1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/crc32c.h>
51 #include <linux/prefetch.h>
52 #include <linux/zlib.h>
53 #include <linux/io.h>
54 #include <linux/semaphore.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57 
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_vfpf.h"
63 #include "bnx2x_dcb.h"
64 #include "bnx2x_sp.h"
65 
66 #include <linux/firmware.h>
67 #include "bnx2x_fw_file_hdr.h"
68 /* FW files */
69 #define FW_FILE_VERSION					\
70 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
71 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
72 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
73 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
74 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
77 
78 /* Time in jiffies before concluding the transmitter is hung */
79 #define TX_TIMEOUT		(5*HZ)
80 
81 static char version[] =
82 	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
83 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
84 
85 MODULE_AUTHOR("Eliezer Tamir");
86 MODULE_DESCRIPTION("Broadcom NetXtreme II "
87 		   "BCM57710/57711/57711E/"
88 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
89 		   "57840/57840_MF Driver");
90 MODULE_LICENSE("GPL");
91 MODULE_VERSION(DRV_MODULE_VERSION);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
94 MODULE_FIRMWARE(FW_FILE_NAME_E2);
95 
96 int num_queues;
97 module_param(num_queues, int, 0);
98 MODULE_PARM_DESC(num_queues,
99 		 " Set number of queues (default is as a number of CPUs)");
100 
101 static int disable_tpa;
102 module_param(disable_tpa, int, 0);
103 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
104 
105 int int_mode;
106 module_param(int_mode, int, 0);
107 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
108 				"(1 INT#x; 2 MSI)");
109 
110 static int dropless_fc;
111 module_param(dropless_fc, int, 0);
112 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
113 
114 static int mrrs = -1;
115 module_param(mrrs, int, 0);
116 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
117 
118 static int debug;
119 module_param(debug, int, 0);
120 MODULE_PARM_DESC(debug, " Default debug msglevel");
121 
122 struct workqueue_struct *bnx2x_wq;
123 
124 struct bnx2x_mac_vals {
125 	u32 xmac_addr;
126 	u32 xmac_val;
127 	u32 emac_addr;
128 	u32 emac_val;
129 	u32 umac_addr;
130 	u32 umac_val;
131 	u32 bmac_addr;
132 	u32 bmac_val[2];
133 };
134 
135 enum bnx2x_board_type {
136 	BCM57710 = 0,
137 	BCM57711,
138 	BCM57711E,
139 	BCM57712,
140 	BCM57712_MF,
141 	BCM57712_VF,
142 	BCM57800,
143 	BCM57800_MF,
144 	BCM57800_VF,
145 	BCM57810,
146 	BCM57810_MF,
147 	BCM57810_VF,
148 	BCM57840_4_10,
149 	BCM57840_2_20,
150 	BCM57840_MF,
151 	BCM57840_VF,
152 	BCM57811,
153 	BCM57811_MF,
154 	BCM57840_O,
155 	BCM57840_MFO,
156 	BCM57811_VF
157 };
158 
159 /* indexed by board_type, above */
160 static struct {
161 	char *name;
162 } board_info[] = {
163 	[BCM57710]	= { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
164 	[BCM57711]	= { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
165 	[BCM57711E]	= { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
166 	[BCM57712]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
167 	[BCM57712_MF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
168 	[BCM57712_VF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
169 	[BCM57800]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
170 	[BCM57800_MF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
171 	[BCM57800_VF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
172 	[BCM57810]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
173 	[BCM57810_MF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
174 	[BCM57810_VF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
175 	[BCM57840_4_10]	= { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
176 	[BCM57840_2_20]	= { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
177 	[BCM57840_MF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
178 	[BCM57840_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
179 	[BCM57811]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
180 	[BCM57811_MF]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
181 	[BCM57840_O]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
182 	[BCM57840_MFO]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
183 	[BCM57811_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
184 };
185 
186 #ifndef PCI_DEVICE_ID_NX2_57710
187 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57711
190 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57711E
193 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57712
196 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57712_MF
199 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57712_VF
202 #define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57800
205 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57800_MF
208 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57800_VF
211 #define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57810
214 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57810_MF
217 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
218 #endif
219 #ifndef PCI_DEVICE_ID_NX2_57840_O
220 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
221 #endif
222 #ifndef PCI_DEVICE_ID_NX2_57810_VF
223 #define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
224 #endif
225 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
226 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
227 #endif
228 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
229 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
230 #endif
231 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
232 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
233 #endif
234 #ifndef PCI_DEVICE_ID_NX2_57840_MF
235 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
236 #endif
237 #ifndef PCI_DEVICE_ID_NX2_57840_VF
238 #define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
239 #endif
240 #ifndef PCI_DEVICE_ID_NX2_57811
241 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
242 #endif
243 #ifndef PCI_DEVICE_ID_NX2_57811_MF
244 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
245 #endif
246 #ifndef PCI_DEVICE_ID_NX2_57811_VF
247 #define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
248 #endif
249 
250 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
251 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
252 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
253 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
254 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
255 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
256 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
257 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
258 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
259 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
260 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
261 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
262 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
263 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
264 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
265 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
266 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
267 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
268 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
269 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
270 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
271 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
272 	{ 0 }
273 };
274 
275 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
276 
277 /* Global resources for unloading a previously loaded device */
278 #define BNX2X_PREV_WAIT_NEEDED 1
279 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
280 static LIST_HEAD(bnx2x_prev_list);
281 /****************************************************************************
282 * General service functions
283 ****************************************************************************/
284 
285 static void __storm_memset_dma_mapping(struct bnx2x *bp,
286 				       u32 addr, dma_addr_t mapping)
287 {
288 	REG_WR(bp,  addr, U64_LO(mapping));
289 	REG_WR(bp,  addr + 4, U64_HI(mapping));
290 }
291 
292 static void storm_memset_spq_addr(struct bnx2x *bp,
293 				  dma_addr_t mapping, u16 abs_fid)
294 {
295 	u32 addr = XSEM_REG_FAST_MEMORY +
296 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
297 
298 	__storm_memset_dma_mapping(bp, addr, mapping);
299 }
300 
301 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
302 				  u16 pf_id)
303 {
304 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
305 		pf_id);
306 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
307 		pf_id);
308 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
309 		pf_id);
310 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
311 		pf_id);
312 }
313 
314 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
315 				 u8 enable)
316 {
317 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
318 		enable);
319 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
320 		enable);
321 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
322 		enable);
323 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
324 		enable);
325 }
326 
327 static void storm_memset_eq_data(struct bnx2x *bp,
328 				 struct event_ring_data *eq_data,
329 				u16 pfid)
330 {
331 	size_t size = sizeof(struct event_ring_data);
332 
333 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
334 
335 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
336 }
337 
338 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
339 				 u16 pfid)
340 {
341 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
342 	REG_WR16(bp, addr, eq_prod);
343 }
344 
345 /* used only at init
346  * locking is done by mcp
347  */
348 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
349 {
350 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
351 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
352 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
353 			       PCICFG_VENDOR_ID_OFFSET);
354 }
355 
356 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
357 {
358 	u32 val;
359 
360 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
361 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
362 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
363 			       PCICFG_VENDOR_ID_OFFSET);
364 
365 	return val;
366 }
367 
368 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
369 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
370 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
371 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
372 #define DMAE_DP_DST_NONE	"dst_addr [none]"
373 
374 static void bnx2x_dp_dmae(struct bnx2x *bp,
375 			  struct dmae_command *dmae, int msglvl)
376 {
377 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
378 	int i;
379 
380 	switch (dmae->opcode & DMAE_COMMAND_DST) {
381 	case DMAE_CMD_DST_PCI:
382 		if (src_type == DMAE_CMD_SRC_PCI)
383 			DP(msglvl, "DMAE: opcode 0x%08x\n"
384 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
385 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
386 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
387 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
388 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
389 			   dmae->comp_val);
390 		else
391 			DP(msglvl, "DMAE: opcode 0x%08x\n"
392 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
393 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
394 			   dmae->opcode, dmae->src_addr_lo >> 2,
395 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
396 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
397 			   dmae->comp_val);
398 		break;
399 	case DMAE_CMD_DST_GRC:
400 		if (src_type == DMAE_CMD_SRC_PCI)
401 			DP(msglvl, "DMAE: opcode 0x%08x\n"
402 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
403 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
404 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
405 			   dmae->len, dmae->dst_addr_lo >> 2,
406 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
407 			   dmae->comp_val);
408 		else
409 			DP(msglvl, "DMAE: opcode 0x%08x\n"
410 			   "src [%08x], len [%d*4], dst [%08x]\n"
411 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
412 			   dmae->opcode, dmae->src_addr_lo >> 2,
413 			   dmae->len, dmae->dst_addr_lo >> 2,
414 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
415 			   dmae->comp_val);
416 		break;
417 	default:
418 		if (src_type == DMAE_CMD_SRC_PCI)
419 			DP(msglvl, "DMAE: opcode 0x%08x\n"
420 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
421 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
422 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
423 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
424 			   dmae->comp_val);
425 		else
426 			DP(msglvl, "DMAE: opcode 0x%08x\n"
427 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
428 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
429 			   dmae->opcode, dmae->src_addr_lo >> 2,
430 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
431 			   dmae->comp_val);
432 		break;
433 	}
434 
435 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
436 		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
437 		   i, *(((u32 *)dmae) + i));
438 }
439 
440 /* copy command into DMAE command memory and set DMAE command go */
441 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
442 {
443 	u32 cmd_offset;
444 	int i;
445 
446 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
447 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
448 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
449 	}
450 	REG_WR(bp, dmae_reg_go_c[idx], 1);
451 }
452 
453 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
454 {
455 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
456 			   DMAE_CMD_C_ENABLE);
457 }
458 
459 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
460 {
461 	return opcode & ~DMAE_CMD_SRC_RESET;
462 }
463 
464 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
465 			     bool with_comp, u8 comp_type)
466 {
467 	u32 opcode = 0;
468 
469 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
470 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
471 
472 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
473 
474 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
475 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
476 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
477 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
478 
479 #ifdef __BIG_ENDIAN
480 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
481 #else
482 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
483 #endif
484 	if (with_comp)
485 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
486 	return opcode;
487 }
488 
489 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
490 				      struct dmae_command *dmae,
491 				      u8 src_type, u8 dst_type)
492 {
493 	memset(dmae, 0, sizeof(struct dmae_command));
494 
495 	/* set the opcode */
496 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
497 					 true, DMAE_COMP_PCI);
498 
499 	/* fill in the completion parameters */
500 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
501 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
502 	dmae->comp_val = DMAE_COMP_VAL;
503 }
504 
505 /* issue a dmae command over the init-channel and wait for completion */
506 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae)
507 {
508 	u32 *wb_comp = bnx2x_sp(bp, wb_comp);
509 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
510 	int rc = 0;
511 
512 	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
513 
514 	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
515 	 * as long as this code is called both from syscall context and
516 	 * from ndo_set_rx_mode() flow that may be called from BH.
517 	 */
518 	spin_lock_bh(&bp->dmae_lock);
519 
520 	/* reset completion */
521 	*wb_comp = 0;
522 
523 	/* post the command on the channel used for initializations */
524 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
525 
526 	/* wait for completion */
527 	udelay(5);
528 	while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
529 
530 		if (!cnt ||
531 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
532 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
533 			BNX2X_ERR("DMAE timeout!\n");
534 			rc = DMAE_TIMEOUT;
535 			goto unlock;
536 		}
537 		cnt--;
538 		udelay(50);
539 	}
540 	if (*wb_comp & DMAE_PCI_ERR_FLAG) {
541 		BNX2X_ERR("DMAE PCI error!\n");
542 		rc = DMAE_PCI_ERROR;
543 	}
544 
545 unlock:
546 	spin_unlock_bh(&bp->dmae_lock);
547 	return rc;
548 }
549 
550 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
551 		      u32 len32)
552 {
553 	int rc;
554 	struct dmae_command dmae;
555 
556 	if (!bp->dmae_ready) {
557 		u32 *data = bnx2x_sp(bp, wb_data[0]);
558 
559 		if (CHIP_IS_E1(bp))
560 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
561 		else
562 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
563 		return;
564 	}
565 
566 	/* set opcode and fixed command fields */
567 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
568 
569 	/* fill in addresses and len */
570 	dmae.src_addr_lo = U64_LO(dma_addr);
571 	dmae.src_addr_hi = U64_HI(dma_addr);
572 	dmae.dst_addr_lo = dst_addr >> 2;
573 	dmae.dst_addr_hi = 0;
574 	dmae.len = len32;
575 
576 	/* issue the command and wait for completion */
577 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae);
578 	if (rc) {
579 		BNX2X_ERR("DMAE returned failure %d\n", rc);
580 		bnx2x_panic();
581 	}
582 }
583 
584 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
585 {
586 	int rc;
587 	struct dmae_command dmae;
588 
589 	if (!bp->dmae_ready) {
590 		u32 *data = bnx2x_sp(bp, wb_data[0]);
591 		int i;
592 
593 		if (CHIP_IS_E1(bp))
594 			for (i = 0; i < len32; i++)
595 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
596 		else
597 			for (i = 0; i < len32; i++)
598 				data[i] = REG_RD(bp, src_addr + i*4);
599 
600 		return;
601 	}
602 
603 	/* set opcode and fixed command fields */
604 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
605 
606 	/* fill in addresses and len */
607 	dmae.src_addr_lo = src_addr >> 2;
608 	dmae.src_addr_hi = 0;
609 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
610 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
611 	dmae.len = len32;
612 
613 	/* issue the command and wait for completion */
614 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae);
615 	if (rc) {
616 		BNX2X_ERR("DMAE returned failure %d\n", rc);
617 		bnx2x_panic();
618 	}
619 }
620 
621 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
622 				      u32 addr, u32 len)
623 {
624 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
625 	int offset = 0;
626 
627 	while (len > dmae_wr_max) {
628 		bnx2x_write_dmae(bp, phys_addr + offset,
629 				 addr + offset, dmae_wr_max);
630 		offset += dmae_wr_max * 4;
631 		len -= dmae_wr_max;
632 	}
633 
634 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
635 }
636 
637 static int bnx2x_mc_assert(struct bnx2x *bp)
638 {
639 	char last_idx;
640 	int i, rc = 0;
641 	u32 row0, row1, row2, row3;
642 
643 	/* XSTORM */
644 	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
645 			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
646 	if (last_idx)
647 		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
648 
649 	/* print the asserts */
650 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
651 
652 		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
653 			      XSTORM_ASSERT_LIST_OFFSET(i));
654 		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
655 			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
656 		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
657 			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
658 		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
659 			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
660 
661 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
662 			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
663 				  i, row3, row2, row1, row0);
664 			rc++;
665 		} else {
666 			break;
667 		}
668 	}
669 
670 	/* TSTORM */
671 	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
672 			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
673 	if (last_idx)
674 		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
675 
676 	/* print the asserts */
677 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
678 
679 		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
680 			      TSTORM_ASSERT_LIST_OFFSET(i));
681 		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
682 			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
683 		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
684 			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
685 		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
686 			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
687 
688 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
689 			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
690 				  i, row3, row2, row1, row0);
691 			rc++;
692 		} else {
693 			break;
694 		}
695 	}
696 
697 	/* CSTORM */
698 	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
699 			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
700 	if (last_idx)
701 		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
702 
703 	/* print the asserts */
704 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
705 
706 		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
707 			      CSTORM_ASSERT_LIST_OFFSET(i));
708 		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
709 			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
710 		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
711 			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
712 		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
713 			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
714 
715 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
716 			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
717 				  i, row3, row2, row1, row0);
718 			rc++;
719 		} else {
720 			break;
721 		}
722 	}
723 
724 	/* USTORM */
725 	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
726 			   USTORM_ASSERT_LIST_INDEX_OFFSET);
727 	if (last_idx)
728 		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
729 
730 	/* print the asserts */
731 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
732 
733 		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
734 			      USTORM_ASSERT_LIST_OFFSET(i));
735 		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
736 			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
737 		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
738 			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
739 		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
740 			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
741 
742 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
743 			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
744 				  i, row3, row2, row1, row0);
745 			rc++;
746 		} else {
747 			break;
748 		}
749 	}
750 
751 	return rc;
752 }
753 
754 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
755 {
756 	u32 addr, val;
757 	u32 mark, offset;
758 	__be32 data[9];
759 	int word;
760 	u32 trace_shmem_base;
761 	if (BP_NOMCP(bp)) {
762 		BNX2X_ERR("NO MCP - can not dump\n");
763 		return;
764 	}
765 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
766 		(bp->common.bc_ver & 0xff0000) >> 16,
767 		(bp->common.bc_ver & 0xff00) >> 8,
768 		(bp->common.bc_ver & 0xff));
769 
770 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
771 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
772 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
773 
774 	if (BP_PATH(bp) == 0)
775 		trace_shmem_base = bp->common.shmem_base;
776 	else
777 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
778 	addr = trace_shmem_base - 0x800;
779 
780 	/* validate TRCB signature */
781 	mark = REG_RD(bp, addr);
782 	if (mark != MFW_TRACE_SIGNATURE) {
783 		BNX2X_ERR("Trace buffer signature is missing.");
784 		return ;
785 	}
786 
787 	/* read cyclic buffer pointer */
788 	addr += 4;
789 	mark = REG_RD(bp, addr);
790 	mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
791 			+ ((mark + 0x3) & ~0x3) - 0x08000000;
792 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
793 
794 	printk("%s", lvl);
795 
796 	/* dump buffer after the mark */
797 	for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
798 		for (word = 0; word < 8; word++)
799 			data[word] = htonl(REG_RD(bp, offset + 4*word));
800 		data[8] = 0x0;
801 		pr_cont("%s", (char *)data);
802 	}
803 
804 	/* dump buffer before the mark */
805 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
806 		for (word = 0; word < 8; word++)
807 			data[word] = htonl(REG_RD(bp, offset + 4*word));
808 		data[8] = 0x0;
809 		pr_cont("%s", (char *)data);
810 	}
811 	printk("%s" "end of fw dump\n", lvl);
812 }
813 
814 static void bnx2x_fw_dump(struct bnx2x *bp)
815 {
816 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
817 }
818 
819 static void bnx2x_hc_int_disable(struct bnx2x *bp)
820 {
821 	int port = BP_PORT(bp);
822 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
823 	u32 val = REG_RD(bp, addr);
824 
825 	/* in E1 we must use only PCI configuration space to disable
826 	 * MSI/MSIX capability
827 	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
828 	 */
829 	if (CHIP_IS_E1(bp)) {
830 		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
831 		 * Use mask register to prevent from HC sending interrupts
832 		 * after we exit the function
833 		 */
834 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
835 
836 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
837 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
838 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
839 	} else
840 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
841 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
842 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
843 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
844 
845 	DP(NETIF_MSG_IFDOWN,
846 	   "write %x to HC %d (addr 0x%x)\n",
847 	   val, port, addr);
848 
849 	/* flush all outstanding writes */
850 	mmiowb();
851 
852 	REG_WR(bp, addr, val);
853 	if (REG_RD(bp, addr) != val)
854 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
855 }
856 
857 static void bnx2x_igu_int_disable(struct bnx2x *bp)
858 {
859 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
860 
861 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
862 		 IGU_PF_CONF_INT_LINE_EN |
863 		 IGU_PF_CONF_ATTN_BIT_EN);
864 
865 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
866 
867 	/* flush all outstanding writes */
868 	mmiowb();
869 
870 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
871 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
872 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
873 }
874 
875 static void bnx2x_int_disable(struct bnx2x *bp)
876 {
877 	if (bp->common.int_block == INT_BLOCK_HC)
878 		bnx2x_hc_int_disable(bp);
879 	else
880 		bnx2x_igu_int_disable(bp);
881 }
882 
883 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
884 {
885 	int i;
886 	u16 j;
887 	struct hc_sp_status_block_data sp_sb_data;
888 	int func = BP_FUNC(bp);
889 #ifdef BNX2X_STOP_ON_ERROR
890 	u16 start = 0, end = 0;
891 	u8 cos;
892 #endif
893 	if (disable_int)
894 		bnx2x_int_disable(bp);
895 
896 	bp->stats_state = STATS_STATE_DISABLED;
897 	bp->eth_stats.unrecoverable_error++;
898 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
899 
900 	BNX2X_ERR("begin crash dump -----------------\n");
901 
902 	/* Indices */
903 	/* Common */
904 	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
905 		  bp->def_idx, bp->def_att_idx, bp->attn_state,
906 		  bp->spq_prod_idx, bp->stats_counter);
907 	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
908 		  bp->def_status_blk->atten_status_block.attn_bits,
909 		  bp->def_status_blk->atten_status_block.attn_bits_ack,
910 		  bp->def_status_blk->atten_status_block.status_block_id,
911 		  bp->def_status_blk->atten_status_block.attn_bits_index);
912 	BNX2X_ERR("     def (");
913 	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
914 		pr_cont("0x%x%s",
915 			bp->def_status_blk->sp_sb.index_values[i],
916 			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
917 
918 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
919 		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
920 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
921 			i*sizeof(u32));
922 
923 	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
924 	       sp_sb_data.igu_sb_id,
925 	       sp_sb_data.igu_seg_id,
926 	       sp_sb_data.p_func.pf_id,
927 	       sp_sb_data.p_func.vnic_id,
928 	       sp_sb_data.p_func.vf_id,
929 	       sp_sb_data.p_func.vf_valid,
930 	       sp_sb_data.state);
931 
932 	for_each_eth_queue(bp, i) {
933 		struct bnx2x_fastpath *fp = &bp->fp[i];
934 		int loop;
935 		struct hc_status_block_data_e2 sb_data_e2;
936 		struct hc_status_block_data_e1x sb_data_e1x;
937 		struct hc_status_block_sm  *hc_sm_p =
938 			CHIP_IS_E1x(bp) ?
939 			sb_data_e1x.common.state_machine :
940 			sb_data_e2.common.state_machine;
941 		struct hc_index_data *hc_index_p =
942 			CHIP_IS_E1x(bp) ?
943 			sb_data_e1x.index_data :
944 			sb_data_e2.index_data;
945 		u8 data_size, cos;
946 		u32 *sb_data_p;
947 		struct bnx2x_fp_txdata txdata;
948 
949 		/* Rx */
950 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
951 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
952 			  fp->rx_comp_prod,
953 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
954 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
955 			  fp->rx_sge_prod, fp->last_max_sge,
956 			  le16_to_cpu(fp->fp_hc_idx));
957 
958 		/* Tx */
959 		for_each_cos_in_tx_queue(fp, cos)
960 		{
961 			txdata = *fp->txdata_ptr[cos];
962 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
963 				  i, txdata.tx_pkt_prod,
964 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
965 				  txdata.tx_bd_cons,
966 				  le16_to_cpu(*txdata.tx_cons_sb));
967 		}
968 
969 		loop = CHIP_IS_E1x(bp) ?
970 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
971 
972 		/* host sb data */
973 
974 		if (IS_FCOE_FP(fp))
975 			continue;
976 
977 		BNX2X_ERR("     run indexes (");
978 		for (j = 0; j < HC_SB_MAX_SM; j++)
979 			pr_cont("0x%x%s",
980 			       fp->sb_running_index[j],
981 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
982 
983 		BNX2X_ERR("     indexes (");
984 		for (j = 0; j < loop; j++)
985 			pr_cont("0x%x%s",
986 			       fp->sb_index_values[j],
987 			       (j == loop - 1) ? ")" : " ");
988 		/* fw sb data */
989 		data_size = CHIP_IS_E1x(bp) ?
990 			sizeof(struct hc_status_block_data_e1x) :
991 			sizeof(struct hc_status_block_data_e2);
992 		data_size /= sizeof(u32);
993 		sb_data_p = CHIP_IS_E1x(bp) ?
994 			(u32 *)&sb_data_e1x :
995 			(u32 *)&sb_data_e2;
996 		/* copy sb data in here */
997 		for (j = 0; j < data_size; j++)
998 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
999 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1000 				j * sizeof(u32));
1001 
1002 		if (!CHIP_IS_E1x(bp)) {
1003 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1004 				sb_data_e2.common.p_func.pf_id,
1005 				sb_data_e2.common.p_func.vf_id,
1006 				sb_data_e2.common.p_func.vf_valid,
1007 				sb_data_e2.common.p_func.vnic_id,
1008 				sb_data_e2.common.same_igu_sb_1b,
1009 				sb_data_e2.common.state);
1010 		} else {
1011 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1012 				sb_data_e1x.common.p_func.pf_id,
1013 				sb_data_e1x.common.p_func.vf_id,
1014 				sb_data_e1x.common.p_func.vf_valid,
1015 				sb_data_e1x.common.p_func.vnic_id,
1016 				sb_data_e1x.common.same_igu_sb_1b,
1017 				sb_data_e1x.common.state);
1018 		}
1019 
1020 		/* SB_SMs data */
1021 		for (j = 0; j < HC_SB_MAX_SM; j++) {
1022 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1023 				j, hc_sm_p[j].__flags,
1024 				hc_sm_p[j].igu_sb_id,
1025 				hc_sm_p[j].igu_seg_id,
1026 				hc_sm_p[j].time_to_expire,
1027 				hc_sm_p[j].timer_value);
1028 		}
1029 
1030 		/* Indices data */
1031 		for (j = 0; j < loop; j++) {
1032 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1033 			       hc_index_p[j].flags,
1034 			       hc_index_p[j].timeout);
1035 		}
1036 	}
1037 
1038 #ifdef BNX2X_STOP_ON_ERROR
1039 
1040 	/* event queue */
1041 	BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1042 	for (i = 0; i < NUM_EQ_DESC; i++) {
1043 		u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1044 
1045 		BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1046 			  i, bp->eq_ring[i].message.opcode,
1047 			  bp->eq_ring[i].message.error);
1048 		BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]);
1049 	}
1050 
1051 	/* Rings */
1052 	/* Rx */
1053 	for_each_valid_rx_queue(bp, i) {
1054 		struct bnx2x_fastpath *fp = &bp->fp[i];
1055 
1056 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1057 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1058 		for (j = start; j != end; j = RX_BD(j + 1)) {
1059 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1060 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1061 
1062 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1063 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1064 		}
1065 
1066 		start = RX_SGE(fp->rx_sge_prod);
1067 		end = RX_SGE(fp->last_max_sge);
1068 		for (j = start; j != end; j = RX_SGE(j + 1)) {
1069 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1070 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1071 
1072 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1073 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1074 		}
1075 
1076 		start = RCQ_BD(fp->rx_comp_cons - 10);
1077 		end = RCQ_BD(fp->rx_comp_cons + 503);
1078 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1079 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1080 
1081 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1082 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1083 		}
1084 	}
1085 
1086 	/* Tx */
1087 	for_each_valid_tx_queue(bp, i) {
1088 		struct bnx2x_fastpath *fp = &bp->fp[i];
1089 		for_each_cos_in_tx_queue(fp, cos) {
1090 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1091 
1092 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1093 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1094 			for (j = start; j != end; j = TX_BD(j + 1)) {
1095 				struct sw_tx_bd *sw_bd =
1096 					&txdata->tx_buf_ring[j];
1097 
1098 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1099 					  i, cos, j, sw_bd->skb,
1100 					  sw_bd->first_bd);
1101 			}
1102 
1103 			start = TX_BD(txdata->tx_bd_cons - 10);
1104 			end = TX_BD(txdata->tx_bd_cons + 254);
1105 			for (j = start; j != end; j = TX_BD(j + 1)) {
1106 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1107 
1108 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1109 					  i, cos, j, tx_bd[0], tx_bd[1],
1110 					  tx_bd[2], tx_bd[3]);
1111 			}
1112 		}
1113 	}
1114 #endif
1115 	bnx2x_fw_dump(bp);
1116 	bnx2x_mc_assert(bp);
1117 	BNX2X_ERR("end crash dump -----------------\n");
1118 }
1119 
1120 /*
1121  * FLR Support for E2
1122  *
1123  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1124  * initialization.
1125  */
1126 #define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1127 #define FLR_WAIT_INTERVAL	50	/* usec */
1128 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1129 
1130 struct pbf_pN_buf_regs {
1131 	int pN;
1132 	u32 init_crd;
1133 	u32 crd;
1134 	u32 crd_freed;
1135 };
1136 
1137 struct pbf_pN_cmd_regs {
1138 	int pN;
1139 	u32 lines_occup;
1140 	u32 lines_freed;
1141 };
1142 
1143 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1144 				     struct pbf_pN_buf_regs *regs,
1145 				     u32 poll_count)
1146 {
1147 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1148 	u32 cur_cnt = poll_count;
1149 
1150 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1151 	crd = crd_start = REG_RD(bp, regs->crd);
1152 	init_crd = REG_RD(bp, regs->init_crd);
1153 
1154 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1155 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1156 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1157 
1158 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1159 	       (init_crd - crd_start))) {
1160 		if (cur_cnt--) {
1161 			udelay(FLR_WAIT_INTERVAL);
1162 			crd = REG_RD(bp, regs->crd);
1163 			crd_freed = REG_RD(bp, regs->crd_freed);
1164 		} else {
1165 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1166 			   regs->pN);
1167 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1168 			   regs->pN, crd);
1169 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1170 			   regs->pN, crd_freed);
1171 			break;
1172 		}
1173 	}
1174 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1175 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1176 }
1177 
1178 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1179 				     struct pbf_pN_cmd_regs *regs,
1180 				     u32 poll_count)
1181 {
1182 	u32 occup, to_free, freed, freed_start;
1183 	u32 cur_cnt = poll_count;
1184 
1185 	occup = to_free = REG_RD(bp, regs->lines_occup);
1186 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1187 
1188 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1189 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1190 
1191 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1192 		if (cur_cnt--) {
1193 			udelay(FLR_WAIT_INTERVAL);
1194 			occup = REG_RD(bp, regs->lines_occup);
1195 			freed = REG_RD(bp, regs->lines_freed);
1196 		} else {
1197 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1198 			   regs->pN);
1199 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1200 			   regs->pN, occup);
1201 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1202 			   regs->pN, freed);
1203 			break;
1204 		}
1205 	}
1206 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1207 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1208 }
1209 
1210 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1211 				    u32 expected, u32 poll_count)
1212 {
1213 	u32 cur_cnt = poll_count;
1214 	u32 val;
1215 
1216 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1217 		udelay(FLR_WAIT_INTERVAL);
1218 
1219 	return val;
1220 }
1221 
1222 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1223 				    char *msg, u32 poll_cnt)
1224 {
1225 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1226 	if (val != 0) {
1227 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1228 		return 1;
1229 	}
1230 	return 0;
1231 }
1232 
1233 /* Common routines with VF FLR cleanup */
1234 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1235 {
1236 	/* adjust polling timeout */
1237 	if (CHIP_REV_IS_EMUL(bp))
1238 		return FLR_POLL_CNT * 2000;
1239 
1240 	if (CHIP_REV_IS_FPGA(bp))
1241 		return FLR_POLL_CNT * 120;
1242 
1243 	return FLR_POLL_CNT;
1244 }
1245 
1246 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1247 {
1248 	struct pbf_pN_cmd_regs cmd_regs[] = {
1249 		{0, (CHIP_IS_E3B0(bp)) ?
1250 			PBF_REG_TQ_OCCUPANCY_Q0 :
1251 			PBF_REG_P0_TQ_OCCUPANCY,
1252 		    (CHIP_IS_E3B0(bp)) ?
1253 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1254 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1255 		{1, (CHIP_IS_E3B0(bp)) ?
1256 			PBF_REG_TQ_OCCUPANCY_Q1 :
1257 			PBF_REG_P1_TQ_OCCUPANCY,
1258 		    (CHIP_IS_E3B0(bp)) ?
1259 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1260 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1261 		{4, (CHIP_IS_E3B0(bp)) ?
1262 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1263 			PBF_REG_P4_TQ_OCCUPANCY,
1264 		    (CHIP_IS_E3B0(bp)) ?
1265 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1266 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1267 	};
1268 
1269 	struct pbf_pN_buf_regs buf_regs[] = {
1270 		{0, (CHIP_IS_E3B0(bp)) ?
1271 			PBF_REG_INIT_CRD_Q0 :
1272 			PBF_REG_P0_INIT_CRD ,
1273 		    (CHIP_IS_E3B0(bp)) ?
1274 			PBF_REG_CREDIT_Q0 :
1275 			PBF_REG_P0_CREDIT,
1276 		    (CHIP_IS_E3B0(bp)) ?
1277 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1278 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1279 		{1, (CHIP_IS_E3B0(bp)) ?
1280 			PBF_REG_INIT_CRD_Q1 :
1281 			PBF_REG_P1_INIT_CRD,
1282 		    (CHIP_IS_E3B0(bp)) ?
1283 			PBF_REG_CREDIT_Q1 :
1284 			PBF_REG_P1_CREDIT,
1285 		    (CHIP_IS_E3B0(bp)) ?
1286 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1287 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1288 		{4, (CHIP_IS_E3B0(bp)) ?
1289 			PBF_REG_INIT_CRD_LB_Q :
1290 			PBF_REG_P4_INIT_CRD,
1291 		    (CHIP_IS_E3B0(bp)) ?
1292 			PBF_REG_CREDIT_LB_Q :
1293 			PBF_REG_P4_CREDIT,
1294 		    (CHIP_IS_E3B0(bp)) ?
1295 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1296 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1297 	};
1298 
1299 	int i;
1300 
1301 	/* Verify the command queues are flushed P0, P1, P4 */
1302 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1303 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1304 
1305 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1306 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1307 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1308 }
1309 
1310 #define OP_GEN_PARAM(param) \
1311 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1312 
1313 #define OP_GEN_TYPE(type) \
1314 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1315 
1316 #define OP_GEN_AGG_VECT(index) \
1317 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1318 
1319 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1320 {
1321 	u32 op_gen_command = 0;
1322 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1323 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1324 	int ret = 0;
1325 
1326 	if (REG_RD(bp, comp_addr)) {
1327 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1328 		return 1;
1329 	}
1330 
1331 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1332 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1333 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1334 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1335 
1336 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1337 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1338 
1339 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1340 		BNX2X_ERR("FW final cleanup did not succeed\n");
1341 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1342 		   (REG_RD(bp, comp_addr)));
1343 		bnx2x_panic();
1344 		return 1;
1345 	}
1346 	/* Zero completion for next FLR */
1347 	REG_WR(bp, comp_addr, 0);
1348 
1349 	return ret;
1350 }
1351 
1352 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1353 {
1354 	u16 status;
1355 
1356 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1357 	return status & PCI_EXP_DEVSTA_TRPND;
1358 }
1359 
1360 /* PF FLR specific routines
1361 */
1362 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1363 {
1364 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1365 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1366 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1367 			"CFC PF usage counter timed out",
1368 			poll_cnt))
1369 		return 1;
1370 
1371 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1372 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1373 			DORQ_REG_PF_USAGE_CNT,
1374 			"DQ PF usage counter timed out",
1375 			poll_cnt))
1376 		return 1;
1377 
1378 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1379 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1380 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1381 			"QM PF usage counter timed out",
1382 			poll_cnt))
1383 		return 1;
1384 
1385 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1386 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1387 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1388 			"Timers VNIC usage counter timed out",
1389 			poll_cnt))
1390 		return 1;
1391 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1392 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1393 			"Timers NUM_SCANS usage counter timed out",
1394 			poll_cnt))
1395 		return 1;
1396 
1397 	/* Wait DMAE PF usage counter to zero */
1398 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1399 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1400 			"DMAE command register timed out",
1401 			poll_cnt))
1402 		return 1;
1403 
1404 	return 0;
1405 }
1406 
1407 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1408 {
1409 	u32 val;
1410 
1411 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1412 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1413 
1414 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1415 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1416 
1417 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1418 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1419 
1420 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1421 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1422 
1423 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1424 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1425 
1426 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1427 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1428 
1429 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1430 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1431 
1432 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1433 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1434 	   val);
1435 }
1436 
1437 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1438 {
1439 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1440 
1441 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1442 
1443 	/* Re-enable PF target read access */
1444 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1445 
1446 	/* Poll HW usage counters */
1447 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1448 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1449 		return -EBUSY;
1450 
1451 	/* Zero the igu 'trailing edge' and 'leading edge' */
1452 
1453 	/* Send the FW cleanup command */
1454 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1455 		return -EBUSY;
1456 
1457 	/* ATC cleanup */
1458 
1459 	/* Verify TX hw is flushed */
1460 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1461 
1462 	/* Wait 100ms (not adjusted according to platform) */
1463 	msleep(100);
1464 
1465 	/* Verify no pending pci transactions */
1466 	if (bnx2x_is_pcie_pending(bp->pdev))
1467 		BNX2X_ERR("PCIE Transactions still pending\n");
1468 
1469 	/* Debug */
1470 	bnx2x_hw_enable_status(bp);
1471 
1472 	/*
1473 	 * Master enable - Due to WB DMAE writes performed before this
1474 	 * register is re-initialized as part of the regular function init
1475 	 */
1476 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1477 
1478 	return 0;
1479 }
1480 
1481 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1482 {
1483 	int port = BP_PORT(bp);
1484 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1485 	u32 val = REG_RD(bp, addr);
1486 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1487 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1488 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1489 
1490 	if (msix) {
1491 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1492 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1493 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1494 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1495 		if (single_msix)
1496 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1497 	} else if (msi) {
1498 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1499 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1500 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1501 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1502 	} else {
1503 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1504 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1505 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1506 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1507 
1508 		if (!CHIP_IS_E1(bp)) {
1509 			DP(NETIF_MSG_IFUP,
1510 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1511 
1512 			REG_WR(bp, addr, val);
1513 
1514 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1515 		}
1516 	}
1517 
1518 	if (CHIP_IS_E1(bp))
1519 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1520 
1521 	DP(NETIF_MSG_IFUP,
1522 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1523 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1524 
1525 	REG_WR(bp, addr, val);
1526 	/*
1527 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1528 	 */
1529 	mmiowb();
1530 	barrier();
1531 
1532 	if (!CHIP_IS_E1(bp)) {
1533 		/* init leading/trailing edge */
1534 		if (IS_MF(bp)) {
1535 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1536 			if (bp->port.pmf)
1537 				/* enable nig and gpio3 attention */
1538 				val |= 0x1100;
1539 		} else
1540 			val = 0xffff;
1541 
1542 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1543 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1544 	}
1545 
1546 	/* Make sure that interrupts are indeed enabled from here on */
1547 	mmiowb();
1548 }
1549 
1550 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1551 {
1552 	u32 val;
1553 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1554 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1555 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1556 
1557 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1558 
1559 	if (msix) {
1560 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1561 			 IGU_PF_CONF_SINGLE_ISR_EN);
1562 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1563 			IGU_PF_CONF_ATTN_BIT_EN);
1564 
1565 		if (single_msix)
1566 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1567 	} else if (msi) {
1568 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1569 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1570 			IGU_PF_CONF_ATTN_BIT_EN |
1571 			IGU_PF_CONF_SINGLE_ISR_EN);
1572 	} else {
1573 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1574 		val |= (IGU_PF_CONF_INT_LINE_EN |
1575 			IGU_PF_CONF_ATTN_BIT_EN |
1576 			IGU_PF_CONF_SINGLE_ISR_EN);
1577 	}
1578 
1579 	/* Clean previous status - need to configure igu prior to ack*/
1580 	if ((!msix) || single_msix) {
1581 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1582 		bnx2x_ack_int(bp);
1583 	}
1584 
1585 	val |= IGU_PF_CONF_FUNC_EN;
1586 
1587 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1588 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1589 
1590 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1591 
1592 	if (val & IGU_PF_CONF_INT_LINE_EN)
1593 		pci_intx(bp->pdev, true);
1594 
1595 	barrier();
1596 
1597 	/* init leading/trailing edge */
1598 	if (IS_MF(bp)) {
1599 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1600 		if (bp->port.pmf)
1601 			/* enable nig and gpio3 attention */
1602 			val |= 0x1100;
1603 	} else
1604 		val = 0xffff;
1605 
1606 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1607 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1608 
1609 	/* Make sure that interrupts are indeed enabled from here on */
1610 	mmiowb();
1611 }
1612 
1613 void bnx2x_int_enable(struct bnx2x *bp)
1614 {
1615 	if (bp->common.int_block == INT_BLOCK_HC)
1616 		bnx2x_hc_int_enable(bp);
1617 	else
1618 		bnx2x_igu_int_enable(bp);
1619 }
1620 
1621 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1622 {
1623 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1624 	int i, offset;
1625 
1626 	if (disable_hw)
1627 		/* prevent the HW from sending interrupts */
1628 		bnx2x_int_disable(bp);
1629 
1630 	/* make sure all ISRs are done */
1631 	if (msix) {
1632 		synchronize_irq(bp->msix_table[0].vector);
1633 		offset = 1;
1634 		if (CNIC_SUPPORT(bp))
1635 			offset++;
1636 		for_each_eth_queue(bp, i)
1637 			synchronize_irq(bp->msix_table[offset++].vector);
1638 	} else
1639 		synchronize_irq(bp->pdev->irq);
1640 
1641 	/* make sure sp_task is not running */
1642 	cancel_delayed_work(&bp->sp_task);
1643 	cancel_delayed_work(&bp->period_task);
1644 	flush_workqueue(bnx2x_wq);
1645 }
1646 
1647 /* fast path */
1648 
1649 /*
1650  * General service functions
1651  */
1652 
1653 /* Return true if succeeded to acquire the lock */
1654 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1655 {
1656 	u32 lock_status;
1657 	u32 resource_bit = (1 << resource);
1658 	int func = BP_FUNC(bp);
1659 	u32 hw_lock_control_reg;
1660 
1661 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1662 	   "Trying to take a lock on resource %d\n", resource);
1663 
1664 	/* Validating that the resource is within range */
1665 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1666 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1667 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1668 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1669 		return false;
1670 	}
1671 
1672 	if (func <= 5)
1673 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1674 	else
1675 		hw_lock_control_reg =
1676 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1677 
1678 	/* Try to acquire the lock */
1679 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1680 	lock_status = REG_RD(bp, hw_lock_control_reg);
1681 	if (lock_status & resource_bit)
1682 		return true;
1683 
1684 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1685 	   "Failed to get a lock on resource %d\n", resource);
1686 	return false;
1687 }
1688 
1689 /**
1690  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1691  *
1692  * @bp:	driver handle
1693  *
1694  * Returns the recovery leader resource id according to the engine this function
1695  * belongs to. Currently only only 2 engines is supported.
1696  */
1697 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1698 {
1699 	if (BP_PATH(bp))
1700 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1701 	else
1702 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1703 }
1704 
1705 /**
1706  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1707  *
1708  * @bp: driver handle
1709  *
1710  * Tries to acquire a leader lock for current engine.
1711  */
1712 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1713 {
1714 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1715 }
1716 
1717 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1718 
1719 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1720 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1721 {
1722 	/* Set the interrupt occurred bit for the sp-task to recognize it
1723 	 * must ack the interrupt and transition according to the IGU
1724 	 * state machine.
1725 	 */
1726 	atomic_set(&bp->interrupt_occurred, 1);
1727 
1728 	/* The sp_task must execute only after this bit
1729 	 * is set, otherwise we will get out of sync and miss all
1730 	 * further interrupts. Hence, the barrier.
1731 	 */
1732 	smp_wmb();
1733 
1734 	/* schedule sp_task to workqueue */
1735 	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1736 }
1737 
1738 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1739 {
1740 	struct bnx2x *bp = fp->bp;
1741 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1742 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1743 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1744 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1745 
1746 	DP(BNX2X_MSG_SP,
1747 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1748 	   fp->index, cid, command, bp->state,
1749 	   rr_cqe->ramrod_cqe.ramrod_type);
1750 
1751 	/* If cid is within VF range, replace the slowpath object with the
1752 	 * one corresponding to this VF
1753 	 */
1754 	if (cid >= BNX2X_FIRST_VF_CID  &&
1755 	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1756 		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1757 
1758 	switch (command) {
1759 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1760 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1761 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1762 		break;
1763 
1764 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1765 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1766 		drv_cmd = BNX2X_Q_CMD_SETUP;
1767 		break;
1768 
1769 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1770 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1771 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1772 		break;
1773 
1774 	case (RAMROD_CMD_ID_ETH_HALT):
1775 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1776 		drv_cmd = BNX2X_Q_CMD_HALT;
1777 		break;
1778 
1779 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1780 		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1781 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1782 		break;
1783 
1784 	case (RAMROD_CMD_ID_ETH_EMPTY):
1785 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1786 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1787 		break;
1788 
1789 	default:
1790 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1791 			  command, fp->index);
1792 		return;
1793 	}
1794 
1795 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1796 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1797 		/* q_obj->complete_cmd() failure means that this was
1798 		 * an unexpected completion.
1799 		 *
1800 		 * In this case we don't want to increase the bp->spq_left
1801 		 * because apparently we haven't sent this command the first
1802 		 * place.
1803 		 */
1804 #ifdef BNX2X_STOP_ON_ERROR
1805 		bnx2x_panic();
1806 #else
1807 		return;
1808 #endif
1809 	/* SRIOV: reschedule any 'in_progress' operations */
1810 	bnx2x_iov_sp_event(bp, cid, true);
1811 
1812 	smp_mb__before_atomic_inc();
1813 	atomic_inc(&bp->cq_spq_left);
1814 	/* push the change in bp->spq_left and towards the memory */
1815 	smp_mb__after_atomic_inc();
1816 
1817 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1818 
1819 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1820 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1821 		/* if Q update ramrod is completed for last Q in AFEX vif set
1822 		 * flow, then ACK MCP at the end
1823 		 *
1824 		 * mark pending ACK to MCP bit.
1825 		 * prevent case that both bits are cleared.
1826 		 * At the end of load/unload driver checks that
1827 		 * sp_state is cleared, and this order prevents
1828 		 * races
1829 		 */
1830 		smp_mb__before_clear_bit();
1831 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1832 		wmb();
1833 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1834 		smp_mb__after_clear_bit();
1835 
1836 		/* schedule the sp task as mcp ack is required */
1837 		bnx2x_schedule_sp_task(bp);
1838 	}
1839 
1840 	return;
1841 }
1842 
1843 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1844 {
1845 	struct bnx2x *bp = netdev_priv(dev_instance);
1846 	u16 status = bnx2x_ack_int(bp);
1847 	u16 mask;
1848 	int i;
1849 	u8 cos;
1850 
1851 	/* Return here if interrupt is shared and it's not for us */
1852 	if (unlikely(status == 0)) {
1853 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1854 		return IRQ_NONE;
1855 	}
1856 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1857 
1858 #ifdef BNX2X_STOP_ON_ERROR
1859 	if (unlikely(bp->panic))
1860 		return IRQ_HANDLED;
1861 #endif
1862 
1863 	for_each_eth_queue(bp, i) {
1864 		struct bnx2x_fastpath *fp = &bp->fp[i];
1865 
1866 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1867 		if (status & mask) {
1868 			/* Handle Rx or Tx according to SB id */
1869 			for_each_cos_in_tx_queue(fp, cos)
1870 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1871 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1872 			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1873 			status &= ~mask;
1874 		}
1875 	}
1876 
1877 	if (CNIC_SUPPORT(bp)) {
1878 		mask = 0x2;
1879 		if (status & (mask | 0x1)) {
1880 			struct cnic_ops *c_ops = NULL;
1881 
1882 			rcu_read_lock();
1883 			c_ops = rcu_dereference(bp->cnic_ops);
1884 			if (c_ops && (bp->cnic_eth_dev.drv_state &
1885 				      CNIC_DRV_STATE_HANDLES_IRQ))
1886 				c_ops->cnic_handler(bp->cnic_data, NULL);
1887 			rcu_read_unlock();
1888 
1889 			status &= ~mask;
1890 		}
1891 	}
1892 
1893 	if (unlikely(status & 0x1)) {
1894 
1895 		/* schedule sp task to perform default status block work, ack
1896 		 * attentions and enable interrupts.
1897 		 */
1898 		bnx2x_schedule_sp_task(bp);
1899 
1900 		status &= ~0x1;
1901 		if (!status)
1902 			return IRQ_HANDLED;
1903 	}
1904 
1905 	if (unlikely(status))
1906 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1907 		   status);
1908 
1909 	return IRQ_HANDLED;
1910 }
1911 
1912 /* Link */
1913 
1914 /*
1915  * General service functions
1916  */
1917 
1918 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1919 {
1920 	u32 lock_status;
1921 	u32 resource_bit = (1 << resource);
1922 	int func = BP_FUNC(bp);
1923 	u32 hw_lock_control_reg;
1924 	int cnt;
1925 
1926 	/* Validating that the resource is within range */
1927 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1928 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1929 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1930 		return -EINVAL;
1931 	}
1932 
1933 	if (func <= 5) {
1934 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1935 	} else {
1936 		hw_lock_control_reg =
1937 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1938 	}
1939 
1940 	/* Validating that the resource is not already taken */
1941 	lock_status = REG_RD(bp, hw_lock_control_reg);
1942 	if (lock_status & resource_bit) {
1943 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1944 		   lock_status, resource_bit);
1945 		return -EEXIST;
1946 	}
1947 
1948 	/* Try for 5 second every 5ms */
1949 	for (cnt = 0; cnt < 1000; cnt++) {
1950 		/* Try to acquire the lock */
1951 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1952 		lock_status = REG_RD(bp, hw_lock_control_reg);
1953 		if (lock_status & resource_bit)
1954 			return 0;
1955 
1956 		usleep_range(5000, 10000);
1957 	}
1958 	BNX2X_ERR("Timeout\n");
1959 	return -EAGAIN;
1960 }
1961 
1962 int bnx2x_release_leader_lock(struct bnx2x *bp)
1963 {
1964 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1965 }
1966 
1967 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1968 {
1969 	u32 lock_status;
1970 	u32 resource_bit = (1 << resource);
1971 	int func = BP_FUNC(bp);
1972 	u32 hw_lock_control_reg;
1973 
1974 	/* Validating that the resource is within range */
1975 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1976 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1977 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1978 		return -EINVAL;
1979 	}
1980 
1981 	if (func <= 5) {
1982 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1983 	} else {
1984 		hw_lock_control_reg =
1985 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1986 	}
1987 
1988 	/* Validating that the resource is currently taken */
1989 	lock_status = REG_RD(bp, hw_lock_control_reg);
1990 	if (!(lock_status & resource_bit)) {
1991 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
1992 			  lock_status, resource_bit);
1993 		return -EFAULT;
1994 	}
1995 
1996 	REG_WR(bp, hw_lock_control_reg, resource_bit);
1997 	return 0;
1998 }
1999 
2000 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2001 {
2002 	/* The GPIO should be swapped if swap register is set and active */
2003 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2004 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2005 	int gpio_shift = gpio_num +
2006 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2007 	u32 gpio_mask = (1 << gpio_shift);
2008 	u32 gpio_reg;
2009 	int value;
2010 
2011 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2012 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2013 		return -EINVAL;
2014 	}
2015 
2016 	/* read GPIO value */
2017 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2018 
2019 	/* get the requested pin value */
2020 	if ((gpio_reg & gpio_mask) == gpio_mask)
2021 		value = 1;
2022 	else
2023 		value = 0;
2024 
2025 	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
2026 
2027 	return value;
2028 }
2029 
2030 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2031 {
2032 	/* The GPIO should be swapped if swap register is set and active */
2033 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2034 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2035 	int gpio_shift = gpio_num +
2036 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2037 	u32 gpio_mask = (1 << gpio_shift);
2038 	u32 gpio_reg;
2039 
2040 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2041 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2042 		return -EINVAL;
2043 	}
2044 
2045 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2046 	/* read GPIO and mask except the float bits */
2047 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2048 
2049 	switch (mode) {
2050 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2051 		DP(NETIF_MSG_LINK,
2052 		   "Set GPIO %d (shift %d) -> output low\n",
2053 		   gpio_num, gpio_shift);
2054 		/* clear FLOAT and set CLR */
2055 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2056 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2057 		break;
2058 
2059 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2060 		DP(NETIF_MSG_LINK,
2061 		   "Set GPIO %d (shift %d) -> output high\n",
2062 		   gpio_num, gpio_shift);
2063 		/* clear FLOAT and set SET */
2064 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2065 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2066 		break;
2067 
2068 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2069 		DP(NETIF_MSG_LINK,
2070 		   "Set GPIO %d (shift %d) -> input\n",
2071 		   gpio_num, gpio_shift);
2072 		/* set FLOAT */
2073 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2074 		break;
2075 
2076 	default:
2077 		break;
2078 	}
2079 
2080 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2081 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2082 
2083 	return 0;
2084 }
2085 
2086 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2087 {
2088 	u32 gpio_reg = 0;
2089 	int rc = 0;
2090 
2091 	/* Any port swapping should be handled by caller. */
2092 
2093 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2094 	/* read GPIO and mask except the float bits */
2095 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2096 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2097 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2098 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2099 
2100 	switch (mode) {
2101 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2102 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2103 		/* set CLR */
2104 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2105 		break;
2106 
2107 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2108 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2109 		/* set SET */
2110 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2111 		break;
2112 
2113 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2114 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2115 		/* set FLOAT */
2116 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2117 		break;
2118 
2119 	default:
2120 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2121 		rc = -EINVAL;
2122 		break;
2123 	}
2124 
2125 	if (rc == 0)
2126 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2127 
2128 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2129 
2130 	return rc;
2131 }
2132 
2133 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2134 {
2135 	/* The GPIO should be swapped if swap register is set and active */
2136 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2137 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2138 	int gpio_shift = gpio_num +
2139 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2140 	u32 gpio_mask = (1 << gpio_shift);
2141 	u32 gpio_reg;
2142 
2143 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2144 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2145 		return -EINVAL;
2146 	}
2147 
2148 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2149 	/* read GPIO int */
2150 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2151 
2152 	switch (mode) {
2153 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2154 		DP(NETIF_MSG_LINK,
2155 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2156 		   gpio_num, gpio_shift);
2157 		/* clear SET and set CLR */
2158 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2159 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2160 		break;
2161 
2162 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2163 		DP(NETIF_MSG_LINK,
2164 		   "Set GPIO INT %d (shift %d) -> output high\n",
2165 		   gpio_num, gpio_shift);
2166 		/* clear CLR and set SET */
2167 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2168 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2169 		break;
2170 
2171 	default:
2172 		break;
2173 	}
2174 
2175 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2176 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2177 
2178 	return 0;
2179 }
2180 
2181 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2182 {
2183 	u32 spio_reg;
2184 
2185 	/* Only 2 SPIOs are configurable */
2186 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2187 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2188 		return -EINVAL;
2189 	}
2190 
2191 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2192 	/* read SPIO and mask except the float bits */
2193 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2194 
2195 	switch (mode) {
2196 	case MISC_SPIO_OUTPUT_LOW:
2197 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2198 		/* clear FLOAT and set CLR */
2199 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2200 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2201 		break;
2202 
2203 	case MISC_SPIO_OUTPUT_HIGH:
2204 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2205 		/* clear FLOAT and set SET */
2206 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2207 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2208 		break;
2209 
2210 	case MISC_SPIO_INPUT_HI_Z:
2211 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2212 		/* set FLOAT */
2213 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2214 		break;
2215 
2216 	default:
2217 		break;
2218 	}
2219 
2220 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2221 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2222 
2223 	return 0;
2224 }
2225 
2226 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2227 {
2228 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2229 	switch (bp->link_vars.ieee_fc &
2230 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2231 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2232 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2233 						   ADVERTISED_Pause);
2234 		break;
2235 
2236 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2237 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2238 						  ADVERTISED_Pause);
2239 		break;
2240 
2241 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2242 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2243 		break;
2244 
2245 	default:
2246 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2247 						   ADVERTISED_Pause);
2248 		break;
2249 	}
2250 }
2251 
2252 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2253 {
2254 	/* Initialize link parameters structure variables
2255 	 * It is recommended to turn off RX FC for jumbo frames
2256 	 *  for better performance
2257 	 */
2258 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2259 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2260 	else
2261 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2262 }
2263 
2264 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2265 {
2266 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2267 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2268 
2269 	if (!BP_NOMCP(bp)) {
2270 		bnx2x_set_requested_fc(bp);
2271 		bnx2x_acquire_phy_lock(bp);
2272 
2273 		if (load_mode == LOAD_DIAG) {
2274 			struct link_params *lp = &bp->link_params;
2275 			lp->loopback_mode = LOOPBACK_XGXS;
2276 			/* do PHY loopback at 10G speed, if possible */
2277 			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2278 				if (lp->speed_cap_mask[cfx_idx] &
2279 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2280 					lp->req_line_speed[cfx_idx] =
2281 					SPEED_10000;
2282 				else
2283 					lp->req_line_speed[cfx_idx] =
2284 					SPEED_1000;
2285 			}
2286 		}
2287 
2288 		if (load_mode == LOAD_LOOPBACK_EXT) {
2289 			struct link_params *lp = &bp->link_params;
2290 			lp->loopback_mode = LOOPBACK_EXT;
2291 		}
2292 
2293 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2294 
2295 		bnx2x_release_phy_lock(bp);
2296 
2297 		bnx2x_calc_fc_adv(bp);
2298 
2299 		if (bp->link_vars.link_up) {
2300 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2301 			bnx2x_link_report(bp);
2302 		}
2303 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2304 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2305 		return rc;
2306 	}
2307 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2308 	return -EINVAL;
2309 }
2310 
2311 void bnx2x_link_set(struct bnx2x *bp)
2312 {
2313 	if (!BP_NOMCP(bp)) {
2314 		bnx2x_acquire_phy_lock(bp);
2315 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2316 		bnx2x_release_phy_lock(bp);
2317 
2318 		bnx2x_calc_fc_adv(bp);
2319 	} else
2320 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2321 }
2322 
2323 static void bnx2x__link_reset(struct bnx2x *bp)
2324 {
2325 	if (!BP_NOMCP(bp)) {
2326 		bnx2x_acquire_phy_lock(bp);
2327 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2328 		bnx2x_release_phy_lock(bp);
2329 	} else
2330 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2331 }
2332 
2333 void bnx2x_force_link_reset(struct bnx2x *bp)
2334 {
2335 	bnx2x_acquire_phy_lock(bp);
2336 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2337 	bnx2x_release_phy_lock(bp);
2338 }
2339 
2340 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2341 {
2342 	u8 rc = 0;
2343 
2344 	if (!BP_NOMCP(bp)) {
2345 		bnx2x_acquire_phy_lock(bp);
2346 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2347 				     is_serdes);
2348 		bnx2x_release_phy_lock(bp);
2349 	} else
2350 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2351 
2352 	return rc;
2353 }
2354 
2355 /* Calculates the sum of vn_min_rates.
2356    It's needed for further normalizing of the min_rates.
2357    Returns:
2358      sum of vn_min_rates.
2359        or
2360      0 - if all the min_rates are 0.
2361      In the later case fairness algorithm should be deactivated.
2362      If not all min_rates are zero then those that are zeroes will be set to 1.
2363  */
2364 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2365 				      struct cmng_init_input *input)
2366 {
2367 	int all_zero = 1;
2368 	int vn;
2369 
2370 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2371 		u32 vn_cfg = bp->mf_config[vn];
2372 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2373 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2374 
2375 		/* Skip hidden vns */
2376 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2377 			vn_min_rate = 0;
2378 		/* If min rate is zero - set it to 1 */
2379 		else if (!vn_min_rate)
2380 			vn_min_rate = DEF_MIN_RATE;
2381 		else
2382 			all_zero = 0;
2383 
2384 		input->vnic_min_rate[vn] = vn_min_rate;
2385 	}
2386 
2387 	/* if ETS or all min rates are zeros - disable fairness */
2388 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2389 		input->flags.cmng_enables &=
2390 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2391 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2392 	} else if (all_zero) {
2393 		input->flags.cmng_enables &=
2394 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2395 		DP(NETIF_MSG_IFUP,
2396 		   "All MIN values are zeroes fairness will be disabled\n");
2397 	} else
2398 		input->flags.cmng_enables |=
2399 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2400 }
2401 
2402 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2403 				    struct cmng_init_input *input)
2404 {
2405 	u16 vn_max_rate;
2406 	u32 vn_cfg = bp->mf_config[vn];
2407 
2408 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2409 		vn_max_rate = 0;
2410 	else {
2411 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2412 
2413 		if (IS_MF_SI(bp)) {
2414 			/* maxCfg in percents of linkspeed */
2415 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2416 		} else /* SD modes */
2417 			/* maxCfg is absolute in 100Mb units */
2418 			vn_max_rate = maxCfg * 100;
2419 	}
2420 
2421 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2422 
2423 	input->vnic_max_rate[vn] = vn_max_rate;
2424 }
2425 
2426 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2427 {
2428 	if (CHIP_REV_IS_SLOW(bp))
2429 		return CMNG_FNS_NONE;
2430 	if (IS_MF(bp))
2431 		return CMNG_FNS_MINMAX;
2432 
2433 	return CMNG_FNS_NONE;
2434 }
2435 
2436 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2437 {
2438 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2439 
2440 	if (BP_NOMCP(bp))
2441 		return; /* what should be the default value in this case */
2442 
2443 	/* For 2 port configuration the absolute function number formula
2444 	 * is:
2445 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2446 	 *
2447 	 *      and there are 4 functions per port
2448 	 *
2449 	 * For 4 port configuration it is
2450 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2451 	 *
2452 	 *      and there are 2 functions per port
2453 	 */
2454 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2455 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2456 
2457 		if (func >= E1H_FUNC_MAX)
2458 			break;
2459 
2460 		bp->mf_config[vn] =
2461 			MF_CFG_RD(bp, func_mf_config[func].config);
2462 	}
2463 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2464 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2465 		bp->flags |= MF_FUNC_DIS;
2466 	} else {
2467 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2468 		bp->flags &= ~MF_FUNC_DIS;
2469 	}
2470 }
2471 
2472 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2473 {
2474 	struct cmng_init_input input;
2475 	memset(&input, 0, sizeof(struct cmng_init_input));
2476 
2477 	input.port_rate = bp->link_vars.line_speed;
2478 
2479 	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2480 		int vn;
2481 
2482 		/* read mf conf from shmem */
2483 		if (read_cfg)
2484 			bnx2x_read_mf_cfg(bp);
2485 
2486 		/* vn_weight_sum and enable fairness if not 0 */
2487 		bnx2x_calc_vn_min(bp, &input);
2488 
2489 		/* calculate and set min-max rate for each vn */
2490 		if (bp->port.pmf)
2491 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2492 				bnx2x_calc_vn_max(bp, vn, &input);
2493 
2494 		/* always enable rate shaping and fairness */
2495 		input.flags.cmng_enables |=
2496 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2497 
2498 		bnx2x_init_cmng(&input, &bp->cmng);
2499 		return;
2500 	}
2501 
2502 	/* rate shaping and fairness are disabled */
2503 	DP(NETIF_MSG_IFUP,
2504 	   "rate shaping and fairness are disabled\n");
2505 }
2506 
2507 static void storm_memset_cmng(struct bnx2x *bp,
2508 			      struct cmng_init *cmng,
2509 			      u8 port)
2510 {
2511 	int vn;
2512 	size_t size = sizeof(struct cmng_struct_per_port);
2513 
2514 	u32 addr = BAR_XSTRORM_INTMEM +
2515 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2516 
2517 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2518 
2519 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2520 		int func = func_by_vn(bp, vn);
2521 
2522 		addr = BAR_XSTRORM_INTMEM +
2523 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2524 		size = sizeof(struct rate_shaping_vars_per_vn);
2525 		__storm_memset_struct(bp, addr, size,
2526 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2527 
2528 		addr = BAR_XSTRORM_INTMEM +
2529 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2530 		size = sizeof(struct fairness_vars_per_vn);
2531 		__storm_memset_struct(bp, addr, size,
2532 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2533 	}
2534 }
2535 
2536 /* init cmng mode in HW according to local configuration */
2537 void bnx2x_set_local_cmng(struct bnx2x *bp)
2538 {
2539 	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2540 
2541 	if (cmng_fns != CMNG_FNS_NONE) {
2542 		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2543 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2544 	} else {
2545 		/* rate shaping and fairness are disabled */
2546 		DP(NETIF_MSG_IFUP,
2547 		   "single function mode without fairness\n");
2548 	}
2549 }
2550 
2551 /* This function is called upon link interrupt */
2552 static void bnx2x_link_attn(struct bnx2x *bp)
2553 {
2554 	/* Make sure that we are synced with the current statistics */
2555 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2556 
2557 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2558 
2559 	if (bp->link_vars.link_up) {
2560 
2561 		/* dropless flow control */
2562 		if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2563 			int port = BP_PORT(bp);
2564 			u32 pause_enabled = 0;
2565 
2566 			if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2567 				pause_enabled = 1;
2568 
2569 			REG_WR(bp, BAR_USTRORM_INTMEM +
2570 			       USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2571 			       pause_enabled);
2572 		}
2573 
2574 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2575 			struct host_port_stats *pstats;
2576 
2577 			pstats = bnx2x_sp(bp, port_stats);
2578 			/* reset old mac stats */
2579 			memset(&(pstats->mac_stx[0]), 0,
2580 			       sizeof(struct mac_stx));
2581 		}
2582 		if (bp->state == BNX2X_STATE_OPEN)
2583 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2584 	}
2585 
2586 	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2587 		bnx2x_set_local_cmng(bp);
2588 
2589 	__bnx2x_link_report(bp);
2590 
2591 	if (IS_MF(bp))
2592 		bnx2x_link_sync_notify(bp);
2593 }
2594 
2595 void bnx2x__link_status_update(struct bnx2x *bp)
2596 {
2597 	if (bp->state != BNX2X_STATE_OPEN)
2598 		return;
2599 
2600 	/* read updated dcb configuration */
2601 	if (IS_PF(bp)) {
2602 		bnx2x_dcbx_pmf_update(bp);
2603 		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2604 		if (bp->link_vars.link_up)
2605 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2606 		else
2607 			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2608 			/* indicate link status */
2609 		bnx2x_link_report(bp);
2610 
2611 	} else { /* VF */
2612 		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2613 					  SUPPORTED_10baseT_Full |
2614 					  SUPPORTED_100baseT_Half |
2615 					  SUPPORTED_100baseT_Full |
2616 					  SUPPORTED_1000baseT_Full |
2617 					  SUPPORTED_2500baseX_Full |
2618 					  SUPPORTED_10000baseT_Full |
2619 					  SUPPORTED_TP |
2620 					  SUPPORTED_FIBRE |
2621 					  SUPPORTED_Autoneg |
2622 					  SUPPORTED_Pause |
2623 					  SUPPORTED_Asym_Pause);
2624 		bp->port.advertising[0] = bp->port.supported[0];
2625 
2626 		bp->link_params.bp = bp;
2627 		bp->link_params.port = BP_PORT(bp);
2628 		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2629 		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2630 		bp->link_params.req_line_speed[0] = SPEED_10000;
2631 		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2632 		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2633 		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2634 		bp->link_vars.line_speed = SPEED_10000;
2635 		bp->link_vars.link_status =
2636 			(LINK_STATUS_LINK_UP |
2637 			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2638 		bp->link_vars.link_up = 1;
2639 		bp->link_vars.duplex = DUPLEX_FULL;
2640 		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2641 		__bnx2x_link_report(bp);
2642 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2643 	}
2644 }
2645 
2646 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2647 				  u16 vlan_val, u8 allowed_prio)
2648 {
2649 	struct bnx2x_func_state_params func_params = {NULL};
2650 	struct bnx2x_func_afex_update_params *f_update_params =
2651 		&func_params.params.afex_update;
2652 
2653 	func_params.f_obj = &bp->func_obj;
2654 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2655 
2656 	/* no need to wait for RAMROD completion, so don't
2657 	 * set RAMROD_COMP_WAIT flag
2658 	 */
2659 
2660 	f_update_params->vif_id = vifid;
2661 	f_update_params->afex_default_vlan = vlan_val;
2662 	f_update_params->allowed_priorities = allowed_prio;
2663 
2664 	/* if ramrod can not be sent, response to MCP immediately */
2665 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2666 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2667 
2668 	return 0;
2669 }
2670 
2671 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2672 					  u16 vif_index, u8 func_bit_map)
2673 {
2674 	struct bnx2x_func_state_params func_params = {NULL};
2675 	struct bnx2x_func_afex_viflists_params *update_params =
2676 		&func_params.params.afex_viflists;
2677 	int rc;
2678 	u32 drv_msg_code;
2679 
2680 	/* validate only LIST_SET and LIST_GET are received from switch */
2681 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2682 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2683 			  cmd_type);
2684 
2685 	func_params.f_obj = &bp->func_obj;
2686 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2687 
2688 	/* set parameters according to cmd_type */
2689 	update_params->afex_vif_list_command = cmd_type;
2690 	update_params->vif_list_index = vif_index;
2691 	update_params->func_bit_map =
2692 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2693 	update_params->func_to_clear = 0;
2694 	drv_msg_code =
2695 		(cmd_type == VIF_LIST_RULE_GET) ?
2696 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2697 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2698 
2699 	/* if ramrod can not be sent, respond to MCP immediately for
2700 	 * SET and GET requests (other are not triggered from MCP)
2701 	 */
2702 	rc = bnx2x_func_state_change(bp, &func_params);
2703 	if (rc < 0)
2704 		bnx2x_fw_command(bp, drv_msg_code, 0);
2705 
2706 	return 0;
2707 }
2708 
2709 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2710 {
2711 	struct afex_stats afex_stats;
2712 	u32 func = BP_ABS_FUNC(bp);
2713 	u32 mf_config;
2714 	u16 vlan_val;
2715 	u32 vlan_prio;
2716 	u16 vif_id;
2717 	u8 allowed_prio;
2718 	u8 vlan_mode;
2719 	u32 addr_to_write, vifid, addrs, stats_type, i;
2720 
2721 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2722 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2723 		DP(BNX2X_MSG_MCP,
2724 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2725 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2726 	}
2727 
2728 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2729 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2730 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2731 		DP(BNX2X_MSG_MCP,
2732 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2733 		   vifid, addrs);
2734 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2735 					       addrs);
2736 	}
2737 
2738 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2739 		addr_to_write = SHMEM2_RD(bp,
2740 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2741 		stats_type = SHMEM2_RD(bp,
2742 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2743 
2744 		DP(BNX2X_MSG_MCP,
2745 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2746 		   addr_to_write);
2747 
2748 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2749 
2750 		/* write response to scratchpad, for MCP */
2751 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2752 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2753 			       *(((u32 *)(&afex_stats))+i));
2754 
2755 		/* send ack message to MCP */
2756 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2757 	}
2758 
2759 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2760 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2761 		bp->mf_config[BP_VN(bp)] = mf_config;
2762 		DP(BNX2X_MSG_MCP,
2763 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2764 		   mf_config);
2765 
2766 		/* if VIF_SET is "enabled" */
2767 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2768 			/* set rate limit directly to internal RAM */
2769 			struct cmng_init_input cmng_input;
2770 			struct rate_shaping_vars_per_vn m_rs_vn;
2771 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2772 			u32 addr = BAR_XSTRORM_INTMEM +
2773 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2774 
2775 			bp->mf_config[BP_VN(bp)] = mf_config;
2776 
2777 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2778 			m_rs_vn.vn_counter.rate =
2779 				cmng_input.vnic_max_rate[BP_VN(bp)];
2780 			m_rs_vn.vn_counter.quota =
2781 				(m_rs_vn.vn_counter.rate *
2782 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2783 
2784 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2785 
2786 			/* read relevant values from mf_cfg struct in shmem */
2787 			vif_id =
2788 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2789 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2790 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2791 			vlan_val =
2792 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2793 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2794 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2795 			vlan_prio = (mf_config &
2796 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2797 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2798 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2799 			vlan_mode =
2800 				(MF_CFG_RD(bp,
2801 					   func_mf_config[func].afex_config) &
2802 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2803 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2804 			allowed_prio =
2805 				(MF_CFG_RD(bp,
2806 					   func_mf_config[func].afex_config) &
2807 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2808 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2809 
2810 			/* send ramrod to FW, return in case of failure */
2811 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2812 						   allowed_prio))
2813 				return;
2814 
2815 			bp->afex_def_vlan_tag = vlan_val;
2816 			bp->afex_vlan_mode = vlan_mode;
2817 		} else {
2818 			/* notify link down because BP->flags is disabled */
2819 			bnx2x_link_report(bp);
2820 
2821 			/* send INVALID VIF ramrod to FW */
2822 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2823 
2824 			/* Reset the default afex VLAN */
2825 			bp->afex_def_vlan_tag = -1;
2826 		}
2827 	}
2828 }
2829 
2830 static void bnx2x_pmf_update(struct bnx2x *bp)
2831 {
2832 	int port = BP_PORT(bp);
2833 	u32 val;
2834 
2835 	bp->port.pmf = 1;
2836 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2837 
2838 	/*
2839 	 * We need the mb() to ensure the ordering between the writing to
2840 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2841 	 */
2842 	smp_mb();
2843 
2844 	/* queue a periodic task */
2845 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2846 
2847 	bnx2x_dcbx_pmf_update(bp);
2848 
2849 	/* enable nig attention */
2850 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2851 	if (bp->common.int_block == INT_BLOCK_HC) {
2852 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2853 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2854 	} else if (!CHIP_IS_E1x(bp)) {
2855 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2856 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2857 	}
2858 
2859 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2860 }
2861 
2862 /* end of Link */
2863 
2864 /* slow path */
2865 
2866 /*
2867  * General service functions
2868  */
2869 
2870 /* send the MCP a request, block until there is a reply */
2871 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2872 {
2873 	int mb_idx = BP_FW_MB_IDX(bp);
2874 	u32 seq;
2875 	u32 rc = 0;
2876 	u32 cnt = 1;
2877 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2878 
2879 	mutex_lock(&bp->fw_mb_mutex);
2880 	seq = ++bp->fw_seq;
2881 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2882 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2883 
2884 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2885 			(command | seq), param);
2886 
2887 	do {
2888 		/* let the FW do it's magic ... */
2889 		msleep(delay);
2890 
2891 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2892 
2893 		/* Give the FW up to 5 second (500*10ms) */
2894 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2895 
2896 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2897 	   cnt*delay, rc, seq);
2898 
2899 	/* is this a reply to our command? */
2900 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2901 		rc &= FW_MSG_CODE_MASK;
2902 	else {
2903 		/* FW BUG! */
2904 		BNX2X_ERR("FW failed to respond!\n");
2905 		bnx2x_fw_dump(bp);
2906 		rc = 0;
2907 	}
2908 	mutex_unlock(&bp->fw_mb_mutex);
2909 
2910 	return rc;
2911 }
2912 
2913 static void storm_memset_func_cfg(struct bnx2x *bp,
2914 				 struct tstorm_eth_function_common_config *tcfg,
2915 				 u16 abs_fid)
2916 {
2917 	size_t size = sizeof(struct tstorm_eth_function_common_config);
2918 
2919 	u32 addr = BAR_TSTRORM_INTMEM +
2920 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2921 
2922 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2923 }
2924 
2925 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2926 {
2927 	if (CHIP_IS_E1x(bp)) {
2928 		struct tstorm_eth_function_common_config tcfg = {0};
2929 
2930 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2931 	}
2932 
2933 	/* Enable the function in the FW */
2934 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2935 	storm_memset_func_en(bp, p->func_id, 1);
2936 
2937 	/* spq */
2938 	if (p->func_flgs & FUNC_FLG_SPQ) {
2939 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2940 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
2941 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2942 	}
2943 }
2944 
2945 /**
2946  * bnx2x_get_common_flags - Return common flags
2947  *
2948  * @bp		device handle
2949  * @fp		queue handle
2950  * @zero_stats	TRUE if statistics zeroing is needed
2951  *
2952  * Return the flags that are common for the Tx-only and not normal connections.
2953  */
2954 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2955 					    struct bnx2x_fastpath *fp,
2956 					    bool zero_stats)
2957 {
2958 	unsigned long flags = 0;
2959 
2960 	/* PF driver will always initialize the Queue to an ACTIVE state */
2961 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2962 
2963 	/* tx only connections collect statistics (on the same index as the
2964 	 * parent connection). The statistics are zeroed when the parent
2965 	 * connection is initialized.
2966 	 */
2967 
2968 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
2969 	if (zero_stats)
2970 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2971 
2972 	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
2973 	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
2974 
2975 #ifdef BNX2X_STOP_ON_ERROR
2976 	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
2977 #endif
2978 
2979 	return flags;
2980 }
2981 
2982 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2983 				       struct bnx2x_fastpath *fp,
2984 				       bool leading)
2985 {
2986 	unsigned long flags = 0;
2987 
2988 	/* calculate other queue flags */
2989 	if (IS_MF_SD(bp))
2990 		__set_bit(BNX2X_Q_FLG_OV, &flags);
2991 
2992 	if (IS_FCOE_FP(fp)) {
2993 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
2994 		/* For FCoE - force usage of default priority (for afex) */
2995 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
2996 	}
2997 
2998 	if (!fp->disable_tpa) {
2999 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3000 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3001 		if (fp->mode == TPA_MODE_GRO)
3002 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3003 	}
3004 
3005 	if (leading) {
3006 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3007 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3008 	}
3009 
3010 	/* Always set HW VLAN stripping */
3011 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3012 
3013 	/* configure silent vlan removal */
3014 	if (IS_MF_AFEX(bp))
3015 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3016 
3017 	return flags | bnx2x_get_common_flags(bp, fp, true);
3018 }
3019 
3020 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3021 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3022 	u8 cos)
3023 {
3024 	gen_init->stat_id = bnx2x_stats_id(fp);
3025 	gen_init->spcl_id = fp->cl_id;
3026 
3027 	/* Always use mini-jumbo MTU for FCoE L2 ring */
3028 	if (IS_FCOE_FP(fp))
3029 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3030 	else
3031 		gen_init->mtu = bp->dev->mtu;
3032 
3033 	gen_init->cos = cos;
3034 }
3035 
3036 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3037 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3038 	struct bnx2x_rxq_setup_params *rxq_init)
3039 {
3040 	u8 max_sge = 0;
3041 	u16 sge_sz = 0;
3042 	u16 tpa_agg_size = 0;
3043 
3044 	if (!fp->disable_tpa) {
3045 		pause->sge_th_lo = SGE_TH_LO(bp);
3046 		pause->sge_th_hi = SGE_TH_HI(bp);
3047 
3048 		/* validate SGE ring has enough to cross high threshold */
3049 		WARN_ON(bp->dropless_fc &&
3050 				pause->sge_th_hi + FW_PREFETCH_CNT >
3051 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3052 
3053 		tpa_agg_size = TPA_AGG_SIZE;
3054 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3055 			SGE_PAGE_SHIFT;
3056 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3057 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3058 		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3059 	}
3060 
3061 	/* pause - not for e1 */
3062 	if (!CHIP_IS_E1(bp)) {
3063 		pause->bd_th_lo = BD_TH_LO(bp);
3064 		pause->bd_th_hi = BD_TH_HI(bp);
3065 
3066 		pause->rcq_th_lo = RCQ_TH_LO(bp);
3067 		pause->rcq_th_hi = RCQ_TH_HI(bp);
3068 		/*
3069 		 * validate that rings have enough entries to cross
3070 		 * high thresholds
3071 		 */
3072 		WARN_ON(bp->dropless_fc &&
3073 				pause->bd_th_hi + FW_PREFETCH_CNT >
3074 				bp->rx_ring_size);
3075 		WARN_ON(bp->dropless_fc &&
3076 				pause->rcq_th_hi + FW_PREFETCH_CNT >
3077 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3078 
3079 		pause->pri_map = 1;
3080 	}
3081 
3082 	/* rxq setup */
3083 	rxq_init->dscr_map = fp->rx_desc_mapping;
3084 	rxq_init->sge_map = fp->rx_sge_mapping;
3085 	rxq_init->rcq_map = fp->rx_comp_mapping;
3086 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3087 
3088 	/* This should be a maximum number of data bytes that may be
3089 	 * placed on the BD (not including paddings).
3090 	 */
3091 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3092 			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3093 
3094 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3095 	rxq_init->tpa_agg_sz = tpa_agg_size;
3096 	rxq_init->sge_buf_sz = sge_sz;
3097 	rxq_init->max_sges_pkt = max_sge;
3098 	rxq_init->rss_engine_id = BP_FUNC(bp);
3099 	rxq_init->mcast_engine_id = BP_FUNC(bp);
3100 
3101 	/* Maximum number or simultaneous TPA aggregation for this Queue.
3102 	 *
3103 	 * For PF Clients it should be the maximum available number.
3104 	 * VF driver(s) may want to define it to a smaller value.
3105 	 */
3106 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3107 
3108 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3109 	rxq_init->fw_sb_id = fp->fw_sb_id;
3110 
3111 	if (IS_FCOE_FP(fp))
3112 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3113 	else
3114 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3115 	/* configure silent vlan removal
3116 	 * if multi function mode is afex, then mask default vlan
3117 	 */
3118 	if (IS_MF_AFEX(bp)) {
3119 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3120 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3121 	}
3122 }
3123 
3124 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3125 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3126 	u8 cos)
3127 {
3128 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3129 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3130 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3131 	txq_init->fw_sb_id = fp->fw_sb_id;
3132 
3133 	/*
3134 	 * set the tss leading client id for TX classification ==
3135 	 * leading RSS client id
3136 	 */
3137 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3138 
3139 	if (IS_FCOE_FP(fp)) {
3140 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3141 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3142 	}
3143 }
3144 
3145 static void bnx2x_pf_init(struct bnx2x *bp)
3146 {
3147 	struct bnx2x_func_init_params func_init = {0};
3148 	struct event_ring_data eq_data = { {0} };
3149 	u16 flags;
3150 
3151 	if (!CHIP_IS_E1x(bp)) {
3152 		/* reset IGU PF statistics: MSIX + ATTN */
3153 		/* PF */
3154 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3155 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3156 			   (CHIP_MODE_IS_4_PORT(bp) ?
3157 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3158 		/* ATTN */
3159 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3160 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3161 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3162 			   (CHIP_MODE_IS_4_PORT(bp) ?
3163 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3164 	}
3165 
3166 	/* function setup flags */
3167 	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3168 
3169 	/* This flag is relevant for E1x only.
3170 	 * E2 doesn't have a TPA configuration in a function level.
3171 	 */
3172 	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3173 
3174 	func_init.func_flgs = flags;
3175 	func_init.pf_id = BP_FUNC(bp);
3176 	func_init.func_id = BP_FUNC(bp);
3177 	func_init.spq_map = bp->spq_mapping;
3178 	func_init.spq_prod = bp->spq_prod_idx;
3179 
3180 	bnx2x_func_init(bp, &func_init);
3181 
3182 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3183 
3184 	/*
3185 	 * Congestion management values depend on the link rate
3186 	 * There is no active link so initial link rate is set to 10 Gbps.
3187 	 * When the link comes up The congestion management values are
3188 	 * re-calculated according to the actual link rate.
3189 	 */
3190 	bp->link_vars.line_speed = SPEED_10000;
3191 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3192 
3193 	/* Only the PMF sets the HW */
3194 	if (bp->port.pmf)
3195 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3196 
3197 	/* init Event Queue - PCI bus guarantees correct endianity*/
3198 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3199 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3200 	eq_data.producer = bp->eq_prod;
3201 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3202 	eq_data.sb_id = DEF_SB_ID;
3203 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3204 }
3205 
3206 static void bnx2x_e1h_disable(struct bnx2x *bp)
3207 {
3208 	int port = BP_PORT(bp);
3209 
3210 	bnx2x_tx_disable(bp);
3211 
3212 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3213 }
3214 
3215 static void bnx2x_e1h_enable(struct bnx2x *bp)
3216 {
3217 	int port = BP_PORT(bp);
3218 
3219 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3220 
3221 	/* Tx queue should be only re-enabled */
3222 	netif_tx_wake_all_queues(bp->dev);
3223 
3224 	/*
3225 	 * Should not call netif_carrier_on since it will be called if the link
3226 	 * is up when checking for link state
3227 	 */
3228 }
3229 
3230 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3231 
3232 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3233 {
3234 	struct eth_stats_info *ether_stat =
3235 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3236 	struct bnx2x_vlan_mac_obj *mac_obj =
3237 		&bp->sp_objs->mac_obj;
3238 	int i;
3239 
3240 	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3241 		ETH_STAT_INFO_VERSION_LEN);
3242 
3243 	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3244 	 * mac_local field in ether_stat struct. The base address is offset by 2
3245 	 * bytes to account for the field being 8 bytes but a mac address is
3246 	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3247 	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3248 	 * allocated by the ether_stat struct, so the macs will land in their
3249 	 * proper positions.
3250 	 */
3251 	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3252 		memset(ether_stat->mac_local + i, 0,
3253 		       sizeof(ether_stat->mac_local[0]));
3254 	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3255 				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3256 				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3257 				ETH_ALEN);
3258 	ether_stat->mtu_size = bp->dev->mtu;
3259 	if (bp->dev->features & NETIF_F_RXCSUM)
3260 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3261 	if (bp->dev->features & NETIF_F_TSO)
3262 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3263 	ether_stat->feature_flags |= bp->common.boot_mode;
3264 
3265 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3266 
3267 	ether_stat->txq_size = bp->tx_ring_size;
3268 	ether_stat->rxq_size = bp->rx_ring_size;
3269 }
3270 
3271 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3272 {
3273 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3274 	struct fcoe_stats_info *fcoe_stat =
3275 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3276 
3277 	if (!CNIC_LOADED(bp))
3278 		return;
3279 
3280 	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3281 
3282 	fcoe_stat->qos_priority =
3283 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3284 
3285 	/* insert FCoE stats from ramrod response */
3286 	if (!NO_FCOE(bp)) {
3287 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3288 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3289 			tstorm_queue_statistics;
3290 
3291 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3292 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3293 			xstorm_queue_statistics;
3294 
3295 		struct fcoe_statistics_params *fw_fcoe_stat =
3296 			&bp->fw_stats_data->fcoe;
3297 
3298 		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3299 			  fcoe_stat->rx_bytes_lo,
3300 			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3301 
3302 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3303 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3304 			  fcoe_stat->rx_bytes_lo,
3305 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3306 
3307 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3308 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3309 			  fcoe_stat->rx_bytes_lo,
3310 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3311 
3312 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3313 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3314 			  fcoe_stat->rx_bytes_lo,
3315 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3316 
3317 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3318 			  fcoe_stat->rx_frames_lo,
3319 			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3320 
3321 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3322 			  fcoe_stat->rx_frames_lo,
3323 			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3324 
3325 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3326 			  fcoe_stat->rx_frames_lo,
3327 			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3328 
3329 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3330 			  fcoe_stat->rx_frames_lo,
3331 			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3332 
3333 		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3334 			  fcoe_stat->tx_bytes_lo,
3335 			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3336 
3337 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3338 			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3339 			  fcoe_stat->tx_bytes_lo,
3340 			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3341 
3342 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3343 			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3344 			  fcoe_stat->tx_bytes_lo,
3345 			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3346 
3347 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3348 			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3349 			  fcoe_stat->tx_bytes_lo,
3350 			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3351 
3352 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3353 			  fcoe_stat->tx_frames_lo,
3354 			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3355 
3356 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3357 			  fcoe_stat->tx_frames_lo,
3358 			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3359 
3360 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3361 			  fcoe_stat->tx_frames_lo,
3362 			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3363 
3364 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3365 			  fcoe_stat->tx_frames_lo,
3366 			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3367 	}
3368 
3369 	/* ask L5 driver to add data to the struct */
3370 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3371 }
3372 
3373 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3374 {
3375 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3376 	struct iscsi_stats_info *iscsi_stat =
3377 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3378 
3379 	if (!CNIC_LOADED(bp))
3380 		return;
3381 
3382 	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3383 	       ETH_ALEN);
3384 
3385 	iscsi_stat->qos_priority =
3386 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3387 
3388 	/* ask L5 driver to add data to the struct */
3389 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3390 }
3391 
3392 /* called due to MCP event (on pmf):
3393  *	reread new bandwidth configuration
3394  *	configure FW
3395  *	notify others function about the change
3396  */
3397 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3398 {
3399 	if (bp->link_vars.link_up) {
3400 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3401 		bnx2x_link_sync_notify(bp);
3402 	}
3403 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3404 }
3405 
3406 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3407 {
3408 	bnx2x_config_mf_bw(bp);
3409 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3410 }
3411 
3412 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3413 {
3414 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3415 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3416 }
3417 
3418 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3419 {
3420 	enum drv_info_opcode op_code;
3421 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3422 
3423 	/* if drv_info version supported by MFW doesn't match - send NACK */
3424 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3425 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3426 		return;
3427 	}
3428 
3429 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3430 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3431 
3432 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3433 	       sizeof(union drv_info_to_mcp));
3434 
3435 	switch (op_code) {
3436 	case ETH_STATS_OPCODE:
3437 		bnx2x_drv_info_ether_stat(bp);
3438 		break;
3439 	case FCOE_STATS_OPCODE:
3440 		bnx2x_drv_info_fcoe_stat(bp);
3441 		break;
3442 	case ISCSI_STATS_OPCODE:
3443 		bnx2x_drv_info_iscsi_stat(bp);
3444 		break;
3445 	default:
3446 		/* if op code isn't supported - send NACK */
3447 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3448 		return;
3449 	}
3450 
3451 	/* if we got drv_info attn from MFW then these fields are defined in
3452 	 * shmem2 for sure
3453 	 */
3454 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3455 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3456 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3457 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3458 
3459 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3460 }
3461 
3462 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3463 {
3464 	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3465 
3466 	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3467 
3468 		/*
3469 		 * This is the only place besides the function initialization
3470 		 * where the bp->flags can change so it is done without any
3471 		 * locks
3472 		 */
3473 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3474 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3475 			bp->flags |= MF_FUNC_DIS;
3476 
3477 			bnx2x_e1h_disable(bp);
3478 		} else {
3479 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3480 			bp->flags &= ~MF_FUNC_DIS;
3481 
3482 			bnx2x_e1h_enable(bp);
3483 		}
3484 		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3485 	}
3486 	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3487 		bnx2x_config_mf_bw(bp);
3488 		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3489 	}
3490 
3491 	/* Report results to MCP */
3492 	if (dcc_event)
3493 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3494 	else
3495 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3496 }
3497 
3498 /* must be called under the spq lock */
3499 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3500 {
3501 	struct eth_spe *next_spe = bp->spq_prod_bd;
3502 
3503 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3504 		bp->spq_prod_bd = bp->spq;
3505 		bp->spq_prod_idx = 0;
3506 		DP(BNX2X_MSG_SP, "end of spq\n");
3507 	} else {
3508 		bp->spq_prod_bd++;
3509 		bp->spq_prod_idx++;
3510 	}
3511 	return next_spe;
3512 }
3513 
3514 /* must be called under the spq lock */
3515 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3516 {
3517 	int func = BP_FUNC(bp);
3518 
3519 	/*
3520 	 * Make sure that BD data is updated before writing the producer:
3521 	 * BD data is written to the memory, the producer is read from the
3522 	 * memory, thus we need a full memory barrier to ensure the ordering.
3523 	 */
3524 	mb();
3525 
3526 	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3527 		 bp->spq_prod_idx);
3528 	mmiowb();
3529 }
3530 
3531 /**
3532  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3533  *
3534  * @cmd:	command to check
3535  * @cmd_type:	command type
3536  */
3537 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3538 {
3539 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3540 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3541 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3542 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3543 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3544 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3545 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3546 		return true;
3547 	else
3548 		return false;
3549 }
3550 
3551 /**
3552  * bnx2x_sp_post - place a single command on an SP ring
3553  *
3554  * @bp:		driver handle
3555  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3556  * @cid:	SW CID the command is related to
3557  * @data_hi:	command private data address (high 32 bits)
3558  * @data_lo:	command private data address (low 32 bits)
3559  * @cmd_type:	command type (e.g. NONE, ETH)
3560  *
3561  * SP data is handled as if it's always an address pair, thus data fields are
3562  * not swapped to little endian in upper functions. Instead this function swaps
3563  * data as if it's two u32 fields.
3564  */
3565 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3566 		  u32 data_hi, u32 data_lo, int cmd_type)
3567 {
3568 	struct eth_spe *spe;
3569 	u16 type;
3570 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3571 
3572 #ifdef BNX2X_STOP_ON_ERROR
3573 	if (unlikely(bp->panic)) {
3574 		BNX2X_ERR("Can't post SP when there is panic\n");
3575 		return -EIO;
3576 	}
3577 #endif
3578 
3579 	spin_lock_bh(&bp->spq_lock);
3580 
3581 	if (common) {
3582 		if (!atomic_read(&bp->eq_spq_left)) {
3583 			BNX2X_ERR("BUG! EQ ring full!\n");
3584 			spin_unlock_bh(&bp->spq_lock);
3585 			bnx2x_panic();
3586 			return -EBUSY;
3587 		}
3588 	} else if (!atomic_read(&bp->cq_spq_left)) {
3589 			BNX2X_ERR("BUG! SPQ ring full!\n");
3590 			spin_unlock_bh(&bp->spq_lock);
3591 			bnx2x_panic();
3592 			return -EBUSY;
3593 	}
3594 
3595 	spe = bnx2x_sp_get_next(bp);
3596 
3597 	/* CID needs port number to be encoded int it */
3598 	spe->hdr.conn_and_cmd_data =
3599 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3600 				    HW_CID(bp, cid));
3601 
3602 	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3603 
3604 	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3605 		 SPE_HDR_FUNCTION_ID);
3606 
3607 	spe->hdr.type = cpu_to_le16(type);
3608 
3609 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3610 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3611 
3612 	/*
3613 	 * It's ok if the actual decrement is issued towards the memory
3614 	 * somewhere between the spin_lock and spin_unlock. Thus no
3615 	 * more explicit memory barrier is needed.
3616 	 */
3617 	if (common)
3618 		atomic_dec(&bp->eq_spq_left);
3619 	else
3620 		atomic_dec(&bp->cq_spq_left);
3621 
3622 	DP(BNX2X_MSG_SP,
3623 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3624 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3625 	   (u32)(U64_LO(bp->spq_mapping) +
3626 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3627 	   HW_CID(bp, cid), data_hi, data_lo, type,
3628 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3629 
3630 	bnx2x_sp_prod_update(bp);
3631 	spin_unlock_bh(&bp->spq_lock);
3632 	return 0;
3633 }
3634 
3635 /* acquire split MCP access lock register */
3636 static int bnx2x_acquire_alr(struct bnx2x *bp)
3637 {
3638 	u32 j, val;
3639 	int rc = 0;
3640 
3641 	might_sleep();
3642 	for (j = 0; j < 1000; j++) {
3643 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3644 		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3645 		if (val & MCPR_ACCESS_LOCK_LOCK)
3646 			break;
3647 
3648 		usleep_range(5000, 10000);
3649 	}
3650 	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3651 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3652 		rc = -EBUSY;
3653 	}
3654 
3655 	return rc;
3656 }
3657 
3658 /* release split MCP access lock register */
3659 static void bnx2x_release_alr(struct bnx2x *bp)
3660 {
3661 	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3662 }
3663 
3664 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3665 #define BNX2X_DEF_SB_IDX	0x0002
3666 
3667 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3668 {
3669 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3670 	u16 rc = 0;
3671 
3672 	barrier(); /* status block is written to by the chip */
3673 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3674 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3675 		rc |= BNX2X_DEF_SB_ATT_IDX;
3676 	}
3677 
3678 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3679 		bp->def_idx = def_sb->sp_sb.running_index;
3680 		rc |= BNX2X_DEF_SB_IDX;
3681 	}
3682 
3683 	/* Do not reorder: indices reading should complete before handling */
3684 	barrier();
3685 	return rc;
3686 }
3687 
3688 /*
3689  * slow path service functions
3690  */
3691 
3692 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3693 {
3694 	int port = BP_PORT(bp);
3695 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3696 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3697 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3698 				       NIG_REG_MASK_INTERRUPT_PORT0;
3699 	u32 aeu_mask;
3700 	u32 nig_mask = 0;
3701 	u32 reg_addr;
3702 
3703 	if (bp->attn_state & asserted)
3704 		BNX2X_ERR("IGU ERROR\n");
3705 
3706 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3707 	aeu_mask = REG_RD(bp, aeu_addr);
3708 
3709 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3710 	   aeu_mask, asserted);
3711 	aeu_mask &= ~(asserted & 0x3ff);
3712 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3713 
3714 	REG_WR(bp, aeu_addr, aeu_mask);
3715 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3716 
3717 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3718 	bp->attn_state |= asserted;
3719 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3720 
3721 	if (asserted & ATTN_HARD_WIRED_MASK) {
3722 		if (asserted & ATTN_NIG_FOR_FUNC) {
3723 
3724 			bnx2x_acquire_phy_lock(bp);
3725 
3726 			/* save nig interrupt mask */
3727 			nig_mask = REG_RD(bp, nig_int_mask_addr);
3728 
3729 			/* If nig_mask is not set, no need to call the update
3730 			 * function.
3731 			 */
3732 			if (nig_mask) {
3733 				REG_WR(bp, nig_int_mask_addr, 0);
3734 
3735 				bnx2x_link_attn(bp);
3736 			}
3737 
3738 			/* handle unicore attn? */
3739 		}
3740 		if (asserted & ATTN_SW_TIMER_4_FUNC)
3741 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3742 
3743 		if (asserted & GPIO_2_FUNC)
3744 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3745 
3746 		if (asserted & GPIO_3_FUNC)
3747 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3748 
3749 		if (asserted & GPIO_4_FUNC)
3750 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3751 
3752 		if (port == 0) {
3753 			if (asserted & ATTN_GENERAL_ATTN_1) {
3754 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3755 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3756 			}
3757 			if (asserted & ATTN_GENERAL_ATTN_2) {
3758 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3759 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3760 			}
3761 			if (asserted & ATTN_GENERAL_ATTN_3) {
3762 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3763 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3764 			}
3765 		} else {
3766 			if (asserted & ATTN_GENERAL_ATTN_4) {
3767 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3768 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3769 			}
3770 			if (asserted & ATTN_GENERAL_ATTN_5) {
3771 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3772 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3773 			}
3774 			if (asserted & ATTN_GENERAL_ATTN_6) {
3775 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3776 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3777 			}
3778 		}
3779 
3780 	} /* if hardwired */
3781 
3782 	if (bp->common.int_block == INT_BLOCK_HC)
3783 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3784 			    COMMAND_REG_ATTN_BITS_SET);
3785 	else
3786 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3787 
3788 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3789 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3790 	REG_WR(bp, reg_addr, asserted);
3791 
3792 	/* now set back the mask */
3793 	if (asserted & ATTN_NIG_FOR_FUNC) {
3794 		/* Verify that IGU ack through BAR was written before restoring
3795 		 * NIG mask. This loop should exit after 2-3 iterations max.
3796 		 */
3797 		if (bp->common.int_block != INT_BLOCK_HC) {
3798 			u32 cnt = 0, igu_acked;
3799 			do {
3800 				igu_acked = REG_RD(bp,
3801 						   IGU_REG_ATTENTION_ACK_BITS);
3802 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3803 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
3804 			if (!igu_acked)
3805 				DP(NETIF_MSG_HW,
3806 				   "Failed to verify IGU ack on time\n");
3807 			barrier();
3808 		}
3809 		REG_WR(bp, nig_int_mask_addr, nig_mask);
3810 		bnx2x_release_phy_lock(bp);
3811 	}
3812 }
3813 
3814 static void bnx2x_fan_failure(struct bnx2x *bp)
3815 {
3816 	int port = BP_PORT(bp);
3817 	u32 ext_phy_config;
3818 	/* mark the failure */
3819 	ext_phy_config =
3820 		SHMEM_RD(bp,
3821 			 dev_info.port_hw_config[port].external_phy_config);
3822 
3823 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3824 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3825 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3826 		 ext_phy_config);
3827 
3828 	/* log the failure */
3829 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3830 			    "Please contact OEM Support for assistance\n");
3831 
3832 	/* Schedule device reset (unload)
3833 	 * This is due to some boards consuming sufficient power when driver is
3834 	 * up to overheat if fan fails.
3835 	 */
3836 	smp_mb__before_clear_bit();
3837 	set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3838 	smp_mb__after_clear_bit();
3839 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
3840 }
3841 
3842 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3843 {
3844 	int port = BP_PORT(bp);
3845 	int reg_offset;
3846 	u32 val;
3847 
3848 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3849 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3850 
3851 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3852 
3853 		val = REG_RD(bp, reg_offset);
3854 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3855 		REG_WR(bp, reg_offset, val);
3856 
3857 		BNX2X_ERR("SPIO5 hw attention\n");
3858 
3859 		/* Fan failure attention */
3860 		bnx2x_hw_reset_phy(&bp->link_params);
3861 		bnx2x_fan_failure(bp);
3862 	}
3863 
3864 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3865 		bnx2x_acquire_phy_lock(bp);
3866 		bnx2x_handle_module_detect_int(&bp->link_params);
3867 		bnx2x_release_phy_lock(bp);
3868 	}
3869 
3870 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
3871 
3872 		val = REG_RD(bp, reg_offset);
3873 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3874 		REG_WR(bp, reg_offset, val);
3875 
3876 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3877 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3878 		bnx2x_panic();
3879 	}
3880 }
3881 
3882 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3883 {
3884 	u32 val;
3885 
3886 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3887 
3888 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3889 		BNX2X_ERR("DB hw attention 0x%x\n", val);
3890 		/* DORQ discard attention */
3891 		if (val & 0x2)
3892 			BNX2X_ERR("FATAL error from DORQ\n");
3893 	}
3894 
3895 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
3896 
3897 		int port = BP_PORT(bp);
3898 		int reg_offset;
3899 
3900 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3901 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3902 
3903 		val = REG_RD(bp, reg_offset);
3904 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3905 		REG_WR(bp, reg_offset, val);
3906 
3907 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3908 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3909 		bnx2x_panic();
3910 	}
3911 }
3912 
3913 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3914 {
3915 	u32 val;
3916 
3917 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3918 
3919 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3920 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
3921 		/* CFC error attention */
3922 		if (val & 0x2)
3923 			BNX2X_ERR("FATAL error from CFC\n");
3924 	}
3925 
3926 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3927 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3928 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3929 		/* RQ_USDMDP_FIFO_OVERFLOW */
3930 		if (val & 0x18000)
3931 			BNX2X_ERR("FATAL error from PXP\n");
3932 
3933 		if (!CHIP_IS_E1x(bp)) {
3934 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3935 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3936 		}
3937 	}
3938 
3939 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
3940 
3941 		int port = BP_PORT(bp);
3942 		int reg_offset;
3943 
3944 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3945 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3946 
3947 		val = REG_RD(bp, reg_offset);
3948 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3949 		REG_WR(bp, reg_offset, val);
3950 
3951 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3952 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3953 		bnx2x_panic();
3954 	}
3955 }
3956 
3957 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3958 {
3959 	u32 val;
3960 
3961 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3962 
3963 		if (attn & BNX2X_PMF_LINK_ASSERT) {
3964 			int func = BP_FUNC(bp);
3965 
3966 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3967 			bnx2x_read_mf_cfg(bp);
3968 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3969 					func_mf_config[BP_ABS_FUNC(bp)].config);
3970 			val = SHMEM_RD(bp,
3971 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
3972 			if (val & DRV_STATUS_DCC_EVENT_MASK)
3973 				bnx2x_dcc_event(bp,
3974 					    (val & DRV_STATUS_DCC_EVENT_MASK));
3975 
3976 			if (val & DRV_STATUS_SET_MF_BW)
3977 				bnx2x_set_mf_bw(bp);
3978 
3979 			if (val & DRV_STATUS_DRV_INFO_REQ)
3980 				bnx2x_handle_drv_info_req(bp);
3981 
3982 			if (val & DRV_STATUS_VF_DISABLED)
3983 				bnx2x_vf_handle_flr_event(bp);
3984 
3985 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3986 				bnx2x_pmf_update(bp);
3987 
3988 			if (bp->port.pmf &&
3989 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3990 				bp->dcbx_enabled > 0)
3991 				/* start dcbx state machine */
3992 				bnx2x_dcbx_set_params(bp,
3993 					BNX2X_DCBX_STATE_NEG_RECEIVED);
3994 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
3995 				bnx2x_handle_afex_cmd(bp,
3996 					val & DRV_STATUS_AFEX_EVENT_MASK);
3997 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3998 				bnx2x_handle_eee_event(bp);
3999 			if (bp->link_vars.periodic_flags &
4000 			    PERIODIC_FLAGS_LINK_EVENT) {
4001 				/*  sync with link */
4002 				bnx2x_acquire_phy_lock(bp);
4003 				bp->link_vars.periodic_flags &=
4004 					~PERIODIC_FLAGS_LINK_EVENT;
4005 				bnx2x_release_phy_lock(bp);
4006 				if (IS_MF(bp))
4007 					bnx2x_link_sync_notify(bp);
4008 				bnx2x_link_report(bp);
4009 			}
4010 			/* Always call it here: bnx2x_link_report() will
4011 			 * prevent the link indication duplication.
4012 			 */
4013 			bnx2x__link_status_update(bp);
4014 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4015 
4016 			BNX2X_ERR("MC assert!\n");
4017 			bnx2x_mc_assert(bp);
4018 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4019 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4020 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4021 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4022 			bnx2x_panic();
4023 
4024 		} else if (attn & BNX2X_MCP_ASSERT) {
4025 
4026 			BNX2X_ERR("MCP assert!\n");
4027 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4028 			bnx2x_fw_dump(bp);
4029 
4030 		} else
4031 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4032 	}
4033 
4034 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4035 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4036 		if (attn & BNX2X_GRC_TIMEOUT) {
4037 			val = CHIP_IS_E1(bp) ? 0 :
4038 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4039 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4040 		}
4041 		if (attn & BNX2X_GRC_RSV) {
4042 			val = CHIP_IS_E1(bp) ? 0 :
4043 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4044 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4045 		}
4046 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4047 	}
4048 }
4049 
4050 /*
4051  * Bits map:
4052  * 0-7   - Engine0 load counter.
4053  * 8-15  - Engine1 load counter.
4054  * 16    - Engine0 RESET_IN_PROGRESS bit.
4055  * 17    - Engine1 RESET_IN_PROGRESS bit.
4056  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4057  *         on the engine
4058  * 19    - Engine1 ONE_IS_LOADED.
4059  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4060  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4061  *         just the one belonging to its engine).
4062  *
4063  */
4064 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4065 
4066 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4067 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4068 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4069 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4070 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4071 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4072 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
4073 
4074 /*
4075  * Set the GLOBAL_RESET bit.
4076  *
4077  * Should be run under rtnl lock
4078  */
4079 void bnx2x_set_reset_global(struct bnx2x *bp)
4080 {
4081 	u32 val;
4082 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4083 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4084 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4085 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4086 }
4087 
4088 /*
4089  * Clear the GLOBAL_RESET bit.
4090  *
4091  * Should be run under rtnl lock
4092  */
4093 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4094 {
4095 	u32 val;
4096 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4097 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4098 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4099 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4100 }
4101 
4102 /*
4103  * Checks the GLOBAL_RESET bit.
4104  *
4105  * should be run under rtnl lock
4106  */
4107 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4108 {
4109 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4110 
4111 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4112 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4113 }
4114 
4115 /*
4116  * Clear RESET_IN_PROGRESS bit for the current engine.
4117  *
4118  * Should be run under rtnl lock
4119  */
4120 static void bnx2x_set_reset_done(struct bnx2x *bp)
4121 {
4122 	u32 val;
4123 	u32 bit = BP_PATH(bp) ?
4124 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4125 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4126 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4127 
4128 	/* Clear the bit */
4129 	val &= ~bit;
4130 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4131 
4132 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4133 }
4134 
4135 /*
4136  * Set RESET_IN_PROGRESS for the current engine.
4137  *
4138  * should be run under rtnl lock
4139  */
4140 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4141 {
4142 	u32 val;
4143 	u32 bit = BP_PATH(bp) ?
4144 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4145 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4146 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4147 
4148 	/* Set the bit */
4149 	val |= bit;
4150 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4151 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4152 }
4153 
4154 /*
4155  * Checks the RESET_IN_PROGRESS bit for the given engine.
4156  * should be run under rtnl lock
4157  */
4158 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4159 {
4160 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4161 	u32 bit = engine ?
4162 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4163 
4164 	/* return false if bit is set */
4165 	return (val & bit) ? false : true;
4166 }
4167 
4168 /*
4169  * set pf load for the current pf.
4170  *
4171  * should be run under rtnl lock
4172  */
4173 void bnx2x_set_pf_load(struct bnx2x *bp)
4174 {
4175 	u32 val1, val;
4176 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4177 			     BNX2X_PATH0_LOAD_CNT_MASK;
4178 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4179 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4180 
4181 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4182 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4183 
4184 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4185 
4186 	/* get the current counter value */
4187 	val1 = (val & mask) >> shift;
4188 
4189 	/* set bit of that PF */
4190 	val1 |= (1 << bp->pf_num);
4191 
4192 	/* clear the old value */
4193 	val &= ~mask;
4194 
4195 	/* set the new one */
4196 	val |= ((val1 << shift) & mask);
4197 
4198 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4199 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4200 }
4201 
4202 /**
4203  * bnx2x_clear_pf_load - clear pf load mark
4204  *
4205  * @bp:		driver handle
4206  *
4207  * Should be run under rtnl lock.
4208  * Decrements the load counter for the current engine. Returns
4209  * whether other functions are still loaded
4210  */
4211 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4212 {
4213 	u32 val1, val;
4214 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4215 			     BNX2X_PATH0_LOAD_CNT_MASK;
4216 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4217 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4218 
4219 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4220 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4221 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4222 
4223 	/* get the current counter value */
4224 	val1 = (val & mask) >> shift;
4225 
4226 	/* clear bit of that PF */
4227 	val1 &= ~(1 << bp->pf_num);
4228 
4229 	/* clear the old value */
4230 	val &= ~mask;
4231 
4232 	/* set the new one */
4233 	val |= ((val1 << shift) & mask);
4234 
4235 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4236 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4237 	return val1 != 0;
4238 }
4239 
4240 /*
4241  * Read the load status for the current engine.
4242  *
4243  * should be run under rtnl lock
4244  */
4245 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4246 {
4247 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4248 			     BNX2X_PATH0_LOAD_CNT_MASK);
4249 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4250 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4251 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4252 
4253 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4254 
4255 	val = (val & mask) >> shift;
4256 
4257 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4258 	   engine, val);
4259 
4260 	return val != 0;
4261 }
4262 
4263 static void _print_parity(struct bnx2x *bp, u32 reg)
4264 {
4265 	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4266 }
4267 
4268 static void _print_next_block(int idx, const char *blk)
4269 {
4270 	pr_cont("%s%s", idx ? ", " : "", blk);
4271 }
4272 
4273 static int bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4274 					    int par_num, bool print)
4275 {
4276 	int i = 0;
4277 	u32 cur_bit = 0;
4278 	for (i = 0; sig; i++) {
4279 		cur_bit = ((u32)0x1 << i);
4280 		if (sig & cur_bit) {
4281 			switch (cur_bit) {
4282 			case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4283 				if (print) {
4284 					_print_next_block(par_num++, "BRB");
4285 					_print_parity(bp,
4286 						      BRB1_REG_BRB1_PRTY_STS);
4287 				}
4288 				break;
4289 			case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4290 				if (print) {
4291 					_print_next_block(par_num++, "PARSER");
4292 					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4293 				}
4294 				break;
4295 			case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4296 				if (print) {
4297 					_print_next_block(par_num++, "TSDM");
4298 					_print_parity(bp,
4299 						      TSDM_REG_TSDM_PRTY_STS);
4300 				}
4301 				break;
4302 			case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4303 				if (print) {
4304 					_print_next_block(par_num++,
4305 							  "SEARCHER");
4306 					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4307 				}
4308 				break;
4309 			case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4310 				if (print) {
4311 					_print_next_block(par_num++, "TCM");
4312 					_print_parity(bp,
4313 						      TCM_REG_TCM_PRTY_STS);
4314 				}
4315 				break;
4316 			case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4317 				if (print) {
4318 					_print_next_block(par_num++, "TSEMI");
4319 					_print_parity(bp,
4320 						      TSEM_REG_TSEM_PRTY_STS_0);
4321 					_print_parity(bp,
4322 						      TSEM_REG_TSEM_PRTY_STS_1);
4323 				}
4324 				break;
4325 			case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4326 				if (print) {
4327 					_print_next_block(par_num++, "XPB");
4328 					_print_parity(bp, GRCBASE_XPB +
4329 							  PB_REG_PB_PRTY_STS);
4330 				}
4331 				break;
4332 			}
4333 
4334 			/* Clear the bit */
4335 			sig &= ~cur_bit;
4336 		}
4337 	}
4338 
4339 	return par_num;
4340 }
4341 
4342 static int bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4343 					    int par_num, bool *global,
4344 					    bool print)
4345 {
4346 	int i = 0;
4347 	u32 cur_bit = 0;
4348 	for (i = 0; sig; i++) {
4349 		cur_bit = ((u32)0x1 << i);
4350 		if (sig & cur_bit) {
4351 			switch (cur_bit) {
4352 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4353 				if (print) {
4354 					_print_next_block(par_num++, "PBF");
4355 					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4356 				}
4357 				break;
4358 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4359 				if (print) {
4360 					_print_next_block(par_num++, "QM");
4361 					_print_parity(bp, QM_REG_QM_PRTY_STS);
4362 				}
4363 				break;
4364 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4365 				if (print) {
4366 					_print_next_block(par_num++, "TM");
4367 					_print_parity(bp, TM_REG_TM_PRTY_STS);
4368 				}
4369 				break;
4370 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4371 				if (print) {
4372 					_print_next_block(par_num++, "XSDM");
4373 					_print_parity(bp,
4374 						      XSDM_REG_XSDM_PRTY_STS);
4375 				}
4376 				break;
4377 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4378 				if (print) {
4379 					_print_next_block(par_num++, "XCM");
4380 					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4381 				}
4382 				break;
4383 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4384 				if (print) {
4385 					_print_next_block(par_num++, "XSEMI");
4386 					_print_parity(bp,
4387 						      XSEM_REG_XSEM_PRTY_STS_0);
4388 					_print_parity(bp,
4389 						      XSEM_REG_XSEM_PRTY_STS_1);
4390 				}
4391 				break;
4392 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4393 				if (print) {
4394 					_print_next_block(par_num++,
4395 							  "DOORBELLQ");
4396 					_print_parity(bp,
4397 						      DORQ_REG_DORQ_PRTY_STS);
4398 				}
4399 				break;
4400 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4401 				if (print) {
4402 					_print_next_block(par_num++, "NIG");
4403 					if (CHIP_IS_E1x(bp)) {
4404 						_print_parity(bp,
4405 							NIG_REG_NIG_PRTY_STS);
4406 					} else {
4407 						_print_parity(bp,
4408 							NIG_REG_NIG_PRTY_STS_0);
4409 						_print_parity(bp,
4410 							NIG_REG_NIG_PRTY_STS_1);
4411 					}
4412 				}
4413 				break;
4414 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4415 				if (print)
4416 					_print_next_block(par_num++,
4417 							  "VAUX PCI CORE");
4418 				*global = true;
4419 				break;
4420 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4421 				if (print) {
4422 					_print_next_block(par_num++, "DEBUG");
4423 					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4424 				}
4425 				break;
4426 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4427 				if (print) {
4428 					_print_next_block(par_num++, "USDM");
4429 					_print_parity(bp,
4430 						      USDM_REG_USDM_PRTY_STS);
4431 				}
4432 				break;
4433 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4434 				if (print) {
4435 					_print_next_block(par_num++, "UCM");
4436 					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4437 				}
4438 				break;
4439 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4440 				if (print) {
4441 					_print_next_block(par_num++, "USEMI");
4442 					_print_parity(bp,
4443 						      USEM_REG_USEM_PRTY_STS_0);
4444 					_print_parity(bp,
4445 						      USEM_REG_USEM_PRTY_STS_1);
4446 				}
4447 				break;
4448 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4449 				if (print) {
4450 					_print_next_block(par_num++, "UPB");
4451 					_print_parity(bp, GRCBASE_UPB +
4452 							  PB_REG_PB_PRTY_STS);
4453 				}
4454 				break;
4455 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4456 				if (print) {
4457 					_print_next_block(par_num++, "CSDM");
4458 					_print_parity(bp,
4459 						      CSDM_REG_CSDM_PRTY_STS);
4460 				}
4461 				break;
4462 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4463 				if (print) {
4464 					_print_next_block(par_num++, "CCM");
4465 					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4466 				}
4467 				break;
4468 			}
4469 
4470 			/* Clear the bit */
4471 			sig &= ~cur_bit;
4472 		}
4473 	}
4474 
4475 	return par_num;
4476 }
4477 
4478 static int bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4479 					    int par_num, bool print)
4480 {
4481 	int i = 0;
4482 	u32 cur_bit = 0;
4483 	for (i = 0; sig; i++) {
4484 		cur_bit = ((u32)0x1 << i);
4485 		if (sig & cur_bit) {
4486 			switch (cur_bit) {
4487 			case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4488 				if (print) {
4489 					_print_next_block(par_num++, "CSEMI");
4490 					_print_parity(bp,
4491 						      CSEM_REG_CSEM_PRTY_STS_0);
4492 					_print_parity(bp,
4493 						      CSEM_REG_CSEM_PRTY_STS_1);
4494 				}
4495 				break;
4496 			case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4497 				if (print) {
4498 					_print_next_block(par_num++, "PXP");
4499 					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4500 					_print_parity(bp,
4501 						      PXP2_REG_PXP2_PRTY_STS_0);
4502 					_print_parity(bp,
4503 						      PXP2_REG_PXP2_PRTY_STS_1);
4504 				}
4505 				break;
4506 			case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4507 				if (print)
4508 					_print_next_block(par_num++,
4509 					"PXPPCICLOCKCLIENT");
4510 				break;
4511 			case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4512 				if (print) {
4513 					_print_next_block(par_num++, "CFC");
4514 					_print_parity(bp,
4515 						      CFC_REG_CFC_PRTY_STS);
4516 				}
4517 				break;
4518 			case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4519 				if (print) {
4520 					_print_next_block(par_num++, "CDU");
4521 					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4522 				}
4523 				break;
4524 			case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4525 				if (print) {
4526 					_print_next_block(par_num++, "DMAE");
4527 					_print_parity(bp,
4528 						      DMAE_REG_DMAE_PRTY_STS);
4529 				}
4530 				break;
4531 			case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4532 				if (print) {
4533 					_print_next_block(par_num++, "IGU");
4534 					if (CHIP_IS_E1x(bp))
4535 						_print_parity(bp,
4536 							HC_REG_HC_PRTY_STS);
4537 					else
4538 						_print_parity(bp,
4539 							IGU_REG_IGU_PRTY_STS);
4540 				}
4541 				break;
4542 			case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4543 				if (print) {
4544 					_print_next_block(par_num++, "MISC");
4545 					_print_parity(bp,
4546 						      MISC_REG_MISC_PRTY_STS);
4547 				}
4548 				break;
4549 			}
4550 
4551 			/* Clear the bit */
4552 			sig &= ~cur_bit;
4553 		}
4554 	}
4555 
4556 	return par_num;
4557 }
4558 
4559 static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4560 					   bool *global, bool print)
4561 {
4562 	int i = 0;
4563 	u32 cur_bit = 0;
4564 	for (i = 0; sig; i++) {
4565 		cur_bit = ((u32)0x1 << i);
4566 		if (sig & cur_bit) {
4567 			switch (cur_bit) {
4568 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4569 				if (print)
4570 					_print_next_block(par_num++, "MCP ROM");
4571 				*global = true;
4572 				break;
4573 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4574 				if (print)
4575 					_print_next_block(par_num++,
4576 							  "MCP UMP RX");
4577 				*global = true;
4578 				break;
4579 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4580 				if (print)
4581 					_print_next_block(par_num++,
4582 							  "MCP UMP TX");
4583 				*global = true;
4584 				break;
4585 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4586 				if (print)
4587 					_print_next_block(par_num++,
4588 							  "MCP SCPAD");
4589 				*global = true;
4590 				break;
4591 			}
4592 
4593 			/* Clear the bit */
4594 			sig &= ~cur_bit;
4595 		}
4596 	}
4597 
4598 	return par_num;
4599 }
4600 
4601 static int bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4602 					    int par_num, bool print)
4603 {
4604 	int i = 0;
4605 	u32 cur_bit = 0;
4606 	for (i = 0; sig; i++) {
4607 		cur_bit = ((u32)0x1 << i);
4608 		if (sig & cur_bit) {
4609 			switch (cur_bit) {
4610 			case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4611 				if (print) {
4612 					_print_next_block(par_num++, "PGLUE_B");
4613 					_print_parity(bp,
4614 						PGLUE_B_REG_PGLUE_B_PRTY_STS);
4615 				}
4616 				break;
4617 			case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4618 				if (print) {
4619 					_print_next_block(par_num++, "ATC");
4620 					_print_parity(bp,
4621 						      ATC_REG_ATC_PRTY_STS);
4622 				}
4623 				break;
4624 			}
4625 
4626 			/* Clear the bit */
4627 			sig &= ~cur_bit;
4628 		}
4629 	}
4630 
4631 	return par_num;
4632 }
4633 
4634 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4635 			      u32 *sig)
4636 {
4637 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4638 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4639 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4640 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4641 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4642 		int par_num = 0;
4643 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4644 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4645 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4646 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4647 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4648 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4649 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4650 		if (print)
4651 			netdev_err(bp->dev,
4652 				   "Parity errors detected in blocks: ");
4653 		par_num = bnx2x_check_blocks_with_parity0(bp,
4654 			sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4655 		par_num = bnx2x_check_blocks_with_parity1(bp,
4656 			sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4657 		par_num = bnx2x_check_blocks_with_parity2(bp,
4658 			sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4659 		par_num = bnx2x_check_blocks_with_parity3(
4660 			sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4661 		par_num = bnx2x_check_blocks_with_parity4(bp,
4662 			sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4663 
4664 		if (print)
4665 			pr_cont("\n");
4666 
4667 		return true;
4668 	} else
4669 		return false;
4670 }
4671 
4672 /**
4673  * bnx2x_chk_parity_attn - checks for parity attentions.
4674  *
4675  * @bp:		driver handle
4676  * @global:	true if there was a global attention
4677  * @print:	show parity attention in syslog
4678  */
4679 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4680 {
4681 	struct attn_route attn = { {0} };
4682 	int port = BP_PORT(bp);
4683 
4684 	attn.sig[0] = REG_RD(bp,
4685 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4686 			     port*4);
4687 	attn.sig[1] = REG_RD(bp,
4688 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4689 			     port*4);
4690 	attn.sig[2] = REG_RD(bp,
4691 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4692 			     port*4);
4693 	attn.sig[3] = REG_RD(bp,
4694 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4695 			     port*4);
4696 
4697 	if (!CHIP_IS_E1x(bp))
4698 		attn.sig[4] = REG_RD(bp,
4699 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4700 				     port*4);
4701 
4702 	return bnx2x_parity_attn(bp, global, print, attn.sig);
4703 }
4704 
4705 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4706 {
4707 	u32 val;
4708 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4709 
4710 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4711 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4712 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4713 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4714 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4715 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4716 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4717 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4718 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4719 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4720 		if (val &
4721 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4722 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4723 		if (val &
4724 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4725 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4726 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4727 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4728 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4729 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4730 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4731 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4732 	}
4733 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4734 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4735 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4736 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4737 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4738 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4739 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4740 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4741 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4742 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4743 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4744 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4745 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4746 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4747 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4748 	}
4749 
4750 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4751 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4752 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4753 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4754 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4755 	}
4756 }
4757 
4758 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4759 {
4760 	struct attn_route attn, *group_mask;
4761 	int port = BP_PORT(bp);
4762 	int index;
4763 	u32 reg_addr;
4764 	u32 val;
4765 	u32 aeu_mask;
4766 	bool global = false;
4767 
4768 	/* need to take HW lock because MCP or other port might also
4769 	   try to handle this event */
4770 	bnx2x_acquire_alr(bp);
4771 
4772 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4773 #ifndef BNX2X_STOP_ON_ERROR
4774 		bp->recovery_state = BNX2X_RECOVERY_INIT;
4775 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4776 		/* Disable HW interrupts */
4777 		bnx2x_int_disable(bp);
4778 		/* In case of parity errors don't handle attentions so that
4779 		 * other function would "see" parity errors.
4780 		 */
4781 #else
4782 		bnx2x_panic();
4783 #endif
4784 		bnx2x_release_alr(bp);
4785 		return;
4786 	}
4787 
4788 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4789 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4790 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4791 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4792 	if (!CHIP_IS_E1x(bp))
4793 		attn.sig[4] =
4794 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4795 	else
4796 		attn.sig[4] = 0;
4797 
4798 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4799 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4800 
4801 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4802 		if (deasserted & (1 << index)) {
4803 			group_mask = &bp->attn_group[index];
4804 
4805 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4806 			   index,
4807 			   group_mask->sig[0], group_mask->sig[1],
4808 			   group_mask->sig[2], group_mask->sig[3],
4809 			   group_mask->sig[4]);
4810 
4811 			bnx2x_attn_int_deasserted4(bp,
4812 					attn.sig[4] & group_mask->sig[4]);
4813 			bnx2x_attn_int_deasserted3(bp,
4814 					attn.sig[3] & group_mask->sig[3]);
4815 			bnx2x_attn_int_deasserted1(bp,
4816 					attn.sig[1] & group_mask->sig[1]);
4817 			bnx2x_attn_int_deasserted2(bp,
4818 					attn.sig[2] & group_mask->sig[2]);
4819 			bnx2x_attn_int_deasserted0(bp,
4820 					attn.sig[0] & group_mask->sig[0]);
4821 		}
4822 	}
4823 
4824 	bnx2x_release_alr(bp);
4825 
4826 	if (bp->common.int_block == INT_BLOCK_HC)
4827 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4828 			    COMMAND_REG_ATTN_BITS_CLR);
4829 	else
4830 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4831 
4832 	val = ~deasserted;
4833 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4834 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4835 	REG_WR(bp, reg_addr, val);
4836 
4837 	if (~bp->attn_state & deasserted)
4838 		BNX2X_ERR("IGU ERROR\n");
4839 
4840 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4841 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
4842 
4843 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4844 	aeu_mask = REG_RD(bp, reg_addr);
4845 
4846 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4847 	   aeu_mask, deasserted);
4848 	aeu_mask |= (deasserted & 0x3ff);
4849 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4850 
4851 	REG_WR(bp, reg_addr, aeu_mask);
4852 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4853 
4854 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4855 	bp->attn_state &= ~deasserted;
4856 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4857 }
4858 
4859 static void bnx2x_attn_int(struct bnx2x *bp)
4860 {
4861 	/* read local copy of bits */
4862 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4863 								attn_bits);
4864 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4865 								attn_bits_ack);
4866 	u32 attn_state = bp->attn_state;
4867 
4868 	/* look for changed bits */
4869 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4870 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4871 
4872 	DP(NETIF_MSG_HW,
4873 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4874 	   attn_bits, attn_ack, asserted, deasserted);
4875 
4876 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4877 		BNX2X_ERR("BAD attention state\n");
4878 
4879 	/* handle bits that were raised */
4880 	if (asserted)
4881 		bnx2x_attn_int_asserted(bp, asserted);
4882 
4883 	if (deasserted)
4884 		bnx2x_attn_int_deasserted(bp, deasserted);
4885 }
4886 
4887 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4888 		      u16 index, u8 op, u8 update)
4889 {
4890 	u32 igu_addr = bp->igu_base_addr;
4891 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4892 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4893 			     igu_addr);
4894 }
4895 
4896 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4897 {
4898 	/* No memory barriers */
4899 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4900 	mmiowb(); /* keep prod updates ordered */
4901 }
4902 
4903 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4904 				      union event_ring_elem *elem)
4905 {
4906 	u8 err = elem->message.error;
4907 
4908 	if (!bp->cnic_eth_dev.starting_cid  ||
4909 	    (cid < bp->cnic_eth_dev.starting_cid &&
4910 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
4911 		return 1;
4912 
4913 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4914 
4915 	if (unlikely(err)) {
4916 
4917 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4918 			  cid);
4919 		bnx2x_panic_dump(bp, false);
4920 	}
4921 	bnx2x_cnic_cfc_comp(bp, cid, err);
4922 	return 0;
4923 }
4924 
4925 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4926 {
4927 	struct bnx2x_mcast_ramrod_params rparam;
4928 	int rc;
4929 
4930 	memset(&rparam, 0, sizeof(rparam));
4931 
4932 	rparam.mcast_obj = &bp->mcast_obj;
4933 
4934 	netif_addr_lock_bh(bp->dev);
4935 
4936 	/* Clear pending state for the last command */
4937 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4938 
4939 	/* If there are pending mcast commands - send them */
4940 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4941 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4942 		if (rc < 0)
4943 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4944 				  rc);
4945 	}
4946 
4947 	netif_addr_unlock_bh(bp->dev);
4948 }
4949 
4950 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4951 					    union event_ring_elem *elem)
4952 {
4953 	unsigned long ramrod_flags = 0;
4954 	int rc = 0;
4955 	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4956 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4957 
4958 	/* Always push next commands out, don't wait here */
4959 	__set_bit(RAMROD_CONT, &ramrod_flags);
4960 
4961 	switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
4962 			    >> BNX2X_SWCID_SHIFT) {
4963 	case BNX2X_FILTER_MAC_PENDING:
4964 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4965 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
4966 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4967 		else
4968 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
4969 
4970 		break;
4971 	case BNX2X_FILTER_MCAST_PENDING:
4972 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4973 		/* This is only relevant for 57710 where multicast MACs are
4974 		 * configured as unicast MACs using the same ramrod.
4975 		 */
4976 		bnx2x_handle_mcast_eqe(bp);
4977 		return;
4978 	default:
4979 		BNX2X_ERR("Unsupported classification command: %d\n",
4980 			  elem->message.data.eth_event.echo);
4981 		return;
4982 	}
4983 
4984 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4985 
4986 	if (rc < 0)
4987 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4988 	else if (rc > 0)
4989 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4990 }
4991 
4992 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4993 
4994 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4995 {
4996 	netif_addr_lock_bh(bp->dev);
4997 
4998 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4999 
5000 	/* Send rx_mode command again if was requested */
5001 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5002 		bnx2x_set_storm_rx_mode(bp);
5003 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5004 				    &bp->sp_state))
5005 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5006 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5007 				    &bp->sp_state))
5008 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5009 
5010 	netif_addr_unlock_bh(bp->dev);
5011 }
5012 
5013 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5014 					      union event_ring_elem *elem)
5015 {
5016 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5017 		DP(BNX2X_MSG_SP,
5018 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5019 		   elem->message.data.vif_list_event.func_bit_map);
5020 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5021 			elem->message.data.vif_list_event.func_bit_map);
5022 	} else if (elem->message.data.vif_list_event.echo ==
5023 		   VIF_LIST_RULE_SET) {
5024 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5025 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5026 	}
5027 }
5028 
5029 /* called with rtnl_lock */
5030 static void bnx2x_after_function_update(struct bnx2x *bp)
5031 {
5032 	int q, rc;
5033 	struct bnx2x_fastpath *fp;
5034 	struct bnx2x_queue_state_params queue_params = {NULL};
5035 	struct bnx2x_queue_update_params *q_update_params =
5036 		&queue_params.params.update;
5037 
5038 	/* Send Q update command with afex vlan removal values for all Qs */
5039 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5040 
5041 	/* set silent vlan removal values according to vlan mode */
5042 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5043 		  &q_update_params->update_flags);
5044 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5045 		  &q_update_params->update_flags);
5046 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5047 
5048 	/* in access mode mark mask and value are 0 to strip all vlans */
5049 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5050 		q_update_params->silent_removal_value = 0;
5051 		q_update_params->silent_removal_mask = 0;
5052 	} else {
5053 		q_update_params->silent_removal_value =
5054 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5055 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5056 	}
5057 
5058 	for_each_eth_queue(bp, q) {
5059 		/* Set the appropriate Queue object */
5060 		fp = &bp->fp[q];
5061 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5062 
5063 		/* send the ramrod */
5064 		rc = bnx2x_queue_state_change(bp, &queue_params);
5065 		if (rc < 0)
5066 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5067 				  q);
5068 	}
5069 
5070 	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5071 		fp = &bp->fp[FCOE_IDX(bp)];
5072 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5073 
5074 		/* clear pending completion bit */
5075 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5076 
5077 		/* mark latest Q bit */
5078 		smp_mb__before_clear_bit();
5079 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5080 		smp_mb__after_clear_bit();
5081 
5082 		/* send Q update ramrod for FCoE Q */
5083 		rc = bnx2x_queue_state_change(bp, &queue_params);
5084 		if (rc < 0)
5085 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5086 				  q);
5087 	} else {
5088 		/* If no FCoE ring - ACK MCP now */
5089 		bnx2x_link_report(bp);
5090 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5091 	}
5092 }
5093 
5094 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5095 	struct bnx2x *bp, u32 cid)
5096 {
5097 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5098 
5099 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5100 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5101 	else
5102 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5103 }
5104 
5105 static void bnx2x_eq_int(struct bnx2x *bp)
5106 {
5107 	u16 hw_cons, sw_cons, sw_prod;
5108 	union event_ring_elem *elem;
5109 	u8 echo;
5110 	u32 cid;
5111 	u8 opcode;
5112 	int rc, spqe_cnt = 0;
5113 	struct bnx2x_queue_sp_obj *q_obj;
5114 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5115 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5116 
5117 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5118 
5119 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5120 	 * when we get the next-page we need to adjust so the loop
5121 	 * condition below will be met. The next element is the size of a
5122 	 * regular element and hence incrementing by 1
5123 	 */
5124 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5125 		hw_cons++;
5126 
5127 	/* This function may never run in parallel with itself for a
5128 	 * specific bp, thus there is no need in "paired" read memory
5129 	 * barrier here.
5130 	 */
5131 	sw_cons = bp->eq_cons;
5132 	sw_prod = bp->eq_prod;
5133 
5134 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5135 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5136 
5137 	for (; sw_cons != hw_cons;
5138 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5139 
5140 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5141 
5142 		rc = bnx2x_iov_eq_sp_event(bp, elem);
5143 		if (!rc) {
5144 			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5145 			   rc);
5146 			goto next_spqe;
5147 		}
5148 
5149 		/* elem CID originates from FW; actually LE */
5150 		cid = SW_CID((__force __le32)
5151 			     elem->message.data.cfc_del_event.cid);
5152 		opcode = elem->message.opcode;
5153 
5154 		/* handle eq element */
5155 		switch (opcode) {
5156 		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5157 			DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n");
5158 			bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event);
5159 			continue;
5160 
5161 		case EVENT_RING_OPCODE_STAT_QUERY:
5162 			DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
5163 			   "got statistics comp event %d\n",
5164 			   bp->stats_comp++);
5165 			/* nothing to do with stats comp */
5166 			goto next_spqe;
5167 
5168 		case EVENT_RING_OPCODE_CFC_DEL:
5169 			/* handle according to cid range */
5170 			/*
5171 			 * we may want to verify here that the bp state is
5172 			 * HALTING
5173 			 */
5174 			DP(BNX2X_MSG_SP,
5175 			   "got delete ramrod for MULTI[%d]\n", cid);
5176 
5177 			if (CNIC_LOADED(bp) &&
5178 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5179 				goto next_spqe;
5180 
5181 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5182 
5183 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5184 				break;
5185 
5186 			goto next_spqe;
5187 
5188 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5189 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5190 			if (f_obj->complete_cmd(bp, f_obj,
5191 						BNX2X_F_CMD_TX_STOP))
5192 				break;
5193 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5194 			goto next_spqe;
5195 
5196 		case EVENT_RING_OPCODE_START_TRAFFIC:
5197 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5198 			if (f_obj->complete_cmd(bp, f_obj,
5199 						BNX2X_F_CMD_TX_START))
5200 				break;
5201 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5202 			goto next_spqe;
5203 
5204 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5205 			echo = elem->message.data.function_update_event.echo;
5206 			if (echo == SWITCH_UPDATE) {
5207 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5208 				   "got FUNC_SWITCH_UPDATE ramrod\n");
5209 				if (f_obj->complete_cmd(
5210 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5211 					break;
5212 
5213 			} else {
5214 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5215 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5216 				f_obj->complete_cmd(bp, f_obj,
5217 						    BNX2X_F_CMD_AFEX_UPDATE);
5218 
5219 				/* We will perform the Queues update from
5220 				 * sp_rtnl task as all Queue SP operations
5221 				 * should run under rtnl_lock.
5222 				 */
5223 				smp_mb__before_clear_bit();
5224 				set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
5225 					&bp->sp_rtnl_state);
5226 				smp_mb__after_clear_bit();
5227 
5228 				schedule_delayed_work(&bp->sp_rtnl_task, 0);
5229 			}
5230 
5231 			goto next_spqe;
5232 
5233 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5234 			f_obj->complete_cmd(bp, f_obj,
5235 					    BNX2X_F_CMD_AFEX_VIFLISTS);
5236 			bnx2x_after_afex_vif_lists(bp, elem);
5237 			goto next_spqe;
5238 		case EVENT_RING_OPCODE_FUNCTION_START:
5239 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5240 			   "got FUNC_START ramrod\n");
5241 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5242 				break;
5243 
5244 			goto next_spqe;
5245 
5246 		case EVENT_RING_OPCODE_FUNCTION_STOP:
5247 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5248 			   "got FUNC_STOP ramrod\n");
5249 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5250 				break;
5251 
5252 			goto next_spqe;
5253 		}
5254 
5255 		switch (opcode | bp->state) {
5256 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5257 		      BNX2X_STATE_OPEN):
5258 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5259 		      BNX2X_STATE_OPENING_WAIT4_PORT):
5260 			cid = elem->message.data.eth_event.echo &
5261 				BNX2X_SWCID_MASK;
5262 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5263 			   cid);
5264 			rss_raw->clear_pending(rss_raw);
5265 			break;
5266 
5267 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5268 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5269 		case (EVENT_RING_OPCODE_SET_MAC |
5270 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5271 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5272 		      BNX2X_STATE_OPEN):
5273 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5274 		      BNX2X_STATE_DIAG):
5275 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5276 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5277 			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5278 			bnx2x_handle_classification_eqe(bp, elem);
5279 			break;
5280 
5281 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5282 		      BNX2X_STATE_OPEN):
5283 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5284 		      BNX2X_STATE_DIAG):
5285 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5286 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5287 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5288 			bnx2x_handle_mcast_eqe(bp);
5289 			break;
5290 
5291 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5292 		      BNX2X_STATE_OPEN):
5293 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5294 		      BNX2X_STATE_DIAG):
5295 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5296 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5297 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5298 			bnx2x_handle_rx_mode_eqe(bp);
5299 			break;
5300 		default:
5301 			/* unknown event log error and continue */
5302 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5303 				  elem->message.opcode, bp->state);
5304 		}
5305 next_spqe:
5306 		spqe_cnt++;
5307 	} /* for */
5308 
5309 	smp_mb__before_atomic_inc();
5310 	atomic_add(spqe_cnt, &bp->eq_spq_left);
5311 
5312 	bp->eq_cons = sw_cons;
5313 	bp->eq_prod = sw_prod;
5314 	/* Make sure that above mem writes were issued towards the memory */
5315 	smp_wmb();
5316 
5317 	/* update producer */
5318 	bnx2x_update_eq_prod(bp, bp->eq_prod);
5319 }
5320 
5321 static void bnx2x_sp_task(struct work_struct *work)
5322 {
5323 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5324 
5325 	DP(BNX2X_MSG_SP, "sp task invoked\n");
5326 
5327 	/* make sure the atomic interrupt_occurred has been written */
5328 	smp_rmb();
5329 	if (atomic_read(&bp->interrupt_occurred)) {
5330 
5331 		/* what work needs to be performed? */
5332 		u16 status = bnx2x_update_dsb_idx(bp);
5333 
5334 		DP(BNX2X_MSG_SP, "status %x\n", status);
5335 		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5336 		atomic_set(&bp->interrupt_occurred, 0);
5337 
5338 		/* HW attentions */
5339 		if (status & BNX2X_DEF_SB_ATT_IDX) {
5340 			bnx2x_attn_int(bp);
5341 			status &= ~BNX2X_DEF_SB_ATT_IDX;
5342 		}
5343 
5344 		/* SP events: STAT_QUERY and others */
5345 		if (status & BNX2X_DEF_SB_IDX) {
5346 			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5347 
5348 		if (FCOE_INIT(bp) &&
5349 			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5350 				/* Prevent local bottom-halves from running as
5351 				 * we are going to change the local NAPI list.
5352 				 */
5353 				local_bh_disable();
5354 				napi_schedule(&bnx2x_fcoe(bp, napi));
5355 				local_bh_enable();
5356 			}
5357 
5358 			/* Handle EQ completions */
5359 			bnx2x_eq_int(bp);
5360 			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5361 				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5362 
5363 			status &= ~BNX2X_DEF_SB_IDX;
5364 		}
5365 
5366 		/* if status is non zero then perhaps something went wrong */
5367 		if (unlikely(status))
5368 			DP(BNX2X_MSG_SP,
5369 			   "got an unknown interrupt! (status 0x%x)\n", status);
5370 
5371 		/* ack status block only if something was actually handled */
5372 		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5373 			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5374 	}
5375 
5376 	/* must be called after the EQ processing (since eq leads to sriov
5377 	 * ramrod completion flows).
5378 	 * This flow may have been scheduled by the arrival of a ramrod
5379 	 * completion, or by the sriov code rescheduling itself.
5380 	 */
5381 	bnx2x_iov_sp_task(bp);
5382 
5383 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5384 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5385 			       &bp->sp_state)) {
5386 		bnx2x_link_report(bp);
5387 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5388 	}
5389 }
5390 
5391 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5392 {
5393 	struct net_device *dev = dev_instance;
5394 	struct bnx2x *bp = netdev_priv(dev);
5395 
5396 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5397 		     IGU_INT_DISABLE, 0);
5398 
5399 #ifdef BNX2X_STOP_ON_ERROR
5400 	if (unlikely(bp->panic))
5401 		return IRQ_HANDLED;
5402 #endif
5403 
5404 	if (CNIC_LOADED(bp)) {
5405 		struct cnic_ops *c_ops;
5406 
5407 		rcu_read_lock();
5408 		c_ops = rcu_dereference(bp->cnic_ops);
5409 		if (c_ops)
5410 			c_ops->cnic_handler(bp->cnic_data, NULL);
5411 		rcu_read_unlock();
5412 	}
5413 
5414 	/* schedule sp task to perform default status block work, ack
5415 	 * attentions and enable interrupts.
5416 	 */
5417 	bnx2x_schedule_sp_task(bp);
5418 
5419 	return IRQ_HANDLED;
5420 }
5421 
5422 /* end of slow path */
5423 
5424 void bnx2x_drv_pulse(struct bnx2x *bp)
5425 {
5426 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5427 		 bp->fw_drv_pulse_wr_seq);
5428 }
5429 
5430 static void bnx2x_timer(unsigned long data)
5431 {
5432 	struct bnx2x *bp = (struct bnx2x *) data;
5433 
5434 	if (!netif_running(bp->dev))
5435 		return;
5436 
5437 	if (IS_PF(bp) &&
5438 	    !BP_NOMCP(bp)) {
5439 		int mb_idx = BP_FW_MB_IDX(bp);
5440 		u32 drv_pulse;
5441 		u32 mcp_pulse;
5442 
5443 		++bp->fw_drv_pulse_wr_seq;
5444 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5445 		/* TBD - add SYSTEM_TIME */
5446 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5447 		bnx2x_drv_pulse(bp);
5448 
5449 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5450 			     MCP_PULSE_SEQ_MASK);
5451 		/* The delta between driver pulse and mcp response
5452 		 * should be 1 (before mcp response) or 0 (after mcp response)
5453 		 */
5454 		if ((drv_pulse != mcp_pulse) &&
5455 		    (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
5456 			/* someone lost a heartbeat... */
5457 			BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5458 				  drv_pulse, mcp_pulse);
5459 		}
5460 	}
5461 
5462 	if (bp->state == BNX2X_STATE_OPEN)
5463 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5464 
5465 	/* sample pf vf bulletin board for new posts from pf */
5466 	if (IS_VF(bp))
5467 		bnx2x_timer_sriov(bp);
5468 
5469 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5470 }
5471 
5472 /* end of Statistics */
5473 
5474 /* nic init */
5475 
5476 /*
5477  * nic init service functions
5478  */
5479 
5480 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5481 {
5482 	u32 i;
5483 	if (!(len%4) && !(addr%4))
5484 		for (i = 0; i < len; i += 4)
5485 			REG_WR(bp, addr + i, fill);
5486 	else
5487 		for (i = 0; i < len; i++)
5488 			REG_WR8(bp, addr + i, fill);
5489 }
5490 
5491 /* helper: writes FP SP data to FW - data_size in dwords */
5492 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5493 				int fw_sb_id,
5494 				u32 *sb_data_p,
5495 				u32 data_size)
5496 {
5497 	int index;
5498 	for (index = 0; index < data_size; index++)
5499 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5500 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5501 			sizeof(u32)*index,
5502 			*(sb_data_p + index));
5503 }
5504 
5505 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5506 {
5507 	u32 *sb_data_p;
5508 	u32 data_size = 0;
5509 	struct hc_status_block_data_e2 sb_data_e2;
5510 	struct hc_status_block_data_e1x sb_data_e1x;
5511 
5512 	/* disable the function first */
5513 	if (!CHIP_IS_E1x(bp)) {
5514 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5515 		sb_data_e2.common.state = SB_DISABLED;
5516 		sb_data_e2.common.p_func.vf_valid = false;
5517 		sb_data_p = (u32 *)&sb_data_e2;
5518 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5519 	} else {
5520 		memset(&sb_data_e1x, 0,
5521 		       sizeof(struct hc_status_block_data_e1x));
5522 		sb_data_e1x.common.state = SB_DISABLED;
5523 		sb_data_e1x.common.p_func.vf_valid = false;
5524 		sb_data_p = (u32 *)&sb_data_e1x;
5525 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5526 	}
5527 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5528 
5529 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5530 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5531 			CSTORM_STATUS_BLOCK_SIZE);
5532 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5533 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5534 			CSTORM_SYNC_BLOCK_SIZE);
5535 }
5536 
5537 /* helper:  writes SP SB data to FW */
5538 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5539 		struct hc_sp_status_block_data *sp_sb_data)
5540 {
5541 	int func = BP_FUNC(bp);
5542 	int i;
5543 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5544 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5545 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5546 			i*sizeof(u32),
5547 			*((u32 *)sp_sb_data + i));
5548 }
5549 
5550 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5551 {
5552 	int func = BP_FUNC(bp);
5553 	struct hc_sp_status_block_data sp_sb_data;
5554 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5555 
5556 	sp_sb_data.state = SB_DISABLED;
5557 	sp_sb_data.p_func.vf_valid = false;
5558 
5559 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5560 
5561 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5562 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5563 			CSTORM_SP_STATUS_BLOCK_SIZE);
5564 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5565 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5566 			CSTORM_SP_SYNC_BLOCK_SIZE);
5567 }
5568 
5569 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5570 					   int igu_sb_id, int igu_seg_id)
5571 {
5572 	hc_sm->igu_sb_id = igu_sb_id;
5573 	hc_sm->igu_seg_id = igu_seg_id;
5574 	hc_sm->timer_value = 0xFF;
5575 	hc_sm->time_to_expire = 0xFFFFFFFF;
5576 }
5577 
5578 /* allocates state machine ids. */
5579 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5580 {
5581 	/* zero out state machine indices */
5582 	/* rx indices */
5583 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5584 
5585 	/* tx indices */
5586 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5587 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5588 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5589 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5590 
5591 	/* map indices */
5592 	/* rx indices */
5593 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5594 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5595 
5596 	/* tx indices */
5597 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5598 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5599 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5600 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5601 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5602 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5603 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5604 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5605 }
5606 
5607 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5608 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5609 {
5610 	int igu_seg_id;
5611 
5612 	struct hc_status_block_data_e2 sb_data_e2;
5613 	struct hc_status_block_data_e1x sb_data_e1x;
5614 	struct hc_status_block_sm  *hc_sm_p;
5615 	int data_size;
5616 	u32 *sb_data_p;
5617 
5618 	if (CHIP_INT_MODE_IS_BC(bp))
5619 		igu_seg_id = HC_SEG_ACCESS_NORM;
5620 	else
5621 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5622 
5623 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5624 
5625 	if (!CHIP_IS_E1x(bp)) {
5626 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5627 		sb_data_e2.common.state = SB_ENABLED;
5628 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5629 		sb_data_e2.common.p_func.vf_id = vfid;
5630 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5631 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5632 		sb_data_e2.common.same_igu_sb_1b = true;
5633 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5634 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5635 		hc_sm_p = sb_data_e2.common.state_machine;
5636 		sb_data_p = (u32 *)&sb_data_e2;
5637 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5638 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5639 	} else {
5640 		memset(&sb_data_e1x, 0,
5641 		       sizeof(struct hc_status_block_data_e1x));
5642 		sb_data_e1x.common.state = SB_ENABLED;
5643 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5644 		sb_data_e1x.common.p_func.vf_id = 0xff;
5645 		sb_data_e1x.common.p_func.vf_valid = false;
5646 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5647 		sb_data_e1x.common.same_igu_sb_1b = true;
5648 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5649 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5650 		hc_sm_p = sb_data_e1x.common.state_machine;
5651 		sb_data_p = (u32 *)&sb_data_e1x;
5652 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5653 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5654 	}
5655 
5656 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5657 				       igu_sb_id, igu_seg_id);
5658 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5659 				       igu_sb_id, igu_seg_id);
5660 
5661 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5662 
5663 	/* write indices to HW - PCI guarantees endianity of regpairs */
5664 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5665 }
5666 
5667 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5668 				     u16 tx_usec, u16 rx_usec)
5669 {
5670 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5671 				    false, rx_usec);
5672 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5673 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5674 				       tx_usec);
5675 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5676 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5677 				       tx_usec);
5678 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5679 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5680 				       tx_usec);
5681 }
5682 
5683 static void bnx2x_init_def_sb(struct bnx2x *bp)
5684 {
5685 	struct host_sp_status_block *def_sb = bp->def_status_blk;
5686 	dma_addr_t mapping = bp->def_status_blk_mapping;
5687 	int igu_sp_sb_index;
5688 	int igu_seg_id;
5689 	int port = BP_PORT(bp);
5690 	int func = BP_FUNC(bp);
5691 	int reg_offset, reg_offset_en5;
5692 	u64 section;
5693 	int index;
5694 	struct hc_sp_status_block_data sp_sb_data;
5695 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5696 
5697 	if (CHIP_INT_MODE_IS_BC(bp)) {
5698 		igu_sp_sb_index = DEF_SB_IGU_ID;
5699 		igu_seg_id = HC_SEG_ACCESS_DEF;
5700 	} else {
5701 		igu_sp_sb_index = bp->igu_dsb_id;
5702 		igu_seg_id = IGU_SEG_ACCESS_DEF;
5703 	}
5704 
5705 	/* ATTN */
5706 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5707 					    atten_status_block);
5708 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5709 
5710 	bp->attn_state = 0;
5711 
5712 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5713 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5714 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5715 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5716 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5717 		int sindex;
5718 		/* take care of sig[0]..sig[4] */
5719 		for (sindex = 0; sindex < 4; sindex++)
5720 			bp->attn_group[index].sig[sindex] =
5721 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5722 
5723 		if (!CHIP_IS_E1x(bp))
5724 			/*
5725 			 * enable5 is separate from the rest of the registers,
5726 			 * and therefore the address skip is 4
5727 			 * and not 16 between the different groups
5728 			 */
5729 			bp->attn_group[index].sig[4] = REG_RD(bp,
5730 					reg_offset_en5 + 0x4*index);
5731 		else
5732 			bp->attn_group[index].sig[4] = 0;
5733 	}
5734 
5735 	if (bp->common.int_block == INT_BLOCK_HC) {
5736 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5737 				     HC_REG_ATTN_MSG0_ADDR_L);
5738 
5739 		REG_WR(bp, reg_offset, U64_LO(section));
5740 		REG_WR(bp, reg_offset + 4, U64_HI(section));
5741 	} else if (!CHIP_IS_E1x(bp)) {
5742 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5743 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5744 	}
5745 
5746 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5747 					    sp_sb);
5748 
5749 	bnx2x_zero_sp_sb(bp);
5750 
5751 	/* PCI guarantees endianity of regpairs */
5752 	sp_sb_data.state		= SB_ENABLED;
5753 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
5754 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
5755 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
5756 	sp_sb_data.igu_seg_id		= igu_seg_id;
5757 	sp_sb_data.p_func.pf_id		= func;
5758 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
5759 	sp_sb_data.p_func.vf_id		= 0xff;
5760 
5761 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5762 
5763 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5764 }
5765 
5766 void bnx2x_update_coalesce(struct bnx2x *bp)
5767 {
5768 	int i;
5769 
5770 	for_each_eth_queue(bp, i)
5771 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5772 					 bp->tx_ticks, bp->rx_ticks);
5773 }
5774 
5775 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5776 {
5777 	spin_lock_init(&bp->spq_lock);
5778 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5779 
5780 	bp->spq_prod_idx = 0;
5781 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5782 	bp->spq_prod_bd = bp->spq;
5783 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5784 }
5785 
5786 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5787 {
5788 	int i;
5789 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5790 		union event_ring_elem *elem =
5791 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5792 
5793 		elem->next_page.addr.hi =
5794 			cpu_to_le32(U64_HI(bp->eq_mapping +
5795 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5796 		elem->next_page.addr.lo =
5797 			cpu_to_le32(U64_LO(bp->eq_mapping +
5798 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5799 	}
5800 	bp->eq_cons = 0;
5801 	bp->eq_prod = NUM_EQ_DESC;
5802 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5803 	/* we want a warning message before it gets wrought... */
5804 	atomic_set(&bp->eq_spq_left,
5805 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5806 }
5807 
5808 /* called with netif_addr_lock_bh() */
5809 int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5810 			unsigned long rx_mode_flags,
5811 			unsigned long rx_accept_flags,
5812 			unsigned long tx_accept_flags,
5813 			unsigned long ramrod_flags)
5814 {
5815 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
5816 	int rc;
5817 
5818 	memset(&ramrod_param, 0, sizeof(ramrod_param));
5819 
5820 	/* Prepare ramrod parameters */
5821 	ramrod_param.cid = 0;
5822 	ramrod_param.cl_id = cl_id;
5823 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5824 	ramrod_param.func_id = BP_FUNC(bp);
5825 
5826 	ramrod_param.pstate = &bp->sp_state;
5827 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5828 
5829 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5830 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5831 
5832 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5833 
5834 	ramrod_param.ramrod_flags = ramrod_flags;
5835 	ramrod_param.rx_mode_flags = rx_mode_flags;
5836 
5837 	ramrod_param.rx_accept_flags = rx_accept_flags;
5838 	ramrod_param.tx_accept_flags = tx_accept_flags;
5839 
5840 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5841 	if (rc < 0) {
5842 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5843 		return rc;
5844 	}
5845 
5846 	return 0;
5847 }
5848 
5849 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
5850 				   unsigned long *rx_accept_flags,
5851 				   unsigned long *tx_accept_flags)
5852 {
5853 	/* Clear the flags first */
5854 	*rx_accept_flags = 0;
5855 	*tx_accept_flags = 0;
5856 
5857 	switch (rx_mode) {
5858 	case BNX2X_RX_MODE_NONE:
5859 		/*
5860 		 * 'drop all' supersedes any accept flags that may have been
5861 		 * passed to the function.
5862 		 */
5863 		break;
5864 	case BNX2X_RX_MODE_NORMAL:
5865 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5866 		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
5867 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5868 
5869 		/* internal switching mode */
5870 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5871 		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
5872 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5873 
5874 		break;
5875 	case BNX2X_RX_MODE_ALLMULTI:
5876 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5877 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5878 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5879 
5880 		/* internal switching mode */
5881 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5882 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5883 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5884 
5885 		break;
5886 	case BNX2X_RX_MODE_PROMISC:
5887 		/* According to definition of SI mode, iface in promisc mode
5888 		 * should receive matched and unmatched (in resolution of port)
5889 		 * unicast packets.
5890 		 */
5891 		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
5892 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5893 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5894 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5895 
5896 		/* internal switching mode */
5897 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5898 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5899 
5900 		if (IS_MF_SI(bp))
5901 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
5902 		else
5903 			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5904 
5905 		break;
5906 	default:
5907 		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
5908 		return -EINVAL;
5909 	}
5910 
5911 	/* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
5912 	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5913 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
5914 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
5915 	}
5916 
5917 	return 0;
5918 }
5919 
5920 /* called with netif_addr_lock_bh() */
5921 int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5922 {
5923 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5924 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5925 	int rc;
5926 
5927 	if (!NO_FCOE(bp))
5928 		/* Configure rx_mode of FCoE Queue */
5929 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5930 
5931 	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
5932 				     &tx_accept_flags);
5933 	if (rc)
5934 		return rc;
5935 
5936 	__set_bit(RAMROD_RX, &ramrod_flags);
5937 	__set_bit(RAMROD_TX, &ramrod_flags);
5938 
5939 	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
5940 				   rx_accept_flags, tx_accept_flags,
5941 				   ramrod_flags);
5942 }
5943 
5944 static void bnx2x_init_internal_common(struct bnx2x *bp)
5945 {
5946 	int i;
5947 
5948 	if (IS_MF_SI(bp))
5949 		/*
5950 		 * In switch independent mode, the TSTORM needs to accept
5951 		 * packets that failed classification, since approximate match
5952 		 * mac addresses aren't written to NIG LLH
5953 		 */
5954 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5955 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5956 	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5957 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5958 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5959 
5960 	/* Zero this manually as its initialization is
5961 	   currently missing in the initTool */
5962 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5963 		REG_WR(bp, BAR_USTRORM_INTMEM +
5964 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
5965 	if (!CHIP_IS_E1x(bp)) {
5966 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5967 			CHIP_INT_MODE_IS_BC(bp) ?
5968 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5969 	}
5970 }
5971 
5972 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5973 {
5974 	switch (load_code) {
5975 	case FW_MSG_CODE_DRV_LOAD_COMMON:
5976 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5977 		bnx2x_init_internal_common(bp);
5978 		/* no break */
5979 
5980 	case FW_MSG_CODE_DRV_LOAD_PORT:
5981 		/* nothing to do */
5982 		/* no break */
5983 
5984 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5985 		/* internal memory per function is
5986 		   initialized inside bnx2x_pf_init */
5987 		break;
5988 
5989 	default:
5990 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5991 		break;
5992 	}
5993 }
5994 
5995 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5996 {
5997 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
5998 }
5999 
6000 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6001 {
6002 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6003 }
6004 
6005 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6006 {
6007 	if (CHIP_IS_E1x(fp->bp))
6008 		return BP_L_ID(fp->bp) + fp->index;
6009 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6010 		return bnx2x_fp_igu_sb_id(fp);
6011 }
6012 
6013 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6014 {
6015 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6016 	u8 cos;
6017 	unsigned long q_type = 0;
6018 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6019 	fp->rx_queue = fp_idx;
6020 	fp->cid = fp_idx;
6021 	fp->cl_id = bnx2x_fp_cl_id(fp);
6022 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6023 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6024 	/* qZone id equals to FW (per path) client id */
6025 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6026 
6027 	/* init shortcut */
6028 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6029 
6030 	/* Setup SB indices */
6031 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6032 
6033 	/* Configure Queue State object */
6034 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6035 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6036 
6037 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6038 
6039 	/* init tx data */
6040 	for_each_cos_in_tx_queue(fp, cos) {
6041 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6042 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6043 				  FP_COS_TO_TXQ(fp, cos, bp),
6044 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6045 		cids[cos] = fp->txdata_ptr[cos]->cid;
6046 	}
6047 
6048 	/* nothing more for vf to do here */
6049 	if (IS_VF(bp))
6050 		return;
6051 
6052 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6053 		      fp->fw_sb_id, fp->igu_sb_id);
6054 	bnx2x_update_fpsb_idx(fp);
6055 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6056 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6057 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6058 
6059 	/**
6060 	 * Configure classification DBs: Always enable Tx switching
6061 	 */
6062 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6063 
6064 	DP(NETIF_MSG_IFUP,
6065 	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6066 	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6067 	   fp->igu_sb_id);
6068 }
6069 
6070 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6071 {
6072 	int i;
6073 
6074 	for (i = 1; i <= NUM_TX_RINGS; i++) {
6075 		struct eth_tx_next_bd *tx_next_bd =
6076 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6077 
6078 		tx_next_bd->addr_hi =
6079 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6080 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6081 		tx_next_bd->addr_lo =
6082 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6083 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6084 	}
6085 
6086 	*txdata->tx_cons_sb = cpu_to_le16(0);
6087 
6088 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6089 	txdata->tx_db.data.zero_fill1 = 0;
6090 	txdata->tx_db.data.prod = 0;
6091 
6092 	txdata->tx_pkt_prod = 0;
6093 	txdata->tx_pkt_cons = 0;
6094 	txdata->tx_bd_prod = 0;
6095 	txdata->tx_bd_cons = 0;
6096 	txdata->tx_pkt = 0;
6097 }
6098 
6099 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6100 {
6101 	int i;
6102 
6103 	for_each_tx_queue_cnic(bp, i)
6104 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6105 }
6106 
6107 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6108 {
6109 	int i;
6110 	u8 cos;
6111 
6112 	for_each_eth_queue(bp, i)
6113 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6114 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6115 }
6116 
6117 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6118 {
6119 	if (!NO_FCOE(bp))
6120 		bnx2x_init_fcoe_fp(bp);
6121 
6122 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6123 		      BNX2X_VF_ID_INVALID, false,
6124 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6125 
6126 	/* ensure status block indices were read */
6127 	rmb();
6128 	bnx2x_init_rx_rings_cnic(bp);
6129 	bnx2x_init_tx_rings_cnic(bp);
6130 
6131 	/* flush all */
6132 	mb();
6133 	mmiowb();
6134 }
6135 
6136 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6137 {
6138 	int i;
6139 
6140 	/* Setup NIC internals and enable interrupts */
6141 	for_each_eth_queue(bp, i)
6142 		bnx2x_init_eth_fp(bp, i);
6143 
6144 	/* ensure status block indices were read */
6145 	rmb();
6146 	bnx2x_init_rx_rings(bp);
6147 	bnx2x_init_tx_rings(bp);
6148 
6149 	if (IS_PF(bp)) {
6150 		/* Initialize MOD_ABS interrupts */
6151 		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6152 				       bp->common.shmem_base,
6153 				       bp->common.shmem2_base, BP_PORT(bp));
6154 
6155 		/* initialize the default status block and sp ring */
6156 		bnx2x_init_def_sb(bp);
6157 		bnx2x_update_dsb_idx(bp);
6158 		bnx2x_init_sp_ring(bp);
6159 	} else {
6160 		bnx2x_memset_stats(bp);
6161 	}
6162 }
6163 
6164 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6165 {
6166 	bnx2x_init_eq_ring(bp);
6167 	bnx2x_init_internal(bp, load_code);
6168 	bnx2x_pf_init(bp);
6169 	bnx2x_stats_init(bp);
6170 
6171 	/* flush all before enabling interrupts */
6172 	mb();
6173 	mmiowb();
6174 
6175 	bnx2x_int_enable(bp);
6176 
6177 	/* Check for SPIO5 */
6178 	bnx2x_attn_int_deasserted0(bp,
6179 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6180 				   AEU_INPUTS_ATTN_BITS_SPIO5);
6181 }
6182 
6183 /* gzip service functions */
6184 static int bnx2x_gunzip_init(struct bnx2x *bp)
6185 {
6186 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6187 					    &bp->gunzip_mapping, GFP_KERNEL);
6188 	if (bp->gunzip_buf  == NULL)
6189 		goto gunzip_nomem1;
6190 
6191 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6192 	if (bp->strm  == NULL)
6193 		goto gunzip_nomem2;
6194 
6195 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6196 	if (bp->strm->workspace == NULL)
6197 		goto gunzip_nomem3;
6198 
6199 	return 0;
6200 
6201 gunzip_nomem3:
6202 	kfree(bp->strm);
6203 	bp->strm = NULL;
6204 
6205 gunzip_nomem2:
6206 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6207 			  bp->gunzip_mapping);
6208 	bp->gunzip_buf = NULL;
6209 
6210 gunzip_nomem1:
6211 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6212 	return -ENOMEM;
6213 }
6214 
6215 static void bnx2x_gunzip_end(struct bnx2x *bp)
6216 {
6217 	if (bp->strm) {
6218 		vfree(bp->strm->workspace);
6219 		kfree(bp->strm);
6220 		bp->strm = NULL;
6221 	}
6222 
6223 	if (bp->gunzip_buf) {
6224 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6225 				  bp->gunzip_mapping);
6226 		bp->gunzip_buf = NULL;
6227 	}
6228 }
6229 
6230 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6231 {
6232 	int n, rc;
6233 
6234 	/* check gzip header */
6235 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6236 		BNX2X_ERR("Bad gzip header\n");
6237 		return -EINVAL;
6238 	}
6239 
6240 	n = 10;
6241 
6242 #define FNAME				0x8
6243 
6244 	if (zbuf[3] & FNAME)
6245 		while ((zbuf[n++] != 0) && (n < len));
6246 
6247 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6248 	bp->strm->avail_in = len - n;
6249 	bp->strm->next_out = bp->gunzip_buf;
6250 	bp->strm->avail_out = FW_BUF_SIZE;
6251 
6252 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6253 	if (rc != Z_OK)
6254 		return rc;
6255 
6256 	rc = zlib_inflate(bp->strm, Z_FINISH);
6257 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6258 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6259 			   bp->strm->msg);
6260 
6261 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6262 	if (bp->gunzip_outlen & 0x3)
6263 		netdev_err(bp->dev,
6264 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6265 				bp->gunzip_outlen);
6266 	bp->gunzip_outlen >>= 2;
6267 
6268 	zlib_inflateEnd(bp->strm);
6269 
6270 	if (rc == Z_STREAM_END)
6271 		return 0;
6272 
6273 	return rc;
6274 }
6275 
6276 /* nic load/unload */
6277 
6278 /*
6279  * General service functions
6280  */
6281 
6282 /* send a NIG loopback debug packet */
6283 static void bnx2x_lb_pckt(struct bnx2x *bp)
6284 {
6285 	u32 wb_write[3];
6286 
6287 	/* Ethernet source and destination addresses */
6288 	wb_write[0] = 0x55555555;
6289 	wb_write[1] = 0x55555555;
6290 	wb_write[2] = 0x20;		/* SOP */
6291 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6292 
6293 	/* NON-IP protocol */
6294 	wb_write[0] = 0x09000000;
6295 	wb_write[1] = 0x55555555;
6296 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6297 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6298 }
6299 
6300 /* some of the internal memories
6301  * are not directly readable from the driver
6302  * to test them we send debug packets
6303  */
6304 static int bnx2x_int_mem_test(struct bnx2x *bp)
6305 {
6306 	int factor;
6307 	int count, i;
6308 	u32 val = 0;
6309 
6310 	if (CHIP_REV_IS_FPGA(bp))
6311 		factor = 120;
6312 	else if (CHIP_REV_IS_EMUL(bp))
6313 		factor = 200;
6314 	else
6315 		factor = 1;
6316 
6317 	/* Disable inputs of parser neighbor blocks */
6318 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6319 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6320 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6321 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6322 
6323 	/*  Write 0 to parser credits for CFC search request */
6324 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6325 
6326 	/* send Ethernet packet */
6327 	bnx2x_lb_pckt(bp);
6328 
6329 	/* TODO do i reset NIG statistic? */
6330 	/* Wait until NIG register shows 1 packet of size 0x10 */
6331 	count = 1000 * factor;
6332 	while (count) {
6333 
6334 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6335 		val = *bnx2x_sp(bp, wb_data[0]);
6336 		if (val == 0x10)
6337 			break;
6338 
6339 		usleep_range(10000, 20000);
6340 		count--;
6341 	}
6342 	if (val != 0x10) {
6343 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6344 		return -1;
6345 	}
6346 
6347 	/* Wait until PRS register shows 1 packet */
6348 	count = 1000 * factor;
6349 	while (count) {
6350 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6351 		if (val == 1)
6352 			break;
6353 
6354 		usleep_range(10000, 20000);
6355 		count--;
6356 	}
6357 	if (val != 0x1) {
6358 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6359 		return -2;
6360 	}
6361 
6362 	/* Reset and init BRB, PRS */
6363 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6364 	msleep(50);
6365 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6366 	msleep(50);
6367 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6368 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6369 
6370 	DP(NETIF_MSG_HW, "part2\n");
6371 
6372 	/* Disable inputs of parser neighbor blocks */
6373 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6374 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6375 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6376 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6377 
6378 	/* Write 0 to parser credits for CFC search request */
6379 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6380 
6381 	/* send 10 Ethernet packets */
6382 	for (i = 0; i < 10; i++)
6383 		bnx2x_lb_pckt(bp);
6384 
6385 	/* Wait until NIG register shows 10 + 1
6386 	   packets of size 11*0x10 = 0xb0 */
6387 	count = 1000 * factor;
6388 	while (count) {
6389 
6390 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6391 		val = *bnx2x_sp(bp, wb_data[0]);
6392 		if (val == 0xb0)
6393 			break;
6394 
6395 		usleep_range(10000, 20000);
6396 		count--;
6397 	}
6398 	if (val != 0xb0) {
6399 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6400 		return -3;
6401 	}
6402 
6403 	/* Wait until PRS register shows 2 packets */
6404 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6405 	if (val != 2)
6406 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6407 
6408 	/* Write 1 to parser credits for CFC search request */
6409 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6410 
6411 	/* Wait until PRS register shows 3 packets */
6412 	msleep(10 * factor);
6413 	/* Wait until NIG register shows 1 packet of size 0x10 */
6414 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6415 	if (val != 3)
6416 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6417 
6418 	/* clear NIG EOP FIFO */
6419 	for (i = 0; i < 11; i++)
6420 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6421 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6422 	if (val != 1) {
6423 		BNX2X_ERR("clear of NIG failed\n");
6424 		return -4;
6425 	}
6426 
6427 	/* Reset and init BRB, PRS, NIG */
6428 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6429 	msleep(50);
6430 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6431 	msleep(50);
6432 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6433 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6434 	if (!CNIC_SUPPORT(bp))
6435 		/* set NIC mode */
6436 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6437 
6438 	/* Enable inputs of parser neighbor blocks */
6439 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6440 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6441 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6442 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6443 
6444 	DP(NETIF_MSG_HW, "done\n");
6445 
6446 	return 0; /* OK */
6447 }
6448 
6449 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6450 {
6451 	u32 val;
6452 
6453 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6454 	if (!CHIP_IS_E1x(bp))
6455 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6456 	else
6457 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6458 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6459 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6460 	/*
6461 	 * mask read length error interrupts in brb for parser
6462 	 * (parsing unit and 'checksum and crc' unit)
6463 	 * these errors are legal (PU reads fixed length and CAC can cause
6464 	 * read length error on truncated packets)
6465 	 */
6466 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6467 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6468 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6469 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6470 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6471 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6472 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6473 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6474 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6475 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6476 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6477 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6478 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6479 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6480 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6481 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6482 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6483 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6484 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6485 
6486 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6487 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6488 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6489 	if (!CHIP_IS_E1x(bp))
6490 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6491 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6492 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6493 
6494 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6495 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6496 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6497 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6498 
6499 	if (!CHIP_IS_E1x(bp))
6500 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6501 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6502 
6503 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6504 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6505 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6506 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6507 }
6508 
6509 static void bnx2x_reset_common(struct bnx2x *bp)
6510 {
6511 	u32 val = 0x1400;
6512 
6513 	/* reset_common */
6514 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6515 	       0xd3ffff7f);
6516 
6517 	if (CHIP_IS_E3(bp)) {
6518 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6519 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6520 	}
6521 
6522 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6523 }
6524 
6525 static void bnx2x_setup_dmae(struct bnx2x *bp)
6526 {
6527 	bp->dmae_ready = 0;
6528 	spin_lock_init(&bp->dmae_lock);
6529 }
6530 
6531 static void bnx2x_init_pxp(struct bnx2x *bp)
6532 {
6533 	u16 devctl;
6534 	int r_order, w_order;
6535 
6536 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6537 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6538 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6539 	if (bp->mrrs == -1)
6540 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6541 	else {
6542 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6543 		r_order = bp->mrrs;
6544 	}
6545 
6546 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6547 }
6548 
6549 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6550 {
6551 	int is_required;
6552 	u32 val;
6553 	int port;
6554 
6555 	if (BP_NOMCP(bp))
6556 		return;
6557 
6558 	is_required = 0;
6559 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6560 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6561 
6562 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6563 		is_required = 1;
6564 
6565 	/*
6566 	 * The fan failure mechanism is usually related to the PHY type since
6567 	 * the power consumption of the board is affected by the PHY. Currently,
6568 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6569 	 */
6570 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6571 		for (port = PORT_0; port < PORT_MAX; port++) {
6572 			is_required |=
6573 				bnx2x_fan_failure_det_req(
6574 					bp,
6575 					bp->common.shmem_base,
6576 					bp->common.shmem2_base,
6577 					port);
6578 		}
6579 
6580 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6581 
6582 	if (is_required == 0)
6583 		return;
6584 
6585 	/* Fan failure is indicated by SPIO 5 */
6586 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6587 
6588 	/* set to active low mode */
6589 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6590 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6591 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6592 
6593 	/* enable interrupt to signal the IGU */
6594 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6595 	val |= MISC_SPIO_SPIO5;
6596 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6597 }
6598 
6599 void bnx2x_pf_disable(struct bnx2x *bp)
6600 {
6601 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6602 	val &= ~IGU_PF_CONF_FUNC_EN;
6603 
6604 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6605 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6606 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6607 }
6608 
6609 static void bnx2x__common_init_phy(struct bnx2x *bp)
6610 {
6611 	u32 shmem_base[2], shmem2_base[2];
6612 	/* Avoid common init in case MFW supports LFA */
6613 	if (SHMEM2_RD(bp, size) >
6614 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6615 		return;
6616 	shmem_base[0] =  bp->common.shmem_base;
6617 	shmem2_base[0] = bp->common.shmem2_base;
6618 	if (!CHIP_IS_E1x(bp)) {
6619 		shmem_base[1] =
6620 			SHMEM2_RD(bp, other_shmem_base_addr);
6621 		shmem2_base[1] =
6622 			SHMEM2_RD(bp, other_shmem2_base_addr);
6623 	}
6624 	bnx2x_acquire_phy_lock(bp);
6625 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6626 			      bp->common.chip_id);
6627 	bnx2x_release_phy_lock(bp);
6628 }
6629 
6630 /**
6631  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6632  *
6633  * @bp:		driver handle
6634  */
6635 static int bnx2x_init_hw_common(struct bnx2x *bp)
6636 {
6637 	u32 val;
6638 
6639 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6640 
6641 	/*
6642 	 * take the RESET lock to protect undi_unload flow from accessing
6643 	 * registers while we're resetting the chip
6644 	 */
6645 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6646 
6647 	bnx2x_reset_common(bp);
6648 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6649 
6650 	val = 0xfffc;
6651 	if (CHIP_IS_E3(bp)) {
6652 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6653 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6654 	}
6655 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6656 
6657 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6658 
6659 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6660 
6661 	if (!CHIP_IS_E1x(bp)) {
6662 		u8 abs_func_id;
6663 
6664 		/**
6665 		 * 4-port mode or 2-port mode we need to turn of master-enable
6666 		 * for everyone, after that, turn it back on for self.
6667 		 * so, we disregard multi-function or not, and always disable
6668 		 * for all functions on the given path, this means 0,2,4,6 for
6669 		 * path 0 and 1,3,5,7 for path 1
6670 		 */
6671 		for (abs_func_id = BP_PATH(bp);
6672 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6673 			if (abs_func_id == BP_ABS_FUNC(bp)) {
6674 				REG_WR(bp,
6675 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6676 				    1);
6677 				continue;
6678 			}
6679 
6680 			bnx2x_pretend_func(bp, abs_func_id);
6681 			/* clear pf enable */
6682 			bnx2x_pf_disable(bp);
6683 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6684 		}
6685 	}
6686 
6687 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6688 	if (CHIP_IS_E1(bp)) {
6689 		/* enable HW interrupt from PXP on USDM overflow
6690 		   bit 16 on INT_MASK_0 */
6691 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6692 	}
6693 
6694 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6695 	bnx2x_init_pxp(bp);
6696 
6697 #ifdef __BIG_ENDIAN
6698 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6699 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6700 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6701 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6702 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6703 	/* make sure this value is 0 */
6704 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6705 
6706 /*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6707 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6708 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6709 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6710 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6711 #endif
6712 
6713 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
6714 
6715 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6716 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6717 
6718 	/* let the HW do it's magic ... */
6719 	msleep(100);
6720 	/* finish PXP init */
6721 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6722 	if (val != 1) {
6723 		BNX2X_ERR("PXP2 CFG failed\n");
6724 		return -EBUSY;
6725 	}
6726 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6727 	if (val != 1) {
6728 		BNX2X_ERR("PXP2 RD_INIT failed\n");
6729 		return -EBUSY;
6730 	}
6731 
6732 	/* Timers bug workaround E2 only. We need to set the entire ILT to
6733 	 * have entries with value "0" and valid bit on.
6734 	 * This needs to be done by the first PF that is loaded in a path
6735 	 * (i.e. common phase)
6736 	 */
6737 	if (!CHIP_IS_E1x(bp)) {
6738 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6739  * (i.e. vnic3) to start even if it is marked as "scan-off".
6740  * This occurs when a different function (func2,3) is being marked
6741  * as "scan-off". Real-life scenario for example: if a driver is being
6742  * load-unloaded while func6,7 are down. This will cause the timer to access
6743  * the ilt, translate to a logical address and send a request to read/write.
6744  * Since the ilt for the function that is down is not valid, this will cause
6745  * a translation error which is unrecoverable.
6746  * The Workaround is intended to make sure that when this happens nothing fatal
6747  * will occur. The workaround:
6748  *	1.  First PF driver which loads on a path will:
6749  *		a.  After taking the chip out of reset, by using pretend,
6750  *		    it will write "0" to the following registers of
6751  *		    the other vnics.
6752  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6753  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6754  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6755  *		    And for itself it will write '1' to
6756  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6757  *		    dmae-operations (writing to pram for example.)
6758  *		    note: can be done for only function 6,7 but cleaner this
6759  *			  way.
6760  *		b.  Write zero+valid to the entire ILT.
6761  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6762  *		    VNIC3 (of that port). The range allocated will be the
6763  *		    entire ILT. This is needed to prevent  ILT range error.
6764  *	2.  Any PF driver load flow:
6765  *		a.  ILT update with the physical addresses of the allocated
6766  *		    logical pages.
6767  *		b.  Wait 20msec. - note that this timeout is needed to make
6768  *		    sure there are no requests in one of the PXP internal
6769  *		    queues with "old" ILT addresses.
6770  *		c.  PF enable in the PGLC.
6771  *		d.  Clear the was_error of the PF in the PGLC. (could have
6772  *		    occurred while driver was down)
6773  *		e.  PF enable in the CFC (WEAK + STRONG)
6774  *		f.  Timers scan enable
6775  *	3.  PF driver unload flow:
6776  *		a.  Clear the Timers scan_en.
6777  *		b.  Polling for scan_on=0 for that PF.
6778  *		c.  Clear the PF enable bit in the PXP.
6779  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
6780  *		e.  Write zero+valid to all ILT entries (The valid bit must
6781  *		    stay set)
6782  *		f.  If this is VNIC 3 of a port then also init
6783  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
6784  *		    to the last entry in the ILT.
6785  *
6786  *	Notes:
6787  *	Currently the PF error in the PGLC is non recoverable.
6788  *	In the future the there will be a recovery routine for this error.
6789  *	Currently attention is masked.
6790  *	Having an MCP lock on the load/unload process does not guarantee that
6791  *	there is no Timer disable during Func6/7 enable. This is because the
6792  *	Timers scan is currently being cleared by the MCP on FLR.
6793  *	Step 2.d can be done only for PF6/7 and the driver can also check if
6794  *	there is error before clearing it. But the flow above is simpler and
6795  *	more general.
6796  *	All ILT entries are written by zero+valid and not just PF6/7
6797  *	ILT entries since in the future the ILT entries allocation for
6798  *	PF-s might be dynamic.
6799  */
6800 		struct ilt_client_info ilt_cli;
6801 		struct bnx2x_ilt ilt;
6802 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6803 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6804 
6805 		/* initialize dummy TM client */
6806 		ilt_cli.start = 0;
6807 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6808 		ilt_cli.client_num = ILT_CLIENT_TM;
6809 
6810 		/* Step 1: set zeroes to all ilt page entries with valid bit on
6811 		 * Step 2: set the timers first/last ilt entry to point
6812 		 * to the entire range to prevent ILT range error for 3rd/4th
6813 		 * vnic	(this code assumes existence of the vnic)
6814 		 *
6815 		 * both steps performed by call to bnx2x_ilt_client_init_op()
6816 		 * with dummy TM client
6817 		 *
6818 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6819 		 * and his brother are split registers
6820 		 */
6821 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6822 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6823 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6824 
6825 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6826 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6827 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6828 	}
6829 
6830 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6831 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6832 
6833 	if (!CHIP_IS_E1x(bp)) {
6834 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6835 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6836 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6837 
6838 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6839 
6840 		/* let the HW do it's magic ... */
6841 		do {
6842 			msleep(200);
6843 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6844 		} while (factor-- && (val != 1));
6845 
6846 		if (val != 1) {
6847 			BNX2X_ERR("ATC_INIT failed\n");
6848 			return -EBUSY;
6849 		}
6850 	}
6851 
6852 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6853 
6854 	bnx2x_iov_init_dmae(bp);
6855 
6856 	/* clean the DMAE memory */
6857 	bp->dmae_ready = 1;
6858 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6859 
6860 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6861 
6862 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6863 
6864 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6865 
6866 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6867 
6868 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6869 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6870 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6871 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6872 
6873 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6874 
6875 	/* QM queues pointers table */
6876 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6877 
6878 	/* soft reset pulse */
6879 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
6880 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
6881 
6882 	if (CNIC_SUPPORT(bp))
6883 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6884 
6885 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6886 	REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6887 	if (!CHIP_REV_IS_SLOW(bp))
6888 		/* enable hw interrupt from doorbell Q */
6889 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6890 
6891 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6892 
6893 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6894 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6895 
6896 	if (!CHIP_IS_E1(bp))
6897 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6898 
6899 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
6900 		if (IS_MF_AFEX(bp)) {
6901 			/* configure that VNTag and VLAN headers must be
6902 			 * received in afex mode
6903 			 */
6904 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
6905 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
6906 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
6907 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
6908 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
6909 		} else {
6910 			/* Bit-map indicating which L2 hdrs may appear
6911 			 * after the basic Ethernet header
6912 			 */
6913 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6914 			       bp->path_has_ovlan ? 7 : 6);
6915 		}
6916 	}
6917 
6918 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6919 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6920 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6921 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6922 
6923 	if (!CHIP_IS_E1x(bp)) {
6924 		/* reset VFC memories */
6925 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6926 			   VFC_MEMORIES_RST_REG_CAM_RST |
6927 			   VFC_MEMORIES_RST_REG_RAM_RST);
6928 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6929 			   VFC_MEMORIES_RST_REG_CAM_RST |
6930 			   VFC_MEMORIES_RST_REG_RAM_RST);
6931 
6932 		msleep(20);
6933 	}
6934 
6935 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6936 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6937 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6938 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6939 
6940 	/* sync semi rtc */
6941 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6942 	       0x80000000);
6943 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6944 	       0x80000000);
6945 
6946 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6947 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6948 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6949 
6950 	if (!CHIP_IS_E1x(bp)) {
6951 		if (IS_MF_AFEX(bp)) {
6952 			/* configure that VNTag and VLAN headers must be
6953 			 * sent in afex mode
6954 			 */
6955 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
6956 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
6957 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
6958 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
6959 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
6960 		} else {
6961 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6962 			       bp->path_has_ovlan ? 7 : 6);
6963 		}
6964 	}
6965 
6966 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
6967 
6968 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6969 
6970 	if (CNIC_SUPPORT(bp)) {
6971 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6972 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6973 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6974 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6975 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6976 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6977 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6978 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6979 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6980 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6981 	}
6982 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
6983 
6984 	if (sizeof(union cdu_context) != 1024)
6985 		/* we currently assume that a context is 1024 bytes */
6986 		dev_alert(&bp->pdev->dev,
6987 			  "please adjust the size of cdu_context(%ld)\n",
6988 			  (long)sizeof(union cdu_context));
6989 
6990 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6991 	val = (4 << 24) + (0 << 12) + 1024;
6992 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6993 
6994 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6995 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6996 	/* enable context validation interrupt from CFC */
6997 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6998 
6999 	/* set the thresholds to prevent CFC/CDU race */
7000 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7001 
7002 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7003 
7004 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7005 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7006 
7007 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7008 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7009 
7010 	/* Reset PCIE errors for debug */
7011 	REG_WR(bp, 0x2814, 0xffffffff);
7012 	REG_WR(bp, 0x3820, 0xffffffff);
7013 
7014 	if (!CHIP_IS_E1x(bp)) {
7015 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7016 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7017 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7018 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7019 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7020 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7021 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7022 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7023 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7024 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7025 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7026 	}
7027 
7028 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7029 	if (!CHIP_IS_E1(bp)) {
7030 		/* in E3 this done in per-port section */
7031 		if (!CHIP_IS_E3(bp))
7032 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7033 	}
7034 	if (CHIP_IS_E1H(bp))
7035 		/* not applicable for E2 (and above ...) */
7036 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7037 
7038 	if (CHIP_REV_IS_SLOW(bp))
7039 		msleep(200);
7040 
7041 	/* finish CFC init */
7042 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7043 	if (val != 1) {
7044 		BNX2X_ERR("CFC LL_INIT failed\n");
7045 		return -EBUSY;
7046 	}
7047 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7048 	if (val != 1) {
7049 		BNX2X_ERR("CFC AC_INIT failed\n");
7050 		return -EBUSY;
7051 	}
7052 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7053 	if (val != 1) {
7054 		BNX2X_ERR("CFC CAM_INIT failed\n");
7055 		return -EBUSY;
7056 	}
7057 	REG_WR(bp, CFC_REG_DEBUG0, 0);
7058 
7059 	if (CHIP_IS_E1(bp)) {
7060 		/* read NIG statistic
7061 		   to see if this is our first up since powerup */
7062 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7063 		val = *bnx2x_sp(bp, wb_data[0]);
7064 
7065 		/* do internal memory self test */
7066 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7067 			BNX2X_ERR("internal mem self test failed\n");
7068 			return -EBUSY;
7069 		}
7070 	}
7071 
7072 	bnx2x_setup_fan_failure_detection(bp);
7073 
7074 	/* clear PXP2 attentions */
7075 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7076 
7077 	bnx2x_enable_blocks_attention(bp);
7078 	bnx2x_enable_blocks_parity(bp);
7079 
7080 	if (!BP_NOMCP(bp)) {
7081 		if (CHIP_IS_E1x(bp))
7082 			bnx2x__common_init_phy(bp);
7083 	} else
7084 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7085 
7086 	return 0;
7087 }
7088 
7089 /**
7090  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7091  *
7092  * @bp:		driver handle
7093  */
7094 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7095 {
7096 	int rc = bnx2x_init_hw_common(bp);
7097 
7098 	if (rc)
7099 		return rc;
7100 
7101 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7102 	if (!BP_NOMCP(bp))
7103 		bnx2x__common_init_phy(bp);
7104 
7105 	return 0;
7106 }
7107 
7108 static int bnx2x_init_hw_port(struct bnx2x *bp)
7109 {
7110 	int port = BP_PORT(bp);
7111 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7112 	u32 low, high;
7113 	u32 val;
7114 
7115 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7116 
7117 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7118 
7119 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7120 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7121 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7122 
7123 	/* Timers bug workaround: disables the pf_master bit in pglue at
7124 	 * common phase, we need to enable it here before any dmae access are
7125 	 * attempted. Therefore we manually added the enable-master to the
7126 	 * port phase (it also happens in the function phase)
7127 	 */
7128 	if (!CHIP_IS_E1x(bp))
7129 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7130 
7131 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7132 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7133 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7134 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7135 
7136 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7137 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7138 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7139 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7140 
7141 	/* QM cid (connection) count */
7142 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7143 
7144 	if (CNIC_SUPPORT(bp)) {
7145 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7146 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7147 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7148 	}
7149 
7150 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7151 
7152 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7153 
7154 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7155 
7156 		if (IS_MF(bp))
7157 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7158 		else if (bp->dev->mtu > 4096) {
7159 			if (bp->flags & ONE_PORT_FLAG)
7160 				low = 160;
7161 			else {
7162 				val = bp->dev->mtu;
7163 				/* (24*1024 + val*4)/256 */
7164 				low = 96 + (val/64) +
7165 						((val % 64) ? 1 : 0);
7166 			}
7167 		} else
7168 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7169 		high = low + 56;	/* 14*1024/256 */
7170 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7171 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7172 	}
7173 
7174 	if (CHIP_MODE_IS_4_PORT(bp))
7175 		REG_WR(bp, (BP_PORT(bp) ?
7176 			    BRB1_REG_MAC_GUARANTIED_1 :
7177 			    BRB1_REG_MAC_GUARANTIED_0), 40);
7178 
7179 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7180 	if (CHIP_IS_E3B0(bp)) {
7181 		if (IS_MF_AFEX(bp)) {
7182 			/* configure headers for AFEX mode */
7183 			REG_WR(bp, BP_PORT(bp) ?
7184 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7185 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7186 			REG_WR(bp, BP_PORT(bp) ?
7187 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7188 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7189 			REG_WR(bp, BP_PORT(bp) ?
7190 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7191 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7192 		} else {
7193 			/* Ovlan exists only if we are in multi-function +
7194 			 * switch-dependent mode, in switch-independent there
7195 			 * is no ovlan headers
7196 			 */
7197 			REG_WR(bp, BP_PORT(bp) ?
7198 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7199 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7200 			       (bp->path_has_ovlan ? 7 : 6));
7201 		}
7202 	}
7203 
7204 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7205 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7206 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7207 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7208 
7209 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7210 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7211 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7212 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7213 
7214 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7215 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7216 
7217 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7218 
7219 	if (CHIP_IS_E1x(bp)) {
7220 		/* configure PBF to work without PAUSE mtu 9000 */
7221 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7222 
7223 		/* update threshold */
7224 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7225 		/* update init credit */
7226 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7227 
7228 		/* probe changes */
7229 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7230 		udelay(50);
7231 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7232 	}
7233 
7234 	if (CNIC_SUPPORT(bp))
7235 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7236 
7237 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7238 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7239 
7240 	if (CHIP_IS_E1(bp)) {
7241 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7242 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7243 	}
7244 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7245 
7246 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7247 
7248 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7249 	/* init aeu_mask_attn_func_0/1:
7250 	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7251 	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7252 	 *             bits 4-7 are used for "per vn group attention" */
7253 	val = IS_MF(bp) ? 0xF7 : 0x7;
7254 	/* Enable DCBX attention for all but E1 */
7255 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7256 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7257 
7258 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7259 
7260 	if (!CHIP_IS_E1x(bp)) {
7261 		/* Bit-map indicating which L2 hdrs may appear after the
7262 		 * basic Ethernet header
7263 		 */
7264 		if (IS_MF_AFEX(bp))
7265 			REG_WR(bp, BP_PORT(bp) ?
7266 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7267 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7268 		else
7269 			REG_WR(bp, BP_PORT(bp) ?
7270 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7271 			       NIG_REG_P0_HDRS_AFTER_BASIC,
7272 			       IS_MF_SD(bp) ? 7 : 6);
7273 
7274 		if (CHIP_IS_E3(bp))
7275 			REG_WR(bp, BP_PORT(bp) ?
7276 				   NIG_REG_LLH1_MF_MODE :
7277 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7278 	}
7279 	if (!CHIP_IS_E3(bp))
7280 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7281 
7282 	if (!CHIP_IS_E1(bp)) {
7283 		/* 0x2 disable mf_ov, 0x1 enable */
7284 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7285 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7286 
7287 		if (!CHIP_IS_E1x(bp)) {
7288 			val = 0;
7289 			switch (bp->mf_mode) {
7290 			case MULTI_FUNCTION_SD:
7291 				val = 1;
7292 				break;
7293 			case MULTI_FUNCTION_SI:
7294 			case MULTI_FUNCTION_AFEX:
7295 				val = 2;
7296 				break;
7297 			}
7298 
7299 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7300 						  NIG_REG_LLH0_CLS_TYPE), val);
7301 		}
7302 		{
7303 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7304 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7305 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7306 		}
7307 	}
7308 
7309 	/* If SPIO5 is set to generate interrupts, enable it for this port */
7310 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7311 	if (val & MISC_SPIO_SPIO5) {
7312 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7313 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7314 		val = REG_RD(bp, reg_addr);
7315 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7316 		REG_WR(bp, reg_addr, val);
7317 	}
7318 
7319 	return 0;
7320 }
7321 
7322 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7323 {
7324 	int reg;
7325 	u32 wb_write[2];
7326 
7327 	if (CHIP_IS_E1(bp))
7328 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7329 	else
7330 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7331 
7332 	wb_write[0] = ONCHIP_ADDR1(addr);
7333 	wb_write[1] = ONCHIP_ADDR2(addr);
7334 	REG_WR_DMAE(bp, reg, wb_write, 2);
7335 }
7336 
7337 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7338 {
7339 	u32 data, ctl, cnt = 100;
7340 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7341 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7342 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7343 	u32 sb_bit =  1 << (idu_sb_id%32);
7344 	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7345 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7346 
7347 	/* Not supported in BC mode */
7348 	if (CHIP_INT_MODE_IS_BC(bp))
7349 		return;
7350 
7351 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7352 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7353 		IGU_REGULAR_CLEANUP_SET				|
7354 		IGU_REGULAR_BCLEANUP;
7355 
7356 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7357 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7358 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7359 
7360 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7361 			 data, igu_addr_data);
7362 	REG_WR(bp, igu_addr_data, data);
7363 	mmiowb();
7364 	barrier();
7365 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7366 			  ctl, igu_addr_ctl);
7367 	REG_WR(bp, igu_addr_ctl, ctl);
7368 	mmiowb();
7369 	barrier();
7370 
7371 	/* wait for clean up to finish */
7372 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7373 		msleep(20);
7374 
7375 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7376 		DP(NETIF_MSG_HW,
7377 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7378 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7379 	}
7380 }
7381 
7382 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7383 {
7384 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7385 }
7386 
7387 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7388 {
7389 	u32 i, base = FUNC_ILT_BASE(func);
7390 	for (i = base; i < base + ILT_PER_FUNC; i++)
7391 		bnx2x_ilt_wr(bp, i, 0);
7392 }
7393 
7394 static void bnx2x_init_searcher(struct bnx2x *bp)
7395 {
7396 	int port = BP_PORT(bp);
7397 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7398 	/* T1 hash bits value determines the T1 number of entries */
7399 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7400 }
7401 
7402 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7403 {
7404 	int rc;
7405 	struct bnx2x_func_state_params func_params = {NULL};
7406 	struct bnx2x_func_switch_update_params *switch_update_params =
7407 		&func_params.params.switch_update;
7408 
7409 	/* Prepare parameters for function state transitions */
7410 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7411 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7412 
7413 	func_params.f_obj = &bp->func_obj;
7414 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7415 
7416 	/* Function parameters */
7417 	switch_update_params->suspend = suspend;
7418 
7419 	rc = bnx2x_func_state_change(bp, &func_params);
7420 
7421 	return rc;
7422 }
7423 
7424 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7425 {
7426 	int rc, i, port = BP_PORT(bp);
7427 	int vlan_en = 0, mac_en[NUM_MACS];
7428 
7429 	/* Close input from network */
7430 	if (bp->mf_mode == SINGLE_FUNCTION) {
7431 		bnx2x_set_rx_filter(&bp->link_params, 0);
7432 	} else {
7433 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7434 				   NIG_REG_LLH0_FUNC_EN);
7435 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7436 			  NIG_REG_LLH0_FUNC_EN, 0);
7437 		for (i = 0; i < NUM_MACS; i++) {
7438 			mac_en[i] = REG_RD(bp, port ?
7439 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7440 					      4 * i) :
7441 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7442 					      4 * i));
7443 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7444 					      4 * i) :
7445 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7446 		}
7447 	}
7448 
7449 	/* Close BMC to host */
7450 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7451 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7452 
7453 	/* Suspend Tx switching to the PF. Completion of this ramrod
7454 	 * further guarantees that all the packets of that PF / child
7455 	 * VFs in BRB were processed by the Parser, so it is safe to
7456 	 * change the NIC_MODE register.
7457 	 */
7458 	rc = bnx2x_func_switch_update(bp, 1);
7459 	if (rc) {
7460 		BNX2X_ERR("Can't suspend tx-switching!\n");
7461 		return rc;
7462 	}
7463 
7464 	/* Change NIC_MODE register */
7465 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7466 
7467 	/* Open input from network */
7468 	if (bp->mf_mode == SINGLE_FUNCTION) {
7469 		bnx2x_set_rx_filter(&bp->link_params, 1);
7470 	} else {
7471 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7472 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7473 		for (i = 0; i < NUM_MACS; i++) {
7474 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7475 					      4 * i) :
7476 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7477 				  mac_en[i]);
7478 		}
7479 	}
7480 
7481 	/* Enable BMC to host */
7482 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7483 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7484 
7485 	/* Resume Tx switching to the PF */
7486 	rc = bnx2x_func_switch_update(bp, 0);
7487 	if (rc) {
7488 		BNX2X_ERR("Can't resume tx-switching!\n");
7489 		return rc;
7490 	}
7491 
7492 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7493 	return 0;
7494 }
7495 
7496 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7497 {
7498 	int rc;
7499 
7500 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7501 
7502 	if (CONFIGURE_NIC_MODE(bp)) {
7503 		/* Configure searcher as part of function hw init */
7504 		bnx2x_init_searcher(bp);
7505 
7506 		/* Reset NIC mode */
7507 		rc = bnx2x_reset_nic_mode(bp);
7508 		if (rc)
7509 			BNX2X_ERR("Can't change NIC mode!\n");
7510 		return rc;
7511 	}
7512 
7513 	return 0;
7514 }
7515 
7516 static int bnx2x_init_hw_func(struct bnx2x *bp)
7517 {
7518 	int port = BP_PORT(bp);
7519 	int func = BP_FUNC(bp);
7520 	int init_phase = PHASE_PF0 + func;
7521 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7522 	u16 cdu_ilt_start;
7523 	u32 addr, val;
7524 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7525 	int i, main_mem_width, rc;
7526 
7527 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7528 
7529 	/* FLR cleanup - hmmm */
7530 	if (!CHIP_IS_E1x(bp)) {
7531 		rc = bnx2x_pf_flr_clnup(bp);
7532 		if (rc) {
7533 			bnx2x_fw_dump(bp);
7534 			return rc;
7535 		}
7536 	}
7537 
7538 	/* set MSI reconfigure capability */
7539 	if (bp->common.int_block == INT_BLOCK_HC) {
7540 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7541 		val = REG_RD(bp, addr);
7542 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7543 		REG_WR(bp, addr, val);
7544 	}
7545 
7546 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7547 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7548 
7549 	ilt = BP_ILT(bp);
7550 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7551 
7552 	if (IS_SRIOV(bp))
7553 		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7554 	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7555 
7556 	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7557 	 * those of the VFs, so start line should be reset
7558 	 */
7559 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7560 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7561 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7562 		ilt->lines[cdu_ilt_start + i].page_mapping =
7563 			bp->context[i].cxt_mapping;
7564 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7565 	}
7566 
7567 	bnx2x_ilt_init_op(bp, INITOP_SET);
7568 
7569 	if (!CONFIGURE_NIC_MODE(bp)) {
7570 		bnx2x_init_searcher(bp);
7571 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
7572 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7573 	} else {
7574 		/* Set NIC mode */
7575 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
7576 		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7577 	}
7578 
7579 	if (!CHIP_IS_E1x(bp)) {
7580 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7581 
7582 		/* Turn on a single ISR mode in IGU if driver is going to use
7583 		 * INT#x or MSI
7584 		 */
7585 		if (!(bp->flags & USING_MSIX_FLAG))
7586 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7587 		/*
7588 		 * Timers workaround bug: function init part.
7589 		 * Need to wait 20msec after initializing ILT,
7590 		 * needed to make sure there are no requests in
7591 		 * one of the PXP internal queues with "old" ILT addresses
7592 		 */
7593 		msleep(20);
7594 		/*
7595 		 * Master enable - Due to WB DMAE writes performed before this
7596 		 * register is re-initialized as part of the regular function
7597 		 * init
7598 		 */
7599 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7600 		/* Enable the function in IGU */
7601 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7602 	}
7603 
7604 	bp->dmae_ready = 1;
7605 
7606 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7607 
7608 	if (!CHIP_IS_E1x(bp))
7609 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7610 
7611 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7612 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7613 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7614 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7615 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7616 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7617 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7618 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7619 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7620 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7621 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7622 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7623 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7624 
7625 	if (!CHIP_IS_E1x(bp))
7626 		REG_WR(bp, QM_REG_PF_EN, 1);
7627 
7628 	if (!CHIP_IS_E1x(bp)) {
7629 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7630 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7631 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7632 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7633 	}
7634 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7635 
7636 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
7637 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7638 
7639 	bnx2x_iov_init_dq(bp);
7640 
7641 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7642 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7643 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7644 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7645 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7646 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7647 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7648 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7649 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7650 	if (!CHIP_IS_E1x(bp))
7651 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7652 
7653 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7654 
7655 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7656 
7657 	if (!CHIP_IS_E1x(bp))
7658 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7659 
7660 	if (IS_MF(bp)) {
7661 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7662 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7663 	}
7664 
7665 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7666 
7667 	/* HC init per function */
7668 	if (bp->common.int_block == INT_BLOCK_HC) {
7669 		if (CHIP_IS_E1H(bp)) {
7670 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7671 
7672 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7673 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7674 		}
7675 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
7676 
7677 	} else {
7678 		int num_segs, sb_idx, prod_offset;
7679 
7680 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7681 
7682 		if (!CHIP_IS_E1x(bp)) {
7683 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7684 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7685 		}
7686 
7687 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7688 
7689 		if (!CHIP_IS_E1x(bp)) {
7690 			int dsb_idx = 0;
7691 			/**
7692 			 * Producer memory:
7693 			 * E2 mode: address 0-135 match to the mapping memory;
7694 			 * 136 - PF0 default prod; 137 - PF1 default prod;
7695 			 * 138 - PF2 default prod; 139 - PF3 default prod;
7696 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
7697 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
7698 			 * 144-147 reserved.
7699 			 *
7700 			 * E1.5 mode - In backward compatible mode;
7701 			 * for non default SB; each even line in the memory
7702 			 * holds the U producer and each odd line hold
7703 			 * the C producer. The first 128 producers are for
7704 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7705 			 * producers are for the DSB for each PF.
7706 			 * Each PF has five segments: (the order inside each
7707 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7708 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7709 			 * 144-147 attn prods;
7710 			 */
7711 			/* non-default-status-blocks */
7712 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7713 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7714 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7715 				prod_offset = (bp->igu_base_sb + sb_idx) *
7716 					num_segs;
7717 
7718 				for (i = 0; i < num_segs; i++) {
7719 					addr = IGU_REG_PROD_CONS_MEMORY +
7720 							(prod_offset + i) * 4;
7721 					REG_WR(bp, addr, 0);
7722 				}
7723 				/* send consumer update with value 0 */
7724 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7725 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7726 				bnx2x_igu_clear_sb(bp,
7727 						   bp->igu_base_sb + sb_idx);
7728 			}
7729 
7730 			/* default-status-blocks */
7731 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7732 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7733 
7734 			if (CHIP_MODE_IS_4_PORT(bp))
7735 				dsb_idx = BP_FUNC(bp);
7736 			else
7737 				dsb_idx = BP_VN(bp);
7738 
7739 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7740 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
7741 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
7742 
7743 			/*
7744 			 * igu prods come in chunks of E1HVN_MAX (4) -
7745 			 * does not matters what is the current chip mode
7746 			 */
7747 			for (i = 0; i < (num_segs * E1HVN_MAX);
7748 			     i += E1HVN_MAX) {
7749 				addr = IGU_REG_PROD_CONS_MEMORY +
7750 							(prod_offset + i)*4;
7751 				REG_WR(bp, addr, 0);
7752 			}
7753 			/* send consumer update with 0 */
7754 			if (CHIP_INT_MODE_IS_BC(bp)) {
7755 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7756 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7757 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7758 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
7759 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7760 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
7761 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7762 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
7763 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7764 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7765 			} else {
7766 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7767 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7768 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7769 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7770 			}
7771 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7772 
7773 			/* !!! These should become driver const once
7774 			   rf-tool supports split-68 const */
7775 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7776 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7777 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7778 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7779 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7780 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7781 		}
7782 	}
7783 
7784 	/* Reset PCIE errors for debug */
7785 	REG_WR(bp, 0x2114, 0xffffffff);
7786 	REG_WR(bp, 0x2120, 0xffffffff);
7787 
7788 	if (CHIP_IS_E1x(bp)) {
7789 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7790 		main_mem_base = HC_REG_MAIN_MEMORY +
7791 				BP_PORT(bp) * (main_mem_size * 4);
7792 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7793 		main_mem_width = 8;
7794 
7795 		val = REG_RD(bp, main_mem_prty_clr);
7796 		if (val)
7797 			DP(NETIF_MSG_HW,
7798 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7799 			   val);
7800 
7801 		/* Clear "false" parity errors in MSI-X table */
7802 		for (i = main_mem_base;
7803 		     i < main_mem_base + main_mem_size * 4;
7804 		     i += main_mem_width) {
7805 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
7806 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7807 					 i, main_mem_width / 4);
7808 		}
7809 		/* Clear HC parity attention */
7810 		REG_RD(bp, main_mem_prty_clr);
7811 	}
7812 
7813 #ifdef BNX2X_STOP_ON_ERROR
7814 	/* Enable STORMs SP logging */
7815 	REG_WR8(bp, BAR_USTRORM_INTMEM +
7816 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7817 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
7818 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7819 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7820 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7821 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
7822 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7823 #endif
7824 
7825 	bnx2x_phy_probe(&bp->link_params);
7826 
7827 	return 0;
7828 }
7829 
7830 void bnx2x_free_mem_cnic(struct bnx2x *bp)
7831 {
7832 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
7833 
7834 	if (!CHIP_IS_E1x(bp))
7835 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7836 			       sizeof(struct host_hc_status_block_e2));
7837 	else
7838 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7839 			       sizeof(struct host_hc_status_block_e1x));
7840 
7841 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7842 }
7843 
7844 void bnx2x_free_mem(struct bnx2x *bp)
7845 {
7846 	int i;
7847 
7848 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7849 		       sizeof(struct host_sp_status_block));
7850 
7851 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7852 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7853 
7854 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7855 		       sizeof(struct bnx2x_slowpath));
7856 
7857 	for (i = 0; i < L2_ILT_LINES(bp); i++)
7858 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7859 			       bp->context[i].size);
7860 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7861 
7862 	BNX2X_FREE(bp->ilt->lines);
7863 
7864 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7865 
7866 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7867 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
7868 
7869 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7870 
7871 	bnx2x_iov_free_mem(bp);
7872 }
7873 
7874 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
7875 {
7876 	if (!CHIP_IS_E1x(bp))
7877 		/* size = the status block + ramrod buffers */
7878 		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7879 				sizeof(struct host_hc_status_block_e2));
7880 	else
7881 		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
7882 				&bp->cnic_sb_mapping,
7883 				sizeof(struct
7884 				       host_hc_status_block_e1x));
7885 
7886 	if (CONFIGURE_NIC_MODE(bp) && !bp->t2)
7887 		/* allocate searcher T2 table, as it wasn't allocated before */
7888 		BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7889 
7890 	/* write address to which L5 should insert its values */
7891 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
7892 		&bp->slowpath->drv_info_to_mcp;
7893 
7894 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
7895 		goto alloc_mem_err;
7896 
7897 	return 0;
7898 
7899 alloc_mem_err:
7900 	bnx2x_free_mem_cnic(bp);
7901 	BNX2X_ERR("Can't allocate memory\n");
7902 	return -ENOMEM;
7903 }
7904 
7905 int bnx2x_alloc_mem(struct bnx2x *bp)
7906 {
7907 	int i, allocated, context_size;
7908 
7909 	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2)
7910 		/* allocate searcher T2 table */
7911 		BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7912 
7913 	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7914 			sizeof(struct host_sp_status_block));
7915 
7916 	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7917 			sizeof(struct bnx2x_slowpath));
7918 
7919 	/* Allocate memory for CDU context:
7920 	 * This memory is allocated separately and not in the generic ILT
7921 	 * functions because CDU differs in few aspects:
7922 	 * 1. There are multiple entities allocating memory for context -
7923 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
7924 	 * its own ILT lines.
7925 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
7926 	 * for the other ILT clients), to be efficient we want to support
7927 	 * allocation of sub-page-size in the last entry.
7928 	 * 3. Context pointers are used by the driver to pass to FW / update
7929 	 * the context (for the other ILT clients the pointers are used just to
7930 	 * free the memory during unload).
7931 	 */
7932 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7933 
7934 	for (i = 0, allocated = 0; allocated < context_size; i++) {
7935 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
7936 					  (context_size - allocated));
7937 		BNX2X_PCI_ALLOC(bp->context[i].vcxt,
7938 				&bp->context[i].cxt_mapping,
7939 				bp->context[i].size);
7940 		allocated += bp->context[i].size;
7941 	}
7942 	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7943 
7944 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7945 		goto alloc_mem_err;
7946 
7947 	if (bnx2x_iov_alloc_mem(bp))
7948 		goto alloc_mem_err;
7949 
7950 	/* Slow path ring */
7951 	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7952 
7953 	/* EQ */
7954 	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7955 			BCM_PAGE_SIZE * NUM_EQ_PAGES);
7956 
7957 	return 0;
7958 
7959 alloc_mem_err:
7960 	bnx2x_free_mem(bp);
7961 	BNX2X_ERR("Can't allocate memory\n");
7962 	return -ENOMEM;
7963 }
7964 
7965 /*
7966  * Init service functions
7967  */
7968 
7969 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7970 		      struct bnx2x_vlan_mac_obj *obj, bool set,
7971 		      int mac_type, unsigned long *ramrod_flags)
7972 {
7973 	int rc;
7974 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7975 
7976 	memset(&ramrod_param, 0, sizeof(ramrod_param));
7977 
7978 	/* Fill general parameters */
7979 	ramrod_param.vlan_mac_obj = obj;
7980 	ramrod_param.ramrod_flags = *ramrod_flags;
7981 
7982 	/* Fill a user request section if needed */
7983 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7984 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7985 
7986 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7987 
7988 		/* Set the command: ADD or DEL */
7989 		if (set)
7990 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7991 		else
7992 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7993 	}
7994 
7995 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7996 
7997 	if (rc == -EEXIST) {
7998 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
7999 		/* do not treat adding same MAC as error */
8000 		rc = 0;
8001 	} else if (rc < 0)
8002 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8003 
8004 	return rc;
8005 }
8006 
8007 int bnx2x_del_all_macs(struct bnx2x *bp,
8008 		       struct bnx2x_vlan_mac_obj *mac_obj,
8009 		       int mac_type, bool wait_for_comp)
8010 {
8011 	int rc;
8012 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8013 
8014 	/* Wait for completion of requested */
8015 	if (wait_for_comp)
8016 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8017 
8018 	/* Set the mac type of addresses we want to clear */
8019 	__set_bit(mac_type, &vlan_mac_flags);
8020 
8021 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8022 	if (rc < 0)
8023 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8024 
8025 	return rc;
8026 }
8027 
8028 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8029 {
8030 	if (is_zero_ether_addr(bp->dev->dev_addr) &&
8031 	    (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
8032 		DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
8033 		   "Ignoring Zero MAC for STORAGE SD mode\n");
8034 		return 0;
8035 	}
8036 
8037 	if (IS_PF(bp)) {
8038 		unsigned long ramrod_flags = 0;
8039 
8040 		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8041 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8042 		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8043 					 &bp->sp_objs->mac_obj, set,
8044 					 BNX2X_ETH_MAC, &ramrod_flags);
8045 	} else { /* vf */
8046 		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8047 					     bp->fp->index, true);
8048 	}
8049 }
8050 
8051 int bnx2x_setup_leading(struct bnx2x *bp)
8052 {
8053 	return bnx2x_setup_queue(bp, &bp->fp[0], 1);
8054 }
8055 
8056 /**
8057  * bnx2x_set_int_mode - configure interrupt mode
8058  *
8059  * @bp:		driver handle
8060  *
8061  * In case of MSI-X it will also try to enable MSI-X.
8062  */
8063 int bnx2x_set_int_mode(struct bnx2x *bp)
8064 {
8065 	int rc = 0;
8066 
8067 	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX)
8068 		return -EINVAL;
8069 
8070 	switch (int_mode) {
8071 	case BNX2X_INT_MODE_MSIX:
8072 		/* attempt to enable msix */
8073 		rc = bnx2x_enable_msix(bp);
8074 
8075 		/* msix attained */
8076 		if (!rc)
8077 			return 0;
8078 
8079 		/* vfs use only msix */
8080 		if (rc && IS_VF(bp))
8081 			return rc;
8082 
8083 		/* failed to enable multiple MSI-X */
8084 		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8085 			       bp->num_queues,
8086 			       1 + bp->num_cnic_queues);
8087 
8088 		/* falling through... */
8089 	case BNX2X_INT_MODE_MSI:
8090 		bnx2x_enable_msi(bp);
8091 
8092 		/* falling through... */
8093 	case BNX2X_INT_MODE_INTX:
8094 		bp->num_ethernet_queues = 1;
8095 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8096 		BNX2X_DEV_INFO("set number of queues to 1\n");
8097 		break;
8098 	default:
8099 		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8100 		return -EINVAL;
8101 	}
8102 	return 0;
8103 }
8104 
8105 /* must be called prior to any HW initializations */
8106 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8107 {
8108 	if (IS_SRIOV(bp))
8109 		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8110 	return L2_ILT_LINES(bp);
8111 }
8112 
8113 void bnx2x_ilt_set_info(struct bnx2x *bp)
8114 {
8115 	struct ilt_client_info *ilt_client;
8116 	struct bnx2x_ilt *ilt = BP_ILT(bp);
8117 	u16 line = 0;
8118 
8119 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8120 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8121 
8122 	/* CDU */
8123 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8124 	ilt_client->client_num = ILT_CLIENT_CDU;
8125 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8126 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8127 	ilt_client->start = line;
8128 	line += bnx2x_cid_ilt_lines(bp);
8129 
8130 	if (CNIC_SUPPORT(bp))
8131 		line += CNIC_ILT_LINES;
8132 	ilt_client->end = line - 1;
8133 
8134 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8135 	   ilt_client->start,
8136 	   ilt_client->end,
8137 	   ilt_client->page_size,
8138 	   ilt_client->flags,
8139 	   ilog2(ilt_client->page_size >> 12));
8140 
8141 	/* QM */
8142 	if (QM_INIT(bp->qm_cid_count)) {
8143 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8144 		ilt_client->client_num = ILT_CLIENT_QM;
8145 		ilt_client->page_size = QM_ILT_PAGE_SZ;
8146 		ilt_client->flags = 0;
8147 		ilt_client->start = line;
8148 
8149 		/* 4 bytes for each cid */
8150 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8151 							 QM_ILT_PAGE_SZ);
8152 
8153 		ilt_client->end = line - 1;
8154 
8155 		DP(NETIF_MSG_IFUP,
8156 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8157 		   ilt_client->start,
8158 		   ilt_client->end,
8159 		   ilt_client->page_size,
8160 		   ilt_client->flags,
8161 		   ilog2(ilt_client->page_size >> 12));
8162 	}
8163 
8164 	if (CNIC_SUPPORT(bp)) {
8165 		/* SRC */
8166 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8167 		ilt_client->client_num = ILT_CLIENT_SRC;
8168 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8169 		ilt_client->flags = 0;
8170 		ilt_client->start = line;
8171 		line += SRC_ILT_LINES;
8172 		ilt_client->end = line - 1;
8173 
8174 		DP(NETIF_MSG_IFUP,
8175 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8176 		   ilt_client->start,
8177 		   ilt_client->end,
8178 		   ilt_client->page_size,
8179 		   ilt_client->flags,
8180 		   ilog2(ilt_client->page_size >> 12));
8181 
8182 		/* TM */
8183 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8184 		ilt_client->client_num = ILT_CLIENT_TM;
8185 		ilt_client->page_size = TM_ILT_PAGE_SZ;
8186 		ilt_client->flags = 0;
8187 		ilt_client->start = line;
8188 		line += TM_ILT_LINES;
8189 		ilt_client->end = line - 1;
8190 
8191 		DP(NETIF_MSG_IFUP,
8192 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8193 		   ilt_client->start,
8194 		   ilt_client->end,
8195 		   ilt_client->page_size,
8196 		   ilt_client->flags,
8197 		   ilog2(ilt_client->page_size >> 12));
8198 	}
8199 
8200 	BUG_ON(line > ILT_MAX_LINES);
8201 }
8202 
8203 /**
8204  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8205  *
8206  * @bp:			driver handle
8207  * @fp:			pointer to fastpath
8208  * @init_params:	pointer to parameters structure
8209  *
8210  * parameters configured:
8211  *      - HC configuration
8212  *      - Queue's CDU context
8213  */
8214 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8215 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8216 {
8217 	u8 cos;
8218 	int cxt_index, cxt_offset;
8219 
8220 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8221 	if (!IS_FCOE_FP(fp)) {
8222 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8223 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8224 
8225 		/* If HC is supported, enable host coalescing in the transition
8226 		 * to INIT state.
8227 		 */
8228 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8229 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8230 
8231 		/* HC rate */
8232 		init_params->rx.hc_rate = bp->rx_ticks ?
8233 			(1000000 / bp->rx_ticks) : 0;
8234 		init_params->tx.hc_rate = bp->tx_ticks ?
8235 			(1000000 / bp->tx_ticks) : 0;
8236 
8237 		/* FW SB ID */
8238 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8239 			fp->fw_sb_id;
8240 
8241 		/*
8242 		 * CQ index among the SB indices: FCoE clients uses the default
8243 		 * SB, therefore it's different.
8244 		 */
8245 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8246 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8247 	}
8248 
8249 	/* set maximum number of COSs supported by this queue */
8250 	init_params->max_cos = fp->max_cos;
8251 
8252 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8253 	    fp->index, init_params->max_cos);
8254 
8255 	/* set the context pointers queue object */
8256 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8257 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8258 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8259 				ILT_PAGE_CIDS);
8260 		init_params->cxts[cos] =
8261 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8262 	}
8263 }
8264 
8265 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8266 			struct bnx2x_queue_state_params *q_params,
8267 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8268 			int tx_index, bool leading)
8269 {
8270 	memset(tx_only_params, 0, sizeof(*tx_only_params));
8271 
8272 	/* Set the command */
8273 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8274 
8275 	/* Set tx-only QUEUE flags: don't zero statistics */
8276 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8277 
8278 	/* choose the index of the cid to send the slow path on */
8279 	tx_only_params->cid_index = tx_index;
8280 
8281 	/* Set general TX_ONLY_SETUP parameters */
8282 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8283 
8284 	/* Set Tx TX_ONLY_SETUP parameters */
8285 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8286 
8287 	DP(NETIF_MSG_IFUP,
8288 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8289 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8290 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8291 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8292 
8293 	/* send the ramrod */
8294 	return bnx2x_queue_state_change(bp, q_params);
8295 }
8296 
8297 /**
8298  * bnx2x_setup_queue - setup queue
8299  *
8300  * @bp:		driver handle
8301  * @fp:		pointer to fastpath
8302  * @leading:	is leading
8303  *
8304  * This function performs 2 steps in a Queue state machine
8305  *      actually: 1) RESET->INIT 2) INIT->SETUP
8306  */
8307 
8308 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8309 		       bool leading)
8310 {
8311 	struct bnx2x_queue_state_params q_params = {NULL};
8312 	struct bnx2x_queue_setup_params *setup_params =
8313 						&q_params.params.setup;
8314 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8315 						&q_params.params.tx_only;
8316 	int rc;
8317 	u8 tx_index;
8318 
8319 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8320 
8321 	/* reset IGU state skip FCoE L2 queue */
8322 	if (!IS_FCOE_FP(fp))
8323 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8324 			     IGU_INT_ENABLE, 0);
8325 
8326 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8327 	/* We want to wait for completion in this context */
8328 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8329 
8330 	/* Prepare the INIT parameters */
8331 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8332 
8333 	/* Set the command */
8334 	q_params.cmd = BNX2X_Q_CMD_INIT;
8335 
8336 	/* Change the state to INIT */
8337 	rc = bnx2x_queue_state_change(bp, &q_params);
8338 	if (rc) {
8339 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8340 		return rc;
8341 	}
8342 
8343 	DP(NETIF_MSG_IFUP, "init complete\n");
8344 
8345 	/* Now move the Queue to the SETUP state... */
8346 	memset(setup_params, 0, sizeof(*setup_params));
8347 
8348 	/* Set QUEUE flags */
8349 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8350 
8351 	/* Set general SETUP parameters */
8352 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8353 				FIRST_TX_COS_INDEX);
8354 
8355 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8356 			    &setup_params->rxq_params);
8357 
8358 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8359 			   FIRST_TX_COS_INDEX);
8360 
8361 	/* Set the command */
8362 	q_params.cmd = BNX2X_Q_CMD_SETUP;
8363 
8364 	if (IS_FCOE_FP(fp))
8365 		bp->fcoe_init = true;
8366 
8367 	/* Change the state to SETUP */
8368 	rc = bnx2x_queue_state_change(bp, &q_params);
8369 	if (rc) {
8370 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8371 		return rc;
8372 	}
8373 
8374 	/* loop through the relevant tx-only indices */
8375 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8376 	      tx_index < fp->max_cos;
8377 	      tx_index++) {
8378 
8379 		/* prepare and send tx-only ramrod*/
8380 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8381 					  tx_only_params, tx_index, leading);
8382 		if (rc) {
8383 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8384 				  fp->index, tx_index);
8385 			return rc;
8386 		}
8387 	}
8388 
8389 	return rc;
8390 }
8391 
8392 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8393 {
8394 	struct bnx2x_fastpath *fp = &bp->fp[index];
8395 	struct bnx2x_fp_txdata *txdata;
8396 	struct bnx2x_queue_state_params q_params = {NULL};
8397 	int rc, tx_index;
8398 
8399 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8400 
8401 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8402 	/* We want to wait for completion in this context */
8403 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8404 
8405 	/* close tx-only connections */
8406 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8407 	     tx_index < fp->max_cos;
8408 	     tx_index++){
8409 
8410 		/* ascertain this is a normal queue*/
8411 		txdata = fp->txdata_ptr[tx_index];
8412 
8413 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8414 							txdata->txq_index);
8415 
8416 		/* send halt terminate on tx-only connection */
8417 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8418 		memset(&q_params.params.terminate, 0,
8419 		       sizeof(q_params.params.terminate));
8420 		q_params.params.terminate.cid_index = tx_index;
8421 
8422 		rc = bnx2x_queue_state_change(bp, &q_params);
8423 		if (rc)
8424 			return rc;
8425 
8426 		/* send halt terminate on tx-only connection */
8427 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8428 		memset(&q_params.params.cfc_del, 0,
8429 		       sizeof(q_params.params.cfc_del));
8430 		q_params.params.cfc_del.cid_index = tx_index;
8431 		rc = bnx2x_queue_state_change(bp, &q_params);
8432 		if (rc)
8433 			return rc;
8434 	}
8435 	/* Stop the primary connection: */
8436 	/* ...halt the connection */
8437 	q_params.cmd = BNX2X_Q_CMD_HALT;
8438 	rc = bnx2x_queue_state_change(bp, &q_params);
8439 	if (rc)
8440 		return rc;
8441 
8442 	/* ...terminate the connection */
8443 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8444 	memset(&q_params.params.terminate, 0,
8445 	       sizeof(q_params.params.terminate));
8446 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8447 	rc = bnx2x_queue_state_change(bp, &q_params);
8448 	if (rc)
8449 		return rc;
8450 	/* ...delete cfc entry */
8451 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8452 	memset(&q_params.params.cfc_del, 0,
8453 	       sizeof(q_params.params.cfc_del));
8454 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8455 	return bnx2x_queue_state_change(bp, &q_params);
8456 }
8457 
8458 static void bnx2x_reset_func(struct bnx2x *bp)
8459 {
8460 	int port = BP_PORT(bp);
8461 	int func = BP_FUNC(bp);
8462 	int i;
8463 
8464 	/* Disable the function in the FW */
8465 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8466 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8467 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8468 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8469 
8470 	/* FP SBs */
8471 	for_each_eth_queue(bp, i) {
8472 		struct bnx2x_fastpath *fp = &bp->fp[i];
8473 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8474 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8475 			   SB_DISABLED);
8476 	}
8477 
8478 	if (CNIC_LOADED(bp))
8479 		/* CNIC SB */
8480 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8481 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8482 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8483 
8484 	/* SP SB */
8485 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8486 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8487 		SB_DISABLED);
8488 
8489 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8490 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8491 		       0);
8492 
8493 	/* Configure IGU */
8494 	if (bp->common.int_block == INT_BLOCK_HC) {
8495 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8496 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8497 	} else {
8498 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8499 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8500 	}
8501 
8502 	if (CNIC_LOADED(bp)) {
8503 		/* Disable Timer scan */
8504 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8505 		/*
8506 		 * Wait for at least 10ms and up to 2 second for the timers
8507 		 * scan to complete
8508 		 */
8509 		for (i = 0; i < 200; i++) {
8510 			usleep_range(10000, 20000);
8511 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8512 				break;
8513 		}
8514 	}
8515 	/* Clear ILT */
8516 	bnx2x_clear_func_ilt(bp, func);
8517 
8518 	/* Timers workaround bug for E2: if this is vnic-3,
8519 	 * we need to set the entire ilt range for this timers.
8520 	 */
8521 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8522 		struct ilt_client_info ilt_cli;
8523 		/* use dummy TM client */
8524 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8525 		ilt_cli.start = 0;
8526 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8527 		ilt_cli.client_num = ILT_CLIENT_TM;
8528 
8529 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8530 	}
8531 
8532 	/* this assumes that reset_port() called before reset_func()*/
8533 	if (!CHIP_IS_E1x(bp))
8534 		bnx2x_pf_disable(bp);
8535 
8536 	bp->dmae_ready = 0;
8537 }
8538 
8539 static void bnx2x_reset_port(struct bnx2x *bp)
8540 {
8541 	int port = BP_PORT(bp);
8542 	u32 val;
8543 
8544 	/* Reset physical Link */
8545 	bnx2x__link_reset(bp);
8546 
8547 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8548 
8549 	/* Do not rcv packets to BRB */
8550 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8551 	/* Do not direct rcv packets that are not for MCP to the BRB */
8552 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8553 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8554 
8555 	/* Configure AEU */
8556 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8557 
8558 	msleep(100);
8559 	/* Check for BRB port occupancy */
8560 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8561 	if (val)
8562 		DP(NETIF_MSG_IFDOWN,
8563 		   "BRB1 is not empty  %d blocks are occupied\n", val);
8564 
8565 	/* TODO: Close Doorbell port? */
8566 }
8567 
8568 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8569 {
8570 	struct bnx2x_func_state_params func_params = {NULL};
8571 
8572 	/* Prepare parameters for function state transitions */
8573 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8574 
8575 	func_params.f_obj = &bp->func_obj;
8576 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
8577 
8578 	func_params.params.hw_init.load_phase = load_code;
8579 
8580 	return bnx2x_func_state_change(bp, &func_params);
8581 }
8582 
8583 static int bnx2x_func_stop(struct bnx2x *bp)
8584 {
8585 	struct bnx2x_func_state_params func_params = {NULL};
8586 	int rc;
8587 
8588 	/* Prepare parameters for function state transitions */
8589 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8590 	func_params.f_obj = &bp->func_obj;
8591 	func_params.cmd = BNX2X_F_CMD_STOP;
8592 
8593 	/*
8594 	 * Try to stop the function the 'good way'. If fails (in case
8595 	 * of a parity error during bnx2x_chip_cleanup()) and we are
8596 	 * not in a debug mode, perform a state transaction in order to
8597 	 * enable further HW_RESET transaction.
8598 	 */
8599 	rc = bnx2x_func_state_change(bp, &func_params);
8600 	if (rc) {
8601 #ifdef BNX2X_STOP_ON_ERROR
8602 		return rc;
8603 #else
8604 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8605 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8606 		return bnx2x_func_state_change(bp, &func_params);
8607 #endif
8608 	}
8609 
8610 	return 0;
8611 }
8612 
8613 /**
8614  * bnx2x_send_unload_req - request unload mode from the MCP.
8615  *
8616  * @bp:			driver handle
8617  * @unload_mode:	requested function's unload mode
8618  *
8619  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8620  */
8621 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8622 {
8623 	u32 reset_code = 0;
8624 	int port = BP_PORT(bp);
8625 
8626 	/* Select the UNLOAD request mode */
8627 	if (unload_mode == UNLOAD_NORMAL)
8628 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8629 
8630 	else if (bp->flags & NO_WOL_FLAG)
8631 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8632 
8633 	else if (bp->wol) {
8634 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8635 		u8 *mac_addr = bp->dev->dev_addr;
8636 		u32 val;
8637 		u16 pmc;
8638 
8639 		/* The mac address is written to entries 1-4 to
8640 		 * preserve entry 0 which is used by the PMF
8641 		 */
8642 		u8 entry = (BP_VN(bp) + 1)*8;
8643 
8644 		val = (mac_addr[0] << 8) | mac_addr[1];
8645 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8646 
8647 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8648 		      (mac_addr[4] << 8) | mac_addr[5];
8649 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8650 
8651 		/* Enable the PME and clear the status */
8652 		pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
8653 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8654 		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
8655 
8656 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8657 
8658 	} else
8659 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8660 
8661 	/* Send the request to the MCP */
8662 	if (!BP_NOMCP(bp))
8663 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
8664 	else {
8665 		int path = BP_PATH(bp);
8666 
8667 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8668 		   path, load_count[path][0], load_count[path][1],
8669 		   load_count[path][2]);
8670 		load_count[path][0]--;
8671 		load_count[path][1 + port]--;
8672 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8673 		   path, load_count[path][0], load_count[path][1],
8674 		   load_count[path][2]);
8675 		if (load_count[path][0] == 0)
8676 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8677 		else if (load_count[path][1 + port] == 0)
8678 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8679 		else
8680 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8681 	}
8682 
8683 	return reset_code;
8684 }
8685 
8686 /**
8687  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8688  *
8689  * @bp:		driver handle
8690  * @keep_link:		true iff link should be kept up
8691  */
8692 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8693 {
8694 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8695 
8696 	/* Report UNLOAD_DONE to MCP */
8697 	if (!BP_NOMCP(bp))
8698 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8699 }
8700 
8701 static int bnx2x_func_wait_started(struct bnx2x *bp)
8702 {
8703 	int tout = 50;
8704 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8705 
8706 	if (!bp->port.pmf)
8707 		return 0;
8708 
8709 	/*
8710 	 * (assumption: No Attention from MCP at this stage)
8711 	 * PMF probably in the middle of TX disable/enable transaction
8712 	 * 1. Sync IRS for default SB
8713 	 * 2. Sync SP queue - this guarantees us that attention handling started
8714 	 * 3. Wait, that TX disable/enable transaction completes
8715 	 *
8716 	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
8717 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
8718 	 * received completion for the transaction the state is TX_STOPPED.
8719 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
8720 	 * transaction.
8721 	 */
8722 
8723 	/* make sure default SB ISR is done */
8724 	if (msix)
8725 		synchronize_irq(bp->msix_table[0].vector);
8726 	else
8727 		synchronize_irq(bp->pdev->irq);
8728 
8729 	flush_workqueue(bnx2x_wq);
8730 
8731 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8732 				BNX2X_F_STATE_STARTED && tout--)
8733 		msleep(20);
8734 
8735 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8736 						BNX2X_F_STATE_STARTED) {
8737 #ifdef BNX2X_STOP_ON_ERROR
8738 		BNX2X_ERR("Wrong function state\n");
8739 		return -EBUSY;
8740 #else
8741 		/*
8742 		 * Failed to complete the transaction in a "good way"
8743 		 * Force both transactions with CLR bit
8744 		 */
8745 		struct bnx2x_func_state_params func_params = {NULL};
8746 
8747 		DP(NETIF_MSG_IFDOWN,
8748 		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8749 
8750 		func_params.f_obj = &bp->func_obj;
8751 		__set_bit(RAMROD_DRV_CLR_ONLY,
8752 					&func_params.ramrod_flags);
8753 
8754 		/* STARTED-->TX_ST0PPED */
8755 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
8756 		bnx2x_func_state_change(bp, &func_params);
8757 
8758 		/* TX_ST0PPED-->STARTED */
8759 		func_params.cmd = BNX2X_F_CMD_TX_START;
8760 		return bnx2x_func_state_change(bp, &func_params);
8761 #endif
8762 	}
8763 
8764 	return 0;
8765 }
8766 
8767 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8768 {
8769 	int port = BP_PORT(bp);
8770 	int i, rc = 0;
8771 	u8 cos;
8772 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
8773 	u32 reset_code;
8774 
8775 	/* Wait until tx fastpath tasks complete */
8776 	for_each_tx_queue(bp, i) {
8777 		struct bnx2x_fastpath *fp = &bp->fp[i];
8778 
8779 		for_each_cos_in_tx_queue(fp, cos)
8780 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8781 #ifdef BNX2X_STOP_ON_ERROR
8782 		if (rc)
8783 			return;
8784 #endif
8785 	}
8786 
8787 	/* Give HW time to discard old tx messages */
8788 	usleep_range(1000, 2000);
8789 
8790 	/* Clean all ETH MACs */
8791 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8792 				false);
8793 	if (rc < 0)
8794 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8795 
8796 	/* Clean up UC list  */
8797 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8798 				true);
8799 	if (rc < 0)
8800 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8801 			  rc);
8802 
8803 	/* Disable LLH */
8804 	if (!CHIP_IS_E1(bp))
8805 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8806 
8807 	/* Set "drop all" (stop Rx).
8808 	 * We need to take a netif_addr_lock() here in order to prevent
8809 	 * a race between the completion code and this code.
8810 	 */
8811 	netif_addr_lock_bh(bp->dev);
8812 	/* Schedule the rx_mode command */
8813 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8814 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8815 	else
8816 		bnx2x_set_storm_rx_mode(bp);
8817 
8818 	/* Cleanup multicast configuration */
8819 	rparam.mcast_obj = &bp->mcast_obj;
8820 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8821 	if (rc < 0)
8822 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8823 
8824 	netif_addr_unlock_bh(bp->dev);
8825 
8826 	bnx2x_iov_chip_cleanup(bp);
8827 
8828 	/*
8829 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
8830 	 * this function should perform FUNC, PORT or COMMON HW
8831 	 * reset.
8832 	 */
8833 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
8834 
8835 	/*
8836 	 * (assumption: No Attention from MCP at this stage)
8837 	 * PMF probably in the middle of TX disable/enable transaction
8838 	 */
8839 	rc = bnx2x_func_wait_started(bp);
8840 	if (rc) {
8841 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
8842 #ifdef BNX2X_STOP_ON_ERROR
8843 		return;
8844 #endif
8845 	}
8846 
8847 	/* Close multi and leading connections
8848 	 * Completions for ramrods are collected in a synchronous way
8849 	 */
8850 	for_each_eth_queue(bp, i)
8851 		if (bnx2x_stop_queue(bp, i))
8852 #ifdef BNX2X_STOP_ON_ERROR
8853 			return;
8854 #else
8855 			goto unload_error;
8856 #endif
8857 
8858 	if (CNIC_LOADED(bp)) {
8859 		for_each_cnic_queue(bp, i)
8860 			if (bnx2x_stop_queue(bp, i))
8861 #ifdef BNX2X_STOP_ON_ERROR
8862 				return;
8863 #else
8864 				goto unload_error;
8865 #endif
8866 	}
8867 
8868 	/* If SP settings didn't get completed so far - something
8869 	 * very wrong has happen.
8870 	 */
8871 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8872 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8873 
8874 #ifndef BNX2X_STOP_ON_ERROR
8875 unload_error:
8876 #endif
8877 	rc = bnx2x_func_stop(bp);
8878 	if (rc) {
8879 		BNX2X_ERR("Function stop failed!\n");
8880 #ifdef BNX2X_STOP_ON_ERROR
8881 		return;
8882 #endif
8883 	}
8884 
8885 	/* Disable HW interrupts, NAPI */
8886 	bnx2x_netif_stop(bp, 1);
8887 	/* Delete all NAPI objects */
8888 	bnx2x_del_all_napi(bp);
8889 	if (CNIC_LOADED(bp))
8890 		bnx2x_del_all_napi_cnic(bp);
8891 
8892 	/* Release IRQs */
8893 	bnx2x_free_irq(bp);
8894 
8895 	/* Reset the chip */
8896 	rc = bnx2x_reset_hw(bp, reset_code);
8897 	if (rc)
8898 		BNX2X_ERR("HW_RESET failed\n");
8899 
8900 	/* Report UNLOAD_DONE to MCP */
8901 	bnx2x_send_unload_done(bp, keep_link);
8902 }
8903 
8904 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8905 {
8906 	u32 val;
8907 
8908 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8909 
8910 	if (CHIP_IS_E1(bp)) {
8911 		int port = BP_PORT(bp);
8912 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8913 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
8914 
8915 		val = REG_RD(bp, addr);
8916 		val &= ~(0x300);
8917 		REG_WR(bp, addr, val);
8918 	} else {
8919 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8920 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8921 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8922 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8923 	}
8924 }
8925 
8926 /* Close gates #2, #3 and #4: */
8927 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8928 {
8929 	u32 val;
8930 
8931 	/* Gates #2 and #4a are closed/opened for "not E1" only */
8932 	if (!CHIP_IS_E1(bp)) {
8933 		/* #4 */
8934 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8935 		/* #2 */
8936 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8937 	}
8938 
8939 	/* #3 */
8940 	if (CHIP_IS_E1x(bp)) {
8941 		/* Prevent interrupts from HC on both ports */
8942 		val = REG_RD(bp, HC_REG_CONFIG_1);
8943 		REG_WR(bp, HC_REG_CONFIG_1,
8944 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8945 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8946 
8947 		val = REG_RD(bp, HC_REG_CONFIG_0);
8948 		REG_WR(bp, HC_REG_CONFIG_0,
8949 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8950 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8951 	} else {
8952 		/* Prevent incoming interrupts in IGU */
8953 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8954 
8955 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8956 		       (!close) ?
8957 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8958 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8959 	}
8960 
8961 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8962 		close ? "closing" : "opening");
8963 	mmiowb();
8964 }
8965 
8966 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
8967 
8968 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8969 {
8970 	/* Do some magic... */
8971 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8972 	*magic_val = val & SHARED_MF_CLP_MAGIC;
8973 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8974 }
8975 
8976 /**
8977  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8978  *
8979  * @bp:		driver handle
8980  * @magic_val:	old value of the `magic' bit.
8981  */
8982 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8983 {
8984 	/* Restore the `magic' bit value... */
8985 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8986 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
8987 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8988 }
8989 
8990 /**
8991  * bnx2x_reset_mcp_prep - prepare for MCP reset.
8992  *
8993  * @bp:		driver handle
8994  * @magic_val:	old value of 'magic' bit.
8995  *
8996  * Takes care of CLP configurations.
8997  */
8998 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8999 {
9000 	u32 shmem;
9001 	u32 validity_offset;
9002 
9003 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9004 
9005 	/* Set `magic' bit in order to save MF config */
9006 	if (!CHIP_IS_E1(bp))
9007 		bnx2x_clp_reset_prep(bp, magic_val);
9008 
9009 	/* Get shmem offset */
9010 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9011 	validity_offset =
9012 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9013 
9014 	/* Clear validity map flags */
9015 	if (shmem > 0)
9016 		REG_WR(bp, shmem + validity_offset, 0);
9017 }
9018 
9019 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9020 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9021 
9022 /**
9023  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9024  *
9025  * @bp:	driver handle
9026  */
9027 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9028 {
9029 	/* special handling for emulation and FPGA,
9030 	   wait 10 times longer */
9031 	if (CHIP_REV_IS_SLOW(bp))
9032 		msleep(MCP_ONE_TIMEOUT*10);
9033 	else
9034 		msleep(MCP_ONE_TIMEOUT);
9035 }
9036 
9037 /*
9038  * initializes bp->common.shmem_base and waits for validity signature to appear
9039  */
9040 static int bnx2x_init_shmem(struct bnx2x *bp)
9041 {
9042 	int cnt = 0;
9043 	u32 val = 0;
9044 
9045 	do {
9046 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9047 		if (bp->common.shmem_base) {
9048 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9049 			if (val & SHR_MEM_VALIDITY_MB)
9050 				return 0;
9051 		}
9052 
9053 		bnx2x_mcp_wait_one(bp);
9054 
9055 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9056 
9057 	BNX2X_ERR("BAD MCP validity signature\n");
9058 
9059 	return -ENODEV;
9060 }
9061 
9062 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9063 {
9064 	int rc = bnx2x_init_shmem(bp);
9065 
9066 	/* Restore the `magic' bit value */
9067 	if (!CHIP_IS_E1(bp))
9068 		bnx2x_clp_reset_done(bp, magic_val);
9069 
9070 	return rc;
9071 }
9072 
9073 static void bnx2x_pxp_prep(struct bnx2x *bp)
9074 {
9075 	if (!CHIP_IS_E1(bp)) {
9076 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9077 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9078 		mmiowb();
9079 	}
9080 }
9081 
9082 /*
9083  * Reset the whole chip except for:
9084  *      - PCIE core
9085  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9086  *              one reset bit)
9087  *      - IGU
9088  *      - MISC (including AEU)
9089  *      - GRC
9090  *      - RBCN, RBCP
9091  */
9092 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9093 {
9094 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9095 	u32 global_bits2, stay_reset2;
9096 
9097 	/*
9098 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9099 	 * (per chip) blocks.
9100 	 */
9101 	global_bits2 =
9102 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9103 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9104 
9105 	/* Don't reset the following blocks.
9106 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9107 	 *            reset, as in 4 port device they might still be owned
9108 	 *            by the MCP (there is only one leader per path).
9109 	 */
9110 	not_reset_mask1 =
9111 		MISC_REGISTERS_RESET_REG_1_RST_HC |
9112 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9113 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9114 
9115 	not_reset_mask2 =
9116 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9117 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9118 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9119 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9120 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9121 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9122 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9123 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9124 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9125 		MISC_REGISTERS_RESET_REG_2_PGLC |
9126 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9127 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9128 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9129 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9130 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9131 		MISC_REGISTERS_RESET_REG_2_UMAC1;
9132 
9133 	/*
9134 	 * Keep the following blocks in reset:
9135 	 *  - all xxMACs are handled by the bnx2x_link code.
9136 	 */
9137 	stay_reset2 =
9138 		MISC_REGISTERS_RESET_REG_2_XMAC |
9139 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9140 
9141 	/* Full reset masks according to the chip */
9142 	reset_mask1 = 0xffffffff;
9143 
9144 	if (CHIP_IS_E1(bp))
9145 		reset_mask2 = 0xffff;
9146 	else if (CHIP_IS_E1H(bp))
9147 		reset_mask2 = 0x1ffff;
9148 	else if (CHIP_IS_E2(bp))
9149 		reset_mask2 = 0xfffff;
9150 	else /* CHIP_IS_E3 */
9151 		reset_mask2 = 0x3ffffff;
9152 
9153 	/* Don't reset global blocks unless we need to */
9154 	if (!global)
9155 		reset_mask2 &= ~global_bits2;
9156 
9157 	/*
9158 	 * In case of attention in the QM, we need to reset PXP
9159 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9160 	 * because otherwise QM reset would release 'close the gates' shortly
9161 	 * before resetting the PXP, then the PSWRQ would send a write
9162 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9163 	 * read the payload data from PSWWR, but PSWWR would not
9164 	 * respond. The write queue in PGLUE would stuck, dmae commands
9165 	 * would not return. Therefore it's important to reset the second
9166 	 * reset register (containing the
9167 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9168 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9169 	 * bit).
9170 	 */
9171 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9172 	       reset_mask2 & (~not_reset_mask2));
9173 
9174 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9175 	       reset_mask1 & (~not_reset_mask1));
9176 
9177 	barrier();
9178 	mmiowb();
9179 
9180 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9181 	       reset_mask2 & (~stay_reset2));
9182 
9183 	barrier();
9184 	mmiowb();
9185 
9186 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9187 	mmiowb();
9188 }
9189 
9190 /**
9191  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9192  * It should get cleared in no more than 1s.
9193  *
9194  * @bp:	driver handle
9195  *
9196  * It should get cleared in no more than 1s. Returns 0 if
9197  * pending writes bit gets cleared.
9198  */
9199 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9200 {
9201 	u32 cnt = 1000;
9202 	u32 pend_bits = 0;
9203 
9204 	do {
9205 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9206 
9207 		if (pend_bits == 0)
9208 			break;
9209 
9210 		usleep_range(1000, 2000);
9211 	} while (cnt-- > 0);
9212 
9213 	if (cnt <= 0) {
9214 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9215 			  pend_bits);
9216 		return -EBUSY;
9217 	}
9218 
9219 	return 0;
9220 }
9221 
9222 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9223 {
9224 	int cnt = 1000;
9225 	u32 val = 0;
9226 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9227 	u32 tags_63_32 = 0;
9228 
9229 	/* Empty the Tetris buffer, wait for 1s */
9230 	do {
9231 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9232 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9233 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9234 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9235 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9236 		if (CHIP_IS_E3(bp))
9237 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9238 
9239 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9240 		    ((port_is_idle_0 & 0x1) == 0x1) &&
9241 		    ((port_is_idle_1 & 0x1) == 0x1) &&
9242 		    (pgl_exp_rom2 == 0xffffffff) &&
9243 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9244 			break;
9245 		usleep_range(1000, 2000);
9246 	} while (cnt-- > 0);
9247 
9248 	if (cnt <= 0) {
9249 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9250 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9251 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9252 			  pgl_exp_rom2);
9253 		return -EAGAIN;
9254 	}
9255 
9256 	barrier();
9257 
9258 	/* Close gates #2, #3 and #4 */
9259 	bnx2x_set_234_gates(bp, true);
9260 
9261 	/* Poll for IGU VQs for 57712 and newer chips */
9262 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9263 		return -EAGAIN;
9264 
9265 	/* TBD: Indicate that "process kill" is in progress to MCP */
9266 
9267 	/* Clear "unprepared" bit */
9268 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9269 	barrier();
9270 
9271 	/* Make sure all is written to the chip before the reset */
9272 	mmiowb();
9273 
9274 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9275 	 * PSWHST, GRC and PSWRD Tetris buffer.
9276 	 */
9277 	usleep_range(1000, 2000);
9278 
9279 	/* Prepare to chip reset: */
9280 	/* MCP */
9281 	if (global)
9282 		bnx2x_reset_mcp_prep(bp, &val);
9283 
9284 	/* PXP */
9285 	bnx2x_pxp_prep(bp);
9286 	barrier();
9287 
9288 	/* reset the chip */
9289 	bnx2x_process_kill_chip_reset(bp, global);
9290 	barrier();
9291 
9292 	/* Recover after reset: */
9293 	/* MCP */
9294 	if (global && bnx2x_reset_mcp_comp(bp, val))
9295 		return -EAGAIN;
9296 
9297 	/* TBD: Add resetting the NO_MCP mode DB here */
9298 
9299 	/* Open the gates #2, #3 and #4 */
9300 	bnx2x_set_234_gates(bp, false);
9301 
9302 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9303 	 * reset state, re-enable attentions. */
9304 
9305 	return 0;
9306 }
9307 
9308 static int bnx2x_leader_reset(struct bnx2x *bp)
9309 {
9310 	int rc = 0;
9311 	bool global = bnx2x_reset_is_global(bp);
9312 	u32 load_code;
9313 
9314 	/* if not going to reset MCP - load "fake" driver to reset HW while
9315 	 * driver is owner of the HW
9316 	 */
9317 	if (!global && !BP_NOMCP(bp)) {
9318 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9319 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9320 		if (!load_code) {
9321 			BNX2X_ERR("MCP response failure, aborting\n");
9322 			rc = -EAGAIN;
9323 			goto exit_leader_reset;
9324 		}
9325 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9326 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9327 			BNX2X_ERR("MCP unexpected resp, aborting\n");
9328 			rc = -EAGAIN;
9329 			goto exit_leader_reset2;
9330 		}
9331 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9332 		if (!load_code) {
9333 			BNX2X_ERR("MCP response failure, aborting\n");
9334 			rc = -EAGAIN;
9335 			goto exit_leader_reset2;
9336 		}
9337 	}
9338 
9339 	/* Try to recover after the failure */
9340 	if (bnx2x_process_kill(bp, global)) {
9341 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9342 			  BP_PATH(bp));
9343 		rc = -EAGAIN;
9344 		goto exit_leader_reset2;
9345 	}
9346 
9347 	/*
9348 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9349 	 * state.
9350 	 */
9351 	bnx2x_set_reset_done(bp);
9352 	if (global)
9353 		bnx2x_clear_reset_global(bp);
9354 
9355 exit_leader_reset2:
9356 	/* unload "fake driver" if it was loaded */
9357 	if (!global && !BP_NOMCP(bp)) {
9358 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9359 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9360 	}
9361 exit_leader_reset:
9362 	bp->is_leader = 0;
9363 	bnx2x_release_leader_lock(bp);
9364 	smp_mb();
9365 	return rc;
9366 }
9367 
9368 static void bnx2x_recovery_failed(struct bnx2x *bp)
9369 {
9370 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9371 
9372 	/* Disconnect this device */
9373 	netif_device_detach(bp->dev);
9374 
9375 	/*
9376 	 * Block ifup for all function on this engine until "process kill"
9377 	 * or power cycle.
9378 	 */
9379 	bnx2x_set_reset_in_progress(bp);
9380 
9381 	/* Shut down the power */
9382 	bnx2x_set_power_state(bp, PCI_D3hot);
9383 
9384 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9385 
9386 	smp_mb();
9387 }
9388 
9389 /*
9390  * Assumption: runs under rtnl lock. This together with the fact
9391  * that it's called only from bnx2x_sp_rtnl() ensure that it
9392  * will never be called when netif_running(bp->dev) is false.
9393  */
9394 static void bnx2x_parity_recover(struct bnx2x *bp)
9395 {
9396 	bool global = false;
9397 	u32 error_recovered, error_unrecovered;
9398 	bool is_parity;
9399 
9400 	DP(NETIF_MSG_HW, "Handling parity\n");
9401 	while (1) {
9402 		switch (bp->recovery_state) {
9403 		case BNX2X_RECOVERY_INIT:
9404 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9405 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9406 			WARN_ON(!is_parity);
9407 
9408 			/* Try to get a LEADER_LOCK HW lock */
9409 			if (bnx2x_trylock_leader_lock(bp)) {
9410 				bnx2x_set_reset_in_progress(bp);
9411 				/*
9412 				 * Check if there is a global attention and if
9413 				 * there was a global attention, set the global
9414 				 * reset bit.
9415 				 */
9416 
9417 				if (global)
9418 					bnx2x_set_reset_global(bp);
9419 
9420 				bp->is_leader = 1;
9421 			}
9422 
9423 			/* Stop the driver */
9424 			/* If interface has been removed - break */
9425 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9426 				return;
9427 
9428 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
9429 
9430 			/* Ensure "is_leader", MCP command sequence and
9431 			 * "recovery_state" update values are seen on other
9432 			 * CPUs.
9433 			 */
9434 			smp_mb();
9435 			break;
9436 
9437 		case BNX2X_RECOVERY_WAIT:
9438 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9439 			if (bp->is_leader) {
9440 				int other_engine = BP_PATH(bp) ? 0 : 1;
9441 				bool other_load_status =
9442 					bnx2x_get_load_status(bp, other_engine);
9443 				bool load_status =
9444 					bnx2x_get_load_status(bp, BP_PATH(bp));
9445 				global = bnx2x_reset_is_global(bp);
9446 
9447 				/*
9448 				 * In case of a parity in a global block, let
9449 				 * the first leader that performs a
9450 				 * leader_reset() reset the global blocks in
9451 				 * order to clear global attentions. Otherwise
9452 				 * the gates will remain closed for that
9453 				 * engine.
9454 				 */
9455 				if (load_status ||
9456 				    (global && other_load_status)) {
9457 					/* Wait until all other functions get
9458 					 * down.
9459 					 */
9460 					schedule_delayed_work(&bp->sp_rtnl_task,
9461 								HZ/10);
9462 					return;
9463 				} else {
9464 					/* If all other functions got down -
9465 					 * try to bring the chip back to
9466 					 * normal. In any case it's an exit
9467 					 * point for a leader.
9468 					 */
9469 					if (bnx2x_leader_reset(bp)) {
9470 						bnx2x_recovery_failed(bp);
9471 						return;
9472 					}
9473 
9474 					/* If we are here, means that the
9475 					 * leader has succeeded and doesn't
9476 					 * want to be a leader any more. Try
9477 					 * to continue as a none-leader.
9478 					 */
9479 					break;
9480 				}
9481 			} else { /* non-leader */
9482 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9483 					/* Try to get a LEADER_LOCK HW lock as
9484 					 * long as a former leader may have
9485 					 * been unloaded by the user or
9486 					 * released a leadership by another
9487 					 * reason.
9488 					 */
9489 					if (bnx2x_trylock_leader_lock(bp)) {
9490 						/* I'm a leader now! Restart a
9491 						 * switch case.
9492 						 */
9493 						bp->is_leader = 1;
9494 						break;
9495 					}
9496 
9497 					schedule_delayed_work(&bp->sp_rtnl_task,
9498 								HZ/10);
9499 					return;
9500 
9501 				} else {
9502 					/*
9503 					 * If there was a global attention, wait
9504 					 * for it to be cleared.
9505 					 */
9506 					if (bnx2x_reset_is_global(bp)) {
9507 						schedule_delayed_work(
9508 							&bp->sp_rtnl_task,
9509 							HZ/10);
9510 						return;
9511 					}
9512 
9513 					error_recovered =
9514 					  bp->eth_stats.recoverable_error;
9515 					error_unrecovered =
9516 					  bp->eth_stats.unrecoverable_error;
9517 					bp->recovery_state =
9518 						BNX2X_RECOVERY_NIC_LOADING;
9519 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9520 						error_unrecovered++;
9521 						netdev_err(bp->dev,
9522 							   "Recovery failed. Power cycle needed\n");
9523 						/* Disconnect this device */
9524 						netif_device_detach(bp->dev);
9525 						/* Shut down the power */
9526 						bnx2x_set_power_state(
9527 							bp, PCI_D3hot);
9528 						smp_mb();
9529 					} else {
9530 						bp->recovery_state =
9531 							BNX2X_RECOVERY_DONE;
9532 						error_recovered++;
9533 						smp_mb();
9534 					}
9535 					bp->eth_stats.recoverable_error =
9536 						error_recovered;
9537 					bp->eth_stats.unrecoverable_error =
9538 						error_unrecovered;
9539 
9540 					return;
9541 				}
9542 			}
9543 		default:
9544 			return;
9545 		}
9546 	}
9547 }
9548 
9549 static int bnx2x_close(struct net_device *dev);
9550 
9551 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9552  * scheduled on a general queue in order to prevent a dead lock.
9553  */
9554 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9555 {
9556 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9557 
9558 	rtnl_lock();
9559 
9560 	if (!netif_running(bp->dev)) {
9561 		rtnl_unlock();
9562 		return;
9563 	}
9564 
9565 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9566 #ifdef BNX2X_STOP_ON_ERROR
9567 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9568 			  "you will need to reboot when done\n");
9569 		goto sp_rtnl_not_reset;
9570 #endif
9571 		/*
9572 		 * Clear all pending SP commands as we are going to reset the
9573 		 * function anyway.
9574 		 */
9575 		bp->sp_rtnl_state = 0;
9576 		smp_mb();
9577 
9578 		bnx2x_parity_recover(bp);
9579 
9580 		rtnl_unlock();
9581 		return;
9582 	}
9583 
9584 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9585 #ifdef BNX2X_STOP_ON_ERROR
9586 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9587 			  "you will need to reboot when done\n");
9588 		goto sp_rtnl_not_reset;
9589 #endif
9590 
9591 		/*
9592 		 * Clear all pending SP commands as we are going to reset the
9593 		 * function anyway.
9594 		 */
9595 		bp->sp_rtnl_state = 0;
9596 		smp_mb();
9597 
9598 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9599 		bnx2x_nic_load(bp, LOAD_NORMAL);
9600 
9601 		rtnl_unlock();
9602 		return;
9603 	}
9604 #ifdef BNX2X_STOP_ON_ERROR
9605 sp_rtnl_not_reset:
9606 #endif
9607 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9608 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9609 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9610 		bnx2x_after_function_update(bp);
9611 	/*
9612 	 * in case of fan failure we need to reset id if the "stop on error"
9613 	 * debug flag is set, since we trying to prevent permanent overheating
9614 	 * damage
9615 	 */
9616 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9617 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9618 		netif_device_detach(bp->dev);
9619 		bnx2x_close(bp->dev);
9620 		rtnl_unlock();
9621 		return;
9622 	}
9623 
9624 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9625 		DP(BNX2X_MSG_SP,
9626 		   "sending set mcast vf pf channel message from rtnl sp-task\n");
9627 		bnx2x_vfpf_set_mcast(bp->dev);
9628 	}
9629 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
9630 			       &bp->sp_rtnl_state)){
9631 		if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
9632 			bnx2x_tx_disable(bp);
9633 			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
9634 		}
9635 	}
9636 
9637 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE,
9638 			       &bp->sp_rtnl_state)) {
9639 		DP(BNX2X_MSG_SP,
9640 		   "sending set storm rx mode vf pf channel message from rtnl sp-task\n");
9641 		bnx2x_vfpf_storm_rx_mode(bp);
9642 	}
9643 
9644 	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
9645 			       &bp->sp_rtnl_state))
9646 		bnx2x_pf_set_vfs_vlan(bp);
9647 
9648 	/* work which needs rtnl lock not-taken (as it takes the lock itself and
9649 	 * can be called from other contexts as well)
9650 	 */
9651 	rtnl_unlock();
9652 
9653 	/* enable SR-IOV if applicable */
9654 	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
9655 					       &bp->sp_rtnl_state)) {
9656 		bnx2x_disable_sriov(bp);
9657 		bnx2x_enable_sriov(bp);
9658 	}
9659 }
9660 
9661 static void bnx2x_period_task(struct work_struct *work)
9662 {
9663 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9664 
9665 	if (!netif_running(bp->dev))
9666 		goto period_task_exit;
9667 
9668 	if (CHIP_REV_IS_SLOW(bp)) {
9669 		BNX2X_ERR("period task called on emulation, ignoring\n");
9670 		goto period_task_exit;
9671 	}
9672 
9673 	bnx2x_acquire_phy_lock(bp);
9674 	/*
9675 	 * The barrier is needed to ensure the ordering between the writing to
9676 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9677 	 * the reading here.
9678 	 */
9679 	smp_mb();
9680 	if (bp->port.pmf) {
9681 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
9682 
9683 		/* Re-queue task in 1 sec */
9684 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9685 	}
9686 
9687 	bnx2x_release_phy_lock(bp);
9688 period_task_exit:
9689 	return;
9690 }
9691 
9692 /*
9693  * Init service functions
9694  */
9695 
9696 u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9697 {
9698 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9699 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9700 	return base + (BP_ABS_FUNC(bp)) * stride;
9701 }
9702 
9703 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9704 					struct bnx2x_mac_vals *vals)
9705 {
9706 	u32 val, base_addr, offset, mask, reset_reg;
9707 	bool mac_stopped = false;
9708 	u8 port = BP_PORT(bp);
9709 
9710 	/* reset addresses as they also mark which values were changed */
9711 	vals->bmac_addr = 0;
9712 	vals->umac_addr = 0;
9713 	vals->xmac_addr = 0;
9714 	vals->emac_addr = 0;
9715 
9716 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9717 
9718 	if (!CHIP_IS_E3(bp)) {
9719 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9720 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9721 		if ((mask & reset_reg) && val) {
9722 			u32 wb_data[2];
9723 			BNX2X_DEV_INFO("Disable bmac Rx\n");
9724 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9725 						: NIG_REG_INGRESS_BMAC0_MEM;
9726 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9727 						: BIGMAC_REGISTER_BMAC_CONTROL;
9728 
9729 			/*
9730 			 * use rd/wr since we cannot use dmae. This is safe
9731 			 * since MCP won't access the bus due to the request
9732 			 * to unload, and no function on the path can be
9733 			 * loaded at this time.
9734 			 */
9735 			wb_data[0] = REG_RD(bp, base_addr + offset);
9736 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9737 			vals->bmac_addr = base_addr + offset;
9738 			vals->bmac_val[0] = wb_data[0];
9739 			vals->bmac_val[1] = wb_data[1];
9740 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9741 			REG_WR(bp, vals->bmac_addr, wb_data[0]);
9742 			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
9743 		}
9744 		BNX2X_DEV_INFO("Disable emac Rx\n");
9745 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
9746 		vals->emac_val = REG_RD(bp, vals->emac_addr);
9747 		REG_WR(bp, vals->emac_addr, 0);
9748 		mac_stopped = true;
9749 	} else {
9750 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9751 			BNX2X_DEV_INFO("Disable xmac Rx\n");
9752 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9753 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9754 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9755 			       val & ~(1 << 1));
9756 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9757 			       val | (1 << 1));
9758 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9759 			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
9760 			REG_WR(bp, vals->xmac_addr, 0);
9761 			mac_stopped = true;
9762 		}
9763 		mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9764 		if (mask & reset_reg) {
9765 			BNX2X_DEV_INFO("Disable umac Rx\n");
9766 			base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9767 			vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9768 			vals->umac_val = REG_RD(bp, vals->umac_addr);
9769 			REG_WR(bp, vals->umac_addr, 0);
9770 			mac_stopped = true;
9771 		}
9772 	}
9773 
9774 	if (mac_stopped)
9775 		msleep(20);
9776 }
9777 
9778 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9779 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
9780 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
9781 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
9782 
9783 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
9784 {
9785 	u16 rcq, bd;
9786 	u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9787 
9788 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9789 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9790 
9791 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9792 	REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9793 
9794 	BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9795 		       port, bd, rcq);
9796 }
9797 
9798 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
9799 {
9800 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9801 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9802 	if (!rc) {
9803 		BNX2X_ERR("MCP response failure, aborting\n");
9804 		return -EBUSY;
9805 	}
9806 
9807 	return 0;
9808 }
9809 
9810 static struct bnx2x_prev_path_list *
9811 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
9812 {
9813 	struct bnx2x_prev_path_list *tmp_list;
9814 
9815 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
9816 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9817 		    bp->pdev->bus->number == tmp_list->bus &&
9818 		    BP_PATH(bp) == tmp_list->path)
9819 			return tmp_list;
9820 
9821 	return NULL;
9822 }
9823 
9824 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
9825 {
9826 	struct bnx2x_prev_path_list *tmp_list;
9827 	int rc;
9828 
9829 	rc = down_interruptible(&bnx2x_prev_sem);
9830 	if (rc) {
9831 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
9832 		return rc;
9833 	}
9834 
9835 	tmp_list = bnx2x_prev_path_get_entry(bp);
9836 	if (tmp_list) {
9837 		tmp_list->aer = 1;
9838 		rc = 0;
9839 	} else {
9840 		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
9841 			  BP_PATH(bp));
9842 	}
9843 
9844 	up(&bnx2x_prev_sem);
9845 
9846 	return rc;
9847 }
9848 
9849 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
9850 {
9851 	struct bnx2x_prev_path_list *tmp_list;
9852 	int rc = false;
9853 
9854 	if (down_trylock(&bnx2x_prev_sem))
9855 		return false;
9856 
9857 	tmp_list = bnx2x_prev_path_get_entry(bp);
9858 	if (tmp_list) {
9859 		if (tmp_list->aer) {
9860 			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
9861 			   BP_PATH(bp));
9862 		} else {
9863 			rc = true;
9864 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
9865 				       BP_PATH(bp));
9866 		}
9867 	}
9868 
9869 	up(&bnx2x_prev_sem);
9870 
9871 	return rc;
9872 }
9873 
9874 bool bnx2x_port_after_undi(struct bnx2x *bp)
9875 {
9876 	struct bnx2x_prev_path_list *entry;
9877 	bool val;
9878 
9879 	down(&bnx2x_prev_sem);
9880 
9881 	entry = bnx2x_prev_path_get_entry(bp);
9882 	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
9883 
9884 	up(&bnx2x_prev_sem);
9885 
9886 	return val;
9887 }
9888 
9889 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
9890 {
9891 	struct bnx2x_prev_path_list *tmp_list;
9892 	int rc;
9893 
9894 	rc = down_interruptible(&bnx2x_prev_sem);
9895 	if (rc) {
9896 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
9897 		return rc;
9898 	}
9899 
9900 	/* Check whether the entry for this path already exists */
9901 	tmp_list = bnx2x_prev_path_get_entry(bp);
9902 	if (tmp_list) {
9903 		if (!tmp_list->aer) {
9904 			BNX2X_ERR("Re-Marking the path.\n");
9905 		} else {
9906 			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
9907 			   BP_PATH(bp));
9908 			tmp_list->aer = 0;
9909 		}
9910 		up(&bnx2x_prev_sem);
9911 		return 0;
9912 	}
9913 	up(&bnx2x_prev_sem);
9914 
9915 	/* Create an entry for this path and add it */
9916 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
9917 	if (!tmp_list) {
9918 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
9919 		return -ENOMEM;
9920 	}
9921 
9922 	tmp_list->bus = bp->pdev->bus->number;
9923 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
9924 	tmp_list->path = BP_PATH(bp);
9925 	tmp_list->aer = 0;
9926 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
9927 
9928 	rc = down_interruptible(&bnx2x_prev_sem);
9929 	if (rc) {
9930 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
9931 		kfree(tmp_list);
9932 	} else {
9933 		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
9934 		   BP_PATH(bp));
9935 		list_add(&tmp_list->list, &bnx2x_prev_list);
9936 		up(&bnx2x_prev_sem);
9937 	}
9938 
9939 	return rc;
9940 }
9941 
9942 static int bnx2x_do_flr(struct bnx2x *bp)
9943 {
9944 	int i;
9945 	u16 status;
9946 	struct pci_dev *dev = bp->pdev;
9947 
9948 	if (CHIP_IS_E1x(bp)) {
9949 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
9950 		return -EINVAL;
9951 	}
9952 
9953 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9954 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9955 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
9956 			  bp->common.bc_ver);
9957 		return -EINVAL;
9958 	}
9959 
9960 	/* Wait for Transaction Pending bit clean */
9961 	for (i = 0; i < 4; i++) {
9962 		if (i)
9963 			msleep((1 << (i - 1)) * 100);
9964 
9965 		pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
9966 		if (!(status & PCI_EXP_DEVSTA_TRPND))
9967 			goto clear;
9968 	}
9969 
9970 	dev_err(&dev->dev,
9971 		"transaction is not cleared; proceeding with reset anyway\n");
9972 
9973 clear:
9974 
9975 	BNX2X_DEV_INFO("Initiating FLR\n");
9976 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
9977 
9978 	return 0;
9979 }
9980 
9981 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
9982 {
9983 	int rc;
9984 
9985 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
9986 
9987 	/* Test if previous unload process was already finished for this path */
9988 	if (bnx2x_prev_is_path_marked(bp))
9989 		return bnx2x_prev_mcp_done(bp);
9990 
9991 	BNX2X_DEV_INFO("Path is unmarked\n");
9992 
9993 	/* If function has FLR capabilities, and existing FW version matches
9994 	 * the one required, then FLR will be sufficient to clean any residue
9995 	 * left by previous driver
9996 	 */
9997 	rc = bnx2x_nic_load_analyze_req(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION);
9998 
9999 	if (!rc) {
10000 		/* fw version is good */
10001 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10002 		rc = bnx2x_do_flr(bp);
10003 	}
10004 
10005 	if (!rc) {
10006 		/* FLR was performed */
10007 		BNX2X_DEV_INFO("FLR successful\n");
10008 		return 0;
10009 	}
10010 
10011 	BNX2X_DEV_INFO("Could not FLR\n");
10012 
10013 	/* Close the MCP request, return failure*/
10014 	rc = bnx2x_prev_mcp_done(bp);
10015 	if (!rc)
10016 		rc = BNX2X_PREV_WAIT_NEEDED;
10017 
10018 	return rc;
10019 }
10020 
10021 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10022 {
10023 	u32 reset_reg, tmp_reg = 0, rc;
10024 	bool prev_undi = false;
10025 	struct bnx2x_mac_vals mac_vals;
10026 
10027 	/* It is possible a previous function received 'common' answer,
10028 	 * but hasn't loaded yet, therefore creating a scenario of
10029 	 * multiple functions receiving 'common' on the same path.
10030 	 */
10031 	BNX2X_DEV_INFO("Common unload Flow\n");
10032 
10033 	memset(&mac_vals, 0, sizeof(mac_vals));
10034 
10035 	if (bnx2x_prev_is_path_marked(bp))
10036 		return bnx2x_prev_mcp_done(bp);
10037 
10038 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10039 
10040 	/* Reset should be performed after BRB is emptied */
10041 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10042 		u32 timer_count = 1000;
10043 
10044 		/* Close the MAC Rx to prevent BRB from filling up */
10045 		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10046 
10047 		/* close LLH filters towards the BRB */
10048 		bnx2x_set_rx_filter(&bp->link_params, 0);
10049 
10050 		/* Check if the UNDI driver was previously loaded
10051 		 * UNDI driver initializes CID offset for normal bell to 0x7
10052 		 */
10053 		if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
10054 			tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
10055 			if (tmp_reg == 0x7) {
10056 				BNX2X_DEV_INFO("UNDI previously loaded\n");
10057 				prev_undi = true;
10058 				/* clear the UNDI indication */
10059 				REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10060 				/* clear possible idle check errors */
10061 				REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10062 			}
10063 		}
10064 		if (!CHIP_IS_E1x(bp))
10065 			/* block FW from writing to host */
10066 			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10067 
10068 		/* wait until BRB is empty */
10069 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10070 		while (timer_count) {
10071 			u32 prev_brb = tmp_reg;
10072 
10073 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10074 			if (!tmp_reg)
10075 				break;
10076 
10077 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10078 
10079 			/* reset timer as long as BRB actually gets emptied */
10080 			if (prev_brb > tmp_reg)
10081 				timer_count = 1000;
10082 			else
10083 				timer_count--;
10084 
10085 			/* If UNDI resides in memory, manually increment it */
10086 			if (prev_undi)
10087 				bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
10088 
10089 			udelay(10);
10090 		}
10091 
10092 		if (!timer_count)
10093 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10094 	}
10095 
10096 	/* No packets are in the pipeline, path is ready for reset */
10097 	bnx2x_reset_common(bp);
10098 
10099 	if (mac_vals.xmac_addr)
10100 		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10101 	if (mac_vals.umac_addr)
10102 		REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10103 	if (mac_vals.emac_addr)
10104 		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10105 	if (mac_vals.bmac_addr) {
10106 		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10107 		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10108 	}
10109 
10110 	rc = bnx2x_prev_mark_path(bp, prev_undi);
10111 	if (rc) {
10112 		bnx2x_prev_mcp_done(bp);
10113 		return rc;
10114 	}
10115 
10116 	return bnx2x_prev_mcp_done(bp);
10117 }
10118 
10119 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
10120  * and boot began, or when kdump kernel was loaded. Either case would invalidate
10121  * the addresses of the transaction, resulting in was-error bit set in the pci
10122  * causing all hw-to-host pcie transactions to timeout. If this happened we want
10123  * to clear the interrupt which detected this from the pglueb and the was done
10124  * bit
10125  */
10126 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10127 {
10128 	if (!CHIP_IS_E1x(bp)) {
10129 		u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10130 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10131 			DP(BNX2X_MSG_SP,
10132 			   "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10133 			REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10134 			       1 << BP_FUNC(bp));
10135 		}
10136 	}
10137 }
10138 
10139 static int bnx2x_prev_unload(struct bnx2x *bp)
10140 {
10141 	int time_counter = 10;
10142 	u32 rc, fw, hw_lock_reg, hw_lock_val;
10143 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10144 
10145 	/* clear hw from errors which may have resulted from an interrupted
10146 	 * dmae transaction.
10147 	 */
10148 	bnx2x_prev_interrupted_dmae(bp);
10149 
10150 	/* Release previously held locks */
10151 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10152 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10153 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10154 
10155 	hw_lock_val = REG_RD(bp, hw_lock_reg);
10156 	if (hw_lock_val) {
10157 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10158 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10159 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10160 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10161 		}
10162 
10163 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10164 		REG_WR(bp, hw_lock_reg, 0xffffffff);
10165 	} else
10166 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10167 
10168 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10169 		BNX2X_DEV_INFO("Release previously held alr\n");
10170 		bnx2x_release_alr(bp);
10171 	}
10172 
10173 	do {
10174 		int aer = 0;
10175 		/* Lock MCP using an unload request */
10176 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10177 		if (!fw) {
10178 			BNX2X_ERR("MCP response failure, aborting\n");
10179 			rc = -EBUSY;
10180 			break;
10181 		}
10182 
10183 		rc = down_interruptible(&bnx2x_prev_sem);
10184 		if (rc) {
10185 			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10186 				  rc);
10187 		} else {
10188 			/* If Path is marked by EEH, ignore unload status */
10189 			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10190 				 bnx2x_prev_path_get_entry(bp)->aer);
10191 			up(&bnx2x_prev_sem);
10192 		}
10193 
10194 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10195 			rc = bnx2x_prev_unload_common(bp);
10196 			break;
10197 		}
10198 
10199 		/* non-common reply from MCP might require looping */
10200 		rc = bnx2x_prev_unload_uncommon(bp);
10201 		if (rc != BNX2X_PREV_WAIT_NEEDED)
10202 			break;
10203 
10204 		msleep(20);
10205 	} while (--time_counter);
10206 
10207 	if (!time_counter || rc) {
10208 		BNX2X_ERR("Failed unloading previous driver, aborting\n");
10209 		rc = -EBUSY;
10210 	}
10211 
10212 	/* Mark function if its port was used to boot from SAN */
10213 	if (bnx2x_port_after_undi(bp))
10214 		bp->link_params.feature_config_flags |=
10215 			FEATURE_CONFIG_BOOT_FROM_SAN;
10216 
10217 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10218 
10219 	return rc;
10220 }
10221 
10222 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10223 {
10224 	u32 val, val2, val3, val4, id, boot_mode;
10225 	u16 pmc;
10226 
10227 	/* Get the chip revision id and number. */
10228 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10229 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10230 	id = ((val & 0xffff) << 16);
10231 	val = REG_RD(bp, MISC_REG_CHIP_REV);
10232 	id |= ((val & 0xf) << 12);
10233 
10234 	/* Metal is read from PCI regs, but we can't access >=0x400 from
10235 	 * the configuration space (so we need to reg_rd)
10236 	 */
10237 	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10238 	id |= (((val >> 24) & 0xf) << 4);
10239 	val = REG_RD(bp, MISC_REG_BOND_ID);
10240 	id |= (val & 0xf);
10241 	bp->common.chip_id = id;
10242 
10243 	/* force 57811 according to MISC register */
10244 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10245 		if (CHIP_IS_57810(bp))
10246 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10247 				(bp->common.chip_id & 0x0000FFFF);
10248 		else if (CHIP_IS_57810_MF(bp))
10249 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10250 				(bp->common.chip_id & 0x0000FFFF);
10251 		bp->common.chip_id |= 0x1;
10252 	}
10253 
10254 	/* Set doorbell size */
10255 	bp->db_size = (1 << BNX2X_DB_SHIFT);
10256 
10257 	if (!CHIP_IS_E1x(bp)) {
10258 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10259 		if ((val & 1) == 0)
10260 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10261 		else
10262 			val = (val >> 1) & 1;
10263 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10264 						       "2_PORT_MODE");
10265 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10266 						 CHIP_2_PORT_MODE;
10267 
10268 		if (CHIP_MODE_IS_4_PORT(bp))
10269 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10270 		else
10271 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10272 	} else {
10273 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10274 		bp->pfid = bp->pf_num;			/* 0..7 */
10275 	}
10276 
10277 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10278 
10279 	bp->link_params.chip_id = bp->common.chip_id;
10280 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10281 
10282 	val = (REG_RD(bp, 0x2874) & 0x55);
10283 	if ((bp->common.chip_id & 0x1) ||
10284 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10285 		bp->flags |= ONE_PORT_FLAG;
10286 		BNX2X_DEV_INFO("single port device\n");
10287 	}
10288 
10289 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10290 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10291 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10292 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10293 		       bp->common.flash_size, bp->common.flash_size);
10294 
10295 	bnx2x_init_shmem(bp);
10296 
10297 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10298 					MISC_REG_GENERIC_CR_1 :
10299 					MISC_REG_GENERIC_CR_0));
10300 
10301 	bp->link_params.shmem_base = bp->common.shmem_base;
10302 	bp->link_params.shmem2_base = bp->common.shmem2_base;
10303 	if (SHMEM2_RD(bp, size) >
10304 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10305 		bp->link_params.lfa_base =
10306 		REG_RD(bp, bp->common.shmem2_base +
10307 		       (u32)offsetof(struct shmem2_region,
10308 				     lfa_host_addr[BP_PORT(bp)]));
10309 	else
10310 		bp->link_params.lfa_base = 0;
10311 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10312 		       bp->common.shmem_base, bp->common.shmem2_base);
10313 
10314 	if (!bp->common.shmem_base) {
10315 		BNX2X_DEV_INFO("MCP not active\n");
10316 		bp->flags |= NO_MCP_FLAG;
10317 		return;
10318 	}
10319 
10320 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10321 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10322 
10323 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
10324 					SHARED_HW_CFG_LED_MODE_MASK) >>
10325 				       SHARED_HW_CFG_LED_MODE_SHIFT);
10326 
10327 	bp->link_params.feature_config_flags = 0;
10328 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10329 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10330 		bp->link_params.feature_config_flags |=
10331 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10332 	else
10333 		bp->link_params.feature_config_flags &=
10334 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10335 
10336 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10337 	bp->common.bc_ver = val;
10338 	BNX2X_DEV_INFO("bc_ver %X\n", val);
10339 	if (val < BNX2X_BC_VER) {
10340 		/* for now only warn
10341 		 * later we might need to enforce this */
10342 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10343 			  BNX2X_BC_VER, val);
10344 	}
10345 	bp->link_params.feature_config_flags |=
10346 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10347 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10348 
10349 	bp->link_params.feature_config_flags |=
10350 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10351 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10352 	bp->link_params.feature_config_flags |=
10353 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10354 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10355 	bp->link_params.feature_config_flags |=
10356 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10357 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10358 
10359 	bp->link_params.feature_config_flags |=
10360 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10361 		FEATURE_CONFIG_MT_SUPPORT : 0;
10362 
10363 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10364 			BC_SUPPORTS_PFC_STATS : 0;
10365 
10366 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10367 			BC_SUPPORTS_FCOE_FEATURES : 0;
10368 
10369 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10370 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10371 
10372 	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10373 			BC_SUPPORTS_RMMOD_CMD : 0;
10374 
10375 	boot_mode = SHMEM_RD(bp,
10376 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10377 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10378 	switch (boot_mode) {
10379 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10380 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10381 		break;
10382 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10383 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10384 		break;
10385 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10386 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10387 		break;
10388 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10389 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10390 		break;
10391 	}
10392 
10393 	pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
10394 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10395 
10396 	BNX2X_DEV_INFO("%sWoL capable\n",
10397 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
10398 
10399 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10400 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10401 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10402 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10403 
10404 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10405 		 val, val2, val3, val4);
10406 }
10407 
10408 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10409 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10410 
10411 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10412 {
10413 	int pfid = BP_FUNC(bp);
10414 	int igu_sb_id;
10415 	u32 val;
10416 	u8 fid, igu_sb_cnt = 0;
10417 
10418 	bp->igu_base_sb = 0xff;
10419 	if (CHIP_INT_MODE_IS_BC(bp)) {
10420 		int vn = BP_VN(bp);
10421 		igu_sb_cnt = bp->igu_sb_cnt;
10422 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10423 			FP_SB_MAX_E1x;
10424 
10425 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10426 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10427 
10428 		return 0;
10429 	}
10430 
10431 	/* IGU in normal mode - read CAM */
10432 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10433 	     igu_sb_id++) {
10434 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10435 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10436 			continue;
10437 		fid = IGU_FID(val);
10438 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
10439 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10440 				continue;
10441 			if (IGU_VEC(val) == 0)
10442 				/* default status block */
10443 				bp->igu_dsb_id = igu_sb_id;
10444 			else {
10445 				if (bp->igu_base_sb == 0xff)
10446 					bp->igu_base_sb = igu_sb_id;
10447 				igu_sb_cnt++;
10448 			}
10449 		}
10450 	}
10451 
10452 #ifdef CONFIG_PCI_MSI
10453 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
10454 	 * optional that number of CAM entries will not be equal to the value
10455 	 * advertised in PCI.
10456 	 * Driver should use the minimal value of both as the actual status
10457 	 * block count
10458 	 */
10459 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10460 #endif
10461 
10462 	if (igu_sb_cnt == 0) {
10463 		BNX2X_ERR("CAM configuration error\n");
10464 		return -EINVAL;
10465 	}
10466 
10467 	return 0;
10468 }
10469 
10470 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10471 {
10472 	int cfg_size = 0, idx, port = BP_PORT(bp);
10473 
10474 	/* Aggregation of supported attributes of all external phys */
10475 	bp->port.supported[0] = 0;
10476 	bp->port.supported[1] = 0;
10477 	switch (bp->link_params.num_phys) {
10478 	case 1:
10479 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10480 		cfg_size = 1;
10481 		break;
10482 	case 2:
10483 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10484 		cfg_size = 1;
10485 		break;
10486 	case 3:
10487 		if (bp->link_params.multi_phy_config &
10488 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10489 			bp->port.supported[1] =
10490 				bp->link_params.phy[EXT_PHY1].supported;
10491 			bp->port.supported[0] =
10492 				bp->link_params.phy[EXT_PHY2].supported;
10493 		} else {
10494 			bp->port.supported[0] =
10495 				bp->link_params.phy[EXT_PHY1].supported;
10496 			bp->port.supported[1] =
10497 				bp->link_params.phy[EXT_PHY2].supported;
10498 		}
10499 		cfg_size = 2;
10500 		break;
10501 	}
10502 
10503 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
10504 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10505 			   SHMEM_RD(bp,
10506 			   dev_info.port_hw_config[port].external_phy_config),
10507 			   SHMEM_RD(bp,
10508 			   dev_info.port_hw_config[port].external_phy_config2));
10509 			return;
10510 	}
10511 
10512 	if (CHIP_IS_E3(bp))
10513 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10514 	else {
10515 		switch (switch_cfg) {
10516 		case SWITCH_CFG_1G:
10517 			bp->port.phy_addr = REG_RD(
10518 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10519 			break;
10520 		case SWITCH_CFG_10G:
10521 			bp->port.phy_addr = REG_RD(
10522 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10523 			break;
10524 		default:
10525 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10526 				  bp->port.link_config[0]);
10527 			return;
10528 		}
10529 	}
10530 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10531 	/* mask what we support according to speed_cap_mask per configuration */
10532 	for (idx = 0; idx < cfg_size; idx++) {
10533 		if (!(bp->link_params.speed_cap_mask[idx] &
10534 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10535 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10536 
10537 		if (!(bp->link_params.speed_cap_mask[idx] &
10538 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10539 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10540 
10541 		if (!(bp->link_params.speed_cap_mask[idx] &
10542 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10543 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10544 
10545 		if (!(bp->link_params.speed_cap_mask[idx] &
10546 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10547 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10548 
10549 		if (!(bp->link_params.speed_cap_mask[idx] &
10550 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10551 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10552 						     SUPPORTED_1000baseT_Full);
10553 
10554 		if (!(bp->link_params.speed_cap_mask[idx] &
10555 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10556 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10557 
10558 		if (!(bp->link_params.speed_cap_mask[idx] &
10559 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10560 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10561 
10562 		if (!(bp->link_params.speed_cap_mask[idx] &
10563 					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
10564 			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
10565 	}
10566 
10567 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10568 		       bp->port.supported[1]);
10569 }
10570 
10571 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10572 {
10573 	u32 link_config, idx, cfg_size = 0;
10574 	bp->port.advertising[0] = 0;
10575 	bp->port.advertising[1] = 0;
10576 	switch (bp->link_params.num_phys) {
10577 	case 1:
10578 	case 2:
10579 		cfg_size = 1;
10580 		break;
10581 	case 3:
10582 		cfg_size = 2;
10583 		break;
10584 	}
10585 	for (idx = 0; idx < cfg_size; idx++) {
10586 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10587 		link_config = bp->port.link_config[idx];
10588 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10589 		case PORT_FEATURE_LINK_SPEED_AUTO:
10590 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10591 				bp->link_params.req_line_speed[idx] =
10592 					SPEED_AUTO_NEG;
10593 				bp->port.advertising[idx] |=
10594 					bp->port.supported[idx];
10595 				if (bp->link_params.phy[EXT_PHY1].type ==
10596 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10597 					bp->port.advertising[idx] |=
10598 					(SUPPORTED_100baseT_Half |
10599 					 SUPPORTED_100baseT_Full);
10600 			} else {
10601 				/* force 10G, no AN */
10602 				bp->link_params.req_line_speed[idx] =
10603 					SPEED_10000;
10604 				bp->port.advertising[idx] |=
10605 					(ADVERTISED_10000baseT_Full |
10606 					 ADVERTISED_FIBRE);
10607 				continue;
10608 			}
10609 			break;
10610 
10611 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
10612 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10613 				bp->link_params.req_line_speed[idx] =
10614 					SPEED_10;
10615 				bp->port.advertising[idx] |=
10616 					(ADVERTISED_10baseT_Full |
10617 					 ADVERTISED_TP);
10618 			} else {
10619 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10620 					    link_config,
10621 				    bp->link_params.speed_cap_mask[idx]);
10622 				return;
10623 			}
10624 			break;
10625 
10626 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
10627 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10628 				bp->link_params.req_line_speed[idx] =
10629 					SPEED_10;
10630 				bp->link_params.req_duplex[idx] =
10631 					DUPLEX_HALF;
10632 				bp->port.advertising[idx] |=
10633 					(ADVERTISED_10baseT_Half |
10634 					 ADVERTISED_TP);
10635 			} else {
10636 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10637 					    link_config,
10638 					  bp->link_params.speed_cap_mask[idx]);
10639 				return;
10640 			}
10641 			break;
10642 
10643 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
10644 			if (bp->port.supported[idx] &
10645 			    SUPPORTED_100baseT_Full) {
10646 				bp->link_params.req_line_speed[idx] =
10647 					SPEED_100;
10648 				bp->port.advertising[idx] |=
10649 					(ADVERTISED_100baseT_Full |
10650 					 ADVERTISED_TP);
10651 			} else {
10652 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10653 					    link_config,
10654 					  bp->link_params.speed_cap_mask[idx]);
10655 				return;
10656 			}
10657 			break;
10658 
10659 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
10660 			if (bp->port.supported[idx] &
10661 			    SUPPORTED_100baseT_Half) {
10662 				bp->link_params.req_line_speed[idx] =
10663 								SPEED_100;
10664 				bp->link_params.req_duplex[idx] =
10665 								DUPLEX_HALF;
10666 				bp->port.advertising[idx] |=
10667 					(ADVERTISED_100baseT_Half |
10668 					 ADVERTISED_TP);
10669 			} else {
10670 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10671 				    link_config,
10672 				    bp->link_params.speed_cap_mask[idx]);
10673 				return;
10674 			}
10675 			break;
10676 
10677 		case PORT_FEATURE_LINK_SPEED_1G:
10678 			if (bp->port.supported[idx] &
10679 			    SUPPORTED_1000baseT_Full) {
10680 				bp->link_params.req_line_speed[idx] =
10681 					SPEED_1000;
10682 				bp->port.advertising[idx] |=
10683 					(ADVERTISED_1000baseT_Full |
10684 					 ADVERTISED_TP);
10685 			} else {
10686 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10687 				    link_config,
10688 				    bp->link_params.speed_cap_mask[idx]);
10689 				return;
10690 			}
10691 			break;
10692 
10693 		case PORT_FEATURE_LINK_SPEED_2_5G:
10694 			if (bp->port.supported[idx] &
10695 			    SUPPORTED_2500baseX_Full) {
10696 				bp->link_params.req_line_speed[idx] =
10697 					SPEED_2500;
10698 				bp->port.advertising[idx] |=
10699 					(ADVERTISED_2500baseX_Full |
10700 						ADVERTISED_TP);
10701 			} else {
10702 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10703 				    link_config,
10704 				    bp->link_params.speed_cap_mask[idx]);
10705 				return;
10706 			}
10707 			break;
10708 
10709 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
10710 			if (bp->port.supported[idx] &
10711 			    SUPPORTED_10000baseT_Full) {
10712 				bp->link_params.req_line_speed[idx] =
10713 					SPEED_10000;
10714 				bp->port.advertising[idx] |=
10715 					(ADVERTISED_10000baseT_Full |
10716 						ADVERTISED_FIBRE);
10717 			} else {
10718 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10719 				    link_config,
10720 				    bp->link_params.speed_cap_mask[idx]);
10721 				return;
10722 			}
10723 			break;
10724 		case PORT_FEATURE_LINK_SPEED_20G:
10725 			bp->link_params.req_line_speed[idx] = SPEED_20000;
10726 
10727 			break;
10728 		default:
10729 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10730 				  link_config);
10731 				bp->link_params.req_line_speed[idx] =
10732 							SPEED_AUTO_NEG;
10733 				bp->port.advertising[idx] =
10734 						bp->port.supported[idx];
10735 			break;
10736 		}
10737 
10738 		bp->link_params.req_flow_ctrl[idx] = (link_config &
10739 					 PORT_FEATURE_FLOW_CONTROL_MASK);
10740 		if (bp->link_params.req_flow_ctrl[idx] ==
10741 		    BNX2X_FLOW_CTRL_AUTO) {
10742 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
10743 				bp->link_params.req_flow_ctrl[idx] =
10744 							BNX2X_FLOW_CTRL_NONE;
10745 			else
10746 				bnx2x_set_requested_fc(bp);
10747 		}
10748 
10749 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10750 			       bp->link_params.req_line_speed[idx],
10751 			       bp->link_params.req_duplex[idx],
10752 			       bp->link_params.req_flow_ctrl[idx],
10753 			       bp->port.advertising[idx]);
10754 	}
10755 }
10756 
10757 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10758 {
10759 	__be16 mac_hi_be = cpu_to_be16(mac_hi);
10760 	__be32 mac_lo_be = cpu_to_be32(mac_lo);
10761 	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
10762 	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
10763 }
10764 
10765 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
10766 {
10767 	int port = BP_PORT(bp);
10768 	u32 config;
10769 	u32 ext_phy_type, ext_phy_config, eee_mode;
10770 
10771 	bp->link_params.bp = bp;
10772 	bp->link_params.port = port;
10773 
10774 	bp->link_params.lane_config =
10775 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10776 
10777 	bp->link_params.speed_cap_mask[0] =
10778 		SHMEM_RD(bp,
10779 			 dev_info.port_hw_config[port].speed_capability_mask) &
10780 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10781 	bp->link_params.speed_cap_mask[1] =
10782 		SHMEM_RD(bp,
10783 			 dev_info.port_hw_config[port].speed_capability_mask2) &
10784 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10785 	bp->port.link_config[0] =
10786 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10787 
10788 	bp->port.link_config[1] =
10789 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10790 
10791 	bp->link_params.multi_phy_config =
10792 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10793 	/* If the device is capable of WoL, set the default state according
10794 	 * to the HW
10795 	 */
10796 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10797 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10798 		   (config & PORT_FEATURE_WOL_ENABLED));
10799 
10800 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10801 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
10802 		bp->flags |= NO_ISCSI_FLAG;
10803 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10804 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
10805 		bp->flags |= NO_FCOE_FLAG;
10806 
10807 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
10808 		       bp->link_params.lane_config,
10809 		       bp->link_params.speed_cap_mask[0],
10810 		       bp->port.link_config[0]);
10811 
10812 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
10813 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
10814 	bnx2x_phy_probe(&bp->link_params);
10815 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10816 
10817 	bnx2x_link_settings_requested(bp);
10818 
10819 	/*
10820 	 * If connected directly, work with the internal PHY, otherwise, work
10821 	 * with the external PHY
10822 	 */
10823 	ext_phy_config =
10824 		SHMEM_RD(bp,
10825 			 dev_info.port_hw_config[port].external_phy_config);
10826 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
10827 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
10828 		bp->mdio.prtad = bp->port.phy_addr;
10829 
10830 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
10831 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
10832 		bp->mdio.prtad =
10833 			XGXS_EXT_PHY_ADDR(ext_phy_config);
10834 
10835 	/* Configure link feature according to nvram value */
10836 	eee_mode = (((SHMEM_RD(bp, dev_info.
10837 		      port_feature_config[port].eee_power_mode)) &
10838 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
10839 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
10840 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
10841 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
10842 					   EEE_MODE_ENABLE_LPI |
10843 					   EEE_MODE_OUTPUT_TIME;
10844 	} else {
10845 		bp->link_params.eee_mode = 0;
10846 	}
10847 }
10848 
10849 void bnx2x_get_iscsi_info(struct bnx2x *bp)
10850 {
10851 	u32 no_flags = NO_ISCSI_FLAG;
10852 	int port = BP_PORT(bp);
10853 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10854 				drv_lic_key[port].max_iscsi_conn);
10855 
10856 	if (!CNIC_SUPPORT(bp)) {
10857 		bp->flags |= no_flags;
10858 		return;
10859 	}
10860 
10861 	/* Get the number of maximum allowed iSCSI connections */
10862 	bp->cnic_eth_dev.max_iscsi_conn =
10863 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
10864 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
10865 
10866 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
10867 		       bp->cnic_eth_dev.max_iscsi_conn);
10868 
10869 	/*
10870 	 * If maximum allowed number of connections is zero -
10871 	 * disable the feature.
10872 	 */
10873 	if (!bp->cnic_eth_dev.max_iscsi_conn)
10874 		bp->flags |= no_flags;
10875 }
10876 
10877 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
10878 {
10879 	/* Port info */
10880 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10881 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
10882 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10883 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
10884 
10885 	/* Node info */
10886 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10887 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
10888 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10889 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
10890 }
10891 
10892 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
10893 {
10894 	u8 count = 0;
10895 
10896 	if (IS_MF(bp)) {
10897 		u8 fid;
10898 
10899 		/* iterate over absolute function ids for this path: */
10900 		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
10901 			if (IS_MF_SD(bp)) {
10902 				u32 cfg = MF_CFG_RD(bp,
10903 						    func_mf_config[fid].config);
10904 
10905 				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
10906 				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
10907 					    FUNC_MF_CFG_PROTOCOL_FCOE))
10908 					count++;
10909 			} else {
10910 				u32 cfg = MF_CFG_RD(bp,
10911 						    func_ext_config[fid].
10912 								      func_cfg);
10913 
10914 				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
10915 				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
10916 					count++;
10917 			}
10918 		}
10919 	} else { /* SF */
10920 		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
10921 
10922 		for (port = 0; port < port_cnt; port++) {
10923 			u32 lic = SHMEM_RD(bp,
10924 					   drv_lic_key[port].max_fcoe_conn) ^
10925 				  FW_ENCODE_32BIT_PATTERN;
10926 			if (lic)
10927 				count++;
10928 		}
10929 	}
10930 
10931 	return count;
10932 }
10933 
10934 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
10935 {
10936 	int port = BP_PORT(bp);
10937 	int func = BP_ABS_FUNC(bp);
10938 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10939 				drv_lic_key[port].max_fcoe_conn);
10940 	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
10941 
10942 	if (!CNIC_SUPPORT(bp)) {
10943 		bp->flags |= NO_FCOE_FLAG;
10944 		return;
10945 	}
10946 
10947 	/* Get the number of maximum allowed FCoE connections */
10948 	bp->cnic_eth_dev.max_fcoe_conn =
10949 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
10950 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
10951 
10952 	/* Calculate the number of maximum allowed FCoE tasks */
10953 	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
10954 
10955 	/* check if FCoE resources must be shared between different functions */
10956 	if (num_fcoe_func)
10957 		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
10958 
10959 	/* Read the WWN: */
10960 	if (!IS_MF(bp)) {
10961 		/* Port info */
10962 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10963 			SHMEM_RD(bp,
10964 				 dev_info.port_hw_config[port].
10965 				 fcoe_wwn_port_name_upper);
10966 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10967 			SHMEM_RD(bp,
10968 				 dev_info.port_hw_config[port].
10969 				 fcoe_wwn_port_name_lower);
10970 
10971 		/* Node info */
10972 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10973 			SHMEM_RD(bp,
10974 				 dev_info.port_hw_config[port].
10975 				 fcoe_wwn_node_name_upper);
10976 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10977 			SHMEM_RD(bp,
10978 				 dev_info.port_hw_config[port].
10979 				 fcoe_wwn_node_name_lower);
10980 	} else if (!IS_MF_SD(bp)) {
10981 		/*
10982 		 * Read the WWN info only if the FCoE feature is enabled for
10983 		 * this function.
10984 		 */
10985 		if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
10986 			bnx2x_get_ext_wwn_info(bp, func);
10987 
10988 	} else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
10989 		bnx2x_get_ext_wwn_info(bp, func);
10990 	}
10991 
10992 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
10993 
10994 	/*
10995 	 * If maximum allowed number of connections is zero -
10996 	 * disable the feature.
10997 	 */
10998 	if (!bp->cnic_eth_dev.max_fcoe_conn)
10999 		bp->flags |= NO_FCOE_FLAG;
11000 }
11001 
11002 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11003 {
11004 	/*
11005 	 * iSCSI may be dynamically disabled but reading
11006 	 * info here we will decrease memory usage by driver
11007 	 * if the feature is disabled for good
11008 	 */
11009 	bnx2x_get_iscsi_info(bp);
11010 	bnx2x_get_fcoe_info(bp);
11011 }
11012 
11013 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11014 {
11015 	u32 val, val2;
11016 	int func = BP_ABS_FUNC(bp);
11017 	int port = BP_PORT(bp);
11018 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11019 	u8 *fip_mac = bp->fip_mac;
11020 
11021 	if (IS_MF(bp)) {
11022 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11023 		 * FCoE MAC then the appropriate feature should be disabled.
11024 		 * In non SD mode features configuration comes from struct
11025 		 * func_ext_config.
11026 		 */
11027 		if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
11028 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11029 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11030 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11031 						 iscsi_mac_addr_upper);
11032 				val = MF_CFG_RD(bp, func_ext_config[func].
11033 						iscsi_mac_addr_lower);
11034 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11035 				BNX2X_DEV_INFO
11036 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11037 			} else {
11038 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11039 			}
11040 
11041 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11042 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11043 						 fcoe_mac_addr_upper);
11044 				val = MF_CFG_RD(bp, func_ext_config[func].
11045 						fcoe_mac_addr_lower);
11046 				bnx2x_set_mac_buf(fip_mac, val, val2);
11047 				BNX2X_DEV_INFO
11048 					("Read FCoE L2 MAC: %pM\n", fip_mac);
11049 			} else {
11050 				bp->flags |= NO_FCOE_FLAG;
11051 			}
11052 
11053 			bp->mf_ext_config = cfg;
11054 
11055 		} else { /* SD MODE */
11056 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11057 				/* use primary mac as iscsi mac */
11058 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11059 
11060 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11061 				BNX2X_DEV_INFO
11062 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11063 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11064 				/* use primary mac as fip mac */
11065 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11066 				BNX2X_DEV_INFO("SD FCoE MODE\n");
11067 				BNX2X_DEV_INFO
11068 					("Read FIP MAC: %pM\n", fip_mac);
11069 			}
11070 		}
11071 
11072 		/* If this is a storage-only interface, use SAN mac as
11073 		 * primary MAC. Notice that for SD this is already the case,
11074 		 * as the SAN mac was copied from the primary MAC.
11075 		 */
11076 		if (IS_MF_FCOE_AFEX(bp))
11077 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11078 	} else {
11079 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11080 				iscsi_mac_upper);
11081 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11082 			       iscsi_mac_lower);
11083 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11084 
11085 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11086 				fcoe_fip_mac_upper);
11087 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11088 			       fcoe_fip_mac_lower);
11089 		bnx2x_set_mac_buf(fip_mac, val, val2);
11090 	}
11091 
11092 	/* Disable iSCSI OOO if MAC configuration is invalid. */
11093 	if (!is_valid_ether_addr(iscsi_mac)) {
11094 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11095 		memset(iscsi_mac, 0, ETH_ALEN);
11096 	}
11097 
11098 	/* Disable FCoE if MAC configuration is invalid. */
11099 	if (!is_valid_ether_addr(fip_mac)) {
11100 		bp->flags |= NO_FCOE_FLAG;
11101 		memset(bp->fip_mac, 0, ETH_ALEN);
11102 	}
11103 }
11104 
11105 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11106 {
11107 	u32 val, val2;
11108 	int func = BP_ABS_FUNC(bp);
11109 	int port = BP_PORT(bp);
11110 
11111 	/* Zero primary MAC configuration */
11112 	memset(bp->dev->dev_addr, 0, ETH_ALEN);
11113 
11114 	if (BP_NOMCP(bp)) {
11115 		BNX2X_ERROR("warning: random MAC workaround active\n");
11116 		eth_hw_addr_random(bp->dev);
11117 	} else if (IS_MF(bp)) {
11118 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11119 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11120 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11121 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11122 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11123 
11124 		if (CNIC_SUPPORT(bp))
11125 			bnx2x_get_cnic_mac_hwinfo(bp);
11126 	} else {
11127 		/* in SF read MACs from port configuration */
11128 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11129 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11130 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11131 
11132 		if (CNIC_SUPPORT(bp))
11133 			bnx2x_get_cnic_mac_hwinfo(bp);
11134 	}
11135 
11136 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11137 
11138 	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
11139 		dev_err(&bp->pdev->dev,
11140 			"bad Ethernet MAC address configuration: %pM\n"
11141 			"change it manually before bringing up the appropriate network interface\n",
11142 			bp->dev->dev_addr);
11143 }
11144 
11145 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11146 {
11147 	int tmp;
11148 	u32 cfg;
11149 
11150 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11151 		/* Take function: tmp = func */
11152 		tmp = BP_ABS_FUNC(bp);
11153 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11154 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11155 	} else {
11156 		/* Take port: tmp = port */
11157 		tmp = BP_PORT(bp);
11158 		cfg = SHMEM_RD(bp,
11159 			       dev_info.port_hw_config[tmp].generic_features);
11160 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11161 	}
11162 	return cfg;
11163 }
11164 
11165 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11166 {
11167 	int /*abs*/func = BP_ABS_FUNC(bp);
11168 	int vn;
11169 	u32 val = 0;
11170 	int rc = 0;
11171 
11172 	bnx2x_get_common_hwinfo(bp);
11173 
11174 	/*
11175 	 * initialize IGU parameters
11176 	 */
11177 	if (CHIP_IS_E1x(bp)) {
11178 		bp->common.int_block = INT_BLOCK_HC;
11179 
11180 		bp->igu_dsb_id = DEF_SB_IGU_ID;
11181 		bp->igu_base_sb = 0;
11182 	} else {
11183 		bp->common.int_block = INT_BLOCK_IGU;
11184 
11185 		/* do not allow device reset during IGU info processing */
11186 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11187 
11188 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11189 
11190 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11191 			int tout = 5000;
11192 
11193 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11194 
11195 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11196 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11197 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11198 
11199 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11200 				tout--;
11201 				usleep_range(1000, 2000);
11202 			}
11203 
11204 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11205 				dev_err(&bp->pdev->dev,
11206 					"FORCING Normal Mode failed!!!\n");
11207 				bnx2x_release_hw_lock(bp,
11208 						      HW_LOCK_RESOURCE_RESET);
11209 				return -EPERM;
11210 			}
11211 		}
11212 
11213 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11214 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11215 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11216 		} else
11217 			BNX2X_DEV_INFO("IGU Normal Mode\n");
11218 
11219 		rc = bnx2x_get_igu_cam_info(bp);
11220 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11221 		if (rc)
11222 			return rc;
11223 	}
11224 
11225 	/*
11226 	 * set base FW non-default (fast path) status block id, this value is
11227 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
11228 	 * determine the id used by the FW.
11229 	 */
11230 	if (CHIP_IS_E1x(bp))
11231 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11232 	else /*
11233 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11234 	      * the same queue are indicated on the same IGU SB). So we prefer
11235 	      * FW and IGU SBs to be the same value.
11236 	      */
11237 		bp->base_fw_ndsb = bp->igu_base_sb;
11238 
11239 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11240 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11241 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
11242 
11243 	/*
11244 	 * Initialize MF configuration
11245 	 */
11246 
11247 	bp->mf_ov = 0;
11248 	bp->mf_mode = 0;
11249 	vn = BP_VN(bp);
11250 
11251 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11252 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11253 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
11254 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11255 
11256 		if (SHMEM2_HAS(bp, mf_cfg_addr))
11257 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11258 		else
11259 			bp->common.mf_cfg_base = bp->common.shmem_base +
11260 				offsetof(struct shmem_region, func_mb) +
11261 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11262 		/*
11263 		 * get mf configuration:
11264 		 * 1. Existence of MF configuration
11265 		 * 2. MAC address must be legal (check only upper bytes)
11266 		 *    for  Switch-Independent mode;
11267 		 *    OVLAN must be legal for Switch-Dependent mode
11268 		 * 3. SF_MODE configures specific MF mode
11269 		 */
11270 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11271 			/* get mf configuration */
11272 			val = SHMEM_RD(bp,
11273 				       dev_info.shared_feature_config.config);
11274 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11275 
11276 			switch (val) {
11277 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11278 				val = MF_CFG_RD(bp, func_mf_config[func].
11279 						mac_upper);
11280 				/* check for legal mac (upper bytes)*/
11281 				if (val != 0xffff) {
11282 					bp->mf_mode = MULTI_FUNCTION_SI;
11283 					bp->mf_config[vn] = MF_CFG_RD(bp,
11284 						   func_mf_config[func].config);
11285 				} else
11286 					BNX2X_DEV_INFO("illegal MAC address for SI\n");
11287 				break;
11288 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11289 				if ((!CHIP_IS_E1x(bp)) &&
11290 				    (MF_CFG_RD(bp, func_mf_config[func].
11291 					       mac_upper) != 0xffff) &&
11292 				    (SHMEM2_HAS(bp,
11293 						afex_driver_support))) {
11294 					bp->mf_mode = MULTI_FUNCTION_AFEX;
11295 					bp->mf_config[vn] = MF_CFG_RD(bp,
11296 						func_mf_config[func].config);
11297 				} else {
11298 					BNX2X_DEV_INFO("can not configure afex mode\n");
11299 				}
11300 				break;
11301 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11302 				/* get OV configuration */
11303 				val = MF_CFG_RD(bp,
11304 					func_mf_config[FUNC_0].e1hov_tag);
11305 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11306 
11307 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11308 					bp->mf_mode = MULTI_FUNCTION_SD;
11309 					bp->mf_config[vn] = MF_CFG_RD(bp,
11310 						func_mf_config[func].config);
11311 				} else
11312 					BNX2X_DEV_INFO("illegal OV for SD\n");
11313 				break;
11314 			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11315 				bp->mf_config[vn] = 0;
11316 				break;
11317 			default:
11318 				/* Unknown configuration: reset mf_config */
11319 				bp->mf_config[vn] = 0;
11320 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11321 			}
11322 		}
11323 
11324 		BNX2X_DEV_INFO("%s function mode\n",
11325 			       IS_MF(bp) ? "multi" : "single");
11326 
11327 		switch (bp->mf_mode) {
11328 		case MULTI_FUNCTION_SD:
11329 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11330 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
11331 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11332 				bp->mf_ov = val;
11333 				bp->path_has_ovlan = true;
11334 
11335 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11336 					       func, bp->mf_ov, bp->mf_ov);
11337 			} else {
11338 				dev_err(&bp->pdev->dev,
11339 					"No valid MF OV for func %d, aborting\n",
11340 					func);
11341 				return -EPERM;
11342 			}
11343 			break;
11344 		case MULTI_FUNCTION_AFEX:
11345 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11346 			break;
11347 		case MULTI_FUNCTION_SI:
11348 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11349 				       func);
11350 			break;
11351 		default:
11352 			if (vn) {
11353 				dev_err(&bp->pdev->dev,
11354 					"VN %d is in a single function mode, aborting\n",
11355 					vn);
11356 				return -EPERM;
11357 			}
11358 			break;
11359 		}
11360 
11361 		/* check if other port on the path needs ovlan:
11362 		 * Since MF configuration is shared between ports
11363 		 * Possible mixed modes are only
11364 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11365 		 */
11366 		if (CHIP_MODE_IS_4_PORT(bp) &&
11367 		    !bp->path_has_ovlan &&
11368 		    !IS_MF(bp) &&
11369 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11370 			u8 other_port = !BP_PORT(bp);
11371 			u8 other_func = BP_PATH(bp) + 2*other_port;
11372 			val = MF_CFG_RD(bp,
11373 					func_mf_config[other_func].e1hov_tag);
11374 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11375 				bp->path_has_ovlan = true;
11376 		}
11377 	}
11378 
11379 	/* adjust igu_sb_cnt to MF for E1x */
11380 	if (CHIP_IS_E1x(bp) && IS_MF(bp))
11381 		bp->igu_sb_cnt /= E1HVN_MAX;
11382 
11383 	/* port info */
11384 	bnx2x_get_port_hwinfo(bp);
11385 
11386 	/* Get MAC addresses */
11387 	bnx2x_get_mac_hwinfo(bp);
11388 
11389 	bnx2x_get_cnic_info(bp);
11390 
11391 	return rc;
11392 }
11393 
11394 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11395 {
11396 	int cnt, i, block_end, rodi;
11397 	char vpd_start[BNX2X_VPD_LEN+1];
11398 	char str_id_reg[VENDOR_ID_LEN+1];
11399 	char str_id_cap[VENDOR_ID_LEN+1];
11400 	char *vpd_data;
11401 	char *vpd_extended_data = NULL;
11402 	u8 len;
11403 
11404 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11405 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11406 
11407 	if (cnt < BNX2X_VPD_LEN)
11408 		goto out_not_found;
11409 
11410 	/* VPD RO tag should be first tag after identifier string, hence
11411 	 * we should be able to find it in first BNX2X_VPD_LEN chars
11412 	 */
11413 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11414 			     PCI_VPD_LRDT_RO_DATA);
11415 	if (i < 0)
11416 		goto out_not_found;
11417 
11418 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11419 		    pci_vpd_lrdt_size(&vpd_start[i]);
11420 
11421 	i += PCI_VPD_LRDT_TAG_SIZE;
11422 
11423 	if (block_end > BNX2X_VPD_LEN) {
11424 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11425 		if (vpd_extended_data  == NULL)
11426 			goto out_not_found;
11427 
11428 		/* read rest of vpd image into vpd_extended_data */
11429 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11430 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11431 				   block_end - BNX2X_VPD_LEN,
11432 				   vpd_extended_data + BNX2X_VPD_LEN);
11433 		if (cnt < (block_end - BNX2X_VPD_LEN))
11434 			goto out_not_found;
11435 		vpd_data = vpd_extended_data;
11436 	} else
11437 		vpd_data = vpd_start;
11438 
11439 	/* now vpd_data holds full vpd content in both cases */
11440 
11441 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11442 				   PCI_VPD_RO_KEYWORD_MFR_ID);
11443 	if (rodi < 0)
11444 		goto out_not_found;
11445 
11446 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
11447 
11448 	if (len != VENDOR_ID_LEN)
11449 		goto out_not_found;
11450 
11451 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11452 
11453 	/* vendor specific info */
11454 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11455 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11456 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11457 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11458 
11459 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11460 						PCI_VPD_RO_KEYWORD_VENDOR0);
11461 		if (rodi >= 0) {
11462 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
11463 
11464 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11465 
11466 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11467 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
11468 				bp->fw_ver[len] = ' ';
11469 			}
11470 		}
11471 		kfree(vpd_extended_data);
11472 		return;
11473 	}
11474 out_not_found:
11475 	kfree(vpd_extended_data);
11476 	return;
11477 }
11478 
11479 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11480 {
11481 	u32 flags = 0;
11482 
11483 	if (CHIP_REV_IS_FPGA(bp))
11484 		SET_FLAGS(flags, MODE_FPGA);
11485 	else if (CHIP_REV_IS_EMUL(bp))
11486 		SET_FLAGS(flags, MODE_EMUL);
11487 	else
11488 		SET_FLAGS(flags, MODE_ASIC);
11489 
11490 	if (CHIP_MODE_IS_4_PORT(bp))
11491 		SET_FLAGS(flags, MODE_PORT4);
11492 	else
11493 		SET_FLAGS(flags, MODE_PORT2);
11494 
11495 	if (CHIP_IS_E2(bp))
11496 		SET_FLAGS(flags, MODE_E2);
11497 	else if (CHIP_IS_E3(bp)) {
11498 		SET_FLAGS(flags, MODE_E3);
11499 		if (CHIP_REV(bp) == CHIP_REV_Ax)
11500 			SET_FLAGS(flags, MODE_E3_A0);
11501 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11502 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11503 	}
11504 
11505 	if (IS_MF(bp)) {
11506 		SET_FLAGS(flags, MODE_MF);
11507 		switch (bp->mf_mode) {
11508 		case MULTI_FUNCTION_SD:
11509 			SET_FLAGS(flags, MODE_MF_SD);
11510 			break;
11511 		case MULTI_FUNCTION_SI:
11512 			SET_FLAGS(flags, MODE_MF_SI);
11513 			break;
11514 		case MULTI_FUNCTION_AFEX:
11515 			SET_FLAGS(flags, MODE_MF_AFEX);
11516 			break;
11517 		}
11518 	} else
11519 		SET_FLAGS(flags, MODE_SF);
11520 
11521 #if defined(__LITTLE_ENDIAN)
11522 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11523 #else /*(__BIG_ENDIAN)*/
11524 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
11525 #endif
11526 	INIT_MODE_FLAGS(bp) = flags;
11527 }
11528 
11529 static int bnx2x_init_bp(struct bnx2x *bp)
11530 {
11531 	int func;
11532 	int rc;
11533 
11534 	mutex_init(&bp->port.phy_mutex);
11535 	mutex_init(&bp->fw_mb_mutex);
11536 	spin_lock_init(&bp->stats_lock);
11537 	sema_init(&bp->stats_sema, 1);
11538 
11539 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11540 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11541 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11542 	if (IS_PF(bp)) {
11543 		rc = bnx2x_get_hwinfo(bp);
11544 		if (rc)
11545 			return rc;
11546 	} else {
11547 		eth_zero_addr(bp->dev->dev_addr);
11548 	}
11549 
11550 	bnx2x_set_modes_bitmap(bp);
11551 
11552 	rc = bnx2x_alloc_mem_bp(bp);
11553 	if (rc)
11554 		return rc;
11555 
11556 	bnx2x_read_fwinfo(bp);
11557 
11558 	func = BP_FUNC(bp);
11559 
11560 	/* need to reset chip if undi was active */
11561 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
11562 		/* init fw_seq */
11563 		bp->fw_seq =
11564 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11565 							DRV_MSG_SEQ_NUMBER_MASK;
11566 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11567 
11568 		bnx2x_prev_unload(bp);
11569 	}
11570 
11571 	if (CHIP_REV_IS_FPGA(bp))
11572 		dev_err(&bp->pdev->dev, "FPGA detected\n");
11573 
11574 	if (BP_NOMCP(bp) && (func == 0))
11575 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11576 
11577 	bp->disable_tpa = disable_tpa;
11578 	bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11579 
11580 	/* Set TPA flags */
11581 	if (bp->disable_tpa) {
11582 		bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11583 		bp->dev->features &= ~NETIF_F_LRO;
11584 	} else {
11585 		bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11586 		bp->dev->features |= NETIF_F_LRO;
11587 	}
11588 
11589 	if (CHIP_IS_E1(bp))
11590 		bp->dropless_fc = 0;
11591 	else
11592 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11593 
11594 	bp->mrrs = mrrs;
11595 
11596 	bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11597 	if (IS_VF(bp))
11598 		bp->rx_ring_size = MAX_RX_AVAIL;
11599 
11600 	/* make sure that the numbers are in the right granularity */
11601 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11602 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11603 
11604 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11605 
11606 	init_timer(&bp->timer);
11607 	bp->timer.expires = jiffies + bp->current_interval;
11608 	bp->timer.data = (unsigned long) bp;
11609 	bp->timer.function = bnx2x_timer;
11610 
11611 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11612 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11613 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11614 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11615 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11616 		bnx2x_dcbx_init_params(bp);
11617 	} else {
11618 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11619 	}
11620 
11621 	if (CHIP_IS_E1x(bp))
11622 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11623 	else
11624 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
11625 
11626 	/* multiple tx priority */
11627 	if (IS_VF(bp))
11628 		bp->max_cos = 1;
11629 	else if (CHIP_IS_E1x(bp))
11630 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11631 	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11632 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11633 	else if (CHIP_IS_E3B0(bp))
11634 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11635 	else
11636 		BNX2X_ERR("unknown chip %x revision %x\n",
11637 			  CHIP_NUM(bp), CHIP_REV(bp));
11638 	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
11639 
11640 	/* We need at least one default status block for slow-path events,
11641 	 * second status block for the L2 queue, and a third status block for
11642 	 * CNIC if supported.
11643 	 */
11644 	if (CNIC_SUPPORT(bp))
11645 		bp->min_msix_vec_cnt = 3;
11646 	else
11647 		bp->min_msix_vec_cnt = 2;
11648 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11649 
11650 	bp->dump_preset_idx = 1;
11651 
11652 	return rc;
11653 }
11654 
11655 /****************************************************************************
11656 * General service functions
11657 ****************************************************************************/
11658 
11659 /*
11660  * net_device service functions
11661  */
11662 
11663 /* called with rtnl_lock */
11664 static int bnx2x_open(struct net_device *dev)
11665 {
11666 	struct bnx2x *bp = netdev_priv(dev);
11667 	bool global = false;
11668 	int other_engine = BP_PATH(bp) ? 0 : 1;
11669 	bool other_load_status, load_status;
11670 	int rc;
11671 
11672 	bp->stats_init = true;
11673 
11674 	netif_carrier_off(dev);
11675 
11676 	bnx2x_set_power_state(bp, PCI_D0);
11677 
11678 	/* If parity had happen during the unload, then attentions
11679 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11680 	 * want the first function loaded on the current engine to
11681 	 * complete the recovery.
11682 	 * Parity recovery is only relevant for PF driver.
11683 	 */
11684 	if (IS_PF(bp)) {
11685 		other_load_status = bnx2x_get_load_status(bp, other_engine);
11686 		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
11687 		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
11688 		    bnx2x_chk_parity_attn(bp, &global, true)) {
11689 			do {
11690 				/* If there are attentions and they are in a
11691 				 * global blocks, set the GLOBAL_RESET bit
11692 				 * regardless whether it will be this function
11693 				 * that will complete the recovery or not.
11694 				 */
11695 				if (global)
11696 					bnx2x_set_reset_global(bp);
11697 
11698 				/* Only the first function on the current
11699 				 * engine should try to recover in open. In case
11700 				 * of attentions in global blocks only the first
11701 				 * in the chip should try to recover.
11702 				 */
11703 				if ((!load_status &&
11704 				     (!global || !other_load_status)) &&
11705 				      bnx2x_trylock_leader_lock(bp) &&
11706 				      !bnx2x_leader_reset(bp)) {
11707 					netdev_info(bp->dev,
11708 						    "Recovered in open\n");
11709 					break;
11710 				}
11711 
11712 				/* recovery has failed... */
11713 				bnx2x_set_power_state(bp, PCI_D3hot);
11714 				bp->recovery_state = BNX2X_RECOVERY_FAILED;
11715 
11716 				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11717 					  "If you still see this message after a few retries then power cycle is required.\n");
11718 
11719 				return -EAGAIN;
11720 			} while (0);
11721 		}
11722 	}
11723 
11724 	bp->recovery_state = BNX2X_RECOVERY_DONE;
11725 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
11726 	if (rc)
11727 		return rc;
11728 	return bnx2x_open_epilog(bp);
11729 }
11730 
11731 /* called with rtnl_lock */
11732 static int bnx2x_close(struct net_device *dev)
11733 {
11734 	struct bnx2x *bp = netdev_priv(dev);
11735 
11736 	/* Unload the driver, release IRQs */
11737 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11738 
11739 	return 0;
11740 }
11741 
11742 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11743 				      struct bnx2x_mcast_ramrod_params *p)
11744 {
11745 	int mc_count = netdev_mc_count(bp->dev);
11746 	struct bnx2x_mcast_list_elem *mc_mac =
11747 		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11748 	struct netdev_hw_addr *ha;
11749 
11750 	if (!mc_mac)
11751 		return -ENOMEM;
11752 
11753 	INIT_LIST_HEAD(&p->mcast_list);
11754 
11755 	netdev_for_each_mc_addr(ha, bp->dev) {
11756 		mc_mac->mac = bnx2x_mc_addr(ha);
11757 		list_add_tail(&mc_mac->link, &p->mcast_list);
11758 		mc_mac++;
11759 	}
11760 
11761 	p->mcast_list_len = mc_count;
11762 
11763 	return 0;
11764 }
11765 
11766 static void bnx2x_free_mcast_macs_list(
11767 	struct bnx2x_mcast_ramrod_params *p)
11768 {
11769 	struct bnx2x_mcast_list_elem *mc_mac =
11770 		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11771 				 link);
11772 
11773 	WARN_ON(!mc_mac);
11774 	kfree(mc_mac);
11775 }
11776 
11777 /**
11778  * bnx2x_set_uc_list - configure a new unicast MACs list.
11779  *
11780  * @bp: driver handle
11781  *
11782  * We will use zero (0) as a MAC type for these MACs.
11783  */
11784 static int bnx2x_set_uc_list(struct bnx2x *bp)
11785 {
11786 	int rc;
11787 	struct net_device *dev = bp->dev;
11788 	struct netdev_hw_addr *ha;
11789 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11790 	unsigned long ramrod_flags = 0;
11791 
11792 	/* First schedule a cleanup up of old configuration */
11793 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11794 	if (rc < 0) {
11795 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11796 		return rc;
11797 	}
11798 
11799 	netdev_for_each_uc_addr(ha, dev) {
11800 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11801 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
11802 		if (rc == -EEXIST) {
11803 			DP(BNX2X_MSG_SP,
11804 			   "Failed to schedule ADD operations: %d\n", rc);
11805 			/* do not treat adding same MAC as error */
11806 			rc = 0;
11807 
11808 		} else if (rc < 0) {
11809 
11810 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
11811 				  rc);
11812 			return rc;
11813 		}
11814 	}
11815 
11816 	/* Execute the pending commands */
11817 	__set_bit(RAMROD_CONT, &ramrod_flags);
11818 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
11819 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
11820 }
11821 
11822 static int bnx2x_set_mc_list(struct bnx2x *bp)
11823 {
11824 	struct net_device *dev = bp->dev;
11825 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
11826 	int rc = 0;
11827 
11828 	rparam.mcast_obj = &bp->mcast_obj;
11829 
11830 	/* first, clear all configured multicast MACs */
11831 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
11832 	if (rc < 0) {
11833 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
11834 		return rc;
11835 	}
11836 
11837 	/* then, configure a new MACs list */
11838 	if (netdev_mc_count(dev)) {
11839 		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
11840 		if (rc) {
11841 			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
11842 				  rc);
11843 			return rc;
11844 		}
11845 
11846 		/* Now add the new MACs */
11847 		rc = bnx2x_config_mcast(bp, &rparam,
11848 					BNX2X_MCAST_CMD_ADD);
11849 		if (rc < 0)
11850 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
11851 				  rc);
11852 
11853 		bnx2x_free_mcast_macs_list(&rparam);
11854 	}
11855 
11856 	return rc;
11857 }
11858 
11859 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
11860 void bnx2x_set_rx_mode(struct net_device *dev)
11861 {
11862 	struct bnx2x *bp = netdev_priv(dev);
11863 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
11864 
11865 	if (bp->state != BNX2X_STATE_OPEN) {
11866 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
11867 		return;
11868 	}
11869 
11870 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
11871 
11872 	if (dev->flags & IFF_PROMISC)
11873 		rx_mode = BNX2X_RX_MODE_PROMISC;
11874 	else if ((dev->flags & IFF_ALLMULTI) ||
11875 		 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
11876 		  CHIP_IS_E1(bp)))
11877 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
11878 	else {
11879 		if (IS_PF(bp)) {
11880 			/* some multicasts */
11881 			if (bnx2x_set_mc_list(bp) < 0)
11882 				rx_mode = BNX2X_RX_MODE_ALLMULTI;
11883 
11884 			if (bnx2x_set_uc_list(bp) < 0)
11885 				rx_mode = BNX2X_RX_MODE_PROMISC;
11886 		} else {
11887 			/* configuring mcast to a vf involves sleeping (when we
11888 			 * wait for the pf's response). Since this function is
11889 			 * called from non sleepable context we must schedule
11890 			 * a work item for this purpose
11891 			 */
11892 			smp_mb__before_clear_bit();
11893 			set_bit(BNX2X_SP_RTNL_VFPF_MCAST,
11894 				&bp->sp_rtnl_state);
11895 			smp_mb__after_clear_bit();
11896 			schedule_delayed_work(&bp->sp_rtnl_task, 0);
11897 		}
11898 	}
11899 
11900 	bp->rx_mode = rx_mode;
11901 	/* handle ISCSI SD mode */
11902 	if (IS_MF_ISCSI_SD(bp))
11903 		bp->rx_mode = BNX2X_RX_MODE_NONE;
11904 
11905 	/* Schedule the rx_mode command */
11906 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
11907 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
11908 		return;
11909 	}
11910 
11911 	if (IS_PF(bp)) {
11912 		bnx2x_set_storm_rx_mode(bp);
11913 	} else {
11914 		/* configuring rx mode to storms in a vf involves sleeping (when
11915 		 * we wait for the pf's response). Since this function is
11916 		 * called from non sleepable context we must schedule
11917 		 * a work item for this purpose
11918 		 */
11919 		smp_mb__before_clear_bit();
11920 		set_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE,
11921 			&bp->sp_rtnl_state);
11922 		smp_mb__after_clear_bit();
11923 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
11924 	}
11925 }
11926 
11927 /* called with rtnl_lock */
11928 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
11929 			   int devad, u16 addr)
11930 {
11931 	struct bnx2x *bp = netdev_priv(netdev);
11932 	u16 value;
11933 	int rc;
11934 
11935 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
11936 	   prtad, devad, addr);
11937 
11938 	/* The HW expects different devad if CL22 is used */
11939 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11940 
11941 	bnx2x_acquire_phy_lock(bp);
11942 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
11943 	bnx2x_release_phy_lock(bp);
11944 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
11945 
11946 	if (!rc)
11947 		rc = value;
11948 	return rc;
11949 }
11950 
11951 /* called with rtnl_lock */
11952 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
11953 			    u16 addr, u16 value)
11954 {
11955 	struct bnx2x *bp = netdev_priv(netdev);
11956 	int rc;
11957 
11958 	DP(NETIF_MSG_LINK,
11959 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
11960 	   prtad, devad, addr, value);
11961 
11962 	/* The HW expects different devad if CL22 is used */
11963 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11964 
11965 	bnx2x_acquire_phy_lock(bp);
11966 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
11967 	bnx2x_release_phy_lock(bp);
11968 	return rc;
11969 }
11970 
11971 /* called with rtnl_lock */
11972 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
11973 {
11974 	struct bnx2x *bp = netdev_priv(dev);
11975 	struct mii_ioctl_data *mdio = if_mii(ifr);
11976 
11977 	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
11978 	   mdio->phy_id, mdio->reg_num, mdio->val_in);
11979 
11980 	if (!netif_running(dev))
11981 		return -EAGAIN;
11982 
11983 	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
11984 }
11985 
11986 #ifdef CONFIG_NET_POLL_CONTROLLER
11987 static void poll_bnx2x(struct net_device *dev)
11988 {
11989 	struct bnx2x *bp = netdev_priv(dev);
11990 	int i;
11991 
11992 	for_each_eth_queue(bp, i) {
11993 		struct bnx2x_fastpath *fp = &bp->fp[i];
11994 		napi_schedule(&bnx2x_fp(bp, fp->index, napi));
11995 	}
11996 }
11997 #endif
11998 
11999 static int bnx2x_validate_addr(struct net_device *dev)
12000 {
12001 	struct bnx2x *bp = netdev_priv(dev);
12002 
12003 	/* query the bulletin board for mac address configured by the PF */
12004 	if (IS_VF(bp))
12005 		bnx2x_sample_bulletin(bp);
12006 
12007 	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
12008 		BNX2X_ERR("Non-valid Ethernet address\n");
12009 		return -EADDRNOTAVAIL;
12010 	}
12011 	return 0;
12012 }
12013 
12014 static const struct net_device_ops bnx2x_netdev_ops = {
12015 	.ndo_open		= bnx2x_open,
12016 	.ndo_stop		= bnx2x_close,
12017 	.ndo_start_xmit		= bnx2x_start_xmit,
12018 	.ndo_select_queue	= bnx2x_select_queue,
12019 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
12020 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
12021 	.ndo_validate_addr	= bnx2x_validate_addr,
12022 	.ndo_do_ioctl		= bnx2x_ioctl,
12023 	.ndo_change_mtu		= bnx2x_change_mtu,
12024 	.ndo_fix_features	= bnx2x_fix_features,
12025 	.ndo_set_features	= bnx2x_set_features,
12026 	.ndo_tx_timeout		= bnx2x_tx_timeout,
12027 #ifdef CONFIG_NET_POLL_CONTROLLER
12028 	.ndo_poll_controller	= poll_bnx2x,
12029 #endif
12030 	.ndo_setup_tc		= bnx2x_setup_tc,
12031 #ifdef CONFIG_BNX2X_SRIOV
12032 	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
12033 	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
12034 	.ndo_get_vf_config	= bnx2x_get_vf_config,
12035 #endif
12036 #ifdef NETDEV_FCOE_WWNN
12037 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
12038 #endif
12039 
12040 #ifdef CONFIG_NET_RX_BUSY_POLL
12041 	.ndo_busy_poll		= bnx2x_low_latency_recv,
12042 #endif
12043 };
12044 
12045 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12046 {
12047 	struct device *dev = &bp->pdev->dev;
12048 
12049 	if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
12050 		bp->flags |= USING_DAC_FLAG;
12051 		if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
12052 			dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
12053 			return -EIO;
12054 		}
12055 	} else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
12056 		dev_err(dev, "System does not support DMA, aborting\n");
12057 		return -EIO;
12058 	}
12059 
12060 	return 0;
12061 }
12062 
12063 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12064 			  struct net_device *dev, unsigned long board_type)
12065 {
12066 	int rc;
12067 	u32 pci_cfg_dword;
12068 	bool chip_is_e1x = (board_type == BCM57710 ||
12069 			    board_type == BCM57711 ||
12070 			    board_type == BCM57711E);
12071 
12072 	SET_NETDEV_DEV(dev, &pdev->dev);
12073 
12074 	bp->dev = dev;
12075 	bp->pdev = pdev;
12076 
12077 	rc = pci_enable_device(pdev);
12078 	if (rc) {
12079 		dev_err(&bp->pdev->dev,
12080 			"Cannot enable PCI device, aborting\n");
12081 		goto err_out;
12082 	}
12083 
12084 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12085 		dev_err(&bp->pdev->dev,
12086 			"Cannot find PCI device base address, aborting\n");
12087 		rc = -ENODEV;
12088 		goto err_out_disable;
12089 	}
12090 
12091 	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12092 		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12093 		rc = -ENODEV;
12094 		goto err_out_disable;
12095 	}
12096 
12097 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12098 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12099 	    PCICFG_REVESION_ID_ERROR_VAL) {
12100 		pr_err("PCI device error, probably due to fan failure, aborting\n");
12101 		rc = -ENODEV;
12102 		goto err_out_disable;
12103 	}
12104 
12105 	if (atomic_read(&pdev->enable_cnt) == 1) {
12106 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12107 		if (rc) {
12108 			dev_err(&bp->pdev->dev,
12109 				"Cannot obtain PCI resources, aborting\n");
12110 			goto err_out_disable;
12111 		}
12112 
12113 		pci_set_master(pdev);
12114 		pci_save_state(pdev);
12115 	}
12116 
12117 	if (IS_PF(bp)) {
12118 		bp->pm_cap = pdev->pm_cap;
12119 		if (bp->pm_cap == 0) {
12120 			dev_err(&bp->pdev->dev,
12121 				"Cannot find power management capability, aborting\n");
12122 			rc = -EIO;
12123 			goto err_out_release;
12124 		}
12125 	}
12126 
12127 	if (!pci_is_pcie(pdev)) {
12128 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12129 		rc = -EIO;
12130 		goto err_out_release;
12131 	}
12132 
12133 	rc = bnx2x_set_coherency_mask(bp);
12134 	if (rc)
12135 		goto err_out_release;
12136 
12137 	dev->mem_start = pci_resource_start(pdev, 0);
12138 	dev->base_addr = dev->mem_start;
12139 	dev->mem_end = pci_resource_end(pdev, 0);
12140 
12141 	dev->irq = pdev->irq;
12142 
12143 	bp->regview = pci_ioremap_bar(pdev, 0);
12144 	if (!bp->regview) {
12145 		dev_err(&bp->pdev->dev,
12146 			"Cannot map register space, aborting\n");
12147 		rc = -ENOMEM;
12148 		goto err_out_release;
12149 	}
12150 
12151 	/* In E1/E1H use pci device function given by kernel.
12152 	 * In E2/E3 read physical function from ME register since these chips
12153 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
12154 	 * (depending on hypervisor).
12155 	 */
12156 	if (chip_is_e1x) {
12157 		bp->pf_num = PCI_FUNC(pdev->devfn);
12158 	} else {
12159 		/* chip is E2/3*/
12160 		pci_read_config_dword(bp->pdev,
12161 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
12162 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12163 				  ME_REG_ABS_PF_NUM_SHIFT);
12164 	}
12165 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12166 
12167 	/* clean indirect addresses */
12168 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12169 			       PCICFG_VENDOR_ID_OFFSET);
12170 	/*
12171 	 * Clean the following indirect addresses for all functions since it
12172 	 * is not used by the driver.
12173 	 */
12174 	if (IS_PF(bp)) {
12175 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12176 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12177 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12178 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12179 
12180 		if (chip_is_e1x) {
12181 			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12182 			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12183 			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12184 			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12185 		}
12186 
12187 		/* Enable internal target-read (in case we are probed after PF
12188 		 * FLR). Must be done prior to any BAR read access. Only for
12189 		 * 57712 and up
12190 		 */
12191 		if (!chip_is_e1x)
12192 			REG_WR(bp,
12193 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12194 	}
12195 
12196 	dev->watchdog_timeo = TX_TIMEOUT;
12197 
12198 	dev->netdev_ops = &bnx2x_netdev_ops;
12199 	bnx2x_set_ethtool_ops(bp, dev);
12200 
12201 	dev->priv_flags |= IFF_UNICAST_FLT;
12202 
12203 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12204 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12205 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12206 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12207 	if (!CHIP_IS_E1x(bp)) {
12208 		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12209 		dev->hw_enc_features =
12210 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12211 			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12212 			NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12213 	}
12214 
12215 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12216 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12217 
12218 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12219 	if (bp->flags & USING_DAC_FLAG)
12220 		dev->features |= NETIF_F_HIGHDMA;
12221 
12222 	/* Add Loopback capability to the device */
12223 	dev->hw_features |= NETIF_F_LOOPBACK;
12224 
12225 #ifdef BCM_DCBNL
12226 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12227 #endif
12228 
12229 	/* get_port_hwinfo() will set prtad and mmds properly */
12230 	bp->mdio.prtad = MDIO_PRTAD_NONE;
12231 	bp->mdio.mmds = 0;
12232 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12233 	bp->mdio.dev = dev;
12234 	bp->mdio.mdio_read = bnx2x_mdio_read;
12235 	bp->mdio.mdio_write = bnx2x_mdio_write;
12236 
12237 	return 0;
12238 
12239 err_out_release:
12240 	if (atomic_read(&pdev->enable_cnt) == 1)
12241 		pci_release_regions(pdev);
12242 
12243 err_out_disable:
12244 	pci_disable_device(pdev);
12245 	pci_set_drvdata(pdev, NULL);
12246 
12247 err_out:
12248 	return rc;
12249 }
12250 
12251 static void bnx2x_get_pcie_width_speed(struct bnx2x *bp, int *width,
12252 				       enum bnx2x_pci_bus_speed *speed)
12253 {
12254 	u32 link_speed, val = 0;
12255 
12256 	pci_read_config_dword(bp->pdev, PCICFG_LINK_CONTROL, &val);
12257 	*width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
12258 
12259 	link_speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
12260 
12261 	switch (link_speed) {
12262 	case 3:
12263 		*speed = BNX2X_PCI_LINK_SPEED_8000;
12264 		break;
12265 	case 2:
12266 		*speed = BNX2X_PCI_LINK_SPEED_5000;
12267 		break;
12268 	default:
12269 		*speed = BNX2X_PCI_LINK_SPEED_2500;
12270 	}
12271 }
12272 
12273 static int bnx2x_check_firmware(struct bnx2x *bp)
12274 {
12275 	const struct firmware *firmware = bp->firmware;
12276 	struct bnx2x_fw_file_hdr *fw_hdr;
12277 	struct bnx2x_fw_file_section *sections;
12278 	u32 offset, len, num_ops;
12279 	__be16 *ops_offsets;
12280 	int i;
12281 	const u8 *fw_ver;
12282 
12283 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12284 		BNX2X_ERR("Wrong FW size\n");
12285 		return -EINVAL;
12286 	}
12287 
12288 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12289 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
12290 
12291 	/* Make sure none of the offsets and sizes make us read beyond
12292 	 * the end of the firmware data */
12293 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12294 		offset = be32_to_cpu(sections[i].offset);
12295 		len = be32_to_cpu(sections[i].len);
12296 		if (offset + len > firmware->size) {
12297 			BNX2X_ERR("Section %d length is out of bounds\n", i);
12298 			return -EINVAL;
12299 		}
12300 	}
12301 
12302 	/* Likewise for the init_ops offsets */
12303 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12304 	ops_offsets = (__force __be16 *)(firmware->data + offset);
12305 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12306 
12307 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12308 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12309 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
12310 			return -EINVAL;
12311 		}
12312 	}
12313 
12314 	/* Check FW version */
12315 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
12316 	fw_ver = firmware->data + offset;
12317 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12318 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12319 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12320 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12321 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12322 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12323 		       BCM_5710_FW_MAJOR_VERSION,
12324 		       BCM_5710_FW_MINOR_VERSION,
12325 		       BCM_5710_FW_REVISION_VERSION,
12326 		       BCM_5710_FW_ENGINEERING_VERSION);
12327 		return -EINVAL;
12328 	}
12329 
12330 	return 0;
12331 }
12332 
12333 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12334 {
12335 	const __be32 *source = (const __be32 *)_source;
12336 	u32 *target = (u32 *)_target;
12337 	u32 i;
12338 
12339 	for (i = 0; i < n/4; i++)
12340 		target[i] = be32_to_cpu(source[i]);
12341 }
12342 
12343 /*
12344    Ops array is stored in the following format:
12345    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12346  */
12347 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12348 {
12349 	const __be32 *source = (const __be32 *)_source;
12350 	struct raw_op *target = (struct raw_op *)_target;
12351 	u32 i, j, tmp;
12352 
12353 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
12354 		tmp = be32_to_cpu(source[j]);
12355 		target[i].op = (tmp >> 24) & 0xff;
12356 		target[i].offset = tmp & 0xffffff;
12357 		target[i].raw_data = be32_to_cpu(source[j + 1]);
12358 	}
12359 }
12360 
12361 /* IRO array is stored in the following format:
12362  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12363  */
12364 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12365 {
12366 	const __be32 *source = (const __be32 *)_source;
12367 	struct iro *target = (struct iro *)_target;
12368 	u32 i, j, tmp;
12369 
12370 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12371 		target[i].base = be32_to_cpu(source[j]);
12372 		j++;
12373 		tmp = be32_to_cpu(source[j]);
12374 		target[i].m1 = (tmp >> 16) & 0xffff;
12375 		target[i].m2 = tmp & 0xffff;
12376 		j++;
12377 		tmp = be32_to_cpu(source[j]);
12378 		target[i].m3 = (tmp >> 16) & 0xffff;
12379 		target[i].size = tmp & 0xffff;
12380 		j++;
12381 	}
12382 }
12383 
12384 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12385 {
12386 	const __be16 *source = (const __be16 *)_source;
12387 	u16 *target = (u16 *)_target;
12388 	u32 i;
12389 
12390 	for (i = 0; i < n/2; i++)
12391 		target[i] = be16_to_cpu(source[i]);
12392 }
12393 
12394 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
12395 do {									\
12396 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
12397 	bp->arr = kmalloc(len, GFP_KERNEL);				\
12398 	if (!bp->arr)							\
12399 		goto lbl;						\
12400 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
12401 	     (u8 *)bp->arr, len);					\
12402 } while (0)
12403 
12404 static int bnx2x_init_firmware(struct bnx2x *bp)
12405 {
12406 	const char *fw_file_name;
12407 	struct bnx2x_fw_file_hdr *fw_hdr;
12408 	int rc;
12409 
12410 	if (bp->firmware)
12411 		return 0;
12412 
12413 	if (CHIP_IS_E1(bp))
12414 		fw_file_name = FW_FILE_NAME_E1;
12415 	else if (CHIP_IS_E1H(bp))
12416 		fw_file_name = FW_FILE_NAME_E1H;
12417 	else if (!CHIP_IS_E1x(bp))
12418 		fw_file_name = FW_FILE_NAME_E2;
12419 	else {
12420 		BNX2X_ERR("Unsupported chip revision\n");
12421 		return -EINVAL;
12422 	}
12423 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12424 
12425 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12426 	if (rc) {
12427 		BNX2X_ERR("Can't load firmware file %s\n",
12428 			  fw_file_name);
12429 		goto request_firmware_exit;
12430 	}
12431 
12432 	rc = bnx2x_check_firmware(bp);
12433 	if (rc) {
12434 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12435 		goto request_firmware_exit;
12436 	}
12437 
12438 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12439 
12440 	/* Initialize the pointers to the init arrays */
12441 	/* Blob */
12442 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12443 
12444 	/* Opcodes */
12445 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12446 
12447 	/* Offsets */
12448 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12449 			    be16_to_cpu_n);
12450 
12451 	/* STORMs firmware */
12452 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12453 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12454 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
12455 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12456 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12457 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12458 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
12459 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
12460 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12461 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12462 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
12463 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12464 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12465 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12466 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
12467 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
12468 	/* IRO */
12469 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12470 
12471 	return 0;
12472 
12473 iro_alloc_err:
12474 	kfree(bp->init_ops_offsets);
12475 init_offsets_alloc_err:
12476 	kfree(bp->init_ops);
12477 init_ops_alloc_err:
12478 	kfree(bp->init_data);
12479 request_firmware_exit:
12480 	release_firmware(bp->firmware);
12481 	bp->firmware = NULL;
12482 
12483 	return rc;
12484 }
12485 
12486 static void bnx2x_release_firmware(struct bnx2x *bp)
12487 {
12488 	kfree(bp->init_ops_offsets);
12489 	kfree(bp->init_ops);
12490 	kfree(bp->init_data);
12491 	release_firmware(bp->firmware);
12492 	bp->firmware = NULL;
12493 }
12494 
12495 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12496 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12497 	.init_hw_cmn      = bnx2x_init_hw_common,
12498 	.init_hw_port     = bnx2x_init_hw_port,
12499 	.init_hw_func     = bnx2x_init_hw_func,
12500 
12501 	.reset_hw_cmn     = bnx2x_reset_common,
12502 	.reset_hw_port    = bnx2x_reset_port,
12503 	.reset_hw_func    = bnx2x_reset_func,
12504 
12505 	.gunzip_init      = bnx2x_gunzip_init,
12506 	.gunzip_end       = bnx2x_gunzip_end,
12507 
12508 	.init_fw          = bnx2x_init_firmware,
12509 	.release_fw       = bnx2x_release_firmware,
12510 };
12511 
12512 void bnx2x__init_func_obj(struct bnx2x *bp)
12513 {
12514 	/* Prepare DMAE related driver resources */
12515 	bnx2x_setup_dmae(bp);
12516 
12517 	bnx2x_init_func_obj(bp, &bp->func_obj,
12518 			    bnx2x_sp(bp, func_rdata),
12519 			    bnx2x_sp_mapping(bp, func_rdata),
12520 			    bnx2x_sp(bp, func_afex_rdata),
12521 			    bnx2x_sp_mapping(bp, func_afex_rdata),
12522 			    &bnx2x_func_sp_drv);
12523 }
12524 
12525 /* must be called after sriov-enable */
12526 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12527 {
12528 	int cid_count = BNX2X_L2_MAX_CID(bp);
12529 
12530 	if (IS_SRIOV(bp))
12531 		cid_count += BNX2X_VF_CIDS;
12532 
12533 	if (CNIC_SUPPORT(bp))
12534 		cid_count += CNIC_CID_MAX;
12535 
12536 	return roundup(cid_count, QM_CID_ROUND);
12537 }
12538 
12539 /**
12540  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12541  *
12542  * @dev:	pci device
12543  *
12544  */
12545 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev,
12546 				     int cnic_cnt, bool is_vf)
12547 {
12548 	int pos, index;
12549 	u16 control = 0;
12550 
12551 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
12552 
12553 	/*
12554 	 * If MSI-X is not supported - return number of SBs needed to support
12555 	 * one fast path queue: one FP queue + SB for CNIC
12556 	 */
12557 	if (!pos) {
12558 		dev_info(&pdev->dev, "no msix capability found\n");
12559 		return 1 + cnic_cnt;
12560 	}
12561 	dev_info(&pdev->dev, "msix capability found\n");
12562 
12563 	/*
12564 	 * The value in the PCI configuration space is the index of the last
12565 	 * entry, namely one less than the actual size of the table, which is
12566 	 * exactly what we want to return from this function: number of all SBs
12567 	 * without the default SB.
12568 	 * For VFs there is no default SB, then we return (index+1).
12569 	 */
12570 	pci_read_config_word(pdev, pos  + PCI_MSI_FLAGS, &control);
12571 
12572 	index = control & PCI_MSIX_FLAGS_QSIZE;
12573 
12574 	return is_vf ? index + 1 : index;
12575 }
12576 
12577 static int set_max_cos_est(int chip_id)
12578 {
12579 	switch (chip_id) {
12580 	case BCM57710:
12581 	case BCM57711:
12582 	case BCM57711E:
12583 		return BNX2X_MULTI_TX_COS_E1X;
12584 	case BCM57712:
12585 	case BCM57712_MF:
12586 	case BCM57712_VF:
12587 		return BNX2X_MULTI_TX_COS_E2_E3A0;
12588 	case BCM57800:
12589 	case BCM57800_MF:
12590 	case BCM57800_VF:
12591 	case BCM57810:
12592 	case BCM57810_MF:
12593 	case BCM57840_4_10:
12594 	case BCM57840_2_20:
12595 	case BCM57840_O:
12596 	case BCM57840_MFO:
12597 	case BCM57810_VF:
12598 	case BCM57840_MF:
12599 	case BCM57840_VF:
12600 	case BCM57811:
12601 	case BCM57811_MF:
12602 	case BCM57811_VF:
12603 		return BNX2X_MULTI_TX_COS_E3B0;
12604 		return 1;
12605 	default:
12606 		pr_err("Unknown board_type (%d), aborting\n", chip_id);
12607 		return -ENODEV;
12608 	}
12609 }
12610 
12611 static int set_is_vf(int chip_id)
12612 {
12613 	switch (chip_id) {
12614 	case BCM57712_VF:
12615 	case BCM57800_VF:
12616 	case BCM57810_VF:
12617 	case BCM57840_VF:
12618 	case BCM57811_VF:
12619 		return true;
12620 	default:
12621 		return false;
12622 	}
12623 }
12624 
12625 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
12626 
12627 static int bnx2x_init_one(struct pci_dev *pdev,
12628 				    const struct pci_device_id *ent)
12629 {
12630 	struct net_device *dev = NULL;
12631 	struct bnx2x *bp;
12632 	int pcie_width;
12633 	enum bnx2x_pci_bus_speed pcie_speed;
12634 	int rc, max_non_def_sbs;
12635 	int rx_count, tx_count, rss_count, doorbell_size;
12636 	int max_cos_est;
12637 	bool is_vf;
12638 	int cnic_cnt;
12639 
12640 	/* An estimated maximum supported CoS number according to the chip
12641 	 * version.
12642 	 * We will try to roughly estimate the maximum number of CoSes this chip
12643 	 * may support in order to minimize the memory allocated for Tx
12644 	 * netdev_queue's. This number will be accurately calculated during the
12645 	 * initialization of bp->max_cos based on the chip versions AND chip
12646 	 * revision in the bnx2x_init_bp().
12647 	 */
12648 	max_cos_est = set_max_cos_est(ent->driver_data);
12649 	if (max_cos_est < 0)
12650 		return max_cos_est;
12651 	is_vf = set_is_vf(ent->driver_data);
12652 	cnic_cnt = is_vf ? 0 : 1;
12653 
12654 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt, is_vf);
12655 
12656 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
12657 	rss_count = is_vf ? 1 : max_non_def_sbs - cnic_cnt;
12658 
12659 	if (rss_count < 1)
12660 		return -EINVAL;
12661 
12662 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12663 	rx_count = rss_count + cnic_cnt;
12664 
12665 	/* Maximum number of netdev Tx queues:
12666 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
12667 	 */
12668 	tx_count = rss_count * max_cos_est + cnic_cnt;
12669 
12670 	/* dev zeroed in init_etherdev */
12671 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
12672 	if (!dev)
12673 		return -ENOMEM;
12674 
12675 	bp = netdev_priv(dev);
12676 
12677 	bp->flags = 0;
12678 	if (is_vf)
12679 		bp->flags |= IS_VF_FLAG;
12680 
12681 	bp->igu_sb_cnt = max_non_def_sbs;
12682 	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
12683 	bp->msg_enable = debug;
12684 	bp->cnic_support = cnic_cnt;
12685 	bp->cnic_probe = bnx2x_cnic_probe;
12686 
12687 	pci_set_drvdata(pdev, dev);
12688 
12689 	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
12690 	if (rc < 0) {
12691 		free_netdev(dev);
12692 		return rc;
12693 	}
12694 
12695 	BNX2X_DEV_INFO("This is a %s function\n",
12696 		       IS_PF(bp) ? "physical" : "virtual");
12697 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
12698 	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
12699 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12700 		       tx_count, rx_count);
12701 
12702 	rc = bnx2x_init_bp(bp);
12703 	if (rc)
12704 		goto init_one_exit;
12705 
12706 	/* Map doorbells here as we need the real value of bp->max_cos which
12707 	 * is initialized in bnx2x_init_bp() to determine the number of
12708 	 * l2 connections.
12709 	 */
12710 	if (IS_VF(bp)) {
12711 		bp->doorbells = bnx2x_vf_doorbells(bp);
12712 		rc = bnx2x_vf_pci_alloc(bp);
12713 		if (rc)
12714 			goto init_one_exit;
12715 	} else {
12716 		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
12717 		if (doorbell_size > pci_resource_len(pdev, 2)) {
12718 			dev_err(&bp->pdev->dev,
12719 				"Cannot map doorbells, bar size too small, aborting\n");
12720 			rc = -ENOMEM;
12721 			goto init_one_exit;
12722 		}
12723 		bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
12724 						doorbell_size);
12725 	}
12726 	if (!bp->doorbells) {
12727 		dev_err(&bp->pdev->dev,
12728 			"Cannot map doorbell space, aborting\n");
12729 		rc = -ENOMEM;
12730 		goto init_one_exit;
12731 	}
12732 
12733 	if (IS_VF(bp)) {
12734 		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
12735 		if (rc)
12736 			goto init_one_exit;
12737 	}
12738 
12739 	/* Enable SRIOV if capability found in configuration space */
12740 	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
12741 	if (rc)
12742 		goto init_one_exit;
12743 
12744 	/* calc qm_cid_count */
12745 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
12746 	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
12747 
12748 	/* disable FCOE L2 queue for E1x*/
12749 	if (CHIP_IS_E1x(bp))
12750 		bp->flags |= NO_FCOE_FLAG;
12751 
12752 	/* Set bp->num_queues for MSI-X mode*/
12753 	bnx2x_set_num_queues(bp);
12754 
12755 	/* Configure interrupt mode: try to enable MSI-X/MSI if
12756 	 * needed.
12757 	 */
12758 	rc = bnx2x_set_int_mode(bp);
12759 	if (rc) {
12760 		dev_err(&pdev->dev, "Cannot set interrupts\n");
12761 		goto init_one_exit;
12762 	}
12763 	BNX2X_DEV_INFO("set interrupts successfully\n");
12764 
12765 	/* register the net device */
12766 	rc = register_netdev(dev);
12767 	if (rc) {
12768 		dev_err(&pdev->dev, "Cannot register net device\n");
12769 		goto init_one_exit;
12770 	}
12771 	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
12772 
12773 	if (!NO_FCOE(bp)) {
12774 		/* Add storage MAC address */
12775 		rtnl_lock();
12776 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12777 		rtnl_unlock();
12778 	}
12779 
12780 	bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
12781 	BNX2X_DEV_INFO("got pcie width %d and speed %d\n",
12782 		       pcie_width, pcie_speed);
12783 
12784 	BNX2X_DEV_INFO("%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12785 		       board_info[ent->driver_data].name,
12786 		       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
12787 		       pcie_width,
12788 		       pcie_speed == BNX2X_PCI_LINK_SPEED_2500 ? "2.5GHz" :
12789 		       pcie_speed == BNX2X_PCI_LINK_SPEED_5000 ? "5.0GHz" :
12790 		       pcie_speed == BNX2X_PCI_LINK_SPEED_8000 ? "8.0GHz" :
12791 		       "Unknown",
12792 		       dev->base_addr, bp->pdev->irq, dev->dev_addr);
12793 
12794 	return 0;
12795 
12796 init_one_exit:
12797 	if (bp->regview)
12798 		iounmap(bp->regview);
12799 
12800 	if (IS_PF(bp) && bp->doorbells)
12801 		iounmap(bp->doorbells);
12802 
12803 	free_netdev(dev);
12804 
12805 	if (atomic_read(&pdev->enable_cnt) == 1)
12806 		pci_release_regions(pdev);
12807 
12808 	pci_disable_device(pdev);
12809 	pci_set_drvdata(pdev, NULL);
12810 
12811 	return rc;
12812 }
12813 
12814 static void __bnx2x_remove(struct pci_dev *pdev,
12815 			   struct net_device *dev,
12816 			   struct bnx2x *bp,
12817 			   bool remove_netdev)
12818 {
12819 	/* Delete storage MAC address */
12820 	if (!NO_FCOE(bp)) {
12821 		rtnl_lock();
12822 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12823 		rtnl_unlock();
12824 	}
12825 
12826 #ifdef BCM_DCBNL
12827 	/* Delete app tlvs from dcbnl */
12828 	bnx2x_dcbnl_update_applist(bp, true);
12829 #endif
12830 
12831 	if (IS_PF(bp) &&
12832 	    !BP_NOMCP(bp) &&
12833 	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
12834 		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
12835 
12836 	/* Close the interface - either directly or implicitly */
12837 	if (remove_netdev) {
12838 		unregister_netdev(dev);
12839 	} else {
12840 		rtnl_lock();
12841 		dev_close(dev);
12842 		rtnl_unlock();
12843 	}
12844 
12845 	bnx2x_iov_remove_one(bp);
12846 
12847 	/* Power on: we can't let PCI layer write to us while we are in D3 */
12848 	if (IS_PF(bp))
12849 		bnx2x_set_power_state(bp, PCI_D0);
12850 
12851 	/* Disable MSI/MSI-X */
12852 	bnx2x_disable_msi(bp);
12853 
12854 	/* Power off */
12855 	if (IS_PF(bp))
12856 		bnx2x_set_power_state(bp, PCI_D3hot);
12857 
12858 	/* Make sure RESET task is not scheduled before continuing */
12859 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
12860 
12861 	/* send message via vfpf channel to release the resources of this vf */
12862 	if (IS_VF(bp))
12863 		bnx2x_vfpf_release(bp);
12864 
12865 	/* Assumes no further PCIe PM changes will occur */
12866 	if (system_state == SYSTEM_POWER_OFF) {
12867 		pci_wake_from_d3(pdev, bp->wol);
12868 		pci_set_power_state(pdev, PCI_D3hot);
12869 	}
12870 
12871 	if (bp->regview)
12872 		iounmap(bp->regview);
12873 
12874 	/* for vf doorbells are part of the regview and were unmapped along with
12875 	 * it. FW is only loaded by PF.
12876 	 */
12877 	if (IS_PF(bp)) {
12878 		if (bp->doorbells)
12879 			iounmap(bp->doorbells);
12880 
12881 		bnx2x_release_firmware(bp);
12882 	}
12883 	bnx2x_free_mem_bp(bp);
12884 
12885 	if (remove_netdev)
12886 		free_netdev(dev);
12887 
12888 	if (atomic_read(&pdev->enable_cnt) == 1)
12889 		pci_release_regions(pdev);
12890 
12891 	pci_disable_device(pdev);
12892 	pci_set_drvdata(pdev, NULL);
12893 }
12894 
12895 static void bnx2x_remove_one(struct pci_dev *pdev)
12896 {
12897 	struct net_device *dev = pci_get_drvdata(pdev);
12898 	struct bnx2x *bp;
12899 
12900 	if (!dev) {
12901 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
12902 		return;
12903 	}
12904 	bp = netdev_priv(dev);
12905 
12906 	__bnx2x_remove(pdev, dev, bp, true);
12907 }
12908 
12909 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
12910 {
12911 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
12912 
12913 	bp->rx_mode = BNX2X_RX_MODE_NONE;
12914 
12915 	if (CNIC_LOADED(bp))
12916 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
12917 
12918 	/* Stop Tx */
12919 	bnx2x_tx_disable(bp);
12920 	/* Delete all NAPI objects */
12921 	bnx2x_del_all_napi(bp);
12922 	if (CNIC_LOADED(bp))
12923 		bnx2x_del_all_napi_cnic(bp);
12924 	netdev_reset_tc(bp->dev);
12925 
12926 	del_timer_sync(&bp->timer);
12927 	cancel_delayed_work(&bp->sp_task);
12928 	cancel_delayed_work(&bp->period_task);
12929 
12930 	spin_lock_bh(&bp->stats_lock);
12931 	bp->stats_state = STATS_STATE_DISABLED;
12932 	spin_unlock_bh(&bp->stats_lock);
12933 
12934 	bnx2x_save_statistics(bp);
12935 
12936 	netif_carrier_off(bp->dev);
12937 
12938 	return 0;
12939 }
12940 
12941 /**
12942  * bnx2x_io_error_detected - called when PCI error is detected
12943  * @pdev: Pointer to PCI device
12944  * @state: The current pci connection state
12945  *
12946  * This function is called after a PCI bus error affecting
12947  * this device has been detected.
12948  */
12949 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
12950 						pci_channel_state_t state)
12951 {
12952 	struct net_device *dev = pci_get_drvdata(pdev);
12953 	struct bnx2x *bp = netdev_priv(dev);
12954 
12955 	rtnl_lock();
12956 
12957 	BNX2X_ERR("IO error detected\n");
12958 
12959 	netif_device_detach(dev);
12960 
12961 	if (state == pci_channel_io_perm_failure) {
12962 		rtnl_unlock();
12963 		return PCI_ERS_RESULT_DISCONNECT;
12964 	}
12965 
12966 	if (netif_running(dev))
12967 		bnx2x_eeh_nic_unload(bp);
12968 
12969 	bnx2x_prev_path_mark_eeh(bp);
12970 
12971 	pci_disable_device(pdev);
12972 
12973 	rtnl_unlock();
12974 
12975 	/* Request a slot reset */
12976 	return PCI_ERS_RESULT_NEED_RESET;
12977 }
12978 
12979 /**
12980  * bnx2x_io_slot_reset - called after the PCI bus has been reset
12981  * @pdev: Pointer to PCI device
12982  *
12983  * Restart the card from scratch, as if from a cold-boot.
12984  */
12985 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
12986 {
12987 	struct net_device *dev = pci_get_drvdata(pdev);
12988 	struct bnx2x *bp = netdev_priv(dev);
12989 	int i;
12990 
12991 	rtnl_lock();
12992 	BNX2X_ERR("IO slot reset initializing...\n");
12993 	if (pci_enable_device(pdev)) {
12994 		dev_err(&pdev->dev,
12995 			"Cannot re-enable PCI device after reset\n");
12996 		rtnl_unlock();
12997 		return PCI_ERS_RESULT_DISCONNECT;
12998 	}
12999 
13000 	pci_set_master(pdev);
13001 	pci_restore_state(pdev);
13002 	pci_save_state(pdev);
13003 
13004 	if (netif_running(dev))
13005 		bnx2x_set_power_state(bp, PCI_D0);
13006 
13007 	if (netif_running(dev)) {
13008 		BNX2X_ERR("IO slot reset --> driver unload\n");
13009 
13010 		/* MCP should have been reset; Need to wait for validity */
13011 		bnx2x_init_shmem(bp);
13012 
13013 		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13014 			u32 v;
13015 
13016 			v = SHMEM2_RD(bp,
13017 				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13018 			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13019 				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13020 		}
13021 		bnx2x_drain_tx_queues(bp);
13022 		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13023 		bnx2x_netif_stop(bp, 1);
13024 		bnx2x_free_irq(bp);
13025 
13026 		/* Report UNLOAD_DONE to MCP */
13027 		bnx2x_send_unload_done(bp, true);
13028 
13029 		bp->sp_state = 0;
13030 		bp->port.pmf = 0;
13031 
13032 		bnx2x_prev_unload(bp);
13033 
13034 		/* We should have reseted the engine, so It's fair to
13035 		 * assume the FW will no longer write to the bnx2x driver.
13036 		 */
13037 		bnx2x_squeeze_objects(bp);
13038 		bnx2x_free_skbs(bp);
13039 		for_each_rx_queue(bp, i)
13040 			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13041 		bnx2x_free_fp_mem(bp);
13042 		bnx2x_free_mem(bp);
13043 
13044 		bp->state = BNX2X_STATE_CLOSED;
13045 	}
13046 
13047 	rtnl_unlock();
13048 
13049 	return PCI_ERS_RESULT_RECOVERED;
13050 }
13051 
13052 /**
13053  * bnx2x_io_resume - called when traffic can start flowing again
13054  * @pdev: Pointer to PCI device
13055  *
13056  * This callback is called when the error recovery driver tells us that
13057  * its OK to resume normal operation.
13058  */
13059 static void bnx2x_io_resume(struct pci_dev *pdev)
13060 {
13061 	struct net_device *dev = pci_get_drvdata(pdev);
13062 	struct bnx2x *bp = netdev_priv(dev);
13063 
13064 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13065 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13066 		return;
13067 	}
13068 
13069 	rtnl_lock();
13070 
13071 	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13072 							DRV_MSG_SEQ_NUMBER_MASK;
13073 
13074 	if (netif_running(dev))
13075 		bnx2x_nic_load(bp, LOAD_NORMAL);
13076 
13077 	netif_device_attach(dev);
13078 
13079 	rtnl_unlock();
13080 }
13081 
13082 static const struct pci_error_handlers bnx2x_err_handler = {
13083 	.error_detected = bnx2x_io_error_detected,
13084 	.slot_reset     = bnx2x_io_slot_reset,
13085 	.resume         = bnx2x_io_resume,
13086 };
13087 
13088 static void bnx2x_shutdown(struct pci_dev *pdev)
13089 {
13090 	struct net_device *dev = pci_get_drvdata(pdev);
13091 	struct bnx2x *bp;
13092 
13093 	if (!dev)
13094 		return;
13095 
13096 	bp = netdev_priv(dev);
13097 	if (!bp)
13098 		return;
13099 
13100 	rtnl_lock();
13101 	netif_device_detach(dev);
13102 	rtnl_unlock();
13103 
13104 	/* Don't remove the netdevice, as there are scenarios which will cause
13105 	 * the kernel to hang, e.g., when trying to remove bnx2i while the
13106 	 * rootfs is mounted from SAN.
13107 	 */
13108 	__bnx2x_remove(pdev, dev, bp, false);
13109 }
13110 
13111 static struct pci_driver bnx2x_pci_driver = {
13112 	.name        = DRV_MODULE_NAME,
13113 	.id_table    = bnx2x_pci_tbl,
13114 	.probe       = bnx2x_init_one,
13115 	.remove      = bnx2x_remove_one,
13116 	.suspend     = bnx2x_suspend,
13117 	.resume      = bnx2x_resume,
13118 	.err_handler = &bnx2x_err_handler,
13119 #ifdef CONFIG_BNX2X_SRIOV
13120 	.sriov_configure = bnx2x_sriov_configure,
13121 #endif
13122 	.shutdown    = bnx2x_shutdown,
13123 };
13124 
13125 static int __init bnx2x_init(void)
13126 {
13127 	int ret;
13128 
13129 	pr_info("%s", version);
13130 
13131 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
13132 	if (bnx2x_wq == NULL) {
13133 		pr_err("Cannot create workqueue\n");
13134 		return -ENOMEM;
13135 	}
13136 
13137 	ret = pci_register_driver(&bnx2x_pci_driver);
13138 	if (ret) {
13139 		pr_err("Cannot register driver\n");
13140 		destroy_workqueue(bnx2x_wq);
13141 	}
13142 	return ret;
13143 }
13144 
13145 static void __exit bnx2x_cleanup(void)
13146 {
13147 	struct list_head *pos, *q;
13148 
13149 	pci_unregister_driver(&bnx2x_pci_driver);
13150 
13151 	destroy_workqueue(bnx2x_wq);
13152 
13153 	/* Free globally allocated resources */
13154 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
13155 		struct bnx2x_prev_path_list *tmp =
13156 			list_entry(pos, struct bnx2x_prev_path_list, list);
13157 		list_del(pos);
13158 		kfree(tmp);
13159 	}
13160 }
13161 
13162 void bnx2x_notify_link_changed(struct bnx2x *bp)
13163 {
13164 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13165 }
13166 
13167 module_init(bnx2x_init);
13168 module_exit(bnx2x_cleanup);
13169 
13170 /**
13171  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13172  *
13173  * @bp:		driver handle
13174  * @set:	set or clear the CAM entry
13175  *
13176  * This function will wait until the ramrod completion returns.
13177  * Return 0 if success, -ENODEV if ramrod doesn't return.
13178  */
13179 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13180 {
13181 	unsigned long ramrod_flags = 0;
13182 
13183 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13184 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13185 				 &bp->iscsi_l2_mac_obj, true,
13186 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13187 }
13188 
13189 /* count denotes the number of new completions we have seen */
13190 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13191 {
13192 	struct eth_spe *spe;
13193 	int cxt_index, cxt_offset;
13194 
13195 #ifdef BNX2X_STOP_ON_ERROR
13196 	if (unlikely(bp->panic))
13197 		return;
13198 #endif
13199 
13200 	spin_lock_bh(&bp->spq_lock);
13201 	BUG_ON(bp->cnic_spq_pending < count);
13202 	bp->cnic_spq_pending -= count;
13203 
13204 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13205 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13206 				& SPE_HDR_CONN_TYPE) >>
13207 				SPE_HDR_CONN_TYPE_SHIFT;
13208 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13209 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13210 
13211 		/* Set validation for iSCSI L2 client before sending SETUP
13212 		 *  ramrod
13213 		 */
13214 		if (type == ETH_CONNECTION_TYPE) {
13215 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13216 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13217 					ILT_PAGE_CIDS;
13218 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13219 					(cxt_index * ILT_PAGE_CIDS);
13220 				bnx2x_set_ctx_validation(bp,
13221 					&bp->context[cxt_index].
13222 							 vcxt[cxt_offset].eth,
13223 					BNX2X_ISCSI_ETH_CID(bp));
13224 			}
13225 		}
13226 
13227 		/*
13228 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
13229 		 * and in the air. We also check that number of outstanding
13230 		 * COMMON ramrods is not more than the EQ and SPQ can
13231 		 * accommodate.
13232 		 */
13233 		if (type == ETH_CONNECTION_TYPE) {
13234 			if (!atomic_read(&bp->cq_spq_left))
13235 				break;
13236 			else
13237 				atomic_dec(&bp->cq_spq_left);
13238 		} else if (type == NONE_CONNECTION_TYPE) {
13239 			if (!atomic_read(&bp->eq_spq_left))
13240 				break;
13241 			else
13242 				atomic_dec(&bp->eq_spq_left);
13243 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
13244 			   (type == FCOE_CONNECTION_TYPE)) {
13245 			if (bp->cnic_spq_pending >=
13246 			    bp->cnic_eth_dev.max_kwqe_pending)
13247 				break;
13248 			else
13249 				bp->cnic_spq_pending++;
13250 		} else {
13251 			BNX2X_ERR("Unknown SPE type: %d\n", type);
13252 			bnx2x_panic();
13253 			break;
13254 		}
13255 
13256 		spe = bnx2x_sp_get_next(bp);
13257 		*spe = *bp->cnic_kwq_cons;
13258 
13259 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
13260 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
13261 
13262 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
13263 			bp->cnic_kwq_cons = bp->cnic_kwq;
13264 		else
13265 			bp->cnic_kwq_cons++;
13266 	}
13267 	bnx2x_sp_prod_update(bp);
13268 	spin_unlock_bh(&bp->spq_lock);
13269 }
13270 
13271 static int bnx2x_cnic_sp_queue(struct net_device *dev,
13272 			       struct kwqe_16 *kwqes[], u32 count)
13273 {
13274 	struct bnx2x *bp = netdev_priv(dev);
13275 	int i;
13276 
13277 #ifdef BNX2X_STOP_ON_ERROR
13278 	if (unlikely(bp->panic)) {
13279 		BNX2X_ERR("Can't post to SP queue while panic\n");
13280 		return -EIO;
13281 	}
13282 #endif
13283 
13284 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
13285 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
13286 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
13287 		return -EAGAIN;
13288 	}
13289 
13290 	spin_lock_bh(&bp->spq_lock);
13291 
13292 	for (i = 0; i < count; i++) {
13293 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
13294 
13295 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
13296 			break;
13297 
13298 		*bp->cnic_kwq_prod = *spe;
13299 
13300 		bp->cnic_kwq_pending++;
13301 
13302 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
13303 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
13304 		   spe->data.update_data_addr.hi,
13305 		   spe->data.update_data_addr.lo,
13306 		   bp->cnic_kwq_pending);
13307 
13308 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
13309 			bp->cnic_kwq_prod = bp->cnic_kwq;
13310 		else
13311 			bp->cnic_kwq_prod++;
13312 	}
13313 
13314 	spin_unlock_bh(&bp->spq_lock);
13315 
13316 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
13317 		bnx2x_cnic_sp_post(bp, 0);
13318 
13319 	return i;
13320 }
13321 
13322 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13323 {
13324 	struct cnic_ops *c_ops;
13325 	int rc = 0;
13326 
13327 	mutex_lock(&bp->cnic_mutex);
13328 	c_ops = rcu_dereference_protected(bp->cnic_ops,
13329 					  lockdep_is_held(&bp->cnic_mutex));
13330 	if (c_ops)
13331 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13332 	mutex_unlock(&bp->cnic_mutex);
13333 
13334 	return rc;
13335 }
13336 
13337 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13338 {
13339 	struct cnic_ops *c_ops;
13340 	int rc = 0;
13341 
13342 	rcu_read_lock();
13343 	c_ops = rcu_dereference(bp->cnic_ops);
13344 	if (c_ops)
13345 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13346 	rcu_read_unlock();
13347 
13348 	return rc;
13349 }
13350 
13351 /*
13352  * for commands that have no data
13353  */
13354 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
13355 {
13356 	struct cnic_ctl_info ctl = {0};
13357 
13358 	ctl.cmd = cmd;
13359 
13360 	return bnx2x_cnic_ctl_send(bp, &ctl);
13361 }
13362 
13363 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
13364 {
13365 	struct cnic_ctl_info ctl = {0};
13366 
13367 	/* first we tell CNIC and only then we count this as a completion */
13368 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
13369 	ctl.data.comp.cid = cid;
13370 	ctl.data.comp.error = err;
13371 
13372 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
13373 	bnx2x_cnic_sp_post(bp, 0);
13374 }
13375 
13376 /* Called with netif_addr_lock_bh() taken.
13377  * Sets an rx_mode config for an iSCSI ETH client.
13378  * Doesn't block.
13379  * Completion should be checked outside.
13380  */
13381 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
13382 {
13383 	unsigned long accept_flags = 0, ramrod_flags = 0;
13384 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13385 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
13386 
13387 	if (start) {
13388 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
13389 		 * because it's the only way for UIO Queue to accept
13390 		 * multicasts (in non-promiscuous mode only one Queue per
13391 		 * function will receive multicast packets (leading in our
13392 		 * case).
13393 		 */
13394 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
13395 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
13396 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
13397 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
13398 
13399 		/* Clear STOP_PENDING bit if START is requested */
13400 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
13401 
13402 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
13403 	} else
13404 		/* Clear START_PENDING bit if STOP is requested */
13405 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
13406 
13407 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
13408 		set_bit(sched_state, &bp->sp_state);
13409 	else {
13410 		__set_bit(RAMROD_RX, &ramrod_flags);
13411 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
13412 				    ramrod_flags);
13413 	}
13414 }
13415 
13416 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
13417 {
13418 	struct bnx2x *bp = netdev_priv(dev);
13419 	int rc = 0;
13420 
13421 	switch (ctl->cmd) {
13422 	case DRV_CTL_CTXTBL_WR_CMD: {
13423 		u32 index = ctl->data.io.offset;
13424 		dma_addr_t addr = ctl->data.io.dma_addr;
13425 
13426 		bnx2x_ilt_wr(bp, index, addr);
13427 		break;
13428 	}
13429 
13430 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
13431 		int count = ctl->data.credit.credit_count;
13432 
13433 		bnx2x_cnic_sp_post(bp, count);
13434 		break;
13435 	}
13436 
13437 	/* rtnl_lock is held.  */
13438 	case DRV_CTL_START_L2_CMD: {
13439 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13440 		unsigned long sp_bits = 0;
13441 
13442 		/* Configure the iSCSI classification object */
13443 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
13444 				   cp->iscsi_l2_client_id,
13445 				   cp->iscsi_l2_cid, BP_FUNC(bp),
13446 				   bnx2x_sp(bp, mac_rdata),
13447 				   bnx2x_sp_mapping(bp, mac_rdata),
13448 				   BNX2X_FILTER_MAC_PENDING,
13449 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
13450 				   &bp->macs_pool);
13451 
13452 		/* Set iSCSI MAC address */
13453 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
13454 		if (rc)
13455 			break;
13456 
13457 		mmiowb();
13458 		barrier();
13459 
13460 		/* Start accepting on iSCSI L2 ring */
13461 
13462 		netif_addr_lock_bh(dev);
13463 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
13464 		netif_addr_unlock_bh(dev);
13465 
13466 		/* bits to wait on */
13467 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13468 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
13469 
13470 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
13471 			BNX2X_ERR("rx_mode completion timed out!\n");
13472 
13473 		break;
13474 	}
13475 
13476 	/* rtnl_lock is held.  */
13477 	case DRV_CTL_STOP_L2_CMD: {
13478 		unsigned long sp_bits = 0;
13479 
13480 		/* Stop accepting on iSCSI L2 ring */
13481 		netif_addr_lock_bh(dev);
13482 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
13483 		netif_addr_unlock_bh(dev);
13484 
13485 		/* bits to wait on */
13486 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13487 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13488 
13489 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
13490 			BNX2X_ERR("rx_mode completion timed out!\n");
13491 
13492 		mmiowb();
13493 		barrier();
13494 
13495 		/* Unset iSCSI L2 MAC */
13496 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13497 					BNX2X_ISCSI_ETH_MAC, true);
13498 		break;
13499 	}
13500 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13501 		int count = ctl->data.credit.credit_count;
13502 
13503 		smp_mb__before_atomic_inc();
13504 		atomic_add(count, &bp->cq_spq_left);
13505 		smp_mb__after_atomic_inc();
13506 		break;
13507 	}
13508 	case DRV_CTL_ULP_REGISTER_CMD: {
13509 		int ulp_type = ctl->data.register_data.ulp_type;
13510 
13511 		if (CHIP_IS_E3(bp)) {
13512 			int idx = BP_FW_MB_IDX(bp);
13513 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13514 			int path = BP_PATH(bp);
13515 			int port = BP_PORT(bp);
13516 			int i;
13517 			u32 scratch_offset;
13518 			u32 *host_addr;
13519 
13520 			/* first write capability to shmem2 */
13521 			if (ulp_type == CNIC_ULP_ISCSI)
13522 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13523 			else if (ulp_type == CNIC_ULP_FCOE)
13524 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13525 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13526 
13527 			if ((ulp_type != CNIC_ULP_FCOE) ||
13528 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13529 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
13530 				break;
13531 
13532 			/* if reached here - should write fcoe capabilities */
13533 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13534 			if (!scratch_offset)
13535 				break;
13536 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
13537 						   fcoe_features[path][port]);
13538 			host_addr = (u32 *) &(ctl->data.register_data.
13539 					      fcoe_features);
13540 			for (i = 0; i < sizeof(struct fcoe_capabilities);
13541 			     i += 4)
13542 				REG_WR(bp, scratch_offset + i,
13543 				       *(host_addr + i/4));
13544 		}
13545 		break;
13546 	}
13547 
13548 	case DRV_CTL_ULP_UNREGISTER_CMD: {
13549 		int ulp_type = ctl->data.ulp_type;
13550 
13551 		if (CHIP_IS_E3(bp)) {
13552 			int idx = BP_FW_MB_IDX(bp);
13553 			u32 cap;
13554 
13555 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13556 			if (ulp_type == CNIC_ULP_ISCSI)
13557 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13558 			else if (ulp_type == CNIC_ULP_FCOE)
13559 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13560 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13561 		}
13562 		break;
13563 	}
13564 
13565 	default:
13566 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
13567 		rc = -EINVAL;
13568 	}
13569 
13570 	return rc;
13571 }
13572 
13573 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13574 {
13575 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13576 
13577 	if (bp->flags & USING_MSIX_FLAG) {
13578 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13579 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13580 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
13581 	} else {
13582 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13583 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13584 	}
13585 	if (!CHIP_IS_E1x(bp))
13586 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13587 	else
13588 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13589 
13590 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
13591 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13592 	cp->irq_arr[1].status_blk = bp->def_status_blk;
13593 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
13594 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
13595 
13596 	cp->num_irq = 2;
13597 }
13598 
13599 void bnx2x_setup_cnic_info(struct bnx2x *bp)
13600 {
13601 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13602 
13603 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13604 			     bnx2x_cid_ilt_lines(bp);
13605 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13606 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13607 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13608 
13609 	if (NO_ISCSI_OOO(bp))
13610 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13611 }
13612 
13613 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
13614 			       void *data)
13615 {
13616 	struct bnx2x *bp = netdev_priv(dev);
13617 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13618 	int rc;
13619 
13620 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
13621 
13622 	if (ops == NULL) {
13623 		BNX2X_ERR("NULL ops received\n");
13624 		return -EINVAL;
13625 	}
13626 
13627 	if (!CNIC_SUPPORT(bp)) {
13628 		BNX2X_ERR("Can't register CNIC when not supported\n");
13629 		return -EOPNOTSUPP;
13630 	}
13631 
13632 	if (!CNIC_LOADED(bp)) {
13633 		rc = bnx2x_load_cnic(bp);
13634 		if (rc) {
13635 			BNX2X_ERR("CNIC-related load failed\n");
13636 			return rc;
13637 		}
13638 	}
13639 
13640 	bp->cnic_enabled = true;
13641 
13642 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
13643 	if (!bp->cnic_kwq)
13644 		return -ENOMEM;
13645 
13646 	bp->cnic_kwq_cons = bp->cnic_kwq;
13647 	bp->cnic_kwq_prod = bp->cnic_kwq;
13648 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
13649 
13650 	bp->cnic_spq_pending = 0;
13651 	bp->cnic_kwq_pending = 0;
13652 
13653 	bp->cnic_data = data;
13654 
13655 	cp->num_irq = 0;
13656 	cp->drv_state |= CNIC_DRV_STATE_REGD;
13657 	cp->iro_arr = bp->iro_arr;
13658 
13659 	bnx2x_setup_cnic_irq_info(bp);
13660 
13661 	rcu_assign_pointer(bp->cnic_ops, ops);
13662 
13663 	return 0;
13664 }
13665 
13666 static int bnx2x_unregister_cnic(struct net_device *dev)
13667 {
13668 	struct bnx2x *bp = netdev_priv(dev);
13669 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13670 
13671 	mutex_lock(&bp->cnic_mutex);
13672 	cp->drv_state = 0;
13673 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
13674 	mutex_unlock(&bp->cnic_mutex);
13675 	synchronize_rcu();
13676 	bp->cnic_enabled = false;
13677 	kfree(bp->cnic_kwq);
13678 	bp->cnic_kwq = NULL;
13679 
13680 	return 0;
13681 }
13682 
13683 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
13684 {
13685 	struct bnx2x *bp = netdev_priv(dev);
13686 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13687 
13688 	/* If both iSCSI and FCoE are disabled - return NULL in
13689 	 * order to indicate CNIC that it should not try to work
13690 	 * with this device.
13691 	 */
13692 	if (NO_ISCSI(bp) && NO_FCOE(bp))
13693 		return NULL;
13694 
13695 	cp->drv_owner = THIS_MODULE;
13696 	cp->chip_id = CHIP_ID(bp);
13697 	cp->pdev = bp->pdev;
13698 	cp->io_base = bp->regview;
13699 	cp->io_base2 = bp->doorbells;
13700 	cp->max_kwqe_pending = 8;
13701 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
13702 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13703 			     bnx2x_cid_ilt_lines(bp);
13704 	cp->ctx_tbl_len = CNIC_ILT_LINES;
13705 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13706 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
13707 	cp->drv_ctl = bnx2x_drv_ctl;
13708 	cp->drv_register_cnic = bnx2x_register_cnic;
13709 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
13710 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13711 	cp->iscsi_l2_client_id =
13712 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13713 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13714 
13715 	if (NO_ISCSI_OOO(bp))
13716 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13717 
13718 	if (NO_ISCSI(bp))
13719 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
13720 
13721 	if (NO_FCOE(bp))
13722 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
13723 
13724 	BNX2X_DEV_INFO(
13725 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
13726 	   cp->ctx_blk_size,
13727 	   cp->ctx_tbl_offset,
13728 	   cp->ctx_tbl_len,
13729 	   cp->starting_cid);
13730 	return cp;
13731 }
13732 
13733 u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
13734 {
13735 	struct bnx2x *bp = fp->bp;
13736 	u32 offset = BAR_USTRORM_INTMEM;
13737 
13738 	if (IS_VF(bp))
13739 		return bnx2x_vf_ustorm_prods_offset(bp, fp);
13740 	else if (!CHIP_IS_E1x(bp))
13741 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
13742 	else
13743 		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
13744 
13745 	return offset;
13746 }
13747 
13748 /* called only on E1H or E2.
13749  * When pretending to be PF, the pretend value is the function number 0...7
13750  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
13751  * combination
13752  */
13753 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
13754 {
13755 	u32 pretend_reg;
13756 
13757 	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
13758 		return -1;
13759 
13760 	/* get my own pretend register */
13761 	pretend_reg = bnx2x_get_pretend_reg(bp);
13762 	REG_WR(bp, pretend_reg, pretend_func_val);
13763 	REG_RD(bp, pretend_reg);
13764 	return 0;
13765 }
13766