xref: /openbmc/linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c (revision c65176fd49f45bd5a5ffaa1790109745d1fa462c)
1 /* bnx2x_main.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h>  /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/aer.h>
33 #include <linux/init.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/bitops.h>
39 #include <linux/irq.h>
40 #include <linux/delay.h>
41 #include <asm/byteorder.h>
42 #include <linux/time.h>
43 #include <linux/ethtool.h>
44 #include <linux/mii.h>
45 #include <linux/if_vlan.h>
46 #include <linux/crash_dump.h>
47 #include <net/ip.h>
48 #include <net/ipv6.h>
49 #include <net/tcp.h>
50 #include <net/vxlan.h>
51 #include <net/checksum.h>
52 #include <net/ip6_checksum.h>
53 #include <linux/workqueue.h>
54 #include <linux/crc32.h>
55 #include <linux/crc32c.h>
56 #include <linux/prefetch.h>
57 #include <linux/zlib.h>
58 #include <linux/io.h>
59 #include <linux/semaphore.h>
60 #include <linux/stringify.h>
61 #include <linux/vmalloc.h>
62 #include "bnx2x.h"
63 #include "bnx2x_init.h"
64 #include "bnx2x_init_ops.h"
65 #include "bnx2x_cmn.h"
66 #include "bnx2x_vfpf.h"
67 #include "bnx2x_dcb.h"
68 #include "bnx2x_sp.h"
69 #include <linux/firmware.h>
70 #include "bnx2x_fw_file_hdr.h"
71 /* FW files */
72 #define FW_FILE_VERSION					\
73 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
74 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
75 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
76 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
77 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
78 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
79 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
80 
81 /* Time in jiffies before concluding the transmitter is hung */
82 #define TX_TIMEOUT		(5*HZ)
83 
84 MODULE_AUTHOR("Eliezer Tamir");
85 MODULE_DESCRIPTION("QLogic "
86 		   "BCM57710/57711/57711E/"
87 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
88 		   "57840/57840_MF Driver");
89 MODULE_LICENSE("GPL");
90 MODULE_FIRMWARE(FW_FILE_NAME_E1);
91 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
92 MODULE_FIRMWARE(FW_FILE_NAME_E2);
93 
94 int bnx2x_num_queues;
95 module_param_named(num_queues, bnx2x_num_queues, int, 0444);
96 MODULE_PARM_DESC(num_queues,
97 		 " Set number of queues (default is as a number of CPUs)");
98 
99 static int disable_tpa;
100 module_param(disable_tpa, int, 0444);
101 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
102 
103 static int int_mode;
104 module_param(int_mode, int, 0444);
105 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
106 				"(1 INT#x; 2 MSI)");
107 
108 static int dropless_fc;
109 module_param(dropless_fc, int, 0444);
110 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
111 
112 static int mrrs = -1;
113 module_param(mrrs, int, 0444);
114 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
115 
116 static int debug;
117 module_param(debug, int, 0444);
118 MODULE_PARM_DESC(debug, " Default debug msglevel");
119 
120 static struct workqueue_struct *bnx2x_wq;
121 struct workqueue_struct *bnx2x_iov_wq;
122 
123 struct bnx2x_mac_vals {
124 	u32 xmac_addr;
125 	u32 xmac_val;
126 	u32 emac_addr;
127 	u32 emac_val;
128 	u32 umac_addr[2];
129 	u32 umac_val[2];
130 	u32 bmac_addr;
131 	u32 bmac_val[2];
132 };
133 
134 enum bnx2x_board_type {
135 	BCM57710 = 0,
136 	BCM57711,
137 	BCM57711E,
138 	BCM57712,
139 	BCM57712_MF,
140 	BCM57712_VF,
141 	BCM57800,
142 	BCM57800_MF,
143 	BCM57800_VF,
144 	BCM57810,
145 	BCM57810_MF,
146 	BCM57810_VF,
147 	BCM57840_4_10,
148 	BCM57840_2_20,
149 	BCM57840_MF,
150 	BCM57840_VF,
151 	BCM57811,
152 	BCM57811_MF,
153 	BCM57840_O,
154 	BCM57840_MFO,
155 	BCM57811_VF
156 };
157 
158 /* indexed by board_type, above */
159 static struct {
160 	char *name;
161 } board_info[] = {
162 	[BCM57710]	= { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
163 	[BCM57711]	= { "QLogic BCM57711 10 Gigabit PCIe" },
164 	[BCM57711E]	= { "QLogic BCM57711E 10 Gigabit PCIe" },
165 	[BCM57712]	= { "QLogic BCM57712 10 Gigabit Ethernet" },
166 	[BCM57712_MF]	= { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
167 	[BCM57712_VF]	= { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
168 	[BCM57800]	= { "QLogic BCM57800 10 Gigabit Ethernet" },
169 	[BCM57800_MF]	= { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
170 	[BCM57800_VF]	= { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
171 	[BCM57810]	= { "QLogic BCM57810 10 Gigabit Ethernet" },
172 	[BCM57810_MF]	= { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
173 	[BCM57810_VF]	= { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
174 	[BCM57840_4_10]	= { "QLogic BCM57840 10 Gigabit Ethernet" },
175 	[BCM57840_2_20]	= { "QLogic BCM57840 20 Gigabit Ethernet" },
176 	[BCM57840_MF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
177 	[BCM57840_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
178 	[BCM57811]	= { "QLogic BCM57811 10 Gigabit Ethernet" },
179 	[BCM57811_MF]	= { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
180 	[BCM57840_O]	= { "QLogic BCM57840 10/20 Gigabit Ethernet" },
181 	[BCM57840_MFO]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
182 	[BCM57811_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
183 };
184 
185 #ifndef PCI_DEVICE_ID_NX2_57710
186 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
187 #endif
188 #ifndef PCI_DEVICE_ID_NX2_57711
189 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
190 #endif
191 #ifndef PCI_DEVICE_ID_NX2_57711E
192 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
193 #endif
194 #ifndef PCI_DEVICE_ID_NX2_57712
195 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
196 #endif
197 #ifndef PCI_DEVICE_ID_NX2_57712_MF
198 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
199 #endif
200 #ifndef PCI_DEVICE_ID_NX2_57712_VF
201 #define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
202 #endif
203 #ifndef PCI_DEVICE_ID_NX2_57800
204 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
205 #endif
206 #ifndef PCI_DEVICE_ID_NX2_57800_MF
207 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
208 #endif
209 #ifndef PCI_DEVICE_ID_NX2_57800_VF
210 #define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
211 #endif
212 #ifndef PCI_DEVICE_ID_NX2_57810
213 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
214 #endif
215 #ifndef PCI_DEVICE_ID_NX2_57810_MF
216 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
217 #endif
218 #ifndef PCI_DEVICE_ID_NX2_57840_O
219 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
220 #endif
221 #ifndef PCI_DEVICE_ID_NX2_57810_VF
222 #define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
223 #endif
224 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
225 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
226 #endif
227 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
228 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
229 #endif
230 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
231 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
232 #endif
233 #ifndef PCI_DEVICE_ID_NX2_57840_MF
234 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
235 #endif
236 #ifndef PCI_DEVICE_ID_NX2_57840_VF
237 #define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
238 #endif
239 #ifndef PCI_DEVICE_ID_NX2_57811
240 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
241 #endif
242 #ifndef PCI_DEVICE_ID_NX2_57811_MF
243 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
244 #endif
245 #ifndef PCI_DEVICE_ID_NX2_57811_VF
246 #define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
247 #endif
248 
249 static const struct pci_device_id bnx2x_pci_tbl[] = {
250 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
251 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
252 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
253 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
254 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
255 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
256 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
257 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
258 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
259 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
260 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
261 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
262 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
263 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
264 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
265 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
266 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
267 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
268 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
269 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
270 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
271 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
272 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
273 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
274 	{ 0 }
275 };
276 
277 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
278 
279 const u32 dmae_reg_go_c[] = {
280 	DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
281 	DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
282 	DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
283 	DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
284 };
285 
286 /* Global resources for unloading a previously loaded device */
287 #define BNX2X_PREV_WAIT_NEEDED 1
288 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
289 static LIST_HEAD(bnx2x_prev_list);
290 
291 /* Forward declaration */
292 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
293 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
294 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
295 
296 /****************************************************************************
297 * General service functions
298 ****************************************************************************/
299 
300 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
301 
302 static void __storm_memset_dma_mapping(struct bnx2x *bp,
303 				       u32 addr, dma_addr_t mapping)
304 {
305 	REG_WR(bp,  addr, U64_LO(mapping));
306 	REG_WR(bp,  addr + 4, U64_HI(mapping));
307 }
308 
309 static void storm_memset_spq_addr(struct bnx2x *bp,
310 				  dma_addr_t mapping, u16 abs_fid)
311 {
312 	u32 addr = XSEM_REG_FAST_MEMORY +
313 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
314 
315 	__storm_memset_dma_mapping(bp, addr, mapping);
316 }
317 
318 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
319 				  u16 pf_id)
320 {
321 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
322 		pf_id);
323 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
324 		pf_id);
325 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
326 		pf_id);
327 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
328 		pf_id);
329 }
330 
331 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
332 				 u8 enable)
333 {
334 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
335 		enable);
336 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
337 		enable);
338 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
339 		enable);
340 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
341 		enable);
342 }
343 
344 static void storm_memset_eq_data(struct bnx2x *bp,
345 				 struct event_ring_data *eq_data,
346 				u16 pfid)
347 {
348 	size_t size = sizeof(struct event_ring_data);
349 
350 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
351 
352 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
353 }
354 
355 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
356 				 u16 pfid)
357 {
358 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
359 	REG_WR16(bp, addr, eq_prod);
360 }
361 
362 /* used only at init
363  * locking is done by mcp
364  */
365 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
366 {
367 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
368 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
369 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
370 			       PCICFG_VENDOR_ID_OFFSET);
371 }
372 
373 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
374 {
375 	u32 val;
376 
377 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
378 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
379 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
380 			       PCICFG_VENDOR_ID_OFFSET);
381 
382 	return val;
383 }
384 
385 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
386 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
387 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
388 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
389 #define DMAE_DP_DST_NONE	"dst_addr [none]"
390 
391 static void bnx2x_dp_dmae(struct bnx2x *bp,
392 			  struct dmae_command *dmae, int msglvl)
393 {
394 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
395 	int i;
396 
397 	switch (dmae->opcode & DMAE_COMMAND_DST) {
398 	case DMAE_CMD_DST_PCI:
399 		if (src_type == DMAE_CMD_SRC_PCI)
400 			DP(msglvl, "DMAE: opcode 0x%08x\n"
401 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
402 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
403 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
404 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
405 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
406 			   dmae->comp_val);
407 		else
408 			DP(msglvl, "DMAE: opcode 0x%08x\n"
409 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
410 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
411 			   dmae->opcode, dmae->src_addr_lo >> 2,
412 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
413 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
414 			   dmae->comp_val);
415 		break;
416 	case DMAE_CMD_DST_GRC:
417 		if (src_type == DMAE_CMD_SRC_PCI)
418 			DP(msglvl, "DMAE: opcode 0x%08x\n"
419 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
420 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
421 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
422 			   dmae->len, dmae->dst_addr_lo >> 2,
423 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
424 			   dmae->comp_val);
425 		else
426 			DP(msglvl, "DMAE: opcode 0x%08x\n"
427 			   "src [%08x], len [%d*4], dst [%08x]\n"
428 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
429 			   dmae->opcode, dmae->src_addr_lo >> 2,
430 			   dmae->len, dmae->dst_addr_lo >> 2,
431 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
432 			   dmae->comp_val);
433 		break;
434 	default:
435 		if (src_type == DMAE_CMD_SRC_PCI)
436 			DP(msglvl, "DMAE: opcode 0x%08x\n"
437 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
438 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
439 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
440 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
441 			   dmae->comp_val);
442 		else
443 			DP(msglvl, "DMAE: opcode 0x%08x\n"
444 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
445 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
446 			   dmae->opcode, dmae->src_addr_lo >> 2,
447 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
448 			   dmae->comp_val);
449 		break;
450 	}
451 
452 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
453 		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
454 		   i, *(((u32 *)dmae) + i));
455 }
456 
457 /* copy command into DMAE command memory and set DMAE command go */
458 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
459 {
460 	u32 cmd_offset;
461 	int i;
462 
463 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
464 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
465 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
466 	}
467 	REG_WR(bp, dmae_reg_go_c[idx], 1);
468 }
469 
470 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
471 {
472 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
473 			   DMAE_CMD_C_ENABLE);
474 }
475 
476 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
477 {
478 	return opcode & ~DMAE_CMD_SRC_RESET;
479 }
480 
481 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
482 			     bool with_comp, u8 comp_type)
483 {
484 	u32 opcode = 0;
485 
486 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
487 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
488 
489 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
490 
491 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
492 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
493 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
494 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
495 
496 #ifdef __BIG_ENDIAN
497 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
498 #else
499 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
500 #endif
501 	if (with_comp)
502 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
503 	return opcode;
504 }
505 
506 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
507 				      struct dmae_command *dmae,
508 				      u8 src_type, u8 dst_type)
509 {
510 	memset(dmae, 0, sizeof(struct dmae_command));
511 
512 	/* set the opcode */
513 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
514 					 true, DMAE_COMP_PCI);
515 
516 	/* fill in the completion parameters */
517 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
518 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
519 	dmae->comp_val = DMAE_COMP_VAL;
520 }
521 
522 /* issue a dmae command over the init-channel and wait for completion */
523 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
524 			       u32 *comp)
525 {
526 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
527 	int rc = 0;
528 
529 	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
530 
531 	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
532 	 * as long as this code is called both from syscall context and
533 	 * from ndo_set_rx_mode() flow that may be called from BH.
534 	 */
535 
536 	spin_lock_bh(&bp->dmae_lock);
537 
538 	/* reset completion */
539 	*comp = 0;
540 
541 	/* post the command on the channel used for initializations */
542 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
543 
544 	/* wait for completion */
545 	udelay(5);
546 	while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
547 
548 		if (!cnt ||
549 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
550 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
551 			BNX2X_ERR("DMAE timeout!\n");
552 			rc = DMAE_TIMEOUT;
553 			goto unlock;
554 		}
555 		cnt--;
556 		udelay(50);
557 	}
558 	if (*comp & DMAE_PCI_ERR_FLAG) {
559 		BNX2X_ERR("DMAE PCI error!\n");
560 		rc = DMAE_PCI_ERROR;
561 	}
562 
563 unlock:
564 
565 	spin_unlock_bh(&bp->dmae_lock);
566 
567 	return rc;
568 }
569 
570 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
571 		      u32 len32)
572 {
573 	int rc;
574 	struct dmae_command dmae;
575 
576 	if (!bp->dmae_ready) {
577 		u32 *data = bnx2x_sp(bp, wb_data[0]);
578 
579 		if (CHIP_IS_E1(bp))
580 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
581 		else
582 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
583 		return;
584 	}
585 
586 	/* set opcode and fixed command fields */
587 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
588 
589 	/* fill in addresses and len */
590 	dmae.src_addr_lo = U64_LO(dma_addr);
591 	dmae.src_addr_hi = U64_HI(dma_addr);
592 	dmae.dst_addr_lo = dst_addr >> 2;
593 	dmae.dst_addr_hi = 0;
594 	dmae.len = len32;
595 
596 	/* issue the command and wait for completion */
597 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
598 	if (rc) {
599 		BNX2X_ERR("DMAE returned failure %d\n", rc);
600 #ifdef BNX2X_STOP_ON_ERROR
601 		bnx2x_panic();
602 #endif
603 	}
604 }
605 
606 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
607 {
608 	int rc;
609 	struct dmae_command dmae;
610 
611 	if (!bp->dmae_ready) {
612 		u32 *data = bnx2x_sp(bp, wb_data[0]);
613 		int i;
614 
615 		if (CHIP_IS_E1(bp))
616 			for (i = 0; i < len32; i++)
617 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
618 		else
619 			for (i = 0; i < len32; i++)
620 				data[i] = REG_RD(bp, src_addr + i*4);
621 
622 		return;
623 	}
624 
625 	/* set opcode and fixed command fields */
626 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
627 
628 	/* fill in addresses and len */
629 	dmae.src_addr_lo = src_addr >> 2;
630 	dmae.src_addr_hi = 0;
631 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
632 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
633 	dmae.len = len32;
634 
635 	/* issue the command and wait for completion */
636 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
637 	if (rc) {
638 		BNX2X_ERR("DMAE returned failure %d\n", rc);
639 #ifdef BNX2X_STOP_ON_ERROR
640 		bnx2x_panic();
641 #endif
642 	}
643 }
644 
645 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
646 				      u32 addr, u32 len)
647 {
648 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
649 	int offset = 0;
650 
651 	while (len > dmae_wr_max) {
652 		bnx2x_write_dmae(bp, phys_addr + offset,
653 				 addr + offset, dmae_wr_max);
654 		offset += dmae_wr_max * 4;
655 		len -= dmae_wr_max;
656 	}
657 
658 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
659 }
660 
661 enum storms {
662 	   XSTORM,
663 	   TSTORM,
664 	   CSTORM,
665 	   USTORM,
666 	   MAX_STORMS
667 };
668 
669 #define STORMS_NUM 4
670 #define REGS_IN_ENTRY 4
671 
672 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
673 					      enum storms storm,
674 					      int entry)
675 {
676 	switch (storm) {
677 	case XSTORM:
678 		return XSTORM_ASSERT_LIST_OFFSET(entry);
679 	case TSTORM:
680 		return TSTORM_ASSERT_LIST_OFFSET(entry);
681 	case CSTORM:
682 		return CSTORM_ASSERT_LIST_OFFSET(entry);
683 	case USTORM:
684 		return USTORM_ASSERT_LIST_OFFSET(entry);
685 	case MAX_STORMS:
686 	default:
687 		BNX2X_ERR("unknown storm\n");
688 	}
689 	return -EINVAL;
690 }
691 
692 static int bnx2x_mc_assert(struct bnx2x *bp)
693 {
694 	char last_idx;
695 	int i, j, rc = 0;
696 	enum storms storm;
697 	u32 regs[REGS_IN_ENTRY];
698 	u32 bar_storm_intmem[STORMS_NUM] = {
699 		BAR_XSTRORM_INTMEM,
700 		BAR_TSTRORM_INTMEM,
701 		BAR_CSTRORM_INTMEM,
702 		BAR_USTRORM_INTMEM
703 	};
704 	u32 storm_assert_list_index[STORMS_NUM] = {
705 		XSTORM_ASSERT_LIST_INDEX_OFFSET,
706 		TSTORM_ASSERT_LIST_INDEX_OFFSET,
707 		CSTORM_ASSERT_LIST_INDEX_OFFSET,
708 		USTORM_ASSERT_LIST_INDEX_OFFSET
709 	};
710 	char *storms_string[STORMS_NUM] = {
711 		"XSTORM",
712 		"TSTORM",
713 		"CSTORM",
714 		"USTORM"
715 	};
716 
717 	for (storm = XSTORM; storm < MAX_STORMS; storm++) {
718 		last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
719 				   storm_assert_list_index[storm]);
720 		if (last_idx)
721 			BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
722 				  storms_string[storm], last_idx);
723 
724 		/* print the asserts */
725 		for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
726 			/* read a single assert entry */
727 			for (j = 0; j < REGS_IN_ENTRY; j++)
728 				regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
729 					  bnx2x_get_assert_list_entry(bp,
730 								      storm,
731 								      i) +
732 					  sizeof(u32) * j);
733 
734 			/* log entry if it contains a valid assert */
735 			if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
736 				BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
737 					  storms_string[storm], i, regs[3],
738 					  regs[2], regs[1], regs[0]);
739 				rc++;
740 			} else {
741 				break;
742 			}
743 		}
744 	}
745 
746 	BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
747 		  CHIP_IS_E1(bp) ? "everest1" :
748 		  CHIP_IS_E1H(bp) ? "everest1h" :
749 		  CHIP_IS_E2(bp) ? "everest2" : "everest3",
750 		  BCM_5710_FW_MAJOR_VERSION,
751 		  BCM_5710_FW_MINOR_VERSION,
752 		  BCM_5710_FW_REVISION_VERSION);
753 
754 	return rc;
755 }
756 
757 #define MCPR_TRACE_BUFFER_SIZE	(0x800)
758 #define SCRATCH_BUFFER_SIZE(bp)	\
759 	(CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
760 
761 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
762 {
763 	u32 addr, val;
764 	u32 mark, offset;
765 	__be32 data[9];
766 	int word;
767 	u32 trace_shmem_base;
768 	if (BP_NOMCP(bp)) {
769 		BNX2X_ERR("NO MCP - can not dump\n");
770 		return;
771 	}
772 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
773 		(bp->common.bc_ver & 0xff0000) >> 16,
774 		(bp->common.bc_ver & 0xff00) >> 8,
775 		(bp->common.bc_ver & 0xff));
776 
777 	if (pci_channel_offline(bp->pdev)) {
778 		BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
779 		return;
780 	}
781 
782 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
783 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
784 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
785 
786 	if (BP_PATH(bp) == 0)
787 		trace_shmem_base = bp->common.shmem_base;
788 	else
789 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
790 
791 	/* sanity */
792 	if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
793 	    trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
794 				SCRATCH_BUFFER_SIZE(bp)) {
795 		BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
796 			  trace_shmem_base);
797 		return;
798 	}
799 
800 	addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
801 
802 	/* validate TRCB signature */
803 	mark = REG_RD(bp, addr);
804 	if (mark != MFW_TRACE_SIGNATURE) {
805 		BNX2X_ERR("Trace buffer signature is missing.");
806 		return ;
807 	}
808 
809 	/* read cyclic buffer pointer */
810 	addr += 4;
811 	mark = REG_RD(bp, addr);
812 	mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
813 	if (mark >= trace_shmem_base || mark < addr + 4) {
814 		BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
815 		return;
816 	}
817 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
818 
819 	printk("%s", lvl);
820 
821 	/* dump buffer after the mark */
822 	for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
823 		for (word = 0; word < 8; word++)
824 			data[word] = htonl(REG_RD(bp, offset + 4*word));
825 		data[8] = 0x0;
826 		pr_cont("%s", (char *)data);
827 	}
828 
829 	/* dump buffer before the mark */
830 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
831 		for (word = 0; word < 8; word++)
832 			data[word] = htonl(REG_RD(bp, offset + 4*word));
833 		data[8] = 0x0;
834 		pr_cont("%s", (char *)data);
835 	}
836 	printk("%s" "end of fw dump\n", lvl);
837 }
838 
839 static void bnx2x_fw_dump(struct bnx2x *bp)
840 {
841 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
842 }
843 
844 static void bnx2x_hc_int_disable(struct bnx2x *bp)
845 {
846 	int port = BP_PORT(bp);
847 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
848 	u32 val = REG_RD(bp, addr);
849 
850 	/* in E1 we must use only PCI configuration space to disable
851 	 * MSI/MSIX capability
852 	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
853 	 */
854 	if (CHIP_IS_E1(bp)) {
855 		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
856 		 * Use mask register to prevent from HC sending interrupts
857 		 * after we exit the function
858 		 */
859 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
860 
861 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
862 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
863 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
864 	} else
865 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
866 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
867 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
868 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
869 
870 	DP(NETIF_MSG_IFDOWN,
871 	   "write %x to HC %d (addr 0x%x)\n",
872 	   val, port, addr);
873 
874 	REG_WR(bp, addr, val);
875 	if (REG_RD(bp, addr) != val)
876 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
877 }
878 
879 static void bnx2x_igu_int_disable(struct bnx2x *bp)
880 {
881 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
882 
883 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
884 		 IGU_PF_CONF_INT_LINE_EN |
885 		 IGU_PF_CONF_ATTN_BIT_EN);
886 
887 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
888 
889 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
890 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
891 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
892 }
893 
894 static void bnx2x_int_disable(struct bnx2x *bp)
895 {
896 	if (bp->common.int_block == INT_BLOCK_HC)
897 		bnx2x_hc_int_disable(bp);
898 	else
899 		bnx2x_igu_int_disable(bp);
900 }
901 
902 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
903 {
904 	int i;
905 	u16 j;
906 	struct hc_sp_status_block_data sp_sb_data;
907 	int func = BP_FUNC(bp);
908 #ifdef BNX2X_STOP_ON_ERROR
909 	u16 start = 0, end = 0;
910 	u8 cos;
911 #endif
912 	if (IS_PF(bp) && disable_int)
913 		bnx2x_int_disable(bp);
914 
915 	bp->stats_state = STATS_STATE_DISABLED;
916 	bp->eth_stats.unrecoverable_error++;
917 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
918 
919 	BNX2X_ERR("begin crash dump -----------------\n");
920 
921 	/* Indices */
922 	/* Common */
923 	if (IS_PF(bp)) {
924 		struct host_sp_status_block *def_sb = bp->def_status_blk;
925 		int data_size, cstorm_offset;
926 
927 		BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
928 			  bp->def_idx, bp->def_att_idx, bp->attn_state,
929 			  bp->spq_prod_idx, bp->stats_counter);
930 		BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
931 			  def_sb->atten_status_block.attn_bits,
932 			  def_sb->atten_status_block.attn_bits_ack,
933 			  def_sb->atten_status_block.status_block_id,
934 			  def_sb->atten_status_block.attn_bits_index);
935 		BNX2X_ERR("     def (");
936 		for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
937 			pr_cont("0x%x%s",
938 				def_sb->sp_sb.index_values[i],
939 				(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
940 
941 		data_size = sizeof(struct hc_sp_status_block_data) /
942 			    sizeof(u32);
943 		cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
944 		for (i = 0; i < data_size; i++)
945 			*((u32 *)&sp_sb_data + i) =
946 				REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
947 					   i * sizeof(u32));
948 
949 		pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
950 			sp_sb_data.igu_sb_id,
951 			sp_sb_data.igu_seg_id,
952 			sp_sb_data.p_func.pf_id,
953 			sp_sb_data.p_func.vnic_id,
954 			sp_sb_data.p_func.vf_id,
955 			sp_sb_data.p_func.vf_valid,
956 			sp_sb_data.state);
957 	}
958 
959 	for_each_eth_queue(bp, i) {
960 		struct bnx2x_fastpath *fp = &bp->fp[i];
961 		int loop;
962 		struct hc_status_block_data_e2 sb_data_e2;
963 		struct hc_status_block_data_e1x sb_data_e1x;
964 		struct hc_status_block_sm  *hc_sm_p =
965 			CHIP_IS_E1x(bp) ?
966 			sb_data_e1x.common.state_machine :
967 			sb_data_e2.common.state_machine;
968 		struct hc_index_data *hc_index_p =
969 			CHIP_IS_E1x(bp) ?
970 			sb_data_e1x.index_data :
971 			sb_data_e2.index_data;
972 		u8 data_size, cos;
973 		u32 *sb_data_p;
974 		struct bnx2x_fp_txdata txdata;
975 
976 		if (!bp->fp)
977 			break;
978 
979 		if (!fp->rx_cons_sb)
980 			continue;
981 
982 		/* Rx */
983 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
984 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
985 			  fp->rx_comp_prod,
986 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
987 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
988 			  fp->rx_sge_prod, fp->last_max_sge,
989 			  le16_to_cpu(fp->fp_hc_idx));
990 
991 		/* Tx */
992 		for_each_cos_in_tx_queue(fp, cos)
993 		{
994 			if (!fp->txdata_ptr[cos])
995 				break;
996 
997 			txdata = *fp->txdata_ptr[cos];
998 
999 			if (!txdata.tx_cons_sb)
1000 				continue;
1001 
1002 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1003 				  i, txdata.tx_pkt_prod,
1004 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
1005 				  txdata.tx_bd_cons,
1006 				  le16_to_cpu(*txdata.tx_cons_sb));
1007 		}
1008 
1009 		loop = CHIP_IS_E1x(bp) ?
1010 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1011 
1012 		/* host sb data */
1013 
1014 		if (IS_FCOE_FP(fp))
1015 			continue;
1016 
1017 		BNX2X_ERR("     run indexes (");
1018 		for (j = 0; j < HC_SB_MAX_SM; j++)
1019 			pr_cont("0x%x%s",
1020 			       fp->sb_running_index[j],
1021 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1022 
1023 		BNX2X_ERR("     indexes (");
1024 		for (j = 0; j < loop; j++)
1025 			pr_cont("0x%x%s",
1026 			       fp->sb_index_values[j],
1027 			       (j == loop - 1) ? ")" : " ");
1028 
1029 		/* VF cannot access FW refelection for status block */
1030 		if (IS_VF(bp))
1031 			continue;
1032 
1033 		/* fw sb data */
1034 		data_size = CHIP_IS_E1x(bp) ?
1035 			sizeof(struct hc_status_block_data_e1x) :
1036 			sizeof(struct hc_status_block_data_e2);
1037 		data_size /= sizeof(u32);
1038 		sb_data_p = CHIP_IS_E1x(bp) ?
1039 			(u32 *)&sb_data_e1x :
1040 			(u32 *)&sb_data_e2;
1041 		/* copy sb data in here */
1042 		for (j = 0; j < data_size; j++)
1043 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1044 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1045 				j * sizeof(u32));
1046 
1047 		if (!CHIP_IS_E1x(bp)) {
1048 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1049 				sb_data_e2.common.p_func.pf_id,
1050 				sb_data_e2.common.p_func.vf_id,
1051 				sb_data_e2.common.p_func.vf_valid,
1052 				sb_data_e2.common.p_func.vnic_id,
1053 				sb_data_e2.common.same_igu_sb_1b,
1054 				sb_data_e2.common.state);
1055 		} else {
1056 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1057 				sb_data_e1x.common.p_func.pf_id,
1058 				sb_data_e1x.common.p_func.vf_id,
1059 				sb_data_e1x.common.p_func.vf_valid,
1060 				sb_data_e1x.common.p_func.vnic_id,
1061 				sb_data_e1x.common.same_igu_sb_1b,
1062 				sb_data_e1x.common.state);
1063 		}
1064 
1065 		/* SB_SMs data */
1066 		for (j = 0; j < HC_SB_MAX_SM; j++) {
1067 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1068 				j, hc_sm_p[j].__flags,
1069 				hc_sm_p[j].igu_sb_id,
1070 				hc_sm_p[j].igu_seg_id,
1071 				hc_sm_p[j].time_to_expire,
1072 				hc_sm_p[j].timer_value);
1073 		}
1074 
1075 		/* Indices data */
1076 		for (j = 0; j < loop; j++) {
1077 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1078 			       hc_index_p[j].flags,
1079 			       hc_index_p[j].timeout);
1080 		}
1081 	}
1082 
1083 #ifdef BNX2X_STOP_ON_ERROR
1084 	if (IS_PF(bp)) {
1085 		/* event queue */
1086 		BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1087 		for (i = 0; i < NUM_EQ_DESC; i++) {
1088 			u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1089 
1090 			BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1091 				  i, bp->eq_ring[i].message.opcode,
1092 				  bp->eq_ring[i].message.error);
1093 			BNX2X_ERR("data: %x %x %x\n",
1094 				  data[0], data[1], data[2]);
1095 		}
1096 	}
1097 
1098 	/* Rings */
1099 	/* Rx */
1100 	for_each_valid_rx_queue(bp, i) {
1101 		struct bnx2x_fastpath *fp = &bp->fp[i];
1102 
1103 		if (!bp->fp)
1104 			break;
1105 
1106 		if (!fp->rx_cons_sb)
1107 			continue;
1108 
1109 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1110 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1111 		for (j = start; j != end; j = RX_BD(j + 1)) {
1112 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1113 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1114 
1115 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1116 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1117 		}
1118 
1119 		start = RX_SGE(fp->rx_sge_prod);
1120 		end = RX_SGE(fp->last_max_sge);
1121 		for (j = start; j != end; j = RX_SGE(j + 1)) {
1122 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1123 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1124 
1125 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1126 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1127 		}
1128 
1129 		start = RCQ_BD(fp->rx_comp_cons - 10);
1130 		end = RCQ_BD(fp->rx_comp_cons + 503);
1131 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1132 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1133 
1134 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1135 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1136 		}
1137 	}
1138 
1139 	/* Tx */
1140 	for_each_valid_tx_queue(bp, i) {
1141 		struct bnx2x_fastpath *fp = &bp->fp[i];
1142 
1143 		if (!bp->fp)
1144 			break;
1145 
1146 		for_each_cos_in_tx_queue(fp, cos) {
1147 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1148 
1149 			if (!fp->txdata_ptr[cos])
1150 				break;
1151 
1152 			if (!txdata->tx_cons_sb)
1153 				continue;
1154 
1155 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1156 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1157 			for (j = start; j != end; j = TX_BD(j + 1)) {
1158 				struct sw_tx_bd *sw_bd =
1159 					&txdata->tx_buf_ring[j];
1160 
1161 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1162 					  i, cos, j, sw_bd->skb,
1163 					  sw_bd->first_bd);
1164 			}
1165 
1166 			start = TX_BD(txdata->tx_bd_cons - 10);
1167 			end = TX_BD(txdata->tx_bd_cons + 254);
1168 			for (j = start; j != end; j = TX_BD(j + 1)) {
1169 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1170 
1171 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1172 					  i, cos, j, tx_bd[0], tx_bd[1],
1173 					  tx_bd[2], tx_bd[3]);
1174 			}
1175 		}
1176 	}
1177 #endif
1178 	if (IS_PF(bp)) {
1179 		int tmp_msg_en = bp->msg_enable;
1180 
1181 		bnx2x_fw_dump(bp);
1182 		bp->msg_enable |= NETIF_MSG_HW;
1183 		BNX2X_ERR("Idle check (1st round) ----------\n");
1184 		bnx2x_idle_chk(bp);
1185 		BNX2X_ERR("Idle check (2nd round) ----------\n");
1186 		bnx2x_idle_chk(bp);
1187 		bp->msg_enable = tmp_msg_en;
1188 		bnx2x_mc_assert(bp);
1189 	}
1190 
1191 	BNX2X_ERR("end crash dump -----------------\n");
1192 }
1193 
1194 /*
1195  * FLR Support for E2
1196  *
1197  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1198  * initialization.
1199  */
1200 #define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1201 #define FLR_WAIT_INTERVAL	50	/* usec */
1202 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1203 
1204 struct pbf_pN_buf_regs {
1205 	int pN;
1206 	u32 init_crd;
1207 	u32 crd;
1208 	u32 crd_freed;
1209 };
1210 
1211 struct pbf_pN_cmd_regs {
1212 	int pN;
1213 	u32 lines_occup;
1214 	u32 lines_freed;
1215 };
1216 
1217 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1218 				     struct pbf_pN_buf_regs *regs,
1219 				     u32 poll_count)
1220 {
1221 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1222 	u32 cur_cnt = poll_count;
1223 
1224 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1225 	crd = crd_start = REG_RD(bp, regs->crd);
1226 	init_crd = REG_RD(bp, regs->init_crd);
1227 
1228 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1229 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1230 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1231 
1232 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1233 	       (init_crd - crd_start))) {
1234 		if (cur_cnt--) {
1235 			udelay(FLR_WAIT_INTERVAL);
1236 			crd = REG_RD(bp, regs->crd);
1237 			crd_freed = REG_RD(bp, regs->crd_freed);
1238 		} else {
1239 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1240 			   regs->pN);
1241 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1242 			   regs->pN, crd);
1243 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1244 			   regs->pN, crd_freed);
1245 			break;
1246 		}
1247 	}
1248 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1249 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1250 }
1251 
1252 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1253 				     struct pbf_pN_cmd_regs *regs,
1254 				     u32 poll_count)
1255 {
1256 	u32 occup, to_free, freed, freed_start;
1257 	u32 cur_cnt = poll_count;
1258 
1259 	occup = to_free = REG_RD(bp, regs->lines_occup);
1260 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1261 
1262 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1263 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1264 
1265 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1266 		if (cur_cnt--) {
1267 			udelay(FLR_WAIT_INTERVAL);
1268 			occup = REG_RD(bp, regs->lines_occup);
1269 			freed = REG_RD(bp, regs->lines_freed);
1270 		} else {
1271 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1272 			   regs->pN);
1273 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1274 			   regs->pN, occup);
1275 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1276 			   regs->pN, freed);
1277 			break;
1278 		}
1279 	}
1280 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1281 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1282 }
1283 
1284 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1285 				    u32 expected, u32 poll_count)
1286 {
1287 	u32 cur_cnt = poll_count;
1288 	u32 val;
1289 
1290 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1291 		udelay(FLR_WAIT_INTERVAL);
1292 
1293 	return val;
1294 }
1295 
1296 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1297 				    char *msg, u32 poll_cnt)
1298 {
1299 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1300 	if (val != 0) {
1301 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1302 		return 1;
1303 	}
1304 	return 0;
1305 }
1306 
1307 /* Common routines with VF FLR cleanup */
1308 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1309 {
1310 	/* adjust polling timeout */
1311 	if (CHIP_REV_IS_EMUL(bp))
1312 		return FLR_POLL_CNT * 2000;
1313 
1314 	if (CHIP_REV_IS_FPGA(bp))
1315 		return FLR_POLL_CNT * 120;
1316 
1317 	return FLR_POLL_CNT;
1318 }
1319 
1320 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1321 {
1322 	struct pbf_pN_cmd_regs cmd_regs[] = {
1323 		{0, (CHIP_IS_E3B0(bp)) ?
1324 			PBF_REG_TQ_OCCUPANCY_Q0 :
1325 			PBF_REG_P0_TQ_OCCUPANCY,
1326 		    (CHIP_IS_E3B0(bp)) ?
1327 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1328 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1329 		{1, (CHIP_IS_E3B0(bp)) ?
1330 			PBF_REG_TQ_OCCUPANCY_Q1 :
1331 			PBF_REG_P1_TQ_OCCUPANCY,
1332 		    (CHIP_IS_E3B0(bp)) ?
1333 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1334 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1335 		{4, (CHIP_IS_E3B0(bp)) ?
1336 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1337 			PBF_REG_P4_TQ_OCCUPANCY,
1338 		    (CHIP_IS_E3B0(bp)) ?
1339 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1340 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1341 	};
1342 
1343 	struct pbf_pN_buf_regs buf_regs[] = {
1344 		{0, (CHIP_IS_E3B0(bp)) ?
1345 			PBF_REG_INIT_CRD_Q0 :
1346 			PBF_REG_P0_INIT_CRD ,
1347 		    (CHIP_IS_E3B0(bp)) ?
1348 			PBF_REG_CREDIT_Q0 :
1349 			PBF_REG_P0_CREDIT,
1350 		    (CHIP_IS_E3B0(bp)) ?
1351 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1352 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1353 		{1, (CHIP_IS_E3B0(bp)) ?
1354 			PBF_REG_INIT_CRD_Q1 :
1355 			PBF_REG_P1_INIT_CRD,
1356 		    (CHIP_IS_E3B0(bp)) ?
1357 			PBF_REG_CREDIT_Q1 :
1358 			PBF_REG_P1_CREDIT,
1359 		    (CHIP_IS_E3B0(bp)) ?
1360 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1361 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1362 		{4, (CHIP_IS_E3B0(bp)) ?
1363 			PBF_REG_INIT_CRD_LB_Q :
1364 			PBF_REG_P4_INIT_CRD,
1365 		    (CHIP_IS_E3B0(bp)) ?
1366 			PBF_REG_CREDIT_LB_Q :
1367 			PBF_REG_P4_CREDIT,
1368 		    (CHIP_IS_E3B0(bp)) ?
1369 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1370 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1371 	};
1372 
1373 	int i;
1374 
1375 	/* Verify the command queues are flushed P0, P1, P4 */
1376 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1377 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1378 
1379 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1380 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1381 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1382 }
1383 
1384 #define OP_GEN_PARAM(param) \
1385 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1386 
1387 #define OP_GEN_TYPE(type) \
1388 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1389 
1390 #define OP_GEN_AGG_VECT(index) \
1391 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1392 
1393 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1394 {
1395 	u32 op_gen_command = 0;
1396 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1397 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1398 	int ret = 0;
1399 
1400 	if (REG_RD(bp, comp_addr)) {
1401 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1402 		return 1;
1403 	}
1404 
1405 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1406 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1407 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1408 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1409 
1410 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1411 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1412 
1413 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1414 		BNX2X_ERR("FW final cleanup did not succeed\n");
1415 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1416 		   (REG_RD(bp, comp_addr)));
1417 		bnx2x_panic();
1418 		return 1;
1419 	}
1420 	/* Zero completion for next FLR */
1421 	REG_WR(bp, comp_addr, 0);
1422 
1423 	return ret;
1424 }
1425 
1426 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1427 {
1428 	u16 status;
1429 
1430 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1431 	return status & PCI_EXP_DEVSTA_TRPND;
1432 }
1433 
1434 /* PF FLR specific routines
1435 */
1436 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1437 {
1438 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1439 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1440 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1441 			"CFC PF usage counter timed out",
1442 			poll_cnt))
1443 		return 1;
1444 
1445 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1446 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1447 			DORQ_REG_PF_USAGE_CNT,
1448 			"DQ PF usage counter timed out",
1449 			poll_cnt))
1450 		return 1;
1451 
1452 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1453 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1454 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1455 			"QM PF usage counter timed out",
1456 			poll_cnt))
1457 		return 1;
1458 
1459 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1460 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1461 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1462 			"Timers VNIC usage counter timed out",
1463 			poll_cnt))
1464 		return 1;
1465 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1466 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1467 			"Timers NUM_SCANS usage counter timed out",
1468 			poll_cnt))
1469 		return 1;
1470 
1471 	/* Wait DMAE PF usage counter to zero */
1472 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1473 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1474 			"DMAE command register timed out",
1475 			poll_cnt))
1476 		return 1;
1477 
1478 	return 0;
1479 }
1480 
1481 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1482 {
1483 	u32 val;
1484 
1485 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1486 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1487 
1488 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1489 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1490 
1491 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1492 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1493 
1494 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1495 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1496 
1497 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1498 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1499 
1500 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1501 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1502 
1503 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1504 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1505 
1506 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1507 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1508 	   val);
1509 }
1510 
1511 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1512 {
1513 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1514 
1515 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1516 
1517 	/* Re-enable PF target read access */
1518 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1519 
1520 	/* Poll HW usage counters */
1521 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1522 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1523 		return -EBUSY;
1524 
1525 	/* Zero the igu 'trailing edge' and 'leading edge' */
1526 
1527 	/* Send the FW cleanup command */
1528 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1529 		return -EBUSY;
1530 
1531 	/* ATC cleanup */
1532 
1533 	/* Verify TX hw is flushed */
1534 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1535 
1536 	/* Wait 100ms (not adjusted according to platform) */
1537 	msleep(100);
1538 
1539 	/* Verify no pending pci transactions */
1540 	if (bnx2x_is_pcie_pending(bp->pdev))
1541 		BNX2X_ERR("PCIE Transactions still pending\n");
1542 
1543 	/* Debug */
1544 	bnx2x_hw_enable_status(bp);
1545 
1546 	/*
1547 	 * Master enable - Due to WB DMAE writes performed before this
1548 	 * register is re-initialized as part of the regular function init
1549 	 */
1550 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1551 
1552 	return 0;
1553 }
1554 
1555 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1556 {
1557 	int port = BP_PORT(bp);
1558 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1559 	u32 val = REG_RD(bp, addr);
1560 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1561 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1562 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1563 
1564 	if (msix) {
1565 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1566 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1567 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1568 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1569 		if (single_msix)
1570 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1571 	} else if (msi) {
1572 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1573 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1574 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1575 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1576 	} else {
1577 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1578 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1579 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1580 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1581 
1582 		if (!CHIP_IS_E1(bp)) {
1583 			DP(NETIF_MSG_IFUP,
1584 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1585 
1586 			REG_WR(bp, addr, val);
1587 
1588 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1589 		}
1590 	}
1591 
1592 	if (CHIP_IS_E1(bp))
1593 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1594 
1595 	DP(NETIF_MSG_IFUP,
1596 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1597 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1598 
1599 	REG_WR(bp, addr, val);
1600 	/*
1601 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1602 	 */
1603 	barrier();
1604 
1605 	if (!CHIP_IS_E1(bp)) {
1606 		/* init leading/trailing edge */
1607 		if (IS_MF(bp)) {
1608 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1609 			if (bp->port.pmf)
1610 				/* enable nig and gpio3 attention */
1611 				val |= 0x1100;
1612 		} else
1613 			val = 0xffff;
1614 
1615 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1616 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1617 	}
1618 }
1619 
1620 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1621 {
1622 	u32 val;
1623 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1624 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1625 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1626 
1627 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1628 
1629 	if (msix) {
1630 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1631 			 IGU_PF_CONF_SINGLE_ISR_EN);
1632 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1633 			IGU_PF_CONF_ATTN_BIT_EN);
1634 
1635 		if (single_msix)
1636 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1637 	} else if (msi) {
1638 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1639 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1640 			IGU_PF_CONF_ATTN_BIT_EN |
1641 			IGU_PF_CONF_SINGLE_ISR_EN);
1642 	} else {
1643 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1644 		val |= (IGU_PF_CONF_INT_LINE_EN |
1645 			IGU_PF_CONF_ATTN_BIT_EN |
1646 			IGU_PF_CONF_SINGLE_ISR_EN);
1647 	}
1648 
1649 	/* Clean previous status - need to configure igu prior to ack*/
1650 	if ((!msix) || single_msix) {
1651 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1652 		bnx2x_ack_int(bp);
1653 	}
1654 
1655 	val |= IGU_PF_CONF_FUNC_EN;
1656 
1657 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1658 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1659 
1660 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1661 
1662 	if (val & IGU_PF_CONF_INT_LINE_EN)
1663 		pci_intx(bp->pdev, true);
1664 
1665 	barrier();
1666 
1667 	/* init leading/trailing edge */
1668 	if (IS_MF(bp)) {
1669 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1670 		if (bp->port.pmf)
1671 			/* enable nig and gpio3 attention */
1672 			val |= 0x1100;
1673 	} else
1674 		val = 0xffff;
1675 
1676 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1677 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1678 }
1679 
1680 void bnx2x_int_enable(struct bnx2x *bp)
1681 {
1682 	if (bp->common.int_block == INT_BLOCK_HC)
1683 		bnx2x_hc_int_enable(bp);
1684 	else
1685 		bnx2x_igu_int_enable(bp);
1686 }
1687 
1688 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1689 {
1690 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1691 	int i, offset;
1692 
1693 	if (disable_hw)
1694 		/* prevent the HW from sending interrupts */
1695 		bnx2x_int_disable(bp);
1696 
1697 	/* make sure all ISRs are done */
1698 	if (msix) {
1699 		synchronize_irq(bp->msix_table[0].vector);
1700 		offset = 1;
1701 		if (CNIC_SUPPORT(bp))
1702 			offset++;
1703 		for_each_eth_queue(bp, i)
1704 			synchronize_irq(bp->msix_table[offset++].vector);
1705 	} else
1706 		synchronize_irq(bp->pdev->irq);
1707 
1708 	/* make sure sp_task is not running */
1709 	cancel_delayed_work(&bp->sp_task);
1710 	cancel_delayed_work(&bp->period_task);
1711 	flush_workqueue(bnx2x_wq);
1712 }
1713 
1714 /* fast path */
1715 
1716 /*
1717  * General service functions
1718  */
1719 
1720 /* Return true if succeeded to acquire the lock */
1721 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1722 {
1723 	u32 lock_status;
1724 	u32 resource_bit = (1 << resource);
1725 	int func = BP_FUNC(bp);
1726 	u32 hw_lock_control_reg;
1727 
1728 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1729 	   "Trying to take a lock on resource %d\n", resource);
1730 
1731 	/* Validating that the resource is within range */
1732 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1733 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1734 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1735 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1736 		return false;
1737 	}
1738 
1739 	if (func <= 5)
1740 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1741 	else
1742 		hw_lock_control_reg =
1743 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1744 
1745 	/* Try to acquire the lock */
1746 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1747 	lock_status = REG_RD(bp, hw_lock_control_reg);
1748 	if (lock_status & resource_bit)
1749 		return true;
1750 
1751 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1752 	   "Failed to get a lock on resource %d\n", resource);
1753 	return false;
1754 }
1755 
1756 /**
1757  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1758  *
1759  * @bp:	driver handle
1760  *
1761  * Returns the recovery leader resource id according to the engine this function
1762  * belongs to. Currently only only 2 engines is supported.
1763  */
1764 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1765 {
1766 	if (BP_PATH(bp))
1767 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1768 	else
1769 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1770 }
1771 
1772 /**
1773  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1774  *
1775  * @bp: driver handle
1776  *
1777  * Tries to acquire a leader lock for current engine.
1778  */
1779 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1780 {
1781 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1782 }
1783 
1784 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1785 
1786 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1787 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1788 {
1789 	/* Set the interrupt occurred bit for the sp-task to recognize it
1790 	 * must ack the interrupt and transition according to the IGU
1791 	 * state machine.
1792 	 */
1793 	atomic_set(&bp->interrupt_occurred, 1);
1794 
1795 	/* The sp_task must execute only after this bit
1796 	 * is set, otherwise we will get out of sync and miss all
1797 	 * further interrupts. Hence, the barrier.
1798 	 */
1799 	smp_wmb();
1800 
1801 	/* schedule sp_task to workqueue */
1802 	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1803 }
1804 
1805 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1806 {
1807 	struct bnx2x *bp = fp->bp;
1808 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1809 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1810 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1811 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1812 
1813 	DP(BNX2X_MSG_SP,
1814 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1815 	   fp->index, cid, command, bp->state,
1816 	   rr_cqe->ramrod_cqe.ramrod_type);
1817 
1818 	/* If cid is within VF range, replace the slowpath object with the
1819 	 * one corresponding to this VF
1820 	 */
1821 	if (cid >= BNX2X_FIRST_VF_CID  &&
1822 	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1823 		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1824 
1825 	switch (command) {
1826 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1827 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1828 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1829 		break;
1830 
1831 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1832 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1833 		drv_cmd = BNX2X_Q_CMD_SETUP;
1834 		break;
1835 
1836 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1837 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1838 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1839 		break;
1840 
1841 	case (RAMROD_CMD_ID_ETH_HALT):
1842 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1843 		drv_cmd = BNX2X_Q_CMD_HALT;
1844 		break;
1845 
1846 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1847 		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1848 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1849 		break;
1850 
1851 	case (RAMROD_CMD_ID_ETH_EMPTY):
1852 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1853 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1854 		break;
1855 
1856 	case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1857 		DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1858 		drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1859 		break;
1860 
1861 	default:
1862 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1863 			  command, fp->index);
1864 		return;
1865 	}
1866 
1867 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1868 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1869 		/* q_obj->complete_cmd() failure means that this was
1870 		 * an unexpected completion.
1871 		 *
1872 		 * In this case we don't want to increase the bp->spq_left
1873 		 * because apparently we haven't sent this command the first
1874 		 * place.
1875 		 */
1876 #ifdef BNX2X_STOP_ON_ERROR
1877 		bnx2x_panic();
1878 #else
1879 		return;
1880 #endif
1881 
1882 	smp_mb__before_atomic();
1883 	atomic_inc(&bp->cq_spq_left);
1884 	/* push the change in bp->spq_left and towards the memory */
1885 	smp_mb__after_atomic();
1886 
1887 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1888 
1889 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1890 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1891 		/* if Q update ramrod is completed for last Q in AFEX vif set
1892 		 * flow, then ACK MCP at the end
1893 		 *
1894 		 * mark pending ACK to MCP bit.
1895 		 * prevent case that both bits are cleared.
1896 		 * At the end of load/unload driver checks that
1897 		 * sp_state is cleared, and this order prevents
1898 		 * races
1899 		 */
1900 		smp_mb__before_atomic();
1901 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1902 		wmb();
1903 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1904 		smp_mb__after_atomic();
1905 
1906 		/* schedule the sp task as mcp ack is required */
1907 		bnx2x_schedule_sp_task(bp);
1908 	}
1909 
1910 	return;
1911 }
1912 
1913 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1914 {
1915 	struct bnx2x *bp = netdev_priv(dev_instance);
1916 	u16 status = bnx2x_ack_int(bp);
1917 	u16 mask;
1918 	int i;
1919 	u8 cos;
1920 
1921 	/* Return here if interrupt is shared and it's not for us */
1922 	if (unlikely(status == 0)) {
1923 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1924 		return IRQ_NONE;
1925 	}
1926 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1927 
1928 #ifdef BNX2X_STOP_ON_ERROR
1929 	if (unlikely(bp->panic))
1930 		return IRQ_HANDLED;
1931 #endif
1932 
1933 	for_each_eth_queue(bp, i) {
1934 		struct bnx2x_fastpath *fp = &bp->fp[i];
1935 
1936 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1937 		if (status & mask) {
1938 			/* Handle Rx or Tx according to SB id */
1939 			for_each_cos_in_tx_queue(fp, cos)
1940 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1941 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1942 			napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1943 			status &= ~mask;
1944 		}
1945 	}
1946 
1947 	if (CNIC_SUPPORT(bp)) {
1948 		mask = 0x2;
1949 		if (status & (mask | 0x1)) {
1950 			struct cnic_ops *c_ops = NULL;
1951 
1952 			rcu_read_lock();
1953 			c_ops = rcu_dereference(bp->cnic_ops);
1954 			if (c_ops && (bp->cnic_eth_dev.drv_state &
1955 				      CNIC_DRV_STATE_HANDLES_IRQ))
1956 				c_ops->cnic_handler(bp->cnic_data, NULL);
1957 			rcu_read_unlock();
1958 
1959 			status &= ~mask;
1960 		}
1961 	}
1962 
1963 	if (unlikely(status & 0x1)) {
1964 
1965 		/* schedule sp task to perform default status block work, ack
1966 		 * attentions and enable interrupts.
1967 		 */
1968 		bnx2x_schedule_sp_task(bp);
1969 
1970 		status &= ~0x1;
1971 		if (!status)
1972 			return IRQ_HANDLED;
1973 	}
1974 
1975 	if (unlikely(status))
1976 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1977 		   status);
1978 
1979 	return IRQ_HANDLED;
1980 }
1981 
1982 /* Link */
1983 
1984 /*
1985  * General service functions
1986  */
1987 
1988 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1989 {
1990 	u32 lock_status;
1991 	u32 resource_bit = (1 << resource);
1992 	int func = BP_FUNC(bp);
1993 	u32 hw_lock_control_reg;
1994 	int cnt;
1995 
1996 	/* Validating that the resource is within range */
1997 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1998 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1999 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2000 		return -EINVAL;
2001 	}
2002 
2003 	if (func <= 5) {
2004 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2005 	} else {
2006 		hw_lock_control_reg =
2007 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2008 	}
2009 
2010 	/* Validating that the resource is not already taken */
2011 	lock_status = REG_RD(bp, hw_lock_control_reg);
2012 	if (lock_status & resource_bit) {
2013 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2014 		   lock_status, resource_bit);
2015 		return -EEXIST;
2016 	}
2017 
2018 	/* Try for 5 second every 5ms */
2019 	for (cnt = 0; cnt < 1000; cnt++) {
2020 		/* Try to acquire the lock */
2021 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2022 		lock_status = REG_RD(bp, hw_lock_control_reg);
2023 		if (lock_status & resource_bit)
2024 			return 0;
2025 
2026 		usleep_range(5000, 10000);
2027 	}
2028 	BNX2X_ERR("Timeout\n");
2029 	return -EAGAIN;
2030 }
2031 
2032 int bnx2x_release_leader_lock(struct bnx2x *bp)
2033 {
2034 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2035 }
2036 
2037 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2038 {
2039 	u32 lock_status;
2040 	u32 resource_bit = (1 << resource);
2041 	int func = BP_FUNC(bp);
2042 	u32 hw_lock_control_reg;
2043 
2044 	/* Validating that the resource is within range */
2045 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2046 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2047 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2048 		return -EINVAL;
2049 	}
2050 
2051 	if (func <= 5) {
2052 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2053 	} else {
2054 		hw_lock_control_reg =
2055 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2056 	}
2057 
2058 	/* Validating that the resource is currently taken */
2059 	lock_status = REG_RD(bp, hw_lock_control_reg);
2060 	if (!(lock_status & resource_bit)) {
2061 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2062 			  lock_status, resource_bit);
2063 		return -EFAULT;
2064 	}
2065 
2066 	REG_WR(bp, hw_lock_control_reg, resource_bit);
2067 	return 0;
2068 }
2069 
2070 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2071 {
2072 	/* The GPIO should be swapped if swap register is set and active */
2073 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2074 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2075 	int gpio_shift = gpio_num +
2076 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2077 	u32 gpio_mask = (1 << gpio_shift);
2078 	u32 gpio_reg;
2079 	int value;
2080 
2081 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2082 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2083 		return -EINVAL;
2084 	}
2085 
2086 	/* read GPIO value */
2087 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2088 
2089 	/* get the requested pin value */
2090 	if ((gpio_reg & gpio_mask) == gpio_mask)
2091 		value = 1;
2092 	else
2093 		value = 0;
2094 
2095 	return value;
2096 }
2097 
2098 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2099 {
2100 	/* The GPIO should be swapped if swap register is set and active */
2101 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2102 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2103 	int gpio_shift = gpio_num +
2104 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2105 	u32 gpio_mask = (1 << gpio_shift);
2106 	u32 gpio_reg;
2107 
2108 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2109 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2110 		return -EINVAL;
2111 	}
2112 
2113 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2114 	/* read GPIO and mask except the float bits */
2115 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2116 
2117 	switch (mode) {
2118 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2119 		DP(NETIF_MSG_LINK,
2120 		   "Set GPIO %d (shift %d) -> output low\n",
2121 		   gpio_num, gpio_shift);
2122 		/* clear FLOAT and set CLR */
2123 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2124 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2125 		break;
2126 
2127 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2128 		DP(NETIF_MSG_LINK,
2129 		   "Set GPIO %d (shift %d) -> output high\n",
2130 		   gpio_num, gpio_shift);
2131 		/* clear FLOAT and set SET */
2132 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2133 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2134 		break;
2135 
2136 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2137 		DP(NETIF_MSG_LINK,
2138 		   "Set GPIO %d (shift %d) -> input\n",
2139 		   gpio_num, gpio_shift);
2140 		/* set FLOAT */
2141 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2142 		break;
2143 
2144 	default:
2145 		break;
2146 	}
2147 
2148 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2149 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2150 
2151 	return 0;
2152 }
2153 
2154 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2155 {
2156 	u32 gpio_reg = 0;
2157 	int rc = 0;
2158 
2159 	/* Any port swapping should be handled by caller. */
2160 
2161 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2162 	/* read GPIO and mask except the float bits */
2163 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2164 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2165 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2166 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2167 
2168 	switch (mode) {
2169 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2170 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2171 		/* set CLR */
2172 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2173 		break;
2174 
2175 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2176 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2177 		/* set SET */
2178 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2179 		break;
2180 
2181 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2182 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2183 		/* set FLOAT */
2184 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2185 		break;
2186 
2187 	default:
2188 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2189 		rc = -EINVAL;
2190 		break;
2191 	}
2192 
2193 	if (rc == 0)
2194 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2195 
2196 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2197 
2198 	return rc;
2199 }
2200 
2201 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2202 {
2203 	/* The GPIO should be swapped if swap register is set and active */
2204 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2205 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2206 	int gpio_shift = gpio_num +
2207 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2208 	u32 gpio_mask = (1 << gpio_shift);
2209 	u32 gpio_reg;
2210 
2211 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2212 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2213 		return -EINVAL;
2214 	}
2215 
2216 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2217 	/* read GPIO int */
2218 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2219 
2220 	switch (mode) {
2221 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2222 		DP(NETIF_MSG_LINK,
2223 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2224 		   gpio_num, gpio_shift);
2225 		/* clear SET and set CLR */
2226 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2227 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2228 		break;
2229 
2230 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2231 		DP(NETIF_MSG_LINK,
2232 		   "Set GPIO INT %d (shift %d) -> output high\n",
2233 		   gpio_num, gpio_shift);
2234 		/* clear CLR and set SET */
2235 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2236 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2237 		break;
2238 
2239 	default:
2240 		break;
2241 	}
2242 
2243 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2244 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2245 
2246 	return 0;
2247 }
2248 
2249 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2250 {
2251 	u32 spio_reg;
2252 
2253 	/* Only 2 SPIOs are configurable */
2254 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2255 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2256 		return -EINVAL;
2257 	}
2258 
2259 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2260 	/* read SPIO and mask except the float bits */
2261 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2262 
2263 	switch (mode) {
2264 	case MISC_SPIO_OUTPUT_LOW:
2265 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2266 		/* clear FLOAT and set CLR */
2267 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2268 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2269 		break;
2270 
2271 	case MISC_SPIO_OUTPUT_HIGH:
2272 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2273 		/* clear FLOAT and set SET */
2274 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2275 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2276 		break;
2277 
2278 	case MISC_SPIO_INPUT_HI_Z:
2279 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2280 		/* set FLOAT */
2281 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2282 		break;
2283 
2284 	default:
2285 		break;
2286 	}
2287 
2288 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2289 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2290 
2291 	return 0;
2292 }
2293 
2294 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2295 {
2296 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2297 
2298 	bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2299 					   ADVERTISED_Pause);
2300 	switch (bp->link_vars.ieee_fc &
2301 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2302 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2303 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2304 						  ADVERTISED_Pause);
2305 		break;
2306 
2307 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2308 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2309 		break;
2310 
2311 	default:
2312 		break;
2313 	}
2314 }
2315 
2316 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2317 {
2318 	/* Initialize link parameters structure variables
2319 	 * It is recommended to turn off RX FC for jumbo frames
2320 	 *  for better performance
2321 	 */
2322 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2323 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2324 	else
2325 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2326 }
2327 
2328 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2329 {
2330 	u32 pause_enabled = 0;
2331 
2332 	if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2333 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2334 			pause_enabled = 1;
2335 
2336 		REG_WR(bp, BAR_USTRORM_INTMEM +
2337 			   USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2338 		       pause_enabled);
2339 	}
2340 
2341 	DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2342 	   pause_enabled ? "enabled" : "disabled");
2343 }
2344 
2345 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2346 {
2347 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2348 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2349 
2350 	if (!BP_NOMCP(bp)) {
2351 		bnx2x_set_requested_fc(bp);
2352 		bnx2x_acquire_phy_lock(bp);
2353 
2354 		if (load_mode == LOAD_DIAG) {
2355 			struct link_params *lp = &bp->link_params;
2356 			lp->loopback_mode = LOOPBACK_XGXS;
2357 			/* Prefer doing PHY loopback at highest speed */
2358 			if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2359 				if (lp->speed_cap_mask[cfx_idx] &
2360 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2361 					lp->req_line_speed[cfx_idx] =
2362 					SPEED_20000;
2363 				else if (lp->speed_cap_mask[cfx_idx] &
2364 					    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2365 						lp->req_line_speed[cfx_idx] =
2366 						SPEED_10000;
2367 				else
2368 					lp->req_line_speed[cfx_idx] =
2369 					SPEED_1000;
2370 			}
2371 		}
2372 
2373 		if (load_mode == LOAD_LOOPBACK_EXT) {
2374 			struct link_params *lp = &bp->link_params;
2375 			lp->loopback_mode = LOOPBACK_EXT;
2376 		}
2377 
2378 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2379 
2380 		bnx2x_release_phy_lock(bp);
2381 
2382 		bnx2x_init_dropless_fc(bp);
2383 
2384 		bnx2x_calc_fc_adv(bp);
2385 
2386 		if (bp->link_vars.link_up) {
2387 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2388 			bnx2x_link_report(bp);
2389 		}
2390 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2391 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2392 		return rc;
2393 	}
2394 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2395 	return -EINVAL;
2396 }
2397 
2398 void bnx2x_link_set(struct bnx2x *bp)
2399 {
2400 	if (!BP_NOMCP(bp)) {
2401 		bnx2x_acquire_phy_lock(bp);
2402 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2403 		bnx2x_release_phy_lock(bp);
2404 
2405 		bnx2x_init_dropless_fc(bp);
2406 
2407 		bnx2x_calc_fc_adv(bp);
2408 	} else
2409 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2410 }
2411 
2412 static void bnx2x__link_reset(struct bnx2x *bp)
2413 {
2414 	if (!BP_NOMCP(bp)) {
2415 		bnx2x_acquire_phy_lock(bp);
2416 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2417 		bnx2x_release_phy_lock(bp);
2418 	} else
2419 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2420 }
2421 
2422 void bnx2x_force_link_reset(struct bnx2x *bp)
2423 {
2424 	bnx2x_acquire_phy_lock(bp);
2425 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2426 	bnx2x_release_phy_lock(bp);
2427 }
2428 
2429 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2430 {
2431 	u8 rc = 0;
2432 
2433 	if (!BP_NOMCP(bp)) {
2434 		bnx2x_acquire_phy_lock(bp);
2435 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2436 				     is_serdes);
2437 		bnx2x_release_phy_lock(bp);
2438 	} else
2439 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2440 
2441 	return rc;
2442 }
2443 
2444 /* Calculates the sum of vn_min_rates.
2445    It's needed for further normalizing of the min_rates.
2446    Returns:
2447      sum of vn_min_rates.
2448        or
2449      0 - if all the min_rates are 0.
2450      In the later case fairness algorithm should be deactivated.
2451      If not all min_rates are zero then those that are zeroes will be set to 1.
2452  */
2453 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2454 				      struct cmng_init_input *input)
2455 {
2456 	int all_zero = 1;
2457 	int vn;
2458 
2459 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2460 		u32 vn_cfg = bp->mf_config[vn];
2461 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2462 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2463 
2464 		/* Skip hidden vns */
2465 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2466 			vn_min_rate = 0;
2467 		/* If min rate is zero - set it to 1 */
2468 		else if (!vn_min_rate)
2469 			vn_min_rate = DEF_MIN_RATE;
2470 		else
2471 			all_zero = 0;
2472 
2473 		input->vnic_min_rate[vn] = vn_min_rate;
2474 	}
2475 
2476 	/* if ETS or all min rates are zeros - disable fairness */
2477 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2478 		input->flags.cmng_enables &=
2479 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2480 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2481 	} else if (all_zero) {
2482 		input->flags.cmng_enables &=
2483 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2484 		DP(NETIF_MSG_IFUP,
2485 		   "All MIN values are zeroes fairness will be disabled\n");
2486 	} else
2487 		input->flags.cmng_enables |=
2488 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2489 }
2490 
2491 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2492 				    struct cmng_init_input *input)
2493 {
2494 	u16 vn_max_rate;
2495 	u32 vn_cfg = bp->mf_config[vn];
2496 
2497 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2498 		vn_max_rate = 0;
2499 	else {
2500 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2501 
2502 		if (IS_MF_PERCENT_BW(bp)) {
2503 			/* maxCfg in percents of linkspeed */
2504 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2505 		} else /* SD modes */
2506 			/* maxCfg is absolute in 100Mb units */
2507 			vn_max_rate = maxCfg * 100;
2508 	}
2509 
2510 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2511 
2512 	input->vnic_max_rate[vn] = vn_max_rate;
2513 }
2514 
2515 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2516 {
2517 	if (CHIP_REV_IS_SLOW(bp))
2518 		return CMNG_FNS_NONE;
2519 	if (IS_MF(bp))
2520 		return CMNG_FNS_MINMAX;
2521 
2522 	return CMNG_FNS_NONE;
2523 }
2524 
2525 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2526 {
2527 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2528 
2529 	if (BP_NOMCP(bp))
2530 		return; /* what should be the default value in this case */
2531 
2532 	/* For 2 port configuration the absolute function number formula
2533 	 * is:
2534 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2535 	 *
2536 	 *      and there are 4 functions per port
2537 	 *
2538 	 * For 4 port configuration it is
2539 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2540 	 *
2541 	 *      and there are 2 functions per port
2542 	 */
2543 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2544 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2545 
2546 		if (func >= E1H_FUNC_MAX)
2547 			break;
2548 
2549 		bp->mf_config[vn] =
2550 			MF_CFG_RD(bp, func_mf_config[func].config);
2551 	}
2552 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2553 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2554 		bp->flags |= MF_FUNC_DIS;
2555 	} else {
2556 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2557 		bp->flags &= ~MF_FUNC_DIS;
2558 	}
2559 }
2560 
2561 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2562 {
2563 	struct cmng_init_input input;
2564 	memset(&input, 0, sizeof(struct cmng_init_input));
2565 
2566 	input.port_rate = bp->link_vars.line_speed;
2567 
2568 	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2569 		int vn;
2570 
2571 		/* read mf conf from shmem */
2572 		if (read_cfg)
2573 			bnx2x_read_mf_cfg(bp);
2574 
2575 		/* vn_weight_sum and enable fairness if not 0 */
2576 		bnx2x_calc_vn_min(bp, &input);
2577 
2578 		/* calculate and set min-max rate for each vn */
2579 		if (bp->port.pmf)
2580 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2581 				bnx2x_calc_vn_max(bp, vn, &input);
2582 
2583 		/* always enable rate shaping and fairness */
2584 		input.flags.cmng_enables |=
2585 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2586 
2587 		bnx2x_init_cmng(&input, &bp->cmng);
2588 		return;
2589 	}
2590 
2591 	/* rate shaping and fairness are disabled */
2592 	DP(NETIF_MSG_IFUP,
2593 	   "rate shaping and fairness are disabled\n");
2594 }
2595 
2596 static void storm_memset_cmng(struct bnx2x *bp,
2597 			      struct cmng_init *cmng,
2598 			      u8 port)
2599 {
2600 	int vn;
2601 	size_t size = sizeof(struct cmng_struct_per_port);
2602 
2603 	u32 addr = BAR_XSTRORM_INTMEM +
2604 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2605 
2606 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2607 
2608 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2609 		int func = func_by_vn(bp, vn);
2610 
2611 		addr = BAR_XSTRORM_INTMEM +
2612 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2613 		size = sizeof(struct rate_shaping_vars_per_vn);
2614 		__storm_memset_struct(bp, addr, size,
2615 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2616 
2617 		addr = BAR_XSTRORM_INTMEM +
2618 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2619 		size = sizeof(struct fairness_vars_per_vn);
2620 		__storm_memset_struct(bp, addr, size,
2621 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2622 	}
2623 }
2624 
2625 /* init cmng mode in HW according to local configuration */
2626 void bnx2x_set_local_cmng(struct bnx2x *bp)
2627 {
2628 	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2629 
2630 	if (cmng_fns != CMNG_FNS_NONE) {
2631 		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2632 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2633 	} else {
2634 		/* rate shaping and fairness are disabled */
2635 		DP(NETIF_MSG_IFUP,
2636 		   "single function mode without fairness\n");
2637 	}
2638 }
2639 
2640 /* This function is called upon link interrupt */
2641 static void bnx2x_link_attn(struct bnx2x *bp)
2642 {
2643 	/* Make sure that we are synced with the current statistics */
2644 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2645 
2646 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2647 
2648 	bnx2x_init_dropless_fc(bp);
2649 
2650 	if (bp->link_vars.link_up) {
2651 
2652 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2653 			struct host_port_stats *pstats;
2654 
2655 			pstats = bnx2x_sp(bp, port_stats);
2656 			/* reset old mac stats */
2657 			memset(&(pstats->mac_stx[0]), 0,
2658 			       sizeof(struct mac_stx));
2659 		}
2660 		if (bp->state == BNX2X_STATE_OPEN)
2661 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2662 	}
2663 
2664 	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2665 		bnx2x_set_local_cmng(bp);
2666 
2667 	__bnx2x_link_report(bp);
2668 
2669 	if (IS_MF(bp))
2670 		bnx2x_link_sync_notify(bp);
2671 }
2672 
2673 void bnx2x__link_status_update(struct bnx2x *bp)
2674 {
2675 	if (bp->state != BNX2X_STATE_OPEN)
2676 		return;
2677 
2678 	/* read updated dcb configuration */
2679 	if (IS_PF(bp)) {
2680 		bnx2x_dcbx_pmf_update(bp);
2681 		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2682 		if (bp->link_vars.link_up)
2683 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2684 		else
2685 			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2686 			/* indicate link status */
2687 		bnx2x_link_report(bp);
2688 
2689 	} else { /* VF */
2690 		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2691 					  SUPPORTED_10baseT_Full |
2692 					  SUPPORTED_100baseT_Half |
2693 					  SUPPORTED_100baseT_Full |
2694 					  SUPPORTED_1000baseT_Full |
2695 					  SUPPORTED_2500baseX_Full |
2696 					  SUPPORTED_10000baseT_Full |
2697 					  SUPPORTED_TP |
2698 					  SUPPORTED_FIBRE |
2699 					  SUPPORTED_Autoneg |
2700 					  SUPPORTED_Pause |
2701 					  SUPPORTED_Asym_Pause);
2702 		bp->port.advertising[0] = bp->port.supported[0];
2703 
2704 		bp->link_params.bp = bp;
2705 		bp->link_params.port = BP_PORT(bp);
2706 		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2707 		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2708 		bp->link_params.req_line_speed[0] = SPEED_10000;
2709 		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2710 		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2711 		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2712 		bp->link_vars.line_speed = SPEED_10000;
2713 		bp->link_vars.link_status =
2714 			(LINK_STATUS_LINK_UP |
2715 			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2716 		bp->link_vars.link_up = 1;
2717 		bp->link_vars.duplex = DUPLEX_FULL;
2718 		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2719 		__bnx2x_link_report(bp);
2720 
2721 		bnx2x_sample_bulletin(bp);
2722 
2723 		/* if bulletin board did not have an update for link status
2724 		 * __bnx2x_link_report will report current status
2725 		 * but it will NOT duplicate report in case of already reported
2726 		 * during sampling bulletin board.
2727 		 */
2728 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2729 	}
2730 }
2731 
2732 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2733 				  u16 vlan_val, u8 allowed_prio)
2734 {
2735 	struct bnx2x_func_state_params func_params = {NULL};
2736 	struct bnx2x_func_afex_update_params *f_update_params =
2737 		&func_params.params.afex_update;
2738 
2739 	func_params.f_obj = &bp->func_obj;
2740 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2741 
2742 	/* no need to wait for RAMROD completion, so don't
2743 	 * set RAMROD_COMP_WAIT flag
2744 	 */
2745 
2746 	f_update_params->vif_id = vifid;
2747 	f_update_params->afex_default_vlan = vlan_val;
2748 	f_update_params->allowed_priorities = allowed_prio;
2749 
2750 	/* if ramrod can not be sent, response to MCP immediately */
2751 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2752 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2753 
2754 	return 0;
2755 }
2756 
2757 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2758 					  u16 vif_index, u8 func_bit_map)
2759 {
2760 	struct bnx2x_func_state_params func_params = {NULL};
2761 	struct bnx2x_func_afex_viflists_params *update_params =
2762 		&func_params.params.afex_viflists;
2763 	int rc;
2764 	u32 drv_msg_code;
2765 
2766 	/* validate only LIST_SET and LIST_GET are received from switch */
2767 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2768 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2769 			  cmd_type);
2770 
2771 	func_params.f_obj = &bp->func_obj;
2772 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2773 
2774 	/* set parameters according to cmd_type */
2775 	update_params->afex_vif_list_command = cmd_type;
2776 	update_params->vif_list_index = vif_index;
2777 	update_params->func_bit_map =
2778 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2779 	update_params->func_to_clear = 0;
2780 	drv_msg_code =
2781 		(cmd_type == VIF_LIST_RULE_GET) ?
2782 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2783 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2784 
2785 	/* if ramrod can not be sent, respond to MCP immediately for
2786 	 * SET and GET requests (other are not triggered from MCP)
2787 	 */
2788 	rc = bnx2x_func_state_change(bp, &func_params);
2789 	if (rc < 0)
2790 		bnx2x_fw_command(bp, drv_msg_code, 0);
2791 
2792 	return 0;
2793 }
2794 
2795 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2796 {
2797 	struct afex_stats afex_stats;
2798 	u32 func = BP_ABS_FUNC(bp);
2799 	u32 mf_config;
2800 	u16 vlan_val;
2801 	u32 vlan_prio;
2802 	u16 vif_id;
2803 	u8 allowed_prio;
2804 	u8 vlan_mode;
2805 	u32 addr_to_write, vifid, addrs, stats_type, i;
2806 
2807 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2808 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2809 		DP(BNX2X_MSG_MCP,
2810 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2811 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2812 	}
2813 
2814 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2815 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2816 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2817 		DP(BNX2X_MSG_MCP,
2818 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2819 		   vifid, addrs);
2820 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2821 					       addrs);
2822 	}
2823 
2824 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2825 		addr_to_write = SHMEM2_RD(bp,
2826 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2827 		stats_type = SHMEM2_RD(bp,
2828 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2829 
2830 		DP(BNX2X_MSG_MCP,
2831 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2832 		   addr_to_write);
2833 
2834 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2835 
2836 		/* write response to scratchpad, for MCP */
2837 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2838 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2839 			       *(((u32 *)(&afex_stats))+i));
2840 
2841 		/* send ack message to MCP */
2842 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2843 	}
2844 
2845 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2846 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2847 		bp->mf_config[BP_VN(bp)] = mf_config;
2848 		DP(BNX2X_MSG_MCP,
2849 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2850 		   mf_config);
2851 
2852 		/* if VIF_SET is "enabled" */
2853 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2854 			/* set rate limit directly to internal RAM */
2855 			struct cmng_init_input cmng_input;
2856 			struct rate_shaping_vars_per_vn m_rs_vn;
2857 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2858 			u32 addr = BAR_XSTRORM_INTMEM +
2859 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2860 
2861 			bp->mf_config[BP_VN(bp)] = mf_config;
2862 
2863 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2864 			m_rs_vn.vn_counter.rate =
2865 				cmng_input.vnic_max_rate[BP_VN(bp)];
2866 			m_rs_vn.vn_counter.quota =
2867 				(m_rs_vn.vn_counter.rate *
2868 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2869 
2870 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2871 
2872 			/* read relevant values from mf_cfg struct in shmem */
2873 			vif_id =
2874 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2875 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2876 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2877 			vlan_val =
2878 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2879 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2880 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2881 			vlan_prio = (mf_config &
2882 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2883 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2884 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2885 			vlan_mode =
2886 				(MF_CFG_RD(bp,
2887 					   func_mf_config[func].afex_config) &
2888 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2889 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2890 			allowed_prio =
2891 				(MF_CFG_RD(bp,
2892 					   func_mf_config[func].afex_config) &
2893 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2894 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2895 
2896 			/* send ramrod to FW, return in case of failure */
2897 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2898 						   allowed_prio))
2899 				return;
2900 
2901 			bp->afex_def_vlan_tag = vlan_val;
2902 			bp->afex_vlan_mode = vlan_mode;
2903 		} else {
2904 			/* notify link down because BP->flags is disabled */
2905 			bnx2x_link_report(bp);
2906 
2907 			/* send INVALID VIF ramrod to FW */
2908 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2909 
2910 			/* Reset the default afex VLAN */
2911 			bp->afex_def_vlan_tag = -1;
2912 		}
2913 	}
2914 }
2915 
2916 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2917 {
2918 	struct bnx2x_func_switch_update_params *switch_update_params;
2919 	struct bnx2x_func_state_params func_params;
2920 
2921 	memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2922 	switch_update_params = &func_params.params.switch_update;
2923 	func_params.f_obj = &bp->func_obj;
2924 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2925 
2926 	/* Prepare parameters for function state transitions */
2927 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2928 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
2929 
2930 	if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2931 		int func = BP_ABS_FUNC(bp);
2932 		u32 val;
2933 
2934 		/* Re-learn the S-tag from shmem */
2935 		val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2936 				FUNC_MF_CFG_E1HOV_TAG_MASK;
2937 		if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2938 			bp->mf_ov = val;
2939 		} else {
2940 			BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2941 			goto fail;
2942 		}
2943 
2944 		/* Configure new S-tag in LLH */
2945 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2946 		       bp->mf_ov);
2947 
2948 		/* Send Ramrod to update FW of change */
2949 		__set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2950 			  &switch_update_params->changes);
2951 		switch_update_params->vlan = bp->mf_ov;
2952 
2953 		if (bnx2x_func_state_change(bp, &func_params) < 0) {
2954 			BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2955 				  bp->mf_ov);
2956 			goto fail;
2957 		} else {
2958 			DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2959 			   bp->mf_ov);
2960 		}
2961 	} else {
2962 		goto fail;
2963 	}
2964 
2965 	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2966 	return;
2967 fail:
2968 	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2969 }
2970 
2971 static void bnx2x_pmf_update(struct bnx2x *bp)
2972 {
2973 	int port = BP_PORT(bp);
2974 	u32 val;
2975 
2976 	bp->port.pmf = 1;
2977 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2978 
2979 	/*
2980 	 * We need the mb() to ensure the ordering between the writing to
2981 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2982 	 */
2983 	smp_mb();
2984 
2985 	/* queue a periodic task */
2986 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2987 
2988 	bnx2x_dcbx_pmf_update(bp);
2989 
2990 	/* enable nig attention */
2991 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2992 	if (bp->common.int_block == INT_BLOCK_HC) {
2993 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2994 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2995 	} else if (!CHIP_IS_E1x(bp)) {
2996 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2997 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2998 	}
2999 
3000 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
3001 }
3002 
3003 /* end of Link */
3004 
3005 /* slow path */
3006 
3007 /*
3008  * General service functions
3009  */
3010 
3011 /* send the MCP a request, block until there is a reply */
3012 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3013 {
3014 	int mb_idx = BP_FW_MB_IDX(bp);
3015 	u32 seq;
3016 	u32 rc = 0;
3017 	u32 cnt = 1;
3018 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3019 
3020 	mutex_lock(&bp->fw_mb_mutex);
3021 	seq = ++bp->fw_seq;
3022 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3023 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3024 
3025 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3026 			(command | seq), param);
3027 
3028 	do {
3029 		/* let the FW do it's magic ... */
3030 		msleep(delay);
3031 
3032 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3033 
3034 		/* Give the FW up to 5 second (500*10ms) */
3035 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3036 
3037 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3038 	   cnt*delay, rc, seq);
3039 
3040 	/* is this a reply to our command? */
3041 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3042 		rc &= FW_MSG_CODE_MASK;
3043 	else {
3044 		/* FW BUG! */
3045 		BNX2X_ERR("FW failed to respond!\n");
3046 		bnx2x_fw_dump(bp);
3047 		rc = 0;
3048 	}
3049 	mutex_unlock(&bp->fw_mb_mutex);
3050 
3051 	return rc;
3052 }
3053 
3054 static void storm_memset_func_cfg(struct bnx2x *bp,
3055 				 struct tstorm_eth_function_common_config *tcfg,
3056 				 u16 abs_fid)
3057 {
3058 	size_t size = sizeof(struct tstorm_eth_function_common_config);
3059 
3060 	u32 addr = BAR_TSTRORM_INTMEM +
3061 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3062 
3063 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3064 }
3065 
3066 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3067 {
3068 	if (CHIP_IS_E1x(bp)) {
3069 		struct tstorm_eth_function_common_config tcfg = {0};
3070 
3071 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
3072 	}
3073 
3074 	/* Enable the function in the FW */
3075 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3076 	storm_memset_func_en(bp, p->func_id, 1);
3077 
3078 	/* spq */
3079 	if (p->spq_active) {
3080 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3081 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
3082 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3083 	}
3084 }
3085 
3086 /**
3087  * bnx2x_get_common_flags - Return common flags
3088  *
3089  * @bp		device handle
3090  * @fp		queue handle
3091  * @zero_stats	TRUE if statistics zeroing is needed
3092  *
3093  * Return the flags that are common for the Tx-only and not normal connections.
3094  */
3095 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3096 					    struct bnx2x_fastpath *fp,
3097 					    bool zero_stats)
3098 {
3099 	unsigned long flags = 0;
3100 
3101 	/* PF driver will always initialize the Queue to an ACTIVE state */
3102 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3103 
3104 	/* tx only connections collect statistics (on the same index as the
3105 	 * parent connection). The statistics are zeroed when the parent
3106 	 * connection is initialized.
3107 	 */
3108 
3109 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
3110 	if (zero_stats)
3111 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3112 
3113 	if (bp->flags & TX_SWITCHING)
3114 		__set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3115 
3116 	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3117 	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3118 
3119 #ifdef BNX2X_STOP_ON_ERROR
3120 	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3121 #endif
3122 
3123 	return flags;
3124 }
3125 
3126 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3127 				       struct bnx2x_fastpath *fp,
3128 				       bool leading)
3129 {
3130 	unsigned long flags = 0;
3131 
3132 	/* calculate other queue flags */
3133 	if (IS_MF_SD(bp))
3134 		__set_bit(BNX2X_Q_FLG_OV, &flags);
3135 
3136 	if (IS_FCOE_FP(fp)) {
3137 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
3138 		/* For FCoE - force usage of default priority (for afex) */
3139 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3140 	}
3141 
3142 	if (fp->mode != TPA_MODE_DISABLED) {
3143 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3144 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3145 		if (fp->mode == TPA_MODE_GRO)
3146 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3147 	}
3148 
3149 	if (leading) {
3150 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3151 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3152 	}
3153 
3154 	/* Always set HW VLAN stripping */
3155 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3156 
3157 	/* configure silent vlan removal */
3158 	if (IS_MF_AFEX(bp))
3159 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3160 
3161 	return flags | bnx2x_get_common_flags(bp, fp, true);
3162 }
3163 
3164 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3165 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3166 	u8 cos)
3167 {
3168 	gen_init->stat_id = bnx2x_stats_id(fp);
3169 	gen_init->spcl_id = fp->cl_id;
3170 
3171 	/* Always use mini-jumbo MTU for FCoE L2 ring */
3172 	if (IS_FCOE_FP(fp))
3173 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3174 	else
3175 		gen_init->mtu = bp->dev->mtu;
3176 
3177 	gen_init->cos = cos;
3178 
3179 	gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3180 }
3181 
3182 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3183 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3184 	struct bnx2x_rxq_setup_params *rxq_init)
3185 {
3186 	u8 max_sge = 0;
3187 	u16 sge_sz = 0;
3188 	u16 tpa_agg_size = 0;
3189 
3190 	if (fp->mode != TPA_MODE_DISABLED) {
3191 		pause->sge_th_lo = SGE_TH_LO(bp);
3192 		pause->sge_th_hi = SGE_TH_HI(bp);
3193 
3194 		/* validate SGE ring has enough to cross high threshold */
3195 		WARN_ON(bp->dropless_fc &&
3196 				pause->sge_th_hi + FW_PREFETCH_CNT >
3197 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3198 
3199 		tpa_agg_size = TPA_AGG_SIZE;
3200 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3201 			SGE_PAGE_SHIFT;
3202 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3203 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3204 		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3205 	}
3206 
3207 	/* pause - not for e1 */
3208 	if (!CHIP_IS_E1(bp)) {
3209 		pause->bd_th_lo = BD_TH_LO(bp);
3210 		pause->bd_th_hi = BD_TH_HI(bp);
3211 
3212 		pause->rcq_th_lo = RCQ_TH_LO(bp);
3213 		pause->rcq_th_hi = RCQ_TH_HI(bp);
3214 		/*
3215 		 * validate that rings have enough entries to cross
3216 		 * high thresholds
3217 		 */
3218 		WARN_ON(bp->dropless_fc &&
3219 				pause->bd_th_hi + FW_PREFETCH_CNT >
3220 				bp->rx_ring_size);
3221 		WARN_ON(bp->dropless_fc &&
3222 				pause->rcq_th_hi + FW_PREFETCH_CNT >
3223 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3224 
3225 		pause->pri_map = 1;
3226 	}
3227 
3228 	/* rxq setup */
3229 	rxq_init->dscr_map = fp->rx_desc_mapping;
3230 	rxq_init->sge_map = fp->rx_sge_mapping;
3231 	rxq_init->rcq_map = fp->rx_comp_mapping;
3232 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3233 
3234 	/* This should be a maximum number of data bytes that may be
3235 	 * placed on the BD (not including paddings).
3236 	 */
3237 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3238 			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3239 
3240 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3241 	rxq_init->tpa_agg_sz = tpa_agg_size;
3242 	rxq_init->sge_buf_sz = sge_sz;
3243 	rxq_init->max_sges_pkt = max_sge;
3244 	rxq_init->rss_engine_id = BP_FUNC(bp);
3245 	rxq_init->mcast_engine_id = BP_FUNC(bp);
3246 
3247 	/* Maximum number or simultaneous TPA aggregation for this Queue.
3248 	 *
3249 	 * For PF Clients it should be the maximum available number.
3250 	 * VF driver(s) may want to define it to a smaller value.
3251 	 */
3252 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3253 
3254 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3255 	rxq_init->fw_sb_id = fp->fw_sb_id;
3256 
3257 	if (IS_FCOE_FP(fp))
3258 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3259 	else
3260 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3261 	/* configure silent vlan removal
3262 	 * if multi function mode is afex, then mask default vlan
3263 	 */
3264 	if (IS_MF_AFEX(bp)) {
3265 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3266 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3267 	}
3268 }
3269 
3270 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3271 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3272 	u8 cos)
3273 {
3274 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3275 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3276 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3277 	txq_init->fw_sb_id = fp->fw_sb_id;
3278 
3279 	/*
3280 	 * set the tss leading client id for TX classification ==
3281 	 * leading RSS client id
3282 	 */
3283 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3284 
3285 	if (IS_FCOE_FP(fp)) {
3286 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3287 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3288 	}
3289 }
3290 
3291 static void bnx2x_pf_init(struct bnx2x *bp)
3292 {
3293 	struct bnx2x_func_init_params func_init = {0};
3294 	struct event_ring_data eq_data = { {0} };
3295 
3296 	if (!CHIP_IS_E1x(bp)) {
3297 		/* reset IGU PF statistics: MSIX + ATTN */
3298 		/* PF */
3299 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3300 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3301 			   (CHIP_MODE_IS_4_PORT(bp) ?
3302 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3303 		/* ATTN */
3304 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3305 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3306 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3307 			   (CHIP_MODE_IS_4_PORT(bp) ?
3308 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3309 	}
3310 
3311 	func_init.spq_active = true;
3312 	func_init.pf_id = BP_FUNC(bp);
3313 	func_init.func_id = BP_FUNC(bp);
3314 	func_init.spq_map = bp->spq_mapping;
3315 	func_init.spq_prod = bp->spq_prod_idx;
3316 
3317 	bnx2x_func_init(bp, &func_init);
3318 
3319 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3320 
3321 	/*
3322 	 * Congestion management values depend on the link rate
3323 	 * There is no active link so initial link rate is set to 10 Gbps.
3324 	 * When the link comes up The congestion management values are
3325 	 * re-calculated according to the actual link rate.
3326 	 */
3327 	bp->link_vars.line_speed = SPEED_10000;
3328 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3329 
3330 	/* Only the PMF sets the HW */
3331 	if (bp->port.pmf)
3332 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3333 
3334 	/* init Event Queue - PCI bus guarantees correct endianity*/
3335 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3336 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3337 	eq_data.producer = bp->eq_prod;
3338 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3339 	eq_data.sb_id = DEF_SB_ID;
3340 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3341 }
3342 
3343 static void bnx2x_e1h_disable(struct bnx2x *bp)
3344 {
3345 	int port = BP_PORT(bp);
3346 
3347 	bnx2x_tx_disable(bp);
3348 
3349 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3350 }
3351 
3352 static void bnx2x_e1h_enable(struct bnx2x *bp)
3353 {
3354 	int port = BP_PORT(bp);
3355 
3356 	if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3357 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3358 
3359 	/* Tx queue should be only re-enabled */
3360 	netif_tx_wake_all_queues(bp->dev);
3361 
3362 	/*
3363 	 * Should not call netif_carrier_on since it will be called if the link
3364 	 * is up when checking for link state
3365 	 */
3366 }
3367 
3368 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3369 
3370 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3371 {
3372 	struct eth_stats_info *ether_stat =
3373 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3374 	struct bnx2x_vlan_mac_obj *mac_obj =
3375 		&bp->sp_objs->mac_obj;
3376 	int i;
3377 
3378 	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3379 		ETH_STAT_INFO_VERSION_LEN);
3380 
3381 	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3382 	 * mac_local field in ether_stat struct. The base address is offset by 2
3383 	 * bytes to account for the field being 8 bytes but a mac address is
3384 	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3385 	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3386 	 * allocated by the ether_stat struct, so the macs will land in their
3387 	 * proper positions.
3388 	 */
3389 	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3390 		memset(ether_stat->mac_local + i, 0,
3391 		       sizeof(ether_stat->mac_local[0]));
3392 	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3393 				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3394 				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3395 				ETH_ALEN);
3396 	ether_stat->mtu_size = bp->dev->mtu;
3397 	if (bp->dev->features & NETIF_F_RXCSUM)
3398 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3399 	if (bp->dev->features & NETIF_F_TSO)
3400 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3401 	ether_stat->feature_flags |= bp->common.boot_mode;
3402 
3403 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3404 
3405 	ether_stat->txq_size = bp->tx_ring_size;
3406 	ether_stat->rxq_size = bp->rx_ring_size;
3407 
3408 #ifdef CONFIG_BNX2X_SRIOV
3409 	ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3410 #endif
3411 }
3412 
3413 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3414 {
3415 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3416 	struct fcoe_stats_info *fcoe_stat =
3417 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3418 
3419 	if (!CNIC_LOADED(bp))
3420 		return;
3421 
3422 	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3423 
3424 	fcoe_stat->qos_priority =
3425 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3426 
3427 	/* insert FCoE stats from ramrod response */
3428 	if (!NO_FCOE(bp)) {
3429 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3430 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3431 			tstorm_queue_statistics;
3432 
3433 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3434 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3435 			xstorm_queue_statistics;
3436 
3437 		struct fcoe_statistics_params *fw_fcoe_stat =
3438 			&bp->fw_stats_data->fcoe;
3439 
3440 		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3441 			  fcoe_stat->rx_bytes_lo,
3442 			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3443 
3444 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3445 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3446 			  fcoe_stat->rx_bytes_lo,
3447 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3448 
3449 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3450 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3451 			  fcoe_stat->rx_bytes_lo,
3452 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3453 
3454 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3455 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3456 			  fcoe_stat->rx_bytes_lo,
3457 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3458 
3459 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3460 			  fcoe_stat->rx_frames_lo,
3461 			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3462 
3463 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3464 			  fcoe_stat->rx_frames_lo,
3465 			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3466 
3467 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3468 			  fcoe_stat->rx_frames_lo,
3469 			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3470 
3471 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3472 			  fcoe_stat->rx_frames_lo,
3473 			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3474 
3475 		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3476 			  fcoe_stat->tx_bytes_lo,
3477 			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3478 
3479 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3480 			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3481 			  fcoe_stat->tx_bytes_lo,
3482 			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3483 
3484 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3485 			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3486 			  fcoe_stat->tx_bytes_lo,
3487 			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3488 
3489 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3490 			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3491 			  fcoe_stat->tx_bytes_lo,
3492 			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3493 
3494 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3495 			  fcoe_stat->tx_frames_lo,
3496 			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3497 
3498 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3499 			  fcoe_stat->tx_frames_lo,
3500 			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3501 
3502 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3503 			  fcoe_stat->tx_frames_lo,
3504 			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3505 
3506 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3507 			  fcoe_stat->tx_frames_lo,
3508 			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3509 	}
3510 
3511 	/* ask L5 driver to add data to the struct */
3512 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3513 }
3514 
3515 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3516 {
3517 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3518 	struct iscsi_stats_info *iscsi_stat =
3519 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3520 
3521 	if (!CNIC_LOADED(bp))
3522 		return;
3523 
3524 	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3525 	       ETH_ALEN);
3526 
3527 	iscsi_stat->qos_priority =
3528 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3529 
3530 	/* ask L5 driver to add data to the struct */
3531 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3532 }
3533 
3534 /* called due to MCP event (on pmf):
3535  *	reread new bandwidth configuration
3536  *	configure FW
3537  *	notify others function about the change
3538  */
3539 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3540 {
3541 	/* Workaround for MFW bug.
3542 	 * MFW is not supposed to generate BW attention in
3543 	 * single function mode.
3544 	 */
3545 	if (!IS_MF(bp)) {
3546 		DP(BNX2X_MSG_MCP,
3547 		   "Ignoring MF BW config in single function mode\n");
3548 		return;
3549 	}
3550 
3551 	if (bp->link_vars.link_up) {
3552 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3553 		bnx2x_link_sync_notify(bp);
3554 	}
3555 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3556 }
3557 
3558 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3559 {
3560 	bnx2x_config_mf_bw(bp);
3561 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3562 }
3563 
3564 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3565 {
3566 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3567 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3568 }
3569 
3570 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH	(20)
3571 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT		(25)
3572 
3573 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3574 {
3575 	enum drv_info_opcode op_code;
3576 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3577 	bool release = false;
3578 	int wait;
3579 
3580 	/* if drv_info version supported by MFW doesn't match - send NACK */
3581 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3582 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3583 		return;
3584 	}
3585 
3586 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3587 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3588 
3589 	/* Must prevent other flows from accessing drv_info_to_mcp */
3590 	mutex_lock(&bp->drv_info_mutex);
3591 
3592 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3593 	       sizeof(union drv_info_to_mcp));
3594 
3595 	switch (op_code) {
3596 	case ETH_STATS_OPCODE:
3597 		bnx2x_drv_info_ether_stat(bp);
3598 		break;
3599 	case FCOE_STATS_OPCODE:
3600 		bnx2x_drv_info_fcoe_stat(bp);
3601 		break;
3602 	case ISCSI_STATS_OPCODE:
3603 		bnx2x_drv_info_iscsi_stat(bp);
3604 		break;
3605 	default:
3606 		/* if op code isn't supported - send NACK */
3607 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3608 		goto out;
3609 	}
3610 
3611 	/* if we got drv_info attn from MFW then these fields are defined in
3612 	 * shmem2 for sure
3613 	 */
3614 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3615 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3616 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3617 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3618 
3619 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3620 
3621 	/* Since possible management wants both this and get_driver_version
3622 	 * need to wait until management notifies us it finished utilizing
3623 	 * the buffer.
3624 	 */
3625 	if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3626 		DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3627 	} else if (!bp->drv_info_mng_owner) {
3628 		u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3629 
3630 		for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3631 			u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3632 
3633 			/* Management is done; need to clear indication */
3634 			if (indication & bit) {
3635 				SHMEM2_WR(bp, mfw_drv_indication,
3636 					  indication & ~bit);
3637 				release = true;
3638 				break;
3639 			}
3640 
3641 			msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3642 		}
3643 	}
3644 	if (!release) {
3645 		DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3646 		bp->drv_info_mng_owner = true;
3647 	}
3648 
3649 out:
3650 	mutex_unlock(&bp->drv_info_mutex);
3651 }
3652 
3653 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3654 {
3655 	u8 vals[4];
3656 	int i = 0;
3657 
3658 	if (bnx2x_format) {
3659 		i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3660 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3661 		if (i > 0)
3662 			vals[0] -= '0';
3663 	} else {
3664 		i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3665 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3666 	}
3667 
3668 	while (i < 4)
3669 		vals[i++] = 0;
3670 
3671 	return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3672 }
3673 
3674 void bnx2x_update_mng_version(struct bnx2x *bp)
3675 {
3676 	u32 iscsiver = DRV_VER_NOT_LOADED;
3677 	u32 fcoever = DRV_VER_NOT_LOADED;
3678 	u32 ethver = DRV_VER_NOT_LOADED;
3679 	int idx = BP_FW_MB_IDX(bp);
3680 	u8 *version;
3681 
3682 	if (!SHMEM2_HAS(bp, func_os_drv_ver))
3683 		return;
3684 
3685 	mutex_lock(&bp->drv_info_mutex);
3686 	/* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3687 	if (bp->drv_info_mng_owner)
3688 		goto out;
3689 
3690 	if (bp->state != BNX2X_STATE_OPEN)
3691 		goto out;
3692 
3693 	/* Parse ethernet driver version */
3694 	ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3695 	if (!CNIC_LOADED(bp))
3696 		goto out;
3697 
3698 	/* Try getting storage driver version via cnic */
3699 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3700 	       sizeof(union drv_info_to_mcp));
3701 	bnx2x_drv_info_iscsi_stat(bp);
3702 	version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3703 	iscsiver = bnx2x_update_mng_version_utility(version, false);
3704 
3705 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3706 	       sizeof(union drv_info_to_mcp));
3707 	bnx2x_drv_info_fcoe_stat(bp);
3708 	version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3709 	fcoever = bnx2x_update_mng_version_utility(version, false);
3710 
3711 out:
3712 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3713 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3714 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3715 
3716 	mutex_unlock(&bp->drv_info_mutex);
3717 
3718 	DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3719 	   ethver, iscsiver, fcoever);
3720 }
3721 
3722 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3723 {
3724 	u32 drv_ver;
3725 	u32 valid_dump;
3726 
3727 	if (!SHMEM2_HAS(bp, drv_info))
3728 		return;
3729 
3730 	/* Update Driver load time, possibly broken in y2038 */
3731 	SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3732 
3733 	drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3734 	SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3735 
3736 	SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3737 
3738 	/* Check & notify On-Chip dump. */
3739 	valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3740 
3741 	if (valid_dump & FIRST_DUMP_VALID)
3742 		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3743 
3744 	if (valid_dump & SECOND_DUMP_VALID)
3745 		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3746 }
3747 
3748 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3749 {
3750 	u32 cmd_ok, cmd_fail;
3751 
3752 	/* sanity */
3753 	if (event & DRV_STATUS_DCC_EVENT_MASK &&
3754 	    event & DRV_STATUS_OEM_EVENT_MASK) {
3755 		BNX2X_ERR("Received simultaneous events %08x\n", event);
3756 		return;
3757 	}
3758 
3759 	if (event & DRV_STATUS_DCC_EVENT_MASK) {
3760 		cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3761 		cmd_ok = DRV_MSG_CODE_DCC_OK;
3762 	} else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3763 		cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3764 		cmd_ok = DRV_MSG_CODE_OEM_OK;
3765 	}
3766 
3767 	DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3768 
3769 	if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3770 		     DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3771 		/* This is the only place besides the function initialization
3772 		 * where the bp->flags can change so it is done without any
3773 		 * locks
3774 		 */
3775 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3776 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3777 			bp->flags |= MF_FUNC_DIS;
3778 
3779 			bnx2x_e1h_disable(bp);
3780 		} else {
3781 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3782 			bp->flags &= ~MF_FUNC_DIS;
3783 
3784 			bnx2x_e1h_enable(bp);
3785 		}
3786 		event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3787 			   DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3788 	}
3789 
3790 	if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3791 		     DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3792 		bnx2x_config_mf_bw(bp);
3793 		event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3794 			   DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3795 	}
3796 
3797 	/* Report results to MCP */
3798 	if (event)
3799 		bnx2x_fw_command(bp, cmd_fail, 0);
3800 	else
3801 		bnx2x_fw_command(bp, cmd_ok, 0);
3802 }
3803 
3804 /* must be called under the spq lock */
3805 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3806 {
3807 	struct eth_spe *next_spe = bp->spq_prod_bd;
3808 
3809 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3810 		bp->spq_prod_bd = bp->spq;
3811 		bp->spq_prod_idx = 0;
3812 		DP(BNX2X_MSG_SP, "end of spq\n");
3813 	} else {
3814 		bp->spq_prod_bd++;
3815 		bp->spq_prod_idx++;
3816 	}
3817 	return next_spe;
3818 }
3819 
3820 /* must be called under the spq lock */
3821 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3822 {
3823 	int func = BP_FUNC(bp);
3824 
3825 	/*
3826 	 * Make sure that BD data is updated before writing the producer:
3827 	 * BD data is written to the memory, the producer is read from the
3828 	 * memory, thus we need a full memory barrier to ensure the ordering.
3829 	 */
3830 	mb();
3831 
3832 	REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3833 			 bp->spq_prod_idx);
3834 }
3835 
3836 /**
3837  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3838  *
3839  * @cmd:	command to check
3840  * @cmd_type:	command type
3841  */
3842 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3843 {
3844 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3845 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3846 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3847 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3848 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3849 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3850 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3851 		return true;
3852 	else
3853 		return false;
3854 }
3855 
3856 /**
3857  * bnx2x_sp_post - place a single command on an SP ring
3858  *
3859  * @bp:		driver handle
3860  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3861  * @cid:	SW CID the command is related to
3862  * @data_hi:	command private data address (high 32 bits)
3863  * @data_lo:	command private data address (low 32 bits)
3864  * @cmd_type:	command type (e.g. NONE, ETH)
3865  *
3866  * SP data is handled as if it's always an address pair, thus data fields are
3867  * not swapped to little endian in upper functions. Instead this function swaps
3868  * data as if it's two u32 fields.
3869  */
3870 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3871 		  u32 data_hi, u32 data_lo, int cmd_type)
3872 {
3873 	struct eth_spe *spe;
3874 	u16 type;
3875 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3876 
3877 #ifdef BNX2X_STOP_ON_ERROR
3878 	if (unlikely(bp->panic)) {
3879 		BNX2X_ERR("Can't post SP when there is panic\n");
3880 		return -EIO;
3881 	}
3882 #endif
3883 
3884 	spin_lock_bh(&bp->spq_lock);
3885 
3886 	if (common) {
3887 		if (!atomic_read(&bp->eq_spq_left)) {
3888 			BNX2X_ERR("BUG! EQ ring full!\n");
3889 			spin_unlock_bh(&bp->spq_lock);
3890 			bnx2x_panic();
3891 			return -EBUSY;
3892 		}
3893 	} else if (!atomic_read(&bp->cq_spq_left)) {
3894 			BNX2X_ERR("BUG! SPQ ring full!\n");
3895 			spin_unlock_bh(&bp->spq_lock);
3896 			bnx2x_panic();
3897 			return -EBUSY;
3898 	}
3899 
3900 	spe = bnx2x_sp_get_next(bp);
3901 
3902 	/* CID needs port number to be encoded int it */
3903 	spe->hdr.conn_and_cmd_data =
3904 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3905 				    HW_CID(bp, cid));
3906 
3907 	/* In some cases, type may already contain the func-id
3908 	 * mainly in SRIOV related use cases, so we add it here only
3909 	 * if it's not already set.
3910 	 */
3911 	if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3912 		type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3913 			SPE_HDR_CONN_TYPE;
3914 		type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3915 			 SPE_HDR_FUNCTION_ID);
3916 	} else {
3917 		type = cmd_type;
3918 	}
3919 
3920 	spe->hdr.type = cpu_to_le16(type);
3921 
3922 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3923 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3924 
3925 	/*
3926 	 * It's ok if the actual decrement is issued towards the memory
3927 	 * somewhere between the spin_lock and spin_unlock. Thus no
3928 	 * more explicit memory barrier is needed.
3929 	 */
3930 	if (common)
3931 		atomic_dec(&bp->eq_spq_left);
3932 	else
3933 		atomic_dec(&bp->cq_spq_left);
3934 
3935 	DP(BNX2X_MSG_SP,
3936 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3937 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3938 	   (u32)(U64_LO(bp->spq_mapping) +
3939 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3940 	   HW_CID(bp, cid), data_hi, data_lo, type,
3941 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3942 
3943 	bnx2x_sp_prod_update(bp);
3944 	spin_unlock_bh(&bp->spq_lock);
3945 	return 0;
3946 }
3947 
3948 /* acquire split MCP access lock register */
3949 static int bnx2x_acquire_alr(struct bnx2x *bp)
3950 {
3951 	u32 j, val;
3952 	int rc = 0;
3953 
3954 	might_sleep();
3955 	for (j = 0; j < 1000; j++) {
3956 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3957 		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3958 		if (val & MCPR_ACCESS_LOCK_LOCK)
3959 			break;
3960 
3961 		usleep_range(5000, 10000);
3962 	}
3963 	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3964 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3965 		rc = -EBUSY;
3966 	}
3967 
3968 	return rc;
3969 }
3970 
3971 /* release split MCP access lock register */
3972 static void bnx2x_release_alr(struct bnx2x *bp)
3973 {
3974 	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3975 }
3976 
3977 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3978 #define BNX2X_DEF_SB_IDX	0x0002
3979 
3980 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3981 {
3982 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3983 	u16 rc = 0;
3984 
3985 	barrier(); /* status block is written to by the chip */
3986 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3987 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3988 		rc |= BNX2X_DEF_SB_ATT_IDX;
3989 	}
3990 
3991 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3992 		bp->def_idx = def_sb->sp_sb.running_index;
3993 		rc |= BNX2X_DEF_SB_IDX;
3994 	}
3995 
3996 	/* Do not reorder: indices reading should complete before handling */
3997 	barrier();
3998 	return rc;
3999 }
4000 
4001 /*
4002  * slow path service functions
4003  */
4004 
4005 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
4006 {
4007 	int port = BP_PORT(bp);
4008 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4009 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
4010 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
4011 				       NIG_REG_MASK_INTERRUPT_PORT0;
4012 	u32 aeu_mask;
4013 	u32 nig_mask = 0;
4014 	u32 reg_addr;
4015 
4016 	if (bp->attn_state & asserted)
4017 		BNX2X_ERR("IGU ERROR\n");
4018 
4019 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4020 	aeu_mask = REG_RD(bp, aeu_addr);
4021 
4022 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
4023 	   aeu_mask, asserted);
4024 	aeu_mask &= ~(asserted & 0x3ff);
4025 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4026 
4027 	REG_WR(bp, aeu_addr, aeu_mask);
4028 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4029 
4030 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4031 	bp->attn_state |= asserted;
4032 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4033 
4034 	if (asserted & ATTN_HARD_WIRED_MASK) {
4035 		if (asserted & ATTN_NIG_FOR_FUNC) {
4036 
4037 			bnx2x_acquire_phy_lock(bp);
4038 
4039 			/* save nig interrupt mask */
4040 			nig_mask = REG_RD(bp, nig_int_mask_addr);
4041 
4042 			/* If nig_mask is not set, no need to call the update
4043 			 * function.
4044 			 */
4045 			if (nig_mask) {
4046 				REG_WR(bp, nig_int_mask_addr, 0);
4047 
4048 				bnx2x_link_attn(bp);
4049 			}
4050 
4051 			/* handle unicore attn? */
4052 		}
4053 		if (asserted & ATTN_SW_TIMER_4_FUNC)
4054 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4055 
4056 		if (asserted & GPIO_2_FUNC)
4057 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4058 
4059 		if (asserted & GPIO_3_FUNC)
4060 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4061 
4062 		if (asserted & GPIO_4_FUNC)
4063 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4064 
4065 		if (port == 0) {
4066 			if (asserted & ATTN_GENERAL_ATTN_1) {
4067 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4068 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4069 			}
4070 			if (asserted & ATTN_GENERAL_ATTN_2) {
4071 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4072 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4073 			}
4074 			if (asserted & ATTN_GENERAL_ATTN_3) {
4075 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4076 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4077 			}
4078 		} else {
4079 			if (asserted & ATTN_GENERAL_ATTN_4) {
4080 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4081 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4082 			}
4083 			if (asserted & ATTN_GENERAL_ATTN_5) {
4084 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4085 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4086 			}
4087 			if (asserted & ATTN_GENERAL_ATTN_6) {
4088 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4089 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4090 			}
4091 		}
4092 
4093 	} /* if hardwired */
4094 
4095 	if (bp->common.int_block == INT_BLOCK_HC)
4096 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4097 			    COMMAND_REG_ATTN_BITS_SET);
4098 	else
4099 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4100 
4101 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4102 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4103 	REG_WR(bp, reg_addr, asserted);
4104 
4105 	/* now set back the mask */
4106 	if (asserted & ATTN_NIG_FOR_FUNC) {
4107 		/* Verify that IGU ack through BAR was written before restoring
4108 		 * NIG mask. This loop should exit after 2-3 iterations max.
4109 		 */
4110 		if (bp->common.int_block != INT_BLOCK_HC) {
4111 			u32 cnt = 0, igu_acked;
4112 			do {
4113 				igu_acked = REG_RD(bp,
4114 						   IGU_REG_ATTENTION_ACK_BITS);
4115 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4116 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
4117 			if (!igu_acked)
4118 				DP(NETIF_MSG_HW,
4119 				   "Failed to verify IGU ack on time\n");
4120 			barrier();
4121 		}
4122 		REG_WR(bp, nig_int_mask_addr, nig_mask);
4123 		bnx2x_release_phy_lock(bp);
4124 	}
4125 }
4126 
4127 static void bnx2x_fan_failure(struct bnx2x *bp)
4128 {
4129 	int port = BP_PORT(bp);
4130 	u32 ext_phy_config;
4131 	/* mark the failure */
4132 	ext_phy_config =
4133 		SHMEM_RD(bp,
4134 			 dev_info.port_hw_config[port].external_phy_config);
4135 
4136 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4137 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4138 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4139 		 ext_phy_config);
4140 
4141 	/* log the failure */
4142 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4143 			    "Please contact OEM Support for assistance\n");
4144 
4145 	/* Schedule device reset (unload)
4146 	 * This is due to some boards consuming sufficient power when driver is
4147 	 * up to overheat if fan fails.
4148 	 */
4149 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4150 }
4151 
4152 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4153 {
4154 	int port = BP_PORT(bp);
4155 	int reg_offset;
4156 	u32 val;
4157 
4158 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4159 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4160 
4161 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4162 
4163 		val = REG_RD(bp, reg_offset);
4164 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4165 		REG_WR(bp, reg_offset, val);
4166 
4167 		BNX2X_ERR("SPIO5 hw attention\n");
4168 
4169 		/* Fan failure attention */
4170 		bnx2x_hw_reset_phy(&bp->link_params);
4171 		bnx2x_fan_failure(bp);
4172 	}
4173 
4174 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4175 		bnx2x_acquire_phy_lock(bp);
4176 		bnx2x_handle_module_detect_int(&bp->link_params);
4177 		bnx2x_release_phy_lock(bp);
4178 	}
4179 
4180 	if (attn & HW_INTERRUPT_ASSERT_SET_0) {
4181 
4182 		val = REG_RD(bp, reg_offset);
4183 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0);
4184 		REG_WR(bp, reg_offset, val);
4185 
4186 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4187 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_0));
4188 		bnx2x_panic();
4189 	}
4190 }
4191 
4192 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4193 {
4194 	u32 val;
4195 
4196 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4197 
4198 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4199 		BNX2X_ERR("DB hw attention 0x%x\n", val);
4200 		/* DORQ discard attention */
4201 		if (val & 0x2)
4202 			BNX2X_ERR("FATAL error from DORQ\n");
4203 	}
4204 
4205 	if (attn & HW_INTERRUPT_ASSERT_SET_1) {
4206 
4207 		int port = BP_PORT(bp);
4208 		int reg_offset;
4209 
4210 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4211 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4212 
4213 		val = REG_RD(bp, reg_offset);
4214 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1);
4215 		REG_WR(bp, reg_offset, val);
4216 
4217 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4218 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_1));
4219 		bnx2x_panic();
4220 	}
4221 }
4222 
4223 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4224 {
4225 	u32 val;
4226 
4227 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4228 
4229 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4230 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
4231 		/* CFC error attention */
4232 		if (val & 0x2)
4233 			BNX2X_ERR("FATAL error from CFC\n");
4234 	}
4235 
4236 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4237 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4238 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4239 		/* RQ_USDMDP_FIFO_OVERFLOW */
4240 		if (val & 0x18000)
4241 			BNX2X_ERR("FATAL error from PXP\n");
4242 
4243 		if (!CHIP_IS_E1x(bp)) {
4244 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4245 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4246 		}
4247 	}
4248 
4249 	if (attn & HW_INTERRUPT_ASSERT_SET_2) {
4250 
4251 		int port = BP_PORT(bp);
4252 		int reg_offset;
4253 
4254 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4255 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4256 
4257 		val = REG_RD(bp, reg_offset);
4258 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2);
4259 		REG_WR(bp, reg_offset, val);
4260 
4261 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4262 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_2));
4263 		bnx2x_panic();
4264 	}
4265 }
4266 
4267 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4268 {
4269 	u32 val;
4270 
4271 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4272 
4273 		if (attn & BNX2X_PMF_LINK_ASSERT) {
4274 			int func = BP_FUNC(bp);
4275 
4276 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4277 			bnx2x_read_mf_cfg(bp);
4278 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4279 					func_mf_config[BP_ABS_FUNC(bp)].config);
4280 			val = SHMEM_RD(bp,
4281 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4282 
4283 			if (val & (DRV_STATUS_DCC_EVENT_MASK |
4284 				   DRV_STATUS_OEM_EVENT_MASK))
4285 				bnx2x_oem_event(bp,
4286 					(val & (DRV_STATUS_DCC_EVENT_MASK |
4287 						DRV_STATUS_OEM_EVENT_MASK)));
4288 
4289 			if (val & DRV_STATUS_SET_MF_BW)
4290 				bnx2x_set_mf_bw(bp);
4291 
4292 			if (val & DRV_STATUS_DRV_INFO_REQ)
4293 				bnx2x_handle_drv_info_req(bp);
4294 
4295 			if (val & DRV_STATUS_VF_DISABLED)
4296 				bnx2x_schedule_iov_task(bp,
4297 							BNX2X_IOV_HANDLE_FLR);
4298 
4299 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4300 				bnx2x_pmf_update(bp);
4301 
4302 			if (bp->port.pmf &&
4303 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4304 				bp->dcbx_enabled > 0)
4305 				/* start dcbx state machine */
4306 				bnx2x_dcbx_set_params(bp,
4307 					BNX2X_DCBX_STATE_NEG_RECEIVED);
4308 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
4309 				bnx2x_handle_afex_cmd(bp,
4310 					val & DRV_STATUS_AFEX_EVENT_MASK);
4311 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4312 				bnx2x_handle_eee_event(bp);
4313 
4314 			if (val & DRV_STATUS_OEM_UPDATE_SVID)
4315 				bnx2x_schedule_sp_rtnl(bp,
4316 					BNX2X_SP_RTNL_UPDATE_SVID, 0);
4317 
4318 			if (bp->link_vars.periodic_flags &
4319 			    PERIODIC_FLAGS_LINK_EVENT) {
4320 				/*  sync with link */
4321 				bnx2x_acquire_phy_lock(bp);
4322 				bp->link_vars.periodic_flags &=
4323 					~PERIODIC_FLAGS_LINK_EVENT;
4324 				bnx2x_release_phy_lock(bp);
4325 				if (IS_MF(bp))
4326 					bnx2x_link_sync_notify(bp);
4327 				bnx2x_link_report(bp);
4328 			}
4329 			/* Always call it here: bnx2x_link_report() will
4330 			 * prevent the link indication duplication.
4331 			 */
4332 			bnx2x__link_status_update(bp);
4333 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4334 
4335 			BNX2X_ERR("MC assert!\n");
4336 			bnx2x_mc_assert(bp);
4337 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4338 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4339 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4340 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4341 			bnx2x_panic();
4342 
4343 		} else if (attn & BNX2X_MCP_ASSERT) {
4344 
4345 			BNX2X_ERR("MCP assert!\n");
4346 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4347 			bnx2x_fw_dump(bp);
4348 
4349 		} else
4350 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4351 	}
4352 
4353 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4354 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4355 		if (attn & BNX2X_GRC_TIMEOUT) {
4356 			val = CHIP_IS_E1(bp) ? 0 :
4357 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4358 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4359 		}
4360 		if (attn & BNX2X_GRC_RSV) {
4361 			val = CHIP_IS_E1(bp) ? 0 :
4362 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4363 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4364 		}
4365 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4366 	}
4367 }
4368 
4369 /*
4370  * Bits map:
4371  * 0-7   - Engine0 load counter.
4372  * 8-15  - Engine1 load counter.
4373  * 16    - Engine0 RESET_IN_PROGRESS bit.
4374  * 17    - Engine1 RESET_IN_PROGRESS bit.
4375  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4376  *         on the engine
4377  * 19    - Engine1 ONE_IS_LOADED.
4378  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4379  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4380  *         just the one belonging to its engine).
4381  *
4382  */
4383 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4384 
4385 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4386 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4387 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4388 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4389 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4390 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4391 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
4392 
4393 /*
4394  * Set the GLOBAL_RESET bit.
4395  *
4396  * Should be run under rtnl lock
4397  */
4398 void bnx2x_set_reset_global(struct bnx2x *bp)
4399 {
4400 	u32 val;
4401 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4402 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4403 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4404 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4405 }
4406 
4407 /*
4408  * Clear the GLOBAL_RESET bit.
4409  *
4410  * Should be run under rtnl lock
4411  */
4412 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4413 {
4414 	u32 val;
4415 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4416 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4417 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4418 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4419 }
4420 
4421 /*
4422  * Checks the GLOBAL_RESET bit.
4423  *
4424  * should be run under rtnl lock
4425  */
4426 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4427 {
4428 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4429 
4430 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4431 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4432 }
4433 
4434 /*
4435  * Clear RESET_IN_PROGRESS bit for the current engine.
4436  *
4437  * Should be run under rtnl lock
4438  */
4439 static void bnx2x_set_reset_done(struct bnx2x *bp)
4440 {
4441 	u32 val;
4442 	u32 bit = BP_PATH(bp) ?
4443 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4444 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4445 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4446 
4447 	/* Clear the bit */
4448 	val &= ~bit;
4449 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4450 
4451 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4452 }
4453 
4454 /*
4455  * Set RESET_IN_PROGRESS for the current engine.
4456  *
4457  * should be run under rtnl lock
4458  */
4459 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4460 {
4461 	u32 val;
4462 	u32 bit = BP_PATH(bp) ?
4463 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4464 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4465 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4466 
4467 	/* Set the bit */
4468 	val |= bit;
4469 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4470 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4471 }
4472 
4473 /*
4474  * Checks the RESET_IN_PROGRESS bit for the given engine.
4475  * should be run under rtnl lock
4476  */
4477 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4478 {
4479 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4480 	u32 bit = engine ?
4481 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4482 
4483 	/* return false if bit is set */
4484 	return (val & bit) ? false : true;
4485 }
4486 
4487 /*
4488  * set pf load for the current pf.
4489  *
4490  * should be run under rtnl lock
4491  */
4492 void bnx2x_set_pf_load(struct bnx2x *bp)
4493 {
4494 	u32 val1, val;
4495 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4496 			     BNX2X_PATH0_LOAD_CNT_MASK;
4497 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4498 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4499 
4500 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4501 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4502 
4503 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4504 
4505 	/* get the current counter value */
4506 	val1 = (val & mask) >> shift;
4507 
4508 	/* set bit of that PF */
4509 	val1 |= (1 << bp->pf_num);
4510 
4511 	/* clear the old value */
4512 	val &= ~mask;
4513 
4514 	/* set the new one */
4515 	val |= ((val1 << shift) & mask);
4516 
4517 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4518 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4519 }
4520 
4521 /**
4522  * bnx2x_clear_pf_load - clear pf load mark
4523  *
4524  * @bp:		driver handle
4525  *
4526  * Should be run under rtnl lock.
4527  * Decrements the load counter for the current engine. Returns
4528  * whether other functions are still loaded
4529  */
4530 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4531 {
4532 	u32 val1, val;
4533 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4534 			     BNX2X_PATH0_LOAD_CNT_MASK;
4535 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4536 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4537 
4538 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4539 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4540 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4541 
4542 	/* get the current counter value */
4543 	val1 = (val & mask) >> shift;
4544 
4545 	/* clear bit of that PF */
4546 	val1 &= ~(1 << bp->pf_num);
4547 
4548 	/* clear the old value */
4549 	val &= ~mask;
4550 
4551 	/* set the new one */
4552 	val |= ((val1 << shift) & mask);
4553 
4554 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4555 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4556 	return val1 != 0;
4557 }
4558 
4559 /*
4560  * Read the load status for the current engine.
4561  *
4562  * should be run under rtnl lock
4563  */
4564 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4565 {
4566 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4567 			     BNX2X_PATH0_LOAD_CNT_MASK);
4568 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4569 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4570 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4571 
4572 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4573 
4574 	val = (val & mask) >> shift;
4575 
4576 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4577 	   engine, val);
4578 
4579 	return val != 0;
4580 }
4581 
4582 static void _print_parity(struct bnx2x *bp, u32 reg)
4583 {
4584 	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4585 }
4586 
4587 static void _print_next_block(int idx, const char *blk)
4588 {
4589 	pr_cont("%s%s", idx ? ", " : "", blk);
4590 }
4591 
4592 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4593 					    int *par_num, bool print)
4594 {
4595 	u32 cur_bit;
4596 	bool res;
4597 	int i;
4598 
4599 	res = false;
4600 
4601 	for (i = 0; sig; i++) {
4602 		cur_bit = (0x1UL << i);
4603 		if (sig & cur_bit) {
4604 			res |= true; /* Each bit is real error! */
4605 
4606 			if (print) {
4607 				switch (cur_bit) {
4608 				case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4609 					_print_next_block((*par_num)++, "BRB");
4610 					_print_parity(bp,
4611 						      BRB1_REG_BRB1_PRTY_STS);
4612 					break;
4613 				case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4614 					_print_next_block((*par_num)++,
4615 							  "PARSER");
4616 					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4617 					break;
4618 				case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4619 					_print_next_block((*par_num)++, "TSDM");
4620 					_print_parity(bp,
4621 						      TSDM_REG_TSDM_PRTY_STS);
4622 					break;
4623 				case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4624 					_print_next_block((*par_num)++,
4625 							  "SEARCHER");
4626 					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4627 					break;
4628 				case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4629 					_print_next_block((*par_num)++, "TCM");
4630 					_print_parity(bp, TCM_REG_TCM_PRTY_STS);
4631 					break;
4632 				case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4633 					_print_next_block((*par_num)++,
4634 							  "TSEMI");
4635 					_print_parity(bp,
4636 						      TSEM_REG_TSEM_PRTY_STS_0);
4637 					_print_parity(bp,
4638 						      TSEM_REG_TSEM_PRTY_STS_1);
4639 					break;
4640 				case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4641 					_print_next_block((*par_num)++, "XPB");
4642 					_print_parity(bp, GRCBASE_XPB +
4643 							  PB_REG_PB_PRTY_STS);
4644 					break;
4645 				}
4646 			}
4647 
4648 			/* Clear the bit */
4649 			sig &= ~cur_bit;
4650 		}
4651 	}
4652 
4653 	return res;
4654 }
4655 
4656 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4657 					    int *par_num, bool *global,
4658 					    bool print)
4659 {
4660 	u32 cur_bit;
4661 	bool res;
4662 	int i;
4663 
4664 	res = false;
4665 
4666 	for (i = 0; sig; i++) {
4667 		cur_bit = (0x1UL << i);
4668 		if (sig & cur_bit) {
4669 			res |= true; /* Each bit is real error! */
4670 			switch (cur_bit) {
4671 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4672 				if (print) {
4673 					_print_next_block((*par_num)++, "PBF");
4674 					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4675 				}
4676 				break;
4677 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4678 				if (print) {
4679 					_print_next_block((*par_num)++, "QM");
4680 					_print_parity(bp, QM_REG_QM_PRTY_STS);
4681 				}
4682 				break;
4683 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4684 				if (print) {
4685 					_print_next_block((*par_num)++, "TM");
4686 					_print_parity(bp, TM_REG_TM_PRTY_STS);
4687 				}
4688 				break;
4689 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4690 				if (print) {
4691 					_print_next_block((*par_num)++, "XSDM");
4692 					_print_parity(bp,
4693 						      XSDM_REG_XSDM_PRTY_STS);
4694 				}
4695 				break;
4696 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4697 				if (print) {
4698 					_print_next_block((*par_num)++, "XCM");
4699 					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4700 				}
4701 				break;
4702 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4703 				if (print) {
4704 					_print_next_block((*par_num)++,
4705 							  "XSEMI");
4706 					_print_parity(bp,
4707 						      XSEM_REG_XSEM_PRTY_STS_0);
4708 					_print_parity(bp,
4709 						      XSEM_REG_XSEM_PRTY_STS_1);
4710 				}
4711 				break;
4712 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4713 				if (print) {
4714 					_print_next_block((*par_num)++,
4715 							  "DOORBELLQ");
4716 					_print_parity(bp,
4717 						      DORQ_REG_DORQ_PRTY_STS);
4718 				}
4719 				break;
4720 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4721 				if (print) {
4722 					_print_next_block((*par_num)++, "NIG");
4723 					if (CHIP_IS_E1x(bp)) {
4724 						_print_parity(bp,
4725 							NIG_REG_NIG_PRTY_STS);
4726 					} else {
4727 						_print_parity(bp,
4728 							NIG_REG_NIG_PRTY_STS_0);
4729 						_print_parity(bp,
4730 							NIG_REG_NIG_PRTY_STS_1);
4731 					}
4732 				}
4733 				break;
4734 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4735 				if (print)
4736 					_print_next_block((*par_num)++,
4737 							  "VAUX PCI CORE");
4738 				*global = true;
4739 				break;
4740 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4741 				if (print) {
4742 					_print_next_block((*par_num)++,
4743 							  "DEBUG");
4744 					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4745 				}
4746 				break;
4747 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4748 				if (print) {
4749 					_print_next_block((*par_num)++, "USDM");
4750 					_print_parity(bp,
4751 						      USDM_REG_USDM_PRTY_STS);
4752 				}
4753 				break;
4754 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4755 				if (print) {
4756 					_print_next_block((*par_num)++, "UCM");
4757 					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4758 				}
4759 				break;
4760 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4761 				if (print) {
4762 					_print_next_block((*par_num)++,
4763 							  "USEMI");
4764 					_print_parity(bp,
4765 						      USEM_REG_USEM_PRTY_STS_0);
4766 					_print_parity(bp,
4767 						      USEM_REG_USEM_PRTY_STS_1);
4768 				}
4769 				break;
4770 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4771 				if (print) {
4772 					_print_next_block((*par_num)++, "UPB");
4773 					_print_parity(bp, GRCBASE_UPB +
4774 							  PB_REG_PB_PRTY_STS);
4775 				}
4776 				break;
4777 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4778 				if (print) {
4779 					_print_next_block((*par_num)++, "CSDM");
4780 					_print_parity(bp,
4781 						      CSDM_REG_CSDM_PRTY_STS);
4782 				}
4783 				break;
4784 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4785 				if (print) {
4786 					_print_next_block((*par_num)++, "CCM");
4787 					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4788 				}
4789 				break;
4790 			}
4791 
4792 			/* Clear the bit */
4793 			sig &= ~cur_bit;
4794 		}
4795 	}
4796 
4797 	return res;
4798 }
4799 
4800 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4801 					    int *par_num, bool print)
4802 {
4803 	u32 cur_bit;
4804 	bool res;
4805 	int i;
4806 
4807 	res = false;
4808 
4809 	for (i = 0; sig; i++) {
4810 		cur_bit = (0x1UL << i);
4811 		if (sig & cur_bit) {
4812 			res = true; /* Each bit is real error! */
4813 			if (print) {
4814 				switch (cur_bit) {
4815 				case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4816 					_print_next_block((*par_num)++,
4817 							  "CSEMI");
4818 					_print_parity(bp,
4819 						      CSEM_REG_CSEM_PRTY_STS_0);
4820 					_print_parity(bp,
4821 						      CSEM_REG_CSEM_PRTY_STS_1);
4822 					break;
4823 				case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4824 					_print_next_block((*par_num)++, "PXP");
4825 					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4826 					_print_parity(bp,
4827 						      PXP2_REG_PXP2_PRTY_STS_0);
4828 					_print_parity(bp,
4829 						      PXP2_REG_PXP2_PRTY_STS_1);
4830 					break;
4831 				case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4832 					_print_next_block((*par_num)++,
4833 							  "PXPPCICLOCKCLIENT");
4834 					break;
4835 				case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4836 					_print_next_block((*par_num)++, "CFC");
4837 					_print_parity(bp,
4838 						      CFC_REG_CFC_PRTY_STS);
4839 					break;
4840 				case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4841 					_print_next_block((*par_num)++, "CDU");
4842 					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4843 					break;
4844 				case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4845 					_print_next_block((*par_num)++, "DMAE");
4846 					_print_parity(bp,
4847 						      DMAE_REG_DMAE_PRTY_STS);
4848 					break;
4849 				case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4850 					_print_next_block((*par_num)++, "IGU");
4851 					if (CHIP_IS_E1x(bp))
4852 						_print_parity(bp,
4853 							HC_REG_HC_PRTY_STS);
4854 					else
4855 						_print_parity(bp,
4856 							IGU_REG_IGU_PRTY_STS);
4857 					break;
4858 				case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4859 					_print_next_block((*par_num)++, "MISC");
4860 					_print_parity(bp,
4861 						      MISC_REG_MISC_PRTY_STS);
4862 					break;
4863 				}
4864 			}
4865 
4866 			/* Clear the bit */
4867 			sig &= ~cur_bit;
4868 		}
4869 	}
4870 
4871 	return res;
4872 }
4873 
4874 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4875 					    int *par_num, bool *global,
4876 					    bool print)
4877 {
4878 	bool res = false;
4879 	u32 cur_bit;
4880 	int i;
4881 
4882 	for (i = 0; sig; i++) {
4883 		cur_bit = (0x1UL << i);
4884 		if (sig & cur_bit) {
4885 			switch (cur_bit) {
4886 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4887 				if (print)
4888 					_print_next_block((*par_num)++,
4889 							  "MCP ROM");
4890 				*global = true;
4891 				res = true;
4892 				break;
4893 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4894 				if (print)
4895 					_print_next_block((*par_num)++,
4896 							  "MCP UMP RX");
4897 				*global = true;
4898 				res = true;
4899 				break;
4900 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4901 				if (print)
4902 					_print_next_block((*par_num)++,
4903 							  "MCP UMP TX");
4904 				*global = true;
4905 				res = true;
4906 				break;
4907 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4908 				(*par_num)++;
4909 				/* clear latched SCPAD PATIRY from MCP */
4910 				REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4911 				       1UL << 10);
4912 				break;
4913 			}
4914 
4915 			/* Clear the bit */
4916 			sig &= ~cur_bit;
4917 		}
4918 	}
4919 
4920 	return res;
4921 }
4922 
4923 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4924 					    int *par_num, bool print)
4925 {
4926 	u32 cur_bit;
4927 	bool res;
4928 	int i;
4929 
4930 	res = false;
4931 
4932 	for (i = 0; sig; i++) {
4933 		cur_bit = (0x1UL << i);
4934 		if (sig & cur_bit) {
4935 			res = true; /* Each bit is real error! */
4936 			if (print) {
4937 				switch (cur_bit) {
4938 				case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4939 					_print_next_block((*par_num)++,
4940 							  "PGLUE_B");
4941 					_print_parity(bp,
4942 						      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4943 					break;
4944 				case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4945 					_print_next_block((*par_num)++, "ATC");
4946 					_print_parity(bp,
4947 						      ATC_REG_ATC_PRTY_STS);
4948 					break;
4949 				}
4950 			}
4951 			/* Clear the bit */
4952 			sig &= ~cur_bit;
4953 		}
4954 	}
4955 
4956 	return res;
4957 }
4958 
4959 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4960 			      u32 *sig)
4961 {
4962 	bool res = false;
4963 
4964 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4965 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4966 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4967 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4968 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4969 		int par_num = 0;
4970 
4971 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4972 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4973 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4974 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4975 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4976 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4977 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4978 		if (print) {
4979 			if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4980 			     (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4981 			     (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4982 			     (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4983 			     (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4984 				netdev_err(bp->dev,
4985 					   "Parity errors detected in blocks: ");
4986 			} else {
4987 				print = false;
4988 			}
4989 		}
4990 		res |= bnx2x_check_blocks_with_parity0(bp,
4991 			sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4992 		res |= bnx2x_check_blocks_with_parity1(bp,
4993 			sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4994 		res |= bnx2x_check_blocks_with_parity2(bp,
4995 			sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4996 		res |= bnx2x_check_blocks_with_parity3(bp,
4997 			sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4998 		res |= bnx2x_check_blocks_with_parity4(bp,
4999 			sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
5000 
5001 		if (print)
5002 			pr_cont("\n");
5003 	}
5004 
5005 	return res;
5006 }
5007 
5008 /**
5009  * bnx2x_chk_parity_attn - checks for parity attentions.
5010  *
5011  * @bp:		driver handle
5012  * @global:	true if there was a global attention
5013  * @print:	show parity attention in syslog
5014  */
5015 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5016 {
5017 	struct attn_route attn = { {0} };
5018 	int port = BP_PORT(bp);
5019 
5020 	attn.sig[0] = REG_RD(bp,
5021 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5022 			     port*4);
5023 	attn.sig[1] = REG_RD(bp,
5024 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5025 			     port*4);
5026 	attn.sig[2] = REG_RD(bp,
5027 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5028 			     port*4);
5029 	attn.sig[3] = REG_RD(bp,
5030 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5031 			     port*4);
5032 	/* Since MCP attentions can't be disabled inside the block, we need to
5033 	 * read AEU registers to see whether they're currently disabled
5034 	 */
5035 	attn.sig[3] &= ((REG_RD(bp,
5036 				!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5037 				      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5038 			 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5039 			~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5040 
5041 	if (!CHIP_IS_E1x(bp))
5042 		attn.sig[4] = REG_RD(bp,
5043 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5044 				     port*4);
5045 
5046 	return bnx2x_parity_attn(bp, global, print, attn.sig);
5047 }
5048 
5049 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5050 {
5051 	u32 val;
5052 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5053 
5054 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5055 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5056 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5057 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5058 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5059 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5060 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5061 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5062 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5063 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5064 		if (val &
5065 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5066 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5067 		if (val &
5068 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5069 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5070 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5071 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5072 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5073 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5074 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5075 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5076 	}
5077 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5078 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5079 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
5080 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5081 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5082 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5083 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5084 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5085 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5086 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5087 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5088 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5089 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5090 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5091 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5092 	}
5093 
5094 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5095 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5096 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5097 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5098 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5099 	}
5100 }
5101 
5102 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5103 {
5104 	struct attn_route attn, *group_mask;
5105 	int port = BP_PORT(bp);
5106 	int index;
5107 	u32 reg_addr;
5108 	u32 val;
5109 	u32 aeu_mask;
5110 	bool global = false;
5111 
5112 	/* need to take HW lock because MCP or other port might also
5113 	   try to handle this event */
5114 	bnx2x_acquire_alr(bp);
5115 
5116 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
5117 #ifndef BNX2X_STOP_ON_ERROR
5118 		bp->recovery_state = BNX2X_RECOVERY_INIT;
5119 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
5120 		/* Disable HW interrupts */
5121 		bnx2x_int_disable(bp);
5122 		/* In case of parity errors don't handle attentions so that
5123 		 * other function would "see" parity errors.
5124 		 */
5125 #else
5126 		bnx2x_panic();
5127 #endif
5128 		bnx2x_release_alr(bp);
5129 		return;
5130 	}
5131 
5132 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5133 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5134 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5135 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5136 	if (!CHIP_IS_E1x(bp))
5137 		attn.sig[4] =
5138 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5139 	else
5140 		attn.sig[4] = 0;
5141 
5142 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5143 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5144 
5145 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5146 		if (deasserted & (1 << index)) {
5147 			group_mask = &bp->attn_group[index];
5148 
5149 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5150 			   index,
5151 			   group_mask->sig[0], group_mask->sig[1],
5152 			   group_mask->sig[2], group_mask->sig[3],
5153 			   group_mask->sig[4]);
5154 
5155 			bnx2x_attn_int_deasserted4(bp,
5156 					attn.sig[4] & group_mask->sig[4]);
5157 			bnx2x_attn_int_deasserted3(bp,
5158 					attn.sig[3] & group_mask->sig[3]);
5159 			bnx2x_attn_int_deasserted1(bp,
5160 					attn.sig[1] & group_mask->sig[1]);
5161 			bnx2x_attn_int_deasserted2(bp,
5162 					attn.sig[2] & group_mask->sig[2]);
5163 			bnx2x_attn_int_deasserted0(bp,
5164 					attn.sig[0] & group_mask->sig[0]);
5165 		}
5166 	}
5167 
5168 	bnx2x_release_alr(bp);
5169 
5170 	if (bp->common.int_block == INT_BLOCK_HC)
5171 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
5172 			    COMMAND_REG_ATTN_BITS_CLR);
5173 	else
5174 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5175 
5176 	val = ~deasserted;
5177 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5178 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5179 	REG_WR(bp, reg_addr, val);
5180 
5181 	if (~bp->attn_state & deasserted)
5182 		BNX2X_ERR("IGU ERROR\n");
5183 
5184 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5185 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
5186 
5187 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5188 	aeu_mask = REG_RD(bp, reg_addr);
5189 
5190 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5191 	   aeu_mask, deasserted);
5192 	aeu_mask |= (deasserted & 0x3ff);
5193 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5194 
5195 	REG_WR(bp, reg_addr, aeu_mask);
5196 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5197 
5198 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5199 	bp->attn_state &= ~deasserted;
5200 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5201 }
5202 
5203 static void bnx2x_attn_int(struct bnx2x *bp)
5204 {
5205 	/* read local copy of bits */
5206 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5207 								attn_bits);
5208 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5209 								attn_bits_ack);
5210 	u32 attn_state = bp->attn_state;
5211 
5212 	/* look for changed bits */
5213 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5214 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5215 
5216 	DP(NETIF_MSG_HW,
5217 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5218 	   attn_bits, attn_ack, asserted, deasserted);
5219 
5220 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5221 		BNX2X_ERR("BAD attention state\n");
5222 
5223 	/* handle bits that were raised */
5224 	if (asserted)
5225 		bnx2x_attn_int_asserted(bp, asserted);
5226 
5227 	if (deasserted)
5228 		bnx2x_attn_int_deasserted(bp, deasserted);
5229 }
5230 
5231 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5232 		      u16 index, u8 op, u8 update)
5233 {
5234 	u32 igu_addr = bp->igu_base_addr;
5235 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5236 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5237 			     igu_addr);
5238 }
5239 
5240 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5241 {
5242 	/* No memory barriers */
5243 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5244 }
5245 
5246 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5247 				      union event_ring_elem *elem)
5248 {
5249 	u8 err = elem->message.error;
5250 
5251 	if (!bp->cnic_eth_dev.starting_cid  ||
5252 	    (cid < bp->cnic_eth_dev.starting_cid &&
5253 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
5254 		return 1;
5255 
5256 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5257 
5258 	if (unlikely(err)) {
5259 
5260 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5261 			  cid);
5262 		bnx2x_panic_dump(bp, false);
5263 	}
5264 	bnx2x_cnic_cfc_comp(bp, cid, err);
5265 	return 0;
5266 }
5267 
5268 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5269 {
5270 	struct bnx2x_mcast_ramrod_params rparam;
5271 	int rc;
5272 
5273 	memset(&rparam, 0, sizeof(rparam));
5274 
5275 	rparam.mcast_obj = &bp->mcast_obj;
5276 
5277 	netif_addr_lock_bh(bp->dev);
5278 
5279 	/* Clear pending state for the last command */
5280 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5281 
5282 	/* If there are pending mcast commands - send them */
5283 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5284 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5285 		if (rc < 0)
5286 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5287 				  rc);
5288 	}
5289 
5290 	netif_addr_unlock_bh(bp->dev);
5291 }
5292 
5293 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5294 					    union event_ring_elem *elem)
5295 {
5296 	unsigned long ramrod_flags = 0;
5297 	int rc = 0;
5298 	u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5299 	u32 cid = echo & BNX2X_SWCID_MASK;
5300 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5301 
5302 	/* Always push next commands out, don't wait here */
5303 	__set_bit(RAMROD_CONT, &ramrod_flags);
5304 
5305 	switch (echo >> BNX2X_SWCID_SHIFT) {
5306 	case BNX2X_FILTER_MAC_PENDING:
5307 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5308 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5309 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5310 		else
5311 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5312 
5313 		break;
5314 	case BNX2X_FILTER_VLAN_PENDING:
5315 		DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5316 		vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5317 		break;
5318 	case BNX2X_FILTER_MCAST_PENDING:
5319 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5320 		/* This is only relevant for 57710 where multicast MACs are
5321 		 * configured as unicast MACs using the same ramrod.
5322 		 */
5323 		bnx2x_handle_mcast_eqe(bp);
5324 		return;
5325 	default:
5326 		BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5327 		return;
5328 	}
5329 
5330 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5331 
5332 	if (rc < 0)
5333 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5334 	else if (rc > 0)
5335 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5336 }
5337 
5338 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5339 
5340 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5341 {
5342 	netif_addr_lock_bh(bp->dev);
5343 
5344 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5345 
5346 	/* Send rx_mode command again if was requested */
5347 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5348 		bnx2x_set_storm_rx_mode(bp);
5349 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5350 				    &bp->sp_state))
5351 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5352 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5353 				    &bp->sp_state))
5354 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5355 
5356 	netif_addr_unlock_bh(bp->dev);
5357 }
5358 
5359 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5360 					      union event_ring_elem *elem)
5361 {
5362 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5363 		DP(BNX2X_MSG_SP,
5364 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5365 		   elem->message.data.vif_list_event.func_bit_map);
5366 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5367 			elem->message.data.vif_list_event.func_bit_map);
5368 	} else if (elem->message.data.vif_list_event.echo ==
5369 		   VIF_LIST_RULE_SET) {
5370 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5371 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5372 	}
5373 }
5374 
5375 /* called with rtnl_lock */
5376 static void bnx2x_after_function_update(struct bnx2x *bp)
5377 {
5378 	int q, rc;
5379 	struct bnx2x_fastpath *fp;
5380 	struct bnx2x_queue_state_params queue_params = {NULL};
5381 	struct bnx2x_queue_update_params *q_update_params =
5382 		&queue_params.params.update;
5383 
5384 	/* Send Q update command with afex vlan removal values for all Qs */
5385 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5386 
5387 	/* set silent vlan removal values according to vlan mode */
5388 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5389 		  &q_update_params->update_flags);
5390 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5391 		  &q_update_params->update_flags);
5392 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5393 
5394 	/* in access mode mark mask and value are 0 to strip all vlans */
5395 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5396 		q_update_params->silent_removal_value = 0;
5397 		q_update_params->silent_removal_mask = 0;
5398 	} else {
5399 		q_update_params->silent_removal_value =
5400 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5401 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5402 	}
5403 
5404 	for_each_eth_queue(bp, q) {
5405 		/* Set the appropriate Queue object */
5406 		fp = &bp->fp[q];
5407 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5408 
5409 		/* send the ramrod */
5410 		rc = bnx2x_queue_state_change(bp, &queue_params);
5411 		if (rc < 0)
5412 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5413 				  q);
5414 	}
5415 
5416 	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5417 		fp = &bp->fp[FCOE_IDX(bp)];
5418 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5419 
5420 		/* clear pending completion bit */
5421 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5422 
5423 		/* mark latest Q bit */
5424 		smp_mb__before_atomic();
5425 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5426 		smp_mb__after_atomic();
5427 
5428 		/* send Q update ramrod for FCoE Q */
5429 		rc = bnx2x_queue_state_change(bp, &queue_params);
5430 		if (rc < 0)
5431 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5432 				  q);
5433 	} else {
5434 		/* If no FCoE ring - ACK MCP now */
5435 		bnx2x_link_report(bp);
5436 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5437 	}
5438 }
5439 
5440 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5441 	struct bnx2x *bp, u32 cid)
5442 {
5443 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5444 
5445 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5446 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5447 	else
5448 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5449 }
5450 
5451 static void bnx2x_eq_int(struct bnx2x *bp)
5452 {
5453 	u16 hw_cons, sw_cons, sw_prod;
5454 	union event_ring_elem *elem;
5455 	u8 echo;
5456 	u32 cid;
5457 	u8 opcode;
5458 	int rc, spqe_cnt = 0;
5459 	struct bnx2x_queue_sp_obj *q_obj;
5460 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5461 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5462 
5463 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5464 
5465 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5466 	 * when we get the next-page we need to adjust so the loop
5467 	 * condition below will be met. The next element is the size of a
5468 	 * regular element and hence incrementing by 1
5469 	 */
5470 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5471 		hw_cons++;
5472 
5473 	/* This function may never run in parallel with itself for a
5474 	 * specific bp, thus there is no need in "paired" read memory
5475 	 * barrier here.
5476 	 */
5477 	sw_cons = bp->eq_cons;
5478 	sw_prod = bp->eq_prod;
5479 
5480 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5481 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5482 
5483 	for (; sw_cons != hw_cons;
5484 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5485 
5486 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5487 
5488 		rc = bnx2x_iov_eq_sp_event(bp, elem);
5489 		if (!rc) {
5490 			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5491 			   rc);
5492 			goto next_spqe;
5493 		}
5494 
5495 		opcode = elem->message.opcode;
5496 
5497 		/* handle eq element */
5498 		switch (opcode) {
5499 		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5500 			bnx2x_vf_mbx_schedule(bp,
5501 					      &elem->message.data.vf_pf_event);
5502 			continue;
5503 
5504 		case EVENT_RING_OPCODE_STAT_QUERY:
5505 			DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5506 			       "got statistics comp event %d\n",
5507 			       bp->stats_comp++);
5508 			/* nothing to do with stats comp */
5509 			goto next_spqe;
5510 
5511 		case EVENT_RING_OPCODE_CFC_DEL:
5512 			/* handle according to cid range */
5513 			/*
5514 			 * we may want to verify here that the bp state is
5515 			 * HALTING
5516 			 */
5517 
5518 			/* elem CID originates from FW; actually LE */
5519 			cid = SW_CID(elem->message.data.cfc_del_event.cid);
5520 
5521 			DP(BNX2X_MSG_SP,
5522 			   "got delete ramrod for MULTI[%d]\n", cid);
5523 
5524 			if (CNIC_LOADED(bp) &&
5525 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5526 				goto next_spqe;
5527 
5528 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5529 
5530 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5531 				break;
5532 
5533 			goto next_spqe;
5534 
5535 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5536 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5537 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5538 			if (f_obj->complete_cmd(bp, f_obj,
5539 						BNX2X_F_CMD_TX_STOP))
5540 				break;
5541 			goto next_spqe;
5542 
5543 		case EVENT_RING_OPCODE_START_TRAFFIC:
5544 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5545 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5546 			if (f_obj->complete_cmd(bp, f_obj,
5547 						BNX2X_F_CMD_TX_START))
5548 				break;
5549 			goto next_spqe;
5550 
5551 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5552 			echo = elem->message.data.function_update_event.echo;
5553 			if (echo == SWITCH_UPDATE) {
5554 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5555 				   "got FUNC_SWITCH_UPDATE ramrod\n");
5556 				if (f_obj->complete_cmd(
5557 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5558 					break;
5559 
5560 			} else {
5561 				int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5562 
5563 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5564 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5565 				f_obj->complete_cmd(bp, f_obj,
5566 						    BNX2X_F_CMD_AFEX_UPDATE);
5567 
5568 				/* We will perform the Queues update from
5569 				 * sp_rtnl task as all Queue SP operations
5570 				 * should run under rtnl_lock.
5571 				 */
5572 				bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5573 			}
5574 
5575 			goto next_spqe;
5576 
5577 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5578 			f_obj->complete_cmd(bp, f_obj,
5579 					    BNX2X_F_CMD_AFEX_VIFLISTS);
5580 			bnx2x_after_afex_vif_lists(bp, elem);
5581 			goto next_spqe;
5582 		case EVENT_RING_OPCODE_FUNCTION_START:
5583 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5584 			   "got FUNC_START ramrod\n");
5585 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5586 				break;
5587 
5588 			goto next_spqe;
5589 
5590 		case EVENT_RING_OPCODE_FUNCTION_STOP:
5591 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5592 			   "got FUNC_STOP ramrod\n");
5593 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5594 				break;
5595 
5596 			goto next_spqe;
5597 
5598 		case EVENT_RING_OPCODE_SET_TIMESYNC:
5599 			DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5600 			   "got set_timesync ramrod completion\n");
5601 			if (f_obj->complete_cmd(bp, f_obj,
5602 						BNX2X_F_CMD_SET_TIMESYNC))
5603 				break;
5604 			goto next_spqe;
5605 		}
5606 
5607 		switch (opcode | bp->state) {
5608 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5609 		      BNX2X_STATE_OPEN):
5610 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5611 		      BNX2X_STATE_OPENING_WAIT4_PORT):
5612 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5613 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5614 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5615 			   SW_CID(elem->message.data.eth_event.echo));
5616 			rss_raw->clear_pending(rss_raw);
5617 			break;
5618 
5619 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5620 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5621 		case (EVENT_RING_OPCODE_SET_MAC |
5622 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5623 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5624 		      BNX2X_STATE_OPEN):
5625 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5626 		      BNX2X_STATE_DIAG):
5627 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5628 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5629 			DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5630 			bnx2x_handle_classification_eqe(bp, elem);
5631 			break;
5632 
5633 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5634 		      BNX2X_STATE_OPEN):
5635 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5636 		      BNX2X_STATE_DIAG):
5637 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5638 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5639 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5640 			bnx2x_handle_mcast_eqe(bp);
5641 			break;
5642 
5643 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5644 		      BNX2X_STATE_OPEN):
5645 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5646 		      BNX2X_STATE_DIAG):
5647 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5648 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5649 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5650 			bnx2x_handle_rx_mode_eqe(bp);
5651 			break;
5652 		default:
5653 			/* unknown event log error and continue */
5654 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5655 				  elem->message.opcode, bp->state);
5656 		}
5657 next_spqe:
5658 		spqe_cnt++;
5659 	} /* for */
5660 
5661 	smp_mb__before_atomic();
5662 	atomic_add(spqe_cnt, &bp->eq_spq_left);
5663 
5664 	bp->eq_cons = sw_cons;
5665 	bp->eq_prod = sw_prod;
5666 	/* Make sure that above mem writes were issued towards the memory */
5667 	smp_wmb();
5668 
5669 	/* update producer */
5670 	bnx2x_update_eq_prod(bp, bp->eq_prod);
5671 }
5672 
5673 static void bnx2x_sp_task(struct work_struct *work)
5674 {
5675 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5676 
5677 	DP(BNX2X_MSG_SP, "sp task invoked\n");
5678 
5679 	/* make sure the atomic interrupt_occurred has been written */
5680 	smp_rmb();
5681 	if (atomic_read(&bp->interrupt_occurred)) {
5682 
5683 		/* what work needs to be performed? */
5684 		u16 status = bnx2x_update_dsb_idx(bp);
5685 
5686 		DP(BNX2X_MSG_SP, "status %x\n", status);
5687 		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5688 		atomic_set(&bp->interrupt_occurred, 0);
5689 
5690 		/* HW attentions */
5691 		if (status & BNX2X_DEF_SB_ATT_IDX) {
5692 			bnx2x_attn_int(bp);
5693 			status &= ~BNX2X_DEF_SB_ATT_IDX;
5694 		}
5695 
5696 		/* SP events: STAT_QUERY and others */
5697 		if (status & BNX2X_DEF_SB_IDX) {
5698 			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5699 
5700 			if (FCOE_INIT(bp) &&
5701 			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5702 				/* Prevent local bottom-halves from running as
5703 				 * we are going to change the local NAPI list.
5704 				 */
5705 				local_bh_disable();
5706 				napi_schedule(&bnx2x_fcoe(bp, napi));
5707 				local_bh_enable();
5708 			}
5709 
5710 			/* Handle EQ completions */
5711 			bnx2x_eq_int(bp);
5712 			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5713 				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5714 
5715 			status &= ~BNX2X_DEF_SB_IDX;
5716 		}
5717 
5718 		/* if status is non zero then perhaps something went wrong */
5719 		if (unlikely(status))
5720 			DP(BNX2X_MSG_SP,
5721 			   "got an unknown interrupt! (status 0x%x)\n", status);
5722 
5723 		/* ack status block only if something was actually handled */
5724 		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5725 			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5726 	}
5727 
5728 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5729 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5730 			       &bp->sp_state)) {
5731 		bnx2x_link_report(bp);
5732 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5733 	}
5734 }
5735 
5736 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5737 {
5738 	struct net_device *dev = dev_instance;
5739 	struct bnx2x *bp = netdev_priv(dev);
5740 
5741 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5742 		     IGU_INT_DISABLE, 0);
5743 
5744 #ifdef BNX2X_STOP_ON_ERROR
5745 	if (unlikely(bp->panic))
5746 		return IRQ_HANDLED;
5747 #endif
5748 
5749 	if (CNIC_LOADED(bp)) {
5750 		struct cnic_ops *c_ops;
5751 
5752 		rcu_read_lock();
5753 		c_ops = rcu_dereference(bp->cnic_ops);
5754 		if (c_ops)
5755 			c_ops->cnic_handler(bp->cnic_data, NULL);
5756 		rcu_read_unlock();
5757 	}
5758 
5759 	/* schedule sp task to perform default status block work, ack
5760 	 * attentions and enable interrupts.
5761 	 */
5762 	bnx2x_schedule_sp_task(bp);
5763 
5764 	return IRQ_HANDLED;
5765 }
5766 
5767 /* end of slow path */
5768 
5769 void bnx2x_drv_pulse(struct bnx2x *bp)
5770 {
5771 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5772 		 bp->fw_drv_pulse_wr_seq);
5773 }
5774 
5775 static void bnx2x_timer(struct timer_list *t)
5776 {
5777 	struct bnx2x *bp = from_timer(bp, t, timer);
5778 
5779 	if (!netif_running(bp->dev))
5780 		return;
5781 
5782 	if (IS_PF(bp) &&
5783 	    !BP_NOMCP(bp)) {
5784 		int mb_idx = BP_FW_MB_IDX(bp);
5785 		u16 drv_pulse;
5786 		u16 mcp_pulse;
5787 
5788 		++bp->fw_drv_pulse_wr_seq;
5789 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5790 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5791 		bnx2x_drv_pulse(bp);
5792 
5793 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5794 			     MCP_PULSE_SEQ_MASK);
5795 		/* The delta between driver pulse and mcp response
5796 		 * should not get too big. If the MFW is more than 5 pulses
5797 		 * behind, we should worry about it enough to generate an error
5798 		 * log.
5799 		 */
5800 		if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5801 			BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5802 				  drv_pulse, mcp_pulse);
5803 	}
5804 
5805 	if (bp->state == BNX2X_STATE_OPEN)
5806 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5807 
5808 	/* sample pf vf bulletin board for new posts from pf */
5809 	if (IS_VF(bp))
5810 		bnx2x_timer_sriov(bp);
5811 
5812 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5813 }
5814 
5815 /* end of Statistics */
5816 
5817 /* nic init */
5818 
5819 /*
5820  * nic init service functions
5821  */
5822 
5823 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5824 {
5825 	u32 i;
5826 	if (!(len%4) && !(addr%4))
5827 		for (i = 0; i < len; i += 4)
5828 			REG_WR(bp, addr + i, fill);
5829 	else
5830 		for (i = 0; i < len; i++)
5831 			REG_WR8(bp, addr + i, fill);
5832 }
5833 
5834 /* helper: writes FP SP data to FW - data_size in dwords */
5835 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5836 				int fw_sb_id,
5837 				u32 *sb_data_p,
5838 				u32 data_size)
5839 {
5840 	int index;
5841 	for (index = 0; index < data_size; index++)
5842 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5843 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5844 			sizeof(u32)*index,
5845 			*(sb_data_p + index));
5846 }
5847 
5848 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5849 {
5850 	u32 *sb_data_p;
5851 	u32 data_size = 0;
5852 	struct hc_status_block_data_e2 sb_data_e2;
5853 	struct hc_status_block_data_e1x sb_data_e1x;
5854 
5855 	/* disable the function first */
5856 	if (!CHIP_IS_E1x(bp)) {
5857 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5858 		sb_data_e2.common.state = SB_DISABLED;
5859 		sb_data_e2.common.p_func.vf_valid = false;
5860 		sb_data_p = (u32 *)&sb_data_e2;
5861 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5862 	} else {
5863 		memset(&sb_data_e1x, 0,
5864 		       sizeof(struct hc_status_block_data_e1x));
5865 		sb_data_e1x.common.state = SB_DISABLED;
5866 		sb_data_e1x.common.p_func.vf_valid = false;
5867 		sb_data_p = (u32 *)&sb_data_e1x;
5868 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5869 	}
5870 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5871 
5872 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5873 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5874 			CSTORM_STATUS_BLOCK_SIZE);
5875 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5876 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5877 			CSTORM_SYNC_BLOCK_SIZE);
5878 }
5879 
5880 /* helper:  writes SP SB data to FW */
5881 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5882 		struct hc_sp_status_block_data *sp_sb_data)
5883 {
5884 	int func = BP_FUNC(bp);
5885 	int i;
5886 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5887 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5888 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5889 			i*sizeof(u32),
5890 			*((u32 *)sp_sb_data + i));
5891 }
5892 
5893 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5894 {
5895 	int func = BP_FUNC(bp);
5896 	struct hc_sp_status_block_data sp_sb_data;
5897 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5898 
5899 	sp_sb_data.state = SB_DISABLED;
5900 	sp_sb_data.p_func.vf_valid = false;
5901 
5902 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5903 
5904 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5905 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5906 			CSTORM_SP_STATUS_BLOCK_SIZE);
5907 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5908 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5909 			CSTORM_SP_SYNC_BLOCK_SIZE);
5910 }
5911 
5912 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5913 					   int igu_sb_id, int igu_seg_id)
5914 {
5915 	hc_sm->igu_sb_id = igu_sb_id;
5916 	hc_sm->igu_seg_id = igu_seg_id;
5917 	hc_sm->timer_value = 0xFF;
5918 	hc_sm->time_to_expire = 0xFFFFFFFF;
5919 }
5920 
5921 /* allocates state machine ids. */
5922 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5923 {
5924 	/* zero out state machine indices */
5925 	/* rx indices */
5926 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5927 
5928 	/* tx indices */
5929 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5930 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5931 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5932 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5933 
5934 	/* map indices */
5935 	/* rx indices */
5936 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5937 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5938 
5939 	/* tx indices */
5940 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5941 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5942 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5943 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5944 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5945 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5946 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5947 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5948 }
5949 
5950 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5951 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5952 {
5953 	int igu_seg_id;
5954 
5955 	struct hc_status_block_data_e2 sb_data_e2;
5956 	struct hc_status_block_data_e1x sb_data_e1x;
5957 	struct hc_status_block_sm  *hc_sm_p;
5958 	int data_size;
5959 	u32 *sb_data_p;
5960 
5961 	if (CHIP_INT_MODE_IS_BC(bp))
5962 		igu_seg_id = HC_SEG_ACCESS_NORM;
5963 	else
5964 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5965 
5966 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5967 
5968 	if (!CHIP_IS_E1x(bp)) {
5969 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5970 		sb_data_e2.common.state = SB_ENABLED;
5971 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5972 		sb_data_e2.common.p_func.vf_id = vfid;
5973 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5974 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5975 		sb_data_e2.common.same_igu_sb_1b = true;
5976 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5977 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5978 		hc_sm_p = sb_data_e2.common.state_machine;
5979 		sb_data_p = (u32 *)&sb_data_e2;
5980 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5981 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5982 	} else {
5983 		memset(&sb_data_e1x, 0,
5984 		       sizeof(struct hc_status_block_data_e1x));
5985 		sb_data_e1x.common.state = SB_ENABLED;
5986 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5987 		sb_data_e1x.common.p_func.vf_id = 0xff;
5988 		sb_data_e1x.common.p_func.vf_valid = false;
5989 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5990 		sb_data_e1x.common.same_igu_sb_1b = true;
5991 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5992 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5993 		hc_sm_p = sb_data_e1x.common.state_machine;
5994 		sb_data_p = (u32 *)&sb_data_e1x;
5995 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5996 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5997 	}
5998 
5999 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
6000 				       igu_sb_id, igu_seg_id);
6001 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
6002 				       igu_sb_id, igu_seg_id);
6003 
6004 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
6005 
6006 	/* write indices to HW - PCI guarantees endianity of regpairs */
6007 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
6008 }
6009 
6010 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6011 				     u16 tx_usec, u16 rx_usec)
6012 {
6013 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6014 				    false, rx_usec);
6015 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6016 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6017 				       tx_usec);
6018 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6019 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6020 				       tx_usec);
6021 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6022 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6023 				       tx_usec);
6024 }
6025 
6026 static void bnx2x_init_def_sb(struct bnx2x *bp)
6027 {
6028 	struct host_sp_status_block *def_sb = bp->def_status_blk;
6029 	dma_addr_t mapping = bp->def_status_blk_mapping;
6030 	int igu_sp_sb_index;
6031 	int igu_seg_id;
6032 	int port = BP_PORT(bp);
6033 	int func = BP_FUNC(bp);
6034 	int reg_offset, reg_offset_en5;
6035 	u64 section;
6036 	int index;
6037 	struct hc_sp_status_block_data sp_sb_data;
6038 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6039 
6040 	if (CHIP_INT_MODE_IS_BC(bp)) {
6041 		igu_sp_sb_index = DEF_SB_IGU_ID;
6042 		igu_seg_id = HC_SEG_ACCESS_DEF;
6043 	} else {
6044 		igu_sp_sb_index = bp->igu_dsb_id;
6045 		igu_seg_id = IGU_SEG_ACCESS_DEF;
6046 	}
6047 
6048 	/* ATTN */
6049 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6050 					    atten_status_block);
6051 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6052 
6053 	bp->attn_state = 0;
6054 
6055 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6056 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6057 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6058 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6059 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6060 		int sindex;
6061 		/* take care of sig[0]..sig[4] */
6062 		for (sindex = 0; sindex < 4; sindex++)
6063 			bp->attn_group[index].sig[sindex] =
6064 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6065 
6066 		if (!CHIP_IS_E1x(bp))
6067 			/*
6068 			 * enable5 is separate from the rest of the registers,
6069 			 * and therefore the address skip is 4
6070 			 * and not 16 between the different groups
6071 			 */
6072 			bp->attn_group[index].sig[4] = REG_RD(bp,
6073 					reg_offset_en5 + 0x4*index);
6074 		else
6075 			bp->attn_group[index].sig[4] = 0;
6076 	}
6077 
6078 	if (bp->common.int_block == INT_BLOCK_HC) {
6079 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6080 				     HC_REG_ATTN_MSG0_ADDR_L);
6081 
6082 		REG_WR(bp, reg_offset, U64_LO(section));
6083 		REG_WR(bp, reg_offset + 4, U64_HI(section));
6084 	} else if (!CHIP_IS_E1x(bp)) {
6085 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6086 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6087 	}
6088 
6089 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6090 					    sp_sb);
6091 
6092 	bnx2x_zero_sp_sb(bp);
6093 
6094 	/* PCI guarantees endianity of regpairs */
6095 	sp_sb_data.state		= SB_ENABLED;
6096 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
6097 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
6098 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
6099 	sp_sb_data.igu_seg_id		= igu_seg_id;
6100 	sp_sb_data.p_func.pf_id		= func;
6101 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
6102 	sp_sb_data.p_func.vf_id		= 0xff;
6103 
6104 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6105 
6106 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6107 }
6108 
6109 void bnx2x_update_coalesce(struct bnx2x *bp)
6110 {
6111 	int i;
6112 
6113 	for_each_eth_queue(bp, i)
6114 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6115 					 bp->tx_ticks, bp->rx_ticks);
6116 }
6117 
6118 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6119 {
6120 	spin_lock_init(&bp->spq_lock);
6121 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6122 
6123 	bp->spq_prod_idx = 0;
6124 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6125 	bp->spq_prod_bd = bp->spq;
6126 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6127 }
6128 
6129 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6130 {
6131 	int i;
6132 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
6133 		union event_ring_elem *elem =
6134 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6135 
6136 		elem->next_page.addr.hi =
6137 			cpu_to_le32(U64_HI(bp->eq_mapping +
6138 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6139 		elem->next_page.addr.lo =
6140 			cpu_to_le32(U64_LO(bp->eq_mapping +
6141 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6142 	}
6143 	bp->eq_cons = 0;
6144 	bp->eq_prod = NUM_EQ_DESC;
6145 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
6146 	/* we want a warning message before it gets wrought... */
6147 	atomic_set(&bp->eq_spq_left,
6148 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6149 }
6150 
6151 /* called with netif_addr_lock_bh() */
6152 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6153 			       unsigned long rx_mode_flags,
6154 			       unsigned long rx_accept_flags,
6155 			       unsigned long tx_accept_flags,
6156 			       unsigned long ramrod_flags)
6157 {
6158 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
6159 	int rc;
6160 
6161 	memset(&ramrod_param, 0, sizeof(ramrod_param));
6162 
6163 	/* Prepare ramrod parameters */
6164 	ramrod_param.cid = 0;
6165 	ramrod_param.cl_id = cl_id;
6166 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6167 	ramrod_param.func_id = BP_FUNC(bp);
6168 
6169 	ramrod_param.pstate = &bp->sp_state;
6170 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6171 
6172 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6173 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6174 
6175 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6176 
6177 	ramrod_param.ramrod_flags = ramrod_flags;
6178 	ramrod_param.rx_mode_flags = rx_mode_flags;
6179 
6180 	ramrod_param.rx_accept_flags = rx_accept_flags;
6181 	ramrod_param.tx_accept_flags = tx_accept_flags;
6182 
6183 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6184 	if (rc < 0) {
6185 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6186 		return rc;
6187 	}
6188 
6189 	return 0;
6190 }
6191 
6192 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6193 				   unsigned long *rx_accept_flags,
6194 				   unsigned long *tx_accept_flags)
6195 {
6196 	/* Clear the flags first */
6197 	*rx_accept_flags = 0;
6198 	*tx_accept_flags = 0;
6199 
6200 	switch (rx_mode) {
6201 	case BNX2X_RX_MODE_NONE:
6202 		/*
6203 		 * 'drop all' supersedes any accept flags that may have been
6204 		 * passed to the function.
6205 		 */
6206 		break;
6207 	case BNX2X_RX_MODE_NORMAL:
6208 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6209 		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6210 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6211 
6212 		/* internal switching mode */
6213 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6214 		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6215 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6216 
6217 		if (bp->accept_any_vlan) {
6218 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6219 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6220 		}
6221 
6222 		break;
6223 	case BNX2X_RX_MODE_ALLMULTI:
6224 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6225 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6226 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6227 
6228 		/* internal switching mode */
6229 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6230 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6231 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6232 
6233 		if (bp->accept_any_vlan) {
6234 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6235 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6236 		}
6237 
6238 		break;
6239 	case BNX2X_RX_MODE_PROMISC:
6240 		/* According to definition of SI mode, iface in promisc mode
6241 		 * should receive matched and unmatched (in resolution of port)
6242 		 * unicast packets.
6243 		 */
6244 		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6245 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6246 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6247 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6248 
6249 		/* internal switching mode */
6250 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6251 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6252 
6253 		if (IS_MF_SI(bp))
6254 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6255 		else
6256 			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6257 
6258 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6259 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6260 
6261 		break;
6262 	default:
6263 		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6264 		return -EINVAL;
6265 	}
6266 
6267 	return 0;
6268 }
6269 
6270 /* called with netif_addr_lock_bh() */
6271 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6272 {
6273 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6274 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6275 	int rc;
6276 
6277 	if (!NO_FCOE(bp))
6278 		/* Configure rx_mode of FCoE Queue */
6279 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6280 
6281 	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6282 				     &tx_accept_flags);
6283 	if (rc)
6284 		return rc;
6285 
6286 	__set_bit(RAMROD_RX, &ramrod_flags);
6287 	__set_bit(RAMROD_TX, &ramrod_flags);
6288 
6289 	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6290 				   rx_accept_flags, tx_accept_flags,
6291 				   ramrod_flags);
6292 }
6293 
6294 static void bnx2x_init_internal_common(struct bnx2x *bp)
6295 {
6296 	int i;
6297 
6298 	/* Zero this manually as its initialization is
6299 	   currently missing in the initTool */
6300 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6301 		REG_WR(bp, BAR_USTRORM_INTMEM +
6302 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6303 	if (!CHIP_IS_E1x(bp)) {
6304 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6305 			CHIP_INT_MODE_IS_BC(bp) ?
6306 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6307 	}
6308 }
6309 
6310 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6311 {
6312 	switch (load_code) {
6313 	case FW_MSG_CODE_DRV_LOAD_COMMON:
6314 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6315 		bnx2x_init_internal_common(bp);
6316 		/* no break */
6317 
6318 	case FW_MSG_CODE_DRV_LOAD_PORT:
6319 		/* nothing to do */
6320 		/* no break */
6321 
6322 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6323 		/* internal memory per function is
6324 		   initialized inside bnx2x_pf_init */
6325 		break;
6326 
6327 	default:
6328 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6329 		break;
6330 	}
6331 }
6332 
6333 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6334 {
6335 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6336 }
6337 
6338 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6339 {
6340 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6341 }
6342 
6343 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6344 {
6345 	if (CHIP_IS_E1x(fp->bp))
6346 		return BP_L_ID(fp->bp) + fp->index;
6347 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6348 		return bnx2x_fp_igu_sb_id(fp);
6349 }
6350 
6351 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6352 {
6353 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6354 	u8 cos;
6355 	unsigned long q_type = 0;
6356 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6357 	fp->rx_queue = fp_idx;
6358 	fp->cid = fp_idx;
6359 	fp->cl_id = bnx2x_fp_cl_id(fp);
6360 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6361 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6362 	/* qZone id equals to FW (per path) client id */
6363 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6364 
6365 	/* init shortcut */
6366 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6367 
6368 	/* Setup SB indices */
6369 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6370 
6371 	/* Configure Queue State object */
6372 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6373 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6374 
6375 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6376 
6377 	/* init tx data */
6378 	for_each_cos_in_tx_queue(fp, cos) {
6379 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6380 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6381 				  FP_COS_TO_TXQ(fp, cos, bp),
6382 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6383 		cids[cos] = fp->txdata_ptr[cos]->cid;
6384 	}
6385 
6386 	/* nothing more for vf to do here */
6387 	if (IS_VF(bp))
6388 		return;
6389 
6390 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6391 		      fp->fw_sb_id, fp->igu_sb_id);
6392 	bnx2x_update_fpsb_idx(fp);
6393 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6394 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6395 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6396 
6397 	/**
6398 	 * Configure classification DBs: Always enable Tx switching
6399 	 */
6400 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6401 
6402 	DP(NETIF_MSG_IFUP,
6403 	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6404 	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6405 	   fp->igu_sb_id);
6406 }
6407 
6408 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6409 {
6410 	int i;
6411 
6412 	for (i = 1; i <= NUM_TX_RINGS; i++) {
6413 		struct eth_tx_next_bd *tx_next_bd =
6414 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6415 
6416 		tx_next_bd->addr_hi =
6417 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6418 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6419 		tx_next_bd->addr_lo =
6420 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6421 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6422 	}
6423 
6424 	*txdata->tx_cons_sb = cpu_to_le16(0);
6425 
6426 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6427 	txdata->tx_db.data.zero_fill1 = 0;
6428 	txdata->tx_db.data.prod = 0;
6429 
6430 	txdata->tx_pkt_prod = 0;
6431 	txdata->tx_pkt_cons = 0;
6432 	txdata->tx_bd_prod = 0;
6433 	txdata->tx_bd_cons = 0;
6434 	txdata->tx_pkt = 0;
6435 }
6436 
6437 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6438 {
6439 	int i;
6440 
6441 	for_each_tx_queue_cnic(bp, i)
6442 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6443 }
6444 
6445 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6446 {
6447 	int i;
6448 	u8 cos;
6449 
6450 	for_each_eth_queue(bp, i)
6451 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6452 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6453 }
6454 
6455 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6456 {
6457 	struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6458 	unsigned long q_type = 0;
6459 
6460 	bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6461 	bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6462 						     BNX2X_FCOE_ETH_CL_ID_IDX);
6463 	bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6464 	bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6465 	bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6466 	bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6467 	bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6468 			  fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6469 			  fp);
6470 
6471 	DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6472 
6473 	/* qZone id equals to FW (per path) client id */
6474 	bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6475 	/* init shortcut */
6476 	bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6477 		bnx2x_rx_ustorm_prods_offset(fp);
6478 
6479 	/* Configure Queue State object */
6480 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6481 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6482 
6483 	/* No multi-CoS for FCoE L2 client */
6484 	BUG_ON(fp->max_cos != 1);
6485 
6486 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6487 			     &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6488 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6489 
6490 	DP(NETIF_MSG_IFUP,
6491 	   "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6492 	   fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6493 	   fp->igu_sb_id);
6494 }
6495 
6496 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6497 {
6498 	if (!NO_FCOE(bp))
6499 		bnx2x_init_fcoe_fp(bp);
6500 
6501 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6502 		      BNX2X_VF_ID_INVALID, false,
6503 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6504 
6505 	/* ensure status block indices were read */
6506 	rmb();
6507 	bnx2x_init_rx_rings_cnic(bp);
6508 	bnx2x_init_tx_rings_cnic(bp);
6509 
6510 	/* flush all */
6511 	mb();
6512 }
6513 
6514 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6515 {
6516 	int i;
6517 
6518 	/* Setup NIC internals and enable interrupts */
6519 	for_each_eth_queue(bp, i)
6520 		bnx2x_init_eth_fp(bp, i);
6521 
6522 	/* ensure status block indices were read */
6523 	rmb();
6524 	bnx2x_init_rx_rings(bp);
6525 	bnx2x_init_tx_rings(bp);
6526 
6527 	if (IS_PF(bp)) {
6528 		/* Initialize MOD_ABS interrupts */
6529 		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6530 				       bp->common.shmem_base,
6531 				       bp->common.shmem2_base, BP_PORT(bp));
6532 
6533 		/* initialize the default status block and sp ring */
6534 		bnx2x_init_def_sb(bp);
6535 		bnx2x_update_dsb_idx(bp);
6536 		bnx2x_init_sp_ring(bp);
6537 	} else {
6538 		bnx2x_memset_stats(bp);
6539 	}
6540 }
6541 
6542 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6543 {
6544 	bnx2x_init_eq_ring(bp);
6545 	bnx2x_init_internal(bp, load_code);
6546 	bnx2x_pf_init(bp);
6547 	bnx2x_stats_init(bp);
6548 
6549 	/* flush all before enabling interrupts */
6550 	mb();
6551 
6552 	bnx2x_int_enable(bp);
6553 
6554 	/* Check for SPIO5 */
6555 	bnx2x_attn_int_deasserted0(bp,
6556 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6557 				   AEU_INPUTS_ATTN_BITS_SPIO5);
6558 }
6559 
6560 /* gzip service functions */
6561 static int bnx2x_gunzip_init(struct bnx2x *bp)
6562 {
6563 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6564 					    &bp->gunzip_mapping, GFP_KERNEL);
6565 	if (bp->gunzip_buf  == NULL)
6566 		goto gunzip_nomem1;
6567 
6568 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6569 	if (bp->strm  == NULL)
6570 		goto gunzip_nomem2;
6571 
6572 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6573 	if (bp->strm->workspace == NULL)
6574 		goto gunzip_nomem3;
6575 
6576 	return 0;
6577 
6578 gunzip_nomem3:
6579 	kfree(bp->strm);
6580 	bp->strm = NULL;
6581 
6582 gunzip_nomem2:
6583 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6584 			  bp->gunzip_mapping);
6585 	bp->gunzip_buf = NULL;
6586 
6587 gunzip_nomem1:
6588 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6589 	return -ENOMEM;
6590 }
6591 
6592 static void bnx2x_gunzip_end(struct bnx2x *bp)
6593 {
6594 	if (bp->strm) {
6595 		vfree(bp->strm->workspace);
6596 		kfree(bp->strm);
6597 		bp->strm = NULL;
6598 	}
6599 
6600 	if (bp->gunzip_buf) {
6601 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6602 				  bp->gunzip_mapping);
6603 		bp->gunzip_buf = NULL;
6604 	}
6605 }
6606 
6607 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6608 {
6609 	int n, rc;
6610 
6611 	/* check gzip header */
6612 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6613 		BNX2X_ERR("Bad gzip header\n");
6614 		return -EINVAL;
6615 	}
6616 
6617 	n = 10;
6618 
6619 #define FNAME				0x8
6620 
6621 	if (zbuf[3] & FNAME)
6622 		while ((zbuf[n++] != 0) && (n < len));
6623 
6624 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6625 	bp->strm->avail_in = len - n;
6626 	bp->strm->next_out = bp->gunzip_buf;
6627 	bp->strm->avail_out = FW_BUF_SIZE;
6628 
6629 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6630 	if (rc != Z_OK)
6631 		return rc;
6632 
6633 	rc = zlib_inflate(bp->strm, Z_FINISH);
6634 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6635 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6636 			   bp->strm->msg);
6637 
6638 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6639 	if (bp->gunzip_outlen & 0x3)
6640 		netdev_err(bp->dev,
6641 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6642 				bp->gunzip_outlen);
6643 	bp->gunzip_outlen >>= 2;
6644 
6645 	zlib_inflateEnd(bp->strm);
6646 
6647 	if (rc == Z_STREAM_END)
6648 		return 0;
6649 
6650 	return rc;
6651 }
6652 
6653 /* nic load/unload */
6654 
6655 /*
6656  * General service functions
6657  */
6658 
6659 /* send a NIG loopback debug packet */
6660 static void bnx2x_lb_pckt(struct bnx2x *bp)
6661 {
6662 	u32 wb_write[3];
6663 
6664 	/* Ethernet source and destination addresses */
6665 	wb_write[0] = 0x55555555;
6666 	wb_write[1] = 0x55555555;
6667 	wb_write[2] = 0x20;		/* SOP */
6668 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6669 
6670 	/* NON-IP protocol */
6671 	wb_write[0] = 0x09000000;
6672 	wb_write[1] = 0x55555555;
6673 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6674 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6675 }
6676 
6677 /* some of the internal memories
6678  * are not directly readable from the driver
6679  * to test them we send debug packets
6680  */
6681 static int bnx2x_int_mem_test(struct bnx2x *bp)
6682 {
6683 	int factor;
6684 	int count, i;
6685 	u32 val = 0;
6686 
6687 	if (CHIP_REV_IS_FPGA(bp))
6688 		factor = 120;
6689 	else if (CHIP_REV_IS_EMUL(bp))
6690 		factor = 200;
6691 	else
6692 		factor = 1;
6693 
6694 	/* Disable inputs of parser neighbor blocks */
6695 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6696 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6697 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6698 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6699 
6700 	/*  Write 0 to parser credits for CFC search request */
6701 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6702 
6703 	/* send Ethernet packet */
6704 	bnx2x_lb_pckt(bp);
6705 
6706 	/* TODO do i reset NIG statistic? */
6707 	/* Wait until NIG register shows 1 packet of size 0x10 */
6708 	count = 1000 * factor;
6709 	while (count) {
6710 
6711 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6712 		val = *bnx2x_sp(bp, wb_data[0]);
6713 		if (val == 0x10)
6714 			break;
6715 
6716 		usleep_range(10000, 20000);
6717 		count--;
6718 	}
6719 	if (val != 0x10) {
6720 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6721 		return -1;
6722 	}
6723 
6724 	/* Wait until PRS register shows 1 packet */
6725 	count = 1000 * factor;
6726 	while (count) {
6727 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6728 		if (val == 1)
6729 			break;
6730 
6731 		usleep_range(10000, 20000);
6732 		count--;
6733 	}
6734 	if (val != 0x1) {
6735 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6736 		return -2;
6737 	}
6738 
6739 	/* Reset and init BRB, PRS */
6740 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6741 	msleep(50);
6742 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6743 	msleep(50);
6744 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6745 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6746 
6747 	DP(NETIF_MSG_HW, "part2\n");
6748 
6749 	/* Disable inputs of parser neighbor blocks */
6750 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6751 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6752 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6753 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6754 
6755 	/* Write 0 to parser credits for CFC search request */
6756 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6757 
6758 	/* send 10 Ethernet packets */
6759 	for (i = 0; i < 10; i++)
6760 		bnx2x_lb_pckt(bp);
6761 
6762 	/* Wait until NIG register shows 10 + 1
6763 	   packets of size 11*0x10 = 0xb0 */
6764 	count = 1000 * factor;
6765 	while (count) {
6766 
6767 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6768 		val = *bnx2x_sp(bp, wb_data[0]);
6769 		if (val == 0xb0)
6770 			break;
6771 
6772 		usleep_range(10000, 20000);
6773 		count--;
6774 	}
6775 	if (val != 0xb0) {
6776 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6777 		return -3;
6778 	}
6779 
6780 	/* Wait until PRS register shows 2 packets */
6781 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6782 	if (val != 2)
6783 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6784 
6785 	/* Write 1 to parser credits for CFC search request */
6786 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6787 
6788 	/* Wait until PRS register shows 3 packets */
6789 	msleep(10 * factor);
6790 	/* Wait until NIG register shows 1 packet of size 0x10 */
6791 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6792 	if (val != 3)
6793 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6794 
6795 	/* clear NIG EOP FIFO */
6796 	for (i = 0; i < 11; i++)
6797 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6798 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6799 	if (val != 1) {
6800 		BNX2X_ERR("clear of NIG failed\n");
6801 		return -4;
6802 	}
6803 
6804 	/* Reset and init BRB, PRS, NIG */
6805 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6806 	msleep(50);
6807 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6808 	msleep(50);
6809 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6810 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6811 	if (!CNIC_SUPPORT(bp))
6812 		/* set NIC mode */
6813 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6814 
6815 	/* Enable inputs of parser neighbor blocks */
6816 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6817 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6818 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6819 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6820 
6821 	DP(NETIF_MSG_HW, "done\n");
6822 
6823 	return 0; /* OK */
6824 }
6825 
6826 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6827 {
6828 	u32 val;
6829 
6830 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6831 	if (!CHIP_IS_E1x(bp))
6832 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6833 	else
6834 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6835 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6836 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6837 	/*
6838 	 * mask read length error interrupts in brb for parser
6839 	 * (parsing unit and 'checksum and crc' unit)
6840 	 * these errors are legal (PU reads fixed length and CAC can cause
6841 	 * read length error on truncated packets)
6842 	 */
6843 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6844 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6845 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6846 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6847 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6848 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6849 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6850 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6851 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6852 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6853 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6854 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6855 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6856 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6857 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6858 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6859 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6860 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6861 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6862 
6863 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6864 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6865 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6866 	if (!CHIP_IS_E1x(bp))
6867 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6868 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6869 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6870 
6871 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6872 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6873 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6874 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6875 
6876 	if (!CHIP_IS_E1x(bp))
6877 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6878 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6879 
6880 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6881 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6882 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6883 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6884 }
6885 
6886 static void bnx2x_reset_common(struct bnx2x *bp)
6887 {
6888 	u32 val = 0x1400;
6889 
6890 	/* reset_common */
6891 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6892 	       0xd3ffff7f);
6893 
6894 	if (CHIP_IS_E3(bp)) {
6895 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6896 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6897 	}
6898 
6899 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6900 }
6901 
6902 static void bnx2x_setup_dmae(struct bnx2x *bp)
6903 {
6904 	bp->dmae_ready = 0;
6905 	spin_lock_init(&bp->dmae_lock);
6906 }
6907 
6908 static void bnx2x_init_pxp(struct bnx2x *bp)
6909 {
6910 	u16 devctl;
6911 	int r_order, w_order;
6912 
6913 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6914 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6915 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6916 	if (bp->mrrs == -1)
6917 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6918 	else {
6919 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6920 		r_order = bp->mrrs;
6921 	}
6922 
6923 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6924 }
6925 
6926 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6927 {
6928 	int is_required;
6929 	u32 val;
6930 	int port;
6931 
6932 	if (BP_NOMCP(bp))
6933 		return;
6934 
6935 	is_required = 0;
6936 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6937 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6938 
6939 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6940 		is_required = 1;
6941 
6942 	/*
6943 	 * The fan failure mechanism is usually related to the PHY type since
6944 	 * the power consumption of the board is affected by the PHY. Currently,
6945 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6946 	 */
6947 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6948 		for (port = PORT_0; port < PORT_MAX; port++) {
6949 			is_required |=
6950 				bnx2x_fan_failure_det_req(
6951 					bp,
6952 					bp->common.shmem_base,
6953 					bp->common.shmem2_base,
6954 					port);
6955 		}
6956 
6957 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6958 
6959 	if (is_required == 0)
6960 		return;
6961 
6962 	/* Fan failure is indicated by SPIO 5 */
6963 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6964 
6965 	/* set to active low mode */
6966 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6967 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6968 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6969 
6970 	/* enable interrupt to signal the IGU */
6971 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6972 	val |= MISC_SPIO_SPIO5;
6973 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6974 }
6975 
6976 void bnx2x_pf_disable(struct bnx2x *bp)
6977 {
6978 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6979 	val &= ~IGU_PF_CONF_FUNC_EN;
6980 
6981 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6982 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6983 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6984 }
6985 
6986 static void bnx2x__common_init_phy(struct bnx2x *bp)
6987 {
6988 	u32 shmem_base[2], shmem2_base[2];
6989 	/* Avoid common init in case MFW supports LFA */
6990 	if (SHMEM2_RD(bp, size) >
6991 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6992 		return;
6993 	shmem_base[0] =  bp->common.shmem_base;
6994 	shmem2_base[0] = bp->common.shmem2_base;
6995 	if (!CHIP_IS_E1x(bp)) {
6996 		shmem_base[1] =
6997 			SHMEM2_RD(bp, other_shmem_base_addr);
6998 		shmem2_base[1] =
6999 			SHMEM2_RD(bp, other_shmem2_base_addr);
7000 	}
7001 	bnx2x_acquire_phy_lock(bp);
7002 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
7003 			      bp->common.chip_id);
7004 	bnx2x_release_phy_lock(bp);
7005 }
7006 
7007 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
7008 {
7009 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
7010 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7011 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7012 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7013 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7014 
7015 	/* make sure this value is 0 */
7016 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7017 
7018 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7019 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7020 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7021 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7022 }
7023 
7024 static void bnx2x_set_endianity(struct bnx2x *bp)
7025 {
7026 #ifdef __BIG_ENDIAN
7027 	bnx2x_config_endianity(bp, 1);
7028 #else
7029 	bnx2x_config_endianity(bp, 0);
7030 #endif
7031 }
7032 
7033 static void bnx2x_reset_endianity(struct bnx2x *bp)
7034 {
7035 	bnx2x_config_endianity(bp, 0);
7036 }
7037 
7038 /**
7039  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7040  *
7041  * @bp:		driver handle
7042  */
7043 static int bnx2x_init_hw_common(struct bnx2x *bp)
7044 {
7045 	u32 val;
7046 
7047 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7048 
7049 	/*
7050 	 * take the RESET lock to protect undi_unload flow from accessing
7051 	 * registers while we're resetting the chip
7052 	 */
7053 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7054 
7055 	bnx2x_reset_common(bp);
7056 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7057 
7058 	val = 0xfffc;
7059 	if (CHIP_IS_E3(bp)) {
7060 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7061 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7062 	}
7063 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7064 
7065 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7066 
7067 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7068 
7069 	if (!CHIP_IS_E1x(bp)) {
7070 		u8 abs_func_id;
7071 
7072 		/**
7073 		 * 4-port mode or 2-port mode we need to turn of master-enable
7074 		 * for everyone, after that, turn it back on for self.
7075 		 * so, we disregard multi-function or not, and always disable
7076 		 * for all functions on the given path, this means 0,2,4,6 for
7077 		 * path 0 and 1,3,5,7 for path 1
7078 		 */
7079 		for (abs_func_id = BP_PATH(bp);
7080 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7081 			if (abs_func_id == BP_ABS_FUNC(bp)) {
7082 				REG_WR(bp,
7083 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7084 				    1);
7085 				continue;
7086 			}
7087 
7088 			bnx2x_pretend_func(bp, abs_func_id);
7089 			/* clear pf enable */
7090 			bnx2x_pf_disable(bp);
7091 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7092 		}
7093 	}
7094 
7095 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7096 	if (CHIP_IS_E1(bp)) {
7097 		/* enable HW interrupt from PXP on USDM overflow
7098 		   bit 16 on INT_MASK_0 */
7099 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7100 	}
7101 
7102 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7103 	bnx2x_init_pxp(bp);
7104 	bnx2x_set_endianity(bp);
7105 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
7106 
7107 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7108 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7109 
7110 	/* let the HW do it's magic ... */
7111 	msleep(100);
7112 	/* finish PXP init */
7113 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7114 	if (val != 1) {
7115 		BNX2X_ERR("PXP2 CFG failed\n");
7116 		return -EBUSY;
7117 	}
7118 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7119 	if (val != 1) {
7120 		BNX2X_ERR("PXP2 RD_INIT failed\n");
7121 		return -EBUSY;
7122 	}
7123 
7124 	/* Timers bug workaround E2 only. We need to set the entire ILT to
7125 	 * have entries with value "0" and valid bit on.
7126 	 * This needs to be done by the first PF that is loaded in a path
7127 	 * (i.e. common phase)
7128 	 */
7129 	if (!CHIP_IS_E1x(bp)) {
7130 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7131  * (i.e. vnic3) to start even if it is marked as "scan-off".
7132  * This occurs when a different function (func2,3) is being marked
7133  * as "scan-off". Real-life scenario for example: if a driver is being
7134  * load-unloaded while func6,7 are down. This will cause the timer to access
7135  * the ilt, translate to a logical address and send a request to read/write.
7136  * Since the ilt for the function that is down is not valid, this will cause
7137  * a translation error which is unrecoverable.
7138  * The Workaround is intended to make sure that when this happens nothing fatal
7139  * will occur. The workaround:
7140  *	1.  First PF driver which loads on a path will:
7141  *		a.  After taking the chip out of reset, by using pretend,
7142  *		    it will write "0" to the following registers of
7143  *		    the other vnics.
7144  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7145  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7146  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7147  *		    And for itself it will write '1' to
7148  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7149  *		    dmae-operations (writing to pram for example.)
7150  *		    note: can be done for only function 6,7 but cleaner this
7151  *			  way.
7152  *		b.  Write zero+valid to the entire ILT.
7153  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7154  *		    VNIC3 (of that port). The range allocated will be the
7155  *		    entire ILT. This is needed to prevent  ILT range error.
7156  *	2.  Any PF driver load flow:
7157  *		a.  ILT update with the physical addresses of the allocated
7158  *		    logical pages.
7159  *		b.  Wait 20msec. - note that this timeout is needed to make
7160  *		    sure there are no requests in one of the PXP internal
7161  *		    queues with "old" ILT addresses.
7162  *		c.  PF enable in the PGLC.
7163  *		d.  Clear the was_error of the PF in the PGLC. (could have
7164  *		    occurred while driver was down)
7165  *		e.  PF enable in the CFC (WEAK + STRONG)
7166  *		f.  Timers scan enable
7167  *	3.  PF driver unload flow:
7168  *		a.  Clear the Timers scan_en.
7169  *		b.  Polling for scan_on=0 for that PF.
7170  *		c.  Clear the PF enable bit in the PXP.
7171  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
7172  *		e.  Write zero+valid to all ILT entries (The valid bit must
7173  *		    stay set)
7174  *		f.  If this is VNIC 3 of a port then also init
7175  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
7176  *		    to the last entry in the ILT.
7177  *
7178  *	Notes:
7179  *	Currently the PF error in the PGLC is non recoverable.
7180  *	In the future the there will be a recovery routine for this error.
7181  *	Currently attention is masked.
7182  *	Having an MCP lock on the load/unload process does not guarantee that
7183  *	there is no Timer disable during Func6/7 enable. This is because the
7184  *	Timers scan is currently being cleared by the MCP on FLR.
7185  *	Step 2.d can be done only for PF6/7 and the driver can also check if
7186  *	there is error before clearing it. But the flow above is simpler and
7187  *	more general.
7188  *	All ILT entries are written by zero+valid and not just PF6/7
7189  *	ILT entries since in the future the ILT entries allocation for
7190  *	PF-s might be dynamic.
7191  */
7192 		struct ilt_client_info ilt_cli;
7193 		struct bnx2x_ilt ilt;
7194 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7195 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7196 
7197 		/* initialize dummy TM client */
7198 		ilt_cli.start = 0;
7199 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7200 		ilt_cli.client_num = ILT_CLIENT_TM;
7201 
7202 		/* Step 1: set zeroes to all ilt page entries with valid bit on
7203 		 * Step 2: set the timers first/last ilt entry to point
7204 		 * to the entire range to prevent ILT range error for 3rd/4th
7205 		 * vnic	(this code assumes existence of the vnic)
7206 		 *
7207 		 * both steps performed by call to bnx2x_ilt_client_init_op()
7208 		 * with dummy TM client
7209 		 *
7210 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7211 		 * and his brother are split registers
7212 		 */
7213 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7214 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7215 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7216 
7217 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7218 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7219 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7220 	}
7221 
7222 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7223 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7224 
7225 	if (!CHIP_IS_E1x(bp)) {
7226 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7227 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7228 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7229 
7230 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7231 
7232 		/* let the HW do it's magic ... */
7233 		do {
7234 			msleep(200);
7235 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7236 		} while (factor-- && (val != 1));
7237 
7238 		if (val != 1) {
7239 			BNX2X_ERR("ATC_INIT failed\n");
7240 			return -EBUSY;
7241 		}
7242 	}
7243 
7244 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7245 
7246 	bnx2x_iov_init_dmae(bp);
7247 
7248 	/* clean the DMAE memory */
7249 	bp->dmae_ready = 1;
7250 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7251 
7252 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7253 
7254 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7255 
7256 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7257 
7258 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7259 
7260 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7261 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7262 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7263 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7264 
7265 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7266 
7267 	/* QM queues pointers table */
7268 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7269 
7270 	/* soft reset pulse */
7271 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
7272 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
7273 
7274 	if (CNIC_SUPPORT(bp))
7275 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7276 
7277 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7278 
7279 	if (!CHIP_REV_IS_SLOW(bp))
7280 		/* enable hw interrupt from doorbell Q */
7281 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7282 
7283 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7284 
7285 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7286 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7287 
7288 	if (!CHIP_IS_E1(bp))
7289 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7290 
7291 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7292 		if (IS_MF_AFEX(bp)) {
7293 			/* configure that VNTag and VLAN headers must be
7294 			 * received in afex mode
7295 			 */
7296 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7297 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7298 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7299 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7300 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7301 		} else {
7302 			/* Bit-map indicating which L2 hdrs may appear
7303 			 * after the basic Ethernet header
7304 			 */
7305 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7306 			       bp->path_has_ovlan ? 7 : 6);
7307 		}
7308 	}
7309 
7310 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7311 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7312 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7313 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7314 
7315 	if (!CHIP_IS_E1x(bp)) {
7316 		/* reset VFC memories */
7317 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7318 			   VFC_MEMORIES_RST_REG_CAM_RST |
7319 			   VFC_MEMORIES_RST_REG_RAM_RST);
7320 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7321 			   VFC_MEMORIES_RST_REG_CAM_RST |
7322 			   VFC_MEMORIES_RST_REG_RAM_RST);
7323 
7324 		msleep(20);
7325 	}
7326 
7327 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7328 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7329 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7330 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7331 
7332 	/* sync semi rtc */
7333 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7334 	       0x80000000);
7335 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7336 	       0x80000000);
7337 
7338 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7339 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7340 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7341 
7342 	if (!CHIP_IS_E1x(bp)) {
7343 		if (IS_MF_AFEX(bp)) {
7344 			/* configure that VNTag and VLAN headers must be
7345 			 * sent in afex mode
7346 			 */
7347 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7348 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7349 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7350 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7351 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7352 		} else {
7353 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7354 			       bp->path_has_ovlan ? 7 : 6);
7355 		}
7356 	}
7357 
7358 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
7359 
7360 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7361 
7362 	if (CNIC_SUPPORT(bp)) {
7363 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7364 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7365 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7366 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7367 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7368 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7369 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7370 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7371 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7372 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7373 	}
7374 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
7375 
7376 	if (sizeof(union cdu_context) != 1024)
7377 		/* we currently assume that a context is 1024 bytes */
7378 		dev_alert(&bp->pdev->dev,
7379 			  "please adjust the size of cdu_context(%ld)\n",
7380 			  (long)sizeof(union cdu_context));
7381 
7382 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7383 	val = (4 << 24) + (0 << 12) + 1024;
7384 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7385 
7386 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7387 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7388 	/* enable context validation interrupt from CFC */
7389 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7390 
7391 	/* set the thresholds to prevent CFC/CDU race */
7392 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7393 
7394 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7395 
7396 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7397 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7398 
7399 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7400 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7401 
7402 	/* Reset PCIE errors for debug */
7403 	REG_WR(bp, 0x2814, 0xffffffff);
7404 	REG_WR(bp, 0x3820, 0xffffffff);
7405 
7406 	if (!CHIP_IS_E1x(bp)) {
7407 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7408 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7409 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7410 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7411 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7412 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7413 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7414 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7415 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7416 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7417 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7418 	}
7419 
7420 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7421 	if (!CHIP_IS_E1(bp)) {
7422 		/* in E3 this done in per-port section */
7423 		if (!CHIP_IS_E3(bp))
7424 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7425 	}
7426 	if (CHIP_IS_E1H(bp))
7427 		/* not applicable for E2 (and above ...) */
7428 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7429 
7430 	if (CHIP_REV_IS_SLOW(bp))
7431 		msleep(200);
7432 
7433 	/* finish CFC init */
7434 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7435 	if (val != 1) {
7436 		BNX2X_ERR("CFC LL_INIT failed\n");
7437 		return -EBUSY;
7438 	}
7439 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7440 	if (val != 1) {
7441 		BNX2X_ERR("CFC AC_INIT failed\n");
7442 		return -EBUSY;
7443 	}
7444 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7445 	if (val != 1) {
7446 		BNX2X_ERR("CFC CAM_INIT failed\n");
7447 		return -EBUSY;
7448 	}
7449 	REG_WR(bp, CFC_REG_DEBUG0, 0);
7450 
7451 	if (CHIP_IS_E1(bp)) {
7452 		/* read NIG statistic
7453 		   to see if this is our first up since powerup */
7454 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7455 		val = *bnx2x_sp(bp, wb_data[0]);
7456 
7457 		/* do internal memory self test */
7458 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7459 			BNX2X_ERR("internal mem self test failed\n");
7460 			return -EBUSY;
7461 		}
7462 	}
7463 
7464 	bnx2x_setup_fan_failure_detection(bp);
7465 
7466 	/* clear PXP2 attentions */
7467 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7468 
7469 	bnx2x_enable_blocks_attention(bp);
7470 	bnx2x_enable_blocks_parity(bp);
7471 
7472 	if (!BP_NOMCP(bp)) {
7473 		if (CHIP_IS_E1x(bp))
7474 			bnx2x__common_init_phy(bp);
7475 	} else
7476 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7477 
7478 	if (SHMEM2_HAS(bp, netproc_fw_ver))
7479 		SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7480 
7481 	return 0;
7482 }
7483 
7484 /**
7485  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7486  *
7487  * @bp:		driver handle
7488  */
7489 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7490 {
7491 	int rc = bnx2x_init_hw_common(bp);
7492 
7493 	if (rc)
7494 		return rc;
7495 
7496 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7497 	if (!BP_NOMCP(bp))
7498 		bnx2x__common_init_phy(bp);
7499 
7500 	return 0;
7501 }
7502 
7503 static int bnx2x_init_hw_port(struct bnx2x *bp)
7504 {
7505 	int port = BP_PORT(bp);
7506 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7507 	u32 low, high;
7508 	u32 val, reg;
7509 
7510 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7511 
7512 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7513 
7514 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7515 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7516 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7517 
7518 	/* Timers bug workaround: disables the pf_master bit in pglue at
7519 	 * common phase, we need to enable it here before any dmae access are
7520 	 * attempted. Therefore we manually added the enable-master to the
7521 	 * port phase (it also happens in the function phase)
7522 	 */
7523 	if (!CHIP_IS_E1x(bp))
7524 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7525 
7526 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7527 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7528 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7529 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7530 
7531 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7532 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7533 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7534 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7535 
7536 	/* QM cid (connection) count */
7537 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7538 
7539 	if (CNIC_SUPPORT(bp)) {
7540 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7541 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7542 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7543 	}
7544 
7545 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7546 
7547 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7548 
7549 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7550 
7551 		if (IS_MF(bp))
7552 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7553 		else if (bp->dev->mtu > 4096) {
7554 			if (bp->flags & ONE_PORT_FLAG)
7555 				low = 160;
7556 			else {
7557 				val = bp->dev->mtu;
7558 				/* (24*1024 + val*4)/256 */
7559 				low = 96 + (val/64) +
7560 						((val % 64) ? 1 : 0);
7561 			}
7562 		} else
7563 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7564 		high = low + 56;	/* 14*1024/256 */
7565 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7566 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7567 	}
7568 
7569 	if (CHIP_MODE_IS_4_PORT(bp))
7570 		REG_WR(bp, (BP_PORT(bp) ?
7571 			    BRB1_REG_MAC_GUARANTIED_1 :
7572 			    BRB1_REG_MAC_GUARANTIED_0), 40);
7573 
7574 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7575 	if (CHIP_IS_E3B0(bp)) {
7576 		if (IS_MF_AFEX(bp)) {
7577 			/* configure headers for AFEX mode */
7578 			REG_WR(bp, BP_PORT(bp) ?
7579 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7580 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7581 			REG_WR(bp, BP_PORT(bp) ?
7582 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7583 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7584 			REG_WR(bp, BP_PORT(bp) ?
7585 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7586 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7587 		} else {
7588 			/* Ovlan exists only if we are in multi-function +
7589 			 * switch-dependent mode, in switch-independent there
7590 			 * is no ovlan headers
7591 			 */
7592 			REG_WR(bp, BP_PORT(bp) ?
7593 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7594 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7595 			       (bp->path_has_ovlan ? 7 : 6));
7596 		}
7597 	}
7598 
7599 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7600 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7601 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7602 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7603 
7604 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7605 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7606 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7607 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7608 
7609 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7610 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7611 
7612 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7613 
7614 	if (CHIP_IS_E1x(bp)) {
7615 		/* configure PBF to work without PAUSE mtu 9000 */
7616 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7617 
7618 		/* update threshold */
7619 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7620 		/* update init credit */
7621 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7622 
7623 		/* probe changes */
7624 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7625 		udelay(50);
7626 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7627 	}
7628 
7629 	if (CNIC_SUPPORT(bp))
7630 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7631 
7632 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7633 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7634 
7635 	if (CHIP_IS_E1(bp)) {
7636 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7637 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7638 	}
7639 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7640 
7641 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7642 
7643 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7644 	/* init aeu_mask_attn_func_0/1:
7645 	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7646 	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7647 	 *             bits 4-7 are used for "per vn group attention" */
7648 	val = IS_MF(bp) ? 0xF7 : 0x7;
7649 	/* Enable DCBX attention for all but E1 */
7650 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7651 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7652 
7653 	/* SCPAD_PARITY should NOT trigger close the gates */
7654 	reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7655 	REG_WR(bp, reg,
7656 	       REG_RD(bp, reg) &
7657 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7658 
7659 	reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7660 	REG_WR(bp, reg,
7661 	       REG_RD(bp, reg) &
7662 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7663 
7664 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7665 
7666 	if (!CHIP_IS_E1x(bp)) {
7667 		/* Bit-map indicating which L2 hdrs may appear after the
7668 		 * basic Ethernet header
7669 		 */
7670 		if (IS_MF_AFEX(bp))
7671 			REG_WR(bp, BP_PORT(bp) ?
7672 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7673 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7674 		else
7675 			REG_WR(bp, BP_PORT(bp) ?
7676 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7677 			       NIG_REG_P0_HDRS_AFTER_BASIC,
7678 			       IS_MF_SD(bp) ? 7 : 6);
7679 
7680 		if (CHIP_IS_E3(bp))
7681 			REG_WR(bp, BP_PORT(bp) ?
7682 				   NIG_REG_LLH1_MF_MODE :
7683 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7684 	}
7685 	if (!CHIP_IS_E3(bp))
7686 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7687 
7688 	if (!CHIP_IS_E1(bp)) {
7689 		/* 0x2 disable mf_ov, 0x1 enable */
7690 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7691 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7692 
7693 		if (!CHIP_IS_E1x(bp)) {
7694 			val = 0;
7695 			switch (bp->mf_mode) {
7696 			case MULTI_FUNCTION_SD:
7697 				val = 1;
7698 				break;
7699 			case MULTI_FUNCTION_SI:
7700 			case MULTI_FUNCTION_AFEX:
7701 				val = 2;
7702 				break;
7703 			}
7704 
7705 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7706 						  NIG_REG_LLH0_CLS_TYPE), val);
7707 		}
7708 		{
7709 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7710 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7711 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7712 		}
7713 	}
7714 
7715 	/* If SPIO5 is set to generate interrupts, enable it for this port */
7716 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7717 	if (val & MISC_SPIO_SPIO5) {
7718 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7719 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7720 		val = REG_RD(bp, reg_addr);
7721 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7722 		REG_WR(bp, reg_addr, val);
7723 	}
7724 
7725 	if (CHIP_IS_E3B0(bp))
7726 		bp->flags |= PTP_SUPPORTED;
7727 
7728 	return 0;
7729 }
7730 
7731 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7732 {
7733 	int reg;
7734 	u32 wb_write[2];
7735 
7736 	if (CHIP_IS_E1(bp))
7737 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7738 	else
7739 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7740 
7741 	wb_write[0] = ONCHIP_ADDR1(addr);
7742 	wb_write[1] = ONCHIP_ADDR2(addr);
7743 	REG_WR_DMAE(bp, reg, wb_write, 2);
7744 }
7745 
7746 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7747 {
7748 	u32 data, ctl, cnt = 100;
7749 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7750 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7751 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7752 	u32 sb_bit =  1 << (idu_sb_id%32);
7753 	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7754 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7755 
7756 	/* Not supported in BC mode */
7757 	if (CHIP_INT_MODE_IS_BC(bp))
7758 		return;
7759 
7760 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7761 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7762 		IGU_REGULAR_CLEANUP_SET				|
7763 		IGU_REGULAR_BCLEANUP;
7764 
7765 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7766 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7767 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7768 
7769 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7770 			 data, igu_addr_data);
7771 	REG_WR(bp, igu_addr_data, data);
7772 	barrier();
7773 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7774 			  ctl, igu_addr_ctl);
7775 	REG_WR(bp, igu_addr_ctl, ctl);
7776 	barrier();
7777 
7778 	/* wait for clean up to finish */
7779 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7780 		msleep(20);
7781 
7782 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7783 		DP(NETIF_MSG_HW,
7784 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7785 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7786 	}
7787 }
7788 
7789 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7790 {
7791 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7792 }
7793 
7794 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7795 {
7796 	u32 i, base = FUNC_ILT_BASE(func);
7797 	for (i = base; i < base + ILT_PER_FUNC; i++)
7798 		bnx2x_ilt_wr(bp, i, 0);
7799 }
7800 
7801 static void bnx2x_init_searcher(struct bnx2x *bp)
7802 {
7803 	int port = BP_PORT(bp);
7804 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7805 	/* T1 hash bits value determines the T1 number of entries */
7806 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7807 }
7808 
7809 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7810 {
7811 	int rc;
7812 	struct bnx2x_func_state_params func_params = {NULL};
7813 	struct bnx2x_func_switch_update_params *switch_update_params =
7814 		&func_params.params.switch_update;
7815 
7816 	/* Prepare parameters for function state transitions */
7817 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7818 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7819 
7820 	func_params.f_obj = &bp->func_obj;
7821 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7822 
7823 	/* Function parameters */
7824 	__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7825 		  &switch_update_params->changes);
7826 	if (suspend)
7827 		__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7828 			  &switch_update_params->changes);
7829 
7830 	rc = bnx2x_func_state_change(bp, &func_params);
7831 
7832 	return rc;
7833 }
7834 
7835 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7836 {
7837 	int rc, i, port = BP_PORT(bp);
7838 	int vlan_en = 0, mac_en[NUM_MACS];
7839 
7840 	/* Close input from network */
7841 	if (bp->mf_mode == SINGLE_FUNCTION) {
7842 		bnx2x_set_rx_filter(&bp->link_params, 0);
7843 	} else {
7844 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7845 				   NIG_REG_LLH0_FUNC_EN);
7846 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7847 			  NIG_REG_LLH0_FUNC_EN, 0);
7848 		for (i = 0; i < NUM_MACS; i++) {
7849 			mac_en[i] = REG_RD(bp, port ?
7850 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7851 					      4 * i) :
7852 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7853 					      4 * i));
7854 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7855 					      4 * i) :
7856 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7857 		}
7858 	}
7859 
7860 	/* Close BMC to host */
7861 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7862 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7863 
7864 	/* Suspend Tx switching to the PF. Completion of this ramrod
7865 	 * further guarantees that all the packets of that PF / child
7866 	 * VFs in BRB were processed by the Parser, so it is safe to
7867 	 * change the NIC_MODE register.
7868 	 */
7869 	rc = bnx2x_func_switch_update(bp, 1);
7870 	if (rc) {
7871 		BNX2X_ERR("Can't suspend tx-switching!\n");
7872 		return rc;
7873 	}
7874 
7875 	/* Change NIC_MODE register */
7876 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7877 
7878 	/* Open input from network */
7879 	if (bp->mf_mode == SINGLE_FUNCTION) {
7880 		bnx2x_set_rx_filter(&bp->link_params, 1);
7881 	} else {
7882 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7883 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7884 		for (i = 0; i < NUM_MACS; i++) {
7885 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7886 					      4 * i) :
7887 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7888 				  mac_en[i]);
7889 		}
7890 	}
7891 
7892 	/* Enable BMC to host */
7893 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7894 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7895 
7896 	/* Resume Tx switching to the PF */
7897 	rc = bnx2x_func_switch_update(bp, 0);
7898 	if (rc) {
7899 		BNX2X_ERR("Can't resume tx-switching!\n");
7900 		return rc;
7901 	}
7902 
7903 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7904 	return 0;
7905 }
7906 
7907 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7908 {
7909 	int rc;
7910 
7911 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7912 
7913 	if (CONFIGURE_NIC_MODE(bp)) {
7914 		/* Configure searcher as part of function hw init */
7915 		bnx2x_init_searcher(bp);
7916 
7917 		/* Reset NIC mode */
7918 		rc = bnx2x_reset_nic_mode(bp);
7919 		if (rc)
7920 			BNX2X_ERR("Can't change NIC mode!\n");
7921 		return rc;
7922 	}
7923 
7924 	return 0;
7925 }
7926 
7927 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7928  * and boot began, or when kdump kernel was loaded. Either case would invalidate
7929  * the addresses of the transaction, resulting in was-error bit set in the pci
7930  * causing all hw-to-host pcie transactions to timeout. If this happened we want
7931  * to clear the interrupt which detected this from the pglueb and the was done
7932  * bit
7933  */
7934 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7935 {
7936 	if (!CHIP_IS_E1x(bp))
7937 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7938 		       1 << BP_ABS_FUNC(bp));
7939 }
7940 
7941 static int bnx2x_init_hw_func(struct bnx2x *bp)
7942 {
7943 	int port = BP_PORT(bp);
7944 	int func = BP_FUNC(bp);
7945 	int init_phase = PHASE_PF0 + func;
7946 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7947 	u16 cdu_ilt_start;
7948 	u32 addr, val;
7949 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7950 	int i, main_mem_width, rc;
7951 
7952 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7953 
7954 	/* FLR cleanup - hmmm */
7955 	if (!CHIP_IS_E1x(bp)) {
7956 		rc = bnx2x_pf_flr_clnup(bp);
7957 		if (rc) {
7958 			bnx2x_fw_dump(bp);
7959 			return rc;
7960 		}
7961 	}
7962 
7963 	/* set MSI reconfigure capability */
7964 	if (bp->common.int_block == INT_BLOCK_HC) {
7965 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7966 		val = REG_RD(bp, addr);
7967 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7968 		REG_WR(bp, addr, val);
7969 	}
7970 
7971 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7972 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7973 
7974 	ilt = BP_ILT(bp);
7975 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7976 
7977 	if (IS_SRIOV(bp))
7978 		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7979 	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7980 
7981 	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7982 	 * those of the VFs, so start line should be reset
7983 	 */
7984 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7985 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7986 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7987 		ilt->lines[cdu_ilt_start + i].page_mapping =
7988 			bp->context[i].cxt_mapping;
7989 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7990 	}
7991 
7992 	bnx2x_ilt_init_op(bp, INITOP_SET);
7993 
7994 	if (!CONFIGURE_NIC_MODE(bp)) {
7995 		bnx2x_init_searcher(bp);
7996 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
7997 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7998 	} else {
7999 		/* Set NIC mode */
8000 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
8001 		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
8002 	}
8003 
8004 	if (!CHIP_IS_E1x(bp)) {
8005 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
8006 
8007 		/* Turn on a single ISR mode in IGU if driver is going to use
8008 		 * INT#x or MSI
8009 		 */
8010 		if (!(bp->flags & USING_MSIX_FLAG))
8011 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8012 		/*
8013 		 * Timers workaround bug: function init part.
8014 		 * Need to wait 20msec after initializing ILT,
8015 		 * needed to make sure there are no requests in
8016 		 * one of the PXP internal queues with "old" ILT addresses
8017 		 */
8018 		msleep(20);
8019 		/*
8020 		 * Master enable - Due to WB DMAE writes performed before this
8021 		 * register is re-initialized as part of the regular function
8022 		 * init
8023 		 */
8024 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8025 		/* Enable the function in IGU */
8026 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8027 	}
8028 
8029 	bp->dmae_ready = 1;
8030 
8031 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8032 
8033 	bnx2x_clean_pglue_errors(bp);
8034 
8035 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8036 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8037 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8038 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8039 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8040 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8041 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8042 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8043 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8044 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8045 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8046 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8047 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8048 
8049 	if (!CHIP_IS_E1x(bp))
8050 		REG_WR(bp, QM_REG_PF_EN, 1);
8051 
8052 	if (!CHIP_IS_E1x(bp)) {
8053 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8054 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8055 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8056 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8057 	}
8058 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
8059 
8060 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
8061 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8062 	REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8063 
8064 	bnx2x_iov_init_dq(bp);
8065 
8066 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8067 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8068 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8069 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8070 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8071 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8072 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8073 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8074 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8075 	if (!CHIP_IS_E1x(bp))
8076 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8077 
8078 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8079 
8080 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8081 
8082 	if (!CHIP_IS_E1x(bp))
8083 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8084 
8085 	if (IS_MF(bp)) {
8086 		if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8087 			REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8088 			REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8089 			       bp->mf_ov);
8090 		}
8091 	}
8092 
8093 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8094 
8095 	/* HC init per function */
8096 	if (bp->common.int_block == INT_BLOCK_HC) {
8097 		if (CHIP_IS_E1H(bp)) {
8098 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8099 
8100 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8101 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8102 		}
8103 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
8104 
8105 	} else {
8106 		int num_segs, sb_idx, prod_offset;
8107 
8108 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8109 
8110 		if (!CHIP_IS_E1x(bp)) {
8111 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8112 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8113 		}
8114 
8115 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8116 
8117 		if (!CHIP_IS_E1x(bp)) {
8118 			int dsb_idx = 0;
8119 			/**
8120 			 * Producer memory:
8121 			 * E2 mode: address 0-135 match to the mapping memory;
8122 			 * 136 - PF0 default prod; 137 - PF1 default prod;
8123 			 * 138 - PF2 default prod; 139 - PF3 default prod;
8124 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
8125 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
8126 			 * 144-147 reserved.
8127 			 *
8128 			 * E1.5 mode - In backward compatible mode;
8129 			 * for non default SB; each even line in the memory
8130 			 * holds the U producer and each odd line hold
8131 			 * the C producer. The first 128 producers are for
8132 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8133 			 * producers are for the DSB for each PF.
8134 			 * Each PF has five segments: (the order inside each
8135 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8136 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8137 			 * 144-147 attn prods;
8138 			 */
8139 			/* non-default-status-blocks */
8140 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8141 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8142 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8143 				prod_offset = (bp->igu_base_sb + sb_idx) *
8144 					num_segs;
8145 
8146 				for (i = 0; i < num_segs; i++) {
8147 					addr = IGU_REG_PROD_CONS_MEMORY +
8148 							(prod_offset + i) * 4;
8149 					REG_WR(bp, addr, 0);
8150 				}
8151 				/* send consumer update with value 0 */
8152 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8153 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8154 				bnx2x_igu_clear_sb(bp,
8155 						   bp->igu_base_sb + sb_idx);
8156 			}
8157 
8158 			/* default-status-blocks */
8159 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8160 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8161 
8162 			if (CHIP_MODE_IS_4_PORT(bp))
8163 				dsb_idx = BP_FUNC(bp);
8164 			else
8165 				dsb_idx = BP_VN(bp);
8166 
8167 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8168 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
8169 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
8170 
8171 			/*
8172 			 * igu prods come in chunks of E1HVN_MAX (4) -
8173 			 * does not matters what is the current chip mode
8174 			 */
8175 			for (i = 0; i < (num_segs * E1HVN_MAX);
8176 			     i += E1HVN_MAX) {
8177 				addr = IGU_REG_PROD_CONS_MEMORY +
8178 							(prod_offset + i)*4;
8179 				REG_WR(bp, addr, 0);
8180 			}
8181 			/* send consumer update with 0 */
8182 			if (CHIP_INT_MODE_IS_BC(bp)) {
8183 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8184 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8185 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8186 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
8187 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8188 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
8189 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8190 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
8191 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8192 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8193 			} else {
8194 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8195 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8196 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8197 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8198 			}
8199 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8200 
8201 			/* !!! These should become driver const once
8202 			   rf-tool supports split-68 const */
8203 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8204 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8205 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8206 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8207 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8208 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8209 		}
8210 	}
8211 
8212 	/* Reset PCIE errors for debug */
8213 	REG_WR(bp, 0x2114, 0xffffffff);
8214 	REG_WR(bp, 0x2120, 0xffffffff);
8215 
8216 	if (CHIP_IS_E1x(bp)) {
8217 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8218 		main_mem_base = HC_REG_MAIN_MEMORY +
8219 				BP_PORT(bp) * (main_mem_size * 4);
8220 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8221 		main_mem_width = 8;
8222 
8223 		val = REG_RD(bp, main_mem_prty_clr);
8224 		if (val)
8225 			DP(NETIF_MSG_HW,
8226 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8227 			   val);
8228 
8229 		/* Clear "false" parity errors in MSI-X table */
8230 		for (i = main_mem_base;
8231 		     i < main_mem_base + main_mem_size * 4;
8232 		     i += main_mem_width) {
8233 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
8234 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8235 					 i, main_mem_width / 4);
8236 		}
8237 		/* Clear HC parity attention */
8238 		REG_RD(bp, main_mem_prty_clr);
8239 	}
8240 
8241 #ifdef BNX2X_STOP_ON_ERROR
8242 	/* Enable STORMs SP logging */
8243 	REG_WR8(bp, BAR_USTRORM_INTMEM +
8244 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8245 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
8246 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8247 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8248 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8249 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
8250 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8251 #endif
8252 
8253 	bnx2x_phy_probe(&bp->link_params);
8254 
8255 	return 0;
8256 }
8257 
8258 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8259 {
8260 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8261 
8262 	if (!CHIP_IS_E1x(bp))
8263 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8264 			       sizeof(struct host_hc_status_block_e2));
8265 	else
8266 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8267 			       sizeof(struct host_hc_status_block_e1x));
8268 
8269 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8270 }
8271 
8272 void bnx2x_free_mem(struct bnx2x *bp)
8273 {
8274 	int i;
8275 
8276 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8277 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8278 
8279 	if (IS_VF(bp))
8280 		return;
8281 
8282 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8283 		       sizeof(struct host_sp_status_block));
8284 
8285 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8286 		       sizeof(struct bnx2x_slowpath));
8287 
8288 	for (i = 0; i < L2_ILT_LINES(bp); i++)
8289 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8290 			       bp->context[i].size);
8291 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8292 
8293 	BNX2X_FREE(bp->ilt->lines);
8294 
8295 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8296 
8297 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8298 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8299 
8300 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8301 
8302 	bnx2x_iov_free_mem(bp);
8303 }
8304 
8305 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8306 {
8307 	if (!CHIP_IS_E1x(bp)) {
8308 		/* size = the status block + ramrod buffers */
8309 		bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8310 						    sizeof(struct host_hc_status_block_e2));
8311 		if (!bp->cnic_sb.e2_sb)
8312 			goto alloc_mem_err;
8313 	} else {
8314 		bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8315 						     sizeof(struct host_hc_status_block_e1x));
8316 		if (!bp->cnic_sb.e1x_sb)
8317 			goto alloc_mem_err;
8318 	}
8319 
8320 	if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8321 		/* allocate searcher T2 table, as it wasn't allocated before */
8322 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8323 		if (!bp->t2)
8324 			goto alloc_mem_err;
8325 	}
8326 
8327 	/* write address to which L5 should insert its values */
8328 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
8329 		&bp->slowpath->drv_info_to_mcp;
8330 
8331 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8332 		goto alloc_mem_err;
8333 
8334 	return 0;
8335 
8336 alloc_mem_err:
8337 	bnx2x_free_mem_cnic(bp);
8338 	BNX2X_ERR("Can't allocate memory\n");
8339 	return -ENOMEM;
8340 }
8341 
8342 int bnx2x_alloc_mem(struct bnx2x *bp)
8343 {
8344 	int i, allocated, context_size;
8345 
8346 	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8347 		/* allocate searcher T2 table */
8348 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8349 		if (!bp->t2)
8350 			goto alloc_mem_err;
8351 	}
8352 
8353 	bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8354 					     sizeof(struct host_sp_status_block));
8355 	if (!bp->def_status_blk)
8356 		goto alloc_mem_err;
8357 
8358 	bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8359 				       sizeof(struct bnx2x_slowpath));
8360 	if (!bp->slowpath)
8361 		goto alloc_mem_err;
8362 
8363 	/* Allocate memory for CDU context:
8364 	 * This memory is allocated separately and not in the generic ILT
8365 	 * functions because CDU differs in few aspects:
8366 	 * 1. There are multiple entities allocating memory for context -
8367 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8368 	 * its own ILT lines.
8369 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
8370 	 * for the other ILT clients), to be efficient we want to support
8371 	 * allocation of sub-page-size in the last entry.
8372 	 * 3. Context pointers are used by the driver to pass to FW / update
8373 	 * the context (for the other ILT clients the pointers are used just to
8374 	 * free the memory during unload).
8375 	 */
8376 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8377 
8378 	for (i = 0, allocated = 0; allocated < context_size; i++) {
8379 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8380 					  (context_size - allocated));
8381 		bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8382 						      bp->context[i].size);
8383 		if (!bp->context[i].vcxt)
8384 			goto alloc_mem_err;
8385 		allocated += bp->context[i].size;
8386 	}
8387 	bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8388 				 GFP_KERNEL);
8389 	if (!bp->ilt->lines)
8390 		goto alloc_mem_err;
8391 
8392 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8393 		goto alloc_mem_err;
8394 
8395 	if (bnx2x_iov_alloc_mem(bp))
8396 		goto alloc_mem_err;
8397 
8398 	/* Slow path ring */
8399 	bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8400 	if (!bp->spq)
8401 		goto alloc_mem_err;
8402 
8403 	/* EQ */
8404 	bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8405 				      BCM_PAGE_SIZE * NUM_EQ_PAGES);
8406 	if (!bp->eq_ring)
8407 		goto alloc_mem_err;
8408 
8409 	return 0;
8410 
8411 alloc_mem_err:
8412 	bnx2x_free_mem(bp);
8413 	BNX2X_ERR("Can't allocate memory\n");
8414 	return -ENOMEM;
8415 }
8416 
8417 /*
8418  * Init service functions
8419  */
8420 
8421 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8422 		      struct bnx2x_vlan_mac_obj *obj, bool set,
8423 		      int mac_type, unsigned long *ramrod_flags)
8424 {
8425 	int rc;
8426 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8427 
8428 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8429 
8430 	/* Fill general parameters */
8431 	ramrod_param.vlan_mac_obj = obj;
8432 	ramrod_param.ramrod_flags = *ramrod_flags;
8433 
8434 	/* Fill a user request section if needed */
8435 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8436 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8437 
8438 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8439 
8440 		/* Set the command: ADD or DEL */
8441 		if (set)
8442 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8443 		else
8444 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8445 	}
8446 
8447 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8448 
8449 	if (rc == -EEXIST) {
8450 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8451 		/* do not treat adding same MAC as error */
8452 		rc = 0;
8453 	} else if (rc < 0)
8454 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8455 
8456 	return rc;
8457 }
8458 
8459 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8460 		       struct bnx2x_vlan_mac_obj *obj, bool set,
8461 		       unsigned long *ramrod_flags)
8462 {
8463 	int rc;
8464 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8465 
8466 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8467 
8468 	/* Fill general parameters */
8469 	ramrod_param.vlan_mac_obj = obj;
8470 	ramrod_param.ramrod_flags = *ramrod_flags;
8471 
8472 	/* Fill a user request section if needed */
8473 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8474 		ramrod_param.user_req.u.vlan.vlan = vlan;
8475 		__set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags);
8476 		/* Set the command: ADD or DEL */
8477 		if (set)
8478 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8479 		else
8480 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8481 	}
8482 
8483 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8484 
8485 	if (rc == -EEXIST) {
8486 		/* Do not treat adding same vlan as error. */
8487 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8488 		rc = 0;
8489 	} else if (rc < 0) {
8490 		BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8491 	}
8492 
8493 	return rc;
8494 }
8495 
8496 void bnx2x_clear_vlan_info(struct bnx2x *bp)
8497 {
8498 	struct bnx2x_vlan_entry *vlan;
8499 
8500 	/* Mark that hw forgot all entries */
8501 	list_for_each_entry(vlan, &bp->vlan_reg, link)
8502 		vlan->hw = false;
8503 
8504 	bp->vlan_cnt = 0;
8505 }
8506 
8507 static int bnx2x_del_all_vlans(struct bnx2x *bp)
8508 {
8509 	struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj;
8510 	unsigned long ramrod_flags = 0, vlan_flags = 0;
8511 	int rc;
8512 
8513 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8514 	__set_bit(BNX2X_VLAN, &vlan_flags);
8515 	rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags);
8516 	if (rc)
8517 		return rc;
8518 
8519 	bnx2x_clear_vlan_info(bp);
8520 
8521 	return 0;
8522 }
8523 
8524 int bnx2x_del_all_macs(struct bnx2x *bp,
8525 		       struct bnx2x_vlan_mac_obj *mac_obj,
8526 		       int mac_type, bool wait_for_comp)
8527 {
8528 	int rc;
8529 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8530 
8531 	/* Wait for completion of requested */
8532 	if (wait_for_comp)
8533 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8534 
8535 	/* Set the mac type of addresses we want to clear */
8536 	__set_bit(mac_type, &vlan_mac_flags);
8537 
8538 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8539 	if (rc < 0)
8540 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8541 
8542 	return rc;
8543 }
8544 
8545 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8546 {
8547 	if (IS_PF(bp)) {
8548 		unsigned long ramrod_flags = 0;
8549 
8550 		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8551 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8552 		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8553 					 &bp->sp_objs->mac_obj, set,
8554 					 BNX2X_ETH_MAC, &ramrod_flags);
8555 	} else { /* vf */
8556 		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8557 					     bp->fp->index, set);
8558 	}
8559 }
8560 
8561 int bnx2x_setup_leading(struct bnx2x *bp)
8562 {
8563 	if (IS_PF(bp))
8564 		return bnx2x_setup_queue(bp, &bp->fp[0], true);
8565 	else /* VF */
8566 		return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8567 }
8568 
8569 /**
8570  * bnx2x_set_int_mode - configure interrupt mode
8571  *
8572  * @bp:		driver handle
8573  *
8574  * In case of MSI-X it will also try to enable MSI-X.
8575  */
8576 int bnx2x_set_int_mode(struct bnx2x *bp)
8577 {
8578 	int rc = 0;
8579 
8580 	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8581 		BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8582 		return -EINVAL;
8583 	}
8584 
8585 	switch (int_mode) {
8586 	case BNX2X_INT_MODE_MSIX:
8587 		/* attempt to enable msix */
8588 		rc = bnx2x_enable_msix(bp);
8589 
8590 		/* msix attained */
8591 		if (!rc)
8592 			return 0;
8593 
8594 		/* vfs use only msix */
8595 		if (rc && IS_VF(bp))
8596 			return rc;
8597 
8598 		/* failed to enable multiple MSI-X */
8599 		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8600 			       bp->num_queues,
8601 			       1 + bp->num_cnic_queues);
8602 
8603 		fallthrough;
8604 	case BNX2X_INT_MODE_MSI:
8605 		bnx2x_enable_msi(bp);
8606 
8607 		fallthrough;
8608 	case BNX2X_INT_MODE_INTX:
8609 		bp->num_ethernet_queues = 1;
8610 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8611 		BNX2X_DEV_INFO("set number of queues to 1\n");
8612 		break;
8613 	default:
8614 		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8615 		return -EINVAL;
8616 	}
8617 	return 0;
8618 }
8619 
8620 /* must be called prior to any HW initializations */
8621 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8622 {
8623 	if (IS_SRIOV(bp))
8624 		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8625 	return L2_ILT_LINES(bp);
8626 }
8627 
8628 void bnx2x_ilt_set_info(struct bnx2x *bp)
8629 {
8630 	struct ilt_client_info *ilt_client;
8631 	struct bnx2x_ilt *ilt = BP_ILT(bp);
8632 	u16 line = 0;
8633 
8634 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8635 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8636 
8637 	/* CDU */
8638 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8639 	ilt_client->client_num = ILT_CLIENT_CDU;
8640 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8641 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8642 	ilt_client->start = line;
8643 	line += bnx2x_cid_ilt_lines(bp);
8644 
8645 	if (CNIC_SUPPORT(bp))
8646 		line += CNIC_ILT_LINES;
8647 	ilt_client->end = line - 1;
8648 
8649 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8650 	   ilt_client->start,
8651 	   ilt_client->end,
8652 	   ilt_client->page_size,
8653 	   ilt_client->flags,
8654 	   ilog2(ilt_client->page_size >> 12));
8655 
8656 	/* QM */
8657 	if (QM_INIT(bp->qm_cid_count)) {
8658 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8659 		ilt_client->client_num = ILT_CLIENT_QM;
8660 		ilt_client->page_size = QM_ILT_PAGE_SZ;
8661 		ilt_client->flags = 0;
8662 		ilt_client->start = line;
8663 
8664 		/* 4 bytes for each cid */
8665 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8666 							 QM_ILT_PAGE_SZ);
8667 
8668 		ilt_client->end = line - 1;
8669 
8670 		DP(NETIF_MSG_IFUP,
8671 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8672 		   ilt_client->start,
8673 		   ilt_client->end,
8674 		   ilt_client->page_size,
8675 		   ilt_client->flags,
8676 		   ilog2(ilt_client->page_size >> 12));
8677 	}
8678 
8679 	if (CNIC_SUPPORT(bp)) {
8680 		/* SRC */
8681 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8682 		ilt_client->client_num = ILT_CLIENT_SRC;
8683 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8684 		ilt_client->flags = 0;
8685 		ilt_client->start = line;
8686 		line += SRC_ILT_LINES;
8687 		ilt_client->end = line - 1;
8688 
8689 		DP(NETIF_MSG_IFUP,
8690 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8691 		   ilt_client->start,
8692 		   ilt_client->end,
8693 		   ilt_client->page_size,
8694 		   ilt_client->flags,
8695 		   ilog2(ilt_client->page_size >> 12));
8696 
8697 		/* TM */
8698 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8699 		ilt_client->client_num = ILT_CLIENT_TM;
8700 		ilt_client->page_size = TM_ILT_PAGE_SZ;
8701 		ilt_client->flags = 0;
8702 		ilt_client->start = line;
8703 		line += TM_ILT_LINES;
8704 		ilt_client->end = line - 1;
8705 
8706 		DP(NETIF_MSG_IFUP,
8707 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8708 		   ilt_client->start,
8709 		   ilt_client->end,
8710 		   ilt_client->page_size,
8711 		   ilt_client->flags,
8712 		   ilog2(ilt_client->page_size >> 12));
8713 	}
8714 
8715 	BUG_ON(line > ILT_MAX_LINES);
8716 }
8717 
8718 /**
8719  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8720  *
8721  * @bp:			driver handle
8722  * @fp:			pointer to fastpath
8723  * @init_params:	pointer to parameters structure
8724  *
8725  * parameters configured:
8726  *      - HC configuration
8727  *      - Queue's CDU context
8728  */
8729 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8730 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8731 {
8732 	u8 cos;
8733 	int cxt_index, cxt_offset;
8734 
8735 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8736 	if (!IS_FCOE_FP(fp)) {
8737 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8738 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8739 
8740 		/* If HC is supported, enable host coalescing in the transition
8741 		 * to INIT state.
8742 		 */
8743 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8744 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8745 
8746 		/* HC rate */
8747 		init_params->rx.hc_rate = bp->rx_ticks ?
8748 			(1000000 / bp->rx_ticks) : 0;
8749 		init_params->tx.hc_rate = bp->tx_ticks ?
8750 			(1000000 / bp->tx_ticks) : 0;
8751 
8752 		/* FW SB ID */
8753 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8754 			fp->fw_sb_id;
8755 
8756 		/*
8757 		 * CQ index among the SB indices: FCoE clients uses the default
8758 		 * SB, therefore it's different.
8759 		 */
8760 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8761 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8762 	}
8763 
8764 	/* set maximum number of COSs supported by this queue */
8765 	init_params->max_cos = fp->max_cos;
8766 
8767 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8768 	    fp->index, init_params->max_cos);
8769 
8770 	/* set the context pointers queue object */
8771 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8772 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8773 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8774 				ILT_PAGE_CIDS);
8775 		init_params->cxts[cos] =
8776 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8777 	}
8778 }
8779 
8780 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8781 			struct bnx2x_queue_state_params *q_params,
8782 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8783 			int tx_index, bool leading)
8784 {
8785 	memset(tx_only_params, 0, sizeof(*tx_only_params));
8786 
8787 	/* Set the command */
8788 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8789 
8790 	/* Set tx-only QUEUE flags: don't zero statistics */
8791 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8792 
8793 	/* choose the index of the cid to send the slow path on */
8794 	tx_only_params->cid_index = tx_index;
8795 
8796 	/* Set general TX_ONLY_SETUP parameters */
8797 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8798 
8799 	/* Set Tx TX_ONLY_SETUP parameters */
8800 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8801 
8802 	DP(NETIF_MSG_IFUP,
8803 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8804 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8805 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8806 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8807 
8808 	/* send the ramrod */
8809 	return bnx2x_queue_state_change(bp, q_params);
8810 }
8811 
8812 /**
8813  * bnx2x_setup_queue - setup queue
8814  *
8815  * @bp:		driver handle
8816  * @fp:		pointer to fastpath
8817  * @leading:	is leading
8818  *
8819  * This function performs 2 steps in a Queue state machine
8820  *      actually: 1) RESET->INIT 2) INIT->SETUP
8821  */
8822 
8823 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8824 		       bool leading)
8825 {
8826 	struct bnx2x_queue_state_params q_params = {NULL};
8827 	struct bnx2x_queue_setup_params *setup_params =
8828 						&q_params.params.setup;
8829 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8830 						&q_params.params.tx_only;
8831 	int rc;
8832 	u8 tx_index;
8833 
8834 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8835 
8836 	/* reset IGU state skip FCoE L2 queue */
8837 	if (!IS_FCOE_FP(fp))
8838 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8839 			     IGU_INT_ENABLE, 0);
8840 
8841 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8842 	/* We want to wait for completion in this context */
8843 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8844 
8845 	/* Prepare the INIT parameters */
8846 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8847 
8848 	/* Set the command */
8849 	q_params.cmd = BNX2X_Q_CMD_INIT;
8850 
8851 	/* Change the state to INIT */
8852 	rc = bnx2x_queue_state_change(bp, &q_params);
8853 	if (rc) {
8854 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8855 		return rc;
8856 	}
8857 
8858 	DP(NETIF_MSG_IFUP, "init complete\n");
8859 
8860 	/* Now move the Queue to the SETUP state... */
8861 	memset(setup_params, 0, sizeof(*setup_params));
8862 
8863 	/* Set QUEUE flags */
8864 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8865 
8866 	/* Set general SETUP parameters */
8867 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8868 				FIRST_TX_COS_INDEX);
8869 
8870 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8871 			    &setup_params->rxq_params);
8872 
8873 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8874 			   FIRST_TX_COS_INDEX);
8875 
8876 	/* Set the command */
8877 	q_params.cmd = BNX2X_Q_CMD_SETUP;
8878 
8879 	if (IS_FCOE_FP(fp))
8880 		bp->fcoe_init = true;
8881 
8882 	/* Change the state to SETUP */
8883 	rc = bnx2x_queue_state_change(bp, &q_params);
8884 	if (rc) {
8885 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8886 		return rc;
8887 	}
8888 
8889 	/* loop through the relevant tx-only indices */
8890 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8891 	      tx_index < fp->max_cos;
8892 	      tx_index++) {
8893 
8894 		/* prepare and send tx-only ramrod*/
8895 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8896 					  tx_only_params, tx_index, leading);
8897 		if (rc) {
8898 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8899 				  fp->index, tx_index);
8900 			return rc;
8901 		}
8902 	}
8903 
8904 	return rc;
8905 }
8906 
8907 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8908 {
8909 	struct bnx2x_fastpath *fp = &bp->fp[index];
8910 	struct bnx2x_fp_txdata *txdata;
8911 	struct bnx2x_queue_state_params q_params = {NULL};
8912 	int rc, tx_index;
8913 
8914 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8915 
8916 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8917 	/* We want to wait for completion in this context */
8918 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8919 
8920 	/* close tx-only connections */
8921 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8922 	     tx_index < fp->max_cos;
8923 	     tx_index++){
8924 
8925 		/* ascertain this is a normal queue*/
8926 		txdata = fp->txdata_ptr[tx_index];
8927 
8928 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8929 							txdata->txq_index);
8930 
8931 		/* send halt terminate on tx-only connection */
8932 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8933 		memset(&q_params.params.terminate, 0,
8934 		       sizeof(q_params.params.terminate));
8935 		q_params.params.terminate.cid_index = tx_index;
8936 
8937 		rc = bnx2x_queue_state_change(bp, &q_params);
8938 		if (rc)
8939 			return rc;
8940 
8941 		/* send halt terminate on tx-only connection */
8942 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8943 		memset(&q_params.params.cfc_del, 0,
8944 		       sizeof(q_params.params.cfc_del));
8945 		q_params.params.cfc_del.cid_index = tx_index;
8946 		rc = bnx2x_queue_state_change(bp, &q_params);
8947 		if (rc)
8948 			return rc;
8949 	}
8950 	/* Stop the primary connection: */
8951 	/* ...halt the connection */
8952 	q_params.cmd = BNX2X_Q_CMD_HALT;
8953 	rc = bnx2x_queue_state_change(bp, &q_params);
8954 	if (rc)
8955 		return rc;
8956 
8957 	/* ...terminate the connection */
8958 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8959 	memset(&q_params.params.terminate, 0,
8960 	       sizeof(q_params.params.terminate));
8961 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8962 	rc = bnx2x_queue_state_change(bp, &q_params);
8963 	if (rc)
8964 		return rc;
8965 	/* ...delete cfc entry */
8966 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8967 	memset(&q_params.params.cfc_del, 0,
8968 	       sizeof(q_params.params.cfc_del));
8969 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8970 	return bnx2x_queue_state_change(bp, &q_params);
8971 }
8972 
8973 static void bnx2x_reset_func(struct bnx2x *bp)
8974 {
8975 	int port = BP_PORT(bp);
8976 	int func = BP_FUNC(bp);
8977 	int i;
8978 
8979 	/* Disable the function in the FW */
8980 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8981 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8982 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8983 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8984 
8985 	/* FP SBs */
8986 	for_each_eth_queue(bp, i) {
8987 		struct bnx2x_fastpath *fp = &bp->fp[i];
8988 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8989 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8990 			   SB_DISABLED);
8991 	}
8992 
8993 	if (CNIC_LOADED(bp))
8994 		/* CNIC SB */
8995 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8996 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8997 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8998 
8999 	/* SP SB */
9000 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
9001 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
9002 		SB_DISABLED);
9003 
9004 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
9005 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
9006 		       0);
9007 
9008 	/* Configure IGU */
9009 	if (bp->common.int_block == INT_BLOCK_HC) {
9010 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
9011 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
9012 	} else {
9013 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
9014 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
9015 	}
9016 
9017 	if (CNIC_LOADED(bp)) {
9018 		/* Disable Timer scan */
9019 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
9020 		/*
9021 		 * Wait for at least 10ms and up to 2 second for the timers
9022 		 * scan to complete
9023 		 */
9024 		for (i = 0; i < 200; i++) {
9025 			usleep_range(10000, 20000);
9026 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
9027 				break;
9028 		}
9029 	}
9030 	/* Clear ILT */
9031 	bnx2x_clear_func_ilt(bp, func);
9032 
9033 	/* Timers workaround bug for E2: if this is vnic-3,
9034 	 * we need to set the entire ilt range for this timers.
9035 	 */
9036 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
9037 		struct ilt_client_info ilt_cli;
9038 		/* use dummy TM client */
9039 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9040 		ilt_cli.start = 0;
9041 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9042 		ilt_cli.client_num = ILT_CLIENT_TM;
9043 
9044 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9045 	}
9046 
9047 	/* this assumes that reset_port() called before reset_func()*/
9048 	if (!CHIP_IS_E1x(bp))
9049 		bnx2x_pf_disable(bp);
9050 
9051 	bp->dmae_ready = 0;
9052 }
9053 
9054 static void bnx2x_reset_port(struct bnx2x *bp)
9055 {
9056 	int port = BP_PORT(bp);
9057 	u32 val;
9058 
9059 	/* Reset physical Link */
9060 	bnx2x__link_reset(bp);
9061 
9062 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9063 
9064 	/* Do not rcv packets to BRB */
9065 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9066 	/* Do not direct rcv packets that are not for MCP to the BRB */
9067 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9068 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9069 
9070 	/* Configure AEU */
9071 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9072 
9073 	msleep(100);
9074 	/* Check for BRB port occupancy */
9075 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9076 	if (val)
9077 		DP(NETIF_MSG_IFDOWN,
9078 		   "BRB1 is not empty  %d blocks are occupied\n", val);
9079 
9080 	/* TODO: Close Doorbell port? */
9081 }
9082 
9083 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9084 {
9085 	struct bnx2x_func_state_params func_params = {NULL};
9086 
9087 	/* Prepare parameters for function state transitions */
9088 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9089 
9090 	func_params.f_obj = &bp->func_obj;
9091 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
9092 
9093 	func_params.params.hw_init.load_phase = load_code;
9094 
9095 	return bnx2x_func_state_change(bp, &func_params);
9096 }
9097 
9098 static int bnx2x_func_stop(struct bnx2x *bp)
9099 {
9100 	struct bnx2x_func_state_params func_params = {NULL};
9101 	int rc;
9102 
9103 	/* Prepare parameters for function state transitions */
9104 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9105 	func_params.f_obj = &bp->func_obj;
9106 	func_params.cmd = BNX2X_F_CMD_STOP;
9107 
9108 	/*
9109 	 * Try to stop the function the 'good way'. If fails (in case
9110 	 * of a parity error during bnx2x_chip_cleanup()) and we are
9111 	 * not in a debug mode, perform a state transaction in order to
9112 	 * enable further HW_RESET transaction.
9113 	 */
9114 	rc = bnx2x_func_state_change(bp, &func_params);
9115 	if (rc) {
9116 #ifdef BNX2X_STOP_ON_ERROR
9117 		return rc;
9118 #else
9119 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9120 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9121 		return bnx2x_func_state_change(bp, &func_params);
9122 #endif
9123 	}
9124 
9125 	return 0;
9126 }
9127 
9128 /**
9129  * bnx2x_send_unload_req - request unload mode from the MCP.
9130  *
9131  * @bp:			driver handle
9132  * @unload_mode:	requested function's unload mode
9133  *
9134  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9135  */
9136 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9137 {
9138 	u32 reset_code = 0;
9139 	int port = BP_PORT(bp);
9140 
9141 	/* Select the UNLOAD request mode */
9142 	if (unload_mode == UNLOAD_NORMAL)
9143 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9144 
9145 	else if (bp->flags & NO_WOL_FLAG)
9146 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9147 
9148 	else if (bp->wol) {
9149 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9150 		u8 *mac_addr = bp->dev->dev_addr;
9151 		struct pci_dev *pdev = bp->pdev;
9152 		u32 val;
9153 		u16 pmc;
9154 
9155 		/* The mac address is written to entries 1-4 to
9156 		 * preserve entry 0 which is used by the PMF
9157 		 */
9158 		u8 entry = (BP_VN(bp) + 1)*8;
9159 
9160 		val = (mac_addr[0] << 8) | mac_addr[1];
9161 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9162 
9163 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9164 		      (mac_addr[4] << 8) | mac_addr[5];
9165 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9166 
9167 		/* Enable the PME and clear the status */
9168 		pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9169 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9170 		pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9171 
9172 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9173 
9174 	} else
9175 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9176 
9177 	/* Send the request to the MCP */
9178 	if (!BP_NOMCP(bp))
9179 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
9180 	else {
9181 		int path = BP_PATH(bp);
9182 
9183 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9184 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9185 		   bnx2x_load_count[path][2]);
9186 		bnx2x_load_count[path][0]--;
9187 		bnx2x_load_count[path][1 + port]--;
9188 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9189 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9190 		   bnx2x_load_count[path][2]);
9191 		if (bnx2x_load_count[path][0] == 0)
9192 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9193 		else if (bnx2x_load_count[path][1 + port] == 0)
9194 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9195 		else
9196 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9197 	}
9198 
9199 	return reset_code;
9200 }
9201 
9202 /**
9203  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9204  *
9205  * @bp:		driver handle
9206  * @keep_link:		true iff link should be kept up
9207  */
9208 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9209 {
9210 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9211 
9212 	/* Report UNLOAD_DONE to MCP */
9213 	if (!BP_NOMCP(bp))
9214 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9215 }
9216 
9217 static int bnx2x_func_wait_started(struct bnx2x *bp)
9218 {
9219 	int tout = 50;
9220 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9221 
9222 	if (!bp->port.pmf)
9223 		return 0;
9224 
9225 	/*
9226 	 * (assumption: No Attention from MCP at this stage)
9227 	 * PMF probably in the middle of TX disable/enable transaction
9228 	 * 1. Sync IRS for default SB
9229 	 * 2. Sync SP queue - this guarantees us that attention handling started
9230 	 * 3. Wait, that TX disable/enable transaction completes
9231 	 *
9232 	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9233 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9234 	 * received completion for the transaction the state is TX_STOPPED.
9235 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9236 	 * transaction.
9237 	 */
9238 
9239 	/* make sure default SB ISR is done */
9240 	if (msix)
9241 		synchronize_irq(bp->msix_table[0].vector);
9242 	else
9243 		synchronize_irq(bp->pdev->irq);
9244 
9245 	flush_workqueue(bnx2x_wq);
9246 	flush_workqueue(bnx2x_iov_wq);
9247 
9248 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9249 				BNX2X_F_STATE_STARTED && tout--)
9250 		msleep(20);
9251 
9252 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9253 						BNX2X_F_STATE_STARTED) {
9254 #ifdef BNX2X_STOP_ON_ERROR
9255 		BNX2X_ERR("Wrong function state\n");
9256 		return -EBUSY;
9257 #else
9258 		/*
9259 		 * Failed to complete the transaction in a "good way"
9260 		 * Force both transactions with CLR bit
9261 		 */
9262 		struct bnx2x_func_state_params func_params = {NULL};
9263 
9264 		DP(NETIF_MSG_IFDOWN,
9265 		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9266 
9267 		func_params.f_obj = &bp->func_obj;
9268 		__set_bit(RAMROD_DRV_CLR_ONLY,
9269 					&func_params.ramrod_flags);
9270 
9271 		/* STARTED-->TX_ST0PPED */
9272 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
9273 		bnx2x_func_state_change(bp, &func_params);
9274 
9275 		/* TX_ST0PPED-->STARTED */
9276 		func_params.cmd = BNX2X_F_CMD_TX_START;
9277 		return bnx2x_func_state_change(bp, &func_params);
9278 #endif
9279 	}
9280 
9281 	return 0;
9282 }
9283 
9284 static void bnx2x_disable_ptp(struct bnx2x *bp)
9285 {
9286 	int port = BP_PORT(bp);
9287 
9288 	/* Disable sending PTP packets to host */
9289 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9290 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9291 
9292 	/* Reset PTP event detection rules */
9293 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9294 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9295 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9296 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9297 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9298 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9299 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9300 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9301 
9302 	/* Disable the PTP feature */
9303 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9304 	       NIG_REG_P0_PTP_EN, 0x0);
9305 }
9306 
9307 /* Called during unload, to stop PTP-related stuff */
9308 static void bnx2x_stop_ptp(struct bnx2x *bp)
9309 {
9310 	/* Cancel PTP work queue. Should be done after the Tx queues are
9311 	 * drained to prevent additional scheduling.
9312 	 */
9313 	cancel_work_sync(&bp->ptp_task);
9314 
9315 	if (bp->ptp_tx_skb) {
9316 		dev_kfree_skb_any(bp->ptp_tx_skb);
9317 		bp->ptp_tx_skb = NULL;
9318 	}
9319 
9320 	/* Disable PTP in HW */
9321 	bnx2x_disable_ptp(bp);
9322 
9323 	DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9324 }
9325 
9326 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9327 {
9328 	int port = BP_PORT(bp);
9329 	int i, rc = 0;
9330 	u8 cos;
9331 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
9332 	u32 reset_code;
9333 
9334 	/* Wait until tx fastpath tasks complete */
9335 	for_each_tx_queue(bp, i) {
9336 		struct bnx2x_fastpath *fp = &bp->fp[i];
9337 
9338 		for_each_cos_in_tx_queue(fp, cos)
9339 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9340 #ifdef BNX2X_STOP_ON_ERROR
9341 		if (rc)
9342 			return;
9343 #endif
9344 	}
9345 
9346 	/* Give HW time to discard old tx messages */
9347 	usleep_range(1000, 2000);
9348 
9349 	/* Clean all ETH MACs */
9350 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9351 				false);
9352 	if (rc < 0)
9353 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9354 
9355 	/* Clean up UC list  */
9356 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9357 				true);
9358 	if (rc < 0)
9359 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9360 			  rc);
9361 
9362 	/* The whole *vlan_obj structure may be not initialized if VLAN
9363 	 * filtering offload is not supported by hardware. Currently this is
9364 	 * true for all hardware covered by CHIP_IS_E1x().
9365 	 */
9366 	if (!CHIP_IS_E1x(bp)) {
9367 		/* Remove all currently configured VLANs */
9368 		rc = bnx2x_del_all_vlans(bp);
9369 		if (rc < 0)
9370 			BNX2X_ERR("Failed to delete all VLANs\n");
9371 	}
9372 
9373 	/* Disable LLH */
9374 	if (!CHIP_IS_E1(bp))
9375 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9376 
9377 	/* Set "drop all" (stop Rx).
9378 	 * We need to take a netif_addr_lock() here in order to prevent
9379 	 * a race between the completion code and this code.
9380 	 */
9381 	netif_addr_lock_bh(bp->dev);
9382 	/* Schedule the rx_mode command */
9383 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9384 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9385 	else if (bp->slowpath)
9386 		bnx2x_set_storm_rx_mode(bp);
9387 
9388 	/* Cleanup multicast configuration */
9389 	rparam.mcast_obj = &bp->mcast_obj;
9390 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9391 	if (rc < 0)
9392 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9393 
9394 	netif_addr_unlock_bh(bp->dev);
9395 
9396 	bnx2x_iov_chip_cleanup(bp);
9397 
9398 	/*
9399 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
9400 	 * this function should perform FUNC, PORT or COMMON HW
9401 	 * reset.
9402 	 */
9403 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
9404 
9405 	/*
9406 	 * (assumption: No Attention from MCP at this stage)
9407 	 * PMF probably in the middle of TX disable/enable transaction
9408 	 */
9409 	rc = bnx2x_func_wait_started(bp);
9410 	if (rc) {
9411 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
9412 #ifdef BNX2X_STOP_ON_ERROR
9413 		return;
9414 #endif
9415 	}
9416 
9417 	/* Close multi and leading connections
9418 	 * Completions for ramrods are collected in a synchronous way
9419 	 */
9420 	for_each_eth_queue(bp, i)
9421 		if (bnx2x_stop_queue(bp, i))
9422 #ifdef BNX2X_STOP_ON_ERROR
9423 			return;
9424 #else
9425 			goto unload_error;
9426 #endif
9427 
9428 	if (CNIC_LOADED(bp)) {
9429 		for_each_cnic_queue(bp, i)
9430 			if (bnx2x_stop_queue(bp, i))
9431 #ifdef BNX2X_STOP_ON_ERROR
9432 				return;
9433 #else
9434 				goto unload_error;
9435 #endif
9436 	}
9437 
9438 	/* If SP settings didn't get completed so far - something
9439 	 * very wrong has happen.
9440 	 */
9441 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9442 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9443 
9444 #ifndef BNX2X_STOP_ON_ERROR
9445 unload_error:
9446 #endif
9447 	rc = bnx2x_func_stop(bp);
9448 	if (rc) {
9449 		BNX2X_ERR("Function stop failed!\n");
9450 #ifdef BNX2X_STOP_ON_ERROR
9451 		return;
9452 #endif
9453 	}
9454 
9455 	/* stop_ptp should be after the Tx queues are drained to prevent
9456 	 * scheduling to the cancelled PTP work queue. It should also be after
9457 	 * function stop ramrod is sent, since as part of this ramrod FW access
9458 	 * PTP registers.
9459 	 */
9460 	if (bp->flags & PTP_SUPPORTED) {
9461 		bnx2x_stop_ptp(bp);
9462 		if (bp->ptp_clock) {
9463 			ptp_clock_unregister(bp->ptp_clock);
9464 			bp->ptp_clock = NULL;
9465 		}
9466 	}
9467 
9468 	/* Disable HW interrupts, NAPI */
9469 	bnx2x_netif_stop(bp, 1);
9470 	/* Delete all NAPI objects */
9471 	bnx2x_del_all_napi(bp);
9472 	if (CNIC_LOADED(bp))
9473 		bnx2x_del_all_napi_cnic(bp);
9474 
9475 	/* Release IRQs */
9476 	bnx2x_free_irq(bp);
9477 
9478 	/* Reset the chip, unless PCI function is offline. If we reach this
9479 	 * point following a PCI error handling, it means device is really
9480 	 * in a bad state and we're about to remove it, so reset the chip
9481 	 * is not a good idea.
9482 	 */
9483 	if (!pci_channel_offline(bp->pdev)) {
9484 		rc = bnx2x_reset_hw(bp, reset_code);
9485 		if (rc)
9486 			BNX2X_ERR("HW_RESET failed\n");
9487 	}
9488 
9489 	/* Report UNLOAD_DONE to MCP */
9490 	bnx2x_send_unload_done(bp, keep_link);
9491 }
9492 
9493 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9494 {
9495 	u32 val;
9496 
9497 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9498 
9499 	if (CHIP_IS_E1(bp)) {
9500 		int port = BP_PORT(bp);
9501 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9502 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
9503 
9504 		val = REG_RD(bp, addr);
9505 		val &= ~(0x300);
9506 		REG_WR(bp, addr, val);
9507 	} else {
9508 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9509 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9510 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9511 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9512 	}
9513 }
9514 
9515 /* Close gates #2, #3 and #4: */
9516 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9517 {
9518 	u32 val;
9519 
9520 	/* Gates #2 and #4a are closed/opened for "not E1" only */
9521 	if (!CHIP_IS_E1(bp)) {
9522 		/* #4 */
9523 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9524 		/* #2 */
9525 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9526 	}
9527 
9528 	/* #3 */
9529 	if (CHIP_IS_E1x(bp)) {
9530 		/* Prevent interrupts from HC on both ports */
9531 		val = REG_RD(bp, HC_REG_CONFIG_1);
9532 		REG_WR(bp, HC_REG_CONFIG_1,
9533 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9534 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9535 
9536 		val = REG_RD(bp, HC_REG_CONFIG_0);
9537 		REG_WR(bp, HC_REG_CONFIG_0,
9538 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9539 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9540 	} else {
9541 		/* Prevent incoming interrupts in IGU */
9542 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9543 
9544 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9545 		       (!close) ?
9546 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9547 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9548 	}
9549 
9550 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9551 		close ? "closing" : "opening");
9552 }
9553 
9554 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9555 
9556 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9557 {
9558 	/* Do some magic... */
9559 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9560 	*magic_val = val & SHARED_MF_CLP_MAGIC;
9561 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9562 }
9563 
9564 /**
9565  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9566  *
9567  * @bp:		driver handle
9568  * @magic_val:	old value of the `magic' bit.
9569  */
9570 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9571 {
9572 	/* Restore the `magic' bit value... */
9573 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9574 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
9575 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9576 }
9577 
9578 /**
9579  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9580  *
9581  * @bp:		driver handle
9582  * @magic_val:	old value of 'magic' bit.
9583  *
9584  * Takes care of CLP configurations.
9585  */
9586 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9587 {
9588 	u32 shmem;
9589 	u32 validity_offset;
9590 
9591 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9592 
9593 	/* Set `magic' bit in order to save MF config */
9594 	if (!CHIP_IS_E1(bp))
9595 		bnx2x_clp_reset_prep(bp, magic_val);
9596 
9597 	/* Get shmem offset */
9598 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9599 	validity_offset =
9600 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9601 
9602 	/* Clear validity map flags */
9603 	if (shmem > 0)
9604 		REG_WR(bp, shmem + validity_offset, 0);
9605 }
9606 
9607 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9608 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9609 
9610 /**
9611  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9612  *
9613  * @bp:	driver handle
9614  */
9615 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9616 {
9617 	/* special handling for emulation and FPGA,
9618 	   wait 10 times longer */
9619 	if (CHIP_REV_IS_SLOW(bp))
9620 		msleep(MCP_ONE_TIMEOUT*10);
9621 	else
9622 		msleep(MCP_ONE_TIMEOUT);
9623 }
9624 
9625 /*
9626  * initializes bp->common.shmem_base and waits for validity signature to appear
9627  */
9628 static int bnx2x_init_shmem(struct bnx2x *bp)
9629 {
9630 	int cnt = 0;
9631 	u32 val = 0;
9632 
9633 	do {
9634 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9635 
9636 		/* If we read all 0xFFs, means we are in PCI error state and
9637 		 * should bail out to avoid crashes on adapter's FW reads.
9638 		 */
9639 		if (bp->common.shmem_base == 0xFFFFFFFF) {
9640 			bp->flags |= NO_MCP_FLAG;
9641 			return -ENODEV;
9642 		}
9643 
9644 		if (bp->common.shmem_base) {
9645 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9646 			if (val & SHR_MEM_VALIDITY_MB)
9647 				return 0;
9648 		}
9649 
9650 		bnx2x_mcp_wait_one(bp);
9651 
9652 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9653 
9654 	BNX2X_ERR("BAD MCP validity signature\n");
9655 
9656 	return -ENODEV;
9657 }
9658 
9659 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9660 {
9661 	int rc = bnx2x_init_shmem(bp);
9662 
9663 	/* Restore the `magic' bit value */
9664 	if (!CHIP_IS_E1(bp))
9665 		bnx2x_clp_reset_done(bp, magic_val);
9666 
9667 	return rc;
9668 }
9669 
9670 static void bnx2x_pxp_prep(struct bnx2x *bp)
9671 {
9672 	if (!CHIP_IS_E1(bp)) {
9673 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9674 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9675 	}
9676 }
9677 
9678 /*
9679  * Reset the whole chip except for:
9680  *      - PCIE core
9681  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9682  *              one reset bit)
9683  *      - IGU
9684  *      - MISC (including AEU)
9685  *      - GRC
9686  *      - RBCN, RBCP
9687  */
9688 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9689 {
9690 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9691 	u32 global_bits2, stay_reset2;
9692 
9693 	/*
9694 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9695 	 * (per chip) blocks.
9696 	 */
9697 	global_bits2 =
9698 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9699 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9700 
9701 	/* Don't reset the following blocks.
9702 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9703 	 *            reset, as in 4 port device they might still be owned
9704 	 *            by the MCP (there is only one leader per path).
9705 	 */
9706 	not_reset_mask1 =
9707 		MISC_REGISTERS_RESET_REG_1_RST_HC |
9708 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9709 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9710 
9711 	not_reset_mask2 =
9712 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9713 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9714 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9715 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9716 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9717 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9718 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9719 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9720 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9721 		MISC_REGISTERS_RESET_REG_2_PGLC |
9722 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9723 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9724 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9725 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9726 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9727 		MISC_REGISTERS_RESET_REG_2_UMAC1;
9728 
9729 	/*
9730 	 * Keep the following blocks in reset:
9731 	 *  - all xxMACs are handled by the bnx2x_link code.
9732 	 */
9733 	stay_reset2 =
9734 		MISC_REGISTERS_RESET_REG_2_XMAC |
9735 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9736 
9737 	/* Full reset masks according to the chip */
9738 	reset_mask1 = 0xffffffff;
9739 
9740 	if (CHIP_IS_E1(bp))
9741 		reset_mask2 = 0xffff;
9742 	else if (CHIP_IS_E1H(bp))
9743 		reset_mask2 = 0x1ffff;
9744 	else if (CHIP_IS_E2(bp))
9745 		reset_mask2 = 0xfffff;
9746 	else /* CHIP_IS_E3 */
9747 		reset_mask2 = 0x3ffffff;
9748 
9749 	/* Don't reset global blocks unless we need to */
9750 	if (!global)
9751 		reset_mask2 &= ~global_bits2;
9752 
9753 	/*
9754 	 * In case of attention in the QM, we need to reset PXP
9755 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9756 	 * because otherwise QM reset would release 'close the gates' shortly
9757 	 * before resetting the PXP, then the PSWRQ would send a write
9758 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9759 	 * read the payload data from PSWWR, but PSWWR would not
9760 	 * respond. The write queue in PGLUE would stuck, dmae commands
9761 	 * would not return. Therefore it's important to reset the second
9762 	 * reset register (containing the
9763 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9764 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9765 	 * bit).
9766 	 */
9767 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9768 	       reset_mask2 & (~not_reset_mask2));
9769 
9770 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9771 	       reset_mask1 & (~not_reset_mask1));
9772 
9773 	barrier();
9774 
9775 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9776 	       reset_mask2 & (~stay_reset2));
9777 
9778 	barrier();
9779 
9780 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9781 }
9782 
9783 /**
9784  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9785  * It should get cleared in no more than 1s.
9786  *
9787  * @bp:	driver handle
9788  *
9789  * It should get cleared in no more than 1s. Returns 0 if
9790  * pending writes bit gets cleared.
9791  */
9792 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9793 {
9794 	u32 cnt = 1000;
9795 	u32 pend_bits = 0;
9796 
9797 	do {
9798 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9799 
9800 		if (pend_bits == 0)
9801 			break;
9802 
9803 		usleep_range(1000, 2000);
9804 	} while (cnt-- > 0);
9805 
9806 	if (cnt <= 0) {
9807 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9808 			  pend_bits);
9809 		return -EBUSY;
9810 	}
9811 
9812 	return 0;
9813 }
9814 
9815 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9816 {
9817 	int cnt = 1000;
9818 	u32 val = 0;
9819 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9820 	u32 tags_63_32 = 0;
9821 
9822 	/* Empty the Tetris buffer, wait for 1s */
9823 	do {
9824 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9825 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9826 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9827 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9828 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9829 		if (CHIP_IS_E3(bp))
9830 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9831 
9832 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9833 		    ((port_is_idle_0 & 0x1) == 0x1) &&
9834 		    ((port_is_idle_1 & 0x1) == 0x1) &&
9835 		    (pgl_exp_rom2 == 0xffffffff) &&
9836 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9837 			break;
9838 		usleep_range(1000, 2000);
9839 	} while (cnt-- > 0);
9840 
9841 	if (cnt <= 0) {
9842 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9843 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9844 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9845 			  pgl_exp_rom2);
9846 		return -EAGAIN;
9847 	}
9848 
9849 	barrier();
9850 
9851 	/* Close gates #2, #3 and #4 */
9852 	bnx2x_set_234_gates(bp, true);
9853 
9854 	/* Poll for IGU VQs for 57712 and newer chips */
9855 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9856 		return -EAGAIN;
9857 
9858 	/* TBD: Indicate that "process kill" is in progress to MCP */
9859 
9860 	/* Clear "unprepared" bit */
9861 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9862 	barrier();
9863 
9864 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9865 	 * PSWHST, GRC and PSWRD Tetris buffer.
9866 	 */
9867 	usleep_range(1000, 2000);
9868 
9869 	/* Prepare to chip reset: */
9870 	/* MCP */
9871 	if (global)
9872 		bnx2x_reset_mcp_prep(bp, &val);
9873 
9874 	/* PXP */
9875 	bnx2x_pxp_prep(bp);
9876 	barrier();
9877 
9878 	/* reset the chip */
9879 	bnx2x_process_kill_chip_reset(bp, global);
9880 	barrier();
9881 
9882 	/* clear errors in PGB */
9883 	if (!CHIP_IS_E1x(bp))
9884 		REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9885 
9886 	/* Recover after reset: */
9887 	/* MCP */
9888 	if (global && bnx2x_reset_mcp_comp(bp, val))
9889 		return -EAGAIN;
9890 
9891 	/* TBD: Add resetting the NO_MCP mode DB here */
9892 
9893 	/* Open the gates #2, #3 and #4 */
9894 	bnx2x_set_234_gates(bp, false);
9895 
9896 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9897 	 * reset state, re-enable attentions. */
9898 
9899 	return 0;
9900 }
9901 
9902 static int bnx2x_leader_reset(struct bnx2x *bp)
9903 {
9904 	int rc = 0;
9905 	bool global = bnx2x_reset_is_global(bp);
9906 	u32 load_code;
9907 
9908 	/* if not going to reset MCP - load "fake" driver to reset HW while
9909 	 * driver is owner of the HW
9910 	 */
9911 	if (!global && !BP_NOMCP(bp)) {
9912 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9913 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9914 		if (!load_code) {
9915 			BNX2X_ERR("MCP response failure, aborting\n");
9916 			rc = -EAGAIN;
9917 			goto exit_leader_reset;
9918 		}
9919 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9920 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9921 			BNX2X_ERR("MCP unexpected resp, aborting\n");
9922 			rc = -EAGAIN;
9923 			goto exit_leader_reset2;
9924 		}
9925 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9926 		if (!load_code) {
9927 			BNX2X_ERR("MCP response failure, aborting\n");
9928 			rc = -EAGAIN;
9929 			goto exit_leader_reset2;
9930 		}
9931 	}
9932 
9933 	/* Try to recover after the failure */
9934 	if (bnx2x_process_kill(bp, global)) {
9935 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9936 			  BP_PATH(bp));
9937 		rc = -EAGAIN;
9938 		goto exit_leader_reset2;
9939 	}
9940 
9941 	/*
9942 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9943 	 * state.
9944 	 */
9945 	bnx2x_set_reset_done(bp);
9946 	if (global)
9947 		bnx2x_clear_reset_global(bp);
9948 
9949 exit_leader_reset2:
9950 	/* unload "fake driver" if it was loaded */
9951 	if (!global && !BP_NOMCP(bp)) {
9952 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9953 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9954 	}
9955 exit_leader_reset:
9956 	bp->is_leader = 0;
9957 	bnx2x_release_leader_lock(bp);
9958 	smp_mb();
9959 	return rc;
9960 }
9961 
9962 static void bnx2x_recovery_failed(struct bnx2x *bp)
9963 {
9964 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9965 
9966 	/* Disconnect this device */
9967 	netif_device_detach(bp->dev);
9968 
9969 	/*
9970 	 * Block ifup for all function on this engine until "process kill"
9971 	 * or power cycle.
9972 	 */
9973 	bnx2x_set_reset_in_progress(bp);
9974 
9975 	/* Shut down the power */
9976 	bnx2x_set_power_state(bp, PCI_D3hot);
9977 
9978 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9979 
9980 	smp_mb();
9981 }
9982 
9983 /*
9984  * Assumption: runs under rtnl lock. This together with the fact
9985  * that it's called only from bnx2x_sp_rtnl() ensure that it
9986  * will never be called when netif_running(bp->dev) is false.
9987  */
9988 static void bnx2x_parity_recover(struct bnx2x *bp)
9989 {
9990 	u32 error_recovered, error_unrecovered;
9991 	bool is_parity, global = false;
9992 #ifdef CONFIG_BNX2X_SRIOV
9993 	int vf_idx;
9994 
9995 	for (vf_idx = 0; vf_idx < bp->requested_nr_virtfn; vf_idx++) {
9996 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
9997 
9998 		if (vf)
9999 			vf->state = VF_LOST;
10000 	}
10001 #endif
10002 	DP(NETIF_MSG_HW, "Handling parity\n");
10003 	while (1) {
10004 		switch (bp->recovery_state) {
10005 		case BNX2X_RECOVERY_INIT:
10006 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
10007 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
10008 			WARN_ON(!is_parity);
10009 
10010 			/* Try to get a LEADER_LOCK HW lock */
10011 			if (bnx2x_trylock_leader_lock(bp)) {
10012 				bnx2x_set_reset_in_progress(bp);
10013 				/*
10014 				 * Check if there is a global attention and if
10015 				 * there was a global attention, set the global
10016 				 * reset bit.
10017 				 */
10018 
10019 				if (global)
10020 					bnx2x_set_reset_global(bp);
10021 
10022 				bp->is_leader = 1;
10023 			}
10024 
10025 			/* Stop the driver */
10026 			/* If interface has been removed - break */
10027 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
10028 				return;
10029 
10030 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
10031 
10032 			/* Ensure "is_leader", MCP command sequence and
10033 			 * "recovery_state" update values are seen on other
10034 			 * CPUs.
10035 			 */
10036 			smp_mb();
10037 			break;
10038 
10039 		case BNX2X_RECOVERY_WAIT:
10040 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
10041 			if (bp->is_leader) {
10042 				int other_engine = BP_PATH(bp) ? 0 : 1;
10043 				bool other_load_status =
10044 					bnx2x_get_load_status(bp, other_engine);
10045 				bool load_status =
10046 					bnx2x_get_load_status(bp, BP_PATH(bp));
10047 				global = bnx2x_reset_is_global(bp);
10048 
10049 				/*
10050 				 * In case of a parity in a global block, let
10051 				 * the first leader that performs a
10052 				 * leader_reset() reset the global blocks in
10053 				 * order to clear global attentions. Otherwise
10054 				 * the gates will remain closed for that
10055 				 * engine.
10056 				 */
10057 				if (load_status ||
10058 				    (global && other_load_status)) {
10059 					/* Wait until all other functions get
10060 					 * down.
10061 					 */
10062 					schedule_delayed_work(&bp->sp_rtnl_task,
10063 								HZ/10);
10064 					return;
10065 				} else {
10066 					/* If all other functions got down -
10067 					 * try to bring the chip back to
10068 					 * normal. In any case it's an exit
10069 					 * point for a leader.
10070 					 */
10071 					if (bnx2x_leader_reset(bp)) {
10072 						bnx2x_recovery_failed(bp);
10073 						return;
10074 					}
10075 
10076 					/* If we are here, means that the
10077 					 * leader has succeeded and doesn't
10078 					 * want to be a leader any more. Try
10079 					 * to continue as a none-leader.
10080 					 */
10081 					break;
10082 				}
10083 			} else { /* non-leader */
10084 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10085 					/* Try to get a LEADER_LOCK HW lock as
10086 					 * long as a former leader may have
10087 					 * been unloaded by the user or
10088 					 * released a leadership by another
10089 					 * reason.
10090 					 */
10091 					if (bnx2x_trylock_leader_lock(bp)) {
10092 						/* I'm a leader now! Restart a
10093 						 * switch case.
10094 						 */
10095 						bp->is_leader = 1;
10096 						break;
10097 					}
10098 
10099 					schedule_delayed_work(&bp->sp_rtnl_task,
10100 								HZ/10);
10101 					return;
10102 
10103 				} else {
10104 					/*
10105 					 * If there was a global attention, wait
10106 					 * for it to be cleared.
10107 					 */
10108 					if (bnx2x_reset_is_global(bp)) {
10109 						schedule_delayed_work(
10110 							&bp->sp_rtnl_task,
10111 							HZ/10);
10112 						return;
10113 					}
10114 
10115 					error_recovered =
10116 					  bp->eth_stats.recoverable_error;
10117 					error_unrecovered =
10118 					  bp->eth_stats.unrecoverable_error;
10119 					bp->recovery_state =
10120 						BNX2X_RECOVERY_NIC_LOADING;
10121 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10122 						error_unrecovered++;
10123 						netdev_err(bp->dev,
10124 							   "Recovery failed. Power cycle needed\n");
10125 						/* Disconnect this device */
10126 						netif_device_detach(bp->dev);
10127 						/* Shut down the power */
10128 						bnx2x_set_power_state(
10129 							bp, PCI_D3hot);
10130 						smp_mb();
10131 					} else {
10132 						bp->recovery_state =
10133 							BNX2X_RECOVERY_DONE;
10134 						error_recovered++;
10135 						smp_mb();
10136 					}
10137 					bp->eth_stats.recoverable_error =
10138 						error_recovered;
10139 					bp->eth_stats.unrecoverable_error =
10140 						error_unrecovered;
10141 
10142 					return;
10143 				}
10144 			}
10145 		default:
10146 			return;
10147 		}
10148 	}
10149 }
10150 
10151 static int bnx2x_udp_port_update(struct bnx2x *bp)
10152 {
10153 	struct bnx2x_func_switch_update_params *switch_update_params;
10154 	struct bnx2x_func_state_params func_params = {NULL};
10155 	u16 vxlan_port = 0, geneve_port = 0;
10156 	int rc;
10157 
10158 	switch_update_params = &func_params.params.switch_update;
10159 
10160 	/* Prepare parameters for function state transitions */
10161 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10162 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10163 
10164 	func_params.f_obj = &bp->func_obj;
10165 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10166 
10167 	/* Function parameters */
10168 	__set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10169 		  &switch_update_params->changes);
10170 
10171 	if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE]) {
10172 		geneve_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10173 		switch_update_params->geneve_dst_port = geneve_port;
10174 	}
10175 
10176 	if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN]) {
10177 		vxlan_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10178 		switch_update_params->vxlan_dst_port = vxlan_port;
10179 	}
10180 
10181 	/* Re-enable inner-rss for the offloaded UDP tunnels */
10182 	__set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10183 		  &switch_update_params->changes);
10184 
10185 	rc = bnx2x_func_state_change(bp, &func_params);
10186 	if (rc)
10187 		BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10188 			  vxlan_port, geneve_port, rc);
10189 	else
10190 		DP(BNX2X_MSG_SP,
10191 		   "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10192 		   vxlan_port, geneve_port);
10193 
10194 	return rc;
10195 }
10196 
10197 static int bnx2x_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
10198 {
10199 	struct bnx2x *bp = netdev_priv(netdev);
10200 	struct udp_tunnel_info ti;
10201 
10202 	udp_tunnel_nic_get_port(netdev, table, 0, &ti);
10203 	bp->udp_tunnel_ports[table] = be16_to_cpu(ti.port);
10204 
10205 	return bnx2x_udp_port_update(bp);
10206 }
10207 
10208 static const struct udp_tunnel_nic_info bnx2x_udp_tunnels = {
10209 	.sync_table	= bnx2x_udp_tunnel_sync,
10210 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
10211 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
10212 	.tables		= {
10213 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
10214 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
10215 	},
10216 };
10217 
10218 static int bnx2x_close(struct net_device *dev);
10219 
10220 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10221  * scheduled on a general queue in order to prevent a dead lock.
10222  */
10223 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10224 {
10225 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10226 
10227 	rtnl_lock();
10228 
10229 	if (!netif_running(bp->dev)) {
10230 		rtnl_unlock();
10231 		return;
10232 	}
10233 
10234 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10235 #ifdef BNX2X_STOP_ON_ERROR
10236 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10237 			  "you will need to reboot when done\n");
10238 		goto sp_rtnl_not_reset;
10239 #endif
10240 		/*
10241 		 * Clear all pending SP commands as we are going to reset the
10242 		 * function anyway.
10243 		 */
10244 		bp->sp_rtnl_state = 0;
10245 		smp_mb();
10246 
10247 		bnx2x_parity_recover(bp);
10248 
10249 		rtnl_unlock();
10250 		return;
10251 	}
10252 
10253 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10254 #ifdef BNX2X_STOP_ON_ERROR
10255 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10256 			  "you will need to reboot when done\n");
10257 		goto sp_rtnl_not_reset;
10258 #endif
10259 
10260 		/*
10261 		 * Clear all pending SP commands as we are going to reset the
10262 		 * function anyway.
10263 		 */
10264 		bp->sp_rtnl_state = 0;
10265 		smp_mb();
10266 
10267 		/* Immediately indicate link as down */
10268 		bp->link_vars.link_up = 0;
10269 		bp->force_link_down = true;
10270 		netif_carrier_off(bp->dev);
10271 		BNX2X_ERR("Indicating link is down due to Tx-timeout\n");
10272 
10273 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10274 		/* When ret value shows failure of allocation failure,
10275 		 * the nic is rebooted again. If open still fails, a error
10276 		 * message to notify the user.
10277 		 */
10278 		if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) {
10279 			bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10280 			if (bnx2x_nic_load(bp, LOAD_NORMAL))
10281 				BNX2X_ERR("Open the NIC fails again!\n");
10282 		}
10283 		rtnl_unlock();
10284 		return;
10285 	}
10286 #ifdef BNX2X_STOP_ON_ERROR
10287 sp_rtnl_not_reset:
10288 #endif
10289 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10290 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10291 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10292 		bnx2x_after_function_update(bp);
10293 	/*
10294 	 * in case of fan failure we need to reset id if the "stop on error"
10295 	 * debug flag is set, since we trying to prevent permanent overheating
10296 	 * damage
10297 	 */
10298 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10299 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10300 		netif_device_detach(bp->dev);
10301 		bnx2x_close(bp->dev);
10302 		rtnl_unlock();
10303 		return;
10304 	}
10305 
10306 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10307 		DP(BNX2X_MSG_SP,
10308 		   "sending set mcast vf pf channel message from rtnl sp-task\n");
10309 		bnx2x_vfpf_set_mcast(bp->dev);
10310 	}
10311 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10312 			       &bp->sp_rtnl_state)){
10313 		if (netif_carrier_ok(bp->dev)) {
10314 			bnx2x_tx_disable(bp);
10315 			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10316 		}
10317 	}
10318 
10319 	if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10320 		DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10321 		bnx2x_set_rx_mode_inner(bp);
10322 	}
10323 
10324 	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10325 			       &bp->sp_rtnl_state))
10326 		bnx2x_pf_set_vfs_vlan(bp);
10327 
10328 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10329 		bnx2x_dcbx_stop_hw_tx(bp);
10330 		bnx2x_dcbx_resume_hw_tx(bp);
10331 	}
10332 
10333 	if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10334 			       &bp->sp_rtnl_state))
10335 		bnx2x_update_mng_version(bp);
10336 
10337 	if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state))
10338 		bnx2x_handle_update_svid_cmd(bp);
10339 
10340 	/* work which needs rtnl lock not-taken (as it takes the lock itself and
10341 	 * can be called from other contexts as well)
10342 	 */
10343 	rtnl_unlock();
10344 
10345 	/* enable SR-IOV if applicable */
10346 	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10347 					       &bp->sp_rtnl_state)) {
10348 		bnx2x_disable_sriov(bp);
10349 		bnx2x_enable_sriov(bp);
10350 	}
10351 }
10352 
10353 static void bnx2x_period_task(struct work_struct *work)
10354 {
10355 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10356 
10357 	if (!netif_running(bp->dev))
10358 		goto period_task_exit;
10359 
10360 	if (CHIP_REV_IS_SLOW(bp)) {
10361 		BNX2X_ERR("period task called on emulation, ignoring\n");
10362 		goto period_task_exit;
10363 	}
10364 
10365 	bnx2x_acquire_phy_lock(bp);
10366 	/*
10367 	 * The barrier is needed to ensure the ordering between the writing to
10368 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10369 	 * the reading here.
10370 	 */
10371 	smp_mb();
10372 	if (bp->port.pmf) {
10373 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
10374 
10375 		/* Re-queue task in 1 sec */
10376 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10377 	}
10378 
10379 	bnx2x_release_phy_lock(bp);
10380 period_task_exit:
10381 	return;
10382 }
10383 
10384 /*
10385  * Init service functions
10386  */
10387 
10388 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10389 {
10390 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10391 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10392 	return base + (BP_ABS_FUNC(bp)) * stride;
10393 }
10394 
10395 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10396 					 u8 port, u32 reset_reg,
10397 					 struct bnx2x_mac_vals *vals)
10398 {
10399 	u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10400 	u32 base_addr;
10401 
10402 	if (!(mask & reset_reg))
10403 		return false;
10404 
10405 	BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10406 	base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10407 	vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10408 	vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10409 	REG_WR(bp, vals->umac_addr[port], 0);
10410 
10411 	return true;
10412 }
10413 
10414 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10415 					struct bnx2x_mac_vals *vals)
10416 {
10417 	u32 val, base_addr, offset, mask, reset_reg;
10418 	bool mac_stopped = false;
10419 	u8 port = BP_PORT(bp);
10420 
10421 	/* reset addresses as they also mark which values were changed */
10422 	memset(vals, 0, sizeof(*vals));
10423 
10424 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10425 
10426 	if (!CHIP_IS_E3(bp)) {
10427 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10428 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10429 		if ((mask & reset_reg) && val) {
10430 			u32 wb_data[2];
10431 			BNX2X_DEV_INFO("Disable bmac Rx\n");
10432 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10433 						: NIG_REG_INGRESS_BMAC0_MEM;
10434 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10435 						: BIGMAC_REGISTER_BMAC_CONTROL;
10436 
10437 			/*
10438 			 * use rd/wr since we cannot use dmae. This is safe
10439 			 * since MCP won't access the bus due to the request
10440 			 * to unload, and no function on the path can be
10441 			 * loaded at this time.
10442 			 */
10443 			wb_data[0] = REG_RD(bp, base_addr + offset);
10444 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10445 			vals->bmac_addr = base_addr + offset;
10446 			vals->bmac_val[0] = wb_data[0];
10447 			vals->bmac_val[1] = wb_data[1];
10448 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10449 			REG_WR(bp, vals->bmac_addr, wb_data[0]);
10450 			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10451 		}
10452 		BNX2X_DEV_INFO("Disable emac Rx\n");
10453 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10454 		vals->emac_val = REG_RD(bp, vals->emac_addr);
10455 		REG_WR(bp, vals->emac_addr, 0);
10456 		mac_stopped = true;
10457 	} else {
10458 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10459 			BNX2X_DEV_INFO("Disable xmac Rx\n");
10460 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10461 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10462 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10463 			       val & ~(1 << 1));
10464 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10465 			       val | (1 << 1));
10466 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10467 			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10468 			REG_WR(bp, vals->xmac_addr, 0);
10469 			mac_stopped = true;
10470 		}
10471 
10472 		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10473 							    reset_reg, vals);
10474 		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10475 							    reset_reg, vals);
10476 	}
10477 
10478 	if (mac_stopped)
10479 		msleep(20);
10480 }
10481 
10482 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10483 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10484 					0x1848 + ((f) << 4))
10485 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
10486 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
10487 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
10488 
10489 #define BCM_5710_UNDI_FW_MF_MAJOR	(0x07)
10490 #define BCM_5710_UNDI_FW_MF_MINOR	(0x08)
10491 #define BCM_5710_UNDI_FW_MF_VERS	(0x05)
10492 
10493 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10494 {
10495 	/* UNDI marks its presence in DORQ -
10496 	 * it initializes CID offset for normal bell to 0x7
10497 	 */
10498 	if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10499 	    MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10500 		return false;
10501 
10502 	if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10503 		BNX2X_DEV_INFO("UNDI previously loaded\n");
10504 		return true;
10505 	}
10506 
10507 	return false;
10508 }
10509 
10510 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10511 {
10512 	u16 rcq, bd;
10513 	u32 addr, tmp_reg;
10514 
10515 	if (BP_FUNC(bp) < 2)
10516 		addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10517 	else
10518 		addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10519 
10520 	tmp_reg = REG_RD(bp, addr);
10521 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10522 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10523 
10524 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10525 	REG_WR(bp, addr, tmp_reg);
10526 
10527 	BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10528 		       BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10529 }
10530 
10531 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10532 {
10533 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10534 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10535 	if (!rc) {
10536 		BNX2X_ERR("MCP response failure, aborting\n");
10537 		return -EBUSY;
10538 	}
10539 
10540 	return 0;
10541 }
10542 
10543 static struct bnx2x_prev_path_list *
10544 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
10545 {
10546 	struct bnx2x_prev_path_list *tmp_list;
10547 
10548 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10549 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10550 		    bp->pdev->bus->number == tmp_list->bus &&
10551 		    BP_PATH(bp) == tmp_list->path)
10552 			return tmp_list;
10553 
10554 	return NULL;
10555 }
10556 
10557 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10558 {
10559 	struct bnx2x_prev_path_list *tmp_list;
10560 	int rc;
10561 
10562 	rc = down_interruptible(&bnx2x_prev_sem);
10563 	if (rc) {
10564 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10565 		return rc;
10566 	}
10567 
10568 	tmp_list = bnx2x_prev_path_get_entry(bp);
10569 	if (tmp_list) {
10570 		tmp_list->aer = 1;
10571 		rc = 0;
10572 	} else {
10573 		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10574 			  BP_PATH(bp));
10575 	}
10576 
10577 	up(&bnx2x_prev_sem);
10578 
10579 	return rc;
10580 }
10581 
10582 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10583 {
10584 	struct bnx2x_prev_path_list *tmp_list;
10585 	bool rc = false;
10586 
10587 	if (down_trylock(&bnx2x_prev_sem))
10588 		return false;
10589 
10590 	tmp_list = bnx2x_prev_path_get_entry(bp);
10591 	if (tmp_list) {
10592 		if (tmp_list->aer) {
10593 			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10594 			   BP_PATH(bp));
10595 		} else {
10596 			rc = true;
10597 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10598 				       BP_PATH(bp));
10599 		}
10600 	}
10601 
10602 	up(&bnx2x_prev_sem);
10603 
10604 	return rc;
10605 }
10606 
10607 bool bnx2x_port_after_undi(struct bnx2x *bp)
10608 {
10609 	struct bnx2x_prev_path_list *entry;
10610 	bool val;
10611 
10612 	down(&bnx2x_prev_sem);
10613 
10614 	entry = bnx2x_prev_path_get_entry(bp);
10615 	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10616 
10617 	up(&bnx2x_prev_sem);
10618 
10619 	return val;
10620 }
10621 
10622 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10623 {
10624 	struct bnx2x_prev_path_list *tmp_list;
10625 	int rc;
10626 
10627 	rc = down_interruptible(&bnx2x_prev_sem);
10628 	if (rc) {
10629 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10630 		return rc;
10631 	}
10632 
10633 	/* Check whether the entry for this path already exists */
10634 	tmp_list = bnx2x_prev_path_get_entry(bp);
10635 	if (tmp_list) {
10636 		if (!tmp_list->aer) {
10637 			BNX2X_ERR("Re-Marking the path.\n");
10638 		} else {
10639 			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10640 			   BP_PATH(bp));
10641 			tmp_list->aer = 0;
10642 		}
10643 		up(&bnx2x_prev_sem);
10644 		return 0;
10645 	}
10646 	up(&bnx2x_prev_sem);
10647 
10648 	/* Create an entry for this path and add it */
10649 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10650 	if (!tmp_list) {
10651 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10652 		return -ENOMEM;
10653 	}
10654 
10655 	tmp_list->bus = bp->pdev->bus->number;
10656 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10657 	tmp_list->path = BP_PATH(bp);
10658 	tmp_list->aer = 0;
10659 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10660 
10661 	rc = down_interruptible(&bnx2x_prev_sem);
10662 	if (rc) {
10663 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10664 		kfree(tmp_list);
10665 	} else {
10666 		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10667 		   BP_PATH(bp));
10668 		list_add(&tmp_list->list, &bnx2x_prev_list);
10669 		up(&bnx2x_prev_sem);
10670 	}
10671 
10672 	return rc;
10673 }
10674 
10675 static int bnx2x_do_flr(struct bnx2x *bp)
10676 {
10677 	struct pci_dev *dev = bp->pdev;
10678 
10679 	if (CHIP_IS_E1x(bp)) {
10680 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10681 		return -EINVAL;
10682 	}
10683 
10684 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10685 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10686 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10687 			  bp->common.bc_ver);
10688 		return -EINVAL;
10689 	}
10690 
10691 	if (!pci_wait_for_pending_transaction(dev))
10692 		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10693 
10694 	BNX2X_DEV_INFO("Initiating FLR\n");
10695 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10696 
10697 	return 0;
10698 }
10699 
10700 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10701 {
10702 	int rc;
10703 
10704 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
10705 
10706 	/* Test if previous unload process was already finished for this path */
10707 	if (bnx2x_prev_is_path_marked(bp))
10708 		return bnx2x_prev_mcp_done(bp);
10709 
10710 	BNX2X_DEV_INFO("Path is unmarked\n");
10711 
10712 	/* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10713 	if (bnx2x_prev_is_after_undi(bp))
10714 		goto out;
10715 
10716 	/* If function has FLR capabilities, and existing FW version matches
10717 	 * the one required, then FLR will be sufficient to clean any residue
10718 	 * left by previous driver
10719 	 */
10720 	rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10721 
10722 	if (!rc) {
10723 		/* fw version is good */
10724 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10725 		rc = bnx2x_do_flr(bp);
10726 	}
10727 
10728 	if (!rc) {
10729 		/* FLR was performed */
10730 		BNX2X_DEV_INFO("FLR successful\n");
10731 		return 0;
10732 	}
10733 
10734 	BNX2X_DEV_INFO("Could not FLR\n");
10735 
10736 out:
10737 	/* Close the MCP request, return failure*/
10738 	rc = bnx2x_prev_mcp_done(bp);
10739 	if (!rc)
10740 		rc = BNX2X_PREV_WAIT_NEEDED;
10741 
10742 	return rc;
10743 }
10744 
10745 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10746 {
10747 	u32 reset_reg, tmp_reg = 0, rc;
10748 	bool prev_undi = false;
10749 	struct bnx2x_mac_vals mac_vals;
10750 
10751 	/* It is possible a previous function received 'common' answer,
10752 	 * but hasn't loaded yet, therefore creating a scenario of
10753 	 * multiple functions receiving 'common' on the same path.
10754 	 */
10755 	BNX2X_DEV_INFO("Common unload Flow\n");
10756 
10757 	memset(&mac_vals, 0, sizeof(mac_vals));
10758 
10759 	if (bnx2x_prev_is_path_marked(bp))
10760 		return bnx2x_prev_mcp_done(bp);
10761 
10762 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10763 
10764 	/* Reset should be performed after BRB is emptied */
10765 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10766 		u32 timer_count = 1000;
10767 
10768 		/* Close the MAC Rx to prevent BRB from filling up */
10769 		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10770 
10771 		/* close LLH filters for both ports towards the BRB */
10772 		bnx2x_set_rx_filter(&bp->link_params, 0);
10773 		bp->link_params.port ^= 1;
10774 		bnx2x_set_rx_filter(&bp->link_params, 0);
10775 		bp->link_params.port ^= 1;
10776 
10777 		/* Check if the UNDI driver was previously loaded */
10778 		if (bnx2x_prev_is_after_undi(bp)) {
10779 			prev_undi = true;
10780 			/* clear the UNDI indication */
10781 			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10782 			/* clear possible idle check errors */
10783 			REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10784 		}
10785 		if (!CHIP_IS_E1x(bp))
10786 			/* block FW from writing to host */
10787 			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10788 
10789 		/* wait until BRB is empty */
10790 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10791 		while (timer_count) {
10792 			u32 prev_brb = tmp_reg;
10793 
10794 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10795 			if (!tmp_reg)
10796 				break;
10797 
10798 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10799 
10800 			/* reset timer as long as BRB actually gets emptied */
10801 			if (prev_brb > tmp_reg)
10802 				timer_count = 1000;
10803 			else
10804 				timer_count--;
10805 
10806 			/* If UNDI resides in memory, manually increment it */
10807 			if (prev_undi)
10808 				bnx2x_prev_unload_undi_inc(bp, 1);
10809 
10810 			udelay(10);
10811 		}
10812 
10813 		if (!timer_count)
10814 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10815 	}
10816 
10817 	/* No packets are in the pipeline, path is ready for reset */
10818 	bnx2x_reset_common(bp);
10819 
10820 	if (mac_vals.xmac_addr)
10821 		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10822 	if (mac_vals.umac_addr[0])
10823 		REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10824 	if (mac_vals.umac_addr[1])
10825 		REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10826 	if (mac_vals.emac_addr)
10827 		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10828 	if (mac_vals.bmac_addr) {
10829 		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10830 		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10831 	}
10832 
10833 	rc = bnx2x_prev_mark_path(bp, prev_undi);
10834 	if (rc) {
10835 		bnx2x_prev_mcp_done(bp);
10836 		return rc;
10837 	}
10838 
10839 	return bnx2x_prev_mcp_done(bp);
10840 }
10841 
10842 static int bnx2x_prev_unload(struct bnx2x *bp)
10843 {
10844 	int time_counter = 10;
10845 	u32 rc, fw, hw_lock_reg, hw_lock_val;
10846 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10847 
10848 	/* clear hw from errors which may have resulted from an interrupted
10849 	 * dmae transaction.
10850 	 */
10851 	bnx2x_clean_pglue_errors(bp);
10852 
10853 	/* Release previously held locks */
10854 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10855 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10856 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10857 
10858 	hw_lock_val = REG_RD(bp, hw_lock_reg);
10859 	if (hw_lock_val) {
10860 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10861 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10862 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10863 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10864 		}
10865 
10866 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10867 		REG_WR(bp, hw_lock_reg, 0xffffffff);
10868 	} else
10869 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10870 
10871 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10872 		BNX2X_DEV_INFO("Release previously held alr\n");
10873 		bnx2x_release_alr(bp);
10874 	}
10875 
10876 	do {
10877 		int aer = 0;
10878 		/* Lock MCP using an unload request */
10879 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10880 		if (!fw) {
10881 			BNX2X_ERR("MCP response failure, aborting\n");
10882 			rc = -EBUSY;
10883 			break;
10884 		}
10885 
10886 		rc = down_interruptible(&bnx2x_prev_sem);
10887 		if (rc) {
10888 			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10889 				  rc);
10890 		} else {
10891 			/* If Path is marked by EEH, ignore unload status */
10892 			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10893 				 bnx2x_prev_path_get_entry(bp)->aer);
10894 			up(&bnx2x_prev_sem);
10895 		}
10896 
10897 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10898 			rc = bnx2x_prev_unload_common(bp);
10899 			break;
10900 		}
10901 
10902 		/* non-common reply from MCP might require looping */
10903 		rc = bnx2x_prev_unload_uncommon(bp);
10904 		if (rc != BNX2X_PREV_WAIT_NEEDED)
10905 			break;
10906 
10907 		msleep(20);
10908 	} while (--time_counter);
10909 
10910 	if (!time_counter || rc) {
10911 		BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10912 		rc = -EPROBE_DEFER;
10913 	}
10914 
10915 	/* Mark function if its port was used to boot from SAN */
10916 	if (bnx2x_port_after_undi(bp))
10917 		bp->link_params.feature_config_flags |=
10918 			FEATURE_CONFIG_BOOT_FROM_SAN;
10919 
10920 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10921 
10922 	return rc;
10923 }
10924 
10925 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10926 {
10927 	u32 val, val2, val3, val4, id, boot_mode;
10928 	u16 pmc;
10929 
10930 	/* Get the chip revision id and number. */
10931 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10932 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10933 	id = ((val & 0xffff) << 16);
10934 	val = REG_RD(bp, MISC_REG_CHIP_REV);
10935 	id |= ((val & 0xf) << 12);
10936 
10937 	/* Metal is read from PCI regs, but we can't access >=0x400 from
10938 	 * the configuration space (so we need to reg_rd)
10939 	 */
10940 	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10941 	id |= (((val >> 24) & 0xf) << 4);
10942 	val = REG_RD(bp, MISC_REG_BOND_ID);
10943 	id |= (val & 0xf);
10944 	bp->common.chip_id = id;
10945 
10946 	/* force 57811 according to MISC register */
10947 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10948 		if (CHIP_IS_57810(bp))
10949 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10950 				(bp->common.chip_id & 0x0000FFFF);
10951 		else if (CHIP_IS_57810_MF(bp))
10952 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10953 				(bp->common.chip_id & 0x0000FFFF);
10954 		bp->common.chip_id |= 0x1;
10955 	}
10956 
10957 	/* Set doorbell size */
10958 	bp->db_size = (1 << BNX2X_DB_SHIFT);
10959 
10960 	if (!CHIP_IS_E1x(bp)) {
10961 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10962 		if ((val & 1) == 0)
10963 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10964 		else
10965 			val = (val >> 1) & 1;
10966 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10967 						       "2_PORT_MODE");
10968 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10969 						 CHIP_2_PORT_MODE;
10970 
10971 		if (CHIP_MODE_IS_4_PORT(bp))
10972 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10973 		else
10974 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10975 	} else {
10976 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10977 		bp->pfid = bp->pf_num;			/* 0..7 */
10978 	}
10979 
10980 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10981 
10982 	bp->link_params.chip_id = bp->common.chip_id;
10983 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10984 
10985 	val = (REG_RD(bp, 0x2874) & 0x55);
10986 	if ((bp->common.chip_id & 0x1) ||
10987 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10988 		bp->flags |= ONE_PORT_FLAG;
10989 		BNX2X_DEV_INFO("single port device\n");
10990 	}
10991 
10992 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10993 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10994 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10995 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10996 		       bp->common.flash_size, bp->common.flash_size);
10997 
10998 	bnx2x_init_shmem(bp);
10999 
11000 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11001 					MISC_REG_GENERIC_CR_1 :
11002 					MISC_REG_GENERIC_CR_0));
11003 
11004 	bp->link_params.shmem_base = bp->common.shmem_base;
11005 	bp->link_params.shmem2_base = bp->common.shmem2_base;
11006 	if (SHMEM2_RD(bp, size) >
11007 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11008 		bp->link_params.lfa_base =
11009 		REG_RD(bp, bp->common.shmem2_base +
11010 		       (u32)offsetof(struct shmem2_region,
11011 				     lfa_host_addr[BP_PORT(bp)]));
11012 	else
11013 		bp->link_params.lfa_base = 0;
11014 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
11015 		       bp->common.shmem_base, bp->common.shmem2_base);
11016 
11017 	if (!bp->common.shmem_base) {
11018 		BNX2X_DEV_INFO("MCP not active\n");
11019 		bp->flags |= NO_MCP_FLAG;
11020 		return;
11021 	}
11022 
11023 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11024 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11025 
11026 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
11027 					SHARED_HW_CFG_LED_MODE_MASK) >>
11028 				       SHARED_HW_CFG_LED_MODE_SHIFT);
11029 
11030 	bp->link_params.feature_config_flags = 0;
11031 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11032 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11033 		bp->link_params.feature_config_flags |=
11034 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11035 	else
11036 		bp->link_params.feature_config_flags &=
11037 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11038 
11039 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11040 	bp->common.bc_ver = val;
11041 	BNX2X_DEV_INFO("bc_ver %X\n", val);
11042 	if (val < BNX2X_BC_VER) {
11043 		/* for now only warn
11044 		 * later we might need to enforce this */
11045 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11046 			  BNX2X_BC_VER, val);
11047 	}
11048 	bp->link_params.feature_config_flags |=
11049 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11050 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11051 
11052 	bp->link_params.feature_config_flags |=
11053 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11054 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11055 	bp->link_params.feature_config_flags |=
11056 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11057 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11058 	bp->link_params.feature_config_flags |=
11059 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11060 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11061 
11062 	bp->link_params.feature_config_flags |=
11063 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11064 		FEATURE_CONFIG_MT_SUPPORT : 0;
11065 
11066 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11067 			BC_SUPPORTS_PFC_STATS : 0;
11068 
11069 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11070 			BC_SUPPORTS_FCOE_FEATURES : 0;
11071 
11072 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11073 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11074 
11075 	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11076 			BC_SUPPORTS_RMMOD_CMD : 0;
11077 
11078 	boot_mode = SHMEM_RD(bp,
11079 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11080 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11081 	switch (boot_mode) {
11082 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11083 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11084 		break;
11085 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11086 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11087 		break;
11088 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11089 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11090 		break;
11091 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11092 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11093 		break;
11094 	}
11095 
11096 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11097 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11098 
11099 	BNX2X_DEV_INFO("%sWoL capable\n",
11100 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
11101 
11102 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11103 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11104 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11105 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11106 
11107 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11108 		 val, val2, val3, val4);
11109 }
11110 
11111 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11112 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11113 
11114 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11115 {
11116 	int pfid = BP_FUNC(bp);
11117 	int igu_sb_id;
11118 	u32 val;
11119 	u8 fid, igu_sb_cnt = 0;
11120 
11121 	bp->igu_base_sb = 0xff;
11122 	if (CHIP_INT_MODE_IS_BC(bp)) {
11123 		int vn = BP_VN(bp);
11124 		igu_sb_cnt = bp->igu_sb_cnt;
11125 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11126 			FP_SB_MAX_E1x;
11127 
11128 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
11129 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11130 
11131 		return 0;
11132 	}
11133 
11134 	/* IGU in normal mode - read CAM */
11135 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11136 	     igu_sb_id++) {
11137 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11138 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11139 			continue;
11140 		fid = IGU_FID(val);
11141 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
11142 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11143 				continue;
11144 			if (IGU_VEC(val) == 0)
11145 				/* default status block */
11146 				bp->igu_dsb_id = igu_sb_id;
11147 			else {
11148 				if (bp->igu_base_sb == 0xff)
11149 					bp->igu_base_sb = igu_sb_id;
11150 				igu_sb_cnt++;
11151 			}
11152 		}
11153 	}
11154 
11155 #ifdef CONFIG_PCI_MSI
11156 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
11157 	 * optional that number of CAM entries will not be equal to the value
11158 	 * advertised in PCI.
11159 	 * Driver should use the minimal value of both as the actual status
11160 	 * block count
11161 	 */
11162 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11163 #endif
11164 
11165 	if (igu_sb_cnt == 0) {
11166 		BNX2X_ERR("CAM configuration error\n");
11167 		return -EINVAL;
11168 	}
11169 
11170 	return 0;
11171 }
11172 
11173 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11174 {
11175 	int cfg_size = 0, idx, port = BP_PORT(bp);
11176 
11177 	/* Aggregation of supported attributes of all external phys */
11178 	bp->port.supported[0] = 0;
11179 	bp->port.supported[1] = 0;
11180 	switch (bp->link_params.num_phys) {
11181 	case 1:
11182 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11183 		cfg_size = 1;
11184 		break;
11185 	case 2:
11186 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11187 		cfg_size = 1;
11188 		break;
11189 	case 3:
11190 		if (bp->link_params.multi_phy_config &
11191 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11192 			bp->port.supported[1] =
11193 				bp->link_params.phy[EXT_PHY1].supported;
11194 			bp->port.supported[0] =
11195 				bp->link_params.phy[EXT_PHY2].supported;
11196 		} else {
11197 			bp->port.supported[0] =
11198 				bp->link_params.phy[EXT_PHY1].supported;
11199 			bp->port.supported[1] =
11200 				bp->link_params.phy[EXT_PHY2].supported;
11201 		}
11202 		cfg_size = 2;
11203 		break;
11204 	}
11205 
11206 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
11207 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11208 			   SHMEM_RD(bp,
11209 			   dev_info.port_hw_config[port].external_phy_config),
11210 			   SHMEM_RD(bp,
11211 			   dev_info.port_hw_config[port].external_phy_config2));
11212 		return;
11213 	}
11214 
11215 	if (CHIP_IS_E3(bp))
11216 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11217 	else {
11218 		switch (switch_cfg) {
11219 		case SWITCH_CFG_1G:
11220 			bp->port.phy_addr = REG_RD(
11221 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11222 			break;
11223 		case SWITCH_CFG_10G:
11224 			bp->port.phy_addr = REG_RD(
11225 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11226 			break;
11227 		default:
11228 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11229 				  bp->port.link_config[0]);
11230 			return;
11231 		}
11232 	}
11233 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11234 	/* mask what we support according to speed_cap_mask per configuration */
11235 	for (idx = 0; idx < cfg_size; idx++) {
11236 		if (!(bp->link_params.speed_cap_mask[idx] &
11237 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11238 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11239 
11240 		if (!(bp->link_params.speed_cap_mask[idx] &
11241 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11242 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11243 
11244 		if (!(bp->link_params.speed_cap_mask[idx] &
11245 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11246 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11247 
11248 		if (!(bp->link_params.speed_cap_mask[idx] &
11249 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11250 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11251 
11252 		if (!(bp->link_params.speed_cap_mask[idx] &
11253 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11254 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11255 						     SUPPORTED_1000baseT_Full);
11256 
11257 		if (!(bp->link_params.speed_cap_mask[idx] &
11258 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11259 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11260 
11261 		if (!(bp->link_params.speed_cap_mask[idx] &
11262 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11263 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11264 
11265 		if (!(bp->link_params.speed_cap_mask[idx] &
11266 					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11267 			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11268 	}
11269 
11270 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11271 		       bp->port.supported[1]);
11272 }
11273 
11274 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11275 {
11276 	u32 link_config, idx, cfg_size = 0;
11277 	bp->port.advertising[0] = 0;
11278 	bp->port.advertising[1] = 0;
11279 	switch (bp->link_params.num_phys) {
11280 	case 1:
11281 	case 2:
11282 		cfg_size = 1;
11283 		break;
11284 	case 3:
11285 		cfg_size = 2;
11286 		break;
11287 	}
11288 	for (idx = 0; idx < cfg_size; idx++) {
11289 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11290 		link_config = bp->port.link_config[idx];
11291 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11292 		case PORT_FEATURE_LINK_SPEED_AUTO:
11293 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11294 				bp->link_params.req_line_speed[idx] =
11295 					SPEED_AUTO_NEG;
11296 				bp->port.advertising[idx] |=
11297 					bp->port.supported[idx];
11298 				if (bp->link_params.phy[EXT_PHY1].type ==
11299 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11300 					bp->port.advertising[idx] |=
11301 					(SUPPORTED_100baseT_Half |
11302 					 SUPPORTED_100baseT_Full);
11303 			} else {
11304 				/* force 10G, no AN */
11305 				bp->link_params.req_line_speed[idx] =
11306 					SPEED_10000;
11307 				bp->port.advertising[idx] |=
11308 					(ADVERTISED_10000baseT_Full |
11309 					 ADVERTISED_FIBRE);
11310 				continue;
11311 			}
11312 			break;
11313 
11314 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
11315 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11316 				bp->link_params.req_line_speed[idx] =
11317 					SPEED_10;
11318 				bp->port.advertising[idx] |=
11319 					(ADVERTISED_10baseT_Full |
11320 					 ADVERTISED_TP);
11321 			} else {
11322 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11323 					    link_config,
11324 				    bp->link_params.speed_cap_mask[idx]);
11325 				return;
11326 			}
11327 			break;
11328 
11329 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
11330 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11331 				bp->link_params.req_line_speed[idx] =
11332 					SPEED_10;
11333 				bp->link_params.req_duplex[idx] =
11334 					DUPLEX_HALF;
11335 				bp->port.advertising[idx] |=
11336 					(ADVERTISED_10baseT_Half |
11337 					 ADVERTISED_TP);
11338 			} else {
11339 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11340 					    link_config,
11341 					  bp->link_params.speed_cap_mask[idx]);
11342 				return;
11343 			}
11344 			break;
11345 
11346 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
11347 			if (bp->port.supported[idx] &
11348 			    SUPPORTED_100baseT_Full) {
11349 				bp->link_params.req_line_speed[idx] =
11350 					SPEED_100;
11351 				bp->port.advertising[idx] |=
11352 					(ADVERTISED_100baseT_Full |
11353 					 ADVERTISED_TP);
11354 			} else {
11355 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11356 					    link_config,
11357 					  bp->link_params.speed_cap_mask[idx]);
11358 				return;
11359 			}
11360 			break;
11361 
11362 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
11363 			if (bp->port.supported[idx] &
11364 			    SUPPORTED_100baseT_Half) {
11365 				bp->link_params.req_line_speed[idx] =
11366 								SPEED_100;
11367 				bp->link_params.req_duplex[idx] =
11368 								DUPLEX_HALF;
11369 				bp->port.advertising[idx] |=
11370 					(ADVERTISED_100baseT_Half |
11371 					 ADVERTISED_TP);
11372 			} else {
11373 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11374 				    link_config,
11375 				    bp->link_params.speed_cap_mask[idx]);
11376 				return;
11377 			}
11378 			break;
11379 
11380 		case PORT_FEATURE_LINK_SPEED_1G:
11381 			if (bp->port.supported[idx] &
11382 			    SUPPORTED_1000baseT_Full) {
11383 				bp->link_params.req_line_speed[idx] =
11384 					SPEED_1000;
11385 				bp->port.advertising[idx] |=
11386 					(ADVERTISED_1000baseT_Full |
11387 					 ADVERTISED_TP);
11388 			} else if (bp->port.supported[idx] &
11389 				   SUPPORTED_1000baseKX_Full) {
11390 				bp->link_params.req_line_speed[idx] =
11391 					SPEED_1000;
11392 				bp->port.advertising[idx] |=
11393 					ADVERTISED_1000baseKX_Full;
11394 			} else {
11395 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11396 				    link_config,
11397 				    bp->link_params.speed_cap_mask[idx]);
11398 				return;
11399 			}
11400 			break;
11401 
11402 		case PORT_FEATURE_LINK_SPEED_2_5G:
11403 			if (bp->port.supported[idx] &
11404 			    SUPPORTED_2500baseX_Full) {
11405 				bp->link_params.req_line_speed[idx] =
11406 					SPEED_2500;
11407 				bp->port.advertising[idx] |=
11408 					(ADVERTISED_2500baseX_Full |
11409 						ADVERTISED_TP);
11410 			} else {
11411 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11412 				    link_config,
11413 				    bp->link_params.speed_cap_mask[idx]);
11414 				return;
11415 			}
11416 			break;
11417 
11418 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
11419 			if (bp->port.supported[idx] &
11420 			    SUPPORTED_10000baseT_Full) {
11421 				bp->link_params.req_line_speed[idx] =
11422 					SPEED_10000;
11423 				bp->port.advertising[idx] |=
11424 					(ADVERTISED_10000baseT_Full |
11425 						ADVERTISED_FIBRE);
11426 			} else if (bp->port.supported[idx] &
11427 				   SUPPORTED_10000baseKR_Full) {
11428 				bp->link_params.req_line_speed[idx] =
11429 					SPEED_10000;
11430 				bp->port.advertising[idx] |=
11431 					(ADVERTISED_10000baseKR_Full |
11432 						ADVERTISED_FIBRE);
11433 			} else {
11434 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11435 				    link_config,
11436 				    bp->link_params.speed_cap_mask[idx]);
11437 				return;
11438 			}
11439 			break;
11440 		case PORT_FEATURE_LINK_SPEED_20G:
11441 			bp->link_params.req_line_speed[idx] = SPEED_20000;
11442 
11443 			break;
11444 		default:
11445 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11446 				  link_config);
11447 				bp->link_params.req_line_speed[idx] =
11448 							SPEED_AUTO_NEG;
11449 				bp->port.advertising[idx] =
11450 						bp->port.supported[idx];
11451 			break;
11452 		}
11453 
11454 		bp->link_params.req_flow_ctrl[idx] = (link_config &
11455 					 PORT_FEATURE_FLOW_CONTROL_MASK);
11456 		if (bp->link_params.req_flow_ctrl[idx] ==
11457 		    BNX2X_FLOW_CTRL_AUTO) {
11458 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11459 				bp->link_params.req_flow_ctrl[idx] =
11460 							BNX2X_FLOW_CTRL_NONE;
11461 			else
11462 				bnx2x_set_requested_fc(bp);
11463 		}
11464 
11465 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11466 			       bp->link_params.req_line_speed[idx],
11467 			       bp->link_params.req_duplex[idx],
11468 			       bp->link_params.req_flow_ctrl[idx],
11469 			       bp->port.advertising[idx]);
11470 	}
11471 }
11472 
11473 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11474 {
11475 	__be16 mac_hi_be = cpu_to_be16(mac_hi);
11476 	__be32 mac_lo_be = cpu_to_be32(mac_lo);
11477 	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11478 	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11479 }
11480 
11481 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11482 {
11483 	int port = BP_PORT(bp);
11484 	u32 config;
11485 	u32 ext_phy_type, ext_phy_config, eee_mode;
11486 
11487 	bp->link_params.bp = bp;
11488 	bp->link_params.port = port;
11489 
11490 	bp->link_params.lane_config =
11491 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11492 
11493 	bp->link_params.speed_cap_mask[0] =
11494 		SHMEM_RD(bp,
11495 			 dev_info.port_hw_config[port].speed_capability_mask) &
11496 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11497 	bp->link_params.speed_cap_mask[1] =
11498 		SHMEM_RD(bp,
11499 			 dev_info.port_hw_config[port].speed_capability_mask2) &
11500 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11501 	bp->port.link_config[0] =
11502 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11503 
11504 	bp->port.link_config[1] =
11505 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11506 
11507 	bp->link_params.multi_phy_config =
11508 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11509 	/* If the device is capable of WoL, set the default state according
11510 	 * to the HW
11511 	 */
11512 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11513 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11514 		   (config & PORT_FEATURE_WOL_ENABLED));
11515 
11516 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11517 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11518 		bp->flags |= NO_ISCSI_FLAG;
11519 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11520 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11521 		bp->flags |= NO_FCOE_FLAG;
11522 
11523 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11524 		       bp->link_params.lane_config,
11525 		       bp->link_params.speed_cap_mask[0],
11526 		       bp->port.link_config[0]);
11527 
11528 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
11529 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
11530 	bnx2x_phy_probe(&bp->link_params);
11531 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11532 
11533 	bnx2x_link_settings_requested(bp);
11534 
11535 	/*
11536 	 * If connected directly, work with the internal PHY, otherwise, work
11537 	 * with the external PHY
11538 	 */
11539 	ext_phy_config =
11540 		SHMEM_RD(bp,
11541 			 dev_info.port_hw_config[port].external_phy_config);
11542 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11543 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11544 		bp->mdio.prtad = bp->port.phy_addr;
11545 
11546 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11547 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11548 		bp->mdio.prtad =
11549 			XGXS_EXT_PHY_ADDR(ext_phy_config);
11550 
11551 	/* Configure link feature according to nvram value */
11552 	eee_mode = (((SHMEM_RD(bp, dev_info.
11553 		      port_feature_config[port].eee_power_mode)) &
11554 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11555 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11556 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11557 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11558 					   EEE_MODE_ENABLE_LPI |
11559 					   EEE_MODE_OUTPUT_TIME;
11560 	} else {
11561 		bp->link_params.eee_mode = 0;
11562 	}
11563 }
11564 
11565 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11566 {
11567 	u32 no_flags = NO_ISCSI_FLAG;
11568 	int port = BP_PORT(bp);
11569 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11570 				drv_lic_key[port].max_iscsi_conn);
11571 
11572 	if (!CNIC_SUPPORT(bp)) {
11573 		bp->flags |= no_flags;
11574 		return;
11575 	}
11576 
11577 	/* Get the number of maximum allowed iSCSI connections */
11578 	bp->cnic_eth_dev.max_iscsi_conn =
11579 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11580 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11581 
11582 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11583 		       bp->cnic_eth_dev.max_iscsi_conn);
11584 
11585 	/*
11586 	 * If maximum allowed number of connections is zero -
11587 	 * disable the feature.
11588 	 */
11589 	if (!bp->cnic_eth_dev.max_iscsi_conn)
11590 		bp->flags |= no_flags;
11591 }
11592 
11593 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11594 {
11595 	/* Port info */
11596 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11597 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11598 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11599 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11600 
11601 	/* Node info */
11602 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11603 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11604 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11605 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11606 }
11607 
11608 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11609 {
11610 	u8 count = 0;
11611 
11612 	if (IS_MF(bp)) {
11613 		u8 fid;
11614 
11615 		/* iterate over absolute function ids for this path: */
11616 		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11617 			if (IS_MF_SD(bp)) {
11618 				u32 cfg = MF_CFG_RD(bp,
11619 						    func_mf_config[fid].config);
11620 
11621 				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11622 				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11623 					    FUNC_MF_CFG_PROTOCOL_FCOE))
11624 					count++;
11625 			} else {
11626 				u32 cfg = MF_CFG_RD(bp,
11627 						    func_ext_config[fid].
11628 								      func_cfg);
11629 
11630 				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11631 				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11632 					count++;
11633 			}
11634 		}
11635 	} else { /* SF */
11636 		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11637 
11638 		for (port = 0; port < port_cnt; port++) {
11639 			u32 lic = SHMEM_RD(bp,
11640 					   drv_lic_key[port].max_fcoe_conn) ^
11641 				  FW_ENCODE_32BIT_PATTERN;
11642 			if (lic)
11643 				count++;
11644 		}
11645 	}
11646 
11647 	return count;
11648 }
11649 
11650 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11651 {
11652 	int port = BP_PORT(bp);
11653 	int func = BP_ABS_FUNC(bp);
11654 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11655 				drv_lic_key[port].max_fcoe_conn);
11656 	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11657 
11658 	if (!CNIC_SUPPORT(bp)) {
11659 		bp->flags |= NO_FCOE_FLAG;
11660 		return;
11661 	}
11662 
11663 	/* Get the number of maximum allowed FCoE connections */
11664 	bp->cnic_eth_dev.max_fcoe_conn =
11665 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11666 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11667 
11668 	/* Calculate the number of maximum allowed FCoE tasks */
11669 	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11670 
11671 	/* check if FCoE resources must be shared between different functions */
11672 	if (num_fcoe_func)
11673 		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11674 
11675 	/* Read the WWN: */
11676 	if (!IS_MF(bp)) {
11677 		/* Port info */
11678 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11679 			SHMEM_RD(bp,
11680 				 dev_info.port_hw_config[port].
11681 				 fcoe_wwn_port_name_upper);
11682 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11683 			SHMEM_RD(bp,
11684 				 dev_info.port_hw_config[port].
11685 				 fcoe_wwn_port_name_lower);
11686 
11687 		/* Node info */
11688 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11689 			SHMEM_RD(bp,
11690 				 dev_info.port_hw_config[port].
11691 				 fcoe_wwn_node_name_upper);
11692 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11693 			SHMEM_RD(bp,
11694 				 dev_info.port_hw_config[port].
11695 				 fcoe_wwn_node_name_lower);
11696 	} else if (!IS_MF_SD(bp)) {
11697 		/* Read the WWN info only if the FCoE feature is enabled for
11698 		 * this function.
11699 		 */
11700 		if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11701 			bnx2x_get_ext_wwn_info(bp, func);
11702 	} else {
11703 		if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11704 			bnx2x_get_ext_wwn_info(bp, func);
11705 	}
11706 
11707 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11708 
11709 	/*
11710 	 * If maximum allowed number of connections is zero -
11711 	 * disable the feature.
11712 	 */
11713 	if (!bp->cnic_eth_dev.max_fcoe_conn) {
11714 		bp->flags |= NO_FCOE_FLAG;
11715 		eth_zero_addr(bp->fip_mac);
11716 	}
11717 }
11718 
11719 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11720 {
11721 	/*
11722 	 * iSCSI may be dynamically disabled but reading
11723 	 * info here we will decrease memory usage by driver
11724 	 * if the feature is disabled for good
11725 	 */
11726 	bnx2x_get_iscsi_info(bp);
11727 	bnx2x_get_fcoe_info(bp);
11728 }
11729 
11730 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11731 {
11732 	u32 val, val2;
11733 	int func = BP_ABS_FUNC(bp);
11734 	int port = BP_PORT(bp);
11735 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11736 	u8 *fip_mac = bp->fip_mac;
11737 
11738 	if (IS_MF(bp)) {
11739 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11740 		 * FCoE MAC then the appropriate feature should be disabled.
11741 		 * In non SD mode features configuration comes from struct
11742 		 * func_ext_config.
11743 		 */
11744 		if (!IS_MF_SD(bp)) {
11745 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11746 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11747 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11748 						 iscsi_mac_addr_upper);
11749 				val = MF_CFG_RD(bp, func_ext_config[func].
11750 						iscsi_mac_addr_lower);
11751 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11752 				BNX2X_DEV_INFO
11753 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11754 			} else {
11755 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11756 			}
11757 
11758 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11759 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11760 						 fcoe_mac_addr_upper);
11761 				val = MF_CFG_RD(bp, func_ext_config[func].
11762 						fcoe_mac_addr_lower);
11763 				bnx2x_set_mac_buf(fip_mac, val, val2);
11764 				BNX2X_DEV_INFO
11765 					("Read FCoE L2 MAC: %pM\n", fip_mac);
11766 			} else {
11767 				bp->flags |= NO_FCOE_FLAG;
11768 			}
11769 
11770 			bp->mf_ext_config = cfg;
11771 
11772 		} else { /* SD MODE */
11773 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11774 				/* use primary mac as iscsi mac */
11775 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11776 
11777 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11778 				BNX2X_DEV_INFO
11779 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11780 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11781 				/* use primary mac as fip mac */
11782 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11783 				BNX2X_DEV_INFO("SD FCoE MODE\n");
11784 				BNX2X_DEV_INFO
11785 					("Read FIP MAC: %pM\n", fip_mac);
11786 			}
11787 		}
11788 
11789 		/* If this is a storage-only interface, use SAN mac as
11790 		 * primary MAC. Notice that for SD this is already the case,
11791 		 * as the SAN mac was copied from the primary MAC.
11792 		 */
11793 		if (IS_MF_FCOE_AFEX(bp))
11794 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11795 	} else {
11796 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11797 				iscsi_mac_upper);
11798 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11799 			       iscsi_mac_lower);
11800 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11801 
11802 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11803 				fcoe_fip_mac_upper);
11804 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11805 			       fcoe_fip_mac_lower);
11806 		bnx2x_set_mac_buf(fip_mac, val, val2);
11807 	}
11808 
11809 	/* Disable iSCSI OOO if MAC configuration is invalid. */
11810 	if (!is_valid_ether_addr(iscsi_mac)) {
11811 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11812 		eth_zero_addr(iscsi_mac);
11813 	}
11814 
11815 	/* Disable FCoE if MAC configuration is invalid. */
11816 	if (!is_valid_ether_addr(fip_mac)) {
11817 		bp->flags |= NO_FCOE_FLAG;
11818 		eth_zero_addr(bp->fip_mac);
11819 	}
11820 }
11821 
11822 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11823 {
11824 	u32 val, val2;
11825 	int func = BP_ABS_FUNC(bp);
11826 	int port = BP_PORT(bp);
11827 
11828 	/* Zero primary MAC configuration */
11829 	eth_zero_addr(bp->dev->dev_addr);
11830 
11831 	if (BP_NOMCP(bp)) {
11832 		BNX2X_ERROR("warning: random MAC workaround active\n");
11833 		eth_hw_addr_random(bp->dev);
11834 	} else if (IS_MF(bp)) {
11835 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11836 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11837 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11838 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11839 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11840 
11841 		if (CNIC_SUPPORT(bp))
11842 			bnx2x_get_cnic_mac_hwinfo(bp);
11843 	} else {
11844 		/* in SF read MACs from port configuration */
11845 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11846 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11847 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11848 
11849 		if (CNIC_SUPPORT(bp))
11850 			bnx2x_get_cnic_mac_hwinfo(bp);
11851 	}
11852 
11853 	if (!BP_NOMCP(bp)) {
11854 		/* Read physical port identifier from shmem */
11855 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11856 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11857 		bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11858 		bp->flags |= HAS_PHYS_PORT_ID;
11859 	}
11860 
11861 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11862 
11863 	if (!is_valid_ether_addr(bp->dev->dev_addr))
11864 		dev_err(&bp->pdev->dev,
11865 			"bad Ethernet MAC address configuration: %pM\n"
11866 			"change it manually before bringing up the appropriate network interface\n",
11867 			bp->dev->dev_addr);
11868 }
11869 
11870 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11871 {
11872 	int tmp;
11873 	u32 cfg;
11874 
11875 	if (IS_VF(bp))
11876 		return false;
11877 
11878 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11879 		/* Take function: tmp = func */
11880 		tmp = BP_ABS_FUNC(bp);
11881 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11882 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11883 	} else {
11884 		/* Take port: tmp = port */
11885 		tmp = BP_PORT(bp);
11886 		cfg = SHMEM_RD(bp,
11887 			       dev_info.port_hw_config[tmp].generic_features);
11888 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11889 	}
11890 	return cfg;
11891 }
11892 
11893 static void validate_set_si_mode(struct bnx2x *bp)
11894 {
11895 	u8 func = BP_ABS_FUNC(bp);
11896 	u32 val;
11897 
11898 	val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11899 
11900 	/* check for legal mac (upper bytes) */
11901 	if (val != 0xffff) {
11902 		bp->mf_mode = MULTI_FUNCTION_SI;
11903 		bp->mf_config[BP_VN(bp)] =
11904 			MF_CFG_RD(bp, func_mf_config[func].config);
11905 	} else
11906 		BNX2X_DEV_INFO("illegal MAC address for SI\n");
11907 }
11908 
11909 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11910 {
11911 	int /*abs*/func = BP_ABS_FUNC(bp);
11912 	int vn;
11913 	u32 val = 0, val2 = 0;
11914 	int rc = 0;
11915 
11916 	/* Validate that chip access is feasible */
11917 	if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11918 		dev_err(&bp->pdev->dev,
11919 			"Chip read returns all Fs. Preventing probe from continuing\n");
11920 		return -EINVAL;
11921 	}
11922 
11923 	bnx2x_get_common_hwinfo(bp);
11924 
11925 	/*
11926 	 * initialize IGU parameters
11927 	 */
11928 	if (CHIP_IS_E1x(bp)) {
11929 		bp->common.int_block = INT_BLOCK_HC;
11930 
11931 		bp->igu_dsb_id = DEF_SB_IGU_ID;
11932 		bp->igu_base_sb = 0;
11933 	} else {
11934 		bp->common.int_block = INT_BLOCK_IGU;
11935 
11936 		/* do not allow device reset during IGU info processing */
11937 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11938 
11939 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11940 
11941 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11942 			int tout = 5000;
11943 
11944 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11945 
11946 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11947 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11948 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11949 
11950 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11951 				tout--;
11952 				usleep_range(1000, 2000);
11953 			}
11954 
11955 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11956 				dev_err(&bp->pdev->dev,
11957 					"FORCING Normal Mode failed!!!\n");
11958 				bnx2x_release_hw_lock(bp,
11959 						      HW_LOCK_RESOURCE_RESET);
11960 				return -EPERM;
11961 			}
11962 		}
11963 
11964 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11965 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11966 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11967 		} else
11968 			BNX2X_DEV_INFO("IGU Normal Mode\n");
11969 
11970 		rc = bnx2x_get_igu_cam_info(bp);
11971 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11972 		if (rc)
11973 			return rc;
11974 	}
11975 
11976 	/*
11977 	 * set base FW non-default (fast path) status block id, this value is
11978 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
11979 	 * determine the id used by the FW.
11980 	 */
11981 	if (CHIP_IS_E1x(bp))
11982 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11983 	else /*
11984 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11985 	      * the same queue are indicated on the same IGU SB). So we prefer
11986 	      * FW and IGU SBs to be the same value.
11987 	      */
11988 		bp->base_fw_ndsb = bp->igu_base_sb;
11989 
11990 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11991 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11992 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
11993 
11994 	/*
11995 	 * Initialize MF configuration
11996 	 */
11997 	bp->mf_ov = 0;
11998 	bp->mf_mode = 0;
11999 	bp->mf_sub_mode = 0;
12000 	vn = BP_VN(bp);
12001 
12002 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12003 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12004 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
12005 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12006 
12007 		if (SHMEM2_HAS(bp, mf_cfg_addr))
12008 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12009 		else
12010 			bp->common.mf_cfg_base = bp->common.shmem_base +
12011 				offsetof(struct shmem_region, func_mb) +
12012 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12013 		/*
12014 		 * get mf configuration:
12015 		 * 1. Existence of MF configuration
12016 		 * 2. MAC address must be legal (check only upper bytes)
12017 		 *    for  Switch-Independent mode;
12018 		 *    OVLAN must be legal for Switch-Dependent mode
12019 		 * 3. SF_MODE configures specific MF mode
12020 		 */
12021 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12022 			/* get mf configuration */
12023 			val = SHMEM_RD(bp,
12024 				       dev_info.shared_feature_config.config);
12025 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12026 
12027 			switch (val) {
12028 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12029 				validate_set_si_mode(bp);
12030 				break;
12031 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12032 				if ((!CHIP_IS_E1x(bp)) &&
12033 				    (MF_CFG_RD(bp, func_mf_config[func].
12034 					       mac_upper) != 0xffff) &&
12035 				    (SHMEM2_HAS(bp,
12036 						afex_driver_support))) {
12037 					bp->mf_mode = MULTI_FUNCTION_AFEX;
12038 					bp->mf_config[vn] = MF_CFG_RD(bp,
12039 						func_mf_config[func].config);
12040 				} else {
12041 					BNX2X_DEV_INFO("can not configure afex mode\n");
12042 				}
12043 				break;
12044 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12045 				/* get OV configuration */
12046 				val = MF_CFG_RD(bp,
12047 					func_mf_config[FUNC_0].e1hov_tag);
12048 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12049 
12050 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12051 					bp->mf_mode = MULTI_FUNCTION_SD;
12052 					bp->mf_config[vn] = MF_CFG_RD(bp,
12053 						func_mf_config[func].config);
12054 				} else
12055 					BNX2X_DEV_INFO("illegal OV for SD\n");
12056 				break;
12057 			case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12058 				bp->mf_mode = MULTI_FUNCTION_SD;
12059 				bp->mf_sub_mode = SUB_MF_MODE_BD;
12060 				bp->mf_config[vn] =
12061 					MF_CFG_RD(bp,
12062 						  func_mf_config[func].config);
12063 
12064 				if (SHMEM2_HAS(bp, mtu_size)) {
12065 					int mtu_idx = BP_FW_MB_IDX(bp);
12066 					u16 mtu_size;
12067 					u32 mtu;
12068 
12069 					mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12070 					mtu_size = (u16)mtu;
12071 					DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12072 					   mtu_size, mtu);
12073 
12074 					/* if valid: update device mtu */
12075 					if ((mtu_size >= ETH_MIN_PACKET_SIZE) &&
12076 					    (mtu_size <=
12077 					     ETH_MAX_JUMBO_PACKET_SIZE))
12078 						bp->dev->mtu = mtu_size;
12079 				}
12080 				break;
12081 			case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12082 				bp->mf_mode = MULTI_FUNCTION_SD;
12083 				bp->mf_sub_mode = SUB_MF_MODE_UFP;
12084 				bp->mf_config[vn] =
12085 					MF_CFG_RD(bp,
12086 						  func_mf_config[func].config);
12087 				break;
12088 			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12089 				bp->mf_config[vn] = 0;
12090 				break;
12091 			case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12092 				val2 = SHMEM_RD(bp,
12093 					dev_info.shared_hw_config.config_3);
12094 				val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12095 				switch (val2) {
12096 				case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12097 					validate_set_si_mode(bp);
12098 					bp->mf_sub_mode =
12099 							SUB_MF_MODE_NPAR1_DOT_5;
12100 					break;
12101 				default:
12102 					/* Unknown configuration */
12103 					bp->mf_config[vn] = 0;
12104 					BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12105 						       val);
12106 				}
12107 				break;
12108 			default:
12109 				/* Unknown configuration: reset mf_config */
12110 				bp->mf_config[vn] = 0;
12111 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12112 			}
12113 		}
12114 
12115 		BNX2X_DEV_INFO("%s function mode\n",
12116 			       IS_MF(bp) ? "multi" : "single");
12117 
12118 		switch (bp->mf_mode) {
12119 		case MULTI_FUNCTION_SD:
12120 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12121 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
12122 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12123 				bp->mf_ov = val;
12124 				bp->path_has_ovlan = true;
12125 
12126 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12127 					       func, bp->mf_ov, bp->mf_ov);
12128 			} else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12129 				   (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12130 				dev_err(&bp->pdev->dev,
12131 					"Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12132 					func);
12133 				bp->path_has_ovlan = true;
12134 			} else {
12135 				dev_err(&bp->pdev->dev,
12136 					"No valid MF OV for func %d, aborting\n",
12137 					func);
12138 				return -EPERM;
12139 			}
12140 			break;
12141 		case MULTI_FUNCTION_AFEX:
12142 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12143 			break;
12144 		case MULTI_FUNCTION_SI:
12145 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12146 				       func);
12147 			break;
12148 		default:
12149 			if (vn) {
12150 				dev_err(&bp->pdev->dev,
12151 					"VN %d is in a single function mode, aborting\n",
12152 					vn);
12153 				return -EPERM;
12154 			}
12155 			break;
12156 		}
12157 
12158 		/* check if other port on the path needs ovlan:
12159 		 * Since MF configuration is shared between ports
12160 		 * Possible mixed modes are only
12161 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12162 		 */
12163 		if (CHIP_MODE_IS_4_PORT(bp) &&
12164 		    !bp->path_has_ovlan &&
12165 		    !IS_MF(bp) &&
12166 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12167 			u8 other_port = !BP_PORT(bp);
12168 			u8 other_func = BP_PATH(bp) + 2*other_port;
12169 			val = MF_CFG_RD(bp,
12170 					func_mf_config[other_func].e1hov_tag);
12171 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12172 				bp->path_has_ovlan = true;
12173 		}
12174 	}
12175 
12176 	/* adjust igu_sb_cnt to MF for E1H */
12177 	if (CHIP_IS_E1H(bp) && IS_MF(bp))
12178 		bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12179 
12180 	/* port info */
12181 	bnx2x_get_port_hwinfo(bp);
12182 
12183 	/* Get MAC addresses */
12184 	bnx2x_get_mac_hwinfo(bp);
12185 
12186 	bnx2x_get_cnic_info(bp);
12187 
12188 	return rc;
12189 }
12190 
12191 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12192 {
12193 	int cnt, i, block_end, rodi;
12194 	char vpd_start[BNX2X_VPD_LEN+1];
12195 	char str_id_reg[VENDOR_ID_LEN+1];
12196 	char str_id_cap[VENDOR_ID_LEN+1];
12197 	char *vpd_data;
12198 	char *vpd_extended_data = NULL;
12199 	u8 len;
12200 
12201 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
12202 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12203 
12204 	if (cnt < BNX2X_VPD_LEN)
12205 		goto out_not_found;
12206 
12207 	/* VPD RO tag should be first tag after identifier string, hence
12208 	 * we should be able to find it in first BNX2X_VPD_LEN chars
12209 	 */
12210 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
12211 			     PCI_VPD_LRDT_RO_DATA);
12212 	if (i < 0)
12213 		goto out_not_found;
12214 
12215 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
12216 		    pci_vpd_lrdt_size(&vpd_start[i]);
12217 
12218 	i += PCI_VPD_LRDT_TAG_SIZE;
12219 
12220 	if (block_end > BNX2X_VPD_LEN) {
12221 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
12222 		if (vpd_extended_data  == NULL)
12223 			goto out_not_found;
12224 
12225 		/* read rest of vpd image into vpd_extended_data */
12226 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
12227 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
12228 				   block_end - BNX2X_VPD_LEN,
12229 				   vpd_extended_data + BNX2X_VPD_LEN);
12230 		if (cnt < (block_end - BNX2X_VPD_LEN))
12231 			goto out_not_found;
12232 		vpd_data = vpd_extended_data;
12233 	} else
12234 		vpd_data = vpd_start;
12235 
12236 	/* now vpd_data holds full vpd content in both cases */
12237 
12238 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12239 				   PCI_VPD_RO_KEYWORD_MFR_ID);
12240 	if (rodi < 0)
12241 		goto out_not_found;
12242 
12243 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
12244 
12245 	if (len != VENDOR_ID_LEN)
12246 		goto out_not_found;
12247 
12248 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12249 
12250 	/* vendor specific info */
12251 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12252 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
12253 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
12254 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12255 
12256 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12257 						PCI_VPD_RO_KEYWORD_VENDOR0);
12258 		if (rodi >= 0) {
12259 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
12260 
12261 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12262 
12263 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12264 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
12265 				bp->fw_ver[len] = ' ';
12266 			}
12267 		}
12268 		kfree(vpd_extended_data);
12269 		return;
12270 	}
12271 out_not_found:
12272 	kfree(vpd_extended_data);
12273 	return;
12274 }
12275 
12276 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12277 {
12278 	u32 flags = 0;
12279 
12280 	if (CHIP_REV_IS_FPGA(bp))
12281 		SET_FLAGS(flags, MODE_FPGA);
12282 	else if (CHIP_REV_IS_EMUL(bp))
12283 		SET_FLAGS(flags, MODE_EMUL);
12284 	else
12285 		SET_FLAGS(flags, MODE_ASIC);
12286 
12287 	if (CHIP_MODE_IS_4_PORT(bp))
12288 		SET_FLAGS(flags, MODE_PORT4);
12289 	else
12290 		SET_FLAGS(flags, MODE_PORT2);
12291 
12292 	if (CHIP_IS_E2(bp))
12293 		SET_FLAGS(flags, MODE_E2);
12294 	else if (CHIP_IS_E3(bp)) {
12295 		SET_FLAGS(flags, MODE_E3);
12296 		if (CHIP_REV(bp) == CHIP_REV_Ax)
12297 			SET_FLAGS(flags, MODE_E3_A0);
12298 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12299 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12300 	}
12301 
12302 	if (IS_MF(bp)) {
12303 		SET_FLAGS(flags, MODE_MF);
12304 		switch (bp->mf_mode) {
12305 		case MULTI_FUNCTION_SD:
12306 			SET_FLAGS(flags, MODE_MF_SD);
12307 			break;
12308 		case MULTI_FUNCTION_SI:
12309 			SET_FLAGS(flags, MODE_MF_SI);
12310 			break;
12311 		case MULTI_FUNCTION_AFEX:
12312 			SET_FLAGS(flags, MODE_MF_AFEX);
12313 			break;
12314 		}
12315 	} else
12316 		SET_FLAGS(flags, MODE_SF);
12317 
12318 #if defined(__LITTLE_ENDIAN)
12319 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12320 #else /*(__BIG_ENDIAN)*/
12321 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
12322 #endif
12323 	INIT_MODE_FLAGS(bp) = flags;
12324 }
12325 
12326 static int bnx2x_init_bp(struct bnx2x *bp)
12327 {
12328 	int func;
12329 	int rc;
12330 
12331 	mutex_init(&bp->port.phy_mutex);
12332 	mutex_init(&bp->fw_mb_mutex);
12333 	mutex_init(&bp->drv_info_mutex);
12334 	sema_init(&bp->stats_lock, 1);
12335 	bp->drv_info_mng_owner = false;
12336 	INIT_LIST_HEAD(&bp->vlan_reg);
12337 
12338 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12339 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12340 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12341 	INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12342 	if (IS_PF(bp)) {
12343 		rc = bnx2x_get_hwinfo(bp);
12344 		if (rc)
12345 			return rc;
12346 	} else {
12347 		eth_zero_addr(bp->dev->dev_addr);
12348 	}
12349 
12350 	bnx2x_set_modes_bitmap(bp);
12351 
12352 	rc = bnx2x_alloc_mem_bp(bp);
12353 	if (rc)
12354 		return rc;
12355 
12356 	bnx2x_read_fwinfo(bp);
12357 
12358 	func = BP_FUNC(bp);
12359 
12360 	/* need to reset chip if undi was active */
12361 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
12362 		/* init fw_seq */
12363 		bp->fw_seq =
12364 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12365 							DRV_MSG_SEQ_NUMBER_MASK;
12366 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12367 
12368 		rc = bnx2x_prev_unload(bp);
12369 		if (rc) {
12370 			bnx2x_free_mem_bp(bp);
12371 			return rc;
12372 		}
12373 	}
12374 
12375 	if (CHIP_REV_IS_FPGA(bp))
12376 		dev_err(&bp->pdev->dev, "FPGA detected\n");
12377 
12378 	if (BP_NOMCP(bp) && (func == 0))
12379 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12380 
12381 	bp->disable_tpa = disable_tpa;
12382 	bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12383 	/* Reduce memory usage in kdump environment by disabling TPA */
12384 	bp->disable_tpa |= is_kdump_kernel();
12385 
12386 	/* Set TPA flags */
12387 	if (bp->disable_tpa) {
12388 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12389 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12390 	}
12391 
12392 	if (CHIP_IS_E1(bp))
12393 		bp->dropless_fc = 0;
12394 	else
12395 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12396 
12397 	bp->mrrs = mrrs;
12398 
12399 	bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12400 	if (IS_VF(bp))
12401 		bp->rx_ring_size = MAX_RX_AVAIL;
12402 
12403 	/* make sure that the numbers are in the right granularity */
12404 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12405 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12406 
12407 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12408 
12409 	timer_setup(&bp->timer, bnx2x_timer, 0);
12410 	bp->timer.expires = jiffies + bp->current_interval;
12411 
12412 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12413 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12414 	    SHMEM2_HAS(bp, dcbx_en) &&
12415 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12416 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12417 	    SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12418 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12419 		bnx2x_dcbx_init_params(bp);
12420 	} else {
12421 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12422 	}
12423 
12424 	if (CHIP_IS_E1x(bp))
12425 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12426 	else
12427 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
12428 
12429 	/* multiple tx priority */
12430 	if (IS_VF(bp))
12431 		bp->max_cos = 1;
12432 	else if (CHIP_IS_E1x(bp))
12433 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12434 	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12435 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12436 	else if (CHIP_IS_E3B0(bp))
12437 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12438 	else
12439 		BNX2X_ERR("unknown chip %x revision %x\n",
12440 			  CHIP_NUM(bp), CHIP_REV(bp));
12441 	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12442 
12443 	/* We need at least one default status block for slow-path events,
12444 	 * second status block for the L2 queue, and a third status block for
12445 	 * CNIC if supported.
12446 	 */
12447 	if (IS_VF(bp))
12448 		bp->min_msix_vec_cnt = 1;
12449 	else if (CNIC_SUPPORT(bp))
12450 		bp->min_msix_vec_cnt = 3;
12451 	else /* PF w/o cnic */
12452 		bp->min_msix_vec_cnt = 2;
12453 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12454 
12455 	bp->dump_preset_idx = 1;
12456 
12457 	return rc;
12458 }
12459 
12460 /****************************************************************************
12461 * General service functions
12462 ****************************************************************************/
12463 
12464 /*
12465  * net_device service functions
12466  */
12467 
12468 /* called with rtnl_lock */
12469 static int bnx2x_open(struct net_device *dev)
12470 {
12471 	struct bnx2x *bp = netdev_priv(dev);
12472 	int rc;
12473 
12474 	bp->stats_init = true;
12475 
12476 	netif_carrier_off(dev);
12477 
12478 	bnx2x_set_power_state(bp, PCI_D0);
12479 
12480 	/* If parity had happen during the unload, then attentions
12481 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12482 	 * want the first function loaded on the current engine to
12483 	 * complete the recovery.
12484 	 * Parity recovery is only relevant for PF driver.
12485 	 */
12486 	if (IS_PF(bp)) {
12487 		int other_engine = BP_PATH(bp) ? 0 : 1;
12488 		bool other_load_status, load_status;
12489 		bool global = false;
12490 
12491 		other_load_status = bnx2x_get_load_status(bp, other_engine);
12492 		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12493 		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12494 		    bnx2x_chk_parity_attn(bp, &global, true)) {
12495 			do {
12496 				/* If there are attentions and they are in a
12497 				 * global blocks, set the GLOBAL_RESET bit
12498 				 * regardless whether it will be this function
12499 				 * that will complete the recovery or not.
12500 				 */
12501 				if (global)
12502 					bnx2x_set_reset_global(bp);
12503 
12504 				/* Only the first function on the current
12505 				 * engine should try to recover in open. In case
12506 				 * of attentions in global blocks only the first
12507 				 * in the chip should try to recover.
12508 				 */
12509 				if ((!load_status &&
12510 				     (!global || !other_load_status)) &&
12511 				      bnx2x_trylock_leader_lock(bp) &&
12512 				      !bnx2x_leader_reset(bp)) {
12513 					netdev_info(bp->dev,
12514 						    "Recovered in open\n");
12515 					break;
12516 				}
12517 
12518 				/* recovery has failed... */
12519 				bnx2x_set_power_state(bp, PCI_D3hot);
12520 				bp->recovery_state = BNX2X_RECOVERY_FAILED;
12521 
12522 				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12523 					  "If you still see this message after a few retries then power cycle is required.\n");
12524 
12525 				return -EAGAIN;
12526 			} while (0);
12527 		}
12528 	}
12529 
12530 	bp->recovery_state = BNX2X_RECOVERY_DONE;
12531 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
12532 	if (rc)
12533 		return rc;
12534 
12535 	return 0;
12536 }
12537 
12538 /* called with rtnl_lock */
12539 static int bnx2x_close(struct net_device *dev)
12540 {
12541 	struct bnx2x *bp = netdev_priv(dev);
12542 
12543 	/* Unload the driver, release IRQs */
12544 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12545 
12546 	return 0;
12547 }
12548 
12549 struct bnx2x_mcast_list_elem_group
12550 {
12551 	struct list_head mcast_group_link;
12552 	struct bnx2x_mcast_list_elem mcast_elems[];
12553 };
12554 
12555 #define MCAST_ELEMS_PER_PG \
12556 	((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12557 	sizeof(struct bnx2x_mcast_list_elem))
12558 
12559 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
12560 {
12561 	struct bnx2x_mcast_list_elem_group *current_mcast_group;
12562 
12563 	while (!list_empty(mcast_group_list)) {
12564 		current_mcast_group = list_first_entry(mcast_group_list,
12565 				      struct bnx2x_mcast_list_elem_group,
12566 				      mcast_group_link);
12567 		list_del(&current_mcast_group->mcast_group_link);
12568 		free_page((unsigned long)current_mcast_group);
12569 	}
12570 }
12571 
12572 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12573 				      struct bnx2x_mcast_ramrod_params *p,
12574 				      struct list_head *mcast_group_list)
12575 {
12576 	struct bnx2x_mcast_list_elem *mc_mac;
12577 	struct netdev_hw_addr *ha;
12578 	struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
12579 	int mc_count = netdev_mc_count(bp->dev);
12580 	int offset = 0;
12581 
12582 	INIT_LIST_HEAD(&p->mcast_list);
12583 	netdev_for_each_mc_addr(ha, bp->dev) {
12584 		if (!offset) {
12585 			current_mcast_group =
12586 				(struct bnx2x_mcast_list_elem_group *)
12587 				__get_free_page(GFP_ATOMIC);
12588 			if (!current_mcast_group) {
12589 				bnx2x_free_mcast_macs_list(mcast_group_list);
12590 				BNX2X_ERR("Failed to allocate mc MAC list\n");
12591 				return -ENOMEM;
12592 			}
12593 			list_add(&current_mcast_group->mcast_group_link,
12594 				 mcast_group_list);
12595 		}
12596 		mc_mac = &current_mcast_group->mcast_elems[offset];
12597 		mc_mac->mac = bnx2x_mc_addr(ha);
12598 		list_add_tail(&mc_mac->link, &p->mcast_list);
12599 		offset++;
12600 		if (offset == MCAST_ELEMS_PER_PG)
12601 			offset = 0;
12602 	}
12603 	p->mcast_list_len = mc_count;
12604 	return 0;
12605 }
12606 
12607 /**
12608  * bnx2x_set_uc_list - configure a new unicast MACs list.
12609  *
12610  * @bp: driver handle
12611  *
12612  * We will use zero (0) as a MAC type for these MACs.
12613  */
12614 static int bnx2x_set_uc_list(struct bnx2x *bp)
12615 {
12616 	int rc;
12617 	struct net_device *dev = bp->dev;
12618 	struct netdev_hw_addr *ha;
12619 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12620 	unsigned long ramrod_flags = 0;
12621 
12622 	/* First schedule a cleanup up of old configuration */
12623 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12624 	if (rc < 0) {
12625 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12626 		return rc;
12627 	}
12628 
12629 	netdev_for_each_uc_addr(ha, dev) {
12630 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12631 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
12632 		if (rc == -EEXIST) {
12633 			DP(BNX2X_MSG_SP,
12634 			   "Failed to schedule ADD operations: %d\n", rc);
12635 			/* do not treat adding same MAC as error */
12636 			rc = 0;
12637 
12638 		} else if (rc < 0) {
12639 
12640 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12641 				  rc);
12642 			return rc;
12643 		}
12644 	}
12645 
12646 	/* Execute the pending commands */
12647 	__set_bit(RAMROD_CONT, &ramrod_flags);
12648 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12649 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
12650 }
12651 
12652 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
12653 {
12654 	LIST_HEAD(mcast_group_list);
12655 	struct net_device *dev = bp->dev;
12656 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12657 	int rc = 0;
12658 
12659 	rparam.mcast_obj = &bp->mcast_obj;
12660 
12661 	/* first, clear all configured multicast MACs */
12662 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12663 	if (rc < 0) {
12664 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12665 		return rc;
12666 	}
12667 
12668 	/* then, configure a new MACs list */
12669 	if (netdev_mc_count(dev)) {
12670 		rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12671 		if (rc)
12672 			return rc;
12673 
12674 		/* Now add the new MACs */
12675 		rc = bnx2x_config_mcast(bp, &rparam,
12676 					BNX2X_MCAST_CMD_ADD);
12677 		if (rc < 0)
12678 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12679 				  rc);
12680 
12681 		bnx2x_free_mcast_macs_list(&mcast_group_list);
12682 	}
12683 
12684 	return rc;
12685 }
12686 
12687 static int bnx2x_set_mc_list(struct bnx2x *bp)
12688 {
12689 	LIST_HEAD(mcast_group_list);
12690 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12691 	struct net_device *dev = bp->dev;
12692 	int rc = 0;
12693 
12694 	/* On older adapters, we need to flush and re-add filters */
12695 	if (CHIP_IS_E1x(bp))
12696 		return bnx2x_set_mc_list_e1x(bp);
12697 
12698 	rparam.mcast_obj = &bp->mcast_obj;
12699 
12700 	if (netdev_mc_count(dev)) {
12701 		rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12702 		if (rc)
12703 			return rc;
12704 
12705 		/* Override the curently configured set of mc filters */
12706 		rc = bnx2x_config_mcast(bp, &rparam,
12707 					BNX2X_MCAST_CMD_SET);
12708 		if (rc < 0)
12709 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12710 				  rc);
12711 
12712 		bnx2x_free_mcast_macs_list(&mcast_group_list);
12713 	} else {
12714 		/* If no mc addresses are required, flush the configuration */
12715 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12716 		if (rc < 0)
12717 			BNX2X_ERR("Failed to clear multicast configuration %d\n",
12718 				  rc);
12719 	}
12720 
12721 	return rc;
12722 }
12723 
12724 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12725 static void bnx2x_set_rx_mode(struct net_device *dev)
12726 {
12727 	struct bnx2x *bp = netdev_priv(dev);
12728 
12729 	if (bp->state != BNX2X_STATE_OPEN) {
12730 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12731 		return;
12732 	} else {
12733 		/* Schedule an SP task to handle rest of change */
12734 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12735 				       NETIF_MSG_IFUP);
12736 	}
12737 }
12738 
12739 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12740 {
12741 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12742 
12743 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12744 
12745 	netif_addr_lock_bh(bp->dev);
12746 
12747 	if (bp->dev->flags & IFF_PROMISC) {
12748 		rx_mode = BNX2X_RX_MODE_PROMISC;
12749 	} else if ((bp->dev->flags & IFF_ALLMULTI) ||
12750 		   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12751 		    CHIP_IS_E1(bp))) {
12752 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
12753 	} else {
12754 		if (IS_PF(bp)) {
12755 			/* some multicasts */
12756 			if (bnx2x_set_mc_list(bp) < 0)
12757 				rx_mode = BNX2X_RX_MODE_ALLMULTI;
12758 
12759 			/* release bh lock, as bnx2x_set_uc_list might sleep */
12760 			netif_addr_unlock_bh(bp->dev);
12761 			if (bnx2x_set_uc_list(bp) < 0)
12762 				rx_mode = BNX2X_RX_MODE_PROMISC;
12763 			netif_addr_lock_bh(bp->dev);
12764 		} else {
12765 			/* configuring mcast to a vf involves sleeping (when we
12766 			 * wait for the pf's response).
12767 			 */
12768 			bnx2x_schedule_sp_rtnl(bp,
12769 					       BNX2X_SP_RTNL_VFPF_MCAST, 0);
12770 		}
12771 	}
12772 
12773 	bp->rx_mode = rx_mode;
12774 	/* handle ISCSI SD mode */
12775 	if (IS_MF_ISCSI_ONLY(bp))
12776 		bp->rx_mode = BNX2X_RX_MODE_NONE;
12777 
12778 	/* Schedule the rx_mode command */
12779 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12780 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12781 		netif_addr_unlock_bh(bp->dev);
12782 		return;
12783 	}
12784 
12785 	if (IS_PF(bp)) {
12786 		bnx2x_set_storm_rx_mode(bp);
12787 		netif_addr_unlock_bh(bp->dev);
12788 	} else {
12789 		/* VF will need to request the PF to make this change, and so
12790 		 * the VF needs to release the bottom-half lock prior to the
12791 		 * request (as it will likely require sleep on the VF side)
12792 		 */
12793 		netif_addr_unlock_bh(bp->dev);
12794 		bnx2x_vfpf_storm_rx_mode(bp);
12795 	}
12796 }
12797 
12798 /* called with rtnl_lock */
12799 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12800 			   int devad, u16 addr)
12801 {
12802 	struct bnx2x *bp = netdev_priv(netdev);
12803 	u16 value;
12804 	int rc;
12805 
12806 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12807 	   prtad, devad, addr);
12808 
12809 	/* The HW expects different devad if CL22 is used */
12810 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12811 
12812 	bnx2x_acquire_phy_lock(bp);
12813 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12814 	bnx2x_release_phy_lock(bp);
12815 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12816 
12817 	if (!rc)
12818 		rc = value;
12819 	return rc;
12820 }
12821 
12822 /* called with rtnl_lock */
12823 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12824 			    u16 addr, u16 value)
12825 {
12826 	struct bnx2x *bp = netdev_priv(netdev);
12827 	int rc;
12828 
12829 	DP(NETIF_MSG_LINK,
12830 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12831 	   prtad, devad, addr, value);
12832 
12833 	/* The HW expects different devad if CL22 is used */
12834 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12835 
12836 	bnx2x_acquire_phy_lock(bp);
12837 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12838 	bnx2x_release_phy_lock(bp);
12839 	return rc;
12840 }
12841 
12842 /* called with rtnl_lock */
12843 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12844 {
12845 	struct bnx2x *bp = netdev_priv(dev);
12846 	struct mii_ioctl_data *mdio = if_mii(ifr);
12847 
12848 	if (!netif_running(dev))
12849 		return -EAGAIN;
12850 
12851 	switch (cmd) {
12852 	case SIOCSHWTSTAMP:
12853 		return bnx2x_hwtstamp_ioctl(bp, ifr);
12854 	default:
12855 		DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12856 		   mdio->phy_id, mdio->reg_num, mdio->val_in);
12857 		return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12858 	}
12859 }
12860 
12861 static int bnx2x_validate_addr(struct net_device *dev)
12862 {
12863 	struct bnx2x *bp = netdev_priv(dev);
12864 
12865 	/* query the bulletin board for mac address configured by the PF */
12866 	if (IS_VF(bp))
12867 		bnx2x_sample_bulletin(bp);
12868 
12869 	if (!is_valid_ether_addr(dev->dev_addr)) {
12870 		BNX2X_ERR("Non-valid Ethernet address\n");
12871 		return -EADDRNOTAVAIL;
12872 	}
12873 	return 0;
12874 }
12875 
12876 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12877 				  struct netdev_phys_item_id *ppid)
12878 {
12879 	struct bnx2x *bp = netdev_priv(netdev);
12880 
12881 	if (!(bp->flags & HAS_PHYS_PORT_ID))
12882 		return -EOPNOTSUPP;
12883 
12884 	ppid->id_len = sizeof(bp->phys_port_id);
12885 	memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12886 
12887 	return 0;
12888 }
12889 
12890 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12891 					      struct net_device *dev,
12892 					      netdev_features_t features)
12893 {
12894 	/*
12895 	 * A skb with gso_size + header length > 9700 will cause a
12896 	 * firmware panic. Drop GSO support.
12897 	 *
12898 	 * Eventually the upper layer should not pass these packets down.
12899 	 *
12900 	 * For speed, if the gso_size is <= 9000, assume there will
12901 	 * not be 700 bytes of headers and pass it through. Only do a
12902 	 * full (slow) validation if the gso_size is > 9000.
12903 	 *
12904 	 * (Due to the way SKB_BY_FRAGS works this will also do a full
12905 	 * validation in that case.)
12906 	 */
12907 	if (unlikely(skb_is_gso(skb) &&
12908 		     (skb_shinfo(skb)->gso_size > 9000) &&
12909 		     !skb_gso_validate_mac_len(skb, 9700)))
12910 		features &= ~NETIF_F_GSO_MASK;
12911 
12912 	features = vlan_features_check(skb, features);
12913 	return vxlan_features_check(skb, features);
12914 }
12915 
12916 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12917 {
12918 	int rc;
12919 
12920 	if (IS_PF(bp)) {
12921 		unsigned long ramrod_flags = 0;
12922 
12923 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12924 		rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12925 					add, &ramrod_flags);
12926 	} else {
12927 		rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12928 	}
12929 
12930 	return rc;
12931 }
12932 
12933 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
12934 {
12935 	struct bnx2x_vlan_entry *vlan;
12936 	int rc = 0;
12937 
12938 	/* Configure all non-configured entries */
12939 	list_for_each_entry(vlan, &bp->vlan_reg, link) {
12940 		if (vlan->hw)
12941 			continue;
12942 
12943 		if (bp->vlan_cnt >= bp->vlan_credit)
12944 			return -ENOBUFS;
12945 
12946 		rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12947 		if (rc) {
12948 			BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
12949 			return rc;
12950 		}
12951 
12952 		DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
12953 		vlan->hw = true;
12954 		bp->vlan_cnt++;
12955 	}
12956 
12957 	return 0;
12958 }
12959 
12960 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
12961 {
12962 	bool need_accept_any_vlan;
12963 
12964 	need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
12965 
12966 	if (bp->accept_any_vlan != need_accept_any_vlan) {
12967 		bp->accept_any_vlan = need_accept_any_vlan;
12968 		DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
12969 		   bp->accept_any_vlan ? "raised" : "cleared");
12970 		if (set_rx_mode) {
12971 			if (IS_PF(bp))
12972 				bnx2x_set_rx_mode_inner(bp);
12973 			else
12974 				bnx2x_vfpf_storm_rx_mode(bp);
12975 		}
12976 	}
12977 }
12978 
12979 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12980 {
12981 	/* Don't set rx mode here. Our caller will do it. */
12982 	bnx2x_vlan_configure(bp, false);
12983 
12984 	return 0;
12985 }
12986 
12987 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
12988 {
12989 	struct bnx2x *bp = netdev_priv(dev);
12990 	struct bnx2x_vlan_entry *vlan;
12991 
12992 	DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
12993 
12994 	vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
12995 	if (!vlan)
12996 		return -ENOMEM;
12997 
12998 	vlan->vid = vid;
12999 	vlan->hw = false;
13000 	list_add_tail(&vlan->link, &bp->vlan_reg);
13001 
13002 	if (netif_running(dev))
13003 		bnx2x_vlan_configure(bp, true);
13004 
13005 	return 0;
13006 }
13007 
13008 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
13009 {
13010 	struct bnx2x *bp = netdev_priv(dev);
13011 	struct bnx2x_vlan_entry *vlan;
13012 	bool found = false;
13013 	int rc = 0;
13014 
13015 	DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
13016 
13017 	list_for_each_entry(vlan, &bp->vlan_reg, link)
13018 		if (vlan->vid == vid) {
13019 			found = true;
13020 			break;
13021 		}
13022 
13023 	if (!found) {
13024 		BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
13025 		return -EINVAL;
13026 	}
13027 
13028 	if (netif_running(dev) && vlan->hw) {
13029 		rc = __bnx2x_vlan_configure_vid(bp, vid, false);
13030 		DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
13031 		bp->vlan_cnt--;
13032 	}
13033 
13034 	list_del(&vlan->link);
13035 	kfree(vlan);
13036 
13037 	if (netif_running(dev))
13038 		bnx2x_vlan_configure(bp, true);
13039 
13040 	DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13041 
13042 	return rc;
13043 }
13044 
13045 static const struct net_device_ops bnx2x_netdev_ops = {
13046 	.ndo_open		= bnx2x_open,
13047 	.ndo_stop		= bnx2x_close,
13048 	.ndo_start_xmit		= bnx2x_start_xmit,
13049 	.ndo_select_queue	= bnx2x_select_queue,
13050 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
13051 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
13052 	.ndo_validate_addr	= bnx2x_validate_addr,
13053 	.ndo_do_ioctl		= bnx2x_ioctl,
13054 	.ndo_change_mtu		= bnx2x_change_mtu,
13055 	.ndo_fix_features	= bnx2x_fix_features,
13056 	.ndo_set_features	= bnx2x_set_features,
13057 	.ndo_tx_timeout		= bnx2x_tx_timeout,
13058 	.ndo_vlan_rx_add_vid	= bnx2x_vlan_rx_add_vid,
13059 	.ndo_vlan_rx_kill_vid	= bnx2x_vlan_rx_kill_vid,
13060 	.ndo_setup_tc		= __bnx2x_setup_tc,
13061 #ifdef CONFIG_BNX2X_SRIOV
13062 	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
13063 	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
13064 	.ndo_get_vf_config	= bnx2x_get_vf_config,
13065 	.ndo_set_vf_spoofchk	= bnx2x_set_vf_spoofchk,
13066 #endif
13067 #ifdef NETDEV_FCOE_WWNN
13068 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
13069 #endif
13070 
13071 	.ndo_get_phys_port_id	= bnx2x_get_phys_port_id,
13072 	.ndo_set_vf_link_state	= bnx2x_set_vf_link_state,
13073 	.ndo_features_check	= bnx2x_features_check,
13074 	.ndo_udp_tunnel_add	= udp_tunnel_nic_add_port,
13075 	.ndo_udp_tunnel_del	= udp_tunnel_nic_del_port,
13076 };
13077 
13078 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
13079 {
13080 	struct device *dev = &bp->pdev->dev;
13081 
13082 	if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
13083 	    dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
13084 		dev_err(dev, "System does not support DMA, aborting\n");
13085 		return -EIO;
13086 	}
13087 
13088 	return 0;
13089 }
13090 
13091 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13092 {
13093 	if (bp->flags & AER_ENABLED) {
13094 		pci_disable_pcie_error_reporting(bp->pdev);
13095 		bp->flags &= ~AER_ENABLED;
13096 	}
13097 }
13098 
13099 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13100 			  struct net_device *dev, unsigned long board_type)
13101 {
13102 	int rc;
13103 	u32 pci_cfg_dword;
13104 	bool chip_is_e1x = (board_type == BCM57710 ||
13105 			    board_type == BCM57711 ||
13106 			    board_type == BCM57711E);
13107 
13108 	SET_NETDEV_DEV(dev, &pdev->dev);
13109 
13110 	bp->dev = dev;
13111 	bp->pdev = pdev;
13112 
13113 	rc = pci_enable_device(pdev);
13114 	if (rc) {
13115 		dev_err(&bp->pdev->dev,
13116 			"Cannot enable PCI device, aborting\n");
13117 		goto err_out;
13118 	}
13119 
13120 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13121 		dev_err(&bp->pdev->dev,
13122 			"Cannot find PCI device base address, aborting\n");
13123 		rc = -ENODEV;
13124 		goto err_out_disable;
13125 	}
13126 
13127 	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13128 		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13129 		rc = -ENODEV;
13130 		goto err_out_disable;
13131 	}
13132 
13133 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13134 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13135 	    PCICFG_REVESION_ID_ERROR_VAL) {
13136 		pr_err("PCI device error, probably due to fan failure, aborting\n");
13137 		rc = -ENODEV;
13138 		goto err_out_disable;
13139 	}
13140 
13141 	if (atomic_read(&pdev->enable_cnt) == 1) {
13142 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13143 		if (rc) {
13144 			dev_err(&bp->pdev->dev,
13145 				"Cannot obtain PCI resources, aborting\n");
13146 			goto err_out_disable;
13147 		}
13148 
13149 		pci_set_master(pdev);
13150 		pci_save_state(pdev);
13151 	}
13152 
13153 	if (IS_PF(bp)) {
13154 		if (!pdev->pm_cap) {
13155 			dev_err(&bp->pdev->dev,
13156 				"Cannot find power management capability, aborting\n");
13157 			rc = -EIO;
13158 			goto err_out_release;
13159 		}
13160 	}
13161 
13162 	if (!pci_is_pcie(pdev)) {
13163 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13164 		rc = -EIO;
13165 		goto err_out_release;
13166 	}
13167 
13168 	rc = bnx2x_set_coherency_mask(bp);
13169 	if (rc)
13170 		goto err_out_release;
13171 
13172 	dev->mem_start = pci_resource_start(pdev, 0);
13173 	dev->base_addr = dev->mem_start;
13174 	dev->mem_end = pci_resource_end(pdev, 0);
13175 
13176 	dev->irq = pdev->irq;
13177 
13178 	bp->regview = pci_ioremap_bar(pdev, 0);
13179 	if (!bp->regview) {
13180 		dev_err(&bp->pdev->dev,
13181 			"Cannot map register space, aborting\n");
13182 		rc = -ENOMEM;
13183 		goto err_out_release;
13184 	}
13185 
13186 	/* In E1/E1H use pci device function given by kernel.
13187 	 * In E2/E3 read physical function from ME register since these chips
13188 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
13189 	 * (depending on hypervisor).
13190 	 */
13191 	if (chip_is_e1x) {
13192 		bp->pf_num = PCI_FUNC(pdev->devfn);
13193 	} else {
13194 		/* chip is E2/3*/
13195 		pci_read_config_dword(bp->pdev,
13196 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
13197 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13198 				  ME_REG_ABS_PF_NUM_SHIFT);
13199 	}
13200 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13201 
13202 	/* clean indirect addresses */
13203 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13204 			       PCICFG_VENDOR_ID_OFFSET);
13205 
13206 	/* Set PCIe reset type to fundamental for EEH recovery */
13207 	pdev->needs_freset = 1;
13208 
13209 	/* AER (Advanced Error reporting) configuration */
13210 	rc = pci_enable_pcie_error_reporting(pdev);
13211 	if (!rc)
13212 		bp->flags |= AER_ENABLED;
13213 	else
13214 		BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13215 
13216 	/*
13217 	 * Clean the following indirect addresses for all functions since it
13218 	 * is not used by the driver.
13219 	 */
13220 	if (IS_PF(bp)) {
13221 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13222 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13223 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13224 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13225 
13226 		if (chip_is_e1x) {
13227 			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13228 			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13229 			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13230 			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13231 		}
13232 
13233 		/* Enable internal target-read (in case we are probed after PF
13234 		 * FLR). Must be done prior to any BAR read access. Only for
13235 		 * 57712 and up
13236 		 */
13237 		if (!chip_is_e1x)
13238 			REG_WR(bp,
13239 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13240 	}
13241 
13242 	dev->watchdog_timeo = TX_TIMEOUT;
13243 
13244 	dev->netdev_ops = &bnx2x_netdev_ops;
13245 	bnx2x_set_ethtool_ops(bp, dev);
13246 
13247 	dev->priv_flags |= IFF_UNICAST_FLT;
13248 
13249 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13250 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13251 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW |
13252 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13253 	if (!chip_is_e1x) {
13254 		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13255 				    NETIF_F_GSO_IPXIP4 |
13256 				    NETIF_F_GSO_UDP_TUNNEL |
13257 				    NETIF_F_GSO_UDP_TUNNEL_CSUM |
13258 				    NETIF_F_GSO_PARTIAL;
13259 
13260 		dev->hw_enc_features =
13261 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13262 			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13263 			NETIF_F_GSO_IPXIP4 |
13264 			NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13265 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
13266 			NETIF_F_GSO_PARTIAL;
13267 
13268 		dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
13269 					    NETIF_F_GSO_UDP_TUNNEL_CSUM;
13270 
13271 		if (IS_PF(bp))
13272 			dev->udp_tunnel_nic_info = &bnx2x_udp_tunnels;
13273 	}
13274 
13275 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13276 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13277 
13278 	if (IS_PF(bp)) {
13279 		if (chip_is_e1x)
13280 			bp->accept_any_vlan = true;
13281 		else
13282 			dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13283 	}
13284 	/* For VF we'll know whether to enable VLAN filtering after
13285 	 * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13286 	 */
13287 
13288 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13289 	dev->features |= NETIF_F_HIGHDMA;
13290 	if (dev->features & NETIF_F_LRO)
13291 		dev->features &= ~NETIF_F_GRO_HW;
13292 
13293 	/* Add Loopback capability to the device */
13294 	dev->hw_features |= NETIF_F_LOOPBACK;
13295 
13296 #ifdef BCM_DCBNL
13297 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13298 #endif
13299 
13300 	/* MTU range, 46 - 9600 */
13301 	dev->min_mtu = ETH_MIN_PACKET_SIZE;
13302 	dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE;
13303 
13304 	/* get_port_hwinfo() will set prtad and mmds properly */
13305 	bp->mdio.prtad = MDIO_PRTAD_NONE;
13306 	bp->mdio.mmds = 0;
13307 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13308 	bp->mdio.dev = dev;
13309 	bp->mdio.mdio_read = bnx2x_mdio_read;
13310 	bp->mdio.mdio_write = bnx2x_mdio_write;
13311 
13312 	return 0;
13313 
13314 err_out_release:
13315 	if (atomic_read(&pdev->enable_cnt) == 1)
13316 		pci_release_regions(pdev);
13317 
13318 err_out_disable:
13319 	pci_disable_device(pdev);
13320 
13321 err_out:
13322 	return rc;
13323 }
13324 
13325 static int bnx2x_check_firmware(struct bnx2x *bp)
13326 {
13327 	const struct firmware *firmware = bp->firmware;
13328 	struct bnx2x_fw_file_hdr *fw_hdr;
13329 	struct bnx2x_fw_file_section *sections;
13330 	u32 offset, len, num_ops;
13331 	__be16 *ops_offsets;
13332 	int i;
13333 	const u8 *fw_ver;
13334 
13335 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13336 		BNX2X_ERR("Wrong FW size\n");
13337 		return -EINVAL;
13338 	}
13339 
13340 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13341 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
13342 
13343 	/* Make sure none of the offsets and sizes make us read beyond
13344 	 * the end of the firmware data */
13345 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13346 		offset = be32_to_cpu(sections[i].offset);
13347 		len = be32_to_cpu(sections[i].len);
13348 		if (offset + len > firmware->size) {
13349 			BNX2X_ERR("Section %d length is out of bounds\n", i);
13350 			return -EINVAL;
13351 		}
13352 	}
13353 
13354 	/* Likewise for the init_ops offsets */
13355 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13356 	ops_offsets = (__force __be16 *)(firmware->data + offset);
13357 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13358 
13359 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13360 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13361 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
13362 			return -EINVAL;
13363 		}
13364 	}
13365 
13366 	/* Check FW version */
13367 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
13368 	fw_ver = firmware->data + offset;
13369 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
13370 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
13371 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
13372 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
13373 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13374 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13375 		       BCM_5710_FW_MAJOR_VERSION,
13376 		       BCM_5710_FW_MINOR_VERSION,
13377 		       BCM_5710_FW_REVISION_VERSION,
13378 		       BCM_5710_FW_ENGINEERING_VERSION);
13379 		return -EINVAL;
13380 	}
13381 
13382 	return 0;
13383 }
13384 
13385 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13386 {
13387 	const __be32 *source = (const __be32 *)_source;
13388 	u32 *target = (u32 *)_target;
13389 	u32 i;
13390 
13391 	for (i = 0; i < n/4; i++)
13392 		target[i] = be32_to_cpu(source[i]);
13393 }
13394 
13395 /*
13396    Ops array is stored in the following format:
13397    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13398  */
13399 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13400 {
13401 	const __be32 *source = (const __be32 *)_source;
13402 	struct raw_op *target = (struct raw_op *)_target;
13403 	u32 i, j, tmp;
13404 
13405 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
13406 		tmp = be32_to_cpu(source[j]);
13407 		target[i].op = (tmp >> 24) & 0xff;
13408 		target[i].offset = tmp & 0xffffff;
13409 		target[i].raw_data = be32_to_cpu(source[j + 1]);
13410 	}
13411 }
13412 
13413 /* IRO array is stored in the following format:
13414  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13415  */
13416 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13417 {
13418 	const __be32 *source = (const __be32 *)_source;
13419 	struct iro *target = (struct iro *)_target;
13420 	u32 i, j, tmp;
13421 
13422 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13423 		target[i].base = be32_to_cpu(source[j]);
13424 		j++;
13425 		tmp = be32_to_cpu(source[j]);
13426 		target[i].m1 = (tmp >> 16) & 0xffff;
13427 		target[i].m2 = tmp & 0xffff;
13428 		j++;
13429 		tmp = be32_to_cpu(source[j]);
13430 		target[i].m3 = (tmp >> 16) & 0xffff;
13431 		target[i].size = tmp & 0xffff;
13432 		j++;
13433 	}
13434 }
13435 
13436 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13437 {
13438 	const __be16 *source = (const __be16 *)_source;
13439 	u16 *target = (u16 *)_target;
13440 	u32 i;
13441 
13442 	for (i = 0; i < n/2; i++)
13443 		target[i] = be16_to_cpu(source[i]);
13444 }
13445 
13446 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
13447 do {									\
13448 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
13449 	bp->arr = kmalloc(len, GFP_KERNEL);				\
13450 	if (!bp->arr)							\
13451 		goto lbl;						\
13452 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
13453 	     (u8 *)bp->arr, len);					\
13454 } while (0)
13455 
13456 static int bnx2x_init_firmware(struct bnx2x *bp)
13457 {
13458 	const char *fw_file_name;
13459 	struct bnx2x_fw_file_hdr *fw_hdr;
13460 	int rc;
13461 
13462 	if (bp->firmware)
13463 		return 0;
13464 
13465 	if (CHIP_IS_E1(bp))
13466 		fw_file_name = FW_FILE_NAME_E1;
13467 	else if (CHIP_IS_E1H(bp))
13468 		fw_file_name = FW_FILE_NAME_E1H;
13469 	else if (!CHIP_IS_E1x(bp))
13470 		fw_file_name = FW_FILE_NAME_E2;
13471 	else {
13472 		BNX2X_ERR("Unsupported chip revision\n");
13473 		return -EINVAL;
13474 	}
13475 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13476 
13477 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13478 	if (rc) {
13479 		BNX2X_ERR("Can't load firmware file %s\n",
13480 			  fw_file_name);
13481 		goto request_firmware_exit;
13482 	}
13483 
13484 	rc = bnx2x_check_firmware(bp);
13485 	if (rc) {
13486 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13487 		goto request_firmware_exit;
13488 	}
13489 
13490 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13491 
13492 	/* Initialize the pointers to the init arrays */
13493 	/* Blob */
13494 	rc = -ENOMEM;
13495 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13496 
13497 	/* Opcodes */
13498 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13499 
13500 	/* Offsets */
13501 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13502 			    be16_to_cpu_n);
13503 
13504 	/* STORMs firmware */
13505 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13506 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13507 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13508 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13509 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13510 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13511 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13512 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
13513 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13514 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13515 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13516 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13517 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13518 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13519 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13520 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
13521 	/* IRO */
13522 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13523 
13524 	return 0;
13525 
13526 iro_alloc_err:
13527 	kfree(bp->init_ops_offsets);
13528 init_offsets_alloc_err:
13529 	kfree(bp->init_ops);
13530 init_ops_alloc_err:
13531 	kfree(bp->init_data);
13532 request_firmware_exit:
13533 	release_firmware(bp->firmware);
13534 	bp->firmware = NULL;
13535 
13536 	return rc;
13537 }
13538 
13539 static void bnx2x_release_firmware(struct bnx2x *bp)
13540 {
13541 	kfree(bp->init_ops_offsets);
13542 	kfree(bp->init_ops);
13543 	kfree(bp->init_data);
13544 	release_firmware(bp->firmware);
13545 	bp->firmware = NULL;
13546 }
13547 
13548 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13549 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13550 	.init_hw_cmn      = bnx2x_init_hw_common,
13551 	.init_hw_port     = bnx2x_init_hw_port,
13552 	.init_hw_func     = bnx2x_init_hw_func,
13553 
13554 	.reset_hw_cmn     = bnx2x_reset_common,
13555 	.reset_hw_port    = bnx2x_reset_port,
13556 	.reset_hw_func    = bnx2x_reset_func,
13557 
13558 	.gunzip_init      = bnx2x_gunzip_init,
13559 	.gunzip_end       = bnx2x_gunzip_end,
13560 
13561 	.init_fw          = bnx2x_init_firmware,
13562 	.release_fw       = bnx2x_release_firmware,
13563 };
13564 
13565 void bnx2x__init_func_obj(struct bnx2x *bp)
13566 {
13567 	/* Prepare DMAE related driver resources */
13568 	bnx2x_setup_dmae(bp);
13569 
13570 	bnx2x_init_func_obj(bp, &bp->func_obj,
13571 			    bnx2x_sp(bp, func_rdata),
13572 			    bnx2x_sp_mapping(bp, func_rdata),
13573 			    bnx2x_sp(bp, func_afex_rdata),
13574 			    bnx2x_sp_mapping(bp, func_afex_rdata),
13575 			    &bnx2x_func_sp_drv);
13576 }
13577 
13578 /* must be called after sriov-enable */
13579 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13580 {
13581 	int cid_count = BNX2X_L2_MAX_CID(bp);
13582 
13583 	if (IS_SRIOV(bp))
13584 		cid_count += BNX2X_VF_CIDS;
13585 
13586 	if (CNIC_SUPPORT(bp))
13587 		cid_count += CNIC_CID_MAX;
13588 
13589 	return roundup(cid_count, QM_CID_ROUND);
13590 }
13591 
13592 /**
13593  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13594  *
13595  * @dev:	pci device
13596  *
13597  */
13598 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13599 {
13600 	int index;
13601 	u16 control = 0;
13602 
13603 	/*
13604 	 * If MSI-X is not supported - return number of SBs needed to support
13605 	 * one fast path queue: one FP queue + SB for CNIC
13606 	 */
13607 	if (!pdev->msix_cap) {
13608 		dev_info(&pdev->dev, "no msix capability found\n");
13609 		return 1 + cnic_cnt;
13610 	}
13611 	dev_info(&pdev->dev, "msix capability found\n");
13612 
13613 	/*
13614 	 * The value in the PCI configuration space is the index of the last
13615 	 * entry, namely one less than the actual size of the table, which is
13616 	 * exactly what we want to return from this function: number of all SBs
13617 	 * without the default SB.
13618 	 * For VFs there is no default SB, then we return (index+1).
13619 	 */
13620 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13621 
13622 	index = control & PCI_MSIX_FLAGS_QSIZE;
13623 
13624 	return index;
13625 }
13626 
13627 static int set_max_cos_est(int chip_id)
13628 {
13629 	switch (chip_id) {
13630 	case BCM57710:
13631 	case BCM57711:
13632 	case BCM57711E:
13633 		return BNX2X_MULTI_TX_COS_E1X;
13634 	case BCM57712:
13635 	case BCM57712_MF:
13636 		return BNX2X_MULTI_TX_COS_E2_E3A0;
13637 	case BCM57800:
13638 	case BCM57800_MF:
13639 	case BCM57810:
13640 	case BCM57810_MF:
13641 	case BCM57840_4_10:
13642 	case BCM57840_2_20:
13643 	case BCM57840_O:
13644 	case BCM57840_MFO:
13645 	case BCM57840_MF:
13646 	case BCM57811:
13647 	case BCM57811_MF:
13648 		return BNX2X_MULTI_TX_COS_E3B0;
13649 	case BCM57712_VF:
13650 	case BCM57800_VF:
13651 	case BCM57810_VF:
13652 	case BCM57840_VF:
13653 	case BCM57811_VF:
13654 		return 1;
13655 	default:
13656 		pr_err("Unknown board_type (%d), aborting\n", chip_id);
13657 		return -ENODEV;
13658 	}
13659 }
13660 
13661 static int set_is_vf(int chip_id)
13662 {
13663 	switch (chip_id) {
13664 	case BCM57712_VF:
13665 	case BCM57800_VF:
13666 	case BCM57810_VF:
13667 	case BCM57840_VF:
13668 	case BCM57811_VF:
13669 		return true;
13670 	default:
13671 		return false;
13672 	}
13673 }
13674 
13675 /* nig_tsgen registers relative address */
13676 #define tsgen_ctrl 0x0
13677 #define tsgen_freecount 0x10
13678 #define tsgen_synctime_t0 0x20
13679 #define tsgen_offset_t0 0x28
13680 #define tsgen_drift_t0 0x30
13681 #define tsgen_synctime_t1 0x58
13682 #define tsgen_offset_t1 0x60
13683 #define tsgen_drift_t1 0x68
13684 
13685 /* FW workaround for setting drift */
13686 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13687 					  int best_val, int best_period)
13688 {
13689 	struct bnx2x_func_state_params func_params = {NULL};
13690 	struct bnx2x_func_set_timesync_params *set_timesync_params =
13691 		&func_params.params.set_timesync;
13692 
13693 	/* Prepare parameters for function state transitions */
13694 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13695 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13696 
13697 	func_params.f_obj = &bp->func_obj;
13698 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13699 
13700 	/* Function parameters */
13701 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13702 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13703 	set_timesync_params->add_sub_drift_adjust_value =
13704 		drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13705 	set_timesync_params->drift_adjust_value = best_val;
13706 	set_timesync_params->drift_adjust_period = best_period;
13707 
13708 	return bnx2x_func_state_change(bp, &func_params);
13709 }
13710 
13711 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13712 {
13713 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13714 	int rc;
13715 	int drift_dir = 1;
13716 	int val, period, period1, period2, dif, dif1, dif2;
13717 	int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13718 
13719 	DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13720 
13721 	if (!netif_running(bp->dev)) {
13722 		DP(BNX2X_MSG_PTP,
13723 		   "PTP adjfreq called while the interface is down\n");
13724 		return -ENETDOWN;
13725 	}
13726 
13727 	if (ppb < 0) {
13728 		ppb = -ppb;
13729 		drift_dir = 0;
13730 	}
13731 
13732 	if (ppb == 0) {
13733 		best_val = 1;
13734 		best_period = 0x1FFFFFF;
13735 	} else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13736 		best_val = 31;
13737 		best_period = 1;
13738 	} else {
13739 		/* Changed not to allow val = 8, 16, 24 as these values
13740 		 * are not supported in workaround.
13741 		 */
13742 		for (val = 0; val <= 31; val++) {
13743 			if ((val & 0x7) == 0)
13744 				continue;
13745 			period1 = val * 1000000 / ppb;
13746 			period2 = period1 + 1;
13747 			if (period1 != 0)
13748 				dif1 = ppb - (val * 1000000 / period1);
13749 			else
13750 				dif1 = BNX2X_MAX_PHC_DRIFT;
13751 			if (dif1 < 0)
13752 				dif1 = -dif1;
13753 			dif2 = ppb - (val * 1000000 / period2);
13754 			if (dif2 < 0)
13755 				dif2 = -dif2;
13756 			dif = (dif1 < dif2) ? dif1 : dif2;
13757 			period = (dif1 < dif2) ? period1 : period2;
13758 			if (dif < best_dif) {
13759 				best_dif = dif;
13760 				best_val = val;
13761 				best_period = period;
13762 			}
13763 		}
13764 	}
13765 
13766 	rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13767 					    best_period);
13768 	if (rc) {
13769 		BNX2X_ERR("Failed to set drift\n");
13770 		return -EFAULT;
13771 	}
13772 
13773 	DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13774 	   best_period);
13775 
13776 	return 0;
13777 }
13778 
13779 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13780 {
13781 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13782 
13783 	if (!netif_running(bp->dev)) {
13784 		DP(BNX2X_MSG_PTP,
13785 		   "PTP adjtime called while the interface is down\n");
13786 		return -ENETDOWN;
13787 	}
13788 
13789 	DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13790 
13791 	timecounter_adjtime(&bp->timecounter, delta);
13792 
13793 	return 0;
13794 }
13795 
13796 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13797 {
13798 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13799 	u64 ns;
13800 
13801 	if (!netif_running(bp->dev)) {
13802 		DP(BNX2X_MSG_PTP,
13803 		   "PTP gettime called while the interface is down\n");
13804 		return -ENETDOWN;
13805 	}
13806 
13807 	ns = timecounter_read(&bp->timecounter);
13808 
13809 	DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13810 
13811 	*ts = ns_to_timespec64(ns);
13812 
13813 	return 0;
13814 }
13815 
13816 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13817 			     const struct timespec64 *ts)
13818 {
13819 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13820 	u64 ns;
13821 
13822 	if (!netif_running(bp->dev)) {
13823 		DP(BNX2X_MSG_PTP,
13824 		   "PTP settime called while the interface is down\n");
13825 		return -ENETDOWN;
13826 	}
13827 
13828 	ns = timespec64_to_ns(ts);
13829 
13830 	DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13831 
13832 	/* Re-init the timecounter */
13833 	timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13834 
13835 	return 0;
13836 }
13837 
13838 /* Enable (or disable) ancillary features of the phc subsystem */
13839 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13840 			    struct ptp_clock_request *rq, int on)
13841 {
13842 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13843 
13844 	BNX2X_ERR("PHC ancillary features are not supported\n");
13845 	return -ENOTSUPP;
13846 }
13847 
13848 void bnx2x_register_phc(struct bnx2x *bp)
13849 {
13850 	/* Fill the ptp_clock_info struct and register PTP clock*/
13851 	bp->ptp_clock_info.owner = THIS_MODULE;
13852 	snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13853 	bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13854 	bp->ptp_clock_info.n_alarm = 0;
13855 	bp->ptp_clock_info.n_ext_ts = 0;
13856 	bp->ptp_clock_info.n_per_out = 0;
13857 	bp->ptp_clock_info.pps = 0;
13858 	bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13859 	bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13860 	bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13861 	bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13862 	bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13863 
13864 	bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13865 	if (IS_ERR(bp->ptp_clock)) {
13866 		bp->ptp_clock = NULL;
13867 		BNX2X_ERR("PTP clock registration failed\n");
13868 	}
13869 }
13870 
13871 static int bnx2x_init_one(struct pci_dev *pdev,
13872 				    const struct pci_device_id *ent)
13873 {
13874 	struct net_device *dev = NULL;
13875 	struct bnx2x *bp;
13876 	int rc, max_non_def_sbs;
13877 	int rx_count, tx_count, rss_count, doorbell_size;
13878 	int max_cos_est;
13879 	bool is_vf;
13880 	int cnic_cnt;
13881 
13882 	/* Management FW 'remembers' living interfaces. Allow it some time
13883 	 * to forget previously living interfaces, allowing a proper re-load.
13884 	 */
13885 	if (is_kdump_kernel()) {
13886 		ktime_t now = ktime_get_boottime();
13887 		ktime_t fw_ready_time = ktime_set(5, 0);
13888 
13889 		if (ktime_before(now, fw_ready_time))
13890 			msleep(ktime_ms_delta(fw_ready_time, now));
13891 	}
13892 
13893 	/* An estimated maximum supported CoS number according to the chip
13894 	 * version.
13895 	 * We will try to roughly estimate the maximum number of CoSes this chip
13896 	 * may support in order to minimize the memory allocated for Tx
13897 	 * netdev_queue's. This number will be accurately calculated during the
13898 	 * initialization of bp->max_cos based on the chip versions AND chip
13899 	 * revision in the bnx2x_init_bp().
13900 	 */
13901 	max_cos_est = set_max_cos_est(ent->driver_data);
13902 	if (max_cos_est < 0)
13903 		return max_cos_est;
13904 	is_vf = set_is_vf(ent->driver_data);
13905 	cnic_cnt = is_vf ? 0 : 1;
13906 
13907 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13908 
13909 	/* add another SB for VF as it has no default SB */
13910 	max_non_def_sbs += is_vf ? 1 : 0;
13911 
13912 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
13913 	rss_count = max_non_def_sbs - cnic_cnt;
13914 
13915 	if (rss_count < 1)
13916 		return -EINVAL;
13917 
13918 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13919 	rx_count = rss_count + cnic_cnt;
13920 
13921 	/* Maximum number of netdev Tx queues:
13922 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13923 	 */
13924 	tx_count = rss_count * max_cos_est + cnic_cnt;
13925 
13926 	/* dev zeroed in init_etherdev */
13927 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13928 	if (!dev)
13929 		return -ENOMEM;
13930 
13931 	bp = netdev_priv(dev);
13932 
13933 	bp->flags = 0;
13934 	if (is_vf)
13935 		bp->flags |= IS_VF_FLAG;
13936 
13937 	bp->igu_sb_cnt = max_non_def_sbs;
13938 	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13939 	bp->msg_enable = debug;
13940 	bp->cnic_support = cnic_cnt;
13941 	bp->cnic_probe = bnx2x_cnic_probe;
13942 
13943 	pci_set_drvdata(pdev, dev);
13944 
13945 	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13946 	if (rc < 0) {
13947 		free_netdev(dev);
13948 		return rc;
13949 	}
13950 
13951 	BNX2X_DEV_INFO("This is a %s function\n",
13952 		       IS_PF(bp) ? "physical" : "virtual");
13953 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13954 	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13955 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13956 		       tx_count, rx_count);
13957 
13958 	rc = bnx2x_init_bp(bp);
13959 	if (rc)
13960 		goto init_one_exit;
13961 
13962 	/* Map doorbells here as we need the real value of bp->max_cos which
13963 	 * is initialized in bnx2x_init_bp() to determine the number of
13964 	 * l2 connections.
13965 	 */
13966 	if (IS_VF(bp)) {
13967 		bp->doorbells = bnx2x_vf_doorbells(bp);
13968 		rc = bnx2x_vf_pci_alloc(bp);
13969 		if (rc)
13970 			goto init_one_freemem;
13971 	} else {
13972 		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13973 		if (doorbell_size > pci_resource_len(pdev, 2)) {
13974 			dev_err(&bp->pdev->dev,
13975 				"Cannot map doorbells, bar size too small, aborting\n");
13976 			rc = -ENOMEM;
13977 			goto init_one_freemem;
13978 		}
13979 		bp->doorbells = ioremap(pci_resource_start(pdev, 2),
13980 						doorbell_size);
13981 	}
13982 	if (!bp->doorbells) {
13983 		dev_err(&bp->pdev->dev,
13984 			"Cannot map doorbell space, aborting\n");
13985 		rc = -ENOMEM;
13986 		goto init_one_freemem;
13987 	}
13988 
13989 	if (IS_VF(bp)) {
13990 		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13991 		if (rc)
13992 			goto init_one_freemem;
13993 
13994 #ifdef CONFIG_BNX2X_SRIOV
13995 		/* VF with OLD Hypervisor or old PF do not support filtering */
13996 		if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
13997 			dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13998 			dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13999 		}
14000 #endif
14001 	}
14002 
14003 	/* Enable SRIOV if capability found in configuration space */
14004 	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
14005 	if (rc)
14006 		goto init_one_freemem;
14007 
14008 	/* calc qm_cid_count */
14009 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
14010 	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
14011 
14012 	/* disable FCOE L2 queue for E1x*/
14013 	if (CHIP_IS_E1x(bp))
14014 		bp->flags |= NO_FCOE_FLAG;
14015 
14016 	/* Set bp->num_queues for MSI-X mode*/
14017 	bnx2x_set_num_queues(bp);
14018 
14019 	/* Configure interrupt mode: try to enable MSI-X/MSI if
14020 	 * needed.
14021 	 */
14022 	rc = bnx2x_set_int_mode(bp);
14023 	if (rc) {
14024 		dev_err(&pdev->dev, "Cannot set interrupts\n");
14025 		goto init_one_freemem;
14026 	}
14027 	BNX2X_DEV_INFO("set interrupts successfully\n");
14028 
14029 	/* register the net device */
14030 	rc = register_netdev(dev);
14031 	if (rc) {
14032 		dev_err(&pdev->dev, "Cannot register net device\n");
14033 		goto init_one_freemem;
14034 	}
14035 	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
14036 
14037 	if (!NO_FCOE(bp)) {
14038 		/* Add storage MAC address */
14039 		rtnl_lock();
14040 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14041 		rtnl_unlock();
14042 	}
14043 	BNX2X_DEV_INFO(
14044 	       "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n",
14045 	       board_info[ent->driver_data].name,
14046 	       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
14047 	       dev->base_addr, bp->pdev->irq, dev->dev_addr);
14048 	pcie_print_link_status(bp->pdev);
14049 
14050 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
14051 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14052 
14053 	return 0;
14054 
14055 init_one_freemem:
14056 	bnx2x_free_mem_bp(bp);
14057 
14058 init_one_exit:
14059 	bnx2x_disable_pcie_error_reporting(bp);
14060 
14061 	if (bp->regview)
14062 		iounmap(bp->regview);
14063 
14064 	if (IS_PF(bp) && bp->doorbells)
14065 		iounmap(bp->doorbells);
14066 
14067 	free_netdev(dev);
14068 
14069 	if (atomic_read(&pdev->enable_cnt) == 1)
14070 		pci_release_regions(pdev);
14071 
14072 	pci_disable_device(pdev);
14073 
14074 	return rc;
14075 }
14076 
14077 static void __bnx2x_remove(struct pci_dev *pdev,
14078 			   struct net_device *dev,
14079 			   struct bnx2x *bp,
14080 			   bool remove_netdev)
14081 {
14082 	/* Delete storage MAC address */
14083 	if (!NO_FCOE(bp)) {
14084 		rtnl_lock();
14085 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14086 		rtnl_unlock();
14087 	}
14088 
14089 #ifdef BCM_DCBNL
14090 	/* Delete app tlvs from dcbnl */
14091 	bnx2x_dcbnl_update_applist(bp, true);
14092 #endif
14093 
14094 	if (IS_PF(bp) &&
14095 	    !BP_NOMCP(bp) &&
14096 	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14097 		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14098 
14099 	/* Close the interface - either directly or implicitly */
14100 	if (remove_netdev) {
14101 		unregister_netdev(dev);
14102 	} else {
14103 		rtnl_lock();
14104 		dev_close(dev);
14105 		rtnl_unlock();
14106 	}
14107 
14108 	bnx2x_iov_remove_one(bp);
14109 
14110 	/* Power on: we can't let PCI layer write to us while we are in D3 */
14111 	if (IS_PF(bp)) {
14112 		bnx2x_set_power_state(bp, PCI_D0);
14113 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14114 
14115 		/* Set endianity registers to reset values in case next driver
14116 		 * boots in different endianty environment.
14117 		 */
14118 		bnx2x_reset_endianity(bp);
14119 	}
14120 
14121 	/* Disable MSI/MSI-X */
14122 	bnx2x_disable_msi(bp);
14123 
14124 	/* Power off */
14125 	if (IS_PF(bp))
14126 		bnx2x_set_power_state(bp, PCI_D3hot);
14127 
14128 	/* Make sure RESET task is not scheduled before continuing */
14129 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
14130 
14131 	/* send message via vfpf channel to release the resources of this vf */
14132 	if (IS_VF(bp))
14133 		bnx2x_vfpf_release(bp);
14134 
14135 	/* Assumes no further PCIe PM changes will occur */
14136 	if (system_state == SYSTEM_POWER_OFF) {
14137 		pci_wake_from_d3(pdev, bp->wol);
14138 		pci_set_power_state(pdev, PCI_D3hot);
14139 	}
14140 
14141 	bnx2x_disable_pcie_error_reporting(bp);
14142 	if (remove_netdev) {
14143 		if (bp->regview)
14144 			iounmap(bp->regview);
14145 
14146 		/* For vfs, doorbells are part of the regview and were unmapped
14147 		 * along with it. FW is only loaded by PF.
14148 		 */
14149 		if (IS_PF(bp)) {
14150 			if (bp->doorbells)
14151 				iounmap(bp->doorbells);
14152 
14153 			bnx2x_release_firmware(bp);
14154 		} else {
14155 			bnx2x_vf_pci_dealloc(bp);
14156 		}
14157 		bnx2x_free_mem_bp(bp);
14158 
14159 		free_netdev(dev);
14160 
14161 		if (atomic_read(&pdev->enable_cnt) == 1)
14162 			pci_release_regions(pdev);
14163 
14164 		pci_disable_device(pdev);
14165 	}
14166 }
14167 
14168 static void bnx2x_remove_one(struct pci_dev *pdev)
14169 {
14170 	struct net_device *dev = pci_get_drvdata(pdev);
14171 	struct bnx2x *bp;
14172 
14173 	if (!dev) {
14174 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14175 		return;
14176 	}
14177 	bp = netdev_priv(dev);
14178 
14179 	__bnx2x_remove(pdev, dev, bp, true);
14180 }
14181 
14182 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14183 {
14184 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14185 
14186 	bp->rx_mode = BNX2X_RX_MODE_NONE;
14187 
14188 	if (CNIC_LOADED(bp))
14189 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14190 
14191 	/* Stop Tx */
14192 	bnx2x_tx_disable(bp);
14193 	/* Delete all NAPI objects */
14194 	bnx2x_del_all_napi(bp);
14195 	if (CNIC_LOADED(bp))
14196 		bnx2x_del_all_napi_cnic(bp);
14197 	netdev_reset_tc(bp->dev);
14198 
14199 	del_timer_sync(&bp->timer);
14200 	cancel_delayed_work_sync(&bp->sp_task);
14201 	cancel_delayed_work_sync(&bp->period_task);
14202 
14203 	if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14204 		bp->stats_state = STATS_STATE_DISABLED;
14205 		up(&bp->stats_lock);
14206 	}
14207 
14208 	bnx2x_save_statistics(bp);
14209 
14210 	netif_carrier_off(bp->dev);
14211 
14212 	return 0;
14213 }
14214 
14215 /**
14216  * bnx2x_io_error_detected - called when PCI error is detected
14217  * @pdev: Pointer to PCI device
14218  * @state: The current pci connection state
14219  *
14220  * This function is called after a PCI bus error affecting
14221  * this device has been detected.
14222  */
14223 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14224 						pci_channel_state_t state)
14225 {
14226 	struct net_device *dev = pci_get_drvdata(pdev);
14227 	struct bnx2x *bp = netdev_priv(dev);
14228 
14229 	rtnl_lock();
14230 
14231 	BNX2X_ERR("IO error detected\n");
14232 
14233 	netif_device_detach(dev);
14234 
14235 	if (state == pci_channel_io_perm_failure) {
14236 		rtnl_unlock();
14237 		return PCI_ERS_RESULT_DISCONNECT;
14238 	}
14239 
14240 	if (netif_running(dev))
14241 		bnx2x_eeh_nic_unload(bp);
14242 
14243 	bnx2x_prev_path_mark_eeh(bp);
14244 
14245 	pci_disable_device(pdev);
14246 
14247 	rtnl_unlock();
14248 
14249 	/* Request a slot reset */
14250 	return PCI_ERS_RESULT_NEED_RESET;
14251 }
14252 
14253 /**
14254  * bnx2x_io_slot_reset - called after the PCI bus has been reset
14255  * @pdev: Pointer to PCI device
14256  *
14257  * Restart the card from scratch, as if from a cold-boot.
14258  */
14259 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14260 {
14261 	struct net_device *dev = pci_get_drvdata(pdev);
14262 	struct bnx2x *bp = netdev_priv(dev);
14263 	int i;
14264 
14265 	rtnl_lock();
14266 	BNX2X_ERR("IO slot reset initializing...\n");
14267 	if (pci_enable_device(pdev)) {
14268 		dev_err(&pdev->dev,
14269 			"Cannot re-enable PCI device after reset\n");
14270 		rtnl_unlock();
14271 		return PCI_ERS_RESULT_DISCONNECT;
14272 	}
14273 
14274 	pci_set_master(pdev);
14275 	pci_restore_state(pdev);
14276 	pci_save_state(pdev);
14277 
14278 	if (netif_running(dev))
14279 		bnx2x_set_power_state(bp, PCI_D0);
14280 
14281 	if (netif_running(dev)) {
14282 		BNX2X_ERR("IO slot reset --> driver unload\n");
14283 
14284 		/* MCP should have been reset; Need to wait for validity */
14285 		if (bnx2x_init_shmem(bp)) {
14286 			rtnl_unlock();
14287 			return PCI_ERS_RESULT_DISCONNECT;
14288 		}
14289 
14290 		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14291 			u32 v;
14292 
14293 			v = SHMEM2_RD(bp,
14294 				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14295 			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14296 				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14297 		}
14298 		bnx2x_drain_tx_queues(bp);
14299 		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14300 		bnx2x_netif_stop(bp, 1);
14301 		bnx2x_free_irq(bp);
14302 
14303 		/* Report UNLOAD_DONE to MCP */
14304 		bnx2x_send_unload_done(bp, true);
14305 
14306 		bp->sp_state = 0;
14307 		bp->port.pmf = 0;
14308 
14309 		bnx2x_prev_unload(bp);
14310 
14311 		/* We should have reseted the engine, so It's fair to
14312 		 * assume the FW will no longer write to the bnx2x driver.
14313 		 */
14314 		bnx2x_squeeze_objects(bp);
14315 		bnx2x_free_skbs(bp);
14316 		for_each_rx_queue(bp, i)
14317 			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14318 		bnx2x_free_fp_mem(bp);
14319 		bnx2x_free_mem(bp);
14320 
14321 		bp->state = BNX2X_STATE_CLOSED;
14322 	}
14323 
14324 	rtnl_unlock();
14325 
14326 	return PCI_ERS_RESULT_RECOVERED;
14327 }
14328 
14329 /**
14330  * bnx2x_io_resume - called when traffic can start flowing again
14331  * @pdev: Pointer to PCI device
14332  *
14333  * This callback is called when the error recovery driver tells us that
14334  * its OK to resume normal operation.
14335  */
14336 static void bnx2x_io_resume(struct pci_dev *pdev)
14337 {
14338 	struct net_device *dev = pci_get_drvdata(pdev);
14339 	struct bnx2x *bp = netdev_priv(dev);
14340 
14341 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14342 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14343 		return;
14344 	}
14345 
14346 	rtnl_lock();
14347 
14348 	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14349 							DRV_MSG_SEQ_NUMBER_MASK;
14350 
14351 	if (netif_running(dev))
14352 		bnx2x_nic_load(bp, LOAD_NORMAL);
14353 
14354 	netif_device_attach(dev);
14355 
14356 	rtnl_unlock();
14357 }
14358 
14359 static const struct pci_error_handlers bnx2x_err_handler = {
14360 	.error_detected = bnx2x_io_error_detected,
14361 	.slot_reset     = bnx2x_io_slot_reset,
14362 	.resume         = bnx2x_io_resume,
14363 };
14364 
14365 static void bnx2x_shutdown(struct pci_dev *pdev)
14366 {
14367 	struct net_device *dev = pci_get_drvdata(pdev);
14368 	struct bnx2x *bp;
14369 
14370 	if (!dev)
14371 		return;
14372 
14373 	bp = netdev_priv(dev);
14374 	if (!bp)
14375 		return;
14376 
14377 	rtnl_lock();
14378 	netif_device_detach(dev);
14379 	rtnl_unlock();
14380 
14381 	/* Don't remove the netdevice, as there are scenarios which will cause
14382 	 * the kernel to hang, e.g., when trying to remove bnx2i while the
14383 	 * rootfs is mounted from SAN.
14384 	 */
14385 	__bnx2x_remove(pdev, dev, bp, false);
14386 }
14387 
14388 static struct pci_driver bnx2x_pci_driver = {
14389 	.name        = DRV_MODULE_NAME,
14390 	.id_table    = bnx2x_pci_tbl,
14391 	.probe       = bnx2x_init_one,
14392 	.remove      = bnx2x_remove_one,
14393 	.driver.pm   = &bnx2x_pm_ops,
14394 	.err_handler = &bnx2x_err_handler,
14395 #ifdef CONFIG_BNX2X_SRIOV
14396 	.sriov_configure = bnx2x_sriov_configure,
14397 #endif
14398 	.shutdown    = bnx2x_shutdown,
14399 };
14400 
14401 static int __init bnx2x_init(void)
14402 {
14403 	int ret;
14404 
14405 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
14406 	if (bnx2x_wq == NULL) {
14407 		pr_err("Cannot create workqueue\n");
14408 		return -ENOMEM;
14409 	}
14410 	bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14411 	if (!bnx2x_iov_wq) {
14412 		pr_err("Cannot create iov workqueue\n");
14413 		destroy_workqueue(bnx2x_wq);
14414 		return -ENOMEM;
14415 	}
14416 
14417 	ret = pci_register_driver(&bnx2x_pci_driver);
14418 	if (ret) {
14419 		pr_err("Cannot register driver\n");
14420 		destroy_workqueue(bnx2x_wq);
14421 		destroy_workqueue(bnx2x_iov_wq);
14422 	}
14423 	return ret;
14424 }
14425 
14426 static void __exit bnx2x_cleanup(void)
14427 {
14428 	struct list_head *pos, *q;
14429 
14430 	pci_unregister_driver(&bnx2x_pci_driver);
14431 
14432 	destroy_workqueue(bnx2x_wq);
14433 	destroy_workqueue(bnx2x_iov_wq);
14434 
14435 	/* Free globally allocated resources */
14436 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
14437 		struct bnx2x_prev_path_list *tmp =
14438 			list_entry(pos, struct bnx2x_prev_path_list, list);
14439 		list_del(pos);
14440 		kfree(tmp);
14441 	}
14442 }
14443 
14444 void bnx2x_notify_link_changed(struct bnx2x *bp)
14445 {
14446 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14447 }
14448 
14449 module_init(bnx2x_init);
14450 module_exit(bnx2x_cleanup);
14451 
14452 /**
14453  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14454  *
14455  * @bp:		driver handle
14456  * @set:	set or clear the CAM entry
14457  *
14458  * This function will wait until the ramrod completion returns.
14459  * Return 0 if success, -ENODEV if ramrod doesn't return.
14460  */
14461 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14462 {
14463 	unsigned long ramrod_flags = 0;
14464 
14465 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14466 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14467 				 &bp->iscsi_l2_mac_obj, true,
14468 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14469 }
14470 
14471 /* count denotes the number of new completions we have seen */
14472 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14473 {
14474 	struct eth_spe *spe;
14475 	int cxt_index, cxt_offset;
14476 
14477 #ifdef BNX2X_STOP_ON_ERROR
14478 	if (unlikely(bp->panic))
14479 		return;
14480 #endif
14481 
14482 	spin_lock_bh(&bp->spq_lock);
14483 	BUG_ON(bp->cnic_spq_pending < count);
14484 	bp->cnic_spq_pending -= count;
14485 
14486 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14487 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14488 				& SPE_HDR_CONN_TYPE) >>
14489 				SPE_HDR_CONN_TYPE_SHIFT;
14490 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14491 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14492 
14493 		/* Set validation for iSCSI L2 client before sending SETUP
14494 		 *  ramrod
14495 		 */
14496 		if (type == ETH_CONNECTION_TYPE) {
14497 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14498 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14499 					ILT_PAGE_CIDS;
14500 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14501 					(cxt_index * ILT_PAGE_CIDS);
14502 				bnx2x_set_ctx_validation(bp,
14503 					&bp->context[cxt_index].
14504 							 vcxt[cxt_offset].eth,
14505 					BNX2X_ISCSI_ETH_CID(bp));
14506 			}
14507 		}
14508 
14509 		/*
14510 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
14511 		 * and in the air. We also check that number of outstanding
14512 		 * COMMON ramrods is not more than the EQ and SPQ can
14513 		 * accommodate.
14514 		 */
14515 		if (type == ETH_CONNECTION_TYPE) {
14516 			if (!atomic_read(&bp->cq_spq_left))
14517 				break;
14518 			else
14519 				atomic_dec(&bp->cq_spq_left);
14520 		} else if (type == NONE_CONNECTION_TYPE) {
14521 			if (!atomic_read(&bp->eq_spq_left))
14522 				break;
14523 			else
14524 				atomic_dec(&bp->eq_spq_left);
14525 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
14526 			   (type == FCOE_CONNECTION_TYPE)) {
14527 			if (bp->cnic_spq_pending >=
14528 			    bp->cnic_eth_dev.max_kwqe_pending)
14529 				break;
14530 			else
14531 				bp->cnic_spq_pending++;
14532 		} else {
14533 			BNX2X_ERR("Unknown SPE type: %d\n", type);
14534 			bnx2x_panic();
14535 			break;
14536 		}
14537 
14538 		spe = bnx2x_sp_get_next(bp);
14539 		*spe = *bp->cnic_kwq_cons;
14540 
14541 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14542 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14543 
14544 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14545 			bp->cnic_kwq_cons = bp->cnic_kwq;
14546 		else
14547 			bp->cnic_kwq_cons++;
14548 	}
14549 	bnx2x_sp_prod_update(bp);
14550 	spin_unlock_bh(&bp->spq_lock);
14551 }
14552 
14553 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14554 			       struct kwqe_16 *kwqes[], u32 count)
14555 {
14556 	struct bnx2x *bp = netdev_priv(dev);
14557 	int i;
14558 
14559 #ifdef BNX2X_STOP_ON_ERROR
14560 	if (unlikely(bp->panic)) {
14561 		BNX2X_ERR("Can't post to SP queue while panic\n");
14562 		return -EIO;
14563 	}
14564 #endif
14565 
14566 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14567 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14568 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
14569 		return -EAGAIN;
14570 	}
14571 
14572 	spin_lock_bh(&bp->spq_lock);
14573 
14574 	for (i = 0; i < count; i++) {
14575 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14576 
14577 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14578 			break;
14579 
14580 		*bp->cnic_kwq_prod = *spe;
14581 
14582 		bp->cnic_kwq_pending++;
14583 
14584 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14585 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
14586 		   spe->data.update_data_addr.hi,
14587 		   spe->data.update_data_addr.lo,
14588 		   bp->cnic_kwq_pending);
14589 
14590 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14591 			bp->cnic_kwq_prod = bp->cnic_kwq;
14592 		else
14593 			bp->cnic_kwq_prod++;
14594 	}
14595 
14596 	spin_unlock_bh(&bp->spq_lock);
14597 
14598 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14599 		bnx2x_cnic_sp_post(bp, 0);
14600 
14601 	return i;
14602 }
14603 
14604 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14605 {
14606 	struct cnic_ops *c_ops;
14607 	int rc = 0;
14608 
14609 	mutex_lock(&bp->cnic_mutex);
14610 	c_ops = rcu_dereference_protected(bp->cnic_ops,
14611 					  lockdep_is_held(&bp->cnic_mutex));
14612 	if (c_ops)
14613 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14614 	mutex_unlock(&bp->cnic_mutex);
14615 
14616 	return rc;
14617 }
14618 
14619 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14620 {
14621 	struct cnic_ops *c_ops;
14622 	int rc = 0;
14623 
14624 	rcu_read_lock();
14625 	c_ops = rcu_dereference(bp->cnic_ops);
14626 	if (c_ops)
14627 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14628 	rcu_read_unlock();
14629 
14630 	return rc;
14631 }
14632 
14633 /*
14634  * for commands that have no data
14635  */
14636 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14637 {
14638 	struct cnic_ctl_info ctl = {0};
14639 
14640 	ctl.cmd = cmd;
14641 
14642 	return bnx2x_cnic_ctl_send(bp, &ctl);
14643 }
14644 
14645 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14646 {
14647 	struct cnic_ctl_info ctl = {0};
14648 
14649 	/* first we tell CNIC and only then we count this as a completion */
14650 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14651 	ctl.data.comp.cid = cid;
14652 	ctl.data.comp.error = err;
14653 
14654 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
14655 	bnx2x_cnic_sp_post(bp, 0);
14656 }
14657 
14658 /* Called with netif_addr_lock_bh() taken.
14659  * Sets an rx_mode config for an iSCSI ETH client.
14660  * Doesn't block.
14661  * Completion should be checked outside.
14662  */
14663 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14664 {
14665 	unsigned long accept_flags = 0, ramrod_flags = 0;
14666 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14667 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14668 
14669 	if (start) {
14670 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
14671 		 * because it's the only way for UIO Queue to accept
14672 		 * multicasts (in non-promiscuous mode only one Queue per
14673 		 * function will receive multicast packets (leading in our
14674 		 * case).
14675 		 */
14676 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14677 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14678 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14679 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14680 
14681 		/* Clear STOP_PENDING bit if START is requested */
14682 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14683 
14684 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14685 	} else
14686 		/* Clear START_PENDING bit if STOP is requested */
14687 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14688 
14689 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14690 		set_bit(sched_state, &bp->sp_state);
14691 	else {
14692 		__set_bit(RAMROD_RX, &ramrod_flags);
14693 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14694 				    ramrod_flags);
14695 	}
14696 }
14697 
14698 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14699 {
14700 	struct bnx2x *bp = netdev_priv(dev);
14701 	int rc = 0;
14702 
14703 	switch (ctl->cmd) {
14704 	case DRV_CTL_CTXTBL_WR_CMD: {
14705 		u32 index = ctl->data.io.offset;
14706 		dma_addr_t addr = ctl->data.io.dma_addr;
14707 
14708 		bnx2x_ilt_wr(bp, index, addr);
14709 		break;
14710 	}
14711 
14712 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14713 		int count = ctl->data.credit.credit_count;
14714 
14715 		bnx2x_cnic_sp_post(bp, count);
14716 		break;
14717 	}
14718 
14719 	/* rtnl_lock is held.  */
14720 	case DRV_CTL_START_L2_CMD: {
14721 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14722 		unsigned long sp_bits = 0;
14723 
14724 		/* Configure the iSCSI classification object */
14725 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14726 				   cp->iscsi_l2_client_id,
14727 				   cp->iscsi_l2_cid, BP_FUNC(bp),
14728 				   bnx2x_sp(bp, mac_rdata),
14729 				   bnx2x_sp_mapping(bp, mac_rdata),
14730 				   BNX2X_FILTER_MAC_PENDING,
14731 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14732 				   &bp->macs_pool);
14733 
14734 		/* Set iSCSI MAC address */
14735 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14736 		if (rc)
14737 			break;
14738 
14739 		barrier();
14740 
14741 		/* Start accepting on iSCSI L2 ring */
14742 
14743 		netif_addr_lock_bh(dev);
14744 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
14745 		netif_addr_unlock_bh(dev);
14746 
14747 		/* bits to wait on */
14748 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14749 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14750 
14751 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14752 			BNX2X_ERR("rx_mode completion timed out!\n");
14753 
14754 		break;
14755 	}
14756 
14757 	/* rtnl_lock is held.  */
14758 	case DRV_CTL_STOP_L2_CMD: {
14759 		unsigned long sp_bits = 0;
14760 
14761 		/* Stop accepting on iSCSI L2 ring */
14762 		netif_addr_lock_bh(dev);
14763 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
14764 		netif_addr_unlock_bh(dev);
14765 
14766 		/* bits to wait on */
14767 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14768 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14769 
14770 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14771 			BNX2X_ERR("rx_mode completion timed out!\n");
14772 
14773 		barrier();
14774 
14775 		/* Unset iSCSI L2 MAC */
14776 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14777 					BNX2X_ISCSI_ETH_MAC, true);
14778 		break;
14779 	}
14780 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14781 		int count = ctl->data.credit.credit_count;
14782 
14783 		smp_mb__before_atomic();
14784 		atomic_add(count, &bp->cq_spq_left);
14785 		smp_mb__after_atomic();
14786 		break;
14787 	}
14788 	case DRV_CTL_ULP_REGISTER_CMD: {
14789 		int ulp_type = ctl->data.register_data.ulp_type;
14790 
14791 		if (CHIP_IS_E3(bp)) {
14792 			int idx = BP_FW_MB_IDX(bp);
14793 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14794 			int path = BP_PATH(bp);
14795 			int port = BP_PORT(bp);
14796 			int i;
14797 			u32 scratch_offset;
14798 			u32 *host_addr;
14799 
14800 			/* first write capability to shmem2 */
14801 			if (ulp_type == CNIC_ULP_ISCSI)
14802 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14803 			else if (ulp_type == CNIC_ULP_FCOE)
14804 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14805 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14806 
14807 			if ((ulp_type != CNIC_ULP_FCOE) ||
14808 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14809 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14810 				break;
14811 
14812 			/* if reached here - should write fcoe capabilities */
14813 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14814 			if (!scratch_offset)
14815 				break;
14816 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
14817 						   fcoe_features[path][port]);
14818 			host_addr = (u32 *) &(ctl->data.register_data.
14819 					      fcoe_features);
14820 			for (i = 0; i < sizeof(struct fcoe_capabilities);
14821 			     i += 4)
14822 				REG_WR(bp, scratch_offset + i,
14823 				       *(host_addr + i/4));
14824 		}
14825 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14826 		break;
14827 	}
14828 
14829 	case DRV_CTL_ULP_UNREGISTER_CMD: {
14830 		int ulp_type = ctl->data.ulp_type;
14831 
14832 		if (CHIP_IS_E3(bp)) {
14833 			int idx = BP_FW_MB_IDX(bp);
14834 			u32 cap;
14835 
14836 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14837 			if (ulp_type == CNIC_ULP_ISCSI)
14838 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14839 			else if (ulp_type == CNIC_ULP_FCOE)
14840 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14841 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14842 		}
14843 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14844 		break;
14845 	}
14846 
14847 	default:
14848 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
14849 		rc = -EINVAL;
14850 	}
14851 
14852 	/* For storage-only interfaces, change driver state */
14853 	if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14854 		switch (ctl->drv_state) {
14855 		case DRV_NOP:
14856 			break;
14857 		case DRV_ACTIVE:
14858 			bnx2x_set_os_driver_state(bp,
14859 						  OS_DRIVER_STATE_ACTIVE);
14860 			break;
14861 		case DRV_INACTIVE:
14862 			bnx2x_set_os_driver_state(bp,
14863 						  OS_DRIVER_STATE_DISABLED);
14864 			break;
14865 		case DRV_UNLOADED:
14866 			bnx2x_set_os_driver_state(bp,
14867 						  OS_DRIVER_STATE_NOT_LOADED);
14868 			break;
14869 		default:
14870 		BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14871 		}
14872 	}
14873 
14874 	return rc;
14875 }
14876 
14877 static int bnx2x_get_fc_npiv(struct net_device *dev,
14878 			     struct cnic_fc_npiv_tbl *cnic_tbl)
14879 {
14880 	struct bnx2x *bp = netdev_priv(dev);
14881 	struct bdn_fc_npiv_tbl *tbl = NULL;
14882 	u32 offset, entries;
14883 	int rc = -EINVAL;
14884 	int i;
14885 
14886 	if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14887 		goto out;
14888 
14889 	DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14890 
14891 	tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14892 	if (!tbl) {
14893 		BNX2X_ERR("Failed to allocate fc_npiv table\n");
14894 		goto out;
14895 	}
14896 
14897 	offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14898 	if (!offset) {
14899 		DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14900 		goto out;
14901 	}
14902 	DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14903 
14904 	/* Read the table contents from nvram */
14905 	if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14906 		BNX2X_ERR("Failed to read FC-NPIV table\n");
14907 		goto out;
14908 	}
14909 
14910 	/* Since bnx2x_nvram_read() returns data in be32, we need to convert
14911 	 * the number of entries back to cpu endianness.
14912 	 */
14913 	entries = tbl->fc_npiv_cfg.num_of_npiv;
14914 	entries = (__force u32)be32_to_cpu((__force __be32)entries);
14915 	tbl->fc_npiv_cfg.num_of_npiv = entries;
14916 
14917 	if (!tbl->fc_npiv_cfg.num_of_npiv) {
14918 		DP(BNX2X_MSG_MCP,
14919 		   "No FC-NPIV table [valid, simply not present]\n");
14920 		goto out;
14921 	} else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14922 		BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14923 			  tbl->fc_npiv_cfg.num_of_npiv);
14924 		goto out;
14925 	} else {
14926 		DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14927 		   tbl->fc_npiv_cfg.num_of_npiv);
14928 	}
14929 
14930 	/* Copy the data into cnic-provided struct */
14931 	cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14932 	for (i = 0; i < cnic_tbl->count; i++) {
14933 		memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14934 		memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14935 	}
14936 
14937 	rc = 0;
14938 out:
14939 	kfree(tbl);
14940 	return rc;
14941 }
14942 
14943 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14944 {
14945 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14946 
14947 	if (bp->flags & USING_MSIX_FLAG) {
14948 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14949 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14950 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
14951 	} else {
14952 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14953 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14954 	}
14955 	if (!CHIP_IS_E1x(bp))
14956 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14957 	else
14958 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14959 
14960 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14961 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14962 	cp->irq_arr[1].status_blk = bp->def_status_blk;
14963 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14964 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14965 
14966 	cp->num_irq = 2;
14967 }
14968 
14969 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14970 {
14971 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14972 
14973 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14974 			     bnx2x_cid_ilt_lines(bp);
14975 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14976 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14977 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14978 
14979 	DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14980 	   BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14981 	   cp->iscsi_l2_cid);
14982 
14983 	if (NO_ISCSI_OOO(bp))
14984 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14985 }
14986 
14987 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14988 			       void *data)
14989 {
14990 	struct bnx2x *bp = netdev_priv(dev);
14991 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14992 	int rc;
14993 
14994 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14995 
14996 	if (ops == NULL) {
14997 		BNX2X_ERR("NULL ops received\n");
14998 		return -EINVAL;
14999 	}
15000 
15001 	if (!CNIC_SUPPORT(bp)) {
15002 		BNX2X_ERR("Can't register CNIC when not supported\n");
15003 		return -EOPNOTSUPP;
15004 	}
15005 
15006 	if (!CNIC_LOADED(bp)) {
15007 		rc = bnx2x_load_cnic(bp);
15008 		if (rc) {
15009 			BNX2X_ERR("CNIC-related load failed\n");
15010 			return rc;
15011 		}
15012 	}
15013 
15014 	bp->cnic_enabled = true;
15015 
15016 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
15017 	if (!bp->cnic_kwq)
15018 		return -ENOMEM;
15019 
15020 	bp->cnic_kwq_cons = bp->cnic_kwq;
15021 	bp->cnic_kwq_prod = bp->cnic_kwq;
15022 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
15023 
15024 	bp->cnic_spq_pending = 0;
15025 	bp->cnic_kwq_pending = 0;
15026 
15027 	bp->cnic_data = data;
15028 
15029 	cp->num_irq = 0;
15030 	cp->drv_state |= CNIC_DRV_STATE_REGD;
15031 	cp->iro_arr = bp->iro_arr;
15032 
15033 	bnx2x_setup_cnic_irq_info(bp);
15034 
15035 	rcu_assign_pointer(bp->cnic_ops, ops);
15036 
15037 	/* Schedule driver to read CNIC driver versions */
15038 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
15039 
15040 	return 0;
15041 }
15042 
15043 static int bnx2x_unregister_cnic(struct net_device *dev)
15044 {
15045 	struct bnx2x *bp = netdev_priv(dev);
15046 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15047 
15048 	mutex_lock(&bp->cnic_mutex);
15049 	cp->drv_state = 0;
15050 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
15051 	mutex_unlock(&bp->cnic_mutex);
15052 	synchronize_rcu();
15053 	bp->cnic_enabled = false;
15054 	kfree(bp->cnic_kwq);
15055 	bp->cnic_kwq = NULL;
15056 
15057 	return 0;
15058 }
15059 
15060 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15061 {
15062 	struct bnx2x *bp = netdev_priv(dev);
15063 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15064 
15065 	/* If both iSCSI and FCoE are disabled - return NULL in
15066 	 * order to indicate CNIC that it should not try to work
15067 	 * with this device.
15068 	 */
15069 	if (NO_ISCSI(bp) && NO_FCOE(bp))
15070 		return NULL;
15071 
15072 	cp->drv_owner = THIS_MODULE;
15073 	cp->chip_id = CHIP_ID(bp);
15074 	cp->pdev = bp->pdev;
15075 	cp->io_base = bp->regview;
15076 	cp->io_base2 = bp->doorbells;
15077 	cp->max_kwqe_pending = 8;
15078 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15079 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15080 			     bnx2x_cid_ilt_lines(bp);
15081 	cp->ctx_tbl_len = CNIC_ILT_LINES;
15082 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15083 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15084 	cp->drv_ctl = bnx2x_drv_ctl;
15085 	cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15086 	cp->drv_register_cnic = bnx2x_register_cnic;
15087 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15088 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15089 	cp->iscsi_l2_client_id =
15090 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15091 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15092 
15093 	if (NO_ISCSI_OOO(bp))
15094 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15095 
15096 	if (NO_ISCSI(bp))
15097 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15098 
15099 	if (NO_FCOE(bp))
15100 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15101 
15102 	BNX2X_DEV_INFO(
15103 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15104 	   cp->ctx_blk_size,
15105 	   cp->ctx_tbl_offset,
15106 	   cp->ctx_tbl_len,
15107 	   cp->starting_cid);
15108 	return cp;
15109 }
15110 
15111 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15112 {
15113 	struct bnx2x *bp = fp->bp;
15114 	u32 offset = BAR_USTRORM_INTMEM;
15115 
15116 	if (IS_VF(bp))
15117 		return bnx2x_vf_ustorm_prods_offset(bp, fp);
15118 	else if (!CHIP_IS_E1x(bp))
15119 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15120 	else
15121 		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15122 
15123 	return offset;
15124 }
15125 
15126 /* called only on E1H or E2.
15127  * When pretending to be PF, the pretend value is the function number 0...7
15128  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15129  * combination
15130  */
15131 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15132 {
15133 	u32 pretend_reg;
15134 
15135 	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15136 		return -1;
15137 
15138 	/* get my own pretend register */
15139 	pretend_reg = bnx2x_get_pretend_reg(bp);
15140 	REG_WR(bp, pretend_reg, pretend_func_val);
15141 	REG_RD(bp, pretend_reg);
15142 	return 0;
15143 }
15144 
15145 static void bnx2x_ptp_task(struct work_struct *work)
15146 {
15147 	struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15148 	int port = BP_PORT(bp);
15149 	u32 val_seq;
15150 	u64 timestamp, ns;
15151 	struct skb_shared_hwtstamps shhwtstamps;
15152 	bool bail = true;
15153 	int i;
15154 
15155 	/* FW may take a while to complete timestamping; try a bit and if it's
15156 	 * still not complete, may indicate an error state - bail out then.
15157 	 */
15158 	for (i = 0; i < 10; i++) {
15159 		/* Read Tx timestamp registers */
15160 		val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15161 				 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15162 		if (val_seq & 0x10000) {
15163 			bail = false;
15164 			break;
15165 		}
15166 		msleep(1 << i);
15167 	}
15168 
15169 	if (!bail) {
15170 		/* There is a valid timestamp value */
15171 		timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15172 				   NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15173 		timestamp <<= 32;
15174 		timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15175 				    NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15176 		/* Reset timestamp register to allow new timestamp */
15177 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15178 		       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15179 		ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15180 
15181 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15182 		shhwtstamps.hwtstamp = ns_to_ktime(ns);
15183 		skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15184 
15185 		DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15186 		   timestamp, ns);
15187 	} else {
15188 		DP(BNX2X_MSG_PTP,
15189 		   "Tx timestamp is not recorded (register read=%u)\n",
15190 		   val_seq);
15191 		bp->eth_stats.ptp_skip_tx_ts++;
15192 	}
15193 
15194 	dev_kfree_skb_any(bp->ptp_tx_skb);
15195 	bp->ptp_tx_skb = NULL;
15196 }
15197 
15198 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15199 {
15200 	int port = BP_PORT(bp);
15201 	u64 timestamp, ns;
15202 
15203 	timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15204 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15205 	timestamp <<= 32;
15206 	timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15207 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15208 
15209 	/* Reset timestamp register to allow new timestamp */
15210 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15211 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15212 
15213 	ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15214 
15215 	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15216 
15217 	DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15218 	   timestamp, ns);
15219 }
15220 
15221 /* Read the PHC */
15222 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15223 {
15224 	struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15225 	int port = BP_PORT(bp);
15226 	u32 wb_data[2];
15227 	u64 phc_cycles;
15228 
15229 	REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15230 		    NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15231 	phc_cycles = wb_data[1];
15232 	phc_cycles = (phc_cycles << 32) + wb_data[0];
15233 
15234 	DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15235 
15236 	return phc_cycles;
15237 }
15238 
15239 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15240 {
15241 	memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15242 	bp->cyclecounter.read = bnx2x_cyclecounter_read;
15243 	bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15244 	bp->cyclecounter.shift = 0;
15245 	bp->cyclecounter.mult = 1;
15246 }
15247 
15248 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15249 {
15250 	struct bnx2x_func_state_params func_params = {NULL};
15251 	struct bnx2x_func_set_timesync_params *set_timesync_params =
15252 		&func_params.params.set_timesync;
15253 
15254 	/* Prepare parameters for function state transitions */
15255 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15256 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15257 
15258 	func_params.f_obj = &bp->func_obj;
15259 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15260 
15261 	/* Function parameters */
15262 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15263 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15264 
15265 	return bnx2x_func_state_change(bp, &func_params);
15266 }
15267 
15268 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15269 {
15270 	struct bnx2x_queue_state_params q_params;
15271 	int rc, i;
15272 
15273 	/* send queue update ramrod to enable PTP packets */
15274 	memset(&q_params, 0, sizeof(q_params));
15275 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15276 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
15277 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15278 		  &q_params.params.update.update_flags);
15279 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15280 		  &q_params.params.update.update_flags);
15281 
15282 	/* send the ramrod on all the queues of the PF */
15283 	for_each_eth_queue(bp, i) {
15284 		struct bnx2x_fastpath *fp = &bp->fp[i];
15285 
15286 		/* Set the appropriate Queue object */
15287 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15288 
15289 		/* Update the Queue state */
15290 		rc = bnx2x_queue_state_change(bp, &q_params);
15291 		if (rc) {
15292 			BNX2X_ERR("Failed to enable PTP packets\n");
15293 			return rc;
15294 		}
15295 	}
15296 
15297 	return 0;
15298 }
15299 
15300 #define BNX2X_P2P_DETECT_PARAM_MASK 0x5F5
15301 #define BNX2X_P2P_DETECT_RULE_MASK 0x3DBB
15302 #define BNX2X_PTP_TX_ON_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15303 #define BNX2X_PTP_TX_ON_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15304 #define BNX2X_PTP_V1_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EE)
15305 #define BNX2X_PTP_V1_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FFE)
15306 #define BNX2X_PTP_V2_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EA)
15307 #define BNX2X_PTP_V2_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FEE)
15308 #define BNX2X_PTP_V2_L2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6BF)
15309 #define BNX2X_PTP_V2_L2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EFF)
15310 #define BNX2X_PTP_V2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15311 #define BNX2X_PTP_V2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15312 
15313 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15314 {
15315 	int port = BP_PORT(bp);
15316 	u32 param, rule;
15317 	int rc;
15318 
15319 	if (!bp->hwtstamp_ioctl_called)
15320 		return 0;
15321 
15322 	param = port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15323 		NIG_REG_P0_TLLH_PTP_PARAM_MASK;
15324 	rule = port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15325 		NIG_REG_P0_TLLH_PTP_RULE_MASK;
15326 	switch (bp->tx_type) {
15327 	case HWTSTAMP_TX_ON:
15328 		bp->flags |= TX_TIMESTAMPING_EN;
15329 		REG_WR(bp, param, BNX2X_PTP_TX_ON_PARAM_MASK);
15330 		REG_WR(bp, rule, BNX2X_PTP_TX_ON_RULE_MASK);
15331 		break;
15332 	case HWTSTAMP_TX_ONESTEP_SYNC:
15333 	case HWTSTAMP_TX_ONESTEP_P2P:
15334 		BNX2X_ERR("One-step timestamping is not supported\n");
15335 		return -ERANGE;
15336 	}
15337 
15338 	param = port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15339 		NIG_REG_P0_LLH_PTP_PARAM_MASK;
15340 	rule = port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15341 		NIG_REG_P0_LLH_PTP_RULE_MASK;
15342 	switch (bp->rx_filter) {
15343 	case HWTSTAMP_FILTER_NONE:
15344 		break;
15345 	case HWTSTAMP_FILTER_ALL:
15346 	case HWTSTAMP_FILTER_SOME:
15347 	case HWTSTAMP_FILTER_NTP_ALL:
15348 		bp->rx_filter = HWTSTAMP_FILTER_NONE;
15349 		break;
15350 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15351 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15352 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15353 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15354 		/* Initialize PTP detection for UDP/IPv4 events */
15355 		REG_WR(bp, param, BNX2X_PTP_V1_L4_PARAM_MASK);
15356 		REG_WR(bp, rule, BNX2X_PTP_V1_L4_RULE_MASK);
15357 		break;
15358 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15359 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15360 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15361 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15362 		/* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15363 		REG_WR(bp, param, BNX2X_PTP_V2_L4_PARAM_MASK);
15364 		REG_WR(bp, rule, BNX2X_PTP_V2_L4_RULE_MASK);
15365 		break;
15366 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15367 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15368 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15369 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15370 		/* Initialize PTP detection L2 events */
15371 		REG_WR(bp, param, BNX2X_PTP_V2_L2_PARAM_MASK);
15372 		REG_WR(bp, rule, BNX2X_PTP_V2_L2_RULE_MASK);
15373 
15374 		break;
15375 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
15376 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
15377 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15378 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15379 		/* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15380 		REG_WR(bp, param, BNX2X_PTP_V2_PARAM_MASK);
15381 		REG_WR(bp, rule, BNX2X_PTP_V2_RULE_MASK);
15382 		break;
15383 	}
15384 
15385 	/* Indicate to FW that this PF expects recorded PTP packets */
15386 	rc = bnx2x_enable_ptp_packets(bp);
15387 	if (rc)
15388 		return rc;
15389 
15390 	/* Enable sending PTP packets to host */
15391 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15392 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15393 
15394 	return 0;
15395 }
15396 
15397 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15398 {
15399 	struct hwtstamp_config config;
15400 	int rc;
15401 
15402 	DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15403 
15404 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15405 		return -EFAULT;
15406 
15407 	DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15408 	   config.tx_type, config.rx_filter);
15409 
15410 	if (config.flags) {
15411 		BNX2X_ERR("config.flags is reserved for future use\n");
15412 		return -EINVAL;
15413 	}
15414 
15415 	bp->hwtstamp_ioctl_called = 1;
15416 	bp->tx_type = config.tx_type;
15417 	bp->rx_filter = config.rx_filter;
15418 
15419 	rc = bnx2x_configure_ptp_filters(bp);
15420 	if (rc)
15421 		return rc;
15422 
15423 	config.rx_filter = bp->rx_filter;
15424 
15425 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15426 		-EFAULT : 0;
15427 }
15428 
15429 /* Configures HW for PTP */
15430 static int bnx2x_configure_ptp(struct bnx2x *bp)
15431 {
15432 	int rc, port = BP_PORT(bp);
15433 	u32 wb_data[2];
15434 
15435 	/* Reset PTP event detection rules - will be configured in the IOCTL */
15436 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15437 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15438 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15439 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15440 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15441 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15442 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15443 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15444 
15445 	/* Disable PTP packets to host - will be configured in the IOCTL*/
15446 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15447 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15448 
15449 	/* Enable the PTP feature */
15450 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15451 	       NIG_REG_P0_PTP_EN, 0x3F);
15452 
15453 	/* Enable the free-running counter */
15454 	wb_data[0] = 0;
15455 	wb_data[1] = 0;
15456 	REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15457 
15458 	/* Reset drift register (offset register is not reset) */
15459 	rc = bnx2x_send_reset_timesync_ramrod(bp);
15460 	if (rc) {
15461 		BNX2X_ERR("Failed to reset PHC drift register\n");
15462 		return -EFAULT;
15463 	}
15464 
15465 	/* Reset possibly old timestamps */
15466 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15467 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15468 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15469 	       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15470 
15471 	return 0;
15472 }
15473 
15474 /* Called during load, to initialize PTP-related stuff */
15475 void bnx2x_init_ptp(struct bnx2x *bp)
15476 {
15477 	int rc;
15478 
15479 	/* Configure PTP in HW */
15480 	rc = bnx2x_configure_ptp(bp);
15481 	if (rc) {
15482 		BNX2X_ERR("Stopping PTP initialization\n");
15483 		return;
15484 	}
15485 
15486 	/* Init work queue for Tx timestamping */
15487 	INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15488 
15489 	/* Init cyclecounter and timecounter. This is done only in the first
15490 	 * load. If done in every load, PTP application will fail when doing
15491 	 * unload / load (e.g. MTU change) while it is running.
15492 	 */
15493 	if (!bp->timecounter_init_done) {
15494 		bnx2x_init_cyclecounter(bp);
15495 		timecounter_init(&bp->timecounter, &bp->cyclecounter,
15496 				 ktime_to_ns(ktime_get_real()));
15497 		bp->timecounter_init_done = 1;
15498 	}
15499 
15500 	DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15501 }
15502