1 /* bnx2x_main.c: Broadcom Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation. 8 * 9 * Maintained by: Eilon Greenstein <eilong@broadcom.com> 10 * Written by: Eliezer Tamir 11 * Based on code from Michael Chan's bnx2 driver 12 * UDP CSUM errata workaround by Arik Gendelman 13 * Slowpath and fastpath rework by Vladislav Zolotarov 14 * Statistics and Link management by Yitchak Gertner 15 * 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/kernel.h> 23 #include <linux/device.h> /* for dev_info() */ 24 #include <linux/timer.h> 25 #include <linux/errno.h> 26 #include <linux/ioport.h> 27 #include <linux/slab.h> 28 #include <linux/interrupt.h> 29 #include <linux/pci.h> 30 #include <linux/init.h> 31 #include <linux/netdevice.h> 32 #include <linux/etherdevice.h> 33 #include <linux/skbuff.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/bitops.h> 36 #include <linux/irq.h> 37 #include <linux/delay.h> 38 #include <asm/byteorder.h> 39 #include <linux/time.h> 40 #include <linux/ethtool.h> 41 #include <linux/mii.h> 42 #include <linux/if_vlan.h> 43 #include <net/ip.h> 44 #include <net/ipv6.h> 45 #include <net/tcp.h> 46 #include <net/checksum.h> 47 #include <net/ip6_checksum.h> 48 #include <linux/workqueue.h> 49 #include <linux/crc32.h> 50 #include <linux/crc32c.h> 51 #include <linux/prefetch.h> 52 #include <linux/zlib.h> 53 #include <linux/io.h> 54 #include <linux/semaphore.h> 55 #include <linux/stringify.h> 56 #include <linux/vmalloc.h> 57 58 #include "bnx2x.h" 59 #include "bnx2x_init.h" 60 #include "bnx2x_init_ops.h" 61 #include "bnx2x_cmn.h" 62 #include "bnx2x_vfpf.h" 63 #include "bnx2x_dcb.h" 64 #include "bnx2x_sp.h" 65 66 #include <linux/firmware.h> 67 #include "bnx2x_fw_file_hdr.h" 68 /* FW files */ 69 #define FW_FILE_VERSION \ 70 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \ 71 __stringify(BCM_5710_FW_MINOR_VERSION) "." \ 72 __stringify(BCM_5710_FW_REVISION_VERSION) "." \ 73 __stringify(BCM_5710_FW_ENGINEERING_VERSION) 74 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw" 75 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw" 76 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw" 77 78 /* Time in jiffies before concluding the transmitter is hung */ 79 #define TX_TIMEOUT (5*HZ) 80 81 static char version[] = 82 "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver " 83 DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; 84 85 MODULE_AUTHOR("Eliezer Tamir"); 86 MODULE_DESCRIPTION("Broadcom NetXtreme II " 87 "BCM57710/57711/57711E/" 88 "57712/57712_MF/57800/57800_MF/57810/57810_MF/" 89 "57840/57840_MF Driver"); 90 MODULE_LICENSE("GPL"); 91 MODULE_VERSION(DRV_MODULE_VERSION); 92 MODULE_FIRMWARE(FW_FILE_NAME_E1); 93 MODULE_FIRMWARE(FW_FILE_NAME_E1H); 94 MODULE_FIRMWARE(FW_FILE_NAME_E2); 95 96 int num_queues; 97 module_param(num_queues, int, 0); 98 MODULE_PARM_DESC(num_queues, 99 " Set number of queues (default is as a number of CPUs)"); 100 101 static int disable_tpa; 102 module_param(disable_tpa, int, 0); 103 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature"); 104 105 int int_mode; 106 module_param(int_mode, int, 0); 107 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X " 108 "(1 INT#x; 2 MSI)"); 109 110 static int dropless_fc; 111 module_param(dropless_fc, int, 0); 112 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring"); 113 114 static int mrrs = -1; 115 module_param(mrrs, int, 0); 116 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)"); 117 118 static int debug; 119 module_param(debug, int, 0); 120 MODULE_PARM_DESC(debug, " Default debug msglevel"); 121 122 struct workqueue_struct *bnx2x_wq; 123 124 struct bnx2x_mac_vals { 125 u32 xmac_addr; 126 u32 xmac_val; 127 u32 emac_addr; 128 u32 emac_val; 129 u32 umac_addr; 130 u32 umac_val; 131 u32 bmac_addr; 132 u32 bmac_val[2]; 133 }; 134 135 enum bnx2x_board_type { 136 BCM57710 = 0, 137 BCM57711, 138 BCM57711E, 139 BCM57712, 140 BCM57712_MF, 141 BCM57712_VF, 142 BCM57800, 143 BCM57800_MF, 144 BCM57800_VF, 145 BCM57810, 146 BCM57810_MF, 147 BCM57810_VF, 148 BCM57840_4_10, 149 BCM57840_2_20, 150 BCM57840_MF, 151 BCM57840_VF, 152 BCM57811, 153 BCM57811_MF, 154 BCM57840_O, 155 BCM57840_MFO, 156 BCM57811_VF 157 }; 158 159 /* indexed by board_type, above */ 160 static struct { 161 char *name; 162 } board_info[] = { 163 [BCM57710] = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" }, 164 [BCM57711] = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" }, 165 [BCM57711E] = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" }, 166 [BCM57712] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" }, 167 [BCM57712_MF] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" }, 168 [BCM57712_VF] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" }, 169 [BCM57800] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" }, 170 [BCM57800_MF] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" }, 171 [BCM57800_VF] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" }, 172 [BCM57810] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" }, 173 [BCM57810_MF] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" }, 174 [BCM57810_VF] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" }, 175 [BCM57840_4_10] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" }, 176 [BCM57840_2_20] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" }, 177 [BCM57840_MF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" }, 178 [BCM57840_VF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }, 179 [BCM57811] = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" }, 180 [BCM57811_MF] = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" }, 181 [BCM57840_O] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" }, 182 [BCM57840_MFO] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" }, 183 [BCM57811_VF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" } 184 }; 185 186 #ifndef PCI_DEVICE_ID_NX2_57710 187 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710 188 #endif 189 #ifndef PCI_DEVICE_ID_NX2_57711 190 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711 191 #endif 192 #ifndef PCI_DEVICE_ID_NX2_57711E 193 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E 194 #endif 195 #ifndef PCI_DEVICE_ID_NX2_57712 196 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712 197 #endif 198 #ifndef PCI_DEVICE_ID_NX2_57712_MF 199 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF 200 #endif 201 #ifndef PCI_DEVICE_ID_NX2_57712_VF 202 #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF 203 #endif 204 #ifndef PCI_DEVICE_ID_NX2_57800 205 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800 206 #endif 207 #ifndef PCI_DEVICE_ID_NX2_57800_MF 208 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF 209 #endif 210 #ifndef PCI_DEVICE_ID_NX2_57800_VF 211 #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF 212 #endif 213 #ifndef PCI_DEVICE_ID_NX2_57810 214 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810 215 #endif 216 #ifndef PCI_DEVICE_ID_NX2_57810_MF 217 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF 218 #endif 219 #ifndef PCI_DEVICE_ID_NX2_57840_O 220 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE 221 #endif 222 #ifndef PCI_DEVICE_ID_NX2_57810_VF 223 #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF 224 #endif 225 #ifndef PCI_DEVICE_ID_NX2_57840_4_10 226 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10 227 #endif 228 #ifndef PCI_DEVICE_ID_NX2_57840_2_20 229 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20 230 #endif 231 #ifndef PCI_DEVICE_ID_NX2_57840_MFO 232 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE 233 #endif 234 #ifndef PCI_DEVICE_ID_NX2_57840_MF 235 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF 236 #endif 237 #ifndef PCI_DEVICE_ID_NX2_57840_VF 238 #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF 239 #endif 240 #ifndef PCI_DEVICE_ID_NX2_57811 241 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811 242 #endif 243 #ifndef PCI_DEVICE_ID_NX2_57811_MF 244 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF 245 #endif 246 #ifndef PCI_DEVICE_ID_NX2_57811_VF 247 #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF 248 #endif 249 250 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = { 251 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 }, 252 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 }, 253 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E }, 254 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 }, 255 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF }, 256 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF }, 257 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 }, 258 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF }, 259 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF }, 260 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 }, 261 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF }, 262 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O }, 263 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 }, 264 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 }, 265 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF }, 266 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO }, 267 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF }, 268 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF }, 269 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 }, 270 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF }, 271 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF }, 272 { 0 } 273 }; 274 275 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl); 276 277 /* Global resources for unloading a previously loaded device */ 278 #define BNX2X_PREV_WAIT_NEEDED 1 279 static DEFINE_SEMAPHORE(bnx2x_prev_sem); 280 static LIST_HEAD(bnx2x_prev_list); 281 /**************************************************************************** 282 * General service functions 283 ****************************************************************************/ 284 285 static void __storm_memset_dma_mapping(struct bnx2x *bp, 286 u32 addr, dma_addr_t mapping) 287 { 288 REG_WR(bp, addr, U64_LO(mapping)); 289 REG_WR(bp, addr + 4, U64_HI(mapping)); 290 } 291 292 static void storm_memset_spq_addr(struct bnx2x *bp, 293 dma_addr_t mapping, u16 abs_fid) 294 { 295 u32 addr = XSEM_REG_FAST_MEMORY + 296 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid); 297 298 __storm_memset_dma_mapping(bp, addr, mapping); 299 } 300 301 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid, 302 u16 pf_id) 303 { 304 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid), 305 pf_id); 306 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid), 307 pf_id); 308 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid), 309 pf_id); 310 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid), 311 pf_id); 312 } 313 314 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid, 315 u8 enable) 316 { 317 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid), 318 enable); 319 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid), 320 enable); 321 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid), 322 enable); 323 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid), 324 enable); 325 } 326 327 static void storm_memset_eq_data(struct bnx2x *bp, 328 struct event_ring_data *eq_data, 329 u16 pfid) 330 { 331 size_t size = sizeof(struct event_ring_data); 332 333 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid); 334 335 __storm_memset_struct(bp, addr, size, (u32 *)eq_data); 336 } 337 338 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod, 339 u16 pfid) 340 { 341 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid); 342 REG_WR16(bp, addr, eq_prod); 343 } 344 345 /* used only at init 346 * locking is done by mcp 347 */ 348 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val) 349 { 350 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); 351 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val); 352 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 353 PCICFG_VENDOR_ID_OFFSET); 354 } 355 356 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr) 357 { 358 u32 val; 359 360 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); 361 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val); 362 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 363 PCICFG_VENDOR_ID_OFFSET); 364 365 return val; 366 } 367 368 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]" 369 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]" 370 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]" 371 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]" 372 #define DMAE_DP_DST_NONE "dst_addr [none]" 373 374 static void bnx2x_dp_dmae(struct bnx2x *bp, 375 struct dmae_command *dmae, int msglvl) 376 { 377 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC; 378 int i; 379 380 switch (dmae->opcode & DMAE_COMMAND_DST) { 381 case DMAE_CMD_DST_PCI: 382 if (src_type == DMAE_CMD_SRC_PCI) 383 DP(msglvl, "DMAE: opcode 0x%08x\n" 384 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n" 385 "comp_addr [%x:%08x], comp_val 0x%08x\n", 386 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 387 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 388 dmae->comp_addr_hi, dmae->comp_addr_lo, 389 dmae->comp_val); 390 else 391 DP(msglvl, "DMAE: opcode 0x%08x\n" 392 "src [%08x], len [%d*4], dst [%x:%08x]\n" 393 "comp_addr [%x:%08x], comp_val 0x%08x\n", 394 dmae->opcode, dmae->src_addr_lo >> 2, 395 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 396 dmae->comp_addr_hi, dmae->comp_addr_lo, 397 dmae->comp_val); 398 break; 399 case DMAE_CMD_DST_GRC: 400 if (src_type == DMAE_CMD_SRC_PCI) 401 DP(msglvl, "DMAE: opcode 0x%08x\n" 402 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n" 403 "comp_addr [%x:%08x], comp_val 0x%08x\n", 404 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 405 dmae->len, dmae->dst_addr_lo >> 2, 406 dmae->comp_addr_hi, dmae->comp_addr_lo, 407 dmae->comp_val); 408 else 409 DP(msglvl, "DMAE: opcode 0x%08x\n" 410 "src [%08x], len [%d*4], dst [%08x]\n" 411 "comp_addr [%x:%08x], comp_val 0x%08x\n", 412 dmae->opcode, dmae->src_addr_lo >> 2, 413 dmae->len, dmae->dst_addr_lo >> 2, 414 dmae->comp_addr_hi, dmae->comp_addr_lo, 415 dmae->comp_val); 416 break; 417 default: 418 if (src_type == DMAE_CMD_SRC_PCI) 419 DP(msglvl, "DMAE: opcode 0x%08x\n" 420 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n" 421 "comp_addr [%x:%08x] comp_val 0x%08x\n", 422 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 423 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 424 dmae->comp_val); 425 else 426 DP(msglvl, "DMAE: opcode 0x%08x\n" 427 "src_addr [%08x] len [%d * 4] dst_addr [none]\n" 428 "comp_addr [%x:%08x] comp_val 0x%08x\n", 429 dmae->opcode, dmae->src_addr_lo >> 2, 430 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 431 dmae->comp_val); 432 break; 433 } 434 435 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) 436 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n", 437 i, *(((u32 *)dmae) + i)); 438 } 439 440 /* copy command into DMAE command memory and set DMAE command go */ 441 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx) 442 { 443 u32 cmd_offset; 444 int i; 445 446 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx); 447 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) { 448 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i)); 449 } 450 REG_WR(bp, dmae_reg_go_c[idx], 1); 451 } 452 453 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type) 454 { 455 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) | 456 DMAE_CMD_C_ENABLE); 457 } 458 459 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode) 460 { 461 return opcode & ~DMAE_CMD_SRC_RESET; 462 } 463 464 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type, 465 bool with_comp, u8 comp_type) 466 { 467 u32 opcode = 0; 468 469 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) | 470 (dst_type << DMAE_COMMAND_DST_SHIFT)); 471 472 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); 473 474 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 475 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) | 476 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT)); 477 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT); 478 479 #ifdef __BIG_ENDIAN 480 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 481 #else 482 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 483 #endif 484 if (with_comp) 485 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type); 486 return opcode; 487 } 488 489 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, 490 struct dmae_command *dmae, 491 u8 src_type, u8 dst_type) 492 { 493 memset(dmae, 0, sizeof(struct dmae_command)); 494 495 /* set the opcode */ 496 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type, 497 true, DMAE_COMP_PCI); 498 499 /* fill in the completion parameters */ 500 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp)); 501 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp)); 502 dmae->comp_val = DMAE_COMP_VAL; 503 } 504 505 /* issue a dmae command over the init-channel and wait for completion */ 506 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae, 507 u32 *comp) 508 { 509 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000; 510 int rc = 0; 511 512 bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE); 513 514 /* Lock the dmae channel. Disable BHs to prevent a dead-lock 515 * as long as this code is called both from syscall context and 516 * from ndo_set_rx_mode() flow that may be called from BH. 517 */ 518 spin_lock_bh(&bp->dmae_lock); 519 520 /* reset completion */ 521 *comp = 0; 522 523 /* post the command on the channel used for initializations */ 524 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp)); 525 526 /* wait for completion */ 527 udelay(5); 528 while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 529 530 if (!cnt || 531 (bp->recovery_state != BNX2X_RECOVERY_DONE && 532 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { 533 BNX2X_ERR("DMAE timeout!\n"); 534 rc = DMAE_TIMEOUT; 535 goto unlock; 536 } 537 cnt--; 538 udelay(50); 539 } 540 if (*comp & DMAE_PCI_ERR_FLAG) { 541 BNX2X_ERR("DMAE PCI error!\n"); 542 rc = DMAE_PCI_ERROR; 543 } 544 545 unlock: 546 spin_unlock_bh(&bp->dmae_lock); 547 return rc; 548 } 549 550 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr, 551 u32 len32) 552 { 553 int rc; 554 struct dmae_command dmae; 555 556 if (!bp->dmae_ready) { 557 u32 *data = bnx2x_sp(bp, wb_data[0]); 558 559 if (CHIP_IS_E1(bp)) 560 bnx2x_init_ind_wr(bp, dst_addr, data, len32); 561 else 562 bnx2x_init_str_wr(bp, dst_addr, data, len32); 563 return; 564 } 565 566 /* set opcode and fixed command fields */ 567 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 568 569 /* fill in addresses and len */ 570 dmae.src_addr_lo = U64_LO(dma_addr); 571 dmae.src_addr_hi = U64_HI(dma_addr); 572 dmae.dst_addr_lo = dst_addr >> 2; 573 dmae.dst_addr_hi = 0; 574 dmae.len = len32; 575 576 /* issue the command and wait for completion */ 577 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp)); 578 if (rc) { 579 BNX2X_ERR("DMAE returned failure %d\n", rc); 580 bnx2x_panic(); 581 } 582 } 583 584 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32) 585 { 586 int rc; 587 struct dmae_command dmae; 588 589 if (!bp->dmae_ready) { 590 u32 *data = bnx2x_sp(bp, wb_data[0]); 591 int i; 592 593 if (CHIP_IS_E1(bp)) 594 for (i = 0; i < len32; i++) 595 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4); 596 else 597 for (i = 0; i < len32; i++) 598 data[i] = REG_RD(bp, src_addr + i*4); 599 600 return; 601 } 602 603 /* set opcode and fixed command fields */ 604 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 605 606 /* fill in addresses and len */ 607 dmae.src_addr_lo = src_addr >> 2; 608 dmae.src_addr_hi = 0; 609 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data)); 610 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data)); 611 dmae.len = len32; 612 613 /* issue the command and wait for completion */ 614 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp)); 615 if (rc) { 616 BNX2X_ERR("DMAE returned failure %d\n", rc); 617 bnx2x_panic(); 618 } 619 } 620 621 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr, 622 u32 addr, u32 len) 623 { 624 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp); 625 int offset = 0; 626 627 while (len > dmae_wr_max) { 628 bnx2x_write_dmae(bp, phys_addr + offset, 629 addr + offset, dmae_wr_max); 630 offset += dmae_wr_max * 4; 631 len -= dmae_wr_max; 632 } 633 634 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len); 635 } 636 637 static int bnx2x_mc_assert(struct bnx2x *bp) 638 { 639 char last_idx; 640 int i, rc = 0; 641 u32 row0, row1, row2, row3; 642 643 /* XSTORM */ 644 last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM + 645 XSTORM_ASSERT_LIST_INDEX_OFFSET); 646 if (last_idx) 647 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 648 649 /* print the asserts */ 650 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { 651 652 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM + 653 XSTORM_ASSERT_LIST_OFFSET(i)); 654 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM + 655 XSTORM_ASSERT_LIST_OFFSET(i) + 4); 656 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM + 657 XSTORM_ASSERT_LIST_OFFSET(i) + 8); 658 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM + 659 XSTORM_ASSERT_LIST_OFFSET(i) + 12); 660 661 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 662 BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 663 i, row3, row2, row1, row0); 664 rc++; 665 } else { 666 break; 667 } 668 } 669 670 /* TSTORM */ 671 last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM + 672 TSTORM_ASSERT_LIST_INDEX_OFFSET); 673 if (last_idx) 674 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 675 676 /* print the asserts */ 677 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { 678 679 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM + 680 TSTORM_ASSERT_LIST_OFFSET(i)); 681 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM + 682 TSTORM_ASSERT_LIST_OFFSET(i) + 4); 683 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM + 684 TSTORM_ASSERT_LIST_OFFSET(i) + 8); 685 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM + 686 TSTORM_ASSERT_LIST_OFFSET(i) + 12); 687 688 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 689 BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 690 i, row3, row2, row1, row0); 691 rc++; 692 } else { 693 break; 694 } 695 } 696 697 /* CSTORM */ 698 last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM + 699 CSTORM_ASSERT_LIST_INDEX_OFFSET); 700 if (last_idx) 701 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 702 703 /* print the asserts */ 704 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { 705 706 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM + 707 CSTORM_ASSERT_LIST_OFFSET(i)); 708 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM + 709 CSTORM_ASSERT_LIST_OFFSET(i) + 4); 710 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM + 711 CSTORM_ASSERT_LIST_OFFSET(i) + 8); 712 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM + 713 CSTORM_ASSERT_LIST_OFFSET(i) + 12); 714 715 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 716 BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 717 i, row3, row2, row1, row0); 718 rc++; 719 } else { 720 break; 721 } 722 } 723 724 /* USTORM */ 725 last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM + 726 USTORM_ASSERT_LIST_INDEX_OFFSET); 727 if (last_idx) 728 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 729 730 /* print the asserts */ 731 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { 732 733 row0 = REG_RD(bp, BAR_USTRORM_INTMEM + 734 USTORM_ASSERT_LIST_OFFSET(i)); 735 row1 = REG_RD(bp, BAR_USTRORM_INTMEM + 736 USTORM_ASSERT_LIST_OFFSET(i) + 4); 737 row2 = REG_RD(bp, BAR_USTRORM_INTMEM + 738 USTORM_ASSERT_LIST_OFFSET(i) + 8); 739 row3 = REG_RD(bp, BAR_USTRORM_INTMEM + 740 USTORM_ASSERT_LIST_OFFSET(i) + 12); 741 742 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 743 BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 744 i, row3, row2, row1, row0); 745 rc++; 746 } else { 747 break; 748 } 749 } 750 751 return rc; 752 } 753 754 #define MCPR_TRACE_BUFFER_SIZE (0x800) 755 #define SCRATCH_BUFFER_SIZE(bp) \ 756 (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000)) 757 758 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl) 759 { 760 u32 addr, val; 761 u32 mark, offset; 762 __be32 data[9]; 763 int word; 764 u32 trace_shmem_base; 765 if (BP_NOMCP(bp)) { 766 BNX2X_ERR("NO MCP - can not dump\n"); 767 return; 768 } 769 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n", 770 (bp->common.bc_ver & 0xff0000) >> 16, 771 (bp->common.bc_ver & 0xff00) >> 8, 772 (bp->common.bc_ver & 0xff)); 773 774 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER); 775 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER)) 776 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val); 777 778 if (BP_PATH(bp) == 0) 779 trace_shmem_base = bp->common.shmem_base; 780 else 781 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr); 782 783 /* sanity */ 784 if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE || 785 trace_shmem_base >= MCPR_SCRATCH_BASE(bp) + 786 SCRATCH_BUFFER_SIZE(bp)) { 787 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n", 788 trace_shmem_base); 789 return; 790 } 791 792 addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE; 793 794 /* validate TRCB signature */ 795 mark = REG_RD(bp, addr); 796 if (mark != MFW_TRACE_SIGNATURE) { 797 BNX2X_ERR("Trace buffer signature is missing."); 798 return ; 799 } 800 801 /* read cyclic buffer pointer */ 802 addr += 4; 803 mark = REG_RD(bp, addr); 804 mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000; 805 if (mark >= trace_shmem_base || mark < addr + 4) { 806 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n"); 807 return; 808 } 809 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark); 810 811 printk("%s", lvl); 812 813 /* dump buffer after the mark */ 814 for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) { 815 for (word = 0; word < 8; word++) 816 data[word] = htonl(REG_RD(bp, offset + 4*word)); 817 data[8] = 0x0; 818 pr_cont("%s", (char *)data); 819 } 820 821 /* dump buffer before the mark */ 822 for (offset = addr + 4; offset <= mark; offset += 0x8*4) { 823 for (word = 0; word < 8; word++) 824 data[word] = htonl(REG_RD(bp, offset + 4*word)); 825 data[8] = 0x0; 826 pr_cont("%s", (char *)data); 827 } 828 printk("%s" "end of fw dump\n", lvl); 829 } 830 831 static void bnx2x_fw_dump(struct bnx2x *bp) 832 { 833 bnx2x_fw_dump_lvl(bp, KERN_ERR); 834 } 835 836 static void bnx2x_hc_int_disable(struct bnx2x *bp) 837 { 838 int port = BP_PORT(bp); 839 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 840 u32 val = REG_RD(bp, addr); 841 842 /* in E1 we must use only PCI configuration space to disable 843 * MSI/MSIX capability 844 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block 845 */ 846 if (CHIP_IS_E1(bp)) { 847 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on 848 * Use mask register to prevent from HC sending interrupts 849 * after we exit the function 850 */ 851 REG_WR(bp, HC_REG_INT_MASK + port*4, 0); 852 853 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 854 HC_CONFIG_0_REG_INT_LINE_EN_0 | 855 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 856 } else 857 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 858 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 859 HC_CONFIG_0_REG_INT_LINE_EN_0 | 860 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 861 862 DP(NETIF_MSG_IFDOWN, 863 "write %x to HC %d (addr 0x%x)\n", 864 val, port, addr); 865 866 /* flush all outstanding writes */ 867 mmiowb(); 868 869 REG_WR(bp, addr, val); 870 if (REG_RD(bp, addr) != val) 871 BNX2X_ERR("BUG! Proper val not read from IGU!\n"); 872 } 873 874 static void bnx2x_igu_int_disable(struct bnx2x *bp) 875 { 876 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 877 878 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 879 IGU_PF_CONF_INT_LINE_EN | 880 IGU_PF_CONF_ATTN_BIT_EN); 881 882 DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val); 883 884 /* flush all outstanding writes */ 885 mmiowb(); 886 887 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 888 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val) 889 BNX2X_ERR("BUG! Proper val not read from IGU!\n"); 890 } 891 892 static void bnx2x_int_disable(struct bnx2x *bp) 893 { 894 if (bp->common.int_block == INT_BLOCK_HC) 895 bnx2x_hc_int_disable(bp); 896 else 897 bnx2x_igu_int_disable(bp); 898 } 899 900 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int) 901 { 902 int i; 903 u16 j; 904 struct hc_sp_status_block_data sp_sb_data; 905 int func = BP_FUNC(bp); 906 #ifdef BNX2X_STOP_ON_ERROR 907 u16 start = 0, end = 0; 908 u8 cos; 909 #endif 910 if (disable_int) 911 bnx2x_int_disable(bp); 912 913 bp->stats_state = STATS_STATE_DISABLED; 914 bp->eth_stats.unrecoverable_error++; 915 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n"); 916 917 BNX2X_ERR("begin crash dump -----------------\n"); 918 919 /* Indices */ 920 /* Common */ 921 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n", 922 bp->def_idx, bp->def_att_idx, bp->attn_state, 923 bp->spq_prod_idx, bp->stats_counter); 924 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n", 925 bp->def_status_blk->atten_status_block.attn_bits, 926 bp->def_status_blk->atten_status_block.attn_bits_ack, 927 bp->def_status_blk->atten_status_block.status_block_id, 928 bp->def_status_blk->atten_status_block.attn_bits_index); 929 BNX2X_ERR(" def ("); 930 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++) 931 pr_cont("0x%x%s", 932 bp->def_status_blk->sp_sb.index_values[i], 933 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " "); 934 935 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++) 936 *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM + 937 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) + 938 i*sizeof(u32)); 939 940 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n", 941 sp_sb_data.igu_sb_id, 942 sp_sb_data.igu_seg_id, 943 sp_sb_data.p_func.pf_id, 944 sp_sb_data.p_func.vnic_id, 945 sp_sb_data.p_func.vf_id, 946 sp_sb_data.p_func.vf_valid, 947 sp_sb_data.state); 948 949 for_each_eth_queue(bp, i) { 950 struct bnx2x_fastpath *fp = &bp->fp[i]; 951 int loop; 952 struct hc_status_block_data_e2 sb_data_e2; 953 struct hc_status_block_data_e1x sb_data_e1x; 954 struct hc_status_block_sm *hc_sm_p = 955 CHIP_IS_E1x(bp) ? 956 sb_data_e1x.common.state_machine : 957 sb_data_e2.common.state_machine; 958 struct hc_index_data *hc_index_p = 959 CHIP_IS_E1x(bp) ? 960 sb_data_e1x.index_data : 961 sb_data_e2.index_data; 962 u8 data_size, cos; 963 u32 *sb_data_p; 964 struct bnx2x_fp_txdata txdata; 965 966 /* Rx */ 967 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n", 968 i, fp->rx_bd_prod, fp->rx_bd_cons, 969 fp->rx_comp_prod, 970 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb)); 971 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n", 972 fp->rx_sge_prod, fp->last_max_sge, 973 le16_to_cpu(fp->fp_hc_idx)); 974 975 /* Tx */ 976 for_each_cos_in_tx_queue(fp, cos) 977 { 978 txdata = *fp->txdata_ptr[cos]; 979 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n", 980 i, txdata.tx_pkt_prod, 981 txdata.tx_pkt_cons, txdata.tx_bd_prod, 982 txdata.tx_bd_cons, 983 le16_to_cpu(*txdata.tx_cons_sb)); 984 } 985 986 loop = CHIP_IS_E1x(bp) ? 987 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2; 988 989 /* host sb data */ 990 991 if (IS_FCOE_FP(fp)) 992 continue; 993 994 BNX2X_ERR(" run indexes ("); 995 for (j = 0; j < HC_SB_MAX_SM; j++) 996 pr_cont("0x%x%s", 997 fp->sb_running_index[j], 998 (j == HC_SB_MAX_SM - 1) ? ")" : " "); 999 1000 BNX2X_ERR(" indexes ("); 1001 for (j = 0; j < loop; j++) 1002 pr_cont("0x%x%s", 1003 fp->sb_index_values[j], 1004 (j == loop - 1) ? ")" : " "); 1005 /* fw sb data */ 1006 data_size = CHIP_IS_E1x(bp) ? 1007 sizeof(struct hc_status_block_data_e1x) : 1008 sizeof(struct hc_status_block_data_e2); 1009 data_size /= sizeof(u32); 1010 sb_data_p = CHIP_IS_E1x(bp) ? 1011 (u32 *)&sb_data_e1x : 1012 (u32 *)&sb_data_e2; 1013 /* copy sb data in here */ 1014 for (j = 0; j < data_size; j++) 1015 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM + 1016 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) + 1017 j * sizeof(u32)); 1018 1019 if (!CHIP_IS_E1x(bp)) { 1020 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n", 1021 sb_data_e2.common.p_func.pf_id, 1022 sb_data_e2.common.p_func.vf_id, 1023 sb_data_e2.common.p_func.vf_valid, 1024 sb_data_e2.common.p_func.vnic_id, 1025 sb_data_e2.common.same_igu_sb_1b, 1026 sb_data_e2.common.state); 1027 } else { 1028 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n", 1029 sb_data_e1x.common.p_func.pf_id, 1030 sb_data_e1x.common.p_func.vf_id, 1031 sb_data_e1x.common.p_func.vf_valid, 1032 sb_data_e1x.common.p_func.vnic_id, 1033 sb_data_e1x.common.same_igu_sb_1b, 1034 sb_data_e1x.common.state); 1035 } 1036 1037 /* SB_SMs data */ 1038 for (j = 0; j < HC_SB_MAX_SM; j++) { 1039 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n", 1040 j, hc_sm_p[j].__flags, 1041 hc_sm_p[j].igu_sb_id, 1042 hc_sm_p[j].igu_seg_id, 1043 hc_sm_p[j].time_to_expire, 1044 hc_sm_p[j].timer_value); 1045 } 1046 1047 /* Indices data */ 1048 for (j = 0; j < loop; j++) { 1049 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j, 1050 hc_index_p[j].flags, 1051 hc_index_p[j].timeout); 1052 } 1053 } 1054 1055 #ifdef BNX2X_STOP_ON_ERROR 1056 1057 /* event queue */ 1058 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod); 1059 for (i = 0; i < NUM_EQ_DESC; i++) { 1060 u32 *data = (u32 *)&bp->eq_ring[i].message.data; 1061 1062 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n", 1063 i, bp->eq_ring[i].message.opcode, 1064 bp->eq_ring[i].message.error); 1065 BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]); 1066 } 1067 1068 /* Rings */ 1069 /* Rx */ 1070 for_each_valid_rx_queue(bp, i) { 1071 struct bnx2x_fastpath *fp = &bp->fp[i]; 1072 1073 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10); 1074 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503); 1075 for (j = start; j != end; j = RX_BD(j + 1)) { 1076 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j]; 1077 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j]; 1078 1079 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n", 1080 i, j, rx_bd[1], rx_bd[0], sw_bd->data); 1081 } 1082 1083 start = RX_SGE(fp->rx_sge_prod); 1084 end = RX_SGE(fp->last_max_sge); 1085 for (j = start; j != end; j = RX_SGE(j + 1)) { 1086 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j]; 1087 struct sw_rx_page *sw_page = &fp->rx_page_ring[j]; 1088 1089 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n", 1090 i, j, rx_sge[1], rx_sge[0], sw_page->page); 1091 } 1092 1093 start = RCQ_BD(fp->rx_comp_cons - 10); 1094 end = RCQ_BD(fp->rx_comp_cons + 503); 1095 for (j = start; j != end; j = RCQ_BD(j + 1)) { 1096 u32 *cqe = (u32 *)&fp->rx_comp_ring[j]; 1097 1098 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n", 1099 i, j, cqe[0], cqe[1], cqe[2], cqe[3]); 1100 } 1101 } 1102 1103 /* Tx */ 1104 for_each_valid_tx_queue(bp, i) { 1105 struct bnx2x_fastpath *fp = &bp->fp[i]; 1106 for_each_cos_in_tx_queue(fp, cos) { 1107 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 1108 1109 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10); 1110 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245); 1111 for (j = start; j != end; j = TX_BD(j + 1)) { 1112 struct sw_tx_bd *sw_bd = 1113 &txdata->tx_buf_ring[j]; 1114 1115 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n", 1116 i, cos, j, sw_bd->skb, 1117 sw_bd->first_bd); 1118 } 1119 1120 start = TX_BD(txdata->tx_bd_cons - 10); 1121 end = TX_BD(txdata->tx_bd_cons + 254); 1122 for (j = start; j != end; j = TX_BD(j + 1)) { 1123 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j]; 1124 1125 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n", 1126 i, cos, j, tx_bd[0], tx_bd[1], 1127 tx_bd[2], tx_bd[3]); 1128 } 1129 } 1130 } 1131 #endif 1132 bnx2x_fw_dump(bp); 1133 bnx2x_mc_assert(bp); 1134 BNX2X_ERR("end crash dump -----------------\n"); 1135 } 1136 1137 /* 1138 * FLR Support for E2 1139 * 1140 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW 1141 * initialization. 1142 */ 1143 #define FLR_WAIT_USEC 10000 /* 10 milliseconds */ 1144 #define FLR_WAIT_INTERVAL 50 /* usec */ 1145 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */ 1146 1147 struct pbf_pN_buf_regs { 1148 int pN; 1149 u32 init_crd; 1150 u32 crd; 1151 u32 crd_freed; 1152 }; 1153 1154 struct pbf_pN_cmd_regs { 1155 int pN; 1156 u32 lines_occup; 1157 u32 lines_freed; 1158 }; 1159 1160 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp, 1161 struct pbf_pN_buf_regs *regs, 1162 u32 poll_count) 1163 { 1164 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start; 1165 u32 cur_cnt = poll_count; 1166 1167 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed); 1168 crd = crd_start = REG_RD(bp, regs->crd); 1169 init_crd = REG_RD(bp, regs->init_crd); 1170 1171 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 1172 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd); 1173 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 1174 1175 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) < 1176 (init_crd - crd_start))) { 1177 if (cur_cnt--) { 1178 udelay(FLR_WAIT_INTERVAL); 1179 crd = REG_RD(bp, regs->crd); 1180 crd_freed = REG_RD(bp, regs->crd_freed); 1181 } else { 1182 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n", 1183 regs->pN); 1184 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n", 1185 regs->pN, crd); 1186 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n", 1187 regs->pN, crd_freed); 1188 break; 1189 } 1190 } 1191 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n", 1192 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 1193 } 1194 1195 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp, 1196 struct pbf_pN_cmd_regs *regs, 1197 u32 poll_count) 1198 { 1199 u32 occup, to_free, freed, freed_start; 1200 u32 cur_cnt = poll_count; 1201 1202 occup = to_free = REG_RD(bp, regs->lines_occup); 1203 freed = freed_start = REG_RD(bp, regs->lines_freed); 1204 1205 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 1206 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 1207 1208 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) { 1209 if (cur_cnt--) { 1210 udelay(FLR_WAIT_INTERVAL); 1211 occup = REG_RD(bp, regs->lines_occup); 1212 freed = REG_RD(bp, regs->lines_freed); 1213 } else { 1214 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n", 1215 regs->pN); 1216 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", 1217 regs->pN, occup); 1218 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", 1219 regs->pN, freed); 1220 break; 1221 } 1222 } 1223 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n", 1224 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 1225 } 1226 1227 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg, 1228 u32 expected, u32 poll_count) 1229 { 1230 u32 cur_cnt = poll_count; 1231 u32 val; 1232 1233 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--) 1234 udelay(FLR_WAIT_INTERVAL); 1235 1236 return val; 1237 } 1238 1239 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg, 1240 char *msg, u32 poll_cnt) 1241 { 1242 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt); 1243 if (val != 0) { 1244 BNX2X_ERR("%s usage count=%d\n", msg, val); 1245 return 1; 1246 } 1247 return 0; 1248 } 1249 1250 /* Common routines with VF FLR cleanup */ 1251 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp) 1252 { 1253 /* adjust polling timeout */ 1254 if (CHIP_REV_IS_EMUL(bp)) 1255 return FLR_POLL_CNT * 2000; 1256 1257 if (CHIP_REV_IS_FPGA(bp)) 1258 return FLR_POLL_CNT * 120; 1259 1260 return FLR_POLL_CNT; 1261 } 1262 1263 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count) 1264 { 1265 struct pbf_pN_cmd_regs cmd_regs[] = { 1266 {0, (CHIP_IS_E3B0(bp)) ? 1267 PBF_REG_TQ_OCCUPANCY_Q0 : 1268 PBF_REG_P0_TQ_OCCUPANCY, 1269 (CHIP_IS_E3B0(bp)) ? 1270 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 1271 PBF_REG_P0_TQ_LINES_FREED_CNT}, 1272 {1, (CHIP_IS_E3B0(bp)) ? 1273 PBF_REG_TQ_OCCUPANCY_Q1 : 1274 PBF_REG_P1_TQ_OCCUPANCY, 1275 (CHIP_IS_E3B0(bp)) ? 1276 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 1277 PBF_REG_P1_TQ_LINES_FREED_CNT}, 1278 {4, (CHIP_IS_E3B0(bp)) ? 1279 PBF_REG_TQ_OCCUPANCY_LB_Q : 1280 PBF_REG_P4_TQ_OCCUPANCY, 1281 (CHIP_IS_E3B0(bp)) ? 1282 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 1283 PBF_REG_P4_TQ_LINES_FREED_CNT} 1284 }; 1285 1286 struct pbf_pN_buf_regs buf_regs[] = { 1287 {0, (CHIP_IS_E3B0(bp)) ? 1288 PBF_REG_INIT_CRD_Q0 : 1289 PBF_REG_P0_INIT_CRD , 1290 (CHIP_IS_E3B0(bp)) ? 1291 PBF_REG_CREDIT_Q0 : 1292 PBF_REG_P0_CREDIT, 1293 (CHIP_IS_E3B0(bp)) ? 1294 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 1295 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 1296 {1, (CHIP_IS_E3B0(bp)) ? 1297 PBF_REG_INIT_CRD_Q1 : 1298 PBF_REG_P1_INIT_CRD, 1299 (CHIP_IS_E3B0(bp)) ? 1300 PBF_REG_CREDIT_Q1 : 1301 PBF_REG_P1_CREDIT, 1302 (CHIP_IS_E3B0(bp)) ? 1303 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 1304 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 1305 {4, (CHIP_IS_E3B0(bp)) ? 1306 PBF_REG_INIT_CRD_LB_Q : 1307 PBF_REG_P4_INIT_CRD, 1308 (CHIP_IS_E3B0(bp)) ? 1309 PBF_REG_CREDIT_LB_Q : 1310 PBF_REG_P4_CREDIT, 1311 (CHIP_IS_E3B0(bp)) ? 1312 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 1313 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 1314 }; 1315 1316 int i; 1317 1318 /* Verify the command queues are flushed P0, P1, P4 */ 1319 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) 1320 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count); 1321 1322 /* Verify the transmission buffers are flushed P0, P1, P4 */ 1323 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) 1324 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count); 1325 } 1326 1327 #define OP_GEN_PARAM(param) \ 1328 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 1329 1330 #define OP_GEN_TYPE(type) \ 1331 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 1332 1333 #define OP_GEN_AGG_VECT(index) \ 1334 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 1335 1336 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt) 1337 { 1338 u32 op_gen_command = 0; 1339 u32 comp_addr = BAR_CSTRORM_INTMEM + 1340 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func); 1341 int ret = 0; 1342 1343 if (REG_RD(bp, comp_addr)) { 1344 BNX2X_ERR("Cleanup complete was not 0 before sending\n"); 1345 return 1; 1346 } 1347 1348 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 1349 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 1350 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 1351 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 1352 1353 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n"); 1354 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command); 1355 1356 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) { 1357 BNX2X_ERR("FW final cleanup did not succeed\n"); 1358 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n", 1359 (REG_RD(bp, comp_addr))); 1360 bnx2x_panic(); 1361 return 1; 1362 } 1363 /* Zero completion for next FLR */ 1364 REG_WR(bp, comp_addr, 0); 1365 1366 return ret; 1367 } 1368 1369 u8 bnx2x_is_pcie_pending(struct pci_dev *dev) 1370 { 1371 u16 status; 1372 1373 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status); 1374 return status & PCI_EXP_DEVSTA_TRPND; 1375 } 1376 1377 /* PF FLR specific routines 1378 */ 1379 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt) 1380 { 1381 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 1382 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1383 CFC_REG_NUM_LCIDS_INSIDE_PF, 1384 "CFC PF usage counter timed out", 1385 poll_cnt)) 1386 return 1; 1387 1388 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 1389 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1390 DORQ_REG_PF_USAGE_CNT, 1391 "DQ PF usage counter timed out", 1392 poll_cnt)) 1393 return 1; 1394 1395 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 1396 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1397 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp), 1398 "QM PF usage counter timed out", 1399 poll_cnt)) 1400 return 1; 1401 1402 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 1403 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1404 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp), 1405 "Timers VNIC usage counter timed out", 1406 poll_cnt)) 1407 return 1; 1408 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1409 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp), 1410 "Timers NUM_SCANS usage counter timed out", 1411 poll_cnt)) 1412 return 1; 1413 1414 /* Wait DMAE PF usage counter to zero */ 1415 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1416 dmae_reg_go_c[INIT_DMAE_C(bp)], 1417 "DMAE command register timed out", 1418 poll_cnt)) 1419 return 1; 1420 1421 return 0; 1422 } 1423 1424 static void bnx2x_hw_enable_status(struct bnx2x *bp) 1425 { 1426 u32 val; 1427 1428 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF); 1429 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 1430 1431 val = REG_RD(bp, PBF_REG_DISABLE_PF); 1432 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val); 1433 1434 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN); 1435 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 1436 1437 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN); 1438 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 1439 1440 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 1441 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 1442 1443 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 1444 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 1445 1446 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 1447 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 1448 1449 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 1450 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", 1451 val); 1452 } 1453 1454 static int bnx2x_pf_flr_clnup(struct bnx2x *bp) 1455 { 1456 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp); 1457 1458 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp)); 1459 1460 /* Re-enable PF target read access */ 1461 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 1462 1463 /* Poll HW usage counters */ 1464 DP(BNX2X_MSG_SP, "Polling usage counters\n"); 1465 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt)) 1466 return -EBUSY; 1467 1468 /* Zero the igu 'trailing edge' and 'leading edge' */ 1469 1470 /* Send the FW cleanup command */ 1471 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt)) 1472 return -EBUSY; 1473 1474 /* ATC cleanup */ 1475 1476 /* Verify TX hw is flushed */ 1477 bnx2x_tx_hw_flushed(bp, poll_cnt); 1478 1479 /* Wait 100ms (not adjusted according to platform) */ 1480 msleep(100); 1481 1482 /* Verify no pending pci transactions */ 1483 if (bnx2x_is_pcie_pending(bp->pdev)) 1484 BNX2X_ERR("PCIE Transactions still pending\n"); 1485 1486 /* Debug */ 1487 bnx2x_hw_enable_status(bp); 1488 1489 /* 1490 * Master enable - Due to WB DMAE writes performed before this 1491 * register is re-initialized as part of the regular function init 1492 */ 1493 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 1494 1495 return 0; 1496 } 1497 1498 static void bnx2x_hc_int_enable(struct bnx2x *bp) 1499 { 1500 int port = BP_PORT(bp); 1501 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 1502 u32 val = REG_RD(bp, addr); 1503 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; 1504 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; 1505 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; 1506 1507 if (msix) { 1508 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1509 HC_CONFIG_0_REG_INT_LINE_EN_0); 1510 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1511 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1512 if (single_msix) 1513 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 1514 } else if (msi) { 1515 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 1516 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1517 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1518 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1519 } else { 1520 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1521 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1522 HC_CONFIG_0_REG_INT_LINE_EN_0 | 1523 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1524 1525 if (!CHIP_IS_E1(bp)) { 1526 DP(NETIF_MSG_IFUP, 1527 "write %x to HC %d (addr 0x%x)\n", val, port, addr); 1528 1529 REG_WR(bp, addr, val); 1530 1531 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 1532 } 1533 } 1534 1535 if (CHIP_IS_E1(bp)) 1536 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF); 1537 1538 DP(NETIF_MSG_IFUP, 1539 "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr, 1540 (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); 1541 1542 REG_WR(bp, addr, val); 1543 /* 1544 * Ensure that HC_CONFIG is written before leading/trailing edge config 1545 */ 1546 mmiowb(); 1547 barrier(); 1548 1549 if (!CHIP_IS_E1(bp)) { 1550 /* init leading/trailing edge */ 1551 if (IS_MF(bp)) { 1552 val = (0xee0f | (1 << (BP_VN(bp) + 4))); 1553 if (bp->port.pmf) 1554 /* enable nig and gpio3 attention */ 1555 val |= 0x1100; 1556 } else 1557 val = 0xffff; 1558 1559 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); 1560 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); 1561 } 1562 1563 /* Make sure that interrupts are indeed enabled from here on */ 1564 mmiowb(); 1565 } 1566 1567 static void bnx2x_igu_int_enable(struct bnx2x *bp) 1568 { 1569 u32 val; 1570 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; 1571 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; 1572 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; 1573 1574 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 1575 1576 if (msix) { 1577 val &= ~(IGU_PF_CONF_INT_LINE_EN | 1578 IGU_PF_CONF_SINGLE_ISR_EN); 1579 val |= (IGU_PF_CONF_MSI_MSIX_EN | 1580 IGU_PF_CONF_ATTN_BIT_EN); 1581 1582 if (single_msix) 1583 val |= IGU_PF_CONF_SINGLE_ISR_EN; 1584 } else if (msi) { 1585 val &= ~IGU_PF_CONF_INT_LINE_EN; 1586 val |= (IGU_PF_CONF_MSI_MSIX_EN | 1587 IGU_PF_CONF_ATTN_BIT_EN | 1588 IGU_PF_CONF_SINGLE_ISR_EN); 1589 } else { 1590 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 1591 val |= (IGU_PF_CONF_INT_LINE_EN | 1592 IGU_PF_CONF_ATTN_BIT_EN | 1593 IGU_PF_CONF_SINGLE_ISR_EN); 1594 } 1595 1596 /* Clean previous status - need to configure igu prior to ack*/ 1597 if ((!msix) || single_msix) { 1598 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 1599 bnx2x_ack_int(bp); 1600 } 1601 1602 val |= IGU_PF_CONF_FUNC_EN; 1603 1604 DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n", 1605 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); 1606 1607 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 1608 1609 if (val & IGU_PF_CONF_INT_LINE_EN) 1610 pci_intx(bp->pdev, true); 1611 1612 barrier(); 1613 1614 /* init leading/trailing edge */ 1615 if (IS_MF(bp)) { 1616 val = (0xee0f | (1 << (BP_VN(bp) + 4))); 1617 if (bp->port.pmf) 1618 /* enable nig and gpio3 attention */ 1619 val |= 0x1100; 1620 } else 1621 val = 0xffff; 1622 1623 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); 1624 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); 1625 1626 /* Make sure that interrupts are indeed enabled from here on */ 1627 mmiowb(); 1628 } 1629 1630 void bnx2x_int_enable(struct bnx2x *bp) 1631 { 1632 if (bp->common.int_block == INT_BLOCK_HC) 1633 bnx2x_hc_int_enable(bp); 1634 else 1635 bnx2x_igu_int_enable(bp); 1636 } 1637 1638 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw) 1639 { 1640 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; 1641 int i, offset; 1642 1643 if (disable_hw) 1644 /* prevent the HW from sending interrupts */ 1645 bnx2x_int_disable(bp); 1646 1647 /* make sure all ISRs are done */ 1648 if (msix) { 1649 synchronize_irq(bp->msix_table[0].vector); 1650 offset = 1; 1651 if (CNIC_SUPPORT(bp)) 1652 offset++; 1653 for_each_eth_queue(bp, i) 1654 synchronize_irq(bp->msix_table[offset++].vector); 1655 } else 1656 synchronize_irq(bp->pdev->irq); 1657 1658 /* make sure sp_task is not running */ 1659 cancel_delayed_work(&bp->sp_task); 1660 cancel_delayed_work(&bp->period_task); 1661 flush_workqueue(bnx2x_wq); 1662 } 1663 1664 /* fast path */ 1665 1666 /* 1667 * General service functions 1668 */ 1669 1670 /* Return true if succeeded to acquire the lock */ 1671 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource) 1672 { 1673 u32 lock_status; 1674 u32 resource_bit = (1 << resource); 1675 int func = BP_FUNC(bp); 1676 u32 hw_lock_control_reg; 1677 1678 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1679 "Trying to take a lock on resource %d\n", resource); 1680 1681 /* Validating that the resource is within range */ 1682 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1683 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1684 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 1685 resource, HW_LOCK_MAX_RESOURCE_VALUE); 1686 return false; 1687 } 1688 1689 if (func <= 5) 1690 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 1691 else 1692 hw_lock_control_reg = 1693 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 1694 1695 /* Try to acquire the lock */ 1696 REG_WR(bp, hw_lock_control_reg + 4, resource_bit); 1697 lock_status = REG_RD(bp, hw_lock_control_reg); 1698 if (lock_status & resource_bit) 1699 return true; 1700 1701 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1702 "Failed to get a lock on resource %d\n", resource); 1703 return false; 1704 } 1705 1706 /** 1707 * bnx2x_get_leader_lock_resource - get the recovery leader resource id 1708 * 1709 * @bp: driver handle 1710 * 1711 * Returns the recovery leader resource id according to the engine this function 1712 * belongs to. Currently only only 2 engines is supported. 1713 */ 1714 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp) 1715 { 1716 if (BP_PATH(bp)) 1717 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1; 1718 else 1719 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0; 1720 } 1721 1722 /** 1723 * bnx2x_trylock_leader_lock- try to acquire a leader lock. 1724 * 1725 * @bp: driver handle 1726 * 1727 * Tries to acquire a leader lock for current engine. 1728 */ 1729 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp) 1730 { 1731 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); 1732 } 1733 1734 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err); 1735 1736 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */ 1737 static int bnx2x_schedule_sp_task(struct bnx2x *bp) 1738 { 1739 /* Set the interrupt occurred bit for the sp-task to recognize it 1740 * must ack the interrupt and transition according to the IGU 1741 * state machine. 1742 */ 1743 atomic_set(&bp->interrupt_occurred, 1); 1744 1745 /* The sp_task must execute only after this bit 1746 * is set, otherwise we will get out of sync and miss all 1747 * further interrupts. Hence, the barrier. 1748 */ 1749 smp_wmb(); 1750 1751 /* schedule sp_task to workqueue */ 1752 return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0); 1753 } 1754 1755 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe) 1756 { 1757 struct bnx2x *bp = fp->bp; 1758 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 1759 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 1760 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX; 1761 struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 1762 1763 DP(BNX2X_MSG_SP, 1764 "fp %d cid %d got ramrod #%d state is %x type is %d\n", 1765 fp->index, cid, command, bp->state, 1766 rr_cqe->ramrod_cqe.ramrod_type); 1767 1768 /* If cid is within VF range, replace the slowpath object with the 1769 * one corresponding to this VF 1770 */ 1771 if (cid >= BNX2X_FIRST_VF_CID && 1772 cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS) 1773 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj); 1774 1775 switch (command) { 1776 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 1777 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid); 1778 drv_cmd = BNX2X_Q_CMD_UPDATE; 1779 break; 1780 1781 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 1782 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid); 1783 drv_cmd = BNX2X_Q_CMD_SETUP; 1784 break; 1785 1786 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 1787 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 1788 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; 1789 break; 1790 1791 case (RAMROD_CMD_ID_ETH_HALT): 1792 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid); 1793 drv_cmd = BNX2X_Q_CMD_HALT; 1794 break; 1795 1796 case (RAMROD_CMD_ID_ETH_TERMINATE): 1797 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid); 1798 drv_cmd = BNX2X_Q_CMD_TERMINATE; 1799 break; 1800 1801 case (RAMROD_CMD_ID_ETH_EMPTY): 1802 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid); 1803 drv_cmd = BNX2X_Q_CMD_EMPTY; 1804 break; 1805 1806 default: 1807 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n", 1808 command, fp->index); 1809 return; 1810 } 1811 1812 if ((drv_cmd != BNX2X_Q_CMD_MAX) && 1813 q_obj->complete_cmd(bp, q_obj, drv_cmd)) 1814 /* q_obj->complete_cmd() failure means that this was 1815 * an unexpected completion. 1816 * 1817 * In this case we don't want to increase the bp->spq_left 1818 * because apparently we haven't sent this command the first 1819 * place. 1820 */ 1821 #ifdef BNX2X_STOP_ON_ERROR 1822 bnx2x_panic(); 1823 #else 1824 return; 1825 #endif 1826 /* SRIOV: reschedule any 'in_progress' operations */ 1827 bnx2x_iov_sp_event(bp, cid, true); 1828 1829 smp_mb__before_atomic_inc(); 1830 atomic_inc(&bp->cq_spq_left); 1831 /* push the change in bp->spq_left and towards the memory */ 1832 smp_mb__after_atomic_inc(); 1833 1834 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left)); 1835 1836 if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) && 1837 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) { 1838 /* if Q update ramrod is completed for last Q in AFEX vif set 1839 * flow, then ACK MCP at the end 1840 * 1841 * mark pending ACK to MCP bit. 1842 * prevent case that both bits are cleared. 1843 * At the end of load/unload driver checks that 1844 * sp_state is cleared, and this order prevents 1845 * races 1846 */ 1847 smp_mb__before_clear_bit(); 1848 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state); 1849 wmb(); 1850 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); 1851 smp_mb__after_clear_bit(); 1852 1853 /* schedule the sp task as mcp ack is required */ 1854 bnx2x_schedule_sp_task(bp); 1855 } 1856 1857 return; 1858 } 1859 1860 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance) 1861 { 1862 struct bnx2x *bp = netdev_priv(dev_instance); 1863 u16 status = bnx2x_ack_int(bp); 1864 u16 mask; 1865 int i; 1866 u8 cos; 1867 1868 /* Return here if interrupt is shared and it's not for us */ 1869 if (unlikely(status == 0)) { 1870 DP(NETIF_MSG_INTR, "not our interrupt!\n"); 1871 return IRQ_NONE; 1872 } 1873 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status); 1874 1875 #ifdef BNX2X_STOP_ON_ERROR 1876 if (unlikely(bp->panic)) 1877 return IRQ_HANDLED; 1878 #endif 1879 1880 for_each_eth_queue(bp, i) { 1881 struct bnx2x_fastpath *fp = &bp->fp[i]; 1882 1883 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp)); 1884 if (status & mask) { 1885 /* Handle Rx or Tx according to SB id */ 1886 for_each_cos_in_tx_queue(fp, cos) 1887 prefetch(fp->txdata_ptr[cos]->tx_cons_sb); 1888 prefetch(&fp->sb_running_index[SM_RX_ID]); 1889 napi_schedule(&bnx2x_fp(bp, fp->index, napi)); 1890 status &= ~mask; 1891 } 1892 } 1893 1894 if (CNIC_SUPPORT(bp)) { 1895 mask = 0x2; 1896 if (status & (mask | 0x1)) { 1897 struct cnic_ops *c_ops = NULL; 1898 1899 rcu_read_lock(); 1900 c_ops = rcu_dereference(bp->cnic_ops); 1901 if (c_ops && (bp->cnic_eth_dev.drv_state & 1902 CNIC_DRV_STATE_HANDLES_IRQ)) 1903 c_ops->cnic_handler(bp->cnic_data, NULL); 1904 rcu_read_unlock(); 1905 1906 status &= ~mask; 1907 } 1908 } 1909 1910 if (unlikely(status & 0x1)) { 1911 1912 /* schedule sp task to perform default status block work, ack 1913 * attentions and enable interrupts. 1914 */ 1915 bnx2x_schedule_sp_task(bp); 1916 1917 status &= ~0x1; 1918 if (!status) 1919 return IRQ_HANDLED; 1920 } 1921 1922 if (unlikely(status)) 1923 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n", 1924 status); 1925 1926 return IRQ_HANDLED; 1927 } 1928 1929 /* Link */ 1930 1931 /* 1932 * General service functions 1933 */ 1934 1935 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource) 1936 { 1937 u32 lock_status; 1938 u32 resource_bit = (1 << resource); 1939 int func = BP_FUNC(bp); 1940 u32 hw_lock_control_reg; 1941 int cnt; 1942 1943 /* Validating that the resource is within range */ 1944 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1945 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 1946 resource, HW_LOCK_MAX_RESOURCE_VALUE); 1947 return -EINVAL; 1948 } 1949 1950 if (func <= 5) { 1951 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 1952 } else { 1953 hw_lock_control_reg = 1954 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 1955 } 1956 1957 /* Validating that the resource is not already taken */ 1958 lock_status = REG_RD(bp, hw_lock_control_reg); 1959 if (lock_status & resource_bit) { 1960 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n", 1961 lock_status, resource_bit); 1962 return -EEXIST; 1963 } 1964 1965 /* Try for 5 second every 5ms */ 1966 for (cnt = 0; cnt < 1000; cnt++) { 1967 /* Try to acquire the lock */ 1968 REG_WR(bp, hw_lock_control_reg + 4, resource_bit); 1969 lock_status = REG_RD(bp, hw_lock_control_reg); 1970 if (lock_status & resource_bit) 1971 return 0; 1972 1973 usleep_range(5000, 10000); 1974 } 1975 BNX2X_ERR("Timeout\n"); 1976 return -EAGAIN; 1977 } 1978 1979 int bnx2x_release_leader_lock(struct bnx2x *bp) 1980 { 1981 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); 1982 } 1983 1984 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource) 1985 { 1986 u32 lock_status; 1987 u32 resource_bit = (1 << resource); 1988 int func = BP_FUNC(bp); 1989 u32 hw_lock_control_reg; 1990 1991 /* Validating that the resource is within range */ 1992 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1993 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 1994 resource, HW_LOCK_MAX_RESOURCE_VALUE); 1995 return -EINVAL; 1996 } 1997 1998 if (func <= 5) { 1999 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 2000 } else { 2001 hw_lock_control_reg = 2002 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 2003 } 2004 2005 /* Validating that the resource is currently taken */ 2006 lock_status = REG_RD(bp, hw_lock_control_reg); 2007 if (!(lock_status & resource_bit)) { 2008 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n", 2009 lock_status, resource_bit); 2010 return -EFAULT; 2011 } 2012 2013 REG_WR(bp, hw_lock_control_reg, resource_bit); 2014 return 0; 2015 } 2016 2017 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port) 2018 { 2019 /* The GPIO should be swapped if swap register is set and active */ 2020 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2021 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2022 int gpio_shift = gpio_num + 2023 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2024 u32 gpio_mask = (1 << gpio_shift); 2025 u32 gpio_reg; 2026 int value; 2027 2028 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2029 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2030 return -EINVAL; 2031 } 2032 2033 /* read GPIO value */ 2034 gpio_reg = REG_RD(bp, MISC_REG_GPIO); 2035 2036 /* get the requested pin value */ 2037 if ((gpio_reg & gpio_mask) == gpio_mask) 2038 value = 1; 2039 else 2040 value = 0; 2041 2042 DP(NETIF_MSG_LINK, "pin %d value 0x%x\n", gpio_num, value); 2043 2044 return value; 2045 } 2046 2047 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) 2048 { 2049 /* The GPIO should be swapped if swap register is set and active */ 2050 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2051 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2052 int gpio_shift = gpio_num + 2053 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2054 u32 gpio_mask = (1 << gpio_shift); 2055 u32 gpio_reg; 2056 2057 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2058 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2059 return -EINVAL; 2060 } 2061 2062 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2063 /* read GPIO and mask except the float bits */ 2064 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 2065 2066 switch (mode) { 2067 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2068 DP(NETIF_MSG_LINK, 2069 "Set GPIO %d (shift %d) -> output low\n", 2070 gpio_num, gpio_shift); 2071 /* clear FLOAT and set CLR */ 2072 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2073 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 2074 break; 2075 2076 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2077 DP(NETIF_MSG_LINK, 2078 "Set GPIO %d (shift %d) -> output high\n", 2079 gpio_num, gpio_shift); 2080 /* clear FLOAT and set SET */ 2081 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2082 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 2083 break; 2084 2085 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2086 DP(NETIF_MSG_LINK, 2087 "Set GPIO %d (shift %d) -> input\n", 2088 gpio_num, gpio_shift); 2089 /* set FLOAT */ 2090 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2091 break; 2092 2093 default: 2094 break; 2095 } 2096 2097 REG_WR(bp, MISC_REG_GPIO, gpio_reg); 2098 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2099 2100 return 0; 2101 } 2102 2103 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode) 2104 { 2105 u32 gpio_reg = 0; 2106 int rc = 0; 2107 2108 /* Any port swapping should be handled by caller. */ 2109 2110 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2111 /* read GPIO and mask except the float bits */ 2112 gpio_reg = REG_RD(bp, MISC_REG_GPIO); 2113 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2114 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 2115 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 2116 2117 switch (mode) { 2118 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2119 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins); 2120 /* set CLR */ 2121 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 2122 break; 2123 2124 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2125 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins); 2126 /* set SET */ 2127 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2128 break; 2129 2130 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2131 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins); 2132 /* set FLOAT */ 2133 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2134 break; 2135 2136 default: 2137 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode); 2138 rc = -EINVAL; 2139 break; 2140 } 2141 2142 if (rc == 0) 2143 REG_WR(bp, MISC_REG_GPIO, gpio_reg); 2144 2145 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2146 2147 return rc; 2148 } 2149 2150 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) 2151 { 2152 /* The GPIO should be swapped if swap register is set and active */ 2153 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2154 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2155 int gpio_shift = gpio_num + 2156 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2157 u32 gpio_mask = (1 << gpio_shift); 2158 u32 gpio_reg; 2159 2160 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2161 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2162 return -EINVAL; 2163 } 2164 2165 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2166 /* read GPIO int */ 2167 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT); 2168 2169 switch (mode) { 2170 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2171 DP(NETIF_MSG_LINK, 2172 "Clear GPIO INT %d (shift %d) -> output low\n", 2173 gpio_num, gpio_shift); 2174 /* clear SET and set CLR */ 2175 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2176 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2177 break; 2178 2179 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2180 DP(NETIF_MSG_LINK, 2181 "Set GPIO INT %d (shift %d) -> output high\n", 2182 gpio_num, gpio_shift); 2183 /* clear CLR and set SET */ 2184 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2185 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2186 break; 2187 2188 default: 2189 break; 2190 } 2191 2192 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg); 2193 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2194 2195 return 0; 2196 } 2197 2198 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode) 2199 { 2200 u32 spio_reg; 2201 2202 /* Only 2 SPIOs are configurable */ 2203 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 2204 BNX2X_ERR("Invalid SPIO 0x%x\n", spio); 2205 return -EINVAL; 2206 } 2207 2208 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); 2209 /* read SPIO and mask except the float bits */ 2210 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 2211 2212 switch (mode) { 2213 case MISC_SPIO_OUTPUT_LOW: 2214 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio); 2215 /* clear FLOAT and set CLR */ 2216 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 2217 spio_reg |= (spio << MISC_SPIO_CLR_POS); 2218 break; 2219 2220 case MISC_SPIO_OUTPUT_HIGH: 2221 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio); 2222 /* clear FLOAT and set SET */ 2223 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 2224 spio_reg |= (spio << MISC_SPIO_SET_POS); 2225 break; 2226 2227 case MISC_SPIO_INPUT_HI_Z: 2228 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio); 2229 /* set FLOAT */ 2230 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 2231 break; 2232 2233 default: 2234 break; 2235 } 2236 2237 REG_WR(bp, MISC_REG_SPIO, spio_reg); 2238 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); 2239 2240 return 0; 2241 } 2242 2243 void bnx2x_calc_fc_adv(struct bnx2x *bp) 2244 { 2245 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp); 2246 switch (bp->link_vars.ieee_fc & 2247 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 2248 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE: 2249 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 2250 ADVERTISED_Pause); 2251 break; 2252 2253 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 2254 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 2255 ADVERTISED_Pause); 2256 break; 2257 2258 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 2259 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 2260 break; 2261 2262 default: 2263 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 2264 ADVERTISED_Pause); 2265 break; 2266 } 2267 } 2268 2269 static void bnx2x_set_requested_fc(struct bnx2x *bp) 2270 { 2271 /* Initialize link parameters structure variables 2272 * It is recommended to turn off RX FC for jumbo frames 2273 * for better performance 2274 */ 2275 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000)) 2276 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX; 2277 else 2278 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH; 2279 } 2280 2281 static void bnx2x_init_dropless_fc(struct bnx2x *bp) 2282 { 2283 u32 pause_enabled = 0; 2284 2285 if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) { 2286 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) 2287 pause_enabled = 1; 2288 2289 REG_WR(bp, BAR_USTRORM_INTMEM + 2290 USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)), 2291 pause_enabled); 2292 } 2293 2294 DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n", 2295 pause_enabled ? "enabled" : "disabled"); 2296 } 2297 2298 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode) 2299 { 2300 int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp); 2301 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx]; 2302 2303 if (!BP_NOMCP(bp)) { 2304 bnx2x_set_requested_fc(bp); 2305 bnx2x_acquire_phy_lock(bp); 2306 2307 if (load_mode == LOAD_DIAG) { 2308 struct link_params *lp = &bp->link_params; 2309 lp->loopback_mode = LOOPBACK_XGXS; 2310 /* do PHY loopback at 10G speed, if possible */ 2311 if (lp->req_line_speed[cfx_idx] < SPEED_10000) { 2312 if (lp->speed_cap_mask[cfx_idx] & 2313 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) 2314 lp->req_line_speed[cfx_idx] = 2315 SPEED_10000; 2316 else 2317 lp->req_line_speed[cfx_idx] = 2318 SPEED_1000; 2319 } 2320 } 2321 2322 if (load_mode == LOAD_LOOPBACK_EXT) { 2323 struct link_params *lp = &bp->link_params; 2324 lp->loopback_mode = LOOPBACK_EXT; 2325 } 2326 2327 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars); 2328 2329 bnx2x_release_phy_lock(bp); 2330 2331 bnx2x_init_dropless_fc(bp); 2332 2333 bnx2x_calc_fc_adv(bp); 2334 2335 if (bp->link_vars.link_up) { 2336 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2337 bnx2x_link_report(bp); 2338 } 2339 queue_delayed_work(bnx2x_wq, &bp->period_task, 0); 2340 bp->link_params.req_line_speed[cfx_idx] = req_line_speed; 2341 return rc; 2342 } 2343 BNX2X_ERR("Bootcode is missing - can not initialize link\n"); 2344 return -EINVAL; 2345 } 2346 2347 void bnx2x_link_set(struct bnx2x *bp) 2348 { 2349 if (!BP_NOMCP(bp)) { 2350 bnx2x_acquire_phy_lock(bp); 2351 bnx2x_phy_init(&bp->link_params, &bp->link_vars); 2352 bnx2x_release_phy_lock(bp); 2353 2354 bnx2x_init_dropless_fc(bp); 2355 2356 bnx2x_calc_fc_adv(bp); 2357 } else 2358 BNX2X_ERR("Bootcode is missing - can not set link\n"); 2359 } 2360 2361 static void bnx2x__link_reset(struct bnx2x *bp) 2362 { 2363 if (!BP_NOMCP(bp)) { 2364 bnx2x_acquire_phy_lock(bp); 2365 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars); 2366 bnx2x_release_phy_lock(bp); 2367 } else 2368 BNX2X_ERR("Bootcode is missing - can not reset link\n"); 2369 } 2370 2371 void bnx2x_force_link_reset(struct bnx2x *bp) 2372 { 2373 bnx2x_acquire_phy_lock(bp); 2374 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1); 2375 bnx2x_release_phy_lock(bp); 2376 } 2377 2378 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes) 2379 { 2380 u8 rc = 0; 2381 2382 if (!BP_NOMCP(bp)) { 2383 bnx2x_acquire_phy_lock(bp); 2384 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars, 2385 is_serdes); 2386 bnx2x_release_phy_lock(bp); 2387 } else 2388 BNX2X_ERR("Bootcode is missing - can not test link\n"); 2389 2390 return rc; 2391 } 2392 2393 /* Calculates the sum of vn_min_rates. 2394 It's needed for further normalizing of the min_rates. 2395 Returns: 2396 sum of vn_min_rates. 2397 or 2398 0 - if all the min_rates are 0. 2399 In the later case fairness algorithm should be deactivated. 2400 If not all min_rates are zero then those that are zeroes will be set to 1. 2401 */ 2402 static void bnx2x_calc_vn_min(struct bnx2x *bp, 2403 struct cmng_init_input *input) 2404 { 2405 int all_zero = 1; 2406 int vn; 2407 2408 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2409 u32 vn_cfg = bp->mf_config[vn]; 2410 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 2411 FUNC_MF_CFG_MIN_BW_SHIFT) * 100; 2412 2413 /* Skip hidden vns */ 2414 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) 2415 vn_min_rate = 0; 2416 /* If min rate is zero - set it to 1 */ 2417 else if (!vn_min_rate) 2418 vn_min_rate = DEF_MIN_RATE; 2419 else 2420 all_zero = 0; 2421 2422 input->vnic_min_rate[vn] = vn_min_rate; 2423 } 2424 2425 /* if ETS or all min rates are zeros - disable fairness */ 2426 if (BNX2X_IS_ETS_ENABLED(bp)) { 2427 input->flags.cmng_enables &= 2428 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2429 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n"); 2430 } else if (all_zero) { 2431 input->flags.cmng_enables &= 2432 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2433 DP(NETIF_MSG_IFUP, 2434 "All MIN values are zeroes fairness will be disabled\n"); 2435 } else 2436 input->flags.cmng_enables |= 2437 CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2438 } 2439 2440 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn, 2441 struct cmng_init_input *input) 2442 { 2443 u16 vn_max_rate; 2444 u32 vn_cfg = bp->mf_config[vn]; 2445 2446 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) 2447 vn_max_rate = 0; 2448 else { 2449 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg); 2450 2451 if (IS_MF_SI(bp)) { 2452 /* maxCfg in percents of linkspeed */ 2453 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100; 2454 } else /* SD modes */ 2455 /* maxCfg is absolute in 100Mb units */ 2456 vn_max_rate = maxCfg * 100; 2457 } 2458 2459 DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 2460 2461 input->vnic_max_rate[vn] = vn_max_rate; 2462 } 2463 2464 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp) 2465 { 2466 if (CHIP_REV_IS_SLOW(bp)) 2467 return CMNG_FNS_NONE; 2468 if (IS_MF(bp)) 2469 return CMNG_FNS_MINMAX; 2470 2471 return CMNG_FNS_NONE; 2472 } 2473 2474 void bnx2x_read_mf_cfg(struct bnx2x *bp) 2475 { 2476 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1); 2477 2478 if (BP_NOMCP(bp)) 2479 return; /* what should be the default value in this case */ 2480 2481 /* For 2 port configuration the absolute function number formula 2482 * is: 2483 * abs_func = 2 * vn + BP_PORT + BP_PATH 2484 * 2485 * and there are 4 functions per port 2486 * 2487 * For 4 port configuration it is 2488 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH 2489 * 2490 * and there are 2 functions per port 2491 */ 2492 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2493 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp); 2494 2495 if (func >= E1H_FUNC_MAX) 2496 break; 2497 2498 bp->mf_config[vn] = 2499 MF_CFG_RD(bp, func_mf_config[func].config); 2500 } 2501 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { 2502 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n"); 2503 bp->flags |= MF_FUNC_DIS; 2504 } else { 2505 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n"); 2506 bp->flags &= ~MF_FUNC_DIS; 2507 } 2508 } 2509 2510 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type) 2511 { 2512 struct cmng_init_input input; 2513 memset(&input, 0, sizeof(struct cmng_init_input)); 2514 2515 input.port_rate = bp->link_vars.line_speed; 2516 2517 if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) { 2518 int vn; 2519 2520 /* read mf conf from shmem */ 2521 if (read_cfg) 2522 bnx2x_read_mf_cfg(bp); 2523 2524 /* vn_weight_sum and enable fairness if not 0 */ 2525 bnx2x_calc_vn_min(bp, &input); 2526 2527 /* calculate and set min-max rate for each vn */ 2528 if (bp->port.pmf) 2529 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) 2530 bnx2x_calc_vn_max(bp, vn, &input); 2531 2532 /* always enable rate shaping and fairness */ 2533 input.flags.cmng_enables |= 2534 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 2535 2536 bnx2x_init_cmng(&input, &bp->cmng); 2537 return; 2538 } 2539 2540 /* rate shaping and fairness are disabled */ 2541 DP(NETIF_MSG_IFUP, 2542 "rate shaping and fairness are disabled\n"); 2543 } 2544 2545 static void storm_memset_cmng(struct bnx2x *bp, 2546 struct cmng_init *cmng, 2547 u8 port) 2548 { 2549 int vn; 2550 size_t size = sizeof(struct cmng_struct_per_port); 2551 2552 u32 addr = BAR_XSTRORM_INTMEM + 2553 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port); 2554 2555 __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port); 2556 2557 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2558 int func = func_by_vn(bp, vn); 2559 2560 addr = BAR_XSTRORM_INTMEM + 2561 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func); 2562 size = sizeof(struct rate_shaping_vars_per_vn); 2563 __storm_memset_struct(bp, addr, size, 2564 (u32 *)&cmng->vnic.vnic_max_rate[vn]); 2565 2566 addr = BAR_XSTRORM_INTMEM + 2567 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func); 2568 size = sizeof(struct fairness_vars_per_vn); 2569 __storm_memset_struct(bp, addr, size, 2570 (u32 *)&cmng->vnic.vnic_min_rate[vn]); 2571 } 2572 } 2573 2574 /* init cmng mode in HW according to local configuration */ 2575 void bnx2x_set_local_cmng(struct bnx2x *bp) 2576 { 2577 int cmng_fns = bnx2x_get_cmng_fns_mode(bp); 2578 2579 if (cmng_fns != CMNG_FNS_NONE) { 2580 bnx2x_cmng_fns_init(bp, false, cmng_fns); 2581 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 2582 } else { 2583 /* rate shaping and fairness are disabled */ 2584 DP(NETIF_MSG_IFUP, 2585 "single function mode without fairness\n"); 2586 } 2587 } 2588 2589 /* This function is called upon link interrupt */ 2590 static void bnx2x_link_attn(struct bnx2x *bp) 2591 { 2592 /* Make sure that we are synced with the current statistics */ 2593 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 2594 2595 bnx2x_link_update(&bp->link_params, &bp->link_vars); 2596 2597 bnx2x_init_dropless_fc(bp); 2598 2599 if (bp->link_vars.link_up) { 2600 2601 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) { 2602 struct host_port_stats *pstats; 2603 2604 pstats = bnx2x_sp(bp, port_stats); 2605 /* reset old mac stats */ 2606 memset(&(pstats->mac_stx[0]), 0, 2607 sizeof(struct mac_stx)); 2608 } 2609 if (bp->state == BNX2X_STATE_OPEN) 2610 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2611 } 2612 2613 if (bp->link_vars.link_up && bp->link_vars.line_speed) 2614 bnx2x_set_local_cmng(bp); 2615 2616 __bnx2x_link_report(bp); 2617 2618 if (IS_MF(bp)) 2619 bnx2x_link_sync_notify(bp); 2620 } 2621 2622 void bnx2x__link_status_update(struct bnx2x *bp) 2623 { 2624 if (bp->state != BNX2X_STATE_OPEN) 2625 return; 2626 2627 /* read updated dcb configuration */ 2628 if (IS_PF(bp)) { 2629 bnx2x_dcbx_pmf_update(bp); 2630 bnx2x_link_status_update(&bp->link_params, &bp->link_vars); 2631 if (bp->link_vars.link_up) 2632 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2633 else 2634 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 2635 /* indicate link status */ 2636 bnx2x_link_report(bp); 2637 2638 } else { /* VF */ 2639 bp->port.supported[0] |= (SUPPORTED_10baseT_Half | 2640 SUPPORTED_10baseT_Full | 2641 SUPPORTED_100baseT_Half | 2642 SUPPORTED_100baseT_Full | 2643 SUPPORTED_1000baseT_Full | 2644 SUPPORTED_2500baseX_Full | 2645 SUPPORTED_10000baseT_Full | 2646 SUPPORTED_TP | 2647 SUPPORTED_FIBRE | 2648 SUPPORTED_Autoneg | 2649 SUPPORTED_Pause | 2650 SUPPORTED_Asym_Pause); 2651 bp->port.advertising[0] = bp->port.supported[0]; 2652 2653 bp->link_params.bp = bp; 2654 bp->link_params.port = BP_PORT(bp); 2655 bp->link_params.req_duplex[0] = DUPLEX_FULL; 2656 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE; 2657 bp->link_params.req_line_speed[0] = SPEED_10000; 2658 bp->link_params.speed_cap_mask[0] = 0x7f0000; 2659 bp->link_params.switch_cfg = SWITCH_CFG_10G; 2660 bp->link_vars.mac_type = MAC_TYPE_BMAC; 2661 bp->link_vars.line_speed = SPEED_10000; 2662 bp->link_vars.link_status = 2663 (LINK_STATUS_LINK_UP | 2664 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 2665 bp->link_vars.link_up = 1; 2666 bp->link_vars.duplex = DUPLEX_FULL; 2667 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE; 2668 __bnx2x_link_report(bp); 2669 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2670 } 2671 } 2672 2673 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid, 2674 u16 vlan_val, u8 allowed_prio) 2675 { 2676 struct bnx2x_func_state_params func_params = {NULL}; 2677 struct bnx2x_func_afex_update_params *f_update_params = 2678 &func_params.params.afex_update; 2679 2680 func_params.f_obj = &bp->func_obj; 2681 func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE; 2682 2683 /* no need to wait for RAMROD completion, so don't 2684 * set RAMROD_COMP_WAIT flag 2685 */ 2686 2687 f_update_params->vif_id = vifid; 2688 f_update_params->afex_default_vlan = vlan_val; 2689 f_update_params->allowed_priorities = allowed_prio; 2690 2691 /* if ramrod can not be sent, response to MCP immediately */ 2692 if (bnx2x_func_state_change(bp, &func_params) < 0) 2693 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 2694 2695 return 0; 2696 } 2697 2698 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type, 2699 u16 vif_index, u8 func_bit_map) 2700 { 2701 struct bnx2x_func_state_params func_params = {NULL}; 2702 struct bnx2x_func_afex_viflists_params *update_params = 2703 &func_params.params.afex_viflists; 2704 int rc; 2705 u32 drv_msg_code; 2706 2707 /* validate only LIST_SET and LIST_GET are received from switch */ 2708 if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET)) 2709 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n", 2710 cmd_type); 2711 2712 func_params.f_obj = &bp->func_obj; 2713 func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS; 2714 2715 /* set parameters according to cmd_type */ 2716 update_params->afex_vif_list_command = cmd_type; 2717 update_params->vif_list_index = vif_index; 2718 update_params->func_bit_map = 2719 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map; 2720 update_params->func_to_clear = 0; 2721 drv_msg_code = 2722 (cmd_type == VIF_LIST_RULE_GET) ? 2723 DRV_MSG_CODE_AFEX_LISTGET_ACK : 2724 DRV_MSG_CODE_AFEX_LISTSET_ACK; 2725 2726 /* if ramrod can not be sent, respond to MCP immediately for 2727 * SET and GET requests (other are not triggered from MCP) 2728 */ 2729 rc = bnx2x_func_state_change(bp, &func_params); 2730 if (rc < 0) 2731 bnx2x_fw_command(bp, drv_msg_code, 0); 2732 2733 return 0; 2734 } 2735 2736 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd) 2737 { 2738 struct afex_stats afex_stats; 2739 u32 func = BP_ABS_FUNC(bp); 2740 u32 mf_config; 2741 u16 vlan_val; 2742 u32 vlan_prio; 2743 u16 vif_id; 2744 u8 allowed_prio; 2745 u8 vlan_mode; 2746 u32 addr_to_write, vifid, addrs, stats_type, i; 2747 2748 if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) { 2749 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2750 DP(BNX2X_MSG_MCP, 2751 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid); 2752 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0); 2753 } 2754 2755 if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) { 2756 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2757 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]); 2758 DP(BNX2X_MSG_MCP, 2759 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n", 2760 vifid, addrs); 2761 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid, 2762 addrs); 2763 } 2764 2765 if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) { 2766 addr_to_write = SHMEM2_RD(bp, 2767 afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]); 2768 stats_type = SHMEM2_RD(bp, 2769 afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2770 2771 DP(BNX2X_MSG_MCP, 2772 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n", 2773 addr_to_write); 2774 2775 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type); 2776 2777 /* write response to scratchpad, for MCP */ 2778 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++) 2779 REG_WR(bp, addr_to_write + i*sizeof(u32), 2780 *(((u32 *)(&afex_stats))+i)); 2781 2782 /* send ack message to MCP */ 2783 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0); 2784 } 2785 2786 if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) { 2787 mf_config = MF_CFG_RD(bp, func_mf_config[func].config); 2788 bp->mf_config[BP_VN(bp)] = mf_config; 2789 DP(BNX2X_MSG_MCP, 2790 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n", 2791 mf_config); 2792 2793 /* if VIF_SET is "enabled" */ 2794 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) { 2795 /* set rate limit directly to internal RAM */ 2796 struct cmng_init_input cmng_input; 2797 struct rate_shaping_vars_per_vn m_rs_vn; 2798 size_t size = sizeof(struct rate_shaping_vars_per_vn); 2799 u32 addr = BAR_XSTRORM_INTMEM + 2800 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp)); 2801 2802 bp->mf_config[BP_VN(bp)] = mf_config; 2803 2804 bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input); 2805 m_rs_vn.vn_counter.rate = 2806 cmng_input.vnic_max_rate[BP_VN(bp)]; 2807 m_rs_vn.vn_counter.quota = 2808 (m_rs_vn.vn_counter.rate * 2809 RS_PERIODIC_TIMEOUT_USEC) / 8; 2810 2811 __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn); 2812 2813 /* read relevant values from mf_cfg struct in shmem */ 2814 vif_id = 2815 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2816 FUNC_MF_CFG_E1HOV_TAG_MASK) >> 2817 FUNC_MF_CFG_E1HOV_TAG_SHIFT; 2818 vlan_val = 2819 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2820 FUNC_MF_CFG_AFEX_VLAN_MASK) >> 2821 FUNC_MF_CFG_AFEX_VLAN_SHIFT; 2822 vlan_prio = (mf_config & 2823 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 2824 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT; 2825 vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT); 2826 vlan_mode = 2827 (MF_CFG_RD(bp, 2828 func_mf_config[func].afex_config) & 2829 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 2830 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT; 2831 allowed_prio = 2832 (MF_CFG_RD(bp, 2833 func_mf_config[func].afex_config) & 2834 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 2835 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT; 2836 2837 /* send ramrod to FW, return in case of failure */ 2838 if (bnx2x_afex_func_update(bp, vif_id, vlan_val, 2839 allowed_prio)) 2840 return; 2841 2842 bp->afex_def_vlan_tag = vlan_val; 2843 bp->afex_vlan_mode = vlan_mode; 2844 } else { 2845 /* notify link down because BP->flags is disabled */ 2846 bnx2x_link_report(bp); 2847 2848 /* send INVALID VIF ramrod to FW */ 2849 bnx2x_afex_func_update(bp, 0xFFFF, 0, 0); 2850 2851 /* Reset the default afex VLAN */ 2852 bp->afex_def_vlan_tag = -1; 2853 } 2854 } 2855 } 2856 2857 static void bnx2x_pmf_update(struct bnx2x *bp) 2858 { 2859 int port = BP_PORT(bp); 2860 u32 val; 2861 2862 bp->port.pmf = 1; 2863 DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf); 2864 2865 /* 2866 * We need the mb() to ensure the ordering between the writing to 2867 * bp->port.pmf here and reading it from the bnx2x_periodic_task(). 2868 */ 2869 smp_mb(); 2870 2871 /* queue a periodic task */ 2872 queue_delayed_work(bnx2x_wq, &bp->period_task, 0); 2873 2874 bnx2x_dcbx_pmf_update(bp); 2875 2876 /* enable nig attention */ 2877 val = (0xff0f | (1 << (BP_VN(bp) + 4))); 2878 if (bp->common.int_block == INT_BLOCK_HC) { 2879 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); 2880 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); 2881 } else if (!CHIP_IS_E1x(bp)) { 2882 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); 2883 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); 2884 } 2885 2886 bnx2x_stats_handle(bp, STATS_EVENT_PMF); 2887 } 2888 2889 /* end of Link */ 2890 2891 /* slow path */ 2892 2893 /* 2894 * General service functions 2895 */ 2896 2897 /* send the MCP a request, block until there is a reply */ 2898 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param) 2899 { 2900 int mb_idx = BP_FW_MB_IDX(bp); 2901 u32 seq; 2902 u32 rc = 0; 2903 u32 cnt = 1; 2904 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10; 2905 2906 mutex_lock(&bp->fw_mb_mutex); 2907 seq = ++bp->fw_seq; 2908 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param); 2909 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq)); 2910 2911 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n", 2912 (command | seq), param); 2913 2914 do { 2915 /* let the FW do it's magic ... */ 2916 msleep(delay); 2917 2918 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header); 2919 2920 /* Give the FW up to 5 second (500*10ms) */ 2921 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 2922 2923 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n", 2924 cnt*delay, rc, seq); 2925 2926 /* is this a reply to our command? */ 2927 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) 2928 rc &= FW_MSG_CODE_MASK; 2929 else { 2930 /* FW BUG! */ 2931 BNX2X_ERR("FW failed to respond!\n"); 2932 bnx2x_fw_dump(bp); 2933 rc = 0; 2934 } 2935 mutex_unlock(&bp->fw_mb_mutex); 2936 2937 return rc; 2938 } 2939 2940 static void storm_memset_func_cfg(struct bnx2x *bp, 2941 struct tstorm_eth_function_common_config *tcfg, 2942 u16 abs_fid) 2943 { 2944 size_t size = sizeof(struct tstorm_eth_function_common_config); 2945 2946 u32 addr = BAR_TSTRORM_INTMEM + 2947 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid); 2948 2949 __storm_memset_struct(bp, addr, size, (u32 *)tcfg); 2950 } 2951 2952 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p) 2953 { 2954 if (CHIP_IS_E1x(bp)) { 2955 struct tstorm_eth_function_common_config tcfg = {0}; 2956 2957 storm_memset_func_cfg(bp, &tcfg, p->func_id); 2958 } 2959 2960 /* Enable the function in the FW */ 2961 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id); 2962 storm_memset_func_en(bp, p->func_id, 1); 2963 2964 /* spq */ 2965 if (p->func_flgs & FUNC_FLG_SPQ) { 2966 storm_memset_spq_addr(bp, p->spq_map, p->func_id); 2967 REG_WR(bp, XSEM_REG_FAST_MEMORY + 2968 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod); 2969 } 2970 } 2971 2972 /** 2973 * bnx2x_get_common_flags - Return common flags 2974 * 2975 * @bp device handle 2976 * @fp queue handle 2977 * @zero_stats TRUE if statistics zeroing is needed 2978 * 2979 * Return the flags that are common for the Tx-only and not normal connections. 2980 */ 2981 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp, 2982 struct bnx2x_fastpath *fp, 2983 bool zero_stats) 2984 { 2985 unsigned long flags = 0; 2986 2987 /* PF driver will always initialize the Queue to an ACTIVE state */ 2988 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags); 2989 2990 /* tx only connections collect statistics (on the same index as the 2991 * parent connection). The statistics are zeroed when the parent 2992 * connection is initialized. 2993 */ 2994 2995 __set_bit(BNX2X_Q_FLG_STATS, &flags); 2996 if (zero_stats) 2997 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags); 2998 2999 __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags); 3000 __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags); 3001 3002 #ifdef BNX2X_STOP_ON_ERROR 3003 __set_bit(BNX2X_Q_FLG_TX_SEC, &flags); 3004 #endif 3005 3006 return flags; 3007 } 3008 3009 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp, 3010 struct bnx2x_fastpath *fp, 3011 bool leading) 3012 { 3013 unsigned long flags = 0; 3014 3015 /* calculate other queue flags */ 3016 if (IS_MF_SD(bp)) 3017 __set_bit(BNX2X_Q_FLG_OV, &flags); 3018 3019 if (IS_FCOE_FP(fp)) { 3020 __set_bit(BNX2X_Q_FLG_FCOE, &flags); 3021 /* For FCoE - force usage of default priority (for afex) */ 3022 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags); 3023 } 3024 3025 if (!fp->disable_tpa) { 3026 __set_bit(BNX2X_Q_FLG_TPA, &flags); 3027 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags); 3028 if (fp->mode == TPA_MODE_GRO) 3029 __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags); 3030 } 3031 3032 if (leading) { 3033 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags); 3034 __set_bit(BNX2X_Q_FLG_MCAST, &flags); 3035 } 3036 3037 /* Always set HW VLAN stripping */ 3038 __set_bit(BNX2X_Q_FLG_VLAN, &flags); 3039 3040 /* configure silent vlan removal */ 3041 if (IS_MF_AFEX(bp)) 3042 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags); 3043 3044 return flags | bnx2x_get_common_flags(bp, fp, true); 3045 } 3046 3047 static void bnx2x_pf_q_prep_general(struct bnx2x *bp, 3048 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init, 3049 u8 cos) 3050 { 3051 gen_init->stat_id = bnx2x_stats_id(fp); 3052 gen_init->spcl_id = fp->cl_id; 3053 3054 /* Always use mini-jumbo MTU for FCoE L2 ring */ 3055 if (IS_FCOE_FP(fp)) 3056 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU; 3057 else 3058 gen_init->mtu = bp->dev->mtu; 3059 3060 gen_init->cos = cos; 3061 } 3062 3063 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp, 3064 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause, 3065 struct bnx2x_rxq_setup_params *rxq_init) 3066 { 3067 u8 max_sge = 0; 3068 u16 sge_sz = 0; 3069 u16 tpa_agg_size = 0; 3070 3071 if (!fp->disable_tpa) { 3072 pause->sge_th_lo = SGE_TH_LO(bp); 3073 pause->sge_th_hi = SGE_TH_HI(bp); 3074 3075 /* validate SGE ring has enough to cross high threshold */ 3076 WARN_ON(bp->dropless_fc && 3077 pause->sge_th_hi + FW_PREFETCH_CNT > 3078 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES); 3079 3080 tpa_agg_size = TPA_AGG_SIZE; 3081 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >> 3082 SGE_PAGE_SHIFT; 3083 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 3084 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT; 3085 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff); 3086 } 3087 3088 /* pause - not for e1 */ 3089 if (!CHIP_IS_E1(bp)) { 3090 pause->bd_th_lo = BD_TH_LO(bp); 3091 pause->bd_th_hi = BD_TH_HI(bp); 3092 3093 pause->rcq_th_lo = RCQ_TH_LO(bp); 3094 pause->rcq_th_hi = RCQ_TH_HI(bp); 3095 /* 3096 * validate that rings have enough entries to cross 3097 * high thresholds 3098 */ 3099 WARN_ON(bp->dropless_fc && 3100 pause->bd_th_hi + FW_PREFETCH_CNT > 3101 bp->rx_ring_size); 3102 WARN_ON(bp->dropless_fc && 3103 pause->rcq_th_hi + FW_PREFETCH_CNT > 3104 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT); 3105 3106 pause->pri_map = 1; 3107 } 3108 3109 /* rxq setup */ 3110 rxq_init->dscr_map = fp->rx_desc_mapping; 3111 rxq_init->sge_map = fp->rx_sge_mapping; 3112 rxq_init->rcq_map = fp->rx_comp_mapping; 3113 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE; 3114 3115 /* This should be a maximum number of data bytes that may be 3116 * placed on the BD (not including paddings). 3117 */ 3118 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START - 3119 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING; 3120 3121 rxq_init->cl_qzone_id = fp->cl_qzone_id; 3122 rxq_init->tpa_agg_sz = tpa_agg_size; 3123 rxq_init->sge_buf_sz = sge_sz; 3124 rxq_init->max_sges_pkt = max_sge; 3125 rxq_init->rss_engine_id = BP_FUNC(bp); 3126 rxq_init->mcast_engine_id = BP_FUNC(bp); 3127 3128 /* Maximum number or simultaneous TPA aggregation for this Queue. 3129 * 3130 * For PF Clients it should be the maximum available number. 3131 * VF driver(s) may want to define it to a smaller value. 3132 */ 3133 rxq_init->max_tpa_queues = MAX_AGG_QS(bp); 3134 3135 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT; 3136 rxq_init->fw_sb_id = fp->fw_sb_id; 3137 3138 if (IS_FCOE_FP(fp)) 3139 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS; 3140 else 3141 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 3142 /* configure silent vlan removal 3143 * if multi function mode is afex, then mask default vlan 3144 */ 3145 if (IS_MF_AFEX(bp)) { 3146 rxq_init->silent_removal_value = bp->afex_def_vlan_tag; 3147 rxq_init->silent_removal_mask = VLAN_VID_MASK; 3148 } 3149 } 3150 3151 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp, 3152 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init, 3153 u8 cos) 3154 { 3155 txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping; 3156 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 3157 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 3158 txq_init->fw_sb_id = fp->fw_sb_id; 3159 3160 /* 3161 * set the tss leading client id for TX classification == 3162 * leading RSS client id 3163 */ 3164 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id); 3165 3166 if (IS_FCOE_FP(fp)) { 3167 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS; 3168 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE; 3169 } 3170 } 3171 3172 static void bnx2x_pf_init(struct bnx2x *bp) 3173 { 3174 struct bnx2x_func_init_params func_init = {0}; 3175 struct event_ring_data eq_data = { {0} }; 3176 u16 flags; 3177 3178 if (!CHIP_IS_E1x(bp)) { 3179 /* reset IGU PF statistics: MSIX + ATTN */ 3180 /* PF */ 3181 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 3182 BNX2X_IGU_STAS_MSG_VF_CNT*4 + 3183 (CHIP_MODE_IS_4_PORT(bp) ? 3184 BP_FUNC(bp) : BP_VN(bp))*4, 0); 3185 /* ATTN */ 3186 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 3187 BNX2X_IGU_STAS_MSG_VF_CNT*4 + 3188 BNX2X_IGU_STAS_MSG_PF_CNT*4 + 3189 (CHIP_MODE_IS_4_PORT(bp) ? 3190 BP_FUNC(bp) : BP_VN(bp))*4, 0); 3191 } 3192 3193 /* function setup flags */ 3194 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); 3195 3196 /* This flag is relevant for E1x only. 3197 * E2 doesn't have a TPA configuration in a function level. 3198 */ 3199 flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0; 3200 3201 func_init.func_flgs = flags; 3202 func_init.pf_id = BP_FUNC(bp); 3203 func_init.func_id = BP_FUNC(bp); 3204 func_init.spq_map = bp->spq_mapping; 3205 func_init.spq_prod = bp->spq_prod_idx; 3206 3207 bnx2x_func_init(bp, &func_init); 3208 3209 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port)); 3210 3211 /* 3212 * Congestion management values depend on the link rate 3213 * There is no active link so initial link rate is set to 10 Gbps. 3214 * When the link comes up The congestion management values are 3215 * re-calculated according to the actual link rate. 3216 */ 3217 bp->link_vars.line_speed = SPEED_10000; 3218 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp)); 3219 3220 /* Only the PMF sets the HW */ 3221 if (bp->port.pmf) 3222 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 3223 3224 /* init Event Queue - PCI bus guarantees correct endianity*/ 3225 eq_data.base_addr.hi = U64_HI(bp->eq_mapping); 3226 eq_data.base_addr.lo = U64_LO(bp->eq_mapping); 3227 eq_data.producer = bp->eq_prod; 3228 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 3229 eq_data.sb_id = DEF_SB_ID; 3230 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp)); 3231 } 3232 3233 static void bnx2x_e1h_disable(struct bnx2x *bp) 3234 { 3235 int port = BP_PORT(bp); 3236 3237 bnx2x_tx_disable(bp); 3238 3239 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); 3240 } 3241 3242 static void bnx2x_e1h_enable(struct bnx2x *bp) 3243 { 3244 int port = BP_PORT(bp); 3245 3246 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1); 3247 3248 /* Tx queue should be only re-enabled */ 3249 netif_tx_wake_all_queues(bp->dev); 3250 3251 /* 3252 * Should not call netif_carrier_on since it will be called if the link 3253 * is up when checking for link state 3254 */ 3255 } 3256 3257 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 3258 3259 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp) 3260 { 3261 struct eth_stats_info *ether_stat = 3262 &bp->slowpath->drv_info_to_mcp.ether_stat; 3263 struct bnx2x_vlan_mac_obj *mac_obj = 3264 &bp->sp_objs->mac_obj; 3265 int i; 3266 3267 strlcpy(ether_stat->version, DRV_MODULE_VERSION, 3268 ETH_STAT_INFO_VERSION_LEN); 3269 3270 /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the 3271 * mac_local field in ether_stat struct. The base address is offset by 2 3272 * bytes to account for the field being 8 bytes but a mac address is 3273 * only 6 bytes. Likewise, the stride for the get_n_elements function is 3274 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes 3275 * allocated by the ether_stat struct, so the macs will land in their 3276 * proper positions. 3277 */ 3278 for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++) 3279 memset(ether_stat->mac_local + i, 0, 3280 sizeof(ether_stat->mac_local[0])); 3281 mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj, 3282 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 3283 ether_stat->mac_local + MAC_PAD, MAC_PAD, 3284 ETH_ALEN); 3285 ether_stat->mtu_size = bp->dev->mtu; 3286 if (bp->dev->features & NETIF_F_RXCSUM) 3287 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 3288 if (bp->dev->features & NETIF_F_TSO) 3289 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 3290 ether_stat->feature_flags |= bp->common.boot_mode; 3291 3292 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0; 3293 3294 ether_stat->txq_size = bp->tx_ring_size; 3295 ether_stat->rxq_size = bp->rx_ring_size; 3296 } 3297 3298 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp) 3299 { 3300 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; 3301 struct fcoe_stats_info *fcoe_stat = 3302 &bp->slowpath->drv_info_to_mcp.fcoe_stat; 3303 3304 if (!CNIC_LOADED(bp)) 3305 return; 3306 3307 memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN); 3308 3309 fcoe_stat->qos_priority = 3310 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE]; 3311 3312 /* insert FCoE stats from ramrod response */ 3313 if (!NO_FCOE(bp)) { 3314 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats = 3315 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. 3316 tstorm_queue_statistics; 3317 3318 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats = 3319 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. 3320 xstorm_queue_statistics; 3321 3322 struct fcoe_statistics_params *fw_fcoe_stat = 3323 &bp->fw_stats_data->fcoe; 3324 3325 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0, 3326 fcoe_stat->rx_bytes_lo, 3327 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt); 3328 3329 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3330 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi, 3331 fcoe_stat->rx_bytes_lo, 3332 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo); 3333 3334 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3335 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi, 3336 fcoe_stat->rx_bytes_lo, 3337 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo); 3338 3339 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3340 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi, 3341 fcoe_stat->rx_bytes_lo, 3342 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo); 3343 3344 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3345 fcoe_stat->rx_frames_lo, 3346 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt); 3347 3348 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3349 fcoe_stat->rx_frames_lo, 3350 fcoe_q_tstorm_stats->rcv_ucast_pkts); 3351 3352 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3353 fcoe_stat->rx_frames_lo, 3354 fcoe_q_tstorm_stats->rcv_bcast_pkts); 3355 3356 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3357 fcoe_stat->rx_frames_lo, 3358 fcoe_q_tstorm_stats->rcv_mcast_pkts); 3359 3360 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0, 3361 fcoe_stat->tx_bytes_lo, 3362 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt); 3363 3364 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3365 fcoe_q_xstorm_stats->ucast_bytes_sent.hi, 3366 fcoe_stat->tx_bytes_lo, 3367 fcoe_q_xstorm_stats->ucast_bytes_sent.lo); 3368 3369 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3370 fcoe_q_xstorm_stats->bcast_bytes_sent.hi, 3371 fcoe_stat->tx_bytes_lo, 3372 fcoe_q_xstorm_stats->bcast_bytes_sent.lo); 3373 3374 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3375 fcoe_q_xstorm_stats->mcast_bytes_sent.hi, 3376 fcoe_stat->tx_bytes_lo, 3377 fcoe_q_xstorm_stats->mcast_bytes_sent.lo); 3378 3379 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3380 fcoe_stat->tx_frames_lo, 3381 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt); 3382 3383 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3384 fcoe_stat->tx_frames_lo, 3385 fcoe_q_xstorm_stats->ucast_pkts_sent); 3386 3387 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3388 fcoe_stat->tx_frames_lo, 3389 fcoe_q_xstorm_stats->bcast_pkts_sent); 3390 3391 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3392 fcoe_stat->tx_frames_lo, 3393 fcoe_q_xstorm_stats->mcast_pkts_sent); 3394 } 3395 3396 /* ask L5 driver to add data to the struct */ 3397 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD); 3398 } 3399 3400 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp) 3401 { 3402 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; 3403 struct iscsi_stats_info *iscsi_stat = 3404 &bp->slowpath->drv_info_to_mcp.iscsi_stat; 3405 3406 if (!CNIC_LOADED(bp)) 3407 return; 3408 3409 memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac, 3410 ETH_ALEN); 3411 3412 iscsi_stat->qos_priority = 3413 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI]; 3414 3415 /* ask L5 driver to add data to the struct */ 3416 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD); 3417 } 3418 3419 /* called due to MCP event (on pmf): 3420 * reread new bandwidth configuration 3421 * configure FW 3422 * notify others function about the change 3423 */ 3424 static void bnx2x_config_mf_bw(struct bnx2x *bp) 3425 { 3426 if (bp->link_vars.link_up) { 3427 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX); 3428 bnx2x_link_sync_notify(bp); 3429 } 3430 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 3431 } 3432 3433 static void bnx2x_set_mf_bw(struct bnx2x *bp) 3434 { 3435 bnx2x_config_mf_bw(bp); 3436 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 3437 } 3438 3439 static void bnx2x_handle_eee_event(struct bnx2x *bp) 3440 { 3441 DP(BNX2X_MSG_MCP, "EEE - LLDP event\n"); 3442 bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 3443 } 3444 3445 static void bnx2x_handle_drv_info_req(struct bnx2x *bp) 3446 { 3447 enum drv_info_opcode op_code; 3448 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control); 3449 3450 /* if drv_info version supported by MFW doesn't match - send NACK */ 3451 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 3452 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); 3453 return; 3454 } 3455 3456 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 3457 DRV_INFO_CONTROL_OP_CODE_SHIFT; 3458 3459 memset(&bp->slowpath->drv_info_to_mcp, 0, 3460 sizeof(union drv_info_to_mcp)); 3461 3462 switch (op_code) { 3463 case ETH_STATS_OPCODE: 3464 bnx2x_drv_info_ether_stat(bp); 3465 break; 3466 case FCOE_STATS_OPCODE: 3467 bnx2x_drv_info_fcoe_stat(bp); 3468 break; 3469 case ISCSI_STATS_OPCODE: 3470 bnx2x_drv_info_iscsi_stat(bp); 3471 break; 3472 default: 3473 /* if op code isn't supported - send NACK */ 3474 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); 3475 return; 3476 } 3477 3478 /* if we got drv_info attn from MFW then these fields are defined in 3479 * shmem2 for sure 3480 */ 3481 SHMEM2_WR(bp, drv_info_host_addr_lo, 3482 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp))); 3483 SHMEM2_WR(bp, drv_info_host_addr_hi, 3484 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp))); 3485 3486 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0); 3487 } 3488 3489 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event) 3490 { 3491 DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event); 3492 3493 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { 3494 3495 /* 3496 * This is the only place besides the function initialization 3497 * where the bp->flags can change so it is done without any 3498 * locks 3499 */ 3500 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { 3501 DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n"); 3502 bp->flags |= MF_FUNC_DIS; 3503 3504 bnx2x_e1h_disable(bp); 3505 } else { 3506 DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n"); 3507 bp->flags &= ~MF_FUNC_DIS; 3508 3509 bnx2x_e1h_enable(bp); 3510 } 3511 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; 3512 } 3513 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { 3514 bnx2x_config_mf_bw(bp); 3515 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; 3516 } 3517 3518 /* Report results to MCP */ 3519 if (dcc_event) 3520 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0); 3521 else 3522 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0); 3523 } 3524 3525 /* must be called under the spq lock */ 3526 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp) 3527 { 3528 struct eth_spe *next_spe = bp->spq_prod_bd; 3529 3530 if (bp->spq_prod_bd == bp->spq_last_bd) { 3531 bp->spq_prod_bd = bp->spq; 3532 bp->spq_prod_idx = 0; 3533 DP(BNX2X_MSG_SP, "end of spq\n"); 3534 } else { 3535 bp->spq_prod_bd++; 3536 bp->spq_prod_idx++; 3537 } 3538 return next_spe; 3539 } 3540 3541 /* must be called under the spq lock */ 3542 static void bnx2x_sp_prod_update(struct bnx2x *bp) 3543 { 3544 int func = BP_FUNC(bp); 3545 3546 /* 3547 * Make sure that BD data is updated before writing the producer: 3548 * BD data is written to the memory, the producer is read from the 3549 * memory, thus we need a full memory barrier to ensure the ordering. 3550 */ 3551 mb(); 3552 3553 REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func), 3554 bp->spq_prod_idx); 3555 mmiowb(); 3556 } 3557 3558 /** 3559 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ 3560 * 3561 * @cmd: command to check 3562 * @cmd_type: command type 3563 */ 3564 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type) 3565 { 3566 if ((cmd_type == NONE_CONNECTION_TYPE) || 3567 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 3568 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 3569 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 3570 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 3571 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 3572 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) 3573 return true; 3574 else 3575 return false; 3576 } 3577 3578 /** 3579 * bnx2x_sp_post - place a single command on an SP ring 3580 * 3581 * @bp: driver handle 3582 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 3583 * @cid: SW CID the command is related to 3584 * @data_hi: command private data address (high 32 bits) 3585 * @data_lo: command private data address (low 32 bits) 3586 * @cmd_type: command type (e.g. NONE, ETH) 3587 * 3588 * SP data is handled as if it's always an address pair, thus data fields are 3589 * not swapped to little endian in upper functions. Instead this function swaps 3590 * data as if it's two u32 fields. 3591 */ 3592 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid, 3593 u32 data_hi, u32 data_lo, int cmd_type) 3594 { 3595 struct eth_spe *spe; 3596 u16 type; 3597 bool common = bnx2x_is_contextless_ramrod(command, cmd_type); 3598 3599 #ifdef BNX2X_STOP_ON_ERROR 3600 if (unlikely(bp->panic)) { 3601 BNX2X_ERR("Can't post SP when there is panic\n"); 3602 return -EIO; 3603 } 3604 #endif 3605 3606 spin_lock_bh(&bp->spq_lock); 3607 3608 if (common) { 3609 if (!atomic_read(&bp->eq_spq_left)) { 3610 BNX2X_ERR("BUG! EQ ring full!\n"); 3611 spin_unlock_bh(&bp->spq_lock); 3612 bnx2x_panic(); 3613 return -EBUSY; 3614 } 3615 } else if (!atomic_read(&bp->cq_spq_left)) { 3616 BNX2X_ERR("BUG! SPQ ring full!\n"); 3617 spin_unlock_bh(&bp->spq_lock); 3618 bnx2x_panic(); 3619 return -EBUSY; 3620 } 3621 3622 spe = bnx2x_sp_get_next(bp); 3623 3624 /* CID needs port number to be encoded int it */ 3625 spe->hdr.conn_and_cmd_data = 3626 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) | 3627 HW_CID(bp, cid)); 3628 3629 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE; 3630 3631 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) & 3632 SPE_HDR_FUNCTION_ID); 3633 3634 spe->hdr.type = cpu_to_le16(type); 3635 3636 spe->data.update_data_addr.hi = cpu_to_le32(data_hi); 3637 spe->data.update_data_addr.lo = cpu_to_le32(data_lo); 3638 3639 /* 3640 * It's ok if the actual decrement is issued towards the memory 3641 * somewhere between the spin_lock and spin_unlock. Thus no 3642 * more explicit memory barrier is needed. 3643 */ 3644 if (common) 3645 atomic_dec(&bp->eq_spq_left); 3646 else 3647 atomic_dec(&bp->cq_spq_left); 3648 3649 DP(BNX2X_MSG_SP, 3650 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n", 3651 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping), 3652 (u32)(U64_LO(bp->spq_mapping) + 3653 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common, 3654 HW_CID(bp, cid), data_hi, data_lo, type, 3655 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left)); 3656 3657 bnx2x_sp_prod_update(bp); 3658 spin_unlock_bh(&bp->spq_lock); 3659 return 0; 3660 } 3661 3662 /* acquire split MCP access lock register */ 3663 static int bnx2x_acquire_alr(struct bnx2x *bp) 3664 { 3665 u32 j, val; 3666 int rc = 0; 3667 3668 might_sleep(); 3669 for (j = 0; j < 1000; j++) { 3670 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK); 3671 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK); 3672 if (val & MCPR_ACCESS_LOCK_LOCK) 3673 break; 3674 3675 usleep_range(5000, 10000); 3676 } 3677 if (!(val & MCPR_ACCESS_LOCK_LOCK)) { 3678 BNX2X_ERR("Cannot acquire MCP access lock register\n"); 3679 rc = -EBUSY; 3680 } 3681 3682 return rc; 3683 } 3684 3685 /* release split MCP access lock register */ 3686 static void bnx2x_release_alr(struct bnx2x *bp) 3687 { 3688 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0); 3689 } 3690 3691 #define BNX2X_DEF_SB_ATT_IDX 0x0001 3692 #define BNX2X_DEF_SB_IDX 0x0002 3693 3694 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp) 3695 { 3696 struct host_sp_status_block *def_sb = bp->def_status_blk; 3697 u16 rc = 0; 3698 3699 barrier(); /* status block is written to by the chip */ 3700 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 3701 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index; 3702 rc |= BNX2X_DEF_SB_ATT_IDX; 3703 } 3704 3705 if (bp->def_idx != def_sb->sp_sb.running_index) { 3706 bp->def_idx = def_sb->sp_sb.running_index; 3707 rc |= BNX2X_DEF_SB_IDX; 3708 } 3709 3710 /* Do not reorder: indices reading should complete before handling */ 3711 barrier(); 3712 return rc; 3713 } 3714 3715 /* 3716 * slow path service functions 3717 */ 3718 3719 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted) 3720 { 3721 int port = BP_PORT(bp); 3722 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 3723 MISC_REG_AEU_MASK_ATTN_FUNC_0; 3724 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 3725 NIG_REG_MASK_INTERRUPT_PORT0; 3726 u32 aeu_mask; 3727 u32 nig_mask = 0; 3728 u32 reg_addr; 3729 3730 if (bp->attn_state & asserted) 3731 BNX2X_ERR("IGU ERROR\n"); 3732 3733 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 3734 aeu_mask = REG_RD(bp, aeu_addr); 3735 3736 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n", 3737 aeu_mask, asserted); 3738 aeu_mask &= ~(asserted & 0x3ff); 3739 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); 3740 3741 REG_WR(bp, aeu_addr, aeu_mask); 3742 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 3743 3744 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); 3745 bp->attn_state |= asserted; 3746 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); 3747 3748 if (asserted & ATTN_HARD_WIRED_MASK) { 3749 if (asserted & ATTN_NIG_FOR_FUNC) { 3750 3751 bnx2x_acquire_phy_lock(bp); 3752 3753 /* save nig interrupt mask */ 3754 nig_mask = REG_RD(bp, nig_int_mask_addr); 3755 3756 /* If nig_mask is not set, no need to call the update 3757 * function. 3758 */ 3759 if (nig_mask) { 3760 REG_WR(bp, nig_int_mask_addr, 0); 3761 3762 bnx2x_link_attn(bp); 3763 } 3764 3765 /* handle unicore attn? */ 3766 } 3767 if (asserted & ATTN_SW_TIMER_4_FUNC) 3768 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n"); 3769 3770 if (asserted & GPIO_2_FUNC) 3771 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n"); 3772 3773 if (asserted & GPIO_3_FUNC) 3774 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n"); 3775 3776 if (asserted & GPIO_4_FUNC) 3777 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n"); 3778 3779 if (port == 0) { 3780 if (asserted & ATTN_GENERAL_ATTN_1) { 3781 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n"); 3782 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 3783 } 3784 if (asserted & ATTN_GENERAL_ATTN_2) { 3785 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n"); 3786 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 3787 } 3788 if (asserted & ATTN_GENERAL_ATTN_3) { 3789 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n"); 3790 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 3791 } 3792 } else { 3793 if (asserted & ATTN_GENERAL_ATTN_4) { 3794 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n"); 3795 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 3796 } 3797 if (asserted & ATTN_GENERAL_ATTN_5) { 3798 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n"); 3799 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 3800 } 3801 if (asserted & ATTN_GENERAL_ATTN_6) { 3802 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n"); 3803 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 3804 } 3805 } 3806 3807 } /* if hardwired */ 3808 3809 if (bp->common.int_block == INT_BLOCK_HC) 3810 reg_addr = (HC_REG_COMMAND_REG + port*32 + 3811 COMMAND_REG_ATTN_BITS_SET); 3812 else 3813 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 3814 3815 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted, 3816 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 3817 REG_WR(bp, reg_addr, asserted); 3818 3819 /* now set back the mask */ 3820 if (asserted & ATTN_NIG_FOR_FUNC) { 3821 /* Verify that IGU ack through BAR was written before restoring 3822 * NIG mask. This loop should exit after 2-3 iterations max. 3823 */ 3824 if (bp->common.int_block != INT_BLOCK_HC) { 3825 u32 cnt = 0, igu_acked; 3826 do { 3827 igu_acked = REG_RD(bp, 3828 IGU_REG_ATTENTION_ACK_BITS); 3829 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 3830 (++cnt < MAX_IGU_ATTN_ACK_TO)); 3831 if (!igu_acked) 3832 DP(NETIF_MSG_HW, 3833 "Failed to verify IGU ack on time\n"); 3834 barrier(); 3835 } 3836 REG_WR(bp, nig_int_mask_addr, nig_mask); 3837 bnx2x_release_phy_lock(bp); 3838 } 3839 } 3840 3841 static void bnx2x_fan_failure(struct bnx2x *bp) 3842 { 3843 int port = BP_PORT(bp); 3844 u32 ext_phy_config; 3845 /* mark the failure */ 3846 ext_phy_config = 3847 SHMEM_RD(bp, 3848 dev_info.port_hw_config[port].external_phy_config); 3849 3850 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 3851 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 3852 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config, 3853 ext_phy_config); 3854 3855 /* log the failure */ 3856 netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n" 3857 "Please contact OEM Support for assistance\n"); 3858 3859 /* Schedule device reset (unload) 3860 * This is due to some boards consuming sufficient power when driver is 3861 * up to overheat if fan fails. 3862 */ 3863 smp_mb__before_clear_bit(); 3864 set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state); 3865 smp_mb__after_clear_bit(); 3866 schedule_delayed_work(&bp->sp_rtnl_task, 0); 3867 } 3868 3869 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn) 3870 { 3871 int port = BP_PORT(bp); 3872 int reg_offset; 3873 u32 val; 3874 3875 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 3876 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 3877 3878 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 3879 3880 val = REG_RD(bp, reg_offset); 3881 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 3882 REG_WR(bp, reg_offset, val); 3883 3884 BNX2X_ERR("SPIO5 hw attention\n"); 3885 3886 /* Fan failure attention */ 3887 bnx2x_hw_reset_phy(&bp->link_params); 3888 bnx2x_fan_failure(bp); 3889 } 3890 3891 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) { 3892 bnx2x_acquire_phy_lock(bp); 3893 bnx2x_handle_module_detect_int(&bp->link_params); 3894 bnx2x_release_phy_lock(bp); 3895 } 3896 3897 if (attn & HW_INTERRUT_ASSERT_SET_0) { 3898 3899 val = REG_RD(bp, reg_offset); 3900 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 3901 REG_WR(bp, reg_offset, val); 3902 3903 BNX2X_ERR("FATAL HW block attention set0 0x%x\n", 3904 (u32)(attn & HW_INTERRUT_ASSERT_SET_0)); 3905 bnx2x_panic(); 3906 } 3907 } 3908 3909 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn) 3910 { 3911 u32 val; 3912 3913 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 3914 3915 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR); 3916 BNX2X_ERR("DB hw attention 0x%x\n", val); 3917 /* DORQ discard attention */ 3918 if (val & 0x2) 3919 BNX2X_ERR("FATAL error from DORQ\n"); 3920 } 3921 3922 if (attn & HW_INTERRUT_ASSERT_SET_1) { 3923 3924 int port = BP_PORT(bp); 3925 int reg_offset; 3926 3927 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 3928 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 3929 3930 val = REG_RD(bp, reg_offset); 3931 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 3932 REG_WR(bp, reg_offset, val); 3933 3934 BNX2X_ERR("FATAL HW block attention set1 0x%x\n", 3935 (u32)(attn & HW_INTERRUT_ASSERT_SET_1)); 3936 bnx2x_panic(); 3937 } 3938 } 3939 3940 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn) 3941 { 3942 u32 val; 3943 3944 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 3945 3946 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR); 3947 BNX2X_ERR("CFC hw attention 0x%x\n", val); 3948 /* CFC error attention */ 3949 if (val & 0x2) 3950 BNX2X_ERR("FATAL error from CFC\n"); 3951 } 3952 3953 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 3954 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0); 3955 BNX2X_ERR("PXP hw attention-0 0x%x\n", val); 3956 /* RQ_USDMDP_FIFO_OVERFLOW */ 3957 if (val & 0x18000) 3958 BNX2X_ERR("FATAL error from PXP\n"); 3959 3960 if (!CHIP_IS_E1x(bp)) { 3961 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1); 3962 BNX2X_ERR("PXP hw attention-1 0x%x\n", val); 3963 } 3964 } 3965 3966 if (attn & HW_INTERRUT_ASSERT_SET_2) { 3967 3968 int port = BP_PORT(bp); 3969 int reg_offset; 3970 3971 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 3972 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 3973 3974 val = REG_RD(bp, reg_offset); 3975 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 3976 REG_WR(bp, reg_offset, val); 3977 3978 BNX2X_ERR("FATAL HW block attention set2 0x%x\n", 3979 (u32)(attn & HW_INTERRUT_ASSERT_SET_2)); 3980 bnx2x_panic(); 3981 } 3982 } 3983 3984 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn) 3985 { 3986 u32 val; 3987 3988 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 3989 3990 if (attn & BNX2X_PMF_LINK_ASSERT) { 3991 int func = BP_FUNC(bp); 3992 3993 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 3994 bnx2x_read_mf_cfg(bp); 3995 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp, 3996 func_mf_config[BP_ABS_FUNC(bp)].config); 3997 val = SHMEM_RD(bp, 3998 func_mb[BP_FW_MB_IDX(bp)].drv_status); 3999 if (val & DRV_STATUS_DCC_EVENT_MASK) 4000 bnx2x_dcc_event(bp, 4001 (val & DRV_STATUS_DCC_EVENT_MASK)); 4002 4003 if (val & DRV_STATUS_SET_MF_BW) 4004 bnx2x_set_mf_bw(bp); 4005 4006 if (val & DRV_STATUS_DRV_INFO_REQ) 4007 bnx2x_handle_drv_info_req(bp); 4008 4009 if (val & DRV_STATUS_VF_DISABLED) 4010 bnx2x_vf_handle_flr_event(bp); 4011 4012 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF)) 4013 bnx2x_pmf_update(bp); 4014 4015 if (bp->port.pmf && 4016 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) && 4017 bp->dcbx_enabled > 0) 4018 /* start dcbx state machine */ 4019 bnx2x_dcbx_set_params(bp, 4020 BNX2X_DCBX_STATE_NEG_RECEIVED); 4021 if (val & DRV_STATUS_AFEX_EVENT_MASK) 4022 bnx2x_handle_afex_cmd(bp, 4023 val & DRV_STATUS_AFEX_EVENT_MASK); 4024 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 4025 bnx2x_handle_eee_event(bp); 4026 if (bp->link_vars.periodic_flags & 4027 PERIODIC_FLAGS_LINK_EVENT) { 4028 /* sync with link */ 4029 bnx2x_acquire_phy_lock(bp); 4030 bp->link_vars.periodic_flags &= 4031 ~PERIODIC_FLAGS_LINK_EVENT; 4032 bnx2x_release_phy_lock(bp); 4033 if (IS_MF(bp)) 4034 bnx2x_link_sync_notify(bp); 4035 bnx2x_link_report(bp); 4036 } 4037 /* Always call it here: bnx2x_link_report() will 4038 * prevent the link indication duplication. 4039 */ 4040 bnx2x__link_status_update(bp); 4041 } else if (attn & BNX2X_MC_ASSERT_BITS) { 4042 4043 BNX2X_ERR("MC assert!\n"); 4044 bnx2x_mc_assert(bp); 4045 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0); 4046 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0); 4047 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0); 4048 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0); 4049 bnx2x_panic(); 4050 4051 } else if (attn & BNX2X_MCP_ASSERT) { 4052 4053 BNX2X_ERR("MCP assert!\n"); 4054 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0); 4055 bnx2x_fw_dump(bp); 4056 4057 } else 4058 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn); 4059 } 4060 4061 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 4062 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn); 4063 if (attn & BNX2X_GRC_TIMEOUT) { 4064 val = CHIP_IS_E1(bp) ? 0 : 4065 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN); 4066 BNX2X_ERR("GRC time-out 0x%08x\n", val); 4067 } 4068 if (attn & BNX2X_GRC_RSV) { 4069 val = CHIP_IS_E1(bp) ? 0 : 4070 REG_RD(bp, MISC_REG_GRC_RSV_ATTN); 4071 BNX2X_ERR("GRC reserved 0x%08x\n", val); 4072 } 4073 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 4074 } 4075 } 4076 4077 /* 4078 * Bits map: 4079 * 0-7 - Engine0 load counter. 4080 * 8-15 - Engine1 load counter. 4081 * 16 - Engine0 RESET_IN_PROGRESS bit. 4082 * 17 - Engine1 RESET_IN_PROGRESS bit. 4083 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function 4084 * on the engine 4085 * 19 - Engine1 ONE_IS_LOADED. 4086 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 4087 * leader to complete (check for both RESET_IN_PROGRESS bits and not for 4088 * just the one belonging to its engine). 4089 * 4090 */ 4091 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 4092 4093 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff 4094 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0 4095 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00 4096 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8 4097 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000 4098 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000 4099 #define BNX2X_GLOBAL_RESET_BIT 0x00040000 4100 4101 /* 4102 * Set the GLOBAL_RESET bit. 4103 * 4104 * Should be run under rtnl lock 4105 */ 4106 void bnx2x_set_reset_global(struct bnx2x *bp) 4107 { 4108 u32 val; 4109 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4110 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4111 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT); 4112 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4113 } 4114 4115 /* 4116 * Clear the GLOBAL_RESET bit. 4117 * 4118 * Should be run under rtnl lock 4119 */ 4120 static void bnx2x_clear_reset_global(struct bnx2x *bp) 4121 { 4122 u32 val; 4123 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4124 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4125 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT)); 4126 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4127 } 4128 4129 /* 4130 * Checks the GLOBAL_RESET bit. 4131 * 4132 * should be run under rtnl lock 4133 */ 4134 static bool bnx2x_reset_is_global(struct bnx2x *bp) 4135 { 4136 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4137 4138 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val); 4139 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false; 4140 } 4141 4142 /* 4143 * Clear RESET_IN_PROGRESS bit for the current engine. 4144 * 4145 * Should be run under rtnl lock 4146 */ 4147 static void bnx2x_set_reset_done(struct bnx2x *bp) 4148 { 4149 u32 val; 4150 u32 bit = BP_PATH(bp) ? 4151 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4152 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4153 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4154 4155 /* Clear the bit */ 4156 val &= ~bit; 4157 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4158 4159 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4160 } 4161 4162 /* 4163 * Set RESET_IN_PROGRESS for the current engine. 4164 * 4165 * should be run under rtnl lock 4166 */ 4167 void bnx2x_set_reset_in_progress(struct bnx2x *bp) 4168 { 4169 u32 val; 4170 u32 bit = BP_PATH(bp) ? 4171 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4172 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4173 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4174 4175 /* Set the bit */ 4176 val |= bit; 4177 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4178 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4179 } 4180 4181 /* 4182 * Checks the RESET_IN_PROGRESS bit for the given engine. 4183 * should be run under rtnl lock 4184 */ 4185 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine) 4186 { 4187 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4188 u32 bit = engine ? 4189 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4190 4191 /* return false if bit is set */ 4192 return (val & bit) ? false : true; 4193 } 4194 4195 /* 4196 * set pf load for the current pf. 4197 * 4198 * should be run under rtnl lock 4199 */ 4200 void bnx2x_set_pf_load(struct bnx2x *bp) 4201 { 4202 u32 val1, val; 4203 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : 4204 BNX2X_PATH0_LOAD_CNT_MASK; 4205 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4206 BNX2X_PATH0_LOAD_CNT_SHIFT; 4207 4208 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4209 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4210 4211 DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val); 4212 4213 /* get the current counter value */ 4214 val1 = (val & mask) >> shift; 4215 4216 /* set bit of that PF */ 4217 val1 |= (1 << bp->pf_num); 4218 4219 /* clear the old value */ 4220 val &= ~mask; 4221 4222 /* set the new one */ 4223 val |= ((val1 << shift) & mask); 4224 4225 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4226 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4227 } 4228 4229 /** 4230 * bnx2x_clear_pf_load - clear pf load mark 4231 * 4232 * @bp: driver handle 4233 * 4234 * Should be run under rtnl lock. 4235 * Decrements the load counter for the current engine. Returns 4236 * whether other functions are still loaded 4237 */ 4238 bool bnx2x_clear_pf_load(struct bnx2x *bp) 4239 { 4240 u32 val1, val; 4241 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : 4242 BNX2X_PATH0_LOAD_CNT_MASK; 4243 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4244 BNX2X_PATH0_LOAD_CNT_SHIFT; 4245 4246 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4247 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4248 DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val); 4249 4250 /* get the current counter value */ 4251 val1 = (val & mask) >> shift; 4252 4253 /* clear bit of that PF */ 4254 val1 &= ~(1 << bp->pf_num); 4255 4256 /* clear the old value */ 4257 val &= ~mask; 4258 4259 /* set the new one */ 4260 val |= ((val1 << shift) & mask); 4261 4262 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4263 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4264 return val1 != 0; 4265 } 4266 4267 /* 4268 * Read the load status for the current engine. 4269 * 4270 * should be run under rtnl lock 4271 */ 4272 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine) 4273 { 4274 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK : 4275 BNX2X_PATH0_LOAD_CNT_MASK); 4276 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4277 BNX2X_PATH0_LOAD_CNT_SHIFT); 4278 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4279 4280 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val); 4281 4282 val = (val & mask) >> shift; 4283 4284 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n", 4285 engine, val); 4286 4287 return val != 0; 4288 } 4289 4290 static void _print_parity(struct bnx2x *bp, u32 reg) 4291 { 4292 pr_cont(" [0x%08x] ", REG_RD(bp, reg)); 4293 } 4294 4295 static void _print_next_block(int idx, const char *blk) 4296 { 4297 pr_cont("%s%s", idx ? ", " : "", blk); 4298 } 4299 4300 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig, 4301 int *par_num, bool print) 4302 { 4303 u32 cur_bit; 4304 bool res; 4305 int i; 4306 4307 res = false; 4308 4309 for (i = 0; sig; i++) { 4310 cur_bit = (0x1UL << i); 4311 if (sig & cur_bit) { 4312 res |= true; /* Each bit is real error! */ 4313 4314 if (print) { 4315 switch (cur_bit) { 4316 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 4317 _print_next_block((*par_num)++, "BRB"); 4318 _print_parity(bp, 4319 BRB1_REG_BRB1_PRTY_STS); 4320 break; 4321 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 4322 _print_next_block((*par_num)++, 4323 "PARSER"); 4324 _print_parity(bp, PRS_REG_PRS_PRTY_STS); 4325 break; 4326 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 4327 _print_next_block((*par_num)++, "TSDM"); 4328 _print_parity(bp, 4329 TSDM_REG_TSDM_PRTY_STS); 4330 break; 4331 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 4332 _print_next_block((*par_num)++, 4333 "SEARCHER"); 4334 _print_parity(bp, SRC_REG_SRC_PRTY_STS); 4335 break; 4336 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 4337 _print_next_block((*par_num)++, "TCM"); 4338 _print_parity(bp, TCM_REG_TCM_PRTY_STS); 4339 break; 4340 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 4341 _print_next_block((*par_num)++, 4342 "TSEMI"); 4343 _print_parity(bp, 4344 TSEM_REG_TSEM_PRTY_STS_0); 4345 _print_parity(bp, 4346 TSEM_REG_TSEM_PRTY_STS_1); 4347 break; 4348 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 4349 _print_next_block((*par_num)++, "XPB"); 4350 _print_parity(bp, GRCBASE_XPB + 4351 PB_REG_PB_PRTY_STS); 4352 break; 4353 } 4354 } 4355 4356 /* Clear the bit */ 4357 sig &= ~cur_bit; 4358 } 4359 } 4360 4361 return res; 4362 } 4363 4364 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig, 4365 int *par_num, bool *global, 4366 bool print) 4367 { 4368 u32 cur_bit; 4369 bool res; 4370 int i; 4371 4372 res = false; 4373 4374 for (i = 0; sig; i++) { 4375 cur_bit = (0x1UL << i); 4376 if (sig & cur_bit) { 4377 res |= true; /* Each bit is real error! */ 4378 switch (cur_bit) { 4379 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 4380 if (print) { 4381 _print_next_block((*par_num)++, "PBF"); 4382 _print_parity(bp, PBF_REG_PBF_PRTY_STS); 4383 } 4384 break; 4385 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 4386 if (print) { 4387 _print_next_block((*par_num)++, "QM"); 4388 _print_parity(bp, QM_REG_QM_PRTY_STS); 4389 } 4390 break; 4391 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 4392 if (print) { 4393 _print_next_block((*par_num)++, "TM"); 4394 _print_parity(bp, TM_REG_TM_PRTY_STS); 4395 } 4396 break; 4397 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 4398 if (print) { 4399 _print_next_block((*par_num)++, "XSDM"); 4400 _print_parity(bp, 4401 XSDM_REG_XSDM_PRTY_STS); 4402 } 4403 break; 4404 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 4405 if (print) { 4406 _print_next_block((*par_num)++, "XCM"); 4407 _print_parity(bp, XCM_REG_XCM_PRTY_STS); 4408 } 4409 break; 4410 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 4411 if (print) { 4412 _print_next_block((*par_num)++, 4413 "XSEMI"); 4414 _print_parity(bp, 4415 XSEM_REG_XSEM_PRTY_STS_0); 4416 _print_parity(bp, 4417 XSEM_REG_XSEM_PRTY_STS_1); 4418 } 4419 break; 4420 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 4421 if (print) { 4422 _print_next_block((*par_num)++, 4423 "DOORBELLQ"); 4424 _print_parity(bp, 4425 DORQ_REG_DORQ_PRTY_STS); 4426 } 4427 break; 4428 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 4429 if (print) { 4430 _print_next_block((*par_num)++, "NIG"); 4431 if (CHIP_IS_E1x(bp)) { 4432 _print_parity(bp, 4433 NIG_REG_NIG_PRTY_STS); 4434 } else { 4435 _print_parity(bp, 4436 NIG_REG_NIG_PRTY_STS_0); 4437 _print_parity(bp, 4438 NIG_REG_NIG_PRTY_STS_1); 4439 } 4440 } 4441 break; 4442 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 4443 if (print) 4444 _print_next_block((*par_num)++, 4445 "VAUX PCI CORE"); 4446 *global = true; 4447 break; 4448 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 4449 if (print) { 4450 _print_next_block((*par_num)++, 4451 "DEBUG"); 4452 _print_parity(bp, DBG_REG_DBG_PRTY_STS); 4453 } 4454 break; 4455 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 4456 if (print) { 4457 _print_next_block((*par_num)++, "USDM"); 4458 _print_parity(bp, 4459 USDM_REG_USDM_PRTY_STS); 4460 } 4461 break; 4462 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 4463 if (print) { 4464 _print_next_block((*par_num)++, "UCM"); 4465 _print_parity(bp, UCM_REG_UCM_PRTY_STS); 4466 } 4467 break; 4468 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 4469 if (print) { 4470 _print_next_block((*par_num)++, 4471 "USEMI"); 4472 _print_parity(bp, 4473 USEM_REG_USEM_PRTY_STS_0); 4474 _print_parity(bp, 4475 USEM_REG_USEM_PRTY_STS_1); 4476 } 4477 break; 4478 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 4479 if (print) { 4480 _print_next_block((*par_num)++, "UPB"); 4481 _print_parity(bp, GRCBASE_UPB + 4482 PB_REG_PB_PRTY_STS); 4483 } 4484 break; 4485 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 4486 if (print) { 4487 _print_next_block((*par_num)++, "CSDM"); 4488 _print_parity(bp, 4489 CSDM_REG_CSDM_PRTY_STS); 4490 } 4491 break; 4492 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 4493 if (print) { 4494 _print_next_block((*par_num)++, "CCM"); 4495 _print_parity(bp, CCM_REG_CCM_PRTY_STS); 4496 } 4497 break; 4498 } 4499 4500 /* Clear the bit */ 4501 sig &= ~cur_bit; 4502 } 4503 } 4504 4505 return res; 4506 } 4507 4508 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig, 4509 int *par_num, bool print) 4510 { 4511 u32 cur_bit; 4512 bool res; 4513 int i; 4514 4515 res = false; 4516 4517 for (i = 0; sig; i++) { 4518 cur_bit = (0x1UL << i); 4519 if (sig & cur_bit) { 4520 res |= true; /* Each bit is real error! */ 4521 if (print) { 4522 switch (cur_bit) { 4523 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 4524 _print_next_block((*par_num)++, 4525 "CSEMI"); 4526 _print_parity(bp, 4527 CSEM_REG_CSEM_PRTY_STS_0); 4528 _print_parity(bp, 4529 CSEM_REG_CSEM_PRTY_STS_1); 4530 break; 4531 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 4532 _print_next_block((*par_num)++, "PXP"); 4533 _print_parity(bp, PXP_REG_PXP_PRTY_STS); 4534 _print_parity(bp, 4535 PXP2_REG_PXP2_PRTY_STS_0); 4536 _print_parity(bp, 4537 PXP2_REG_PXP2_PRTY_STS_1); 4538 break; 4539 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 4540 _print_next_block((*par_num)++, 4541 "PXPPCICLOCKCLIENT"); 4542 break; 4543 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 4544 _print_next_block((*par_num)++, "CFC"); 4545 _print_parity(bp, 4546 CFC_REG_CFC_PRTY_STS); 4547 break; 4548 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 4549 _print_next_block((*par_num)++, "CDU"); 4550 _print_parity(bp, CDU_REG_CDU_PRTY_STS); 4551 break; 4552 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 4553 _print_next_block((*par_num)++, "DMAE"); 4554 _print_parity(bp, 4555 DMAE_REG_DMAE_PRTY_STS); 4556 break; 4557 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 4558 _print_next_block((*par_num)++, "IGU"); 4559 if (CHIP_IS_E1x(bp)) 4560 _print_parity(bp, 4561 HC_REG_HC_PRTY_STS); 4562 else 4563 _print_parity(bp, 4564 IGU_REG_IGU_PRTY_STS); 4565 break; 4566 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 4567 _print_next_block((*par_num)++, "MISC"); 4568 _print_parity(bp, 4569 MISC_REG_MISC_PRTY_STS); 4570 break; 4571 } 4572 } 4573 4574 /* Clear the bit */ 4575 sig &= ~cur_bit; 4576 } 4577 } 4578 4579 return res; 4580 } 4581 4582 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig, 4583 int *par_num, bool *global, 4584 bool print) 4585 { 4586 bool res = false; 4587 u32 cur_bit; 4588 int i; 4589 4590 for (i = 0; sig; i++) { 4591 cur_bit = (0x1UL << i); 4592 if (sig & cur_bit) { 4593 switch (cur_bit) { 4594 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 4595 if (print) 4596 _print_next_block((*par_num)++, 4597 "MCP ROM"); 4598 *global = true; 4599 res |= true; 4600 break; 4601 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 4602 if (print) 4603 _print_next_block((*par_num)++, 4604 "MCP UMP RX"); 4605 *global = true; 4606 res |= true; 4607 break; 4608 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 4609 if (print) 4610 _print_next_block((*par_num)++, 4611 "MCP UMP TX"); 4612 *global = true; 4613 res |= true; 4614 break; 4615 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 4616 if (print) 4617 _print_next_block((*par_num)++, 4618 "MCP SCPAD"); 4619 /* clear latched SCPAD PATIRY from MCP */ 4620 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 4621 1UL << 10); 4622 break; 4623 } 4624 4625 /* Clear the bit */ 4626 sig &= ~cur_bit; 4627 } 4628 } 4629 4630 return res; 4631 } 4632 4633 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig, 4634 int *par_num, bool print) 4635 { 4636 u32 cur_bit; 4637 bool res; 4638 int i; 4639 4640 res = false; 4641 4642 for (i = 0; sig; i++) { 4643 cur_bit = (0x1UL << i); 4644 if (sig & cur_bit) { 4645 res |= true; /* Each bit is real error! */ 4646 if (print) { 4647 switch (cur_bit) { 4648 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 4649 _print_next_block((*par_num)++, 4650 "PGLUE_B"); 4651 _print_parity(bp, 4652 PGLUE_B_REG_PGLUE_B_PRTY_STS); 4653 break; 4654 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 4655 _print_next_block((*par_num)++, "ATC"); 4656 _print_parity(bp, 4657 ATC_REG_ATC_PRTY_STS); 4658 break; 4659 } 4660 } 4661 /* Clear the bit */ 4662 sig &= ~cur_bit; 4663 } 4664 } 4665 4666 return res; 4667 } 4668 4669 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print, 4670 u32 *sig) 4671 { 4672 bool res = false; 4673 4674 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 4675 (sig[1] & HW_PRTY_ASSERT_SET_1) || 4676 (sig[2] & HW_PRTY_ASSERT_SET_2) || 4677 (sig[3] & HW_PRTY_ASSERT_SET_3) || 4678 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 4679 int par_num = 0; 4680 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n" 4681 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 4682 sig[0] & HW_PRTY_ASSERT_SET_0, 4683 sig[1] & HW_PRTY_ASSERT_SET_1, 4684 sig[2] & HW_PRTY_ASSERT_SET_2, 4685 sig[3] & HW_PRTY_ASSERT_SET_3, 4686 sig[4] & HW_PRTY_ASSERT_SET_4); 4687 if (print) 4688 netdev_err(bp->dev, 4689 "Parity errors detected in blocks: "); 4690 res |= bnx2x_check_blocks_with_parity0(bp, 4691 sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print); 4692 res |= bnx2x_check_blocks_with_parity1(bp, 4693 sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print); 4694 res |= bnx2x_check_blocks_with_parity2(bp, 4695 sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print); 4696 res |= bnx2x_check_blocks_with_parity3(bp, 4697 sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print); 4698 res |= bnx2x_check_blocks_with_parity4(bp, 4699 sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print); 4700 4701 if (print) 4702 pr_cont("\n"); 4703 } 4704 4705 return res; 4706 } 4707 4708 /** 4709 * bnx2x_chk_parity_attn - checks for parity attentions. 4710 * 4711 * @bp: driver handle 4712 * @global: true if there was a global attention 4713 * @print: show parity attention in syslog 4714 */ 4715 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print) 4716 { 4717 struct attn_route attn = { {0} }; 4718 int port = BP_PORT(bp); 4719 4720 attn.sig[0] = REG_RD(bp, 4721 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 4722 port*4); 4723 attn.sig[1] = REG_RD(bp, 4724 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + 4725 port*4); 4726 attn.sig[2] = REG_RD(bp, 4727 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + 4728 port*4); 4729 attn.sig[3] = REG_RD(bp, 4730 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + 4731 port*4); 4732 /* Since MCP attentions can't be disabled inside the block, we need to 4733 * read AEU registers to see whether they're currently disabled 4734 */ 4735 attn.sig[3] &= ((REG_RD(bp, 4736 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0 4737 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) & 4738 MISC_AEU_ENABLE_MCP_PRTY_BITS) | 4739 ~MISC_AEU_ENABLE_MCP_PRTY_BITS); 4740 4741 if (!CHIP_IS_E1x(bp)) 4742 attn.sig[4] = REG_RD(bp, 4743 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + 4744 port*4); 4745 4746 return bnx2x_parity_attn(bp, global, print, attn.sig); 4747 } 4748 4749 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn) 4750 { 4751 u32 val; 4752 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 4753 4754 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 4755 BNX2X_ERR("PGLUE hw attention 0x%x\n", val); 4756 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 4757 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 4758 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 4759 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 4760 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 4761 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 4762 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 4763 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 4764 if (val & 4765 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 4766 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 4767 if (val & 4768 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 4769 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 4770 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 4771 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 4772 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 4773 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 4774 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 4775 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 4776 } 4777 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 4778 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR); 4779 BNX2X_ERR("ATC hw attention 0x%x\n", val); 4780 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 4781 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 4782 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 4783 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 4784 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 4785 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 4786 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 4787 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 4788 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 4789 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 4790 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 4791 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 4792 } 4793 4794 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 4795 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 4796 BNX2X_ERR("FATAL parity attention set4 0x%x\n", 4797 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 4798 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 4799 } 4800 } 4801 4802 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted) 4803 { 4804 struct attn_route attn, *group_mask; 4805 int port = BP_PORT(bp); 4806 int index; 4807 u32 reg_addr; 4808 u32 val; 4809 u32 aeu_mask; 4810 bool global = false; 4811 4812 /* need to take HW lock because MCP or other port might also 4813 try to handle this event */ 4814 bnx2x_acquire_alr(bp); 4815 4816 if (bnx2x_chk_parity_attn(bp, &global, true)) { 4817 #ifndef BNX2X_STOP_ON_ERROR 4818 bp->recovery_state = BNX2X_RECOVERY_INIT; 4819 schedule_delayed_work(&bp->sp_rtnl_task, 0); 4820 /* Disable HW interrupts */ 4821 bnx2x_int_disable(bp); 4822 /* In case of parity errors don't handle attentions so that 4823 * other function would "see" parity errors. 4824 */ 4825 #else 4826 bnx2x_panic(); 4827 #endif 4828 bnx2x_release_alr(bp); 4829 return; 4830 } 4831 4832 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 4833 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 4834 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 4835 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 4836 if (!CHIP_IS_E1x(bp)) 4837 attn.sig[4] = 4838 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 4839 else 4840 attn.sig[4] = 0; 4841 4842 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n", 4843 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 4844 4845 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 4846 if (deasserted & (1 << index)) { 4847 group_mask = &bp->attn_group[index]; 4848 4849 DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n", 4850 index, 4851 group_mask->sig[0], group_mask->sig[1], 4852 group_mask->sig[2], group_mask->sig[3], 4853 group_mask->sig[4]); 4854 4855 bnx2x_attn_int_deasserted4(bp, 4856 attn.sig[4] & group_mask->sig[4]); 4857 bnx2x_attn_int_deasserted3(bp, 4858 attn.sig[3] & group_mask->sig[3]); 4859 bnx2x_attn_int_deasserted1(bp, 4860 attn.sig[1] & group_mask->sig[1]); 4861 bnx2x_attn_int_deasserted2(bp, 4862 attn.sig[2] & group_mask->sig[2]); 4863 bnx2x_attn_int_deasserted0(bp, 4864 attn.sig[0] & group_mask->sig[0]); 4865 } 4866 } 4867 4868 bnx2x_release_alr(bp); 4869 4870 if (bp->common.int_block == INT_BLOCK_HC) 4871 reg_addr = (HC_REG_COMMAND_REG + port*32 + 4872 COMMAND_REG_ATTN_BITS_CLR); 4873 else 4874 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 4875 4876 val = ~deasserted; 4877 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val, 4878 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 4879 REG_WR(bp, reg_addr, val); 4880 4881 if (~bp->attn_state & deasserted) 4882 BNX2X_ERR("IGU ERROR\n"); 4883 4884 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4885 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4886 4887 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 4888 aeu_mask = REG_RD(bp, reg_addr); 4889 4890 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n", 4891 aeu_mask, deasserted); 4892 aeu_mask |= (deasserted & 0x3ff); 4893 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); 4894 4895 REG_WR(bp, reg_addr, aeu_mask); 4896 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 4897 4898 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); 4899 bp->attn_state &= ~deasserted; 4900 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); 4901 } 4902 4903 static void bnx2x_attn_int(struct bnx2x *bp) 4904 { 4905 /* read local copy of bits */ 4906 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block. 4907 attn_bits); 4908 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block. 4909 attn_bits_ack); 4910 u32 attn_state = bp->attn_state; 4911 4912 /* look for changed bits */ 4913 u32 asserted = attn_bits & ~attn_ack & ~attn_state; 4914 u32 deasserted = ~attn_bits & attn_ack & attn_state; 4915 4916 DP(NETIF_MSG_HW, 4917 "attn_bits %x attn_ack %x asserted %x deasserted %x\n", 4918 attn_bits, attn_ack, asserted, deasserted); 4919 4920 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) 4921 BNX2X_ERR("BAD attention state\n"); 4922 4923 /* handle bits that were raised */ 4924 if (asserted) 4925 bnx2x_attn_int_asserted(bp, asserted); 4926 4927 if (deasserted) 4928 bnx2x_attn_int_deasserted(bp, deasserted); 4929 } 4930 4931 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment, 4932 u16 index, u8 op, u8 update) 4933 { 4934 u32 igu_addr = bp->igu_base_addr; 4935 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 4936 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update, 4937 igu_addr); 4938 } 4939 4940 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod) 4941 { 4942 /* No memory barriers */ 4943 storm_memset_eq_prod(bp, prod, BP_FUNC(bp)); 4944 mmiowb(); /* keep prod updates ordered */ 4945 } 4946 4947 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid, 4948 union event_ring_elem *elem) 4949 { 4950 u8 err = elem->message.error; 4951 4952 if (!bp->cnic_eth_dev.starting_cid || 4953 (cid < bp->cnic_eth_dev.starting_cid && 4954 cid != bp->cnic_eth_dev.iscsi_l2_cid)) 4955 return 1; 4956 4957 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid); 4958 4959 if (unlikely(err)) { 4960 4961 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n", 4962 cid); 4963 bnx2x_panic_dump(bp, false); 4964 } 4965 bnx2x_cnic_cfc_comp(bp, cid, err); 4966 return 0; 4967 } 4968 4969 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp) 4970 { 4971 struct bnx2x_mcast_ramrod_params rparam; 4972 int rc; 4973 4974 memset(&rparam, 0, sizeof(rparam)); 4975 4976 rparam.mcast_obj = &bp->mcast_obj; 4977 4978 netif_addr_lock_bh(bp->dev); 4979 4980 /* Clear pending state for the last command */ 4981 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw); 4982 4983 /* If there are pending mcast commands - send them */ 4984 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) { 4985 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 4986 if (rc < 0) 4987 BNX2X_ERR("Failed to send pending mcast commands: %d\n", 4988 rc); 4989 } 4990 4991 netif_addr_unlock_bh(bp->dev); 4992 } 4993 4994 static void bnx2x_handle_classification_eqe(struct bnx2x *bp, 4995 union event_ring_elem *elem) 4996 { 4997 unsigned long ramrod_flags = 0; 4998 int rc = 0; 4999 u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK; 5000 struct bnx2x_vlan_mac_obj *vlan_mac_obj; 5001 5002 /* Always push next commands out, don't wait here */ 5003 __set_bit(RAMROD_CONT, &ramrod_flags); 5004 5005 switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo) 5006 >> BNX2X_SWCID_SHIFT) { 5007 case BNX2X_FILTER_MAC_PENDING: 5008 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n"); 5009 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp))) 5010 vlan_mac_obj = &bp->iscsi_l2_mac_obj; 5011 else 5012 vlan_mac_obj = &bp->sp_objs[cid].mac_obj; 5013 5014 break; 5015 case BNX2X_FILTER_MCAST_PENDING: 5016 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n"); 5017 /* This is only relevant for 57710 where multicast MACs are 5018 * configured as unicast MACs using the same ramrod. 5019 */ 5020 bnx2x_handle_mcast_eqe(bp); 5021 return; 5022 default: 5023 BNX2X_ERR("Unsupported classification command: %d\n", 5024 elem->message.data.eth_event.echo); 5025 return; 5026 } 5027 5028 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags); 5029 5030 if (rc < 0) 5031 BNX2X_ERR("Failed to schedule new commands: %d\n", rc); 5032 else if (rc > 0) 5033 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n"); 5034 } 5035 5036 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start); 5037 5038 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp) 5039 { 5040 netif_addr_lock_bh(bp->dev); 5041 5042 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); 5043 5044 /* Send rx_mode command again if was requested */ 5045 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state)) 5046 bnx2x_set_storm_rx_mode(bp); 5047 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, 5048 &bp->sp_state)) 5049 bnx2x_set_iscsi_eth_rx_mode(bp, true); 5050 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, 5051 &bp->sp_state)) 5052 bnx2x_set_iscsi_eth_rx_mode(bp, false); 5053 5054 netif_addr_unlock_bh(bp->dev); 5055 } 5056 5057 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp, 5058 union event_ring_elem *elem) 5059 { 5060 if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) { 5061 DP(BNX2X_MSG_SP, 5062 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n", 5063 elem->message.data.vif_list_event.func_bit_map); 5064 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK, 5065 elem->message.data.vif_list_event.func_bit_map); 5066 } else if (elem->message.data.vif_list_event.echo == 5067 VIF_LIST_RULE_SET) { 5068 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n"); 5069 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0); 5070 } 5071 } 5072 5073 /* called with rtnl_lock */ 5074 static void bnx2x_after_function_update(struct bnx2x *bp) 5075 { 5076 int q, rc; 5077 struct bnx2x_fastpath *fp; 5078 struct bnx2x_queue_state_params queue_params = {NULL}; 5079 struct bnx2x_queue_update_params *q_update_params = 5080 &queue_params.params.update; 5081 5082 /* Send Q update command with afex vlan removal values for all Qs */ 5083 queue_params.cmd = BNX2X_Q_CMD_UPDATE; 5084 5085 /* set silent vlan removal values according to vlan mode */ 5086 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG, 5087 &q_update_params->update_flags); 5088 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, 5089 &q_update_params->update_flags); 5090 __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); 5091 5092 /* in access mode mark mask and value are 0 to strip all vlans */ 5093 if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) { 5094 q_update_params->silent_removal_value = 0; 5095 q_update_params->silent_removal_mask = 0; 5096 } else { 5097 q_update_params->silent_removal_value = 5098 (bp->afex_def_vlan_tag & VLAN_VID_MASK); 5099 q_update_params->silent_removal_mask = VLAN_VID_MASK; 5100 } 5101 5102 for_each_eth_queue(bp, q) { 5103 /* Set the appropriate Queue object */ 5104 fp = &bp->fp[q]; 5105 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 5106 5107 /* send the ramrod */ 5108 rc = bnx2x_queue_state_change(bp, &queue_params); 5109 if (rc < 0) 5110 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", 5111 q); 5112 } 5113 5114 if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) { 5115 fp = &bp->fp[FCOE_IDX(bp)]; 5116 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 5117 5118 /* clear pending completion bit */ 5119 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); 5120 5121 /* mark latest Q bit */ 5122 smp_mb__before_clear_bit(); 5123 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); 5124 smp_mb__after_clear_bit(); 5125 5126 /* send Q update ramrod for FCoE Q */ 5127 rc = bnx2x_queue_state_change(bp, &queue_params); 5128 if (rc < 0) 5129 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", 5130 q); 5131 } else { 5132 /* If no FCoE ring - ACK MCP now */ 5133 bnx2x_link_report(bp); 5134 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 5135 } 5136 } 5137 5138 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj( 5139 struct bnx2x *bp, u32 cid) 5140 { 5141 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid); 5142 5143 if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp))) 5144 return &bnx2x_fcoe_sp_obj(bp, q_obj); 5145 else 5146 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj; 5147 } 5148 5149 static void bnx2x_eq_int(struct bnx2x *bp) 5150 { 5151 u16 hw_cons, sw_cons, sw_prod; 5152 union event_ring_elem *elem; 5153 u8 echo; 5154 u32 cid; 5155 u8 opcode; 5156 int rc, spqe_cnt = 0; 5157 struct bnx2x_queue_sp_obj *q_obj; 5158 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj; 5159 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw; 5160 5161 hw_cons = le16_to_cpu(*bp->eq_cons_sb); 5162 5163 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256. 5164 * when we get the next-page we need to adjust so the loop 5165 * condition below will be met. The next element is the size of a 5166 * regular element and hence incrementing by 1 5167 */ 5168 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) 5169 hw_cons++; 5170 5171 /* This function may never run in parallel with itself for a 5172 * specific bp, thus there is no need in "paired" read memory 5173 * barrier here. 5174 */ 5175 sw_cons = bp->eq_cons; 5176 sw_prod = bp->eq_prod; 5177 5178 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n", 5179 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left)); 5180 5181 for (; sw_cons != hw_cons; 5182 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 5183 5184 elem = &bp->eq_ring[EQ_DESC(sw_cons)]; 5185 5186 rc = bnx2x_iov_eq_sp_event(bp, elem); 5187 if (!rc) { 5188 DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n", 5189 rc); 5190 goto next_spqe; 5191 } 5192 5193 /* elem CID originates from FW; actually LE */ 5194 cid = SW_CID((__force __le32) 5195 elem->message.data.cfc_del_event.cid); 5196 opcode = elem->message.opcode; 5197 5198 /* handle eq element */ 5199 switch (opcode) { 5200 case EVENT_RING_OPCODE_VF_PF_CHANNEL: 5201 DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n"); 5202 bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event); 5203 continue; 5204 5205 case EVENT_RING_OPCODE_STAT_QUERY: 5206 DP(BNX2X_MSG_SP | BNX2X_MSG_STATS, 5207 "got statistics comp event %d\n", 5208 bp->stats_comp++); 5209 /* nothing to do with stats comp */ 5210 goto next_spqe; 5211 5212 case EVENT_RING_OPCODE_CFC_DEL: 5213 /* handle according to cid range */ 5214 /* 5215 * we may want to verify here that the bp state is 5216 * HALTING 5217 */ 5218 DP(BNX2X_MSG_SP, 5219 "got delete ramrod for MULTI[%d]\n", cid); 5220 5221 if (CNIC_LOADED(bp) && 5222 !bnx2x_cnic_handle_cfc_del(bp, cid, elem)) 5223 goto next_spqe; 5224 5225 q_obj = bnx2x_cid_to_q_obj(bp, cid); 5226 5227 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL)) 5228 break; 5229 5230 goto next_spqe; 5231 5232 case EVENT_RING_OPCODE_STOP_TRAFFIC: 5233 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n"); 5234 if (f_obj->complete_cmd(bp, f_obj, 5235 BNX2X_F_CMD_TX_STOP)) 5236 break; 5237 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED); 5238 goto next_spqe; 5239 5240 case EVENT_RING_OPCODE_START_TRAFFIC: 5241 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n"); 5242 if (f_obj->complete_cmd(bp, f_obj, 5243 BNX2X_F_CMD_TX_START)) 5244 break; 5245 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED); 5246 goto next_spqe; 5247 5248 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 5249 echo = elem->message.data.function_update_event.echo; 5250 if (echo == SWITCH_UPDATE) { 5251 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5252 "got FUNC_SWITCH_UPDATE ramrod\n"); 5253 if (f_obj->complete_cmd( 5254 bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE)) 5255 break; 5256 5257 } else { 5258 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP, 5259 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 5260 f_obj->complete_cmd(bp, f_obj, 5261 BNX2X_F_CMD_AFEX_UPDATE); 5262 5263 /* We will perform the Queues update from 5264 * sp_rtnl task as all Queue SP operations 5265 * should run under rtnl_lock. 5266 */ 5267 smp_mb__before_clear_bit(); 5268 set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, 5269 &bp->sp_rtnl_state); 5270 smp_mb__after_clear_bit(); 5271 5272 schedule_delayed_work(&bp->sp_rtnl_task, 0); 5273 } 5274 5275 goto next_spqe; 5276 5277 case EVENT_RING_OPCODE_AFEX_VIF_LISTS: 5278 f_obj->complete_cmd(bp, f_obj, 5279 BNX2X_F_CMD_AFEX_VIFLISTS); 5280 bnx2x_after_afex_vif_lists(bp, elem); 5281 goto next_spqe; 5282 case EVENT_RING_OPCODE_FUNCTION_START: 5283 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5284 "got FUNC_START ramrod\n"); 5285 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START)) 5286 break; 5287 5288 goto next_spqe; 5289 5290 case EVENT_RING_OPCODE_FUNCTION_STOP: 5291 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5292 "got FUNC_STOP ramrod\n"); 5293 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP)) 5294 break; 5295 5296 goto next_spqe; 5297 } 5298 5299 switch (opcode | bp->state) { 5300 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5301 BNX2X_STATE_OPEN): 5302 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5303 BNX2X_STATE_OPENING_WAIT4_PORT): 5304 cid = elem->message.data.eth_event.echo & 5305 BNX2X_SWCID_MASK; 5306 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n", 5307 cid); 5308 rss_raw->clear_pending(rss_raw); 5309 break; 5310 5311 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN): 5312 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG): 5313 case (EVENT_RING_OPCODE_SET_MAC | 5314 BNX2X_STATE_CLOSING_WAIT4_HALT): 5315 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5316 BNX2X_STATE_OPEN): 5317 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5318 BNX2X_STATE_DIAG): 5319 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5320 BNX2X_STATE_CLOSING_WAIT4_HALT): 5321 DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n"); 5322 bnx2x_handle_classification_eqe(bp, elem); 5323 break; 5324 5325 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5326 BNX2X_STATE_OPEN): 5327 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5328 BNX2X_STATE_DIAG): 5329 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5330 BNX2X_STATE_CLOSING_WAIT4_HALT): 5331 DP(BNX2X_MSG_SP, "got mcast ramrod\n"); 5332 bnx2x_handle_mcast_eqe(bp); 5333 break; 5334 5335 case (EVENT_RING_OPCODE_FILTERS_RULES | 5336 BNX2X_STATE_OPEN): 5337 case (EVENT_RING_OPCODE_FILTERS_RULES | 5338 BNX2X_STATE_DIAG): 5339 case (EVENT_RING_OPCODE_FILTERS_RULES | 5340 BNX2X_STATE_CLOSING_WAIT4_HALT): 5341 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n"); 5342 bnx2x_handle_rx_mode_eqe(bp); 5343 break; 5344 default: 5345 /* unknown event log error and continue */ 5346 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n", 5347 elem->message.opcode, bp->state); 5348 } 5349 next_spqe: 5350 spqe_cnt++; 5351 } /* for */ 5352 5353 smp_mb__before_atomic_inc(); 5354 atomic_add(spqe_cnt, &bp->eq_spq_left); 5355 5356 bp->eq_cons = sw_cons; 5357 bp->eq_prod = sw_prod; 5358 /* Make sure that above mem writes were issued towards the memory */ 5359 smp_wmb(); 5360 5361 /* update producer */ 5362 bnx2x_update_eq_prod(bp, bp->eq_prod); 5363 } 5364 5365 static void bnx2x_sp_task(struct work_struct *work) 5366 { 5367 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work); 5368 5369 DP(BNX2X_MSG_SP, "sp task invoked\n"); 5370 5371 /* make sure the atomic interrupt_occurred has been written */ 5372 smp_rmb(); 5373 if (atomic_read(&bp->interrupt_occurred)) { 5374 5375 /* what work needs to be performed? */ 5376 u16 status = bnx2x_update_dsb_idx(bp); 5377 5378 DP(BNX2X_MSG_SP, "status %x\n", status); 5379 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n"); 5380 atomic_set(&bp->interrupt_occurred, 0); 5381 5382 /* HW attentions */ 5383 if (status & BNX2X_DEF_SB_ATT_IDX) { 5384 bnx2x_attn_int(bp); 5385 status &= ~BNX2X_DEF_SB_ATT_IDX; 5386 } 5387 5388 /* SP events: STAT_QUERY and others */ 5389 if (status & BNX2X_DEF_SB_IDX) { 5390 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp); 5391 5392 if (FCOE_INIT(bp) && 5393 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 5394 /* Prevent local bottom-halves from running as 5395 * we are going to change the local NAPI list. 5396 */ 5397 local_bh_disable(); 5398 napi_schedule(&bnx2x_fcoe(bp, napi)); 5399 local_bh_enable(); 5400 } 5401 5402 /* Handle EQ completions */ 5403 bnx2x_eq_int(bp); 5404 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 5405 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1); 5406 5407 status &= ~BNX2X_DEF_SB_IDX; 5408 } 5409 5410 /* if status is non zero then perhaps something went wrong */ 5411 if (unlikely(status)) 5412 DP(BNX2X_MSG_SP, 5413 "got an unknown interrupt! (status 0x%x)\n", status); 5414 5415 /* ack status block only if something was actually handled */ 5416 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID, 5417 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1); 5418 } 5419 5420 /* must be called after the EQ processing (since eq leads to sriov 5421 * ramrod completion flows). 5422 * This flow may have been scheduled by the arrival of a ramrod 5423 * completion, or by the sriov code rescheduling itself. 5424 */ 5425 bnx2x_iov_sp_task(bp); 5426 5427 /* afex - poll to check if VIFSET_ACK should be sent to MFW */ 5428 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, 5429 &bp->sp_state)) { 5430 bnx2x_link_report(bp); 5431 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 5432 } 5433 } 5434 5435 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance) 5436 { 5437 struct net_device *dev = dev_instance; 5438 struct bnx2x *bp = netdev_priv(dev); 5439 5440 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, 5441 IGU_INT_DISABLE, 0); 5442 5443 #ifdef BNX2X_STOP_ON_ERROR 5444 if (unlikely(bp->panic)) 5445 return IRQ_HANDLED; 5446 #endif 5447 5448 if (CNIC_LOADED(bp)) { 5449 struct cnic_ops *c_ops; 5450 5451 rcu_read_lock(); 5452 c_ops = rcu_dereference(bp->cnic_ops); 5453 if (c_ops) 5454 c_ops->cnic_handler(bp->cnic_data, NULL); 5455 rcu_read_unlock(); 5456 } 5457 5458 /* schedule sp task to perform default status block work, ack 5459 * attentions and enable interrupts. 5460 */ 5461 bnx2x_schedule_sp_task(bp); 5462 5463 return IRQ_HANDLED; 5464 } 5465 5466 /* end of slow path */ 5467 5468 void bnx2x_drv_pulse(struct bnx2x *bp) 5469 { 5470 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb, 5471 bp->fw_drv_pulse_wr_seq); 5472 } 5473 5474 static void bnx2x_timer(unsigned long data) 5475 { 5476 struct bnx2x *bp = (struct bnx2x *) data; 5477 5478 if (!netif_running(bp->dev)) 5479 return; 5480 5481 if (IS_PF(bp) && 5482 !BP_NOMCP(bp)) { 5483 int mb_idx = BP_FW_MB_IDX(bp); 5484 u16 drv_pulse; 5485 u16 mcp_pulse; 5486 5487 ++bp->fw_drv_pulse_wr_seq; 5488 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 5489 drv_pulse = bp->fw_drv_pulse_wr_seq; 5490 bnx2x_drv_pulse(bp); 5491 5492 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) & 5493 MCP_PULSE_SEQ_MASK); 5494 /* The delta between driver pulse and mcp response 5495 * should not get too big. If the MFW is more than 5 pulses 5496 * behind, we should worry about it enough to generate an error 5497 * log. 5498 */ 5499 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5) 5500 BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 5501 drv_pulse, mcp_pulse); 5502 } 5503 5504 if (bp->state == BNX2X_STATE_OPEN) 5505 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE); 5506 5507 /* sample pf vf bulletin board for new posts from pf */ 5508 if (IS_VF(bp)) 5509 bnx2x_timer_sriov(bp); 5510 5511 mod_timer(&bp->timer, jiffies + bp->current_interval); 5512 } 5513 5514 /* end of Statistics */ 5515 5516 /* nic init */ 5517 5518 /* 5519 * nic init service functions 5520 */ 5521 5522 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len) 5523 { 5524 u32 i; 5525 if (!(len%4) && !(addr%4)) 5526 for (i = 0; i < len; i += 4) 5527 REG_WR(bp, addr + i, fill); 5528 else 5529 for (i = 0; i < len; i++) 5530 REG_WR8(bp, addr + i, fill); 5531 } 5532 5533 /* helper: writes FP SP data to FW - data_size in dwords */ 5534 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp, 5535 int fw_sb_id, 5536 u32 *sb_data_p, 5537 u32 data_size) 5538 { 5539 int index; 5540 for (index = 0; index < data_size; index++) 5541 REG_WR(bp, BAR_CSTRORM_INTMEM + 5542 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 5543 sizeof(u32)*index, 5544 *(sb_data_p + index)); 5545 } 5546 5547 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id) 5548 { 5549 u32 *sb_data_p; 5550 u32 data_size = 0; 5551 struct hc_status_block_data_e2 sb_data_e2; 5552 struct hc_status_block_data_e1x sb_data_e1x; 5553 5554 /* disable the function first */ 5555 if (!CHIP_IS_E1x(bp)) { 5556 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 5557 sb_data_e2.common.state = SB_DISABLED; 5558 sb_data_e2.common.p_func.vf_valid = false; 5559 sb_data_p = (u32 *)&sb_data_e2; 5560 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); 5561 } else { 5562 memset(&sb_data_e1x, 0, 5563 sizeof(struct hc_status_block_data_e1x)); 5564 sb_data_e1x.common.state = SB_DISABLED; 5565 sb_data_e1x.common.p_func.vf_valid = false; 5566 sb_data_p = (u32 *)&sb_data_e1x; 5567 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); 5568 } 5569 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); 5570 5571 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5572 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0, 5573 CSTORM_STATUS_BLOCK_SIZE); 5574 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5575 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0, 5576 CSTORM_SYNC_BLOCK_SIZE); 5577 } 5578 5579 /* helper: writes SP SB data to FW */ 5580 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp, 5581 struct hc_sp_status_block_data *sp_sb_data) 5582 { 5583 int func = BP_FUNC(bp); 5584 int i; 5585 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++) 5586 REG_WR(bp, BAR_CSTRORM_INTMEM + 5587 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) + 5588 i*sizeof(u32), 5589 *((u32 *)sp_sb_data + i)); 5590 } 5591 5592 static void bnx2x_zero_sp_sb(struct bnx2x *bp) 5593 { 5594 int func = BP_FUNC(bp); 5595 struct hc_sp_status_block_data sp_sb_data; 5596 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 5597 5598 sp_sb_data.state = SB_DISABLED; 5599 sp_sb_data.p_func.vf_valid = false; 5600 5601 bnx2x_wr_sp_sb_data(bp, &sp_sb_data); 5602 5603 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5604 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0, 5605 CSTORM_SP_STATUS_BLOCK_SIZE); 5606 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5607 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0, 5608 CSTORM_SP_SYNC_BLOCK_SIZE); 5609 } 5610 5611 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 5612 int igu_sb_id, int igu_seg_id) 5613 { 5614 hc_sm->igu_sb_id = igu_sb_id; 5615 hc_sm->igu_seg_id = igu_seg_id; 5616 hc_sm->timer_value = 0xFF; 5617 hc_sm->time_to_expire = 0xFFFFFFFF; 5618 } 5619 5620 /* allocates state machine ids. */ 5621 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data) 5622 { 5623 /* zero out state machine indices */ 5624 /* rx indices */ 5625 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 5626 5627 /* tx indices */ 5628 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 5629 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 5630 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 5631 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 5632 5633 /* map indices */ 5634 /* rx indices */ 5635 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 5636 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5637 5638 /* tx indices */ 5639 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 5640 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5641 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 5642 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5643 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 5644 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5645 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 5646 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5647 } 5648 5649 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid, 5650 u8 vf_valid, int fw_sb_id, int igu_sb_id) 5651 { 5652 int igu_seg_id; 5653 5654 struct hc_status_block_data_e2 sb_data_e2; 5655 struct hc_status_block_data_e1x sb_data_e1x; 5656 struct hc_status_block_sm *hc_sm_p; 5657 int data_size; 5658 u32 *sb_data_p; 5659 5660 if (CHIP_INT_MODE_IS_BC(bp)) 5661 igu_seg_id = HC_SEG_ACCESS_NORM; 5662 else 5663 igu_seg_id = IGU_SEG_ACCESS_NORM; 5664 5665 bnx2x_zero_fp_sb(bp, fw_sb_id); 5666 5667 if (!CHIP_IS_E1x(bp)) { 5668 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 5669 sb_data_e2.common.state = SB_ENABLED; 5670 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp); 5671 sb_data_e2.common.p_func.vf_id = vfid; 5672 sb_data_e2.common.p_func.vf_valid = vf_valid; 5673 sb_data_e2.common.p_func.vnic_id = BP_VN(bp); 5674 sb_data_e2.common.same_igu_sb_1b = true; 5675 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping); 5676 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping); 5677 hc_sm_p = sb_data_e2.common.state_machine; 5678 sb_data_p = (u32 *)&sb_data_e2; 5679 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); 5680 bnx2x_map_sb_state_machines(sb_data_e2.index_data); 5681 } else { 5682 memset(&sb_data_e1x, 0, 5683 sizeof(struct hc_status_block_data_e1x)); 5684 sb_data_e1x.common.state = SB_ENABLED; 5685 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp); 5686 sb_data_e1x.common.p_func.vf_id = 0xff; 5687 sb_data_e1x.common.p_func.vf_valid = false; 5688 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp); 5689 sb_data_e1x.common.same_igu_sb_1b = true; 5690 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping); 5691 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping); 5692 hc_sm_p = sb_data_e1x.common.state_machine; 5693 sb_data_p = (u32 *)&sb_data_e1x; 5694 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); 5695 bnx2x_map_sb_state_machines(sb_data_e1x.index_data); 5696 } 5697 5698 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], 5699 igu_sb_id, igu_seg_id); 5700 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], 5701 igu_sb_id, igu_seg_id); 5702 5703 DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id); 5704 5705 /* write indices to HW - PCI guarantees endianity of regpairs */ 5706 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); 5707 } 5708 5709 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id, 5710 u16 tx_usec, u16 rx_usec) 5711 { 5712 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS, 5713 false, rx_usec); 5714 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 5715 HC_INDEX_ETH_TX_CQ_CONS_COS0, false, 5716 tx_usec); 5717 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 5718 HC_INDEX_ETH_TX_CQ_CONS_COS1, false, 5719 tx_usec); 5720 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 5721 HC_INDEX_ETH_TX_CQ_CONS_COS2, false, 5722 tx_usec); 5723 } 5724 5725 static void bnx2x_init_def_sb(struct bnx2x *bp) 5726 { 5727 struct host_sp_status_block *def_sb = bp->def_status_blk; 5728 dma_addr_t mapping = bp->def_status_blk_mapping; 5729 int igu_sp_sb_index; 5730 int igu_seg_id; 5731 int port = BP_PORT(bp); 5732 int func = BP_FUNC(bp); 5733 int reg_offset, reg_offset_en5; 5734 u64 section; 5735 int index; 5736 struct hc_sp_status_block_data sp_sb_data; 5737 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 5738 5739 if (CHIP_INT_MODE_IS_BC(bp)) { 5740 igu_sp_sb_index = DEF_SB_IGU_ID; 5741 igu_seg_id = HC_SEG_ACCESS_DEF; 5742 } else { 5743 igu_sp_sb_index = bp->igu_dsb_id; 5744 igu_seg_id = IGU_SEG_ACCESS_DEF; 5745 } 5746 5747 /* ATTN */ 5748 section = ((u64)mapping) + offsetof(struct host_sp_status_block, 5749 atten_status_block); 5750 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 5751 5752 bp->attn_state = 0; 5753 5754 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 5755 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 5756 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 5757 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0); 5758 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 5759 int sindex; 5760 /* take care of sig[0]..sig[4] */ 5761 for (sindex = 0; sindex < 4; sindex++) 5762 bp->attn_group[index].sig[sindex] = 5763 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index); 5764 5765 if (!CHIP_IS_E1x(bp)) 5766 /* 5767 * enable5 is separate from the rest of the registers, 5768 * and therefore the address skip is 4 5769 * and not 16 between the different groups 5770 */ 5771 bp->attn_group[index].sig[4] = REG_RD(bp, 5772 reg_offset_en5 + 0x4*index); 5773 else 5774 bp->attn_group[index].sig[4] = 0; 5775 } 5776 5777 if (bp->common.int_block == INT_BLOCK_HC) { 5778 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L : 5779 HC_REG_ATTN_MSG0_ADDR_L); 5780 5781 REG_WR(bp, reg_offset, U64_LO(section)); 5782 REG_WR(bp, reg_offset + 4, U64_HI(section)); 5783 } else if (!CHIP_IS_E1x(bp)) { 5784 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 5785 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 5786 } 5787 5788 section = ((u64)mapping) + offsetof(struct host_sp_status_block, 5789 sp_sb); 5790 5791 bnx2x_zero_sp_sb(bp); 5792 5793 /* PCI guarantees endianity of regpairs */ 5794 sp_sb_data.state = SB_ENABLED; 5795 sp_sb_data.host_sb_addr.lo = U64_LO(section); 5796 sp_sb_data.host_sb_addr.hi = U64_HI(section); 5797 sp_sb_data.igu_sb_id = igu_sp_sb_index; 5798 sp_sb_data.igu_seg_id = igu_seg_id; 5799 sp_sb_data.p_func.pf_id = func; 5800 sp_sb_data.p_func.vnic_id = BP_VN(bp); 5801 sp_sb_data.p_func.vf_id = 0xff; 5802 5803 bnx2x_wr_sp_sb_data(bp, &sp_sb_data); 5804 5805 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 5806 } 5807 5808 void bnx2x_update_coalesce(struct bnx2x *bp) 5809 { 5810 int i; 5811 5812 for_each_eth_queue(bp, i) 5813 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id, 5814 bp->tx_ticks, bp->rx_ticks); 5815 } 5816 5817 static void bnx2x_init_sp_ring(struct bnx2x *bp) 5818 { 5819 spin_lock_init(&bp->spq_lock); 5820 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING); 5821 5822 bp->spq_prod_idx = 0; 5823 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX; 5824 bp->spq_prod_bd = bp->spq; 5825 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT; 5826 } 5827 5828 static void bnx2x_init_eq_ring(struct bnx2x *bp) 5829 { 5830 int i; 5831 for (i = 1; i <= NUM_EQ_PAGES; i++) { 5832 union event_ring_elem *elem = 5833 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1]; 5834 5835 elem->next_page.addr.hi = 5836 cpu_to_le32(U64_HI(bp->eq_mapping + 5837 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES))); 5838 elem->next_page.addr.lo = 5839 cpu_to_le32(U64_LO(bp->eq_mapping + 5840 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES))); 5841 } 5842 bp->eq_cons = 0; 5843 bp->eq_prod = NUM_EQ_DESC; 5844 bp->eq_cons_sb = BNX2X_EQ_INDEX; 5845 /* we want a warning message before it gets wrought... */ 5846 atomic_set(&bp->eq_spq_left, 5847 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1); 5848 } 5849 5850 /* called with netif_addr_lock_bh() */ 5851 int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id, 5852 unsigned long rx_mode_flags, 5853 unsigned long rx_accept_flags, 5854 unsigned long tx_accept_flags, 5855 unsigned long ramrod_flags) 5856 { 5857 struct bnx2x_rx_mode_ramrod_params ramrod_param; 5858 int rc; 5859 5860 memset(&ramrod_param, 0, sizeof(ramrod_param)); 5861 5862 /* Prepare ramrod parameters */ 5863 ramrod_param.cid = 0; 5864 ramrod_param.cl_id = cl_id; 5865 ramrod_param.rx_mode_obj = &bp->rx_mode_obj; 5866 ramrod_param.func_id = BP_FUNC(bp); 5867 5868 ramrod_param.pstate = &bp->sp_state; 5869 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING; 5870 5871 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata); 5872 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata); 5873 5874 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); 5875 5876 ramrod_param.ramrod_flags = ramrod_flags; 5877 ramrod_param.rx_mode_flags = rx_mode_flags; 5878 5879 ramrod_param.rx_accept_flags = rx_accept_flags; 5880 ramrod_param.tx_accept_flags = tx_accept_flags; 5881 5882 rc = bnx2x_config_rx_mode(bp, &ramrod_param); 5883 if (rc < 0) { 5884 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode); 5885 return rc; 5886 } 5887 5888 return 0; 5889 } 5890 5891 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode, 5892 unsigned long *rx_accept_flags, 5893 unsigned long *tx_accept_flags) 5894 { 5895 /* Clear the flags first */ 5896 *rx_accept_flags = 0; 5897 *tx_accept_flags = 0; 5898 5899 switch (rx_mode) { 5900 case BNX2X_RX_MODE_NONE: 5901 /* 5902 * 'drop all' supersedes any accept flags that may have been 5903 * passed to the function. 5904 */ 5905 break; 5906 case BNX2X_RX_MODE_NORMAL: 5907 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 5908 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags); 5909 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 5910 5911 /* internal switching mode */ 5912 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 5913 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags); 5914 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 5915 5916 break; 5917 case BNX2X_RX_MODE_ALLMULTI: 5918 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 5919 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); 5920 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 5921 5922 /* internal switching mode */ 5923 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 5924 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); 5925 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 5926 5927 break; 5928 case BNX2X_RX_MODE_PROMISC: 5929 /* According to definition of SI mode, iface in promisc mode 5930 * should receive matched and unmatched (in resolution of port) 5931 * unicast packets. 5932 */ 5933 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags); 5934 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 5935 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); 5936 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 5937 5938 /* internal switching mode */ 5939 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); 5940 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 5941 5942 if (IS_MF_SI(bp)) 5943 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags); 5944 else 5945 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 5946 5947 break; 5948 default: 5949 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode); 5950 return -EINVAL; 5951 } 5952 5953 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ 5954 if (bp->rx_mode != BNX2X_RX_MODE_NONE) { 5955 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 5956 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 5957 } 5958 5959 return 0; 5960 } 5961 5962 /* called with netif_addr_lock_bh() */ 5963 int bnx2x_set_storm_rx_mode(struct bnx2x *bp) 5964 { 5965 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 5966 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 5967 int rc; 5968 5969 if (!NO_FCOE(bp)) 5970 /* Configure rx_mode of FCoE Queue */ 5971 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags); 5972 5973 rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags, 5974 &tx_accept_flags); 5975 if (rc) 5976 return rc; 5977 5978 __set_bit(RAMROD_RX, &ramrod_flags); 5979 __set_bit(RAMROD_TX, &ramrod_flags); 5980 5981 return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, 5982 rx_accept_flags, tx_accept_flags, 5983 ramrod_flags); 5984 } 5985 5986 static void bnx2x_init_internal_common(struct bnx2x *bp) 5987 { 5988 int i; 5989 5990 if (IS_MF_SI(bp)) 5991 /* 5992 * In switch independent mode, the TSTORM needs to accept 5993 * packets that failed classification, since approximate match 5994 * mac addresses aren't written to NIG LLH 5995 */ 5996 REG_WR8(bp, BAR_TSTRORM_INTMEM + 5997 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2); 5998 else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */ 5999 REG_WR8(bp, BAR_TSTRORM_INTMEM + 6000 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0); 6001 6002 /* Zero this manually as its initialization is 6003 currently missing in the initTool */ 6004 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) 6005 REG_WR(bp, BAR_USTRORM_INTMEM + 6006 USTORM_AGG_DATA_OFFSET + i * 4, 0); 6007 if (!CHIP_IS_E1x(bp)) { 6008 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET, 6009 CHIP_INT_MODE_IS_BC(bp) ? 6010 HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 6011 } 6012 } 6013 6014 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code) 6015 { 6016 switch (load_code) { 6017 case FW_MSG_CODE_DRV_LOAD_COMMON: 6018 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 6019 bnx2x_init_internal_common(bp); 6020 /* no break */ 6021 6022 case FW_MSG_CODE_DRV_LOAD_PORT: 6023 /* nothing to do */ 6024 /* no break */ 6025 6026 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 6027 /* internal memory per function is 6028 initialized inside bnx2x_pf_init */ 6029 break; 6030 6031 default: 6032 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code); 6033 break; 6034 } 6035 } 6036 6037 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp) 6038 { 6039 return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp); 6040 } 6041 6042 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp) 6043 { 6044 return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp); 6045 } 6046 6047 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp) 6048 { 6049 if (CHIP_IS_E1x(fp->bp)) 6050 return BP_L_ID(fp->bp) + fp->index; 6051 else /* We want Client ID to be the same as IGU SB ID for 57712 */ 6052 return bnx2x_fp_igu_sb_id(fp); 6053 } 6054 6055 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx) 6056 { 6057 struct bnx2x_fastpath *fp = &bp->fp[fp_idx]; 6058 u8 cos; 6059 unsigned long q_type = 0; 6060 u32 cids[BNX2X_MULTI_TX_COS] = { 0 }; 6061 fp->rx_queue = fp_idx; 6062 fp->cid = fp_idx; 6063 fp->cl_id = bnx2x_fp_cl_id(fp); 6064 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp); 6065 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp); 6066 /* qZone id equals to FW (per path) client id */ 6067 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp); 6068 6069 /* init shortcut */ 6070 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp); 6071 6072 /* Setup SB indices */ 6073 fp->rx_cons_sb = BNX2X_RX_SB_INDEX; 6074 6075 /* Configure Queue State object */ 6076 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 6077 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 6078 6079 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS); 6080 6081 /* init tx data */ 6082 for_each_cos_in_tx_queue(fp, cos) { 6083 bnx2x_init_txdata(bp, fp->txdata_ptr[cos], 6084 CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp), 6085 FP_COS_TO_TXQ(fp, cos, bp), 6086 BNX2X_TX_SB_INDEX_BASE + cos, fp); 6087 cids[cos] = fp->txdata_ptr[cos]->cid; 6088 } 6089 6090 /* nothing more for vf to do here */ 6091 if (IS_VF(bp)) 6092 return; 6093 6094 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false, 6095 fp->fw_sb_id, fp->igu_sb_id); 6096 bnx2x_update_fpsb_idx(fp); 6097 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids, 6098 fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata), 6099 bnx2x_sp_mapping(bp, q_rdata), q_type); 6100 6101 /** 6102 * Configure classification DBs: Always enable Tx switching 6103 */ 6104 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX); 6105 6106 DP(NETIF_MSG_IFUP, 6107 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n", 6108 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id, 6109 fp->igu_sb_id); 6110 } 6111 6112 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata) 6113 { 6114 int i; 6115 6116 for (i = 1; i <= NUM_TX_RINGS; i++) { 6117 struct eth_tx_next_bd *tx_next_bd = 6118 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd; 6119 6120 tx_next_bd->addr_hi = 6121 cpu_to_le32(U64_HI(txdata->tx_desc_mapping + 6122 BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); 6123 tx_next_bd->addr_lo = 6124 cpu_to_le32(U64_LO(txdata->tx_desc_mapping + 6125 BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); 6126 } 6127 6128 *txdata->tx_cons_sb = cpu_to_le16(0); 6129 6130 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1); 6131 txdata->tx_db.data.zero_fill1 = 0; 6132 txdata->tx_db.data.prod = 0; 6133 6134 txdata->tx_pkt_prod = 0; 6135 txdata->tx_pkt_cons = 0; 6136 txdata->tx_bd_prod = 0; 6137 txdata->tx_bd_cons = 0; 6138 txdata->tx_pkt = 0; 6139 } 6140 6141 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp) 6142 { 6143 int i; 6144 6145 for_each_tx_queue_cnic(bp, i) 6146 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]); 6147 } 6148 6149 static void bnx2x_init_tx_rings(struct bnx2x *bp) 6150 { 6151 int i; 6152 u8 cos; 6153 6154 for_each_eth_queue(bp, i) 6155 for_each_cos_in_tx_queue(&bp->fp[i], cos) 6156 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]); 6157 } 6158 6159 void bnx2x_nic_init_cnic(struct bnx2x *bp) 6160 { 6161 if (!NO_FCOE(bp)) 6162 bnx2x_init_fcoe_fp(bp); 6163 6164 bnx2x_init_sb(bp, bp->cnic_sb_mapping, 6165 BNX2X_VF_ID_INVALID, false, 6166 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp)); 6167 6168 /* ensure status block indices were read */ 6169 rmb(); 6170 bnx2x_init_rx_rings_cnic(bp); 6171 bnx2x_init_tx_rings_cnic(bp); 6172 6173 /* flush all */ 6174 mb(); 6175 mmiowb(); 6176 } 6177 6178 void bnx2x_pre_irq_nic_init(struct bnx2x *bp) 6179 { 6180 int i; 6181 6182 /* Setup NIC internals and enable interrupts */ 6183 for_each_eth_queue(bp, i) 6184 bnx2x_init_eth_fp(bp, i); 6185 6186 /* ensure status block indices were read */ 6187 rmb(); 6188 bnx2x_init_rx_rings(bp); 6189 bnx2x_init_tx_rings(bp); 6190 6191 if (IS_PF(bp)) { 6192 /* Initialize MOD_ABS interrupts */ 6193 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id, 6194 bp->common.shmem_base, 6195 bp->common.shmem2_base, BP_PORT(bp)); 6196 6197 /* initialize the default status block and sp ring */ 6198 bnx2x_init_def_sb(bp); 6199 bnx2x_update_dsb_idx(bp); 6200 bnx2x_init_sp_ring(bp); 6201 } else { 6202 bnx2x_memset_stats(bp); 6203 } 6204 } 6205 6206 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code) 6207 { 6208 bnx2x_init_eq_ring(bp); 6209 bnx2x_init_internal(bp, load_code); 6210 bnx2x_pf_init(bp); 6211 bnx2x_stats_init(bp); 6212 6213 /* flush all before enabling interrupts */ 6214 mb(); 6215 mmiowb(); 6216 6217 bnx2x_int_enable(bp); 6218 6219 /* Check for SPIO5 */ 6220 bnx2x_attn_int_deasserted0(bp, 6221 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) & 6222 AEU_INPUTS_ATTN_BITS_SPIO5); 6223 } 6224 6225 /* gzip service functions */ 6226 static int bnx2x_gunzip_init(struct bnx2x *bp) 6227 { 6228 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE, 6229 &bp->gunzip_mapping, GFP_KERNEL); 6230 if (bp->gunzip_buf == NULL) 6231 goto gunzip_nomem1; 6232 6233 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL); 6234 if (bp->strm == NULL) 6235 goto gunzip_nomem2; 6236 6237 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize()); 6238 if (bp->strm->workspace == NULL) 6239 goto gunzip_nomem3; 6240 6241 return 0; 6242 6243 gunzip_nomem3: 6244 kfree(bp->strm); 6245 bp->strm = NULL; 6246 6247 gunzip_nomem2: 6248 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, 6249 bp->gunzip_mapping); 6250 bp->gunzip_buf = NULL; 6251 6252 gunzip_nomem1: 6253 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n"); 6254 return -ENOMEM; 6255 } 6256 6257 static void bnx2x_gunzip_end(struct bnx2x *bp) 6258 { 6259 if (bp->strm) { 6260 vfree(bp->strm->workspace); 6261 kfree(bp->strm); 6262 bp->strm = NULL; 6263 } 6264 6265 if (bp->gunzip_buf) { 6266 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, 6267 bp->gunzip_mapping); 6268 bp->gunzip_buf = NULL; 6269 } 6270 } 6271 6272 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len) 6273 { 6274 int n, rc; 6275 6276 /* check gzip header */ 6277 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) { 6278 BNX2X_ERR("Bad gzip header\n"); 6279 return -EINVAL; 6280 } 6281 6282 n = 10; 6283 6284 #define FNAME 0x8 6285 6286 if (zbuf[3] & FNAME) 6287 while ((zbuf[n++] != 0) && (n < len)); 6288 6289 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n; 6290 bp->strm->avail_in = len - n; 6291 bp->strm->next_out = bp->gunzip_buf; 6292 bp->strm->avail_out = FW_BUF_SIZE; 6293 6294 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS); 6295 if (rc != Z_OK) 6296 return rc; 6297 6298 rc = zlib_inflate(bp->strm, Z_FINISH); 6299 if ((rc != Z_OK) && (rc != Z_STREAM_END)) 6300 netdev_err(bp->dev, "Firmware decompression error: %s\n", 6301 bp->strm->msg); 6302 6303 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out); 6304 if (bp->gunzip_outlen & 0x3) 6305 netdev_err(bp->dev, 6306 "Firmware decompression error: gunzip_outlen (%d) not aligned\n", 6307 bp->gunzip_outlen); 6308 bp->gunzip_outlen >>= 2; 6309 6310 zlib_inflateEnd(bp->strm); 6311 6312 if (rc == Z_STREAM_END) 6313 return 0; 6314 6315 return rc; 6316 } 6317 6318 /* nic load/unload */ 6319 6320 /* 6321 * General service functions 6322 */ 6323 6324 /* send a NIG loopback debug packet */ 6325 static void bnx2x_lb_pckt(struct bnx2x *bp) 6326 { 6327 u32 wb_write[3]; 6328 6329 /* Ethernet source and destination addresses */ 6330 wb_write[0] = 0x55555555; 6331 wb_write[1] = 0x55555555; 6332 wb_write[2] = 0x20; /* SOP */ 6333 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 6334 6335 /* NON-IP protocol */ 6336 wb_write[0] = 0x09000000; 6337 wb_write[1] = 0x55555555; 6338 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 6339 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 6340 } 6341 6342 /* some of the internal memories 6343 * are not directly readable from the driver 6344 * to test them we send debug packets 6345 */ 6346 static int bnx2x_int_mem_test(struct bnx2x *bp) 6347 { 6348 int factor; 6349 int count, i; 6350 u32 val = 0; 6351 6352 if (CHIP_REV_IS_FPGA(bp)) 6353 factor = 120; 6354 else if (CHIP_REV_IS_EMUL(bp)) 6355 factor = 200; 6356 else 6357 factor = 1; 6358 6359 /* Disable inputs of parser neighbor blocks */ 6360 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); 6361 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); 6362 REG_WR(bp, CFC_REG_DEBUG0, 0x1); 6363 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); 6364 6365 /* Write 0 to parser credits for CFC search request */ 6366 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 6367 6368 /* send Ethernet packet */ 6369 bnx2x_lb_pckt(bp); 6370 6371 /* TODO do i reset NIG statistic? */ 6372 /* Wait until NIG register shows 1 packet of size 0x10 */ 6373 count = 1000 * factor; 6374 while (count) { 6375 6376 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 6377 val = *bnx2x_sp(bp, wb_data[0]); 6378 if (val == 0x10) 6379 break; 6380 6381 usleep_range(10000, 20000); 6382 count--; 6383 } 6384 if (val != 0x10) { 6385 BNX2X_ERR("NIG timeout val = 0x%x\n", val); 6386 return -1; 6387 } 6388 6389 /* Wait until PRS register shows 1 packet */ 6390 count = 1000 * factor; 6391 while (count) { 6392 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6393 if (val == 1) 6394 break; 6395 6396 usleep_range(10000, 20000); 6397 count--; 6398 } 6399 if (val != 0x1) { 6400 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6401 return -2; 6402 } 6403 6404 /* Reset and init BRB, PRS */ 6405 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 6406 msleep(50); 6407 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 6408 msleep(50); 6409 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 6410 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 6411 6412 DP(NETIF_MSG_HW, "part2\n"); 6413 6414 /* Disable inputs of parser neighbor blocks */ 6415 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); 6416 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); 6417 REG_WR(bp, CFC_REG_DEBUG0, 0x1); 6418 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); 6419 6420 /* Write 0 to parser credits for CFC search request */ 6421 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 6422 6423 /* send 10 Ethernet packets */ 6424 for (i = 0; i < 10; i++) 6425 bnx2x_lb_pckt(bp); 6426 6427 /* Wait until NIG register shows 10 + 1 6428 packets of size 11*0x10 = 0xb0 */ 6429 count = 1000 * factor; 6430 while (count) { 6431 6432 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 6433 val = *bnx2x_sp(bp, wb_data[0]); 6434 if (val == 0xb0) 6435 break; 6436 6437 usleep_range(10000, 20000); 6438 count--; 6439 } 6440 if (val != 0xb0) { 6441 BNX2X_ERR("NIG timeout val = 0x%x\n", val); 6442 return -3; 6443 } 6444 6445 /* Wait until PRS register shows 2 packets */ 6446 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6447 if (val != 2) 6448 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6449 6450 /* Write 1 to parser credits for CFC search request */ 6451 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 6452 6453 /* Wait until PRS register shows 3 packets */ 6454 msleep(10 * factor); 6455 /* Wait until NIG register shows 1 packet of size 0x10 */ 6456 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6457 if (val != 3) 6458 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6459 6460 /* clear NIG EOP FIFO */ 6461 for (i = 0; i < 11; i++) 6462 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO); 6463 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY); 6464 if (val != 1) { 6465 BNX2X_ERR("clear of NIG failed\n"); 6466 return -4; 6467 } 6468 6469 /* Reset and init BRB, PRS, NIG */ 6470 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 6471 msleep(50); 6472 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 6473 msleep(50); 6474 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 6475 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 6476 if (!CNIC_SUPPORT(bp)) 6477 /* set NIC mode */ 6478 REG_WR(bp, PRS_REG_NIC_MODE, 1); 6479 6480 /* Enable inputs of parser neighbor blocks */ 6481 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff); 6482 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1); 6483 REG_WR(bp, CFC_REG_DEBUG0, 0x0); 6484 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1); 6485 6486 DP(NETIF_MSG_HW, "done\n"); 6487 6488 return 0; /* OK */ 6489 } 6490 6491 static void bnx2x_enable_blocks_attention(struct bnx2x *bp) 6492 { 6493 u32 val; 6494 6495 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); 6496 if (!CHIP_IS_E1x(bp)) 6497 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40); 6498 else 6499 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0); 6500 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); 6501 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); 6502 /* 6503 * mask read length error interrupts in brb for parser 6504 * (parsing unit and 'checksum and crc' unit) 6505 * these errors are legal (PU reads fixed length and CAC can cause 6506 * read length error on truncated packets) 6507 */ 6508 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00); 6509 REG_WR(bp, QM_REG_QM_INT_MASK, 0); 6510 REG_WR(bp, TM_REG_TM_INT_MASK, 0); 6511 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0); 6512 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0); 6513 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0); 6514 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */ 6515 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */ 6516 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0); 6517 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0); 6518 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0); 6519 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */ 6520 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */ 6521 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 6522 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0); 6523 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0); 6524 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0); 6525 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */ 6526 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */ 6527 6528 val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 6529 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 6530 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN; 6531 if (!CHIP_IS_E1x(bp)) 6532 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 6533 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED; 6534 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val); 6535 6536 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0); 6537 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0); 6538 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0); 6539 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */ 6540 6541 if (!CHIP_IS_E1x(bp)) 6542 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 6543 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 6544 6545 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0); 6546 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0); 6547 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */ 6548 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 6549 } 6550 6551 static void bnx2x_reset_common(struct bnx2x *bp) 6552 { 6553 u32 val = 0x1400; 6554 6555 /* reset_common */ 6556 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 6557 0xd3ffff7f); 6558 6559 if (CHIP_IS_E3(bp)) { 6560 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 6561 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 6562 } 6563 6564 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val); 6565 } 6566 6567 static void bnx2x_setup_dmae(struct bnx2x *bp) 6568 { 6569 bp->dmae_ready = 0; 6570 spin_lock_init(&bp->dmae_lock); 6571 } 6572 6573 static void bnx2x_init_pxp(struct bnx2x *bp) 6574 { 6575 u16 devctl; 6576 int r_order, w_order; 6577 6578 pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl); 6579 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl); 6580 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 6581 if (bp->mrrs == -1) 6582 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12); 6583 else { 6584 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs); 6585 r_order = bp->mrrs; 6586 } 6587 6588 bnx2x_init_pxp_arb(bp, r_order, w_order); 6589 } 6590 6591 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp) 6592 { 6593 int is_required; 6594 u32 val; 6595 int port; 6596 6597 if (BP_NOMCP(bp)) 6598 return; 6599 6600 is_required = 0; 6601 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) & 6602 SHARED_HW_CFG_FAN_FAILURE_MASK; 6603 6604 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) 6605 is_required = 1; 6606 6607 /* 6608 * The fan failure mechanism is usually related to the PHY type since 6609 * the power consumption of the board is affected by the PHY. Currently, 6610 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 6611 */ 6612 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) 6613 for (port = PORT_0; port < PORT_MAX; port++) { 6614 is_required |= 6615 bnx2x_fan_failure_det_req( 6616 bp, 6617 bp->common.shmem_base, 6618 bp->common.shmem2_base, 6619 port); 6620 } 6621 6622 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required); 6623 6624 if (is_required == 0) 6625 return; 6626 6627 /* Fan failure is indicated by SPIO 5 */ 6628 bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 6629 6630 /* set to active low mode */ 6631 val = REG_RD(bp, MISC_REG_SPIO_INT); 6632 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 6633 REG_WR(bp, MISC_REG_SPIO_INT, val); 6634 6635 /* enable interrupt to signal the IGU */ 6636 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); 6637 val |= MISC_SPIO_SPIO5; 6638 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val); 6639 } 6640 6641 void bnx2x_pf_disable(struct bnx2x *bp) 6642 { 6643 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 6644 val &= ~IGU_PF_CONF_FUNC_EN; 6645 6646 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 6647 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 6648 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0); 6649 } 6650 6651 static void bnx2x__common_init_phy(struct bnx2x *bp) 6652 { 6653 u32 shmem_base[2], shmem2_base[2]; 6654 /* Avoid common init in case MFW supports LFA */ 6655 if (SHMEM2_RD(bp, size) > 6656 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) 6657 return; 6658 shmem_base[0] = bp->common.shmem_base; 6659 shmem2_base[0] = bp->common.shmem2_base; 6660 if (!CHIP_IS_E1x(bp)) { 6661 shmem_base[1] = 6662 SHMEM2_RD(bp, other_shmem_base_addr); 6663 shmem2_base[1] = 6664 SHMEM2_RD(bp, other_shmem2_base_addr); 6665 } 6666 bnx2x_acquire_phy_lock(bp); 6667 bnx2x_common_init_phy(bp, shmem_base, shmem2_base, 6668 bp->common.chip_id); 6669 bnx2x_release_phy_lock(bp); 6670 } 6671 6672 /** 6673 * bnx2x_init_hw_common - initialize the HW at the COMMON phase. 6674 * 6675 * @bp: driver handle 6676 */ 6677 static int bnx2x_init_hw_common(struct bnx2x *bp) 6678 { 6679 u32 val; 6680 6681 DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp)); 6682 6683 /* 6684 * take the RESET lock to protect undi_unload flow from accessing 6685 * registers while we're resetting the chip 6686 */ 6687 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 6688 6689 bnx2x_reset_common(bp); 6690 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff); 6691 6692 val = 0xfffc; 6693 if (CHIP_IS_E3(bp)) { 6694 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 6695 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 6696 } 6697 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val); 6698 6699 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 6700 6701 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON); 6702 6703 if (!CHIP_IS_E1x(bp)) { 6704 u8 abs_func_id; 6705 6706 /** 6707 * 4-port mode or 2-port mode we need to turn of master-enable 6708 * for everyone, after that, turn it back on for self. 6709 * so, we disregard multi-function or not, and always disable 6710 * for all functions on the given path, this means 0,2,4,6 for 6711 * path 0 and 1,3,5,7 for path 1 6712 */ 6713 for (abs_func_id = BP_PATH(bp); 6714 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) { 6715 if (abs_func_id == BP_ABS_FUNC(bp)) { 6716 REG_WR(bp, 6717 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 6718 1); 6719 continue; 6720 } 6721 6722 bnx2x_pretend_func(bp, abs_func_id); 6723 /* clear pf enable */ 6724 bnx2x_pf_disable(bp); 6725 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 6726 } 6727 } 6728 6729 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON); 6730 if (CHIP_IS_E1(bp)) { 6731 /* enable HW interrupt from PXP on USDM overflow 6732 bit 16 on INT_MASK_0 */ 6733 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); 6734 } 6735 6736 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON); 6737 bnx2x_init_pxp(bp); 6738 6739 #ifdef __BIG_ENDIAN 6740 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1); 6741 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1); 6742 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1); 6743 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1); 6744 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1); 6745 /* make sure this value is 0 */ 6746 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0); 6747 6748 /* REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */ 6749 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1); 6750 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1); 6751 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1); 6752 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1); 6753 #endif 6754 6755 bnx2x_ilt_init_page_size(bp, INITOP_SET); 6756 6757 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp)) 6758 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 6759 6760 /* let the HW do it's magic ... */ 6761 msleep(100); 6762 /* finish PXP init */ 6763 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE); 6764 if (val != 1) { 6765 BNX2X_ERR("PXP2 CFG failed\n"); 6766 return -EBUSY; 6767 } 6768 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE); 6769 if (val != 1) { 6770 BNX2X_ERR("PXP2 RD_INIT failed\n"); 6771 return -EBUSY; 6772 } 6773 6774 /* Timers bug workaround E2 only. We need to set the entire ILT to 6775 * have entries with value "0" and valid bit on. 6776 * This needs to be done by the first PF that is loaded in a path 6777 * (i.e. common phase) 6778 */ 6779 if (!CHIP_IS_E1x(bp)) { 6780 /* In E2 there is a bug in the timers block that can cause function 6 / 7 6781 * (i.e. vnic3) to start even if it is marked as "scan-off". 6782 * This occurs when a different function (func2,3) is being marked 6783 * as "scan-off". Real-life scenario for example: if a driver is being 6784 * load-unloaded while func6,7 are down. This will cause the timer to access 6785 * the ilt, translate to a logical address and send a request to read/write. 6786 * Since the ilt for the function that is down is not valid, this will cause 6787 * a translation error which is unrecoverable. 6788 * The Workaround is intended to make sure that when this happens nothing fatal 6789 * will occur. The workaround: 6790 * 1. First PF driver which loads on a path will: 6791 * a. After taking the chip out of reset, by using pretend, 6792 * it will write "0" to the following registers of 6793 * the other vnics. 6794 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 6795 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 6796 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 6797 * And for itself it will write '1' to 6798 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 6799 * dmae-operations (writing to pram for example.) 6800 * note: can be done for only function 6,7 but cleaner this 6801 * way. 6802 * b. Write zero+valid to the entire ILT. 6803 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 6804 * VNIC3 (of that port). The range allocated will be the 6805 * entire ILT. This is needed to prevent ILT range error. 6806 * 2. Any PF driver load flow: 6807 * a. ILT update with the physical addresses of the allocated 6808 * logical pages. 6809 * b. Wait 20msec. - note that this timeout is needed to make 6810 * sure there are no requests in one of the PXP internal 6811 * queues with "old" ILT addresses. 6812 * c. PF enable in the PGLC. 6813 * d. Clear the was_error of the PF in the PGLC. (could have 6814 * occurred while driver was down) 6815 * e. PF enable in the CFC (WEAK + STRONG) 6816 * f. Timers scan enable 6817 * 3. PF driver unload flow: 6818 * a. Clear the Timers scan_en. 6819 * b. Polling for scan_on=0 for that PF. 6820 * c. Clear the PF enable bit in the PXP. 6821 * d. Clear the PF enable in the CFC (WEAK + STRONG) 6822 * e. Write zero+valid to all ILT entries (The valid bit must 6823 * stay set) 6824 * f. If this is VNIC 3 of a port then also init 6825 * first_timers_ilt_entry to zero and last_timers_ilt_entry 6826 * to the last entry in the ILT. 6827 * 6828 * Notes: 6829 * Currently the PF error in the PGLC is non recoverable. 6830 * In the future the there will be a recovery routine for this error. 6831 * Currently attention is masked. 6832 * Having an MCP lock on the load/unload process does not guarantee that 6833 * there is no Timer disable during Func6/7 enable. This is because the 6834 * Timers scan is currently being cleared by the MCP on FLR. 6835 * Step 2.d can be done only for PF6/7 and the driver can also check if 6836 * there is error before clearing it. But the flow above is simpler and 6837 * more general. 6838 * All ILT entries are written by zero+valid and not just PF6/7 6839 * ILT entries since in the future the ILT entries allocation for 6840 * PF-s might be dynamic. 6841 */ 6842 struct ilt_client_info ilt_cli; 6843 struct bnx2x_ilt ilt; 6844 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 6845 memset(&ilt, 0, sizeof(struct bnx2x_ilt)); 6846 6847 /* initialize dummy TM client */ 6848 ilt_cli.start = 0; 6849 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 6850 ilt_cli.client_num = ILT_CLIENT_TM; 6851 6852 /* Step 1: set zeroes to all ilt page entries with valid bit on 6853 * Step 2: set the timers first/last ilt entry to point 6854 * to the entire range to prevent ILT range error for 3rd/4th 6855 * vnic (this code assumes existence of the vnic) 6856 * 6857 * both steps performed by call to bnx2x_ilt_client_init_op() 6858 * with dummy TM client 6859 * 6860 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 6861 * and his brother are split registers 6862 */ 6863 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6)); 6864 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR); 6865 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 6866 6867 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN); 6868 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN); 6869 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 6870 } 6871 6872 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0); 6873 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0); 6874 6875 if (!CHIP_IS_E1x(bp)) { 6876 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 : 6877 (CHIP_REV_IS_FPGA(bp) ? 400 : 0); 6878 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON); 6879 6880 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON); 6881 6882 /* let the HW do it's magic ... */ 6883 do { 6884 msleep(200); 6885 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE); 6886 } while (factor-- && (val != 1)); 6887 6888 if (val != 1) { 6889 BNX2X_ERR("ATC_INIT failed\n"); 6890 return -EBUSY; 6891 } 6892 } 6893 6894 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON); 6895 6896 bnx2x_iov_init_dmae(bp); 6897 6898 /* clean the DMAE memory */ 6899 bp->dmae_ready = 1; 6900 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1); 6901 6902 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON); 6903 6904 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON); 6905 6906 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON); 6907 6908 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON); 6909 6910 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3); 6911 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3); 6912 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3); 6913 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3); 6914 6915 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON); 6916 6917 /* QM queues pointers table */ 6918 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET); 6919 6920 /* soft reset pulse */ 6921 REG_WR(bp, QM_REG_SOFT_RESET, 1); 6922 REG_WR(bp, QM_REG_SOFT_RESET, 0); 6923 6924 if (CNIC_SUPPORT(bp)) 6925 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON); 6926 6927 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON); 6928 6929 if (!CHIP_REV_IS_SLOW(bp)) 6930 /* enable hw interrupt from doorbell Q */ 6931 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); 6932 6933 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 6934 6935 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 6936 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf); 6937 6938 if (!CHIP_IS_E1(bp)) 6939 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan); 6940 6941 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) { 6942 if (IS_MF_AFEX(bp)) { 6943 /* configure that VNTag and VLAN headers must be 6944 * received in afex mode 6945 */ 6946 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE); 6947 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA); 6948 REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 6949 REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 6950 REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4); 6951 } else { 6952 /* Bit-map indicating which L2 hdrs may appear 6953 * after the basic Ethernet header 6954 */ 6955 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 6956 bp->path_has_ovlan ? 7 : 6); 6957 } 6958 } 6959 6960 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON); 6961 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON); 6962 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON); 6963 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON); 6964 6965 if (!CHIP_IS_E1x(bp)) { 6966 /* reset VFC memories */ 6967 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 6968 VFC_MEMORIES_RST_REG_CAM_RST | 6969 VFC_MEMORIES_RST_REG_RAM_RST); 6970 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 6971 VFC_MEMORIES_RST_REG_CAM_RST | 6972 VFC_MEMORIES_RST_REG_RAM_RST); 6973 6974 msleep(20); 6975 } 6976 6977 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON); 6978 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON); 6979 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON); 6980 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON); 6981 6982 /* sync semi rtc */ 6983 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 6984 0x80000000); 6985 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 6986 0x80000000); 6987 6988 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON); 6989 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON); 6990 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON); 6991 6992 if (!CHIP_IS_E1x(bp)) { 6993 if (IS_MF_AFEX(bp)) { 6994 /* configure that VNTag and VLAN headers must be 6995 * sent in afex mode 6996 */ 6997 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE); 6998 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA); 6999 REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 7000 REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 7001 REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4); 7002 } else { 7003 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 7004 bp->path_has_ovlan ? 7 : 6); 7005 } 7006 } 7007 7008 REG_WR(bp, SRC_REG_SOFT_RST, 1); 7009 7010 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON); 7011 7012 if (CNIC_SUPPORT(bp)) { 7013 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672); 7014 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 7015 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b); 7016 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a); 7017 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116); 7018 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 7019 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf); 7020 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 7021 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f); 7022 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7); 7023 } 7024 REG_WR(bp, SRC_REG_SOFT_RST, 0); 7025 7026 if (sizeof(union cdu_context) != 1024) 7027 /* we currently assume that a context is 1024 bytes */ 7028 dev_alert(&bp->pdev->dev, 7029 "please adjust the size of cdu_context(%ld)\n", 7030 (long)sizeof(union cdu_context)); 7031 7032 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON); 7033 val = (4 << 24) + (0 << 12) + 1024; 7034 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val); 7035 7036 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON); 7037 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF); 7038 /* enable context validation interrupt from CFC */ 7039 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); 7040 7041 /* set the thresholds to prevent CFC/CDU race */ 7042 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000); 7043 7044 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON); 7045 7046 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp)) 7047 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36); 7048 7049 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON); 7050 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON); 7051 7052 /* Reset PCIE errors for debug */ 7053 REG_WR(bp, 0x2814, 0xffffffff); 7054 REG_WR(bp, 0x3820, 0xffffffff); 7055 7056 if (!CHIP_IS_E1x(bp)) { 7057 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 7058 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 7059 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 7060 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 7061 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 7062 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 7063 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 7064 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 7065 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 7066 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 7067 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 7068 } 7069 7070 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON); 7071 if (!CHIP_IS_E1(bp)) { 7072 /* in E3 this done in per-port section */ 7073 if (!CHIP_IS_E3(bp)) 7074 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp)); 7075 } 7076 if (CHIP_IS_E1H(bp)) 7077 /* not applicable for E2 (and above ...) */ 7078 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp)); 7079 7080 if (CHIP_REV_IS_SLOW(bp)) 7081 msleep(200); 7082 7083 /* finish CFC init */ 7084 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10); 7085 if (val != 1) { 7086 BNX2X_ERR("CFC LL_INIT failed\n"); 7087 return -EBUSY; 7088 } 7089 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10); 7090 if (val != 1) { 7091 BNX2X_ERR("CFC AC_INIT failed\n"); 7092 return -EBUSY; 7093 } 7094 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 7095 if (val != 1) { 7096 BNX2X_ERR("CFC CAM_INIT failed\n"); 7097 return -EBUSY; 7098 } 7099 REG_WR(bp, CFC_REG_DEBUG0, 0); 7100 7101 if (CHIP_IS_E1(bp)) { 7102 /* read NIG statistic 7103 to see if this is our first up since powerup */ 7104 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 7105 val = *bnx2x_sp(bp, wb_data[0]); 7106 7107 /* do internal memory self test */ 7108 if ((val == 0) && bnx2x_int_mem_test(bp)) { 7109 BNX2X_ERR("internal mem self test failed\n"); 7110 return -EBUSY; 7111 } 7112 } 7113 7114 bnx2x_setup_fan_failure_detection(bp); 7115 7116 /* clear PXP2 attentions */ 7117 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0); 7118 7119 bnx2x_enable_blocks_attention(bp); 7120 bnx2x_enable_blocks_parity(bp); 7121 7122 if (!BP_NOMCP(bp)) { 7123 if (CHIP_IS_E1x(bp)) 7124 bnx2x__common_init_phy(bp); 7125 } else 7126 BNX2X_ERR("Bootcode is missing - can not initialize link\n"); 7127 7128 return 0; 7129 } 7130 7131 /** 7132 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase. 7133 * 7134 * @bp: driver handle 7135 */ 7136 static int bnx2x_init_hw_common_chip(struct bnx2x *bp) 7137 { 7138 int rc = bnx2x_init_hw_common(bp); 7139 7140 if (rc) 7141 return rc; 7142 7143 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 7144 if (!BP_NOMCP(bp)) 7145 bnx2x__common_init_phy(bp); 7146 7147 return 0; 7148 } 7149 7150 static int bnx2x_init_hw_port(struct bnx2x *bp) 7151 { 7152 int port = BP_PORT(bp); 7153 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 7154 u32 low, high; 7155 u32 val, reg; 7156 7157 DP(NETIF_MSG_HW, "starting port init port %d\n", port); 7158 7159 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 7160 7161 bnx2x_init_block(bp, BLOCK_MISC, init_phase); 7162 bnx2x_init_block(bp, BLOCK_PXP, init_phase); 7163 bnx2x_init_block(bp, BLOCK_PXP2, init_phase); 7164 7165 /* Timers bug workaround: disables the pf_master bit in pglue at 7166 * common phase, we need to enable it here before any dmae access are 7167 * attempted. Therefore we manually added the enable-master to the 7168 * port phase (it also happens in the function phase) 7169 */ 7170 if (!CHIP_IS_E1x(bp)) 7171 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 7172 7173 bnx2x_init_block(bp, BLOCK_ATC, init_phase); 7174 bnx2x_init_block(bp, BLOCK_DMAE, init_phase); 7175 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); 7176 bnx2x_init_block(bp, BLOCK_QM, init_phase); 7177 7178 bnx2x_init_block(bp, BLOCK_TCM, init_phase); 7179 bnx2x_init_block(bp, BLOCK_UCM, init_phase); 7180 bnx2x_init_block(bp, BLOCK_CCM, init_phase); 7181 bnx2x_init_block(bp, BLOCK_XCM, init_phase); 7182 7183 /* QM cid (connection) count */ 7184 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET); 7185 7186 if (CNIC_SUPPORT(bp)) { 7187 bnx2x_init_block(bp, BLOCK_TM, init_phase); 7188 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20); 7189 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 7190 } 7191 7192 bnx2x_init_block(bp, BLOCK_DORQ, init_phase); 7193 7194 bnx2x_init_block(bp, BLOCK_BRB1, init_phase); 7195 7196 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) { 7197 7198 if (IS_MF(bp)) 7199 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246); 7200 else if (bp->dev->mtu > 4096) { 7201 if (bp->flags & ONE_PORT_FLAG) 7202 low = 160; 7203 else { 7204 val = bp->dev->mtu; 7205 /* (24*1024 + val*4)/256 */ 7206 low = 96 + (val/64) + 7207 ((val % 64) ? 1 : 0); 7208 } 7209 } else 7210 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160); 7211 high = low + 56; /* 14*1024/256 */ 7212 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 7213 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 7214 } 7215 7216 if (CHIP_MODE_IS_4_PORT(bp)) 7217 REG_WR(bp, (BP_PORT(bp) ? 7218 BRB1_REG_MAC_GUARANTIED_1 : 7219 BRB1_REG_MAC_GUARANTIED_0), 40); 7220 7221 bnx2x_init_block(bp, BLOCK_PRS, init_phase); 7222 if (CHIP_IS_E3B0(bp)) { 7223 if (IS_MF_AFEX(bp)) { 7224 /* configure headers for AFEX mode */ 7225 REG_WR(bp, BP_PORT(bp) ? 7226 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 7227 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 7228 REG_WR(bp, BP_PORT(bp) ? 7229 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 7230 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 7231 REG_WR(bp, BP_PORT(bp) ? 7232 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 7233 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 7234 } else { 7235 /* Ovlan exists only if we are in multi-function + 7236 * switch-dependent mode, in switch-independent there 7237 * is no ovlan headers 7238 */ 7239 REG_WR(bp, BP_PORT(bp) ? 7240 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 7241 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 7242 (bp->path_has_ovlan ? 7 : 6)); 7243 } 7244 } 7245 7246 bnx2x_init_block(bp, BLOCK_TSDM, init_phase); 7247 bnx2x_init_block(bp, BLOCK_CSDM, init_phase); 7248 bnx2x_init_block(bp, BLOCK_USDM, init_phase); 7249 bnx2x_init_block(bp, BLOCK_XSDM, init_phase); 7250 7251 bnx2x_init_block(bp, BLOCK_TSEM, init_phase); 7252 bnx2x_init_block(bp, BLOCK_USEM, init_phase); 7253 bnx2x_init_block(bp, BLOCK_CSEM, init_phase); 7254 bnx2x_init_block(bp, BLOCK_XSEM, init_phase); 7255 7256 bnx2x_init_block(bp, BLOCK_UPB, init_phase); 7257 bnx2x_init_block(bp, BLOCK_XPB, init_phase); 7258 7259 bnx2x_init_block(bp, BLOCK_PBF, init_phase); 7260 7261 if (CHIP_IS_E1x(bp)) { 7262 /* configure PBF to work without PAUSE mtu 9000 */ 7263 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 7264 7265 /* update threshold */ 7266 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 7267 /* update init credit */ 7268 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 7269 7270 /* probe changes */ 7271 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1); 7272 udelay(50); 7273 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0); 7274 } 7275 7276 if (CNIC_SUPPORT(bp)) 7277 bnx2x_init_block(bp, BLOCK_SRC, init_phase); 7278 7279 bnx2x_init_block(bp, BLOCK_CDU, init_phase); 7280 bnx2x_init_block(bp, BLOCK_CFC, init_phase); 7281 7282 if (CHIP_IS_E1(bp)) { 7283 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 7284 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 7285 } 7286 bnx2x_init_block(bp, BLOCK_HC, init_phase); 7287 7288 bnx2x_init_block(bp, BLOCK_IGU, init_phase); 7289 7290 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); 7291 /* init aeu_mask_attn_func_0/1: 7292 * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use 7293 * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF 7294 * bits 4-7 are used for "per vn group attention" */ 7295 val = IS_MF(bp) ? 0xF7 : 0x7; 7296 /* Enable DCBX attention for all but E1 */ 7297 val |= CHIP_IS_E1(bp) ? 0 : 0x10; 7298 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 7299 7300 /* SCPAD_PARITY should NOT trigger close the gates */ 7301 reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0; 7302 REG_WR(bp, reg, 7303 REG_RD(bp, reg) & 7304 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY); 7305 7306 reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0; 7307 REG_WR(bp, reg, 7308 REG_RD(bp, reg) & 7309 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY); 7310 7311 bnx2x_init_block(bp, BLOCK_NIG, init_phase); 7312 7313 if (!CHIP_IS_E1x(bp)) { 7314 /* Bit-map indicating which L2 hdrs may appear after the 7315 * basic Ethernet header 7316 */ 7317 if (IS_MF_AFEX(bp)) 7318 REG_WR(bp, BP_PORT(bp) ? 7319 NIG_REG_P1_HDRS_AFTER_BASIC : 7320 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 7321 else 7322 REG_WR(bp, BP_PORT(bp) ? 7323 NIG_REG_P1_HDRS_AFTER_BASIC : 7324 NIG_REG_P0_HDRS_AFTER_BASIC, 7325 IS_MF_SD(bp) ? 7 : 6); 7326 7327 if (CHIP_IS_E3(bp)) 7328 REG_WR(bp, BP_PORT(bp) ? 7329 NIG_REG_LLH1_MF_MODE : 7330 NIG_REG_LLH_MF_MODE, IS_MF(bp)); 7331 } 7332 if (!CHIP_IS_E3(bp)) 7333 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 7334 7335 if (!CHIP_IS_E1(bp)) { 7336 /* 0x2 disable mf_ov, 0x1 enable */ 7337 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 7338 (IS_MF_SD(bp) ? 0x1 : 0x2)); 7339 7340 if (!CHIP_IS_E1x(bp)) { 7341 val = 0; 7342 switch (bp->mf_mode) { 7343 case MULTI_FUNCTION_SD: 7344 val = 1; 7345 break; 7346 case MULTI_FUNCTION_SI: 7347 case MULTI_FUNCTION_AFEX: 7348 val = 2; 7349 break; 7350 } 7351 7352 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE : 7353 NIG_REG_LLH0_CLS_TYPE), val); 7354 } 7355 { 7356 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 7357 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 7358 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 7359 } 7360 } 7361 7362 /* If SPIO5 is set to generate interrupts, enable it for this port */ 7363 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); 7364 if (val & MISC_SPIO_SPIO5) { 7365 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 7366 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 7367 val = REG_RD(bp, reg_addr); 7368 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 7369 REG_WR(bp, reg_addr, val); 7370 } 7371 7372 return 0; 7373 } 7374 7375 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr) 7376 { 7377 int reg; 7378 u32 wb_write[2]; 7379 7380 if (CHIP_IS_E1(bp)) 7381 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 7382 else 7383 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 7384 7385 wb_write[0] = ONCHIP_ADDR1(addr); 7386 wb_write[1] = ONCHIP_ADDR2(addr); 7387 REG_WR_DMAE(bp, reg, wb_write, 2); 7388 } 7389 7390 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf) 7391 { 7392 u32 data, ctl, cnt = 100; 7393 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 7394 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 7395 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 7396 u32 sb_bit = 1 << (idu_sb_id%32); 7397 u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 7398 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 7399 7400 /* Not supported in BC mode */ 7401 if (CHIP_INT_MODE_IS_BC(bp)) 7402 return; 7403 7404 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup 7405 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 7406 IGU_REGULAR_CLEANUP_SET | 7407 IGU_REGULAR_BCLEANUP; 7408 7409 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT | 7410 func_encode << IGU_CTRL_REG_FID_SHIFT | 7411 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT; 7412 7413 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 7414 data, igu_addr_data); 7415 REG_WR(bp, igu_addr_data, data); 7416 mmiowb(); 7417 barrier(); 7418 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 7419 ctl, igu_addr_ctl); 7420 REG_WR(bp, igu_addr_ctl, ctl); 7421 mmiowb(); 7422 barrier(); 7423 7424 /* wait for clean up to finish */ 7425 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt) 7426 msleep(20); 7427 7428 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) { 7429 DP(NETIF_MSG_HW, 7430 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n", 7431 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 7432 } 7433 } 7434 7435 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id) 7436 { 7437 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/); 7438 } 7439 7440 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func) 7441 { 7442 u32 i, base = FUNC_ILT_BASE(func); 7443 for (i = base; i < base + ILT_PER_FUNC; i++) 7444 bnx2x_ilt_wr(bp, i, 0); 7445 } 7446 7447 static void bnx2x_init_searcher(struct bnx2x *bp) 7448 { 7449 int port = BP_PORT(bp); 7450 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM); 7451 /* T1 hash bits value determines the T1 number of entries */ 7452 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS); 7453 } 7454 7455 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend) 7456 { 7457 int rc; 7458 struct bnx2x_func_state_params func_params = {NULL}; 7459 struct bnx2x_func_switch_update_params *switch_update_params = 7460 &func_params.params.switch_update; 7461 7462 /* Prepare parameters for function state transitions */ 7463 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 7464 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 7465 7466 func_params.f_obj = &bp->func_obj; 7467 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 7468 7469 /* Function parameters */ 7470 switch_update_params->suspend = suspend; 7471 7472 rc = bnx2x_func_state_change(bp, &func_params); 7473 7474 return rc; 7475 } 7476 7477 static int bnx2x_reset_nic_mode(struct bnx2x *bp) 7478 { 7479 int rc, i, port = BP_PORT(bp); 7480 int vlan_en = 0, mac_en[NUM_MACS]; 7481 7482 /* Close input from network */ 7483 if (bp->mf_mode == SINGLE_FUNCTION) { 7484 bnx2x_set_rx_filter(&bp->link_params, 0); 7485 } else { 7486 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN : 7487 NIG_REG_LLH0_FUNC_EN); 7488 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : 7489 NIG_REG_LLH0_FUNC_EN, 0); 7490 for (i = 0; i < NUM_MACS; i++) { 7491 mac_en[i] = REG_RD(bp, port ? 7492 (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7493 4 * i) : 7494 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 7495 4 * i)); 7496 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7497 4 * i) : 7498 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0); 7499 } 7500 } 7501 7502 /* Close BMC to host */ 7503 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : 7504 NIG_REG_P1_TX_MNG_HOST_ENABLE, 0); 7505 7506 /* Suspend Tx switching to the PF. Completion of this ramrod 7507 * further guarantees that all the packets of that PF / child 7508 * VFs in BRB were processed by the Parser, so it is safe to 7509 * change the NIC_MODE register. 7510 */ 7511 rc = bnx2x_func_switch_update(bp, 1); 7512 if (rc) { 7513 BNX2X_ERR("Can't suspend tx-switching!\n"); 7514 return rc; 7515 } 7516 7517 /* Change NIC_MODE register */ 7518 REG_WR(bp, PRS_REG_NIC_MODE, 0); 7519 7520 /* Open input from network */ 7521 if (bp->mf_mode == SINGLE_FUNCTION) { 7522 bnx2x_set_rx_filter(&bp->link_params, 1); 7523 } else { 7524 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : 7525 NIG_REG_LLH0_FUNC_EN, vlan_en); 7526 for (i = 0; i < NUM_MACS; i++) { 7527 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7528 4 * i) : 7529 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 7530 mac_en[i]); 7531 } 7532 } 7533 7534 /* Enable BMC to host */ 7535 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : 7536 NIG_REG_P1_TX_MNG_HOST_ENABLE, 1); 7537 7538 /* Resume Tx switching to the PF */ 7539 rc = bnx2x_func_switch_update(bp, 0); 7540 if (rc) { 7541 BNX2X_ERR("Can't resume tx-switching!\n"); 7542 return rc; 7543 } 7544 7545 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); 7546 return 0; 7547 } 7548 7549 int bnx2x_init_hw_func_cnic(struct bnx2x *bp) 7550 { 7551 int rc; 7552 7553 bnx2x_ilt_init_op_cnic(bp, INITOP_SET); 7554 7555 if (CONFIGURE_NIC_MODE(bp)) { 7556 /* Configure searcher as part of function hw init */ 7557 bnx2x_init_searcher(bp); 7558 7559 /* Reset NIC mode */ 7560 rc = bnx2x_reset_nic_mode(bp); 7561 if (rc) 7562 BNX2X_ERR("Can't change NIC mode!\n"); 7563 return rc; 7564 } 7565 7566 return 0; 7567 } 7568 7569 static int bnx2x_init_hw_func(struct bnx2x *bp) 7570 { 7571 int port = BP_PORT(bp); 7572 int func = BP_FUNC(bp); 7573 int init_phase = PHASE_PF0 + func; 7574 struct bnx2x_ilt *ilt = BP_ILT(bp); 7575 u16 cdu_ilt_start; 7576 u32 addr, val; 7577 u32 main_mem_base, main_mem_size, main_mem_prty_clr; 7578 int i, main_mem_width, rc; 7579 7580 DP(NETIF_MSG_HW, "starting func init func %d\n", func); 7581 7582 /* FLR cleanup - hmmm */ 7583 if (!CHIP_IS_E1x(bp)) { 7584 rc = bnx2x_pf_flr_clnup(bp); 7585 if (rc) { 7586 bnx2x_fw_dump(bp); 7587 return rc; 7588 } 7589 } 7590 7591 /* set MSI reconfigure capability */ 7592 if (bp->common.int_block == INT_BLOCK_HC) { 7593 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 7594 val = REG_RD(bp, addr); 7595 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 7596 REG_WR(bp, addr, val); 7597 } 7598 7599 bnx2x_init_block(bp, BLOCK_PXP, init_phase); 7600 bnx2x_init_block(bp, BLOCK_PXP2, init_phase); 7601 7602 ilt = BP_ILT(bp); 7603 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 7604 7605 if (IS_SRIOV(bp)) 7606 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS; 7607 cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start); 7608 7609 /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes 7610 * those of the VFs, so start line should be reset 7611 */ 7612 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 7613 for (i = 0; i < L2_ILT_LINES(bp); i++) { 7614 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt; 7615 ilt->lines[cdu_ilt_start + i].page_mapping = 7616 bp->context[i].cxt_mapping; 7617 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size; 7618 } 7619 7620 bnx2x_ilt_init_op(bp, INITOP_SET); 7621 7622 if (!CONFIGURE_NIC_MODE(bp)) { 7623 bnx2x_init_searcher(bp); 7624 REG_WR(bp, PRS_REG_NIC_MODE, 0); 7625 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); 7626 } else { 7627 /* Set NIC mode */ 7628 REG_WR(bp, PRS_REG_NIC_MODE, 1); 7629 DP(NETIF_MSG_IFUP, "NIC MODE configured\n"); 7630 } 7631 7632 if (!CHIP_IS_E1x(bp)) { 7633 u32 pf_conf = IGU_PF_CONF_FUNC_EN; 7634 7635 /* Turn on a single ISR mode in IGU if driver is going to use 7636 * INT#x or MSI 7637 */ 7638 if (!(bp->flags & USING_MSIX_FLAG)) 7639 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 7640 /* 7641 * Timers workaround bug: function init part. 7642 * Need to wait 20msec after initializing ILT, 7643 * needed to make sure there are no requests in 7644 * one of the PXP internal queues with "old" ILT addresses 7645 */ 7646 msleep(20); 7647 /* 7648 * Master enable - Due to WB DMAE writes performed before this 7649 * register is re-initialized as part of the regular function 7650 * init 7651 */ 7652 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 7653 /* Enable the function in IGU */ 7654 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf); 7655 } 7656 7657 bp->dmae_ready = 1; 7658 7659 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); 7660 7661 if (!CHIP_IS_E1x(bp)) 7662 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); 7663 7664 bnx2x_init_block(bp, BLOCK_ATC, init_phase); 7665 bnx2x_init_block(bp, BLOCK_DMAE, init_phase); 7666 bnx2x_init_block(bp, BLOCK_NIG, init_phase); 7667 bnx2x_init_block(bp, BLOCK_SRC, init_phase); 7668 bnx2x_init_block(bp, BLOCK_MISC, init_phase); 7669 bnx2x_init_block(bp, BLOCK_TCM, init_phase); 7670 bnx2x_init_block(bp, BLOCK_UCM, init_phase); 7671 bnx2x_init_block(bp, BLOCK_CCM, init_phase); 7672 bnx2x_init_block(bp, BLOCK_XCM, init_phase); 7673 bnx2x_init_block(bp, BLOCK_TSEM, init_phase); 7674 bnx2x_init_block(bp, BLOCK_USEM, init_phase); 7675 bnx2x_init_block(bp, BLOCK_CSEM, init_phase); 7676 bnx2x_init_block(bp, BLOCK_XSEM, init_phase); 7677 7678 if (!CHIP_IS_E1x(bp)) 7679 REG_WR(bp, QM_REG_PF_EN, 1); 7680 7681 if (!CHIP_IS_E1x(bp)) { 7682 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 7683 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 7684 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 7685 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 7686 } 7687 bnx2x_init_block(bp, BLOCK_QM, init_phase); 7688 7689 bnx2x_init_block(bp, BLOCK_TM, init_phase); 7690 bnx2x_init_block(bp, BLOCK_DORQ, init_phase); 7691 REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */ 7692 7693 bnx2x_iov_init_dq(bp); 7694 7695 bnx2x_init_block(bp, BLOCK_BRB1, init_phase); 7696 bnx2x_init_block(bp, BLOCK_PRS, init_phase); 7697 bnx2x_init_block(bp, BLOCK_TSDM, init_phase); 7698 bnx2x_init_block(bp, BLOCK_CSDM, init_phase); 7699 bnx2x_init_block(bp, BLOCK_USDM, init_phase); 7700 bnx2x_init_block(bp, BLOCK_XSDM, init_phase); 7701 bnx2x_init_block(bp, BLOCK_UPB, init_phase); 7702 bnx2x_init_block(bp, BLOCK_XPB, init_phase); 7703 bnx2x_init_block(bp, BLOCK_PBF, init_phase); 7704 if (!CHIP_IS_E1x(bp)) 7705 REG_WR(bp, PBF_REG_DISABLE_PF, 0); 7706 7707 bnx2x_init_block(bp, BLOCK_CDU, init_phase); 7708 7709 bnx2x_init_block(bp, BLOCK_CFC, init_phase); 7710 7711 if (!CHIP_IS_E1x(bp)) 7712 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1); 7713 7714 if (IS_MF(bp)) { 7715 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1); 7716 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov); 7717 } 7718 7719 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); 7720 7721 /* HC init per function */ 7722 if (bp->common.int_block == INT_BLOCK_HC) { 7723 if (CHIP_IS_E1H(bp)) { 7724 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 7725 7726 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 7727 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 7728 } 7729 bnx2x_init_block(bp, BLOCK_HC, init_phase); 7730 7731 } else { 7732 int num_segs, sb_idx, prod_offset; 7733 7734 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 7735 7736 if (!CHIP_IS_E1x(bp)) { 7737 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); 7738 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); 7739 } 7740 7741 bnx2x_init_block(bp, BLOCK_IGU, init_phase); 7742 7743 if (!CHIP_IS_E1x(bp)) { 7744 int dsb_idx = 0; 7745 /** 7746 * Producer memory: 7747 * E2 mode: address 0-135 match to the mapping memory; 7748 * 136 - PF0 default prod; 137 - PF1 default prod; 7749 * 138 - PF2 default prod; 139 - PF3 default prod; 7750 * 140 - PF0 attn prod; 141 - PF1 attn prod; 7751 * 142 - PF2 attn prod; 143 - PF3 attn prod; 7752 * 144-147 reserved. 7753 * 7754 * E1.5 mode - In backward compatible mode; 7755 * for non default SB; each even line in the memory 7756 * holds the U producer and each odd line hold 7757 * the C producer. The first 128 producers are for 7758 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 7759 * producers are for the DSB for each PF. 7760 * Each PF has five segments: (the order inside each 7761 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 7762 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 7763 * 144-147 attn prods; 7764 */ 7765 /* non-default-status-blocks */ 7766 num_segs = CHIP_INT_MODE_IS_BC(bp) ? 7767 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 7768 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) { 7769 prod_offset = (bp->igu_base_sb + sb_idx) * 7770 num_segs; 7771 7772 for (i = 0; i < num_segs; i++) { 7773 addr = IGU_REG_PROD_CONS_MEMORY + 7774 (prod_offset + i) * 4; 7775 REG_WR(bp, addr, 0); 7776 } 7777 /* send consumer update with value 0 */ 7778 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx, 7779 USTORM_ID, 0, IGU_INT_NOP, 1); 7780 bnx2x_igu_clear_sb(bp, 7781 bp->igu_base_sb + sb_idx); 7782 } 7783 7784 /* default-status-blocks */ 7785 num_segs = CHIP_INT_MODE_IS_BC(bp) ? 7786 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 7787 7788 if (CHIP_MODE_IS_4_PORT(bp)) 7789 dsb_idx = BP_FUNC(bp); 7790 else 7791 dsb_idx = BP_VN(bp); 7792 7793 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ? 7794 IGU_BC_BASE_DSB_PROD + dsb_idx : 7795 IGU_NORM_BASE_DSB_PROD + dsb_idx); 7796 7797 /* 7798 * igu prods come in chunks of E1HVN_MAX (4) - 7799 * does not matters what is the current chip mode 7800 */ 7801 for (i = 0; i < (num_segs * E1HVN_MAX); 7802 i += E1HVN_MAX) { 7803 addr = IGU_REG_PROD_CONS_MEMORY + 7804 (prod_offset + i)*4; 7805 REG_WR(bp, addr, 0); 7806 } 7807 /* send consumer update with 0 */ 7808 if (CHIP_INT_MODE_IS_BC(bp)) { 7809 bnx2x_ack_sb(bp, bp->igu_dsb_id, 7810 USTORM_ID, 0, IGU_INT_NOP, 1); 7811 bnx2x_ack_sb(bp, bp->igu_dsb_id, 7812 CSTORM_ID, 0, IGU_INT_NOP, 1); 7813 bnx2x_ack_sb(bp, bp->igu_dsb_id, 7814 XSTORM_ID, 0, IGU_INT_NOP, 1); 7815 bnx2x_ack_sb(bp, bp->igu_dsb_id, 7816 TSTORM_ID, 0, IGU_INT_NOP, 1); 7817 bnx2x_ack_sb(bp, bp->igu_dsb_id, 7818 ATTENTION_ID, 0, IGU_INT_NOP, 1); 7819 } else { 7820 bnx2x_ack_sb(bp, bp->igu_dsb_id, 7821 USTORM_ID, 0, IGU_INT_NOP, 1); 7822 bnx2x_ack_sb(bp, bp->igu_dsb_id, 7823 ATTENTION_ID, 0, IGU_INT_NOP, 1); 7824 } 7825 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id); 7826 7827 /* !!! These should become driver const once 7828 rf-tool supports split-68 const */ 7829 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 7830 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 7831 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0); 7832 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0); 7833 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0); 7834 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0); 7835 } 7836 } 7837 7838 /* Reset PCIE errors for debug */ 7839 REG_WR(bp, 0x2114, 0xffffffff); 7840 REG_WR(bp, 0x2120, 0xffffffff); 7841 7842 if (CHIP_IS_E1x(bp)) { 7843 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 7844 main_mem_base = HC_REG_MAIN_MEMORY + 7845 BP_PORT(bp) * (main_mem_size * 4); 7846 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 7847 main_mem_width = 8; 7848 7849 val = REG_RD(bp, main_mem_prty_clr); 7850 if (val) 7851 DP(NETIF_MSG_HW, 7852 "Hmmm... Parity errors in HC block during function init (0x%x)!\n", 7853 val); 7854 7855 /* Clear "false" parity errors in MSI-X table */ 7856 for (i = main_mem_base; 7857 i < main_mem_base + main_mem_size * 4; 7858 i += main_mem_width) { 7859 bnx2x_read_dmae(bp, i, main_mem_width / 4); 7860 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), 7861 i, main_mem_width / 4); 7862 } 7863 /* Clear HC parity attention */ 7864 REG_RD(bp, main_mem_prty_clr); 7865 } 7866 7867 #ifdef BNX2X_STOP_ON_ERROR 7868 /* Enable STORMs SP logging */ 7869 REG_WR8(bp, BAR_USTRORM_INTMEM + 7870 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 7871 REG_WR8(bp, BAR_TSTRORM_INTMEM + 7872 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 7873 REG_WR8(bp, BAR_CSTRORM_INTMEM + 7874 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 7875 REG_WR8(bp, BAR_XSTRORM_INTMEM + 7876 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 7877 #endif 7878 7879 bnx2x_phy_probe(&bp->link_params); 7880 7881 return 0; 7882 } 7883 7884 void bnx2x_free_mem_cnic(struct bnx2x *bp) 7885 { 7886 bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE); 7887 7888 if (!CHIP_IS_E1x(bp)) 7889 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping, 7890 sizeof(struct host_hc_status_block_e2)); 7891 else 7892 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping, 7893 sizeof(struct host_hc_status_block_e1x)); 7894 7895 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); 7896 } 7897 7898 void bnx2x_free_mem(struct bnx2x *bp) 7899 { 7900 int i; 7901 7902 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, 7903 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 7904 7905 if (IS_VF(bp)) 7906 return; 7907 7908 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping, 7909 sizeof(struct host_sp_status_block)); 7910 7911 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping, 7912 sizeof(struct bnx2x_slowpath)); 7913 7914 for (i = 0; i < L2_ILT_LINES(bp); i++) 7915 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping, 7916 bp->context[i].size); 7917 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE); 7918 7919 BNX2X_FREE(bp->ilt->lines); 7920 7921 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE); 7922 7923 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping, 7924 BCM_PAGE_SIZE * NUM_EQ_PAGES); 7925 7926 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); 7927 7928 bnx2x_iov_free_mem(bp); 7929 } 7930 7931 int bnx2x_alloc_mem_cnic(struct bnx2x *bp) 7932 { 7933 if (!CHIP_IS_E1x(bp)) 7934 /* size = the status block + ramrod buffers */ 7935 BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping, 7936 sizeof(struct host_hc_status_block_e2)); 7937 else 7938 BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, 7939 &bp->cnic_sb_mapping, 7940 sizeof(struct 7941 host_hc_status_block_e1x)); 7942 7943 if (CONFIGURE_NIC_MODE(bp) && !bp->t2) 7944 /* allocate searcher T2 table, as it wasn't allocated before */ 7945 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ); 7946 7947 /* write address to which L5 should insert its values */ 7948 bp->cnic_eth_dev.addr_drv_info_to_mcp = 7949 &bp->slowpath->drv_info_to_mcp; 7950 7951 if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC)) 7952 goto alloc_mem_err; 7953 7954 return 0; 7955 7956 alloc_mem_err: 7957 bnx2x_free_mem_cnic(bp); 7958 BNX2X_ERR("Can't allocate memory\n"); 7959 return -ENOMEM; 7960 } 7961 7962 int bnx2x_alloc_mem(struct bnx2x *bp) 7963 { 7964 int i, allocated, context_size; 7965 7966 if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) 7967 /* allocate searcher T2 table */ 7968 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ); 7969 7970 BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping, 7971 sizeof(struct host_sp_status_block)); 7972 7973 BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping, 7974 sizeof(struct bnx2x_slowpath)); 7975 7976 /* Allocate memory for CDU context: 7977 * This memory is allocated separately and not in the generic ILT 7978 * functions because CDU differs in few aspects: 7979 * 1. There are multiple entities allocating memory for context - 7980 * 'regular' driver, CNIC and SRIOV driver. Each separately controls 7981 * its own ILT lines. 7982 * 2. Since CDU page-size is not a single 4KB page (which is the case 7983 * for the other ILT clients), to be efficient we want to support 7984 * allocation of sub-page-size in the last entry. 7985 * 3. Context pointers are used by the driver to pass to FW / update 7986 * the context (for the other ILT clients the pointers are used just to 7987 * free the memory during unload). 7988 */ 7989 context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp); 7990 7991 for (i = 0, allocated = 0; allocated < context_size; i++) { 7992 bp->context[i].size = min(CDU_ILT_PAGE_SZ, 7993 (context_size - allocated)); 7994 BNX2X_PCI_ALLOC(bp->context[i].vcxt, 7995 &bp->context[i].cxt_mapping, 7996 bp->context[i].size); 7997 allocated += bp->context[i].size; 7998 } 7999 BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES); 8000 8001 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC)) 8002 goto alloc_mem_err; 8003 8004 if (bnx2x_iov_alloc_mem(bp)) 8005 goto alloc_mem_err; 8006 8007 /* Slow path ring */ 8008 BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE); 8009 8010 /* EQ */ 8011 BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping, 8012 BCM_PAGE_SIZE * NUM_EQ_PAGES); 8013 8014 return 0; 8015 8016 alloc_mem_err: 8017 bnx2x_free_mem(bp); 8018 BNX2X_ERR("Can't allocate memory\n"); 8019 return -ENOMEM; 8020 } 8021 8022 /* 8023 * Init service functions 8024 */ 8025 8026 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac, 8027 struct bnx2x_vlan_mac_obj *obj, bool set, 8028 int mac_type, unsigned long *ramrod_flags) 8029 { 8030 int rc; 8031 struct bnx2x_vlan_mac_ramrod_params ramrod_param; 8032 8033 memset(&ramrod_param, 0, sizeof(ramrod_param)); 8034 8035 /* Fill general parameters */ 8036 ramrod_param.vlan_mac_obj = obj; 8037 ramrod_param.ramrod_flags = *ramrod_flags; 8038 8039 /* Fill a user request section if needed */ 8040 if (!test_bit(RAMROD_CONT, ramrod_flags)) { 8041 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 8042 8043 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 8044 8045 /* Set the command: ADD or DEL */ 8046 if (set) 8047 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD; 8048 else 8049 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL; 8050 } 8051 8052 rc = bnx2x_config_vlan_mac(bp, &ramrod_param); 8053 8054 if (rc == -EEXIST) { 8055 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc); 8056 /* do not treat adding same MAC as error */ 8057 rc = 0; 8058 } else if (rc < 0) 8059 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del")); 8060 8061 return rc; 8062 } 8063 8064 int bnx2x_del_all_macs(struct bnx2x *bp, 8065 struct bnx2x_vlan_mac_obj *mac_obj, 8066 int mac_type, bool wait_for_comp) 8067 { 8068 int rc; 8069 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 8070 8071 /* Wait for completion of requested */ 8072 if (wait_for_comp) 8073 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 8074 8075 /* Set the mac type of addresses we want to clear */ 8076 __set_bit(mac_type, &vlan_mac_flags); 8077 8078 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags); 8079 if (rc < 0) 8080 BNX2X_ERR("Failed to delete MACs: %d\n", rc); 8081 8082 return rc; 8083 } 8084 8085 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set) 8086 { 8087 if (is_zero_ether_addr(bp->dev->dev_addr) && 8088 (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) { 8089 DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN, 8090 "Ignoring Zero MAC for STORAGE SD mode\n"); 8091 return 0; 8092 } 8093 8094 if (IS_PF(bp)) { 8095 unsigned long ramrod_flags = 0; 8096 8097 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n"); 8098 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 8099 return bnx2x_set_mac_one(bp, bp->dev->dev_addr, 8100 &bp->sp_objs->mac_obj, set, 8101 BNX2X_ETH_MAC, &ramrod_flags); 8102 } else { /* vf */ 8103 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, 8104 bp->fp->index, true); 8105 } 8106 } 8107 8108 int bnx2x_setup_leading(struct bnx2x *bp) 8109 { 8110 if (IS_PF(bp)) 8111 return bnx2x_setup_queue(bp, &bp->fp[0], true); 8112 else /* VF */ 8113 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true); 8114 } 8115 8116 /** 8117 * bnx2x_set_int_mode - configure interrupt mode 8118 * 8119 * @bp: driver handle 8120 * 8121 * In case of MSI-X it will also try to enable MSI-X. 8122 */ 8123 int bnx2x_set_int_mode(struct bnx2x *bp) 8124 { 8125 int rc = 0; 8126 8127 if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) { 8128 BNX2X_ERR("VF not loaded since interrupt mode not msix\n"); 8129 return -EINVAL; 8130 } 8131 8132 switch (int_mode) { 8133 case BNX2X_INT_MODE_MSIX: 8134 /* attempt to enable msix */ 8135 rc = bnx2x_enable_msix(bp); 8136 8137 /* msix attained */ 8138 if (!rc) 8139 return 0; 8140 8141 /* vfs use only msix */ 8142 if (rc && IS_VF(bp)) 8143 return rc; 8144 8145 /* failed to enable multiple MSI-X */ 8146 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n", 8147 bp->num_queues, 8148 1 + bp->num_cnic_queues); 8149 8150 /* falling through... */ 8151 case BNX2X_INT_MODE_MSI: 8152 bnx2x_enable_msi(bp); 8153 8154 /* falling through... */ 8155 case BNX2X_INT_MODE_INTX: 8156 bp->num_ethernet_queues = 1; 8157 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 8158 BNX2X_DEV_INFO("set number of queues to 1\n"); 8159 break; 8160 default: 8161 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n"); 8162 return -EINVAL; 8163 } 8164 return 0; 8165 } 8166 8167 /* must be called prior to any HW initializations */ 8168 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp) 8169 { 8170 if (IS_SRIOV(bp)) 8171 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS; 8172 return L2_ILT_LINES(bp); 8173 } 8174 8175 void bnx2x_ilt_set_info(struct bnx2x *bp) 8176 { 8177 struct ilt_client_info *ilt_client; 8178 struct bnx2x_ilt *ilt = BP_ILT(bp); 8179 u16 line = 0; 8180 8181 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp)); 8182 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line); 8183 8184 /* CDU */ 8185 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 8186 ilt_client->client_num = ILT_CLIENT_CDU; 8187 ilt_client->page_size = CDU_ILT_PAGE_SZ; 8188 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 8189 ilt_client->start = line; 8190 line += bnx2x_cid_ilt_lines(bp); 8191 8192 if (CNIC_SUPPORT(bp)) 8193 line += CNIC_ILT_LINES; 8194 ilt_client->end = line - 1; 8195 8196 DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8197 ilt_client->start, 8198 ilt_client->end, 8199 ilt_client->page_size, 8200 ilt_client->flags, 8201 ilog2(ilt_client->page_size >> 12)); 8202 8203 /* QM */ 8204 if (QM_INIT(bp->qm_cid_count)) { 8205 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 8206 ilt_client->client_num = ILT_CLIENT_QM; 8207 ilt_client->page_size = QM_ILT_PAGE_SZ; 8208 ilt_client->flags = 0; 8209 ilt_client->start = line; 8210 8211 /* 4 bytes for each cid */ 8212 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 8213 QM_ILT_PAGE_SZ); 8214 8215 ilt_client->end = line - 1; 8216 8217 DP(NETIF_MSG_IFUP, 8218 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8219 ilt_client->start, 8220 ilt_client->end, 8221 ilt_client->page_size, 8222 ilt_client->flags, 8223 ilog2(ilt_client->page_size >> 12)); 8224 } 8225 8226 if (CNIC_SUPPORT(bp)) { 8227 /* SRC */ 8228 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 8229 ilt_client->client_num = ILT_CLIENT_SRC; 8230 ilt_client->page_size = SRC_ILT_PAGE_SZ; 8231 ilt_client->flags = 0; 8232 ilt_client->start = line; 8233 line += SRC_ILT_LINES; 8234 ilt_client->end = line - 1; 8235 8236 DP(NETIF_MSG_IFUP, 8237 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8238 ilt_client->start, 8239 ilt_client->end, 8240 ilt_client->page_size, 8241 ilt_client->flags, 8242 ilog2(ilt_client->page_size >> 12)); 8243 8244 /* TM */ 8245 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 8246 ilt_client->client_num = ILT_CLIENT_TM; 8247 ilt_client->page_size = TM_ILT_PAGE_SZ; 8248 ilt_client->flags = 0; 8249 ilt_client->start = line; 8250 line += TM_ILT_LINES; 8251 ilt_client->end = line - 1; 8252 8253 DP(NETIF_MSG_IFUP, 8254 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8255 ilt_client->start, 8256 ilt_client->end, 8257 ilt_client->page_size, 8258 ilt_client->flags, 8259 ilog2(ilt_client->page_size >> 12)); 8260 } 8261 8262 BUG_ON(line > ILT_MAX_LINES); 8263 } 8264 8265 /** 8266 * bnx2x_pf_q_prep_init - prepare INIT transition parameters 8267 * 8268 * @bp: driver handle 8269 * @fp: pointer to fastpath 8270 * @init_params: pointer to parameters structure 8271 * 8272 * parameters configured: 8273 * - HC configuration 8274 * - Queue's CDU context 8275 */ 8276 static void bnx2x_pf_q_prep_init(struct bnx2x *bp, 8277 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params) 8278 { 8279 u8 cos; 8280 int cxt_index, cxt_offset; 8281 8282 /* FCoE Queue uses Default SB, thus has no HC capabilities */ 8283 if (!IS_FCOE_FP(fp)) { 8284 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags); 8285 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags); 8286 8287 /* If HC is supported, enable host coalescing in the transition 8288 * to INIT state. 8289 */ 8290 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags); 8291 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags); 8292 8293 /* HC rate */ 8294 init_params->rx.hc_rate = bp->rx_ticks ? 8295 (1000000 / bp->rx_ticks) : 0; 8296 init_params->tx.hc_rate = bp->tx_ticks ? 8297 (1000000 / bp->tx_ticks) : 0; 8298 8299 /* FW SB ID */ 8300 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = 8301 fp->fw_sb_id; 8302 8303 /* 8304 * CQ index among the SB indices: FCoE clients uses the default 8305 * SB, therefore it's different. 8306 */ 8307 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 8308 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 8309 } 8310 8311 /* set maximum number of COSs supported by this queue */ 8312 init_params->max_cos = fp->max_cos; 8313 8314 DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n", 8315 fp->index, init_params->max_cos); 8316 8317 /* set the context pointers queue object */ 8318 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 8319 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS; 8320 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index * 8321 ILT_PAGE_CIDS); 8322 init_params->cxts[cos] = 8323 &bp->context[cxt_index].vcxt[cxt_offset].eth; 8324 } 8325 } 8326 8327 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp, 8328 struct bnx2x_queue_state_params *q_params, 8329 struct bnx2x_queue_setup_tx_only_params *tx_only_params, 8330 int tx_index, bool leading) 8331 { 8332 memset(tx_only_params, 0, sizeof(*tx_only_params)); 8333 8334 /* Set the command */ 8335 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; 8336 8337 /* Set tx-only QUEUE flags: don't zero statistics */ 8338 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false); 8339 8340 /* choose the index of the cid to send the slow path on */ 8341 tx_only_params->cid_index = tx_index; 8342 8343 /* Set general TX_ONLY_SETUP parameters */ 8344 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index); 8345 8346 /* Set Tx TX_ONLY_SETUP parameters */ 8347 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index); 8348 8349 DP(NETIF_MSG_IFUP, 8350 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n", 8351 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX], 8352 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id, 8353 tx_only_params->gen_params.spcl_id, tx_only_params->flags); 8354 8355 /* send the ramrod */ 8356 return bnx2x_queue_state_change(bp, q_params); 8357 } 8358 8359 /** 8360 * bnx2x_setup_queue - setup queue 8361 * 8362 * @bp: driver handle 8363 * @fp: pointer to fastpath 8364 * @leading: is leading 8365 * 8366 * This function performs 2 steps in a Queue state machine 8367 * actually: 1) RESET->INIT 2) INIT->SETUP 8368 */ 8369 8370 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp, 8371 bool leading) 8372 { 8373 struct bnx2x_queue_state_params q_params = {NULL}; 8374 struct bnx2x_queue_setup_params *setup_params = 8375 &q_params.params.setup; 8376 struct bnx2x_queue_setup_tx_only_params *tx_only_params = 8377 &q_params.params.tx_only; 8378 int rc; 8379 u8 tx_index; 8380 8381 DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index); 8382 8383 /* reset IGU state skip FCoE L2 queue */ 8384 if (!IS_FCOE_FP(fp)) 8385 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, 8386 IGU_INT_ENABLE, 0); 8387 8388 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 8389 /* We want to wait for completion in this context */ 8390 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 8391 8392 /* Prepare the INIT parameters */ 8393 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init); 8394 8395 /* Set the command */ 8396 q_params.cmd = BNX2X_Q_CMD_INIT; 8397 8398 /* Change the state to INIT */ 8399 rc = bnx2x_queue_state_change(bp, &q_params); 8400 if (rc) { 8401 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index); 8402 return rc; 8403 } 8404 8405 DP(NETIF_MSG_IFUP, "init complete\n"); 8406 8407 /* Now move the Queue to the SETUP state... */ 8408 memset(setup_params, 0, sizeof(*setup_params)); 8409 8410 /* Set QUEUE flags */ 8411 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading); 8412 8413 /* Set general SETUP parameters */ 8414 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params, 8415 FIRST_TX_COS_INDEX); 8416 8417 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params, 8418 &setup_params->rxq_params); 8419 8420 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params, 8421 FIRST_TX_COS_INDEX); 8422 8423 /* Set the command */ 8424 q_params.cmd = BNX2X_Q_CMD_SETUP; 8425 8426 if (IS_FCOE_FP(fp)) 8427 bp->fcoe_init = true; 8428 8429 /* Change the state to SETUP */ 8430 rc = bnx2x_queue_state_change(bp, &q_params); 8431 if (rc) { 8432 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index); 8433 return rc; 8434 } 8435 8436 /* loop through the relevant tx-only indices */ 8437 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 8438 tx_index < fp->max_cos; 8439 tx_index++) { 8440 8441 /* prepare and send tx-only ramrod*/ 8442 rc = bnx2x_setup_tx_only(bp, fp, &q_params, 8443 tx_only_params, tx_index, leading); 8444 if (rc) { 8445 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n", 8446 fp->index, tx_index); 8447 return rc; 8448 } 8449 } 8450 8451 return rc; 8452 } 8453 8454 static int bnx2x_stop_queue(struct bnx2x *bp, int index) 8455 { 8456 struct bnx2x_fastpath *fp = &bp->fp[index]; 8457 struct bnx2x_fp_txdata *txdata; 8458 struct bnx2x_queue_state_params q_params = {NULL}; 8459 int rc, tx_index; 8460 8461 DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid); 8462 8463 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 8464 /* We want to wait for completion in this context */ 8465 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 8466 8467 /* close tx-only connections */ 8468 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 8469 tx_index < fp->max_cos; 8470 tx_index++){ 8471 8472 /* ascertain this is a normal queue*/ 8473 txdata = fp->txdata_ptr[tx_index]; 8474 8475 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n", 8476 txdata->txq_index); 8477 8478 /* send halt terminate on tx-only connection */ 8479 q_params.cmd = BNX2X_Q_CMD_TERMINATE; 8480 memset(&q_params.params.terminate, 0, 8481 sizeof(q_params.params.terminate)); 8482 q_params.params.terminate.cid_index = tx_index; 8483 8484 rc = bnx2x_queue_state_change(bp, &q_params); 8485 if (rc) 8486 return rc; 8487 8488 /* send halt terminate on tx-only connection */ 8489 q_params.cmd = BNX2X_Q_CMD_CFC_DEL; 8490 memset(&q_params.params.cfc_del, 0, 8491 sizeof(q_params.params.cfc_del)); 8492 q_params.params.cfc_del.cid_index = tx_index; 8493 rc = bnx2x_queue_state_change(bp, &q_params); 8494 if (rc) 8495 return rc; 8496 } 8497 /* Stop the primary connection: */ 8498 /* ...halt the connection */ 8499 q_params.cmd = BNX2X_Q_CMD_HALT; 8500 rc = bnx2x_queue_state_change(bp, &q_params); 8501 if (rc) 8502 return rc; 8503 8504 /* ...terminate the connection */ 8505 q_params.cmd = BNX2X_Q_CMD_TERMINATE; 8506 memset(&q_params.params.terminate, 0, 8507 sizeof(q_params.params.terminate)); 8508 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 8509 rc = bnx2x_queue_state_change(bp, &q_params); 8510 if (rc) 8511 return rc; 8512 /* ...delete cfc entry */ 8513 q_params.cmd = BNX2X_Q_CMD_CFC_DEL; 8514 memset(&q_params.params.cfc_del, 0, 8515 sizeof(q_params.params.cfc_del)); 8516 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 8517 return bnx2x_queue_state_change(bp, &q_params); 8518 } 8519 8520 static void bnx2x_reset_func(struct bnx2x *bp) 8521 { 8522 int port = BP_PORT(bp); 8523 int func = BP_FUNC(bp); 8524 int i; 8525 8526 /* Disable the function in the FW */ 8527 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 8528 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 8529 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 8530 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 8531 8532 /* FP SBs */ 8533 for_each_eth_queue(bp, i) { 8534 struct bnx2x_fastpath *fp = &bp->fp[i]; 8535 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8536 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 8537 SB_DISABLED); 8538 } 8539 8540 if (CNIC_LOADED(bp)) 8541 /* CNIC SB */ 8542 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8543 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET 8544 (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED); 8545 8546 /* SP SB */ 8547 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8548 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 8549 SB_DISABLED); 8550 8551 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) 8552 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 8553 0); 8554 8555 /* Configure IGU */ 8556 if (bp->common.int_block == INT_BLOCK_HC) { 8557 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 8558 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 8559 } else { 8560 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); 8561 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); 8562 } 8563 8564 if (CNIC_LOADED(bp)) { 8565 /* Disable Timer scan */ 8566 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 8567 /* 8568 * Wait for at least 10ms and up to 2 second for the timers 8569 * scan to complete 8570 */ 8571 for (i = 0; i < 200; i++) { 8572 usleep_range(10000, 20000); 8573 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4)) 8574 break; 8575 } 8576 } 8577 /* Clear ILT */ 8578 bnx2x_clear_func_ilt(bp, func); 8579 8580 /* Timers workaround bug for E2: if this is vnic-3, 8581 * we need to set the entire ilt range for this timers. 8582 */ 8583 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) { 8584 struct ilt_client_info ilt_cli; 8585 /* use dummy TM client */ 8586 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 8587 ilt_cli.start = 0; 8588 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 8589 ilt_cli.client_num = ILT_CLIENT_TM; 8590 8591 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR); 8592 } 8593 8594 /* this assumes that reset_port() called before reset_func()*/ 8595 if (!CHIP_IS_E1x(bp)) 8596 bnx2x_pf_disable(bp); 8597 8598 bp->dmae_ready = 0; 8599 } 8600 8601 static void bnx2x_reset_port(struct bnx2x *bp) 8602 { 8603 int port = BP_PORT(bp); 8604 u32 val; 8605 8606 /* Reset physical Link */ 8607 bnx2x__link_reset(bp); 8608 8609 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 8610 8611 /* Do not rcv packets to BRB */ 8612 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 8613 /* Do not direct rcv packets that are not for MCP to the BRB */ 8614 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 8615 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 8616 8617 /* Configure AEU */ 8618 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 8619 8620 msleep(100); 8621 /* Check for BRB port occupancy */ 8622 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 8623 if (val) 8624 DP(NETIF_MSG_IFDOWN, 8625 "BRB1 is not empty %d blocks are occupied\n", val); 8626 8627 /* TODO: Close Doorbell port? */ 8628 } 8629 8630 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code) 8631 { 8632 struct bnx2x_func_state_params func_params = {NULL}; 8633 8634 /* Prepare parameters for function state transitions */ 8635 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 8636 8637 func_params.f_obj = &bp->func_obj; 8638 func_params.cmd = BNX2X_F_CMD_HW_RESET; 8639 8640 func_params.params.hw_init.load_phase = load_code; 8641 8642 return bnx2x_func_state_change(bp, &func_params); 8643 } 8644 8645 static int bnx2x_func_stop(struct bnx2x *bp) 8646 { 8647 struct bnx2x_func_state_params func_params = {NULL}; 8648 int rc; 8649 8650 /* Prepare parameters for function state transitions */ 8651 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 8652 func_params.f_obj = &bp->func_obj; 8653 func_params.cmd = BNX2X_F_CMD_STOP; 8654 8655 /* 8656 * Try to stop the function the 'good way'. If fails (in case 8657 * of a parity error during bnx2x_chip_cleanup()) and we are 8658 * not in a debug mode, perform a state transaction in order to 8659 * enable further HW_RESET transaction. 8660 */ 8661 rc = bnx2x_func_state_change(bp, &func_params); 8662 if (rc) { 8663 #ifdef BNX2X_STOP_ON_ERROR 8664 return rc; 8665 #else 8666 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n"); 8667 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 8668 return bnx2x_func_state_change(bp, &func_params); 8669 #endif 8670 } 8671 8672 return 0; 8673 } 8674 8675 /** 8676 * bnx2x_send_unload_req - request unload mode from the MCP. 8677 * 8678 * @bp: driver handle 8679 * @unload_mode: requested function's unload mode 8680 * 8681 * Return unload mode returned by the MCP: COMMON, PORT or FUNC. 8682 */ 8683 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode) 8684 { 8685 u32 reset_code = 0; 8686 int port = BP_PORT(bp); 8687 8688 /* Select the UNLOAD request mode */ 8689 if (unload_mode == UNLOAD_NORMAL) 8690 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 8691 8692 else if (bp->flags & NO_WOL_FLAG) 8693 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP; 8694 8695 else if (bp->wol) { 8696 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; 8697 u8 *mac_addr = bp->dev->dev_addr; 8698 struct pci_dev *pdev = bp->pdev; 8699 u32 val; 8700 u16 pmc; 8701 8702 /* The mac address is written to entries 1-4 to 8703 * preserve entry 0 which is used by the PMF 8704 */ 8705 u8 entry = (BP_VN(bp) + 1)*8; 8706 8707 val = (mac_addr[0] << 8) | mac_addr[1]; 8708 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val); 8709 8710 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 8711 (mac_addr[4] << 8) | mac_addr[5]; 8712 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val); 8713 8714 /* Enable the PME and clear the status */ 8715 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc); 8716 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS; 8717 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc); 8718 8719 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN; 8720 8721 } else 8722 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 8723 8724 /* Send the request to the MCP */ 8725 if (!BP_NOMCP(bp)) 8726 reset_code = bnx2x_fw_command(bp, reset_code, 0); 8727 else { 8728 int path = BP_PATH(bp); 8729 8730 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n", 8731 path, load_count[path][0], load_count[path][1], 8732 load_count[path][2]); 8733 load_count[path][0]--; 8734 load_count[path][1 + port]--; 8735 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n", 8736 path, load_count[path][0], load_count[path][1], 8737 load_count[path][2]); 8738 if (load_count[path][0] == 0) 8739 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON; 8740 else if (load_count[path][1 + port] == 0) 8741 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT; 8742 else 8743 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION; 8744 } 8745 8746 return reset_code; 8747 } 8748 8749 /** 8750 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP. 8751 * 8752 * @bp: driver handle 8753 * @keep_link: true iff link should be kept up 8754 */ 8755 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link) 8756 { 8757 u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 8758 8759 /* Report UNLOAD_DONE to MCP */ 8760 if (!BP_NOMCP(bp)) 8761 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 8762 } 8763 8764 static int bnx2x_func_wait_started(struct bnx2x *bp) 8765 { 8766 int tout = 50; 8767 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; 8768 8769 if (!bp->port.pmf) 8770 return 0; 8771 8772 /* 8773 * (assumption: No Attention from MCP at this stage) 8774 * PMF probably in the middle of TX disable/enable transaction 8775 * 1. Sync IRS for default SB 8776 * 2. Sync SP queue - this guarantees us that attention handling started 8777 * 3. Wait, that TX disable/enable transaction completes 8778 * 8779 * 1+2 guarantee that if DCBx attention was scheduled it already changed 8780 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 8781 * received completion for the transaction the state is TX_STOPPED. 8782 * State will return to STARTED after completion of TX_STOPPED-->STARTED 8783 * transaction. 8784 */ 8785 8786 /* make sure default SB ISR is done */ 8787 if (msix) 8788 synchronize_irq(bp->msix_table[0].vector); 8789 else 8790 synchronize_irq(bp->pdev->irq); 8791 8792 flush_workqueue(bnx2x_wq); 8793 8794 while (bnx2x_func_get_state(bp, &bp->func_obj) != 8795 BNX2X_F_STATE_STARTED && tout--) 8796 msleep(20); 8797 8798 if (bnx2x_func_get_state(bp, &bp->func_obj) != 8799 BNX2X_F_STATE_STARTED) { 8800 #ifdef BNX2X_STOP_ON_ERROR 8801 BNX2X_ERR("Wrong function state\n"); 8802 return -EBUSY; 8803 #else 8804 /* 8805 * Failed to complete the transaction in a "good way" 8806 * Force both transactions with CLR bit 8807 */ 8808 struct bnx2x_func_state_params func_params = {NULL}; 8809 8810 DP(NETIF_MSG_IFDOWN, 8811 "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n"); 8812 8813 func_params.f_obj = &bp->func_obj; 8814 __set_bit(RAMROD_DRV_CLR_ONLY, 8815 &func_params.ramrod_flags); 8816 8817 /* STARTED-->TX_ST0PPED */ 8818 func_params.cmd = BNX2X_F_CMD_TX_STOP; 8819 bnx2x_func_state_change(bp, &func_params); 8820 8821 /* TX_ST0PPED-->STARTED */ 8822 func_params.cmd = BNX2X_F_CMD_TX_START; 8823 return bnx2x_func_state_change(bp, &func_params); 8824 #endif 8825 } 8826 8827 return 0; 8828 } 8829 8830 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link) 8831 { 8832 int port = BP_PORT(bp); 8833 int i, rc = 0; 8834 u8 cos; 8835 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 8836 u32 reset_code; 8837 8838 /* Wait until tx fastpath tasks complete */ 8839 for_each_tx_queue(bp, i) { 8840 struct bnx2x_fastpath *fp = &bp->fp[i]; 8841 8842 for_each_cos_in_tx_queue(fp, cos) 8843 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); 8844 #ifdef BNX2X_STOP_ON_ERROR 8845 if (rc) 8846 return; 8847 #endif 8848 } 8849 8850 /* Give HW time to discard old tx messages */ 8851 usleep_range(1000, 2000); 8852 8853 /* Clean all ETH MACs */ 8854 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC, 8855 false); 8856 if (rc < 0) 8857 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc); 8858 8859 /* Clean up UC list */ 8860 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC, 8861 true); 8862 if (rc < 0) 8863 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n", 8864 rc); 8865 8866 /* Disable LLH */ 8867 if (!CHIP_IS_E1(bp)) 8868 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); 8869 8870 /* Set "drop all" (stop Rx). 8871 * We need to take a netif_addr_lock() here in order to prevent 8872 * a race between the completion code and this code. 8873 */ 8874 netif_addr_lock_bh(bp->dev); 8875 /* Schedule the rx_mode command */ 8876 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) 8877 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); 8878 else 8879 bnx2x_set_storm_rx_mode(bp); 8880 8881 /* Cleanup multicast configuration */ 8882 rparam.mcast_obj = &bp->mcast_obj; 8883 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 8884 if (rc < 0) 8885 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc); 8886 8887 netif_addr_unlock_bh(bp->dev); 8888 8889 bnx2x_iov_chip_cleanup(bp); 8890 8891 /* 8892 * Send the UNLOAD_REQUEST to the MCP. This will return if 8893 * this function should perform FUNC, PORT or COMMON HW 8894 * reset. 8895 */ 8896 reset_code = bnx2x_send_unload_req(bp, unload_mode); 8897 8898 /* 8899 * (assumption: No Attention from MCP at this stage) 8900 * PMF probably in the middle of TX disable/enable transaction 8901 */ 8902 rc = bnx2x_func_wait_started(bp); 8903 if (rc) { 8904 BNX2X_ERR("bnx2x_func_wait_started failed\n"); 8905 #ifdef BNX2X_STOP_ON_ERROR 8906 return; 8907 #endif 8908 } 8909 8910 /* Close multi and leading connections 8911 * Completions for ramrods are collected in a synchronous way 8912 */ 8913 for_each_eth_queue(bp, i) 8914 if (bnx2x_stop_queue(bp, i)) 8915 #ifdef BNX2X_STOP_ON_ERROR 8916 return; 8917 #else 8918 goto unload_error; 8919 #endif 8920 8921 if (CNIC_LOADED(bp)) { 8922 for_each_cnic_queue(bp, i) 8923 if (bnx2x_stop_queue(bp, i)) 8924 #ifdef BNX2X_STOP_ON_ERROR 8925 return; 8926 #else 8927 goto unload_error; 8928 #endif 8929 } 8930 8931 /* If SP settings didn't get completed so far - something 8932 * very wrong has happen. 8933 */ 8934 if (!bnx2x_wait_sp_comp(bp, ~0x0UL)) 8935 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n"); 8936 8937 #ifndef BNX2X_STOP_ON_ERROR 8938 unload_error: 8939 #endif 8940 rc = bnx2x_func_stop(bp); 8941 if (rc) { 8942 BNX2X_ERR("Function stop failed!\n"); 8943 #ifdef BNX2X_STOP_ON_ERROR 8944 return; 8945 #endif 8946 } 8947 8948 /* Disable HW interrupts, NAPI */ 8949 bnx2x_netif_stop(bp, 1); 8950 /* Delete all NAPI objects */ 8951 bnx2x_del_all_napi(bp); 8952 if (CNIC_LOADED(bp)) 8953 bnx2x_del_all_napi_cnic(bp); 8954 8955 /* Release IRQs */ 8956 bnx2x_free_irq(bp); 8957 8958 /* Reset the chip */ 8959 rc = bnx2x_reset_hw(bp, reset_code); 8960 if (rc) 8961 BNX2X_ERR("HW_RESET failed\n"); 8962 8963 /* Report UNLOAD_DONE to MCP */ 8964 bnx2x_send_unload_done(bp, keep_link); 8965 } 8966 8967 void bnx2x_disable_close_the_gate(struct bnx2x *bp) 8968 { 8969 u32 val; 8970 8971 DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n"); 8972 8973 if (CHIP_IS_E1(bp)) { 8974 int port = BP_PORT(bp); 8975 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 8976 MISC_REG_AEU_MASK_ATTN_FUNC_0; 8977 8978 val = REG_RD(bp, addr); 8979 val &= ~(0x300); 8980 REG_WR(bp, addr, val); 8981 } else { 8982 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK); 8983 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 8984 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 8985 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val); 8986 } 8987 } 8988 8989 /* Close gates #2, #3 and #4: */ 8990 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close) 8991 { 8992 u32 val; 8993 8994 /* Gates #2 and #4a are closed/opened for "not E1" only */ 8995 if (!CHIP_IS_E1(bp)) { 8996 /* #4 */ 8997 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 8998 /* #2 */ 8999 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 9000 } 9001 9002 /* #3 */ 9003 if (CHIP_IS_E1x(bp)) { 9004 /* Prevent interrupts from HC on both ports */ 9005 val = REG_RD(bp, HC_REG_CONFIG_1); 9006 REG_WR(bp, HC_REG_CONFIG_1, 9007 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 9008 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 9009 9010 val = REG_RD(bp, HC_REG_CONFIG_0); 9011 REG_WR(bp, HC_REG_CONFIG_0, 9012 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 9013 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 9014 } else { 9015 /* Prevent incoming interrupts in IGU */ 9016 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); 9017 9018 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, 9019 (!close) ? 9020 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 9021 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 9022 } 9023 9024 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n", 9025 close ? "closing" : "opening"); 9026 mmiowb(); 9027 } 9028 9029 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */ 9030 9031 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val) 9032 { 9033 /* Do some magic... */ 9034 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); 9035 *magic_val = val & SHARED_MF_CLP_MAGIC; 9036 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 9037 } 9038 9039 /** 9040 * bnx2x_clp_reset_done - restore the value of the `magic' bit. 9041 * 9042 * @bp: driver handle 9043 * @magic_val: old value of the `magic' bit. 9044 */ 9045 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val) 9046 { 9047 /* Restore the `magic' bit value... */ 9048 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); 9049 MF_CFG_WR(bp, shared_mf_config.clp_mb, 9050 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 9051 } 9052 9053 /** 9054 * bnx2x_reset_mcp_prep - prepare for MCP reset. 9055 * 9056 * @bp: driver handle 9057 * @magic_val: old value of 'magic' bit. 9058 * 9059 * Takes care of CLP configurations. 9060 */ 9061 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val) 9062 { 9063 u32 shmem; 9064 u32 validity_offset; 9065 9066 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n"); 9067 9068 /* Set `magic' bit in order to save MF config */ 9069 if (!CHIP_IS_E1(bp)) 9070 bnx2x_clp_reset_prep(bp, magic_val); 9071 9072 /* Get shmem offset */ 9073 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); 9074 validity_offset = 9075 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]); 9076 9077 /* Clear validity map flags */ 9078 if (shmem > 0) 9079 REG_WR(bp, shmem + validity_offset, 0); 9080 } 9081 9082 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 9083 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 9084 9085 /** 9086 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT 9087 * 9088 * @bp: driver handle 9089 */ 9090 static void bnx2x_mcp_wait_one(struct bnx2x *bp) 9091 { 9092 /* special handling for emulation and FPGA, 9093 wait 10 times longer */ 9094 if (CHIP_REV_IS_SLOW(bp)) 9095 msleep(MCP_ONE_TIMEOUT*10); 9096 else 9097 msleep(MCP_ONE_TIMEOUT); 9098 } 9099 9100 /* 9101 * initializes bp->common.shmem_base and waits for validity signature to appear 9102 */ 9103 static int bnx2x_init_shmem(struct bnx2x *bp) 9104 { 9105 int cnt = 0; 9106 u32 val = 0; 9107 9108 do { 9109 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); 9110 if (bp->common.shmem_base) { 9111 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]); 9112 if (val & SHR_MEM_VALIDITY_MB) 9113 return 0; 9114 } 9115 9116 bnx2x_mcp_wait_one(bp); 9117 9118 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 9119 9120 BNX2X_ERR("BAD MCP validity signature\n"); 9121 9122 return -ENODEV; 9123 } 9124 9125 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val) 9126 { 9127 int rc = bnx2x_init_shmem(bp); 9128 9129 /* Restore the `magic' bit value */ 9130 if (!CHIP_IS_E1(bp)) 9131 bnx2x_clp_reset_done(bp, magic_val); 9132 9133 return rc; 9134 } 9135 9136 static void bnx2x_pxp_prep(struct bnx2x *bp) 9137 { 9138 if (!CHIP_IS_E1(bp)) { 9139 REG_WR(bp, PXP2_REG_RD_START_INIT, 0); 9140 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0); 9141 mmiowb(); 9142 } 9143 } 9144 9145 /* 9146 * Reset the whole chip except for: 9147 * - PCIE core 9148 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by 9149 * one reset bit) 9150 * - IGU 9151 * - MISC (including AEU) 9152 * - GRC 9153 * - RBCN, RBCP 9154 */ 9155 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global) 9156 { 9157 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 9158 u32 global_bits2, stay_reset2; 9159 9160 /* 9161 * Bits that have to be set in reset_mask2 if we want to reset 'global' 9162 * (per chip) blocks. 9163 */ 9164 global_bits2 = 9165 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 9166 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 9167 9168 /* Don't reset the following blocks. 9169 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 9170 * reset, as in 4 port device they might still be owned 9171 * by the MCP (there is only one leader per path). 9172 */ 9173 not_reset_mask1 = 9174 MISC_REGISTERS_RESET_REG_1_RST_HC | 9175 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 9176 MISC_REGISTERS_RESET_REG_1_RST_PXP; 9177 9178 not_reset_mask2 = 9179 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 9180 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 9181 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 9182 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 9183 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 9184 MISC_REGISTERS_RESET_REG_2_RST_GRC | 9185 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 9186 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 9187 MISC_REGISTERS_RESET_REG_2_RST_ATC | 9188 MISC_REGISTERS_RESET_REG_2_PGLC | 9189 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 9190 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 9191 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 9192 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 9193 MISC_REGISTERS_RESET_REG_2_UMAC0 | 9194 MISC_REGISTERS_RESET_REG_2_UMAC1; 9195 9196 /* 9197 * Keep the following blocks in reset: 9198 * - all xxMACs are handled by the bnx2x_link code. 9199 */ 9200 stay_reset2 = 9201 MISC_REGISTERS_RESET_REG_2_XMAC | 9202 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 9203 9204 /* Full reset masks according to the chip */ 9205 reset_mask1 = 0xffffffff; 9206 9207 if (CHIP_IS_E1(bp)) 9208 reset_mask2 = 0xffff; 9209 else if (CHIP_IS_E1H(bp)) 9210 reset_mask2 = 0x1ffff; 9211 else if (CHIP_IS_E2(bp)) 9212 reset_mask2 = 0xfffff; 9213 else /* CHIP_IS_E3 */ 9214 reset_mask2 = 0x3ffffff; 9215 9216 /* Don't reset global blocks unless we need to */ 9217 if (!global) 9218 reset_mask2 &= ~global_bits2; 9219 9220 /* 9221 * In case of attention in the QM, we need to reset PXP 9222 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 9223 * because otherwise QM reset would release 'close the gates' shortly 9224 * before resetting the PXP, then the PSWRQ would send a write 9225 * request to PGLUE. Then when PXP is reset, PGLUE would try to 9226 * read the payload data from PSWWR, but PSWWR would not 9227 * respond. The write queue in PGLUE would stuck, dmae commands 9228 * would not return. Therefore it's important to reset the second 9229 * reset register (containing the 9230 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 9231 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 9232 * bit). 9233 */ 9234 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 9235 reset_mask2 & (~not_reset_mask2)); 9236 9237 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 9238 reset_mask1 & (~not_reset_mask1)); 9239 9240 barrier(); 9241 mmiowb(); 9242 9243 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 9244 reset_mask2 & (~stay_reset2)); 9245 9246 barrier(); 9247 mmiowb(); 9248 9249 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 9250 mmiowb(); 9251 } 9252 9253 /** 9254 * bnx2x_er_poll_igu_vq - poll for pending writes bit. 9255 * It should get cleared in no more than 1s. 9256 * 9257 * @bp: driver handle 9258 * 9259 * It should get cleared in no more than 1s. Returns 0 if 9260 * pending writes bit gets cleared. 9261 */ 9262 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp) 9263 { 9264 u32 cnt = 1000; 9265 u32 pend_bits = 0; 9266 9267 do { 9268 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS); 9269 9270 if (pend_bits == 0) 9271 break; 9272 9273 usleep_range(1000, 2000); 9274 } while (cnt-- > 0); 9275 9276 if (cnt <= 0) { 9277 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n", 9278 pend_bits); 9279 return -EBUSY; 9280 } 9281 9282 return 0; 9283 } 9284 9285 static int bnx2x_process_kill(struct bnx2x *bp, bool global) 9286 { 9287 int cnt = 1000; 9288 u32 val = 0; 9289 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 9290 u32 tags_63_32 = 0; 9291 9292 /* Empty the Tetris buffer, wait for 1s */ 9293 do { 9294 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT); 9295 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT); 9296 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0); 9297 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1); 9298 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2); 9299 if (CHIP_IS_E3(bp)) 9300 tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32); 9301 9302 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 9303 ((port_is_idle_0 & 0x1) == 0x1) && 9304 ((port_is_idle_1 & 0x1) == 0x1) && 9305 (pgl_exp_rom2 == 0xffffffff) && 9306 (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff))) 9307 break; 9308 usleep_range(1000, 2000); 9309 } while (cnt-- > 0); 9310 9311 if (cnt <= 0) { 9312 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n"); 9313 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 9314 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, 9315 pgl_exp_rom2); 9316 return -EAGAIN; 9317 } 9318 9319 barrier(); 9320 9321 /* Close gates #2, #3 and #4 */ 9322 bnx2x_set_234_gates(bp, true); 9323 9324 /* Poll for IGU VQs for 57712 and newer chips */ 9325 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp)) 9326 return -EAGAIN; 9327 9328 /* TBD: Indicate that "process kill" is in progress to MCP */ 9329 9330 /* Clear "unprepared" bit */ 9331 REG_WR(bp, MISC_REG_UNPREPARED, 0); 9332 barrier(); 9333 9334 /* Make sure all is written to the chip before the reset */ 9335 mmiowb(); 9336 9337 /* Wait for 1ms to empty GLUE and PCI-E core queues, 9338 * PSWHST, GRC and PSWRD Tetris buffer. 9339 */ 9340 usleep_range(1000, 2000); 9341 9342 /* Prepare to chip reset: */ 9343 /* MCP */ 9344 if (global) 9345 bnx2x_reset_mcp_prep(bp, &val); 9346 9347 /* PXP */ 9348 bnx2x_pxp_prep(bp); 9349 barrier(); 9350 9351 /* reset the chip */ 9352 bnx2x_process_kill_chip_reset(bp, global); 9353 barrier(); 9354 9355 /* Recover after reset: */ 9356 /* MCP */ 9357 if (global && bnx2x_reset_mcp_comp(bp, val)) 9358 return -EAGAIN; 9359 9360 /* TBD: Add resetting the NO_MCP mode DB here */ 9361 9362 /* Open the gates #2, #3 and #4 */ 9363 bnx2x_set_234_gates(bp, false); 9364 9365 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a 9366 * reset state, re-enable attentions. */ 9367 9368 return 0; 9369 } 9370 9371 static int bnx2x_leader_reset(struct bnx2x *bp) 9372 { 9373 int rc = 0; 9374 bool global = bnx2x_reset_is_global(bp); 9375 u32 load_code; 9376 9377 /* if not going to reset MCP - load "fake" driver to reset HW while 9378 * driver is owner of the HW 9379 */ 9380 if (!global && !BP_NOMCP(bp)) { 9381 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, 9382 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 9383 if (!load_code) { 9384 BNX2X_ERR("MCP response failure, aborting\n"); 9385 rc = -EAGAIN; 9386 goto exit_leader_reset; 9387 } 9388 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 9389 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 9390 BNX2X_ERR("MCP unexpected resp, aborting\n"); 9391 rc = -EAGAIN; 9392 goto exit_leader_reset2; 9393 } 9394 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 9395 if (!load_code) { 9396 BNX2X_ERR("MCP response failure, aborting\n"); 9397 rc = -EAGAIN; 9398 goto exit_leader_reset2; 9399 } 9400 } 9401 9402 /* Try to recover after the failure */ 9403 if (bnx2x_process_kill(bp, global)) { 9404 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n", 9405 BP_PATH(bp)); 9406 rc = -EAGAIN; 9407 goto exit_leader_reset2; 9408 } 9409 9410 /* 9411 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver 9412 * state. 9413 */ 9414 bnx2x_set_reset_done(bp); 9415 if (global) 9416 bnx2x_clear_reset_global(bp); 9417 9418 exit_leader_reset2: 9419 /* unload "fake driver" if it was loaded */ 9420 if (!global && !BP_NOMCP(bp)) { 9421 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 9422 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); 9423 } 9424 exit_leader_reset: 9425 bp->is_leader = 0; 9426 bnx2x_release_leader_lock(bp); 9427 smp_mb(); 9428 return rc; 9429 } 9430 9431 static void bnx2x_recovery_failed(struct bnx2x *bp) 9432 { 9433 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n"); 9434 9435 /* Disconnect this device */ 9436 netif_device_detach(bp->dev); 9437 9438 /* 9439 * Block ifup for all function on this engine until "process kill" 9440 * or power cycle. 9441 */ 9442 bnx2x_set_reset_in_progress(bp); 9443 9444 /* Shut down the power */ 9445 bnx2x_set_power_state(bp, PCI_D3hot); 9446 9447 bp->recovery_state = BNX2X_RECOVERY_FAILED; 9448 9449 smp_mb(); 9450 } 9451 9452 /* 9453 * Assumption: runs under rtnl lock. This together with the fact 9454 * that it's called only from bnx2x_sp_rtnl() ensure that it 9455 * will never be called when netif_running(bp->dev) is false. 9456 */ 9457 static void bnx2x_parity_recover(struct bnx2x *bp) 9458 { 9459 bool global = false; 9460 u32 error_recovered, error_unrecovered; 9461 bool is_parity; 9462 9463 DP(NETIF_MSG_HW, "Handling parity\n"); 9464 while (1) { 9465 switch (bp->recovery_state) { 9466 case BNX2X_RECOVERY_INIT: 9467 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n"); 9468 is_parity = bnx2x_chk_parity_attn(bp, &global, false); 9469 WARN_ON(!is_parity); 9470 9471 /* Try to get a LEADER_LOCK HW lock */ 9472 if (bnx2x_trylock_leader_lock(bp)) { 9473 bnx2x_set_reset_in_progress(bp); 9474 /* 9475 * Check if there is a global attention and if 9476 * there was a global attention, set the global 9477 * reset bit. 9478 */ 9479 9480 if (global) 9481 bnx2x_set_reset_global(bp); 9482 9483 bp->is_leader = 1; 9484 } 9485 9486 /* Stop the driver */ 9487 /* If interface has been removed - break */ 9488 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false)) 9489 return; 9490 9491 bp->recovery_state = BNX2X_RECOVERY_WAIT; 9492 9493 /* Ensure "is_leader", MCP command sequence and 9494 * "recovery_state" update values are seen on other 9495 * CPUs. 9496 */ 9497 smp_mb(); 9498 break; 9499 9500 case BNX2X_RECOVERY_WAIT: 9501 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n"); 9502 if (bp->is_leader) { 9503 int other_engine = BP_PATH(bp) ? 0 : 1; 9504 bool other_load_status = 9505 bnx2x_get_load_status(bp, other_engine); 9506 bool load_status = 9507 bnx2x_get_load_status(bp, BP_PATH(bp)); 9508 global = bnx2x_reset_is_global(bp); 9509 9510 /* 9511 * In case of a parity in a global block, let 9512 * the first leader that performs a 9513 * leader_reset() reset the global blocks in 9514 * order to clear global attentions. Otherwise 9515 * the gates will remain closed for that 9516 * engine. 9517 */ 9518 if (load_status || 9519 (global && other_load_status)) { 9520 /* Wait until all other functions get 9521 * down. 9522 */ 9523 schedule_delayed_work(&bp->sp_rtnl_task, 9524 HZ/10); 9525 return; 9526 } else { 9527 /* If all other functions got down - 9528 * try to bring the chip back to 9529 * normal. In any case it's an exit 9530 * point for a leader. 9531 */ 9532 if (bnx2x_leader_reset(bp)) { 9533 bnx2x_recovery_failed(bp); 9534 return; 9535 } 9536 9537 /* If we are here, means that the 9538 * leader has succeeded and doesn't 9539 * want to be a leader any more. Try 9540 * to continue as a none-leader. 9541 */ 9542 break; 9543 } 9544 } else { /* non-leader */ 9545 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) { 9546 /* Try to get a LEADER_LOCK HW lock as 9547 * long as a former leader may have 9548 * been unloaded by the user or 9549 * released a leadership by another 9550 * reason. 9551 */ 9552 if (bnx2x_trylock_leader_lock(bp)) { 9553 /* I'm a leader now! Restart a 9554 * switch case. 9555 */ 9556 bp->is_leader = 1; 9557 break; 9558 } 9559 9560 schedule_delayed_work(&bp->sp_rtnl_task, 9561 HZ/10); 9562 return; 9563 9564 } else { 9565 /* 9566 * If there was a global attention, wait 9567 * for it to be cleared. 9568 */ 9569 if (bnx2x_reset_is_global(bp)) { 9570 schedule_delayed_work( 9571 &bp->sp_rtnl_task, 9572 HZ/10); 9573 return; 9574 } 9575 9576 error_recovered = 9577 bp->eth_stats.recoverable_error; 9578 error_unrecovered = 9579 bp->eth_stats.unrecoverable_error; 9580 bp->recovery_state = 9581 BNX2X_RECOVERY_NIC_LOADING; 9582 if (bnx2x_nic_load(bp, LOAD_NORMAL)) { 9583 error_unrecovered++; 9584 netdev_err(bp->dev, 9585 "Recovery failed. Power cycle needed\n"); 9586 /* Disconnect this device */ 9587 netif_device_detach(bp->dev); 9588 /* Shut down the power */ 9589 bnx2x_set_power_state( 9590 bp, PCI_D3hot); 9591 smp_mb(); 9592 } else { 9593 bp->recovery_state = 9594 BNX2X_RECOVERY_DONE; 9595 error_recovered++; 9596 smp_mb(); 9597 } 9598 bp->eth_stats.recoverable_error = 9599 error_recovered; 9600 bp->eth_stats.unrecoverable_error = 9601 error_unrecovered; 9602 9603 return; 9604 } 9605 } 9606 default: 9607 return; 9608 } 9609 } 9610 } 9611 9612 static int bnx2x_close(struct net_device *dev); 9613 9614 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is 9615 * scheduled on a general queue in order to prevent a dead lock. 9616 */ 9617 static void bnx2x_sp_rtnl_task(struct work_struct *work) 9618 { 9619 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work); 9620 9621 rtnl_lock(); 9622 9623 if (!netif_running(bp->dev)) { 9624 rtnl_unlock(); 9625 return; 9626 } 9627 9628 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) { 9629 #ifdef BNX2X_STOP_ON_ERROR 9630 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" 9631 "you will need to reboot when done\n"); 9632 goto sp_rtnl_not_reset; 9633 #endif 9634 /* 9635 * Clear all pending SP commands as we are going to reset the 9636 * function anyway. 9637 */ 9638 bp->sp_rtnl_state = 0; 9639 smp_mb(); 9640 9641 bnx2x_parity_recover(bp); 9642 9643 rtnl_unlock(); 9644 return; 9645 } 9646 9647 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) { 9648 #ifdef BNX2X_STOP_ON_ERROR 9649 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" 9650 "you will need to reboot when done\n"); 9651 goto sp_rtnl_not_reset; 9652 #endif 9653 9654 /* 9655 * Clear all pending SP commands as we are going to reset the 9656 * function anyway. 9657 */ 9658 bp->sp_rtnl_state = 0; 9659 smp_mb(); 9660 9661 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 9662 bnx2x_nic_load(bp, LOAD_NORMAL); 9663 9664 rtnl_unlock(); 9665 return; 9666 } 9667 #ifdef BNX2X_STOP_ON_ERROR 9668 sp_rtnl_not_reset: 9669 #endif 9670 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state)) 9671 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos); 9672 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state)) 9673 bnx2x_after_function_update(bp); 9674 /* 9675 * in case of fan failure we need to reset id if the "stop on error" 9676 * debug flag is set, since we trying to prevent permanent overheating 9677 * damage 9678 */ 9679 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) { 9680 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n"); 9681 netif_device_detach(bp->dev); 9682 bnx2x_close(bp->dev); 9683 rtnl_unlock(); 9684 return; 9685 } 9686 9687 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) { 9688 DP(BNX2X_MSG_SP, 9689 "sending set mcast vf pf channel message from rtnl sp-task\n"); 9690 bnx2x_vfpf_set_mcast(bp->dev); 9691 } 9692 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, 9693 &bp->sp_rtnl_state)){ 9694 if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) { 9695 bnx2x_tx_disable(bp); 9696 BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n"); 9697 } 9698 } 9699 9700 if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) { 9701 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n"); 9702 bnx2x_set_rx_mode_inner(bp); 9703 } 9704 9705 if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN, 9706 &bp->sp_rtnl_state)) 9707 bnx2x_pf_set_vfs_vlan(bp); 9708 9709 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) 9710 bnx2x_dcbx_stop_hw_tx(bp); 9711 9712 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_RESUME, &bp->sp_rtnl_state)) 9713 bnx2x_dcbx_resume_hw_tx(bp); 9714 9715 /* work which needs rtnl lock not-taken (as it takes the lock itself and 9716 * can be called from other contexts as well) 9717 */ 9718 rtnl_unlock(); 9719 9720 /* enable SR-IOV if applicable */ 9721 if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV, 9722 &bp->sp_rtnl_state)) { 9723 bnx2x_disable_sriov(bp); 9724 bnx2x_enable_sriov(bp); 9725 } 9726 } 9727 9728 static void bnx2x_period_task(struct work_struct *work) 9729 { 9730 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work); 9731 9732 if (!netif_running(bp->dev)) 9733 goto period_task_exit; 9734 9735 if (CHIP_REV_IS_SLOW(bp)) { 9736 BNX2X_ERR("period task called on emulation, ignoring\n"); 9737 goto period_task_exit; 9738 } 9739 9740 bnx2x_acquire_phy_lock(bp); 9741 /* 9742 * The barrier is needed to ensure the ordering between the writing to 9743 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and 9744 * the reading here. 9745 */ 9746 smp_mb(); 9747 if (bp->port.pmf) { 9748 bnx2x_period_func(&bp->link_params, &bp->link_vars); 9749 9750 /* Re-queue task in 1 sec */ 9751 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ); 9752 } 9753 9754 bnx2x_release_phy_lock(bp); 9755 period_task_exit: 9756 return; 9757 } 9758 9759 /* 9760 * Init service functions 9761 */ 9762 9763 u32 bnx2x_get_pretend_reg(struct bnx2x *bp) 9764 { 9765 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0; 9766 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base; 9767 return base + (BP_ABS_FUNC(bp)) * stride; 9768 } 9769 9770 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp, 9771 struct bnx2x_mac_vals *vals) 9772 { 9773 u32 val, base_addr, offset, mask, reset_reg; 9774 bool mac_stopped = false; 9775 u8 port = BP_PORT(bp); 9776 9777 /* reset addresses as they also mark which values were changed */ 9778 vals->bmac_addr = 0; 9779 vals->umac_addr = 0; 9780 vals->xmac_addr = 0; 9781 vals->emac_addr = 0; 9782 9783 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2); 9784 9785 if (!CHIP_IS_E3(bp)) { 9786 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 9787 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 9788 if ((mask & reset_reg) && val) { 9789 u32 wb_data[2]; 9790 BNX2X_DEV_INFO("Disable bmac Rx\n"); 9791 base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM 9792 : NIG_REG_INGRESS_BMAC0_MEM; 9793 offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL 9794 : BIGMAC_REGISTER_BMAC_CONTROL; 9795 9796 /* 9797 * use rd/wr since we cannot use dmae. This is safe 9798 * since MCP won't access the bus due to the request 9799 * to unload, and no function on the path can be 9800 * loaded at this time. 9801 */ 9802 wb_data[0] = REG_RD(bp, base_addr + offset); 9803 wb_data[1] = REG_RD(bp, base_addr + offset + 0x4); 9804 vals->bmac_addr = base_addr + offset; 9805 vals->bmac_val[0] = wb_data[0]; 9806 vals->bmac_val[1] = wb_data[1]; 9807 wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE; 9808 REG_WR(bp, vals->bmac_addr, wb_data[0]); 9809 REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]); 9810 } 9811 BNX2X_DEV_INFO("Disable emac Rx\n"); 9812 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4; 9813 vals->emac_val = REG_RD(bp, vals->emac_addr); 9814 REG_WR(bp, vals->emac_addr, 0); 9815 mac_stopped = true; 9816 } else { 9817 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 9818 BNX2X_DEV_INFO("Disable xmac Rx\n"); 9819 base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 9820 val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI); 9821 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, 9822 val & ~(1 << 1)); 9823 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, 9824 val | (1 << 1)); 9825 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 9826 vals->xmac_val = REG_RD(bp, vals->xmac_addr); 9827 REG_WR(bp, vals->xmac_addr, 0); 9828 mac_stopped = true; 9829 } 9830 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 9831 if (mask & reset_reg) { 9832 BNX2X_DEV_INFO("Disable umac Rx\n"); 9833 base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 9834 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; 9835 vals->umac_val = REG_RD(bp, vals->umac_addr); 9836 REG_WR(bp, vals->umac_addr, 0); 9837 mac_stopped = true; 9838 } 9839 } 9840 9841 if (mac_stopped) 9842 msleep(20); 9843 } 9844 9845 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 9846 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff) 9847 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 9848 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 9849 9850 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc) 9851 { 9852 u16 rcq, bd; 9853 u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port)); 9854 9855 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc; 9856 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc; 9857 9858 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd); 9859 REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg); 9860 9861 BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", 9862 port, bd, rcq); 9863 } 9864 9865 static int bnx2x_prev_mcp_done(struct bnx2x *bp) 9866 { 9867 u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 9868 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 9869 if (!rc) { 9870 BNX2X_ERR("MCP response failure, aborting\n"); 9871 return -EBUSY; 9872 } 9873 9874 return 0; 9875 } 9876 9877 static struct bnx2x_prev_path_list * 9878 bnx2x_prev_path_get_entry(struct bnx2x *bp) 9879 { 9880 struct bnx2x_prev_path_list *tmp_list; 9881 9882 list_for_each_entry(tmp_list, &bnx2x_prev_list, list) 9883 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot && 9884 bp->pdev->bus->number == tmp_list->bus && 9885 BP_PATH(bp) == tmp_list->path) 9886 return tmp_list; 9887 9888 return NULL; 9889 } 9890 9891 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp) 9892 { 9893 struct bnx2x_prev_path_list *tmp_list; 9894 int rc; 9895 9896 rc = down_interruptible(&bnx2x_prev_sem); 9897 if (rc) { 9898 BNX2X_ERR("Received %d when tried to take lock\n", rc); 9899 return rc; 9900 } 9901 9902 tmp_list = bnx2x_prev_path_get_entry(bp); 9903 if (tmp_list) { 9904 tmp_list->aer = 1; 9905 rc = 0; 9906 } else { 9907 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n", 9908 BP_PATH(bp)); 9909 } 9910 9911 up(&bnx2x_prev_sem); 9912 9913 return rc; 9914 } 9915 9916 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp) 9917 { 9918 struct bnx2x_prev_path_list *tmp_list; 9919 int rc = false; 9920 9921 if (down_trylock(&bnx2x_prev_sem)) 9922 return false; 9923 9924 tmp_list = bnx2x_prev_path_get_entry(bp); 9925 if (tmp_list) { 9926 if (tmp_list->aer) { 9927 DP(NETIF_MSG_HW, "Path %d was marked by AER\n", 9928 BP_PATH(bp)); 9929 } else { 9930 rc = true; 9931 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n", 9932 BP_PATH(bp)); 9933 } 9934 } 9935 9936 up(&bnx2x_prev_sem); 9937 9938 return rc; 9939 } 9940 9941 bool bnx2x_port_after_undi(struct bnx2x *bp) 9942 { 9943 struct bnx2x_prev_path_list *entry; 9944 bool val; 9945 9946 down(&bnx2x_prev_sem); 9947 9948 entry = bnx2x_prev_path_get_entry(bp); 9949 val = !!(entry && (entry->undi & (1 << BP_PORT(bp)))); 9950 9951 up(&bnx2x_prev_sem); 9952 9953 return val; 9954 } 9955 9956 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi) 9957 { 9958 struct bnx2x_prev_path_list *tmp_list; 9959 int rc; 9960 9961 rc = down_interruptible(&bnx2x_prev_sem); 9962 if (rc) { 9963 BNX2X_ERR("Received %d when tried to take lock\n", rc); 9964 return rc; 9965 } 9966 9967 /* Check whether the entry for this path already exists */ 9968 tmp_list = bnx2x_prev_path_get_entry(bp); 9969 if (tmp_list) { 9970 if (!tmp_list->aer) { 9971 BNX2X_ERR("Re-Marking the path.\n"); 9972 } else { 9973 DP(NETIF_MSG_HW, "Removing AER indication from path %d\n", 9974 BP_PATH(bp)); 9975 tmp_list->aer = 0; 9976 } 9977 up(&bnx2x_prev_sem); 9978 return 0; 9979 } 9980 up(&bnx2x_prev_sem); 9981 9982 /* Create an entry for this path and add it */ 9983 tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL); 9984 if (!tmp_list) { 9985 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n"); 9986 return -ENOMEM; 9987 } 9988 9989 tmp_list->bus = bp->pdev->bus->number; 9990 tmp_list->slot = PCI_SLOT(bp->pdev->devfn); 9991 tmp_list->path = BP_PATH(bp); 9992 tmp_list->aer = 0; 9993 tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0; 9994 9995 rc = down_interruptible(&bnx2x_prev_sem); 9996 if (rc) { 9997 BNX2X_ERR("Received %d when tried to take lock\n", rc); 9998 kfree(tmp_list); 9999 } else { 10000 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n", 10001 BP_PATH(bp)); 10002 list_add(&tmp_list->list, &bnx2x_prev_list); 10003 up(&bnx2x_prev_sem); 10004 } 10005 10006 return rc; 10007 } 10008 10009 static int bnx2x_do_flr(struct bnx2x *bp) 10010 { 10011 struct pci_dev *dev = bp->pdev; 10012 10013 if (CHIP_IS_E1x(bp)) { 10014 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n"); 10015 return -EINVAL; 10016 } 10017 10018 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 10019 if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 10020 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n", 10021 bp->common.bc_ver); 10022 return -EINVAL; 10023 } 10024 10025 if (!pci_wait_for_pending_transaction(dev)) 10026 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n"); 10027 10028 BNX2X_DEV_INFO("Initiating FLR\n"); 10029 bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0); 10030 10031 return 0; 10032 } 10033 10034 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp) 10035 { 10036 int rc; 10037 10038 BNX2X_DEV_INFO("Uncommon unload Flow\n"); 10039 10040 /* Test if previous unload process was already finished for this path */ 10041 if (bnx2x_prev_is_path_marked(bp)) 10042 return bnx2x_prev_mcp_done(bp); 10043 10044 BNX2X_DEV_INFO("Path is unmarked\n"); 10045 10046 /* If function has FLR capabilities, and existing FW version matches 10047 * the one required, then FLR will be sufficient to clean any residue 10048 * left by previous driver 10049 */ 10050 rc = bnx2x_nic_load_analyze_req(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION); 10051 10052 if (!rc) { 10053 /* fw version is good */ 10054 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n"); 10055 rc = bnx2x_do_flr(bp); 10056 } 10057 10058 if (!rc) { 10059 /* FLR was performed */ 10060 BNX2X_DEV_INFO("FLR successful\n"); 10061 return 0; 10062 } 10063 10064 BNX2X_DEV_INFO("Could not FLR\n"); 10065 10066 /* Close the MCP request, return failure*/ 10067 rc = bnx2x_prev_mcp_done(bp); 10068 if (!rc) 10069 rc = BNX2X_PREV_WAIT_NEEDED; 10070 10071 return rc; 10072 } 10073 10074 static int bnx2x_prev_unload_common(struct bnx2x *bp) 10075 { 10076 u32 reset_reg, tmp_reg = 0, rc; 10077 bool prev_undi = false; 10078 struct bnx2x_mac_vals mac_vals; 10079 10080 /* It is possible a previous function received 'common' answer, 10081 * but hasn't loaded yet, therefore creating a scenario of 10082 * multiple functions receiving 'common' on the same path. 10083 */ 10084 BNX2X_DEV_INFO("Common unload Flow\n"); 10085 10086 memset(&mac_vals, 0, sizeof(mac_vals)); 10087 10088 if (bnx2x_prev_is_path_marked(bp)) 10089 return bnx2x_prev_mcp_done(bp); 10090 10091 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1); 10092 10093 /* Reset should be performed after BRB is emptied */ 10094 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 10095 u32 timer_count = 1000; 10096 10097 /* Close the MAC Rx to prevent BRB from filling up */ 10098 bnx2x_prev_unload_close_mac(bp, &mac_vals); 10099 10100 /* close LLH filters towards the BRB */ 10101 bnx2x_set_rx_filter(&bp->link_params, 0); 10102 10103 /* Check if the UNDI driver was previously loaded 10104 * UNDI driver initializes CID offset for normal bell to 0x7 10105 */ 10106 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { 10107 tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST); 10108 if (tmp_reg == 0x7) { 10109 BNX2X_DEV_INFO("UNDI previously loaded\n"); 10110 prev_undi = true; 10111 /* clear the UNDI indication */ 10112 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0); 10113 /* clear possible idle check errors */ 10114 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0); 10115 } 10116 } 10117 if (!CHIP_IS_E1x(bp)) 10118 /* block FW from writing to host */ 10119 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 10120 10121 /* wait until BRB is empty */ 10122 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); 10123 while (timer_count) { 10124 u32 prev_brb = tmp_reg; 10125 10126 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); 10127 if (!tmp_reg) 10128 break; 10129 10130 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg); 10131 10132 /* reset timer as long as BRB actually gets emptied */ 10133 if (prev_brb > tmp_reg) 10134 timer_count = 1000; 10135 else 10136 timer_count--; 10137 10138 /* If UNDI resides in memory, manually increment it */ 10139 if (prev_undi) 10140 bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1); 10141 10142 udelay(10); 10143 } 10144 10145 if (!timer_count) 10146 BNX2X_ERR("Failed to empty BRB, hope for the best\n"); 10147 } 10148 10149 /* No packets are in the pipeline, path is ready for reset */ 10150 bnx2x_reset_common(bp); 10151 10152 if (mac_vals.xmac_addr) 10153 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val); 10154 if (mac_vals.umac_addr) 10155 REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val); 10156 if (mac_vals.emac_addr) 10157 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val); 10158 if (mac_vals.bmac_addr) { 10159 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 10160 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 10161 } 10162 10163 rc = bnx2x_prev_mark_path(bp, prev_undi); 10164 if (rc) { 10165 bnx2x_prev_mcp_done(bp); 10166 return rc; 10167 } 10168 10169 return bnx2x_prev_mcp_done(bp); 10170 } 10171 10172 /* previous driver DMAE transaction may have occurred when pre-boot stage ended 10173 * and boot began, or when kdump kernel was loaded. Either case would invalidate 10174 * the addresses of the transaction, resulting in was-error bit set in the pci 10175 * causing all hw-to-host pcie transactions to timeout. If this happened we want 10176 * to clear the interrupt which detected this from the pglueb and the was done 10177 * bit 10178 */ 10179 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp) 10180 { 10181 if (!CHIP_IS_E1x(bp)) { 10182 u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS); 10183 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { 10184 DP(BNX2X_MSG_SP, 10185 "'was error' bit was found to be set in pglueb upon startup. Clearing\n"); 10186 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 10187 1 << BP_FUNC(bp)); 10188 } 10189 } 10190 } 10191 10192 static int bnx2x_prev_unload(struct bnx2x *bp) 10193 { 10194 int time_counter = 10; 10195 u32 rc, fw, hw_lock_reg, hw_lock_val; 10196 BNX2X_DEV_INFO("Entering Previous Unload Flow\n"); 10197 10198 /* clear hw from errors which may have resulted from an interrupted 10199 * dmae transaction. 10200 */ 10201 bnx2x_prev_interrupted_dmae(bp); 10202 10203 /* Release previously held locks */ 10204 hw_lock_reg = (BP_FUNC(bp) <= 5) ? 10205 (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) : 10206 (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8); 10207 10208 hw_lock_val = REG_RD(bp, hw_lock_reg); 10209 if (hw_lock_val) { 10210 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 10211 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n"); 10212 REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB, 10213 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp))); 10214 } 10215 10216 BNX2X_DEV_INFO("Release Previously held hw lock\n"); 10217 REG_WR(bp, hw_lock_reg, 0xffffffff); 10218 } else 10219 BNX2X_DEV_INFO("No need to release hw/nvram locks\n"); 10220 10221 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) { 10222 BNX2X_DEV_INFO("Release previously held alr\n"); 10223 bnx2x_release_alr(bp); 10224 } 10225 10226 do { 10227 int aer = 0; 10228 /* Lock MCP using an unload request */ 10229 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 10230 if (!fw) { 10231 BNX2X_ERR("MCP response failure, aborting\n"); 10232 rc = -EBUSY; 10233 break; 10234 } 10235 10236 rc = down_interruptible(&bnx2x_prev_sem); 10237 if (rc) { 10238 BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n", 10239 rc); 10240 } else { 10241 /* If Path is marked by EEH, ignore unload status */ 10242 aer = !!(bnx2x_prev_path_get_entry(bp) && 10243 bnx2x_prev_path_get_entry(bp)->aer); 10244 up(&bnx2x_prev_sem); 10245 } 10246 10247 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) { 10248 rc = bnx2x_prev_unload_common(bp); 10249 break; 10250 } 10251 10252 /* non-common reply from MCP might require looping */ 10253 rc = bnx2x_prev_unload_uncommon(bp); 10254 if (rc != BNX2X_PREV_WAIT_NEEDED) 10255 break; 10256 10257 msleep(20); 10258 } while (--time_counter); 10259 10260 if (!time_counter || rc) { 10261 BNX2X_ERR("Failed unloading previous driver, aborting\n"); 10262 rc = -EBUSY; 10263 } 10264 10265 /* Mark function if its port was used to boot from SAN */ 10266 if (bnx2x_port_after_undi(bp)) 10267 bp->link_params.feature_config_flags |= 10268 FEATURE_CONFIG_BOOT_FROM_SAN; 10269 10270 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc); 10271 10272 return rc; 10273 } 10274 10275 static void bnx2x_get_common_hwinfo(struct bnx2x *bp) 10276 { 10277 u32 val, val2, val3, val4, id, boot_mode; 10278 u16 pmc; 10279 10280 /* Get the chip revision id and number. */ 10281 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */ 10282 val = REG_RD(bp, MISC_REG_CHIP_NUM); 10283 id = ((val & 0xffff) << 16); 10284 val = REG_RD(bp, MISC_REG_CHIP_REV); 10285 id |= ((val & 0xf) << 12); 10286 10287 /* Metal is read from PCI regs, but we can't access >=0x400 from 10288 * the configuration space (so we need to reg_rd) 10289 */ 10290 val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3); 10291 id |= (((val >> 24) & 0xf) << 4); 10292 val = REG_RD(bp, MISC_REG_BOND_ID); 10293 id |= (val & 0xf); 10294 bp->common.chip_id = id; 10295 10296 /* force 57811 according to MISC register */ 10297 if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 10298 if (CHIP_IS_57810(bp)) 10299 bp->common.chip_id = (CHIP_NUM_57811 << 16) | 10300 (bp->common.chip_id & 0x0000FFFF); 10301 else if (CHIP_IS_57810_MF(bp)) 10302 bp->common.chip_id = (CHIP_NUM_57811_MF << 16) | 10303 (bp->common.chip_id & 0x0000FFFF); 10304 bp->common.chip_id |= 0x1; 10305 } 10306 10307 /* Set doorbell size */ 10308 bp->db_size = (1 << BNX2X_DB_SHIFT); 10309 10310 if (!CHIP_IS_E1x(bp)) { 10311 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR); 10312 if ((val & 1) == 0) 10313 val = REG_RD(bp, MISC_REG_PORT4MODE_EN); 10314 else 10315 val = (val >> 1) & 1; 10316 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" : 10317 "2_PORT_MODE"); 10318 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE : 10319 CHIP_2_PORT_MODE; 10320 10321 if (CHIP_MODE_IS_4_PORT(bp)) 10322 bp->pfid = (bp->pf_num >> 1); /* 0..3 */ 10323 else 10324 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */ 10325 } else { 10326 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */ 10327 bp->pfid = bp->pf_num; /* 0..7 */ 10328 } 10329 10330 BNX2X_DEV_INFO("pf_id: %x", bp->pfid); 10331 10332 bp->link_params.chip_id = bp->common.chip_id; 10333 BNX2X_DEV_INFO("chip ID is 0x%x\n", id); 10334 10335 val = (REG_RD(bp, 0x2874) & 0x55); 10336 if ((bp->common.chip_id & 0x1) || 10337 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) { 10338 bp->flags |= ONE_PORT_FLAG; 10339 BNX2X_DEV_INFO("single port device\n"); 10340 } 10341 10342 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4); 10343 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE << 10344 (val & MCPR_NVM_CFG4_FLASH_SIZE)); 10345 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n", 10346 bp->common.flash_size, bp->common.flash_size); 10347 10348 bnx2x_init_shmem(bp); 10349 10350 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ? 10351 MISC_REG_GENERIC_CR_1 : 10352 MISC_REG_GENERIC_CR_0)); 10353 10354 bp->link_params.shmem_base = bp->common.shmem_base; 10355 bp->link_params.shmem2_base = bp->common.shmem2_base; 10356 if (SHMEM2_RD(bp, size) > 10357 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) 10358 bp->link_params.lfa_base = 10359 REG_RD(bp, bp->common.shmem2_base + 10360 (u32)offsetof(struct shmem2_region, 10361 lfa_host_addr[BP_PORT(bp)])); 10362 else 10363 bp->link_params.lfa_base = 0; 10364 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n", 10365 bp->common.shmem_base, bp->common.shmem2_base); 10366 10367 if (!bp->common.shmem_base) { 10368 BNX2X_DEV_INFO("MCP not active\n"); 10369 bp->flags |= NO_MCP_FLAG; 10370 return; 10371 } 10372 10373 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config); 10374 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config); 10375 10376 bp->link_params.hw_led_mode = ((bp->common.hw_config & 10377 SHARED_HW_CFG_LED_MODE_MASK) >> 10378 SHARED_HW_CFG_LED_MODE_SHIFT); 10379 10380 bp->link_params.feature_config_flags = 0; 10381 val = SHMEM_RD(bp, dev_info.shared_feature_config.config); 10382 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) 10383 bp->link_params.feature_config_flags |= 10384 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 10385 else 10386 bp->link_params.feature_config_flags &= 10387 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 10388 10389 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8; 10390 bp->common.bc_ver = val; 10391 BNX2X_DEV_INFO("bc_ver %X\n", val); 10392 if (val < BNX2X_BC_VER) { 10393 /* for now only warn 10394 * later we might need to enforce this */ 10395 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n", 10396 BNX2X_BC_VER, val); 10397 } 10398 bp->link_params.feature_config_flags |= 10399 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ? 10400 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0; 10401 10402 bp->link_params.feature_config_flags |= 10403 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ? 10404 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0; 10405 bp->link_params.feature_config_flags |= 10406 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ? 10407 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0; 10408 bp->link_params.feature_config_flags |= 10409 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ? 10410 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0; 10411 10412 bp->link_params.feature_config_flags |= 10413 (val >= REQ_BC_VER_4_MT_SUPPORTED) ? 10414 FEATURE_CONFIG_MT_SUPPORT : 0; 10415 10416 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ? 10417 BC_SUPPORTS_PFC_STATS : 0; 10418 10419 bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ? 10420 BC_SUPPORTS_FCOE_FEATURES : 0; 10421 10422 bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ? 10423 BC_SUPPORTS_DCBX_MSG_NON_PMF : 0; 10424 10425 bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ? 10426 BC_SUPPORTS_RMMOD_CMD : 0; 10427 10428 boot_mode = SHMEM_RD(bp, 10429 dev_info.port_feature_config[BP_PORT(bp)].mba_config) & 10430 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK; 10431 switch (boot_mode) { 10432 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE: 10433 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE; 10434 break; 10435 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB: 10436 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI; 10437 break; 10438 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT: 10439 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE; 10440 break; 10441 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE: 10442 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE; 10443 break; 10444 } 10445 10446 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc); 10447 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG; 10448 10449 BNX2X_DEV_INFO("%sWoL capable\n", 10450 (bp->flags & NO_WOL_FLAG) ? "not " : ""); 10451 10452 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num); 10453 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]); 10454 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]); 10455 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]); 10456 10457 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n", 10458 val, val2, val3, val4); 10459 } 10460 10461 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 10462 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 10463 10464 static int bnx2x_get_igu_cam_info(struct bnx2x *bp) 10465 { 10466 int pfid = BP_FUNC(bp); 10467 int igu_sb_id; 10468 u32 val; 10469 u8 fid, igu_sb_cnt = 0; 10470 10471 bp->igu_base_sb = 0xff; 10472 if (CHIP_INT_MODE_IS_BC(bp)) { 10473 int vn = BP_VN(bp); 10474 igu_sb_cnt = bp->igu_sb_cnt; 10475 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) * 10476 FP_SB_MAX_E1x; 10477 10478 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x + 10479 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn); 10480 10481 return 0; 10482 } 10483 10484 /* IGU in normal mode - read CAM */ 10485 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 10486 igu_sb_id++) { 10487 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 10488 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) 10489 continue; 10490 fid = IGU_FID(val); 10491 if ((fid & IGU_FID_ENCODE_IS_PF)) { 10492 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) 10493 continue; 10494 if (IGU_VEC(val) == 0) 10495 /* default status block */ 10496 bp->igu_dsb_id = igu_sb_id; 10497 else { 10498 if (bp->igu_base_sb == 0xff) 10499 bp->igu_base_sb = igu_sb_id; 10500 igu_sb_cnt++; 10501 } 10502 } 10503 } 10504 10505 #ifdef CONFIG_PCI_MSI 10506 /* Due to new PF resource allocation by MFW T7.4 and above, it's 10507 * optional that number of CAM entries will not be equal to the value 10508 * advertised in PCI. 10509 * Driver should use the minimal value of both as the actual status 10510 * block count 10511 */ 10512 bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt); 10513 #endif 10514 10515 if (igu_sb_cnt == 0) { 10516 BNX2X_ERR("CAM configuration error\n"); 10517 return -EINVAL; 10518 } 10519 10520 return 0; 10521 } 10522 10523 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg) 10524 { 10525 int cfg_size = 0, idx, port = BP_PORT(bp); 10526 10527 /* Aggregation of supported attributes of all external phys */ 10528 bp->port.supported[0] = 0; 10529 bp->port.supported[1] = 0; 10530 switch (bp->link_params.num_phys) { 10531 case 1: 10532 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported; 10533 cfg_size = 1; 10534 break; 10535 case 2: 10536 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported; 10537 cfg_size = 1; 10538 break; 10539 case 3: 10540 if (bp->link_params.multi_phy_config & 10541 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 10542 bp->port.supported[1] = 10543 bp->link_params.phy[EXT_PHY1].supported; 10544 bp->port.supported[0] = 10545 bp->link_params.phy[EXT_PHY2].supported; 10546 } else { 10547 bp->port.supported[0] = 10548 bp->link_params.phy[EXT_PHY1].supported; 10549 bp->port.supported[1] = 10550 bp->link_params.phy[EXT_PHY2].supported; 10551 } 10552 cfg_size = 2; 10553 break; 10554 } 10555 10556 if (!(bp->port.supported[0] || bp->port.supported[1])) { 10557 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n", 10558 SHMEM_RD(bp, 10559 dev_info.port_hw_config[port].external_phy_config), 10560 SHMEM_RD(bp, 10561 dev_info.port_hw_config[port].external_phy_config2)); 10562 return; 10563 } 10564 10565 if (CHIP_IS_E3(bp)) 10566 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR); 10567 else { 10568 switch (switch_cfg) { 10569 case SWITCH_CFG_1G: 10570 bp->port.phy_addr = REG_RD( 10571 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 10572 break; 10573 case SWITCH_CFG_10G: 10574 bp->port.phy_addr = REG_RD( 10575 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 10576 break; 10577 default: 10578 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n", 10579 bp->port.link_config[0]); 10580 return; 10581 } 10582 } 10583 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr); 10584 /* mask what we support according to speed_cap_mask per configuration */ 10585 for (idx = 0; idx < cfg_size; idx++) { 10586 if (!(bp->link_params.speed_cap_mask[idx] & 10587 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) 10588 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half; 10589 10590 if (!(bp->link_params.speed_cap_mask[idx] & 10591 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) 10592 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full; 10593 10594 if (!(bp->link_params.speed_cap_mask[idx] & 10595 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) 10596 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half; 10597 10598 if (!(bp->link_params.speed_cap_mask[idx] & 10599 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) 10600 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full; 10601 10602 if (!(bp->link_params.speed_cap_mask[idx] & 10603 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) 10604 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half | 10605 SUPPORTED_1000baseT_Full); 10606 10607 if (!(bp->link_params.speed_cap_mask[idx] & 10608 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) 10609 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full; 10610 10611 if (!(bp->link_params.speed_cap_mask[idx] & 10612 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) 10613 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full; 10614 10615 if (!(bp->link_params.speed_cap_mask[idx] & 10616 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) 10617 bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full; 10618 } 10619 10620 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0], 10621 bp->port.supported[1]); 10622 } 10623 10624 static void bnx2x_link_settings_requested(struct bnx2x *bp) 10625 { 10626 u32 link_config, idx, cfg_size = 0; 10627 bp->port.advertising[0] = 0; 10628 bp->port.advertising[1] = 0; 10629 switch (bp->link_params.num_phys) { 10630 case 1: 10631 case 2: 10632 cfg_size = 1; 10633 break; 10634 case 3: 10635 cfg_size = 2; 10636 break; 10637 } 10638 for (idx = 0; idx < cfg_size; idx++) { 10639 bp->link_params.req_duplex[idx] = DUPLEX_FULL; 10640 link_config = bp->port.link_config[idx]; 10641 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 10642 case PORT_FEATURE_LINK_SPEED_AUTO: 10643 if (bp->port.supported[idx] & SUPPORTED_Autoneg) { 10644 bp->link_params.req_line_speed[idx] = 10645 SPEED_AUTO_NEG; 10646 bp->port.advertising[idx] |= 10647 bp->port.supported[idx]; 10648 if (bp->link_params.phy[EXT_PHY1].type == 10649 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 10650 bp->port.advertising[idx] |= 10651 (SUPPORTED_100baseT_Half | 10652 SUPPORTED_100baseT_Full); 10653 } else { 10654 /* force 10G, no AN */ 10655 bp->link_params.req_line_speed[idx] = 10656 SPEED_10000; 10657 bp->port.advertising[idx] |= 10658 (ADVERTISED_10000baseT_Full | 10659 ADVERTISED_FIBRE); 10660 continue; 10661 } 10662 break; 10663 10664 case PORT_FEATURE_LINK_SPEED_10M_FULL: 10665 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) { 10666 bp->link_params.req_line_speed[idx] = 10667 SPEED_10; 10668 bp->port.advertising[idx] |= 10669 (ADVERTISED_10baseT_Full | 10670 ADVERTISED_TP); 10671 } else { 10672 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 10673 link_config, 10674 bp->link_params.speed_cap_mask[idx]); 10675 return; 10676 } 10677 break; 10678 10679 case PORT_FEATURE_LINK_SPEED_10M_HALF: 10680 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) { 10681 bp->link_params.req_line_speed[idx] = 10682 SPEED_10; 10683 bp->link_params.req_duplex[idx] = 10684 DUPLEX_HALF; 10685 bp->port.advertising[idx] |= 10686 (ADVERTISED_10baseT_Half | 10687 ADVERTISED_TP); 10688 } else { 10689 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 10690 link_config, 10691 bp->link_params.speed_cap_mask[idx]); 10692 return; 10693 } 10694 break; 10695 10696 case PORT_FEATURE_LINK_SPEED_100M_FULL: 10697 if (bp->port.supported[idx] & 10698 SUPPORTED_100baseT_Full) { 10699 bp->link_params.req_line_speed[idx] = 10700 SPEED_100; 10701 bp->port.advertising[idx] |= 10702 (ADVERTISED_100baseT_Full | 10703 ADVERTISED_TP); 10704 } else { 10705 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 10706 link_config, 10707 bp->link_params.speed_cap_mask[idx]); 10708 return; 10709 } 10710 break; 10711 10712 case PORT_FEATURE_LINK_SPEED_100M_HALF: 10713 if (bp->port.supported[idx] & 10714 SUPPORTED_100baseT_Half) { 10715 bp->link_params.req_line_speed[idx] = 10716 SPEED_100; 10717 bp->link_params.req_duplex[idx] = 10718 DUPLEX_HALF; 10719 bp->port.advertising[idx] |= 10720 (ADVERTISED_100baseT_Half | 10721 ADVERTISED_TP); 10722 } else { 10723 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 10724 link_config, 10725 bp->link_params.speed_cap_mask[idx]); 10726 return; 10727 } 10728 break; 10729 10730 case PORT_FEATURE_LINK_SPEED_1G: 10731 if (bp->port.supported[idx] & 10732 SUPPORTED_1000baseT_Full) { 10733 bp->link_params.req_line_speed[idx] = 10734 SPEED_1000; 10735 bp->port.advertising[idx] |= 10736 (ADVERTISED_1000baseT_Full | 10737 ADVERTISED_TP); 10738 } else { 10739 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 10740 link_config, 10741 bp->link_params.speed_cap_mask[idx]); 10742 return; 10743 } 10744 break; 10745 10746 case PORT_FEATURE_LINK_SPEED_2_5G: 10747 if (bp->port.supported[idx] & 10748 SUPPORTED_2500baseX_Full) { 10749 bp->link_params.req_line_speed[idx] = 10750 SPEED_2500; 10751 bp->port.advertising[idx] |= 10752 (ADVERTISED_2500baseX_Full | 10753 ADVERTISED_TP); 10754 } else { 10755 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 10756 link_config, 10757 bp->link_params.speed_cap_mask[idx]); 10758 return; 10759 } 10760 break; 10761 10762 case PORT_FEATURE_LINK_SPEED_10G_CX4: 10763 if (bp->port.supported[idx] & 10764 SUPPORTED_10000baseT_Full) { 10765 bp->link_params.req_line_speed[idx] = 10766 SPEED_10000; 10767 bp->port.advertising[idx] |= 10768 (ADVERTISED_10000baseT_Full | 10769 ADVERTISED_FIBRE); 10770 } else { 10771 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 10772 link_config, 10773 bp->link_params.speed_cap_mask[idx]); 10774 return; 10775 } 10776 break; 10777 case PORT_FEATURE_LINK_SPEED_20G: 10778 bp->link_params.req_line_speed[idx] = SPEED_20000; 10779 10780 break; 10781 default: 10782 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n", 10783 link_config); 10784 bp->link_params.req_line_speed[idx] = 10785 SPEED_AUTO_NEG; 10786 bp->port.advertising[idx] = 10787 bp->port.supported[idx]; 10788 break; 10789 } 10790 10791 bp->link_params.req_flow_ctrl[idx] = (link_config & 10792 PORT_FEATURE_FLOW_CONTROL_MASK); 10793 if (bp->link_params.req_flow_ctrl[idx] == 10794 BNX2X_FLOW_CTRL_AUTO) { 10795 if (!(bp->port.supported[idx] & SUPPORTED_Autoneg)) 10796 bp->link_params.req_flow_ctrl[idx] = 10797 BNX2X_FLOW_CTRL_NONE; 10798 else 10799 bnx2x_set_requested_fc(bp); 10800 } 10801 10802 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n", 10803 bp->link_params.req_line_speed[idx], 10804 bp->link_params.req_duplex[idx], 10805 bp->link_params.req_flow_ctrl[idx], 10806 bp->port.advertising[idx]); 10807 } 10808 } 10809 10810 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi) 10811 { 10812 __be16 mac_hi_be = cpu_to_be16(mac_hi); 10813 __be32 mac_lo_be = cpu_to_be32(mac_lo); 10814 memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be)); 10815 memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be)); 10816 } 10817 10818 static void bnx2x_get_port_hwinfo(struct bnx2x *bp) 10819 { 10820 int port = BP_PORT(bp); 10821 u32 config; 10822 u32 ext_phy_type, ext_phy_config, eee_mode; 10823 10824 bp->link_params.bp = bp; 10825 bp->link_params.port = port; 10826 10827 bp->link_params.lane_config = 10828 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config); 10829 10830 bp->link_params.speed_cap_mask[0] = 10831 SHMEM_RD(bp, 10832 dev_info.port_hw_config[port].speed_capability_mask) & 10833 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; 10834 bp->link_params.speed_cap_mask[1] = 10835 SHMEM_RD(bp, 10836 dev_info.port_hw_config[port].speed_capability_mask2) & 10837 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; 10838 bp->port.link_config[0] = 10839 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config); 10840 10841 bp->port.link_config[1] = 10842 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2); 10843 10844 bp->link_params.multi_phy_config = 10845 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config); 10846 /* If the device is capable of WoL, set the default state according 10847 * to the HW 10848 */ 10849 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config); 10850 bp->wol = (!(bp->flags & NO_WOL_FLAG) && 10851 (config & PORT_FEATURE_WOL_ENABLED)); 10852 10853 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 10854 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp)) 10855 bp->flags |= NO_ISCSI_FLAG; 10856 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 10857 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp))) 10858 bp->flags |= NO_FCOE_FLAG; 10859 10860 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n", 10861 bp->link_params.lane_config, 10862 bp->link_params.speed_cap_mask[0], 10863 bp->port.link_config[0]); 10864 10865 bp->link_params.switch_cfg = (bp->port.link_config[0] & 10866 PORT_FEATURE_CONNECTED_SWITCH_MASK); 10867 bnx2x_phy_probe(&bp->link_params); 10868 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg); 10869 10870 bnx2x_link_settings_requested(bp); 10871 10872 /* 10873 * If connected directly, work with the internal PHY, otherwise, work 10874 * with the external PHY 10875 */ 10876 ext_phy_config = 10877 SHMEM_RD(bp, 10878 dev_info.port_hw_config[port].external_phy_config); 10879 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config); 10880 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) 10881 bp->mdio.prtad = bp->port.phy_addr; 10882 10883 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && 10884 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) 10885 bp->mdio.prtad = 10886 XGXS_EXT_PHY_ADDR(ext_phy_config); 10887 10888 /* Configure link feature according to nvram value */ 10889 eee_mode = (((SHMEM_RD(bp, dev_info. 10890 port_feature_config[port].eee_power_mode)) & 10891 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 10892 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 10893 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 10894 bp->link_params.eee_mode = EEE_MODE_ADV_LPI | 10895 EEE_MODE_ENABLE_LPI | 10896 EEE_MODE_OUTPUT_TIME; 10897 } else { 10898 bp->link_params.eee_mode = 0; 10899 } 10900 } 10901 10902 void bnx2x_get_iscsi_info(struct bnx2x *bp) 10903 { 10904 u32 no_flags = NO_ISCSI_FLAG; 10905 int port = BP_PORT(bp); 10906 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, 10907 drv_lic_key[port].max_iscsi_conn); 10908 10909 if (!CNIC_SUPPORT(bp)) { 10910 bp->flags |= no_flags; 10911 return; 10912 } 10913 10914 /* Get the number of maximum allowed iSCSI connections */ 10915 bp->cnic_eth_dev.max_iscsi_conn = 10916 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >> 10917 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT; 10918 10919 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n", 10920 bp->cnic_eth_dev.max_iscsi_conn); 10921 10922 /* 10923 * If maximum allowed number of connections is zero - 10924 * disable the feature. 10925 */ 10926 if (!bp->cnic_eth_dev.max_iscsi_conn) 10927 bp->flags |= no_flags; 10928 } 10929 10930 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func) 10931 { 10932 /* Port info */ 10933 bp->cnic_eth_dev.fcoe_wwn_port_name_hi = 10934 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper); 10935 bp->cnic_eth_dev.fcoe_wwn_port_name_lo = 10936 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower); 10937 10938 /* Node info */ 10939 bp->cnic_eth_dev.fcoe_wwn_node_name_hi = 10940 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper); 10941 bp->cnic_eth_dev.fcoe_wwn_node_name_lo = 10942 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower); 10943 } 10944 10945 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp) 10946 { 10947 u8 count = 0; 10948 10949 if (IS_MF(bp)) { 10950 u8 fid; 10951 10952 /* iterate over absolute function ids for this path: */ 10953 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) { 10954 if (IS_MF_SD(bp)) { 10955 u32 cfg = MF_CFG_RD(bp, 10956 func_mf_config[fid].config); 10957 10958 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) && 10959 ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) == 10960 FUNC_MF_CFG_PROTOCOL_FCOE)) 10961 count++; 10962 } else { 10963 u32 cfg = MF_CFG_RD(bp, 10964 func_ext_config[fid]. 10965 func_cfg); 10966 10967 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) && 10968 (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)) 10969 count++; 10970 } 10971 } 10972 } else { /* SF */ 10973 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1; 10974 10975 for (port = 0; port < port_cnt; port++) { 10976 u32 lic = SHMEM_RD(bp, 10977 drv_lic_key[port].max_fcoe_conn) ^ 10978 FW_ENCODE_32BIT_PATTERN; 10979 if (lic) 10980 count++; 10981 } 10982 } 10983 10984 return count; 10985 } 10986 10987 static void bnx2x_get_fcoe_info(struct bnx2x *bp) 10988 { 10989 int port = BP_PORT(bp); 10990 int func = BP_ABS_FUNC(bp); 10991 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, 10992 drv_lic_key[port].max_fcoe_conn); 10993 u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp); 10994 10995 if (!CNIC_SUPPORT(bp)) { 10996 bp->flags |= NO_FCOE_FLAG; 10997 return; 10998 } 10999 11000 /* Get the number of maximum allowed FCoE connections */ 11001 bp->cnic_eth_dev.max_fcoe_conn = 11002 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >> 11003 BNX2X_MAX_FCOE_INIT_CONN_SHIFT; 11004 11005 /* Calculate the number of maximum allowed FCoE tasks */ 11006 bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE; 11007 11008 /* check if FCoE resources must be shared between different functions */ 11009 if (num_fcoe_func) 11010 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func; 11011 11012 /* Read the WWN: */ 11013 if (!IS_MF(bp)) { 11014 /* Port info */ 11015 bp->cnic_eth_dev.fcoe_wwn_port_name_hi = 11016 SHMEM_RD(bp, 11017 dev_info.port_hw_config[port]. 11018 fcoe_wwn_port_name_upper); 11019 bp->cnic_eth_dev.fcoe_wwn_port_name_lo = 11020 SHMEM_RD(bp, 11021 dev_info.port_hw_config[port]. 11022 fcoe_wwn_port_name_lower); 11023 11024 /* Node info */ 11025 bp->cnic_eth_dev.fcoe_wwn_node_name_hi = 11026 SHMEM_RD(bp, 11027 dev_info.port_hw_config[port]. 11028 fcoe_wwn_node_name_upper); 11029 bp->cnic_eth_dev.fcoe_wwn_node_name_lo = 11030 SHMEM_RD(bp, 11031 dev_info.port_hw_config[port]. 11032 fcoe_wwn_node_name_lower); 11033 } else if (!IS_MF_SD(bp)) { 11034 /* 11035 * Read the WWN info only if the FCoE feature is enabled for 11036 * this function. 11037 */ 11038 if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp)) 11039 bnx2x_get_ext_wwn_info(bp, func); 11040 11041 } else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) { 11042 bnx2x_get_ext_wwn_info(bp, func); 11043 } 11044 11045 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn); 11046 11047 /* 11048 * If maximum allowed number of connections is zero - 11049 * disable the feature. 11050 */ 11051 if (!bp->cnic_eth_dev.max_fcoe_conn) 11052 bp->flags |= NO_FCOE_FLAG; 11053 } 11054 11055 static void bnx2x_get_cnic_info(struct bnx2x *bp) 11056 { 11057 /* 11058 * iSCSI may be dynamically disabled but reading 11059 * info here we will decrease memory usage by driver 11060 * if the feature is disabled for good 11061 */ 11062 bnx2x_get_iscsi_info(bp); 11063 bnx2x_get_fcoe_info(bp); 11064 } 11065 11066 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp) 11067 { 11068 u32 val, val2; 11069 int func = BP_ABS_FUNC(bp); 11070 int port = BP_PORT(bp); 11071 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac; 11072 u8 *fip_mac = bp->fip_mac; 11073 11074 if (IS_MF(bp)) { 11075 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or 11076 * FCoE MAC then the appropriate feature should be disabled. 11077 * In non SD mode features configuration comes from struct 11078 * func_ext_config. 11079 */ 11080 if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) { 11081 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg); 11082 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 11083 val2 = MF_CFG_RD(bp, func_ext_config[func]. 11084 iscsi_mac_addr_upper); 11085 val = MF_CFG_RD(bp, func_ext_config[func]. 11086 iscsi_mac_addr_lower); 11087 bnx2x_set_mac_buf(iscsi_mac, val, val2); 11088 BNX2X_DEV_INFO 11089 ("Read iSCSI MAC: %pM\n", iscsi_mac); 11090 } else { 11091 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; 11092 } 11093 11094 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 11095 val2 = MF_CFG_RD(bp, func_ext_config[func]. 11096 fcoe_mac_addr_upper); 11097 val = MF_CFG_RD(bp, func_ext_config[func]. 11098 fcoe_mac_addr_lower); 11099 bnx2x_set_mac_buf(fip_mac, val, val2); 11100 BNX2X_DEV_INFO 11101 ("Read FCoE L2 MAC: %pM\n", fip_mac); 11102 } else { 11103 bp->flags |= NO_FCOE_FLAG; 11104 } 11105 11106 bp->mf_ext_config = cfg; 11107 11108 } else { /* SD MODE */ 11109 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) { 11110 /* use primary mac as iscsi mac */ 11111 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN); 11112 11113 BNX2X_DEV_INFO("SD ISCSI MODE\n"); 11114 BNX2X_DEV_INFO 11115 ("Read iSCSI MAC: %pM\n", iscsi_mac); 11116 } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) { 11117 /* use primary mac as fip mac */ 11118 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN); 11119 BNX2X_DEV_INFO("SD FCoE MODE\n"); 11120 BNX2X_DEV_INFO 11121 ("Read FIP MAC: %pM\n", fip_mac); 11122 } 11123 } 11124 11125 /* If this is a storage-only interface, use SAN mac as 11126 * primary MAC. Notice that for SD this is already the case, 11127 * as the SAN mac was copied from the primary MAC. 11128 */ 11129 if (IS_MF_FCOE_AFEX(bp)) 11130 memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN); 11131 } else { 11132 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11133 iscsi_mac_upper); 11134 val = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11135 iscsi_mac_lower); 11136 bnx2x_set_mac_buf(iscsi_mac, val, val2); 11137 11138 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11139 fcoe_fip_mac_upper); 11140 val = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11141 fcoe_fip_mac_lower); 11142 bnx2x_set_mac_buf(fip_mac, val, val2); 11143 } 11144 11145 /* Disable iSCSI OOO if MAC configuration is invalid. */ 11146 if (!is_valid_ether_addr(iscsi_mac)) { 11147 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; 11148 memset(iscsi_mac, 0, ETH_ALEN); 11149 } 11150 11151 /* Disable FCoE if MAC configuration is invalid. */ 11152 if (!is_valid_ether_addr(fip_mac)) { 11153 bp->flags |= NO_FCOE_FLAG; 11154 memset(bp->fip_mac, 0, ETH_ALEN); 11155 } 11156 } 11157 11158 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp) 11159 { 11160 u32 val, val2; 11161 int func = BP_ABS_FUNC(bp); 11162 int port = BP_PORT(bp); 11163 11164 /* Zero primary MAC configuration */ 11165 memset(bp->dev->dev_addr, 0, ETH_ALEN); 11166 11167 if (BP_NOMCP(bp)) { 11168 BNX2X_ERROR("warning: random MAC workaround active\n"); 11169 eth_hw_addr_random(bp->dev); 11170 } else if (IS_MF(bp)) { 11171 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper); 11172 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower); 11173 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) && 11174 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT)) 11175 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2); 11176 11177 if (CNIC_SUPPORT(bp)) 11178 bnx2x_get_cnic_mac_hwinfo(bp); 11179 } else { 11180 /* in SF read MACs from port configuration */ 11181 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper); 11182 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower); 11183 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2); 11184 11185 if (CNIC_SUPPORT(bp)) 11186 bnx2x_get_cnic_mac_hwinfo(bp); 11187 } 11188 11189 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN); 11190 11191 if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr)) 11192 dev_err(&bp->pdev->dev, 11193 "bad Ethernet MAC address configuration: %pM\n" 11194 "change it manually before bringing up the appropriate network interface\n", 11195 bp->dev->dev_addr); 11196 } 11197 11198 static bool bnx2x_get_dropless_info(struct bnx2x *bp) 11199 { 11200 int tmp; 11201 u32 cfg; 11202 11203 if (IS_VF(bp)) 11204 return 0; 11205 11206 if (IS_MF(bp) && !CHIP_IS_E1x(bp)) { 11207 /* Take function: tmp = func */ 11208 tmp = BP_ABS_FUNC(bp); 11209 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg); 11210 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING); 11211 } else { 11212 /* Take port: tmp = port */ 11213 tmp = BP_PORT(bp); 11214 cfg = SHMEM_RD(bp, 11215 dev_info.port_hw_config[tmp].generic_features); 11216 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED); 11217 } 11218 return cfg; 11219 } 11220 11221 static int bnx2x_get_hwinfo(struct bnx2x *bp) 11222 { 11223 int /*abs*/func = BP_ABS_FUNC(bp); 11224 int vn; 11225 u32 val = 0; 11226 int rc = 0; 11227 11228 bnx2x_get_common_hwinfo(bp); 11229 11230 /* 11231 * initialize IGU parameters 11232 */ 11233 if (CHIP_IS_E1x(bp)) { 11234 bp->common.int_block = INT_BLOCK_HC; 11235 11236 bp->igu_dsb_id = DEF_SB_IGU_ID; 11237 bp->igu_base_sb = 0; 11238 } else { 11239 bp->common.int_block = INT_BLOCK_IGU; 11240 11241 /* do not allow device reset during IGU info processing */ 11242 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 11243 11244 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); 11245 11246 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 11247 int tout = 5000; 11248 11249 BNX2X_DEV_INFO("FORCING Normal Mode\n"); 11250 11251 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 11252 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val); 11253 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f); 11254 11255 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) { 11256 tout--; 11257 usleep_range(1000, 2000); 11258 } 11259 11260 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) { 11261 dev_err(&bp->pdev->dev, 11262 "FORCING Normal Mode failed!!!\n"); 11263 bnx2x_release_hw_lock(bp, 11264 HW_LOCK_RESOURCE_RESET); 11265 return -EPERM; 11266 } 11267 } 11268 11269 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 11270 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n"); 11271 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP; 11272 } else 11273 BNX2X_DEV_INFO("IGU Normal Mode\n"); 11274 11275 rc = bnx2x_get_igu_cam_info(bp); 11276 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 11277 if (rc) 11278 return rc; 11279 } 11280 11281 /* 11282 * set base FW non-default (fast path) status block id, this value is 11283 * used to initialize the fw_sb_id saved on the fp/queue structure to 11284 * determine the id used by the FW. 11285 */ 11286 if (CHIP_IS_E1x(bp)) 11287 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp); 11288 else /* 11289 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of 11290 * the same queue are indicated on the same IGU SB). So we prefer 11291 * FW and IGU SBs to be the same value. 11292 */ 11293 bp->base_fw_ndsb = bp->igu_base_sb; 11294 11295 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n" 11296 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb, 11297 bp->igu_sb_cnt, bp->base_fw_ndsb); 11298 11299 /* 11300 * Initialize MF configuration 11301 */ 11302 11303 bp->mf_ov = 0; 11304 bp->mf_mode = 0; 11305 vn = BP_VN(bp); 11306 11307 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) { 11308 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n", 11309 bp->common.shmem2_base, SHMEM2_RD(bp, size), 11310 (u32)offsetof(struct shmem2_region, mf_cfg_addr)); 11311 11312 if (SHMEM2_HAS(bp, mf_cfg_addr)) 11313 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr); 11314 else 11315 bp->common.mf_cfg_base = bp->common.shmem_base + 11316 offsetof(struct shmem_region, func_mb) + 11317 E1H_FUNC_MAX * sizeof(struct drv_func_mb); 11318 /* 11319 * get mf configuration: 11320 * 1. Existence of MF configuration 11321 * 2. MAC address must be legal (check only upper bytes) 11322 * for Switch-Independent mode; 11323 * OVLAN must be legal for Switch-Dependent mode 11324 * 3. SF_MODE configures specific MF mode 11325 */ 11326 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { 11327 /* get mf configuration */ 11328 val = SHMEM_RD(bp, 11329 dev_info.shared_feature_config.config); 11330 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK; 11331 11332 switch (val) { 11333 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 11334 val = MF_CFG_RD(bp, func_mf_config[func]. 11335 mac_upper); 11336 /* check for legal mac (upper bytes)*/ 11337 if (val != 0xffff) { 11338 bp->mf_mode = MULTI_FUNCTION_SI; 11339 bp->mf_config[vn] = MF_CFG_RD(bp, 11340 func_mf_config[func].config); 11341 } else 11342 BNX2X_DEV_INFO("illegal MAC address for SI\n"); 11343 break; 11344 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 11345 if ((!CHIP_IS_E1x(bp)) && 11346 (MF_CFG_RD(bp, func_mf_config[func]. 11347 mac_upper) != 0xffff) && 11348 (SHMEM2_HAS(bp, 11349 afex_driver_support))) { 11350 bp->mf_mode = MULTI_FUNCTION_AFEX; 11351 bp->mf_config[vn] = MF_CFG_RD(bp, 11352 func_mf_config[func].config); 11353 } else { 11354 BNX2X_DEV_INFO("can not configure afex mode\n"); 11355 } 11356 break; 11357 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 11358 /* get OV configuration */ 11359 val = MF_CFG_RD(bp, 11360 func_mf_config[FUNC_0].e1hov_tag); 11361 val &= FUNC_MF_CFG_E1HOV_TAG_MASK; 11362 11363 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 11364 bp->mf_mode = MULTI_FUNCTION_SD; 11365 bp->mf_config[vn] = MF_CFG_RD(bp, 11366 func_mf_config[func].config); 11367 } else 11368 BNX2X_DEV_INFO("illegal OV for SD\n"); 11369 break; 11370 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 11371 bp->mf_config[vn] = 0; 11372 break; 11373 default: 11374 /* Unknown configuration: reset mf_config */ 11375 bp->mf_config[vn] = 0; 11376 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val); 11377 } 11378 } 11379 11380 BNX2X_DEV_INFO("%s function mode\n", 11381 IS_MF(bp) ? "multi" : "single"); 11382 11383 switch (bp->mf_mode) { 11384 case MULTI_FUNCTION_SD: 11385 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 11386 FUNC_MF_CFG_E1HOV_TAG_MASK; 11387 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 11388 bp->mf_ov = val; 11389 bp->path_has_ovlan = true; 11390 11391 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n", 11392 func, bp->mf_ov, bp->mf_ov); 11393 } else { 11394 dev_err(&bp->pdev->dev, 11395 "No valid MF OV for func %d, aborting\n", 11396 func); 11397 return -EPERM; 11398 } 11399 break; 11400 case MULTI_FUNCTION_AFEX: 11401 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func); 11402 break; 11403 case MULTI_FUNCTION_SI: 11404 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n", 11405 func); 11406 break; 11407 default: 11408 if (vn) { 11409 dev_err(&bp->pdev->dev, 11410 "VN %d is in a single function mode, aborting\n", 11411 vn); 11412 return -EPERM; 11413 } 11414 break; 11415 } 11416 11417 /* check if other port on the path needs ovlan: 11418 * Since MF configuration is shared between ports 11419 * Possible mixed modes are only 11420 * {SF, SI} {SF, SD} {SD, SF} {SI, SF} 11421 */ 11422 if (CHIP_MODE_IS_4_PORT(bp) && 11423 !bp->path_has_ovlan && 11424 !IS_MF(bp) && 11425 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { 11426 u8 other_port = !BP_PORT(bp); 11427 u8 other_func = BP_PATH(bp) + 2*other_port; 11428 val = MF_CFG_RD(bp, 11429 func_mf_config[other_func].e1hov_tag); 11430 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) 11431 bp->path_has_ovlan = true; 11432 } 11433 } 11434 11435 /* adjust igu_sb_cnt to MF for E1x */ 11436 if (CHIP_IS_E1x(bp) && IS_MF(bp)) 11437 bp->igu_sb_cnt /= E1HVN_MAX; 11438 11439 /* port info */ 11440 bnx2x_get_port_hwinfo(bp); 11441 11442 /* Get MAC addresses */ 11443 bnx2x_get_mac_hwinfo(bp); 11444 11445 bnx2x_get_cnic_info(bp); 11446 11447 return rc; 11448 } 11449 11450 static void bnx2x_read_fwinfo(struct bnx2x *bp) 11451 { 11452 int cnt, i, block_end, rodi; 11453 char vpd_start[BNX2X_VPD_LEN+1]; 11454 char str_id_reg[VENDOR_ID_LEN+1]; 11455 char str_id_cap[VENDOR_ID_LEN+1]; 11456 char *vpd_data; 11457 char *vpd_extended_data = NULL; 11458 u8 len; 11459 11460 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start); 11461 memset(bp->fw_ver, 0, sizeof(bp->fw_ver)); 11462 11463 if (cnt < BNX2X_VPD_LEN) 11464 goto out_not_found; 11465 11466 /* VPD RO tag should be first tag after identifier string, hence 11467 * we should be able to find it in first BNX2X_VPD_LEN chars 11468 */ 11469 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN, 11470 PCI_VPD_LRDT_RO_DATA); 11471 if (i < 0) 11472 goto out_not_found; 11473 11474 block_end = i + PCI_VPD_LRDT_TAG_SIZE + 11475 pci_vpd_lrdt_size(&vpd_start[i]); 11476 11477 i += PCI_VPD_LRDT_TAG_SIZE; 11478 11479 if (block_end > BNX2X_VPD_LEN) { 11480 vpd_extended_data = kmalloc(block_end, GFP_KERNEL); 11481 if (vpd_extended_data == NULL) 11482 goto out_not_found; 11483 11484 /* read rest of vpd image into vpd_extended_data */ 11485 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN); 11486 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN, 11487 block_end - BNX2X_VPD_LEN, 11488 vpd_extended_data + BNX2X_VPD_LEN); 11489 if (cnt < (block_end - BNX2X_VPD_LEN)) 11490 goto out_not_found; 11491 vpd_data = vpd_extended_data; 11492 } else 11493 vpd_data = vpd_start; 11494 11495 /* now vpd_data holds full vpd content in both cases */ 11496 11497 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, 11498 PCI_VPD_RO_KEYWORD_MFR_ID); 11499 if (rodi < 0) 11500 goto out_not_found; 11501 11502 len = pci_vpd_info_field_size(&vpd_data[rodi]); 11503 11504 if (len != VENDOR_ID_LEN) 11505 goto out_not_found; 11506 11507 rodi += PCI_VPD_INFO_FLD_HDR_SIZE; 11508 11509 /* vendor specific info */ 11510 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL); 11511 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL); 11512 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) || 11513 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) { 11514 11515 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, 11516 PCI_VPD_RO_KEYWORD_VENDOR0); 11517 if (rodi >= 0) { 11518 len = pci_vpd_info_field_size(&vpd_data[rodi]); 11519 11520 rodi += PCI_VPD_INFO_FLD_HDR_SIZE; 11521 11522 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) { 11523 memcpy(bp->fw_ver, &vpd_data[rodi], len); 11524 bp->fw_ver[len] = ' '; 11525 } 11526 } 11527 kfree(vpd_extended_data); 11528 return; 11529 } 11530 out_not_found: 11531 kfree(vpd_extended_data); 11532 return; 11533 } 11534 11535 static void bnx2x_set_modes_bitmap(struct bnx2x *bp) 11536 { 11537 u32 flags = 0; 11538 11539 if (CHIP_REV_IS_FPGA(bp)) 11540 SET_FLAGS(flags, MODE_FPGA); 11541 else if (CHIP_REV_IS_EMUL(bp)) 11542 SET_FLAGS(flags, MODE_EMUL); 11543 else 11544 SET_FLAGS(flags, MODE_ASIC); 11545 11546 if (CHIP_MODE_IS_4_PORT(bp)) 11547 SET_FLAGS(flags, MODE_PORT4); 11548 else 11549 SET_FLAGS(flags, MODE_PORT2); 11550 11551 if (CHIP_IS_E2(bp)) 11552 SET_FLAGS(flags, MODE_E2); 11553 else if (CHIP_IS_E3(bp)) { 11554 SET_FLAGS(flags, MODE_E3); 11555 if (CHIP_REV(bp) == CHIP_REV_Ax) 11556 SET_FLAGS(flags, MODE_E3_A0); 11557 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/ 11558 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 11559 } 11560 11561 if (IS_MF(bp)) { 11562 SET_FLAGS(flags, MODE_MF); 11563 switch (bp->mf_mode) { 11564 case MULTI_FUNCTION_SD: 11565 SET_FLAGS(flags, MODE_MF_SD); 11566 break; 11567 case MULTI_FUNCTION_SI: 11568 SET_FLAGS(flags, MODE_MF_SI); 11569 break; 11570 case MULTI_FUNCTION_AFEX: 11571 SET_FLAGS(flags, MODE_MF_AFEX); 11572 break; 11573 } 11574 } else 11575 SET_FLAGS(flags, MODE_SF); 11576 11577 #if defined(__LITTLE_ENDIAN) 11578 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 11579 #else /*(__BIG_ENDIAN)*/ 11580 SET_FLAGS(flags, MODE_BIG_ENDIAN); 11581 #endif 11582 INIT_MODE_FLAGS(bp) = flags; 11583 } 11584 11585 static int bnx2x_init_bp(struct bnx2x *bp) 11586 { 11587 int func; 11588 int rc; 11589 11590 mutex_init(&bp->port.phy_mutex); 11591 mutex_init(&bp->fw_mb_mutex); 11592 spin_lock_init(&bp->stats_lock); 11593 sema_init(&bp->stats_sema, 1); 11594 11595 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task); 11596 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task); 11597 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task); 11598 if (IS_PF(bp)) { 11599 rc = bnx2x_get_hwinfo(bp); 11600 if (rc) 11601 return rc; 11602 } else { 11603 eth_zero_addr(bp->dev->dev_addr); 11604 } 11605 11606 bnx2x_set_modes_bitmap(bp); 11607 11608 rc = bnx2x_alloc_mem_bp(bp); 11609 if (rc) 11610 return rc; 11611 11612 bnx2x_read_fwinfo(bp); 11613 11614 func = BP_FUNC(bp); 11615 11616 /* need to reset chip if undi was active */ 11617 if (IS_PF(bp) && !BP_NOMCP(bp)) { 11618 /* init fw_seq */ 11619 bp->fw_seq = 11620 SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 11621 DRV_MSG_SEQ_NUMBER_MASK; 11622 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); 11623 11624 bnx2x_prev_unload(bp); 11625 } 11626 11627 if (CHIP_REV_IS_FPGA(bp)) 11628 dev_err(&bp->pdev->dev, "FPGA detected\n"); 11629 11630 if (BP_NOMCP(bp) && (func == 0)) 11631 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n"); 11632 11633 bp->disable_tpa = disable_tpa; 11634 bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp); 11635 11636 /* Set TPA flags */ 11637 if (bp->disable_tpa) { 11638 bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG); 11639 bp->dev->features &= ~NETIF_F_LRO; 11640 } else { 11641 bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG); 11642 bp->dev->features |= NETIF_F_LRO; 11643 } 11644 11645 if (CHIP_IS_E1(bp)) 11646 bp->dropless_fc = 0; 11647 else 11648 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp); 11649 11650 bp->mrrs = mrrs; 11651 11652 bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL; 11653 if (IS_VF(bp)) 11654 bp->rx_ring_size = MAX_RX_AVAIL; 11655 11656 /* make sure that the numbers are in the right granularity */ 11657 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR; 11658 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR; 11659 11660 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ; 11661 11662 init_timer(&bp->timer); 11663 bp->timer.expires = jiffies + bp->current_interval; 11664 bp->timer.data = (unsigned long) bp; 11665 bp->timer.function = bnx2x_timer; 11666 11667 if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) && 11668 SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) && 11669 SHMEM2_RD(bp, dcbx_lldp_params_offset) && 11670 SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) { 11671 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON); 11672 bnx2x_dcbx_init_params(bp); 11673 } else { 11674 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF); 11675 } 11676 11677 if (CHIP_IS_E1x(bp)) 11678 bp->cnic_base_cl_id = FP_SB_MAX_E1x; 11679 else 11680 bp->cnic_base_cl_id = FP_SB_MAX_E2; 11681 11682 /* multiple tx priority */ 11683 if (IS_VF(bp)) 11684 bp->max_cos = 1; 11685 else if (CHIP_IS_E1x(bp)) 11686 bp->max_cos = BNX2X_MULTI_TX_COS_E1X; 11687 else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp)) 11688 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0; 11689 else if (CHIP_IS_E3B0(bp)) 11690 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0; 11691 else 11692 BNX2X_ERR("unknown chip %x revision %x\n", 11693 CHIP_NUM(bp), CHIP_REV(bp)); 11694 BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos); 11695 11696 /* We need at least one default status block for slow-path events, 11697 * second status block for the L2 queue, and a third status block for 11698 * CNIC if supported. 11699 */ 11700 if (IS_VF(bp)) 11701 bp->min_msix_vec_cnt = 1; 11702 else if (CNIC_SUPPORT(bp)) 11703 bp->min_msix_vec_cnt = 3; 11704 else /* PF w/o cnic */ 11705 bp->min_msix_vec_cnt = 2; 11706 BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt); 11707 11708 bp->dump_preset_idx = 1; 11709 11710 return rc; 11711 } 11712 11713 /**************************************************************************** 11714 * General service functions 11715 ****************************************************************************/ 11716 11717 /* 11718 * net_device service functions 11719 */ 11720 11721 /* called with rtnl_lock */ 11722 static int bnx2x_open(struct net_device *dev) 11723 { 11724 struct bnx2x *bp = netdev_priv(dev); 11725 int rc; 11726 11727 bp->stats_init = true; 11728 11729 netif_carrier_off(dev); 11730 11731 bnx2x_set_power_state(bp, PCI_D0); 11732 11733 /* If parity had happen during the unload, then attentions 11734 * and/or RECOVERY_IN_PROGRES may still be set. In this case we 11735 * want the first function loaded on the current engine to 11736 * complete the recovery. 11737 * Parity recovery is only relevant for PF driver. 11738 */ 11739 if (IS_PF(bp)) { 11740 int other_engine = BP_PATH(bp) ? 0 : 1; 11741 bool other_load_status, load_status; 11742 bool global = false; 11743 11744 other_load_status = bnx2x_get_load_status(bp, other_engine); 11745 load_status = bnx2x_get_load_status(bp, BP_PATH(bp)); 11746 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) || 11747 bnx2x_chk_parity_attn(bp, &global, true)) { 11748 do { 11749 /* If there are attentions and they are in a 11750 * global blocks, set the GLOBAL_RESET bit 11751 * regardless whether it will be this function 11752 * that will complete the recovery or not. 11753 */ 11754 if (global) 11755 bnx2x_set_reset_global(bp); 11756 11757 /* Only the first function on the current 11758 * engine should try to recover in open. In case 11759 * of attentions in global blocks only the first 11760 * in the chip should try to recover. 11761 */ 11762 if ((!load_status && 11763 (!global || !other_load_status)) && 11764 bnx2x_trylock_leader_lock(bp) && 11765 !bnx2x_leader_reset(bp)) { 11766 netdev_info(bp->dev, 11767 "Recovered in open\n"); 11768 break; 11769 } 11770 11771 /* recovery has failed... */ 11772 bnx2x_set_power_state(bp, PCI_D3hot); 11773 bp->recovery_state = BNX2X_RECOVERY_FAILED; 11774 11775 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n" 11776 "If you still see this message after a few retries then power cycle is required.\n"); 11777 11778 return -EAGAIN; 11779 } while (0); 11780 } 11781 } 11782 11783 bp->recovery_state = BNX2X_RECOVERY_DONE; 11784 rc = bnx2x_nic_load(bp, LOAD_OPEN); 11785 if (rc) 11786 return rc; 11787 return bnx2x_open_epilog(bp); 11788 } 11789 11790 /* called with rtnl_lock */ 11791 static int bnx2x_close(struct net_device *dev) 11792 { 11793 struct bnx2x *bp = netdev_priv(dev); 11794 11795 /* Unload the driver, release IRQs */ 11796 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 11797 11798 return 0; 11799 } 11800 11801 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp, 11802 struct bnx2x_mcast_ramrod_params *p) 11803 { 11804 int mc_count = netdev_mc_count(bp->dev); 11805 struct bnx2x_mcast_list_elem *mc_mac = 11806 kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC); 11807 struct netdev_hw_addr *ha; 11808 11809 if (!mc_mac) 11810 return -ENOMEM; 11811 11812 INIT_LIST_HEAD(&p->mcast_list); 11813 11814 netdev_for_each_mc_addr(ha, bp->dev) { 11815 mc_mac->mac = bnx2x_mc_addr(ha); 11816 list_add_tail(&mc_mac->link, &p->mcast_list); 11817 mc_mac++; 11818 } 11819 11820 p->mcast_list_len = mc_count; 11821 11822 return 0; 11823 } 11824 11825 static void bnx2x_free_mcast_macs_list( 11826 struct bnx2x_mcast_ramrod_params *p) 11827 { 11828 struct bnx2x_mcast_list_elem *mc_mac = 11829 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem, 11830 link); 11831 11832 WARN_ON(!mc_mac); 11833 kfree(mc_mac); 11834 } 11835 11836 /** 11837 * bnx2x_set_uc_list - configure a new unicast MACs list. 11838 * 11839 * @bp: driver handle 11840 * 11841 * We will use zero (0) as a MAC type for these MACs. 11842 */ 11843 static int bnx2x_set_uc_list(struct bnx2x *bp) 11844 { 11845 int rc; 11846 struct net_device *dev = bp->dev; 11847 struct netdev_hw_addr *ha; 11848 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; 11849 unsigned long ramrod_flags = 0; 11850 11851 /* First schedule a cleanup up of old configuration */ 11852 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false); 11853 if (rc < 0) { 11854 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc); 11855 return rc; 11856 } 11857 11858 netdev_for_each_uc_addr(ha, dev) { 11859 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true, 11860 BNX2X_UC_LIST_MAC, &ramrod_flags); 11861 if (rc == -EEXIST) { 11862 DP(BNX2X_MSG_SP, 11863 "Failed to schedule ADD operations: %d\n", rc); 11864 /* do not treat adding same MAC as error */ 11865 rc = 0; 11866 11867 } else if (rc < 0) { 11868 11869 BNX2X_ERR("Failed to schedule ADD operations: %d\n", 11870 rc); 11871 return rc; 11872 } 11873 } 11874 11875 /* Execute the pending commands */ 11876 __set_bit(RAMROD_CONT, &ramrod_flags); 11877 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */, 11878 BNX2X_UC_LIST_MAC, &ramrod_flags); 11879 } 11880 11881 static int bnx2x_set_mc_list(struct bnx2x *bp) 11882 { 11883 struct net_device *dev = bp->dev; 11884 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 11885 int rc = 0; 11886 11887 rparam.mcast_obj = &bp->mcast_obj; 11888 11889 /* first, clear all configured multicast MACs */ 11890 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 11891 if (rc < 0) { 11892 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc); 11893 return rc; 11894 } 11895 11896 /* then, configure a new MACs list */ 11897 if (netdev_mc_count(dev)) { 11898 rc = bnx2x_init_mcast_macs_list(bp, &rparam); 11899 if (rc) { 11900 BNX2X_ERR("Failed to create multicast MACs list: %d\n", 11901 rc); 11902 return rc; 11903 } 11904 11905 /* Now add the new MACs */ 11906 rc = bnx2x_config_mcast(bp, &rparam, 11907 BNX2X_MCAST_CMD_ADD); 11908 if (rc < 0) 11909 BNX2X_ERR("Failed to set a new multicast configuration: %d\n", 11910 rc); 11911 11912 bnx2x_free_mcast_macs_list(&rparam); 11913 } 11914 11915 return rc; 11916 } 11917 11918 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */ 11919 void bnx2x_set_rx_mode(struct net_device *dev) 11920 { 11921 struct bnx2x *bp = netdev_priv(dev); 11922 11923 if (bp->state != BNX2X_STATE_OPEN) { 11924 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state); 11925 return; 11926 } else { 11927 /* Schedule an SP task to handle rest of change */ 11928 DP(NETIF_MSG_IFUP, "Scheduling an Rx mode change\n"); 11929 smp_mb__before_clear_bit(); 11930 set_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state); 11931 smp_mb__after_clear_bit(); 11932 schedule_delayed_work(&bp->sp_rtnl_task, 0); 11933 } 11934 } 11935 11936 void bnx2x_set_rx_mode_inner(struct bnx2x *bp) 11937 { 11938 u32 rx_mode = BNX2X_RX_MODE_NORMAL; 11939 11940 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags); 11941 11942 netif_addr_lock_bh(bp->dev); 11943 11944 if (bp->dev->flags & IFF_PROMISC) { 11945 rx_mode = BNX2X_RX_MODE_PROMISC; 11946 } else if ((bp->dev->flags & IFF_ALLMULTI) || 11947 ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) && 11948 CHIP_IS_E1(bp))) { 11949 rx_mode = BNX2X_RX_MODE_ALLMULTI; 11950 } else { 11951 if (IS_PF(bp)) { 11952 /* some multicasts */ 11953 if (bnx2x_set_mc_list(bp) < 0) 11954 rx_mode = BNX2X_RX_MODE_ALLMULTI; 11955 11956 /* release bh lock, as bnx2x_set_uc_list might sleep */ 11957 netif_addr_unlock_bh(bp->dev); 11958 if (bnx2x_set_uc_list(bp) < 0) 11959 rx_mode = BNX2X_RX_MODE_PROMISC; 11960 netif_addr_lock_bh(bp->dev); 11961 } else { 11962 /* configuring mcast to a vf involves sleeping (when we 11963 * wait for the pf's response). 11964 */ 11965 smp_mb__before_clear_bit(); 11966 set_bit(BNX2X_SP_RTNL_VFPF_MCAST, 11967 &bp->sp_rtnl_state); 11968 smp_mb__after_clear_bit(); 11969 schedule_delayed_work(&bp->sp_rtnl_task, 0); 11970 } 11971 } 11972 11973 bp->rx_mode = rx_mode; 11974 /* handle ISCSI SD mode */ 11975 if (IS_MF_ISCSI_SD(bp)) 11976 bp->rx_mode = BNX2X_RX_MODE_NONE; 11977 11978 /* Schedule the rx_mode command */ 11979 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) { 11980 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); 11981 netif_addr_unlock_bh(bp->dev); 11982 return; 11983 } 11984 11985 if (IS_PF(bp)) { 11986 bnx2x_set_storm_rx_mode(bp); 11987 netif_addr_unlock_bh(bp->dev); 11988 } else { 11989 /* VF will need to request the PF to make this change, and so 11990 * the VF needs to release the bottom-half lock prior to the 11991 * request (as it will likely require sleep on the VF side) 11992 */ 11993 netif_addr_unlock_bh(bp->dev); 11994 bnx2x_vfpf_storm_rx_mode(bp); 11995 } 11996 } 11997 11998 /* called with rtnl_lock */ 11999 static int bnx2x_mdio_read(struct net_device *netdev, int prtad, 12000 int devad, u16 addr) 12001 { 12002 struct bnx2x *bp = netdev_priv(netdev); 12003 u16 value; 12004 int rc; 12005 12006 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n", 12007 prtad, devad, addr); 12008 12009 /* The HW expects different devad if CL22 is used */ 12010 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; 12011 12012 bnx2x_acquire_phy_lock(bp); 12013 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value); 12014 bnx2x_release_phy_lock(bp); 12015 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc); 12016 12017 if (!rc) 12018 rc = value; 12019 return rc; 12020 } 12021 12022 /* called with rtnl_lock */ 12023 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad, 12024 u16 addr, u16 value) 12025 { 12026 struct bnx2x *bp = netdev_priv(netdev); 12027 int rc; 12028 12029 DP(NETIF_MSG_LINK, 12030 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n", 12031 prtad, devad, addr, value); 12032 12033 /* The HW expects different devad if CL22 is used */ 12034 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; 12035 12036 bnx2x_acquire_phy_lock(bp); 12037 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value); 12038 bnx2x_release_phy_lock(bp); 12039 return rc; 12040 } 12041 12042 /* called with rtnl_lock */ 12043 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 12044 { 12045 struct bnx2x *bp = netdev_priv(dev); 12046 struct mii_ioctl_data *mdio = if_mii(ifr); 12047 12048 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n", 12049 mdio->phy_id, mdio->reg_num, mdio->val_in); 12050 12051 if (!netif_running(dev)) 12052 return -EAGAIN; 12053 12054 return mdio_mii_ioctl(&bp->mdio, mdio, cmd); 12055 } 12056 12057 #ifdef CONFIG_NET_POLL_CONTROLLER 12058 static void poll_bnx2x(struct net_device *dev) 12059 { 12060 struct bnx2x *bp = netdev_priv(dev); 12061 int i; 12062 12063 for_each_eth_queue(bp, i) { 12064 struct bnx2x_fastpath *fp = &bp->fp[i]; 12065 napi_schedule(&bnx2x_fp(bp, fp->index, napi)); 12066 } 12067 } 12068 #endif 12069 12070 static int bnx2x_validate_addr(struct net_device *dev) 12071 { 12072 struct bnx2x *bp = netdev_priv(dev); 12073 12074 /* query the bulletin board for mac address configured by the PF */ 12075 if (IS_VF(bp)) 12076 bnx2x_sample_bulletin(bp); 12077 12078 if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) { 12079 BNX2X_ERR("Non-valid Ethernet address\n"); 12080 return -EADDRNOTAVAIL; 12081 } 12082 return 0; 12083 } 12084 12085 static const struct net_device_ops bnx2x_netdev_ops = { 12086 .ndo_open = bnx2x_open, 12087 .ndo_stop = bnx2x_close, 12088 .ndo_start_xmit = bnx2x_start_xmit, 12089 .ndo_select_queue = bnx2x_select_queue, 12090 .ndo_set_rx_mode = bnx2x_set_rx_mode, 12091 .ndo_set_mac_address = bnx2x_change_mac_addr, 12092 .ndo_validate_addr = bnx2x_validate_addr, 12093 .ndo_do_ioctl = bnx2x_ioctl, 12094 .ndo_change_mtu = bnx2x_change_mtu, 12095 .ndo_fix_features = bnx2x_fix_features, 12096 .ndo_set_features = bnx2x_set_features, 12097 .ndo_tx_timeout = bnx2x_tx_timeout, 12098 #ifdef CONFIG_NET_POLL_CONTROLLER 12099 .ndo_poll_controller = poll_bnx2x, 12100 #endif 12101 .ndo_setup_tc = bnx2x_setup_tc, 12102 #ifdef CONFIG_BNX2X_SRIOV 12103 .ndo_set_vf_mac = bnx2x_set_vf_mac, 12104 .ndo_set_vf_vlan = bnx2x_set_vf_vlan, 12105 .ndo_get_vf_config = bnx2x_get_vf_config, 12106 #endif 12107 #ifdef NETDEV_FCOE_WWNN 12108 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn, 12109 #endif 12110 12111 #ifdef CONFIG_NET_RX_BUSY_POLL 12112 .ndo_busy_poll = bnx2x_low_latency_recv, 12113 #endif 12114 }; 12115 12116 static int bnx2x_set_coherency_mask(struct bnx2x *bp) 12117 { 12118 struct device *dev = &bp->pdev->dev; 12119 12120 if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) { 12121 if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) { 12122 dev_err(dev, "dma_set_coherent_mask failed, aborting\n"); 12123 return -EIO; 12124 } 12125 } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) { 12126 dev_err(dev, "System does not support DMA, aborting\n"); 12127 return -EIO; 12128 } 12129 12130 return 0; 12131 } 12132 12133 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev, 12134 struct net_device *dev, unsigned long board_type) 12135 { 12136 int rc; 12137 u32 pci_cfg_dword; 12138 bool chip_is_e1x = (board_type == BCM57710 || 12139 board_type == BCM57711 || 12140 board_type == BCM57711E); 12141 12142 SET_NETDEV_DEV(dev, &pdev->dev); 12143 12144 bp->dev = dev; 12145 bp->pdev = pdev; 12146 12147 rc = pci_enable_device(pdev); 12148 if (rc) { 12149 dev_err(&bp->pdev->dev, 12150 "Cannot enable PCI device, aborting\n"); 12151 goto err_out; 12152 } 12153 12154 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 12155 dev_err(&bp->pdev->dev, 12156 "Cannot find PCI device base address, aborting\n"); 12157 rc = -ENODEV; 12158 goto err_out_disable; 12159 } 12160 12161 if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) { 12162 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n"); 12163 rc = -ENODEV; 12164 goto err_out_disable; 12165 } 12166 12167 pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword); 12168 if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) == 12169 PCICFG_REVESION_ID_ERROR_VAL) { 12170 pr_err("PCI device error, probably due to fan failure, aborting\n"); 12171 rc = -ENODEV; 12172 goto err_out_disable; 12173 } 12174 12175 if (atomic_read(&pdev->enable_cnt) == 1) { 12176 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 12177 if (rc) { 12178 dev_err(&bp->pdev->dev, 12179 "Cannot obtain PCI resources, aborting\n"); 12180 goto err_out_disable; 12181 } 12182 12183 pci_set_master(pdev); 12184 pci_save_state(pdev); 12185 } 12186 12187 if (IS_PF(bp)) { 12188 if (!pdev->pm_cap) { 12189 dev_err(&bp->pdev->dev, 12190 "Cannot find power management capability, aborting\n"); 12191 rc = -EIO; 12192 goto err_out_release; 12193 } 12194 } 12195 12196 if (!pci_is_pcie(pdev)) { 12197 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n"); 12198 rc = -EIO; 12199 goto err_out_release; 12200 } 12201 12202 rc = bnx2x_set_coherency_mask(bp); 12203 if (rc) 12204 goto err_out_release; 12205 12206 dev->mem_start = pci_resource_start(pdev, 0); 12207 dev->base_addr = dev->mem_start; 12208 dev->mem_end = pci_resource_end(pdev, 0); 12209 12210 dev->irq = pdev->irq; 12211 12212 bp->regview = pci_ioremap_bar(pdev, 0); 12213 if (!bp->regview) { 12214 dev_err(&bp->pdev->dev, 12215 "Cannot map register space, aborting\n"); 12216 rc = -ENOMEM; 12217 goto err_out_release; 12218 } 12219 12220 /* In E1/E1H use pci device function given by kernel. 12221 * In E2/E3 read physical function from ME register since these chips 12222 * support Physical Device Assignment where kernel BDF maybe arbitrary 12223 * (depending on hypervisor). 12224 */ 12225 if (chip_is_e1x) { 12226 bp->pf_num = PCI_FUNC(pdev->devfn); 12227 } else { 12228 /* chip is E2/3*/ 12229 pci_read_config_dword(bp->pdev, 12230 PCICFG_ME_REGISTER, &pci_cfg_dword); 12231 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >> 12232 ME_REG_ABS_PF_NUM_SHIFT); 12233 } 12234 BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num); 12235 12236 /* clean indirect addresses */ 12237 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 12238 PCICFG_VENDOR_ID_OFFSET); 12239 /* 12240 * Clean the following indirect addresses for all functions since it 12241 * is not used by the driver. 12242 */ 12243 if (IS_PF(bp)) { 12244 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0); 12245 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0); 12246 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0); 12247 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0); 12248 12249 if (chip_is_e1x) { 12250 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0); 12251 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0); 12252 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0); 12253 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0); 12254 } 12255 12256 /* Enable internal target-read (in case we are probed after PF 12257 * FLR). Must be done prior to any BAR read access. Only for 12258 * 57712 and up 12259 */ 12260 if (!chip_is_e1x) 12261 REG_WR(bp, 12262 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 12263 } 12264 12265 dev->watchdog_timeo = TX_TIMEOUT; 12266 12267 dev->netdev_ops = &bnx2x_netdev_ops; 12268 bnx2x_set_ethtool_ops(bp, dev); 12269 12270 dev->priv_flags |= IFF_UNICAST_FLT; 12271 12272 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 12273 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | 12274 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | 12275 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX; 12276 if (!CHIP_IS_E1x(bp)) { 12277 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL; 12278 dev->hw_enc_features = 12279 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 12280 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | 12281 NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL; 12282 } 12283 12284 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 12285 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA; 12286 12287 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX; 12288 dev->features |= NETIF_F_HIGHDMA; 12289 12290 /* Add Loopback capability to the device */ 12291 dev->hw_features |= NETIF_F_LOOPBACK; 12292 12293 #ifdef BCM_DCBNL 12294 dev->dcbnl_ops = &bnx2x_dcbnl_ops; 12295 #endif 12296 12297 /* get_port_hwinfo() will set prtad and mmds properly */ 12298 bp->mdio.prtad = MDIO_PRTAD_NONE; 12299 bp->mdio.mmds = 0; 12300 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22; 12301 bp->mdio.dev = dev; 12302 bp->mdio.mdio_read = bnx2x_mdio_read; 12303 bp->mdio.mdio_write = bnx2x_mdio_write; 12304 12305 return 0; 12306 12307 err_out_release: 12308 if (atomic_read(&pdev->enable_cnt) == 1) 12309 pci_release_regions(pdev); 12310 12311 err_out_disable: 12312 pci_disable_device(pdev); 12313 pci_set_drvdata(pdev, NULL); 12314 12315 err_out: 12316 return rc; 12317 } 12318 12319 static void bnx2x_get_pcie_width_speed(struct bnx2x *bp, int *width, 12320 enum bnx2x_pci_bus_speed *speed) 12321 { 12322 u32 link_speed, val = 0; 12323 12324 pci_read_config_dword(bp->pdev, PCICFG_LINK_CONTROL, &val); 12325 *width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT; 12326 12327 link_speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT; 12328 12329 switch (link_speed) { 12330 case 3: 12331 *speed = BNX2X_PCI_LINK_SPEED_8000; 12332 break; 12333 case 2: 12334 *speed = BNX2X_PCI_LINK_SPEED_5000; 12335 break; 12336 default: 12337 *speed = BNX2X_PCI_LINK_SPEED_2500; 12338 } 12339 } 12340 12341 static int bnx2x_check_firmware(struct bnx2x *bp) 12342 { 12343 const struct firmware *firmware = bp->firmware; 12344 struct bnx2x_fw_file_hdr *fw_hdr; 12345 struct bnx2x_fw_file_section *sections; 12346 u32 offset, len, num_ops; 12347 __be16 *ops_offsets; 12348 int i; 12349 const u8 *fw_ver; 12350 12351 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) { 12352 BNX2X_ERR("Wrong FW size\n"); 12353 return -EINVAL; 12354 } 12355 12356 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data; 12357 sections = (struct bnx2x_fw_file_section *)fw_hdr; 12358 12359 /* Make sure none of the offsets and sizes make us read beyond 12360 * the end of the firmware data */ 12361 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) { 12362 offset = be32_to_cpu(sections[i].offset); 12363 len = be32_to_cpu(sections[i].len); 12364 if (offset + len > firmware->size) { 12365 BNX2X_ERR("Section %d length is out of bounds\n", i); 12366 return -EINVAL; 12367 } 12368 } 12369 12370 /* Likewise for the init_ops offsets */ 12371 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset); 12372 ops_offsets = (__force __be16 *)(firmware->data + offset); 12373 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op); 12374 12375 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) { 12376 if (be16_to_cpu(ops_offsets[i]) > num_ops) { 12377 BNX2X_ERR("Section offset %d is out of bounds\n", i); 12378 return -EINVAL; 12379 } 12380 } 12381 12382 /* Check FW version */ 12383 offset = be32_to_cpu(fw_hdr->fw_version.offset); 12384 fw_ver = firmware->data + offset; 12385 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) || 12386 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) || 12387 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) || 12388 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) { 12389 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n", 12390 fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3], 12391 BCM_5710_FW_MAJOR_VERSION, 12392 BCM_5710_FW_MINOR_VERSION, 12393 BCM_5710_FW_REVISION_VERSION, 12394 BCM_5710_FW_ENGINEERING_VERSION); 12395 return -EINVAL; 12396 } 12397 12398 return 0; 12399 } 12400 12401 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n) 12402 { 12403 const __be32 *source = (const __be32 *)_source; 12404 u32 *target = (u32 *)_target; 12405 u32 i; 12406 12407 for (i = 0; i < n/4; i++) 12408 target[i] = be32_to_cpu(source[i]); 12409 } 12410 12411 /* 12412 Ops array is stored in the following format: 12413 {op(8bit), offset(24bit, big endian), data(32bit, big endian)} 12414 */ 12415 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n) 12416 { 12417 const __be32 *source = (const __be32 *)_source; 12418 struct raw_op *target = (struct raw_op *)_target; 12419 u32 i, j, tmp; 12420 12421 for (i = 0, j = 0; i < n/8; i++, j += 2) { 12422 tmp = be32_to_cpu(source[j]); 12423 target[i].op = (tmp >> 24) & 0xff; 12424 target[i].offset = tmp & 0xffffff; 12425 target[i].raw_data = be32_to_cpu(source[j + 1]); 12426 } 12427 } 12428 12429 /* IRO array is stored in the following format: 12430 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) } 12431 */ 12432 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n) 12433 { 12434 const __be32 *source = (const __be32 *)_source; 12435 struct iro *target = (struct iro *)_target; 12436 u32 i, j, tmp; 12437 12438 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) { 12439 target[i].base = be32_to_cpu(source[j]); 12440 j++; 12441 tmp = be32_to_cpu(source[j]); 12442 target[i].m1 = (tmp >> 16) & 0xffff; 12443 target[i].m2 = tmp & 0xffff; 12444 j++; 12445 tmp = be32_to_cpu(source[j]); 12446 target[i].m3 = (tmp >> 16) & 0xffff; 12447 target[i].size = tmp & 0xffff; 12448 j++; 12449 } 12450 } 12451 12452 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n) 12453 { 12454 const __be16 *source = (const __be16 *)_source; 12455 u16 *target = (u16 *)_target; 12456 u32 i; 12457 12458 for (i = 0; i < n/2; i++) 12459 target[i] = be16_to_cpu(source[i]); 12460 } 12461 12462 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \ 12463 do { \ 12464 u32 len = be32_to_cpu(fw_hdr->arr.len); \ 12465 bp->arr = kmalloc(len, GFP_KERNEL); \ 12466 if (!bp->arr) \ 12467 goto lbl; \ 12468 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \ 12469 (u8 *)bp->arr, len); \ 12470 } while (0) 12471 12472 static int bnx2x_init_firmware(struct bnx2x *bp) 12473 { 12474 const char *fw_file_name; 12475 struct bnx2x_fw_file_hdr *fw_hdr; 12476 int rc; 12477 12478 if (bp->firmware) 12479 return 0; 12480 12481 if (CHIP_IS_E1(bp)) 12482 fw_file_name = FW_FILE_NAME_E1; 12483 else if (CHIP_IS_E1H(bp)) 12484 fw_file_name = FW_FILE_NAME_E1H; 12485 else if (!CHIP_IS_E1x(bp)) 12486 fw_file_name = FW_FILE_NAME_E2; 12487 else { 12488 BNX2X_ERR("Unsupported chip revision\n"); 12489 return -EINVAL; 12490 } 12491 BNX2X_DEV_INFO("Loading %s\n", fw_file_name); 12492 12493 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev); 12494 if (rc) { 12495 BNX2X_ERR("Can't load firmware file %s\n", 12496 fw_file_name); 12497 goto request_firmware_exit; 12498 } 12499 12500 rc = bnx2x_check_firmware(bp); 12501 if (rc) { 12502 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name); 12503 goto request_firmware_exit; 12504 } 12505 12506 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data; 12507 12508 /* Initialize the pointers to the init arrays */ 12509 /* Blob */ 12510 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n); 12511 12512 /* Opcodes */ 12513 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops); 12514 12515 /* Offsets */ 12516 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err, 12517 be16_to_cpu_n); 12518 12519 /* STORMs firmware */ 12520 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 12521 be32_to_cpu(fw_hdr->tsem_int_table_data.offset); 12522 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data + 12523 be32_to_cpu(fw_hdr->tsem_pram_data.offset); 12524 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data + 12525 be32_to_cpu(fw_hdr->usem_int_table_data.offset); 12526 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data + 12527 be32_to_cpu(fw_hdr->usem_pram_data.offset); 12528 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 12529 be32_to_cpu(fw_hdr->xsem_int_table_data.offset); 12530 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data + 12531 be32_to_cpu(fw_hdr->xsem_pram_data.offset); 12532 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 12533 be32_to_cpu(fw_hdr->csem_int_table_data.offset); 12534 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data + 12535 be32_to_cpu(fw_hdr->csem_pram_data.offset); 12536 /* IRO */ 12537 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro); 12538 12539 return 0; 12540 12541 iro_alloc_err: 12542 kfree(bp->init_ops_offsets); 12543 init_offsets_alloc_err: 12544 kfree(bp->init_ops); 12545 init_ops_alloc_err: 12546 kfree(bp->init_data); 12547 request_firmware_exit: 12548 release_firmware(bp->firmware); 12549 bp->firmware = NULL; 12550 12551 return rc; 12552 } 12553 12554 static void bnx2x_release_firmware(struct bnx2x *bp) 12555 { 12556 kfree(bp->init_ops_offsets); 12557 kfree(bp->init_ops); 12558 kfree(bp->init_data); 12559 release_firmware(bp->firmware); 12560 bp->firmware = NULL; 12561 } 12562 12563 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = { 12564 .init_hw_cmn_chip = bnx2x_init_hw_common_chip, 12565 .init_hw_cmn = bnx2x_init_hw_common, 12566 .init_hw_port = bnx2x_init_hw_port, 12567 .init_hw_func = bnx2x_init_hw_func, 12568 12569 .reset_hw_cmn = bnx2x_reset_common, 12570 .reset_hw_port = bnx2x_reset_port, 12571 .reset_hw_func = bnx2x_reset_func, 12572 12573 .gunzip_init = bnx2x_gunzip_init, 12574 .gunzip_end = bnx2x_gunzip_end, 12575 12576 .init_fw = bnx2x_init_firmware, 12577 .release_fw = bnx2x_release_firmware, 12578 }; 12579 12580 void bnx2x__init_func_obj(struct bnx2x *bp) 12581 { 12582 /* Prepare DMAE related driver resources */ 12583 bnx2x_setup_dmae(bp); 12584 12585 bnx2x_init_func_obj(bp, &bp->func_obj, 12586 bnx2x_sp(bp, func_rdata), 12587 bnx2x_sp_mapping(bp, func_rdata), 12588 bnx2x_sp(bp, func_afex_rdata), 12589 bnx2x_sp_mapping(bp, func_afex_rdata), 12590 &bnx2x_func_sp_drv); 12591 } 12592 12593 /* must be called after sriov-enable */ 12594 static int bnx2x_set_qm_cid_count(struct bnx2x *bp) 12595 { 12596 int cid_count = BNX2X_L2_MAX_CID(bp); 12597 12598 if (IS_SRIOV(bp)) 12599 cid_count += BNX2X_VF_CIDS; 12600 12601 if (CNIC_SUPPORT(bp)) 12602 cid_count += CNIC_CID_MAX; 12603 12604 return roundup(cid_count, QM_CID_ROUND); 12605 } 12606 12607 /** 12608 * bnx2x_get_num_none_def_sbs - return the number of none default SBs 12609 * 12610 * @dev: pci device 12611 * 12612 */ 12613 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt) 12614 { 12615 int index; 12616 u16 control = 0; 12617 12618 /* 12619 * If MSI-X is not supported - return number of SBs needed to support 12620 * one fast path queue: one FP queue + SB for CNIC 12621 */ 12622 if (!pdev->msix_cap) { 12623 dev_info(&pdev->dev, "no msix capability found\n"); 12624 return 1 + cnic_cnt; 12625 } 12626 dev_info(&pdev->dev, "msix capability found\n"); 12627 12628 /* 12629 * The value in the PCI configuration space is the index of the last 12630 * entry, namely one less than the actual size of the table, which is 12631 * exactly what we want to return from this function: number of all SBs 12632 * without the default SB. 12633 * For VFs there is no default SB, then we return (index+1). 12634 */ 12635 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSI_FLAGS, &control); 12636 12637 index = control & PCI_MSIX_FLAGS_QSIZE; 12638 12639 return index; 12640 } 12641 12642 static int set_max_cos_est(int chip_id) 12643 { 12644 switch (chip_id) { 12645 case BCM57710: 12646 case BCM57711: 12647 case BCM57711E: 12648 return BNX2X_MULTI_TX_COS_E1X; 12649 case BCM57712: 12650 case BCM57712_MF: 12651 return BNX2X_MULTI_TX_COS_E2_E3A0; 12652 case BCM57800: 12653 case BCM57800_MF: 12654 case BCM57810: 12655 case BCM57810_MF: 12656 case BCM57840_4_10: 12657 case BCM57840_2_20: 12658 case BCM57840_O: 12659 case BCM57840_MFO: 12660 case BCM57840_MF: 12661 case BCM57811: 12662 case BCM57811_MF: 12663 return BNX2X_MULTI_TX_COS_E3B0; 12664 case BCM57712_VF: 12665 case BCM57800_VF: 12666 case BCM57810_VF: 12667 case BCM57840_VF: 12668 case BCM57811_VF: 12669 return 1; 12670 default: 12671 pr_err("Unknown board_type (%d), aborting\n", chip_id); 12672 return -ENODEV; 12673 } 12674 } 12675 12676 static int set_is_vf(int chip_id) 12677 { 12678 switch (chip_id) { 12679 case BCM57712_VF: 12680 case BCM57800_VF: 12681 case BCM57810_VF: 12682 case BCM57840_VF: 12683 case BCM57811_VF: 12684 return true; 12685 default: 12686 return false; 12687 } 12688 } 12689 12690 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev); 12691 12692 static int bnx2x_init_one(struct pci_dev *pdev, 12693 const struct pci_device_id *ent) 12694 { 12695 struct net_device *dev = NULL; 12696 struct bnx2x *bp; 12697 int pcie_width; 12698 enum bnx2x_pci_bus_speed pcie_speed; 12699 int rc, max_non_def_sbs; 12700 int rx_count, tx_count, rss_count, doorbell_size; 12701 int max_cos_est; 12702 bool is_vf; 12703 int cnic_cnt; 12704 12705 /* An estimated maximum supported CoS number according to the chip 12706 * version. 12707 * We will try to roughly estimate the maximum number of CoSes this chip 12708 * may support in order to minimize the memory allocated for Tx 12709 * netdev_queue's. This number will be accurately calculated during the 12710 * initialization of bp->max_cos based on the chip versions AND chip 12711 * revision in the bnx2x_init_bp(). 12712 */ 12713 max_cos_est = set_max_cos_est(ent->driver_data); 12714 if (max_cos_est < 0) 12715 return max_cos_est; 12716 is_vf = set_is_vf(ent->driver_data); 12717 cnic_cnt = is_vf ? 0 : 1; 12718 12719 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt); 12720 12721 /* add another SB for VF as it has no default SB */ 12722 max_non_def_sbs += is_vf ? 1 : 0; 12723 12724 /* Maximum number of RSS queues: one IGU SB goes to CNIC */ 12725 rss_count = max_non_def_sbs - cnic_cnt; 12726 12727 if (rss_count < 1) 12728 return -EINVAL; 12729 12730 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */ 12731 rx_count = rss_count + cnic_cnt; 12732 12733 /* Maximum number of netdev Tx queues: 12734 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2 12735 */ 12736 tx_count = rss_count * max_cos_est + cnic_cnt; 12737 12738 /* dev zeroed in init_etherdev */ 12739 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count); 12740 if (!dev) 12741 return -ENOMEM; 12742 12743 bp = netdev_priv(dev); 12744 12745 bp->flags = 0; 12746 if (is_vf) 12747 bp->flags |= IS_VF_FLAG; 12748 12749 bp->igu_sb_cnt = max_non_def_sbs; 12750 bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM; 12751 bp->msg_enable = debug; 12752 bp->cnic_support = cnic_cnt; 12753 bp->cnic_probe = bnx2x_cnic_probe; 12754 12755 pci_set_drvdata(pdev, dev); 12756 12757 rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data); 12758 if (rc < 0) { 12759 free_netdev(dev); 12760 return rc; 12761 } 12762 12763 BNX2X_DEV_INFO("This is a %s function\n", 12764 IS_PF(bp) ? "physical" : "virtual"); 12765 BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off"); 12766 BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs); 12767 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n", 12768 tx_count, rx_count); 12769 12770 rc = bnx2x_init_bp(bp); 12771 if (rc) 12772 goto init_one_exit; 12773 12774 /* Map doorbells here as we need the real value of bp->max_cos which 12775 * is initialized in bnx2x_init_bp() to determine the number of 12776 * l2 connections. 12777 */ 12778 if (IS_VF(bp)) { 12779 bp->doorbells = bnx2x_vf_doorbells(bp); 12780 rc = bnx2x_vf_pci_alloc(bp); 12781 if (rc) 12782 goto init_one_exit; 12783 } else { 12784 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT); 12785 if (doorbell_size > pci_resource_len(pdev, 2)) { 12786 dev_err(&bp->pdev->dev, 12787 "Cannot map doorbells, bar size too small, aborting\n"); 12788 rc = -ENOMEM; 12789 goto init_one_exit; 12790 } 12791 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2), 12792 doorbell_size); 12793 } 12794 if (!bp->doorbells) { 12795 dev_err(&bp->pdev->dev, 12796 "Cannot map doorbell space, aborting\n"); 12797 rc = -ENOMEM; 12798 goto init_one_exit; 12799 } 12800 12801 if (IS_VF(bp)) { 12802 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count); 12803 if (rc) 12804 goto init_one_exit; 12805 } 12806 12807 /* Enable SRIOV if capability found in configuration space */ 12808 rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS); 12809 if (rc) 12810 goto init_one_exit; 12811 12812 /* calc qm_cid_count */ 12813 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp); 12814 BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count); 12815 12816 /* disable FCOE L2 queue for E1x*/ 12817 if (CHIP_IS_E1x(bp)) 12818 bp->flags |= NO_FCOE_FLAG; 12819 12820 /* Set bp->num_queues for MSI-X mode*/ 12821 bnx2x_set_num_queues(bp); 12822 12823 /* Configure interrupt mode: try to enable MSI-X/MSI if 12824 * needed. 12825 */ 12826 rc = bnx2x_set_int_mode(bp); 12827 if (rc) { 12828 dev_err(&pdev->dev, "Cannot set interrupts\n"); 12829 goto init_one_exit; 12830 } 12831 BNX2X_DEV_INFO("set interrupts successfully\n"); 12832 12833 /* register the net device */ 12834 rc = register_netdev(dev); 12835 if (rc) { 12836 dev_err(&pdev->dev, "Cannot register net device\n"); 12837 goto init_one_exit; 12838 } 12839 BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name); 12840 12841 if (!NO_FCOE(bp)) { 12842 /* Add storage MAC address */ 12843 rtnl_lock(); 12844 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); 12845 rtnl_unlock(); 12846 } 12847 12848 bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed); 12849 BNX2X_DEV_INFO("got pcie width %d and speed %d\n", 12850 pcie_width, pcie_speed); 12851 12852 BNX2X_DEV_INFO("%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n", 12853 board_info[ent->driver_data].name, 12854 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4), 12855 pcie_width, 12856 pcie_speed == BNX2X_PCI_LINK_SPEED_2500 ? "2.5GHz" : 12857 pcie_speed == BNX2X_PCI_LINK_SPEED_5000 ? "5.0GHz" : 12858 pcie_speed == BNX2X_PCI_LINK_SPEED_8000 ? "8.0GHz" : 12859 "Unknown", 12860 dev->base_addr, bp->pdev->irq, dev->dev_addr); 12861 12862 return 0; 12863 12864 init_one_exit: 12865 if (bp->regview) 12866 iounmap(bp->regview); 12867 12868 if (IS_PF(bp) && bp->doorbells) 12869 iounmap(bp->doorbells); 12870 12871 free_netdev(dev); 12872 12873 if (atomic_read(&pdev->enable_cnt) == 1) 12874 pci_release_regions(pdev); 12875 12876 pci_disable_device(pdev); 12877 pci_set_drvdata(pdev, NULL); 12878 12879 return rc; 12880 } 12881 12882 static void __bnx2x_remove(struct pci_dev *pdev, 12883 struct net_device *dev, 12884 struct bnx2x *bp, 12885 bool remove_netdev) 12886 { 12887 /* Delete storage MAC address */ 12888 if (!NO_FCOE(bp)) { 12889 rtnl_lock(); 12890 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); 12891 rtnl_unlock(); 12892 } 12893 12894 #ifdef BCM_DCBNL 12895 /* Delete app tlvs from dcbnl */ 12896 bnx2x_dcbnl_update_applist(bp, true); 12897 #endif 12898 12899 if (IS_PF(bp) && 12900 !BP_NOMCP(bp) && 12901 (bp->flags & BC_SUPPORTS_RMMOD_CMD)) 12902 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0); 12903 12904 /* Close the interface - either directly or implicitly */ 12905 if (remove_netdev) { 12906 unregister_netdev(dev); 12907 } else { 12908 rtnl_lock(); 12909 dev_close(dev); 12910 rtnl_unlock(); 12911 } 12912 12913 bnx2x_iov_remove_one(bp); 12914 12915 /* Power on: we can't let PCI layer write to us while we are in D3 */ 12916 if (IS_PF(bp)) 12917 bnx2x_set_power_state(bp, PCI_D0); 12918 12919 /* Disable MSI/MSI-X */ 12920 bnx2x_disable_msi(bp); 12921 12922 /* Power off */ 12923 if (IS_PF(bp)) 12924 bnx2x_set_power_state(bp, PCI_D3hot); 12925 12926 /* Make sure RESET task is not scheduled before continuing */ 12927 cancel_delayed_work_sync(&bp->sp_rtnl_task); 12928 12929 /* send message via vfpf channel to release the resources of this vf */ 12930 if (IS_VF(bp)) 12931 bnx2x_vfpf_release(bp); 12932 12933 /* Assumes no further PCIe PM changes will occur */ 12934 if (system_state == SYSTEM_POWER_OFF) { 12935 pci_wake_from_d3(pdev, bp->wol); 12936 pci_set_power_state(pdev, PCI_D3hot); 12937 } 12938 12939 if (bp->regview) 12940 iounmap(bp->regview); 12941 12942 /* for vf doorbells are part of the regview and were unmapped along with 12943 * it. FW is only loaded by PF. 12944 */ 12945 if (IS_PF(bp)) { 12946 if (bp->doorbells) 12947 iounmap(bp->doorbells); 12948 12949 bnx2x_release_firmware(bp); 12950 } 12951 bnx2x_free_mem_bp(bp); 12952 12953 if (remove_netdev) 12954 free_netdev(dev); 12955 12956 if (atomic_read(&pdev->enable_cnt) == 1) 12957 pci_release_regions(pdev); 12958 12959 pci_disable_device(pdev); 12960 pci_set_drvdata(pdev, NULL); 12961 } 12962 12963 static void bnx2x_remove_one(struct pci_dev *pdev) 12964 { 12965 struct net_device *dev = pci_get_drvdata(pdev); 12966 struct bnx2x *bp; 12967 12968 if (!dev) { 12969 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 12970 return; 12971 } 12972 bp = netdev_priv(dev); 12973 12974 __bnx2x_remove(pdev, dev, bp, true); 12975 } 12976 12977 static int bnx2x_eeh_nic_unload(struct bnx2x *bp) 12978 { 12979 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; 12980 12981 bp->rx_mode = BNX2X_RX_MODE_NONE; 12982 12983 if (CNIC_LOADED(bp)) 12984 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); 12985 12986 /* Stop Tx */ 12987 bnx2x_tx_disable(bp); 12988 /* Delete all NAPI objects */ 12989 bnx2x_del_all_napi(bp); 12990 if (CNIC_LOADED(bp)) 12991 bnx2x_del_all_napi_cnic(bp); 12992 netdev_reset_tc(bp->dev); 12993 12994 del_timer_sync(&bp->timer); 12995 cancel_delayed_work(&bp->sp_task); 12996 cancel_delayed_work(&bp->period_task); 12997 12998 spin_lock_bh(&bp->stats_lock); 12999 bp->stats_state = STATS_STATE_DISABLED; 13000 spin_unlock_bh(&bp->stats_lock); 13001 13002 bnx2x_save_statistics(bp); 13003 13004 netif_carrier_off(bp->dev); 13005 13006 return 0; 13007 } 13008 13009 /** 13010 * bnx2x_io_error_detected - called when PCI error is detected 13011 * @pdev: Pointer to PCI device 13012 * @state: The current pci connection state 13013 * 13014 * This function is called after a PCI bus error affecting 13015 * this device has been detected. 13016 */ 13017 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev, 13018 pci_channel_state_t state) 13019 { 13020 struct net_device *dev = pci_get_drvdata(pdev); 13021 struct bnx2x *bp = netdev_priv(dev); 13022 13023 rtnl_lock(); 13024 13025 BNX2X_ERR("IO error detected\n"); 13026 13027 netif_device_detach(dev); 13028 13029 if (state == pci_channel_io_perm_failure) { 13030 rtnl_unlock(); 13031 return PCI_ERS_RESULT_DISCONNECT; 13032 } 13033 13034 if (netif_running(dev)) 13035 bnx2x_eeh_nic_unload(bp); 13036 13037 bnx2x_prev_path_mark_eeh(bp); 13038 13039 pci_disable_device(pdev); 13040 13041 rtnl_unlock(); 13042 13043 /* Request a slot reset */ 13044 return PCI_ERS_RESULT_NEED_RESET; 13045 } 13046 13047 /** 13048 * bnx2x_io_slot_reset - called after the PCI bus has been reset 13049 * @pdev: Pointer to PCI device 13050 * 13051 * Restart the card from scratch, as if from a cold-boot. 13052 */ 13053 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev) 13054 { 13055 struct net_device *dev = pci_get_drvdata(pdev); 13056 struct bnx2x *bp = netdev_priv(dev); 13057 int i; 13058 13059 rtnl_lock(); 13060 BNX2X_ERR("IO slot reset initializing...\n"); 13061 if (pci_enable_device(pdev)) { 13062 dev_err(&pdev->dev, 13063 "Cannot re-enable PCI device after reset\n"); 13064 rtnl_unlock(); 13065 return PCI_ERS_RESULT_DISCONNECT; 13066 } 13067 13068 pci_set_master(pdev); 13069 pci_restore_state(pdev); 13070 pci_save_state(pdev); 13071 13072 if (netif_running(dev)) 13073 bnx2x_set_power_state(bp, PCI_D0); 13074 13075 if (netif_running(dev)) { 13076 BNX2X_ERR("IO slot reset --> driver unload\n"); 13077 13078 /* MCP should have been reset; Need to wait for validity */ 13079 bnx2x_init_shmem(bp); 13080 13081 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 13082 u32 v; 13083 13084 v = SHMEM2_RD(bp, 13085 drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 13086 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 13087 v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 13088 } 13089 bnx2x_drain_tx_queues(bp); 13090 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY); 13091 bnx2x_netif_stop(bp, 1); 13092 bnx2x_free_irq(bp); 13093 13094 /* Report UNLOAD_DONE to MCP */ 13095 bnx2x_send_unload_done(bp, true); 13096 13097 bp->sp_state = 0; 13098 bp->port.pmf = 0; 13099 13100 bnx2x_prev_unload(bp); 13101 13102 /* We should have reseted the engine, so It's fair to 13103 * assume the FW will no longer write to the bnx2x driver. 13104 */ 13105 bnx2x_squeeze_objects(bp); 13106 bnx2x_free_skbs(bp); 13107 for_each_rx_queue(bp, i) 13108 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 13109 bnx2x_free_fp_mem(bp); 13110 bnx2x_free_mem(bp); 13111 13112 bp->state = BNX2X_STATE_CLOSED; 13113 } 13114 13115 rtnl_unlock(); 13116 13117 return PCI_ERS_RESULT_RECOVERED; 13118 } 13119 13120 /** 13121 * bnx2x_io_resume - called when traffic can start flowing again 13122 * @pdev: Pointer to PCI device 13123 * 13124 * This callback is called when the error recovery driver tells us that 13125 * its OK to resume normal operation. 13126 */ 13127 static void bnx2x_io_resume(struct pci_dev *pdev) 13128 { 13129 struct net_device *dev = pci_get_drvdata(pdev); 13130 struct bnx2x *bp = netdev_priv(dev); 13131 13132 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 13133 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n"); 13134 return; 13135 } 13136 13137 rtnl_lock(); 13138 13139 bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 13140 DRV_MSG_SEQ_NUMBER_MASK; 13141 13142 if (netif_running(dev)) 13143 bnx2x_nic_load(bp, LOAD_NORMAL); 13144 13145 netif_device_attach(dev); 13146 13147 rtnl_unlock(); 13148 } 13149 13150 static const struct pci_error_handlers bnx2x_err_handler = { 13151 .error_detected = bnx2x_io_error_detected, 13152 .slot_reset = bnx2x_io_slot_reset, 13153 .resume = bnx2x_io_resume, 13154 }; 13155 13156 static void bnx2x_shutdown(struct pci_dev *pdev) 13157 { 13158 struct net_device *dev = pci_get_drvdata(pdev); 13159 struct bnx2x *bp; 13160 13161 if (!dev) 13162 return; 13163 13164 bp = netdev_priv(dev); 13165 if (!bp) 13166 return; 13167 13168 rtnl_lock(); 13169 netif_device_detach(dev); 13170 rtnl_unlock(); 13171 13172 /* Don't remove the netdevice, as there are scenarios which will cause 13173 * the kernel to hang, e.g., when trying to remove bnx2i while the 13174 * rootfs is mounted from SAN. 13175 */ 13176 __bnx2x_remove(pdev, dev, bp, false); 13177 } 13178 13179 static struct pci_driver bnx2x_pci_driver = { 13180 .name = DRV_MODULE_NAME, 13181 .id_table = bnx2x_pci_tbl, 13182 .probe = bnx2x_init_one, 13183 .remove = bnx2x_remove_one, 13184 .suspend = bnx2x_suspend, 13185 .resume = bnx2x_resume, 13186 .err_handler = &bnx2x_err_handler, 13187 #ifdef CONFIG_BNX2X_SRIOV 13188 .sriov_configure = bnx2x_sriov_configure, 13189 #endif 13190 .shutdown = bnx2x_shutdown, 13191 }; 13192 13193 static int __init bnx2x_init(void) 13194 { 13195 int ret; 13196 13197 pr_info("%s", version); 13198 13199 bnx2x_wq = create_singlethread_workqueue("bnx2x"); 13200 if (bnx2x_wq == NULL) { 13201 pr_err("Cannot create workqueue\n"); 13202 return -ENOMEM; 13203 } 13204 13205 ret = pci_register_driver(&bnx2x_pci_driver); 13206 if (ret) { 13207 pr_err("Cannot register driver\n"); 13208 destroy_workqueue(bnx2x_wq); 13209 } 13210 return ret; 13211 } 13212 13213 static void __exit bnx2x_cleanup(void) 13214 { 13215 struct list_head *pos, *q; 13216 13217 pci_unregister_driver(&bnx2x_pci_driver); 13218 13219 destroy_workqueue(bnx2x_wq); 13220 13221 /* Free globally allocated resources */ 13222 list_for_each_safe(pos, q, &bnx2x_prev_list) { 13223 struct bnx2x_prev_path_list *tmp = 13224 list_entry(pos, struct bnx2x_prev_path_list, list); 13225 list_del(pos); 13226 kfree(tmp); 13227 } 13228 } 13229 13230 void bnx2x_notify_link_changed(struct bnx2x *bp) 13231 { 13232 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1); 13233 } 13234 13235 module_init(bnx2x_init); 13236 module_exit(bnx2x_cleanup); 13237 13238 /** 13239 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s). 13240 * 13241 * @bp: driver handle 13242 * @set: set or clear the CAM entry 13243 * 13244 * This function will wait until the ramrod completion returns. 13245 * Return 0 if success, -ENODEV if ramrod doesn't return. 13246 */ 13247 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp) 13248 { 13249 unsigned long ramrod_flags = 0; 13250 13251 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 13252 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac, 13253 &bp->iscsi_l2_mac_obj, true, 13254 BNX2X_ISCSI_ETH_MAC, &ramrod_flags); 13255 } 13256 13257 /* count denotes the number of new completions we have seen */ 13258 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count) 13259 { 13260 struct eth_spe *spe; 13261 int cxt_index, cxt_offset; 13262 13263 #ifdef BNX2X_STOP_ON_ERROR 13264 if (unlikely(bp->panic)) 13265 return; 13266 #endif 13267 13268 spin_lock_bh(&bp->spq_lock); 13269 BUG_ON(bp->cnic_spq_pending < count); 13270 bp->cnic_spq_pending -= count; 13271 13272 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) { 13273 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type) 13274 & SPE_HDR_CONN_TYPE) >> 13275 SPE_HDR_CONN_TYPE_SHIFT; 13276 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data) 13277 >> SPE_HDR_CMD_ID_SHIFT) & 0xff; 13278 13279 /* Set validation for iSCSI L2 client before sending SETUP 13280 * ramrod 13281 */ 13282 if (type == ETH_CONNECTION_TYPE) { 13283 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) { 13284 cxt_index = BNX2X_ISCSI_ETH_CID(bp) / 13285 ILT_PAGE_CIDS; 13286 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) - 13287 (cxt_index * ILT_PAGE_CIDS); 13288 bnx2x_set_ctx_validation(bp, 13289 &bp->context[cxt_index]. 13290 vcxt[cxt_offset].eth, 13291 BNX2X_ISCSI_ETH_CID(bp)); 13292 } 13293 } 13294 13295 /* 13296 * There may be not more than 8 L2, not more than 8 L5 SPEs 13297 * and in the air. We also check that number of outstanding 13298 * COMMON ramrods is not more than the EQ and SPQ can 13299 * accommodate. 13300 */ 13301 if (type == ETH_CONNECTION_TYPE) { 13302 if (!atomic_read(&bp->cq_spq_left)) 13303 break; 13304 else 13305 atomic_dec(&bp->cq_spq_left); 13306 } else if (type == NONE_CONNECTION_TYPE) { 13307 if (!atomic_read(&bp->eq_spq_left)) 13308 break; 13309 else 13310 atomic_dec(&bp->eq_spq_left); 13311 } else if ((type == ISCSI_CONNECTION_TYPE) || 13312 (type == FCOE_CONNECTION_TYPE)) { 13313 if (bp->cnic_spq_pending >= 13314 bp->cnic_eth_dev.max_kwqe_pending) 13315 break; 13316 else 13317 bp->cnic_spq_pending++; 13318 } else { 13319 BNX2X_ERR("Unknown SPE type: %d\n", type); 13320 bnx2x_panic(); 13321 break; 13322 } 13323 13324 spe = bnx2x_sp_get_next(bp); 13325 *spe = *bp->cnic_kwq_cons; 13326 13327 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n", 13328 bp->cnic_spq_pending, bp->cnic_kwq_pending, count); 13329 13330 if (bp->cnic_kwq_cons == bp->cnic_kwq_last) 13331 bp->cnic_kwq_cons = bp->cnic_kwq; 13332 else 13333 bp->cnic_kwq_cons++; 13334 } 13335 bnx2x_sp_prod_update(bp); 13336 spin_unlock_bh(&bp->spq_lock); 13337 } 13338 13339 static int bnx2x_cnic_sp_queue(struct net_device *dev, 13340 struct kwqe_16 *kwqes[], u32 count) 13341 { 13342 struct bnx2x *bp = netdev_priv(dev); 13343 int i; 13344 13345 #ifdef BNX2X_STOP_ON_ERROR 13346 if (unlikely(bp->panic)) { 13347 BNX2X_ERR("Can't post to SP queue while panic\n"); 13348 return -EIO; 13349 } 13350 #endif 13351 13352 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) && 13353 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { 13354 BNX2X_ERR("Handling parity error recovery. Try again later\n"); 13355 return -EAGAIN; 13356 } 13357 13358 spin_lock_bh(&bp->spq_lock); 13359 13360 for (i = 0; i < count; i++) { 13361 struct eth_spe *spe = (struct eth_spe *)kwqes[i]; 13362 13363 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT) 13364 break; 13365 13366 *bp->cnic_kwq_prod = *spe; 13367 13368 bp->cnic_kwq_pending++; 13369 13370 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n", 13371 spe->hdr.conn_and_cmd_data, spe->hdr.type, 13372 spe->data.update_data_addr.hi, 13373 spe->data.update_data_addr.lo, 13374 bp->cnic_kwq_pending); 13375 13376 if (bp->cnic_kwq_prod == bp->cnic_kwq_last) 13377 bp->cnic_kwq_prod = bp->cnic_kwq; 13378 else 13379 bp->cnic_kwq_prod++; 13380 } 13381 13382 spin_unlock_bh(&bp->spq_lock); 13383 13384 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending) 13385 bnx2x_cnic_sp_post(bp, 0); 13386 13387 return i; 13388 } 13389 13390 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl) 13391 { 13392 struct cnic_ops *c_ops; 13393 int rc = 0; 13394 13395 mutex_lock(&bp->cnic_mutex); 13396 c_ops = rcu_dereference_protected(bp->cnic_ops, 13397 lockdep_is_held(&bp->cnic_mutex)); 13398 if (c_ops) 13399 rc = c_ops->cnic_ctl(bp->cnic_data, ctl); 13400 mutex_unlock(&bp->cnic_mutex); 13401 13402 return rc; 13403 } 13404 13405 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl) 13406 { 13407 struct cnic_ops *c_ops; 13408 int rc = 0; 13409 13410 rcu_read_lock(); 13411 c_ops = rcu_dereference(bp->cnic_ops); 13412 if (c_ops) 13413 rc = c_ops->cnic_ctl(bp->cnic_data, ctl); 13414 rcu_read_unlock(); 13415 13416 return rc; 13417 } 13418 13419 /* 13420 * for commands that have no data 13421 */ 13422 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd) 13423 { 13424 struct cnic_ctl_info ctl = {0}; 13425 13426 ctl.cmd = cmd; 13427 13428 return bnx2x_cnic_ctl_send(bp, &ctl); 13429 } 13430 13431 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err) 13432 { 13433 struct cnic_ctl_info ctl = {0}; 13434 13435 /* first we tell CNIC and only then we count this as a completion */ 13436 ctl.cmd = CNIC_CTL_COMPLETION_CMD; 13437 ctl.data.comp.cid = cid; 13438 ctl.data.comp.error = err; 13439 13440 bnx2x_cnic_ctl_send_bh(bp, &ctl); 13441 bnx2x_cnic_sp_post(bp, 0); 13442 } 13443 13444 /* Called with netif_addr_lock_bh() taken. 13445 * Sets an rx_mode config for an iSCSI ETH client. 13446 * Doesn't block. 13447 * Completion should be checked outside. 13448 */ 13449 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start) 13450 { 13451 unsigned long accept_flags = 0, ramrod_flags = 0; 13452 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); 13453 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED; 13454 13455 if (start) { 13456 /* Start accepting on iSCSI L2 ring. Accept all multicasts 13457 * because it's the only way for UIO Queue to accept 13458 * multicasts (in non-promiscuous mode only one Queue per 13459 * function will receive multicast packets (leading in our 13460 * case). 13461 */ 13462 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags); 13463 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags); 13464 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags); 13465 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); 13466 13467 /* Clear STOP_PENDING bit if START is requested */ 13468 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state); 13469 13470 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED; 13471 } else 13472 /* Clear START_PENDING bit if STOP is requested */ 13473 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state); 13474 13475 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) 13476 set_bit(sched_state, &bp->sp_state); 13477 else { 13478 __set_bit(RAMROD_RX, &ramrod_flags); 13479 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0, 13480 ramrod_flags); 13481 } 13482 } 13483 13484 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl) 13485 { 13486 struct bnx2x *bp = netdev_priv(dev); 13487 int rc = 0; 13488 13489 switch (ctl->cmd) { 13490 case DRV_CTL_CTXTBL_WR_CMD: { 13491 u32 index = ctl->data.io.offset; 13492 dma_addr_t addr = ctl->data.io.dma_addr; 13493 13494 bnx2x_ilt_wr(bp, index, addr); 13495 break; 13496 } 13497 13498 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: { 13499 int count = ctl->data.credit.credit_count; 13500 13501 bnx2x_cnic_sp_post(bp, count); 13502 break; 13503 } 13504 13505 /* rtnl_lock is held. */ 13506 case DRV_CTL_START_L2_CMD: { 13507 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 13508 unsigned long sp_bits = 0; 13509 13510 /* Configure the iSCSI classification object */ 13511 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj, 13512 cp->iscsi_l2_client_id, 13513 cp->iscsi_l2_cid, BP_FUNC(bp), 13514 bnx2x_sp(bp, mac_rdata), 13515 bnx2x_sp_mapping(bp, mac_rdata), 13516 BNX2X_FILTER_MAC_PENDING, 13517 &bp->sp_state, BNX2X_OBJ_TYPE_RX, 13518 &bp->macs_pool); 13519 13520 /* Set iSCSI MAC address */ 13521 rc = bnx2x_set_iscsi_eth_mac_addr(bp); 13522 if (rc) 13523 break; 13524 13525 mmiowb(); 13526 barrier(); 13527 13528 /* Start accepting on iSCSI L2 ring */ 13529 13530 netif_addr_lock_bh(dev); 13531 bnx2x_set_iscsi_eth_rx_mode(bp, true); 13532 netif_addr_unlock_bh(dev); 13533 13534 /* bits to wait on */ 13535 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); 13536 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits); 13537 13538 if (!bnx2x_wait_sp_comp(bp, sp_bits)) 13539 BNX2X_ERR("rx_mode completion timed out!\n"); 13540 13541 break; 13542 } 13543 13544 /* rtnl_lock is held. */ 13545 case DRV_CTL_STOP_L2_CMD: { 13546 unsigned long sp_bits = 0; 13547 13548 /* Stop accepting on iSCSI L2 ring */ 13549 netif_addr_lock_bh(dev); 13550 bnx2x_set_iscsi_eth_rx_mode(bp, false); 13551 netif_addr_unlock_bh(dev); 13552 13553 /* bits to wait on */ 13554 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); 13555 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits); 13556 13557 if (!bnx2x_wait_sp_comp(bp, sp_bits)) 13558 BNX2X_ERR("rx_mode completion timed out!\n"); 13559 13560 mmiowb(); 13561 barrier(); 13562 13563 /* Unset iSCSI L2 MAC */ 13564 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj, 13565 BNX2X_ISCSI_ETH_MAC, true); 13566 break; 13567 } 13568 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: { 13569 int count = ctl->data.credit.credit_count; 13570 13571 smp_mb__before_atomic_inc(); 13572 atomic_add(count, &bp->cq_spq_left); 13573 smp_mb__after_atomic_inc(); 13574 break; 13575 } 13576 case DRV_CTL_ULP_REGISTER_CMD: { 13577 int ulp_type = ctl->data.register_data.ulp_type; 13578 13579 if (CHIP_IS_E3(bp)) { 13580 int idx = BP_FW_MB_IDX(bp); 13581 u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); 13582 int path = BP_PATH(bp); 13583 int port = BP_PORT(bp); 13584 int i; 13585 u32 scratch_offset; 13586 u32 *host_addr; 13587 13588 /* first write capability to shmem2 */ 13589 if (ulp_type == CNIC_ULP_ISCSI) 13590 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; 13591 else if (ulp_type == CNIC_ULP_FCOE) 13592 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE; 13593 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); 13594 13595 if ((ulp_type != CNIC_ULP_FCOE) || 13596 (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) || 13597 (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES))) 13598 break; 13599 13600 /* if reached here - should write fcoe capabilities */ 13601 scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr); 13602 if (!scratch_offset) 13603 break; 13604 scratch_offset += offsetof(struct glob_ncsi_oem_data, 13605 fcoe_features[path][port]); 13606 host_addr = (u32 *) &(ctl->data.register_data. 13607 fcoe_features); 13608 for (i = 0; i < sizeof(struct fcoe_capabilities); 13609 i += 4) 13610 REG_WR(bp, scratch_offset + i, 13611 *(host_addr + i/4)); 13612 } 13613 break; 13614 } 13615 13616 case DRV_CTL_ULP_UNREGISTER_CMD: { 13617 int ulp_type = ctl->data.ulp_type; 13618 13619 if (CHIP_IS_E3(bp)) { 13620 int idx = BP_FW_MB_IDX(bp); 13621 u32 cap; 13622 13623 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); 13624 if (ulp_type == CNIC_ULP_ISCSI) 13625 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; 13626 else if (ulp_type == CNIC_ULP_FCOE) 13627 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE; 13628 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); 13629 } 13630 break; 13631 } 13632 13633 default: 13634 BNX2X_ERR("unknown command %x\n", ctl->cmd); 13635 rc = -EINVAL; 13636 } 13637 13638 return rc; 13639 } 13640 13641 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp) 13642 { 13643 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 13644 13645 if (bp->flags & USING_MSIX_FLAG) { 13646 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX; 13647 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX; 13648 cp->irq_arr[0].vector = bp->msix_table[1].vector; 13649 } else { 13650 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX; 13651 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX; 13652 } 13653 if (!CHIP_IS_E1x(bp)) 13654 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb; 13655 else 13656 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb; 13657 13658 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp); 13659 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp); 13660 cp->irq_arr[1].status_blk = bp->def_status_blk; 13661 cp->irq_arr[1].status_blk_num = DEF_SB_ID; 13662 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID; 13663 13664 cp->num_irq = 2; 13665 } 13666 13667 void bnx2x_setup_cnic_info(struct bnx2x *bp) 13668 { 13669 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 13670 13671 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + 13672 bnx2x_cid_ilt_lines(bp); 13673 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; 13674 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); 13675 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); 13676 13677 DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n", 13678 BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid, 13679 cp->iscsi_l2_cid); 13680 13681 if (NO_ISCSI_OOO(bp)) 13682 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; 13683 } 13684 13685 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops, 13686 void *data) 13687 { 13688 struct bnx2x *bp = netdev_priv(dev); 13689 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 13690 int rc; 13691 13692 DP(NETIF_MSG_IFUP, "Register_cnic called\n"); 13693 13694 if (ops == NULL) { 13695 BNX2X_ERR("NULL ops received\n"); 13696 return -EINVAL; 13697 } 13698 13699 if (!CNIC_SUPPORT(bp)) { 13700 BNX2X_ERR("Can't register CNIC when not supported\n"); 13701 return -EOPNOTSUPP; 13702 } 13703 13704 if (!CNIC_LOADED(bp)) { 13705 rc = bnx2x_load_cnic(bp); 13706 if (rc) { 13707 BNX2X_ERR("CNIC-related load failed\n"); 13708 return rc; 13709 } 13710 } 13711 13712 bp->cnic_enabled = true; 13713 13714 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL); 13715 if (!bp->cnic_kwq) 13716 return -ENOMEM; 13717 13718 bp->cnic_kwq_cons = bp->cnic_kwq; 13719 bp->cnic_kwq_prod = bp->cnic_kwq; 13720 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT; 13721 13722 bp->cnic_spq_pending = 0; 13723 bp->cnic_kwq_pending = 0; 13724 13725 bp->cnic_data = data; 13726 13727 cp->num_irq = 0; 13728 cp->drv_state |= CNIC_DRV_STATE_REGD; 13729 cp->iro_arr = bp->iro_arr; 13730 13731 bnx2x_setup_cnic_irq_info(bp); 13732 13733 rcu_assign_pointer(bp->cnic_ops, ops); 13734 13735 return 0; 13736 } 13737 13738 static int bnx2x_unregister_cnic(struct net_device *dev) 13739 { 13740 struct bnx2x *bp = netdev_priv(dev); 13741 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 13742 13743 mutex_lock(&bp->cnic_mutex); 13744 cp->drv_state = 0; 13745 RCU_INIT_POINTER(bp->cnic_ops, NULL); 13746 mutex_unlock(&bp->cnic_mutex); 13747 synchronize_rcu(); 13748 bp->cnic_enabled = false; 13749 kfree(bp->cnic_kwq); 13750 bp->cnic_kwq = NULL; 13751 13752 return 0; 13753 } 13754 13755 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev) 13756 { 13757 struct bnx2x *bp = netdev_priv(dev); 13758 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 13759 13760 /* If both iSCSI and FCoE are disabled - return NULL in 13761 * order to indicate CNIC that it should not try to work 13762 * with this device. 13763 */ 13764 if (NO_ISCSI(bp) && NO_FCOE(bp)) 13765 return NULL; 13766 13767 cp->drv_owner = THIS_MODULE; 13768 cp->chip_id = CHIP_ID(bp); 13769 cp->pdev = bp->pdev; 13770 cp->io_base = bp->regview; 13771 cp->io_base2 = bp->doorbells; 13772 cp->max_kwqe_pending = 8; 13773 cp->ctx_blk_size = CDU_ILT_PAGE_SZ; 13774 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + 13775 bnx2x_cid_ilt_lines(bp); 13776 cp->ctx_tbl_len = CNIC_ILT_LINES; 13777 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; 13778 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue; 13779 cp->drv_ctl = bnx2x_drv_ctl; 13780 cp->drv_register_cnic = bnx2x_register_cnic; 13781 cp->drv_unregister_cnic = bnx2x_unregister_cnic; 13782 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); 13783 cp->iscsi_l2_client_id = 13784 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); 13785 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); 13786 13787 if (NO_ISCSI_OOO(bp)) 13788 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; 13789 13790 if (NO_ISCSI(bp)) 13791 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI; 13792 13793 if (NO_FCOE(bp)) 13794 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE; 13795 13796 BNX2X_DEV_INFO( 13797 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n", 13798 cp->ctx_blk_size, 13799 cp->ctx_tbl_offset, 13800 cp->ctx_tbl_len, 13801 cp->starting_cid); 13802 return cp; 13803 } 13804 13805 u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp) 13806 { 13807 struct bnx2x *bp = fp->bp; 13808 u32 offset = BAR_USTRORM_INTMEM; 13809 13810 if (IS_VF(bp)) 13811 return bnx2x_vf_ustorm_prods_offset(bp, fp); 13812 else if (!CHIP_IS_E1x(bp)) 13813 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 13814 else 13815 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id); 13816 13817 return offset; 13818 } 13819 13820 /* called only on E1H or E2. 13821 * When pretending to be PF, the pretend value is the function number 0...7 13822 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 13823 * combination 13824 */ 13825 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val) 13826 { 13827 u32 pretend_reg; 13828 13829 if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX) 13830 return -1; 13831 13832 /* get my own pretend register */ 13833 pretend_reg = bnx2x_get_pretend_reg(bp); 13834 REG_WR(bp, pretend_reg, pretend_func_val); 13835 REG_RD(bp, pretend_reg); 13836 return 0; 13837 } 13838