1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2012 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/crc32c.h>
51 #include <linux/prefetch.h>
52 #include <linux/zlib.h>
53 #include <linux/io.h>
54 #include <linux/semaphore.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57 
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_dcb.h"
63 #include "bnx2x_sp.h"
64 
65 #include <linux/firmware.h>
66 #include "bnx2x_fw_file_hdr.h"
67 /* FW files */
68 #define FW_FILE_VERSION					\
69 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
70 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
71 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
72 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
73 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
74 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
76 
77 #define MAC_LEADING_ZERO_CNT (ALIGN(ETH_ALEN, sizeof(u32)) - ETH_ALEN)
78 
79 /* Time in jiffies before concluding the transmitter is hung */
80 #define TX_TIMEOUT		(5*HZ)
81 
82 static char version[] =
83 	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
84 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
85 
86 MODULE_AUTHOR("Eliezer Tamir");
87 MODULE_DESCRIPTION("Broadcom NetXtreme II "
88 		   "BCM57710/57711/57711E/"
89 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
90 		   "57840/57840_MF Driver");
91 MODULE_LICENSE("GPL");
92 MODULE_VERSION(DRV_MODULE_VERSION);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1);
94 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
95 MODULE_FIRMWARE(FW_FILE_NAME_E2);
96 
97 
98 int num_queues;
99 module_param(num_queues, int, 0);
100 MODULE_PARM_DESC(num_queues,
101 		 " Set number of queues (default is as a number of CPUs)");
102 
103 static int disable_tpa;
104 module_param(disable_tpa, int, 0);
105 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
106 
107 #define INT_MODE_INTx			1
108 #define INT_MODE_MSI			2
109 int int_mode;
110 module_param(int_mode, int, 0);
111 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
112 				"(1 INT#x; 2 MSI)");
113 
114 static int dropless_fc;
115 module_param(dropless_fc, int, 0);
116 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
117 
118 static int mrrs = -1;
119 module_param(mrrs, int, 0);
120 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
121 
122 static int debug;
123 module_param(debug, int, 0);
124 MODULE_PARM_DESC(debug, " Default debug msglevel");
125 
126 
127 
128 struct workqueue_struct *bnx2x_wq;
129 
130 struct bnx2x_mac_vals {
131 	u32 xmac_addr;
132 	u32 xmac_val;
133 	u32 emac_addr;
134 	u32 emac_val;
135 	u32 umac_addr;
136 	u32 umac_val;
137 	u32 bmac_addr;
138 	u32 bmac_val[2];
139 };
140 
141 enum bnx2x_board_type {
142 	BCM57710 = 0,
143 	BCM57711,
144 	BCM57711E,
145 	BCM57712,
146 	BCM57712_MF,
147 	BCM57800,
148 	BCM57800_MF,
149 	BCM57810,
150 	BCM57810_MF,
151 	BCM57840_O,
152 	BCM57840_4_10,
153 	BCM57840_2_20,
154 	BCM57840_MFO,
155 	BCM57840_MF,
156 	BCM57811,
157 	BCM57811_MF
158 };
159 
160 /* indexed by board_type, above */
161 static struct {
162 	char *name;
163 } board_info[] = {
164 	{ "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
165 	{ "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
166 	{ "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
167 	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
168 	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
169 	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
170 	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
171 	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
172 	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
173 	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
174 	{ "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
175 	{ "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
176 	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function"},
177 	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function"},
178 	{ "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet"},
179 	{ "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function"},
180 };
181 
182 #ifndef PCI_DEVICE_ID_NX2_57710
183 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
184 #endif
185 #ifndef PCI_DEVICE_ID_NX2_57711
186 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
187 #endif
188 #ifndef PCI_DEVICE_ID_NX2_57711E
189 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
190 #endif
191 #ifndef PCI_DEVICE_ID_NX2_57712
192 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
193 #endif
194 #ifndef PCI_DEVICE_ID_NX2_57712_MF
195 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
196 #endif
197 #ifndef PCI_DEVICE_ID_NX2_57800
198 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
199 #endif
200 #ifndef PCI_DEVICE_ID_NX2_57800_MF
201 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
202 #endif
203 #ifndef PCI_DEVICE_ID_NX2_57810
204 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
205 #endif
206 #ifndef PCI_DEVICE_ID_NX2_57810_MF
207 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
208 #endif
209 #ifndef PCI_DEVICE_ID_NX2_57840_O
210 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
211 #endif
212 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
213 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
214 #endif
215 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
216 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
217 #endif
218 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
219 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
220 #endif
221 #ifndef PCI_DEVICE_ID_NX2_57840_MF
222 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
223 #endif
224 #ifndef PCI_DEVICE_ID_NX2_57811
225 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
226 #endif
227 #ifndef PCI_DEVICE_ID_NX2_57811_MF
228 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
229 #endif
230 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
231 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
232 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
233 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
234 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
235 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
236 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
237 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
238 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
239 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
240 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
241 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
242 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
243 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
244 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
245 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
246 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
247 	{ 0 }
248 };
249 
250 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
251 
252 /* Global resources for unloading a previously loaded device */
253 #define BNX2X_PREV_WAIT_NEEDED 1
254 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
255 static LIST_HEAD(bnx2x_prev_list);
256 /****************************************************************************
257 * General service functions
258 ****************************************************************************/
259 
260 static void __storm_memset_dma_mapping(struct bnx2x *bp,
261 				       u32 addr, dma_addr_t mapping)
262 {
263 	REG_WR(bp,  addr, U64_LO(mapping));
264 	REG_WR(bp,  addr + 4, U64_HI(mapping));
265 }
266 
267 static void storm_memset_spq_addr(struct bnx2x *bp,
268 				  dma_addr_t mapping, u16 abs_fid)
269 {
270 	u32 addr = XSEM_REG_FAST_MEMORY +
271 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
272 
273 	__storm_memset_dma_mapping(bp, addr, mapping);
274 }
275 
276 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
277 				  u16 pf_id)
278 {
279 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
280 		pf_id);
281 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
282 		pf_id);
283 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
284 		pf_id);
285 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
286 		pf_id);
287 }
288 
289 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
290 				 u8 enable)
291 {
292 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
293 		enable);
294 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
295 		enable);
296 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
297 		enable);
298 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
299 		enable);
300 }
301 
302 static void storm_memset_eq_data(struct bnx2x *bp,
303 				 struct event_ring_data *eq_data,
304 				u16 pfid)
305 {
306 	size_t size = sizeof(struct event_ring_data);
307 
308 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
309 
310 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
311 }
312 
313 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
314 				 u16 pfid)
315 {
316 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
317 	REG_WR16(bp, addr, eq_prod);
318 }
319 
320 /* used only at init
321  * locking is done by mcp
322  */
323 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
324 {
325 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
326 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
327 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
328 			       PCICFG_VENDOR_ID_OFFSET);
329 }
330 
331 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
332 {
333 	u32 val;
334 
335 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
336 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
337 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
338 			       PCICFG_VENDOR_ID_OFFSET);
339 
340 	return val;
341 }
342 
343 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
344 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
345 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
346 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
347 #define DMAE_DP_DST_NONE	"dst_addr [none]"
348 
349 
350 /* copy command into DMAE command memory and set DMAE command go */
351 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
352 {
353 	u32 cmd_offset;
354 	int i;
355 
356 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
357 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
358 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
359 	}
360 	REG_WR(bp, dmae_reg_go_c[idx], 1);
361 }
362 
363 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
364 {
365 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
366 			   DMAE_CMD_C_ENABLE);
367 }
368 
369 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
370 {
371 	return opcode & ~DMAE_CMD_SRC_RESET;
372 }
373 
374 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
375 			     bool with_comp, u8 comp_type)
376 {
377 	u32 opcode = 0;
378 
379 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
380 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
381 
382 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
383 
384 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
385 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
386 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
387 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
388 
389 #ifdef __BIG_ENDIAN
390 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
391 #else
392 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
393 #endif
394 	if (with_comp)
395 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
396 	return opcode;
397 }
398 
399 static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
400 				      struct dmae_command *dmae,
401 				      u8 src_type, u8 dst_type)
402 {
403 	memset(dmae, 0, sizeof(struct dmae_command));
404 
405 	/* set the opcode */
406 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
407 					 true, DMAE_COMP_PCI);
408 
409 	/* fill in the completion parameters */
410 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
411 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
412 	dmae->comp_val = DMAE_COMP_VAL;
413 }
414 
415 /* issue a dmae command over the init-channel and wailt for completion */
416 static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
417 				      struct dmae_command *dmae)
418 {
419 	u32 *wb_comp = bnx2x_sp(bp, wb_comp);
420 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
421 	int rc = 0;
422 
423 	/*
424 	 * Lock the dmae channel. Disable BHs to prevent a dead-lock
425 	 * as long as this code is called both from syscall context and
426 	 * from ndo_set_rx_mode() flow that may be called from BH.
427 	 */
428 	spin_lock_bh(&bp->dmae_lock);
429 
430 	/* reset completion */
431 	*wb_comp = 0;
432 
433 	/* post the command on the channel used for initializations */
434 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
435 
436 	/* wait for completion */
437 	udelay(5);
438 	while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
439 
440 		if (!cnt ||
441 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
442 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
443 			BNX2X_ERR("DMAE timeout!\n");
444 			rc = DMAE_TIMEOUT;
445 			goto unlock;
446 		}
447 		cnt--;
448 		udelay(50);
449 	}
450 	if (*wb_comp & DMAE_PCI_ERR_FLAG) {
451 		BNX2X_ERR("DMAE PCI error!\n");
452 		rc = DMAE_PCI_ERROR;
453 	}
454 
455 unlock:
456 	spin_unlock_bh(&bp->dmae_lock);
457 	return rc;
458 }
459 
460 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
461 		      u32 len32)
462 {
463 	struct dmae_command dmae;
464 
465 	if (!bp->dmae_ready) {
466 		u32 *data = bnx2x_sp(bp, wb_data[0]);
467 
468 		if (CHIP_IS_E1(bp))
469 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
470 		else
471 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
472 		return;
473 	}
474 
475 	/* set opcode and fixed command fields */
476 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
477 
478 	/* fill in addresses and len */
479 	dmae.src_addr_lo = U64_LO(dma_addr);
480 	dmae.src_addr_hi = U64_HI(dma_addr);
481 	dmae.dst_addr_lo = dst_addr >> 2;
482 	dmae.dst_addr_hi = 0;
483 	dmae.len = len32;
484 
485 	/* issue the command and wait for completion */
486 	bnx2x_issue_dmae_with_comp(bp, &dmae);
487 }
488 
489 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
490 {
491 	struct dmae_command dmae;
492 
493 	if (!bp->dmae_ready) {
494 		u32 *data = bnx2x_sp(bp, wb_data[0]);
495 		int i;
496 
497 		if (CHIP_IS_E1(bp))
498 			for (i = 0; i < len32; i++)
499 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
500 		else
501 			for (i = 0; i < len32; i++)
502 				data[i] = REG_RD(bp, src_addr + i*4);
503 
504 		return;
505 	}
506 
507 	/* set opcode and fixed command fields */
508 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
509 
510 	/* fill in addresses and len */
511 	dmae.src_addr_lo = src_addr >> 2;
512 	dmae.src_addr_hi = 0;
513 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
514 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
515 	dmae.len = len32;
516 
517 	/* issue the command and wait for completion */
518 	bnx2x_issue_dmae_with_comp(bp, &dmae);
519 }
520 
521 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
522 				      u32 addr, u32 len)
523 {
524 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
525 	int offset = 0;
526 
527 	while (len > dmae_wr_max) {
528 		bnx2x_write_dmae(bp, phys_addr + offset,
529 				 addr + offset, dmae_wr_max);
530 		offset += dmae_wr_max * 4;
531 		len -= dmae_wr_max;
532 	}
533 
534 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
535 }
536 
537 static int bnx2x_mc_assert(struct bnx2x *bp)
538 {
539 	char last_idx;
540 	int i, rc = 0;
541 	u32 row0, row1, row2, row3;
542 
543 	/* XSTORM */
544 	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
545 			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
546 	if (last_idx)
547 		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
548 
549 	/* print the asserts */
550 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
551 
552 		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
553 			      XSTORM_ASSERT_LIST_OFFSET(i));
554 		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
555 			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
556 		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
557 			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
558 		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
559 			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
560 
561 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
562 			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
563 				  i, row3, row2, row1, row0);
564 			rc++;
565 		} else {
566 			break;
567 		}
568 	}
569 
570 	/* TSTORM */
571 	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
572 			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
573 	if (last_idx)
574 		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
575 
576 	/* print the asserts */
577 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
578 
579 		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
580 			      TSTORM_ASSERT_LIST_OFFSET(i));
581 		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
582 			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
583 		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
584 			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
585 		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
586 			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
587 
588 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
589 			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
590 				  i, row3, row2, row1, row0);
591 			rc++;
592 		} else {
593 			break;
594 		}
595 	}
596 
597 	/* CSTORM */
598 	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
599 			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
600 	if (last_idx)
601 		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
602 
603 	/* print the asserts */
604 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
605 
606 		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
607 			      CSTORM_ASSERT_LIST_OFFSET(i));
608 		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
609 			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
610 		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
611 			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
612 		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
613 			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
614 
615 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
616 			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
617 				  i, row3, row2, row1, row0);
618 			rc++;
619 		} else {
620 			break;
621 		}
622 	}
623 
624 	/* USTORM */
625 	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
626 			   USTORM_ASSERT_LIST_INDEX_OFFSET);
627 	if (last_idx)
628 		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
629 
630 	/* print the asserts */
631 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
632 
633 		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
634 			      USTORM_ASSERT_LIST_OFFSET(i));
635 		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
636 			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
637 		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
638 			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
639 		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
640 			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
641 
642 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
643 			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
644 				  i, row3, row2, row1, row0);
645 			rc++;
646 		} else {
647 			break;
648 		}
649 	}
650 
651 	return rc;
652 }
653 
654 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
655 {
656 	u32 addr, val;
657 	u32 mark, offset;
658 	__be32 data[9];
659 	int word;
660 	u32 trace_shmem_base;
661 	if (BP_NOMCP(bp)) {
662 		BNX2X_ERR("NO MCP - can not dump\n");
663 		return;
664 	}
665 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
666 		(bp->common.bc_ver & 0xff0000) >> 16,
667 		(bp->common.bc_ver & 0xff00) >> 8,
668 		(bp->common.bc_ver & 0xff));
669 
670 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
671 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
672 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
673 
674 	if (BP_PATH(bp) == 0)
675 		trace_shmem_base = bp->common.shmem_base;
676 	else
677 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
678 	addr = trace_shmem_base - 0x800;
679 
680 	/* validate TRCB signature */
681 	mark = REG_RD(bp, addr);
682 	if (mark != MFW_TRACE_SIGNATURE) {
683 		BNX2X_ERR("Trace buffer signature is missing.");
684 		return ;
685 	}
686 
687 	/* read cyclic buffer pointer */
688 	addr += 4;
689 	mark = REG_RD(bp, addr);
690 	mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
691 			+ ((mark + 0x3) & ~0x3) - 0x08000000;
692 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
693 
694 	printk("%s", lvl);
695 	for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
696 		for (word = 0; word < 8; word++)
697 			data[word] = htonl(REG_RD(bp, offset + 4*word));
698 		data[8] = 0x0;
699 		pr_cont("%s", (char *)data);
700 	}
701 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
702 		for (word = 0; word < 8; word++)
703 			data[word] = htonl(REG_RD(bp, offset + 4*word));
704 		data[8] = 0x0;
705 		pr_cont("%s", (char *)data);
706 	}
707 	printk("%s" "end of fw dump\n", lvl);
708 }
709 
710 static void bnx2x_fw_dump(struct bnx2x *bp)
711 {
712 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
713 }
714 
715 void bnx2x_panic_dump(struct bnx2x *bp)
716 {
717 	int i;
718 	u16 j;
719 	struct hc_sp_status_block_data sp_sb_data;
720 	int func = BP_FUNC(bp);
721 #ifdef BNX2X_STOP_ON_ERROR
722 	u16 start = 0, end = 0;
723 	u8 cos;
724 #endif
725 
726 	bp->stats_state = STATS_STATE_DISABLED;
727 	bp->eth_stats.unrecoverable_error++;
728 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
729 
730 	BNX2X_ERR("begin crash dump -----------------\n");
731 
732 	/* Indices */
733 	/* Common */
734 	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
735 		  bp->def_idx, bp->def_att_idx, bp->attn_state,
736 		  bp->spq_prod_idx, bp->stats_counter);
737 	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
738 		  bp->def_status_blk->atten_status_block.attn_bits,
739 		  bp->def_status_blk->atten_status_block.attn_bits_ack,
740 		  bp->def_status_blk->atten_status_block.status_block_id,
741 		  bp->def_status_blk->atten_status_block.attn_bits_index);
742 	BNX2X_ERR("     def (");
743 	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
744 		pr_cont("0x%x%s",
745 			bp->def_status_blk->sp_sb.index_values[i],
746 			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
747 
748 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
749 		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
750 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
751 			i*sizeof(u32));
752 
753 	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
754 	       sp_sb_data.igu_sb_id,
755 	       sp_sb_data.igu_seg_id,
756 	       sp_sb_data.p_func.pf_id,
757 	       sp_sb_data.p_func.vnic_id,
758 	       sp_sb_data.p_func.vf_id,
759 	       sp_sb_data.p_func.vf_valid,
760 	       sp_sb_data.state);
761 
762 
763 	for_each_eth_queue(bp, i) {
764 		struct bnx2x_fastpath *fp = &bp->fp[i];
765 		int loop;
766 		struct hc_status_block_data_e2 sb_data_e2;
767 		struct hc_status_block_data_e1x sb_data_e1x;
768 		struct hc_status_block_sm  *hc_sm_p =
769 			CHIP_IS_E1x(bp) ?
770 			sb_data_e1x.common.state_machine :
771 			sb_data_e2.common.state_machine;
772 		struct hc_index_data *hc_index_p =
773 			CHIP_IS_E1x(bp) ?
774 			sb_data_e1x.index_data :
775 			sb_data_e2.index_data;
776 		u8 data_size, cos;
777 		u32 *sb_data_p;
778 		struct bnx2x_fp_txdata txdata;
779 
780 		/* Rx */
781 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
782 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
783 			  fp->rx_comp_prod,
784 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
785 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
786 			  fp->rx_sge_prod, fp->last_max_sge,
787 			  le16_to_cpu(fp->fp_hc_idx));
788 
789 		/* Tx */
790 		for_each_cos_in_tx_queue(fp, cos)
791 		{
792 			txdata = *fp->txdata_ptr[cos];
793 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
794 				  i, txdata.tx_pkt_prod,
795 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
796 				  txdata.tx_bd_cons,
797 				  le16_to_cpu(*txdata.tx_cons_sb));
798 		}
799 
800 		loop = CHIP_IS_E1x(bp) ?
801 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
802 
803 		/* host sb data */
804 
805 		if (IS_FCOE_FP(fp))
806 			continue;
807 
808 		BNX2X_ERR("     run indexes (");
809 		for (j = 0; j < HC_SB_MAX_SM; j++)
810 			pr_cont("0x%x%s",
811 			       fp->sb_running_index[j],
812 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
813 
814 		BNX2X_ERR("     indexes (");
815 		for (j = 0; j < loop; j++)
816 			pr_cont("0x%x%s",
817 			       fp->sb_index_values[j],
818 			       (j == loop - 1) ? ")" : " ");
819 		/* fw sb data */
820 		data_size = CHIP_IS_E1x(bp) ?
821 			sizeof(struct hc_status_block_data_e1x) :
822 			sizeof(struct hc_status_block_data_e2);
823 		data_size /= sizeof(u32);
824 		sb_data_p = CHIP_IS_E1x(bp) ?
825 			(u32 *)&sb_data_e1x :
826 			(u32 *)&sb_data_e2;
827 		/* copy sb data in here */
828 		for (j = 0; j < data_size; j++)
829 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
830 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
831 				j * sizeof(u32));
832 
833 		if (!CHIP_IS_E1x(bp)) {
834 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
835 				sb_data_e2.common.p_func.pf_id,
836 				sb_data_e2.common.p_func.vf_id,
837 				sb_data_e2.common.p_func.vf_valid,
838 				sb_data_e2.common.p_func.vnic_id,
839 				sb_data_e2.common.same_igu_sb_1b,
840 				sb_data_e2.common.state);
841 		} else {
842 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
843 				sb_data_e1x.common.p_func.pf_id,
844 				sb_data_e1x.common.p_func.vf_id,
845 				sb_data_e1x.common.p_func.vf_valid,
846 				sb_data_e1x.common.p_func.vnic_id,
847 				sb_data_e1x.common.same_igu_sb_1b,
848 				sb_data_e1x.common.state);
849 		}
850 
851 		/* SB_SMs data */
852 		for (j = 0; j < HC_SB_MAX_SM; j++) {
853 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
854 				j, hc_sm_p[j].__flags,
855 				hc_sm_p[j].igu_sb_id,
856 				hc_sm_p[j].igu_seg_id,
857 				hc_sm_p[j].time_to_expire,
858 				hc_sm_p[j].timer_value);
859 		}
860 
861 		/* Indecies data */
862 		for (j = 0; j < loop; j++) {
863 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
864 			       hc_index_p[j].flags,
865 			       hc_index_p[j].timeout);
866 		}
867 	}
868 
869 #ifdef BNX2X_STOP_ON_ERROR
870 	/* Rings */
871 	/* Rx */
872 	for_each_valid_rx_queue(bp, i) {
873 		struct bnx2x_fastpath *fp = &bp->fp[i];
874 
875 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
876 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
877 		for (j = start; j != end; j = RX_BD(j + 1)) {
878 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
879 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
880 
881 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
882 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
883 		}
884 
885 		start = RX_SGE(fp->rx_sge_prod);
886 		end = RX_SGE(fp->last_max_sge);
887 		for (j = start; j != end; j = RX_SGE(j + 1)) {
888 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
889 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
890 
891 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
892 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
893 		}
894 
895 		start = RCQ_BD(fp->rx_comp_cons - 10);
896 		end = RCQ_BD(fp->rx_comp_cons + 503);
897 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
898 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
899 
900 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
901 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
902 		}
903 	}
904 
905 	/* Tx */
906 	for_each_valid_tx_queue(bp, i) {
907 		struct bnx2x_fastpath *fp = &bp->fp[i];
908 		for_each_cos_in_tx_queue(fp, cos) {
909 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
910 
911 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
912 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
913 			for (j = start; j != end; j = TX_BD(j + 1)) {
914 				struct sw_tx_bd *sw_bd =
915 					&txdata->tx_buf_ring[j];
916 
917 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
918 					  i, cos, j, sw_bd->skb,
919 					  sw_bd->first_bd);
920 			}
921 
922 			start = TX_BD(txdata->tx_bd_cons - 10);
923 			end = TX_BD(txdata->tx_bd_cons + 254);
924 			for (j = start; j != end; j = TX_BD(j + 1)) {
925 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
926 
927 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
928 					  i, cos, j, tx_bd[0], tx_bd[1],
929 					  tx_bd[2], tx_bd[3]);
930 			}
931 		}
932 	}
933 #endif
934 	bnx2x_fw_dump(bp);
935 	bnx2x_mc_assert(bp);
936 	BNX2X_ERR("end crash dump -----------------\n");
937 }
938 
939 /*
940  * FLR Support for E2
941  *
942  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
943  * initialization.
944  */
945 #define FLR_WAIT_USEC		10000	/* 10 miliseconds */
946 #define FLR_WAIT_INTERVAL	50	/* usec */
947 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
948 
949 struct pbf_pN_buf_regs {
950 	int pN;
951 	u32 init_crd;
952 	u32 crd;
953 	u32 crd_freed;
954 };
955 
956 struct pbf_pN_cmd_regs {
957 	int pN;
958 	u32 lines_occup;
959 	u32 lines_freed;
960 };
961 
962 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
963 				     struct pbf_pN_buf_regs *regs,
964 				     u32 poll_count)
965 {
966 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
967 	u32 cur_cnt = poll_count;
968 
969 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
970 	crd = crd_start = REG_RD(bp, regs->crd);
971 	init_crd = REG_RD(bp, regs->init_crd);
972 
973 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
974 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
975 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
976 
977 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
978 	       (init_crd - crd_start))) {
979 		if (cur_cnt--) {
980 			udelay(FLR_WAIT_INTERVAL);
981 			crd = REG_RD(bp, regs->crd);
982 			crd_freed = REG_RD(bp, regs->crd_freed);
983 		} else {
984 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
985 			   regs->pN);
986 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
987 			   regs->pN, crd);
988 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
989 			   regs->pN, crd_freed);
990 			break;
991 		}
992 	}
993 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
994 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
995 }
996 
997 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
998 				     struct pbf_pN_cmd_regs *regs,
999 				     u32 poll_count)
1000 {
1001 	u32 occup, to_free, freed, freed_start;
1002 	u32 cur_cnt = poll_count;
1003 
1004 	occup = to_free = REG_RD(bp, regs->lines_occup);
1005 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1006 
1007 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1008 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1009 
1010 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1011 		if (cur_cnt--) {
1012 			udelay(FLR_WAIT_INTERVAL);
1013 			occup = REG_RD(bp, regs->lines_occup);
1014 			freed = REG_RD(bp, regs->lines_freed);
1015 		} else {
1016 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1017 			   regs->pN);
1018 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1019 			   regs->pN, occup);
1020 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1021 			   regs->pN, freed);
1022 			break;
1023 		}
1024 	}
1025 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1026 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1027 }
1028 
1029 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1030 				    u32 expected, u32 poll_count)
1031 {
1032 	u32 cur_cnt = poll_count;
1033 	u32 val;
1034 
1035 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1036 		udelay(FLR_WAIT_INTERVAL);
1037 
1038 	return val;
1039 }
1040 
1041 static int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1042 					   char *msg, u32 poll_cnt)
1043 {
1044 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1045 	if (val != 0) {
1046 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1047 		return 1;
1048 	}
1049 	return 0;
1050 }
1051 
1052 static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1053 {
1054 	/* adjust polling timeout */
1055 	if (CHIP_REV_IS_EMUL(bp))
1056 		return FLR_POLL_CNT * 2000;
1057 
1058 	if (CHIP_REV_IS_FPGA(bp))
1059 		return FLR_POLL_CNT * 120;
1060 
1061 	return FLR_POLL_CNT;
1062 }
1063 
1064 static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1065 {
1066 	struct pbf_pN_cmd_regs cmd_regs[] = {
1067 		{0, (CHIP_IS_E3B0(bp)) ?
1068 			PBF_REG_TQ_OCCUPANCY_Q0 :
1069 			PBF_REG_P0_TQ_OCCUPANCY,
1070 		    (CHIP_IS_E3B0(bp)) ?
1071 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1072 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1073 		{1, (CHIP_IS_E3B0(bp)) ?
1074 			PBF_REG_TQ_OCCUPANCY_Q1 :
1075 			PBF_REG_P1_TQ_OCCUPANCY,
1076 		    (CHIP_IS_E3B0(bp)) ?
1077 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1078 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1079 		{4, (CHIP_IS_E3B0(bp)) ?
1080 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1081 			PBF_REG_P4_TQ_OCCUPANCY,
1082 		    (CHIP_IS_E3B0(bp)) ?
1083 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1084 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1085 	};
1086 
1087 	struct pbf_pN_buf_regs buf_regs[] = {
1088 		{0, (CHIP_IS_E3B0(bp)) ?
1089 			PBF_REG_INIT_CRD_Q0 :
1090 			PBF_REG_P0_INIT_CRD ,
1091 		    (CHIP_IS_E3B0(bp)) ?
1092 			PBF_REG_CREDIT_Q0 :
1093 			PBF_REG_P0_CREDIT,
1094 		    (CHIP_IS_E3B0(bp)) ?
1095 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1096 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1097 		{1, (CHIP_IS_E3B0(bp)) ?
1098 			PBF_REG_INIT_CRD_Q1 :
1099 			PBF_REG_P1_INIT_CRD,
1100 		    (CHIP_IS_E3B0(bp)) ?
1101 			PBF_REG_CREDIT_Q1 :
1102 			PBF_REG_P1_CREDIT,
1103 		    (CHIP_IS_E3B0(bp)) ?
1104 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1105 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1106 		{4, (CHIP_IS_E3B0(bp)) ?
1107 			PBF_REG_INIT_CRD_LB_Q :
1108 			PBF_REG_P4_INIT_CRD,
1109 		    (CHIP_IS_E3B0(bp)) ?
1110 			PBF_REG_CREDIT_LB_Q :
1111 			PBF_REG_P4_CREDIT,
1112 		    (CHIP_IS_E3B0(bp)) ?
1113 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1114 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1115 	};
1116 
1117 	int i;
1118 
1119 	/* Verify the command queues are flushed P0, P1, P4 */
1120 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1121 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1122 
1123 
1124 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1125 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1126 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1127 }
1128 
1129 #define OP_GEN_PARAM(param) \
1130 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1131 
1132 #define OP_GEN_TYPE(type) \
1133 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1134 
1135 #define OP_GEN_AGG_VECT(index) \
1136 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1137 
1138 
1139 static int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1140 					 u32 poll_cnt)
1141 {
1142 	struct sdm_op_gen op_gen = {0};
1143 
1144 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1145 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1146 	int ret = 0;
1147 
1148 	if (REG_RD(bp, comp_addr)) {
1149 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1150 		return 1;
1151 	}
1152 
1153 	op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1154 	op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1155 	op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1156 	op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1157 
1158 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1159 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1160 
1161 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1162 		BNX2X_ERR("FW final cleanup did not succeed\n");
1163 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1164 		   (REG_RD(bp, comp_addr)));
1165 		ret = 1;
1166 	}
1167 	/* Zero completion for nxt FLR */
1168 	REG_WR(bp, comp_addr, 0);
1169 
1170 	return ret;
1171 }
1172 
1173 static u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1174 {
1175 	u16 status;
1176 
1177 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1178 	return status & PCI_EXP_DEVSTA_TRPND;
1179 }
1180 
1181 /* PF FLR specific routines
1182 */
1183 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1184 {
1185 
1186 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1187 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1188 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1189 			"CFC PF usage counter timed out",
1190 			poll_cnt))
1191 		return 1;
1192 
1193 
1194 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1195 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1196 			DORQ_REG_PF_USAGE_CNT,
1197 			"DQ PF usage counter timed out",
1198 			poll_cnt))
1199 		return 1;
1200 
1201 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1202 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1203 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1204 			"QM PF usage counter timed out",
1205 			poll_cnt))
1206 		return 1;
1207 
1208 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1209 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1210 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1211 			"Timers VNIC usage counter timed out",
1212 			poll_cnt))
1213 		return 1;
1214 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1215 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1216 			"Timers NUM_SCANS usage counter timed out",
1217 			poll_cnt))
1218 		return 1;
1219 
1220 	/* Wait DMAE PF usage counter to zero */
1221 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1222 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1223 			"DMAE dommand register timed out",
1224 			poll_cnt))
1225 		return 1;
1226 
1227 	return 0;
1228 }
1229 
1230 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1231 {
1232 	u32 val;
1233 
1234 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1235 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1236 
1237 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1238 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1239 
1240 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1241 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1242 
1243 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1244 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1245 
1246 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1247 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1248 
1249 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1250 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1251 
1252 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1253 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1254 
1255 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1256 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1257 	   val);
1258 }
1259 
1260 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1261 {
1262 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1263 
1264 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1265 
1266 	/* Re-enable PF target read access */
1267 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1268 
1269 	/* Poll HW usage counters */
1270 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1271 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1272 		return -EBUSY;
1273 
1274 	/* Zero the igu 'trailing edge' and 'leading edge' */
1275 
1276 	/* Send the FW cleanup command */
1277 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1278 		return -EBUSY;
1279 
1280 	/* ATC cleanup */
1281 
1282 	/* Verify TX hw is flushed */
1283 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1284 
1285 	/* Wait 100ms (not adjusted according to platform) */
1286 	msleep(100);
1287 
1288 	/* Verify no pending pci transactions */
1289 	if (bnx2x_is_pcie_pending(bp->pdev))
1290 		BNX2X_ERR("PCIE Transactions still pending\n");
1291 
1292 	/* Debug */
1293 	bnx2x_hw_enable_status(bp);
1294 
1295 	/*
1296 	 * Master enable - Due to WB DMAE writes performed before this
1297 	 * register is re-initialized as part of the regular function init
1298 	 */
1299 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1300 
1301 	return 0;
1302 }
1303 
1304 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1305 {
1306 	int port = BP_PORT(bp);
1307 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1308 	u32 val = REG_RD(bp, addr);
1309 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1310 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1311 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1312 
1313 	if (msix) {
1314 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1315 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1316 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1317 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1318 		if (single_msix)
1319 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1320 	} else if (msi) {
1321 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1322 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1323 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1324 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1325 	} else {
1326 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1327 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1328 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1329 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1330 
1331 		if (!CHIP_IS_E1(bp)) {
1332 			DP(NETIF_MSG_IFUP,
1333 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1334 
1335 			REG_WR(bp, addr, val);
1336 
1337 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1338 		}
1339 	}
1340 
1341 	if (CHIP_IS_E1(bp))
1342 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1343 
1344 	DP(NETIF_MSG_IFUP,
1345 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1346 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1347 
1348 	REG_WR(bp, addr, val);
1349 	/*
1350 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1351 	 */
1352 	mmiowb();
1353 	barrier();
1354 
1355 	if (!CHIP_IS_E1(bp)) {
1356 		/* init leading/trailing edge */
1357 		if (IS_MF(bp)) {
1358 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1359 			if (bp->port.pmf)
1360 				/* enable nig and gpio3 attention */
1361 				val |= 0x1100;
1362 		} else
1363 			val = 0xffff;
1364 
1365 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1366 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1367 	}
1368 
1369 	/* Make sure that interrupts are indeed enabled from here on */
1370 	mmiowb();
1371 }
1372 
1373 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1374 {
1375 	u32 val;
1376 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1377 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1378 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1379 
1380 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1381 
1382 	if (msix) {
1383 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1384 			 IGU_PF_CONF_SINGLE_ISR_EN);
1385 		val |= (IGU_PF_CONF_FUNC_EN |
1386 			IGU_PF_CONF_MSI_MSIX_EN |
1387 			IGU_PF_CONF_ATTN_BIT_EN);
1388 
1389 		if (single_msix)
1390 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1391 	} else if (msi) {
1392 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1393 		val |= (IGU_PF_CONF_FUNC_EN |
1394 			IGU_PF_CONF_MSI_MSIX_EN |
1395 			IGU_PF_CONF_ATTN_BIT_EN |
1396 			IGU_PF_CONF_SINGLE_ISR_EN);
1397 	} else {
1398 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1399 		val |= (IGU_PF_CONF_FUNC_EN |
1400 			IGU_PF_CONF_INT_LINE_EN |
1401 			IGU_PF_CONF_ATTN_BIT_EN |
1402 			IGU_PF_CONF_SINGLE_ISR_EN);
1403 	}
1404 
1405 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1406 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1407 
1408 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1409 
1410 	if (val & IGU_PF_CONF_INT_LINE_EN)
1411 		pci_intx(bp->pdev, true);
1412 
1413 	barrier();
1414 
1415 	/* init leading/trailing edge */
1416 	if (IS_MF(bp)) {
1417 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1418 		if (bp->port.pmf)
1419 			/* enable nig and gpio3 attention */
1420 			val |= 0x1100;
1421 	} else
1422 		val = 0xffff;
1423 
1424 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1425 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1426 
1427 	/* Make sure that interrupts are indeed enabled from here on */
1428 	mmiowb();
1429 }
1430 
1431 void bnx2x_int_enable(struct bnx2x *bp)
1432 {
1433 	if (bp->common.int_block == INT_BLOCK_HC)
1434 		bnx2x_hc_int_enable(bp);
1435 	else
1436 		bnx2x_igu_int_enable(bp);
1437 }
1438 
1439 static void bnx2x_hc_int_disable(struct bnx2x *bp)
1440 {
1441 	int port = BP_PORT(bp);
1442 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1443 	u32 val = REG_RD(bp, addr);
1444 
1445 	/*
1446 	 * in E1 we must use only PCI configuration space to disable
1447 	 * MSI/MSIX capablility
1448 	 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1449 	 */
1450 	if (CHIP_IS_E1(bp)) {
1451 		/*  Since IGU_PF_CONF_MSI_MSIX_EN still always on
1452 		 *  Use mask register to prevent from HC sending interrupts
1453 		 *  after we exit the function
1454 		 */
1455 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1456 
1457 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1458 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1459 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1460 	} else
1461 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1462 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1463 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1464 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1465 
1466 	DP(NETIF_MSG_IFDOWN,
1467 	   "write %x to HC %d (addr 0x%x)\n",
1468 	   val, port, addr);
1469 
1470 	/* flush all outstanding writes */
1471 	mmiowb();
1472 
1473 	REG_WR(bp, addr, val);
1474 	if (REG_RD(bp, addr) != val)
1475 		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1476 }
1477 
1478 static void bnx2x_igu_int_disable(struct bnx2x *bp)
1479 {
1480 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1481 
1482 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1483 		 IGU_PF_CONF_INT_LINE_EN |
1484 		 IGU_PF_CONF_ATTN_BIT_EN);
1485 
1486 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
1487 
1488 	/* flush all outstanding writes */
1489 	mmiowb();
1490 
1491 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1492 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1493 		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1494 }
1495 
1496 static void bnx2x_int_disable(struct bnx2x *bp)
1497 {
1498 	if (bp->common.int_block == INT_BLOCK_HC)
1499 		bnx2x_hc_int_disable(bp);
1500 	else
1501 		bnx2x_igu_int_disable(bp);
1502 }
1503 
1504 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1505 {
1506 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1507 	int i, offset;
1508 
1509 	if (disable_hw)
1510 		/* prevent the HW from sending interrupts */
1511 		bnx2x_int_disable(bp);
1512 
1513 	/* make sure all ISRs are done */
1514 	if (msix) {
1515 		synchronize_irq(bp->msix_table[0].vector);
1516 		offset = 1;
1517 		if (CNIC_SUPPORT(bp))
1518 			offset++;
1519 		for_each_eth_queue(bp, i)
1520 			synchronize_irq(bp->msix_table[offset++].vector);
1521 	} else
1522 		synchronize_irq(bp->pdev->irq);
1523 
1524 	/* make sure sp_task is not running */
1525 	cancel_delayed_work(&bp->sp_task);
1526 	cancel_delayed_work(&bp->period_task);
1527 	flush_workqueue(bnx2x_wq);
1528 }
1529 
1530 /* fast path */
1531 
1532 /*
1533  * General service functions
1534  */
1535 
1536 /* Return true if succeeded to acquire the lock */
1537 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1538 {
1539 	u32 lock_status;
1540 	u32 resource_bit = (1 << resource);
1541 	int func = BP_FUNC(bp);
1542 	u32 hw_lock_control_reg;
1543 
1544 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1545 	   "Trying to take a lock on resource %d\n", resource);
1546 
1547 	/* Validating that the resource is within range */
1548 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1549 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1550 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1551 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1552 		return false;
1553 	}
1554 
1555 	if (func <= 5)
1556 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1557 	else
1558 		hw_lock_control_reg =
1559 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1560 
1561 	/* Try to acquire the lock */
1562 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1563 	lock_status = REG_RD(bp, hw_lock_control_reg);
1564 	if (lock_status & resource_bit)
1565 		return true;
1566 
1567 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1568 	   "Failed to get a lock on resource %d\n", resource);
1569 	return false;
1570 }
1571 
1572 /**
1573  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1574  *
1575  * @bp:	driver handle
1576  *
1577  * Returns the recovery leader resource id according to the engine this function
1578  * belongs to. Currently only only 2 engines is supported.
1579  */
1580 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1581 {
1582 	if (BP_PATH(bp))
1583 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1584 	else
1585 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1586 }
1587 
1588 /**
1589  * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1590  *
1591  * @bp: driver handle
1592  *
1593  * Tries to aquire a leader lock for current engine.
1594  */
1595 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1596 {
1597 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1598 }
1599 
1600 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1601 
1602 
1603 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1604 {
1605 	struct bnx2x *bp = fp->bp;
1606 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1607 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1608 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1609 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1610 
1611 	DP(BNX2X_MSG_SP,
1612 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1613 	   fp->index, cid, command, bp->state,
1614 	   rr_cqe->ramrod_cqe.ramrod_type);
1615 
1616 	switch (command) {
1617 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1618 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1619 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1620 		break;
1621 
1622 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1623 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1624 		drv_cmd = BNX2X_Q_CMD_SETUP;
1625 		break;
1626 
1627 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1628 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1629 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1630 		break;
1631 
1632 	case (RAMROD_CMD_ID_ETH_HALT):
1633 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1634 		drv_cmd = BNX2X_Q_CMD_HALT;
1635 		break;
1636 
1637 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1638 		DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1639 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1640 		break;
1641 
1642 	case (RAMROD_CMD_ID_ETH_EMPTY):
1643 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1644 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1645 		break;
1646 
1647 	default:
1648 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1649 			  command, fp->index);
1650 		return;
1651 	}
1652 
1653 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1654 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1655 		/* q_obj->complete_cmd() failure means that this was
1656 		 * an unexpected completion.
1657 		 *
1658 		 * In this case we don't want to increase the bp->spq_left
1659 		 * because apparently we haven't sent this command the first
1660 		 * place.
1661 		 */
1662 #ifdef BNX2X_STOP_ON_ERROR
1663 		bnx2x_panic();
1664 #else
1665 		return;
1666 #endif
1667 
1668 	smp_mb__before_atomic_inc();
1669 	atomic_inc(&bp->cq_spq_left);
1670 	/* push the change in bp->spq_left and towards the memory */
1671 	smp_mb__after_atomic_inc();
1672 
1673 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1674 
1675 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1676 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1677 		/* if Q update ramrod is completed for last Q in AFEX vif set
1678 		 * flow, then ACK MCP at the end
1679 		 *
1680 		 * mark pending ACK to MCP bit.
1681 		 * prevent case that both bits are cleared.
1682 		 * At the end of load/unload driver checks that
1683 		 * sp_state is cleaerd, and this order prevents
1684 		 * races
1685 		 */
1686 		smp_mb__before_clear_bit();
1687 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1688 		wmb();
1689 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1690 		smp_mb__after_clear_bit();
1691 
1692 		/* schedule workqueue to send ack to MCP */
1693 		queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1694 	}
1695 
1696 	return;
1697 }
1698 
1699 void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1700 			u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1701 {
1702 	u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1703 
1704 	bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1705 				 start);
1706 }
1707 
1708 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1709 {
1710 	struct bnx2x *bp = netdev_priv(dev_instance);
1711 	u16 status = bnx2x_ack_int(bp);
1712 	u16 mask;
1713 	int i;
1714 	u8 cos;
1715 
1716 	/* Return here if interrupt is shared and it's not for us */
1717 	if (unlikely(status == 0)) {
1718 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1719 		return IRQ_NONE;
1720 	}
1721 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1722 
1723 #ifdef BNX2X_STOP_ON_ERROR
1724 	if (unlikely(bp->panic))
1725 		return IRQ_HANDLED;
1726 #endif
1727 
1728 	for_each_eth_queue(bp, i) {
1729 		struct bnx2x_fastpath *fp = &bp->fp[i];
1730 
1731 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1732 		if (status & mask) {
1733 			/* Handle Rx or Tx according to SB id */
1734 			prefetch(fp->rx_cons_sb);
1735 			for_each_cos_in_tx_queue(fp, cos)
1736 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1737 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1738 			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1739 			status &= ~mask;
1740 		}
1741 	}
1742 
1743 	if (CNIC_SUPPORT(bp)) {
1744 		mask = 0x2;
1745 		if (status & (mask | 0x1)) {
1746 			struct cnic_ops *c_ops = NULL;
1747 
1748 			if (likely(bp->state == BNX2X_STATE_OPEN)) {
1749 				rcu_read_lock();
1750 				c_ops = rcu_dereference(bp->cnic_ops);
1751 				if (c_ops)
1752 					c_ops->cnic_handler(bp->cnic_data,
1753 							    NULL);
1754 				rcu_read_unlock();
1755 			}
1756 
1757 			status &= ~mask;
1758 		}
1759 	}
1760 
1761 	if (unlikely(status & 0x1)) {
1762 		queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1763 
1764 		status &= ~0x1;
1765 		if (!status)
1766 			return IRQ_HANDLED;
1767 	}
1768 
1769 	if (unlikely(status))
1770 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1771 		   status);
1772 
1773 	return IRQ_HANDLED;
1774 }
1775 
1776 /* Link */
1777 
1778 /*
1779  * General service functions
1780  */
1781 
1782 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1783 {
1784 	u32 lock_status;
1785 	u32 resource_bit = (1 << resource);
1786 	int func = BP_FUNC(bp);
1787 	u32 hw_lock_control_reg;
1788 	int cnt;
1789 
1790 	/* Validating that the resource is within range */
1791 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1792 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1793 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1794 		return -EINVAL;
1795 	}
1796 
1797 	if (func <= 5) {
1798 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1799 	} else {
1800 		hw_lock_control_reg =
1801 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1802 	}
1803 
1804 	/* Validating that the resource is not already taken */
1805 	lock_status = REG_RD(bp, hw_lock_control_reg);
1806 	if (lock_status & resource_bit) {
1807 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1808 		   lock_status, resource_bit);
1809 		return -EEXIST;
1810 	}
1811 
1812 	/* Try for 5 second every 5ms */
1813 	for (cnt = 0; cnt < 1000; cnt++) {
1814 		/* Try to acquire the lock */
1815 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1816 		lock_status = REG_RD(bp, hw_lock_control_reg);
1817 		if (lock_status & resource_bit)
1818 			return 0;
1819 
1820 		msleep(5);
1821 	}
1822 	BNX2X_ERR("Timeout\n");
1823 	return -EAGAIN;
1824 }
1825 
1826 int bnx2x_release_leader_lock(struct bnx2x *bp)
1827 {
1828 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1829 }
1830 
1831 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1832 {
1833 	u32 lock_status;
1834 	u32 resource_bit = (1 << resource);
1835 	int func = BP_FUNC(bp);
1836 	u32 hw_lock_control_reg;
1837 
1838 	/* Validating that the resource is within range */
1839 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1840 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1841 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1842 		return -EINVAL;
1843 	}
1844 
1845 	if (func <= 5) {
1846 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1847 	} else {
1848 		hw_lock_control_reg =
1849 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1850 	}
1851 
1852 	/* Validating that the resource is currently taken */
1853 	lock_status = REG_RD(bp, hw_lock_control_reg);
1854 	if (!(lock_status & resource_bit)) {
1855 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. unlock was called but lock wasn't taken!\n",
1856 		   lock_status, resource_bit);
1857 		return -EFAULT;
1858 	}
1859 
1860 	REG_WR(bp, hw_lock_control_reg, resource_bit);
1861 	return 0;
1862 }
1863 
1864 
1865 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1866 {
1867 	/* The GPIO should be swapped if swap register is set and active */
1868 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1869 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1870 	int gpio_shift = gpio_num +
1871 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1872 	u32 gpio_mask = (1 << gpio_shift);
1873 	u32 gpio_reg;
1874 	int value;
1875 
1876 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1877 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1878 		return -EINVAL;
1879 	}
1880 
1881 	/* read GPIO value */
1882 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1883 
1884 	/* get the requested pin value */
1885 	if ((gpio_reg & gpio_mask) == gpio_mask)
1886 		value = 1;
1887 	else
1888 		value = 0;
1889 
1890 	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
1891 
1892 	return value;
1893 }
1894 
1895 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1896 {
1897 	/* The GPIO should be swapped if swap register is set and active */
1898 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1899 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1900 	int gpio_shift = gpio_num +
1901 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1902 	u32 gpio_mask = (1 << gpio_shift);
1903 	u32 gpio_reg;
1904 
1905 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1906 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1907 		return -EINVAL;
1908 	}
1909 
1910 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1911 	/* read GPIO and mask except the float bits */
1912 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1913 
1914 	switch (mode) {
1915 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1916 		DP(NETIF_MSG_LINK,
1917 		   "Set GPIO %d (shift %d) -> output low\n",
1918 		   gpio_num, gpio_shift);
1919 		/* clear FLOAT and set CLR */
1920 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1921 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1922 		break;
1923 
1924 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1925 		DP(NETIF_MSG_LINK,
1926 		   "Set GPIO %d (shift %d) -> output high\n",
1927 		   gpio_num, gpio_shift);
1928 		/* clear FLOAT and set SET */
1929 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1930 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1931 		break;
1932 
1933 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1934 		DP(NETIF_MSG_LINK,
1935 		   "Set GPIO %d (shift %d) -> input\n",
1936 		   gpio_num, gpio_shift);
1937 		/* set FLOAT */
1938 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1939 		break;
1940 
1941 	default:
1942 		break;
1943 	}
1944 
1945 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1946 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1947 
1948 	return 0;
1949 }
1950 
1951 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1952 {
1953 	u32 gpio_reg = 0;
1954 	int rc = 0;
1955 
1956 	/* Any port swapping should be handled by caller. */
1957 
1958 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1959 	/* read GPIO and mask except the float bits */
1960 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1961 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1962 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1963 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1964 
1965 	switch (mode) {
1966 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1967 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
1968 		/* set CLR */
1969 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
1970 		break;
1971 
1972 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1973 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
1974 		/* set SET */
1975 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
1976 		break;
1977 
1978 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1979 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
1980 		/* set FLOAT */
1981 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1982 		break;
1983 
1984 	default:
1985 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
1986 		rc = -EINVAL;
1987 		break;
1988 	}
1989 
1990 	if (rc == 0)
1991 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1992 
1993 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1994 
1995 	return rc;
1996 }
1997 
1998 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1999 {
2000 	/* The GPIO should be swapped if swap register is set and active */
2001 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2002 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2003 	int gpio_shift = gpio_num +
2004 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2005 	u32 gpio_mask = (1 << gpio_shift);
2006 	u32 gpio_reg;
2007 
2008 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2009 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2010 		return -EINVAL;
2011 	}
2012 
2013 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2014 	/* read GPIO int */
2015 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2016 
2017 	switch (mode) {
2018 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2019 		DP(NETIF_MSG_LINK,
2020 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2021 		   gpio_num, gpio_shift);
2022 		/* clear SET and set CLR */
2023 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2024 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2025 		break;
2026 
2027 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2028 		DP(NETIF_MSG_LINK,
2029 		   "Set GPIO INT %d (shift %d) -> output high\n",
2030 		   gpio_num, gpio_shift);
2031 		/* clear CLR and set SET */
2032 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2033 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2034 		break;
2035 
2036 	default:
2037 		break;
2038 	}
2039 
2040 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2041 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2042 
2043 	return 0;
2044 }
2045 
2046 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2047 {
2048 	u32 spio_reg;
2049 
2050 	/* Only 2 SPIOs are configurable */
2051 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2052 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2053 		return -EINVAL;
2054 	}
2055 
2056 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2057 	/* read SPIO and mask except the float bits */
2058 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2059 
2060 	switch (mode) {
2061 	case MISC_SPIO_OUTPUT_LOW:
2062 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2063 		/* clear FLOAT and set CLR */
2064 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2065 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2066 		break;
2067 
2068 	case MISC_SPIO_OUTPUT_HIGH:
2069 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2070 		/* clear FLOAT and set SET */
2071 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2072 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2073 		break;
2074 
2075 	case MISC_SPIO_INPUT_HI_Z:
2076 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2077 		/* set FLOAT */
2078 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2079 		break;
2080 
2081 	default:
2082 		break;
2083 	}
2084 
2085 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2086 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2087 
2088 	return 0;
2089 }
2090 
2091 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2092 {
2093 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2094 	switch (bp->link_vars.ieee_fc &
2095 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2096 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2097 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2098 						   ADVERTISED_Pause);
2099 		break;
2100 
2101 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2102 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2103 						  ADVERTISED_Pause);
2104 		break;
2105 
2106 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2107 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2108 		break;
2109 
2110 	default:
2111 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2112 						   ADVERTISED_Pause);
2113 		break;
2114 	}
2115 }
2116 
2117 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2118 {
2119 	/* Initialize link parameters structure variables
2120 	 * It is recommended to turn off RX FC for jumbo frames
2121 	 *  for better performance
2122 	 */
2123 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2124 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2125 	else
2126 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2127 }
2128 
2129 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2130 {
2131 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2132 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2133 
2134 	if (!BP_NOMCP(bp)) {
2135 		bnx2x_set_requested_fc(bp);
2136 		bnx2x_acquire_phy_lock(bp);
2137 
2138 		if (load_mode == LOAD_DIAG) {
2139 			struct link_params *lp = &bp->link_params;
2140 			lp->loopback_mode = LOOPBACK_XGXS;
2141 			/* do PHY loopback at 10G speed, if possible */
2142 			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2143 				if (lp->speed_cap_mask[cfx_idx] &
2144 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2145 					lp->req_line_speed[cfx_idx] =
2146 					SPEED_10000;
2147 				else
2148 					lp->req_line_speed[cfx_idx] =
2149 					SPEED_1000;
2150 			}
2151 		}
2152 
2153 		if (load_mode == LOAD_LOOPBACK_EXT) {
2154 			struct link_params *lp = &bp->link_params;
2155 			lp->loopback_mode = LOOPBACK_EXT;
2156 		}
2157 
2158 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2159 
2160 		bnx2x_release_phy_lock(bp);
2161 
2162 		bnx2x_calc_fc_adv(bp);
2163 
2164 		if (bp->link_vars.link_up) {
2165 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2166 			bnx2x_link_report(bp);
2167 		}
2168 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2169 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2170 		return rc;
2171 	}
2172 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2173 	return -EINVAL;
2174 }
2175 
2176 void bnx2x_link_set(struct bnx2x *bp)
2177 {
2178 	if (!BP_NOMCP(bp)) {
2179 		bnx2x_acquire_phy_lock(bp);
2180 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2181 		bnx2x_release_phy_lock(bp);
2182 
2183 		bnx2x_calc_fc_adv(bp);
2184 	} else
2185 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2186 }
2187 
2188 static void bnx2x__link_reset(struct bnx2x *bp)
2189 {
2190 	if (!BP_NOMCP(bp)) {
2191 		bnx2x_acquire_phy_lock(bp);
2192 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2193 		bnx2x_release_phy_lock(bp);
2194 	} else
2195 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2196 }
2197 
2198 void bnx2x_force_link_reset(struct bnx2x *bp)
2199 {
2200 	bnx2x_acquire_phy_lock(bp);
2201 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2202 	bnx2x_release_phy_lock(bp);
2203 }
2204 
2205 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2206 {
2207 	u8 rc = 0;
2208 
2209 	if (!BP_NOMCP(bp)) {
2210 		bnx2x_acquire_phy_lock(bp);
2211 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2212 				     is_serdes);
2213 		bnx2x_release_phy_lock(bp);
2214 	} else
2215 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2216 
2217 	return rc;
2218 }
2219 
2220 
2221 /* Calculates the sum of vn_min_rates.
2222    It's needed for further normalizing of the min_rates.
2223    Returns:
2224      sum of vn_min_rates.
2225        or
2226      0 - if all the min_rates are 0.
2227      In the later case fainess algorithm should be deactivated.
2228      If not all min_rates are zero then those that are zeroes will be set to 1.
2229  */
2230 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2231 				      struct cmng_init_input *input)
2232 {
2233 	int all_zero = 1;
2234 	int vn;
2235 
2236 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2237 		u32 vn_cfg = bp->mf_config[vn];
2238 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2239 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2240 
2241 		/* Skip hidden vns */
2242 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2243 			vn_min_rate = 0;
2244 		/* If min rate is zero - set it to 1 */
2245 		else if (!vn_min_rate)
2246 			vn_min_rate = DEF_MIN_RATE;
2247 		else
2248 			all_zero = 0;
2249 
2250 		input->vnic_min_rate[vn] = vn_min_rate;
2251 	}
2252 
2253 	/* if ETS or all min rates are zeros - disable fairness */
2254 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2255 		input->flags.cmng_enables &=
2256 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2257 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2258 	} else if (all_zero) {
2259 		input->flags.cmng_enables &=
2260 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2261 		DP(NETIF_MSG_IFUP,
2262 		   "All MIN values are zeroes fairness will be disabled\n");
2263 	} else
2264 		input->flags.cmng_enables |=
2265 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2266 }
2267 
2268 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2269 				    struct cmng_init_input *input)
2270 {
2271 	u16 vn_max_rate;
2272 	u32 vn_cfg = bp->mf_config[vn];
2273 
2274 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2275 		vn_max_rate = 0;
2276 	else {
2277 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2278 
2279 		if (IS_MF_SI(bp)) {
2280 			/* maxCfg in percents of linkspeed */
2281 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2282 		} else /* SD modes */
2283 			/* maxCfg is absolute in 100Mb units */
2284 			vn_max_rate = maxCfg * 100;
2285 	}
2286 
2287 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2288 
2289 	input->vnic_max_rate[vn] = vn_max_rate;
2290 }
2291 
2292 
2293 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2294 {
2295 	if (CHIP_REV_IS_SLOW(bp))
2296 		return CMNG_FNS_NONE;
2297 	if (IS_MF(bp))
2298 		return CMNG_FNS_MINMAX;
2299 
2300 	return CMNG_FNS_NONE;
2301 }
2302 
2303 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2304 {
2305 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2306 
2307 	if (BP_NOMCP(bp))
2308 		return; /* what should be the default bvalue in this case */
2309 
2310 	/* For 2 port configuration the absolute function number formula
2311 	 * is:
2312 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2313 	 *
2314 	 *      and there are 4 functions per port
2315 	 *
2316 	 * For 4 port configuration it is
2317 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2318 	 *
2319 	 *      and there are 2 functions per port
2320 	 */
2321 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2322 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2323 
2324 		if (func >= E1H_FUNC_MAX)
2325 			break;
2326 
2327 		bp->mf_config[vn] =
2328 			MF_CFG_RD(bp, func_mf_config[func].config);
2329 	}
2330 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2331 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2332 		bp->flags |= MF_FUNC_DIS;
2333 	} else {
2334 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2335 		bp->flags &= ~MF_FUNC_DIS;
2336 	}
2337 }
2338 
2339 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2340 {
2341 	struct cmng_init_input input;
2342 	memset(&input, 0, sizeof(struct cmng_init_input));
2343 
2344 	input.port_rate = bp->link_vars.line_speed;
2345 
2346 	if (cmng_type == CMNG_FNS_MINMAX) {
2347 		int vn;
2348 
2349 		/* read mf conf from shmem */
2350 		if (read_cfg)
2351 			bnx2x_read_mf_cfg(bp);
2352 
2353 		/* vn_weight_sum and enable fairness if not 0 */
2354 		bnx2x_calc_vn_min(bp, &input);
2355 
2356 		/* calculate and set min-max rate for each vn */
2357 		if (bp->port.pmf)
2358 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2359 				bnx2x_calc_vn_max(bp, vn, &input);
2360 
2361 		/* always enable rate shaping and fairness */
2362 		input.flags.cmng_enables |=
2363 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2364 
2365 		bnx2x_init_cmng(&input, &bp->cmng);
2366 		return;
2367 	}
2368 
2369 	/* rate shaping and fairness are disabled */
2370 	DP(NETIF_MSG_IFUP,
2371 	   "rate shaping and fairness are disabled\n");
2372 }
2373 
2374 static void storm_memset_cmng(struct bnx2x *bp,
2375 			      struct cmng_init *cmng,
2376 			      u8 port)
2377 {
2378 	int vn;
2379 	size_t size = sizeof(struct cmng_struct_per_port);
2380 
2381 	u32 addr = BAR_XSTRORM_INTMEM +
2382 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2383 
2384 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2385 
2386 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2387 		int func = func_by_vn(bp, vn);
2388 
2389 		addr = BAR_XSTRORM_INTMEM +
2390 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2391 		size = sizeof(struct rate_shaping_vars_per_vn);
2392 		__storm_memset_struct(bp, addr, size,
2393 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2394 
2395 		addr = BAR_XSTRORM_INTMEM +
2396 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2397 		size = sizeof(struct fairness_vars_per_vn);
2398 		__storm_memset_struct(bp, addr, size,
2399 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2400 	}
2401 }
2402 
2403 /* This function is called upon link interrupt */
2404 static void bnx2x_link_attn(struct bnx2x *bp)
2405 {
2406 	/* Make sure that we are synced with the current statistics */
2407 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2408 
2409 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2410 
2411 	if (bp->link_vars.link_up) {
2412 
2413 		/* dropless flow control */
2414 		if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2415 			int port = BP_PORT(bp);
2416 			u32 pause_enabled = 0;
2417 
2418 			if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2419 				pause_enabled = 1;
2420 
2421 			REG_WR(bp, BAR_USTRORM_INTMEM +
2422 			       USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2423 			       pause_enabled);
2424 		}
2425 
2426 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2427 			struct host_port_stats *pstats;
2428 
2429 			pstats = bnx2x_sp(bp, port_stats);
2430 			/* reset old mac stats */
2431 			memset(&(pstats->mac_stx[0]), 0,
2432 			       sizeof(struct mac_stx));
2433 		}
2434 		if (bp->state == BNX2X_STATE_OPEN)
2435 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2436 	}
2437 
2438 	if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2439 		int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2440 
2441 		if (cmng_fns != CMNG_FNS_NONE) {
2442 			bnx2x_cmng_fns_init(bp, false, cmng_fns);
2443 			storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2444 		} else
2445 			/* rate shaping and fairness are disabled */
2446 			DP(NETIF_MSG_IFUP,
2447 			   "single function mode without fairness\n");
2448 	}
2449 
2450 	__bnx2x_link_report(bp);
2451 
2452 	if (IS_MF(bp))
2453 		bnx2x_link_sync_notify(bp);
2454 }
2455 
2456 void bnx2x__link_status_update(struct bnx2x *bp)
2457 {
2458 	if (bp->state != BNX2X_STATE_OPEN)
2459 		return;
2460 
2461 	/* read updated dcb configuration */
2462 	bnx2x_dcbx_pmf_update(bp);
2463 
2464 	bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2465 
2466 	if (bp->link_vars.link_up)
2467 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2468 	else
2469 		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2470 
2471 	/* indicate link status */
2472 	bnx2x_link_report(bp);
2473 }
2474 
2475 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2476 				  u16 vlan_val, u8 allowed_prio)
2477 {
2478 	struct bnx2x_func_state_params func_params = {0};
2479 	struct bnx2x_func_afex_update_params *f_update_params =
2480 		&func_params.params.afex_update;
2481 
2482 	func_params.f_obj = &bp->func_obj;
2483 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2484 
2485 	/* no need to wait for RAMROD completion, so don't
2486 	 * set RAMROD_COMP_WAIT flag
2487 	 */
2488 
2489 	f_update_params->vif_id = vifid;
2490 	f_update_params->afex_default_vlan = vlan_val;
2491 	f_update_params->allowed_priorities = allowed_prio;
2492 
2493 	/* if ramrod can not be sent, response to MCP immediately */
2494 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2495 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2496 
2497 	return 0;
2498 }
2499 
2500 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2501 					  u16 vif_index, u8 func_bit_map)
2502 {
2503 	struct bnx2x_func_state_params func_params = {0};
2504 	struct bnx2x_func_afex_viflists_params *update_params =
2505 		&func_params.params.afex_viflists;
2506 	int rc;
2507 	u32 drv_msg_code;
2508 
2509 	/* validate only LIST_SET and LIST_GET are received from switch */
2510 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2511 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2512 			  cmd_type);
2513 
2514 	func_params.f_obj = &bp->func_obj;
2515 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2516 
2517 	/* set parameters according to cmd_type */
2518 	update_params->afex_vif_list_command = cmd_type;
2519 	update_params->vif_list_index = cpu_to_le16(vif_index);
2520 	update_params->func_bit_map =
2521 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2522 	update_params->func_to_clear = 0;
2523 	drv_msg_code =
2524 		(cmd_type == VIF_LIST_RULE_GET) ?
2525 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2526 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2527 
2528 	/* if ramrod can not be sent, respond to MCP immediately for
2529 	 * SET and GET requests (other are not triggered from MCP)
2530 	 */
2531 	rc = bnx2x_func_state_change(bp, &func_params);
2532 	if (rc < 0)
2533 		bnx2x_fw_command(bp, drv_msg_code, 0);
2534 
2535 	return 0;
2536 }
2537 
2538 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2539 {
2540 	struct afex_stats afex_stats;
2541 	u32 func = BP_ABS_FUNC(bp);
2542 	u32 mf_config;
2543 	u16 vlan_val;
2544 	u32 vlan_prio;
2545 	u16 vif_id;
2546 	u8 allowed_prio;
2547 	u8 vlan_mode;
2548 	u32 addr_to_write, vifid, addrs, stats_type, i;
2549 
2550 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2551 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2552 		DP(BNX2X_MSG_MCP,
2553 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2554 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2555 	}
2556 
2557 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2558 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2559 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2560 		DP(BNX2X_MSG_MCP,
2561 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2562 		   vifid, addrs);
2563 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2564 					       addrs);
2565 	}
2566 
2567 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2568 		addr_to_write = SHMEM2_RD(bp,
2569 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2570 		stats_type = SHMEM2_RD(bp,
2571 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2572 
2573 		DP(BNX2X_MSG_MCP,
2574 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2575 		   addr_to_write);
2576 
2577 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2578 
2579 		/* write response to scratchpad, for MCP */
2580 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2581 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2582 			       *(((u32 *)(&afex_stats))+i));
2583 
2584 		/* send ack message to MCP */
2585 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2586 	}
2587 
2588 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2589 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2590 		bp->mf_config[BP_VN(bp)] = mf_config;
2591 		DP(BNX2X_MSG_MCP,
2592 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2593 		   mf_config);
2594 
2595 		/* if VIF_SET is "enabled" */
2596 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2597 			/* set rate limit directly to internal RAM */
2598 			struct cmng_init_input cmng_input;
2599 			struct rate_shaping_vars_per_vn m_rs_vn;
2600 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2601 			u32 addr = BAR_XSTRORM_INTMEM +
2602 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2603 
2604 			bp->mf_config[BP_VN(bp)] = mf_config;
2605 
2606 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2607 			m_rs_vn.vn_counter.rate =
2608 				cmng_input.vnic_max_rate[BP_VN(bp)];
2609 			m_rs_vn.vn_counter.quota =
2610 				(m_rs_vn.vn_counter.rate *
2611 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2612 
2613 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2614 
2615 			/* read relevant values from mf_cfg struct in shmem */
2616 			vif_id =
2617 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2618 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2619 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2620 			vlan_val =
2621 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2622 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2623 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2624 			vlan_prio = (mf_config &
2625 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2626 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2627 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2628 			vlan_mode =
2629 				(MF_CFG_RD(bp,
2630 					   func_mf_config[func].afex_config) &
2631 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2632 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2633 			allowed_prio =
2634 				(MF_CFG_RD(bp,
2635 					   func_mf_config[func].afex_config) &
2636 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2637 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2638 
2639 			/* send ramrod to FW, return in case of failure */
2640 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2641 						   allowed_prio))
2642 				return;
2643 
2644 			bp->afex_def_vlan_tag = vlan_val;
2645 			bp->afex_vlan_mode = vlan_mode;
2646 		} else {
2647 			/* notify link down because BP->flags is disabled */
2648 			bnx2x_link_report(bp);
2649 
2650 			/* send INVALID VIF ramrod to FW */
2651 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2652 
2653 			/* Reset the default afex VLAN */
2654 			bp->afex_def_vlan_tag = -1;
2655 		}
2656 	}
2657 }
2658 
2659 static void bnx2x_pmf_update(struct bnx2x *bp)
2660 {
2661 	int port = BP_PORT(bp);
2662 	u32 val;
2663 
2664 	bp->port.pmf = 1;
2665 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2666 
2667 	/*
2668 	 * We need the mb() to ensure the ordering between the writing to
2669 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2670 	 */
2671 	smp_mb();
2672 
2673 	/* queue a periodic task */
2674 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2675 
2676 	bnx2x_dcbx_pmf_update(bp);
2677 
2678 	/* enable nig attention */
2679 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2680 	if (bp->common.int_block == INT_BLOCK_HC) {
2681 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2682 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2683 	} else if (!CHIP_IS_E1x(bp)) {
2684 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2685 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2686 	}
2687 
2688 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2689 }
2690 
2691 /* end of Link */
2692 
2693 /* slow path */
2694 
2695 /*
2696  * General service functions
2697  */
2698 
2699 /* send the MCP a request, block until there is a reply */
2700 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2701 {
2702 	int mb_idx = BP_FW_MB_IDX(bp);
2703 	u32 seq;
2704 	u32 rc = 0;
2705 	u32 cnt = 1;
2706 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2707 
2708 	mutex_lock(&bp->fw_mb_mutex);
2709 	seq = ++bp->fw_seq;
2710 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2711 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2712 
2713 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2714 			(command | seq), param);
2715 
2716 	do {
2717 		/* let the FW do it's magic ... */
2718 		msleep(delay);
2719 
2720 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2721 
2722 		/* Give the FW up to 5 second (500*10ms) */
2723 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2724 
2725 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2726 	   cnt*delay, rc, seq);
2727 
2728 	/* is this a reply to our command? */
2729 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2730 		rc &= FW_MSG_CODE_MASK;
2731 	else {
2732 		/* FW BUG! */
2733 		BNX2X_ERR("FW failed to respond!\n");
2734 		bnx2x_fw_dump(bp);
2735 		rc = 0;
2736 	}
2737 	mutex_unlock(&bp->fw_mb_mutex);
2738 
2739 	return rc;
2740 }
2741 
2742 
2743 static void storm_memset_func_cfg(struct bnx2x *bp,
2744 				 struct tstorm_eth_function_common_config *tcfg,
2745 				 u16 abs_fid)
2746 {
2747 	size_t size = sizeof(struct tstorm_eth_function_common_config);
2748 
2749 	u32 addr = BAR_TSTRORM_INTMEM +
2750 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2751 
2752 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2753 }
2754 
2755 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2756 {
2757 	if (CHIP_IS_E1x(bp)) {
2758 		struct tstorm_eth_function_common_config tcfg = {0};
2759 
2760 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2761 	}
2762 
2763 	/* Enable the function in the FW */
2764 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2765 	storm_memset_func_en(bp, p->func_id, 1);
2766 
2767 	/* spq */
2768 	if (p->func_flgs & FUNC_FLG_SPQ) {
2769 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2770 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
2771 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2772 	}
2773 }
2774 
2775 /**
2776  * bnx2x_get_tx_only_flags - Return common flags
2777  *
2778  * @bp		device handle
2779  * @fp		queue handle
2780  * @zero_stats	TRUE if statistics zeroing is needed
2781  *
2782  * Return the flags that are common for the Tx-only and not normal connections.
2783  */
2784 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2785 					    struct bnx2x_fastpath *fp,
2786 					    bool zero_stats)
2787 {
2788 	unsigned long flags = 0;
2789 
2790 	/* PF driver will always initialize the Queue to an ACTIVE state */
2791 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2792 
2793 	/* tx only connections collect statistics (on the same index as the
2794 	 *  parent connection). The statistics are zeroed when the parent
2795 	 *  connection is initialized.
2796 	 */
2797 
2798 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
2799 	if (zero_stats)
2800 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2801 
2802 
2803 	return flags;
2804 }
2805 
2806 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2807 				       struct bnx2x_fastpath *fp,
2808 				       bool leading)
2809 {
2810 	unsigned long flags = 0;
2811 
2812 	/* calculate other queue flags */
2813 	if (IS_MF_SD(bp))
2814 		__set_bit(BNX2X_Q_FLG_OV, &flags);
2815 
2816 	if (IS_FCOE_FP(fp)) {
2817 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
2818 		/* For FCoE - force usage of default priority (for afex) */
2819 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
2820 	}
2821 
2822 	if (!fp->disable_tpa) {
2823 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
2824 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2825 		if (fp->mode == TPA_MODE_GRO)
2826 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
2827 	}
2828 
2829 	if (leading) {
2830 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2831 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
2832 	}
2833 
2834 	/* Always set HW VLAN stripping */
2835 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
2836 
2837 	/* configure silent vlan removal */
2838 	if (IS_MF_AFEX(bp))
2839 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
2840 
2841 
2842 	return flags | bnx2x_get_common_flags(bp, fp, true);
2843 }
2844 
2845 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2846 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2847 	u8 cos)
2848 {
2849 	gen_init->stat_id = bnx2x_stats_id(fp);
2850 	gen_init->spcl_id = fp->cl_id;
2851 
2852 	/* Always use mini-jumbo MTU for FCoE L2 ring */
2853 	if (IS_FCOE_FP(fp))
2854 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2855 	else
2856 		gen_init->mtu = bp->dev->mtu;
2857 
2858 	gen_init->cos = cos;
2859 }
2860 
2861 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2862 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2863 	struct bnx2x_rxq_setup_params *rxq_init)
2864 {
2865 	u8 max_sge = 0;
2866 	u16 sge_sz = 0;
2867 	u16 tpa_agg_size = 0;
2868 
2869 	if (!fp->disable_tpa) {
2870 		pause->sge_th_lo = SGE_TH_LO(bp);
2871 		pause->sge_th_hi = SGE_TH_HI(bp);
2872 
2873 		/* validate SGE ring has enough to cross high threshold */
2874 		WARN_ON(bp->dropless_fc &&
2875 				pause->sge_th_hi + FW_PREFETCH_CNT >
2876 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
2877 
2878 		tpa_agg_size = min_t(u32,
2879 			(min_t(u32, 8, MAX_SKB_FRAGS) *
2880 			SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2881 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2882 			SGE_PAGE_SHIFT;
2883 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2884 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2885 		sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2886 				    0xffff);
2887 	}
2888 
2889 	/* pause - not for e1 */
2890 	if (!CHIP_IS_E1(bp)) {
2891 		pause->bd_th_lo = BD_TH_LO(bp);
2892 		pause->bd_th_hi = BD_TH_HI(bp);
2893 
2894 		pause->rcq_th_lo = RCQ_TH_LO(bp);
2895 		pause->rcq_th_hi = RCQ_TH_HI(bp);
2896 		/*
2897 		 * validate that rings have enough entries to cross
2898 		 * high thresholds
2899 		 */
2900 		WARN_ON(bp->dropless_fc &&
2901 				pause->bd_th_hi + FW_PREFETCH_CNT >
2902 				bp->rx_ring_size);
2903 		WARN_ON(bp->dropless_fc &&
2904 				pause->rcq_th_hi + FW_PREFETCH_CNT >
2905 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
2906 
2907 		pause->pri_map = 1;
2908 	}
2909 
2910 	/* rxq setup */
2911 	rxq_init->dscr_map = fp->rx_desc_mapping;
2912 	rxq_init->sge_map = fp->rx_sge_mapping;
2913 	rxq_init->rcq_map = fp->rx_comp_mapping;
2914 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2915 
2916 	/* This should be a maximum number of data bytes that may be
2917 	 * placed on the BD (not including paddings).
2918 	 */
2919 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
2920 		BNX2X_FW_RX_ALIGN_END -	IP_HEADER_ALIGNMENT_PADDING;
2921 
2922 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
2923 	rxq_init->tpa_agg_sz = tpa_agg_size;
2924 	rxq_init->sge_buf_sz = sge_sz;
2925 	rxq_init->max_sges_pkt = max_sge;
2926 	rxq_init->rss_engine_id = BP_FUNC(bp);
2927 	rxq_init->mcast_engine_id = BP_FUNC(bp);
2928 
2929 	/* Maximum number or simultaneous TPA aggregation for this Queue.
2930 	 *
2931 	 * For PF Clients it should be the maximum avaliable number.
2932 	 * VF driver(s) may want to define it to a smaller value.
2933 	 */
2934 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
2935 
2936 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2937 	rxq_init->fw_sb_id = fp->fw_sb_id;
2938 
2939 	if (IS_FCOE_FP(fp))
2940 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2941 	else
2942 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2943 	/* configure silent vlan removal
2944 	 * if multi function mode is afex, then mask default vlan
2945 	 */
2946 	if (IS_MF_AFEX(bp)) {
2947 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
2948 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
2949 	}
2950 }
2951 
2952 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2953 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2954 	u8 cos)
2955 {
2956 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
2957 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2958 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2959 	txq_init->fw_sb_id = fp->fw_sb_id;
2960 
2961 	/*
2962 	 * set the tss leading client id for TX classfication ==
2963 	 * leading RSS client id
2964 	 */
2965 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2966 
2967 	if (IS_FCOE_FP(fp)) {
2968 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2969 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2970 	}
2971 }
2972 
2973 static void bnx2x_pf_init(struct bnx2x *bp)
2974 {
2975 	struct bnx2x_func_init_params func_init = {0};
2976 	struct event_ring_data eq_data = { {0} };
2977 	u16 flags;
2978 
2979 	if (!CHIP_IS_E1x(bp)) {
2980 		/* reset IGU PF statistics: MSIX + ATTN */
2981 		/* PF */
2982 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2983 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2984 			   (CHIP_MODE_IS_4_PORT(bp) ?
2985 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2986 		/* ATTN */
2987 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2988 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2989 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2990 			   (CHIP_MODE_IS_4_PORT(bp) ?
2991 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2992 	}
2993 
2994 	/* function setup flags */
2995 	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2996 
2997 	/* This flag is relevant for E1x only.
2998 	 * E2 doesn't have a TPA configuration in a function level.
2999 	 */
3000 	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3001 
3002 	func_init.func_flgs = flags;
3003 	func_init.pf_id = BP_FUNC(bp);
3004 	func_init.func_id = BP_FUNC(bp);
3005 	func_init.spq_map = bp->spq_mapping;
3006 	func_init.spq_prod = bp->spq_prod_idx;
3007 
3008 	bnx2x_func_init(bp, &func_init);
3009 
3010 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3011 
3012 	/*
3013 	 * Congestion management values depend on the link rate
3014 	 * There is no active link so initial link rate is set to 10 Gbps.
3015 	 * When the link comes up The congestion management values are
3016 	 * re-calculated according to the actual link rate.
3017 	 */
3018 	bp->link_vars.line_speed = SPEED_10000;
3019 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3020 
3021 	/* Only the PMF sets the HW */
3022 	if (bp->port.pmf)
3023 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3024 
3025 	/* init Event Queue */
3026 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3027 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3028 	eq_data.producer = bp->eq_prod;
3029 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3030 	eq_data.sb_id = DEF_SB_ID;
3031 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3032 }
3033 
3034 
3035 static void bnx2x_e1h_disable(struct bnx2x *bp)
3036 {
3037 	int port = BP_PORT(bp);
3038 
3039 	bnx2x_tx_disable(bp);
3040 
3041 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3042 }
3043 
3044 static void bnx2x_e1h_enable(struct bnx2x *bp)
3045 {
3046 	int port = BP_PORT(bp);
3047 
3048 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3049 
3050 	/* Tx queue should be only reenabled */
3051 	netif_tx_wake_all_queues(bp->dev);
3052 
3053 	/*
3054 	 * Should not call netif_carrier_on since it will be called if the link
3055 	 * is up when checking for link state
3056 	 */
3057 }
3058 
3059 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3060 
3061 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3062 {
3063 	struct eth_stats_info *ether_stat =
3064 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3065 
3066 	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3067 		ETH_STAT_INFO_VERSION_LEN);
3068 
3069 	bp->sp_objs[0].mac_obj.get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3070 					DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3071 					ether_stat->mac_local);
3072 
3073 	ether_stat->mtu_size = bp->dev->mtu;
3074 
3075 	if (bp->dev->features & NETIF_F_RXCSUM)
3076 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3077 	if (bp->dev->features & NETIF_F_TSO)
3078 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3079 	ether_stat->feature_flags |= bp->common.boot_mode;
3080 
3081 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3082 
3083 	ether_stat->txq_size = bp->tx_ring_size;
3084 	ether_stat->rxq_size = bp->rx_ring_size;
3085 }
3086 
3087 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3088 {
3089 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3090 	struct fcoe_stats_info *fcoe_stat =
3091 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3092 
3093 	if (!CNIC_LOADED(bp))
3094 		return;
3095 
3096 	memcpy(fcoe_stat->mac_local + MAC_LEADING_ZERO_CNT,
3097 	       bp->fip_mac, ETH_ALEN);
3098 
3099 	fcoe_stat->qos_priority =
3100 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3101 
3102 	/* insert FCoE stats from ramrod response */
3103 	if (!NO_FCOE(bp)) {
3104 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3105 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3106 			tstorm_queue_statistics;
3107 
3108 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3109 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3110 			xstorm_queue_statistics;
3111 
3112 		struct fcoe_statistics_params *fw_fcoe_stat =
3113 			&bp->fw_stats_data->fcoe;
3114 
3115 		ADD_64(fcoe_stat->rx_bytes_hi, 0, fcoe_stat->rx_bytes_lo,
3116 		       fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3117 
3118 		ADD_64(fcoe_stat->rx_bytes_hi,
3119 		       fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3120 		       fcoe_stat->rx_bytes_lo,
3121 		       fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3122 
3123 		ADD_64(fcoe_stat->rx_bytes_hi,
3124 		       fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3125 		       fcoe_stat->rx_bytes_lo,
3126 		       fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3127 
3128 		ADD_64(fcoe_stat->rx_bytes_hi,
3129 		       fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3130 		       fcoe_stat->rx_bytes_lo,
3131 		       fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3132 
3133 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3134 		       fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3135 
3136 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3137 		       fcoe_q_tstorm_stats->rcv_ucast_pkts);
3138 
3139 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3140 		       fcoe_q_tstorm_stats->rcv_bcast_pkts);
3141 
3142 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3143 		       fcoe_q_tstorm_stats->rcv_mcast_pkts);
3144 
3145 		ADD_64(fcoe_stat->tx_bytes_hi, 0, fcoe_stat->tx_bytes_lo,
3146 		       fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3147 
3148 		ADD_64(fcoe_stat->tx_bytes_hi,
3149 		       fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3150 		       fcoe_stat->tx_bytes_lo,
3151 		       fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3152 
3153 		ADD_64(fcoe_stat->tx_bytes_hi,
3154 		       fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3155 		       fcoe_stat->tx_bytes_lo,
3156 		       fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3157 
3158 		ADD_64(fcoe_stat->tx_bytes_hi,
3159 		       fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3160 		       fcoe_stat->tx_bytes_lo,
3161 		       fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3162 
3163 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3164 		       fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3165 
3166 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3167 		       fcoe_q_xstorm_stats->ucast_pkts_sent);
3168 
3169 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3170 		       fcoe_q_xstorm_stats->bcast_pkts_sent);
3171 
3172 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3173 		       fcoe_q_xstorm_stats->mcast_pkts_sent);
3174 	}
3175 
3176 	/* ask L5 driver to add data to the struct */
3177 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3178 }
3179 
3180 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3181 {
3182 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3183 	struct iscsi_stats_info *iscsi_stat =
3184 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3185 
3186 	if (!CNIC_LOADED(bp))
3187 		return;
3188 
3189 	memcpy(iscsi_stat->mac_local + MAC_LEADING_ZERO_CNT,
3190 	       bp->cnic_eth_dev.iscsi_mac, ETH_ALEN);
3191 
3192 	iscsi_stat->qos_priority =
3193 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3194 
3195 	/* ask L5 driver to add data to the struct */
3196 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3197 }
3198 
3199 /* called due to MCP event (on pmf):
3200  *	reread new bandwidth configuration
3201  *	configure FW
3202  *	notify others function about the change
3203  */
3204 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3205 {
3206 	if (bp->link_vars.link_up) {
3207 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3208 		bnx2x_link_sync_notify(bp);
3209 	}
3210 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3211 }
3212 
3213 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3214 {
3215 	bnx2x_config_mf_bw(bp);
3216 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3217 }
3218 
3219 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3220 {
3221 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3222 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3223 }
3224 
3225 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3226 {
3227 	enum drv_info_opcode op_code;
3228 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3229 
3230 	/* if drv_info version supported by MFW doesn't match - send NACK */
3231 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3232 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3233 		return;
3234 	}
3235 
3236 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3237 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3238 
3239 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3240 	       sizeof(union drv_info_to_mcp));
3241 
3242 	switch (op_code) {
3243 	case ETH_STATS_OPCODE:
3244 		bnx2x_drv_info_ether_stat(bp);
3245 		break;
3246 	case FCOE_STATS_OPCODE:
3247 		bnx2x_drv_info_fcoe_stat(bp);
3248 		break;
3249 	case ISCSI_STATS_OPCODE:
3250 		bnx2x_drv_info_iscsi_stat(bp);
3251 		break;
3252 	default:
3253 		/* if op code isn't supported - send NACK */
3254 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3255 		return;
3256 	}
3257 
3258 	/* if we got drv_info attn from MFW then these fields are defined in
3259 	 * shmem2 for sure
3260 	 */
3261 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3262 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3263 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3264 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3265 
3266 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3267 }
3268 
3269 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3270 {
3271 	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3272 
3273 	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3274 
3275 		/*
3276 		 * This is the only place besides the function initialization
3277 		 * where the bp->flags can change so it is done without any
3278 		 * locks
3279 		 */
3280 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3281 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3282 			bp->flags |= MF_FUNC_DIS;
3283 
3284 			bnx2x_e1h_disable(bp);
3285 		} else {
3286 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3287 			bp->flags &= ~MF_FUNC_DIS;
3288 
3289 			bnx2x_e1h_enable(bp);
3290 		}
3291 		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3292 	}
3293 	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3294 		bnx2x_config_mf_bw(bp);
3295 		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3296 	}
3297 
3298 	/* Report results to MCP */
3299 	if (dcc_event)
3300 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3301 	else
3302 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3303 }
3304 
3305 /* must be called under the spq lock */
3306 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3307 {
3308 	struct eth_spe *next_spe = bp->spq_prod_bd;
3309 
3310 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3311 		bp->spq_prod_bd = bp->spq;
3312 		bp->spq_prod_idx = 0;
3313 		DP(BNX2X_MSG_SP, "end of spq\n");
3314 	} else {
3315 		bp->spq_prod_bd++;
3316 		bp->spq_prod_idx++;
3317 	}
3318 	return next_spe;
3319 }
3320 
3321 /* must be called under the spq lock */
3322 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3323 {
3324 	int func = BP_FUNC(bp);
3325 
3326 	/*
3327 	 * Make sure that BD data is updated before writing the producer:
3328 	 * BD data is written to the memory, the producer is read from the
3329 	 * memory, thus we need a full memory barrier to ensure the ordering.
3330 	 */
3331 	mb();
3332 
3333 	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3334 		 bp->spq_prod_idx);
3335 	mmiowb();
3336 }
3337 
3338 /**
3339  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3340  *
3341  * @cmd:	command to check
3342  * @cmd_type:	command type
3343  */
3344 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3345 {
3346 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3347 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3348 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3349 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3350 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3351 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3352 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3353 		return true;
3354 	else
3355 		return false;
3356 
3357 }
3358 
3359 
3360 /**
3361  * bnx2x_sp_post - place a single command on an SP ring
3362  *
3363  * @bp:		driver handle
3364  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3365  * @cid:	SW CID the command is related to
3366  * @data_hi:	command private data address (high 32 bits)
3367  * @data_lo:	command private data address (low 32 bits)
3368  * @cmd_type:	command type (e.g. NONE, ETH)
3369  *
3370  * SP data is handled as if it's always an address pair, thus data fields are
3371  * not swapped to little endian in upper functions. Instead this function swaps
3372  * data as if it's two u32 fields.
3373  */
3374 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3375 		  u32 data_hi, u32 data_lo, int cmd_type)
3376 {
3377 	struct eth_spe *spe;
3378 	u16 type;
3379 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3380 
3381 #ifdef BNX2X_STOP_ON_ERROR
3382 	if (unlikely(bp->panic)) {
3383 		BNX2X_ERR("Can't post SP when there is panic\n");
3384 		return -EIO;
3385 	}
3386 #endif
3387 
3388 	spin_lock_bh(&bp->spq_lock);
3389 
3390 	if (common) {
3391 		if (!atomic_read(&bp->eq_spq_left)) {
3392 			BNX2X_ERR("BUG! EQ ring full!\n");
3393 			spin_unlock_bh(&bp->spq_lock);
3394 			bnx2x_panic();
3395 			return -EBUSY;
3396 		}
3397 	} else if (!atomic_read(&bp->cq_spq_left)) {
3398 			BNX2X_ERR("BUG! SPQ ring full!\n");
3399 			spin_unlock_bh(&bp->spq_lock);
3400 			bnx2x_panic();
3401 			return -EBUSY;
3402 	}
3403 
3404 	spe = bnx2x_sp_get_next(bp);
3405 
3406 	/* CID needs port number to be encoded int it */
3407 	spe->hdr.conn_and_cmd_data =
3408 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3409 				    HW_CID(bp, cid));
3410 
3411 	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3412 
3413 	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3414 		 SPE_HDR_FUNCTION_ID);
3415 
3416 	spe->hdr.type = cpu_to_le16(type);
3417 
3418 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3419 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3420 
3421 	/*
3422 	 * It's ok if the actual decrement is issued towards the memory
3423 	 * somewhere between the spin_lock and spin_unlock. Thus no
3424 	 * more explict memory barrier is needed.
3425 	 */
3426 	if (common)
3427 		atomic_dec(&bp->eq_spq_left);
3428 	else
3429 		atomic_dec(&bp->cq_spq_left);
3430 
3431 
3432 	DP(BNX2X_MSG_SP,
3433 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3434 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3435 	   (u32)(U64_LO(bp->spq_mapping) +
3436 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3437 	   HW_CID(bp, cid), data_hi, data_lo, type,
3438 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3439 
3440 	bnx2x_sp_prod_update(bp);
3441 	spin_unlock_bh(&bp->spq_lock);
3442 	return 0;
3443 }
3444 
3445 /* acquire split MCP access lock register */
3446 static int bnx2x_acquire_alr(struct bnx2x *bp)
3447 {
3448 	u32 j, val;
3449 	int rc = 0;
3450 
3451 	might_sleep();
3452 	for (j = 0; j < 1000; j++) {
3453 		val = (1UL << 31);
3454 		REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3455 		val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3456 		if (val & (1L << 31))
3457 			break;
3458 
3459 		msleep(5);
3460 	}
3461 	if (!(val & (1L << 31))) {
3462 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3463 		rc = -EBUSY;
3464 	}
3465 
3466 	return rc;
3467 }
3468 
3469 /* release split MCP access lock register */
3470 static void bnx2x_release_alr(struct bnx2x *bp)
3471 {
3472 	REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3473 }
3474 
3475 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3476 #define BNX2X_DEF_SB_IDX	0x0002
3477 
3478 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3479 {
3480 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3481 	u16 rc = 0;
3482 
3483 	barrier(); /* status block is written to by the chip */
3484 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3485 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3486 		rc |= BNX2X_DEF_SB_ATT_IDX;
3487 	}
3488 
3489 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3490 		bp->def_idx = def_sb->sp_sb.running_index;
3491 		rc |= BNX2X_DEF_SB_IDX;
3492 	}
3493 
3494 	/* Do not reorder: indecies reading should complete before handling */
3495 	barrier();
3496 	return rc;
3497 }
3498 
3499 /*
3500  * slow path service functions
3501  */
3502 
3503 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3504 {
3505 	int port = BP_PORT(bp);
3506 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3507 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3508 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3509 				       NIG_REG_MASK_INTERRUPT_PORT0;
3510 	u32 aeu_mask;
3511 	u32 nig_mask = 0;
3512 	u32 reg_addr;
3513 
3514 	if (bp->attn_state & asserted)
3515 		BNX2X_ERR("IGU ERROR\n");
3516 
3517 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3518 	aeu_mask = REG_RD(bp, aeu_addr);
3519 
3520 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3521 	   aeu_mask, asserted);
3522 	aeu_mask &= ~(asserted & 0x3ff);
3523 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3524 
3525 	REG_WR(bp, aeu_addr, aeu_mask);
3526 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3527 
3528 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3529 	bp->attn_state |= asserted;
3530 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3531 
3532 	if (asserted & ATTN_HARD_WIRED_MASK) {
3533 		if (asserted & ATTN_NIG_FOR_FUNC) {
3534 
3535 			bnx2x_acquire_phy_lock(bp);
3536 
3537 			/* save nig interrupt mask */
3538 			nig_mask = REG_RD(bp, nig_int_mask_addr);
3539 
3540 			/* If nig_mask is not set, no need to call the update
3541 			 * function.
3542 			 */
3543 			if (nig_mask) {
3544 				REG_WR(bp, nig_int_mask_addr, 0);
3545 
3546 				bnx2x_link_attn(bp);
3547 			}
3548 
3549 			/* handle unicore attn? */
3550 		}
3551 		if (asserted & ATTN_SW_TIMER_4_FUNC)
3552 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3553 
3554 		if (asserted & GPIO_2_FUNC)
3555 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3556 
3557 		if (asserted & GPIO_3_FUNC)
3558 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3559 
3560 		if (asserted & GPIO_4_FUNC)
3561 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3562 
3563 		if (port == 0) {
3564 			if (asserted & ATTN_GENERAL_ATTN_1) {
3565 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3566 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3567 			}
3568 			if (asserted & ATTN_GENERAL_ATTN_2) {
3569 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3570 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3571 			}
3572 			if (asserted & ATTN_GENERAL_ATTN_3) {
3573 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3574 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3575 			}
3576 		} else {
3577 			if (asserted & ATTN_GENERAL_ATTN_4) {
3578 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3579 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3580 			}
3581 			if (asserted & ATTN_GENERAL_ATTN_5) {
3582 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3583 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3584 			}
3585 			if (asserted & ATTN_GENERAL_ATTN_6) {
3586 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3587 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3588 			}
3589 		}
3590 
3591 	} /* if hardwired */
3592 
3593 	if (bp->common.int_block == INT_BLOCK_HC)
3594 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3595 			    COMMAND_REG_ATTN_BITS_SET);
3596 	else
3597 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3598 
3599 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3600 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3601 	REG_WR(bp, reg_addr, asserted);
3602 
3603 	/* now set back the mask */
3604 	if (asserted & ATTN_NIG_FOR_FUNC) {
3605 		/* Verify that IGU ack through BAR was written before restoring
3606 		 * NIG mask. This loop should exit after 2-3 iterations max.
3607 		 */
3608 		if (bp->common.int_block != INT_BLOCK_HC) {
3609 			u32 cnt = 0, igu_acked;
3610 			do {
3611 				igu_acked = REG_RD(bp,
3612 						   IGU_REG_ATTENTION_ACK_BITS);
3613 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3614 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
3615 			if (!igu_acked)
3616 				DP(NETIF_MSG_HW,
3617 				   "Failed to verify IGU ack on time\n");
3618 			barrier();
3619 		}
3620 		REG_WR(bp, nig_int_mask_addr, nig_mask);
3621 		bnx2x_release_phy_lock(bp);
3622 	}
3623 }
3624 
3625 static void bnx2x_fan_failure(struct bnx2x *bp)
3626 {
3627 	int port = BP_PORT(bp);
3628 	u32 ext_phy_config;
3629 	/* mark the failure */
3630 	ext_phy_config =
3631 		SHMEM_RD(bp,
3632 			 dev_info.port_hw_config[port].external_phy_config);
3633 
3634 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3635 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3636 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3637 		 ext_phy_config);
3638 
3639 	/* log the failure */
3640 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3641 			    "Please contact OEM Support for assistance\n");
3642 
3643 	/*
3644 	 * Scheudle device reset (unload)
3645 	 * This is due to some boards consuming sufficient power when driver is
3646 	 * up to overheat if fan fails.
3647 	 */
3648 	smp_mb__before_clear_bit();
3649 	set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3650 	smp_mb__after_clear_bit();
3651 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
3652 
3653 }
3654 
3655 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3656 {
3657 	int port = BP_PORT(bp);
3658 	int reg_offset;
3659 	u32 val;
3660 
3661 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3662 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3663 
3664 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3665 
3666 		val = REG_RD(bp, reg_offset);
3667 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3668 		REG_WR(bp, reg_offset, val);
3669 
3670 		BNX2X_ERR("SPIO5 hw attention\n");
3671 
3672 		/* Fan failure attention */
3673 		bnx2x_hw_reset_phy(&bp->link_params);
3674 		bnx2x_fan_failure(bp);
3675 	}
3676 
3677 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3678 		bnx2x_acquire_phy_lock(bp);
3679 		bnx2x_handle_module_detect_int(&bp->link_params);
3680 		bnx2x_release_phy_lock(bp);
3681 	}
3682 
3683 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
3684 
3685 		val = REG_RD(bp, reg_offset);
3686 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3687 		REG_WR(bp, reg_offset, val);
3688 
3689 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3690 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3691 		bnx2x_panic();
3692 	}
3693 }
3694 
3695 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3696 {
3697 	u32 val;
3698 
3699 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3700 
3701 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3702 		BNX2X_ERR("DB hw attention 0x%x\n", val);
3703 		/* DORQ discard attention */
3704 		if (val & 0x2)
3705 			BNX2X_ERR("FATAL error from DORQ\n");
3706 	}
3707 
3708 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
3709 
3710 		int port = BP_PORT(bp);
3711 		int reg_offset;
3712 
3713 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3714 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3715 
3716 		val = REG_RD(bp, reg_offset);
3717 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3718 		REG_WR(bp, reg_offset, val);
3719 
3720 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3721 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3722 		bnx2x_panic();
3723 	}
3724 }
3725 
3726 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3727 {
3728 	u32 val;
3729 
3730 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3731 
3732 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3733 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
3734 		/* CFC error attention */
3735 		if (val & 0x2)
3736 			BNX2X_ERR("FATAL error from CFC\n");
3737 	}
3738 
3739 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3740 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3741 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3742 		/* RQ_USDMDP_FIFO_OVERFLOW */
3743 		if (val & 0x18000)
3744 			BNX2X_ERR("FATAL error from PXP\n");
3745 
3746 		if (!CHIP_IS_E1x(bp)) {
3747 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3748 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3749 		}
3750 	}
3751 
3752 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
3753 
3754 		int port = BP_PORT(bp);
3755 		int reg_offset;
3756 
3757 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3758 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3759 
3760 		val = REG_RD(bp, reg_offset);
3761 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3762 		REG_WR(bp, reg_offset, val);
3763 
3764 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3765 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3766 		bnx2x_panic();
3767 	}
3768 }
3769 
3770 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3771 {
3772 	u32 val;
3773 
3774 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3775 
3776 		if (attn & BNX2X_PMF_LINK_ASSERT) {
3777 			int func = BP_FUNC(bp);
3778 
3779 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3780 			bnx2x_read_mf_cfg(bp);
3781 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3782 					func_mf_config[BP_ABS_FUNC(bp)].config);
3783 			val = SHMEM_RD(bp,
3784 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
3785 			if (val & DRV_STATUS_DCC_EVENT_MASK)
3786 				bnx2x_dcc_event(bp,
3787 					    (val & DRV_STATUS_DCC_EVENT_MASK));
3788 
3789 			if (val & DRV_STATUS_SET_MF_BW)
3790 				bnx2x_set_mf_bw(bp);
3791 
3792 			if (val & DRV_STATUS_DRV_INFO_REQ)
3793 				bnx2x_handle_drv_info_req(bp);
3794 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3795 				bnx2x_pmf_update(bp);
3796 
3797 			if (bp->port.pmf &&
3798 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3799 				bp->dcbx_enabled > 0)
3800 				/* start dcbx state machine */
3801 				bnx2x_dcbx_set_params(bp,
3802 					BNX2X_DCBX_STATE_NEG_RECEIVED);
3803 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
3804 				bnx2x_handle_afex_cmd(bp,
3805 					val & DRV_STATUS_AFEX_EVENT_MASK);
3806 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3807 				bnx2x_handle_eee_event(bp);
3808 			if (bp->link_vars.periodic_flags &
3809 			    PERIODIC_FLAGS_LINK_EVENT) {
3810 				/*  sync with link */
3811 				bnx2x_acquire_phy_lock(bp);
3812 				bp->link_vars.periodic_flags &=
3813 					~PERIODIC_FLAGS_LINK_EVENT;
3814 				bnx2x_release_phy_lock(bp);
3815 				if (IS_MF(bp))
3816 					bnx2x_link_sync_notify(bp);
3817 				bnx2x_link_report(bp);
3818 			}
3819 			/* Always call it here: bnx2x_link_report() will
3820 			 * prevent the link indication duplication.
3821 			 */
3822 			bnx2x__link_status_update(bp);
3823 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
3824 
3825 			BNX2X_ERR("MC assert!\n");
3826 			bnx2x_mc_assert(bp);
3827 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3828 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3829 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3830 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3831 			bnx2x_panic();
3832 
3833 		} else if (attn & BNX2X_MCP_ASSERT) {
3834 
3835 			BNX2X_ERR("MCP assert!\n");
3836 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3837 			bnx2x_fw_dump(bp);
3838 
3839 		} else
3840 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3841 	}
3842 
3843 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3844 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3845 		if (attn & BNX2X_GRC_TIMEOUT) {
3846 			val = CHIP_IS_E1(bp) ? 0 :
3847 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3848 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
3849 		}
3850 		if (attn & BNX2X_GRC_RSV) {
3851 			val = CHIP_IS_E1(bp) ? 0 :
3852 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3853 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
3854 		}
3855 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3856 	}
3857 }
3858 
3859 /*
3860  * Bits map:
3861  * 0-7   - Engine0 load counter.
3862  * 8-15  - Engine1 load counter.
3863  * 16    - Engine0 RESET_IN_PROGRESS bit.
3864  * 17    - Engine1 RESET_IN_PROGRESS bit.
3865  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3866  *         on the engine
3867  * 19    - Engine1 ONE_IS_LOADED.
3868  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
3869  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
3870  *         just the one belonging to its engine).
3871  *
3872  */
3873 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
3874 
3875 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
3876 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
3877 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
3878 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
3879 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
3880 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
3881 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
3882 
3883 /*
3884  * Set the GLOBAL_RESET bit.
3885  *
3886  * Should be run under rtnl lock
3887  */
3888 void bnx2x_set_reset_global(struct bnx2x *bp)
3889 {
3890 	u32 val;
3891 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3892 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3893 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3894 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3895 }
3896 
3897 /*
3898  * Clear the GLOBAL_RESET bit.
3899  *
3900  * Should be run under rtnl lock
3901  */
3902 static void bnx2x_clear_reset_global(struct bnx2x *bp)
3903 {
3904 	u32 val;
3905 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3906 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3907 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3908 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3909 }
3910 
3911 /*
3912  * Checks the GLOBAL_RESET bit.
3913  *
3914  * should be run under rtnl lock
3915  */
3916 static bool bnx2x_reset_is_global(struct bnx2x *bp)
3917 {
3918 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3919 
3920 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3921 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3922 }
3923 
3924 /*
3925  * Clear RESET_IN_PROGRESS bit for the current engine.
3926  *
3927  * Should be run under rtnl lock
3928  */
3929 static void bnx2x_set_reset_done(struct bnx2x *bp)
3930 {
3931 	u32 val;
3932 	u32 bit = BP_PATH(bp) ?
3933 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3934 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3935 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3936 
3937 	/* Clear the bit */
3938 	val &= ~bit;
3939 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3940 
3941 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3942 }
3943 
3944 /*
3945  * Set RESET_IN_PROGRESS for the current engine.
3946  *
3947  * should be run under rtnl lock
3948  */
3949 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3950 {
3951 	u32 val;
3952 	u32 bit = BP_PATH(bp) ?
3953 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3954 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3955 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3956 
3957 	/* Set the bit */
3958 	val |= bit;
3959 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3960 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3961 }
3962 
3963 /*
3964  * Checks the RESET_IN_PROGRESS bit for the given engine.
3965  * should be run under rtnl lock
3966  */
3967 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
3968 {
3969 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3970 	u32 bit = engine ?
3971 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3972 
3973 	/* return false if bit is set */
3974 	return (val & bit) ? false : true;
3975 }
3976 
3977 /*
3978  * set pf load for the current pf.
3979  *
3980  * should be run under rtnl lock
3981  */
3982 void bnx2x_set_pf_load(struct bnx2x *bp)
3983 {
3984 	u32 val1, val;
3985 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3986 			     BNX2X_PATH0_LOAD_CNT_MASK;
3987 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3988 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3989 
3990 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3991 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3992 
3993 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
3994 
3995 	/* get the current counter value */
3996 	val1 = (val & mask) >> shift;
3997 
3998 	/* set bit of that PF */
3999 	val1 |= (1 << bp->pf_num);
4000 
4001 	/* clear the old value */
4002 	val &= ~mask;
4003 
4004 	/* set the new one */
4005 	val |= ((val1 << shift) & mask);
4006 
4007 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4008 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4009 }
4010 
4011 /**
4012  * bnx2x_clear_pf_load - clear pf load mark
4013  *
4014  * @bp:		driver handle
4015  *
4016  * Should be run under rtnl lock.
4017  * Decrements the load counter for the current engine. Returns
4018  * whether other functions are still loaded
4019  */
4020 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4021 {
4022 	u32 val1, val;
4023 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4024 			     BNX2X_PATH0_LOAD_CNT_MASK;
4025 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4026 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4027 
4028 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4029 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4030 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4031 
4032 	/* get the current counter value */
4033 	val1 = (val & mask) >> shift;
4034 
4035 	/* clear bit of that PF */
4036 	val1 &= ~(1 << bp->pf_num);
4037 
4038 	/* clear the old value */
4039 	val &= ~mask;
4040 
4041 	/* set the new one */
4042 	val |= ((val1 << shift) & mask);
4043 
4044 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4045 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4046 	return val1 != 0;
4047 }
4048 
4049 /*
4050  * Read the load status for the current engine.
4051  *
4052  * should be run under rtnl lock
4053  */
4054 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4055 {
4056 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4057 			     BNX2X_PATH0_LOAD_CNT_MASK);
4058 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4059 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4060 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4061 
4062 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4063 
4064 	val = (val & mask) >> shift;
4065 
4066 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4067 	   engine, val);
4068 
4069 	return val != 0;
4070 }
4071 
4072 static void _print_next_block(int idx, const char *blk)
4073 {
4074 	pr_cont("%s%s", idx ? ", " : "", blk);
4075 }
4076 
4077 static int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
4078 					   bool print)
4079 {
4080 	int i = 0;
4081 	u32 cur_bit = 0;
4082 	for (i = 0; sig; i++) {
4083 		cur_bit = ((u32)0x1 << i);
4084 		if (sig & cur_bit) {
4085 			switch (cur_bit) {
4086 			case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4087 				if (print)
4088 					_print_next_block(par_num++, "BRB");
4089 				break;
4090 			case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4091 				if (print)
4092 					_print_next_block(par_num++, "PARSER");
4093 				break;
4094 			case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4095 				if (print)
4096 					_print_next_block(par_num++, "TSDM");
4097 				break;
4098 			case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4099 				if (print)
4100 					_print_next_block(par_num++,
4101 							  "SEARCHER");
4102 				break;
4103 			case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4104 				if (print)
4105 					_print_next_block(par_num++, "TCM");
4106 				break;
4107 			case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4108 				if (print)
4109 					_print_next_block(par_num++, "TSEMI");
4110 				break;
4111 			case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4112 				if (print)
4113 					_print_next_block(par_num++, "XPB");
4114 				break;
4115 			}
4116 
4117 			/* Clear the bit */
4118 			sig &= ~cur_bit;
4119 		}
4120 	}
4121 
4122 	return par_num;
4123 }
4124 
4125 static int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
4126 					   bool *global, bool print)
4127 {
4128 	int i = 0;
4129 	u32 cur_bit = 0;
4130 	for (i = 0; sig; i++) {
4131 		cur_bit = ((u32)0x1 << i);
4132 		if (sig & cur_bit) {
4133 			switch (cur_bit) {
4134 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4135 				if (print)
4136 					_print_next_block(par_num++, "PBF");
4137 				break;
4138 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4139 				if (print)
4140 					_print_next_block(par_num++, "QM");
4141 				break;
4142 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4143 				if (print)
4144 					_print_next_block(par_num++, "TM");
4145 				break;
4146 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4147 				if (print)
4148 					_print_next_block(par_num++, "XSDM");
4149 				break;
4150 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4151 				if (print)
4152 					_print_next_block(par_num++, "XCM");
4153 				break;
4154 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4155 				if (print)
4156 					_print_next_block(par_num++, "XSEMI");
4157 				break;
4158 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4159 				if (print)
4160 					_print_next_block(par_num++,
4161 							  "DOORBELLQ");
4162 				break;
4163 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4164 				if (print)
4165 					_print_next_block(par_num++, "NIG");
4166 				break;
4167 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4168 				if (print)
4169 					_print_next_block(par_num++,
4170 							  "VAUX PCI CORE");
4171 				*global = true;
4172 				break;
4173 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4174 				if (print)
4175 					_print_next_block(par_num++, "DEBUG");
4176 				break;
4177 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4178 				if (print)
4179 					_print_next_block(par_num++, "USDM");
4180 				break;
4181 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4182 				if (print)
4183 					_print_next_block(par_num++, "UCM");
4184 				break;
4185 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4186 				if (print)
4187 					_print_next_block(par_num++, "USEMI");
4188 				break;
4189 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4190 				if (print)
4191 					_print_next_block(par_num++, "UPB");
4192 				break;
4193 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4194 				if (print)
4195 					_print_next_block(par_num++, "CSDM");
4196 				break;
4197 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4198 				if (print)
4199 					_print_next_block(par_num++, "CCM");
4200 				break;
4201 			}
4202 
4203 			/* Clear the bit */
4204 			sig &= ~cur_bit;
4205 		}
4206 	}
4207 
4208 	return par_num;
4209 }
4210 
4211 static int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
4212 					   bool print)
4213 {
4214 	int i = 0;
4215 	u32 cur_bit = 0;
4216 	for (i = 0; sig; i++) {
4217 		cur_bit = ((u32)0x1 << i);
4218 		if (sig & cur_bit) {
4219 			switch (cur_bit) {
4220 			case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4221 				if (print)
4222 					_print_next_block(par_num++, "CSEMI");
4223 				break;
4224 			case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4225 				if (print)
4226 					_print_next_block(par_num++, "PXP");
4227 				break;
4228 			case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4229 				if (print)
4230 					_print_next_block(par_num++,
4231 					"PXPPCICLOCKCLIENT");
4232 				break;
4233 			case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4234 				if (print)
4235 					_print_next_block(par_num++, "CFC");
4236 				break;
4237 			case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4238 				if (print)
4239 					_print_next_block(par_num++, "CDU");
4240 				break;
4241 			case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4242 				if (print)
4243 					_print_next_block(par_num++, "DMAE");
4244 				break;
4245 			case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4246 				if (print)
4247 					_print_next_block(par_num++, "IGU");
4248 				break;
4249 			case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4250 				if (print)
4251 					_print_next_block(par_num++, "MISC");
4252 				break;
4253 			}
4254 
4255 			/* Clear the bit */
4256 			sig &= ~cur_bit;
4257 		}
4258 	}
4259 
4260 	return par_num;
4261 }
4262 
4263 static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4264 					   bool *global, bool print)
4265 {
4266 	int i = 0;
4267 	u32 cur_bit = 0;
4268 	for (i = 0; sig; i++) {
4269 		cur_bit = ((u32)0x1 << i);
4270 		if (sig & cur_bit) {
4271 			switch (cur_bit) {
4272 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4273 				if (print)
4274 					_print_next_block(par_num++, "MCP ROM");
4275 				*global = true;
4276 				break;
4277 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4278 				if (print)
4279 					_print_next_block(par_num++,
4280 							  "MCP UMP RX");
4281 				*global = true;
4282 				break;
4283 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4284 				if (print)
4285 					_print_next_block(par_num++,
4286 							  "MCP UMP TX");
4287 				*global = true;
4288 				break;
4289 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4290 				if (print)
4291 					_print_next_block(par_num++,
4292 							  "MCP SCPAD");
4293 				*global = true;
4294 				break;
4295 			}
4296 
4297 			/* Clear the bit */
4298 			sig &= ~cur_bit;
4299 		}
4300 	}
4301 
4302 	return par_num;
4303 }
4304 
4305 static int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
4306 					   bool print)
4307 {
4308 	int i = 0;
4309 	u32 cur_bit = 0;
4310 	for (i = 0; sig; i++) {
4311 		cur_bit = ((u32)0x1 << i);
4312 		if (sig & cur_bit) {
4313 			switch (cur_bit) {
4314 			case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4315 				if (print)
4316 					_print_next_block(par_num++, "PGLUE_B");
4317 				break;
4318 			case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4319 				if (print)
4320 					_print_next_block(par_num++, "ATC");
4321 				break;
4322 			}
4323 
4324 			/* Clear the bit */
4325 			sig &= ~cur_bit;
4326 		}
4327 	}
4328 
4329 	return par_num;
4330 }
4331 
4332 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4333 			      u32 *sig)
4334 {
4335 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4336 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4337 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4338 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4339 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4340 		int par_num = 0;
4341 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4342 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4343 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4344 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4345 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4346 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4347 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4348 		if (print)
4349 			netdev_err(bp->dev,
4350 				   "Parity errors detected in blocks: ");
4351 		par_num = bnx2x_check_blocks_with_parity0(
4352 			sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4353 		par_num = bnx2x_check_blocks_with_parity1(
4354 			sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4355 		par_num = bnx2x_check_blocks_with_parity2(
4356 			sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4357 		par_num = bnx2x_check_blocks_with_parity3(
4358 			sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4359 		par_num = bnx2x_check_blocks_with_parity4(
4360 			sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4361 
4362 		if (print)
4363 			pr_cont("\n");
4364 
4365 		return true;
4366 	} else
4367 		return false;
4368 }
4369 
4370 /**
4371  * bnx2x_chk_parity_attn - checks for parity attentions.
4372  *
4373  * @bp:		driver handle
4374  * @global:	true if there was a global attention
4375  * @print:	show parity attention in syslog
4376  */
4377 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4378 {
4379 	struct attn_route attn = { {0} };
4380 	int port = BP_PORT(bp);
4381 
4382 	attn.sig[0] = REG_RD(bp,
4383 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4384 			     port*4);
4385 	attn.sig[1] = REG_RD(bp,
4386 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4387 			     port*4);
4388 	attn.sig[2] = REG_RD(bp,
4389 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4390 			     port*4);
4391 	attn.sig[3] = REG_RD(bp,
4392 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4393 			     port*4);
4394 
4395 	if (!CHIP_IS_E1x(bp))
4396 		attn.sig[4] = REG_RD(bp,
4397 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4398 				     port*4);
4399 
4400 	return bnx2x_parity_attn(bp, global, print, attn.sig);
4401 }
4402 
4403 
4404 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4405 {
4406 	u32 val;
4407 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4408 
4409 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4410 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4411 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4412 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4413 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4414 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4415 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4416 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4417 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4418 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4419 		if (val &
4420 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4421 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4422 		if (val &
4423 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4424 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4425 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4426 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4427 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4428 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4429 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4430 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4431 	}
4432 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4433 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4434 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4435 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4436 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4437 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4438 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4439 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4440 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4441 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4442 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4443 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4444 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4445 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4446 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4447 	}
4448 
4449 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4450 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4451 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4452 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4453 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4454 	}
4455 
4456 }
4457 
4458 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4459 {
4460 	struct attn_route attn, *group_mask;
4461 	int port = BP_PORT(bp);
4462 	int index;
4463 	u32 reg_addr;
4464 	u32 val;
4465 	u32 aeu_mask;
4466 	bool global = false;
4467 
4468 	/* need to take HW lock because MCP or other port might also
4469 	   try to handle this event */
4470 	bnx2x_acquire_alr(bp);
4471 
4472 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4473 #ifndef BNX2X_STOP_ON_ERROR
4474 		bp->recovery_state = BNX2X_RECOVERY_INIT;
4475 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4476 		/* Disable HW interrupts */
4477 		bnx2x_int_disable(bp);
4478 		/* In case of parity errors don't handle attentions so that
4479 		 * other function would "see" parity errors.
4480 		 */
4481 #else
4482 		bnx2x_panic();
4483 #endif
4484 		bnx2x_release_alr(bp);
4485 		return;
4486 	}
4487 
4488 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4489 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4490 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4491 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4492 	if (!CHIP_IS_E1x(bp))
4493 		attn.sig[4] =
4494 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4495 	else
4496 		attn.sig[4] = 0;
4497 
4498 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4499 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4500 
4501 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4502 		if (deasserted & (1 << index)) {
4503 			group_mask = &bp->attn_group[index];
4504 
4505 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4506 			   index,
4507 			   group_mask->sig[0], group_mask->sig[1],
4508 			   group_mask->sig[2], group_mask->sig[3],
4509 			   group_mask->sig[4]);
4510 
4511 			bnx2x_attn_int_deasserted4(bp,
4512 					attn.sig[4] & group_mask->sig[4]);
4513 			bnx2x_attn_int_deasserted3(bp,
4514 					attn.sig[3] & group_mask->sig[3]);
4515 			bnx2x_attn_int_deasserted1(bp,
4516 					attn.sig[1] & group_mask->sig[1]);
4517 			bnx2x_attn_int_deasserted2(bp,
4518 					attn.sig[2] & group_mask->sig[2]);
4519 			bnx2x_attn_int_deasserted0(bp,
4520 					attn.sig[0] & group_mask->sig[0]);
4521 		}
4522 	}
4523 
4524 	bnx2x_release_alr(bp);
4525 
4526 	if (bp->common.int_block == INT_BLOCK_HC)
4527 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4528 			    COMMAND_REG_ATTN_BITS_CLR);
4529 	else
4530 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4531 
4532 	val = ~deasserted;
4533 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4534 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4535 	REG_WR(bp, reg_addr, val);
4536 
4537 	if (~bp->attn_state & deasserted)
4538 		BNX2X_ERR("IGU ERROR\n");
4539 
4540 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4541 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
4542 
4543 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4544 	aeu_mask = REG_RD(bp, reg_addr);
4545 
4546 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4547 	   aeu_mask, deasserted);
4548 	aeu_mask |= (deasserted & 0x3ff);
4549 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4550 
4551 	REG_WR(bp, reg_addr, aeu_mask);
4552 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4553 
4554 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4555 	bp->attn_state &= ~deasserted;
4556 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4557 }
4558 
4559 static void bnx2x_attn_int(struct bnx2x *bp)
4560 {
4561 	/* read local copy of bits */
4562 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4563 								attn_bits);
4564 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4565 								attn_bits_ack);
4566 	u32 attn_state = bp->attn_state;
4567 
4568 	/* look for changed bits */
4569 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4570 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4571 
4572 	DP(NETIF_MSG_HW,
4573 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4574 	   attn_bits, attn_ack, asserted, deasserted);
4575 
4576 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4577 		BNX2X_ERR("BAD attention state\n");
4578 
4579 	/* handle bits that were raised */
4580 	if (asserted)
4581 		bnx2x_attn_int_asserted(bp, asserted);
4582 
4583 	if (deasserted)
4584 		bnx2x_attn_int_deasserted(bp, deasserted);
4585 }
4586 
4587 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4588 		      u16 index, u8 op, u8 update)
4589 {
4590 	u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4591 
4592 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4593 			     igu_addr);
4594 }
4595 
4596 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4597 {
4598 	/* No memory barriers */
4599 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4600 	mmiowb(); /* keep prod updates ordered */
4601 }
4602 
4603 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4604 				      union event_ring_elem *elem)
4605 {
4606 	u8 err = elem->message.error;
4607 
4608 	if (!bp->cnic_eth_dev.starting_cid  ||
4609 	    (cid < bp->cnic_eth_dev.starting_cid &&
4610 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
4611 		return 1;
4612 
4613 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4614 
4615 	if (unlikely(err)) {
4616 
4617 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4618 			  cid);
4619 		bnx2x_panic_dump(bp);
4620 	}
4621 	bnx2x_cnic_cfc_comp(bp, cid, err);
4622 	return 0;
4623 }
4624 
4625 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4626 {
4627 	struct bnx2x_mcast_ramrod_params rparam;
4628 	int rc;
4629 
4630 	memset(&rparam, 0, sizeof(rparam));
4631 
4632 	rparam.mcast_obj = &bp->mcast_obj;
4633 
4634 	netif_addr_lock_bh(bp->dev);
4635 
4636 	/* Clear pending state for the last command */
4637 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4638 
4639 	/* If there are pending mcast commands - send them */
4640 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4641 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4642 		if (rc < 0)
4643 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4644 				  rc);
4645 	}
4646 
4647 	netif_addr_unlock_bh(bp->dev);
4648 }
4649 
4650 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4651 					    union event_ring_elem *elem)
4652 {
4653 	unsigned long ramrod_flags = 0;
4654 	int rc = 0;
4655 	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4656 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4657 
4658 	/* Always push next commands out, don't wait here */
4659 	__set_bit(RAMROD_CONT, &ramrod_flags);
4660 
4661 	switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4662 	case BNX2X_FILTER_MAC_PENDING:
4663 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4664 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
4665 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4666 		else
4667 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
4668 
4669 		break;
4670 	case BNX2X_FILTER_MCAST_PENDING:
4671 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4672 		/* This is only relevant for 57710 where multicast MACs are
4673 		 * configured as unicast MACs using the same ramrod.
4674 		 */
4675 		bnx2x_handle_mcast_eqe(bp);
4676 		return;
4677 	default:
4678 		BNX2X_ERR("Unsupported classification command: %d\n",
4679 			  elem->message.data.eth_event.echo);
4680 		return;
4681 	}
4682 
4683 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4684 
4685 	if (rc < 0)
4686 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4687 	else if (rc > 0)
4688 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4689 
4690 }
4691 
4692 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4693 
4694 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4695 {
4696 	netif_addr_lock_bh(bp->dev);
4697 
4698 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4699 
4700 	/* Send rx_mode command again if was requested */
4701 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4702 		bnx2x_set_storm_rx_mode(bp);
4703 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4704 				    &bp->sp_state))
4705 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
4706 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4707 				    &bp->sp_state))
4708 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
4709 
4710 	netif_addr_unlock_bh(bp->dev);
4711 }
4712 
4713 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
4714 					      union event_ring_elem *elem)
4715 {
4716 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
4717 		DP(BNX2X_MSG_SP,
4718 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
4719 		   elem->message.data.vif_list_event.func_bit_map);
4720 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
4721 			elem->message.data.vif_list_event.func_bit_map);
4722 	} else if (elem->message.data.vif_list_event.echo ==
4723 		   VIF_LIST_RULE_SET) {
4724 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
4725 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
4726 	}
4727 }
4728 
4729 /* called with rtnl_lock */
4730 static void bnx2x_after_function_update(struct bnx2x *bp)
4731 {
4732 	int q, rc;
4733 	struct bnx2x_fastpath *fp;
4734 	struct bnx2x_queue_state_params queue_params = {NULL};
4735 	struct bnx2x_queue_update_params *q_update_params =
4736 		&queue_params.params.update;
4737 
4738 	/* Send Q update command with afex vlan removal values	for all Qs */
4739 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
4740 
4741 	/* set silent vlan removal values according to vlan mode */
4742 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
4743 		  &q_update_params->update_flags);
4744 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
4745 		  &q_update_params->update_flags);
4746 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
4747 
4748 	/* in access mode mark mask and value are 0 to strip all vlans */
4749 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
4750 		q_update_params->silent_removal_value = 0;
4751 		q_update_params->silent_removal_mask = 0;
4752 	} else {
4753 		q_update_params->silent_removal_value =
4754 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
4755 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
4756 	}
4757 
4758 	for_each_eth_queue(bp, q) {
4759 		/* Set the appropriate Queue object */
4760 		fp = &bp->fp[q];
4761 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
4762 
4763 		/* send the ramrod */
4764 		rc = bnx2x_queue_state_change(bp, &queue_params);
4765 		if (rc < 0)
4766 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
4767 				  q);
4768 	}
4769 
4770 	if (!NO_FCOE(bp)) {
4771 		fp = &bp->fp[FCOE_IDX(bp)];
4772 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
4773 
4774 		/* clear pending completion bit */
4775 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
4776 
4777 		/* mark latest Q bit */
4778 		smp_mb__before_clear_bit();
4779 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
4780 		smp_mb__after_clear_bit();
4781 
4782 		/* send Q update ramrod for FCoE Q */
4783 		rc = bnx2x_queue_state_change(bp, &queue_params);
4784 		if (rc < 0)
4785 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
4786 				  q);
4787 	} else {
4788 		/* If no FCoE ring - ACK MCP now */
4789 		bnx2x_link_report(bp);
4790 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
4791 	}
4792 }
4793 
4794 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4795 	struct bnx2x *bp, u32 cid)
4796 {
4797 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4798 
4799 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
4800 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
4801 	else
4802 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
4803 }
4804 
4805 static void bnx2x_eq_int(struct bnx2x *bp)
4806 {
4807 	u16 hw_cons, sw_cons, sw_prod;
4808 	union event_ring_elem *elem;
4809 	u8 echo;
4810 	u32 cid;
4811 	u8 opcode;
4812 	int spqe_cnt = 0;
4813 	struct bnx2x_queue_sp_obj *q_obj;
4814 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4815 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4816 
4817 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4818 
4819 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4820 	 * when we get the the next-page we nned to adjust so the loop
4821 	 * condition below will be met. The next element is the size of a
4822 	 * regular element and hence incrementing by 1
4823 	 */
4824 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4825 		hw_cons++;
4826 
4827 	/* This function may never run in parallel with itself for a
4828 	 * specific bp, thus there is no need in "paired" read memory
4829 	 * barrier here.
4830 	 */
4831 	sw_cons = bp->eq_cons;
4832 	sw_prod = bp->eq_prod;
4833 
4834 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
4835 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4836 
4837 	for (; sw_cons != hw_cons;
4838 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4839 
4840 
4841 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4842 
4843 		cid = SW_CID(elem->message.data.cfc_del_event.cid);
4844 		opcode = elem->message.opcode;
4845 
4846 
4847 		/* handle eq element */
4848 		switch (opcode) {
4849 		case EVENT_RING_OPCODE_STAT_QUERY:
4850 			DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
4851 			   "got statistics comp event %d\n",
4852 			   bp->stats_comp++);
4853 			/* nothing to do with stats comp */
4854 			goto next_spqe;
4855 
4856 		case EVENT_RING_OPCODE_CFC_DEL:
4857 			/* handle according to cid range */
4858 			/*
4859 			 * we may want to verify here that the bp state is
4860 			 * HALTING
4861 			 */
4862 			DP(BNX2X_MSG_SP,
4863 			   "got delete ramrod for MULTI[%d]\n", cid);
4864 
4865 			if (CNIC_LOADED(bp) &&
4866 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4867 				goto next_spqe;
4868 
4869 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
4870 
4871 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4872 				break;
4873 
4874 
4875 
4876 			goto next_spqe;
4877 
4878 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
4879 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
4880 			if (f_obj->complete_cmd(bp, f_obj,
4881 						BNX2X_F_CMD_TX_STOP))
4882 				break;
4883 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4884 			goto next_spqe;
4885 
4886 		case EVENT_RING_OPCODE_START_TRAFFIC:
4887 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
4888 			if (f_obj->complete_cmd(bp, f_obj,
4889 						BNX2X_F_CMD_TX_START))
4890 				break;
4891 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4892 			goto next_spqe;
4893 
4894 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
4895 			echo = elem->message.data.function_update_event.echo;
4896 			if (echo == SWITCH_UPDATE) {
4897 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4898 				   "got FUNC_SWITCH_UPDATE ramrod\n");
4899 				if (f_obj->complete_cmd(
4900 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
4901 					break;
4902 
4903 			} else {
4904 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
4905 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
4906 				f_obj->complete_cmd(bp, f_obj,
4907 						    BNX2X_F_CMD_AFEX_UPDATE);
4908 
4909 				/* We will perform the Queues update from
4910 				 * sp_rtnl task as all Queue SP operations
4911 				 * should run under rtnl_lock.
4912 				 */
4913 				smp_mb__before_clear_bit();
4914 				set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
4915 					&bp->sp_rtnl_state);
4916 				smp_mb__after_clear_bit();
4917 
4918 				schedule_delayed_work(&bp->sp_rtnl_task, 0);
4919 			}
4920 
4921 			goto next_spqe;
4922 
4923 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
4924 			f_obj->complete_cmd(bp, f_obj,
4925 					    BNX2X_F_CMD_AFEX_VIFLISTS);
4926 			bnx2x_after_afex_vif_lists(bp, elem);
4927 			goto next_spqe;
4928 		case EVENT_RING_OPCODE_FUNCTION_START:
4929 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4930 			   "got FUNC_START ramrod\n");
4931 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4932 				break;
4933 
4934 			goto next_spqe;
4935 
4936 		case EVENT_RING_OPCODE_FUNCTION_STOP:
4937 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4938 			   "got FUNC_STOP ramrod\n");
4939 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4940 				break;
4941 
4942 			goto next_spqe;
4943 		}
4944 
4945 		switch (opcode | bp->state) {
4946 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4947 		      BNX2X_STATE_OPEN):
4948 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4949 		      BNX2X_STATE_OPENING_WAIT4_PORT):
4950 			cid = elem->message.data.eth_event.echo &
4951 				BNX2X_SWCID_MASK;
4952 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4953 			   cid);
4954 			rss_raw->clear_pending(rss_raw);
4955 			break;
4956 
4957 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4958 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4959 		case (EVENT_RING_OPCODE_SET_MAC |
4960 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4961 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4962 		      BNX2X_STATE_OPEN):
4963 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4964 		      BNX2X_STATE_DIAG):
4965 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4966 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4967 			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
4968 			bnx2x_handle_classification_eqe(bp, elem);
4969 			break;
4970 
4971 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4972 		      BNX2X_STATE_OPEN):
4973 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4974 		      BNX2X_STATE_DIAG):
4975 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4976 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4977 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
4978 			bnx2x_handle_mcast_eqe(bp);
4979 			break;
4980 
4981 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4982 		      BNX2X_STATE_OPEN):
4983 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4984 		      BNX2X_STATE_DIAG):
4985 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4986 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4987 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
4988 			bnx2x_handle_rx_mode_eqe(bp);
4989 			break;
4990 		default:
4991 			/* unknown event log error and continue */
4992 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4993 				  elem->message.opcode, bp->state);
4994 		}
4995 next_spqe:
4996 		spqe_cnt++;
4997 	} /* for */
4998 
4999 	smp_mb__before_atomic_inc();
5000 	atomic_add(spqe_cnt, &bp->eq_spq_left);
5001 
5002 	bp->eq_cons = sw_cons;
5003 	bp->eq_prod = sw_prod;
5004 	/* Make sure that above mem writes were issued towards the memory */
5005 	smp_wmb();
5006 
5007 	/* update producer */
5008 	bnx2x_update_eq_prod(bp, bp->eq_prod);
5009 }
5010 
5011 static void bnx2x_sp_task(struct work_struct *work)
5012 {
5013 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5014 	u16 status;
5015 
5016 	status = bnx2x_update_dsb_idx(bp);
5017 /*	if (status == 0)				     */
5018 /*		BNX2X_ERR("spurious slowpath interrupt!\n"); */
5019 
5020 	DP(BNX2X_MSG_SP, "got a slowpath interrupt (status 0x%x)\n", status);
5021 
5022 	/* HW attentions */
5023 	if (status & BNX2X_DEF_SB_ATT_IDX) {
5024 		bnx2x_attn_int(bp);
5025 		status &= ~BNX2X_DEF_SB_ATT_IDX;
5026 	}
5027 
5028 	/* SP events: STAT_QUERY and others */
5029 	if (status & BNX2X_DEF_SB_IDX) {
5030 		struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5031 
5032 		if (FCOE_INIT(bp) &&
5033 		    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5034 			/*
5035 			 * Prevent local bottom-halves from running as
5036 			 * we are going to change the local NAPI list.
5037 			 */
5038 			local_bh_disable();
5039 			napi_schedule(&bnx2x_fcoe(bp, napi));
5040 			local_bh_enable();
5041 		}
5042 
5043 		/* Handle EQ completions */
5044 		bnx2x_eq_int(bp);
5045 
5046 		bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5047 			le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5048 
5049 		status &= ~BNX2X_DEF_SB_IDX;
5050 	}
5051 
5052 	if (unlikely(status))
5053 		DP(BNX2X_MSG_SP, "got an unknown interrupt! (status 0x%x)\n",
5054 		   status);
5055 
5056 	bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5057 	     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5058 
5059 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5060 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5061 			       &bp->sp_state)) {
5062 		bnx2x_link_report(bp);
5063 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5064 	}
5065 }
5066 
5067 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5068 {
5069 	struct net_device *dev = dev_instance;
5070 	struct bnx2x *bp = netdev_priv(dev);
5071 
5072 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5073 		     IGU_INT_DISABLE, 0);
5074 
5075 #ifdef BNX2X_STOP_ON_ERROR
5076 	if (unlikely(bp->panic))
5077 		return IRQ_HANDLED;
5078 #endif
5079 
5080 	if (CNIC_LOADED(bp)) {
5081 		struct cnic_ops *c_ops;
5082 
5083 		rcu_read_lock();
5084 		c_ops = rcu_dereference(bp->cnic_ops);
5085 		if (c_ops)
5086 			c_ops->cnic_handler(bp->cnic_data, NULL);
5087 		rcu_read_unlock();
5088 	}
5089 
5090 	queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
5091 
5092 	return IRQ_HANDLED;
5093 }
5094 
5095 /* end of slow path */
5096 
5097 
5098 void bnx2x_drv_pulse(struct bnx2x *bp)
5099 {
5100 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5101 		 bp->fw_drv_pulse_wr_seq);
5102 }
5103 
5104 
5105 static void bnx2x_timer(unsigned long data)
5106 {
5107 	struct bnx2x *bp = (struct bnx2x *) data;
5108 
5109 	if (!netif_running(bp->dev))
5110 		return;
5111 
5112 	if (!BP_NOMCP(bp)) {
5113 		int mb_idx = BP_FW_MB_IDX(bp);
5114 		u32 drv_pulse;
5115 		u32 mcp_pulse;
5116 
5117 		++bp->fw_drv_pulse_wr_seq;
5118 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5119 		/* TBD - add SYSTEM_TIME */
5120 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5121 		bnx2x_drv_pulse(bp);
5122 
5123 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5124 			     MCP_PULSE_SEQ_MASK);
5125 		/* The delta between driver pulse and mcp response
5126 		 * should be 1 (before mcp response) or 0 (after mcp response)
5127 		 */
5128 		if ((drv_pulse != mcp_pulse) &&
5129 		    (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
5130 			/* someone lost a heartbeat... */
5131 			BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5132 				  drv_pulse, mcp_pulse);
5133 		}
5134 	}
5135 
5136 	if (bp->state == BNX2X_STATE_OPEN)
5137 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5138 
5139 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5140 }
5141 
5142 /* end of Statistics */
5143 
5144 /* nic init */
5145 
5146 /*
5147  * nic init service functions
5148  */
5149 
5150 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5151 {
5152 	u32 i;
5153 	if (!(len%4) && !(addr%4))
5154 		for (i = 0; i < len; i += 4)
5155 			REG_WR(bp, addr + i, fill);
5156 	else
5157 		for (i = 0; i < len; i++)
5158 			REG_WR8(bp, addr + i, fill);
5159 
5160 }
5161 
5162 /* helper: writes FP SP data to FW - data_size in dwords */
5163 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5164 				int fw_sb_id,
5165 				u32 *sb_data_p,
5166 				u32 data_size)
5167 {
5168 	int index;
5169 	for (index = 0; index < data_size; index++)
5170 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5171 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5172 			sizeof(u32)*index,
5173 			*(sb_data_p + index));
5174 }
5175 
5176 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5177 {
5178 	u32 *sb_data_p;
5179 	u32 data_size = 0;
5180 	struct hc_status_block_data_e2 sb_data_e2;
5181 	struct hc_status_block_data_e1x sb_data_e1x;
5182 
5183 	/* disable the function first */
5184 	if (!CHIP_IS_E1x(bp)) {
5185 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5186 		sb_data_e2.common.state = SB_DISABLED;
5187 		sb_data_e2.common.p_func.vf_valid = false;
5188 		sb_data_p = (u32 *)&sb_data_e2;
5189 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5190 	} else {
5191 		memset(&sb_data_e1x, 0,
5192 		       sizeof(struct hc_status_block_data_e1x));
5193 		sb_data_e1x.common.state = SB_DISABLED;
5194 		sb_data_e1x.common.p_func.vf_valid = false;
5195 		sb_data_p = (u32 *)&sb_data_e1x;
5196 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5197 	}
5198 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5199 
5200 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5201 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5202 			CSTORM_STATUS_BLOCK_SIZE);
5203 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5204 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5205 			CSTORM_SYNC_BLOCK_SIZE);
5206 }
5207 
5208 /* helper:  writes SP SB data to FW */
5209 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5210 		struct hc_sp_status_block_data *sp_sb_data)
5211 {
5212 	int func = BP_FUNC(bp);
5213 	int i;
5214 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5215 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5216 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5217 			i*sizeof(u32),
5218 			*((u32 *)sp_sb_data + i));
5219 }
5220 
5221 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5222 {
5223 	int func = BP_FUNC(bp);
5224 	struct hc_sp_status_block_data sp_sb_data;
5225 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5226 
5227 	sp_sb_data.state = SB_DISABLED;
5228 	sp_sb_data.p_func.vf_valid = false;
5229 
5230 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5231 
5232 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5233 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5234 			CSTORM_SP_STATUS_BLOCK_SIZE);
5235 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5236 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5237 			CSTORM_SP_SYNC_BLOCK_SIZE);
5238 
5239 }
5240 
5241 
5242 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5243 					   int igu_sb_id, int igu_seg_id)
5244 {
5245 	hc_sm->igu_sb_id = igu_sb_id;
5246 	hc_sm->igu_seg_id = igu_seg_id;
5247 	hc_sm->timer_value = 0xFF;
5248 	hc_sm->time_to_expire = 0xFFFFFFFF;
5249 }
5250 
5251 
5252 /* allocates state machine ids. */
5253 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5254 {
5255 	/* zero out state machine indices */
5256 	/* rx indices */
5257 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5258 
5259 	/* tx indices */
5260 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5261 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5262 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5263 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5264 
5265 	/* map indices */
5266 	/* rx indices */
5267 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5268 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5269 
5270 	/* tx indices */
5271 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5272 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5273 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5274 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5275 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5276 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5277 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5278 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5279 }
5280 
5281 static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5282 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5283 {
5284 	int igu_seg_id;
5285 
5286 	struct hc_status_block_data_e2 sb_data_e2;
5287 	struct hc_status_block_data_e1x sb_data_e1x;
5288 	struct hc_status_block_sm  *hc_sm_p;
5289 	int data_size;
5290 	u32 *sb_data_p;
5291 
5292 	if (CHIP_INT_MODE_IS_BC(bp))
5293 		igu_seg_id = HC_SEG_ACCESS_NORM;
5294 	else
5295 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5296 
5297 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5298 
5299 	if (!CHIP_IS_E1x(bp)) {
5300 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5301 		sb_data_e2.common.state = SB_ENABLED;
5302 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5303 		sb_data_e2.common.p_func.vf_id = vfid;
5304 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5305 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5306 		sb_data_e2.common.same_igu_sb_1b = true;
5307 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5308 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5309 		hc_sm_p = sb_data_e2.common.state_machine;
5310 		sb_data_p = (u32 *)&sb_data_e2;
5311 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5312 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5313 	} else {
5314 		memset(&sb_data_e1x, 0,
5315 		       sizeof(struct hc_status_block_data_e1x));
5316 		sb_data_e1x.common.state = SB_ENABLED;
5317 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5318 		sb_data_e1x.common.p_func.vf_id = 0xff;
5319 		sb_data_e1x.common.p_func.vf_valid = false;
5320 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5321 		sb_data_e1x.common.same_igu_sb_1b = true;
5322 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5323 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5324 		hc_sm_p = sb_data_e1x.common.state_machine;
5325 		sb_data_p = (u32 *)&sb_data_e1x;
5326 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5327 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5328 	}
5329 
5330 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5331 				       igu_sb_id, igu_seg_id);
5332 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5333 				       igu_sb_id, igu_seg_id);
5334 
5335 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5336 
5337 	/* write indecies to HW */
5338 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5339 }
5340 
5341 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5342 				     u16 tx_usec, u16 rx_usec)
5343 {
5344 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5345 				    false, rx_usec);
5346 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5347 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5348 				       tx_usec);
5349 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5350 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5351 				       tx_usec);
5352 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5353 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5354 				       tx_usec);
5355 }
5356 
5357 static void bnx2x_init_def_sb(struct bnx2x *bp)
5358 {
5359 	struct host_sp_status_block *def_sb = bp->def_status_blk;
5360 	dma_addr_t mapping = bp->def_status_blk_mapping;
5361 	int igu_sp_sb_index;
5362 	int igu_seg_id;
5363 	int port = BP_PORT(bp);
5364 	int func = BP_FUNC(bp);
5365 	int reg_offset, reg_offset_en5;
5366 	u64 section;
5367 	int index;
5368 	struct hc_sp_status_block_data sp_sb_data;
5369 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5370 
5371 	if (CHIP_INT_MODE_IS_BC(bp)) {
5372 		igu_sp_sb_index = DEF_SB_IGU_ID;
5373 		igu_seg_id = HC_SEG_ACCESS_DEF;
5374 	} else {
5375 		igu_sp_sb_index = bp->igu_dsb_id;
5376 		igu_seg_id = IGU_SEG_ACCESS_DEF;
5377 	}
5378 
5379 	/* ATTN */
5380 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5381 					    atten_status_block);
5382 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5383 
5384 	bp->attn_state = 0;
5385 
5386 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5387 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5388 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5389 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5390 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5391 		int sindex;
5392 		/* take care of sig[0]..sig[4] */
5393 		for (sindex = 0; sindex < 4; sindex++)
5394 			bp->attn_group[index].sig[sindex] =
5395 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5396 
5397 		if (!CHIP_IS_E1x(bp))
5398 			/*
5399 			 * enable5 is separate from the rest of the registers,
5400 			 * and therefore the address skip is 4
5401 			 * and not 16 between the different groups
5402 			 */
5403 			bp->attn_group[index].sig[4] = REG_RD(bp,
5404 					reg_offset_en5 + 0x4*index);
5405 		else
5406 			bp->attn_group[index].sig[4] = 0;
5407 	}
5408 
5409 	if (bp->common.int_block == INT_BLOCK_HC) {
5410 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5411 				     HC_REG_ATTN_MSG0_ADDR_L);
5412 
5413 		REG_WR(bp, reg_offset, U64_LO(section));
5414 		REG_WR(bp, reg_offset + 4, U64_HI(section));
5415 	} else if (!CHIP_IS_E1x(bp)) {
5416 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5417 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5418 	}
5419 
5420 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5421 					    sp_sb);
5422 
5423 	bnx2x_zero_sp_sb(bp);
5424 
5425 	sp_sb_data.state		= SB_ENABLED;
5426 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
5427 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
5428 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
5429 	sp_sb_data.igu_seg_id		= igu_seg_id;
5430 	sp_sb_data.p_func.pf_id		= func;
5431 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
5432 	sp_sb_data.p_func.vf_id		= 0xff;
5433 
5434 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5435 
5436 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5437 }
5438 
5439 void bnx2x_update_coalesce(struct bnx2x *bp)
5440 {
5441 	int i;
5442 
5443 	for_each_eth_queue(bp, i)
5444 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5445 					 bp->tx_ticks, bp->rx_ticks);
5446 }
5447 
5448 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5449 {
5450 	spin_lock_init(&bp->spq_lock);
5451 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5452 
5453 	bp->spq_prod_idx = 0;
5454 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5455 	bp->spq_prod_bd = bp->spq;
5456 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5457 }
5458 
5459 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5460 {
5461 	int i;
5462 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5463 		union event_ring_elem *elem =
5464 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5465 
5466 		elem->next_page.addr.hi =
5467 			cpu_to_le32(U64_HI(bp->eq_mapping +
5468 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5469 		elem->next_page.addr.lo =
5470 			cpu_to_le32(U64_LO(bp->eq_mapping +
5471 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5472 	}
5473 	bp->eq_cons = 0;
5474 	bp->eq_prod = NUM_EQ_DESC;
5475 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5476 	/* we want a warning message before it gets rought... */
5477 	atomic_set(&bp->eq_spq_left,
5478 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5479 }
5480 
5481 
5482 /* called with netif_addr_lock_bh() */
5483 void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5484 			 unsigned long rx_mode_flags,
5485 			 unsigned long rx_accept_flags,
5486 			 unsigned long tx_accept_flags,
5487 			 unsigned long ramrod_flags)
5488 {
5489 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
5490 	int rc;
5491 
5492 	memset(&ramrod_param, 0, sizeof(ramrod_param));
5493 
5494 	/* Prepare ramrod parameters */
5495 	ramrod_param.cid = 0;
5496 	ramrod_param.cl_id = cl_id;
5497 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5498 	ramrod_param.func_id = BP_FUNC(bp);
5499 
5500 	ramrod_param.pstate = &bp->sp_state;
5501 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5502 
5503 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5504 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5505 
5506 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5507 
5508 	ramrod_param.ramrod_flags = ramrod_flags;
5509 	ramrod_param.rx_mode_flags = rx_mode_flags;
5510 
5511 	ramrod_param.rx_accept_flags = rx_accept_flags;
5512 	ramrod_param.tx_accept_flags = tx_accept_flags;
5513 
5514 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5515 	if (rc < 0) {
5516 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5517 		return;
5518 	}
5519 }
5520 
5521 /* called with netif_addr_lock_bh() */
5522 void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5523 {
5524 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5525 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5526 
5527 	if (!NO_FCOE(bp))
5528 
5529 		/* Configure rx_mode of FCoE Queue */
5530 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5531 
5532 	switch (bp->rx_mode) {
5533 	case BNX2X_RX_MODE_NONE:
5534 		/*
5535 		 * 'drop all' supersedes any accept flags that may have been
5536 		 * passed to the function.
5537 		 */
5538 		break;
5539 	case BNX2X_RX_MODE_NORMAL:
5540 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5541 		__set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5542 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5543 
5544 		/* internal switching mode */
5545 		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5546 		__set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5547 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5548 
5549 		break;
5550 	case BNX2X_RX_MODE_ALLMULTI:
5551 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5552 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5553 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5554 
5555 		/* internal switching mode */
5556 		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5557 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5558 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5559 
5560 		break;
5561 	case BNX2X_RX_MODE_PROMISC:
5562 		/* According to deffinition of SI mode, iface in promisc mode
5563 		 * should receive matched and unmatched (in resolution of port)
5564 		 * unicast packets.
5565 		 */
5566 		__set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5567 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5568 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5569 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5570 
5571 		/* internal switching mode */
5572 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5573 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5574 
5575 		if (IS_MF_SI(bp))
5576 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5577 		else
5578 			__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5579 
5580 		break;
5581 	default:
5582 		BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5583 		return;
5584 	}
5585 
5586 	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5587 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5588 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5589 	}
5590 
5591 	__set_bit(RAMROD_RX, &ramrod_flags);
5592 	__set_bit(RAMROD_TX, &ramrod_flags);
5593 
5594 	bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5595 			    tx_accept_flags, ramrod_flags);
5596 }
5597 
5598 static void bnx2x_init_internal_common(struct bnx2x *bp)
5599 {
5600 	int i;
5601 
5602 	if (IS_MF_SI(bp))
5603 		/*
5604 		 * In switch independent mode, the TSTORM needs to accept
5605 		 * packets that failed classification, since approximate match
5606 		 * mac addresses aren't written to NIG LLH
5607 		 */
5608 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5609 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5610 	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5611 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5612 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5613 
5614 	/* Zero this manually as its initialization is
5615 	   currently missing in the initTool */
5616 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5617 		REG_WR(bp, BAR_USTRORM_INTMEM +
5618 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
5619 	if (!CHIP_IS_E1x(bp)) {
5620 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5621 			CHIP_INT_MODE_IS_BC(bp) ?
5622 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5623 	}
5624 }
5625 
5626 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5627 {
5628 	switch (load_code) {
5629 	case FW_MSG_CODE_DRV_LOAD_COMMON:
5630 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5631 		bnx2x_init_internal_common(bp);
5632 		/* no break */
5633 
5634 	case FW_MSG_CODE_DRV_LOAD_PORT:
5635 		/* nothing to do */
5636 		/* no break */
5637 
5638 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5639 		/* internal memory per function is
5640 		   initialized inside bnx2x_pf_init */
5641 		break;
5642 
5643 	default:
5644 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5645 		break;
5646 	}
5647 }
5648 
5649 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5650 {
5651 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
5652 }
5653 
5654 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5655 {
5656 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
5657 }
5658 
5659 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5660 {
5661 	if (CHIP_IS_E1x(fp->bp))
5662 		return BP_L_ID(fp->bp) + fp->index;
5663 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
5664 		return bnx2x_fp_igu_sb_id(fp);
5665 }
5666 
5667 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5668 {
5669 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5670 	u8 cos;
5671 	unsigned long q_type = 0;
5672 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5673 	fp->rx_queue = fp_idx;
5674 	fp->cid = fp_idx;
5675 	fp->cl_id = bnx2x_fp_cl_id(fp);
5676 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5677 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5678 	/* qZone id equals to FW (per path) client id */
5679 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
5680 
5681 	/* init shortcut */
5682 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5683 
5684 	/* Setup SB indicies */
5685 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5686 
5687 	/* Configure Queue State object */
5688 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5689 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5690 
5691 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5692 
5693 	/* init tx data */
5694 	for_each_cos_in_tx_queue(fp, cos) {
5695 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
5696 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
5697 				  FP_COS_TO_TXQ(fp, cos, bp),
5698 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
5699 		cids[cos] = fp->txdata_ptr[cos]->cid;
5700 	}
5701 
5702 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
5703 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5704 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
5705 
5706 	/**
5707 	 * Configure classification DBs: Always enable Tx switching
5708 	 */
5709 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5710 
5711 	DP(NETIF_MSG_IFUP, "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
5712 		   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5713 		   fp->igu_sb_id);
5714 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5715 		      fp->fw_sb_id, fp->igu_sb_id);
5716 
5717 	bnx2x_update_fpsb_idx(fp);
5718 }
5719 
5720 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
5721 {
5722 	int i;
5723 
5724 	for (i = 1; i <= NUM_TX_RINGS; i++) {
5725 		struct eth_tx_next_bd *tx_next_bd =
5726 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
5727 
5728 		tx_next_bd->addr_hi =
5729 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
5730 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
5731 		tx_next_bd->addr_lo =
5732 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
5733 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
5734 	}
5735 
5736 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
5737 	txdata->tx_db.data.zero_fill1 = 0;
5738 	txdata->tx_db.data.prod = 0;
5739 
5740 	txdata->tx_pkt_prod = 0;
5741 	txdata->tx_pkt_cons = 0;
5742 	txdata->tx_bd_prod = 0;
5743 	txdata->tx_bd_cons = 0;
5744 	txdata->tx_pkt = 0;
5745 }
5746 
5747 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
5748 {
5749 	int i;
5750 
5751 	for_each_tx_queue_cnic(bp, i)
5752 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
5753 }
5754 static void bnx2x_init_tx_rings(struct bnx2x *bp)
5755 {
5756 	int i;
5757 	u8 cos;
5758 
5759 	for_each_eth_queue(bp, i)
5760 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
5761 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
5762 }
5763 
5764 void bnx2x_nic_init_cnic(struct bnx2x *bp)
5765 {
5766 	if (!NO_FCOE(bp))
5767 		bnx2x_init_fcoe_fp(bp);
5768 
5769 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5770 		      BNX2X_VF_ID_INVALID, false,
5771 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5772 
5773 	/* ensure status block indices were read */
5774 	rmb();
5775 	bnx2x_init_rx_rings_cnic(bp);
5776 	bnx2x_init_tx_rings_cnic(bp);
5777 
5778 	/* flush all */
5779 	mb();
5780 	mmiowb();
5781 }
5782 
5783 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5784 {
5785 	int i;
5786 
5787 	for_each_eth_queue(bp, i)
5788 		bnx2x_init_eth_fp(bp, i);
5789 	/* Initialize MOD_ABS interrupts */
5790 	bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5791 			       bp->common.shmem_base, bp->common.shmem2_base,
5792 			       BP_PORT(bp));
5793 	/* ensure status block indices were read */
5794 	rmb();
5795 
5796 	bnx2x_init_def_sb(bp);
5797 	bnx2x_update_dsb_idx(bp);
5798 	bnx2x_init_rx_rings(bp);
5799 	bnx2x_init_tx_rings(bp);
5800 	bnx2x_init_sp_ring(bp);
5801 	bnx2x_init_eq_ring(bp);
5802 	bnx2x_init_internal(bp, load_code);
5803 	bnx2x_pf_init(bp);
5804 	bnx2x_stats_init(bp);
5805 
5806 	/* flush all before enabling interrupts */
5807 	mb();
5808 	mmiowb();
5809 
5810 	bnx2x_int_enable(bp);
5811 
5812 	/* Check for SPIO5 */
5813 	bnx2x_attn_int_deasserted0(bp,
5814 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5815 				   AEU_INPUTS_ATTN_BITS_SPIO5);
5816 }
5817 
5818 /* end of nic init */
5819 
5820 /*
5821  * gzip service functions
5822  */
5823 
5824 static int bnx2x_gunzip_init(struct bnx2x *bp)
5825 {
5826 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5827 					    &bp->gunzip_mapping, GFP_KERNEL);
5828 	if (bp->gunzip_buf  == NULL)
5829 		goto gunzip_nomem1;
5830 
5831 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5832 	if (bp->strm  == NULL)
5833 		goto gunzip_nomem2;
5834 
5835 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5836 	if (bp->strm->workspace == NULL)
5837 		goto gunzip_nomem3;
5838 
5839 	return 0;
5840 
5841 gunzip_nomem3:
5842 	kfree(bp->strm);
5843 	bp->strm = NULL;
5844 
5845 gunzip_nomem2:
5846 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5847 			  bp->gunzip_mapping);
5848 	bp->gunzip_buf = NULL;
5849 
5850 gunzip_nomem1:
5851 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
5852 	return -ENOMEM;
5853 }
5854 
5855 static void bnx2x_gunzip_end(struct bnx2x *bp)
5856 {
5857 	if (bp->strm) {
5858 		vfree(bp->strm->workspace);
5859 		kfree(bp->strm);
5860 		bp->strm = NULL;
5861 	}
5862 
5863 	if (bp->gunzip_buf) {
5864 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5865 				  bp->gunzip_mapping);
5866 		bp->gunzip_buf = NULL;
5867 	}
5868 }
5869 
5870 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5871 {
5872 	int n, rc;
5873 
5874 	/* check gzip header */
5875 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5876 		BNX2X_ERR("Bad gzip header\n");
5877 		return -EINVAL;
5878 	}
5879 
5880 	n = 10;
5881 
5882 #define FNAME				0x8
5883 
5884 	if (zbuf[3] & FNAME)
5885 		while ((zbuf[n++] != 0) && (n < len));
5886 
5887 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5888 	bp->strm->avail_in = len - n;
5889 	bp->strm->next_out = bp->gunzip_buf;
5890 	bp->strm->avail_out = FW_BUF_SIZE;
5891 
5892 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5893 	if (rc != Z_OK)
5894 		return rc;
5895 
5896 	rc = zlib_inflate(bp->strm, Z_FINISH);
5897 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
5898 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
5899 			   bp->strm->msg);
5900 
5901 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5902 	if (bp->gunzip_outlen & 0x3)
5903 		netdev_err(bp->dev,
5904 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
5905 				bp->gunzip_outlen);
5906 	bp->gunzip_outlen >>= 2;
5907 
5908 	zlib_inflateEnd(bp->strm);
5909 
5910 	if (rc == Z_STREAM_END)
5911 		return 0;
5912 
5913 	return rc;
5914 }
5915 
5916 /* nic load/unload */
5917 
5918 /*
5919  * General service functions
5920  */
5921 
5922 /* send a NIG loopback debug packet */
5923 static void bnx2x_lb_pckt(struct bnx2x *bp)
5924 {
5925 	u32 wb_write[3];
5926 
5927 	/* Ethernet source and destination addresses */
5928 	wb_write[0] = 0x55555555;
5929 	wb_write[1] = 0x55555555;
5930 	wb_write[2] = 0x20;		/* SOP */
5931 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5932 
5933 	/* NON-IP protocol */
5934 	wb_write[0] = 0x09000000;
5935 	wb_write[1] = 0x55555555;
5936 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
5937 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5938 }
5939 
5940 /* some of the internal memories
5941  * are not directly readable from the driver
5942  * to test them we send debug packets
5943  */
5944 static int bnx2x_int_mem_test(struct bnx2x *bp)
5945 {
5946 	int factor;
5947 	int count, i;
5948 	u32 val = 0;
5949 
5950 	if (CHIP_REV_IS_FPGA(bp))
5951 		factor = 120;
5952 	else if (CHIP_REV_IS_EMUL(bp))
5953 		factor = 200;
5954 	else
5955 		factor = 1;
5956 
5957 	/* Disable inputs of parser neighbor blocks */
5958 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5959 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5960 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5961 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5962 
5963 	/*  Write 0 to parser credits for CFC search request */
5964 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5965 
5966 	/* send Ethernet packet */
5967 	bnx2x_lb_pckt(bp);
5968 
5969 	/* TODO do i reset NIG statistic? */
5970 	/* Wait until NIG register shows 1 packet of size 0x10 */
5971 	count = 1000 * factor;
5972 	while (count) {
5973 
5974 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5975 		val = *bnx2x_sp(bp, wb_data[0]);
5976 		if (val == 0x10)
5977 			break;
5978 
5979 		msleep(10);
5980 		count--;
5981 	}
5982 	if (val != 0x10) {
5983 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5984 		return -1;
5985 	}
5986 
5987 	/* Wait until PRS register shows 1 packet */
5988 	count = 1000 * factor;
5989 	while (count) {
5990 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5991 		if (val == 1)
5992 			break;
5993 
5994 		msleep(10);
5995 		count--;
5996 	}
5997 	if (val != 0x1) {
5998 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5999 		return -2;
6000 	}
6001 
6002 	/* Reset and init BRB, PRS */
6003 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6004 	msleep(50);
6005 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6006 	msleep(50);
6007 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6008 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6009 
6010 	DP(NETIF_MSG_HW, "part2\n");
6011 
6012 	/* Disable inputs of parser neighbor blocks */
6013 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6014 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6015 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6016 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6017 
6018 	/* Write 0 to parser credits for CFC search request */
6019 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6020 
6021 	/* send 10 Ethernet packets */
6022 	for (i = 0; i < 10; i++)
6023 		bnx2x_lb_pckt(bp);
6024 
6025 	/* Wait until NIG register shows 10 + 1
6026 	   packets of size 11*0x10 = 0xb0 */
6027 	count = 1000 * factor;
6028 	while (count) {
6029 
6030 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6031 		val = *bnx2x_sp(bp, wb_data[0]);
6032 		if (val == 0xb0)
6033 			break;
6034 
6035 		msleep(10);
6036 		count--;
6037 	}
6038 	if (val != 0xb0) {
6039 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6040 		return -3;
6041 	}
6042 
6043 	/* Wait until PRS register shows 2 packets */
6044 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6045 	if (val != 2)
6046 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6047 
6048 	/* Write 1 to parser credits for CFC search request */
6049 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6050 
6051 	/* Wait until PRS register shows 3 packets */
6052 	msleep(10 * factor);
6053 	/* Wait until NIG register shows 1 packet of size 0x10 */
6054 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6055 	if (val != 3)
6056 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6057 
6058 	/* clear NIG EOP FIFO */
6059 	for (i = 0; i < 11; i++)
6060 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6061 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6062 	if (val != 1) {
6063 		BNX2X_ERR("clear of NIG failed\n");
6064 		return -4;
6065 	}
6066 
6067 	/* Reset and init BRB, PRS, NIG */
6068 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6069 	msleep(50);
6070 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6071 	msleep(50);
6072 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6073 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6074 	if (!CNIC_SUPPORT(bp))
6075 		/* set NIC mode */
6076 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6077 
6078 	/* Enable inputs of parser neighbor blocks */
6079 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6080 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6081 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6082 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6083 
6084 	DP(NETIF_MSG_HW, "done\n");
6085 
6086 	return 0; /* OK */
6087 }
6088 
6089 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6090 {
6091 	u32 val;
6092 
6093 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6094 	if (!CHIP_IS_E1x(bp))
6095 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6096 	else
6097 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6098 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6099 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6100 	/*
6101 	 * mask read length error interrupts in brb for parser
6102 	 * (parsing unit and 'checksum and crc' unit)
6103 	 * these errors are legal (PU reads fixed length and CAC can cause
6104 	 * read length error on truncated packets)
6105 	 */
6106 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6107 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6108 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6109 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6110 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6111 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6112 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6113 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6114 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6115 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6116 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6117 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6118 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6119 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6120 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6121 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6122 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6123 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6124 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6125 
6126 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6127 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6128 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6129 	if (!CHIP_IS_E1x(bp))
6130 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6131 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6132 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6133 
6134 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6135 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6136 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6137 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6138 
6139 	if (!CHIP_IS_E1x(bp))
6140 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6141 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6142 
6143 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6144 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6145 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6146 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6147 }
6148 
6149 static void bnx2x_reset_common(struct bnx2x *bp)
6150 {
6151 	u32 val = 0x1400;
6152 
6153 	/* reset_common */
6154 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6155 	       0xd3ffff7f);
6156 
6157 	if (CHIP_IS_E3(bp)) {
6158 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6159 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6160 	}
6161 
6162 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6163 }
6164 
6165 static void bnx2x_setup_dmae(struct bnx2x *bp)
6166 {
6167 	bp->dmae_ready = 0;
6168 	spin_lock_init(&bp->dmae_lock);
6169 }
6170 
6171 static void bnx2x_init_pxp(struct bnx2x *bp)
6172 {
6173 	u16 devctl;
6174 	int r_order, w_order;
6175 
6176 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6177 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6178 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6179 	if (bp->mrrs == -1)
6180 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6181 	else {
6182 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6183 		r_order = bp->mrrs;
6184 	}
6185 
6186 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6187 }
6188 
6189 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6190 {
6191 	int is_required;
6192 	u32 val;
6193 	int port;
6194 
6195 	if (BP_NOMCP(bp))
6196 		return;
6197 
6198 	is_required = 0;
6199 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6200 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6201 
6202 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6203 		is_required = 1;
6204 
6205 	/*
6206 	 * The fan failure mechanism is usually related to the PHY type since
6207 	 * the power consumption of the board is affected by the PHY. Currently,
6208 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6209 	 */
6210 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6211 		for (port = PORT_0; port < PORT_MAX; port++) {
6212 			is_required |=
6213 				bnx2x_fan_failure_det_req(
6214 					bp,
6215 					bp->common.shmem_base,
6216 					bp->common.shmem2_base,
6217 					port);
6218 		}
6219 
6220 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6221 
6222 	if (is_required == 0)
6223 		return;
6224 
6225 	/* Fan failure is indicated by SPIO 5 */
6226 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6227 
6228 	/* set to active low mode */
6229 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6230 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6231 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6232 
6233 	/* enable interrupt to signal the IGU */
6234 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6235 	val |= MISC_SPIO_SPIO5;
6236 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6237 }
6238 
6239 static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
6240 {
6241 	u32 offset = 0;
6242 
6243 	if (CHIP_IS_E1(bp))
6244 		return;
6245 	if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
6246 		return;
6247 
6248 	switch (BP_ABS_FUNC(bp)) {
6249 	case 0:
6250 		offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
6251 		break;
6252 	case 1:
6253 		offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
6254 		break;
6255 	case 2:
6256 		offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
6257 		break;
6258 	case 3:
6259 		offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
6260 		break;
6261 	case 4:
6262 		offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
6263 		break;
6264 	case 5:
6265 		offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
6266 		break;
6267 	case 6:
6268 		offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
6269 		break;
6270 	case 7:
6271 		offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
6272 		break;
6273 	default:
6274 		return;
6275 	}
6276 
6277 	REG_WR(bp, offset, pretend_func_num);
6278 	REG_RD(bp, offset);
6279 	DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
6280 }
6281 
6282 void bnx2x_pf_disable(struct bnx2x *bp)
6283 {
6284 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6285 	val &= ~IGU_PF_CONF_FUNC_EN;
6286 
6287 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6288 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6289 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6290 }
6291 
6292 static void bnx2x__common_init_phy(struct bnx2x *bp)
6293 {
6294 	u32 shmem_base[2], shmem2_base[2];
6295 	/* Avoid common init in case MFW supports LFA */
6296 	if (SHMEM2_RD(bp, size) >
6297 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6298 		return;
6299 	shmem_base[0] =  bp->common.shmem_base;
6300 	shmem2_base[0] = bp->common.shmem2_base;
6301 	if (!CHIP_IS_E1x(bp)) {
6302 		shmem_base[1] =
6303 			SHMEM2_RD(bp, other_shmem_base_addr);
6304 		shmem2_base[1] =
6305 			SHMEM2_RD(bp, other_shmem2_base_addr);
6306 	}
6307 	bnx2x_acquire_phy_lock(bp);
6308 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6309 			      bp->common.chip_id);
6310 	bnx2x_release_phy_lock(bp);
6311 }
6312 
6313 /**
6314  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6315  *
6316  * @bp:		driver handle
6317  */
6318 static int bnx2x_init_hw_common(struct bnx2x *bp)
6319 {
6320 	u32 val;
6321 
6322 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6323 
6324 	/*
6325 	 * take the UNDI lock to protect undi_unload flow from accessing
6326 	 * registers while we're resetting the chip
6327 	 */
6328 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6329 
6330 	bnx2x_reset_common(bp);
6331 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6332 
6333 	val = 0xfffc;
6334 	if (CHIP_IS_E3(bp)) {
6335 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6336 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6337 	}
6338 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6339 
6340 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6341 
6342 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6343 
6344 	if (!CHIP_IS_E1x(bp)) {
6345 		u8 abs_func_id;
6346 
6347 		/**
6348 		 * 4-port mode or 2-port mode we need to turn of master-enable
6349 		 * for everyone, after that, turn it back on for self.
6350 		 * so, we disregard multi-function or not, and always disable
6351 		 * for all functions on the given path, this means 0,2,4,6 for
6352 		 * path 0 and 1,3,5,7 for path 1
6353 		 */
6354 		for (abs_func_id = BP_PATH(bp);
6355 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6356 			if (abs_func_id == BP_ABS_FUNC(bp)) {
6357 				REG_WR(bp,
6358 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6359 				    1);
6360 				continue;
6361 			}
6362 
6363 			bnx2x_pretend_func(bp, abs_func_id);
6364 			/* clear pf enable */
6365 			bnx2x_pf_disable(bp);
6366 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6367 		}
6368 	}
6369 
6370 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6371 	if (CHIP_IS_E1(bp)) {
6372 		/* enable HW interrupt from PXP on USDM overflow
6373 		   bit 16 on INT_MASK_0 */
6374 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6375 	}
6376 
6377 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6378 	bnx2x_init_pxp(bp);
6379 
6380 #ifdef __BIG_ENDIAN
6381 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6382 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6383 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6384 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6385 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6386 	/* make sure this value is 0 */
6387 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6388 
6389 /*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6390 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6391 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6392 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6393 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6394 #endif
6395 
6396 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
6397 
6398 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6399 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6400 
6401 	/* let the HW do it's magic ... */
6402 	msleep(100);
6403 	/* finish PXP init */
6404 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6405 	if (val != 1) {
6406 		BNX2X_ERR("PXP2 CFG failed\n");
6407 		return -EBUSY;
6408 	}
6409 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6410 	if (val != 1) {
6411 		BNX2X_ERR("PXP2 RD_INIT failed\n");
6412 		return -EBUSY;
6413 	}
6414 
6415 	/* Timers bug workaround E2 only. We need to set the entire ILT to
6416 	 * have entries with value "0" and valid bit on.
6417 	 * This needs to be done by the first PF that is loaded in a path
6418 	 * (i.e. common phase)
6419 	 */
6420 	if (!CHIP_IS_E1x(bp)) {
6421 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6422  * (i.e. vnic3) to start even if it is marked as "scan-off".
6423  * This occurs when a different function (func2,3) is being marked
6424  * as "scan-off". Real-life scenario for example: if a driver is being
6425  * load-unloaded while func6,7 are down. This will cause the timer to access
6426  * the ilt, translate to a logical address and send a request to read/write.
6427  * Since the ilt for the function that is down is not valid, this will cause
6428  * a translation error which is unrecoverable.
6429  * The Workaround is intended to make sure that when this happens nothing fatal
6430  * will occur. The workaround:
6431  *	1.  First PF driver which loads on a path will:
6432  *		a.  After taking the chip out of reset, by using pretend,
6433  *		    it will write "0" to the following registers of
6434  *		    the other vnics.
6435  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6436  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6437  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6438  *		    And for itself it will write '1' to
6439  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6440  *		    dmae-operations (writing to pram for example.)
6441  *		    note: can be done for only function 6,7 but cleaner this
6442  *			  way.
6443  *		b.  Write zero+valid to the entire ILT.
6444  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6445  *		    VNIC3 (of that port). The range allocated will be the
6446  *		    entire ILT. This is needed to prevent  ILT range error.
6447  *	2.  Any PF driver load flow:
6448  *		a.  ILT update with the physical addresses of the allocated
6449  *		    logical pages.
6450  *		b.  Wait 20msec. - note that this timeout is needed to make
6451  *		    sure there are no requests in one of the PXP internal
6452  *		    queues with "old" ILT addresses.
6453  *		c.  PF enable in the PGLC.
6454  *		d.  Clear the was_error of the PF in the PGLC. (could have
6455  *		    occured while driver was down)
6456  *		e.  PF enable in the CFC (WEAK + STRONG)
6457  *		f.  Timers scan enable
6458  *	3.  PF driver unload flow:
6459  *		a.  Clear the Timers scan_en.
6460  *		b.  Polling for scan_on=0 for that PF.
6461  *		c.  Clear the PF enable bit in the PXP.
6462  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
6463  *		e.  Write zero+valid to all ILT entries (The valid bit must
6464  *		    stay set)
6465  *		f.  If this is VNIC 3 of a port then also init
6466  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
6467  *		    to the last enrty in the ILT.
6468  *
6469  *	Notes:
6470  *	Currently the PF error in the PGLC is non recoverable.
6471  *	In the future the there will be a recovery routine for this error.
6472  *	Currently attention is masked.
6473  *	Having an MCP lock on the load/unload process does not guarantee that
6474  *	there is no Timer disable during Func6/7 enable. This is because the
6475  *	Timers scan is currently being cleared by the MCP on FLR.
6476  *	Step 2.d can be done only for PF6/7 and the driver can also check if
6477  *	there is error before clearing it. But the flow above is simpler and
6478  *	more general.
6479  *	All ILT entries are written by zero+valid and not just PF6/7
6480  *	ILT entries since in the future the ILT entries allocation for
6481  *	PF-s might be dynamic.
6482  */
6483 		struct ilt_client_info ilt_cli;
6484 		struct bnx2x_ilt ilt;
6485 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6486 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6487 
6488 		/* initialize dummy TM client */
6489 		ilt_cli.start = 0;
6490 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6491 		ilt_cli.client_num = ILT_CLIENT_TM;
6492 
6493 		/* Step 1: set zeroes to all ilt page entries with valid bit on
6494 		 * Step 2: set the timers first/last ilt entry to point
6495 		 * to the entire range to prevent ILT range error for 3rd/4th
6496 		 * vnic	(this code assumes existance of the vnic)
6497 		 *
6498 		 * both steps performed by call to bnx2x_ilt_client_init_op()
6499 		 * with dummy TM client
6500 		 *
6501 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6502 		 * and his brother are split registers
6503 		 */
6504 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6505 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6506 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6507 
6508 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6509 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6510 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6511 	}
6512 
6513 
6514 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6515 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6516 
6517 	if (!CHIP_IS_E1x(bp)) {
6518 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6519 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6520 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6521 
6522 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6523 
6524 		/* let the HW do it's magic ... */
6525 		do {
6526 			msleep(200);
6527 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6528 		} while (factor-- && (val != 1));
6529 
6530 		if (val != 1) {
6531 			BNX2X_ERR("ATC_INIT failed\n");
6532 			return -EBUSY;
6533 		}
6534 	}
6535 
6536 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6537 
6538 	/* clean the DMAE memory */
6539 	bp->dmae_ready = 1;
6540 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6541 
6542 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6543 
6544 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6545 
6546 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6547 
6548 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6549 
6550 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6551 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6552 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6553 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6554 
6555 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6556 
6557 
6558 	/* QM queues pointers table */
6559 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6560 
6561 	/* soft reset pulse */
6562 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
6563 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
6564 
6565 	if (CNIC_SUPPORT(bp))
6566 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6567 
6568 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6569 	REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6570 	if (!CHIP_REV_IS_SLOW(bp))
6571 		/* enable hw interrupt from doorbell Q */
6572 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6573 
6574 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6575 
6576 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6577 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6578 
6579 	if (!CHIP_IS_E1(bp))
6580 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6581 
6582 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
6583 		if (IS_MF_AFEX(bp)) {
6584 			/* configure that VNTag and VLAN headers must be
6585 			 * received in afex mode
6586 			 */
6587 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
6588 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
6589 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
6590 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
6591 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
6592 		} else {
6593 			/* Bit-map indicating which L2 hdrs may appear
6594 			 * after the basic Ethernet header
6595 			 */
6596 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6597 			       bp->path_has_ovlan ? 7 : 6);
6598 		}
6599 	}
6600 
6601 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6602 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6603 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6604 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6605 
6606 	if (!CHIP_IS_E1x(bp)) {
6607 		/* reset VFC memories */
6608 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6609 			   VFC_MEMORIES_RST_REG_CAM_RST |
6610 			   VFC_MEMORIES_RST_REG_RAM_RST);
6611 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6612 			   VFC_MEMORIES_RST_REG_CAM_RST |
6613 			   VFC_MEMORIES_RST_REG_RAM_RST);
6614 
6615 		msleep(20);
6616 	}
6617 
6618 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6619 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6620 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6621 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6622 
6623 	/* sync semi rtc */
6624 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6625 	       0x80000000);
6626 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6627 	       0x80000000);
6628 
6629 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6630 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6631 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6632 
6633 	if (!CHIP_IS_E1x(bp)) {
6634 		if (IS_MF_AFEX(bp)) {
6635 			/* configure that VNTag and VLAN headers must be
6636 			 * sent in afex mode
6637 			 */
6638 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
6639 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
6640 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
6641 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
6642 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
6643 		} else {
6644 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6645 			       bp->path_has_ovlan ? 7 : 6);
6646 		}
6647 	}
6648 
6649 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
6650 
6651 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6652 
6653 	if (CNIC_SUPPORT(bp)) {
6654 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6655 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6656 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6657 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6658 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6659 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6660 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6661 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6662 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6663 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6664 	}
6665 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
6666 
6667 	if (sizeof(union cdu_context) != 1024)
6668 		/* we currently assume that a context is 1024 bytes */
6669 		dev_alert(&bp->pdev->dev,
6670 			  "please adjust the size of cdu_context(%ld)\n",
6671 			  (long)sizeof(union cdu_context));
6672 
6673 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6674 	val = (4 << 24) + (0 << 12) + 1024;
6675 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6676 
6677 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6678 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6679 	/* enable context validation interrupt from CFC */
6680 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6681 
6682 	/* set the thresholds to prevent CFC/CDU race */
6683 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6684 
6685 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6686 
6687 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6688 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6689 
6690 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6691 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6692 
6693 	/* Reset PCIE errors for debug */
6694 	REG_WR(bp, 0x2814, 0xffffffff);
6695 	REG_WR(bp, 0x3820, 0xffffffff);
6696 
6697 	if (!CHIP_IS_E1x(bp)) {
6698 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6699 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6700 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6701 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6702 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6703 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6704 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6705 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6706 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6707 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6708 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6709 	}
6710 
6711 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6712 	if (!CHIP_IS_E1(bp)) {
6713 		/* in E3 this done in per-port section */
6714 		if (!CHIP_IS_E3(bp))
6715 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6716 	}
6717 	if (CHIP_IS_E1H(bp))
6718 		/* not applicable for E2 (and above ...) */
6719 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6720 
6721 	if (CHIP_REV_IS_SLOW(bp))
6722 		msleep(200);
6723 
6724 	/* finish CFC init */
6725 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6726 	if (val != 1) {
6727 		BNX2X_ERR("CFC LL_INIT failed\n");
6728 		return -EBUSY;
6729 	}
6730 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6731 	if (val != 1) {
6732 		BNX2X_ERR("CFC AC_INIT failed\n");
6733 		return -EBUSY;
6734 	}
6735 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6736 	if (val != 1) {
6737 		BNX2X_ERR("CFC CAM_INIT failed\n");
6738 		return -EBUSY;
6739 	}
6740 	REG_WR(bp, CFC_REG_DEBUG0, 0);
6741 
6742 	if (CHIP_IS_E1(bp)) {
6743 		/* read NIG statistic
6744 		   to see if this is our first up since powerup */
6745 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6746 		val = *bnx2x_sp(bp, wb_data[0]);
6747 
6748 		/* do internal memory self test */
6749 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
6750 			BNX2X_ERR("internal mem self test failed\n");
6751 			return -EBUSY;
6752 		}
6753 	}
6754 
6755 	bnx2x_setup_fan_failure_detection(bp);
6756 
6757 	/* clear PXP2 attentions */
6758 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6759 
6760 	bnx2x_enable_blocks_attention(bp);
6761 	bnx2x_enable_blocks_parity(bp);
6762 
6763 	if (!BP_NOMCP(bp)) {
6764 		if (CHIP_IS_E1x(bp))
6765 			bnx2x__common_init_phy(bp);
6766 	} else
6767 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6768 
6769 	return 0;
6770 }
6771 
6772 /**
6773  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6774  *
6775  * @bp:		driver handle
6776  */
6777 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6778 {
6779 	int rc = bnx2x_init_hw_common(bp);
6780 
6781 	if (rc)
6782 		return rc;
6783 
6784 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
6785 	if (!BP_NOMCP(bp))
6786 		bnx2x__common_init_phy(bp);
6787 
6788 	return 0;
6789 }
6790 
6791 static int bnx2x_init_hw_port(struct bnx2x *bp)
6792 {
6793 	int port = BP_PORT(bp);
6794 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6795 	u32 low, high;
6796 	u32 val;
6797 
6798 
6799 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
6800 
6801 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6802 
6803 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6804 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6805 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6806 
6807 	/* Timers bug workaround: disables the pf_master bit in pglue at
6808 	 * common phase, we need to enable it here before any dmae access are
6809 	 * attempted. Therefore we manually added the enable-master to the
6810 	 * port phase (it also happens in the function phase)
6811 	 */
6812 	if (!CHIP_IS_E1x(bp))
6813 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6814 
6815 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6816 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6817 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6818 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6819 
6820 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6821 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6822 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6823 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6824 
6825 	/* QM cid (connection) count */
6826 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6827 
6828 	if (CNIC_SUPPORT(bp)) {
6829 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
6830 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6831 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6832 	}
6833 
6834 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6835 
6836 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6837 
6838 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6839 
6840 		if (IS_MF(bp))
6841 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6842 		else if (bp->dev->mtu > 4096) {
6843 			if (bp->flags & ONE_PORT_FLAG)
6844 				low = 160;
6845 			else {
6846 				val = bp->dev->mtu;
6847 				/* (24*1024 + val*4)/256 */
6848 				low = 96 + (val/64) +
6849 						((val % 64) ? 1 : 0);
6850 			}
6851 		} else
6852 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6853 		high = low + 56;	/* 14*1024/256 */
6854 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6855 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6856 	}
6857 
6858 	if (CHIP_MODE_IS_4_PORT(bp))
6859 		REG_WR(bp, (BP_PORT(bp) ?
6860 			    BRB1_REG_MAC_GUARANTIED_1 :
6861 			    BRB1_REG_MAC_GUARANTIED_0), 40);
6862 
6863 
6864 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6865 	if (CHIP_IS_E3B0(bp)) {
6866 		if (IS_MF_AFEX(bp)) {
6867 			/* configure headers for AFEX mode */
6868 			REG_WR(bp, BP_PORT(bp) ?
6869 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6870 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
6871 			REG_WR(bp, BP_PORT(bp) ?
6872 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
6873 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
6874 			REG_WR(bp, BP_PORT(bp) ?
6875 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
6876 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
6877 		} else {
6878 			/* Ovlan exists only if we are in multi-function +
6879 			 * switch-dependent mode, in switch-independent there
6880 			 * is no ovlan headers
6881 			 */
6882 			REG_WR(bp, BP_PORT(bp) ?
6883 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6884 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6885 			       (bp->path_has_ovlan ? 7 : 6));
6886 		}
6887 	}
6888 
6889 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6890 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6891 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6892 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6893 
6894 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6895 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6896 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6897 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6898 
6899 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6900 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6901 
6902 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6903 
6904 	if (CHIP_IS_E1x(bp)) {
6905 		/* configure PBF to work without PAUSE mtu 9000 */
6906 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6907 
6908 		/* update threshold */
6909 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6910 		/* update init credit */
6911 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6912 
6913 		/* probe changes */
6914 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6915 		udelay(50);
6916 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6917 	}
6918 
6919 	if (CNIC_SUPPORT(bp))
6920 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6921 
6922 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6923 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6924 
6925 	if (CHIP_IS_E1(bp)) {
6926 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6927 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6928 	}
6929 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
6930 
6931 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6932 
6933 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6934 	/* init aeu_mask_attn_func_0/1:
6935 	 *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6936 	 *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6937 	 *             bits 4-7 are used for "per vn group attention" */
6938 	val = IS_MF(bp) ? 0xF7 : 0x7;
6939 	/* Enable DCBX attention for all but E1 */
6940 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6941 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6942 
6943 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6944 
6945 	if (!CHIP_IS_E1x(bp)) {
6946 		/* Bit-map indicating which L2 hdrs may appear after the
6947 		 * basic Ethernet header
6948 		 */
6949 		if (IS_MF_AFEX(bp))
6950 			REG_WR(bp, BP_PORT(bp) ?
6951 			       NIG_REG_P1_HDRS_AFTER_BASIC :
6952 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
6953 		else
6954 			REG_WR(bp, BP_PORT(bp) ?
6955 			       NIG_REG_P1_HDRS_AFTER_BASIC :
6956 			       NIG_REG_P0_HDRS_AFTER_BASIC,
6957 			       IS_MF_SD(bp) ? 7 : 6);
6958 
6959 		if (CHIP_IS_E3(bp))
6960 			REG_WR(bp, BP_PORT(bp) ?
6961 				   NIG_REG_LLH1_MF_MODE :
6962 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
6963 	}
6964 	if (!CHIP_IS_E3(bp))
6965 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
6966 
6967 	if (!CHIP_IS_E1(bp)) {
6968 		/* 0x2 disable mf_ov, 0x1 enable */
6969 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
6970 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
6971 
6972 		if (!CHIP_IS_E1x(bp)) {
6973 			val = 0;
6974 			switch (bp->mf_mode) {
6975 			case MULTI_FUNCTION_SD:
6976 				val = 1;
6977 				break;
6978 			case MULTI_FUNCTION_SI:
6979 			case MULTI_FUNCTION_AFEX:
6980 				val = 2;
6981 				break;
6982 			}
6983 
6984 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
6985 						  NIG_REG_LLH0_CLS_TYPE), val);
6986 		}
6987 		{
6988 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
6989 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
6990 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
6991 		}
6992 	}
6993 
6994 
6995 	/* If SPIO5 is set to generate interrupts, enable it for this port */
6996 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6997 	if (val & MISC_SPIO_SPIO5) {
6998 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6999 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7000 		val = REG_RD(bp, reg_addr);
7001 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7002 		REG_WR(bp, reg_addr, val);
7003 	}
7004 
7005 	return 0;
7006 }
7007 
7008 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7009 {
7010 	int reg;
7011 	u32 wb_write[2];
7012 
7013 	if (CHIP_IS_E1(bp))
7014 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7015 	else
7016 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7017 
7018 	wb_write[0] = ONCHIP_ADDR1(addr);
7019 	wb_write[1] = ONCHIP_ADDR2(addr);
7020 	REG_WR_DMAE(bp, reg, wb_write, 2);
7021 }
7022 
7023 static void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func,
7024 				   u8 idu_sb_id, bool is_Pf)
7025 {
7026 	u32 data, ctl, cnt = 100;
7027 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7028 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7029 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7030 	u32 sb_bit =  1 << (idu_sb_id%32);
7031 	u32 func_encode = func | (is_Pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7032 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7033 
7034 	/* Not supported in BC mode */
7035 	if (CHIP_INT_MODE_IS_BC(bp))
7036 		return;
7037 
7038 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7039 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7040 		IGU_REGULAR_CLEANUP_SET				|
7041 		IGU_REGULAR_BCLEANUP;
7042 
7043 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7044 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7045 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7046 
7047 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7048 			 data, igu_addr_data);
7049 	REG_WR(bp, igu_addr_data, data);
7050 	mmiowb();
7051 	barrier();
7052 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7053 			  ctl, igu_addr_ctl);
7054 	REG_WR(bp, igu_addr_ctl, ctl);
7055 	mmiowb();
7056 	barrier();
7057 
7058 	/* wait for clean up to finish */
7059 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7060 		msleep(20);
7061 
7062 
7063 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7064 		DP(NETIF_MSG_HW,
7065 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7066 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7067 	}
7068 }
7069 
7070 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7071 {
7072 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7073 }
7074 
7075 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7076 {
7077 	u32 i, base = FUNC_ILT_BASE(func);
7078 	for (i = base; i < base + ILT_PER_FUNC; i++)
7079 		bnx2x_ilt_wr(bp, i, 0);
7080 }
7081 
7082 
7083 static void bnx2x_init_searcher(struct bnx2x *bp)
7084 {
7085 	int port = BP_PORT(bp);
7086 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7087 	/* T1 hash bits value determines the T1 number of entries */
7088 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7089 }
7090 
7091 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7092 {
7093 	int rc;
7094 	struct bnx2x_func_state_params func_params = {NULL};
7095 	struct bnx2x_func_switch_update_params *switch_update_params =
7096 		&func_params.params.switch_update;
7097 
7098 	/* Prepare parameters for function state transitions */
7099 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7100 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7101 
7102 	func_params.f_obj = &bp->func_obj;
7103 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7104 
7105 	/* Function parameters */
7106 	switch_update_params->suspend = suspend;
7107 
7108 	rc = bnx2x_func_state_change(bp, &func_params);
7109 
7110 	return rc;
7111 }
7112 
7113 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7114 {
7115 	int rc, i, port = BP_PORT(bp);
7116 	int vlan_en = 0, mac_en[NUM_MACS];
7117 
7118 
7119 	/* Close input from network */
7120 	if (bp->mf_mode == SINGLE_FUNCTION) {
7121 		bnx2x_set_rx_filter(&bp->link_params, 0);
7122 	} else {
7123 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7124 				   NIG_REG_LLH0_FUNC_EN);
7125 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7126 			  NIG_REG_LLH0_FUNC_EN, 0);
7127 		for (i = 0; i < NUM_MACS; i++) {
7128 			mac_en[i] = REG_RD(bp, port ?
7129 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7130 					      4 * i) :
7131 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7132 					      4 * i));
7133 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7134 					      4 * i) :
7135 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7136 		}
7137 	}
7138 
7139 	/* Close BMC to host */
7140 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7141 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7142 
7143 	/* Suspend Tx switching to the PF. Completion of this ramrod
7144 	 * further guarantees that all the packets of that PF / child
7145 	 * VFs in BRB were processed by the Parser, so it is safe to
7146 	 * change the NIC_MODE register.
7147 	 */
7148 	rc = bnx2x_func_switch_update(bp, 1);
7149 	if (rc) {
7150 		BNX2X_ERR("Can't suspend tx-switching!\n");
7151 		return rc;
7152 	}
7153 
7154 	/* Change NIC_MODE register */
7155 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7156 
7157 	/* Open input from network */
7158 	if (bp->mf_mode == SINGLE_FUNCTION) {
7159 		bnx2x_set_rx_filter(&bp->link_params, 1);
7160 	} else {
7161 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7162 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7163 		for (i = 0; i < NUM_MACS; i++) {
7164 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7165 					      4 * i) :
7166 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7167 				  mac_en[i]);
7168 		}
7169 	}
7170 
7171 	/* Enable BMC to host */
7172 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7173 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7174 
7175 	/* Resume Tx switching to the PF */
7176 	rc = bnx2x_func_switch_update(bp, 0);
7177 	if (rc) {
7178 		BNX2X_ERR("Can't resume tx-switching!\n");
7179 		return rc;
7180 	}
7181 
7182 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7183 	return 0;
7184 }
7185 
7186 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7187 {
7188 	int rc;
7189 
7190 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7191 
7192 	if (CONFIGURE_NIC_MODE(bp)) {
7193 		/* Configrue searcher as part of function hw init */
7194 		bnx2x_init_searcher(bp);
7195 
7196 		/* Reset NIC mode */
7197 		rc = bnx2x_reset_nic_mode(bp);
7198 		if (rc)
7199 			BNX2X_ERR("Can't change NIC mode!\n");
7200 		return rc;
7201 	}
7202 
7203 	return 0;
7204 }
7205 
7206 static int bnx2x_init_hw_func(struct bnx2x *bp)
7207 {
7208 	int port = BP_PORT(bp);
7209 	int func = BP_FUNC(bp);
7210 	int init_phase = PHASE_PF0 + func;
7211 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7212 	u16 cdu_ilt_start;
7213 	u32 addr, val;
7214 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7215 	int i, main_mem_width, rc;
7216 
7217 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7218 
7219 	/* FLR cleanup - hmmm */
7220 	if (!CHIP_IS_E1x(bp)) {
7221 		rc = bnx2x_pf_flr_clnup(bp);
7222 		if (rc)
7223 			return rc;
7224 	}
7225 
7226 	/* set MSI reconfigure capability */
7227 	if (bp->common.int_block == INT_BLOCK_HC) {
7228 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7229 		val = REG_RD(bp, addr);
7230 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7231 		REG_WR(bp, addr, val);
7232 	}
7233 
7234 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7235 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7236 
7237 	ilt = BP_ILT(bp);
7238 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7239 
7240 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7241 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7242 		ilt->lines[cdu_ilt_start + i].page_mapping =
7243 			bp->context[i].cxt_mapping;
7244 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7245 	}
7246 	bnx2x_ilt_init_op(bp, INITOP_SET);
7247 
7248 	if (!CONFIGURE_NIC_MODE(bp)) {
7249 		bnx2x_init_searcher(bp);
7250 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
7251 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7252 	} else {
7253 		/* Set NIC mode */
7254 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
7255 		DP(NETIF_MSG_IFUP, "NIC MODE configrued\n");
7256 
7257 	}
7258 
7259 	if (!CHIP_IS_E1x(bp)) {
7260 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7261 
7262 		/* Turn on a single ISR mode in IGU if driver is going to use
7263 		 * INT#x or MSI
7264 		 */
7265 		if (!(bp->flags & USING_MSIX_FLAG))
7266 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7267 		/*
7268 		 * Timers workaround bug: function init part.
7269 		 * Need to wait 20msec after initializing ILT,
7270 		 * needed to make sure there are no requests in
7271 		 * one of the PXP internal queues with "old" ILT addresses
7272 		 */
7273 		msleep(20);
7274 		/*
7275 		 * Master enable - Due to WB DMAE writes performed before this
7276 		 * register is re-initialized as part of the regular function
7277 		 * init
7278 		 */
7279 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7280 		/* Enable the function in IGU */
7281 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7282 	}
7283 
7284 	bp->dmae_ready = 1;
7285 
7286 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7287 
7288 	if (!CHIP_IS_E1x(bp))
7289 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7290 
7291 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7292 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7293 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7294 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7295 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7296 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7297 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7298 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7299 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7300 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7301 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7302 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7303 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7304 
7305 	if (!CHIP_IS_E1x(bp))
7306 		REG_WR(bp, QM_REG_PF_EN, 1);
7307 
7308 	if (!CHIP_IS_E1x(bp)) {
7309 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7310 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7311 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7312 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7313 	}
7314 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7315 
7316 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
7317 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7318 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7319 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7320 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7321 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7322 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7323 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7324 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7325 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7326 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7327 	if (!CHIP_IS_E1x(bp))
7328 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7329 
7330 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7331 
7332 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7333 
7334 	if (!CHIP_IS_E1x(bp))
7335 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7336 
7337 	if (IS_MF(bp)) {
7338 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7339 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7340 	}
7341 
7342 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7343 
7344 	/* HC init per function */
7345 	if (bp->common.int_block == INT_BLOCK_HC) {
7346 		if (CHIP_IS_E1H(bp)) {
7347 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7348 
7349 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7350 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7351 		}
7352 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
7353 
7354 	} else {
7355 		int num_segs, sb_idx, prod_offset;
7356 
7357 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7358 
7359 		if (!CHIP_IS_E1x(bp)) {
7360 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7361 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7362 		}
7363 
7364 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7365 
7366 		if (!CHIP_IS_E1x(bp)) {
7367 			int dsb_idx = 0;
7368 			/**
7369 			 * Producer memory:
7370 			 * E2 mode: address 0-135 match to the mapping memory;
7371 			 * 136 - PF0 default prod; 137 - PF1 default prod;
7372 			 * 138 - PF2 default prod; 139 - PF3 default prod;
7373 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
7374 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
7375 			 * 144-147 reserved.
7376 			 *
7377 			 * E1.5 mode - In backward compatible mode;
7378 			 * for non default SB; each even line in the memory
7379 			 * holds the U producer and each odd line hold
7380 			 * the C producer. The first 128 producers are for
7381 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7382 			 * producers are for the DSB for each PF.
7383 			 * Each PF has five segments: (the order inside each
7384 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7385 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7386 			 * 144-147 attn prods;
7387 			 */
7388 			/* non-default-status-blocks */
7389 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7390 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7391 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7392 				prod_offset = (bp->igu_base_sb + sb_idx) *
7393 					num_segs;
7394 
7395 				for (i = 0; i < num_segs; i++) {
7396 					addr = IGU_REG_PROD_CONS_MEMORY +
7397 							(prod_offset + i) * 4;
7398 					REG_WR(bp, addr, 0);
7399 				}
7400 				/* send consumer update with value 0 */
7401 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7402 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7403 				bnx2x_igu_clear_sb(bp,
7404 						   bp->igu_base_sb + sb_idx);
7405 			}
7406 
7407 			/* default-status-blocks */
7408 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7409 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7410 
7411 			if (CHIP_MODE_IS_4_PORT(bp))
7412 				dsb_idx = BP_FUNC(bp);
7413 			else
7414 				dsb_idx = BP_VN(bp);
7415 
7416 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7417 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
7418 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
7419 
7420 			/*
7421 			 * igu prods come in chunks of E1HVN_MAX (4) -
7422 			 * does not matters what is the current chip mode
7423 			 */
7424 			for (i = 0; i < (num_segs * E1HVN_MAX);
7425 			     i += E1HVN_MAX) {
7426 				addr = IGU_REG_PROD_CONS_MEMORY +
7427 							(prod_offset + i)*4;
7428 				REG_WR(bp, addr, 0);
7429 			}
7430 			/* send consumer update with 0 */
7431 			if (CHIP_INT_MODE_IS_BC(bp)) {
7432 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7433 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7434 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7435 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
7436 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7437 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
7438 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7439 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
7440 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7441 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7442 			} else {
7443 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7444 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7445 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7446 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7447 			}
7448 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7449 
7450 			/* !!! these should become driver const once
7451 			   rf-tool supports split-68 const */
7452 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7453 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7454 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7455 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7456 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7457 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7458 		}
7459 	}
7460 
7461 	/* Reset PCIE errors for debug */
7462 	REG_WR(bp, 0x2114, 0xffffffff);
7463 	REG_WR(bp, 0x2120, 0xffffffff);
7464 
7465 	if (CHIP_IS_E1x(bp)) {
7466 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7467 		main_mem_base = HC_REG_MAIN_MEMORY +
7468 				BP_PORT(bp) * (main_mem_size * 4);
7469 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7470 		main_mem_width = 8;
7471 
7472 		val = REG_RD(bp, main_mem_prty_clr);
7473 		if (val)
7474 			DP(NETIF_MSG_HW,
7475 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7476 			   val);
7477 
7478 		/* Clear "false" parity errors in MSI-X table */
7479 		for (i = main_mem_base;
7480 		     i < main_mem_base + main_mem_size * 4;
7481 		     i += main_mem_width) {
7482 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
7483 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7484 					 i, main_mem_width / 4);
7485 		}
7486 		/* Clear HC parity attention */
7487 		REG_RD(bp, main_mem_prty_clr);
7488 	}
7489 
7490 #ifdef BNX2X_STOP_ON_ERROR
7491 	/* Enable STORMs SP logging */
7492 	REG_WR8(bp, BAR_USTRORM_INTMEM +
7493 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7494 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
7495 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7496 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7497 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7498 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
7499 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7500 #endif
7501 
7502 	bnx2x_phy_probe(&bp->link_params);
7503 
7504 	return 0;
7505 }
7506 
7507 
7508 void bnx2x_free_mem_cnic(struct bnx2x *bp)
7509 {
7510 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
7511 
7512 	if (!CHIP_IS_E1x(bp))
7513 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7514 			       sizeof(struct host_hc_status_block_e2));
7515 	else
7516 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7517 			       sizeof(struct host_hc_status_block_e1x));
7518 
7519 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7520 }
7521 
7522 void bnx2x_free_mem(struct bnx2x *bp)
7523 {
7524 	int i;
7525 
7526 	/* fastpath */
7527 	bnx2x_free_fp_mem(bp);
7528 	/* end of fastpath */
7529 
7530 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7531 		       sizeof(struct host_sp_status_block));
7532 
7533 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7534 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7535 
7536 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7537 		       sizeof(struct bnx2x_slowpath));
7538 
7539 	for (i = 0; i < L2_ILT_LINES(bp); i++)
7540 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7541 			       bp->context[i].size);
7542 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7543 
7544 	BNX2X_FREE(bp->ilt->lines);
7545 
7546 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7547 
7548 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7549 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
7550 }
7551 
7552 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
7553 {
7554 	int num_groups;
7555 	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
7556 
7557 	/* number of queues for statistics is number of eth queues + FCoE */
7558 	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
7559 
7560 	/* Total number of FW statistics requests =
7561 	 * 1 for port stats + 1 for PF stats + potential 1 for FCoE stats +
7562 	 * num of queues
7563 	 */
7564 	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
7565 
7566 
7567 	/* Request is built from stats_query_header and an array of
7568 	 * stats_query_cmd_group each of which contains
7569 	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
7570 	 * configured in the stats_query_header.
7571 	 */
7572 	num_groups = ((bp->fw_stats_num) / STATS_QUERY_CMD_COUNT) +
7573 		     (((bp->fw_stats_num) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
7574 
7575 	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
7576 			num_groups * sizeof(struct stats_query_cmd_group);
7577 
7578 	/* Data for statistics requests + stats_conter
7579 	 *
7580 	 * stats_counter holds per-STORM counters that are incremented
7581 	 * when STORM has finished with the current request.
7582 	 *
7583 	 * memory for FCoE offloaded statistics are counted anyway,
7584 	 * even if they will not be sent.
7585 	 */
7586 	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
7587 		sizeof(struct per_pf_stats) +
7588 		sizeof(struct fcoe_statistics_params) +
7589 		sizeof(struct per_queue_stats) * num_queue_stats +
7590 		sizeof(struct stats_counter);
7591 
7592 	BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
7593 			bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7594 
7595 	/* Set shortcuts */
7596 	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
7597 	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
7598 
7599 	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
7600 		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
7601 
7602 	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
7603 				   bp->fw_stats_req_sz;
7604 	return 0;
7605 
7606 alloc_mem_err:
7607 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7608 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7609 	BNX2X_ERR("Can't allocate memory\n");
7610 	return -ENOMEM;
7611 }
7612 
7613 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
7614 {
7615 	if (!CHIP_IS_E1x(bp))
7616 		/* size = the status block + ramrod buffers */
7617 		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7618 				sizeof(struct host_hc_status_block_e2));
7619 	else
7620 		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
7621 				&bp->cnic_sb_mapping,
7622 				sizeof(struct
7623 				       host_hc_status_block_e1x));
7624 
7625 	if (CONFIGURE_NIC_MODE(bp))
7626 		/* allocate searcher T2 table, as it wan't allocated before */
7627 		BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7628 
7629 	/* write address to which L5 should insert its values */
7630 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
7631 		&bp->slowpath->drv_info_to_mcp;
7632 
7633 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
7634 		goto alloc_mem_err;
7635 
7636 	return 0;
7637 
7638 alloc_mem_err:
7639 	bnx2x_free_mem_cnic(bp);
7640 	BNX2X_ERR("Can't allocate memory\n");
7641 	return -ENOMEM;
7642 }
7643 
7644 int bnx2x_alloc_mem(struct bnx2x *bp)
7645 {
7646 	int i, allocated, context_size;
7647 
7648 	if (!CONFIGURE_NIC_MODE(bp))
7649 		/* allocate searcher T2 table */
7650 		BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7651 
7652 	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7653 			sizeof(struct host_sp_status_block));
7654 
7655 	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7656 			sizeof(struct bnx2x_slowpath));
7657 
7658 	/* Allocated memory for FW statistics  */
7659 	if (bnx2x_alloc_fw_stats_mem(bp))
7660 		goto alloc_mem_err;
7661 
7662 	/* Allocate memory for CDU context:
7663 	 * This memory is allocated separately and not in the generic ILT
7664 	 * functions because CDU differs in few aspects:
7665 	 * 1. There are multiple entities allocating memory for context -
7666 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
7667 	 * its own ILT lines.
7668 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
7669 	 * for the other ILT clients), to be efficient we want to support
7670 	 * allocation of sub-page-size in the last entry.
7671 	 * 3. Context pointers are used by the driver to pass to FW / update
7672 	 * the context (for the other ILT clients the pointers are used just to
7673 	 * free the memory during unload).
7674 	 */
7675 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7676 
7677 	for (i = 0, allocated = 0; allocated < context_size; i++) {
7678 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
7679 					  (context_size - allocated));
7680 		BNX2X_PCI_ALLOC(bp->context[i].vcxt,
7681 				&bp->context[i].cxt_mapping,
7682 				bp->context[i].size);
7683 		allocated += bp->context[i].size;
7684 	}
7685 	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7686 
7687 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7688 		goto alloc_mem_err;
7689 
7690 	/* Slow path ring */
7691 	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7692 
7693 	/* EQ */
7694 	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7695 			BCM_PAGE_SIZE * NUM_EQ_PAGES);
7696 
7697 
7698 	/* fastpath */
7699 	/* need to be done at the end, since it's self adjusting to amount
7700 	 * of memory available for RSS queues
7701 	 */
7702 	if (bnx2x_alloc_fp_mem(bp))
7703 		goto alloc_mem_err;
7704 	return 0;
7705 
7706 alloc_mem_err:
7707 	bnx2x_free_mem(bp);
7708 	BNX2X_ERR("Can't allocate memory\n");
7709 	return -ENOMEM;
7710 }
7711 
7712 /*
7713  * Init service functions
7714  */
7715 
7716 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7717 		      struct bnx2x_vlan_mac_obj *obj, bool set,
7718 		      int mac_type, unsigned long *ramrod_flags)
7719 {
7720 	int rc;
7721 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7722 
7723 	memset(&ramrod_param, 0, sizeof(ramrod_param));
7724 
7725 	/* Fill general parameters */
7726 	ramrod_param.vlan_mac_obj = obj;
7727 	ramrod_param.ramrod_flags = *ramrod_flags;
7728 
7729 	/* Fill a user request section if needed */
7730 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7731 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7732 
7733 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7734 
7735 		/* Set the command: ADD or DEL */
7736 		if (set)
7737 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7738 		else
7739 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7740 	}
7741 
7742 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7743 
7744 	if (rc == -EEXIST) {
7745 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
7746 		/* do not treat adding same MAC as error */
7747 		rc = 0;
7748 	} else if (rc < 0)
7749 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7750 
7751 	return rc;
7752 }
7753 
7754 int bnx2x_del_all_macs(struct bnx2x *bp,
7755 		       struct bnx2x_vlan_mac_obj *mac_obj,
7756 		       int mac_type, bool wait_for_comp)
7757 {
7758 	int rc;
7759 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
7760 
7761 	/* Wait for completion of requested */
7762 	if (wait_for_comp)
7763 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7764 
7765 	/* Set the mac type of addresses we want to clear */
7766 	__set_bit(mac_type, &vlan_mac_flags);
7767 
7768 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7769 	if (rc < 0)
7770 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7771 
7772 	return rc;
7773 }
7774 
7775 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7776 {
7777 	unsigned long ramrod_flags = 0;
7778 
7779 	if (is_zero_ether_addr(bp->dev->dev_addr) &&
7780 	    (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
7781 		DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
7782 		   "Ignoring Zero MAC for STORAGE SD mode\n");
7783 		return 0;
7784 	}
7785 
7786 	DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7787 
7788 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7789 	/* Eth MAC is set on RSS leading client (fp[0]) */
7790 	return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->sp_objs->mac_obj,
7791 				 set, BNX2X_ETH_MAC, &ramrod_flags);
7792 }
7793 
7794 int bnx2x_setup_leading(struct bnx2x *bp)
7795 {
7796 	return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7797 }
7798 
7799 /**
7800  * bnx2x_set_int_mode - configure interrupt mode
7801  *
7802  * @bp:		driver handle
7803  *
7804  * In case of MSI-X it will also try to enable MSI-X.
7805  */
7806 void bnx2x_set_int_mode(struct bnx2x *bp)
7807 {
7808 	switch (int_mode) {
7809 	case INT_MODE_MSI:
7810 		bnx2x_enable_msi(bp);
7811 		/* falling through... */
7812 	case INT_MODE_INTx:
7813 		bp->num_ethernet_queues = 1;
7814 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
7815 		BNX2X_DEV_INFO("set number of queues to 1\n");
7816 		break;
7817 	default:
7818 		/* if we can't use MSI-X we only need one fp,
7819 		 * so try to enable MSI-X with the requested number of fp's
7820 		 * and fallback to MSI or legacy INTx with one fp
7821 		 */
7822 		if (bnx2x_enable_msix(bp) ||
7823 		    bp->flags & USING_SINGLE_MSIX_FLAG) {
7824 			/* failed to enable multiple MSI-X */
7825 			BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
7826 				       bp->num_queues,
7827 				       1 + bp->num_cnic_queues);
7828 
7829 			bp->num_queues = 1 + bp->num_cnic_queues;
7830 
7831 			/* Try to enable MSI */
7832 			if (!(bp->flags & USING_SINGLE_MSIX_FLAG) &&
7833 			    !(bp->flags & DISABLE_MSI_FLAG))
7834 				bnx2x_enable_msi(bp);
7835 		}
7836 		break;
7837 	}
7838 }
7839 
7840 /* must be called prioir to any HW initializations */
7841 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7842 {
7843 	return L2_ILT_LINES(bp);
7844 }
7845 
7846 void bnx2x_ilt_set_info(struct bnx2x *bp)
7847 {
7848 	struct ilt_client_info *ilt_client;
7849 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7850 	u16 line = 0;
7851 
7852 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7853 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7854 
7855 	/* CDU */
7856 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7857 	ilt_client->client_num = ILT_CLIENT_CDU;
7858 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
7859 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7860 	ilt_client->start = line;
7861 	line += bnx2x_cid_ilt_lines(bp);
7862 
7863 	if (CNIC_SUPPORT(bp))
7864 		line += CNIC_ILT_LINES;
7865 	ilt_client->end = line - 1;
7866 
7867 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7868 	   ilt_client->start,
7869 	   ilt_client->end,
7870 	   ilt_client->page_size,
7871 	   ilt_client->flags,
7872 	   ilog2(ilt_client->page_size >> 12));
7873 
7874 	/* QM */
7875 	if (QM_INIT(bp->qm_cid_count)) {
7876 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
7877 		ilt_client->client_num = ILT_CLIENT_QM;
7878 		ilt_client->page_size = QM_ILT_PAGE_SZ;
7879 		ilt_client->flags = 0;
7880 		ilt_client->start = line;
7881 
7882 		/* 4 bytes for each cid */
7883 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7884 							 QM_ILT_PAGE_SZ);
7885 
7886 		ilt_client->end = line - 1;
7887 
7888 		DP(NETIF_MSG_IFUP,
7889 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7890 		   ilt_client->start,
7891 		   ilt_client->end,
7892 		   ilt_client->page_size,
7893 		   ilt_client->flags,
7894 		   ilog2(ilt_client->page_size >> 12));
7895 
7896 	}
7897 
7898 	if (CNIC_SUPPORT(bp)) {
7899 		/* SRC */
7900 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7901 		ilt_client->client_num = ILT_CLIENT_SRC;
7902 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
7903 		ilt_client->flags = 0;
7904 		ilt_client->start = line;
7905 		line += SRC_ILT_LINES;
7906 		ilt_client->end = line - 1;
7907 
7908 		DP(NETIF_MSG_IFUP,
7909 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7910 		   ilt_client->start,
7911 		   ilt_client->end,
7912 		   ilt_client->page_size,
7913 		   ilt_client->flags,
7914 		   ilog2(ilt_client->page_size >> 12));
7915 
7916 		/* TM */
7917 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
7918 		ilt_client->client_num = ILT_CLIENT_TM;
7919 		ilt_client->page_size = TM_ILT_PAGE_SZ;
7920 		ilt_client->flags = 0;
7921 		ilt_client->start = line;
7922 		line += TM_ILT_LINES;
7923 		ilt_client->end = line - 1;
7924 
7925 		DP(NETIF_MSG_IFUP,
7926 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7927 		   ilt_client->start,
7928 		   ilt_client->end,
7929 		   ilt_client->page_size,
7930 		   ilt_client->flags,
7931 		   ilog2(ilt_client->page_size >> 12));
7932 	}
7933 
7934 	BUG_ON(line > ILT_MAX_LINES);
7935 }
7936 
7937 /**
7938  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7939  *
7940  * @bp:			driver handle
7941  * @fp:			pointer to fastpath
7942  * @init_params:	pointer to parameters structure
7943  *
7944  * parameters configured:
7945  *      - HC configuration
7946  *      - Queue's CDU context
7947  */
7948 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7949 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
7950 {
7951 
7952 	u8 cos;
7953 	int cxt_index, cxt_offset;
7954 
7955 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
7956 	if (!IS_FCOE_FP(fp)) {
7957 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
7958 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
7959 
7960 		/* If HC is supporterd, enable host coalescing in the transition
7961 		 * to INIT state.
7962 		 */
7963 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
7964 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
7965 
7966 		/* HC rate */
7967 		init_params->rx.hc_rate = bp->rx_ticks ?
7968 			(1000000 / bp->rx_ticks) : 0;
7969 		init_params->tx.hc_rate = bp->tx_ticks ?
7970 			(1000000 / bp->tx_ticks) : 0;
7971 
7972 		/* FW SB ID */
7973 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
7974 			fp->fw_sb_id;
7975 
7976 		/*
7977 		 * CQ index among the SB indices: FCoE clients uses the default
7978 		 * SB, therefore it's different.
7979 		 */
7980 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
7981 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
7982 	}
7983 
7984 	/* set maximum number of COSs supported by this queue */
7985 	init_params->max_cos = fp->max_cos;
7986 
7987 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
7988 	    fp->index, init_params->max_cos);
7989 
7990 	/* set the context pointers queue object */
7991 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
7992 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
7993 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
7994 				ILT_PAGE_CIDS);
7995 		init_params->cxts[cos] =
7996 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
7997 	}
7998 }
7999 
8000 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8001 			struct bnx2x_queue_state_params *q_params,
8002 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8003 			int tx_index, bool leading)
8004 {
8005 	memset(tx_only_params, 0, sizeof(*tx_only_params));
8006 
8007 	/* Set the command */
8008 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8009 
8010 	/* Set tx-only QUEUE flags: don't zero statistics */
8011 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8012 
8013 	/* choose the index of the cid to send the slow path on */
8014 	tx_only_params->cid_index = tx_index;
8015 
8016 	/* Set general TX_ONLY_SETUP parameters */
8017 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8018 
8019 	/* Set Tx TX_ONLY_SETUP parameters */
8020 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8021 
8022 	DP(NETIF_MSG_IFUP,
8023 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8024 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8025 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8026 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8027 
8028 	/* send the ramrod */
8029 	return bnx2x_queue_state_change(bp, q_params);
8030 }
8031 
8032 
8033 /**
8034  * bnx2x_setup_queue - setup queue
8035  *
8036  * @bp:		driver handle
8037  * @fp:		pointer to fastpath
8038  * @leading:	is leading
8039  *
8040  * This function performs 2 steps in a Queue state machine
8041  *      actually: 1) RESET->INIT 2) INIT->SETUP
8042  */
8043 
8044 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8045 		       bool leading)
8046 {
8047 	struct bnx2x_queue_state_params q_params = {NULL};
8048 	struct bnx2x_queue_setup_params *setup_params =
8049 						&q_params.params.setup;
8050 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8051 						&q_params.params.tx_only;
8052 	int rc;
8053 	u8 tx_index;
8054 
8055 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8056 
8057 	/* reset IGU state skip FCoE L2 queue */
8058 	if (!IS_FCOE_FP(fp))
8059 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8060 			     IGU_INT_ENABLE, 0);
8061 
8062 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8063 	/* We want to wait for completion in this context */
8064 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8065 
8066 	/* Prepare the INIT parameters */
8067 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8068 
8069 	/* Set the command */
8070 	q_params.cmd = BNX2X_Q_CMD_INIT;
8071 
8072 	/* Change the state to INIT */
8073 	rc = bnx2x_queue_state_change(bp, &q_params);
8074 	if (rc) {
8075 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8076 		return rc;
8077 	}
8078 
8079 	DP(NETIF_MSG_IFUP, "init complete\n");
8080 
8081 
8082 	/* Now move the Queue to the SETUP state... */
8083 	memset(setup_params, 0, sizeof(*setup_params));
8084 
8085 	/* Set QUEUE flags */
8086 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8087 
8088 	/* Set general SETUP parameters */
8089 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8090 				FIRST_TX_COS_INDEX);
8091 
8092 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8093 			    &setup_params->rxq_params);
8094 
8095 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8096 			   FIRST_TX_COS_INDEX);
8097 
8098 	/* Set the command */
8099 	q_params.cmd = BNX2X_Q_CMD_SETUP;
8100 
8101 	if (IS_FCOE_FP(fp))
8102 		bp->fcoe_init = true;
8103 
8104 	/* Change the state to SETUP */
8105 	rc = bnx2x_queue_state_change(bp, &q_params);
8106 	if (rc) {
8107 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8108 		return rc;
8109 	}
8110 
8111 	/* loop through the relevant tx-only indices */
8112 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8113 	      tx_index < fp->max_cos;
8114 	      tx_index++) {
8115 
8116 		/* prepare and send tx-only ramrod*/
8117 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8118 					  tx_only_params, tx_index, leading);
8119 		if (rc) {
8120 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8121 				  fp->index, tx_index);
8122 			return rc;
8123 		}
8124 	}
8125 
8126 	return rc;
8127 }
8128 
8129 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8130 {
8131 	struct bnx2x_fastpath *fp = &bp->fp[index];
8132 	struct bnx2x_fp_txdata *txdata;
8133 	struct bnx2x_queue_state_params q_params = {NULL};
8134 	int rc, tx_index;
8135 
8136 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8137 
8138 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8139 	/* We want to wait for completion in this context */
8140 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8141 
8142 
8143 	/* close tx-only connections */
8144 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8145 	     tx_index < fp->max_cos;
8146 	     tx_index++){
8147 
8148 		/* ascertain this is a normal queue*/
8149 		txdata = fp->txdata_ptr[tx_index];
8150 
8151 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8152 							txdata->txq_index);
8153 
8154 		/* send halt terminate on tx-only connection */
8155 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8156 		memset(&q_params.params.terminate, 0,
8157 		       sizeof(q_params.params.terminate));
8158 		q_params.params.terminate.cid_index = tx_index;
8159 
8160 		rc = bnx2x_queue_state_change(bp, &q_params);
8161 		if (rc)
8162 			return rc;
8163 
8164 		/* send halt terminate on tx-only connection */
8165 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8166 		memset(&q_params.params.cfc_del, 0,
8167 		       sizeof(q_params.params.cfc_del));
8168 		q_params.params.cfc_del.cid_index = tx_index;
8169 		rc = bnx2x_queue_state_change(bp, &q_params);
8170 		if (rc)
8171 			return rc;
8172 	}
8173 	/* Stop the primary connection: */
8174 	/* ...halt the connection */
8175 	q_params.cmd = BNX2X_Q_CMD_HALT;
8176 	rc = bnx2x_queue_state_change(bp, &q_params);
8177 	if (rc)
8178 		return rc;
8179 
8180 	/* ...terminate the connection */
8181 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8182 	memset(&q_params.params.terminate, 0,
8183 	       sizeof(q_params.params.terminate));
8184 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8185 	rc = bnx2x_queue_state_change(bp, &q_params);
8186 	if (rc)
8187 		return rc;
8188 	/* ...delete cfc entry */
8189 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8190 	memset(&q_params.params.cfc_del, 0,
8191 	       sizeof(q_params.params.cfc_del));
8192 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8193 	return bnx2x_queue_state_change(bp, &q_params);
8194 }
8195 
8196 
8197 static void bnx2x_reset_func(struct bnx2x *bp)
8198 {
8199 	int port = BP_PORT(bp);
8200 	int func = BP_FUNC(bp);
8201 	int i;
8202 
8203 	/* Disable the function in the FW */
8204 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8205 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8206 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8207 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8208 
8209 	/* FP SBs */
8210 	for_each_eth_queue(bp, i) {
8211 		struct bnx2x_fastpath *fp = &bp->fp[i];
8212 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8213 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8214 			   SB_DISABLED);
8215 	}
8216 
8217 	if (CNIC_LOADED(bp))
8218 		/* CNIC SB */
8219 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8220 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8221 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8222 
8223 	/* SP SB */
8224 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8225 		   CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8226 		   SB_DISABLED);
8227 
8228 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8229 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8230 		       0);
8231 
8232 	/* Configure IGU */
8233 	if (bp->common.int_block == INT_BLOCK_HC) {
8234 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8235 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8236 	} else {
8237 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8238 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8239 	}
8240 
8241 	if (CNIC_LOADED(bp)) {
8242 		/* Disable Timer scan */
8243 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8244 		/*
8245 		 * Wait for at least 10ms and up to 2 second for the timers
8246 		 * scan to complete
8247 		 */
8248 		for (i = 0; i < 200; i++) {
8249 			msleep(10);
8250 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8251 				break;
8252 		}
8253 	}
8254 	/* Clear ILT */
8255 	bnx2x_clear_func_ilt(bp, func);
8256 
8257 	/* Timers workaround bug for E2: if this is vnic-3,
8258 	 * we need to set the entire ilt range for this timers.
8259 	 */
8260 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8261 		struct ilt_client_info ilt_cli;
8262 		/* use dummy TM client */
8263 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8264 		ilt_cli.start = 0;
8265 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8266 		ilt_cli.client_num = ILT_CLIENT_TM;
8267 
8268 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8269 	}
8270 
8271 	/* this assumes that reset_port() called before reset_func()*/
8272 	if (!CHIP_IS_E1x(bp))
8273 		bnx2x_pf_disable(bp);
8274 
8275 	bp->dmae_ready = 0;
8276 }
8277 
8278 static void bnx2x_reset_port(struct bnx2x *bp)
8279 {
8280 	int port = BP_PORT(bp);
8281 	u32 val;
8282 
8283 	/* Reset physical Link */
8284 	bnx2x__link_reset(bp);
8285 
8286 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8287 
8288 	/* Do not rcv packets to BRB */
8289 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8290 	/* Do not direct rcv packets that are not for MCP to the BRB */
8291 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8292 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8293 
8294 	/* Configure AEU */
8295 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8296 
8297 	msleep(100);
8298 	/* Check for BRB port occupancy */
8299 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8300 	if (val)
8301 		DP(NETIF_MSG_IFDOWN,
8302 		   "BRB1 is not empty  %d blocks are occupied\n", val);
8303 
8304 	/* TODO: Close Doorbell port? */
8305 }
8306 
8307 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8308 {
8309 	struct bnx2x_func_state_params func_params = {NULL};
8310 
8311 	/* Prepare parameters for function state transitions */
8312 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8313 
8314 	func_params.f_obj = &bp->func_obj;
8315 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
8316 
8317 	func_params.params.hw_init.load_phase = load_code;
8318 
8319 	return bnx2x_func_state_change(bp, &func_params);
8320 }
8321 
8322 static int bnx2x_func_stop(struct bnx2x *bp)
8323 {
8324 	struct bnx2x_func_state_params func_params = {NULL};
8325 	int rc;
8326 
8327 	/* Prepare parameters for function state transitions */
8328 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8329 	func_params.f_obj = &bp->func_obj;
8330 	func_params.cmd = BNX2X_F_CMD_STOP;
8331 
8332 	/*
8333 	 * Try to stop the function the 'good way'. If fails (in case
8334 	 * of a parity error during bnx2x_chip_cleanup()) and we are
8335 	 * not in a debug mode, perform a state transaction in order to
8336 	 * enable further HW_RESET transaction.
8337 	 */
8338 	rc = bnx2x_func_state_change(bp, &func_params);
8339 	if (rc) {
8340 #ifdef BNX2X_STOP_ON_ERROR
8341 		return rc;
8342 #else
8343 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8344 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8345 		return bnx2x_func_state_change(bp, &func_params);
8346 #endif
8347 	}
8348 
8349 	return 0;
8350 }
8351 
8352 /**
8353  * bnx2x_send_unload_req - request unload mode from the MCP.
8354  *
8355  * @bp:			driver handle
8356  * @unload_mode:	requested function's unload mode
8357  *
8358  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8359  */
8360 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8361 {
8362 	u32 reset_code = 0;
8363 	int port = BP_PORT(bp);
8364 
8365 	/* Select the UNLOAD request mode */
8366 	if (unload_mode == UNLOAD_NORMAL)
8367 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8368 
8369 	else if (bp->flags & NO_WOL_FLAG)
8370 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8371 
8372 	else if (bp->wol) {
8373 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8374 		u8 *mac_addr = bp->dev->dev_addr;
8375 		u32 val;
8376 		u16 pmc;
8377 
8378 		/* The mac address is written to entries 1-4 to
8379 		 * preserve entry 0 which is used by the PMF
8380 		 */
8381 		u8 entry = (BP_VN(bp) + 1)*8;
8382 
8383 		val = (mac_addr[0] << 8) | mac_addr[1];
8384 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8385 
8386 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8387 		      (mac_addr[4] << 8) | mac_addr[5];
8388 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8389 
8390 		/* Enable the PME and clear the status */
8391 		pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
8392 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8393 		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
8394 
8395 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8396 
8397 	} else
8398 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8399 
8400 	/* Send the request to the MCP */
8401 	if (!BP_NOMCP(bp))
8402 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
8403 	else {
8404 		int path = BP_PATH(bp);
8405 
8406 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8407 		   path, load_count[path][0], load_count[path][1],
8408 		   load_count[path][2]);
8409 		load_count[path][0]--;
8410 		load_count[path][1 + port]--;
8411 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8412 		   path, load_count[path][0], load_count[path][1],
8413 		   load_count[path][2]);
8414 		if (load_count[path][0] == 0)
8415 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8416 		else if (load_count[path][1 + port] == 0)
8417 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8418 		else
8419 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8420 	}
8421 
8422 	return reset_code;
8423 }
8424 
8425 /**
8426  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8427  *
8428  * @bp:		driver handle
8429  * @keep_link:		true iff link should be kept up
8430  */
8431 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8432 {
8433 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8434 
8435 	/* Report UNLOAD_DONE to MCP */
8436 	if (!BP_NOMCP(bp))
8437 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8438 }
8439 
8440 static int bnx2x_func_wait_started(struct bnx2x *bp)
8441 {
8442 	int tout = 50;
8443 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8444 
8445 	if (!bp->port.pmf)
8446 		return 0;
8447 
8448 	/*
8449 	 * (assumption: No Attention from MCP at this stage)
8450 	 * PMF probably in the middle of TXdisable/enable transaction
8451 	 * 1. Sync IRS for default SB
8452 	 * 2. Sync SP queue - this guarantes us that attention handling started
8453 	 * 3. Wait, that TXdisable/enable transaction completes
8454 	 *
8455 	 * 1+2 guranty that if DCBx attention was scheduled it already changed
8456 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
8457 	 * received complettion for the transaction the state is TX_STOPPED.
8458 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
8459 	 * transaction.
8460 	 */
8461 
8462 	/* make sure default SB ISR is done */
8463 	if (msix)
8464 		synchronize_irq(bp->msix_table[0].vector);
8465 	else
8466 		synchronize_irq(bp->pdev->irq);
8467 
8468 	flush_workqueue(bnx2x_wq);
8469 
8470 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8471 				BNX2X_F_STATE_STARTED && tout--)
8472 		msleep(20);
8473 
8474 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8475 						BNX2X_F_STATE_STARTED) {
8476 #ifdef BNX2X_STOP_ON_ERROR
8477 		BNX2X_ERR("Wrong function state\n");
8478 		return -EBUSY;
8479 #else
8480 		/*
8481 		 * Failed to complete the transaction in a "good way"
8482 		 * Force both transactions with CLR bit
8483 		 */
8484 		struct bnx2x_func_state_params func_params = {NULL};
8485 
8486 		DP(NETIF_MSG_IFDOWN,
8487 		   "Hmmm... unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8488 
8489 		func_params.f_obj = &bp->func_obj;
8490 		__set_bit(RAMROD_DRV_CLR_ONLY,
8491 					&func_params.ramrod_flags);
8492 
8493 		/* STARTED-->TX_ST0PPED */
8494 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
8495 		bnx2x_func_state_change(bp, &func_params);
8496 
8497 		/* TX_ST0PPED-->STARTED */
8498 		func_params.cmd = BNX2X_F_CMD_TX_START;
8499 		return bnx2x_func_state_change(bp, &func_params);
8500 #endif
8501 	}
8502 
8503 	return 0;
8504 }
8505 
8506 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8507 {
8508 	int port = BP_PORT(bp);
8509 	int i, rc = 0;
8510 	u8 cos;
8511 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
8512 	u32 reset_code;
8513 
8514 	/* Wait until tx fastpath tasks complete */
8515 	for_each_tx_queue(bp, i) {
8516 		struct bnx2x_fastpath *fp = &bp->fp[i];
8517 
8518 		for_each_cos_in_tx_queue(fp, cos)
8519 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8520 #ifdef BNX2X_STOP_ON_ERROR
8521 		if (rc)
8522 			return;
8523 #endif
8524 	}
8525 
8526 	/* Give HW time to discard old tx messages */
8527 	usleep_range(1000, 1000);
8528 
8529 	/* Clean all ETH MACs */
8530 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8531 				false);
8532 	if (rc < 0)
8533 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8534 
8535 	/* Clean up UC list  */
8536 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8537 				true);
8538 	if (rc < 0)
8539 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8540 			  rc);
8541 
8542 	/* Disable LLH */
8543 	if (!CHIP_IS_E1(bp))
8544 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8545 
8546 	/* Set "drop all" (stop Rx).
8547 	 * We need to take a netif_addr_lock() here in order to prevent
8548 	 * a race between the completion code and this code.
8549 	 */
8550 	netif_addr_lock_bh(bp->dev);
8551 	/* Schedule the rx_mode command */
8552 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8553 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8554 	else
8555 		bnx2x_set_storm_rx_mode(bp);
8556 
8557 	/* Cleanup multicast configuration */
8558 	rparam.mcast_obj = &bp->mcast_obj;
8559 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8560 	if (rc < 0)
8561 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8562 
8563 	netif_addr_unlock_bh(bp->dev);
8564 
8565 
8566 
8567 	/*
8568 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
8569 	 * this function should perform FUNC, PORT or COMMON HW
8570 	 * reset.
8571 	 */
8572 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
8573 
8574 	/*
8575 	 * (assumption: No Attention from MCP at this stage)
8576 	 * PMF probably in the middle of TXdisable/enable transaction
8577 	 */
8578 	rc = bnx2x_func_wait_started(bp);
8579 	if (rc) {
8580 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
8581 #ifdef BNX2X_STOP_ON_ERROR
8582 		return;
8583 #endif
8584 	}
8585 
8586 	/* Close multi and leading connections
8587 	 * Completions for ramrods are collected in a synchronous way
8588 	 */
8589 	for_each_eth_queue(bp, i)
8590 		if (bnx2x_stop_queue(bp, i))
8591 #ifdef BNX2X_STOP_ON_ERROR
8592 			return;
8593 #else
8594 			goto unload_error;
8595 #endif
8596 
8597 	if (CNIC_LOADED(bp)) {
8598 		for_each_cnic_queue(bp, i)
8599 			if (bnx2x_stop_queue(bp, i))
8600 #ifdef BNX2X_STOP_ON_ERROR
8601 				return;
8602 #else
8603 				goto unload_error;
8604 #endif
8605 	}
8606 
8607 	/* If SP settings didn't get completed so far - something
8608 	 * very wrong has happen.
8609 	 */
8610 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8611 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8612 
8613 #ifndef BNX2X_STOP_ON_ERROR
8614 unload_error:
8615 #endif
8616 	rc = bnx2x_func_stop(bp);
8617 	if (rc) {
8618 		BNX2X_ERR("Function stop failed!\n");
8619 #ifdef BNX2X_STOP_ON_ERROR
8620 		return;
8621 #endif
8622 	}
8623 
8624 	/* Disable HW interrupts, NAPI */
8625 	bnx2x_netif_stop(bp, 1);
8626 	/* Delete all NAPI objects */
8627 	bnx2x_del_all_napi(bp);
8628 	if (CNIC_LOADED(bp))
8629 		bnx2x_del_all_napi_cnic(bp);
8630 
8631 	/* Release IRQs */
8632 	bnx2x_free_irq(bp);
8633 
8634 	/* Reset the chip */
8635 	rc = bnx2x_reset_hw(bp, reset_code);
8636 	if (rc)
8637 		BNX2X_ERR("HW_RESET failed\n");
8638 
8639 
8640 	/* Report UNLOAD_DONE to MCP */
8641 	bnx2x_send_unload_done(bp, keep_link);
8642 }
8643 
8644 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8645 {
8646 	u32 val;
8647 
8648 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8649 
8650 	if (CHIP_IS_E1(bp)) {
8651 		int port = BP_PORT(bp);
8652 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8653 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
8654 
8655 		val = REG_RD(bp, addr);
8656 		val &= ~(0x300);
8657 		REG_WR(bp, addr, val);
8658 	} else {
8659 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8660 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8661 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8662 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8663 	}
8664 }
8665 
8666 /* Close gates #2, #3 and #4: */
8667 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8668 {
8669 	u32 val;
8670 
8671 	/* Gates #2 and #4a are closed/opened for "not E1" only */
8672 	if (!CHIP_IS_E1(bp)) {
8673 		/* #4 */
8674 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8675 		/* #2 */
8676 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8677 	}
8678 
8679 	/* #3 */
8680 	if (CHIP_IS_E1x(bp)) {
8681 		/* Prevent interrupts from HC on both ports */
8682 		val = REG_RD(bp, HC_REG_CONFIG_1);
8683 		REG_WR(bp, HC_REG_CONFIG_1,
8684 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8685 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8686 
8687 		val = REG_RD(bp, HC_REG_CONFIG_0);
8688 		REG_WR(bp, HC_REG_CONFIG_0,
8689 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8690 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8691 	} else {
8692 		/* Prevent incomming interrupts in IGU */
8693 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8694 
8695 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8696 		       (!close) ?
8697 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8698 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8699 	}
8700 
8701 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8702 		close ? "closing" : "opening");
8703 	mmiowb();
8704 }
8705 
8706 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
8707 
8708 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8709 {
8710 	/* Do some magic... */
8711 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8712 	*magic_val = val & SHARED_MF_CLP_MAGIC;
8713 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8714 }
8715 
8716 /**
8717  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8718  *
8719  * @bp:		driver handle
8720  * @magic_val:	old value of the `magic' bit.
8721  */
8722 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8723 {
8724 	/* Restore the `magic' bit value... */
8725 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8726 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
8727 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8728 }
8729 
8730 /**
8731  * bnx2x_reset_mcp_prep - prepare for MCP reset.
8732  *
8733  * @bp:		driver handle
8734  * @magic_val:	old value of 'magic' bit.
8735  *
8736  * Takes care of CLP configurations.
8737  */
8738 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8739 {
8740 	u32 shmem;
8741 	u32 validity_offset;
8742 
8743 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
8744 
8745 	/* Set `magic' bit in order to save MF config */
8746 	if (!CHIP_IS_E1(bp))
8747 		bnx2x_clp_reset_prep(bp, magic_val);
8748 
8749 	/* Get shmem offset */
8750 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8751 	validity_offset =
8752 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
8753 
8754 	/* Clear validity map flags */
8755 	if (shmem > 0)
8756 		REG_WR(bp, shmem + validity_offset, 0);
8757 }
8758 
8759 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
8760 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
8761 
8762 /**
8763  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
8764  *
8765  * @bp:	driver handle
8766  */
8767 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
8768 {
8769 	/* special handling for emulation and FPGA,
8770 	   wait 10 times longer */
8771 	if (CHIP_REV_IS_SLOW(bp))
8772 		msleep(MCP_ONE_TIMEOUT*10);
8773 	else
8774 		msleep(MCP_ONE_TIMEOUT);
8775 }
8776 
8777 /*
8778  * initializes bp->common.shmem_base and waits for validity signature to appear
8779  */
8780 static int bnx2x_init_shmem(struct bnx2x *bp)
8781 {
8782 	int cnt = 0;
8783 	u32 val = 0;
8784 
8785 	do {
8786 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8787 		if (bp->common.shmem_base) {
8788 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8789 			if (val & SHR_MEM_VALIDITY_MB)
8790 				return 0;
8791 		}
8792 
8793 		bnx2x_mcp_wait_one(bp);
8794 
8795 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8796 
8797 	BNX2X_ERR("BAD MCP validity signature\n");
8798 
8799 	return -ENODEV;
8800 }
8801 
8802 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8803 {
8804 	int rc = bnx2x_init_shmem(bp);
8805 
8806 	/* Restore the `magic' bit value */
8807 	if (!CHIP_IS_E1(bp))
8808 		bnx2x_clp_reset_done(bp, magic_val);
8809 
8810 	return rc;
8811 }
8812 
8813 static void bnx2x_pxp_prep(struct bnx2x *bp)
8814 {
8815 	if (!CHIP_IS_E1(bp)) {
8816 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8817 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8818 		mmiowb();
8819 	}
8820 }
8821 
8822 /*
8823  * Reset the whole chip except for:
8824  *      - PCIE core
8825  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
8826  *              one reset bit)
8827  *      - IGU
8828  *      - MISC (including AEU)
8829  *      - GRC
8830  *      - RBCN, RBCP
8831  */
8832 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
8833 {
8834 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
8835 	u32 global_bits2, stay_reset2;
8836 
8837 	/*
8838 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
8839 	 * (per chip) blocks.
8840 	 */
8841 	global_bits2 =
8842 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8843 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8844 
8845 	/* Don't reset the following blocks.
8846 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
8847 	 *            reset, as in 4 port device they might still be owned
8848 	 *            by the MCP (there is only one leader per path).
8849 	 */
8850 	not_reset_mask1 =
8851 		MISC_REGISTERS_RESET_REG_1_RST_HC |
8852 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8853 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
8854 
8855 	not_reset_mask2 =
8856 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8857 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8858 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8859 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8860 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8861 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
8862 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8863 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8864 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
8865 		MISC_REGISTERS_RESET_REG_2_PGLC |
8866 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8867 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8868 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8869 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8870 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
8871 		MISC_REGISTERS_RESET_REG_2_UMAC1;
8872 
8873 	/*
8874 	 * Keep the following blocks in reset:
8875 	 *  - all xxMACs are handled by the bnx2x_link code.
8876 	 */
8877 	stay_reset2 =
8878 		MISC_REGISTERS_RESET_REG_2_XMAC |
8879 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8880 
8881 	/* Full reset masks according to the chip */
8882 	reset_mask1 = 0xffffffff;
8883 
8884 	if (CHIP_IS_E1(bp))
8885 		reset_mask2 = 0xffff;
8886 	else if (CHIP_IS_E1H(bp))
8887 		reset_mask2 = 0x1ffff;
8888 	else if (CHIP_IS_E2(bp))
8889 		reset_mask2 = 0xfffff;
8890 	else /* CHIP_IS_E3 */
8891 		reset_mask2 = 0x3ffffff;
8892 
8893 	/* Don't reset global blocks unless we need to */
8894 	if (!global)
8895 		reset_mask2 &= ~global_bits2;
8896 
8897 	/*
8898 	 * In case of attention in the QM, we need to reset PXP
8899 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8900 	 * because otherwise QM reset would release 'close the gates' shortly
8901 	 * before resetting the PXP, then the PSWRQ would send a write
8902 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
8903 	 * read the payload data from PSWWR, but PSWWR would not
8904 	 * respond. The write queue in PGLUE would stuck, dmae commands
8905 	 * would not return. Therefore it's important to reset the second
8906 	 * reset register (containing the
8907 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8908 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8909 	 * bit).
8910 	 */
8911 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8912 	       reset_mask2 & (~not_reset_mask2));
8913 
8914 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8915 	       reset_mask1 & (~not_reset_mask1));
8916 
8917 	barrier();
8918 	mmiowb();
8919 
8920 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8921 	       reset_mask2 & (~stay_reset2));
8922 
8923 	barrier();
8924 	mmiowb();
8925 
8926 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8927 	mmiowb();
8928 }
8929 
8930 /**
8931  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8932  * It should get cleared in no more than 1s.
8933  *
8934  * @bp:	driver handle
8935  *
8936  * It should get cleared in no more than 1s. Returns 0 if
8937  * pending writes bit gets cleared.
8938  */
8939 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8940 {
8941 	u32 cnt = 1000;
8942 	u32 pend_bits = 0;
8943 
8944 	do {
8945 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8946 
8947 		if (pend_bits == 0)
8948 			break;
8949 
8950 		usleep_range(1000, 1000);
8951 	} while (cnt-- > 0);
8952 
8953 	if (cnt <= 0) {
8954 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8955 			  pend_bits);
8956 		return -EBUSY;
8957 	}
8958 
8959 	return 0;
8960 }
8961 
8962 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
8963 {
8964 	int cnt = 1000;
8965 	u32 val = 0;
8966 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
8967 		u32 tags_63_32 = 0;
8968 
8969 
8970 	/* Empty the Tetris buffer, wait for 1s */
8971 	do {
8972 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
8973 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
8974 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
8975 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
8976 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
8977 		if (CHIP_IS_E3(bp))
8978 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
8979 
8980 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
8981 		    ((port_is_idle_0 & 0x1) == 0x1) &&
8982 		    ((port_is_idle_1 & 0x1) == 0x1) &&
8983 		    (pgl_exp_rom2 == 0xffffffff) &&
8984 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
8985 			break;
8986 		usleep_range(1000, 1000);
8987 	} while (cnt-- > 0);
8988 
8989 	if (cnt <= 0) {
8990 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
8991 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8992 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
8993 			  pgl_exp_rom2);
8994 		return -EAGAIN;
8995 	}
8996 
8997 	barrier();
8998 
8999 	/* Close gates #2, #3 and #4 */
9000 	bnx2x_set_234_gates(bp, true);
9001 
9002 	/* Poll for IGU VQs for 57712 and newer chips */
9003 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9004 		return -EAGAIN;
9005 
9006 
9007 	/* TBD: Indicate that "process kill" is in progress to MCP */
9008 
9009 	/* Clear "unprepared" bit */
9010 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9011 	barrier();
9012 
9013 	/* Make sure all is written to the chip before the reset */
9014 	mmiowb();
9015 
9016 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9017 	 * PSWHST, GRC and PSWRD Tetris buffer.
9018 	 */
9019 	usleep_range(1000, 1000);
9020 
9021 	/* Prepare to chip reset: */
9022 	/* MCP */
9023 	if (global)
9024 		bnx2x_reset_mcp_prep(bp, &val);
9025 
9026 	/* PXP */
9027 	bnx2x_pxp_prep(bp);
9028 	barrier();
9029 
9030 	/* reset the chip */
9031 	bnx2x_process_kill_chip_reset(bp, global);
9032 	barrier();
9033 
9034 	/* Recover after reset: */
9035 	/* MCP */
9036 	if (global && bnx2x_reset_mcp_comp(bp, val))
9037 		return -EAGAIN;
9038 
9039 	/* TBD: Add resetting the NO_MCP mode DB here */
9040 
9041 	/* Open the gates #2, #3 and #4 */
9042 	bnx2x_set_234_gates(bp, false);
9043 
9044 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9045 	 * reset state, re-enable attentions. */
9046 
9047 	return 0;
9048 }
9049 
9050 static int bnx2x_leader_reset(struct bnx2x *bp)
9051 {
9052 	int rc = 0;
9053 	bool global = bnx2x_reset_is_global(bp);
9054 	u32 load_code;
9055 
9056 	/* if not going to reset MCP - load "fake" driver to reset HW while
9057 	 * driver is owner of the HW
9058 	 */
9059 	if (!global && !BP_NOMCP(bp)) {
9060 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9061 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9062 		if (!load_code) {
9063 			BNX2X_ERR("MCP response failure, aborting\n");
9064 			rc = -EAGAIN;
9065 			goto exit_leader_reset;
9066 		}
9067 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9068 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9069 			BNX2X_ERR("MCP unexpected resp, aborting\n");
9070 			rc = -EAGAIN;
9071 			goto exit_leader_reset2;
9072 		}
9073 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9074 		if (!load_code) {
9075 			BNX2X_ERR("MCP response failure, aborting\n");
9076 			rc = -EAGAIN;
9077 			goto exit_leader_reset2;
9078 		}
9079 	}
9080 
9081 	/* Try to recover after the failure */
9082 	if (bnx2x_process_kill(bp, global)) {
9083 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9084 			  BP_PATH(bp));
9085 		rc = -EAGAIN;
9086 		goto exit_leader_reset2;
9087 	}
9088 
9089 	/*
9090 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9091 	 * state.
9092 	 */
9093 	bnx2x_set_reset_done(bp);
9094 	if (global)
9095 		bnx2x_clear_reset_global(bp);
9096 
9097 exit_leader_reset2:
9098 	/* unload "fake driver" if it was loaded */
9099 	if (!global && !BP_NOMCP(bp)) {
9100 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9101 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9102 	}
9103 exit_leader_reset:
9104 	bp->is_leader = 0;
9105 	bnx2x_release_leader_lock(bp);
9106 	smp_mb();
9107 	return rc;
9108 }
9109 
9110 static void bnx2x_recovery_failed(struct bnx2x *bp)
9111 {
9112 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9113 
9114 	/* Disconnect this device */
9115 	netif_device_detach(bp->dev);
9116 
9117 	/*
9118 	 * Block ifup for all function on this engine until "process kill"
9119 	 * or power cycle.
9120 	 */
9121 	bnx2x_set_reset_in_progress(bp);
9122 
9123 	/* Shut down the power */
9124 	bnx2x_set_power_state(bp, PCI_D3hot);
9125 
9126 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9127 
9128 	smp_mb();
9129 }
9130 
9131 /*
9132  * Assumption: runs under rtnl lock. This together with the fact
9133  * that it's called only from bnx2x_sp_rtnl() ensure that it
9134  * will never be called when netif_running(bp->dev) is false.
9135  */
9136 static void bnx2x_parity_recover(struct bnx2x *bp)
9137 {
9138 	bool global = false;
9139 	u32 error_recovered, error_unrecovered;
9140 	bool is_parity;
9141 
9142 	DP(NETIF_MSG_HW, "Handling parity\n");
9143 	while (1) {
9144 		switch (bp->recovery_state) {
9145 		case BNX2X_RECOVERY_INIT:
9146 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9147 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9148 			WARN_ON(!is_parity);
9149 
9150 			/* Try to get a LEADER_LOCK HW lock */
9151 			if (bnx2x_trylock_leader_lock(bp)) {
9152 				bnx2x_set_reset_in_progress(bp);
9153 				/*
9154 				 * Check if there is a global attention and if
9155 				 * there was a global attention, set the global
9156 				 * reset bit.
9157 				 */
9158 
9159 				if (global)
9160 					bnx2x_set_reset_global(bp);
9161 
9162 				bp->is_leader = 1;
9163 			}
9164 
9165 			/* Stop the driver */
9166 			/* If interface has been removed - break */
9167 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9168 				return;
9169 
9170 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
9171 
9172 			/* Ensure "is_leader", MCP command sequence and
9173 			 * "recovery_state" update values are seen on other
9174 			 * CPUs.
9175 			 */
9176 			smp_mb();
9177 			break;
9178 
9179 		case BNX2X_RECOVERY_WAIT:
9180 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9181 			if (bp->is_leader) {
9182 				int other_engine = BP_PATH(bp) ? 0 : 1;
9183 				bool other_load_status =
9184 					bnx2x_get_load_status(bp, other_engine);
9185 				bool load_status =
9186 					bnx2x_get_load_status(bp, BP_PATH(bp));
9187 				global = bnx2x_reset_is_global(bp);
9188 
9189 				/*
9190 				 * In case of a parity in a global block, let
9191 				 * the first leader that performs a
9192 				 * leader_reset() reset the global blocks in
9193 				 * order to clear global attentions. Otherwise
9194 				 * the the gates will remain closed for that
9195 				 * engine.
9196 				 */
9197 				if (load_status ||
9198 				    (global && other_load_status)) {
9199 					/* Wait until all other functions get
9200 					 * down.
9201 					 */
9202 					schedule_delayed_work(&bp->sp_rtnl_task,
9203 								HZ/10);
9204 					return;
9205 				} else {
9206 					/* If all other functions got down -
9207 					 * try to bring the chip back to
9208 					 * normal. In any case it's an exit
9209 					 * point for a leader.
9210 					 */
9211 					if (bnx2x_leader_reset(bp)) {
9212 						bnx2x_recovery_failed(bp);
9213 						return;
9214 					}
9215 
9216 					/* If we are here, means that the
9217 					 * leader has succeeded and doesn't
9218 					 * want to be a leader any more. Try
9219 					 * to continue as a none-leader.
9220 					 */
9221 					break;
9222 				}
9223 			} else { /* non-leader */
9224 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9225 					/* Try to get a LEADER_LOCK HW lock as
9226 					 * long as a former leader may have
9227 					 * been unloaded by the user or
9228 					 * released a leadership by another
9229 					 * reason.
9230 					 */
9231 					if (bnx2x_trylock_leader_lock(bp)) {
9232 						/* I'm a leader now! Restart a
9233 						 * switch case.
9234 						 */
9235 						bp->is_leader = 1;
9236 						break;
9237 					}
9238 
9239 					schedule_delayed_work(&bp->sp_rtnl_task,
9240 								HZ/10);
9241 					return;
9242 
9243 				} else {
9244 					/*
9245 					 * If there was a global attention, wait
9246 					 * for it to be cleared.
9247 					 */
9248 					if (bnx2x_reset_is_global(bp)) {
9249 						schedule_delayed_work(
9250 							&bp->sp_rtnl_task,
9251 							HZ/10);
9252 						return;
9253 					}
9254 
9255 					error_recovered =
9256 					  bp->eth_stats.recoverable_error;
9257 					error_unrecovered =
9258 					  bp->eth_stats.unrecoverable_error;
9259 					bp->recovery_state =
9260 						BNX2X_RECOVERY_NIC_LOADING;
9261 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9262 						error_unrecovered++;
9263 						netdev_err(bp->dev,
9264 							   "Recovery failed. Power cycle needed\n");
9265 						/* Disconnect this device */
9266 						netif_device_detach(bp->dev);
9267 						/* Shut down the power */
9268 						bnx2x_set_power_state(
9269 							bp, PCI_D3hot);
9270 						smp_mb();
9271 					} else {
9272 						bp->recovery_state =
9273 							BNX2X_RECOVERY_DONE;
9274 						error_recovered++;
9275 						smp_mb();
9276 					}
9277 					bp->eth_stats.recoverable_error =
9278 						error_recovered;
9279 					bp->eth_stats.unrecoverable_error =
9280 						error_unrecovered;
9281 
9282 					return;
9283 				}
9284 			}
9285 		default:
9286 			return;
9287 		}
9288 	}
9289 }
9290 
9291 static int bnx2x_close(struct net_device *dev);
9292 
9293 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9294  * scheduled on a general queue in order to prevent a dead lock.
9295  */
9296 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9297 {
9298 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9299 
9300 	rtnl_lock();
9301 
9302 	if (!netif_running(bp->dev))
9303 		goto sp_rtnl_exit;
9304 
9305 	/* if stop on error is defined no recovery flows should be executed */
9306 #ifdef BNX2X_STOP_ON_ERROR
9307 	BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9308 		  "you will need to reboot when done\n");
9309 	goto sp_rtnl_not_reset;
9310 #endif
9311 
9312 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9313 		/*
9314 		 * Clear all pending SP commands as we are going to reset the
9315 		 * function anyway.
9316 		 */
9317 		bp->sp_rtnl_state = 0;
9318 		smp_mb();
9319 
9320 		bnx2x_parity_recover(bp);
9321 
9322 		goto sp_rtnl_exit;
9323 	}
9324 
9325 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9326 		/*
9327 		 * Clear all pending SP commands as we are going to reset the
9328 		 * function anyway.
9329 		 */
9330 		bp->sp_rtnl_state = 0;
9331 		smp_mb();
9332 
9333 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9334 		bnx2x_nic_load(bp, LOAD_NORMAL);
9335 
9336 		goto sp_rtnl_exit;
9337 	}
9338 #ifdef BNX2X_STOP_ON_ERROR
9339 sp_rtnl_not_reset:
9340 #endif
9341 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9342 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9343 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9344 		bnx2x_after_function_update(bp);
9345 	/*
9346 	 * in case of fan failure we need to reset id if the "stop on error"
9347 	 * debug flag is set, since we trying to prevent permanent overheating
9348 	 * damage
9349 	 */
9350 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9351 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9352 		netif_device_detach(bp->dev);
9353 		bnx2x_close(bp->dev);
9354 	}
9355 
9356 sp_rtnl_exit:
9357 	rtnl_unlock();
9358 }
9359 
9360 /* end of nic load/unload */
9361 
9362 static void bnx2x_period_task(struct work_struct *work)
9363 {
9364 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9365 
9366 	if (!netif_running(bp->dev))
9367 		goto period_task_exit;
9368 
9369 	if (CHIP_REV_IS_SLOW(bp)) {
9370 		BNX2X_ERR("period task called on emulation, ignoring\n");
9371 		goto period_task_exit;
9372 	}
9373 
9374 	bnx2x_acquire_phy_lock(bp);
9375 	/*
9376 	 * The barrier is needed to ensure the ordering between the writing to
9377 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9378 	 * the reading here.
9379 	 */
9380 	smp_mb();
9381 	if (bp->port.pmf) {
9382 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
9383 
9384 		/* Re-queue task in 1 sec */
9385 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9386 	}
9387 
9388 	bnx2x_release_phy_lock(bp);
9389 period_task_exit:
9390 	return;
9391 }
9392 
9393 /*
9394  * Init service functions
9395  */
9396 
9397 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9398 {
9399 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9400 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9401 	return base + (BP_ABS_FUNC(bp)) * stride;
9402 }
9403 
9404 static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
9405 {
9406 	u32 reg = bnx2x_get_pretend_reg(bp);
9407 
9408 	/* Flush all outstanding writes */
9409 	mmiowb();
9410 
9411 	/* Pretend to be function 0 */
9412 	REG_WR(bp, reg, 0);
9413 	REG_RD(bp, reg);	/* Flush the GRC transaction (in the chip) */
9414 
9415 	/* From now we are in the "like-E1" mode */
9416 	bnx2x_int_disable(bp);
9417 
9418 	/* Flush all outstanding writes */
9419 	mmiowb();
9420 
9421 	/* Restore the original function */
9422 	REG_WR(bp, reg, BP_ABS_FUNC(bp));
9423 	REG_RD(bp, reg);
9424 }
9425 
9426 static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
9427 {
9428 	if (CHIP_IS_E1(bp))
9429 		bnx2x_int_disable(bp);
9430 	else
9431 		bnx2x_undi_int_disable_e1h(bp);
9432 }
9433 
9434 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9435 					struct bnx2x_mac_vals *vals)
9436 {
9437 	u32 val, base_addr, offset, mask, reset_reg;
9438 	bool mac_stopped = false;
9439 	u8 port = BP_PORT(bp);
9440 
9441 	/* reset addresses as they also mark which values were changed */
9442 	vals->bmac_addr = 0;
9443 	vals->umac_addr = 0;
9444 	vals->xmac_addr = 0;
9445 	vals->emac_addr = 0;
9446 
9447 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9448 
9449 	if (!CHIP_IS_E3(bp)) {
9450 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9451 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9452 		if ((mask & reset_reg) && val) {
9453 			u32 wb_data[2];
9454 			BNX2X_DEV_INFO("Disable bmac Rx\n");
9455 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9456 						: NIG_REG_INGRESS_BMAC0_MEM;
9457 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9458 						: BIGMAC_REGISTER_BMAC_CONTROL;
9459 
9460 			/*
9461 			 * use rd/wr since we cannot use dmae. This is safe
9462 			 * since MCP won't access the bus due to the request
9463 			 * to unload, and no function on the path can be
9464 			 * loaded at this time.
9465 			 */
9466 			wb_data[0] = REG_RD(bp, base_addr + offset);
9467 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9468 			vals->bmac_addr = base_addr + offset;
9469 			vals->bmac_val[0] = wb_data[0];
9470 			vals->bmac_val[1] = wb_data[1];
9471 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9472 			REG_WR(bp, vals->bmac_addr, wb_data[0]);
9473 			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
9474 
9475 		}
9476 		BNX2X_DEV_INFO("Disable emac Rx\n");
9477 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
9478 		vals->emac_val = REG_RD(bp, vals->emac_addr);
9479 		REG_WR(bp, vals->emac_addr, 0);
9480 		mac_stopped = true;
9481 	} else {
9482 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9483 			BNX2X_DEV_INFO("Disable xmac Rx\n");
9484 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9485 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9486 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9487 			       val & ~(1 << 1));
9488 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9489 			       val | (1 << 1));
9490 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9491 			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
9492 			REG_WR(bp, vals->xmac_addr, 0);
9493 			mac_stopped = true;
9494 		}
9495 		mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9496 		if (mask & reset_reg) {
9497 			BNX2X_DEV_INFO("Disable umac Rx\n");
9498 			base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9499 			vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9500 			vals->umac_val = REG_RD(bp, vals->umac_addr);
9501 			REG_WR(bp, vals->umac_addr, 0);
9502 			mac_stopped = true;
9503 		}
9504 	}
9505 
9506 	if (mac_stopped)
9507 		msleep(20);
9508 
9509 }
9510 
9511 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9512 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
9513 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
9514 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
9515 
9516 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
9517 {
9518 	u16 rcq, bd;
9519 	u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9520 
9521 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9522 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9523 
9524 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9525 	REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9526 
9527 	BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9528 		       port, bd, rcq);
9529 }
9530 
9531 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
9532 {
9533 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9534 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9535 	if (!rc) {
9536 		BNX2X_ERR("MCP response failure, aborting\n");
9537 		return -EBUSY;
9538 	}
9539 
9540 	return 0;
9541 }
9542 
9543 static struct bnx2x_prev_path_list *
9544 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
9545 {
9546 	struct bnx2x_prev_path_list *tmp_list;
9547 
9548 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
9549 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9550 		    bp->pdev->bus->number == tmp_list->bus &&
9551 		    BP_PATH(bp) == tmp_list->path)
9552 			return tmp_list;
9553 
9554 	return NULL;
9555 }
9556 
9557 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
9558 {
9559 	struct bnx2x_prev_path_list *tmp_list;
9560 	int rc = false;
9561 
9562 	if (down_trylock(&bnx2x_prev_sem))
9563 		return false;
9564 
9565 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list) {
9566 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9567 		    bp->pdev->bus->number == tmp_list->bus &&
9568 		    BP_PATH(bp) == tmp_list->path) {
9569 			rc = true;
9570 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
9571 				       BP_PATH(bp));
9572 			break;
9573 		}
9574 	}
9575 
9576 	up(&bnx2x_prev_sem);
9577 
9578 	return rc;
9579 }
9580 
9581 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
9582 {
9583 	struct bnx2x_prev_path_list *tmp_list;
9584 	int rc;
9585 
9586 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
9587 	if (!tmp_list) {
9588 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
9589 		return -ENOMEM;
9590 	}
9591 
9592 	tmp_list->bus = bp->pdev->bus->number;
9593 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
9594 	tmp_list->path = BP_PATH(bp);
9595 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
9596 
9597 	rc = down_interruptible(&bnx2x_prev_sem);
9598 	if (rc) {
9599 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
9600 		kfree(tmp_list);
9601 	} else {
9602 		BNX2X_DEV_INFO("Marked path [%d] - finished previous unload\n",
9603 				BP_PATH(bp));
9604 		list_add(&tmp_list->list, &bnx2x_prev_list);
9605 		up(&bnx2x_prev_sem);
9606 	}
9607 
9608 	return rc;
9609 }
9610 
9611 static int bnx2x_do_flr(struct bnx2x *bp)
9612 {
9613 	int i;
9614 	u16 status;
9615 	struct pci_dev *dev = bp->pdev;
9616 
9617 
9618 	if (CHIP_IS_E1x(bp)) {
9619 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
9620 		return -EINVAL;
9621 	}
9622 
9623 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9624 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9625 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
9626 			  bp->common.bc_ver);
9627 		return -EINVAL;
9628 	}
9629 
9630 	/* Wait for Transaction Pending bit clean */
9631 	for (i = 0; i < 4; i++) {
9632 		if (i)
9633 			msleep((1 << (i - 1)) * 100);
9634 
9635 		pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
9636 		if (!(status & PCI_EXP_DEVSTA_TRPND))
9637 			goto clear;
9638 	}
9639 
9640 	dev_err(&dev->dev,
9641 		"transaction is not cleared; proceeding with reset anyway\n");
9642 
9643 clear:
9644 
9645 	BNX2X_DEV_INFO("Initiating FLR\n");
9646 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
9647 
9648 	return 0;
9649 }
9650 
9651 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
9652 {
9653 	int rc;
9654 
9655 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
9656 
9657 	/* Test if previous unload process was already finished for this path */
9658 	if (bnx2x_prev_is_path_marked(bp))
9659 		return bnx2x_prev_mcp_done(bp);
9660 
9661 	/* If function has FLR capabilities, and existing FW version matches
9662 	 * the one required, then FLR will be sufficient to clean any residue
9663 	 * left by previous driver
9664 	 */
9665 	rc = bnx2x_test_firmware_version(bp, false);
9666 
9667 	if (!rc) {
9668 		/* fw version is good */
9669 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
9670 		rc = bnx2x_do_flr(bp);
9671 	}
9672 
9673 	if (!rc) {
9674 		/* FLR was performed */
9675 		BNX2X_DEV_INFO("FLR successful\n");
9676 		return 0;
9677 	}
9678 
9679 	BNX2X_DEV_INFO("Could not FLR\n");
9680 
9681 	/* Close the MCP request, return failure*/
9682 	rc = bnx2x_prev_mcp_done(bp);
9683 	if (!rc)
9684 		rc = BNX2X_PREV_WAIT_NEEDED;
9685 
9686 	return rc;
9687 }
9688 
9689 static int bnx2x_prev_unload_common(struct bnx2x *bp)
9690 {
9691 	u32 reset_reg, tmp_reg = 0, rc;
9692 	bool prev_undi = false;
9693 	struct bnx2x_mac_vals mac_vals;
9694 
9695 	/* It is possible a previous function received 'common' answer,
9696 	 * but hasn't loaded yet, therefore creating a scenario of
9697 	 * multiple functions receiving 'common' on the same path.
9698 	 */
9699 	BNX2X_DEV_INFO("Common unload Flow\n");
9700 
9701 	memset(&mac_vals, 0, sizeof(mac_vals));
9702 
9703 	if (bnx2x_prev_is_path_marked(bp))
9704 		return bnx2x_prev_mcp_done(bp);
9705 
9706 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
9707 
9708 	/* Reset should be performed after BRB is emptied */
9709 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
9710 		u32 timer_count = 1000;
9711 
9712 		/* Close the MAC Rx to prevent BRB from filling up */
9713 		bnx2x_prev_unload_close_mac(bp, &mac_vals);
9714 
9715 		/* close LLH filters towards the BRB */
9716 		bnx2x_set_rx_filter(&bp->link_params, 0);
9717 
9718 		/* Check if the UNDI driver was previously loaded
9719 		 * UNDI driver initializes CID offset for normal bell to 0x7
9720 		 */
9721 		reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
9722 		if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
9723 			tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
9724 			if (tmp_reg == 0x7) {
9725 				BNX2X_DEV_INFO("UNDI previously loaded\n");
9726 				prev_undi = true;
9727 				/* clear the UNDI indication */
9728 				REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
9729 			}
9730 		}
9731 		/* wait until BRB is empty */
9732 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9733 		while (timer_count) {
9734 			u32 prev_brb = tmp_reg;
9735 
9736 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9737 			if (!tmp_reg)
9738 				break;
9739 
9740 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
9741 
9742 			/* reset timer as long as BRB actually gets emptied */
9743 			if (prev_brb > tmp_reg)
9744 				timer_count = 1000;
9745 			else
9746 				timer_count--;
9747 
9748 			/* If UNDI resides in memory, manually increment it */
9749 			if (prev_undi)
9750 				bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
9751 
9752 			udelay(10);
9753 		}
9754 
9755 		if (!timer_count)
9756 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
9757 
9758 	}
9759 
9760 	/* No packets are in the pipeline, path is ready for reset */
9761 	bnx2x_reset_common(bp);
9762 
9763 	if (mac_vals.xmac_addr)
9764 		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
9765 	if (mac_vals.umac_addr)
9766 		REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
9767 	if (mac_vals.emac_addr)
9768 		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
9769 	if (mac_vals.bmac_addr) {
9770 		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
9771 		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
9772 	}
9773 
9774 	rc = bnx2x_prev_mark_path(bp, prev_undi);
9775 	if (rc) {
9776 		bnx2x_prev_mcp_done(bp);
9777 		return rc;
9778 	}
9779 
9780 	return bnx2x_prev_mcp_done(bp);
9781 }
9782 
9783 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
9784  * and boot began, or when kdump kernel was loaded. Either case would invalidate
9785  * the addresses of the transaction, resulting in was-error bit set in the pci
9786  * causing all hw-to-host pcie transactions to timeout. If this happened we want
9787  * to clear the interrupt which detected this from the pglueb and the was done
9788  * bit
9789  */
9790 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
9791 {
9792 	if (!CHIP_IS_E1x(bp)) {
9793 		u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
9794 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
9795 			BNX2X_ERR("was error bit was found to be set in pglueb upon startup. Clearing");
9796 			REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
9797 			       1 << BP_FUNC(bp));
9798 		}
9799 	}
9800 }
9801 
9802 static int bnx2x_prev_unload(struct bnx2x *bp)
9803 {
9804 	int time_counter = 10;
9805 	u32 rc, fw, hw_lock_reg, hw_lock_val;
9806 	struct bnx2x_prev_path_list *prev_list;
9807 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
9808 
9809 	/* clear hw from errors which may have resulted from an interrupted
9810 	 * dmae transaction.
9811 	 */
9812 	bnx2x_prev_interrupted_dmae(bp);
9813 
9814 	/* Release previously held locks */
9815 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
9816 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
9817 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
9818 
9819 	hw_lock_val = (REG_RD(bp, hw_lock_reg));
9820 	if (hw_lock_val) {
9821 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
9822 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
9823 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
9824 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
9825 		}
9826 
9827 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
9828 		REG_WR(bp, hw_lock_reg, 0xffffffff);
9829 	} else
9830 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
9831 
9832 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
9833 		BNX2X_DEV_INFO("Release previously held alr\n");
9834 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
9835 	}
9836 
9837 
9838 	do {
9839 		/* Lock MCP using an unload request */
9840 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
9841 		if (!fw) {
9842 			BNX2X_ERR("MCP response failure, aborting\n");
9843 			rc = -EBUSY;
9844 			break;
9845 		}
9846 
9847 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
9848 			rc = bnx2x_prev_unload_common(bp);
9849 			break;
9850 		}
9851 
9852 		/* non-common reply from MCP night require looping */
9853 		rc = bnx2x_prev_unload_uncommon(bp);
9854 		if (rc != BNX2X_PREV_WAIT_NEEDED)
9855 			break;
9856 
9857 		msleep(20);
9858 	} while (--time_counter);
9859 
9860 	if (!time_counter || rc) {
9861 		BNX2X_ERR("Failed unloading previous driver, aborting\n");
9862 		rc = -EBUSY;
9863 	}
9864 
9865 	/* Mark function if its port was used to boot from SAN */
9866 	prev_list = bnx2x_prev_path_get_entry(bp);
9867 	if (prev_list && (prev_list->undi & (1 << BP_PORT(bp))))
9868 		bp->link_params.feature_config_flags |=
9869 			FEATURE_CONFIG_BOOT_FROM_SAN;
9870 
9871 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
9872 
9873 	return rc;
9874 }
9875 
9876 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
9877 {
9878 	u32 val, val2, val3, val4, id, boot_mode;
9879 	u16 pmc;
9880 
9881 	/* Get the chip revision id and number. */
9882 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
9883 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
9884 	id = ((val & 0xffff) << 16);
9885 	val = REG_RD(bp, MISC_REG_CHIP_REV);
9886 	id |= ((val & 0xf) << 12);
9887 	val = REG_RD(bp, MISC_REG_CHIP_METAL);
9888 	id |= ((val & 0xff) << 4);
9889 	val = REG_RD(bp, MISC_REG_BOND_ID);
9890 	id |= (val & 0xf);
9891 	bp->common.chip_id = id;
9892 
9893 	/* force 57811 according to MISC register */
9894 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
9895 		if (CHIP_IS_57810(bp))
9896 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
9897 				(bp->common.chip_id & 0x0000FFFF);
9898 		else if (CHIP_IS_57810_MF(bp))
9899 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
9900 				(bp->common.chip_id & 0x0000FFFF);
9901 		bp->common.chip_id |= 0x1;
9902 	}
9903 
9904 	/* Set doorbell size */
9905 	bp->db_size = (1 << BNX2X_DB_SHIFT);
9906 
9907 	if (!CHIP_IS_E1x(bp)) {
9908 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
9909 		if ((val & 1) == 0)
9910 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
9911 		else
9912 			val = (val >> 1) & 1;
9913 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
9914 						       "2_PORT_MODE");
9915 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
9916 						 CHIP_2_PORT_MODE;
9917 
9918 		if (CHIP_MODE_IS_4_PORT(bp))
9919 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
9920 		else
9921 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
9922 	} else {
9923 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
9924 		bp->pfid = bp->pf_num;			/* 0..7 */
9925 	}
9926 
9927 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
9928 
9929 	bp->link_params.chip_id = bp->common.chip_id;
9930 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
9931 
9932 	val = (REG_RD(bp, 0x2874) & 0x55);
9933 	if ((bp->common.chip_id & 0x1) ||
9934 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
9935 		bp->flags |= ONE_PORT_FLAG;
9936 		BNX2X_DEV_INFO("single port device\n");
9937 	}
9938 
9939 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
9940 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
9941 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
9942 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
9943 		       bp->common.flash_size, bp->common.flash_size);
9944 
9945 	bnx2x_init_shmem(bp);
9946 
9947 
9948 
9949 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
9950 					MISC_REG_GENERIC_CR_1 :
9951 					MISC_REG_GENERIC_CR_0));
9952 
9953 	bp->link_params.shmem_base = bp->common.shmem_base;
9954 	bp->link_params.shmem2_base = bp->common.shmem2_base;
9955 	if (SHMEM2_RD(bp, size) >
9956 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
9957 		bp->link_params.lfa_base =
9958 		REG_RD(bp, bp->common.shmem2_base +
9959 		       (u32)offsetof(struct shmem2_region,
9960 				     lfa_host_addr[BP_PORT(bp)]));
9961 	else
9962 		bp->link_params.lfa_base = 0;
9963 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
9964 		       bp->common.shmem_base, bp->common.shmem2_base);
9965 
9966 	if (!bp->common.shmem_base) {
9967 		BNX2X_DEV_INFO("MCP not active\n");
9968 		bp->flags |= NO_MCP_FLAG;
9969 		return;
9970 	}
9971 
9972 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
9973 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
9974 
9975 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
9976 					SHARED_HW_CFG_LED_MODE_MASK) >>
9977 				       SHARED_HW_CFG_LED_MODE_SHIFT);
9978 
9979 	bp->link_params.feature_config_flags = 0;
9980 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
9981 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
9982 		bp->link_params.feature_config_flags |=
9983 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9984 	else
9985 		bp->link_params.feature_config_flags &=
9986 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9987 
9988 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
9989 	bp->common.bc_ver = val;
9990 	BNX2X_DEV_INFO("bc_ver %X\n", val);
9991 	if (val < BNX2X_BC_VER) {
9992 		/* for now only warn
9993 		 * later we might need to enforce this */
9994 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
9995 			  BNX2X_BC_VER, val);
9996 	}
9997 	bp->link_params.feature_config_flags |=
9998 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
9999 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10000 
10001 	bp->link_params.feature_config_flags |=
10002 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10003 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10004 	bp->link_params.feature_config_flags |=
10005 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10006 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10007 	bp->link_params.feature_config_flags |=
10008 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10009 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10010 
10011 	bp->link_params.feature_config_flags |=
10012 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10013 		FEATURE_CONFIG_MT_SUPPORT : 0;
10014 
10015 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10016 			BC_SUPPORTS_PFC_STATS : 0;
10017 
10018 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10019 			BC_SUPPORTS_FCOE_FEATURES : 0;
10020 
10021 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10022 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10023 	boot_mode = SHMEM_RD(bp,
10024 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10025 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10026 	switch (boot_mode) {
10027 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10028 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10029 		break;
10030 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10031 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10032 		break;
10033 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10034 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10035 		break;
10036 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10037 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10038 		break;
10039 	}
10040 
10041 	pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
10042 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10043 
10044 	BNX2X_DEV_INFO("%sWoL capable\n",
10045 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
10046 
10047 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10048 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10049 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10050 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10051 
10052 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10053 		 val, val2, val3, val4);
10054 }
10055 
10056 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10057 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10058 
10059 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10060 {
10061 	int pfid = BP_FUNC(bp);
10062 	int igu_sb_id;
10063 	u32 val;
10064 	u8 fid, igu_sb_cnt = 0;
10065 
10066 	bp->igu_base_sb = 0xff;
10067 	if (CHIP_INT_MODE_IS_BC(bp)) {
10068 		int vn = BP_VN(bp);
10069 		igu_sb_cnt = bp->igu_sb_cnt;
10070 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10071 			FP_SB_MAX_E1x;
10072 
10073 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10074 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10075 
10076 		return 0;
10077 	}
10078 
10079 	/* IGU in normal mode - read CAM */
10080 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10081 	     igu_sb_id++) {
10082 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10083 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10084 			continue;
10085 		fid = IGU_FID(val);
10086 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
10087 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10088 				continue;
10089 			if (IGU_VEC(val) == 0)
10090 				/* default status block */
10091 				bp->igu_dsb_id = igu_sb_id;
10092 			else {
10093 				if (bp->igu_base_sb == 0xff)
10094 					bp->igu_base_sb = igu_sb_id;
10095 				igu_sb_cnt++;
10096 			}
10097 		}
10098 	}
10099 
10100 #ifdef CONFIG_PCI_MSI
10101 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
10102 	 * optional that number of CAM entries will not be equal to the value
10103 	 * advertised in PCI.
10104 	 * Driver should use the minimal value of both as the actual status
10105 	 * block count
10106 	 */
10107 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10108 #endif
10109 
10110 	if (igu_sb_cnt == 0) {
10111 		BNX2X_ERR("CAM configuration error\n");
10112 		return -EINVAL;
10113 	}
10114 
10115 	return 0;
10116 }
10117 
10118 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10119 {
10120 	int cfg_size = 0, idx, port = BP_PORT(bp);
10121 
10122 	/* Aggregation of supported attributes of all external phys */
10123 	bp->port.supported[0] = 0;
10124 	bp->port.supported[1] = 0;
10125 	switch (bp->link_params.num_phys) {
10126 	case 1:
10127 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10128 		cfg_size = 1;
10129 		break;
10130 	case 2:
10131 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10132 		cfg_size = 1;
10133 		break;
10134 	case 3:
10135 		if (bp->link_params.multi_phy_config &
10136 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10137 			bp->port.supported[1] =
10138 				bp->link_params.phy[EXT_PHY1].supported;
10139 			bp->port.supported[0] =
10140 				bp->link_params.phy[EXT_PHY2].supported;
10141 		} else {
10142 			bp->port.supported[0] =
10143 				bp->link_params.phy[EXT_PHY1].supported;
10144 			bp->port.supported[1] =
10145 				bp->link_params.phy[EXT_PHY2].supported;
10146 		}
10147 		cfg_size = 2;
10148 		break;
10149 	}
10150 
10151 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
10152 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10153 			   SHMEM_RD(bp,
10154 			   dev_info.port_hw_config[port].external_phy_config),
10155 			   SHMEM_RD(bp,
10156 			   dev_info.port_hw_config[port].external_phy_config2));
10157 			return;
10158 	}
10159 
10160 	if (CHIP_IS_E3(bp))
10161 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10162 	else {
10163 		switch (switch_cfg) {
10164 		case SWITCH_CFG_1G:
10165 			bp->port.phy_addr = REG_RD(
10166 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10167 			break;
10168 		case SWITCH_CFG_10G:
10169 			bp->port.phy_addr = REG_RD(
10170 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10171 			break;
10172 		default:
10173 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10174 				  bp->port.link_config[0]);
10175 			return;
10176 		}
10177 	}
10178 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10179 	/* mask what we support according to speed_cap_mask per configuration */
10180 	for (idx = 0; idx < cfg_size; idx++) {
10181 		if (!(bp->link_params.speed_cap_mask[idx] &
10182 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10183 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10184 
10185 		if (!(bp->link_params.speed_cap_mask[idx] &
10186 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10187 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10188 
10189 		if (!(bp->link_params.speed_cap_mask[idx] &
10190 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10191 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10192 
10193 		if (!(bp->link_params.speed_cap_mask[idx] &
10194 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10195 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10196 
10197 		if (!(bp->link_params.speed_cap_mask[idx] &
10198 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10199 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10200 						     SUPPORTED_1000baseT_Full);
10201 
10202 		if (!(bp->link_params.speed_cap_mask[idx] &
10203 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10204 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10205 
10206 		if (!(bp->link_params.speed_cap_mask[idx] &
10207 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10208 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10209 
10210 	}
10211 
10212 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10213 		       bp->port.supported[1]);
10214 }
10215 
10216 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10217 {
10218 	u32 link_config, idx, cfg_size = 0;
10219 	bp->port.advertising[0] = 0;
10220 	bp->port.advertising[1] = 0;
10221 	switch (bp->link_params.num_phys) {
10222 	case 1:
10223 	case 2:
10224 		cfg_size = 1;
10225 		break;
10226 	case 3:
10227 		cfg_size = 2;
10228 		break;
10229 	}
10230 	for (idx = 0; idx < cfg_size; idx++) {
10231 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10232 		link_config = bp->port.link_config[idx];
10233 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10234 		case PORT_FEATURE_LINK_SPEED_AUTO:
10235 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10236 				bp->link_params.req_line_speed[idx] =
10237 					SPEED_AUTO_NEG;
10238 				bp->port.advertising[idx] |=
10239 					bp->port.supported[idx];
10240 				if (bp->link_params.phy[EXT_PHY1].type ==
10241 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10242 					bp->port.advertising[idx] |=
10243 					(SUPPORTED_100baseT_Half |
10244 					 SUPPORTED_100baseT_Full);
10245 			} else {
10246 				/* force 10G, no AN */
10247 				bp->link_params.req_line_speed[idx] =
10248 					SPEED_10000;
10249 				bp->port.advertising[idx] |=
10250 					(ADVERTISED_10000baseT_Full |
10251 					 ADVERTISED_FIBRE);
10252 				continue;
10253 			}
10254 			break;
10255 
10256 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
10257 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10258 				bp->link_params.req_line_speed[idx] =
10259 					SPEED_10;
10260 				bp->port.advertising[idx] |=
10261 					(ADVERTISED_10baseT_Full |
10262 					 ADVERTISED_TP);
10263 			} else {
10264 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10265 					    link_config,
10266 				    bp->link_params.speed_cap_mask[idx]);
10267 				return;
10268 			}
10269 			break;
10270 
10271 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
10272 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10273 				bp->link_params.req_line_speed[idx] =
10274 					SPEED_10;
10275 				bp->link_params.req_duplex[idx] =
10276 					DUPLEX_HALF;
10277 				bp->port.advertising[idx] |=
10278 					(ADVERTISED_10baseT_Half |
10279 					 ADVERTISED_TP);
10280 			} else {
10281 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10282 					    link_config,
10283 					  bp->link_params.speed_cap_mask[idx]);
10284 				return;
10285 			}
10286 			break;
10287 
10288 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
10289 			if (bp->port.supported[idx] &
10290 			    SUPPORTED_100baseT_Full) {
10291 				bp->link_params.req_line_speed[idx] =
10292 					SPEED_100;
10293 				bp->port.advertising[idx] |=
10294 					(ADVERTISED_100baseT_Full |
10295 					 ADVERTISED_TP);
10296 			} else {
10297 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10298 					    link_config,
10299 					  bp->link_params.speed_cap_mask[idx]);
10300 				return;
10301 			}
10302 			break;
10303 
10304 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
10305 			if (bp->port.supported[idx] &
10306 			    SUPPORTED_100baseT_Half) {
10307 				bp->link_params.req_line_speed[idx] =
10308 								SPEED_100;
10309 				bp->link_params.req_duplex[idx] =
10310 								DUPLEX_HALF;
10311 				bp->port.advertising[idx] |=
10312 					(ADVERTISED_100baseT_Half |
10313 					 ADVERTISED_TP);
10314 			} else {
10315 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10316 				    link_config,
10317 				    bp->link_params.speed_cap_mask[idx]);
10318 				return;
10319 			}
10320 			break;
10321 
10322 		case PORT_FEATURE_LINK_SPEED_1G:
10323 			if (bp->port.supported[idx] &
10324 			    SUPPORTED_1000baseT_Full) {
10325 				bp->link_params.req_line_speed[idx] =
10326 					SPEED_1000;
10327 				bp->port.advertising[idx] |=
10328 					(ADVERTISED_1000baseT_Full |
10329 					 ADVERTISED_TP);
10330 			} else {
10331 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10332 				    link_config,
10333 				    bp->link_params.speed_cap_mask[idx]);
10334 				return;
10335 			}
10336 			break;
10337 
10338 		case PORT_FEATURE_LINK_SPEED_2_5G:
10339 			if (bp->port.supported[idx] &
10340 			    SUPPORTED_2500baseX_Full) {
10341 				bp->link_params.req_line_speed[idx] =
10342 					SPEED_2500;
10343 				bp->port.advertising[idx] |=
10344 					(ADVERTISED_2500baseX_Full |
10345 						ADVERTISED_TP);
10346 			} else {
10347 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10348 				    link_config,
10349 				    bp->link_params.speed_cap_mask[idx]);
10350 				return;
10351 			}
10352 			break;
10353 
10354 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
10355 			if (bp->port.supported[idx] &
10356 			    SUPPORTED_10000baseT_Full) {
10357 				bp->link_params.req_line_speed[idx] =
10358 					SPEED_10000;
10359 				bp->port.advertising[idx] |=
10360 					(ADVERTISED_10000baseT_Full |
10361 						ADVERTISED_FIBRE);
10362 			} else {
10363 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10364 				    link_config,
10365 				    bp->link_params.speed_cap_mask[idx]);
10366 				return;
10367 			}
10368 			break;
10369 		case PORT_FEATURE_LINK_SPEED_20G:
10370 			bp->link_params.req_line_speed[idx] = SPEED_20000;
10371 
10372 			break;
10373 		default:
10374 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10375 				  link_config);
10376 				bp->link_params.req_line_speed[idx] =
10377 							SPEED_AUTO_NEG;
10378 				bp->port.advertising[idx] =
10379 						bp->port.supported[idx];
10380 			break;
10381 		}
10382 
10383 		bp->link_params.req_flow_ctrl[idx] = (link_config &
10384 					 PORT_FEATURE_FLOW_CONTROL_MASK);
10385 		if (bp->link_params.req_flow_ctrl[idx] ==
10386 		    BNX2X_FLOW_CTRL_AUTO) {
10387 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
10388 				bp->link_params.req_flow_ctrl[idx] =
10389 							BNX2X_FLOW_CTRL_NONE;
10390 			else
10391 				bnx2x_set_requested_fc(bp);
10392 		}
10393 
10394 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10395 			       bp->link_params.req_line_speed[idx],
10396 			       bp->link_params.req_duplex[idx],
10397 			       bp->link_params.req_flow_ctrl[idx],
10398 			       bp->port.advertising[idx]);
10399 	}
10400 }
10401 
10402 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10403 {
10404 	mac_hi = cpu_to_be16(mac_hi);
10405 	mac_lo = cpu_to_be32(mac_lo);
10406 	memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
10407 	memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
10408 }
10409 
10410 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
10411 {
10412 	int port = BP_PORT(bp);
10413 	u32 config;
10414 	u32 ext_phy_type, ext_phy_config, eee_mode;
10415 
10416 	bp->link_params.bp = bp;
10417 	bp->link_params.port = port;
10418 
10419 	bp->link_params.lane_config =
10420 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10421 
10422 	bp->link_params.speed_cap_mask[0] =
10423 		SHMEM_RD(bp,
10424 			 dev_info.port_hw_config[port].speed_capability_mask);
10425 	bp->link_params.speed_cap_mask[1] =
10426 		SHMEM_RD(bp,
10427 			 dev_info.port_hw_config[port].speed_capability_mask2);
10428 	bp->port.link_config[0] =
10429 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10430 
10431 	bp->port.link_config[1] =
10432 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10433 
10434 	bp->link_params.multi_phy_config =
10435 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10436 	/* If the device is capable of WoL, set the default state according
10437 	 * to the HW
10438 	 */
10439 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10440 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10441 		   (config & PORT_FEATURE_WOL_ENABLED));
10442 
10443 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
10444 		       bp->link_params.lane_config,
10445 		       bp->link_params.speed_cap_mask[0],
10446 		       bp->port.link_config[0]);
10447 
10448 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
10449 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
10450 	bnx2x_phy_probe(&bp->link_params);
10451 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10452 
10453 	bnx2x_link_settings_requested(bp);
10454 
10455 	/*
10456 	 * If connected directly, work with the internal PHY, otherwise, work
10457 	 * with the external PHY
10458 	 */
10459 	ext_phy_config =
10460 		SHMEM_RD(bp,
10461 			 dev_info.port_hw_config[port].external_phy_config);
10462 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
10463 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
10464 		bp->mdio.prtad = bp->port.phy_addr;
10465 
10466 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
10467 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
10468 		bp->mdio.prtad =
10469 			XGXS_EXT_PHY_ADDR(ext_phy_config);
10470 
10471 	/* Configure link feature according to nvram value */
10472 	eee_mode = (((SHMEM_RD(bp, dev_info.
10473 		      port_feature_config[port].eee_power_mode)) &
10474 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
10475 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
10476 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
10477 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
10478 					   EEE_MODE_ENABLE_LPI |
10479 					   EEE_MODE_OUTPUT_TIME;
10480 	} else {
10481 		bp->link_params.eee_mode = 0;
10482 	}
10483 }
10484 
10485 void bnx2x_get_iscsi_info(struct bnx2x *bp)
10486 {
10487 	u32 no_flags = NO_ISCSI_FLAG;
10488 	int port = BP_PORT(bp);
10489 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10490 				drv_lic_key[port].max_iscsi_conn);
10491 
10492 	if (!CNIC_SUPPORT(bp)) {
10493 		bp->flags |= no_flags;
10494 		return;
10495 	}
10496 
10497 	/* Get the number of maximum allowed iSCSI connections */
10498 	bp->cnic_eth_dev.max_iscsi_conn =
10499 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
10500 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
10501 
10502 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
10503 		       bp->cnic_eth_dev.max_iscsi_conn);
10504 
10505 	/*
10506 	 * If maximum allowed number of connections is zero -
10507 	 * disable the feature.
10508 	 */
10509 	if (!bp->cnic_eth_dev.max_iscsi_conn)
10510 		bp->flags |= no_flags;
10511 
10512 }
10513 
10514 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
10515 {
10516 	/* Port info */
10517 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10518 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
10519 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10520 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
10521 
10522 	/* Node info */
10523 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10524 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
10525 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10526 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
10527 }
10528 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
10529 {
10530 	int port = BP_PORT(bp);
10531 	int func = BP_ABS_FUNC(bp);
10532 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10533 				drv_lic_key[port].max_fcoe_conn);
10534 
10535 	if (!CNIC_SUPPORT(bp)) {
10536 		bp->flags |= NO_FCOE_FLAG;
10537 		return;
10538 	}
10539 
10540 	/* Get the number of maximum allowed FCoE connections */
10541 	bp->cnic_eth_dev.max_fcoe_conn =
10542 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
10543 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
10544 
10545 	/* Read the WWN: */
10546 	if (!IS_MF(bp)) {
10547 		/* Port info */
10548 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10549 			SHMEM_RD(bp,
10550 				dev_info.port_hw_config[port].
10551 				 fcoe_wwn_port_name_upper);
10552 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10553 			SHMEM_RD(bp,
10554 				dev_info.port_hw_config[port].
10555 				 fcoe_wwn_port_name_lower);
10556 
10557 		/* Node info */
10558 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10559 			SHMEM_RD(bp,
10560 				dev_info.port_hw_config[port].
10561 				 fcoe_wwn_node_name_upper);
10562 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10563 			SHMEM_RD(bp,
10564 				dev_info.port_hw_config[port].
10565 				 fcoe_wwn_node_name_lower);
10566 	} else if (!IS_MF_SD(bp)) {
10567 		/*
10568 		 * Read the WWN info only if the FCoE feature is enabled for
10569 		 * this function.
10570 		 */
10571 		if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
10572 			bnx2x_get_ext_wwn_info(bp, func);
10573 
10574 	} else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
10575 		bnx2x_get_ext_wwn_info(bp, func);
10576 	}
10577 
10578 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
10579 
10580 	/*
10581 	 * If maximum allowed number of connections is zero -
10582 	 * disable the feature.
10583 	 */
10584 	if (!bp->cnic_eth_dev.max_fcoe_conn)
10585 		bp->flags |= NO_FCOE_FLAG;
10586 }
10587 
10588 static void bnx2x_get_cnic_info(struct bnx2x *bp)
10589 {
10590 	/*
10591 	 * iSCSI may be dynamically disabled but reading
10592 	 * info here we will decrease memory usage by driver
10593 	 * if the feature is disabled for good
10594 	 */
10595 	bnx2x_get_iscsi_info(bp);
10596 	bnx2x_get_fcoe_info(bp);
10597 }
10598 
10599 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
10600 {
10601 	u32 val, val2;
10602 	int func = BP_ABS_FUNC(bp);
10603 	int port = BP_PORT(bp);
10604 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
10605 	u8 *fip_mac = bp->fip_mac;
10606 
10607 	if (IS_MF(bp)) {
10608 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
10609 		 * FCoE MAC then the appropriate feature should be disabled.
10610 		 * In non SD mode features configuration comes from struct
10611 		 * func_ext_config.
10612 		 */
10613 		if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
10614 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
10615 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
10616 				val2 = MF_CFG_RD(bp, func_ext_config[func].
10617 						 iscsi_mac_addr_upper);
10618 				val = MF_CFG_RD(bp, func_ext_config[func].
10619 						iscsi_mac_addr_lower);
10620 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
10621 				BNX2X_DEV_INFO
10622 					("Read iSCSI MAC: %pM\n", iscsi_mac);
10623 			} else {
10624 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
10625 			}
10626 
10627 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
10628 				val2 = MF_CFG_RD(bp, func_ext_config[func].
10629 						 fcoe_mac_addr_upper);
10630 				val = MF_CFG_RD(bp, func_ext_config[func].
10631 						fcoe_mac_addr_lower);
10632 				bnx2x_set_mac_buf(fip_mac, val, val2);
10633 				BNX2X_DEV_INFO
10634 					("Read FCoE L2 MAC: %pM\n", fip_mac);
10635 			} else {
10636 				bp->flags |= NO_FCOE_FLAG;
10637 			}
10638 
10639 			bp->mf_ext_config = cfg;
10640 
10641 		} else { /* SD MODE */
10642 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
10643 				/* use primary mac as iscsi mac */
10644 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
10645 
10646 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
10647 				BNX2X_DEV_INFO
10648 					("Read iSCSI MAC: %pM\n", iscsi_mac);
10649 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
10650 				/* use primary mac as fip mac */
10651 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
10652 				BNX2X_DEV_INFO("SD FCoE MODE\n");
10653 				BNX2X_DEV_INFO
10654 					("Read FIP MAC: %pM\n", fip_mac);
10655 			}
10656 		}
10657 
10658 		if (IS_MF_STORAGE_SD(bp))
10659 			/* Zero primary MAC configuration */
10660 			memset(bp->dev->dev_addr, 0, ETH_ALEN);
10661 
10662 		if (IS_MF_FCOE_AFEX(bp))
10663 			/* use FIP MAC as primary MAC */
10664 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
10665 
10666 	} else {
10667 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
10668 				iscsi_mac_upper);
10669 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
10670 			       iscsi_mac_lower);
10671 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
10672 
10673 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
10674 				fcoe_fip_mac_upper);
10675 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
10676 			       fcoe_fip_mac_lower);
10677 		bnx2x_set_mac_buf(fip_mac, val, val2);
10678 	}
10679 
10680 	/* Disable iSCSI OOO if MAC configuration is invalid. */
10681 	if (!is_valid_ether_addr(iscsi_mac)) {
10682 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
10683 		memset(iscsi_mac, 0, ETH_ALEN);
10684 	}
10685 
10686 	/* Disable FCoE if MAC configuration is invalid. */
10687 	if (!is_valid_ether_addr(fip_mac)) {
10688 		bp->flags |= NO_FCOE_FLAG;
10689 		memset(bp->fip_mac, 0, ETH_ALEN);
10690 	}
10691 }
10692 
10693 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
10694 {
10695 	u32 val, val2;
10696 	int func = BP_ABS_FUNC(bp);
10697 	int port = BP_PORT(bp);
10698 
10699 	/* Zero primary MAC configuration */
10700 	memset(bp->dev->dev_addr, 0, ETH_ALEN);
10701 
10702 	if (BP_NOMCP(bp)) {
10703 		BNX2X_ERROR("warning: random MAC workaround active\n");
10704 		eth_hw_addr_random(bp->dev);
10705 	} else if (IS_MF(bp)) {
10706 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
10707 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
10708 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
10709 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
10710 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
10711 
10712 		if (CNIC_SUPPORT(bp))
10713 			bnx2x_get_cnic_mac_hwinfo(bp);
10714 	} else {
10715 		/* in SF read MACs from port configuration */
10716 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
10717 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
10718 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
10719 
10720 		if (CNIC_SUPPORT(bp))
10721 			bnx2x_get_cnic_mac_hwinfo(bp);
10722 	}
10723 
10724 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
10725 	memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
10726 
10727 	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
10728 		dev_err(&bp->pdev->dev,
10729 			"bad Ethernet MAC address configuration: %pM\n"
10730 			"change it manually before bringing up the appropriate network interface\n",
10731 			bp->dev->dev_addr);
10732 }
10733 
10734 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
10735 {
10736 	int tmp;
10737 	u32 cfg;
10738 
10739 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
10740 		/* Take function: tmp = func */
10741 		tmp = BP_ABS_FUNC(bp);
10742 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
10743 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
10744 	} else {
10745 		/* Take port: tmp = port */
10746 		tmp = BP_PORT(bp);
10747 		cfg = SHMEM_RD(bp,
10748 			       dev_info.port_hw_config[tmp].generic_features);
10749 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
10750 	}
10751 	return cfg;
10752 }
10753 
10754 static int bnx2x_get_hwinfo(struct bnx2x *bp)
10755 {
10756 	int /*abs*/func = BP_ABS_FUNC(bp);
10757 	int vn;
10758 	u32 val = 0;
10759 	int rc = 0;
10760 
10761 	bnx2x_get_common_hwinfo(bp);
10762 
10763 	/*
10764 	 * initialize IGU parameters
10765 	 */
10766 	if (CHIP_IS_E1x(bp)) {
10767 		bp->common.int_block = INT_BLOCK_HC;
10768 
10769 		bp->igu_dsb_id = DEF_SB_IGU_ID;
10770 		bp->igu_base_sb = 0;
10771 	} else {
10772 		bp->common.int_block = INT_BLOCK_IGU;
10773 
10774 		/* do not allow device reset during IGU info preocessing */
10775 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
10776 
10777 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
10778 
10779 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
10780 			int tout = 5000;
10781 
10782 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
10783 
10784 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
10785 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
10786 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
10787 
10788 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
10789 				tout--;
10790 				usleep_range(1000, 1000);
10791 			}
10792 
10793 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
10794 				dev_err(&bp->pdev->dev,
10795 					"FORCING Normal Mode failed!!!\n");
10796 				bnx2x_release_hw_lock(bp,
10797 						      HW_LOCK_RESOURCE_RESET);
10798 				return -EPERM;
10799 			}
10800 		}
10801 
10802 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
10803 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
10804 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
10805 		} else
10806 			BNX2X_DEV_INFO("IGU Normal Mode\n");
10807 
10808 		rc = bnx2x_get_igu_cam_info(bp);
10809 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
10810 		if (rc)
10811 			return rc;
10812 	}
10813 
10814 	/*
10815 	 * set base FW non-default (fast path) status block id, this value is
10816 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
10817 	 * determine the id used by the FW.
10818 	 */
10819 	if (CHIP_IS_E1x(bp))
10820 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
10821 	else /*
10822 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
10823 	      * the same queue are indicated on the same IGU SB). So we prefer
10824 	      * FW and IGU SBs to be the same value.
10825 	      */
10826 		bp->base_fw_ndsb = bp->igu_base_sb;
10827 
10828 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
10829 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
10830 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
10831 
10832 	/*
10833 	 * Initialize MF configuration
10834 	 */
10835 
10836 	bp->mf_ov = 0;
10837 	bp->mf_mode = 0;
10838 	vn = BP_VN(bp);
10839 
10840 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
10841 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
10842 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
10843 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
10844 
10845 		if (SHMEM2_HAS(bp, mf_cfg_addr))
10846 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
10847 		else
10848 			bp->common.mf_cfg_base = bp->common.shmem_base +
10849 				offsetof(struct shmem_region, func_mb) +
10850 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
10851 		/*
10852 		 * get mf configuration:
10853 		 * 1. existence of MF configuration
10854 		 * 2. MAC address must be legal (check only upper bytes)
10855 		 *    for  Switch-Independent mode;
10856 		 *    OVLAN must be legal for Switch-Dependent mode
10857 		 * 3. SF_MODE configures specific MF mode
10858 		 */
10859 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
10860 			/* get mf configuration */
10861 			val = SHMEM_RD(bp,
10862 				       dev_info.shared_feature_config.config);
10863 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
10864 
10865 			switch (val) {
10866 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
10867 				val = MF_CFG_RD(bp, func_mf_config[func].
10868 						mac_upper);
10869 				/* check for legal mac (upper bytes)*/
10870 				if (val != 0xffff) {
10871 					bp->mf_mode = MULTI_FUNCTION_SI;
10872 					bp->mf_config[vn] = MF_CFG_RD(bp,
10873 						   func_mf_config[func].config);
10874 				} else
10875 					BNX2X_DEV_INFO("illegal MAC address for SI\n");
10876 				break;
10877 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
10878 				if ((!CHIP_IS_E1x(bp)) &&
10879 				    (MF_CFG_RD(bp, func_mf_config[func].
10880 					       mac_upper) != 0xffff) &&
10881 				    (SHMEM2_HAS(bp,
10882 						afex_driver_support))) {
10883 					bp->mf_mode = MULTI_FUNCTION_AFEX;
10884 					bp->mf_config[vn] = MF_CFG_RD(bp,
10885 						func_mf_config[func].config);
10886 				} else {
10887 					BNX2X_DEV_INFO("can not configure afex mode\n");
10888 				}
10889 				break;
10890 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
10891 				/* get OV configuration */
10892 				val = MF_CFG_RD(bp,
10893 					func_mf_config[FUNC_0].e1hov_tag);
10894 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
10895 
10896 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
10897 					bp->mf_mode = MULTI_FUNCTION_SD;
10898 					bp->mf_config[vn] = MF_CFG_RD(bp,
10899 						func_mf_config[func].config);
10900 				} else
10901 					BNX2X_DEV_INFO("illegal OV for SD\n");
10902 				break;
10903 			default:
10904 				/* Unknown configuration: reset mf_config */
10905 				bp->mf_config[vn] = 0;
10906 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
10907 			}
10908 		}
10909 
10910 		BNX2X_DEV_INFO("%s function mode\n",
10911 			       IS_MF(bp) ? "multi" : "single");
10912 
10913 		switch (bp->mf_mode) {
10914 		case MULTI_FUNCTION_SD:
10915 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
10916 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
10917 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
10918 				bp->mf_ov = val;
10919 				bp->path_has_ovlan = true;
10920 
10921 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
10922 					       func, bp->mf_ov, bp->mf_ov);
10923 			} else {
10924 				dev_err(&bp->pdev->dev,
10925 					"No valid MF OV for func %d, aborting\n",
10926 					func);
10927 				return -EPERM;
10928 			}
10929 			break;
10930 		case MULTI_FUNCTION_AFEX:
10931 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
10932 			break;
10933 		case MULTI_FUNCTION_SI:
10934 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
10935 				       func);
10936 			break;
10937 		default:
10938 			if (vn) {
10939 				dev_err(&bp->pdev->dev,
10940 					"VN %d is in a single function mode, aborting\n",
10941 					vn);
10942 				return -EPERM;
10943 			}
10944 			break;
10945 		}
10946 
10947 		/* check if other port on the path needs ovlan:
10948 		 * Since MF configuration is shared between ports
10949 		 * Possible mixed modes are only
10950 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
10951 		 */
10952 		if (CHIP_MODE_IS_4_PORT(bp) &&
10953 		    !bp->path_has_ovlan &&
10954 		    !IS_MF(bp) &&
10955 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
10956 			u8 other_port = !BP_PORT(bp);
10957 			u8 other_func = BP_PATH(bp) + 2*other_port;
10958 			val = MF_CFG_RD(bp,
10959 					func_mf_config[other_func].e1hov_tag);
10960 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
10961 				bp->path_has_ovlan = true;
10962 		}
10963 	}
10964 
10965 	/* adjust igu_sb_cnt to MF for E1x */
10966 	if (CHIP_IS_E1x(bp) && IS_MF(bp))
10967 		bp->igu_sb_cnt /= E1HVN_MAX;
10968 
10969 	/* port info */
10970 	bnx2x_get_port_hwinfo(bp);
10971 
10972 	/* Get MAC addresses */
10973 	bnx2x_get_mac_hwinfo(bp);
10974 
10975 	bnx2x_get_cnic_info(bp);
10976 
10977 	return rc;
10978 }
10979 
10980 static void bnx2x_read_fwinfo(struct bnx2x *bp)
10981 {
10982 	int cnt, i, block_end, rodi;
10983 	char vpd_start[BNX2X_VPD_LEN+1];
10984 	char str_id_reg[VENDOR_ID_LEN+1];
10985 	char str_id_cap[VENDOR_ID_LEN+1];
10986 	char *vpd_data;
10987 	char *vpd_extended_data = NULL;
10988 	u8 len;
10989 
10990 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
10991 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
10992 
10993 	if (cnt < BNX2X_VPD_LEN)
10994 		goto out_not_found;
10995 
10996 	/* VPD RO tag should be first tag after identifier string, hence
10997 	 * we should be able to find it in first BNX2X_VPD_LEN chars
10998 	 */
10999 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11000 			     PCI_VPD_LRDT_RO_DATA);
11001 	if (i < 0)
11002 		goto out_not_found;
11003 
11004 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11005 		    pci_vpd_lrdt_size(&vpd_start[i]);
11006 
11007 	i += PCI_VPD_LRDT_TAG_SIZE;
11008 
11009 	if (block_end > BNX2X_VPD_LEN) {
11010 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11011 		if (vpd_extended_data  == NULL)
11012 			goto out_not_found;
11013 
11014 		/* read rest of vpd image into vpd_extended_data */
11015 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11016 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11017 				   block_end - BNX2X_VPD_LEN,
11018 				   vpd_extended_data + BNX2X_VPD_LEN);
11019 		if (cnt < (block_end - BNX2X_VPD_LEN))
11020 			goto out_not_found;
11021 		vpd_data = vpd_extended_data;
11022 	} else
11023 		vpd_data = vpd_start;
11024 
11025 	/* now vpd_data holds full vpd content in both cases */
11026 
11027 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11028 				   PCI_VPD_RO_KEYWORD_MFR_ID);
11029 	if (rodi < 0)
11030 		goto out_not_found;
11031 
11032 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
11033 
11034 	if (len != VENDOR_ID_LEN)
11035 		goto out_not_found;
11036 
11037 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11038 
11039 	/* vendor specific info */
11040 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11041 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11042 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11043 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11044 
11045 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11046 						PCI_VPD_RO_KEYWORD_VENDOR0);
11047 		if (rodi >= 0) {
11048 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
11049 
11050 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11051 
11052 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11053 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
11054 				bp->fw_ver[len] = ' ';
11055 			}
11056 		}
11057 		kfree(vpd_extended_data);
11058 		return;
11059 	}
11060 out_not_found:
11061 	kfree(vpd_extended_data);
11062 	return;
11063 }
11064 
11065 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11066 {
11067 	u32 flags = 0;
11068 
11069 	if (CHIP_REV_IS_FPGA(bp))
11070 		SET_FLAGS(flags, MODE_FPGA);
11071 	else if (CHIP_REV_IS_EMUL(bp))
11072 		SET_FLAGS(flags, MODE_EMUL);
11073 	else
11074 		SET_FLAGS(flags, MODE_ASIC);
11075 
11076 	if (CHIP_MODE_IS_4_PORT(bp))
11077 		SET_FLAGS(flags, MODE_PORT4);
11078 	else
11079 		SET_FLAGS(flags, MODE_PORT2);
11080 
11081 	if (CHIP_IS_E2(bp))
11082 		SET_FLAGS(flags, MODE_E2);
11083 	else if (CHIP_IS_E3(bp)) {
11084 		SET_FLAGS(flags, MODE_E3);
11085 		if (CHIP_REV(bp) == CHIP_REV_Ax)
11086 			SET_FLAGS(flags, MODE_E3_A0);
11087 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11088 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11089 	}
11090 
11091 	if (IS_MF(bp)) {
11092 		SET_FLAGS(flags, MODE_MF);
11093 		switch (bp->mf_mode) {
11094 		case MULTI_FUNCTION_SD:
11095 			SET_FLAGS(flags, MODE_MF_SD);
11096 			break;
11097 		case MULTI_FUNCTION_SI:
11098 			SET_FLAGS(flags, MODE_MF_SI);
11099 			break;
11100 		case MULTI_FUNCTION_AFEX:
11101 			SET_FLAGS(flags, MODE_MF_AFEX);
11102 			break;
11103 		}
11104 	} else
11105 		SET_FLAGS(flags, MODE_SF);
11106 
11107 #if defined(__LITTLE_ENDIAN)
11108 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11109 #else /*(__BIG_ENDIAN)*/
11110 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
11111 #endif
11112 	INIT_MODE_FLAGS(bp) = flags;
11113 }
11114 
11115 static int bnx2x_init_bp(struct bnx2x *bp)
11116 {
11117 	int func;
11118 	int rc;
11119 
11120 	mutex_init(&bp->port.phy_mutex);
11121 	mutex_init(&bp->fw_mb_mutex);
11122 	spin_lock_init(&bp->stats_lock);
11123 
11124 
11125 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11126 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11127 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11128 	rc = bnx2x_get_hwinfo(bp);
11129 	if (rc)
11130 		return rc;
11131 
11132 	bnx2x_set_modes_bitmap(bp);
11133 
11134 	rc = bnx2x_alloc_mem_bp(bp);
11135 	if (rc)
11136 		return rc;
11137 
11138 	bnx2x_read_fwinfo(bp);
11139 
11140 	func = BP_FUNC(bp);
11141 
11142 	/* need to reset chip if undi was active */
11143 	if (!BP_NOMCP(bp)) {
11144 		/* init fw_seq */
11145 		bp->fw_seq =
11146 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11147 							DRV_MSG_SEQ_NUMBER_MASK;
11148 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11149 
11150 		bnx2x_prev_unload(bp);
11151 	}
11152 
11153 
11154 	if (CHIP_REV_IS_FPGA(bp))
11155 		dev_err(&bp->pdev->dev, "FPGA detected\n");
11156 
11157 	if (BP_NOMCP(bp) && (func == 0))
11158 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11159 
11160 	bp->disable_tpa = disable_tpa;
11161 	bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11162 
11163 	/* Set TPA flags */
11164 	if (bp->disable_tpa) {
11165 		bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11166 		bp->dev->features &= ~NETIF_F_LRO;
11167 	} else {
11168 		bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11169 		bp->dev->features |= NETIF_F_LRO;
11170 	}
11171 
11172 	if (CHIP_IS_E1(bp))
11173 		bp->dropless_fc = 0;
11174 	else
11175 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11176 
11177 	bp->mrrs = mrrs;
11178 
11179 	bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11180 
11181 	/* make sure that the numbers are in the right granularity */
11182 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11183 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11184 
11185 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11186 
11187 	init_timer(&bp->timer);
11188 	bp->timer.expires = jiffies + bp->current_interval;
11189 	bp->timer.data = (unsigned long) bp;
11190 	bp->timer.function = bnx2x_timer;
11191 
11192 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11193 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11194 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11195 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11196 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11197 		bnx2x_dcbx_init_params(bp);
11198 	} else {
11199 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11200 	}
11201 
11202 	if (CHIP_IS_E1x(bp))
11203 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11204 	else
11205 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
11206 
11207 	/* multiple tx priority */
11208 	if (CHIP_IS_E1x(bp))
11209 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11210 	if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11211 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11212 	if (CHIP_IS_E3B0(bp))
11213 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11214 
11215 	/* We need at least one default status block for slow-path events,
11216 	 * second status block for the L2 queue, and a third status block for
11217 	 * CNIC if supproted.
11218 	 */
11219 	if (CNIC_SUPPORT(bp))
11220 		bp->min_msix_vec_cnt = 3;
11221 	else
11222 		bp->min_msix_vec_cnt = 2;
11223 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11224 
11225 	return rc;
11226 }
11227 
11228 
11229 /****************************************************************************
11230 * General service functions
11231 ****************************************************************************/
11232 
11233 /*
11234  * net_device service functions
11235  */
11236 
11237 /* called with rtnl_lock */
11238 static int bnx2x_open(struct net_device *dev)
11239 {
11240 	struct bnx2x *bp = netdev_priv(dev);
11241 	bool global = false;
11242 	int other_engine = BP_PATH(bp) ? 0 : 1;
11243 	bool other_load_status, load_status;
11244 
11245 	bp->stats_init = true;
11246 
11247 	netif_carrier_off(dev);
11248 
11249 	bnx2x_set_power_state(bp, PCI_D0);
11250 
11251 	other_load_status = bnx2x_get_load_status(bp, other_engine);
11252 	load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
11253 
11254 	/*
11255 	 * If parity had happen during the unload, then attentions
11256 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11257 	 * want the first function loaded on the current engine to
11258 	 * complete the recovery.
11259 	 */
11260 	if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
11261 	    bnx2x_chk_parity_attn(bp, &global, true))
11262 		do {
11263 			/*
11264 			 * If there are attentions and they are in a global
11265 			 * blocks, set the GLOBAL_RESET bit regardless whether
11266 			 * it will be this function that will complete the
11267 			 * recovery or not.
11268 			 */
11269 			if (global)
11270 				bnx2x_set_reset_global(bp);
11271 
11272 			/*
11273 			 * Only the first function on the current engine should
11274 			 * try to recover in open. In case of attentions in
11275 			 * global blocks only the first in the chip should try
11276 			 * to recover.
11277 			 */
11278 			if ((!load_status &&
11279 			     (!global || !other_load_status)) &&
11280 			    bnx2x_trylock_leader_lock(bp) &&
11281 			    !bnx2x_leader_reset(bp)) {
11282 				netdev_info(bp->dev, "Recovered in open\n");
11283 				break;
11284 			}
11285 
11286 			/* recovery has failed... */
11287 			bnx2x_set_power_state(bp, PCI_D3hot);
11288 			bp->recovery_state = BNX2X_RECOVERY_FAILED;
11289 
11290 			BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11291 				  "If you still see this message after a few retries then power cycle is required.\n");
11292 
11293 			return -EAGAIN;
11294 		} while (0);
11295 
11296 	bp->recovery_state = BNX2X_RECOVERY_DONE;
11297 	return bnx2x_nic_load(bp, LOAD_OPEN);
11298 }
11299 
11300 /* called with rtnl_lock */
11301 static int bnx2x_close(struct net_device *dev)
11302 {
11303 	struct bnx2x *bp = netdev_priv(dev);
11304 
11305 	/* Unload the driver, release IRQs */
11306 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11307 
11308 	/* Power off */
11309 	bnx2x_set_power_state(bp, PCI_D3hot);
11310 
11311 	return 0;
11312 }
11313 
11314 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11315 				      struct bnx2x_mcast_ramrod_params *p)
11316 {
11317 	int mc_count = netdev_mc_count(bp->dev);
11318 	struct bnx2x_mcast_list_elem *mc_mac =
11319 		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11320 	struct netdev_hw_addr *ha;
11321 
11322 	if (!mc_mac)
11323 		return -ENOMEM;
11324 
11325 	INIT_LIST_HEAD(&p->mcast_list);
11326 
11327 	netdev_for_each_mc_addr(ha, bp->dev) {
11328 		mc_mac->mac = bnx2x_mc_addr(ha);
11329 		list_add_tail(&mc_mac->link, &p->mcast_list);
11330 		mc_mac++;
11331 	}
11332 
11333 	p->mcast_list_len = mc_count;
11334 
11335 	return 0;
11336 }
11337 
11338 static void bnx2x_free_mcast_macs_list(
11339 	struct bnx2x_mcast_ramrod_params *p)
11340 {
11341 	struct bnx2x_mcast_list_elem *mc_mac =
11342 		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11343 				 link);
11344 
11345 	WARN_ON(!mc_mac);
11346 	kfree(mc_mac);
11347 }
11348 
11349 /**
11350  * bnx2x_set_uc_list - configure a new unicast MACs list.
11351  *
11352  * @bp: driver handle
11353  *
11354  * We will use zero (0) as a MAC type for these MACs.
11355  */
11356 static int bnx2x_set_uc_list(struct bnx2x *bp)
11357 {
11358 	int rc;
11359 	struct net_device *dev = bp->dev;
11360 	struct netdev_hw_addr *ha;
11361 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11362 	unsigned long ramrod_flags = 0;
11363 
11364 	/* First schedule a cleanup up of old configuration */
11365 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11366 	if (rc < 0) {
11367 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11368 		return rc;
11369 	}
11370 
11371 	netdev_for_each_uc_addr(ha, dev) {
11372 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11373 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
11374 		if (rc == -EEXIST) {
11375 			DP(BNX2X_MSG_SP,
11376 			   "Failed to schedule ADD operations: %d\n", rc);
11377 			/* do not treat adding same MAC as error */
11378 			rc = 0;
11379 
11380 		} else if (rc < 0) {
11381 
11382 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
11383 				  rc);
11384 			return rc;
11385 		}
11386 	}
11387 
11388 	/* Execute the pending commands */
11389 	__set_bit(RAMROD_CONT, &ramrod_flags);
11390 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
11391 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
11392 }
11393 
11394 static int bnx2x_set_mc_list(struct bnx2x *bp)
11395 {
11396 	struct net_device *dev = bp->dev;
11397 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
11398 	int rc = 0;
11399 
11400 	rparam.mcast_obj = &bp->mcast_obj;
11401 
11402 	/* first, clear all configured multicast MACs */
11403 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
11404 	if (rc < 0) {
11405 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
11406 		return rc;
11407 	}
11408 
11409 	/* then, configure a new MACs list */
11410 	if (netdev_mc_count(dev)) {
11411 		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
11412 		if (rc) {
11413 			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
11414 				  rc);
11415 			return rc;
11416 		}
11417 
11418 		/* Now add the new MACs */
11419 		rc = bnx2x_config_mcast(bp, &rparam,
11420 					BNX2X_MCAST_CMD_ADD);
11421 		if (rc < 0)
11422 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
11423 				  rc);
11424 
11425 		bnx2x_free_mcast_macs_list(&rparam);
11426 	}
11427 
11428 	return rc;
11429 }
11430 
11431 
11432 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
11433 void bnx2x_set_rx_mode(struct net_device *dev)
11434 {
11435 	struct bnx2x *bp = netdev_priv(dev);
11436 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
11437 
11438 	if (bp->state != BNX2X_STATE_OPEN) {
11439 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
11440 		return;
11441 	}
11442 
11443 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
11444 
11445 	if (dev->flags & IFF_PROMISC)
11446 		rx_mode = BNX2X_RX_MODE_PROMISC;
11447 	else if ((dev->flags & IFF_ALLMULTI) ||
11448 		 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
11449 		  CHIP_IS_E1(bp)))
11450 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
11451 	else {
11452 		/* some multicasts */
11453 		if (bnx2x_set_mc_list(bp) < 0)
11454 			rx_mode = BNX2X_RX_MODE_ALLMULTI;
11455 
11456 		if (bnx2x_set_uc_list(bp) < 0)
11457 			rx_mode = BNX2X_RX_MODE_PROMISC;
11458 	}
11459 
11460 	bp->rx_mode = rx_mode;
11461 	/* handle ISCSI SD mode */
11462 	if (IS_MF_ISCSI_SD(bp))
11463 		bp->rx_mode = BNX2X_RX_MODE_NONE;
11464 
11465 	/* Schedule the rx_mode command */
11466 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
11467 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
11468 		return;
11469 	}
11470 
11471 	bnx2x_set_storm_rx_mode(bp);
11472 }
11473 
11474 /* called with rtnl_lock */
11475 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
11476 			   int devad, u16 addr)
11477 {
11478 	struct bnx2x *bp = netdev_priv(netdev);
11479 	u16 value;
11480 	int rc;
11481 
11482 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
11483 	   prtad, devad, addr);
11484 
11485 	/* The HW expects different devad if CL22 is used */
11486 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11487 
11488 	bnx2x_acquire_phy_lock(bp);
11489 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
11490 	bnx2x_release_phy_lock(bp);
11491 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
11492 
11493 	if (!rc)
11494 		rc = value;
11495 	return rc;
11496 }
11497 
11498 /* called with rtnl_lock */
11499 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
11500 			    u16 addr, u16 value)
11501 {
11502 	struct bnx2x *bp = netdev_priv(netdev);
11503 	int rc;
11504 
11505 	DP(NETIF_MSG_LINK,
11506 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
11507 	   prtad, devad, addr, value);
11508 
11509 	/* The HW expects different devad if CL22 is used */
11510 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11511 
11512 	bnx2x_acquire_phy_lock(bp);
11513 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
11514 	bnx2x_release_phy_lock(bp);
11515 	return rc;
11516 }
11517 
11518 /* called with rtnl_lock */
11519 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
11520 {
11521 	struct bnx2x *bp = netdev_priv(dev);
11522 	struct mii_ioctl_data *mdio = if_mii(ifr);
11523 
11524 	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
11525 	   mdio->phy_id, mdio->reg_num, mdio->val_in);
11526 
11527 	if (!netif_running(dev))
11528 		return -EAGAIN;
11529 
11530 	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
11531 }
11532 
11533 #ifdef CONFIG_NET_POLL_CONTROLLER
11534 static void poll_bnx2x(struct net_device *dev)
11535 {
11536 	struct bnx2x *bp = netdev_priv(dev);
11537 	int i;
11538 
11539 	for_each_eth_queue(bp, i) {
11540 		struct bnx2x_fastpath *fp = &bp->fp[i];
11541 		napi_schedule(&bnx2x_fp(bp, fp->index, napi));
11542 	}
11543 }
11544 #endif
11545 
11546 static int bnx2x_validate_addr(struct net_device *dev)
11547 {
11548 	struct bnx2x *bp = netdev_priv(dev);
11549 
11550 	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
11551 		BNX2X_ERR("Non-valid Ethernet address\n");
11552 		return -EADDRNOTAVAIL;
11553 	}
11554 	return 0;
11555 }
11556 
11557 static const struct net_device_ops bnx2x_netdev_ops = {
11558 	.ndo_open		= bnx2x_open,
11559 	.ndo_stop		= bnx2x_close,
11560 	.ndo_start_xmit		= bnx2x_start_xmit,
11561 	.ndo_select_queue	= bnx2x_select_queue,
11562 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
11563 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
11564 	.ndo_validate_addr	= bnx2x_validate_addr,
11565 	.ndo_do_ioctl		= bnx2x_ioctl,
11566 	.ndo_change_mtu		= bnx2x_change_mtu,
11567 	.ndo_fix_features	= bnx2x_fix_features,
11568 	.ndo_set_features	= bnx2x_set_features,
11569 	.ndo_tx_timeout		= bnx2x_tx_timeout,
11570 #ifdef CONFIG_NET_POLL_CONTROLLER
11571 	.ndo_poll_controller	= poll_bnx2x,
11572 #endif
11573 	.ndo_setup_tc		= bnx2x_setup_tc,
11574 
11575 #ifdef NETDEV_FCOE_WWNN
11576 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
11577 #endif
11578 };
11579 
11580 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
11581 {
11582 	struct device *dev = &bp->pdev->dev;
11583 
11584 	if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
11585 		bp->flags |= USING_DAC_FLAG;
11586 		if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
11587 			dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
11588 			return -EIO;
11589 		}
11590 	} else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
11591 		dev_err(dev, "System does not support DMA, aborting\n");
11592 		return -EIO;
11593 	}
11594 
11595 	return 0;
11596 }
11597 
11598 static int bnx2x_init_dev(struct pci_dev *pdev, struct net_device *dev,
11599 			  unsigned long board_type)
11600 {
11601 	struct bnx2x *bp;
11602 	int rc;
11603 	u32 pci_cfg_dword;
11604 	bool chip_is_e1x = (board_type == BCM57710 ||
11605 			    board_type == BCM57711 ||
11606 			    board_type == BCM57711E);
11607 
11608 	SET_NETDEV_DEV(dev, &pdev->dev);
11609 	bp = netdev_priv(dev);
11610 
11611 	bp->dev = dev;
11612 	bp->pdev = pdev;
11613 	bp->flags = 0;
11614 
11615 	rc = pci_enable_device(pdev);
11616 	if (rc) {
11617 		dev_err(&bp->pdev->dev,
11618 			"Cannot enable PCI device, aborting\n");
11619 		goto err_out;
11620 	}
11621 
11622 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
11623 		dev_err(&bp->pdev->dev,
11624 			"Cannot find PCI device base address, aborting\n");
11625 		rc = -ENODEV;
11626 		goto err_out_disable;
11627 	}
11628 
11629 	if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
11630 		dev_err(&bp->pdev->dev, "Cannot find second PCI device"
11631 		       " base address, aborting\n");
11632 		rc = -ENODEV;
11633 		goto err_out_disable;
11634 	}
11635 
11636 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
11637 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
11638 	    PCICFG_REVESION_ID_ERROR_VAL) {
11639 		pr_err("PCI device error, probably due to fan failure, aborting\n");
11640 		rc = -ENODEV;
11641 		goto err_out_disable;
11642 	}
11643 
11644 	if (atomic_read(&pdev->enable_cnt) == 1) {
11645 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
11646 		if (rc) {
11647 			dev_err(&bp->pdev->dev,
11648 				"Cannot obtain PCI resources, aborting\n");
11649 			goto err_out_disable;
11650 		}
11651 
11652 		pci_set_master(pdev);
11653 		pci_save_state(pdev);
11654 	}
11655 
11656 	bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
11657 	if (bp->pm_cap == 0) {
11658 		dev_err(&bp->pdev->dev,
11659 			"Cannot find power management capability, aborting\n");
11660 		rc = -EIO;
11661 		goto err_out_release;
11662 	}
11663 
11664 	if (!pci_is_pcie(pdev)) {
11665 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
11666 		rc = -EIO;
11667 		goto err_out_release;
11668 	}
11669 
11670 	rc = bnx2x_set_coherency_mask(bp);
11671 	if (rc)
11672 		goto err_out_release;
11673 
11674 	dev->mem_start = pci_resource_start(pdev, 0);
11675 	dev->base_addr = dev->mem_start;
11676 	dev->mem_end = pci_resource_end(pdev, 0);
11677 
11678 	dev->irq = pdev->irq;
11679 
11680 	bp->regview = pci_ioremap_bar(pdev, 0);
11681 	if (!bp->regview) {
11682 		dev_err(&bp->pdev->dev,
11683 			"Cannot map register space, aborting\n");
11684 		rc = -ENOMEM;
11685 		goto err_out_release;
11686 	}
11687 
11688 	/* In E1/E1H use pci device function given by kernel.
11689 	 * In E2/E3 read physical function from ME register since these chips
11690 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
11691 	 * (depending on hypervisor).
11692 	 */
11693 	if (chip_is_e1x)
11694 		bp->pf_num = PCI_FUNC(pdev->devfn);
11695 	else {/* chip is E2/3*/
11696 		pci_read_config_dword(bp->pdev,
11697 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
11698 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
11699 		    ME_REG_ABS_PF_NUM_SHIFT);
11700 	}
11701 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
11702 
11703 	bnx2x_set_power_state(bp, PCI_D0);
11704 
11705 	/* clean indirect addresses */
11706 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
11707 			       PCICFG_VENDOR_ID_OFFSET);
11708 	/*
11709 	 * Clean the following indirect addresses for all functions since it
11710 	 * is not used by the driver.
11711 	 */
11712 	REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
11713 	REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
11714 	REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
11715 	REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
11716 
11717 	if (chip_is_e1x) {
11718 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
11719 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
11720 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
11721 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
11722 	}
11723 
11724 	/*
11725 	 * Enable internal target-read (in case we are probed after PF FLR).
11726 	 * Must be done prior to any BAR read access. Only for 57712 and up
11727 	 */
11728 	if (!chip_is_e1x)
11729 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
11730 
11731 	dev->watchdog_timeo = TX_TIMEOUT;
11732 
11733 	dev->netdev_ops = &bnx2x_netdev_ops;
11734 	bnx2x_set_ethtool_ops(dev);
11735 
11736 	dev->priv_flags |= IFF_UNICAST_FLT;
11737 
11738 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
11739 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
11740 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
11741 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
11742 
11743 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
11744 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
11745 
11746 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
11747 	if (bp->flags & USING_DAC_FLAG)
11748 		dev->features |= NETIF_F_HIGHDMA;
11749 
11750 	/* Add Loopback capability to the device */
11751 	dev->hw_features |= NETIF_F_LOOPBACK;
11752 
11753 #ifdef BCM_DCBNL
11754 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
11755 #endif
11756 
11757 	/* get_port_hwinfo() will set prtad and mmds properly */
11758 	bp->mdio.prtad = MDIO_PRTAD_NONE;
11759 	bp->mdio.mmds = 0;
11760 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
11761 	bp->mdio.dev = dev;
11762 	bp->mdio.mdio_read = bnx2x_mdio_read;
11763 	bp->mdio.mdio_write = bnx2x_mdio_write;
11764 
11765 	return 0;
11766 
11767 err_out_release:
11768 	if (atomic_read(&pdev->enable_cnt) == 1)
11769 		pci_release_regions(pdev);
11770 
11771 err_out_disable:
11772 	pci_disable_device(pdev);
11773 	pci_set_drvdata(pdev, NULL);
11774 
11775 err_out:
11776 	return rc;
11777 }
11778 
11779 static void bnx2x_get_pcie_width_speed(struct bnx2x *bp, int *width, int *speed)
11780 {
11781 	u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
11782 
11783 	*width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
11784 
11785 	/* return value of 1=2.5GHz 2=5GHz */
11786 	*speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
11787 }
11788 
11789 static int bnx2x_check_firmware(struct bnx2x *bp)
11790 {
11791 	const struct firmware *firmware = bp->firmware;
11792 	struct bnx2x_fw_file_hdr *fw_hdr;
11793 	struct bnx2x_fw_file_section *sections;
11794 	u32 offset, len, num_ops;
11795 	u16 *ops_offsets;
11796 	int i;
11797 	const u8 *fw_ver;
11798 
11799 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
11800 		BNX2X_ERR("Wrong FW size\n");
11801 		return -EINVAL;
11802 	}
11803 
11804 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
11805 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
11806 
11807 	/* Make sure none of the offsets and sizes make us read beyond
11808 	 * the end of the firmware data */
11809 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
11810 		offset = be32_to_cpu(sections[i].offset);
11811 		len = be32_to_cpu(sections[i].len);
11812 		if (offset + len > firmware->size) {
11813 			BNX2X_ERR("Section %d length is out of bounds\n", i);
11814 			return -EINVAL;
11815 		}
11816 	}
11817 
11818 	/* Likewise for the init_ops offsets */
11819 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
11820 	ops_offsets = (u16 *)(firmware->data + offset);
11821 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
11822 
11823 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
11824 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
11825 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
11826 			return -EINVAL;
11827 		}
11828 	}
11829 
11830 	/* Check FW version */
11831 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
11832 	fw_ver = firmware->data + offset;
11833 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
11834 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
11835 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
11836 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
11837 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
11838 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
11839 		       BCM_5710_FW_MAJOR_VERSION,
11840 		       BCM_5710_FW_MINOR_VERSION,
11841 		       BCM_5710_FW_REVISION_VERSION,
11842 		       BCM_5710_FW_ENGINEERING_VERSION);
11843 		return -EINVAL;
11844 	}
11845 
11846 	return 0;
11847 }
11848 
11849 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
11850 {
11851 	const __be32 *source = (const __be32 *)_source;
11852 	u32 *target = (u32 *)_target;
11853 	u32 i;
11854 
11855 	for (i = 0; i < n/4; i++)
11856 		target[i] = be32_to_cpu(source[i]);
11857 }
11858 
11859 /*
11860    Ops array is stored in the following format:
11861    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
11862  */
11863 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
11864 {
11865 	const __be32 *source = (const __be32 *)_source;
11866 	struct raw_op *target = (struct raw_op *)_target;
11867 	u32 i, j, tmp;
11868 
11869 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
11870 		tmp = be32_to_cpu(source[j]);
11871 		target[i].op = (tmp >> 24) & 0xff;
11872 		target[i].offset = tmp & 0xffffff;
11873 		target[i].raw_data = be32_to_cpu(source[j + 1]);
11874 	}
11875 }
11876 
11877 /* IRO array is stored in the following format:
11878  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
11879  */
11880 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
11881 {
11882 	const __be32 *source = (const __be32 *)_source;
11883 	struct iro *target = (struct iro *)_target;
11884 	u32 i, j, tmp;
11885 
11886 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
11887 		target[i].base = be32_to_cpu(source[j]);
11888 		j++;
11889 		tmp = be32_to_cpu(source[j]);
11890 		target[i].m1 = (tmp >> 16) & 0xffff;
11891 		target[i].m2 = tmp & 0xffff;
11892 		j++;
11893 		tmp = be32_to_cpu(source[j]);
11894 		target[i].m3 = (tmp >> 16) & 0xffff;
11895 		target[i].size = tmp & 0xffff;
11896 		j++;
11897 	}
11898 }
11899 
11900 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
11901 {
11902 	const __be16 *source = (const __be16 *)_source;
11903 	u16 *target = (u16 *)_target;
11904 	u32 i;
11905 
11906 	for (i = 0; i < n/2; i++)
11907 		target[i] = be16_to_cpu(source[i]);
11908 }
11909 
11910 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
11911 do {									\
11912 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
11913 	bp->arr = kmalloc(len, GFP_KERNEL);				\
11914 	if (!bp->arr)							\
11915 		goto lbl;						\
11916 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
11917 	     (u8 *)bp->arr, len);					\
11918 } while (0)
11919 
11920 static int bnx2x_init_firmware(struct bnx2x *bp)
11921 {
11922 	const char *fw_file_name;
11923 	struct bnx2x_fw_file_hdr *fw_hdr;
11924 	int rc;
11925 
11926 	if (bp->firmware)
11927 		return 0;
11928 
11929 	if (CHIP_IS_E1(bp))
11930 		fw_file_name = FW_FILE_NAME_E1;
11931 	else if (CHIP_IS_E1H(bp))
11932 		fw_file_name = FW_FILE_NAME_E1H;
11933 	else if (!CHIP_IS_E1x(bp))
11934 		fw_file_name = FW_FILE_NAME_E2;
11935 	else {
11936 		BNX2X_ERR("Unsupported chip revision\n");
11937 		return -EINVAL;
11938 	}
11939 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
11940 
11941 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
11942 	if (rc) {
11943 		BNX2X_ERR("Can't load firmware file %s\n",
11944 			  fw_file_name);
11945 		goto request_firmware_exit;
11946 	}
11947 
11948 	rc = bnx2x_check_firmware(bp);
11949 	if (rc) {
11950 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
11951 		goto request_firmware_exit;
11952 	}
11953 
11954 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
11955 
11956 	/* Initialize the pointers to the init arrays */
11957 	/* Blob */
11958 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
11959 
11960 	/* Opcodes */
11961 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
11962 
11963 	/* Offsets */
11964 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
11965 			    be16_to_cpu_n);
11966 
11967 	/* STORMs firmware */
11968 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11969 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
11970 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
11971 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
11972 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11973 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
11974 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
11975 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
11976 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11977 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
11978 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
11979 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
11980 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11981 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
11982 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
11983 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
11984 	/* IRO */
11985 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
11986 
11987 	return 0;
11988 
11989 iro_alloc_err:
11990 	kfree(bp->init_ops_offsets);
11991 init_offsets_alloc_err:
11992 	kfree(bp->init_ops);
11993 init_ops_alloc_err:
11994 	kfree(bp->init_data);
11995 request_firmware_exit:
11996 	release_firmware(bp->firmware);
11997 	bp->firmware = NULL;
11998 
11999 	return rc;
12000 }
12001 
12002 static void bnx2x_release_firmware(struct bnx2x *bp)
12003 {
12004 	kfree(bp->init_ops_offsets);
12005 	kfree(bp->init_ops);
12006 	kfree(bp->init_data);
12007 	release_firmware(bp->firmware);
12008 	bp->firmware = NULL;
12009 }
12010 
12011 
12012 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12013 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12014 	.init_hw_cmn      = bnx2x_init_hw_common,
12015 	.init_hw_port     = bnx2x_init_hw_port,
12016 	.init_hw_func     = bnx2x_init_hw_func,
12017 
12018 	.reset_hw_cmn     = bnx2x_reset_common,
12019 	.reset_hw_port    = bnx2x_reset_port,
12020 	.reset_hw_func    = bnx2x_reset_func,
12021 
12022 	.gunzip_init      = bnx2x_gunzip_init,
12023 	.gunzip_end       = bnx2x_gunzip_end,
12024 
12025 	.init_fw          = bnx2x_init_firmware,
12026 	.release_fw       = bnx2x_release_firmware,
12027 };
12028 
12029 void bnx2x__init_func_obj(struct bnx2x *bp)
12030 {
12031 	/* Prepare DMAE related driver resources */
12032 	bnx2x_setup_dmae(bp);
12033 
12034 	bnx2x_init_func_obj(bp, &bp->func_obj,
12035 			    bnx2x_sp(bp, func_rdata),
12036 			    bnx2x_sp_mapping(bp, func_rdata),
12037 			    bnx2x_sp(bp, func_afex_rdata),
12038 			    bnx2x_sp_mapping(bp, func_afex_rdata),
12039 			    &bnx2x_func_sp_drv);
12040 }
12041 
12042 /* must be called after sriov-enable */
12043 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12044 {
12045 	int cid_count = BNX2X_L2_MAX_CID(bp);
12046 
12047 	if (CNIC_SUPPORT(bp))
12048 		cid_count += CNIC_CID_MAX;
12049 	return roundup(cid_count, QM_CID_ROUND);
12050 }
12051 
12052 /**
12053  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12054  *
12055  * @dev:	pci device
12056  *
12057  */
12058 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev,
12059 				     int cnic_cnt)
12060 {
12061 	int pos;
12062 	u16 control;
12063 
12064 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
12065 
12066 	/*
12067 	 * If MSI-X is not supported - return number of SBs needed to support
12068 	 * one fast path queue: one FP queue + SB for CNIC
12069 	 */
12070 	if (!pos)
12071 		return 1 + cnic_cnt;
12072 
12073 	/*
12074 	 * The value in the PCI configuration space is the index of the last
12075 	 * entry, namely one less than the actual size of the table, which is
12076 	 * exactly what we want to return from this function: number of all SBs
12077 	 * without the default SB.
12078 	 */
12079 	pci_read_config_word(pdev, pos  + PCI_MSI_FLAGS, &control);
12080 	return control & PCI_MSIX_FLAGS_QSIZE;
12081 }
12082 
12083 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *);
12084 
12085 static int bnx2x_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
12086 {
12087 	struct net_device *dev = NULL;
12088 	struct bnx2x *bp;
12089 	int pcie_width, pcie_speed;
12090 	int rc, max_non_def_sbs;
12091 	int rx_count, tx_count, rss_count, doorbell_size;
12092 	int cnic_cnt;
12093 	/*
12094 	 * An estimated maximum supported CoS number according to the chip
12095 	 * version.
12096 	 * We will try to roughly estimate the maximum number of CoSes this chip
12097 	 * may support in order to minimize the memory allocated for Tx
12098 	 * netdev_queue's. This number will be accurately calculated during the
12099 	 * initialization of bp->max_cos based on the chip versions AND chip
12100 	 * revision in the bnx2x_init_bp().
12101 	 */
12102 	u8 max_cos_est = 0;
12103 
12104 	switch (ent->driver_data) {
12105 	case BCM57710:
12106 	case BCM57711:
12107 	case BCM57711E:
12108 		max_cos_est = BNX2X_MULTI_TX_COS_E1X;
12109 		break;
12110 
12111 	case BCM57712:
12112 	case BCM57712_MF:
12113 		max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
12114 		break;
12115 
12116 	case BCM57800:
12117 	case BCM57800_MF:
12118 	case BCM57810:
12119 	case BCM57810_MF:
12120 	case BCM57840_O:
12121 	case BCM57840_4_10:
12122 	case BCM57840_2_20:
12123 	case BCM57840_MFO:
12124 	case BCM57840_MF:
12125 	case BCM57811:
12126 	case BCM57811_MF:
12127 		max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
12128 		break;
12129 
12130 	default:
12131 		pr_err("Unknown board_type (%ld), aborting\n",
12132 			   ent->driver_data);
12133 		return -ENODEV;
12134 	}
12135 
12136 	cnic_cnt = 1;
12137 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
12138 
12139 	WARN_ON(!max_non_def_sbs);
12140 
12141 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
12142 	rss_count = max_non_def_sbs - cnic_cnt;
12143 
12144 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12145 	rx_count = rss_count + cnic_cnt;
12146 
12147 	/*
12148 	 * Maximum number of netdev Tx queues:
12149 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
12150 	 */
12151 	tx_count = rss_count * max_cos_est + cnic_cnt;
12152 
12153 	/* dev zeroed in init_etherdev */
12154 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
12155 	if (!dev)
12156 		return -ENOMEM;
12157 
12158 	bp = netdev_priv(dev);
12159 
12160 	bp->igu_sb_cnt = max_non_def_sbs;
12161 	bp->msg_enable = debug;
12162 	bp->cnic_support = cnic_cnt;
12163 	bp->cnic_probe = bnx2x_cnic_probe;
12164 
12165 	pci_set_drvdata(pdev, dev);
12166 
12167 	rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
12168 	if (rc < 0) {
12169 		free_netdev(dev);
12170 		return rc;
12171 	}
12172 
12173 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
12174 	BNX2X_DEV_INFO("max_non_def_sbs %d\n", max_non_def_sbs);
12175 
12176 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12177 			  tx_count, rx_count);
12178 
12179 	rc = bnx2x_init_bp(bp);
12180 	if (rc)
12181 		goto init_one_exit;
12182 
12183 	/*
12184 	 * Map doorbels here as we need the real value of bp->max_cos which
12185 	 * is initialized in bnx2x_init_bp().
12186 	 */
12187 	doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
12188 	if (doorbell_size > pci_resource_len(pdev, 2)) {
12189 		dev_err(&bp->pdev->dev,
12190 			"Cannot map doorbells, bar size too small, aborting\n");
12191 		rc = -ENOMEM;
12192 		goto init_one_exit;
12193 	}
12194 	bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
12195 					doorbell_size);
12196 	if (!bp->doorbells) {
12197 		dev_err(&bp->pdev->dev,
12198 			"Cannot map doorbell space, aborting\n");
12199 		rc = -ENOMEM;
12200 		goto init_one_exit;
12201 	}
12202 
12203 	/* calc qm_cid_count */
12204 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
12205 
12206 	/* disable FCOE L2 queue for E1x*/
12207 	if (CHIP_IS_E1x(bp))
12208 		bp->flags |= NO_FCOE_FLAG;
12209 
12210 	/* disable FCOE for 57840 device, until FW supports it */
12211 	switch (ent->driver_data) {
12212 	case BCM57840_O:
12213 	case BCM57840_4_10:
12214 	case BCM57840_2_20:
12215 	case BCM57840_MFO:
12216 	case BCM57840_MF:
12217 		bp->flags |= NO_FCOE_FLAG;
12218 	}
12219 
12220 	/* Set bp->num_queues for MSI-X mode*/
12221 	bnx2x_set_num_queues(bp);
12222 
12223 	/* Configure interrupt mode: try to enable MSI-X/MSI if
12224 	 * needed.
12225 	 */
12226 	bnx2x_set_int_mode(bp);
12227 
12228 	rc = register_netdev(dev);
12229 	if (rc) {
12230 		dev_err(&pdev->dev, "Cannot register net device\n");
12231 		goto init_one_exit;
12232 	}
12233 
12234 
12235 	if (!NO_FCOE(bp)) {
12236 		/* Add storage MAC address */
12237 		rtnl_lock();
12238 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12239 		rtnl_unlock();
12240 	}
12241 
12242 	bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
12243 
12244 	BNX2X_DEV_INFO(
12245 		"%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12246 		    board_info[ent->driver_data].name,
12247 		    (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
12248 		    pcie_width,
12249 		    ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
12250 		     (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
12251 		    "5GHz (Gen2)" : "2.5GHz",
12252 		    dev->base_addr, bp->pdev->irq, dev->dev_addr);
12253 
12254 	return 0;
12255 
12256 init_one_exit:
12257 	if (bp->regview)
12258 		iounmap(bp->regview);
12259 
12260 	if (bp->doorbells)
12261 		iounmap(bp->doorbells);
12262 
12263 	free_netdev(dev);
12264 
12265 	if (atomic_read(&pdev->enable_cnt) == 1)
12266 		pci_release_regions(pdev);
12267 
12268 	pci_disable_device(pdev);
12269 	pci_set_drvdata(pdev, NULL);
12270 
12271 	return rc;
12272 }
12273 
12274 static void bnx2x_remove_one(struct pci_dev *pdev)
12275 {
12276 	struct net_device *dev = pci_get_drvdata(pdev);
12277 	struct bnx2x *bp;
12278 
12279 	if (!dev) {
12280 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
12281 		return;
12282 	}
12283 	bp = netdev_priv(dev);
12284 
12285 	/* Delete storage MAC address */
12286 	if (!NO_FCOE(bp)) {
12287 		rtnl_lock();
12288 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12289 		rtnl_unlock();
12290 	}
12291 
12292 #ifdef BCM_DCBNL
12293 	/* Delete app tlvs from dcbnl */
12294 	bnx2x_dcbnl_update_applist(bp, true);
12295 #endif
12296 
12297 	unregister_netdev(dev);
12298 
12299 	/* Power on: we can't let PCI layer write to us while we are in D3 */
12300 	bnx2x_set_power_state(bp, PCI_D0);
12301 
12302 	/* Disable MSI/MSI-X */
12303 	bnx2x_disable_msi(bp);
12304 
12305 	/* Power off */
12306 	bnx2x_set_power_state(bp, PCI_D3hot);
12307 
12308 	/* Make sure RESET task is not scheduled before continuing */
12309 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
12310 
12311 	if (bp->regview)
12312 		iounmap(bp->regview);
12313 
12314 	if (bp->doorbells)
12315 		iounmap(bp->doorbells);
12316 
12317 	bnx2x_release_firmware(bp);
12318 
12319 	bnx2x_free_mem_bp(bp);
12320 
12321 	free_netdev(dev);
12322 
12323 	if (atomic_read(&pdev->enable_cnt) == 1)
12324 		pci_release_regions(pdev);
12325 
12326 	pci_disable_device(pdev);
12327 	pci_set_drvdata(pdev, NULL);
12328 }
12329 
12330 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
12331 {
12332 	int i;
12333 
12334 	bp->state = BNX2X_STATE_ERROR;
12335 
12336 	bp->rx_mode = BNX2X_RX_MODE_NONE;
12337 
12338 	if (CNIC_LOADED(bp))
12339 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
12340 
12341 	/* Stop Tx */
12342 	bnx2x_tx_disable(bp);
12343 
12344 	bnx2x_netif_stop(bp, 0);
12345 	/* Delete all NAPI objects */
12346 	bnx2x_del_all_napi(bp);
12347 	if (CNIC_LOADED(bp))
12348 		bnx2x_del_all_napi_cnic(bp);
12349 
12350 	del_timer_sync(&bp->timer);
12351 
12352 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
12353 
12354 	/* Release IRQs */
12355 	bnx2x_free_irq(bp);
12356 
12357 	/* Free SKBs, SGEs, TPA pool and driver internals */
12358 	bnx2x_free_skbs(bp);
12359 
12360 	for_each_rx_queue(bp, i)
12361 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
12362 
12363 	bnx2x_free_mem(bp);
12364 
12365 	bp->state = BNX2X_STATE_CLOSED;
12366 
12367 	netif_carrier_off(bp->dev);
12368 
12369 	return 0;
12370 }
12371 
12372 static void bnx2x_eeh_recover(struct bnx2x *bp)
12373 {
12374 	u32 val;
12375 
12376 	mutex_init(&bp->port.phy_mutex);
12377 
12378 
12379 	val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
12380 	if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
12381 		!= (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
12382 		BNX2X_ERR("BAD MCP validity signature\n");
12383 }
12384 
12385 /**
12386  * bnx2x_io_error_detected - called when PCI error is detected
12387  * @pdev: Pointer to PCI device
12388  * @state: The current pci connection state
12389  *
12390  * This function is called after a PCI bus error affecting
12391  * this device has been detected.
12392  */
12393 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
12394 						pci_channel_state_t state)
12395 {
12396 	struct net_device *dev = pci_get_drvdata(pdev);
12397 	struct bnx2x *bp = netdev_priv(dev);
12398 
12399 	rtnl_lock();
12400 
12401 	netif_device_detach(dev);
12402 
12403 	if (state == pci_channel_io_perm_failure) {
12404 		rtnl_unlock();
12405 		return PCI_ERS_RESULT_DISCONNECT;
12406 	}
12407 
12408 	if (netif_running(dev))
12409 		bnx2x_eeh_nic_unload(bp);
12410 
12411 	pci_disable_device(pdev);
12412 
12413 	rtnl_unlock();
12414 
12415 	/* Request a slot reset */
12416 	return PCI_ERS_RESULT_NEED_RESET;
12417 }
12418 
12419 /**
12420  * bnx2x_io_slot_reset - called after the PCI bus has been reset
12421  * @pdev: Pointer to PCI device
12422  *
12423  * Restart the card from scratch, as if from a cold-boot.
12424  */
12425 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
12426 {
12427 	struct net_device *dev = pci_get_drvdata(pdev);
12428 	struct bnx2x *bp = netdev_priv(dev);
12429 
12430 	rtnl_lock();
12431 
12432 	if (pci_enable_device(pdev)) {
12433 		dev_err(&pdev->dev,
12434 			"Cannot re-enable PCI device after reset\n");
12435 		rtnl_unlock();
12436 		return PCI_ERS_RESULT_DISCONNECT;
12437 	}
12438 
12439 	pci_set_master(pdev);
12440 	pci_restore_state(pdev);
12441 
12442 	if (netif_running(dev))
12443 		bnx2x_set_power_state(bp, PCI_D0);
12444 
12445 	rtnl_unlock();
12446 
12447 	return PCI_ERS_RESULT_RECOVERED;
12448 }
12449 
12450 /**
12451  * bnx2x_io_resume - called when traffic can start flowing again
12452  * @pdev: Pointer to PCI device
12453  *
12454  * This callback is called when the error recovery driver tells us that
12455  * its OK to resume normal operation.
12456  */
12457 static void bnx2x_io_resume(struct pci_dev *pdev)
12458 {
12459 	struct net_device *dev = pci_get_drvdata(pdev);
12460 	struct bnx2x *bp = netdev_priv(dev);
12461 
12462 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
12463 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
12464 		return;
12465 	}
12466 
12467 	rtnl_lock();
12468 
12469 	bnx2x_eeh_recover(bp);
12470 
12471 	if (netif_running(dev))
12472 		bnx2x_nic_load(bp, LOAD_NORMAL);
12473 
12474 	netif_device_attach(dev);
12475 
12476 	rtnl_unlock();
12477 }
12478 
12479 static const struct pci_error_handlers bnx2x_err_handler = {
12480 	.error_detected = bnx2x_io_error_detected,
12481 	.slot_reset     = bnx2x_io_slot_reset,
12482 	.resume         = bnx2x_io_resume,
12483 };
12484 
12485 static struct pci_driver bnx2x_pci_driver = {
12486 	.name        = DRV_MODULE_NAME,
12487 	.id_table    = bnx2x_pci_tbl,
12488 	.probe       = bnx2x_init_one,
12489 	.remove      = bnx2x_remove_one,
12490 	.suspend     = bnx2x_suspend,
12491 	.resume      = bnx2x_resume,
12492 	.err_handler = &bnx2x_err_handler,
12493 };
12494 
12495 static int __init bnx2x_init(void)
12496 {
12497 	int ret;
12498 
12499 	pr_info("%s", version);
12500 
12501 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
12502 	if (bnx2x_wq == NULL) {
12503 		pr_err("Cannot create workqueue\n");
12504 		return -ENOMEM;
12505 	}
12506 
12507 	ret = pci_register_driver(&bnx2x_pci_driver);
12508 	if (ret) {
12509 		pr_err("Cannot register driver\n");
12510 		destroy_workqueue(bnx2x_wq);
12511 	}
12512 	return ret;
12513 }
12514 
12515 static void __exit bnx2x_cleanup(void)
12516 {
12517 	struct list_head *pos, *q;
12518 	pci_unregister_driver(&bnx2x_pci_driver);
12519 
12520 	destroy_workqueue(bnx2x_wq);
12521 
12522 	/* Free globablly allocated resources */
12523 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
12524 		struct bnx2x_prev_path_list *tmp =
12525 			list_entry(pos, struct bnx2x_prev_path_list, list);
12526 		list_del(pos);
12527 		kfree(tmp);
12528 	}
12529 }
12530 
12531 void bnx2x_notify_link_changed(struct bnx2x *bp)
12532 {
12533 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
12534 }
12535 
12536 module_init(bnx2x_init);
12537 module_exit(bnx2x_cleanup);
12538 
12539 /**
12540  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
12541  *
12542  * @bp:		driver handle
12543  * @set:	set or clear the CAM entry
12544  *
12545  * This function will wait until the ramdord completion returns.
12546  * Return 0 if success, -ENODEV if ramrod doesn't return.
12547  */
12548 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
12549 {
12550 	unsigned long ramrod_flags = 0;
12551 
12552 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12553 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
12554 				 &bp->iscsi_l2_mac_obj, true,
12555 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
12556 }
12557 
12558 /* count denotes the number of new completions we have seen */
12559 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
12560 {
12561 	struct eth_spe *spe;
12562 	int cxt_index, cxt_offset;
12563 
12564 #ifdef BNX2X_STOP_ON_ERROR
12565 	if (unlikely(bp->panic))
12566 		return;
12567 #endif
12568 
12569 	spin_lock_bh(&bp->spq_lock);
12570 	BUG_ON(bp->cnic_spq_pending < count);
12571 	bp->cnic_spq_pending -= count;
12572 
12573 
12574 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
12575 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
12576 				& SPE_HDR_CONN_TYPE) >>
12577 				SPE_HDR_CONN_TYPE_SHIFT;
12578 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
12579 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
12580 
12581 		/* Set validation for iSCSI L2 client before sending SETUP
12582 		 *  ramrod
12583 		 */
12584 		if (type == ETH_CONNECTION_TYPE) {
12585 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
12586 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
12587 					ILT_PAGE_CIDS;
12588 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
12589 					(cxt_index * ILT_PAGE_CIDS);
12590 				bnx2x_set_ctx_validation(bp,
12591 					&bp->context[cxt_index].
12592 							 vcxt[cxt_offset].eth,
12593 					BNX2X_ISCSI_ETH_CID(bp));
12594 			}
12595 		}
12596 
12597 		/*
12598 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
12599 		 * and in the air. We also check that number of outstanding
12600 		 * COMMON ramrods is not more than the EQ and SPQ can
12601 		 * accommodate.
12602 		 */
12603 		if (type == ETH_CONNECTION_TYPE) {
12604 			if (!atomic_read(&bp->cq_spq_left))
12605 				break;
12606 			else
12607 				atomic_dec(&bp->cq_spq_left);
12608 		} else if (type == NONE_CONNECTION_TYPE) {
12609 			if (!atomic_read(&bp->eq_spq_left))
12610 				break;
12611 			else
12612 				atomic_dec(&bp->eq_spq_left);
12613 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
12614 			   (type == FCOE_CONNECTION_TYPE)) {
12615 			if (bp->cnic_spq_pending >=
12616 			    bp->cnic_eth_dev.max_kwqe_pending)
12617 				break;
12618 			else
12619 				bp->cnic_spq_pending++;
12620 		} else {
12621 			BNX2X_ERR("Unknown SPE type: %d\n", type);
12622 			bnx2x_panic();
12623 			break;
12624 		}
12625 
12626 		spe = bnx2x_sp_get_next(bp);
12627 		*spe = *bp->cnic_kwq_cons;
12628 
12629 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
12630 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
12631 
12632 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
12633 			bp->cnic_kwq_cons = bp->cnic_kwq;
12634 		else
12635 			bp->cnic_kwq_cons++;
12636 	}
12637 	bnx2x_sp_prod_update(bp);
12638 	spin_unlock_bh(&bp->spq_lock);
12639 }
12640 
12641 static int bnx2x_cnic_sp_queue(struct net_device *dev,
12642 			       struct kwqe_16 *kwqes[], u32 count)
12643 {
12644 	struct bnx2x *bp = netdev_priv(dev);
12645 	int i;
12646 
12647 #ifdef BNX2X_STOP_ON_ERROR
12648 	if (unlikely(bp->panic)) {
12649 		BNX2X_ERR("Can't post to SP queue while panic\n");
12650 		return -EIO;
12651 	}
12652 #endif
12653 
12654 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
12655 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
12656 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
12657 		return -EAGAIN;
12658 	}
12659 
12660 	spin_lock_bh(&bp->spq_lock);
12661 
12662 	for (i = 0; i < count; i++) {
12663 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
12664 
12665 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
12666 			break;
12667 
12668 		*bp->cnic_kwq_prod = *spe;
12669 
12670 		bp->cnic_kwq_pending++;
12671 
12672 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
12673 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
12674 		   spe->data.update_data_addr.hi,
12675 		   spe->data.update_data_addr.lo,
12676 		   bp->cnic_kwq_pending);
12677 
12678 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
12679 			bp->cnic_kwq_prod = bp->cnic_kwq;
12680 		else
12681 			bp->cnic_kwq_prod++;
12682 	}
12683 
12684 	spin_unlock_bh(&bp->spq_lock);
12685 
12686 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
12687 		bnx2x_cnic_sp_post(bp, 0);
12688 
12689 	return i;
12690 }
12691 
12692 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
12693 {
12694 	struct cnic_ops *c_ops;
12695 	int rc = 0;
12696 
12697 	mutex_lock(&bp->cnic_mutex);
12698 	c_ops = rcu_dereference_protected(bp->cnic_ops,
12699 					  lockdep_is_held(&bp->cnic_mutex));
12700 	if (c_ops)
12701 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
12702 	mutex_unlock(&bp->cnic_mutex);
12703 
12704 	return rc;
12705 }
12706 
12707 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
12708 {
12709 	struct cnic_ops *c_ops;
12710 	int rc = 0;
12711 
12712 	rcu_read_lock();
12713 	c_ops = rcu_dereference(bp->cnic_ops);
12714 	if (c_ops)
12715 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
12716 	rcu_read_unlock();
12717 
12718 	return rc;
12719 }
12720 
12721 /*
12722  * for commands that have no data
12723  */
12724 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
12725 {
12726 	struct cnic_ctl_info ctl = {0};
12727 
12728 	ctl.cmd = cmd;
12729 
12730 	return bnx2x_cnic_ctl_send(bp, &ctl);
12731 }
12732 
12733 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
12734 {
12735 	struct cnic_ctl_info ctl = {0};
12736 
12737 	/* first we tell CNIC and only then we count this as a completion */
12738 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
12739 	ctl.data.comp.cid = cid;
12740 	ctl.data.comp.error = err;
12741 
12742 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
12743 	bnx2x_cnic_sp_post(bp, 0);
12744 }
12745 
12746 
12747 /* Called with netif_addr_lock_bh() taken.
12748  * Sets an rx_mode config for an iSCSI ETH client.
12749  * Doesn't block.
12750  * Completion should be checked outside.
12751  */
12752 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
12753 {
12754 	unsigned long accept_flags = 0, ramrod_flags = 0;
12755 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
12756 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
12757 
12758 	if (start) {
12759 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
12760 		 * because it's the only way for UIO Queue to accept
12761 		 * multicasts (in non-promiscuous mode only one Queue per
12762 		 * function will receive multicast packets (leading in our
12763 		 * case).
12764 		 */
12765 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
12766 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
12767 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
12768 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
12769 
12770 		/* Clear STOP_PENDING bit if START is requested */
12771 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
12772 
12773 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
12774 	} else
12775 		/* Clear START_PENDING bit if STOP is requested */
12776 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
12777 
12778 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
12779 		set_bit(sched_state, &bp->sp_state);
12780 	else {
12781 		__set_bit(RAMROD_RX, &ramrod_flags);
12782 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
12783 				    ramrod_flags);
12784 	}
12785 }
12786 
12787 
12788 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
12789 {
12790 	struct bnx2x *bp = netdev_priv(dev);
12791 	int rc = 0;
12792 
12793 	switch (ctl->cmd) {
12794 	case DRV_CTL_CTXTBL_WR_CMD: {
12795 		u32 index = ctl->data.io.offset;
12796 		dma_addr_t addr = ctl->data.io.dma_addr;
12797 
12798 		bnx2x_ilt_wr(bp, index, addr);
12799 		break;
12800 	}
12801 
12802 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
12803 		int count = ctl->data.credit.credit_count;
12804 
12805 		bnx2x_cnic_sp_post(bp, count);
12806 		break;
12807 	}
12808 
12809 	/* rtnl_lock is held.  */
12810 	case DRV_CTL_START_L2_CMD: {
12811 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12812 		unsigned long sp_bits = 0;
12813 
12814 		/* Configure the iSCSI classification object */
12815 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
12816 				   cp->iscsi_l2_client_id,
12817 				   cp->iscsi_l2_cid, BP_FUNC(bp),
12818 				   bnx2x_sp(bp, mac_rdata),
12819 				   bnx2x_sp_mapping(bp, mac_rdata),
12820 				   BNX2X_FILTER_MAC_PENDING,
12821 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
12822 				   &bp->macs_pool);
12823 
12824 		/* Set iSCSI MAC address */
12825 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
12826 		if (rc)
12827 			break;
12828 
12829 		mmiowb();
12830 		barrier();
12831 
12832 		/* Start accepting on iSCSI L2 ring */
12833 
12834 		netif_addr_lock_bh(dev);
12835 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
12836 		netif_addr_unlock_bh(dev);
12837 
12838 		/* bits to wait on */
12839 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
12840 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
12841 
12842 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
12843 			BNX2X_ERR("rx_mode completion timed out!\n");
12844 
12845 		break;
12846 	}
12847 
12848 	/* rtnl_lock is held.  */
12849 	case DRV_CTL_STOP_L2_CMD: {
12850 		unsigned long sp_bits = 0;
12851 
12852 		/* Stop accepting on iSCSI L2 ring */
12853 		netif_addr_lock_bh(dev);
12854 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
12855 		netif_addr_unlock_bh(dev);
12856 
12857 		/* bits to wait on */
12858 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
12859 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
12860 
12861 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
12862 			BNX2X_ERR("rx_mode completion timed out!\n");
12863 
12864 		mmiowb();
12865 		barrier();
12866 
12867 		/* Unset iSCSI L2 MAC */
12868 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
12869 					BNX2X_ISCSI_ETH_MAC, true);
12870 		break;
12871 	}
12872 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
12873 		int count = ctl->data.credit.credit_count;
12874 
12875 		smp_mb__before_atomic_inc();
12876 		atomic_add(count, &bp->cq_spq_left);
12877 		smp_mb__after_atomic_inc();
12878 		break;
12879 	}
12880 	case DRV_CTL_ULP_REGISTER_CMD: {
12881 		int ulp_type = ctl->data.register_data.ulp_type;
12882 
12883 		if (CHIP_IS_E3(bp)) {
12884 			int idx = BP_FW_MB_IDX(bp);
12885 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
12886 			int path = BP_PATH(bp);
12887 			int port = BP_PORT(bp);
12888 			int i;
12889 			u32 scratch_offset;
12890 			u32 *host_addr;
12891 
12892 			/* first write capability to shmem2 */
12893 			if (ulp_type == CNIC_ULP_ISCSI)
12894 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
12895 			else if (ulp_type == CNIC_ULP_FCOE)
12896 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
12897 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
12898 
12899 			if ((ulp_type != CNIC_ULP_FCOE) ||
12900 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
12901 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
12902 				break;
12903 
12904 			/* if reached here - should write fcoe capabilities */
12905 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
12906 			if (!scratch_offset)
12907 				break;
12908 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
12909 						   fcoe_features[path][port]);
12910 			host_addr = (u32 *) &(ctl->data.register_data.
12911 					      fcoe_features);
12912 			for (i = 0; i < sizeof(struct fcoe_capabilities);
12913 			     i += 4)
12914 				REG_WR(bp, scratch_offset + i,
12915 				       *(host_addr + i/4));
12916 		}
12917 		break;
12918 	}
12919 
12920 	case DRV_CTL_ULP_UNREGISTER_CMD: {
12921 		int ulp_type = ctl->data.ulp_type;
12922 
12923 		if (CHIP_IS_E3(bp)) {
12924 			int idx = BP_FW_MB_IDX(bp);
12925 			u32 cap;
12926 
12927 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
12928 			if (ulp_type == CNIC_ULP_ISCSI)
12929 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
12930 			else if (ulp_type == CNIC_ULP_FCOE)
12931 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
12932 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
12933 		}
12934 		break;
12935 	}
12936 
12937 	default:
12938 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
12939 		rc = -EINVAL;
12940 	}
12941 
12942 	return rc;
12943 }
12944 
12945 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
12946 {
12947 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12948 
12949 	if (bp->flags & USING_MSIX_FLAG) {
12950 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
12951 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
12952 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
12953 	} else {
12954 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
12955 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
12956 	}
12957 	if (!CHIP_IS_E1x(bp))
12958 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
12959 	else
12960 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
12961 
12962 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
12963 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
12964 	cp->irq_arr[1].status_blk = bp->def_status_blk;
12965 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
12966 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
12967 
12968 	cp->num_irq = 2;
12969 }
12970 
12971 void bnx2x_setup_cnic_info(struct bnx2x *bp)
12972 {
12973 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12974 
12975 
12976 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
12977 			     bnx2x_cid_ilt_lines(bp);
12978 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
12979 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
12980 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
12981 
12982 	if (NO_ISCSI_OOO(bp))
12983 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
12984 }
12985 
12986 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
12987 			       void *data)
12988 {
12989 	struct bnx2x *bp = netdev_priv(dev);
12990 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12991 	int rc;
12992 
12993 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
12994 
12995 	if (ops == NULL) {
12996 		BNX2X_ERR("NULL ops received\n");
12997 		return -EINVAL;
12998 	}
12999 
13000 	if (!CNIC_SUPPORT(bp)) {
13001 		BNX2X_ERR("Can't register CNIC when not supported\n");
13002 		return -EOPNOTSUPP;
13003 	}
13004 
13005 	if (!CNIC_LOADED(bp)) {
13006 		rc = bnx2x_load_cnic(bp);
13007 		if (rc) {
13008 			BNX2X_ERR("CNIC-related load failed\n");
13009 			return rc;
13010 		}
13011 
13012 	}
13013 
13014 	bp->cnic_enabled = true;
13015 
13016 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
13017 	if (!bp->cnic_kwq)
13018 		return -ENOMEM;
13019 
13020 	bp->cnic_kwq_cons = bp->cnic_kwq;
13021 	bp->cnic_kwq_prod = bp->cnic_kwq;
13022 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
13023 
13024 	bp->cnic_spq_pending = 0;
13025 	bp->cnic_kwq_pending = 0;
13026 
13027 	bp->cnic_data = data;
13028 
13029 	cp->num_irq = 0;
13030 	cp->drv_state |= CNIC_DRV_STATE_REGD;
13031 	cp->iro_arr = bp->iro_arr;
13032 
13033 	bnx2x_setup_cnic_irq_info(bp);
13034 
13035 	rcu_assign_pointer(bp->cnic_ops, ops);
13036 
13037 	return 0;
13038 }
13039 
13040 static int bnx2x_unregister_cnic(struct net_device *dev)
13041 {
13042 	struct bnx2x *bp = netdev_priv(dev);
13043 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13044 
13045 	mutex_lock(&bp->cnic_mutex);
13046 	cp->drv_state = 0;
13047 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
13048 	mutex_unlock(&bp->cnic_mutex);
13049 	synchronize_rcu();
13050 	kfree(bp->cnic_kwq);
13051 	bp->cnic_kwq = NULL;
13052 
13053 	return 0;
13054 }
13055 
13056 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
13057 {
13058 	struct bnx2x *bp = netdev_priv(dev);
13059 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13060 
13061 	/* If both iSCSI and FCoE are disabled - return NULL in
13062 	 * order to indicate CNIC that it should not try to work
13063 	 * with this device.
13064 	 */
13065 	if (NO_ISCSI(bp) && NO_FCOE(bp))
13066 		return NULL;
13067 
13068 	cp->drv_owner = THIS_MODULE;
13069 	cp->chip_id = CHIP_ID(bp);
13070 	cp->pdev = bp->pdev;
13071 	cp->io_base = bp->regview;
13072 	cp->io_base2 = bp->doorbells;
13073 	cp->max_kwqe_pending = 8;
13074 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
13075 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13076 			     bnx2x_cid_ilt_lines(bp);
13077 	cp->ctx_tbl_len = CNIC_ILT_LINES;
13078 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13079 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
13080 	cp->drv_ctl = bnx2x_drv_ctl;
13081 	cp->drv_register_cnic = bnx2x_register_cnic;
13082 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
13083 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13084 	cp->iscsi_l2_client_id =
13085 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13086 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13087 
13088 	if (NO_ISCSI_OOO(bp))
13089 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13090 
13091 	if (NO_ISCSI(bp))
13092 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
13093 
13094 	if (NO_FCOE(bp))
13095 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
13096 
13097 	BNX2X_DEV_INFO(
13098 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
13099 	   cp->ctx_blk_size,
13100 	   cp->ctx_tbl_offset,
13101 	   cp->ctx_tbl_len,
13102 	   cp->starting_cid);
13103 	return cp;
13104 }
13105 
13106 
13107