1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/aer.h>
31 #include <linux/init.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/bitops.h>
37 #include <linux/irq.h>
38 #include <linux/delay.h>
39 #include <asm/byteorder.h>
40 #include <linux/time.h>
41 #include <linux/ethtool.h>
42 #include <linux/mii.h>
43 #include <linux/if_vlan.h>
44 #include <linux/crash_dump.h>
45 #include <net/ip.h>
46 #include <net/ipv6.h>
47 #include <net/tcp.h>
48 #include <net/vxlan.h>
49 #include <net/checksum.h>
50 #include <net/ip6_checksum.h>
51 #include <linux/workqueue.h>
52 #include <linux/crc32.h>
53 #include <linux/crc32c.h>
54 #include <linux/prefetch.h>
55 #include <linux/zlib.h>
56 #include <linux/io.h>
57 #include <linux/semaphore.h>
58 #include <linux/stringify.h>
59 #include <linux/vmalloc.h>
60 
61 #include "bnx2x.h"
62 #include "bnx2x_init.h"
63 #include "bnx2x_init_ops.h"
64 #include "bnx2x_cmn.h"
65 #include "bnx2x_vfpf.h"
66 #include "bnx2x_dcb.h"
67 #include "bnx2x_sp.h"
68 #include <linux/firmware.h>
69 #include "bnx2x_fw_file_hdr.h"
70 /* FW files */
71 #define FW_FILE_VERSION					\
72 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
73 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
74 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
75 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
76 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
77 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
78 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
79 
80 /* Time in jiffies before concluding the transmitter is hung */
81 #define TX_TIMEOUT		(5*HZ)
82 
83 static char version[] =
84 	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
85 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
86 
87 MODULE_AUTHOR("Eliezer Tamir");
88 MODULE_DESCRIPTION("Broadcom NetXtreme II "
89 		   "BCM57710/57711/57711E/"
90 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
91 		   "57840/57840_MF Driver");
92 MODULE_LICENSE("GPL");
93 MODULE_VERSION(DRV_MODULE_VERSION);
94 MODULE_FIRMWARE(FW_FILE_NAME_E1);
95 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
96 MODULE_FIRMWARE(FW_FILE_NAME_E2);
97 
98 int bnx2x_num_queues;
99 module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
100 MODULE_PARM_DESC(num_queues,
101 		 " Set number of queues (default is as a number of CPUs)");
102 
103 static int disable_tpa;
104 module_param(disable_tpa, int, S_IRUGO);
105 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
106 
107 static int int_mode;
108 module_param(int_mode, int, S_IRUGO);
109 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
110 				"(1 INT#x; 2 MSI)");
111 
112 static int dropless_fc;
113 module_param(dropless_fc, int, S_IRUGO);
114 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
115 
116 static int mrrs = -1;
117 module_param(mrrs, int, S_IRUGO);
118 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
119 
120 static int debug;
121 module_param(debug, int, S_IRUGO);
122 MODULE_PARM_DESC(debug, " Default debug msglevel");
123 
124 static struct workqueue_struct *bnx2x_wq;
125 struct workqueue_struct *bnx2x_iov_wq;
126 
127 struct bnx2x_mac_vals {
128 	u32 xmac_addr;
129 	u32 xmac_val;
130 	u32 emac_addr;
131 	u32 emac_val;
132 	u32 umac_addr[2];
133 	u32 umac_val[2];
134 	u32 bmac_addr;
135 	u32 bmac_val[2];
136 };
137 
138 enum bnx2x_board_type {
139 	BCM57710 = 0,
140 	BCM57711,
141 	BCM57711E,
142 	BCM57712,
143 	BCM57712_MF,
144 	BCM57712_VF,
145 	BCM57800,
146 	BCM57800_MF,
147 	BCM57800_VF,
148 	BCM57810,
149 	BCM57810_MF,
150 	BCM57810_VF,
151 	BCM57840_4_10,
152 	BCM57840_2_20,
153 	BCM57840_MF,
154 	BCM57840_VF,
155 	BCM57811,
156 	BCM57811_MF,
157 	BCM57840_O,
158 	BCM57840_MFO,
159 	BCM57811_VF
160 };
161 
162 /* indexed by board_type, above */
163 static struct {
164 	char *name;
165 } board_info[] = {
166 	[BCM57710]	= { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
167 	[BCM57711]	= { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
168 	[BCM57711E]	= { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
169 	[BCM57712]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
170 	[BCM57712_MF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
171 	[BCM57712_VF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
172 	[BCM57800]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
173 	[BCM57800_MF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
174 	[BCM57800_VF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
175 	[BCM57810]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
176 	[BCM57810_MF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
177 	[BCM57810_VF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
178 	[BCM57840_4_10]	= { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
179 	[BCM57840_2_20]	= { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
180 	[BCM57840_MF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
181 	[BCM57840_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
182 	[BCM57811]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
183 	[BCM57811_MF]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
184 	[BCM57840_O]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
185 	[BCM57840_MFO]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
186 	[BCM57811_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
187 };
188 
189 #ifndef PCI_DEVICE_ID_NX2_57710
190 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57711
193 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57711E
196 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57712
199 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57712_MF
202 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57712_VF
205 #define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57800
208 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57800_MF
211 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57800_VF
214 #define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57810
217 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
218 #endif
219 #ifndef PCI_DEVICE_ID_NX2_57810_MF
220 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
221 #endif
222 #ifndef PCI_DEVICE_ID_NX2_57840_O
223 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
224 #endif
225 #ifndef PCI_DEVICE_ID_NX2_57810_VF
226 #define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
227 #endif
228 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
229 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
230 #endif
231 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
232 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
233 #endif
234 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
235 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
236 #endif
237 #ifndef PCI_DEVICE_ID_NX2_57840_MF
238 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
239 #endif
240 #ifndef PCI_DEVICE_ID_NX2_57840_VF
241 #define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
242 #endif
243 #ifndef PCI_DEVICE_ID_NX2_57811
244 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
245 #endif
246 #ifndef PCI_DEVICE_ID_NX2_57811_MF
247 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
248 #endif
249 #ifndef PCI_DEVICE_ID_NX2_57811_VF
250 #define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
251 #endif
252 
253 static const struct pci_device_id bnx2x_pci_tbl[] = {
254 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
255 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
256 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
257 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
258 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
259 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
260 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
261 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
262 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
263 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
264 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
265 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
266 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
267 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
268 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
269 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
270 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
271 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
272 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
273 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
274 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
275 	{ 0 }
276 };
277 
278 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
279 
280 /* Global resources for unloading a previously loaded device */
281 #define BNX2X_PREV_WAIT_NEEDED 1
282 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
283 static LIST_HEAD(bnx2x_prev_list);
284 
285 /* Forward declaration */
286 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
287 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
288 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
289 
290 /****************************************************************************
291 * General service functions
292 ****************************************************************************/
293 
294 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
295 
296 static void __storm_memset_dma_mapping(struct bnx2x *bp,
297 				       u32 addr, dma_addr_t mapping)
298 {
299 	REG_WR(bp,  addr, U64_LO(mapping));
300 	REG_WR(bp,  addr + 4, U64_HI(mapping));
301 }
302 
303 static void storm_memset_spq_addr(struct bnx2x *bp,
304 				  dma_addr_t mapping, u16 abs_fid)
305 {
306 	u32 addr = XSEM_REG_FAST_MEMORY +
307 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
308 
309 	__storm_memset_dma_mapping(bp, addr, mapping);
310 }
311 
312 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
313 				  u16 pf_id)
314 {
315 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
316 		pf_id);
317 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
318 		pf_id);
319 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
320 		pf_id);
321 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
322 		pf_id);
323 }
324 
325 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
326 				 u8 enable)
327 {
328 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
329 		enable);
330 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
331 		enable);
332 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
333 		enable);
334 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
335 		enable);
336 }
337 
338 static void storm_memset_eq_data(struct bnx2x *bp,
339 				 struct event_ring_data *eq_data,
340 				u16 pfid)
341 {
342 	size_t size = sizeof(struct event_ring_data);
343 
344 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
345 
346 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
347 }
348 
349 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
350 				 u16 pfid)
351 {
352 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
353 	REG_WR16(bp, addr, eq_prod);
354 }
355 
356 /* used only at init
357  * locking is done by mcp
358  */
359 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
360 {
361 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
362 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
363 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
364 			       PCICFG_VENDOR_ID_OFFSET);
365 }
366 
367 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
368 {
369 	u32 val;
370 
371 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
372 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
373 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
374 			       PCICFG_VENDOR_ID_OFFSET);
375 
376 	return val;
377 }
378 
379 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
380 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
381 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
382 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
383 #define DMAE_DP_DST_NONE	"dst_addr [none]"
384 
385 static void bnx2x_dp_dmae(struct bnx2x *bp,
386 			  struct dmae_command *dmae, int msglvl)
387 {
388 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
389 	int i;
390 
391 	switch (dmae->opcode & DMAE_COMMAND_DST) {
392 	case DMAE_CMD_DST_PCI:
393 		if (src_type == DMAE_CMD_SRC_PCI)
394 			DP(msglvl, "DMAE: opcode 0x%08x\n"
395 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
396 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
397 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
398 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
399 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
400 			   dmae->comp_val);
401 		else
402 			DP(msglvl, "DMAE: opcode 0x%08x\n"
403 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
404 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
405 			   dmae->opcode, dmae->src_addr_lo >> 2,
406 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
407 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
408 			   dmae->comp_val);
409 		break;
410 	case DMAE_CMD_DST_GRC:
411 		if (src_type == DMAE_CMD_SRC_PCI)
412 			DP(msglvl, "DMAE: opcode 0x%08x\n"
413 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
414 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
415 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
416 			   dmae->len, dmae->dst_addr_lo >> 2,
417 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
418 			   dmae->comp_val);
419 		else
420 			DP(msglvl, "DMAE: opcode 0x%08x\n"
421 			   "src [%08x], len [%d*4], dst [%08x]\n"
422 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
423 			   dmae->opcode, dmae->src_addr_lo >> 2,
424 			   dmae->len, dmae->dst_addr_lo >> 2,
425 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
426 			   dmae->comp_val);
427 		break;
428 	default:
429 		if (src_type == DMAE_CMD_SRC_PCI)
430 			DP(msglvl, "DMAE: opcode 0x%08x\n"
431 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
432 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
433 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
434 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
435 			   dmae->comp_val);
436 		else
437 			DP(msglvl, "DMAE: opcode 0x%08x\n"
438 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
439 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
440 			   dmae->opcode, dmae->src_addr_lo >> 2,
441 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
442 			   dmae->comp_val);
443 		break;
444 	}
445 
446 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
447 		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
448 		   i, *(((u32 *)dmae) + i));
449 }
450 
451 /* copy command into DMAE command memory and set DMAE command go */
452 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
453 {
454 	u32 cmd_offset;
455 	int i;
456 
457 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
458 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
459 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
460 	}
461 	REG_WR(bp, dmae_reg_go_c[idx], 1);
462 }
463 
464 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
465 {
466 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
467 			   DMAE_CMD_C_ENABLE);
468 }
469 
470 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
471 {
472 	return opcode & ~DMAE_CMD_SRC_RESET;
473 }
474 
475 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
476 			     bool with_comp, u8 comp_type)
477 {
478 	u32 opcode = 0;
479 
480 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
481 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
482 
483 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
484 
485 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
486 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
487 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
488 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
489 
490 #ifdef __BIG_ENDIAN
491 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
492 #else
493 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
494 #endif
495 	if (with_comp)
496 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
497 	return opcode;
498 }
499 
500 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
501 				      struct dmae_command *dmae,
502 				      u8 src_type, u8 dst_type)
503 {
504 	memset(dmae, 0, sizeof(struct dmae_command));
505 
506 	/* set the opcode */
507 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
508 					 true, DMAE_COMP_PCI);
509 
510 	/* fill in the completion parameters */
511 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
512 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
513 	dmae->comp_val = DMAE_COMP_VAL;
514 }
515 
516 /* issue a dmae command over the init-channel and wait for completion */
517 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
518 			       u32 *comp)
519 {
520 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
521 	int rc = 0;
522 
523 	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
524 
525 	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
526 	 * as long as this code is called both from syscall context and
527 	 * from ndo_set_rx_mode() flow that may be called from BH.
528 	 */
529 
530 	spin_lock_bh(&bp->dmae_lock);
531 
532 	/* reset completion */
533 	*comp = 0;
534 
535 	/* post the command on the channel used for initializations */
536 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
537 
538 	/* wait for completion */
539 	udelay(5);
540 	while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
541 
542 		if (!cnt ||
543 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
544 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
545 			BNX2X_ERR("DMAE timeout!\n");
546 			rc = DMAE_TIMEOUT;
547 			goto unlock;
548 		}
549 		cnt--;
550 		udelay(50);
551 	}
552 	if (*comp & DMAE_PCI_ERR_FLAG) {
553 		BNX2X_ERR("DMAE PCI error!\n");
554 		rc = DMAE_PCI_ERROR;
555 	}
556 
557 unlock:
558 
559 	spin_unlock_bh(&bp->dmae_lock);
560 
561 	return rc;
562 }
563 
564 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
565 		      u32 len32)
566 {
567 	int rc;
568 	struct dmae_command dmae;
569 
570 	if (!bp->dmae_ready) {
571 		u32 *data = bnx2x_sp(bp, wb_data[0]);
572 
573 		if (CHIP_IS_E1(bp))
574 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
575 		else
576 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
577 		return;
578 	}
579 
580 	/* set opcode and fixed command fields */
581 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
582 
583 	/* fill in addresses and len */
584 	dmae.src_addr_lo = U64_LO(dma_addr);
585 	dmae.src_addr_hi = U64_HI(dma_addr);
586 	dmae.dst_addr_lo = dst_addr >> 2;
587 	dmae.dst_addr_hi = 0;
588 	dmae.len = len32;
589 
590 	/* issue the command and wait for completion */
591 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
592 	if (rc) {
593 		BNX2X_ERR("DMAE returned failure %d\n", rc);
594 #ifdef BNX2X_STOP_ON_ERROR
595 		bnx2x_panic();
596 #endif
597 	}
598 }
599 
600 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
601 {
602 	int rc;
603 	struct dmae_command dmae;
604 
605 	if (!bp->dmae_ready) {
606 		u32 *data = bnx2x_sp(bp, wb_data[0]);
607 		int i;
608 
609 		if (CHIP_IS_E1(bp))
610 			for (i = 0; i < len32; i++)
611 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
612 		else
613 			for (i = 0; i < len32; i++)
614 				data[i] = REG_RD(bp, src_addr + i*4);
615 
616 		return;
617 	}
618 
619 	/* set opcode and fixed command fields */
620 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
621 
622 	/* fill in addresses and len */
623 	dmae.src_addr_lo = src_addr >> 2;
624 	dmae.src_addr_hi = 0;
625 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
626 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
627 	dmae.len = len32;
628 
629 	/* issue the command and wait for completion */
630 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
631 	if (rc) {
632 		BNX2X_ERR("DMAE returned failure %d\n", rc);
633 #ifdef BNX2X_STOP_ON_ERROR
634 		bnx2x_panic();
635 #endif
636 	}
637 }
638 
639 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
640 				      u32 addr, u32 len)
641 {
642 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
643 	int offset = 0;
644 
645 	while (len > dmae_wr_max) {
646 		bnx2x_write_dmae(bp, phys_addr + offset,
647 				 addr + offset, dmae_wr_max);
648 		offset += dmae_wr_max * 4;
649 		len -= dmae_wr_max;
650 	}
651 
652 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
653 }
654 
655 enum storms {
656 	   XSTORM,
657 	   TSTORM,
658 	   CSTORM,
659 	   USTORM,
660 	   MAX_STORMS
661 };
662 
663 #define STORMS_NUM 4
664 #define REGS_IN_ENTRY 4
665 
666 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
667 					      enum storms storm,
668 					      int entry)
669 {
670 	switch (storm) {
671 	case XSTORM:
672 		return XSTORM_ASSERT_LIST_OFFSET(entry);
673 	case TSTORM:
674 		return TSTORM_ASSERT_LIST_OFFSET(entry);
675 	case CSTORM:
676 		return CSTORM_ASSERT_LIST_OFFSET(entry);
677 	case USTORM:
678 		return USTORM_ASSERT_LIST_OFFSET(entry);
679 	case MAX_STORMS:
680 	default:
681 		BNX2X_ERR("unknown storm\n");
682 	}
683 	return -EINVAL;
684 }
685 
686 static int bnx2x_mc_assert(struct bnx2x *bp)
687 {
688 	char last_idx;
689 	int i, j, rc = 0;
690 	enum storms storm;
691 	u32 regs[REGS_IN_ENTRY];
692 	u32 bar_storm_intmem[STORMS_NUM] = {
693 		BAR_XSTRORM_INTMEM,
694 		BAR_TSTRORM_INTMEM,
695 		BAR_CSTRORM_INTMEM,
696 		BAR_USTRORM_INTMEM
697 	};
698 	u32 storm_assert_list_index[STORMS_NUM] = {
699 		XSTORM_ASSERT_LIST_INDEX_OFFSET,
700 		TSTORM_ASSERT_LIST_INDEX_OFFSET,
701 		CSTORM_ASSERT_LIST_INDEX_OFFSET,
702 		USTORM_ASSERT_LIST_INDEX_OFFSET
703 	};
704 	char *storms_string[STORMS_NUM] = {
705 		"XSTORM",
706 		"TSTORM",
707 		"CSTORM",
708 		"USTORM"
709 	};
710 
711 	for (storm = XSTORM; storm < MAX_STORMS; storm++) {
712 		last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
713 				   storm_assert_list_index[storm]);
714 		if (last_idx)
715 			BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
716 				  storms_string[storm], last_idx);
717 
718 		/* print the asserts */
719 		for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
720 			/* read a single assert entry */
721 			for (j = 0; j < REGS_IN_ENTRY; j++)
722 				regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
723 					  bnx2x_get_assert_list_entry(bp,
724 								      storm,
725 								      i) +
726 					  sizeof(u32) * j);
727 
728 			/* log entry if it contains a valid assert */
729 			if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
730 				BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
731 					  storms_string[storm], i, regs[3],
732 					  regs[2], regs[1], regs[0]);
733 				rc++;
734 			} else {
735 				break;
736 			}
737 		}
738 	}
739 
740 	BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
741 		  CHIP_IS_E1(bp) ? "everest1" :
742 		  CHIP_IS_E1H(bp) ? "everest1h" :
743 		  CHIP_IS_E2(bp) ? "everest2" : "everest3",
744 		  BCM_5710_FW_MAJOR_VERSION,
745 		  BCM_5710_FW_MINOR_VERSION,
746 		  BCM_5710_FW_REVISION_VERSION);
747 
748 	return rc;
749 }
750 
751 #define MCPR_TRACE_BUFFER_SIZE	(0x800)
752 #define SCRATCH_BUFFER_SIZE(bp)	\
753 	(CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
754 
755 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
756 {
757 	u32 addr, val;
758 	u32 mark, offset;
759 	__be32 data[9];
760 	int word;
761 	u32 trace_shmem_base;
762 	if (BP_NOMCP(bp)) {
763 		BNX2X_ERR("NO MCP - can not dump\n");
764 		return;
765 	}
766 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
767 		(bp->common.bc_ver & 0xff0000) >> 16,
768 		(bp->common.bc_ver & 0xff00) >> 8,
769 		(bp->common.bc_ver & 0xff));
770 
771 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
772 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
773 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
774 
775 	if (BP_PATH(bp) == 0)
776 		trace_shmem_base = bp->common.shmem_base;
777 	else
778 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
779 
780 	/* sanity */
781 	if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
782 	    trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
783 				SCRATCH_BUFFER_SIZE(bp)) {
784 		BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
785 			  trace_shmem_base);
786 		return;
787 	}
788 
789 	addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
790 
791 	/* validate TRCB signature */
792 	mark = REG_RD(bp, addr);
793 	if (mark != MFW_TRACE_SIGNATURE) {
794 		BNX2X_ERR("Trace buffer signature is missing.");
795 		return ;
796 	}
797 
798 	/* read cyclic buffer pointer */
799 	addr += 4;
800 	mark = REG_RD(bp, addr);
801 	mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
802 	if (mark >= trace_shmem_base || mark < addr + 4) {
803 		BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
804 		return;
805 	}
806 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
807 
808 	printk("%s", lvl);
809 
810 	/* dump buffer after the mark */
811 	for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
812 		for (word = 0; word < 8; word++)
813 			data[word] = htonl(REG_RD(bp, offset + 4*word));
814 		data[8] = 0x0;
815 		pr_cont("%s", (char *)data);
816 	}
817 
818 	/* dump buffer before the mark */
819 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
820 		for (word = 0; word < 8; word++)
821 			data[word] = htonl(REG_RD(bp, offset + 4*word));
822 		data[8] = 0x0;
823 		pr_cont("%s", (char *)data);
824 	}
825 	printk("%s" "end of fw dump\n", lvl);
826 }
827 
828 static void bnx2x_fw_dump(struct bnx2x *bp)
829 {
830 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
831 }
832 
833 static void bnx2x_hc_int_disable(struct bnx2x *bp)
834 {
835 	int port = BP_PORT(bp);
836 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
837 	u32 val = REG_RD(bp, addr);
838 
839 	/* in E1 we must use only PCI configuration space to disable
840 	 * MSI/MSIX capability
841 	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
842 	 */
843 	if (CHIP_IS_E1(bp)) {
844 		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
845 		 * Use mask register to prevent from HC sending interrupts
846 		 * after we exit the function
847 		 */
848 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
849 
850 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
851 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
852 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
853 	} else
854 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
855 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
856 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
857 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
858 
859 	DP(NETIF_MSG_IFDOWN,
860 	   "write %x to HC %d (addr 0x%x)\n",
861 	   val, port, addr);
862 
863 	/* flush all outstanding writes */
864 	mmiowb();
865 
866 	REG_WR(bp, addr, val);
867 	if (REG_RD(bp, addr) != val)
868 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
869 }
870 
871 static void bnx2x_igu_int_disable(struct bnx2x *bp)
872 {
873 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
874 
875 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
876 		 IGU_PF_CONF_INT_LINE_EN |
877 		 IGU_PF_CONF_ATTN_BIT_EN);
878 
879 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
880 
881 	/* flush all outstanding writes */
882 	mmiowb();
883 
884 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
885 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
886 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
887 }
888 
889 static void bnx2x_int_disable(struct bnx2x *bp)
890 {
891 	if (bp->common.int_block == INT_BLOCK_HC)
892 		bnx2x_hc_int_disable(bp);
893 	else
894 		bnx2x_igu_int_disable(bp);
895 }
896 
897 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
898 {
899 	int i;
900 	u16 j;
901 	struct hc_sp_status_block_data sp_sb_data;
902 	int func = BP_FUNC(bp);
903 #ifdef BNX2X_STOP_ON_ERROR
904 	u16 start = 0, end = 0;
905 	u8 cos;
906 #endif
907 	if (IS_PF(bp) && disable_int)
908 		bnx2x_int_disable(bp);
909 
910 	bp->stats_state = STATS_STATE_DISABLED;
911 	bp->eth_stats.unrecoverable_error++;
912 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
913 
914 	BNX2X_ERR("begin crash dump -----------------\n");
915 
916 	/* Indices */
917 	/* Common */
918 	if (IS_PF(bp)) {
919 		struct host_sp_status_block *def_sb = bp->def_status_blk;
920 		int data_size, cstorm_offset;
921 
922 		BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
923 			  bp->def_idx, bp->def_att_idx, bp->attn_state,
924 			  bp->spq_prod_idx, bp->stats_counter);
925 		BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
926 			  def_sb->atten_status_block.attn_bits,
927 			  def_sb->atten_status_block.attn_bits_ack,
928 			  def_sb->atten_status_block.status_block_id,
929 			  def_sb->atten_status_block.attn_bits_index);
930 		BNX2X_ERR("     def (");
931 		for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
932 			pr_cont("0x%x%s",
933 				def_sb->sp_sb.index_values[i],
934 				(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
935 
936 		data_size = sizeof(struct hc_sp_status_block_data) /
937 			    sizeof(u32);
938 		cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
939 		for (i = 0; i < data_size; i++)
940 			*((u32 *)&sp_sb_data + i) =
941 				REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
942 					   i * sizeof(u32));
943 
944 		pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
945 			sp_sb_data.igu_sb_id,
946 			sp_sb_data.igu_seg_id,
947 			sp_sb_data.p_func.pf_id,
948 			sp_sb_data.p_func.vnic_id,
949 			sp_sb_data.p_func.vf_id,
950 			sp_sb_data.p_func.vf_valid,
951 			sp_sb_data.state);
952 	}
953 
954 	for_each_eth_queue(bp, i) {
955 		struct bnx2x_fastpath *fp = &bp->fp[i];
956 		int loop;
957 		struct hc_status_block_data_e2 sb_data_e2;
958 		struct hc_status_block_data_e1x sb_data_e1x;
959 		struct hc_status_block_sm  *hc_sm_p =
960 			CHIP_IS_E1x(bp) ?
961 			sb_data_e1x.common.state_machine :
962 			sb_data_e2.common.state_machine;
963 		struct hc_index_data *hc_index_p =
964 			CHIP_IS_E1x(bp) ?
965 			sb_data_e1x.index_data :
966 			sb_data_e2.index_data;
967 		u8 data_size, cos;
968 		u32 *sb_data_p;
969 		struct bnx2x_fp_txdata txdata;
970 
971 		if (!bp->fp)
972 			break;
973 
974 		if (!fp->rx_cons_sb)
975 			continue;
976 
977 		/* Rx */
978 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
979 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
980 			  fp->rx_comp_prod,
981 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
982 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
983 			  fp->rx_sge_prod, fp->last_max_sge,
984 			  le16_to_cpu(fp->fp_hc_idx));
985 
986 		/* Tx */
987 		for_each_cos_in_tx_queue(fp, cos)
988 		{
989 			if (!fp->txdata_ptr[cos])
990 				break;
991 
992 			txdata = *fp->txdata_ptr[cos];
993 
994 			if (!txdata.tx_cons_sb)
995 				continue;
996 
997 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
998 				  i, txdata.tx_pkt_prod,
999 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
1000 				  txdata.tx_bd_cons,
1001 				  le16_to_cpu(*txdata.tx_cons_sb));
1002 		}
1003 
1004 		loop = CHIP_IS_E1x(bp) ?
1005 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1006 
1007 		/* host sb data */
1008 
1009 		if (IS_FCOE_FP(fp))
1010 			continue;
1011 
1012 		BNX2X_ERR("     run indexes (");
1013 		for (j = 0; j < HC_SB_MAX_SM; j++)
1014 			pr_cont("0x%x%s",
1015 			       fp->sb_running_index[j],
1016 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1017 
1018 		BNX2X_ERR("     indexes (");
1019 		for (j = 0; j < loop; j++)
1020 			pr_cont("0x%x%s",
1021 			       fp->sb_index_values[j],
1022 			       (j == loop - 1) ? ")" : " ");
1023 
1024 		/* VF cannot access FW refelection for status block */
1025 		if (IS_VF(bp))
1026 			continue;
1027 
1028 		/* fw sb data */
1029 		data_size = CHIP_IS_E1x(bp) ?
1030 			sizeof(struct hc_status_block_data_e1x) :
1031 			sizeof(struct hc_status_block_data_e2);
1032 		data_size /= sizeof(u32);
1033 		sb_data_p = CHIP_IS_E1x(bp) ?
1034 			(u32 *)&sb_data_e1x :
1035 			(u32 *)&sb_data_e2;
1036 		/* copy sb data in here */
1037 		for (j = 0; j < data_size; j++)
1038 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1039 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1040 				j * sizeof(u32));
1041 
1042 		if (!CHIP_IS_E1x(bp)) {
1043 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1044 				sb_data_e2.common.p_func.pf_id,
1045 				sb_data_e2.common.p_func.vf_id,
1046 				sb_data_e2.common.p_func.vf_valid,
1047 				sb_data_e2.common.p_func.vnic_id,
1048 				sb_data_e2.common.same_igu_sb_1b,
1049 				sb_data_e2.common.state);
1050 		} else {
1051 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1052 				sb_data_e1x.common.p_func.pf_id,
1053 				sb_data_e1x.common.p_func.vf_id,
1054 				sb_data_e1x.common.p_func.vf_valid,
1055 				sb_data_e1x.common.p_func.vnic_id,
1056 				sb_data_e1x.common.same_igu_sb_1b,
1057 				sb_data_e1x.common.state);
1058 		}
1059 
1060 		/* SB_SMs data */
1061 		for (j = 0; j < HC_SB_MAX_SM; j++) {
1062 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1063 				j, hc_sm_p[j].__flags,
1064 				hc_sm_p[j].igu_sb_id,
1065 				hc_sm_p[j].igu_seg_id,
1066 				hc_sm_p[j].time_to_expire,
1067 				hc_sm_p[j].timer_value);
1068 		}
1069 
1070 		/* Indices data */
1071 		for (j = 0; j < loop; j++) {
1072 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1073 			       hc_index_p[j].flags,
1074 			       hc_index_p[j].timeout);
1075 		}
1076 	}
1077 
1078 #ifdef BNX2X_STOP_ON_ERROR
1079 	if (IS_PF(bp)) {
1080 		/* event queue */
1081 		BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1082 		for (i = 0; i < NUM_EQ_DESC; i++) {
1083 			u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1084 
1085 			BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1086 				  i, bp->eq_ring[i].message.opcode,
1087 				  bp->eq_ring[i].message.error);
1088 			BNX2X_ERR("data: %x %x %x\n",
1089 				  data[0], data[1], data[2]);
1090 		}
1091 	}
1092 
1093 	/* Rings */
1094 	/* Rx */
1095 	for_each_valid_rx_queue(bp, i) {
1096 		struct bnx2x_fastpath *fp = &bp->fp[i];
1097 
1098 		if (!bp->fp)
1099 			break;
1100 
1101 		if (!fp->rx_cons_sb)
1102 			continue;
1103 
1104 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1105 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1106 		for (j = start; j != end; j = RX_BD(j + 1)) {
1107 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1108 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1109 
1110 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1111 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1112 		}
1113 
1114 		start = RX_SGE(fp->rx_sge_prod);
1115 		end = RX_SGE(fp->last_max_sge);
1116 		for (j = start; j != end; j = RX_SGE(j + 1)) {
1117 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1118 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1119 
1120 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1121 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1122 		}
1123 
1124 		start = RCQ_BD(fp->rx_comp_cons - 10);
1125 		end = RCQ_BD(fp->rx_comp_cons + 503);
1126 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1127 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1128 
1129 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1130 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1131 		}
1132 	}
1133 
1134 	/* Tx */
1135 	for_each_valid_tx_queue(bp, i) {
1136 		struct bnx2x_fastpath *fp = &bp->fp[i];
1137 
1138 		if (!bp->fp)
1139 			break;
1140 
1141 		for_each_cos_in_tx_queue(fp, cos) {
1142 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1143 
1144 			if (!fp->txdata_ptr[cos])
1145 				break;
1146 
1147 			if (!txdata->tx_cons_sb)
1148 				continue;
1149 
1150 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1151 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1152 			for (j = start; j != end; j = TX_BD(j + 1)) {
1153 				struct sw_tx_bd *sw_bd =
1154 					&txdata->tx_buf_ring[j];
1155 
1156 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1157 					  i, cos, j, sw_bd->skb,
1158 					  sw_bd->first_bd);
1159 			}
1160 
1161 			start = TX_BD(txdata->tx_bd_cons - 10);
1162 			end = TX_BD(txdata->tx_bd_cons + 254);
1163 			for (j = start; j != end; j = TX_BD(j + 1)) {
1164 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1165 
1166 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1167 					  i, cos, j, tx_bd[0], tx_bd[1],
1168 					  tx_bd[2], tx_bd[3]);
1169 			}
1170 		}
1171 	}
1172 #endif
1173 	if (IS_PF(bp)) {
1174 		bnx2x_fw_dump(bp);
1175 		bnx2x_mc_assert(bp);
1176 	}
1177 	BNX2X_ERR("end crash dump -----------------\n");
1178 }
1179 
1180 /*
1181  * FLR Support for E2
1182  *
1183  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1184  * initialization.
1185  */
1186 #define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1187 #define FLR_WAIT_INTERVAL	50	/* usec */
1188 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1189 
1190 struct pbf_pN_buf_regs {
1191 	int pN;
1192 	u32 init_crd;
1193 	u32 crd;
1194 	u32 crd_freed;
1195 };
1196 
1197 struct pbf_pN_cmd_regs {
1198 	int pN;
1199 	u32 lines_occup;
1200 	u32 lines_freed;
1201 };
1202 
1203 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1204 				     struct pbf_pN_buf_regs *regs,
1205 				     u32 poll_count)
1206 {
1207 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1208 	u32 cur_cnt = poll_count;
1209 
1210 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1211 	crd = crd_start = REG_RD(bp, regs->crd);
1212 	init_crd = REG_RD(bp, regs->init_crd);
1213 
1214 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1215 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1216 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1217 
1218 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1219 	       (init_crd - crd_start))) {
1220 		if (cur_cnt--) {
1221 			udelay(FLR_WAIT_INTERVAL);
1222 			crd = REG_RD(bp, regs->crd);
1223 			crd_freed = REG_RD(bp, regs->crd_freed);
1224 		} else {
1225 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1226 			   regs->pN);
1227 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1228 			   regs->pN, crd);
1229 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1230 			   regs->pN, crd_freed);
1231 			break;
1232 		}
1233 	}
1234 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1235 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1236 }
1237 
1238 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1239 				     struct pbf_pN_cmd_regs *regs,
1240 				     u32 poll_count)
1241 {
1242 	u32 occup, to_free, freed, freed_start;
1243 	u32 cur_cnt = poll_count;
1244 
1245 	occup = to_free = REG_RD(bp, regs->lines_occup);
1246 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1247 
1248 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1249 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1250 
1251 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1252 		if (cur_cnt--) {
1253 			udelay(FLR_WAIT_INTERVAL);
1254 			occup = REG_RD(bp, regs->lines_occup);
1255 			freed = REG_RD(bp, regs->lines_freed);
1256 		} else {
1257 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1258 			   regs->pN);
1259 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1260 			   regs->pN, occup);
1261 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1262 			   regs->pN, freed);
1263 			break;
1264 		}
1265 	}
1266 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1267 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1268 }
1269 
1270 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1271 				    u32 expected, u32 poll_count)
1272 {
1273 	u32 cur_cnt = poll_count;
1274 	u32 val;
1275 
1276 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1277 		udelay(FLR_WAIT_INTERVAL);
1278 
1279 	return val;
1280 }
1281 
1282 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1283 				    char *msg, u32 poll_cnt)
1284 {
1285 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1286 	if (val != 0) {
1287 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1288 		return 1;
1289 	}
1290 	return 0;
1291 }
1292 
1293 /* Common routines with VF FLR cleanup */
1294 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1295 {
1296 	/* adjust polling timeout */
1297 	if (CHIP_REV_IS_EMUL(bp))
1298 		return FLR_POLL_CNT * 2000;
1299 
1300 	if (CHIP_REV_IS_FPGA(bp))
1301 		return FLR_POLL_CNT * 120;
1302 
1303 	return FLR_POLL_CNT;
1304 }
1305 
1306 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1307 {
1308 	struct pbf_pN_cmd_regs cmd_regs[] = {
1309 		{0, (CHIP_IS_E3B0(bp)) ?
1310 			PBF_REG_TQ_OCCUPANCY_Q0 :
1311 			PBF_REG_P0_TQ_OCCUPANCY,
1312 		    (CHIP_IS_E3B0(bp)) ?
1313 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1314 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1315 		{1, (CHIP_IS_E3B0(bp)) ?
1316 			PBF_REG_TQ_OCCUPANCY_Q1 :
1317 			PBF_REG_P1_TQ_OCCUPANCY,
1318 		    (CHIP_IS_E3B0(bp)) ?
1319 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1320 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1321 		{4, (CHIP_IS_E3B0(bp)) ?
1322 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1323 			PBF_REG_P4_TQ_OCCUPANCY,
1324 		    (CHIP_IS_E3B0(bp)) ?
1325 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1326 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1327 	};
1328 
1329 	struct pbf_pN_buf_regs buf_regs[] = {
1330 		{0, (CHIP_IS_E3B0(bp)) ?
1331 			PBF_REG_INIT_CRD_Q0 :
1332 			PBF_REG_P0_INIT_CRD ,
1333 		    (CHIP_IS_E3B0(bp)) ?
1334 			PBF_REG_CREDIT_Q0 :
1335 			PBF_REG_P0_CREDIT,
1336 		    (CHIP_IS_E3B0(bp)) ?
1337 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1338 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1339 		{1, (CHIP_IS_E3B0(bp)) ?
1340 			PBF_REG_INIT_CRD_Q1 :
1341 			PBF_REG_P1_INIT_CRD,
1342 		    (CHIP_IS_E3B0(bp)) ?
1343 			PBF_REG_CREDIT_Q1 :
1344 			PBF_REG_P1_CREDIT,
1345 		    (CHIP_IS_E3B0(bp)) ?
1346 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1347 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1348 		{4, (CHIP_IS_E3B0(bp)) ?
1349 			PBF_REG_INIT_CRD_LB_Q :
1350 			PBF_REG_P4_INIT_CRD,
1351 		    (CHIP_IS_E3B0(bp)) ?
1352 			PBF_REG_CREDIT_LB_Q :
1353 			PBF_REG_P4_CREDIT,
1354 		    (CHIP_IS_E3B0(bp)) ?
1355 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1356 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1357 	};
1358 
1359 	int i;
1360 
1361 	/* Verify the command queues are flushed P0, P1, P4 */
1362 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1363 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1364 
1365 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1366 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1367 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1368 }
1369 
1370 #define OP_GEN_PARAM(param) \
1371 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1372 
1373 #define OP_GEN_TYPE(type) \
1374 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1375 
1376 #define OP_GEN_AGG_VECT(index) \
1377 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1378 
1379 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1380 {
1381 	u32 op_gen_command = 0;
1382 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1383 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1384 	int ret = 0;
1385 
1386 	if (REG_RD(bp, comp_addr)) {
1387 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1388 		return 1;
1389 	}
1390 
1391 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1392 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1393 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1394 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1395 
1396 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1397 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1398 
1399 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1400 		BNX2X_ERR("FW final cleanup did not succeed\n");
1401 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1402 		   (REG_RD(bp, comp_addr)));
1403 		bnx2x_panic();
1404 		return 1;
1405 	}
1406 	/* Zero completion for next FLR */
1407 	REG_WR(bp, comp_addr, 0);
1408 
1409 	return ret;
1410 }
1411 
1412 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1413 {
1414 	u16 status;
1415 
1416 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1417 	return status & PCI_EXP_DEVSTA_TRPND;
1418 }
1419 
1420 /* PF FLR specific routines
1421 */
1422 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1423 {
1424 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1425 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1426 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1427 			"CFC PF usage counter timed out",
1428 			poll_cnt))
1429 		return 1;
1430 
1431 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1432 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1433 			DORQ_REG_PF_USAGE_CNT,
1434 			"DQ PF usage counter timed out",
1435 			poll_cnt))
1436 		return 1;
1437 
1438 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1439 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1440 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1441 			"QM PF usage counter timed out",
1442 			poll_cnt))
1443 		return 1;
1444 
1445 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1446 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1447 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1448 			"Timers VNIC usage counter timed out",
1449 			poll_cnt))
1450 		return 1;
1451 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1452 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1453 			"Timers NUM_SCANS usage counter timed out",
1454 			poll_cnt))
1455 		return 1;
1456 
1457 	/* Wait DMAE PF usage counter to zero */
1458 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1459 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1460 			"DMAE command register timed out",
1461 			poll_cnt))
1462 		return 1;
1463 
1464 	return 0;
1465 }
1466 
1467 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1468 {
1469 	u32 val;
1470 
1471 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1472 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1473 
1474 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1475 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1476 
1477 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1478 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1479 
1480 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1481 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1482 
1483 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1484 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1485 
1486 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1487 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1488 
1489 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1490 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1491 
1492 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1493 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1494 	   val);
1495 }
1496 
1497 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1498 {
1499 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1500 
1501 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1502 
1503 	/* Re-enable PF target read access */
1504 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1505 
1506 	/* Poll HW usage counters */
1507 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1508 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1509 		return -EBUSY;
1510 
1511 	/* Zero the igu 'trailing edge' and 'leading edge' */
1512 
1513 	/* Send the FW cleanup command */
1514 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1515 		return -EBUSY;
1516 
1517 	/* ATC cleanup */
1518 
1519 	/* Verify TX hw is flushed */
1520 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1521 
1522 	/* Wait 100ms (not adjusted according to platform) */
1523 	msleep(100);
1524 
1525 	/* Verify no pending pci transactions */
1526 	if (bnx2x_is_pcie_pending(bp->pdev))
1527 		BNX2X_ERR("PCIE Transactions still pending\n");
1528 
1529 	/* Debug */
1530 	bnx2x_hw_enable_status(bp);
1531 
1532 	/*
1533 	 * Master enable - Due to WB DMAE writes performed before this
1534 	 * register is re-initialized as part of the regular function init
1535 	 */
1536 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1537 
1538 	return 0;
1539 }
1540 
1541 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1542 {
1543 	int port = BP_PORT(bp);
1544 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1545 	u32 val = REG_RD(bp, addr);
1546 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1547 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1548 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1549 
1550 	if (msix) {
1551 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1552 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1553 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1554 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1555 		if (single_msix)
1556 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1557 	} else if (msi) {
1558 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1559 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1560 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1561 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1562 	} else {
1563 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1564 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1565 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1566 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1567 
1568 		if (!CHIP_IS_E1(bp)) {
1569 			DP(NETIF_MSG_IFUP,
1570 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1571 
1572 			REG_WR(bp, addr, val);
1573 
1574 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1575 		}
1576 	}
1577 
1578 	if (CHIP_IS_E1(bp))
1579 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1580 
1581 	DP(NETIF_MSG_IFUP,
1582 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1583 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1584 
1585 	REG_WR(bp, addr, val);
1586 	/*
1587 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1588 	 */
1589 	mmiowb();
1590 	barrier();
1591 
1592 	if (!CHIP_IS_E1(bp)) {
1593 		/* init leading/trailing edge */
1594 		if (IS_MF(bp)) {
1595 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1596 			if (bp->port.pmf)
1597 				/* enable nig and gpio3 attention */
1598 				val |= 0x1100;
1599 		} else
1600 			val = 0xffff;
1601 
1602 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1603 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1604 	}
1605 
1606 	/* Make sure that interrupts are indeed enabled from here on */
1607 	mmiowb();
1608 }
1609 
1610 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1611 {
1612 	u32 val;
1613 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1614 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1615 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1616 
1617 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1618 
1619 	if (msix) {
1620 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1621 			 IGU_PF_CONF_SINGLE_ISR_EN);
1622 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1623 			IGU_PF_CONF_ATTN_BIT_EN);
1624 
1625 		if (single_msix)
1626 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1627 	} else if (msi) {
1628 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1629 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1630 			IGU_PF_CONF_ATTN_BIT_EN |
1631 			IGU_PF_CONF_SINGLE_ISR_EN);
1632 	} else {
1633 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1634 		val |= (IGU_PF_CONF_INT_LINE_EN |
1635 			IGU_PF_CONF_ATTN_BIT_EN |
1636 			IGU_PF_CONF_SINGLE_ISR_EN);
1637 	}
1638 
1639 	/* Clean previous status - need to configure igu prior to ack*/
1640 	if ((!msix) || single_msix) {
1641 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1642 		bnx2x_ack_int(bp);
1643 	}
1644 
1645 	val |= IGU_PF_CONF_FUNC_EN;
1646 
1647 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1648 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1649 
1650 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1651 
1652 	if (val & IGU_PF_CONF_INT_LINE_EN)
1653 		pci_intx(bp->pdev, true);
1654 
1655 	barrier();
1656 
1657 	/* init leading/trailing edge */
1658 	if (IS_MF(bp)) {
1659 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1660 		if (bp->port.pmf)
1661 			/* enable nig and gpio3 attention */
1662 			val |= 0x1100;
1663 	} else
1664 		val = 0xffff;
1665 
1666 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1667 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1668 
1669 	/* Make sure that interrupts are indeed enabled from here on */
1670 	mmiowb();
1671 }
1672 
1673 void bnx2x_int_enable(struct bnx2x *bp)
1674 {
1675 	if (bp->common.int_block == INT_BLOCK_HC)
1676 		bnx2x_hc_int_enable(bp);
1677 	else
1678 		bnx2x_igu_int_enable(bp);
1679 }
1680 
1681 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1682 {
1683 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1684 	int i, offset;
1685 
1686 	if (disable_hw)
1687 		/* prevent the HW from sending interrupts */
1688 		bnx2x_int_disable(bp);
1689 
1690 	/* make sure all ISRs are done */
1691 	if (msix) {
1692 		synchronize_irq(bp->msix_table[0].vector);
1693 		offset = 1;
1694 		if (CNIC_SUPPORT(bp))
1695 			offset++;
1696 		for_each_eth_queue(bp, i)
1697 			synchronize_irq(bp->msix_table[offset++].vector);
1698 	} else
1699 		synchronize_irq(bp->pdev->irq);
1700 
1701 	/* make sure sp_task is not running */
1702 	cancel_delayed_work(&bp->sp_task);
1703 	cancel_delayed_work(&bp->period_task);
1704 	flush_workqueue(bnx2x_wq);
1705 }
1706 
1707 /* fast path */
1708 
1709 /*
1710  * General service functions
1711  */
1712 
1713 /* Return true if succeeded to acquire the lock */
1714 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1715 {
1716 	u32 lock_status;
1717 	u32 resource_bit = (1 << resource);
1718 	int func = BP_FUNC(bp);
1719 	u32 hw_lock_control_reg;
1720 
1721 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1722 	   "Trying to take a lock on resource %d\n", resource);
1723 
1724 	/* Validating that the resource is within range */
1725 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1726 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1727 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1728 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1729 		return false;
1730 	}
1731 
1732 	if (func <= 5)
1733 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1734 	else
1735 		hw_lock_control_reg =
1736 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1737 
1738 	/* Try to acquire the lock */
1739 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1740 	lock_status = REG_RD(bp, hw_lock_control_reg);
1741 	if (lock_status & resource_bit)
1742 		return true;
1743 
1744 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1745 	   "Failed to get a lock on resource %d\n", resource);
1746 	return false;
1747 }
1748 
1749 /**
1750  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1751  *
1752  * @bp:	driver handle
1753  *
1754  * Returns the recovery leader resource id according to the engine this function
1755  * belongs to. Currently only only 2 engines is supported.
1756  */
1757 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1758 {
1759 	if (BP_PATH(bp))
1760 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1761 	else
1762 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1763 }
1764 
1765 /**
1766  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1767  *
1768  * @bp: driver handle
1769  *
1770  * Tries to acquire a leader lock for current engine.
1771  */
1772 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1773 {
1774 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1775 }
1776 
1777 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1778 
1779 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1780 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1781 {
1782 	/* Set the interrupt occurred bit for the sp-task to recognize it
1783 	 * must ack the interrupt and transition according to the IGU
1784 	 * state machine.
1785 	 */
1786 	atomic_set(&bp->interrupt_occurred, 1);
1787 
1788 	/* The sp_task must execute only after this bit
1789 	 * is set, otherwise we will get out of sync and miss all
1790 	 * further interrupts. Hence, the barrier.
1791 	 */
1792 	smp_wmb();
1793 
1794 	/* schedule sp_task to workqueue */
1795 	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1796 }
1797 
1798 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1799 {
1800 	struct bnx2x *bp = fp->bp;
1801 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1802 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1803 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1804 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1805 
1806 	DP(BNX2X_MSG_SP,
1807 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1808 	   fp->index, cid, command, bp->state,
1809 	   rr_cqe->ramrod_cqe.ramrod_type);
1810 
1811 	/* If cid is within VF range, replace the slowpath object with the
1812 	 * one corresponding to this VF
1813 	 */
1814 	if (cid >= BNX2X_FIRST_VF_CID  &&
1815 	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1816 		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1817 
1818 	switch (command) {
1819 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1820 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1821 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1822 		break;
1823 
1824 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1825 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1826 		drv_cmd = BNX2X_Q_CMD_SETUP;
1827 		break;
1828 
1829 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1830 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1831 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1832 		break;
1833 
1834 	case (RAMROD_CMD_ID_ETH_HALT):
1835 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1836 		drv_cmd = BNX2X_Q_CMD_HALT;
1837 		break;
1838 
1839 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1840 		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1841 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1842 		break;
1843 
1844 	case (RAMROD_CMD_ID_ETH_EMPTY):
1845 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1846 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1847 		break;
1848 
1849 	case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1850 		DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1851 		drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1852 		break;
1853 
1854 	default:
1855 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1856 			  command, fp->index);
1857 		return;
1858 	}
1859 
1860 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1861 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1862 		/* q_obj->complete_cmd() failure means that this was
1863 		 * an unexpected completion.
1864 		 *
1865 		 * In this case we don't want to increase the bp->spq_left
1866 		 * because apparently we haven't sent this command the first
1867 		 * place.
1868 		 */
1869 #ifdef BNX2X_STOP_ON_ERROR
1870 		bnx2x_panic();
1871 #else
1872 		return;
1873 #endif
1874 
1875 	smp_mb__before_atomic();
1876 	atomic_inc(&bp->cq_spq_left);
1877 	/* push the change in bp->spq_left and towards the memory */
1878 	smp_mb__after_atomic();
1879 
1880 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1881 
1882 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1883 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1884 		/* if Q update ramrod is completed for last Q in AFEX vif set
1885 		 * flow, then ACK MCP at the end
1886 		 *
1887 		 * mark pending ACK to MCP bit.
1888 		 * prevent case that both bits are cleared.
1889 		 * At the end of load/unload driver checks that
1890 		 * sp_state is cleared, and this order prevents
1891 		 * races
1892 		 */
1893 		smp_mb__before_atomic();
1894 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1895 		wmb();
1896 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1897 		smp_mb__after_atomic();
1898 
1899 		/* schedule the sp task as mcp ack is required */
1900 		bnx2x_schedule_sp_task(bp);
1901 	}
1902 
1903 	return;
1904 }
1905 
1906 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1907 {
1908 	struct bnx2x *bp = netdev_priv(dev_instance);
1909 	u16 status = bnx2x_ack_int(bp);
1910 	u16 mask;
1911 	int i;
1912 	u8 cos;
1913 
1914 	/* Return here if interrupt is shared and it's not for us */
1915 	if (unlikely(status == 0)) {
1916 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1917 		return IRQ_NONE;
1918 	}
1919 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1920 
1921 #ifdef BNX2X_STOP_ON_ERROR
1922 	if (unlikely(bp->panic))
1923 		return IRQ_HANDLED;
1924 #endif
1925 
1926 	for_each_eth_queue(bp, i) {
1927 		struct bnx2x_fastpath *fp = &bp->fp[i];
1928 
1929 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1930 		if (status & mask) {
1931 			/* Handle Rx or Tx according to SB id */
1932 			for_each_cos_in_tx_queue(fp, cos)
1933 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1934 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1935 			napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1936 			status &= ~mask;
1937 		}
1938 	}
1939 
1940 	if (CNIC_SUPPORT(bp)) {
1941 		mask = 0x2;
1942 		if (status & (mask | 0x1)) {
1943 			struct cnic_ops *c_ops = NULL;
1944 
1945 			rcu_read_lock();
1946 			c_ops = rcu_dereference(bp->cnic_ops);
1947 			if (c_ops && (bp->cnic_eth_dev.drv_state &
1948 				      CNIC_DRV_STATE_HANDLES_IRQ))
1949 				c_ops->cnic_handler(bp->cnic_data, NULL);
1950 			rcu_read_unlock();
1951 
1952 			status &= ~mask;
1953 		}
1954 	}
1955 
1956 	if (unlikely(status & 0x1)) {
1957 
1958 		/* schedule sp task to perform default status block work, ack
1959 		 * attentions and enable interrupts.
1960 		 */
1961 		bnx2x_schedule_sp_task(bp);
1962 
1963 		status &= ~0x1;
1964 		if (!status)
1965 			return IRQ_HANDLED;
1966 	}
1967 
1968 	if (unlikely(status))
1969 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1970 		   status);
1971 
1972 	return IRQ_HANDLED;
1973 }
1974 
1975 /* Link */
1976 
1977 /*
1978  * General service functions
1979  */
1980 
1981 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1982 {
1983 	u32 lock_status;
1984 	u32 resource_bit = (1 << resource);
1985 	int func = BP_FUNC(bp);
1986 	u32 hw_lock_control_reg;
1987 	int cnt;
1988 
1989 	/* Validating that the resource is within range */
1990 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1991 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1992 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1993 		return -EINVAL;
1994 	}
1995 
1996 	if (func <= 5) {
1997 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1998 	} else {
1999 		hw_lock_control_reg =
2000 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2001 	}
2002 
2003 	/* Validating that the resource is not already taken */
2004 	lock_status = REG_RD(bp, hw_lock_control_reg);
2005 	if (lock_status & resource_bit) {
2006 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2007 		   lock_status, resource_bit);
2008 		return -EEXIST;
2009 	}
2010 
2011 	/* Try for 5 second every 5ms */
2012 	for (cnt = 0; cnt < 1000; cnt++) {
2013 		/* Try to acquire the lock */
2014 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2015 		lock_status = REG_RD(bp, hw_lock_control_reg);
2016 		if (lock_status & resource_bit)
2017 			return 0;
2018 
2019 		usleep_range(5000, 10000);
2020 	}
2021 	BNX2X_ERR("Timeout\n");
2022 	return -EAGAIN;
2023 }
2024 
2025 int bnx2x_release_leader_lock(struct bnx2x *bp)
2026 {
2027 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2028 }
2029 
2030 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2031 {
2032 	u32 lock_status;
2033 	u32 resource_bit = (1 << resource);
2034 	int func = BP_FUNC(bp);
2035 	u32 hw_lock_control_reg;
2036 
2037 	/* Validating that the resource is within range */
2038 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2039 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2040 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2041 		return -EINVAL;
2042 	}
2043 
2044 	if (func <= 5) {
2045 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2046 	} else {
2047 		hw_lock_control_reg =
2048 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2049 	}
2050 
2051 	/* Validating that the resource is currently taken */
2052 	lock_status = REG_RD(bp, hw_lock_control_reg);
2053 	if (!(lock_status & resource_bit)) {
2054 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2055 			  lock_status, resource_bit);
2056 		return -EFAULT;
2057 	}
2058 
2059 	REG_WR(bp, hw_lock_control_reg, resource_bit);
2060 	return 0;
2061 }
2062 
2063 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2064 {
2065 	/* The GPIO should be swapped if swap register is set and active */
2066 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2067 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2068 	int gpio_shift = gpio_num +
2069 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2070 	u32 gpio_mask = (1 << gpio_shift);
2071 	u32 gpio_reg;
2072 	int value;
2073 
2074 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2075 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2076 		return -EINVAL;
2077 	}
2078 
2079 	/* read GPIO value */
2080 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2081 
2082 	/* get the requested pin value */
2083 	if ((gpio_reg & gpio_mask) == gpio_mask)
2084 		value = 1;
2085 	else
2086 		value = 0;
2087 
2088 	return value;
2089 }
2090 
2091 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2092 {
2093 	/* The GPIO should be swapped if swap register is set and active */
2094 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2095 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2096 	int gpio_shift = gpio_num +
2097 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2098 	u32 gpio_mask = (1 << gpio_shift);
2099 	u32 gpio_reg;
2100 
2101 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2102 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2103 		return -EINVAL;
2104 	}
2105 
2106 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2107 	/* read GPIO and mask except the float bits */
2108 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2109 
2110 	switch (mode) {
2111 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2112 		DP(NETIF_MSG_LINK,
2113 		   "Set GPIO %d (shift %d) -> output low\n",
2114 		   gpio_num, gpio_shift);
2115 		/* clear FLOAT and set CLR */
2116 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2117 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2118 		break;
2119 
2120 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2121 		DP(NETIF_MSG_LINK,
2122 		   "Set GPIO %d (shift %d) -> output high\n",
2123 		   gpio_num, gpio_shift);
2124 		/* clear FLOAT and set SET */
2125 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2126 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2127 		break;
2128 
2129 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2130 		DP(NETIF_MSG_LINK,
2131 		   "Set GPIO %d (shift %d) -> input\n",
2132 		   gpio_num, gpio_shift);
2133 		/* set FLOAT */
2134 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2135 		break;
2136 
2137 	default:
2138 		break;
2139 	}
2140 
2141 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2142 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2143 
2144 	return 0;
2145 }
2146 
2147 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2148 {
2149 	u32 gpio_reg = 0;
2150 	int rc = 0;
2151 
2152 	/* Any port swapping should be handled by caller. */
2153 
2154 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2155 	/* read GPIO and mask except the float bits */
2156 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2157 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2158 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2159 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2160 
2161 	switch (mode) {
2162 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2163 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2164 		/* set CLR */
2165 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2166 		break;
2167 
2168 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2169 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2170 		/* set SET */
2171 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2172 		break;
2173 
2174 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2175 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2176 		/* set FLOAT */
2177 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2178 		break;
2179 
2180 	default:
2181 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2182 		rc = -EINVAL;
2183 		break;
2184 	}
2185 
2186 	if (rc == 0)
2187 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2188 
2189 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2190 
2191 	return rc;
2192 }
2193 
2194 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2195 {
2196 	/* The GPIO should be swapped if swap register is set and active */
2197 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2198 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2199 	int gpio_shift = gpio_num +
2200 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2201 	u32 gpio_mask = (1 << gpio_shift);
2202 	u32 gpio_reg;
2203 
2204 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2205 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2206 		return -EINVAL;
2207 	}
2208 
2209 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2210 	/* read GPIO int */
2211 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2212 
2213 	switch (mode) {
2214 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2215 		DP(NETIF_MSG_LINK,
2216 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2217 		   gpio_num, gpio_shift);
2218 		/* clear SET and set CLR */
2219 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2220 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2221 		break;
2222 
2223 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2224 		DP(NETIF_MSG_LINK,
2225 		   "Set GPIO INT %d (shift %d) -> output high\n",
2226 		   gpio_num, gpio_shift);
2227 		/* clear CLR and set SET */
2228 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2229 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2230 		break;
2231 
2232 	default:
2233 		break;
2234 	}
2235 
2236 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2237 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2238 
2239 	return 0;
2240 }
2241 
2242 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2243 {
2244 	u32 spio_reg;
2245 
2246 	/* Only 2 SPIOs are configurable */
2247 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2248 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2249 		return -EINVAL;
2250 	}
2251 
2252 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2253 	/* read SPIO and mask except the float bits */
2254 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2255 
2256 	switch (mode) {
2257 	case MISC_SPIO_OUTPUT_LOW:
2258 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2259 		/* clear FLOAT and set CLR */
2260 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2261 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2262 		break;
2263 
2264 	case MISC_SPIO_OUTPUT_HIGH:
2265 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2266 		/* clear FLOAT and set SET */
2267 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2268 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2269 		break;
2270 
2271 	case MISC_SPIO_INPUT_HI_Z:
2272 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2273 		/* set FLOAT */
2274 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2275 		break;
2276 
2277 	default:
2278 		break;
2279 	}
2280 
2281 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2282 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2283 
2284 	return 0;
2285 }
2286 
2287 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2288 {
2289 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2290 
2291 	bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2292 					   ADVERTISED_Pause);
2293 	switch (bp->link_vars.ieee_fc &
2294 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2295 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2296 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2297 						  ADVERTISED_Pause);
2298 		break;
2299 
2300 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2301 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2302 		break;
2303 
2304 	default:
2305 		break;
2306 	}
2307 }
2308 
2309 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2310 {
2311 	/* Initialize link parameters structure variables
2312 	 * It is recommended to turn off RX FC for jumbo frames
2313 	 *  for better performance
2314 	 */
2315 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2316 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2317 	else
2318 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2319 }
2320 
2321 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2322 {
2323 	u32 pause_enabled = 0;
2324 
2325 	if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2326 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2327 			pause_enabled = 1;
2328 
2329 		REG_WR(bp, BAR_USTRORM_INTMEM +
2330 			   USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2331 		       pause_enabled);
2332 	}
2333 
2334 	DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2335 	   pause_enabled ? "enabled" : "disabled");
2336 }
2337 
2338 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2339 {
2340 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2341 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2342 
2343 	if (!BP_NOMCP(bp)) {
2344 		bnx2x_set_requested_fc(bp);
2345 		bnx2x_acquire_phy_lock(bp);
2346 
2347 		if (load_mode == LOAD_DIAG) {
2348 			struct link_params *lp = &bp->link_params;
2349 			lp->loopback_mode = LOOPBACK_XGXS;
2350 			/* Prefer doing PHY loopback at highest speed */
2351 			if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2352 				if (lp->speed_cap_mask[cfx_idx] &
2353 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2354 					lp->req_line_speed[cfx_idx] =
2355 					SPEED_20000;
2356 				else if (lp->speed_cap_mask[cfx_idx] &
2357 					    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2358 						lp->req_line_speed[cfx_idx] =
2359 						SPEED_10000;
2360 				else
2361 					lp->req_line_speed[cfx_idx] =
2362 					SPEED_1000;
2363 			}
2364 		}
2365 
2366 		if (load_mode == LOAD_LOOPBACK_EXT) {
2367 			struct link_params *lp = &bp->link_params;
2368 			lp->loopback_mode = LOOPBACK_EXT;
2369 		}
2370 
2371 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2372 
2373 		bnx2x_release_phy_lock(bp);
2374 
2375 		bnx2x_init_dropless_fc(bp);
2376 
2377 		bnx2x_calc_fc_adv(bp);
2378 
2379 		if (bp->link_vars.link_up) {
2380 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2381 			bnx2x_link_report(bp);
2382 		}
2383 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2384 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2385 		return rc;
2386 	}
2387 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2388 	return -EINVAL;
2389 }
2390 
2391 void bnx2x_link_set(struct bnx2x *bp)
2392 {
2393 	if (!BP_NOMCP(bp)) {
2394 		bnx2x_acquire_phy_lock(bp);
2395 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2396 		bnx2x_release_phy_lock(bp);
2397 
2398 		bnx2x_init_dropless_fc(bp);
2399 
2400 		bnx2x_calc_fc_adv(bp);
2401 	} else
2402 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2403 }
2404 
2405 static void bnx2x__link_reset(struct bnx2x *bp)
2406 {
2407 	if (!BP_NOMCP(bp)) {
2408 		bnx2x_acquire_phy_lock(bp);
2409 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2410 		bnx2x_release_phy_lock(bp);
2411 	} else
2412 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2413 }
2414 
2415 void bnx2x_force_link_reset(struct bnx2x *bp)
2416 {
2417 	bnx2x_acquire_phy_lock(bp);
2418 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2419 	bnx2x_release_phy_lock(bp);
2420 }
2421 
2422 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2423 {
2424 	u8 rc = 0;
2425 
2426 	if (!BP_NOMCP(bp)) {
2427 		bnx2x_acquire_phy_lock(bp);
2428 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2429 				     is_serdes);
2430 		bnx2x_release_phy_lock(bp);
2431 	} else
2432 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2433 
2434 	return rc;
2435 }
2436 
2437 /* Calculates the sum of vn_min_rates.
2438    It's needed for further normalizing of the min_rates.
2439    Returns:
2440      sum of vn_min_rates.
2441        or
2442      0 - if all the min_rates are 0.
2443      In the later case fairness algorithm should be deactivated.
2444      If not all min_rates are zero then those that are zeroes will be set to 1.
2445  */
2446 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2447 				      struct cmng_init_input *input)
2448 {
2449 	int all_zero = 1;
2450 	int vn;
2451 
2452 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2453 		u32 vn_cfg = bp->mf_config[vn];
2454 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2455 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2456 
2457 		/* Skip hidden vns */
2458 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2459 			vn_min_rate = 0;
2460 		/* If min rate is zero - set it to 1 */
2461 		else if (!vn_min_rate)
2462 			vn_min_rate = DEF_MIN_RATE;
2463 		else
2464 			all_zero = 0;
2465 
2466 		input->vnic_min_rate[vn] = vn_min_rate;
2467 	}
2468 
2469 	/* if ETS or all min rates are zeros - disable fairness */
2470 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2471 		input->flags.cmng_enables &=
2472 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2473 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2474 	} else if (all_zero) {
2475 		input->flags.cmng_enables &=
2476 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2477 		DP(NETIF_MSG_IFUP,
2478 		   "All MIN values are zeroes fairness will be disabled\n");
2479 	} else
2480 		input->flags.cmng_enables |=
2481 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2482 }
2483 
2484 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2485 				    struct cmng_init_input *input)
2486 {
2487 	u16 vn_max_rate;
2488 	u32 vn_cfg = bp->mf_config[vn];
2489 
2490 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2491 		vn_max_rate = 0;
2492 	else {
2493 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2494 
2495 		if (IS_MF_SI(bp)) {
2496 			/* maxCfg in percents of linkspeed */
2497 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2498 		} else /* SD modes */
2499 			/* maxCfg is absolute in 100Mb units */
2500 			vn_max_rate = maxCfg * 100;
2501 	}
2502 
2503 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2504 
2505 	input->vnic_max_rate[vn] = vn_max_rate;
2506 }
2507 
2508 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2509 {
2510 	if (CHIP_REV_IS_SLOW(bp))
2511 		return CMNG_FNS_NONE;
2512 	if (IS_MF(bp))
2513 		return CMNG_FNS_MINMAX;
2514 
2515 	return CMNG_FNS_NONE;
2516 }
2517 
2518 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2519 {
2520 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2521 
2522 	if (BP_NOMCP(bp))
2523 		return; /* what should be the default value in this case */
2524 
2525 	/* For 2 port configuration the absolute function number formula
2526 	 * is:
2527 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2528 	 *
2529 	 *      and there are 4 functions per port
2530 	 *
2531 	 * For 4 port configuration it is
2532 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2533 	 *
2534 	 *      and there are 2 functions per port
2535 	 */
2536 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2537 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2538 
2539 		if (func >= E1H_FUNC_MAX)
2540 			break;
2541 
2542 		bp->mf_config[vn] =
2543 			MF_CFG_RD(bp, func_mf_config[func].config);
2544 	}
2545 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2546 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2547 		bp->flags |= MF_FUNC_DIS;
2548 	} else {
2549 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2550 		bp->flags &= ~MF_FUNC_DIS;
2551 	}
2552 }
2553 
2554 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2555 {
2556 	struct cmng_init_input input;
2557 	memset(&input, 0, sizeof(struct cmng_init_input));
2558 
2559 	input.port_rate = bp->link_vars.line_speed;
2560 
2561 	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2562 		int vn;
2563 
2564 		/* read mf conf from shmem */
2565 		if (read_cfg)
2566 			bnx2x_read_mf_cfg(bp);
2567 
2568 		/* vn_weight_sum and enable fairness if not 0 */
2569 		bnx2x_calc_vn_min(bp, &input);
2570 
2571 		/* calculate and set min-max rate for each vn */
2572 		if (bp->port.pmf)
2573 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2574 				bnx2x_calc_vn_max(bp, vn, &input);
2575 
2576 		/* always enable rate shaping and fairness */
2577 		input.flags.cmng_enables |=
2578 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2579 
2580 		bnx2x_init_cmng(&input, &bp->cmng);
2581 		return;
2582 	}
2583 
2584 	/* rate shaping and fairness are disabled */
2585 	DP(NETIF_MSG_IFUP,
2586 	   "rate shaping and fairness are disabled\n");
2587 }
2588 
2589 static void storm_memset_cmng(struct bnx2x *bp,
2590 			      struct cmng_init *cmng,
2591 			      u8 port)
2592 {
2593 	int vn;
2594 	size_t size = sizeof(struct cmng_struct_per_port);
2595 
2596 	u32 addr = BAR_XSTRORM_INTMEM +
2597 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2598 
2599 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2600 
2601 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2602 		int func = func_by_vn(bp, vn);
2603 
2604 		addr = BAR_XSTRORM_INTMEM +
2605 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2606 		size = sizeof(struct rate_shaping_vars_per_vn);
2607 		__storm_memset_struct(bp, addr, size,
2608 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2609 
2610 		addr = BAR_XSTRORM_INTMEM +
2611 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2612 		size = sizeof(struct fairness_vars_per_vn);
2613 		__storm_memset_struct(bp, addr, size,
2614 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2615 	}
2616 }
2617 
2618 /* init cmng mode in HW according to local configuration */
2619 void bnx2x_set_local_cmng(struct bnx2x *bp)
2620 {
2621 	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2622 
2623 	if (cmng_fns != CMNG_FNS_NONE) {
2624 		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2625 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2626 	} else {
2627 		/* rate shaping and fairness are disabled */
2628 		DP(NETIF_MSG_IFUP,
2629 		   "single function mode without fairness\n");
2630 	}
2631 }
2632 
2633 /* This function is called upon link interrupt */
2634 static void bnx2x_link_attn(struct bnx2x *bp)
2635 {
2636 	/* Make sure that we are synced with the current statistics */
2637 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2638 
2639 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2640 
2641 	bnx2x_init_dropless_fc(bp);
2642 
2643 	if (bp->link_vars.link_up) {
2644 
2645 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2646 			struct host_port_stats *pstats;
2647 
2648 			pstats = bnx2x_sp(bp, port_stats);
2649 			/* reset old mac stats */
2650 			memset(&(pstats->mac_stx[0]), 0,
2651 			       sizeof(struct mac_stx));
2652 		}
2653 		if (bp->state == BNX2X_STATE_OPEN)
2654 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2655 	}
2656 
2657 	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2658 		bnx2x_set_local_cmng(bp);
2659 
2660 	__bnx2x_link_report(bp);
2661 
2662 	if (IS_MF(bp))
2663 		bnx2x_link_sync_notify(bp);
2664 }
2665 
2666 void bnx2x__link_status_update(struct bnx2x *bp)
2667 {
2668 	if (bp->state != BNX2X_STATE_OPEN)
2669 		return;
2670 
2671 	/* read updated dcb configuration */
2672 	if (IS_PF(bp)) {
2673 		bnx2x_dcbx_pmf_update(bp);
2674 		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2675 		if (bp->link_vars.link_up)
2676 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2677 		else
2678 			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2679 			/* indicate link status */
2680 		bnx2x_link_report(bp);
2681 
2682 	} else { /* VF */
2683 		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2684 					  SUPPORTED_10baseT_Full |
2685 					  SUPPORTED_100baseT_Half |
2686 					  SUPPORTED_100baseT_Full |
2687 					  SUPPORTED_1000baseT_Full |
2688 					  SUPPORTED_2500baseX_Full |
2689 					  SUPPORTED_10000baseT_Full |
2690 					  SUPPORTED_TP |
2691 					  SUPPORTED_FIBRE |
2692 					  SUPPORTED_Autoneg |
2693 					  SUPPORTED_Pause |
2694 					  SUPPORTED_Asym_Pause);
2695 		bp->port.advertising[0] = bp->port.supported[0];
2696 
2697 		bp->link_params.bp = bp;
2698 		bp->link_params.port = BP_PORT(bp);
2699 		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2700 		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2701 		bp->link_params.req_line_speed[0] = SPEED_10000;
2702 		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2703 		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2704 		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2705 		bp->link_vars.line_speed = SPEED_10000;
2706 		bp->link_vars.link_status =
2707 			(LINK_STATUS_LINK_UP |
2708 			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2709 		bp->link_vars.link_up = 1;
2710 		bp->link_vars.duplex = DUPLEX_FULL;
2711 		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2712 		__bnx2x_link_report(bp);
2713 
2714 		bnx2x_sample_bulletin(bp);
2715 
2716 		/* if bulletin board did not have an update for link status
2717 		 * __bnx2x_link_report will report current status
2718 		 * but it will NOT duplicate report in case of already reported
2719 		 * during sampling bulletin board.
2720 		 */
2721 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2722 	}
2723 }
2724 
2725 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2726 				  u16 vlan_val, u8 allowed_prio)
2727 {
2728 	struct bnx2x_func_state_params func_params = {NULL};
2729 	struct bnx2x_func_afex_update_params *f_update_params =
2730 		&func_params.params.afex_update;
2731 
2732 	func_params.f_obj = &bp->func_obj;
2733 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2734 
2735 	/* no need to wait for RAMROD completion, so don't
2736 	 * set RAMROD_COMP_WAIT flag
2737 	 */
2738 
2739 	f_update_params->vif_id = vifid;
2740 	f_update_params->afex_default_vlan = vlan_val;
2741 	f_update_params->allowed_priorities = allowed_prio;
2742 
2743 	/* if ramrod can not be sent, response to MCP immediately */
2744 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2745 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2746 
2747 	return 0;
2748 }
2749 
2750 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2751 					  u16 vif_index, u8 func_bit_map)
2752 {
2753 	struct bnx2x_func_state_params func_params = {NULL};
2754 	struct bnx2x_func_afex_viflists_params *update_params =
2755 		&func_params.params.afex_viflists;
2756 	int rc;
2757 	u32 drv_msg_code;
2758 
2759 	/* validate only LIST_SET and LIST_GET are received from switch */
2760 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2761 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2762 			  cmd_type);
2763 
2764 	func_params.f_obj = &bp->func_obj;
2765 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2766 
2767 	/* set parameters according to cmd_type */
2768 	update_params->afex_vif_list_command = cmd_type;
2769 	update_params->vif_list_index = vif_index;
2770 	update_params->func_bit_map =
2771 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2772 	update_params->func_to_clear = 0;
2773 	drv_msg_code =
2774 		(cmd_type == VIF_LIST_RULE_GET) ?
2775 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2776 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2777 
2778 	/* if ramrod can not be sent, respond to MCP immediately for
2779 	 * SET and GET requests (other are not triggered from MCP)
2780 	 */
2781 	rc = bnx2x_func_state_change(bp, &func_params);
2782 	if (rc < 0)
2783 		bnx2x_fw_command(bp, drv_msg_code, 0);
2784 
2785 	return 0;
2786 }
2787 
2788 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2789 {
2790 	struct afex_stats afex_stats;
2791 	u32 func = BP_ABS_FUNC(bp);
2792 	u32 mf_config;
2793 	u16 vlan_val;
2794 	u32 vlan_prio;
2795 	u16 vif_id;
2796 	u8 allowed_prio;
2797 	u8 vlan_mode;
2798 	u32 addr_to_write, vifid, addrs, stats_type, i;
2799 
2800 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2801 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2802 		DP(BNX2X_MSG_MCP,
2803 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2804 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2805 	}
2806 
2807 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2808 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2809 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2810 		DP(BNX2X_MSG_MCP,
2811 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2812 		   vifid, addrs);
2813 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2814 					       addrs);
2815 	}
2816 
2817 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2818 		addr_to_write = SHMEM2_RD(bp,
2819 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2820 		stats_type = SHMEM2_RD(bp,
2821 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2822 
2823 		DP(BNX2X_MSG_MCP,
2824 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2825 		   addr_to_write);
2826 
2827 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2828 
2829 		/* write response to scratchpad, for MCP */
2830 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2831 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2832 			       *(((u32 *)(&afex_stats))+i));
2833 
2834 		/* send ack message to MCP */
2835 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2836 	}
2837 
2838 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2839 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2840 		bp->mf_config[BP_VN(bp)] = mf_config;
2841 		DP(BNX2X_MSG_MCP,
2842 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2843 		   mf_config);
2844 
2845 		/* if VIF_SET is "enabled" */
2846 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2847 			/* set rate limit directly to internal RAM */
2848 			struct cmng_init_input cmng_input;
2849 			struct rate_shaping_vars_per_vn m_rs_vn;
2850 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2851 			u32 addr = BAR_XSTRORM_INTMEM +
2852 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2853 
2854 			bp->mf_config[BP_VN(bp)] = mf_config;
2855 
2856 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2857 			m_rs_vn.vn_counter.rate =
2858 				cmng_input.vnic_max_rate[BP_VN(bp)];
2859 			m_rs_vn.vn_counter.quota =
2860 				(m_rs_vn.vn_counter.rate *
2861 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2862 
2863 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2864 
2865 			/* read relevant values from mf_cfg struct in shmem */
2866 			vif_id =
2867 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2868 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2869 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2870 			vlan_val =
2871 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2872 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2873 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2874 			vlan_prio = (mf_config &
2875 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2876 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2877 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2878 			vlan_mode =
2879 				(MF_CFG_RD(bp,
2880 					   func_mf_config[func].afex_config) &
2881 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2882 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2883 			allowed_prio =
2884 				(MF_CFG_RD(bp,
2885 					   func_mf_config[func].afex_config) &
2886 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2887 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2888 
2889 			/* send ramrod to FW, return in case of failure */
2890 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2891 						   allowed_prio))
2892 				return;
2893 
2894 			bp->afex_def_vlan_tag = vlan_val;
2895 			bp->afex_vlan_mode = vlan_mode;
2896 		} else {
2897 			/* notify link down because BP->flags is disabled */
2898 			bnx2x_link_report(bp);
2899 
2900 			/* send INVALID VIF ramrod to FW */
2901 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2902 
2903 			/* Reset the default afex VLAN */
2904 			bp->afex_def_vlan_tag = -1;
2905 		}
2906 	}
2907 }
2908 
2909 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2910 {
2911 	struct bnx2x_func_switch_update_params *switch_update_params;
2912 	struct bnx2x_func_state_params func_params;
2913 
2914 	memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2915 	switch_update_params = &func_params.params.switch_update;
2916 	func_params.f_obj = &bp->func_obj;
2917 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2918 
2919 	if (IS_MF_UFP(bp)) {
2920 		int func = BP_ABS_FUNC(bp);
2921 		u32 val;
2922 
2923 		/* Re-learn the S-tag from shmem */
2924 		val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2925 				FUNC_MF_CFG_E1HOV_TAG_MASK;
2926 		if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2927 			bp->mf_ov = val;
2928 		} else {
2929 			BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2930 			goto fail;
2931 		}
2932 
2933 		/* Configure new S-tag in LLH */
2934 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2935 		       bp->mf_ov);
2936 
2937 		/* Send Ramrod to update FW of change */
2938 		__set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2939 			  &switch_update_params->changes);
2940 		switch_update_params->vlan = bp->mf_ov;
2941 
2942 		if (bnx2x_func_state_change(bp, &func_params) < 0) {
2943 			BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2944 				  bp->mf_ov);
2945 			goto fail;
2946 		}
2947 
2948 		DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n", bp->mf_ov);
2949 
2950 		bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2951 
2952 		return;
2953 	}
2954 
2955 	/* not supported by SW yet */
2956 fail:
2957 	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2958 }
2959 
2960 static void bnx2x_pmf_update(struct bnx2x *bp)
2961 {
2962 	int port = BP_PORT(bp);
2963 	u32 val;
2964 
2965 	bp->port.pmf = 1;
2966 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2967 
2968 	/*
2969 	 * We need the mb() to ensure the ordering between the writing to
2970 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2971 	 */
2972 	smp_mb();
2973 
2974 	/* queue a periodic task */
2975 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2976 
2977 	bnx2x_dcbx_pmf_update(bp);
2978 
2979 	/* enable nig attention */
2980 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2981 	if (bp->common.int_block == INT_BLOCK_HC) {
2982 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2983 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2984 	} else if (!CHIP_IS_E1x(bp)) {
2985 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2986 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2987 	}
2988 
2989 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2990 }
2991 
2992 /* end of Link */
2993 
2994 /* slow path */
2995 
2996 /*
2997  * General service functions
2998  */
2999 
3000 /* send the MCP a request, block until there is a reply */
3001 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3002 {
3003 	int mb_idx = BP_FW_MB_IDX(bp);
3004 	u32 seq;
3005 	u32 rc = 0;
3006 	u32 cnt = 1;
3007 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3008 
3009 	mutex_lock(&bp->fw_mb_mutex);
3010 	seq = ++bp->fw_seq;
3011 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3012 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3013 
3014 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3015 			(command | seq), param);
3016 
3017 	do {
3018 		/* let the FW do it's magic ... */
3019 		msleep(delay);
3020 
3021 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3022 
3023 		/* Give the FW up to 5 second (500*10ms) */
3024 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3025 
3026 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3027 	   cnt*delay, rc, seq);
3028 
3029 	/* is this a reply to our command? */
3030 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3031 		rc &= FW_MSG_CODE_MASK;
3032 	else {
3033 		/* FW BUG! */
3034 		BNX2X_ERR("FW failed to respond!\n");
3035 		bnx2x_fw_dump(bp);
3036 		rc = 0;
3037 	}
3038 	mutex_unlock(&bp->fw_mb_mutex);
3039 
3040 	return rc;
3041 }
3042 
3043 static void storm_memset_func_cfg(struct bnx2x *bp,
3044 				 struct tstorm_eth_function_common_config *tcfg,
3045 				 u16 abs_fid)
3046 {
3047 	size_t size = sizeof(struct tstorm_eth_function_common_config);
3048 
3049 	u32 addr = BAR_TSTRORM_INTMEM +
3050 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3051 
3052 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3053 }
3054 
3055 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3056 {
3057 	if (CHIP_IS_E1x(bp)) {
3058 		struct tstorm_eth_function_common_config tcfg = {0};
3059 
3060 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
3061 	}
3062 
3063 	/* Enable the function in the FW */
3064 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3065 	storm_memset_func_en(bp, p->func_id, 1);
3066 
3067 	/* spq */
3068 	if (p->func_flgs & FUNC_FLG_SPQ) {
3069 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3070 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
3071 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3072 	}
3073 }
3074 
3075 /**
3076  * bnx2x_get_common_flags - Return common flags
3077  *
3078  * @bp		device handle
3079  * @fp		queue handle
3080  * @zero_stats	TRUE if statistics zeroing is needed
3081  *
3082  * Return the flags that are common for the Tx-only and not normal connections.
3083  */
3084 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3085 					    struct bnx2x_fastpath *fp,
3086 					    bool zero_stats)
3087 {
3088 	unsigned long flags = 0;
3089 
3090 	/* PF driver will always initialize the Queue to an ACTIVE state */
3091 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3092 
3093 	/* tx only connections collect statistics (on the same index as the
3094 	 * parent connection). The statistics are zeroed when the parent
3095 	 * connection is initialized.
3096 	 */
3097 
3098 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
3099 	if (zero_stats)
3100 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3101 
3102 	if (bp->flags & TX_SWITCHING)
3103 		__set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3104 
3105 	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3106 	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3107 
3108 #ifdef BNX2X_STOP_ON_ERROR
3109 	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3110 #endif
3111 
3112 	return flags;
3113 }
3114 
3115 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3116 				       struct bnx2x_fastpath *fp,
3117 				       bool leading)
3118 {
3119 	unsigned long flags = 0;
3120 
3121 	/* calculate other queue flags */
3122 	if (IS_MF_SD(bp))
3123 		__set_bit(BNX2X_Q_FLG_OV, &flags);
3124 
3125 	if (IS_FCOE_FP(fp)) {
3126 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
3127 		/* For FCoE - force usage of default priority (for afex) */
3128 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3129 	}
3130 
3131 	if (fp->mode != TPA_MODE_DISABLED) {
3132 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3133 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3134 		if (fp->mode == TPA_MODE_GRO)
3135 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3136 	}
3137 
3138 	if (leading) {
3139 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3140 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3141 	}
3142 
3143 	/* Always set HW VLAN stripping */
3144 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3145 
3146 	/* configure silent vlan removal */
3147 	if (IS_MF_AFEX(bp))
3148 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3149 
3150 	return flags | bnx2x_get_common_flags(bp, fp, true);
3151 }
3152 
3153 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3154 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3155 	u8 cos)
3156 {
3157 	gen_init->stat_id = bnx2x_stats_id(fp);
3158 	gen_init->spcl_id = fp->cl_id;
3159 
3160 	/* Always use mini-jumbo MTU for FCoE L2 ring */
3161 	if (IS_FCOE_FP(fp))
3162 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3163 	else
3164 		gen_init->mtu = bp->dev->mtu;
3165 
3166 	gen_init->cos = cos;
3167 
3168 	gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3169 }
3170 
3171 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3172 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3173 	struct bnx2x_rxq_setup_params *rxq_init)
3174 {
3175 	u8 max_sge = 0;
3176 	u16 sge_sz = 0;
3177 	u16 tpa_agg_size = 0;
3178 
3179 	if (fp->mode != TPA_MODE_DISABLED) {
3180 		pause->sge_th_lo = SGE_TH_LO(bp);
3181 		pause->sge_th_hi = SGE_TH_HI(bp);
3182 
3183 		/* validate SGE ring has enough to cross high threshold */
3184 		WARN_ON(bp->dropless_fc &&
3185 				pause->sge_th_hi + FW_PREFETCH_CNT >
3186 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3187 
3188 		tpa_agg_size = TPA_AGG_SIZE;
3189 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3190 			SGE_PAGE_SHIFT;
3191 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3192 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3193 		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3194 	}
3195 
3196 	/* pause - not for e1 */
3197 	if (!CHIP_IS_E1(bp)) {
3198 		pause->bd_th_lo = BD_TH_LO(bp);
3199 		pause->bd_th_hi = BD_TH_HI(bp);
3200 
3201 		pause->rcq_th_lo = RCQ_TH_LO(bp);
3202 		pause->rcq_th_hi = RCQ_TH_HI(bp);
3203 		/*
3204 		 * validate that rings have enough entries to cross
3205 		 * high thresholds
3206 		 */
3207 		WARN_ON(bp->dropless_fc &&
3208 				pause->bd_th_hi + FW_PREFETCH_CNT >
3209 				bp->rx_ring_size);
3210 		WARN_ON(bp->dropless_fc &&
3211 				pause->rcq_th_hi + FW_PREFETCH_CNT >
3212 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3213 
3214 		pause->pri_map = 1;
3215 	}
3216 
3217 	/* rxq setup */
3218 	rxq_init->dscr_map = fp->rx_desc_mapping;
3219 	rxq_init->sge_map = fp->rx_sge_mapping;
3220 	rxq_init->rcq_map = fp->rx_comp_mapping;
3221 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3222 
3223 	/* This should be a maximum number of data bytes that may be
3224 	 * placed on the BD (not including paddings).
3225 	 */
3226 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3227 			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3228 
3229 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3230 	rxq_init->tpa_agg_sz = tpa_agg_size;
3231 	rxq_init->sge_buf_sz = sge_sz;
3232 	rxq_init->max_sges_pkt = max_sge;
3233 	rxq_init->rss_engine_id = BP_FUNC(bp);
3234 	rxq_init->mcast_engine_id = BP_FUNC(bp);
3235 
3236 	/* Maximum number or simultaneous TPA aggregation for this Queue.
3237 	 *
3238 	 * For PF Clients it should be the maximum available number.
3239 	 * VF driver(s) may want to define it to a smaller value.
3240 	 */
3241 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3242 
3243 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3244 	rxq_init->fw_sb_id = fp->fw_sb_id;
3245 
3246 	if (IS_FCOE_FP(fp))
3247 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3248 	else
3249 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3250 	/* configure silent vlan removal
3251 	 * if multi function mode is afex, then mask default vlan
3252 	 */
3253 	if (IS_MF_AFEX(bp)) {
3254 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3255 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3256 	}
3257 }
3258 
3259 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3260 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3261 	u8 cos)
3262 {
3263 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3264 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3265 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3266 	txq_init->fw_sb_id = fp->fw_sb_id;
3267 
3268 	/*
3269 	 * set the tss leading client id for TX classification ==
3270 	 * leading RSS client id
3271 	 */
3272 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3273 
3274 	if (IS_FCOE_FP(fp)) {
3275 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3276 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3277 	}
3278 }
3279 
3280 static void bnx2x_pf_init(struct bnx2x *bp)
3281 {
3282 	struct bnx2x_func_init_params func_init = {0};
3283 	struct event_ring_data eq_data = { {0} };
3284 	u16 flags;
3285 
3286 	if (!CHIP_IS_E1x(bp)) {
3287 		/* reset IGU PF statistics: MSIX + ATTN */
3288 		/* PF */
3289 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3290 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3291 			   (CHIP_MODE_IS_4_PORT(bp) ?
3292 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3293 		/* ATTN */
3294 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3295 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3296 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3297 			   (CHIP_MODE_IS_4_PORT(bp) ?
3298 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3299 	}
3300 
3301 	/* function setup flags */
3302 	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3303 
3304 	/* This flag is relevant for E1x only.
3305 	 * E2 doesn't have a TPA configuration in a function level.
3306 	 */
3307 	flags |= (bp->dev->features & NETIF_F_LRO) ? FUNC_FLG_TPA : 0;
3308 
3309 	func_init.func_flgs = flags;
3310 	func_init.pf_id = BP_FUNC(bp);
3311 	func_init.func_id = BP_FUNC(bp);
3312 	func_init.spq_map = bp->spq_mapping;
3313 	func_init.spq_prod = bp->spq_prod_idx;
3314 
3315 	bnx2x_func_init(bp, &func_init);
3316 
3317 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3318 
3319 	/*
3320 	 * Congestion management values depend on the link rate
3321 	 * There is no active link so initial link rate is set to 10 Gbps.
3322 	 * When the link comes up The congestion management values are
3323 	 * re-calculated according to the actual link rate.
3324 	 */
3325 	bp->link_vars.line_speed = SPEED_10000;
3326 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3327 
3328 	/* Only the PMF sets the HW */
3329 	if (bp->port.pmf)
3330 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3331 
3332 	/* init Event Queue - PCI bus guarantees correct endianity*/
3333 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3334 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3335 	eq_data.producer = bp->eq_prod;
3336 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3337 	eq_data.sb_id = DEF_SB_ID;
3338 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3339 }
3340 
3341 static void bnx2x_e1h_disable(struct bnx2x *bp)
3342 {
3343 	int port = BP_PORT(bp);
3344 
3345 	bnx2x_tx_disable(bp);
3346 
3347 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3348 }
3349 
3350 static void bnx2x_e1h_enable(struct bnx2x *bp)
3351 {
3352 	int port = BP_PORT(bp);
3353 
3354 	if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3355 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3356 
3357 	/* Tx queue should be only re-enabled */
3358 	netif_tx_wake_all_queues(bp->dev);
3359 
3360 	/*
3361 	 * Should not call netif_carrier_on since it will be called if the link
3362 	 * is up when checking for link state
3363 	 */
3364 }
3365 
3366 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3367 
3368 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3369 {
3370 	struct eth_stats_info *ether_stat =
3371 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3372 	struct bnx2x_vlan_mac_obj *mac_obj =
3373 		&bp->sp_objs->mac_obj;
3374 	int i;
3375 
3376 	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3377 		ETH_STAT_INFO_VERSION_LEN);
3378 
3379 	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3380 	 * mac_local field in ether_stat struct. The base address is offset by 2
3381 	 * bytes to account for the field being 8 bytes but a mac address is
3382 	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3383 	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3384 	 * allocated by the ether_stat struct, so the macs will land in their
3385 	 * proper positions.
3386 	 */
3387 	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3388 		memset(ether_stat->mac_local + i, 0,
3389 		       sizeof(ether_stat->mac_local[0]));
3390 	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3391 				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3392 				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3393 				ETH_ALEN);
3394 	ether_stat->mtu_size = bp->dev->mtu;
3395 	if (bp->dev->features & NETIF_F_RXCSUM)
3396 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3397 	if (bp->dev->features & NETIF_F_TSO)
3398 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3399 	ether_stat->feature_flags |= bp->common.boot_mode;
3400 
3401 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3402 
3403 	ether_stat->txq_size = bp->tx_ring_size;
3404 	ether_stat->rxq_size = bp->rx_ring_size;
3405 
3406 #ifdef CONFIG_BNX2X_SRIOV
3407 	ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3408 #endif
3409 }
3410 
3411 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3412 {
3413 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3414 	struct fcoe_stats_info *fcoe_stat =
3415 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3416 
3417 	if (!CNIC_LOADED(bp))
3418 		return;
3419 
3420 	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3421 
3422 	fcoe_stat->qos_priority =
3423 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3424 
3425 	/* insert FCoE stats from ramrod response */
3426 	if (!NO_FCOE(bp)) {
3427 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3428 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3429 			tstorm_queue_statistics;
3430 
3431 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3432 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3433 			xstorm_queue_statistics;
3434 
3435 		struct fcoe_statistics_params *fw_fcoe_stat =
3436 			&bp->fw_stats_data->fcoe;
3437 
3438 		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3439 			  fcoe_stat->rx_bytes_lo,
3440 			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3441 
3442 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3443 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3444 			  fcoe_stat->rx_bytes_lo,
3445 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3446 
3447 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3448 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3449 			  fcoe_stat->rx_bytes_lo,
3450 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3451 
3452 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3453 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3454 			  fcoe_stat->rx_bytes_lo,
3455 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3456 
3457 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3458 			  fcoe_stat->rx_frames_lo,
3459 			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3460 
3461 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3462 			  fcoe_stat->rx_frames_lo,
3463 			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3464 
3465 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3466 			  fcoe_stat->rx_frames_lo,
3467 			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3468 
3469 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3470 			  fcoe_stat->rx_frames_lo,
3471 			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3472 
3473 		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3474 			  fcoe_stat->tx_bytes_lo,
3475 			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3476 
3477 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3478 			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3479 			  fcoe_stat->tx_bytes_lo,
3480 			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3481 
3482 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3483 			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3484 			  fcoe_stat->tx_bytes_lo,
3485 			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3486 
3487 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3488 			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3489 			  fcoe_stat->tx_bytes_lo,
3490 			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3491 
3492 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3493 			  fcoe_stat->tx_frames_lo,
3494 			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3495 
3496 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3497 			  fcoe_stat->tx_frames_lo,
3498 			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3499 
3500 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3501 			  fcoe_stat->tx_frames_lo,
3502 			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3503 
3504 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3505 			  fcoe_stat->tx_frames_lo,
3506 			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3507 	}
3508 
3509 	/* ask L5 driver to add data to the struct */
3510 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3511 }
3512 
3513 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3514 {
3515 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3516 	struct iscsi_stats_info *iscsi_stat =
3517 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3518 
3519 	if (!CNIC_LOADED(bp))
3520 		return;
3521 
3522 	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3523 	       ETH_ALEN);
3524 
3525 	iscsi_stat->qos_priority =
3526 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3527 
3528 	/* ask L5 driver to add data to the struct */
3529 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3530 }
3531 
3532 /* called due to MCP event (on pmf):
3533  *	reread new bandwidth configuration
3534  *	configure FW
3535  *	notify others function about the change
3536  */
3537 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3538 {
3539 	if (bp->link_vars.link_up) {
3540 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3541 		bnx2x_link_sync_notify(bp);
3542 	}
3543 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3544 }
3545 
3546 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3547 {
3548 	bnx2x_config_mf_bw(bp);
3549 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3550 }
3551 
3552 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3553 {
3554 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3555 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3556 }
3557 
3558 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH	(20)
3559 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT		(25)
3560 
3561 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3562 {
3563 	enum drv_info_opcode op_code;
3564 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3565 	bool release = false;
3566 	int wait;
3567 
3568 	/* if drv_info version supported by MFW doesn't match - send NACK */
3569 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3570 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3571 		return;
3572 	}
3573 
3574 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3575 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3576 
3577 	/* Must prevent other flows from accessing drv_info_to_mcp */
3578 	mutex_lock(&bp->drv_info_mutex);
3579 
3580 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3581 	       sizeof(union drv_info_to_mcp));
3582 
3583 	switch (op_code) {
3584 	case ETH_STATS_OPCODE:
3585 		bnx2x_drv_info_ether_stat(bp);
3586 		break;
3587 	case FCOE_STATS_OPCODE:
3588 		bnx2x_drv_info_fcoe_stat(bp);
3589 		break;
3590 	case ISCSI_STATS_OPCODE:
3591 		bnx2x_drv_info_iscsi_stat(bp);
3592 		break;
3593 	default:
3594 		/* if op code isn't supported - send NACK */
3595 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3596 		goto out;
3597 	}
3598 
3599 	/* if we got drv_info attn from MFW then these fields are defined in
3600 	 * shmem2 for sure
3601 	 */
3602 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3603 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3604 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3605 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3606 
3607 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3608 
3609 	/* Since possible management wants both this and get_driver_version
3610 	 * need to wait until management notifies us it finished utilizing
3611 	 * the buffer.
3612 	 */
3613 	if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3614 		DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3615 	} else if (!bp->drv_info_mng_owner) {
3616 		u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3617 
3618 		for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3619 			u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3620 
3621 			/* Management is done; need to clear indication */
3622 			if (indication & bit) {
3623 				SHMEM2_WR(bp, mfw_drv_indication,
3624 					  indication & ~bit);
3625 				release = true;
3626 				break;
3627 			}
3628 
3629 			msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3630 		}
3631 	}
3632 	if (!release) {
3633 		DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3634 		bp->drv_info_mng_owner = true;
3635 	}
3636 
3637 out:
3638 	mutex_unlock(&bp->drv_info_mutex);
3639 }
3640 
3641 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3642 {
3643 	u8 vals[4];
3644 	int i = 0;
3645 
3646 	if (bnx2x_format) {
3647 		i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3648 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3649 		if (i > 0)
3650 			vals[0] -= '0';
3651 	} else {
3652 		i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3653 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3654 	}
3655 
3656 	while (i < 4)
3657 		vals[i++] = 0;
3658 
3659 	return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3660 }
3661 
3662 void bnx2x_update_mng_version(struct bnx2x *bp)
3663 {
3664 	u32 iscsiver = DRV_VER_NOT_LOADED;
3665 	u32 fcoever = DRV_VER_NOT_LOADED;
3666 	u32 ethver = DRV_VER_NOT_LOADED;
3667 	int idx = BP_FW_MB_IDX(bp);
3668 	u8 *version;
3669 
3670 	if (!SHMEM2_HAS(bp, func_os_drv_ver))
3671 		return;
3672 
3673 	mutex_lock(&bp->drv_info_mutex);
3674 	/* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3675 	if (bp->drv_info_mng_owner)
3676 		goto out;
3677 
3678 	if (bp->state != BNX2X_STATE_OPEN)
3679 		goto out;
3680 
3681 	/* Parse ethernet driver version */
3682 	ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3683 	if (!CNIC_LOADED(bp))
3684 		goto out;
3685 
3686 	/* Try getting storage driver version via cnic */
3687 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3688 	       sizeof(union drv_info_to_mcp));
3689 	bnx2x_drv_info_iscsi_stat(bp);
3690 	version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3691 	iscsiver = bnx2x_update_mng_version_utility(version, false);
3692 
3693 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3694 	       sizeof(union drv_info_to_mcp));
3695 	bnx2x_drv_info_fcoe_stat(bp);
3696 	version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3697 	fcoever = bnx2x_update_mng_version_utility(version, false);
3698 
3699 out:
3700 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3701 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3702 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3703 
3704 	mutex_unlock(&bp->drv_info_mutex);
3705 
3706 	DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3707 	   ethver, iscsiver, fcoever);
3708 }
3709 
3710 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3711 {
3712 	u32 cmd_ok, cmd_fail;
3713 
3714 	/* sanity */
3715 	if (event & DRV_STATUS_DCC_EVENT_MASK &&
3716 	    event & DRV_STATUS_OEM_EVENT_MASK) {
3717 		BNX2X_ERR("Received simultaneous events %08x\n", event);
3718 		return;
3719 	}
3720 
3721 	if (event & DRV_STATUS_DCC_EVENT_MASK) {
3722 		cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3723 		cmd_ok = DRV_MSG_CODE_DCC_OK;
3724 	} else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3725 		cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3726 		cmd_ok = DRV_MSG_CODE_OEM_OK;
3727 	}
3728 
3729 	DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3730 
3731 	if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3732 		     DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3733 		/* This is the only place besides the function initialization
3734 		 * where the bp->flags can change so it is done without any
3735 		 * locks
3736 		 */
3737 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3738 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3739 			bp->flags |= MF_FUNC_DIS;
3740 
3741 			bnx2x_e1h_disable(bp);
3742 		} else {
3743 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3744 			bp->flags &= ~MF_FUNC_DIS;
3745 
3746 			bnx2x_e1h_enable(bp);
3747 		}
3748 		event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3749 			   DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3750 	}
3751 
3752 	if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3753 		     DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3754 		bnx2x_config_mf_bw(bp);
3755 		event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3756 			   DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3757 	}
3758 
3759 	/* Report results to MCP */
3760 	if (event)
3761 		bnx2x_fw_command(bp, cmd_fail, 0);
3762 	else
3763 		bnx2x_fw_command(bp, cmd_ok, 0);
3764 }
3765 
3766 /* must be called under the spq lock */
3767 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3768 {
3769 	struct eth_spe *next_spe = bp->spq_prod_bd;
3770 
3771 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3772 		bp->spq_prod_bd = bp->spq;
3773 		bp->spq_prod_idx = 0;
3774 		DP(BNX2X_MSG_SP, "end of spq\n");
3775 	} else {
3776 		bp->spq_prod_bd++;
3777 		bp->spq_prod_idx++;
3778 	}
3779 	return next_spe;
3780 }
3781 
3782 /* must be called under the spq lock */
3783 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3784 {
3785 	int func = BP_FUNC(bp);
3786 
3787 	/*
3788 	 * Make sure that BD data is updated before writing the producer:
3789 	 * BD data is written to the memory, the producer is read from the
3790 	 * memory, thus we need a full memory barrier to ensure the ordering.
3791 	 */
3792 	mb();
3793 
3794 	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3795 		 bp->spq_prod_idx);
3796 	mmiowb();
3797 }
3798 
3799 /**
3800  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3801  *
3802  * @cmd:	command to check
3803  * @cmd_type:	command type
3804  */
3805 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3806 {
3807 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3808 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3809 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3810 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3811 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3812 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3813 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3814 		return true;
3815 	else
3816 		return false;
3817 }
3818 
3819 /**
3820  * bnx2x_sp_post - place a single command on an SP ring
3821  *
3822  * @bp:		driver handle
3823  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3824  * @cid:	SW CID the command is related to
3825  * @data_hi:	command private data address (high 32 bits)
3826  * @data_lo:	command private data address (low 32 bits)
3827  * @cmd_type:	command type (e.g. NONE, ETH)
3828  *
3829  * SP data is handled as if it's always an address pair, thus data fields are
3830  * not swapped to little endian in upper functions. Instead this function swaps
3831  * data as if it's two u32 fields.
3832  */
3833 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3834 		  u32 data_hi, u32 data_lo, int cmd_type)
3835 {
3836 	struct eth_spe *spe;
3837 	u16 type;
3838 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3839 
3840 #ifdef BNX2X_STOP_ON_ERROR
3841 	if (unlikely(bp->panic)) {
3842 		BNX2X_ERR("Can't post SP when there is panic\n");
3843 		return -EIO;
3844 	}
3845 #endif
3846 
3847 	spin_lock_bh(&bp->spq_lock);
3848 
3849 	if (common) {
3850 		if (!atomic_read(&bp->eq_spq_left)) {
3851 			BNX2X_ERR("BUG! EQ ring full!\n");
3852 			spin_unlock_bh(&bp->spq_lock);
3853 			bnx2x_panic();
3854 			return -EBUSY;
3855 		}
3856 	} else if (!atomic_read(&bp->cq_spq_left)) {
3857 			BNX2X_ERR("BUG! SPQ ring full!\n");
3858 			spin_unlock_bh(&bp->spq_lock);
3859 			bnx2x_panic();
3860 			return -EBUSY;
3861 	}
3862 
3863 	spe = bnx2x_sp_get_next(bp);
3864 
3865 	/* CID needs port number to be encoded int it */
3866 	spe->hdr.conn_and_cmd_data =
3867 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3868 				    HW_CID(bp, cid));
3869 
3870 	/* In some cases, type may already contain the func-id
3871 	 * mainly in SRIOV related use cases, so we add it here only
3872 	 * if it's not already set.
3873 	 */
3874 	if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3875 		type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3876 			SPE_HDR_CONN_TYPE;
3877 		type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3878 			 SPE_HDR_FUNCTION_ID);
3879 	} else {
3880 		type = cmd_type;
3881 	}
3882 
3883 	spe->hdr.type = cpu_to_le16(type);
3884 
3885 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3886 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3887 
3888 	/*
3889 	 * It's ok if the actual decrement is issued towards the memory
3890 	 * somewhere between the spin_lock and spin_unlock. Thus no
3891 	 * more explicit memory barrier is needed.
3892 	 */
3893 	if (common)
3894 		atomic_dec(&bp->eq_spq_left);
3895 	else
3896 		atomic_dec(&bp->cq_spq_left);
3897 
3898 	DP(BNX2X_MSG_SP,
3899 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3900 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3901 	   (u32)(U64_LO(bp->spq_mapping) +
3902 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3903 	   HW_CID(bp, cid), data_hi, data_lo, type,
3904 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3905 
3906 	bnx2x_sp_prod_update(bp);
3907 	spin_unlock_bh(&bp->spq_lock);
3908 	return 0;
3909 }
3910 
3911 /* acquire split MCP access lock register */
3912 static int bnx2x_acquire_alr(struct bnx2x *bp)
3913 {
3914 	u32 j, val;
3915 	int rc = 0;
3916 
3917 	might_sleep();
3918 	for (j = 0; j < 1000; j++) {
3919 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3920 		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3921 		if (val & MCPR_ACCESS_LOCK_LOCK)
3922 			break;
3923 
3924 		usleep_range(5000, 10000);
3925 	}
3926 	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3927 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3928 		rc = -EBUSY;
3929 	}
3930 
3931 	return rc;
3932 }
3933 
3934 /* release split MCP access lock register */
3935 static void bnx2x_release_alr(struct bnx2x *bp)
3936 {
3937 	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3938 }
3939 
3940 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3941 #define BNX2X_DEF_SB_IDX	0x0002
3942 
3943 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3944 {
3945 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3946 	u16 rc = 0;
3947 
3948 	barrier(); /* status block is written to by the chip */
3949 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3950 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3951 		rc |= BNX2X_DEF_SB_ATT_IDX;
3952 	}
3953 
3954 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3955 		bp->def_idx = def_sb->sp_sb.running_index;
3956 		rc |= BNX2X_DEF_SB_IDX;
3957 	}
3958 
3959 	/* Do not reorder: indices reading should complete before handling */
3960 	barrier();
3961 	return rc;
3962 }
3963 
3964 /*
3965  * slow path service functions
3966  */
3967 
3968 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3969 {
3970 	int port = BP_PORT(bp);
3971 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3972 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3973 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3974 				       NIG_REG_MASK_INTERRUPT_PORT0;
3975 	u32 aeu_mask;
3976 	u32 nig_mask = 0;
3977 	u32 reg_addr;
3978 
3979 	if (bp->attn_state & asserted)
3980 		BNX2X_ERR("IGU ERROR\n");
3981 
3982 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3983 	aeu_mask = REG_RD(bp, aeu_addr);
3984 
3985 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3986 	   aeu_mask, asserted);
3987 	aeu_mask &= ~(asserted & 0x3ff);
3988 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3989 
3990 	REG_WR(bp, aeu_addr, aeu_mask);
3991 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3992 
3993 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3994 	bp->attn_state |= asserted;
3995 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3996 
3997 	if (asserted & ATTN_HARD_WIRED_MASK) {
3998 		if (asserted & ATTN_NIG_FOR_FUNC) {
3999 
4000 			bnx2x_acquire_phy_lock(bp);
4001 
4002 			/* save nig interrupt mask */
4003 			nig_mask = REG_RD(bp, nig_int_mask_addr);
4004 
4005 			/* If nig_mask is not set, no need to call the update
4006 			 * function.
4007 			 */
4008 			if (nig_mask) {
4009 				REG_WR(bp, nig_int_mask_addr, 0);
4010 
4011 				bnx2x_link_attn(bp);
4012 			}
4013 
4014 			/* handle unicore attn? */
4015 		}
4016 		if (asserted & ATTN_SW_TIMER_4_FUNC)
4017 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4018 
4019 		if (asserted & GPIO_2_FUNC)
4020 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4021 
4022 		if (asserted & GPIO_3_FUNC)
4023 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4024 
4025 		if (asserted & GPIO_4_FUNC)
4026 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4027 
4028 		if (port == 0) {
4029 			if (asserted & ATTN_GENERAL_ATTN_1) {
4030 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4031 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4032 			}
4033 			if (asserted & ATTN_GENERAL_ATTN_2) {
4034 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4035 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4036 			}
4037 			if (asserted & ATTN_GENERAL_ATTN_3) {
4038 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4039 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4040 			}
4041 		} else {
4042 			if (asserted & ATTN_GENERAL_ATTN_4) {
4043 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4044 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4045 			}
4046 			if (asserted & ATTN_GENERAL_ATTN_5) {
4047 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4048 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4049 			}
4050 			if (asserted & ATTN_GENERAL_ATTN_6) {
4051 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4052 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4053 			}
4054 		}
4055 
4056 	} /* if hardwired */
4057 
4058 	if (bp->common.int_block == INT_BLOCK_HC)
4059 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4060 			    COMMAND_REG_ATTN_BITS_SET);
4061 	else
4062 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4063 
4064 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4065 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4066 	REG_WR(bp, reg_addr, asserted);
4067 
4068 	/* now set back the mask */
4069 	if (asserted & ATTN_NIG_FOR_FUNC) {
4070 		/* Verify that IGU ack through BAR was written before restoring
4071 		 * NIG mask. This loop should exit after 2-3 iterations max.
4072 		 */
4073 		if (bp->common.int_block != INT_BLOCK_HC) {
4074 			u32 cnt = 0, igu_acked;
4075 			do {
4076 				igu_acked = REG_RD(bp,
4077 						   IGU_REG_ATTENTION_ACK_BITS);
4078 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4079 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
4080 			if (!igu_acked)
4081 				DP(NETIF_MSG_HW,
4082 				   "Failed to verify IGU ack on time\n");
4083 			barrier();
4084 		}
4085 		REG_WR(bp, nig_int_mask_addr, nig_mask);
4086 		bnx2x_release_phy_lock(bp);
4087 	}
4088 }
4089 
4090 static void bnx2x_fan_failure(struct bnx2x *bp)
4091 {
4092 	int port = BP_PORT(bp);
4093 	u32 ext_phy_config;
4094 	/* mark the failure */
4095 	ext_phy_config =
4096 		SHMEM_RD(bp,
4097 			 dev_info.port_hw_config[port].external_phy_config);
4098 
4099 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4100 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4101 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4102 		 ext_phy_config);
4103 
4104 	/* log the failure */
4105 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4106 			    "Please contact OEM Support for assistance\n");
4107 
4108 	/* Schedule device reset (unload)
4109 	 * This is due to some boards consuming sufficient power when driver is
4110 	 * up to overheat if fan fails.
4111 	 */
4112 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4113 }
4114 
4115 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4116 {
4117 	int port = BP_PORT(bp);
4118 	int reg_offset;
4119 	u32 val;
4120 
4121 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4122 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4123 
4124 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4125 
4126 		val = REG_RD(bp, reg_offset);
4127 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4128 		REG_WR(bp, reg_offset, val);
4129 
4130 		BNX2X_ERR("SPIO5 hw attention\n");
4131 
4132 		/* Fan failure attention */
4133 		bnx2x_hw_reset_phy(&bp->link_params);
4134 		bnx2x_fan_failure(bp);
4135 	}
4136 
4137 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4138 		bnx2x_acquire_phy_lock(bp);
4139 		bnx2x_handle_module_detect_int(&bp->link_params);
4140 		bnx2x_release_phy_lock(bp);
4141 	}
4142 
4143 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
4144 
4145 		val = REG_RD(bp, reg_offset);
4146 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4147 		REG_WR(bp, reg_offset, val);
4148 
4149 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4150 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
4151 		bnx2x_panic();
4152 	}
4153 }
4154 
4155 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4156 {
4157 	u32 val;
4158 
4159 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4160 
4161 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4162 		BNX2X_ERR("DB hw attention 0x%x\n", val);
4163 		/* DORQ discard attention */
4164 		if (val & 0x2)
4165 			BNX2X_ERR("FATAL error from DORQ\n");
4166 	}
4167 
4168 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
4169 
4170 		int port = BP_PORT(bp);
4171 		int reg_offset;
4172 
4173 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4174 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4175 
4176 		val = REG_RD(bp, reg_offset);
4177 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4178 		REG_WR(bp, reg_offset, val);
4179 
4180 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4181 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
4182 		bnx2x_panic();
4183 	}
4184 }
4185 
4186 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4187 {
4188 	u32 val;
4189 
4190 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4191 
4192 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4193 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
4194 		/* CFC error attention */
4195 		if (val & 0x2)
4196 			BNX2X_ERR("FATAL error from CFC\n");
4197 	}
4198 
4199 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4200 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4201 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4202 		/* RQ_USDMDP_FIFO_OVERFLOW */
4203 		if (val & 0x18000)
4204 			BNX2X_ERR("FATAL error from PXP\n");
4205 
4206 		if (!CHIP_IS_E1x(bp)) {
4207 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4208 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4209 		}
4210 	}
4211 
4212 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
4213 
4214 		int port = BP_PORT(bp);
4215 		int reg_offset;
4216 
4217 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4218 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4219 
4220 		val = REG_RD(bp, reg_offset);
4221 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4222 		REG_WR(bp, reg_offset, val);
4223 
4224 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4225 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
4226 		bnx2x_panic();
4227 	}
4228 }
4229 
4230 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4231 {
4232 	u32 val;
4233 
4234 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4235 
4236 		if (attn & BNX2X_PMF_LINK_ASSERT) {
4237 			int func = BP_FUNC(bp);
4238 
4239 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4240 			bnx2x_read_mf_cfg(bp);
4241 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4242 					func_mf_config[BP_ABS_FUNC(bp)].config);
4243 			val = SHMEM_RD(bp,
4244 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4245 
4246 			if (val & (DRV_STATUS_DCC_EVENT_MASK |
4247 				   DRV_STATUS_OEM_EVENT_MASK))
4248 				bnx2x_oem_event(bp,
4249 					(val & (DRV_STATUS_DCC_EVENT_MASK |
4250 						DRV_STATUS_OEM_EVENT_MASK)));
4251 
4252 			if (val & DRV_STATUS_SET_MF_BW)
4253 				bnx2x_set_mf_bw(bp);
4254 
4255 			if (val & DRV_STATUS_DRV_INFO_REQ)
4256 				bnx2x_handle_drv_info_req(bp);
4257 
4258 			if (val & DRV_STATUS_VF_DISABLED)
4259 				bnx2x_schedule_iov_task(bp,
4260 							BNX2X_IOV_HANDLE_FLR);
4261 
4262 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4263 				bnx2x_pmf_update(bp);
4264 
4265 			if (bp->port.pmf &&
4266 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4267 				bp->dcbx_enabled > 0)
4268 				/* start dcbx state machine */
4269 				bnx2x_dcbx_set_params(bp,
4270 					BNX2X_DCBX_STATE_NEG_RECEIVED);
4271 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
4272 				bnx2x_handle_afex_cmd(bp,
4273 					val & DRV_STATUS_AFEX_EVENT_MASK);
4274 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4275 				bnx2x_handle_eee_event(bp);
4276 
4277 			if (val & DRV_STATUS_OEM_UPDATE_SVID)
4278 				bnx2x_handle_update_svid_cmd(bp);
4279 
4280 			if (bp->link_vars.periodic_flags &
4281 			    PERIODIC_FLAGS_LINK_EVENT) {
4282 				/*  sync with link */
4283 				bnx2x_acquire_phy_lock(bp);
4284 				bp->link_vars.periodic_flags &=
4285 					~PERIODIC_FLAGS_LINK_EVENT;
4286 				bnx2x_release_phy_lock(bp);
4287 				if (IS_MF(bp))
4288 					bnx2x_link_sync_notify(bp);
4289 				bnx2x_link_report(bp);
4290 			}
4291 			/* Always call it here: bnx2x_link_report() will
4292 			 * prevent the link indication duplication.
4293 			 */
4294 			bnx2x__link_status_update(bp);
4295 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4296 
4297 			BNX2X_ERR("MC assert!\n");
4298 			bnx2x_mc_assert(bp);
4299 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4300 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4301 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4302 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4303 			bnx2x_panic();
4304 
4305 		} else if (attn & BNX2X_MCP_ASSERT) {
4306 
4307 			BNX2X_ERR("MCP assert!\n");
4308 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4309 			bnx2x_fw_dump(bp);
4310 
4311 		} else
4312 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4313 	}
4314 
4315 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4316 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4317 		if (attn & BNX2X_GRC_TIMEOUT) {
4318 			val = CHIP_IS_E1(bp) ? 0 :
4319 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4320 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4321 		}
4322 		if (attn & BNX2X_GRC_RSV) {
4323 			val = CHIP_IS_E1(bp) ? 0 :
4324 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4325 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4326 		}
4327 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4328 	}
4329 }
4330 
4331 /*
4332  * Bits map:
4333  * 0-7   - Engine0 load counter.
4334  * 8-15  - Engine1 load counter.
4335  * 16    - Engine0 RESET_IN_PROGRESS bit.
4336  * 17    - Engine1 RESET_IN_PROGRESS bit.
4337  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4338  *         on the engine
4339  * 19    - Engine1 ONE_IS_LOADED.
4340  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4341  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4342  *         just the one belonging to its engine).
4343  *
4344  */
4345 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4346 
4347 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4348 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4349 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4350 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4351 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4352 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4353 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
4354 
4355 /*
4356  * Set the GLOBAL_RESET bit.
4357  *
4358  * Should be run under rtnl lock
4359  */
4360 void bnx2x_set_reset_global(struct bnx2x *bp)
4361 {
4362 	u32 val;
4363 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4364 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4365 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4366 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4367 }
4368 
4369 /*
4370  * Clear the GLOBAL_RESET bit.
4371  *
4372  * Should be run under rtnl lock
4373  */
4374 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4375 {
4376 	u32 val;
4377 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4378 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4379 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4380 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4381 }
4382 
4383 /*
4384  * Checks the GLOBAL_RESET bit.
4385  *
4386  * should be run under rtnl lock
4387  */
4388 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4389 {
4390 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4391 
4392 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4393 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4394 }
4395 
4396 /*
4397  * Clear RESET_IN_PROGRESS bit for the current engine.
4398  *
4399  * Should be run under rtnl lock
4400  */
4401 static void bnx2x_set_reset_done(struct bnx2x *bp)
4402 {
4403 	u32 val;
4404 	u32 bit = BP_PATH(bp) ?
4405 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4406 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4407 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4408 
4409 	/* Clear the bit */
4410 	val &= ~bit;
4411 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4412 
4413 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4414 }
4415 
4416 /*
4417  * Set RESET_IN_PROGRESS for the current engine.
4418  *
4419  * should be run under rtnl lock
4420  */
4421 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4422 {
4423 	u32 val;
4424 	u32 bit = BP_PATH(bp) ?
4425 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4426 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4427 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4428 
4429 	/* Set the bit */
4430 	val |= bit;
4431 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4432 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4433 }
4434 
4435 /*
4436  * Checks the RESET_IN_PROGRESS bit for the given engine.
4437  * should be run under rtnl lock
4438  */
4439 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4440 {
4441 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4442 	u32 bit = engine ?
4443 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4444 
4445 	/* return false if bit is set */
4446 	return (val & bit) ? false : true;
4447 }
4448 
4449 /*
4450  * set pf load for the current pf.
4451  *
4452  * should be run under rtnl lock
4453  */
4454 void bnx2x_set_pf_load(struct bnx2x *bp)
4455 {
4456 	u32 val1, val;
4457 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4458 			     BNX2X_PATH0_LOAD_CNT_MASK;
4459 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4460 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4461 
4462 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4463 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4464 
4465 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4466 
4467 	/* get the current counter value */
4468 	val1 = (val & mask) >> shift;
4469 
4470 	/* set bit of that PF */
4471 	val1 |= (1 << bp->pf_num);
4472 
4473 	/* clear the old value */
4474 	val &= ~mask;
4475 
4476 	/* set the new one */
4477 	val |= ((val1 << shift) & mask);
4478 
4479 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4480 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4481 }
4482 
4483 /**
4484  * bnx2x_clear_pf_load - clear pf load mark
4485  *
4486  * @bp:		driver handle
4487  *
4488  * Should be run under rtnl lock.
4489  * Decrements the load counter for the current engine. Returns
4490  * whether other functions are still loaded
4491  */
4492 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4493 {
4494 	u32 val1, val;
4495 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4496 			     BNX2X_PATH0_LOAD_CNT_MASK;
4497 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4498 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4499 
4500 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4501 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4502 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4503 
4504 	/* get the current counter value */
4505 	val1 = (val & mask) >> shift;
4506 
4507 	/* clear bit of that PF */
4508 	val1 &= ~(1 << bp->pf_num);
4509 
4510 	/* clear the old value */
4511 	val &= ~mask;
4512 
4513 	/* set the new one */
4514 	val |= ((val1 << shift) & mask);
4515 
4516 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4517 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4518 	return val1 != 0;
4519 }
4520 
4521 /*
4522  * Read the load status for the current engine.
4523  *
4524  * should be run under rtnl lock
4525  */
4526 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4527 {
4528 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4529 			     BNX2X_PATH0_LOAD_CNT_MASK);
4530 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4531 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4532 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4533 
4534 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4535 
4536 	val = (val & mask) >> shift;
4537 
4538 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4539 	   engine, val);
4540 
4541 	return val != 0;
4542 }
4543 
4544 static void _print_parity(struct bnx2x *bp, u32 reg)
4545 {
4546 	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4547 }
4548 
4549 static void _print_next_block(int idx, const char *blk)
4550 {
4551 	pr_cont("%s%s", idx ? ", " : "", blk);
4552 }
4553 
4554 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4555 					    int *par_num, bool print)
4556 {
4557 	u32 cur_bit;
4558 	bool res;
4559 	int i;
4560 
4561 	res = false;
4562 
4563 	for (i = 0; sig; i++) {
4564 		cur_bit = (0x1UL << i);
4565 		if (sig & cur_bit) {
4566 			res |= true; /* Each bit is real error! */
4567 
4568 			if (print) {
4569 				switch (cur_bit) {
4570 				case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4571 					_print_next_block((*par_num)++, "BRB");
4572 					_print_parity(bp,
4573 						      BRB1_REG_BRB1_PRTY_STS);
4574 					break;
4575 				case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4576 					_print_next_block((*par_num)++,
4577 							  "PARSER");
4578 					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4579 					break;
4580 				case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4581 					_print_next_block((*par_num)++, "TSDM");
4582 					_print_parity(bp,
4583 						      TSDM_REG_TSDM_PRTY_STS);
4584 					break;
4585 				case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4586 					_print_next_block((*par_num)++,
4587 							  "SEARCHER");
4588 					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4589 					break;
4590 				case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4591 					_print_next_block((*par_num)++, "TCM");
4592 					_print_parity(bp, TCM_REG_TCM_PRTY_STS);
4593 					break;
4594 				case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4595 					_print_next_block((*par_num)++,
4596 							  "TSEMI");
4597 					_print_parity(bp,
4598 						      TSEM_REG_TSEM_PRTY_STS_0);
4599 					_print_parity(bp,
4600 						      TSEM_REG_TSEM_PRTY_STS_1);
4601 					break;
4602 				case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4603 					_print_next_block((*par_num)++, "XPB");
4604 					_print_parity(bp, GRCBASE_XPB +
4605 							  PB_REG_PB_PRTY_STS);
4606 					break;
4607 				}
4608 			}
4609 
4610 			/* Clear the bit */
4611 			sig &= ~cur_bit;
4612 		}
4613 	}
4614 
4615 	return res;
4616 }
4617 
4618 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4619 					    int *par_num, bool *global,
4620 					    bool print)
4621 {
4622 	u32 cur_bit;
4623 	bool res;
4624 	int i;
4625 
4626 	res = false;
4627 
4628 	for (i = 0; sig; i++) {
4629 		cur_bit = (0x1UL << i);
4630 		if (sig & cur_bit) {
4631 			res |= true; /* Each bit is real error! */
4632 			switch (cur_bit) {
4633 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4634 				if (print) {
4635 					_print_next_block((*par_num)++, "PBF");
4636 					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4637 				}
4638 				break;
4639 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4640 				if (print) {
4641 					_print_next_block((*par_num)++, "QM");
4642 					_print_parity(bp, QM_REG_QM_PRTY_STS);
4643 				}
4644 				break;
4645 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4646 				if (print) {
4647 					_print_next_block((*par_num)++, "TM");
4648 					_print_parity(bp, TM_REG_TM_PRTY_STS);
4649 				}
4650 				break;
4651 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4652 				if (print) {
4653 					_print_next_block((*par_num)++, "XSDM");
4654 					_print_parity(bp,
4655 						      XSDM_REG_XSDM_PRTY_STS);
4656 				}
4657 				break;
4658 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4659 				if (print) {
4660 					_print_next_block((*par_num)++, "XCM");
4661 					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4662 				}
4663 				break;
4664 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4665 				if (print) {
4666 					_print_next_block((*par_num)++,
4667 							  "XSEMI");
4668 					_print_parity(bp,
4669 						      XSEM_REG_XSEM_PRTY_STS_0);
4670 					_print_parity(bp,
4671 						      XSEM_REG_XSEM_PRTY_STS_1);
4672 				}
4673 				break;
4674 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4675 				if (print) {
4676 					_print_next_block((*par_num)++,
4677 							  "DOORBELLQ");
4678 					_print_parity(bp,
4679 						      DORQ_REG_DORQ_PRTY_STS);
4680 				}
4681 				break;
4682 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4683 				if (print) {
4684 					_print_next_block((*par_num)++, "NIG");
4685 					if (CHIP_IS_E1x(bp)) {
4686 						_print_parity(bp,
4687 							NIG_REG_NIG_PRTY_STS);
4688 					} else {
4689 						_print_parity(bp,
4690 							NIG_REG_NIG_PRTY_STS_0);
4691 						_print_parity(bp,
4692 							NIG_REG_NIG_PRTY_STS_1);
4693 					}
4694 				}
4695 				break;
4696 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4697 				if (print)
4698 					_print_next_block((*par_num)++,
4699 							  "VAUX PCI CORE");
4700 				*global = true;
4701 				break;
4702 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4703 				if (print) {
4704 					_print_next_block((*par_num)++,
4705 							  "DEBUG");
4706 					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4707 				}
4708 				break;
4709 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4710 				if (print) {
4711 					_print_next_block((*par_num)++, "USDM");
4712 					_print_parity(bp,
4713 						      USDM_REG_USDM_PRTY_STS);
4714 				}
4715 				break;
4716 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4717 				if (print) {
4718 					_print_next_block((*par_num)++, "UCM");
4719 					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4720 				}
4721 				break;
4722 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4723 				if (print) {
4724 					_print_next_block((*par_num)++,
4725 							  "USEMI");
4726 					_print_parity(bp,
4727 						      USEM_REG_USEM_PRTY_STS_0);
4728 					_print_parity(bp,
4729 						      USEM_REG_USEM_PRTY_STS_1);
4730 				}
4731 				break;
4732 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4733 				if (print) {
4734 					_print_next_block((*par_num)++, "UPB");
4735 					_print_parity(bp, GRCBASE_UPB +
4736 							  PB_REG_PB_PRTY_STS);
4737 				}
4738 				break;
4739 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4740 				if (print) {
4741 					_print_next_block((*par_num)++, "CSDM");
4742 					_print_parity(bp,
4743 						      CSDM_REG_CSDM_PRTY_STS);
4744 				}
4745 				break;
4746 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4747 				if (print) {
4748 					_print_next_block((*par_num)++, "CCM");
4749 					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4750 				}
4751 				break;
4752 			}
4753 
4754 			/* Clear the bit */
4755 			sig &= ~cur_bit;
4756 		}
4757 	}
4758 
4759 	return res;
4760 }
4761 
4762 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4763 					    int *par_num, bool print)
4764 {
4765 	u32 cur_bit;
4766 	bool res;
4767 	int i;
4768 
4769 	res = false;
4770 
4771 	for (i = 0; sig; i++) {
4772 		cur_bit = (0x1UL << i);
4773 		if (sig & cur_bit) {
4774 			res = true; /* Each bit is real error! */
4775 			if (print) {
4776 				switch (cur_bit) {
4777 				case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4778 					_print_next_block((*par_num)++,
4779 							  "CSEMI");
4780 					_print_parity(bp,
4781 						      CSEM_REG_CSEM_PRTY_STS_0);
4782 					_print_parity(bp,
4783 						      CSEM_REG_CSEM_PRTY_STS_1);
4784 					break;
4785 				case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4786 					_print_next_block((*par_num)++, "PXP");
4787 					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4788 					_print_parity(bp,
4789 						      PXP2_REG_PXP2_PRTY_STS_0);
4790 					_print_parity(bp,
4791 						      PXP2_REG_PXP2_PRTY_STS_1);
4792 					break;
4793 				case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4794 					_print_next_block((*par_num)++,
4795 							  "PXPPCICLOCKCLIENT");
4796 					break;
4797 				case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4798 					_print_next_block((*par_num)++, "CFC");
4799 					_print_parity(bp,
4800 						      CFC_REG_CFC_PRTY_STS);
4801 					break;
4802 				case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4803 					_print_next_block((*par_num)++, "CDU");
4804 					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4805 					break;
4806 				case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4807 					_print_next_block((*par_num)++, "DMAE");
4808 					_print_parity(bp,
4809 						      DMAE_REG_DMAE_PRTY_STS);
4810 					break;
4811 				case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4812 					_print_next_block((*par_num)++, "IGU");
4813 					if (CHIP_IS_E1x(bp))
4814 						_print_parity(bp,
4815 							HC_REG_HC_PRTY_STS);
4816 					else
4817 						_print_parity(bp,
4818 							IGU_REG_IGU_PRTY_STS);
4819 					break;
4820 				case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4821 					_print_next_block((*par_num)++, "MISC");
4822 					_print_parity(bp,
4823 						      MISC_REG_MISC_PRTY_STS);
4824 					break;
4825 				}
4826 			}
4827 
4828 			/* Clear the bit */
4829 			sig &= ~cur_bit;
4830 		}
4831 	}
4832 
4833 	return res;
4834 }
4835 
4836 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4837 					    int *par_num, bool *global,
4838 					    bool print)
4839 {
4840 	bool res = false;
4841 	u32 cur_bit;
4842 	int i;
4843 
4844 	for (i = 0; sig; i++) {
4845 		cur_bit = (0x1UL << i);
4846 		if (sig & cur_bit) {
4847 			switch (cur_bit) {
4848 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4849 				if (print)
4850 					_print_next_block((*par_num)++,
4851 							  "MCP ROM");
4852 				*global = true;
4853 				res = true;
4854 				break;
4855 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4856 				if (print)
4857 					_print_next_block((*par_num)++,
4858 							  "MCP UMP RX");
4859 				*global = true;
4860 				res = true;
4861 				break;
4862 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4863 				if (print)
4864 					_print_next_block((*par_num)++,
4865 							  "MCP UMP TX");
4866 				*global = true;
4867 				res = true;
4868 				break;
4869 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4870 				(*par_num)++;
4871 				/* clear latched SCPAD PATIRY from MCP */
4872 				REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4873 				       1UL << 10);
4874 				break;
4875 			}
4876 
4877 			/* Clear the bit */
4878 			sig &= ~cur_bit;
4879 		}
4880 	}
4881 
4882 	return res;
4883 }
4884 
4885 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4886 					    int *par_num, bool print)
4887 {
4888 	u32 cur_bit;
4889 	bool res;
4890 	int i;
4891 
4892 	res = false;
4893 
4894 	for (i = 0; sig; i++) {
4895 		cur_bit = (0x1UL << i);
4896 		if (sig & cur_bit) {
4897 			res = true; /* Each bit is real error! */
4898 			if (print) {
4899 				switch (cur_bit) {
4900 				case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4901 					_print_next_block((*par_num)++,
4902 							  "PGLUE_B");
4903 					_print_parity(bp,
4904 						      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4905 					break;
4906 				case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4907 					_print_next_block((*par_num)++, "ATC");
4908 					_print_parity(bp,
4909 						      ATC_REG_ATC_PRTY_STS);
4910 					break;
4911 				}
4912 			}
4913 			/* Clear the bit */
4914 			sig &= ~cur_bit;
4915 		}
4916 	}
4917 
4918 	return res;
4919 }
4920 
4921 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4922 			      u32 *sig)
4923 {
4924 	bool res = false;
4925 
4926 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4927 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4928 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4929 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4930 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4931 		int par_num = 0;
4932 
4933 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4934 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4935 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4936 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4937 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4938 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4939 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4940 		if (print) {
4941 			if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4942 			     (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4943 			     (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4944 			     (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4945 			     (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4946 				netdev_err(bp->dev,
4947 					   "Parity errors detected in blocks: ");
4948 			} else {
4949 				print = false;
4950 			}
4951 		}
4952 		res |= bnx2x_check_blocks_with_parity0(bp,
4953 			sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4954 		res |= bnx2x_check_blocks_with_parity1(bp,
4955 			sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4956 		res |= bnx2x_check_blocks_with_parity2(bp,
4957 			sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4958 		res |= bnx2x_check_blocks_with_parity3(bp,
4959 			sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4960 		res |= bnx2x_check_blocks_with_parity4(bp,
4961 			sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4962 
4963 		if (print)
4964 			pr_cont("\n");
4965 	}
4966 
4967 	return res;
4968 }
4969 
4970 /**
4971  * bnx2x_chk_parity_attn - checks for parity attentions.
4972  *
4973  * @bp:		driver handle
4974  * @global:	true if there was a global attention
4975  * @print:	show parity attention in syslog
4976  */
4977 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4978 {
4979 	struct attn_route attn = { {0} };
4980 	int port = BP_PORT(bp);
4981 
4982 	attn.sig[0] = REG_RD(bp,
4983 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4984 			     port*4);
4985 	attn.sig[1] = REG_RD(bp,
4986 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4987 			     port*4);
4988 	attn.sig[2] = REG_RD(bp,
4989 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4990 			     port*4);
4991 	attn.sig[3] = REG_RD(bp,
4992 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4993 			     port*4);
4994 	/* Since MCP attentions can't be disabled inside the block, we need to
4995 	 * read AEU registers to see whether they're currently disabled
4996 	 */
4997 	attn.sig[3] &= ((REG_RD(bp,
4998 				!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
4999 				      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5000 			 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5001 			~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5002 
5003 	if (!CHIP_IS_E1x(bp))
5004 		attn.sig[4] = REG_RD(bp,
5005 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5006 				     port*4);
5007 
5008 	return bnx2x_parity_attn(bp, global, print, attn.sig);
5009 }
5010 
5011 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5012 {
5013 	u32 val;
5014 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5015 
5016 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5017 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5018 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5019 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5020 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5021 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5022 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5023 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5024 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5025 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5026 		if (val &
5027 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5028 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5029 		if (val &
5030 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5031 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5032 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5033 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5034 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5035 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5036 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5037 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5038 	}
5039 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5040 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5041 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
5042 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5043 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5044 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5045 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5046 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5047 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5048 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5049 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5050 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5051 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5052 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5053 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5054 	}
5055 
5056 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5057 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5058 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5059 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5060 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5061 	}
5062 }
5063 
5064 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5065 {
5066 	struct attn_route attn, *group_mask;
5067 	int port = BP_PORT(bp);
5068 	int index;
5069 	u32 reg_addr;
5070 	u32 val;
5071 	u32 aeu_mask;
5072 	bool global = false;
5073 
5074 	/* need to take HW lock because MCP or other port might also
5075 	   try to handle this event */
5076 	bnx2x_acquire_alr(bp);
5077 
5078 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
5079 #ifndef BNX2X_STOP_ON_ERROR
5080 		bp->recovery_state = BNX2X_RECOVERY_INIT;
5081 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
5082 		/* Disable HW interrupts */
5083 		bnx2x_int_disable(bp);
5084 		/* In case of parity errors don't handle attentions so that
5085 		 * other function would "see" parity errors.
5086 		 */
5087 #else
5088 		bnx2x_panic();
5089 #endif
5090 		bnx2x_release_alr(bp);
5091 		return;
5092 	}
5093 
5094 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5095 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5096 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5097 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5098 	if (!CHIP_IS_E1x(bp))
5099 		attn.sig[4] =
5100 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5101 	else
5102 		attn.sig[4] = 0;
5103 
5104 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5105 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5106 
5107 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5108 		if (deasserted & (1 << index)) {
5109 			group_mask = &bp->attn_group[index];
5110 
5111 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5112 			   index,
5113 			   group_mask->sig[0], group_mask->sig[1],
5114 			   group_mask->sig[2], group_mask->sig[3],
5115 			   group_mask->sig[4]);
5116 
5117 			bnx2x_attn_int_deasserted4(bp,
5118 					attn.sig[4] & group_mask->sig[4]);
5119 			bnx2x_attn_int_deasserted3(bp,
5120 					attn.sig[3] & group_mask->sig[3]);
5121 			bnx2x_attn_int_deasserted1(bp,
5122 					attn.sig[1] & group_mask->sig[1]);
5123 			bnx2x_attn_int_deasserted2(bp,
5124 					attn.sig[2] & group_mask->sig[2]);
5125 			bnx2x_attn_int_deasserted0(bp,
5126 					attn.sig[0] & group_mask->sig[0]);
5127 		}
5128 	}
5129 
5130 	bnx2x_release_alr(bp);
5131 
5132 	if (bp->common.int_block == INT_BLOCK_HC)
5133 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
5134 			    COMMAND_REG_ATTN_BITS_CLR);
5135 	else
5136 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5137 
5138 	val = ~deasserted;
5139 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5140 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5141 	REG_WR(bp, reg_addr, val);
5142 
5143 	if (~bp->attn_state & deasserted)
5144 		BNX2X_ERR("IGU ERROR\n");
5145 
5146 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5147 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
5148 
5149 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5150 	aeu_mask = REG_RD(bp, reg_addr);
5151 
5152 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5153 	   aeu_mask, deasserted);
5154 	aeu_mask |= (deasserted & 0x3ff);
5155 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5156 
5157 	REG_WR(bp, reg_addr, aeu_mask);
5158 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5159 
5160 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5161 	bp->attn_state &= ~deasserted;
5162 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5163 }
5164 
5165 static void bnx2x_attn_int(struct bnx2x *bp)
5166 {
5167 	/* read local copy of bits */
5168 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5169 								attn_bits);
5170 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5171 								attn_bits_ack);
5172 	u32 attn_state = bp->attn_state;
5173 
5174 	/* look for changed bits */
5175 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5176 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5177 
5178 	DP(NETIF_MSG_HW,
5179 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5180 	   attn_bits, attn_ack, asserted, deasserted);
5181 
5182 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5183 		BNX2X_ERR("BAD attention state\n");
5184 
5185 	/* handle bits that were raised */
5186 	if (asserted)
5187 		bnx2x_attn_int_asserted(bp, asserted);
5188 
5189 	if (deasserted)
5190 		bnx2x_attn_int_deasserted(bp, deasserted);
5191 }
5192 
5193 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5194 		      u16 index, u8 op, u8 update)
5195 {
5196 	u32 igu_addr = bp->igu_base_addr;
5197 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5198 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5199 			     igu_addr);
5200 }
5201 
5202 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5203 {
5204 	/* No memory barriers */
5205 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5206 	mmiowb(); /* keep prod updates ordered */
5207 }
5208 
5209 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5210 				      union event_ring_elem *elem)
5211 {
5212 	u8 err = elem->message.error;
5213 
5214 	if (!bp->cnic_eth_dev.starting_cid  ||
5215 	    (cid < bp->cnic_eth_dev.starting_cid &&
5216 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
5217 		return 1;
5218 
5219 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5220 
5221 	if (unlikely(err)) {
5222 
5223 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5224 			  cid);
5225 		bnx2x_panic_dump(bp, false);
5226 	}
5227 	bnx2x_cnic_cfc_comp(bp, cid, err);
5228 	return 0;
5229 }
5230 
5231 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5232 {
5233 	struct bnx2x_mcast_ramrod_params rparam;
5234 	int rc;
5235 
5236 	memset(&rparam, 0, sizeof(rparam));
5237 
5238 	rparam.mcast_obj = &bp->mcast_obj;
5239 
5240 	netif_addr_lock_bh(bp->dev);
5241 
5242 	/* Clear pending state for the last command */
5243 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5244 
5245 	/* If there are pending mcast commands - send them */
5246 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5247 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5248 		if (rc < 0)
5249 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5250 				  rc);
5251 	}
5252 
5253 	netif_addr_unlock_bh(bp->dev);
5254 }
5255 
5256 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5257 					    union event_ring_elem *elem)
5258 {
5259 	unsigned long ramrod_flags = 0;
5260 	int rc = 0;
5261 	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
5262 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5263 
5264 	/* Always push next commands out, don't wait here */
5265 	__set_bit(RAMROD_CONT, &ramrod_flags);
5266 
5267 	switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
5268 			    >> BNX2X_SWCID_SHIFT) {
5269 	case BNX2X_FILTER_MAC_PENDING:
5270 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5271 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5272 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5273 		else
5274 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5275 
5276 		break;
5277 	case BNX2X_FILTER_MCAST_PENDING:
5278 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5279 		/* This is only relevant for 57710 where multicast MACs are
5280 		 * configured as unicast MACs using the same ramrod.
5281 		 */
5282 		bnx2x_handle_mcast_eqe(bp);
5283 		return;
5284 	default:
5285 		BNX2X_ERR("Unsupported classification command: %d\n",
5286 			  elem->message.data.eth_event.echo);
5287 		return;
5288 	}
5289 
5290 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5291 
5292 	if (rc < 0)
5293 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5294 	else if (rc > 0)
5295 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5296 }
5297 
5298 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5299 
5300 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5301 {
5302 	netif_addr_lock_bh(bp->dev);
5303 
5304 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5305 
5306 	/* Send rx_mode command again if was requested */
5307 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5308 		bnx2x_set_storm_rx_mode(bp);
5309 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5310 				    &bp->sp_state))
5311 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5312 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5313 				    &bp->sp_state))
5314 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5315 
5316 	netif_addr_unlock_bh(bp->dev);
5317 }
5318 
5319 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5320 					      union event_ring_elem *elem)
5321 {
5322 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5323 		DP(BNX2X_MSG_SP,
5324 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5325 		   elem->message.data.vif_list_event.func_bit_map);
5326 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5327 			elem->message.data.vif_list_event.func_bit_map);
5328 	} else if (elem->message.data.vif_list_event.echo ==
5329 		   VIF_LIST_RULE_SET) {
5330 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5331 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5332 	}
5333 }
5334 
5335 /* called with rtnl_lock */
5336 static void bnx2x_after_function_update(struct bnx2x *bp)
5337 {
5338 	int q, rc;
5339 	struct bnx2x_fastpath *fp;
5340 	struct bnx2x_queue_state_params queue_params = {NULL};
5341 	struct bnx2x_queue_update_params *q_update_params =
5342 		&queue_params.params.update;
5343 
5344 	/* Send Q update command with afex vlan removal values for all Qs */
5345 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5346 
5347 	/* set silent vlan removal values according to vlan mode */
5348 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5349 		  &q_update_params->update_flags);
5350 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5351 		  &q_update_params->update_flags);
5352 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5353 
5354 	/* in access mode mark mask and value are 0 to strip all vlans */
5355 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5356 		q_update_params->silent_removal_value = 0;
5357 		q_update_params->silent_removal_mask = 0;
5358 	} else {
5359 		q_update_params->silent_removal_value =
5360 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5361 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5362 	}
5363 
5364 	for_each_eth_queue(bp, q) {
5365 		/* Set the appropriate Queue object */
5366 		fp = &bp->fp[q];
5367 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5368 
5369 		/* send the ramrod */
5370 		rc = bnx2x_queue_state_change(bp, &queue_params);
5371 		if (rc < 0)
5372 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5373 				  q);
5374 	}
5375 
5376 	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5377 		fp = &bp->fp[FCOE_IDX(bp)];
5378 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5379 
5380 		/* clear pending completion bit */
5381 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5382 
5383 		/* mark latest Q bit */
5384 		smp_mb__before_atomic();
5385 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5386 		smp_mb__after_atomic();
5387 
5388 		/* send Q update ramrod for FCoE Q */
5389 		rc = bnx2x_queue_state_change(bp, &queue_params);
5390 		if (rc < 0)
5391 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5392 				  q);
5393 	} else {
5394 		/* If no FCoE ring - ACK MCP now */
5395 		bnx2x_link_report(bp);
5396 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5397 	}
5398 }
5399 
5400 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5401 	struct bnx2x *bp, u32 cid)
5402 {
5403 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5404 
5405 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5406 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5407 	else
5408 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5409 }
5410 
5411 static void bnx2x_eq_int(struct bnx2x *bp)
5412 {
5413 	u16 hw_cons, sw_cons, sw_prod;
5414 	union event_ring_elem *elem;
5415 	u8 echo;
5416 	u32 cid;
5417 	u8 opcode;
5418 	int rc, spqe_cnt = 0;
5419 	struct bnx2x_queue_sp_obj *q_obj;
5420 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5421 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5422 
5423 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5424 
5425 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5426 	 * when we get the next-page we need to adjust so the loop
5427 	 * condition below will be met. The next element is the size of a
5428 	 * regular element and hence incrementing by 1
5429 	 */
5430 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5431 		hw_cons++;
5432 
5433 	/* This function may never run in parallel with itself for a
5434 	 * specific bp, thus there is no need in "paired" read memory
5435 	 * barrier here.
5436 	 */
5437 	sw_cons = bp->eq_cons;
5438 	sw_prod = bp->eq_prod;
5439 
5440 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5441 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5442 
5443 	for (; sw_cons != hw_cons;
5444 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5445 
5446 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5447 
5448 		rc = bnx2x_iov_eq_sp_event(bp, elem);
5449 		if (!rc) {
5450 			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5451 			   rc);
5452 			goto next_spqe;
5453 		}
5454 
5455 		/* elem CID originates from FW; actually LE */
5456 		cid = SW_CID((__force __le32)
5457 			     elem->message.data.cfc_del_event.cid);
5458 		opcode = elem->message.opcode;
5459 
5460 		/* handle eq element */
5461 		switch (opcode) {
5462 		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5463 			bnx2x_vf_mbx_schedule(bp,
5464 					      &elem->message.data.vf_pf_event);
5465 			continue;
5466 
5467 		case EVENT_RING_OPCODE_STAT_QUERY:
5468 			DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5469 			       "got statistics comp event %d\n",
5470 			       bp->stats_comp++);
5471 			/* nothing to do with stats comp */
5472 			goto next_spqe;
5473 
5474 		case EVENT_RING_OPCODE_CFC_DEL:
5475 			/* handle according to cid range */
5476 			/*
5477 			 * we may want to verify here that the bp state is
5478 			 * HALTING
5479 			 */
5480 			DP(BNX2X_MSG_SP,
5481 			   "got delete ramrod for MULTI[%d]\n", cid);
5482 
5483 			if (CNIC_LOADED(bp) &&
5484 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5485 				goto next_spqe;
5486 
5487 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5488 
5489 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5490 				break;
5491 
5492 			goto next_spqe;
5493 
5494 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5495 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5496 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5497 			if (f_obj->complete_cmd(bp, f_obj,
5498 						BNX2X_F_CMD_TX_STOP))
5499 				break;
5500 			goto next_spqe;
5501 
5502 		case EVENT_RING_OPCODE_START_TRAFFIC:
5503 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5504 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5505 			if (f_obj->complete_cmd(bp, f_obj,
5506 						BNX2X_F_CMD_TX_START))
5507 				break;
5508 			goto next_spqe;
5509 
5510 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5511 			echo = elem->message.data.function_update_event.echo;
5512 			if (echo == SWITCH_UPDATE) {
5513 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5514 				   "got FUNC_SWITCH_UPDATE ramrod\n");
5515 				if (f_obj->complete_cmd(
5516 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5517 					break;
5518 
5519 			} else {
5520 				int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5521 
5522 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5523 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5524 				f_obj->complete_cmd(bp, f_obj,
5525 						    BNX2X_F_CMD_AFEX_UPDATE);
5526 
5527 				/* We will perform the Queues update from
5528 				 * sp_rtnl task as all Queue SP operations
5529 				 * should run under rtnl_lock.
5530 				 */
5531 				bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5532 			}
5533 
5534 			goto next_spqe;
5535 
5536 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5537 			f_obj->complete_cmd(bp, f_obj,
5538 					    BNX2X_F_CMD_AFEX_VIFLISTS);
5539 			bnx2x_after_afex_vif_lists(bp, elem);
5540 			goto next_spqe;
5541 		case EVENT_RING_OPCODE_FUNCTION_START:
5542 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5543 			   "got FUNC_START ramrod\n");
5544 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5545 				break;
5546 
5547 			goto next_spqe;
5548 
5549 		case EVENT_RING_OPCODE_FUNCTION_STOP:
5550 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5551 			   "got FUNC_STOP ramrod\n");
5552 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5553 				break;
5554 
5555 			goto next_spqe;
5556 
5557 		case EVENT_RING_OPCODE_SET_TIMESYNC:
5558 			DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5559 			   "got set_timesync ramrod completion\n");
5560 			if (f_obj->complete_cmd(bp, f_obj,
5561 						BNX2X_F_CMD_SET_TIMESYNC))
5562 				break;
5563 			goto next_spqe;
5564 		}
5565 
5566 		switch (opcode | bp->state) {
5567 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5568 		      BNX2X_STATE_OPEN):
5569 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5570 		      BNX2X_STATE_OPENING_WAIT4_PORT):
5571 			cid = elem->message.data.eth_event.echo &
5572 				BNX2X_SWCID_MASK;
5573 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5574 			   cid);
5575 			rss_raw->clear_pending(rss_raw);
5576 			break;
5577 
5578 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5579 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5580 		case (EVENT_RING_OPCODE_SET_MAC |
5581 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5582 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5583 		      BNX2X_STATE_OPEN):
5584 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5585 		      BNX2X_STATE_DIAG):
5586 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5587 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5588 			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5589 			bnx2x_handle_classification_eqe(bp, elem);
5590 			break;
5591 
5592 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5593 		      BNX2X_STATE_OPEN):
5594 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5595 		      BNX2X_STATE_DIAG):
5596 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5597 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5598 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5599 			bnx2x_handle_mcast_eqe(bp);
5600 			break;
5601 
5602 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5603 		      BNX2X_STATE_OPEN):
5604 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5605 		      BNX2X_STATE_DIAG):
5606 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5607 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5608 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5609 			bnx2x_handle_rx_mode_eqe(bp);
5610 			break;
5611 		default:
5612 			/* unknown event log error and continue */
5613 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5614 				  elem->message.opcode, bp->state);
5615 		}
5616 next_spqe:
5617 		spqe_cnt++;
5618 	} /* for */
5619 
5620 	smp_mb__before_atomic();
5621 	atomic_add(spqe_cnt, &bp->eq_spq_left);
5622 
5623 	bp->eq_cons = sw_cons;
5624 	bp->eq_prod = sw_prod;
5625 	/* Make sure that above mem writes were issued towards the memory */
5626 	smp_wmb();
5627 
5628 	/* update producer */
5629 	bnx2x_update_eq_prod(bp, bp->eq_prod);
5630 }
5631 
5632 static void bnx2x_sp_task(struct work_struct *work)
5633 {
5634 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5635 
5636 	DP(BNX2X_MSG_SP, "sp task invoked\n");
5637 
5638 	/* make sure the atomic interrupt_occurred has been written */
5639 	smp_rmb();
5640 	if (atomic_read(&bp->interrupt_occurred)) {
5641 
5642 		/* what work needs to be performed? */
5643 		u16 status = bnx2x_update_dsb_idx(bp);
5644 
5645 		DP(BNX2X_MSG_SP, "status %x\n", status);
5646 		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5647 		atomic_set(&bp->interrupt_occurred, 0);
5648 
5649 		/* HW attentions */
5650 		if (status & BNX2X_DEF_SB_ATT_IDX) {
5651 			bnx2x_attn_int(bp);
5652 			status &= ~BNX2X_DEF_SB_ATT_IDX;
5653 		}
5654 
5655 		/* SP events: STAT_QUERY and others */
5656 		if (status & BNX2X_DEF_SB_IDX) {
5657 			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5658 
5659 		if (FCOE_INIT(bp) &&
5660 			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5661 				/* Prevent local bottom-halves from running as
5662 				 * we are going to change the local NAPI list.
5663 				 */
5664 				local_bh_disable();
5665 				napi_schedule(&bnx2x_fcoe(bp, napi));
5666 				local_bh_enable();
5667 			}
5668 
5669 			/* Handle EQ completions */
5670 			bnx2x_eq_int(bp);
5671 			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5672 				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5673 
5674 			status &= ~BNX2X_DEF_SB_IDX;
5675 		}
5676 
5677 		/* if status is non zero then perhaps something went wrong */
5678 		if (unlikely(status))
5679 			DP(BNX2X_MSG_SP,
5680 			   "got an unknown interrupt! (status 0x%x)\n", status);
5681 
5682 		/* ack status block only if something was actually handled */
5683 		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5684 			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5685 	}
5686 
5687 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5688 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5689 			       &bp->sp_state)) {
5690 		bnx2x_link_report(bp);
5691 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5692 	}
5693 }
5694 
5695 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5696 {
5697 	struct net_device *dev = dev_instance;
5698 	struct bnx2x *bp = netdev_priv(dev);
5699 
5700 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5701 		     IGU_INT_DISABLE, 0);
5702 
5703 #ifdef BNX2X_STOP_ON_ERROR
5704 	if (unlikely(bp->panic))
5705 		return IRQ_HANDLED;
5706 #endif
5707 
5708 	if (CNIC_LOADED(bp)) {
5709 		struct cnic_ops *c_ops;
5710 
5711 		rcu_read_lock();
5712 		c_ops = rcu_dereference(bp->cnic_ops);
5713 		if (c_ops)
5714 			c_ops->cnic_handler(bp->cnic_data, NULL);
5715 		rcu_read_unlock();
5716 	}
5717 
5718 	/* schedule sp task to perform default status block work, ack
5719 	 * attentions and enable interrupts.
5720 	 */
5721 	bnx2x_schedule_sp_task(bp);
5722 
5723 	return IRQ_HANDLED;
5724 }
5725 
5726 /* end of slow path */
5727 
5728 void bnx2x_drv_pulse(struct bnx2x *bp)
5729 {
5730 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5731 		 bp->fw_drv_pulse_wr_seq);
5732 }
5733 
5734 static void bnx2x_timer(unsigned long data)
5735 {
5736 	struct bnx2x *bp = (struct bnx2x *) data;
5737 
5738 	if (!netif_running(bp->dev))
5739 		return;
5740 
5741 	if (IS_PF(bp) &&
5742 	    !BP_NOMCP(bp)) {
5743 		int mb_idx = BP_FW_MB_IDX(bp);
5744 		u16 drv_pulse;
5745 		u16 mcp_pulse;
5746 
5747 		++bp->fw_drv_pulse_wr_seq;
5748 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5749 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5750 		bnx2x_drv_pulse(bp);
5751 
5752 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5753 			     MCP_PULSE_SEQ_MASK);
5754 		/* The delta between driver pulse and mcp response
5755 		 * should not get too big. If the MFW is more than 5 pulses
5756 		 * behind, we should worry about it enough to generate an error
5757 		 * log.
5758 		 */
5759 		if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5760 			BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5761 				  drv_pulse, mcp_pulse);
5762 	}
5763 
5764 	if (bp->state == BNX2X_STATE_OPEN)
5765 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5766 
5767 	/* sample pf vf bulletin board for new posts from pf */
5768 	if (IS_VF(bp))
5769 		bnx2x_timer_sriov(bp);
5770 
5771 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5772 }
5773 
5774 /* end of Statistics */
5775 
5776 /* nic init */
5777 
5778 /*
5779  * nic init service functions
5780  */
5781 
5782 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5783 {
5784 	u32 i;
5785 	if (!(len%4) && !(addr%4))
5786 		for (i = 0; i < len; i += 4)
5787 			REG_WR(bp, addr + i, fill);
5788 	else
5789 		for (i = 0; i < len; i++)
5790 			REG_WR8(bp, addr + i, fill);
5791 }
5792 
5793 /* helper: writes FP SP data to FW - data_size in dwords */
5794 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5795 				int fw_sb_id,
5796 				u32 *sb_data_p,
5797 				u32 data_size)
5798 {
5799 	int index;
5800 	for (index = 0; index < data_size; index++)
5801 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5802 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5803 			sizeof(u32)*index,
5804 			*(sb_data_p + index));
5805 }
5806 
5807 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5808 {
5809 	u32 *sb_data_p;
5810 	u32 data_size = 0;
5811 	struct hc_status_block_data_e2 sb_data_e2;
5812 	struct hc_status_block_data_e1x sb_data_e1x;
5813 
5814 	/* disable the function first */
5815 	if (!CHIP_IS_E1x(bp)) {
5816 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5817 		sb_data_e2.common.state = SB_DISABLED;
5818 		sb_data_e2.common.p_func.vf_valid = false;
5819 		sb_data_p = (u32 *)&sb_data_e2;
5820 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5821 	} else {
5822 		memset(&sb_data_e1x, 0,
5823 		       sizeof(struct hc_status_block_data_e1x));
5824 		sb_data_e1x.common.state = SB_DISABLED;
5825 		sb_data_e1x.common.p_func.vf_valid = false;
5826 		sb_data_p = (u32 *)&sb_data_e1x;
5827 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5828 	}
5829 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5830 
5831 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5832 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5833 			CSTORM_STATUS_BLOCK_SIZE);
5834 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5835 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5836 			CSTORM_SYNC_BLOCK_SIZE);
5837 }
5838 
5839 /* helper:  writes SP SB data to FW */
5840 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5841 		struct hc_sp_status_block_data *sp_sb_data)
5842 {
5843 	int func = BP_FUNC(bp);
5844 	int i;
5845 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5846 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5847 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5848 			i*sizeof(u32),
5849 			*((u32 *)sp_sb_data + i));
5850 }
5851 
5852 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5853 {
5854 	int func = BP_FUNC(bp);
5855 	struct hc_sp_status_block_data sp_sb_data;
5856 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5857 
5858 	sp_sb_data.state = SB_DISABLED;
5859 	sp_sb_data.p_func.vf_valid = false;
5860 
5861 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5862 
5863 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5864 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5865 			CSTORM_SP_STATUS_BLOCK_SIZE);
5866 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5867 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5868 			CSTORM_SP_SYNC_BLOCK_SIZE);
5869 }
5870 
5871 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5872 					   int igu_sb_id, int igu_seg_id)
5873 {
5874 	hc_sm->igu_sb_id = igu_sb_id;
5875 	hc_sm->igu_seg_id = igu_seg_id;
5876 	hc_sm->timer_value = 0xFF;
5877 	hc_sm->time_to_expire = 0xFFFFFFFF;
5878 }
5879 
5880 /* allocates state machine ids. */
5881 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5882 {
5883 	/* zero out state machine indices */
5884 	/* rx indices */
5885 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5886 
5887 	/* tx indices */
5888 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5889 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5890 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5891 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5892 
5893 	/* map indices */
5894 	/* rx indices */
5895 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5896 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5897 
5898 	/* tx indices */
5899 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5900 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5901 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5902 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5903 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5904 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5905 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5906 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5907 }
5908 
5909 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5910 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5911 {
5912 	int igu_seg_id;
5913 
5914 	struct hc_status_block_data_e2 sb_data_e2;
5915 	struct hc_status_block_data_e1x sb_data_e1x;
5916 	struct hc_status_block_sm  *hc_sm_p;
5917 	int data_size;
5918 	u32 *sb_data_p;
5919 
5920 	if (CHIP_INT_MODE_IS_BC(bp))
5921 		igu_seg_id = HC_SEG_ACCESS_NORM;
5922 	else
5923 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5924 
5925 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5926 
5927 	if (!CHIP_IS_E1x(bp)) {
5928 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5929 		sb_data_e2.common.state = SB_ENABLED;
5930 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5931 		sb_data_e2.common.p_func.vf_id = vfid;
5932 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5933 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5934 		sb_data_e2.common.same_igu_sb_1b = true;
5935 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5936 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5937 		hc_sm_p = sb_data_e2.common.state_machine;
5938 		sb_data_p = (u32 *)&sb_data_e2;
5939 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5940 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5941 	} else {
5942 		memset(&sb_data_e1x, 0,
5943 		       sizeof(struct hc_status_block_data_e1x));
5944 		sb_data_e1x.common.state = SB_ENABLED;
5945 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5946 		sb_data_e1x.common.p_func.vf_id = 0xff;
5947 		sb_data_e1x.common.p_func.vf_valid = false;
5948 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5949 		sb_data_e1x.common.same_igu_sb_1b = true;
5950 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5951 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5952 		hc_sm_p = sb_data_e1x.common.state_machine;
5953 		sb_data_p = (u32 *)&sb_data_e1x;
5954 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5955 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5956 	}
5957 
5958 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5959 				       igu_sb_id, igu_seg_id);
5960 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5961 				       igu_sb_id, igu_seg_id);
5962 
5963 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5964 
5965 	/* write indices to HW - PCI guarantees endianity of regpairs */
5966 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5967 }
5968 
5969 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5970 				     u16 tx_usec, u16 rx_usec)
5971 {
5972 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5973 				    false, rx_usec);
5974 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5975 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5976 				       tx_usec);
5977 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5978 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5979 				       tx_usec);
5980 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5981 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5982 				       tx_usec);
5983 }
5984 
5985 static void bnx2x_init_def_sb(struct bnx2x *bp)
5986 {
5987 	struct host_sp_status_block *def_sb = bp->def_status_blk;
5988 	dma_addr_t mapping = bp->def_status_blk_mapping;
5989 	int igu_sp_sb_index;
5990 	int igu_seg_id;
5991 	int port = BP_PORT(bp);
5992 	int func = BP_FUNC(bp);
5993 	int reg_offset, reg_offset_en5;
5994 	u64 section;
5995 	int index;
5996 	struct hc_sp_status_block_data sp_sb_data;
5997 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5998 
5999 	if (CHIP_INT_MODE_IS_BC(bp)) {
6000 		igu_sp_sb_index = DEF_SB_IGU_ID;
6001 		igu_seg_id = HC_SEG_ACCESS_DEF;
6002 	} else {
6003 		igu_sp_sb_index = bp->igu_dsb_id;
6004 		igu_seg_id = IGU_SEG_ACCESS_DEF;
6005 	}
6006 
6007 	/* ATTN */
6008 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6009 					    atten_status_block);
6010 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6011 
6012 	bp->attn_state = 0;
6013 
6014 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6015 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6016 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6017 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6018 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6019 		int sindex;
6020 		/* take care of sig[0]..sig[4] */
6021 		for (sindex = 0; sindex < 4; sindex++)
6022 			bp->attn_group[index].sig[sindex] =
6023 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6024 
6025 		if (!CHIP_IS_E1x(bp))
6026 			/*
6027 			 * enable5 is separate from the rest of the registers,
6028 			 * and therefore the address skip is 4
6029 			 * and not 16 between the different groups
6030 			 */
6031 			bp->attn_group[index].sig[4] = REG_RD(bp,
6032 					reg_offset_en5 + 0x4*index);
6033 		else
6034 			bp->attn_group[index].sig[4] = 0;
6035 	}
6036 
6037 	if (bp->common.int_block == INT_BLOCK_HC) {
6038 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6039 				     HC_REG_ATTN_MSG0_ADDR_L);
6040 
6041 		REG_WR(bp, reg_offset, U64_LO(section));
6042 		REG_WR(bp, reg_offset + 4, U64_HI(section));
6043 	} else if (!CHIP_IS_E1x(bp)) {
6044 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6045 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6046 	}
6047 
6048 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6049 					    sp_sb);
6050 
6051 	bnx2x_zero_sp_sb(bp);
6052 
6053 	/* PCI guarantees endianity of regpairs */
6054 	sp_sb_data.state		= SB_ENABLED;
6055 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
6056 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
6057 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
6058 	sp_sb_data.igu_seg_id		= igu_seg_id;
6059 	sp_sb_data.p_func.pf_id		= func;
6060 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
6061 	sp_sb_data.p_func.vf_id		= 0xff;
6062 
6063 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6064 
6065 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6066 }
6067 
6068 void bnx2x_update_coalesce(struct bnx2x *bp)
6069 {
6070 	int i;
6071 
6072 	for_each_eth_queue(bp, i)
6073 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6074 					 bp->tx_ticks, bp->rx_ticks);
6075 }
6076 
6077 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6078 {
6079 	spin_lock_init(&bp->spq_lock);
6080 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6081 
6082 	bp->spq_prod_idx = 0;
6083 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6084 	bp->spq_prod_bd = bp->spq;
6085 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6086 }
6087 
6088 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6089 {
6090 	int i;
6091 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
6092 		union event_ring_elem *elem =
6093 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6094 
6095 		elem->next_page.addr.hi =
6096 			cpu_to_le32(U64_HI(bp->eq_mapping +
6097 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6098 		elem->next_page.addr.lo =
6099 			cpu_to_le32(U64_LO(bp->eq_mapping +
6100 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6101 	}
6102 	bp->eq_cons = 0;
6103 	bp->eq_prod = NUM_EQ_DESC;
6104 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
6105 	/* we want a warning message before it gets wrought... */
6106 	atomic_set(&bp->eq_spq_left,
6107 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6108 }
6109 
6110 /* called with netif_addr_lock_bh() */
6111 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6112 			       unsigned long rx_mode_flags,
6113 			       unsigned long rx_accept_flags,
6114 			       unsigned long tx_accept_flags,
6115 			       unsigned long ramrod_flags)
6116 {
6117 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
6118 	int rc;
6119 
6120 	memset(&ramrod_param, 0, sizeof(ramrod_param));
6121 
6122 	/* Prepare ramrod parameters */
6123 	ramrod_param.cid = 0;
6124 	ramrod_param.cl_id = cl_id;
6125 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6126 	ramrod_param.func_id = BP_FUNC(bp);
6127 
6128 	ramrod_param.pstate = &bp->sp_state;
6129 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6130 
6131 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6132 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6133 
6134 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6135 
6136 	ramrod_param.ramrod_flags = ramrod_flags;
6137 	ramrod_param.rx_mode_flags = rx_mode_flags;
6138 
6139 	ramrod_param.rx_accept_flags = rx_accept_flags;
6140 	ramrod_param.tx_accept_flags = tx_accept_flags;
6141 
6142 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6143 	if (rc < 0) {
6144 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6145 		return rc;
6146 	}
6147 
6148 	return 0;
6149 }
6150 
6151 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6152 				   unsigned long *rx_accept_flags,
6153 				   unsigned long *tx_accept_flags)
6154 {
6155 	/* Clear the flags first */
6156 	*rx_accept_flags = 0;
6157 	*tx_accept_flags = 0;
6158 
6159 	switch (rx_mode) {
6160 	case BNX2X_RX_MODE_NONE:
6161 		/*
6162 		 * 'drop all' supersedes any accept flags that may have been
6163 		 * passed to the function.
6164 		 */
6165 		break;
6166 	case BNX2X_RX_MODE_NORMAL:
6167 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6168 		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6169 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6170 
6171 		/* internal switching mode */
6172 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6173 		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6174 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6175 
6176 		break;
6177 	case BNX2X_RX_MODE_ALLMULTI:
6178 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6179 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6180 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6181 
6182 		/* internal switching mode */
6183 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6184 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6185 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6186 
6187 		break;
6188 	case BNX2X_RX_MODE_PROMISC:
6189 		/* According to definition of SI mode, iface in promisc mode
6190 		 * should receive matched and unmatched (in resolution of port)
6191 		 * unicast packets.
6192 		 */
6193 		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6194 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6195 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6196 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6197 
6198 		/* internal switching mode */
6199 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6200 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6201 
6202 		if (IS_MF_SI(bp))
6203 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6204 		else
6205 			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6206 
6207 		break;
6208 	default:
6209 		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6210 		return -EINVAL;
6211 	}
6212 
6213 	/* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
6214 	if (rx_mode != BNX2X_RX_MODE_NONE) {
6215 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6216 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6217 	}
6218 
6219 	return 0;
6220 }
6221 
6222 /* called with netif_addr_lock_bh() */
6223 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6224 {
6225 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6226 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6227 	int rc;
6228 
6229 	if (!NO_FCOE(bp))
6230 		/* Configure rx_mode of FCoE Queue */
6231 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6232 
6233 	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6234 				     &tx_accept_flags);
6235 	if (rc)
6236 		return rc;
6237 
6238 	__set_bit(RAMROD_RX, &ramrod_flags);
6239 	__set_bit(RAMROD_TX, &ramrod_flags);
6240 
6241 	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6242 				   rx_accept_flags, tx_accept_flags,
6243 				   ramrod_flags);
6244 }
6245 
6246 static void bnx2x_init_internal_common(struct bnx2x *bp)
6247 {
6248 	int i;
6249 
6250 	/* Zero this manually as its initialization is
6251 	   currently missing in the initTool */
6252 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6253 		REG_WR(bp, BAR_USTRORM_INTMEM +
6254 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6255 	if (!CHIP_IS_E1x(bp)) {
6256 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6257 			CHIP_INT_MODE_IS_BC(bp) ?
6258 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6259 	}
6260 }
6261 
6262 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6263 {
6264 	switch (load_code) {
6265 	case FW_MSG_CODE_DRV_LOAD_COMMON:
6266 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6267 		bnx2x_init_internal_common(bp);
6268 		/* no break */
6269 
6270 	case FW_MSG_CODE_DRV_LOAD_PORT:
6271 		/* nothing to do */
6272 		/* no break */
6273 
6274 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6275 		/* internal memory per function is
6276 		   initialized inside bnx2x_pf_init */
6277 		break;
6278 
6279 	default:
6280 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6281 		break;
6282 	}
6283 }
6284 
6285 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6286 {
6287 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6288 }
6289 
6290 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6291 {
6292 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6293 }
6294 
6295 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6296 {
6297 	if (CHIP_IS_E1x(fp->bp))
6298 		return BP_L_ID(fp->bp) + fp->index;
6299 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6300 		return bnx2x_fp_igu_sb_id(fp);
6301 }
6302 
6303 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6304 {
6305 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6306 	u8 cos;
6307 	unsigned long q_type = 0;
6308 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6309 	fp->rx_queue = fp_idx;
6310 	fp->cid = fp_idx;
6311 	fp->cl_id = bnx2x_fp_cl_id(fp);
6312 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6313 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6314 	/* qZone id equals to FW (per path) client id */
6315 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6316 
6317 	/* init shortcut */
6318 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6319 
6320 	/* Setup SB indices */
6321 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6322 
6323 	/* Configure Queue State object */
6324 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6325 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6326 
6327 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6328 
6329 	/* init tx data */
6330 	for_each_cos_in_tx_queue(fp, cos) {
6331 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6332 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6333 				  FP_COS_TO_TXQ(fp, cos, bp),
6334 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6335 		cids[cos] = fp->txdata_ptr[cos]->cid;
6336 	}
6337 
6338 	/* nothing more for vf to do here */
6339 	if (IS_VF(bp))
6340 		return;
6341 
6342 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6343 		      fp->fw_sb_id, fp->igu_sb_id);
6344 	bnx2x_update_fpsb_idx(fp);
6345 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6346 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6347 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6348 
6349 	/**
6350 	 * Configure classification DBs: Always enable Tx switching
6351 	 */
6352 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6353 
6354 	DP(NETIF_MSG_IFUP,
6355 	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6356 	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6357 	   fp->igu_sb_id);
6358 }
6359 
6360 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6361 {
6362 	int i;
6363 
6364 	for (i = 1; i <= NUM_TX_RINGS; i++) {
6365 		struct eth_tx_next_bd *tx_next_bd =
6366 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6367 
6368 		tx_next_bd->addr_hi =
6369 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6370 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6371 		tx_next_bd->addr_lo =
6372 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6373 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6374 	}
6375 
6376 	*txdata->tx_cons_sb = cpu_to_le16(0);
6377 
6378 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6379 	txdata->tx_db.data.zero_fill1 = 0;
6380 	txdata->tx_db.data.prod = 0;
6381 
6382 	txdata->tx_pkt_prod = 0;
6383 	txdata->tx_pkt_cons = 0;
6384 	txdata->tx_bd_prod = 0;
6385 	txdata->tx_bd_cons = 0;
6386 	txdata->tx_pkt = 0;
6387 }
6388 
6389 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6390 {
6391 	int i;
6392 
6393 	for_each_tx_queue_cnic(bp, i)
6394 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6395 }
6396 
6397 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6398 {
6399 	int i;
6400 	u8 cos;
6401 
6402 	for_each_eth_queue(bp, i)
6403 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6404 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6405 }
6406 
6407 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6408 {
6409 	struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6410 	unsigned long q_type = 0;
6411 
6412 	bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6413 	bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6414 						     BNX2X_FCOE_ETH_CL_ID_IDX);
6415 	bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6416 	bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6417 	bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6418 	bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6419 	bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6420 			  fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6421 			  fp);
6422 
6423 	DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6424 
6425 	/* qZone id equals to FW (per path) client id */
6426 	bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6427 	/* init shortcut */
6428 	bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6429 		bnx2x_rx_ustorm_prods_offset(fp);
6430 
6431 	/* Configure Queue State object */
6432 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6433 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6434 
6435 	/* No multi-CoS for FCoE L2 client */
6436 	BUG_ON(fp->max_cos != 1);
6437 
6438 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6439 			     &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6440 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6441 
6442 	DP(NETIF_MSG_IFUP,
6443 	   "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6444 	   fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6445 	   fp->igu_sb_id);
6446 }
6447 
6448 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6449 {
6450 	if (!NO_FCOE(bp))
6451 		bnx2x_init_fcoe_fp(bp);
6452 
6453 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6454 		      BNX2X_VF_ID_INVALID, false,
6455 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6456 
6457 	/* ensure status block indices were read */
6458 	rmb();
6459 	bnx2x_init_rx_rings_cnic(bp);
6460 	bnx2x_init_tx_rings_cnic(bp);
6461 
6462 	/* flush all */
6463 	mb();
6464 	mmiowb();
6465 }
6466 
6467 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6468 {
6469 	int i;
6470 
6471 	/* Setup NIC internals and enable interrupts */
6472 	for_each_eth_queue(bp, i)
6473 		bnx2x_init_eth_fp(bp, i);
6474 
6475 	/* ensure status block indices were read */
6476 	rmb();
6477 	bnx2x_init_rx_rings(bp);
6478 	bnx2x_init_tx_rings(bp);
6479 
6480 	if (IS_PF(bp)) {
6481 		/* Initialize MOD_ABS interrupts */
6482 		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6483 				       bp->common.shmem_base,
6484 				       bp->common.shmem2_base, BP_PORT(bp));
6485 
6486 		/* initialize the default status block and sp ring */
6487 		bnx2x_init_def_sb(bp);
6488 		bnx2x_update_dsb_idx(bp);
6489 		bnx2x_init_sp_ring(bp);
6490 	} else {
6491 		bnx2x_memset_stats(bp);
6492 	}
6493 }
6494 
6495 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6496 {
6497 	bnx2x_init_eq_ring(bp);
6498 	bnx2x_init_internal(bp, load_code);
6499 	bnx2x_pf_init(bp);
6500 	bnx2x_stats_init(bp);
6501 
6502 	/* flush all before enabling interrupts */
6503 	mb();
6504 	mmiowb();
6505 
6506 	bnx2x_int_enable(bp);
6507 
6508 	/* Check for SPIO5 */
6509 	bnx2x_attn_int_deasserted0(bp,
6510 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6511 				   AEU_INPUTS_ATTN_BITS_SPIO5);
6512 }
6513 
6514 /* gzip service functions */
6515 static int bnx2x_gunzip_init(struct bnx2x *bp)
6516 {
6517 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6518 					    &bp->gunzip_mapping, GFP_KERNEL);
6519 	if (bp->gunzip_buf  == NULL)
6520 		goto gunzip_nomem1;
6521 
6522 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6523 	if (bp->strm  == NULL)
6524 		goto gunzip_nomem2;
6525 
6526 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6527 	if (bp->strm->workspace == NULL)
6528 		goto gunzip_nomem3;
6529 
6530 	return 0;
6531 
6532 gunzip_nomem3:
6533 	kfree(bp->strm);
6534 	bp->strm = NULL;
6535 
6536 gunzip_nomem2:
6537 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6538 			  bp->gunzip_mapping);
6539 	bp->gunzip_buf = NULL;
6540 
6541 gunzip_nomem1:
6542 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6543 	return -ENOMEM;
6544 }
6545 
6546 static void bnx2x_gunzip_end(struct bnx2x *bp)
6547 {
6548 	if (bp->strm) {
6549 		vfree(bp->strm->workspace);
6550 		kfree(bp->strm);
6551 		bp->strm = NULL;
6552 	}
6553 
6554 	if (bp->gunzip_buf) {
6555 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6556 				  bp->gunzip_mapping);
6557 		bp->gunzip_buf = NULL;
6558 	}
6559 }
6560 
6561 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6562 {
6563 	int n, rc;
6564 
6565 	/* check gzip header */
6566 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6567 		BNX2X_ERR("Bad gzip header\n");
6568 		return -EINVAL;
6569 	}
6570 
6571 	n = 10;
6572 
6573 #define FNAME				0x8
6574 
6575 	if (zbuf[3] & FNAME)
6576 		while ((zbuf[n++] != 0) && (n < len));
6577 
6578 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6579 	bp->strm->avail_in = len - n;
6580 	bp->strm->next_out = bp->gunzip_buf;
6581 	bp->strm->avail_out = FW_BUF_SIZE;
6582 
6583 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6584 	if (rc != Z_OK)
6585 		return rc;
6586 
6587 	rc = zlib_inflate(bp->strm, Z_FINISH);
6588 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6589 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6590 			   bp->strm->msg);
6591 
6592 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6593 	if (bp->gunzip_outlen & 0x3)
6594 		netdev_err(bp->dev,
6595 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6596 				bp->gunzip_outlen);
6597 	bp->gunzip_outlen >>= 2;
6598 
6599 	zlib_inflateEnd(bp->strm);
6600 
6601 	if (rc == Z_STREAM_END)
6602 		return 0;
6603 
6604 	return rc;
6605 }
6606 
6607 /* nic load/unload */
6608 
6609 /*
6610  * General service functions
6611  */
6612 
6613 /* send a NIG loopback debug packet */
6614 static void bnx2x_lb_pckt(struct bnx2x *bp)
6615 {
6616 	u32 wb_write[3];
6617 
6618 	/* Ethernet source and destination addresses */
6619 	wb_write[0] = 0x55555555;
6620 	wb_write[1] = 0x55555555;
6621 	wb_write[2] = 0x20;		/* SOP */
6622 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6623 
6624 	/* NON-IP protocol */
6625 	wb_write[0] = 0x09000000;
6626 	wb_write[1] = 0x55555555;
6627 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6628 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6629 }
6630 
6631 /* some of the internal memories
6632  * are not directly readable from the driver
6633  * to test them we send debug packets
6634  */
6635 static int bnx2x_int_mem_test(struct bnx2x *bp)
6636 {
6637 	int factor;
6638 	int count, i;
6639 	u32 val = 0;
6640 
6641 	if (CHIP_REV_IS_FPGA(bp))
6642 		factor = 120;
6643 	else if (CHIP_REV_IS_EMUL(bp))
6644 		factor = 200;
6645 	else
6646 		factor = 1;
6647 
6648 	/* Disable inputs of parser neighbor blocks */
6649 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6650 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6651 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6652 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6653 
6654 	/*  Write 0 to parser credits for CFC search request */
6655 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6656 
6657 	/* send Ethernet packet */
6658 	bnx2x_lb_pckt(bp);
6659 
6660 	/* TODO do i reset NIG statistic? */
6661 	/* Wait until NIG register shows 1 packet of size 0x10 */
6662 	count = 1000 * factor;
6663 	while (count) {
6664 
6665 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6666 		val = *bnx2x_sp(bp, wb_data[0]);
6667 		if (val == 0x10)
6668 			break;
6669 
6670 		usleep_range(10000, 20000);
6671 		count--;
6672 	}
6673 	if (val != 0x10) {
6674 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6675 		return -1;
6676 	}
6677 
6678 	/* Wait until PRS register shows 1 packet */
6679 	count = 1000 * factor;
6680 	while (count) {
6681 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6682 		if (val == 1)
6683 			break;
6684 
6685 		usleep_range(10000, 20000);
6686 		count--;
6687 	}
6688 	if (val != 0x1) {
6689 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6690 		return -2;
6691 	}
6692 
6693 	/* Reset and init BRB, PRS */
6694 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6695 	msleep(50);
6696 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6697 	msleep(50);
6698 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6699 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6700 
6701 	DP(NETIF_MSG_HW, "part2\n");
6702 
6703 	/* Disable inputs of parser neighbor blocks */
6704 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6705 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6706 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6707 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6708 
6709 	/* Write 0 to parser credits for CFC search request */
6710 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6711 
6712 	/* send 10 Ethernet packets */
6713 	for (i = 0; i < 10; i++)
6714 		bnx2x_lb_pckt(bp);
6715 
6716 	/* Wait until NIG register shows 10 + 1
6717 	   packets of size 11*0x10 = 0xb0 */
6718 	count = 1000 * factor;
6719 	while (count) {
6720 
6721 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6722 		val = *bnx2x_sp(bp, wb_data[0]);
6723 		if (val == 0xb0)
6724 			break;
6725 
6726 		usleep_range(10000, 20000);
6727 		count--;
6728 	}
6729 	if (val != 0xb0) {
6730 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6731 		return -3;
6732 	}
6733 
6734 	/* Wait until PRS register shows 2 packets */
6735 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6736 	if (val != 2)
6737 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6738 
6739 	/* Write 1 to parser credits for CFC search request */
6740 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6741 
6742 	/* Wait until PRS register shows 3 packets */
6743 	msleep(10 * factor);
6744 	/* Wait until NIG register shows 1 packet of size 0x10 */
6745 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6746 	if (val != 3)
6747 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6748 
6749 	/* clear NIG EOP FIFO */
6750 	for (i = 0; i < 11; i++)
6751 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6752 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6753 	if (val != 1) {
6754 		BNX2X_ERR("clear of NIG failed\n");
6755 		return -4;
6756 	}
6757 
6758 	/* Reset and init BRB, PRS, NIG */
6759 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6760 	msleep(50);
6761 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6762 	msleep(50);
6763 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6764 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6765 	if (!CNIC_SUPPORT(bp))
6766 		/* set NIC mode */
6767 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6768 
6769 	/* Enable inputs of parser neighbor blocks */
6770 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6771 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6772 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6773 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6774 
6775 	DP(NETIF_MSG_HW, "done\n");
6776 
6777 	return 0; /* OK */
6778 }
6779 
6780 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6781 {
6782 	u32 val;
6783 
6784 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6785 	if (!CHIP_IS_E1x(bp))
6786 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6787 	else
6788 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6789 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6790 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6791 	/*
6792 	 * mask read length error interrupts in brb for parser
6793 	 * (parsing unit and 'checksum and crc' unit)
6794 	 * these errors are legal (PU reads fixed length and CAC can cause
6795 	 * read length error on truncated packets)
6796 	 */
6797 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6798 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6799 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6800 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6801 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6802 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6803 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6804 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6805 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6806 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6807 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6808 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6809 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6810 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6811 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6812 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6813 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6814 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6815 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6816 
6817 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6818 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6819 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6820 	if (!CHIP_IS_E1x(bp))
6821 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6822 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6823 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6824 
6825 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6826 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6827 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6828 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6829 
6830 	if (!CHIP_IS_E1x(bp))
6831 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6832 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6833 
6834 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6835 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6836 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6837 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6838 }
6839 
6840 static void bnx2x_reset_common(struct bnx2x *bp)
6841 {
6842 	u32 val = 0x1400;
6843 
6844 	/* reset_common */
6845 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6846 	       0xd3ffff7f);
6847 
6848 	if (CHIP_IS_E3(bp)) {
6849 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6850 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6851 	}
6852 
6853 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6854 }
6855 
6856 static void bnx2x_setup_dmae(struct bnx2x *bp)
6857 {
6858 	bp->dmae_ready = 0;
6859 	spin_lock_init(&bp->dmae_lock);
6860 }
6861 
6862 static void bnx2x_init_pxp(struct bnx2x *bp)
6863 {
6864 	u16 devctl;
6865 	int r_order, w_order;
6866 
6867 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6868 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6869 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6870 	if (bp->mrrs == -1)
6871 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6872 	else {
6873 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6874 		r_order = bp->mrrs;
6875 	}
6876 
6877 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6878 }
6879 
6880 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6881 {
6882 	int is_required;
6883 	u32 val;
6884 	int port;
6885 
6886 	if (BP_NOMCP(bp))
6887 		return;
6888 
6889 	is_required = 0;
6890 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6891 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6892 
6893 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6894 		is_required = 1;
6895 
6896 	/*
6897 	 * The fan failure mechanism is usually related to the PHY type since
6898 	 * the power consumption of the board is affected by the PHY. Currently,
6899 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6900 	 */
6901 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6902 		for (port = PORT_0; port < PORT_MAX; port++) {
6903 			is_required |=
6904 				bnx2x_fan_failure_det_req(
6905 					bp,
6906 					bp->common.shmem_base,
6907 					bp->common.shmem2_base,
6908 					port);
6909 		}
6910 
6911 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6912 
6913 	if (is_required == 0)
6914 		return;
6915 
6916 	/* Fan failure is indicated by SPIO 5 */
6917 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6918 
6919 	/* set to active low mode */
6920 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6921 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6922 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6923 
6924 	/* enable interrupt to signal the IGU */
6925 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6926 	val |= MISC_SPIO_SPIO5;
6927 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6928 }
6929 
6930 void bnx2x_pf_disable(struct bnx2x *bp)
6931 {
6932 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6933 	val &= ~IGU_PF_CONF_FUNC_EN;
6934 
6935 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6936 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6937 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6938 }
6939 
6940 static void bnx2x__common_init_phy(struct bnx2x *bp)
6941 {
6942 	u32 shmem_base[2], shmem2_base[2];
6943 	/* Avoid common init in case MFW supports LFA */
6944 	if (SHMEM2_RD(bp, size) >
6945 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6946 		return;
6947 	shmem_base[0] =  bp->common.shmem_base;
6948 	shmem2_base[0] = bp->common.shmem2_base;
6949 	if (!CHIP_IS_E1x(bp)) {
6950 		shmem_base[1] =
6951 			SHMEM2_RD(bp, other_shmem_base_addr);
6952 		shmem2_base[1] =
6953 			SHMEM2_RD(bp, other_shmem2_base_addr);
6954 	}
6955 	bnx2x_acquire_phy_lock(bp);
6956 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6957 			      bp->common.chip_id);
6958 	bnx2x_release_phy_lock(bp);
6959 }
6960 
6961 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
6962 {
6963 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
6964 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
6965 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
6966 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
6967 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
6968 
6969 	/* make sure this value is 0 */
6970 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6971 
6972 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
6973 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
6974 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
6975 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
6976 }
6977 
6978 static void bnx2x_set_endianity(struct bnx2x *bp)
6979 {
6980 #ifdef __BIG_ENDIAN
6981 	bnx2x_config_endianity(bp, 1);
6982 #else
6983 	bnx2x_config_endianity(bp, 0);
6984 #endif
6985 }
6986 
6987 static void bnx2x_reset_endianity(struct bnx2x *bp)
6988 {
6989 	bnx2x_config_endianity(bp, 0);
6990 }
6991 
6992 /**
6993  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6994  *
6995  * @bp:		driver handle
6996  */
6997 static int bnx2x_init_hw_common(struct bnx2x *bp)
6998 {
6999 	u32 val;
7000 
7001 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7002 
7003 	/*
7004 	 * take the RESET lock to protect undi_unload flow from accessing
7005 	 * registers while we're resetting the chip
7006 	 */
7007 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7008 
7009 	bnx2x_reset_common(bp);
7010 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7011 
7012 	val = 0xfffc;
7013 	if (CHIP_IS_E3(bp)) {
7014 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7015 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7016 	}
7017 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7018 
7019 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7020 
7021 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7022 
7023 	if (!CHIP_IS_E1x(bp)) {
7024 		u8 abs_func_id;
7025 
7026 		/**
7027 		 * 4-port mode or 2-port mode we need to turn of master-enable
7028 		 * for everyone, after that, turn it back on for self.
7029 		 * so, we disregard multi-function or not, and always disable
7030 		 * for all functions on the given path, this means 0,2,4,6 for
7031 		 * path 0 and 1,3,5,7 for path 1
7032 		 */
7033 		for (abs_func_id = BP_PATH(bp);
7034 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7035 			if (abs_func_id == BP_ABS_FUNC(bp)) {
7036 				REG_WR(bp,
7037 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7038 				    1);
7039 				continue;
7040 			}
7041 
7042 			bnx2x_pretend_func(bp, abs_func_id);
7043 			/* clear pf enable */
7044 			bnx2x_pf_disable(bp);
7045 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7046 		}
7047 	}
7048 
7049 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7050 	if (CHIP_IS_E1(bp)) {
7051 		/* enable HW interrupt from PXP on USDM overflow
7052 		   bit 16 on INT_MASK_0 */
7053 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7054 	}
7055 
7056 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7057 	bnx2x_init_pxp(bp);
7058 	bnx2x_set_endianity(bp);
7059 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
7060 
7061 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7062 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7063 
7064 	/* let the HW do it's magic ... */
7065 	msleep(100);
7066 	/* finish PXP init */
7067 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7068 	if (val != 1) {
7069 		BNX2X_ERR("PXP2 CFG failed\n");
7070 		return -EBUSY;
7071 	}
7072 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7073 	if (val != 1) {
7074 		BNX2X_ERR("PXP2 RD_INIT failed\n");
7075 		return -EBUSY;
7076 	}
7077 
7078 	/* Timers bug workaround E2 only. We need to set the entire ILT to
7079 	 * have entries with value "0" and valid bit on.
7080 	 * This needs to be done by the first PF that is loaded in a path
7081 	 * (i.e. common phase)
7082 	 */
7083 	if (!CHIP_IS_E1x(bp)) {
7084 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7085  * (i.e. vnic3) to start even if it is marked as "scan-off".
7086  * This occurs when a different function (func2,3) is being marked
7087  * as "scan-off". Real-life scenario for example: if a driver is being
7088  * load-unloaded while func6,7 are down. This will cause the timer to access
7089  * the ilt, translate to a logical address and send a request to read/write.
7090  * Since the ilt for the function that is down is not valid, this will cause
7091  * a translation error which is unrecoverable.
7092  * The Workaround is intended to make sure that when this happens nothing fatal
7093  * will occur. The workaround:
7094  *	1.  First PF driver which loads on a path will:
7095  *		a.  After taking the chip out of reset, by using pretend,
7096  *		    it will write "0" to the following registers of
7097  *		    the other vnics.
7098  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7099  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7100  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7101  *		    And for itself it will write '1' to
7102  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7103  *		    dmae-operations (writing to pram for example.)
7104  *		    note: can be done for only function 6,7 but cleaner this
7105  *			  way.
7106  *		b.  Write zero+valid to the entire ILT.
7107  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7108  *		    VNIC3 (of that port). The range allocated will be the
7109  *		    entire ILT. This is needed to prevent  ILT range error.
7110  *	2.  Any PF driver load flow:
7111  *		a.  ILT update with the physical addresses of the allocated
7112  *		    logical pages.
7113  *		b.  Wait 20msec. - note that this timeout is needed to make
7114  *		    sure there are no requests in one of the PXP internal
7115  *		    queues with "old" ILT addresses.
7116  *		c.  PF enable in the PGLC.
7117  *		d.  Clear the was_error of the PF in the PGLC. (could have
7118  *		    occurred while driver was down)
7119  *		e.  PF enable in the CFC (WEAK + STRONG)
7120  *		f.  Timers scan enable
7121  *	3.  PF driver unload flow:
7122  *		a.  Clear the Timers scan_en.
7123  *		b.  Polling for scan_on=0 for that PF.
7124  *		c.  Clear the PF enable bit in the PXP.
7125  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
7126  *		e.  Write zero+valid to all ILT entries (The valid bit must
7127  *		    stay set)
7128  *		f.  If this is VNIC 3 of a port then also init
7129  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
7130  *		    to the last entry in the ILT.
7131  *
7132  *	Notes:
7133  *	Currently the PF error in the PGLC is non recoverable.
7134  *	In the future the there will be a recovery routine for this error.
7135  *	Currently attention is masked.
7136  *	Having an MCP lock on the load/unload process does not guarantee that
7137  *	there is no Timer disable during Func6/7 enable. This is because the
7138  *	Timers scan is currently being cleared by the MCP on FLR.
7139  *	Step 2.d can be done only for PF6/7 and the driver can also check if
7140  *	there is error before clearing it. But the flow above is simpler and
7141  *	more general.
7142  *	All ILT entries are written by zero+valid and not just PF6/7
7143  *	ILT entries since in the future the ILT entries allocation for
7144  *	PF-s might be dynamic.
7145  */
7146 		struct ilt_client_info ilt_cli;
7147 		struct bnx2x_ilt ilt;
7148 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7149 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7150 
7151 		/* initialize dummy TM client */
7152 		ilt_cli.start = 0;
7153 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7154 		ilt_cli.client_num = ILT_CLIENT_TM;
7155 
7156 		/* Step 1: set zeroes to all ilt page entries with valid bit on
7157 		 * Step 2: set the timers first/last ilt entry to point
7158 		 * to the entire range to prevent ILT range error for 3rd/4th
7159 		 * vnic	(this code assumes existence of the vnic)
7160 		 *
7161 		 * both steps performed by call to bnx2x_ilt_client_init_op()
7162 		 * with dummy TM client
7163 		 *
7164 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7165 		 * and his brother are split registers
7166 		 */
7167 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7168 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7169 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7170 
7171 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7172 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7173 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7174 	}
7175 
7176 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7177 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7178 
7179 	if (!CHIP_IS_E1x(bp)) {
7180 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7181 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7182 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7183 
7184 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7185 
7186 		/* let the HW do it's magic ... */
7187 		do {
7188 			msleep(200);
7189 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7190 		} while (factor-- && (val != 1));
7191 
7192 		if (val != 1) {
7193 			BNX2X_ERR("ATC_INIT failed\n");
7194 			return -EBUSY;
7195 		}
7196 	}
7197 
7198 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7199 
7200 	bnx2x_iov_init_dmae(bp);
7201 
7202 	/* clean the DMAE memory */
7203 	bp->dmae_ready = 1;
7204 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7205 
7206 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7207 
7208 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7209 
7210 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7211 
7212 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7213 
7214 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7215 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7216 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7217 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7218 
7219 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7220 
7221 	/* QM queues pointers table */
7222 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7223 
7224 	/* soft reset pulse */
7225 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
7226 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
7227 
7228 	if (CNIC_SUPPORT(bp))
7229 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7230 
7231 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7232 
7233 	if (!CHIP_REV_IS_SLOW(bp))
7234 		/* enable hw interrupt from doorbell Q */
7235 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7236 
7237 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7238 
7239 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7240 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7241 
7242 	if (!CHIP_IS_E1(bp))
7243 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7244 
7245 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7246 		if (IS_MF_AFEX(bp)) {
7247 			/* configure that VNTag and VLAN headers must be
7248 			 * received in afex mode
7249 			 */
7250 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7251 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7252 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7253 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7254 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7255 		} else {
7256 			/* Bit-map indicating which L2 hdrs may appear
7257 			 * after the basic Ethernet header
7258 			 */
7259 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7260 			       bp->path_has_ovlan ? 7 : 6);
7261 		}
7262 	}
7263 
7264 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7265 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7266 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7267 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7268 
7269 	if (!CHIP_IS_E1x(bp)) {
7270 		/* reset VFC memories */
7271 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7272 			   VFC_MEMORIES_RST_REG_CAM_RST |
7273 			   VFC_MEMORIES_RST_REG_RAM_RST);
7274 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7275 			   VFC_MEMORIES_RST_REG_CAM_RST |
7276 			   VFC_MEMORIES_RST_REG_RAM_RST);
7277 
7278 		msleep(20);
7279 	}
7280 
7281 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7282 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7283 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7284 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7285 
7286 	/* sync semi rtc */
7287 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7288 	       0x80000000);
7289 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7290 	       0x80000000);
7291 
7292 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7293 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7294 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7295 
7296 	if (!CHIP_IS_E1x(bp)) {
7297 		if (IS_MF_AFEX(bp)) {
7298 			/* configure that VNTag and VLAN headers must be
7299 			 * sent in afex mode
7300 			 */
7301 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7302 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7303 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7304 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7305 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7306 		} else {
7307 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7308 			       bp->path_has_ovlan ? 7 : 6);
7309 		}
7310 	}
7311 
7312 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
7313 
7314 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7315 
7316 	if (CNIC_SUPPORT(bp)) {
7317 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7318 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7319 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7320 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7321 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7322 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7323 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7324 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7325 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7326 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7327 	}
7328 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
7329 
7330 	if (sizeof(union cdu_context) != 1024)
7331 		/* we currently assume that a context is 1024 bytes */
7332 		dev_alert(&bp->pdev->dev,
7333 			  "please adjust the size of cdu_context(%ld)\n",
7334 			  (long)sizeof(union cdu_context));
7335 
7336 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7337 	val = (4 << 24) + (0 << 12) + 1024;
7338 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7339 
7340 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7341 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7342 	/* enable context validation interrupt from CFC */
7343 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7344 
7345 	/* set the thresholds to prevent CFC/CDU race */
7346 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7347 
7348 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7349 
7350 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7351 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7352 
7353 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7354 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7355 
7356 	/* Reset PCIE errors for debug */
7357 	REG_WR(bp, 0x2814, 0xffffffff);
7358 	REG_WR(bp, 0x3820, 0xffffffff);
7359 
7360 	if (!CHIP_IS_E1x(bp)) {
7361 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7362 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7363 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7364 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7365 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7366 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7367 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7368 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7369 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7370 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7371 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7372 	}
7373 
7374 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7375 	if (!CHIP_IS_E1(bp)) {
7376 		/* in E3 this done in per-port section */
7377 		if (!CHIP_IS_E3(bp))
7378 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7379 	}
7380 	if (CHIP_IS_E1H(bp))
7381 		/* not applicable for E2 (and above ...) */
7382 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7383 
7384 	if (CHIP_REV_IS_SLOW(bp))
7385 		msleep(200);
7386 
7387 	/* finish CFC init */
7388 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7389 	if (val != 1) {
7390 		BNX2X_ERR("CFC LL_INIT failed\n");
7391 		return -EBUSY;
7392 	}
7393 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7394 	if (val != 1) {
7395 		BNX2X_ERR("CFC AC_INIT failed\n");
7396 		return -EBUSY;
7397 	}
7398 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7399 	if (val != 1) {
7400 		BNX2X_ERR("CFC CAM_INIT failed\n");
7401 		return -EBUSY;
7402 	}
7403 	REG_WR(bp, CFC_REG_DEBUG0, 0);
7404 
7405 	if (CHIP_IS_E1(bp)) {
7406 		/* read NIG statistic
7407 		   to see if this is our first up since powerup */
7408 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7409 		val = *bnx2x_sp(bp, wb_data[0]);
7410 
7411 		/* do internal memory self test */
7412 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7413 			BNX2X_ERR("internal mem self test failed\n");
7414 			return -EBUSY;
7415 		}
7416 	}
7417 
7418 	bnx2x_setup_fan_failure_detection(bp);
7419 
7420 	/* clear PXP2 attentions */
7421 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7422 
7423 	bnx2x_enable_blocks_attention(bp);
7424 	bnx2x_enable_blocks_parity(bp);
7425 
7426 	if (!BP_NOMCP(bp)) {
7427 		if (CHIP_IS_E1x(bp))
7428 			bnx2x__common_init_phy(bp);
7429 	} else
7430 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7431 
7432 	return 0;
7433 }
7434 
7435 /**
7436  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7437  *
7438  * @bp:		driver handle
7439  */
7440 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7441 {
7442 	int rc = bnx2x_init_hw_common(bp);
7443 
7444 	if (rc)
7445 		return rc;
7446 
7447 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7448 	if (!BP_NOMCP(bp))
7449 		bnx2x__common_init_phy(bp);
7450 
7451 	return 0;
7452 }
7453 
7454 static int bnx2x_init_hw_port(struct bnx2x *bp)
7455 {
7456 	int port = BP_PORT(bp);
7457 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7458 	u32 low, high;
7459 	u32 val, reg;
7460 
7461 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7462 
7463 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7464 
7465 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7466 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7467 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7468 
7469 	/* Timers bug workaround: disables the pf_master bit in pglue at
7470 	 * common phase, we need to enable it here before any dmae access are
7471 	 * attempted. Therefore we manually added the enable-master to the
7472 	 * port phase (it also happens in the function phase)
7473 	 */
7474 	if (!CHIP_IS_E1x(bp))
7475 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7476 
7477 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7478 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7479 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7480 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7481 
7482 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7483 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7484 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7485 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7486 
7487 	/* QM cid (connection) count */
7488 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7489 
7490 	if (CNIC_SUPPORT(bp)) {
7491 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7492 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7493 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7494 	}
7495 
7496 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7497 
7498 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7499 
7500 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7501 
7502 		if (IS_MF(bp))
7503 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7504 		else if (bp->dev->mtu > 4096) {
7505 			if (bp->flags & ONE_PORT_FLAG)
7506 				low = 160;
7507 			else {
7508 				val = bp->dev->mtu;
7509 				/* (24*1024 + val*4)/256 */
7510 				low = 96 + (val/64) +
7511 						((val % 64) ? 1 : 0);
7512 			}
7513 		} else
7514 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7515 		high = low + 56;	/* 14*1024/256 */
7516 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7517 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7518 	}
7519 
7520 	if (CHIP_MODE_IS_4_PORT(bp))
7521 		REG_WR(bp, (BP_PORT(bp) ?
7522 			    BRB1_REG_MAC_GUARANTIED_1 :
7523 			    BRB1_REG_MAC_GUARANTIED_0), 40);
7524 
7525 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7526 	if (CHIP_IS_E3B0(bp)) {
7527 		if (IS_MF_AFEX(bp)) {
7528 			/* configure headers for AFEX mode */
7529 			REG_WR(bp, BP_PORT(bp) ?
7530 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7531 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7532 			REG_WR(bp, BP_PORT(bp) ?
7533 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7534 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7535 			REG_WR(bp, BP_PORT(bp) ?
7536 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7537 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7538 		} else {
7539 			/* Ovlan exists only if we are in multi-function +
7540 			 * switch-dependent mode, in switch-independent there
7541 			 * is no ovlan headers
7542 			 */
7543 			REG_WR(bp, BP_PORT(bp) ?
7544 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7545 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7546 			       (bp->path_has_ovlan ? 7 : 6));
7547 		}
7548 	}
7549 
7550 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7551 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7552 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7553 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7554 
7555 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7556 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7557 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7558 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7559 
7560 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7561 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7562 
7563 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7564 
7565 	if (CHIP_IS_E1x(bp)) {
7566 		/* configure PBF to work without PAUSE mtu 9000 */
7567 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7568 
7569 		/* update threshold */
7570 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7571 		/* update init credit */
7572 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7573 
7574 		/* probe changes */
7575 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7576 		udelay(50);
7577 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7578 	}
7579 
7580 	if (CNIC_SUPPORT(bp))
7581 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7582 
7583 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7584 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7585 
7586 	if (CHIP_IS_E1(bp)) {
7587 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7588 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7589 	}
7590 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7591 
7592 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7593 
7594 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7595 	/* init aeu_mask_attn_func_0/1:
7596 	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7597 	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7598 	 *             bits 4-7 are used for "per vn group attention" */
7599 	val = IS_MF(bp) ? 0xF7 : 0x7;
7600 	/* Enable DCBX attention for all but E1 */
7601 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7602 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7603 
7604 	/* SCPAD_PARITY should NOT trigger close the gates */
7605 	reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7606 	REG_WR(bp, reg,
7607 	       REG_RD(bp, reg) &
7608 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7609 
7610 	reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7611 	REG_WR(bp, reg,
7612 	       REG_RD(bp, reg) &
7613 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7614 
7615 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7616 
7617 	if (!CHIP_IS_E1x(bp)) {
7618 		/* Bit-map indicating which L2 hdrs may appear after the
7619 		 * basic Ethernet header
7620 		 */
7621 		if (IS_MF_AFEX(bp))
7622 			REG_WR(bp, BP_PORT(bp) ?
7623 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7624 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7625 		else
7626 			REG_WR(bp, BP_PORT(bp) ?
7627 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7628 			       NIG_REG_P0_HDRS_AFTER_BASIC,
7629 			       IS_MF_SD(bp) ? 7 : 6);
7630 
7631 		if (CHIP_IS_E3(bp))
7632 			REG_WR(bp, BP_PORT(bp) ?
7633 				   NIG_REG_LLH1_MF_MODE :
7634 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7635 	}
7636 	if (!CHIP_IS_E3(bp))
7637 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7638 
7639 	if (!CHIP_IS_E1(bp)) {
7640 		/* 0x2 disable mf_ov, 0x1 enable */
7641 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7642 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7643 
7644 		if (!CHIP_IS_E1x(bp)) {
7645 			val = 0;
7646 			switch (bp->mf_mode) {
7647 			case MULTI_FUNCTION_SD:
7648 				val = 1;
7649 				break;
7650 			case MULTI_FUNCTION_SI:
7651 			case MULTI_FUNCTION_AFEX:
7652 				val = 2;
7653 				break;
7654 			}
7655 
7656 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7657 						  NIG_REG_LLH0_CLS_TYPE), val);
7658 		}
7659 		{
7660 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7661 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7662 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7663 		}
7664 	}
7665 
7666 	/* If SPIO5 is set to generate interrupts, enable it for this port */
7667 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7668 	if (val & MISC_SPIO_SPIO5) {
7669 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7670 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7671 		val = REG_RD(bp, reg_addr);
7672 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7673 		REG_WR(bp, reg_addr, val);
7674 	}
7675 
7676 	return 0;
7677 }
7678 
7679 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7680 {
7681 	int reg;
7682 	u32 wb_write[2];
7683 
7684 	if (CHIP_IS_E1(bp))
7685 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7686 	else
7687 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7688 
7689 	wb_write[0] = ONCHIP_ADDR1(addr);
7690 	wb_write[1] = ONCHIP_ADDR2(addr);
7691 	REG_WR_DMAE(bp, reg, wb_write, 2);
7692 }
7693 
7694 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7695 {
7696 	u32 data, ctl, cnt = 100;
7697 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7698 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7699 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7700 	u32 sb_bit =  1 << (idu_sb_id%32);
7701 	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7702 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7703 
7704 	/* Not supported in BC mode */
7705 	if (CHIP_INT_MODE_IS_BC(bp))
7706 		return;
7707 
7708 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7709 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7710 		IGU_REGULAR_CLEANUP_SET				|
7711 		IGU_REGULAR_BCLEANUP;
7712 
7713 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7714 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7715 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7716 
7717 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7718 			 data, igu_addr_data);
7719 	REG_WR(bp, igu_addr_data, data);
7720 	mmiowb();
7721 	barrier();
7722 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7723 			  ctl, igu_addr_ctl);
7724 	REG_WR(bp, igu_addr_ctl, ctl);
7725 	mmiowb();
7726 	barrier();
7727 
7728 	/* wait for clean up to finish */
7729 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7730 		msleep(20);
7731 
7732 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7733 		DP(NETIF_MSG_HW,
7734 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7735 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7736 	}
7737 }
7738 
7739 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7740 {
7741 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7742 }
7743 
7744 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7745 {
7746 	u32 i, base = FUNC_ILT_BASE(func);
7747 	for (i = base; i < base + ILT_PER_FUNC; i++)
7748 		bnx2x_ilt_wr(bp, i, 0);
7749 }
7750 
7751 static void bnx2x_init_searcher(struct bnx2x *bp)
7752 {
7753 	int port = BP_PORT(bp);
7754 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7755 	/* T1 hash bits value determines the T1 number of entries */
7756 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7757 }
7758 
7759 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7760 {
7761 	int rc;
7762 	struct bnx2x_func_state_params func_params = {NULL};
7763 	struct bnx2x_func_switch_update_params *switch_update_params =
7764 		&func_params.params.switch_update;
7765 
7766 	/* Prepare parameters for function state transitions */
7767 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7768 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7769 
7770 	func_params.f_obj = &bp->func_obj;
7771 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7772 
7773 	/* Function parameters */
7774 	__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7775 		  &switch_update_params->changes);
7776 	if (suspend)
7777 		__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7778 			  &switch_update_params->changes);
7779 
7780 	rc = bnx2x_func_state_change(bp, &func_params);
7781 
7782 	return rc;
7783 }
7784 
7785 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7786 {
7787 	int rc, i, port = BP_PORT(bp);
7788 	int vlan_en = 0, mac_en[NUM_MACS];
7789 
7790 	/* Close input from network */
7791 	if (bp->mf_mode == SINGLE_FUNCTION) {
7792 		bnx2x_set_rx_filter(&bp->link_params, 0);
7793 	} else {
7794 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7795 				   NIG_REG_LLH0_FUNC_EN);
7796 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7797 			  NIG_REG_LLH0_FUNC_EN, 0);
7798 		for (i = 0; i < NUM_MACS; i++) {
7799 			mac_en[i] = REG_RD(bp, port ?
7800 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7801 					      4 * i) :
7802 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7803 					      4 * i));
7804 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7805 					      4 * i) :
7806 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7807 		}
7808 	}
7809 
7810 	/* Close BMC to host */
7811 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7812 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7813 
7814 	/* Suspend Tx switching to the PF. Completion of this ramrod
7815 	 * further guarantees that all the packets of that PF / child
7816 	 * VFs in BRB were processed by the Parser, so it is safe to
7817 	 * change the NIC_MODE register.
7818 	 */
7819 	rc = bnx2x_func_switch_update(bp, 1);
7820 	if (rc) {
7821 		BNX2X_ERR("Can't suspend tx-switching!\n");
7822 		return rc;
7823 	}
7824 
7825 	/* Change NIC_MODE register */
7826 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7827 
7828 	/* Open input from network */
7829 	if (bp->mf_mode == SINGLE_FUNCTION) {
7830 		bnx2x_set_rx_filter(&bp->link_params, 1);
7831 	} else {
7832 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7833 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7834 		for (i = 0; i < NUM_MACS; i++) {
7835 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7836 					      4 * i) :
7837 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7838 				  mac_en[i]);
7839 		}
7840 	}
7841 
7842 	/* Enable BMC to host */
7843 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7844 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7845 
7846 	/* Resume Tx switching to the PF */
7847 	rc = bnx2x_func_switch_update(bp, 0);
7848 	if (rc) {
7849 		BNX2X_ERR("Can't resume tx-switching!\n");
7850 		return rc;
7851 	}
7852 
7853 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7854 	return 0;
7855 }
7856 
7857 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7858 {
7859 	int rc;
7860 
7861 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7862 
7863 	if (CONFIGURE_NIC_MODE(bp)) {
7864 		/* Configure searcher as part of function hw init */
7865 		bnx2x_init_searcher(bp);
7866 
7867 		/* Reset NIC mode */
7868 		rc = bnx2x_reset_nic_mode(bp);
7869 		if (rc)
7870 			BNX2X_ERR("Can't change NIC mode!\n");
7871 		return rc;
7872 	}
7873 
7874 	return 0;
7875 }
7876 
7877 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7878  * and boot began, or when kdump kernel was loaded. Either case would invalidate
7879  * the addresses of the transaction, resulting in was-error bit set in the pci
7880  * causing all hw-to-host pcie transactions to timeout. If this happened we want
7881  * to clear the interrupt which detected this from the pglueb and the was done
7882  * bit
7883  */
7884 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7885 {
7886 	if (!CHIP_IS_E1x(bp))
7887 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7888 		       1 << BP_ABS_FUNC(bp));
7889 }
7890 
7891 static int bnx2x_init_hw_func(struct bnx2x *bp)
7892 {
7893 	int port = BP_PORT(bp);
7894 	int func = BP_FUNC(bp);
7895 	int init_phase = PHASE_PF0 + func;
7896 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7897 	u16 cdu_ilt_start;
7898 	u32 addr, val;
7899 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7900 	int i, main_mem_width, rc;
7901 
7902 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7903 
7904 	/* FLR cleanup - hmmm */
7905 	if (!CHIP_IS_E1x(bp)) {
7906 		rc = bnx2x_pf_flr_clnup(bp);
7907 		if (rc) {
7908 			bnx2x_fw_dump(bp);
7909 			return rc;
7910 		}
7911 	}
7912 
7913 	/* set MSI reconfigure capability */
7914 	if (bp->common.int_block == INT_BLOCK_HC) {
7915 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7916 		val = REG_RD(bp, addr);
7917 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7918 		REG_WR(bp, addr, val);
7919 	}
7920 
7921 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7922 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7923 
7924 	ilt = BP_ILT(bp);
7925 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7926 
7927 	if (IS_SRIOV(bp))
7928 		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7929 	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7930 
7931 	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7932 	 * those of the VFs, so start line should be reset
7933 	 */
7934 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7935 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7936 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7937 		ilt->lines[cdu_ilt_start + i].page_mapping =
7938 			bp->context[i].cxt_mapping;
7939 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7940 	}
7941 
7942 	bnx2x_ilt_init_op(bp, INITOP_SET);
7943 
7944 	if (!CONFIGURE_NIC_MODE(bp)) {
7945 		bnx2x_init_searcher(bp);
7946 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
7947 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7948 	} else {
7949 		/* Set NIC mode */
7950 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
7951 		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7952 	}
7953 
7954 	if (!CHIP_IS_E1x(bp)) {
7955 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7956 
7957 		/* Turn on a single ISR mode in IGU if driver is going to use
7958 		 * INT#x or MSI
7959 		 */
7960 		if (!(bp->flags & USING_MSIX_FLAG))
7961 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7962 		/*
7963 		 * Timers workaround bug: function init part.
7964 		 * Need to wait 20msec after initializing ILT,
7965 		 * needed to make sure there are no requests in
7966 		 * one of the PXP internal queues with "old" ILT addresses
7967 		 */
7968 		msleep(20);
7969 		/*
7970 		 * Master enable - Due to WB DMAE writes performed before this
7971 		 * register is re-initialized as part of the regular function
7972 		 * init
7973 		 */
7974 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7975 		/* Enable the function in IGU */
7976 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7977 	}
7978 
7979 	bp->dmae_ready = 1;
7980 
7981 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7982 
7983 	bnx2x_clean_pglue_errors(bp);
7984 
7985 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7986 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7987 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7988 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7989 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7990 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7991 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7992 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7993 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7994 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7995 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7996 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7997 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7998 
7999 	if (!CHIP_IS_E1x(bp))
8000 		REG_WR(bp, QM_REG_PF_EN, 1);
8001 
8002 	if (!CHIP_IS_E1x(bp)) {
8003 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8004 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8005 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8006 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8007 	}
8008 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
8009 
8010 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
8011 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8012 	REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8013 
8014 	bnx2x_iov_init_dq(bp);
8015 
8016 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8017 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8018 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8019 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8020 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8021 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8022 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8023 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8024 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8025 	if (!CHIP_IS_E1x(bp))
8026 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8027 
8028 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8029 
8030 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8031 
8032 	if (!CHIP_IS_E1x(bp))
8033 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8034 
8035 	if (IS_MF(bp)) {
8036 		if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8037 			REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8038 			REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8039 			       bp->mf_ov);
8040 		}
8041 	}
8042 
8043 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8044 
8045 	/* HC init per function */
8046 	if (bp->common.int_block == INT_BLOCK_HC) {
8047 		if (CHIP_IS_E1H(bp)) {
8048 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8049 
8050 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8051 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8052 		}
8053 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
8054 
8055 	} else {
8056 		int num_segs, sb_idx, prod_offset;
8057 
8058 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8059 
8060 		if (!CHIP_IS_E1x(bp)) {
8061 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8062 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8063 		}
8064 
8065 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8066 
8067 		if (!CHIP_IS_E1x(bp)) {
8068 			int dsb_idx = 0;
8069 			/**
8070 			 * Producer memory:
8071 			 * E2 mode: address 0-135 match to the mapping memory;
8072 			 * 136 - PF0 default prod; 137 - PF1 default prod;
8073 			 * 138 - PF2 default prod; 139 - PF3 default prod;
8074 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
8075 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
8076 			 * 144-147 reserved.
8077 			 *
8078 			 * E1.5 mode - In backward compatible mode;
8079 			 * for non default SB; each even line in the memory
8080 			 * holds the U producer and each odd line hold
8081 			 * the C producer. The first 128 producers are for
8082 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8083 			 * producers are for the DSB for each PF.
8084 			 * Each PF has five segments: (the order inside each
8085 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8086 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8087 			 * 144-147 attn prods;
8088 			 */
8089 			/* non-default-status-blocks */
8090 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8091 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8092 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8093 				prod_offset = (bp->igu_base_sb + sb_idx) *
8094 					num_segs;
8095 
8096 				for (i = 0; i < num_segs; i++) {
8097 					addr = IGU_REG_PROD_CONS_MEMORY +
8098 							(prod_offset + i) * 4;
8099 					REG_WR(bp, addr, 0);
8100 				}
8101 				/* send consumer update with value 0 */
8102 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8103 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8104 				bnx2x_igu_clear_sb(bp,
8105 						   bp->igu_base_sb + sb_idx);
8106 			}
8107 
8108 			/* default-status-blocks */
8109 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8110 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8111 
8112 			if (CHIP_MODE_IS_4_PORT(bp))
8113 				dsb_idx = BP_FUNC(bp);
8114 			else
8115 				dsb_idx = BP_VN(bp);
8116 
8117 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8118 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
8119 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
8120 
8121 			/*
8122 			 * igu prods come in chunks of E1HVN_MAX (4) -
8123 			 * does not matters what is the current chip mode
8124 			 */
8125 			for (i = 0; i < (num_segs * E1HVN_MAX);
8126 			     i += E1HVN_MAX) {
8127 				addr = IGU_REG_PROD_CONS_MEMORY +
8128 							(prod_offset + i)*4;
8129 				REG_WR(bp, addr, 0);
8130 			}
8131 			/* send consumer update with 0 */
8132 			if (CHIP_INT_MODE_IS_BC(bp)) {
8133 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8134 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8135 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8136 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
8137 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8138 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
8139 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8140 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
8141 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8142 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8143 			} else {
8144 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8145 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8146 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8147 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8148 			}
8149 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8150 
8151 			/* !!! These should become driver const once
8152 			   rf-tool supports split-68 const */
8153 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8154 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8155 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8156 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8157 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8158 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8159 		}
8160 	}
8161 
8162 	/* Reset PCIE errors for debug */
8163 	REG_WR(bp, 0x2114, 0xffffffff);
8164 	REG_WR(bp, 0x2120, 0xffffffff);
8165 
8166 	if (CHIP_IS_E1x(bp)) {
8167 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8168 		main_mem_base = HC_REG_MAIN_MEMORY +
8169 				BP_PORT(bp) * (main_mem_size * 4);
8170 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8171 		main_mem_width = 8;
8172 
8173 		val = REG_RD(bp, main_mem_prty_clr);
8174 		if (val)
8175 			DP(NETIF_MSG_HW,
8176 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8177 			   val);
8178 
8179 		/* Clear "false" parity errors in MSI-X table */
8180 		for (i = main_mem_base;
8181 		     i < main_mem_base + main_mem_size * 4;
8182 		     i += main_mem_width) {
8183 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
8184 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8185 					 i, main_mem_width / 4);
8186 		}
8187 		/* Clear HC parity attention */
8188 		REG_RD(bp, main_mem_prty_clr);
8189 	}
8190 
8191 #ifdef BNX2X_STOP_ON_ERROR
8192 	/* Enable STORMs SP logging */
8193 	REG_WR8(bp, BAR_USTRORM_INTMEM +
8194 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8195 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
8196 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8197 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8198 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8199 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
8200 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8201 #endif
8202 
8203 	bnx2x_phy_probe(&bp->link_params);
8204 
8205 	return 0;
8206 }
8207 
8208 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8209 {
8210 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8211 
8212 	if (!CHIP_IS_E1x(bp))
8213 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8214 			       sizeof(struct host_hc_status_block_e2));
8215 	else
8216 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8217 			       sizeof(struct host_hc_status_block_e1x));
8218 
8219 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8220 }
8221 
8222 void bnx2x_free_mem(struct bnx2x *bp)
8223 {
8224 	int i;
8225 
8226 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8227 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8228 
8229 	if (IS_VF(bp))
8230 		return;
8231 
8232 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8233 		       sizeof(struct host_sp_status_block));
8234 
8235 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8236 		       sizeof(struct bnx2x_slowpath));
8237 
8238 	for (i = 0; i < L2_ILT_LINES(bp); i++)
8239 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8240 			       bp->context[i].size);
8241 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8242 
8243 	BNX2X_FREE(bp->ilt->lines);
8244 
8245 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8246 
8247 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8248 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8249 
8250 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8251 
8252 	bnx2x_iov_free_mem(bp);
8253 }
8254 
8255 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8256 {
8257 	if (!CHIP_IS_E1x(bp)) {
8258 		/* size = the status block + ramrod buffers */
8259 		bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8260 						    sizeof(struct host_hc_status_block_e2));
8261 		if (!bp->cnic_sb.e2_sb)
8262 			goto alloc_mem_err;
8263 	} else {
8264 		bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8265 						     sizeof(struct host_hc_status_block_e1x));
8266 		if (!bp->cnic_sb.e1x_sb)
8267 			goto alloc_mem_err;
8268 	}
8269 
8270 	if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8271 		/* allocate searcher T2 table, as it wasn't allocated before */
8272 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8273 		if (!bp->t2)
8274 			goto alloc_mem_err;
8275 	}
8276 
8277 	/* write address to which L5 should insert its values */
8278 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
8279 		&bp->slowpath->drv_info_to_mcp;
8280 
8281 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8282 		goto alloc_mem_err;
8283 
8284 	return 0;
8285 
8286 alloc_mem_err:
8287 	bnx2x_free_mem_cnic(bp);
8288 	BNX2X_ERR("Can't allocate memory\n");
8289 	return -ENOMEM;
8290 }
8291 
8292 int bnx2x_alloc_mem(struct bnx2x *bp)
8293 {
8294 	int i, allocated, context_size;
8295 
8296 	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8297 		/* allocate searcher T2 table */
8298 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8299 		if (!bp->t2)
8300 			goto alloc_mem_err;
8301 	}
8302 
8303 	bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8304 					     sizeof(struct host_sp_status_block));
8305 	if (!bp->def_status_blk)
8306 		goto alloc_mem_err;
8307 
8308 	bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8309 				       sizeof(struct bnx2x_slowpath));
8310 	if (!bp->slowpath)
8311 		goto alloc_mem_err;
8312 
8313 	/* Allocate memory for CDU context:
8314 	 * This memory is allocated separately and not in the generic ILT
8315 	 * functions because CDU differs in few aspects:
8316 	 * 1. There are multiple entities allocating memory for context -
8317 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8318 	 * its own ILT lines.
8319 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
8320 	 * for the other ILT clients), to be efficient we want to support
8321 	 * allocation of sub-page-size in the last entry.
8322 	 * 3. Context pointers are used by the driver to pass to FW / update
8323 	 * the context (for the other ILT clients the pointers are used just to
8324 	 * free the memory during unload).
8325 	 */
8326 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8327 
8328 	for (i = 0, allocated = 0; allocated < context_size; i++) {
8329 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8330 					  (context_size - allocated));
8331 		bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8332 						      bp->context[i].size);
8333 		if (!bp->context[i].vcxt)
8334 			goto alloc_mem_err;
8335 		allocated += bp->context[i].size;
8336 	}
8337 	bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8338 				 GFP_KERNEL);
8339 	if (!bp->ilt->lines)
8340 		goto alloc_mem_err;
8341 
8342 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8343 		goto alloc_mem_err;
8344 
8345 	if (bnx2x_iov_alloc_mem(bp))
8346 		goto alloc_mem_err;
8347 
8348 	/* Slow path ring */
8349 	bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8350 	if (!bp->spq)
8351 		goto alloc_mem_err;
8352 
8353 	/* EQ */
8354 	bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8355 				      BCM_PAGE_SIZE * NUM_EQ_PAGES);
8356 	if (!bp->eq_ring)
8357 		goto alloc_mem_err;
8358 
8359 	return 0;
8360 
8361 alloc_mem_err:
8362 	bnx2x_free_mem(bp);
8363 	BNX2X_ERR("Can't allocate memory\n");
8364 	return -ENOMEM;
8365 }
8366 
8367 /*
8368  * Init service functions
8369  */
8370 
8371 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8372 		      struct bnx2x_vlan_mac_obj *obj, bool set,
8373 		      int mac_type, unsigned long *ramrod_flags)
8374 {
8375 	int rc;
8376 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8377 
8378 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8379 
8380 	/* Fill general parameters */
8381 	ramrod_param.vlan_mac_obj = obj;
8382 	ramrod_param.ramrod_flags = *ramrod_flags;
8383 
8384 	/* Fill a user request section if needed */
8385 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8386 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8387 
8388 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8389 
8390 		/* Set the command: ADD or DEL */
8391 		if (set)
8392 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8393 		else
8394 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8395 	}
8396 
8397 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8398 
8399 	if (rc == -EEXIST) {
8400 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8401 		/* do not treat adding same MAC as error */
8402 		rc = 0;
8403 	} else if (rc < 0)
8404 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8405 
8406 	return rc;
8407 }
8408 
8409 int bnx2x_del_all_macs(struct bnx2x *bp,
8410 		       struct bnx2x_vlan_mac_obj *mac_obj,
8411 		       int mac_type, bool wait_for_comp)
8412 {
8413 	int rc;
8414 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8415 
8416 	/* Wait for completion of requested */
8417 	if (wait_for_comp)
8418 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8419 
8420 	/* Set the mac type of addresses we want to clear */
8421 	__set_bit(mac_type, &vlan_mac_flags);
8422 
8423 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8424 	if (rc < 0)
8425 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8426 
8427 	return rc;
8428 }
8429 
8430 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8431 {
8432 	if (IS_PF(bp)) {
8433 		unsigned long ramrod_flags = 0;
8434 
8435 		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8436 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8437 		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8438 					 &bp->sp_objs->mac_obj, set,
8439 					 BNX2X_ETH_MAC, &ramrod_flags);
8440 	} else { /* vf */
8441 		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8442 					     bp->fp->index, set);
8443 	}
8444 }
8445 
8446 int bnx2x_setup_leading(struct bnx2x *bp)
8447 {
8448 	if (IS_PF(bp))
8449 		return bnx2x_setup_queue(bp, &bp->fp[0], true);
8450 	else /* VF */
8451 		return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8452 }
8453 
8454 /**
8455  * bnx2x_set_int_mode - configure interrupt mode
8456  *
8457  * @bp:		driver handle
8458  *
8459  * In case of MSI-X it will also try to enable MSI-X.
8460  */
8461 int bnx2x_set_int_mode(struct bnx2x *bp)
8462 {
8463 	int rc = 0;
8464 
8465 	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8466 		BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8467 		return -EINVAL;
8468 	}
8469 
8470 	switch (int_mode) {
8471 	case BNX2X_INT_MODE_MSIX:
8472 		/* attempt to enable msix */
8473 		rc = bnx2x_enable_msix(bp);
8474 
8475 		/* msix attained */
8476 		if (!rc)
8477 			return 0;
8478 
8479 		/* vfs use only msix */
8480 		if (rc && IS_VF(bp))
8481 			return rc;
8482 
8483 		/* failed to enable multiple MSI-X */
8484 		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8485 			       bp->num_queues,
8486 			       1 + bp->num_cnic_queues);
8487 
8488 		/* falling through... */
8489 	case BNX2X_INT_MODE_MSI:
8490 		bnx2x_enable_msi(bp);
8491 
8492 		/* falling through... */
8493 	case BNX2X_INT_MODE_INTX:
8494 		bp->num_ethernet_queues = 1;
8495 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8496 		BNX2X_DEV_INFO("set number of queues to 1\n");
8497 		break;
8498 	default:
8499 		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8500 		return -EINVAL;
8501 	}
8502 	return 0;
8503 }
8504 
8505 /* must be called prior to any HW initializations */
8506 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8507 {
8508 	if (IS_SRIOV(bp))
8509 		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8510 	return L2_ILT_LINES(bp);
8511 }
8512 
8513 void bnx2x_ilt_set_info(struct bnx2x *bp)
8514 {
8515 	struct ilt_client_info *ilt_client;
8516 	struct bnx2x_ilt *ilt = BP_ILT(bp);
8517 	u16 line = 0;
8518 
8519 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8520 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8521 
8522 	/* CDU */
8523 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8524 	ilt_client->client_num = ILT_CLIENT_CDU;
8525 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8526 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8527 	ilt_client->start = line;
8528 	line += bnx2x_cid_ilt_lines(bp);
8529 
8530 	if (CNIC_SUPPORT(bp))
8531 		line += CNIC_ILT_LINES;
8532 	ilt_client->end = line - 1;
8533 
8534 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8535 	   ilt_client->start,
8536 	   ilt_client->end,
8537 	   ilt_client->page_size,
8538 	   ilt_client->flags,
8539 	   ilog2(ilt_client->page_size >> 12));
8540 
8541 	/* QM */
8542 	if (QM_INIT(bp->qm_cid_count)) {
8543 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8544 		ilt_client->client_num = ILT_CLIENT_QM;
8545 		ilt_client->page_size = QM_ILT_PAGE_SZ;
8546 		ilt_client->flags = 0;
8547 		ilt_client->start = line;
8548 
8549 		/* 4 bytes for each cid */
8550 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8551 							 QM_ILT_PAGE_SZ);
8552 
8553 		ilt_client->end = line - 1;
8554 
8555 		DP(NETIF_MSG_IFUP,
8556 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8557 		   ilt_client->start,
8558 		   ilt_client->end,
8559 		   ilt_client->page_size,
8560 		   ilt_client->flags,
8561 		   ilog2(ilt_client->page_size >> 12));
8562 	}
8563 
8564 	if (CNIC_SUPPORT(bp)) {
8565 		/* SRC */
8566 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8567 		ilt_client->client_num = ILT_CLIENT_SRC;
8568 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8569 		ilt_client->flags = 0;
8570 		ilt_client->start = line;
8571 		line += SRC_ILT_LINES;
8572 		ilt_client->end = line - 1;
8573 
8574 		DP(NETIF_MSG_IFUP,
8575 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8576 		   ilt_client->start,
8577 		   ilt_client->end,
8578 		   ilt_client->page_size,
8579 		   ilt_client->flags,
8580 		   ilog2(ilt_client->page_size >> 12));
8581 
8582 		/* TM */
8583 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8584 		ilt_client->client_num = ILT_CLIENT_TM;
8585 		ilt_client->page_size = TM_ILT_PAGE_SZ;
8586 		ilt_client->flags = 0;
8587 		ilt_client->start = line;
8588 		line += TM_ILT_LINES;
8589 		ilt_client->end = line - 1;
8590 
8591 		DP(NETIF_MSG_IFUP,
8592 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8593 		   ilt_client->start,
8594 		   ilt_client->end,
8595 		   ilt_client->page_size,
8596 		   ilt_client->flags,
8597 		   ilog2(ilt_client->page_size >> 12));
8598 	}
8599 
8600 	BUG_ON(line > ILT_MAX_LINES);
8601 }
8602 
8603 /**
8604  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8605  *
8606  * @bp:			driver handle
8607  * @fp:			pointer to fastpath
8608  * @init_params:	pointer to parameters structure
8609  *
8610  * parameters configured:
8611  *      - HC configuration
8612  *      - Queue's CDU context
8613  */
8614 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8615 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8616 {
8617 	u8 cos;
8618 	int cxt_index, cxt_offset;
8619 
8620 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8621 	if (!IS_FCOE_FP(fp)) {
8622 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8623 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8624 
8625 		/* If HC is supported, enable host coalescing in the transition
8626 		 * to INIT state.
8627 		 */
8628 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8629 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8630 
8631 		/* HC rate */
8632 		init_params->rx.hc_rate = bp->rx_ticks ?
8633 			(1000000 / bp->rx_ticks) : 0;
8634 		init_params->tx.hc_rate = bp->tx_ticks ?
8635 			(1000000 / bp->tx_ticks) : 0;
8636 
8637 		/* FW SB ID */
8638 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8639 			fp->fw_sb_id;
8640 
8641 		/*
8642 		 * CQ index among the SB indices: FCoE clients uses the default
8643 		 * SB, therefore it's different.
8644 		 */
8645 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8646 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8647 	}
8648 
8649 	/* set maximum number of COSs supported by this queue */
8650 	init_params->max_cos = fp->max_cos;
8651 
8652 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8653 	    fp->index, init_params->max_cos);
8654 
8655 	/* set the context pointers queue object */
8656 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8657 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8658 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8659 				ILT_PAGE_CIDS);
8660 		init_params->cxts[cos] =
8661 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8662 	}
8663 }
8664 
8665 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8666 			struct bnx2x_queue_state_params *q_params,
8667 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8668 			int tx_index, bool leading)
8669 {
8670 	memset(tx_only_params, 0, sizeof(*tx_only_params));
8671 
8672 	/* Set the command */
8673 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8674 
8675 	/* Set tx-only QUEUE flags: don't zero statistics */
8676 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8677 
8678 	/* choose the index of the cid to send the slow path on */
8679 	tx_only_params->cid_index = tx_index;
8680 
8681 	/* Set general TX_ONLY_SETUP parameters */
8682 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8683 
8684 	/* Set Tx TX_ONLY_SETUP parameters */
8685 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8686 
8687 	DP(NETIF_MSG_IFUP,
8688 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8689 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8690 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8691 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8692 
8693 	/* send the ramrod */
8694 	return bnx2x_queue_state_change(bp, q_params);
8695 }
8696 
8697 /**
8698  * bnx2x_setup_queue - setup queue
8699  *
8700  * @bp:		driver handle
8701  * @fp:		pointer to fastpath
8702  * @leading:	is leading
8703  *
8704  * This function performs 2 steps in a Queue state machine
8705  *      actually: 1) RESET->INIT 2) INIT->SETUP
8706  */
8707 
8708 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8709 		       bool leading)
8710 {
8711 	struct bnx2x_queue_state_params q_params = {NULL};
8712 	struct bnx2x_queue_setup_params *setup_params =
8713 						&q_params.params.setup;
8714 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8715 						&q_params.params.tx_only;
8716 	int rc;
8717 	u8 tx_index;
8718 
8719 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8720 
8721 	/* reset IGU state skip FCoE L2 queue */
8722 	if (!IS_FCOE_FP(fp))
8723 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8724 			     IGU_INT_ENABLE, 0);
8725 
8726 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8727 	/* We want to wait for completion in this context */
8728 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8729 
8730 	/* Prepare the INIT parameters */
8731 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8732 
8733 	/* Set the command */
8734 	q_params.cmd = BNX2X_Q_CMD_INIT;
8735 
8736 	/* Change the state to INIT */
8737 	rc = bnx2x_queue_state_change(bp, &q_params);
8738 	if (rc) {
8739 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8740 		return rc;
8741 	}
8742 
8743 	DP(NETIF_MSG_IFUP, "init complete\n");
8744 
8745 	/* Now move the Queue to the SETUP state... */
8746 	memset(setup_params, 0, sizeof(*setup_params));
8747 
8748 	/* Set QUEUE flags */
8749 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8750 
8751 	/* Set general SETUP parameters */
8752 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8753 				FIRST_TX_COS_INDEX);
8754 
8755 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8756 			    &setup_params->rxq_params);
8757 
8758 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8759 			   FIRST_TX_COS_INDEX);
8760 
8761 	/* Set the command */
8762 	q_params.cmd = BNX2X_Q_CMD_SETUP;
8763 
8764 	if (IS_FCOE_FP(fp))
8765 		bp->fcoe_init = true;
8766 
8767 	/* Change the state to SETUP */
8768 	rc = bnx2x_queue_state_change(bp, &q_params);
8769 	if (rc) {
8770 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8771 		return rc;
8772 	}
8773 
8774 	/* loop through the relevant tx-only indices */
8775 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8776 	      tx_index < fp->max_cos;
8777 	      tx_index++) {
8778 
8779 		/* prepare and send tx-only ramrod*/
8780 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8781 					  tx_only_params, tx_index, leading);
8782 		if (rc) {
8783 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8784 				  fp->index, tx_index);
8785 			return rc;
8786 		}
8787 	}
8788 
8789 	return rc;
8790 }
8791 
8792 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8793 {
8794 	struct bnx2x_fastpath *fp = &bp->fp[index];
8795 	struct bnx2x_fp_txdata *txdata;
8796 	struct bnx2x_queue_state_params q_params = {NULL};
8797 	int rc, tx_index;
8798 
8799 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8800 
8801 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8802 	/* We want to wait for completion in this context */
8803 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8804 
8805 	/* close tx-only connections */
8806 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8807 	     tx_index < fp->max_cos;
8808 	     tx_index++){
8809 
8810 		/* ascertain this is a normal queue*/
8811 		txdata = fp->txdata_ptr[tx_index];
8812 
8813 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8814 							txdata->txq_index);
8815 
8816 		/* send halt terminate on tx-only connection */
8817 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8818 		memset(&q_params.params.terminate, 0,
8819 		       sizeof(q_params.params.terminate));
8820 		q_params.params.terminate.cid_index = tx_index;
8821 
8822 		rc = bnx2x_queue_state_change(bp, &q_params);
8823 		if (rc)
8824 			return rc;
8825 
8826 		/* send halt terminate on tx-only connection */
8827 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8828 		memset(&q_params.params.cfc_del, 0,
8829 		       sizeof(q_params.params.cfc_del));
8830 		q_params.params.cfc_del.cid_index = tx_index;
8831 		rc = bnx2x_queue_state_change(bp, &q_params);
8832 		if (rc)
8833 			return rc;
8834 	}
8835 	/* Stop the primary connection: */
8836 	/* ...halt the connection */
8837 	q_params.cmd = BNX2X_Q_CMD_HALT;
8838 	rc = bnx2x_queue_state_change(bp, &q_params);
8839 	if (rc)
8840 		return rc;
8841 
8842 	/* ...terminate the connection */
8843 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8844 	memset(&q_params.params.terminate, 0,
8845 	       sizeof(q_params.params.terminate));
8846 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8847 	rc = bnx2x_queue_state_change(bp, &q_params);
8848 	if (rc)
8849 		return rc;
8850 	/* ...delete cfc entry */
8851 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8852 	memset(&q_params.params.cfc_del, 0,
8853 	       sizeof(q_params.params.cfc_del));
8854 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8855 	return bnx2x_queue_state_change(bp, &q_params);
8856 }
8857 
8858 static void bnx2x_reset_func(struct bnx2x *bp)
8859 {
8860 	int port = BP_PORT(bp);
8861 	int func = BP_FUNC(bp);
8862 	int i;
8863 
8864 	/* Disable the function in the FW */
8865 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8866 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8867 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8868 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8869 
8870 	/* FP SBs */
8871 	for_each_eth_queue(bp, i) {
8872 		struct bnx2x_fastpath *fp = &bp->fp[i];
8873 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8874 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8875 			   SB_DISABLED);
8876 	}
8877 
8878 	if (CNIC_LOADED(bp))
8879 		/* CNIC SB */
8880 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8881 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8882 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8883 
8884 	/* SP SB */
8885 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8886 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8887 		SB_DISABLED);
8888 
8889 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8890 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8891 		       0);
8892 
8893 	/* Configure IGU */
8894 	if (bp->common.int_block == INT_BLOCK_HC) {
8895 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8896 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8897 	} else {
8898 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8899 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8900 	}
8901 
8902 	if (CNIC_LOADED(bp)) {
8903 		/* Disable Timer scan */
8904 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8905 		/*
8906 		 * Wait for at least 10ms and up to 2 second for the timers
8907 		 * scan to complete
8908 		 */
8909 		for (i = 0; i < 200; i++) {
8910 			usleep_range(10000, 20000);
8911 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8912 				break;
8913 		}
8914 	}
8915 	/* Clear ILT */
8916 	bnx2x_clear_func_ilt(bp, func);
8917 
8918 	/* Timers workaround bug for E2: if this is vnic-3,
8919 	 * we need to set the entire ilt range for this timers.
8920 	 */
8921 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8922 		struct ilt_client_info ilt_cli;
8923 		/* use dummy TM client */
8924 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8925 		ilt_cli.start = 0;
8926 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8927 		ilt_cli.client_num = ILT_CLIENT_TM;
8928 
8929 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8930 	}
8931 
8932 	/* this assumes that reset_port() called before reset_func()*/
8933 	if (!CHIP_IS_E1x(bp))
8934 		bnx2x_pf_disable(bp);
8935 
8936 	bp->dmae_ready = 0;
8937 }
8938 
8939 static void bnx2x_reset_port(struct bnx2x *bp)
8940 {
8941 	int port = BP_PORT(bp);
8942 	u32 val;
8943 
8944 	/* Reset physical Link */
8945 	bnx2x__link_reset(bp);
8946 
8947 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8948 
8949 	/* Do not rcv packets to BRB */
8950 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8951 	/* Do not direct rcv packets that are not for MCP to the BRB */
8952 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8953 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8954 
8955 	/* Configure AEU */
8956 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8957 
8958 	msleep(100);
8959 	/* Check for BRB port occupancy */
8960 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8961 	if (val)
8962 		DP(NETIF_MSG_IFDOWN,
8963 		   "BRB1 is not empty  %d blocks are occupied\n", val);
8964 
8965 	/* TODO: Close Doorbell port? */
8966 }
8967 
8968 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8969 {
8970 	struct bnx2x_func_state_params func_params = {NULL};
8971 
8972 	/* Prepare parameters for function state transitions */
8973 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8974 
8975 	func_params.f_obj = &bp->func_obj;
8976 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
8977 
8978 	func_params.params.hw_init.load_phase = load_code;
8979 
8980 	return bnx2x_func_state_change(bp, &func_params);
8981 }
8982 
8983 static int bnx2x_func_stop(struct bnx2x *bp)
8984 {
8985 	struct bnx2x_func_state_params func_params = {NULL};
8986 	int rc;
8987 
8988 	/* Prepare parameters for function state transitions */
8989 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8990 	func_params.f_obj = &bp->func_obj;
8991 	func_params.cmd = BNX2X_F_CMD_STOP;
8992 
8993 	/*
8994 	 * Try to stop the function the 'good way'. If fails (in case
8995 	 * of a parity error during bnx2x_chip_cleanup()) and we are
8996 	 * not in a debug mode, perform a state transaction in order to
8997 	 * enable further HW_RESET transaction.
8998 	 */
8999 	rc = bnx2x_func_state_change(bp, &func_params);
9000 	if (rc) {
9001 #ifdef BNX2X_STOP_ON_ERROR
9002 		return rc;
9003 #else
9004 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9005 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9006 		return bnx2x_func_state_change(bp, &func_params);
9007 #endif
9008 	}
9009 
9010 	return 0;
9011 }
9012 
9013 /**
9014  * bnx2x_send_unload_req - request unload mode from the MCP.
9015  *
9016  * @bp:			driver handle
9017  * @unload_mode:	requested function's unload mode
9018  *
9019  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9020  */
9021 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9022 {
9023 	u32 reset_code = 0;
9024 	int port = BP_PORT(bp);
9025 
9026 	/* Select the UNLOAD request mode */
9027 	if (unload_mode == UNLOAD_NORMAL)
9028 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9029 
9030 	else if (bp->flags & NO_WOL_FLAG)
9031 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9032 
9033 	else if (bp->wol) {
9034 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9035 		u8 *mac_addr = bp->dev->dev_addr;
9036 		struct pci_dev *pdev = bp->pdev;
9037 		u32 val;
9038 		u16 pmc;
9039 
9040 		/* The mac address is written to entries 1-4 to
9041 		 * preserve entry 0 which is used by the PMF
9042 		 */
9043 		u8 entry = (BP_VN(bp) + 1)*8;
9044 
9045 		val = (mac_addr[0] << 8) | mac_addr[1];
9046 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9047 
9048 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9049 		      (mac_addr[4] << 8) | mac_addr[5];
9050 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9051 
9052 		/* Enable the PME and clear the status */
9053 		pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9054 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9055 		pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9056 
9057 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9058 
9059 	} else
9060 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9061 
9062 	/* Send the request to the MCP */
9063 	if (!BP_NOMCP(bp))
9064 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
9065 	else {
9066 		int path = BP_PATH(bp);
9067 
9068 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9069 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9070 		   bnx2x_load_count[path][2]);
9071 		bnx2x_load_count[path][0]--;
9072 		bnx2x_load_count[path][1 + port]--;
9073 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9074 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9075 		   bnx2x_load_count[path][2]);
9076 		if (bnx2x_load_count[path][0] == 0)
9077 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9078 		else if (bnx2x_load_count[path][1 + port] == 0)
9079 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9080 		else
9081 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9082 	}
9083 
9084 	return reset_code;
9085 }
9086 
9087 /**
9088  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9089  *
9090  * @bp:		driver handle
9091  * @keep_link:		true iff link should be kept up
9092  */
9093 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9094 {
9095 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9096 
9097 	/* Report UNLOAD_DONE to MCP */
9098 	if (!BP_NOMCP(bp))
9099 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9100 }
9101 
9102 static int bnx2x_func_wait_started(struct bnx2x *bp)
9103 {
9104 	int tout = 50;
9105 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9106 
9107 	if (!bp->port.pmf)
9108 		return 0;
9109 
9110 	/*
9111 	 * (assumption: No Attention from MCP at this stage)
9112 	 * PMF probably in the middle of TX disable/enable transaction
9113 	 * 1. Sync IRS for default SB
9114 	 * 2. Sync SP queue - this guarantees us that attention handling started
9115 	 * 3. Wait, that TX disable/enable transaction completes
9116 	 *
9117 	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9118 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9119 	 * received completion for the transaction the state is TX_STOPPED.
9120 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9121 	 * transaction.
9122 	 */
9123 
9124 	/* make sure default SB ISR is done */
9125 	if (msix)
9126 		synchronize_irq(bp->msix_table[0].vector);
9127 	else
9128 		synchronize_irq(bp->pdev->irq);
9129 
9130 	flush_workqueue(bnx2x_wq);
9131 	flush_workqueue(bnx2x_iov_wq);
9132 
9133 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9134 				BNX2X_F_STATE_STARTED && tout--)
9135 		msleep(20);
9136 
9137 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9138 						BNX2X_F_STATE_STARTED) {
9139 #ifdef BNX2X_STOP_ON_ERROR
9140 		BNX2X_ERR("Wrong function state\n");
9141 		return -EBUSY;
9142 #else
9143 		/*
9144 		 * Failed to complete the transaction in a "good way"
9145 		 * Force both transactions with CLR bit
9146 		 */
9147 		struct bnx2x_func_state_params func_params = {NULL};
9148 
9149 		DP(NETIF_MSG_IFDOWN,
9150 		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9151 
9152 		func_params.f_obj = &bp->func_obj;
9153 		__set_bit(RAMROD_DRV_CLR_ONLY,
9154 					&func_params.ramrod_flags);
9155 
9156 		/* STARTED-->TX_ST0PPED */
9157 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
9158 		bnx2x_func_state_change(bp, &func_params);
9159 
9160 		/* TX_ST0PPED-->STARTED */
9161 		func_params.cmd = BNX2X_F_CMD_TX_START;
9162 		return bnx2x_func_state_change(bp, &func_params);
9163 #endif
9164 	}
9165 
9166 	return 0;
9167 }
9168 
9169 static void bnx2x_disable_ptp(struct bnx2x *bp)
9170 {
9171 	int port = BP_PORT(bp);
9172 
9173 	/* Disable sending PTP packets to host */
9174 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9175 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9176 
9177 	/* Reset PTP event detection rules */
9178 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9179 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9180 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9181 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9182 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9183 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9184 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9185 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9186 
9187 	/* Disable the PTP feature */
9188 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9189 	       NIG_REG_P0_PTP_EN, 0x0);
9190 }
9191 
9192 /* Called during unload, to stop PTP-related stuff */
9193 static void bnx2x_stop_ptp(struct bnx2x *bp)
9194 {
9195 	/* Cancel PTP work queue. Should be done after the Tx queues are
9196 	 * drained to prevent additional scheduling.
9197 	 */
9198 	cancel_work_sync(&bp->ptp_task);
9199 
9200 	if (bp->ptp_tx_skb) {
9201 		dev_kfree_skb_any(bp->ptp_tx_skb);
9202 		bp->ptp_tx_skb = NULL;
9203 	}
9204 
9205 	/* Disable PTP in HW */
9206 	bnx2x_disable_ptp(bp);
9207 
9208 	DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9209 }
9210 
9211 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9212 {
9213 	int port = BP_PORT(bp);
9214 	int i, rc = 0;
9215 	u8 cos;
9216 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
9217 	u32 reset_code;
9218 
9219 	/* Wait until tx fastpath tasks complete */
9220 	for_each_tx_queue(bp, i) {
9221 		struct bnx2x_fastpath *fp = &bp->fp[i];
9222 
9223 		for_each_cos_in_tx_queue(fp, cos)
9224 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9225 #ifdef BNX2X_STOP_ON_ERROR
9226 		if (rc)
9227 			return;
9228 #endif
9229 	}
9230 
9231 	/* Give HW time to discard old tx messages */
9232 	usleep_range(1000, 2000);
9233 
9234 	/* Clean all ETH MACs */
9235 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9236 				false);
9237 	if (rc < 0)
9238 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9239 
9240 	/* Clean up UC list  */
9241 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9242 				true);
9243 	if (rc < 0)
9244 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9245 			  rc);
9246 
9247 	/* Disable LLH */
9248 	if (!CHIP_IS_E1(bp))
9249 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9250 
9251 	/* Set "drop all" (stop Rx).
9252 	 * We need to take a netif_addr_lock() here in order to prevent
9253 	 * a race between the completion code and this code.
9254 	 */
9255 	netif_addr_lock_bh(bp->dev);
9256 	/* Schedule the rx_mode command */
9257 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9258 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9259 	else
9260 		bnx2x_set_storm_rx_mode(bp);
9261 
9262 	/* Cleanup multicast configuration */
9263 	rparam.mcast_obj = &bp->mcast_obj;
9264 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9265 	if (rc < 0)
9266 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9267 
9268 	netif_addr_unlock_bh(bp->dev);
9269 
9270 	bnx2x_iov_chip_cleanup(bp);
9271 
9272 	/*
9273 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
9274 	 * this function should perform FUNC, PORT or COMMON HW
9275 	 * reset.
9276 	 */
9277 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
9278 
9279 	/*
9280 	 * (assumption: No Attention from MCP at this stage)
9281 	 * PMF probably in the middle of TX disable/enable transaction
9282 	 */
9283 	rc = bnx2x_func_wait_started(bp);
9284 	if (rc) {
9285 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
9286 #ifdef BNX2X_STOP_ON_ERROR
9287 		return;
9288 #endif
9289 	}
9290 
9291 	/* Close multi and leading connections
9292 	 * Completions for ramrods are collected in a synchronous way
9293 	 */
9294 	for_each_eth_queue(bp, i)
9295 		if (bnx2x_stop_queue(bp, i))
9296 #ifdef BNX2X_STOP_ON_ERROR
9297 			return;
9298 #else
9299 			goto unload_error;
9300 #endif
9301 
9302 	if (CNIC_LOADED(bp)) {
9303 		for_each_cnic_queue(bp, i)
9304 			if (bnx2x_stop_queue(bp, i))
9305 #ifdef BNX2X_STOP_ON_ERROR
9306 				return;
9307 #else
9308 				goto unload_error;
9309 #endif
9310 	}
9311 
9312 	/* If SP settings didn't get completed so far - something
9313 	 * very wrong has happen.
9314 	 */
9315 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9316 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9317 
9318 #ifndef BNX2X_STOP_ON_ERROR
9319 unload_error:
9320 #endif
9321 	rc = bnx2x_func_stop(bp);
9322 	if (rc) {
9323 		BNX2X_ERR("Function stop failed!\n");
9324 #ifdef BNX2X_STOP_ON_ERROR
9325 		return;
9326 #endif
9327 	}
9328 
9329 	/* stop_ptp should be after the Tx queues are drained to prevent
9330 	 * scheduling to the cancelled PTP work queue. It should also be after
9331 	 * function stop ramrod is sent, since as part of this ramrod FW access
9332 	 * PTP registers.
9333 	 */
9334 	if (bp->flags & PTP_SUPPORTED)
9335 		bnx2x_stop_ptp(bp);
9336 
9337 	/* Disable HW interrupts, NAPI */
9338 	bnx2x_netif_stop(bp, 1);
9339 	/* Delete all NAPI objects */
9340 	bnx2x_del_all_napi(bp);
9341 	if (CNIC_LOADED(bp))
9342 		bnx2x_del_all_napi_cnic(bp);
9343 
9344 	/* Release IRQs */
9345 	bnx2x_free_irq(bp);
9346 
9347 	/* Reset the chip */
9348 	rc = bnx2x_reset_hw(bp, reset_code);
9349 	if (rc)
9350 		BNX2X_ERR("HW_RESET failed\n");
9351 
9352 	/* Report UNLOAD_DONE to MCP */
9353 	bnx2x_send_unload_done(bp, keep_link);
9354 }
9355 
9356 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9357 {
9358 	u32 val;
9359 
9360 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9361 
9362 	if (CHIP_IS_E1(bp)) {
9363 		int port = BP_PORT(bp);
9364 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9365 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
9366 
9367 		val = REG_RD(bp, addr);
9368 		val &= ~(0x300);
9369 		REG_WR(bp, addr, val);
9370 	} else {
9371 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9372 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9373 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9374 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9375 	}
9376 }
9377 
9378 /* Close gates #2, #3 and #4: */
9379 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9380 {
9381 	u32 val;
9382 
9383 	/* Gates #2 and #4a are closed/opened for "not E1" only */
9384 	if (!CHIP_IS_E1(bp)) {
9385 		/* #4 */
9386 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9387 		/* #2 */
9388 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9389 	}
9390 
9391 	/* #3 */
9392 	if (CHIP_IS_E1x(bp)) {
9393 		/* Prevent interrupts from HC on both ports */
9394 		val = REG_RD(bp, HC_REG_CONFIG_1);
9395 		REG_WR(bp, HC_REG_CONFIG_1,
9396 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9397 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9398 
9399 		val = REG_RD(bp, HC_REG_CONFIG_0);
9400 		REG_WR(bp, HC_REG_CONFIG_0,
9401 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9402 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9403 	} else {
9404 		/* Prevent incoming interrupts in IGU */
9405 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9406 
9407 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9408 		       (!close) ?
9409 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9410 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9411 	}
9412 
9413 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9414 		close ? "closing" : "opening");
9415 	mmiowb();
9416 }
9417 
9418 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9419 
9420 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9421 {
9422 	/* Do some magic... */
9423 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9424 	*magic_val = val & SHARED_MF_CLP_MAGIC;
9425 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9426 }
9427 
9428 /**
9429  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9430  *
9431  * @bp:		driver handle
9432  * @magic_val:	old value of the `magic' bit.
9433  */
9434 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9435 {
9436 	/* Restore the `magic' bit value... */
9437 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9438 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
9439 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9440 }
9441 
9442 /**
9443  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9444  *
9445  * @bp:		driver handle
9446  * @magic_val:	old value of 'magic' bit.
9447  *
9448  * Takes care of CLP configurations.
9449  */
9450 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9451 {
9452 	u32 shmem;
9453 	u32 validity_offset;
9454 
9455 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9456 
9457 	/* Set `magic' bit in order to save MF config */
9458 	if (!CHIP_IS_E1(bp))
9459 		bnx2x_clp_reset_prep(bp, magic_val);
9460 
9461 	/* Get shmem offset */
9462 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9463 	validity_offset =
9464 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9465 
9466 	/* Clear validity map flags */
9467 	if (shmem > 0)
9468 		REG_WR(bp, shmem + validity_offset, 0);
9469 }
9470 
9471 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9472 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9473 
9474 /**
9475  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9476  *
9477  * @bp:	driver handle
9478  */
9479 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9480 {
9481 	/* special handling for emulation and FPGA,
9482 	   wait 10 times longer */
9483 	if (CHIP_REV_IS_SLOW(bp))
9484 		msleep(MCP_ONE_TIMEOUT*10);
9485 	else
9486 		msleep(MCP_ONE_TIMEOUT);
9487 }
9488 
9489 /*
9490  * initializes bp->common.shmem_base and waits for validity signature to appear
9491  */
9492 static int bnx2x_init_shmem(struct bnx2x *bp)
9493 {
9494 	int cnt = 0;
9495 	u32 val = 0;
9496 
9497 	do {
9498 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9499 		if (bp->common.shmem_base) {
9500 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9501 			if (val & SHR_MEM_VALIDITY_MB)
9502 				return 0;
9503 		}
9504 
9505 		bnx2x_mcp_wait_one(bp);
9506 
9507 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9508 
9509 	BNX2X_ERR("BAD MCP validity signature\n");
9510 
9511 	return -ENODEV;
9512 }
9513 
9514 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9515 {
9516 	int rc = bnx2x_init_shmem(bp);
9517 
9518 	/* Restore the `magic' bit value */
9519 	if (!CHIP_IS_E1(bp))
9520 		bnx2x_clp_reset_done(bp, magic_val);
9521 
9522 	return rc;
9523 }
9524 
9525 static void bnx2x_pxp_prep(struct bnx2x *bp)
9526 {
9527 	if (!CHIP_IS_E1(bp)) {
9528 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9529 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9530 		mmiowb();
9531 	}
9532 }
9533 
9534 /*
9535  * Reset the whole chip except for:
9536  *      - PCIE core
9537  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9538  *              one reset bit)
9539  *      - IGU
9540  *      - MISC (including AEU)
9541  *      - GRC
9542  *      - RBCN, RBCP
9543  */
9544 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9545 {
9546 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9547 	u32 global_bits2, stay_reset2;
9548 
9549 	/*
9550 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9551 	 * (per chip) blocks.
9552 	 */
9553 	global_bits2 =
9554 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9555 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9556 
9557 	/* Don't reset the following blocks.
9558 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9559 	 *            reset, as in 4 port device they might still be owned
9560 	 *            by the MCP (there is only one leader per path).
9561 	 */
9562 	not_reset_mask1 =
9563 		MISC_REGISTERS_RESET_REG_1_RST_HC |
9564 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9565 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9566 
9567 	not_reset_mask2 =
9568 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9569 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9570 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9571 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9572 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9573 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9574 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9575 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9576 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9577 		MISC_REGISTERS_RESET_REG_2_PGLC |
9578 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9579 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9580 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9581 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9582 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9583 		MISC_REGISTERS_RESET_REG_2_UMAC1;
9584 
9585 	/*
9586 	 * Keep the following blocks in reset:
9587 	 *  - all xxMACs are handled by the bnx2x_link code.
9588 	 */
9589 	stay_reset2 =
9590 		MISC_REGISTERS_RESET_REG_2_XMAC |
9591 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9592 
9593 	/* Full reset masks according to the chip */
9594 	reset_mask1 = 0xffffffff;
9595 
9596 	if (CHIP_IS_E1(bp))
9597 		reset_mask2 = 0xffff;
9598 	else if (CHIP_IS_E1H(bp))
9599 		reset_mask2 = 0x1ffff;
9600 	else if (CHIP_IS_E2(bp))
9601 		reset_mask2 = 0xfffff;
9602 	else /* CHIP_IS_E3 */
9603 		reset_mask2 = 0x3ffffff;
9604 
9605 	/* Don't reset global blocks unless we need to */
9606 	if (!global)
9607 		reset_mask2 &= ~global_bits2;
9608 
9609 	/*
9610 	 * In case of attention in the QM, we need to reset PXP
9611 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9612 	 * because otherwise QM reset would release 'close the gates' shortly
9613 	 * before resetting the PXP, then the PSWRQ would send a write
9614 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9615 	 * read the payload data from PSWWR, but PSWWR would not
9616 	 * respond. The write queue in PGLUE would stuck, dmae commands
9617 	 * would not return. Therefore it's important to reset the second
9618 	 * reset register (containing the
9619 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9620 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9621 	 * bit).
9622 	 */
9623 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9624 	       reset_mask2 & (~not_reset_mask2));
9625 
9626 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9627 	       reset_mask1 & (~not_reset_mask1));
9628 
9629 	barrier();
9630 	mmiowb();
9631 
9632 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9633 	       reset_mask2 & (~stay_reset2));
9634 
9635 	barrier();
9636 	mmiowb();
9637 
9638 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9639 	mmiowb();
9640 }
9641 
9642 /**
9643  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9644  * It should get cleared in no more than 1s.
9645  *
9646  * @bp:	driver handle
9647  *
9648  * It should get cleared in no more than 1s. Returns 0 if
9649  * pending writes bit gets cleared.
9650  */
9651 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9652 {
9653 	u32 cnt = 1000;
9654 	u32 pend_bits = 0;
9655 
9656 	do {
9657 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9658 
9659 		if (pend_bits == 0)
9660 			break;
9661 
9662 		usleep_range(1000, 2000);
9663 	} while (cnt-- > 0);
9664 
9665 	if (cnt <= 0) {
9666 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9667 			  pend_bits);
9668 		return -EBUSY;
9669 	}
9670 
9671 	return 0;
9672 }
9673 
9674 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9675 {
9676 	int cnt = 1000;
9677 	u32 val = 0;
9678 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9679 	u32 tags_63_32 = 0;
9680 
9681 	/* Empty the Tetris buffer, wait for 1s */
9682 	do {
9683 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9684 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9685 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9686 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9687 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9688 		if (CHIP_IS_E3(bp))
9689 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9690 
9691 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9692 		    ((port_is_idle_0 & 0x1) == 0x1) &&
9693 		    ((port_is_idle_1 & 0x1) == 0x1) &&
9694 		    (pgl_exp_rom2 == 0xffffffff) &&
9695 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9696 			break;
9697 		usleep_range(1000, 2000);
9698 	} while (cnt-- > 0);
9699 
9700 	if (cnt <= 0) {
9701 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9702 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9703 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9704 			  pgl_exp_rom2);
9705 		return -EAGAIN;
9706 	}
9707 
9708 	barrier();
9709 
9710 	/* Close gates #2, #3 and #4 */
9711 	bnx2x_set_234_gates(bp, true);
9712 
9713 	/* Poll for IGU VQs for 57712 and newer chips */
9714 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9715 		return -EAGAIN;
9716 
9717 	/* TBD: Indicate that "process kill" is in progress to MCP */
9718 
9719 	/* Clear "unprepared" bit */
9720 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9721 	barrier();
9722 
9723 	/* Make sure all is written to the chip before the reset */
9724 	mmiowb();
9725 
9726 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9727 	 * PSWHST, GRC and PSWRD Tetris buffer.
9728 	 */
9729 	usleep_range(1000, 2000);
9730 
9731 	/* Prepare to chip reset: */
9732 	/* MCP */
9733 	if (global)
9734 		bnx2x_reset_mcp_prep(bp, &val);
9735 
9736 	/* PXP */
9737 	bnx2x_pxp_prep(bp);
9738 	barrier();
9739 
9740 	/* reset the chip */
9741 	bnx2x_process_kill_chip_reset(bp, global);
9742 	barrier();
9743 
9744 	/* clear errors in PGB */
9745 	if (!CHIP_IS_E1x(bp))
9746 		REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9747 
9748 	/* Recover after reset: */
9749 	/* MCP */
9750 	if (global && bnx2x_reset_mcp_comp(bp, val))
9751 		return -EAGAIN;
9752 
9753 	/* TBD: Add resetting the NO_MCP mode DB here */
9754 
9755 	/* Open the gates #2, #3 and #4 */
9756 	bnx2x_set_234_gates(bp, false);
9757 
9758 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9759 	 * reset state, re-enable attentions. */
9760 
9761 	return 0;
9762 }
9763 
9764 static int bnx2x_leader_reset(struct bnx2x *bp)
9765 {
9766 	int rc = 0;
9767 	bool global = bnx2x_reset_is_global(bp);
9768 	u32 load_code;
9769 
9770 	/* if not going to reset MCP - load "fake" driver to reset HW while
9771 	 * driver is owner of the HW
9772 	 */
9773 	if (!global && !BP_NOMCP(bp)) {
9774 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9775 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9776 		if (!load_code) {
9777 			BNX2X_ERR("MCP response failure, aborting\n");
9778 			rc = -EAGAIN;
9779 			goto exit_leader_reset;
9780 		}
9781 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9782 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9783 			BNX2X_ERR("MCP unexpected resp, aborting\n");
9784 			rc = -EAGAIN;
9785 			goto exit_leader_reset2;
9786 		}
9787 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9788 		if (!load_code) {
9789 			BNX2X_ERR("MCP response failure, aborting\n");
9790 			rc = -EAGAIN;
9791 			goto exit_leader_reset2;
9792 		}
9793 	}
9794 
9795 	/* Try to recover after the failure */
9796 	if (bnx2x_process_kill(bp, global)) {
9797 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9798 			  BP_PATH(bp));
9799 		rc = -EAGAIN;
9800 		goto exit_leader_reset2;
9801 	}
9802 
9803 	/*
9804 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9805 	 * state.
9806 	 */
9807 	bnx2x_set_reset_done(bp);
9808 	if (global)
9809 		bnx2x_clear_reset_global(bp);
9810 
9811 exit_leader_reset2:
9812 	/* unload "fake driver" if it was loaded */
9813 	if (!global && !BP_NOMCP(bp)) {
9814 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9815 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9816 	}
9817 exit_leader_reset:
9818 	bp->is_leader = 0;
9819 	bnx2x_release_leader_lock(bp);
9820 	smp_mb();
9821 	return rc;
9822 }
9823 
9824 static void bnx2x_recovery_failed(struct bnx2x *bp)
9825 {
9826 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9827 
9828 	/* Disconnect this device */
9829 	netif_device_detach(bp->dev);
9830 
9831 	/*
9832 	 * Block ifup for all function on this engine until "process kill"
9833 	 * or power cycle.
9834 	 */
9835 	bnx2x_set_reset_in_progress(bp);
9836 
9837 	/* Shut down the power */
9838 	bnx2x_set_power_state(bp, PCI_D3hot);
9839 
9840 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9841 
9842 	smp_mb();
9843 }
9844 
9845 /*
9846  * Assumption: runs under rtnl lock. This together with the fact
9847  * that it's called only from bnx2x_sp_rtnl() ensure that it
9848  * will never be called when netif_running(bp->dev) is false.
9849  */
9850 static void bnx2x_parity_recover(struct bnx2x *bp)
9851 {
9852 	bool global = false;
9853 	u32 error_recovered, error_unrecovered;
9854 	bool is_parity;
9855 
9856 	DP(NETIF_MSG_HW, "Handling parity\n");
9857 	while (1) {
9858 		switch (bp->recovery_state) {
9859 		case BNX2X_RECOVERY_INIT:
9860 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9861 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9862 			WARN_ON(!is_parity);
9863 
9864 			/* Try to get a LEADER_LOCK HW lock */
9865 			if (bnx2x_trylock_leader_lock(bp)) {
9866 				bnx2x_set_reset_in_progress(bp);
9867 				/*
9868 				 * Check if there is a global attention and if
9869 				 * there was a global attention, set the global
9870 				 * reset bit.
9871 				 */
9872 
9873 				if (global)
9874 					bnx2x_set_reset_global(bp);
9875 
9876 				bp->is_leader = 1;
9877 			}
9878 
9879 			/* Stop the driver */
9880 			/* If interface has been removed - break */
9881 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9882 				return;
9883 
9884 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
9885 
9886 			/* Ensure "is_leader", MCP command sequence and
9887 			 * "recovery_state" update values are seen on other
9888 			 * CPUs.
9889 			 */
9890 			smp_mb();
9891 			break;
9892 
9893 		case BNX2X_RECOVERY_WAIT:
9894 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9895 			if (bp->is_leader) {
9896 				int other_engine = BP_PATH(bp) ? 0 : 1;
9897 				bool other_load_status =
9898 					bnx2x_get_load_status(bp, other_engine);
9899 				bool load_status =
9900 					bnx2x_get_load_status(bp, BP_PATH(bp));
9901 				global = bnx2x_reset_is_global(bp);
9902 
9903 				/*
9904 				 * In case of a parity in a global block, let
9905 				 * the first leader that performs a
9906 				 * leader_reset() reset the global blocks in
9907 				 * order to clear global attentions. Otherwise
9908 				 * the gates will remain closed for that
9909 				 * engine.
9910 				 */
9911 				if (load_status ||
9912 				    (global && other_load_status)) {
9913 					/* Wait until all other functions get
9914 					 * down.
9915 					 */
9916 					schedule_delayed_work(&bp->sp_rtnl_task,
9917 								HZ/10);
9918 					return;
9919 				} else {
9920 					/* If all other functions got down -
9921 					 * try to bring the chip back to
9922 					 * normal. In any case it's an exit
9923 					 * point for a leader.
9924 					 */
9925 					if (bnx2x_leader_reset(bp)) {
9926 						bnx2x_recovery_failed(bp);
9927 						return;
9928 					}
9929 
9930 					/* If we are here, means that the
9931 					 * leader has succeeded and doesn't
9932 					 * want to be a leader any more. Try
9933 					 * to continue as a none-leader.
9934 					 */
9935 					break;
9936 				}
9937 			} else { /* non-leader */
9938 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9939 					/* Try to get a LEADER_LOCK HW lock as
9940 					 * long as a former leader may have
9941 					 * been unloaded by the user or
9942 					 * released a leadership by another
9943 					 * reason.
9944 					 */
9945 					if (bnx2x_trylock_leader_lock(bp)) {
9946 						/* I'm a leader now! Restart a
9947 						 * switch case.
9948 						 */
9949 						bp->is_leader = 1;
9950 						break;
9951 					}
9952 
9953 					schedule_delayed_work(&bp->sp_rtnl_task,
9954 								HZ/10);
9955 					return;
9956 
9957 				} else {
9958 					/*
9959 					 * If there was a global attention, wait
9960 					 * for it to be cleared.
9961 					 */
9962 					if (bnx2x_reset_is_global(bp)) {
9963 						schedule_delayed_work(
9964 							&bp->sp_rtnl_task,
9965 							HZ/10);
9966 						return;
9967 					}
9968 
9969 					error_recovered =
9970 					  bp->eth_stats.recoverable_error;
9971 					error_unrecovered =
9972 					  bp->eth_stats.unrecoverable_error;
9973 					bp->recovery_state =
9974 						BNX2X_RECOVERY_NIC_LOADING;
9975 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9976 						error_unrecovered++;
9977 						netdev_err(bp->dev,
9978 							   "Recovery failed. Power cycle needed\n");
9979 						/* Disconnect this device */
9980 						netif_device_detach(bp->dev);
9981 						/* Shut down the power */
9982 						bnx2x_set_power_state(
9983 							bp, PCI_D3hot);
9984 						smp_mb();
9985 					} else {
9986 						bp->recovery_state =
9987 							BNX2X_RECOVERY_DONE;
9988 						error_recovered++;
9989 						smp_mb();
9990 					}
9991 					bp->eth_stats.recoverable_error =
9992 						error_recovered;
9993 					bp->eth_stats.unrecoverable_error =
9994 						error_unrecovered;
9995 
9996 					return;
9997 				}
9998 			}
9999 		default:
10000 			return;
10001 		}
10002 	}
10003 }
10004 
10005 static int bnx2x_close(struct net_device *dev);
10006 
10007 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10008  * scheduled on a general queue in order to prevent a dead lock.
10009  */
10010 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10011 {
10012 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10013 
10014 	rtnl_lock();
10015 
10016 	if (!netif_running(bp->dev)) {
10017 		rtnl_unlock();
10018 		return;
10019 	}
10020 
10021 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10022 #ifdef BNX2X_STOP_ON_ERROR
10023 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10024 			  "you will need to reboot when done\n");
10025 		goto sp_rtnl_not_reset;
10026 #endif
10027 		/*
10028 		 * Clear all pending SP commands as we are going to reset the
10029 		 * function anyway.
10030 		 */
10031 		bp->sp_rtnl_state = 0;
10032 		smp_mb();
10033 
10034 		bnx2x_parity_recover(bp);
10035 
10036 		rtnl_unlock();
10037 		return;
10038 	}
10039 
10040 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10041 #ifdef BNX2X_STOP_ON_ERROR
10042 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10043 			  "you will need to reboot when done\n");
10044 		goto sp_rtnl_not_reset;
10045 #endif
10046 
10047 		/*
10048 		 * Clear all pending SP commands as we are going to reset the
10049 		 * function anyway.
10050 		 */
10051 		bp->sp_rtnl_state = 0;
10052 		smp_mb();
10053 
10054 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10055 		bnx2x_nic_load(bp, LOAD_NORMAL);
10056 
10057 		rtnl_unlock();
10058 		return;
10059 	}
10060 #ifdef BNX2X_STOP_ON_ERROR
10061 sp_rtnl_not_reset:
10062 #endif
10063 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10064 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10065 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10066 		bnx2x_after_function_update(bp);
10067 	/*
10068 	 * in case of fan failure we need to reset id if the "stop on error"
10069 	 * debug flag is set, since we trying to prevent permanent overheating
10070 	 * damage
10071 	 */
10072 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10073 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10074 		netif_device_detach(bp->dev);
10075 		bnx2x_close(bp->dev);
10076 		rtnl_unlock();
10077 		return;
10078 	}
10079 
10080 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10081 		DP(BNX2X_MSG_SP,
10082 		   "sending set mcast vf pf channel message from rtnl sp-task\n");
10083 		bnx2x_vfpf_set_mcast(bp->dev);
10084 	}
10085 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10086 			       &bp->sp_rtnl_state)){
10087 		if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
10088 			bnx2x_tx_disable(bp);
10089 			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10090 		}
10091 	}
10092 
10093 	if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10094 		DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10095 		bnx2x_set_rx_mode_inner(bp);
10096 	}
10097 
10098 	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10099 			       &bp->sp_rtnl_state))
10100 		bnx2x_pf_set_vfs_vlan(bp);
10101 
10102 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10103 		bnx2x_dcbx_stop_hw_tx(bp);
10104 		bnx2x_dcbx_resume_hw_tx(bp);
10105 	}
10106 
10107 	if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10108 			       &bp->sp_rtnl_state))
10109 		bnx2x_update_mng_version(bp);
10110 
10111 	/* work which needs rtnl lock not-taken (as it takes the lock itself and
10112 	 * can be called from other contexts as well)
10113 	 */
10114 	rtnl_unlock();
10115 
10116 	/* enable SR-IOV if applicable */
10117 	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10118 					       &bp->sp_rtnl_state)) {
10119 		bnx2x_disable_sriov(bp);
10120 		bnx2x_enable_sriov(bp);
10121 	}
10122 }
10123 
10124 static void bnx2x_period_task(struct work_struct *work)
10125 {
10126 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10127 
10128 	if (!netif_running(bp->dev))
10129 		goto period_task_exit;
10130 
10131 	if (CHIP_REV_IS_SLOW(bp)) {
10132 		BNX2X_ERR("period task called on emulation, ignoring\n");
10133 		goto period_task_exit;
10134 	}
10135 
10136 	bnx2x_acquire_phy_lock(bp);
10137 	/*
10138 	 * The barrier is needed to ensure the ordering between the writing to
10139 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10140 	 * the reading here.
10141 	 */
10142 	smp_mb();
10143 	if (bp->port.pmf) {
10144 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
10145 
10146 		/* Re-queue task in 1 sec */
10147 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10148 	}
10149 
10150 	bnx2x_release_phy_lock(bp);
10151 period_task_exit:
10152 	return;
10153 }
10154 
10155 /*
10156  * Init service functions
10157  */
10158 
10159 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10160 {
10161 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10162 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10163 	return base + (BP_ABS_FUNC(bp)) * stride;
10164 }
10165 
10166 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10167 					 u8 port, u32 reset_reg,
10168 					 struct bnx2x_mac_vals *vals)
10169 {
10170 	u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10171 	u32 base_addr;
10172 
10173 	if (!(mask & reset_reg))
10174 		return false;
10175 
10176 	BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10177 	base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10178 	vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10179 	vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10180 	REG_WR(bp, vals->umac_addr[port], 0);
10181 
10182 	return true;
10183 }
10184 
10185 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10186 					struct bnx2x_mac_vals *vals)
10187 {
10188 	u32 val, base_addr, offset, mask, reset_reg;
10189 	bool mac_stopped = false;
10190 	u8 port = BP_PORT(bp);
10191 
10192 	/* reset addresses as they also mark which values were changed */
10193 	memset(vals, 0, sizeof(*vals));
10194 
10195 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10196 
10197 	if (!CHIP_IS_E3(bp)) {
10198 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10199 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10200 		if ((mask & reset_reg) && val) {
10201 			u32 wb_data[2];
10202 			BNX2X_DEV_INFO("Disable bmac Rx\n");
10203 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10204 						: NIG_REG_INGRESS_BMAC0_MEM;
10205 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10206 						: BIGMAC_REGISTER_BMAC_CONTROL;
10207 
10208 			/*
10209 			 * use rd/wr since we cannot use dmae. This is safe
10210 			 * since MCP won't access the bus due to the request
10211 			 * to unload, and no function on the path can be
10212 			 * loaded at this time.
10213 			 */
10214 			wb_data[0] = REG_RD(bp, base_addr + offset);
10215 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10216 			vals->bmac_addr = base_addr + offset;
10217 			vals->bmac_val[0] = wb_data[0];
10218 			vals->bmac_val[1] = wb_data[1];
10219 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10220 			REG_WR(bp, vals->bmac_addr, wb_data[0]);
10221 			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10222 		}
10223 		BNX2X_DEV_INFO("Disable emac Rx\n");
10224 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10225 		vals->emac_val = REG_RD(bp, vals->emac_addr);
10226 		REG_WR(bp, vals->emac_addr, 0);
10227 		mac_stopped = true;
10228 	} else {
10229 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10230 			BNX2X_DEV_INFO("Disable xmac Rx\n");
10231 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10232 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10233 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10234 			       val & ~(1 << 1));
10235 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10236 			       val | (1 << 1));
10237 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10238 			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10239 			REG_WR(bp, vals->xmac_addr, 0);
10240 			mac_stopped = true;
10241 		}
10242 
10243 		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10244 							    reset_reg, vals);
10245 		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10246 							    reset_reg, vals);
10247 	}
10248 
10249 	if (mac_stopped)
10250 		msleep(20);
10251 }
10252 
10253 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10254 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10255 					0x1848 + ((f) << 4))
10256 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
10257 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
10258 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
10259 
10260 #define BCM_5710_UNDI_FW_MF_MAJOR	(0x07)
10261 #define BCM_5710_UNDI_FW_MF_MINOR	(0x08)
10262 #define BCM_5710_UNDI_FW_MF_VERS	(0x05)
10263 
10264 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10265 {
10266 	/* UNDI marks its presence in DORQ -
10267 	 * it initializes CID offset for normal bell to 0x7
10268 	 */
10269 	if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10270 	    MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10271 		return false;
10272 
10273 	if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10274 		BNX2X_DEV_INFO("UNDI previously loaded\n");
10275 		return true;
10276 	}
10277 
10278 	return false;
10279 }
10280 
10281 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10282 {
10283 	u16 rcq, bd;
10284 	u32 addr, tmp_reg;
10285 
10286 	if (BP_FUNC(bp) < 2)
10287 		addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10288 	else
10289 		addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10290 
10291 	tmp_reg = REG_RD(bp, addr);
10292 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10293 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10294 
10295 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10296 	REG_WR(bp, addr, tmp_reg);
10297 
10298 	BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10299 		       BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10300 }
10301 
10302 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10303 {
10304 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10305 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10306 	if (!rc) {
10307 		BNX2X_ERR("MCP response failure, aborting\n");
10308 		return -EBUSY;
10309 	}
10310 
10311 	return 0;
10312 }
10313 
10314 static struct bnx2x_prev_path_list *
10315 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
10316 {
10317 	struct bnx2x_prev_path_list *tmp_list;
10318 
10319 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10320 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10321 		    bp->pdev->bus->number == tmp_list->bus &&
10322 		    BP_PATH(bp) == tmp_list->path)
10323 			return tmp_list;
10324 
10325 	return NULL;
10326 }
10327 
10328 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10329 {
10330 	struct bnx2x_prev_path_list *tmp_list;
10331 	int rc;
10332 
10333 	rc = down_interruptible(&bnx2x_prev_sem);
10334 	if (rc) {
10335 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10336 		return rc;
10337 	}
10338 
10339 	tmp_list = bnx2x_prev_path_get_entry(bp);
10340 	if (tmp_list) {
10341 		tmp_list->aer = 1;
10342 		rc = 0;
10343 	} else {
10344 		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10345 			  BP_PATH(bp));
10346 	}
10347 
10348 	up(&bnx2x_prev_sem);
10349 
10350 	return rc;
10351 }
10352 
10353 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10354 {
10355 	struct bnx2x_prev_path_list *tmp_list;
10356 	bool rc = false;
10357 
10358 	if (down_trylock(&bnx2x_prev_sem))
10359 		return false;
10360 
10361 	tmp_list = bnx2x_prev_path_get_entry(bp);
10362 	if (tmp_list) {
10363 		if (tmp_list->aer) {
10364 			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10365 			   BP_PATH(bp));
10366 		} else {
10367 			rc = true;
10368 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10369 				       BP_PATH(bp));
10370 		}
10371 	}
10372 
10373 	up(&bnx2x_prev_sem);
10374 
10375 	return rc;
10376 }
10377 
10378 bool bnx2x_port_after_undi(struct bnx2x *bp)
10379 {
10380 	struct bnx2x_prev_path_list *entry;
10381 	bool val;
10382 
10383 	down(&bnx2x_prev_sem);
10384 
10385 	entry = bnx2x_prev_path_get_entry(bp);
10386 	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10387 
10388 	up(&bnx2x_prev_sem);
10389 
10390 	return val;
10391 }
10392 
10393 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10394 {
10395 	struct bnx2x_prev_path_list *tmp_list;
10396 	int rc;
10397 
10398 	rc = down_interruptible(&bnx2x_prev_sem);
10399 	if (rc) {
10400 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10401 		return rc;
10402 	}
10403 
10404 	/* Check whether the entry for this path already exists */
10405 	tmp_list = bnx2x_prev_path_get_entry(bp);
10406 	if (tmp_list) {
10407 		if (!tmp_list->aer) {
10408 			BNX2X_ERR("Re-Marking the path.\n");
10409 		} else {
10410 			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10411 			   BP_PATH(bp));
10412 			tmp_list->aer = 0;
10413 		}
10414 		up(&bnx2x_prev_sem);
10415 		return 0;
10416 	}
10417 	up(&bnx2x_prev_sem);
10418 
10419 	/* Create an entry for this path and add it */
10420 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10421 	if (!tmp_list) {
10422 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10423 		return -ENOMEM;
10424 	}
10425 
10426 	tmp_list->bus = bp->pdev->bus->number;
10427 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10428 	tmp_list->path = BP_PATH(bp);
10429 	tmp_list->aer = 0;
10430 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10431 
10432 	rc = down_interruptible(&bnx2x_prev_sem);
10433 	if (rc) {
10434 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10435 		kfree(tmp_list);
10436 	} else {
10437 		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10438 		   BP_PATH(bp));
10439 		list_add(&tmp_list->list, &bnx2x_prev_list);
10440 		up(&bnx2x_prev_sem);
10441 	}
10442 
10443 	return rc;
10444 }
10445 
10446 static int bnx2x_do_flr(struct bnx2x *bp)
10447 {
10448 	struct pci_dev *dev = bp->pdev;
10449 
10450 	if (CHIP_IS_E1x(bp)) {
10451 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10452 		return -EINVAL;
10453 	}
10454 
10455 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10456 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10457 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10458 			  bp->common.bc_ver);
10459 		return -EINVAL;
10460 	}
10461 
10462 	if (!pci_wait_for_pending_transaction(dev))
10463 		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10464 
10465 	BNX2X_DEV_INFO("Initiating FLR\n");
10466 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10467 
10468 	return 0;
10469 }
10470 
10471 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10472 {
10473 	int rc;
10474 
10475 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
10476 
10477 	/* Test if previous unload process was already finished for this path */
10478 	if (bnx2x_prev_is_path_marked(bp))
10479 		return bnx2x_prev_mcp_done(bp);
10480 
10481 	BNX2X_DEV_INFO("Path is unmarked\n");
10482 
10483 	/* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10484 	if (bnx2x_prev_is_after_undi(bp))
10485 		goto out;
10486 
10487 	/* If function has FLR capabilities, and existing FW version matches
10488 	 * the one required, then FLR will be sufficient to clean any residue
10489 	 * left by previous driver
10490 	 */
10491 	rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10492 
10493 	if (!rc) {
10494 		/* fw version is good */
10495 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10496 		rc = bnx2x_do_flr(bp);
10497 	}
10498 
10499 	if (!rc) {
10500 		/* FLR was performed */
10501 		BNX2X_DEV_INFO("FLR successful\n");
10502 		return 0;
10503 	}
10504 
10505 	BNX2X_DEV_INFO("Could not FLR\n");
10506 
10507 out:
10508 	/* Close the MCP request, return failure*/
10509 	rc = bnx2x_prev_mcp_done(bp);
10510 	if (!rc)
10511 		rc = BNX2X_PREV_WAIT_NEEDED;
10512 
10513 	return rc;
10514 }
10515 
10516 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10517 {
10518 	u32 reset_reg, tmp_reg = 0, rc;
10519 	bool prev_undi = false;
10520 	struct bnx2x_mac_vals mac_vals;
10521 
10522 	/* It is possible a previous function received 'common' answer,
10523 	 * but hasn't loaded yet, therefore creating a scenario of
10524 	 * multiple functions receiving 'common' on the same path.
10525 	 */
10526 	BNX2X_DEV_INFO("Common unload Flow\n");
10527 
10528 	memset(&mac_vals, 0, sizeof(mac_vals));
10529 
10530 	if (bnx2x_prev_is_path_marked(bp))
10531 		return bnx2x_prev_mcp_done(bp);
10532 
10533 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10534 
10535 	/* Reset should be performed after BRB is emptied */
10536 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10537 		u32 timer_count = 1000;
10538 
10539 		/* Close the MAC Rx to prevent BRB from filling up */
10540 		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10541 
10542 		/* close LLH filters for both ports towards the BRB */
10543 		bnx2x_set_rx_filter(&bp->link_params, 0);
10544 		bp->link_params.port ^= 1;
10545 		bnx2x_set_rx_filter(&bp->link_params, 0);
10546 		bp->link_params.port ^= 1;
10547 
10548 		/* Check if the UNDI driver was previously loaded */
10549 		if (bnx2x_prev_is_after_undi(bp)) {
10550 			prev_undi = true;
10551 			/* clear the UNDI indication */
10552 			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10553 			/* clear possible idle check errors */
10554 			REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10555 		}
10556 		if (!CHIP_IS_E1x(bp))
10557 			/* block FW from writing to host */
10558 			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10559 
10560 		/* wait until BRB is empty */
10561 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10562 		while (timer_count) {
10563 			u32 prev_brb = tmp_reg;
10564 
10565 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10566 			if (!tmp_reg)
10567 				break;
10568 
10569 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10570 
10571 			/* reset timer as long as BRB actually gets emptied */
10572 			if (prev_brb > tmp_reg)
10573 				timer_count = 1000;
10574 			else
10575 				timer_count--;
10576 
10577 			/* If UNDI resides in memory, manually increment it */
10578 			if (prev_undi)
10579 				bnx2x_prev_unload_undi_inc(bp, 1);
10580 
10581 			udelay(10);
10582 		}
10583 
10584 		if (!timer_count)
10585 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10586 	}
10587 
10588 	/* No packets are in the pipeline, path is ready for reset */
10589 	bnx2x_reset_common(bp);
10590 
10591 	if (mac_vals.xmac_addr)
10592 		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10593 	if (mac_vals.umac_addr[0])
10594 		REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10595 	if (mac_vals.umac_addr[1])
10596 		REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10597 	if (mac_vals.emac_addr)
10598 		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10599 	if (mac_vals.bmac_addr) {
10600 		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10601 		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10602 	}
10603 
10604 	rc = bnx2x_prev_mark_path(bp, prev_undi);
10605 	if (rc) {
10606 		bnx2x_prev_mcp_done(bp);
10607 		return rc;
10608 	}
10609 
10610 	return bnx2x_prev_mcp_done(bp);
10611 }
10612 
10613 static int bnx2x_prev_unload(struct bnx2x *bp)
10614 {
10615 	int time_counter = 10;
10616 	u32 rc, fw, hw_lock_reg, hw_lock_val;
10617 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10618 
10619 	/* clear hw from errors which may have resulted from an interrupted
10620 	 * dmae transaction.
10621 	 */
10622 	bnx2x_clean_pglue_errors(bp);
10623 
10624 	/* Release previously held locks */
10625 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10626 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10627 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10628 
10629 	hw_lock_val = REG_RD(bp, hw_lock_reg);
10630 	if (hw_lock_val) {
10631 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10632 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10633 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10634 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10635 		}
10636 
10637 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10638 		REG_WR(bp, hw_lock_reg, 0xffffffff);
10639 	} else
10640 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10641 
10642 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10643 		BNX2X_DEV_INFO("Release previously held alr\n");
10644 		bnx2x_release_alr(bp);
10645 	}
10646 
10647 	do {
10648 		int aer = 0;
10649 		/* Lock MCP using an unload request */
10650 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10651 		if (!fw) {
10652 			BNX2X_ERR("MCP response failure, aborting\n");
10653 			rc = -EBUSY;
10654 			break;
10655 		}
10656 
10657 		rc = down_interruptible(&bnx2x_prev_sem);
10658 		if (rc) {
10659 			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10660 				  rc);
10661 		} else {
10662 			/* If Path is marked by EEH, ignore unload status */
10663 			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10664 				 bnx2x_prev_path_get_entry(bp)->aer);
10665 			up(&bnx2x_prev_sem);
10666 		}
10667 
10668 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10669 			rc = bnx2x_prev_unload_common(bp);
10670 			break;
10671 		}
10672 
10673 		/* non-common reply from MCP might require looping */
10674 		rc = bnx2x_prev_unload_uncommon(bp);
10675 		if (rc != BNX2X_PREV_WAIT_NEEDED)
10676 			break;
10677 
10678 		msleep(20);
10679 	} while (--time_counter);
10680 
10681 	if (!time_counter || rc) {
10682 		BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10683 		rc = -EPROBE_DEFER;
10684 	}
10685 
10686 	/* Mark function if its port was used to boot from SAN */
10687 	if (bnx2x_port_after_undi(bp))
10688 		bp->link_params.feature_config_flags |=
10689 			FEATURE_CONFIG_BOOT_FROM_SAN;
10690 
10691 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10692 
10693 	return rc;
10694 }
10695 
10696 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10697 {
10698 	u32 val, val2, val3, val4, id, boot_mode;
10699 	u16 pmc;
10700 
10701 	/* Get the chip revision id and number. */
10702 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10703 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10704 	id = ((val & 0xffff) << 16);
10705 	val = REG_RD(bp, MISC_REG_CHIP_REV);
10706 	id |= ((val & 0xf) << 12);
10707 
10708 	/* Metal is read from PCI regs, but we can't access >=0x400 from
10709 	 * the configuration space (so we need to reg_rd)
10710 	 */
10711 	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10712 	id |= (((val >> 24) & 0xf) << 4);
10713 	val = REG_RD(bp, MISC_REG_BOND_ID);
10714 	id |= (val & 0xf);
10715 	bp->common.chip_id = id;
10716 
10717 	/* force 57811 according to MISC register */
10718 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10719 		if (CHIP_IS_57810(bp))
10720 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10721 				(bp->common.chip_id & 0x0000FFFF);
10722 		else if (CHIP_IS_57810_MF(bp))
10723 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10724 				(bp->common.chip_id & 0x0000FFFF);
10725 		bp->common.chip_id |= 0x1;
10726 	}
10727 
10728 	/* Set doorbell size */
10729 	bp->db_size = (1 << BNX2X_DB_SHIFT);
10730 
10731 	if (!CHIP_IS_E1x(bp)) {
10732 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10733 		if ((val & 1) == 0)
10734 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10735 		else
10736 			val = (val >> 1) & 1;
10737 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10738 						       "2_PORT_MODE");
10739 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10740 						 CHIP_2_PORT_MODE;
10741 
10742 		if (CHIP_MODE_IS_4_PORT(bp))
10743 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10744 		else
10745 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10746 	} else {
10747 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10748 		bp->pfid = bp->pf_num;			/* 0..7 */
10749 	}
10750 
10751 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10752 
10753 	bp->link_params.chip_id = bp->common.chip_id;
10754 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10755 
10756 	val = (REG_RD(bp, 0x2874) & 0x55);
10757 	if ((bp->common.chip_id & 0x1) ||
10758 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10759 		bp->flags |= ONE_PORT_FLAG;
10760 		BNX2X_DEV_INFO("single port device\n");
10761 	}
10762 
10763 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10764 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10765 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10766 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10767 		       bp->common.flash_size, bp->common.flash_size);
10768 
10769 	bnx2x_init_shmem(bp);
10770 
10771 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10772 					MISC_REG_GENERIC_CR_1 :
10773 					MISC_REG_GENERIC_CR_0));
10774 
10775 	bp->link_params.shmem_base = bp->common.shmem_base;
10776 	bp->link_params.shmem2_base = bp->common.shmem2_base;
10777 	if (SHMEM2_RD(bp, size) >
10778 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10779 		bp->link_params.lfa_base =
10780 		REG_RD(bp, bp->common.shmem2_base +
10781 		       (u32)offsetof(struct shmem2_region,
10782 				     lfa_host_addr[BP_PORT(bp)]));
10783 	else
10784 		bp->link_params.lfa_base = 0;
10785 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10786 		       bp->common.shmem_base, bp->common.shmem2_base);
10787 
10788 	if (!bp->common.shmem_base) {
10789 		BNX2X_DEV_INFO("MCP not active\n");
10790 		bp->flags |= NO_MCP_FLAG;
10791 		return;
10792 	}
10793 
10794 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10795 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10796 
10797 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
10798 					SHARED_HW_CFG_LED_MODE_MASK) >>
10799 				       SHARED_HW_CFG_LED_MODE_SHIFT);
10800 
10801 	bp->link_params.feature_config_flags = 0;
10802 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10803 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10804 		bp->link_params.feature_config_flags |=
10805 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10806 	else
10807 		bp->link_params.feature_config_flags &=
10808 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10809 
10810 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10811 	bp->common.bc_ver = val;
10812 	BNX2X_DEV_INFO("bc_ver %X\n", val);
10813 	if (val < BNX2X_BC_VER) {
10814 		/* for now only warn
10815 		 * later we might need to enforce this */
10816 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10817 			  BNX2X_BC_VER, val);
10818 	}
10819 	bp->link_params.feature_config_flags |=
10820 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10821 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10822 
10823 	bp->link_params.feature_config_flags |=
10824 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10825 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10826 	bp->link_params.feature_config_flags |=
10827 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10828 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10829 	bp->link_params.feature_config_flags |=
10830 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10831 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10832 
10833 	bp->link_params.feature_config_flags |=
10834 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10835 		FEATURE_CONFIG_MT_SUPPORT : 0;
10836 
10837 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10838 			BC_SUPPORTS_PFC_STATS : 0;
10839 
10840 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10841 			BC_SUPPORTS_FCOE_FEATURES : 0;
10842 
10843 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10844 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10845 
10846 	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10847 			BC_SUPPORTS_RMMOD_CMD : 0;
10848 
10849 	boot_mode = SHMEM_RD(bp,
10850 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10851 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10852 	switch (boot_mode) {
10853 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10854 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10855 		break;
10856 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10857 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10858 		break;
10859 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10860 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10861 		break;
10862 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10863 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10864 		break;
10865 	}
10866 
10867 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
10868 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10869 
10870 	BNX2X_DEV_INFO("%sWoL capable\n",
10871 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
10872 
10873 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10874 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10875 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10876 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10877 
10878 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10879 		 val, val2, val3, val4);
10880 }
10881 
10882 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10883 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10884 
10885 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10886 {
10887 	int pfid = BP_FUNC(bp);
10888 	int igu_sb_id;
10889 	u32 val;
10890 	u8 fid, igu_sb_cnt = 0;
10891 
10892 	bp->igu_base_sb = 0xff;
10893 	if (CHIP_INT_MODE_IS_BC(bp)) {
10894 		int vn = BP_VN(bp);
10895 		igu_sb_cnt = bp->igu_sb_cnt;
10896 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10897 			FP_SB_MAX_E1x;
10898 
10899 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10900 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10901 
10902 		return 0;
10903 	}
10904 
10905 	/* IGU in normal mode - read CAM */
10906 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10907 	     igu_sb_id++) {
10908 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10909 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10910 			continue;
10911 		fid = IGU_FID(val);
10912 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
10913 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10914 				continue;
10915 			if (IGU_VEC(val) == 0)
10916 				/* default status block */
10917 				bp->igu_dsb_id = igu_sb_id;
10918 			else {
10919 				if (bp->igu_base_sb == 0xff)
10920 					bp->igu_base_sb = igu_sb_id;
10921 				igu_sb_cnt++;
10922 			}
10923 		}
10924 	}
10925 
10926 #ifdef CONFIG_PCI_MSI
10927 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
10928 	 * optional that number of CAM entries will not be equal to the value
10929 	 * advertised in PCI.
10930 	 * Driver should use the minimal value of both as the actual status
10931 	 * block count
10932 	 */
10933 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10934 #endif
10935 
10936 	if (igu_sb_cnt == 0) {
10937 		BNX2X_ERR("CAM configuration error\n");
10938 		return -EINVAL;
10939 	}
10940 
10941 	return 0;
10942 }
10943 
10944 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10945 {
10946 	int cfg_size = 0, idx, port = BP_PORT(bp);
10947 
10948 	/* Aggregation of supported attributes of all external phys */
10949 	bp->port.supported[0] = 0;
10950 	bp->port.supported[1] = 0;
10951 	switch (bp->link_params.num_phys) {
10952 	case 1:
10953 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10954 		cfg_size = 1;
10955 		break;
10956 	case 2:
10957 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10958 		cfg_size = 1;
10959 		break;
10960 	case 3:
10961 		if (bp->link_params.multi_phy_config &
10962 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10963 			bp->port.supported[1] =
10964 				bp->link_params.phy[EXT_PHY1].supported;
10965 			bp->port.supported[0] =
10966 				bp->link_params.phy[EXT_PHY2].supported;
10967 		} else {
10968 			bp->port.supported[0] =
10969 				bp->link_params.phy[EXT_PHY1].supported;
10970 			bp->port.supported[1] =
10971 				bp->link_params.phy[EXT_PHY2].supported;
10972 		}
10973 		cfg_size = 2;
10974 		break;
10975 	}
10976 
10977 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
10978 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10979 			   SHMEM_RD(bp,
10980 			   dev_info.port_hw_config[port].external_phy_config),
10981 			   SHMEM_RD(bp,
10982 			   dev_info.port_hw_config[port].external_phy_config2));
10983 			return;
10984 	}
10985 
10986 	if (CHIP_IS_E3(bp))
10987 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10988 	else {
10989 		switch (switch_cfg) {
10990 		case SWITCH_CFG_1G:
10991 			bp->port.phy_addr = REG_RD(
10992 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10993 			break;
10994 		case SWITCH_CFG_10G:
10995 			bp->port.phy_addr = REG_RD(
10996 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10997 			break;
10998 		default:
10999 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11000 				  bp->port.link_config[0]);
11001 			return;
11002 		}
11003 	}
11004 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11005 	/* mask what we support according to speed_cap_mask per configuration */
11006 	for (idx = 0; idx < cfg_size; idx++) {
11007 		if (!(bp->link_params.speed_cap_mask[idx] &
11008 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11009 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11010 
11011 		if (!(bp->link_params.speed_cap_mask[idx] &
11012 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11013 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11014 
11015 		if (!(bp->link_params.speed_cap_mask[idx] &
11016 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11017 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11018 
11019 		if (!(bp->link_params.speed_cap_mask[idx] &
11020 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11021 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11022 
11023 		if (!(bp->link_params.speed_cap_mask[idx] &
11024 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11025 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11026 						     SUPPORTED_1000baseT_Full);
11027 
11028 		if (!(bp->link_params.speed_cap_mask[idx] &
11029 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11030 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11031 
11032 		if (!(bp->link_params.speed_cap_mask[idx] &
11033 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11034 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11035 
11036 		if (!(bp->link_params.speed_cap_mask[idx] &
11037 					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11038 			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11039 	}
11040 
11041 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11042 		       bp->port.supported[1]);
11043 }
11044 
11045 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11046 {
11047 	u32 link_config, idx, cfg_size = 0;
11048 	bp->port.advertising[0] = 0;
11049 	bp->port.advertising[1] = 0;
11050 	switch (bp->link_params.num_phys) {
11051 	case 1:
11052 	case 2:
11053 		cfg_size = 1;
11054 		break;
11055 	case 3:
11056 		cfg_size = 2;
11057 		break;
11058 	}
11059 	for (idx = 0; idx < cfg_size; idx++) {
11060 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11061 		link_config = bp->port.link_config[idx];
11062 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11063 		case PORT_FEATURE_LINK_SPEED_AUTO:
11064 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11065 				bp->link_params.req_line_speed[idx] =
11066 					SPEED_AUTO_NEG;
11067 				bp->port.advertising[idx] |=
11068 					bp->port.supported[idx];
11069 				if (bp->link_params.phy[EXT_PHY1].type ==
11070 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11071 					bp->port.advertising[idx] |=
11072 					(SUPPORTED_100baseT_Half |
11073 					 SUPPORTED_100baseT_Full);
11074 			} else {
11075 				/* force 10G, no AN */
11076 				bp->link_params.req_line_speed[idx] =
11077 					SPEED_10000;
11078 				bp->port.advertising[idx] |=
11079 					(ADVERTISED_10000baseT_Full |
11080 					 ADVERTISED_FIBRE);
11081 				continue;
11082 			}
11083 			break;
11084 
11085 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
11086 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11087 				bp->link_params.req_line_speed[idx] =
11088 					SPEED_10;
11089 				bp->port.advertising[idx] |=
11090 					(ADVERTISED_10baseT_Full |
11091 					 ADVERTISED_TP);
11092 			} else {
11093 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11094 					    link_config,
11095 				    bp->link_params.speed_cap_mask[idx]);
11096 				return;
11097 			}
11098 			break;
11099 
11100 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
11101 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11102 				bp->link_params.req_line_speed[idx] =
11103 					SPEED_10;
11104 				bp->link_params.req_duplex[idx] =
11105 					DUPLEX_HALF;
11106 				bp->port.advertising[idx] |=
11107 					(ADVERTISED_10baseT_Half |
11108 					 ADVERTISED_TP);
11109 			} else {
11110 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11111 					    link_config,
11112 					  bp->link_params.speed_cap_mask[idx]);
11113 				return;
11114 			}
11115 			break;
11116 
11117 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
11118 			if (bp->port.supported[idx] &
11119 			    SUPPORTED_100baseT_Full) {
11120 				bp->link_params.req_line_speed[idx] =
11121 					SPEED_100;
11122 				bp->port.advertising[idx] |=
11123 					(ADVERTISED_100baseT_Full |
11124 					 ADVERTISED_TP);
11125 			} else {
11126 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11127 					    link_config,
11128 					  bp->link_params.speed_cap_mask[idx]);
11129 				return;
11130 			}
11131 			break;
11132 
11133 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
11134 			if (bp->port.supported[idx] &
11135 			    SUPPORTED_100baseT_Half) {
11136 				bp->link_params.req_line_speed[idx] =
11137 								SPEED_100;
11138 				bp->link_params.req_duplex[idx] =
11139 								DUPLEX_HALF;
11140 				bp->port.advertising[idx] |=
11141 					(ADVERTISED_100baseT_Half |
11142 					 ADVERTISED_TP);
11143 			} else {
11144 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11145 				    link_config,
11146 				    bp->link_params.speed_cap_mask[idx]);
11147 				return;
11148 			}
11149 			break;
11150 
11151 		case PORT_FEATURE_LINK_SPEED_1G:
11152 			if (bp->port.supported[idx] &
11153 			    SUPPORTED_1000baseT_Full) {
11154 				bp->link_params.req_line_speed[idx] =
11155 					SPEED_1000;
11156 				bp->port.advertising[idx] |=
11157 					(ADVERTISED_1000baseT_Full |
11158 					 ADVERTISED_TP);
11159 			} else if (bp->port.supported[idx] &
11160 				   SUPPORTED_1000baseKX_Full) {
11161 				bp->link_params.req_line_speed[idx] =
11162 					SPEED_1000;
11163 				bp->port.advertising[idx] |=
11164 					ADVERTISED_1000baseKX_Full;
11165 			} else {
11166 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11167 				    link_config,
11168 				    bp->link_params.speed_cap_mask[idx]);
11169 				return;
11170 			}
11171 			break;
11172 
11173 		case PORT_FEATURE_LINK_SPEED_2_5G:
11174 			if (bp->port.supported[idx] &
11175 			    SUPPORTED_2500baseX_Full) {
11176 				bp->link_params.req_line_speed[idx] =
11177 					SPEED_2500;
11178 				bp->port.advertising[idx] |=
11179 					(ADVERTISED_2500baseX_Full |
11180 						ADVERTISED_TP);
11181 			} else {
11182 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11183 				    link_config,
11184 				    bp->link_params.speed_cap_mask[idx]);
11185 				return;
11186 			}
11187 			break;
11188 
11189 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
11190 			if (bp->port.supported[idx] &
11191 			    SUPPORTED_10000baseT_Full) {
11192 				bp->link_params.req_line_speed[idx] =
11193 					SPEED_10000;
11194 				bp->port.advertising[idx] |=
11195 					(ADVERTISED_10000baseT_Full |
11196 						ADVERTISED_FIBRE);
11197 			} else if (bp->port.supported[idx] &
11198 				   SUPPORTED_10000baseKR_Full) {
11199 				bp->link_params.req_line_speed[idx] =
11200 					SPEED_10000;
11201 				bp->port.advertising[idx] |=
11202 					(ADVERTISED_10000baseKR_Full |
11203 						ADVERTISED_FIBRE);
11204 			} else {
11205 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11206 				    link_config,
11207 				    bp->link_params.speed_cap_mask[idx]);
11208 				return;
11209 			}
11210 			break;
11211 		case PORT_FEATURE_LINK_SPEED_20G:
11212 			bp->link_params.req_line_speed[idx] = SPEED_20000;
11213 
11214 			break;
11215 		default:
11216 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11217 				  link_config);
11218 				bp->link_params.req_line_speed[idx] =
11219 							SPEED_AUTO_NEG;
11220 				bp->port.advertising[idx] =
11221 						bp->port.supported[idx];
11222 			break;
11223 		}
11224 
11225 		bp->link_params.req_flow_ctrl[idx] = (link_config &
11226 					 PORT_FEATURE_FLOW_CONTROL_MASK);
11227 		if (bp->link_params.req_flow_ctrl[idx] ==
11228 		    BNX2X_FLOW_CTRL_AUTO) {
11229 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11230 				bp->link_params.req_flow_ctrl[idx] =
11231 							BNX2X_FLOW_CTRL_NONE;
11232 			else
11233 				bnx2x_set_requested_fc(bp);
11234 		}
11235 
11236 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11237 			       bp->link_params.req_line_speed[idx],
11238 			       bp->link_params.req_duplex[idx],
11239 			       bp->link_params.req_flow_ctrl[idx],
11240 			       bp->port.advertising[idx]);
11241 	}
11242 }
11243 
11244 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11245 {
11246 	__be16 mac_hi_be = cpu_to_be16(mac_hi);
11247 	__be32 mac_lo_be = cpu_to_be32(mac_lo);
11248 	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11249 	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11250 }
11251 
11252 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11253 {
11254 	int port = BP_PORT(bp);
11255 	u32 config;
11256 	u32 ext_phy_type, ext_phy_config, eee_mode;
11257 
11258 	bp->link_params.bp = bp;
11259 	bp->link_params.port = port;
11260 
11261 	bp->link_params.lane_config =
11262 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11263 
11264 	bp->link_params.speed_cap_mask[0] =
11265 		SHMEM_RD(bp,
11266 			 dev_info.port_hw_config[port].speed_capability_mask) &
11267 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11268 	bp->link_params.speed_cap_mask[1] =
11269 		SHMEM_RD(bp,
11270 			 dev_info.port_hw_config[port].speed_capability_mask2) &
11271 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11272 	bp->port.link_config[0] =
11273 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11274 
11275 	bp->port.link_config[1] =
11276 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11277 
11278 	bp->link_params.multi_phy_config =
11279 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11280 	/* If the device is capable of WoL, set the default state according
11281 	 * to the HW
11282 	 */
11283 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11284 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11285 		   (config & PORT_FEATURE_WOL_ENABLED));
11286 
11287 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11288 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11289 		bp->flags |= NO_ISCSI_FLAG;
11290 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11291 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11292 		bp->flags |= NO_FCOE_FLAG;
11293 
11294 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11295 		       bp->link_params.lane_config,
11296 		       bp->link_params.speed_cap_mask[0],
11297 		       bp->port.link_config[0]);
11298 
11299 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
11300 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
11301 	bnx2x_phy_probe(&bp->link_params);
11302 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11303 
11304 	bnx2x_link_settings_requested(bp);
11305 
11306 	/*
11307 	 * If connected directly, work with the internal PHY, otherwise, work
11308 	 * with the external PHY
11309 	 */
11310 	ext_phy_config =
11311 		SHMEM_RD(bp,
11312 			 dev_info.port_hw_config[port].external_phy_config);
11313 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11314 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11315 		bp->mdio.prtad = bp->port.phy_addr;
11316 
11317 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11318 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11319 		bp->mdio.prtad =
11320 			XGXS_EXT_PHY_ADDR(ext_phy_config);
11321 
11322 	/* Configure link feature according to nvram value */
11323 	eee_mode = (((SHMEM_RD(bp, dev_info.
11324 		      port_feature_config[port].eee_power_mode)) &
11325 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11326 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11327 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11328 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11329 					   EEE_MODE_ENABLE_LPI |
11330 					   EEE_MODE_OUTPUT_TIME;
11331 	} else {
11332 		bp->link_params.eee_mode = 0;
11333 	}
11334 }
11335 
11336 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11337 {
11338 	u32 no_flags = NO_ISCSI_FLAG;
11339 	int port = BP_PORT(bp);
11340 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11341 				drv_lic_key[port].max_iscsi_conn);
11342 
11343 	if (!CNIC_SUPPORT(bp)) {
11344 		bp->flags |= no_flags;
11345 		return;
11346 	}
11347 
11348 	/* Get the number of maximum allowed iSCSI connections */
11349 	bp->cnic_eth_dev.max_iscsi_conn =
11350 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11351 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11352 
11353 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11354 		       bp->cnic_eth_dev.max_iscsi_conn);
11355 
11356 	/*
11357 	 * If maximum allowed number of connections is zero -
11358 	 * disable the feature.
11359 	 */
11360 	if (!bp->cnic_eth_dev.max_iscsi_conn)
11361 		bp->flags |= no_flags;
11362 }
11363 
11364 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11365 {
11366 	/* Port info */
11367 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11368 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11369 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11370 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11371 
11372 	/* Node info */
11373 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11374 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11375 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11376 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11377 }
11378 
11379 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11380 {
11381 	u8 count = 0;
11382 
11383 	if (IS_MF(bp)) {
11384 		u8 fid;
11385 
11386 		/* iterate over absolute function ids for this path: */
11387 		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11388 			if (IS_MF_SD(bp)) {
11389 				u32 cfg = MF_CFG_RD(bp,
11390 						    func_mf_config[fid].config);
11391 
11392 				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11393 				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11394 					    FUNC_MF_CFG_PROTOCOL_FCOE))
11395 					count++;
11396 			} else {
11397 				u32 cfg = MF_CFG_RD(bp,
11398 						    func_ext_config[fid].
11399 								      func_cfg);
11400 
11401 				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11402 				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11403 					count++;
11404 			}
11405 		}
11406 	} else { /* SF */
11407 		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11408 
11409 		for (port = 0; port < port_cnt; port++) {
11410 			u32 lic = SHMEM_RD(bp,
11411 					   drv_lic_key[port].max_fcoe_conn) ^
11412 				  FW_ENCODE_32BIT_PATTERN;
11413 			if (lic)
11414 				count++;
11415 		}
11416 	}
11417 
11418 	return count;
11419 }
11420 
11421 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11422 {
11423 	int port = BP_PORT(bp);
11424 	int func = BP_ABS_FUNC(bp);
11425 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11426 				drv_lic_key[port].max_fcoe_conn);
11427 	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11428 
11429 	if (!CNIC_SUPPORT(bp)) {
11430 		bp->flags |= NO_FCOE_FLAG;
11431 		return;
11432 	}
11433 
11434 	/* Get the number of maximum allowed FCoE connections */
11435 	bp->cnic_eth_dev.max_fcoe_conn =
11436 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11437 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11438 
11439 	/* Calculate the number of maximum allowed FCoE tasks */
11440 	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11441 
11442 	/* check if FCoE resources must be shared between different functions */
11443 	if (num_fcoe_func)
11444 		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11445 
11446 	/* Read the WWN: */
11447 	if (!IS_MF(bp)) {
11448 		/* Port info */
11449 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11450 			SHMEM_RD(bp,
11451 				 dev_info.port_hw_config[port].
11452 				 fcoe_wwn_port_name_upper);
11453 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11454 			SHMEM_RD(bp,
11455 				 dev_info.port_hw_config[port].
11456 				 fcoe_wwn_port_name_lower);
11457 
11458 		/* Node info */
11459 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11460 			SHMEM_RD(bp,
11461 				 dev_info.port_hw_config[port].
11462 				 fcoe_wwn_node_name_upper);
11463 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11464 			SHMEM_RD(bp,
11465 				 dev_info.port_hw_config[port].
11466 				 fcoe_wwn_node_name_lower);
11467 	} else if (!IS_MF_SD(bp)) {
11468 		/* Read the WWN info only if the FCoE feature is enabled for
11469 		 * this function.
11470 		 */
11471 		if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11472 			bnx2x_get_ext_wwn_info(bp, func);
11473 	} else {
11474 		if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11475 			bnx2x_get_ext_wwn_info(bp, func);
11476 	}
11477 
11478 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11479 
11480 	/*
11481 	 * If maximum allowed number of connections is zero -
11482 	 * disable the feature.
11483 	 */
11484 	if (!bp->cnic_eth_dev.max_fcoe_conn)
11485 		bp->flags |= NO_FCOE_FLAG;
11486 }
11487 
11488 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11489 {
11490 	/*
11491 	 * iSCSI may be dynamically disabled but reading
11492 	 * info here we will decrease memory usage by driver
11493 	 * if the feature is disabled for good
11494 	 */
11495 	bnx2x_get_iscsi_info(bp);
11496 	bnx2x_get_fcoe_info(bp);
11497 }
11498 
11499 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11500 {
11501 	u32 val, val2;
11502 	int func = BP_ABS_FUNC(bp);
11503 	int port = BP_PORT(bp);
11504 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11505 	u8 *fip_mac = bp->fip_mac;
11506 
11507 	if (IS_MF(bp)) {
11508 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11509 		 * FCoE MAC then the appropriate feature should be disabled.
11510 		 * In non SD mode features configuration comes from struct
11511 		 * func_ext_config.
11512 		 */
11513 		if (!IS_MF_SD(bp)) {
11514 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11515 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11516 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11517 						 iscsi_mac_addr_upper);
11518 				val = MF_CFG_RD(bp, func_ext_config[func].
11519 						iscsi_mac_addr_lower);
11520 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11521 				BNX2X_DEV_INFO
11522 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11523 			} else {
11524 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11525 			}
11526 
11527 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11528 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11529 						 fcoe_mac_addr_upper);
11530 				val = MF_CFG_RD(bp, func_ext_config[func].
11531 						fcoe_mac_addr_lower);
11532 				bnx2x_set_mac_buf(fip_mac, val, val2);
11533 				BNX2X_DEV_INFO
11534 					("Read FCoE L2 MAC: %pM\n", fip_mac);
11535 			} else {
11536 				bp->flags |= NO_FCOE_FLAG;
11537 			}
11538 
11539 			bp->mf_ext_config = cfg;
11540 
11541 		} else { /* SD MODE */
11542 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11543 				/* use primary mac as iscsi mac */
11544 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11545 
11546 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11547 				BNX2X_DEV_INFO
11548 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11549 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11550 				/* use primary mac as fip mac */
11551 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11552 				BNX2X_DEV_INFO("SD FCoE MODE\n");
11553 				BNX2X_DEV_INFO
11554 					("Read FIP MAC: %pM\n", fip_mac);
11555 			}
11556 		}
11557 
11558 		/* If this is a storage-only interface, use SAN mac as
11559 		 * primary MAC. Notice that for SD this is already the case,
11560 		 * as the SAN mac was copied from the primary MAC.
11561 		 */
11562 		if (IS_MF_FCOE_AFEX(bp))
11563 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11564 	} else {
11565 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11566 				iscsi_mac_upper);
11567 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11568 			       iscsi_mac_lower);
11569 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11570 
11571 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11572 				fcoe_fip_mac_upper);
11573 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11574 			       fcoe_fip_mac_lower);
11575 		bnx2x_set_mac_buf(fip_mac, val, val2);
11576 	}
11577 
11578 	/* Disable iSCSI OOO if MAC configuration is invalid. */
11579 	if (!is_valid_ether_addr(iscsi_mac)) {
11580 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11581 		eth_zero_addr(iscsi_mac);
11582 	}
11583 
11584 	/* Disable FCoE if MAC configuration is invalid. */
11585 	if (!is_valid_ether_addr(fip_mac)) {
11586 		bp->flags |= NO_FCOE_FLAG;
11587 		eth_zero_addr(bp->fip_mac);
11588 	}
11589 }
11590 
11591 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11592 {
11593 	u32 val, val2;
11594 	int func = BP_ABS_FUNC(bp);
11595 	int port = BP_PORT(bp);
11596 
11597 	/* Zero primary MAC configuration */
11598 	eth_zero_addr(bp->dev->dev_addr);
11599 
11600 	if (BP_NOMCP(bp)) {
11601 		BNX2X_ERROR("warning: random MAC workaround active\n");
11602 		eth_hw_addr_random(bp->dev);
11603 	} else if (IS_MF(bp)) {
11604 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11605 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11606 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11607 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11608 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11609 
11610 		if (CNIC_SUPPORT(bp))
11611 			bnx2x_get_cnic_mac_hwinfo(bp);
11612 	} else {
11613 		/* in SF read MACs from port configuration */
11614 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11615 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11616 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11617 
11618 		if (CNIC_SUPPORT(bp))
11619 			bnx2x_get_cnic_mac_hwinfo(bp);
11620 	}
11621 
11622 	if (!BP_NOMCP(bp)) {
11623 		/* Read physical port identifier from shmem */
11624 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11625 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11626 		bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11627 		bp->flags |= HAS_PHYS_PORT_ID;
11628 	}
11629 
11630 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11631 
11632 	if (!is_valid_ether_addr(bp->dev->dev_addr))
11633 		dev_err(&bp->pdev->dev,
11634 			"bad Ethernet MAC address configuration: %pM\n"
11635 			"change it manually before bringing up the appropriate network interface\n",
11636 			bp->dev->dev_addr);
11637 }
11638 
11639 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11640 {
11641 	int tmp;
11642 	u32 cfg;
11643 
11644 	if (IS_VF(bp))
11645 		return false;
11646 
11647 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11648 		/* Take function: tmp = func */
11649 		tmp = BP_ABS_FUNC(bp);
11650 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11651 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11652 	} else {
11653 		/* Take port: tmp = port */
11654 		tmp = BP_PORT(bp);
11655 		cfg = SHMEM_RD(bp,
11656 			       dev_info.port_hw_config[tmp].generic_features);
11657 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11658 	}
11659 	return cfg;
11660 }
11661 
11662 static void validate_set_si_mode(struct bnx2x *bp)
11663 {
11664 	u8 func = BP_ABS_FUNC(bp);
11665 	u32 val;
11666 
11667 	val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11668 
11669 	/* check for legal mac (upper bytes) */
11670 	if (val != 0xffff) {
11671 		bp->mf_mode = MULTI_FUNCTION_SI;
11672 		bp->mf_config[BP_VN(bp)] =
11673 			MF_CFG_RD(bp, func_mf_config[func].config);
11674 	} else
11675 		BNX2X_DEV_INFO("illegal MAC address for SI\n");
11676 }
11677 
11678 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11679 {
11680 	int /*abs*/func = BP_ABS_FUNC(bp);
11681 	int vn;
11682 	u32 val = 0, val2 = 0;
11683 	int rc = 0;
11684 
11685 	/* Validate that chip access is feasible */
11686 	if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11687 		dev_err(&bp->pdev->dev,
11688 			"Chip read returns all Fs. Preventing probe from continuing\n");
11689 		return -EINVAL;
11690 	}
11691 
11692 	bnx2x_get_common_hwinfo(bp);
11693 
11694 	/*
11695 	 * initialize IGU parameters
11696 	 */
11697 	if (CHIP_IS_E1x(bp)) {
11698 		bp->common.int_block = INT_BLOCK_HC;
11699 
11700 		bp->igu_dsb_id = DEF_SB_IGU_ID;
11701 		bp->igu_base_sb = 0;
11702 	} else {
11703 		bp->common.int_block = INT_BLOCK_IGU;
11704 
11705 		/* do not allow device reset during IGU info processing */
11706 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11707 
11708 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11709 
11710 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11711 			int tout = 5000;
11712 
11713 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11714 
11715 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11716 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11717 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11718 
11719 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11720 				tout--;
11721 				usleep_range(1000, 2000);
11722 			}
11723 
11724 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11725 				dev_err(&bp->pdev->dev,
11726 					"FORCING Normal Mode failed!!!\n");
11727 				bnx2x_release_hw_lock(bp,
11728 						      HW_LOCK_RESOURCE_RESET);
11729 				return -EPERM;
11730 			}
11731 		}
11732 
11733 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11734 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11735 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11736 		} else
11737 			BNX2X_DEV_INFO("IGU Normal Mode\n");
11738 
11739 		rc = bnx2x_get_igu_cam_info(bp);
11740 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11741 		if (rc)
11742 			return rc;
11743 	}
11744 
11745 	/*
11746 	 * set base FW non-default (fast path) status block id, this value is
11747 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
11748 	 * determine the id used by the FW.
11749 	 */
11750 	if (CHIP_IS_E1x(bp))
11751 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11752 	else /*
11753 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11754 	      * the same queue are indicated on the same IGU SB). So we prefer
11755 	      * FW and IGU SBs to be the same value.
11756 	      */
11757 		bp->base_fw_ndsb = bp->igu_base_sb;
11758 
11759 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11760 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11761 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
11762 
11763 	/*
11764 	 * Initialize MF configuration
11765 	 */
11766 
11767 	bp->mf_ov = 0;
11768 	bp->mf_mode = 0;
11769 	bp->mf_sub_mode = 0;
11770 	vn = BP_VN(bp);
11771 
11772 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11773 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11774 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
11775 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11776 
11777 		if (SHMEM2_HAS(bp, mf_cfg_addr))
11778 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11779 		else
11780 			bp->common.mf_cfg_base = bp->common.shmem_base +
11781 				offsetof(struct shmem_region, func_mb) +
11782 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11783 		/*
11784 		 * get mf configuration:
11785 		 * 1. Existence of MF configuration
11786 		 * 2. MAC address must be legal (check only upper bytes)
11787 		 *    for  Switch-Independent mode;
11788 		 *    OVLAN must be legal for Switch-Dependent mode
11789 		 * 3. SF_MODE configures specific MF mode
11790 		 */
11791 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11792 			/* get mf configuration */
11793 			val = SHMEM_RD(bp,
11794 				       dev_info.shared_feature_config.config);
11795 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11796 
11797 			switch (val) {
11798 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11799 				validate_set_si_mode(bp);
11800 				break;
11801 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11802 				if ((!CHIP_IS_E1x(bp)) &&
11803 				    (MF_CFG_RD(bp, func_mf_config[func].
11804 					       mac_upper) != 0xffff) &&
11805 				    (SHMEM2_HAS(bp,
11806 						afex_driver_support))) {
11807 					bp->mf_mode = MULTI_FUNCTION_AFEX;
11808 					bp->mf_config[vn] = MF_CFG_RD(bp,
11809 						func_mf_config[func].config);
11810 				} else {
11811 					BNX2X_DEV_INFO("can not configure afex mode\n");
11812 				}
11813 				break;
11814 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11815 				/* get OV configuration */
11816 				val = MF_CFG_RD(bp,
11817 					func_mf_config[FUNC_0].e1hov_tag);
11818 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11819 
11820 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11821 					bp->mf_mode = MULTI_FUNCTION_SD;
11822 					bp->mf_config[vn] = MF_CFG_RD(bp,
11823 						func_mf_config[func].config);
11824 				} else
11825 					BNX2X_DEV_INFO("illegal OV for SD\n");
11826 				break;
11827 			case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
11828 				bp->mf_mode = MULTI_FUNCTION_SD;
11829 				bp->mf_sub_mode = SUB_MF_MODE_UFP;
11830 				bp->mf_config[vn] =
11831 					MF_CFG_RD(bp,
11832 						  func_mf_config[func].config);
11833 				break;
11834 			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11835 				bp->mf_config[vn] = 0;
11836 				break;
11837 			case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
11838 				val2 = SHMEM_RD(bp,
11839 					dev_info.shared_hw_config.config_3);
11840 				val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
11841 				switch (val2) {
11842 				case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
11843 					validate_set_si_mode(bp);
11844 					bp->mf_sub_mode =
11845 							SUB_MF_MODE_NPAR1_DOT_5;
11846 					break;
11847 				default:
11848 					/* Unknown configuration */
11849 					bp->mf_config[vn] = 0;
11850 					BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
11851 						       val);
11852 				}
11853 				break;
11854 			default:
11855 				/* Unknown configuration: reset mf_config */
11856 				bp->mf_config[vn] = 0;
11857 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11858 			}
11859 		}
11860 
11861 		BNX2X_DEV_INFO("%s function mode\n",
11862 			       IS_MF(bp) ? "multi" : "single");
11863 
11864 		switch (bp->mf_mode) {
11865 		case MULTI_FUNCTION_SD:
11866 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11867 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
11868 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11869 				bp->mf_ov = val;
11870 				bp->path_has_ovlan = true;
11871 
11872 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11873 					       func, bp->mf_ov, bp->mf_ov);
11874 			} else if (bp->mf_sub_mode == SUB_MF_MODE_UFP) {
11875 				dev_err(&bp->pdev->dev,
11876 					"Unexpected - no valid MF OV for func %d in UFP mode\n",
11877 					func);
11878 				bp->path_has_ovlan = true;
11879 			} else {
11880 				dev_err(&bp->pdev->dev,
11881 					"No valid MF OV for func %d, aborting\n",
11882 					func);
11883 				return -EPERM;
11884 			}
11885 			break;
11886 		case MULTI_FUNCTION_AFEX:
11887 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11888 			break;
11889 		case MULTI_FUNCTION_SI:
11890 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11891 				       func);
11892 			break;
11893 		default:
11894 			if (vn) {
11895 				dev_err(&bp->pdev->dev,
11896 					"VN %d is in a single function mode, aborting\n",
11897 					vn);
11898 				return -EPERM;
11899 			}
11900 			break;
11901 		}
11902 
11903 		/* check if other port on the path needs ovlan:
11904 		 * Since MF configuration is shared between ports
11905 		 * Possible mixed modes are only
11906 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11907 		 */
11908 		if (CHIP_MODE_IS_4_PORT(bp) &&
11909 		    !bp->path_has_ovlan &&
11910 		    !IS_MF(bp) &&
11911 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11912 			u8 other_port = !BP_PORT(bp);
11913 			u8 other_func = BP_PATH(bp) + 2*other_port;
11914 			val = MF_CFG_RD(bp,
11915 					func_mf_config[other_func].e1hov_tag);
11916 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11917 				bp->path_has_ovlan = true;
11918 		}
11919 	}
11920 
11921 	/* adjust igu_sb_cnt to MF for E1H */
11922 	if (CHIP_IS_E1H(bp) && IS_MF(bp))
11923 		bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
11924 
11925 	/* port info */
11926 	bnx2x_get_port_hwinfo(bp);
11927 
11928 	/* Get MAC addresses */
11929 	bnx2x_get_mac_hwinfo(bp);
11930 
11931 	bnx2x_get_cnic_info(bp);
11932 
11933 	return rc;
11934 }
11935 
11936 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11937 {
11938 	int cnt, i, block_end, rodi;
11939 	char vpd_start[BNX2X_VPD_LEN+1];
11940 	char str_id_reg[VENDOR_ID_LEN+1];
11941 	char str_id_cap[VENDOR_ID_LEN+1];
11942 	char *vpd_data;
11943 	char *vpd_extended_data = NULL;
11944 	u8 len;
11945 
11946 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11947 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11948 
11949 	if (cnt < BNX2X_VPD_LEN)
11950 		goto out_not_found;
11951 
11952 	/* VPD RO tag should be first tag after identifier string, hence
11953 	 * we should be able to find it in first BNX2X_VPD_LEN chars
11954 	 */
11955 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11956 			     PCI_VPD_LRDT_RO_DATA);
11957 	if (i < 0)
11958 		goto out_not_found;
11959 
11960 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11961 		    pci_vpd_lrdt_size(&vpd_start[i]);
11962 
11963 	i += PCI_VPD_LRDT_TAG_SIZE;
11964 
11965 	if (block_end > BNX2X_VPD_LEN) {
11966 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11967 		if (vpd_extended_data  == NULL)
11968 			goto out_not_found;
11969 
11970 		/* read rest of vpd image into vpd_extended_data */
11971 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11972 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11973 				   block_end - BNX2X_VPD_LEN,
11974 				   vpd_extended_data + BNX2X_VPD_LEN);
11975 		if (cnt < (block_end - BNX2X_VPD_LEN))
11976 			goto out_not_found;
11977 		vpd_data = vpd_extended_data;
11978 	} else
11979 		vpd_data = vpd_start;
11980 
11981 	/* now vpd_data holds full vpd content in both cases */
11982 
11983 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11984 				   PCI_VPD_RO_KEYWORD_MFR_ID);
11985 	if (rodi < 0)
11986 		goto out_not_found;
11987 
11988 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
11989 
11990 	if (len != VENDOR_ID_LEN)
11991 		goto out_not_found;
11992 
11993 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11994 
11995 	/* vendor specific info */
11996 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11997 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11998 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11999 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12000 
12001 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12002 						PCI_VPD_RO_KEYWORD_VENDOR0);
12003 		if (rodi >= 0) {
12004 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
12005 
12006 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12007 
12008 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12009 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
12010 				bp->fw_ver[len] = ' ';
12011 			}
12012 		}
12013 		kfree(vpd_extended_data);
12014 		return;
12015 	}
12016 out_not_found:
12017 	kfree(vpd_extended_data);
12018 	return;
12019 }
12020 
12021 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12022 {
12023 	u32 flags = 0;
12024 
12025 	if (CHIP_REV_IS_FPGA(bp))
12026 		SET_FLAGS(flags, MODE_FPGA);
12027 	else if (CHIP_REV_IS_EMUL(bp))
12028 		SET_FLAGS(flags, MODE_EMUL);
12029 	else
12030 		SET_FLAGS(flags, MODE_ASIC);
12031 
12032 	if (CHIP_MODE_IS_4_PORT(bp))
12033 		SET_FLAGS(flags, MODE_PORT4);
12034 	else
12035 		SET_FLAGS(flags, MODE_PORT2);
12036 
12037 	if (CHIP_IS_E2(bp))
12038 		SET_FLAGS(flags, MODE_E2);
12039 	else if (CHIP_IS_E3(bp)) {
12040 		SET_FLAGS(flags, MODE_E3);
12041 		if (CHIP_REV(bp) == CHIP_REV_Ax)
12042 			SET_FLAGS(flags, MODE_E3_A0);
12043 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12044 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12045 	}
12046 
12047 	if (IS_MF(bp)) {
12048 		SET_FLAGS(flags, MODE_MF);
12049 		switch (bp->mf_mode) {
12050 		case MULTI_FUNCTION_SD:
12051 			SET_FLAGS(flags, MODE_MF_SD);
12052 			break;
12053 		case MULTI_FUNCTION_SI:
12054 			SET_FLAGS(flags, MODE_MF_SI);
12055 			break;
12056 		case MULTI_FUNCTION_AFEX:
12057 			SET_FLAGS(flags, MODE_MF_AFEX);
12058 			break;
12059 		}
12060 	} else
12061 		SET_FLAGS(flags, MODE_SF);
12062 
12063 #if defined(__LITTLE_ENDIAN)
12064 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12065 #else /*(__BIG_ENDIAN)*/
12066 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
12067 #endif
12068 	INIT_MODE_FLAGS(bp) = flags;
12069 }
12070 
12071 static int bnx2x_init_bp(struct bnx2x *bp)
12072 {
12073 	int func;
12074 	int rc;
12075 
12076 	mutex_init(&bp->port.phy_mutex);
12077 	mutex_init(&bp->fw_mb_mutex);
12078 	mutex_init(&bp->drv_info_mutex);
12079 	sema_init(&bp->stats_lock, 1);
12080 	bp->drv_info_mng_owner = false;
12081 
12082 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12083 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12084 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12085 	INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12086 	if (IS_PF(bp)) {
12087 		rc = bnx2x_get_hwinfo(bp);
12088 		if (rc)
12089 			return rc;
12090 	} else {
12091 		eth_zero_addr(bp->dev->dev_addr);
12092 	}
12093 
12094 	bnx2x_set_modes_bitmap(bp);
12095 
12096 	rc = bnx2x_alloc_mem_bp(bp);
12097 	if (rc)
12098 		return rc;
12099 
12100 	bnx2x_read_fwinfo(bp);
12101 
12102 	func = BP_FUNC(bp);
12103 
12104 	/* need to reset chip if undi was active */
12105 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
12106 		/* init fw_seq */
12107 		bp->fw_seq =
12108 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12109 							DRV_MSG_SEQ_NUMBER_MASK;
12110 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12111 
12112 		rc = bnx2x_prev_unload(bp);
12113 		if (rc) {
12114 			bnx2x_free_mem_bp(bp);
12115 			return rc;
12116 		}
12117 	}
12118 
12119 	if (CHIP_REV_IS_FPGA(bp))
12120 		dev_err(&bp->pdev->dev, "FPGA detected\n");
12121 
12122 	if (BP_NOMCP(bp) && (func == 0))
12123 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12124 
12125 	bp->disable_tpa = disable_tpa;
12126 	bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12127 	/* Reduce memory usage in kdump environment by disabling TPA */
12128 	bp->disable_tpa |= is_kdump_kernel();
12129 
12130 	/* Set TPA flags */
12131 	if (bp->disable_tpa) {
12132 		bp->dev->hw_features &= ~NETIF_F_LRO;
12133 		bp->dev->features &= ~NETIF_F_LRO;
12134 	}
12135 
12136 	if (CHIP_IS_E1(bp))
12137 		bp->dropless_fc = 0;
12138 	else
12139 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12140 
12141 	bp->mrrs = mrrs;
12142 
12143 	bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12144 	if (IS_VF(bp))
12145 		bp->rx_ring_size = MAX_RX_AVAIL;
12146 
12147 	/* make sure that the numbers are in the right granularity */
12148 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12149 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12150 
12151 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12152 
12153 	init_timer(&bp->timer);
12154 	bp->timer.expires = jiffies + bp->current_interval;
12155 	bp->timer.data = (unsigned long) bp;
12156 	bp->timer.function = bnx2x_timer;
12157 
12158 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12159 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12160 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12161 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
12162 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12163 		bnx2x_dcbx_init_params(bp);
12164 	} else {
12165 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12166 	}
12167 
12168 	if (CHIP_IS_E1x(bp))
12169 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12170 	else
12171 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
12172 
12173 	/* multiple tx priority */
12174 	if (IS_VF(bp))
12175 		bp->max_cos = 1;
12176 	else if (CHIP_IS_E1x(bp))
12177 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12178 	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12179 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12180 	else if (CHIP_IS_E3B0(bp))
12181 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12182 	else
12183 		BNX2X_ERR("unknown chip %x revision %x\n",
12184 			  CHIP_NUM(bp), CHIP_REV(bp));
12185 	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12186 
12187 	/* We need at least one default status block for slow-path events,
12188 	 * second status block for the L2 queue, and a third status block for
12189 	 * CNIC if supported.
12190 	 */
12191 	if (IS_VF(bp))
12192 		bp->min_msix_vec_cnt = 1;
12193 	else if (CNIC_SUPPORT(bp))
12194 		bp->min_msix_vec_cnt = 3;
12195 	else /* PF w/o cnic */
12196 		bp->min_msix_vec_cnt = 2;
12197 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12198 
12199 	bp->dump_preset_idx = 1;
12200 
12201 	if (CHIP_IS_E3B0(bp))
12202 		bp->flags |= PTP_SUPPORTED;
12203 
12204 	return rc;
12205 }
12206 
12207 /****************************************************************************
12208 * General service functions
12209 ****************************************************************************/
12210 
12211 /*
12212  * net_device service functions
12213  */
12214 
12215 /* called with rtnl_lock */
12216 static int bnx2x_open(struct net_device *dev)
12217 {
12218 	struct bnx2x *bp = netdev_priv(dev);
12219 	int rc;
12220 
12221 	bp->stats_init = true;
12222 
12223 	netif_carrier_off(dev);
12224 
12225 	bnx2x_set_power_state(bp, PCI_D0);
12226 
12227 	/* If parity had happen during the unload, then attentions
12228 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12229 	 * want the first function loaded on the current engine to
12230 	 * complete the recovery.
12231 	 * Parity recovery is only relevant for PF driver.
12232 	 */
12233 	if (IS_PF(bp)) {
12234 		int other_engine = BP_PATH(bp) ? 0 : 1;
12235 		bool other_load_status, load_status;
12236 		bool global = false;
12237 
12238 		other_load_status = bnx2x_get_load_status(bp, other_engine);
12239 		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12240 		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12241 		    bnx2x_chk_parity_attn(bp, &global, true)) {
12242 			do {
12243 				/* If there are attentions and they are in a
12244 				 * global blocks, set the GLOBAL_RESET bit
12245 				 * regardless whether it will be this function
12246 				 * that will complete the recovery or not.
12247 				 */
12248 				if (global)
12249 					bnx2x_set_reset_global(bp);
12250 
12251 				/* Only the first function on the current
12252 				 * engine should try to recover in open. In case
12253 				 * of attentions in global blocks only the first
12254 				 * in the chip should try to recover.
12255 				 */
12256 				if ((!load_status &&
12257 				     (!global || !other_load_status)) &&
12258 				      bnx2x_trylock_leader_lock(bp) &&
12259 				      !bnx2x_leader_reset(bp)) {
12260 					netdev_info(bp->dev,
12261 						    "Recovered in open\n");
12262 					break;
12263 				}
12264 
12265 				/* recovery has failed... */
12266 				bnx2x_set_power_state(bp, PCI_D3hot);
12267 				bp->recovery_state = BNX2X_RECOVERY_FAILED;
12268 
12269 				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12270 					  "If you still see this message after a few retries then power cycle is required.\n");
12271 
12272 				return -EAGAIN;
12273 			} while (0);
12274 		}
12275 	}
12276 
12277 	bp->recovery_state = BNX2X_RECOVERY_DONE;
12278 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
12279 	if (rc)
12280 		return rc;
12281 	return 0;
12282 }
12283 
12284 /* called with rtnl_lock */
12285 static int bnx2x_close(struct net_device *dev)
12286 {
12287 	struct bnx2x *bp = netdev_priv(dev);
12288 
12289 	/* Unload the driver, release IRQs */
12290 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12291 
12292 	return 0;
12293 }
12294 
12295 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12296 				      struct bnx2x_mcast_ramrod_params *p)
12297 {
12298 	int mc_count = netdev_mc_count(bp->dev);
12299 	struct bnx2x_mcast_list_elem *mc_mac =
12300 		kcalloc(mc_count, sizeof(*mc_mac), GFP_ATOMIC);
12301 	struct netdev_hw_addr *ha;
12302 
12303 	if (!mc_mac)
12304 		return -ENOMEM;
12305 
12306 	INIT_LIST_HEAD(&p->mcast_list);
12307 
12308 	netdev_for_each_mc_addr(ha, bp->dev) {
12309 		mc_mac->mac = bnx2x_mc_addr(ha);
12310 		list_add_tail(&mc_mac->link, &p->mcast_list);
12311 		mc_mac++;
12312 	}
12313 
12314 	p->mcast_list_len = mc_count;
12315 
12316 	return 0;
12317 }
12318 
12319 static void bnx2x_free_mcast_macs_list(
12320 	struct bnx2x_mcast_ramrod_params *p)
12321 {
12322 	struct bnx2x_mcast_list_elem *mc_mac =
12323 		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
12324 				 link);
12325 
12326 	WARN_ON(!mc_mac);
12327 	kfree(mc_mac);
12328 }
12329 
12330 /**
12331  * bnx2x_set_uc_list - configure a new unicast MACs list.
12332  *
12333  * @bp: driver handle
12334  *
12335  * We will use zero (0) as a MAC type for these MACs.
12336  */
12337 static int bnx2x_set_uc_list(struct bnx2x *bp)
12338 {
12339 	int rc;
12340 	struct net_device *dev = bp->dev;
12341 	struct netdev_hw_addr *ha;
12342 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12343 	unsigned long ramrod_flags = 0;
12344 
12345 	/* First schedule a cleanup up of old configuration */
12346 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12347 	if (rc < 0) {
12348 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12349 		return rc;
12350 	}
12351 
12352 	netdev_for_each_uc_addr(ha, dev) {
12353 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12354 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
12355 		if (rc == -EEXIST) {
12356 			DP(BNX2X_MSG_SP,
12357 			   "Failed to schedule ADD operations: %d\n", rc);
12358 			/* do not treat adding same MAC as error */
12359 			rc = 0;
12360 
12361 		} else if (rc < 0) {
12362 
12363 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12364 				  rc);
12365 			return rc;
12366 		}
12367 	}
12368 
12369 	/* Execute the pending commands */
12370 	__set_bit(RAMROD_CONT, &ramrod_flags);
12371 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12372 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
12373 }
12374 
12375 static int bnx2x_set_mc_list(struct bnx2x *bp)
12376 {
12377 	struct net_device *dev = bp->dev;
12378 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12379 	int rc = 0;
12380 
12381 	rparam.mcast_obj = &bp->mcast_obj;
12382 
12383 	/* first, clear all configured multicast MACs */
12384 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12385 	if (rc < 0) {
12386 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12387 		return rc;
12388 	}
12389 
12390 	/* then, configure a new MACs list */
12391 	if (netdev_mc_count(dev)) {
12392 		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
12393 		if (rc) {
12394 			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
12395 				  rc);
12396 			return rc;
12397 		}
12398 
12399 		/* Now add the new MACs */
12400 		rc = bnx2x_config_mcast(bp, &rparam,
12401 					BNX2X_MCAST_CMD_ADD);
12402 		if (rc < 0)
12403 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12404 				  rc);
12405 
12406 		bnx2x_free_mcast_macs_list(&rparam);
12407 	}
12408 
12409 	return rc;
12410 }
12411 
12412 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12413 static void bnx2x_set_rx_mode(struct net_device *dev)
12414 {
12415 	struct bnx2x *bp = netdev_priv(dev);
12416 
12417 	if (bp->state != BNX2X_STATE_OPEN) {
12418 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12419 		return;
12420 	} else {
12421 		/* Schedule an SP task to handle rest of change */
12422 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12423 				       NETIF_MSG_IFUP);
12424 	}
12425 }
12426 
12427 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12428 {
12429 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12430 
12431 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12432 
12433 	netif_addr_lock_bh(bp->dev);
12434 
12435 	if (bp->dev->flags & IFF_PROMISC) {
12436 		rx_mode = BNX2X_RX_MODE_PROMISC;
12437 	} else if ((bp->dev->flags & IFF_ALLMULTI) ||
12438 		   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12439 		    CHIP_IS_E1(bp))) {
12440 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
12441 	} else {
12442 		if (IS_PF(bp)) {
12443 			/* some multicasts */
12444 			if (bnx2x_set_mc_list(bp) < 0)
12445 				rx_mode = BNX2X_RX_MODE_ALLMULTI;
12446 
12447 			/* release bh lock, as bnx2x_set_uc_list might sleep */
12448 			netif_addr_unlock_bh(bp->dev);
12449 			if (bnx2x_set_uc_list(bp) < 0)
12450 				rx_mode = BNX2X_RX_MODE_PROMISC;
12451 			netif_addr_lock_bh(bp->dev);
12452 		} else {
12453 			/* configuring mcast to a vf involves sleeping (when we
12454 			 * wait for the pf's response).
12455 			 */
12456 			bnx2x_schedule_sp_rtnl(bp,
12457 					       BNX2X_SP_RTNL_VFPF_MCAST, 0);
12458 		}
12459 	}
12460 
12461 	bp->rx_mode = rx_mode;
12462 	/* handle ISCSI SD mode */
12463 	if (IS_MF_ISCSI_ONLY(bp))
12464 		bp->rx_mode = BNX2X_RX_MODE_NONE;
12465 
12466 	/* Schedule the rx_mode command */
12467 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12468 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12469 		netif_addr_unlock_bh(bp->dev);
12470 		return;
12471 	}
12472 
12473 	if (IS_PF(bp)) {
12474 		bnx2x_set_storm_rx_mode(bp);
12475 		netif_addr_unlock_bh(bp->dev);
12476 	} else {
12477 		/* VF will need to request the PF to make this change, and so
12478 		 * the VF needs to release the bottom-half lock prior to the
12479 		 * request (as it will likely require sleep on the VF side)
12480 		 */
12481 		netif_addr_unlock_bh(bp->dev);
12482 		bnx2x_vfpf_storm_rx_mode(bp);
12483 	}
12484 }
12485 
12486 /* called with rtnl_lock */
12487 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12488 			   int devad, u16 addr)
12489 {
12490 	struct bnx2x *bp = netdev_priv(netdev);
12491 	u16 value;
12492 	int rc;
12493 
12494 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12495 	   prtad, devad, addr);
12496 
12497 	/* The HW expects different devad if CL22 is used */
12498 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12499 
12500 	bnx2x_acquire_phy_lock(bp);
12501 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12502 	bnx2x_release_phy_lock(bp);
12503 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12504 
12505 	if (!rc)
12506 		rc = value;
12507 	return rc;
12508 }
12509 
12510 /* called with rtnl_lock */
12511 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12512 			    u16 addr, u16 value)
12513 {
12514 	struct bnx2x *bp = netdev_priv(netdev);
12515 	int rc;
12516 
12517 	DP(NETIF_MSG_LINK,
12518 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12519 	   prtad, devad, addr, value);
12520 
12521 	/* The HW expects different devad if CL22 is used */
12522 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12523 
12524 	bnx2x_acquire_phy_lock(bp);
12525 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12526 	bnx2x_release_phy_lock(bp);
12527 	return rc;
12528 }
12529 
12530 /* called with rtnl_lock */
12531 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12532 {
12533 	struct bnx2x *bp = netdev_priv(dev);
12534 	struct mii_ioctl_data *mdio = if_mii(ifr);
12535 
12536 	if (!netif_running(dev))
12537 		return -EAGAIN;
12538 
12539 	switch (cmd) {
12540 	case SIOCSHWTSTAMP:
12541 		return bnx2x_hwtstamp_ioctl(bp, ifr);
12542 	default:
12543 		DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12544 		   mdio->phy_id, mdio->reg_num, mdio->val_in);
12545 		return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12546 	}
12547 }
12548 
12549 #ifdef CONFIG_NET_POLL_CONTROLLER
12550 static void poll_bnx2x(struct net_device *dev)
12551 {
12552 	struct bnx2x *bp = netdev_priv(dev);
12553 	int i;
12554 
12555 	for_each_eth_queue(bp, i) {
12556 		struct bnx2x_fastpath *fp = &bp->fp[i];
12557 		napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12558 	}
12559 }
12560 #endif
12561 
12562 static int bnx2x_validate_addr(struct net_device *dev)
12563 {
12564 	struct bnx2x *bp = netdev_priv(dev);
12565 
12566 	/* query the bulletin board for mac address configured by the PF */
12567 	if (IS_VF(bp))
12568 		bnx2x_sample_bulletin(bp);
12569 
12570 	if (!is_valid_ether_addr(dev->dev_addr)) {
12571 		BNX2X_ERR("Non-valid Ethernet address\n");
12572 		return -EADDRNOTAVAIL;
12573 	}
12574 	return 0;
12575 }
12576 
12577 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12578 				  struct netdev_phys_item_id *ppid)
12579 {
12580 	struct bnx2x *bp = netdev_priv(netdev);
12581 
12582 	if (!(bp->flags & HAS_PHYS_PORT_ID))
12583 		return -EOPNOTSUPP;
12584 
12585 	ppid->id_len = sizeof(bp->phys_port_id);
12586 	memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12587 
12588 	return 0;
12589 }
12590 
12591 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12592 					      struct net_device *dev,
12593 					      netdev_features_t features)
12594 {
12595 	features = vlan_features_check(skb, features);
12596 	return vxlan_features_check(skb, features);
12597 }
12598 
12599 static const struct net_device_ops bnx2x_netdev_ops = {
12600 	.ndo_open		= bnx2x_open,
12601 	.ndo_stop		= bnx2x_close,
12602 	.ndo_start_xmit		= bnx2x_start_xmit,
12603 	.ndo_select_queue	= bnx2x_select_queue,
12604 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
12605 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
12606 	.ndo_validate_addr	= bnx2x_validate_addr,
12607 	.ndo_do_ioctl		= bnx2x_ioctl,
12608 	.ndo_change_mtu		= bnx2x_change_mtu,
12609 	.ndo_fix_features	= bnx2x_fix_features,
12610 	.ndo_set_features	= bnx2x_set_features,
12611 	.ndo_tx_timeout		= bnx2x_tx_timeout,
12612 #ifdef CONFIG_NET_POLL_CONTROLLER
12613 	.ndo_poll_controller	= poll_bnx2x,
12614 #endif
12615 	.ndo_setup_tc		= bnx2x_setup_tc,
12616 #ifdef CONFIG_BNX2X_SRIOV
12617 	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
12618 	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
12619 	.ndo_get_vf_config	= bnx2x_get_vf_config,
12620 #endif
12621 #ifdef NETDEV_FCOE_WWNN
12622 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
12623 #endif
12624 
12625 #ifdef CONFIG_NET_RX_BUSY_POLL
12626 	.ndo_busy_poll		= bnx2x_low_latency_recv,
12627 #endif
12628 	.ndo_get_phys_port_id	= bnx2x_get_phys_port_id,
12629 	.ndo_set_vf_link_state	= bnx2x_set_vf_link_state,
12630 	.ndo_features_check	= bnx2x_features_check,
12631 };
12632 
12633 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12634 {
12635 	struct device *dev = &bp->pdev->dev;
12636 
12637 	if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
12638 	    dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
12639 		dev_err(dev, "System does not support DMA, aborting\n");
12640 		return -EIO;
12641 	}
12642 
12643 	return 0;
12644 }
12645 
12646 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
12647 {
12648 	if (bp->flags & AER_ENABLED) {
12649 		pci_disable_pcie_error_reporting(bp->pdev);
12650 		bp->flags &= ~AER_ENABLED;
12651 	}
12652 }
12653 
12654 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12655 			  struct net_device *dev, unsigned long board_type)
12656 {
12657 	int rc;
12658 	u32 pci_cfg_dword;
12659 	bool chip_is_e1x = (board_type == BCM57710 ||
12660 			    board_type == BCM57711 ||
12661 			    board_type == BCM57711E);
12662 
12663 	SET_NETDEV_DEV(dev, &pdev->dev);
12664 
12665 	bp->dev = dev;
12666 	bp->pdev = pdev;
12667 
12668 	rc = pci_enable_device(pdev);
12669 	if (rc) {
12670 		dev_err(&bp->pdev->dev,
12671 			"Cannot enable PCI device, aborting\n");
12672 		goto err_out;
12673 	}
12674 
12675 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12676 		dev_err(&bp->pdev->dev,
12677 			"Cannot find PCI device base address, aborting\n");
12678 		rc = -ENODEV;
12679 		goto err_out_disable;
12680 	}
12681 
12682 	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12683 		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12684 		rc = -ENODEV;
12685 		goto err_out_disable;
12686 	}
12687 
12688 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12689 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12690 	    PCICFG_REVESION_ID_ERROR_VAL) {
12691 		pr_err("PCI device error, probably due to fan failure, aborting\n");
12692 		rc = -ENODEV;
12693 		goto err_out_disable;
12694 	}
12695 
12696 	if (atomic_read(&pdev->enable_cnt) == 1) {
12697 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12698 		if (rc) {
12699 			dev_err(&bp->pdev->dev,
12700 				"Cannot obtain PCI resources, aborting\n");
12701 			goto err_out_disable;
12702 		}
12703 
12704 		pci_set_master(pdev);
12705 		pci_save_state(pdev);
12706 	}
12707 
12708 	if (IS_PF(bp)) {
12709 		if (!pdev->pm_cap) {
12710 			dev_err(&bp->pdev->dev,
12711 				"Cannot find power management capability, aborting\n");
12712 			rc = -EIO;
12713 			goto err_out_release;
12714 		}
12715 	}
12716 
12717 	if (!pci_is_pcie(pdev)) {
12718 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12719 		rc = -EIO;
12720 		goto err_out_release;
12721 	}
12722 
12723 	rc = bnx2x_set_coherency_mask(bp);
12724 	if (rc)
12725 		goto err_out_release;
12726 
12727 	dev->mem_start = pci_resource_start(pdev, 0);
12728 	dev->base_addr = dev->mem_start;
12729 	dev->mem_end = pci_resource_end(pdev, 0);
12730 
12731 	dev->irq = pdev->irq;
12732 
12733 	bp->regview = pci_ioremap_bar(pdev, 0);
12734 	if (!bp->regview) {
12735 		dev_err(&bp->pdev->dev,
12736 			"Cannot map register space, aborting\n");
12737 		rc = -ENOMEM;
12738 		goto err_out_release;
12739 	}
12740 
12741 	/* In E1/E1H use pci device function given by kernel.
12742 	 * In E2/E3 read physical function from ME register since these chips
12743 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
12744 	 * (depending on hypervisor).
12745 	 */
12746 	if (chip_is_e1x) {
12747 		bp->pf_num = PCI_FUNC(pdev->devfn);
12748 	} else {
12749 		/* chip is E2/3*/
12750 		pci_read_config_dword(bp->pdev,
12751 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
12752 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12753 				  ME_REG_ABS_PF_NUM_SHIFT);
12754 	}
12755 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12756 
12757 	/* clean indirect addresses */
12758 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12759 			       PCICFG_VENDOR_ID_OFFSET);
12760 
12761 	/* Set PCIe reset type to fundamental for EEH recovery */
12762 	pdev->needs_freset = 1;
12763 
12764 	/* AER (Advanced Error reporting) configuration */
12765 	rc = pci_enable_pcie_error_reporting(pdev);
12766 	if (!rc)
12767 		bp->flags |= AER_ENABLED;
12768 	else
12769 		BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
12770 
12771 	/*
12772 	 * Clean the following indirect addresses for all functions since it
12773 	 * is not used by the driver.
12774 	 */
12775 	if (IS_PF(bp)) {
12776 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12777 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12778 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12779 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12780 
12781 		if (chip_is_e1x) {
12782 			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12783 			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12784 			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12785 			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12786 		}
12787 
12788 		/* Enable internal target-read (in case we are probed after PF
12789 		 * FLR). Must be done prior to any BAR read access. Only for
12790 		 * 57712 and up
12791 		 */
12792 		if (!chip_is_e1x)
12793 			REG_WR(bp,
12794 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12795 	}
12796 
12797 	dev->watchdog_timeo = TX_TIMEOUT;
12798 
12799 	dev->netdev_ops = &bnx2x_netdev_ops;
12800 	bnx2x_set_ethtool_ops(bp, dev);
12801 
12802 	dev->priv_flags |= IFF_UNICAST_FLT;
12803 
12804 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12805 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12806 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12807 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12808 	if (!chip_is_e1x) {
12809 		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
12810 				    NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
12811 		dev->hw_enc_features =
12812 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12813 			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12814 			NETIF_F_GSO_IPIP |
12815 			NETIF_F_GSO_SIT |
12816 			NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12817 	}
12818 
12819 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12820 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12821 
12822 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12823 	dev->features |= NETIF_F_HIGHDMA;
12824 
12825 	/* Add Loopback capability to the device */
12826 	dev->hw_features |= NETIF_F_LOOPBACK;
12827 
12828 #ifdef BCM_DCBNL
12829 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12830 #endif
12831 
12832 	/* get_port_hwinfo() will set prtad and mmds properly */
12833 	bp->mdio.prtad = MDIO_PRTAD_NONE;
12834 	bp->mdio.mmds = 0;
12835 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12836 	bp->mdio.dev = dev;
12837 	bp->mdio.mdio_read = bnx2x_mdio_read;
12838 	bp->mdio.mdio_write = bnx2x_mdio_write;
12839 
12840 	return 0;
12841 
12842 err_out_release:
12843 	if (atomic_read(&pdev->enable_cnt) == 1)
12844 		pci_release_regions(pdev);
12845 
12846 err_out_disable:
12847 	pci_disable_device(pdev);
12848 
12849 err_out:
12850 	return rc;
12851 }
12852 
12853 static int bnx2x_check_firmware(struct bnx2x *bp)
12854 {
12855 	const struct firmware *firmware = bp->firmware;
12856 	struct bnx2x_fw_file_hdr *fw_hdr;
12857 	struct bnx2x_fw_file_section *sections;
12858 	u32 offset, len, num_ops;
12859 	__be16 *ops_offsets;
12860 	int i;
12861 	const u8 *fw_ver;
12862 
12863 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12864 		BNX2X_ERR("Wrong FW size\n");
12865 		return -EINVAL;
12866 	}
12867 
12868 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12869 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
12870 
12871 	/* Make sure none of the offsets and sizes make us read beyond
12872 	 * the end of the firmware data */
12873 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12874 		offset = be32_to_cpu(sections[i].offset);
12875 		len = be32_to_cpu(sections[i].len);
12876 		if (offset + len > firmware->size) {
12877 			BNX2X_ERR("Section %d length is out of bounds\n", i);
12878 			return -EINVAL;
12879 		}
12880 	}
12881 
12882 	/* Likewise for the init_ops offsets */
12883 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12884 	ops_offsets = (__force __be16 *)(firmware->data + offset);
12885 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12886 
12887 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12888 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12889 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
12890 			return -EINVAL;
12891 		}
12892 	}
12893 
12894 	/* Check FW version */
12895 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
12896 	fw_ver = firmware->data + offset;
12897 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12898 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12899 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12900 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12901 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12902 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12903 		       BCM_5710_FW_MAJOR_VERSION,
12904 		       BCM_5710_FW_MINOR_VERSION,
12905 		       BCM_5710_FW_REVISION_VERSION,
12906 		       BCM_5710_FW_ENGINEERING_VERSION);
12907 		return -EINVAL;
12908 	}
12909 
12910 	return 0;
12911 }
12912 
12913 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12914 {
12915 	const __be32 *source = (const __be32 *)_source;
12916 	u32 *target = (u32 *)_target;
12917 	u32 i;
12918 
12919 	for (i = 0; i < n/4; i++)
12920 		target[i] = be32_to_cpu(source[i]);
12921 }
12922 
12923 /*
12924    Ops array is stored in the following format:
12925    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12926  */
12927 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12928 {
12929 	const __be32 *source = (const __be32 *)_source;
12930 	struct raw_op *target = (struct raw_op *)_target;
12931 	u32 i, j, tmp;
12932 
12933 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
12934 		tmp = be32_to_cpu(source[j]);
12935 		target[i].op = (tmp >> 24) & 0xff;
12936 		target[i].offset = tmp & 0xffffff;
12937 		target[i].raw_data = be32_to_cpu(source[j + 1]);
12938 	}
12939 }
12940 
12941 /* IRO array is stored in the following format:
12942  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12943  */
12944 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12945 {
12946 	const __be32 *source = (const __be32 *)_source;
12947 	struct iro *target = (struct iro *)_target;
12948 	u32 i, j, tmp;
12949 
12950 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12951 		target[i].base = be32_to_cpu(source[j]);
12952 		j++;
12953 		tmp = be32_to_cpu(source[j]);
12954 		target[i].m1 = (tmp >> 16) & 0xffff;
12955 		target[i].m2 = tmp & 0xffff;
12956 		j++;
12957 		tmp = be32_to_cpu(source[j]);
12958 		target[i].m3 = (tmp >> 16) & 0xffff;
12959 		target[i].size = tmp & 0xffff;
12960 		j++;
12961 	}
12962 }
12963 
12964 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12965 {
12966 	const __be16 *source = (const __be16 *)_source;
12967 	u16 *target = (u16 *)_target;
12968 	u32 i;
12969 
12970 	for (i = 0; i < n/2; i++)
12971 		target[i] = be16_to_cpu(source[i]);
12972 }
12973 
12974 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
12975 do {									\
12976 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
12977 	bp->arr = kmalloc(len, GFP_KERNEL);				\
12978 	if (!bp->arr)							\
12979 		goto lbl;						\
12980 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
12981 	     (u8 *)bp->arr, len);					\
12982 } while (0)
12983 
12984 static int bnx2x_init_firmware(struct bnx2x *bp)
12985 {
12986 	const char *fw_file_name;
12987 	struct bnx2x_fw_file_hdr *fw_hdr;
12988 	int rc;
12989 
12990 	if (bp->firmware)
12991 		return 0;
12992 
12993 	if (CHIP_IS_E1(bp))
12994 		fw_file_name = FW_FILE_NAME_E1;
12995 	else if (CHIP_IS_E1H(bp))
12996 		fw_file_name = FW_FILE_NAME_E1H;
12997 	else if (!CHIP_IS_E1x(bp))
12998 		fw_file_name = FW_FILE_NAME_E2;
12999 	else {
13000 		BNX2X_ERR("Unsupported chip revision\n");
13001 		return -EINVAL;
13002 	}
13003 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13004 
13005 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13006 	if (rc) {
13007 		BNX2X_ERR("Can't load firmware file %s\n",
13008 			  fw_file_name);
13009 		goto request_firmware_exit;
13010 	}
13011 
13012 	rc = bnx2x_check_firmware(bp);
13013 	if (rc) {
13014 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13015 		goto request_firmware_exit;
13016 	}
13017 
13018 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13019 
13020 	/* Initialize the pointers to the init arrays */
13021 	/* Blob */
13022 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13023 
13024 	/* Opcodes */
13025 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13026 
13027 	/* Offsets */
13028 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13029 			    be16_to_cpu_n);
13030 
13031 	/* STORMs firmware */
13032 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13033 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13034 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13035 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13036 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13037 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13038 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13039 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
13040 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13041 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13042 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13043 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13044 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13045 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13046 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13047 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
13048 	/* IRO */
13049 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13050 
13051 	return 0;
13052 
13053 iro_alloc_err:
13054 	kfree(bp->init_ops_offsets);
13055 init_offsets_alloc_err:
13056 	kfree(bp->init_ops);
13057 init_ops_alloc_err:
13058 	kfree(bp->init_data);
13059 request_firmware_exit:
13060 	release_firmware(bp->firmware);
13061 	bp->firmware = NULL;
13062 
13063 	return rc;
13064 }
13065 
13066 static void bnx2x_release_firmware(struct bnx2x *bp)
13067 {
13068 	kfree(bp->init_ops_offsets);
13069 	kfree(bp->init_ops);
13070 	kfree(bp->init_data);
13071 	release_firmware(bp->firmware);
13072 	bp->firmware = NULL;
13073 }
13074 
13075 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13076 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13077 	.init_hw_cmn      = bnx2x_init_hw_common,
13078 	.init_hw_port     = bnx2x_init_hw_port,
13079 	.init_hw_func     = bnx2x_init_hw_func,
13080 
13081 	.reset_hw_cmn     = bnx2x_reset_common,
13082 	.reset_hw_port    = bnx2x_reset_port,
13083 	.reset_hw_func    = bnx2x_reset_func,
13084 
13085 	.gunzip_init      = bnx2x_gunzip_init,
13086 	.gunzip_end       = bnx2x_gunzip_end,
13087 
13088 	.init_fw          = bnx2x_init_firmware,
13089 	.release_fw       = bnx2x_release_firmware,
13090 };
13091 
13092 void bnx2x__init_func_obj(struct bnx2x *bp)
13093 {
13094 	/* Prepare DMAE related driver resources */
13095 	bnx2x_setup_dmae(bp);
13096 
13097 	bnx2x_init_func_obj(bp, &bp->func_obj,
13098 			    bnx2x_sp(bp, func_rdata),
13099 			    bnx2x_sp_mapping(bp, func_rdata),
13100 			    bnx2x_sp(bp, func_afex_rdata),
13101 			    bnx2x_sp_mapping(bp, func_afex_rdata),
13102 			    &bnx2x_func_sp_drv);
13103 }
13104 
13105 /* must be called after sriov-enable */
13106 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13107 {
13108 	int cid_count = BNX2X_L2_MAX_CID(bp);
13109 
13110 	if (IS_SRIOV(bp))
13111 		cid_count += BNX2X_VF_CIDS;
13112 
13113 	if (CNIC_SUPPORT(bp))
13114 		cid_count += CNIC_CID_MAX;
13115 
13116 	return roundup(cid_count, QM_CID_ROUND);
13117 }
13118 
13119 /**
13120  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13121  *
13122  * @dev:	pci device
13123  *
13124  */
13125 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13126 {
13127 	int index;
13128 	u16 control = 0;
13129 
13130 	/*
13131 	 * If MSI-X is not supported - return number of SBs needed to support
13132 	 * one fast path queue: one FP queue + SB for CNIC
13133 	 */
13134 	if (!pdev->msix_cap) {
13135 		dev_info(&pdev->dev, "no msix capability found\n");
13136 		return 1 + cnic_cnt;
13137 	}
13138 	dev_info(&pdev->dev, "msix capability found\n");
13139 
13140 	/*
13141 	 * The value in the PCI configuration space is the index of the last
13142 	 * entry, namely one less than the actual size of the table, which is
13143 	 * exactly what we want to return from this function: number of all SBs
13144 	 * without the default SB.
13145 	 * For VFs there is no default SB, then we return (index+1).
13146 	 */
13147 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13148 
13149 	index = control & PCI_MSIX_FLAGS_QSIZE;
13150 
13151 	return index;
13152 }
13153 
13154 static int set_max_cos_est(int chip_id)
13155 {
13156 	switch (chip_id) {
13157 	case BCM57710:
13158 	case BCM57711:
13159 	case BCM57711E:
13160 		return BNX2X_MULTI_TX_COS_E1X;
13161 	case BCM57712:
13162 	case BCM57712_MF:
13163 		return BNX2X_MULTI_TX_COS_E2_E3A0;
13164 	case BCM57800:
13165 	case BCM57800_MF:
13166 	case BCM57810:
13167 	case BCM57810_MF:
13168 	case BCM57840_4_10:
13169 	case BCM57840_2_20:
13170 	case BCM57840_O:
13171 	case BCM57840_MFO:
13172 	case BCM57840_MF:
13173 	case BCM57811:
13174 	case BCM57811_MF:
13175 		return BNX2X_MULTI_TX_COS_E3B0;
13176 	case BCM57712_VF:
13177 	case BCM57800_VF:
13178 	case BCM57810_VF:
13179 	case BCM57840_VF:
13180 	case BCM57811_VF:
13181 		return 1;
13182 	default:
13183 		pr_err("Unknown board_type (%d), aborting\n", chip_id);
13184 		return -ENODEV;
13185 	}
13186 }
13187 
13188 static int set_is_vf(int chip_id)
13189 {
13190 	switch (chip_id) {
13191 	case BCM57712_VF:
13192 	case BCM57800_VF:
13193 	case BCM57810_VF:
13194 	case BCM57840_VF:
13195 	case BCM57811_VF:
13196 		return true;
13197 	default:
13198 		return false;
13199 	}
13200 }
13201 
13202 /* nig_tsgen registers relative address */
13203 #define tsgen_ctrl 0x0
13204 #define tsgen_freecount 0x10
13205 #define tsgen_synctime_t0 0x20
13206 #define tsgen_offset_t0 0x28
13207 #define tsgen_drift_t0 0x30
13208 #define tsgen_synctime_t1 0x58
13209 #define tsgen_offset_t1 0x60
13210 #define tsgen_drift_t1 0x68
13211 
13212 /* FW workaround for setting drift */
13213 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13214 					  int best_val, int best_period)
13215 {
13216 	struct bnx2x_func_state_params func_params = {NULL};
13217 	struct bnx2x_func_set_timesync_params *set_timesync_params =
13218 		&func_params.params.set_timesync;
13219 
13220 	/* Prepare parameters for function state transitions */
13221 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13222 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13223 
13224 	func_params.f_obj = &bp->func_obj;
13225 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13226 
13227 	/* Function parameters */
13228 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13229 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13230 	set_timesync_params->add_sub_drift_adjust_value =
13231 		drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13232 	set_timesync_params->drift_adjust_value = best_val;
13233 	set_timesync_params->drift_adjust_period = best_period;
13234 
13235 	return bnx2x_func_state_change(bp, &func_params);
13236 }
13237 
13238 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13239 {
13240 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13241 	int rc;
13242 	int drift_dir = 1;
13243 	int val, period, period1, period2, dif, dif1, dif2;
13244 	int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13245 
13246 	DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13247 
13248 	if (!netif_running(bp->dev)) {
13249 		DP(BNX2X_MSG_PTP,
13250 		   "PTP adjfreq called while the interface is down\n");
13251 		return -EFAULT;
13252 	}
13253 
13254 	if (ppb < 0) {
13255 		ppb = -ppb;
13256 		drift_dir = 0;
13257 	}
13258 
13259 	if (ppb == 0) {
13260 		best_val = 1;
13261 		best_period = 0x1FFFFFF;
13262 	} else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13263 		best_val = 31;
13264 		best_period = 1;
13265 	} else {
13266 		/* Changed not to allow val = 8, 16, 24 as these values
13267 		 * are not supported in workaround.
13268 		 */
13269 		for (val = 0; val <= 31; val++) {
13270 			if ((val & 0x7) == 0)
13271 				continue;
13272 			period1 = val * 1000000 / ppb;
13273 			period2 = period1 + 1;
13274 			if (period1 != 0)
13275 				dif1 = ppb - (val * 1000000 / period1);
13276 			else
13277 				dif1 = BNX2X_MAX_PHC_DRIFT;
13278 			if (dif1 < 0)
13279 				dif1 = -dif1;
13280 			dif2 = ppb - (val * 1000000 / period2);
13281 			if (dif2 < 0)
13282 				dif2 = -dif2;
13283 			dif = (dif1 < dif2) ? dif1 : dif2;
13284 			period = (dif1 < dif2) ? period1 : period2;
13285 			if (dif < best_dif) {
13286 				best_dif = dif;
13287 				best_val = val;
13288 				best_period = period;
13289 			}
13290 		}
13291 	}
13292 
13293 	rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13294 					    best_period);
13295 	if (rc) {
13296 		BNX2X_ERR("Failed to set drift\n");
13297 		return -EFAULT;
13298 	}
13299 
13300 	DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13301 	   best_period);
13302 
13303 	return 0;
13304 }
13305 
13306 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13307 {
13308 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13309 
13310 	DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13311 
13312 	timecounter_adjtime(&bp->timecounter, delta);
13313 
13314 	return 0;
13315 }
13316 
13317 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13318 {
13319 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13320 	u64 ns;
13321 
13322 	ns = timecounter_read(&bp->timecounter);
13323 
13324 	DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13325 
13326 	*ts = ns_to_timespec64(ns);
13327 
13328 	return 0;
13329 }
13330 
13331 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13332 			     const struct timespec64 *ts)
13333 {
13334 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13335 	u64 ns;
13336 
13337 	ns = timespec64_to_ns(ts);
13338 
13339 	DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13340 
13341 	/* Re-init the timecounter */
13342 	timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13343 
13344 	return 0;
13345 }
13346 
13347 /* Enable (or disable) ancillary features of the phc subsystem */
13348 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13349 			    struct ptp_clock_request *rq, int on)
13350 {
13351 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13352 
13353 	BNX2X_ERR("PHC ancillary features are not supported\n");
13354 	return -ENOTSUPP;
13355 }
13356 
13357 static void bnx2x_register_phc(struct bnx2x *bp)
13358 {
13359 	/* Fill the ptp_clock_info struct and register PTP clock*/
13360 	bp->ptp_clock_info.owner = THIS_MODULE;
13361 	snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13362 	bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13363 	bp->ptp_clock_info.n_alarm = 0;
13364 	bp->ptp_clock_info.n_ext_ts = 0;
13365 	bp->ptp_clock_info.n_per_out = 0;
13366 	bp->ptp_clock_info.pps = 0;
13367 	bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13368 	bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13369 	bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13370 	bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13371 	bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13372 
13373 	bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13374 	if (IS_ERR(bp->ptp_clock)) {
13375 		bp->ptp_clock = NULL;
13376 		BNX2X_ERR("PTP clock registeration failed\n");
13377 	}
13378 }
13379 
13380 static int bnx2x_init_one(struct pci_dev *pdev,
13381 				    const struct pci_device_id *ent)
13382 {
13383 	struct net_device *dev = NULL;
13384 	struct bnx2x *bp;
13385 	enum pcie_link_width pcie_width;
13386 	enum pci_bus_speed pcie_speed;
13387 	int rc, max_non_def_sbs;
13388 	int rx_count, tx_count, rss_count, doorbell_size;
13389 	int max_cos_est;
13390 	bool is_vf;
13391 	int cnic_cnt;
13392 
13393 	/* Management FW 'remembers' living interfaces. Allow it some time
13394 	 * to forget previously living interfaces, allowing a proper re-load.
13395 	 */
13396 	if (is_kdump_kernel()) {
13397 		ktime_t now = ktime_get_boottime();
13398 		ktime_t fw_ready_time = ktime_set(5, 0);
13399 
13400 		if (ktime_before(now, fw_ready_time))
13401 			msleep(ktime_ms_delta(fw_ready_time, now));
13402 	}
13403 
13404 	/* An estimated maximum supported CoS number according to the chip
13405 	 * version.
13406 	 * We will try to roughly estimate the maximum number of CoSes this chip
13407 	 * may support in order to minimize the memory allocated for Tx
13408 	 * netdev_queue's. This number will be accurately calculated during the
13409 	 * initialization of bp->max_cos based on the chip versions AND chip
13410 	 * revision in the bnx2x_init_bp().
13411 	 */
13412 	max_cos_est = set_max_cos_est(ent->driver_data);
13413 	if (max_cos_est < 0)
13414 		return max_cos_est;
13415 	is_vf = set_is_vf(ent->driver_data);
13416 	cnic_cnt = is_vf ? 0 : 1;
13417 
13418 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13419 
13420 	/* add another SB for VF as it has no default SB */
13421 	max_non_def_sbs += is_vf ? 1 : 0;
13422 
13423 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
13424 	rss_count = max_non_def_sbs - cnic_cnt;
13425 
13426 	if (rss_count < 1)
13427 		return -EINVAL;
13428 
13429 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13430 	rx_count = rss_count + cnic_cnt;
13431 
13432 	/* Maximum number of netdev Tx queues:
13433 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13434 	 */
13435 	tx_count = rss_count * max_cos_est + cnic_cnt;
13436 
13437 	/* dev zeroed in init_etherdev */
13438 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13439 	if (!dev)
13440 		return -ENOMEM;
13441 
13442 	bp = netdev_priv(dev);
13443 
13444 	bp->flags = 0;
13445 	if (is_vf)
13446 		bp->flags |= IS_VF_FLAG;
13447 
13448 	bp->igu_sb_cnt = max_non_def_sbs;
13449 	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13450 	bp->msg_enable = debug;
13451 	bp->cnic_support = cnic_cnt;
13452 	bp->cnic_probe = bnx2x_cnic_probe;
13453 
13454 	pci_set_drvdata(pdev, dev);
13455 
13456 	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13457 	if (rc < 0) {
13458 		free_netdev(dev);
13459 		return rc;
13460 	}
13461 
13462 	BNX2X_DEV_INFO("This is a %s function\n",
13463 		       IS_PF(bp) ? "physical" : "virtual");
13464 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13465 	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13466 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13467 		       tx_count, rx_count);
13468 
13469 	rc = bnx2x_init_bp(bp);
13470 	if (rc)
13471 		goto init_one_exit;
13472 
13473 	/* Map doorbells here as we need the real value of bp->max_cos which
13474 	 * is initialized in bnx2x_init_bp() to determine the number of
13475 	 * l2 connections.
13476 	 */
13477 	if (IS_VF(bp)) {
13478 		bp->doorbells = bnx2x_vf_doorbells(bp);
13479 		rc = bnx2x_vf_pci_alloc(bp);
13480 		if (rc)
13481 			goto init_one_exit;
13482 	} else {
13483 		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13484 		if (doorbell_size > pci_resource_len(pdev, 2)) {
13485 			dev_err(&bp->pdev->dev,
13486 				"Cannot map doorbells, bar size too small, aborting\n");
13487 			rc = -ENOMEM;
13488 			goto init_one_exit;
13489 		}
13490 		bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
13491 						doorbell_size);
13492 	}
13493 	if (!bp->doorbells) {
13494 		dev_err(&bp->pdev->dev,
13495 			"Cannot map doorbell space, aborting\n");
13496 		rc = -ENOMEM;
13497 		goto init_one_exit;
13498 	}
13499 
13500 	if (IS_VF(bp)) {
13501 		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13502 		if (rc)
13503 			goto init_one_exit;
13504 	}
13505 
13506 	/* Enable SRIOV if capability found in configuration space */
13507 	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13508 	if (rc)
13509 		goto init_one_exit;
13510 
13511 	/* calc qm_cid_count */
13512 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13513 	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13514 
13515 	/* disable FCOE L2 queue for E1x*/
13516 	if (CHIP_IS_E1x(bp))
13517 		bp->flags |= NO_FCOE_FLAG;
13518 
13519 	/* Set bp->num_queues for MSI-X mode*/
13520 	bnx2x_set_num_queues(bp);
13521 
13522 	/* Configure interrupt mode: try to enable MSI-X/MSI if
13523 	 * needed.
13524 	 */
13525 	rc = bnx2x_set_int_mode(bp);
13526 	if (rc) {
13527 		dev_err(&pdev->dev, "Cannot set interrupts\n");
13528 		goto init_one_exit;
13529 	}
13530 	BNX2X_DEV_INFO("set interrupts successfully\n");
13531 
13532 	/* register the net device */
13533 	rc = register_netdev(dev);
13534 	if (rc) {
13535 		dev_err(&pdev->dev, "Cannot register net device\n");
13536 		goto init_one_exit;
13537 	}
13538 	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13539 
13540 	if (!NO_FCOE(bp)) {
13541 		/* Add storage MAC address */
13542 		rtnl_lock();
13543 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13544 		rtnl_unlock();
13545 	}
13546 	if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
13547 	    pcie_speed == PCI_SPEED_UNKNOWN ||
13548 	    pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
13549 		BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
13550 	else
13551 		BNX2X_DEV_INFO(
13552 		       "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
13553 		       board_info[ent->driver_data].name,
13554 		       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13555 		       pcie_width,
13556 		       pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
13557 		       pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
13558 		       pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
13559 		       "Unknown",
13560 		       dev->base_addr, bp->pdev->irq, dev->dev_addr);
13561 
13562 	bnx2x_register_phc(bp);
13563 
13564 	return 0;
13565 
13566 init_one_exit:
13567 	bnx2x_disable_pcie_error_reporting(bp);
13568 
13569 	if (bp->regview)
13570 		iounmap(bp->regview);
13571 
13572 	if (IS_PF(bp) && bp->doorbells)
13573 		iounmap(bp->doorbells);
13574 
13575 	free_netdev(dev);
13576 
13577 	if (atomic_read(&pdev->enable_cnt) == 1)
13578 		pci_release_regions(pdev);
13579 
13580 	pci_disable_device(pdev);
13581 
13582 	return rc;
13583 }
13584 
13585 static void __bnx2x_remove(struct pci_dev *pdev,
13586 			   struct net_device *dev,
13587 			   struct bnx2x *bp,
13588 			   bool remove_netdev)
13589 {
13590 	if (bp->ptp_clock) {
13591 		ptp_clock_unregister(bp->ptp_clock);
13592 		bp->ptp_clock = NULL;
13593 	}
13594 
13595 	/* Delete storage MAC address */
13596 	if (!NO_FCOE(bp)) {
13597 		rtnl_lock();
13598 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13599 		rtnl_unlock();
13600 	}
13601 
13602 #ifdef BCM_DCBNL
13603 	/* Delete app tlvs from dcbnl */
13604 	bnx2x_dcbnl_update_applist(bp, true);
13605 #endif
13606 
13607 	if (IS_PF(bp) &&
13608 	    !BP_NOMCP(bp) &&
13609 	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
13610 		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
13611 
13612 	/* Close the interface - either directly or implicitly */
13613 	if (remove_netdev) {
13614 		unregister_netdev(dev);
13615 	} else {
13616 		rtnl_lock();
13617 		dev_close(dev);
13618 		rtnl_unlock();
13619 	}
13620 
13621 	bnx2x_iov_remove_one(bp);
13622 
13623 	/* Power on: we can't let PCI layer write to us while we are in D3 */
13624 	if (IS_PF(bp)) {
13625 		bnx2x_set_power_state(bp, PCI_D0);
13626 
13627 		/* Set endianity registers to reset values in case next driver
13628 		 * boots in different endianty environment.
13629 		 */
13630 		bnx2x_reset_endianity(bp);
13631 	}
13632 
13633 	/* Disable MSI/MSI-X */
13634 	bnx2x_disable_msi(bp);
13635 
13636 	/* Power off */
13637 	if (IS_PF(bp))
13638 		bnx2x_set_power_state(bp, PCI_D3hot);
13639 
13640 	/* Make sure RESET task is not scheduled before continuing */
13641 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
13642 
13643 	/* send message via vfpf channel to release the resources of this vf */
13644 	if (IS_VF(bp))
13645 		bnx2x_vfpf_release(bp);
13646 
13647 	/* Assumes no further PCIe PM changes will occur */
13648 	if (system_state == SYSTEM_POWER_OFF) {
13649 		pci_wake_from_d3(pdev, bp->wol);
13650 		pci_set_power_state(pdev, PCI_D3hot);
13651 	}
13652 
13653 	bnx2x_disable_pcie_error_reporting(bp);
13654 	if (remove_netdev) {
13655 		if (bp->regview)
13656 			iounmap(bp->regview);
13657 
13658 		/* For vfs, doorbells are part of the regview and were unmapped
13659 		 * along with it. FW is only loaded by PF.
13660 		 */
13661 		if (IS_PF(bp)) {
13662 			if (bp->doorbells)
13663 				iounmap(bp->doorbells);
13664 
13665 			bnx2x_release_firmware(bp);
13666 		} else {
13667 			bnx2x_vf_pci_dealloc(bp);
13668 		}
13669 		bnx2x_free_mem_bp(bp);
13670 
13671 		free_netdev(dev);
13672 
13673 		if (atomic_read(&pdev->enable_cnt) == 1)
13674 			pci_release_regions(pdev);
13675 
13676 		pci_disable_device(pdev);
13677 	}
13678 }
13679 
13680 static void bnx2x_remove_one(struct pci_dev *pdev)
13681 {
13682 	struct net_device *dev = pci_get_drvdata(pdev);
13683 	struct bnx2x *bp;
13684 
13685 	if (!dev) {
13686 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
13687 		return;
13688 	}
13689 	bp = netdev_priv(dev);
13690 
13691 	__bnx2x_remove(pdev, dev, bp, true);
13692 }
13693 
13694 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
13695 {
13696 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
13697 
13698 	bp->rx_mode = BNX2X_RX_MODE_NONE;
13699 
13700 	if (CNIC_LOADED(bp))
13701 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
13702 
13703 	/* Stop Tx */
13704 	bnx2x_tx_disable(bp);
13705 	/* Delete all NAPI objects */
13706 	bnx2x_del_all_napi(bp);
13707 	if (CNIC_LOADED(bp))
13708 		bnx2x_del_all_napi_cnic(bp);
13709 	netdev_reset_tc(bp->dev);
13710 
13711 	del_timer_sync(&bp->timer);
13712 	cancel_delayed_work_sync(&bp->sp_task);
13713 	cancel_delayed_work_sync(&bp->period_task);
13714 
13715 	if (!down_timeout(&bp->stats_lock, HZ / 10)) {
13716 		bp->stats_state = STATS_STATE_DISABLED;
13717 		up(&bp->stats_lock);
13718 	}
13719 
13720 	bnx2x_save_statistics(bp);
13721 
13722 	netif_carrier_off(bp->dev);
13723 
13724 	return 0;
13725 }
13726 
13727 /**
13728  * bnx2x_io_error_detected - called when PCI error is detected
13729  * @pdev: Pointer to PCI device
13730  * @state: The current pci connection state
13731  *
13732  * This function is called after a PCI bus error affecting
13733  * this device has been detected.
13734  */
13735 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
13736 						pci_channel_state_t state)
13737 {
13738 	struct net_device *dev = pci_get_drvdata(pdev);
13739 	struct bnx2x *bp = netdev_priv(dev);
13740 
13741 	rtnl_lock();
13742 
13743 	BNX2X_ERR("IO error detected\n");
13744 
13745 	netif_device_detach(dev);
13746 
13747 	if (state == pci_channel_io_perm_failure) {
13748 		rtnl_unlock();
13749 		return PCI_ERS_RESULT_DISCONNECT;
13750 	}
13751 
13752 	if (netif_running(dev))
13753 		bnx2x_eeh_nic_unload(bp);
13754 
13755 	bnx2x_prev_path_mark_eeh(bp);
13756 
13757 	pci_disable_device(pdev);
13758 
13759 	rtnl_unlock();
13760 
13761 	/* Request a slot reset */
13762 	return PCI_ERS_RESULT_NEED_RESET;
13763 }
13764 
13765 /**
13766  * bnx2x_io_slot_reset - called after the PCI bus has been reset
13767  * @pdev: Pointer to PCI device
13768  *
13769  * Restart the card from scratch, as if from a cold-boot.
13770  */
13771 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
13772 {
13773 	struct net_device *dev = pci_get_drvdata(pdev);
13774 	struct bnx2x *bp = netdev_priv(dev);
13775 	int i;
13776 
13777 	rtnl_lock();
13778 	BNX2X_ERR("IO slot reset initializing...\n");
13779 	if (pci_enable_device(pdev)) {
13780 		dev_err(&pdev->dev,
13781 			"Cannot re-enable PCI device after reset\n");
13782 		rtnl_unlock();
13783 		return PCI_ERS_RESULT_DISCONNECT;
13784 	}
13785 
13786 	pci_set_master(pdev);
13787 	pci_restore_state(pdev);
13788 	pci_save_state(pdev);
13789 
13790 	if (netif_running(dev))
13791 		bnx2x_set_power_state(bp, PCI_D0);
13792 
13793 	if (netif_running(dev)) {
13794 		BNX2X_ERR("IO slot reset --> driver unload\n");
13795 
13796 		/* MCP should have been reset; Need to wait for validity */
13797 		bnx2x_init_shmem(bp);
13798 
13799 		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13800 			u32 v;
13801 
13802 			v = SHMEM2_RD(bp,
13803 				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13804 			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13805 				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13806 		}
13807 		bnx2x_drain_tx_queues(bp);
13808 		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13809 		bnx2x_netif_stop(bp, 1);
13810 		bnx2x_free_irq(bp);
13811 
13812 		/* Report UNLOAD_DONE to MCP */
13813 		bnx2x_send_unload_done(bp, true);
13814 
13815 		bp->sp_state = 0;
13816 		bp->port.pmf = 0;
13817 
13818 		bnx2x_prev_unload(bp);
13819 
13820 		/* We should have reseted the engine, so It's fair to
13821 		 * assume the FW will no longer write to the bnx2x driver.
13822 		 */
13823 		bnx2x_squeeze_objects(bp);
13824 		bnx2x_free_skbs(bp);
13825 		for_each_rx_queue(bp, i)
13826 			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13827 		bnx2x_free_fp_mem(bp);
13828 		bnx2x_free_mem(bp);
13829 
13830 		bp->state = BNX2X_STATE_CLOSED;
13831 	}
13832 
13833 	rtnl_unlock();
13834 
13835 	/* If AER, perform cleanup of the PCIe registers */
13836 	if (bp->flags & AER_ENABLED) {
13837 		if (pci_cleanup_aer_uncorrect_error_status(pdev))
13838 			BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
13839 		else
13840 			DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
13841 	}
13842 
13843 	return PCI_ERS_RESULT_RECOVERED;
13844 }
13845 
13846 /**
13847  * bnx2x_io_resume - called when traffic can start flowing again
13848  * @pdev: Pointer to PCI device
13849  *
13850  * This callback is called when the error recovery driver tells us that
13851  * its OK to resume normal operation.
13852  */
13853 static void bnx2x_io_resume(struct pci_dev *pdev)
13854 {
13855 	struct net_device *dev = pci_get_drvdata(pdev);
13856 	struct bnx2x *bp = netdev_priv(dev);
13857 
13858 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13859 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13860 		return;
13861 	}
13862 
13863 	rtnl_lock();
13864 
13865 	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13866 							DRV_MSG_SEQ_NUMBER_MASK;
13867 
13868 	if (netif_running(dev))
13869 		bnx2x_nic_load(bp, LOAD_NORMAL);
13870 
13871 	netif_device_attach(dev);
13872 
13873 	rtnl_unlock();
13874 }
13875 
13876 static const struct pci_error_handlers bnx2x_err_handler = {
13877 	.error_detected = bnx2x_io_error_detected,
13878 	.slot_reset     = bnx2x_io_slot_reset,
13879 	.resume         = bnx2x_io_resume,
13880 };
13881 
13882 static void bnx2x_shutdown(struct pci_dev *pdev)
13883 {
13884 	struct net_device *dev = pci_get_drvdata(pdev);
13885 	struct bnx2x *bp;
13886 
13887 	if (!dev)
13888 		return;
13889 
13890 	bp = netdev_priv(dev);
13891 	if (!bp)
13892 		return;
13893 
13894 	rtnl_lock();
13895 	netif_device_detach(dev);
13896 	rtnl_unlock();
13897 
13898 	/* Don't remove the netdevice, as there are scenarios which will cause
13899 	 * the kernel to hang, e.g., when trying to remove bnx2i while the
13900 	 * rootfs is mounted from SAN.
13901 	 */
13902 	__bnx2x_remove(pdev, dev, bp, false);
13903 }
13904 
13905 static struct pci_driver bnx2x_pci_driver = {
13906 	.name        = DRV_MODULE_NAME,
13907 	.id_table    = bnx2x_pci_tbl,
13908 	.probe       = bnx2x_init_one,
13909 	.remove      = bnx2x_remove_one,
13910 	.suspend     = bnx2x_suspend,
13911 	.resume      = bnx2x_resume,
13912 	.err_handler = &bnx2x_err_handler,
13913 #ifdef CONFIG_BNX2X_SRIOV
13914 	.sriov_configure = bnx2x_sriov_configure,
13915 #endif
13916 	.shutdown    = bnx2x_shutdown,
13917 };
13918 
13919 static int __init bnx2x_init(void)
13920 {
13921 	int ret;
13922 
13923 	pr_info("%s", version);
13924 
13925 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
13926 	if (bnx2x_wq == NULL) {
13927 		pr_err("Cannot create workqueue\n");
13928 		return -ENOMEM;
13929 	}
13930 	bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
13931 	if (!bnx2x_iov_wq) {
13932 		pr_err("Cannot create iov workqueue\n");
13933 		destroy_workqueue(bnx2x_wq);
13934 		return -ENOMEM;
13935 	}
13936 
13937 	ret = pci_register_driver(&bnx2x_pci_driver);
13938 	if (ret) {
13939 		pr_err("Cannot register driver\n");
13940 		destroy_workqueue(bnx2x_wq);
13941 		destroy_workqueue(bnx2x_iov_wq);
13942 	}
13943 	return ret;
13944 }
13945 
13946 static void __exit bnx2x_cleanup(void)
13947 {
13948 	struct list_head *pos, *q;
13949 
13950 	pci_unregister_driver(&bnx2x_pci_driver);
13951 
13952 	destroy_workqueue(bnx2x_wq);
13953 	destroy_workqueue(bnx2x_iov_wq);
13954 
13955 	/* Free globally allocated resources */
13956 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
13957 		struct bnx2x_prev_path_list *tmp =
13958 			list_entry(pos, struct bnx2x_prev_path_list, list);
13959 		list_del(pos);
13960 		kfree(tmp);
13961 	}
13962 }
13963 
13964 void bnx2x_notify_link_changed(struct bnx2x *bp)
13965 {
13966 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13967 }
13968 
13969 module_init(bnx2x_init);
13970 module_exit(bnx2x_cleanup);
13971 
13972 /**
13973  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13974  *
13975  * @bp:		driver handle
13976  * @set:	set or clear the CAM entry
13977  *
13978  * This function will wait until the ramrod completion returns.
13979  * Return 0 if success, -ENODEV if ramrod doesn't return.
13980  */
13981 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13982 {
13983 	unsigned long ramrod_flags = 0;
13984 
13985 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13986 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13987 				 &bp->iscsi_l2_mac_obj, true,
13988 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13989 }
13990 
13991 /* count denotes the number of new completions we have seen */
13992 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13993 {
13994 	struct eth_spe *spe;
13995 	int cxt_index, cxt_offset;
13996 
13997 #ifdef BNX2X_STOP_ON_ERROR
13998 	if (unlikely(bp->panic))
13999 		return;
14000 #endif
14001 
14002 	spin_lock_bh(&bp->spq_lock);
14003 	BUG_ON(bp->cnic_spq_pending < count);
14004 	bp->cnic_spq_pending -= count;
14005 
14006 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14007 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14008 				& SPE_HDR_CONN_TYPE) >>
14009 				SPE_HDR_CONN_TYPE_SHIFT;
14010 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14011 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14012 
14013 		/* Set validation for iSCSI L2 client before sending SETUP
14014 		 *  ramrod
14015 		 */
14016 		if (type == ETH_CONNECTION_TYPE) {
14017 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14018 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14019 					ILT_PAGE_CIDS;
14020 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14021 					(cxt_index * ILT_PAGE_CIDS);
14022 				bnx2x_set_ctx_validation(bp,
14023 					&bp->context[cxt_index].
14024 							 vcxt[cxt_offset].eth,
14025 					BNX2X_ISCSI_ETH_CID(bp));
14026 			}
14027 		}
14028 
14029 		/*
14030 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
14031 		 * and in the air. We also check that number of outstanding
14032 		 * COMMON ramrods is not more than the EQ and SPQ can
14033 		 * accommodate.
14034 		 */
14035 		if (type == ETH_CONNECTION_TYPE) {
14036 			if (!atomic_read(&bp->cq_spq_left))
14037 				break;
14038 			else
14039 				atomic_dec(&bp->cq_spq_left);
14040 		} else if (type == NONE_CONNECTION_TYPE) {
14041 			if (!atomic_read(&bp->eq_spq_left))
14042 				break;
14043 			else
14044 				atomic_dec(&bp->eq_spq_left);
14045 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
14046 			   (type == FCOE_CONNECTION_TYPE)) {
14047 			if (bp->cnic_spq_pending >=
14048 			    bp->cnic_eth_dev.max_kwqe_pending)
14049 				break;
14050 			else
14051 				bp->cnic_spq_pending++;
14052 		} else {
14053 			BNX2X_ERR("Unknown SPE type: %d\n", type);
14054 			bnx2x_panic();
14055 			break;
14056 		}
14057 
14058 		spe = bnx2x_sp_get_next(bp);
14059 		*spe = *bp->cnic_kwq_cons;
14060 
14061 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14062 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14063 
14064 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14065 			bp->cnic_kwq_cons = bp->cnic_kwq;
14066 		else
14067 			bp->cnic_kwq_cons++;
14068 	}
14069 	bnx2x_sp_prod_update(bp);
14070 	spin_unlock_bh(&bp->spq_lock);
14071 }
14072 
14073 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14074 			       struct kwqe_16 *kwqes[], u32 count)
14075 {
14076 	struct bnx2x *bp = netdev_priv(dev);
14077 	int i;
14078 
14079 #ifdef BNX2X_STOP_ON_ERROR
14080 	if (unlikely(bp->panic)) {
14081 		BNX2X_ERR("Can't post to SP queue while panic\n");
14082 		return -EIO;
14083 	}
14084 #endif
14085 
14086 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14087 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14088 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
14089 		return -EAGAIN;
14090 	}
14091 
14092 	spin_lock_bh(&bp->spq_lock);
14093 
14094 	for (i = 0; i < count; i++) {
14095 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14096 
14097 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14098 			break;
14099 
14100 		*bp->cnic_kwq_prod = *spe;
14101 
14102 		bp->cnic_kwq_pending++;
14103 
14104 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14105 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
14106 		   spe->data.update_data_addr.hi,
14107 		   spe->data.update_data_addr.lo,
14108 		   bp->cnic_kwq_pending);
14109 
14110 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14111 			bp->cnic_kwq_prod = bp->cnic_kwq;
14112 		else
14113 			bp->cnic_kwq_prod++;
14114 	}
14115 
14116 	spin_unlock_bh(&bp->spq_lock);
14117 
14118 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14119 		bnx2x_cnic_sp_post(bp, 0);
14120 
14121 	return i;
14122 }
14123 
14124 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14125 {
14126 	struct cnic_ops *c_ops;
14127 	int rc = 0;
14128 
14129 	mutex_lock(&bp->cnic_mutex);
14130 	c_ops = rcu_dereference_protected(bp->cnic_ops,
14131 					  lockdep_is_held(&bp->cnic_mutex));
14132 	if (c_ops)
14133 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14134 	mutex_unlock(&bp->cnic_mutex);
14135 
14136 	return rc;
14137 }
14138 
14139 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14140 {
14141 	struct cnic_ops *c_ops;
14142 	int rc = 0;
14143 
14144 	rcu_read_lock();
14145 	c_ops = rcu_dereference(bp->cnic_ops);
14146 	if (c_ops)
14147 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14148 	rcu_read_unlock();
14149 
14150 	return rc;
14151 }
14152 
14153 /*
14154  * for commands that have no data
14155  */
14156 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14157 {
14158 	struct cnic_ctl_info ctl = {0};
14159 
14160 	ctl.cmd = cmd;
14161 
14162 	return bnx2x_cnic_ctl_send(bp, &ctl);
14163 }
14164 
14165 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14166 {
14167 	struct cnic_ctl_info ctl = {0};
14168 
14169 	/* first we tell CNIC and only then we count this as a completion */
14170 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14171 	ctl.data.comp.cid = cid;
14172 	ctl.data.comp.error = err;
14173 
14174 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
14175 	bnx2x_cnic_sp_post(bp, 0);
14176 }
14177 
14178 /* Called with netif_addr_lock_bh() taken.
14179  * Sets an rx_mode config for an iSCSI ETH client.
14180  * Doesn't block.
14181  * Completion should be checked outside.
14182  */
14183 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14184 {
14185 	unsigned long accept_flags = 0, ramrod_flags = 0;
14186 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14187 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14188 
14189 	if (start) {
14190 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
14191 		 * because it's the only way for UIO Queue to accept
14192 		 * multicasts (in non-promiscuous mode only one Queue per
14193 		 * function will receive multicast packets (leading in our
14194 		 * case).
14195 		 */
14196 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14197 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14198 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14199 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14200 
14201 		/* Clear STOP_PENDING bit if START is requested */
14202 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14203 
14204 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14205 	} else
14206 		/* Clear START_PENDING bit if STOP is requested */
14207 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14208 
14209 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14210 		set_bit(sched_state, &bp->sp_state);
14211 	else {
14212 		__set_bit(RAMROD_RX, &ramrod_flags);
14213 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14214 				    ramrod_flags);
14215 	}
14216 }
14217 
14218 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14219 {
14220 	struct bnx2x *bp = netdev_priv(dev);
14221 	int rc = 0;
14222 
14223 	switch (ctl->cmd) {
14224 	case DRV_CTL_CTXTBL_WR_CMD: {
14225 		u32 index = ctl->data.io.offset;
14226 		dma_addr_t addr = ctl->data.io.dma_addr;
14227 
14228 		bnx2x_ilt_wr(bp, index, addr);
14229 		break;
14230 	}
14231 
14232 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14233 		int count = ctl->data.credit.credit_count;
14234 
14235 		bnx2x_cnic_sp_post(bp, count);
14236 		break;
14237 	}
14238 
14239 	/* rtnl_lock is held.  */
14240 	case DRV_CTL_START_L2_CMD: {
14241 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14242 		unsigned long sp_bits = 0;
14243 
14244 		/* Configure the iSCSI classification object */
14245 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14246 				   cp->iscsi_l2_client_id,
14247 				   cp->iscsi_l2_cid, BP_FUNC(bp),
14248 				   bnx2x_sp(bp, mac_rdata),
14249 				   bnx2x_sp_mapping(bp, mac_rdata),
14250 				   BNX2X_FILTER_MAC_PENDING,
14251 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14252 				   &bp->macs_pool);
14253 
14254 		/* Set iSCSI MAC address */
14255 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14256 		if (rc)
14257 			break;
14258 
14259 		mmiowb();
14260 		barrier();
14261 
14262 		/* Start accepting on iSCSI L2 ring */
14263 
14264 		netif_addr_lock_bh(dev);
14265 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
14266 		netif_addr_unlock_bh(dev);
14267 
14268 		/* bits to wait on */
14269 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14270 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14271 
14272 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14273 			BNX2X_ERR("rx_mode completion timed out!\n");
14274 
14275 		break;
14276 	}
14277 
14278 	/* rtnl_lock is held.  */
14279 	case DRV_CTL_STOP_L2_CMD: {
14280 		unsigned long sp_bits = 0;
14281 
14282 		/* Stop accepting on iSCSI L2 ring */
14283 		netif_addr_lock_bh(dev);
14284 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
14285 		netif_addr_unlock_bh(dev);
14286 
14287 		/* bits to wait on */
14288 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14289 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14290 
14291 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14292 			BNX2X_ERR("rx_mode completion timed out!\n");
14293 
14294 		mmiowb();
14295 		barrier();
14296 
14297 		/* Unset iSCSI L2 MAC */
14298 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14299 					BNX2X_ISCSI_ETH_MAC, true);
14300 		break;
14301 	}
14302 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14303 		int count = ctl->data.credit.credit_count;
14304 
14305 		smp_mb__before_atomic();
14306 		atomic_add(count, &bp->cq_spq_left);
14307 		smp_mb__after_atomic();
14308 		break;
14309 	}
14310 	case DRV_CTL_ULP_REGISTER_CMD: {
14311 		int ulp_type = ctl->data.register_data.ulp_type;
14312 
14313 		if (CHIP_IS_E3(bp)) {
14314 			int idx = BP_FW_MB_IDX(bp);
14315 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14316 			int path = BP_PATH(bp);
14317 			int port = BP_PORT(bp);
14318 			int i;
14319 			u32 scratch_offset;
14320 			u32 *host_addr;
14321 
14322 			/* first write capability to shmem2 */
14323 			if (ulp_type == CNIC_ULP_ISCSI)
14324 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14325 			else if (ulp_type == CNIC_ULP_FCOE)
14326 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14327 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14328 
14329 			if ((ulp_type != CNIC_ULP_FCOE) ||
14330 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14331 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14332 				break;
14333 
14334 			/* if reached here - should write fcoe capabilities */
14335 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14336 			if (!scratch_offset)
14337 				break;
14338 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
14339 						   fcoe_features[path][port]);
14340 			host_addr = (u32 *) &(ctl->data.register_data.
14341 					      fcoe_features);
14342 			for (i = 0; i < sizeof(struct fcoe_capabilities);
14343 			     i += 4)
14344 				REG_WR(bp, scratch_offset + i,
14345 				       *(host_addr + i/4));
14346 		}
14347 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14348 		break;
14349 	}
14350 
14351 	case DRV_CTL_ULP_UNREGISTER_CMD: {
14352 		int ulp_type = ctl->data.ulp_type;
14353 
14354 		if (CHIP_IS_E3(bp)) {
14355 			int idx = BP_FW_MB_IDX(bp);
14356 			u32 cap;
14357 
14358 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14359 			if (ulp_type == CNIC_ULP_ISCSI)
14360 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14361 			else if (ulp_type == CNIC_ULP_FCOE)
14362 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14363 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14364 		}
14365 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14366 		break;
14367 	}
14368 
14369 	default:
14370 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
14371 		rc = -EINVAL;
14372 	}
14373 
14374 	return rc;
14375 }
14376 
14377 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14378 {
14379 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14380 
14381 	if (bp->flags & USING_MSIX_FLAG) {
14382 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14383 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14384 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
14385 	} else {
14386 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14387 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14388 	}
14389 	if (!CHIP_IS_E1x(bp))
14390 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14391 	else
14392 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14393 
14394 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14395 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14396 	cp->irq_arr[1].status_blk = bp->def_status_blk;
14397 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14398 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14399 
14400 	cp->num_irq = 2;
14401 }
14402 
14403 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14404 {
14405 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14406 
14407 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14408 			     bnx2x_cid_ilt_lines(bp);
14409 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14410 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14411 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14412 
14413 	DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14414 	   BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14415 	   cp->iscsi_l2_cid);
14416 
14417 	if (NO_ISCSI_OOO(bp))
14418 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14419 }
14420 
14421 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14422 			       void *data)
14423 {
14424 	struct bnx2x *bp = netdev_priv(dev);
14425 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14426 	int rc;
14427 
14428 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14429 
14430 	if (ops == NULL) {
14431 		BNX2X_ERR("NULL ops received\n");
14432 		return -EINVAL;
14433 	}
14434 
14435 	if (!CNIC_SUPPORT(bp)) {
14436 		BNX2X_ERR("Can't register CNIC when not supported\n");
14437 		return -EOPNOTSUPP;
14438 	}
14439 
14440 	if (!CNIC_LOADED(bp)) {
14441 		rc = bnx2x_load_cnic(bp);
14442 		if (rc) {
14443 			BNX2X_ERR("CNIC-related load failed\n");
14444 			return rc;
14445 		}
14446 	}
14447 
14448 	bp->cnic_enabled = true;
14449 
14450 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14451 	if (!bp->cnic_kwq)
14452 		return -ENOMEM;
14453 
14454 	bp->cnic_kwq_cons = bp->cnic_kwq;
14455 	bp->cnic_kwq_prod = bp->cnic_kwq;
14456 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14457 
14458 	bp->cnic_spq_pending = 0;
14459 	bp->cnic_kwq_pending = 0;
14460 
14461 	bp->cnic_data = data;
14462 
14463 	cp->num_irq = 0;
14464 	cp->drv_state |= CNIC_DRV_STATE_REGD;
14465 	cp->iro_arr = bp->iro_arr;
14466 
14467 	bnx2x_setup_cnic_irq_info(bp);
14468 
14469 	rcu_assign_pointer(bp->cnic_ops, ops);
14470 
14471 	/* Schedule driver to read CNIC driver versions */
14472 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14473 
14474 	return 0;
14475 }
14476 
14477 static int bnx2x_unregister_cnic(struct net_device *dev)
14478 {
14479 	struct bnx2x *bp = netdev_priv(dev);
14480 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14481 
14482 	mutex_lock(&bp->cnic_mutex);
14483 	cp->drv_state = 0;
14484 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
14485 	mutex_unlock(&bp->cnic_mutex);
14486 	synchronize_rcu();
14487 	bp->cnic_enabled = false;
14488 	kfree(bp->cnic_kwq);
14489 	bp->cnic_kwq = NULL;
14490 
14491 	return 0;
14492 }
14493 
14494 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
14495 {
14496 	struct bnx2x *bp = netdev_priv(dev);
14497 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14498 
14499 	/* If both iSCSI and FCoE are disabled - return NULL in
14500 	 * order to indicate CNIC that it should not try to work
14501 	 * with this device.
14502 	 */
14503 	if (NO_ISCSI(bp) && NO_FCOE(bp))
14504 		return NULL;
14505 
14506 	cp->drv_owner = THIS_MODULE;
14507 	cp->chip_id = CHIP_ID(bp);
14508 	cp->pdev = bp->pdev;
14509 	cp->io_base = bp->regview;
14510 	cp->io_base2 = bp->doorbells;
14511 	cp->max_kwqe_pending = 8;
14512 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
14513 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14514 			     bnx2x_cid_ilt_lines(bp);
14515 	cp->ctx_tbl_len = CNIC_ILT_LINES;
14516 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14517 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
14518 	cp->drv_ctl = bnx2x_drv_ctl;
14519 	cp->drv_register_cnic = bnx2x_register_cnic;
14520 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
14521 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14522 	cp->iscsi_l2_client_id =
14523 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14524 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14525 
14526 	if (NO_ISCSI_OOO(bp))
14527 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14528 
14529 	if (NO_ISCSI(bp))
14530 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
14531 
14532 	if (NO_FCOE(bp))
14533 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
14534 
14535 	BNX2X_DEV_INFO(
14536 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
14537 	   cp->ctx_blk_size,
14538 	   cp->ctx_tbl_offset,
14539 	   cp->ctx_tbl_len,
14540 	   cp->starting_cid);
14541 	return cp;
14542 }
14543 
14544 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
14545 {
14546 	struct bnx2x *bp = fp->bp;
14547 	u32 offset = BAR_USTRORM_INTMEM;
14548 
14549 	if (IS_VF(bp))
14550 		return bnx2x_vf_ustorm_prods_offset(bp, fp);
14551 	else if (!CHIP_IS_E1x(bp))
14552 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
14553 	else
14554 		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
14555 
14556 	return offset;
14557 }
14558 
14559 /* called only on E1H or E2.
14560  * When pretending to be PF, the pretend value is the function number 0...7
14561  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
14562  * combination
14563  */
14564 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
14565 {
14566 	u32 pretend_reg;
14567 
14568 	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
14569 		return -1;
14570 
14571 	/* get my own pretend register */
14572 	pretend_reg = bnx2x_get_pretend_reg(bp);
14573 	REG_WR(bp, pretend_reg, pretend_func_val);
14574 	REG_RD(bp, pretend_reg);
14575 	return 0;
14576 }
14577 
14578 static void bnx2x_ptp_task(struct work_struct *work)
14579 {
14580 	struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
14581 	int port = BP_PORT(bp);
14582 	u32 val_seq;
14583 	u64 timestamp, ns;
14584 	struct skb_shared_hwtstamps shhwtstamps;
14585 
14586 	/* Read Tx timestamp registers */
14587 	val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
14588 			 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
14589 	if (val_seq & 0x10000) {
14590 		/* There is a valid timestamp value */
14591 		timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
14592 				   NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
14593 		timestamp <<= 32;
14594 		timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
14595 				    NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
14596 		/* Reset timestamp register to allow new timestamp */
14597 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
14598 		       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
14599 		ns = timecounter_cyc2time(&bp->timecounter, timestamp);
14600 
14601 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
14602 		shhwtstamps.hwtstamp = ns_to_ktime(ns);
14603 		skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
14604 		dev_kfree_skb_any(bp->ptp_tx_skb);
14605 		bp->ptp_tx_skb = NULL;
14606 
14607 		DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
14608 		   timestamp, ns);
14609 	} else {
14610 		DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n");
14611 		/* Reschedule to keep checking for a valid timestamp value */
14612 		schedule_work(&bp->ptp_task);
14613 	}
14614 }
14615 
14616 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
14617 {
14618 	int port = BP_PORT(bp);
14619 	u64 timestamp, ns;
14620 
14621 	timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
14622 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
14623 	timestamp <<= 32;
14624 	timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
14625 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
14626 
14627 	/* Reset timestamp register to allow new timestamp */
14628 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
14629 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
14630 
14631 	ns = timecounter_cyc2time(&bp->timecounter, timestamp);
14632 
14633 	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
14634 
14635 	DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
14636 	   timestamp, ns);
14637 }
14638 
14639 /* Read the PHC */
14640 static cycle_t bnx2x_cyclecounter_read(const struct cyclecounter *cc)
14641 {
14642 	struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
14643 	int port = BP_PORT(bp);
14644 	u32 wb_data[2];
14645 	u64 phc_cycles;
14646 
14647 	REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
14648 		    NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
14649 	phc_cycles = wb_data[1];
14650 	phc_cycles = (phc_cycles << 32) + wb_data[0];
14651 
14652 	DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
14653 
14654 	return phc_cycles;
14655 }
14656 
14657 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
14658 {
14659 	memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
14660 	bp->cyclecounter.read = bnx2x_cyclecounter_read;
14661 	bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
14662 	bp->cyclecounter.shift = 1;
14663 	bp->cyclecounter.mult = 1;
14664 }
14665 
14666 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
14667 {
14668 	struct bnx2x_func_state_params func_params = {NULL};
14669 	struct bnx2x_func_set_timesync_params *set_timesync_params =
14670 		&func_params.params.set_timesync;
14671 
14672 	/* Prepare parameters for function state transitions */
14673 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
14674 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
14675 
14676 	func_params.f_obj = &bp->func_obj;
14677 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
14678 
14679 	/* Function parameters */
14680 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
14681 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
14682 
14683 	return bnx2x_func_state_change(bp, &func_params);
14684 }
14685 
14686 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
14687 {
14688 	struct bnx2x_queue_state_params q_params;
14689 	int rc, i;
14690 
14691 	/* send queue update ramrod to enable PTP packets */
14692 	memset(&q_params, 0, sizeof(q_params));
14693 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
14694 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
14695 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
14696 		  &q_params.params.update.update_flags);
14697 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
14698 		  &q_params.params.update.update_flags);
14699 
14700 	/* send the ramrod on all the queues of the PF */
14701 	for_each_eth_queue(bp, i) {
14702 		struct bnx2x_fastpath *fp = &bp->fp[i];
14703 
14704 		/* Set the appropriate Queue object */
14705 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
14706 
14707 		/* Update the Queue state */
14708 		rc = bnx2x_queue_state_change(bp, &q_params);
14709 		if (rc) {
14710 			BNX2X_ERR("Failed to enable PTP packets\n");
14711 			return rc;
14712 		}
14713 	}
14714 
14715 	return 0;
14716 }
14717 
14718 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
14719 {
14720 	int port = BP_PORT(bp);
14721 	int rc;
14722 
14723 	if (!bp->hwtstamp_ioctl_called)
14724 		return 0;
14725 
14726 	switch (bp->tx_type) {
14727 	case HWTSTAMP_TX_ON:
14728 		bp->flags |= TX_TIMESTAMPING_EN;
14729 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
14730 		       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA);
14731 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
14732 		       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE);
14733 		break;
14734 	case HWTSTAMP_TX_ONESTEP_SYNC:
14735 		BNX2X_ERR("One-step timestamping is not supported\n");
14736 		return -ERANGE;
14737 	}
14738 
14739 	switch (bp->rx_filter) {
14740 	case HWTSTAMP_FILTER_NONE:
14741 		break;
14742 	case HWTSTAMP_FILTER_ALL:
14743 	case HWTSTAMP_FILTER_SOME:
14744 		bp->rx_filter = HWTSTAMP_FILTER_NONE;
14745 		break;
14746 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
14747 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
14748 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
14749 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
14750 		/* Initialize PTP detection for UDP/IPv4 events */
14751 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14752 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE);
14753 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14754 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE);
14755 		break;
14756 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
14757 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
14758 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
14759 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
14760 		/* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
14761 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14762 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA);
14763 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14764 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE);
14765 		break;
14766 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
14767 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
14768 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
14769 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
14770 		/* Initialize PTP detection L2 events */
14771 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14772 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF);
14773 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14774 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF);
14775 
14776 		break;
14777 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
14778 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
14779 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
14780 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
14781 		/* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
14782 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14783 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA);
14784 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14785 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE);
14786 		break;
14787 	}
14788 
14789 	/* Indicate to FW that this PF expects recorded PTP packets */
14790 	rc = bnx2x_enable_ptp_packets(bp);
14791 	if (rc)
14792 		return rc;
14793 
14794 	/* Enable sending PTP packets to host */
14795 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
14796 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
14797 
14798 	return 0;
14799 }
14800 
14801 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
14802 {
14803 	struct hwtstamp_config config;
14804 	int rc;
14805 
14806 	DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
14807 
14808 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
14809 		return -EFAULT;
14810 
14811 	DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
14812 	   config.tx_type, config.rx_filter);
14813 
14814 	if (config.flags) {
14815 		BNX2X_ERR("config.flags is reserved for future use\n");
14816 		return -EINVAL;
14817 	}
14818 
14819 	bp->hwtstamp_ioctl_called = 1;
14820 	bp->tx_type = config.tx_type;
14821 	bp->rx_filter = config.rx_filter;
14822 
14823 	rc = bnx2x_configure_ptp_filters(bp);
14824 	if (rc)
14825 		return rc;
14826 
14827 	config.rx_filter = bp->rx_filter;
14828 
14829 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
14830 		-EFAULT : 0;
14831 }
14832 
14833 /* Configures HW for PTP */
14834 static int bnx2x_configure_ptp(struct bnx2x *bp)
14835 {
14836 	int rc, port = BP_PORT(bp);
14837 	u32 wb_data[2];
14838 
14839 	/* Reset PTP event detection rules - will be configured in the IOCTL */
14840 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14841 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
14842 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14843 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
14844 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
14845 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
14846 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
14847 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
14848 
14849 	/* Disable PTP packets to host - will be configured in the IOCTL*/
14850 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
14851 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
14852 
14853 	/* Enable the PTP feature */
14854 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
14855 	       NIG_REG_P0_PTP_EN, 0x3F);
14856 
14857 	/* Enable the free-running counter */
14858 	wb_data[0] = 0;
14859 	wb_data[1] = 0;
14860 	REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
14861 
14862 	/* Reset drift register (offset register is not reset) */
14863 	rc = bnx2x_send_reset_timesync_ramrod(bp);
14864 	if (rc) {
14865 		BNX2X_ERR("Failed to reset PHC drift register\n");
14866 		return -EFAULT;
14867 	}
14868 
14869 	/* Reset possibly old timestamps */
14870 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
14871 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
14872 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
14873 	       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
14874 
14875 	return 0;
14876 }
14877 
14878 /* Called during load, to initialize PTP-related stuff */
14879 void bnx2x_init_ptp(struct bnx2x *bp)
14880 {
14881 	int rc;
14882 
14883 	/* Configure PTP in HW */
14884 	rc = bnx2x_configure_ptp(bp);
14885 	if (rc) {
14886 		BNX2X_ERR("Stopping PTP initialization\n");
14887 		return;
14888 	}
14889 
14890 	/* Init work queue for Tx timestamping */
14891 	INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
14892 
14893 	/* Init cyclecounter and timecounter. This is done only in the first
14894 	 * load. If done in every load, PTP application will fail when doing
14895 	 * unload / load (e.g. MTU change) while it is running.
14896 	 */
14897 	if (!bp->timecounter_init_done) {
14898 		bnx2x_init_cyclecounter(bp);
14899 		timecounter_init(&bp->timecounter, &bp->cyclecounter,
14900 				 ktime_to_ns(ktime_get_real()));
14901 		bp->timecounter_init_done = 1;
14902 	}
14903 
14904 	DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
14905 }
14906