1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2012 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if.h>
43 #include <linux/if_vlan.h>
44 #include <net/ip.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/checksum.h>
48 #include <net/ip6_checksum.h>
49 #include <linux/workqueue.h>
50 #include <linux/crc32.h>
51 #include <linux/crc32c.h>
52 #include <linux/prefetch.h>
53 #include <linux/zlib.h>
54 #include <linux/io.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57 
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_dcb.h"
63 #include "bnx2x_sp.h"
64 
65 #include <linux/firmware.h>
66 #include "bnx2x_fw_file_hdr.h"
67 /* FW files */
68 #define FW_FILE_VERSION					\
69 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
70 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
71 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
72 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
73 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
74 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
76 
77 /* Time in jiffies before concluding the transmitter is hung */
78 #define TX_TIMEOUT		(5*HZ)
79 
80 static char version[] __devinitdata =
81 	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
82 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
83 
84 MODULE_AUTHOR("Eliezer Tamir");
85 MODULE_DESCRIPTION("Broadcom NetXtreme II "
86 		   "BCM57710/57711/57711E/"
87 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
88 		   "57840/57840_MF Driver");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_MODULE_VERSION);
91 MODULE_FIRMWARE(FW_FILE_NAME_E1);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
93 MODULE_FIRMWARE(FW_FILE_NAME_E2);
94 
95 static int multi_mode = 1;
96 module_param(multi_mode, int, 0);
97 MODULE_PARM_DESC(multi_mode, " Multi queue mode "
98 			     "(0 Disable; 1 Enable (default))");
99 
100 int num_queues;
101 module_param(num_queues, int, 0);
102 MODULE_PARM_DESC(num_queues, " Number of queues for multi_mode=1"
103 				" (default is as a number of CPUs)");
104 
105 static int disable_tpa;
106 module_param(disable_tpa, int, 0);
107 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
108 
109 #define INT_MODE_INTx			1
110 #define INT_MODE_MSI			2
111 static int int_mode;
112 module_param(int_mode, int, 0);
113 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
114 				"(1 INT#x; 2 MSI)");
115 
116 static int dropless_fc;
117 module_param(dropless_fc, int, 0);
118 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
119 
120 static int mrrs = -1;
121 module_param(mrrs, int, 0);
122 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
123 
124 static int debug;
125 module_param(debug, int, 0);
126 MODULE_PARM_DESC(debug, " Default debug msglevel");
127 
128 
129 
130 struct workqueue_struct *bnx2x_wq;
131 
132 enum bnx2x_board_type {
133 	BCM57710 = 0,
134 	BCM57711,
135 	BCM57711E,
136 	BCM57712,
137 	BCM57712_MF,
138 	BCM57800,
139 	BCM57800_MF,
140 	BCM57810,
141 	BCM57810_MF,
142 	BCM57840,
143 	BCM57840_MF
144 };
145 
146 /* indexed by board_type, above */
147 static struct {
148 	char *name;
149 } board_info[] __devinitdata = {
150 	{ "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
151 	{ "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
152 	{ "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
153 	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
154 	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
155 	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
156 	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
157 	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
158 	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
159 	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
160 	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit "
161 						"Ethernet Multi Function"}
162 };
163 
164 #ifndef PCI_DEVICE_ID_NX2_57710
165 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
166 #endif
167 #ifndef PCI_DEVICE_ID_NX2_57711
168 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
169 #endif
170 #ifndef PCI_DEVICE_ID_NX2_57711E
171 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
172 #endif
173 #ifndef PCI_DEVICE_ID_NX2_57712
174 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
175 #endif
176 #ifndef PCI_DEVICE_ID_NX2_57712_MF
177 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
178 #endif
179 #ifndef PCI_DEVICE_ID_NX2_57800
180 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
181 #endif
182 #ifndef PCI_DEVICE_ID_NX2_57800_MF
183 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
184 #endif
185 #ifndef PCI_DEVICE_ID_NX2_57810
186 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
187 #endif
188 #ifndef PCI_DEVICE_ID_NX2_57810_MF
189 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
190 #endif
191 #ifndef PCI_DEVICE_ID_NX2_57840
192 #define PCI_DEVICE_ID_NX2_57840		CHIP_NUM_57840
193 #endif
194 #ifndef PCI_DEVICE_ID_NX2_57840_MF
195 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
196 #endif
197 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
198 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
199 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
200 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
201 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
202 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
203 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
204 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
205 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
206 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
207 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840), BCM57840 },
208 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
209 	{ 0 }
210 };
211 
212 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
213 
214 /****************************************************************************
215 * General service functions
216 ****************************************************************************/
217 
218 static inline void __storm_memset_dma_mapping(struct bnx2x *bp,
219 				       u32 addr, dma_addr_t mapping)
220 {
221 	REG_WR(bp,  addr, U64_LO(mapping));
222 	REG_WR(bp,  addr + 4, U64_HI(mapping));
223 }
224 
225 static inline void storm_memset_spq_addr(struct bnx2x *bp,
226 					 dma_addr_t mapping, u16 abs_fid)
227 {
228 	u32 addr = XSEM_REG_FAST_MEMORY +
229 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
230 
231 	__storm_memset_dma_mapping(bp, addr, mapping);
232 }
233 
234 static inline void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
235 					 u16 pf_id)
236 {
237 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
238 		pf_id);
239 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
240 		pf_id);
241 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
242 		pf_id);
243 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
244 		pf_id);
245 }
246 
247 static inline void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
248 					u8 enable)
249 {
250 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
251 		enable);
252 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
253 		enable);
254 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
255 		enable);
256 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
257 		enable);
258 }
259 
260 static inline void storm_memset_eq_data(struct bnx2x *bp,
261 				struct event_ring_data *eq_data,
262 				u16 pfid)
263 {
264 	size_t size = sizeof(struct event_ring_data);
265 
266 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
267 
268 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
269 }
270 
271 static inline void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
272 					u16 pfid)
273 {
274 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
275 	REG_WR16(bp, addr, eq_prod);
276 }
277 
278 /* used only at init
279  * locking is done by mcp
280  */
281 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
282 {
283 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
284 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
285 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
286 			       PCICFG_VENDOR_ID_OFFSET);
287 }
288 
289 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
290 {
291 	u32 val;
292 
293 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
294 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
295 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
296 			       PCICFG_VENDOR_ID_OFFSET);
297 
298 	return val;
299 }
300 
301 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
302 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
303 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
304 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
305 #define DMAE_DP_DST_NONE	"dst_addr [none]"
306 
307 static void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae,
308 			  int msglvl)
309 {
310 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
311 
312 	switch (dmae->opcode & DMAE_COMMAND_DST) {
313 	case DMAE_CMD_DST_PCI:
314 		if (src_type == DMAE_CMD_SRC_PCI)
315 			DP(msglvl, "DMAE: opcode 0x%08x\n"
316 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
317 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
318 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
319 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
320 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
321 			   dmae->comp_val);
322 		else
323 			DP(msglvl, "DMAE: opcode 0x%08x\n"
324 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
325 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
326 			   dmae->opcode, dmae->src_addr_lo >> 2,
327 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
328 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
329 			   dmae->comp_val);
330 		break;
331 	case DMAE_CMD_DST_GRC:
332 		if (src_type == DMAE_CMD_SRC_PCI)
333 			DP(msglvl, "DMAE: opcode 0x%08x\n"
334 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
335 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
336 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
337 			   dmae->len, dmae->dst_addr_lo >> 2,
338 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
339 			   dmae->comp_val);
340 		else
341 			DP(msglvl, "DMAE: opcode 0x%08x\n"
342 			   "src [%08x], len [%d*4], dst [%08x]\n"
343 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
344 			   dmae->opcode, dmae->src_addr_lo >> 2,
345 			   dmae->len, dmae->dst_addr_lo >> 2,
346 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
347 			   dmae->comp_val);
348 		break;
349 	default:
350 		if (src_type == DMAE_CMD_SRC_PCI)
351 			DP(msglvl, "DMAE: opcode 0x%08x\n"
352 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
353 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
354 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
355 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
356 			   dmae->comp_val);
357 		else
358 			DP(msglvl, "DMAE: opcode 0x%08x\n"
359 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
360 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
361 			   dmae->opcode, dmae->src_addr_lo >> 2,
362 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
363 			   dmae->comp_val);
364 		break;
365 	}
366 
367 }
368 
369 /* copy command into DMAE command memory and set DMAE command go */
370 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
371 {
372 	u32 cmd_offset;
373 	int i;
374 
375 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
376 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
377 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
378 	}
379 	REG_WR(bp, dmae_reg_go_c[idx], 1);
380 }
381 
382 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
383 {
384 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
385 			   DMAE_CMD_C_ENABLE);
386 }
387 
388 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
389 {
390 	return opcode & ~DMAE_CMD_SRC_RESET;
391 }
392 
393 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
394 			     bool with_comp, u8 comp_type)
395 {
396 	u32 opcode = 0;
397 
398 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
399 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
400 
401 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
402 
403 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
404 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
405 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
406 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
407 
408 #ifdef __BIG_ENDIAN
409 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
410 #else
411 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
412 #endif
413 	if (with_comp)
414 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
415 	return opcode;
416 }
417 
418 static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
419 				      struct dmae_command *dmae,
420 				      u8 src_type, u8 dst_type)
421 {
422 	memset(dmae, 0, sizeof(struct dmae_command));
423 
424 	/* set the opcode */
425 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
426 					 true, DMAE_COMP_PCI);
427 
428 	/* fill in the completion parameters */
429 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
430 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
431 	dmae->comp_val = DMAE_COMP_VAL;
432 }
433 
434 /* issue a dmae command over the init-channel and wailt for completion */
435 static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
436 				      struct dmae_command *dmae)
437 {
438 	u32 *wb_comp = bnx2x_sp(bp, wb_comp);
439 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
440 	int rc = 0;
441 
442 	/*
443 	 * Lock the dmae channel. Disable BHs to prevent a dead-lock
444 	 * as long as this code is called both from syscall context and
445 	 * from ndo_set_rx_mode() flow that may be called from BH.
446 	 */
447 	spin_lock_bh(&bp->dmae_lock);
448 
449 	/* reset completion */
450 	*wb_comp = 0;
451 
452 	/* post the command on the channel used for initializations */
453 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
454 
455 	/* wait for completion */
456 	udelay(5);
457 	while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
458 
459 		if (!cnt ||
460 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
461 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
462 			BNX2X_ERR("DMAE timeout!\n");
463 			rc = DMAE_TIMEOUT;
464 			goto unlock;
465 		}
466 		cnt--;
467 		udelay(50);
468 	}
469 	if (*wb_comp & DMAE_PCI_ERR_FLAG) {
470 		BNX2X_ERR("DMAE PCI error!\n");
471 		rc = DMAE_PCI_ERROR;
472 	}
473 
474 unlock:
475 	spin_unlock_bh(&bp->dmae_lock);
476 	return rc;
477 }
478 
479 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
480 		      u32 len32)
481 {
482 	struct dmae_command dmae;
483 
484 	if (!bp->dmae_ready) {
485 		u32 *data = bnx2x_sp(bp, wb_data[0]);
486 
487 		if (CHIP_IS_E1(bp))
488 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
489 		else
490 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
491 		return;
492 	}
493 
494 	/* set opcode and fixed command fields */
495 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
496 
497 	/* fill in addresses and len */
498 	dmae.src_addr_lo = U64_LO(dma_addr);
499 	dmae.src_addr_hi = U64_HI(dma_addr);
500 	dmae.dst_addr_lo = dst_addr >> 2;
501 	dmae.dst_addr_hi = 0;
502 	dmae.len = len32;
503 
504 	bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
505 
506 	/* issue the command and wait for completion */
507 	bnx2x_issue_dmae_with_comp(bp, &dmae);
508 }
509 
510 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
511 {
512 	struct dmae_command dmae;
513 
514 	if (!bp->dmae_ready) {
515 		u32 *data = bnx2x_sp(bp, wb_data[0]);
516 		int i;
517 
518 		if (CHIP_IS_E1(bp))
519 			for (i = 0; i < len32; i++)
520 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
521 		else
522 			for (i = 0; i < len32; i++)
523 				data[i] = REG_RD(bp, src_addr + i*4);
524 
525 		return;
526 	}
527 
528 	/* set opcode and fixed command fields */
529 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
530 
531 	/* fill in addresses and len */
532 	dmae.src_addr_lo = src_addr >> 2;
533 	dmae.src_addr_hi = 0;
534 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
535 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
536 	dmae.len = len32;
537 
538 	bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
539 
540 	/* issue the command and wait for completion */
541 	bnx2x_issue_dmae_with_comp(bp, &dmae);
542 }
543 
544 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
545 				      u32 addr, u32 len)
546 {
547 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
548 	int offset = 0;
549 
550 	while (len > dmae_wr_max) {
551 		bnx2x_write_dmae(bp, phys_addr + offset,
552 				 addr + offset, dmae_wr_max);
553 		offset += dmae_wr_max * 4;
554 		len -= dmae_wr_max;
555 	}
556 
557 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
558 }
559 
560 /* used only for slowpath so not inlined */
561 static void bnx2x_wb_wr(struct bnx2x *bp, int reg, u32 val_hi, u32 val_lo)
562 {
563 	u32 wb_write[2];
564 
565 	wb_write[0] = val_hi;
566 	wb_write[1] = val_lo;
567 	REG_WR_DMAE(bp, reg, wb_write, 2);
568 }
569 
570 #ifdef USE_WB_RD
571 static u64 bnx2x_wb_rd(struct bnx2x *bp, int reg)
572 {
573 	u32 wb_data[2];
574 
575 	REG_RD_DMAE(bp, reg, wb_data, 2);
576 
577 	return HILO_U64(wb_data[0], wb_data[1]);
578 }
579 #endif
580 
581 static int bnx2x_mc_assert(struct bnx2x *bp)
582 {
583 	char last_idx;
584 	int i, rc = 0;
585 	u32 row0, row1, row2, row3;
586 
587 	/* XSTORM */
588 	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
589 			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
590 	if (last_idx)
591 		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
592 
593 	/* print the asserts */
594 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
595 
596 		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
597 			      XSTORM_ASSERT_LIST_OFFSET(i));
598 		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
599 			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
600 		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
601 			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
602 		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
603 			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
604 
605 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
606 			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
607 				  i, row3, row2, row1, row0);
608 			rc++;
609 		} else {
610 			break;
611 		}
612 	}
613 
614 	/* TSTORM */
615 	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
616 			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
617 	if (last_idx)
618 		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
619 
620 	/* print the asserts */
621 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
622 
623 		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
624 			      TSTORM_ASSERT_LIST_OFFSET(i));
625 		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
626 			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
627 		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
628 			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
629 		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
630 			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
631 
632 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
633 			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
634 				  i, row3, row2, row1, row0);
635 			rc++;
636 		} else {
637 			break;
638 		}
639 	}
640 
641 	/* CSTORM */
642 	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
643 			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
644 	if (last_idx)
645 		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
646 
647 	/* print the asserts */
648 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
649 
650 		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
651 			      CSTORM_ASSERT_LIST_OFFSET(i));
652 		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
653 			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
654 		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
655 			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
656 		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
657 			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
658 
659 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
660 			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
661 				  i, row3, row2, row1, row0);
662 			rc++;
663 		} else {
664 			break;
665 		}
666 	}
667 
668 	/* USTORM */
669 	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
670 			   USTORM_ASSERT_LIST_INDEX_OFFSET);
671 	if (last_idx)
672 		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
673 
674 	/* print the asserts */
675 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
676 
677 		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
678 			      USTORM_ASSERT_LIST_OFFSET(i));
679 		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
680 			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
681 		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
682 			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
683 		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
684 			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
685 
686 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
687 			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
688 				  i, row3, row2, row1, row0);
689 			rc++;
690 		} else {
691 			break;
692 		}
693 	}
694 
695 	return rc;
696 }
697 
698 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
699 {
700 	u32 addr, val;
701 	u32 mark, offset;
702 	__be32 data[9];
703 	int word;
704 	u32 trace_shmem_base;
705 	if (BP_NOMCP(bp)) {
706 		BNX2X_ERR("NO MCP - can not dump\n");
707 		return;
708 	}
709 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
710 		(bp->common.bc_ver & 0xff0000) >> 16,
711 		(bp->common.bc_ver & 0xff00) >> 8,
712 		(bp->common.bc_ver & 0xff));
713 
714 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
715 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
716 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
717 
718 	if (BP_PATH(bp) == 0)
719 		trace_shmem_base = bp->common.shmem_base;
720 	else
721 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
722 	addr = trace_shmem_base - 0x800;
723 
724 	/* validate TRCB signature */
725 	mark = REG_RD(bp, addr);
726 	if (mark != MFW_TRACE_SIGNATURE) {
727 		BNX2X_ERR("Trace buffer signature is missing.");
728 		return ;
729 	}
730 
731 	/* read cyclic buffer pointer */
732 	addr += 4;
733 	mark = REG_RD(bp, addr);
734 	mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
735 			+ ((mark + 0x3) & ~0x3) - 0x08000000;
736 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
737 
738 	printk("%s", lvl);
739 	for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
740 		for (word = 0; word < 8; word++)
741 			data[word] = htonl(REG_RD(bp, offset + 4*word));
742 		data[8] = 0x0;
743 		pr_cont("%s", (char *)data);
744 	}
745 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
746 		for (word = 0; word < 8; word++)
747 			data[word] = htonl(REG_RD(bp, offset + 4*word));
748 		data[8] = 0x0;
749 		pr_cont("%s", (char *)data);
750 	}
751 	printk("%s" "end of fw dump\n", lvl);
752 }
753 
754 static inline void bnx2x_fw_dump(struct bnx2x *bp)
755 {
756 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
757 }
758 
759 void bnx2x_panic_dump(struct bnx2x *bp)
760 {
761 	int i;
762 	u16 j;
763 	struct hc_sp_status_block_data sp_sb_data;
764 	int func = BP_FUNC(bp);
765 #ifdef BNX2X_STOP_ON_ERROR
766 	u16 start = 0, end = 0;
767 	u8 cos;
768 #endif
769 
770 	bp->stats_state = STATS_STATE_DISABLED;
771 	bp->eth_stats.unrecoverable_error++;
772 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
773 
774 	BNX2X_ERR("begin crash dump -----------------\n");
775 
776 	/* Indices */
777 	/* Common */
778 	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
779 		  bp->def_idx, bp->def_att_idx, bp->attn_state,
780 		  bp->spq_prod_idx, bp->stats_counter);
781 	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
782 		  bp->def_status_blk->atten_status_block.attn_bits,
783 		  bp->def_status_blk->atten_status_block.attn_bits_ack,
784 		  bp->def_status_blk->atten_status_block.status_block_id,
785 		  bp->def_status_blk->atten_status_block.attn_bits_index);
786 	BNX2X_ERR("     def (");
787 	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
788 		pr_cont("0x%x%s",
789 			bp->def_status_blk->sp_sb.index_values[i],
790 			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
791 
792 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
793 		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
794 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
795 			i*sizeof(u32));
796 
797 	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
798 	       sp_sb_data.igu_sb_id,
799 	       sp_sb_data.igu_seg_id,
800 	       sp_sb_data.p_func.pf_id,
801 	       sp_sb_data.p_func.vnic_id,
802 	       sp_sb_data.p_func.vf_id,
803 	       sp_sb_data.p_func.vf_valid,
804 	       sp_sb_data.state);
805 
806 
807 	for_each_eth_queue(bp, i) {
808 		struct bnx2x_fastpath *fp = &bp->fp[i];
809 		int loop;
810 		struct hc_status_block_data_e2 sb_data_e2;
811 		struct hc_status_block_data_e1x sb_data_e1x;
812 		struct hc_status_block_sm  *hc_sm_p =
813 			CHIP_IS_E1x(bp) ?
814 			sb_data_e1x.common.state_machine :
815 			sb_data_e2.common.state_machine;
816 		struct hc_index_data *hc_index_p =
817 			CHIP_IS_E1x(bp) ?
818 			sb_data_e1x.index_data :
819 			sb_data_e2.index_data;
820 		u8 data_size, cos;
821 		u32 *sb_data_p;
822 		struct bnx2x_fp_txdata txdata;
823 
824 		/* Rx */
825 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
826 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
827 			  fp->rx_comp_prod,
828 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
829 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
830 			  fp->rx_sge_prod, fp->last_max_sge,
831 			  le16_to_cpu(fp->fp_hc_idx));
832 
833 		/* Tx */
834 		for_each_cos_in_tx_queue(fp, cos)
835 		{
836 			txdata = fp->txdata[cos];
837 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
838 				  i, txdata.tx_pkt_prod,
839 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
840 				  txdata.tx_bd_cons,
841 				  le16_to_cpu(*txdata.tx_cons_sb));
842 		}
843 
844 		loop = CHIP_IS_E1x(bp) ?
845 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
846 
847 		/* host sb data */
848 
849 #ifdef BCM_CNIC
850 		if (IS_FCOE_FP(fp))
851 			continue;
852 #endif
853 		BNX2X_ERR("     run indexes (");
854 		for (j = 0; j < HC_SB_MAX_SM; j++)
855 			pr_cont("0x%x%s",
856 			       fp->sb_running_index[j],
857 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
858 
859 		BNX2X_ERR("     indexes (");
860 		for (j = 0; j < loop; j++)
861 			pr_cont("0x%x%s",
862 			       fp->sb_index_values[j],
863 			       (j == loop - 1) ? ")" : " ");
864 		/* fw sb data */
865 		data_size = CHIP_IS_E1x(bp) ?
866 			sizeof(struct hc_status_block_data_e1x) :
867 			sizeof(struct hc_status_block_data_e2);
868 		data_size /= sizeof(u32);
869 		sb_data_p = CHIP_IS_E1x(bp) ?
870 			(u32 *)&sb_data_e1x :
871 			(u32 *)&sb_data_e2;
872 		/* copy sb data in here */
873 		for (j = 0; j < data_size; j++)
874 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
875 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
876 				j * sizeof(u32));
877 
878 		if (!CHIP_IS_E1x(bp)) {
879 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
880 				sb_data_e2.common.p_func.pf_id,
881 				sb_data_e2.common.p_func.vf_id,
882 				sb_data_e2.common.p_func.vf_valid,
883 				sb_data_e2.common.p_func.vnic_id,
884 				sb_data_e2.common.same_igu_sb_1b,
885 				sb_data_e2.common.state);
886 		} else {
887 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
888 				sb_data_e1x.common.p_func.pf_id,
889 				sb_data_e1x.common.p_func.vf_id,
890 				sb_data_e1x.common.p_func.vf_valid,
891 				sb_data_e1x.common.p_func.vnic_id,
892 				sb_data_e1x.common.same_igu_sb_1b,
893 				sb_data_e1x.common.state);
894 		}
895 
896 		/* SB_SMs data */
897 		for (j = 0; j < HC_SB_MAX_SM; j++) {
898 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
899 				j, hc_sm_p[j].__flags,
900 				hc_sm_p[j].igu_sb_id,
901 				hc_sm_p[j].igu_seg_id,
902 				hc_sm_p[j].time_to_expire,
903 				hc_sm_p[j].timer_value);
904 		}
905 
906 		/* Indecies data */
907 		for (j = 0; j < loop; j++) {
908 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
909 			       hc_index_p[j].flags,
910 			       hc_index_p[j].timeout);
911 		}
912 	}
913 
914 #ifdef BNX2X_STOP_ON_ERROR
915 	/* Rings */
916 	/* Rx */
917 	for_each_rx_queue(bp, i) {
918 		struct bnx2x_fastpath *fp = &bp->fp[i];
919 
920 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
921 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
922 		for (j = start; j != end; j = RX_BD(j + 1)) {
923 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
924 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
925 
926 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
927 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
928 		}
929 
930 		start = RX_SGE(fp->rx_sge_prod);
931 		end = RX_SGE(fp->last_max_sge);
932 		for (j = start; j != end; j = RX_SGE(j + 1)) {
933 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
934 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
935 
936 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
937 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
938 		}
939 
940 		start = RCQ_BD(fp->rx_comp_cons - 10);
941 		end = RCQ_BD(fp->rx_comp_cons + 503);
942 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
943 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
944 
945 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
946 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
947 		}
948 	}
949 
950 	/* Tx */
951 	for_each_tx_queue(bp, i) {
952 		struct bnx2x_fastpath *fp = &bp->fp[i];
953 		for_each_cos_in_tx_queue(fp, cos) {
954 			struct bnx2x_fp_txdata *txdata = &fp->txdata[cos];
955 
956 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
957 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
958 			for (j = start; j != end; j = TX_BD(j + 1)) {
959 				struct sw_tx_bd *sw_bd =
960 					&txdata->tx_buf_ring[j];
961 
962 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
963 					  i, cos, j, sw_bd->skb,
964 					  sw_bd->first_bd);
965 			}
966 
967 			start = TX_BD(txdata->tx_bd_cons - 10);
968 			end = TX_BD(txdata->tx_bd_cons + 254);
969 			for (j = start; j != end; j = TX_BD(j + 1)) {
970 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
971 
972 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
973 					  i, cos, j, tx_bd[0], tx_bd[1],
974 					  tx_bd[2], tx_bd[3]);
975 			}
976 		}
977 	}
978 #endif
979 	bnx2x_fw_dump(bp);
980 	bnx2x_mc_assert(bp);
981 	BNX2X_ERR("end crash dump -----------------\n");
982 }
983 
984 /*
985  * FLR Support for E2
986  *
987  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
988  * initialization.
989  */
990 #define FLR_WAIT_USEC		10000	/* 10 miliseconds */
991 #define FLR_WAIT_INTERVAL	50	/* usec */
992 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
993 
994 struct pbf_pN_buf_regs {
995 	int pN;
996 	u32 init_crd;
997 	u32 crd;
998 	u32 crd_freed;
999 };
1000 
1001 struct pbf_pN_cmd_regs {
1002 	int pN;
1003 	u32 lines_occup;
1004 	u32 lines_freed;
1005 };
1006 
1007 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1008 				     struct pbf_pN_buf_regs *regs,
1009 				     u32 poll_count)
1010 {
1011 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1012 	u32 cur_cnt = poll_count;
1013 
1014 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1015 	crd = crd_start = REG_RD(bp, regs->crd);
1016 	init_crd = REG_RD(bp, regs->init_crd);
1017 
1018 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1019 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1020 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1021 
1022 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1023 	       (init_crd - crd_start))) {
1024 		if (cur_cnt--) {
1025 			udelay(FLR_WAIT_INTERVAL);
1026 			crd = REG_RD(bp, regs->crd);
1027 			crd_freed = REG_RD(bp, regs->crd_freed);
1028 		} else {
1029 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1030 			   regs->pN);
1031 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1032 			   regs->pN, crd);
1033 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1034 			   regs->pN, crd_freed);
1035 			break;
1036 		}
1037 	}
1038 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1039 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1040 }
1041 
1042 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1043 				     struct pbf_pN_cmd_regs *regs,
1044 				     u32 poll_count)
1045 {
1046 	u32 occup, to_free, freed, freed_start;
1047 	u32 cur_cnt = poll_count;
1048 
1049 	occup = to_free = REG_RD(bp, regs->lines_occup);
1050 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1051 
1052 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1053 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1054 
1055 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1056 		if (cur_cnt--) {
1057 			udelay(FLR_WAIT_INTERVAL);
1058 			occup = REG_RD(bp, regs->lines_occup);
1059 			freed = REG_RD(bp, regs->lines_freed);
1060 		} else {
1061 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1062 			   regs->pN);
1063 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1064 			   regs->pN, occup);
1065 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1066 			   regs->pN, freed);
1067 			break;
1068 		}
1069 	}
1070 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1071 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1072 }
1073 
1074 static inline u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1075 				     u32 expected, u32 poll_count)
1076 {
1077 	u32 cur_cnt = poll_count;
1078 	u32 val;
1079 
1080 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1081 		udelay(FLR_WAIT_INTERVAL);
1082 
1083 	return val;
1084 }
1085 
1086 static inline int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1087 						  char *msg, u32 poll_cnt)
1088 {
1089 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1090 	if (val != 0) {
1091 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1092 		return 1;
1093 	}
1094 	return 0;
1095 }
1096 
1097 static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1098 {
1099 	/* adjust polling timeout */
1100 	if (CHIP_REV_IS_EMUL(bp))
1101 		return FLR_POLL_CNT * 2000;
1102 
1103 	if (CHIP_REV_IS_FPGA(bp))
1104 		return FLR_POLL_CNT * 120;
1105 
1106 	return FLR_POLL_CNT;
1107 }
1108 
1109 static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1110 {
1111 	struct pbf_pN_cmd_regs cmd_regs[] = {
1112 		{0, (CHIP_IS_E3B0(bp)) ?
1113 			PBF_REG_TQ_OCCUPANCY_Q0 :
1114 			PBF_REG_P0_TQ_OCCUPANCY,
1115 		    (CHIP_IS_E3B0(bp)) ?
1116 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1117 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1118 		{1, (CHIP_IS_E3B0(bp)) ?
1119 			PBF_REG_TQ_OCCUPANCY_Q1 :
1120 			PBF_REG_P1_TQ_OCCUPANCY,
1121 		    (CHIP_IS_E3B0(bp)) ?
1122 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1123 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1124 		{4, (CHIP_IS_E3B0(bp)) ?
1125 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1126 			PBF_REG_P4_TQ_OCCUPANCY,
1127 		    (CHIP_IS_E3B0(bp)) ?
1128 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1129 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1130 	};
1131 
1132 	struct pbf_pN_buf_regs buf_regs[] = {
1133 		{0, (CHIP_IS_E3B0(bp)) ?
1134 			PBF_REG_INIT_CRD_Q0 :
1135 			PBF_REG_P0_INIT_CRD ,
1136 		    (CHIP_IS_E3B0(bp)) ?
1137 			PBF_REG_CREDIT_Q0 :
1138 			PBF_REG_P0_CREDIT,
1139 		    (CHIP_IS_E3B0(bp)) ?
1140 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1141 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1142 		{1, (CHIP_IS_E3B0(bp)) ?
1143 			PBF_REG_INIT_CRD_Q1 :
1144 			PBF_REG_P1_INIT_CRD,
1145 		    (CHIP_IS_E3B0(bp)) ?
1146 			PBF_REG_CREDIT_Q1 :
1147 			PBF_REG_P1_CREDIT,
1148 		    (CHIP_IS_E3B0(bp)) ?
1149 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1150 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1151 		{4, (CHIP_IS_E3B0(bp)) ?
1152 			PBF_REG_INIT_CRD_LB_Q :
1153 			PBF_REG_P4_INIT_CRD,
1154 		    (CHIP_IS_E3B0(bp)) ?
1155 			PBF_REG_CREDIT_LB_Q :
1156 			PBF_REG_P4_CREDIT,
1157 		    (CHIP_IS_E3B0(bp)) ?
1158 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1159 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1160 	};
1161 
1162 	int i;
1163 
1164 	/* Verify the command queues are flushed P0, P1, P4 */
1165 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1166 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1167 
1168 
1169 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1170 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1171 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1172 }
1173 
1174 #define OP_GEN_PARAM(param) \
1175 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1176 
1177 #define OP_GEN_TYPE(type) \
1178 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1179 
1180 #define OP_GEN_AGG_VECT(index) \
1181 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1182 
1183 
1184 static inline int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1185 					 u32 poll_cnt)
1186 {
1187 	struct sdm_op_gen op_gen = {0};
1188 
1189 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1190 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1191 	int ret = 0;
1192 
1193 	if (REG_RD(bp, comp_addr)) {
1194 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1195 		return 1;
1196 	}
1197 
1198 	op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1199 	op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1200 	op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1201 	op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1202 
1203 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1204 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1205 
1206 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1207 		BNX2X_ERR("FW final cleanup did not succeed\n");
1208 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1209 		   (REG_RD(bp, comp_addr)));
1210 		ret = 1;
1211 	}
1212 	/* Zero completion for nxt FLR */
1213 	REG_WR(bp, comp_addr, 0);
1214 
1215 	return ret;
1216 }
1217 
1218 static inline u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1219 {
1220 	int pos;
1221 	u16 status;
1222 
1223 	pos = pci_pcie_cap(dev);
1224 	if (!pos)
1225 		return false;
1226 
1227 	pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
1228 	return status & PCI_EXP_DEVSTA_TRPND;
1229 }
1230 
1231 /* PF FLR specific routines
1232 */
1233 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1234 {
1235 
1236 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1237 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1238 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1239 			"CFC PF usage counter timed out",
1240 			poll_cnt))
1241 		return 1;
1242 
1243 
1244 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1245 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1246 			DORQ_REG_PF_USAGE_CNT,
1247 			"DQ PF usage counter timed out",
1248 			poll_cnt))
1249 		return 1;
1250 
1251 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1252 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1253 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1254 			"QM PF usage counter timed out",
1255 			poll_cnt))
1256 		return 1;
1257 
1258 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1259 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1260 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1261 			"Timers VNIC usage counter timed out",
1262 			poll_cnt))
1263 		return 1;
1264 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1265 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1266 			"Timers NUM_SCANS usage counter timed out",
1267 			poll_cnt))
1268 		return 1;
1269 
1270 	/* Wait DMAE PF usage counter to zero */
1271 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1272 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1273 			"DMAE dommand register timed out",
1274 			poll_cnt))
1275 		return 1;
1276 
1277 	return 0;
1278 }
1279 
1280 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1281 {
1282 	u32 val;
1283 
1284 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1285 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1286 
1287 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1288 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1289 
1290 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1291 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1292 
1293 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1294 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1295 
1296 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1297 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1298 
1299 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1300 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1301 
1302 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1303 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1304 
1305 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1306 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1307 	   val);
1308 }
1309 
1310 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1311 {
1312 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1313 
1314 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1315 
1316 	/* Re-enable PF target read access */
1317 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1318 
1319 	/* Poll HW usage counters */
1320 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1321 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1322 		return -EBUSY;
1323 
1324 	/* Zero the igu 'trailing edge' and 'leading edge' */
1325 
1326 	/* Send the FW cleanup command */
1327 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1328 		return -EBUSY;
1329 
1330 	/* ATC cleanup */
1331 
1332 	/* Verify TX hw is flushed */
1333 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1334 
1335 	/* Wait 100ms (not adjusted according to platform) */
1336 	msleep(100);
1337 
1338 	/* Verify no pending pci transactions */
1339 	if (bnx2x_is_pcie_pending(bp->pdev))
1340 		BNX2X_ERR("PCIE Transactions still pending\n");
1341 
1342 	/* Debug */
1343 	bnx2x_hw_enable_status(bp);
1344 
1345 	/*
1346 	 * Master enable - Due to WB DMAE writes performed before this
1347 	 * register is re-initialized as part of the regular function init
1348 	 */
1349 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1350 
1351 	return 0;
1352 }
1353 
1354 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1355 {
1356 	int port = BP_PORT(bp);
1357 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1358 	u32 val = REG_RD(bp, addr);
1359 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1360 	int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1361 
1362 	if (msix) {
1363 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1364 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1365 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1366 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1367 	} else if (msi) {
1368 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1369 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1370 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1371 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1372 	} else {
1373 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1374 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1375 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1376 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1377 
1378 		if (!CHIP_IS_E1(bp)) {
1379 			DP(NETIF_MSG_IFUP,
1380 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1381 
1382 			REG_WR(bp, addr, val);
1383 
1384 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1385 		}
1386 	}
1387 
1388 	if (CHIP_IS_E1(bp))
1389 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1390 
1391 	DP(NETIF_MSG_IFUP,
1392 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1393 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1394 
1395 	REG_WR(bp, addr, val);
1396 	/*
1397 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1398 	 */
1399 	mmiowb();
1400 	barrier();
1401 
1402 	if (!CHIP_IS_E1(bp)) {
1403 		/* init leading/trailing edge */
1404 		if (IS_MF(bp)) {
1405 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1406 			if (bp->port.pmf)
1407 				/* enable nig and gpio3 attention */
1408 				val |= 0x1100;
1409 		} else
1410 			val = 0xffff;
1411 
1412 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1413 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1414 	}
1415 
1416 	/* Make sure that interrupts are indeed enabled from here on */
1417 	mmiowb();
1418 }
1419 
1420 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1421 {
1422 	u32 val;
1423 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1424 	int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1425 
1426 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1427 
1428 	if (msix) {
1429 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1430 			 IGU_PF_CONF_SINGLE_ISR_EN);
1431 		val |= (IGU_PF_CONF_FUNC_EN |
1432 			IGU_PF_CONF_MSI_MSIX_EN |
1433 			IGU_PF_CONF_ATTN_BIT_EN);
1434 	} else if (msi) {
1435 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1436 		val |= (IGU_PF_CONF_FUNC_EN |
1437 			IGU_PF_CONF_MSI_MSIX_EN |
1438 			IGU_PF_CONF_ATTN_BIT_EN |
1439 			IGU_PF_CONF_SINGLE_ISR_EN);
1440 	} else {
1441 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1442 		val |= (IGU_PF_CONF_FUNC_EN |
1443 			IGU_PF_CONF_INT_LINE_EN |
1444 			IGU_PF_CONF_ATTN_BIT_EN |
1445 			IGU_PF_CONF_SINGLE_ISR_EN);
1446 	}
1447 
1448 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1449 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1450 
1451 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1452 
1453 	barrier();
1454 
1455 	/* init leading/trailing edge */
1456 	if (IS_MF(bp)) {
1457 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1458 		if (bp->port.pmf)
1459 			/* enable nig and gpio3 attention */
1460 			val |= 0x1100;
1461 	} else
1462 		val = 0xffff;
1463 
1464 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1465 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1466 
1467 	/* Make sure that interrupts are indeed enabled from here on */
1468 	mmiowb();
1469 }
1470 
1471 void bnx2x_int_enable(struct bnx2x *bp)
1472 {
1473 	if (bp->common.int_block == INT_BLOCK_HC)
1474 		bnx2x_hc_int_enable(bp);
1475 	else
1476 		bnx2x_igu_int_enable(bp);
1477 }
1478 
1479 static void bnx2x_hc_int_disable(struct bnx2x *bp)
1480 {
1481 	int port = BP_PORT(bp);
1482 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1483 	u32 val = REG_RD(bp, addr);
1484 
1485 	/*
1486 	 * in E1 we must use only PCI configuration space to disable
1487 	 * MSI/MSIX capablility
1488 	 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1489 	 */
1490 	if (CHIP_IS_E1(bp)) {
1491 		/*  Since IGU_PF_CONF_MSI_MSIX_EN still always on
1492 		 *  Use mask register to prevent from HC sending interrupts
1493 		 *  after we exit the function
1494 		 */
1495 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1496 
1497 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1498 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1499 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1500 	} else
1501 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1502 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1503 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1504 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1505 
1506 	DP(NETIF_MSG_IFDOWN,
1507 	   "write %x to HC %d (addr 0x%x)\n",
1508 	   val, port, addr);
1509 
1510 	/* flush all outstanding writes */
1511 	mmiowb();
1512 
1513 	REG_WR(bp, addr, val);
1514 	if (REG_RD(bp, addr) != val)
1515 		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1516 }
1517 
1518 static void bnx2x_igu_int_disable(struct bnx2x *bp)
1519 {
1520 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1521 
1522 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1523 		 IGU_PF_CONF_INT_LINE_EN |
1524 		 IGU_PF_CONF_ATTN_BIT_EN);
1525 
1526 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
1527 
1528 	/* flush all outstanding writes */
1529 	mmiowb();
1530 
1531 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1532 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1533 		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1534 }
1535 
1536 void bnx2x_int_disable(struct bnx2x *bp)
1537 {
1538 	if (bp->common.int_block == INT_BLOCK_HC)
1539 		bnx2x_hc_int_disable(bp);
1540 	else
1541 		bnx2x_igu_int_disable(bp);
1542 }
1543 
1544 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1545 {
1546 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1547 	int i, offset;
1548 
1549 	if (disable_hw)
1550 		/* prevent the HW from sending interrupts */
1551 		bnx2x_int_disable(bp);
1552 
1553 	/* make sure all ISRs are done */
1554 	if (msix) {
1555 		synchronize_irq(bp->msix_table[0].vector);
1556 		offset = 1;
1557 #ifdef BCM_CNIC
1558 		offset++;
1559 #endif
1560 		for_each_eth_queue(bp, i)
1561 			synchronize_irq(bp->msix_table[offset++].vector);
1562 	} else
1563 		synchronize_irq(bp->pdev->irq);
1564 
1565 	/* make sure sp_task is not running */
1566 	cancel_delayed_work(&bp->sp_task);
1567 	cancel_delayed_work(&bp->period_task);
1568 	flush_workqueue(bnx2x_wq);
1569 }
1570 
1571 /* fast path */
1572 
1573 /*
1574  * General service functions
1575  */
1576 
1577 /* Return true if succeeded to acquire the lock */
1578 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1579 {
1580 	u32 lock_status;
1581 	u32 resource_bit = (1 << resource);
1582 	int func = BP_FUNC(bp);
1583 	u32 hw_lock_control_reg;
1584 
1585 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1586 	   "Trying to take a lock on resource %d\n", resource);
1587 
1588 	/* Validating that the resource is within range */
1589 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1590 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1591 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1592 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1593 		return false;
1594 	}
1595 
1596 	if (func <= 5)
1597 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1598 	else
1599 		hw_lock_control_reg =
1600 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1601 
1602 	/* Try to acquire the lock */
1603 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1604 	lock_status = REG_RD(bp, hw_lock_control_reg);
1605 	if (lock_status & resource_bit)
1606 		return true;
1607 
1608 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1609 	   "Failed to get a lock on resource %d\n", resource);
1610 	return false;
1611 }
1612 
1613 /**
1614  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1615  *
1616  * @bp:	driver handle
1617  *
1618  * Returns the recovery leader resource id according to the engine this function
1619  * belongs to. Currently only only 2 engines is supported.
1620  */
1621 static inline int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1622 {
1623 	if (BP_PATH(bp))
1624 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1625 	else
1626 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1627 }
1628 
1629 /**
1630  * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1631  *
1632  * @bp: driver handle
1633  *
1634  * Tries to aquire a leader lock for cuurent engine.
1635  */
1636 static inline bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1637 {
1638 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1639 }
1640 
1641 #ifdef BCM_CNIC
1642 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1643 #endif
1644 
1645 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1646 {
1647 	struct bnx2x *bp = fp->bp;
1648 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1649 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1650 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1651 	struct bnx2x_queue_sp_obj *q_obj = &fp->q_obj;
1652 
1653 	DP(BNX2X_MSG_SP,
1654 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1655 	   fp->index, cid, command, bp->state,
1656 	   rr_cqe->ramrod_cqe.ramrod_type);
1657 
1658 	switch (command) {
1659 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1660 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1661 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1662 		break;
1663 
1664 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1665 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1666 		drv_cmd = BNX2X_Q_CMD_SETUP;
1667 		break;
1668 
1669 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1670 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1671 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1672 		break;
1673 
1674 	case (RAMROD_CMD_ID_ETH_HALT):
1675 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1676 		drv_cmd = BNX2X_Q_CMD_HALT;
1677 		break;
1678 
1679 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1680 		DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1681 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1682 		break;
1683 
1684 	case (RAMROD_CMD_ID_ETH_EMPTY):
1685 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1686 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1687 		break;
1688 
1689 	default:
1690 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1691 			  command, fp->index);
1692 		return;
1693 	}
1694 
1695 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1696 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1697 		/* q_obj->complete_cmd() failure means that this was
1698 		 * an unexpected completion.
1699 		 *
1700 		 * In this case we don't want to increase the bp->spq_left
1701 		 * because apparently we haven't sent this command the first
1702 		 * place.
1703 		 */
1704 #ifdef BNX2X_STOP_ON_ERROR
1705 		bnx2x_panic();
1706 #else
1707 		return;
1708 #endif
1709 
1710 	smp_mb__before_atomic_inc();
1711 	atomic_inc(&bp->cq_spq_left);
1712 	/* push the change in bp->spq_left and towards the memory */
1713 	smp_mb__after_atomic_inc();
1714 
1715 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1716 
1717 	return;
1718 }
1719 
1720 void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1721 			u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1722 {
1723 	u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1724 
1725 	bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1726 				 start);
1727 }
1728 
1729 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1730 {
1731 	struct bnx2x *bp = netdev_priv(dev_instance);
1732 	u16 status = bnx2x_ack_int(bp);
1733 	u16 mask;
1734 	int i;
1735 	u8 cos;
1736 
1737 	/* Return here if interrupt is shared and it's not for us */
1738 	if (unlikely(status == 0)) {
1739 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1740 		return IRQ_NONE;
1741 	}
1742 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1743 
1744 #ifdef BNX2X_STOP_ON_ERROR
1745 	if (unlikely(bp->panic))
1746 		return IRQ_HANDLED;
1747 #endif
1748 
1749 	for_each_eth_queue(bp, i) {
1750 		struct bnx2x_fastpath *fp = &bp->fp[i];
1751 
1752 		mask = 0x2 << (fp->index + CNIC_PRESENT);
1753 		if (status & mask) {
1754 			/* Handle Rx or Tx according to SB id */
1755 			prefetch(fp->rx_cons_sb);
1756 			for_each_cos_in_tx_queue(fp, cos)
1757 				prefetch(fp->txdata[cos].tx_cons_sb);
1758 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1759 			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1760 			status &= ~mask;
1761 		}
1762 	}
1763 
1764 #ifdef BCM_CNIC
1765 	mask = 0x2;
1766 	if (status & (mask | 0x1)) {
1767 		struct cnic_ops *c_ops = NULL;
1768 
1769 		if (likely(bp->state == BNX2X_STATE_OPEN)) {
1770 			rcu_read_lock();
1771 			c_ops = rcu_dereference(bp->cnic_ops);
1772 			if (c_ops)
1773 				c_ops->cnic_handler(bp->cnic_data, NULL);
1774 			rcu_read_unlock();
1775 		}
1776 
1777 		status &= ~mask;
1778 	}
1779 #endif
1780 
1781 	if (unlikely(status & 0x1)) {
1782 		queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1783 
1784 		status &= ~0x1;
1785 		if (!status)
1786 			return IRQ_HANDLED;
1787 	}
1788 
1789 	if (unlikely(status))
1790 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1791 		   status);
1792 
1793 	return IRQ_HANDLED;
1794 }
1795 
1796 /* Link */
1797 
1798 /*
1799  * General service functions
1800  */
1801 
1802 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1803 {
1804 	u32 lock_status;
1805 	u32 resource_bit = (1 << resource);
1806 	int func = BP_FUNC(bp);
1807 	u32 hw_lock_control_reg;
1808 	int cnt;
1809 
1810 	/* Validating that the resource is within range */
1811 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1812 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1813 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1814 		return -EINVAL;
1815 	}
1816 
1817 	if (func <= 5) {
1818 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1819 	} else {
1820 		hw_lock_control_reg =
1821 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1822 	}
1823 
1824 	/* Validating that the resource is not already taken */
1825 	lock_status = REG_RD(bp, hw_lock_control_reg);
1826 	if (lock_status & resource_bit) {
1827 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1828 		   lock_status, resource_bit);
1829 		return -EEXIST;
1830 	}
1831 
1832 	/* Try for 5 second every 5ms */
1833 	for (cnt = 0; cnt < 1000; cnt++) {
1834 		/* Try to acquire the lock */
1835 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1836 		lock_status = REG_RD(bp, hw_lock_control_reg);
1837 		if (lock_status & resource_bit)
1838 			return 0;
1839 
1840 		msleep(5);
1841 	}
1842 	BNX2X_ERR("Timeout\n");
1843 	return -EAGAIN;
1844 }
1845 
1846 int bnx2x_release_leader_lock(struct bnx2x *bp)
1847 {
1848 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1849 }
1850 
1851 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1852 {
1853 	u32 lock_status;
1854 	u32 resource_bit = (1 << resource);
1855 	int func = BP_FUNC(bp);
1856 	u32 hw_lock_control_reg;
1857 
1858 	/* Validating that the resource is within range */
1859 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1860 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1861 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1862 		return -EINVAL;
1863 	}
1864 
1865 	if (func <= 5) {
1866 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1867 	} else {
1868 		hw_lock_control_reg =
1869 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1870 	}
1871 
1872 	/* Validating that the resource is currently taken */
1873 	lock_status = REG_RD(bp, hw_lock_control_reg);
1874 	if (!(lock_status & resource_bit)) {
1875 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. unlock was called but lock wasn't taken!\n",
1876 		   lock_status, resource_bit);
1877 		return -EFAULT;
1878 	}
1879 
1880 	REG_WR(bp, hw_lock_control_reg, resource_bit);
1881 	return 0;
1882 }
1883 
1884 
1885 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1886 {
1887 	/* The GPIO should be swapped if swap register is set and active */
1888 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1889 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1890 	int gpio_shift = gpio_num +
1891 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1892 	u32 gpio_mask = (1 << gpio_shift);
1893 	u32 gpio_reg;
1894 	int value;
1895 
1896 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1897 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1898 		return -EINVAL;
1899 	}
1900 
1901 	/* read GPIO value */
1902 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1903 
1904 	/* get the requested pin value */
1905 	if ((gpio_reg & gpio_mask) == gpio_mask)
1906 		value = 1;
1907 	else
1908 		value = 0;
1909 
1910 	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
1911 
1912 	return value;
1913 }
1914 
1915 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1916 {
1917 	/* The GPIO should be swapped if swap register is set and active */
1918 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1919 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1920 	int gpio_shift = gpio_num +
1921 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1922 	u32 gpio_mask = (1 << gpio_shift);
1923 	u32 gpio_reg;
1924 
1925 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1926 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1927 		return -EINVAL;
1928 	}
1929 
1930 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1931 	/* read GPIO and mask except the float bits */
1932 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1933 
1934 	switch (mode) {
1935 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1936 		DP(NETIF_MSG_LINK,
1937 		   "Set GPIO %d (shift %d) -> output low\n",
1938 		   gpio_num, gpio_shift);
1939 		/* clear FLOAT and set CLR */
1940 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1941 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1942 		break;
1943 
1944 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1945 		DP(NETIF_MSG_LINK,
1946 		   "Set GPIO %d (shift %d) -> output high\n",
1947 		   gpio_num, gpio_shift);
1948 		/* clear FLOAT and set SET */
1949 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1950 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1951 		break;
1952 
1953 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1954 		DP(NETIF_MSG_LINK,
1955 		   "Set GPIO %d (shift %d) -> input\n",
1956 		   gpio_num, gpio_shift);
1957 		/* set FLOAT */
1958 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1959 		break;
1960 
1961 	default:
1962 		break;
1963 	}
1964 
1965 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1966 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1967 
1968 	return 0;
1969 }
1970 
1971 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1972 {
1973 	u32 gpio_reg = 0;
1974 	int rc = 0;
1975 
1976 	/* Any port swapping should be handled by caller. */
1977 
1978 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1979 	/* read GPIO and mask except the float bits */
1980 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1981 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1982 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1983 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1984 
1985 	switch (mode) {
1986 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1987 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
1988 		/* set CLR */
1989 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
1990 		break;
1991 
1992 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1993 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
1994 		/* set SET */
1995 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
1996 		break;
1997 
1998 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1999 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2000 		/* set FLOAT */
2001 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2002 		break;
2003 
2004 	default:
2005 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2006 		rc = -EINVAL;
2007 		break;
2008 	}
2009 
2010 	if (rc == 0)
2011 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2012 
2013 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2014 
2015 	return rc;
2016 }
2017 
2018 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2019 {
2020 	/* The GPIO should be swapped if swap register is set and active */
2021 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2022 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2023 	int gpio_shift = gpio_num +
2024 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2025 	u32 gpio_mask = (1 << gpio_shift);
2026 	u32 gpio_reg;
2027 
2028 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2029 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2030 		return -EINVAL;
2031 	}
2032 
2033 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2034 	/* read GPIO int */
2035 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2036 
2037 	switch (mode) {
2038 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2039 		DP(NETIF_MSG_LINK,
2040 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2041 		   gpio_num, gpio_shift);
2042 		/* clear SET and set CLR */
2043 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2044 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2045 		break;
2046 
2047 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2048 		DP(NETIF_MSG_LINK,
2049 		   "Set GPIO INT %d (shift %d) -> output high\n",
2050 		   gpio_num, gpio_shift);
2051 		/* clear CLR and set SET */
2052 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2053 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2054 		break;
2055 
2056 	default:
2057 		break;
2058 	}
2059 
2060 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2061 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2062 
2063 	return 0;
2064 }
2065 
2066 static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
2067 {
2068 	u32 spio_mask = (1 << spio_num);
2069 	u32 spio_reg;
2070 
2071 	if ((spio_num < MISC_REGISTERS_SPIO_4) ||
2072 	    (spio_num > MISC_REGISTERS_SPIO_7)) {
2073 		BNX2X_ERR("Invalid SPIO %d\n", spio_num);
2074 		return -EINVAL;
2075 	}
2076 
2077 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2078 	/* read SPIO and mask except the float bits */
2079 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
2080 
2081 	switch (mode) {
2082 	case MISC_REGISTERS_SPIO_OUTPUT_LOW:
2083 		DP(NETIF_MSG_HW, "Set SPIO %d -> output low\n", spio_num);
2084 		/* clear FLOAT and set CLR */
2085 		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2086 		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
2087 		break;
2088 
2089 	case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
2090 		DP(NETIF_MSG_HW, "Set SPIO %d -> output high\n", spio_num);
2091 		/* clear FLOAT and set SET */
2092 		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2093 		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
2094 		break;
2095 
2096 	case MISC_REGISTERS_SPIO_INPUT_HI_Z:
2097 		DP(NETIF_MSG_HW, "Set SPIO %d -> input\n", spio_num);
2098 		/* set FLOAT */
2099 		spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2100 		break;
2101 
2102 	default:
2103 		break;
2104 	}
2105 
2106 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2107 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2108 
2109 	return 0;
2110 }
2111 
2112 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2113 {
2114 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2115 	switch (bp->link_vars.ieee_fc &
2116 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2117 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2118 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2119 						   ADVERTISED_Pause);
2120 		break;
2121 
2122 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2123 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2124 						  ADVERTISED_Pause);
2125 		break;
2126 
2127 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2128 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2129 		break;
2130 
2131 	default:
2132 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2133 						   ADVERTISED_Pause);
2134 		break;
2135 	}
2136 }
2137 
2138 u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2139 {
2140 	if (!BP_NOMCP(bp)) {
2141 		u8 rc;
2142 		int cfx_idx = bnx2x_get_link_cfg_idx(bp);
2143 		u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2144 		/*
2145 		 * Initialize link parameters structure variables
2146 		 * It is recommended to turn off RX FC for jumbo frames
2147 		 * for better performance
2148 		 */
2149 		if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2150 			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2151 		else
2152 			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2153 
2154 		bnx2x_acquire_phy_lock(bp);
2155 
2156 		if (load_mode == LOAD_DIAG) {
2157 			struct link_params *lp = &bp->link_params;
2158 			lp->loopback_mode = LOOPBACK_XGXS;
2159 			/* do PHY loopback at 10G speed, if possible */
2160 			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2161 				if (lp->speed_cap_mask[cfx_idx] &
2162 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2163 					lp->req_line_speed[cfx_idx] =
2164 					SPEED_10000;
2165 				else
2166 					lp->req_line_speed[cfx_idx] =
2167 					SPEED_1000;
2168 			}
2169 		}
2170 
2171 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2172 
2173 		bnx2x_release_phy_lock(bp);
2174 
2175 		bnx2x_calc_fc_adv(bp);
2176 
2177 		if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
2178 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2179 			bnx2x_link_report(bp);
2180 		} else
2181 			queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2182 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2183 		return rc;
2184 	}
2185 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2186 	return -EINVAL;
2187 }
2188 
2189 void bnx2x_link_set(struct bnx2x *bp)
2190 {
2191 	if (!BP_NOMCP(bp)) {
2192 		bnx2x_acquire_phy_lock(bp);
2193 		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2194 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2195 		bnx2x_release_phy_lock(bp);
2196 
2197 		bnx2x_calc_fc_adv(bp);
2198 	} else
2199 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2200 }
2201 
2202 static void bnx2x__link_reset(struct bnx2x *bp)
2203 {
2204 	if (!BP_NOMCP(bp)) {
2205 		bnx2x_acquire_phy_lock(bp);
2206 		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2207 		bnx2x_release_phy_lock(bp);
2208 	} else
2209 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2210 }
2211 
2212 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2213 {
2214 	u8 rc = 0;
2215 
2216 	if (!BP_NOMCP(bp)) {
2217 		bnx2x_acquire_phy_lock(bp);
2218 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2219 				     is_serdes);
2220 		bnx2x_release_phy_lock(bp);
2221 	} else
2222 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2223 
2224 	return rc;
2225 }
2226 
2227 static void bnx2x_init_port_minmax(struct bnx2x *bp)
2228 {
2229 	u32 r_param = bp->link_vars.line_speed / 8;
2230 	u32 fair_periodic_timeout_usec;
2231 	u32 t_fair;
2232 
2233 	memset(&(bp->cmng.rs_vars), 0,
2234 	       sizeof(struct rate_shaping_vars_per_port));
2235 	memset(&(bp->cmng.fair_vars), 0, sizeof(struct fairness_vars_per_port));
2236 
2237 	/* 100 usec in SDM ticks = 25 since each tick is 4 usec */
2238 	bp->cmng.rs_vars.rs_periodic_timeout = RS_PERIODIC_TIMEOUT_USEC / 4;
2239 
2240 	/* this is the threshold below which no timer arming will occur
2241 	   1.25 coefficient is for the threshold to be a little bigger
2242 	   than the real time, to compensate for timer in-accuracy */
2243 	bp->cmng.rs_vars.rs_threshold =
2244 				(RS_PERIODIC_TIMEOUT_USEC * r_param * 5) / 4;
2245 
2246 	/* resolution of fairness timer */
2247 	fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
2248 	/* for 10G it is 1000usec. for 1G it is 10000usec. */
2249 	t_fair = T_FAIR_COEF / bp->link_vars.line_speed;
2250 
2251 	/* this is the threshold below which we won't arm the timer anymore */
2252 	bp->cmng.fair_vars.fair_threshold = QM_ARB_BYTES;
2253 
2254 	/* we multiply by 1e3/8 to get bytes/msec.
2255 	   We don't want the credits to pass a credit
2256 	   of the t_fair*FAIR_MEM (algorithm resolution) */
2257 	bp->cmng.fair_vars.upper_bound = r_param * t_fair * FAIR_MEM;
2258 	/* since each tick is 4 usec */
2259 	bp->cmng.fair_vars.fairness_timeout = fair_periodic_timeout_usec / 4;
2260 }
2261 
2262 /* Calculates the sum of vn_min_rates.
2263    It's needed for further normalizing of the min_rates.
2264    Returns:
2265      sum of vn_min_rates.
2266        or
2267      0 - if all the min_rates are 0.
2268      In the later case fainess algorithm should be deactivated.
2269      If not all min_rates are zero then those that are zeroes will be set to 1.
2270  */
2271 static void bnx2x_calc_vn_weight_sum(struct bnx2x *bp)
2272 {
2273 	int all_zero = 1;
2274 	int vn;
2275 
2276 	bp->vn_weight_sum = 0;
2277 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2278 		u32 vn_cfg = bp->mf_config[vn];
2279 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2280 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2281 
2282 		/* Skip hidden vns */
2283 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2284 			continue;
2285 
2286 		/* If min rate is zero - set it to 1 */
2287 		if (!vn_min_rate)
2288 			vn_min_rate = DEF_MIN_RATE;
2289 		else
2290 			all_zero = 0;
2291 
2292 		bp->vn_weight_sum += vn_min_rate;
2293 	}
2294 
2295 	/* if ETS or all min rates are zeros - disable fairness */
2296 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2297 		bp->cmng.flags.cmng_enables &=
2298 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2299 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2300 	} else if (all_zero) {
2301 		bp->cmng.flags.cmng_enables &=
2302 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2303 		DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2304 		   "  fairness will be disabled\n");
2305 	} else
2306 		bp->cmng.flags.cmng_enables |=
2307 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2308 }
2309 
2310 static void bnx2x_init_vn_minmax(struct bnx2x *bp, int vn)
2311 {
2312 	struct rate_shaping_vars_per_vn m_rs_vn;
2313 	struct fairness_vars_per_vn m_fair_vn;
2314 	u32 vn_cfg = bp->mf_config[vn];
2315 	int func = func_by_vn(bp, vn);
2316 	u16 vn_min_rate, vn_max_rate;
2317 	int i;
2318 
2319 	/* If function is hidden - set min and max to zeroes */
2320 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
2321 		vn_min_rate = 0;
2322 		vn_max_rate = 0;
2323 
2324 	} else {
2325 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2326 
2327 		vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2328 				FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2329 		/* If fairness is enabled (not all min rates are zeroes) and
2330 		   if current min rate is zero - set it to 1.
2331 		   This is a requirement of the algorithm. */
2332 		if (bp->vn_weight_sum && (vn_min_rate == 0))
2333 			vn_min_rate = DEF_MIN_RATE;
2334 
2335 		if (IS_MF_SI(bp))
2336 			/* maxCfg in percents of linkspeed */
2337 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2338 		else
2339 			/* maxCfg is absolute in 100Mb units */
2340 			vn_max_rate = maxCfg * 100;
2341 	}
2342 
2343 	DP(NETIF_MSG_IFUP,
2344 	   "func %d: vn_min_rate %d  vn_max_rate %d  vn_weight_sum %d\n",
2345 	   func, vn_min_rate, vn_max_rate, bp->vn_weight_sum);
2346 
2347 	memset(&m_rs_vn, 0, sizeof(struct rate_shaping_vars_per_vn));
2348 	memset(&m_fair_vn, 0, sizeof(struct fairness_vars_per_vn));
2349 
2350 	/* global vn counter - maximal Mbps for this vn */
2351 	m_rs_vn.vn_counter.rate = vn_max_rate;
2352 
2353 	/* quota - number of bytes transmitted in this period */
2354 	m_rs_vn.vn_counter.quota =
2355 				(vn_max_rate * RS_PERIODIC_TIMEOUT_USEC) / 8;
2356 
2357 	if (bp->vn_weight_sum) {
2358 		/* credit for each period of the fairness algorithm:
2359 		   number of bytes in T_FAIR (the vn share the port rate).
2360 		   vn_weight_sum should not be larger than 10000, thus
2361 		   T_FAIR_COEF / (8 * vn_weight_sum) will always be greater
2362 		   than zero */
2363 		m_fair_vn.vn_credit_delta =
2364 			max_t(u32, (vn_min_rate * (T_FAIR_COEF /
2365 						   (8 * bp->vn_weight_sum))),
2366 			      (bp->cmng.fair_vars.fair_threshold +
2367 							MIN_ABOVE_THRESH));
2368 		DP(NETIF_MSG_IFUP, "m_fair_vn.vn_credit_delta %d\n",
2369 		   m_fair_vn.vn_credit_delta);
2370 	}
2371 
2372 	/* Store it to internal memory */
2373 	for (i = 0; i < sizeof(struct rate_shaping_vars_per_vn)/4; i++)
2374 		REG_WR(bp, BAR_XSTRORM_INTMEM +
2375 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func) + i * 4,
2376 		       ((u32 *)(&m_rs_vn))[i]);
2377 
2378 	for (i = 0; i < sizeof(struct fairness_vars_per_vn)/4; i++)
2379 		REG_WR(bp, BAR_XSTRORM_INTMEM +
2380 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func) + i * 4,
2381 		       ((u32 *)(&m_fair_vn))[i]);
2382 }
2383 
2384 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2385 {
2386 	if (CHIP_REV_IS_SLOW(bp))
2387 		return CMNG_FNS_NONE;
2388 	if (IS_MF(bp))
2389 		return CMNG_FNS_MINMAX;
2390 
2391 	return CMNG_FNS_NONE;
2392 }
2393 
2394 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2395 {
2396 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2397 
2398 	if (BP_NOMCP(bp))
2399 		return; /* what should be the default bvalue in this case */
2400 
2401 	/* For 2 port configuration the absolute function number formula
2402 	 * is:
2403 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2404 	 *
2405 	 *      and there are 4 functions per port
2406 	 *
2407 	 * For 4 port configuration it is
2408 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2409 	 *
2410 	 *      and there are 2 functions per port
2411 	 */
2412 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2413 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2414 
2415 		if (func >= E1H_FUNC_MAX)
2416 			break;
2417 
2418 		bp->mf_config[vn] =
2419 			MF_CFG_RD(bp, func_mf_config[func].config);
2420 	}
2421 }
2422 
2423 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2424 {
2425 
2426 	if (cmng_type == CMNG_FNS_MINMAX) {
2427 		int vn;
2428 
2429 		/* clear cmng_enables */
2430 		bp->cmng.flags.cmng_enables = 0;
2431 
2432 		/* read mf conf from shmem */
2433 		if (read_cfg)
2434 			bnx2x_read_mf_cfg(bp);
2435 
2436 		/* Init rate shaping and fairness contexts */
2437 		bnx2x_init_port_minmax(bp);
2438 
2439 		/* vn_weight_sum and enable fairness if not 0 */
2440 		bnx2x_calc_vn_weight_sum(bp);
2441 
2442 		/* calculate and set min-max rate for each vn */
2443 		if (bp->port.pmf)
2444 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2445 				bnx2x_init_vn_minmax(bp, vn);
2446 
2447 		/* always enable rate shaping and fairness */
2448 		bp->cmng.flags.cmng_enables |=
2449 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2450 		if (!bp->vn_weight_sum)
2451 			DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2452 				   "  fairness will be disabled\n");
2453 		return;
2454 	}
2455 
2456 	/* rate shaping and fairness are disabled */
2457 	DP(NETIF_MSG_IFUP,
2458 	   "rate shaping and fairness are disabled\n");
2459 }
2460 
2461 /* This function is called upon link interrupt */
2462 static void bnx2x_link_attn(struct bnx2x *bp)
2463 {
2464 	/* Make sure that we are synced with the current statistics */
2465 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2466 
2467 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2468 
2469 	if (bp->link_vars.link_up) {
2470 
2471 		/* dropless flow control */
2472 		if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2473 			int port = BP_PORT(bp);
2474 			u32 pause_enabled = 0;
2475 
2476 			if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2477 				pause_enabled = 1;
2478 
2479 			REG_WR(bp, BAR_USTRORM_INTMEM +
2480 			       USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2481 			       pause_enabled);
2482 		}
2483 
2484 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2485 			struct host_port_stats *pstats;
2486 
2487 			pstats = bnx2x_sp(bp, port_stats);
2488 			/* reset old mac stats */
2489 			memset(&(pstats->mac_stx[0]), 0,
2490 			       sizeof(struct mac_stx));
2491 		}
2492 		if (bp->state == BNX2X_STATE_OPEN)
2493 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2494 	}
2495 
2496 	if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2497 		int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2498 
2499 		if (cmng_fns != CMNG_FNS_NONE) {
2500 			bnx2x_cmng_fns_init(bp, false, cmng_fns);
2501 			storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2502 		} else
2503 			/* rate shaping and fairness are disabled */
2504 			DP(NETIF_MSG_IFUP,
2505 			   "single function mode without fairness\n");
2506 	}
2507 
2508 	__bnx2x_link_report(bp);
2509 
2510 	if (IS_MF(bp))
2511 		bnx2x_link_sync_notify(bp);
2512 }
2513 
2514 void bnx2x__link_status_update(struct bnx2x *bp)
2515 {
2516 	if (bp->state != BNX2X_STATE_OPEN)
2517 		return;
2518 
2519 	/* read updated dcb configuration */
2520 	bnx2x_dcbx_pmf_update(bp);
2521 
2522 	bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2523 
2524 	if (bp->link_vars.link_up)
2525 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2526 	else
2527 		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2528 
2529 	/* indicate link status */
2530 	bnx2x_link_report(bp);
2531 }
2532 
2533 static void bnx2x_pmf_update(struct bnx2x *bp)
2534 {
2535 	int port = BP_PORT(bp);
2536 	u32 val;
2537 
2538 	bp->port.pmf = 1;
2539 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2540 
2541 	/*
2542 	 * We need the mb() to ensure the ordering between the writing to
2543 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2544 	 */
2545 	smp_mb();
2546 
2547 	/* queue a periodic task */
2548 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2549 
2550 	bnx2x_dcbx_pmf_update(bp);
2551 
2552 	/* enable nig attention */
2553 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2554 	if (bp->common.int_block == INT_BLOCK_HC) {
2555 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2556 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2557 	} else if (!CHIP_IS_E1x(bp)) {
2558 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2559 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2560 	}
2561 
2562 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2563 }
2564 
2565 /* end of Link */
2566 
2567 /* slow path */
2568 
2569 /*
2570  * General service functions
2571  */
2572 
2573 /* send the MCP a request, block until there is a reply */
2574 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2575 {
2576 	int mb_idx = BP_FW_MB_IDX(bp);
2577 	u32 seq;
2578 	u32 rc = 0;
2579 	u32 cnt = 1;
2580 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2581 
2582 	mutex_lock(&bp->fw_mb_mutex);
2583 	seq = ++bp->fw_seq;
2584 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2585 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2586 
2587 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2588 			(command | seq), param);
2589 
2590 	do {
2591 		/* let the FW do it's magic ... */
2592 		msleep(delay);
2593 
2594 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2595 
2596 		/* Give the FW up to 5 second (500*10ms) */
2597 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2598 
2599 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2600 	   cnt*delay, rc, seq);
2601 
2602 	/* is this a reply to our command? */
2603 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2604 		rc &= FW_MSG_CODE_MASK;
2605 	else {
2606 		/* FW BUG! */
2607 		BNX2X_ERR("FW failed to respond!\n");
2608 		bnx2x_fw_dump(bp);
2609 		rc = 0;
2610 	}
2611 	mutex_unlock(&bp->fw_mb_mutex);
2612 
2613 	return rc;
2614 }
2615 
2616 
2617 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2618 {
2619 	if (CHIP_IS_E1x(bp)) {
2620 		struct tstorm_eth_function_common_config tcfg = {0};
2621 
2622 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2623 	}
2624 
2625 	/* Enable the function in the FW */
2626 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2627 	storm_memset_func_en(bp, p->func_id, 1);
2628 
2629 	/* spq */
2630 	if (p->func_flgs & FUNC_FLG_SPQ) {
2631 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2632 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
2633 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2634 	}
2635 }
2636 
2637 /**
2638  * bnx2x_get_tx_only_flags - Return common flags
2639  *
2640  * @bp		device handle
2641  * @fp		queue handle
2642  * @zero_stats	TRUE if statistics zeroing is needed
2643  *
2644  * Return the flags that are common for the Tx-only and not normal connections.
2645  */
2646 static inline unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2647 						   struct bnx2x_fastpath *fp,
2648 						   bool zero_stats)
2649 {
2650 	unsigned long flags = 0;
2651 
2652 	/* PF driver will always initialize the Queue to an ACTIVE state */
2653 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2654 
2655 	/* tx only connections collect statistics (on the same index as the
2656 	 *  parent connection). The statistics are zeroed when the parent
2657 	 *  connection is initialized.
2658 	 */
2659 
2660 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
2661 	if (zero_stats)
2662 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2663 
2664 
2665 	return flags;
2666 }
2667 
2668 static inline unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2669 					      struct bnx2x_fastpath *fp,
2670 					      bool leading)
2671 {
2672 	unsigned long flags = 0;
2673 
2674 	/* calculate other queue flags */
2675 	if (IS_MF_SD(bp))
2676 		__set_bit(BNX2X_Q_FLG_OV, &flags);
2677 
2678 	if (IS_FCOE_FP(fp))
2679 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
2680 
2681 	if (!fp->disable_tpa) {
2682 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
2683 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2684 		if (fp->mode == TPA_MODE_GRO)
2685 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
2686 	}
2687 
2688 	if (leading) {
2689 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2690 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
2691 	}
2692 
2693 	/* Always set HW VLAN stripping */
2694 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
2695 
2696 
2697 	return flags | bnx2x_get_common_flags(bp, fp, true);
2698 }
2699 
2700 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2701 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2702 	u8 cos)
2703 {
2704 	gen_init->stat_id = bnx2x_stats_id(fp);
2705 	gen_init->spcl_id = fp->cl_id;
2706 
2707 	/* Always use mini-jumbo MTU for FCoE L2 ring */
2708 	if (IS_FCOE_FP(fp))
2709 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2710 	else
2711 		gen_init->mtu = bp->dev->mtu;
2712 
2713 	gen_init->cos = cos;
2714 }
2715 
2716 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2717 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2718 	struct bnx2x_rxq_setup_params *rxq_init)
2719 {
2720 	u8 max_sge = 0;
2721 	u16 sge_sz = 0;
2722 	u16 tpa_agg_size = 0;
2723 
2724 	if (!fp->disable_tpa) {
2725 		pause->sge_th_lo = SGE_TH_LO(bp);
2726 		pause->sge_th_hi = SGE_TH_HI(bp);
2727 
2728 		/* validate SGE ring has enough to cross high threshold */
2729 		WARN_ON(bp->dropless_fc &&
2730 				pause->sge_th_hi + FW_PREFETCH_CNT >
2731 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
2732 
2733 		tpa_agg_size = min_t(u32,
2734 			(min_t(u32, 8, MAX_SKB_FRAGS) *
2735 			SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2736 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2737 			SGE_PAGE_SHIFT;
2738 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2739 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2740 		sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2741 				    0xffff);
2742 	}
2743 
2744 	/* pause - not for e1 */
2745 	if (!CHIP_IS_E1(bp)) {
2746 		pause->bd_th_lo = BD_TH_LO(bp);
2747 		pause->bd_th_hi = BD_TH_HI(bp);
2748 
2749 		pause->rcq_th_lo = RCQ_TH_LO(bp);
2750 		pause->rcq_th_hi = RCQ_TH_HI(bp);
2751 		/*
2752 		 * validate that rings have enough entries to cross
2753 		 * high thresholds
2754 		 */
2755 		WARN_ON(bp->dropless_fc &&
2756 				pause->bd_th_hi + FW_PREFETCH_CNT >
2757 				bp->rx_ring_size);
2758 		WARN_ON(bp->dropless_fc &&
2759 				pause->rcq_th_hi + FW_PREFETCH_CNT >
2760 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
2761 
2762 		pause->pri_map = 1;
2763 	}
2764 
2765 	/* rxq setup */
2766 	rxq_init->dscr_map = fp->rx_desc_mapping;
2767 	rxq_init->sge_map = fp->rx_sge_mapping;
2768 	rxq_init->rcq_map = fp->rx_comp_mapping;
2769 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2770 
2771 	/* This should be a maximum number of data bytes that may be
2772 	 * placed on the BD (not including paddings).
2773 	 */
2774 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
2775 		BNX2X_FW_RX_ALIGN_END -	IP_HEADER_ALIGNMENT_PADDING;
2776 
2777 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
2778 	rxq_init->tpa_agg_sz = tpa_agg_size;
2779 	rxq_init->sge_buf_sz = sge_sz;
2780 	rxq_init->max_sges_pkt = max_sge;
2781 	rxq_init->rss_engine_id = BP_FUNC(bp);
2782 	rxq_init->mcast_engine_id = BP_FUNC(bp);
2783 
2784 	/* Maximum number or simultaneous TPA aggregation for this Queue.
2785 	 *
2786 	 * For PF Clients it should be the maximum avaliable number.
2787 	 * VF driver(s) may want to define it to a smaller value.
2788 	 */
2789 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
2790 
2791 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2792 	rxq_init->fw_sb_id = fp->fw_sb_id;
2793 
2794 	if (IS_FCOE_FP(fp))
2795 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2796 	else
2797 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2798 }
2799 
2800 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2801 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2802 	u8 cos)
2803 {
2804 	txq_init->dscr_map = fp->txdata[cos].tx_desc_mapping;
2805 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2806 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2807 	txq_init->fw_sb_id = fp->fw_sb_id;
2808 
2809 	/*
2810 	 * set the tss leading client id for TX classfication ==
2811 	 * leading RSS client id
2812 	 */
2813 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2814 
2815 	if (IS_FCOE_FP(fp)) {
2816 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2817 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2818 	}
2819 }
2820 
2821 static void bnx2x_pf_init(struct bnx2x *bp)
2822 {
2823 	struct bnx2x_func_init_params func_init = {0};
2824 	struct event_ring_data eq_data = { {0} };
2825 	u16 flags;
2826 
2827 	if (!CHIP_IS_E1x(bp)) {
2828 		/* reset IGU PF statistics: MSIX + ATTN */
2829 		/* PF */
2830 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2831 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2832 			   (CHIP_MODE_IS_4_PORT(bp) ?
2833 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2834 		/* ATTN */
2835 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2836 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2837 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2838 			   (CHIP_MODE_IS_4_PORT(bp) ?
2839 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2840 	}
2841 
2842 	/* function setup flags */
2843 	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2844 
2845 	/* This flag is relevant for E1x only.
2846 	 * E2 doesn't have a TPA configuration in a function level.
2847 	 */
2848 	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
2849 
2850 	func_init.func_flgs = flags;
2851 	func_init.pf_id = BP_FUNC(bp);
2852 	func_init.func_id = BP_FUNC(bp);
2853 	func_init.spq_map = bp->spq_mapping;
2854 	func_init.spq_prod = bp->spq_prod_idx;
2855 
2856 	bnx2x_func_init(bp, &func_init);
2857 
2858 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
2859 
2860 	/*
2861 	 * Congestion management values depend on the link rate
2862 	 * There is no active link so initial link rate is set to 10 Gbps.
2863 	 * When the link comes up The congestion management values are
2864 	 * re-calculated according to the actual link rate.
2865 	 */
2866 	bp->link_vars.line_speed = SPEED_10000;
2867 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
2868 
2869 	/* Only the PMF sets the HW */
2870 	if (bp->port.pmf)
2871 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2872 
2873 	/* init Event Queue */
2874 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
2875 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
2876 	eq_data.producer = bp->eq_prod;
2877 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
2878 	eq_data.sb_id = DEF_SB_ID;
2879 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
2880 }
2881 
2882 
2883 static void bnx2x_e1h_disable(struct bnx2x *bp)
2884 {
2885 	int port = BP_PORT(bp);
2886 
2887 	bnx2x_tx_disable(bp);
2888 
2889 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
2890 }
2891 
2892 static void bnx2x_e1h_enable(struct bnx2x *bp)
2893 {
2894 	int port = BP_PORT(bp);
2895 
2896 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
2897 
2898 	/* Tx queue should be only reenabled */
2899 	netif_tx_wake_all_queues(bp->dev);
2900 
2901 	/*
2902 	 * Should not call netif_carrier_on since it will be called if the link
2903 	 * is up when checking for link state
2904 	 */
2905 }
2906 
2907 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
2908 
2909 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
2910 {
2911 	struct eth_stats_info *ether_stat =
2912 		&bp->slowpath->drv_info_to_mcp.ether_stat;
2913 
2914 	/* leave last char as NULL */
2915 	memcpy(ether_stat->version, DRV_MODULE_VERSION,
2916 	       ETH_STAT_INFO_VERSION_LEN - 1);
2917 
2918 	bp->fp[0].mac_obj.get_n_elements(bp, &bp->fp[0].mac_obj,
2919 					 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
2920 					 ether_stat->mac_local);
2921 
2922 	ether_stat->mtu_size = bp->dev->mtu;
2923 
2924 	if (bp->dev->features & NETIF_F_RXCSUM)
2925 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
2926 	if (bp->dev->features & NETIF_F_TSO)
2927 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
2928 	ether_stat->feature_flags |= bp->common.boot_mode;
2929 
2930 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
2931 
2932 	ether_stat->txq_size = bp->tx_ring_size;
2933 	ether_stat->rxq_size = bp->rx_ring_size;
2934 }
2935 
2936 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
2937 {
2938 #ifdef BCM_CNIC
2939 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
2940 	struct fcoe_stats_info *fcoe_stat =
2941 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
2942 
2943 	memcpy(fcoe_stat->mac_local, bp->fip_mac, ETH_ALEN);
2944 
2945 	fcoe_stat->qos_priority =
2946 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
2947 
2948 	/* insert FCoE stats from ramrod response */
2949 	if (!NO_FCOE(bp)) {
2950 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
2951 			&bp->fw_stats_data->queue_stats[FCOE_IDX].
2952 			tstorm_queue_statistics;
2953 
2954 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
2955 			&bp->fw_stats_data->queue_stats[FCOE_IDX].
2956 			xstorm_queue_statistics;
2957 
2958 		struct fcoe_statistics_params *fw_fcoe_stat =
2959 			&bp->fw_stats_data->fcoe;
2960 
2961 		ADD_64(fcoe_stat->rx_bytes_hi, 0, fcoe_stat->rx_bytes_lo,
2962 		       fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
2963 
2964 		ADD_64(fcoe_stat->rx_bytes_hi,
2965 		       fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
2966 		       fcoe_stat->rx_bytes_lo,
2967 		       fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
2968 
2969 		ADD_64(fcoe_stat->rx_bytes_hi,
2970 		       fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
2971 		       fcoe_stat->rx_bytes_lo,
2972 		       fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
2973 
2974 		ADD_64(fcoe_stat->rx_bytes_hi,
2975 		       fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
2976 		       fcoe_stat->rx_bytes_lo,
2977 		       fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
2978 
2979 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2980 		       fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
2981 
2982 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2983 		       fcoe_q_tstorm_stats->rcv_ucast_pkts);
2984 
2985 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2986 		       fcoe_q_tstorm_stats->rcv_bcast_pkts);
2987 
2988 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2989 		       fcoe_q_tstorm_stats->rcv_mcast_pkts);
2990 
2991 		ADD_64(fcoe_stat->tx_bytes_hi, 0, fcoe_stat->tx_bytes_lo,
2992 		       fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
2993 
2994 		ADD_64(fcoe_stat->tx_bytes_hi,
2995 		       fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
2996 		       fcoe_stat->tx_bytes_lo,
2997 		       fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
2998 
2999 		ADD_64(fcoe_stat->tx_bytes_hi,
3000 		       fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3001 		       fcoe_stat->tx_bytes_lo,
3002 		       fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3003 
3004 		ADD_64(fcoe_stat->tx_bytes_hi,
3005 		       fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3006 		       fcoe_stat->tx_bytes_lo,
3007 		       fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3008 
3009 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3010 		       fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3011 
3012 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3013 		       fcoe_q_xstorm_stats->ucast_pkts_sent);
3014 
3015 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3016 		       fcoe_q_xstorm_stats->bcast_pkts_sent);
3017 
3018 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3019 		       fcoe_q_xstorm_stats->mcast_pkts_sent);
3020 	}
3021 
3022 	/* ask L5 driver to add data to the struct */
3023 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3024 #endif
3025 }
3026 
3027 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3028 {
3029 #ifdef BCM_CNIC
3030 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3031 	struct iscsi_stats_info *iscsi_stat =
3032 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3033 
3034 	memcpy(iscsi_stat->mac_local, bp->cnic_eth_dev.iscsi_mac, ETH_ALEN);
3035 
3036 	iscsi_stat->qos_priority =
3037 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3038 
3039 	/* ask L5 driver to add data to the struct */
3040 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3041 #endif
3042 }
3043 
3044 /* called due to MCP event (on pmf):
3045  *	reread new bandwidth configuration
3046  *	configure FW
3047  *	notify others function about the change
3048  */
3049 static inline void bnx2x_config_mf_bw(struct bnx2x *bp)
3050 {
3051 	if (bp->link_vars.link_up) {
3052 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3053 		bnx2x_link_sync_notify(bp);
3054 	}
3055 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3056 }
3057 
3058 static inline void bnx2x_set_mf_bw(struct bnx2x *bp)
3059 {
3060 	bnx2x_config_mf_bw(bp);
3061 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3062 }
3063 
3064 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3065 {
3066 	enum drv_info_opcode op_code;
3067 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3068 
3069 	/* if drv_info version supported by MFW doesn't match - send NACK */
3070 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3071 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3072 		return;
3073 	}
3074 
3075 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3076 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3077 
3078 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3079 	       sizeof(union drv_info_to_mcp));
3080 
3081 	switch (op_code) {
3082 	case ETH_STATS_OPCODE:
3083 		bnx2x_drv_info_ether_stat(bp);
3084 		break;
3085 	case FCOE_STATS_OPCODE:
3086 		bnx2x_drv_info_fcoe_stat(bp);
3087 		break;
3088 	case ISCSI_STATS_OPCODE:
3089 		bnx2x_drv_info_iscsi_stat(bp);
3090 		break;
3091 	default:
3092 		/* if op code isn't supported - send NACK */
3093 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3094 		return;
3095 	}
3096 
3097 	/* if we got drv_info attn from MFW then these fields are defined in
3098 	 * shmem2 for sure
3099 	 */
3100 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3101 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3102 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3103 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3104 
3105 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3106 }
3107 
3108 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3109 {
3110 	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3111 
3112 	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3113 
3114 		/*
3115 		 * This is the only place besides the function initialization
3116 		 * where the bp->flags can change so it is done without any
3117 		 * locks
3118 		 */
3119 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3120 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3121 			bp->flags |= MF_FUNC_DIS;
3122 
3123 			bnx2x_e1h_disable(bp);
3124 		} else {
3125 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3126 			bp->flags &= ~MF_FUNC_DIS;
3127 
3128 			bnx2x_e1h_enable(bp);
3129 		}
3130 		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3131 	}
3132 	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3133 		bnx2x_config_mf_bw(bp);
3134 		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3135 	}
3136 
3137 	/* Report results to MCP */
3138 	if (dcc_event)
3139 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3140 	else
3141 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3142 }
3143 
3144 /* must be called under the spq lock */
3145 static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3146 {
3147 	struct eth_spe *next_spe = bp->spq_prod_bd;
3148 
3149 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3150 		bp->spq_prod_bd = bp->spq;
3151 		bp->spq_prod_idx = 0;
3152 		DP(BNX2X_MSG_SP, "end of spq\n");
3153 	} else {
3154 		bp->spq_prod_bd++;
3155 		bp->spq_prod_idx++;
3156 	}
3157 	return next_spe;
3158 }
3159 
3160 /* must be called under the spq lock */
3161 static inline void bnx2x_sp_prod_update(struct bnx2x *bp)
3162 {
3163 	int func = BP_FUNC(bp);
3164 
3165 	/*
3166 	 * Make sure that BD data is updated before writing the producer:
3167 	 * BD data is written to the memory, the producer is read from the
3168 	 * memory, thus we need a full memory barrier to ensure the ordering.
3169 	 */
3170 	mb();
3171 
3172 	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3173 		 bp->spq_prod_idx);
3174 	mmiowb();
3175 }
3176 
3177 /**
3178  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3179  *
3180  * @cmd:	command to check
3181  * @cmd_type:	command type
3182  */
3183 static inline bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3184 {
3185 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3186 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3187 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3188 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3189 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3190 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3191 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3192 		return true;
3193 	else
3194 		return false;
3195 
3196 }
3197 
3198 
3199 /**
3200  * bnx2x_sp_post - place a single command on an SP ring
3201  *
3202  * @bp:		driver handle
3203  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3204  * @cid:	SW CID the command is related to
3205  * @data_hi:	command private data address (high 32 bits)
3206  * @data_lo:	command private data address (low 32 bits)
3207  * @cmd_type:	command type (e.g. NONE, ETH)
3208  *
3209  * SP data is handled as if it's always an address pair, thus data fields are
3210  * not swapped to little endian in upper functions. Instead this function swaps
3211  * data as if it's two u32 fields.
3212  */
3213 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3214 		  u32 data_hi, u32 data_lo, int cmd_type)
3215 {
3216 	struct eth_spe *spe;
3217 	u16 type;
3218 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3219 
3220 #ifdef BNX2X_STOP_ON_ERROR
3221 	if (unlikely(bp->panic)) {
3222 		BNX2X_ERR("Can't post SP when there is panic\n");
3223 		return -EIO;
3224 	}
3225 #endif
3226 
3227 	spin_lock_bh(&bp->spq_lock);
3228 
3229 	if (common) {
3230 		if (!atomic_read(&bp->eq_spq_left)) {
3231 			BNX2X_ERR("BUG! EQ ring full!\n");
3232 			spin_unlock_bh(&bp->spq_lock);
3233 			bnx2x_panic();
3234 			return -EBUSY;
3235 		}
3236 	} else if (!atomic_read(&bp->cq_spq_left)) {
3237 			BNX2X_ERR("BUG! SPQ ring full!\n");
3238 			spin_unlock_bh(&bp->spq_lock);
3239 			bnx2x_panic();
3240 			return -EBUSY;
3241 	}
3242 
3243 	spe = bnx2x_sp_get_next(bp);
3244 
3245 	/* CID needs port number to be encoded int it */
3246 	spe->hdr.conn_and_cmd_data =
3247 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3248 				    HW_CID(bp, cid));
3249 
3250 	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3251 
3252 	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3253 		 SPE_HDR_FUNCTION_ID);
3254 
3255 	spe->hdr.type = cpu_to_le16(type);
3256 
3257 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3258 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3259 
3260 	/*
3261 	 * It's ok if the actual decrement is issued towards the memory
3262 	 * somewhere between the spin_lock and spin_unlock. Thus no
3263 	 * more explict memory barrier is needed.
3264 	 */
3265 	if (common)
3266 		atomic_dec(&bp->eq_spq_left);
3267 	else
3268 		atomic_dec(&bp->cq_spq_left);
3269 
3270 
3271 	DP(BNX2X_MSG_SP,
3272 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3273 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3274 	   (u32)(U64_LO(bp->spq_mapping) +
3275 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3276 	   HW_CID(bp, cid), data_hi, data_lo, type,
3277 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3278 
3279 	bnx2x_sp_prod_update(bp);
3280 	spin_unlock_bh(&bp->spq_lock);
3281 	return 0;
3282 }
3283 
3284 /* acquire split MCP access lock register */
3285 static int bnx2x_acquire_alr(struct bnx2x *bp)
3286 {
3287 	u32 j, val;
3288 	int rc = 0;
3289 
3290 	might_sleep();
3291 	for (j = 0; j < 1000; j++) {
3292 		val = (1UL << 31);
3293 		REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3294 		val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3295 		if (val & (1L << 31))
3296 			break;
3297 
3298 		msleep(5);
3299 	}
3300 	if (!(val & (1L << 31))) {
3301 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3302 		rc = -EBUSY;
3303 	}
3304 
3305 	return rc;
3306 }
3307 
3308 /* release split MCP access lock register */
3309 static void bnx2x_release_alr(struct bnx2x *bp)
3310 {
3311 	REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3312 }
3313 
3314 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3315 #define BNX2X_DEF_SB_IDX	0x0002
3316 
3317 static inline u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3318 {
3319 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3320 	u16 rc = 0;
3321 
3322 	barrier(); /* status block is written to by the chip */
3323 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3324 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3325 		rc |= BNX2X_DEF_SB_ATT_IDX;
3326 	}
3327 
3328 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3329 		bp->def_idx = def_sb->sp_sb.running_index;
3330 		rc |= BNX2X_DEF_SB_IDX;
3331 	}
3332 
3333 	/* Do not reorder: indecies reading should complete before handling */
3334 	barrier();
3335 	return rc;
3336 }
3337 
3338 /*
3339  * slow path service functions
3340  */
3341 
3342 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3343 {
3344 	int port = BP_PORT(bp);
3345 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3346 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3347 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3348 				       NIG_REG_MASK_INTERRUPT_PORT0;
3349 	u32 aeu_mask;
3350 	u32 nig_mask = 0;
3351 	u32 reg_addr;
3352 
3353 	if (bp->attn_state & asserted)
3354 		BNX2X_ERR("IGU ERROR\n");
3355 
3356 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3357 	aeu_mask = REG_RD(bp, aeu_addr);
3358 
3359 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3360 	   aeu_mask, asserted);
3361 	aeu_mask &= ~(asserted & 0x3ff);
3362 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3363 
3364 	REG_WR(bp, aeu_addr, aeu_mask);
3365 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3366 
3367 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3368 	bp->attn_state |= asserted;
3369 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3370 
3371 	if (asserted & ATTN_HARD_WIRED_MASK) {
3372 		if (asserted & ATTN_NIG_FOR_FUNC) {
3373 
3374 			bnx2x_acquire_phy_lock(bp);
3375 
3376 			/* save nig interrupt mask */
3377 			nig_mask = REG_RD(bp, nig_int_mask_addr);
3378 
3379 			/* If nig_mask is not set, no need to call the update
3380 			 * function.
3381 			 */
3382 			if (nig_mask) {
3383 				REG_WR(bp, nig_int_mask_addr, 0);
3384 
3385 				bnx2x_link_attn(bp);
3386 			}
3387 
3388 			/* handle unicore attn? */
3389 		}
3390 		if (asserted & ATTN_SW_TIMER_4_FUNC)
3391 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3392 
3393 		if (asserted & GPIO_2_FUNC)
3394 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3395 
3396 		if (asserted & GPIO_3_FUNC)
3397 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3398 
3399 		if (asserted & GPIO_4_FUNC)
3400 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3401 
3402 		if (port == 0) {
3403 			if (asserted & ATTN_GENERAL_ATTN_1) {
3404 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3405 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3406 			}
3407 			if (asserted & ATTN_GENERAL_ATTN_2) {
3408 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3409 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3410 			}
3411 			if (asserted & ATTN_GENERAL_ATTN_3) {
3412 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3413 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3414 			}
3415 		} else {
3416 			if (asserted & ATTN_GENERAL_ATTN_4) {
3417 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3418 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3419 			}
3420 			if (asserted & ATTN_GENERAL_ATTN_5) {
3421 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3422 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3423 			}
3424 			if (asserted & ATTN_GENERAL_ATTN_6) {
3425 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3426 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3427 			}
3428 		}
3429 
3430 	} /* if hardwired */
3431 
3432 	if (bp->common.int_block == INT_BLOCK_HC)
3433 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3434 			    COMMAND_REG_ATTN_BITS_SET);
3435 	else
3436 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3437 
3438 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3439 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3440 	REG_WR(bp, reg_addr, asserted);
3441 
3442 	/* now set back the mask */
3443 	if (asserted & ATTN_NIG_FOR_FUNC) {
3444 		REG_WR(bp, nig_int_mask_addr, nig_mask);
3445 		bnx2x_release_phy_lock(bp);
3446 	}
3447 }
3448 
3449 static inline void bnx2x_fan_failure(struct bnx2x *bp)
3450 {
3451 	int port = BP_PORT(bp);
3452 	u32 ext_phy_config;
3453 	/* mark the failure */
3454 	ext_phy_config =
3455 		SHMEM_RD(bp,
3456 			 dev_info.port_hw_config[port].external_phy_config);
3457 
3458 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3459 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3460 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3461 		 ext_phy_config);
3462 
3463 	/* log the failure */
3464 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3465 			    "Please contact OEM Support for assistance\n");
3466 
3467 	/*
3468 	 * Scheudle device reset (unload)
3469 	 * This is due to some boards consuming sufficient power when driver is
3470 	 * up to overheat if fan fails.
3471 	 */
3472 	smp_mb__before_clear_bit();
3473 	set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3474 	smp_mb__after_clear_bit();
3475 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
3476 
3477 }
3478 
3479 static inline void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3480 {
3481 	int port = BP_PORT(bp);
3482 	int reg_offset;
3483 	u32 val;
3484 
3485 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3486 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3487 
3488 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3489 
3490 		val = REG_RD(bp, reg_offset);
3491 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3492 		REG_WR(bp, reg_offset, val);
3493 
3494 		BNX2X_ERR("SPIO5 hw attention\n");
3495 
3496 		/* Fan failure attention */
3497 		bnx2x_hw_reset_phy(&bp->link_params);
3498 		bnx2x_fan_failure(bp);
3499 	}
3500 
3501 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3502 		bnx2x_acquire_phy_lock(bp);
3503 		bnx2x_handle_module_detect_int(&bp->link_params);
3504 		bnx2x_release_phy_lock(bp);
3505 	}
3506 
3507 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
3508 
3509 		val = REG_RD(bp, reg_offset);
3510 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3511 		REG_WR(bp, reg_offset, val);
3512 
3513 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3514 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3515 		bnx2x_panic();
3516 	}
3517 }
3518 
3519 static inline void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3520 {
3521 	u32 val;
3522 
3523 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3524 
3525 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3526 		BNX2X_ERR("DB hw attention 0x%x\n", val);
3527 		/* DORQ discard attention */
3528 		if (val & 0x2)
3529 			BNX2X_ERR("FATAL error from DORQ\n");
3530 	}
3531 
3532 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
3533 
3534 		int port = BP_PORT(bp);
3535 		int reg_offset;
3536 
3537 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3538 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3539 
3540 		val = REG_RD(bp, reg_offset);
3541 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3542 		REG_WR(bp, reg_offset, val);
3543 
3544 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3545 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3546 		bnx2x_panic();
3547 	}
3548 }
3549 
3550 static inline void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3551 {
3552 	u32 val;
3553 
3554 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3555 
3556 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3557 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
3558 		/* CFC error attention */
3559 		if (val & 0x2)
3560 			BNX2X_ERR("FATAL error from CFC\n");
3561 	}
3562 
3563 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3564 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3565 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3566 		/* RQ_USDMDP_FIFO_OVERFLOW */
3567 		if (val & 0x18000)
3568 			BNX2X_ERR("FATAL error from PXP\n");
3569 
3570 		if (!CHIP_IS_E1x(bp)) {
3571 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3572 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3573 		}
3574 	}
3575 
3576 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
3577 
3578 		int port = BP_PORT(bp);
3579 		int reg_offset;
3580 
3581 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3582 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3583 
3584 		val = REG_RD(bp, reg_offset);
3585 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3586 		REG_WR(bp, reg_offset, val);
3587 
3588 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3589 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3590 		bnx2x_panic();
3591 	}
3592 }
3593 
3594 static inline void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3595 {
3596 	u32 val;
3597 
3598 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3599 
3600 		if (attn & BNX2X_PMF_LINK_ASSERT) {
3601 			int func = BP_FUNC(bp);
3602 
3603 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3604 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3605 					func_mf_config[BP_ABS_FUNC(bp)].config);
3606 			val = SHMEM_RD(bp,
3607 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
3608 			if (val & DRV_STATUS_DCC_EVENT_MASK)
3609 				bnx2x_dcc_event(bp,
3610 					    (val & DRV_STATUS_DCC_EVENT_MASK));
3611 
3612 			if (val & DRV_STATUS_SET_MF_BW)
3613 				bnx2x_set_mf_bw(bp);
3614 
3615 			if (val & DRV_STATUS_DRV_INFO_REQ)
3616 				bnx2x_handle_drv_info_req(bp);
3617 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3618 				bnx2x_pmf_update(bp);
3619 
3620 			if (bp->port.pmf &&
3621 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3622 				bp->dcbx_enabled > 0)
3623 				/* start dcbx state machine */
3624 				bnx2x_dcbx_set_params(bp,
3625 					BNX2X_DCBX_STATE_NEG_RECEIVED);
3626 			if (bp->link_vars.periodic_flags &
3627 			    PERIODIC_FLAGS_LINK_EVENT) {
3628 				/*  sync with link */
3629 				bnx2x_acquire_phy_lock(bp);
3630 				bp->link_vars.periodic_flags &=
3631 					~PERIODIC_FLAGS_LINK_EVENT;
3632 				bnx2x_release_phy_lock(bp);
3633 				if (IS_MF(bp))
3634 					bnx2x_link_sync_notify(bp);
3635 				bnx2x_link_report(bp);
3636 			}
3637 			/* Always call it here: bnx2x_link_report() will
3638 			 * prevent the link indication duplication.
3639 			 */
3640 			bnx2x__link_status_update(bp);
3641 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
3642 
3643 			BNX2X_ERR("MC assert!\n");
3644 			bnx2x_mc_assert(bp);
3645 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3646 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3647 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3648 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3649 			bnx2x_panic();
3650 
3651 		} else if (attn & BNX2X_MCP_ASSERT) {
3652 
3653 			BNX2X_ERR("MCP assert!\n");
3654 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3655 			bnx2x_fw_dump(bp);
3656 
3657 		} else
3658 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3659 	}
3660 
3661 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3662 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3663 		if (attn & BNX2X_GRC_TIMEOUT) {
3664 			val = CHIP_IS_E1(bp) ? 0 :
3665 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3666 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
3667 		}
3668 		if (attn & BNX2X_GRC_RSV) {
3669 			val = CHIP_IS_E1(bp) ? 0 :
3670 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3671 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
3672 		}
3673 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3674 	}
3675 }
3676 
3677 /*
3678  * Bits map:
3679  * 0-7   - Engine0 load counter.
3680  * 8-15  - Engine1 load counter.
3681  * 16    - Engine0 RESET_IN_PROGRESS bit.
3682  * 17    - Engine1 RESET_IN_PROGRESS bit.
3683  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3684  *         on the engine
3685  * 19    - Engine1 ONE_IS_LOADED.
3686  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
3687  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
3688  *         just the one belonging to its engine).
3689  *
3690  */
3691 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
3692 
3693 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
3694 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
3695 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
3696 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
3697 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
3698 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
3699 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
3700 
3701 /*
3702  * Set the GLOBAL_RESET bit.
3703  *
3704  * Should be run under rtnl lock
3705  */
3706 void bnx2x_set_reset_global(struct bnx2x *bp)
3707 {
3708 	u32 val;
3709 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3710 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3711 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3712 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3713 }
3714 
3715 /*
3716  * Clear the GLOBAL_RESET bit.
3717  *
3718  * Should be run under rtnl lock
3719  */
3720 static inline void bnx2x_clear_reset_global(struct bnx2x *bp)
3721 {
3722 	u32 val;
3723 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3724 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3725 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3726 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3727 }
3728 
3729 /*
3730  * Checks the GLOBAL_RESET bit.
3731  *
3732  * should be run under rtnl lock
3733  */
3734 static inline bool bnx2x_reset_is_global(struct bnx2x *bp)
3735 {
3736 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3737 
3738 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3739 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3740 }
3741 
3742 /*
3743  * Clear RESET_IN_PROGRESS bit for the current engine.
3744  *
3745  * Should be run under rtnl lock
3746  */
3747 static inline void bnx2x_set_reset_done(struct bnx2x *bp)
3748 {
3749 	u32 val;
3750 	u32 bit = BP_PATH(bp) ?
3751 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3752 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3753 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3754 
3755 	/* Clear the bit */
3756 	val &= ~bit;
3757 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3758 
3759 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3760 }
3761 
3762 /*
3763  * Set RESET_IN_PROGRESS for the current engine.
3764  *
3765  * should be run under rtnl lock
3766  */
3767 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3768 {
3769 	u32 val;
3770 	u32 bit = BP_PATH(bp) ?
3771 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3772 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3773 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3774 
3775 	/* Set the bit */
3776 	val |= bit;
3777 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3778 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3779 }
3780 
3781 /*
3782  * Checks the RESET_IN_PROGRESS bit for the given engine.
3783  * should be run under rtnl lock
3784  */
3785 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
3786 {
3787 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3788 	u32 bit = engine ?
3789 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3790 
3791 	/* return false if bit is set */
3792 	return (val & bit) ? false : true;
3793 }
3794 
3795 /*
3796  * set pf load for the current pf.
3797  *
3798  * should be run under rtnl lock
3799  */
3800 void bnx2x_set_pf_load(struct bnx2x *bp)
3801 {
3802 	u32 val1, val;
3803 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3804 			     BNX2X_PATH0_LOAD_CNT_MASK;
3805 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3806 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3807 
3808 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3809 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3810 
3811 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
3812 
3813 	/* get the current counter value */
3814 	val1 = (val & mask) >> shift;
3815 
3816 	/* set bit of that PF */
3817 	val1 |= (1 << bp->pf_num);
3818 
3819 	/* clear the old value */
3820 	val &= ~mask;
3821 
3822 	/* set the new one */
3823 	val |= ((val1 << shift) & mask);
3824 
3825 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3826 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3827 }
3828 
3829 /**
3830  * bnx2x_clear_pf_load - clear pf load mark
3831  *
3832  * @bp:		driver handle
3833  *
3834  * Should be run under rtnl lock.
3835  * Decrements the load counter for the current engine. Returns
3836  * whether other functions are still loaded
3837  */
3838 bool bnx2x_clear_pf_load(struct bnx2x *bp)
3839 {
3840 	u32 val1, val;
3841 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3842 			     BNX2X_PATH0_LOAD_CNT_MASK;
3843 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3844 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3845 
3846 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3847 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3848 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
3849 
3850 	/* get the current counter value */
3851 	val1 = (val & mask) >> shift;
3852 
3853 	/* clear bit of that PF */
3854 	val1 &= ~(1 << bp->pf_num);
3855 
3856 	/* clear the old value */
3857 	val &= ~mask;
3858 
3859 	/* set the new one */
3860 	val |= ((val1 << shift) & mask);
3861 
3862 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3863 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3864 	return val1 != 0;
3865 }
3866 
3867 /*
3868  * Read the load status for the current engine.
3869  *
3870  * should be run under rtnl lock
3871  */
3872 static inline bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
3873 {
3874 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
3875 			     BNX2X_PATH0_LOAD_CNT_MASK);
3876 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3877 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
3878 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3879 
3880 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
3881 
3882 	val = (val & mask) >> shift;
3883 
3884 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
3885 	   engine, val);
3886 
3887 	return val != 0;
3888 }
3889 
3890 /*
3891  * Reset the load status for the current engine.
3892  */
3893 static inline void bnx2x_clear_load_status(struct bnx2x *bp)
3894 {
3895 	u32 val;
3896 	u32 mask = (BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3897 		    BNX2X_PATH0_LOAD_CNT_MASK);
3898 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3899 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3900 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~mask));
3901 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3902 }
3903 
3904 static inline void _print_next_block(int idx, const char *blk)
3905 {
3906 	pr_cont("%s%s", idx ? ", " : "", blk);
3907 }
3908 
3909 static inline int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
3910 						  bool print)
3911 {
3912 	int i = 0;
3913 	u32 cur_bit = 0;
3914 	for (i = 0; sig; i++) {
3915 		cur_bit = ((u32)0x1 << i);
3916 		if (sig & cur_bit) {
3917 			switch (cur_bit) {
3918 			case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3919 				if (print)
3920 					_print_next_block(par_num++, "BRB");
3921 				break;
3922 			case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3923 				if (print)
3924 					_print_next_block(par_num++, "PARSER");
3925 				break;
3926 			case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3927 				if (print)
3928 					_print_next_block(par_num++, "TSDM");
3929 				break;
3930 			case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3931 				if (print)
3932 					_print_next_block(par_num++,
3933 							  "SEARCHER");
3934 				break;
3935 			case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3936 				if (print)
3937 					_print_next_block(par_num++, "TCM");
3938 				break;
3939 			case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3940 				if (print)
3941 					_print_next_block(par_num++, "TSEMI");
3942 				break;
3943 			case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3944 				if (print)
3945 					_print_next_block(par_num++, "XPB");
3946 				break;
3947 			}
3948 
3949 			/* Clear the bit */
3950 			sig &= ~cur_bit;
3951 		}
3952 	}
3953 
3954 	return par_num;
3955 }
3956 
3957 static inline int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
3958 						  bool *global, bool print)
3959 {
3960 	int i = 0;
3961 	u32 cur_bit = 0;
3962 	for (i = 0; sig; i++) {
3963 		cur_bit = ((u32)0x1 << i);
3964 		if (sig & cur_bit) {
3965 			switch (cur_bit) {
3966 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3967 				if (print)
3968 					_print_next_block(par_num++, "PBF");
3969 				break;
3970 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3971 				if (print)
3972 					_print_next_block(par_num++, "QM");
3973 				break;
3974 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3975 				if (print)
3976 					_print_next_block(par_num++, "TM");
3977 				break;
3978 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3979 				if (print)
3980 					_print_next_block(par_num++, "XSDM");
3981 				break;
3982 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3983 				if (print)
3984 					_print_next_block(par_num++, "XCM");
3985 				break;
3986 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3987 				if (print)
3988 					_print_next_block(par_num++, "XSEMI");
3989 				break;
3990 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3991 				if (print)
3992 					_print_next_block(par_num++,
3993 							  "DOORBELLQ");
3994 				break;
3995 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
3996 				if (print)
3997 					_print_next_block(par_num++, "NIG");
3998 				break;
3999 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4000 				if (print)
4001 					_print_next_block(par_num++,
4002 							  "VAUX PCI CORE");
4003 				*global = true;
4004 				break;
4005 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4006 				if (print)
4007 					_print_next_block(par_num++, "DEBUG");
4008 				break;
4009 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4010 				if (print)
4011 					_print_next_block(par_num++, "USDM");
4012 				break;
4013 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4014 				if (print)
4015 					_print_next_block(par_num++, "UCM");
4016 				break;
4017 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4018 				if (print)
4019 					_print_next_block(par_num++, "USEMI");
4020 				break;
4021 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4022 				if (print)
4023 					_print_next_block(par_num++, "UPB");
4024 				break;
4025 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4026 				if (print)
4027 					_print_next_block(par_num++, "CSDM");
4028 				break;
4029 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4030 				if (print)
4031 					_print_next_block(par_num++, "CCM");
4032 				break;
4033 			}
4034 
4035 			/* Clear the bit */
4036 			sig &= ~cur_bit;
4037 		}
4038 	}
4039 
4040 	return par_num;
4041 }
4042 
4043 static inline int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
4044 						  bool print)
4045 {
4046 	int i = 0;
4047 	u32 cur_bit = 0;
4048 	for (i = 0; sig; i++) {
4049 		cur_bit = ((u32)0x1 << i);
4050 		if (sig & cur_bit) {
4051 			switch (cur_bit) {
4052 			case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4053 				if (print)
4054 					_print_next_block(par_num++, "CSEMI");
4055 				break;
4056 			case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4057 				if (print)
4058 					_print_next_block(par_num++, "PXP");
4059 				break;
4060 			case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4061 				if (print)
4062 					_print_next_block(par_num++,
4063 					"PXPPCICLOCKCLIENT");
4064 				break;
4065 			case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4066 				if (print)
4067 					_print_next_block(par_num++, "CFC");
4068 				break;
4069 			case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4070 				if (print)
4071 					_print_next_block(par_num++, "CDU");
4072 				break;
4073 			case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4074 				if (print)
4075 					_print_next_block(par_num++, "DMAE");
4076 				break;
4077 			case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4078 				if (print)
4079 					_print_next_block(par_num++, "IGU");
4080 				break;
4081 			case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4082 				if (print)
4083 					_print_next_block(par_num++, "MISC");
4084 				break;
4085 			}
4086 
4087 			/* Clear the bit */
4088 			sig &= ~cur_bit;
4089 		}
4090 	}
4091 
4092 	return par_num;
4093 }
4094 
4095 static inline int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4096 						  bool *global, bool print)
4097 {
4098 	int i = 0;
4099 	u32 cur_bit = 0;
4100 	for (i = 0; sig; i++) {
4101 		cur_bit = ((u32)0x1 << i);
4102 		if (sig & cur_bit) {
4103 			switch (cur_bit) {
4104 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4105 				if (print)
4106 					_print_next_block(par_num++, "MCP ROM");
4107 				*global = true;
4108 				break;
4109 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4110 				if (print)
4111 					_print_next_block(par_num++,
4112 							  "MCP UMP RX");
4113 				*global = true;
4114 				break;
4115 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4116 				if (print)
4117 					_print_next_block(par_num++,
4118 							  "MCP UMP TX");
4119 				*global = true;
4120 				break;
4121 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4122 				if (print)
4123 					_print_next_block(par_num++,
4124 							  "MCP SCPAD");
4125 				*global = true;
4126 				break;
4127 			}
4128 
4129 			/* Clear the bit */
4130 			sig &= ~cur_bit;
4131 		}
4132 	}
4133 
4134 	return par_num;
4135 }
4136 
4137 static inline int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
4138 						  bool print)
4139 {
4140 	int i = 0;
4141 	u32 cur_bit = 0;
4142 	for (i = 0; sig; i++) {
4143 		cur_bit = ((u32)0x1 << i);
4144 		if (sig & cur_bit) {
4145 			switch (cur_bit) {
4146 			case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4147 				if (print)
4148 					_print_next_block(par_num++, "PGLUE_B");
4149 				break;
4150 			case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4151 				if (print)
4152 					_print_next_block(par_num++, "ATC");
4153 				break;
4154 			}
4155 
4156 			/* Clear the bit */
4157 			sig &= ~cur_bit;
4158 		}
4159 	}
4160 
4161 	return par_num;
4162 }
4163 
4164 static inline bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4165 				     u32 *sig)
4166 {
4167 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4168 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4169 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4170 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4171 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4172 		int par_num = 0;
4173 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4174 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4175 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4176 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4177 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4178 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4179 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4180 		if (print)
4181 			netdev_err(bp->dev,
4182 				   "Parity errors detected in blocks: ");
4183 		par_num = bnx2x_check_blocks_with_parity0(
4184 			sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4185 		par_num = bnx2x_check_blocks_with_parity1(
4186 			sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4187 		par_num = bnx2x_check_blocks_with_parity2(
4188 			sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4189 		par_num = bnx2x_check_blocks_with_parity3(
4190 			sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4191 		par_num = bnx2x_check_blocks_with_parity4(
4192 			sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4193 
4194 		if (print)
4195 			pr_cont("\n");
4196 
4197 		return true;
4198 	} else
4199 		return false;
4200 }
4201 
4202 /**
4203  * bnx2x_chk_parity_attn - checks for parity attentions.
4204  *
4205  * @bp:		driver handle
4206  * @global:	true if there was a global attention
4207  * @print:	show parity attention in syslog
4208  */
4209 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4210 {
4211 	struct attn_route attn = { {0} };
4212 	int port = BP_PORT(bp);
4213 
4214 	attn.sig[0] = REG_RD(bp,
4215 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4216 			     port*4);
4217 	attn.sig[1] = REG_RD(bp,
4218 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4219 			     port*4);
4220 	attn.sig[2] = REG_RD(bp,
4221 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4222 			     port*4);
4223 	attn.sig[3] = REG_RD(bp,
4224 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4225 			     port*4);
4226 
4227 	if (!CHIP_IS_E1x(bp))
4228 		attn.sig[4] = REG_RD(bp,
4229 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4230 				     port*4);
4231 
4232 	return bnx2x_parity_attn(bp, global, print, attn.sig);
4233 }
4234 
4235 
4236 static inline void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4237 {
4238 	u32 val;
4239 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4240 
4241 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4242 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4243 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4244 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4245 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4246 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4247 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4248 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4249 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4250 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4251 		if (val &
4252 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4253 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4254 		if (val &
4255 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4256 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4257 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4258 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4259 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4260 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4261 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4262 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4263 	}
4264 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4265 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4266 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4267 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4268 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4269 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4270 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4271 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4272 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4273 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4274 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4275 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4276 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4277 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4278 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4279 	}
4280 
4281 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4282 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4283 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4284 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4285 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4286 	}
4287 
4288 }
4289 
4290 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4291 {
4292 	struct attn_route attn, *group_mask;
4293 	int port = BP_PORT(bp);
4294 	int index;
4295 	u32 reg_addr;
4296 	u32 val;
4297 	u32 aeu_mask;
4298 	bool global = false;
4299 
4300 	/* need to take HW lock because MCP or other port might also
4301 	   try to handle this event */
4302 	bnx2x_acquire_alr(bp);
4303 
4304 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4305 #ifndef BNX2X_STOP_ON_ERROR
4306 		bp->recovery_state = BNX2X_RECOVERY_INIT;
4307 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4308 		/* Disable HW interrupts */
4309 		bnx2x_int_disable(bp);
4310 		/* In case of parity errors don't handle attentions so that
4311 		 * other function would "see" parity errors.
4312 		 */
4313 #else
4314 		bnx2x_panic();
4315 #endif
4316 		bnx2x_release_alr(bp);
4317 		return;
4318 	}
4319 
4320 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4321 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4322 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4323 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4324 	if (!CHIP_IS_E1x(bp))
4325 		attn.sig[4] =
4326 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4327 	else
4328 		attn.sig[4] = 0;
4329 
4330 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4331 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4332 
4333 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4334 		if (deasserted & (1 << index)) {
4335 			group_mask = &bp->attn_group[index];
4336 
4337 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4338 			   index,
4339 			   group_mask->sig[0], group_mask->sig[1],
4340 			   group_mask->sig[2], group_mask->sig[3],
4341 			   group_mask->sig[4]);
4342 
4343 			bnx2x_attn_int_deasserted4(bp,
4344 					attn.sig[4] & group_mask->sig[4]);
4345 			bnx2x_attn_int_deasserted3(bp,
4346 					attn.sig[3] & group_mask->sig[3]);
4347 			bnx2x_attn_int_deasserted1(bp,
4348 					attn.sig[1] & group_mask->sig[1]);
4349 			bnx2x_attn_int_deasserted2(bp,
4350 					attn.sig[2] & group_mask->sig[2]);
4351 			bnx2x_attn_int_deasserted0(bp,
4352 					attn.sig[0] & group_mask->sig[0]);
4353 		}
4354 	}
4355 
4356 	bnx2x_release_alr(bp);
4357 
4358 	if (bp->common.int_block == INT_BLOCK_HC)
4359 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4360 			    COMMAND_REG_ATTN_BITS_CLR);
4361 	else
4362 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4363 
4364 	val = ~deasserted;
4365 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4366 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4367 	REG_WR(bp, reg_addr, val);
4368 
4369 	if (~bp->attn_state & deasserted)
4370 		BNX2X_ERR("IGU ERROR\n");
4371 
4372 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4373 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
4374 
4375 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4376 	aeu_mask = REG_RD(bp, reg_addr);
4377 
4378 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4379 	   aeu_mask, deasserted);
4380 	aeu_mask |= (deasserted & 0x3ff);
4381 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4382 
4383 	REG_WR(bp, reg_addr, aeu_mask);
4384 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4385 
4386 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4387 	bp->attn_state &= ~deasserted;
4388 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4389 }
4390 
4391 static void bnx2x_attn_int(struct bnx2x *bp)
4392 {
4393 	/* read local copy of bits */
4394 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4395 								attn_bits);
4396 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4397 								attn_bits_ack);
4398 	u32 attn_state = bp->attn_state;
4399 
4400 	/* look for changed bits */
4401 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4402 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4403 
4404 	DP(NETIF_MSG_HW,
4405 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4406 	   attn_bits, attn_ack, asserted, deasserted);
4407 
4408 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4409 		BNX2X_ERR("BAD attention state\n");
4410 
4411 	/* handle bits that were raised */
4412 	if (asserted)
4413 		bnx2x_attn_int_asserted(bp, asserted);
4414 
4415 	if (deasserted)
4416 		bnx2x_attn_int_deasserted(bp, deasserted);
4417 }
4418 
4419 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4420 		      u16 index, u8 op, u8 update)
4421 {
4422 	u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4423 
4424 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4425 			     igu_addr);
4426 }
4427 
4428 static inline void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4429 {
4430 	/* No memory barriers */
4431 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4432 	mmiowb(); /* keep prod updates ordered */
4433 }
4434 
4435 #ifdef BCM_CNIC
4436 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4437 				      union event_ring_elem *elem)
4438 {
4439 	u8 err = elem->message.error;
4440 
4441 	if (!bp->cnic_eth_dev.starting_cid  ||
4442 	    (cid < bp->cnic_eth_dev.starting_cid &&
4443 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
4444 		return 1;
4445 
4446 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4447 
4448 	if (unlikely(err)) {
4449 
4450 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4451 			  cid);
4452 		bnx2x_panic_dump(bp);
4453 	}
4454 	bnx2x_cnic_cfc_comp(bp, cid, err);
4455 	return 0;
4456 }
4457 #endif
4458 
4459 static inline void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4460 {
4461 	struct bnx2x_mcast_ramrod_params rparam;
4462 	int rc;
4463 
4464 	memset(&rparam, 0, sizeof(rparam));
4465 
4466 	rparam.mcast_obj = &bp->mcast_obj;
4467 
4468 	netif_addr_lock_bh(bp->dev);
4469 
4470 	/* Clear pending state for the last command */
4471 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4472 
4473 	/* If there are pending mcast commands - send them */
4474 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4475 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4476 		if (rc < 0)
4477 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4478 				  rc);
4479 	}
4480 
4481 	netif_addr_unlock_bh(bp->dev);
4482 }
4483 
4484 static inline void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4485 						   union event_ring_elem *elem)
4486 {
4487 	unsigned long ramrod_flags = 0;
4488 	int rc = 0;
4489 	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4490 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4491 
4492 	/* Always push next commands out, don't wait here */
4493 	__set_bit(RAMROD_CONT, &ramrod_flags);
4494 
4495 	switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4496 	case BNX2X_FILTER_MAC_PENDING:
4497 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4498 #ifdef BCM_CNIC
4499 		if (cid == BNX2X_ISCSI_ETH_CID)
4500 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4501 		else
4502 #endif
4503 			vlan_mac_obj = &bp->fp[cid].mac_obj;
4504 
4505 		break;
4506 	case BNX2X_FILTER_MCAST_PENDING:
4507 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4508 		/* This is only relevant for 57710 where multicast MACs are
4509 		 * configured as unicast MACs using the same ramrod.
4510 		 */
4511 		bnx2x_handle_mcast_eqe(bp);
4512 		return;
4513 	default:
4514 		BNX2X_ERR("Unsupported classification command: %d\n",
4515 			  elem->message.data.eth_event.echo);
4516 		return;
4517 	}
4518 
4519 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4520 
4521 	if (rc < 0)
4522 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4523 	else if (rc > 0)
4524 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4525 
4526 }
4527 
4528 #ifdef BCM_CNIC
4529 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4530 #endif
4531 
4532 static inline void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4533 {
4534 	netif_addr_lock_bh(bp->dev);
4535 
4536 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4537 
4538 	/* Send rx_mode command again if was requested */
4539 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4540 		bnx2x_set_storm_rx_mode(bp);
4541 #ifdef BCM_CNIC
4542 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4543 				    &bp->sp_state))
4544 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
4545 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4546 				    &bp->sp_state))
4547 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
4548 #endif
4549 
4550 	netif_addr_unlock_bh(bp->dev);
4551 }
4552 
4553 static inline struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4554 	struct bnx2x *bp, u32 cid)
4555 {
4556 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4557 #ifdef BCM_CNIC
4558 	if (cid == BNX2X_FCOE_ETH_CID)
4559 		return &bnx2x_fcoe(bp, q_obj);
4560 	else
4561 #endif
4562 		return &bnx2x_fp(bp, CID_TO_FP(cid), q_obj);
4563 }
4564 
4565 static void bnx2x_eq_int(struct bnx2x *bp)
4566 {
4567 	u16 hw_cons, sw_cons, sw_prod;
4568 	union event_ring_elem *elem;
4569 	u32 cid;
4570 	u8 opcode;
4571 	int spqe_cnt = 0;
4572 	struct bnx2x_queue_sp_obj *q_obj;
4573 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4574 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4575 
4576 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4577 
4578 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4579 	 * when we get the the next-page we nned to adjust so the loop
4580 	 * condition below will be met. The next element is the size of a
4581 	 * regular element and hence incrementing by 1
4582 	 */
4583 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4584 		hw_cons++;
4585 
4586 	/* This function may never run in parallel with itself for a
4587 	 * specific bp, thus there is no need in "paired" read memory
4588 	 * barrier here.
4589 	 */
4590 	sw_cons = bp->eq_cons;
4591 	sw_prod = bp->eq_prod;
4592 
4593 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
4594 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4595 
4596 	for (; sw_cons != hw_cons;
4597 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4598 
4599 
4600 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4601 
4602 		cid = SW_CID(elem->message.data.cfc_del_event.cid);
4603 		opcode = elem->message.opcode;
4604 
4605 
4606 		/* handle eq element */
4607 		switch (opcode) {
4608 		case EVENT_RING_OPCODE_STAT_QUERY:
4609 			DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
4610 			   "got statistics comp event %d\n",
4611 			   bp->stats_comp++);
4612 			/* nothing to do with stats comp */
4613 			goto next_spqe;
4614 
4615 		case EVENT_RING_OPCODE_CFC_DEL:
4616 			/* handle according to cid range */
4617 			/*
4618 			 * we may want to verify here that the bp state is
4619 			 * HALTING
4620 			 */
4621 			DP(BNX2X_MSG_SP,
4622 			   "got delete ramrod for MULTI[%d]\n", cid);
4623 #ifdef BCM_CNIC
4624 			if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4625 				goto next_spqe;
4626 #endif
4627 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
4628 
4629 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4630 				break;
4631 
4632 
4633 
4634 			goto next_spqe;
4635 
4636 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
4637 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
4638 			if (f_obj->complete_cmd(bp, f_obj,
4639 						BNX2X_F_CMD_TX_STOP))
4640 				break;
4641 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4642 			goto next_spqe;
4643 
4644 		case EVENT_RING_OPCODE_START_TRAFFIC:
4645 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
4646 			if (f_obj->complete_cmd(bp, f_obj,
4647 						BNX2X_F_CMD_TX_START))
4648 				break;
4649 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4650 			goto next_spqe;
4651 		case EVENT_RING_OPCODE_FUNCTION_START:
4652 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4653 			   "got FUNC_START ramrod\n");
4654 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4655 				break;
4656 
4657 			goto next_spqe;
4658 
4659 		case EVENT_RING_OPCODE_FUNCTION_STOP:
4660 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4661 			   "got FUNC_STOP ramrod\n");
4662 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4663 				break;
4664 
4665 			goto next_spqe;
4666 		}
4667 
4668 		switch (opcode | bp->state) {
4669 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4670 		      BNX2X_STATE_OPEN):
4671 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4672 		      BNX2X_STATE_OPENING_WAIT4_PORT):
4673 			cid = elem->message.data.eth_event.echo &
4674 				BNX2X_SWCID_MASK;
4675 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4676 			   cid);
4677 			rss_raw->clear_pending(rss_raw);
4678 			break;
4679 
4680 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4681 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4682 		case (EVENT_RING_OPCODE_SET_MAC |
4683 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4684 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4685 		      BNX2X_STATE_OPEN):
4686 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4687 		      BNX2X_STATE_DIAG):
4688 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4689 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4690 			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
4691 			bnx2x_handle_classification_eqe(bp, elem);
4692 			break;
4693 
4694 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4695 		      BNX2X_STATE_OPEN):
4696 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4697 		      BNX2X_STATE_DIAG):
4698 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4699 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4700 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
4701 			bnx2x_handle_mcast_eqe(bp);
4702 			break;
4703 
4704 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4705 		      BNX2X_STATE_OPEN):
4706 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4707 		      BNX2X_STATE_DIAG):
4708 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4709 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4710 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
4711 			bnx2x_handle_rx_mode_eqe(bp);
4712 			break;
4713 		default:
4714 			/* unknown event log error and continue */
4715 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4716 				  elem->message.opcode, bp->state);
4717 		}
4718 next_spqe:
4719 		spqe_cnt++;
4720 	} /* for */
4721 
4722 	smp_mb__before_atomic_inc();
4723 	atomic_add(spqe_cnt, &bp->eq_spq_left);
4724 
4725 	bp->eq_cons = sw_cons;
4726 	bp->eq_prod = sw_prod;
4727 	/* Make sure that above mem writes were issued towards the memory */
4728 	smp_wmb();
4729 
4730 	/* update producer */
4731 	bnx2x_update_eq_prod(bp, bp->eq_prod);
4732 }
4733 
4734 static void bnx2x_sp_task(struct work_struct *work)
4735 {
4736 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
4737 	u16 status;
4738 
4739 	status = bnx2x_update_dsb_idx(bp);
4740 /*	if (status == 0)				     */
4741 /*		BNX2X_ERR("spurious slowpath interrupt!\n"); */
4742 
4743 	DP(BNX2X_MSG_SP, "got a slowpath interrupt (status 0x%x)\n", status);
4744 
4745 	/* HW attentions */
4746 	if (status & BNX2X_DEF_SB_ATT_IDX) {
4747 		bnx2x_attn_int(bp);
4748 		status &= ~BNX2X_DEF_SB_ATT_IDX;
4749 	}
4750 
4751 	/* SP events: STAT_QUERY and others */
4752 	if (status & BNX2X_DEF_SB_IDX) {
4753 #ifdef BCM_CNIC
4754 		struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
4755 
4756 		if ((!NO_FCOE(bp)) &&
4757 			(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
4758 			/*
4759 			 * Prevent local bottom-halves from running as
4760 			 * we are going to change the local NAPI list.
4761 			 */
4762 			local_bh_disable();
4763 			napi_schedule(&bnx2x_fcoe(bp, napi));
4764 			local_bh_enable();
4765 		}
4766 #endif
4767 		/* Handle EQ completions */
4768 		bnx2x_eq_int(bp);
4769 
4770 		bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
4771 			le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
4772 
4773 		status &= ~BNX2X_DEF_SB_IDX;
4774 	}
4775 
4776 	if (unlikely(status))
4777 		DP(BNX2X_MSG_SP, "got an unknown interrupt! (status 0x%x)\n",
4778 		   status);
4779 
4780 	bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
4781 	     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
4782 }
4783 
4784 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
4785 {
4786 	struct net_device *dev = dev_instance;
4787 	struct bnx2x *bp = netdev_priv(dev);
4788 
4789 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
4790 		     IGU_INT_DISABLE, 0);
4791 
4792 #ifdef BNX2X_STOP_ON_ERROR
4793 	if (unlikely(bp->panic))
4794 		return IRQ_HANDLED;
4795 #endif
4796 
4797 #ifdef BCM_CNIC
4798 	{
4799 		struct cnic_ops *c_ops;
4800 
4801 		rcu_read_lock();
4802 		c_ops = rcu_dereference(bp->cnic_ops);
4803 		if (c_ops)
4804 			c_ops->cnic_handler(bp->cnic_data, NULL);
4805 		rcu_read_unlock();
4806 	}
4807 #endif
4808 	queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
4809 
4810 	return IRQ_HANDLED;
4811 }
4812 
4813 /* end of slow path */
4814 
4815 
4816 void bnx2x_drv_pulse(struct bnx2x *bp)
4817 {
4818 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
4819 		 bp->fw_drv_pulse_wr_seq);
4820 }
4821 
4822 
4823 static void bnx2x_timer(unsigned long data)
4824 {
4825 	struct bnx2x *bp = (struct bnx2x *) data;
4826 
4827 	if (!netif_running(bp->dev))
4828 		return;
4829 
4830 	if (!BP_NOMCP(bp)) {
4831 		int mb_idx = BP_FW_MB_IDX(bp);
4832 		u32 drv_pulse;
4833 		u32 mcp_pulse;
4834 
4835 		++bp->fw_drv_pulse_wr_seq;
4836 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
4837 		/* TBD - add SYSTEM_TIME */
4838 		drv_pulse = bp->fw_drv_pulse_wr_seq;
4839 		bnx2x_drv_pulse(bp);
4840 
4841 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
4842 			     MCP_PULSE_SEQ_MASK);
4843 		/* The delta between driver pulse and mcp response
4844 		 * should be 1 (before mcp response) or 0 (after mcp response)
4845 		 */
4846 		if ((drv_pulse != mcp_pulse) &&
4847 		    (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
4848 			/* someone lost a heartbeat... */
4849 			BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
4850 				  drv_pulse, mcp_pulse);
4851 		}
4852 	}
4853 
4854 	if (bp->state == BNX2X_STATE_OPEN)
4855 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
4856 
4857 	mod_timer(&bp->timer, jiffies + bp->current_interval);
4858 }
4859 
4860 /* end of Statistics */
4861 
4862 /* nic init */
4863 
4864 /*
4865  * nic init service functions
4866  */
4867 
4868 static inline void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
4869 {
4870 	u32 i;
4871 	if (!(len%4) && !(addr%4))
4872 		for (i = 0; i < len; i += 4)
4873 			REG_WR(bp, addr + i, fill);
4874 	else
4875 		for (i = 0; i < len; i++)
4876 			REG_WR8(bp, addr + i, fill);
4877 
4878 }
4879 
4880 /* helper: writes FP SP data to FW - data_size in dwords */
4881 static inline void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
4882 				       int fw_sb_id,
4883 				       u32 *sb_data_p,
4884 				       u32 data_size)
4885 {
4886 	int index;
4887 	for (index = 0; index < data_size; index++)
4888 		REG_WR(bp, BAR_CSTRORM_INTMEM +
4889 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4890 			sizeof(u32)*index,
4891 			*(sb_data_p + index));
4892 }
4893 
4894 static inline void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
4895 {
4896 	u32 *sb_data_p;
4897 	u32 data_size = 0;
4898 	struct hc_status_block_data_e2 sb_data_e2;
4899 	struct hc_status_block_data_e1x sb_data_e1x;
4900 
4901 	/* disable the function first */
4902 	if (!CHIP_IS_E1x(bp)) {
4903 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4904 		sb_data_e2.common.state = SB_DISABLED;
4905 		sb_data_e2.common.p_func.vf_valid = false;
4906 		sb_data_p = (u32 *)&sb_data_e2;
4907 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
4908 	} else {
4909 		memset(&sb_data_e1x, 0,
4910 		       sizeof(struct hc_status_block_data_e1x));
4911 		sb_data_e1x.common.state = SB_DISABLED;
4912 		sb_data_e1x.common.p_func.vf_valid = false;
4913 		sb_data_p = (u32 *)&sb_data_e1x;
4914 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
4915 	}
4916 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
4917 
4918 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4919 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
4920 			CSTORM_STATUS_BLOCK_SIZE);
4921 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4922 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
4923 			CSTORM_SYNC_BLOCK_SIZE);
4924 }
4925 
4926 /* helper:  writes SP SB data to FW */
4927 static inline void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
4928 		struct hc_sp_status_block_data *sp_sb_data)
4929 {
4930 	int func = BP_FUNC(bp);
4931 	int i;
4932 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
4933 		REG_WR(bp, BAR_CSTRORM_INTMEM +
4934 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
4935 			i*sizeof(u32),
4936 			*((u32 *)sp_sb_data + i));
4937 }
4938 
4939 static inline void bnx2x_zero_sp_sb(struct bnx2x *bp)
4940 {
4941 	int func = BP_FUNC(bp);
4942 	struct hc_sp_status_block_data sp_sb_data;
4943 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4944 
4945 	sp_sb_data.state = SB_DISABLED;
4946 	sp_sb_data.p_func.vf_valid = false;
4947 
4948 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
4949 
4950 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4951 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
4952 			CSTORM_SP_STATUS_BLOCK_SIZE);
4953 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4954 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
4955 			CSTORM_SP_SYNC_BLOCK_SIZE);
4956 
4957 }
4958 
4959 
4960 static inline
4961 void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
4962 					   int igu_sb_id, int igu_seg_id)
4963 {
4964 	hc_sm->igu_sb_id = igu_sb_id;
4965 	hc_sm->igu_seg_id = igu_seg_id;
4966 	hc_sm->timer_value = 0xFF;
4967 	hc_sm->time_to_expire = 0xFFFFFFFF;
4968 }
4969 
4970 
4971 /* allocates state machine ids. */
4972 static inline
4973 void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
4974 {
4975 	/* zero out state machine indices */
4976 	/* rx indices */
4977 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4978 
4979 	/* tx indices */
4980 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4981 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
4982 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
4983 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
4984 
4985 	/* map indices */
4986 	/* rx indices */
4987 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
4988 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4989 
4990 	/* tx indices */
4991 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
4992 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4993 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
4994 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4995 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
4996 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4997 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
4998 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4999 }
5000 
5001 static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5002 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5003 {
5004 	int igu_seg_id;
5005 
5006 	struct hc_status_block_data_e2 sb_data_e2;
5007 	struct hc_status_block_data_e1x sb_data_e1x;
5008 	struct hc_status_block_sm  *hc_sm_p;
5009 	int data_size;
5010 	u32 *sb_data_p;
5011 
5012 	if (CHIP_INT_MODE_IS_BC(bp))
5013 		igu_seg_id = HC_SEG_ACCESS_NORM;
5014 	else
5015 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5016 
5017 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5018 
5019 	if (!CHIP_IS_E1x(bp)) {
5020 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5021 		sb_data_e2.common.state = SB_ENABLED;
5022 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5023 		sb_data_e2.common.p_func.vf_id = vfid;
5024 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5025 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5026 		sb_data_e2.common.same_igu_sb_1b = true;
5027 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5028 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5029 		hc_sm_p = sb_data_e2.common.state_machine;
5030 		sb_data_p = (u32 *)&sb_data_e2;
5031 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5032 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5033 	} else {
5034 		memset(&sb_data_e1x, 0,
5035 		       sizeof(struct hc_status_block_data_e1x));
5036 		sb_data_e1x.common.state = SB_ENABLED;
5037 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5038 		sb_data_e1x.common.p_func.vf_id = 0xff;
5039 		sb_data_e1x.common.p_func.vf_valid = false;
5040 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5041 		sb_data_e1x.common.same_igu_sb_1b = true;
5042 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5043 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5044 		hc_sm_p = sb_data_e1x.common.state_machine;
5045 		sb_data_p = (u32 *)&sb_data_e1x;
5046 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5047 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5048 	}
5049 
5050 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5051 				       igu_sb_id, igu_seg_id);
5052 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5053 				       igu_sb_id, igu_seg_id);
5054 
5055 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5056 
5057 	/* write indecies to HW */
5058 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5059 }
5060 
5061 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5062 				     u16 tx_usec, u16 rx_usec)
5063 {
5064 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5065 				    false, rx_usec);
5066 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5067 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5068 				       tx_usec);
5069 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5070 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5071 				       tx_usec);
5072 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5073 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5074 				       tx_usec);
5075 }
5076 
5077 static void bnx2x_init_def_sb(struct bnx2x *bp)
5078 {
5079 	struct host_sp_status_block *def_sb = bp->def_status_blk;
5080 	dma_addr_t mapping = bp->def_status_blk_mapping;
5081 	int igu_sp_sb_index;
5082 	int igu_seg_id;
5083 	int port = BP_PORT(bp);
5084 	int func = BP_FUNC(bp);
5085 	int reg_offset, reg_offset_en5;
5086 	u64 section;
5087 	int index;
5088 	struct hc_sp_status_block_data sp_sb_data;
5089 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5090 
5091 	if (CHIP_INT_MODE_IS_BC(bp)) {
5092 		igu_sp_sb_index = DEF_SB_IGU_ID;
5093 		igu_seg_id = HC_SEG_ACCESS_DEF;
5094 	} else {
5095 		igu_sp_sb_index = bp->igu_dsb_id;
5096 		igu_seg_id = IGU_SEG_ACCESS_DEF;
5097 	}
5098 
5099 	/* ATTN */
5100 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5101 					    atten_status_block);
5102 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5103 
5104 	bp->attn_state = 0;
5105 
5106 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5107 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5108 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5109 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5110 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5111 		int sindex;
5112 		/* take care of sig[0]..sig[4] */
5113 		for (sindex = 0; sindex < 4; sindex++)
5114 			bp->attn_group[index].sig[sindex] =
5115 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5116 
5117 		if (!CHIP_IS_E1x(bp))
5118 			/*
5119 			 * enable5 is separate from the rest of the registers,
5120 			 * and therefore the address skip is 4
5121 			 * and not 16 between the different groups
5122 			 */
5123 			bp->attn_group[index].sig[4] = REG_RD(bp,
5124 					reg_offset_en5 + 0x4*index);
5125 		else
5126 			bp->attn_group[index].sig[4] = 0;
5127 	}
5128 
5129 	if (bp->common.int_block == INT_BLOCK_HC) {
5130 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5131 				     HC_REG_ATTN_MSG0_ADDR_L);
5132 
5133 		REG_WR(bp, reg_offset, U64_LO(section));
5134 		REG_WR(bp, reg_offset + 4, U64_HI(section));
5135 	} else if (!CHIP_IS_E1x(bp)) {
5136 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5137 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5138 	}
5139 
5140 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5141 					    sp_sb);
5142 
5143 	bnx2x_zero_sp_sb(bp);
5144 
5145 	sp_sb_data.state		= SB_ENABLED;
5146 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
5147 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
5148 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
5149 	sp_sb_data.igu_seg_id		= igu_seg_id;
5150 	sp_sb_data.p_func.pf_id		= func;
5151 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
5152 	sp_sb_data.p_func.vf_id		= 0xff;
5153 
5154 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5155 
5156 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5157 }
5158 
5159 void bnx2x_update_coalesce(struct bnx2x *bp)
5160 {
5161 	int i;
5162 
5163 	for_each_eth_queue(bp, i)
5164 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5165 					 bp->tx_ticks, bp->rx_ticks);
5166 }
5167 
5168 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5169 {
5170 	spin_lock_init(&bp->spq_lock);
5171 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5172 
5173 	bp->spq_prod_idx = 0;
5174 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5175 	bp->spq_prod_bd = bp->spq;
5176 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5177 }
5178 
5179 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5180 {
5181 	int i;
5182 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5183 		union event_ring_elem *elem =
5184 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5185 
5186 		elem->next_page.addr.hi =
5187 			cpu_to_le32(U64_HI(bp->eq_mapping +
5188 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5189 		elem->next_page.addr.lo =
5190 			cpu_to_le32(U64_LO(bp->eq_mapping +
5191 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5192 	}
5193 	bp->eq_cons = 0;
5194 	bp->eq_prod = NUM_EQ_DESC;
5195 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5196 	/* we want a warning message before it gets rought... */
5197 	atomic_set(&bp->eq_spq_left,
5198 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5199 }
5200 
5201 
5202 /* called with netif_addr_lock_bh() */
5203 void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5204 			 unsigned long rx_mode_flags,
5205 			 unsigned long rx_accept_flags,
5206 			 unsigned long tx_accept_flags,
5207 			 unsigned long ramrod_flags)
5208 {
5209 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
5210 	int rc;
5211 
5212 	memset(&ramrod_param, 0, sizeof(ramrod_param));
5213 
5214 	/* Prepare ramrod parameters */
5215 	ramrod_param.cid = 0;
5216 	ramrod_param.cl_id = cl_id;
5217 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5218 	ramrod_param.func_id = BP_FUNC(bp);
5219 
5220 	ramrod_param.pstate = &bp->sp_state;
5221 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5222 
5223 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5224 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5225 
5226 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5227 
5228 	ramrod_param.ramrod_flags = ramrod_flags;
5229 	ramrod_param.rx_mode_flags = rx_mode_flags;
5230 
5231 	ramrod_param.rx_accept_flags = rx_accept_flags;
5232 	ramrod_param.tx_accept_flags = tx_accept_flags;
5233 
5234 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5235 	if (rc < 0) {
5236 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5237 		return;
5238 	}
5239 }
5240 
5241 /* called with netif_addr_lock_bh() */
5242 void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5243 {
5244 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5245 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5246 
5247 #ifdef BCM_CNIC
5248 	if (!NO_FCOE(bp))
5249 
5250 		/* Configure rx_mode of FCoE Queue */
5251 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5252 #endif
5253 
5254 	switch (bp->rx_mode) {
5255 	case BNX2X_RX_MODE_NONE:
5256 		/*
5257 		 * 'drop all' supersedes any accept flags that may have been
5258 		 * passed to the function.
5259 		 */
5260 		break;
5261 	case BNX2X_RX_MODE_NORMAL:
5262 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5263 		__set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5264 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5265 
5266 		/* internal switching mode */
5267 		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5268 		__set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5269 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5270 
5271 		break;
5272 	case BNX2X_RX_MODE_ALLMULTI:
5273 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5274 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5275 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5276 
5277 		/* internal switching mode */
5278 		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5279 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5280 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5281 
5282 		break;
5283 	case BNX2X_RX_MODE_PROMISC:
5284 		/* According to deffinition of SI mode, iface in promisc mode
5285 		 * should receive matched and unmatched (in resolution of port)
5286 		 * unicast packets.
5287 		 */
5288 		__set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5289 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5290 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5291 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5292 
5293 		/* internal switching mode */
5294 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5295 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5296 
5297 		if (IS_MF_SI(bp))
5298 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5299 		else
5300 			__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5301 
5302 		break;
5303 	default:
5304 		BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5305 		return;
5306 	}
5307 
5308 	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5309 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5310 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5311 	}
5312 
5313 	__set_bit(RAMROD_RX, &ramrod_flags);
5314 	__set_bit(RAMROD_TX, &ramrod_flags);
5315 
5316 	bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5317 			    tx_accept_flags, ramrod_flags);
5318 }
5319 
5320 static void bnx2x_init_internal_common(struct bnx2x *bp)
5321 {
5322 	int i;
5323 
5324 	if (IS_MF_SI(bp))
5325 		/*
5326 		 * In switch independent mode, the TSTORM needs to accept
5327 		 * packets that failed classification, since approximate match
5328 		 * mac addresses aren't written to NIG LLH
5329 		 */
5330 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5331 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5332 	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5333 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5334 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5335 
5336 	/* Zero this manually as its initialization is
5337 	   currently missing in the initTool */
5338 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5339 		REG_WR(bp, BAR_USTRORM_INTMEM +
5340 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
5341 	if (!CHIP_IS_E1x(bp)) {
5342 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5343 			CHIP_INT_MODE_IS_BC(bp) ?
5344 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5345 	}
5346 }
5347 
5348 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5349 {
5350 	switch (load_code) {
5351 	case FW_MSG_CODE_DRV_LOAD_COMMON:
5352 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5353 		bnx2x_init_internal_common(bp);
5354 		/* no break */
5355 
5356 	case FW_MSG_CODE_DRV_LOAD_PORT:
5357 		/* nothing to do */
5358 		/* no break */
5359 
5360 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5361 		/* internal memory per function is
5362 		   initialized inside bnx2x_pf_init */
5363 		break;
5364 
5365 	default:
5366 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5367 		break;
5368 	}
5369 }
5370 
5371 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5372 {
5373 	return fp->bp->igu_base_sb + fp->index + CNIC_PRESENT;
5374 }
5375 
5376 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5377 {
5378 	return fp->bp->base_fw_ndsb + fp->index + CNIC_PRESENT;
5379 }
5380 
5381 static inline u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5382 {
5383 	if (CHIP_IS_E1x(fp->bp))
5384 		return BP_L_ID(fp->bp) + fp->index;
5385 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
5386 		return bnx2x_fp_igu_sb_id(fp);
5387 }
5388 
5389 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5390 {
5391 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5392 	u8 cos;
5393 	unsigned long q_type = 0;
5394 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5395 	fp->rx_queue = fp_idx;
5396 	fp->cid = fp_idx;
5397 	fp->cl_id = bnx2x_fp_cl_id(fp);
5398 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5399 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5400 	/* qZone id equals to FW (per path) client id */
5401 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
5402 
5403 	/* init shortcut */
5404 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5405 
5406 	/* Setup SB indicies */
5407 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5408 
5409 	/* Configure Queue State object */
5410 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5411 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5412 
5413 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5414 
5415 	/* init tx data */
5416 	for_each_cos_in_tx_queue(fp, cos) {
5417 		bnx2x_init_txdata(bp, &fp->txdata[cos],
5418 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos),
5419 				  FP_COS_TO_TXQ(fp, cos),
5420 				  BNX2X_TX_SB_INDEX_BASE + cos);
5421 		cids[cos] = fp->txdata[cos].cid;
5422 	}
5423 
5424 	bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, cids, fp->max_cos,
5425 			     BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5426 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
5427 
5428 	/**
5429 	 * Configure classification DBs: Always enable Tx switching
5430 	 */
5431 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5432 
5433 	DP(NETIF_MSG_IFUP, "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
5434 		   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5435 		   fp->igu_sb_id);
5436 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5437 		      fp->fw_sb_id, fp->igu_sb_id);
5438 
5439 	bnx2x_update_fpsb_idx(fp);
5440 }
5441 
5442 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5443 {
5444 	int i;
5445 
5446 	for_each_eth_queue(bp, i)
5447 		bnx2x_init_eth_fp(bp, i);
5448 #ifdef BCM_CNIC
5449 	if (!NO_FCOE(bp))
5450 		bnx2x_init_fcoe_fp(bp);
5451 
5452 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5453 		      BNX2X_VF_ID_INVALID, false,
5454 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5455 
5456 #endif
5457 
5458 	/* Initialize MOD_ABS interrupts */
5459 	bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5460 			       bp->common.shmem_base, bp->common.shmem2_base,
5461 			       BP_PORT(bp));
5462 	/* ensure status block indices were read */
5463 	rmb();
5464 
5465 	bnx2x_init_def_sb(bp);
5466 	bnx2x_update_dsb_idx(bp);
5467 	bnx2x_init_rx_rings(bp);
5468 	bnx2x_init_tx_rings(bp);
5469 	bnx2x_init_sp_ring(bp);
5470 	bnx2x_init_eq_ring(bp);
5471 	bnx2x_init_internal(bp, load_code);
5472 	bnx2x_pf_init(bp);
5473 	bnx2x_stats_init(bp);
5474 
5475 	/* flush all before enabling interrupts */
5476 	mb();
5477 	mmiowb();
5478 
5479 	bnx2x_int_enable(bp);
5480 
5481 	/* Check for SPIO5 */
5482 	bnx2x_attn_int_deasserted0(bp,
5483 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5484 				   AEU_INPUTS_ATTN_BITS_SPIO5);
5485 }
5486 
5487 /* end of nic init */
5488 
5489 /*
5490  * gzip service functions
5491  */
5492 
5493 static int bnx2x_gunzip_init(struct bnx2x *bp)
5494 {
5495 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5496 					    &bp->gunzip_mapping, GFP_KERNEL);
5497 	if (bp->gunzip_buf  == NULL)
5498 		goto gunzip_nomem1;
5499 
5500 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5501 	if (bp->strm  == NULL)
5502 		goto gunzip_nomem2;
5503 
5504 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5505 	if (bp->strm->workspace == NULL)
5506 		goto gunzip_nomem3;
5507 
5508 	return 0;
5509 
5510 gunzip_nomem3:
5511 	kfree(bp->strm);
5512 	bp->strm = NULL;
5513 
5514 gunzip_nomem2:
5515 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5516 			  bp->gunzip_mapping);
5517 	bp->gunzip_buf = NULL;
5518 
5519 gunzip_nomem1:
5520 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
5521 	return -ENOMEM;
5522 }
5523 
5524 static void bnx2x_gunzip_end(struct bnx2x *bp)
5525 {
5526 	if (bp->strm) {
5527 		vfree(bp->strm->workspace);
5528 		kfree(bp->strm);
5529 		bp->strm = NULL;
5530 	}
5531 
5532 	if (bp->gunzip_buf) {
5533 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5534 				  bp->gunzip_mapping);
5535 		bp->gunzip_buf = NULL;
5536 	}
5537 }
5538 
5539 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5540 {
5541 	int n, rc;
5542 
5543 	/* check gzip header */
5544 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5545 		BNX2X_ERR("Bad gzip header\n");
5546 		return -EINVAL;
5547 	}
5548 
5549 	n = 10;
5550 
5551 #define FNAME				0x8
5552 
5553 	if (zbuf[3] & FNAME)
5554 		while ((zbuf[n++] != 0) && (n < len));
5555 
5556 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5557 	bp->strm->avail_in = len - n;
5558 	bp->strm->next_out = bp->gunzip_buf;
5559 	bp->strm->avail_out = FW_BUF_SIZE;
5560 
5561 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5562 	if (rc != Z_OK)
5563 		return rc;
5564 
5565 	rc = zlib_inflate(bp->strm, Z_FINISH);
5566 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
5567 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
5568 			   bp->strm->msg);
5569 
5570 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5571 	if (bp->gunzip_outlen & 0x3)
5572 		netdev_err(bp->dev,
5573 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
5574 				bp->gunzip_outlen);
5575 	bp->gunzip_outlen >>= 2;
5576 
5577 	zlib_inflateEnd(bp->strm);
5578 
5579 	if (rc == Z_STREAM_END)
5580 		return 0;
5581 
5582 	return rc;
5583 }
5584 
5585 /* nic load/unload */
5586 
5587 /*
5588  * General service functions
5589  */
5590 
5591 /* send a NIG loopback debug packet */
5592 static void bnx2x_lb_pckt(struct bnx2x *bp)
5593 {
5594 	u32 wb_write[3];
5595 
5596 	/* Ethernet source and destination addresses */
5597 	wb_write[0] = 0x55555555;
5598 	wb_write[1] = 0x55555555;
5599 	wb_write[2] = 0x20;		/* SOP */
5600 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5601 
5602 	/* NON-IP protocol */
5603 	wb_write[0] = 0x09000000;
5604 	wb_write[1] = 0x55555555;
5605 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
5606 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5607 }
5608 
5609 /* some of the internal memories
5610  * are not directly readable from the driver
5611  * to test them we send debug packets
5612  */
5613 static int bnx2x_int_mem_test(struct bnx2x *bp)
5614 {
5615 	int factor;
5616 	int count, i;
5617 	u32 val = 0;
5618 
5619 	if (CHIP_REV_IS_FPGA(bp))
5620 		factor = 120;
5621 	else if (CHIP_REV_IS_EMUL(bp))
5622 		factor = 200;
5623 	else
5624 		factor = 1;
5625 
5626 	/* Disable inputs of parser neighbor blocks */
5627 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5628 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5629 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5630 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5631 
5632 	/*  Write 0 to parser credits for CFC search request */
5633 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5634 
5635 	/* send Ethernet packet */
5636 	bnx2x_lb_pckt(bp);
5637 
5638 	/* TODO do i reset NIG statistic? */
5639 	/* Wait until NIG register shows 1 packet of size 0x10 */
5640 	count = 1000 * factor;
5641 	while (count) {
5642 
5643 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5644 		val = *bnx2x_sp(bp, wb_data[0]);
5645 		if (val == 0x10)
5646 			break;
5647 
5648 		msleep(10);
5649 		count--;
5650 	}
5651 	if (val != 0x10) {
5652 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5653 		return -1;
5654 	}
5655 
5656 	/* Wait until PRS register shows 1 packet */
5657 	count = 1000 * factor;
5658 	while (count) {
5659 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5660 		if (val == 1)
5661 			break;
5662 
5663 		msleep(10);
5664 		count--;
5665 	}
5666 	if (val != 0x1) {
5667 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5668 		return -2;
5669 	}
5670 
5671 	/* Reset and init BRB, PRS */
5672 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5673 	msleep(50);
5674 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5675 	msleep(50);
5676 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5677 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5678 
5679 	DP(NETIF_MSG_HW, "part2\n");
5680 
5681 	/* Disable inputs of parser neighbor blocks */
5682 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5683 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5684 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5685 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5686 
5687 	/* Write 0 to parser credits for CFC search request */
5688 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5689 
5690 	/* send 10 Ethernet packets */
5691 	for (i = 0; i < 10; i++)
5692 		bnx2x_lb_pckt(bp);
5693 
5694 	/* Wait until NIG register shows 10 + 1
5695 	   packets of size 11*0x10 = 0xb0 */
5696 	count = 1000 * factor;
5697 	while (count) {
5698 
5699 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5700 		val = *bnx2x_sp(bp, wb_data[0]);
5701 		if (val == 0xb0)
5702 			break;
5703 
5704 		msleep(10);
5705 		count--;
5706 	}
5707 	if (val != 0xb0) {
5708 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5709 		return -3;
5710 	}
5711 
5712 	/* Wait until PRS register shows 2 packets */
5713 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5714 	if (val != 2)
5715 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
5716 
5717 	/* Write 1 to parser credits for CFC search request */
5718 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
5719 
5720 	/* Wait until PRS register shows 3 packets */
5721 	msleep(10 * factor);
5722 	/* Wait until NIG register shows 1 packet of size 0x10 */
5723 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5724 	if (val != 3)
5725 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
5726 
5727 	/* clear NIG EOP FIFO */
5728 	for (i = 0; i < 11; i++)
5729 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
5730 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
5731 	if (val != 1) {
5732 		BNX2X_ERR("clear of NIG failed\n");
5733 		return -4;
5734 	}
5735 
5736 	/* Reset and init BRB, PRS, NIG */
5737 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5738 	msleep(50);
5739 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5740 	msleep(50);
5741 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5742 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5743 #ifndef BCM_CNIC
5744 	/* set NIC mode */
5745 	REG_WR(bp, PRS_REG_NIC_MODE, 1);
5746 #endif
5747 
5748 	/* Enable inputs of parser neighbor blocks */
5749 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
5750 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
5751 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
5752 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
5753 
5754 	DP(NETIF_MSG_HW, "done\n");
5755 
5756 	return 0; /* OK */
5757 }
5758 
5759 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
5760 {
5761 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
5762 	if (!CHIP_IS_E1x(bp))
5763 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
5764 	else
5765 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
5766 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
5767 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
5768 	/*
5769 	 * mask read length error interrupts in brb for parser
5770 	 * (parsing unit and 'checksum and crc' unit)
5771 	 * these errors are legal (PU reads fixed length and CAC can cause
5772 	 * read length error on truncated packets)
5773 	 */
5774 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
5775 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
5776 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
5777 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
5778 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
5779 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
5780 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
5781 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
5782 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
5783 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
5784 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
5785 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
5786 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
5787 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
5788 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
5789 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
5790 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
5791 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
5792 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
5793 
5794 	if (CHIP_REV_IS_FPGA(bp))
5795 		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
5796 	else if (!CHIP_IS_E1x(bp))
5797 		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
5798 			   (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
5799 				| PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
5800 				| PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
5801 				| PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
5802 				| PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
5803 	else
5804 		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
5805 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
5806 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
5807 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
5808 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
5809 
5810 	if (!CHIP_IS_E1x(bp))
5811 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
5812 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
5813 
5814 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
5815 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
5816 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
5817 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
5818 }
5819 
5820 static void bnx2x_reset_common(struct bnx2x *bp)
5821 {
5822 	u32 val = 0x1400;
5823 
5824 	/* reset_common */
5825 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
5826 	       0xd3ffff7f);
5827 
5828 	if (CHIP_IS_E3(bp)) {
5829 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
5830 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
5831 	}
5832 
5833 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
5834 }
5835 
5836 static void bnx2x_setup_dmae(struct bnx2x *bp)
5837 {
5838 	bp->dmae_ready = 0;
5839 	spin_lock_init(&bp->dmae_lock);
5840 }
5841 
5842 static void bnx2x_init_pxp(struct bnx2x *bp)
5843 {
5844 	u16 devctl;
5845 	int r_order, w_order;
5846 
5847 	pci_read_config_word(bp->pdev,
5848 			     pci_pcie_cap(bp->pdev) + PCI_EXP_DEVCTL, &devctl);
5849 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
5850 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5851 	if (bp->mrrs == -1)
5852 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5853 	else {
5854 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
5855 		r_order = bp->mrrs;
5856 	}
5857 
5858 	bnx2x_init_pxp_arb(bp, r_order, w_order);
5859 }
5860 
5861 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
5862 {
5863 	int is_required;
5864 	u32 val;
5865 	int port;
5866 
5867 	if (BP_NOMCP(bp))
5868 		return;
5869 
5870 	is_required = 0;
5871 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
5872 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
5873 
5874 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
5875 		is_required = 1;
5876 
5877 	/*
5878 	 * The fan failure mechanism is usually related to the PHY type since
5879 	 * the power consumption of the board is affected by the PHY. Currently,
5880 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
5881 	 */
5882 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
5883 		for (port = PORT_0; port < PORT_MAX; port++) {
5884 			is_required |=
5885 				bnx2x_fan_failure_det_req(
5886 					bp,
5887 					bp->common.shmem_base,
5888 					bp->common.shmem2_base,
5889 					port);
5890 		}
5891 
5892 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
5893 
5894 	if (is_required == 0)
5895 		return;
5896 
5897 	/* Fan failure is indicated by SPIO 5 */
5898 	bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
5899 		       MISC_REGISTERS_SPIO_INPUT_HI_Z);
5900 
5901 	/* set to active low mode */
5902 	val = REG_RD(bp, MISC_REG_SPIO_INT);
5903 	val |= ((1 << MISC_REGISTERS_SPIO_5) <<
5904 					MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
5905 	REG_WR(bp, MISC_REG_SPIO_INT, val);
5906 
5907 	/* enable interrupt to signal the IGU */
5908 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
5909 	val |= (1 << MISC_REGISTERS_SPIO_5);
5910 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
5911 }
5912 
5913 static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
5914 {
5915 	u32 offset = 0;
5916 
5917 	if (CHIP_IS_E1(bp))
5918 		return;
5919 	if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
5920 		return;
5921 
5922 	switch (BP_ABS_FUNC(bp)) {
5923 	case 0:
5924 		offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
5925 		break;
5926 	case 1:
5927 		offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
5928 		break;
5929 	case 2:
5930 		offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
5931 		break;
5932 	case 3:
5933 		offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
5934 		break;
5935 	case 4:
5936 		offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
5937 		break;
5938 	case 5:
5939 		offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
5940 		break;
5941 	case 6:
5942 		offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
5943 		break;
5944 	case 7:
5945 		offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
5946 		break;
5947 	default:
5948 		return;
5949 	}
5950 
5951 	REG_WR(bp, offset, pretend_func_num);
5952 	REG_RD(bp, offset);
5953 	DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
5954 }
5955 
5956 void bnx2x_pf_disable(struct bnx2x *bp)
5957 {
5958 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
5959 	val &= ~IGU_PF_CONF_FUNC_EN;
5960 
5961 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
5962 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
5963 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
5964 }
5965 
5966 static inline void bnx2x__common_init_phy(struct bnx2x *bp)
5967 {
5968 	u32 shmem_base[2], shmem2_base[2];
5969 	shmem_base[0] =  bp->common.shmem_base;
5970 	shmem2_base[0] = bp->common.shmem2_base;
5971 	if (!CHIP_IS_E1x(bp)) {
5972 		shmem_base[1] =
5973 			SHMEM2_RD(bp, other_shmem_base_addr);
5974 		shmem2_base[1] =
5975 			SHMEM2_RD(bp, other_shmem2_base_addr);
5976 	}
5977 	bnx2x_acquire_phy_lock(bp);
5978 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
5979 			      bp->common.chip_id);
5980 	bnx2x_release_phy_lock(bp);
5981 }
5982 
5983 /**
5984  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
5985  *
5986  * @bp:		driver handle
5987  */
5988 static int bnx2x_init_hw_common(struct bnx2x *bp)
5989 {
5990 	u32 val;
5991 
5992 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
5993 
5994 	/*
5995 	 * take the UNDI lock to protect undi_unload flow from accessing
5996 	 * registers while we're resetting the chip
5997 	 */
5998 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
5999 
6000 	bnx2x_reset_common(bp);
6001 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6002 
6003 	val = 0xfffc;
6004 	if (CHIP_IS_E3(bp)) {
6005 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6006 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6007 	}
6008 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6009 
6010 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6011 
6012 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6013 
6014 	if (!CHIP_IS_E1x(bp)) {
6015 		u8 abs_func_id;
6016 
6017 		/**
6018 		 * 4-port mode or 2-port mode we need to turn of master-enable
6019 		 * for everyone, after that, turn it back on for self.
6020 		 * so, we disregard multi-function or not, and always disable
6021 		 * for all functions on the given path, this means 0,2,4,6 for
6022 		 * path 0 and 1,3,5,7 for path 1
6023 		 */
6024 		for (abs_func_id = BP_PATH(bp);
6025 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6026 			if (abs_func_id == BP_ABS_FUNC(bp)) {
6027 				REG_WR(bp,
6028 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6029 				    1);
6030 				continue;
6031 			}
6032 
6033 			bnx2x_pretend_func(bp, abs_func_id);
6034 			/* clear pf enable */
6035 			bnx2x_pf_disable(bp);
6036 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6037 		}
6038 	}
6039 
6040 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6041 	if (CHIP_IS_E1(bp)) {
6042 		/* enable HW interrupt from PXP on USDM overflow
6043 		   bit 16 on INT_MASK_0 */
6044 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6045 	}
6046 
6047 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6048 	bnx2x_init_pxp(bp);
6049 
6050 #ifdef __BIG_ENDIAN
6051 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6052 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6053 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6054 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6055 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6056 	/* make sure this value is 0 */
6057 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6058 
6059 /*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6060 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6061 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6062 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6063 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6064 #endif
6065 
6066 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
6067 
6068 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6069 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6070 
6071 	/* let the HW do it's magic ... */
6072 	msleep(100);
6073 	/* finish PXP init */
6074 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6075 	if (val != 1) {
6076 		BNX2X_ERR("PXP2 CFG failed\n");
6077 		return -EBUSY;
6078 	}
6079 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6080 	if (val != 1) {
6081 		BNX2X_ERR("PXP2 RD_INIT failed\n");
6082 		return -EBUSY;
6083 	}
6084 
6085 	/* Timers bug workaround E2 only. We need to set the entire ILT to
6086 	 * have entries with value "0" and valid bit on.
6087 	 * This needs to be done by the first PF that is loaded in a path
6088 	 * (i.e. common phase)
6089 	 */
6090 	if (!CHIP_IS_E1x(bp)) {
6091 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6092  * (i.e. vnic3) to start even if it is marked as "scan-off".
6093  * This occurs when a different function (func2,3) is being marked
6094  * as "scan-off". Real-life scenario for example: if a driver is being
6095  * load-unloaded while func6,7 are down. This will cause the timer to access
6096  * the ilt, translate to a logical address and send a request to read/write.
6097  * Since the ilt for the function that is down is not valid, this will cause
6098  * a translation error which is unrecoverable.
6099  * The Workaround is intended to make sure that when this happens nothing fatal
6100  * will occur. The workaround:
6101  *	1.  First PF driver which loads on a path will:
6102  *		a.  After taking the chip out of reset, by using pretend,
6103  *		    it will write "0" to the following registers of
6104  *		    the other vnics.
6105  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6106  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6107  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6108  *		    And for itself it will write '1' to
6109  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6110  *		    dmae-operations (writing to pram for example.)
6111  *		    note: can be done for only function 6,7 but cleaner this
6112  *			  way.
6113  *		b.  Write zero+valid to the entire ILT.
6114  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6115  *		    VNIC3 (of that port). The range allocated will be the
6116  *		    entire ILT. This is needed to prevent  ILT range error.
6117  *	2.  Any PF driver load flow:
6118  *		a.  ILT update with the physical addresses of the allocated
6119  *		    logical pages.
6120  *		b.  Wait 20msec. - note that this timeout is needed to make
6121  *		    sure there are no requests in one of the PXP internal
6122  *		    queues with "old" ILT addresses.
6123  *		c.  PF enable in the PGLC.
6124  *		d.  Clear the was_error of the PF in the PGLC. (could have
6125  *		    occured while driver was down)
6126  *		e.  PF enable in the CFC (WEAK + STRONG)
6127  *		f.  Timers scan enable
6128  *	3.  PF driver unload flow:
6129  *		a.  Clear the Timers scan_en.
6130  *		b.  Polling for scan_on=0 for that PF.
6131  *		c.  Clear the PF enable bit in the PXP.
6132  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
6133  *		e.  Write zero+valid to all ILT entries (The valid bit must
6134  *		    stay set)
6135  *		f.  If this is VNIC 3 of a port then also init
6136  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
6137  *		    to the last enrty in the ILT.
6138  *
6139  *	Notes:
6140  *	Currently the PF error in the PGLC is non recoverable.
6141  *	In the future the there will be a recovery routine for this error.
6142  *	Currently attention is masked.
6143  *	Having an MCP lock on the load/unload process does not guarantee that
6144  *	there is no Timer disable during Func6/7 enable. This is because the
6145  *	Timers scan is currently being cleared by the MCP on FLR.
6146  *	Step 2.d can be done only for PF6/7 and the driver can also check if
6147  *	there is error before clearing it. But the flow above is simpler and
6148  *	more general.
6149  *	All ILT entries are written by zero+valid and not just PF6/7
6150  *	ILT entries since in the future the ILT entries allocation for
6151  *	PF-s might be dynamic.
6152  */
6153 		struct ilt_client_info ilt_cli;
6154 		struct bnx2x_ilt ilt;
6155 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6156 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6157 
6158 		/* initialize dummy TM client */
6159 		ilt_cli.start = 0;
6160 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6161 		ilt_cli.client_num = ILT_CLIENT_TM;
6162 
6163 		/* Step 1: set zeroes to all ilt page entries with valid bit on
6164 		 * Step 2: set the timers first/last ilt entry to point
6165 		 * to the entire range to prevent ILT range error for 3rd/4th
6166 		 * vnic	(this code assumes existance of the vnic)
6167 		 *
6168 		 * both steps performed by call to bnx2x_ilt_client_init_op()
6169 		 * with dummy TM client
6170 		 *
6171 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6172 		 * and his brother are split registers
6173 		 */
6174 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6175 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6176 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6177 
6178 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6179 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6180 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6181 	}
6182 
6183 
6184 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6185 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6186 
6187 	if (!CHIP_IS_E1x(bp)) {
6188 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6189 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6190 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6191 
6192 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6193 
6194 		/* let the HW do it's magic ... */
6195 		do {
6196 			msleep(200);
6197 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6198 		} while (factor-- && (val != 1));
6199 
6200 		if (val != 1) {
6201 			BNX2X_ERR("ATC_INIT failed\n");
6202 			return -EBUSY;
6203 		}
6204 	}
6205 
6206 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6207 
6208 	/* clean the DMAE memory */
6209 	bp->dmae_ready = 1;
6210 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6211 
6212 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6213 
6214 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6215 
6216 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6217 
6218 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6219 
6220 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6221 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6222 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6223 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6224 
6225 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6226 
6227 
6228 	/* QM queues pointers table */
6229 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6230 
6231 	/* soft reset pulse */
6232 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
6233 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
6234 
6235 #ifdef BCM_CNIC
6236 	bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6237 #endif
6238 
6239 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6240 	REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6241 	if (!CHIP_REV_IS_SLOW(bp))
6242 		/* enable hw interrupt from doorbell Q */
6243 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6244 
6245 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6246 
6247 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6248 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6249 
6250 	if (!CHIP_IS_E1(bp))
6251 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6252 
6253 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp))
6254 		/* Bit-map indicating which L2 hdrs may appear
6255 		 * after the basic Ethernet header
6256 		 */
6257 		REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6258 		       bp->path_has_ovlan ? 7 : 6);
6259 
6260 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6261 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6262 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6263 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6264 
6265 	if (!CHIP_IS_E1x(bp)) {
6266 		/* reset VFC memories */
6267 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6268 			   VFC_MEMORIES_RST_REG_CAM_RST |
6269 			   VFC_MEMORIES_RST_REG_RAM_RST);
6270 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6271 			   VFC_MEMORIES_RST_REG_CAM_RST |
6272 			   VFC_MEMORIES_RST_REG_RAM_RST);
6273 
6274 		msleep(20);
6275 	}
6276 
6277 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6278 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6279 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6280 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6281 
6282 	/* sync semi rtc */
6283 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6284 	       0x80000000);
6285 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6286 	       0x80000000);
6287 
6288 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6289 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6290 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6291 
6292 	if (!CHIP_IS_E1x(bp))
6293 		REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6294 		       bp->path_has_ovlan ? 7 : 6);
6295 
6296 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
6297 
6298 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6299 
6300 #ifdef BCM_CNIC
6301 	REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6302 	REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6303 	REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6304 	REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6305 	REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6306 	REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6307 	REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6308 	REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6309 	REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6310 	REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6311 #endif
6312 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
6313 
6314 	if (sizeof(union cdu_context) != 1024)
6315 		/* we currently assume that a context is 1024 bytes */
6316 		dev_alert(&bp->pdev->dev,
6317 			  "please adjust the size of cdu_context(%ld)\n",
6318 			  (long)sizeof(union cdu_context));
6319 
6320 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6321 	val = (4 << 24) + (0 << 12) + 1024;
6322 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6323 
6324 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6325 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6326 	/* enable context validation interrupt from CFC */
6327 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6328 
6329 	/* set the thresholds to prevent CFC/CDU race */
6330 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6331 
6332 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6333 
6334 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6335 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6336 
6337 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6338 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6339 
6340 	/* Reset PCIE errors for debug */
6341 	REG_WR(bp, 0x2814, 0xffffffff);
6342 	REG_WR(bp, 0x3820, 0xffffffff);
6343 
6344 	if (!CHIP_IS_E1x(bp)) {
6345 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6346 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6347 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6348 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6349 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6350 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6351 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6352 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6353 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6354 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6355 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6356 	}
6357 
6358 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6359 	if (!CHIP_IS_E1(bp)) {
6360 		/* in E3 this done in per-port section */
6361 		if (!CHIP_IS_E3(bp))
6362 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6363 	}
6364 	if (CHIP_IS_E1H(bp))
6365 		/* not applicable for E2 (and above ...) */
6366 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6367 
6368 	if (CHIP_REV_IS_SLOW(bp))
6369 		msleep(200);
6370 
6371 	/* finish CFC init */
6372 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6373 	if (val != 1) {
6374 		BNX2X_ERR("CFC LL_INIT failed\n");
6375 		return -EBUSY;
6376 	}
6377 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6378 	if (val != 1) {
6379 		BNX2X_ERR("CFC AC_INIT failed\n");
6380 		return -EBUSY;
6381 	}
6382 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6383 	if (val != 1) {
6384 		BNX2X_ERR("CFC CAM_INIT failed\n");
6385 		return -EBUSY;
6386 	}
6387 	REG_WR(bp, CFC_REG_DEBUG0, 0);
6388 
6389 	if (CHIP_IS_E1(bp)) {
6390 		/* read NIG statistic
6391 		   to see if this is our first up since powerup */
6392 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6393 		val = *bnx2x_sp(bp, wb_data[0]);
6394 
6395 		/* do internal memory self test */
6396 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
6397 			BNX2X_ERR("internal mem self test failed\n");
6398 			return -EBUSY;
6399 		}
6400 	}
6401 
6402 	bnx2x_setup_fan_failure_detection(bp);
6403 
6404 	/* clear PXP2 attentions */
6405 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6406 
6407 	bnx2x_enable_blocks_attention(bp);
6408 	bnx2x_enable_blocks_parity(bp);
6409 
6410 	if (!BP_NOMCP(bp)) {
6411 		if (CHIP_IS_E1x(bp))
6412 			bnx2x__common_init_phy(bp);
6413 	} else
6414 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6415 
6416 	return 0;
6417 }
6418 
6419 /**
6420  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6421  *
6422  * @bp:		driver handle
6423  */
6424 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6425 {
6426 	int rc = bnx2x_init_hw_common(bp);
6427 
6428 	if (rc)
6429 		return rc;
6430 
6431 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
6432 	if (!BP_NOMCP(bp))
6433 		bnx2x__common_init_phy(bp);
6434 
6435 	return 0;
6436 }
6437 
6438 static int bnx2x_init_hw_port(struct bnx2x *bp)
6439 {
6440 	int port = BP_PORT(bp);
6441 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6442 	u32 low, high;
6443 	u32 val;
6444 
6445 	bnx2x__link_reset(bp);
6446 
6447 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
6448 
6449 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6450 
6451 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6452 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6453 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6454 
6455 	/* Timers bug workaround: disables the pf_master bit in pglue at
6456 	 * common phase, we need to enable it here before any dmae access are
6457 	 * attempted. Therefore we manually added the enable-master to the
6458 	 * port phase (it also happens in the function phase)
6459 	 */
6460 	if (!CHIP_IS_E1x(bp))
6461 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6462 
6463 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6464 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6465 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6466 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6467 
6468 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6469 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6470 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6471 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6472 
6473 	/* QM cid (connection) count */
6474 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6475 
6476 #ifdef BCM_CNIC
6477 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
6478 	REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6479 	REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6480 #endif
6481 
6482 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6483 
6484 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6485 		bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6486 
6487 		if (IS_MF(bp))
6488 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6489 		else if (bp->dev->mtu > 4096) {
6490 			if (bp->flags & ONE_PORT_FLAG)
6491 				low = 160;
6492 			else {
6493 				val = bp->dev->mtu;
6494 				/* (24*1024 + val*4)/256 */
6495 				low = 96 + (val/64) +
6496 						((val % 64) ? 1 : 0);
6497 			}
6498 		} else
6499 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6500 		high = low + 56;	/* 14*1024/256 */
6501 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6502 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6503 	}
6504 
6505 	if (CHIP_MODE_IS_4_PORT(bp))
6506 		REG_WR(bp, (BP_PORT(bp) ?
6507 			    BRB1_REG_MAC_GUARANTIED_1 :
6508 			    BRB1_REG_MAC_GUARANTIED_0), 40);
6509 
6510 
6511 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6512 	if (CHIP_IS_E3B0(bp))
6513 		/* Ovlan exists only if we are in multi-function +
6514 		 * switch-dependent mode, in switch-independent there
6515 		 * is no ovlan headers
6516 		 */
6517 		REG_WR(bp, BP_PORT(bp) ?
6518 		       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6519 		       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6520 		       (bp->path_has_ovlan ? 7 : 6));
6521 
6522 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6523 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6524 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6525 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6526 
6527 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6528 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6529 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6530 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6531 
6532 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6533 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6534 
6535 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6536 
6537 	if (CHIP_IS_E1x(bp)) {
6538 		/* configure PBF to work without PAUSE mtu 9000 */
6539 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6540 
6541 		/* update threshold */
6542 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6543 		/* update init credit */
6544 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6545 
6546 		/* probe changes */
6547 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6548 		udelay(50);
6549 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6550 	}
6551 
6552 #ifdef BCM_CNIC
6553 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6554 #endif
6555 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6556 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6557 
6558 	if (CHIP_IS_E1(bp)) {
6559 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6560 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6561 	}
6562 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
6563 
6564 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6565 
6566 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6567 	/* init aeu_mask_attn_func_0/1:
6568 	 *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6569 	 *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6570 	 *             bits 4-7 are used for "per vn group attention" */
6571 	val = IS_MF(bp) ? 0xF7 : 0x7;
6572 	/* Enable DCBX attention for all but E1 */
6573 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6574 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6575 
6576 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6577 
6578 	if (!CHIP_IS_E1x(bp)) {
6579 		/* Bit-map indicating which L2 hdrs may appear after the
6580 		 * basic Ethernet header
6581 		 */
6582 		REG_WR(bp, BP_PORT(bp) ?
6583 			   NIG_REG_P1_HDRS_AFTER_BASIC :
6584 			   NIG_REG_P0_HDRS_AFTER_BASIC,
6585 			   IS_MF_SD(bp) ? 7 : 6);
6586 
6587 		if (CHIP_IS_E3(bp))
6588 			REG_WR(bp, BP_PORT(bp) ?
6589 				   NIG_REG_LLH1_MF_MODE :
6590 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
6591 	}
6592 	if (!CHIP_IS_E3(bp))
6593 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
6594 
6595 	if (!CHIP_IS_E1(bp)) {
6596 		/* 0x2 disable mf_ov, 0x1 enable */
6597 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
6598 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
6599 
6600 		if (!CHIP_IS_E1x(bp)) {
6601 			val = 0;
6602 			switch (bp->mf_mode) {
6603 			case MULTI_FUNCTION_SD:
6604 				val = 1;
6605 				break;
6606 			case MULTI_FUNCTION_SI:
6607 				val = 2;
6608 				break;
6609 			}
6610 
6611 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
6612 						  NIG_REG_LLH0_CLS_TYPE), val);
6613 		}
6614 		{
6615 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
6616 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
6617 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
6618 		}
6619 	}
6620 
6621 
6622 	/* If SPIO5 is set to generate interrupts, enable it for this port */
6623 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6624 	if (val & (1 << MISC_REGISTERS_SPIO_5)) {
6625 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6626 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6627 		val = REG_RD(bp, reg_addr);
6628 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
6629 		REG_WR(bp, reg_addr, val);
6630 	}
6631 
6632 	return 0;
6633 }
6634 
6635 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
6636 {
6637 	int reg;
6638 
6639 	if (CHIP_IS_E1(bp))
6640 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
6641 	else
6642 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
6643 
6644 	bnx2x_wb_wr(bp, reg, ONCHIP_ADDR1(addr), ONCHIP_ADDR2(addr));
6645 }
6646 
6647 static inline void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
6648 {
6649 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
6650 }
6651 
6652 static inline void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
6653 {
6654 	u32 i, base = FUNC_ILT_BASE(func);
6655 	for (i = base; i < base + ILT_PER_FUNC; i++)
6656 		bnx2x_ilt_wr(bp, i, 0);
6657 }
6658 
6659 static int bnx2x_init_hw_func(struct bnx2x *bp)
6660 {
6661 	int port = BP_PORT(bp);
6662 	int func = BP_FUNC(bp);
6663 	int init_phase = PHASE_PF0 + func;
6664 	struct bnx2x_ilt *ilt = BP_ILT(bp);
6665 	u16 cdu_ilt_start;
6666 	u32 addr, val;
6667 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
6668 	int i, main_mem_width, rc;
6669 
6670 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
6671 
6672 	/* FLR cleanup - hmmm */
6673 	if (!CHIP_IS_E1x(bp)) {
6674 		rc = bnx2x_pf_flr_clnup(bp);
6675 		if (rc)
6676 			return rc;
6677 	}
6678 
6679 	/* set MSI reconfigure capability */
6680 	if (bp->common.int_block == INT_BLOCK_HC) {
6681 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
6682 		val = REG_RD(bp, addr);
6683 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
6684 		REG_WR(bp, addr, val);
6685 	}
6686 
6687 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6688 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6689 
6690 	ilt = BP_ILT(bp);
6691 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
6692 
6693 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
6694 		ilt->lines[cdu_ilt_start + i].page =
6695 			bp->context.vcxt + (ILT_PAGE_CIDS * i);
6696 		ilt->lines[cdu_ilt_start + i].page_mapping =
6697 			bp->context.cxt_mapping + (CDU_ILT_PAGE_SZ * i);
6698 		/* cdu ilt pages are allocated manually so there's no need to
6699 		set the size */
6700 	}
6701 	bnx2x_ilt_init_op(bp, INITOP_SET);
6702 
6703 #ifdef BCM_CNIC
6704 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
6705 
6706 	/* T1 hash bits value determines the T1 number of entries */
6707 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
6708 #endif
6709 
6710 #ifndef BCM_CNIC
6711 	/* set NIC mode */
6712 	REG_WR(bp, PRS_REG_NIC_MODE, 1);
6713 #endif  /* BCM_CNIC */
6714 
6715 	if (!CHIP_IS_E1x(bp)) {
6716 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
6717 
6718 		/* Turn on a single ISR mode in IGU if driver is going to use
6719 		 * INT#x or MSI
6720 		 */
6721 		if (!(bp->flags & USING_MSIX_FLAG))
6722 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
6723 		/*
6724 		 * Timers workaround bug: function init part.
6725 		 * Need to wait 20msec after initializing ILT,
6726 		 * needed to make sure there are no requests in
6727 		 * one of the PXP internal queues with "old" ILT addresses
6728 		 */
6729 		msleep(20);
6730 		/*
6731 		 * Master enable - Due to WB DMAE writes performed before this
6732 		 * register is re-initialized as part of the regular function
6733 		 * init
6734 		 */
6735 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6736 		/* Enable the function in IGU */
6737 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
6738 	}
6739 
6740 	bp->dmae_ready = 1;
6741 
6742 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6743 
6744 	if (!CHIP_IS_E1x(bp))
6745 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
6746 
6747 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6748 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6749 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6750 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6751 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6752 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6753 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6754 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6755 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6756 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6757 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6758 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6759 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6760 
6761 	if (!CHIP_IS_E1x(bp))
6762 		REG_WR(bp, QM_REG_PF_EN, 1);
6763 
6764 	if (!CHIP_IS_E1x(bp)) {
6765 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6766 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6767 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6768 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6769 	}
6770 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6771 
6772 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
6773 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6774 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6775 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6776 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6777 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6778 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6779 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6780 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6781 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6782 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6783 	if (!CHIP_IS_E1x(bp))
6784 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
6785 
6786 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6787 
6788 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6789 
6790 	if (!CHIP_IS_E1x(bp))
6791 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
6792 
6793 	if (IS_MF(bp)) {
6794 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
6795 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
6796 	}
6797 
6798 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6799 
6800 	/* HC init per function */
6801 	if (bp->common.int_block == INT_BLOCK_HC) {
6802 		if (CHIP_IS_E1H(bp)) {
6803 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6804 
6805 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6806 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6807 		}
6808 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
6809 
6810 	} else {
6811 		int num_segs, sb_idx, prod_offset;
6812 
6813 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6814 
6815 		if (!CHIP_IS_E1x(bp)) {
6816 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
6817 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
6818 		}
6819 
6820 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6821 
6822 		if (!CHIP_IS_E1x(bp)) {
6823 			int dsb_idx = 0;
6824 			/**
6825 			 * Producer memory:
6826 			 * E2 mode: address 0-135 match to the mapping memory;
6827 			 * 136 - PF0 default prod; 137 - PF1 default prod;
6828 			 * 138 - PF2 default prod; 139 - PF3 default prod;
6829 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
6830 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
6831 			 * 144-147 reserved.
6832 			 *
6833 			 * E1.5 mode - In backward compatible mode;
6834 			 * for non default SB; each even line in the memory
6835 			 * holds the U producer and each odd line hold
6836 			 * the C producer. The first 128 producers are for
6837 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
6838 			 * producers are for the DSB for each PF.
6839 			 * Each PF has five segments: (the order inside each
6840 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
6841 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
6842 			 * 144-147 attn prods;
6843 			 */
6844 			/* non-default-status-blocks */
6845 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6846 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
6847 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
6848 				prod_offset = (bp->igu_base_sb + sb_idx) *
6849 					num_segs;
6850 
6851 				for (i = 0; i < num_segs; i++) {
6852 					addr = IGU_REG_PROD_CONS_MEMORY +
6853 							(prod_offset + i) * 4;
6854 					REG_WR(bp, addr, 0);
6855 				}
6856 				/* send consumer update with value 0 */
6857 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
6858 					     USTORM_ID, 0, IGU_INT_NOP, 1);
6859 				bnx2x_igu_clear_sb(bp,
6860 						   bp->igu_base_sb + sb_idx);
6861 			}
6862 
6863 			/* default-status-blocks */
6864 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6865 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
6866 
6867 			if (CHIP_MODE_IS_4_PORT(bp))
6868 				dsb_idx = BP_FUNC(bp);
6869 			else
6870 				dsb_idx = BP_VN(bp);
6871 
6872 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
6873 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
6874 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
6875 
6876 			/*
6877 			 * igu prods come in chunks of E1HVN_MAX (4) -
6878 			 * does not matters what is the current chip mode
6879 			 */
6880 			for (i = 0; i < (num_segs * E1HVN_MAX);
6881 			     i += E1HVN_MAX) {
6882 				addr = IGU_REG_PROD_CONS_MEMORY +
6883 							(prod_offset + i)*4;
6884 				REG_WR(bp, addr, 0);
6885 			}
6886 			/* send consumer update with 0 */
6887 			if (CHIP_INT_MODE_IS_BC(bp)) {
6888 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6889 					     USTORM_ID, 0, IGU_INT_NOP, 1);
6890 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6891 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
6892 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6893 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
6894 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6895 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
6896 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6897 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
6898 			} else {
6899 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6900 					     USTORM_ID, 0, IGU_INT_NOP, 1);
6901 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6902 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
6903 			}
6904 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
6905 
6906 			/* !!! these should become driver const once
6907 			   rf-tool supports split-68 const */
6908 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
6909 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
6910 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
6911 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
6912 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
6913 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
6914 		}
6915 	}
6916 
6917 	/* Reset PCIE errors for debug */
6918 	REG_WR(bp, 0x2114, 0xffffffff);
6919 	REG_WR(bp, 0x2120, 0xffffffff);
6920 
6921 	if (CHIP_IS_E1x(bp)) {
6922 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
6923 		main_mem_base = HC_REG_MAIN_MEMORY +
6924 				BP_PORT(bp) * (main_mem_size * 4);
6925 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
6926 		main_mem_width = 8;
6927 
6928 		val = REG_RD(bp, main_mem_prty_clr);
6929 		if (val)
6930 			DP(NETIF_MSG_HW,
6931 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
6932 			   val);
6933 
6934 		/* Clear "false" parity errors in MSI-X table */
6935 		for (i = main_mem_base;
6936 		     i < main_mem_base + main_mem_size * 4;
6937 		     i += main_mem_width) {
6938 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
6939 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
6940 					 i, main_mem_width / 4);
6941 		}
6942 		/* Clear HC parity attention */
6943 		REG_RD(bp, main_mem_prty_clr);
6944 	}
6945 
6946 #ifdef BNX2X_STOP_ON_ERROR
6947 	/* Enable STORMs SP logging */
6948 	REG_WR8(bp, BAR_USTRORM_INTMEM +
6949 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6950 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
6951 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6952 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
6953 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6954 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
6955 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6956 #endif
6957 
6958 	bnx2x_phy_probe(&bp->link_params);
6959 
6960 	return 0;
6961 }
6962 
6963 
6964 void bnx2x_free_mem(struct bnx2x *bp)
6965 {
6966 	/* fastpath */
6967 	bnx2x_free_fp_mem(bp);
6968 	/* end of fastpath */
6969 
6970 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
6971 		       sizeof(struct host_sp_status_block));
6972 
6973 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
6974 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
6975 
6976 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
6977 		       sizeof(struct bnx2x_slowpath));
6978 
6979 	BNX2X_PCI_FREE(bp->context.vcxt, bp->context.cxt_mapping,
6980 		       bp->context.size);
6981 
6982 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
6983 
6984 	BNX2X_FREE(bp->ilt->lines);
6985 
6986 #ifdef BCM_CNIC
6987 	if (!CHIP_IS_E1x(bp))
6988 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
6989 			       sizeof(struct host_hc_status_block_e2));
6990 	else
6991 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
6992 			       sizeof(struct host_hc_status_block_e1x));
6993 
6994 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
6995 #endif
6996 
6997 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
6998 
6999 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7000 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
7001 }
7002 
7003 static inline int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
7004 {
7005 	int num_groups;
7006 	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
7007 
7008 	/* number of queues for statistics is number of eth queues + FCoE */
7009 	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
7010 
7011 	/* Total number of FW statistics requests =
7012 	 * 1 for port stats + 1 for PF stats + potential 1 for FCoE stats +
7013 	 * num of queues
7014 	 */
7015 	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
7016 
7017 
7018 	/* Request is built from stats_query_header and an array of
7019 	 * stats_query_cmd_group each of which contains
7020 	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
7021 	 * configured in the stats_query_header.
7022 	 */
7023 	num_groups = ((bp->fw_stats_num) / STATS_QUERY_CMD_COUNT) +
7024 		     (((bp->fw_stats_num) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
7025 
7026 	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
7027 			num_groups * sizeof(struct stats_query_cmd_group);
7028 
7029 	/* Data for statistics requests + stats_conter
7030 	 *
7031 	 * stats_counter holds per-STORM counters that are incremented
7032 	 * when STORM has finished with the current request.
7033 	 *
7034 	 * memory for FCoE offloaded statistics are counted anyway,
7035 	 * even if they will not be sent.
7036 	 */
7037 	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
7038 		sizeof(struct per_pf_stats) +
7039 		sizeof(struct fcoe_statistics_params) +
7040 		sizeof(struct per_queue_stats) * num_queue_stats +
7041 		sizeof(struct stats_counter);
7042 
7043 	BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
7044 			bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7045 
7046 	/* Set shortcuts */
7047 	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
7048 	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
7049 
7050 	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
7051 		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
7052 
7053 	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
7054 				   bp->fw_stats_req_sz;
7055 	return 0;
7056 
7057 alloc_mem_err:
7058 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7059 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7060 	BNX2X_ERR("Can't allocate memory\n");
7061 	return -ENOMEM;
7062 }
7063 
7064 
7065 int bnx2x_alloc_mem(struct bnx2x *bp)
7066 {
7067 #ifdef BCM_CNIC
7068 	if (!CHIP_IS_E1x(bp))
7069 		/* size = the status block + ramrod buffers */
7070 		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7071 				sizeof(struct host_hc_status_block_e2));
7072 	else
7073 		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, &bp->cnic_sb_mapping,
7074 				sizeof(struct host_hc_status_block_e1x));
7075 
7076 	/* allocate searcher T2 table */
7077 	BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7078 #endif
7079 
7080 
7081 	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7082 			sizeof(struct host_sp_status_block));
7083 
7084 	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7085 			sizeof(struct bnx2x_slowpath));
7086 
7087 #ifdef BCM_CNIC
7088 	/* write address to which L5 should insert its values */
7089 	bp->cnic_eth_dev.addr_drv_info_to_mcp = &bp->slowpath->drv_info_to_mcp;
7090 #endif
7091 
7092 	/* Allocated memory for FW statistics  */
7093 	if (bnx2x_alloc_fw_stats_mem(bp))
7094 		goto alloc_mem_err;
7095 
7096 	bp->context.size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7097 
7098 	BNX2X_PCI_ALLOC(bp->context.vcxt, &bp->context.cxt_mapping,
7099 			bp->context.size);
7100 
7101 	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7102 
7103 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7104 		goto alloc_mem_err;
7105 
7106 	/* Slow path ring */
7107 	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7108 
7109 	/* EQ */
7110 	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7111 			BCM_PAGE_SIZE * NUM_EQ_PAGES);
7112 
7113 
7114 	/* fastpath */
7115 	/* need to be done at the end, since it's self adjusting to amount
7116 	 * of memory available for RSS queues
7117 	 */
7118 	if (bnx2x_alloc_fp_mem(bp))
7119 		goto alloc_mem_err;
7120 	return 0;
7121 
7122 alloc_mem_err:
7123 	bnx2x_free_mem(bp);
7124 	BNX2X_ERR("Can't allocate memory\n");
7125 	return -ENOMEM;
7126 }
7127 
7128 /*
7129  * Init service functions
7130  */
7131 
7132 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7133 		      struct bnx2x_vlan_mac_obj *obj, bool set,
7134 		      int mac_type, unsigned long *ramrod_flags)
7135 {
7136 	int rc;
7137 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7138 
7139 	memset(&ramrod_param, 0, sizeof(ramrod_param));
7140 
7141 	/* Fill general parameters */
7142 	ramrod_param.vlan_mac_obj = obj;
7143 	ramrod_param.ramrod_flags = *ramrod_flags;
7144 
7145 	/* Fill a user request section if needed */
7146 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7147 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7148 
7149 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7150 
7151 		/* Set the command: ADD or DEL */
7152 		if (set)
7153 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7154 		else
7155 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7156 	}
7157 
7158 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7159 	if (rc < 0)
7160 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7161 	return rc;
7162 }
7163 
7164 int bnx2x_del_all_macs(struct bnx2x *bp,
7165 		       struct bnx2x_vlan_mac_obj *mac_obj,
7166 		       int mac_type, bool wait_for_comp)
7167 {
7168 	int rc;
7169 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
7170 
7171 	/* Wait for completion of requested */
7172 	if (wait_for_comp)
7173 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7174 
7175 	/* Set the mac type of addresses we want to clear */
7176 	__set_bit(mac_type, &vlan_mac_flags);
7177 
7178 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7179 	if (rc < 0)
7180 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7181 
7182 	return rc;
7183 }
7184 
7185 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7186 {
7187 	unsigned long ramrod_flags = 0;
7188 
7189 #ifdef BCM_CNIC
7190 	if (is_zero_ether_addr(bp->dev->dev_addr) && IS_MF_STORAGE_SD(bp)) {
7191 		DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
7192 		   "Ignoring Zero MAC for STORAGE SD mode\n");
7193 		return 0;
7194 	}
7195 #endif
7196 
7197 	DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7198 
7199 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7200 	/* Eth MAC is set on RSS leading client (fp[0]) */
7201 	return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->fp->mac_obj, set,
7202 				 BNX2X_ETH_MAC, &ramrod_flags);
7203 }
7204 
7205 int bnx2x_setup_leading(struct bnx2x *bp)
7206 {
7207 	return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7208 }
7209 
7210 /**
7211  * bnx2x_set_int_mode - configure interrupt mode
7212  *
7213  * @bp:		driver handle
7214  *
7215  * In case of MSI-X it will also try to enable MSI-X.
7216  */
7217 static void __devinit bnx2x_set_int_mode(struct bnx2x *bp)
7218 {
7219 	switch (int_mode) {
7220 	case INT_MODE_MSI:
7221 		bnx2x_enable_msi(bp);
7222 		/* falling through... */
7223 	case INT_MODE_INTx:
7224 		bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7225 		BNX2X_DEV_INFO("set number of queues to 1\n");
7226 		break;
7227 	default:
7228 		/* Set number of queues according to bp->multi_mode value */
7229 		bnx2x_set_num_queues(bp);
7230 
7231 		BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
7232 
7233 		/* if we can't use MSI-X we only need one fp,
7234 		 * so try to enable MSI-X with the requested number of fp's
7235 		 * and fallback to MSI or legacy INTx with one fp
7236 		 */
7237 		if (bnx2x_enable_msix(bp)) {
7238 			/* failed to enable MSI-X */
7239 			BNX2X_DEV_INFO("Failed to enable MSI-X (%d), set number of queues to %d\n",
7240 				       bp->num_queues, 1 + NON_ETH_CONTEXT_USE);
7241 
7242 			bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7243 
7244 			/* Try to enable MSI */
7245 			if (!(bp->flags & DISABLE_MSI_FLAG))
7246 				bnx2x_enable_msi(bp);
7247 		}
7248 		break;
7249 	}
7250 }
7251 
7252 /* must be called prioir to any HW initializations */
7253 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7254 {
7255 	return L2_ILT_LINES(bp);
7256 }
7257 
7258 void bnx2x_ilt_set_info(struct bnx2x *bp)
7259 {
7260 	struct ilt_client_info *ilt_client;
7261 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7262 	u16 line = 0;
7263 
7264 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7265 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7266 
7267 	/* CDU */
7268 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7269 	ilt_client->client_num = ILT_CLIENT_CDU;
7270 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
7271 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7272 	ilt_client->start = line;
7273 	line += bnx2x_cid_ilt_lines(bp);
7274 #ifdef BCM_CNIC
7275 	line += CNIC_ILT_LINES;
7276 #endif
7277 	ilt_client->end = line - 1;
7278 
7279 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7280 	   ilt_client->start,
7281 	   ilt_client->end,
7282 	   ilt_client->page_size,
7283 	   ilt_client->flags,
7284 	   ilog2(ilt_client->page_size >> 12));
7285 
7286 	/* QM */
7287 	if (QM_INIT(bp->qm_cid_count)) {
7288 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
7289 		ilt_client->client_num = ILT_CLIENT_QM;
7290 		ilt_client->page_size = QM_ILT_PAGE_SZ;
7291 		ilt_client->flags = 0;
7292 		ilt_client->start = line;
7293 
7294 		/* 4 bytes for each cid */
7295 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7296 							 QM_ILT_PAGE_SZ);
7297 
7298 		ilt_client->end = line - 1;
7299 
7300 		DP(NETIF_MSG_IFUP,
7301 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7302 		   ilt_client->start,
7303 		   ilt_client->end,
7304 		   ilt_client->page_size,
7305 		   ilt_client->flags,
7306 		   ilog2(ilt_client->page_size >> 12));
7307 
7308 	}
7309 	/* SRC */
7310 	ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7311 #ifdef BCM_CNIC
7312 	ilt_client->client_num = ILT_CLIENT_SRC;
7313 	ilt_client->page_size = SRC_ILT_PAGE_SZ;
7314 	ilt_client->flags = 0;
7315 	ilt_client->start = line;
7316 	line += SRC_ILT_LINES;
7317 	ilt_client->end = line - 1;
7318 
7319 	DP(NETIF_MSG_IFUP,
7320 	   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7321 	   ilt_client->start,
7322 	   ilt_client->end,
7323 	   ilt_client->page_size,
7324 	   ilt_client->flags,
7325 	   ilog2(ilt_client->page_size >> 12));
7326 
7327 #else
7328 	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7329 #endif
7330 
7331 	/* TM */
7332 	ilt_client = &ilt->clients[ILT_CLIENT_TM];
7333 #ifdef BCM_CNIC
7334 	ilt_client->client_num = ILT_CLIENT_TM;
7335 	ilt_client->page_size = TM_ILT_PAGE_SZ;
7336 	ilt_client->flags = 0;
7337 	ilt_client->start = line;
7338 	line += TM_ILT_LINES;
7339 	ilt_client->end = line - 1;
7340 
7341 	DP(NETIF_MSG_IFUP,
7342 	   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7343 	   ilt_client->start,
7344 	   ilt_client->end,
7345 	   ilt_client->page_size,
7346 	   ilt_client->flags,
7347 	   ilog2(ilt_client->page_size >> 12));
7348 
7349 #else
7350 	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7351 #endif
7352 	BUG_ON(line > ILT_MAX_LINES);
7353 }
7354 
7355 /**
7356  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7357  *
7358  * @bp:			driver handle
7359  * @fp:			pointer to fastpath
7360  * @init_params:	pointer to parameters structure
7361  *
7362  * parameters configured:
7363  *      - HC configuration
7364  *      - Queue's CDU context
7365  */
7366 static inline void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7367 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
7368 {
7369 
7370 	u8 cos;
7371 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
7372 	if (!IS_FCOE_FP(fp)) {
7373 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
7374 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
7375 
7376 		/* If HC is supporterd, enable host coalescing in the transition
7377 		 * to INIT state.
7378 		 */
7379 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
7380 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
7381 
7382 		/* HC rate */
7383 		init_params->rx.hc_rate = bp->rx_ticks ?
7384 			(1000000 / bp->rx_ticks) : 0;
7385 		init_params->tx.hc_rate = bp->tx_ticks ?
7386 			(1000000 / bp->tx_ticks) : 0;
7387 
7388 		/* FW SB ID */
7389 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
7390 			fp->fw_sb_id;
7391 
7392 		/*
7393 		 * CQ index among the SB indices: FCoE clients uses the default
7394 		 * SB, therefore it's different.
7395 		 */
7396 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
7397 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
7398 	}
7399 
7400 	/* set maximum number of COSs supported by this queue */
7401 	init_params->max_cos = fp->max_cos;
7402 
7403 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
7404 	    fp->index, init_params->max_cos);
7405 
7406 	/* set the context pointers queue object */
7407 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++)
7408 		init_params->cxts[cos] =
7409 			&bp->context.vcxt[fp->txdata[cos].cid].eth;
7410 }
7411 
7412 int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7413 			struct bnx2x_queue_state_params *q_params,
7414 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
7415 			int tx_index, bool leading)
7416 {
7417 	memset(tx_only_params, 0, sizeof(*tx_only_params));
7418 
7419 	/* Set the command */
7420 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
7421 
7422 	/* Set tx-only QUEUE flags: don't zero statistics */
7423 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
7424 
7425 	/* choose the index of the cid to send the slow path on */
7426 	tx_only_params->cid_index = tx_index;
7427 
7428 	/* Set general TX_ONLY_SETUP parameters */
7429 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
7430 
7431 	/* Set Tx TX_ONLY_SETUP parameters */
7432 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
7433 
7434 	DP(NETIF_MSG_IFUP,
7435 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
7436 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
7437 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
7438 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
7439 
7440 	/* send the ramrod */
7441 	return bnx2x_queue_state_change(bp, q_params);
7442 }
7443 
7444 
7445 /**
7446  * bnx2x_setup_queue - setup queue
7447  *
7448  * @bp:		driver handle
7449  * @fp:		pointer to fastpath
7450  * @leading:	is leading
7451  *
7452  * This function performs 2 steps in a Queue state machine
7453  *      actually: 1) RESET->INIT 2) INIT->SETUP
7454  */
7455 
7456 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7457 		       bool leading)
7458 {
7459 	struct bnx2x_queue_state_params q_params = {NULL};
7460 	struct bnx2x_queue_setup_params *setup_params =
7461 						&q_params.params.setup;
7462 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
7463 						&q_params.params.tx_only;
7464 	int rc;
7465 	u8 tx_index;
7466 
7467 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
7468 
7469 	/* reset IGU state skip FCoE L2 queue */
7470 	if (!IS_FCOE_FP(fp))
7471 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
7472 			     IGU_INT_ENABLE, 0);
7473 
7474 	q_params.q_obj = &fp->q_obj;
7475 	/* We want to wait for completion in this context */
7476 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7477 
7478 	/* Prepare the INIT parameters */
7479 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
7480 
7481 	/* Set the command */
7482 	q_params.cmd = BNX2X_Q_CMD_INIT;
7483 
7484 	/* Change the state to INIT */
7485 	rc = bnx2x_queue_state_change(bp, &q_params);
7486 	if (rc) {
7487 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
7488 		return rc;
7489 	}
7490 
7491 	DP(NETIF_MSG_IFUP, "init complete\n");
7492 
7493 
7494 	/* Now move the Queue to the SETUP state... */
7495 	memset(setup_params, 0, sizeof(*setup_params));
7496 
7497 	/* Set QUEUE flags */
7498 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
7499 
7500 	/* Set general SETUP parameters */
7501 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
7502 				FIRST_TX_COS_INDEX);
7503 
7504 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
7505 			    &setup_params->rxq_params);
7506 
7507 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
7508 			   FIRST_TX_COS_INDEX);
7509 
7510 	/* Set the command */
7511 	q_params.cmd = BNX2X_Q_CMD_SETUP;
7512 
7513 	/* Change the state to SETUP */
7514 	rc = bnx2x_queue_state_change(bp, &q_params);
7515 	if (rc) {
7516 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
7517 		return rc;
7518 	}
7519 
7520 	/* loop through the relevant tx-only indices */
7521 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7522 	      tx_index < fp->max_cos;
7523 	      tx_index++) {
7524 
7525 		/* prepare and send tx-only ramrod*/
7526 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
7527 					  tx_only_params, tx_index, leading);
7528 		if (rc) {
7529 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
7530 				  fp->index, tx_index);
7531 			return rc;
7532 		}
7533 	}
7534 
7535 	return rc;
7536 }
7537 
7538 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
7539 {
7540 	struct bnx2x_fastpath *fp = &bp->fp[index];
7541 	struct bnx2x_fp_txdata *txdata;
7542 	struct bnx2x_queue_state_params q_params = {NULL};
7543 	int rc, tx_index;
7544 
7545 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
7546 
7547 	q_params.q_obj = &fp->q_obj;
7548 	/* We want to wait for completion in this context */
7549 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7550 
7551 
7552 	/* close tx-only connections */
7553 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7554 	     tx_index < fp->max_cos;
7555 	     tx_index++){
7556 
7557 		/* ascertain this is a normal queue*/
7558 		txdata = &fp->txdata[tx_index];
7559 
7560 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
7561 							txdata->txq_index);
7562 
7563 		/* send halt terminate on tx-only connection */
7564 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7565 		memset(&q_params.params.terminate, 0,
7566 		       sizeof(q_params.params.terminate));
7567 		q_params.params.terminate.cid_index = tx_index;
7568 
7569 		rc = bnx2x_queue_state_change(bp, &q_params);
7570 		if (rc)
7571 			return rc;
7572 
7573 		/* send halt terminate on tx-only connection */
7574 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7575 		memset(&q_params.params.cfc_del, 0,
7576 		       sizeof(q_params.params.cfc_del));
7577 		q_params.params.cfc_del.cid_index = tx_index;
7578 		rc = bnx2x_queue_state_change(bp, &q_params);
7579 		if (rc)
7580 			return rc;
7581 	}
7582 	/* Stop the primary connection: */
7583 	/* ...halt the connection */
7584 	q_params.cmd = BNX2X_Q_CMD_HALT;
7585 	rc = bnx2x_queue_state_change(bp, &q_params);
7586 	if (rc)
7587 		return rc;
7588 
7589 	/* ...terminate the connection */
7590 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7591 	memset(&q_params.params.terminate, 0,
7592 	       sizeof(q_params.params.terminate));
7593 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
7594 	rc = bnx2x_queue_state_change(bp, &q_params);
7595 	if (rc)
7596 		return rc;
7597 	/* ...delete cfc entry */
7598 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7599 	memset(&q_params.params.cfc_del, 0,
7600 	       sizeof(q_params.params.cfc_del));
7601 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
7602 	return bnx2x_queue_state_change(bp, &q_params);
7603 }
7604 
7605 
7606 static void bnx2x_reset_func(struct bnx2x *bp)
7607 {
7608 	int port = BP_PORT(bp);
7609 	int func = BP_FUNC(bp);
7610 	int i;
7611 
7612 	/* Disable the function in the FW */
7613 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
7614 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
7615 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
7616 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
7617 
7618 	/* FP SBs */
7619 	for_each_eth_queue(bp, i) {
7620 		struct bnx2x_fastpath *fp = &bp->fp[i];
7621 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
7622 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
7623 			   SB_DISABLED);
7624 	}
7625 
7626 #ifdef BCM_CNIC
7627 	/* CNIC SB */
7628 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7629 		CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp)),
7630 		SB_DISABLED);
7631 #endif
7632 	/* SP SB */
7633 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7634 		   CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
7635 		   SB_DISABLED);
7636 
7637 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
7638 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
7639 		       0);
7640 
7641 	/* Configure IGU */
7642 	if (bp->common.int_block == INT_BLOCK_HC) {
7643 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7644 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7645 	} else {
7646 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7647 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7648 	}
7649 
7650 #ifdef BCM_CNIC
7651 	/* Disable Timer scan */
7652 	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
7653 	/*
7654 	 * Wait for at least 10ms and up to 2 second for the timers scan to
7655 	 * complete
7656 	 */
7657 	for (i = 0; i < 200; i++) {
7658 		msleep(10);
7659 		if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
7660 			break;
7661 	}
7662 #endif
7663 	/* Clear ILT */
7664 	bnx2x_clear_func_ilt(bp, func);
7665 
7666 	/* Timers workaround bug for E2: if this is vnic-3,
7667 	 * we need to set the entire ilt range for this timers.
7668 	 */
7669 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
7670 		struct ilt_client_info ilt_cli;
7671 		/* use dummy TM client */
7672 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7673 		ilt_cli.start = 0;
7674 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7675 		ilt_cli.client_num = ILT_CLIENT_TM;
7676 
7677 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
7678 	}
7679 
7680 	/* this assumes that reset_port() called before reset_func()*/
7681 	if (!CHIP_IS_E1x(bp))
7682 		bnx2x_pf_disable(bp);
7683 
7684 	bp->dmae_ready = 0;
7685 }
7686 
7687 static void bnx2x_reset_port(struct bnx2x *bp)
7688 {
7689 	int port = BP_PORT(bp);
7690 	u32 val;
7691 
7692 	/* Reset physical Link */
7693 	bnx2x__link_reset(bp);
7694 
7695 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7696 
7697 	/* Do not rcv packets to BRB */
7698 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
7699 	/* Do not direct rcv packets that are not for MCP to the BRB */
7700 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
7701 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
7702 
7703 	/* Configure AEU */
7704 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
7705 
7706 	msleep(100);
7707 	/* Check for BRB port occupancy */
7708 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
7709 	if (val)
7710 		DP(NETIF_MSG_IFDOWN,
7711 		   "BRB1 is not empty  %d blocks are occupied\n", val);
7712 
7713 	/* TODO: Close Doorbell port? */
7714 }
7715 
7716 static inline int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
7717 {
7718 	struct bnx2x_func_state_params func_params = {NULL};
7719 
7720 	/* Prepare parameters for function state transitions */
7721 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7722 
7723 	func_params.f_obj = &bp->func_obj;
7724 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
7725 
7726 	func_params.params.hw_init.load_phase = load_code;
7727 
7728 	return bnx2x_func_state_change(bp, &func_params);
7729 }
7730 
7731 static inline int bnx2x_func_stop(struct bnx2x *bp)
7732 {
7733 	struct bnx2x_func_state_params func_params = {NULL};
7734 	int rc;
7735 
7736 	/* Prepare parameters for function state transitions */
7737 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7738 	func_params.f_obj = &bp->func_obj;
7739 	func_params.cmd = BNX2X_F_CMD_STOP;
7740 
7741 	/*
7742 	 * Try to stop the function the 'good way'. If fails (in case
7743 	 * of a parity error during bnx2x_chip_cleanup()) and we are
7744 	 * not in a debug mode, perform a state transaction in order to
7745 	 * enable further HW_RESET transaction.
7746 	 */
7747 	rc = bnx2x_func_state_change(bp, &func_params);
7748 	if (rc) {
7749 #ifdef BNX2X_STOP_ON_ERROR
7750 		return rc;
7751 #else
7752 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
7753 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
7754 		return bnx2x_func_state_change(bp, &func_params);
7755 #endif
7756 	}
7757 
7758 	return 0;
7759 }
7760 
7761 /**
7762  * bnx2x_send_unload_req - request unload mode from the MCP.
7763  *
7764  * @bp:			driver handle
7765  * @unload_mode:	requested function's unload mode
7766  *
7767  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
7768  */
7769 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
7770 {
7771 	u32 reset_code = 0;
7772 	int port = BP_PORT(bp);
7773 
7774 	/* Select the UNLOAD request mode */
7775 	if (unload_mode == UNLOAD_NORMAL)
7776 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7777 
7778 	else if (bp->flags & NO_WOL_FLAG)
7779 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
7780 
7781 	else if (bp->wol) {
7782 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
7783 		u8 *mac_addr = bp->dev->dev_addr;
7784 		u32 val;
7785 		u16 pmc;
7786 
7787 		/* The mac address is written to entries 1-4 to
7788 		 * preserve entry 0 which is used by the PMF
7789 		 */
7790 		u8 entry = (BP_VN(bp) + 1)*8;
7791 
7792 		val = (mac_addr[0] << 8) | mac_addr[1];
7793 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
7794 
7795 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
7796 		      (mac_addr[4] << 8) | mac_addr[5];
7797 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
7798 
7799 		/* Enable the PME and clear the status */
7800 		pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
7801 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
7802 		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
7803 
7804 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
7805 
7806 	} else
7807 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7808 
7809 	/* Send the request to the MCP */
7810 	if (!BP_NOMCP(bp))
7811 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
7812 	else {
7813 		int path = BP_PATH(bp);
7814 
7815 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
7816 		   path, load_count[path][0], load_count[path][1],
7817 		   load_count[path][2]);
7818 		load_count[path][0]--;
7819 		load_count[path][1 + port]--;
7820 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
7821 		   path, load_count[path][0], load_count[path][1],
7822 		   load_count[path][2]);
7823 		if (load_count[path][0] == 0)
7824 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
7825 		else if (load_count[path][1 + port] == 0)
7826 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
7827 		else
7828 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
7829 	}
7830 
7831 	return reset_code;
7832 }
7833 
7834 /**
7835  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
7836  *
7837  * @bp:		driver handle
7838  */
7839 void bnx2x_send_unload_done(struct bnx2x *bp)
7840 {
7841 	/* Report UNLOAD_DONE to MCP */
7842 	if (!BP_NOMCP(bp))
7843 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
7844 }
7845 
7846 static inline int bnx2x_func_wait_started(struct bnx2x *bp)
7847 {
7848 	int tout = 50;
7849 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
7850 
7851 	if (!bp->port.pmf)
7852 		return 0;
7853 
7854 	/*
7855 	 * (assumption: No Attention from MCP at this stage)
7856 	 * PMF probably in the middle of TXdisable/enable transaction
7857 	 * 1. Sync IRS for default SB
7858 	 * 2. Sync SP queue - this guarantes us that attention handling started
7859 	 * 3. Wait, that TXdisable/enable transaction completes
7860 	 *
7861 	 * 1+2 guranty that if DCBx attention was scheduled it already changed
7862 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
7863 	 * received complettion for the transaction the state is TX_STOPPED.
7864 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
7865 	 * transaction.
7866 	 */
7867 
7868 	/* make sure default SB ISR is done */
7869 	if (msix)
7870 		synchronize_irq(bp->msix_table[0].vector);
7871 	else
7872 		synchronize_irq(bp->pdev->irq);
7873 
7874 	flush_workqueue(bnx2x_wq);
7875 
7876 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
7877 				BNX2X_F_STATE_STARTED && tout--)
7878 		msleep(20);
7879 
7880 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
7881 						BNX2X_F_STATE_STARTED) {
7882 #ifdef BNX2X_STOP_ON_ERROR
7883 		BNX2X_ERR("Wrong function state\n");
7884 		return -EBUSY;
7885 #else
7886 		/*
7887 		 * Failed to complete the transaction in a "good way"
7888 		 * Force both transactions with CLR bit
7889 		 */
7890 		struct bnx2x_func_state_params func_params = {NULL};
7891 
7892 		DP(NETIF_MSG_IFDOWN,
7893 		   "Hmmm... unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
7894 
7895 		func_params.f_obj = &bp->func_obj;
7896 		__set_bit(RAMROD_DRV_CLR_ONLY,
7897 					&func_params.ramrod_flags);
7898 
7899 		/* STARTED-->TX_ST0PPED */
7900 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
7901 		bnx2x_func_state_change(bp, &func_params);
7902 
7903 		/* TX_ST0PPED-->STARTED */
7904 		func_params.cmd = BNX2X_F_CMD_TX_START;
7905 		return bnx2x_func_state_change(bp, &func_params);
7906 #endif
7907 	}
7908 
7909 	return 0;
7910 }
7911 
7912 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode)
7913 {
7914 	int port = BP_PORT(bp);
7915 	int i, rc = 0;
7916 	u8 cos;
7917 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
7918 	u32 reset_code;
7919 
7920 	/* Wait until tx fastpath tasks complete */
7921 	for_each_tx_queue(bp, i) {
7922 		struct bnx2x_fastpath *fp = &bp->fp[i];
7923 
7924 		for_each_cos_in_tx_queue(fp, cos)
7925 			rc = bnx2x_clean_tx_queue(bp, &fp->txdata[cos]);
7926 #ifdef BNX2X_STOP_ON_ERROR
7927 		if (rc)
7928 			return;
7929 #endif
7930 	}
7931 
7932 	/* Give HW time to discard old tx messages */
7933 	usleep_range(1000, 1000);
7934 
7935 	/* Clean all ETH MACs */
7936 	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_ETH_MAC, false);
7937 	if (rc < 0)
7938 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
7939 
7940 	/* Clean up UC list  */
7941 	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_UC_LIST_MAC,
7942 				true);
7943 	if (rc < 0)
7944 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
7945 			  rc);
7946 
7947 	/* Disable LLH */
7948 	if (!CHIP_IS_E1(bp))
7949 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7950 
7951 	/* Set "drop all" (stop Rx).
7952 	 * We need to take a netif_addr_lock() here in order to prevent
7953 	 * a race between the completion code and this code.
7954 	 */
7955 	netif_addr_lock_bh(bp->dev);
7956 	/* Schedule the rx_mode command */
7957 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
7958 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
7959 	else
7960 		bnx2x_set_storm_rx_mode(bp);
7961 
7962 	/* Cleanup multicast configuration */
7963 	rparam.mcast_obj = &bp->mcast_obj;
7964 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
7965 	if (rc < 0)
7966 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
7967 
7968 	netif_addr_unlock_bh(bp->dev);
7969 
7970 
7971 
7972 	/*
7973 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
7974 	 * this function should perform FUNC, PORT or COMMON HW
7975 	 * reset.
7976 	 */
7977 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
7978 
7979 	/*
7980 	 * (assumption: No Attention from MCP at this stage)
7981 	 * PMF probably in the middle of TXdisable/enable transaction
7982 	 */
7983 	rc = bnx2x_func_wait_started(bp);
7984 	if (rc) {
7985 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
7986 #ifdef BNX2X_STOP_ON_ERROR
7987 		return;
7988 #endif
7989 	}
7990 
7991 	/* Close multi and leading connections
7992 	 * Completions for ramrods are collected in a synchronous way
7993 	 */
7994 	for_each_queue(bp, i)
7995 		if (bnx2x_stop_queue(bp, i))
7996 #ifdef BNX2X_STOP_ON_ERROR
7997 			return;
7998 #else
7999 			goto unload_error;
8000 #endif
8001 	/* If SP settings didn't get completed so far - something
8002 	 * very wrong has happen.
8003 	 */
8004 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8005 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8006 
8007 #ifndef BNX2X_STOP_ON_ERROR
8008 unload_error:
8009 #endif
8010 	rc = bnx2x_func_stop(bp);
8011 	if (rc) {
8012 		BNX2X_ERR("Function stop failed!\n");
8013 #ifdef BNX2X_STOP_ON_ERROR
8014 		return;
8015 #endif
8016 	}
8017 
8018 	/* Disable HW interrupts, NAPI */
8019 	bnx2x_netif_stop(bp, 1);
8020 
8021 	/* Release IRQs */
8022 	bnx2x_free_irq(bp);
8023 
8024 	/* Reset the chip */
8025 	rc = bnx2x_reset_hw(bp, reset_code);
8026 	if (rc)
8027 		BNX2X_ERR("HW_RESET failed\n");
8028 
8029 
8030 	/* Report UNLOAD_DONE to MCP */
8031 	bnx2x_send_unload_done(bp);
8032 }
8033 
8034 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8035 {
8036 	u32 val;
8037 
8038 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8039 
8040 	if (CHIP_IS_E1(bp)) {
8041 		int port = BP_PORT(bp);
8042 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8043 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
8044 
8045 		val = REG_RD(bp, addr);
8046 		val &= ~(0x300);
8047 		REG_WR(bp, addr, val);
8048 	} else {
8049 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8050 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8051 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8052 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8053 	}
8054 }
8055 
8056 /* Close gates #2, #3 and #4: */
8057 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8058 {
8059 	u32 val;
8060 
8061 	/* Gates #2 and #4a are closed/opened for "not E1" only */
8062 	if (!CHIP_IS_E1(bp)) {
8063 		/* #4 */
8064 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8065 		/* #2 */
8066 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8067 	}
8068 
8069 	/* #3 */
8070 	if (CHIP_IS_E1x(bp)) {
8071 		/* Prevent interrupts from HC on both ports */
8072 		val = REG_RD(bp, HC_REG_CONFIG_1);
8073 		REG_WR(bp, HC_REG_CONFIG_1,
8074 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8075 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8076 
8077 		val = REG_RD(bp, HC_REG_CONFIG_0);
8078 		REG_WR(bp, HC_REG_CONFIG_0,
8079 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8080 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8081 	} else {
8082 		/* Prevent incomming interrupts in IGU */
8083 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8084 
8085 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8086 		       (!close) ?
8087 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8088 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8089 	}
8090 
8091 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8092 		close ? "closing" : "opening");
8093 	mmiowb();
8094 }
8095 
8096 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
8097 
8098 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8099 {
8100 	/* Do some magic... */
8101 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8102 	*magic_val = val & SHARED_MF_CLP_MAGIC;
8103 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8104 }
8105 
8106 /**
8107  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8108  *
8109  * @bp:		driver handle
8110  * @magic_val:	old value of the `magic' bit.
8111  */
8112 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8113 {
8114 	/* Restore the `magic' bit value... */
8115 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8116 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
8117 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8118 }
8119 
8120 /**
8121  * bnx2x_reset_mcp_prep - prepare for MCP reset.
8122  *
8123  * @bp:		driver handle
8124  * @magic_val:	old value of 'magic' bit.
8125  *
8126  * Takes care of CLP configurations.
8127  */
8128 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8129 {
8130 	u32 shmem;
8131 	u32 validity_offset;
8132 
8133 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
8134 
8135 	/* Set `magic' bit in order to save MF config */
8136 	if (!CHIP_IS_E1(bp))
8137 		bnx2x_clp_reset_prep(bp, magic_val);
8138 
8139 	/* Get shmem offset */
8140 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8141 	validity_offset = offsetof(struct shmem_region, validity_map[0]);
8142 
8143 	/* Clear validity map flags */
8144 	if (shmem > 0)
8145 		REG_WR(bp, shmem + validity_offset, 0);
8146 }
8147 
8148 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
8149 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
8150 
8151 /**
8152  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
8153  *
8154  * @bp:	driver handle
8155  */
8156 static inline void bnx2x_mcp_wait_one(struct bnx2x *bp)
8157 {
8158 	/* special handling for emulation and FPGA,
8159 	   wait 10 times longer */
8160 	if (CHIP_REV_IS_SLOW(bp))
8161 		msleep(MCP_ONE_TIMEOUT*10);
8162 	else
8163 		msleep(MCP_ONE_TIMEOUT);
8164 }
8165 
8166 /*
8167  * initializes bp->common.shmem_base and waits for validity signature to appear
8168  */
8169 static int bnx2x_init_shmem(struct bnx2x *bp)
8170 {
8171 	int cnt = 0;
8172 	u32 val = 0;
8173 
8174 	do {
8175 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8176 		if (bp->common.shmem_base) {
8177 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8178 			if (val & SHR_MEM_VALIDITY_MB)
8179 				return 0;
8180 		}
8181 
8182 		bnx2x_mcp_wait_one(bp);
8183 
8184 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8185 
8186 	BNX2X_ERR("BAD MCP validity signature\n");
8187 
8188 	return -ENODEV;
8189 }
8190 
8191 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8192 {
8193 	int rc = bnx2x_init_shmem(bp);
8194 
8195 	/* Restore the `magic' bit value */
8196 	if (!CHIP_IS_E1(bp))
8197 		bnx2x_clp_reset_done(bp, magic_val);
8198 
8199 	return rc;
8200 }
8201 
8202 static void bnx2x_pxp_prep(struct bnx2x *bp)
8203 {
8204 	if (!CHIP_IS_E1(bp)) {
8205 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8206 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8207 		mmiowb();
8208 	}
8209 }
8210 
8211 /*
8212  * Reset the whole chip except for:
8213  *      - PCIE core
8214  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
8215  *              one reset bit)
8216  *      - IGU
8217  *      - MISC (including AEU)
8218  *      - GRC
8219  *      - RBCN, RBCP
8220  */
8221 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
8222 {
8223 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
8224 	u32 global_bits2, stay_reset2;
8225 
8226 	/*
8227 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
8228 	 * (per chip) blocks.
8229 	 */
8230 	global_bits2 =
8231 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8232 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8233 
8234 	/* Don't reset the following blocks */
8235 	not_reset_mask1 =
8236 		MISC_REGISTERS_RESET_REG_1_RST_HC |
8237 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8238 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
8239 
8240 	not_reset_mask2 =
8241 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8242 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8243 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8244 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8245 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8246 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
8247 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8248 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8249 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
8250 		MISC_REGISTERS_RESET_REG_2_PGLC;
8251 
8252 	/*
8253 	 * Keep the following blocks in reset:
8254 	 *  - all xxMACs are handled by the bnx2x_link code.
8255 	 */
8256 	stay_reset2 =
8257 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8258 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8259 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8260 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8261 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
8262 		MISC_REGISTERS_RESET_REG_2_UMAC1 |
8263 		MISC_REGISTERS_RESET_REG_2_XMAC |
8264 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8265 
8266 	/* Full reset masks according to the chip */
8267 	reset_mask1 = 0xffffffff;
8268 
8269 	if (CHIP_IS_E1(bp))
8270 		reset_mask2 = 0xffff;
8271 	else if (CHIP_IS_E1H(bp))
8272 		reset_mask2 = 0x1ffff;
8273 	else if (CHIP_IS_E2(bp))
8274 		reset_mask2 = 0xfffff;
8275 	else /* CHIP_IS_E3 */
8276 		reset_mask2 = 0x3ffffff;
8277 
8278 	/* Don't reset global blocks unless we need to */
8279 	if (!global)
8280 		reset_mask2 &= ~global_bits2;
8281 
8282 	/*
8283 	 * In case of attention in the QM, we need to reset PXP
8284 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8285 	 * because otherwise QM reset would release 'close the gates' shortly
8286 	 * before resetting the PXP, then the PSWRQ would send a write
8287 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
8288 	 * read the payload data from PSWWR, but PSWWR would not
8289 	 * respond. The write queue in PGLUE would stuck, dmae commands
8290 	 * would not return. Therefore it's important to reset the second
8291 	 * reset register (containing the
8292 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8293 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8294 	 * bit).
8295 	 */
8296 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8297 	       reset_mask2 & (~not_reset_mask2));
8298 
8299 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8300 	       reset_mask1 & (~not_reset_mask1));
8301 
8302 	barrier();
8303 	mmiowb();
8304 
8305 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8306 	       reset_mask2 & (~stay_reset2));
8307 
8308 	barrier();
8309 	mmiowb();
8310 
8311 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8312 	mmiowb();
8313 }
8314 
8315 /**
8316  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8317  * It should get cleared in no more than 1s.
8318  *
8319  * @bp:	driver handle
8320  *
8321  * It should get cleared in no more than 1s. Returns 0 if
8322  * pending writes bit gets cleared.
8323  */
8324 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8325 {
8326 	u32 cnt = 1000;
8327 	u32 pend_bits = 0;
8328 
8329 	do {
8330 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8331 
8332 		if (pend_bits == 0)
8333 			break;
8334 
8335 		usleep_range(1000, 1000);
8336 	} while (cnt-- > 0);
8337 
8338 	if (cnt <= 0) {
8339 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8340 			  pend_bits);
8341 		return -EBUSY;
8342 	}
8343 
8344 	return 0;
8345 }
8346 
8347 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
8348 {
8349 	int cnt = 1000;
8350 	u32 val = 0;
8351 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
8352 
8353 
8354 	/* Empty the Tetris buffer, wait for 1s */
8355 	do {
8356 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
8357 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
8358 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
8359 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
8360 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
8361 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
8362 		    ((port_is_idle_0 & 0x1) == 0x1) &&
8363 		    ((port_is_idle_1 & 0x1) == 0x1) &&
8364 		    (pgl_exp_rom2 == 0xffffffff))
8365 			break;
8366 		usleep_range(1000, 1000);
8367 	} while (cnt-- > 0);
8368 
8369 	if (cnt <= 0) {
8370 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
8371 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8372 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
8373 			  pgl_exp_rom2);
8374 		return -EAGAIN;
8375 	}
8376 
8377 	barrier();
8378 
8379 	/* Close gates #2, #3 and #4 */
8380 	bnx2x_set_234_gates(bp, true);
8381 
8382 	/* Poll for IGU VQs for 57712 and newer chips */
8383 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
8384 		return -EAGAIN;
8385 
8386 
8387 	/* TBD: Indicate that "process kill" is in progress to MCP */
8388 
8389 	/* Clear "unprepared" bit */
8390 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
8391 	barrier();
8392 
8393 	/* Make sure all is written to the chip before the reset */
8394 	mmiowb();
8395 
8396 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
8397 	 * PSWHST, GRC and PSWRD Tetris buffer.
8398 	 */
8399 	usleep_range(1000, 1000);
8400 
8401 	/* Prepare to chip reset: */
8402 	/* MCP */
8403 	if (global)
8404 		bnx2x_reset_mcp_prep(bp, &val);
8405 
8406 	/* PXP */
8407 	bnx2x_pxp_prep(bp);
8408 	barrier();
8409 
8410 	/* reset the chip */
8411 	bnx2x_process_kill_chip_reset(bp, global);
8412 	barrier();
8413 
8414 	/* Recover after reset: */
8415 	/* MCP */
8416 	if (global && bnx2x_reset_mcp_comp(bp, val))
8417 		return -EAGAIN;
8418 
8419 	/* TBD: Add resetting the NO_MCP mode DB here */
8420 
8421 	/* PXP */
8422 	bnx2x_pxp_prep(bp);
8423 
8424 	/* Open the gates #2, #3 and #4 */
8425 	bnx2x_set_234_gates(bp, false);
8426 
8427 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
8428 	 * reset state, re-enable attentions. */
8429 
8430 	return 0;
8431 }
8432 
8433 int bnx2x_leader_reset(struct bnx2x *bp)
8434 {
8435 	int rc = 0;
8436 	bool global = bnx2x_reset_is_global(bp);
8437 	u32 load_code;
8438 
8439 	/* if not going to reset MCP - load "fake" driver to reset HW while
8440 	 * driver is owner of the HW
8441 	 */
8442 	if (!global && !BP_NOMCP(bp)) {
8443 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, 0);
8444 		if (!load_code) {
8445 			BNX2X_ERR("MCP response failure, aborting\n");
8446 			rc = -EAGAIN;
8447 			goto exit_leader_reset;
8448 		}
8449 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
8450 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
8451 			BNX2X_ERR("MCP unexpected resp, aborting\n");
8452 			rc = -EAGAIN;
8453 			goto exit_leader_reset2;
8454 		}
8455 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
8456 		if (!load_code) {
8457 			BNX2X_ERR("MCP response failure, aborting\n");
8458 			rc = -EAGAIN;
8459 			goto exit_leader_reset2;
8460 		}
8461 	}
8462 
8463 	/* Try to recover after the failure */
8464 	if (bnx2x_process_kill(bp, global)) {
8465 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
8466 			  BP_PATH(bp));
8467 		rc = -EAGAIN;
8468 		goto exit_leader_reset2;
8469 	}
8470 
8471 	/*
8472 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
8473 	 * state.
8474 	 */
8475 	bnx2x_set_reset_done(bp);
8476 	if (global)
8477 		bnx2x_clear_reset_global(bp);
8478 
8479 exit_leader_reset2:
8480 	/* unload "fake driver" if it was loaded */
8481 	if (!global && !BP_NOMCP(bp)) {
8482 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
8483 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8484 	}
8485 exit_leader_reset:
8486 	bp->is_leader = 0;
8487 	bnx2x_release_leader_lock(bp);
8488 	smp_mb();
8489 	return rc;
8490 }
8491 
8492 static inline void bnx2x_recovery_failed(struct bnx2x *bp)
8493 {
8494 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
8495 
8496 	/* Disconnect this device */
8497 	netif_device_detach(bp->dev);
8498 
8499 	/*
8500 	 * Block ifup for all function on this engine until "process kill"
8501 	 * or power cycle.
8502 	 */
8503 	bnx2x_set_reset_in_progress(bp);
8504 
8505 	/* Shut down the power */
8506 	bnx2x_set_power_state(bp, PCI_D3hot);
8507 
8508 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
8509 
8510 	smp_mb();
8511 }
8512 
8513 /*
8514  * Assumption: runs under rtnl lock. This together with the fact
8515  * that it's called only from bnx2x_sp_rtnl() ensure that it
8516  * will never be called when netif_running(bp->dev) is false.
8517  */
8518 static void bnx2x_parity_recover(struct bnx2x *bp)
8519 {
8520 	bool global = false;
8521 	u32 error_recovered, error_unrecovered;
8522 	bool is_parity;
8523 
8524 	DP(NETIF_MSG_HW, "Handling parity\n");
8525 	while (1) {
8526 		switch (bp->recovery_state) {
8527 		case BNX2X_RECOVERY_INIT:
8528 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
8529 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
8530 			WARN_ON(!is_parity);
8531 
8532 			/* Try to get a LEADER_LOCK HW lock */
8533 			if (bnx2x_trylock_leader_lock(bp)) {
8534 				bnx2x_set_reset_in_progress(bp);
8535 				/*
8536 				 * Check if there is a global attention and if
8537 				 * there was a global attention, set the global
8538 				 * reset bit.
8539 				 */
8540 
8541 				if (global)
8542 					bnx2x_set_reset_global(bp);
8543 
8544 				bp->is_leader = 1;
8545 			}
8546 
8547 			/* Stop the driver */
8548 			/* If interface has been removed - break */
8549 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY))
8550 				return;
8551 
8552 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
8553 
8554 			/* Ensure "is_leader", MCP command sequence and
8555 			 * "recovery_state" update values are seen on other
8556 			 * CPUs.
8557 			 */
8558 			smp_mb();
8559 			break;
8560 
8561 		case BNX2X_RECOVERY_WAIT:
8562 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
8563 			if (bp->is_leader) {
8564 				int other_engine = BP_PATH(bp) ? 0 : 1;
8565 				bool other_load_status =
8566 					bnx2x_get_load_status(bp, other_engine);
8567 				bool load_status =
8568 					bnx2x_get_load_status(bp, BP_PATH(bp));
8569 				global = bnx2x_reset_is_global(bp);
8570 
8571 				/*
8572 				 * In case of a parity in a global block, let
8573 				 * the first leader that performs a
8574 				 * leader_reset() reset the global blocks in
8575 				 * order to clear global attentions. Otherwise
8576 				 * the the gates will remain closed for that
8577 				 * engine.
8578 				 */
8579 				if (load_status ||
8580 				    (global && other_load_status)) {
8581 					/* Wait until all other functions get
8582 					 * down.
8583 					 */
8584 					schedule_delayed_work(&bp->sp_rtnl_task,
8585 								HZ/10);
8586 					return;
8587 				} else {
8588 					/* If all other functions got down -
8589 					 * try to bring the chip back to
8590 					 * normal. In any case it's an exit
8591 					 * point for a leader.
8592 					 */
8593 					if (bnx2x_leader_reset(bp)) {
8594 						bnx2x_recovery_failed(bp);
8595 						return;
8596 					}
8597 
8598 					/* If we are here, means that the
8599 					 * leader has succeeded and doesn't
8600 					 * want to be a leader any more. Try
8601 					 * to continue as a none-leader.
8602 					 */
8603 					break;
8604 				}
8605 			} else { /* non-leader */
8606 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
8607 					/* Try to get a LEADER_LOCK HW lock as
8608 					 * long as a former leader may have
8609 					 * been unloaded by the user or
8610 					 * released a leadership by another
8611 					 * reason.
8612 					 */
8613 					if (bnx2x_trylock_leader_lock(bp)) {
8614 						/* I'm a leader now! Restart a
8615 						 * switch case.
8616 						 */
8617 						bp->is_leader = 1;
8618 						break;
8619 					}
8620 
8621 					schedule_delayed_work(&bp->sp_rtnl_task,
8622 								HZ/10);
8623 					return;
8624 
8625 				} else {
8626 					/*
8627 					 * If there was a global attention, wait
8628 					 * for it to be cleared.
8629 					 */
8630 					if (bnx2x_reset_is_global(bp)) {
8631 						schedule_delayed_work(
8632 							&bp->sp_rtnl_task,
8633 							HZ/10);
8634 						return;
8635 					}
8636 
8637 					error_recovered =
8638 					  bp->eth_stats.recoverable_error;
8639 					error_unrecovered =
8640 					  bp->eth_stats.unrecoverable_error;
8641 					bp->recovery_state =
8642 						BNX2X_RECOVERY_NIC_LOADING;
8643 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
8644 						error_unrecovered++;
8645 						netdev_err(bp->dev,
8646 							   "Recovery failed. Power cycle needed\n");
8647 						/* Disconnect this device */
8648 						netif_device_detach(bp->dev);
8649 						/* Shut down the power */
8650 						bnx2x_set_power_state(
8651 							bp, PCI_D3hot);
8652 						smp_mb();
8653 					} else {
8654 						bp->recovery_state =
8655 							BNX2X_RECOVERY_DONE;
8656 						error_recovered++;
8657 						smp_mb();
8658 					}
8659 					bp->eth_stats.recoverable_error =
8660 						error_recovered;
8661 					bp->eth_stats.unrecoverable_error =
8662 						error_unrecovered;
8663 
8664 					return;
8665 				}
8666 			}
8667 		default:
8668 			return;
8669 		}
8670 	}
8671 }
8672 
8673 static int bnx2x_close(struct net_device *dev);
8674 
8675 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
8676  * scheduled on a general queue in order to prevent a dead lock.
8677  */
8678 static void bnx2x_sp_rtnl_task(struct work_struct *work)
8679 {
8680 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
8681 
8682 	rtnl_lock();
8683 
8684 	if (!netif_running(bp->dev))
8685 		goto sp_rtnl_exit;
8686 
8687 	/* if stop on error is defined no recovery flows should be executed */
8688 #ifdef BNX2X_STOP_ON_ERROR
8689 	BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
8690 		  "you will need to reboot when done\n");
8691 	goto sp_rtnl_not_reset;
8692 #endif
8693 
8694 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
8695 		/*
8696 		 * Clear all pending SP commands as we are going to reset the
8697 		 * function anyway.
8698 		 */
8699 		bp->sp_rtnl_state = 0;
8700 		smp_mb();
8701 
8702 		bnx2x_parity_recover(bp);
8703 
8704 		goto sp_rtnl_exit;
8705 	}
8706 
8707 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
8708 		/*
8709 		 * Clear all pending SP commands as we are going to reset the
8710 		 * function anyway.
8711 		 */
8712 		bp->sp_rtnl_state = 0;
8713 		smp_mb();
8714 
8715 		bnx2x_nic_unload(bp, UNLOAD_NORMAL);
8716 		bnx2x_nic_load(bp, LOAD_NORMAL);
8717 
8718 		goto sp_rtnl_exit;
8719 	}
8720 #ifdef BNX2X_STOP_ON_ERROR
8721 sp_rtnl_not_reset:
8722 #endif
8723 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
8724 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
8725 
8726 	/*
8727 	 * in case of fan failure we need to reset id if the "stop on error"
8728 	 * debug flag is set, since we trying to prevent permanent overheating
8729 	 * damage
8730 	 */
8731 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
8732 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
8733 		netif_device_detach(bp->dev);
8734 		bnx2x_close(bp->dev);
8735 	}
8736 
8737 sp_rtnl_exit:
8738 	rtnl_unlock();
8739 }
8740 
8741 /* end of nic load/unload */
8742 
8743 static void bnx2x_period_task(struct work_struct *work)
8744 {
8745 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
8746 
8747 	if (!netif_running(bp->dev))
8748 		goto period_task_exit;
8749 
8750 	if (CHIP_REV_IS_SLOW(bp)) {
8751 		BNX2X_ERR("period task called on emulation, ignoring\n");
8752 		goto period_task_exit;
8753 	}
8754 
8755 	bnx2x_acquire_phy_lock(bp);
8756 	/*
8757 	 * The barrier is needed to ensure the ordering between the writing to
8758 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
8759 	 * the reading here.
8760 	 */
8761 	smp_mb();
8762 	if (bp->port.pmf) {
8763 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
8764 
8765 		/* Re-queue task in 1 sec */
8766 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
8767 	}
8768 
8769 	bnx2x_release_phy_lock(bp);
8770 period_task_exit:
8771 	return;
8772 }
8773 
8774 /*
8775  * Init service functions
8776  */
8777 
8778 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
8779 {
8780 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
8781 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
8782 	return base + (BP_ABS_FUNC(bp)) * stride;
8783 }
8784 
8785 static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
8786 {
8787 	u32 reg = bnx2x_get_pretend_reg(bp);
8788 
8789 	/* Flush all outstanding writes */
8790 	mmiowb();
8791 
8792 	/* Pretend to be function 0 */
8793 	REG_WR(bp, reg, 0);
8794 	REG_RD(bp, reg);	/* Flush the GRC transaction (in the chip) */
8795 
8796 	/* From now we are in the "like-E1" mode */
8797 	bnx2x_int_disable(bp);
8798 
8799 	/* Flush all outstanding writes */
8800 	mmiowb();
8801 
8802 	/* Restore the original function */
8803 	REG_WR(bp, reg, BP_ABS_FUNC(bp));
8804 	REG_RD(bp, reg);
8805 }
8806 
8807 static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
8808 {
8809 	if (CHIP_IS_E1(bp))
8810 		bnx2x_int_disable(bp);
8811 	else
8812 		bnx2x_undi_int_disable_e1h(bp);
8813 }
8814 
8815 static void __devinit bnx2x_undi_unload(struct bnx2x *bp)
8816 {
8817 	u32 val;
8818 
8819 	/* possibly another driver is trying to reset the chip */
8820 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
8821 
8822 	/* check if doorbell queue is reset */
8823 	if (REG_RD(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET)
8824 	    & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
8825 
8826 		/*
8827 		 * Check if it is the UNDI driver
8828 		 * UNDI driver initializes CID offset for normal bell to 0x7
8829 		 */
8830 		val = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
8831 		if (val == 0x7) {
8832 			u32 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8833 			/* save our pf_num */
8834 			int orig_pf_num = bp->pf_num;
8835 			int port;
8836 			u32 swap_en, swap_val, value;
8837 
8838 			/* clear the UNDI indication */
8839 			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
8840 
8841 			BNX2X_DEV_INFO("UNDI is active! reset device\n");
8842 
8843 			/* try unload UNDI on port 0 */
8844 			bp->pf_num = 0;
8845 			bp->fw_seq =
8846 			      (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8847 				DRV_MSG_SEQ_NUMBER_MASK);
8848 			reset_code = bnx2x_fw_command(bp, reset_code, 0);
8849 
8850 			/* if UNDI is loaded on the other port */
8851 			if (reset_code != FW_MSG_CODE_DRV_UNLOAD_COMMON) {
8852 
8853 				/* send "DONE" for previous unload */
8854 				bnx2x_fw_command(bp,
8855 						 DRV_MSG_CODE_UNLOAD_DONE, 0);
8856 
8857 				/* unload UNDI on port 1 */
8858 				bp->pf_num = 1;
8859 				bp->fw_seq =
8860 			      (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8861 					DRV_MSG_SEQ_NUMBER_MASK);
8862 				reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8863 
8864 				bnx2x_fw_command(bp, reset_code, 0);
8865 			}
8866 
8867 			bnx2x_undi_int_disable(bp);
8868 			port = BP_PORT(bp);
8869 
8870 			/* close input traffic and wait for it */
8871 			/* Do not rcv packets to BRB */
8872 			REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_DRV_MASK :
8873 					   NIG_REG_LLH0_BRB1_DRV_MASK), 0x0);
8874 			/* Do not direct rcv packets that are not for MCP to
8875 			 * the BRB */
8876 			REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8877 					   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8878 			/* clear AEU */
8879 			REG_WR(bp, (port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8880 					   MISC_REG_AEU_MASK_ATTN_FUNC_0), 0);
8881 			msleep(10);
8882 
8883 			/* save NIG port swap info */
8884 			swap_val = REG_RD(bp, NIG_REG_PORT_SWAP);
8885 			swap_en = REG_RD(bp, NIG_REG_STRAP_OVERRIDE);
8886 			/* reset device */
8887 			REG_WR(bp,
8888 			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8889 			       0xd3ffffff);
8890 
8891 			value = 0x1400;
8892 			if (CHIP_IS_E3(bp)) {
8893 				value |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
8894 				value |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
8895 			}
8896 
8897 			REG_WR(bp,
8898 			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8899 			       value);
8900 
8901 			/* take the NIG out of reset and restore swap values */
8902 			REG_WR(bp,
8903 			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
8904 			       MISC_REGISTERS_RESET_REG_1_RST_NIG);
8905 			REG_WR(bp, NIG_REG_PORT_SWAP, swap_val);
8906 			REG_WR(bp, NIG_REG_STRAP_OVERRIDE, swap_en);
8907 
8908 			/* send unload done to the MCP */
8909 			bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8910 
8911 			/* restore our func and fw_seq */
8912 			bp->pf_num = orig_pf_num;
8913 		}
8914 	}
8915 
8916 	/* now it's safe to release the lock */
8917 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
8918 }
8919 
8920 static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp)
8921 {
8922 	u32 val, val2, val3, val4, id, boot_mode;
8923 	u16 pmc;
8924 
8925 	/* Get the chip revision id and number. */
8926 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
8927 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
8928 	id = ((val & 0xffff) << 16);
8929 	val = REG_RD(bp, MISC_REG_CHIP_REV);
8930 	id |= ((val & 0xf) << 12);
8931 	val = REG_RD(bp, MISC_REG_CHIP_METAL);
8932 	id |= ((val & 0xff) << 4);
8933 	val = REG_RD(bp, MISC_REG_BOND_ID);
8934 	id |= (val & 0xf);
8935 	bp->common.chip_id = id;
8936 
8937 	/* Set doorbell size */
8938 	bp->db_size = (1 << BNX2X_DB_SHIFT);
8939 
8940 	if (!CHIP_IS_E1x(bp)) {
8941 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
8942 		if ((val & 1) == 0)
8943 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
8944 		else
8945 			val = (val >> 1) & 1;
8946 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
8947 						       "2_PORT_MODE");
8948 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
8949 						 CHIP_2_PORT_MODE;
8950 
8951 		if (CHIP_MODE_IS_4_PORT(bp))
8952 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
8953 		else
8954 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
8955 	} else {
8956 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
8957 		bp->pfid = bp->pf_num;			/* 0..7 */
8958 	}
8959 
8960 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
8961 
8962 	bp->link_params.chip_id = bp->common.chip_id;
8963 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
8964 
8965 	val = (REG_RD(bp, 0x2874) & 0x55);
8966 	if ((bp->common.chip_id & 0x1) ||
8967 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
8968 		bp->flags |= ONE_PORT_FLAG;
8969 		BNX2X_DEV_INFO("single port device\n");
8970 	}
8971 
8972 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
8973 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
8974 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
8975 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
8976 		       bp->common.flash_size, bp->common.flash_size);
8977 
8978 	bnx2x_init_shmem(bp);
8979 
8980 
8981 
8982 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
8983 					MISC_REG_GENERIC_CR_1 :
8984 					MISC_REG_GENERIC_CR_0));
8985 
8986 	bp->link_params.shmem_base = bp->common.shmem_base;
8987 	bp->link_params.shmem2_base = bp->common.shmem2_base;
8988 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
8989 		       bp->common.shmem_base, bp->common.shmem2_base);
8990 
8991 	if (!bp->common.shmem_base) {
8992 		BNX2X_DEV_INFO("MCP not active\n");
8993 		bp->flags |= NO_MCP_FLAG;
8994 		return;
8995 	}
8996 
8997 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
8998 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
8999 
9000 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
9001 					SHARED_HW_CFG_LED_MODE_MASK) >>
9002 				       SHARED_HW_CFG_LED_MODE_SHIFT);
9003 
9004 	bp->link_params.feature_config_flags = 0;
9005 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
9006 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
9007 		bp->link_params.feature_config_flags |=
9008 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9009 	else
9010 		bp->link_params.feature_config_flags &=
9011 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9012 
9013 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
9014 	bp->common.bc_ver = val;
9015 	BNX2X_DEV_INFO("bc_ver %X\n", val);
9016 	if (val < BNX2X_BC_VER) {
9017 		/* for now only warn
9018 		 * later we might need to enforce this */
9019 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
9020 			  BNX2X_BC_VER, val);
9021 	}
9022 	bp->link_params.feature_config_flags |=
9023 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
9024 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
9025 
9026 	bp->link_params.feature_config_flags |=
9027 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
9028 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
9029 
9030 	bp->link_params.feature_config_flags |=
9031 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
9032 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
9033 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
9034 			BC_SUPPORTS_PFC_STATS : 0;
9035 
9036 	boot_mode = SHMEM_RD(bp,
9037 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
9038 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
9039 	switch (boot_mode) {
9040 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
9041 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
9042 		break;
9043 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
9044 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
9045 		break;
9046 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
9047 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
9048 		break;
9049 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
9050 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
9051 		break;
9052 	}
9053 
9054 	pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
9055 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
9056 
9057 	BNX2X_DEV_INFO("%sWoL capable\n",
9058 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
9059 
9060 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
9061 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
9062 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
9063 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
9064 
9065 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
9066 		 val, val2, val3, val4);
9067 }
9068 
9069 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
9070 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
9071 
9072 static void __devinit bnx2x_get_igu_cam_info(struct bnx2x *bp)
9073 {
9074 	int pfid = BP_FUNC(bp);
9075 	int igu_sb_id;
9076 	u32 val;
9077 	u8 fid, igu_sb_cnt = 0;
9078 
9079 	bp->igu_base_sb = 0xff;
9080 	if (CHIP_INT_MODE_IS_BC(bp)) {
9081 		int vn = BP_VN(bp);
9082 		igu_sb_cnt = bp->igu_sb_cnt;
9083 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
9084 			FP_SB_MAX_E1x;
9085 
9086 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
9087 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
9088 
9089 		return;
9090 	}
9091 
9092 	/* IGU in normal mode - read CAM */
9093 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
9094 	     igu_sb_id++) {
9095 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
9096 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
9097 			continue;
9098 		fid = IGU_FID(val);
9099 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
9100 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
9101 				continue;
9102 			if (IGU_VEC(val) == 0)
9103 				/* default status block */
9104 				bp->igu_dsb_id = igu_sb_id;
9105 			else {
9106 				if (bp->igu_base_sb == 0xff)
9107 					bp->igu_base_sb = igu_sb_id;
9108 				igu_sb_cnt++;
9109 			}
9110 		}
9111 	}
9112 
9113 #ifdef CONFIG_PCI_MSI
9114 	/*
9115 	 * It's expected that number of CAM entries for this functions is equal
9116 	 * to the number evaluated based on the MSI-X table size. We want a
9117 	 * harsh warning if these values are different!
9118 	 */
9119 	WARN_ON(bp->igu_sb_cnt != igu_sb_cnt);
9120 #endif
9121 
9122 	if (igu_sb_cnt == 0)
9123 		BNX2X_ERR("CAM configuration error\n");
9124 }
9125 
9126 static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp,
9127 						    u32 switch_cfg)
9128 {
9129 	int cfg_size = 0, idx, port = BP_PORT(bp);
9130 
9131 	/* Aggregation of supported attributes of all external phys */
9132 	bp->port.supported[0] = 0;
9133 	bp->port.supported[1] = 0;
9134 	switch (bp->link_params.num_phys) {
9135 	case 1:
9136 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
9137 		cfg_size = 1;
9138 		break;
9139 	case 2:
9140 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
9141 		cfg_size = 1;
9142 		break;
9143 	case 3:
9144 		if (bp->link_params.multi_phy_config &
9145 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
9146 			bp->port.supported[1] =
9147 				bp->link_params.phy[EXT_PHY1].supported;
9148 			bp->port.supported[0] =
9149 				bp->link_params.phy[EXT_PHY2].supported;
9150 		} else {
9151 			bp->port.supported[0] =
9152 				bp->link_params.phy[EXT_PHY1].supported;
9153 			bp->port.supported[1] =
9154 				bp->link_params.phy[EXT_PHY2].supported;
9155 		}
9156 		cfg_size = 2;
9157 		break;
9158 	}
9159 
9160 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
9161 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
9162 			   SHMEM_RD(bp,
9163 			   dev_info.port_hw_config[port].external_phy_config),
9164 			   SHMEM_RD(bp,
9165 			   dev_info.port_hw_config[port].external_phy_config2));
9166 			return;
9167 	}
9168 
9169 	if (CHIP_IS_E3(bp))
9170 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
9171 	else {
9172 		switch (switch_cfg) {
9173 		case SWITCH_CFG_1G:
9174 			bp->port.phy_addr = REG_RD(
9175 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
9176 			break;
9177 		case SWITCH_CFG_10G:
9178 			bp->port.phy_addr = REG_RD(
9179 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
9180 			break;
9181 		default:
9182 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
9183 				  bp->port.link_config[0]);
9184 			return;
9185 		}
9186 	}
9187 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
9188 	/* mask what we support according to speed_cap_mask per configuration */
9189 	for (idx = 0; idx < cfg_size; idx++) {
9190 		if (!(bp->link_params.speed_cap_mask[idx] &
9191 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
9192 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
9193 
9194 		if (!(bp->link_params.speed_cap_mask[idx] &
9195 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
9196 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
9197 
9198 		if (!(bp->link_params.speed_cap_mask[idx] &
9199 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
9200 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
9201 
9202 		if (!(bp->link_params.speed_cap_mask[idx] &
9203 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
9204 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
9205 
9206 		if (!(bp->link_params.speed_cap_mask[idx] &
9207 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
9208 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
9209 						     SUPPORTED_1000baseT_Full);
9210 
9211 		if (!(bp->link_params.speed_cap_mask[idx] &
9212 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
9213 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
9214 
9215 		if (!(bp->link_params.speed_cap_mask[idx] &
9216 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
9217 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
9218 
9219 	}
9220 
9221 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
9222 		       bp->port.supported[1]);
9223 }
9224 
9225 static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp)
9226 {
9227 	u32 link_config, idx, cfg_size = 0;
9228 	bp->port.advertising[0] = 0;
9229 	bp->port.advertising[1] = 0;
9230 	switch (bp->link_params.num_phys) {
9231 	case 1:
9232 	case 2:
9233 		cfg_size = 1;
9234 		break;
9235 	case 3:
9236 		cfg_size = 2;
9237 		break;
9238 	}
9239 	for (idx = 0; idx < cfg_size; idx++) {
9240 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
9241 		link_config = bp->port.link_config[idx];
9242 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
9243 		case PORT_FEATURE_LINK_SPEED_AUTO:
9244 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
9245 				bp->link_params.req_line_speed[idx] =
9246 					SPEED_AUTO_NEG;
9247 				bp->port.advertising[idx] |=
9248 					bp->port.supported[idx];
9249 				if (bp->link_params.phy[EXT_PHY1].type ==
9250 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
9251 					bp->port.advertising[idx] |=
9252 					(SUPPORTED_100baseT_Half |
9253 					 SUPPORTED_100baseT_Full);
9254 			} else {
9255 				/* force 10G, no AN */
9256 				bp->link_params.req_line_speed[idx] =
9257 					SPEED_10000;
9258 				bp->port.advertising[idx] |=
9259 					(ADVERTISED_10000baseT_Full |
9260 					 ADVERTISED_FIBRE);
9261 				continue;
9262 			}
9263 			break;
9264 
9265 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
9266 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
9267 				bp->link_params.req_line_speed[idx] =
9268 					SPEED_10;
9269 				bp->port.advertising[idx] |=
9270 					(ADVERTISED_10baseT_Full |
9271 					 ADVERTISED_TP);
9272 			} else {
9273 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9274 					    link_config,
9275 				    bp->link_params.speed_cap_mask[idx]);
9276 				return;
9277 			}
9278 			break;
9279 
9280 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
9281 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
9282 				bp->link_params.req_line_speed[idx] =
9283 					SPEED_10;
9284 				bp->link_params.req_duplex[idx] =
9285 					DUPLEX_HALF;
9286 				bp->port.advertising[idx] |=
9287 					(ADVERTISED_10baseT_Half |
9288 					 ADVERTISED_TP);
9289 			} else {
9290 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9291 					    link_config,
9292 					  bp->link_params.speed_cap_mask[idx]);
9293 				return;
9294 			}
9295 			break;
9296 
9297 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
9298 			if (bp->port.supported[idx] &
9299 			    SUPPORTED_100baseT_Full) {
9300 				bp->link_params.req_line_speed[idx] =
9301 					SPEED_100;
9302 				bp->port.advertising[idx] |=
9303 					(ADVERTISED_100baseT_Full |
9304 					 ADVERTISED_TP);
9305 			} else {
9306 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9307 					    link_config,
9308 					  bp->link_params.speed_cap_mask[idx]);
9309 				return;
9310 			}
9311 			break;
9312 
9313 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
9314 			if (bp->port.supported[idx] &
9315 			    SUPPORTED_100baseT_Half) {
9316 				bp->link_params.req_line_speed[idx] =
9317 								SPEED_100;
9318 				bp->link_params.req_duplex[idx] =
9319 								DUPLEX_HALF;
9320 				bp->port.advertising[idx] |=
9321 					(ADVERTISED_100baseT_Half |
9322 					 ADVERTISED_TP);
9323 			} else {
9324 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9325 				    link_config,
9326 				    bp->link_params.speed_cap_mask[idx]);
9327 				return;
9328 			}
9329 			break;
9330 
9331 		case PORT_FEATURE_LINK_SPEED_1G:
9332 			if (bp->port.supported[idx] &
9333 			    SUPPORTED_1000baseT_Full) {
9334 				bp->link_params.req_line_speed[idx] =
9335 					SPEED_1000;
9336 				bp->port.advertising[idx] |=
9337 					(ADVERTISED_1000baseT_Full |
9338 					 ADVERTISED_TP);
9339 			} else {
9340 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9341 				    link_config,
9342 				    bp->link_params.speed_cap_mask[idx]);
9343 				return;
9344 			}
9345 			break;
9346 
9347 		case PORT_FEATURE_LINK_SPEED_2_5G:
9348 			if (bp->port.supported[idx] &
9349 			    SUPPORTED_2500baseX_Full) {
9350 				bp->link_params.req_line_speed[idx] =
9351 					SPEED_2500;
9352 				bp->port.advertising[idx] |=
9353 					(ADVERTISED_2500baseX_Full |
9354 						ADVERTISED_TP);
9355 			} else {
9356 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9357 				    link_config,
9358 				    bp->link_params.speed_cap_mask[idx]);
9359 				return;
9360 			}
9361 			break;
9362 
9363 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
9364 			if (bp->port.supported[idx] &
9365 			    SUPPORTED_10000baseT_Full) {
9366 				bp->link_params.req_line_speed[idx] =
9367 					SPEED_10000;
9368 				bp->port.advertising[idx] |=
9369 					(ADVERTISED_10000baseT_Full |
9370 						ADVERTISED_FIBRE);
9371 			} else {
9372 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9373 				    link_config,
9374 				    bp->link_params.speed_cap_mask[idx]);
9375 				return;
9376 			}
9377 			break;
9378 		case PORT_FEATURE_LINK_SPEED_20G:
9379 			bp->link_params.req_line_speed[idx] = SPEED_20000;
9380 
9381 			break;
9382 		default:
9383 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
9384 				  link_config);
9385 				bp->link_params.req_line_speed[idx] =
9386 							SPEED_AUTO_NEG;
9387 				bp->port.advertising[idx] =
9388 						bp->port.supported[idx];
9389 			break;
9390 		}
9391 
9392 		bp->link_params.req_flow_ctrl[idx] = (link_config &
9393 					 PORT_FEATURE_FLOW_CONTROL_MASK);
9394 		if ((bp->link_params.req_flow_ctrl[idx] ==
9395 		     BNX2X_FLOW_CTRL_AUTO) &&
9396 		    !(bp->port.supported[idx] & SUPPORTED_Autoneg)) {
9397 			bp->link_params.req_flow_ctrl[idx] =
9398 				BNX2X_FLOW_CTRL_NONE;
9399 		}
9400 
9401 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
9402 			       bp->link_params.req_line_speed[idx],
9403 			       bp->link_params.req_duplex[idx],
9404 			       bp->link_params.req_flow_ctrl[idx],
9405 			       bp->port.advertising[idx]);
9406 	}
9407 }
9408 
9409 static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
9410 {
9411 	mac_hi = cpu_to_be16(mac_hi);
9412 	mac_lo = cpu_to_be32(mac_lo);
9413 	memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
9414 	memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
9415 }
9416 
9417 static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp)
9418 {
9419 	int port = BP_PORT(bp);
9420 	u32 config;
9421 	u32 ext_phy_type, ext_phy_config;
9422 
9423 	bp->link_params.bp = bp;
9424 	bp->link_params.port = port;
9425 
9426 	bp->link_params.lane_config =
9427 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
9428 
9429 	bp->link_params.speed_cap_mask[0] =
9430 		SHMEM_RD(bp,
9431 			 dev_info.port_hw_config[port].speed_capability_mask);
9432 	bp->link_params.speed_cap_mask[1] =
9433 		SHMEM_RD(bp,
9434 			 dev_info.port_hw_config[port].speed_capability_mask2);
9435 	bp->port.link_config[0] =
9436 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
9437 
9438 	bp->port.link_config[1] =
9439 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
9440 
9441 	bp->link_params.multi_phy_config =
9442 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
9443 	/* If the device is capable of WoL, set the default state according
9444 	 * to the HW
9445 	 */
9446 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
9447 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
9448 		   (config & PORT_FEATURE_WOL_ENABLED));
9449 
9450 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
9451 		       bp->link_params.lane_config,
9452 		       bp->link_params.speed_cap_mask[0],
9453 		       bp->port.link_config[0]);
9454 
9455 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
9456 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
9457 	bnx2x_phy_probe(&bp->link_params);
9458 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
9459 
9460 	bnx2x_link_settings_requested(bp);
9461 
9462 	/*
9463 	 * If connected directly, work with the internal PHY, otherwise, work
9464 	 * with the external PHY
9465 	 */
9466 	ext_phy_config =
9467 		SHMEM_RD(bp,
9468 			 dev_info.port_hw_config[port].external_phy_config);
9469 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
9470 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
9471 		bp->mdio.prtad = bp->port.phy_addr;
9472 
9473 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
9474 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
9475 		bp->mdio.prtad =
9476 			XGXS_EXT_PHY_ADDR(ext_phy_config);
9477 
9478 	/*
9479 	 * Check if hw lock is required to access MDC/MDIO bus to the PHY(s)
9480 	 * In MF mode, it is set to cover self test cases
9481 	 */
9482 	if (IS_MF(bp))
9483 		bp->port.need_hw_lock = 1;
9484 	else
9485 		bp->port.need_hw_lock = bnx2x_hw_lock_required(bp,
9486 							bp->common.shmem_base,
9487 							bp->common.shmem2_base);
9488 }
9489 
9490 void bnx2x_get_iscsi_info(struct bnx2x *bp)
9491 {
9492 	u32 no_flags = NO_ISCSI_FLAG;
9493 #ifdef BCM_CNIC
9494 	int port = BP_PORT(bp);
9495 
9496 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9497 				drv_lic_key[port].max_iscsi_conn);
9498 
9499 	/* Get the number of maximum allowed iSCSI connections */
9500 	bp->cnic_eth_dev.max_iscsi_conn =
9501 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
9502 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
9503 
9504 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
9505 		       bp->cnic_eth_dev.max_iscsi_conn);
9506 
9507 	/*
9508 	 * If maximum allowed number of connections is zero -
9509 	 * disable the feature.
9510 	 */
9511 	if (!bp->cnic_eth_dev.max_iscsi_conn)
9512 		bp->flags |= no_flags;
9513 #else
9514 	bp->flags |= no_flags;
9515 #endif
9516 }
9517 
9518 #ifdef BCM_CNIC
9519 static void __devinit bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
9520 {
9521 	/* Port info */
9522 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9523 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
9524 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9525 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
9526 
9527 	/* Node info */
9528 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9529 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
9530 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9531 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
9532 }
9533 #endif
9534 static void __devinit bnx2x_get_fcoe_info(struct bnx2x *bp)
9535 {
9536 #ifdef BCM_CNIC
9537 	int port = BP_PORT(bp);
9538 	int func = BP_ABS_FUNC(bp);
9539 
9540 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9541 				drv_lic_key[port].max_fcoe_conn);
9542 
9543 	/* Get the number of maximum allowed FCoE connections */
9544 	bp->cnic_eth_dev.max_fcoe_conn =
9545 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
9546 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
9547 
9548 	/* Read the WWN: */
9549 	if (!IS_MF(bp)) {
9550 		/* Port info */
9551 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9552 			SHMEM_RD(bp,
9553 				dev_info.port_hw_config[port].
9554 				 fcoe_wwn_port_name_upper);
9555 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9556 			SHMEM_RD(bp,
9557 				dev_info.port_hw_config[port].
9558 				 fcoe_wwn_port_name_lower);
9559 
9560 		/* Node info */
9561 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9562 			SHMEM_RD(bp,
9563 				dev_info.port_hw_config[port].
9564 				 fcoe_wwn_node_name_upper);
9565 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9566 			SHMEM_RD(bp,
9567 				dev_info.port_hw_config[port].
9568 				 fcoe_wwn_node_name_lower);
9569 	} else if (!IS_MF_SD(bp)) {
9570 		u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9571 
9572 		/*
9573 		 * Read the WWN info only if the FCoE feature is enabled for
9574 		 * this function.
9575 		 */
9576 		if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)
9577 			bnx2x_get_ext_wwn_info(bp, func);
9578 
9579 	} else if (IS_MF_FCOE_SD(bp))
9580 		bnx2x_get_ext_wwn_info(bp, func);
9581 
9582 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
9583 
9584 	/*
9585 	 * If maximum allowed number of connections is zero -
9586 	 * disable the feature.
9587 	 */
9588 	if (!bp->cnic_eth_dev.max_fcoe_conn)
9589 		bp->flags |= NO_FCOE_FLAG;
9590 #else
9591 	bp->flags |= NO_FCOE_FLAG;
9592 #endif
9593 }
9594 
9595 static void __devinit bnx2x_get_cnic_info(struct bnx2x *bp)
9596 {
9597 	/*
9598 	 * iSCSI may be dynamically disabled but reading
9599 	 * info here we will decrease memory usage by driver
9600 	 * if the feature is disabled for good
9601 	 */
9602 	bnx2x_get_iscsi_info(bp);
9603 	bnx2x_get_fcoe_info(bp);
9604 }
9605 
9606 static void __devinit bnx2x_get_mac_hwinfo(struct bnx2x *bp)
9607 {
9608 	u32 val, val2;
9609 	int func = BP_ABS_FUNC(bp);
9610 	int port = BP_PORT(bp);
9611 #ifdef BCM_CNIC
9612 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
9613 	u8 *fip_mac = bp->fip_mac;
9614 #endif
9615 
9616 	/* Zero primary MAC configuration */
9617 	memset(bp->dev->dev_addr, 0, ETH_ALEN);
9618 
9619 	if (BP_NOMCP(bp)) {
9620 		BNX2X_ERROR("warning: random MAC workaround active\n");
9621 		eth_hw_addr_random(bp->dev);
9622 	} else if (IS_MF(bp)) {
9623 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
9624 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
9625 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
9626 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
9627 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9628 
9629 #ifdef BCM_CNIC
9630 		/*
9631 		 * iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
9632 		 * FCoE MAC then the appropriate feature should be disabled.
9633 		 *
9634 		 * In non SD mode features configuration comes from
9635 		 * struct func_ext_config.
9636 		 */
9637 		if (!IS_MF_SD(bp)) {
9638 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9639 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
9640 				val2 = MF_CFG_RD(bp, func_ext_config[func].
9641 						     iscsi_mac_addr_upper);
9642 				val = MF_CFG_RD(bp, func_ext_config[func].
9643 						    iscsi_mac_addr_lower);
9644 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
9645 				BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9646 					       iscsi_mac);
9647 			} else
9648 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
9649 
9650 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9651 				val2 = MF_CFG_RD(bp, func_ext_config[func].
9652 						     fcoe_mac_addr_upper);
9653 				val = MF_CFG_RD(bp, func_ext_config[func].
9654 						    fcoe_mac_addr_lower);
9655 				bnx2x_set_mac_buf(fip_mac, val, val2);
9656 				BNX2X_DEV_INFO("Read FCoE L2 MAC: %pM\n",
9657 					       fip_mac);
9658 
9659 			} else
9660 				bp->flags |= NO_FCOE_FLAG;
9661 		} else { /* SD MODE */
9662 			if (IS_MF_STORAGE_SD(bp)) {
9663 				if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
9664 					/* use primary mac as iscsi mac */
9665 					memcpy(iscsi_mac, bp->dev->dev_addr,
9666 					       ETH_ALEN);
9667 
9668 					BNX2X_DEV_INFO("SD ISCSI MODE\n");
9669 					BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9670 						       iscsi_mac);
9671 				} else { /* FCoE */
9672 					memcpy(fip_mac, bp->dev->dev_addr,
9673 					       ETH_ALEN);
9674 					BNX2X_DEV_INFO("SD FCoE MODE\n");
9675 					BNX2X_DEV_INFO("Read FIP MAC: %pM\n",
9676 						       fip_mac);
9677 				}
9678 				/* Zero primary MAC configuration */
9679 				memset(bp->dev->dev_addr, 0, ETH_ALEN);
9680 			}
9681 		}
9682 #endif
9683 	} else {
9684 		/* in SF read MACs from port configuration */
9685 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
9686 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
9687 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9688 
9689 #ifdef BCM_CNIC
9690 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9691 				    iscsi_mac_upper);
9692 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9693 				   iscsi_mac_lower);
9694 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
9695 
9696 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9697 				    fcoe_fip_mac_upper);
9698 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9699 				   fcoe_fip_mac_lower);
9700 		bnx2x_set_mac_buf(fip_mac, val, val2);
9701 #endif
9702 	}
9703 
9704 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
9705 	memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
9706 
9707 #ifdef BCM_CNIC
9708 	/* Disable iSCSI if MAC configuration is
9709 	 * invalid.
9710 	 */
9711 	if (!is_valid_ether_addr(iscsi_mac)) {
9712 		bp->flags |= NO_ISCSI_FLAG;
9713 		memset(iscsi_mac, 0, ETH_ALEN);
9714 	}
9715 
9716 	/* Disable FCoE if MAC configuration is
9717 	 * invalid.
9718 	 */
9719 	if (!is_valid_ether_addr(fip_mac)) {
9720 		bp->flags |= NO_FCOE_FLAG;
9721 		memset(bp->fip_mac, 0, ETH_ALEN);
9722 	}
9723 #endif
9724 
9725 	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
9726 		dev_err(&bp->pdev->dev,
9727 			"bad Ethernet MAC address configuration: %pM\n"
9728 			"change it manually before bringing up the appropriate network interface\n",
9729 			bp->dev->dev_addr);
9730 
9731 
9732 }
9733 
9734 static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp)
9735 {
9736 	int /*abs*/func = BP_ABS_FUNC(bp);
9737 	int vn;
9738 	u32 val = 0;
9739 	int rc = 0;
9740 
9741 	bnx2x_get_common_hwinfo(bp);
9742 
9743 	/*
9744 	 * initialize IGU parameters
9745 	 */
9746 	if (CHIP_IS_E1x(bp)) {
9747 		bp->common.int_block = INT_BLOCK_HC;
9748 
9749 		bp->igu_dsb_id = DEF_SB_IGU_ID;
9750 		bp->igu_base_sb = 0;
9751 	} else {
9752 		bp->common.int_block = INT_BLOCK_IGU;
9753 
9754 		/* do not allow device reset during IGU info preocessing */
9755 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
9756 
9757 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9758 
9759 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9760 			int tout = 5000;
9761 
9762 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
9763 
9764 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
9765 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
9766 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
9767 
9768 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9769 				tout--;
9770 				usleep_range(1000, 1000);
9771 			}
9772 
9773 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9774 				dev_err(&bp->pdev->dev,
9775 					"FORCING Normal Mode failed!!!\n");
9776 				return -EPERM;
9777 			}
9778 		}
9779 
9780 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9781 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
9782 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
9783 		} else
9784 			BNX2X_DEV_INFO("IGU Normal Mode\n");
9785 
9786 		bnx2x_get_igu_cam_info(bp);
9787 
9788 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
9789 	}
9790 
9791 	/*
9792 	 * set base FW non-default (fast path) status block id, this value is
9793 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
9794 	 * determine the id used by the FW.
9795 	 */
9796 	if (CHIP_IS_E1x(bp))
9797 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
9798 	else /*
9799 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
9800 	      * the same queue are indicated on the same IGU SB). So we prefer
9801 	      * FW and IGU SBs to be the same value.
9802 	      */
9803 		bp->base_fw_ndsb = bp->igu_base_sb;
9804 
9805 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
9806 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
9807 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
9808 
9809 	/*
9810 	 * Initialize MF configuration
9811 	 */
9812 
9813 	bp->mf_ov = 0;
9814 	bp->mf_mode = 0;
9815 	vn = BP_VN(bp);
9816 
9817 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
9818 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
9819 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
9820 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
9821 
9822 		if (SHMEM2_HAS(bp, mf_cfg_addr))
9823 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
9824 		else
9825 			bp->common.mf_cfg_base = bp->common.shmem_base +
9826 				offsetof(struct shmem_region, func_mb) +
9827 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
9828 		/*
9829 		 * get mf configuration:
9830 		 * 1. existence of MF configuration
9831 		 * 2. MAC address must be legal (check only upper bytes)
9832 		 *    for  Switch-Independent mode;
9833 		 *    OVLAN must be legal for Switch-Dependent mode
9834 		 * 3. SF_MODE configures specific MF mode
9835 		 */
9836 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9837 			/* get mf configuration */
9838 			val = SHMEM_RD(bp,
9839 				       dev_info.shared_feature_config.config);
9840 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
9841 
9842 			switch (val) {
9843 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
9844 				val = MF_CFG_RD(bp, func_mf_config[func].
9845 						mac_upper);
9846 				/* check for legal mac (upper bytes)*/
9847 				if (val != 0xffff) {
9848 					bp->mf_mode = MULTI_FUNCTION_SI;
9849 					bp->mf_config[vn] = MF_CFG_RD(bp,
9850 						   func_mf_config[func].config);
9851 				} else
9852 					BNX2X_DEV_INFO("illegal MAC address for SI\n");
9853 				break;
9854 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
9855 				/* get OV configuration */
9856 				val = MF_CFG_RD(bp,
9857 					func_mf_config[FUNC_0].e1hov_tag);
9858 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
9859 
9860 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9861 					bp->mf_mode = MULTI_FUNCTION_SD;
9862 					bp->mf_config[vn] = MF_CFG_RD(bp,
9863 						func_mf_config[func].config);
9864 				} else
9865 					BNX2X_DEV_INFO("illegal OV for SD\n");
9866 				break;
9867 			default:
9868 				/* Unknown configuration: reset mf_config */
9869 				bp->mf_config[vn] = 0;
9870 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
9871 			}
9872 		}
9873 
9874 		BNX2X_DEV_INFO("%s function mode\n",
9875 			       IS_MF(bp) ? "multi" : "single");
9876 
9877 		switch (bp->mf_mode) {
9878 		case MULTI_FUNCTION_SD:
9879 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
9880 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
9881 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9882 				bp->mf_ov = val;
9883 				bp->path_has_ovlan = true;
9884 
9885 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
9886 					       func, bp->mf_ov, bp->mf_ov);
9887 			} else {
9888 				dev_err(&bp->pdev->dev,
9889 					"No valid MF OV for func %d, aborting\n",
9890 					func);
9891 				return -EPERM;
9892 			}
9893 			break;
9894 		case MULTI_FUNCTION_SI:
9895 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
9896 				       func);
9897 			break;
9898 		default:
9899 			if (vn) {
9900 				dev_err(&bp->pdev->dev,
9901 					"VN %d is in a single function mode, aborting\n",
9902 					vn);
9903 				return -EPERM;
9904 			}
9905 			break;
9906 		}
9907 
9908 		/* check if other port on the path needs ovlan:
9909 		 * Since MF configuration is shared between ports
9910 		 * Possible mixed modes are only
9911 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
9912 		 */
9913 		if (CHIP_MODE_IS_4_PORT(bp) &&
9914 		    !bp->path_has_ovlan &&
9915 		    !IS_MF(bp) &&
9916 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9917 			u8 other_port = !BP_PORT(bp);
9918 			u8 other_func = BP_PATH(bp) + 2*other_port;
9919 			val = MF_CFG_RD(bp,
9920 					func_mf_config[other_func].e1hov_tag);
9921 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
9922 				bp->path_has_ovlan = true;
9923 		}
9924 	}
9925 
9926 	/* adjust igu_sb_cnt to MF for E1x */
9927 	if (CHIP_IS_E1x(bp) && IS_MF(bp))
9928 		bp->igu_sb_cnt /= E1HVN_MAX;
9929 
9930 	/* port info */
9931 	bnx2x_get_port_hwinfo(bp);
9932 
9933 	/* Get MAC addresses */
9934 	bnx2x_get_mac_hwinfo(bp);
9935 
9936 	bnx2x_get_cnic_info(bp);
9937 
9938 	return rc;
9939 }
9940 
9941 static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp)
9942 {
9943 	int cnt, i, block_end, rodi;
9944 	char vpd_start[BNX2X_VPD_LEN+1];
9945 	char str_id_reg[VENDOR_ID_LEN+1];
9946 	char str_id_cap[VENDOR_ID_LEN+1];
9947 	char *vpd_data;
9948 	char *vpd_extended_data = NULL;
9949 	u8 len;
9950 
9951 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
9952 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
9953 
9954 	if (cnt < BNX2X_VPD_LEN)
9955 		goto out_not_found;
9956 
9957 	/* VPD RO tag should be first tag after identifier string, hence
9958 	 * we should be able to find it in first BNX2X_VPD_LEN chars
9959 	 */
9960 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
9961 			     PCI_VPD_LRDT_RO_DATA);
9962 	if (i < 0)
9963 		goto out_not_found;
9964 
9965 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
9966 		    pci_vpd_lrdt_size(&vpd_start[i]);
9967 
9968 	i += PCI_VPD_LRDT_TAG_SIZE;
9969 
9970 	if (block_end > BNX2X_VPD_LEN) {
9971 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
9972 		if (vpd_extended_data  == NULL)
9973 			goto out_not_found;
9974 
9975 		/* read rest of vpd image into vpd_extended_data */
9976 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
9977 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
9978 				   block_end - BNX2X_VPD_LEN,
9979 				   vpd_extended_data + BNX2X_VPD_LEN);
9980 		if (cnt < (block_end - BNX2X_VPD_LEN))
9981 			goto out_not_found;
9982 		vpd_data = vpd_extended_data;
9983 	} else
9984 		vpd_data = vpd_start;
9985 
9986 	/* now vpd_data holds full vpd content in both cases */
9987 
9988 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
9989 				   PCI_VPD_RO_KEYWORD_MFR_ID);
9990 	if (rodi < 0)
9991 		goto out_not_found;
9992 
9993 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
9994 
9995 	if (len != VENDOR_ID_LEN)
9996 		goto out_not_found;
9997 
9998 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
9999 
10000 	/* vendor specific info */
10001 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
10002 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
10003 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
10004 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
10005 
10006 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
10007 						PCI_VPD_RO_KEYWORD_VENDOR0);
10008 		if (rodi >= 0) {
10009 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
10010 
10011 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
10012 
10013 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
10014 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
10015 				bp->fw_ver[len] = ' ';
10016 			}
10017 		}
10018 		kfree(vpd_extended_data);
10019 		return;
10020 	}
10021 out_not_found:
10022 	kfree(vpd_extended_data);
10023 	return;
10024 }
10025 
10026 static void __devinit bnx2x_set_modes_bitmap(struct bnx2x *bp)
10027 {
10028 	u32 flags = 0;
10029 
10030 	if (CHIP_REV_IS_FPGA(bp))
10031 		SET_FLAGS(flags, MODE_FPGA);
10032 	else if (CHIP_REV_IS_EMUL(bp))
10033 		SET_FLAGS(flags, MODE_EMUL);
10034 	else
10035 		SET_FLAGS(flags, MODE_ASIC);
10036 
10037 	if (CHIP_MODE_IS_4_PORT(bp))
10038 		SET_FLAGS(flags, MODE_PORT4);
10039 	else
10040 		SET_FLAGS(flags, MODE_PORT2);
10041 
10042 	if (CHIP_IS_E2(bp))
10043 		SET_FLAGS(flags, MODE_E2);
10044 	else if (CHIP_IS_E3(bp)) {
10045 		SET_FLAGS(flags, MODE_E3);
10046 		if (CHIP_REV(bp) == CHIP_REV_Ax)
10047 			SET_FLAGS(flags, MODE_E3_A0);
10048 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
10049 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
10050 	}
10051 
10052 	if (IS_MF(bp)) {
10053 		SET_FLAGS(flags, MODE_MF);
10054 		switch (bp->mf_mode) {
10055 		case MULTI_FUNCTION_SD:
10056 			SET_FLAGS(flags, MODE_MF_SD);
10057 			break;
10058 		case MULTI_FUNCTION_SI:
10059 			SET_FLAGS(flags, MODE_MF_SI);
10060 			break;
10061 		}
10062 	} else
10063 		SET_FLAGS(flags, MODE_SF);
10064 
10065 #if defined(__LITTLE_ENDIAN)
10066 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
10067 #else /*(__BIG_ENDIAN)*/
10068 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
10069 #endif
10070 	INIT_MODE_FLAGS(bp) = flags;
10071 }
10072 
10073 static int __devinit bnx2x_init_bp(struct bnx2x *bp)
10074 {
10075 	int func;
10076 	int rc;
10077 
10078 	mutex_init(&bp->port.phy_mutex);
10079 	mutex_init(&bp->fw_mb_mutex);
10080 	spin_lock_init(&bp->stats_lock);
10081 #ifdef BCM_CNIC
10082 	mutex_init(&bp->cnic_mutex);
10083 #endif
10084 
10085 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
10086 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
10087 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
10088 	rc = bnx2x_get_hwinfo(bp);
10089 	if (rc)
10090 		return rc;
10091 
10092 	bnx2x_set_modes_bitmap(bp);
10093 
10094 	rc = bnx2x_alloc_mem_bp(bp);
10095 	if (rc)
10096 		return rc;
10097 
10098 	bnx2x_read_fwinfo(bp);
10099 
10100 	func = BP_FUNC(bp);
10101 
10102 	/* need to reset chip if undi was active */
10103 	if (!BP_NOMCP(bp))
10104 		bnx2x_undi_unload(bp);
10105 
10106 	if (CHIP_REV_IS_FPGA(bp))
10107 		dev_err(&bp->pdev->dev, "FPGA detected\n");
10108 
10109 	if (BP_NOMCP(bp) && (func == 0))
10110 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
10111 
10112 	bp->multi_mode = multi_mode;
10113 
10114 	bp->disable_tpa = disable_tpa;
10115 
10116 #ifdef BCM_CNIC
10117 	bp->disable_tpa |= IS_MF_STORAGE_SD(bp);
10118 #endif
10119 
10120 	/* Set TPA flags */
10121 	if (bp->disable_tpa) {
10122 		bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
10123 		bp->dev->features &= ~NETIF_F_LRO;
10124 	} else {
10125 		bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
10126 		bp->dev->features |= NETIF_F_LRO;
10127 	}
10128 
10129 	if (CHIP_IS_E1(bp))
10130 		bp->dropless_fc = 0;
10131 	else
10132 		bp->dropless_fc = dropless_fc;
10133 
10134 	bp->mrrs = mrrs;
10135 
10136 	bp->tx_ring_size = MAX_TX_AVAIL;
10137 
10138 	/* make sure that the numbers are in the right granularity */
10139 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
10140 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
10141 
10142 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
10143 
10144 	init_timer(&bp->timer);
10145 	bp->timer.expires = jiffies + bp->current_interval;
10146 	bp->timer.data = (unsigned long) bp;
10147 	bp->timer.function = bnx2x_timer;
10148 
10149 	bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
10150 	bnx2x_dcbx_init_params(bp);
10151 
10152 #ifdef BCM_CNIC
10153 	if (CHIP_IS_E1x(bp))
10154 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
10155 	else
10156 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
10157 #endif
10158 
10159 	/* multiple tx priority */
10160 	if (CHIP_IS_E1x(bp))
10161 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
10162 	if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
10163 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
10164 	if (CHIP_IS_E3B0(bp))
10165 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
10166 
10167 	bp->gro_check = bnx2x_need_gro_check(bp->dev->mtu);
10168 
10169 	return rc;
10170 }
10171 
10172 
10173 /****************************************************************************
10174 * General service functions
10175 ****************************************************************************/
10176 
10177 /*
10178  * net_device service functions
10179  */
10180 
10181 /* called with rtnl_lock */
10182 static int bnx2x_open(struct net_device *dev)
10183 {
10184 	struct bnx2x *bp = netdev_priv(dev);
10185 	bool global = false;
10186 	int other_engine = BP_PATH(bp) ? 0 : 1;
10187 	bool other_load_status, load_status;
10188 
10189 	bp->stats_init = true;
10190 
10191 	netif_carrier_off(dev);
10192 
10193 	bnx2x_set_power_state(bp, PCI_D0);
10194 
10195 	other_load_status = bnx2x_get_load_status(bp, other_engine);
10196 	load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
10197 
10198 	/*
10199 	 * If parity had happen during the unload, then attentions
10200 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
10201 	 * want the first function loaded on the current engine to
10202 	 * complete the recovery.
10203 	 */
10204 	if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
10205 	    bnx2x_chk_parity_attn(bp, &global, true))
10206 		do {
10207 			/*
10208 			 * If there are attentions and they are in a global
10209 			 * blocks, set the GLOBAL_RESET bit regardless whether
10210 			 * it will be this function that will complete the
10211 			 * recovery or not.
10212 			 */
10213 			if (global)
10214 				bnx2x_set_reset_global(bp);
10215 
10216 			/*
10217 			 * Only the first function on the current engine should
10218 			 * try to recover in open. In case of attentions in
10219 			 * global blocks only the first in the chip should try
10220 			 * to recover.
10221 			 */
10222 			if ((!load_status &&
10223 			     (!global || !other_load_status)) &&
10224 			    bnx2x_trylock_leader_lock(bp) &&
10225 			    !bnx2x_leader_reset(bp)) {
10226 				netdev_info(bp->dev, "Recovered in open\n");
10227 				break;
10228 			}
10229 
10230 			/* recovery has failed... */
10231 			bnx2x_set_power_state(bp, PCI_D3hot);
10232 			bp->recovery_state = BNX2X_RECOVERY_FAILED;
10233 
10234 			BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
10235 				  "If you still see this message after a few retries then power cycle is required.\n");
10236 
10237 			return -EAGAIN;
10238 		} while (0);
10239 
10240 	bp->recovery_state = BNX2X_RECOVERY_DONE;
10241 	return bnx2x_nic_load(bp, LOAD_OPEN);
10242 }
10243 
10244 /* called with rtnl_lock */
10245 static int bnx2x_close(struct net_device *dev)
10246 {
10247 	struct bnx2x *bp = netdev_priv(dev);
10248 
10249 	/* Unload the driver, release IRQs */
10250 	bnx2x_nic_unload(bp, UNLOAD_CLOSE);
10251 
10252 	/* Power off */
10253 	bnx2x_set_power_state(bp, PCI_D3hot);
10254 
10255 	return 0;
10256 }
10257 
10258 static inline int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
10259 					 struct bnx2x_mcast_ramrod_params *p)
10260 {
10261 	int mc_count = netdev_mc_count(bp->dev);
10262 	struct bnx2x_mcast_list_elem *mc_mac =
10263 		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
10264 	struct netdev_hw_addr *ha;
10265 
10266 	if (!mc_mac)
10267 		return -ENOMEM;
10268 
10269 	INIT_LIST_HEAD(&p->mcast_list);
10270 
10271 	netdev_for_each_mc_addr(ha, bp->dev) {
10272 		mc_mac->mac = bnx2x_mc_addr(ha);
10273 		list_add_tail(&mc_mac->link, &p->mcast_list);
10274 		mc_mac++;
10275 	}
10276 
10277 	p->mcast_list_len = mc_count;
10278 
10279 	return 0;
10280 }
10281 
10282 static inline void bnx2x_free_mcast_macs_list(
10283 	struct bnx2x_mcast_ramrod_params *p)
10284 {
10285 	struct bnx2x_mcast_list_elem *mc_mac =
10286 		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
10287 				 link);
10288 
10289 	WARN_ON(!mc_mac);
10290 	kfree(mc_mac);
10291 }
10292 
10293 /**
10294  * bnx2x_set_uc_list - configure a new unicast MACs list.
10295  *
10296  * @bp: driver handle
10297  *
10298  * We will use zero (0) as a MAC type for these MACs.
10299  */
10300 static inline int bnx2x_set_uc_list(struct bnx2x *bp)
10301 {
10302 	int rc;
10303 	struct net_device *dev = bp->dev;
10304 	struct netdev_hw_addr *ha;
10305 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->fp->mac_obj;
10306 	unsigned long ramrod_flags = 0;
10307 
10308 	/* First schedule a cleanup up of old configuration */
10309 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
10310 	if (rc < 0) {
10311 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
10312 		return rc;
10313 	}
10314 
10315 	netdev_for_each_uc_addr(ha, dev) {
10316 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
10317 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
10318 		if (rc < 0) {
10319 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
10320 				  rc);
10321 			return rc;
10322 		}
10323 	}
10324 
10325 	/* Execute the pending commands */
10326 	__set_bit(RAMROD_CONT, &ramrod_flags);
10327 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
10328 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
10329 }
10330 
10331 static inline int bnx2x_set_mc_list(struct bnx2x *bp)
10332 {
10333 	struct net_device *dev = bp->dev;
10334 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
10335 	int rc = 0;
10336 
10337 	rparam.mcast_obj = &bp->mcast_obj;
10338 
10339 	/* first, clear all configured multicast MACs */
10340 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
10341 	if (rc < 0) {
10342 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
10343 		return rc;
10344 	}
10345 
10346 	/* then, configure a new MACs list */
10347 	if (netdev_mc_count(dev)) {
10348 		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
10349 		if (rc) {
10350 			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
10351 				  rc);
10352 			return rc;
10353 		}
10354 
10355 		/* Now add the new MACs */
10356 		rc = bnx2x_config_mcast(bp, &rparam,
10357 					BNX2X_MCAST_CMD_ADD);
10358 		if (rc < 0)
10359 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
10360 				  rc);
10361 
10362 		bnx2x_free_mcast_macs_list(&rparam);
10363 	}
10364 
10365 	return rc;
10366 }
10367 
10368 
10369 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
10370 void bnx2x_set_rx_mode(struct net_device *dev)
10371 {
10372 	struct bnx2x *bp = netdev_priv(dev);
10373 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
10374 
10375 	if (bp->state != BNX2X_STATE_OPEN) {
10376 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
10377 		return;
10378 	}
10379 
10380 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
10381 
10382 	if (dev->flags & IFF_PROMISC)
10383 		rx_mode = BNX2X_RX_MODE_PROMISC;
10384 	else if ((dev->flags & IFF_ALLMULTI) ||
10385 		 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
10386 		  CHIP_IS_E1(bp)))
10387 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
10388 	else {
10389 		/* some multicasts */
10390 		if (bnx2x_set_mc_list(bp) < 0)
10391 			rx_mode = BNX2X_RX_MODE_ALLMULTI;
10392 
10393 		if (bnx2x_set_uc_list(bp) < 0)
10394 			rx_mode = BNX2X_RX_MODE_PROMISC;
10395 	}
10396 
10397 	bp->rx_mode = rx_mode;
10398 #ifdef BCM_CNIC
10399 	/* handle ISCSI SD mode */
10400 	if (IS_MF_ISCSI_SD(bp))
10401 		bp->rx_mode = BNX2X_RX_MODE_NONE;
10402 #endif
10403 
10404 	/* Schedule the rx_mode command */
10405 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
10406 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
10407 		return;
10408 	}
10409 
10410 	bnx2x_set_storm_rx_mode(bp);
10411 }
10412 
10413 /* called with rtnl_lock */
10414 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
10415 			   int devad, u16 addr)
10416 {
10417 	struct bnx2x *bp = netdev_priv(netdev);
10418 	u16 value;
10419 	int rc;
10420 
10421 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
10422 	   prtad, devad, addr);
10423 
10424 	/* The HW expects different devad if CL22 is used */
10425 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10426 
10427 	bnx2x_acquire_phy_lock(bp);
10428 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
10429 	bnx2x_release_phy_lock(bp);
10430 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
10431 
10432 	if (!rc)
10433 		rc = value;
10434 	return rc;
10435 }
10436 
10437 /* called with rtnl_lock */
10438 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
10439 			    u16 addr, u16 value)
10440 {
10441 	struct bnx2x *bp = netdev_priv(netdev);
10442 	int rc;
10443 
10444 	DP(NETIF_MSG_LINK,
10445 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
10446 	   prtad, devad, addr, value);
10447 
10448 	/* The HW expects different devad if CL22 is used */
10449 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10450 
10451 	bnx2x_acquire_phy_lock(bp);
10452 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
10453 	bnx2x_release_phy_lock(bp);
10454 	return rc;
10455 }
10456 
10457 /* called with rtnl_lock */
10458 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10459 {
10460 	struct bnx2x *bp = netdev_priv(dev);
10461 	struct mii_ioctl_data *mdio = if_mii(ifr);
10462 
10463 	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
10464 	   mdio->phy_id, mdio->reg_num, mdio->val_in);
10465 
10466 	if (!netif_running(dev))
10467 		return -EAGAIN;
10468 
10469 	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
10470 }
10471 
10472 #ifdef CONFIG_NET_POLL_CONTROLLER
10473 static void poll_bnx2x(struct net_device *dev)
10474 {
10475 	struct bnx2x *bp = netdev_priv(dev);
10476 
10477 	disable_irq(bp->pdev->irq);
10478 	bnx2x_interrupt(bp->pdev->irq, dev);
10479 	enable_irq(bp->pdev->irq);
10480 }
10481 #endif
10482 
10483 static int bnx2x_validate_addr(struct net_device *dev)
10484 {
10485 	struct bnx2x *bp = netdev_priv(dev);
10486 
10487 	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
10488 		BNX2X_ERR("Non-valid Ethernet address\n");
10489 		return -EADDRNOTAVAIL;
10490 	}
10491 	return 0;
10492 }
10493 
10494 static const struct net_device_ops bnx2x_netdev_ops = {
10495 	.ndo_open		= bnx2x_open,
10496 	.ndo_stop		= bnx2x_close,
10497 	.ndo_start_xmit		= bnx2x_start_xmit,
10498 	.ndo_select_queue	= bnx2x_select_queue,
10499 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
10500 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
10501 	.ndo_validate_addr	= bnx2x_validate_addr,
10502 	.ndo_do_ioctl		= bnx2x_ioctl,
10503 	.ndo_change_mtu		= bnx2x_change_mtu,
10504 	.ndo_fix_features	= bnx2x_fix_features,
10505 	.ndo_set_features	= bnx2x_set_features,
10506 	.ndo_tx_timeout		= bnx2x_tx_timeout,
10507 #ifdef CONFIG_NET_POLL_CONTROLLER
10508 	.ndo_poll_controller	= poll_bnx2x,
10509 #endif
10510 	.ndo_setup_tc		= bnx2x_setup_tc,
10511 
10512 #if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
10513 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
10514 #endif
10515 };
10516 
10517 static inline int bnx2x_set_coherency_mask(struct bnx2x *bp)
10518 {
10519 	struct device *dev = &bp->pdev->dev;
10520 
10521 	if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
10522 		bp->flags |= USING_DAC_FLAG;
10523 		if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
10524 			dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
10525 			return -EIO;
10526 		}
10527 	} else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
10528 		dev_err(dev, "System does not support DMA, aborting\n");
10529 		return -EIO;
10530 	}
10531 
10532 	return 0;
10533 }
10534 
10535 static int __devinit bnx2x_init_dev(struct pci_dev *pdev,
10536 				    struct net_device *dev,
10537 				    unsigned long board_type)
10538 {
10539 	struct bnx2x *bp;
10540 	int rc;
10541 	u32 pci_cfg_dword;
10542 	bool chip_is_e1x = (board_type == BCM57710 ||
10543 			    board_type == BCM57711 ||
10544 			    board_type == BCM57711E);
10545 
10546 	SET_NETDEV_DEV(dev, &pdev->dev);
10547 	bp = netdev_priv(dev);
10548 
10549 	bp->dev = dev;
10550 	bp->pdev = pdev;
10551 	bp->flags = 0;
10552 
10553 	rc = pci_enable_device(pdev);
10554 	if (rc) {
10555 		dev_err(&bp->pdev->dev,
10556 			"Cannot enable PCI device, aborting\n");
10557 		goto err_out;
10558 	}
10559 
10560 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
10561 		dev_err(&bp->pdev->dev,
10562 			"Cannot find PCI device base address, aborting\n");
10563 		rc = -ENODEV;
10564 		goto err_out_disable;
10565 	}
10566 
10567 	if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
10568 		dev_err(&bp->pdev->dev, "Cannot find second PCI device"
10569 		       " base address, aborting\n");
10570 		rc = -ENODEV;
10571 		goto err_out_disable;
10572 	}
10573 
10574 	if (atomic_read(&pdev->enable_cnt) == 1) {
10575 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
10576 		if (rc) {
10577 			dev_err(&bp->pdev->dev,
10578 				"Cannot obtain PCI resources, aborting\n");
10579 			goto err_out_disable;
10580 		}
10581 
10582 		pci_set_master(pdev);
10583 		pci_save_state(pdev);
10584 	}
10585 
10586 	bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
10587 	if (bp->pm_cap == 0) {
10588 		dev_err(&bp->pdev->dev,
10589 			"Cannot find power management capability, aborting\n");
10590 		rc = -EIO;
10591 		goto err_out_release;
10592 	}
10593 
10594 	if (!pci_is_pcie(pdev)) {
10595 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
10596 		rc = -EIO;
10597 		goto err_out_release;
10598 	}
10599 
10600 	rc = bnx2x_set_coherency_mask(bp);
10601 	if (rc)
10602 		goto err_out_release;
10603 
10604 	dev->mem_start = pci_resource_start(pdev, 0);
10605 	dev->base_addr = dev->mem_start;
10606 	dev->mem_end = pci_resource_end(pdev, 0);
10607 
10608 	dev->irq = pdev->irq;
10609 
10610 	bp->regview = pci_ioremap_bar(pdev, 0);
10611 	if (!bp->regview) {
10612 		dev_err(&bp->pdev->dev,
10613 			"Cannot map register space, aborting\n");
10614 		rc = -ENOMEM;
10615 		goto err_out_release;
10616 	}
10617 
10618 	/* In E1/E1H use pci device function given by kernel.
10619 	 * In E2/E3 read physical function from ME register since these chips
10620 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
10621 	 * (depending on hypervisor).
10622 	 */
10623 	if (chip_is_e1x)
10624 		bp->pf_num = PCI_FUNC(pdev->devfn);
10625 	else {/* chip is E2/3*/
10626 		pci_read_config_dword(bp->pdev,
10627 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
10628 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
10629 		    ME_REG_ABS_PF_NUM_SHIFT);
10630 	}
10631 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
10632 
10633 	bnx2x_set_power_state(bp, PCI_D0);
10634 
10635 	/* clean indirect addresses */
10636 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
10637 			       PCICFG_VENDOR_ID_OFFSET);
10638 	/*
10639 	 * Clean the following indirect addresses for all functions since it
10640 	 * is not used by the driver.
10641 	 */
10642 	REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
10643 	REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
10644 	REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
10645 	REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
10646 
10647 	if (chip_is_e1x) {
10648 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
10649 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
10650 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
10651 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
10652 	}
10653 
10654 	/*
10655 	 * Enable internal target-read (in case we are probed after PF FLR).
10656 	 * Must be done prior to any BAR read access. Only for 57712 and up
10657 	 */
10658 	if (!chip_is_e1x)
10659 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
10660 
10661 	/* Reset the load counter */
10662 	bnx2x_clear_load_status(bp);
10663 
10664 	dev->watchdog_timeo = TX_TIMEOUT;
10665 
10666 	dev->netdev_ops = &bnx2x_netdev_ops;
10667 	bnx2x_set_ethtool_ops(dev);
10668 
10669 	dev->priv_flags |= IFF_UNICAST_FLT;
10670 
10671 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10672 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
10673 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
10674 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
10675 
10676 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10677 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
10678 
10679 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
10680 	if (bp->flags & USING_DAC_FLAG)
10681 		dev->features |= NETIF_F_HIGHDMA;
10682 
10683 	/* Add Loopback capability to the device */
10684 	dev->hw_features |= NETIF_F_LOOPBACK;
10685 
10686 #ifdef BCM_DCBNL
10687 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
10688 #endif
10689 
10690 	/* get_port_hwinfo() will set prtad and mmds properly */
10691 	bp->mdio.prtad = MDIO_PRTAD_NONE;
10692 	bp->mdio.mmds = 0;
10693 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
10694 	bp->mdio.dev = dev;
10695 	bp->mdio.mdio_read = bnx2x_mdio_read;
10696 	bp->mdio.mdio_write = bnx2x_mdio_write;
10697 
10698 	return 0;
10699 
10700 err_out_release:
10701 	if (atomic_read(&pdev->enable_cnt) == 1)
10702 		pci_release_regions(pdev);
10703 
10704 err_out_disable:
10705 	pci_disable_device(pdev);
10706 	pci_set_drvdata(pdev, NULL);
10707 
10708 err_out:
10709 	return rc;
10710 }
10711 
10712 static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp,
10713 						 int *width, int *speed)
10714 {
10715 	u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
10716 
10717 	*width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
10718 
10719 	/* return value of 1=2.5GHz 2=5GHz */
10720 	*speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
10721 }
10722 
10723 static int bnx2x_check_firmware(struct bnx2x *bp)
10724 {
10725 	const struct firmware *firmware = bp->firmware;
10726 	struct bnx2x_fw_file_hdr *fw_hdr;
10727 	struct bnx2x_fw_file_section *sections;
10728 	u32 offset, len, num_ops;
10729 	u16 *ops_offsets;
10730 	int i;
10731 	const u8 *fw_ver;
10732 
10733 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
10734 		BNX2X_ERR("Wrong FW size\n");
10735 		return -EINVAL;
10736 	}
10737 
10738 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
10739 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
10740 
10741 	/* Make sure none of the offsets and sizes make us read beyond
10742 	 * the end of the firmware data */
10743 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
10744 		offset = be32_to_cpu(sections[i].offset);
10745 		len = be32_to_cpu(sections[i].len);
10746 		if (offset + len > firmware->size) {
10747 			BNX2X_ERR("Section %d length is out of bounds\n", i);
10748 			return -EINVAL;
10749 		}
10750 	}
10751 
10752 	/* Likewise for the init_ops offsets */
10753 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
10754 	ops_offsets = (u16 *)(firmware->data + offset);
10755 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
10756 
10757 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
10758 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
10759 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
10760 			return -EINVAL;
10761 		}
10762 	}
10763 
10764 	/* Check FW version */
10765 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
10766 	fw_ver = firmware->data + offset;
10767 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
10768 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
10769 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
10770 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
10771 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
10772 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
10773 		       BCM_5710_FW_MAJOR_VERSION,
10774 		       BCM_5710_FW_MINOR_VERSION,
10775 		       BCM_5710_FW_REVISION_VERSION,
10776 		       BCM_5710_FW_ENGINEERING_VERSION);
10777 		return -EINVAL;
10778 	}
10779 
10780 	return 0;
10781 }
10782 
10783 static inline void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10784 {
10785 	const __be32 *source = (const __be32 *)_source;
10786 	u32 *target = (u32 *)_target;
10787 	u32 i;
10788 
10789 	for (i = 0; i < n/4; i++)
10790 		target[i] = be32_to_cpu(source[i]);
10791 }
10792 
10793 /*
10794    Ops array is stored in the following format:
10795    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
10796  */
10797 static inline void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
10798 {
10799 	const __be32 *source = (const __be32 *)_source;
10800 	struct raw_op *target = (struct raw_op *)_target;
10801 	u32 i, j, tmp;
10802 
10803 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
10804 		tmp = be32_to_cpu(source[j]);
10805 		target[i].op = (tmp >> 24) & 0xff;
10806 		target[i].offset = tmp & 0xffffff;
10807 		target[i].raw_data = be32_to_cpu(source[j + 1]);
10808 	}
10809 }
10810 
10811 /**
10812  * IRO array is stored in the following format:
10813  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
10814  */
10815 static inline void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
10816 {
10817 	const __be32 *source = (const __be32 *)_source;
10818 	struct iro *target = (struct iro *)_target;
10819 	u32 i, j, tmp;
10820 
10821 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
10822 		target[i].base = be32_to_cpu(source[j]);
10823 		j++;
10824 		tmp = be32_to_cpu(source[j]);
10825 		target[i].m1 = (tmp >> 16) & 0xffff;
10826 		target[i].m2 = tmp & 0xffff;
10827 		j++;
10828 		tmp = be32_to_cpu(source[j]);
10829 		target[i].m3 = (tmp >> 16) & 0xffff;
10830 		target[i].size = tmp & 0xffff;
10831 		j++;
10832 	}
10833 }
10834 
10835 static inline void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10836 {
10837 	const __be16 *source = (const __be16 *)_source;
10838 	u16 *target = (u16 *)_target;
10839 	u32 i;
10840 
10841 	for (i = 0; i < n/2; i++)
10842 		target[i] = be16_to_cpu(source[i]);
10843 }
10844 
10845 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
10846 do {									\
10847 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
10848 	bp->arr = kmalloc(len, GFP_KERNEL);				\
10849 	if (!bp->arr)							\
10850 		goto lbl;						\
10851 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
10852 	     (u8 *)bp->arr, len);					\
10853 } while (0)
10854 
10855 static int bnx2x_init_firmware(struct bnx2x *bp)
10856 {
10857 	const char *fw_file_name;
10858 	struct bnx2x_fw_file_hdr *fw_hdr;
10859 	int rc;
10860 
10861 	if (bp->firmware)
10862 		return 0;
10863 
10864 	if (CHIP_IS_E1(bp))
10865 		fw_file_name = FW_FILE_NAME_E1;
10866 	else if (CHIP_IS_E1H(bp))
10867 		fw_file_name = FW_FILE_NAME_E1H;
10868 	else if (!CHIP_IS_E1x(bp))
10869 		fw_file_name = FW_FILE_NAME_E2;
10870 	else {
10871 		BNX2X_ERR("Unsupported chip revision\n");
10872 		return -EINVAL;
10873 	}
10874 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
10875 
10876 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
10877 	if (rc) {
10878 		BNX2X_ERR("Can't load firmware file %s\n",
10879 			  fw_file_name);
10880 		goto request_firmware_exit;
10881 	}
10882 
10883 	rc = bnx2x_check_firmware(bp);
10884 	if (rc) {
10885 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
10886 		goto request_firmware_exit;
10887 	}
10888 
10889 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
10890 
10891 	/* Initialize the pointers to the init arrays */
10892 	/* Blob */
10893 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
10894 
10895 	/* Opcodes */
10896 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
10897 
10898 	/* Offsets */
10899 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
10900 			    be16_to_cpu_n);
10901 
10902 	/* STORMs firmware */
10903 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10904 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
10905 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
10906 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
10907 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10908 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
10909 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
10910 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
10911 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10912 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
10913 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
10914 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
10915 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10916 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
10917 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
10918 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
10919 	/* IRO */
10920 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
10921 
10922 	return 0;
10923 
10924 iro_alloc_err:
10925 	kfree(bp->init_ops_offsets);
10926 init_offsets_alloc_err:
10927 	kfree(bp->init_ops);
10928 init_ops_alloc_err:
10929 	kfree(bp->init_data);
10930 request_firmware_exit:
10931 	release_firmware(bp->firmware);
10932 	bp->firmware = NULL;
10933 
10934 	return rc;
10935 }
10936 
10937 static void bnx2x_release_firmware(struct bnx2x *bp)
10938 {
10939 	kfree(bp->init_ops_offsets);
10940 	kfree(bp->init_ops);
10941 	kfree(bp->init_data);
10942 	release_firmware(bp->firmware);
10943 	bp->firmware = NULL;
10944 }
10945 
10946 
10947 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
10948 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
10949 	.init_hw_cmn      = bnx2x_init_hw_common,
10950 	.init_hw_port     = bnx2x_init_hw_port,
10951 	.init_hw_func     = bnx2x_init_hw_func,
10952 
10953 	.reset_hw_cmn     = bnx2x_reset_common,
10954 	.reset_hw_port    = bnx2x_reset_port,
10955 	.reset_hw_func    = bnx2x_reset_func,
10956 
10957 	.gunzip_init      = bnx2x_gunzip_init,
10958 	.gunzip_end       = bnx2x_gunzip_end,
10959 
10960 	.init_fw          = bnx2x_init_firmware,
10961 	.release_fw       = bnx2x_release_firmware,
10962 };
10963 
10964 void bnx2x__init_func_obj(struct bnx2x *bp)
10965 {
10966 	/* Prepare DMAE related driver resources */
10967 	bnx2x_setup_dmae(bp);
10968 
10969 	bnx2x_init_func_obj(bp, &bp->func_obj,
10970 			    bnx2x_sp(bp, func_rdata),
10971 			    bnx2x_sp_mapping(bp, func_rdata),
10972 			    &bnx2x_func_sp_drv);
10973 }
10974 
10975 /* must be called after sriov-enable */
10976 static inline int bnx2x_set_qm_cid_count(struct bnx2x *bp)
10977 {
10978 	int cid_count = BNX2X_L2_CID_COUNT(bp);
10979 
10980 #ifdef BCM_CNIC
10981 	cid_count += CNIC_CID_MAX;
10982 #endif
10983 	return roundup(cid_count, QM_CID_ROUND);
10984 }
10985 
10986 /**
10987  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
10988  *
10989  * @dev:	pci device
10990  *
10991  */
10992 static inline int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev)
10993 {
10994 	int pos;
10995 	u16 control;
10996 
10997 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
10998 
10999 	/*
11000 	 * If MSI-X is not supported - return number of SBs needed to support
11001 	 * one fast path queue: one FP queue + SB for CNIC
11002 	 */
11003 	if (!pos)
11004 		return 1 + CNIC_PRESENT;
11005 
11006 	/*
11007 	 * The value in the PCI configuration space is the index of the last
11008 	 * entry, namely one less than the actual size of the table, which is
11009 	 * exactly what we want to return from this function: number of all SBs
11010 	 * without the default SB.
11011 	 */
11012 	pci_read_config_word(pdev, pos  + PCI_MSI_FLAGS, &control);
11013 	return control & PCI_MSIX_FLAGS_QSIZE;
11014 }
11015 
11016 static int __devinit bnx2x_init_one(struct pci_dev *pdev,
11017 				    const struct pci_device_id *ent)
11018 {
11019 	struct net_device *dev = NULL;
11020 	struct bnx2x *bp;
11021 	int pcie_width, pcie_speed;
11022 	int rc, max_non_def_sbs;
11023 	int rx_count, tx_count, rss_count;
11024 	/*
11025 	 * An estimated maximum supported CoS number according to the chip
11026 	 * version.
11027 	 * We will try to roughly estimate the maximum number of CoSes this chip
11028 	 * may support in order to minimize the memory allocated for Tx
11029 	 * netdev_queue's. This number will be accurately calculated during the
11030 	 * initialization of bp->max_cos based on the chip versions AND chip
11031 	 * revision in the bnx2x_init_bp().
11032 	 */
11033 	u8 max_cos_est = 0;
11034 
11035 	switch (ent->driver_data) {
11036 	case BCM57710:
11037 	case BCM57711:
11038 	case BCM57711E:
11039 		max_cos_est = BNX2X_MULTI_TX_COS_E1X;
11040 		break;
11041 
11042 	case BCM57712:
11043 	case BCM57712_MF:
11044 		max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
11045 		break;
11046 
11047 	case BCM57800:
11048 	case BCM57800_MF:
11049 	case BCM57810:
11050 	case BCM57810_MF:
11051 	case BCM57840:
11052 	case BCM57840_MF:
11053 		max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
11054 		break;
11055 
11056 	default:
11057 		pr_err("Unknown board_type (%ld), aborting\n",
11058 			   ent->driver_data);
11059 		return -ENODEV;
11060 	}
11061 
11062 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev);
11063 
11064 	/* !!! FIXME !!!
11065 	 * Do not allow the maximum SB count to grow above 16
11066 	 * since Special CIDs starts from 16*BNX2X_MULTI_TX_COS=48.
11067 	 * We will use the FP_SB_MAX_E1x macro for this matter.
11068 	 */
11069 	max_non_def_sbs = min_t(int, FP_SB_MAX_E1x, max_non_def_sbs);
11070 
11071 	WARN_ON(!max_non_def_sbs);
11072 
11073 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
11074 	rss_count = max_non_def_sbs - CNIC_PRESENT;
11075 
11076 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
11077 	rx_count = rss_count + FCOE_PRESENT;
11078 
11079 	/*
11080 	 * Maximum number of netdev Tx queues:
11081 	 *      Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
11082 	 */
11083 	tx_count = MAX_TXQS_PER_COS * max_cos_est + FCOE_PRESENT;
11084 
11085 	/* dev zeroed in init_etherdev */
11086 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
11087 	if (!dev)
11088 		return -ENOMEM;
11089 
11090 	bp = netdev_priv(dev);
11091 
11092 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
11093 			  tx_count, rx_count);
11094 
11095 	bp->igu_sb_cnt = max_non_def_sbs;
11096 	bp->msg_enable = debug;
11097 	pci_set_drvdata(pdev, dev);
11098 
11099 	rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
11100 	if (rc < 0) {
11101 		free_netdev(dev);
11102 		return rc;
11103 	}
11104 
11105 	BNX2X_DEV_INFO("max_non_def_sbs %d\n", max_non_def_sbs);
11106 
11107 	rc = bnx2x_init_bp(bp);
11108 	if (rc)
11109 		goto init_one_exit;
11110 
11111 	/*
11112 	 * Map doorbels here as we need the real value of bp->max_cos which
11113 	 * is initialized in bnx2x_init_bp().
11114 	 */
11115 	bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
11116 					min_t(u64, BNX2X_DB_SIZE(bp),
11117 					      pci_resource_len(pdev, 2)));
11118 	if (!bp->doorbells) {
11119 		dev_err(&bp->pdev->dev,
11120 			"Cannot map doorbell space, aborting\n");
11121 		rc = -ENOMEM;
11122 		goto init_one_exit;
11123 	}
11124 
11125 	/* calc qm_cid_count */
11126 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
11127 
11128 #ifdef BCM_CNIC
11129 	/* disable FCOE L2 queue for E1x */
11130 	if (CHIP_IS_E1x(bp))
11131 		bp->flags |= NO_FCOE_FLAG;
11132 
11133 #endif
11134 
11135 	/* Configure interrupt mode: try to enable MSI-X/MSI if
11136 	 * needed, set bp->num_queues appropriately.
11137 	 */
11138 	bnx2x_set_int_mode(bp);
11139 
11140 	/* Add all NAPI objects */
11141 	bnx2x_add_all_napi(bp);
11142 
11143 	rc = register_netdev(dev);
11144 	if (rc) {
11145 		dev_err(&pdev->dev, "Cannot register net device\n");
11146 		goto init_one_exit;
11147 	}
11148 
11149 #ifdef BCM_CNIC
11150 	if (!NO_FCOE(bp)) {
11151 		/* Add storage MAC address */
11152 		rtnl_lock();
11153 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11154 		rtnl_unlock();
11155 	}
11156 #endif
11157 
11158 	bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
11159 
11160 	BNX2X_DEV_INFO(
11161 		"%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
11162 		    board_info[ent->driver_data].name,
11163 		    (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
11164 		    pcie_width,
11165 		    ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
11166 		     (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
11167 		    "5GHz (Gen2)" : "2.5GHz",
11168 		    dev->base_addr, bp->pdev->irq, dev->dev_addr);
11169 
11170 	return 0;
11171 
11172 init_one_exit:
11173 	if (bp->regview)
11174 		iounmap(bp->regview);
11175 
11176 	if (bp->doorbells)
11177 		iounmap(bp->doorbells);
11178 
11179 	free_netdev(dev);
11180 
11181 	if (atomic_read(&pdev->enable_cnt) == 1)
11182 		pci_release_regions(pdev);
11183 
11184 	pci_disable_device(pdev);
11185 	pci_set_drvdata(pdev, NULL);
11186 
11187 	return rc;
11188 }
11189 
11190 static void __devexit bnx2x_remove_one(struct pci_dev *pdev)
11191 {
11192 	struct net_device *dev = pci_get_drvdata(pdev);
11193 	struct bnx2x *bp;
11194 
11195 	if (!dev) {
11196 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
11197 		return;
11198 	}
11199 	bp = netdev_priv(dev);
11200 
11201 #ifdef BCM_CNIC
11202 	/* Delete storage MAC address */
11203 	if (!NO_FCOE(bp)) {
11204 		rtnl_lock();
11205 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11206 		rtnl_unlock();
11207 	}
11208 #endif
11209 
11210 #ifdef BCM_DCBNL
11211 	/* Delete app tlvs from dcbnl */
11212 	bnx2x_dcbnl_update_applist(bp, true);
11213 #endif
11214 
11215 	unregister_netdev(dev);
11216 
11217 	/* Delete all NAPI objects */
11218 	bnx2x_del_all_napi(bp);
11219 
11220 	/* Power on: we can't let PCI layer write to us while we are in D3 */
11221 	bnx2x_set_power_state(bp, PCI_D0);
11222 
11223 	/* Disable MSI/MSI-X */
11224 	bnx2x_disable_msi(bp);
11225 
11226 	/* Power off */
11227 	bnx2x_set_power_state(bp, PCI_D3hot);
11228 
11229 	/* Make sure RESET task is not scheduled before continuing */
11230 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
11231 
11232 	if (bp->regview)
11233 		iounmap(bp->regview);
11234 
11235 	if (bp->doorbells)
11236 		iounmap(bp->doorbells);
11237 
11238 	bnx2x_release_firmware(bp);
11239 
11240 	bnx2x_free_mem_bp(bp);
11241 
11242 	free_netdev(dev);
11243 
11244 	if (atomic_read(&pdev->enable_cnt) == 1)
11245 		pci_release_regions(pdev);
11246 
11247 	pci_disable_device(pdev);
11248 	pci_set_drvdata(pdev, NULL);
11249 }
11250 
11251 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
11252 {
11253 	int i;
11254 
11255 	bp->state = BNX2X_STATE_ERROR;
11256 
11257 	bp->rx_mode = BNX2X_RX_MODE_NONE;
11258 
11259 #ifdef BCM_CNIC
11260 	bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
11261 #endif
11262 	/* Stop Tx */
11263 	bnx2x_tx_disable(bp);
11264 
11265 	bnx2x_netif_stop(bp, 0);
11266 
11267 	del_timer_sync(&bp->timer);
11268 
11269 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
11270 
11271 	/* Release IRQs */
11272 	bnx2x_free_irq(bp);
11273 
11274 	/* Free SKBs, SGEs, TPA pool and driver internals */
11275 	bnx2x_free_skbs(bp);
11276 
11277 	for_each_rx_queue(bp, i)
11278 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
11279 
11280 	bnx2x_free_mem(bp);
11281 
11282 	bp->state = BNX2X_STATE_CLOSED;
11283 
11284 	netif_carrier_off(bp->dev);
11285 
11286 	return 0;
11287 }
11288 
11289 static void bnx2x_eeh_recover(struct bnx2x *bp)
11290 {
11291 	u32 val;
11292 
11293 	mutex_init(&bp->port.phy_mutex);
11294 
11295 
11296 	val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
11297 	if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11298 		!= (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11299 		BNX2X_ERR("BAD MCP validity signature\n");
11300 }
11301 
11302 /**
11303  * bnx2x_io_error_detected - called when PCI error is detected
11304  * @pdev: Pointer to PCI device
11305  * @state: The current pci connection state
11306  *
11307  * This function is called after a PCI bus error affecting
11308  * this device has been detected.
11309  */
11310 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
11311 						pci_channel_state_t state)
11312 {
11313 	struct net_device *dev = pci_get_drvdata(pdev);
11314 	struct bnx2x *bp = netdev_priv(dev);
11315 
11316 	rtnl_lock();
11317 
11318 	netif_device_detach(dev);
11319 
11320 	if (state == pci_channel_io_perm_failure) {
11321 		rtnl_unlock();
11322 		return PCI_ERS_RESULT_DISCONNECT;
11323 	}
11324 
11325 	if (netif_running(dev))
11326 		bnx2x_eeh_nic_unload(bp);
11327 
11328 	pci_disable_device(pdev);
11329 
11330 	rtnl_unlock();
11331 
11332 	/* Request a slot reset */
11333 	return PCI_ERS_RESULT_NEED_RESET;
11334 }
11335 
11336 /**
11337  * bnx2x_io_slot_reset - called after the PCI bus has been reset
11338  * @pdev: Pointer to PCI device
11339  *
11340  * Restart the card from scratch, as if from a cold-boot.
11341  */
11342 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
11343 {
11344 	struct net_device *dev = pci_get_drvdata(pdev);
11345 	struct bnx2x *bp = netdev_priv(dev);
11346 
11347 	rtnl_lock();
11348 
11349 	if (pci_enable_device(pdev)) {
11350 		dev_err(&pdev->dev,
11351 			"Cannot re-enable PCI device after reset\n");
11352 		rtnl_unlock();
11353 		return PCI_ERS_RESULT_DISCONNECT;
11354 	}
11355 
11356 	pci_set_master(pdev);
11357 	pci_restore_state(pdev);
11358 
11359 	if (netif_running(dev))
11360 		bnx2x_set_power_state(bp, PCI_D0);
11361 
11362 	rtnl_unlock();
11363 
11364 	return PCI_ERS_RESULT_RECOVERED;
11365 }
11366 
11367 /**
11368  * bnx2x_io_resume - called when traffic can start flowing again
11369  * @pdev: Pointer to PCI device
11370  *
11371  * This callback is called when the error recovery driver tells us that
11372  * its OK to resume normal operation.
11373  */
11374 static void bnx2x_io_resume(struct pci_dev *pdev)
11375 {
11376 	struct net_device *dev = pci_get_drvdata(pdev);
11377 	struct bnx2x *bp = netdev_priv(dev);
11378 
11379 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
11380 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
11381 		return;
11382 	}
11383 
11384 	rtnl_lock();
11385 
11386 	bnx2x_eeh_recover(bp);
11387 
11388 	if (netif_running(dev))
11389 		bnx2x_nic_load(bp, LOAD_NORMAL);
11390 
11391 	netif_device_attach(dev);
11392 
11393 	rtnl_unlock();
11394 }
11395 
11396 static struct pci_error_handlers bnx2x_err_handler = {
11397 	.error_detected = bnx2x_io_error_detected,
11398 	.slot_reset     = bnx2x_io_slot_reset,
11399 	.resume         = bnx2x_io_resume,
11400 };
11401 
11402 static struct pci_driver bnx2x_pci_driver = {
11403 	.name        = DRV_MODULE_NAME,
11404 	.id_table    = bnx2x_pci_tbl,
11405 	.probe       = bnx2x_init_one,
11406 	.remove      = __devexit_p(bnx2x_remove_one),
11407 	.suspend     = bnx2x_suspend,
11408 	.resume      = bnx2x_resume,
11409 	.err_handler = &bnx2x_err_handler,
11410 };
11411 
11412 static int __init bnx2x_init(void)
11413 {
11414 	int ret;
11415 
11416 	pr_info("%s", version);
11417 
11418 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
11419 	if (bnx2x_wq == NULL) {
11420 		pr_err("Cannot create workqueue\n");
11421 		return -ENOMEM;
11422 	}
11423 
11424 	ret = pci_register_driver(&bnx2x_pci_driver);
11425 	if (ret) {
11426 		pr_err("Cannot register driver\n");
11427 		destroy_workqueue(bnx2x_wq);
11428 	}
11429 	return ret;
11430 }
11431 
11432 static void __exit bnx2x_cleanup(void)
11433 {
11434 	pci_unregister_driver(&bnx2x_pci_driver);
11435 
11436 	destroy_workqueue(bnx2x_wq);
11437 }
11438 
11439 void bnx2x_notify_link_changed(struct bnx2x *bp)
11440 {
11441 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
11442 }
11443 
11444 module_init(bnx2x_init);
11445 module_exit(bnx2x_cleanup);
11446 
11447 #ifdef BCM_CNIC
11448 /**
11449  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
11450  *
11451  * @bp:		driver handle
11452  * @set:	set or clear the CAM entry
11453  *
11454  * This function will wait until the ramdord completion returns.
11455  * Return 0 if success, -ENODEV if ramrod doesn't return.
11456  */
11457 static inline int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
11458 {
11459 	unsigned long ramrod_flags = 0;
11460 
11461 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11462 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
11463 				 &bp->iscsi_l2_mac_obj, true,
11464 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
11465 }
11466 
11467 /* count denotes the number of new completions we have seen */
11468 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
11469 {
11470 	struct eth_spe *spe;
11471 
11472 #ifdef BNX2X_STOP_ON_ERROR
11473 	if (unlikely(bp->panic))
11474 		return;
11475 #endif
11476 
11477 	spin_lock_bh(&bp->spq_lock);
11478 	BUG_ON(bp->cnic_spq_pending < count);
11479 	bp->cnic_spq_pending -= count;
11480 
11481 
11482 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
11483 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
11484 				& SPE_HDR_CONN_TYPE) >>
11485 				SPE_HDR_CONN_TYPE_SHIFT;
11486 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
11487 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
11488 
11489 		/* Set validation for iSCSI L2 client before sending SETUP
11490 		 *  ramrod
11491 		 */
11492 		if (type == ETH_CONNECTION_TYPE) {
11493 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP)
11494 				bnx2x_set_ctx_validation(bp, &bp->context.
11495 					vcxt[BNX2X_ISCSI_ETH_CID].eth,
11496 					BNX2X_ISCSI_ETH_CID);
11497 		}
11498 
11499 		/*
11500 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
11501 		 * and in the air. We also check that number of outstanding
11502 		 * COMMON ramrods is not more than the EQ and SPQ can
11503 		 * accommodate.
11504 		 */
11505 		if (type == ETH_CONNECTION_TYPE) {
11506 			if (!atomic_read(&bp->cq_spq_left))
11507 				break;
11508 			else
11509 				atomic_dec(&bp->cq_spq_left);
11510 		} else if (type == NONE_CONNECTION_TYPE) {
11511 			if (!atomic_read(&bp->eq_spq_left))
11512 				break;
11513 			else
11514 				atomic_dec(&bp->eq_spq_left);
11515 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
11516 			   (type == FCOE_CONNECTION_TYPE)) {
11517 			if (bp->cnic_spq_pending >=
11518 			    bp->cnic_eth_dev.max_kwqe_pending)
11519 				break;
11520 			else
11521 				bp->cnic_spq_pending++;
11522 		} else {
11523 			BNX2X_ERR("Unknown SPE type: %d\n", type);
11524 			bnx2x_panic();
11525 			break;
11526 		}
11527 
11528 		spe = bnx2x_sp_get_next(bp);
11529 		*spe = *bp->cnic_kwq_cons;
11530 
11531 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
11532 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
11533 
11534 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
11535 			bp->cnic_kwq_cons = bp->cnic_kwq;
11536 		else
11537 			bp->cnic_kwq_cons++;
11538 	}
11539 	bnx2x_sp_prod_update(bp);
11540 	spin_unlock_bh(&bp->spq_lock);
11541 }
11542 
11543 static int bnx2x_cnic_sp_queue(struct net_device *dev,
11544 			       struct kwqe_16 *kwqes[], u32 count)
11545 {
11546 	struct bnx2x *bp = netdev_priv(dev);
11547 	int i;
11548 
11549 #ifdef BNX2X_STOP_ON_ERROR
11550 	if (unlikely(bp->panic)) {
11551 		BNX2X_ERR("Can't post to SP queue while panic\n");
11552 		return -EIO;
11553 	}
11554 #endif
11555 
11556 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
11557 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
11558 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
11559 		return -EAGAIN;
11560 	}
11561 
11562 	spin_lock_bh(&bp->spq_lock);
11563 
11564 	for (i = 0; i < count; i++) {
11565 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
11566 
11567 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
11568 			break;
11569 
11570 		*bp->cnic_kwq_prod = *spe;
11571 
11572 		bp->cnic_kwq_pending++;
11573 
11574 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
11575 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
11576 		   spe->data.update_data_addr.hi,
11577 		   spe->data.update_data_addr.lo,
11578 		   bp->cnic_kwq_pending);
11579 
11580 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
11581 			bp->cnic_kwq_prod = bp->cnic_kwq;
11582 		else
11583 			bp->cnic_kwq_prod++;
11584 	}
11585 
11586 	spin_unlock_bh(&bp->spq_lock);
11587 
11588 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
11589 		bnx2x_cnic_sp_post(bp, 0);
11590 
11591 	return i;
11592 }
11593 
11594 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11595 {
11596 	struct cnic_ops *c_ops;
11597 	int rc = 0;
11598 
11599 	mutex_lock(&bp->cnic_mutex);
11600 	c_ops = rcu_dereference_protected(bp->cnic_ops,
11601 					  lockdep_is_held(&bp->cnic_mutex));
11602 	if (c_ops)
11603 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11604 	mutex_unlock(&bp->cnic_mutex);
11605 
11606 	return rc;
11607 }
11608 
11609 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11610 {
11611 	struct cnic_ops *c_ops;
11612 	int rc = 0;
11613 
11614 	rcu_read_lock();
11615 	c_ops = rcu_dereference(bp->cnic_ops);
11616 	if (c_ops)
11617 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11618 	rcu_read_unlock();
11619 
11620 	return rc;
11621 }
11622 
11623 /*
11624  * for commands that have no data
11625  */
11626 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
11627 {
11628 	struct cnic_ctl_info ctl = {0};
11629 
11630 	ctl.cmd = cmd;
11631 
11632 	return bnx2x_cnic_ctl_send(bp, &ctl);
11633 }
11634 
11635 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
11636 {
11637 	struct cnic_ctl_info ctl = {0};
11638 
11639 	/* first we tell CNIC and only then we count this as a completion */
11640 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
11641 	ctl.data.comp.cid = cid;
11642 	ctl.data.comp.error = err;
11643 
11644 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
11645 	bnx2x_cnic_sp_post(bp, 0);
11646 }
11647 
11648 
11649 /* Called with netif_addr_lock_bh() taken.
11650  * Sets an rx_mode config for an iSCSI ETH client.
11651  * Doesn't block.
11652  * Completion should be checked outside.
11653  */
11654 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
11655 {
11656 	unsigned long accept_flags = 0, ramrod_flags = 0;
11657 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11658 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
11659 
11660 	if (start) {
11661 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
11662 		 * because it's the only way for UIO Queue to accept
11663 		 * multicasts (in non-promiscuous mode only one Queue per
11664 		 * function will receive multicast packets (leading in our
11665 		 * case).
11666 		 */
11667 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
11668 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
11669 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
11670 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
11671 
11672 		/* Clear STOP_PENDING bit if START is requested */
11673 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
11674 
11675 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
11676 	} else
11677 		/* Clear START_PENDING bit if STOP is requested */
11678 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
11679 
11680 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
11681 		set_bit(sched_state, &bp->sp_state);
11682 	else {
11683 		__set_bit(RAMROD_RX, &ramrod_flags);
11684 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
11685 				    ramrod_flags);
11686 	}
11687 }
11688 
11689 
11690 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
11691 {
11692 	struct bnx2x *bp = netdev_priv(dev);
11693 	int rc = 0;
11694 
11695 	switch (ctl->cmd) {
11696 	case DRV_CTL_CTXTBL_WR_CMD: {
11697 		u32 index = ctl->data.io.offset;
11698 		dma_addr_t addr = ctl->data.io.dma_addr;
11699 
11700 		bnx2x_ilt_wr(bp, index, addr);
11701 		break;
11702 	}
11703 
11704 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
11705 		int count = ctl->data.credit.credit_count;
11706 
11707 		bnx2x_cnic_sp_post(bp, count);
11708 		break;
11709 	}
11710 
11711 	/* rtnl_lock is held.  */
11712 	case DRV_CTL_START_L2_CMD: {
11713 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11714 		unsigned long sp_bits = 0;
11715 
11716 		/* Configure the iSCSI classification object */
11717 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
11718 				   cp->iscsi_l2_client_id,
11719 				   cp->iscsi_l2_cid, BP_FUNC(bp),
11720 				   bnx2x_sp(bp, mac_rdata),
11721 				   bnx2x_sp_mapping(bp, mac_rdata),
11722 				   BNX2X_FILTER_MAC_PENDING,
11723 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
11724 				   &bp->macs_pool);
11725 
11726 		/* Set iSCSI MAC address */
11727 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
11728 		if (rc)
11729 			break;
11730 
11731 		mmiowb();
11732 		barrier();
11733 
11734 		/* Start accepting on iSCSI L2 ring */
11735 
11736 		netif_addr_lock_bh(dev);
11737 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
11738 		netif_addr_unlock_bh(dev);
11739 
11740 		/* bits to wait on */
11741 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11742 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
11743 
11744 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
11745 			BNX2X_ERR("rx_mode completion timed out!\n");
11746 
11747 		break;
11748 	}
11749 
11750 	/* rtnl_lock is held.  */
11751 	case DRV_CTL_STOP_L2_CMD: {
11752 		unsigned long sp_bits = 0;
11753 
11754 		/* Stop accepting on iSCSI L2 ring */
11755 		netif_addr_lock_bh(dev);
11756 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
11757 		netif_addr_unlock_bh(dev);
11758 
11759 		/* bits to wait on */
11760 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11761 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
11762 
11763 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
11764 			BNX2X_ERR("rx_mode completion timed out!\n");
11765 
11766 		mmiowb();
11767 		barrier();
11768 
11769 		/* Unset iSCSI L2 MAC */
11770 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
11771 					BNX2X_ISCSI_ETH_MAC, true);
11772 		break;
11773 	}
11774 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
11775 		int count = ctl->data.credit.credit_count;
11776 
11777 		smp_mb__before_atomic_inc();
11778 		atomic_add(count, &bp->cq_spq_left);
11779 		smp_mb__after_atomic_inc();
11780 		break;
11781 	}
11782 	case DRV_CTL_ULP_REGISTER_CMD: {
11783 		int ulp_type = ctl->data.ulp_type;
11784 
11785 		if (CHIP_IS_E3(bp)) {
11786 			int idx = BP_FW_MB_IDX(bp);
11787 			u32 cap;
11788 
11789 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
11790 			if (ulp_type == CNIC_ULP_ISCSI)
11791 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
11792 			else if (ulp_type == CNIC_ULP_FCOE)
11793 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
11794 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
11795 		}
11796 		break;
11797 	}
11798 	case DRV_CTL_ULP_UNREGISTER_CMD: {
11799 		int ulp_type = ctl->data.ulp_type;
11800 
11801 		if (CHIP_IS_E3(bp)) {
11802 			int idx = BP_FW_MB_IDX(bp);
11803 			u32 cap;
11804 
11805 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
11806 			if (ulp_type == CNIC_ULP_ISCSI)
11807 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
11808 			else if (ulp_type == CNIC_ULP_FCOE)
11809 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
11810 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
11811 		}
11812 		break;
11813 	}
11814 
11815 	default:
11816 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
11817 		rc = -EINVAL;
11818 	}
11819 
11820 	return rc;
11821 }
11822 
11823 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
11824 {
11825 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11826 
11827 	if (bp->flags & USING_MSIX_FLAG) {
11828 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
11829 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
11830 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
11831 	} else {
11832 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
11833 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
11834 	}
11835 	if (!CHIP_IS_E1x(bp))
11836 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
11837 	else
11838 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
11839 
11840 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
11841 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
11842 	cp->irq_arr[1].status_blk = bp->def_status_blk;
11843 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
11844 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
11845 
11846 	cp->num_irq = 2;
11847 }
11848 
11849 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
11850 			       void *data)
11851 {
11852 	struct bnx2x *bp = netdev_priv(dev);
11853 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11854 
11855 	if (ops == NULL) {
11856 		BNX2X_ERR("NULL ops received\n");
11857 		return -EINVAL;
11858 	}
11859 
11860 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
11861 	if (!bp->cnic_kwq)
11862 		return -ENOMEM;
11863 
11864 	bp->cnic_kwq_cons = bp->cnic_kwq;
11865 	bp->cnic_kwq_prod = bp->cnic_kwq;
11866 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
11867 
11868 	bp->cnic_spq_pending = 0;
11869 	bp->cnic_kwq_pending = 0;
11870 
11871 	bp->cnic_data = data;
11872 
11873 	cp->num_irq = 0;
11874 	cp->drv_state |= CNIC_DRV_STATE_REGD;
11875 	cp->iro_arr = bp->iro_arr;
11876 
11877 	bnx2x_setup_cnic_irq_info(bp);
11878 
11879 	rcu_assign_pointer(bp->cnic_ops, ops);
11880 
11881 	return 0;
11882 }
11883 
11884 static int bnx2x_unregister_cnic(struct net_device *dev)
11885 {
11886 	struct bnx2x *bp = netdev_priv(dev);
11887 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11888 
11889 	mutex_lock(&bp->cnic_mutex);
11890 	cp->drv_state = 0;
11891 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
11892 	mutex_unlock(&bp->cnic_mutex);
11893 	synchronize_rcu();
11894 	kfree(bp->cnic_kwq);
11895 	bp->cnic_kwq = NULL;
11896 
11897 	return 0;
11898 }
11899 
11900 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
11901 {
11902 	struct bnx2x *bp = netdev_priv(dev);
11903 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11904 
11905 	/* If both iSCSI and FCoE are disabled - return NULL in
11906 	 * order to indicate CNIC that it should not try to work
11907 	 * with this device.
11908 	 */
11909 	if (NO_ISCSI(bp) && NO_FCOE(bp))
11910 		return NULL;
11911 
11912 	cp->drv_owner = THIS_MODULE;
11913 	cp->chip_id = CHIP_ID(bp);
11914 	cp->pdev = bp->pdev;
11915 	cp->io_base = bp->regview;
11916 	cp->io_base2 = bp->doorbells;
11917 	cp->max_kwqe_pending = 8;
11918 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
11919 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
11920 			     bnx2x_cid_ilt_lines(bp);
11921 	cp->ctx_tbl_len = CNIC_ILT_LINES;
11922 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
11923 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
11924 	cp->drv_ctl = bnx2x_drv_ctl;
11925 	cp->drv_register_cnic = bnx2x_register_cnic;
11926 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
11927 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID;
11928 	cp->iscsi_l2_client_id =
11929 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11930 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID;
11931 
11932 	if (NO_ISCSI_OOO(bp))
11933 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
11934 
11935 	if (NO_ISCSI(bp))
11936 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
11937 
11938 	if (NO_FCOE(bp))
11939 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
11940 
11941 	BNX2X_DEV_INFO(
11942 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
11943 	   cp->ctx_blk_size,
11944 	   cp->ctx_tbl_offset,
11945 	   cp->ctx_tbl_len,
11946 	   cp->starting_cid);
11947 	return cp;
11948 }
11949 EXPORT_SYMBOL(bnx2x_cnic_probe);
11950 
11951 #endif /* BCM_CNIC */
11952 
11953