 12942 12943 if (bp->vlan_cnt >= bp->vlan_credit) 12944 return -ENOBUFS; 12945 12946 rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true); 12947 if (rc) { 12948 BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid); 12949 return rc; 12950 } 12951 12952 DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid); 12953 vlan->hw = true; 12954 bp->vlan_cnt++; 12955 } 12956 12957 return 0; 12958 } 12959 12960 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode) 12961 { 12962 bool need_accept_any_vlan; 12963 12964 need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp); 12965 12966 if (bp->accept_any_vlan != need_accept_any_vlan) { 12967 bp->accept_any_vlan = need_accept_any_vlan; 12968 DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n", 12969 bp->accept_any_vlan ? "raised" : "cleared"); 12970 if (set_rx_mode) { 12971 if (IS_PF(bp)) 12972 bnx2x_set_rx_mode_inner(bp); 12973 else 12974 bnx2x_vfpf_storm_rx_mode(bp); 12975 } 12976 } 12977 } 12978 12979 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp) 12980 { 12981 /* Don't set rx mode here. Our caller will do it. */ 12982 bnx2x_vlan_configure(bp, false); 12983 12984 return 0; 12985 } 12986 12987 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid) 12988 { 12989 struct bnx2x *bp = netdev_priv(dev); 12990 struct bnx2x_vlan_entry *vlan; 12991 12992 DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid); 12993 12994 vlan = kmalloc(sizeof(*vlan), GFP_KERNEL); 12995 if (!vlan) 12996 return -ENOMEM; 12997 12998 vlan->vid = vid; 12999 vlan->hw = false; 13000 list_add_tail(&vlan->link, &bp->vlan_reg); 13001 13002 if (netif_running(dev)) 13003 bnx2x_vlan_configure(bp, true); 13004 13005 return 0; 13006 } 13007 13008 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid) 13009 { 13010 struct bnx2x *bp = netdev_priv(dev); 13011 struct bnx2x_vlan_entry *vlan; 13012 bool found = false; 13013 int rc = 0; 13014 13015 DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid); 13016 13017 list_for_each_entry(vlan, &bp->vlan_reg, link) 13018 if (vlan->vid == vid) { 13019 found = true; 13020 break; 13021 } 13022 13023 if (!found) { 13024 BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid); 13025 return -EINVAL; 13026 } 13027 13028 if (netif_running(dev) && vlan->hw) { 13029 rc = __bnx2x_vlan_configure_vid(bp, vid, false); 13030 DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid); 13031 bp->vlan_cnt--; 13032 } 13033 13034 list_del(&vlan->link); 13035 kfree(vlan); 13036 13037 if (netif_running(dev)) 13038 bnx2x_vlan_configure(bp, true); 13039 13040 DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc); 13041 13042 return rc; 13043 } 13044 13045 static const struct net_device_ops bnx2x_netdev_ops = { 13046 .ndo_open = bnx2x_open, 13047 .ndo_stop = bnx2x_close, 13048 .ndo_start_xmit = bnx2x_start_xmit, 13049 .ndo_select_queue = bnx2x_select_queue, 13050 .ndo_set_rx_mode = bnx2x_set_rx_mode, 13051 .ndo_set_mac_address = bnx2x_change_mac_addr, 13052 .ndo_validate_addr = bnx2x_validate_addr, 13053 .ndo_do_ioctl = bnx2x_ioctl, 13054 .ndo_change_mtu = bnx2x_change_mtu, 13055 .ndo_fix_features = bnx2x_fix_features, 13056 .ndo_set_features = bnx2x_set_features, 13057 .ndo_tx_timeout = bnx2x_tx_timeout, 13058 .ndo_vlan_rx_add_vid = bnx2x_vlan_rx_add_vid, 13059 .ndo_vlan_rx_kill_vid = bnx2x_vlan_rx_kill_vid, 13060 .ndo_setup_tc = __bnx2x_setup_tc, 13061 #ifdef CONFIG_BNX2X_SRIOV 13062 .ndo_set_vf_mac = bnx2x_set_vf_mac, 13063 .ndo_set_vf_vlan = bnx2x_set_vf_vlan, 13064 .ndo_get_vf_config = bnx2x_get_vf_config, 13065 .ndo_set_vf_spoofchk = bnx2x_set_vf_spoofchk, 13066 #endif 13067 #ifdef NETDEV_FCOE_WWNN 13068 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn, 13069 #endif 13070 13071 .ndo_get_phys_port_id = bnx2x_get_phys_port_id, 13072 .ndo_set_vf_link_state = bnx2x_set_vf_link_state, 13073 .ndo_features_check = bnx2x_features_check, 13074 .ndo_udp_tunnel_add = udp_tunnel_nic_add_port, 13075 .ndo_udp_tunnel_del = udp_tunnel_nic_del_port, 13076 }; 13077 13078 static int bnx2x_set_coherency_mask(struct bnx2x *bp) 13079 { 13080 struct device *dev = &bp->pdev->dev; 13081 13082 if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 && 13083 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) { 13084 dev_err(dev, "System does not support DMA, aborting\n"); 13085 return -EIO; 13086 } 13087 13088 return 0; 13089 } 13090 13091 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp) 13092 { 13093 if (bp->flags & AER_ENABLED) { 13094 pci_disable_pcie_error_reporting(bp->pdev); 13095 bp->flags &= ~AER_ENABLED; 13096 } 13097 } 13098 13099 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev, 13100 struct net_device *dev, unsigned long board_type) 13101 { 13102 int rc; 13103 u32 pci_cfg_dword; 13104 bool chip_is_e1x = (board_type == BCM57710 || 13105 board_type == BCM57711 || 13106 board_type == BCM57711E); 13107 13108 SET_NETDEV_DEV(dev, &pdev->dev); 13109 13110 bp->dev = dev; 13111 bp->pdev = pdev; 13112 13113 rc = pci_enable_device(pdev); 13114 if (rc) { 13115 dev_err(&bp->pdev->dev, 13116 "Cannot enable PCI device, aborting\n"); 13117 goto err_out; 13118 } 13119 13120 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 13121 dev_err(&bp->pdev->dev, 13122 "Cannot find PCI device base address, aborting\n"); 13123 rc = -ENODEV; 13124 goto err_out_disable; 13125 } 13126 13127 if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) { 13128 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n"); 13129 rc = -ENODEV; 13130 goto err_out_disable; 13131 } 13132 13133 pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword); 13134 if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) == 13135 PCICFG_REVESION_ID_ERROR_VAL) { 13136 pr_err("PCI device error, probably due to fan failure, aborting\n"); 13137 rc = -ENODEV; 13138 goto err_out_disable; 13139 } 13140 13141 if (atomic_read(&pdev->enable_cnt) == 1) { 13142 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 13143 if (rc) { 13144 dev_err(&bp->pdev->dev, 13145 "Cannot obtain PCI resources, aborting\n"); 13146 goto err_out_disable; 13147 } 13148 13149 pci_set_master(pdev); 13150 pci_save_state(pdev); 13151 } 13152 13153 if (IS_PF(bp)) { 13154 if (!pdev->pm_cap) { 13155 dev_err(&bp->pdev->dev, 13156 "Cannot find power management capability, aborting\n"); 13157 rc = -EIO; 13158 goto err_out_release; 13159 } 13160 } 13161 13162 if (!pci_is_pcie(pdev)) { 13163 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n"); 13164 rc = -EIO; 13165 goto err_out_release; 13166 } 13167 13168 rc = bnx2x_set_coherency_mask(bp); 13169 if (rc) 13170 goto err_out_release; 13171 13172 dev->mem_start = pci_resource_start(pdev, 0); 13173 dev->base_addr = dev->mem_start; 13174 dev->mem_end = pci_resource_end(pdev, 0); 13175 13176 dev->irq = pdev->irq; 13177 13178 bp->regview = pci_ioremap_bar(pdev, 0); 13179 if (!bp->regview) { 13180 dev_err(&bp->pdev->dev, 13181 "Cannot map register space, aborting\n"); 13182 rc = -ENOMEM; 13183 goto err_out_release; 13184 } 13185 13186 /* In E1/E1H use pci device function given by kernel. 13187 * In E2/E3 read physical function from ME register since these chips 13188 * support Physical Device Assignment where kernel BDF maybe arbitrary 13189 * (depending on hypervisor). 13190 */ 13191 if (chip_is_e1x) { 13192 bp->pf_num = PCI_FUNC(pdev->devfn); 13193 } else { 13194 /* chip is E2/3*/ 13195 pci_read_config_dword(bp->pdev, 13196 PCICFG_ME_REGISTER, &pci_cfg_dword); 13197 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >> 13198 ME_REG_ABS_PF_NUM_SHIFT); 13199 } 13200 BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num); 13201 13202 /* clean indirect addresses */ 13203 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 13204 PCICFG_VENDOR_ID_OFFSET); 13205 13206 /* Set PCIe reset type to fundamental for EEH recovery */ 13207 pdev->needs_freset = 1; 13208 13209 /* AER (Advanced Error reporting) configuration */ 13210 rc = pci_enable_pcie_error_reporting(pdev); 13211 if (!rc) 13212 bp->flags |= AER_ENABLED; 13213 else 13214 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc); 13215 13216 /* 13217 * Clean the following indirect addresses for all functions since it 13218 * is not used by the driver. 13219 */ 13220 if (IS_PF(bp)) { 13221 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0); 13222 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0); 13223 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0); 13224 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0); 13225 13226 if (chip_is_e1x) { 13227 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0); 13228 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0); 13229 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0); 13230 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0); 13231 } 13232 13233 /* Enable internal target-read (in case we are probed after PF 13234 * FLR). Must be done prior to any BAR read access. Only for 13235 * 57712 and up 13236 */ 13237 if (!chip_is_e1x) 13238 REG_WR(bp, 13239 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 13240 } 13241 13242 dev->watchdog_timeo = TX_TIMEOUT; 13243 13244 dev->netdev_ops = &bnx2x_netdev_ops; 13245 bnx2x_set_ethtool_ops(bp, dev); 13246 13247 dev->priv_flags |= IFF_UNICAST_FLT; 13248 13249 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 13250 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | 13251 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW | 13252 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX; 13253 if (!chip_is_e1x) { 13254 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM | 13255 NETIF_F_GSO_IPXIP4 | 13256 NETIF_F_GSO_UDP_TUNNEL | 13257 NETIF_F_GSO_UDP_TUNNEL_CSUM | 13258 NETIF_F_GSO_PARTIAL; 13259 13260 dev->hw_enc_features = 13261 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13262 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | 13263 NETIF_F_GSO_IPXIP4 | 13264 NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM | 13265 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM | 13266 NETIF_F_GSO_PARTIAL; 13267 13268 dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM | 13269 NETIF_F_GSO_UDP_TUNNEL_CSUM; 13270 13271 if (IS_PF(bp)) 13272 dev->udp_tunnel_nic_info = &bnx2x_udp_tunnels; 13273 } 13274 13275 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 13276 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA; 13277 13278 if (IS_PF(bp)) { 13279 if (chip_is_e1x) 13280 bp->accept_any_vlan = true; 13281 else 13282 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 13283 } 13284 /* For VF we'll know whether to enable VLAN filtering after 13285 * getting a response to CHANNEL_TLV_ACQUIRE from PF. 13286 */ 13287 13288 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX; 13289 dev->features |= NETIF_F_HIGHDMA; 13290 if (dev->features & NETIF_F_LRO) 13291 dev->features &= ~NETIF_F_GRO_HW; 13292 13293 /* Add Loopback capability to the device */ 13294 dev->hw_features |= NETIF_F_LOOPBACK; 13295 13296 #ifdef BCM_DCBNL 13297 dev->dcbnl_ops = &bnx2x_dcbnl_ops; 13298 #endif 13299 13300 /* MTU range, 46 - 9600 */ 13301 dev->min_mtu = ETH_MIN_PACKET_SIZE; 13302 dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE; 13303 13304 /* get_port_hwinfo() will set prtad and mmds properly */ 13305 bp->mdio.prtad = MDIO_PRTAD_NONE; 13306 bp->mdio.mmds = 0; 13307 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22; 13308 bp->mdio.dev = dev; 13309 bp->mdio.mdio_read = bnx2x_mdio_read; 13310 bp->mdio.mdio_write = bnx2x_mdio_write; 13311 13312 return 0; 13313 13314 err_out_release: 13315 if (atomic_read(&pdev->enable_cnt) == 1) 13316 pci_release_regions(pdev); 13317 13318 err_out_disable: 13319 pci_disable_device(pdev); 13320 13321 err_out: 13322 return rc; 13323 } 13324 13325 static int bnx2x_check_firmware(struct bnx2x *bp) 13326 { 13327 const struct firmware *firmware = bp->firmware; 13328 struct bnx2x_fw_file_hdr *fw_hdr; 13329 struct bnx2x_fw_file_section *sections; 13330 u32 offset, len, num_ops; 13331 __be16 *ops_offsets; 13332 int i; 13333 const u8 *fw_ver; 13334 13335 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) { 13336 BNX2X_ERR("Wrong FW size\n"); 13337 return -EINVAL; 13338 } 13339 13340 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data; 13341 sections = (struct bnx2x_fw_file_section *)fw_hdr; 13342 13343 /* Make sure none of the offsets and sizes make us read beyond 13344 * the end of the firmware data */ 13345 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) { 13346 offset = be32_to_cpu(sections[i].offset); 13347 len = be32_to_cpu(sections[i].len); 13348 if (offset + len > firmware->size) { 13349 BNX2X_ERR("Section %d length is out of bounds\n", i); 13350 return -EINVAL; 13351 } 13352 } 13353 13354 /* Likewise for the init_ops offsets */ 13355 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset); 13356 ops_offsets = (__force __be16 *)(firmware->data + offset); 13357 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op); 13358 13359 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) { 13360 if (be16_to_cpu(ops_offsets[i]) > num_ops) { 13361 BNX2X_ERR("Section offset %d is out of bounds\n", i); 13362 return -EINVAL; 13363 } 13364 } 13365 13366 /* Check FW version */ 13367 offset = be32_to_cpu(fw_hdr->fw_version.offset); 13368 fw_ver = firmware->data + offset; 13369 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) || 13370 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) || 13371 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) || 13372 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) { 13373 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n", 13374 fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3], 13375 BCM_5710_FW_MAJOR_VERSION, 13376 BCM_5710_FW_MINOR_VERSION, 13377 BCM_5710_FW_REVISION_VERSION, 13378 BCM_5710_FW_ENGINEERING_VERSION); 13379 return -EINVAL; 13380 } 13381 13382 return 0; 13383 } 13384 13385 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n) 13386 { 13387 const __be32 *source = (const __be32 *)_source; 13388 u32 *target = (u32 *)_target; 13389 u32 i; 13390 13391 for (i = 0; i < n/4; i++) 13392 target[i] = be32_to_cpu(source[i]); 13393 } 13394 13395 /* 13396 Ops array is stored in the following format: 13397 {op(8bit), offset(24bit, big endian), data(32bit, big endian)} 13398 */ 13399 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n) 13400 { 13401 const __be32 *source = (const __be32 *)_source; 13402 struct raw_op *target = (struct raw_op *)_target; 13403 u32 i, j, tmp; 13404 13405 for (i = 0, j = 0; i < n/8; i++, j += 2) { 13406 tmp = be32_to_cpu(source[j]); 13407 target[i].op = (tmp >> 24) & 0xff; 13408 target[i].offset = tmp & 0xffffff; 13409 target[i].raw_data = be32_to_cpu(source[j + 1]); 13410 } 13411 } 13412 13413 /* IRO array is stored in the following format: 13414 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) } 13415 */ 13416 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n) 13417 { 13418 const __be32 *source = (const __be32 *)_source; 13419 struct iro *target = (struct iro *)_target; 13420 u32 i, j, tmp; 13421 13422 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) { 13423 target[i].base = be32_to_cpu(source[j]); 13424 j++; 13425 tmp = be32_to_cpu(source[j]); 13426 target[i].m1 = (tmp >> 16) & 0xffff; 13427 target[i].m2 = tmp & 0xffff; 13428 j++; 13429 tmp = be32_to_cpu(source[j]); 13430 target[i].m3 = (tmp >> 16) & 0xffff; 13431 target[i].size = tmp & 0xffff; 13432 j++; 13433 } 13434 } 13435 13436 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n) 13437 { 13438 const __be16 *source = (const __be16 *)_source; 13439 u16 *target = (u16 *)_target; 13440 u32 i; 13441 13442 for (i = 0; i < n/2; i++) 13443 target[i] = be16_to_cpu(source[i]); 13444 } 13445 13446 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \ 13447 do { \ 13448 u32 len = be32_to_cpu(fw_hdr->arr.len); \ 13449 bp->arr = kmalloc(len, GFP_KERNEL); \ 13450 if (!bp->arr) \ 13451 goto lbl; \ 13452 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \ 13453 (u8 *)bp->arr, len); \ 13454 } while (0) 13455 13456 static int bnx2x_init_firmware(struct bnx2x *bp) 13457 { 13458 const char *fw_file_name; 13459 struct bnx2x_fw_file_hdr *fw_hdr; 13460 int rc; 13461 13462 if (bp->firmware) 13463 return 0; 13464 13465 if (CHIP_IS_E1(bp)) 13466 fw_file_name = FW_FILE_NAME_E1; 13467 else if (CHIP_IS_E1H(bp)) 13468 fw_file_name = FW_FILE_NAME_E1H; 13469 else if (!CHIP_IS_E1x(bp)) 13470 fw_file_name = FW_FILE_NAME_E2; 13471 else { 13472 BNX2X_ERR("Unsupported chip revision\n"); 13473 return -EINVAL; 13474 } 13475 BNX2X_DEV_INFO("Loading %s\n", fw_file_name); 13476 13477 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev); 13478 if (rc) { 13479 BNX2X_ERR("Can't load firmware file %s\n", 13480 fw_file_name); 13481 goto request_firmware_exit; 13482 } 13483 13484 rc = bnx2x_check_firmware(bp); 13485 if (rc) { 13486 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name); 13487 goto request_firmware_exit; 13488 } 13489 13490 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data; 13491 13492 /* Initialize the pointers to the init arrays */ 13493 /* Blob */ 13494 rc = -ENOMEM; 13495 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n); 13496 13497 /* Opcodes */ 13498 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops); 13499 13500 /* Offsets */ 13501 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err, 13502 be16_to_cpu_n); 13503 13504 /* STORMs firmware */ 13505 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13506 be32_to_cpu(fw_hdr->tsem_int_table_data.offset); 13507 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data + 13508 be32_to_cpu(fw_hdr->tsem_pram_data.offset); 13509 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13510 be32_to_cpu(fw_hdr->usem_int_table_data.offset); 13511 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data + 13512 be32_to_cpu(fw_hdr->usem_pram_data.offset); 13513 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13514 be32_to_cpu(fw_hdr->xsem_int_table_data.offset); 13515 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data + 13516 be32_to_cpu(fw_hdr->xsem_pram_data.offset); 13517 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13518 be32_to_cpu(fw_hdr->csem_int_table_data.offset); 13519 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data + 13520 be32_to_cpu(fw_hdr->csem_pram_data.offset); 13521 /* IRO */ 13522 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro); 13523 13524 return 0; 13525 13526 iro_alloc_err: 13527 kfree(bp->init_ops_offsets); 13528 init_offsets_alloc_err: 13529 kfree(bp->init_ops); 13530 init_ops_alloc_err: 13531 kfree(bp->init_data); 13532 request_firmware_exit: 13533 release_firmware(bp->firmware); 13534 bp->firmware = NULL; 13535 13536 return rc; 13537 } 13538 13539 static void bnx2x_release_firmware(struct bnx2x *bp) 13540 { 13541 kfree(bp->init_ops_offsets); 13542 kfree(bp->init_ops); 13543 kfree(bp->init_data); 13544 release_firmware(bp->firmware); 13545 bp->firmware = NULL; 13546 } 13547 13548 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = { 13549 .init_hw_cmn_chip = bnx2x_init_hw_common_chip, 13550 .init_hw_cmn = bnx2x_init_hw_common, 13551 .init_hw_port = bnx2x_init_hw_port, 13552 .init_hw_func = bnx2x_init_hw_func, 13553 13554 .reset_hw_cmn = bnx2x_reset_common, 13555 .reset_hw_port = bnx2x_reset_port, 13556 .reset_hw_func = bnx2x_reset_func, 13557 13558 .gunzip_init = bnx2x_gunzip_init, 13559 .gunzip_end = bnx2x_gunzip_end, 13560 13561 .init_fw = bnx2x_init_firmware, 13562 .release_fw = bnx2x_release_firmware, 13563 }; 13564 13565 void bnx2x__init_func_obj(struct bnx2x *bp) 13566 { 13567 /* Prepare DMAE related driver resources */ 13568 bnx2x_setup_dmae(bp); 13569 13570 bnx2x_init_func_obj(bp, &bp->func_obj, 13571 bnx2x_sp(bp, func_rdata), 13572 bnx2x_sp_mapping(bp, func_rdata), 13573 bnx2x_sp(bp, func_afex_rdata), 13574 bnx2x_sp_mapping(bp, func_afex_rdata), 13575 &bnx2x_func_sp_drv); 13576 } 13577 13578 /* must be called after sriov-enable */ 13579 static int bnx2x_set_qm_cid_count(struct bnx2x *bp) 13580 { 13581 int cid_count = BNX2X_L2_MAX_CID(bp); 13582 13583 if (IS_SRIOV(bp)) 13584 cid_count += BNX2X_VF_CIDS; 13585 13586 if (CNIC_SUPPORT(bp)) 13587 cid_count += CNIC_CID_MAX; 13588 13589 return roundup(cid_count, QM_CID_ROUND); 13590 } 13591 13592 /** 13593 * bnx2x_get_num_none_def_sbs - return the number of none default SBs 13594 * @pdev: pci device 13595 * @cnic_cnt: count 13596 * 13597 */ 13598 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt) 13599 { 13600 int index; 13601 u16 control = 0; 13602 13603 /* 13604 * If MSI-X is not supported - return number of SBs needed to support 13605 * one fast path queue: one FP queue + SB for CNIC 13606 */ 13607 if (!pdev->msix_cap) { 13608 dev_info(&pdev->dev, "no msix capability found\n"); 13609 return 1 + cnic_cnt; 13610 } 13611 dev_info(&pdev->dev, "msix capability found\n"); 13612 13613 /* 13614 * The value in the PCI configuration space is the index of the last 13615 * entry, namely one less than the actual size of the table, which is 13616 * exactly what we want to return from this function: number of all SBs 13617 * without the default SB. 13618 * For VFs there is no default SB, then we return (index+1). 13619 */ 13620 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control); 13621 13622 index = control & PCI_MSIX_FLAGS_QSIZE; 13623 13624 return index; 13625 } 13626 13627 static int set_max_cos_est(int chip_id) 13628 { 13629 switch (chip_id) { 13630 case BCM57710: 13631 case BCM57711: 13632 case BCM57711E: 13633 return BNX2X_MULTI_TX_COS_E1X; 13634 case BCM57712: 13635 case BCM57712_MF: 13636 return BNX2X_MULTI_TX_COS_E2_E3A0; 13637 case BCM57800: 13638 case BCM57800_MF: 13639 case BCM57810: 13640 case BCM57810_MF: 13641 case BCM57840_4_10: 13642 case BCM57840_2_20: 13643 case BCM57840_O: 13644 case BCM57840_MFO: 13645 case BCM57840_MF: 13646 case BCM57811: 13647 case BCM57811_MF: 13648 return BNX2X_MULTI_TX_COS_E3B0; 13649 case BCM57712_VF: 13650 case BCM57800_VF: 13651 case BCM57810_VF: 13652 case BCM57840_VF: 13653 case BCM57811_VF: 13654 return 1; 13655 default: 13656 pr_err("Unknown board_type (%d), aborting\n", chip_id); 13657 return -ENODEV; 13658 } 13659 } 13660 13661 static int set_is_vf(int chip_id) 13662 { 13663 switch (chip_id) { 13664 case BCM57712_VF: 13665 case BCM57800_VF: 13666 case BCM57810_VF: 13667 case BCM57840_VF: 13668 case BCM57811_VF: 13669 return true; 13670 default: 13671 return false; 13672 } 13673 } 13674 13675 /* nig_tsgen registers relative address */ 13676 #define tsgen_ctrl 0x0 13677 #define tsgen_freecount 0x10 13678 #define tsgen_synctime_t0 0x20 13679 #define tsgen_offset_t0 0x28 13680 #define tsgen_drift_t0 0x30 13681 #define tsgen_synctime_t1 0x58 13682 #define tsgen_offset_t1 0x60 13683 #define tsgen_drift_t1 0x68 13684 13685 /* FW workaround for setting drift */ 13686 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir, 13687 int best_val, int best_period) 13688 { 13689 struct bnx2x_func_state_params func_params = {NULL}; 13690 struct bnx2x_func_set_timesync_params *set_timesync_params = 13691 &func_params.params.set_timesync; 13692 13693 /* Prepare parameters for function state transitions */ 13694 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 13695 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 13696 13697 func_params.f_obj = &bp->func_obj; 13698 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC; 13699 13700 /* Function parameters */ 13701 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET; 13702 set_timesync_params->offset_cmd = TS_OFFSET_KEEP; 13703 set_timesync_params->add_sub_drift_adjust_value = 13704 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE; 13705 set_timesync_params->drift_adjust_value = best_val; 13706 set_timesync_params->drift_adjust_period = best_period; 13707 13708 return bnx2x_func_state_change(bp, &func_params); 13709 } 13710 13711 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) 13712 { 13713 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13714 int rc; 13715 int drift_dir = 1; 13716 int val, period, period1, period2, dif, dif1, dif2; 13717 int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0; 13718 13719 DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb); 13720 13721 if (!netif_running(bp->dev)) { 13722 DP(BNX2X_MSG_PTP, 13723 "PTP adjfreq called while the interface is down\n"); 13724 return -ENETDOWN; 13725 } 13726 13727 if (ppb < 0) { 13728 ppb = -ppb; 13729 drift_dir = 0; 13730 } 13731 13732 if (ppb == 0) { 13733 best_val = 1; 13734 best_period = 0x1FFFFFF; 13735 } else if (ppb >= BNX2X_MAX_PHC_DRIFT) { 13736 best_val = 31; 13737 best_period = 1; 13738 } else { 13739 /* Changed not to allow val = 8, 16, 24 as these values 13740 * are not supported in workaround. 13741 */ 13742 for (val = 0; val <= 31; val++) { 13743 if ((val & 0x7) == 0) 13744 continue; 13745 period1 = val * 1000000 / ppb; 13746 period2 = period1 + 1; 13747 if (period1 != 0) 13748 dif1 = ppb - (val * 1000000 / period1); 13749 else 13750 dif1 = BNX2X_MAX_PHC_DRIFT; 13751 if (dif1 < 0) 13752 dif1 = -dif1; 13753 dif2 = ppb - (val * 1000000 / period2); 13754 if (dif2 < 0) 13755 dif2 = -dif2; 13756 dif = (dif1 < dif2) ? dif1 : dif2; 13757 period = (dif1 < dif2) ? period1 : period2; 13758 if (dif < best_dif) { 13759 best_dif = dif; 13760 best_val = val; 13761 best_period = period; 13762 } 13763 } 13764 } 13765 13766 rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val, 13767 best_period); 13768 if (rc) { 13769 BNX2X_ERR("Failed to set drift\n"); 13770 return -EFAULT; 13771 } 13772 13773 DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val, 13774 best_period); 13775 13776 return 0; 13777 } 13778 13779 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 13780 { 13781 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13782 13783 if (!netif_running(bp->dev)) { 13784 DP(BNX2X_MSG_PTP, 13785 "PTP adjtime called while the interface is down\n"); 13786 return -ENETDOWN; 13787 } 13788 13789 DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta); 13790 13791 timecounter_adjtime(&bp->timecounter, delta); 13792 13793 return 0; 13794 } 13795 13796 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) 13797 { 13798 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13799 u64 ns; 13800 13801 if (!netif_running(bp->dev)) { 13802 DP(BNX2X_MSG_PTP, 13803 "PTP gettime called while the interface is down\n"); 13804 return -ENETDOWN; 13805 } 13806 13807 ns = timecounter_read(&bp->timecounter); 13808 13809 DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns); 13810 13811 *ts = ns_to_timespec64(ns); 13812 13813 return 0; 13814 } 13815 13816 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp, 13817 const struct timespec64 *ts) 13818 { 13819 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13820 u64 ns; 13821 13822 if (!netif_running(bp->dev)) { 13823 DP(BNX2X_MSG_PTP, 13824 "PTP settime called while the interface is down\n"); 13825 return -ENETDOWN; 13826 } 13827 13828 ns = timespec64_to_ns(ts); 13829 13830 DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns); 13831 13832 /* Re-init the timecounter */ 13833 timecounter_init(&bp->timecounter, &bp->cyclecounter, ns); 13834 13835 return 0; 13836 } 13837 13838 /* Enable (or disable) ancillary features of the phc subsystem */ 13839 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp, 13840 struct ptp_clock_request *rq, int on) 13841 { 13842 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13843 13844 BNX2X_ERR("PHC ancillary features are not supported\n"); 13845 return -ENOTSUPP; 13846 } 13847 13848 void bnx2x_register_phc(struct bnx2x *bp) 13849 { 13850 /* Fill the ptp_clock_info struct and register PTP clock*/ 13851 bp->ptp_clock_info.owner = THIS_MODULE; 13852 snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name); 13853 bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */ 13854 bp->ptp_clock_info.n_alarm = 0; 13855 bp->ptp_clock_info.n_ext_ts = 0; 13856 bp->ptp_clock_info.n_per_out = 0; 13857 bp->ptp_clock_info.pps = 0; 13858 bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq; 13859 bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime; 13860 bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime; 13861 bp->ptp_clock_info.settime64 = bnx2x_ptp_settime; 13862 bp->ptp_clock_info.enable = bnx2x_ptp_enable; 13863 13864 bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev); 13865 if (IS_ERR(bp->ptp_clock)) { 13866 bp->ptp_clock = NULL; 13867 BNX2X_ERR("PTP clock registration failed\n"); 13868 } 13869 } 13870 13871 static int bnx2x_init_one(struct pci_dev *pdev, 13872 const struct pci_device_id *ent) 13873 { 13874 struct net_device *dev = NULL; 13875 struct bnx2x *bp; 13876 int rc, max_non_def_sbs; 13877 int rx_count, tx_count, rss_count, doorbell_size; 13878 int max_cos_est; 13879 bool is_vf; 13880 int cnic_cnt; 13881 13882 /* Management FW 'remembers' living interfaces. Allow it some time 13883 * to forget previously living interfaces, allowing a proper re-load. 13884 */ 13885 if (is_kdump_kernel()) { 13886 ktime_t now = ktime_get_boottime(); 13887 ktime_t fw_ready_time = ktime_set(5, 0); 13888 13889 if (ktime_before(now, fw_ready_time)) 13890 msleep(ktime_ms_delta(fw_ready_time, now)); 13891 } 13892 13893 /* An estimated maximum supported CoS number according to the chip 13894 * version. 13895 * We will try to roughly estimate the maximum number of CoSes this chip 13896 * may support in order to minimize the memory allocated for Tx 13897 * netdev_queue's. This number will be accurately calculated during the 13898 * initialization of bp->max_cos based on the chip versions AND chip 13899 * revision in the bnx2x_init_bp(). 13900 */ 13901 max_cos_est = set_max_cos_est(ent->driver_data); 13902 if (max_cos_est < 0) 13903 return max_cos_est; 13904 is_vf = set_is_vf(ent->driver_data); 13905 cnic_cnt = is_vf ? 0 : 1; 13906 13907 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt); 13908 13909 /* add another SB for VF as it has no default SB */ 13910 max_non_def_sbs += is_vf ? 1 : 0; 13911 13912 /* Maximum number of RSS queues: one IGU SB goes to CNIC */ 13913 rss_count = max_non_def_sbs - cnic_cnt; 13914 13915 if (rss_count < 1) 13916 return -EINVAL; 13917 13918 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */ 13919 rx_count = rss_count + cnic_cnt; 13920 13921 /* Maximum number of netdev Tx queues: 13922 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2 13923 */ 13924 tx_count = rss_count * max_cos_est + cnic_cnt; 13925 13926 /* dev zeroed in init_etherdev */ 13927 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count); 13928 if (!dev) 13929 return -ENOMEM; 13930 13931 bp = netdev_priv(dev); 13932 13933 bp->flags = 0; 13934 if (is_vf) 13935 bp->flags |= IS_VF_FLAG; 13936 13937 bp->igu_sb_cnt = max_non_def_sbs; 13938 bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM; 13939 bp->msg_enable = debug; 13940 bp->cnic_support = cnic_cnt; 13941 bp->cnic_probe = bnx2x_cnic_probe; 13942 13943 pci_set_drvdata(pdev, dev); 13944 13945 rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data); 13946 if (rc < 0) { 13947 free_netdev(dev); 13948 return rc; 13949 } 13950 13951 BNX2X_DEV_INFO("This is a %s function\n", 13952 IS_PF(bp) ? "physical" : "virtual"); 13953 BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off"); 13954 BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs); 13955 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n", 13956 tx_count, rx_count); 13957 13958 rc = bnx2x_init_bp(bp); 13959 if (rc) 13960 goto init_one_exit; 13961 13962 /* Map doorbells here as we need the real value of bp->max_cos which 13963 * is initialized in bnx2x_init_bp() to determine the number of 13964 * l2 connections. 13965 */ 13966 if (IS_VF(bp)) { 13967 bp->doorbells = bnx2x_vf_doorbells(bp); 13968 rc = bnx2x_vf_pci_alloc(bp); 13969 if (rc) 13970 goto init_one_freemem; 13971 } else { 13972 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT); 13973 if (doorbell_size > pci_resource_len(pdev, 2)) { 13974 dev_err(&bp->pdev->dev, 13975 "Cannot map doorbells, bar size too small, aborting\n"); 13976 rc = -ENOMEM; 13977 goto init_one_freemem; 13978 } 13979 bp->doorbells = ioremap(pci_resource_start(pdev, 2), 13980 doorbell_size); 13981 } 13982 if (!bp->doorbells) { 13983 dev_err(&bp->pdev->dev, 13984 "Cannot map doorbell space, aborting\n"); 13985 rc = -ENOMEM; 13986 goto init_one_freemem; 13987 } 13988 13989 if (IS_VF(bp)) { 13990 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count); 13991 if (rc) 13992 goto init_one_freemem; 13993 13994 #ifdef CONFIG_BNX2X_SRIOV 13995 /* VF with OLD Hypervisor or old PF do not support filtering */ 13996 if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) { 13997 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 13998 dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 13999 } 14000 #endif 14001 } 14002 14003 /* Enable SRIOV if capability found in configuration space */ 14004 rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS); 14005 if (rc) 14006 goto init_one_freemem; 14007 14008 /* calc qm_cid_count */ 14009 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp); 14010 BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count); 14011 14012 /* disable FCOE L2 queue for E1x*/ 14013 if (CHIP_IS_E1x(bp)) 14014 bp->flags |= NO_FCOE_FLAG; 14015 14016 /* Set bp->num_queues for MSI-X mode*/ 14017 bnx2x_set_num_queues(bp); 14018 14019 /* Configure interrupt mode: try to enable MSI-X/MSI if 14020 * needed. 14021 */ 14022 rc = bnx2x_set_int_mode(bp); 14023 if (rc) { 14024 dev_err(&pdev->dev, "Cannot set interrupts\n"); 14025 goto init_one_freemem; 14026 } 14027 BNX2X_DEV_INFO("set interrupts successfully\n"); 14028 14029 /* register the net device */ 14030 rc = register_netdev(dev); 14031 if (rc) { 14032 dev_err(&pdev->dev, "Cannot register net device\n"); 14033 goto init_one_freemem; 14034 } 14035 BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name); 14036 14037 if (!NO_FCOE(bp)) { 14038 /* Add storage MAC address */ 14039 rtnl_lock(); 14040 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); 14041 rtnl_unlock(); 14042 } 14043 BNX2X_DEV_INFO( 14044 "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n", 14045 board_info[ent->driver_data].name, 14046 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4), 14047 dev->base_addr, bp->pdev->irq, dev->dev_addr); 14048 pcie_print_link_status(bp->pdev); 14049 14050 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) 14051 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED); 14052 14053 return 0; 14054 14055 init_one_freemem: 14056 bnx2x_free_mem_bp(bp); 14057 14058 init_one_exit: 14059 bnx2x_disable_pcie_error_reporting(bp); 14060 14061 if (bp->regview) 14062 iounmap(bp->regview); 14063 14064 if (IS_PF(bp) && bp->doorbells) 14065 iounmap(bp->doorbells); 14066 14067 free_netdev(dev); 14068 14069 if (atomic_read(&pdev->enable_cnt) == 1) 14070 pci_release_regions(pdev); 14071 14072 pci_disable_device(pdev); 14073 14074 return rc; 14075 } 14076 14077 static void __bnx2x_remove(struct pci_dev *pdev, 14078 struct net_device *dev, 14079 struct bnx2x *bp, 14080 bool remove_netdev) 14081 { 14082 /* Delete storage MAC address */ 14083 if (!NO_FCOE(bp)) { 14084 rtnl_lock(); 14085 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); 14086 rtnl_unlock(); 14087 } 14088 14089 #ifdef BCM_DCBNL 14090 /* Delete app tlvs from dcbnl */ 14091 bnx2x_dcbnl_update_applist(bp, true); 14092 #endif 14093 14094 if (IS_PF(bp) && 14095 !BP_NOMCP(bp) && 14096 (bp->flags & BC_SUPPORTS_RMMOD_CMD)) 14097 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0); 14098 14099 /* Close the interface - either directly or implicitly */ 14100 if (remove_netdev) { 14101 unregister_netdev(dev); 14102 } else { 14103 rtnl_lock(); 14104 dev_close(dev); 14105 rtnl_unlock(); 14106 } 14107 14108 bnx2x_iov_remove_one(bp); 14109 14110 /* Power on: we can't let PCI layer write to us while we are in D3 */ 14111 if (IS_PF(bp)) { 14112 bnx2x_set_power_state(bp, PCI_D0); 14113 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED); 14114 14115 /* Set endianity registers to reset values in case next driver 14116 * boots in different endianty environment. 14117 */ 14118 bnx2x_reset_endianity(bp); 14119 } 14120 14121 /* Disable MSI/MSI-X */ 14122 bnx2x_disable_msi(bp); 14123 14124 /* Power off */ 14125 if (IS_PF(bp)) 14126 bnx2x_set_power_state(bp, PCI_D3hot); 14127 14128 /* Make sure RESET task is not scheduled before continuing */ 14129 cancel_delayed_work_sync(&bp->sp_rtnl_task); 14130 14131 /* send message via vfpf channel to release the resources of this vf */ 14132 if (IS_VF(bp)) 14133 bnx2x_vfpf_release(bp); 14134 14135 /* Assumes no further PCIe PM changes will occur */ 14136 if (system_state == SYSTEM_POWER_OFF) { 14137 pci_wake_from_d3(pdev, bp->wol); 14138 pci_set_power_state(pdev, PCI_D3hot); 14139 } 14140 14141 bnx2x_disable_pcie_error_reporting(bp); 14142 if (remove_netdev) { 14143 if (bp->regview) 14144 iounmap(bp->regview); 14145 14146 /* For vfs, doorbells are part of the regview and were unmapped 14147 * along with it. FW is only loaded by PF. 14148 */ 14149 if (IS_PF(bp)) { 14150 if (bp->doorbells) 14151 iounmap(bp->doorbells); 14152 14153 bnx2x_release_firmware(bp); 14154 } else { 14155 bnx2x_vf_pci_dealloc(bp); 14156 } 14157 bnx2x_free_mem_bp(bp); 14158 14159 free_netdev(dev); 14160 14161 if (atomic_read(&pdev->enable_cnt) == 1) 14162 pci_release_regions(pdev); 14163 14164 pci_disable_device(pdev); 14165 } 14166 } 14167 14168 static void bnx2x_remove_one(struct pci_dev *pdev) 14169 { 14170 struct net_device *dev = pci_get_drvdata(pdev); 14171 struct bnx2x *bp; 14172 14173 if (!dev) { 14174 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 14175 return; 14176 } 14177 bp = netdev_priv(dev); 14178 14179 __bnx2x_remove(pdev, dev, bp, true); 14180 } 14181 14182 static int bnx2x_eeh_nic_unload(struct bnx2x *bp) 14183 { 14184 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; 14185 14186 bp->rx_mode = BNX2X_RX_MODE_NONE; 14187 14188 if (CNIC_LOADED(bp)) 14189 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); 14190 14191 /* Stop Tx */ 14192 bnx2x_tx_disable(bp); 14193 /* Delete all NAPI objects */ 14194 bnx2x_del_all_napi(bp); 14195 if (CNIC_LOADED(bp)) 14196 bnx2x_del_all_napi_cnic(bp); 14197 netdev_reset_tc(bp->dev); 14198 14199 del_timer_sync(&bp->timer); 14200 cancel_delayed_work_sync(&bp->sp_task); 14201 cancel_delayed_work_sync(&bp->period_task); 14202 14203 if (!down_timeout(&bp->stats_lock, HZ / 10)) { 14204 bp->stats_state = STATS_STATE_DISABLED; 14205 up(&bp->stats_lock); 14206 } 14207 14208 bnx2x_save_statistics(bp); 14209 14210 netif_carrier_off(bp->dev); 14211 14212 return 0; 14213 } 14214 14215 /** 14216 * bnx2x_io_error_detected - called when PCI error is detected 14217 * @pdev: Pointer to PCI device 14218 * @state: The current pci connection state 14219 * 14220 * This function is called after a PCI bus error affecting 14221 * this device has been detected. 14222 */ 14223 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev, 14224 pci_channel_state_t state) 14225 { 14226 struct net_device *dev = pci_get_drvdata(pdev); 14227 struct bnx2x *bp = netdev_priv(dev); 14228 14229 rtnl_lock(); 14230 14231 BNX2X_ERR("IO error detected\n"); 14232 14233 netif_device_detach(dev); 14234 14235 if (state == pci_channel_io_perm_failure) { 14236 rtnl_unlock(); 14237 return PCI_ERS_RESULT_DISCONNECT; 14238 } 14239 14240 if (netif_running(dev)) 14241 bnx2x_eeh_nic_unload(bp); 14242 14243 bnx2x_prev_path_mark_eeh(bp); 14244 14245 pci_disable_device(pdev); 14246 14247 rtnl_unlock(); 14248 14249 /* Request a slot reset */ 14250 return PCI_ERS_RESULT_NEED_RESET; 14251 } 14252 14253 /** 14254 * bnx2x_io_slot_reset - called after the PCI bus has been reset 14255 * @pdev: Pointer to PCI device 14256 * 14257 * Restart the card from scratch, as if from a cold-boot. 14258 */ 14259 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev) 14260 { 14261 struct net_device *dev = pci_get_drvdata(pdev); 14262 struct bnx2x *bp = netdev_priv(dev); 14263 int i; 14264 14265 rtnl_lock(); 14266 BNX2X_ERR("IO slot reset initializing...\n"); 14267 if (pci_enable_device(pdev)) { 14268 dev_err(&pdev->dev, 14269 "Cannot re-enable PCI device after reset\n"); 14270 rtnl_unlock(); 14271 return PCI_ERS_RESULT_DISCONNECT; 14272 } 14273 14274 pci_set_master(pdev); 14275 pci_restore_state(pdev); 14276 pci_save_state(pdev); 14277 14278 if (netif_running(dev)) 14279 bnx2x_set_power_state(bp, PCI_D0); 14280 14281 if (netif_running(dev)) { 14282 BNX2X_ERR("IO slot reset --> driver unload\n"); 14283 14284 /* MCP should have been reset; Need to wait for validity */ 14285 if (bnx2x_init_shmem(bp)) { 14286 rtnl_unlock(); 14287 return PCI_ERS_RESULT_DISCONNECT; 14288 } 14289 14290 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 14291 u32 v; 14292 14293 v = SHMEM2_RD(bp, 14294 drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 14295 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 14296 v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 14297 } 14298 bnx2x_drain_tx_queues(bp); 14299 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY); 14300 bnx2x_netif_stop(bp, 1); 14301 bnx2x_free_irq(bp); 14302 14303 /* Report UNLOAD_DONE to MCP */ 14304 bnx2x_send_unload_done(bp, true); 14305 14306 bp->sp_state = 0; 14307 bp->port.pmf = 0; 14308 14309 bnx2x_prev_unload(bp); 14310 14311 /* We should have reseted the engine, so It's fair to 14312 * assume the FW will no longer write to the bnx2x driver. 14313 */ 14314 bnx2x_squeeze_objects(bp); 14315 bnx2x_free_skbs(bp); 14316 for_each_rx_queue(bp, i) 14317 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 14318 bnx2x_free_fp_mem(bp); 14319 bnx2x_free_mem(bp); 14320 14321 bp->state = BNX2X_STATE_CLOSED; 14322 } 14323 14324 rtnl_unlock(); 14325 14326 return PCI_ERS_RESULT_RECOVERED; 14327 } 14328 14329 /** 14330 * bnx2x_io_resume - called when traffic can start flowing again 14331 * @pdev: Pointer to PCI device 14332 * 14333 * This callback is called when the error recovery driver tells us that 14334 * its OK to resume normal operation. 14335 */ 14336 static void bnx2x_io_resume(struct pci_dev *pdev) 14337 { 14338 struct net_device *dev = pci_get_drvdata(pdev); 14339 struct bnx2x *bp = netdev_priv(dev); 14340 14341 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 14342 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n"); 14343 return; 14344 } 14345 14346 rtnl_lock(); 14347 14348 bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 14349 DRV_MSG_SEQ_NUMBER_MASK; 14350 14351 if (netif_running(dev)) 14352 bnx2x_nic_load(bp, LOAD_NORMAL); 14353 14354 netif_device_attach(dev); 14355 14356 rtnl_unlock(); 14357 } 14358 14359 static const struct pci_error_handlers bnx2x_err_handler = { 14360 .error_detected = bnx2x_io_error_detected, 14361 .slot_reset = bnx2x_io_slot_reset, 14362 .resume = bnx2x_io_resume, 14363 }; 14364 14365 static void bnx2x_shutdown(struct pci_dev *pdev) 14366 { 14367 struct net_device *dev = pci_get_drvdata(pdev); 14368 struct bnx2x *bp; 14369 14370 if (!dev) 14371 return; 14372 14373 bp = netdev_priv(dev); 14374 if (!bp) 14375 return; 14376 14377 rtnl_lock(); 14378 netif_device_detach(dev); 14379 rtnl_unlock(); 14380 14381 /* Don't remove the netdevice, as there are scenarios which will cause 14382 * the kernel to hang, e.g., when trying to remove bnx2i while the 14383 * rootfs is mounted from SAN. 14384 */ 14385 __bnx2x_remove(pdev, dev, bp, false); 14386 } 14387 14388 static struct pci_driver bnx2x_pci_driver = { 14389 .name = DRV_MODULE_NAME, 14390 .id_table = bnx2x_pci_tbl, 14391 .probe = bnx2x_init_one, 14392 .remove = bnx2x_remove_one, 14393 .driver.pm = &bnx2x_pm_ops, 14394 .err_handler = &bnx2x_err_handler, 14395 #ifdef CONFIG_BNX2X_SRIOV 14396 .sriov_configure = bnx2x_sriov_configure, 14397 #endif 14398 .shutdown = bnx2x_shutdown, 14399 }; 14400 14401 static int __init bnx2x_init(void) 14402 { 14403 int ret; 14404 14405 bnx2x_wq = create_singlethread_workqueue("bnx2x"); 14406 if (bnx2x_wq == NULL) { 14407 pr_err("Cannot create workqueue\n"); 14408 return -ENOMEM; 14409 } 14410 bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov"); 14411 if (!bnx2x_iov_wq) { 14412 pr_err("Cannot create iov workqueue\n"); 14413 destroy_workqueue(bnx2x_wq); 14414 return -ENOMEM; 14415 } 14416 14417 ret = pci_register_driver(&bnx2x_pci_driver); 14418 if (ret) { 14419 pr_err("Cannot register driver\n"); 14420 destroy_workqueue(bnx2x_wq); 14421 destroy_workqueue(bnx2x_iov_wq); 14422 } 14423 return ret; 14424 } 14425 14426 static void __exit bnx2x_cleanup(void) 14427 { 14428 struct list_head *pos, *q; 14429 14430 pci_unregister_driver(&bnx2x_pci_driver); 14431 14432 destroy_workqueue(bnx2x_wq); 14433 destroy_workqueue(bnx2x_iov_wq); 14434 14435 /* Free globally allocated resources */ 14436 list_for_each_safe(pos, q, &bnx2x_prev_list) { 14437 struct bnx2x_prev_path_list *tmp = 14438 list_entry(pos, struct bnx2x_prev_path_list, list); 14439 list_del(pos); 14440 kfree(tmp); 14441 } 14442 } 14443 14444 void bnx2x_notify_link_changed(struct bnx2x *bp) 14445 { 14446 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1); 14447 } 14448 14449 module_init(bnx2x_init); 14450 module_exit(bnx2x_cleanup); 14451 14452 /** 14453 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s). 14454 * @bp: driver handle 14455 * 14456 * This function will wait until the ramrod completion returns. 14457 * Return 0 if success, -ENODEV if ramrod doesn't return. 14458 */ 14459 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp) 14460 { 14461 unsigned long ramrod_flags = 0; 14462 14463 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 14464 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac, 14465 &bp->iscsi_l2_mac_obj, true, 14466 BNX2X_ISCSI_ETH_MAC, &ramrod_flags); 14467 } 14468 14469 /* count denotes the number of new completions we have seen */ 14470 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count) 14471 { 14472 struct eth_spe *spe; 14473 int cxt_index, cxt_offset; 14474 14475 #ifdef BNX2X_STOP_ON_ERROR 14476 if (unlikely(bp->panic)) 14477 return; 14478 #endif 14479 14480 spin_lock_bh(&bp->spq_lock); 14481 BUG_ON(bp->cnic_spq_pending < count); 14482 bp->cnic_spq_pending -= count; 14483 14484 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) { 14485 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type) 14486 & SPE_HDR_CONN_TYPE) >> 14487 SPE_HDR_CONN_TYPE_SHIFT; 14488 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data) 14489 >> SPE_HDR_CMD_ID_SHIFT) & 0xff; 14490 14491 /* Set validation for iSCSI L2 client before sending SETUP 14492 * ramrod 14493 */ 14494 if (type == ETH_CONNECTION_TYPE) { 14495 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) { 14496 cxt_index = BNX2X_ISCSI_ETH_CID(bp) / 14497 ILT_PAGE_CIDS; 14498 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) - 14499 (cxt_index * ILT_PAGE_CIDS); 14500 bnx2x_set_ctx_validation(bp, 14501 &bp->context[cxt_index]. 14502 vcxt[cxt_offset].eth, 14503 BNX2X_ISCSI_ETH_CID(bp)); 14504 } 14505 } 14506 14507 /* 14508 * There may be not more than 8 L2, not more than 8 L5 SPEs 14509 * and in the air. We also check that number of outstanding 14510 * COMMON ramrods is not more than the EQ and SPQ can 14511 * accommodate. 14512 */ 14513 if (type == ETH_CONNECTION_TYPE) { 14514 if (!atomic_read(&bp->cq_spq_left)) 14515 break; 14516 else 14517 atomic_dec(&bp->cq_spq_left); 14518 } else if (type == NONE_CONNECTION_TYPE) { 14519 if (!atomic_read(&bp->eq_spq_left)) 14520 break; 14521 else 14522 atomic_dec(&bp->eq_spq_left); 14523 } else if ((type == ISCSI_CONNECTION_TYPE) || 14524 (type == FCOE_CONNECTION_TYPE)) { 14525 if (bp->cnic_spq_pending >= 14526 bp->cnic_eth_dev.max_kwqe_pending) 14527 break; 14528 else 14529 bp->cnic_spq_pending++; 14530 } else { 14531 BNX2X_ERR("Unknown SPE type: %d\n", type); 14532 bnx2x_panic(); 14533 break; 14534 } 14535 14536 spe = bnx2x_sp_get_next(bp); 14537 *spe = *bp->cnic_kwq_cons; 14538 14539 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n", 14540 bp->cnic_spq_pending, bp->cnic_kwq_pending, count); 14541 14542 if (bp->cnic_kwq_cons == bp->cnic_kwq_last) 14543 bp->cnic_kwq_cons = bp->cnic_kwq; 14544 else 14545 bp->cnic_kwq_cons++; 14546 } 14547 bnx2x_sp_prod_update(bp); 14548 spin_unlock_bh(&bp->spq_lock); 14549 } 14550 14551 static int bnx2x_cnic_sp_queue(struct net_device *dev, 14552 struct kwqe_16 *kwqes[], u32 count) 14553 { 14554 struct bnx2x *bp = netdev_priv(dev); 14555 int i; 14556 14557 #ifdef BNX2X_STOP_ON_ERROR 14558 if (unlikely(bp->panic)) { 14559 BNX2X_ERR("Can't post to SP queue while panic\n"); 14560 return -EIO; 14561 } 14562 #endif 14563 14564 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) && 14565 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { 14566 BNX2X_ERR("Handling parity error recovery. Try again later\n"); 14567 return -EAGAIN; 14568 } 14569 14570 spin_lock_bh(&bp->spq_lock); 14571 14572 for (i = 0; i < count; i++) { 14573 struct eth_spe *spe = (struct eth_spe *)kwqes[i]; 14574 14575 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT) 14576 break; 14577 14578 *bp->cnic_kwq_prod = *spe; 14579 14580 bp->cnic_kwq_pending++; 14581 14582 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n", 14583 spe->hdr.conn_and_cmd_data, spe->hdr.type, 14584 spe->data.update_data_addr.hi, 14585 spe->data.update_data_addr.lo, 14586 bp->cnic_kwq_pending); 14587 14588 if (bp->cnic_kwq_prod == bp->cnic_kwq_last) 14589 bp->cnic_kwq_prod = bp->cnic_kwq; 14590 else 14591 bp->cnic_kwq_prod++; 14592 } 14593 14594 spin_unlock_bh(&bp->spq_lock); 14595 14596 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending) 14597 bnx2x_cnic_sp_post(bp, 0); 14598 14599 return i; 14600 } 14601 14602 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl) 14603 { 14604 struct cnic_ops *c_ops; 14605 int rc = 0; 14606 14607 mutex_lock(&bp->cnic_mutex); 14608 c_ops = rcu_dereference_protected(bp->cnic_ops, 14609 lockdep_is_held(&bp->cnic_mutex)); 14610 if (c_ops) 14611 rc = c_ops->cnic_ctl(bp->cnic_data, ctl); 14612 mutex_unlock(&bp->cnic_mutex); 14613 14614 return rc; 14615 } 14616 14617 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl) 14618 { 14619 struct cnic_ops *c_ops; 14620 int rc = 0; 14621 14622 rcu_read_lock(); 14623 c_ops = rcu_dereference(bp->cnic_ops); 14624 if (c_ops) 14625 rc = c_ops->cnic_ctl(bp->cnic_data, ctl); 14626 rcu_read_unlock(); 14627 14628 return rc; 14629 } 14630 14631 /* 14632 * for commands that have no data 14633 */ 14634 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd) 14635 { 14636 struct cnic_ctl_info ctl = {0}; 14637 14638 ctl.cmd = cmd; 14639 14640 return bnx2x_cnic_ctl_send(bp, &ctl); 14641 } 14642 14643 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err) 14644 { 14645 struct cnic_ctl_info ctl = {0}; 14646 14647 /* first we tell CNIC and only then we count this as a completion */ 14648 ctl.cmd = CNIC_CTL_COMPLETION_CMD; 14649 ctl.data.comp.cid = cid; 14650 ctl.data.comp.error = err; 14651 14652 bnx2x_cnic_ctl_send_bh(bp, &ctl); 14653 bnx2x_cnic_sp_post(bp, 0); 14654 } 14655 14656 /* Called with netif_addr_lock_bh() taken. 14657 * Sets an rx_mode config for an iSCSI ETH client. 14658 * Doesn't block. 14659 * Completion should be checked outside. 14660 */ 14661 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start) 14662 { 14663 unsigned long accept_flags = 0, ramrod_flags = 0; 14664 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); 14665 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED; 14666 14667 if (start) { 14668 /* Start accepting on iSCSI L2 ring. Accept all multicasts 14669 * because it's the only way for UIO Queue to accept 14670 * multicasts (in non-promiscuous mode only one Queue per 14671 * function will receive multicast packets (leading in our 14672 * case). 14673 */ 14674 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags); 14675 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags); 14676 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags); 14677 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); 14678 14679 /* Clear STOP_PENDING bit if START is requested */ 14680 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state); 14681 14682 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED; 14683 } else 14684 /* Clear START_PENDING bit if STOP is requested */ 14685 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state); 14686 14687 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) 14688 set_bit(sched_state, &bp->sp_state); 14689 else { 14690 __set_bit(RAMROD_RX, &ramrod_flags); 14691 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0, 14692 ramrod_flags); 14693 } 14694 } 14695 14696 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl) 14697 { 14698 struct bnx2x *bp = netdev_priv(dev); 14699 int rc = 0; 14700 14701 switch (ctl->cmd) { 14702 case DRV_CTL_CTXTBL_WR_CMD: { 14703 u32 index = ctl->data.io.offset; 14704 dma_addr_t addr = ctl->data.io.dma_addr; 14705 14706 bnx2x_ilt_wr(bp, index, addr); 14707 break; 14708 } 14709 14710 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: { 14711 int count = ctl->data.credit.credit_count; 14712 14713 bnx2x_cnic_sp_post(bp, count); 14714 break; 14715 } 14716 14717 /* rtnl_lock is held. */ 14718 case DRV_CTL_START_L2_CMD: { 14719 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14720 unsigned long sp_bits = 0; 14721 14722 /* Configure the iSCSI classification object */ 14723 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj, 14724 cp->iscsi_l2_client_id, 14725 cp->iscsi_l2_cid, BP_FUNC(bp), 14726 bnx2x_sp(bp, mac_rdata), 14727 bnx2x_sp_mapping(bp, mac_rdata), 14728 BNX2X_FILTER_MAC_PENDING, 14729 &bp->sp_state, BNX2X_OBJ_TYPE_RX, 14730 &bp->macs_pool); 14731 14732 /* Set iSCSI MAC address */ 14733 rc = bnx2x_set_iscsi_eth_mac_addr(bp); 14734 if (rc) 14735 break; 14736 14737 barrier(); 14738 14739 /* Start accepting on iSCSI L2 ring */ 14740 14741 netif_addr_lock_bh(dev); 14742 bnx2x_set_iscsi_eth_rx_mode(bp, true); 14743 netif_addr_unlock_bh(dev); 14744 14745 /* bits to wait on */ 14746 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); 14747 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits); 14748 14749 if (!bnx2x_wait_sp_comp(bp, sp_bits)) 14750 BNX2X_ERR("rx_mode completion timed out!\n"); 14751 14752 break; 14753 } 14754 14755 /* rtnl_lock is held. */ 14756 case DRV_CTL_STOP_L2_CMD: { 14757 unsigned long sp_bits = 0; 14758 14759 /* Stop accepting on iSCSI L2 ring */ 14760 netif_addr_lock_bh(dev); 14761 bnx2x_set_iscsi_eth_rx_mode(bp, false); 14762 netif_addr_unlock_bh(dev); 14763 14764 /* bits to wait on */ 14765 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); 14766 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits); 14767 14768 if (!bnx2x_wait_sp_comp(bp, sp_bits)) 14769 BNX2X_ERR("rx_mode completion timed out!\n"); 14770 14771 barrier(); 14772 14773 /* Unset iSCSI L2 MAC */ 14774 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj, 14775 BNX2X_ISCSI_ETH_MAC, true); 14776 break; 14777 } 14778 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: { 14779 int count = ctl->data.credit.credit_count; 14780 14781 smp_mb__before_atomic(); 14782 atomic_add(count, &bp->cq_spq_left); 14783 smp_mb__after_atomic(); 14784 break; 14785 } 14786 case DRV_CTL_ULP_REGISTER_CMD: { 14787 int ulp_type = ctl->data.register_data.ulp_type; 14788 14789 if (CHIP_IS_E3(bp)) { 14790 int idx = BP_FW_MB_IDX(bp); 14791 u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); 14792 int path = BP_PATH(bp); 14793 int port = BP_PORT(bp); 14794 int i; 14795 u32 scratch_offset; 14796 u32 *host_addr; 14797 14798 /* first write capability to shmem2 */ 14799 if (ulp_type == CNIC_ULP_ISCSI) 14800 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; 14801 else if (ulp_type == CNIC_ULP_FCOE) 14802 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE; 14803 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); 14804 14805 if ((ulp_type != CNIC_ULP_FCOE) || 14806 (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) || 14807 (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES))) 14808 break; 14809 14810 /* if reached here - should write fcoe capabilities */ 14811 scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr); 14812 if (!scratch_offset) 14813 break; 14814 scratch_offset += offsetof(struct glob_ncsi_oem_data, 14815 fcoe_features[path][port]); 14816 host_addr = (u32 *) &(ctl->data.register_data. 14817 fcoe_features); 14818 for (i = 0; i < sizeof(struct fcoe_capabilities); 14819 i += 4) 14820 REG_WR(bp, scratch_offset + i, 14821 *(host_addr + i/4)); 14822 } 14823 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 14824 break; 14825 } 14826 14827 case DRV_CTL_ULP_UNREGISTER_CMD: { 14828 int ulp_type = ctl->data.ulp_type; 14829 14830 if (CHIP_IS_E3(bp)) { 14831 int idx = BP_FW_MB_IDX(bp); 14832 u32 cap; 14833 14834 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); 14835 if (ulp_type == CNIC_ULP_ISCSI) 14836 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; 14837 else if (ulp_type == CNIC_ULP_FCOE) 14838 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE; 14839 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); 14840 } 14841 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 14842 break; 14843 } 14844 14845 default: 14846 BNX2X_ERR("unknown command %x\n", ctl->cmd); 14847 rc = -EINVAL; 14848 } 14849 14850 /* For storage-only interfaces, change driver state */ 14851 if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) { 14852 switch (ctl->drv_state) { 14853 case DRV_NOP: 14854 break; 14855 case DRV_ACTIVE: 14856 bnx2x_set_os_driver_state(bp, 14857 OS_DRIVER_STATE_ACTIVE); 14858 break; 14859 case DRV_INACTIVE: 14860 bnx2x_set_os_driver_state(bp, 14861 OS_DRIVER_STATE_DISABLED); 14862 break; 14863 case DRV_UNLOADED: 14864 bnx2x_set_os_driver_state(bp, 14865 OS_DRIVER_STATE_NOT_LOADED); 14866 break; 14867 default: 14868 BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state); 14869 } 14870 } 14871 14872 return rc; 14873 } 14874 14875 static int bnx2x_get_fc_npiv(struct net_device *dev, 14876 struct cnic_fc_npiv_tbl *cnic_tbl) 14877 { 14878 struct bnx2x *bp = netdev_priv(dev); 14879 struct bdn_fc_npiv_tbl *tbl = NULL; 14880 u32 offset, entries; 14881 int rc = -EINVAL; 14882 int i; 14883 14884 if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0])) 14885 goto out; 14886 14887 DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n"); 14888 14889 tbl = kmalloc(sizeof(*tbl), GFP_KERNEL); 14890 if (!tbl) { 14891 BNX2X_ERR("Failed to allocate fc_npiv table\n"); 14892 goto out; 14893 } 14894 14895 offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]); 14896 if (!offset) { 14897 DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n"); 14898 goto out; 14899 } 14900 DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset); 14901 14902 /* Read the table contents from nvram */ 14903 if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) { 14904 BNX2X_ERR("Failed to read FC-NPIV table\n"); 14905 goto out; 14906 } 14907 14908 /* Since bnx2x_nvram_read() returns data in be32, we need to convert 14909 * the number of entries back to cpu endianness. 14910 */ 14911 entries = tbl->fc_npiv_cfg.num_of_npiv; 14912 entries = (__force u32)be32_to_cpu((__force __be32)entries); 14913 tbl->fc_npiv_cfg.num_of_npiv = entries; 14914 14915 if (!tbl->fc_npiv_cfg.num_of_npiv) { 14916 DP(BNX2X_MSG_MCP, 14917 "No FC-NPIV table [valid, simply not present]\n"); 14918 goto out; 14919 } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) { 14920 BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n", 14921 tbl->fc_npiv_cfg.num_of_npiv); 14922 goto out; 14923 } else { 14924 DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n", 14925 tbl->fc_npiv_cfg.num_of_npiv); 14926 } 14927 14928 /* Copy the data into cnic-provided struct */ 14929 cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv; 14930 for (i = 0; i < cnic_tbl->count; i++) { 14931 memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8); 14932 memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8); 14933 } 14934 14935 rc = 0; 14936 out: 14937 kfree(tbl); 14938 return rc; 14939 } 14940 14941 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp) 14942 { 14943 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14944 14945 if (bp->flags & USING_MSIX_FLAG) { 14946 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX; 14947 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX; 14948 cp->irq_arr[0].vector = bp->msix_table[1].vector; 14949 } else { 14950 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX; 14951 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX; 14952 } 14953 if (!CHIP_IS_E1x(bp)) 14954 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb; 14955 else 14956 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb; 14957 14958 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp); 14959 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp); 14960 cp->irq_arr[1].status_blk = bp->def_status_blk; 14961 cp->irq_arr[1].status_blk_num = DEF_SB_ID; 14962 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID; 14963 14964 cp->num_irq = 2; 14965 } 14966 14967 void bnx2x_setup_cnic_info(struct bnx2x *bp) 14968 { 14969 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14970 14971 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + 14972 bnx2x_cid_ilt_lines(bp); 14973 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; 14974 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); 14975 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); 14976 14977 DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n", 14978 BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid, 14979 cp->iscsi_l2_cid); 14980 14981 if (NO_ISCSI_OOO(bp)) 14982 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; 14983 } 14984 14985 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops, 14986 void *data) 14987 { 14988 struct bnx2x *bp = netdev_priv(dev); 14989 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14990 int rc; 14991 14992 DP(NETIF_MSG_IFUP, "Register_cnic called\n"); 14993 14994 if (ops == NULL) { 14995 BNX2X_ERR("NULL ops received\n"); 14996 return -EINVAL; 14997 } 14998 14999 if (!CNIC_SUPPORT(bp)) { 15000 BNX2X_ERR("Can't register CNIC when not supported\n"); 15001 return -EOPNOTSUPP; 15002 } 15003 15004 if (!CNIC_LOADED(bp)) { 15005 rc = bnx2x_load_cnic(bp); 15006 if (rc) { 15007 BNX2X_ERR("CNIC-related load failed\n"); 15008 return rc; 15009 } 15010 } 15011 15012 bp->cnic_enabled = true; 15013 15014 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL); 15015 if (!bp->cnic_kwq) 15016 return -ENOMEM; 15017 15018 bp->cnic_kwq_cons = bp->cnic_kwq; 15019 bp->cnic_kwq_prod = bp->cnic_kwq; 15020 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT; 15021 15022 bp->cnic_spq_pending = 0; 15023 bp->cnic_kwq_pending = 0; 15024 15025 bp->cnic_data = data; 15026 15027 cp->num_irq = 0; 15028 cp->drv_state |= CNIC_DRV_STATE_REGD; 15029 cp->iro_arr = bp->iro_arr; 15030 15031 bnx2x_setup_cnic_irq_info(bp); 15032 15033 rcu_assign_pointer(bp->cnic_ops, ops); 15034 15035 /* Schedule driver to read CNIC driver versions */ 15036 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 15037 15038 return 0; 15039 } 15040 15041 static int bnx2x_unregister_cnic(struct net_device *dev) 15042 { 15043 struct bnx2x *bp = netdev_priv(dev); 15044 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 15045 15046 mutex_lock(&bp->cnic_mutex); 15047 cp->drv_state = 0; 15048 RCU_INIT_POINTER(bp->cnic_ops, NULL); 15049 mutex_unlock(&bp->cnic_mutex); 15050 synchronize_rcu(); 15051 bp->cnic_enabled = false; 15052 kfree(bp->cnic_kwq); 15053 bp->cnic_kwq = NULL; 15054 15055 return 0; 15056 } 15057 15058 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev) 15059 { 15060 struct bnx2x *bp = netdev_priv(dev); 15061 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 15062 15063 /* If both iSCSI and FCoE are disabled - return NULL in 15064 * order to indicate CNIC that it should not try to work 15065 * with this device. 15066 */ 15067 if (NO_ISCSI(bp) && NO_FCOE(bp)) 15068 return NULL; 15069 15070 cp->drv_owner = THIS_MODULE; 15071 cp->chip_id = CHIP_ID(bp); 15072 cp->pdev = bp->pdev; 15073 cp->io_base = bp->regview; 15074 cp->io_base2 = bp->doorbells; 15075 cp->max_kwqe_pending = 8; 15076 cp->ctx_blk_size = CDU_ILT_PAGE_SZ; 15077 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + 15078 bnx2x_cid_ilt_lines(bp); 15079 cp->ctx_tbl_len = CNIC_ILT_LINES; 15080 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; 15081 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue; 15082 cp->drv_ctl = bnx2x_drv_ctl; 15083 cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv; 15084 cp->drv_register_cnic = bnx2x_register_cnic; 15085 cp->drv_unregister_cnic = bnx2x_unregister_cnic; 15086 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); 15087 cp->iscsi_l2_client_id = 15088 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); 15089 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); 15090 15091 if (NO_ISCSI_OOO(bp)) 15092 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; 15093 15094 if (NO_ISCSI(bp)) 15095 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI; 15096 15097 if (NO_FCOE(bp)) 15098 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE; 15099 15100 BNX2X_DEV_INFO( 15101 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n", 15102 cp->ctx_blk_size, 15103 cp->ctx_tbl_offset, 15104 cp->ctx_tbl_len, 15105 cp->starting_cid); 15106 return cp; 15107 } 15108 15109 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp) 15110 { 15111 struct bnx2x *bp = fp->bp; 15112 u32 offset = BAR_USTRORM_INTMEM; 15113 15114 if (IS_VF(bp)) 15115 return bnx2x_vf_ustorm_prods_offset(bp, fp); 15116 else if (!CHIP_IS_E1x(bp)) 15117 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 15118 else 15119 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id); 15120 15121 return offset; 15122 } 15123 15124 /* called only on E1H or E2. 15125 * When pretending to be PF, the pretend value is the function number 0...7 15126 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 15127 * combination 15128 */ 15129 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val) 15130 { 15131 u32 pretend_reg; 15132 15133 if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX) 15134 return -1; 15135 15136 /* get my own pretend register */ 15137 pretend_reg = bnx2x_get_pretend_reg(bp); 15138 REG_WR(bp, pretend_reg, pretend_func_val); 15139 REG_RD(bp, pretend_reg); 15140 return 0; 15141 } 15142 15143 static void bnx2x_ptp_task(struct work_struct *work) 15144 { 15145 struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task); 15146 int port = BP_PORT(bp); 15147 u32 val_seq; 15148 u64 timestamp, ns; 15149 struct skb_shared_hwtstamps shhwtstamps; 15150 bool bail = true; 15151 int i; 15152 15153 /* FW may take a while to complete timestamping; try a bit and if it's 15154 * still not complete, may indicate an error state - bail out then. 15155 */ 15156 for (i = 0; i < 10; i++) { 15157 /* Read Tx timestamp registers */ 15158 val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID : 15159 NIG_REG_P0_TLLH_PTP_BUF_SEQID); 15160 if (val_seq & 0x10000) { 15161 bail = false; 15162 break; 15163 } 15164 msleep(1 << i); 15165 } 15166 15167 if (!bail) { 15168 /* There is a valid timestamp value */ 15169 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB : 15170 NIG_REG_P0_TLLH_PTP_BUF_TS_MSB); 15171 timestamp <<= 32; 15172 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB : 15173 NIG_REG_P0_TLLH_PTP_BUF_TS_LSB); 15174 /* Reset timestamp register to allow new timestamp */ 15175 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID : 15176 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000); 15177 ns = timecounter_cyc2time(&bp->timecounter, timestamp); 15178 15179 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 15180 shhwtstamps.hwtstamp = ns_to_ktime(ns); 15181 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps); 15182 15183 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n", 15184 timestamp, ns); 15185 } else { 15186 DP(BNX2X_MSG_PTP, 15187 "Tx timestamp is not recorded (register read=%u)\n", 15188 val_seq); 15189 bp->eth_stats.ptp_skip_tx_ts++; 15190 } 15191 15192 dev_kfree_skb_any(bp->ptp_tx_skb); 15193 bp->ptp_tx_skb = NULL; 15194 } 15195 15196 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb) 15197 { 15198 int port = BP_PORT(bp); 15199 u64 timestamp, ns; 15200 15201 timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB : 15202 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB); 15203 timestamp <<= 32; 15204 timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB : 15205 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB); 15206 15207 /* Reset timestamp register to allow new timestamp */ 15208 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID : 15209 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000); 15210 15211 ns = timecounter_cyc2time(&bp->timecounter, timestamp); 15212 15213 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 15214 15215 DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n", 15216 timestamp, ns); 15217 } 15218 15219 /* Read the PHC */ 15220 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc) 15221 { 15222 struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter); 15223 int port = BP_PORT(bp); 15224 u32 wb_data[2]; 15225 u64 phc_cycles; 15226 15227 REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 : 15228 NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2); 15229 phc_cycles = wb_data[1]; 15230 phc_cycles = (phc_cycles << 32) + wb_data[0]; 15231 15232 DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles); 15233 15234 return phc_cycles; 15235 } 15236 15237 static void bnx2x_init_cyclecounter(struct bnx2x *bp) 15238 { 15239 memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter)); 15240 bp->cyclecounter.read = bnx2x_cyclecounter_read; 15241 bp->cyclecounter.mask = CYCLECOUNTER_MASK(64); 15242 bp->cyclecounter.shift = 0; 15243 bp->cyclecounter.mult = 1; 15244 } 15245 15246 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp) 15247 { 15248 struct bnx2x_func_state_params func_params = {NULL}; 15249 struct bnx2x_func_set_timesync_params *set_timesync_params = 15250 &func_params.params.set_timesync; 15251 15252 /* Prepare parameters for function state transitions */ 15253 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 15254 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 15255 15256 func_params.f_obj = &bp->func_obj; 15257 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC; 15258 15259 /* Function parameters */ 15260 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET; 15261 set_timesync_params->offset_cmd = TS_OFFSET_KEEP; 15262 15263 return bnx2x_func_state_change(bp, &func_params); 15264 } 15265 15266 static int bnx2x_enable_ptp_packets(struct bnx2x *bp) 15267 { 15268 struct bnx2x_queue_state_params q_params; 15269 int rc, i; 15270 15271 /* send queue update ramrod to enable PTP packets */ 15272 memset(&q_params, 0, sizeof(q_params)); 15273 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 15274 q_params.cmd = BNX2X_Q_CMD_UPDATE; 15275 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG, 15276 &q_params.params.update.update_flags); 15277 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS, 15278 &q_params.params.update.update_flags); 15279 15280 /* send the ramrod on all the queues of the PF */ 15281 for_each_eth_queue(bp, i) { 15282 struct bnx2x_fastpath *fp = &bp->fp[i]; 15283 15284 /* Set the appropriate Queue object */ 15285 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 15286 15287 /* Update the Queue state */ 15288 rc = bnx2x_queue_state_change(bp, &q_params); 15289 if (rc) { 15290 BNX2X_ERR("Failed to enable PTP packets\n"); 15291 return rc; 15292 } 15293 } 15294 15295 return 0; 15296 } 15297 15298 #define BNX2X_P2P_DETECT_PARAM_MASK 0x5F5 15299 #define BNX2X_P2P_DETECT_RULE_MASK 0x3DBB 15300 #define BNX2X_PTP_TX_ON_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA) 15301 #define BNX2X_PTP_TX_ON_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE) 15302 #define BNX2X_PTP_V1_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EE) 15303 #define BNX2X_PTP_V1_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FFE) 15304 #define BNX2X_PTP_V2_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EA) 15305 #define BNX2X_PTP_V2_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FEE) 15306 #define BNX2X_PTP_V2_L2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6BF) 15307 #define BNX2X_PTP_V2_L2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EFF) 15308 #define BNX2X_PTP_V2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA) 15309 #define BNX2X_PTP_V2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE) 15310 15311 int bnx2x_configure_ptp_filters(struct bnx2x *bp) 15312 { 15313 int port = BP_PORT(bp); 15314 u32 param, rule; 15315 int rc; 15316 15317 if (!bp->hwtstamp_ioctl_called) 15318 return 0; 15319 15320 param = port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK : 15321 NIG_REG_P0_TLLH_PTP_PARAM_MASK; 15322 rule = port ? NIG_REG_P1_TLLH_PTP_RULE_MASK : 15323 NIG_REG_P0_TLLH_PTP_RULE_MASK; 15324 switch (bp->tx_type) { 15325 case HWTSTAMP_TX_ON: 15326 bp->flags |= TX_TIMESTAMPING_EN; 15327 REG_WR(bp, param, BNX2X_PTP_TX_ON_PARAM_MASK); 15328 REG_WR(bp, rule, BNX2X_PTP_TX_ON_RULE_MASK); 15329 break; 15330 case HWTSTAMP_TX_ONESTEP_SYNC: 15331 case HWTSTAMP_TX_ONESTEP_P2P: 15332 BNX2X_ERR("One-step timestamping is not supported\n"); 15333 return -ERANGE; 15334 } 15335 15336 param = port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15337 NIG_REG_P0_LLH_PTP_PARAM_MASK; 15338 rule = port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15339 NIG_REG_P0_LLH_PTP_RULE_MASK; 15340 switch (bp->rx_filter) { 15341 case HWTSTAMP_FILTER_NONE: 15342 break; 15343 case HWTSTAMP_FILTER_ALL: 15344 case HWTSTAMP_FILTER_SOME: 15345 case HWTSTAMP_FILTER_NTP_ALL: 15346 bp->rx_filter = HWTSTAMP_FILTER_NONE; 15347 break; 15348 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 15349 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 15350 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 15351 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 15352 /* Initialize PTP detection for UDP/IPv4 events */ 15353 REG_WR(bp, param, BNX2X_PTP_V1_L4_PARAM_MASK); 15354 REG_WR(bp, rule, BNX2X_PTP_V1_L4_RULE_MASK); 15355 break; 15356 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 15357 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 15358 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 15359 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 15360 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */ 15361 REG_WR(bp, param, BNX2X_PTP_V2_L4_PARAM_MASK); 15362 REG_WR(bp, rule, BNX2X_PTP_V2_L4_RULE_MASK); 15363 break; 15364 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 15365 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 15366 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 15367 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT; 15368 /* Initialize PTP detection L2 events */ 15369 REG_WR(bp, param, BNX2X_PTP_V2_L2_PARAM_MASK); 15370 REG_WR(bp, rule, BNX2X_PTP_V2_L2_RULE_MASK); 15371 15372 break; 15373 case HWTSTAMP_FILTER_PTP_V2_EVENT: 15374 case HWTSTAMP_FILTER_PTP_V2_SYNC: 15375 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 15376 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 15377 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */ 15378 REG_WR(bp, param, BNX2X_PTP_V2_PARAM_MASK); 15379 REG_WR(bp, rule, BNX2X_PTP_V2_RULE_MASK); 15380 break; 15381 } 15382 15383 /* Indicate to FW that this PF expects recorded PTP packets */ 15384 rc = bnx2x_enable_ptp_packets(bp); 15385 if (rc) 15386 return rc; 15387 15388 /* Enable sending PTP packets to host */ 15389 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST : 15390 NIG_REG_P0_LLH_PTP_TO_HOST, 0x1); 15391 15392 return 0; 15393 } 15394 15395 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr) 15396 { 15397 struct hwtstamp_config config; 15398 int rc; 15399 15400 DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n"); 15401 15402 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 15403 return -EFAULT; 15404 15405 DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n", 15406 config.tx_type, config.rx_filter); 15407 15408 if (config.flags) { 15409 BNX2X_ERR("config.flags is reserved for future use\n"); 15410 return -EINVAL; 15411 } 15412 15413 bp->hwtstamp_ioctl_called = true; 15414 bp->tx_type = config.tx_type; 15415 bp->rx_filter = config.rx_filter; 15416 15417 rc = bnx2x_configure_ptp_filters(bp); 15418 if (rc) 15419 return rc; 15420 15421 config.rx_filter = bp->rx_filter; 15422 15423 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 15424 -EFAULT : 0; 15425 } 15426 15427 /* Configures HW for PTP */ 15428 static int bnx2x_configure_ptp(struct bnx2x *bp) 15429 { 15430 int rc, port = BP_PORT(bp); 15431 u32 wb_data[2]; 15432 15433 /* Reset PTP event detection rules - will be configured in the IOCTL */ 15434 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15435 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF); 15436 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15437 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF); 15438 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK : 15439 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF); 15440 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK : 15441 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF); 15442 15443 /* Disable PTP packets to host - will be configured in the IOCTL*/ 15444 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST : 15445 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0); 15446 15447 /* Enable the PTP feature */ 15448 REG_WR(bp, port ? NIG_REG_P1_PTP_EN : 15449 NIG_REG_P0_PTP_EN, 0x3F); 15450 15451 /* Enable the free-running counter */ 15452 wb_data[0] = 0; 15453 wb_data[1] = 0; 15454 REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2); 15455 15456 /* Reset drift register (offset register is not reset) */ 15457 rc = bnx2x_send_reset_timesync_ramrod(bp); 15458 if (rc) { 15459 BNX2X_ERR("Failed to reset PHC drift register\n"); 15460 return -EFAULT; 15461 } 15462 15463 /* Reset possibly old timestamps */ 15464 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID : 15465 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000); 15466 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID : 15467 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000); 15468 15469 return 0; 15470 } 15471 15472 /* Called during load, to initialize PTP-related stuff */ 15473 void bnx2x_init_ptp(struct bnx2x *bp) 15474 { 15475 int rc; 15476 15477 /* Configure PTP in HW */ 15478 rc = bnx2x_configure_ptp(bp); 15479 if (rc) { 15480 BNX2X_ERR("Stopping PTP initialization\n"); 15481 return; 15482 } 15483 15484 /* Init work queue for Tx timestamping */ 15485 INIT_WORK(&bp->ptp_task, bnx2x_ptp_task); 15486 15487 /* Init cyclecounter and timecounter. This is done only in the first 15488 * load. If done in every load, PTP application will fail when doing 15489 * unload / load (e.g. MTU change) while it is running. 15490 */ 15491 if (!bp->timecounter_init_done) { 15492 bnx2x_init_cyclecounter(bp); 15493 timecounter_init(&bp->timecounter, &bp->cyclecounter, 15494 ktime_to_ns(ktime_get_real())); 15495 bp->timecounter_init_done = true; 15496 } 15497 15498 DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n"); 15499 } 15500