1 /* bnx2x_main.c: QLogic Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * Copyright (c) 2014 QLogic Corporation 5 * All rights reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation. 10 * 11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 12 * Written by: Eliezer Tamir 13 * Based on code from Michael Chan's bnx2 driver 14 * UDP CSUM errata workaround by Arik Gendelman 15 * Slowpath and fastpath rework by Vladislav Zolotarov 16 * Statistics and Link management by Yitchak Gertner 17 * 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/module.h> 23 #include <linux/moduleparam.h> 24 #include <linux/kernel.h> 25 #include <linux/device.h> /* for dev_info() */ 26 #include <linux/timer.h> 27 #include <linux/errno.h> 28 #include <linux/ioport.h> 29 #include <linux/slab.h> 30 #include <linux/interrupt.h> 31 #include <linux/pci.h> 32 #include <linux/aer.h> 33 #include <linux/init.h> 34 #include <linux/netdevice.h> 35 #include <linux/etherdevice.h> 36 #include <linux/skbuff.h> 37 #include <linux/dma-mapping.h> 38 #include <linux/bitops.h> 39 #include <linux/irq.h> 40 #include <linux/delay.h> 41 #include <asm/byteorder.h> 42 #include <linux/time.h> 43 #include <linux/ethtool.h> 44 #include <linux/mii.h> 45 #include <linux/if_vlan.h> 46 #include <linux/crash_dump.h> 47 #include <net/ip.h> 48 #include <net/ipv6.h> 49 #include <net/tcp.h> 50 #include <net/vxlan.h> 51 #include <net/checksum.h> 52 #include <net/ip6_checksum.h> 53 #include <linux/workqueue.h> 54 #include <linux/crc32.h> 55 #include <linux/crc32c.h> 56 #include <linux/prefetch.h> 57 #include <linux/zlib.h> 58 #include <linux/io.h> 59 #include <linux/semaphore.h> 60 #include <linux/stringify.h> 61 #include <linux/vmalloc.h> 62 #include "bnx2x.h" 63 #include "bnx2x_init.h" 64 #include "bnx2x_init_ops.h" 65 #include "bnx2x_cmn.h" 66 #include "bnx2x_vfpf.h" 67 #include "bnx2x_dcb.h" 68 #include "bnx2x_sp.h" 69 #include <linux/firmware.h> 70 #include "bnx2x_fw_file_hdr.h" 71 /* FW files */ 72 #define FW_FILE_VERSION \ 73 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \ 74 __stringify(BCM_5710_FW_MINOR_VERSION) "." \ 75 __stringify(BCM_5710_FW_REVISION_VERSION) "." \ 76 __stringify(BCM_5710_FW_ENGINEERING_VERSION) 77 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw" 78 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw" 79 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw" 80 81 /* Time in jiffies before concluding the transmitter is hung */ 82 #define TX_TIMEOUT (5*HZ) 83 84 static char version[] = 85 "QLogic 5771x/578xx 10/20-Gigabit Ethernet Driver " 86 DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; 87 88 MODULE_AUTHOR("Eliezer Tamir"); 89 MODULE_DESCRIPTION("QLogic " 90 "BCM57710/57711/57711E/" 91 "57712/57712_MF/57800/57800_MF/57810/57810_MF/" 92 "57840/57840_MF Driver"); 93 MODULE_LICENSE("GPL"); 94 MODULE_VERSION(DRV_MODULE_VERSION); 95 MODULE_FIRMWARE(FW_FILE_NAME_E1); 96 MODULE_FIRMWARE(FW_FILE_NAME_E1H); 97 MODULE_FIRMWARE(FW_FILE_NAME_E2); 98 99 int bnx2x_num_queues; 100 module_param_named(num_queues, bnx2x_num_queues, int, 0444); 101 MODULE_PARM_DESC(num_queues, 102 " Set number of queues (default is as a number of CPUs)"); 103 104 static int disable_tpa; 105 module_param(disable_tpa, int, 0444); 106 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature"); 107 108 static int int_mode; 109 module_param(int_mode, int, 0444); 110 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X " 111 "(1 INT#x; 2 MSI)"); 112 113 static int dropless_fc; 114 module_param(dropless_fc, int, 0444); 115 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring"); 116 117 static int mrrs = -1; 118 module_param(mrrs, int, 0444); 119 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)"); 120 121 static int debug; 122 module_param(debug, int, 0444); 123 MODULE_PARM_DESC(debug, " Default debug msglevel"); 124 125 static struct workqueue_struct *bnx2x_wq; 126 struct workqueue_struct *bnx2x_iov_wq; 127 128 struct bnx2x_mac_vals { 129 u32 xmac_addr; 130 u32 xmac_val; 131 u32 emac_addr; 132 u32 emac_val; 133 u32 umac_addr[2]; 134 u32 umac_val[2]; 135 u32 bmac_addr; 136 u32 bmac_val[2]; 137 }; 138 139 enum bnx2x_board_type { 140 BCM57710 = 0, 141 BCM57711, 142 BCM57711E, 143 BCM57712, 144 BCM57712_MF, 145 BCM57712_VF, 146 BCM57800, 147 BCM57800_MF, 148 BCM57800_VF, 149 BCM57810, 150 BCM57810_MF, 151 BCM57810_VF, 152 BCM57840_4_10, 153 BCM57840_2_20, 154 BCM57840_MF, 155 BCM57840_VF, 156 BCM57811, 157 BCM57811_MF, 158 BCM57840_O, 159 BCM57840_MFO, 160 BCM57811_VF 161 }; 162 163 /* indexed by board_type, above */ 164 static struct { 165 char *name; 166 } board_info[] = { 167 [BCM57710] = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" }, 168 [BCM57711] = { "QLogic BCM57711 10 Gigabit PCIe" }, 169 [BCM57711E] = { "QLogic BCM57711E 10 Gigabit PCIe" }, 170 [BCM57712] = { "QLogic BCM57712 10 Gigabit Ethernet" }, 171 [BCM57712_MF] = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" }, 172 [BCM57712_VF] = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" }, 173 [BCM57800] = { "QLogic BCM57800 10 Gigabit Ethernet" }, 174 [BCM57800_MF] = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" }, 175 [BCM57800_VF] = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" }, 176 [BCM57810] = { "QLogic BCM57810 10 Gigabit Ethernet" }, 177 [BCM57810_MF] = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" }, 178 [BCM57810_VF] = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" }, 179 [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" }, 180 [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" }, 181 [BCM57840_MF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" }, 182 [BCM57840_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }, 183 [BCM57811] = { "QLogic BCM57811 10 Gigabit Ethernet" }, 184 [BCM57811_MF] = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" }, 185 [BCM57840_O] = { "QLogic BCM57840 10/20 Gigabit Ethernet" }, 186 [BCM57840_MFO] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" }, 187 [BCM57811_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" } 188 }; 189 190 #ifndef PCI_DEVICE_ID_NX2_57710 191 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710 192 #endif 193 #ifndef PCI_DEVICE_ID_NX2_57711 194 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711 195 #endif 196 #ifndef PCI_DEVICE_ID_NX2_57711E 197 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E 198 #endif 199 #ifndef PCI_DEVICE_ID_NX2_57712 200 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712 201 #endif 202 #ifndef PCI_DEVICE_ID_NX2_57712_MF 203 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF 204 #endif 205 #ifndef PCI_DEVICE_ID_NX2_57712_VF 206 #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF 207 #endif 208 #ifndef PCI_DEVICE_ID_NX2_57800 209 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800 210 #endif 211 #ifndef PCI_DEVICE_ID_NX2_57800_MF 212 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF 213 #endif 214 #ifndef PCI_DEVICE_ID_NX2_57800_VF 215 #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF 216 #endif 217 #ifndef PCI_DEVICE_ID_NX2_57810 218 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810 219 #endif 220 #ifndef PCI_DEVICE_ID_NX2_57810_MF 221 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF 222 #endif 223 #ifndef PCI_DEVICE_ID_NX2_57840_O 224 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE 225 #endif 226 #ifndef PCI_DEVICE_ID_NX2_57810_VF 227 #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF 228 #endif 229 #ifndef PCI_DEVICE_ID_NX2_57840_4_10 230 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10 231 #endif 232 #ifndef PCI_DEVICE_ID_NX2_57840_2_20 233 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20 234 #endif 235 #ifndef PCI_DEVICE_ID_NX2_57840_MFO 236 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE 237 #endif 238 #ifndef PCI_DEVICE_ID_NX2_57840_MF 239 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF 240 #endif 241 #ifndef PCI_DEVICE_ID_NX2_57840_VF 242 #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF 243 #endif 244 #ifndef PCI_DEVICE_ID_NX2_57811 245 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811 246 #endif 247 #ifndef PCI_DEVICE_ID_NX2_57811_MF 248 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF 249 #endif 250 #ifndef PCI_DEVICE_ID_NX2_57811_VF 251 #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF 252 #endif 253 254 static const struct pci_device_id bnx2x_pci_tbl[] = { 255 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 }, 256 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 }, 257 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E }, 258 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 }, 259 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF }, 260 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF }, 261 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 }, 262 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF }, 263 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF }, 264 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 }, 265 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF }, 266 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O }, 267 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 }, 268 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 }, 269 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 }, 270 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF }, 271 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO }, 272 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF }, 273 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF }, 274 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF }, 275 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF }, 276 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 }, 277 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF }, 278 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF }, 279 { 0 } 280 }; 281 282 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl); 283 284 /* Global resources for unloading a previously loaded device */ 285 #define BNX2X_PREV_WAIT_NEEDED 1 286 static DEFINE_SEMAPHORE(bnx2x_prev_sem); 287 static LIST_HEAD(bnx2x_prev_list); 288 289 /* Forward declaration */ 290 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev); 291 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp); 292 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp); 293 294 /**************************************************************************** 295 * General service functions 296 ****************************************************************************/ 297 298 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr); 299 300 static void __storm_memset_dma_mapping(struct bnx2x *bp, 301 u32 addr, dma_addr_t mapping) 302 { 303 REG_WR(bp, addr, U64_LO(mapping)); 304 REG_WR(bp, addr + 4, U64_HI(mapping)); 305 } 306 307 static void storm_memset_spq_addr(struct bnx2x *bp, 308 dma_addr_t mapping, u16 abs_fid) 309 { 310 u32 addr = XSEM_REG_FAST_MEMORY + 311 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid); 312 313 __storm_memset_dma_mapping(bp, addr, mapping); 314 } 315 316 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid, 317 u16 pf_id) 318 { 319 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid), 320 pf_id); 321 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid), 322 pf_id); 323 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid), 324 pf_id); 325 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid), 326 pf_id); 327 } 328 329 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid, 330 u8 enable) 331 { 332 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid), 333 enable); 334 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid), 335 enable); 336 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid), 337 enable); 338 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid), 339 enable); 340 } 341 342 static void storm_memset_eq_data(struct bnx2x *bp, 343 struct event_ring_data *eq_data, 344 u16 pfid) 345 { 346 size_t size = sizeof(struct event_ring_data); 347 348 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid); 349 350 __storm_memset_struct(bp, addr, size, (u32 *)eq_data); 351 } 352 353 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod, 354 u16 pfid) 355 { 356 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid); 357 REG_WR16(bp, addr, eq_prod); 358 } 359 360 /* used only at init 361 * locking is done by mcp 362 */ 363 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val) 364 { 365 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); 366 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val); 367 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 368 PCICFG_VENDOR_ID_OFFSET); 369 } 370 371 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr) 372 { 373 u32 val; 374 375 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); 376 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val); 377 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 378 PCICFG_VENDOR_ID_OFFSET); 379 380 return val; 381 } 382 383 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]" 384 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]" 385 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]" 386 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]" 387 #define DMAE_DP_DST_NONE "dst_addr [none]" 388 389 static void bnx2x_dp_dmae(struct bnx2x *bp, 390 struct dmae_command *dmae, int msglvl) 391 { 392 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC; 393 int i; 394 395 switch (dmae->opcode & DMAE_COMMAND_DST) { 396 case DMAE_CMD_DST_PCI: 397 if (src_type == DMAE_CMD_SRC_PCI) 398 DP(msglvl, "DMAE: opcode 0x%08x\n" 399 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n" 400 "comp_addr [%x:%08x], comp_val 0x%08x\n", 401 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 402 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 403 dmae->comp_addr_hi, dmae->comp_addr_lo, 404 dmae->comp_val); 405 else 406 DP(msglvl, "DMAE: opcode 0x%08x\n" 407 "src [%08x], len [%d*4], dst [%x:%08x]\n" 408 "comp_addr [%x:%08x], comp_val 0x%08x\n", 409 dmae->opcode, dmae->src_addr_lo >> 2, 410 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 411 dmae->comp_addr_hi, dmae->comp_addr_lo, 412 dmae->comp_val); 413 break; 414 case DMAE_CMD_DST_GRC: 415 if (src_type == DMAE_CMD_SRC_PCI) 416 DP(msglvl, "DMAE: opcode 0x%08x\n" 417 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n" 418 "comp_addr [%x:%08x], comp_val 0x%08x\n", 419 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 420 dmae->len, dmae->dst_addr_lo >> 2, 421 dmae->comp_addr_hi, dmae->comp_addr_lo, 422 dmae->comp_val); 423 else 424 DP(msglvl, "DMAE: opcode 0x%08x\n" 425 "src [%08x], len [%d*4], dst [%08x]\n" 426 "comp_addr [%x:%08x], comp_val 0x%08x\n", 427 dmae->opcode, dmae->src_addr_lo >> 2, 428 dmae->len, dmae->dst_addr_lo >> 2, 429 dmae->comp_addr_hi, dmae->comp_addr_lo, 430 dmae->comp_val); 431 break; 432 default: 433 if (src_type == DMAE_CMD_SRC_PCI) 434 DP(msglvl, "DMAE: opcode 0x%08x\n" 435 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n" 436 "comp_addr [%x:%08x] comp_val 0x%08x\n", 437 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 438 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 439 dmae->comp_val); 440 else 441 DP(msglvl, "DMAE: opcode 0x%08x\n" 442 "src_addr [%08x] len [%d * 4] dst_addr [none]\n" 443 "comp_addr [%x:%08x] comp_val 0x%08x\n", 444 dmae->opcode, dmae->src_addr_lo >> 2, 445 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 446 dmae->comp_val); 447 break; 448 } 449 450 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) 451 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n", 452 i, *(((u32 *)dmae) + i)); 453 } 454 455 /* copy command into DMAE command memory and set DMAE command go */ 456 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx) 457 { 458 u32 cmd_offset; 459 int i; 460 461 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx); 462 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) { 463 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i)); 464 } 465 REG_WR(bp, dmae_reg_go_c[idx], 1); 466 } 467 468 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type) 469 { 470 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) | 471 DMAE_CMD_C_ENABLE); 472 } 473 474 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode) 475 { 476 return opcode & ~DMAE_CMD_SRC_RESET; 477 } 478 479 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type, 480 bool with_comp, u8 comp_type) 481 { 482 u32 opcode = 0; 483 484 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) | 485 (dst_type << DMAE_COMMAND_DST_SHIFT)); 486 487 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); 488 489 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 490 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) | 491 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT)); 492 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT); 493 494 #ifdef __BIG_ENDIAN 495 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 496 #else 497 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 498 #endif 499 if (with_comp) 500 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type); 501 return opcode; 502 } 503 504 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, 505 struct dmae_command *dmae, 506 u8 src_type, u8 dst_type) 507 { 508 memset(dmae, 0, sizeof(struct dmae_command)); 509 510 /* set the opcode */ 511 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type, 512 true, DMAE_COMP_PCI); 513 514 /* fill in the completion parameters */ 515 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp)); 516 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp)); 517 dmae->comp_val = DMAE_COMP_VAL; 518 } 519 520 /* issue a dmae command over the init-channel and wait for completion */ 521 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae, 522 u32 *comp) 523 { 524 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000; 525 int rc = 0; 526 527 bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE); 528 529 /* Lock the dmae channel. Disable BHs to prevent a dead-lock 530 * as long as this code is called both from syscall context and 531 * from ndo_set_rx_mode() flow that may be called from BH. 532 */ 533 534 spin_lock_bh(&bp->dmae_lock); 535 536 /* reset completion */ 537 *comp = 0; 538 539 /* post the command on the channel used for initializations */ 540 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp)); 541 542 /* wait for completion */ 543 udelay(5); 544 while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 545 546 if (!cnt || 547 (bp->recovery_state != BNX2X_RECOVERY_DONE && 548 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { 549 BNX2X_ERR("DMAE timeout!\n"); 550 rc = DMAE_TIMEOUT; 551 goto unlock; 552 } 553 cnt--; 554 udelay(50); 555 } 556 if (*comp & DMAE_PCI_ERR_FLAG) { 557 BNX2X_ERR("DMAE PCI error!\n"); 558 rc = DMAE_PCI_ERROR; 559 } 560 561 unlock: 562 563 spin_unlock_bh(&bp->dmae_lock); 564 565 return rc; 566 } 567 568 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr, 569 u32 len32) 570 { 571 int rc; 572 struct dmae_command dmae; 573 574 if (!bp->dmae_ready) { 575 u32 *data = bnx2x_sp(bp, wb_data[0]); 576 577 if (CHIP_IS_E1(bp)) 578 bnx2x_init_ind_wr(bp, dst_addr, data, len32); 579 else 580 bnx2x_init_str_wr(bp, dst_addr, data, len32); 581 return; 582 } 583 584 /* set opcode and fixed command fields */ 585 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 586 587 /* fill in addresses and len */ 588 dmae.src_addr_lo = U64_LO(dma_addr); 589 dmae.src_addr_hi = U64_HI(dma_addr); 590 dmae.dst_addr_lo = dst_addr >> 2; 591 dmae.dst_addr_hi = 0; 592 dmae.len = len32; 593 594 /* issue the command and wait for completion */ 595 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp)); 596 if (rc) { 597 BNX2X_ERR("DMAE returned failure %d\n", rc); 598 #ifdef BNX2X_STOP_ON_ERROR 599 bnx2x_panic(); 600 #endif 601 } 602 } 603 604 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32) 605 { 606 int rc; 607 struct dmae_command dmae; 608 609 if (!bp->dmae_ready) { 610 u32 *data = bnx2x_sp(bp, wb_data[0]); 611 int i; 612 613 if (CHIP_IS_E1(bp)) 614 for (i = 0; i < len32; i++) 615 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4); 616 else 617 for (i = 0; i < len32; i++) 618 data[i] = REG_RD(bp, src_addr + i*4); 619 620 return; 621 } 622 623 /* set opcode and fixed command fields */ 624 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 625 626 /* fill in addresses and len */ 627 dmae.src_addr_lo = src_addr >> 2; 628 dmae.src_addr_hi = 0; 629 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data)); 630 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data)); 631 dmae.len = len32; 632 633 /* issue the command and wait for completion */ 634 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp)); 635 if (rc) { 636 BNX2X_ERR("DMAE returned failure %d\n", rc); 637 #ifdef BNX2X_STOP_ON_ERROR 638 bnx2x_panic(); 639 #endif 640 } 641 } 642 643 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr, 644 u32 addr, u32 len) 645 { 646 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp); 647 int offset = 0; 648 649 while (len > dmae_wr_max) { 650 bnx2x_write_dmae(bp, phys_addr + offset, 651 addr + offset, dmae_wr_max); 652 offset += dmae_wr_max * 4; 653 len -= dmae_wr_max; 654 } 655 656 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len); 657 } 658 659 enum storms { 660 XSTORM, 661 TSTORM, 662 CSTORM, 663 USTORM, 664 MAX_STORMS 665 }; 666 667 #define STORMS_NUM 4 668 #define REGS_IN_ENTRY 4 669 670 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp, 671 enum storms storm, 672 int entry) 673 { 674 switch (storm) { 675 case XSTORM: 676 return XSTORM_ASSERT_LIST_OFFSET(entry); 677 case TSTORM: 678 return TSTORM_ASSERT_LIST_OFFSET(entry); 679 case CSTORM: 680 return CSTORM_ASSERT_LIST_OFFSET(entry); 681 case USTORM: 682 return USTORM_ASSERT_LIST_OFFSET(entry); 683 case MAX_STORMS: 684 default: 685 BNX2X_ERR("unknown storm\n"); 686 } 687 return -EINVAL; 688 } 689 690 static int bnx2x_mc_assert(struct bnx2x *bp) 691 { 692 char last_idx; 693 int i, j, rc = 0; 694 enum storms storm; 695 u32 regs[REGS_IN_ENTRY]; 696 u32 bar_storm_intmem[STORMS_NUM] = { 697 BAR_XSTRORM_INTMEM, 698 BAR_TSTRORM_INTMEM, 699 BAR_CSTRORM_INTMEM, 700 BAR_USTRORM_INTMEM 701 }; 702 u32 storm_assert_list_index[STORMS_NUM] = { 703 XSTORM_ASSERT_LIST_INDEX_OFFSET, 704 TSTORM_ASSERT_LIST_INDEX_OFFSET, 705 CSTORM_ASSERT_LIST_INDEX_OFFSET, 706 USTORM_ASSERT_LIST_INDEX_OFFSET 707 }; 708 char *storms_string[STORMS_NUM] = { 709 "XSTORM", 710 "TSTORM", 711 "CSTORM", 712 "USTORM" 713 }; 714 715 for (storm = XSTORM; storm < MAX_STORMS; storm++) { 716 last_idx = REG_RD8(bp, bar_storm_intmem[storm] + 717 storm_assert_list_index[storm]); 718 if (last_idx) 719 BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n", 720 storms_string[storm], last_idx); 721 722 /* print the asserts */ 723 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { 724 /* read a single assert entry */ 725 for (j = 0; j < REGS_IN_ENTRY; j++) 726 regs[j] = REG_RD(bp, bar_storm_intmem[storm] + 727 bnx2x_get_assert_list_entry(bp, 728 storm, 729 i) + 730 sizeof(u32) * j); 731 732 /* log entry if it contains a valid assert */ 733 if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) { 734 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 735 storms_string[storm], i, regs[3], 736 regs[2], regs[1], regs[0]); 737 rc++; 738 } else { 739 break; 740 } 741 } 742 } 743 744 BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n", 745 CHIP_IS_E1(bp) ? "everest1" : 746 CHIP_IS_E1H(bp) ? "everest1h" : 747 CHIP_IS_E2(bp) ? "everest2" : "everest3", 748 BCM_5710_FW_MAJOR_VERSION, 749 BCM_5710_FW_MINOR_VERSION, 750 BCM_5710_FW_REVISION_VERSION); 751 752 return rc; 753 } 754 755 #define MCPR_TRACE_BUFFER_SIZE (0x800) 756 #define SCRATCH_BUFFER_SIZE(bp) \ 757 (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000)) 758 759 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl) 760 { 761 u32 addr, val; 762 u32 mark, offset; 763 __be32 data[9]; 764 int word; 765 u32 trace_shmem_base; 766 if (BP_NOMCP(bp)) { 767 BNX2X_ERR("NO MCP - can not dump\n"); 768 return; 769 } 770 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n", 771 (bp->common.bc_ver & 0xff0000) >> 16, 772 (bp->common.bc_ver & 0xff00) >> 8, 773 (bp->common.bc_ver & 0xff)); 774 775 if (pci_channel_offline(bp->pdev)) { 776 BNX2X_ERR("Cannot dump MCP info while in PCI error\n"); 777 return; 778 } 779 780 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER); 781 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER)) 782 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val); 783 784 if (BP_PATH(bp) == 0) 785 trace_shmem_base = bp->common.shmem_base; 786 else 787 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr); 788 789 /* sanity */ 790 if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE || 791 trace_shmem_base >= MCPR_SCRATCH_BASE(bp) + 792 SCRATCH_BUFFER_SIZE(bp)) { 793 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n", 794 trace_shmem_base); 795 return; 796 } 797 798 addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE; 799 800 /* validate TRCB signature */ 801 mark = REG_RD(bp, addr); 802 if (mark != MFW_TRACE_SIGNATURE) { 803 BNX2X_ERR("Trace buffer signature is missing."); 804 return ; 805 } 806 807 /* read cyclic buffer pointer */ 808 addr += 4; 809 mark = REG_RD(bp, addr); 810 mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000; 811 if (mark >= trace_shmem_base || mark < addr + 4) { 812 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n"); 813 return; 814 } 815 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark); 816 817 printk("%s", lvl); 818 819 /* dump buffer after the mark */ 820 for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) { 821 for (word = 0; word < 8; word++) 822 data[word] = htonl(REG_RD(bp, offset + 4*word)); 823 data[8] = 0x0; 824 pr_cont("%s", (char *)data); 825 } 826 827 /* dump buffer before the mark */ 828 for (offset = addr + 4; offset <= mark; offset += 0x8*4) { 829 for (word = 0; word < 8; word++) 830 data[word] = htonl(REG_RD(bp, offset + 4*word)); 831 data[8] = 0x0; 832 pr_cont("%s", (char *)data); 833 } 834 printk("%s" "end of fw dump\n", lvl); 835 } 836 837 static void bnx2x_fw_dump(struct bnx2x *bp) 838 { 839 bnx2x_fw_dump_lvl(bp, KERN_ERR); 840 } 841 842 static void bnx2x_hc_int_disable(struct bnx2x *bp) 843 { 844 int port = BP_PORT(bp); 845 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 846 u32 val = REG_RD(bp, addr); 847 848 /* in E1 we must use only PCI configuration space to disable 849 * MSI/MSIX capability 850 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block 851 */ 852 if (CHIP_IS_E1(bp)) { 853 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on 854 * Use mask register to prevent from HC sending interrupts 855 * after we exit the function 856 */ 857 REG_WR(bp, HC_REG_INT_MASK + port*4, 0); 858 859 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 860 HC_CONFIG_0_REG_INT_LINE_EN_0 | 861 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 862 } else 863 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 864 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 865 HC_CONFIG_0_REG_INT_LINE_EN_0 | 866 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 867 868 DP(NETIF_MSG_IFDOWN, 869 "write %x to HC %d (addr 0x%x)\n", 870 val, port, addr); 871 872 REG_WR(bp, addr, val); 873 if (REG_RD(bp, addr) != val) 874 BNX2X_ERR("BUG! Proper val not read from IGU!\n"); 875 } 876 877 static void bnx2x_igu_int_disable(struct bnx2x *bp) 878 { 879 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 880 881 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 882 IGU_PF_CONF_INT_LINE_EN | 883 IGU_PF_CONF_ATTN_BIT_EN); 884 885 DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val); 886 887 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 888 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val) 889 BNX2X_ERR("BUG! Proper val not read from IGU!\n"); 890 } 891 892 static void bnx2x_int_disable(struct bnx2x *bp) 893 { 894 if (bp->common.int_block == INT_BLOCK_HC) 895 bnx2x_hc_int_disable(bp); 896 else 897 bnx2x_igu_int_disable(bp); 898 } 899 900 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int) 901 { 902 int i; 903 u16 j; 904 struct hc_sp_status_block_data sp_sb_data; 905 int func = BP_FUNC(bp); 906 #ifdef BNX2X_STOP_ON_ERROR 907 u16 start = 0, end = 0; 908 u8 cos; 909 #endif 910 if (IS_PF(bp) && disable_int) 911 bnx2x_int_disable(bp); 912 913 bp->stats_state = STATS_STATE_DISABLED; 914 bp->eth_stats.unrecoverable_error++; 915 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n"); 916 917 BNX2X_ERR("begin crash dump -----------------\n"); 918 919 /* Indices */ 920 /* Common */ 921 if (IS_PF(bp)) { 922 struct host_sp_status_block *def_sb = bp->def_status_blk; 923 int data_size, cstorm_offset; 924 925 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n", 926 bp->def_idx, bp->def_att_idx, bp->attn_state, 927 bp->spq_prod_idx, bp->stats_counter); 928 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n", 929 def_sb->atten_status_block.attn_bits, 930 def_sb->atten_status_block.attn_bits_ack, 931 def_sb->atten_status_block.status_block_id, 932 def_sb->atten_status_block.attn_bits_index); 933 BNX2X_ERR(" def ("); 934 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++) 935 pr_cont("0x%x%s", 936 def_sb->sp_sb.index_values[i], 937 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " "); 938 939 data_size = sizeof(struct hc_sp_status_block_data) / 940 sizeof(u32); 941 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func); 942 for (i = 0; i < data_size; i++) 943 *((u32 *)&sp_sb_data + i) = 944 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset + 945 i * sizeof(u32)); 946 947 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n", 948 sp_sb_data.igu_sb_id, 949 sp_sb_data.igu_seg_id, 950 sp_sb_data.p_func.pf_id, 951 sp_sb_data.p_func.vnic_id, 952 sp_sb_data.p_func.vf_id, 953 sp_sb_data.p_func.vf_valid, 954 sp_sb_data.state); 955 } 956 957 for_each_eth_queue(bp, i) { 958 struct bnx2x_fastpath *fp = &bp->fp[i]; 959 int loop; 960 struct hc_status_block_data_e2 sb_data_e2; 961 struct hc_status_block_data_e1x sb_data_e1x; 962 struct hc_status_block_sm *hc_sm_p = 963 CHIP_IS_E1x(bp) ? 964 sb_data_e1x.common.state_machine : 965 sb_data_e2.common.state_machine; 966 struct hc_index_data *hc_index_p = 967 CHIP_IS_E1x(bp) ? 968 sb_data_e1x.index_data : 969 sb_data_e2.index_data; 970 u8 data_size, cos; 971 u32 *sb_data_p; 972 struct bnx2x_fp_txdata txdata; 973 974 if (!bp->fp) 975 break; 976 977 if (!fp->rx_cons_sb) 978 continue; 979 980 /* Rx */ 981 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n", 982 i, fp->rx_bd_prod, fp->rx_bd_cons, 983 fp->rx_comp_prod, 984 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb)); 985 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n", 986 fp->rx_sge_prod, fp->last_max_sge, 987 le16_to_cpu(fp->fp_hc_idx)); 988 989 /* Tx */ 990 for_each_cos_in_tx_queue(fp, cos) 991 { 992 if (!fp->txdata_ptr[cos]) 993 break; 994 995 txdata = *fp->txdata_ptr[cos]; 996 997 if (!txdata.tx_cons_sb) 998 continue; 999 1000 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n", 1001 i, txdata.tx_pkt_prod, 1002 txdata.tx_pkt_cons, txdata.tx_bd_prod, 1003 txdata.tx_bd_cons, 1004 le16_to_cpu(*txdata.tx_cons_sb)); 1005 } 1006 1007 loop = CHIP_IS_E1x(bp) ? 1008 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2; 1009 1010 /* host sb data */ 1011 1012 if (IS_FCOE_FP(fp)) 1013 continue; 1014 1015 BNX2X_ERR(" run indexes ("); 1016 for (j = 0; j < HC_SB_MAX_SM; j++) 1017 pr_cont("0x%x%s", 1018 fp->sb_running_index[j], 1019 (j == HC_SB_MAX_SM - 1) ? ")" : " "); 1020 1021 BNX2X_ERR(" indexes ("); 1022 for (j = 0; j < loop; j++) 1023 pr_cont("0x%x%s", 1024 fp->sb_index_values[j], 1025 (j == loop - 1) ? ")" : " "); 1026 1027 /* VF cannot access FW refelection for status block */ 1028 if (IS_VF(bp)) 1029 continue; 1030 1031 /* fw sb data */ 1032 data_size = CHIP_IS_E1x(bp) ? 1033 sizeof(struct hc_status_block_data_e1x) : 1034 sizeof(struct hc_status_block_data_e2); 1035 data_size /= sizeof(u32); 1036 sb_data_p = CHIP_IS_E1x(bp) ? 1037 (u32 *)&sb_data_e1x : 1038 (u32 *)&sb_data_e2; 1039 /* copy sb data in here */ 1040 for (j = 0; j < data_size; j++) 1041 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM + 1042 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) + 1043 j * sizeof(u32)); 1044 1045 if (!CHIP_IS_E1x(bp)) { 1046 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n", 1047 sb_data_e2.common.p_func.pf_id, 1048 sb_data_e2.common.p_func.vf_id, 1049 sb_data_e2.common.p_func.vf_valid, 1050 sb_data_e2.common.p_func.vnic_id, 1051 sb_data_e2.common.same_igu_sb_1b, 1052 sb_data_e2.common.state); 1053 } else { 1054 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n", 1055 sb_data_e1x.common.p_func.pf_id, 1056 sb_data_e1x.common.p_func.vf_id, 1057 sb_data_e1x.common.p_func.vf_valid, 1058 sb_data_e1x.common.p_func.vnic_id, 1059 sb_data_e1x.common.same_igu_sb_1b, 1060 sb_data_e1x.common.state); 1061 } 1062 1063 /* SB_SMs data */ 1064 for (j = 0; j < HC_SB_MAX_SM; j++) { 1065 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n", 1066 j, hc_sm_p[j].__flags, 1067 hc_sm_p[j].igu_sb_id, 1068 hc_sm_p[j].igu_seg_id, 1069 hc_sm_p[j].time_to_expire, 1070 hc_sm_p[j].timer_value); 1071 } 1072 1073 /* Indices data */ 1074 for (j = 0; j < loop; j++) { 1075 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j, 1076 hc_index_p[j].flags, 1077 hc_index_p[j].timeout); 1078 } 1079 } 1080 1081 #ifdef BNX2X_STOP_ON_ERROR 1082 if (IS_PF(bp)) { 1083 /* event queue */ 1084 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod); 1085 for (i = 0; i < NUM_EQ_DESC; i++) { 1086 u32 *data = (u32 *)&bp->eq_ring[i].message.data; 1087 1088 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n", 1089 i, bp->eq_ring[i].message.opcode, 1090 bp->eq_ring[i].message.error); 1091 BNX2X_ERR("data: %x %x %x\n", 1092 data[0], data[1], data[2]); 1093 } 1094 } 1095 1096 /* Rings */ 1097 /* Rx */ 1098 for_each_valid_rx_queue(bp, i) { 1099 struct bnx2x_fastpath *fp = &bp->fp[i]; 1100 1101 if (!bp->fp) 1102 break; 1103 1104 if (!fp->rx_cons_sb) 1105 continue; 1106 1107 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10); 1108 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503); 1109 for (j = start; j != end; j = RX_BD(j + 1)) { 1110 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j]; 1111 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j]; 1112 1113 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n", 1114 i, j, rx_bd[1], rx_bd[0], sw_bd->data); 1115 } 1116 1117 start = RX_SGE(fp->rx_sge_prod); 1118 end = RX_SGE(fp->last_max_sge); 1119 for (j = start; j != end; j = RX_SGE(j + 1)) { 1120 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j]; 1121 struct sw_rx_page *sw_page = &fp->rx_page_ring[j]; 1122 1123 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n", 1124 i, j, rx_sge[1], rx_sge[0], sw_page->page); 1125 } 1126 1127 start = RCQ_BD(fp->rx_comp_cons - 10); 1128 end = RCQ_BD(fp->rx_comp_cons + 503); 1129 for (j = start; j != end; j = RCQ_BD(j + 1)) { 1130 u32 *cqe = (u32 *)&fp->rx_comp_ring[j]; 1131 1132 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n", 1133 i, j, cqe[0], cqe[1], cqe[2], cqe[3]); 1134 } 1135 } 1136 1137 /* Tx */ 1138 for_each_valid_tx_queue(bp, i) { 1139 struct bnx2x_fastpath *fp = &bp->fp[i]; 1140 1141 if (!bp->fp) 1142 break; 1143 1144 for_each_cos_in_tx_queue(fp, cos) { 1145 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 1146 1147 if (!fp->txdata_ptr[cos]) 1148 break; 1149 1150 if (!txdata->tx_cons_sb) 1151 continue; 1152 1153 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10); 1154 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245); 1155 for (j = start; j != end; j = TX_BD(j + 1)) { 1156 struct sw_tx_bd *sw_bd = 1157 &txdata->tx_buf_ring[j]; 1158 1159 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n", 1160 i, cos, j, sw_bd->skb, 1161 sw_bd->first_bd); 1162 } 1163 1164 start = TX_BD(txdata->tx_bd_cons - 10); 1165 end = TX_BD(txdata->tx_bd_cons + 254); 1166 for (j = start; j != end; j = TX_BD(j + 1)) { 1167 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j]; 1168 1169 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n", 1170 i, cos, j, tx_bd[0], tx_bd[1], 1171 tx_bd[2], tx_bd[3]); 1172 } 1173 } 1174 } 1175 #endif 1176 if (IS_PF(bp)) { 1177 bnx2x_fw_dump(bp); 1178 bnx2x_mc_assert(bp); 1179 } 1180 BNX2X_ERR("end crash dump -----------------\n"); 1181 } 1182 1183 /* 1184 * FLR Support for E2 1185 * 1186 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW 1187 * initialization. 1188 */ 1189 #define FLR_WAIT_USEC 10000 /* 10 milliseconds */ 1190 #define FLR_WAIT_INTERVAL 50 /* usec */ 1191 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */ 1192 1193 struct pbf_pN_buf_regs { 1194 int pN; 1195 u32 init_crd; 1196 u32 crd; 1197 u32 crd_freed; 1198 }; 1199 1200 struct pbf_pN_cmd_regs { 1201 int pN; 1202 u32 lines_occup; 1203 u32 lines_freed; 1204 }; 1205 1206 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp, 1207 struct pbf_pN_buf_regs *regs, 1208 u32 poll_count) 1209 { 1210 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start; 1211 u32 cur_cnt = poll_count; 1212 1213 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed); 1214 crd = crd_start = REG_RD(bp, regs->crd); 1215 init_crd = REG_RD(bp, regs->init_crd); 1216 1217 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 1218 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd); 1219 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 1220 1221 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) < 1222 (init_crd - crd_start))) { 1223 if (cur_cnt--) { 1224 udelay(FLR_WAIT_INTERVAL); 1225 crd = REG_RD(bp, regs->crd); 1226 crd_freed = REG_RD(bp, regs->crd_freed); 1227 } else { 1228 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n", 1229 regs->pN); 1230 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n", 1231 regs->pN, crd); 1232 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n", 1233 regs->pN, crd_freed); 1234 break; 1235 } 1236 } 1237 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n", 1238 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 1239 } 1240 1241 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp, 1242 struct pbf_pN_cmd_regs *regs, 1243 u32 poll_count) 1244 { 1245 u32 occup, to_free, freed, freed_start; 1246 u32 cur_cnt = poll_count; 1247 1248 occup = to_free = REG_RD(bp, regs->lines_occup); 1249 freed = freed_start = REG_RD(bp, regs->lines_freed); 1250 1251 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 1252 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 1253 1254 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) { 1255 if (cur_cnt--) { 1256 udelay(FLR_WAIT_INTERVAL); 1257 occup = REG_RD(bp, regs->lines_occup); 1258 freed = REG_RD(bp, regs->lines_freed); 1259 } else { 1260 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n", 1261 regs->pN); 1262 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", 1263 regs->pN, occup); 1264 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", 1265 regs->pN, freed); 1266 break; 1267 } 1268 } 1269 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n", 1270 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 1271 } 1272 1273 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg, 1274 u32 expected, u32 poll_count) 1275 { 1276 u32 cur_cnt = poll_count; 1277 u32 val; 1278 1279 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--) 1280 udelay(FLR_WAIT_INTERVAL); 1281 1282 return val; 1283 } 1284 1285 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg, 1286 char *msg, u32 poll_cnt) 1287 { 1288 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt); 1289 if (val != 0) { 1290 BNX2X_ERR("%s usage count=%d\n", msg, val); 1291 return 1; 1292 } 1293 return 0; 1294 } 1295 1296 /* Common routines with VF FLR cleanup */ 1297 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp) 1298 { 1299 /* adjust polling timeout */ 1300 if (CHIP_REV_IS_EMUL(bp)) 1301 return FLR_POLL_CNT * 2000; 1302 1303 if (CHIP_REV_IS_FPGA(bp)) 1304 return FLR_POLL_CNT * 120; 1305 1306 return FLR_POLL_CNT; 1307 } 1308 1309 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count) 1310 { 1311 struct pbf_pN_cmd_regs cmd_regs[] = { 1312 {0, (CHIP_IS_E3B0(bp)) ? 1313 PBF_REG_TQ_OCCUPANCY_Q0 : 1314 PBF_REG_P0_TQ_OCCUPANCY, 1315 (CHIP_IS_E3B0(bp)) ? 1316 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 1317 PBF_REG_P0_TQ_LINES_FREED_CNT}, 1318 {1, (CHIP_IS_E3B0(bp)) ? 1319 PBF_REG_TQ_OCCUPANCY_Q1 : 1320 PBF_REG_P1_TQ_OCCUPANCY, 1321 (CHIP_IS_E3B0(bp)) ? 1322 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 1323 PBF_REG_P1_TQ_LINES_FREED_CNT}, 1324 {4, (CHIP_IS_E3B0(bp)) ? 1325 PBF_REG_TQ_OCCUPANCY_LB_Q : 1326 PBF_REG_P4_TQ_OCCUPANCY, 1327 (CHIP_IS_E3B0(bp)) ? 1328 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 1329 PBF_REG_P4_TQ_LINES_FREED_CNT} 1330 }; 1331 1332 struct pbf_pN_buf_regs buf_regs[] = { 1333 {0, (CHIP_IS_E3B0(bp)) ? 1334 PBF_REG_INIT_CRD_Q0 : 1335 PBF_REG_P0_INIT_CRD , 1336 (CHIP_IS_E3B0(bp)) ? 1337 PBF_REG_CREDIT_Q0 : 1338 PBF_REG_P0_CREDIT, 1339 (CHIP_IS_E3B0(bp)) ? 1340 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 1341 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 1342 {1, (CHIP_IS_E3B0(bp)) ? 1343 PBF_REG_INIT_CRD_Q1 : 1344 PBF_REG_P1_INIT_CRD, 1345 (CHIP_IS_E3B0(bp)) ? 1346 PBF_REG_CREDIT_Q1 : 1347 PBF_REG_P1_CREDIT, 1348 (CHIP_IS_E3B0(bp)) ? 1349 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 1350 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 1351 {4, (CHIP_IS_E3B0(bp)) ? 1352 PBF_REG_INIT_CRD_LB_Q : 1353 PBF_REG_P4_INIT_CRD, 1354 (CHIP_IS_E3B0(bp)) ? 1355 PBF_REG_CREDIT_LB_Q : 1356 PBF_REG_P4_CREDIT, 1357 (CHIP_IS_E3B0(bp)) ? 1358 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 1359 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 1360 }; 1361 1362 int i; 1363 1364 /* Verify the command queues are flushed P0, P1, P4 */ 1365 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) 1366 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count); 1367 1368 /* Verify the transmission buffers are flushed P0, P1, P4 */ 1369 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) 1370 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count); 1371 } 1372 1373 #define OP_GEN_PARAM(param) \ 1374 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 1375 1376 #define OP_GEN_TYPE(type) \ 1377 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 1378 1379 #define OP_GEN_AGG_VECT(index) \ 1380 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 1381 1382 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt) 1383 { 1384 u32 op_gen_command = 0; 1385 u32 comp_addr = BAR_CSTRORM_INTMEM + 1386 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func); 1387 int ret = 0; 1388 1389 if (REG_RD(bp, comp_addr)) { 1390 BNX2X_ERR("Cleanup complete was not 0 before sending\n"); 1391 return 1; 1392 } 1393 1394 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 1395 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 1396 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 1397 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 1398 1399 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n"); 1400 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command); 1401 1402 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) { 1403 BNX2X_ERR("FW final cleanup did not succeed\n"); 1404 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n", 1405 (REG_RD(bp, comp_addr))); 1406 bnx2x_panic(); 1407 return 1; 1408 } 1409 /* Zero completion for next FLR */ 1410 REG_WR(bp, comp_addr, 0); 1411 1412 return ret; 1413 } 1414 1415 u8 bnx2x_is_pcie_pending(struct pci_dev *dev) 1416 { 1417 u16 status; 1418 1419 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status); 1420 return status & PCI_EXP_DEVSTA_TRPND; 1421 } 1422 1423 /* PF FLR specific routines 1424 */ 1425 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt) 1426 { 1427 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 1428 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1429 CFC_REG_NUM_LCIDS_INSIDE_PF, 1430 "CFC PF usage counter timed out", 1431 poll_cnt)) 1432 return 1; 1433 1434 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 1435 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1436 DORQ_REG_PF_USAGE_CNT, 1437 "DQ PF usage counter timed out", 1438 poll_cnt)) 1439 return 1; 1440 1441 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 1442 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1443 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp), 1444 "QM PF usage counter timed out", 1445 poll_cnt)) 1446 return 1; 1447 1448 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 1449 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1450 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp), 1451 "Timers VNIC usage counter timed out", 1452 poll_cnt)) 1453 return 1; 1454 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1455 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp), 1456 "Timers NUM_SCANS usage counter timed out", 1457 poll_cnt)) 1458 return 1; 1459 1460 /* Wait DMAE PF usage counter to zero */ 1461 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1462 dmae_reg_go_c[INIT_DMAE_C(bp)], 1463 "DMAE command register timed out", 1464 poll_cnt)) 1465 return 1; 1466 1467 return 0; 1468 } 1469 1470 static void bnx2x_hw_enable_status(struct bnx2x *bp) 1471 { 1472 u32 val; 1473 1474 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF); 1475 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 1476 1477 val = REG_RD(bp, PBF_REG_DISABLE_PF); 1478 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val); 1479 1480 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN); 1481 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 1482 1483 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN); 1484 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 1485 1486 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 1487 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 1488 1489 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 1490 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 1491 1492 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 1493 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 1494 1495 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 1496 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", 1497 val); 1498 } 1499 1500 static int bnx2x_pf_flr_clnup(struct bnx2x *bp) 1501 { 1502 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp); 1503 1504 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp)); 1505 1506 /* Re-enable PF target read access */ 1507 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 1508 1509 /* Poll HW usage counters */ 1510 DP(BNX2X_MSG_SP, "Polling usage counters\n"); 1511 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt)) 1512 return -EBUSY; 1513 1514 /* Zero the igu 'trailing edge' and 'leading edge' */ 1515 1516 /* Send the FW cleanup command */ 1517 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt)) 1518 return -EBUSY; 1519 1520 /* ATC cleanup */ 1521 1522 /* Verify TX hw is flushed */ 1523 bnx2x_tx_hw_flushed(bp, poll_cnt); 1524 1525 /* Wait 100ms (not adjusted according to platform) */ 1526 msleep(100); 1527 1528 /* Verify no pending pci transactions */ 1529 if (bnx2x_is_pcie_pending(bp->pdev)) 1530 BNX2X_ERR("PCIE Transactions still pending\n"); 1531 1532 /* Debug */ 1533 bnx2x_hw_enable_status(bp); 1534 1535 /* 1536 * Master enable - Due to WB DMAE writes performed before this 1537 * register is re-initialized as part of the regular function init 1538 */ 1539 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 1540 1541 return 0; 1542 } 1543 1544 static void bnx2x_hc_int_enable(struct bnx2x *bp) 1545 { 1546 int port = BP_PORT(bp); 1547 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 1548 u32 val = REG_RD(bp, addr); 1549 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; 1550 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; 1551 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; 1552 1553 if (msix) { 1554 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1555 HC_CONFIG_0_REG_INT_LINE_EN_0); 1556 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1557 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1558 if (single_msix) 1559 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 1560 } else if (msi) { 1561 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 1562 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1563 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1564 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1565 } else { 1566 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1567 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1568 HC_CONFIG_0_REG_INT_LINE_EN_0 | 1569 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1570 1571 if (!CHIP_IS_E1(bp)) { 1572 DP(NETIF_MSG_IFUP, 1573 "write %x to HC %d (addr 0x%x)\n", val, port, addr); 1574 1575 REG_WR(bp, addr, val); 1576 1577 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 1578 } 1579 } 1580 1581 if (CHIP_IS_E1(bp)) 1582 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF); 1583 1584 DP(NETIF_MSG_IFUP, 1585 "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr, 1586 (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); 1587 1588 REG_WR(bp, addr, val); 1589 /* 1590 * Ensure that HC_CONFIG is written before leading/trailing edge config 1591 */ 1592 barrier(); 1593 1594 if (!CHIP_IS_E1(bp)) { 1595 /* init leading/trailing edge */ 1596 if (IS_MF(bp)) { 1597 val = (0xee0f | (1 << (BP_VN(bp) + 4))); 1598 if (bp->port.pmf) 1599 /* enable nig and gpio3 attention */ 1600 val |= 0x1100; 1601 } else 1602 val = 0xffff; 1603 1604 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); 1605 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); 1606 } 1607 } 1608 1609 static void bnx2x_igu_int_enable(struct bnx2x *bp) 1610 { 1611 u32 val; 1612 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; 1613 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; 1614 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; 1615 1616 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 1617 1618 if (msix) { 1619 val &= ~(IGU_PF_CONF_INT_LINE_EN | 1620 IGU_PF_CONF_SINGLE_ISR_EN); 1621 val |= (IGU_PF_CONF_MSI_MSIX_EN | 1622 IGU_PF_CONF_ATTN_BIT_EN); 1623 1624 if (single_msix) 1625 val |= IGU_PF_CONF_SINGLE_ISR_EN; 1626 } else if (msi) { 1627 val &= ~IGU_PF_CONF_INT_LINE_EN; 1628 val |= (IGU_PF_CONF_MSI_MSIX_EN | 1629 IGU_PF_CONF_ATTN_BIT_EN | 1630 IGU_PF_CONF_SINGLE_ISR_EN); 1631 } else { 1632 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 1633 val |= (IGU_PF_CONF_INT_LINE_EN | 1634 IGU_PF_CONF_ATTN_BIT_EN | 1635 IGU_PF_CONF_SINGLE_ISR_EN); 1636 } 1637 1638 /* Clean previous status - need to configure igu prior to ack*/ 1639 if ((!msix) || single_msix) { 1640 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 1641 bnx2x_ack_int(bp); 1642 } 1643 1644 val |= IGU_PF_CONF_FUNC_EN; 1645 1646 DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n", 1647 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); 1648 1649 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 1650 1651 if (val & IGU_PF_CONF_INT_LINE_EN) 1652 pci_intx(bp->pdev, true); 1653 1654 barrier(); 1655 1656 /* init leading/trailing edge */ 1657 if (IS_MF(bp)) { 1658 val = (0xee0f | (1 << (BP_VN(bp) + 4))); 1659 if (bp->port.pmf) 1660 /* enable nig and gpio3 attention */ 1661 val |= 0x1100; 1662 } else 1663 val = 0xffff; 1664 1665 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); 1666 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); 1667 } 1668 1669 void bnx2x_int_enable(struct bnx2x *bp) 1670 { 1671 if (bp->common.int_block == INT_BLOCK_HC) 1672 bnx2x_hc_int_enable(bp); 1673 else 1674 bnx2x_igu_int_enable(bp); 1675 } 1676 1677 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw) 1678 { 1679 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; 1680 int i, offset; 1681 1682 if (disable_hw) 1683 /* prevent the HW from sending interrupts */ 1684 bnx2x_int_disable(bp); 1685 1686 /* make sure all ISRs are done */ 1687 if (msix) { 1688 synchronize_irq(bp->msix_table[0].vector); 1689 offset = 1; 1690 if (CNIC_SUPPORT(bp)) 1691 offset++; 1692 for_each_eth_queue(bp, i) 1693 synchronize_irq(bp->msix_table[offset++].vector); 1694 } else 1695 synchronize_irq(bp->pdev->irq); 1696 1697 /* make sure sp_task is not running */ 1698 cancel_delayed_work(&bp->sp_task); 1699 cancel_delayed_work(&bp->period_task); 1700 flush_workqueue(bnx2x_wq); 1701 } 1702 1703 /* fast path */ 1704 1705 /* 1706 * General service functions 1707 */ 1708 1709 /* Return true if succeeded to acquire the lock */ 1710 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource) 1711 { 1712 u32 lock_status; 1713 u32 resource_bit = (1 << resource); 1714 int func = BP_FUNC(bp); 1715 u32 hw_lock_control_reg; 1716 1717 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1718 "Trying to take a lock on resource %d\n", resource); 1719 1720 /* Validating that the resource is within range */ 1721 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1722 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1723 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 1724 resource, HW_LOCK_MAX_RESOURCE_VALUE); 1725 return false; 1726 } 1727 1728 if (func <= 5) 1729 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 1730 else 1731 hw_lock_control_reg = 1732 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 1733 1734 /* Try to acquire the lock */ 1735 REG_WR(bp, hw_lock_control_reg + 4, resource_bit); 1736 lock_status = REG_RD(bp, hw_lock_control_reg); 1737 if (lock_status & resource_bit) 1738 return true; 1739 1740 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1741 "Failed to get a lock on resource %d\n", resource); 1742 return false; 1743 } 1744 1745 /** 1746 * bnx2x_get_leader_lock_resource - get the recovery leader resource id 1747 * 1748 * @bp: driver handle 1749 * 1750 * Returns the recovery leader resource id according to the engine this function 1751 * belongs to. Currently only only 2 engines is supported. 1752 */ 1753 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp) 1754 { 1755 if (BP_PATH(bp)) 1756 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1; 1757 else 1758 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0; 1759 } 1760 1761 /** 1762 * bnx2x_trylock_leader_lock- try to acquire a leader lock. 1763 * 1764 * @bp: driver handle 1765 * 1766 * Tries to acquire a leader lock for current engine. 1767 */ 1768 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp) 1769 { 1770 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); 1771 } 1772 1773 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err); 1774 1775 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */ 1776 static int bnx2x_schedule_sp_task(struct bnx2x *bp) 1777 { 1778 /* Set the interrupt occurred bit for the sp-task to recognize it 1779 * must ack the interrupt and transition according to the IGU 1780 * state machine. 1781 */ 1782 atomic_set(&bp->interrupt_occurred, 1); 1783 1784 /* The sp_task must execute only after this bit 1785 * is set, otherwise we will get out of sync and miss all 1786 * further interrupts. Hence, the barrier. 1787 */ 1788 smp_wmb(); 1789 1790 /* schedule sp_task to workqueue */ 1791 return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0); 1792 } 1793 1794 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe) 1795 { 1796 struct bnx2x *bp = fp->bp; 1797 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 1798 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 1799 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX; 1800 struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 1801 1802 DP(BNX2X_MSG_SP, 1803 "fp %d cid %d got ramrod #%d state is %x type is %d\n", 1804 fp->index, cid, command, bp->state, 1805 rr_cqe->ramrod_cqe.ramrod_type); 1806 1807 /* If cid is within VF range, replace the slowpath object with the 1808 * one corresponding to this VF 1809 */ 1810 if (cid >= BNX2X_FIRST_VF_CID && 1811 cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS) 1812 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj); 1813 1814 switch (command) { 1815 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 1816 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid); 1817 drv_cmd = BNX2X_Q_CMD_UPDATE; 1818 break; 1819 1820 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 1821 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid); 1822 drv_cmd = BNX2X_Q_CMD_SETUP; 1823 break; 1824 1825 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 1826 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 1827 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; 1828 break; 1829 1830 case (RAMROD_CMD_ID_ETH_HALT): 1831 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid); 1832 drv_cmd = BNX2X_Q_CMD_HALT; 1833 break; 1834 1835 case (RAMROD_CMD_ID_ETH_TERMINATE): 1836 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid); 1837 drv_cmd = BNX2X_Q_CMD_TERMINATE; 1838 break; 1839 1840 case (RAMROD_CMD_ID_ETH_EMPTY): 1841 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid); 1842 drv_cmd = BNX2X_Q_CMD_EMPTY; 1843 break; 1844 1845 case (RAMROD_CMD_ID_ETH_TPA_UPDATE): 1846 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid); 1847 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA; 1848 break; 1849 1850 default: 1851 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n", 1852 command, fp->index); 1853 return; 1854 } 1855 1856 if ((drv_cmd != BNX2X_Q_CMD_MAX) && 1857 q_obj->complete_cmd(bp, q_obj, drv_cmd)) 1858 /* q_obj->complete_cmd() failure means that this was 1859 * an unexpected completion. 1860 * 1861 * In this case we don't want to increase the bp->spq_left 1862 * because apparently we haven't sent this command the first 1863 * place. 1864 */ 1865 #ifdef BNX2X_STOP_ON_ERROR 1866 bnx2x_panic(); 1867 #else 1868 return; 1869 #endif 1870 1871 smp_mb__before_atomic(); 1872 atomic_inc(&bp->cq_spq_left); 1873 /* push the change in bp->spq_left and towards the memory */ 1874 smp_mb__after_atomic(); 1875 1876 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left)); 1877 1878 if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) && 1879 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) { 1880 /* if Q update ramrod is completed for last Q in AFEX vif set 1881 * flow, then ACK MCP at the end 1882 * 1883 * mark pending ACK to MCP bit. 1884 * prevent case that both bits are cleared. 1885 * At the end of load/unload driver checks that 1886 * sp_state is cleared, and this order prevents 1887 * races 1888 */ 1889 smp_mb__before_atomic(); 1890 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state); 1891 wmb(); 1892 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); 1893 smp_mb__after_atomic(); 1894 1895 /* schedule the sp task as mcp ack is required */ 1896 bnx2x_schedule_sp_task(bp); 1897 } 1898 1899 return; 1900 } 1901 1902 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance) 1903 { 1904 struct bnx2x *bp = netdev_priv(dev_instance); 1905 u16 status = bnx2x_ack_int(bp); 1906 u16 mask; 1907 int i; 1908 u8 cos; 1909 1910 /* Return here if interrupt is shared and it's not for us */ 1911 if (unlikely(status == 0)) { 1912 DP(NETIF_MSG_INTR, "not our interrupt!\n"); 1913 return IRQ_NONE; 1914 } 1915 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status); 1916 1917 #ifdef BNX2X_STOP_ON_ERROR 1918 if (unlikely(bp->panic)) 1919 return IRQ_HANDLED; 1920 #endif 1921 1922 for_each_eth_queue(bp, i) { 1923 struct bnx2x_fastpath *fp = &bp->fp[i]; 1924 1925 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp)); 1926 if (status & mask) { 1927 /* Handle Rx or Tx according to SB id */ 1928 for_each_cos_in_tx_queue(fp, cos) 1929 prefetch(fp->txdata_ptr[cos]->tx_cons_sb); 1930 prefetch(&fp->sb_running_index[SM_RX_ID]); 1931 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi)); 1932 status &= ~mask; 1933 } 1934 } 1935 1936 if (CNIC_SUPPORT(bp)) { 1937 mask = 0x2; 1938 if (status & (mask | 0x1)) { 1939 struct cnic_ops *c_ops = NULL; 1940 1941 rcu_read_lock(); 1942 c_ops = rcu_dereference(bp->cnic_ops); 1943 if (c_ops && (bp->cnic_eth_dev.drv_state & 1944 CNIC_DRV_STATE_HANDLES_IRQ)) 1945 c_ops->cnic_handler(bp->cnic_data, NULL); 1946 rcu_read_unlock(); 1947 1948 status &= ~mask; 1949 } 1950 } 1951 1952 if (unlikely(status & 0x1)) { 1953 1954 /* schedule sp task to perform default status block work, ack 1955 * attentions and enable interrupts. 1956 */ 1957 bnx2x_schedule_sp_task(bp); 1958 1959 status &= ~0x1; 1960 if (!status) 1961 return IRQ_HANDLED; 1962 } 1963 1964 if (unlikely(status)) 1965 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n", 1966 status); 1967 1968 return IRQ_HANDLED; 1969 } 1970 1971 /* Link */ 1972 1973 /* 1974 * General service functions 1975 */ 1976 1977 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource) 1978 { 1979 u32 lock_status; 1980 u32 resource_bit = (1 << resource); 1981 int func = BP_FUNC(bp); 1982 u32 hw_lock_control_reg; 1983 int cnt; 1984 1985 /* Validating that the resource is within range */ 1986 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1987 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 1988 resource, HW_LOCK_MAX_RESOURCE_VALUE); 1989 return -EINVAL; 1990 } 1991 1992 if (func <= 5) { 1993 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 1994 } else { 1995 hw_lock_control_reg = 1996 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 1997 } 1998 1999 /* Validating that the resource is not already taken */ 2000 lock_status = REG_RD(bp, hw_lock_control_reg); 2001 if (lock_status & resource_bit) { 2002 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n", 2003 lock_status, resource_bit); 2004 return -EEXIST; 2005 } 2006 2007 /* Try for 5 second every 5ms */ 2008 for (cnt = 0; cnt < 1000; cnt++) { 2009 /* Try to acquire the lock */ 2010 REG_WR(bp, hw_lock_control_reg + 4, resource_bit); 2011 lock_status = REG_RD(bp, hw_lock_control_reg); 2012 if (lock_status & resource_bit) 2013 return 0; 2014 2015 usleep_range(5000, 10000); 2016 } 2017 BNX2X_ERR("Timeout\n"); 2018 return -EAGAIN; 2019 } 2020 2021 int bnx2x_release_leader_lock(struct bnx2x *bp) 2022 { 2023 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); 2024 } 2025 2026 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource) 2027 { 2028 u32 lock_status; 2029 u32 resource_bit = (1 << resource); 2030 int func = BP_FUNC(bp); 2031 u32 hw_lock_control_reg; 2032 2033 /* Validating that the resource is within range */ 2034 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 2035 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 2036 resource, HW_LOCK_MAX_RESOURCE_VALUE); 2037 return -EINVAL; 2038 } 2039 2040 if (func <= 5) { 2041 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 2042 } else { 2043 hw_lock_control_reg = 2044 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 2045 } 2046 2047 /* Validating that the resource is currently taken */ 2048 lock_status = REG_RD(bp, hw_lock_control_reg); 2049 if (!(lock_status & resource_bit)) { 2050 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n", 2051 lock_status, resource_bit); 2052 return -EFAULT; 2053 } 2054 2055 REG_WR(bp, hw_lock_control_reg, resource_bit); 2056 return 0; 2057 } 2058 2059 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port) 2060 { 2061 /* The GPIO should be swapped if swap register is set and active */ 2062 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2063 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2064 int gpio_shift = gpio_num + 2065 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2066 u32 gpio_mask = (1 << gpio_shift); 2067 u32 gpio_reg; 2068 int value; 2069 2070 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2071 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2072 return -EINVAL; 2073 } 2074 2075 /* read GPIO value */ 2076 gpio_reg = REG_RD(bp, MISC_REG_GPIO); 2077 2078 /* get the requested pin value */ 2079 if ((gpio_reg & gpio_mask) == gpio_mask) 2080 value = 1; 2081 else 2082 value = 0; 2083 2084 return value; 2085 } 2086 2087 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) 2088 { 2089 /* The GPIO should be swapped if swap register is set and active */ 2090 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2091 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2092 int gpio_shift = gpio_num + 2093 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2094 u32 gpio_mask = (1 << gpio_shift); 2095 u32 gpio_reg; 2096 2097 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2098 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2099 return -EINVAL; 2100 } 2101 2102 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2103 /* read GPIO and mask except the float bits */ 2104 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 2105 2106 switch (mode) { 2107 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2108 DP(NETIF_MSG_LINK, 2109 "Set GPIO %d (shift %d) -> output low\n", 2110 gpio_num, gpio_shift); 2111 /* clear FLOAT and set CLR */ 2112 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2113 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 2114 break; 2115 2116 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2117 DP(NETIF_MSG_LINK, 2118 "Set GPIO %d (shift %d) -> output high\n", 2119 gpio_num, gpio_shift); 2120 /* clear FLOAT and set SET */ 2121 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2122 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 2123 break; 2124 2125 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2126 DP(NETIF_MSG_LINK, 2127 "Set GPIO %d (shift %d) -> input\n", 2128 gpio_num, gpio_shift); 2129 /* set FLOAT */ 2130 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2131 break; 2132 2133 default: 2134 break; 2135 } 2136 2137 REG_WR(bp, MISC_REG_GPIO, gpio_reg); 2138 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2139 2140 return 0; 2141 } 2142 2143 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode) 2144 { 2145 u32 gpio_reg = 0; 2146 int rc = 0; 2147 2148 /* Any port swapping should be handled by caller. */ 2149 2150 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2151 /* read GPIO and mask except the float bits */ 2152 gpio_reg = REG_RD(bp, MISC_REG_GPIO); 2153 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2154 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 2155 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 2156 2157 switch (mode) { 2158 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2159 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins); 2160 /* set CLR */ 2161 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 2162 break; 2163 2164 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2165 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins); 2166 /* set SET */ 2167 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2168 break; 2169 2170 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2171 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins); 2172 /* set FLOAT */ 2173 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2174 break; 2175 2176 default: 2177 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode); 2178 rc = -EINVAL; 2179 break; 2180 } 2181 2182 if (rc == 0) 2183 REG_WR(bp, MISC_REG_GPIO, gpio_reg); 2184 2185 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2186 2187 return rc; 2188 } 2189 2190 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) 2191 { 2192 /* The GPIO should be swapped if swap register is set and active */ 2193 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2194 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2195 int gpio_shift = gpio_num + 2196 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2197 u32 gpio_mask = (1 << gpio_shift); 2198 u32 gpio_reg; 2199 2200 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2201 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2202 return -EINVAL; 2203 } 2204 2205 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2206 /* read GPIO int */ 2207 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT); 2208 2209 switch (mode) { 2210 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2211 DP(NETIF_MSG_LINK, 2212 "Clear GPIO INT %d (shift %d) -> output low\n", 2213 gpio_num, gpio_shift); 2214 /* clear SET and set CLR */ 2215 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2216 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2217 break; 2218 2219 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2220 DP(NETIF_MSG_LINK, 2221 "Set GPIO INT %d (shift %d) -> output high\n", 2222 gpio_num, gpio_shift); 2223 /* clear CLR and set SET */ 2224 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2225 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2226 break; 2227 2228 default: 2229 break; 2230 } 2231 2232 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg); 2233 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2234 2235 return 0; 2236 } 2237 2238 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode) 2239 { 2240 u32 spio_reg; 2241 2242 /* Only 2 SPIOs are configurable */ 2243 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 2244 BNX2X_ERR("Invalid SPIO 0x%x\n", spio); 2245 return -EINVAL; 2246 } 2247 2248 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); 2249 /* read SPIO and mask except the float bits */ 2250 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 2251 2252 switch (mode) { 2253 case MISC_SPIO_OUTPUT_LOW: 2254 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio); 2255 /* clear FLOAT and set CLR */ 2256 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 2257 spio_reg |= (spio << MISC_SPIO_CLR_POS); 2258 break; 2259 2260 case MISC_SPIO_OUTPUT_HIGH: 2261 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio); 2262 /* clear FLOAT and set SET */ 2263 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 2264 spio_reg |= (spio << MISC_SPIO_SET_POS); 2265 break; 2266 2267 case MISC_SPIO_INPUT_HI_Z: 2268 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio); 2269 /* set FLOAT */ 2270 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 2271 break; 2272 2273 default: 2274 break; 2275 } 2276 2277 REG_WR(bp, MISC_REG_SPIO, spio_reg); 2278 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); 2279 2280 return 0; 2281 } 2282 2283 void bnx2x_calc_fc_adv(struct bnx2x *bp) 2284 { 2285 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp); 2286 2287 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 2288 ADVERTISED_Pause); 2289 switch (bp->link_vars.ieee_fc & 2290 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 2291 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 2292 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 2293 ADVERTISED_Pause); 2294 break; 2295 2296 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 2297 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 2298 break; 2299 2300 default: 2301 break; 2302 } 2303 } 2304 2305 static void bnx2x_set_requested_fc(struct bnx2x *bp) 2306 { 2307 /* Initialize link parameters structure variables 2308 * It is recommended to turn off RX FC for jumbo frames 2309 * for better performance 2310 */ 2311 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000)) 2312 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX; 2313 else 2314 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH; 2315 } 2316 2317 static void bnx2x_init_dropless_fc(struct bnx2x *bp) 2318 { 2319 u32 pause_enabled = 0; 2320 2321 if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) { 2322 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) 2323 pause_enabled = 1; 2324 2325 REG_WR(bp, BAR_USTRORM_INTMEM + 2326 USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)), 2327 pause_enabled); 2328 } 2329 2330 DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n", 2331 pause_enabled ? "enabled" : "disabled"); 2332 } 2333 2334 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode) 2335 { 2336 int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp); 2337 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx]; 2338 2339 if (!BP_NOMCP(bp)) { 2340 bnx2x_set_requested_fc(bp); 2341 bnx2x_acquire_phy_lock(bp); 2342 2343 if (load_mode == LOAD_DIAG) { 2344 struct link_params *lp = &bp->link_params; 2345 lp->loopback_mode = LOOPBACK_XGXS; 2346 /* Prefer doing PHY loopback at highest speed */ 2347 if (lp->req_line_speed[cfx_idx] < SPEED_20000) { 2348 if (lp->speed_cap_mask[cfx_idx] & 2349 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G) 2350 lp->req_line_speed[cfx_idx] = 2351 SPEED_20000; 2352 else if (lp->speed_cap_mask[cfx_idx] & 2353 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) 2354 lp->req_line_speed[cfx_idx] = 2355 SPEED_10000; 2356 else 2357 lp->req_line_speed[cfx_idx] = 2358 SPEED_1000; 2359 } 2360 } 2361 2362 if (load_mode == LOAD_LOOPBACK_EXT) { 2363 struct link_params *lp = &bp->link_params; 2364 lp->loopback_mode = LOOPBACK_EXT; 2365 } 2366 2367 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars); 2368 2369 bnx2x_release_phy_lock(bp); 2370 2371 bnx2x_init_dropless_fc(bp); 2372 2373 bnx2x_calc_fc_adv(bp); 2374 2375 if (bp->link_vars.link_up) { 2376 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2377 bnx2x_link_report(bp); 2378 } 2379 queue_delayed_work(bnx2x_wq, &bp->period_task, 0); 2380 bp->link_params.req_line_speed[cfx_idx] = req_line_speed; 2381 return rc; 2382 } 2383 BNX2X_ERR("Bootcode is missing - can not initialize link\n"); 2384 return -EINVAL; 2385 } 2386 2387 void bnx2x_link_set(struct bnx2x *bp) 2388 { 2389 if (!BP_NOMCP(bp)) { 2390 bnx2x_acquire_phy_lock(bp); 2391 bnx2x_phy_init(&bp->link_params, &bp->link_vars); 2392 bnx2x_release_phy_lock(bp); 2393 2394 bnx2x_init_dropless_fc(bp); 2395 2396 bnx2x_calc_fc_adv(bp); 2397 } else 2398 BNX2X_ERR("Bootcode is missing - can not set link\n"); 2399 } 2400 2401 static void bnx2x__link_reset(struct bnx2x *bp) 2402 { 2403 if (!BP_NOMCP(bp)) { 2404 bnx2x_acquire_phy_lock(bp); 2405 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars); 2406 bnx2x_release_phy_lock(bp); 2407 } else 2408 BNX2X_ERR("Bootcode is missing - can not reset link\n"); 2409 } 2410 2411 void bnx2x_force_link_reset(struct bnx2x *bp) 2412 { 2413 bnx2x_acquire_phy_lock(bp); 2414 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1); 2415 bnx2x_release_phy_lock(bp); 2416 } 2417 2418 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes) 2419 { 2420 u8 rc = 0; 2421 2422 if (!BP_NOMCP(bp)) { 2423 bnx2x_acquire_phy_lock(bp); 2424 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars, 2425 is_serdes); 2426 bnx2x_release_phy_lock(bp); 2427 } else 2428 BNX2X_ERR("Bootcode is missing - can not test link\n"); 2429 2430 return rc; 2431 } 2432 2433 /* Calculates the sum of vn_min_rates. 2434 It's needed for further normalizing of the min_rates. 2435 Returns: 2436 sum of vn_min_rates. 2437 or 2438 0 - if all the min_rates are 0. 2439 In the later case fairness algorithm should be deactivated. 2440 If not all min_rates are zero then those that are zeroes will be set to 1. 2441 */ 2442 static void bnx2x_calc_vn_min(struct bnx2x *bp, 2443 struct cmng_init_input *input) 2444 { 2445 int all_zero = 1; 2446 int vn; 2447 2448 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2449 u32 vn_cfg = bp->mf_config[vn]; 2450 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 2451 FUNC_MF_CFG_MIN_BW_SHIFT) * 100; 2452 2453 /* Skip hidden vns */ 2454 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) 2455 vn_min_rate = 0; 2456 /* If min rate is zero - set it to 1 */ 2457 else if (!vn_min_rate) 2458 vn_min_rate = DEF_MIN_RATE; 2459 else 2460 all_zero = 0; 2461 2462 input->vnic_min_rate[vn] = vn_min_rate; 2463 } 2464 2465 /* if ETS or all min rates are zeros - disable fairness */ 2466 if (BNX2X_IS_ETS_ENABLED(bp)) { 2467 input->flags.cmng_enables &= 2468 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2469 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n"); 2470 } else if (all_zero) { 2471 input->flags.cmng_enables &= 2472 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2473 DP(NETIF_MSG_IFUP, 2474 "All MIN values are zeroes fairness will be disabled\n"); 2475 } else 2476 input->flags.cmng_enables |= 2477 CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2478 } 2479 2480 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn, 2481 struct cmng_init_input *input) 2482 { 2483 u16 vn_max_rate; 2484 u32 vn_cfg = bp->mf_config[vn]; 2485 2486 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) 2487 vn_max_rate = 0; 2488 else { 2489 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg); 2490 2491 if (IS_MF_PERCENT_BW(bp)) { 2492 /* maxCfg in percents of linkspeed */ 2493 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100; 2494 } else /* SD modes */ 2495 /* maxCfg is absolute in 100Mb units */ 2496 vn_max_rate = maxCfg * 100; 2497 } 2498 2499 DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 2500 2501 input->vnic_max_rate[vn] = vn_max_rate; 2502 } 2503 2504 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp) 2505 { 2506 if (CHIP_REV_IS_SLOW(bp)) 2507 return CMNG_FNS_NONE; 2508 if (IS_MF(bp)) 2509 return CMNG_FNS_MINMAX; 2510 2511 return CMNG_FNS_NONE; 2512 } 2513 2514 void bnx2x_read_mf_cfg(struct bnx2x *bp) 2515 { 2516 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1); 2517 2518 if (BP_NOMCP(bp)) 2519 return; /* what should be the default value in this case */ 2520 2521 /* For 2 port configuration the absolute function number formula 2522 * is: 2523 * abs_func = 2 * vn + BP_PORT + BP_PATH 2524 * 2525 * and there are 4 functions per port 2526 * 2527 * For 4 port configuration it is 2528 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH 2529 * 2530 * and there are 2 functions per port 2531 */ 2532 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2533 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp); 2534 2535 if (func >= E1H_FUNC_MAX) 2536 break; 2537 2538 bp->mf_config[vn] = 2539 MF_CFG_RD(bp, func_mf_config[func].config); 2540 } 2541 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { 2542 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n"); 2543 bp->flags |= MF_FUNC_DIS; 2544 } else { 2545 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n"); 2546 bp->flags &= ~MF_FUNC_DIS; 2547 } 2548 } 2549 2550 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type) 2551 { 2552 struct cmng_init_input input; 2553 memset(&input, 0, sizeof(struct cmng_init_input)); 2554 2555 input.port_rate = bp->link_vars.line_speed; 2556 2557 if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) { 2558 int vn; 2559 2560 /* read mf conf from shmem */ 2561 if (read_cfg) 2562 bnx2x_read_mf_cfg(bp); 2563 2564 /* vn_weight_sum and enable fairness if not 0 */ 2565 bnx2x_calc_vn_min(bp, &input); 2566 2567 /* calculate and set min-max rate for each vn */ 2568 if (bp->port.pmf) 2569 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) 2570 bnx2x_calc_vn_max(bp, vn, &input); 2571 2572 /* always enable rate shaping and fairness */ 2573 input.flags.cmng_enables |= 2574 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 2575 2576 bnx2x_init_cmng(&input, &bp->cmng); 2577 return; 2578 } 2579 2580 /* rate shaping and fairness are disabled */ 2581 DP(NETIF_MSG_IFUP, 2582 "rate shaping and fairness are disabled\n"); 2583 } 2584 2585 static void storm_memset_cmng(struct bnx2x *bp, 2586 struct cmng_init *cmng, 2587 u8 port) 2588 { 2589 int vn; 2590 size_t size = sizeof(struct cmng_struct_per_port); 2591 2592 u32 addr = BAR_XSTRORM_INTMEM + 2593 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port); 2594 2595 __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port); 2596 2597 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2598 int func = func_by_vn(bp, vn); 2599 2600 addr = BAR_XSTRORM_INTMEM + 2601 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func); 2602 size = sizeof(struct rate_shaping_vars_per_vn); 2603 __storm_memset_struct(bp, addr, size, 2604 (u32 *)&cmng->vnic.vnic_max_rate[vn]); 2605 2606 addr = BAR_XSTRORM_INTMEM + 2607 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func); 2608 size = sizeof(struct fairness_vars_per_vn); 2609 __storm_memset_struct(bp, addr, size, 2610 (u32 *)&cmng->vnic.vnic_min_rate[vn]); 2611 } 2612 } 2613 2614 /* init cmng mode in HW according to local configuration */ 2615 void bnx2x_set_local_cmng(struct bnx2x *bp) 2616 { 2617 int cmng_fns = bnx2x_get_cmng_fns_mode(bp); 2618 2619 if (cmng_fns != CMNG_FNS_NONE) { 2620 bnx2x_cmng_fns_init(bp, false, cmng_fns); 2621 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 2622 } else { 2623 /* rate shaping and fairness are disabled */ 2624 DP(NETIF_MSG_IFUP, 2625 "single function mode without fairness\n"); 2626 } 2627 } 2628 2629 /* This function is called upon link interrupt */ 2630 static void bnx2x_link_attn(struct bnx2x *bp) 2631 { 2632 /* Make sure that we are synced with the current statistics */ 2633 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 2634 2635 bnx2x_link_update(&bp->link_params, &bp->link_vars); 2636 2637 bnx2x_init_dropless_fc(bp); 2638 2639 if (bp->link_vars.link_up) { 2640 2641 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) { 2642 struct host_port_stats *pstats; 2643 2644 pstats = bnx2x_sp(bp, port_stats); 2645 /* reset old mac stats */ 2646 memset(&(pstats->mac_stx[0]), 0, 2647 sizeof(struct mac_stx)); 2648 } 2649 if (bp->state == BNX2X_STATE_OPEN) 2650 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2651 } 2652 2653 if (bp->link_vars.link_up && bp->link_vars.line_speed) 2654 bnx2x_set_local_cmng(bp); 2655 2656 __bnx2x_link_report(bp); 2657 2658 if (IS_MF(bp)) 2659 bnx2x_link_sync_notify(bp); 2660 } 2661 2662 void bnx2x__link_status_update(struct bnx2x *bp) 2663 { 2664 if (bp->state != BNX2X_STATE_OPEN) 2665 return; 2666 2667 /* read updated dcb configuration */ 2668 if (IS_PF(bp)) { 2669 bnx2x_dcbx_pmf_update(bp); 2670 bnx2x_link_status_update(&bp->link_params, &bp->link_vars); 2671 if (bp->link_vars.link_up) 2672 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2673 else 2674 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 2675 /* indicate link status */ 2676 bnx2x_link_report(bp); 2677 2678 } else { /* VF */ 2679 bp->port.supported[0] |= (SUPPORTED_10baseT_Half | 2680 SUPPORTED_10baseT_Full | 2681 SUPPORTED_100baseT_Half | 2682 SUPPORTED_100baseT_Full | 2683 SUPPORTED_1000baseT_Full | 2684 SUPPORTED_2500baseX_Full | 2685 SUPPORTED_10000baseT_Full | 2686 SUPPORTED_TP | 2687 SUPPORTED_FIBRE | 2688 SUPPORTED_Autoneg | 2689 SUPPORTED_Pause | 2690 SUPPORTED_Asym_Pause); 2691 bp->port.advertising[0] = bp->port.supported[0]; 2692 2693 bp->link_params.bp = bp; 2694 bp->link_params.port = BP_PORT(bp); 2695 bp->link_params.req_duplex[0] = DUPLEX_FULL; 2696 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE; 2697 bp->link_params.req_line_speed[0] = SPEED_10000; 2698 bp->link_params.speed_cap_mask[0] = 0x7f0000; 2699 bp->link_params.switch_cfg = SWITCH_CFG_10G; 2700 bp->link_vars.mac_type = MAC_TYPE_BMAC; 2701 bp->link_vars.line_speed = SPEED_10000; 2702 bp->link_vars.link_status = 2703 (LINK_STATUS_LINK_UP | 2704 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 2705 bp->link_vars.link_up = 1; 2706 bp->link_vars.duplex = DUPLEX_FULL; 2707 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE; 2708 __bnx2x_link_report(bp); 2709 2710 bnx2x_sample_bulletin(bp); 2711 2712 /* if bulletin board did not have an update for link status 2713 * __bnx2x_link_report will report current status 2714 * but it will NOT duplicate report in case of already reported 2715 * during sampling bulletin board. 2716 */ 2717 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2718 } 2719 } 2720 2721 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid, 2722 u16 vlan_val, u8 allowed_prio) 2723 { 2724 struct bnx2x_func_state_params func_params = {NULL}; 2725 struct bnx2x_func_afex_update_params *f_update_params = 2726 &func_params.params.afex_update; 2727 2728 func_params.f_obj = &bp->func_obj; 2729 func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE; 2730 2731 /* no need to wait for RAMROD completion, so don't 2732 * set RAMROD_COMP_WAIT flag 2733 */ 2734 2735 f_update_params->vif_id = vifid; 2736 f_update_params->afex_default_vlan = vlan_val; 2737 f_update_params->allowed_priorities = allowed_prio; 2738 2739 /* if ramrod can not be sent, response to MCP immediately */ 2740 if (bnx2x_func_state_change(bp, &func_params) < 0) 2741 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 2742 2743 return 0; 2744 } 2745 2746 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type, 2747 u16 vif_index, u8 func_bit_map) 2748 { 2749 struct bnx2x_func_state_params func_params = {NULL}; 2750 struct bnx2x_func_afex_viflists_params *update_params = 2751 &func_params.params.afex_viflists; 2752 int rc; 2753 u32 drv_msg_code; 2754 2755 /* validate only LIST_SET and LIST_GET are received from switch */ 2756 if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET)) 2757 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n", 2758 cmd_type); 2759 2760 func_params.f_obj = &bp->func_obj; 2761 func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS; 2762 2763 /* set parameters according to cmd_type */ 2764 update_params->afex_vif_list_command = cmd_type; 2765 update_params->vif_list_index = vif_index; 2766 update_params->func_bit_map = 2767 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map; 2768 update_params->func_to_clear = 0; 2769 drv_msg_code = 2770 (cmd_type == VIF_LIST_RULE_GET) ? 2771 DRV_MSG_CODE_AFEX_LISTGET_ACK : 2772 DRV_MSG_CODE_AFEX_LISTSET_ACK; 2773 2774 /* if ramrod can not be sent, respond to MCP immediately for 2775 * SET and GET requests (other are not triggered from MCP) 2776 */ 2777 rc = bnx2x_func_state_change(bp, &func_params); 2778 if (rc < 0) 2779 bnx2x_fw_command(bp, drv_msg_code, 0); 2780 2781 return 0; 2782 } 2783 2784 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd) 2785 { 2786 struct afex_stats afex_stats; 2787 u32 func = BP_ABS_FUNC(bp); 2788 u32 mf_config; 2789 u16 vlan_val; 2790 u32 vlan_prio; 2791 u16 vif_id; 2792 u8 allowed_prio; 2793 u8 vlan_mode; 2794 u32 addr_to_write, vifid, addrs, stats_type, i; 2795 2796 if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) { 2797 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2798 DP(BNX2X_MSG_MCP, 2799 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid); 2800 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0); 2801 } 2802 2803 if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) { 2804 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2805 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]); 2806 DP(BNX2X_MSG_MCP, 2807 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n", 2808 vifid, addrs); 2809 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid, 2810 addrs); 2811 } 2812 2813 if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) { 2814 addr_to_write = SHMEM2_RD(bp, 2815 afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]); 2816 stats_type = SHMEM2_RD(bp, 2817 afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2818 2819 DP(BNX2X_MSG_MCP, 2820 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n", 2821 addr_to_write); 2822 2823 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type); 2824 2825 /* write response to scratchpad, for MCP */ 2826 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++) 2827 REG_WR(bp, addr_to_write + i*sizeof(u32), 2828 *(((u32 *)(&afex_stats))+i)); 2829 2830 /* send ack message to MCP */ 2831 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0); 2832 } 2833 2834 if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) { 2835 mf_config = MF_CFG_RD(bp, func_mf_config[func].config); 2836 bp->mf_config[BP_VN(bp)] = mf_config; 2837 DP(BNX2X_MSG_MCP, 2838 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n", 2839 mf_config); 2840 2841 /* if VIF_SET is "enabled" */ 2842 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) { 2843 /* set rate limit directly to internal RAM */ 2844 struct cmng_init_input cmng_input; 2845 struct rate_shaping_vars_per_vn m_rs_vn; 2846 size_t size = sizeof(struct rate_shaping_vars_per_vn); 2847 u32 addr = BAR_XSTRORM_INTMEM + 2848 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp)); 2849 2850 bp->mf_config[BP_VN(bp)] = mf_config; 2851 2852 bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input); 2853 m_rs_vn.vn_counter.rate = 2854 cmng_input.vnic_max_rate[BP_VN(bp)]; 2855 m_rs_vn.vn_counter.quota = 2856 (m_rs_vn.vn_counter.rate * 2857 RS_PERIODIC_TIMEOUT_USEC) / 8; 2858 2859 __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn); 2860 2861 /* read relevant values from mf_cfg struct in shmem */ 2862 vif_id = 2863 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2864 FUNC_MF_CFG_E1HOV_TAG_MASK) >> 2865 FUNC_MF_CFG_E1HOV_TAG_SHIFT; 2866 vlan_val = 2867 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2868 FUNC_MF_CFG_AFEX_VLAN_MASK) >> 2869 FUNC_MF_CFG_AFEX_VLAN_SHIFT; 2870 vlan_prio = (mf_config & 2871 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 2872 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT; 2873 vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT); 2874 vlan_mode = 2875 (MF_CFG_RD(bp, 2876 func_mf_config[func].afex_config) & 2877 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 2878 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT; 2879 allowed_prio = 2880 (MF_CFG_RD(bp, 2881 func_mf_config[func].afex_config) & 2882 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 2883 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT; 2884 2885 /* send ramrod to FW, return in case of failure */ 2886 if (bnx2x_afex_func_update(bp, vif_id, vlan_val, 2887 allowed_prio)) 2888 return; 2889 2890 bp->afex_def_vlan_tag = vlan_val; 2891 bp->afex_vlan_mode = vlan_mode; 2892 } else { 2893 /* notify link down because BP->flags is disabled */ 2894 bnx2x_link_report(bp); 2895 2896 /* send INVALID VIF ramrod to FW */ 2897 bnx2x_afex_func_update(bp, 0xFFFF, 0, 0); 2898 2899 /* Reset the default afex VLAN */ 2900 bp->afex_def_vlan_tag = -1; 2901 } 2902 } 2903 } 2904 2905 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp) 2906 { 2907 struct bnx2x_func_switch_update_params *switch_update_params; 2908 struct bnx2x_func_state_params func_params; 2909 2910 memset(&func_params, 0, sizeof(struct bnx2x_func_state_params)); 2911 switch_update_params = &func_params.params.switch_update; 2912 func_params.f_obj = &bp->func_obj; 2913 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 2914 2915 /* Prepare parameters for function state transitions */ 2916 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 2917 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 2918 2919 if (IS_MF_UFP(bp) || IS_MF_BD(bp)) { 2920 int func = BP_ABS_FUNC(bp); 2921 u32 val; 2922 2923 /* Re-learn the S-tag from shmem */ 2924 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2925 FUNC_MF_CFG_E1HOV_TAG_MASK; 2926 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 2927 bp->mf_ov = val; 2928 } else { 2929 BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n"); 2930 goto fail; 2931 } 2932 2933 /* Configure new S-tag in LLH */ 2934 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8, 2935 bp->mf_ov); 2936 2937 /* Send Ramrod to update FW of change */ 2938 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG, 2939 &switch_update_params->changes); 2940 switch_update_params->vlan = bp->mf_ov; 2941 2942 if (bnx2x_func_state_change(bp, &func_params) < 0) { 2943 BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n", 2944 bp->mf_ov); 2945 goto fail; 2946 } else { 2947 DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n", 2948 bp->mf_ov); 2949 } 2950 } else { 2951 goto fail; 2952 } 2953 2954 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0); 2955 return; 2956 fail: 2957 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0); 2958 } 2959 2960 static void bnx2x_pmf_update(struct bnx2x *bp) 2961 { 2962 int port = BP_PORT(bp); 2963 u32 val; 2964 2965 bp->port.pmf = 1; 2966 DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf); 2967 2968 /* 2969 * We need the mb() to ensure the ordering between the writing to 2970 * bp->port.pmf here and reading it from the bnx2x_periodic_task(). 2971 */ 2972 smp_mb(); 2973 2974 /* queue a periodic task */ 2975 queue_delayed_work(bnx2x_wq, &bp->period_task, 0); 2976 2977 bnx2x_dcbx_pmf_update(bp); 2978 2979 /* enable nig attention */ 2980 val = (0xff0f | (1 << (BP_VN(bp) + 4))); 2981 if (bp->common.int_block == INT_BLOCK_HC) { 2982 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); 2983 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); 2984 } else if (!CHIP_IS_E1x(bp)) { 2985 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); 2986 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); 2987 } 2988 2989 bnx2x_stats_handle(bp, STATS_EVENT_PMF); 2990 } 2991 2992 /* end of Link */ 2993 2994 /* slow path */ 2995 2996 /* 2997 * General service functions 2998 */ 2999 3000 /* send the MCP a request, block until there is a reply */ 3001 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param) 3002 { 3003 int mb_idx = BP_FW_MB_IDX(bp); 3004 u32 seq; 3005 u32 rc = 0; 3006 u32 cnt = 1; 3007 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10; 3008 3009 mutex_lock(&bp->fw_mb_mutex); 3010 seq = ++bp->fw_seq; 3011 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param); 3012 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq)); 3013 3014 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n", 3015 (command | seq), param); 3016 3017 do { 3018 /* let the FW do it's magic ... */ 3019 msleep(delay); 3020 3021 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header); 3022 3023 /* Give the FW up to 5 second (500*10ms) */ 3024 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 3025 3026 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n", 3027 cnt*delay, rc, seq); 3028 3029 /* is this a reply to our command? */ 3030 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) 3031 rc &= FW_MSG_CODE_MASK; 3032 else { 3033 /* FW BUG! */ 3034 BNX2X_ERR("FW failed to respond!\n"); 3035 bnx2x_fw_dump(bp); 3036 rc = 0; 3037 } 3038 mutex_unlock(&bp->fw_mb_mutex); 3039 3040 return rc; 3041 } 3042 3043 static void storm_memset_func_cfg(struct bnx2x *bp, 3044 struct tstorm_eth_function_common_config *tcfg, 3045 u16 abs_fid) 3046 { 3047 size_t size = sizeof(struct tstorm_eth_function_common_config); 3048 3049 u32 addr = BAR_TSTRORM_INTMEM + 3050 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid); 3051 3052 __storm_memset_struct(bp, addr, size, (u32 *)tcfg); 3053 } 3054 3055 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p) 3056 { 3057 if (CHIP_IS_E1x(bp)) { 3058 struct tstorm_eth_function_common_config tcfg = {0}; 3059 3060 storm_memset_func_cfg(bp, &tcfg, p->func_id); 3061 } 3062 3063 /* Enable the function in the FW */ 3064 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id); 3065 storm_memset_func_en(bp, p->func_id, 1); 3066 3067 /* spq */ 3068 if (p->spq_active) { 3069 storm_memset_spq_addr(bp, p->spq_map, p->func_id); 3070 REG_WR(bp, XSEM_REG_FAST_MEMORY + 3071 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod); 3072 } 3073 } 3074 3075 /** 3076 * bnx2x_get_common_flags - Return common flags 3077 * 3078 * @bp device handle 3079 * @fp queue handle 3080 * @zero_stats TRUE if statistics zeroing is needed 3081 * 3082 * Return the flags that are common for the Tx-only and not normal connections. 3083 */ 3084 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp, 3085 struct bnx2x_fastpath *fp, 3086 bool zero_stats) 3087 { 3088 unsigned long flags = 0; 3089 3090 /* PF driver will always initialize the Queue to an ACTIVE state */ 3091 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags); 3092 3093 /* tx only connections collect statistics (on the same index as the 3094 * parent connection). The statistics are zeroed when the parent 3095 * connection is initialized. 3096 */ 3097 3098 __set_bit(BNX2X_Q_FLG_STATS, &flags); 3099 if (zero_stats) 3100 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags); 3101 3102 if (bp->flags & TX_SWITCHING) 3103 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags); 3104 3105 __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags); 3106 __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags); 3107 3108 #ifdef BNX2X_STOP_ON_ERROR 3109 __set_bit(BNX2X_Q_FLG_TX_SEC, &flags); 3110 #endif 3111 3112 return flags; 3113 } 3114 3115 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp, 3116 struct bnx2x_fastpath *fp, 3117 bool leading) 3118 { 3119 unsigned long flags = 0; 3120 3121 /* calculate other queue flags */ 3122 if (IS_MF_SD(bp)) 3123 __set_bit(BNX2X_Q_FLG_OV, &flags); 3124 3125 if (IS_FCOE_FP(fp)) { 3126 __set_bit(BNX2X_Q_FLG_FCOE, &flags); 3127 /* For FCoE - force usage of default priority (for afex) */ 3128 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags); 3129 } 3130 3131 if (fp->mode != TPA_MODE_DISABLED) { 3132 __set_bit(BNX2X_Q_FLG_TPA, &flags); 3133 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags); 3134 if (fp->mode == TPA_MODE_GRO) 3135 __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags); 3136 } 3137 3138 if (leading) { 3139 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags); 3140 __set_bit(BNX2X_Q_FLG_MCAST, &flags); 3141 } 3142 3143 /* Always set HW VLAN stripping */ 3144 __set_bit(BNX2X_Q_FLG_VLAN, &flags); 3145 3146 /* configure silent vlan removal */ 3147 if (IS_MF_AFEX(bp)) 3148 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags); 3149 3150 return flags | bnx2x_get_common_flags(bp, fp, true); 3151 } 3152 3153 static void bnx2x_pf_q_prep_general(struct bnx2x *bp, 3154 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init, 3155 u8 cos) 3156 { 3157 gen_init->stat_id = bnx2x_stats_id(fp); 3158 gen_init->spcl_id = fp->cl_id; 3159 3160 /* Always use mini-jumbo MTU for FCoE L2 ring */ 3161 if (IS_FCOE_FP(fp)) 3162 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU; 3163 else 3164 gen_init->mtu = bp->dev->mtu; 3165 3166 gen_init->cos = cos; 3167 3168 gen_init->fp_hsi = ETH_FP_HSI_VERSION; 3169 } 3170 3171 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp, 3172 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause, 3173 struct bnx2x_rxq_setup_params *rxq_init) 3174 { 3175 u8 max_sge = 0; 3176 u16 sge_sz = 0; 3177 u16 tpa_agg_size = 0; 3178 3179 if (fp->mode != TPA_MODE_DISABLED) { 3180 pause->sge_th_lo = SGE_TH_LO(bp); 3181 pause->sge_th_hi = SGE_TH_HI(bp); 3182 3183 /* validate SGE ring has enough to cross high threshold */ 3184 WARN_ON(bp->dropless_fc && 3185 pause->sge_th_hi + FW_PREFETCH_CNT > 3186 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES); 3187 3188 tpa_agg_size = TPA_AGG_SIZE; 3189 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >> 3190 SGE_PAGE_SHIFT; 3191 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 3192 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT; 3193 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff); 3194 } 3195 3196 /* pause - not for e1 */ 3197 if (!CHIP_IS_E1(bp)) { 3198 pause->bd_th_lo = BD_TH_LO(bp); 3199 pause->bd_th_hi = BD_TH_HI(bp); 3200 3201 pause->rcq_th_lo = RCQ_TH_LO(bp); 3202 pause->rcq_th_hi = RCQ_TH_HI(bp); 3203 /* 3204 * validate that rings have enough entries to cross 3205 * high thresholds 3206 */ 3207 WARN_ON(bp->dropless_fc && 3208 pause->bd_th_hi + FW_PREFETCH_CNT > 3209 bp->rx_ring_size); 3210 WARN_ON(bp->dropless_fc && 3211 pause->rcq_th_hi + FW_PREFETCH_CNT > 3212 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT); 3213 3214 pause->pri_map = 1; 3215 } 3216 3217 /* rxq setup */ 3218 rxq_init->dscr_map = fp->rx_desc_mapping; 3219 rxq_init->sge_map = fp->rx_sge_mapping; 3220 rxq_init->rcq_map = fp->rx_comp_mapping; 3221 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE; 3222 3223 /* This should be a maximum number of data bytes that may be 3224 * placed on the BD (not including paddings). 3225 */ 3226 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START - 3227 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING; 3228 3229 rxq_init->cl_qzone_id = fp->cl_qzone_id; 3230 rxq_init->tpa_agg_sz = tpa_agg_size; 3231 rxq_init->sge_buf_sz = sge_sz; 3232 rxq_init->max_sges_pkt = max_sge; 3233 rxq_init->rss_engine_id = BP_FUNC(bp); 3234 rxq_init->mcast_engine_id = BP_FUNC(bp); 3235 3236 /* Maximum number or simultaneous TPA aggregation for this Queue. 3237 * 3238 * For PF Clients it should be the maximum available number. 3239 * VF driver(s) may want to define it to a smaller value. 3240 */ 3241 rxq_init->max_tpa_queues = MAX_AGG_QS(bp); 3242 3243 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT; 3244 rxq_init->fw_sb_id = fp->fw_sb_id; 3245 3246 if (IS_FCOE_FP(fp)) 3247 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS; 3248 else 3249 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 3250 /* configure silent vlan removal 3251 * if multi function mode is afex, then mask default vlan 3252 */ 3253 if (IS_MF_AFEX(bp)) { 3254 rxq_init->silent_removal_value = bp->afex_def_vlan_tag; 3255 rxq_init->silent_removal_mask = VLAN_VID_MASK; 3256 } 3257 } 3258 3259 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp, 3260 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init, 3261 u8 cos) 3262 { 3263 txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping; 3264 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 3265 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 3266 txq_init->fw_sb_id = fp->fw_sb_id; 3267 3268 /* 3269 * set the tss leading client id for TX classification == 3270 * leading RSS client id 3271 */ 3272 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id); 3273 3274 if (IS_FCOE_FP(fp)) { 3275 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS; 3276 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE; 3277 } 3278 } 3279 3280 static void bnx2x_pf_init(struct bnx2x *bp) 3281 { 3282 struct bnx2x_func_init_params func_init = {0}; 3283 struct event_ring_data eq_data = { {0} }; 3284 3285 if (!CHIP_IS_E1x(bp)) { 3286 /* reset IGU PF statistics: MSIX + ATTN */ 3287 /* PF */ 3288 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 3289 BNX2X_IGU_STAS_MSG_VF_CNT*4 + 3290 (CHIP_MODE_IS_4_PORT(bp) ? 3291 BP_FUNC(bp) : BP_VN(bp))*4, 0); 3292 /* ATTN */ 3293 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 3294 BNX2X_IGU_STAS_MSG_VF_CNT*4 + 3295 BNX2X_IGU_STAS_MSG_PF_CNT*4 + 3296 (CHIP_MODE_IS_4_PORT(bp) ? 3297 BP_FUNC(bp) : BP_VN(bp))*4, 0); 3298 } 3299 3300 func_init.spq_active = true; 3301 func_init.pf_id = BP_FUNC(bp); 3302 func_init.func_id = BP_FUNC(bp); 3303 func_init.spq_map = bp->spq_mapping; 3304 func_init.spq_prod = bp->spq_prod_idx; 3305 3306 bnx2x_func_init(bp, &func_init); 3307 3308 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port)); 3309 3310 /* 3311 * Congestion management values depend on the link rate 3312 * There is no active link so initial link rate is set to 10 Gbps. 3313 * When the link comes up The congestion management values are 3314 * re-calculated according to the actual link rate. 3315 */ 3316 bp->link_vars.line_speed = SPEED_10000; 3317 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp)); 3318 3319 /* Only the PMF sets the HW */ 3320 if (bp->port.pmf) 3321 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 3322 3323 /* init Event Queue - PCI bus guarantees correct endianity*/ 3324 eq_data.base_addr.hi = U64_HI(bp->eq_mapping); 3325 eq_data.base_addr.lo = U64_LO(bp->eq_mapping); 3326 eq_data.producer = bp->eq_prod; 3327 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 3328 eq_data.sb_id = DEF_SB_ID; 3329 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp)); 3330 } 3331 3332 static void bnx2x_e1h_disable(struct bnx2x *bp) 3333 { 3334 int port = BP_PORT(bp); 3335 3336 bnx2x_tx_disable(bp); 3337 3338 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); 3339 } 3340 3341 static void bnx2x_e1h_enable(struct bnx2x *bp) 3342 { 3343 int port = BP_PORT(bp); 3344 3345 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) 3346 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1); 3347 3348 /* Tx queue should be only re-enabled */ 3349 netif_tx_wake_all_queues(bp->dev); 3350 3351 /* 3352 * Should not call netif_carrier_on since it will be called if the link 3353 * is up when checking for link state 3354 */ 3355 } 3356 3357 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 3358 3359 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp) 3360 { 3361 struct eth_stats_info *ether_stat = 3362 &bp->slowpath->drv_info_to_mcp.ether_stat; 3363 struct bnx2x_vlan_mac_obj *mac_obj = 3364 &bp->sp_objs->mac_obj; 3365 int i; 3366 3367 strlcpy(ether_stat->version, DRV_MODULE_VERSION, 3368 ETH_STAT_INFO_VERSION_LEN); 3369 3370 /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the 3371 * mac_local field in ether_stat struct. The base address is offset by 2 3372 * bytes to account for the field being 8 bytes but a mac address is 3373 * only 6 bytes. Likewise, the stride for the get_n_elements function is 3374 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes 3375 * allocated by the ether_stat struct, so the macs will land in their 3376 * proper positions. 3377 */ 3378 for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++) 3379 memset(ether_stat->mac_local + i, 0, 3380 sizeof(ether_stat->mac_local[0])); 3381 mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj, 3382 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 3383 ether_stat->mac_local + MAC_PAD, MAC_PAD, 3384 ETH_ALEN); 3385 ether_stat->mtu_size = bp->dev->mtu; 3386 if (bp->dev->features & NETIF_F_RXCSUM) 3387 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 3388 if (bp->dev->features & NETIF_F_TSO) 3389 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 3390 ether_stat->feature_flags |= bp->common.boot_mode; 3391 3392 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0; 3393 3394 ether_stat->txq_size = bp->tx_ring_size; 3395 ether_stat->rxq_size = bp->rx_ring_size; 3396 3397 #ifdef CONFIG_BNX2X_SRIOV 3398 ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0; 3399 #endif 3400 } 3401 3402 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp) 3403 { 3404 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; 3405 struct fcoe_stats_info *fcoe_stat = 3406 &bp->slowpath->drv_info_to_mcp.fcoe_stat; 3407 3408 if (!CNIC_LOADED(bp)) 3409 return; 3410 3411 memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN); 3412 3413 fcoe_stat->qos_priority = 3414 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE]; 3415 3416 /* insert FCoE stats from ramrod response */ 3417 if (!NO_FCOE(bp)) { 3418 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats = 3419 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. 3420 tstorm_queue_statistics; 3421 3422 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats = 3423 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. 3424 xstorm_queue_statistics; 3425 3426 struct fcoe_statistics_params *fw_fcoe_stat = 3427 &bp->fw_stats_data->fcoe; 3428 3429 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0, 3430 fcoe_stat->rx_bytes_lo, 3431 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt); 3432 3433 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3434 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi, 3435 fcoe_stat->rx_bytes_lo, 3436 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo); 3437 3438 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3439 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi, 3440 fcoe_stat->rx_bytes_lo, 3441 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo); 3442 3443 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3444 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi, 3445 fcoe_stat->rx_bytes_lo, 3446 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo); 3447 3448 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3449 fcoe_stat->rx_frames_lo, 3450 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt); 3451 3452 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3453 fcoe_stat->rx_frames_lo, 3454 fcoe_q_tstorm_stats->rcv_ucast_pkts); 3455 3456 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3457 fcoe_stat->rx_frames_lo, 3458 fcoe_q_tstorm_stats->rcv_bcast_pkts); 3459 3460 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3461 fcoe_stat->rx_frames_lo, 3462 fcoe_q_tstorm_stats->rcv_mcast_pkts); 3463 3464 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0, 3465 fcoe_stat->tx_bytes_lo, 3466 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt); 3467 3468 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3469 fcoe_q_xstorm_stats->ucast_bytes_sent.hi, 3470 fcoe_stat->tx_bytes_lo, 3471 fcoe_q_xstorm_stats->ucast_bytes_sent.lo); 3472 3473 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3474 fcoe_q_xstorm_stats->bcast_bytes_sent.hi, 3475 fcoe_stat->tx_bytes_lo, 3476 fcoe_q_xstorm_stats->bcast_bytes_sent.lo); 3477 3478 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3479 fcoe_q_xstorm_stats->mcast_bytes_sent.hi, 3480 fcoe_stat->tx_bytes_lo, 3481 fcoe_q_xstorm_stats->mcast_bytes_sent.lo); 3482 3483 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3484 fcoe_stat->tx_frames_lo, 3485 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt); 3486 3487 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3488 fcoe_stat->tx_frames_lo, 3489 fcoe_q_xstorm_stats->ucast_pkts_sent); 3490 3491 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3492 fcoe_stat->tx_frames_lo, 3493 fcoe_q_xstorm_stats->bcast_pkts_sent); 3494 3495 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3496 fcoe_stat->tx_frames_lo, 3497 fcoe_q_xstorm_stats->mcast_pkts_sent); 3498 } 3499 3500 /* ask L5 driver to add data to the struct */ 3501 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD); 3502 } 3503 3504 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp) 3505 { 3506 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; 3507 struct iscsi_stats_info *iscsi_stat = 3508 &bp->slowpath->drv_info_to_mcp.iscsi_stat; 3509 3510 if (!CNIC_LOADED(bp)) 3511 return; 3512 3513 memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac, 3514 ETH_ALEN); 3515 3516 iscsi_stat->qos_priority = 3517 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI]; 3518 3519 /* ask L5 driver to add data to the struct */ 3520 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD); 3521 } 3522 3523 /* called due to MCP event (on pmf): 3524 * reread new bandwidth configuration 3525 * configure FW 3526 * notify others function about the change 3527 */ 3528 static void bnx2x_config_mf_bw(struct bnx2x *bp) 3529 { 3530 /* Workaround for MFW bug. 3531 * MFW is not supposed to generate BW attention in 3532 * single function mode. 3533 */ 3534 if (!IS_MF(bp)) { 3535 DP(BNX2X_MSG_MCP, 3536 "Ignoring MF BW config in single function mode\n"); 3537 return; 3538 } 3539 3540 if (bp->link_vars.link_up) { 3541 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX); 3542 bnx2x_link_sync_notify(bp); 3543 } 3544 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 3545 } 3546 3547 static void bnx2x_set_mf_bw(struct bnx2x *bp) 3548 { 3549 bnx2x_config_mf_bw(bp); 3550 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 3551 } 3552 3553 static void bnx2x_handle_eee_event(struct bnx2x *bp) 3554 { 3555 DP(BNX2X_MSG_MCP, "EEE - LLDP event\n"); 3556 bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 3557 } 3558 3559 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH (20) 3560 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT (25) 3561 3562 static void bnx2x_handle_drv_info_req(struct bnx2x *bp) 3563 { 3564 enum drv_info_opcode op_code; 3565 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control); 3566 bool release = false; 3567 int wait; 3568 3569 /* if drv_info version supported by MFW doesn't match - send NACK */ 3570 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 3571 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); 3572 return; 3573 } 3574 3575 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 3576 DRV_INFO_CONTROL_OP_CODE_SHIFT; 3577 3578 /* Must prevent other flows from accessing drv_info_to_mcp */ 3579 mutex_lock(&bp->drv_info_mutex); 3580 3581 memset(&bp->slowpath->drv_info_to_mcp, 0, 3582 sizeof(union drv_info_to_mcp)); 3583 3584 switch (op_code) { 3585 case ETH_STATS_OPCODE: 3586 bnx2x_drv_info_ether_stat(bp); 3587 break; 3588 case FCOE_STATS_OPCODE: 3589 bnx2x_drv_info_fcoe_stat(bp); 3590 break; 3591 case ISCSI_STATS_OPCODE: 3592 bnx2x_drv_info_iscsi_stat(bp); 3593 break; 3594 default: 3595 /* if op code isn't supported - send NACK */ 3596 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); 3597 goto out; 3598 } 3599 3600 /* if we got drv_info attn from MFW then these fields are defined in 3601 * shmem2 for sure 3602 */ 3603 SHMEM2_WR(bp, drv_info_host_addr_lo, 3604 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp))); 3605 SHMEM2_WR(bp, drv_info_host_addr_hi, 3606 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp))); 3607 3608 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0); 3609 3610 /* Since possible management wants both this and get_driver_version 3611 * need to wait until management notifies us it finished utilizing 3612 * the buffer. 3613 */ 3614 if (!SHMEM2_HAS(bp, mfw_drv_indication)) { 3615 DP(BNX2X_MSG_MCP, "Management does not support indication\n"); 3616 } else if (!bp->drv_info_mng_owner) { 3617 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1)); 3618 3619 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) { 3620 u32 indication = SHMEM2_RD(bp, mfw_drv_indication); 3621 3622 /* Management is done; need to clear indication */ 3623 if (indication & bit) { 3624 SHMEM2_WR(bp, mfw_drv_indication, 3625 indication & ~bit); 3626 release = true; 3627 break; 3628 } 3629 3630 msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH); 3631 } 3632 } 3633 if (!release) { 3634 DP(BNX2X_MSG_MCP, "Management did not release indication\n"); 3635 bp->drv_info_mng_owner = true; 3636 } 3637 3638 out: 3639 mutex_unlock(&bp->drv_info_mutex); 3640 } 3641 3642 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format) 3643 { 3644 u8 vals[4]; 3645 int i = 0; 3646 3647 if (bnx2x_format) { 3648 i = sscanf(version, "1.%c%hhd.%hhd.%hhd", 3649 &vals[0], &vals[1], &vals[2], &vals[3]); 3650 if (i > 0) 3651 vals[0] -= '0'; 3652 } else { 3653 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd", 3654 &vals[0], &vals[1], &vals[2], &vals[3]); 3655 } 3656 3657 while (i < 4) 3658 vals[i++] = 0; 3659 3660 return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3]; 3661 } 3662 3663 void bnx2x_update_mng_version(struct bnx2x *bp) 3664 { 3665 u32 iscsiver = DRV_VER_NOT_LOADED; 3666 u32 fcoever = DRV_VER_NOT_LOADED; 3667 u32 ethver = DRV_VER_NOT_LOADED; 3668 int idx = BP_FW_MB_IDX(bp); 3669 u8 *version; 3670 3671 if (!SHMEM2_HAS(bp, func_os_drv_ver)) 3672 return; 3673 3674 mutex_lock(&bp->drv_info_mutex); 3675 /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */ 3676 if (bp->drv_info_mng_owner) 3677 goto out; 3678 3679 if (bp->state != BNX2X_STATE_OPEN) 3680 goto out; 3681 3682 /* Parse ethernet driver version */ 3683 ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true); 3684 if (!CNIC_LOADED(bp)) 3685 goto out; 3686 3687 /* Try getting storage driver version via cnic */ 3688 memset(&bp->slowpath->drv_info_to_mcp, 0, 3689 sizeof(union drv_info_to_mcp)); 3690 bnx2x_drv_info_iscsi_stat(bp); 3691 version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version; 3692 iscsiver = bnx2x_update_mng_version_utility(version, false); 3693 3694 memset(&bp->slowpath->drv_info_to_mcp, 0, 3695 sizeof(union drv_info_to_mcp)); 3696 bnx2x_drv_info_fcoe_stat(bp); 3697 version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version; 3698 fcoever = bnx2x_update_mng_version_utility(version, false); 3699 3700 out: 3701 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver); 3702 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver); 3703 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever); 3704 3705 mutex_unlock(&bp->drv_info_mutex); 3706 3707 DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n", 3708 ethver, iscsiver, fcoever); 3709 } 3710 3711 void bnx2x_update_mfw_dump(struct bnx2x *bp) 3712 { 3713 u32 drv_ver; 3714 u32 valid_dump; 3715 3716 if (!SHMEM2_HAS(bp, drv_info)) 3717 return; 3718 3719 /* Update Driver load time, possibly broken in y2038 */ 3720 SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds()); 3721 3722 drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true); 3723 SHMEM2_WR(bp, drv_info.drv_ver, drv_ver); 3724 3725 SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM)); 3726 3727 /* Check & notify On-Chip dump. */ 3728 valid_dump = SHMEM2_RD(bp, drv_info.valid_dump); 3729 3730 if (valid_dump & FIRST_DUMP_VALID) 3731 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n"); 3732 3733 if (valid_dump & SECOND_DUMP_VALID) 3734 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n"); 3735 } 3736 3737 static void bnx2x_oem_event(struct bnx2x *bp, u32 event) 3738 { 3739 u32 cmd_ok, cmd_fail; 3740 3741 /* sanity */ 3742 if (event & DRV_STATUS_DCC_EVENT_MASK && 3743 event & DRV_STATUS_OEM_EVENT_MASK) { 3744 BNX2X_ERR("Received simultaneous events %08x\n", event); 3745 return; 3746 } 3747 3748 if (event & DRV_STATUS_DCC_EVENT_MASK) { 3749 cmd_fail = DRV_MSG_CODE_DCC_FAILURE; 3750 cmd_ok = DRV_MSG_CODE_DCC_OK; 3751 } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ { 3752 cmd_fail = DRV_MSG_CODE_OEM_FAILURE; 3753 cmd_ok = DRV_MSG_CODE_OEM_OK; 3754 } 3755 3756 DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event); 3757 3758 if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF | 3759 DRV_STATUS_OEM_DISABLE_ENABLE_PF)) { 3760 /* This is the only place besides the function initialization 3761 * where the bp->flags can change so it is done without any 3762 * locks 3763 */ 3764 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { 3765 DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n"); 3766 bp->flags |= MF_FUNC_DIS; 3767 3768 bnx2x_e1h_disable(bp); 3769 } else { 3770 DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n"); 3771 bp->flags &= ~MF_FUNC_DIS; 3772 3773 bnx2x_e1h_enable(bp); 3774 } 3775 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF | 3776 DRV_STATUS_OEM_DISABLE_ENABLE_PF); 3777 } 3778 3779 if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION | 3780 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) { 3781 bnx2x_config_mf_bw(bp); 3782 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION | 3783 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION); 3784 } 3785 3786 /* Report results to MCP */ 3787 if (event) 3788 bnx2x_fw_command(bp, cmd_fail, 0); 3789 else 3790 bnx2x_fw_command(bp, cmd_ok, 0); 3791 } 3792 3793 /* must be called under the spq lock */ 3794 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp) 3795 { 3796 struct eth_spe *next_spe = bp->spq_prod_bd; 3797 3798 if (bp->spq_prod_bd == bp->spq_last_bd) { 3799 bp->spq_prod_bd = bp->spq; 3800 bp->spq_prod_idx = 0; 3801 DP(BNX2X_MSG_SP, "end of spq\n"); 3802 } else { 3803 bp->spq_prod_bd++; 3804 bp->spq_prod_idx++; 3805 } 3806 return next_spe; 3807 } 3808 3809 /* must be called under the spq lock */ 3810 static void bnx2x_sp_prod_update(struct bnx2x *bp) 3811 { 3812 int func = BP_FUNC(bp); 3813 3814 /* 3815 * Make sure that BD data is updated before writing the producer: 3816 * BD data is written to the memory, the producer is read from the 3817 * memory, thus we need a full memory barrier to ensure the ordering. 3818 */ 3819 mb(); 3820 3821 REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func), 3822 bp->spq_prod_idx); 3823 } 3824 3825 /** 3826 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ 3827 * 3828 * @cmd: command to check 3829 * @cmd_type: command type 3830 */ 3831 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type) 3832 { 3833 if ((cmd_type == NONE_CONNECTION_TYPE) || 3834 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 3835 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 3836 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 3837 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 3838 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 3839 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) 3840 return true; 3841 else 3842 return false; 3843 } 3844 3845 /** 3846 * bnx2x_sp_post - place a single command on an SP ring 3847 * 3848 * @bp: driver handle 3849 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 3850 * @cid: SW CID the command is related to 3851 * @data_hi: command private data address (high 32 bits) 3852 * @data_lo: command private data address (low 32 bits) 3853 * @cmd_type: command type (e.g. NONE, ETH) 3854 * 3855 * SP data is handled as if it's always an address pair, thus data fields are 3856 * not swapped to little endian in upper functions. Instead this function swaps 3857 * data as if it's two u32 fields. 3858 */ 3859 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid, 3860 u32 data_hi, u32 data_lo, int cmd_type) 3861 { 3862 struct eth_spe *spe; 3863 u16 type; 3864 bool common = bnx2x_is_contextless_ramrod(command, cmd_type); 3865 3866 #ifdef BNX2X_STOP_ON_ERROR 3867 if (unlikely(bp->panic)) { 3868 BNX2X_ERR("Can't post SP when there is panic\n"); 3869 return -EIO; 3870 } 3871 #endif 3872 3873 spin_lock_bh(&bp->spq_lock); 3874 3875 if (common) { 3876 if (!atomic_read(&bp->eq_spq_left)) { 3877 BNX2X_ERR("BUG! EQ ring full!\n"); 3878 spin_unlock_bh(&bp->spq_lock); 3879 bnx2x_panic(); 3880 return -EBUSY; 3881 } 3882 } else if (!atomic_read(&bp->cq_spq_left)) { 3883 BNX2X_ERR("BUG! SPQ ring full!\n"); 3884 spin_unlock_bh(&bp->spq_lock); 3885 bnx2x_panic(); 3886 return -EBUSY; 3887 } 3888 3889 spe = bnx2x_sp_get_next(bp); 3890 3891 /* CID needs port number to be encoded int it */ 3892 spe->hdr.conn_and_cmd_data = 3893 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) | 3894 HW_CID(bp, cid)); 3895 3896 /* In some cases, type may already contain the func-id 3897 * mainly in SRIOV related use cases, so we add it here only 3898 * if it's not already set. 3899 */ 3900 if (!(cmd_type & SPE_HDR_FUNCTION_ID)) { 3901 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & 3902 SPE_HDR_CONN_TYPE; 3903 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) & 3904 SPE_HDR_FUNCTION_ID); 3905 } else { 3906 type = cmd_type; 3907 } 3908 3909 spe->hdr.type = cpu_to_le16(type); 3910 3911 spe->data.update_data_addr.hi = cpu_to_le32(data_hi); 3912 spe->data.update_data_addr.lo = cpu_to_le32(data_lo); 3913 3914 /* 3915 * It's ok if the actual decrement is issued towards the memory 3916 * somewhere between the spin_lock and spin_unlock. Thus no 3917 * more explicit memory barrier is needed. 3918 */ 3919 if (common) 3920 atomic_dec(&bp->eq_spq_left); 3921 else 3922 atomic_dec(&bp->cq_spq_left); 3923 3924 DP(BNX2X_MSG_SP, 3925 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n", 3926 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping), 3927 (u32)(U64_LO(bp->spq_mapping) + 3928 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common, 3929 HW_CID(bp, cid), data_hi, data_lo, type, 3930 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left)); 3931 3932 bnx2x_sp_prod_update(bp); 3933 spin_unlock_bh(&bp->spq_lock); 3934 return 0; 3935 } 3936 3937 /* acquire split MCP access lock register */ 3938 static int bnx2x_acquire_alr(struct bnx2x *bp) 3939 { 3940 u32 j, val; 3941 int rc = 0; 3942 3943 might_sleep(); 3944 for (j = 0; j < 1000; j++) { 3945 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK); 3946 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK); 3947 if (val & MCPR_ACCESS_LOCK_LOCK) 3948 break; 3949 3950 usleep_range(5000, 10000); 3951 } 3952 if (!(val & MCPR_ACCESS_LOCK_LOCK)) { 3953 BNX2X_ERR("Cannot acquire MCP access lock register\n"); 3954 rc = -EBUSY; 3955 } 3956 3957 return rc; 3958 } 3959 3960 /* release split MCP access lock register */ 3961 static void bnx2x_release_alr(struct bnx2x *bp) 3962 { 3963 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0); 3964 } 3965 3966 #define BNX2X_DEF_SB_ATT_IDX 0x0001 3967 #define BNX2X_DEF_SB_IDX 0x0002 3968 3969 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp) 3970 { 3971 struct host_sp_status_block *def_sb = bp->def_status_blk; 3972 u16 rc = 0; 3973 3974 barrier(); /* status block is written to by the chip */ 3975 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 3976 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index; 3977 rc |= BNX2X_DEF_SB_ATT_IDX; 3978 } 3979 3980 if (bp->def_idx != def_sb->sp_sb.running_index) { 3981 bp->def_idx = def_sb->sp_sb.running_index; 3982 rc |= BNX2X_DEF_SB_IDX; 3983 } 3984 3985 /* Do not reorder: indices reading should complete before handling */ 3986 barrier(); 3987 return rc; 3988 } 3989 3990 /* 3991 * slow path service functions 3992 */ 3993 3994 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted) 3995 { 3996 int port = BP_PORT(bp); 3997 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 3998 MISC_REG_AEU_MASK_ATTN_FUNC_0; 3999 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 4000 NIG_REG_MASK_INTERRUPT_PORT0; 4001 u32 aeu_mask; 4002 u32 nig_mask = 0; 4003 u32 reg_addr; 4004 4005 if (bp->attn_state & asserted) 4006 BNX2X_ERR("IGU ERROR\n"); 4007 4008 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 4009 aeu_mask = REG_RD(bp, aeu_addr); 4010 4011 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n", 4012 aeu_mask, asserted); 4013 aeu_mask &= ~(asserted & 0x3ff); 4014 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); 4015 4016 REG_WR(bp, aeu_addr, aeu_mask); 4017 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 4018 4019 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); 4020 bp->attn_state |= asserted; 4021 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); 4022 4023 if (asserted & ATTN_HARD_WIRED_MASK) { 4024 if (asserted & ATTN_NIG_FOR_FUNC) { 4025 4026 bnx2x_acquire_phy_lock(bp); 4027 4028 /* save nig interrupt mask */ 4029 nig_mask = REG_RD(bp, nig_int_mask_addr); 4030 4031 /* If nig_mask is not set, no need to call the update 4032 * function. 4033 */ 4034 if (nig_mask) { 4035 REG_WR(bp, nig_int_mask_addr, 0); 4036 4037 bnx2x_link_attn(bp); 4038 } 4039 4040 /* handle unicore attn? */ 4041 } 4042 if (asserted & ATTN_SW_TIMER_4_FUNC) 4043 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n"); 4044 4045 if (asserted & GPIO_2_FUNC) 4046 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n"); 4047 4048 if (asserted & GPIO_3_FUNC) 4049 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n"); 4050 4051 if (asserted & GPIO_4_FUNC) 4052 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n"); 4053 4054 if (port == 0) { 4055 if (asserted & ATTN_GENERAL_ATTN_1) { 4056 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n"); 4057 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 4058 } 4059 if (asserted & ATTN_GENERAL_ATTN_2) { 4060 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n"); 4061 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 4062 } 4063 if (asserted & ATTN_GENERAL_ATTN_3) { 4064 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n"); 4065 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 4066 } 4067 } else { 4068 if (asserted & ATTN_GENERAL_ATTN_4) { 4069 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n"); 4070 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 4071 } 4072 if (asserted & ATTN_GENERAL_ATTN_5) { 4073 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n"); 4074 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 4075 } 4076 if (asserted & ATTN_GENERAL_ATTN_6) { 4077 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n"); 4078 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 4079 } 4080 } 4081 4082 } /* if hardwired */ 4083 4084 if (bp->common.int_block == INT_BLOCK_HC) 4085 reg_addr = (HC_REG_COMMAND_REG + port*32 + 4086 COMMAND_REG_ATTN_BITS_SET); 4087 else 4088 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 4089 4090 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted, 4091 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 4092 REG_WR(bp, reg_addr, asserted); 4093 4094 /* now set back the mask */ 4095 if (asserted & ATTN_NIG_FOR_FUNC) { 4096 /* Verify that IGU ack through BAR was written before restoring 4097 * NIG mask. This loop should exit after 2-3 iterations max. 4098 */ 4099 if (bp->common.int_block != INT_BLOCK_HC) { 4100 u32 cnt = 0, igu_acked; 4101 do { 4102 igu_acked = REG_RD(bp, 4103 IGU_REG_ATTENTION_ACK_BITS); 4104 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 4105 (++cnt < MAX_IGU_ATTN_ACK_TO)); 4106 if (!igu_acked) 4107 DP(NETIF_MSG_HW, 4108 "Failed to verify IGU ack on time\n"); 4109 barrier(); 4110 } 4111 REG_WR(bp, nig_int_mask_addr, nig_mask); 4112 bnx2x_release_phy_lock(bp); 4113 } 4114 } 4115 4116 static void bnx2x_fan_failure(struct bnx2x *bp) 4117 { 4118 int port = BP_PORT(bp); 4119 u32 ext_phy_config; 4120 /* mark the failure */ 4121 ext_phy_config = 4122 SHMEM_RD(bp, 4123 dev_info.port_hw_config[port].external_phy_config); 4124 4125 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 4126 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 4127 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config, 4128 ext_phy_config); 4129 4130 /* log the failure */ 4131 netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n" 4132 "Please contact OEM Support for assistance\n"); 4133 4134 /* Schedule device reset (unload) 4135 * This is due to some boards consuming sufficient power when driver is 4136 * up to overheat if fan fails. 4137 */ 4138 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0); 4139 } 4140 4141 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn) 4142 { 4143 int port = BP_PORT(bp); 4144 int reg_offset; 4145 u32 val; 4146 4147 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 4148 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 4149 4150 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 4151 4152 val = REG_RD(bp, reg_offset); 4153 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 4154 REG_WR(bp, reg_offset, val); 4155 4156 BNX2X_ERR("SPIO5 hw attention\n"); 4157 4158 /* Fan failure attention */ 4159 bnx2x_hw_reset_phy(&bp->link_params); 4160 bnx2x_fan_failure(bp); 4161 } 4162 4163 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) { 4164 bnx2x_acquire_phy_lock(bp); 4165 bnx2x_handle_module_detect_int(&bp->link_params); 4166 bnx2x_release_phy_lock(bp); 4167 } 4168 4169 if (attn & HW_INTERRUPT_ASSERT_SET_0) { 4170 4171 val = REG_RD(bp, reg_offset); 4172 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0); 4173 REG_WR(bp, reg_offset, val); 4174 4175 BNX2X_ERR("FATAL HW block attention set0 0x%x\n", 4176 (u32)(attn & HW_INTERRUPT_ASSERT_SET_0)); 4177 bnx2x_panic(); 4178 } 4179 } 4180 4181 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn) 4182 { 4183 u32 val; 4184 4185 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 4186 4187 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR); 4188 BNX2X_ERR("DB hw attention 0x%x\n", val); 4189 /* DORQ discard attention */ 4190 if (val & 0x2) 4191 BNX2X_ERR("FATAL error from DORQ\n"); 4192 } 4193 4194 if (attn & HW_INTERRUPT_ASSERT_SET_1) { 4195 4196 int port = BP_PORT(bp); 4197 int reg_offset; 4198 4199 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 4200 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 4201 4202 val = REG_RD(bp, reg_offset); 4203 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1); 4204 REG_WR(bp, reg_offset, val); 4205 4206 BNX2X_ERR("FATAL HW block attention set1 0x%x\n", 4207 (u32)(attn & HW_INTERRUPT_ASSERT_SET_1)); 4208 bnx2x_panic(); 4209 } 4210 } 4211 4212 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn) 4213 { 4214 u32 val; 4215 4216 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 4217 4218 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR); 4219 BNX2X_ERR("CFC hw attention 0x%x\n", val); 4220 /* CFC error attention */ 4221 if (val & 0x2) 4222 BNX2X_ERR("FATAL error from CFC\n"); 4223 } 4224 4225 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 4226 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0); 4227 BNX2X_ERR("PXP hw attention-0 0x%x\n", val); 4228 /* RQ_USDMDP_FIFO_OVERFLOW */ 4229 if (val & 0x18000) 4230 BNX2X_ERR("FATAL error from PXP\n"); 4231 4232 if (!CHIP_IS_E1x(bp)) { 4233 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1); 4234 BNX2X_ERR("PXP hw attention-1 0x%x\n", val); 4235 } 4236 } 4237 4238 if (attn & HW_INTERRUPT_ASSERT_SET_2) { 4239 4240 int port = BP_PORT(bp); 4241 int reg_offset; 4242 4243 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 4244 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 4245 4246 val = REG_RD(bp, reg_offset); 4247 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2); 4248 REG_WR(bp, reg_offset, val); 4249 4250 BNX2X_ERR("FATAL HW block attention set2 0x%x\n", 4251 (u32)(attn & HW_INTERRUPT_ASSERT_SET_2)); 4252 bnx2x_panic(); 4253 } 4254 } 4255 4256 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn) 4257 { 4258 u32 val; 4259 4260 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 4261 4262 if (attn & BNX2X_PMF_LINK_ASSERT) { 4263 int func = BP_FUNC(bp); 4264 4265 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 4266 bnx2x_read_mf_cfg(bp); 4267 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp, 4268 func_mf_config[BP_ABS_FUNC(bp)].config); 4269 val = SHMEM_RD(bp, 4270 func_mb[BP_FW_MB_IDX(bp)].drv_status); 4271 4272 if (val & (DRV_STATUS_DCC_EVENT_MASK | 4273 DRV_STATUS_OEM_EVENT_MASK)) 4274 bnx2x_oem_event(bp, 4275 (val & (DRV_STATUS_DCC_EVENT_MASK | 4276 DRV_STATUS_OEM_EVENT_MASK))); 4277 4278 if (val & DRV_STATUS_SET_MF_BW) 4279 bnx2x_set_mf_bw(bp); 4280 4281 if (val & DRV_STATUS_DRV_INFO_REQ) 4282 bnx2x_handle_drv_info_req(bp); 4283 4284 if (val & DRV_STATUS_VF_DISABLED) 4285 bnx2x_schedule_iov_task(bp, 4286 BNX2X_IOV_HANDLE_FLR); 4287 4288 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF)) 4289 bnx2x_pmf_update(bp); 4290 4291 if (bp->port.pmf && 4292 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) && 4293 bp->dcbx_enabled > 0) 4294 /* start dcbx state machine */ 4295 bnx2x_dcbx_set_params(bp, 4296 BNX2X_DCBX_STATE_NEG_RECEIVED); 4297 if (val & DRV_STATUS_AFEX_EVENT_MASK) 4298 bnx2x_handle_afex_cmd(bp, 4299 val & DRV_STATUS_AFEX_EVENT_MASK); 4300 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 4301 bnx2x_handle_eee_event(bp); 4302 4303 if (val & DRV_STATUS_OEM_UPDATE_SVID) 4304 bnx2x_schedule_sp_rtnl(bp, 4305 BNX2X_SP_RTNL_UPDATE_SVID, 0); 4306 4307 if (bp->link_vars.periodic_flags & 4308 PERIODIC_FLAGS_LINK_EVENT) { 4309 /* sync with link */ 4310 bnx2x_acquire_phy_lock(bp); 4311 bp->link_vars.periodic_flags &= 4312 ~PERIODIC_FLAGS_LINK_EVENT; 4313 bnx2x_release_phy_lock(bp); 4314 if (IS_MF(bp)) 4315 bnx2x_link_sync_notify(bp); 4316 bnx2x_link_report(bp); 4317 } 4318 /* Always call it here: bnx2x_link_report() will 4319 * prevent the link indication duplication. 4320 */ 4321 bnx2x__link_status_update(bp); 4322 } else if (attn & BNX2X_MC_ASSERT_BITS) { 4323 4324 BNX2X_ERR("MC assert!\n"); 4325 bnx2x_mc_assert(bp); 4326 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0); 4327 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0); 4328 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0); 4329 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0); 4330 bnx2x_panic(); 4331 4332 } else if (attn & BNX2X_MCP_ASSERT) { 4333 4334 BNX2X_ERR("MCP assert!\n"); 4335 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0); 4336 bnx2x_fw_dump(bp); 4337 4338 } else 4339 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn); 4340 } 4341 4342 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 4343 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn); 4344 if (attn & BNX2X_GRC_TIMEOUT) { 4345 val = CHIP_IS_E1(bp) ? 0 : 4346 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN); 4347 BNX2X_ERR("GRC time-out 0x%08x\n", val); 4348 } 4349 if (attn & BNX2X_GRC_RSV) { 4350 val = CHIP_IS_E1(bp) ? 0 : 4351 REG_RD(bp, MISC_REG_GRC_RSV_ATTN); 4352 BNX2X_ERR("GRC reserved 0x%08x\n", val); 4353 } 4354 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 4355 } 4356 } 4357 4358 /* 4359 * Bits map: 4360 * 0-7 - Engine0 load counter. 4361 * 8-15 - Engine1 load counter. 4362 * 16 - Engine0 RESET_IN_PROGRESS bit. 4363 * 17 - Engine1 RESET_IN_PROGRESS bit. 4364 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function 4365 * on the engine 4366 * 19 - Engine1 ONE_IS_LOADED. 4367 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 4368 * leader to complete (check for both RESET_IN_PROGRESS bits and not for 4369 * just the one belonging to its engine). 4370 * 4371 */ 4372 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 4373 4374 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff 4375 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0 4376 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00 4377 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8 4378 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000 4379 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000 4380 #define BNX2X_GLOBAL_RESET_BIT 0x00040000 4381 4382 /* 4383 * Set the GLOBAL_RESET bit. 4384 * 4385 * Should be run under rtnl lock 4386 */ 4387 void bnx2x_set_reset_global(struct bnx2x *bp) 4388 { 4389 u32 val; 4390 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4391 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4392 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT); 4393 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4394 } 4395 4396 /* 4397 * Clear the GLOBAL_RESET bit. 4398 * 4399 * Should be run under rtnl lock 4400 */ 4401 static void bnx2x_clear_reset_global(struct bnx2x *bp) 4402 { 4403 u32 val; 4404 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4405 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4406 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT)); 4407 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4408 } 4409 4410 /* 4411 * Checks the GLOBAL_RESET bit. 4412 * 4413 * should be run under rtnl lock 4414 */ 4415 static bool bnx2x_reset_is_global(struct bnx2x *bp) 4416 { 4417 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4418 4419 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val); 4420 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false; 4421 } 4422 4423 /* 4424 * Clear RESET_IN_PROGRESS bit for the current engine. 4425 * 4426 * Should be run under rtnl lock 4427 */ 4428 static void bnx2x_set_reset_done(struct bnx2x *bp) 4429 { 4430 u32 val; 4431 u32 bit = BP_PATH(bp) ? 4432 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4433 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4434 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4435 4436 /* Clear the bit */ 4437 val &= ~bit; 4438 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4439 4440 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4441 } 4442 4443 /* 4444 * Set RESET_IN_PROGRESS for the current engine. 4445 * 4446 * should be run under rtnl lock 4447 */ 4448 void bnx2x_set_reset_in_progress(struct bnx2x *bp) 4449 { 4450 u32 val; 4451 u32 bit = BP_PATH(bp) ? 4452 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4453 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4454 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4455 4456 /* Set the bit */ 4457 val |= bit; 4458 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4459 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4460 } 4461 4462 /* 4463 * Checks the RESET_IN_PROGRESS bit for the given engine. 4464 * should be run under rtnl lock 4465 */ 4466 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine) 4467 { 4468 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4469 u32 bit = engine ? 4470 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4471 4472 /* return false if bit is set */ 4473 return (val & bit) ? false : true; 4474 } 4475 4476 /* 4477 * set pf load for the current pf. 4478 * 4479 * should be run under rtnl lock 4480 */ 4481 void bnx2x_set_pf_load(struct bnx2x *bp) 4482 { 4483 u32 val1, val; 4484 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : 4485 BNX2X_PATH0_LOAD_CNT_MASK; 4486 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4487 BNX2X_PATH0_LOAD_CNT_SHIFT; 4488 4489 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4490 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4491 4492 DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val); 4493 4494 /* get the current counter value */ 4495 val1 = (val & mask) >> shift; 4496 4497 /* set bit of that PF */ 4498 val1 |= (1 << bp->pf_num); 4499 4500 /* clear the old value */ 4501 val &= ~mask; 4502 4503 /* set the new one */ 4504 val |= ((val1 << shift) & mask); 4505 4506 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4507 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4508 } 4509 4510 /** 4511 * bnx2x_clear_pf_load - clear pf load mark 4512 * 4513 * @bp: driver handle 4514 * 4515 * Should be run under rtnl lock. 4516 * Decrements the load counter for the current engine. Returns 4517 * whether other functions are still loaded 4518 */ 4519 bool bnx2x_clear_pf_load(struct bnx2x *bp) 4520 { 4521 u32 val1, val; 4522 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : 4523 BNX2X_PATH0_LOAD_CNT_MASK; 4524 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4525 BNX2X_PATH0_LOAD_CNT_SHIFT; 4526 4527 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4528 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4529 DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val); 4530 4531 /* get the current counter value */ 4532 val1 = (val & mask) >> shift; 4533 4534 /* clear bit of that PF */ 4535 val1 &= ~(1 << bp->pf_num); 4536 4537 /* clear the old value */ 4538 val &= ~mask; 4539 4540 /* set the new one */ 4541 val |= ((val1 << shift) & mask); 4542 4543 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4544 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4545 return val1 != 0; 4546 } 4547 4548 /* 4549 * Read the load status for the current engine. 4550 * 4551 * should be run under rtnl lock 4552 */ 4553 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine) 4554 { 4555 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK : 4556 BNX2X_PATH0_LOAD_CNT_MASK); 4557 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4558 BNX2X_PATH0_LOAD_CNT_SHIFT); 4559 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4560 4561 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val); 4562 4563 val = (val & mask) >> shift; 4564 4565 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n", 4566 engine, val); 4567 4568 return val != 0; 4569 } 4570 4571 static void _print_parity(struct bnx2x *bp, u32 reg) 4572 { 4573 pr_cont(" [0x%08x] ", REG_RD(bp, reg)); 4574 } 4575 4576 static void _print_next_block(int idx, const char *blk) 4577 { 4578 pr_cont("%s%s", idx ? ", " : "", blk); 4579 } 4580 4581 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig, 4582 int *par_num, bool print) 4583 { 4584 u32 cur_bit; 4585 bool res; 4586 int i; 4587 4588 res = false; 4589 4590 for (i = 0; sig; i++) { 4591 cur_bit = (0x1UL << i); 4592 if (sig & cur_bit) { 4593 res |= true; /* Each bit is real error! */ 4594 4595 if (print) { 4596 switch (cur_bit) { 4597 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 4598 _print_next_block((*par_num)++, "BRB"); 4599 _print_parity(bp, 4600 BRB1_REG_BRB1_PRTY_STS); 4601 break; 4602 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 4603 _print_next_block((*par_num)++, 4604 "PARSER"); 4605 _print_parity(bp, PRS_REG_PRS_PRTY_STS); 4606 break; 4607 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 4608 _print_next_block((*par_num)++, "TSDM"); 4609 _print_parity(bp, 4610 TSDM_REG_TSDM_PRTY_STS); 4611 break; 4612 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 4613 _print_next_block((*par_num)++, 4614 "SEARCHER"); 4615 _print_parity(bp, SRC_REG_SRC_PRTY_STS); 4616 break; 4617 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 4618 _print_next_block((*par_num)++, "TCM"); 4619 _print_parity(bp, TCM_REG_TCM_PRTY_STS); 4620 break; 4621 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 4622 _print_next_block((*par_num)++, 4623 "TSEMI"); 4624 _print_parity(bp, 4625 TSEM_REG_TSEM_PRTY_STS_0); 4626 _print_parity(bp, 4627 TSEM_REG_TSEM_PRTY_STS_1); 4628 break; 4629 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 4630 _print_next_block((*par_num)++, "XPB"); 4631 _print_parity(bp, GRCBASE_XPB + 4632 PB_REG_PB_PRTY_STS); 4633 break; 4634 } 4635 } 4636 4637 /* Clear the bit */ 4638 sig &= ~cur_bit; 4639 } 4640 } 4641 4642 return res; 4643 } 4644 4645 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig, 4646 int *par_num, bool *global, 4647 bool print) 4648 { 4649 u32 cur_bit; 4650 bool res; 4651 int i; 4652 4653 res = false; 4654 4655 for (i = 0; sig; i++) { 4656 cur_bit = (0x1UL << i); 4657 if (sig & cur_bit) { 4658 res |= true; /* Each bit is real error! */ 4659 switch (cur_bit) { 4660 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 4661 if (print) { 4662 _print_next_block((*par_num)++, "PBF"); 4663 _print_parity(bp, PBF_REG_PBF_PRTY_STS); 4664 } 4665 break; 4666 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 4667 if (print) { 4668 _print_next_block((*par_num)++, "QM"); 4669 _print_parity(bp, QM_REG_QM_PRTY_STS); 4670 } 4671 break; 4672 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 4673 if (print) { 4674 _print_next_block((*par_num)++, "TM"); 4675 _print_parity(bp, TM_REG_TM_PRTY_STS); 4676 } 4677 break; 4678 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 4679 if (print) { 4680 _print_next_block((*par_num)++, "XSDM"); 4681 _print_parity(bp, 4682 XSDM_REG_XSDM_PRTY_STS); 4683 } 4684 break; 4685 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 4686 if (print) { 4687 _print_next_block((*par_num)++, "XCM"); 4688 _print_parity(bp, XCM_REG_XCM_PRTY_STS); 4689 } 4690 break; 4691 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 4692 if (print) { 4693 _print_next_block((*par_num)++, 4694 "XSEMI"); 4695 _print_parity(bp, 4696 XSEM_REG_XSEM_PRTY_STS_0); 4697 _print_parity(bp, 4698 XSEM_REG_XSEM_PRTY_STS_1); 4699 } 4700 break; 4701 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 4702 if (print) { 4703 _print_next_block((*par_num)++, 4704 "DOORBELLQ"); 4705 _print_parity(bp, 4706 DORQ_REG_DORQ_PRTY_STS); 4707 } 4708 break; 4709 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 4710 if (print) { 4711 _print_next_block((*par_num)++, "NIG"); 4712 if (CHIP_IS_E1x(bp)) { 4713 _print_parity(bp, 4714 NIG_REG_NIG_PRTY_STS); 4715 } else { 4716 _print_parity(bp, 4717 NIG_REG_NIG_PRTY_STS_0); 4718 _print_parity(bp, 4719 NIG_REG_NIG_PRTY_STS_1); 4720 } 4721 } 4722 break; 4723 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 4724 if (print) 4725 _print_next_block((*par_num)++, 4726 "VAUX PCI CORE"); 4727 *global = true; 4728 break; 4729 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 4730 if (print) { 4731 _print_next_block((*par_num)++, 4732 "DEBUG"); 4733 _print_parity(bp, DBG_REG_DBG_PRTY_STS); 4734 } 4735 break; 4736 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 4737 if (print) { 4738 _print_next_block((*par_num)++, "USDM"); 4739 _print_parity(bp, 4740 USDM_REG_USDM_PRTY_STS); 4741 } 4742 break; 4743 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 4744 if (print) { 4745 _print_next_block((*par_num)++, "UCM"); 4746 _print_parity(bp, UCM_REG_UCM_PRTY_STS); 4747 } 4748 break; 4749 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 4750 if (print) { 4751 _print_next_block((*par_num)++, 4752 "USEMI"); 4753 _print_parity(bp, 4754 USEM_REG_USEM_PRTY_STS_0); 4755 _print_parity(bp, 4756 USEM_REG_USEM_PRTY_STS_1); 4757 } 4758 break; 4759 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 4760 if (print) { 4761 _print_next_block((*par_num)++, "UPB"); 4762 _print_parity(bp, GRCBASE_UPB + 4763 PB_REG_PB_PRTY_STS); 4764 } 4765 break; 4766 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 4767 if (print) { 4768 _print_next_block((*par_num)++, "CSDM"); 4769 _print_parity(bp, 4770 CSDM_REG_CSDM_PRTY_STS); 4771 } 4772 break; 4773 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 4774 if (print) { 4775 _print_next_block((*par_num)++, "CCM"); 4776 _print_parity(bp, CCM_REG_CCM_PRTY_STS); 4777 } 4778 break; 4779 } 4780 4781 /* Clear the bit */ 4782 sig &= ~cur_bit; 4783 } 4784 } 4785 4786 return res; 4787 } 4788 4789 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig, 4790 int *par_num, bool print) 4791 { 4792 u32 cur_bit; 4793 bool res; 4794 int i; 4795 4796 res = false; 4797 4798 for (i = 0; sig; i++) { 4799 cur_bit = (0x1UL << i); 4800 if (sig & cur_bit) { 4801 res = true; /* Each bit is real error! */ 4802 if (print) { 4803 switch (cur_bit) { 4804 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 4805 _print_next_block((*par_num)++, 4806 "CSEMI"); 4807 _print_parity(bp, 4808 CSEM_REG_CSEM_PRTY_STS_0); 4809 _print_parity(bp, 4810 CSEM_REG_CSEM_PRTY_STS_1); 4811 break; 4812 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 4813 _print_next_block((*par_num)++, "PXP"); 4814 _print_parity(bp, PXP_REG_PXP_PRTY_STS); 4815 _print_parity(bp, 4816 PXP2_REG_PXP2_PRTY_STS_0); 4817 _print_parity(bp, 4818 PXP2_REG_PXP2_PRTY_STS_1); 4819 break; 4820 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 4821 _print_next_block((*par_num)++, 4822 "PXPPCICLOCKCLIENT"); 4823 break; 4824 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 4825 _print_next_block((*par_num)++, "CFC"); 4826 _print_parity(bp, 4827 CFC_REG_CFC_PRTY_STS); 4828 break; 4829 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 4830 _print_next_block((*par_num)++, "CDU"); 4831 _print_parity(bp, CDU_REG_CDU_PRTY_STS); 4832 break; 4833 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 4834 _print_next_block((*par_num)++, "DMAE"); 4835 _print_parity(bp, 4836 DMAE_REG_DMAE_PRTY_STS); 4837 break; 4838 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 4839 _print_next_block((*par_num)++, "IGU"); 4840 if (CHIP_IS_E1x(bp)) 4841 _print_parity(bp, 4842 HC_REG_HC_PRTY_STS); 4843 else 4844 _print_parity(bp, 4845 IGU_REG_IGU_PRTY_STS); 4846 break; 4847 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 4848 _print_next_block((*par_num)++, "MISC"); 4849 _print_parity(bp, 4850 MISC_REG_MISC_PRTY_STS); 4851 break; 4852 } 4853 } 4854 4855 /* Clear the bit */ 4856 sig &= ~cur_bit; 4857 } 4858 } 4859 4860 return res; 4861 } 4862 4863 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig, 4864 int *par_num, bool *global, 4865 bool print) 4866 { 4867 bool res = false; 4868 u32 cur_bit; 4869 int i; 4870 4871 for (i = 0; sig; i++) { 4872 cur_bit = (0x1UL << i); 4873 if (sig & cur_bit) { 4874 switch (cur_bit) { 4875 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 4876 if (print) 4877 _print_next_block((*par_num)++, 4878 "MCP ROM"); 4879 *global = true; 4880 res = true; 4881 break; 4882 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 4883 if (print) 4884 _print_next_block((*par_num)++, 4885 "MCP UMP RX"); 4886 *global = true; 4887 res = true; 4888 break; 4889 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 4890 if (print) 4891 _print_next_block((*par_num)++, 4892 "MCP UMP TX"); 4893 *global = true; 4894 res = true; 4895 break; 4896 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 4897 (*par_num)++; 4898 /* clear latched SCPAD PATIRY from MCP */ 4899 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 4900 1UL << 10); 4901 break; 4902 } 4903 4904 /* Clear the bit */ 4905 sig &= ~cur_bit; 4906 } 4907 } 4908 4909 return res; 4910 } 4911 4912 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig, 4913 int *par_num, bool print) 4914 { 4915 u32 cur_bit; 4916 bool res; 4917 int i; 4918 4919 res = false; 4920 4921 for (i = 0; sig; i++) { 4922 cur_bit = (0x1UL << i); 4923 if (sig & cur_bit) { 4924 res = true; /* Each bit is real error! */ 4925 if (print) { 4926 switch (cur_bit) { 4927 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 4928 _print_next_block((*par_num)++, 4929 "PGLUE_B"); 4930 _print_parity(bp, 4931 PGLUE_B_REG_PGLUE_B_PRTY_STS); 4932 break; 4933 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 4934 _print_next_block((*par_num)++, "ATC"); 4935 _print_parity(bp, 4936 ATC_REG_ATC_PRTY_STS); 4937 break; 4938 } 4939 } 4940 /* Clear the bit */ 4941 sig &= ~cur_bit; 4942 } 4943 } 4944 4945 return res; 4946 } 4947 4948 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print, 4949 u32 *sig) 4950 { 4951 bool res = false; 4952 4953 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 4954 (sig[1] & HW_PRTY_ASSERT_SET_1) || 4955 (sig[2] & HW_PRTY_ASSERT_SET_2) || 4956 (sig[3] & HW_PRTY_ASSERT_SET_3) || 4957 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 4958 int par_num = 0; 4959 4960 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n" 4961 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 4962 sig[0] & HW_PRTY_ASSERT_SET_0, 4963 sig[1] & HW_PRTY_ASSERT_SET_1, 4964 sig[2] & HW_PRTY_ASSERT_SET_2, 4965 sig[3] & HW_PRTY_ASSERT_SET_3, 4966 sig[4] & HW_PRTY_ASSERT_SET_4); 4967 if (print) { 4968 if (((sig[0] & HW_PRTY_ASSERT_SET_0) || 4969 (sig[1] & HW_PRTY_ASSERT_SET_1) || 4970 (sig[2] & HW_PRTY_ASSERT_SET_2) || 4971 (sig[4] & HW_PRTY_ASSERT_SET_4)) || 4972 (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) { 4973 netdev_err(bp->dev, 4974 "Parity errors detected in blocks: "); 4975 } else { 4976 print = false; 4977 } 4978 } 4979 res |= bnx2x_check_blocks_with_parity0(bp, 4980 sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print); 4981 res |= bnx2x_check_blocks_with_parity1(bp, 4982 sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print); 4983 res |= bnx2x_check_blocks_with_parity2(bp, 4984 sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print); 4985 res |= bnx2x_check_blocks_with_parity3(bp, 4986 sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print); 4987 res |= bnx2x_check_blocks_with_parity4(bp, 4988 sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print); 4989 4990 if (print) 4991 pr_cont("\n"); 4992 } 4993 4994 return res; 4995 } 4996 4997 /** 4998 * bnx2x_chk_parity_attn - checks for parity attentions. 4999 * 5000 * @bp: driver handle 5001 * @global: true if there was a global attention 5002 * @print: show parity attention in syslog 5003 */ 5004 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print) 5005 { 5006 struct attn_route attn = { {0} }; 5007 int port = BP_PORT(bp); 5008 5009 attn.sig[0] = REG_RD(bp, 5010 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 5011 port*4); 5012 attn.sig[1] = REG_RD(bp, 5013 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + 5014 port*4); 5015 attn.sig[2] = REG_RD(bp, 5016 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + 5017 port*4); 5018 attn.sig[3] = REG_RD(bp, 5019 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + 5020 port*4); 5021 /* Since MCP attentions can't be disabled inside the block, we need to 5022 * read AEU registers to see whether they're currently disabled 5023 */ 5024 attn.sig[3] &= ((REG_RD(bp, 5025 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0 5026 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) & 5027 MISC_AEU_ENABLE_MCP_PRTY_BITS) | 5028 ~MISC_AEU_ENABLE_MCP_PRTY_BITS); 5029 5030 if (!CHIP_IS_E1x(bp)) 5031 attn.sig[4] = REG_RD(bp, 5032 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + 5033 port*4); 5034 5035 return bnx2x_parity_attn(bp, global, print, attn.sig); 5036 } 5037 5038 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn) 5039 { 5040 u32 val; 5041 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 5042 5043 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 5044 BNX2X_ERR("PGLUE hw attention 0x%x\n", val); 5045 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 5046 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 5047 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 5048 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 5049 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 5050 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 5051 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 5052 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 5053 if (val & 5054 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 5055 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 5056 if (val & 5057 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 5058 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 5059 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 5060 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 5061 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 5062 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 5063 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 5064 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 5065 } 5066 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 5067 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR); 5068 BNX2X_ERR("ATC hw attention 0x%x\n", val); 5069 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 5070 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 5071 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 5072 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 5073 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 5074 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 5075 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 5076 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 5077 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 5078 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 5079 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 5080 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 5081 } 5082 5083 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 5084 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 5085 BNX2X_ERR("FATAL parity attention set4 0x%x\n", 5086 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 5087 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 5088 } 5089 } 5090 5091 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted) 5092 { 5093 struct attn_route attn, *group_mask; 5094 int port = BP_PORT(bp); 5095 int index; 5096 u32 reg_addr; 5097 u32 val; 5098 u32 aeu_mask; 5099 bool global = false; 5100 5101 /* need to take HW lock because MCP or other port might also 5102 try to handle this event */ 5103 bnx2x_acquire_alr(bp); 5104 5105 if (bnx2x_chk_parity_attn(bp, &global, true)) { 5106 #ifndef BNX2X_STOP_ON_ERROR 5107 bp->recovery_state = BNX2X_RECOVERY_INIT; 5108 schedule_delayed_work(&bp->sp_rtnl_task, 0); 5109 /* Disable HW interrupts */ 5110 bnx2x_int_disable(bp); 5111 /* In case of parity errors don't handle attentions so that 5112 * other function would "see" parity errors. 5113 */ 5114 #else 5115 bnx2x_panic(); 5116 #endif 5117 bnx2x_release_alr(bp); 5118 return; 5119 } 5120 5121 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 5122 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 5123 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 5124 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 5125 if (!CHIP_IS_E1x(bp)) 5126 attn.sig[4] = 5127 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 5128 else 5129 attn.sig[4] = 0; 5130 5131 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n", 5132 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 5133 5134 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 5135 if (deasserted & (1 << index)) { 5136 group_mask = &bp->attn_group[index]; 5137 5138 DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n", 5139 index, 5140 group_mask->sig[0], group_mask->sig[1], 5141 group_mask->sig[2], group_mask->sig[3], 5142 group_mask->sig[4]); 5143 5144 bnx2x_attn_int_deasserted4(bp, 5145 attn.sig[4] & group_mask->sig[4]); 5146 bnx2x_attn_int_deasserted3(bp, 5147 attn.sig[3] & group_mask->sig[3]); 5148 bnx2x_attn_int_deasserted1(bp, 5149 attn.sig[1] & group_mask->sig[1]); 5150 bnx2x_attn_int_deasserted2(bp, 5151 attn.sig[2] & group_mask->sig[2]); 5152 bnx2x_attn_int_deasserted0(bp, 5153 attn.sig[0] & group_mask->sig[0]); 5154 } 5155 } 5156 5157 bnx2x_release_alr(bp); 5158 5159 if (bp->common.int_block == INT_BLOCK_HC) 5160 reg_addr = (HC_REG_COMMAND_REG + port*32 + 5161 COMMAND_REG_ATTN_BITS_CLR); 5162 else 5163 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 5164 5165 val = ~deasserted; 5166 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val, 5167 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 5168 REG_WR(bp, reg_addr, val); 5169 5170 if (~bp->attn_state & deasserted) 5171 BNX2X_ERR("IGU ERROR\n"); 5172 5173 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 5174 MISC_REG_AEU_MASK_ATTN_FUNC_0; 5175 5176 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 5177 aeu_mask = REG_RD(bp, reg_addr); 5178 5179 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n", 5180 aeu_mask, deasserted); 5181 aeu_mask |= (deasserted & 0x3ff); 5182 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); 5183 5184 REG_WR(bp, reg_addr, aeu_mask); 5185 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 5186 5187 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); 5188 bp->attn_state &= ~deasserted; 5189 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); 5190 } 5191 5192 static void bnx2x_attn_int(struct bnx2x *bp) 5193 { 5194 /* read local copy of bits */ 5195 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block. 5196 attn_bits); 5197 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block. 5198 attn_bits_ack); 5199 u32 attn_state = bp->attn_state; 5200 5201 /* look for changed bits */ 5202 u32 asserted = attn_bits & ~attn_ack & ~attn_state; 5203 u32 deasserted = ~attn_bits & attn_ack & attn_state; 5204 5205 DP(NETIF_MSG_HW, 5206 "attn_bits %x attn_ack %x asserted %x deasserted %x\n", 5207 attn_bits, attn_ack, asserted, deasserted); 5208 5209 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) 5210 BNX2X_ERR("BAD attention state\n"); 5211 5212 /* handle bits that were raised */ 5213 if (asserted) 5214 bnx2x_attn_int_asserted(bp, asserted); 5215 5216 if (deasserted) 5217 bnx2x_attn_int_deasserted(bp, deasserted); 5218 } 5219 5220 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment, 5221 u16 index, u8 op, u8 update) 5222 { 5223 u32 igu_addr = bp->igu_base_addr; 5224 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 5225 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update, 5226 igu_addr); 5227 } 5228 5229 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod) 5230 { 5231 /* No memory barriers */ 5232 storm_memset_eq_prod(bp, prod, BP_FUNC(bp)); 5233 } 5234 5235 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid, 5236 union event_ring_elem *elem) 5237 { 5238 u8 err = elem->message.error; 5239 5240 if (!bp->cnic_eth_dev.starting_cid || 5241 (cid < bp->cnic_eth_dev.starting_cid && 5242 cid != bp->cnic_eth_dev.iscsi_l2_cid)) 5243 return 1; 5244 5245 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid); 5246 5247 if (unlikely(err)) { 5248 5249 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n", 5250 cid); 5251 bnx2x_panic_dump(bp, false); 5252 } 5253 bnx2x_cnic_cfc_comp(bp, cid, err); 5254 return 0; 5255 } 5256 5257 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp) 5258 { 5259 struct bnx2x_mcast_ramrod_params rparam; 5260 int rc; 5261 5262 memset(&rparam, 0, sizeof(rparam)); 5263 5264 rparam.mcast_obj = &bp->mcast_obj; 5265 5266 netif_addr_lock_bh(bp->dev); 5267 5268 /* Clear pending state for the last command */ 5269 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw); 5270 5271 /* If there are pending mcast commands - send them */ 5272 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) { 5273 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 5274 if (rc < 0) 5275 BNX2X_ERR("Failed to send pending mcast commands: %d\n", 5276 rc); 5277 } 5278 5279 netif_addr_unlock_bh(bp->dev); 5280 } 5281 5282 static void bnx2x_handle_classification_eqe(struct bnx2x *bp, 5283 union event_ring_elem *elem) 5284 { 5285 unsigned long ramrod_flags = 0; 5286 int rc = 0; 5287 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo); 5288 u32 cid = echo & BNX2X_SWCID_MASK; 5289 struct bnx2x_vlan_mac_obj *vlan_mac_obj; 5290 5291 /* Always push next commands out, don't wait here */ 5292 __set_bit(RAMROD_CONT, &ramrod_flags); 5293 5294 switch (echo >> BNX2X_SWCID_SHIFT) { 5295 case BNX2X_FILTER_MAC_PENDING: 5296 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n"); 5297 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp))) 5298 vlan_mac_obj = &bp->iscsi_l2_mac_obj; 5299 else 5300 vlan_mac_obj = &bp->sp_objs[cid].mac_obj; 5301 5302 break; 5303 case BNX2X_FILTER_VLAN_PENDING: 5304 DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n"); 5305 vlan_mac_obj = &bp->sp_objs[cid].vlan_obj; 5306 break; 5307 case BNX2X_FILTER_MCAST_PENDING: 5308 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n"); 5309 /* This is only relevant for 57710 where multicast MACs are 5310 * configured as unicast MACs using the same ramrod. 5311 */ 5312 bnx2x_handle_mcast_eqe(bp); 5313 return; 5314 default: 5315 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo); 5316 return; 5317 } 5318 5319 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags); 5320 5321 if (rc < 0) 5322 BNX2X_ERR("Failed to schedule new commands: %d\n", rc); 5323 else if (rc > 0) 5324 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n"); 5325 } 5326 5327 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start); 5328 5329 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp) 5330 { 5331 netif_addr_lock_bh(bp->dev); 5332 5333 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); 5334 5335 /* Send rx_mode command again if was requested */ 5336 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state)) 5337 bnx2x_set_storm_rx_mode(bp); 5338 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, 5339 &bp->sp_state)) 5340 bnx2x_set_iscsi_eth_rx_mode(bp, true); 5341 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, 5342 &bp->sp_state)) 5343 bnx2x_set_iscsi_eth_rx_mode(bp, false); 5344 5345 netif_addr_unlock_bh(bp->dev); 5346 } 5347 5348 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp, 5349 union event_ring_elem *elem) 5350 { 5351 if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) { 5352 DP(BNX2X_MSG_SP, 5353 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n", 5354 elem->message.data.vif_list_event.func_bit_map); 5355 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK, 5356 elem->message.data.vif_list_event.func_bit_map); 5357 } else if (elem->message.data.vif_list_event.echo == 5358 VIF_LIST_RULE_SET) { 5359 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n"); 5360 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0); 5361 } 5362 } 5363 5364 /* called with rtnl_lock */ 5365 static void bnx2x_after_function_update(struct bnx2x *bp) 5366 { 5367 int q, rc; 5368 struct bnx2x_fastpath *fp; 5369 struct bnx2x_queue_state_params queue_params = {NULL}; 5370 struct bnx2x_queue_update_params *q_update_params = 5371 &queue_params.params.update; 5372 5373 /* Send Q update command with afex vlan removal values for all Qs */ 5374 queue_params.cmd = BNX2X_Q_CMD_UPDATE; 5375 5376 /* set silent vlan removal values according to vlan mode */ 5377 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG, 5378 &q_update_params->update_flags); 5379 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, 5380 &q_update_params->update_flags); 5381 __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); 5382 5383 /* in access mode mark mask and value are 0 to strip all vlans */ 5384 if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) { 5385 q_update_params->silent_removal_value = 0; 5386 q_update_params->silent_removal_mask = 0; 5387 } else { 5388 q_update_params->silent_removal_value = 5389 (bp->afex_def_vlan_tag & VLAN_VID_MASK); 5390 q_update_params->silent_removal_mask = VLAN_VID_MASK; 5391 } 5392 5393 for_each_eth_queue(bp, q) { 5394 /* Set the appropriate Queue object */ 5395 fp = &bp->fp[q]; 5396 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 5397 5398 /* send the ramrod */ 5399 rc = bnx2x_queue_state_change(bp, &queue_params); 5400 if (rc < 0) 5401 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", 5402 q); 5403 } 5404 5405 if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) { 5406 fp = &bp->fp[FCOE_IDX(bp)]; 5407 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 5408 5409 /* clear pending completion bit */ 5410 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); 5411 5412 /* mark latest Q bit */ 5413 smp_mb__before_atomic(); 5414 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); 5415 smp_mb__after_atomic(); 5416 5417 /* send Q update ramrod for FCoE Q */ 5418 rc = bnx2x_queue_state_change(bp, &queue_params); 5419 if (rc < 0) 5420 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", 5421 q); 5422 } else { 5423 /* If no FCoE ring - ACK MCP now */ 5424 bnx2x_link_report(bp); 5425 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 5426 } 5427 } 5428 5429 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj( 5430 struct bnx2x *bp, u32 cid) 5431 { 5432 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid); 5433 5434 if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp))) 5435 return &bnx2x_fcoe_sp_obj(bp, q_obj); 5436 else 5437 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj; 5438 } 5439 5440 static void bnx2x_eq_int(struct bnx2x *bp) 5441 { 5442 u16 hw_cons, sw_cons, sw_prod; 5443 union event_ring_elem *elem; 5444 u8 echo; 5445 u32 cid; 5446 u8 opcode; 5447 int rc, spqe_cnt = 0; 5448 struct bnx2x_queue_sp_obj *q_obj; 5449 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj; 5450 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw; 5451 5452 hw_cons = le16_to_cpu(*bp->eq_cons_sb); 5453 5454 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256. 5455 * when we get the next-page we need to adjust so the loop 5456 * condition below will be met. The next element is the size of a 5457 * regular element and hence incrementing by 1 5458 */ 5459 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) 5460 hw_cons++; 5461 5462 /* This function may never run in parallel with itself for a 5463 * specific bp, thus there is no need in "paired" read memory 5464 * barrier here. 5465 */ 5466 sw_cons = bp->eq_cons; 5467 sw_prod = bp->eq_prod; 5468 5469 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n", 5470 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left)); 5471 5472 for (; sw_cons != hw_cons; 5473 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 5474 5475 elem = &bp->eq_ring[EQ_DESC(sw_cons)]; 5476 5477 rc = bnx2x_iov_eq_sp_event(bp, elem); 5478 if (!rc) { 5479 DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n", 5480 rc); 5481 goto next_spqe; 5482 } 5483 5484 opcode = elem->message.opcode; 5485 5486 /* handle eq element */ 5487 switch (opcode) { 5488 case EVENT_RING_OPCODE_VF_PF_CHANNEL: 5489 bnx2x_vf_mbx_schedule(bp, 5490 &elem->message.data.vf_pf_event); 5491 continue; 5492 5493 case EVENT_RING_OPCODE_STAT_QUERY: 5494 DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS), 5495 "got statistics comp event %d\n", 5496 bp->stats_comp++); 5497 /* nothing to do with stats comp */ 5498 goto next_spqe; 5499 5500 case EVENT_RING_OPCODE_CFC_DEL: 5501 /* handle according to cid range */ 5502 /* 5503 * we may want to verify here that the bp state is 5504 * HALTING 5505 */ 5506 5507 /* elem CID originates from FW; actually LE */ 5508 cid = SW_CID(elem->message.data.cfc_del_event.cid); 5509 5510 DP(BNX2X_MSG_SP, 5511 "got delete ramrod for MULTI[%d]\n", cid); 5512 5513 if (CNIC_LOADED(bp) && 5514 !bnx2x_cnic_handle_cfc_del(bp, cid, elem)) 5515 goto next_spqe; 5516 5517 q_obj = bnx2x_cid_to_q_obj(bp, cid); 5518 5519 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL)) 5520 break; 5521 5522 goto next_spqe; 5523 5524 case EVENT_RING_OPCODE_STOP_TRAFFIC: 5525 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n"); 5526 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED); 5527 if (f_obj->complete_cmd(bp, f_obj, 5528 BNX2X_F_CMD_TX_STOP)) 5529 break; 5530 goto next_spqe; 5531 5532 case EVENT_RING_OPCODE_START_TRAFFIC: 5533 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n"); 5534 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED); 5535 if (f_obj->complete_cmd(bp, f_obj, 5536 BNX2X_F_CMD_TX_START)) 5537 break; 5538 goto next_spqe; 5539 5540 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 5541 echo = elem->message.data.function_update_event.echo; 5542 if (echo == SWITCH_UPDATE) { 5543 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5544 "got FUNC_SWITCH_UPDATE ramrod\n"); 5545 if (f_obj->complete_cmd( 5546 bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE)) 5547 break; 5548 5549 } else { 5550 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE; 5551 5552 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP, 5553 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 5554 f_obj->complete_cmd(bp, f_obj, 5555 BNX2X_F_CMD_AFEX_UPDATE); 5556 5557 /* We will perform the Queues update from 5558 * sp_rtnl task as all Queue SP operations 5559 * should run under rtnl_lock. 5560 */ 5561 bnx2x_schedule_sp_rtnl(bp, cmd, 0); 5562 } 5563 5564 goto next_spqe; 5565 5566 case EVENT_RING_OPCODE_AFEX_VIF_LISTS: 5567 f_obj->complete_cmd(bp, f_obj, 5568 BNX2X_F_CMD_AFEX_VIFLISTS); 5569 bnx2x_after_afex_vif_lists(bp, elem); 5570 goto next_spqe; 5571 case EVENT_RING_OPCODE_FUNCTION_START: 5572 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5573 "got FUNC_START ramrod\n"); 5574 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START)) 5575 break; 5576 5577 goto next_spqe; 5578 5579 case EVENT_RING_OPCODE_FUNCTION_STOP: 5580 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5581 "got FUNC_STOP ramrod\n"); 5582 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP)) 5583 break; 5584 5585 goto next_spqe; 5586 5587 case EVENT_RING_OPCODE_SET_TIMESYNC: 5588 DP(BNX2X_MSG_SP | BNX2X_MSG_PTP, 5589 "got set_timesync ramrod completion\n"); 5590 if (f_obj->complete_cmd(bp, f_obj, 5591 BNX2X_F_CMD_SET_TIMESYNC)) 5592 break; 5593 goto next_spqe; 5594 } 5595 5596 switch (opcode | bp->state) { 5597 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5598 BNX2X_STATE_OPEN): 5599 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5600 BNX2X_STATE_OPENING_WAIT4_PORT): 5601 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5602 BNX2X_STATE_CLOSING_WAIT4_HALT): 5603 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n", 5604 SW_CID(elem->message.data.eth_event.echo)); 5605 rss_raw->clear_pending(rss_raw); 5606 break; 5607 5608 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN): 5609 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG): 5610 case (EVENT_RING_OPCODE_SET_MAC | 5611 BNX2X_STATE_CLOSING_WAIT4_HALT): 5612 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5613 BNX2X_STATE_OPEN): 5614 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5615 BNX2X_STATE_DIAG): 5616 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5617 BNX2X_STATE_CLOSING_WAIT4_HALT): 5618 DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n"); 5619 bnx2x_handle_classification_eqe(bp, elem); 5620 break; 5621 5622 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5623 BNX2X_STATE_OPEN): 5624 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5625 BNX2X_STATE_DIAG): 5626 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5627 BNX2X_STATE_CLOSING_WAIT4_HALT): 5628 DP(BNX2X_MSG_SP, "got mcast ramrod\n"); 5629 bnx2x_handle_mcast_eqe(bp); 5630 break; 5631 5632 case (EVENT_RING_OPCODE_FILTERS_RULES | 5633 BNX2X_STATE_OPEN): 5634 case (EVENT_RING_OPCODE_FILTERS_RULES | 5635 BNX2X_STATE_DIAG): 5636 case (EVENT_RING_OPCODE_FILTERS_RULES | 5637 BNX2X_STATE_CLOSING_WAIT4_HALT): 5638 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n"); 5639 bnx2x_handle_rx_mode_eqe(bp); 5640 break; 5641 default: 5642 /* unknown event log error and continue */ 5643 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n", 5644 elem->message.opcode, bp->state); 5645 } 5646 next_spqe: 5647 spqe_cnt++; 5648 } /* for */ 5649 5650 smp_mb__before_atomic(); 5651 atomic_add(spqe_cnt, &bp->eq_spq_left); 5652 5653 bp->eq_cons = sw_cons; 5654 bp->eq_prod = sw_prod; 5655 /* Make sure that above mem writes were issued towards the memory */ 5656 smp_wmb(); 5657 5658 /* update producer */ 5659 bnx2x_update_eq_prod(bp, bp->eq_prod); 5660 } 5661 5662 static void bnx2x_sp_task(struct work_struct *work) 5663 { 5664 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work); 5665 5666 DP(BNX2X_MSG_SP, "sp task invoked\n"); 5667 5668 /* make sure the atomic interrupt_occurred has been written */ 5669 smp_rmb(); 5670 if (atomic_read(&bp->interrupt_occurred)) { 5671 5672 /* what work needs to be performed? */ 5673 u16 status = bnx2x_update_dsb_idx(bp); 5674 5675 DP(BNX2X_MSG_SP, "status %x\n", status); 5676 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n"); 5677 atomic_set(&bp->interrupt_occurred, 0); 5678 5679 /* HW attentions */ 5680 if (status & BNX2X_DEF_SB_ATT_IDX) { 5681 bnx2x_attn_int(bp); 5682 status &= ~BNX2X_DEF_SB_ATT_IDX; 5683 } 5684 5685 /* SP events: STAT_QUERY and others */ 5686 if (status & BNX2X_DEF_SB_IDX) { 5687 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp); 5688 5689 if (FCOE_INIT(bp) && 5690 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 5691 /* Prevent local bottom-halves from running as 5692 * we are going to change the local NAPI list. 5693 */ 5694 local_bh_disable(); 5695 napi_schedule(&bnx2x_fcoe(bp, napi)); 5696 local_bh_enable(); 5697 } 5698 5699 /* Handle EQ completions */ 5700 bnx2x_eq_int(bp); 5701 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 5702 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1); 5703 5704 status &= ~BNX2X_DEF_SB_IDX; 5705 } 5706 5707 /* if status is non zero then perhaps something went wrong */ 5708 if (unlikely(status)) 5709 DP(BNX2X_MSG_SP, 5710 "got an unknown interrupt! (status 0x%x)\n", status); 5711 5712 /* ack status block only if something was actually handled */ 5713 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID, 5714 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1); 5715 } 5716 5717 /* afex - poll to check if VIFSET_ACK should be sent to MFW */ 5718 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, 5719 &bp->sp_state)) { 5720 bnx2x_link_report(bp); 5721 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 5722 } 5723 } 5724 5725 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance) 5726 { 5727 struct net_device *dev = dev_instance; 5728 struct bnx2x *bp = netdev_priv(dev); 5729 5730 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, 5731 IGU_INT_DISABLE, 0); 5732 5733 #ifdef BNX2X_STOP_ON_ERROR 5734 if (unlikely(bp->panic)) 5735 return IRQ_HANDLED; 5736 #endif 5737 5738 if (CNIC_LOADED(bp)) { 5739 struct cnic_ops *c_ops; 5740 5741 rcu_read_lock(); 5742 c_ops = rcu_dereference(bp->cnic_ops); 5743 if (c_ops) 5744 c_ops->cnic_handler(bp->cnic_data, NULL); 5745 rcu_read_unlock(); 5746 } 5747 5748 /* schedule sp task to perform default status block work, ack 5749 * attentions and enable interrupts. 5750 */ 5751 bnx2x_schedule_sp_task(bp); 5752 5753 return IRQ_HANDLED; 5754 } 5755 5756 /* end of slow path */ 5757 5758 void bnx2x_drv_pulse(struct bnx2x *bp) 5759 { 5760 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb, 5761 bp->fw_drv_pulse_wr_seq); 5762 } 5763 5764 static void bnx2x_timer(struct timer_list *t) 5765 { 5766 struct bnx2x *bp = from_timer(bp, t, timer); 5767 5768 if (!netif_running(bp->dev)) 5769 return; 5770 5771 if (IS_PF(bp) && 5772 !BP_NOMCP(bp)) { 5773 int mb_idx = BP_FW_MB_IDX(bp); 5774 u16 drv_pulse; 5775 u16 mcp_pulse; 5776 5777 ++bp->fw_drv_pulse_wr_seq; 5778 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 5779 drv_pulse = bp->fw_drv_pulse_wr_seq; 5780 bnx2x_drv_pulse(bp); 5781 5782 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) & 5783 MCP_PULSE_SEQ_MASK); 5784 /* The delta between driver pulse and mcp response 5785 * should not get too big. If the MFW is more than 5 pulses 5786 * behind, we should worry about it enough to generate an error 5787 * log. 5788 */ 5789 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5) 5790 BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 5791 drv_pulse, mcp_pulse); 5792 } 5793 5794 if (bp->state == BNX2X_STATE_OPEN) 5795 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE); 5796 5797 /* sample pf vf bulletin board for new posts from pf */ 5798 if (IS_VF(bp)) 5799 bnx2x_timer_sriov(bp); 5800 5801 mod_timer(&bp->timer, jiffies + bp->current_interval); 5802 } 5803 5804 /* end of Statistics */ 5805 5806 /* nic init */ 5807 5808 /* 5809 * nic init service functions 5810 */ 5811 5812 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len) 5813 { 5814 u32 i; 5815 if (!(len%4) && !(addr%4)) 5816 for (i = 0; i < len; i += 4) 5817 REG_WR(bp, addr + i, fill); 5818 else 5819 for (i = 0; i < len; i++) 5820 REG_WR8(bp, addr + i, fill); 5821 } 5822 5823 /* helper: writes FP SP data to FW - data_size in dwords */ 5824 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp, 5825 int fw_sb_id, 5826 u32 *sb_data_p, 5827 u32 data_size) 5828 { 5829 int index; 5830 for (index = 0; index < data_size; index++) 5831 REG_WR(bp, BAR_CSTRORM_INTMEM + 5832 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 5833 sizeof(u32)*index, 5834 *(sb_data_p + index)); 5835 } 5836 5837 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id) 5838 { 5839 u32 *sb_data_p; 5840 u32 data_size = 0; 5841 struct hc_status_block_data_e2 sb_data_e2; 5842 struct hc_status_block_data_e1x sb_data_e1x; 5843 5844 /* disable the function first */ 5845 if (!CHIP_IS_E1x(bp)) { 5846 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 5847 sb_data_e2.common.state = SB_DISABLED; 5848 sb_data_e2.common.p_func.vf_valid = false; 5849 sb_data_p = (u32 *)&sb_data_e2; 5850 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); 5851 } else { 5852 memset(&sb_data_e1x, 0, 5853 sizeof(struct hc_status_block_data_e1x)); 5854 sb_data_e1x.common.state = SB_DISABLED; 5855 sb_data_e1x.common.p_func.vf_valid = false; 5856 sb_data_p = (u32 *)&sb_data_e1x; 5857 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); 5858 } 5859 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); 5860 5861 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5862 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0, 5863 CSTORM_STATUS_BLOCK_SIZE); 5864 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5865 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0, 5866 CSTORM_SYNC_BLOCK_SIZE); 5867 } 5868 5869 /* helper: writes SP SB data to FW */ 5870 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp, 5871 struct hc_sp_status_block_data *sp_sb_data) 5872 { 5873 int func = BP_FUNC(bp); 5874 int i; 5875 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++) 5876 REG_WR(bp, BAR_CSTRORM_INTMEM + 5877 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) + 5878 i*sizeof(u32), 5879 *((u32 *)sp_sb_data + i)); 5880 } 5881 5882 static void bnx2x_zero_sp_sb(struct bnx2x *bp) 5883 { 5884 int func = BP_FUNC(bp); 5885 struct hc_sp_status_block_data sp_sb_data; 5886 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 5887 5888 sp_sb_data.state = SB_DISABLED; 5889 sp_sb_data.p_func.vf_valid = false; 5890 5891 bnx2x_wr_sp_sb_data(bp, &sp_sb_data); 5892 5893 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5894 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0, 5895 CSTORM_SP_STATUS_BLOCK_SIZE); 5896 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5897 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0, 5898 CSTORM_SP_SYNC_BLOCK_SIZE); 5899 } 5900 5901 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 5902 int igu_sb_id, int igu_seg_id) 5903 { 5904 hc_sm->igu_sb_id = igu_sb_id; 5905 hc_sm->igu_seg_id = igu_seg_id; 5906 hc_sm->timer_value = 0xFF; 5907 hc_sm->time_to_expire = 0xFFFFFFFF; 5908 } 5909 5910 /* allocates state machine ids. */ 5911 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data) 5912 { 5913 /* zero out state machine indices */ 5914 /* rx indices */ 5915 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 5916 5917 /* tx indices */ 5918 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 5919 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 5920 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 5921 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 5922 5923 /* map indices */ 5924 /* rx indices */ 5925 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 5926 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5927 5928 /* tx indices */ 5929 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 5930 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5931 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 5932 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5933 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 5934 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5935 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 5936 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5937 } 5938 5939 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid, 5940 u8 vf_valid, int fw_sb_id, int igu_sb_id) 5941 { 5942 int igu_seg_id; 5943 5944 struct hc_status_block_data_e2 sb_data_e2; 5945 struct hc_status_block_data_e1x sb_data_e1x; 5946 struct hc_status_block_sm *hc_sm_p; 5947 int data_size; 5948 u32 *sb_data_p; 5949 5950 if (CHIP_INT_MODE_IS_BC(bp)) 5951 igu_seg_id = HC_SEG_ACCESS_NORM; 5952 else 5953 igu_seg_id = IGU_SEG_ACCESS_NORM; 5954 5955 bnx2x_zero_fp_sb(bp, fw_sb_id); 5956 5957 if (!CHIP_IS_E1x(bp)) { 5958 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 5959 sb_data_e2.common.state = SB_ENABLED; 5960 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp); 5961 sb_data_e2.common.p_func.vf_id = vfid; 5962 sb_data_e2.common.p_func.vf_valid = vf_valid; 5963 sb_data_e2.common.p_func.vnic_id = BP_VN(bp); 5964 sb_data_e2.common.same_igu_sb_1b = true; 5965 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping); 5966 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping); 5967 hc_sm_p = sb_data_e2.common.state_machine; 5968 sb_data_p = (u32 *)&sb_data_e2; 5969 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); 5970 bnx2x_map_sb_state_machines(sb_data_e2.index_data); 5971 } else { 5972 memset(&sb_data_e1x, 0, 5973 sizeof(struct hc_status_block_data_e1x)); 5974 sb_data_e1x.common.state = SB_ENABLED; 5975 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp); 5976 sb_data_e1x.common.p_func.vf_id = 0xff; 5977 sb_data_e1x.common.p_func.vf_valid = false; 5978 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp); 5979 sb_data_e1x.common.same_igu_sb_1b = true; 5980 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping); 5981 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping); 5982 hc_sm_p = sb_data_e1x.common.state_machine; 5983 sb_data_p = (u32 *)&sb_data_e1x; 5984 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); 5985 bnx2x_map_sb_state_machines(sb_data_e1x.index_data); 5986 } 5987 5988 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], 5989 igu_sb_id, igu_seg_id); 5990 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], 5991 igu_sb_id, igu_seg_id); 5992 5993 DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id); 5994 5995 /* write indices to HW - PCI guarantees endianity of regpairs */ 5996 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); 5997 } 5998 5999 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id, 6000 u16 tx_usec, u16 rx_usec) 6001 { 6002 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS, 6003 false, rx_usec); 6004 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 6005 HC_INDEX_ETH_TX_CQ_CONS_COS0, false, 6006 tx_usec); 6007 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 6008 HC_INDEX_ETH_TX_CQ_CONS_COS1, false, 6009 tx_usec); 6010 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 6011 HC_INDEX_ETH_TX_CQ_CONS_COS2, false, 6012 tx_usec); 6013 } 6014 6015 static void bnx2x_init_def_sb(struct bnx2x *bp) 6016 { 6017 struct host_sp_status_block *def_sb = bp->def_status_blk; 6018 dma_addr_t mapping = bp->def_status_blk_mapping; 6019 int igu_sp_sb_index; 6020 int igu_seg_id; 6021 int port = BP_PORT(bp); 6022 int func = BP_FUNC(bp); 6023 int reg_offset, reg_offset_en5; 6024 u64 section; 6025 int index; 6026 struct hc_sp_status_block_data sp_sb_data; 6027 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 6028 6029 if (CHIP_INT_MODE_IS_BC(bp)) { 6030 igu_sp_sb_index = DEF_SB_IGU_ID; 6031 igu_seg_id = HC_SEG_ACCESS_DEF; 6032 } else { 6033 igu_sp_sb_index = bp->igu_dsb_id; 6034 igu_seg_id = IGU_SEG_ACCESS_DEF; 6035 } 6036 6037 /* ATTN */ 6038 section = ((u64)mapping) + offsetof(struct host_sp_status_block, 6039 atten_status_block); 6040 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 6041 6042 bp->attn_state = 0; 6043 6044 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 6045 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 6046 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 6047 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0); 6048 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 6049 int sindex; 6050 /* take care of sig[0]..sig[4] */ 6051 for (sindex = 0; sindex < 4; sindex++) 6052 bp->attn_group[index].sig[sindex] = 6053 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index); 6054 6055 if (!CHIP_IS_E1x(bp)) 6056 /* 6057 * enable5 is separate from the rest of the registers, 6058 * and therefore the address skip is 4 6059 * and not 16 between the different groups 6060 */ 6061 bp->attn_group[index].sig[4] = REG_RD(bp, 6062 reg_offset_en5 + 0x4*index); 6063 else 6064 bp->attn_group[index].sig[4] = 0; 6065 } 6066 6067 if (bp->common.int_block == INT_BLOCK_HC) { 6068 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L : 6069 HC_REG_ATTN_MSG0_ADDR_L); 6070 6071 REG_WR(bp, reg_offset, U64_LO(section)); 6072 REG_WR(bp, reg_offset + 4, U64_HI(section)); 6073 } else if (!CHIP_IS_E1x(bp)) { 6074 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 6075 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 6076 } 6077 6078 section = ((u64)mapping) + offsetof(struct host_sp_status_block, 6079 sp_sb); 6080 6081 bnx2x_zero_sp_sb(bp); 6082 6083 /* PCI guarantees endianity of regpairs */ 6084 sp_sb_data.state = SB_ENABLED; 6085 sp_sb_data.host_sb_addr.lo = U64_LO(section); 6086 sp_sb_data.host_sb_addr.hi = U64_HI(section); 6087 sp_sb_data.igu_sb_id = igu_sp_sb_index; 6088 sp_sb_data.igu_seg_id = igu_seg_id; 6089 sp_sb_data.p_func.pf_id = func; 6090 sp_sb_data.p_func.vnic_id = BP_VN(bp); 6091 sp_sb_data.p_func.vf_id = 0xff; 6092 6093 bnx2x_wr_sp_sb_data(bp, &sp_sb_data); 6094 6095 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 6096 } 6097 6098 void bnx2x_update_coalesce(struct bnx2x *bp) 6099 { 6100 int i; 6101 6102 for_each_eth_queue(bp, i) 6103 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id, 6104 bp->tx_ticks, bp->rx_ticks); 6105 } 6106 6107 static void bnx2x_init_sp_ring(struct bnx2x *bp) 6108 { 6109 spin_lock_init(&bp->spq_lock); 6110 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING); 6111 6112 bp->spq_prod_idx = 0; 6113 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX; 6114 bp->spq_prod_bd = bp->spq; 6115 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT; 6116 } 6117 6118 static void bnx2x_init_eq_ring(struct bnx2x *bp) 6119 { 6120 int i; 6121 for (i = 1; i <= NUM_EQ_PAGES; i++) { 6122 union event_ring_elem *elem = 6123 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1]; 6124 6125 elem->next_page.addr.hi = 6126 cpu_to_le32(U64_HI(bp->eq_mapping + 6127 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES))); 6128 elem->next_page.addr.lo = 6129 cpu_to_le32(U64_LO(bp->eq_mapping + 6130 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES))); 6131 } 6132 bp->eq_cons = 0; 6133 bp->eq_prod = NUM_EQ_DESC; 6134 bp->eq_cons_sb = BNX2X_EQ_INDEX; 6135 /* we want a warning message before it gets wrought... */ 6136 atomic_set(&bp->eq_spq_left, 6137 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1); 6138 } 6139 6140 /* called with netif_addr_lock_bh() */ 6141 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id, 6142 unsigned long rx_mode_flags, 6143 unsigned long rx_accept_flags, 6144 unsigned long tx_accept_flags, 6145 unsigned long ramrod_flags) 6146 { 6147 struct bnx2x_rx_mode_ramrod_params ramrod_param; 6148 int rc; 6149 6150 memset(&ramrod_param, 0, sizeof(ramrod_param)); 6151 6152 /* Prepare ramrod parameters */ 6153 ramrod_param.cid = 0; 6154 ramrod_param.cl_id = cl_id; 6155 ramrod_param.rx_mode_obj = &bp->rx_mode_obj; 6156 ramrod_param.func_id = BP_FUNC(bp); 6157 6158 ramrod_param.pstate = &bp->sp_state; 6159 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING; 6160 6161 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata); 6162 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata); 6163 6164 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); 6165 6166 ramrod_param.ramrod_flags = ramrod_flags; 6167 ramrod_param.rx_mode_flags = rx_mode_flags; 6168 6169 ramrod_param.rx_accept_flags = rx_accept_flags; 6170 ramrod_param.tx_accept_flags = tx_accept_flags; 6171 6172 rc = bnx2x_config_rx_mode(bp, &ramrod_param); 6173 if (rc < 0) { 6174 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode); 6175 return rc; 6176 } 6177 6178 return 0; 6179 } 6180 6181 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode, 6182 unsigned long *rx_accept_flags, 6183 unsigned long *tx_accept_flags) 6184 { 6185 /* Clear the flags first */ 6186 *rx_accept_flags = 0; 6187 *tx_accept_flags = 0; 6188 6189 switch (rx_mode) { 6190 case BNX2X_RX_MODE_NONE: 6191 /* 6192 * 'drop all' supersedes any accept flags that may have been 6193 * passed to the function. 6194 */ 6195 break; 6196 case BNX2X_RX_MODE_NORMAL: 6197 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 6198 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags); 6199 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 6200 6201 /* internal switching mode */ 6202 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 6203 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags); 6204 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 6205 6206 if (bp->accept_any_vlan) { 6207 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 6208 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 6209 } 6210 6211 break; 6212 case BNX2X_RX_MODE_ALLMULTI: 6213 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 6214 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); 6215 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 6216 6217 /* internal switching mode */ 6218 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 6219 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); 6220 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 6221 6222 if (bp->accept_any_vlan) { 6223 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 6224 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 6225 } 6226 6227 break; 6228 case BNX2X_RX_MODE_PROMISC: 6229 /* According to definition of SI mode, iface in promisc mode 6230 * should receive matched and unmatched (in resolution of port) 6231 * unicast packets. 6232 */ 6233 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags); 6234 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 6235 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); 6236 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 6237 6238 /* internal switching mode */ 6239 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); 6240 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 6241 6242 if (IS_MF_SI(bp)) 6243 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags); 6244 else 6245 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 6246 6247 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 6248 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 6249 6250 break; 6251 default: 6252 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode); 6253 return -EINVAL; 6254 } 6255 6256 return 0; 6257 } 6258 6259 /* called with netif_addr_lock_bh() */ 6260 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp) 6261 { 6262 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 6263 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 6264 int rc; 6265 6266 if (!NO_FCOE(bp)) 6267 /* Configure rx_mode of FCoE Queue */ 6268 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags); 6269 6270 rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags, 6271 &tx_accept_flags); 6272 if (rc) 6273 return rc; 6274 6275 __set_bit(RAMROD_RX, &ramrod_flags); 6276 __set_bit(RAMROD_TX, &ramrod_flags); 6277 6278 return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, 6279 rx_accept_flags, tx_accept_flags, 6280 ramrod_flags); 6281 } 6282 6283 static void bnx2x_init_internal_common(struct bnx2x *bp) 6284 { 6285 int i; 6286 6287 /* Zero this manually as its initialization is 6288 currently missing in the initTool */ 6289 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) 6290 REG_WR(bp, BAR_USTRORM_INTMEM + 6291 USTORM_AGG_DATA_OFFSET + i * 4, 0); 6292 if (!CHIP_IS_E1x(bp)) { 6293 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET, 6294 CHIP_INT_MODE_IS_BC(bp) ? 6295 HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 6296 } 6297 } 6298 6299 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code) 6300 { 6301 switch (load_code) { 6302 case FW_MSG_CODE_DRV_LOAD_COMMON: 6303 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 6304 bnx2x_init_internal_common(bp); 6305 /* no break */ 6306 6307 case FW_MSG_CODE_DRV_LOAD_PORT: 6308 /* nothing to do */ 6309 /* no break */ 6310 6311 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 6312 /* internal memory per function is 6313 initialized inside bnx2x_pf_init */ 6314 break; 6315 6316 default: 6317 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code); 6318 break; 6319 } 6320 } 6321 6322 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp) 6323 { 6324 return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp); 6325 } 6326 6327 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp) 6328 { 6329 return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp); 6330 } 6331 6332 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp) 6333 { 6334 if (CHIP_IS_E1x(fp->bp)) 6335 return BP_L_ID(fp->bp) + fp->index; 6336 else /* We want Client ID to be the same as IGU SB ID for 57712 */ 6337 return bnx2x_fp_igu_sb_id(fp); 6338 } 6339 6340 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx) 6341 { 6342 struct bnx2x_fastpath *fp = &bp->fp[fp_idx]; 6343 u8 cos; 6344 unsigned long q_type = 0; 6345 u32 cids[BNX2X_MULTI_TX_COS] = { 0 }; 6346 fp->rx_queue = fp_idx; 6347 fp->cid = fp_idx; 6348 fp->cl_id = bnx2x_fp_cl_id(fp); 6349 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp); 6350 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp); 6351 /* qZone id equals to FW (per path) client id */ 6352 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp); 6353 6354 /* init shortcut */ 6355 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp); 6356 6357 /* Setup SB indices */ 6358 fp->rx_cons_sb = BNX2X_RX_SB_INDEX; 6359 6360 /* Configure Queue State object */ 6361 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 6362 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 6363 6364 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS); 6365 6366 /* init tx data */ 6367 for_each_cos_in_tx_queue(fp, cos) { 6368 bnx2x_init_txdata(bp, fp->txdata_ptr[cos], 6369 CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp), 6370 FP_COS_TO_TXQ(fp, cos, bp), 6371 BNX2X_TX_SB_INDEX_BASE + cos, fp); 6372 cids[cos] = fp->txdata_ptr[cos]->cid; 6373 } 6374 6375 /* nothing more for vf to do here */ 6376 if (IS_VF(bp)) 6377 return; 6378 6379 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false, 6380 fp->fw_sb_id, fp->igu_sb_id); 6381 bnx2x_update_fpsb_idx(fp); 6382 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids, 6383 fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata), 6384 bnx2x_sp_mapping(bp, q_rdata), q_type); 6385 6386 /** 6387 * Configure classification DBs: Always enable Tx switching 6388 */ 6389 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX); 6390 6391 DP(NETIF_MSG_IFUP, 6392 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n", 6393 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id, 6394 fp->igu_sb_id); 6395 } 6396 6397 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata) 6398 { 6399 int i; 6400 6401 for (i = 1; i <= NUM_TX_RINGS; i++) { 6402 struct eth_tx_next_bd *tx_next_bd = 6403 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd; 6404 6405 tx_next_bd->addr_hi = 6406 cpu_to_le32(U64_HI(txdata->tx_desc_mapping + 6407 BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); 6408 tx_next_bd->addr_lo = 6409 cpu_to_le32(U64_LO(txdata->tx_desc_mapping + 6410 BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); 6411 } 6412 6413 *txdata->tx_cons_sb = cpu_to_le16(0); 6414 6415 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1); 6416 txdata->tx_db.data.zero_fill1 = 0; 6417 txdata->tx_db.data.prod = 0; 6418 6419 txdata->tx_pkt_prod = 0; 6420 txdata->tx_pkt_cons = 0; 6421 txdata->tx_bd_prod = 0; 6422 txdata->tx_bd_cons = 0; 6423 txdata->tx_pkt = 0; 6424 } 6425 6426 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp) 6427 { 6428 int i; 6429 6430 for_each_tx_queue_cnic(bp, i) 6431 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]); 6432 } 6433 6434 static void bnx2x_init_tx_rings(struct bnx2x *bp) 6435 { 6436 int i; 6437 u8 cos; 6438 6439 for_each_eth_queue(bp, i) 6440 for_each_cos_in_tx_queue(&bp->fp[i], cos) 6441 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]); 6442 } 6443 6444 static void bnx2x_init_fcoe_fp(struct bnx2x *bp) 6445 { 6446 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp); 6447 unsigned long q_type = 0; 6448 6449 bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp); 6450 bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp, 6451 BNX2X_FCOE_ETH_CL_ID_IDX); 6452 bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp); 6453 bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID; 6454 bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id; 6455 bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX; 6456 bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]), 6457 fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX, 6458 fp); 6459 6460 DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index); 6461 6462 /* qZone id equals to FW (per path) client id */ 6463 bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp); 6464 /* init shortcut */ 6465 bnx2x_fcoe(bp, ustorm_rx_prods_offset) = 6466 bnx2x_rx_ustorm_prods_offset(fp); 6467 6468 /* Configure Queue State object */ 6469 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 6470 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 6471 6472 /* No multi-CoS for FCoE L2 client */ 6473 BUG_ON(fp->max_cos != 1); 6474 6475 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, 6476 &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata), 6477 bnx2x_sp_mapping(bp, q_rdata), q_type); 6478 6479 DP(NETIF_MSG_IFUP, 6480 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n", 6481 fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id, 6482 fp->igu_sb_id); 6483 } 6484 6485 void bnx2x_nic_init_cnic(struct bnx2x *bp) 6486 { 6487 if (!NO_FCOE(bp)) 6488 bnx2x_init_fcoe_fp(bp); 6489 6490 bnx2x_init_sb(bp, bp->cnic_sb_mapping, 6491 BNX2X_VF_ID_INVALID, false, 6492 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp)); 6493 6494 /* ensure status block indices were read */ 6495 rmb(); 6496 bnx2x_init_rx_rings_cnic(bp); 6497 bnx2x_init_tx_rings_cnic(bp); 6498 6499 /* flush all */ 6500 mb(); 6501 } 6502 6503 void bnx2x_pre_irq_nic_init(struct bnx2x *bp) 6504 { 6505 int i; 6506 6507 /* Setup NIC internals and enable interrupts */ 6508 for_each_eth_queue(bp, i) 6509 bnx2x_init_eth_fp(bp, i); 6510 6511 /* ensure status block indices were read */ 6512 rmb(); 6513 bnx2x_init_rx_rings(bp); 6514 bnx2x_init_tx_rings(bp); 6515 6516 if (IS_PF(bp)) { 6517 /* Initialize MOD_ABS interrupts */ 6518 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id, 6519 bp->common.shmem_base, 6520 bp->common.shmem2_base, BP_PORT(bp)); 6521 6522 /* initialize the default status block and sp ring */ 6523 bnx2x_init_def_sb(bp); 6524 bnx2x_update_dsb_idx(bp); 6525 bnx2x_init_sp_ring(bp); 6526 } else { 6527 bnx2x_memset_stats(bp); 6528 } 6529 } 6530 6531 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code) 6532 { 6533 bnx2x_init_eq_ring(bp); 6534 bnx2x_init_internal(bp, load_code); 6535 bnx2x_pf_init(bp); 6536 bnx2x_stats_init(bp); 6537 6538 /* flush all before enabling interrupts */ 6539 mb(); 6540 6541 bnx2x_int_enable(bp); 6542 6543 /* Check for SPIO5 */ 6544 bnx2x_attn_int_deasserted0(bp, 6545 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) & 6546 AEU_INPUTS_ATTN_BITS_SPIO5); 6547 } 6548 6549 /* gzip service functions */ 6550 static int bnx2x_gunzip_init(struct bnx2x *bp) 6551 { 6552 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE, 6553 &bp->gunzip_mapping, GFP_KERNEL); 6554 if (bp->gunzip_buf == NULL) 6555 goto gunzip_nomem1; 6556 6557 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL); 6558 if (bp->strm == NULL) 6559 goto gunzip_nomem2; 6560 6561 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize()); 6562 if (bp->strm->workspace == NULL) 6563 goto gunzip_nomem3; 6564 6565 return 0; 6566 6567 gunzip_nomem3: 6568 kfree(bp->strm); 6569 bp->strm = NULL; 6570 6571 gunzip_nomem2: 6572 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, 6573 bp->gunzip_mapping); 6574 bp->gunzip_buf = NULL; 6575 6576 gunzip_nomem1: 6577 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n"); 6578 return -ENOMEM; 6579 } 6580 6581 static void bnx2x_gunzip_end(struct bnx2x *bp) 6582 { 6583 if (bp->strm) { 6584 vfree(bp->strm->workspace); 6585 kfree(bp->strm); 6586 bp->strm = NULL; 6587 } 6588 6589 if (bp->gunzip_buf) { 6590 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, 6591 bp->gunzip_mapping); 6592 bp->gunzip_buf = NULL; 6593 } 6594 } 6595 6596 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len) 6597 { 6598 int n, rc; 6599 6600 /* check gzip header */ 6601 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) { 6602 BNX2X_ERR("Bad gzip header\n"); 6603 return -EINVAL; 6604 } 6605 6606 n = 10; 6607 6608 #define FNAME 0x8 6609 6610 if (zbuf[3] & FNAME) 6611 while ((zbuf[n++] != 0) && (n < len)); 6612 6613 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n; 6614 bp->strm->avail_in = len - n; 6615 bp->strm->next_out = bp->gunzip_buf; 6616 bp->strm->avail_out = FW_BUF_SIZE; 6617 6618 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS); 6619 if (rc != Z_OK) 6620 return rc; 6621 6622 rc = zlib_inflate(bp->strm, Z_FINISH); 6623 if ((rc != Z_OK) && (rc != Z_STREAM_END)) 6624 netdev_err(bp->dev, "Firmware decompression error: %s\n", 6625 bp->strm->msg); 6626 6627 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out); 6628 if (bp->gunzip_outlen & 0x3) 6629 netdev_err(bp->dev, 6630 "Firmware decompression error: gunzip_outlen (%d) not aligned\n", 6631 bp->gunzip_outlen); 6632 bp->gunzip_outlen >>= 2; 6633 6634 zlib_inflateEnd(bp->strm); 6635 6636 if (rc == Z_STREAM_END) 6637 return 0; 6638 6639 return rc; 6640 } 6641 6642 /* nic load/unload */ 6643 6644 /* 6645 * General service functions 6646 */ 6647 6648 /* send a NIG loopback debug packet */ 6649 static void bnx2x_lb_pckt(struct bnx2x *bp) 6650 { 6651 u32 wb_write[3]; 6652 6653 /* Ethernet source and destination addresses */ 6654 wb_write[0] = 0x55555555; 6655 wb_write[1] = 0x55555555; 6656 wb_write[2] = 0x20; /* SOP */ 6657 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 6658 6659 /* NON-IP protocol */ 6660 wb_write[0] = 0x09000000; 6661 wb_write[1] = 0x55555555; 6662 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 6663 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 6664 } 6665 6666 /* some of the internal memories 6667 * are not directly readable from the driver 6668 * to test them we send debug packets 6669 */ 6670 static int bnx2x_int_mem_test(struct bnx2x *bp) 6671 { 6672 int factor; 6673 int count, i; 6674 u32 val = 0; 6675 6676 if (CHIP_REV_IS_FPGA(bp)) 6677 factor = 120; 6678 else if (CHIP_REV_IS_EMUL(bp)) 6679 factor = 200; 6680 else 6681 factor = 1; 6682 6683 /* Disable inputs of parser neighbor blocks */ 6684 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); 6685 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); 6686 REG_WR(bp, CFC_REG_DEBUG0, 0x1); 6687 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); 6688 6689 /* Write 0 to parser credits for CFC search request */ 6690 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 6691 6692 /* send Ethernet packet */ 6693 bnx2x_lb_pckt(bp); 6694 6695 /* TODO do i reset NIG statistic? */ 6696 /* Wait until NIG register shows 1 packet of size 0x10 */ 6697 count = 1000 * factor; 6698 while (count) { 6699 6700 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 6701 val = *bnx2x_sp(bp, wb_data[0]); 6702 if (val == 0x10) 6703 break; 6704 6705 usleep_range(10000, 20000); 6706 count--; 6707 } 6708 if (val != 0x10) { 6709 BNX2X_ERR("NIG timeout val = 0x%x\n", val); 6710 return -1; 6711 } 6712 6713 /* Wait until PRS register shows 1 packet */ 6714 count = 1000 * factor; 6715 while (count) { 6716 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6717 if (val == 1) 6718 break; 6719 6720 usleep_range(10000, 20000); 6721 count--; 6722 } 6723 if (val != 0x1) { 6724 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6725 return -2; 6726 } 6727 6728 /* Reset and init BRB, PRS */ 6729 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 6730 msleep(50); 6731 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 6732 msleep(50); 6733 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 6734 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 6735 6736 DP(NETIF_MSG_HW, "part2\n"); 6737 6738 /* Disable inputs of parser neighbor blocks */ 6739 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); 6740 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); 6741 REG_WR(bp, CFC_REG_DEBUG0, 0x1); 6742 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); 6743 6744 /* Write 0 to parser credits for CFC search request */ 6745 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 6746 6747 /* send 10 Ethernet packets */ 6748 for (i = 0; i < 10; i++) 6749 bnx2x_lb_pckt(bp); 6750 6751 /* Wait until NIG register shows 10 + 1 6752 packets of size 11*0x10 = 0xb0 */ 6753 count = 1000 * factor; 6754 while (count) { 6755 6756 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 6757 val = *bnx2x_sp(bp, wb_data[0]); 6758 if (val == 0xb0) 6759 break; 6760 6761 usleep_range(10000, 20000); 6762 count--; 6763 } 6764 if (val != 0xb0) { 6765 BNX2X_ERR("NIG timeout val = 0x%x\n", val); 6766 return -3; 6767 } 6768 6769 /* Wait until PRS register shows 2 packets */ 6770 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6771 if (val != 2) 6772 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6773 6774 /* Write 1 to parser credits for CFC search request */ 6775 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 6776 6777 /* Wait until PRS register shows 3 packets */ 6778 msleep(10 * factor); 6779 /* Wait until NIG register shows 1 packet of size 0x10 */ 6780 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6781 if (val != 3) 6782 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6783 6784 /* clear NIG EOP FIFO */ 6785 for (i = 0; i < 11; i++) 6786 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO); 6787 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY); 6788 if (val != 1) { 6789 BNX2X_ERR("clear of NIG failed\n"); 6790 return -4; 6791 } 6792 6793 /* Reset and init BRB, PRS, NIG */ 6794 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 6795 msleep(50); 6796 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 6797 msleep(50); 6798 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 6799 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 6800 if (!CNIC_SUPPORT(bp)) 6801 /* set NIC mode */ 6802 REG_WR(bp, PRS_REG_NIC_MODE, 1); 6803 6804 /* Enable inputs of parser neighbor blocks */ 6805 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff); 6806 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1); 6807 REG_WR(bp, CFC_REG_DEBUG0, 0x0); 6808 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1); 6809 6810 DP(NETIF_MSG_HW, "done\n"); 6811 6812 return 0; /* OK */ 6813 } 6814 6815 static void bnx2x_enable_blocks_attention(struct bnx2x *bp) 6816 { 6817 u32 val; 6818 6819 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); 6820 if (!CHIP_IS_E1x(bp)) 6821 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40); 6822 else 6823 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0); 6824 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); 6825 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); 6826 /* 6827 * mask read length error interrupts in brb for parser 6828 * (parsing unit and 'checksum and crc' unit) 6829 * these errors are legal (PU reads fixed length and CAC can cause 6830 * read length error on truncated packets) 6831 */ 6832 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00); 6833 REG_WR(bp, QM_REG_QM_INT_MASK, 0); 6834 REG_WR(bp, TM_REG_TM_INT_MASK, 0); 6835 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0); 6836 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0); 6837 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0); 6838 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */ 6839 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */ 6840 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0); 6841 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0); 6842 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0); 6843 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */ 6844 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */ 6845 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 6846 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0); 6847 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0); 6848 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0); 6849 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */ 6850 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */ 6851 6852 val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 6853 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 6854 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN; 6855 if (!CHIP_IS_E1x(bp)) 6856 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 6857 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED; 6858 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val); 6859 6860 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0); 6861 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0); 6862 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0); 6863 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */ 6864 6865 if (!CHIP_IS_E1x(bp)) 6866 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 6867 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 6868 6869 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0); 6870 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0); 6871 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */ 6872 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 6873 } 6874 6875 static void bnx2x_reset_common(struct bnx2x *bp) 6876 { 6877 u32 val = 0x1400; 6878 6879 /* reset_common */ 6880 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 6881 0xd3ffff7f); 6882 6883 if (CHIP_IS_E3(bp)) { 6884 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 6885 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 6886 } 6887 6888 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val); 6889 } 6890 6891 static void bnx2x_setup_dmae(struct bnx2x *bp) 6892 { 6893 bp->dmae_ready = 0; 6894 spin_lock_init(&bp->dmae_lock); 6895 } 6896 6897 static void bnx2x_init_pxp(struct bnx2x *bp) 6898 { 6899 u16 devctl; 6900 int r_order, w_order; 6901 6902 pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl); 6903 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl); 6904 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 6905 if (bp->mrrs == -1) 6906 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12); 6907 else { 6908 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs); 6909 r_order = bp->mrrs; 6910 } 6911 6912 bnx2x_init_pxp_arb(bp, r_order, w_order); 6913 } 6914 6915 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp) 6916 { 6917 int is_required; 6918 u32 val; 6919 int port; 6920 6921 if (BP_NOMCP(bp)) 6922 return; 6923 6924 is_required = 0; 6925 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) & 6926 SHARED_HW_CFG_FAN_FAILURE_MASK; 6927 6928 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) 6929 is_required = 1; 6930 6931 /* 6932 * The fan failure mechanism is usually related to the PHY type since 6933 * the power consumption of the board is affected by the PHY. Currently, 6934 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 6935 */ 6936 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) 6937 for (port = PORT_0; port < PORT_MAX; port++) { 6938 is_required |= 6939 bnx2x_fan_failure_det_req( 6940 bp, 6941 bp->common.shmem_base, 6942 bp->common.shmem2_base, 6943 port); 6944 } 6945 6946 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required); 6947 6948 if (is_required == 0) 6949 return; 6950 6951 /* Fan failure is indicated by SPIO 5 */ 6952 bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 6953 6954 /* set to active low mode */ 6955 val = REG_RD(bp, MISC_REG_SPIO_INT); 6956 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 6957 REG_WR(bp, MISC_REG_SPIO_INT, val); 6958 6959 /* enable interrupt to signal the IGU */ 6960 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); 6961 val |= MISC_SPIO_SPIO5; 6962 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val); 6963 } 6964 6965 void bnx2x_pf_disable(struct bnx2x *bp) 6966 { 6967 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 6968 val &= ~IGU_PF_CONF_FUNC_EN; 6969 6970 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 6971 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 6972 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0); 6973 } 6974 6975 static void bnx2x__common_init_phy(struct bnx2x *bp) 6976 { 6977 u32 shmem_base[2], shmem2_base[2]; 6978 /* Avoid common init in case MFW supports LFA */ 6979 if (SHMEM2_RD(bp, size) > 6980 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) 6981 return; 6982 shmem_base[0] = bp->common.shmem_base; 6983 shmem2_base[0] = bp->common.shmem2_base; 6984 if (!CHIP_IS_E1x(bp)) { 6985 shmem_base[1] = 6986 SHMEM2_RD(bp, other_shmem_base_addr); 6987 shmem2_base[1] = 6988 SHMEM2_RD(bp, other_shmem2_base_addr); 6989 } 6990 bnx2x_acquire_phy_lock(bp); 6991 bnx2x_common_init_phy(bp, shmem_base, shmem2_base, 6992 bp->common.chip_id); 6993 bnx2x_release_phy_lock(bp); 6994 } 6995 6996 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val) 6997 { 6998 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val); 6999 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val); 7000 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val); 7001 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val); 7002 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val); 7003 7004 /* make sure this value is 0 */ 7005 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0); 7006 7007 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val); 7008 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val); 7009 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val); 7010 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val); 7011 } 7012 7013 static void bnx2x_set_endianity(struct bnx2x *bp) 7014 { 7015 #ifdef __BIG_ENDIAN 7016 bnx2x_config_endianity(bp, 1); 7017 #else 7018 bnx2x_config_endianity(bp, 0); 7019 #endif 7020 } 7021 7022 static void bnx2x_reset_endianity(struct bnx2x *bp) 7023 { 7024 bnx2x_config_endianity(bp, 0); 7025 } 7026 7027 /** 7028 * bnx2x_init_hw_common - initialize the HW at the COMMON phase. 7029 * 7030 * @bp: driver handle 7031 */ 7032 static int bnx2x_init_hw_common(struct bnx2x *bp) 7033 { 7034 u32 val; 7035 7036 DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp)); 7037 7038 /* 7039 * take the RESET lock to protect undi_unload flow from accessing 7040 * registers while we're resetting the chip 7041 */ 7042 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 7043 7044 bnx2x_reset_common(bp); 7045 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff); 7046 7047 val = 0xfffc; 7048 if (CHIP_IS_E3(bp)) { 7049 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 7050 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 7051 } 7052 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val); 7053 7054 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 7055 7056 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON); 7057 7058 if (!CHIP_IS_E1x(bp)) { 7059 u8 abs_func_id; 7060 7061 /** 7062 * 4-port mode or 2-port mode we need to turn of master-enable 7063 * for everyone, after that, turn it back on for self. 7064 * so, we disregard multi-function or not, and always disable 7065 * for all functions on the given path, this means 0,2,4,6 for 7066 * path 0 and 1,3,5,7 for path 1 7067 */ 7068 for (abs_func_id = BP_PATH(bp); 7069 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) { 7070 if (abs_func_id == BP_ABS_FUNC(bp)) { 7071 REG_WR(bp, 7072 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 7073 1); 7074 continue; 7075 } 7076 7077 bnx2x_pretend_func(bp, abs_func_id); 7078 /* clear pf enable */ 7079 bnx2x_pf_disable(bp); 7080 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 7081 } 7082 } 7083 7084 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON); 7085 if (CHIP_IS_E1(bp)) { 7086 /* enable HW interrupt from PXP on USDM overflow 7087 bit 16 on INT_MASK_0 */ 7088 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); 7089 } 7090 7091 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON); 7092 bnx2x_init_pxp(bp); 7093 bnx2x_set_endianity(bp); 7094 bnx2x_ilt_init_page_size(bp, INITOP_SET); 7095 7096 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp)) 7097 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 7098 7099 /* let the HW do it's magic ... */ 7100 msleep(100); 7101 /* finish PXP init */ 7102 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE); 7103 if (val != 1) { 7104 BNX2X_ERR("PXP2 CFG failed\n"); 7105 return -EBUSY; 7106 } 7107 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE); 7108 if (val != 1) { 7109 BNX2X_ERR("PXP2 RD_INIT failed\n"); 7110 return -EBUSY; 7111 } 7112 7113 /* Timers bug workaround E2 only. We need to set the entire ILT to 7114 * have entries with value "0" and valid bit on. 7115 * This needs to be done by the first PF that is loaded in a path 7116 * (i.e. common phase) 7117 */ 7118 if (!CHIP_IS_E1x(bp)) { 7119 /* In E2 there is a bug in the timers block that can cause function 6 / 7 7120 * (i.e. vnic3) to start even if it is marked as "scan-off". 7121 * This occurs when a different function (func2,3) is being marked 7122 * as "scan-off". Real-life scenario for example: if a driver is being 7123 * load-unloaded while func6,7 are down. This will cause the timer to access 7124 * the ilt, translate to a logical address and send a request to read/write. 7125 * Since the ilt for the function that is down is not valid, this will cause 7126 * a translation error which is unrecoverable. 7127 * The Workaround is intended to make sure that when this happens nothing fatal 7128 * will occur. The workaround: 7129 * 1. First PF driver which loads on a path will: 7130 * a. After taking the chip out of reset, by using pretend, 7131 * it will write "0" to the following registers of 7132 * the other vnics. 7133 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 7134 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 7135 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 7136 * And for itself it will write '1' to 7137 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 7138 * dmae-operations (writing to pram for example.) 7139 * note: can be done for only function 6,7 but cleaner this 7140 * way. 7141 * b. Write zero+valid to the entire ILT. 7142 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 7143 * VNIC3 (of that port). The range allocated will be the 7144 * entire ILT. This is needed to prevent ILT range error. 7145 * 2. Any PF driver load flow: 7146 * a. ILT update with the physical addresses of the allocated 7147 * logical pages. 7148 * b. Wait 20msec. - note that this timeout is needed to make 7149 * sure there are no requests in one of the PXP internal 7150 * queues with "old" ILT addresses. 7151 * c. PF enable in the PGLC. 7152 * d. Clear the was_error of the PF in the PGLC. (could have 7153 * occurred while driver was down) 7154 * e. PF enable in the CFC (WEAK + STRONG) 7155 * f. Timers scan enable 7156 * 3. PF driver unload flow: 7157 * a. Clear the Timers scan_en. 7158 * b. Polling for scan_on=0 for that PF. 7159 * c. Clear the PF enable bit in the PXP. 7160 * d. Clear the PF enable in the CFC (WEAK + STRONG) 7161 * e. Write zero+valid to all ILT entries (The valid bit must 7162 * stay set) 7163 * f. If this is VNIC 3 of a port then also init 7164 * first_timers_ilt_entry to zero and last_timers_ilt_entry 7165 * to the last entry in the ILT. 7166 * 7167 * Notes: 7168 * Currently the PF error in the PGLC is non recoverable. 7169 * In the future the there will be a recovery routine for this error. 7170 * Currently attention is masked. 7171 * Having an MCP lock on the load/unload process does not guarantee that 7172 * there is no Timer disable during Func6/7 enable. This is because the 7173 * Timers scan is currently being cleared by the MCP on FLR. 7174 * Step 2.d can be done only for PF6/7 and the driver can also check if 7175 * there is error before clearing it. But the flow above is simpler and 7176 * more general. 7177 * All ILT entries are written by zero+valid and not just PF6/7 7178 * ILT entries since in the future the ILT entries allocation for 7179 * PF-s might be dynamic. 7180 */ 7181 struct ilt_client_info ilt_cli; 7182 struct bnx2x_ilt ilt; 7183 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 7184 memset(&ilt, 0, sizeof(struct bnx2x_ilt)); 7185 7186 /* initialize dummy TM client */ 7187 ilt_cli.start = 0; 7188 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 7189 ilt_cli.client_num = ILT_CLIENT_TM; 7190 7191 /* Step 1: set zeroes to all ilt page entries with valid bit on 7192 * Step 2: set the timers first/last ilt entry to point 7193 * to the entire range to prevent ILT range error for 3rd/4th 7194 * vnic (this code assumes existence of the vnic) 7195 * 7196 * both steps performed by call to bnx2x_ilt_client_init_op() 7197 * with dummy TM client 7198 * 7199 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 7200 * and his brother are split registers 7201 */ 7202 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6)); 7203 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR); 7204 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 7205 7206 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN); 7207 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN); 7208 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 7209 } 7210 7211 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0); 7212 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0); 7213 7214 if (!CHIP_IS_E1x(bp)) { 7215 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 : 7216 (CHIP_REV_IS_FPGA(bp) ? 400 : 0); 7217 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON); 7218 7219 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON); 7220 7221 /* let the HW do it's magic ... */ 7222 do { 7223 msleep(200); 7224 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE); 7225 } while (factor-- && (val != 1)); 7226 7227 if (val != 1) { 7228 BNX2X_ERR("ATC_INIT failed\n"); 7229 return -EBUSY; 7230 } 7231 } 7232 7233 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON); 7234 7235 bnx2x_iov_init_dmae(bp); 7236 7237 /* clean the DMAE memory */ 7238 bp->dmae_ready = 1; 7239 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1); 7240 7241 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON); 7242 7243 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON); 7244 7245 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON); 7246 7247 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON); 7248 7249 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3); 7250 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3); 7251 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3); 7252 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3); 7253 7254 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON); 7255 7256 /* QM queues pointers table */ 7257 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET); 7258 7259 /* soft reset pulse */ 7260 REG_WR(bp, QM_REG_SOFT_RESET, 1); 7261 REG_WR(bp, QM_REG_SOFT_RESET, 0); 7262 7263 if (CNIC_SUPPORT(bp)) 7264 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON); 7265 7266 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON); 7267 7268 if (!CHIP_REV_IS_SLOW(bp)) 7269 /* enable hw interrupt from doorbell Q */ 7270 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); 7271 7272 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 7273 7274 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 7275 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf); 7276 7277 if (!CHIP_IS_E1(bp)) 7278 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan); 7279 7280 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) { 7281 if (IS_MF_AFEX(bp)) { 7282 /* configure that VNTag and VLAN headers must be 7283 * received in afex mode 7284 */ 7285 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE); 7286 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA); 7287 REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 7288 REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 7289 REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4); 7290 } else { 7291 /* Bit-map indicating which L2 hdrs may appear 7292 * after the basic Ethernet header 7293 */ 7294 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 7295 bp->path_has_ovlan ? 7 : 6); 7296 } 7297 } 7298 7299 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON); 7300 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON); 7301 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON); 7302 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON); 7303 7304 if (!CHIP_IS_E1x(bp)) { 7305 /* reset VFC memories */ 7306 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 7307 VFC_MEMORIES_RST_REG_CAM_RST | 7308 VFC_MEMORIES_RST_REG_RAM_RST); 7309 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 7310 VFC_MEMORIES_RST_REG_CAM_RST | 7311 VFC_MEMORIES_RST_REG_RAM_RST); 7312 7313 msleep(20); 7314 } 7315 7316 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON); 7317 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON); 7318 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON); 7319 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON); 7320 7321 /* sync semi rtc */ 7322 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 7323 0x80000000); 7324 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 7325 0x80000000); 7326 7327 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON); 7328 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON); 7329 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON); 7330 7331 if (!CHIP_IS_E1x(bp)) { 7332 if (IS_MF_AFEX(bp)) { 7333 /* configure that VNTag and VLAN headers must be 7334 * sent in afex mode 7335 */ 7336 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE); 7337 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA); 7338 REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 7339 REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 7340 REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4); 7341 } else { 7342 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 7343 bp->path_has_ovlan ? 7 : 6); 7344 } 7345 } 7346 7347 REG_WR(bp, SRC_REG_SOFT_RST, 1); 7348 7349 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON); 7350 7351 if (CNIC_SUPPORT(bp)) { 7352 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672); 7353 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 7354 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b); 7355 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a); 7356 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116); 7357 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 7358 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf); 7359 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 7360 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f); 7361 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7); 7362 } 7363 REG_WR(bp, SRC_REG_SOFT_RST, 0); 7364 7365 if (sizeof(union cdu_context) != 1024) 7366 /* we currently assume that a context is 1024 bytes */ 7367 dev_alert(&bp->pdev->dev, 7368 "please adjust the size of cdu_context(%ld)\n", 7369 (long)sizeof(union cdu_context)); 7370 7371 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON); 7372 val = (4 << 24) + (0 << 12) + 1024; 7373 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val); 7374 7375 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON); 7376 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF); 7377 /* enable context validation interrupt from CFC */ 7378 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); 7379 7380 /* set the thresholds to prevent CFC/CDU race */ 7381 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000); 7382 7383 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON); 7384 7385 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp)) 7386 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36); 7387 7388 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON); 7389 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON); 7390 7391 /* Reset PCIE errors for debug */ 7392 REG_WR(bp, 0x2814, 0xffffffff); 7393 REG_WR(bp, 0x3820, 0xffffffff); 7394 7395 if (!CHIP_IS_E1x(bp)) { 7396 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 7397 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 7398 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 7399 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 7400 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 7401 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 7402 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 7403 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 7404 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 7405 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 7406 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 7407 } 7408 7409 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON); 7410 if (!CHIP_IS_E1(bp)) { 7411 /* in E3 this done in per-port section */ 7412 if (!CHIP_IS_E3(bp)) 7413 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp)); 7414 } 7415 if (CHIP_IS_E1H(bp)) 7416 /* not applicable for E2 (and above ...) */ 7417 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp)); 7418 7419 if (CHIP_REV_IS_SLOW(bp)) 7420 msleep(200); 7421 7422 /* finish CFC init */ 7423 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10); 7424 if (val != 1) { 7425 BNX2X_ERR("CFC LL_INIT failed\n"); 7426 return -EBUSY; 7427 } 7428 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10); 7429 if (val != 1) { 7430 BNX2X_ERR("CFC AC_INIT failed\n"); 7431 return -EBUSY; 7432 } 7433 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 7434 if (val != 1) { 7435 BNX2X_ERR("CFC CAM_INIT failed\n"); 7436 return -EBUSY; 7437 } 7438 REG_WR(bp, CFC_REG_DEBUG0, 0); 7439 7440 if (CHIP_IS_E1(bp)) { 7441 /* read NIG statistic 7442 to see if this is our first up since powerup */ 7443 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 7444 val = *bnx2x_sp(bp, wb_data[0]); 7445 7446 /* do internal memory self test */ 7447 if ((val == 0) && bnx2x_int_mem_test(bp)) { 7448 BNX2X_ERR("internal mem self test failed\n"); 7449 return -EBUSY; 7450 } 7451 } 7452 7453 bnx2x_setup_fan_failure_detection(bp); 7454 7455 /* clear PXP2 attentions */ 7456 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0); 7457 7458 bnx2x_enable_blocks_attention(bp); 7459 bnx2x_enable_blocks_parity(bp); 7460 7461 if (!BP_NOMCP(bp)) { 7462 if (CHIP_IS_E1x(bp)) 7463 bnx2x__common_init_phy(bp); 7464 } else 7465 BNX2X_ERR("Bootcode is missing - can not initialize link\n"); 7466 7467 if (SHMEM2_HAS(bp, netproc_fw_ver)) 7468 SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM)); 7469 7470 return 0; 7471 } 7472 7473 /** 7474 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase. 7475 * 7476 * @bp: driver handle 7477 */ 7478 static int bnx2x_init_hw_common_chip(struct bnx2x *bp) 7479 { 7480 int rc = bnx2x_init_hw_common(bp); 7481 7482 if (rc) 7483 return rc; 7484 7485 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 7486 if (!BP_NOMCP(bp)) 7487 bnx2x__common_init_phy(bp); 7488 7489 return 0; 7490 } 7491 7492 static int bnx2x_init_hw_port(struct bnx2x *bp) 7493 { 7494 int port = BP_PORT(bp); 7495 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 7496 u32 low, high; 7497 u32 val, reg; 7498 7499 DP(NETIF_MSG_HW, "starting port init port %d\n", port); 7500 7501 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 7502 7503 bnx2x_init_block(bp, BLOCK_MISC, init_phase); 7504 bnx2x_init_block(bp, BLOCK_PXP, init_phase); 7505 bnx2x_init_block(bp, BLOCK_PXP2, init_phase); 7506 7507 /* Timers bug workaround: disables the pf_master bit in pglue at 7508 * common phase, we need to enable it here before any dmae access are 7509 * attempted. Therefore we manually added the enable-master to the 7510 * port phase (it also happens in the function phase) 7511 */ 7512 if (!CHIP_IS_E1x(bp)) 7513 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 7514 7515 bnx2x_init_block(bp, BLOCK_ATC, init_phase); 7516 bnx2x_init_block(bp, BLOCK_DMAE, init_phase); 7517 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); 7518 bnx2x_init_block(bp, BLOCK_QM, init_phase); 7519 7520 bnx2x_init_block(bp, BLOCK_TCM, init_phase); 7521 bnx2x_init_block(bp, BLOCK_UCM, init_phase); 7522 bnx2x_init_block(bp, BLOCK_CCM, init_phase); 7523 bnx2x_init_block(bp, BLOCK_XCM, init_phase); 7524 7525 /* QM cid (connection) count */ 7526 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET); 7527 7528 if (CNIC_SUPPORT(bp)) { 7529 bnx2x_init_block(bp, BLOCK_TM, init_phase); 7530 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20); 7531 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 7532 } 7533 7534 bnx2x_init_block(bp, BLOCK_DORQ, init_phase); 7535 7536 bnx2x_init_block(bp, BLOCK_BRB1, init_phase); 7537 7538 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) { 7539 7540 if (IS_MF(bp)) 7541 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246); 7542 else if (bp->dev->mtu > 4096) { 7543 if (bp->flags & ONE_PORT_FLAG) 7544 low = 160; 7545 else { 7546 val = bp->dev->mtu; 7547 /* (24*1024 + val*4)/256 */ 7548 low = 96 + (val/64) + 7549 ((val % 64) ? 1 : 0); 7550 } 7551 } else 7552 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160); 7553 high = low + 56; /* 14*1024/256 */ 7554 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 7555 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 7556 } 7557 7558 if (CHIP_MODE_IS_4_PORT(bp)) 7559 REG_WR(bp, (BP_PORT(bp) ? 7560 BRB1_REG_MAC_GUARANTIED_1 : 7561 BRB1_REG_MAC_GUARANTIED_0), 40); 7562 7563 bnx2x_init_block(bp, BLOCK_PRS, init_phase); 7564 if (CHIP_IS_E3B0(bp)) { 7565 if (IS_MF_AFEX(bp)) { 7566 /* configure headers for AFEX mode */ 7567 REG_WR(bp, BP_PORT(bp) ? 7568 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 7569 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 7570 REG_WR(bp, BP_PORT(bp) ? 7571 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 7572 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 7573 REG_WR(bp, BP_PORT(bp) ? 7574 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 7575 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 7576 } else { 7577 /* Ovlan exists only if we are in multi-function + 7578 * switch-dependent mode, in switch-independent there 7579 * is no ovlan headers 7580 */ 7581 REG_WR(bp, BP_PORT(bp) ? 7582 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 7583 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 7584 (bp->path_has_ovlan ? 7 : 6)); 7585 } 7586 } 7587 7588 bnx2x_init_block(bp, BLOCK_TSDM, init_phase); 7589 bnx2x_init_block(bp, BLOCK_CSDM, init_phase); 7590 bnx2x_init_block(bp, BLOCK_USDM, init_phase); 7591 bnx2x_init_block(bp, BLOCK_XSDM, init_phase); 7592 7593 bnx2x_init_block(bp, BLOCK_TSEM, init_phase); 7594 bnx2x_init_block(bp, BLOCK_USEM, init_phase); 7595 bnx2x_init_block(bp, BLOCK_CSEM, init_phase); 7596 bnx2x_init_block(bp, BLOCK_XSEM, init_phase); 7597 7598 bnx2x_init_block(bp, BLOCK_UPB, init_phase); 7599 bnx2x_init_block(bp, BLOCK_XPB, init_phase); 7600 7601 bnx2x_init_block(bp, BLOCK_PBF, init_phase); 7602 7603 if (CHIP_IS_E1x(bp)) { 7604 /* configure PBF to work without PAUSE mtu 9000 */ 7605 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 7606 7607 /* update threshold */ 7608 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 7609 /* update init credit */ 7610 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 7611 7612 /* probe changes */ 7613 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1); 7614 udelay(50); 7615 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0); 7616 } 7617 7618 if (CNIC_SUPPORT(bp)) 7619 bnx2x_init_block(bp, BLOCK_SRC, init_phase); 7620 7621 bnx2x_init_block(bp, BLOCK_CDU, init_phase); 7622 bnx2x_init_block(bp, BLOCK_CFC, init_phase); 7623 7624 if (CHIP_IS_E1(bp)) { 7625 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 7626 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 7627 } 7628 bnx2x_init_block(bp, BLOCK_HC, init_phase); 7629 7630 bnx2x_init_block(bp, BLOCK_IGU, init_phase); 7631 7632 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); 7633 /* init aeu_mask_attn_func_0/1: 7634 * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use 7635 * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF 7636 * bits 4-7 are used for "per vn group attention" */ 7637 val = IS_MF(bp) ? 0xF7 : 0x7; 7638 /* Enable DCBX attention for all but E1 */ 7639 val |= CHIP_IS_E1(bp) ? 0 : 0x10; 7640 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 7641 7642 /* SCPAD_PARITY should NOT trigger close the gates */ 7643 reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0; 7644 REG_WR(bp, reg, 7645 REG_RD(bp, reg) & 7646 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY); 7647 7648 reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0; 7649 REG_WR(bp, reg, 7650 REG_RD(bp, reg) & 7651 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY); 7652 7653 bnx2x_init_block(bp, BLOCK_NIG, init_phase); 7654 7655 if (!CHIP_IS_E1x(bp)) { 7656 /* Bit-map indicating which L2 hdrs may appear after the 7657 * basic Ethernet header 7658 */ 7659 if (IS_MF_AFEX(bp)) 7660 REG_WR(bp, BP_PORT(bp) ? 7661 NIG_REG_P1_HDRS_AFTER_BASIC : 7662 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 7663 else 7664 REG_WR(bp, BP_PORT(bp) ? 7665 NIG_REG_P1_HDRS_AFTER_BASIC : 7666 NIG_REG_P0_HDRS_AFTER_BASIC, 7667 IS_MF_SD(bp) ? 7 : 6); 7668 7669 if (CHIP_IS_E3(bp)) 7670 REG_WR(bp, BP_PORT(bp) ? 7671 NIG_REG_LLH1_MF_MODE : 7672 NIG_REG_LLH_MF_MODE, IS_MF(bp)); 7673 } 7674 if (!CHIP_IS_E3(bp)) 7675 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 7676 7677 if (!CHIP_IS_E1(bp)) { 7678 /* 0x2 disable mf_ov, 0x1 enable */ 7679 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 7680 (IS_MF_SD(bp) ? 0x1 : 0x2)); 7681 7682 if (!CHIP_IS_E1x(bp)) { 7683 val = 0; 7684 switch (bp->mf_mode) { 7685 case MULTI_FUNCTION_SD: 7686 val = 1; 7687 break; 7688 case MULTI_FUNCTION_SI: 7689 case MULTI_FUNCTION_AFEX: 7690 val = 2; 7691 break; 7692 } 7693 7694 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE : 7695 NIG_REG_LLH0_CLS_TYPE), val); 7696 } 7697 { 7698 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 7699 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 7700 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 7701 } 7702 } 7703 7704 /* If SPIO5 is set to generate interrupts, enable it for this port */ 7705 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); 7706 if (val & MISC_SPIO_SPIO5) { 7707 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 7708 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 7709 val = REG_RD(bp, reg_addr); 7710 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 7711 REG_WR(bp, reg_addr, val); 7712 } 7713 7714 if (CHIP_IS_E3B0(bp)) 7715 bp->flags |= PTP_SUPPORTED; 7716 7717 return 0; 7718 } 7719 7720 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr) 7721 { 7722 int reg; 7723 u32 wb_write[2]; 7724 7725 if (CHIP_IS_E1(bp)) 7726 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 7727 else 7728 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 7729 7730 wb_write[0] = ONCHIP_ADDR1(addr); 7731 wb_write[1] = ONCHIP_ADDR2(addr); 7732 REG_WR_DMAE(bp, reg, wb_write, 2); 7733 } 7734 7735 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf) 7736 { 7737 u32 data, ctl, cnt = 100; 7738 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 7739 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 7740 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 7741 u32 sb_bit = 1 << (idu_sb_id%32); 7742 u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 7743 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 7744 7745 /* Not supported in BC mode */ 7746 if (CHIP_INT_MODE_IS_BC(bp)) 7747 return; 7748 7749 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup 7750 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 7751 IGU_REGULAR_CLEANUP_SET | 7752 IGU_REGULAR_BCLEANUP; 7753 7754 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT | 7755 func_encode << IGU_CTRL_REG_FID_SHIFT | 7756 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT; 7757 7758 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 7759 data, igu_addr_data); 7760 REG_WR(bp, igu_addr_data, data); 7761 barrier(); 7762 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 7763 ctl, igu_addr_ctl); 7764 REG_WR(bp, igu_addr_ctl, ctl); 7765 barrier(); 7766 7767 /* wait for clean up to finish */ 7768 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt) 7769 msleep(20); 7770 7771 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) { 7772 DP(NETIF_MSG_HW, 7773 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n", 7774 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 7775 } 7776 } 7777 7778 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id) 7779 { 7780 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/); 7781 } 7782 7783 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func) 7784 { 7785 u32 i, base = FUNC_ILT_BASE(func); 7786 for (i = base; i < base + ILT_PER_FUNC; i++) 7787 bnx2x_ilt_wr(bp, i, 0); 7788 } 7789 7790 static void bnx2x_init_searcher(struct bnx2x *bp) 7791 { 7792 int port = BP_PORT(bp); 7793 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM); 7794 /* T1 hash bits value determines the T1 number of entries */ 7795 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS); 7796 } 7797 7798 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend) 7799 { 7800 int rc; 7801 struct bnx2x_func_state_params func_params = {NULL}; 7802 struct bnx2x_func_switch_update_params *switch_update_params = 7803 &func_params.params.switch_update; 7804 7805 /* Prepare parameters for function state transitions */ 7806 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 7807 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 7808 7809 func_params.f_obj = &bp->func_obj; 7810 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 7811 7812 /* Function parameters */ 7813 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG, 7814 &switch_update_params->changes); 7815 if (suspend) 7816 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND, 7817 &switch_update_params->changes); 7818 7819 rc = bnx2x_func_state_change(bp, &func_params); 7820 7821 return rc; 7822 } 7823 7824 static int bnx2x_reset_nic_mode(struct bnx2x *bp) 7825 { 7826 int rc, i, port = BP_PORT(bp); 7827 int vlan_en = 0, mac_en[NUM_MACS]; 7828 7829 /* Close input from network */ 7830 if (bp->mf_mode == SINGLE_FUNCTION) { 7831 bnx2x_set_rx_filter(&bp->link_params, 0); 7832 } else { 7833 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN : 7834 NIG_REG_LLH0_FUNC_EN); 7835 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : 7836 NIG_REG_LLH0_FUNC_EN, 0); 7837 for (i = 0; i < NUM_MACS; i++) { 7838 mac_en[i] = REG_RD(bp, port ? 7839 (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7840 4 * i) : 7841 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 7842 4 * i)); 7843 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7844 4 * i) : 7845 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0); 7846 } 7847 } 7848 7849 /* Close BMC to host */ 7850 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : 7851 NIG_REG_P1_TX_MNG_HOST_ENABLE, 0); 7852 7853 /* Suspend Tx switching to the PF. Completion of this ramrod 7854 * further guarantees that all the packets of that PF / child 7855 * VFs in BRB were processed by the Parser, so it is safe to 7856 * change the NIC_MODE register. 7857 */ 7858 rc = bnx2x_func_switch_update(bp, 1); 7859 if (rc) { 7860 BNX2X_ERR("Can't suspend tx-switching!\n"); 7861 return rc; 7862 } 7863 7864 /* Change NIC_MODE register */ 7865 REG_WR(bp, PRS_REG_NIC_MODE, 0); 7866 7867 /* Open input from network */ 7868 if (bp->mf_mode == SINGLE_FUNCTION) { 7869 bnx2x_set_rx_filter(&bp->link_params, 1); 7870 } else { 7871 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : 7872 NIG_REG_LLH0_FUNC_EN, vlan_en); 7873 for (i = 0; i < NUM_MACS; i++) { 7874 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7875 4 * i) : 7876 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 7877 mac_en[i]); 7878 } 7879 } 7880 7881 /* Enable BMC to host */ 7882 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : 7883 NIG_REG_P1_TX_MNG_HOST_ENABLE, 1); 7884 7885 /* Resume Tx switching to the PF */ 7886 rc = bnx2x_func_switch_update(bp, 0); 7887 if (rc) { 7888 BNX2X_ERR("Can't resume tx-switching!\n"); 7889 return rc; 7890 } 7891 7892 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); 7893 return 0; 7894 } 7895 7896 int bnx2x_init_hw_func_cnic(struct bnx2x *bp) 7897 { 7898 int rc; 7899 7900 bnx2x_ilt_init_op_cnic(bp, INITOP_SET); 7901 7902 if (CONFIGURE_NIC_MODE(bp)) { 7903 /* Configure searcher as part of function hw init */ 7904 bnx2x_init_searcher(bp); 7905 7906 /* Reset NIC mode */ 7907 rc = bnx2x_reset_nic_mode(bp); 7908 if (rc) 7909 BNX2X_ERR("Can't change NIC mode!\n"); 7910 return rc; 7911 } 7912 7913 return 0; 7914 } 7915 7916 /* previous driver DMAE transaction may have occurred when pre-boot stage ended 7917 * and boot began, or when kdump kernel was loaded. Either case would invalidate 7918 * the addresses of the transaction, resulting in was-error bit set in the pci 7919 * causing all hw-to-host pcie transactions to timeout. If this happened we want 7920 * to clear the interrupt which detected this from the pglueb and the was done 7921 * bit 7922 */ 7923 static void bnx2x_clean_pglue_errors(struct bnx2x *bp) 7924 { 7925 if (!CHIP_IS_E1x(bp)) 7926 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 7927 1 << BP_ABS_FUNC(bp)); 7928 } 7929 7930 static int bnx2x_init_hw_func(struct bnx2x *bp) 7931 { 7932 int port = BP_PORT(bp); 7933 int func = BP_FUNC(bp); 7934 int init_phase = PHASE_PF0 + func; 7935 struct bnx2x_ilt *ilt = BP_ILT(bp); 7936 u16 cdu_ilt_start; 7937 u32 addr, val; 7938 u32 main_mem_base, main_mem_size, main_mem_prty_clr; 7939 int i, main_mem_width, rc; 7940 7941 DP(NETIF_MSG_HW, "starting func init func %d\n", func); 7942 7943 /* FLR cleanup - hmmm */ 7944 if (!CHIP_IS_E1x(bp)) { 7945 rc = bnx2x_pf_flr_clnup(bp); 7946 if (rc) { 7947 bnx2x_fw_dump(bp); 7948 return rc; 7949 } 7950 } 7951 7952 /* set MSI reconfigure capability */ 7953 if (bp->common.int_block == INT_BLOCK_HC) { 7954 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 7955 val = REG_RD(bp, addr); 7956 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 7957 REG_WR(bp, addr, val); 7958 } 7959 7960 bnx2x_init_block(bp, BLOCK_PXP, init_phase); 7961 bnx2x_init_block(bp, BLOCK_PXP2, init_phase); 7962 7963 ilt = BP_ILT(bp); 7964 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 7965 7966 if (IS_SRIOV(bp)) 7967 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS; 7968 cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start); 7969 7970 /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes 7971 * those of the VFs, so start line should be reset 7972 */ 7973 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 7974 for (i = 0; i < L2_ILT_LINES(bp); i++) { 7975 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt; 7976 ilt->lines[cdu_ilt_start + i].page_mapping = 7977 bp->context[i].cxt_mapping; 7978 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size; 7979 } 7980 7981 bnx2x_ilt_init_op(bp, INITOP_SET); 7982 7983 if (!CONFIGURE_NIC_MODE(bp)) { 7984 bnx2x_init_searcher(bp); 7985 REG_WR(bp, PRS_REG_NIC_MODE, 0); 7986 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); 7987 } else { 7988 /* Set NIC mode */ 7989 REG_WR(bp, PRS_REG_NIC_MODE, 1); 7990 DP(NETIF_MSG_IFUP, "NIC MODE configured\n"); 7991 } 7992 7993 if (!CHIP_IS_E1x(bp)) { 7994 u32 pf_conf = IGU_PF_CONF_FUNC_EN; 7995 7996 /* Turn on a single ISR mode in IGU if driver is going to use 7997 * INT#x or MSI 7998 */ 7999 if (!(bp->flags & USING_MSIX_FLAG)) 8000 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 8001 /* 8002 * Timers workaround bug: function init part. 8003 * Need to wait 20msec after initializing ILT, 8004 * needed to make sure there are no requests in 8005 * one of the PXP internal queues with "old" ILT addresses 8006 */ 8007 msleep(20); 8008 /* 8009 * Master enable - Due to WB DMAE writes performed before this 8010 * register is re-initialized as part of the regular function 8011 * init 8012 */ 8013 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 8014 /* Enable the function in IGU */ 8015 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf); 8016 } 8017 8018 bp->dmae_ready = 1; 8019 8020 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); 8021 8022 bnx2x_clean_pglue_errors(bp); 8023 8024 bnx2x_init_block(bp, BLOCK_ATC, init_phase); 8025 bnx2x_init_block(bp, BLOCK_DMAE, init_phase); 8026 bnx2x_init_block(bp, BLOCK_NIG, init_phase); 8027 bnx2x_init_block(bp, BLOCK_SRC, init_phase); 8028 bnx2x_init_block(bp, BLOCK_MISC, init_phase); 8029 bnx2x_init_block(bp, BLOCK_TCM, init_phase); 8030 bnx2x_init_block(bp, BLOCK_UCM, init_phase); 8031 bnx2x_init_block(bp, BLOCK_CCM, init_phase); 8032 bnx2x_init_block(bp, BLOCK_XCM, init_phase); 8033 bnx2x_init_block(bp, BLOCK_TSEM, init_phase); 8034 bnx2x_init_block(bp, BLOCK_USEM, init_phase); 8035 bnx2x_init_block(bp, BLOCK_CSEM, init_phase); 8036 bnx2x_init_block(bp, BLOCK_XSEM, init_phase); 8037 8038 if (!CHIP_IS_E1x(bp)) 8039 REG_WR(bp, QM_REG_PF_EN, 1); 8040 8041 if (!CHIP_IS_E1x(bp)) { 8042 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8043 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8044 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8045 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8046 } 8047 bnx2x_init_block(bp, BLOCK_QM, init_phase); 8048 8049 bnx2x_init_block(bp, BLOCK_TM, init_phase); 8050 bnx2x_init_block(bp, BLOCK_DORQ, init_phase); 8051 REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */ 8052 8053 bnx2x_iov_init_dq(bp); 8054 8055 bnx2x_init_block(bp, BLOCK_BRB1, init_phase); 8056 bnx2x_init_block(bp, BLOCK_PRS, init_phase); 8057 bnx2x_init_block(bp, BLOCK_TSDM, init_phase); 8058 bnx2x_init_block(bp, BLOCK_CSDM, init_phase); 8059 bnx2x_init_block(bp, BLOCK_USDM, init_phase); 8060 bnx2x_init_block(bp, BLOCK_XSDM, init_phase); 8061 bnx2x_init_block(bp, BLOCK_UPB, init_phase); 8062 bnx2x_init_block(bp, BLOCK_XPB, init_phase); 8063 bnx2x_init_block(bp, BLOCK_PBF, init_phase); 8064 if (!CHIP_IS_E1x(bp)) 8065 REG_WR(bp, PBF_REG_DISABLE_PF, 0); 8066 8067 bnx2x_init_block(bp, BLOCK_CDU, init_phase); 8068 8069 bnx2x_init_block(bp, BLOCK_CFC, init_phase); 8070 8071 if (!CHIP_IS_E1x(bp)) 8072 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1); 8073 8074 if (IS_MF(bp)) { 8075 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) { 8076 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1); 8077 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8, 8078 bp->mf_ov); 8079 } 8080 } 8081 8082 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); 8083 8084 /* HC init per function */ 8085 if (bp->common.int_block == INT_BLOCK_HC) { 8086 if (CHIP_IS_E1H(bp)) { 8087 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8088 8089 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 8090 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 8091 } 8092 bnx2x_init_block(bp, BLOCK_HC, init_phase); 8093 8094 } else { 8095 int num_segs, sb_idx, prod_offset; 8096 8097 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8098 8099 if (!CHIP_IS_E1x(bp)) { 8100 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); 8101 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); 8102 } 8103 8104 bnx2x_init_block(bp, BLOCK_IGU, init_phase); 8105 8106 if (!CHIP_IS_E1x(bp)) { 8107 int dsb_idx = 0; 8108 /** 8109 * Producer memory: 8110 * E2 mode: address 0-135 match to the mapping memory; 8111 * 136 - PF0 default prod; 137 - PF1 default prod; 8112 * 138 - PF2 default prod; 139 - PF3 default prod; 8113 * 140 - PF0 attn prod; 141 - PF1 attn prod; 8114 * 142 - PF2 attn prod; 143 - PF3 attn prod; 8115 * 144-147 reserved. 8116 * 8117 * E1.5 mode - In backward compatible mode; 8118 * for non default SB; each even line in the memory 8119 * holds the U producer and each odd line hold 8120 * the C producer. The first 128 producers are for 8121 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 8122 * producers are for the DSB for each PF. 8123 * Each PF has five segments: (the order inside each 8124 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 8125 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 8126 * 144-147 attn prods; 8127 */ 8128 /* non-default-status-blocks */ 8129 num_segs = CHIP_INT_MODE_IS_BC(bp) ? 8130 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 8131 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) { 8132 prod_offset = (bp->igu_base_sb + sb_idx) * 8133 num_segs; 8134 8135 for (i = 0; i < num_segs; i++) { 8136 addr = IGU_REG_PROD_CONS_MEMORY + 8137 (prod_offset + i) * 4; 8138 REG_WR(bp, addr, 0); 8139 } 8140 /* send consumer update with value 0 */ 8141 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx, 8142 USTORM_ID, 0, IGU_INT_NOP, 1); 8143 bnx2x_igu_clear_sb(bp, 8144 bp->igu_base_sb + sb_idx); 8145 } 8146 8147 /* default-status-blocks */ 8148 num_segs = CHIP_INT_MODE_IS_BC(bp) ? 8149 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 8150 8151 if (CHIP_MODE_IS_4_PORT(bp)) 8152 dsb_idx = BP_FUNC(bp); 8153 else 8154 dsb_idx = BP_VN(bp); 8155 8156 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ? 8157 IGU_BC_BASE_DSB_PROD + dsb_idx : 8158 IGU_NORM_BASE_DSB_PROD + dsb_idx); 8159 8160 /* 8161 * igu prods come in chunks of E1HVN_MAX (4) - 8162 * does not matters what is the current chip mode 8163 */ 8164 for (i = 0; i < (num_segs * E1HVN_MAX); 8165 i += E1HVN_MAX) { 8166 addr = IGU_REG_PROD_CONS_MEMORY + 8167 (prod_offset + i)*4; 8168 REG_WR(bp, addr, 0); 8169 } 8170 /* send consumer update with 0 */ 8171 if (CHIP_INT_MODE_IS_BC(bp)) { 8172 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8173 USTORM_ID, 0, IGU_INT_NOP, 1); 8174 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8175 CSTORM_ID, 0, IGU_INT_NOP, 1); 8176 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8177 XSTORM_ID, 0, IGU_INT_NOP, 1); 8178 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8179 TSTORM_ID, 0, IGU_INT_NOP, 1); 8180 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8181 ATTENTION_ID, 0, IGU_INT_NOP, 1); 8182 } else { 8183 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8184 USTORM_ID, 0, IGU_INT_NOP, 1); 8185 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8186 ATTENTION_ID, 0, IGU_INT_NOP, 1); 8187 } 8188 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id); 8189 8190 /* !!! These should become driver const once 8191 rf-tool supports split-68 const */ 8192 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 8193 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 8194 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0); 8195 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0); 8196 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0); 8197 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0); 8198 } 8199 } 8200 8201 /* Reset PCIE errors for debug */ 8202 REG_WR(bp, 0x2114, 0xffffffff); 8203 REG_WR(bp, 0x2120, 0xffffffff); 8204 8205 if (CHIP_IS_E1x(bp)) { 8206 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 8207 main_mem_base = HC_REG_MAIN_MEMORY + 8208 BP_PORT(bp) * (main_mem_size * 4); 8209 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 8210 main_mem_width = 8; 8211 8212 val = REG_RD(bp, main_mem_prty_clr); 8213 if (val) 8214 DP(NETIF_MSG_HW, 8215 "Hmmm... Parity errors in HC block during function init (0x%x)!\n", 8216 val); 8217 8218 /* Clear "false" parity errors in MSI-X table */ 8219 for (i = main_mem_base; 8220 i < main_mem_base + main_mem_size * 4; 8221 i += main_mem_width) { 8222 bnx2x_read_dmae(bp, i, main_mem_width / 4); 8223 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), 8224 i, main_mem_width / 4); 8225 } 8226 /* Clear HC parity attention */ 8227 REG_RD(bp, main_mem_prty_clr); 8228 } 8229 8230 #ifdef BNX2X_STOP_ON_ERROR 8231 /* Enable STORMs SP logging */ 8232 REG_WR8(bp, BAR_USTRORM_INTMEM + 8233 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8234 REG_WR8(bp, BAR_TSTRORM_INTMEM + 8235 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8236 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8237 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8238 REG_WR8(bp, BAR_XSTRORM_INTMEM + 8239 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8240 #endif 8241 8242 bnx2x_phy_probe(&bp->link_params); 8243 8244 return 0; 8245 } 8246 8247 void bnx2x_free_mem_cnic(struct bnx2x *bp) 8248 { 8249 bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE); 8250 8251 if (!CHIP_IS_E1x(bp)) 8252 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping, 8253 sizeof(struct host_hc_status_block_e2)); 8254 else 8255 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping, 8256 sizeof(struct host_hc_status_block_e1x)); 8257 8258 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); 8259 } 8260 8261 void bnx2x_free_mem(struct bnx2x *bp) 8262 { 8263 int i; 8264 8265 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, 8266 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 8267 8268 if (IS_VF(bp)) 8269 return; 8270 8271 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping, 8272 sizeof(struct host_sp_status_block)); 8273 8274 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping, 8275 sizeof(struct bnx2x_slowpath)); 8276 8277 for (i = 0; i < L2_ILT_LINES(bp); i++) 8278 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping, 8279 bp->context[i].size); 8280 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE); 8281 8282 BNX2X_FREE(bp->ilt->lines); 8283 8284 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE); 8285 8286 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping, 8287 BCM_PAGE_SIZE * NUM_EQ_PAGES); 8288 8289 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); 8290 8291 bnx2x_iov_free_mem(bp); 8292 } 8293 8294 int bnx2x_alloc_mem_cnic(struct bnx2x *bp) 8295 { 8296 if (!CHIP_IS_E1x(bp)) { 8297 /* size = the status block + ramrod buffers */ 8298 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping, 8299 sizeof(struct host_hc_status_block_e2)); 8300 if (!bp->cnic_sb.e2_sb) 8301 goto alloc_mem_err; 8302 } else { 8303 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping, 8304 sizeof(struct host_hc_status_block_e1x)); 8305 if (!bp->cnic_sb.e1x_sb) 8306 goto alloc_mem_err; 8307 } 8308 8309 if (CONFIGURE_NIC_MODE(bp) && !bp->t2) { 8310 /* allocate searcher T2 table, as it wasn't allocated before */ 8311 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ); 8312 if (!bp->t2) 8313 goto alloc_mem_err; 8314 } 8315 8316 /* write address to which L5 should insert its values */ 8317 bp->cnic_eth_dev.addr_drv_info_to_mcp = 8318 &bp->slowpath->drv_info_to_mcp; 8319 8320 if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC)) 8321 goto alloc_mem_err; 8322 8323 return 0; 8324 8325 alloc_mem_err: 8326 bnx2x_free_mem_cnic(bp); 8327 BNX2X_ERR("Can't allocate memory\n"); 8328 return -ENOMEM; 8329 } 8330 8331 int bnx2x_alloc_mem(struct bnx2x *bp) 8332 { 8333 int i, allocated, context_size; 8334 8335 if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) { 8336 /* allocate searcher T2 table */ 8337 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ); 8338 if (!bp->t2) 8339 goto alloc_mem_err; 8340 } 8341 8342 bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping, 8343 sizeof(struct host_sp_status_block)); 8344 if (!bp->def_status_blk) 8345 goto alloc_mem_err; 8346 8347 bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping, 8348 sizeof(struct bnx2x_slowpath)); 8349 if (!bp->slowpath) 8350 goto alloc_mem_err; 8351 8352 /* Allocate memory for CDU context: 8353 * This memory is allocated separately and not in the generic ILT 8354 * functions because CDU differs in few aspects: 8355 * 1. There are multiple entities allocating memory for context - 8356 * 'regular' driver, CNIC and SRIOV driver. Each separately controls 8357 * its own ILT lines. 8358 * 2. Since CDU page-size is not a single 4KB page (which is the case 8359 * for the other ILT clients), to be efficient we want to support 8360 * allocation of sub-page-size in the last entry. 8361 * 3. Context pointers are used by the driver to pass to FW / update 8362 * the context (for the other ILT clients the pointers are used just to 8363 * free the memory during unload). 8364 */ 8365 context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp); 8366 8367 for (i = 0, allocated = 0; allocated < context_size; i++) { 8368 bp->context[i].size = min(CDU_ILT_PAGE_SZ, 8369 (context_size - allocated)); 8370 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping, 8371 bp->context[i].size); 8372 if (!bp->context[i].vcxt) 8373 goto alloc_mem_err; 8374 allocated += bp->context[i].size; 8375 } 8376 bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line), 8377 GFP_KERNEL); 8378 if (!bp->ilt->lines) 8379 goto alloc_mem_err; 8380 8381 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC)) 8382 goto alloc_mem_err; 8383 8384 if (bnx2x_iov_alloc_mem(bp)) 8385 goto alloc_mem_err; 8386 8387 /* Slow path ring */ 8388 bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE); 8389 if (!bp->spq) 8390 goto alloc_mem_err; 8391 8392 /* EQ */ 8393 bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping, 8394 BCM_PAGE_SIZE * NUM_EQ_PAGES); 8395 if (!bp->eq_ring) 8396 goto alloc_mem_err; 8397 8398 return 0; 8399 8400 alloc_mem_err: 8401 bnx2x_free_mem(bp); 8402 BNX2X_ERR("Can't allocate memory\n"); 8403 return -ENOMEM; 8404 } 8405 8406 /* 8407 * Init service functions 8408 */ 8409 8410 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac, 8411 struct bnx2x_vlan_mac_obj *obj, bool set, 8412 int mac_type, unsigned long *ramrod_flags) 8413 { 8414 int rc; 8415 struct bnx2x_vlan_mac_ramrod_params ramrod_param; 8416 8417 memset(&ramrod_param, 0, sizeof(ramrod_param)); 8418 8419 /* Fill general parameters */ 8420 ramrod_param.vlan_mac_obj = obj; 8421 ramrod_param.ramrod_flags = *ramrod_flags; 8422 8423 /* Fill a user request section if needed */ 8424 if (!test_bit(RAMROD_CONT, ramrod_flags)) { 8425 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 8426 8427 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 8428 8429 /* Set the command: ADD or DEL */ 8430 if (set) 8431 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD; 8432 else 8433 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL; 8434 } 8435 8436 rc = bnx2x_config_vlan_mac(bp, &ramrod_param); 8437 8438 if (rc == -EEXIST) { 8439 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc); 8440 /* do not treat adding same MAC as error */ 8441 rc = 0; 8442 } else if (rc < 0) 8443 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del")); 8444 8445 return rc; 8446 } 8447 8448 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan, 8449 struct bnx2x_vlan_mac_obj *obj, bool set, 8450 unsigned long *ramrod_flags) 8451 { 8452 int rc; 8453 struct bnx2x_vlan_mac_ramrod_params ramrod_param; 8454 8455 memset(&ramrod_param, 0, sizeof(ramrod_param)); 8456 8457 /* Fill general parameters */ 8458 ramrod_param.vlan_mac_obj = obj; 8459 ramrod_param.ramrod_flags = *ramrod_flags; 8460 8461 /* Fill a user request section if needed */ 8462 if (!test_bit(RAMROD_CONT, ramrod_flags)) { 8463 ramrod_param.user_req.u.vlan.vlan = vlan; 8464 __set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags); 8465 /* Set the command: ADD or DEL */ 8466 if (set) 8467 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD; 8468 else 8469 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL; 8470 } 8471 8472 rc = bnx2x_config_vlan_mac(bp, &ramrod_param); 8473 8474 if (rc == -EEXIST) { 8475 /* Do not treat adding same vlan as error. */ 8476 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc); 8477 rc = 0; 8478 } else if (rc < 0) { 8479 BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del")); 8480 } 8481 8482 return rc; 8483 } 8484 8485 void bnx2x_clear_vlan_info(struct bnx2x *bp) 8486 { 8487 struct bnx2x_vlan_entry *vlan; 8488 8489 /* Mark that hw forgot all entries */ 8490 list_for_each_entry(vlan, &bp->vlan_reg, link) 8491 vlan->hw = false; 8492 8493 bp->vlan_cnt = 0; 8494 } 8495 8496 static int bnx2x_del_all_vlans(struct bnx2x *bp) 8497 { 8498 struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj; 8499 unsigned long ramrod_flags = 0, vlan_flags = 0; 8500 int rc; 8501 8502 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 8503 __set_bit(BNX2X_VLAN, &vlan_flags); 8504 rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags); 8505 if (rc) 8506 return rc; 8507 8508 bnx2x_clear_vlan_info(bp); 8509 8510 return 0; 8511 } 8512 8513 int bnx2x_del_all_macs(struct bnx2x *bp, 8514 struct bnx2x_vlan_mac_obj *mac_obj, 8515 int mac_type, bool wait_for_comp) 8516 { 8517 int rc; 8518 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 8519 8520 /* Wait for completion of requested */ 8521 if (wait_for_comp) 8522 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 8523 8524 /* Set the mac type of addresses we want to clear */ 8525 __set_bit(mac_type, &vlan_mac_flags); 8526 8527 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags); 8528 if (rc < 0) 8529 BNX2X_ERR("Failed to delete MACs: %d\n", rc); 8530 8531 return rc; 8532 } 8533 8534 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set) 8535 { 8536 if (IS_PF(bp)) { 8537 unsigned long ramrod_flags = 0; 8538 8539 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n"); 8540 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 8541 return bnx2x_set_mac_one(bp, bp->dev->dev_addr, 8542 &bp->sp_objs->mac_obj, set, 8543 BNX2X_ETH_MAC, &ramrod_flags); 8544 } else { /* vf */ 8545 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, 8546 bp->fp->index, set); 8547 } 8548 } 8549 8550 int bnx2x_setup_leading(struct bnx2x *bp) 8551 { 8552 if (IS_PF(bp)) 8553 return bnx2x_setup_queue(bp, &bp->fp[0], true); 8554 else /* VF */ 8555 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true); 8556 } 8557 8558 /** 8559 * bnx2x_set_int_mode - configure interrupt mode 8560 * 8561 * @bp: driver handle 8562 * 8563 * In case of MSI-X it will also try to enable MSI-X. 8564 */ 8565 int bnx2x_set_int_mode(struct bnx2x *bp) 8566 { 8567 int rc = 0; 8568 8569 if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) { 8570 BNX2X_ERR("VF not loaded since interrupt mode not msix\n"); 8571 return -EINVAL; 8572 } 8573 8574 switch (int_mode) { 8575 case BNX2X_INT_MODE_MSIX: 8576 /* attempt to enable msix */ 8577 rc = bnx2x_enable_msix(bp); 8578 8579 /* msix attained */ 8580 if (!rc) 8581 return 0; 8582 8583 /* vfs use only msix */ 8584 if (rc && IS_VF(bp)) 8585 return rc; 8586 8587 /* failed to enable multiple MSI-X */ 8588 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n", 8589 bp->num_queues, 8590 1 + bp->num_cnic_queues); 8591 8592 /* fall through */ 8593 case BNX2X_INT_MODE_MSI: 8594 bnx2x_enable_msi(bp); 8595 8596 /* fall through */ 8597 case BNX2X_INT_MODE_INTX: 8598 bp->num_ethernet_queues = 1; 8599 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 8600 BNX2X_DEV_INFO("set number of queues to 1\n"); 8601 break; 8602 default: 8603 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n"); 8604 return -EINVAL; 8605 } 8606 return 0; 8607 } 8608 8609 /* must be called prior to any HW initializations */ 8610 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp) 8611 { 8612 if (IS_SRIOV(bp)) 8613 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS; 8614 return L2_ILT_LINES(bp); 8615 } 8616 8617 void bnx2x_ilt_set_info(struct bnx2x *bp) 8618 { 8619 struct ilt_client_info *ilt_client; 8620 struct bnx2x_ilt *ilt = BP_ILT(bp); 8621 u16 line = 0; 8622 8623 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp)); 8624 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line); 8625 8626 /* CDU */ 8627 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 8628 ilt_client->client_num = ILT_CLIENT_CDU; 8629 ilt_client->page_size = CDU_ILT_PAGE_SZ; 8630 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 8631 ilt_client->start = line; 8632 line += bnx2x_cid_ilt_lines(bp); 8633 8634 if (CNIC_SUPPORT(bp)) 8635 line += CNIC_ILT_LINES; 8636 ilt_client->end = line - 1; 8637 8638 DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8639 ilt_client->start, 8640 ilt_client->end, 8641 ilt_client->page_size, 8642 ilt_client->flags, 8643 ilog2(ilt_client->page_size >> 12)); 8644 8645 /* QM */ 8646 if (QM_INIT(bp->qm_cid_count)) { 8647 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 8648 ilt_client->client_num = ILT_CLIENT_QM; 8649 ilt_client->page_size = QM_ILT_PAGE_SZ; 8650 ilt_client->flags = 0; 8651 ilt_client->start = line; 8652 8653 /* 4 bytes for each cid */ 8654 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 8655 QM_ILT_PAGE_SZ); 8656 8657 ilt_client->end = line - 1; 8658 8659 DP(NETIF_MSG_IFUP, 8660 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8661 ilt_client->start, 8662 ilt_client->end, 8663 ilt_client->page_size, 8664 ilt_client->flags, 8665 ilog2(ilt_client->page_size >> 12)); 8666 } 8667 8668 if (CNIC_SUPPORT(bp)) { 8669 /* SRC */ 8670 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 8671 ilt_client->client_num = ILT_CLIENT_SRC; 8672 ilt_client->page_size = SRC_ILT_PAGE_SZ; 8673 ilt_client->flags = 0; 8674 ilt_client->start = line; 8675 line += SRC_ILT_LINES; 8676 ilt_client->end = line - 1; 8677 8678 DP(NETIF_MSG_IFUP, 8679 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8680 ilt_client->start, 8681 ilt_client->end, 8682 ilt_client->page_size, 8683 ilt_client->flags, 8684 ilog2(ilt_client->page_size >> 12)); 8685 8686 /* TM */ 8687 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 8688 ilt_client->client_num = ILT_CLIENT_TM; 8689 ilt_client->page_size = TM_ILT_PAGE_SZ; 8690 ilt_client->flags = 0; 8691 ilt_client->start = line; 8692 line += TM_ILT_LINES; 8693 ilt_client->end = line - 1; 8694 8695 DP(NETIF_MSG_IFUP, 8696 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8697 ilt_client->start, 8698 ilt_client->end, 8699 ilt_client->page_size, 8700 ilt_client->flags, 8701 ilog2(ilt_client->page_size >> 12)); 8702 } 8703 8704 BUG_ON(line > ILT_MAX_LINES); 8705 } 8706 8707 /** 8708 * bnx2x_pf_q_prep_init - prepare INIT transition parameters 8709 * 8710 * @bp: driver handle 8711 * @fp: pointer to fastpath 8712 * @init_params: pointer to parameters structure 8713 * 8714 * parameters configured: 8715 * - HC configuration 8716 * - Queue's CDU context 8717 */ 8718 static void bnx2x_pf_q_prep_init(struct bnx2x *bp, 8719 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params) 8720 { 8721 u8 cos; 8722 int cxt_index, cxt_offset; 8723 8724 /* FCoE Queue uses Default SB, thus has no HC capabilities */ 8725 if (!IS_FCOE_FP(fp)) { 8726 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags); 8727 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags); 8728 8729 /* If HC is supported, enable host coalescing in the transition 8730 * to INIT state. 8731 */ 8732 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags); 8733 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags); 8734 8735 /* HC rate */ 8736 init_params->rx.hc_rate = bp->rx_ticks ? 8737 (1000000 / bp->rx_ticks) : 0; 8738 init_params->tx.hc_rate = bp->tx_ticks ? 8739 (1000000 / bp->tx_ticks) : 0; 8740 8741 /* FW SB ID */ 8742 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = 8743 fp->fw_sb_id; 8744 8745 /* 8746 * CQ index among the SB indices: FCoE clients uses the default 8747 * SB, therefore it's different. 8748 */ 8749 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 8750 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 8751 } 8752 8753 /* set maximum number of COSs supported by this queue */ 8754 init_params->max_cos = fp->max_cos; 8755 8756 DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n", 8757 fp->index, init_params->max_cos); 8758 8759 /* set the context pointers queue object */ 8760 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 8761 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS; 8762 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index * 8763 ILT_PAGE_CIDS); 8764 init_params->cxts[cos] = 8765 &bp->context[cxt_index].vcxt[cxt_offset].eth; 8766 } 8767 } 8768 8769 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp, 8770 struct bnx2x_queue_state_params *q_params, 8771 struct bnx2x_queue_setup_tx_only_params *tx_only_params, 8772 int tx_index, bool leading) 8773 { 8774 memset(tx_only_params, 0, sizeof(*tx_only_params)); 8775 8776 /* Set the command */ 8777 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; 8778 8779 /* Set tx-only QUEUE flags: don't zero statistics */ 8780 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false); 8781 8782 /* choose the index of the cid to send the slow path on */ 8783 tx_only_params->cid_index = tx_index; 8784 8785 /* Set general TX_ONLY_SETUP parameters */ 8786 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index); 8787 8788 /* Set Tx TX_ONLY_SETUP parameters */ 8789 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index); 8790 8791 DP(NETIF_MSG_IFUP, 8792 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n", 8793 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX], 8794 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id, 8795 tx_only_params->gen_params.spcl_id, tx_only_params->flags); 8796 8797 /* send the ramrod */ 8798 return bnx2x_queue_state_change(bp, q_params); 8799 } 8800 8801 /** 8802 * bnx2x_setup_queue - setup queue 8803 * 8804 * @bp: driver handle 8805 * @fp: pointer to fastpath 8806 * @leading: is leading 8807 * 8808 * This function performs 2 steps in a Queue state machine 8809 * actually: 1) RESET->INIT 2) INIT->SETUP 8810 */ 8811 8812 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp, 8813 bool leading) 8814 { 8815 struct bnx2x_queue_state_params q_params = {NULL}; 8816 struct bnx2x_queue_setup_params *setup_params = 8817 &q_params.params.setup; 8818 struct bnx2x_queue_setup_tx_only_params *tx_only_params = 8819 &q_params.params.tx_only; 8820 int rc; 8821 u8 tx_index; 8822 8823 DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index); 8824 8825 /* reset IGU state skip FCoE L2 queue */ 8826 if (!IS_FCOE_FP(fp)) 8827 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, 8828 IGU_INT_ENABLE, 0); 8829 8830 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 8831 /* We want to wait for completion in this context */ 8832 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 8833 8834 /* Prepare the INIT parameters */ 8835 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init); 8836 8837 /* Set the command */ 8838 q_params.cmd = BNX2X_Q_CMD_INIT; 8839 8840 /* Change the state to INIT */ 8841 rc = bnx2x_queue_state_change(bp, &q_params); 8842 if (rc) { 8843 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index); 8844 return rc; 8845 } 8846 8847 DP(NETIF_MSG_IFUP, "init complete\n"); 8848 8849 /* Now move the Queue to the SETUP state... */ 8850 memset(setup_params, 0, sizeof(*setup_params)); 8851 8852 /* Set QUEUE flags */ 8853 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading); 8854 8855 /* Set general SETUP parameters */ 8856 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params, 8857 FIRST_TX_COS_INDEX); 8858 8859 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params, 8860 &setup_params->rxq_params); 8861 8862 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params, 8863 FIRST_TX_COS_INDEX); 8864 8865 /* Set the command */ 8866 q_params.cmd = BNX2X_Q_CMD_SETUP; 8867 8868 if (IS_FCOE_FP(fp)) 8869 bp->fcoe_init = true; 8870 8871 /* Change the state to SETUP */ 8872 rc = bnx2x_queue_state_change(bp, &q_params); 8873 if (rc) { 8874 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index); 8875 return rc; 8876 } 8877 8878 /* loop through the relevant tx-only indices */ 8879 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 8880 tx_index < fp->max_cos; 8881 tx_index++) { 8882 8883 /* prepare and send tx-only ramrod*/ 8884 rc = bnx2x_setup_tx_only(bp, fp, &q_params, 8885 tx_only_params, tx_index, leading); 8886 if (rc) { 8887 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n", 8888 fp->index, tx_index); 8889 return rc; 8890 } 8891 } 8892 8893 return rc; 8894 } 8895 8896 static int bnx2x_stop_queue(struct bnx2x *bp, int index) 8897 { 8898 struct bnx2x_fastpath *fp = &bp->fp[index]; 8899 struct bnx2x_fp_txdata *txdata; 8900 struct bnx2x_queue_state_params q_params = {NULL}; 8901 int rc, tx_index; 8902 8903 DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid); 8904 8905 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 8906 /* We want to wait for completion in this context */ 8907 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 8908 8909 /* close tx-only connections */ 8910 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 8911 tx_index < fp->max_cos; 8912 tx_index++){ 8913 8914 /* ascertain this is a normal queue*/ 8915 txdata = fp->txdata_ptr[tx_index]; 8916 8917 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n", 8918 txdata->txq_index); 8919 8920 /* send halt terminate on tx-only connection */ 8921 q_params.cmd = BNX2X_Q_CMD_TERMINATE; 8922 memset(&q_params.params.terminate, 0, 8923 sizeof(q_params.params.terminate)); 8924 q_params.params.terminate.cid_index = tx_index; 8925 8926 rc = bnx2x_queue_state_change(bp, &q_params); 8927 if (rc) 8928 return rc; 8929 8930 /* send halt terminate on tx-only connection */ 8931 q_params.cmd = BNX2X_Q_CMD_CFC_DEL; 8932 memset(&q_params.params.cfc_del, 0, 8933 sizeof(q_params.params.cfc_del)); 8934 q_params.params.cfc_del.cid_index = tx_index; 8935 rc = bnx2x_queue_state_change(bp, &q_params); 8936 if (rc) 8937 return rc; 8938 } 8939 /* Stop the primary connection: */ 8940 /* ...halt the connection */ 8941 q_params.cmd = BNX2X_Q_CMD_HALT; 8942 rc = bnx2x_queue_state_change(bp, &q_params); 8943 if (rc) 8944 return rc; 8945 8946 /* ...terminate the connection */ 8947 q_params.cmd = BNX2X_Q_CMD_TERMINATE; 8948 memset(&q_params.params.terminate, 0, 8949 sizeof(q_params.params.terminate)); 8950 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 8951 rc = bnx2x_queue_state_change(bp, &q_params); 8952 if (rc) 8953 return rc; 8954 /* ...delete cfc entry */ 8955 q_params.cmd = BNX2X_Q_CMD_CFC_DEL; 8956 memset(&q_params.params.cfc_del, 0, 8957 sizeof(q_params.params.cfc_del)); 8958 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 8959 return bnx2x_queue_state_change(bp, &q_params); 8960 } 8961 8962 static void bnx2x_reset_func(struct bnx2x *bp) 8963 { 8964 int port = BP_PORT(bp); 8965 int func = BP_FUNC(bp); 8966 int i; 8967 8968 /* Disable the function in the FW */ 8969 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 8970 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 8971 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 8972 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 8973 8974 /* FP SBs */ 8975 for_each_eth_queue(bp, i) { 8976 struct bnx2x_fastpath *fp = &bp->fp[i]; 8977 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8978 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 8979 SB_DISABLED); 8980 } 8981 8982 if (CNIC_LOADED(bp)) 8983 /* CNIC SB */ 8984 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8985 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET 8986 (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED); 8987 8988 /* SP SB */ 8989 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8990 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 8991 SB_DISABLED); 8992 8993 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) 8994 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 8995 0); 8996 8997 /* Configure IGU */ 8998 if (bp->common.int_block == INT_BLOCK_HC) { 8999 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 9000 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 9001 } else { 9002 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); 9003 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); 9004 } 9005 9006 if (CNIC_LOADED(bp)) { 9007 /* Disable Timer scan */ 9008 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 9009 /* 9010 * Wait for at least 10ms and up to 2 second for the timers 9011 * scan to complete 9012 */ 9013 for (i = 0; i < 200; i++) { 9014 usleep_range(10000, 20000); 9015 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4)) 9016 break; 9017 } 9018 } 9019 /* Clear ILT */ 9020 bnx2x_clear_func_ilt(bp, func); 9021 9022 /* Timers workaround bug for E2: if this is vnic-3, 9023 * we need to set the entire ilt range for this timers. 9024 */ 9025 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) { 9026 struct ilt_client_info ilt_cli; 9027 /* use dummy TM client */ 9028 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 9029 ilt_cli.start = 0; 9030 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 9031 ilt_cli.client_num = ILT_CLIENT_TM; 9032 9033 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR); 9034 } 9035 9036 /* this assumes that reset_port() called before reset_func()*/ 9037 if (!CHIP_IS_E1x(bp)) 9038 bnx2x_pf_disable(bp); 9039 9040 bp->dmae_ready = 0; 9041 } 9042 9043 static void bnx2x_reset_port(struct bnx2x *bp) 9044 { 9045 int port = BP_PORT(bp); 9046 u32 val; 9047 9048 /* Reset physical Link */ 9049 bnx2x__link_reset(bp); 9050 9051 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 9052 9053 /* Do not rcv packets to BRB */ 9054 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 9055 /* Do not direct rcv packets that are not for MCP to the BRB */ 9056 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 9057 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 9058 9059 /* Configure AEU */ 9060 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 9061 9062 msleep(100); 9063 /* Check for BRB port occupancy */ 9064 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 9065 if (val) 9066 DP(NETIF_MSG_IFDOWN, 9067 "BRB1 is not empty %d blocks are occupied\n", val); 9068 9069 /* TODO: Close Doorbell port? */ 9070 } 9071 9072 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code) 9073 { 9074 struct bnx2x_func_state_params func_params = {NULL}; 9075 9076 /* Prepare parameters for function state transitions */ 9077 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 9078 9079 func_params.f_obj = &bp->func_obj; 9080 func_params.cmd = BNX2X_F_CMD_HW_RESET; 9081 9082 func_params.params.hw_init.load_phase = load_code; 9083 9084 return bnx2x_func_state_change(bp, &func_params); 9085 } 9086 9087 static int bnx2x_func_stop(struct bnx2x *bp) 9088 { 9089 struct bnx2x_func_state_params func_params = {NULL}; 9090 int rc; 9091 9092 /* Prepare parameters for function state transitions */ 9093 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 9094 func_params.f_obj = &bp->func_obj; 9095 func_params.cmd = BNX2X_F_CMD_STOP; 9096 9097 /* 9098 * Try to stop the function the 'good way'. If fails (in case 9099 * of a parity error during bnx2x_chip_cleanup()) and we are 9100 * not in a debug mode, perform a state transaction in order to 9101 * enable further HW_RESET transaction. 9102 */ 9103 rc = bnx2x_func_state_change(bp, &func_params); 9104 if (rc) { 9105 #ifdef BNX2X_STOP_ON_ERROR 9106 return rc; 9107 #else 9108 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n"); 9109 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 9110 return bnx2x_func_state_change(bp, &func_params); 9111 #endif 9112 } 9113 9114 return 0; 9115 } 9116 9117 /** 9118 * bnx2x_send_unload_req - request unload mode from the MCP. 9119 * 9120 * @bp: driver handle 9121 * @unload_mode: requested function's unload mode 9122 * 9123 * Return unload mode returned by the MCP: COMMON, PORT or FUNC. 9124 */ 9125 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode) 9126 { 9127 u32 reset_code = 0; 9128 int port = BP_PORT(bp); 9129 9130 /* Select the UNLOAD request mode */ 9131 if (unload_mode == UNLOAD_NORMAL) 9132 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 9133 9134 else if (bp->flags & NO_WOL_FLAG) 9135 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP; 9136 9137 else if (bp->wol) { 9138 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; 9139 u8 *mac_addr = bp->dev->dev_addr; 9140 struct pci_dev *pdev = bp->pdev; 9141 u32 val; 9142 u16 pmc; 9143 9144 /* The mac address is written to entries 1-4 to 9145 * preserve entry 0 which is used by the PMF 9146 */ 9147 u8 entry = (BP_VN(bp) + 1)*8; 9148 9149 val = (mac_addr[0] << 8) | mac_addr[1]; 9150 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val); 9151 9152 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 9153 (mac_addr[4] << 8) | mac_addr[5]; 9154 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val); 9155 9156 /* Enable the PME and clear the status */ 9157 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc); 9158 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS; 9159 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc); 9160 9161 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN; 9162 9163 } else 9164 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 9165 9166 /* Send the request to the MCP */ 9167 if (!BP_NOMCP(bp)) 9168 reset_code = bnx2x_fw_command(bp, reset_code, 0); 9169 else { 9170 int path = BP_PATH(bp); 9171 9172 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n", 9173 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 9174 bnx2x_load_count[path][2]); 9175 bnx2x_load_count[path][0]--; 9176 bnx2x_load_count[path][1 + port]--; 9177 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n", 9178 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 9179 bnx2x_load_count[path][2]); 9180 if (bnx2x_load_count[path][0] == 0) 9181 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON; 9182 else if (bnx2x_load_count[path][1 + port] == 0) 9183 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT; 9184 else 9185 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION; 9186 } 9187 9188 return reset_code; 9189 } 9190 9191 /** 9192 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP. 9193 * 9194 * @bp: driver handle 9195 * @keep_link: true iff link should be kept up 9196 */ 9197 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link) 9198 { 9199 u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 9200 9201 /* Report UNLOAD_DONE to MCP */ 9202 if (!BP_NOMCP(bp)) 9203 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 9204 } 9205 9206 static int bnx2x_func_wait_started(struct bnx2x *bp) 9207 { 9208 int tout = 50; 9209 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; 9210 9211 if (!bp->port.pmf) 9212 return 0; 9213 9214 /* 9215 * (assumption: No Attention from MCP at this stage) 9216 * PMF probably in the middle of TX disable/enable transaction 9217 * 1. Sync IRS for default SB 9218 * 2. Sync SP queue - this guarantees us that attention handling started 9219 * 3. Wait, that TX disable/enable transaction completes 9220 * 9221 * 1+2 guarantee that if DCBx attention was scheduled it already changed 9222 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 9223 * received completion for the transaction the state is TX_STOPPED. 9224 * State will return to STARTED after completion of TX_STOPPED-->STARTED 9225 * transaction. 9226 */ 9227 9228 /* make sure default SB ISR is done */ 9229 if (msix) 9230 synchronize_irq(bp->msix_table[0].vector); 9231 else 9232 synchronize_irq(bp->pdev->irq); 9233 9234 flush_workqueue(bnx2x_wq); 9235 flush_workqueue(bnx2x_iov_wq); 9236 9237 while (bnx2x_func_get_state(bp, &bp->func_obj) != 9238 BNX2X_F_STATE_STARTED && tout--) 9239 msleep(20); 9240 9241 if (bnx2x_func_get_state(bp, &bp->func_obj) != 9242 BNX2X_F_STATE_STARTED) { 9243 #ifdef BNX2X_STOP_ON_ERROR 9244 BNX2X_ERR("Wrong function state\n"); 9245 return -EBUSY; 9246 #else 9247 /* 9248 * Failed to complete the transaction in a "good way" 9249 * Force both transactions with CLR bit 9250 */ 9251 struct bnx2x_func_state_params func_params = {NULL}; 9252 9253 DP(NETIF_MSG_IFDOWN, 9254 "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n"); 9255 9256 func_params.f_obj = &bp->func_obj; 9257 __set_bit(RAMROD_DRV_CLR_ONLY, 9258 &func_params.ramrod_flags); 9259 9260 /* STARTED-->TX_ST0PPED */ 9261 func_params.cmd = BNX2X_F_CMD_TX_STOP; 9262 bnx2x_func_state_change(bp, &func_params); 9263 9264 /* TX_ST0PPED-->STARTED */ 9265 func_params.cmd = BNX2X_F_CMD_TX_START; 9266 return bnx2x_func_state_change(bp, &func_params); 9267 #endif 9268 } 9269 9270 return 0; 9271 } 9272 9273 static void bnx2x_disable_ptp(struct bnx2x *bp) 9274 { 9275 int port = BP_PORT(bp); 9276 9277 /* Disable sending PTP packets to host */ 9278 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST : 9279 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0); 9280 9281 /* Reset PTP event detection rules */ 9282 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 9283 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF); 9284 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 9285 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF); 9286 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK : 9287 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF); 9288 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK : 9289 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF); 9290 9291 /* Disable the PTP feature */ 9292 REG_WR(bp, port ? NIG_REG_P1_PTP_EN : 9293 NIG_REG_P0_PTP_EN, 0x0); 9294 } 9295 9296 /* Called during unload, to stop PTP-related stuff */ 9297 static void bnx2x_stop_ptp(struct bnx2x *bp) 9298 { 9299 /* Cancel PTP work queue. Should be done after the Tx queues are 9300 * drained to prevent additional scheduling. 9301 */ 9302 cancel_work_sync(&bp->ptp_task); 9303 9304 if (bp->ptp_tx_skb) { 9305 dev_kfree_skb_any(bp->ptp_tx_skb); 9306 bp->ptp_tx_skb = NULL; 9307 } 9308 9309 /* Disable PTP in HW */ 9310 bnx2x_disable_ptp(bp); 9311 9312 DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n"); 9313 } 9314 9315 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link) 9316 { 9317 int port = BP_PORT(bp); 9318 int i, rc = 0; 9319 u8 cos; 9320 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 9321 u32 reset_code; 9322 9323 /* Wait until tx fastpath tasks complete */ 9324 for_each_tx_queue(bp, i) { 9325 struct bnx2x_fastpath *fp = &bp->fp[i]; 9326 9327 for_each_cos_in_tx_queue(fp, cos) 9328 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); 9329 #ifdef BNX2X_STOP_ON_ERROR 9330 if (rc) 9331 return; 9332 #endif 9333 } 9334 9335 /* Give HW time to discard old tx messages */ 9336 usleep_range(1000, 2000); 9337 9338 /* Clean all ETH MACs */ 9339 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC, 9340 false); 9341 if (rc < 0) 9342 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc); 9343 9344 /* Clean up UC list */ 9345 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC, 9346 true); 9347 if (rc < 0) 9348 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n", 9349 rc); 9350 9351 /* The whole *vlan_obj structure may be not initialized if VLAN 9352 * filtering offload is not supported by hardware. Currently this is 9353 * true for all hardware covered by CHIP_IS_E1x(). 9354 */ 9355 if (!CHIP_IS_E1x(bp)) { 9356 /* Remove all currently configured VLANs */ 9357 rc = bnx2x_del_all_vlans(bp); 9358 if (rc < 0) 9359 BNX2X_ERR("Failed to delete all VLANs\n"); 9360 } 9361 9362 /* Disable LLH */ 9363 if (!CHIP_IS_E1(bp)) 9364 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); 9365 9366 /* Set "drop all" (stop Rx). 9367 * We need to take a netif_addr_lock() here in order to prevent 9368 * a race between the completion code and this code. 9369 */ 9370 netif_addr_lock_bh(bp->dev); 9371 /* Schedule the rx_mode command */ 9372 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) 9373 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); 9374 else if (bp->slowpath) 9375 bnx2x_set_storm_rx_mode(bp); 9376 9377 /* Cleanup multicast configuration */ 9378 rparam.mcast_obj = &bp->mcast_obj; 9379 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 9380 if (rc < 0) 9381 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc); 9382 9383 netif_addr_unlock_bh(bp->dev); 9384 9385 bnx2x_iov_chip_cleanup(bp); 9386 9387 /* 9388 * Send the UNLOAD_REQUEST to the MCP. This will return if 9389 * this function should perform FUNC, PORT or COMMON HW 9390 * reset. 9391 */ 9392 reset_code = bnx2x_send_unload_req(bp, unload_mode); 9393 9394 /* 9395 * (assumption: No Attention from MCP at this stage) 9396 * PMF probably in the middle of TX disable/enable transaction 9397 */ 9398 rc = bnx2x_func_wait_started(bp); 9399 if (rc) { 9400 BNX2X_ERR("bnx2x_func_wait_started failed\n"); 9401 #ifdef BNX2X_STOP_ON_ERROR 9402 return; 9403 #endif 9404 } 9405 9406 /* Close multi and leading connections 9407 * Completions for ramrods are collected in a synchronous way 9408 */ 9409 for_each_eth_queue(bp, i) 9410 if (bnx2x_stop_queue(bp, i)) 9411 #ifdef BNX2X_STOP_ON_ERROR 9412 return; 9413 #else 9414 goto unload_error; 9415 #endif 9416 9417 if (CNIC_LOADED(bp)) { 9418 for_each_cnic_queue(bp, i) 9419 if (bnx2x_stop_queue(bp, i)) 9420 #ifdef BNX2X_STOP_ON_ERROR 9421 return; 9422 #else 9423 goto unload_error; 9424 #endif 9425 } 9426 9427 /* If SP settings didn't get completed so far - something 9428 * very wrong has happen. 9429 */ 9430 if (!bnx2x_wait_sp_comp(bp, ~0x0UL)) 9431 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n"); 9432 9433 #ifndef BNX2X_STOP_ON_ERROR 9434 unload_error: 9435 #endif 9436 rc = bnx2x_func_stop(bp); 9437 if (rc) { 9438 BNX2X_ERR("Function stop failed!\n"); 9439 #ifdef BNX2X_STOP_ON_ERROR 9440 return; 9441 #endif 9442 } 9443 9444 /* stop_ptp should be after the Tx queues are drained to prevent 9445 * scheduling to the cancelled PTP work queue. It should also be after 9446 * function stop ramrod is sent, since as part of this ramrod FW access 9447 * PTP registers. 9448 */ 9449 if (bp->flags & PTP_SUPPORTED) { 9450 bnx2x_stop_ptp(bp); 9451 if (bp->ptp_clock) { 9452 ptp_clock_unregister(bp->ptp_clock); 9453 bp->ptp_clock = NULL; 9454 } 9455 } 9456 9457 /* Disable HW interrupts, NAPI */ 9458 bnx2x_netif_stop(bp, 1); 9459 /* Delete all NAPI objects */ 9460 bnx2x_del_all_napi(bp); 9461 if (CNIC_LOADED(bp)) 9462 bnx2x_del_all_napi_cnic(bp); 9463 9464 /* Release IRQs */ 9465 bnx2x_free_irq(bp); 9466 9467 /* Reset the chip, unless PCI function is offline. If we reach this 9468 * point following a PCI error handling, it means device is really 9469 * in a bad state and we're about to remove it, so reset the chip 9470 * is not a good idea. 9471 */ 9472 if (!pci_channel_offline(bp->pdev)) { 9473 rc = bnx2x_reset_hw(bp, reset_code); 9474 if (rc) 9475 BNX2X_ERR("HW_RESET failed\n"); 9476 } 9477 9478 /* Report UNLOAD_DONE to MCP */ 9479 bnx2x_send_unload_done(bp, keep_link); 9480 } 9481 9482 void bnx2x_disable_close_the_gate(struct bnx2x *bp) 9483 { 9484 u32 val; 9485 9486 DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n"); 9487 9488 if (CHIP_IS_E1(bp)) { 9489 int port = BP_PORT(bp); 9490 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 9491 MISC_REG_AEU_MASK_ATTN_FUNC_0; 9492 9493 val = REG_RD(bp, addr); 9494 val &= ~(0x300); 9495 REG_WR(bp, addr, val); 9496 } else { 9497 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK); 9498 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 9499 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 9500 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val); 9501 } 9502 } 9503 9504 /* Close gates #2, #3 and #4: */ 9505 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close) 9506 { 9507 u32 val; 9508 9509 /* Gates #2 and #4a are closed/opened for "not E1" only */ 9510 if (!CHIP_IS_E1(bp)) { 9511 /* #4 */ 9512 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 9513 /* #2 */ 9514 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 9515 } 9516 9517 /* #3 */ 9518 if (CHIP_IS_E1x(bp)) { 9519 /* Prevent interrupts from HC on both ports */ 9520 val = REG_RD(bp, HC_REG_CONFIG_1); 9521 REG_WR(bp, HC_REG_CONFIG_1, 9522 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 9523 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 9524 9525 val = REG_RD(bp, HC_REG_CONFIG_0); 9526 REG_WR(bp, HC_REG_CONFIG_0, 9527 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 9528 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 9529 } else { 9530 /* Prevent incoming interrupts in IGU */ 9531 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); 9532 9533 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, 9534 (!close) ? 9535 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 9536 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 9537 } 9538 9539 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n", 9540 close ? "closing" : "opening"); 9541 } 9542 9543 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */ 9544 9545 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val) 9546 { 9547 /* Do some magic... */ 9548 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); 9549 *magic_val = val & SHARED_MF_CLP_MAGIC; 9550 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 9551 } 9552 9553 /** 9554 * bnx2x_clp_reset_done - restore the value of the `magic' bit. 9555 * 9556 * @bp: driver handle 9557 * @magic_val: old value of the `magic' bit. 9558 */ 9559 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val) 9560 { 9561 /* Restore the `magic' bit value... */ 9562 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); 9563 MF_CFG_WR(bp, shared_mf_config.clp_mb, 9564 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 9565 } 9566 9567 /** 9568 * bnx2x_reset_mcp_prep - prepare for MCP reset. 9569 * 9570 * @bp: driver handle 9571 * @magic_val: old value of 'magic' bit. 9572 * 9573 * Takes care of CLP configurations. 9574 */ 9575 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val) 9576 { 9577 u32 shmem; 9578 u32 validity_offset; 9579 9580 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n"); 9581 9582 /* Set `magic' bit in order to save MF config */ 9583 if (!CHIP_IS_E1(bp)) 9584 bnx2x_clp_reset_prep(bp, magic_val); 9585 9586 /* Get shmem offset */ 9587 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); 9588 validity_offset = 9589 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]); 9590 9591 /* Clear validity map flags */ 9592 if (shmem > 0) 9593 REG_WR(bp, shmem + validity_offset, 0); 9594 } 9595 9596 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 9597 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 9598 9599 /** 9600 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT 9601 * 9602 * @bp: driver handle 9603 */ 9604 static void bnx2x_mcp_wait_one(struct bnx2x *bp) 9605 { 9606 /* special handling for emulation and FPGA, 9607 wait 10 times longer */ 9608 if (CHIP_REV_IS_SLOW(bp)) 9609 msleep(MCP_ONE_TIMEOUT*10); 9610 else 9611 msleep(MCP_ONE_TIMEOUT); 9612 } 9613 9614 /* 9615 * initializes bp->common.shmem_base and waits for validity signature to appear 9616 */ 9617 static int bnx2x_init_shmem(struct bnx2x *bp) 9618 { 9619 int cnt = 0; 9620 u32 val = 0; 9621 9622 do { 9623 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); 9624 9625 /* If we read all 0xFFs, means we are in PCI error state and 9626 * should bail out to avoid crashes on adapter's FW reads. 9627 */ 9628 if (bp->common.shmem_base == 0xFFFFFFFF) { 9629 bp->flags |= NO_MCP_FLAG; 9630 return -ENODEV; 9631 } 9632 9633 if (bp->common.shmem_base) { 9634 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]); 9635 if (val & SHR_MEM_VALIDITY_MB) 9636 return 0; 9637 } 9638 9639 bnx2x_mcp_wait_one(bp); 9640 9641 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 9642 9643 BNX2X_ERR("BAD MCP validity signature\n"); 9644 9645 return -ENODEV; 9646 } 9647 9648 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val) 9649 { 9650 int rc = bnx2x_init_shmem(bp); 9651 9652 /* Restore the `magic' bit value */ 9653 if (!CHIP_IS_E1(bp)) 9654 bnx2x_clp_reset_done(bp, magic_val); 9655 9656 return rc; 9657 } 9658 9659 static void bnx2x_pxp_prep(struct bnx2x *bp) 9660 { 9661 if (!CHIP_IS_E1(bp)) { 9662 REG_WR(bp, PXP2_REG_RD_START_INIT, 0); 9663 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0); 9664 } 9665 } 9666 9667 /* 9668 * Reset the whole chip except for: 9669 * - PCIE core 9670 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by 9671 * one reset bit) 9672 * - IGU 9673 * - MISC (including AEU) 9674 * - GRC 9675 * - RBCN, RBCP 9676 */ 9677 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global) 9678 { 9679 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 9680 u32 global_bits2, stay_reset2; 9681 9682 /* 9683 * Bits that have to be set in reset_mask2 if we want to reset 'global' 9684 * (per chip) blocks. 9685 */ 9686 global_bits2 = 9687 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 9688 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 9689 9690 /* Don't reset the following blocks. 9691 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 9692 * reset, as in 4 port device they might still be owned 9693 * by the MCP (there is only one leader per path). 9694 */ 9695 not_reset_mask1 = 9696 MISC_REGISTERS_RESET_REG_1_RST_HC | 9697 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 9698 MISC_REGISTERS_RESET_REG_1_RST_PXP; 9699 9700 not_reset_mask2 = 9701 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 9702 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 9703 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 9704 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 9705 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 9706 MISC_REGISTERS_RESET_REG_2_RST_GRC | 9707 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 9708 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 9709 MISC_REGISTERS_RESET_REG_2_RST_ATC | 9710 MISC_REGISTERS_RESET_REG_2_PGLC | 9711 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 9712 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 9713 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 9714 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 9715 MISC_REGISTERS_RESET_REG_2_UMAC0 | 9716 MISC_REGISTERS_RESET_REG_2_UMAC1; 9717 9718 /* 9719 * Keep the following blocks in reset: 9720 * - all xxMACs are handled by the bnx2x_link code. 9721 */ 9722 stay_reset2 = 9723 MISC_REGISTERS_RESET_REG_2_XMAC | 9724 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 9725 9726 /* Full reset masks according to the chip */ 9727 reset_mask1 = 0xffffffff; 9728 9729 if (CHIP_IS_E1(bp)) 9730 reset_mask2 = 0xffff; 9731 else if (CHIP_IS_E1H(bp)) 9732 reset_mask2 = 0x1ffff; 9733 else if (CHIP_IS_E2(bp)) 9734 reset_mask2 = 0xfffff; 9735 else /* CHIP_IS_E3 */ 9736 reset_mask2 = 0x3ffffff; 9737 9738 /* Don't reset global blocks unless we need to */ 9739 if (!global) 9740 reset_mask2 &= ~global_bits2; 9741 9742 /* 9743 * In case of attention in the QM, we need to reset PXP 9744 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 9745 * because otherwise QM reset would release 'close the gates' shortly 9746 * before resetting the PXP, then the PSWRQ would send a write 9747 * request to PGLUE. Then when PXP is reset, PGLUE would try to 9748 * read the payload data from PSWWR, but PSWWR would not 9749 * respond. The write queue in PGLUE would stuck, dmae commands 9750 * would not return. Therefore it's important to reset the second 9751 * reset register (containing the 9752 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 9753 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 9754 * bit). 9755 */ 9756 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 9757 reset_mask2 & (~not_reset_mask2)); 9758 9759 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 9760 reset_mask1 & (~not_reset_mask1)); 9761 9762 barrier(); 9763 9764 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 9765 reset_mask2 & (~stay_reset2)); 9766 9767 barrier(); 9768 9769 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 9770 } 9771 9772 /** 9773 * bnx2x_er_poll_igu_vq - poll for pending writes bit. 9774 * It should get cleared in no more than 1s. 9775 * 9776 * @bp: driver handle 9777 * 9778 * It should get cleared in no more than 1s. Returns 0 if 9779 * pending writes bit gets cleared. 9780 */ 9781 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp) 9782 { 9783 u32 cnt = 1000; 9784 u32 pend_bits = 0; 9785 9786 do { 9787 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS); 9788 9789 if (pend_bits == 0) 9790 break; 9791 9792 usleep_range(1000, 2000); 9793 } while (cnt-- > 0); 9794 9795 if (cnt <= 0) { 9796 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n", 9797 pend_bits); 9798 return -EBUSY; 9799 } 9800 9801 return 0; 9802 } 9803 9804 static int bnx2x_process_kill(struct bnx2x *bp, bool global) 9805 { 9806 int cnt = 1000; 9807 u32 val = 0; 9808 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 9809 u32 tags_63_32 = 0; 9810 9811 /* Empty the Tetris buffer, wait for 1s */ 9812 do { 9813 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT); 9814 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT); 9815 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0); 9816 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1); 9817 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2); 9818 if (CHIP_IS_E3(bp)) 9819 tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32); 9820 9821 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 9822 ((port_is_idle_0 & 0x1) == 0x1) && 9823 ((port_is_idle_1 & 0x1) == 0x1) && 9824 (pgl_exp_rom2 == 0xffffffff) && 9825 (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff))) 9826 break; 9827 usleep_range(1000, 2000); 9828 } while (cnt-- > 0); 9829 9830 if (cnt <= 0) { 9831 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n"); 9832 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 9833 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, 9834 pgl_exp_rom2); 9835 return -EAGAIN; 9836 } 9837 9838 barrier(); 9839 9840 /* Close gates #2, #3 and #4 */ 9841 bnx2x_set_234_gates(bp, true); 9842 9843 /* Poll for IGU VQs for 57712 and newer chips */ 9844 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp)) 9845 return -EAGAIN; 9846 9847 /* TBD: Indicate that "process kill" is in progress to MCP */ 9848 9849 /* Clear "unprepared" bit */ 9850 REG_WR(bp, MISC_REG_UNPREPARED, 0); 9851 barrier(); 9852 9853 /* Wait for 1ms to empty GLUE and PCI-E core queues, 9854 * PSWHST, GRC and PSWRD Tetris buffer. 9855 */ 9856 usleep_range(1000, 2000); 9857 9858 /* Prepare to chip reset: */ 9859 /* MCP */ 9860 if (global) 9861 bnx2x_reset_mcp_prep(bp, &val); 9862 9863 /* PXP */ 9864 bnx2x_pxp_prep(bp); 9865 barrier(); 9866 9867 /* reset the chip */ 9868 bnx2x_process_kill_chip_reset(bp, global); 9869 barrier(); 9870 9871 /* clear errors in PGB */ 9872 if (!CHIP_IS_E1x(bp)) 9873 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 9874 9875 /* Recover after reset: */ 9876 /* MCP */ 9877 if (global && bnx2x_reset_mcp_comp(bp, val)) 9878 return -EAGAIN; 9879 9880 /* TBD: Add resetting the NO_MCP mode DB here */ 9881 9882 /* Open the gates #2, #3 and #4 */ 9883 bnx2x_set_234_gates(bp, false); 9884 9885 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a 9886 * reset state, re-enable attentions. */ 9887 9888 return 0; 9889 } 9890 9891 static int bnx2x_leader_reset(struct bnx2x *bp) 9892 { 9893 int rc = 0; 9894 bool global = bnx2x_reset_is_global(bp); 9895 u32 load_code; 9896 9897 /* if not going to reset MCP - load "fake" driver to reset HW while 9898 * driver is owner of the HW 9899 */ 9900 if (!global && !BP_NOMCP(bp)) { 9901 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, 9902 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 9903 if (!load_code) { 9904 BNX2X_ERR("MCP response failure, aborting\n"); 9905 rc = -EAGAIN; 9906 goto exit_leader_reset; 9907 } 9908 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 9909 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 9910 BNX2X_ERR("MCP unexpected resp, aborting\n"); 9911 rc = -EAGAIN; 9912 goto exit_leader_reset2; 9913 } 9914 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 9915 if (!load_code) { 9916 BNX2X_ERR("MCP response failure, aborting\n"); 9917 rc = -EAGAIN; 9918 goto exit_leader_reset2; 9919 } 9920 } 9921 9922 /* Try to recover after the failure */ 9923 if (bnx2x_process_kill(bp, global)) { 9924 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n", 9925 BP_PATH(bp)); 9926 rc = -EAGAIN; 9927 goto exit_leader_reset2; 9928 } 9929 9930 /* 9931 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver 9932 * state. 9933 */ 9934 bnx2x_set_reset_done(bp); 9935 if (global) 9936 bnx2x_clear_reset_global(bp); 9937 9938 exit_leader_reset2: 9939 /* unload "fake driver" if it was loaded */ 9940 if (!global && !BP_NOMCP(bp)) { 9941 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 9942 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); 9943 } 9944 exit_leader_reset: 9945 bp->is_leader = 0; 9946 bnx2x_release_leader_lock(bp); 9947 smp_mb(); 9948 return rc; 9949 } 9950 9951 static void bnx2x_recovery_failed(struct bnx2x *bp) 9952 { 9953 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n"); 9954 9955 /* Disconnect this device */ 9956 netif_device_detach(bp->dev); 9957 9958 /* 9959 * Block ifup for all function on this engine until "process kill" 9960 * or power cycle. 9961 */ 9962 bnx2x_set_reset_in_progress(bp); 9963 9964 /* Shut down the power */ 9965 bnx2x_set_power_state(bp, PCI_D3hot); 9966 9967 bp->recovery_state = BNX2X_RECOVERY_FAILED; 9968 9969 smp_mb(); 9970 } 9971 9972 /* 9973 * Assumption: runs under rtnl lock. This together with the fact 9974 * that it's called only from bnx2x_sp_rtnl() ensure that it 9975 * will never be called when netif_running(bp->dev) is false. 9976 */ 9977 static void bnx2x_parity_recover(struct bnx2x *bp) 9978 { 9979 u32 error_recovered, error_unrecovered; 9980 bool is_parity, global = false; 9981 #ifdef CONFIG_BNX2X_SRIOV 9982 int vf_idx; 9983 9984 for (vf_idx = 0; vf_idx < bp->requested_nr_virtfn; vf_idx++) { 9985 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx); 9986 9987 if (vf) 9988 vf->state = VF_LOST; 9989 } 9990 #endif 9991 DP(NETIF_MSG_HW, "Handling parity\n"); 9992 while (1) { 9993 switch (bp->recovery_state) { 9994 case BNX2X_RECOVERY_INIT: 9995 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n"); 9996 is_parity = bnx2x_chk_parity_attn(bp, &global, false); 9997 WARN_ON(!is_parity); 9998 9999 /* Try to get a LEADER_LOCK HW lock */ 10000 if (bnx2x_trylock_leader_lock(bp)) { 10001 bnx2x_set_reset_in_progress(bp); 10002 /* 10003 * Check if there is a global attention and if 10004 * there was a global attention, set the global 10005 * reset bit. 10006 */ 10007 10008 if (global) 10009 bnx2x_set_reset_global(bp); 10010 10011 bp->is_leader = 1; 10012 } 10013 10014 /* Stop the driver */ 10015 /* If interface has been removed - break */ 10016 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false)) 10017 return; 10018 10019 bp->recovery_state = BNX2X_RECOVERY_WAIT; 10020 10021 /* Ensure "is_leader", MCP command sequence and 10022 * "recovery_state" update values are seen on other 10023 * CPUs. 10024 */ 10025 smp_mb(); 10026 break; 10027 10028 case BNX2X_RECOVERY_WAIT: 10029 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n"); 10030 if (bp->is_leader) { 10031 int other_engine = BP_PATH(bp) ? 0 : 1; 10032 bool other_load_status = 10033 bnx2x_get_load_status(bp, other_engine); 10034 bool load_status = 10035 bnx2x_get_load_status(bp, BP_PATH(bp)); 10036 global = bnx2x_reset_is_global(bp); 10037 10038 /* 10039 * In case of a parity in a global block, let 10040 * the first leader that performs a 10041 * leader_reset() reset the global blocks in 10042 * order to clear global attentions. Otherwise 10043 * the gates will remain closed for that 10044 * engine. 10045 */ 10046 if (load_status || 10047 (global && other_load_status)) { 10048 /* Wait until all other functions get 10049 * down. 10050 */ 10051 schedule_delayed_work(&bp->sp_rtnl_task, 10052 HZ/10); 10053 return; 10054 } else { 10055 /* If all other functions got down - 10056 * try to bring the chip back to 10057 * normal. In any case it's an exit 10058 * point for a leader. 10059 */ 10060 if (bnx2x_leader_reset(bp)) { 10061 bnx2x_recovery_failed(bp); 10062 return; 10063 } 10064 10065 /* If we are here, means that the 10066 * leader has succeeded and doesn't 10067 * want to be a leader any more. Try 10068 * to continue as a none-leader. 10069 */ 10070 break; 10071 } 10072 } else { /* non-leader */ 10073 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) { 10074 /* Try to get a LEADER_LOCK HW lock as 10075 * long as a former leader may have 10076 * been unloaded by the user or 10077 * released a leadership by another 10078 * reason. 10079 */ 10080 if (bnx2x_trylock_leader_lock(bp)) { 10081 /* I'm a leader now! Restart a 10082 * switch case. 10083 */ 10084 bp->is_leader = 1; 10085 break; 10086 } 10087 10088 schedule_delayed_work(&bp->sp_rtnl_task, 10089 HZ/10); 10090 return; 10091 10092 } else { 10093 /* 10094 * If there was a global attention, wait 10095 * for it to be cleared. 10096 */ 10097 if (bnx2x_reset_is_global(bp)) { 10098 schedule_delayed_work( 10099 &bp->sp_rtnl_task, 10100 HZ/10); 10101 return; 10102 } 10103 10104 error_recovered = 10105 bp->eth_stats.recoverable_error; 10106 error_unrecovered = 10107 bp->eth_stats.unrecoverable_error; 10108 bp->recovery_state = 10109 BNX2X_RECOVERY_NIC_LOADING; 10110 if (bnx2x_nic_load(bp, LOAD_NORMAL)) { 10111 error_unrecovered++; 10112 netdev_err(bp->dev, 10113 "Recovery failed. Power cycle needed\n"); 10114 /* Disconnect this device */ 10115 netif_device_detach(bp->dev); 10116 /* Shut down the power */ 10117 bnx2x_set_power_state( 10118 bp, PCI_D3hot); 10119 smp_mb(); 10120 } else { 10121 bp->recovery_state = 10122 BNX2X_RECOVERY_DONE; 10123 error_recovered++; 10124 smp_mb(); 10125 } 10126 bp->eth_stats.recoverable_error = 10127 error_recovered; 10128 bp->eth_stats.unrecoverable_error = 10129 error_unrecovered; 10130 10131 return; 10132 } 10133 } 10134 default: 10135 return; 10136 } 10137 } 10138 } 10139 10140 static int bnx2x_udp_port_update(struct bnx2x *bp) 10141 { 10142 struct bnx2x_func_switch_update_params *switch_update_params; 10143 struct bnx2x_func_state_params func_params = {NULL}; 10144 struct bnx2x_udp_tunnel *udp_tunnel; 10145 u16 vxlan_port = 0, geneve_port = 0; 10146 int rc; 10147 10148 switch_update_params = &func_params.params.switch_update; 10149 10150 /* Prepare parameters for function state transitions */ 10151 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 10152 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 10153 10154 func_params.f_obj = &bp->func_obj; 10155 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 10156 10157 /* Function parameters */ 10158 __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG, 10159 &switch_update_params->changes); 10160 10161 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count) { 10162 udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE]; 10163 geneve_port = udp_tunnel->dst_port; 10164 switch_update_params->geneve_dst_port = geneve_port; 10165 } 10166 10167 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count) { 10168 udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN]; 10169 vxlan_port = udp_tunnel->dst_port; 10170 switch_update_params->vxlan_dst_port = vxlan_port; 10171 } 10172 10173 /* Re-enable inner-rss for the offloaded UDP tunnels */ 10174 __set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS, 10175 &switch_update_params->changes); 10176 10177 rc = bnx2x_func_state_change(bp, &func_params); 10178 if (rc) 10179 BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n", 10180 vxlan_port, geneve_port, rc); 10181 else 10182 DP(BNX2X_MSG_SP, 10183 "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n", 10184 vxlan_port, geneve_port); 10185 10186 return rc; 10187 } 10188 10189 static void __bnx2x_add_udp_port(struct bnx2x *bp, u16 port, 10190 enum bnx2x_udp_port_type type) 10191 { 10192 struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type]; 10193 10194 if (!netif_running(bp->dev) || !IS_PF(bp) || CHIP_IS_E1x(bp)) 10195 return; 10196 10197 if (udp_port->count && udp_port->dst_port == port) { 10198 udp_port->count++; 10199 return; 10200 } 10201 10202 if (udp_port->count) { 10203 DP(BNX2X_MSG_SP, 10204 "UDP tunnel [%d] - destination port limit reached\n", 10205 type); 10206 return; 10207 } 10208 10209 udp_port->dst_port = port; 10210 udp_port->count = 1; 10211 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0); 10212 } 10213 10214 static void __bnx2x_del_udp_port(struct bnx2x *bp, u16 port, 10215 enum bnx2x_udp_port_type type) 10216 { 10217 struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type]; 10218 10219 if (!IS_PF(bp) || CHIP_IS_E1x(bp)) 10220 return; 10221 10222 if (!udp_port->count || udp_port->dst_port != port) { 10223 DP(BNX2X_MSG_SP, "Invalid UDP tunnel [%d] port\n", 10224 type); 10225 return; 10226 } 10227 10228 /* Remove reference, and make certain it's no longer in use */ 10229 udp_port->count--; 10230 if (udp_port->count) 10231 return; 10232 udp_port->dst_port = 0; 10233 10234 if (netif_running(bp->dev)) 10235 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0); 10236 else 10237 DP(BNX2X_MSG_SP, "Deleted UDP tunnel [%d] port %d\n", 10238 type, port); 10239 } 10240 10241 static void bnx2x_udp_tunnel_add(struct net_device *netdev, 10242 struct udp_tunnel_info *ti) 10243 { 10244 struct bnx2x *bp = netdev_priv(netdev); 10245 u16 t_port = ntohs(ti->port); 10246 10247 switch (ti->type) { 10248 case UDP_TUNNEL_TYPE_VXLAN: 10249 __bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN); 10250 break; 10251 case UDP_TUNNEL_TYPE_GENEVE: 10252 __bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE); 10253 break; 10254 default: 10255 break; 10256 } 10257 } 10258 10259 static void bnx2x_udp_tunnel_del(struct net_device *netdev, 10260 struct udp_tunnel_info *ti) 10261 { 10262 struct bnx2x *bp = netdev_priv(netdev); 10263 u16 t_port = ntohs(ti->port); 10264 10265 switch (ti->type) { 10266 case UDP_TUNNEL_TYPE_VXLAN: 10267 __bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN); 10268 break; 10269 case UDP_TUNNEL_TYPE_GENEVE: 10270 __bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE); 10271 break; 10272 default: 10273 break; 10274 } 10275 } 10276 10277 static int bnx2x_close(struct net_device *dev); 10278 10279 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is 10280 * scheduled on a general queue in order to prevent a dead lock. 10281 */ 10282 static void bnx2x_sp_rtnl_task(struct work_struct *work) 10283 { 10284 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work); 10285 10286 rtnl_lock(); 10287 10288 if (!netif_running(bp->dev)) { 10289 rtnl_unlock(); 10290 return; 10291 } 10292 10293 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) { 10294 #ifdef BNX2X_STOP_ON_ERROR 10295 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" 10296 "you will need to reboot when done\n"); 10297 goto sp_rtnl_not_reset; 10298 #endif 10299 /* 10300 * Clear all pending SP commands as we are going to reset the 10301 * function anyway. 10302 */ 10303 bp->sp_rtnl_state = 0; 10304 smp_mb(); 10305 10306 bnx2x_parity_recover(bp); 10307 10308 rtnl_unlock(); 10309 return; 10310 } 10311 10312 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) { 10313 #ifdef BNX2X_STOP_ON_ERROR 10314 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" 10315 "you will need to reboot when done\n"); 10316 goto sp_rtnl_not_reset; 10317 #endif 10318 10319 /* 10320 * Clear all pending SP commands as we are going to reset the 10321 * function anyway. 10322 */ 10323 bp->sp_rtnl_state = 0; 10324 smp_mb(); 10325 10326 /* Immediately indicate link as down */ 10327 bp->link_vars.link_up = 0; 10328 bp->force_link_down = true; 10329 netif_carrier_off(bp->dev); 10330 BNX2X_ERR("Indicating link is down due to Tx-timeout\n"); 10331 10332 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 10333 /* When ret value shows failure of allocation failure, 10334 * the nic is rebooted again. If open still fails, a error 10335 * message to notify the user. 10336 */ 10337 if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) { 10338 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 10339 if (bnx2x_nic_load(bp, LOAD_NORMAL)) 10340 BNX2X_ERR("Open the NIC fails again!\n"); 10341 } 10342 rtnl_unlock(); 10343 return; 10344 } 10345 #ifdef BNX2X_STOP_ON_ERROR 10346 sp_rtnl_not_reset: 10347 #endif 10348 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state)) 10349 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos); 10350 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state)) 10351 bnx2x_after_function_update(bp); 10352 /* 10353 * in case of fan failure we need to reset id if the "stop on error" 10354 * debug flag is set, since we trying to prevent permanent overheating 10355 * damage 10356 */ 10357 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) { 10358 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n"); 10359 netif_device_detach(bp->dev); 10360 bnx2x_close(bp->dev); 10361 rtnl_unlock(); 10362 return; 10363 } 10364 10365 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) { 10366 DP(BNX2X_MSG_SP, 10367 "sending set mcast vf pf channel message from rtnl sp-task\n"); 10368 bnx2x_vfpf_set_mcast(bp->dev); 10369 } 10370 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, 10371 &bp->sp_rtnl_state)){ 10372 if (netif_carrier_ok(bp->dev)) { 10373 bnx2x_tx_disable(bp); 10374 BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n"); 10375 } 10376 } 10377 10378 if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) { 10379 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n"); 10380 bnx2x_set_rx_mode_inner(bp); 10381 } 10382 10383 if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN, 10384 &bp->sp_rtnl_state)) 10385 bnx2x_pf_set_vfs_vlan(bp); 10386 10387 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) { 10388 bnx2x_dcbx_stop_hw_tx(bp); 10389 bnx2x_dcbx_resume_hw_tx(bp); 10390 } 10391 10392 if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION, 10393 &bp->sp_rtnl_state)) 10394 bnx2x_update_mng_version(bp); 10395 10396 if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state)) 10397 bnx2x_handle_update_svid_cmd(bp); 10398 10399 if (test_and_clear_bit(BNX2X_SP_RTNL_CHANGE_UDP_PORT, 10400 &bp->sp_rtnl_state)) { 10401 if (bnx2x_udp_port_update(bp)) { 10402 /* On error, forget configuration */ 10403 memset(bp->udp_tunnel_ports, 0, 10404 sizeof(struct bnx2x_udp_tunnel) * 10405 BNX2X_UDP_PORT_MAX); 10406 } else { 10407 /* Since we don't store additional port information, 10408 * if no ports are configured for any feature ask for 10409 * information about currently configured ports. 10410 */ 10411 if (!bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count && 10412 !bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count) 10413 udp_tunnel_get_rx_info(bp->dev); 10414 } 10415 } 10416 10417 /* work which needs rtnl lock not-taken (as it takes the lock itself and 10418 * can be called from other contexts as well) 10419 */ 10420 rtnl_unlock(); 10421 10422 /* enable SR-IOV if applicable */ 10423 if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV, 10424 &bp->sp_rtnl_state)) { 10425 bnx2x_disable_sriov(bp); 10426 bnx2x_enable_sriov(bp); 10427 } 10428 } 10429 10430 static void bnx2x_period_task(struct work_struct *work) 10431 { 10432 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work); 10433 10434 if (!netif_running(bp->dev)) 10435 goto period_task_exit; 10436 10437 if (CHIP_REV_IS_SLOW(bp)) { 10438 BNX2X_ERR("period task called on emulation, ignoring\n"); 10439 goto period_task_exit; 10440 } 10441 10442 bnx2x_acquire_phy_lock(bp); 10443 /* 10444 * The barrier is needed to ensure the ordering between the writing to 10445 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and 10446 * the reading here. 10447 */ 10448 smp_mb(); 10449 if (bp->port.pmf) { 10450 bnx2x_period_func(&bp->link_params, &bp->link_vars); 10451 10452 /* Re-queue task in 1 sec */ 10453 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ); 10454 } 10455 10456 bnx2x_release_phy_lock(bp); 10457 period_task_exit: 10458 return; 10459 } 10460 10461 /* 10462 * Init service functions 10463 */ 10464 10465 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp) 10466 { 10467 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0; 10468 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base; 10469 return base + (BP_ABS_FUNC(bp)) * stride; 10470 } 10471 10472 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp, 10473 u8 port, u32 reset_reg, 10474 struct bnx2x_mac_vals *vals) 10475 { 10476 u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 10477 u32 base_addr; 10478 10479 if (!(mask & reset_reg)) 10480 return false; 10481 10482 BNX2X_DEV_INFO("Disable umac Rx %02x\n", port); 10483 base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 10484 vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG; 10485 vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]); 10486 REG_WR(bp, vals->umac_addr[port], 0); 10487 10488 return true; 10489 } 10490 10491 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp, 10492 struct bnx2x_mac_vals *vals) 10493 { 10494 u32 val, base_addr, offset, mask, reset_reg; 10495 bool mac_stopped = false; 10496 u8 port = BP_PORT(bp); 10497 10498 /* reset addresses as they also mark which values were changed */ 10499 memset(vals, 0, sizeof(*vals)); 10500 10501 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2); 10502 10503 if (!CHIP_IS_E3(bp)) { 10504 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 10505 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 10506 if ((mask & reset_reg) && val) { 10507 u32 wb_data[2]; 10508 BNX2X_DEV_INFO("Disable bmac Rx\n"); 10509 base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM 10510 : NIG_REG_INGRESS_BMAC0_MEM; 10511 offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL 10512 : BIGMAC_REGISTER_BMAC_CONTROL; 10513 10514 /* 10515 * use rd/wr since we cannot use dmae. This is safe 10516 * since MCP won't access the bus due to the request 10517 * to unload, and no function on the path can be 10518 * loaded at this time. 10519 */ 10520 wb_data[0] = REG_RD(bp, base_addr + offset); 10521 wb_data[1] = REG_RD(bp, base_addr + offset + 0x4); 10522 vals->bmac_addr = base_addr + offset; 10523 vals->bmac_val[0] = wb_data[0]; 10524 vals->bmac_val[1] = wb_data[1]; 10525 wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE; 10526 REG_WR(bp, vals->bmac_addr, wb_data[0]); 10527 REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]); 10528 } 10529 BNX2X_DEV_INFO("Disable emac Rx\n"); 10530 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4; 10531 vals->emac_val = REG_RD(bp, vals->emac_addr); 10532 REG_WR(bp, vals->emac_addr, 0); 10533 mac_stopped = true; 10534 } else { 10535 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 10536 BNX2X_DEV_INFO("Disable xmac Rx\n"); 10537 base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 10538 val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI); 10539 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, 10540 val & ~(1 << 1)); 10541 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, 10542 val | (1 << 1)); 10543 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 10544 vals->xmac_val = REG_RD(bp, vals->xmac_addr); 10545 REG_WR(bp, vals->xmac_addr, 0); 10546 mac_stopped = true; 10547 } 10548 10549 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0, 10550 reset_reg, vals); 10551 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1, 10552 reset_reg, vals); 10553 } 10554 10555 if (mac_stopped) 10556 msleep(20); 10557 } 10558 10559 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 10560 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \ 10561 0x1848 + ((f) << 4)) 10562 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff) 10563 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 10564 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 10565 10566 #define BCM_5710_UNDI_FW_MF_MAJOR (0x07) 10567 #define BCM_5710_UNDI_FW_MF_MINOR (0x08) 10568 #define BCM_5710_UNDI_FW_MF_VERS (0x05) 10569 10570 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp) 10571 { 10572 /* UNDI marks its presence in DORQ - 10573 * it initializes CID offset for normal bell to 0x7 10574 */ 10575 if (!(REG_RD(bp, MISC_REG_RESET_REG_1) & 10576 MISC_REGISTERS_RESET_REG_1_RST_DORQ)) 10577 return false; 10578 10579 if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) { 10580 BNX2X_DEV_INFO("UNDI previously loaded\n"); 10581 return true; 10582 } 10583 10584 return false; 10585 } 10586 10587 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc) 10588 { 10589 u16 rcq, bd; 10590 u32 addr, tmp_reg; 10591 10592 if (BP_FUNC(bp) < 2) 10593 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp)); 10594 else 10595 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2); 10596 10597 tmp_reg = REG_RD(bp, addr); 10598 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc; 10599 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc; 10600 10601 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd); 10602 REG_WR(bp, addr, tmp_reg); 10603 10604 BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n", 10605 BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq); 10606 } 10607 10608 static int bnx2x_prev_mcp_done(struct bnx2x *bp) 10609 { 10610 u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 10611 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 10612 if (!rc) { 10613 BNX2X_ERR("MCP response failure, aborting\n"); 10614 return -EBUSY; 10615 } 10616 10617 return 0; 10618 } 10619 10620 static struct bnx2x_prev_path_list * 10621 bnx2x_prev_path_get_entry(struct bnx2x *bp) 10622 { 10623 struct bnx2x_prev_path_list *tmp_list; 10624 10625 list_for_each_entry(tmp_list, &bnx2x_prev_list, list) 10626 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot && 10627 bp->pdev->bus->number == tmp_list->bus && 10628 BP_PATH(bp) == tmp_list->path) 10629 return tmp_list; 10630 10631 return NULL; 10632 } 10633 10634 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp) 10635 { 10636 struct bnx2x_prev_path_list *tmp_list; 10637 int rc; 10638 10639 rc = down_interruptible(&bnx2x_prev_sem); 10640 if (rc) { 10641 BNX2X_ERR("Received %d when tried to take lock\n", rc); 10642 return rc; 10643 } 10644 10645 tmp_list = bnx2x_prev_path_get_entry(bp); 10646 if (tmp_list) { 10647 tmp_list->aer = 1; 10648 rc = 0; 10649 } else { 10650 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n", 10651 BP_PATH(bp)); 10652 } 10653 10654 up(&bnx2x_prev_sem); 10655 10656 return rc; 10657 } 10658 10659 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp) 10660 { 10661 struct bnx2x_prev_path_list *tmp_list; 10662 bool rc = false; 10663 10664 if (down_trylock(&bnx2x_prev_sem)) 10665 return false; 10666 10667 tmp_list = bnx2x_prev_path_get_entry(bp); 10668 if (tmp_list) { 10669 if (tmp_list->aer) { 10670 DP(NETIF_MSG_HW, "Path %d was marked by AER\n", 10671 BP_PATH(bp)); 10672 } else { 10673 rc = true; 10674 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n", 10675 BP_PATH(bp)); 10676 } 10677 } 10678 10679 up(&bnx2x_prev_sem); 10680 10681 return rc; 10682 } 10683 10684 bool bnx2x_port_after_undi(struct bnx2x *bp) 10685 { 10686 struct bnx2x_prev_path_list *entry; 10687 bool val; 10688 10689 down(&bnx2x_prev_sem); 10690 10691 entry = bnx2x_prev_path_get_entry(bp); 10692 val = !!(entry && (entry->undi & (1 << BP_PORT(bp)))); 10693 10694 up(&bnx2x_prev_sem); 10695 10696 return val; 10697 } 10698 10699 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi) 10700 { 10701 struct bnx2x_prev_path_list *tmp_list; 10702 int rc; 10703 10704 rc = down_interruptible(&bnx2x_prev_sem); 10705 if (rc) { 10706 BNX2X_ERR("Received %d when tried to take lock\n", rc); 10707 return rc; 10708 } 10709 10710 /* Check whether the entry for this path already exists */ 10711 tmp_list = bnx2x_prev_path_get_entry(bp); 10712 if (tmp_list) { 10713 if (!tmp_list->aer) { 10714 BNX2X_ERR("Re-Marking the path.\n"); 10715 } else { 10716 DP(NETIF_MSG_HW, "Removing AER indication from path %d\n", 10717 BP_PATH(bp)); 10718 tmp_list->aer = 0; 10719 } 10720 up(&bnx2x_prev_sem); 10721 return 0; 10722 } 10723 up(&bnx2x_prev_sem); 10724 10725 /* Create an entry for this path and add it */ 10726 tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL); 10727 if (!tmp_list) { 10728 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n"); 10729 return -ENOMEM; 10730 } 10731 10732 tmp_list->bus = bp->pdev->bus->number; 10733 tmp_list->slot = PCI_SLOT(bp->pdev->devfn); 10734 tmp_list->path = BP_PATH(bp); 10735 tmp_list->aer = 0; 10736 tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0; 10737 10738 rc = down_interruptible(&bnx2x_prev_sem); 10739 if (rc) { 10740 BNX2X_ERR("Received %d when tried to take lock\n", rc); 10741 kfree(tmp_list); 10742 } else { 10743 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n", 10744 BP_PATH(bp)); 10745 list_add(&tmp_list->list, &bnx2x_prev_list); 10746 up(&bnx2x_prev_sem); 10747 } 10748 10749 return rc; 10750 } 10751 10752 static int bnx2x_do_flr(struct bnx2x *bp) 10753 { 10754 struct pci_dev *dev = bp->pdev; 10755 10756 if (CHIP_IS_E1x(bp)) { 10757 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n"); 10758 return -EINVAL; 10759 } 10760 10761 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 10762 if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 10763 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n", 10764 bp->common.bc_ver); 10765 return -EINVAL; 10766 } 10767 10768 if (!pci_wait_for_pending_transaction(dev)) 10769 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n"); 10770 10771 BNX2X_DEV_INFO("Initiating FLR\n"); 10772 bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0); 10773 10774 return 0; 10775 } 10776 10777 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp) 10778 { 10779 int rc; 10780 10781 BNX2X_DEV_INFO("Uncommon unload Flow\n"); 10782 10783 /* Test if previous unload process was already finished for this path */ 10784 if (bnx2x_prev_is_path_marked(bp)) 10785 return bnx2x_prev_mcp_done(bp); 10786 10787 BNX2X_DEV_INFO("Path is unmarked\n"); 10788 10789 /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */ 10790 if (bnx2x_prev_is_after_undi(bp)) 10791 goto out; 10792 10793 /* If function has FLR capabilities, and existing FW version matches 10794 * the one required, then FLR will be sufficient to clean any residue 10795 * left by previous driver 10796 */ 10797 rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false); 10798 10799 if (!rc) { 10800 /* fw version is good */ 10801 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n"); 10802 rc = bnx2x_do_flr(bp); 10803 } 10804 10805 if (!rc) { 10806 /* FLR was performed */ 10807 BNX2X_DEV_INFO("FLR successful\n"); 10808 return 0; 10809 } 10810 10811 BNX2X_DEV_INFO("Could not FLR\n"); 10812 10813 out: 10814 /* Close the MCP request, return failure*/ 10815 rc = bnx2x_prev_mcp_done(bp); 10816 if (!rc) 10817 rc = BNX2X_PREV_WAIT_NEEDED; 10818 10819 return rc; 10820 } 10821 10822 static int bnx2x_prev_unload_common(struct bnx2x *bp) 10823 { 10824 u32 reset_reg, tmp_reg = 0, rc; 10825 bool prev_undi = false; 10826 struct bnx2x_mac_vals mac_vals; 10827 10828 /* It is possible a previous function received 'common' answer, 10829 * but hasn't loaded yet, therefore creating a scenario of 10830 * multiple functions receiving 'common' on the same path. 10831 */ 10832 BNX2X_DEV_INFO("Common unload Flow\n"); 10833 10834 memset(&mac_vals, 0, sizeof(mac_vals)); 10835 10836 if (bnx2x_prev_is_path_marked(bp)) 10837 return bnx2x_prev_mcp_done(bp); 10838 10839 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1); 10840 10841 /* Reset should be performed after BRB is emptied */ 10842 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 10843 u32 timer_count = 1000; 10844 10845 /* Close the MAC Rx to prevent BRB from filling up */ 10846 bnx2x_prev_unload_close_mac(bp, &mac_vals); 10847 10848 /* close LLH filters for both ports towards the BRB */ 10849 bnx2x_set_rx_filter(&bp->link_params, 0); 10850 bp->link_params.port ^= 1; 10851 bnx2x_set_rx_filter(&bp->link_params, 0); 10852 bp->link_params.port ^= 1; 10853 10854 /* Check if the UNDI driver was previously loaded */ 10855 if (bnx2x_prev_is_after_undi(bp)) { 10856 prev_undi = true; 10857 /* clear the UNDI indication */ 10858 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0); 10859 /* clear possible idle check errors */ 10860 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0); 10861 } 10862 if (!CHIP_IS_E1x(bp)) 10863 /* block FW from writing to host */ 10864 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 10865 10866 /* wait until BRB is empty */ 10867 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); 10868 while (timer_count) { 10869 u32 prev_brb = tmp_reg; 10870 10871 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); 10872 if (!tmp_reg) 10873 break; 10874 10875 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg); 10876 10877 /* reset timer as long as BRB actually gets emptied */ 10878 if (prev_brb > tmp_reg) 10879 timer_count = 1000; 10880 else 10881 timer_count--; 10882 10883 /* If UNDI resides in memory, manually increment it */ 10884 if (prev_undi) 10885 bnx2x_prev_unload_undi_inc(bp, 1); 10886 10887 udelay(10); 10888 } 10889 10890 if (!timer_count) 10891 BNX2X_ERR("Failed to empty BRB, hope for the best\n"); 10892 } 10893 10894 /* No packets are in the pipeline, path is ready for reset */ 10895 bnx2x_reset_common(bp); 10896 10897 if (mac_vals.xmac_addr) 10898 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val); 10899 if (mac_vals.umac_addr[0]) 10900 REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]); 10901 if (mac_vals.umac_addr[1]) 10902 REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]); 10903 if (mac_vals.emac_addr) 10904 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val); 10905 if (mac_vals.bmac_addr) { 10906 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 10907 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 10908 } 10909 10910 rc = bnx2x_prev_mark_path(bp, prev_undi); 10911 if (rc) { 10912 bnx2x_prev_mcp_done(bp); 10913 return rc; 10914 } 10915 10916 return bnx2x_prev_mcp_done(bp); 10917 } 10918 10919 static int bnx2x_prev_unload(struct bnx2x *bp) 10920 { 10921 int time_counter = 10; 10922 u32 rc, fw, hw_lock_reg, hw_lock_val; 10923 BNX2X_DEV_INFO("Entering Previous Unload Flow\n"); 10924 10925 /* clear hw from errors which may have resulted from an interrupted 10926 * dmae transaction. 10927 */ 10928 bnx2x_clean_pglue_errors(bp); 10929 10930 /* Release previously held locks */ 10931 hw_lock_reg = (BP_FUNC(bp) <= 5) ? 10932 (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) : 10933 (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8); 10934 10935 hw_lock_val = REG_RD(bp, hw_lock_reg); 10936 if (hw_lock_val) { 10937 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 10938 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n"); 10939 REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB, 10940 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp))); 10941 } 10942 10943 BNX2X_DEV_INFO("Release Previously held hw lock\n"); 10944 REG_WR(bp, hw_lock_reg, 0xffffffff); 10945 } else 10946 BNX2X_DEV_INFO("No need to release hw/nvram locks\n"); 10947 10948 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) { 10949 BNX2X_DEV_INFO("Release previously held alr\n"); 10950 bnx2x_release_alr(bp); 10951 } 10952 10953 do { 10954 int aer = 0; 10955 /* Lock MCP using an unload request */ 10956 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 10957 if (!fw) { 10958 BNX2X_ERR("MCP response failure, aborting\n"); 10959 rc = -EBUSY; 10960 break; 10961 } 10962 10963 rc = down_interruptible(&bnx2x_prev_sem); 10964 if (rc) { 10965 BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n", 10966 rc); 10967 } else { 10968 /* If Path is marked by EEH, ignore unload status */ 10969 aer = !!(bnx2x_prev_path_get_entry(bp) && 10970 bnx2x_prev_path_get_entry(bp)->aer); 10971 up(&bnx2x_prev_sem); 10972 } 10973 10974 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) { 10975 rc = bnx2x_prev_unload_common(bp); 10976 break; 10977 } 10978 10979 /* non-common reply from MCP might require looping */ 10980 rc = bnx2x_prev_unload_uncommon(bp); 10981 if (rc != BNX2X_PREV_WAIT_NEEDED) 10982 break; 10983 10984 msleep(20); 10985 } while (--time_counter); 10986 10987 if (!time_counter || rc) { 10988 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n"); 10989 rc = -EPROBE_DEFER; 10990 } 10991 10992 /* Mark function if its port was used to boot from SAN */ 10993 if (bnx2x_port_after_undi(bp)) 10994 bp->link_params.feature_config_flags |= 10995 FEATURE_CONFIG_BOOT_FROM_SAN; 10996 10997 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc); 10998 10999 return rc; 11000 } 11001 11002 static void bnx2x_get_common_hwinfo(struct bnx2x *bp) 11003 { 11004 u32 val, val2, val3, val4, id, boot_mode; 11005 u16 pmc; 11006 11007 /* Get the chip revision id and number. */ 11008 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */ 11009 val = REG_RD(bp, MISC_REG_CHIP_NUM); 11010 id = ((val & 0xffff) << 16); 11011 val = REG_RD(bp, MISC_REG_CHIP_REV); 11012 id |= ((val & 0xf) << 12); 11013 11014 /* Metal is read from PCI regs, but we can't access >=0x400 from 11015 * the configuration space (so we need to reg_rd) 11016 */ 11017 val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3); 11018 id |= (((val >> 24) & 0xf) << 4); 11019 val = REG_RD(bp, MISC_REG_BOND_ID); 11020 id |= (val & 0xf); 11021 bp->common.chip_id = id; 11022 11023 /* force 57811 according to MISC register */ 11024 if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 11025 if (CHIP_IS_57810(bp)) 11026 bp->common.chip_id = (CHIP_NUM_57811 << 16) | 11027 (bp->common.chip_id & 0x0000FFFF); 11028 else if (CHIP_IS_57810_MF(bp)) 11029 bp->common.chip_id = (CHIP_NUM_57811_MF << 16) | 11030 (bp->common.chip_id & 0x0000FFFF); 11031 bp->common.chip_id |= 0x1; 11032 } 11033 11034 /* Set doorbell size */ 11035 bp->db_size = (1 << BNX2X_DB_SHIFT); 11036 11037 if (!CHIP_IS_E1x(bp)) { 11038 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR); 11039 if ((val & 1) == 0) 11040 val = REG_RD(bp, MISC_REG_PORT4MODE_EN); 11041 else 11042 val = (val >> 1) & 1; 11043 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" : 11044 "2_PORT_MODE"); 11045 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE : 11046 CHIP_2_PORT_MODE; 11047 11048 if (CHIP_MODE_IS_4_PORT(bp)) 11049 bp->pfid = (bp->pf_num >> 1); /* 0..3 */ 11050 else 11051 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */ 11052 } else { 11053 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */ 11054 bp->pfid = bp->pf_num; /* 0..7 */ 11055 } 11056 11057 BNX2X_DEV_INFO("pf_id: %x", bp->pfid); 11058 11059 bp->link_params.chip_id = bp->common.chip_id; 11060 BNX2X_DEV_INFO("chip ID is 0x%x\n", id); 11061 11062 val = (REG_RD(bp, 0x2874) & 0x55); 11063 if ((bp->common.chip_id & 0x1) || 11064 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) { 11065 bp->flags |= ONE_PORT_FLAG; 11066 BNX2X_DEV_INFO("single port device\n"); 11067 } 11068 11069 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4); 11070 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE << 11071 (val & MCPR_NVM_CFG4_FLASH_SIZE)); 11072 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n", 11073 bp->common.flash_size, bp->common.flash_size); 11074 11075 bnx2x_init_shmem(bp); 11076 11077 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ? 11078 MISC_REG_GENERIC_CR_1 : 11079 MISC_REG_GENERIC_CR_0)); 11080 11081 bp->link_params.shmem_base = bp->common.shmem_base; 11082 bp->link_params.shmem2_base = bp->common.shmem2_base; 11083 if (SHMEM2_RD(bp, size) > 11084 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) 11085 bp->link_params.lfa_base = 11086 REG_RD(bp, bp->common.shmem2_base + 11087 (u32)offsetof(struct shmem2_region, 11088 lfa_host_addr[BP_PORT(bp)])); 11089 else 11090 bp->link_params.lfa_base = 0; 11091 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n", 11092 bp->common.shmem_base, bp->common.shmem2_base); 11093 11094 if (!bp->common.shmem_base) { 11095 BNX2X_DEV_INFO("MCP not active\n"); 11096 bp->flags |= NO_MCP_FLAG; 11097 return; 11098 } 11099 11100 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config); 11101 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config); 11102 11103 bp->link_params.hw_led_mode = ((bp->common.hw_config & 11104 SHARED_HW_CFG_LED_MODE_MASK) >> 11105 SHARED_HW_CFG_LED_MODE_SHIFT); 11106 11107 bp->link_params.feature_config_flags = 0; 11108 val = SHMEM_RD(bp, dev_info.shared_feature_config.config); 11109 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) 11110 bp->link_params.feature_config_flags |= 11111 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 11112 else 11113 bp->link_params.feature_config_flags &= 11114 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 11115 11116 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8; 11117 bp->common.bc_ver = val; 11118 BNX2X_DEV_INFO("bc_ver %X\n", val); 11119 if (val < BNX2X_BC_VER) { 11120 /* for now only warn 11121 * later we might need to enforce this */ 11122 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n", 11123 BNX2X_BC_VER, val); 11124 } 11125 bp->link_params.feature_config_flags |= 11126 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ? 11127 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0; 11128 11129 bp->link_params.feature_config_flags |= 11130 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ? 11131 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0; 11132 bp->link_params.feature_config_flags |= 11133 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ? 11134 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0; 11135 bp->link_params.feature_config_flags |= 11136 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ? 11137 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0; 11138 11139 bp->link_params.feature_config_flags |= 11140 (val >= REQ_BC_VER_4_MT_SUPPORTED) ? 11141 FEATURE_CONFIG_MT_SUPPORT : 0; 11142 11143 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ? 11144 BC_SUPPORTS_PFC_STATS : 0; 11145 11146 bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ? 11147 BC_SUPPORTS_FCOE_FEATURES : 0; 11148 11149 bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ? 11150 BC_SUPPORTS_DCBX_MSG_NON_PMF : 0; 11151 11152 bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ? 11153 BC_SUPPORTS_RMMOD_CMD : 0; 11154 11155 boot_mode = SHMEM_RD(bp, 11156 dev_info.port_feature_config[BP_PORT(bp)].mba_config) & 11157 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK; 11158 switch (boot_mode) { 11159 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE: 11160 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE; 11161 break; 11162 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB: 11163 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI; 11164 break; 11165 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT: 11166 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE; 11167 break; 11168 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE: 11169 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE; 11170 break; 11171 } 11172 11173 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc); 11174 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG; 11175 11176 BNX2X_DEV_INFO("%sWoL capable\n", 11177 (bp->flags & NO_WOL_FLAG) ? "not " : ""); 11178 11179 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num); 11180 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]); 11181 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]); 11182 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]); 11183 11184 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n", 11185 val, val2, val3, val4); 11186 } 11187 11188 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 11189 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 11190 11191 static int bnx2x_get_igu_cam_info(struct bnx2x *bp) 11192 { 11193 int pfid = BP_FUNC(bp); 11194 int igu_sb_id; 11195 u32 val; 11196 u8 fid, igu_sb_cnt = 0; 11197 11198 bp->igu_base_sb = 0xff; 11199 if (CHIP_INT_MODE_IS_BC(bp)) { 11200 int vn = BP_VN(bp); 11201 igu_sb_cnt = bp->igu_sb_cnt; 11202 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) * 11203 FP_SB_MAX_E1x; 11204 11205 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x + 11206 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn); 11207 11208 return 0; 11209 } 11210 11211 /* IGU in normal mode - read CAM */ 11212 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 11213 igu_sb_id++) { 11214 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 11215 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) 11216 continue; 11217 fid = IGU_FID(val); 11218 if ((fid & IGU_FID_ENCODE_IS_PF)) { 11219 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) 11220 continue; 11221 if (IGU_VEC(val) == 0) 11222 /* default status block */ 11223 bp->igu_dsb_id = igu_sb_id; 11224 else { 11225 if (bp->igu_base_sb == 0xff) 11226 bp->igu_base_sb = igu_sb_id; 11227 igu_sb_cnt++; 11228 } 11229 } 11230 } 11231 11232 #ifdef CONFIG_PCI_MSI 11233 /* Due to new PF resource allocation by MFW T7.4 and above, it's 11234 * optional that number of CAM entries will not be equal to the value 11235 * advertised in PCI. 11236 * Driver should use the minimal value of both as the actual status 11237 * block count 11238 */ 11239 bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt); 11240 #endif 11241 11242 if (igu_sb_cnt == 0) { 11243 BNX2X_ERR("CAM configuration error\n"); 11244 return -EINVAL; 11245 } 11246 11247 return 0; 11248 } 11249 11250 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg) 11251 { 11252 int cfg_size = 0, idx, port = BP_PORT(bp); 11253 11254 /* Aggregation of supported attributes of all external phys */ 11255 bp->port.supported[0] = 0; 11256 bp->port.supported[1] = 0; 11257 switch (bp->link_params.num_phys) { 11258 case 1: 11259 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported; 11260 cfg_size = 1; 11261 break; 11262 case 2: 11263 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported; 11264 cfg_size = 1; 11265 break; 11266 case 3: 11267 if (bp->link_params.multi_phy_config & 11268 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 11269 bp->port.supported[1] = 11270 bp->link_params.phy[EXT_PHY1].supported; 11271 bp->port.supported[0] = 11272 bp->link_params.phy[EXT_PHY2].supported; 11273 } else { 11274 bp->port.supported[0] = 11275 bp->link_params.phy[EXT_PHY1].supported; 11276 bp->port.supported[1] = 11277 bp->link_params.phy[EXT_PHY2].supported; 11278 } 11279 cfg_size = 2; 11280 break; 11281 } 11282 11283 if (!(bp->port.supported[0] || bp->port.supported[1])) { 11284 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n", 11285 SHMEM_RD(bp, 11286 dev_info.port_hw_config[port].external_phy_config), 11287 SHMEM_RD(bp, 11288 dev_info.port_hw_config[port].external_phy_config2)); 11289 return; 11290 } 11291 11292 if (CHIP_IS_E3(bp)) 11293 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR); 11294 else { 11295 switch (switch_cfg) { 11296 case SWITCH_CFG_1G: 11297 bp->port.phy_addr = REG_RD( 11298 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 11299 break; 11300 case SWITCH_CFG_10G: 11301 bp->port.phy_addr = REG_RD( 11302 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 11303 break; 11304 default: 11305 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n", 11306 bp->port.link_config[0]); 11307 return; 11308 } 11309 } 11310 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr); 11311 /* mask what we support according to speed_cap_mask per configuration */ 11312 for (idx = 0; idx < cfg_size; idx++) { 11313 if (!(bp->link_params.speed_cap_mask[idx] & 11314 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) 11315 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half; 11316 11317 if (!(bp->link_params.speed_cap_mask[idx] & 11318 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) 11319 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full; 11320 11321 if (!(bp->link_params.speed_cap_mask[idx] & 11322 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) 11323 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half; 11324 11325 if (!(bp->link_params.speed_cap_mask[idx] & 11326 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) 11327 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full; 11328 11329 if (!(bp->link_params.speed_cap_mask[idx] & 11330 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) 11331 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half | 11332 SUPPORTED_1000baseT_Full); 11333 11334 if (!(bp->link_params.speed_cap_mask[idx] & 11335 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) 11336 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full; 11337 11338 if (!(bp->link_params.speed_cap_mask[idx] & 11339 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) 11340 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full; 11341 11342 if (!(bp->link_params.speed_cap_mask[idx] & 11343 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) 11344 bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full; 11345 } 11346 11347 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0], 11348 bp->port.supported[1]); 11349 } 11350 11351 static void bnx2x_link_settings_requested(struct bnx2x *bp) 11352 { 11353 u32 link_config, idx, cfg_size = 0; 11354 bp->port.advertising[0] = 0; 11355 bp->port.advertising[1] = 0; 11356 switch (bp->link_params.num_phys) { 11357 case 1: 11358 case 2: 11359 cfg_size = 1; 11360 break; 11361 case 3: 11362 cfg_size = 2; 11363 break; 11364 } 11365 for (idx = 0; idx < cfg_size; idx++) { 11366 bp->link_params.req_duplex[idx] = DUPLEX_FULL; 11367 link_config = bp->port.link_config[idx]; 11368 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 11369 case PORT_FEATURE_LINK_SPEED_AUTO: 11370 if (bp->port.supported[idx] & SUPPORTED_Autoneg) { 11371 bp->link_params.req_line_speed[idx] = 11372 SPEED_AUTO_NEG; 11373 bp->port.advertising[idx] |= 11374 bp->port.supported[idx]; 11375 if (bp->link_params.phy[EXT_PHY1].type == 11376 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 11377 bp->port.advertising[idx] |= 11378 (SUPPORTED_100baseT_Half | 11379 SUPPORTED_100baseT_Full); 11380 } else { 11381 /* force 10G, no AN */ 11382 bp->link_params.req_line_speed[idx] = 11383 SPEED_10000; 11384 bp->port.advertising[idx] |= 11385 (ADVERTISED_10000baseT_Full | 11386 ADVERTISED_FIBRE); 11387 continue; 11388 } 11389 break; 11390 11391 case PORT_FEATURE_LINK_SPEED_10M_FULL: 11392 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) { 11393 bp->link_params.req_line_speed[idx] = 11394 SPEED_10; 11395 bp->port.advertising[idx] |= 11396 (ADVERTISED_10baseT_Full | 11397 ADVERTISED_TP); 11398 } else { 11399 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11400 link_config, 11401 bp->link_params.speed_cap_mask[idx]); 11402 return; 11403 } 11404 break; 11405 11406 case PORT_FEATURE_LINK_SPEED_10M_HALF: 11407 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) { 11408 bp->link_params.req_line_speed[idx] = 11409 SPEED_10; 11410 bp->link_params.req_duplex[idx] = 11411 DUPLEX_HALF; 11412 bp->port.advertising[idx] |= 11413 (ADVERTISED_10baseT_Half | 11414 ADVERTISED_TP); 11415 } else { 11416 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11417 link_config, 11418 bp->link_params.speed_cap_mask[idx]); 11419 return; 11420 } 11421 break; 11422 11423 case PORT_FEATURE_LINK_SPEED_100M_FULL: 11424 if (bp->port.supported[idx] & 11425 SUPPORTED_100baseT_Full) { 11426 bp->link_params.req_line_speed[idx] = 11427 SPEED_100; 11428 bp->port.advertising[idx] |= 11429 (ADVERTISED_100baseT_Full | 11430 ADVERTISED_TP); 11431 } else { 11432 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11433 link_config, 11434 bp->link_params.speed_cap_mask[idx]); 11435 return; 11436 } 11437 break; 11438 11439 case PORT_FEATURE_LINK_SPEED_100M_HALF: 11440 if (bp->port.supported[idx] & 11441 SUPPORTED_100baseT_Half) { 11442 bp->link_params.req_line_speed[idx] = 11443 SPEED_100; 11444 bp->link_params.req_duplex[idx] = 11445 DUPLEX_HALF; 11446 bp->port.advertising[idx] |= 11447 (ADVERTISED_100baseT_Half | 11448 ADVERTISED_TP); 11449 } else { 11450 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11451 link_config, 11452 bp->link_params.speed_cap_mask[idx]); 11453 return; 11454 } 11455 break; 11456 11457 case PORT_FEATURE_LINK_SPEED_1G: 11458 if (bp->port.supported[idx] & 11459 SUPPORTED_1000baseT_Full) { 11460 bp->link_params.req_line_speed[idx] = 11461 SPEED_1000; 11462 bp->port.advertising[idx] |= 11463 (ADVERTISED_1000baseT_Full | 11464 ADVERTISED_TP); 11465 } else if (bp->port.supported[idx] & 11466 SUPPORTED_1000baseKX_Full) { 11467 bp->link_params.req_line_speed[idx] = 11468 SPEED_1000; 11469 bp->port.advertising[idx] |= 11470 ADVERTISED_1000baseKX_Full; 11471 } else { 11472 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11473 link_config, 11474 bp->link_params.speed_cap_mask[idx]); 11475 return; 11476 } 11477 break; 11478 11479 case PORT_FEATURE_LINK_SPEED_2_5G: 11480 if (bp->port.supported[idx] & 11481 SUPPORTED_2500baseX_Full) { 11482 bp->link_params.req_line_speed[idx] = 11483 SPEED_2500; 11484 bp->port.advertising[idx] |= 11485 (ADVERTISED_2500baseX_Full | 11486 ADVERTISED_TP); 11487 } else { 11488 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11489 link_config, 11490 bp->link_params.speed_cap_mask[idx]); 11491 return; 11492 } 11493 break; 11494 11495 case PORT_FEATURE_LINK_SPEED_10G_CX4: 11496 if (bp->port.supported[idx] & 11497 SUPPORTED_10000baseT_Full) { 11498 bp->link_params.req_line_speed[idx] = 11499 SPEED_10000; 11500 bp->port.advertising[idx] |= 11501 (ADVERTISED_10000baseT_Full | 11502 ADVERTISED_FIBRE); 11503 } else if (bp->port.supported[idx] & 11504 SUPPORTED_10000baseKR_Full) { 11505 bp->link_params.req_line_speed[idx] = 11506 SPEED_10000; 11507 bp->port.advertising[idx] |= 11508 (ADVERTISED_10000baseKR_Full | 11509 ADVERTISED_FIBRE); 11510 } else { 11511 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11512 link_config, 11513 bp->link_params.speed_cap_mask[idx]); 11514 return; 11515 } 11516 break; 11517 case PORT_FEATURE_LINK_SPEED_20G: 11518 bp->link_params.req_line_speed[idx] = SPEED_20000; 11519 11520 break; 11521 default: 11522 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n", 11523 link_config); 11524 bp->link_params.req_line_speed[idx] = 11525 SPEED_AUTO_NEG; 11526 bp->port.advertising[idx] = 11527 bp->port.supported[idx]; 11528 break; 11529 } 11530 11531 bp->link_params.req_flow_ctrl[idx] = (link_config & 11532 PORT_FEATURE_FLOW_CONTROL_MASK); 11533 if (bp->link_params.req_flow_ctrl[idx] == 11534 BNX2X_FLOW_CTRL_AUTO) { 11535 if (!(bp->port.supported[idx] & SUPPORTED_Autoneg)) 11536 bp->link_params.req_flow_ctrl[idx] = 11537 BNX2X_FLOW_CTRL_NONE; 11538 else 11539 bnx2x_set_requested_fc(bp); 11540 } 11541 11542 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n", 11543 bp->link_params.req_line_speed[idx], 11544 bp->link_params.req_duplex[idx], 11545 bp->link_params.req_flow_ctrl[idx], 11546 bp->port.advertising[idx]); 11547 } 11548 } 11549 11550 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi) 11551 { 11552 __be16 mac_hi_be = cpu_to_be16(mac_hi); 11553 __be32 mac_lo_be = cpu_to_be32(mac_lo); 11554 memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be)); 11555 memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be)); 11556 } 11557 11558 static void bnx2x_get_port_hwinfo(struct bnx2x *bp) 11559 { 11560 int port = BP_PORT(bp); 11561 u32 config; 11562 u32 ext_phy_type, ext_phy_config, eee_mode; 11563 11564 bp->link_params.bp = bp; 11565 bp->link_params.port = port; 11566 11567 bp->link_params.lane_config = 11568 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config); 11569 11570 bp->link_params.speed_cap_mask[0] = 11571 SHMEM_RD(bp, 11572 dev_info.port_hw_config[port].speed_capability_mask) & 11573 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; 11574 bp->link_params.speed_cap_mask[1] = 11575 SHMEM_RD(bp, 11576 dev_info.port_hw_config[port].speed_capability_mask2) & 11577 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; 11578 bp->port.link_config[0] = 11579 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config); 11580 11581 bp->port.link_config[1] = 11582 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2); 11583 11584 bp->link_params.multi_phy_config = 11585 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config); 11586 /* If the device is capable of WoL, set the default state according 11587 * to the HW 11588 */ 11589 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config); 11590 bp->wol = (!(bp->flags & NO_WOL_FLAG) && 11591 (config & PORT_FEATURE_WOL_ENABLED)); 11592 11593 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 11594 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp)) 11595 bp->flags |= NO_ISCSI_FLAG; 11596 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 11597 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp))) 11598 bp->flags |= NO_FCOE_FLAG; 11599 11600 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n", 11601 bp->link_params.lane_config, 11602 bp->link_params.speed_cap_mask[0], 11603 bp->port.link_config[0]); 11604 11605 bp->link_params.switch_cfg = (bp->port.link_config[0] & 11606 PORT_FEATURE_CONNECTED_SWITCH_MASK); 11607 bnx2x_phy_probe(&bp->link_params); 11608 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg); 11609 11610 bnx2x_link_settings_requested(bp); 11611 11612 /* 11613 * If connected directly, work with the internal PHY, otherwise, work 11614 * with the external PHY 11615 */ 11616 ext_phy_config = 11617 SHMEM_RD(bp, 11618 dev_info.port_hw_config[port].external_phy_config); 11619 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config); 11620 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) 11621 bp->mdio.prtad = bp->port.phy_addr; 11622 11623 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && 11624 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) 11625 bp->mdio.prtad = 11626 XGXS_EXT_PHY_ADDR(ext_phy_config); 11627 11628 /* Configure link feature according to nvram value */ 11629 eee_mode = (((SHMEM_RD(bp, dev_info. 11630 port_feature_config[port].eee_power_mode)) & 11631 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 11632 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 11633 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 11634 bp->link_params.eee_mode = EEE_MODE_ADV_LPI | 11635 EEE_MODE_ENABLE_LPI | 11636 EEE_MODE_OUTPUT_TIME; 11637 } else { 11638 bp->link_params.eee_mode = 0; 11639 } 11640 } 11641 11642 void bnx2x_get_iscsi_info(struct bnx2x *bp) 11643 { 11644 u32 no_flags = NO_ISCSI_FLAG; 11645 int port = BP_PORT(bp); 11646 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, 11647 drv_lic_key[port].max_iscsi_conn); 11648 11649 if (!CNIC_SUPPORT(bp)) { 11650 bp->flags |= no_flags; 11651 return; 11652 } 11653 11654 /* Get the number of maximum allowed iSCSI connections */ 11655 bp->cnic_eth_dev.max_iscsi_conn = 11656 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >> 11657 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT; 11658 11659 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n", 11660 bp->cnic_eth_dev.max_iscsi_conn); 11661 11662 /* 11663 * If maximum allowed number of connections is zero - 11664 * disable the feature. 11665 */ 11666 if (!bp->cnic_eth_dev.max_iscsi_conn) 11667 bp->flags |= no_flags; 11668 } 11669 11670 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func) 11671 { 11672 /* Port info */ 11673 bp->cnic_eth_dev.fcoe_wwn_port_name_hi = 11674 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper); 11675 bp->cnic_eth_dev.fcoe_wwn_port_name_lo = 11676 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower); 11677 11678 /* Node info */ 11679 bp->cnic_eth_dev.fcoe_wwn_node_name_hi = 11680 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper); 11681 bp->cnic_eth_dev.fcoe_wwn_node_name_lo = 11682 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower); 11683 } 11684 11685 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp) 11686 { 11687 u8 count = 0; 11688 11689 if (IS_MF(bp)) { 11690 u8 fid; 11691 11692 /* iterate over absolute function ids for this path: */ 11693 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) { 11694 if (IS_MF_SD(bp)) { 11695 u32 cfg = MF_CFG_RD(bp, 11696 func_mf_config[fid].config); 11697 11698 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) && 11699 ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) == 11700 FUNC_MF_CFG_PROTOCOL_FCOE)) 11701 count++; 11702 } else { 11703 u32 cfg = MF_CFG_RD(bp, 11704 func_ext_config[fid]. 11705 func_cfg); 11706 11707 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) && 11708 (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)) 11709 count++; 11710 } 11711 } 11712 } else { /* SF */ 11713 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1; 11714 11715 for (port = 0; port < port_cnt; port++) { 11716 u32 lic = SHMEM_RD(bp, 11717 drv_lic_key[port].max_fcoe_conn) ^ 11718 FW_ENCODE_32BIT_PATTERN; 11719 if (lic) 11720 count++; 11721 } 11722 } 11723 11724 return count; 11725 } 11726 11727 static void bnx2x_get_fcoe_info(struct bnx2x *bp) 11728 { 11729 int port = BP_PORT(bp); 11730 int func = BP_ABS_FUNC(bp); 11731 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, 11732 drv_lic_key[port].max_fcoe_conn); 11733 u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp); 11734 11735 if (!CNIC_SUPPORT(bp)) { 11736 bp->flags |= NO_FCOE_FLAG; 11737 return; 11738 } 11739 11740 /* Get the number of maximum allowed FCoE connections */ 11741 bp->cnic_eth_dev.max_fcoe_conn = 11742 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >> 11743 BNX2X_MAX_FCOE_INIT_CONN_SHIFT; 11744 11745 /* Calculate the number of maximum allowed FCoE tasks */ 11746 bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE; 11747 11748 /* check if FCoE resources must be shared between different functions */ 11749 if (num_fcoe_func) 11750 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func; 11751 11752 /* Read the WWN: */ 11753 if (!IS_MF(bp)) { 11754 /* Port info */ 11755 bp->cnic_eth_dev.fcoe_wwn_port_name_hi = 11756 SHMEM_RD(bp, 11757 dev_info.port_hw_config[port]. 11758 fcoe_wwn_port_name_upper); 11759 bp->cnic_eth_dev.fcoe_wwn_port_name_lo = 11760 SHMEM_RD(bp, 11761 dev_info.port_hw_config[port]. 11762 fcoe_wwn_port_name_lower); 11763 11764 /* Node info */ 11765 bp->cnic_eth_dev.fcoe_wwn_node_name_hi = 11766 SHMEM_RD(bp, 11767 dev_info.port_hw_config[port]. 11768 fcoe_wwn_node_name_upper); 11769 bp->cnic_eth_dev.fcoe_wwn_node_name_lo = 11770 SHMEM_RD(bp, 11771 dev_info.port_hw_config[port]. 11772 fcoe_wwn_node_name_lower); 11773 } else if (!IS_MF_SD(bp)) { 11774 /* Read the WWN info only if the FCoE feature is enabled for 11775 * this function. 11776 */ 11777 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp)) 11778 bnx2x_get_ext_wwn_info(bp, func); 11779 } else { 11780 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp)) 11781 bnx2x_get_ext_wwn_info(bp, func); 11782 } 11783 11784 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn); 11785 11786 /* 11787 * If maximum allowed number of connections is zero - 11788 * disable the feature. 11789 */ 11790 if (!bp->cnic_eth_dev.max_fcoe_conn) { 11791 bp->flags |= NO_FCOE_FLAG; 11792 eth_zero_addr(bp->fip_mac); 11793 } 11794 } 11795 11796 static void bnx2x_get_cnic_info(struct bnx2x *bp) 11797 { 11798 /* 11799 * iSCSI may be dynamically disabled but reading 11800 * info here we will decrease memory usage by driver 11801 * if the feature is disabled for good 11802 */ 11803 bnx2x_get_iscsi_info(bp); 11804 bnx2x_get_fcoe_info(bp); 11805 } 11806 11807 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp) 11808 { 11809 u32 val, val2; 11810 int func = BP_ABS_FUNC(bp); 11811 int port = BP_PORT(bp); 11812 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac; 11813 u8 *fip_mac = bp->fip_mac; 11814 11815 if (IS_MF(bp)) { 11816 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or 11817 * FCoE MAC then the appropriate feature should be disabled. 11818 * In non SD mode features configuration comes from struct 11819 * func_ext_config. 11820 */ 11821 if (!IS_MF_SD(bp)) { 11822 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg); 11823 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 11824 val2 = MF_CFG_RD(bp, func_ext_config[func]. 11825 iscsi_mac_addr_upper); 11826 val = MF_CFG_RD(bp, func_ext_config[func]. 11827 iscsi_mac_addr_lower); 11828 bnx2x_set_mac_buf(iscsi_mac, val, val2); 11829 BNX2X_DEV_INFO 11830 ("Read iSCSI MAC: %pM\n", iscsi_mac); 11831 } else { 11832 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; 11833 } 11834 11835 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 11836 val2 = MF_CFG_RD(bp, func_ext_config[func]. 11837 fcoe_mac_addr_upper); 11838 val = MF_CFG_RD(bp, func_ext_config[func]. 11839 fcoe_mac_addr_lower); 11840 bnx2x_set_mac_buf(fip_mac, val, val2); 11841 BNX2X_DEV_INFO 11842 ("Read FCoE L2 MAC: %pM\n", fip_mac); 11843 } else { 11844 bp->flags |= NO_FCOE_FLAG; 11845 } 11846 11847 bp->mf_ext_config = cfg; 11848 11849 } else { /* SD MODE */ 11850 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) { 11851 /* use primary mac as iscsi mac */ 11852 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN); 11853 11854 BNX2X_DEV_INFO("SD ISCSI MODE\n"); 11855 BNX2X_DEV_INFO 11856 ("Read iSCSI MAC: %pM\n", iscsi_mac); 11857 } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) { 11858 /* use primary mac as fip mac */ 11859 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN); 11860 BNX2X_DEV_INFO("SD FCoE MODE\n"); 11861 BNX2X_DEV_INFO 11862 ("Read FIP MAC: %pM\n", fip_mac); 11863 } 11864 } 11865 11866 /* If this is a storage-only interface, use SAN mac as 11867 * primary MAC. Notice that for SD this is already the case, 11868 * as the SAN mac was copied from the primary MAC. 11869 */ 11870 if (IS_MF_FCOE_AFEX(bp)) 11871 memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN); 11872 } else { 11873 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11874 iscsi_mac_upper); 11875 val = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11876 iscsi_mac_lower); 11877 bnx2x_set_mac_buf(iscsi_mac, val, val2); 11878 11879 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11880 fcoe_fip_mac_upper); 11881 val = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11882 fcoe_fip_mac_lower); 11883 bnx2x_set_mac_buf(fip_mac, val, val2); 11884 } 11885 11886 /* Disable iSCSI OOO if MAC configuration is invalid. */ 11887 if (!is_valid_ether_addr(iscsi_mac)) { 11888 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; 11889 eth_zero_addr(iscsi_mac); 11890 } 11891 11892 /* Disable FCoE if MAC configuration is invalid. */ 11893 if (!is_valid_ether_addr(fip_mac)) { 11894 bp->flags |= NO_FCOE_FLAG; 11895 eth_zero_addr(bp->fip_mac); 11896 } 11897 } 11898 11899 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp) 11900 { 11901 u32 val, val2; 11902 int func = BP_ABS_FUNC(bp); 11903 int port = BP_PORT(bp); 11904 11905 /* Zero primary MAC configuration */ 11906 eth_zero_addr(bp->dev->dev_addr); 11907 11908 if (BP_NOMCP(bp)) { 11909 BNX2X_ERROR("warning: random MAC workaround active\n"); 11910 eth_hw_addr_random(bp->dev); 11911 } else if (IS_MF(bp)) { 11912 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper); 11913 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower); 11914 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) && 11915 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT)) 11916 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2); 11917 11918 if (CNIC_SUPPORT(bp)) 11919 bnx2x_get_cnic_mac_hwinfo(bp); 11920 } else { 11921 /* in SF read MACs from port configuration */ 11922 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper); 11923 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower); 11924 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2); 11925 11926 if (CNIC_SUPPORT(bp)) 11927 bnx2x_get_cnic_mac_hwinfo(bp); 11928 } 11929 11930 if (!BP_NOMCP(bp)) { 11931 /* Read physical port identifier from shmem */ 11932 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper); 11933 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower); 11934 bnx2x_set_mac_buf(bp->phys_port_id, val, val2); 11935 bp->flags |= HAS_PHYS_PORT_ID; 11936 } 11937 11938 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN); 11939 11940 if (!is_valid_ether_addr(bp->dev->dev_addr)) 11941 dev_err(&bp->pdev->dev, 11942 "bad Ethernet MAC address configuration: %pM\n" 11943 "change it manually before bringing up the appropriate network interface\n", 11944 bp->dev->dev_addr); 11945 } 11946 11947 static bool bnx2x_get_dropless_info(struct bnx2x *bp) 11948 { 11949 int tmp; 11950 u32 cfg; 11951 11952 if (IS_VF(bp)) 11953 return false; 11954 11955 if (IS_MF(bp) && !CHIP_IS_E1x(bp)) { 11956 /* Take function: tmp = func */ 11957 tmp = BP_ABS_FUNC(bp); 11958 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg); 11959 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING); 11960 } else { 11961 /* Take port: tmp = port */ 11962 tmp = BP_PORT(bp); 11963 cfg = SHMEM_RD(bp, 11964 dev_info.port_hw_config[tmp].generic_features); 11965 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED); 11966 } 11967 return cfg; 11968 } 11969 11970 static void validate_set_si_mode(struct bnx2x *bp) 11971 { 11972 u8 func = BP_ABS_FUNC(bp); 11973 u32 val; 11974 11975 val = MF_CFG_RD(bp, func_mf_config[func].mac_upper); 11976 11977 /* check for legal mac (upper bytes) */ 11978 if (val != 0xffff) { 11979 bp->mf_mode = MULTI_FUNCTION_SI; 11980 bp->mf_config[BP_VN(bp)] = 11981 MF_CFG_RD(bp, func_mf_config[func].config); 11982 } else 11983 BNX2X_DEV_INFO("illegal MAC address for SI\n"); 11984 } 11985 11986 static int bnx2x_get_hwinfo(struct bnx2x *bp) 11987 { 11988 int /*abs*/func = BP_ABS_FUNC(bp); 11989 int vn; 11990 u32 val = 0, val2 = 0; 11991 int rc = 0; 11992 11993 /* Validate that chip access is feasible */ 11994 if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) { 11995 dev_err(&bp->pdev->dev, 11996 "Chip read returns all Fs. Preventing probe from continuing\n"); 11997 return -EINVAL; 11998 } 11999 12000 bnx2x_get_common_hwinfo(bp); 12001 12002 /* 12003 * initialize IGU parameters 12004 */ 12005 if (CHIP_IS_E1x(bp)) { 12006 bp->common.int_block = INT_BLOCK_HC; 12007 12008 bp->igu_dsb_id = DEF_SB_IGU_ID; 12009 bp->igu_base_sb = 0; 12010 } else { 12011 bp->common.int_block = INT_BLOCK_IGU; 12012 12013 /* do not allow device reset during IGU info processing */ 12014 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 12015 12016 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); 12017 12018 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 12019 int tout = 5000; 12020 12021 BNX2X_DEV_INFO("FORCING Normal Mode\n"); 12022 12023 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 12024 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val); 12025 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f); 12026 12027 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) { 12028 tout--; 12029 usleep_range(1000, 2000); 12030 } 12031 12032 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) { 12033 dev_err(&bp->pdev->dev, 12034 "FORCING Normal Mode failed!!!\n"); 12035 bnx2x_release_hw_lock(bp, 12036 HW_LOCK_RESOURCE_RESET); 12037 return -EPERM; 12038 } 12039 } 12040 12041 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 12042 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n"); 12043 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP; 12044 } else 12045 BNX2X_DEV_INFO("IGU Normal Mode\n"); 12046 12047 rc = bnx2x_get_igu_cam_info(bp); 12048 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 12049 if (rc) 12050 return rc; 12051 } 12052 12053 /* 12054 * set base FW non-default (fast path) status block id, this value is 12055 * used to initialize the fw_sb_id saved on the fp/queue structure to 12056 * determine the id used by the FW. 12057 */ 12058 if (CHIP_IS_E1x(bp)) 12059 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp); 12060 else /* 12061 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of 12062 * the same queue are indicated on the same IGU SB). So we prefer 12063 * FW and IGU SBs to be the same value. 12064 */ 12065 bp->base_fw_ndsb = bp->igu_base_sb; 12066 12067 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n" 12068 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb, 12069 bp->igu_sb_cnt, bp->base_fw_ndsb); 12070 12071 /* 12072 * Initialize MF configuration 12073 */ 12074 bp->mf_ov = 0; 12075 bp->mf_mode = 0; 12076 bp->mf_sub_mode = 0; 12077 vn = BP_VN(bp); 12078 12079 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) { 12080 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n", 12081 bp->common.shmem2_base, SHMEM2_RD(bp, size), 12082 (u32)offsetof(struct shmem2_region, mf_cfg_addr)); 12083 12084 if (SHMEM2_HAS(bp, mf_cfg_addr)) 12085 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr); 12086 else 12087 bp->common.mf_cfg_base = bp->common.shmem_base + 12088 offsetof(struct shmem_region, func_mb) + 12089 E1H_FUNC_MAX * sizeof(struct drv_func_mb); 12090 /* 12091 * get mf configuration: 12092 * 1. Existence of MF configuration 12093 * 2. MAC address must be legal (check only upper bytes) 12094 * for Switch-Independent mode; 12095 * OVLAN must be legal for Switch-Dependent mode 12096 * 3. SF_MODE configures specific MF mode 12097 */ 12098 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { 12099 /* get mf configuration */ 12100 val = SHMEM_RD(bp, 12101 dev_info.shared_feature_config.config); 12102 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK; 12103 12104 switch (val) { 12105 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 12106 validate_set_si_mode(bp); 12107 break; 12108 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 12109 if ((!CHIP_IS_E1x(bp)) && 12110 (MF_CFG_RD(bp, func_mf_config[func]. 12111 mac_upper) != 0xffff) && 12112 (SHMEM2_HAS(bp, 12113 afex_driver_support))) { 12114 bp->mf_mode = MULTI_FUNCTION_AFEX; 12115 bp->mf_config[vn] = MF_CFG_RD(bp, 12116 func_mf_config[func].config); 12117 } else { 12118 BNX2X_DEV_INFO("can not configure afex mode\n"); 12119 } 12120 break; 12121 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 12122 /* get OV configuration */ 12123 val = MF_CFG_RD(bp, 12124 func_mf_config[FUNC_0].e1hov_tag); 12125 val &= FUNC_MF_CFG_E1HOV_TAG_MASK; 12126 12127 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 12128 bp->mf_mode = MULTI_FUNCTION_SD; 12129 bp->mf_config[vn] = MF_CFG_RD(bp, 12130 func_mf_config[func].config); 12131 } else 12132 BNX2X_DEV_INFO("illegal OV for SD\n"); 12133 break; 12134 case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE: 12135 bp->mf_mode = MULTI_FUNCTION_SD; 12136 bp->mf_sub_mode = SUB_MF_MODE_BD; 12137 bp->mf_config[vn] = 12138 MF_CFG_RD(bp, 12139 func_mf_config[func].config); 12140 12141 if (SHMEM2_HAS(bp, mtu_size)) { 12142 int mtu_idx = BP_FW_MB_IDX(bp); 12143 u16 mtu_size; 12144 u32 mtu; 12145 12146 mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]); 12147 mtu_size = (u16)mtu; 12148 DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n", 12149 mtu_size, mtu); 12150 12151 /* if valid: update device mtu */ 12152 if ((mtu_size >= ETH_MIN_PACKET_SIZE) && 12153 (mtu_size <= 12154 ETH_MAX_JUMBO_PACKET_SIZE)) 12155 bp->dev->mtu = mtu_size; 12156 } 12157 break; 12158 case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE: 12159 bp->mf_mode = MULTI_FUNCTION_SD; 12160 bp->mf_sub_mode = SUB_MF_MODE_UFP; 12161 bp->mf_config[vn] = 12162 MF_CFG_RD(bp, 12163 func_mf_config[func].config); 12164 break; 12165 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 12166 bp->mf_config[vn] = 0; 12167 break; 12168 case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE: 12169 val2 = SHMEM_RD(bp, 12170 dev_info.shared_hw_config.config_3); 12171 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK; 12172 switch (val2) { 12173 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5: 12174 validate_set_si_mode(bp); 12175 bp->mf_sub_mode = 12176 SUB_MF_MODE_NPAR1_DOT_5; 12177 break; 12178 default: 12179 /* Unknown configuration */ 12180 bp->mf_config[vn] = 0; 12181 BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n", 12182 val); 12183 } 12184 break; 12185 default: 12186 /* Unknown configuration: reset mf_config */ 12187 bp->mf_config[vn] = 0; 12188 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val); 12189 } 12190 } 12191 12192 BNX2X_DEV_INFO("%s function mode\n", 12193 IS_MF(bp) ? "multi" : "single"); 12194 12195 switch (bp->mf_mode) { 12196 case MULTI_FUNCTION_SD: 12197 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 12198 FUNC_MF_CFG_E1HOV_TAG_MASK; 12199 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 12200 bp->mf_ov = val; 12201 bp->path_has_ovlan = true; 12202 12203 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n", 12204 func, bp->mf_ov, bp->mf_ov); 12205 } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) || 12206 (bp->mf_sub_mode == SUB_MF_MODE_BD)) { 12207 dev_err(&bp->pdev->dev, 12208 "Unexpected - no valid MF OV for func %d in UFP/BD mode\n", 12209 func); 12210 bp->path_has_ovlan = true; 12211 } else { 12212 dev_err(&bp->pdev->dev, 12213 "No valid MF OV for func %d, aborting\n", 12214 func); 12215 return -EPERM; 12216 } 12217 break; 12218 case MULTI_FUNCTION_AFEX: 12219 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func); 12220 break; 12221 case MULTI_FUNCTION_SI: 12222 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n", 12223 func); 12224 break; 12225 default: 12226 if (vn) { 12227 dev_err(&bp->pdev->dev, 12228 "VN %d is in a single function mode, aborting\n", 12229 vn); 12230 return -EPERM; 12231 } 12232 break; 12233 } 12234 12235 /* check if other port on the path needs ovlan: 12236 * Since MF configuration is shared between ports 12237 * Possible mixed modes are only 12238 * {SF, SI} {SF, SD} {SD, SF} {SI, SF} 12239 */ 12240 if (CHIP_MODE_IS_4_PORT(bp) && 12241 !bp->path_has_ovlan && 12242 !IS_MF(bp) && 12243 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { 12244 u8 other_port = !BP_PORT(bp); 12245 u8 other_func = BP_PATH(bp) + 2*other_port; 12246 val = MF_CFG_RD(bp, 12247 func_mf_config[other_func].e1hov_tag); 12248 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) 12249 bp->path_has_ovlan = true; 12250 } 12251 } 12252 12253 /* adjust igu_sb_cnt to MF for E1H */ 12254 if (CHIP_IS_E1H(bp) && IS_MF(bp)) 12255 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT); 12256 12257 /* port info */ 12258 bnx2x_get_port_hwinfo(bp); 12259 12260 /* Get MAC addresses */ 12261 bnx2x_get_mac_hwinfo(bp); 12262 12263 bnx2x_get_cnic_info(bp); 12264 12265 return rc; 12266 } 12267 12268 static void bnx2x_read_fwinfo(struct bnx2x *bp) 12269 { 12270 int cnt, i, block_end, rodi; 12271 char vpd_start[BNX2X_VPD_LEN+1]; 12272 char str_id_reg[VENDOR_ID_LEN+1]; 12273 char str_id_cap[VENDOR_ID_LEN+1]; 12274 char *vpd_data; 12275 char *vpd_extended_data = NULL; 12276 u8 len; 12277 12278 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start); 12279 memset(bp->fw_ver, 0, sizeof(bp->fw_ver)); 12280 12281 if (cnt < BNX2X_VPD_LEN) 12282 goto out_not_found; 12283 12284 /* VPD RO tag should be first tag after identifier string, hence 12285 * we should be able to find it in first BNX2X_VPD_LEN chars 12286 */ 12287 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN, 12288 PCI_VPD_LRDT_RO_DATA); 12289 if (i < 0) 12290 goto out_not_found; 12291 12292 block_end = i + PCI_VPD_LRDT_TAG_SIZE + 12293 pci_vpd_lrdt_size(&vpd_start[i]); 12294 12295 i += PCI_VPD_LRDT_TAG_SIZE; 12296 12297 if (block_end > BNX2X_VPD_LEN) { 12298 vpd_extended_data = kmalloc(block_end, GFP_KERNEL); 12299 if (vpd_extended_data == NULL) 12300 goto out_not_found; 12301 12302 /* read rest of vpd image into vpd_extended_data */ 12303 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN); 12304 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN, 12305 block_end - BNX2X_VPD_LEN, 12306 vpd_extended_data + BNX2X_VPD_LEN); 12307 if (cnt < (block_end - BNX2X_VPD_LEN)) 12308 goto out_not_found; 12309 vpd_data = vpd_extended_data; 12310 } else 12311 vpd_data = vpd_start; 12312 12313 /* now vpd_data holds full vpd content in both cases */ 12314 12315 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, 12316 PCI_VPD_RO_KEYWORD_MFR_ID); 12317 if (rodi < 0) 12318 goto out_not_found; 12319 12320 len = pci_vpd_info_field_size(&vpd_data[rodi]); 12321 12322 if (len != VENDOR_ID_LEN) 12323 goto out_not_found; 12324 12325 rodi += PCI_VPD_INFO_FLD_HDR_SIZE; 12326 12327 /* vendor specific info */ 12328 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL); 12329 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL); 12330 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) || 12331 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) { 12332 12333 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, 12334 PCI_VPD_RO_KEYWORD_VENDOR0); 12335 if (rodi >= 0) { 12336 len = pci_vpd_info_field_size(&vpd_data[rodi]); 12337 12338 rodi += PCI_VPD_INFO_FLD_HDR_SIZE; 12339 12340 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) { 12341 memcpy(bp->fw_ver, &vpd_data[rodi], len); 12342 bp->fw_ver[len] = ' '; 12343 } 12344 } 12345 kfree(vpd_extended_data); 12346 return; 12347 } 12348 out_not_found: 12349 kfree(vpd_extended_data); 12350 return; 12351 } 12352 12353 static void bnx2x_set_modes_bitmap(struct bnx2x *bp) 12354 { 12355 u32 flags = 0; 12356 12357 if (CHIP_REV_IS_FPGA(bp)) 12358 SET_FLAGS(flags, MODE_FPGA); 12359 else if (CHIP_REV_IS_EMUL(bp)) 12360 SET_FLAGS(flags, MODE_EMUL); 12361 else 12362 SET_FLAGS(flags, MODE_ASIC); 12363 12364 if (CHIP_MODE_IS_4_PORT(bp)) 12365 SET_FLAGS(flags, MODE_PORT4); 12366 else 12367 SET_FLAGS(flags, MODE_PORT2); 12368 12369 if (CHIP_IS_E2(bp)) 12370 SET_FLAGS(flags, MODE_E2); 12371 else if (CHIP_IS_E3(bp)) { 12372 SET_FLAGS(flags, MODE_E3); 12373 if (CHIP_REV(bp) == CHIP_REV_Ax) 12374 SET_FLAGS(flags, MODE_E3_A0); 12375 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/ 12376 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 12377 } 12378 12379 if (IS_MF(bp)) { 12380 SET_FLAGS(flags, MODE_MF); 12381 switch (bp->mf_mode) { 12382 case MULTI_FUNCTION_SD: 12383 SET_FLAGS(flags, MODE_MF_SD); 12384 break; 12385 case MULTI_FUNCTION_SI: 12386 SET_FLAGS(flags, MODE_MF_SI); 12387 break; 12388 case MULTI_FUNCTION_AFEX: 12389 SET_FLAGS(flags, MODE_MF_AFEX); 12390 break; 12391 } 12392 } else 12393 SET_FLAGS(flags, MODE_SF); 12394 12395 #if defined(__LITTLE_ENDIAN) 12396 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 12397 #else /*(__BIG_ENDIAN)*/ 12398 SET_FLAGS(flags, MODE_BIG_ENDIAN); 12399 #endif 12400 INIT_MODE_FLAGS(bp) = flags; 12401 } 12402 12403 static int bnx2x_init_bp(struct bnx2x *bp) 12404 { 12405 int func; 12406 int rc; 12407 12408 mutex_init(&bp->port.phy_mutex); 12409 mutex_init(&bp->fw_mb_mutex); 12410 mutex_init(&bp->drv_info_mutex); 12411 sema_init(&bp->stats_lock, 1); 12412 bp->drv_info_mng_owner = false; 12413 INIT_LIST_HEAD(&bp->vlan_reg); 12414 12415 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task); 12416 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task); 12417 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task); 12418 INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task); 12419 if (IS_PF(bp)) { 12420 rc = bnx2x_get_hwinfo(bp); 12421 if (rc) 12422 return rc; 12423 } else { 12424 eth_zero_addr(bp->dev->dev_addr); 12425 } 12426 12427 bnx2x_set_modes_bitmap(bp); 12428 12429 rc = bnx2x_alloc_mem_bp(bp); 12430 if (rc) 12431 return rc; 12432 12433 bnx2x_read_fwinfo(bp); 12434 12435 func = BP_FUNC(bp); 12436 12437 /* need to reset chip if undi was active */ 12438 if (IS_PF(bp) && !BP_NOMCP(bp)) { 12439 /* init fw_seq */ 12440 bp->fw_seq = 12441 SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 12442 DRV_MSG_SEQ_NUMBER_MASK; 12443 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); 12444 12445 rc = bnx2x_prev_unload(bp); 12446 if (rc) { 12447 bnx2x_free_mem_bp(bp); 12448 return rc; 12449 } 12450 } 12451 12452 if (CHIP_REV_IS_FPGA(bp)) 12453 dev_err(&bp->pdev->dev, "FPGA detected\n"); 12454 12455 if (BP_NOMCP(bp) && (func == 0)) 12456 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n"); 12457 12458 bp->disable_tpa = disable_tpa; 12459 bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp); 12460 /* Reduce memory usage in kdump environment by disabling TPA */ 12461 bp->disable_tpa |= is_kdump_kernel(); 12462 12463 /* Set TPA flags */ 12464 if (bp->disable_tpa) { 12465 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12466 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12467 } 12468 12469 if (CHIP_IS_E1(bp)) 12470 bp->dropless_fc = 0; 12471 else 12472 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp); 12473 12474 bp->mrrs = mrrs; 12475 12476 bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL; 12477 if (IS_VF(bp)) 12478 bp->rx_ring_size = MAX_RX_AVAIL; 12479 12480 /* make sure that the numbers are in the right granularity */ 12481 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR; 12482 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR; 12483 12484 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ; 12485 12486 timer_setup(&bp->timer, bnx2x_timer, 0); 12487 bp->timer.expires = jiffies + bp->current_interval; 12488 12489 if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) && 12490 SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) && 12491 SHMEM2_HAS(bp, dcbx_en) && 12492 SHMEM2_RD(bp, dcbx_lldp_params_offset) && 12493 SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) && 12494 SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) { 12495 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON); 12496 bnx2x_dcbx_init_params(bp); 12497 } else { 12498 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF); 12499 } 12500 12501 if (CHIP_IS_E1x(bp)) 12502 bp->cnic_base_cl_id = FP_SB_MAX_E1x; 12503 else 12504 bp->cnic_base_cl_id = FP_SB_MAX_E2; 12505 12506 /* multiple tx priority */ 12507 if (IS_VF(bp)) 12508 bp->max_cos = 1; 12509 else if (CHIP_IS_E1x(bp)) 12510 bp->max_cos = BNX2X_MULTI_TX_COS_E1X; 12511 else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp)) 12512 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0; 12513 else if (CHIP_IS_E3B0(bp)) 12514 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0; 12515 else 12516 BNX2X_ERR("unknown chip %x revision %x\n", 12517 CHIP_NUM(bp), CHIP_REV(bp)); 12518 BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos); 12519 12520 /* We need at least one default status block for slow-path events, 12521 * second status block for the L2 queue, and a third status block for 12522 * CNIC if supported. 12523 */ 12524 if (IS_VF(bp)) 12525 bp->min_msix_vec_cnt = 1; 12526 else if (CNIC_SUPPORT(bp)) 12527 bp->min_msix_vec_cnt = 3; 12528 else /* PF w/o cnic */ 12529 bp->min_msix_vec_cnt = 2; 12530 BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt); 12531 12532 bp->dump_preset_idx = 1; 12533 12534 return rc; 12535 } 12536 12537 /**************************************************************************** 12538 * General service functions 12539 ****************************************************************************/ 12540 12541 /* 12542 * net_device service functions 12543 */ 12544 12545 /* called with rtnl_lock */ 12546 static int bnx2x_open(struct net_device *dev) 12547 { 12548 struct bnx2x *bp = netdev_priv(dev); 12549 int rc; 12550 12551 bp->stats_init = true; 12552 12553 netif_carrier_off(dev); 12554 12555 bnx2x_set_power_state(bp, PCI_D0); 12556 12557 /* If parity had happen during the unload, then attentions 12558 * and/or RECOVERY_IN_PROGRES may still be set. In this case we 12559 * want the first function loaded on the current engine to 12560 * complete the recovery. 12561 * Parity recovery is only relevant for PF driver. 12562 */ 12563 if (IS_PF(bp)) { 12564 int other_engine = BP_PATH(bp) ? 0 : 1; 12565 bool other_load_status, load_status; 12566 bool global = false; 12567 12568 other_load_status = bnx2x_get_load_status(bp, other_engine); 12569 load_status = bnx2x_get_load_status(bp, BP_PATH(bp)); 12570 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) || 12571 bnx2x_chk_parity_attn(bp, &global, true)) { 12572 do { 12573 /* If there are attentions and they are in a 12574 * global blocks, set the GLOBAL_RESET bit 12575 * regardless whether it will be this function 12576 * that will complete the recovery or not. 12577 */ 12578 if (global) 12579 bnx2x_set_reset_global(bp); 12580 12581 /* Only the first function on the current 12582 * engine should try to recover in open. In case 12583 * of attentions in global blocks only the first 12584 * in the chip should try to recover. 12585 */ 12586 if ((!load_status && 12587 (!global || !other_load_status)) && 12588 bnx2x_trylock_leader_lock(bp) && 12589 !bnx2x_leader_reset(bp)) { 12590 netdev_info(bp->dev, 12591 "Recovered in open\n"); 12592 break; 12593 } 12594 12595 /* recovery has failed... */ 12596 bnx2x_set_power_state(bp, PCI_D3hot); 12597 bp->recovery_state = BNX2X_RECOVERY_FAILED; 12598 12599 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n" 12600 "If you still see this message after a few retries then power cycle is required.\n"); 12601 12602 return -EAGAIN; 12603 } while (0); 12604 } 12605 } 12606 12607 bp->recovery_state = BNX2X_RECOVERY_DONE; 12608 rc = bnx2x_nic_load(bp, LOAD_OPEN); 12609 if (rc) 12610 return rc; 12611 12612 if (IS_PF(bp)) 12613 udp_tunnel_get_rx_info(dev); 12614 12615 return 0; 12616 } 12617 12618 /* called with rtnl_lock */ 12619 static int bnx2x_close(struct net_device *dev) 12620 { 12621 struct bnx2x *bp = netdev_priv(dev); 12622 12623 /* Unload the driver, release IRQs */ 12624 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 12625 12626 return 0; 12627 } 12628 12629 struct bnx2x_mcast_list_elem_group 12630 { 12631 struct list_head mcast_group_link; 12632 struct bnx2x_mcast_list_elem mcast_elems[]; 12633 }; 12634 12635 #define MCAST_ELEMS_PER_PG \ 12636 ((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \ 12637 sizeof(struct bnx2x_mcast_list_elem)) 12638 12639 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list) 12640 { 12641 struct bnx2x_mcast_list_elem_group *current_mcast_group; 12642 12643 while (!list_empty(mcast_group_list)) { 12644 current_mcast_group = list_first_entry(mcast_group_list, 12645 struct bnx2x_mcast_list_elem_group, 12646 mcast_group_link); 12647 list_del(¤t_mcast_group->mcast_group_link); 12648 free_page((unsigned long)current_mcast_group); 12649 } 12650 } 12651 12652 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp, 12653 struct bnx2x_mcast_ramrod_params *p, 12654 struct list_head *mcast_group_list) 12655 { 12656 struct bnx2x_mcast_list_elem *mc_mac; 12657 struct netdev_hw_addr *ha; 12658 struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL; 12659 int mc_count = netdev_mc_count(bp->dev); 12660 int offset = 0; 12661 12662 INIT_LIST_HEAD(&p->mcast_list); 12663 netdev_for_each_mc_addr(ha, bp->dev) { 12664 if (!offset) { 12665 current_mcast_group = 12666 (struct bnx2x_mcast_list_elem_group *) 12667 __get_free_page(GFP_ATOMIC); 12668 if (!current_mcast_group) { 12669 bnx2x_free_mcast_macs_list(mcast_group_list); 12670 BNX2X_ERR("Failed to allocate mc MAC list\n"); 12671 return -ENOMEM; 12672 } 12673 list_add(¤t_mcast_group->mcast_group_link, 12674 mcast_group_list); 12675 } 12676 mc_mac = ¤t_mcast_group->mcast_elems[offset]; 12677 mc_mac->mac = bnx2x_mc_addr(ha); 12678 list_add_tail(&mc_mac->link, &p->mcast_list); 12679 offset++; 12680 if (offset == MCAST_ELEMS_PER_PG) 12681 offset = 0; 12682 } 12683 p->mcast_list_len = mc_count; 12684 return 0; 12685 } 12686 12687 /** 12688 * bnx2x_set_uc_list - configure a new unicast MACs list. 12689 * 12690 * @bp: driver handle 12691 * 12692 * We will use zero (0) as a MAC type for these MACs. 12693 */ 12694 static int bnx2x_set_uc_list(struct bnx2x *bp) 12695 { 12696 int rc; 12697 struct net_device *dev = bp->dev; 12698 struct netdev_hw_addr *ha; 12699 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; 12700 unsigned long ramrod_flags = 0; 12701 12702 /* First schedule a cleanup up of old configuration */ 12703 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false); 12704 if (rc < 0) { 12705 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc); 12706 return rc; 12707 } 12708 12709 netdev_for_each_uc_addr(ha, dev) { 12710 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true, 12711 BNX2X_UC_LIST_MAC, &ramrod_flags); 12712 if (rc == -EEXIST) { 12713 DP(BNX2X_MSG_SP, 12714 "Failed to schedule ADD operations: %d\n", rc); 12715 /* do not treat adding same MAC as error */ 12716 rc = 0; 12717 12718 } else if (rc < 0) { 12719 12720 BNX2X_ERR("Failed to schedule ADD operations: %d\n", 12721 rc); 12722 return rc; 12723 } 12724 } 12725 12726 /* Execute the pending commands */ 12727 __set_bit(RAMROD_CONT, &ramrod_flags); 12728 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */, 12729 BNX2X_UC_LIST_MAC, &ramrod_flags); 12730 } 12731 12732 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp) 12733 { 12734 LIST_HEAD(mcast_group_list); 12735 struct net_device *dev = bp->dev; 12736 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 12737 int rc = 0; 12738 12739 rparam.mcast_obj = &bp->mcast_obj; 12740 12741 /* first, clear all configured multicast MACs */ 12742 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 12743 if (rc < 0) { 12744 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc); 12745 return rc; 12746 } 12747 12748 /* then, configure a new MACs list */ 12749 if (netdev_mc_count(dev)) { 12750 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list); 12751 if (rc) 12752 return rc; 12753 12754 /* Now add the new MACs */ 12755 rc = bnx2x_config_mcast(bp, &rparam, 12756 BNX2X_MCAST_CMD_ADD); 12757 if (rc < 0) 12758 BNX2X_ERR("Failed to set a new multicast configuration: %d\n", 12759 rc); 12760 12761 bnx2x_free_mcast_macs_list(&mcast_group_list); 12762 } 12763 12764 return rc; 12765 } 12766 12767 static int bnx2x_set_mc_list(struct bnx2x *bp) 12768 { 12769 LIST_HEAD(mcast_group_list); 12770 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 12771 struct net_device *dev = bp->dev; 12772 int rc = 0; 12773 12774 /* On older adapters, we need to flush and re-add filters */ 12775 if (CHIP_IS_E1x(bp)) 12776 return bnx2x_set_mc_list_e1x(bp); 12777 12778 rparam.mcast_obj = &bp->mcast_obj; 12779 12780 if (netdev_mc_count(dev)) { 12781 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list); 12782 if (rc) 12783 return rc; 12784 12785 /* Override the curently configured set of mc filters */ 12786 rc = bnx2x_config_mcast(bp, &rparam, 12787 BNX2X_MCAST_CMD_SET); 12788 if (rc < 0) 12789 BNX2X_ERR("Failed to set a new multicast configuration: %d\n", 12790 rc); 12791 12792 bnx2x_free_mcast_macs_list(&mcast_group_list); 12793 } else { 12794 /* If no mc addresses are required, flush the configuration */ 12795 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 12796 if (rc < 0) 12797 BNX2X_ERR("Failed to clear multicast configuration %d\n", 12798 rc); 12799 } 12800 12801 return rc; 12802 } 12803 12804 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */ 12805 static void bnx2x_set_rx_mode(struct net_device *dev) 12806 { 12807 struct bnx2x *bp = netdev_priv(dev); 12808 12809 if (bp->state != BNX2X_STATE_OPEN) { 12810 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state); 12811 return; 12812 } else { 12813 /* Schedule an SP task to handle rest of change */ 12814 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE, 12815 NETIF_MSG_IFUP); 12816 } 12817 } 12818 12819 void bnx2x_set_rx_mode_inner(struct bnx2x *bp) 12820 { 12821 u32 rx_mode = BNX2X_RX_MODE_NORMAL; 12822 12823 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags); 12824 12825 netif_addr_lock_bh(bp->dev); 12826 12827 if (bp->dev->flags & IFF_PROMISC) { 12828 rx_mode = BNX2X_RX_MODE_PROMISC; 12829 } else if ((bp->dev->flags & IFF_ALLMULTI) || 12830 ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) && 12831 CHIP_IS_E1(bp))) { 12832 rx_mode = BNX2X_RX_MODE_ALLMULTI; 12833 } else { 12834 if (IS_PF(bp)) { 12835 /* some multicasts */ 12836 if (bnx2x_set_mc_list(bp) < 0) 12837 rx_mode = BNX2X_RX_MODE_ALLMULTI; 12838 12839 /* release bh lock, as bnx2x_set_uc_list might sleep */ 12840 netif_addr_unlock_bh(bp->dev); 12841 if (bnx2x_set_uc_list(bp) < 0) 12842 rx_mode = BNX2X_RX_MODE_PROMISC; 12843 netif_addr_lock_bh(bp->dev); 12844 } else { 12845 /* configuring mcast to a vf involves sleeping (when we 12846 * wait for the pf's response). 12847 */ 12848 bnx2x_schedule_sp_rtnl(bp, 12849 BNX2X_SP_RTNL_VFPF_MCAST, 0); 12850 } 12851 } 12852 12853 bp->rx_mode = rx_mode; 12854 /* handle ISCSI SD mode */ 12855 if (IS_MF_ISCSI_ONLY(bp)) 12856 bp->rx_mode = BNX2X_RX_MODE_NONE; 12857 12858 /* Schedule the rx_mode command */ 12859 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) { 12860 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); 12861 netif_addr_unlock_bh(bp->dev); 12862 return; 12863 } 12864 12865 if (IS_PF(bp)) { 12866 bnx2x_set_storm_rx_mode(bp); 12867 netif_addr_unlock_bh(bp->dev); 12868 } else { 12869 /* VF will need to request the PF to make this change, and so 12870 * the VF needs to release the bottom-half lock prior to the 12871 * request (as it will likely require sleep on the VF side) 12872 */ 12873 netif_addr_unlock_bh(bp->dev); 12874 bnx2x_vfpf_storm_rx_mode(bp); 12875 } 12876 } 12877 12878 /* called with rtnl_lock */ 12879 static int bnx2x_mdio_read(struct net_device *netdev, int prtad, 12880 int devad, u16 addr) 12881 { 12882 struct bnx2x *bp = netdev_priv(netdev); 12883 u16 value; 12884 int rc; 12885 12886 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n", 12887 prtad, devad, addr); 12888 12889 /* The HW expects different devad if CL22 is used */ 12890 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; 12891 12892 bnx2x_acquire_phy_lock(bp); 12893 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value); 12894 bnx2x_release_phy_lock(bp); 12895 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc); 12896 12897 if (!rc) 12898 rc = value; 12899 return rc; 12900 } 12901 12902 /* called with rtnl_lock */ 12903 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad, 12904 u16 addr, u16 value) 12905 { 12906 struct bnx2x *bp = netdev_priv(netdev); 12907 int rc; 12908 12909 DP(NETIF_MSG_LINK, 12910 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n", 12911 prtad, devad, addr, value); 12912 12913 /* The HW expects different devad if CL22 is used */ 12914 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; 12915 12916 bnx2x_acquire_phy_lock(bp); 12917 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value); 12918 bnx2x_release_phy_lock(bp); 12919 return rc; 12920 } 12921 12922 /* called with rtnl_lock */ 12923 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 12924 { 12925 struct bnx2x *bp = netdev_priv(dev); 12926 struct mii_ioctl_data *mdio = if_mii(ifr); 12927 12928 if (!netif_running(dev)) 12929 return -EAGAIN; 12930 12931 switch (cmd) { 12932 case SIOCSHWTSTAMP: 12933 return bnx2x_hwtstamp_ioctl(bp, ifr); 12934 default: 12935 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n", 12936 mdio->phy_id, mdio->reg_num, mdio->val_in); 12937 return mdio_mii_ioctl(&bp->mdio, mdio, cmd); 12938 } 12939 } 12940 12941 static int bnx2x_validate_addr(struct net_device *dev) 12942 { 12943 struct bnx2x *bp = netdev_priv(dev); 12944 12945 /* query the bulletin board for mac address configured by the PF */ 12946 if (IS_VF(bp)) 12947 bnx2x_sample_bulletin(bp); 12948 12949 if (!is_valid_ether_addr(dev->dev_addr)) { 12950 BNX2X_ERR("Non-valid Ethernet address\n"); 12951 return -EADDRNOTAVAIL; 12952 } 12953 return 0; 12954 } 12955 12956 static int bnx2x_get_phys_port_id(struct net_device *netdev, 12957 struct netdev_phys_item_id *ppid) 12958 { 12959 struct bnx2x *bp = netdev_priv(netdev); 12960 12961 if (!(bp->flags & HAS_PHYS_PORT_ID)) 12962 return -EOPNOTSUPP; 12963 12964 ppid->id_len = sizeof(bp->phys_port_id); 12965 memcpy(ppid->id, bp->phys_port_id, ppid->id_len); 12966 12967 return 0; 12968 } 12969 12970 static netdev_features_t bnx2x_features_check(struct sk_buff *skb, 12971 struct net_device *dev, 12972 netdev_features_t features) 12973 { 12974 /* 12975 * A skb with gso_size + header length > 9700 will cause a 12976 * firmware panic. Drop GSO support. 12977 * 12978 * Eventually the upper layer should not pass these packets down. 12979 * 12980 * For speed, if the gso_size is <= 9000, assume there will 12981 * not be 700 bytes of headers and pass it through. Only do a 12982 * full (slow) validation if the gso_size is > 9000. 12983 * 12984 * (Due to the way SKB_BY_FRAGS works this will also do a full 12985 * validation in that case.) 12986 */ 12987 if (unlikely(skb_is_gso(skb) && 12988 (skb_shinfo(skb)->gso_size > 9000) && 12989 !skb_gso_validate_mac_len(skb, 9700))) 12990 features &= ~NETIF_F_GSO_MASK; 12991 12992 features = vlan_features_check(skb, features); 12993 return vxlan_features_check(skb, features); 12994 } 12995 12996 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add) 12997 { 12998 int rc; 12999 13000 if (IS_PF(bp)) { 13001 unsigned long ramrod_flags = 0; 13002 13003 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 13004 rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj, 13005 add, &ramrod_flags); 13006 } else { 13007 rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add); 13008 } 13009 13010 return rc; 13011 } 13012 13013 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp) 13014 { 13015 struct bnx2x_vlan_entry *vlan; 13016 int rc = 0; 13017 13018 /* Configure all non-configured entries */ 13019 list_for_each_entry(vlan, &bp->vlan_reg, link) { 13020 if (vlan->hw) 13021 continue; 13022 13023 if (bp->vlan_cnt >= bp->vlan_credit) 13024 return -ENOBUFS; 13025 13026 rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true); 13027 if (rc) { 13028 BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid); 13029 return rc; 13030 } 13031 13032 DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid); 13033 vlan->hw = true; 13034 bp->vlan_cnt++; 13035 } 13036 13037 return 0; 13038 } 13039 13040 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode) 13041 { 13042 bool need_accept_any_vlan; 13043 13044 need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp); 13045 13046 if (bp->accept_any_vlan != need_accept_any_vlan) { 13047 bp->accept_any_vlan = need_accept_any_vlan; 13048 DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n", 13049 bp->accept_any_vlan ? "raised" : "cleared"); 13050 if (set_rx_mode) { 13051 if (IS_PF(bp)) 13052 bnx2x_set_rx_mode_inner(bp); 13053 else 13054 bnx2x_vfpf_storm_rx_mode(bp); 13055 } 13056 } 13057 } 13058 13059 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp) 13060 { 13061 /* Don't set rx mode here. Our caller will do it. */ 13062 bnx2x_vlan_configure(bp, false); 13063 13064 return 0; 13065 } 13066 13067 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid) 13068 { 13069 struct bnx2x *bp = netdev_priv(dev); 13070 struct bnx2x_vlan_entry *vlan; 13071 13072 DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid); 13073 13074 vlan = kmalloc(sizeof(*vlan), GFP_KERNEL); 13075 if (!vlan) 13076 return -ENOMEM; 13077 13078 vlan->vid = vid; 13079 vlan->hw = false; 13080 list_add_tail(&vlan->link, &bp->vlan_reg); 13081 13082 if (netif_running(dev)) 13083 bnx2x_vlan_configure(bp, true); 13084 13085 return 0; 13086 } 13087 13088 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid) 13089 { 13090 struct bnx2x *bp = netdev_priv(dev); 13091 struct bnx2x_vlan_entry *vlan; 13092 bool found = false; 13093 int rc = 0; 13094 13095 DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid); 13096 13097 list_for_each_entry(vlan, &bp->vlan_reg, link) 13098 if (vlan->vid == vid) { 13099 found = true; 13100 break; 13101 } 13102 13103 if (!found) { 13104 BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid); 13105 return -EINVAL; 13106 } 13107 13108 if (netif_running(dev) && vlan->hw) { 13109 rc = __bnx2x_vlan_configure_vid(bp, vid, false); 13110 DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid); 13111 bp->vlan_cnt--; 13112 } 13113 13114 list_del(&vlan->link); 13115 kfree(vlan); 13116 13117 if (netif_running(dev)) 13118 bnx2x_vlan_configure(bp, true); 13119 13120 DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc); 13121 13122 return rc; 13123 } 13124 13125 static const struct net_device_ops bnx2x_netdev_ops = { 13126 .ndo_open = bnx2x_open, 13127 .ndo_stop = bnx2x_close, 13128 .ndo_start_xmit = bnx2x_start_xmit, 13129 .ndo_select_queue = bnx2x_select_queue, 13130 .ndo_set_rx_mode = bnx2x_set_rx_mode, 13131 .ndo_set_mac_address = bnx2x_change_mac_addr, 13132 .ndo_validate_addr = bnx2x_validate_addr, 13133 .ndo_do_ioctl = bnx2x_ioctl, 13134 .ndo_change_mtu = bnx2x_change_mtu, 13135 .ndo_fix_features = bnx2x_fix_features, 13136 .ndo_set_features = bnx2x_set_features, 13137 .ndo_tx_timeout = bnx2x_tx_timeout, 13138 .ndo_vlan_rx_add_vid = bnx2x_vlan_rx_add_vid, 13139 .ndo_vlan_rx_kill_vid = bnx2x_vlan_rx_kill_vid, 13140 .ndo_setup_tc = __bnx2x_setup_tc, 13141 #ifdef CONFIG_BNX2X_SRIOV 13142 .ndo_set_vf_mac = bnx2x_set_vf_mac, 13143 .ndo_set_vf_vlan = bnx2x_set_vf_vlan, 13144 .ndo_get_vf_config = bnx2x_get_vf_config, 13145 .ndo_set_vf_spoofchk = bnx2x_set_vf_spoofchk, 13146 #endif 13147 #ifdef NETDEV_FCOE_WWNN 13148 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn, 13149 #endif 13150 13151 .ndo_get_phys_port_id = bnx2x_get_phys_port_id, 13152 .ndo_set_vf_link_state = bnx2x_set_vf_link_state, 13153 .ndo_features_check = bnx2x_features_check, 13154 .ndo_udp_tunnel_add = bnx2x_udp_tunnel_add, 13155 .ndo_udp_tunnel_del = bnx2x_udp_tunnel_del, 13156 }; 13157 13158 static int bnx2x_set_coherency_mask(struct bnx2x *bp) 13159 { 13160 struct device *dev = &bp->pdev->dev; 13161 13162 if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 && 13163 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) { 13164 dev_err(dev, "System does not support DMA, aborting\n"); 13165 return -EIO; 13166 } 13167 13168 return 0; 13169 } 13170 13171 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp) 13172 { 13173 if (bp->flags & AER_ENABLED) { 13174 pci_disable_pcie_error_reporting(bp->pdev); 13175 bp->flags &= ~AER_ENABLED; 13176 } 13177 } 13178 13179 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev, 13180 struct net_device *dev, unsigned long board_type) 13181 { 13182 int rc; 13183 u32 pci_cfg_dword; 13184 bool chip_is_e1x = (board_type == BCM57710 || 13185 board_type == BCM57711 || 13186 board_type == BCM57711E); 13187 13188 SET_NETDEV_DEV(dev, &pdev->dev); 13189 13190 bp->dev = dev; 13191 bp->pdev = pdev; 13192 13193 rc = pci_enable_device(pdev); 13194 if (rc) { 13195 dev_err(&bp->pdev->dev, 13196 "Cannot enable PCI device, aborting\n"); 13197 goto err_out; 13198 } 13199 13200 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 13201 dev_err(&bp->pdev->dev, 13202 "Cannot find PCI device base address, aborting\n"); 13203 rc = -ENODEV; 13204 goto err_out_disable; 13205 } 13206 13207 if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) { 13208 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n"); 13209 rc = -ENODEV; 13210 goto err_out_disable; 13211 } 13212 13213 pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword); 13214 if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) == 13215 PCICFG_REVESION_ID_ERROR_VAL) { 13216 pr_err("PCI device error, probably due to fan failure, aborting\n"); 13217 rc = -ENODEV; 13218 goto err_out_disable; 13219 } 13220 13221 if (atomic_read(&pdev->enable_cnt) == 1) { 13222 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 13223 if (rc) { 13224 dev_err(&bp->pdev->dev, 13225 "Cannot obtain PCI resources, aborting\n"); 13226 goto err_out_disable; 13227 } 13228 13229 pci_set_master(pdev); 13230 pci_save_state(pdev); 13231 } 13232 13233 if (IS_PF(bp)) { 13234 if (!pdev->pm_cap) { 13235 dev_err(&bp->pdev->dev, 13236 "Cannot find power management capability, aborting\n"); 13237 rc = -EIO; 13238 goto err_out_release; 13239 } 13240 } 13241 13242 if (!pci_is_pcie(pdev)) { 13243 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n"); 13244 rc = -EIO; 13245 goto err_out_release; 13246 } 13247 13248 rc = bnx2x_set_coherency_mask(bp); 13249 if (rc) 13250 goto err_out_release; 13251 13252 dev->mem_start = pci_resource_start(pdev, 0); 13253 dev->base_addr = dev->mem_start; 13254 dev->mem_end = pci_resource_end(pdev, 0); 13255 13256 dev->irq = pdev->irq; 13257 13258 bp->regview = pci_ioremap_bar(pdev, 0); 13259 if (!bp->regview) { 13260 dev_err(&bp->pdev->dev, 13261 "Cannot map register space, aborting\n"); 13262 rc = -ENOMEM; 13263 goto err_out_release; 13264 } 13265 13266 /* In E1/E1H use pci device function given by kernel. 13267 * In E2/E3 read physical function from ME register since these chips 13268 * support Physical Device Assignment where kernel BDF maybe arbitrary 13269 * (depending on hypervisor). 13270 */ 13271 if (chip_is_e1x) { 13272 bp->pf_num = PCI_FUNC(pdev->devfn); 13273 } else { 13274 /* chip is E2/3*/ 13275 pci_read_config_dword(bp->pdev, 13276 PCICFG_ME_REGISTER, &pci_cfg_dword); 13277 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >> 13278 ME_REG_ABS_PF_NUM_SHIFT); 13279 } 13280 BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num); 13281 13282 /* clean indirect addresses */ 13283 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 13284 PCICFG_VENDOR_ID_OFFSET); 13285 13286 /* Set PCIe reset type to fundamental for EEH recovery */ 13287 pdev->needs_freset = 1; 13288 13289 /* AER (Advanced Error reporting) configuration */ 13290 rc = pci_enable_pcie_error_reporting(pdev); 13291 if (!rc) 13292 bp->flags |= AER_ENABLED; 13293 else 13294 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc); 13295 13296 /* 13297 * Clean the following indirect addresses for all functions since it 13298 * is not used by the driver. 13299 */ 13300 if (IS_PF(bp)) { 13301 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0); 13302 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0); 13303 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0); 13304 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0); 13305 13306 if (chip_is_e1x) { 13307 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0); 13308 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0); 13309 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0); 13310 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0); 13311 } 13312 13313 /* Enable internal target-read (in case we are probed after PF 13314 * FLR). Must be done prior to any BAR read access. Only for 13315 * 57712 and up 13316 */ 13317 if (!chip_is_e1x) 13318 REG_WR(bp, 13319 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 13320 } 13321 13322 dev->watchdog_timeo = TX_TIMEOUT; 13323 13324 dev->netdev_ops = &bnx2x_netdev_ops; 13325 bnx2x_set_ethtool_ops(bp, dev); 13326 13327 dev->priv_flags |= IFF_UNICAST_FLT; 13328 13329 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 13330 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | 13331 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW | 13332 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX; 13333 if (!chip_is_e1x) { 13334 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM | 13335 NETIF_F_GSO_IPXIP4 | 13336 NETIF_F_GSO_UDP_TUNNEL | 13337 NETIF_F_GSO_UDP_TUNNEL_CSUM | 13338 NETIF_F_GSO_PARTIAL; 13339 13340 dev->hw_enc_features = 13341 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13342 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | 13343 NETIF_F_GSO_IPXIP4 | 13344 NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM | 13345 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM | 13346 NETIF_F_GSO_PARTIAL; 13347 13348 dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM | 13349 NETIF_F_GSO_UDP_TUNNEL_CSUM; 13350 } 13351 13352 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 13353 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA; 13354 13355 if (IS_PF(bp)) { 13356 if (chip_is_e1x) 13357 bp->accept_any_vlan = true; 13358 else 13359 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 13360 } 13361 /* For VF we'll know whether to enable VLAN filtering after 13362 * getting a response to CHANNEL_TLV_ACQUIRE from PF. 13363 */ 13364 13365 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX; 13366 dev->features |= NETIF_F_HIGHDMA; 13367 if (dev->features & NETIF_F_LRO) 13368 dev->features &= ~NETIF_F_GRO_HW; 13369 13370 /* Add Loopback capability to the device */ 13371 dev->hw_features |= NETIF_F_LOOPBACK; 13372 13373 #ifdef BCM_DCBNL 13374 dev->dcbnl_ops = &bnx2x_dcbnl_ops; 13375 #endif 13376 13377 /* MTU range, 46 - 9600 */ 13378 dev->min_mtu = ETH_MIN_PACKET_SIZE; 13379 dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE; 13380 13381 /* get_port_hwinfo() will set prtad and mmds properly */ 13382 bp->mdio.prtad = MDIO_PRTAD_NONE; 13383 bp->mdio.mmds = 0; 13384 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22; 13385 bp->mdio.dev = dev; 13386 bp->mdio.mdio_read = bnx2x_mdio_read; 13387 bp->mdio.mdio_write = bnx2x_mdio_write; 13388 13389 return 0; 13390 13391 err_out_release: 13392 if (atomic_read(&pdev->enable_cnt) == 1) 13393 pci_release_regions(pdev); 13394 13395 err_out_disable: 13396 pci_disable_device(pdev); 13397 13398 err_out: 13399 return rc; 13400 } 13401 13402 static int bnx2x_check_firmware(struct bnx2x *bp) 13403 { 13404 const struct firmware *firmware = bp->firmware; 13405 struct bnx2x_fw_file_hdr *fw_hdr; 13406 struct bnx2x_fw_file_section *sections; 13407 u32 offset, len, num_ops; 13408 __be16 *ops_offsets; 13409 int i; 13410 const u8 *fw_ver; 13411 13412 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) { 13413 BNX2X_ERR("Wrong FW size\n"); 13414 return -EINVAL; 13415 } 13416 13417 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data; 13418 sections = (struct bnx2x_fw_file_section *)fw_hdr; 13419 13420 /* Make sure none of the offsets and sizes make us read beyond 13421 * the end of the firmware data */ 13422 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) { 13423 offset = be32_to_cpu(sections[i].offset); 13424 len = be32_to_cpu(sections[i].len); 13425 if (offset + len > firmware->size) { 13426 BNX2X_ERR("Section %d length is out of bounds\n", i); 13427 return -EINVAL; 13428 } 13429 } 13430 13431 /* Likewise for the init_ops offsets */ 13432 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset); 13433 ops_offsets = (__force __be16 *)(firmware->data + offset); 13434 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op); 13435 13436 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) { 13437 if (be16_to_cpu(ops_offsets[i]) > num_ops) { 13438 BNX2X_ERR("Section offset %d is out of bounds\n", i); 13439 return -EINVAL; 13440 } 13441 } 13442 13443 /* Check FW version */ 13444 offset = be32_to_cpu(fw_hdr->fw_version.offset); 13445 fw_ver = firmware->data + offset; 13446 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) || 13447 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) || 13448 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) || 13449 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) { 13450 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n", 13451 fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3], 13452 BCM_5710_FW_MAJOR_VERSION, 13453 BCM_5710_FW_MINOR_VERSION, 13454 BCM_5710_FW_REVISION_VERSION, 13455 BCM_5710_FW_ENGINEERING_VERSION); 13456 return -EINVAL; 13457 } 13458 13459 return 0; 13460 } 13461 13462 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n) 13463 { 13464 const __be32 *source = (const __be32 *)_source; 13465 u32 *target = (u32 *)_target; 13466 u32 i; 13467 13468 for (i = 0; i < n/4; i++) 13469 target[i] = be32_to_cpu(source[i]); 13470 } 13471 13472 /* 13473 Ops array is stored in the following format: 13474 {op(8bit), offset(24bit, big endian), data(32bit, big endian)} 13475 */ 13476 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n) 13477 { 13478 const __be32 *source = (const __be32 *)_source; 13479 struct raw_op *target = (struct raw_op *)_target; 13480 u32 i, j, tmp; 13481 13482 for (i = 0, j = 0; i < n/8; i++, j += 2) { 13483 tmp = be32_to_cpu(source[j]); 13484 target[i].op = (tmp >> 24) & 0xff; 13485 target[i].offset = tmp & 0xffffff; 13486 target[i].raw_data = be32_to_cpu(source[j + 1]); 13487 } 13488 } 13489 13490 /* IRO array is stored in the following format: 13491 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) } 13492 */ 13493 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n) 13494 { 13495 const __be32 *source = (const __be32 *)_source; 13496 struct iro *target = (struct iro *)_target; 13497 u32 i, j, tmp; 13498 13499 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) { 13500 target[i].base = be32_to_cpu(source[j]); 13501 j++; 13502 tmp = be32_to_cpu(source[j]); 13503 target[i].m1 = (tmp >> 16) & 0xffff; 13504 target[i].m2 = tmp & 0xffff; 13505 j++; 13506 tmp = be32_to_cpu(source[j]); 13507 target[i].m3 = (tmp >> 16) & 0xffff; 13508 target[i].size = tmp & 0xffff; 13509 j++; 13510 } 13511 } 13512 13513 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n) 13514 { 13515 const __be16 *source = (const __be16 *)_source; 13516 u16 *target = (u16 *)_target; 13517 u32 i; 13518 13519 for (i = 0; i < n/2; i++) 13520 target[i] = be16_to_cpu(source[i]); 13521 } 13522 13523 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \ 13524 do { \ 13525 u32 len = be32_to_cpu(fw_hdr->arr.len); \ 13526 bp->arr = kmalloc(len, GFP_KERNEL); \ 13527 if (!bp->arr) \ 13528 goto lbl; \ 13529 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \ 13530 (u8 *)bp->arr, len); \ 13531 } while (0) 13532 13533 static int bnx2x_init_firmware(struct bnx2x *bp) 13534 { 13535 const char *fw_file_name; 13536 struct bnx2x_fw_file_hdr *fw_hdr; 13537 int rc; 13538 13539 if (bp->firmware) 13540 return 0; 13541 13542 if (CHIP_IS_E1(bp)) 13543 fw_file_name = FW_FILE_NAME_E1; 13544 else if (CHIP_IS_E1H(bp)) 13545 fw_file_name = FW_FILE_NAME_E1H; 13546 else if (!CHIP_IS_E1x(bp)) 13547 fw_file_name = FW_FILE_NAME_E2; 13548 else { 13549 BNX2X_ERR("Unsupported chip revision\n"); 13550 return -EINVAL; 13551 } 13552 BNX2X_DEV_INFO("Loading %s\n", fw_file_name); 13553 13554 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev); 13555 if (rc) { 13556 BNX2X_ERR("Can't load firmware file %s\n", 13557 fw_file_name); 13558 goto request_firmware_exit; 13559 } 13560 13561 rc = bnx2x_check_firmware(bp); 13562 if (rc) { 13563 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name); 13564 goto request_firmware_exit; 13565 } 13566 13567 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data; 13568 13569 /* Initialize the pointers to the init arrays */ 13570 /* Blob */ 13571 rc = -ENOMEM; 13572 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n); 13573 13574 /* Opcodes */ 13575 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops); 13576 13577 /* Offsets */ 13578 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err, 13579 be16_to_cpu_n); 13580 13581 /* STORMs firmware */ 13582 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13583 be32_to_cpu(fw_hdr->tsem_int_table_data.offset); 13584 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data + 13585 be32_to_cpu(fw_hdr->tsem_pram_data.offset); 13586 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13587 be32_to_cpu(fw_hdr->usem_int_table_data.offset); 13588 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data + 13589 be32_to_cpu(fw_hdr->usem_pram_data.offset); 13590 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13591 be32_to_cpu(fw_hdr->xsem_int_table_data.offset); 13592 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data + 13593 be32_to_cpu(fw_hdr->xsem_pram_data.offset); 13594 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13595 be32_to_cpu(fw_hdr->csem_int_table_data.offset); 13596 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data + 13597 be32_to_cpu(fw_hdr->csem_pram_data.offset); 13598 /* IRO */ 13599 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro); 13600 13601 return 0; 13602 13603 iro_alloc_err: 13604 kfree(bp->init_ops_offsets); 13605 init_offsets_alloc_err: 13606 kfree(bp->init_ops); 13607 init_ops_alloc_err: 13608 kfree(bp->init_data); 13609 request_firmware_exit: 13610 release_firmware(bp->firmware); 13611 bp->firmware = NULL; 13612 13613 return rc; 13614 } 13615 13616 static void bnx2x_release_firmware(struct bnx2x *bp) 13617 { 13618 kfree(bp->init_ops_offsets); 13619 kfree(bp->init_ops); 13620 kfree(bp->init_data); 13621 release_firmware(bp->firmware); 13622 bp->firmware = NULL; 13623 } 13624 13625 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = { 13626 .init_hw_cmn_chip = bnx2x_init_hw_common_chip, 13627 .init_hw_cmn = bnx2x_init_hw_common, 13628 .init_hw_port = bnx2x_init_hw_port, 13629 .init_hw_func = bnx2x_init_hw_func, 13630 13631 .reset_hw_cmn = bnx2x_reset_common, 13632 .reset_hw_port = bnx2x_reset_port, 13633 .reset_hw_func = bnx2x_reset_func, 13634 13635 .gunzip_init = bnx2x_gunzip_init, 13636 .gunzip_end = bnx2x_gunzip_end, 13637 13638 .init_fw = bnx2x_init_firmware, 13639 .release_fw = bnx2x_release_firmware, 13640 }; 13641 13642 void bnx2x__init_func_obj(struct bnx2x *bp) 13643 { 13644 /* Prepare DMAE related driver resources */ 13645 bnx2x_setup_dmae(bp); 13646 13647 bnx2x_init_func_obj(bp, &bp->func_obj, 13648 bnx2x_sp(bp, func_rdata), 13649 bnx2x_sp_mapping(bp, func_rdata), 13650 bnx2x_sp(bp, func_afex_rdata), 13651 bnx2x_sp_mapping(bp, func_afex_rdata), 13652 &bnx2x_func_sp_drv); 13653 } 13654 13655 /* must be called after sriov-enable */ 13656 static int bnx2x_set_qm_cid_count(struct bnx2x *bp) 13657 { 13658 int cid_count = BNX2X_L2_MAX_CID(bp); 13659 13660 if (IS_SRIOV(bp)) 13661 cid_count += BNX2X_VF_CIDS; 13662 13663 if (CNIC_SUPPORT(bp)) 13664 cid_count += CNIC_CID_MAX; 13665 13666 return roundup(cid_count, QM_CID_ROUND); 13667 } 13668 13669 /** 13670 * bnx2x_get_num_none_def_sbs - return the number of none default SBs 13671 * 13672 * @dev: pci device 13673 * 13674 */ 13675 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt) 13676 { 13677 int index; 13678 u16 control = 0; 13679 13680 /* 13681 * If MSI-X is not supported - return number of SBs needed to support 13682 * one fast path queue: one FP queue + SB for CNIC 13683 */ 13684 if (!pdev->msix_cap) { 13685 dev_info(&pdev->dev, "no msix capability found\n"); 13686 return 1 + cnic_cnt; 13687 } 13688 dev_info(&pdev->dev, "msix capability found\n"); 13689 13690 /* 13691 * The value in the PCI configuration space is the index of the last 13692 * entry, namely one less than the actual size of the table, which is 13693 * exactly what we want to return from this function: number of all SBs 13694 * without the default SB. 13695 * For VFs there is no default SB, then we return (index+1). 13696 */ 13697 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control); 13698 13699 index = control & PCI_MSIX_FLAGS_QSIZE; 13700 13701 return index; 13702 } 13703 13704 static int set_max_cos_est(int chip_id) 13705 { 13706 switch (chip_id) { 13707 case BCM57710: 13708 case BCM57711: 13709 case BCM57711E: 13710 return BNX2X_MULTI_TX_COS_E1X; 13711 case BCM57712: 13712 case BCM57712_MF: 13713 return BNX2X_MULTI_TX_COS_E2_E3A0; 13714 case BCM57800: 13715 case BCM57800_MF: 13716 case BCM57810: 13717 case BCM57810_MF: 13718 case BCM57840_4_10: 13719 case BCM57840_2_20: 13720 case BCM57840_O: 13721 case BCM57840_MFO: 13722 case BCM57840_MF: 13723 case BCM57811: 13724 case BCM57811_MF: 13725 return BNX2X_MULTI_TX_COS_E3B0; 13726 case BCM57712_VF: 13727 case BCM57800_VF: 13728 case BCM57810_VF: 13729 case BCM57840_VF: 13730 case BCM57811_VF: 13731 return 1; 13732 default: 13733 pr_err("Unknown board_type (%d), aborting\n", chip_id); 13734 return -ENODEV; 13735 } 13736 } 13737 13738 static int set_is_vf(int chip_id) 13739 { 13740 switch (chip_id) { 13741 case BCM57712_VF: 13742 case BCM57800_VF: 13743 case BCM57810_VF: 13744 case BCM57840_VF: 13745 case BCM57811_VF: 13746 return true; 13747 default: 13748 return false; 13749 } 13750 } 13751 13752 /* nig_tsgen registers relative address */ 13753 #define tsgen_ctrl 0x0 13754 #define tsgen_freecount 0x10 13755 #define tsgen_synctime_t0 0x20 13756 #define tsgen_offset_t0 0x28 13757 #define tsgen_drift_t0 0x30 13758 #define tsgen_synctime_t1 0x58 13759 #define tsgen_offset_t1 0x60 13760 #define tsgen_drift_t1 0x68 13761 13762 /* FW workaround for setting drift */ 13763 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir, 13764 int best_val, int best_period) 13765 { 13766 struct bnx2x_func_state_params func_params = {NULL}; 13767 struct bnx2x_func_set_timesync_params *set_timesync_params = 13768 &func_params.params.set_timesync; 13769 13770 /* Prepare parameters for function state transitions */ 13771 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 13772 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 13773 13774 func_params.f_obj = &bp->func_obj; 13775 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC; 13776 13777 /* Function parameters */ 13778 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET; 13779 set_timesync_params->offset_cmd = TS_OFFSET_KEEP; 13780 set_timesync_params->add_sub_drift_adjust_value = 13781 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE; 13782 set_timesync_params->drift_adjust_value = best_val; 13783 set_timesync_params->drift_adjust_period = best_period; 13784 13785 return bnx2x_func_state_change(bp, &func_params); 13786 } 13787 13788 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) 13789 { 13790 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13791 int rc; 13792 int drift_dir = 1; 13793 int val, period, period1, period2, dif, dif1, dif2; 13794 int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0; 13795 13796 DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb); 13797 13798 if (!netif_running(bp->dev)) { 13799 DP(BNX2X_MSG_PTP, 13800 "PTP adjfreq called while the interface is down\n"); 13801 return -ENETDOWN; 13802 } 13803 13804 if (ppb < 0) { 13805 ppb = -ppb; 13806 drift_dir = 0; 13807 } 13808 13809 if (ppb == 0) { 13810 best_val = 1; 13811 best_period = 0x1FFFFFF; 13812 } else if (ppb >= BNX2X_MAX_PHC_DRIFT) { 13813 best_val = 31; 13814 best_period = 1; 13815 } else { 13816 /* Changed not to allow val = 8, 16, 24 as these values 13817 * are not supported in workaround. 13818 */ 13819 for (val = 0; val <= 31; val++) { 13820 if ((val & 0x7) == 0) 13821 continue; 13822 period1 = val * 1000000 / ppb; 13823 period2 = period1 + 1; 13824 if (period1 != 0) 13825 dif1 = ppb - (val * 1000000 / period1); 13826 else 13827 dif1 = BNX2X_MAX_PHC_DRIFT; 13828 if (dif1 < 0) 13829 dif1 = -dif1; 13830 dif2 = ppb - (val * 1000000 / period2); 13831 if (dif2 < 0) 13832 dif2 = -dif2; 13833 dif = (dif1 < dif2) ? dif1 : dif2; 13834 period = (dif1 < dif2) ? period1 : period2; 13835 if (dif < best_dif) { 13836 best_dif = dif; 13837 best_val = val; 13838 best_period = period; 13839 } 13840 } 13841 } 13842 13843 rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val, 13844 best_period); 13845 if (rc) { 13846 BNX2X_ERR("Failed to set drift\n"); 13847 return -EFAULT; 13848 } 13849 13850 DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val, 13851 best_period); 13852 13853 return 0; 13854 } 13855 13856 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 13857 { 13858 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13859 13860 if (!netif_running(bp->dev)) { 13861 DP(BNX2X_MSG_PTP, 13862 "PTP adjtime called while the interface is down\n"); 13863 return -ENETDOWN; 13864 } 13865 13866 DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta); 13867 13868 timecounter_adjtime(&bp->timecounter, delta); 13869 13870 return 0; 13871 } 13872 13873 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) 13874 { 13875 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13876 u64 ns; 13877 13878 if (!netif_running(bp->dev)) { 13879 DP(BNX2X_MSG_PTP, 13880 "PTP gettime called while the interface is down\n"); 13881 return -ENETDOWN; 13882 } 13883 13884 ns = timecounter_read(&bp->timecounter); 13885 13886 DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns); 13887 13888 *ts = ns_to_timespec64(ns); 13889 13890 return 0; 13891 } 13892 13893 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp, 13894 const struct timespec64 *ts) 13895 { 13896 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13897 u64 ns; 13898 13899 if (!netif_running(bp->dev)) { 13900 DP(BNX2X_MSG_PTP, 13901 "PTP settime called while the interface is down\n"); 13902 return -ENETDOWN; 13903 } 13904 13905 ns = timespec64_to_ns(ts); 13906 13907 DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns); 13908 13909 /* Re-init the timecounter */ 13910 timecounter_init(&bp->timecounter, &bp->cyclecounter, ns); 13911 13912 return 0; 13913 } 13914 13915 /* Enable (or disable) ancillary features of the phc subsystem */ 13916 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp, 13917 struct ptp_clock_request *rq, int on) 13918 { 13919 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13920 13921 BNX2X_ERR("PHC ancillary features are not supported\n"); 13922 return -ENOTSUPP; 13923 } 13924 13925 void bnx2x_register_phc(struct bnx2x *bp) 13926 { 13927 /* Fill the ptp_clock_info struct and register PTP clock*/ 13928 bp->ptp_clock_info.owner = THIS_MODULE; 13929 snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name); 13930 bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */ 13931 bp->ptp_clock_info.n_alarm = 0; 13932 bp->ptp_clock_info.n_ext_ts = 0; 13933 bp->ptp_clock_info.n_per_out = 0; 13934 bp->ptp_clock_info.pps = 0; 13935 bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq; 13936 bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime; 13937 bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime; 13938 bp->ptp_clock_info.settime64 = bnx2x_ptp_settime; 13939 bp->ptp_clock_info.enable = bnx2x_ptp_enable; 13940 13941 bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev); 13942 if (IS_ERR(bp->ptp_clock)) { 13943 bp->ptp_clock = NULL; 13944 BNX2X_ERR("PTP clock registration failed\n"); 13945 } 13946 } 13947 13948 static int bnx2x_init_one(struct pci_dev *pdev, 13949 const struct pci_device_id *ent) 13950 { 13951 struct net_device *dev = NULL; 13952 struct bnx2x *bp; 13953 int rc, max_non_def_sbs; 13954 int rx_count, tx_count, rss_count, doorbell_size; 13955 int max_cos_est; 13956 bool is_vf; 13957 int cnic_cnt; 13958 13959 /* Management FW 'remembers' living interfaces. Allow it some time 13960 * to forget previously living interfaces, allowing a proper re-load. 13961 */ 13962 if (is_kdump_kernel()) { 13963 ktime_t now = ktime_get_boottime(); 13964 ktime_t fw_ready_time = ktime_set(5, 0); 13965 13966 if (ktime_before(now, fw_ready_time)) 13967 msleep(ktime_ms_delta(fw_ready_time, now)); 13968 } 13969 13970 /* An estimated maximum supported CoS number according to the chip 13971 * version. 13972 * We will try to roughly estimate the maximum number of CoSes this chip 13973 * may support in order to minimize the memory allocated for Tx 13974 * netdev_queue's. This number will be accurately calculated during the 13975 * initialization of bp->max_cos based on the chip versions AND chip 13976 * revision in the bnx2x_init_bp(). 13977 */ 13978 max_cos_est = set_max_cos_est(ent->driver_data); 13979 if (max_cos_est < 0) 13980 return max_cos_est; 13981 is_vf = set_is_vf(ent->driver_data); 13982 cnic_cnt = is_vf ? 0 : 1; 13983 13984 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt); 13985 13986 /* add another SB for VF as it has no default SB */ 13987 max_non_def_sbs += is_vf ? 1 : 0; 13988 13989 /* Maximum number of RSS queues: one IGU SB goes to CNIC */ 13990 rss_count = max_non_def_sbs - cnic_cnt; 13991 13992 if (rss_count < 1) 13993 return -EINVAL; 13994 13995 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */ 13996 rx_count = rss_count + cnic_cnt; 13997 13998 /* Maximum number of netdev Tx queues: 13999 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2 14000 */ 14001 tx_count = rss_count * max_cos_est + cnic_cnt; 14002 14003 /* dev zeroed in init_etherdev */ 14004 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count); 14005 if (!dev) 14006 return -ENOMEM; 14007 14008 bp = netdev_priv(dev); 14009 14010 bp->flags = 0; 14011 if (is_vf) 14012 bp->flags |= IS_VF_FLAG; 14013 14014 bp->igu_sb_cnt = max_non_def_sbs; 14015 bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM; 14016 bp->msg_enable = debug; 14017 bp->cnic_support = cnic_cnt; 14018 bp->cnic_probe = bnx2x_cnic_probe; 14019 14020 pci_set_drvdata(pdev, dev); 14021 14022 rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data); 14023 if (rc < 0) { 14024 free_netdev(dev); 14025 return rc; 14026 } 14027 14028 BNX2X_DEV_INFO("This is a %s function\n", 14029 IS_PF(bp) ? "physical" : "virtual"); 14030 BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off"); 14031 BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs); 14032 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n", 14033 tx_count, rx_count); 14034 14035 rc = bnx2x_init_bp(bp); 14036 if (rc) 14037 goto init_one_exit; 14038 14039 /* Map doorbells here as we need the real value of bp->max_cos which 14040 * is initialized in bnx2x_init_bp() to determine the number of 14041 * l2 connections. 14042 */ 14043 if (IS_VF(bp)) { 14044 bp->doorbells = bnx2x_vf_doorbells(bp); 14045 rc = bnx2x_vf_pci_alloc(bp); 14046 if (rc) 14047 goto init_one_freemem; 14048 } else { 14049 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT); 14050 if (doorbell_size > pci_resource_len(pdev, 2)) { 14051 dev_err(&bp->pdev->dev, 14052 "Cannot map doorbells, bar size too small, aborting\n"); 14053 rc = -ENOMEM; 14054 goto init_one_freemem; 14055 } 14056 bp->doorbells = ioremap(pci_resource_start(pdev, 2), 14057 doorbell_size); 14058 } 14059 if (!bp->doorbells) { 14060 dev_err(&bp->pdev->dev, 14061 "Cannot map doorbell space, aborting\n"); 14062 rc = -ENOMEM; 14063 goto init_one_freemem; 14064 } 14065 14066 if (IS_VF(bp)) { 14067 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count); 14068 if (rc) 14069 goto init_one_freemem; 14070 14071 #ifdef CONFIG_BNX2X_SRIOV 14072 /* VF with OLD Hypervisor or old PF do not support filtering */ 14073 if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) { 14074 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 14075 dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 14076 } 14077 #endif 14078 } 14079 14080 /* Enable SRIOV if capability found in configuration space */ 14081 rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS); 14082 if (rc) 14083 goto init_one_freemem; 14084 14085 /* calc qm_cid_count */ 14086 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp); 14087 BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count); 14088 14089 /* disable FCOE L2 queue for E1x*/ 14090 if (CHIP_IS_E1x(bp)) 14091 bp->flags |= NO_FCOE_FLAG; 14092 14093 /* Set bp->num_queues for MSI-X mode*/ 14094 bnx2x_set_num_queues(bp); 14095 14096 /* Configure interrupt mode: try to enable MSI-X/MSI if 14097 * needed. 14098 */ 14099 rc = bnx2x_set_int_mode(bp); 14100 if (rc) { 14101 dev_err(&pdev->dev, "Cannot set interrupts\n"); 14102 goto init_one_freemem; 14103 } 14104 BNX2X_DEV_INFO("set interrupts successfully\n"); 14105 14106 /* register the net device */ 14107 rc = register_netdev(dev); 14108 if (rc) { 14109 dev_err(&pdev->dev, "Cannot register net device\n"); 14110 goto init_one_freemem; 14111 } 14112 BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name); 14113 14114 if (!NO_FCOE(bp)) { 14115 /* Add storage MAC address */ 14116 rtnl_lock(); 14117 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); 14118 rtnl_unlock(); 14119 } 14120 BNX2X_DEV_INFO( 14121 "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n", 14122 board_info[ent->driver_data].name, 14123 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4), 14124 dev->base_addr, bp->pdev->irq, dev->dev_addr); 14125 pcie_print_link_status(bp->pdev); 14126 14127 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) 14128 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED); 14129 14130 return 0; 14131 14132 init_one_freemem: 14133 bnx2x_free_mem_bp(bp); 14134 14135 init_one_exit: 14136 bnx2x_disable_pcie_error_reporting(bp); 14137 14138 if (bp->regview) 14139 iounmap(bp->regview); 14140 14141 if (IS_PF(bp) && bp->doorbells) 14142 iounmap(bp->doorbells); 14143 14144 free_netdev(dev); 14145 14146 if (atomic_read(&pdev->enable_cnt) == 1) 14147 pci_release_regions(pdev); 14148 14149 pci_disable_device(pdev); 14150 14151 return rc; 14152 } 14153 14154 static void __bnx2x_remove(struct pci_dev *pdev, 14155 struct net_device *dev, 14156 struct bnx2x *bp, 14157 bool remove_netdev) 14158 { 14159 /* Delete storage MAC address */ 14160 if (!NO_FCOE(bp)) { 14161 rtnl_lock(); 14162 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); 14163 rtnl_unlock(); 14164 } 14165 14166 #ifdef BCM_DCBNL 14167 /* Delete app tlvs from dcbnl */ 14168 bnx2x_dcbnl_update_applist(bp, true); 14169 #endif 14170 14171 if (IS_PF(bp) && 14172 !BP_NOMCP(bp) && 14173 (bp->flags & BC_SUPPORTS_RMMOD_CMD)) 14174 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0); 14175 14176 /* Close the interface - either directly or implicitly */ 14177 if (remove_netdev) { 14178 unregister_netdev(dev); 14179 } else { 14180 rtnl_lock(); 14181 dev_close(dev); 14182 rtnl_unlock(); 14183 } 14184 14185 bnx2x_iov_remove_one(bp); 14186 14187 /* Power on: we can't let PCI layer write to us while we are in D3 */ 14188 if (IS_PF(bp)) { 14189 bnx2x_set_power_state(bp, PCI_D0); 14190 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED); 14191 14192 /* Set endianity registers to reset values in case next driver 14193 * boots in different endianty environment. 14194 */ 14195 bnx2x_reset_endianity(bp); 14196 } 14197 14198 /* Disable MSI/MSI-X */ 14199 bnx2x_disable_msi(bp); 14200 14201 /* Power off */ 14202 if (IS_PF(bp)) 14203 bnx2x_set_power_state(bp, PCI_D3hot); 14204 14205 /* Make sure RESET task is not scheduled before continuing */ 14206 cancel_delayed_work_sync(&bp->sp_rtnl_task); 14207 14208 /* send message via vfpf channel to release the resources of this vf */ 14209 if (IS_VF(bp)) 14210 bnx2x_vfpf_release(bp); 14211 14212 /* Assumes no further PCIe PM changes will occur */ 14213 if (system_state == SYSTEM_POWER_OFF) { 14214 pci_wake_from_d3(pdev, bp->wol); 14215 pci_set_power_state(pdev, PCI_D3hot); 14216 } 14217 14218 bnx2x_disable_pcie_error_reporting(bp); 14219 if (remove_netdev) { 14220 if (bp->regview) 14221 iounmap(bp->regview); 14222 14223 /* For vfs, doorbells are part of the regview and were unmapped 14224 * along with it. FW is only loaded by PF. 14225 */ 14226 if (IS_PF(bp)) { 14227 if (bp->doorbells) 14228 iounmap(bp->doorbells); 14229 14230 bnx2x_release_firmware(bp); 14231 } else { 14232 bnx2x_vf_pci_dealloc(bp); 14233 } 14234 bnx2x_free_mem_bp(bp); 14235 14236 free_netdev(dev); 14237 14238 if (atomic_read(&pdev->enable_cnt) == 1) 14239 pci_release_regions(pdev); 14240 14241 pci_disable_device(pdev); 14242 } 14243 } 14244 14245 static void bnx2x_remove_one(struct pci_dev *pdev) 14246 { 14247 struct net_device *dev = pci_get_drvdata(pdev); 14248 struct bnx2x *bp; 14249 14250 if (!dev) { 14251 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 14252 return; 14253 } 14254 bp = netdev_priv(dev); 14255 14256 __bnx2x_remove(pdev, dev, bp, true); 14257 } 14258 14259 static int bnx2x_eeh_nic_unload(struct bnx2x *bp) 14260 { 14261 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; 14262 14263 bp->rx_mode = BNX2X_RX_MODE_NONE; 14264 14265 if (CNIC_LOADED(bp)) 14266 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); 14267 14268 /* Stop Tx */ 14269 bnx2x_tx_disable(bp); 14270 /* Delete all NAPI objects */ 14271 bnx2x_del_all_napi(bp); 14272 if (CNIC_LOADED(bp)) 14273 bnx2x_del_all_napi_cnic(bp); 14274 netdev_reset_tc(bp->dev); 14275 14276 del_timer_sync(&bp->timer); 14277 cancel_delayed_work_sync(&bp->sp_task); 14278 cancel_delayed_work_sync(&bp->period_task); 14279 14280 if (!down_timeout(&bp->stats_lock, HZ / 10)) { 14281 bp->stats_state = STATS_STATE_DISABLED; 14282 up(&bp->stats_lock); 14283 } 14284 14285 bnx2x_save_statistics(bp); 14286 14287 netif_carrier_off(bp->dev); 14288 14289 return 0; 14290 } 14291 14292 /** 14293 * bnx2x_io_error_detected - called when PCI error is detected 14294 * @pdev: Pointer to PCI device 14295 * @state: The current pci connection state 14296 * 14297 * This function is called after a PCI bus error affecting 14298 * this device has been detected. 14299 */ 14300 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev, 14301 pci_channel_state_t state) 14302 { 14303 struct net_device *dev = pci_get_drvdata(pdev); 14304 struct bnx2x *bp = netdev_priv(dev); 14305 14306 rtnl_lock(); 14307 14308 BNX2X_ERR("IO error detected\n"); 14309 14310 netif_device_detach(dev); 14311 14312 if (state == pci_channel_io_perm_failure) { 14313 rtnl_unlock(); 14314 return PCI_ERS_RESULT_DISCONNECT; 14315 } 14316 14317 if (netif_running(dev)) 14318 bnx2x_eeh_nic_unload(bp); 14319 14320 bnx2x_prev_path_mark_eeh(bp); 14321 14322 pci_disable_device(pdev); 14323 14324 rtnl_unlock(); 14325 14326 /* Request a slot reset */ 14327 return PCI_ERS_RESULT_NEED_RESET; 14328 } 14329 14330 /** 14331 * bnx2x_io_slot_reset - called after the PCI bus has been reset 14332 * @pdev: Pointer to PCI device 14333 * 14334 * Restart the card from scratch, as if from a cold-boot. 14335 */ 14336 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev) 14337 { 14338 struct net_device *dev = pci_get_drvdata(pdev); 14339 struct bnx2x *bp = netdev_priv(dev); 14340 int i; 14341 14342 rtnl_lock(); 14343 BNX2X_ERR("IO slot reset initializing...\n"); 14344 if (pci_enable_device(pdev)) { 14345 dev_err(&pdev->dev, 14346 "Cannot re-enable PCI device after reset\n"); 14347 rtnl_unlock(); 14348 return PCI_ERS_RESULT_DISCONNECT; 14349 } 14350 14351 pci_set_master(pdev); 14352 pci_restore_state(pdev); 14353 pci_save_state(pdev); 14354 14355 if (netif_running(dev)) 14356 bnx2x_set_power_state(bp, PCI_D0); 14357 14358 if (netif_running(dev)) { 14359 BNX2X_ERR("IO slot reset --> driver unload\n"); 14360 14361 /* MCP should have been reset; Need to wait for validity */ 14362 if (bnx2x_init_shmem(bp)) { 14363 rtnl_unlock(); 14364 return PCI_ERS_RESULT_DISCONNECT; 14365 } 14366 14367 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 14368 u32 v; 14369 14370 v = SHMEM2_RD(bp, 14371 drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 14372 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 14373 v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 14374 } 14375 bnx2x_drain_tx_queues(bp); 14376 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY); 14377 bnx2x_netif_stop(bp, 1); 14378 bnx2x_free_irq(bp); 14379 14380 /* Report UNLOAD_DONE to MCP */ 14381 bnx2x_send_unload_done(bp, true); 14382 14383 bp->sp_state = 0; 14384 bp->port.pmf = 0; 14385 14386 bnx2x_prev_unload(bp); 14387 14388 /* We should have reseted the engine, so It's fair to 14389 * assume the FW will no longer write to the bnx2x driver. 14390 */ 14391 bnx2x_squeeze_objects(bp); 14392 bnx2x_free_skbs(bp); 14393 for_each_rx_queue(bp, i) 14394 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 14395 bnx2x_free_fp_mem(bp); 14396 bnx2x_free_mem(bp); 14397 14398 bp->state = BNX2X_STATE_CLOSED; 14399 } 14400 14401 rtnl_unlock(); 14402 14403 return PCI_ERS_RESULT_RECOVERED; 14404 } 14405 14406 /** 14407 * bnx2x_io_resume - called when traffic can start flowing again 14408 * @pdev: Pointer to PCI device 14409 * 14410 * This callback is called when the error recovery driver tells us that 14411 * its OK to resume normal operation. 14412 */ 14413 static void bnx2x_io_resume(struct pci_dev *pdev) 14414 { 14415 struct net_device *dev = pci_get_drvdata(pdev); 14416 struct bnx2x *bp = netdev_priv(dev); 14417 14418 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 14419 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n"); 14420 return; 14421 } 14422 14423 rtnl_lock(); 14424 14425 bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 14426 DRV_MSG_SEQ_NUMBER_MASK; 14427 14428 if (netif_running(dev)) 14429 bnx2x_nic_load(bp, LOAD_NORMAL); 14430 14431 netif_device_attach(dev); 14432 14433 rtnl_unlock(); 14434 } 14435 14436 static const struct pci_error_handlers bnx2x_err_handler = { 14437 .error_detected = bnx2x_io_error_detected, 14438 .slot_reset = bnx2x_io_slot_reset, 14439 .resume = bnx2x_io_resume, 14440 }; 14441 14442 static void bnx2x_shutdown(struct pci_dev *pdev) 14443 { 14444 struct net_device *dev = pci_get_drvdata(pdev); 14445 struct bnx2x *bp; 14446 14447 if (!dev) 14448 return; 14449 14450 bp = netdev_priv(dev); 14451 if (!bp) 14452 return; 14453 14454 rtnl_lock(); 14455 netif_device_detach(dev); 14456 rtnl_unlock(); 14457 14458 /* Don't remove the netdevice, as there are scenarios which will cause 14459 * the kernel to hang, e.g., when trying to remove bnx2i while the 14460 * rootfs is mounted from SAN. 14461 */ 14462 __bnx2x_remove(pdev, dev, bp, false); 14463 } 14464 14465 static struct pci_driver bnx2x_pci_driver = { 14466 .name = DRV_MODULE_NAME, 14467 .id_table = bnx2x_pci_tbl, 14468 .probe = bnx2x_init_one, 14469 .remove = bnx2x_remove_one, 14470 .suspend = bnx2x_suspend, 14471 .resume = bnx2x_resume, 14472 .err_handler = &bnx2x_err_handler, 14473 #ifdef CONFIG_BNX2X_SRIOV 14474 .sriov_configure = bnx2x_sriov_configure, 14475 #endif 14476 .shutdown = bnx2x_shutdown, 14477 }; 14478 14479 static int __init bnx2x_init(void) 14480 { 14481 int ret; 14482 14483 pr_info("%s", version); 14484 14485 bnx2x_wq = create_singlethread_workqueue("bnx2x"); 14486 if (bnx2x_wq == NULL) { 14487 pr_err("Cannot create workqueue\n"); 14488 return -ENOMEM; 14489 } 14490 bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov"); 14491 if (!bnx2x_iov_wq) { 14492 pr_err("Cannot create iov workqueue\n"); 14493 destroy_workqueue(bnx2x_wq); 14494 return -ENOMEM; 14495 } 14496 14497 ret = pci_register_driver(&bnx2x_pci_driver); 14498 if (ret) { 14499 pr_err("Cannot register driver\n"); 14500 destroy_workqueue(bnx2x_wq); 14501 destroy_workqueue(bnx2x_iov_wq); 14502 } 14503 return ret; 14504 } 14505 14506 static void __exit bnx2x_cleanup(void) 14507 { 14508 struct list_head *pos, *q; 14509 14510 pci_unregister_driver(&bnx2x_pci_driver); 14511 14512 destroy_workqueue(bnx2x_wq); 14513 destroy_workqueue(bnx2x_iov_wq); 14514 14515 /* Free globally allocated resources */ 14516 list_for_each_safe(pos, q, &bnx2x_prev_list) { 14517 struct bnx2x_prev_path_list *tmp = 14518 list_entry(pos, struct bnx2x_prev_path_list, list); 14519 list_del(pos); 14520 kfree(tmp); 14521 } 14522 } 14523 14524 void bnx2x_notify_link_changed(struct bnx2x *bp) 14525 { 14526 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1); 14527 } 14528 14529 module_init(bnx2x_init); 14530 module_exit(bnx2x_cleanup); 14531 14532 /** 14533 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s). 14534 * 14535 * @bp: driver handle 14536 * @set: set or clear the CAM entry 14537 * 14538 * This function will wait until the ramrod completion returns. 14539 * Return 0 if success, -ENODEV if ramrod doesn't return. 14540 */ 14541 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp) 14542 { 14543 unsigned long ramrod_flags = 0; 14544 14545 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 14546 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac, 14547 &bp->iscsi_l2_mac_obj, true, 14548 BNX2X_ISCSI_ETH_MAC, &ramrod_flags); 14549 } 14550 14551 /* count denotes the number of new completions we have seen */ 14552 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count) 14553 { 14554 struct eth_spe *spe; 14555 int cxt_index, cxt_offset; 14556 14557 #ifdef BNX2X_STOP_ON_ERROR 14558 if (unlikely(bp->panic)) 14559 return; 14560 #endif 14561 14562 spin_lock_bh(&bp->spq_lock); 14563 BUG_ON(bp->cnic_spq_pending < count); 14564 bp->cnic_spq_pending -= count; 14565 14566 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) { 14567 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type) 14568 & SPE_HDR_CONN_TYPE) >> 14569 SPE_HDR_CONN_TYPE_SHIFT; 14570 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data) 14571 >> SPE_HDR_CMD_ID_SHIFT) & 0xff; 14572 14573 /* Set validation for iSCSI L2 client before sending SETUP 14574 * ramrod 14575 */ 14576 if (type == ETH_CONNECTION_TYPE) { 14577 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) { 14578 cxt_index = BNX2X_ISCSI_ETH_CID(bp) / 14579 ILT_PAGE_CIDS; 14580 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) - 14581 (cxt_index * ILT_PAGE_CIDS); 14582 bnx2x_set_ctx_validation(bp, 14583 &bp->context[cxt_index]. 14584 vcxt[cxt_offset].eth, 14585 BNX2X_ISCSI_ETH_CID(bp)); 14586 } 14587 } 14588 14589 /* 14590 * There may be not more than 8 L2, not more than 8 L5 SPEs 14591 * and in the air. We also check that number of outstanding 14592 * COMMON ramrods is not more than the EQ and SPQ can 14593 * accommodate. 14594 */ 14595 if (type == ETH_CONNECTION_TYPE) { 14596 if (!atomic_read(&bp->cq_spq_left)) 14597 break; 14598 else 14599 atomic_dec(&bp->cq_spq_left); 14600 } else if (type == NONE_CONNECTION_TYPE) { 14601 if (!atomic_read(&bp->eq_spq_left)) 14602 break; 14603 else 14604 atomic_dec(&bp->eq_spq_left); 14605 } else if ((type == ISCSI_CONNECTION_TYPE) || 14606 (type == FCOE_CONNECTION_TYPE)) { 14607 if (bp->cnic_spq_pending >= 14608 bp->cnic_eth_dev.max_kwqe_pending) 14609 break; 14610 else 14611 bp->cnic_spq_pending++; 14612 } else { 14613 BNX2X_ERR("Unknown SPE type: %d\n", type); 14614 bnx2x_panic(); 14615 break; 14616 } 14617 14618 spe = bnx2x_sp_get_next(bp); 14619 *spe = *bp->cnic_kwq_cons; 14620 14621 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n", 14622 bp->cnic_spq_pending, bp->cnic_kwq_pending, count); 14623 14624 if (bp->cnic_kwq_cons == bp->cnic_kwq_last) 14625 bp->cnic_kwq_cons = bp->cnic_kwq; 14626 else 14627 bp->cnic_kwq_cons++; 14628 } 14629 bnx2x_sp_prod_update(bp); 14630 spin_unlock_bh(&bp->spq_lock); 14631 } 14632 14633 static int bnx2x_cnic_sp_queue(struct net_device *dev, 14634 struct kwqe_16 *kwqes[], u32 count) 14635 { 14636 struct bnx2x *bp = netdev_priv(dev); 14637 int i; 14638 14639 #ifdef BNX2X_STOP_ON_ERROR 14640 if (unlikely(bp->panic)) { 14641 BNX2X_ERR("Can't post to SP queue while panic\n"); 14642 return -EIO; 14643 } 14644 #endif 14645 14646 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) && 14647 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { 14648 BNX2X_ERR("Handling parity error recovery. Try again later\n"); 14649 return -EAGAIN; 14650 } 14651 14652 spin_lock_bh(&bp->spq_lock); 14653 14654 for (i = 0; i < count; i++) { 14655 struct eth_spe *spe = (struct eth_spe *)kwqes[i]; 14656 14657 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT) 14658 break; 14659 14660 *bp->cnic_kwq_prod = *spe; 14661 14662 bp->cnic_kwq_pending++; 14663 14664 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n", 14665 spe->hdr.conn_and_cmd_data, spe->hdr.type, 14666 spe->data.update_data_addr.hi, 14667 spe->data.update_data_addr.lo, 14668 bp->cnic_kwq_pending); 14669 14670 if (bp->cnic_kwq_prod == bp->cnic_kwq_last) 14671 bp->cnic_kwq_prod = bp->cnic_kwq; 14672 else 14673 bp->cnic_kwq_prod++; 14674 } 14675 14676 spin_unlock_bh(&bp->spq_lock); 14677 14678 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending) 14679 bnx2x_cnic_sp_post(bp, 0); 14680 14681 return i; 14682 } 14683 14684 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl) 14685 { 14686 struct cnic_ops *c_ops; 14687 int rc = 0; 14688 14689 mutex_lock(&bp->cnic_mutex); 14690 c_ops = rcu_dereference_protected(bp->cnic_ops, 14691 lockdep_is_held(&bp->cnic_mutex)); 14692 if (c_ops) 14693 rc = c_ops->cnic_ctl(bp->cnic_data, ctl); 14694 mutex_unlock(&bp->cnic_mutex); 14695 14696 return rc; 14697 } 14698 14699 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl) 14700 { 14701 struct cnic_ops *c_ops; 14702 int rc = 0; 14703 14704 rcu_read_lock(); 14705 c_ops = rcu_dereference(bp->cnic_ops); 14706 if (c_ops) 14707 rc = c_ops->cnic_ctl(bp->cnic_data, ctl); 14708 rcu_read_unlock(); 14709 14710 return rc; 14711 } 14712 14713 /* 14714 * for commands that have no data 14715 */ 14716 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd) 14717 { 14718 struct cnic_ctl_info ctl = {0}; 14719 14720 ctl.cmd = cmd; 14721 14722 return bnx2x_cnic_ctl_send(bp, &ctl); 14723 } 14724 14725 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err) 14726 { 14727 struct cnic_ctl_info ctl = {0}; 14728 14729 /* first we tell CNIC and only then we count this as a completion */ 14730 ctl.cmd = CNIC_CTL_COMPLETION_CMD; 14731 ctl.data.comp.cid = cid; 14732 ctl.data.comp.error = err; 14733 14734 bnx2x_cnic_ctl_send_bh(bp, &ctl); 14735 bnx2x_cnic_sp_post(bp, 0); 14736 } 14737 14738 /* Called with netif_addr_lock_bh() taken. 14739 * Sets an rx_mode config for an iSCSI ETH client. 14740 * Doesn't block. 14741 * Completion should be checked outside. 14742 */ 14743 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start) 14744 { 14745 unsigned long accept_flags = 0, ramrod_flags = 0; 14746 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); 14747 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED; 14748 14749 if (start) { 14750 /* Start accepting on iSCSI L2 ring. Accept all multicasts 14751 * because it's the only way for UIO Queue to accept 14752 * multicasts (in non-promiscuous mode only one Queue per 14753 * function will receive multicast packets (leading in our 14754 * case). 14755 */ 14756 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags); 14757 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags); 14758 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags); 14759 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); 14760 14761 /* Clear STOP_PENDING bit if START is requested */ 14762 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state); 14763 14764 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED; 14765 } else 14766 /* Clear START_PENDING bit if STOP is requested */ 14767 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state); 14768 14769 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) 14770 set_bit(sched_state, &bp->sp_state); 14771 else { 14772 __set_bit(RAMROD_RX, &ramrod_flags); 14773 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0, 14774 ramrod_flags); 14775 } 14776 } 14777 14778 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl) 14779 { 14780 struct bnx2x *bp = netdev_priv(dev); 14781 int rc = 0; 14782 14783 switch (ctl->cmd) { 14784 case DRV_CTL_CTXTBL_WR_CMD: { 14785 u32 index = ctl->data.io.offset; 14786 dma_addr_t addr = ctl->data.io.dma_addr; 14787 14788 bnx2x_ilt_wr(bp, index, addr); 14789 break; 14790 } 14791 14792 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: { 14793 int count = ctl->data.credit.credit_count; 14794 14795 bnx2x_cnic_sp_post(bp, count); 14796 break; 14797 } 14798 14799 /* rtnl_lock is held. */ 14800 case DRV_CTL_START_L2_CMD: { 14801 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14802 unsigned long sp_bits = 0; 14803 14804 /* Configure the iSCSI classification object */ 14805 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj, 14806 cp->iscsi_l2_client_id, 14807 cp->iscsi_l2_cid, BP_FUNC(bp), 14808 bnx2x_sp(bp, mac_rdata), 14809 bnx2x_sp_mapping(bp, mac_rdata), 14810 BNX2X_FILTER_MAC_PENDING, 14811 &bp->sp_state, BNX2X_OBJ_TYPE_RX, 14812 &bp->macs_pool); 14813 14814 /* Set iSCSI MAC address */ 14815 rc = bnx2x_set_iscsi_eth_mac_addr(bp); 14816 if (rc) 14817 break; 14818 14819 barrier(); 14820 14821 /* Start accepting on iSCSI L2 ring */ 14822 14823 netif_addr_lock_bh(dev); 14824 bnx2x_set_iscsi_eth_rx_mode(bp, true); 14825 netif_addr_unlock_bh(dev); 14826 14827 /* bits to wait on */ 14828 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); 14829 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits); 14830 14831 if (!bnx2x_wait_sp_comp(bp, sp_bits)) 14832 BNX2X_ERR("rx_mode completion timed out!\n"); 14833 14834 break; 14835 } 14836 14837 /* rtnl_lock is held. */ 14838 case DRV_CTL_STOP_L2_CMD: { 14839 unsigned long sp_bits = 0; 14840 14841 /* Stop accepting on iSCSI L2 ring */ 14842 netif_addr_lock_bh(dev); 14843 bnx2x_set_iscsi_eth_rx_mode(bp, false); 14844 netif_addr_unlock_bh(dev); 14845 14846 /* bits to wait on */ 14847 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); 14848 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits); 14849 14850 if (!bnx2x_wait_sp_comp(bp, sp_bits)) 14851 BNX2X_ERR("rx_mode completion timed out!\n"); 14852 14853 barrier(); 14854 14855 /* Unset iSCSI L2 MAC */ 14856 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj, 14857 BNX2X_ISCSI_ETH_MAC, true); 14858 break; 14859 } 14860 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: { 14861 int count = ctl->data.credit.credit_count; 14862 14863 smp_mb__before_atomic(); 14864 atomic_add(count, &bp->cq_spq_left); 14865 smp_mb__after_atomic(); 14866 break; 14867 } 14868 case DRV_CTL_ULP_REGISTER_CMD: { 14869 int ulp_type = ctl->data.register_data.ulp_type; 14870 14871 if (CHIP_IS_E3(bp)) { 14872 int idx = BP_FW_MB_IDX(bp); 14873 u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); 14874 int path = BP_PATH(bp); 14875 int port = BP_PORT(bp); 14876 int i; 14877 u32 scratch_offset; 14878 u32 *host_addr; 14879 14880 /* first write capability to shmem2 */ 14881 if (ulp_type == CNIC_ULP_ISCSI) 14882 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; 14883 else if (ulp_type == CNIC_ULP_FCOE) 14884 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE; 14885 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); 14886 14887 if ((ulp_type != CNIC_ULP_FCOE) || 14888 (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) || 14889 (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES))) 14890 break; 14891 14892 /* if reached here - should write fcoe capabilities */ 14893 scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr); 14894 if (!scratch_offset) 14895 break; 14896 scratch_offset += offsetof(struct glob_ncsi_oem_data, 14897 fcoe_features[path][port]); 14898 host_addr = (u32 *) &(ctl->data.register_data. 14899 fcoe_features); 14900 for (i = 0; i < sizeof(struct fcoe_capabilities); 14901 i += 4) 14902 REG_WR(bp, scratch_offset + i, 14903 *(host_addr + i/4)); 14904 } 14905 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 14906 break; 14907 } 14908 14909 case DRV_CTL_ULP_UNREGISTER_CMD: { 14910 int ulp_type = ctl->data.ulp_type; 14911 14912 if (CHIP_IS_E3(bp)) { 14913 int idx = BP_FW_MB_IDX(bp); 14914 u32 cap; 14915 14916 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); 14917 if (ulp_type == CNIC_ULP_ISCSI) 14918 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; 14919 else if (ulp_type == CNIC_ULP_FCOE) 14920 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE; 14921 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); 14922 } 14923 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 14924 break; 14925 } 14926 14927 default: 14928 BNX2X_ERR("unknown command %x\n", ctl->cmd); 14929 rc = -EINVAL; 14930 } 14931 14932 /* For storage-only interfaces, change driver state */ 14933 if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) { 14934 switch (ctl->drv_state) { 14935 case DRV_NOP: 14936 break; 14937 case DRV_ACTIVE: 14938 bnx2x_set_os_driver_state(bp, 14939 OS_DRIVER_STATE_ACTIVE); 14940 break; 14941 case DRV_INACTIVE: 14942 bnx2x_set_os_driver_state(bp, 14943 OS_DRIVER_STATE_DISABLED); 14944 break; 14945 case DRV_UNLOADED: 14946 bnx2x_set_os_driver_state(bp, 14947 OS_DRIVER_STATE_NOT_LOADED); 14948 break; 14949 default: 14950 BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state); 14951 } 14952 } 14953 14954 return rc; 14955 } 14956 14957 static int bnx2x_get_fc_npiv(struct net_device *dev, 14958 struct cnic_fc_npiv_tbl *cnic_tbl) 14959 { 14960 struct bnx2x *bp = netdev_priv(dev); 14961 struct bdn_fc_npiv_tbl *tbl = NULL; 14962 u32 offset, entries; 14963 int rc = -EINVAL; 14964 int i; 14965 14966 if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0])) 14967 goto out; 14968 14969 DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n"); 14970 14971 tbl = kmalloc(sizeof(*tbl), GFP_KERNEL); 14972 if (!tbl) { 14973 BNX2X_ERR("Failed to allocate fc_npiv table\n"); 14974 goto out; 14975 } 14976 14977 offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]); 14978 if (!offset) { 14979 DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n"); 14980 goto out; 14981 } 14982 DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset); 14983 14984 /* Read the table contents from nvram */ 14985 if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) { 14986 BNX2X_ERR("Failed to read FC-NPIV table\n"); 14987 goto out; 14988 } 14989 14990 /* Since bnx2x_nvram_read() returns data in be32, we need to convert 14991 * the number of entries back to cpu endianness. 14992 */ 14993 entries = tbl->fc_npiv_cfg.num_of_npiv; 14994 entries = (__force u32)be32_to_cpu((__force __be32)entries); 14995 tbl->fc_npiv_cfg.num_of_npiv = entries; 14996 14997 if (!tbl->fc_npiv_cfg.num_of_npiv) { 14998 DP(BNX2X_MSG_MCP, 14999 "No FC-NPIV table [valid, simply not present]\n"); 15000 goto out; 15001 } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) { 15002 BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n", 15003 tbl->fc_npiv_cfg.num_of_npiv); 15004 goto out; 15005 } else { 15006 DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n", 15007 tbl->fc_npiv_cfg.num_of_npiv); 15008 } 15009 15010 /* Copy the data into cnic-provided struct */ 15011 cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv; 15012 for (i = 0; i < cnic_tbl->count; i++) { 15013 memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8); 15014 memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8); 15015 } 15016 15017 rc = 0; 15018 out: 15019 kfree(tbl); 15020 return rc; 15021 } 15022 15023 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp) 15024 { 15025 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 15026 15027 if (bp->flags & USING_MSIX_FLAG) { 15028 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX; 15029 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX; 15030 cp->irq_arr[0].vector = bp->msix_table[1].vector; 15031 } else { 15032 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX; 15033 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX; 15034 } 15035 if (!CHIP_IS_E1x(bp)) 15036 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb; 15037 else 15038 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb; 15039 15040 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp); 15041 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp); 15042 cp->irq_arr[1].status_blk = bp->def_status_blk; 15043 cp->irq_arr[1].status_blk_num = DEF_SB_ID; 15044 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID; 15045 15046 cp->num_irq = 2; 15047 } 15048 15049 void bnx2x_setup_cnic_info(struct bnx2x *bp) 15050 { 15051 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 15052 15053 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + 15054 bnx2x_cid_ilt_lines(bp); 15055 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; 15056 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); 15057 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); 15058 15059 DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n", 15060 BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid, 15061 cp->iscsi_l2_cid); 15062 15063 if (NO_ISCSI_OOO(bp)) 15064 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; 15065 } 15066 15067 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops, 15068 void *data) 15069 { 15070 struct bnx2x *bp = netdev_priv(dev); 15071 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 15072 int rc; 15073 15074 DP(NETIF_MSG_IFUP, "Register_cnic called\n"); 15075 15076 if (ops == NULL) { 15077 BNX2X_ERR("NULL ops received\n"); 15078 return -EINVAL; 15079 } 15080 15081 if (!CNIC_SUPPORT(bp)) { 15082 BNX2X_ERR("Can't register CNIC when not supported\n"); 15083 return -EOPNOTSUPP; 15084 } 15085 15086 if (!CNIC_LOADED(bp)) { 15087 rc = bnx2x_load_cnic(bp); 15088 if (rc) { 15089 BNX2X_ERR("CNIC-related load failed\n"); 15090 return rc; 15091 } 15092 } 15093 15094 bp->cnic_enabled = true; 15095 15096 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL); 15097 if (!bp->cnic_kwq) 15098 return -ENOMEM; 15099 15100 bp->cnic_kwq_cons = bp->cnic_kwq; 15101 bp->cnic_kwq_prod = bp->cnic_kwq; 15102 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT; 15103 15104 bp->cnic_spq_pending = 0; 15105 bp->cnic_kwq_pending = 0; 15106 15107 bp->cnic_data = data; 15108 15109 cp->num_irq = 0; 15110 cp->drv_state |= CNIC_DRV_STATE_REGD; 15111 cp->iro_arr = bp->iro_arr; 15112 15113 bnx2x_setup_cnic_irq_info(bp); 15114 15115 rcu_assign_pointer(bp->cnic_ops, ops); 15116 15117 /* Schedule driver to read CNIC driver versions */ 15118 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 15119 15120 return 0; 15121 } 15122 15123 static int bnx2x_unregister_cnic(struct net_device *dev) 15124 { 15125 struct bnx2x *bp = netdev_priv(dev); 15126 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 15127 15128 mutex_lock(&bp->cnic_mutex); 15129 cp->drv_state = 0; 15130 RCU_INIT_POINTER(bp->cnic_ops, NULL); 15131 mutex_unlock(&bp->cnic_mutex); 15132 synchronize_rcu(); 15133 bp->cnic_enabled = false; 15134 kfree(bp->cnic_kwq); 15135 bp->cnic_kwq = NULL; 15136 15137 return 0; 15138 } 15139 15140 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev) 15141 { 15142 struct bnx2x *bp = netdev_priv(dev); 15143 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 15144 15145 /* If both iSCSI and FCoE are disabled - return NULL in 15146 * order to indicate CNIC that it should not try to work 15147 * with this device. 15148 */ 15149 if (NO_ISCSI(bp) && NO_FCOE(bp)) 15150 return NULL; 15151 15152 cp->drv_owner = THIS_MODULE; 15153 cp->chip_id = CHIP_ID(bp); 15154 cp->pdev = bp->pdev; 15155 cp->io_base = bp->regview; 15156 cp->io_base2 = bp->doorbells; 15157 cp->max_kwqe_pending = 8; 15158 cp->ctx_blk_size = CDU_ILT_PAGE_SZ; 15159 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + 15160 bnx2x_cid_ilt_lines(bp); 15161 cp->ctx_tbl_len = CNIC_ILT_LINES; 15162 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; 15163 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue; 15164 cp->drv_ctl = bnx2x_drv_ctl; 15165 cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv; 15166 cp->drv_register_cnic = bnx2x_register_cnic; 15167 cp->drv_unregister_cnic = bnx2x_unregister_cnic; 15168 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); 15169 cp->iscsi_l2_client_id = 15170 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); 15171 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); 15172 15173 if (NO_ISCSI_OOO(bp)) 15174 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; 15175 15176 if (NO_ISCSI(bp)) 15177 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI; 15178 15179 if (NO_FCOE(bp)) 15180 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE; 15181 15182 BNX2X_DEV_INFO( 15183 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n", 15184 cp->ctx_blk_size, 15185 cp->ctx_tbl_offset, 15186 cp->ctx_tbl_len, 15187 cp->starting_cid); 15188 return cp; 15189 } 15190 15191 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp) 15192 { 15193 struct bnx2x *bp = fp->bp; 15194 u32 offset = BAR_USTRORM_INTMEM; 15195 15196 if (IS_VF(bp)) 15197 return bnx2x_vf_ustorm_prods_offset(bp, fp); 15198 else if (!CHIP_IS_E1x(bp)) 15199 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 15200 else 15201 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id); 15202 15203 return offset; 15204 } 15205 15206 /* called only on E1H or E2. 15207 * When pretending to be PF, the pretend value is the function number 0...7 15208 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 15209 * combination 15210 */ 15211 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val) 15212 { 15213 u32 pretend_reg; 15214 15215 if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX) 15216 return -1; 15217 15218 /* get my own pretend register */ 15219 pretend_reg = bnx2x_get_pretend_reg(bp); 15220 REG_WR(bp, pretend_reg, pretend_func_val); 15221 REG_RD(bp, pretend_reg); 15222 return 0; 15223 } 15224 15225 static void bnx2x_ptp_task(struct work_struct *work) 15226 { 15227 struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task); 15228 int port = BP_PORT(bp); 15229 u32 val_seq; 15230 u64 timestamp, ns; 15231 struct skb_shared_hwtstamps shhwtstamps; 15232 bool bail = true; 15233 int i; 15234 15235 /* FW may take a while to complete timestamping; try a bit and if it's 15236 * still not complete, may indicate an error state - bail out then. 15237 */ 15238 for (i = 0; i < 10; i++) { 15239 /* Read Tx timestamp registers */ 15240 val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID : 15241 NIG_REG_P0_TLLH_PTP_BUF_SEQID); 15242 if (val_seq & 0x10000) { 15243 bail = false; 15244 break; 15245 } 15246 msleep(1 << i); 15247 } 15248 15249 if (!bail) { 15250 /* There is a valid timestamp value */ 15251 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB : 15252 NIG_REG_P0_TLLH_PTP_BUF_TS_MSB); 15253 timestamp <<= 32; 15254 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB : 15255 NIG_REG_P0_TLLH_PTP_BUF_TS_LSB); 15256 /* Reset timestamp register to allow new timestamp */ 15257 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID : 15258 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000); 15259 ns = timecounter_cyc2time(&bp->timecounter, timestamp); 15260 15261 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 15262 shhwtstamps.hwtstamp = ns_to_ktime(ns); 15263 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps); 15264 15265 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n", 15266 timestamp, ns); 15267 } else { 15268 DP(BNX2X_MSG_PTP, 15269 "Tx timestamp is not recorded (register read=%u)\n", 15270 val_seq); 15271 bp->eth_stats.ptp_skip_tx_ts++; 15272 } 15273 15274 dev_kfree_skb_any(bp->ptp_tx_skb); 15275 bp->ptp_tx_skb = NULL; 15276 } 15277 15278 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb) 15279 { 15280 int port = BP_PORT(bp); 15281 u64 timestamp, ns; 15282 15283 timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB : 15284 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB); 15285 timestamp <<= 32; 15286 timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB : 15287 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB); 15288 15289 /* Reset timestamp register to allow new timestamp */ 15290 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID : 15291 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000); 15292 15293 ns = timecounter_cyc2time(&bp->timecounter, timestamp); 15294 15295 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 15296 15297 DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n", 15298 timestamp, ns); 15299 } 15300 15301 /* Read the PHC */ 15302 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc) 15303 { 15304 struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter); 15305 int port = BP_PORT(bp); 15306 u32 wb_data[2]; 15307 u64 phc_cycles; 15308 15309 REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 : 15310 NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2); 15311 phc_cycles = wb_data[1]; 15312 phc_cycles = (phc_cycles << 32) + wb_data[0]; 15313 15314 DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles); 15315 15316 return phc_cycles; 15317 } 15318 15319 static void bnx2x_init_cyclecounter(struct bnx2x *bp) 15320 { 15321 memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter)); 15322 bp->cyclecounter.read = bnx2x_cyclecounter_read; 15323 bp->cyclecounter.mask = CYCLECOUNTER_MASK(64); 15324 bp->cyclecounter.shift = 0; 15325 bp->cyclecounter.mult = 1; 15326 } 15327 15328 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp) 15329 { 15330 struct bnx2x_func_state_params func_params = {NULL}; 15331 struct bnx2x_func_set_timesync_params *set_timesync_params = 15332 &func_params.params.set_timesync; 15333 15334 /* Prepare parameters for function state transitions */ 15335 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 15336 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 15337 15338 func_params.f_obj = &bp->func_obj; 15339 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC; 15340 15341 /* Function parameters */ 15342 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET; 15343 set_timesync_params->offset_cmd = TS_OFFSET_KEEP; 15344 15345 return bnx2x_func_state_change(bp, &func_params); 15346 } 15347 15348 static int bnx2x_enable_ptp_packets(struct bnx2x *bp) 15349 { 15350 struct bnx2x_queue_state_params q_params; 15351 int rc, i; 15352 15353 /* send queue update ramrod to enable PTP packets */ 15354 memset(&q_params, 0, sizeof(q_params)); 15355 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 15356 q_params.cmd = BNX2X_Q_CMD_UPDATE; 15357 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG, 15358 &q_params.params.update.update_flags); 15359 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS, 15360 &q_params.params.update.update_flags); 15361 15362 /* send the ramrod on all the queues of the PF */ 15363 for_each_eth_queue(bp, i) { 15364 struct bnx2x_fastpath *fp = &bp->fp[i]; 15365 15366 /* Set the appropriate Queue object */ 15367 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 15368 15369 /* Update the Queue state */ 15370 rc = bnx2x_queue_state_change(bp, &q_params); 15371 if (rc) { 15372 BNX2X_ERR("Failed to enable PTP packets\n"); 15373 return rc; 15374 } 15375 } 15376 15377 return 0; 15378 } 15379 15380 #define BNX2X_P2P_DETECT_PARAM_MASK 0x5F5 15381 #define BNX2X_P2P_DETECT_RULE_MASK 0x3DBB 15382 #define BNX2X_PTP_TX_ON_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA) 15383 #define BNX2X_PTP_TX_ON_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE) 15384 #define BNX2X_PTP_V1_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EE) 15385 #define BNX2X_PTP_V1_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FFE) 15386 #define BNX2X_PTP_V2_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EA) 15387 #define BNX2X_PTP_V2_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FEE) 15388 #define BNX2X_PTP_V2_L2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6BF) 15389 #define BNX2X_PTP_V2_L2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EFF) 15390 #define BNX2X_PTP_V2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA) 15391 #define BNX2X_PTP_V2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE) 15392 15393 int bnx2x_configure_ptp_filters(struct bnx2x *bp) 15394 { 15395 int port = BP_PORT(bp); 15396 u32 param, rule; 15397 int rc; 15398 15399 if (!bp->hwtstamp_ioctl_called) 15400 return 0; 15401 15402 param = port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK : 15403 NIG_REG_P0_TLLH_PTP_PARAM_MASK; 15404 rule = port ? NIG_REG_P1_TLLH_PTP_RULE_MASK : 15405 NIG_REG_P0_TLLH_PTP_RULE_MASK; 15406 switch (bp->tx_type) { 15407 case HWTSTAMP_TX_ON: 15408 bp->flags |= TX_TIMESTAMPING_EN; 15409 REG_WR(bp, param, BNX2X_PTP_TX_ON_PARAM_MASK); 15410 REG_WR(bp, rule, BNX2X_PTP_TX_ON_RULE_MASK); 15411 break; 15412 case HWTSTAMP_TX_ONESTEP_SYNC: 15413 case HWTSTAMP_TX_ONESTEP_P2P: 15414 BNX2X_ERR("One-step timestamping is not supported\n"); 15415 return -ERANGE; 15416 } 15417 15418 param = port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15419 NIG_REG_P0_LLH_PTP_PARAM_MASK; 15420 rule = port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15421 NIG_REG_P0_LLH_PTP_RULE_MASK; 15422 switch (bp->rx_filter) { 15423 case HWTSTAMP_FILTER_NONE: 15424 break; 15425 case HWTSTAMP_FILTER_ALL: 15426 case HWTSTAMP_FILTER_SOME: 15427 case HWTSTAMP_FILTER_NTP_ALL: 15428 bp->rx_filter = HWTSTAMP_FILTER_NONE; 15429 break; 15430 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 15431 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 15432 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 15433 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 15434 /* Initialize PTP detection for UDP/IPv4 events */ 15435 REG_WR(bp, param, BNX2X_PTP_V1_L4_PARAM_MASK); 15436 REG_WR(bp, rule, BNX2X_PTP_V1_L4_RULE_MASK); 15437 break; 15438 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 15439 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 15440 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 15441 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 15442 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */ 15443 REG_WR(bp, param, BNX2X_PTP_V2_L4_PARAM_MASK); 15444 REG_WR(bp, rule, BNX2X_PTP_V2_L4_RULE_MASK); 15445 break; 15446 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 15447 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 15448 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 15449 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT; 15450 /* Initialize PTP detection L2 events */ 15451 REG_WR(bp, param, BNX2X_PTP_V2_L2_PARAM_MASK); 15452 REG_WR(bp, rule, BNX2X_PTP_V2_L2_RULE_MASK); 15453 15454 break; 15455 case HWTSTAMP_FILTER_PTP_V2_EVENT: 15456 case HWTSTAMP_FILTER_PTP_V2_SYNC: 15457 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 15458 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 15459 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */ 15460 REG_WR(bp, param, BNX2X_PTP_V2_PARAM_MASK); 15461 REG_WR(bp, rule, BNX2X_PTP_V2_RULE_MASK); 15462 break; 15463 } 15464 15465 /* Indicate to FW that this PF expects recorded PTP packets */ 15466 rc = bnx2x_enable_ptp_packets(bp); 15467 if (rc) 15468 return rc; 15469 15470 /* Enable sending PTP packets to host */ 15471 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST : 15472 NIG_REG_P0_LLH_PTP_TO_HOST, 0x1); 15473 15474 return 0; 15475 } 15476 15477 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr) 15478 { 15479 struct hwtstamp_config config; 15480 int rc; 15481 15482 DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n"); 15483 15484 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 15485 return -EFAULT; 15486 15487 DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n", 15488 config.tx_type, config.rx_filter); 15489 15490 if (config.flags) { 15491 BNX2X_ERR("config.flags is reserved for future use\n"); 15492 return -EINVAL; 15493 } 15494 15495 bp->hwtstamp_ioctl_called = 1; 15496 bp->tx_type = config.tx_type; 15497 bp->rx_filter = config.rx_filter; 15498 15499 rc = bnx2x_configure_ptp_filters(bp); 15500 if (rc) 15501 return rc; 15502 15503 config.rx_filter = bp->rx_filter; 15504 15505 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 15506 -EFAULT : 0; 15507 } 15508 15509 /* Configures HW for PTP */ 15510 static int bnx2x_configure_ptp(struct bnx2x *bp) 15511 { 15512 int rc, port = BP_PORT(bp); 15513 u32 wb_data[2]; 15514 15515 /* Reset PTP event detection rules - will be configured in the IOCTL */ 15516 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15517 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF); 15518 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15519 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF); 15520 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK : 15521 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF); 15522 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK : 15523 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF); 15524 15525 /* Disable PTP packets to host - will be configured in the IOCTL*/ 15526 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST : 15527 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0); 15528 15529 /* Enable the PTP feature */ 15530 REG_WR(bp, port ? NIG_REG_P1_PTP_EN : 15531 NIG_REG_P0_PTP_EN, 0x3F); 15532 15533 /* Enable the free-running counter */ 15534 wb_data[0] = 0; 15535 wb_data[1] = 0; 15536 REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2); 15537 15538 /* Reset drift register (offset register is not reset) */ 15539 rc = bnx2x_send_reset_timesync_ramrod(bp); 15540 if (rc) { 15541 BNX2X_ERR("Failed to reset PHC drift register\n"); 15542 return -EFAULT; 15543 } 15544 15545 /* Reset possibly old timestamps */ 15546 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID : 15547 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000); 15548 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID : 15549 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000); 15550 15551 return 0; 15552 } 15553 15554 /* Called during load, to initialize PTP-related stuff */ 15555 void bnx2x_init_ptp(struct bnx2x *bp) 15556 { 15557 int rc; 15558 15559 /* Configure PTP in HW */ 15560 rc = bnx2x_configure_ptp(bp); 15561 if (rc) { 15562 BNX2X_ERR("Stopping PTP initialization\n"); 15563 return; 15564 } 15565 15566 /* Init work queue for Tx timestamping */ 15567 INIT_WORK(&bp->ptp_task, bnx2x_ptp_task); 15568 15569 /* Init cyclecounter and timecounter. This is done only in the first 15570 * load. If done in every load, PTP application will fail when doing 15571 * unload / load (e.g. MTU change) while it is running. 15572 */ 15573 if (!bp->timecounter_init_done) { 15574 bnx2x_init_cyclecounter(bp); 15575 timecounter_init(&bp->timecounter, &bp->cyclecounter, 15576 ktime_to_ns(ktime_get_real())); 15577 bp->timecounter_init_done = 1; 15578 } 15579 15580 DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n"); 15581 } 15582