1 /* bnx2x_main.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h>  /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/aer.h>
33 #include <linux/init.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/bitops.h>
39 #include <linux/irq.h>
40 #include <linux/delay.h>
41 #include <asm/byteorder.h>
42 #include <linux/time.h>
43 #include <linux/ethtool.h>
44 #include <linux/mii.h>
45 #include <linux/if_vlan.h>
46 #include <linux/crash_dump.h>
47 #include <net/ip.h>
48 #include <net/ipv6.h>
49 #include <net/tcp.h>
50 #include <net/vxlan.h>
51 #include <net/checksum.h>
52 #include <net/ip6_checksum.h>
53 #include <linux/workqueue.h>
54 #include <linux/crc32.h>
55 #include <linux/crc32c.h>
56 #include <linux/prefetch.h>
57 #include <linux/zlib.h>
58 #include <linux/io.h>
59 #include <linux/semaphore.h>
60 #include <linux/stringify.h>
61 #include <linux/vmalloc.h>
62 #include "bnx2x.h"
63 #include "bnx2x_init.h"
64 #include "bnx2x_init_ops.h"
65 #include "bnx2x_cmn.h"
66 #include "bnx2x_vfpf.h"
67 #include "bnx2x_dcb.h"
68 #include "bnx2x_sp.h"
69 #include <linux/firmware.h>
70 #include "bnx2x_fw_file_hdr.h"
71 /* FW files */
72 #define FW_FILE_VERSION					\
73 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
74 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
75 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
76 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
77 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
78 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
79 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
80 
81 /* Time in jiffies before concluding the transmitter is hung */
82 #define TX_TIMEOUT		(5*HZ)
83 
84 static char version[] =
85 	"QLogic 5771x/578xx 10/20-Gigabit Ethernet Driver "
86 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
87 
88 MODULE_AUTHOR("Eliezer Tamir");
89 MODULE_DESCRIPTION("QLogic "
90 		   "BCM57710/57711/57711E/"
91 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
92 		   "57840/57840_MF Driver");
93 MODULE_LICENSE("GPL");
94 MODULE_VERSION(DRV_MODULE_VERSION);
95 MODULE_FIRMWARE(FW_FILE_NAME_E1);
96 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
97 MODULE_FIRMWARE(FW_FILE_NAME_E2);
98 
99 int bnx2x_num_queues;
100 module_param_named(num_queues, bnx2x_num_queues, int, 0444);
101 MODULE_PARM_DESC(num_queues,
102 		 " Set number of queues (default is as a number of CPUs)");
103 
104 static int disable_tpa;
105 module_param(disable_tpa, int, 0444);
106 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
107 
108 static int int_mode;
109 module_param(int_mode, int, 0444);
110 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
111 				"(1 INT#x; 2 MSI)");
112 
113 static int dropless_fc;
114 module_param(dropless_fc, int, 0444);
115 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
116 
117 static int mrrs = -1;
118 module_param(mrrs, int, 0444);
119 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
120 
121 static int debug;
122 module_param(debug, int, 0444);
123 MODULE_PARM_DESC(debug, " Default debug msglevel");
124 
125 static struct workqueue_struct *bnx2x_wq;
126 struct workqueue_struct *bnx2x_iov_wq;
127 
128 struct bnx2x_mac_vals {
129 	u32 xmac_addr;
130 	u32 xmac_val;
131 	u32 emac_addr;
132 	u32 emac_val;
133 	u32 umac_addr[2];
134 	u32 umac_val[2];
135 	u32 bmac_addr;
136 	u32 bmac_val[2];
137 };
138 
139 enum bnx2x_board_type {
140 	BCM57710 = 0,
141 	BCM57711,
142 	BCM57711E,
143 	BCM57712,
144 	BCM57712_MF,
145 	BCM57712_VF,
146 	BCM57800,
147 	BCM57800_MF,
148 	BCM57800_VF,
149 	BCM57810,
150 	BCM57810_MF,
151 	BCM57810_VF,
152 	BCM57840_4_10,
153 	BCM57840_2_20,
154 	BCM57840_MF,
155 	BCM57840_VF,
156 	BCM57811,
157 	BCM57811_MF,
158 	BCM57840_O,
159 	BCM57840_MFO,
160 	BCM57811_VF
161 };
162 
163 /* indexed by board_type, above */
164 static struct {
165 	char *name;
166 } board_info[] = {
167 	[BCM57710]	= { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
168 	[BCM57711]	= { "QLogic BCM57711 10 Gigabit PCIe" },
169 	[BCM57711E]	= { "QLogic BCM57711E 10 Gigabit PCIe" },
170 	[BCM57712]	= { "QLogic BCM57712 10 Gigabit Ethernet" },
171 	[BCM57712_MF]	= { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
172 	[BCM57712_VF]	= { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
173 	[BCM57800]	= { "QLogic BCM57800 10 Gigabit Ethernet" },
174 	[BCM57800_MF]	= { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
175 	[BCM57800_VF]	= { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
176 	[BCM57810]	= { "QLogic BCM57810 10 Gigabit Ethernet" },
177 	[BCM57810_MF]	= { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
178 	[BCM57810_VF]	= { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
179 	[BCM57840_4_10]	= { "QLogic BCM57840 10 Gigabit Ethernet" },
180 	[BCM57840_2_20]	= { "QLogic BCM57840 20 Gigabit Ethernet" },
181 	[BCM57840_MF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
182 	[BCM57840_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
183 	[BCM57811]	= { "QLogic BCM57811 10 Gigabit Ethernet" },
184 	[BCM57811_MF]	= { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
185 	[BCM57840_O]	= { "QLogic BCM57840 10/20 Gigabit Ethernet" },
186 	[BCM57840_MFO]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
187 	[BCM57811_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
188 };
189 
190 #ifndef PCI_DEVICE_ID_NX2_57710
191 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
192 #endif
193 #ifndef PCI_DEVICE_ID_NX2_57711
194 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
195 #endif
196 #ifndef PCI_DEVICE_ID_NX2_57711E
197 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
198 #endif
199 #ifndef PCI_DEVICE_ID_NX2_57712
200 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
201 #endif
202 #ifndef PCI_DEVICE_ID_NX2_57712_MF
203 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
204 #endif
205 #ifndef PCI_DEVICE_ID_NX2_57712_VF
206 #define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
207 #endif
208 #ifndef PCI_DEVICE_ID_NX2_57800
209 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
210 #endif
211 #ifndef PCI_DEVICE_ID_NX2_57800_MF
212 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
213 #endif
214 #ifndef PCI_DEVICE_ID_NX2_57800_VF
215 #define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
216 #endif
217 #ifndef PCI_DEVICE_ID_NX2_57810
218 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
219 #endif
220 #ifndef PCI_DEVICE_ID_NX2_57810_MF
221 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
222 #endif
223 #ifndef PCI_DEVICE_ID_NX2_57840_O
224 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
225 #endif
226 #ifndef PCI_DEVICE_ID_NX2_57810_VF
227 #define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
228 #endif
229 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
230 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
231 #endif
232 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
233 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
234 #endif
235 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
236 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
237 #endif
238 #ifndef PCI_DEVICE_ID_NX2_57840_MF
239 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
240 #endif
241 #ifndef PCI_DEVICE_ID_NX2_57840_VF
242 #define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
243 #endif
244 #ifndef PCI_DEVICE_ID_NX2_57811
245 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
246 #endif
247 #ifndef PCI_DEVICE_ID_NX2_57811_MF
248 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
249 #endif
250 #ifndef PCI_DEVICE_ID_NX2_57811_VF
251 #define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
252 #endif
253 
254 static const struct pci_device_id bnx2x_pci_tbl[] = {
255 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
256 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
257 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
258 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
259 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
260 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
261 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
262 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
263 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
264 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
265 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
266 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
267 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
268 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
269 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
270 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
271 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
272 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
273 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
274 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
275 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
276 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
277 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
278 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
279 	{ 0 }
280 };
281 
282 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
283 
284 /* Global resources for unloading a previously loaded device */
285 #define BNX2X_PREV_WAIT_NEEDED 1
286 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
287 static LIST_HEAD(bnx2x_prev_list);
288 
289 /* Forward declaration */
290 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
291 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
292 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
293 
294 /****************************************************************************
295 * General service functions
296 ****************************************************************************/
297 
298 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
299 
300 static void __storm_memset_dma_mapping(struct bnx2x *bp,
301 				       u32 addr, dma_addr_t mapping)
302 {
303 	REG_WR(bp,  addr, U64_LO(mapping));
304 	REG_WR(bp,  addr + 4, U64_HI(mapping));
305 }
306 
307 static void storm_memset_spq_addr(struct bnx2x *bp,
308 				  dma_addr_t mapping, u16 abs_fid)
309 {
310 	u32 addr = XSEM_REG_FAST_MEMORY +
311 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
312 
313 	__storm_memset_dma_mapping(bp, addr, mapping);
314 }
315 
316 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
317 				  u16 pf_id)
318 {
319 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
320 		pf_id);
321 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
322 		pf_id);
323 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
324 		pf_id);
325 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
326 		pf_id);
327 }
328 
329 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
330 				 u8 enable)
331 {
332 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
333 		enable);
334 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
335 		enable);
336 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
337 		enable);
338 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
339 		enable);
340 }
341 
342 static void storm_memset_eq_data(struct bnx2x *bp,
343 				 struct event_ring_data *eq_data,
344 				u16 pfid)
345 {
346 	size_t size = sizeof(struct event_ring_data);
347 
348 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
349 
350 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
351 }
352 
353 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
354 				 u16 pfid)
355 {
356 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
357 	REG_WR16(bp, addr, eq_prod);
358 }
359 
360 /* used only at init
361  * locking is done by mcp
362  */
363 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
364 {
365 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
366 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
367 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
368 			       PCICFG_VENDOR_ID_OFFSET);
369 }
370 
371 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
372 {
373 	u32 val;
374 
375 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
376 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
377 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
378 			       PCICFG_VENDOR_ID_OFFSET);
379 
380 	return val;
381 }
382 
383 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
384 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
385 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
386 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
387 #define DMAE_DP_DST_NONE	"dst_addr [none]"
388 
389 static void bnx2x_dp_dmae(struct bnx2x *bp,
390 			  struct dmae_command *dmae, int msglvl)
391 {
392 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
393 	int i;
394 
395 	switch (dmae->opcode & DMAE_COMMAND_DST) {
396 	case DMAE_CMD_DST_PCI:
397 		if (src_type == DMAE_CMD_SRC_PCI)
398 			DP(msglvl, "DMAE: opcode 0x%08x\n"
399 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
400 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
401 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
402 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
403 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
404 			   dmae->comp_val);
405 		else
406 			DP(msglvl, "DMAE: opcode 0x%08x\n"
407 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
408 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
409 			   dmae->opcode, dmae->src_addr_lo >> 2,
410 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
411 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
412 			   dmae->comp_val);
413 		break;
414 	case DMAE_CMD_DST_GRC:
415 		if (src_type == DMAE_CMD_SRC_PCI)
416 			DP(msglvl, "DMAE: opcode 0x%08x\n"
417 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
418 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
419 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
420 			   dmae->len, dmae->dst_addr_lo >> 2,
421 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
422 			   dmae->comp_val);
423 		else
424 			DP(msglvl, "DMAE: opcode 0x%08x\n"
425 			   "src [%08x], len [%d*4], dst [%08x]\n"
426 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
427 			   dmae->opcode, dmae->src_addr_lo >> 2,
428 			   dmae->len, dmae->dst_addr_lo >> 2,
429 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
430 			   dmae->comp_val);
431 		break;
432 	default:
433 		if (src_type == DMAE_CMD_SRC_PCI)
434 			DP(msglvl, "DMAE: opcode 0x%08x\n"
435 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
436 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
437 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
438 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
439 			   dmae->comp_val);
440 		else
441 			DP(msglvl, "DMAE: opcode 0x%08x\n"
442 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
443 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
444 			   dmae->opcode, dmae->src_addr_lo >> 2,
445 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
446 			   dmae->comp_val);
447 		break;
448 	}
449 
450 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
451 		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
452 		   i, *(((u32 *)dmae) + i));
453 }
454 
455 /* copy command into DMAE command memory and set DMAE command go */
456 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
457 {
458 	u32 cmd_offset;
459 	int i;
460 
461 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
462 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
463 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
464 	}
465 	REG_WR(bp, dmae_reg_go_c[idx], 1);
466 }
467 
468 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
469 {
470 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
471 			   DMAE_CMD_C_ENABLE);
472 }
473 
474 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
475 {
476 	return opcode & ~DMAE_CMD_SRC_RESET;
477 }
478 
479 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
480 			     bool with_comp, u8 comp_type)
481 {
482 	u32 opcode = 0;
483 
484 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
485 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
486 
487 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
488 
489 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
490 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
491 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
492 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
493 
494 #ifdef __BIG_ENDIAN
495 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
496 #else
497 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
498 #endif
499 	if (with_comp)
500 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
501 	return opcode;
502 }
503 
504 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
505 				      struct dmae_command *dmae,
506 				      u8 src_type, u8 dst_type)
507 {
508 	memset(dmae, 0, sizeof(struct dmae_command));
509 
510 	/* set the opcode */
511 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
512 					 true, DMAE_COMP_PCI);
513 
514 	/* fill in the completion parameters */
515 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
516 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
517 	dmae->comp_val = DMAE_COMP_VAL;
518 }
519 
520 /* issue a dmae command over the init-channel and wait for completion */
521 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
522 			       u32 *comp)
523 {
524 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
525 	int rc = 0;
526 
527 	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
528 
529 	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
530 	 * as long as this code is called both from syscall context and
531 	 * from ndo_set_rx_mode() flow that may be called from BH.
532 	 */
533 
534 	spin_lock_bh(&bp->dmae_lock);
535 
536 	/* reset completion */
537 	*comp = 0;
538 
539 	/* post the command on the channel used for initializations */
540 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
541 
542 	/* wait for completion */
543 	udelay(5);
544 	while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
545 
546 		if (!cnt ||
547 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
548 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
549 			BNX2X_ERR("DMAE timeout!\n");
550 			rc = DMAE_TIMEOUT;
551 			goto unlock;
552 		}
553 		cnt--;
554 		udelay(50);
555 	}
556 	if (*comp & DMAE_PCI_ERR_FLAG) {
557 		BNX2X_ERR("DMAE PCI error!\n");
558 		rc = DMAE_PCI_ERROR;
559 	}
560 
561 unlock:
562 
563 	spin_unlock_bh(&bp->dmae_lock);
564 
565 	return rc;
566 }
567 
568 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
569 		      u32 len32)
570 {
571 	int rc;
572 	struct dmae_command dmae;
573 
574 	if (!bp->dmae_ready) {
575 		u32 *data = bnx2x_sp(bp, wb_data[0]);
576 
577 		if (CHIP_IS_E1(bp))
578 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
579 		else
580 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
581 		return;
582 	}
583 
584 	/* set opcode and fixed command fields */
585 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
586 
587 	/* fill in addresses and len */
588 	dmae.src_addr_lo = U64_LO(dma_addr);
589 	dmae.src_addr_hi = U64_HI(dma_addr);
590 	dmae.dst_addr_lo = dst_addr >> 2;
591 	dmae.dst_addr_hi = 0;
592 	dmae.len = len32;
593 
594 	/* issue the command and wait for completion */
595 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
596 	if (rc) {
597 		BNX2X_ERR("DMAE returned failure %d\n", rc);
598 #ifdef BNX2X_STOP_ON_ERROR
599 		bnx2x_panic();
600 #endif
601 	}
602 }
603 
604 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
605 {
606 	int rc;
607 	struct dmae_command dmae;
608 
609 	if (!bp->dmae_ready) {
610 		u32 *data = bnx2x_sp(bp, wb_data[0]);
611 		int i;
612 
613 		if (CHIP_IS_E1(bp))
614 			for (i = 0; i < len32; i++)
615 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
616 		else
617 			for (i = 0; i < len32; i++)
618 				data[i] = REG_RD(bp, src_addr + i*4);
619 
620 		return;
621 	}
622 
623 	/* set opcode and fixed command fields */
624 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
625 
626 	/* fill in addresses and len */
627 	dmae.src_addr_lo = src_addr >> 2;
628 	dmae.src_addr_hi = 0;
629 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
630 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
631 	dmae.len = len32;
632 
633 	/* issue the command and wait for completion */
634 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
635 	if (rc) {
636 		BNX2X_ERR("DMAE returned failure %d\n", rc);
637 #ifdef BNX2X_STOP_ON_ERROR
638 		bnx2x_panic();
639 #endif
640 	}
641 }
642 
643 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
644 				      u32 addr, u32 len)
645 {
646 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
647 	int offset = 0;
648 
649 	while (len > dmae_wr_max) {
650 		bnx2x_write_dmae(bp, phys_addr + offset,
651 				 addr + offset, dmae_wr_max);
652 		offset += dmae_wr_max * 4;
653 		len -= dmae_wr_max;
654 	}
655 
656 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
657 }
658 
659 enum storms {
660 	   XSTORM,
661 	   TSTORM,
662 	   CSTORM,
663 	   USTORM,
664 	   MAX_STORMS
665 };
666 
667 #define STORMS_NUM 4
668 #define REGS_IN_ENTRY 4
669 
670 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
671 					      enum storms storm,
672 					      int entry)
673 {
674 	switch (storm) {
675 	case XSTORM:
676 		return XSTORM_ASSERT_LIST_OFFSET(entry);
677 	case TSTORM:
678 		return TSTORM_ASSERT_LIST_OFFSET(entry);
679 	case CSTORM:
680 		return CSTORM_ASSERT_LIST_OFFSET(entry);
681 	case USTORM:
682 		return USTORM_ASSERT_LIST_OFFSET(entry);
683 	case MAX_STORMS:
684 	default:
685 		BNX2X_ERR("unknown storm\n");
686 	}
687 	return -EINVAL;
688 }
689 
690 static int bnx2x_mc_assert(struct bnx2x *bp)
691 {
692 	char last_idx;
693 	int i, j, rc = 0;
694 	enum storms storm;
695 	u32 regs[REGS_IN_ENTRY];
696 	u32 bar_storm_intmem[STORMS_NUM] = {
697 		BAR_XSTRORM_INTMEM,
698 		BAR_TSTRORM_INTMEM,
699 		BAR_CSTRORM_INTMEM,
700 		BAR_USTRORM_INTMEM
701 	};
702 	u32 storm_assert_list_index[STORMS_NUM] = {
703 		XSTORM_ASSERT_LIST_INDEX_OFFSET,
704 		TSTORM_ASSERT_LIST_INDEX_OFFSET,
705 		CSTORM_ASSERT_LIST_INDEX_OFFSET,
706 		USTORM_ASSERT_LIST_INDEX_OFFSET
707 	};
708 	char *storms_string[STORMS_NUM] = {
709 		"XSTORM",
710 		"TSTORM",
711 		"CSTORM",
712 		"USTORM"
713 	};
714 
715 	for (storm = XSTORM; storm < MAX_STORMS; storm++) {
716 		last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
717 				   storm_assert_list_index[storm]);
718 		if (last_idx)
719 			BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
720 				  storms_string[storm], last_idx);
721 
722 		/* print the asserts */
723 		for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
724 			/* read a single assert entry */
725 			for (j = 0; j < REGS_IN_ENTRY; j++)
726 				regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
727 					  bnx2x_get_assert_list_entry(bp,
728 								      storm,
729 								      i) +
730 					  sizeof(u32) * j);
731 
732 			/* log entry if it contains a valid assert */
733 			if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
734 				BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
735 					  storms_string[storm], i, regs[3],
736 					  regs[2], regs[1], regs[0]);
737 				rc++;
738 			} else {
739 				break;
740 			}
741 		}
742 	}
743 
744 	BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
745 		  CHIP_IS_E1(bp) ? "everest1" :
746 		  CHIP_IS_E1H(bp) ? "everest1h" :
747 		  CHIP_IS_E2(bp) ? "everest2" : "everest3",
748 		  BCM_5710_FW_MAJOR_VERSION,
749 		  BCM_5710_FW_MINOR_VERSION,
750 		  BCM_5710_FW_REVISION_VERSION);
751 
752 	return rc;
753 }
754 
755 #define MCPR_TRACE_BUFFER_SIZE	(0x800)
756 #define SCRATCH_BUFFER_SIZE(bp)	\
757 	(CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
758 
759 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
760 {
761 	u32 addr, val;
762 	u32 mark, offset;
763 	__be32 data[9];
764 	int word;
765 	u32 trace_shmem_base;
766 	if (BP_NOMCP(bp)) {
767 		BNX2X_ERR("NO MCP - can not dump\n");
768 		return;
769 	}
770 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
771 		(bp->common.bc_ver & 0xff0000) >> 16,
772 		(bp->common.bc_ver & 0xff00) >> 8,
773 		(bp->common.bc_ver & 0xff));
774 
775 	if (pci_channel_offline(bp->pdev)) {
776 		BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
777 		return;
778 	}
779 
780 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
781 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
782 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
783 
784 	if (BP_PATH(bp) == 0)
785 		trace_shmem_base = bp->common.shmem_base;
786 	else
787 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
788 
789 	/* sanity */
790 	if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
791 	    trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
792 				SCRATCH_BUFFER_SIZE(bp)) {
793 		BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
794 			  trace_shmem_base);
795 		return;
796 	}
797 
798 	addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
799 
800 	/* validate TRCB signature */
801 	mark = REG_RD(bp, addr);
802 	if (mark != MFW_TRACE_SIGNATURE) {
803 		BNX2X_ERR("Trace buffer signature is missing.");
804 		return ;
805 	}
806 
807 	/* read cyclic buffer pointer */
808 	addr += 4;
809 	mark = REG_RD(bp, addr);
810 	mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
811 	if (mark >= trace_shmem_base || mark < addr + 4) {
812 		BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
813 		return;
814 	}
815 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
816 
817 	printk("%s", lvl);
818 
819 	/* dump buffer after the mark */
820 	for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
821 		for (word = 0; word < 8; word++)
822 			data[word] = htonl(REG_RD(bp, offset + 4*word));
823 		data[8] = 0x0;
824 		pr_cont("%s", (char *)data);
825 	}
826 
827 	/* dump buffer before the mark */
828 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
829 		for (word = 0; word < 8; word++)
830 			data[word] = htonl(REG_RD(bp, offset + 4*word));
831 		data[8] = 0x0;
832 		pr_cont("%s", (char *)data);
833 	}
834 	printk("%s" "end of fw dump\n", lvl);
835 }
836 
837 static void bnx2x_fw_dump(struct bnx2x *bp)
838 {
839 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
840 }
841 
842 static void bnx2x_hc_int_disable(struct bnx2x *bp)
843 {
844 	int port = BP_PORT(bp);
845 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
846 	u32 val = REG_RD(bp, addr);
847 
848 	/* in E1 we must use only PCI configuration space to disable
849 	 * MSI/MSIX capability
850 	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
851 	 */
852 	if (CHIP_IS_E1(bp)) {
853 		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
854 		 * Use mask register to prevent from HC sending interrupts
855 		 * after we exit the function
856 		 */
857 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
858 
859 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
860 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
861 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
862 	} else
863 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
864 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
865 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
866 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
867 
868 	DP(NETIF_MSG_IFDOWN,
869 	   "write %x to HC %d (addr 0x%x)\n",
870 	   val, port, addr);
871 
872 	REG_WR(bp, addr, val);
873 	if (REG_RD(bp, addr) != val)
874 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
875 }
876 
877 static void bnx2x_igu_int_disable(struct bnx2x *bp)
878 {
879 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
880 
881 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
882 		 IGU_PF_CONF_INT_LINE_EN |
883 		 IGU_PF_CONF_ATTN_BIT_EN);
884 
885 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
886 
887 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
888 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
889 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
890 }
891 
892 static void bnx2x_int_disable(struct bnx2x *bp)
893 {
894 	if (bp->common.int_block == INT_BLOCK_HC)
895 		bnx2x_hc_int_disable(bp);
896 	else
897 		bnx2x_igu_int_disable(bp);
898 }
899 
900 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
901 {
902 	int i;
903 	u16 j;
904 	struct hc_sp_status_block_data sp_sb_data;
905 	int func = BP_FUNC(bp);
906 #ifdef BNX2X_STOP_ON_ERROR
907 	u16 start = 0, end = 0;
908 	u8 cos;
909 #endif
910 	if (IS_PF(bp) && disable_int)
911 		bnx2x_int_disable(bp);
912 
913 	bp->stats_state = STATS_STATE_DISABLED;
914 	bp->eth_stats.unrecoverable_error++;
915 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
916 
917 	BNX2X_ERR("begin crash dump -----------------\n");
918 
919 	/* Indices */
920 	/* Common */
921 	if (IS_PF(bp)) {
922 		struct host_sp_status_block *def_sb = bp->def_status_blk;
923 		int data_size, cstorm_offset;
924 
925 		BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
926 			  bp->def_idx, bp->def_att_idx, bp->attn_state,
927 			  bp->spq_prod_idx, bp->stats_counter);
928 		BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
929 			  def_sb->atten_status_block.attn_bits,
930 			  def_sb->atten_status_block.attn_bits_ack,
931 			  def_sb->atten_status_block.status_block_id,
932 			  def_sb->atten_status_block.attn_bits_index);
933 		BNX2X_ERR("     def (");
934 		for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
935 			pr_cont("0x%x%s",
936 				def_sb->sp_sb.index_values[i],
937 				(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
938 
939 		data_size = sizeof(struct hc_sp_status_block_data) /
940 			    sizeof(u32);
941 		cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
942 		for (i = 0; i < data_size; i++)
943 			*((u32 *)&sp_sb_data + i) =
944 				REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
945 					   i * sizeof(u32));
946 
947 		pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
948 			sp_sb_data.igu_sb_id,
949 			sp_sb_data.igu_seg_id,
950 			sp_sb_data.p_func.pf_id,
951 			sp_sb_data.p_func.vnic_id,
952 			sp_sb_data.p_func.vf_id,
953 			sp_sb_data.p_func.vf_valid,
954 			sp_sb_data.state);
955 	}
956 
957 	for_each_eth_queue(bp, i) {
958 		struct bnx2x_fastpath *fp = &bp->fp[i];
959 		int loop;
960 		struct hc_status_block_data_e2 sb_data_e2;
961 		struct hc_status_block_data_e1x sb_data_e1x;
962 		struct hc_status_block_sm  *hc_sm_p =
963 			CHIP_IS_E1x(bp) ?
964 			sb_data_e1x.common.state_machine :
965 			sb_data_e2.common.state_machine;
966 		struct hc_index_data *hc_index_p =
967 			CHIP_IS_E1x(bp) ?
968 			sb_data_e1x.index_data :
969 			sb_data_e2.index_data;
970 		u8 data_size, cos;
971 		u32 *sb_data_p;
972 		struct bnx2x_fp_txdata txdata;
973 
974 		if (!bp->fp)
975 			break;
976 
977 		if (!fp->rx_cons_sb)
978 			continue;
979 
980 		/* Rx */
981 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
982 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
983 			  fp->rx_comp_prod,
984 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
985 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
986 			  fp->rx_sge_prod, fp->last_max_sge,
987 			  le16_to_cpu(fp->fp_hc_idx));
988 
989 		/* Tx */
990 		for_each_cos_in_tx_queue(fp, cos)
991 		{
992 			if (!fp->txdata_ptr[cos])
993 				break;
994 
995 			txdata = *fp->txdata_ptr[cos];
996 
997 			if (!txdata.tx_cons_sb)
998 				continue;
999 
1000 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1001 				  i, txdata.tx_pkt_prod,
1002 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
1003 				  txdata.tx_bd_cons,
1004 				  le16_to_cpu(*txdata.tx_cons_sb));
1005 		}
1006 
1007 		loop = CHIP_IS_E1x(bp) ?
1008 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1009 
1010 		/* host sb data */
1011 
1012 		if (IS_FCOE_FP(fp))
1013 			continue;
1014 
1015 		BNX2X_ERR("     run indexes (");
1016 		for (j = 0; j < HC_SB_MAX_SM; j++)
1017 			pr_cont("0x%x%s",
1018 			       fp->sb_running_index[j],
1019 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1020 
1021 		BNX2X_ERR("     indexes (");
1022 		for (j = 0; j < loop; j++)
1023 			pr_cont("0x%x%s",
1024 			       fp->sb_index_values[j],
1025 			       (j == loop - 1) ? ")" : " ");
1026 
1027 		/* VF cannot access FW refelection for status block */
1028 		if (IS_VF(bp))
1029 			continue;
1030 
1031 		/* fw sb data */
1032 		data_size = CHIP_IS_E1x(bp) ?
1033 			sizeof(struct hc_status_block_data_e1x) :
1034 			sizeof(struct hc_status_block_data_e2);
1035 		data_size /= sizeof(u32);
1036 		sb_data_p = CHIP_IS_E1x(bp) ?
1037 			(u32 *)&sb_data_e1x :
1038 			(u32 *)&sb_data_e2;
1039 		/* copy sb data in here */
1040 		for (j = 0; j < data_size; j++)
1041 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1042 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1043 				j * sizeof(u32));
1044 
1045 		if (!CHIP_IS_E1x(bp)) {
1046 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1047 				sb_data_e2.common.p_func.pf_id,
1048 				sb_data_e2.common.p_func.vf_id,
1049 				sb_data_e2.common.p_func.vf_valid,
1050 				sb_data_e2.common.p_func.vnic_id,
1051 				sb_data_e2.common.same_igu_sb_1b,
1052 				sb_data_e2.common.state);
1053 		} else {
1054 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1055 				sb_data_e1x.common.p_func.pf_id,
1056 				sb_data_e1x.common.p_func.vf_id,
1057 				sb_data_e1x.common.p_func.vf_valid,
1058 				sb_data_e1x.common.p_func.vnic_id,
1059 				sb_data_e1x.common.same_igu_sb_1b,
1060 				sb_data_e1x.common.state);
1061 		}
1062 
1063 		/* SB_SMs data */
1064 		for (j = 0; j < HC_SB_MAX_SM; j++) {
1065 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1066 				j, hc_sm_p[j].__flags,
1067 				hc_sm_p[j].igu_sb_id,
1068 				hc_sm_p[j].igu_seg_id,
1069 				hc_sm_p[j].time_to_expire,
1070 				hc_sm_p[j].timer_value);
1071 		}
1072 
1073 		/* Indices data */
1074 		for (j = 0; j < loop; j++) {
1075 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1076 			       hc_index_p[j].flags,
1077 			       hc_index_p[j].timeout);
1078 		}
1079 	}
1080 
1081 #ifdef BNX2X_STOP_ON_ERROR
1082 	if (IS_PF(bp)) {
1083 		/* event queue */
1084 		BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1085 		for (i = 0; i < NUM_EQ_DESC; i++) {
1086 			u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1087 
1088 			BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1089 				  i, bp->eq_ring[i].message.opcode,
1090 				  bp->eq_ring[i].message.error);
1091 			BNX2X_ERR("data: %x %x %x\n",
1092 				  data[0], data[1], data[2]);
1093 		}
1094 	}
1095 
1096 	/* Rings */
1097 	/* Rx */
1098 	for_each_valid_rx_queue(bp, i) {
1099 		struct bnx2x_fastpath *fp = &bp->fp[i];
1100 
1101 		if (!bp->fp)
1102 			break;
1103 
1104 		if (!fp->rx_cons_sb)
1105 			continue;
1106 
1107 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1108 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1109 		for (j = start; j != end; j = RX_BD(j + 1)) {
1110 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1111 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1112 
1113 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1114 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1115 		}
1116 
1117 		start = RX_SGE(fp->rx_sge_prod);
1118 		end = RX_SGE(fp->last_max_sge);
1119 		for (j = start; j != end; j = RX_SGE(j + 1)) {
1120 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1121 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1122 
1123 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1124 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1125 		}
1126 
1127 		start = RCQ_BD(fp->rx_comp_cons - 10);
1128 		end = RCQ_BD(fp->rx_comp_cons + 503);
1129 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1130 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1131 
1132 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1133 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1134 		}
1135 	}
1136 
1137 	/* Tx */
1138 	for_each_valid_tx_queue(bp, i) {
1139 		struct bnx2x_fastpath *fp = &bp->fp[i];
1140 
1141 		if (!bp->fp)
1142 			break;
1143 
1144 		for_each_cos_in_tx_queue(fp, cos) {
1145 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1146 
1147 			if (!fp->txdata_ptr[cos])
1148 				break;
1149 
1150 			if (!txdata->tx_cons_sb)
1151 				continue;
1152 
1153 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1154 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1155 			for (j = start; j != end; j = TX_BD(j + 1)) {
1156 				struct sw_tx_bd *sw_bd =
1157 					&txdata->tx_buf_ring[j];
1158 
1159 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1160 					  i, cos, j, sw_bd->skb,
1161 					  sw_bd->first_bd);
1162 			}
1163 
1164 			start = TX_BD(txdata->tx_bd_cons - 10);
1165 			end = TX_BD(txdata->tx_bd_cons + 254);
1166 			for (j = start; j != end; j = TX_BD(j + 1)) {
1167 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1168 
1169 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1170 					  i, cos, j, tx_bd[0], tx_bd[1],
1171 					  tx_bd[2], tx_bd[3]);
1172 			}
1173 		}
1174 	}
1175 #endif
1176 	if (IS_PF(bp)) {
1177 		bnx2x_fw_dump(bp);
1178 		bnx2x_mc_assert(bp);
1179 	}
1180 	BNX2X_ERR("end crash dump -----------------\n");
1181 }
1182 
1183 /*
1184  * FLR Support for E2
1185  *
1186  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1187  * initialization.
1188  */
1189 #define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1190 #define FLR_WAIT_INTERVAL	50	/* usec */
1191 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1192 
1193 struct pbf_pN_buf_regs {
1194 	int pN;
1195 	u32 init_crd;
1196 	u32 crd;
1197 	u32 crd_freed;
1198 };
1199 
1200 struct pbf_pN_cmd_regs {
1201 	int pN;
1202 	u32 lines_occup;
1203 	u32 lines_freed;
1204 };
1205 
1206 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1207 				     struct pbf_pN_buf_regs *regs,
1208 				     u32 poll_count)
1209 {
1210 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1211 	u32 cur_cnt = poll_count;
1212 
1213 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1214 	crd = crd_start = REG_RD(bp, regs->crd);
1215 	init_crd = REG_RD(bp, regs->init_crd);
1216 
1217 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1218 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1219 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1220 
1221 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1222 	       (init_crd - crd_start))) {
1223 		if (cur_cnt--) {
1224 			udelay(FLR_WAIT_INTERVAL);
1225 			crd = REG_RD(bp, regs->crd);
1226 			crd_freed = REG_RD(bp, regs->crd_freed);
1227 		} else {
1228 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1229 			   regs->pN);
1230 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1231 			   regs->pN, crd);
1232 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1233 			   regs->pN, crd_freed);
1234 			break;
1235 		}
1236 	}
1237 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1238 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1239 }
1240 
1241 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1242 				     struct pbf_pN_cmd_regs *regs,
1243 				     u32 poll_count)
1244 {
1245 	u32 occup, to_free, freed, freed_start;
1246 	u32 cur_cnt = poll_count;
1247 
1248 	occup = to_free = REG_RD(bp, regs->lines_occup);
1249 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1250 
1251 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1252 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1253 
1254 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1255 		if (cur_cnt--) {
1256 			udelay(FLR_WAIT_INTERVAL);
1257 			occup = REG_RD(bp, regs->lines_occup);
1258 			freed = REG_RD(bp, regs->lines_freed);
1259 		} else {
1260 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1261 			   regs->pN);
1262 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1263 			   regs->pN, occup);
1264 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1265 			   regs->pN, freed);
1266 			break;
1267 		}
1268 	}
1269 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1270 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1271 }
1272 
1273 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1274 				    u32 expected, u32 poll_count)
1275 {
1276 	u32 cur_cnt = poll_count;
1277 	u32 val;
1278 
1279 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1280 		udelay(FLR_WAIT_INTERVAL);
1281 
1282 	return val;
1283 }
1284 
1285 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1286 				    char *msg, u32 poll_cnt)
1287 {
1288 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1289 	if (val != 0) {
1290 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1291 		return 1;
1292 	}
1293 	return 0;
1294 }
1295 
1296 /* Common routines with VF FLR cleanup */
1297 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1298 {
1299 	/* adjust polling timeout */
1300 	if (CHIP_REV_IS_EMUL(bp))
1301 		return FLR_POLL_CNT * 2000;
1302 
1303 	if (CHIP_REV_IS_FPGA(bp))
1304 		return FLR_POLL_CNT * 120;
1305 
1306 	return FLR_POLL_CNT;
1307 }
1308 
1309 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1310 {
1311 	struct pbf_pN_cmd_regs cmd_regs[] = {
1312 		{0, (CHIP_IS_E3B0(bp)) ?
1313 			PBF_REG_TQ_OCCUPANCY_Q0 :
1314 			PBF_REG_P0_TQ_OCCUPANCY,
1315 		    (CHIP_IS_E3B0(bp)) ?
1316 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1317 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1318 		{1, (CHIP_IS_E3B0(bp)) ?
1319 			PBF_REG_TQ_OCCUPANCY_Q1 :
1320 			PBF_REG_P1_TQ_OCCUPANCY,
1321 		    (CHIP_IS_E3B0(bp)) ?
1322 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1323 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1324 		{4, (CHIP_IS_E3B0(bp)) ?
1325 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1326 			PBF_REG_P4_TQ_OCCUPANCY,
1327 		    (CHIP_IS_E3B0(bp)) ?
1328 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1329 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1330 	};
1331 
1332 	struct pbf_pN_buf_regs buf_regs[] = {
1333 		{0, (CHIP_IS_E3B0(bp)) ?
1334 			PBF_REG_INIT_CRD_Q0 :
1335 			PBF_REG_P0_INIT_CRD ,
1336 		    (CHIP_IS_E3B0(bp)) ?
1337 			PBF_REG_CREDIT_Q0 :
1338 			PBF_REG_P0_CREDIT,
1339 		    (CHIP_IS_E3B0(bp)) ?
1340 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1341 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1342 		{1, (CHIP_IS_E3B0(bp)) ?
1343 			PBF_REG_INIT_CRD_Q1 :
1344 			PBF_REG_P1_INIT_CRD,
1345 		    (CHIP_IS_E3B0(bp)) ?
1346 			PBF_REG_CREDIT_Q1 :
1347 			PBF_REG_P1_CREDIT,
1348 		    (CHIP_IS_E3B0(bp)) ?
1349 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1350 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1351 		{4, (CHIP_IS_E3B0(bp)) ?
1352 			PBF_REG_INIT_CRD_LB_Q :
1353 			PBF_REG_P4_INIT_CRD,
1354 		    (CHIP_IS_E3B0(bp)) ?
1355 			PBF_REG_CREDIT_LB_Q :
1356 			PBF_REG_P4_CREDIT,
1357 		    (CHIP_IS_E3B0(bp)) ?
1358 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1359 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1360 	};
1361 
1362 	int i;
1363 
1364 	/* Verify the command queues are flushed P0, P1, P4 */
1365 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1366 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1367 
1368 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1369 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1370 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1371 }
1372 
1373 #define OP_GEN_PARAM(param) \
1374 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1375 
1376 #define OP_GEN_TYPE(type) \
1377 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1378 
1379 #define OP_GEN_AGG_VECT(index) \
1380 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1381 
1382 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1383 {
1384 	u32 op_gen_command = 0;
1385 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1386 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1387 	int ret = 0;
1388 
1389 	if (REG_RD(bp, comp_addr)) {
1390 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1391 		return 1;
1392 	}
1393 
1394 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1395 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1396 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1397 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1398 
1399 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1400 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1401 
1402 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1403 		BNX2X_ERR("FW final cleanup did not succeed\n");
1404 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1405 		   (REG_RD(bp, comp_addr)));
1406 		bnx2x_panic();
1407 		return 1;
1408 	}
1409 	/* Zero completion for next FLR */
1410 	REG_WR(bp, comp_addr, 0);
1411 
1412 	return ret;
1413 }
1414 
1415 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1416 {
1417 	u16 status;
1418 
1419 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1420 	return status & PCI_EXP_DEVSTA_TRPND;
1421 }
1422 
1423 /* PF FLR specific routines
1424 */
1425 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1426 {
1427 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1428 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1429 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1430 			"CFC PF usage counter timed out",
1431 			poll_cnt))
1432 		return 1;
1433 
1434 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1435 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1436 			DORQ_REG_PF_USAGE_CNT,
1437 			"DQ PF usage counter timed out",
1438 			poll_cnt))
1439 		return 1;
1440 
1441 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1442 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1443 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1444 			"QM PF usage counter timed out",
1445 			poll_cnt))
1446 		return 1;
1447 
1448 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1449 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1450 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1451 			"Timers VNIC usage counter timed out",
1452 			poll_cnt))
1453 		return 1;
1454 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1455 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1456 			"Timers NUM_SCANS usage counter timed out",
1457 			poll_cnt))
1458 		return 1;
1459 
1460 	/* Wait DMAE PF usage counter to zero */
1461 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1462 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1463 			"DMAE command register timed out",
1464 			poll_cnt))
1465 		return 1;
1466 
1467 	return 0;
1468 }
1469 
1470 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1471 {
1472 	u32 val;
1473 
1474 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1475 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1476 
1477 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1478 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1479 
1480 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1481 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1482 
1483 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1484 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1485 
1486 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1487 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1488 
1489 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1490 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1491 
1492 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1493 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1494 
1495 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1496 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1497 	   val);
1498 }
1499 
1500 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1501 {
1502 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1503 
1504 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1505 
1506 	/* Re-enable PF target read access */
1507 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1508 
1509 	/* Poll HW usage counters */
1510 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1511 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1512 		return -EBUSY;
1513 
1514 	/* Zero the igu 'trailing edge' and 'leading edge' */
1515 
1516 	/* Send the FW cleanup command */
1517 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1518 		return -EBUSY;
1519 
1520 	/* ATC cleanup */
1521 
1522 	/* Verify TX hw is flushed */
1523 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1524 
1525 	/* Wait 100ms (not adjusted according to platform) */
1526 	msleep(100);
1527 
1528 	/* Verify no pending pci transactions */
1529 	if (bnx2x_is_pcie_pending(bp->pdev))
1530 		BNX2X_ERR("PCIE Transactions still pending\n");
1531 
1532 	/* Debug */
1533 	bnx2x_hw_enable_status(bp);
1534 
1535 	/*
1536 	 * Master enable - Due to WB DMAE writes performed before this
1537 	 * register is re-initialized as part of the regular function init
1538 	 */
1539 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1540 
1541 	return 0;
1542 }
1543 
1544 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1545 {
1546 	int port = BP_PORT(bp);
1547 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1548 	u32 val = REG_RD(bp, addr);
1549 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1550 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1551 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1552 
1553 	if (msix) {
1554 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1555 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1556 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1557 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1558 		if (single_msix)
1559 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1560 	} else if (msi) {
1561 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1562 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1563 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1564 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1565 	} else {
1566 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1567 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1568 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1569 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1570 
1571 		if (!CHIP_IS_E1(bp)) {
1572 			DP(NETIF_MSG_IFUP,
1573 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1574 
1575 			REG_WR(bp, addr, val);
1576 
1577 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1578 		}
1579 	}
1580 
1581 	if (CHIP_IS_E1(bp))
1582 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1583 
1584 	DP(NETIF_MSG_IFUP,
1585 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1586 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1587 
1588 	REG_WR(bp, addr, val);
1589 	/*
1590 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1591 	 */
1592 	barrier();
1593 
1594 	if (!CHIP_IS_E1(bp)) {
1595 		/* init leading/trailing edge */
1596 		if (IS_MF(bp)) {
1597 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1598 			if (bp->port.pmf)
1599 				/* enable nig and gpio3 attention */
1600 				val |= 0x1100;
1601 		} else
1602 			val = 0xffff;
1603 
1604 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1605 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1606 	}
1607 }
1608 
1609 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1610 {
1611 	u32 val;
1612 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1613 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1614 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1615 
1616 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1617 
1618 	if (msix) {
1619 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1620 			 IGU_PF_CONF_SINGLE_ISR_EN);
1621 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1622 			IGU_PF_CONF_ATTN_BIT_EN);
1623 
1624 		if (single_msix)
1625 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1626 	} else if (msi) {
1627 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1628 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1629 			IGU_PF_CONF_ATTN_BIT_EN |
1630 			IGU_PF_CONF_SINGLE_ISR_EN);
1631 	} else {
1632 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1633 		val |= (IGU_PF_CONF_INT_LINE_EN |
1634 			IGU_PF_CONF_ATTN_BIT_EN |
1635 			IGU_PF_CONF_SINGLE_ISR_EN);
1636 	}
1637 
1638 	/* Clean previous status - need to configure igu prior to ack*/
1639 	if ((!msix) || single_msix) {
1640 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1641 		bnx2x_ack_int(bp);
1642 	}
1643 
1644 	val |= IGU_PF_CONF_FUNC_EN;
1645 
1646 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1647 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1648 
1649 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1650 
1651 	if (val & IGU_PF_CONF_INT_LINE_EN)
1652 		pci_intx(bp->pdev, true);
1653 
1654 	barrier();
1655 
1656 	/* init leading/trailing edge */
1657 	if (IS_MF(bp)) {
1658 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1659 		if (bp->port.pmf)
1660 			/* enable nig and gpio3 attention */
1661 			val |= 0x1100;
1662 	} else
1663 		val = 0xffff;
1664 
1665 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1666 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1667 }
1668 
1669 void bnx2x_int_enable(struct bnx2x *bp)
1670 {
1671 	if (bp->common.int_block == INT_BLOCK_HC)
1672 		bnx2x_hc_int_enable(bp);
1673 	else
1674 		bnx2x_igu_int_enable(bp);
1675 }
1676 
1677 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1678 {
1679 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1680 	int i, offset;
1681 
1682 	if (disable_hw)
1683 		/* prevent the HW from sending interrupts */
1684 		bnx2x_int_disable(bp);
1685 
1686 	/* make sure all ISRs are done */
1687 	if (msix) {
1688 		synchronize_irq(bp->msix_table[0].vector);
1689 		offset = 1;
1690 		if (CNIC_SUPPORT(bp))
1691 			offset++;
1692 		for_each_eth_queue(bp, i)
1693 			synchronize_irq(bp->msix_table[offset++].vector);
1694 	} else
1695 		synchronize_irq(bp->pdev->irq);
1696 
1697 	/* make sure sp_task is not running */
1698 	cancel_delayed_work(&bp->sp_task);
1699 	cancel_delayed_work(&bp->period_task);
1700 	flush_workqueue(bnx2x_wq);
1701 }
1702 
1703 /* fast path */
1704 
1705 /*
1706  * General service functions
1707  */
1708 
1709 /* Return true if succeeded to acquire the lock */
1710 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1711 {
1712 	u32 lock_status;
1713 	u32 resource_bit = (1 << resource);
1714 	int func = BP_FUNC(bp);
1715 	u32 hw_lock_control_reg;
1716 
1717 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1718 	   "Trying to take a lock on resource %d\n", resource);
1719 
1720 	/* Validating that the resource is within range */
1721 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1722 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1723 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1724 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1725 		return false;
1726 	}
1727 
1728 	if (func <= 5)
1729 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1730 	else
1731 		hw_lock_control_reg =
1732 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1733 
1734 	/* Try to acquire the lock */
1735 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1736 	lock_status = REG_RD(bp, hw_lock_control_reg);
1737 	if (lock_status & resource_bit)
1738 		return true;
1739 
1740 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1741 	   "Failed to get a lock on resource %d\n", resource);
1742 	return false;
1743 }
1744 
1745 /**
1746  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1747  *
1748  * @bp:	driver handle
1749  *
1750  * Returns the recovery leader resource id according to the engine this function
1751  * belongs to. Currently only only 2 engines is supported.
1752  */
1753 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1754 {
1755 	if (BP_PATH(bp))
1756 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1757 	else
1758 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1759 }
1760 
1761 /**
1762  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1763  *
1764  * @bp: driver handle
1765  *
1766  * Tries to acquire a leader lock for current engine.
1767  */
1768 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1769 {
1770 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1771 }
1772 
1773 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1774 
1775 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1776 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1777 {
1778 	/* Set the interrupt occurred bit for the sp-task to recognize it
1779 	 * must ack the interrupt and transition according to the IGU
1780 	 * state machine.
1781 	 */
1782 	atomic_set(&bp->interrupt_occurred, 1);
1783 
1784 	/* The sp_task must execute only after this bit
1785 	 * is set, otherwise we will get out of sync and miss all
1786 	 * further interrupts. Hence, the barrier.
1787 	 */
1788 	smp_wmb();
1789 
1790 	/* schedule sp_task to workqueue */
1791 	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1792 }
1793 
1794 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1795 {
1796 	struct bnx2x *bp = fp->bp;
1797 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1798 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1799 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1800 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1801 
1802 	DP(BNX2X_MSG_SP,
1803 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1804 	   fp->index, cid, command, bp->state,
1805 	   rr_cqe->ramrod_cqe.ramrod_type);
1806 
1807 	/* If cid is within VF range, replace the slowpath object with the
1808 	 * one corresponding to this VF
1809 	 */
1810 	if (cid >= BNX2X_FIRST_VF_CID  &&
1811 	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1812 		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1813 
1814 	switch (command) {
1815 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1816 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1817 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1818 		break;
1819 
1820 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1821 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1822 		drv_cmd = BNX2X_Q_CMD_SETUP;
1823 		break;
1824 
1825 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1826 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1827 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1828 		break;
1829 
1830 	case (RAMROD_CMD_ID_ETH_HALT):
1831 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1832 		drv_cmd = BNX2X_Q_CMD_HALT;
1833 		break;
1834 
1835 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1836 		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1837 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1838 		break;
1839 
1840 	case (RAMROD_CMD_ID_ETH_EMPTY):
1841 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1842 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1843 		break;
1844 
1845 	case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1846 		DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1847 		drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1848 		break;
1849 
1850 	default:
1851 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1852 			  command, fp->index);
1853 		return;
1854 	}
1855 
1856 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1857 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1858 		/* q_obj->complete_cmd() failure means that this was
1859 		 * an unexpected completion.
1860 		 *
1861 		 * In this case we don't want to increase the bp->spq_left
1862 		 * because apparently we haven't sent this command the first
1863 		 * place.
1864 		 */
1865 #ifdef BNX2X_STOP_ON_ERROR
1866 		bnx2x_panic();
1867 #else
1868 		return;
1869 #endif
1870 
1871 	smp_mb__before_atomic();
1872 	atomic_inc(&bp->cq_spq_left);
1873 	/* push the change in bp->spq_left and towards the memory */
1874 	smp_mb__after_atomic();
1875 
1876 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1877 
1878 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1879 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1880 		/* if Q update ramrod is completed for last Q in AFEX vif set
1881 		 * flow, then ACK MCP at the end
1882 		 *
1883 		 * mark pending ACK to MCP bit.
1884 		 * prevent case that both bits are cleared.
1885 		 * At the end of load/unload driver checks that
1886 		 * sp_state is cleared, and this order prevents
1887 		 * races
1888 		 */
1889 		smp_mb__before_atomic();
1890 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1891 		wmb();
1892 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1893 		smp_mb__after_atomic();
1894 
1895 		/* schedule the sp task as mcp ack is required */
1896 		bnx2x_schedule_sp_task(bp);
1897 	}
1898 
1899 	return;
1900 }
1901 
1902 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1903 {
1904 	struct bnx2x *bp = netdev_priv(dev_instance);
1905 	u16 status = bnx2x_ack_int(bp);
1906 	u16 mask;
1907 	int i;
1908 	u8 cos;
1909 
1910 	/* Return here if interrupt is shared and it's not for us */
1911 	if (unlikely(status == 0)) {
1912 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1913 		return IRQ_NONE;
1914 	}
1915 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1916 
1917 #ifdef BNX2X_STOP_ON_ERROR
1918 	if (unlikely(bp->panic))
1919 		return IRQ_HANDLED;
1920 #endif
1921 
1922 	for_each_eth_queue(bp, i) {
1923 		struct bnx2x_fastpath *fp = &bp->fp[i];
1924 
1925 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1926 		if (status & mask) {
1927 			/* Handle Rx or Tx according to SB id */
1928 			for_each_cos_in_tx_queue(fp, cos)
1929 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1930 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1931 			napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1932 			status &= ~mask;
1933 		}
1934 	}
1935 
1936 	if (CNIC_SUPPORT(bp)) {
1937 		mask = 0x2;
1938 		if (status & (mask | 0x1)) {
1939 			struct cnic_ops *c_ops = NULL;
1940 
1941 			rcu_read_lock();
1942 			c_ops = rcu_dereference(bp->cnic_ops);
1943 			if (c_ops && (bp->cnic_eth_dev.drv_state &
1944 				      CNIC_DRV_STATE_HANDLES_IRQ))
1945 				c_ops->cnic_handler(bp->cnic_data, NULL);
1946 			rcu_read_unlock();
1947 
1948 			status &= ~mask;
1949 		}
1950 	}
1951 
1952 	if (unlikely(status & 0x1)) {
1953 
1954 		/* schedule sp task to perform default status block work, ack
1955 		 * attentions and enable interrupts.
1956 		 */
1957 		bnx2x_schedule_sp_task(bp);
1958 
1959 		status &= ~0x1;
1960 		if (!status)
1961 			return IRQ_HANDLED;
1962 	}
1963 
1964 	if (unlikely(status))
1965 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1966 		   status);
1967 
1968 	return IRQ_HANDLED;
1969 }
1970 
1971 /* Link */
1972 
1973 /*
1974  * General service functions
1975  */
1976 
1977 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1978 {
1979 	u32 lock_status;
1980 	u32 resource_bit = (1 << resource);
1981 	int func = BP_FUNC(bp);
1982 	u32 hw_lock_control_reg;
1983 	int cnt;
1984 
1985 	/* Validating that the resource is within range */
1986 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1987 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1988 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1989 		return -EINVAL;
1990 	}
1991 
1992 	if (func <= 5) {
1993 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1994 	} else {
1995 		hw_lock_control_reg =
1996 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1997 	}
1998 
1999 	/* Validating that the resource is not already taken */
2000 	lock_status = REG_RD(bp, hw_lock_control_reg);
2001 	if (lock_status & resource_bit) {
2002 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2003 		   lock_status, resource_bit);
2004 		return -EEXIST;
2005 	}
2006 
2007 	/* Try for 5 second every 5ms */
2008 	for (cnt = 0; cnt < 1000; cnt++) {
2009 		/* Try to acquire the lock */
2010 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2011 		lock_status = REG_RD(bp, hw_lock_control_reg);
2012 		if (lock_status & resource_bit)
2013 			return 0;
2014 
2015 		usleep_range(5000, 10000);
2016 	}
2017 	BNX2X_ERR("Timeout\n");
2018 	return -EAGAIN;
2019 }
2020 
2021 int bnx2x_release_leader_lock(struct bnx2x *bp)
2022 {
2023 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2024 }
2025 
2026 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2027 {
2028 	u32 lock_status;
2029 	u32 resource_bit = (1 << resource);
2030 	int func = BP_FUNC(bp);
2031 	u32 hw_lock_control_reg;
2032 
2033 	/* Validating that the resource is within range */
2034 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2035 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2036 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2037 		return -EINVAL;
2038 	}
2039 
2040 	if (func <= 5) {
2041 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2042 	} else {
2043 		hw_lock_control_reg =
2044 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2045 	}
2046 
2047 	/* Validating that the resource is currently taken */
2048 	lock_status = REG_RD(bp, hw_lock_control_reg);
2049 	if (!(lock_status & resource_bit)) {
2050 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2051 			  lock_status, resource_bit);
2052 		return -EFAULT;
2053 	}
2054 
2055 	REG_WR(bp, hw_lock_control_reg, resource_bit);
2056 	return 0;
2057 }
2058 
2059 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2060 {
2061 	/* The GPIO should be swapped if swap register is set and active */
2062 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2063 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2064 	int gpio_shift = gpio_num +
2065 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2066 	u32 gpio_mask = (1 << gpio_shift);
2067 	u32 gpio_reg;
2068 	int value;
2069 
2070 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2071 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2072 		return -EINVAL;
2073 	}
2074 
2075 	/* read GPIO value */
2076 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2077 
2078 	/* get the requested pin value */
2079 	if ((gpio_reg & gpio_mask) == gpio_mask)
2080 		value = 1;
2081 	else
2082 		value = 0;
2083 
2084 	return value;
2085 }
2086 
2087 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2088 {
2089 	/* The GPIO should be swapped if swap register is set and active */
2090 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2091 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2092 	int gpio_shift = gpio_num +
2093 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2094 	u32 gpio_mask = (1 << gpio_shift);
2095 	u32 gpio_reg;
2096 
2097 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2098 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2099 		return -EINVAL;
2100 	}
2101 
2102 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2103 	/* read GPIO and mask except the float bits */
2104 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2105 
2106 	switch (mode) {
2107 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2108 		DP(NETIF_MSG_LINK,
2109 		   "Set GPIO %d (shift %d) -> output low\n",
2110 		   gpio_num, gpio_shift);
2111 		/* clear FLOAT and set CLR */
2112 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2113 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2114 		break;
2115 
2116 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2117 		DP(NETIF_MSG_LINK,
2118 		   "Set GPIO %d (shift %d) -> output high\n",
2119 		   gpio_num, gpio_shift);
2120 		/* clear FLOAT and set SET */
2121 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2122 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2123 		break;
2124 
2125 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2126 		DP(NETIF_MSG_LINK,
2127 		   "Set GPIO %d (shift %d) -> input\n",
2128 		   gpio_num, gpio_shift);
2129 		/* set FLOAT */
2130 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2131 		break;
2132 
2133 	default:
2134 		break;
2135 	}
2136 
2137 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2138 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2139 
2140 	return 0;
2141 }
2142 
2143 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2144 {
2145 	u32 gpio_reg = 0;
2146 	int rc = 0;
2147 
2148 	/* Any port swapping should be handled by caller. */
2149 
2150 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2151 	/* read GPIO and mask except the float bits */
2152 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2153 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2154 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2155 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2156 
2157 	switch (mode) {
2158 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2159 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2160 		/* set CLR */
2161 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2162 		break;
2163 
2164 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2165 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2166 		/* set SET */
2167 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2168 		break;
2169 
2170 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2171 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2172 		/* set FLOAT */
2173 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2174 		break;
2175 
2176 	default:
2177 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2178 		rc = -EINVAL;
2179 		break;
2180 	}
2181 
2182 	if (rc == 0)
2183 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2184 
2185 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2186 
2187 	return rc;
2188 }
2189 
2190 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2191 {
2192 	/* The GPIO should be swapped if swap register is set and active */
2193 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2194 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2195 	int gpio_shift = gpio_num +
2196 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2197 	u32 gpio_mask = (1 << gpio_shift);
2198 	u32 gpio_reg;
2199 
2200 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2201 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2202 		return -EINVAL;
2203 	}
2204 
2205 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2206 	/* read GPIO int */
2207 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2208 
2209 	switch (mode) {
2210 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2211 		DP(NETIF_MSG_LINK,
2212 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2213 		   gpio_num, gpio_shift);
2214 		/* clear SET and set CLR */
2215 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2216 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2217 		break;
2218 
2219 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2220 		DP(NETIF_MSG_LINK,
2221 		   "Set GPIO INT %d (shift %d) -> output high\n",
2222 		   gpio_num, gpio_shift);
2223 		/* clear CLR and set SET */
2224 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2225 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2226 		break;
2227 
2228 	default:
2229 		break;
2230 	}
2231 
2232 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2233 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2234 
2235 	return 0;
2236 }
2237 
2238 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2239 {
2240 	u32 spio_reg;
2241 
2242 	/* Only 2 SPIOs are configurable */
2243 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2244 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2245 		return -EINVAL;
2246 	}
2247 
2248 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2249 	/* read SPIO and mask except the float bits */
2250 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2251 
2252 	switch (mode) {
2253 	case MISC_SPIO_OUTPUT_LOW:
2254 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2255 		/* clear FLOAT and set CLR */
2256 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2257 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2258 		break;
2259 
2260 	case MISC_SPIO_OUTPUT_HIGH:
2261 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2262 		/* clear FLOAT and set SET */
2263 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2264 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2265 		break;
2266 
2267 	case MISC_SPIO_INPUT_HI_Z:
2268 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2269 		/* set FLOAT */
2270 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2271 		break;
2272 
2273 	default:
2274 		break;
2275 	}
2276 
2277 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2278 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2279 
2280 	return 0;
2281 }
2282 
2283 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2284 {
2285 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2286 
2287 	bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2288 					   ADVERTISED_Pause);
2289 	switch (bp->link_vars.ieee_fc &
2290 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2291 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2292 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2293 						  ADVERTISED_Pause);
2294 		break;
2295 
2296 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2297 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2298 		break;
2299 
2300 	default:
2301 		break;
2302 	}
2303 }
2304 
2305 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2306 {
2307 	/* Initialize link parameters structure variables
2308 	 * It is recommended to turn off RX FC for jumbo frames
2309 	 *  for better performance
2310 	 */
2311 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2312 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2313 	else
2314 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2315 }
2316 
2317 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2318 {
2319 	u32 pause_enabled = 0;
2320 
2321 	if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2322 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2323 			pause_enabled = 1;
2324 
2325 		REG_WR(bp, BAR_USTRORM_INTMEM +
2326 			   USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2327 		       pause_enabled);
2328 	}
2329 
2330 	DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2331 	   pause_enabled ? "enabled" : "disabled");
2332 }
2333 
2334 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2335 {
2336 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2337 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2338 
2339 	if (!BP_NOMCP(bp)) {
2340 		bnx2x_set_requested_fc(bp);
2341 		bnx2x_acquire_phy_lock(bp);
2342 
2343 		if (load_mode == LOAD_DIAG) {
2344 			struct link_params *lp = &bp->link_params;
2345 			lp->loopback_mode = LOOPBACK_XGXS;
2346 			/* Prefer doing PHY loopback at highest speed */
2347 			if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2348 				if (lp->speed_cap_mask[cfx_idx] &
2349 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2350 					lp->req_line_speed[cfx_idx] =
2351 					SPEED_20000;
2352 				else if (lp->speed_cap_mask[cfx_idx] &
2353 					    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2354 						lp->req_line_speed[cfx_idx] =
2355 						SPEED_10000;
2356 				else
2357 					lp->req_line_speed[cfx_idx] =
2358 					SPEED_1000;
2359 			}
2360 		}
2361 
2362 		if (load_mode == LOAD_LOOPBACK_EXT) {
2363 			struct link_params *lp = &bp->link_params;
2364 			lp->loopback_mode = LOOPBACK_EXT;
2365 		}
2366 
2367 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2368 
2369 		bnx2x_release_phy_lock(bp);
2370 
2371 		bnx2x_init_dropless_fc(bp);
2372 
2373 		bnx2x_calc_fc_adv(bp);
2374 
2375 		if (bp->link_vars.link_up) {
2376 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2377 			bnx2x_link_report(bp);
2378 		}
2379 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2380 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2381 		return rc;
2382 	}
2383 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2384 	return -EINVAL;
2385 }
2386 
2387 void bnx2x_link_set(struct bnx2x *bp)
2388 {
2389 	if (!BP_NOMCP(bp)) {
2390 		bnx2x_acquire_phy_lock(bp);
2391 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2392 		bnx2x_release_phy_lock(bp);
2393 
2394 		bnx2x_init_dropless_fc(bp);
2395 
2396 		bnx2x_calc_fc_adv(bp);
2397 	} else
2398 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2399 }
2400 
2401 static void bnx2x__link_reset(struct bnx2x *bp)
2402 {
2403 	if (!BP_NOMCP(bp)) {
2404 		bnx2x_acquire_phy_lock(bp);
2405 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2406 		bnx2x_release_phy_lock(bp);
2407 	} else
2408 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2409 }
2410 
2411 void bnx2x_force_link_reset(struct bnx2x *bp)
2412 {
2413 	bnx2x_acquire_phy_lock(bp);
2414 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2415 	bnx2x_release_phy_lock(bp);
2416 }
2417 
2418 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2419 {
2420 	u8 rc = 0;
2421 
2422 	if (!BP_NOMCP(bp)) {
2423 		bnx2x_acquire_phy_lock(bp);
2424 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2425 				     is_serdes);
2426 		bnx2x_release_phy_lock(bp);
2427 	} else
2428 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2429 
2430 	return rc;
2431 }
2432 
2433 /* Calculates the sum of vn_min_rates.
2434    It's needed for further normalizing of the min_rates.
2435    Returns:
2436      sum of vn_min_rates.
2437        or
2438      0 - if all the min_rates are 0.
2439      In the later case fairness algorithm should be deactivated.
2440      If not all min_rates are zero then those that are zeroes will be set to 1.
2441  */
2442 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2443 				      struct cmng_init_input *input)
2444 {
2445 	int all_zero = 1;
2446 	int vn;
2447 
2448 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2449 		u32 vn_cfg = bp->mf_config[vn];
2450 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2451 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2452 
2453 		/* Skip hidden vns */
2454 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2455 			vn_min_rate = 0;
2456 		/* If min rate is zero - set it to 1 */
2457 		else if (!vn_min_rate)
2458 			vn_min_rate = DEF_MIN_RATE;
2459 		else
2460 			all_zero = 0;
2461 
2462 		input->vnic_min_rate[vn] = vn_min_rate;
2463 	}
2464 
2465 	/* if ETS or all min rates are zeros - disable fairness */
2466 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2467 		input->flags.cmng_enables &=
2468 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2469 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2470 	} else if (all_zero) {
2471 		input->flags.cmng_enables &=
2472 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2473 		DP(NETIF_MSG_IFUP,
2474 		   "All MIN values are zeroes fairness will be disabled\n");
2475 	} else
2476 		input->flags.cmng_enables |=
2477 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2478 }
2479 
2480 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2481 				    struct cmng_init_input *input)
2482 {
2483 	u16 vn_max_rate;
2484 	u32 vn_cfg = bp->mf_config[vn];
2485 
2486 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2487 		vn_max_rate = 0;
2488 	else {
2489 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2490 
2491 		if (IS_MF_PERCENT_BW(bp)) {
2492 			/* maxCfg in percents of linkspeed */
2493 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2494 		} else /* SD modes */
2495 			/* maxCfg is absolute in 100Mb units */
2496 			vn_max_rate = maxCfg * 100;
2497 	}
2498 
2499 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2500 
2501 	input->vnic_max_rate[vn] = vn_max_rate;
2502 }
2503 
2504 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2505 {
2506 	if (CHIP_REV_IS_SLOW(bp))
2507 		return CMNG_FNS_NONE;
2508 	if (IS_MF(bp))
2509 		return CMNG_FNS_MINMAX;
2510 
2511 	return CMNG_FNS_NONE;
2512 }
2513 
2514 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2515 {
2516 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2517 
2518 	if (BP_NOMCP(bp))
2519 		return; /* what should be the default value in this case */
2520 
2521 	/* For 2 port configuration the absolute function number formula
2522 	 * is:
2523 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2524 	 *
2525 	 *      and there are 4 functions per port
2526 	 *
2527 	 * For 4 port configuration it is
2528 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2529 	 *
2530 	 *      and there are 2 functions per port
2531 	 */
2532 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2533 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2534 
2535 		if (func >= E1H_FUNC_MAX)
2536 			break;
2537 
2538 		bp->mf_config[vn] =
2539 			MF_CFG_RD(bp, func_mf_config[func].config);
2540 	}
2541 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2542 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2543 		bp->flags |= MF_FUNC_DIS;
2544 	} else {
2545 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2546 		bp->flags &= ~MF_FUNC_DIS;
2547 	}
2548 }
2549 
2550 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2551 {
2552 	struct cmng_init_input input;
2553 	memset(&input, 0, sizeof(struct cmng_init_input));
2554 
2555 	input.port_rate = bp->link_vars.line_speed;
2556 
2557 	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2558 		int vn;
2559 
2560 		/* read mf conf from shmem */
2561 		if (read_cfg)
2562 			bnx2x_read_mf_cfg(bp);
2563 
2564 		/* vn_weight_sum and enable fairness if not 0 */
2565 		bnx2x_calc_vn_min(bp, &input);
2566 
2567 		/* calculate and set min-max rate for each vn */
2568 		if (bp->port.pmf)
2569 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2570 				bnx2x_calc_vn_max(bp, vn, &input);
2571 
2572 		/* always enable rate shaping and fairness */
2573 		input.flags.cmng_enables |=
2574 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2575 
2576 		bnx2x_init_cmng(&input, &bp->cmng);
2577 		return;
2578 	}
2579 
2580 	/* rate shaping and fairness are disabled */
2581 	DP(NETIF_MSG_IFUP,
2582 	   "rate shaping and fairness are disabled\n");
2583 }
2584 
2585 static void storm_memset_cmng(struct bnx2x *bp,
2586 			      struct cmng_init *cmng,
2587 			      u8 port)
2588 {
2589 	int vn;
2590 	size_t size = sizeof(struct cmng_struct_per_port);
2591 
2592 	u32 addr = BAR_XSTRORM_INTMEM +
2593 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2594 
2595 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2596 
2597 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2598 		int func = func_by_vn(bp, vn);
2599 
2600 		addr = BAR_XSTRORM_INTMEM +
2601 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2602 		size = sizeof(struct rate_shaping_vars_per_vn);
2603 		__storm_memset_struct(bp, addr, size,
2604 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2605 
2606 		addr = BAR_XSTRORM_INTMEM +
2607 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2608 		size = sizeof(struct fairness_vars_per_vn);
2609 		__storm_memset_struct(bp, addr, size,
2610 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2611 	}
2612 }
2613 
2614 /* init cmng mode in HW according to local configuration */
2615 void bnx2x_set_local_cmng(struct bnx2x *bp)
2616 {
2617 	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2618 
2619 	if (cmng_fns != CMNG_FNS_NONE) {
2620 		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2621 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2622 	} else {
2623 		/* rate shaping and fairness are disabled */
2624 		DP(NETIF_MSG_IFUP,
2625 		   "single function mode without fairness\n");
2626 	}
2627 }
2628 
2629 /* This function is called upon link interrupt */
2630 static void bnx2x_link_attn(struct bnx2x *bp)
2631 {
2632 	/* Make sure that we are synced with the current statistics */
2633 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2634 
2635 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2636 
2637 	bnx2x_init_dropless_fc(bp);
2638 
2639 	if (bp->link_vars.link_up) {
2640 
2641 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2642 			struct host_port_stats *pstats;
2643 
2644 			pstats = bnx2x_sp(bp, port_stats);
2645 			/* reset old mac stats */
2646 			memset(&(pstats->mac_stx[0]), 0,
2647 			       sizeof(struct mac_stx));
2648 		}
2649 		if (bp->state == BNX2X_STATE_OPEN)
2650 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2651 	}
2652 
2653 	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2654 		bnx2x_set_local_cmng(bp);
2655 
2656 	__bnx2x_link_report(bp);
2657 
2658 	if (IS_MF(bp))
2659 		bnx2x_link_sync_notify(bp);
2660 }
2661 
2662 void bnx2x__link_status_update(struct bnx2x *bp)
2663 {
2664 	if (bp->state != BNX2X_STATE_OPEN)
2665 		return;
2666 
2667 	/* read updated dcb configuration */
2668 	if (IS_PF(bp)) {
2669 		bnx2x_dcbx_pmf_update(bp);
2670 		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2671 		if (bp->link_vars.link_up)
2672 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2673 		else
2674 			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2675 			/* indicate link status */
2676 		bnx2x_link_report(bp);
2677 
2678 	} else { /* VF */
2679 		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2680 					  SUPPORTED_10baseT_Full |
2681 					  SUPPORTED_100baseT_Half |
2682 					  SUPPORTED_100baseT_Full |
2683 					  SUPPORTED_1000baseT_Full |
2684 					  SUPPORTED_2500baseX_Full |
2685 					  SUPPORTED_10000baseT_Full |
2686 					  SUPPORTED_TP |
2687 					  SUPPORTED_FIBRE |
2688 					  SUPPORTED_Autoneg |
2689 					  SUPPORTED_Pause |
2690 					  SUPPORTED_Asym_Pause);
2691 		bp->port.advertising[0] = bp->port.supported[0];
2692 
2693 		bp->link_params.bp = bp;
2694 		bp->link_params.port = BP_PORT(bp);
2695 		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2696 		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2697 		bp->link_params.req_line_speed[0] = SPEED_10000;
2698 		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2699 		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2700 		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2701 		bp->link_vars.line_speed = SPEED_10000;
2702 		bp->link_vars.link_status =
2703 			(LINK_STATUS_LINK_UP |
2704 			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2705 		bp->link_vars.link_up = 1;
2706 		bp->link_vars.duplex = DUPLEX_FULL;
2707 		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2708 		__bnx2x_link_report(bp);
2709 
2710 		bnx2x_sample_bulletin(bp);
2711 
2712 		/* if bulletin board did not have an update for link status
2713 		 * __bnx2x_link_report will report current status
2714 		 * but it will NOT duplicate report in case of already reported
2715 		 * during sampling bulletin board.
2716 		 */
2717 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2718 	}
2719 }
2720 
2721 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2722 				  u16 vlan_val, u8 allowed_prio)
2723 {
2724 	struct bnx2x_func_state_params func_params = {NULL};
2725 	struct bnx2x_func_afex_update_params *f_update_params =
2726 		&func_params.params.afex_update;
2727 
2728 	func_params.f_obj = &bp->func_obj;
2729 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2730 
2731 	/* no need to wait for RAMROD completion, so don't
2732 	 * set RAMROD_COMP_WAIT flag
2733 	 */
2734 
2735 	f_update_params->vif_id = vifid;
2736 	f_update_params->afex_default_vlan = vlan_val;
2737 	f_update_params->allowed_priorities = allowed_prio;
2738 
2739 	/* if ramrod can not be sent, response to MCP immediately */
2740 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2741 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2742 
2743 	return 0;
2744 }
2745 
2746 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2747 					  u16 vif_index, u8 func_bit_map)
2748 {
2749 	struct bnx2x_func_state_params func_params = {NULL};
2750 	struct bnx2x_func_afex_viflists_params *update_params =
2751 		&func_params.params.afex_viflists;
2752 	int rc;
2753 	u32 drv_msg_code;
2754 
2755 	/* validate only LIST_SET and LIST_GET are received from switch */
2756 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2757 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2758 			  cmd_type);
2759 
2760 	func_params.f_obj = &bp->func_obj;
2761 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2762 
2763 	/* set parameters according to cmd_type */
2764 	update_params->afex_vif_list_command = cmd_type;
2765 	update_params->vif_list_index = vif_index;
2766 	update_params->func_bit_map =
2767 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2768 	update_params->func_to_clear = 0;
2769 	drv_msg_code =
2770 		(cmd_type == VIF_LIST_RULE_GET) ?
2771 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2772 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2773 
2774 	/* if ramrod can not be sent, respond to MCP immediately for
2775 	 * SET and GET requests (other are not triggered from MCP)
2776 	 */
2777 	rc = bnx2x_func_state_change(bp, &func_params);
2778 	if (rc < 0)
2779 		bnx2x_fw_command(bp, drv_msg_code, 0);
2780 
2781 	return 0;
2782 }
2783 
2784 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2785 {
2786 	struct afex_stats afex_stats;
2787 	u32 func = BP_ABS_FUNC(bp);
2788 	u32 mf_config;
2789 	u16 vlan_val;
2790 	u32 vlan_prio;
2791 	u16 vif_id;
2792 	u8 allowed_prio;
2793 	u8 vlan_mode;
2794 	u32 addr_to_write, vifid, addrs, stats_type, i;
2795 
2796 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2797 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2798 		DP(BNX2X_MSG_MCP,
2799 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2800 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2801 	}
2802 
2803 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2804 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2805 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2806 		DP(BNX2X_MSG_MCP,
2807 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2808 		   vifid, addrs);
2809 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2810 					       addrs);
2811 	}
2812 
2813 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2814 		addr_to_write = SHMEM2_RD(bp,
2815 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2816 		stats_type = SHMEM2_RD(bp,
2817 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2818 
2819 		DP(BNX2X_MSG_MCP,
2820 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2821 		   addr_to_write);
2822 
2823 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2824 
2825 		/* write response to scratchpad, for MCP */
2826 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2827 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2828 			       *(((u32 *)(&afex_stats))+i));
2829 
2830 		/* send ack message to MCP */
2831 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2832 	}
2833 
2834 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2835 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2836 		bp->mf_config[BP_VN(bp)] = mf_config;
2837 		DP(BNX2X_MSG_MCP,
2838 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2839 		   mf_config);
2840 
2841 		/* if VIF_SET is "enabled" */
2842 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2843 			/* set rate limit directly to internal RAM */
2844 			struct cmng_init_input cmng_input;
2845 			struct rate_shaping_vars_per_vn m_rs_vn;
2846 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2847 			u32 addr = BAR_XSTRORM_INTMEM +
2848 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2849 
2850 			bp->mf_config[BP_VN(bp)] = mf_config;
2851 
2852 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2853 			m_rs_vn.vn_counter.rate =
2854 				cmng_input.vnic_max_rate[BP_VN(bp)];
2855 			m_rs_vn.vn_counter.quota =
2856 				(m_rs_vn.vn_counter.rate *
2857 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2858 
2859 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2860 
2861 			/* read relevant values from mf_cfg struct in shmem */
2862 			vif_id =
2863 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2864 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2865 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2866 			vlan_val =
2867 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2868 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2869 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2870 			vlan_prio = (mf_config &
2871 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2872 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2873 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2874 			vlan_mode =
2875 				(MF_CFG_RD(bp,
2876 					   func_mf_config[func].afex_config) &
2877 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2878 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2879 			allowed_prio =
2880 				(MF_CFG_RD(bp,
2881 					   func_mf_config[func].afex_config) &
2882 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2883 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2884 
2885 			/* send ramrod to FW, return in case of failure */
2886 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2887 						   allowed_prio))
2888 				return;
2889 
2890 			bp->afex_def_vlan_tag = vlan_val;
2891 			bp->afex_vlan_mode = vlan_mode;
2892 		} else {
2893 			/* notify link down because BP->flags is disabled */
2894 			bnx2x_link_report(bp);
2895 
2896 			/* send INVALID VIF ramrod to FW */
2897 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2898 
2899 			/* Reset the default afex VLAN */
2900 			bp->afex_def_vlan_tag = -1;
2901 		}
2902 	}
2903 }
2904 
2905 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2906 {
2907 	struct bnx2x_func_switch_update_params *switch_update_params;
2908 	struct bnx2x_func_state_params func_params;
2909 
2910 	memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2911 	switch_update_params = &func_params.params.switch_update;
2912 	func_params.f_obj = &bp->func_obj;
2913 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2914 
2915 	/* Prepare parameters for function state transitions */
2916 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2917 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
2918 
2919 	if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2920 		int func = BP_ABS_FUNC(bp);
2921 		u32 val;
2922 
2923 		/* Re-learn the S-tag from shmem */
2924 		val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2925 				FUNC_MF_CFG_E1HOV_TAG_MASK;
2926 		if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2927 			bp->mf_ov = val;
2928 		} else {
2929 			BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2930 			goto fail;
2931 		}
2932 
2933 		/* Configure new S-tag in LLH */
2934 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2935 		       bp->mf_ov);
2936 
2937 		/* Send Ramrod to update FW of change */
2938 		__set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2939 			  &switch_update_params->changes);
2940 		switch_update_params->vlan = bp->mf_ov;
2941 
2942 		if (bnx2x_func_state_change(bp, &func_params) < 0) {
2943 			BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2944 				  bp->mf_ov);
2945 			goto fail;
2946 		} else {
2947 			DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2948 			   bp->mf_ov);
2949 		}
2950 	} else {
2951 		goto fail;
2952 	}
2953 
2954 	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2955 	return;
2956 fail:
2957 	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2958 }
2959 
2960 static void bnx2x_pmf_update(struct bnx2x *bp)
2961 {
2962 	int port = BP_PORT(bp);
2963 	u32 val;
2964 
2965 	bp->port.pmf = 1;
2966 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2967 
2968 	/*
2969 	 * We need the mb() to ensure the ordering between the writing to
2970 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2971 	 */
2972 	smp_mb();
2973 
2974 	/* queue a periodic task */
2975 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2976 
2977 	bnx2x_dcbx_pmf_update(bp);
2978 
2979 	/* enable nig attention */
2980 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2981 	if (bp->common.int_block == INT_BLOCK_HC) {
2982 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2983 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2984 	} else if (!CHIP_IS_E1x(bp)) {
2985 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2986 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2987 	}
2988 
2989 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2990 }
2991 
2992 /* end of Link */
2993 
2994 /* slow path */
2995 
2996 /*
2997  * General service functions
2998  */
2999 
3000 /* send the MCP a request, block until there is a reply */
3001 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3002 {
3003 	int mb_idx = BP_FW_MB_IDX(bp);
3004 	u32 seq;
3005 	u32 rc = 0;
3006 	u32 cnt = 1;
3007 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3008 
3009 	mutex_lock(&bp->fw_mb_mutex);
3010 	seq = ++bp->fw_seq;
3011 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3012 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3013 
3014 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3015 			(command | seq), param);
3016 
3017 	do {
3018 		/* let the FW do it's magic ... */
3019 		msleep(delay);
3020 
3021 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3022 
3023 		/* Give the FW up to 5 second (500*10ms) */
3024 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3025 
3026 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3027 	   cnt*delay, rc, seq);
3028 
3029 	/* is this a reply to our command? */
3030 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3031 		rc &= FW_MSG_CODE_MASK;
3032 	else {
3033 		/* FW BUG! */
3034 		BNX2X_ERR("FW failed to respond!\n");
3035 		bnx2x_fw_dump(bp);
3036 		rc = 0;
3037 	}
3038 	mutex_unlock(&bp->fw_mb_mutex);
3039 
3040 	return rc;
3041 }
3042 
3043 static void storm_memset_func_cfg(struct bnx2x *bp,
3044 				 struct tstorm_eth_function_common_config *tcfg,
3045 				 u16 abs_fid)
3046 {
3047 	size_t size = sizeof(struct tstorm_eth_function_common_config);
3048 
3049 	u32 addr = BAR_TSTRORM_INTMEM +
3050 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3051 
3052 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3053 }
3054 
3055 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3056 {
3057 	if (CHIP_IS_E1x(bp)) {
3058 		struct tstorm_eth_function_common_config tcfg = {0};
3059 
3060 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
3061 	}
3062 
3063 	/* Enable the function in the FW */
3064 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3065 	storm_memset_func_en(bp, p->func_id, 1);
3066 
3067 	/* spq */
3068 	if (p->spq_active) {
3069 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3070 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
3071 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3072 	}
3073 }
3074 
3075 /**
3076  * bnx2x_get_common_flags - Return common flags
3077  *
3078  * @bp		device handle
3079  * @fp		queue handle
3080  * @zero_stats	TRUE if statistics zeroing is needed
3081  *
3082  * Return the flags that are common for the Tx-only and not normal connections.
3083  */
3084 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3085 					    struct bnx2x_fastpath *fp,
3086 					    bool zero_stats)
3087 {
3088 	unsigned long flags = 0;
3089 
3090 	/* PF driver will always initialize the Queue to an ACTIVE state */
3091 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3092 
3093 	/* tx only connections collect statistics (on the same index as the
3094 	 * parent connection). The statistics are zeroed when the parent
3095 	 * connection is initialized.
3096 	 */
3097 
3098 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
3099 	if (zero_stats)
3100 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3101 
3102 	if (bp->flags & TX_SWITCHING)
3103 		__set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3104 
3105 	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3106 	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3107 
3108 #ifdef BNX2X_STOP_ON_ERROR
3109 	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3110 #endif
3111 
3112 	return flags;
3113 }
3114 
3115 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3116 				       struct bnx2x_fastpath *fp,
3117 				       bool leading)
3118 {
3119 	unsigned long flags = 0;
3120 
3121 	/* calculate other queue flags */
3122 	if (IS_MF_SD(bp))
3123 		__set_bit(BNX2X_Q_FLG_OV, &flags);
3124 
3125 	if (IS_FCOE_FP(fp)) {
3126 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
3127 		/* For FCoE - force usage of default priority (for afex) */
3128 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3129 	}
3130 
3131 	if (fp->mode != TPA_MODE_DISABLED) {
3132 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3133 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3134 		if (fp->mode == TPA_MODE_GRO)
3135 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3136 	}
3137 
3138 	if (leading) {
3139 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3140 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3141 	}
3142 
3143 	/* Always set HW VLAN stripping */
3144 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3145 
3146 	/* configure silent vlan removal */
3147 	if (IS_MF_AFEX(bp))
3148 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3149 
3150 	return flags | bnx2x_get_common_flags(bp, fp, true);
3151 }
3152 
3153 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3154 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3155 	u8 cos)
3156 {
3157 	gen_init->stat_id = bnx2x_stats_id(fp);
3158 	gen_init->spcl_id = fp->cl_id;
3159 
3160 	/* Always use mini-jumbo MTU for FCoE L2 ring */
3161 	if (IS_FCOE_FP(fp))
3162 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3163 	else
3164 		gen_init->mtu = bp->dev->mtu;
3165 
3166 	gen_init->cos = cos;
3167 
3168 	gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3169 }
3170 
3171 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3172 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3173 	struct bnx2x_rxq_setup_params *rxq_init)
3174 {
3175 	u8 max_sge = 0;
3176 	u16 sge_sz = 0;
3177 	u16 tpa_agg_size = 0;
3178 
3179 	if (fp->mode != TPA_MODE_DISABLED) {
3180 		pause->sge_th_lo = SGE_TH_LO(bp);
3181 		pause->sge_th_hi = SGE_TH_HI(bp);
3182 
3183 		/* validate SGE ring has enough to cross high threshold */
3184 		WARN_ON(bp->dropless_fc &&
3185 				pause->sge_th_hi + FW_PREFETCH_CNT >
3186 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3187 
3188 		tpa_agg_size = TPA_AGG_SIZE;
3189 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3190 			SGE_PAGE_SHIFT;
3191 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3192 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3193 		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3194 	}
3195 
3196 	/* pause - not for e1 */
3197 	if (!CHIP_IS_E1(bp)) {
3198 		pause->bd_th_lo = BD_TH_LO(bp);
3199 		pause->bd_th_hi = BD_TH_HI(bp);
3200 
3201 		pause->rcq_th_lo = RCQ_TH_LO(bp);
3202 		pause->rcq_th_hi = RCQ_TH_HI(bp);
3203 		/*
3204 		 * validate that rings have enough entries to cross
3205 		 * high thresholds
3206 		 */
3207 		WARN_ON(bp->dropless_fc &&
3208 				pause->bd_th_hi + FW_PREFETCH_CNT >
3209 				bp->rx_ring_size);
3210 		WARN_ON(bp->dropless_fc &&
3211 				pause->rcq_th_hi + FW_PREFETCH_CNT >
3212 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3213 
3214 		pause->pri_map = 1;
3215 	}
3216 
3217 	/* rxq setup */
3218 	rxq_init->dscr_map = fp->rx_desc_mapping;
3219 	rxq_init->sge_map = fp->rx_sge_mapping;
3220 	rxq_init->rcq_map = fp->rx_comp_mapping;
3221 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3222 
3223 	/* This should be a maximum number of data bytes that may be
3224 	 * placed on the BD (not including paddings).
3225 	 */
3226 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3227 			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3228 
3229 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3230 	rxq_init->tpa_agg_sz = tpa_agg_size;
3231 	rxq_init->sge_buf_sz = sge_sz;
3232 	rxq_init->max_sges_pkt = max_sge;
3233 	rxq_init->rss_engine_id = BP_FUNC(bp);
3234 	rxq_init->mcast_engine_id = BP_FUNC(bp);
3235 
3236 	/* Maximum number or simultaneous TPA aggregation for this Queue.
3237 	 *
3238 	 * For PF Clients it should be the maximum available number.
3239 	 * VF driver(s) may want to define it to a smaller value.
3240 	 */
3241 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3242 
3243 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3244 	rxq_init->fw_sb_id = fp->fw_sb_id;
3245 
3246 	if (IS_FCOE_FP(fp))
3247 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3248 	else
3249 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3250 	/* configure silent vlan removal
3251 	 * if multi function mode is afex, then mask default vlan
3252 	 */
3253 	if (IS_MF_AFEX(bp)) {
3254 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3255 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3256 	}
3257 }
3258 
3259 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3260 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3261 	u8 cos)
3262 {
3263 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3264 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3265 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3266 	txq_init->fw_sb_id = fp->fw_sb_id;
3267 
3268 	/*
3269 	 * set the tss leading client id for TX classification ==
3270 	 * leading RSS client id
3271 	 */
3272 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3273 
3274 	if (IS_FCOE_FP(fp)) {
3275 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3276 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3277 	}
3278 }
3279 
3280 static void bnx2x_pf_init(struct bnx2x *bp)
3281 {
3282 	struct bnx2x_func_init_params func_init = {0};
3283 	struct event_ring_data eq_data = { {0} };
3284 
3285 	if (!CHIP_IS_E1x(bp)) {
3286 		/* reset IGU PF statistics: MSIX + ATTN */
3287 		/* PF */
3288 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3289 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3290 			   (CHIP_MODE_IS_4_PORT(bp) ?
3291 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3292 		/* ATTN */
3293 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3294 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3295 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3296 			   (CHIP_MODE_IS_4_PORT(bp) ?
3297 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3298 	}
3299 
3300 	func_init.spq_active = true;
3301 	func_init.pf_id = BP_FUNC(bp);
3302 	func_init.func_id = BP_FUNC(bp);
3303 	func_init.spq_map = bp->spq_mapping;
3304 	func_init.spq_prod = bp->spq_prod_idx;
3305 
3306 	bnx2x_func_init(bp, &func_init);
3307 
3308 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3309 
3310 	/*
3311 	 * Congestion management values depend on the link rate
3312 	 * There is no active link so initial link rate is set to 10 Gbps.
3313 	 * When the link comes up The congestion management values are
3314 	 * re-calculated according to the actual link rate.
3315 	 */
3316 	bp->link_vars.line_speed = SPEED_10000;
3317 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3318 
3319 	/* Only the PMF sets the HW */
3320 	if (bp->port.pmf)
3321 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3322 
3323 	/* init Event Queue - PCI bus guarantees correct endianity*/
3324 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3325 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3326 	eq_data.producer = bp->eq_prod;
3327 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3328 	eq_data.sb_id = DEF_SB_ID;
3329 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3330 }
3331 
3332 static void bnx2x_e1h_disable(struct bnx2x *bp)
3333 {
3334 	int port = BP_PORT(bp);
3335 
3336 	bnx2x_tx_disable(bp);
3337 
3338 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3339 }
3340 
3341 static void bnx2x_e1h_enable(struct bnx2x *bp)
3342 {
3343 	int port = BP_PORT(bp);
3344 
3345 	if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3346 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3347 
3348 	/* Tx queue should be only re-enabled */
3349 	netif_tx_wake_all_queues(bp->dev);
3350 
3351 	/*
3352 	 * Should not call netif_carrier_on since it will be called if the link
3353 	 * is up when checking for link state
3354 	 */
3355 }
3356 
3357 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3358 
3359 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3360 {
3361 	struct eth_stats_info *ether_stat =
3362 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3363 	struct bnx2x_vlan_mac_obj *mac_obj =
3364 		&bp->sp_objs->mac_obj;
3365 	int i;
3366 
3367 	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3368 		ETH_STAT_INFO_VERSION_LEN);
3369 
3370 	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3371 	 * mac_local field in ether_stat struct. The base address is offset by 2
3372 	 * bytes to account for the field being 8 bytes but a mac address is
3373 	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3374 	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3375 	 * allocated by the ether_stat struct, so the macs will land in their
3376 	 * proper positions.
3377 	 */
3378 	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3379 		memset(ether_stat->mac_local + i, 0,
3380 		       sizeof(ether_stat->mac_local[0]));
3381 	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3382 				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3383 				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3384 				ETH_ALEN);
3385 	ether_stat->mtu_size = bp->dev->mtu;
3386 	if (bp->dev->features & NETIF_F_RXCSUM)
3387 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3388 	if (bp->dev->features & NETIF_F_TSO)
3389 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3390 	ether_stat->feature_flags |= bp->common.boot_mode;
3391 
3392 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3393 
3394 	ether_stat->txq_size = bp->tx_ring_size;
3395 	ether_stat->rxq_size = bp->rx_ring_size;
3396 
3397 #ifdef CONFIG_BNX2X_SRIOV
3398 	ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3399 #endif
3400 }
3401 
3402 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3403 {
3404 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3405 	struct fcoe_stats_info *fcoe_stat =
3406 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3407 
3408 	if (!CNIC_LOADED(bp))
3409 		return;
3410 
3411 	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3412 
3413 	fcoe_stat->qos_priority =
3414 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3415 
3416 	/* insert FCoE stats from ramrod response */
3417 	if (!NO_FCOE(bp)) {
3418 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3419 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3420 			tstorm_queue_statistics;
3421 
3422 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3423 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3424 			xstorm_queue_statistics;
3425 
3426 		struct fcoe_statistics_params *fw_fcoe_stat =
3427 			&bp->fw_stats_data->fcoe;
3428 
3429 		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3430 			  fcoe_stat->rx_bytes_lo,
3431 			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3432 
3433 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3434 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3435 			  fcoe_stat->rx_bytes_lo,
3436 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3437 
3438 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3439 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3440 			  fcoe_stat->rx_bytes_lo,
3441 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3442 
3443 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3444 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3445 			  fcoe_stat->rx_bytes_lo,
3446 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3447 
3448 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3449 			  fcoe_stat->rx_frames_lo,
3450 			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3451 
3452 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3453 			  fcoe_stat->rx_frames_lo,
3454 			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3455 
3456 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3457 			  fcoe_stat->rx_frames_lo,
3458 			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3459 
3460 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3461 			  fcoe_stat->rx_frames_lo,
3462 			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3463 
3464 		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3465 			  fcoe_stat->tx_bytes_lo,
3466 			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3467 
3468 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3469 			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3470 			  fcoe_stat->tx_bytes_lo,
3471 			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3472 
3473 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3474 			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3475 			  fcoe_stat->tx_bytes_lo,
3476 			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3477 
3478 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3479 			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3480 			  fcoe_stat->tx_bytes_lo,
3481 			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3482 
3483 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3484 			  fcoe_stat->tx_frames_lo,
3485 			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3486 
3487 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3488 			  fcoe_stat->tx_frames_lo,
3489 			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3490 
3491 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3492 			  fcoe_stat->tx_frames_lo,
3493 			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3494 
3495 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3496 			  fcoe_stat->tx_frames_lo,
3497 			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3498 	}
3499 
3500 	/* ask L5 driver to add data to the struct */
3501 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3502 }
3503 
3504 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3505 {
3506 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3507 	struct iscsi_stats_info *iscsi_stat =
3508 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3509 
3510 	if (!CNIC_LOADED(bp))
3511 		return;
3512 
3513 	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3514 	       ETH_ALEN);
3515 
3516 	iscsi_stat->qos_priority =
3517 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3518 
3519 	/* ask L5 driver to add data to the struct */
3520 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3521 }
3522 
3523 /* called due to MCP event (on pmf):
3524  *	reread new bandwidth configuration
3525  *	configure FW
3526  *	notify others function about the change
3527  */
3528 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3529 {
3530 	/* Workaround for MFW bug.
3531 	 * MFW is not supposed to generate BW attention in
3532 	 * single function mode.
3533 	 */
3534 	if (!IS_MF(bp)) {
3535 		DP(BNX2X_MSG_MCP,
3536 		   "Ignoring MF BW config in single function mode\n");
3537 		return;
3538 	}
3539 
3540 	if (bp->link_vars.link_up) {
3541 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3542 		bnx2x_link_sync_notify(bp);
3543 	}
3544 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3545 }
3546 
3547 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3548 {
3549 	bnx2x_config_mf_bw(bp);
3550 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3551 }
3552 
3553 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3554 {
3555 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3556 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3557 }
3558 
3559 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH	(20)
3560 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT		(25)
3561 
3562 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3563 {
3564 	enum drv_info_opcode op_code;
3565 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3566 	bool release = false;
3567 	int wait;
3568 
3569 	/* if drv_info version supported by MFW doesn't match - send NACK */
3570 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3571 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3572 		return;
3573 	}
3574 
3575 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3576 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3577 
3578 	/* Must prevent other flows from accessing drv_info_to_mcp */
3579 	mutex_lock(&bp->drv_info_mutex);
3580 
3581 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3582 	       sizeof(union drv_info_to_mcp));
3583 
3584 	switch (op_code) {
3585 	case ETH_STATS_OPCODE:
3586 		bnx2x_drv_info_ether_stat(bp);
3587 		break;
3588 	case FCOE_STATS_OPCODE:
3589 		bnx2x_drv_info_fcoe_stat(bp);
3590 		break;
3591 	case ISCSI_STATS_OPCODE:
3592 		bnx2x_drv_info_iscsi_stat(bp);
3593 		break;
3594 	default:
3595 		/* if op code isn't supported - send NACK */
3596 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3597 		goto out;
3598 	}
3599 
3600 	/* if we got drv_info attn from MFW then these fields are defined in
3601 	 * shmem2 for sure
3602 	 */
3603 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3604 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3605 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3606 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3607 
3608 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3609 
3610 	/* Since possible management wants both this and get_driver_version
3611 	 * need to wait until management notifies us it finished utilizing
3612 	 * the buffer.
3613 	 */
3614 	if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3615 		DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3616 	} else if (!bp->drv_info_mng_owner) {
3617 		u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3618 
3619 		for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3620 			u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3621 
3622 			/* Management is done; need to clear indication */
3623 			if (indication & bit) {
3624 				SHMEM2_WR(bp, mfw_drv_indication,
3625 					  indication & ~bit);
3626 				release = true;
3627 				break;
3628 			}
3629 
3630 			msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3631 		}
3632 	}
3633 	if (!release) {
3634 		DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3635 		bp->drv_info_mng_owner = true;
3636 	}
3637 
3638 out:
3639 	mutex_unlock(&bp->drv_info_mutex);
3640 }
3641 
3642 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3643 {
3644 	u8 vals[4];
3645 	int i = 0;
3646 
3647 	if (bnx2x_format) {
3648 		i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3649 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3650 		if (i > 0)
3651 			vals[0] -= '0';
3652 	} else {
3653 		i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3654 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3655 	}
3656 
3657 	while (i < 4)
3658 		vals[i++] = 0;
3659 
3660 	return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3661 }
3662 
3663 void bnx2x_update_mng_version(struct bnx2x *bp)
3664 {
3665 	u32 iscsiver = DRV_VER_NOT_LOADED;
3666 	u32 fcoever = DRV_VER_NOT_LOADED;
3667 	u32 ethver = DRV_VER_NOT_LOADED;
3668 	int idx = BP_FW_MB_IDX(bp);
3669 	u8 *version;
3670 
3671 	if (!SHMEM2_HAS(bp, func_os_drv_ver))
3672 		return;
3673 
3674 	mutex_lock(&bp->drv_info_mutex);
3675 	/* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3676 	if (bp->drv_info_mng_owner)
3677 		goto out;
3678 
3679 	if (bp->state != BNX2X_STATE_OPEN)
3680 		goto out;
3681 
3682 	/* Parse ethernet driver version */
3683 	ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3684 	if (!CNIC_LOADED(bp))
3685 		goto out;
3686 
3687 	/* Try getting storage driver version via cnic */
3688 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3689 	       sizeof(union drv_info_to_mcp));
3690 	bnx2x_drv_info_iscsi_stat(bp);
3691 	version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3692 	iscsiver = bnx2x_update_mng_version_utility(version, false);
3693 
3694 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3695 	       sizeof(union drv_info_to_mcp));
3696 	bnx2x_drv_info_fcoe_stat(bp);
3697 	version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3698 	fcoever = bnx2x_update_mng_version_utility(version, false);
3699 
3700 out:
3701 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3702 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3703 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3704 
3705 	mutex_unlock(&bp->drv_info_mutex);
3706 
3707 	DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3708 	   ethver, iscsiver, fcoever);
3709 }
3710 
3711 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3712 {
3713 	u32 drv_ver;
3714 	u32 valid_dump;
3715 
3716 	if (!SHMEM2_HAS(bp, drv_info))
3717 		return;
3718 
3719 	/* Update Driver load time, possibly broken in y2038 */
3720 	SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3721 
3722 	drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3723 	SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3724 
3725 	SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3726 
3727 	/* Check & notify On-Chip dump. */
3728 	valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3729 
3730 	if (valid_dump & FIRST_DUMP_VALID)
3731 		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3732 
3733 	if (valid_dump & SECOND_DUMP_VALID)
3734 		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3735 }
3736 
3737 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3738 {
3739 	u32 cmd_ok, cmd_fail;
3740 
3741 	/* sanity */
3742 	if (event & DRV_STATUS_DCC_EVENT_MASK &&
3743 	    event & DRV_STATUS_OEM_EVENT_MASK) {
3744 		BNX2X_ERR("Received simultaneous events %08x\n", event);
3745 		return;
3746 	}
3747 
3748 	if (event & DRV_STATUS_DCC_EVENT_MASK) {
3749 		cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3750 		cmd_ok = DRV_MSG_CODE_DCC_OK;
3751 	} else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3752 		cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3753 		cmd_ok = DRV_MSG_CODE_OEM_OK;
3754 	}
3755 
3756 	DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3757 
3758 	if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3759 		     DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3760 		/* This is the only place besides the function initialization
3761 		 * where the bp->flags can change so it is done without any
3762 		 * locks
3763 		 */
3764 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3765 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3766 			bp->flags |= MF_FUNC_DIS;
3767 
3768 			bnx2x_e1h_disable(bp);
3769 		} else {
3770 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3771 			bp->flags &= ~MF_FUNC_DIS;
3772 
3773 			bnx2x_e1h_enable(bp);
3774 		}
3775 		event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3776 			   DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3777 	}
3778 
3779 	if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3780 		     DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3781 		bnx2x_config_mf_bw(bp);
3782 		event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3783 			   DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3784 	}
3785 
3786 	/* Report results to MCP */
3787 	if (event)
3788 		bnx2x_fw_command(bp, cmd_fail, 0);
3789 	else
3790 		bnx2x_fw_command(bp, cmd_ok, 0);
3791 }
3792 
3793 /* must be called under the spq lock */
3794 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3795 {
3796 	struct eth_spe *next_spe = bp->spq_prod_bd;
3797 
3798 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3799 		bp->spq_prod_bd = bp->spq;
3800 		bp->spq_prod_idx = 0;
3801 		DP(BNX2X_MSG_SP, "end of spq\n");
3802 	} else {
3803 		bp->spq_prod_bd++;
3804 		bp->spq_prod_idx++;
3805 	}
3806 	return next_spe;
3807 }
3808 
3809 /* must be called under the spq lock */
3810 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3811 {
3812 	int func = BP_FUNC(bp);
3813 
3814 	/*
3815 	 * Make sure that BD data is updated before writing the producer:
3816 	 * BD data is written to the memory, the producer is read from the
3817 	 * memory, thus we need a full memory barrier to ensure the ordering.
3818 	 */
3819 	mb();
3820 
3821 	REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3822 			 bp->spq_prod_idx);
3823 }
3824 
3825 /**
3826  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3827  *
3828  * @cmd:	command to check
3829  * @cmd_type:	command type
3830  */
3831 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3832 {
3833 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3834 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3835 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3836 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3837 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3838 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3839 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3840 		return true;
3841 	else
3842 		return false;
3843 }
3844 
3845 /**
3846  * bnx2x_sp_post - place a single command on an SP ring
3847  *
3848  * @bp:		driver handle
3849  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3850  * @cid:	SW CID the command is related to
3851  * @data_hi:	command private data address (high 32 bits)
3852  * @data_lo:	command private data address (low 32 bits)
3853  * @cmd_type:	command type (e.g. NONE, ETH)
3854  *
3855  * SP data is handled as if it's always an address pair, thus data fields are
3856  * not swapped to little endian in upper functions. Instead this function swaps
3857  * data as if it's two u32 fields.
3858  */
3859 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3860 		  u32 data_hi, u32 data_lo, int cmd_type)
3861 {
3862 	struct eth_spe *spe;
3863 	u16 type;
3864 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3865 
3866 #ifdef BNX2X_STOP_ON_ERROR
3867 	if (unlikely(bp->panic)) {
3868 		BNX2X_ERR("Can't post SP when there is panic\n");
3869 		return -EIO;
3870 	}
3871 #endif
3872 
3873 	spin_lock_bh(&bp->spq_lock);
3874 
3875 	if (common) {
3876 		if (!atomic_read(&bp->eq_spq_left)) {
3877 			BNX2X_ERR("BUG! EQ ring full!\n");
3878 			spin_unlock_bh(&bp->spq_lock);
3879 			bnx2x_panic();
3880 			return -EBUSY;
3881 		}
3882 	} else if (!atomic_read(&bp->cq_spq_left)) {
3883 			BNX2X_ERR("BUG! SPQ ring full!\n");
3884 			spin_unlock_bh(&bp->spq_lock);
3885 			bnx2x_panic();
3886 			return -EBUSY;
3887 	}
3888 
3889 	spe = bnx2x_sp_get_next(bp);
3890 
3891 	/* CID needs port number to be encoded int it */
3892 	spe->hdr.conn_and_cmd_data =
3893 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3894 				    HW_CID(bp, cid));
3895 
3896 	/* In some cases, type may already contain the func-id
3897 	 * mainly in SRIOV related use cases, so we add it here only
3898 	 * if it's not already set.
3899 	 */
3900 	if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3901 		type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3902 			SPE_HDR_CONN_TYPE;
3903 		type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3904 			 SPE_HDR_FUNCTION_ID);
3905 	} else {
3906 		type = cmd_type;
3907 	}
3908 
3909 	spe->hdr.type = cpu_to_le16(type);
3910 
3911 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3912 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3913 
3914 	/*
3915 	 * It's ok if the actual decrement is issued towards the memory
3916 	 * somewhere between the spin_lock and spin_unlock. Thus no
3917 	 * more explicit memory barrier is needed.
3918 	 */
3919 	if (common)
3920 		atomic_dec(&bp->eq_spq_left);
3921 	else
3922 		atomic_dec(&bp->cq_spq_left);
3923 
3924 	DP(BNX2X_MSG_SP,
3925 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3926 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3927 	   (u32)(U64_LO(bp->spq_mapping) +
3928 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3929 	   HW_CID(bp, cid), data_hi, data_lo, type,
3930 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3931 
3932 	bnx2x_sp_prod_update(bp);
3933 	spin_unlock_bh(&bp->spq_lock);
3934 	return 0;
3935 }
3936 
3937 /* acquire split MCP access lock register */
3938 static int bnx2x_acquire_alr(struct bnx2x *bp)
3939 {
3940 	u32 j, val;
3941 	int rc = 0;
3942 
3943 	might_sleep();
3944 	for (j = 0; j < 1000; j++) {
3945 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3946 		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3947 		if (val & MCPR_ACCESS_LOCK_LOCK)
3948 			break;
3949 
3950 		usleep_range(5000, 10000);
3951 	}
3952 	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3953 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3954 		rc = -EBUSY;
3955 	}
3956 
3957 	return rc;
3958 }
3959 
3960 /* release split MCP access lock register */
3961 static void bnx2x_release_alr(struct bnx2x *bp)
3962 {
3963 	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3964 }
3965 
3966 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3967 #define BNX2X_DEF_SB_IDX	0x0002
3968 
3969 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3970 {
3971 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3972 	u16 rc = 0;
3973 
3974 	barrier(); /* status block is written to by the chip */
3975 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3976 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3977 		rc |= BNX2X_DEF_SB_ATT_IDX;
3978 	}
3979 
3980 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3981 		bp->def_idx = def_sb->sp_sb.running_index;
3982 		rc |= BNX2X_DEF_SB_IDX;
3983 	}
3984 
3985 	/* Do not reorder: indices reading should complete before handling */
3986 	barrier();
3987 	return rc;
3988 }
3989 
3990 /*
3991  * slow path service functions
3992  */
3993 
3994 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3995 {
3996 	int port = BP_PORT(bp);
3997 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3998 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3999 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
4000 				       NIG_REG_MASK_INTERRUPT_PORT0;
4001 	u32 aeu_mask;
4002 	u32 nig_mask = 0;
4003 	u32 reg_addr;
4004 
4005 	if (bp->attn_state & asserted)
4006 		BNX2X_ERR("IGU ERROR\n");
4007 
4008 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4009 	aeu_mask = REG_RD(bp, aeu_addr);
4010 
4011 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
4012 	   aeu_mask, asserted);
4013 	aeu_mask &= ~(asserted & 0x3ff);
4014 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4015 
4016 	REG_WR(bp, aeu_addr, aeu_mask);
4017 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4018 
4019 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4020 	bp->attn_state |= asserted;
4021 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4022 
4023 	if (asserted & ATTN_HARD_WIRED_MASK) {
4024 		if (asserted & ATTN_NIG_FOR_FUNC) {
4025 
4026 			bnx2x_acquire_phy_lock(bp);
4027 
4028 			/* save nig interrupt mask */
4029 			nig_mask = REG_RD(bp, nig_int_mask_addr);
4030 
4031 			/* If nig_mask is not set, no need to call the update
4032 			 * function.
4033 			 */
4034 			if (nig_mask) {
4035 				REG_WR(bp, nig_int_mask_addr, 0);
4036 
4037 				bnx2x_link_attn(bp);
4038 			}
4039 
4040 			/* handle unicore attn? */
4041 		}
4042 		if (asserted & ATTN_SW_TIMER_4_FUNC)
4043 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4044 
4045 		if (asserted & GPIO_2_FUNC)
4046 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4047 
4048 		if (asserted & GPIO_3_FUNC)
4049 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4050 
4051 		if (asserted & GPIO_4_FUNC)
4052 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4053 
4054 		if (port == 0) {
4055 			if (asserted & ATTN_GENERAL_ATTN_1) {
4056 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4057 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4058 			}
4059 			if (asserted & ATTN_GENERAL_ATTN_2) {
4060 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4061 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4062 			}
4063 			if (asserted & ATTN_GENERAL_ATTN_3) {
4064 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4065 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4066 			}
4067 		} else {
4068 			if (asserted & ATTN_GENERAL_ATTN_4) {
4069 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4070 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4071 			}
4072 			if (asserted & ATTN_GENERAL_ATTN_5) {
4073 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4074 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4075 			}
4076 			if (asserted & ATTN_GENERAL_ATTN_6) {
4077 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4078 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4079 			}
4080 		}
4081 
4082 	} /* if hardwired */
4083 
4084 	if (bp->common.int_block == INT_BLOCK_HC)
4085 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4086 			    COMMAND_REG_ATTN_BITS_SET);
4087 	else
4088 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4089 
4090 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4091 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4092 	REG_WR(bp, reg_addr, asserted);
4093 
4094 	/* now set back the mask */
4095 	if (asserted & ATTN_NIG_FOR_FUNC) {
4096 		/* Verify that IGU ack through BAR was written before restoring
4097 		 * NIG mask. This loop should exit after 2-3 iterations max.
4098 		 */
4099 		if (bp->common.int_block != INT_BLOCK_HC) {
4100 			u32 cnt = 0, igu_acked;
4101 			do {
4102 				igu_acked = REG_RD(bp,
4103 						   IGU_REG_ATTENTION_ACK_BITS);
4104 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4105 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
4106 			if (!igu_acked)
4107 				DP(NETIF_MSG_HW,
4108 				   "Failed to verify IGU ack on time\n");
4109 			barrier();
4110 		}
4111 		REG_WR(bp, nig_int_mask_addr, nig_mask);
4112 		bnx2x_release_phy_lock(bp);
4113 	}
4114 }
4115 
4116 static void bnx2x_fan_failure(struct bnx2x *bp)
4117 {
4118 	int port = BP_PORT(bp);
4119 	u32 ext_phy_config;
4120 	/* mark the failure */
4121 	ext_phy_config =
4122 		SHMEM_RD(bp,
4123 			 dev_info.port_hw_config[port].external_phy_config);
4124 
4125 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4126 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4127 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4128 		 ext_phy_config);
4129 
4130 	/* log the failure */
4131 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4132 			    "Please contact OEM Support for assistance\n");
4133 
4134 	/* Schedule device reset (unload)
4135 	 * This is due to some boards consuming sufficient power when driver is
4136 	 * up to overheat if fan fails.
4137 	 */
4138 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4139 }
4140 
4141 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4142 {
4143 	int port = BP_PORT(bp);
4144 	int reg_offset;
4145 	u32 val;
4146 
4147 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4148 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4149 
4150 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4151 
4152 		val = REG_RD(bp, reg_offset);
4153 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4154 		REG_WR(bp, reg_offset, val);
4155 
4156 		BNX2X_ERR("SPIO5 hw attention\n");
4157 
4158 		/* Fan failure attention */
4159 		bnx2x_hw_reset_phy(&bp->link_params);
4160 		bnx2x_fan_failure(bp);
4161 	}
4162 
4163 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4164 		bnx2x_acquire_phy_lock(bp);
4165 		bnx2x_handle_module_detect_int(&bp->link_params);
4166 		bnx2x_release_phy_lock(bp);
4167 	}
4168 
4169 	if (attn & HW_INTERRUPT_ASSERT_SET_0) {
4170 
4171 		val = REG_RD(bp, reg_offset);
4172 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0);
4173 		REG_WR(bp, reg_offset, val);
4174 
4175 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4176 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_0));
4177 		bnx2x_panic();
4178 	}
4179 }
4180 
4181 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4182 {
4183 	u32 val;
4184 
4185 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4186 
4187 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4188 		BNX2X_ERR("DB hw attention 0x%x\n", val);
4189 		/* DORQ discard attention */
4190 		if (val & 0x2)
4191 			BNX2X_ERR("FATAL error from DORQ\n");
4192 	}
4193 
4194 	if (attn & HW_INTERRUPT_ASSERT_SET_1) {
4195 
4196 		int port = BP_PORT(bp);
4197 		int reg_offset;
4198 
4199 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4200 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4201 
4202 		val = REG_RD(bp, reg_offset);
4203 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1);
4204 		REG_WR(bp, reg_offset, val);
4205 
4206 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4207 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_1));
4208 		bnx2x_panic();
4209 	}
4210 }
4211 
4212 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4213 {
4214 	u32 val;
4215 
4216 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4217 
4218 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4219 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
4220 		/* CFC error attention */
4221 		if (val & 0x2)
4222 			BNX2X_ERR("FATAL error from CFC\n");
4223 	}
4224 
4225 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4226 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4227 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4228 		/* RQ_USDMDP_FIFO_OVERFLOW */
4229 		if (val & 0x18000)
4230 			BNX2X_ERR("FATAL error from PXP\n");
4231 
4232 		if (!CHIP_IS_E1x(bp)) {
4233 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4234 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4235 		}
4236 	}
4237 
4238 	if (attn & HW_INTERRUPT_ASSERT_SET_2) {
4239 
4240 		int port = BP_PORT(bp);
4241 		int reg_offset;
4242 
4243 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4244 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4245 
4246 		val = REG_RD(bp, reg_offset);
4247 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2);
4248 		REG_WR(bp, reg_offset, val);
4249 
4250 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4251 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_2));
4252 		bnx2x_panic();
4253 	}
4254 }
4255 
4256 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4257 {
4258 	u32 val;
4259 
4260 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4261 
4262 		if (attn & BNX2X_PMF_LINK_ASSERT) {
4263 			int func = BP_FUNC(bp);
4264 
4265 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4266 			bnx2x_read_mf_cfg(bp);
4267 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4268 					func_mf_config[BP_ABS_FUNC(bp)].config);
4269 			val = SHMEM_RD(bp,
4270 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4271 
4272 			if (val & (DRV_STATUS_DCC_EVENT_MASK |
4273 				   DRV_STATUS_OEM_EVENT_MASK))
4274 				bnx2x_oem_event(bp,
4275 					(val & (DRV_STATUS_DCC_EVENT_MASK |
4276 						DRV_STATUS_OEM_EVENT_MASK)));
4277 
4278 			if (val & DRV_STATUS_SET_MF_BW)
4279 				bnx2x_set_mf_bw(bp);
4280 
4281 			if (val & DRV_STATUS_DRV_INFO_REQ)
4282 				bnx2x_handle_drv_info_req(bp);
4283 
4284 			if (val & DRV_STATUS_VF_DISABLED)
4285 				bnx2x_schedule_iov_task(bp,
4286 							BNX2X_IOV_HANDLE_FLR);
4287 
4288 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4289 				bnx2x_pmf_update(bp);
4290 
4291 			if (bp->port.pmf &&
4292 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4293 				bp->dcbx_enabled > 0)
4294 				/* start dcbx state machine */
4295 				bnx2x_dcbx_set_params(bp,
4296 					BNX2X_DCBX_STATE_NEG_RECEIVED);
4297 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
4298 				bnx2x_handle_afex_cmd(bp,
4299 					val & DRV_STATUS_AFEX_EVENT_MASK);
4300 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4301 				bnx2x_handle_eee_event(bp);
4302 
4303 			if (val & DRV_STATUS_OEM_UPDATE_SVID)
4304 				bnx2x_schedule_sp_rtnl(bp,
4305 					BNX2X_SP_RTNL_UPDATE_SVID, 0);
4306 
4307 			if (bp->link_vars.periodic_flags &
4308 			    PERIODIC_FLAGS_LINK_EVENT) {
4309 				/*  sync with link */
4310 				bnx2x_acquire_phy_lock(bp);
4311 				bp->link_vars.periodic_flags &=
4312 					~PERIODIC_FLAGS_LINK_EVENT;
4313 				bnx2x_release_phy_lock(bp);
4314 				if (IS_MF(bp))
4315 					bnx2x_link_sync_notify(bp);
4316 				bnx2x_link_report(bp);
4317 			}
4318 			/* Always call it here: bnx2x_link_report() will
4319 			 * prevent the link indication duplication.
4320 			 */
4321 			bnx2x__link_status_update(bp);
4322 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4323 
4324 			BNX2X_ERR("MC assert!\n");
4325 			bnx2x_mc_assert(bp);
4326 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4327 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4328 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4329 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4330 			bnx2x_panic();
4331 
4332 		} else if (attn & BNX2X_MCP_ASSERT) {
4333 
4334 			BNX2X_ERR("MCP assert!\n");
4335 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4336 			bnx2x_fw_dump(bp);
4337 
4338 		} else
4339 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4340 	}
4341 
4342 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4343 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4344 		if (attn & BNX2X_GRC_TIMEOUT) {
4345 			val = CHIP_IS_E1(bp) ? 0 :
4346 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4347 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4348 		}
4349 		if (attn & BNX2X_GRC_RSV) {
4350 			val = CHIP_IS_E1(bp) ? 0 :
4351 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4352 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4353 		}
4354 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4355 	}
4356 }
4357 
4358 /*
4359  * Bits map:
4360  * 0-7   - Engine0 load counter.
4361  * 8-15  - Engine1 load counter.
4362  * 16    - Engine0 RESET_IN_PROGRESS bit.
4363  * 17    - Engine1 RESET_IN_PROGRESS bit.
4364  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4365  *         on the engine
4366  * 19    - Engine1 ONE_IS_LOADED.
4367  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4368  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4369  *         just the one belonging to its engine).
4370  *
4371  */
4372 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4373 
4374 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4375 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4376 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4377 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4378 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4379 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4380 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
4381 
4382 /*
4383  * Set the GLOBAL_RESET bit.
4384  *
4385  * Should be run under rtnl lock
4386  */
4387 void bnx2x_set_reset_global(struct bnx2x *bp)
4388 {
4389 	u32 val;
4390 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4391 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4392 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4393 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4394 }
4395 
4396 /*
4397  * Clear the GLOBAL_RESET bit.
4398  *
4399  * Should be run under rtnl lock
4400  */
4401 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4402 {
4403 	u32 val;
4404 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4405 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4406 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4407 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4408 }
4409 
4410 /*
4411  * Checks the GLOBAL_RESET bit.
4412  *
4413  * should be run under rtnl lock
4414  */
4415 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4416 {
4417 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4418 
4419 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4420 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4421 }
4422 
4423 /*
4424  * Clear RESET_IN_PROGRESS bit for the current engine.
4425  *
4426  * Should be run under rtnl lock
4427  */
4428 static void bnx2x_set_reset_done(struct bnx2x *bp)
4429 {
4430 	u32 val;
4431 	u32 bit = BP_PATH(bp) ?
4432 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4433 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4434 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4435 
4436 	/* Clear the bit */
4437 	val &= ~bit;
4438 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4439 
4440 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4441 }
4442 
4443 /*
4444  * Set RESET_IN_PROGRESS for the current engine.
4445  *
4446  * should be run under rtnl lock
4447  */
4448 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4449 {
4450 	u32 val;
4451 	u32 bit = BP_PATH(bp) ?
4452 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4453 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4454 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4455 
4456 	/* Set the bit */
4457 	val |= bit;
4458 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4459 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4460 }
4461 
4462 /*
4463  * Checks the RESET_IN_PROGRESS bit for the given engine.
4464  * should be run under rtnl lock
4465  */
4466 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4467 {
4468 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4469 	u32 bit = engine ?
4470 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4471 
4472 	/* return false if bit is set */
4473 	return (val & bit) ? false : true;
4474 }
4475 
4476 /*
4477  * set pf load for the current pf.
4478  *
4479  * should be run under rtnl lock
4480  */
4481 void bnx2x_set_pf_load(struct bnx2x *bp)
4482 {
4483 	u32 val1, val;
4484 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4485 			     BNX2X_PATH0_LOAD_CNT_MASK;
4486 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4487 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4488 
4489 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4490 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4491 
4492 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4493 
4494 	/* get the current counter value */
4495 	val1 = (val & mask) >> shift;
4496 
4497 	/* set bit of that PF */
4498 	val1 |= (1 << bp->pf_num);
4499 
4500 	/* clear the old value */
4501 	val &= ~mask;
4502 
4503 	/* set the new one */
4504 	val |= ((val1 << shift) & mask);
4505 
4506 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4507 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4508 }
4509 
4510 /**
4511  * bnx2x_clear_pf_load - clear pf load mark
4512  *
4513  * @bp:		driver handle
4514  *
4515  * Should be run under rtnl lock.
4516  * Decrements the load counter for the current engine. Returns
4517  * whether other functions are still loaded
4518  */
4519 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4520 {
4521 	u32 val1, val;
4522 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4523 			     BNX2X_PATH0_LOAD_CNT_MASK;
4524 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4525 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4526 
4527 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4528 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4529 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4530 
4531 	/* get the current counter value */
4532 	val1 = (val & mask) >> shift;
4533 
4534 	/* clear bit of that PF */
4535 	val1 &= ~(1 << bp->pf_num);
4536 
4537 	/* clear the old value */
4538 	val &= ~mask;
4539 
4540 	/* set the new one */
4541 	val |= ((val1 << shift) & mask);
4542 
4543 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4544 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4545 	return val1 != 0;
4546 }
4547 
4548 /*
4549  * Read the load status for the current engine.
4550  *
4551  * should be run under rtnl lock
4552  */
4553 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4554 {
4555 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4556 			     BNX2X_PATH0_LOAD_CNT_MASK);
4557 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4558 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4559 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4560 
4561 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4562 
4563 	val = (val & mask) >> shift;
4564 
4565 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4566 	   engine, val);
4567 
4568 	return val != 0;
4569 }
4570 
4571 static void _print_parity(struct bnx2x *bp, u32 reg)
4572 {
4573 	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4574 }
4575 
4576 static void _print_next_block(int idx, const char *blk)
4577 {
4578 	pr_cont("%s%s", idx ? ", " : "", blk);
4579 }
4580 
4581 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4582 					    int *par_num, bool print)
4583 {
4584 	u32 cur_bit;
4585 	bool res;
4586 	int i;
4587 
4588 	res = false;
4589 
4590 	for (i = 0; sig; i++) {
4591 		cur_bit = (0x1UL << i);
4592 		if (sig & cur_bit) {
4593 			res |= true; /* Each bit is real error! */
4594 
4595 			if (print) {
4596 				switch (cur_bit) {
4597 				case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4598 					_print_next_block((*par_num)++, "BRB");
4599 					_print_parity(bp,
4600 						      BRB1_REG_BRB1_PRTY_STS);
4601 					break;
4602 				case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4603 					_print_next_block((*par_num)++,
4604 							  "PARSER");
4605 					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4606 					break;
4607 				case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4608 					_print_next_block((*par_num)++, "TSDM");
4609 					_print_parity(bp,
4610 						      TSDM_REG_TSDM_PRTY_STS);
4611 					break;
4612 				case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4613 					_print_next_block((*par_num)++,
4614 							  "SEARCHER");
4615 					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4616 					break;
4617 				case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4618 					_print_next_block((*par_num)++, "TCM");
4619 					_print_parity(bp, TCM_REG_TCM_PRTY_STS);
4620 					break;
4621 				case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4622 					_print_next_block((*par_num)++,
4623 							  "TSEMI");
4624 					_print_parity(bp,
4625 						      TSEM_REG_TSEM_PRTY_STS_0);
4626 					_print_parity(bp,
4627 						      TSEM_REG_TSEM_PRTY_STS_1);
4628 					break;
4629 				case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4630 					_print_next_block((*par_num)++, "XPB");
4631 					_print_parity(bp, GRCBASE_XPB +
4632 							  PB_REG_PB_PRTY_STS);
4633 					break;
4634 				}
4635 			}
4636 
4637 			/* Clear the bit */
4638 			sig &= ~cur_bit;
4639 		}
4640 	}
4641 
4642 	return res;
4643 }
4644 
4645 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4646 					    int *par_num, bool *global,
4647 					    bool print)
4648 {
4649 	u32 cur_bit;
4650 	bool res;
4651 	int i;
4652 
4653 	res = false;
4654 
4655 	for (i = 0; sig; i++) {
4656 		cur_bit = (0x1UL << i);
4657 		if (sig & cur_bit) {
4658 			res |= true; /* Each bit is real error! */
4659 			switch (cur_bit) {
4660 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4661 				if (print) {
4662 					_print_next_block((*par_num)++, "PBF");
4663 					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4664 				}
4665 				break;
4666 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4667 				if (print) {
4668 					_print_next_block((*par_num)++, "QM");
4669 					_print_parity(bp, QM_REG_QM_PRTY_STS);
4670 				}
4671 				break;
4672 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4673 				if (print) {
4674 					_print_next_block((*par_num)++, "TM");
4675 					_print_parity(bp, TM_REG_TM_PRTY_STS);
4676 				}
4677 				break;
4678 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4679 				if (print) {
4680 					_print_next_block((*par_num)++, "XSDM");
4681 					_print_parity(bp,
4682 						      XSDM_REG_XSDM_PRTY_STS);
4683 				}
4684 				break;
4685 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4686 				if (print) {
4687 					_print_next_block((*par_num)++, "XCM");
4688 					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4689 				}
4690 				break;
4691 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4692 				if (print) {
4693 					_print_next_block((*par_num)++,
4694 							  "XSEMI");
4695 					_print_parity(bp,
4696 						      XSEM_REG_XSEM_PRTY_STS_0);
4697 					_print_parity(bp,
4698 						      XSEM_REG_XSEM_PRTY_STS_1);
4699 				}
4700 				break;
4701 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4702 				if (print) {
4703 					_print_next_block((*par_num)++,
4704 							  "DOORBELLQ");
4705 					_print_parity(bp,
4706 						      DORQ_REG_DORQ_PRTY_STS);
4707 				}
4708 				break;
4709 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4710 				if (print) {
4711 					_print_next_block((*par_num)++, "NIG");
4712 					if (CHIP_IS_E1x(bp)) {
4713 						_print_parity(bp,
4714 							NIG_REG_NIG_PRTY_STS);
4715 					} else {
4716 						_print_parity(bp,
4717 							NIG_REG_NIG_PRTY_STS_0);
4718 						_print_parity(bp,
4719 							NIG_REG_NIG_PRTY_STS_1);
4720 					}
4721 				}
4722 				break;
4723 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4724 				if (print)
4725 					_print_next_block((*par_num)++,
4726 							  "VAUX PCI CORE");
4727 				*global = true;
4728 				break;
4729 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4730 				if (print) {
4731 					_print_next_block((*par_num)++,
4732 							  "DEBUG");
4733 					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4734 				}
4735 				break;
4736 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4737 				if (print) {
4738 					_print_next_block((*par_num)++, "USDM");
4739 					_print_parity(bp,
4740 						      USDM_REG_USDM_PRTY_STS);
4741 				}
4742 				break;
4743 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4744 				if (print) {
4745 					_print_next_block((*par_num)++, "UCM");
4746 					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4747 				}
4748 				break;
4749 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4750 				if (print) {
4751 					_print_next_block((*par_num)++,
4752 							  "USEMI");
4753 					_print_parity(bp,
4754 						      USEM_REG_USEM_PRTY_STS_0);
4755 					_print_parity(bp,
4756 						      USEM_REG_USEM_PRTY_STS_1);
4757 				}
4758 				break;
4759 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4760 				if (print) {
4761 					_print_next_block((*par_num)++, "UPB");
4762 					_print_parity(bp, GRCBASE_UPB +
4763 							  PB_REG_PB_PRTY_STS);
4764 				}
4765 				break;
4766 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4767 				if (print) {
4768 					_print_next_block((*par_num)++, "CSDM");
4769 					_print_parity(bp,
4770 						      CSDM_REG_CSDM_PRTY_STS);
4771 				}
4772 				break;
4773 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4774 				if (print) {
4775 					_print_next_block((*par_num)++, "CCM");
4776 					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4777 				}
4778 				break;
4779 			}
4780 
4781 			/* Clear the bit */
4782 			sig &= ~cur_bit;
4783 		}
4784 	}
4785 
4786 	return res;
4787 }
4788 
4789 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4790 					    int *par_num, bool print)
4791 {
4792 	u32 cur_bit;
4793 	bool res;
4794 	int i;
4795 
4796 	res = false;
4797 
4798 	for (i = 0; sig; i++) {
4799 		cur_bit = (0x1UL << i);
4800 		if (sig & cur_bit) {
4801 			res = true; /* Each bit is real error! */
4802 			if (print) {
4803 				switch (cur_bit) {
4804 				case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4805 					_print_next_block((*par_num)++,
4806 							  "CSEMI");
4807 					_print_parity(bp,
4808 						      CSEM_REG_CSEM_PRTY_STS_0);
4809 					_print_parity(bp,
4810 						      CSEM_REG_CSEM_PRTY_STS_1);
4811 					break;
4812 				case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4813 					_print_next_block((*par_num)++, "PXP");
4814 					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4815 					_print_parity(bp,
4816 						      PXP2_REG_PXP2_PRTY_STS_0);
4817 					_print_parity(bp,
4818 						      PXP2_REG_PXP2_PRTY_STS_1);
4819 					break;
4820 				case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4821 					_print_next_block((*par_num)++,
4822 							  "PXPPCICLOCKCLIENT");
4823 					break;
4824 				case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4825 					_print_next_block((*par_num)++, "CFC");
4826 					_print_parity(bp,
4827 						      CFC_REG_CFC_PRTY_STS);
4828 					break;
4829 				case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4830 					_print_next_block((*par_num)++, "CDU");
4831 					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4832 					break;
4833 				case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4834 					_print_next_block((*par_num)++, "DMAE");
4835 					_print_parity(bp,
4836 						      DMAE_REG_DMAE_PRTY_STS);
4837 					break;
4838 				case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4839 					_print_next_block((*par_num)++, "IGU");
4840 					if (CHIP_IS_E1x(bp))
4841 						_print_parity(bp,
4842 							HC_REG_HC_PRTY_STS);
4843 					else
4844 						_print_parity(bp,
4845 							IGU_REG_IGU_PRTY_STS);
4846 					break;
4847 				case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4848 					_print_next_block((*par_num)++, "MISC");
4849 					_print_parity(bp,
4850 						      MISC_REG_MISC_PRTY_STS);
4851 					break;
4852 				}
4853 			}
4854 
4855 			/* Clear the bit */
4856 			sig &= ~cur_bit;
4857 		}
4858 	}
4859 
4860 	return res;
4861 }
4862 
4863 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4864 					    int *par_num, bool *global,
4865 					    bool print)
4866 {
4867 	bool res = false;
4868 	u32 cur_bit;
4869 	int i;
4870 
4871 	for (i = 0; sig; i++) {
4872 		cur_bit = (0x1UL << i);
4873 		if (sig & cur_bit) {
4874 			switch (cur_bit) {
4875 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4876 				if (print)
4877 					_print_next_block((*par_num)++,
4878 							  "MCP ROM");
4879 				*global = true;
4880 				res = true;
4881 				break;
4882 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4883 				if (print)
4884 					_print_next_block((*par_num)++,
4885 							  "MCP UMP RX");
4886 				*global = true;
4887 				res = true;
4888 				break;
4889 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4890 				if (print)
4891 					_print_next_block((*par_num)++,
4892 							  "MCP UMP TX");
4893 				*global = true;
4894 				res = true;
4895 				break;
4896 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4897 				(*par_num)++;
4898 				/* clear latched SCPAD PATIRY from MCP */
4899 				REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4900 				       1UL << 10);
4901 				break;
4902 			}
4903 
4904 			/* Clear the bit */
4905 			sig &= ~cur_bit;
4906 		}
4907 	}
4908 
4909 	return res;
4910 }
4911 
4912 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4913 					    int *par_num, bool print)
4914 {
4915 	u32 cur_bit;
4916 	bool res;
4917 	int i;
4918 
4919 	res = false;
4920 
4921 	for (i = 0; sig; i++) {
4922 		cur_bit = (0x1UL << i);
4923 		if (sig & cur_bit) {
4924 			res = true; /* Each bit is real error! */
4925 			if (print) {
4926 				switch (cur_bit) {
4927 				case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4928 					_print_next_block((*par_num)++,
4929 							  "PGLUE_B");
4930 					_print_parity(bp,
4931 						      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4932 					break;
4933 				case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4934 					_print_next_block((*par_num)++, "ATC");
4935 					_print_parity(bp,
4936 						      ATC_REG_ATC_PRTY_STS);
4937 					break;
4938 				}
4939 			}
4940 			/* Clear the bit */
4941 			sig &= ~cur_bit;
4942 		}
4943 	}
4944 
4945 	return res;
4946 }
4947 
4948 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4949 			      u32 *sig)
4950 {
4951 	bool res = false;
4952 
4953 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4954 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4955 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4956 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4957 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4958 		int par_num = 0;
4959 
4960 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4961 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4962 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4963 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4964 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4965 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4966 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4967 		if (print) {
4968 			if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4969 			     (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4970 			     (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4971 			     (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4972 			     (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4973 				netdev_err(bp->dev,
4974 					   "Parity errors detected in blocks: ");
4975 			} else {
4976 				print = false;
4977 			}
4978 		}
4979 		res |= bnx2x_check_blocks_with_parity0(bp,
4980 			sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4981 		res |= bnx2x_check_blocks_with_parity1(bp,
4982 			sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4983 		res |= bnx2x_check_blocks_with_parity2(bp,
4984 			sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4985 		res |= bnx2x_check_blocks_with_parity3(bp,
4986 			sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4987 		res |= bnx2x_check_blocks_with_parity4(bp,
4988 			sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4989 
4990 		if (print)
4991 			pr_cont("\n");
4992 	}
4993 
4994 	return res;
4995 }
4996 
4997 /**
4998  * bnx2x_chk_parity_attn - checks for parity attentions.
4999  *
5000  * @bp:		driver handle
5001  * @global:	true if there was a global attention
5002  * @print:	show parity attention in syslog
5003  */
5004 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5005 {
5006 	struct attn_route attn = { {0} };
5007 	int port = BP_PORT(bp);
5008 
5009 	attn.sig[0] = REG_RD(bp,
5010 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5011 			     port*4);
5012 	attn.sig[1] = REG_RD(bp,
5013 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5014 			     port*4);
5015 	attn.sig[2] = REG_RD(bp,
5016 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5017 			     port*4);
5018 	attn.sig[3] = REG_RD(bp,
5019 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5020 			     port*4);
5021 	/* Since MCP attentions can't be disabled inside the block, we need to
5022 	 * read AEU registers to see whether they're currently disabled
5023 	 */
5024 	attn.sig[3] &= ((REG_RD(bp,
5025 				!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5026 				      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5027 			 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5028 			~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5029 
5030 	if (!CHIP_IS_E1x(bp))
5031 		attn.sig[4] = REG_RD(bp,
5032 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5033 				     port*4);
5034 
5035 	return bnx2x_parity_attn(bp, global, print, attn.sig);
5036 }
5037 
5038 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5039 {
5040 	u32 val;
5041 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5042 
5043 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5044 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5045 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5046 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5047 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5048 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5049 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5050 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5051 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5052 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5053 		if (val &
5054 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5055 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5056 		if (val &
5057 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5058 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5059 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5060 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5061 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5062 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5063 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5064 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5065 	}
5066 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5067 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5068 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
5069 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5070 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5071 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5072 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5073 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5074 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5075 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5076 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5077 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5078 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5079 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5080 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5081 	}
5082 
5083 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5084 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5085 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5086 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5087 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5088 	}
5089 }
5090 
5091 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5092 {
5093 	struct attn_route attn, *group_mask;
5094 	int port = BP_PORT(bp);
5095 	int index;
5096 	u32 reg_addr;
5097 	u32 val;
5098 	u32 aeu_mask;
5099 	bool global = false;
5100 
5101 	/* need to take HW lock because MCP or other port might also
5102 	   try to handle this event */
5103 	bnx2x_acquire_alr(bp);
5104 
5105 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
5106 #ifndef BNX2X_STOP_ON_ERROR
5107 		bp->recovery_state = BNX2X_RECOVERY_INIT;
5108 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
5109 		/* Disable HW interrupts */
5110 		bnx2x_int_disable(bp);
5111 		/* In case of parity errors don't handle attentions so that
5112 		 * other function would "see" parity errors.
5113 		 */
5114 #else
5115 		bnx2x_panic();
5116 #endif
5117 		bnx2x_release_alr(bp);
5118 		return;
5119 	}
5120 
5121 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5122 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5123 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5124 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5125 	if (!CHIP_IS_E1x(bp))
5126 		attn.sig[4] =
5127 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5128 	else
5129 		attn.sig[4] = 0;
5130 
5131 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5132 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5133 
5134 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5135 		if (deasserted & (1 << index)) {
5136 			group_mask = &bp->attn_group[index];
5137 
5138 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5139 			   index,
5140 			   group_mask->sig[0], group_mask->sig[1],
5141 			   group_mask->sig[2], group_mask->sig[3],
5142 			   group_mask->sig[4]);
5143 
5144 			bnx2x_attn_int_deasserted4(bp,
5145 					attn.sig[4] & group_mask->sig[4]);
5146 			bnx2x_attn_int_deasserted3(bp,
5147 					attn.sig[3] & group_mask->sig[3]);
5148 			bnx2x_attn_int_deasserted1(bp,
5149 					attn.sig[1] & group_mask->sig[1]);
5150 			bnx2x_attn_int_deasserted2(bp,
5151 					attn.sig[2] & group_mask->sig[2]);
5152 			bnx2x_attn_int_deasserted0(bp,
5153 					attn.sig[0] & group_mask->sig[0]);
5154 		}
5155 	}
5156 
5157 	bnx2x_release_alr(bp);
5158 
5159 	if (bp->common.int_block == INT_BLOCK_HC)
5160 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
5161 			    COMMAND_REG_ATTN_BITS_CLR);
5162 	else
5163 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5164 
5165 	val = ~deasserted;
5166 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5167 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5168 	REG_WR(bp, reg_addr, val);
5169 
5170 	if (~bp->attn_state & deasserted)
5171 		BNX2X_ERR("IGU ERROR\n");
5172 
5173 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5174 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
5175 
5176 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5177 	aeu_mask = REG_RD(bp, reg_addr);
5178 
5179 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5180 	   aeu_mask, deasserted);
5181 	aeu_mask |= (deasserted & 0x3ff);
5182 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5183 
5184 	REG_WR(bp, reg_addr, aeu_mask);
5185 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5186 
5187 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5188 	bp->attn_state &= ~deasserted;
5189 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5190 }
5191 
5192 static void bnx2x_attn_int(struct bnx2x *bp)
5193 {
5194 	/* read local copy of bits */
5195 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5196 								attn_bits);
5197 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5198 								attn_bits_ack);
5199 	u32 attn_state = bp->attn_state;
5200 
5201 	/* look for changed bits */
5202 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5203 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5204 
5205 	DP(NETIF_MSG_HW,
5206 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5207 	   attn_bits, attn_ack, asserted, deasserted);
5208 
5209 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5210 		BNX2X_ERR("BAD attention state\n");
5211 
5212 	/* handle bits that were raised */
5213 	if (asserted)
5214 		bnx2x_attn_int_asserted(bp, asserted);
5215 
5216 	if (deasserted)
5217 		bnx2x_attn_int_deasserted(bp, deasserted);
5218 }
5219 
5220 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5221 		      u16 index, u8 op, u8 update)
5222 {
5223 	u32 igu_addr = bp->igu_base_addr;
5224 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5225 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5226 			     igu_addr);
5227 }
5228 
5229 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5230 {
5231 	/* No memory barriers */
5232 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5233 }
5234 
5235 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5236 				      union event_ring_elem *elem)
5237 {
5238 	u8 err = elem->message.error;
5239 
5240 	if (!bp->cnic_eth_dev.starting_cid  ||
5241 	    (cid < bp->cnic_eth_dev.starting_cid &&
5242 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
5243 		return 1;
5244 
5245 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5246 
5247 	if (unlikely(err)) {
5248 
5249 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5250 			  cid);
5251 		bnx2x_panic_dump(bp, false);
5252 	}
5253 	bnx2x_cnic_cfc_comp(bp, cid, err);
5254 	return 0;
5255 }
5256 
5257 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5258 {
5259 	struct bnx2x_mcast_ramrod_params rparam;
5260 	int rc;
5261 
5262 	memset(&rparam, 0, sizeof(rparam));
5263 
5264 	rparam.mcast_obj = &bp->mcast_obj;
5265 
5266 	netif_addr_lock_bh(bp->dev);
5267 
5268 	/* Clear pending state for the last command */
5269 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5270 
5271 	/* If there are pending mcast commands - send them */
5272 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5273 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5274 		if (rc < 0)
5275 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5276 				  rc);
5277 	}
5278 
5279 	netif_addr_unlock_bh(bp->dev);
5280 }
5281 
5282 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5283 					    union event_ring_elem *elem)
5284 {
5285 	unsigned long ramrod_flags = 0;
5286 	int rc = 0;
5287 	u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5288 	u32 cid = echo & BNX2X_SWCID_MASK;
5289 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5290 
5291 	/* Always push next commands out, don't wait here */
5292 	__set_bit(RAMROD_CONT, &ramrod_flags);
5293 
5294 	switch (echo >> BNX2X_SWCID_SHIFT) {
5295 	case BNX2X_FILTER_MAC_PENDING:
5296 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5297 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5298 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5299 		else
5300 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5301 
5302 		break;
5303 	case BNX2X_FILTER_VLAN_PENDING:
5304 		DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5305 		vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5306 		break;
5307 	case BNX2X_FILTER_MCAST_PENDING:
5308 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5309 		/* This is only relevant for 57710 where multicast MACs are
5310 		 * configured as unicast MACs using the same ramrod.
5311 		 */
5312 		bnx2x_handle_mcast_eqe(bp);
5313 		return;
5314 	default:
5315 		BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5316 		return;
5317 	}
5318 
5319 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5320 
5321 	if (rc < 0)
5322 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5323 	else if (rc > 0)
5324 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5325 }
5326 
5327 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5328 
5329 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5330 {
5331 	netif_addr_lock_bh(bp->dev);
5332 
5333 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5334 
5335 	/* Send rx_mode command again if was requested */
5336 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5337 		bnx2x_set_storm_rx_mode(bp);
5338 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5339 				    &bp->sp_state))
5340 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5341 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5342 				    &bp->sp_state))
5343 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5344 
5345 	netif_addr_unlock_bh(bp->dev);
5346 }
5347 
5348 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5349 					      union event_ring_elem *elem)
5350 {
5351 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5352 		DP(BNX2X_MSG_SP,
5353 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5354 		   elem->message.data.vif_list_event.func_bit_map);
5355 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5356 			elem->message.data.vif_list_event.func_bit_map);
5357 	} else if (elem->message.data.vif_list_event.echo ==
5358 		   VIF_LIST_RULE_SET) {
5359 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5360 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5361 	}
5362 }
5363 
5364 /* called with rtnl_lock */
5365 static void bnx2x_after_function_update(struct bnx2x *bp)
5366 {
5367 	int q, rc;
5368 	struct bnx2x_fastpath *fp;
5369 	struct bnx2x_queue_state_params queue_params = {NULL};
5370 	struct bnx2x_queue_update_params *q_update_params =
5371 		&queue_params.params.update;
5372 
5373 	/* Send Q update command with afex vlan removal values for all Qs */
5374 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5375 
5376 	/* set silent vlan removal values according to vlan mode */
5377 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5378 		  &q_update_params->update_flags);
5379 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5380 		  &q_update_params->update_flags);
5381 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5382 
5383 	/* in access mode mark mask and value are 0 to strip all vlans */
5384 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5385 		q_update_params->silent_removal_value = 0;
5386 		q_update_params->silent_removal_mask = 0;
5387 	} else {
5388 		q_update_params->silent_removal_value =
5389 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5390 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5391 	}
5392 
5393 	for_each_eth_queue(bp, q) {
5394 		/* Set the appropriate Queue object */
5395 		fp = &bp->fp[q];
5396 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5397 
5398 		/* send the ramrod */
5399 		rc = bnx2x_queue_state_change(bp, &queue_params);
5400 		if (rc < 0)
5401 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5402 				  q);
5403 	}
5404 
5405 	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5406 		fp = &bp->fp[FCOE_IDX(bp)];
5407 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5408 
5409 		/* clear pending completion bit */
5410 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5411 
5412 		/* mark latest Q bit */
5413 		smp_mb__before_atomic();
5414 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5415 		smp_mb__after_atomic();
5416 
5417 		/* send Q update ramrod for FCoE Q */
5418 		rc = bnx2x_queue_state_change(bp, &queue_params);
5419 		if (rc < 0)
5420 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5421 				  q);
5422 	} else {
5423 		/* If no FCoE ring - ACK MCP now */
5424 		bnx2x_link_report(bp);
5425 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5426 	}
5427 }
5428 
5429 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5430 	struct bnx2x *bp, u32 cid)
5431 {
5432 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5433 
5434 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5435 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5436 	else
5437 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5438 }
5439 
5440 static void bnx2x_eq_int(struct bnx2x *bp)
5441 {
5442 	u16 hw_cons, sw_cons, sw_prod;
5443 	union event_ring_elem *elem;
5444 	u8 echo;
5445 	u32 cid;
5446 	u8 opcode;
5447 	int rc, spqe_cnt = 0;
5448 	struct bnx2x_queue_sp_obj *q_obj;
5449 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5450 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5451 
5452 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5453 
5454 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5455 	 * when we get the next-page we need to adjust so the loop
5456 	 * condition below will be met. The next element is the size of a
5457 	 * regular element and hence incrementing by 1
5458 	 */
5459 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5460 		hw_cons++;
5461 
5462 	/* This function may never run in parallel with itself for a
5463 	 * specific bp, thus there is no need in "paired" read memory
5464 	 * barrier here.
5465 	 */
5466 	sw_cons = bp->eq_cons;
5467 	sw_prod = bp->eq_prod;
5468 
5469 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5470 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5471 
5472 	for (; sw_cons != hw_cons;
5473 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5474 
5475 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5476 
5477 		rc = bnx2x_iov_eq_sp_event(bp, elem);
5478 		if (!rc) {
5479 			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5480 			   rc);
5481 			goto next_spqe;
5482 		}
5483 
5484 		opcode = elem->message.opcode;
5485 
5486 		/* handle eq element */
5487 		switch (opcode) {
5488 		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5489 			bnx2x_vf_mbx_schedule(bp,
5490 					      &elem->message.data.vf_pf_event);
5491 			continue;
5492 
5493 		case EVENT_RING_OPCODE_STAT_QUERY:
5494 			DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5495 			       "got statistics comp event %d\n",
5496 			       bp->stats_comp++);
5497 			/* nothing to do with stats comp */
5498 			goto next_spqe;
5499 
5500 		case EVENT_RING_OPCODE_CFC_DEL:
5501 			/* handle according to cid range */
5502 			/*
5503 			 * we may want to verify here that the bp state is
5504 			 * HALTING
5505 			 */
5506 
5507 			/* elem CID originates from FW; actually LE */
5508 			cid = SW_CID(elem->message.data.cfc_del_event.cid);
5509 
5510 			DP(BNX2X_MSG_SP,
5511 			   "got delete ramrod for MULTI[%d]\n", cid);
5512 
5513 			if (CNIC_LOADED(bp) &&
5514 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5515 				goto next_spqe;
5516 
5517 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5518 
5519 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5520 				break;
5521 
5522 			goto next_spqe;
5523 
5524 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5525 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5526 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5527 			if (f_obj->complete_cmd(bp, f_obj,
5528 						BNX2X_F_CMD_TX_STOP))
5529 				break;
5530 			goto next_spqe;
5531 
5532 		case EVENT_RING_OPCODE_START_TRAFFIC:
5533 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5534 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5535 			if (f_obj->complete_cmd(bp, f_obj,
5536 						BNX2X_F_CMD_TX_START))
5537 				break;
5538 			goto next_spqe;
5539 
5540 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5541 			echo = elem->message.data.function_update_event.echo;
5542 			if (echo == SWITCH_UPDATE) {
5543 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5544 				   "got FUNC_SWITCH_UPDATE ramrod\n");
5545 				if (f_obj->complete_cmd(
5546 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5547 					break;
5548 
5549 			} else {
5550 				int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5551 
5552 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5553 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5554 				f_obj->complete_cmd(bp, f_obj,
5555 						    BNX2X_F_CMD_AFEX_UPDATE);
5556 
5557 				/* We will perform the Queues update from
5558 				 * sp_rtnl task as all Queue SP operations
5559 				 * should run under rtnl_lock.
5560 				 */
5561 				bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5562 			}
5563 
5564 			goto next_spqe;
5565 
5566 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5567 			f_obj->complete_cmd(bp, f_obj,
5568 					    BNX2X_F_CMD_AFEX_VIFLISTS);
5569 			bnx2x_after_afex_vif_lists(bp, elem);
5570 			goto next_spqe;
5571 		case EVENT_RING_OPCODE_FUNCTION_START:
5572 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5573 			   "got FUNC_START ramrod\n");
5574 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5575 				break;
5576 
5577 			goto next_spqe;
5578 
5579 		case EVENT_RING_OPCODE_FUNCTION_STOP:
5580 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5581 			   "got FUNC_STOP ramrod\n");
5582 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5583 				break;
5584 
5585 			goto next_spqe;
5586 
5587 		case EVENT_RING_OPCODE_SET_TIMESYNC:
5588 			DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5589 			   "got set_timesync ramrod completion\n");
5590 			if (f_obj->complete_cmd(bp, f_obj,
5591 						BNX2X_F_CMD_SET_TIMESYNC))
5592 				break;
5593 			goto next_spqe;
5594 		}
5595 
5596 		switch (opcode | bp->state) {
5597 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5598 		      BNX2X_STATE_OPEN):
5599 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5600 		      BNX2X_STATE_OPENING_WAIT4_PORT):
5601 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5602 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5603 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5604 			   SW_CID(elem->message.data.eth_event.echo));
5605 			rss_raw->clear_pending(rss_raw);
5606 			break;
5607 
5608 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5609 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5610 		case (EVENT_RING_OPCODE_SET_MAC |
5611 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5612 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5613 		      BNX2X_STATE_OPEN):
5614 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5615 		      BNX2X_STATE_DIAG):
5616 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5617 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5618 			DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5619 			bnx2x_handle_classification_eqe(bp, elem);
5620 			break;
5621 
5622 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5623 		      BNX2X_STATE_OPEN):
5624 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5625 		      BNX2X_STATE_DIAG):
5626 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5627 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5628 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5629 			bnx2x_handle_mcast_eqe(bp);
5630 			break;
5631 
5632 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5633 		      BNX2X_STATE_OPEN):
5634 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5635 		      BNX2X_STATE_DIAG):
5636 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5637 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5638 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5639 			bnx2x_handle_rx_mode_eqe(bp);
5640 			break;
5641 		default:
5642 			/* unknown event log error and continue */
5643 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5644 				  elem->message.opcode, bp->state);
5645 		}
5646 next_spqe:
5647 		spqe_cnt++;
5648 	} /* for */
5649 
5650 	smp_mb__before_atomic();
5651 	atomic_add(spqe_cnt, &bp->eq_spq_left);
5652 
5653 	bp->eq_cons = sw_cons;
5654 	bp->eq_prod = sw_prod;
5655 	/* Make sure that above mem writes were issued towards the memory */
5656 	smp_wmb();
5657 
5658 	/* update producer */
5659 	bnx2x_update_eq_prod(bp, bp->eq_prod);
5660 }
5661 
5662 static void bnx2x_sp_task(struct work_struct *work)
5663 {
5664 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5665 
5666 	DP(BNX2X_MSG_SP, "sp task invoked\n");
5667 
5668 	/* make sure the atomic interrupt_occurred has been written */
5669 	smp_rmb();
5670 	if (atomic_read(&bp->interrupt_occurred)) {
5671 
5672 		/* what work needs to be performed? */
5673 		u16 status = bnx2x_update_dsb_idx(bp);
5674 
5675 		DP(BNX2X_MSG_SP, "status %x\n", status);
5676 		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5677 		atomic_set(&bp->interrupt_occurred, 0);
5678 
5679 		/* HW attentions */
5680 		if (status & BNX2X_DEF_SB_ATT_IDX) {
5681 			bnx2x_attn_int(bp);
5682 			status &= ~BNX2X_DEF_SB_ATT_IDX;
5683 		}
5684 
5685 		/* SP events: STAT_QUERY and others */
5686 		if (status & BNX2X_DEF_SB_IDX) {
5687 			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5688 
5689 			if (FCOE_INIT(bp) &&
5690 			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5691 				/* Prevent local bottom-halves from running as
5692 				 * we are going to change the local NAPI list.
5693 				 */
5694 				local_bh_disable();
5695 				napi_schedule(&bnx2x_fcoe(bp, napi));
5696 				local_bh_enable();
5697 			}
5698 
5699 			/* Handle EQ completions */
5700 			bnx2x_eq_int(bp);
5701 			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5702 				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5703 
5704 			status &= ~BNX2X_DEF_SB_IDX;
5705 		}
5706 
5707 		/* if status is non zero then perhaps something went wrong */
5708 		if (unlikely(status))
5709 			DP(BNX2X_MSG_SP,
5710 			   "got an unknown interrupt! (status 0x%x)\n", status);
5711 
5712 		/* ack status block only if something was actually handled */
5713 		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5714 			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5715 	}
5716 
5717 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5718 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5719 			       &bp->sp_state)) {
5720 		bnx2x_link_report(bp);
5721 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5722 	}
5723 }
5724 
5725 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5726 {
5727 	struct net_device *dev = dev_instance;
5728 	struct bnx2x *bp = netdev_priv(dev);
5729 
5730 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5731 		     IGU_INT_DISABLE, 0);
5732 
5733 #ifdef BNX2X_STOP_ON_ERROR
5734 	if (unlikely(bp->panic))
5735 		return IRQ_HANDLED;
5736 #endif
5737 
5738 	if (CNIC_LOADED(bp)) {
5739 		struct cnic_ops *c_ops;
5740 
5741 		rcu_read_lock();
5742 		c_ops = rcu_dereference(bp->cnic_ops);
5743 		if (c_ops)
5744 			c_ops->cnic_handler(bp->cnic_data, NULL);
5745 		rcu_read_unlock();
5746 	}
5747 
5748 	/* schedule sp task to perform default status block work, ack
5749 	 * attentions and enable interrupts.
5750 	 */
5751 	bnx2x_schedule_sp_task(bp);
5752 
5753 	return IRQ_HANDLED;
5754 }
5755 
5756 /* end of slow path */
5757 
5758 void bnx2x_drv_pulse(struct bnx2x *bp)
5759 {
5760 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5761 		 bp->fw_drv_pulse_wr_seq);
5762 }
5763 
5764 static void bnx2x_timer(struct timer_list *t)
5765 {
5766 	struct bnx2x *bp = from_timer(bp, t, timer);
5767 
5768 	if (!netif_running(bp->dev))
5769 		return;
5770 
5771 	if (IS_PF(bp) &&
5772 	    !BP_NOMCP(bp)) {
5773 		int mb_idx = BP_FW_MB_IDX(bp);
5774 		u16 drv_pulse;
5775 		u16 mcp_pulse;
5776 
5777 		++bp->fw_drv_pulse_wr_seq;
5778 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5779 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5780 		bnx2x_drv_pulse(bp);
5781 
5782 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5783 			     MCP_PULSE_SEQ_MASK);
5784 		/* The delta between driver pulse and mcp response
5785 		 * should not get too big. If the MFW is more than 5 pulses
5786 		 * behind, we should worry about it enough to generate an error
5787 		 * log.
5788 		 */
5789 		if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5790 			BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5791 				  drv_pulse, mcp_pulse);
5792 	}
5793 
5794 	if (bp->state == BNX2X_STATE_OPEN)
5795 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5796 
5797 	/* sample pf vf bulletin board for new posts from pf */
5798 	if (IS_VF(bp))
5799 		bnx2x_timer_sriov(bp);
5800 
5801 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5802 }
5803 
5804 /* end of Statistics */
5805 
5806 /* nic init */
5807 
5808 /*
5809  * nic init service functions
5810  */
5811 
5812 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5813 {
5814 	u32 i;
5815 	if (!(len%4) && !(addr%4))
5816 		for (i = 0; i < len; i += 4)
5817 			REG_WR(bp, addr + i, fill);
5818 	else
5819 		for (i = 0; i < len; i++)
5820 			REG_WR8(bp, addr + i, fill);
5821 }
5822 
5823 /* helper: writes FP SP data to FW - data_size in dwords */
5824 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5825 				int fw_sb_id,
5826 				u32 *sb_data_p,
5827 				u32 data_size)
5828 {
5829 	int index;
5830 	for (index = 0; index < data_size; index++)
5831 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5832 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5833 			sizeof(u32)*index,
5834 			*(sb_data_p + index));
5835 }
5836 
5837 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5838 {
5839 	u32 *sb_data_p;
5840 	u32 data_size = 0;
5841 	struct hc_status_block_data_e2 sb_data_e2;
5842 	struct hc_status_block_data_e1x sb_data_e1x;
5843 
5844 	/* disable the function first */
5845 	if (!CHIP_IS_E1x(bp)) {
5846 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5847 		sb_data_e2.common.state = SB_DISABLED;
5848 		sb_data_e2.common.p_func.vf_valid = false;
5849 		sb_data_p = (u32 *)&sb_data_e2;
5850 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5851 	} else {
5852 		memset(&sb_data_e1x, 0,
5853 		       sizeof(struct hc_status_block_data_e1x));
5854 		sb_data_e1x.common.state = SB_DISABLED;
5855 		sb_data_e1x.common.p_func.vf_valid = false;
5856 		sb_data_p = (u32 *)&sb_data_e1x;
5857 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5858 	}
5859 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5860 
5861 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5862 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5863 			CSTORM_STATUS_BLOCK_SIZE);
5864 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5865 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5866 			CSTORM_SYNC_BLOCK_SIZE);
5867 }
5868 
5869 /* helper:  writes SP SB data to FW */
5870 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5871 		struct hc_sp_status_block_data *sp_sb_data)
5872 {
5873 	int func = BP_FUNC(bp);
5874 	int i;
5875 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5876 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5877 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5878 			i*sizeof(u32),
5879 			*((u32 *)sp_sb_data + i));
5880 }
5881 
5882 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5883 {
5884 	int func = BP_FUNC(bp);
5885 	struct hc_sp_status_block_data sp_sb_data;
5886 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5887 
5888 	sp_sb_data.state = SB_DISABLED;
5889 	sp_sb_data.p_func.vf_valid = false;
5890 
5891 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5892 
5893 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5894 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5895 			CSTORM_SP_STATUS_BLOCK_SIZE);
5896 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5897 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5898 			CSTORM_SP_SYNC_BLOCK_SIZE);
5899 }
5900 
5901 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5902 					   int igu_sb_id, int igu_seg_id)
5903 {
5904 	hc_sm->igu_sb_id = igu_sb_id;
5905 	hc_sm->igu_seg_id = igu_seg_id;
5906 	hc_sm->timer_value = 0xFF;
5907 	hc_sm->time_to_expire = 0xFFFFFFFF;
5908 }
5909 
5910 /* allocates state machine ids. */
5911 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5912 {
5913 	/* zero out state machine indices */
5914 	/* rx indices */
5915 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5916 
5917 	/* tx indices */
5918 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5919 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5920 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5921 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5922 
5923 	/* map indices */
5924 	/* rx indices */
5925 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5926 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5927 
5928 	/* tx indices */
5929 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5930 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5931 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5932 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5933 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5934 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5935 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5936 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5937 }
5938 
5939 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5940 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5941 {
5942 	int igu_seg_id;
5943 
5944 	struct hc_status_block_data_e2 sb_data_e2;
5945 	struct hc_status_block_data_e1x sb_data_e1x;
5946 	struct hc_status_block_sm  *hc_sm_p;
5947 	int data_size;
5948 	u32 *sb_data_p;
5949 
5950 	if (CHIP_INT_MODE_IS_BC(bp))
5951 		igu_seg_id = HC_SEG_ACCESS_NORM;
5952 	else
5953 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5954 
5955 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5956 
5957 	if (!CHIP_IS_E1x(bp)) {
5958 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5959 		sb_data_e2.common.state = SB_ENABLED;
5960 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5961 		sb_data_e2.common.p_func.vf_id = vfid;
5962 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5963 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5964 		sb_data_e2.common.same_igu_sb_1b = true;
5965 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5966 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5967 		hc_sm_p = sb_data_e2.common.state_machine;
5968 		sb_data_p = (u32 *)&sb_data_e2;
5969 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5970 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5971 	} else {
5972 		memset(&sb_data_e1x, 0,
5973 		       sizeof(struct hc_status_block_data_e1x));
5974 		sb_data_e1x.common.state = SB_ENABLED;
5975 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5976 		sb_data_e1x.common.p_func.vf_id = 0xff;
5977 		sb_data_e1x.common.p_func.vf_valid = false;
5978 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5979 		sb_data_e1x.common.same_igu_sb_1b = true;
5980 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5981 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5982 		hc_sm_p = sb_data_e1x.common.state_machine;
5983 		sb_data_p = (u32 *)&sb_data_e1x;
5984 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5985 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5986 	}
5987 
5988 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5989 				       igu_sb_id, igu_seg_id);
5990 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5991 				       igu_sb_id, igu_seg_id);
5992 
5993 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5994 
5995 	/* write indices to HW - PCI guarantees endianity of regpairs */
5996 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5997 }
5998 
5999 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6000 				     u16 tx_usec, u16 rx_usec)
6001 {
6002 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6003 				    false, rx_usec);
6004 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6005 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6006 				       tx_usec);
6007 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6008 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6009 				       tx_usec);
6010 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6011 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6012 				       tx_usec);
6013 }
6014 
6015 static void bnx2x_init_def_sb(struct bnx2x *bp)
6016 {
6017 	struct host_sp_status_block *def_sb = bp->def_status_blk;
6018 	dma_addr_t mapping = bp->def_status_blk_mapping;
6019 	int igu_sp_sb_index;
6020 	int igu_seg_id;
6021 	int port = BP_PORT(bp);
6022 	int func = BP_FUNC(bp);
6023 	int reg_offset, reg_offset_en5;
6024 	u64 section;
6025 	int index;
6026 	struct hc_sp_status_block_data sp_sb_data;
6027 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6028 
6029 	if (CHIP_INT_MODE_IS_BC(bp)) {
6030 		igu_sp_sb_index = DEF_SB_IGU_ID;
6031 		igu_seg_id = HC_SEG_ACCESS_DEF;
6032 	} else {
6033 		igu_sp_sb_index = bp->igu_dsb_id;
6034 		igu_seg_id = IGU_SEG_ACCESS_DEF;
6035 	}
6036 
6037 	/* ATTN */
6038 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6039 					    atten_status_block);
6040 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6041 
6042 	bp->attn_state = 0;
6043 
6044 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6045 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6046 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6047 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6048 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6049 		int sindex;
6050 		/* take care of sig[0]..sig[4] */
6051 		for (sindex = 0; sindex < 4; sindex++)
6052 			bp->attn_group[index].sig[sindex] =
6053 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6054 
6055 		if (!CHIP_IS_E1x(bp))
6056 			/*
6057 			 * enable5 is separate from the rest of the registers,
6058 			 * and therefore the address skip is 4
6059 			 * and not 16 between the different groups
6060 			 */
6061 			bp->attn_group[index].sig[4] = REG_RD(bp,
6062 					reg_offset_en5 + 0x4*index);
6063 		else
6064 			bp->attn_group[index].sig[4] = 0;
6065 	}
6066 
6067 	if (bp->common.int_block == INT_BLOCK_HC) {
6068 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6069 				     HC_REG_ATTN_MSG0_ADDR_L);
6070 
6071 		REG_WR(bp, reg_offset, U64_LO(section));
6072 		REG_WR(bp, reg_offset + 4, U64_HI(section));
6073 	} else if (!CHIP_IS_E1x(bp)) {
6074 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6075 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6076 	}
6077 
6078 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6079 					    sp_sb);
6080 
6081 	bnx2x_zero_sp_sb(bp);
6082 
6083 	/* PCI guarantees endianity of regpairs */
6084 	sp_sb_data.state		= SB_ENABLED;
6085 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
6086 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
6087 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
6088 	sp_sb_data.igu_seg_id		= igu_seg_id;
6089 	sp_sb_data.p_func.pf_id		= func;
6090 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
6091 	sp_sb_data.p_func.vf_id		= 0xff;
6092 
6093 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6094 
6095 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6096 }
6097 
6098 void bnx2x_update_coalesce(struct bnx2x *bp)
6099 {
6100 	int i;
6101 
6102 	for_each_eth_queue(bp, i)
6103 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6104 					 bp->tx_ticks, bp->rx_ticks);
6105 }
6106 
6107 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6108 {
6109 	spin_lock_init(&bp->spq_lock);
6110 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6111 
6112 	bp->spq_prod_idx = 0;
6113 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6114 	bp->spq_prod_bd = bp->spq;
6115 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6116 }
6117 
6118 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6119 {
6120 	int i;
6121 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
6122 		union event_ring_elem *elem =
6123 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6124 
6125 		elem->next_page.addr.hi =
6126 			cpu_to_le32(U64_HI(bp->eq_mapping +
6127 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6128 		elem->next_page.addr.lo =
6129 			cpu_to_le32(U64_LO(bp->eq_mapping +
6130 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6131 	}
6132 	bp->eq_cons = 0;
6133 	bp->eq_prod = NUM_EQ_DESC;
6134 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
6135 	/* we want a warning message before it gets wrought... */
6136 	atomic_set(&bp->eq_spq_left,
6137 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6138 }
6139 
6140 /* called with netif_addr_lock_bh() */
6141 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6142 			       unsigned long rx_mode_flags,
6143 			       unsigned long rx_accept_flags,
6144 			       unsigned long tx_accept_flags,
6145 			       unsigned long ramrod_flags)
6146 {
6147 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
6148 	int rc;
6149 
6150 	memset(&ramrod_param, 0, sizeof(ramrod_param));
6151 
6152 	/* Prepare ramrod parameters */
6153 	ramrod_param.cid = 0;
6154 	ramrod_param.cl_id = cl_id;
6155 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6156 	ramrod_param.func_id = BP_FUNC(bp);
6157 
6158 	ramrod_param.pstate = &bp->sp_state;
6159 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6160 
6161 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6162 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6163 
6164 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6165 
6166 	ramrod_param.ramrod_flags = ramrod_flags;
6167 	ramrod_param.rx_mode_flags = rx_mode_flags;
6168 
6169 	ramrod_param.rx_accept_flags = rx_accept_flags;
6170 	ramrod_param.tx_accept_flags = tx_accept_flags;
6171 
6172 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6173 	if (rc < 0) {
6174 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6175 		return rc;
6176 	}
6177 
6178 	return 0;
6179 }
6180 
6181 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6182 				   unsigned long *rx_accept_flags,
6183 				   unsigned long *tx_accept_flags)
6184 {
6185 	/* Clear the flags first */
6186 	*rx_accept_flags = 0;
6187 	*tx_accept_flags = 0;
6188 
6189 	switch (rx_mode) {
6190 	case BNX2X_RX_MODE_NONE:
6191 		/*
6192 		 * 'drop all' supersedes any accept flags that may have been
6193 		 * passed to the function.
6194 		 */
6195 		break;
6196 	case BNX2X_RX_MODE_NORMAL:
6197 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6198 		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6199 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6200 
6201 		/* internal switching mode */
6202 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6203 		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6204 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6205 
6206 		if (bp->accept_any_vlan) {
6207 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6208 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6209 		}
6210 
6211 		break;
6212 	case BNX2X_RX_MODE_ALLMULTI:
6213 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6214 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6215 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6216 
6217 		/* internal switching mode */
6218 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6219 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6220 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6221 
6222 		if (bp->accept_any_vlan) {
6223 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6224 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6225 		}
6226 
6227 		break;
6228 	case BNX2X_RX_MODE_PROMISC:
6229 		/* According to definition of SI mode, iface in promisc mode
6230 		 * should receive matched and unmatched (in resolution of port)
6231 		 * unicast packets.
6232 		 */
6233 		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6234 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6235 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6236 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6237 
6238 		/* internal switching mode */
6239 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6240 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6241 
6242 		if (IS_MF_SI(bp))
6243 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6244 		else
6245 			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6246 
6247 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6248 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6249 
6250 		break;
6251 	default:
6252 		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6253 		return -EINVAL;
6254 	}
6255 
6256 	return 0;
6257 }
6258 
6259 /* called with netif_addr_lock_bh() */
6260 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6261 {
6262 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6263 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6264 	int rc;
6265 
6266 	if (!NO_FCOE(bp))
6267 		/* Configure rx_mode of FCoE Queue */
6268 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6269 
6270 	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6271 				     &tx_accept_flags);
6272 	if (rc)
6273 		return rc;
6274 
6275 	__set_bit(RAMROD_RX, &ramrod_flags);
6276 	__set_bit(RAMROD_TX, &ramrod_flags);
6277 
6278 	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6279 				   rx_accept_flags, tx_accept_flags,
6280 				   ramrod_flags);
6281 }
6282 
6283 static void bnx2x_init_internal_common(struct bnx2x *bp)
6284 {
6285 	int i;
6286 
6287 	/* Zero this manually as its initialization is
6288 	   currently missing in the initTool */
6289 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6290 		REG_WR(bp, BAR_USTRORM_INTMEM +
6291 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6292 	if (!CHIP_IS_E1x(bp)) {
6293 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6294 			CHIP_INT_MODE_IS_BC(bp) ?
6295 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6296 	}
6297 }
6298 
6299 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6300 {
6301 	switch (load_code) {
6302 	case FW_MSG_CODE_DRV_LOAD_COMMON:
6303 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6304 		bnx2x_init_internal_common(bp);
6305 		/* no break */
6306 
6307 	case FW_MSG_CODE_DRV_LOAD_PORT:
6308 		/* nothing to do */
6309 		/* no break */
6310 
6311 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6312 		/* internal memory per function is
6313 		   initialized inside bnx2x_pf_init */
6314 		break;
6315 
6316 	default:
6317 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6318 		break;
6319 	}
6320 }
6321 
6322 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6323 {
6324 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6325 }
6326 
6327 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6328 {
6329 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6330 }
6331 
6332 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6333 {
6334 	if (CHIP_IS_E1x(fp->bp))
6335 		return BP_L_ID(fp->bp) + fp->index;
6336 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6337 		return bnx2x_fp_igu_sb_id(fp);
6338 }
6339 
6340 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6341 {
6342 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6343 	u8 cos;
6344 	unsigned long q_type = 0;
6345 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6346 	fp->rx_queue = fp_idx;
6347 	fp->cid = fp_idx;
6348 	fp->cl_id = bnx2x_fp_cl_id(fp);
6349 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6350 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6351 	/* qZone id equals to FW (per path) client id */
6352 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6353 
6354 	/* init shortcut */
6355 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6356 
6357 	/* Setup SB indices */
6358 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6359 
6360 	/* Configure Queue State object */
6361 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6362 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6363 
6364 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6365 
6366 	/* init tx data */
6367 	for_each_cos_in_tx_queue(fp, cos) {
6368 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6369 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6370 				  FP_COS_TO_TXQ(fp, cos, bp),
6371 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6372 		cids[cos] = fp->txdata_ptr[cos]->cid;
6373 	}
6374 
6375 	/* nothing more for vf to do here */
6376 	if (IS_VF(bp))
6377 		return;
6378 
6379 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6380 		      fp->fw_sb_id, fp->igu_sb_id);
6381 	bnx2x_update_fpsb_idx(fp);
6382 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6383 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6384 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6385 
6386 	/**
6387 	 * Configure classification DBs: Always enable Tx switching
6388 	 */
6389 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6390 
6391 	DP(NETIF_MSG_IFUP,
6392 	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6393 	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6394 	   fp->igu_sb_id);
6395 }
6396 
6397 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6398 {
6399 	int i;
6400 
6401 	for (i = 1; i <= NUM_TX_RINGS; i++) {
6402 		struct eth_tx_next_bd *tx_next_bd =
6403 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6404 
6405 		tx_next_bd->addr_hi =
6406 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6407 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6408 		tx_next_bd->addr_lo =
6409 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6410 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6411 	}
6412 
6413 	*txdata->tx_cons_sb = cpu_to_le16(0);
6414 
6415 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6416 	txdata->tx_db.data.zero_fill1 = 0;
6417 	txdata->tx_db.data.prod = 0;
6418 
6419 	txdata->tx_pkt_prod = 0;
6420 	txdata->tx_pkt_cons = 0;
6421 	txdata->tx_bd_prod = 0;
6422 	txdata->tx_bd_cons = 0;
6423 	txdata->tx_pkt = 0;
6424 }
6425 
6426 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6427 {
6428 	int i;
6429 
6430 	for_each_tx_queue_cnic(bp, i)
6431 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6432 }
6433 
6434 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6435 {
6436 	int i;
6437 	u8 cos;
6438 
6439 	for_each_eth_queue(bp, i)
6440 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6441 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6442 }
6443 
6444 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6445 {
6446 	struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6447 	unsigned long q_type = 0;
6448 
6449 	bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6450 	bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6451 						     BNX2X_FCOE_ETH_CL_ID_IDX);
6452 	bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6453 	bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6454 	bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6455 	bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6456 	bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6457 			  fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6458 			  fp);
6459 
6460 	DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6461 
6462 	/* qZone id equals to FW (per path) client id */
6463 	bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6464 	/* init shortcut */
6465 	bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6466 		bnx2x_rx_ustorm_prods_offset(fp);
6467 
6468 	/* Configure Queue State object */
6469 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6470 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6471 
6472 	/* No multi-CoS for FCoE L2 client */
6473 	BUG_ON(fp->max_cos != 1);
6474 
6475 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6476 			     &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6477 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6478 
6479 	DP(NETIF_MSG_IFUP,
6480 	   "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6481 	   fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6482 	   fp->igu_sb_id);
6483 }
6484 
6485 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6486 {
6487 	if (!NO_FCOE(bp))
6488 		bnx2x_init_fcoe_fp(bp);
6489 
6490 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6491 		      BNX2X_VF_ID_INVALID, false,
6492 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6493 
6494 	/* ensure status block indices were read */
6495 	rmb();
6496 	bnx2x_init_rx_rings_cnic(bp);
6497 	bnx2x_init_tx_rings_cnic(bp);
6498 
6499 	/* flush all */
6500 	mb();
6501 }
6502 
6503 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6504 {
6505 	int i;
6506 
6507 	/* Setup NIC internals and enable interrupts */
6508 	for_each_eth_queue(bp, i)
6509 		bnx2x_init_eth_fp(bp, i);
6510 
6511 	/* ensure status block indices were read */
6512 	rmb();
6513 	bnx2x_init_rx_rings(bp);
6514 	bnx2x_init_tx_rings(bp);
6515 
6516 	if (IS_PF(bp)) {
6517 		/* Initialize MOD_ABS interrupts */
6518 		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6519 				       bp->common.shmem_base,
6520 				       bp->common.shmem2_base, BP_PORT(bp));
6521 
6522 		/* initialize the default status block and sp ring */
6523 		bnx2x_init_def_sb(bp);
6524 		bnx2x_update_dsb_idx(bp);
6525 		bnx2x_init_sp_ring(bp);
6526 	} else {
6527 		bnx2x_memset_stats(bp);
6528 	}
6529 }
6530 
6531 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6532 {
6533 	bnx2x_init_eq_ring(bp);
6534 	bnx2x_init_internal(bp, load_code);
6535 	bnx2x_pf_init(bp);
6536 	bnx2x_stats_init(bp);
6537 
6538 	/* flush all before enabling interrupts */
6539 	mb();
6540 
6541 	bnx2x_int_enable(bp);
6542 
6543 	/* Check for SPIO5 */
6544 	bnx2x_attn_int_deasserted0(bp,
6545 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6546 				   AEU_INPUTS_ATTN_BITS_SPIO5);
6547 }
6548 
6549 /* gzip service functions */
6550 static int bnx2x_gunzip_init(struct bnx2x *bp)
6551 {
6552 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6553 					    &bp->gunzip_mapping, GFP_KERNEL);
6554 	if (bp->gunzip_buf  == NULL)
6555 		goto gunzip_nomem1;
6556 
6557 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6558 	if (bp->strm  == NULL)
6559 		goto gunzip_nomem2;
6560 
6561 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6562 	if (bp->strm->workspace == NULL)
6563 		goto gunzip_nomem3;
6564 
6565 	return 0;
6566 
6567 gunzip_nomem3:
6568 	kfree(bp->strm);
6569 	bp->strm = NULL;
6570 
6571 gunzip_nomem2:
6572 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6573 			  bp->gunzip_mapping);
6574 	bp->gunzip_buf = NULL;
6575 
6576 gunzip_nomem1:
6577 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6578 	return -ENOMEM;
6579 }
6580 
6581 static void bnx2x_gunzip_end(struct bnx2x *bp)
6582 {
6583 	if (bp->strm) {
6584 		vfree(bp->strm->workspace);
6585 		kfree(bp->strm);
6586 		bp->strm = NULL;
6587 	}
6588 
6589 	if (bp->gunzip_buf) {
6590 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6591 				  bp->gunzip_mapping);
6592 		bp->gunzip_buf = NULL;
6593 	}
6594 }
6595 
6596 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6597 {
6598 	int n, rc;
6599 
6600 	/* check gzip header */
6601 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6602 		BNX2X_ERR("Bad gzip header\n");
6603 		return -EINVAL;
6604 	}
6605 
6606 	n = 10;
6607 
6608 #define FNAME				0x8
6609 
6610 	if (zbuf[3] & FNAME)
6611 		while ((zbuf[n++] != 0) && (n < len));
6612 
6613 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6614 	bp->strm->avail_in = len - n;
6615 	bp->strm->next_out = bp->gunzip_buf;
6616 	bp->strm->avail_out = FW_BUF_SIZE;
6617 
6618 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6619 	if (rc != Z_OK)
6620 		return rc;
6621 
6622 	rc = zlib_inflate(bp->strm, Z_FINISH);
6623 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6624 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6625 			   bp->strm->msg);
6626 
6627 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6628 	if (bp->gunzip_outlen & 0x3)
6629 		netdev_err(bp->dev,
6630 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6631 				bp->gunzip_outlen);
6632 	bp->gunzip_outlen >>= 2;
6633 
6634 	zlib_inflateEnd(bp->strm);
6635 
6636 	if (rc == Z_STREAM_END)
6637 		return 0;
6638 
6639 	return rc;
6640 }
6641 
6642 /* nic load/unload */
6643 
6644 /*
6645  * General service functions
6646  */
6647 
6648 /* send a NIG loopback debug packet */
6649 static void bnx2x_lb_pckt(struct bnx2x *bp)
6650 {
6651 	u32 wb_write[3];
6652 
6653 	/* Ethernet source and destination addresses */
6654 	wb_write[0] = 0x55555555;
6655 	wb_write[1] = 0x55555555;
6656 	wb_write[2] = 0x20;		/* SOP */
6657 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6658 
6659 	/* NON-IP protocol */
6660 	wb_write[0] = 0x09000000;
6661 	wb_write[1] = 0x55555555;
6662 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6663 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6664 }
6665 
6666 /* some of the internal memories
6667  * are not directly readable from the driver
6668  * to test them we send debug packets
6669  */
6670 static int bnx2x_int_mem_test(struct bnx2x *bp)
6671 {
6672 	int factor;
6673 	int count, i;
6674 	u32 val = 0;
6675 
6676 	if (CHIP_REV_IS_FPGA(bp))
6677 		factor = 120;
6678 	else if (CHIP_REV_IS_EMUL(bp))
6679 		factor = 200;
6680 	else
6681 		factor = 1;
6682 
6683 	/* Disable inputs of parser neighbor blocks */
6684 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6685 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6686 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6687 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6688 
6689 	/*  Write 0 to parser credits for CFC search request */
6690 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6691 
6692 	/* send Ethernet packet */
6693 	bnx2x_lb_pckt(bp);
6694 
6695 	/* TODO do i reset NIG statistic? */
6696 	/* Wait until NIG register shows 1 packet of size 0x10 */
6697 	count = 1000 * factor;
6698 	while (count) {
6699 
6700 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6701 		val = *bnx2x_sp(bp, wb_data[0]);
6702 		if (val == 0x10)
6703 			break;
6704 
6705 		usleep_range(10000, 20000);
6706 		count--;
6707 	}
6708 	if (val != 0x10) {
6709 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6710 		return -1;
6711 	}
6712 
6713 	/* Wait until PRS register shows 1 packet */
6714 	count = 1000 * factor;
6715 	while (count) {
6716 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6717 		if (val == 1)
6718 			break;
6719 
6720 		usleep_range(10000, 20000);
6721 		count--;
6722 	}
6723 	if (val != 0x1) {
6724 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6725 		return -2;
6726 	}
6727 
6728 	/* Reset and init BRB, PRS */
6729 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6730 	msleep(50);
6731 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6732 	msleep(50);
6733 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6734 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6735 
6736 	DP(NETIF_MSG_HW, "part2\n");
6737 
6738 	/* Disable inputs of parser neighbor blocks */
6739 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6740 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6741 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6742 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6743 
6744 	/* Write 0 to parser credits for CFC search request */
6745 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6746 
6747 	/* send 10 Ethernet packets */
6748 	for (i = 0; i < 10; i++)
6749 		bnx2x_lb_pckt(bp);
6750 
6751 	/* Wait until NIG register shows 10 + 1
6752 	   packets of size 11*0x10 = 0xb0 */
6753 	count = 1000 * factor;
6754 	while (count) {
6755 
6756 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6757 		val = *bnx2x_sp(bp, wb_data[0]);
6758 		if (val == 0xb0)
6759 			break;
6760 
6761 		usleep_range(10000, 20000);
6762 		count--;
6763 	}
6764 	if (val != 0xb0) {
6765 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6766 		return -3;
6767 	}
6768 
6769 	/* Wait until PRS register shows 2 packets */
6770 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6771 	if (val != 2)
6772 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6773 
6774 	/* Write 1 to parser credits for CFC search request */
6775 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6776 
6777 	/* Wait until PRS register shows 3 packets */
6778 	msleep(10 * factor);
6779 	/* Wait until NIG register shows 1 packet of size 0x10 */
6780 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6781 	if (val != 3)
6782 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6783 
6784 	/* clear NIG EOP FIFO */
6785 	for (i = 0; i < 11; i++)
6786 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6787 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6788 	if (val != 1) {
6789 		BNX2X_ERR("clear of NIG failed\n");
6790 		return -4;
6791 	}
6792 
6793 	/* Reset and init BRB, PRS, NIG */
6794 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6795 	msleep(50);
6796 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6797 	msleep(50);
6798 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6799 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6800 	if (!CNIC_SUPPORT(bp))
6801 		/* set NIC mode */
6802 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6803 
6804 	/* Enable inputs of parser neighbor blocks */
6805 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6806 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6807 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6808 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6809 
6810 	DP(NETIF_MSG_HW, "done\n");
6811 
6812 	return 0; /* OK */
6813 }
6814 
6815 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6816 {
6817 	u32 val;
6818 
6819 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6820 	if (!CHIP_IS_E1x(bp))
6821 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6822 	else
6823 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6824 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6825 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6826 	/*
6827 	 * mask read length error interrupts in brb for parser
6828 	 * (parsing unit and 'checksum and crc' unit)
6829 	 * these errors are legal (PU reads fixed length and CAC can cause
6830 	 * read length error on truncated packets)
6831 	 */
6832 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6833 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6834 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6835 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6836 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6837 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6838 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6839 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6840 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6841 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6842 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6843 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6844 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6845 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6846 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6847 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6848 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6849 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6850 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6851 
6852 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6853 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6854 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6855 	if (!CHIP_IS_E1x(bp))
6856 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6857 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6858 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6859 
6860 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6861 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6862 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6863 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6864 
6865 	if (!CHIP_IS_E1x(bp))
6866 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6867 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6868 
6869 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6870 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6871 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6872 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6873 }
6874 
6875 static void bnx2x_reset_common(struct bnx2x *bp)
6876 {
6877 	u32 val = 0x1400;
6878 
6879 	/* reset_common */
6880 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6881 	       0xd3ffff7f);
6882 
6883 	if (CHIP_IS_E3(bp)) {
6884 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6885 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6886 	}
6887 
6888 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6889 }
6890 
6891 static void bnx2x_setup_dmae(struct bnx2x *bp)
6892 {
6893 	bp->dmae_ready = 0;
6894 	spin_lock_init(&bp->dmae_lock);
6895 }
6896 
6897 static void bnx2x_init_pxp(struct bnx2x *bp)
6898 {
6899 	u16 devctl;
6900 	int r_order, w_order;
6901 
6902 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6903 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6904 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6905 	if (bp->mrrs == -1)
6906 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6907 	else {
6908 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6909 		r_order = bp->mrrs;
6910 	}
6911 
6912 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6913 }
6914 
6915 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6916 {
6917 	int is_required;
6918 	u32 val;
6919 	int port;
6920 
6921 	if (BP_NOMCP(bp))
6922 		return;
6923 
6924 	is_required = 0;
6925 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6926 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6927 
6928 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6929 		is_required = 1;
6930 
6931 	/*
6932 	 * The fan failure mechanism is usually related to the PHY type since
6933 	 * the power consumption of the board is affected by the PHY. Currently,
6934 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6935 	 */
6936 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6937 		for (port = PORT_0; port < PORT_MAX; port++) {
6938 			is_required |=
6939 				bnx2x_fan_failure_det_req(
6940 					bp,
6941 					bp->common.shmem_base,
6942 					bp->common.shmem2_base,
6943 					port);
6944 		}
6945 
6946 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6947 
6948 	if (is_required == 0)
6949 		return;
6950 
6951 	/* Fan failure is indicated by SPIO 5 */
6952 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6953 
6954 	/* set to active low mode */
6955 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6956 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6957 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6958 
6959 	/* enable interrupt to signal the IGU */
6960 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6961 	val |= MISC_SPIO_SPIO5;
6962 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6963 }
6964 
6965 void bnx2x_pf_disable(struct bnx2x *bp)
6966 {
6967 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6968 	val &= ~IGU_PF_CONF_FUNC_EN;
6969 
6970 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6971 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6972 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6973 }
6974 
6975 static void bnx2x__common_init_phy(struct bnx2x *bp)
6976 {
6977 	u32 shmem_base[2], shmem2_base[2];
6978 	/* Avoid common init in case MFW supports LFA */
6979 	if (SHMEM2_RD(bp, size) >
6980 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6981 		return;
6982 	shmem_base[0] =  bp->common.shmem_base;
6983 	shmem2_base[0] = bp->common.shmem2_base;
6984 	if (!CHIP_IS_E1x(bp)) {
6985 		shmem_base[1] =
6986 			SHMEM2_RD(bp, other_shmem_base_addr);
6987 		shmem2_base[1] =
6988 			SHMEM2_RD(bp, other_shmem2_base_addr);
6989 	}
6990 	bnx2x_acquire_phy_lock(bp);
6991 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6992 			      bp->common.chip_id);
6993 	bnx2x_release_phy_lock(bp);
6994 }
6995 
6996 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
6997 {
6998 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
6999 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7000 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7001 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7002 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7003 
7004 	/* make sure this value is 0 */
7005 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7006 
7007 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7008 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7009 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7010 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7011 }
7012 
7013 static void bnx2x_set_endianity(struct bnx2x *bp)
7014 {
7015 #ifdef __BIG_ENDIAN
7016 	bnx2x_config_endianity(bp, 1);
7017 #else
7018 	bnx2x_config_endianity(bp, 0);
7019 #endif
7020 }
7021 
7022 static void bnx2x_reset_endianity(struct bnx2x *bp)
7023 {
7024 	bnx2x_config_endianity(bp, 0);
7025 }
7026 
7027 /**
7028  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7029  *
7030  * @bp:		driver handle
7031  */
7032 static int bnx2x_init_hw_common(struct bnx2x *bp)
7033 {
7034 	u32 val;
7035 
7036 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7037 
7038 	/*
7039 	 * take the RESET lock to protect undi_unload flow from accessing
7040 	 * registers while we're resetting the chip
7041 	 */
7042 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7043 
7044 	bnx2x_reset_common(bp);
7045 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7046 
7047 	val = 0xfffc;
7048 	if (CHIP_IS_E3(bp)) {
7049 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7050 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7051 	}
7052 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7053 
7054 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7055 
7056 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7057 
7058 	if (!CHIP_IS_E1x(bp)) {
7059 		u8 abs_func_id;
7060 
7061 		/**
7062 		 * 4-port mode or 2-port mode we need to turn of master-enable
7063 		 * for everyone, after that, turn it back on for self.
7064 		 * so, we disregard multi-function or not, and always disable
7065 		 * for all functions on the given path, this means 0,2,4,6 for
7066 		 * path 0 and 1,3,5,7 for path 1
7067 		 */
7068 		for (abs_func_id = BP_PATH(bp);
7069 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7070 			if (abs_func_id == BP_ABS_FUNC(bp)) {
7071 				REG_WR(bp,
7072 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7073 				    1);
7074 				continue;
7075 			}
7076 
7077 			bnx2x_pretend_func(bp, abs_func_id);
7078 			/* clear pf enable */
7079 			bnx2x_pf_disable(bp);
7080 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7081 		}
7082 	}
7083 
7084 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7085 	if (CHIP_IS_E1(bp)) {
7086 		/* enable HW interrupt from PXP on USDM overflow
7087 		   bit 16 on INT_MASK_0 */
7088 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7089 	}
7090 
7091 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7092 	bnx2x_init_pxp(bp);
7093 	bnx2x_set_endianity(bp);
7094 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
7095 
7096 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7097 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7098 
7099 	/* let the HW do it's magic ... */
7100 	msleep(100);
7101 	/* finish PXP init */
7102 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7103 	if (val != 1) {
7104 		BNX2X_ERR("PXP2 CFG failed\n");
7105 		return -EBUSY;
7106 	}
7107 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7108 	if (val != 1) {
7109 		BNX2X_ERR("PXP2 RD_INIT failed\n");
7110 		return -EBUSY;
7111 	}
7112 
7113 	/* Timers bug workaround E2 only. We need to set the entire ILT to
7114 	 * have entries with value "0" and valid bit on.
7115 	 * This needs to be done by the first PF that is loaded in a path
7116 	 * (i.e. common phase)
7117 	 */
7118 	if (!CHIP_IS_E1x(bp)) {
7119 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7120  * (i.e. vnic3) to start even if it is marked as "scan-off".
7121  * This occurs when a different function (func2,3) is being marked
7122  * as "scan-off". Real-life scenario for example: if a driver is being
7123  * load-unloaded while func6,7 are down. This will cause the timer to access
7124  * the ilt, translate to a logical address and send a request to read/write.
7125  * Since the ilt for the function that is down is not valid, this will cause
7126  * a translation error which is unrecoverable.
7127  * The Workaround is intended to make sure that when this happens nothing fatal
7128  * will occur. The workaround:
7129  *	1.  First PF driver which loads on a path will:
7130  *		a.  After taking the chip out of reset, by using pretend,
7131  *		    it will write "0" to the following registers of
7132  *		    the other vnics.
7133  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7134  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7135  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7136  *		    And for itself it will write '1' to
7137  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7138  *		    dmae-operations (writing to pram for example.)
7139  *		    note: can be done for only function 6,7 but cleaner this
7140  *			  way.
7141  *		b.  Write zero+valid to the entire ILT.
7142  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7143  *		    VNIC3 (of that port). The range allocated will be the
7144  *		    entire ILT. This is needed to prevent  ILT range error.
7145  *	2.  Any PF driver load flow:
7146  *		a.  ILT update with the physical addresses of the allocated
7147  *		    logical pages.
7148  *		b.  Wait 20msec. - note that this timeout is needed to make
7149  *		    sure there are no requests in one of the PXP internal
7150  *		    queues with "old" ILT addresses.
7151  *		c.  PF enable in the PGLC.
7152  *		d.  Clear the was_error of the PF in the PGLC. (could have
7153  *		    occurred while driver was down)
7154  *		e.  PF enable in the CFC (WEAK + STRONG)
7155  *		f.  Timers scan enable
7156  *	3.  PF driver unload flow:
7157  *		a.  Clear the Timers scan_en.
7158  *		b.  Polling for scan_on=0 for that PF.
7159  *		c.  Clear the PF enable bit in the PXP.
7160  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
7161  *		e.  Write zero+valid to all ILT entries (The valid bit must
7162  *		    stay set)
7163  *		f.  If this is VNIC 3 of a port then also init
7164  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
7165  *		    to the last entry in the ILT.
7166  *
7167  *	Notes:
7168  *	Currently the PF error in the PGLC is non recoverable.
7169  *	In the future the there will be a recovery routine for this error.
7170  *	Currently attention is masked.
7171  *	Having an MCP lock on the load/unload process does not guarantee that
7172  *	there is no Timer disable during Func6/7 enable. This is because the
7173  *	Timers scan is currently being cleared by the MCP on FLR.
7174  *	Step 2.d can be done only for PF6/7 and the driver can also check if
7175  *	there is error before clearing it. But the flow above is simpler and
7176  *	more general.
7177  *	All ILT entries are written by zero+valid and not just PF6/7
7178  *	ILT entries since in the future the ILT entries allocation for
7179  *	PF-s might be dynamic.
7180  */
7181 		struct ilt_client_info ilt_cli;
7182 		struct bnx2x_ilt ilt;
7183 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7184 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7185 
7186 		/* initialize dummy TM client */
7187 		ilt_cli.start = 0;
7188 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7189 		ilt_cli.client_num = ILT_CLIENT_TM;
7190 
7191 		/* Step 1: set zeroes to all ilt page entries with valid bit on
7192 		 * Step 2: set the timers first/last ilt entry to point
7193 		 * to the entire range to prevent ILT range error for 3rd/4th
7194 		 * vnic	(this code assumes existence of the vnic)
7195 		 *
7196 		 * both steps performed by call to bnx2x_ilt_client_init_op()
7197 		 * with dummy TM client
7198 		 *
7199 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7200 		 * and his brother are split registers
7201 		 */
7202 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7203 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7204 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7205 
7206 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7207 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7208 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7209 	}
7210 
7211 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7212 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7213 
7214 	if (!CHIP_IS_E1x(bp)) {
7215 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7216 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7217 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7218 
7219 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7220 
7221 		/* let the HW do it's magic ... */
7222 		do {
7223 			msleep(200);
7224 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7225 		} while (factor-- && (val != 1));
7226 
7227 		if (val != 1) {
7228 			BNX2X_ERR("ATC_INIT failed\n");
7229 			return -EBUSY;
7230 		}
7231 	}
7232 
7233 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7234 
7235 	bnx2x_iov_init_dmae(bp);
7236 
7237 	/* clean the DMAE memory */
7238 	bp->dmae_ready = 1;
7239 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7240 
7241 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7242 
7243 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7244 
7245 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7246 
7247 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7248 
7249 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7250 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7251 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7252 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7253 
7254 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7255 
7256 	/* QM queues pointers table */
7257 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7258 
7259 	/* soft reset pulse */
7260 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
7261 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
7262 
7263 	if (CNIC_SUPPORT(bp))
7264 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7265 
7266 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7267 
7268 	if (!CHIP_REV_IS_SLOW(bp))
7269 		/* enable hw interrupt from doorbell Q */
7270 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7271 
7272 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7273 
7274 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7275 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7276 
7277 	if (!CHIP_IS_E1(bp))
7278 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7279 
7280 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7281 		if (IS_MF_AFEX(bp)) {
7282 			/* configure that VNTag and VLAN headers must be
7283 			 * received in afex mode
7284 			 */
7285 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7286 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7287 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7288 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7289 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7290 		} else {
7291 			/* Bit-map indicating which L2 hdrs may appear
7292 			 * after the basic Ethernet header
7293 			 */
7294 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7295 			       bp->path_has_ovlan ? 7 : 6);
7296 		}
7297 	}
7298 
7299 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7300 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7301 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7302 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7303 
7304 	if (!CHIP_IS_E1x(bp)) {
7305 		/* reset VFC memories */
7306 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7307 			   VFC_MEMORIES_RST_REG_CAM_RST |
7308 			   VFC_MEMORIES_RST_REG_RAM_RST);
7309 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7310 			   VFC_MEMORIES_RST_REG_CAM_RST |
7311 			   VFC_MEMORIES_RST_REG_RAM_RST);
7312 
7313 		msleep(20);
7314 	}
7315 
7316 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7317 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7318 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7319 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7320 
7321 	/* sync semi rtc */
7322 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7323 	       0x80000000);
7324 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7325 	       0x80000000);
7326 
7327 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7328 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7329 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7330 
7331 	if (!CHIP_IS_E1x(bp)) {
7332 		if (IS_MF_AFEX(bp)) {
7333 			/* configure that VNTag and VLAN headers must be
7334 			 * sent in afex mode
7335 			 */
7336 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7337 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7338 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7339 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7340 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7341 		} else {
7342 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7343 			       bp->path_has_ovlan ? 7 : 6);
7344 		}
7345 	}
7346 
7347 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
7348 
7349 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7350 
7351 	if (CNIC_SUPPORT(bp)) {
7352 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7353 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7354 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7355 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7356 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7357 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7358 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7359 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7360 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7361 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7362 	}
7363 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
7364 
7365 	if (sizeof(union cdu_context) != 1024)
7366 		/* we currently assume that a context is 1024 bytes */
7367 		dev_alert(&bp->pdev->dev,
7368 			  "please adjust the size of cdu_context(%ld)\n",
7369 			  (long)sizeof(union cdu_context));
7370 
7371 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7372 	val = (4 << 24) + (0 << 12) + 1024;
7373 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7374 
7375 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7376 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7377 	/* enable context validation interrupt from CFC */
7378 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7379 
7380 	/* set the thresholds to prevent CFC/CDU race */
7381 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7382 
7383 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7384 
7385 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7386 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7387 
7388 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7389 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7390 
7391 	/* Reset PCIE errors for debug */
7392 	REG_WR(bp, 0x2814, 0xffffffff);
7393 	REG_WR(bp, 0x3820, 0xffffffff);
7394 
7395 	if (!CHIP_IS_E1x(bp)) {
7396 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7397 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7398 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7399 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7400 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7401 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7402 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7403 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7404 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7405 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7406 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7407 	}
7408 
7409 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7410 	if (!CHIP_IS_E1(bp)) {
7411 		/* in E3 this done in per-port section */
7412 		if (!CHIP_IS_E3(bp))
7413 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7414 	}
7415 	if (CHIP_IS_E1H(bp))
7416 		/* not applicable for E2 (and above ...) */
7417 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7418 
7419 	if (CHIP_REV_IS_SLOW(bp))
7420 		msleep(200);
7421 
7422 	/* finish CFC init */
7423 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7424 	if (val != 1) {
7425 		BNX2X_ERR("CFC LL_INIT failed\n");
7426 		return -EBUSY;
7427 	}
7428 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7429 	if (val != 1) {
7430 		BNX2X_ERR("CFC AC_INIT failed\n");
7431 		return -EBUSY;
7432 	}
7433 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7434 	if (val != 1) {
7435 		BNX2X_ERR("CFC CAM_INIT failed\n");
7436 		return -EBUSY;
7437 	}
7438 	REG_WR(bp, CFC_REG_DEBUG0, 0);
7439 
7440 	if (CHIP_IS_E1(bp)) {
7441 		/* read NIG statistic
7442 		   to see if this is our first up since powerup */
7443 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7444 		val = *bnx2x_sp(bp, wb_data[0]);
7445 
7446 		/* do internal memory self test */
7447 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7448 			BNX2X_ERR("internal mem self test failed\n");
7449 			return -EBUSY;
7450 		}
7451 	}
7452 
7453 	bnx2x_setup_fan_failure_detection(bp);
7454 
7455 	/* clear PXP2 attentions */
7456 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7457 
7458 	bnx2x_enable_blocks_attention(bp);
7459 	bnx2x_enable_blocks_parity(bp);
7460 
7461 	if (!BP_NOMCP(bp)) {
7462 		if (CHIP_IS_E1x(bp))
7463 			bnx2x__common_init_phy(bp);
7464 	} else
7465 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7466 
7467 	if (SHMEM2_HAS(bp, netproc_fw_ver))
7468 		SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7469 
7470 	return 0;
7471 }
7472 
7473 /**
7474  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7475  *
7476  * @bp:		driver handle
7477  */
7478 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7479 {
7480 	int rc = bnx2x_init_hw_common(bp);
7481 
7482 	if (rc)
7483 		return rc;
7484 
7485 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7486 	if (!BP_NOMCP(bp))
7487 		bnx2x__common_init_phy(bp);
7488 
7489 	return 0;
7490 }
7491 
7492 static int bnx2x_init_hw_port(struct bnx2x *bp)
7493 {
7494 	int port = BP_PORT(bp);
7495 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7496 	u32 low, high;
7497 	u32 val, reg;
7498 
7499 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7500 
7501 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7502 
7503 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7504 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7505 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7506 
7507 	/* Timers bug workaround: disables the pf_master bit in pglue at
7508 	 * common phase, we need to enable it here before any dmae access are
7509 	 * attempted. Therefore we manually added the enable-master to the
7510 	 * port phase (it also happens in the function phase)
7511 	 */
7512 	if (!CHIP_IS_E1x(bp))
7513 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7514 
7515 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7516 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7517 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7518 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7519 
7520 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7521 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7522 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7523 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7524 
7525 	/* QM cid (connection) count */
7526 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7527 
7528 	if (CNIC_SUPPORT(bp)) {
7529 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7530 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7531 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7532 	}
7533 
7534 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7535 
7536 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7537 
7538 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7539 
7540 		if (IS_MF(bp))
7541 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7542 		else if (bp->dev->mtu > 4096) {
7543 			if (bp->flags & ONE_PORT_FLAG)
7544 				low = 160;
7545 			else {
7546 				val = bp->dev->mtu;
7547 				/* (24*1024 + val*4)/256 */
7548 				low = 96 + (val/64) +
7549 						((val % 64) ? 1 : 0);
7550 			}
7551 		} else
7552 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7553 		high = low + 56;	/* 14*1024/256 */
7554 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7555 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7556 	}
7557 
7558 	if (CHIP_MODE_IS_4_PORT(bp))
7559 		REG_WR(bp, (BP_PORT(bp) ?
7560 			    BRB1_REG_MAC_GUARANTIED_1 :
7561 			    BRB1_REG_MAC_GUARANTIED_0), 40);
7562 
7563 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7564 	if (CHIP_IS_E3B0(bp)) {
7565 		if (IS_MF_AFEX(bp)) {
7566 			/* configure headers for AFEX mode */
7567 			REG_WR(bp, BP_PORT(bp) ?
7568 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7569 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7570 			REG_WR(bp, BP_PORT(bp) ?
7571 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7572 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7573 			REG_WR(bp, BP_PORT(bp) ?
7574 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7575 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7576 		} else {
7577 			/* Ovlan exists only if we are in multi-function +
7578 			 * switch-dependent mode, in switch-independent there
7579 			 * is no ovlan headers
7580 			 */
7581 			REG_WR(bp, BP_PORT(bp) ?
7582 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7583 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7584 			       (bp->path_has_ovlan ? 7 : 6));
7585 		}
7586 	}
7587 
7588 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7589 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7590 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7591 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7592 
7593 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7594 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7595 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7596 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7597 
7598 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7599 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7600 
7601 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7602 
7603 	if (CHIP_IS_E1x(bp)) {
7604 		/* configure PBF to work without PAUSE mtu 9000 */
7605 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7606 
7607 		/* update threshold */
7608 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7609 		/* update init credit */
7610 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7611 
7612 		/* probe changes */
7613 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7614 		udelay(50);
7615 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7616 	}
7617 
7618 	if (CNIC_SUPPORT(bp))
7619 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7620 
7621 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7622 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7623 
7624 	if (CHIP_IS_E1(bp)) {
7625 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7626 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7627 	}
7628 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7629 
7630 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7631 
7632 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7633 	/* init aeu_mask_attn_func_0/1:
7634 	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7635 	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7636 	 *             bits 4-7 are used for "per vn group attention" */
7637 	val = IS_MF(bp) ? 0xF7 : 0x7;
7638 	/* Enable DCBX attention for all but E1 */
7639 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7640 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7641 
7642 	/* SCPAD_PARITY should NOT trigger close the gates */
7643 	reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7644 	REG_WR(bp, reg,
7645 	       REG_RD(bp, reg) &
7646 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7647 
7648 	reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7649 	REG_WR(bp, reg,
7650 	       REG_RD(bp, reg) &
7651 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7652 
7653 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7654 
7655 	if (!CHIP_IS_E1x(bp)) {
7656 		/* Bit-map indicating which L2 hdrs may appear after the
7657 		 * basic Ethernet header
7658 		 */
7659 		if (IS_MF_AFEX(bp))
7660 			REG_WR(bp, BP_PORT(bp) ?
7661 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7662 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7663 		else
7664 			REG_WR(bp, BP_PORT(bp) ?
7665 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7666 			       NIG_REG_P0_HDRS_AFTER_BASIC,
7667 			       IS_MF_SD(bp) ? 7 : 6);
7668 
7669 		if (CHIP_IS_E3(bp))
7670 			REG_WR(bp, BP_PORT(bp) ?
7671 				   NIG_REG_LLH1_MF_MODE :
7672 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7673 	}
7674 	if (!CHIP_IS_E3(bp))
7675 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7676 
7677 	if (!CHIP_IS_E1(bp)) {
7678 		/* 0x2 disable mf_ov, 0x1 enable */
7679 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7680 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7681 
7682 		if (!CHIP_IS_E1x(bp)) {
7683 			val = 0;
7684 			switch (bp->mf_mode) {
7685 			case MULTI_FUNCTION_SD:
7686 				val = 1;
7687 				break;
7688 			case MULTI_FUNCTION_SI:
7689 			case MULTI_FUNCTION_AFEX:
7690 				val = 2;
7691 				break;
7692 			}
7693 
7694 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7695 						  NIG_REG_LLH0_CLS_TYPE), val);
7696 		}
7697 		{
7698 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7699 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7700 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7701 		}
7702 	}
7703 
7704 	/* If SPIO5 is set to generate interrupts, enable it for this port */
7705 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7706 	if (val & MISC_SPIO_SPIO5) {
7707 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7708 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7709 		val = REG_RD(bp, reg_addr);
7710 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7711 		REG_WR(bp, reg_addr, val);
7712 	}
7713 
7714 	if (CHIP_IS_E3B0(bp))
7715 		bp->flags |= PTP_SUPPORTED;
7716 
7717 	return 0;
7718 }
7719 
7720 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7721 {
7722 	int reg;
7723 	u32 wb_write[2];
7724 
7725 	if (CHIP_IS_E1(bp))
7726 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7727 	else
7728 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7729 
7730 	wb_write[0] = ONCHIP_ADDR1(addr);
7731 	wb_write[1] = ONCHIP_ADDR2(addr);
7732 	REG_WR_DMAE(bp, reg, wb_write, 2);
7733 }
7734 
7735 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7736 {
7737 	u32 data, ctl, cnt = 100;
7738 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7739 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7740 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7741 	u32 sb_bit =  1 << (idu_sb_id%32);
7742 	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7743 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7744 
7745 	/* Not supported in BC mode */
7746 	if (CHIP_INT_MODE_IS_BC(bp))
7747 		return;
7748 
7749 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7750 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7751 		IGU_REGULAR_CLEANUP_SET				|
7752 		IGU_REGULAR_BCLEANUP;
7753 
7754 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7755 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7756 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7757 
7758 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7759 			 data, igu_addr_data);
7760 	REG_WR(bp, igu_addr_data, data);
7761 	barrier();
7762 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7763 			  ctl, igu_addr_ctl);
7764 	REG_WR(bp, igu_addr_ctl, ctl);
7765 	barrier();
7766 
7767 	/* wait for clean up to finish */
7768 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7769 		msleep(20);
7770 
7771 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7772 		DP(NETIF_MSG_HW,
7773 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7774 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7775 	}
7776 }
7777 
7778 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7779 {
7780 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7781 }
7782 
7783 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7784 {
7785 	u32 i, base = FUNC_ILT_BASE(func);
7786 	for (i = base; i < base + ILT_PER_FUNC; i++)
7787 		bnx2x_ilt_wr(bp, i, 0);
7788 }
7789 
7790 static void bnx2x_init_searcher(struct bnx2x *bp)
7791 {
7792 	int port = BP_PORT(bp);
7793 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7794 	/* T1 hash bits value determines the T1 number of entries */
7795 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7796 }
7797 
7798 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7799 {
7800 	int rc;
7801 	struct bnx2x_func_state_params func_params = {NULL};
7802 	struct bnx2x_func_switch_update_params *switch_update_params =
7803 		&func_params.params.switch_update;
7804 
7805 	/* Prepare parameters for function state transitions */
7806 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7807 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7808 
7809 	func_params.f_obj = &bp->func_obj;
7810 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7811 
7812 	/* Function parameters */
7813 	__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7814 		  &switch_update_params->changes);
7815 	if (suspend)
7816 		__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7817 			  &switch_update_params->changes);
7818 
7819 	rc = bnx2x_func_state_change(bp, &func_params);
7820 
7821 	return rc;
7822 }
7823 
7824 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7825 {
7826 	int rc, i, port = BP_PORT(bp);
7827 	int vlan_en = 0, mac_en[NUM_MACS];
7828 
7829 	/* Close input from network */
7830 	if (bp->mf_mode == SINGLE_FUNCTION) {
7831 		bnx2x_set_rx_filter(&bp->link_params, 0);
7832 	} else {
7833 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7834 				   NIG_REG_LLH0_FUNC_EN);
7835 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7836 			  NIG_REG_LLH0_FUNC_EN, 0);
7837 		for (i = 0; i < NUM_MACS; i++) {
7838 			mac_en[i] = REG_RD(bp, port ?
7839 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7840 					      4 * i) :
7841 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7842 					      4 * i));
7843 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7844 					      4 * i) :
7845 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7846 		}
7847 	}
7848 
7849 	/* Close BMC to host */
7850 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7851 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7852 
7853 	/* Suspend Tx switching to the PF. Completion of this ramrod
7854 	 * further guarantees that all the packets of that PF / child
7855 	 * VFs in BRB were processed by the Parser, so it is safe to
7856 	 * change the NIC_MODE register.
7857 	 */
7858 	rc = bnx2x_func_switch_update(bp, 1);
7859 	if (rc) {
7860 		BNX2X_ERR("Can't suspend tx-switching!\n");
7861 		return rc;
7862 	}
7863 
7864 	/* Change NIC_MODE register */
7865 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7866 
7867 	/* Open input from network */
7868 	if (bp->mf_mode == SINGLE_FUNCTION) {
7869 		bnx2x_set_rx_filter(&bp->link_params, 1);
7870 	} else {
7871 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7872 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7873 		for (i = 0; i < NUM_MACS; i++) {
7874 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7875 					      4 * i) :
7876 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7877 				  mac_en[i]);
7878 		}
7879 	}
7880 
7881 	/* Enable BMC to host */
7882 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7883 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7884 
7885 	/* Resume Tx switching to the PF */
7886 	rc = bnx2x_func_switch_update(bp, 0);
7887 	if (rc) {
7888 		BNX2X_ERR("Can't resume tx-switching!\n");
7889 		return rc;
7890 	}
7891 
7892 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7893 	return 0;
7894 }
7895 
7896 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7897 {
7898 	int rc;
7899 
7900 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7901 
7902 	if (CONFIGURE_NIC_MODE(bp)) {
7903 		/* Configure searcher as part of function hw init */
7904 		bnx2x_init_searcher(bp);
7905 
7906 		/* Reset NIC mode */
7907 		rc = bnx2x_reset_nic_mode(bp);
7908 		if (rc)
7909 			BNX2X_ERR("Can't change NIC mode!\n");
7910 		return rc;
7911 	}
7912 
7913 	return 0;
7914 }
7915 
7916 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7917  * and boot began, or when kdump kernel was loaded. Either case would invalidate
7918  * the addresses of the transaction, resulting in was-error bit set in the pci
7919  * causing all hw-to-host pcie transactions to timeout. If this happened we want
7920  * to clear the interrupt which detected this from the pglueb and the was done
7921  * bit
7922  */
7923 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7924 {
7925 	if (!CHIP_IS_E1x(bp))
7926 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7927 		       1 << BP_ABS_FUNC(bp));
7928 }
7929 
7930 static int bnx2x_init_hw_func(struct bnx2x *bp)
7931 {
7932 	int port = BP_PORT(bp);
7933 	int func = BP_FUNC(bp);
7934 	int init_phase = PHASE_PF0 + func;
7935 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7936 	u16 cdu_ilt_start;
7937 	u32 addr, val;
7938 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7939 	int i, main_mem_width, rc;
7940 
7941 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7942 
7943 	/* FLR cleanup - hmmm */
7944 	if (!CHIP_IS_E1x(bp)) {
7945 		rc = bnx2x_pf_flr_clnup(bp);
7946 		if (rc) {
7947 			bnx2x_fw_dump(bp);
7948 			return rc;
7949 		}
7950 	}
7951 
7952 	/* set MSI reconfigure capability */
7953 	if (bp->common.int_block == INT_BLOCK_HC) {
7954 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7955 		val = REG_RD(bp, addr);
7956 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7957 		REG_WR(bp, addr, val);
7958 	}
7959 
7960 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7961 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7962 
7963 	ilt = BP_ILT(bp);
7964 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7965 
7966 	if (IS_SRIOV(bp))
7967 		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7968 	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7969 
7970 	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7971 	 * those of the VFs, so start line should be reset
7972 	 */
7973 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7974 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7975 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7976 		ilt->lines[cdu_ilt_start + i].page_mapping =
7977 			bp->context[i].cxt_mapping;
7978 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7979 	}
7980 
7981 	bnx2x_ilt_init_op(bp, INITOP_SET);
7982 
7983 	if (!CONFIGURE_NIC_MODE(bp)) {
7984 		bnx2x_init_searcher(bp);
7985 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
7986 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7987 	} else {
7988 		/* Set NIC mode */
7989 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
7990 		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7991 	}
7992 
7993 	if (!CHIP_IS_E1x(bp)) {
7994 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7995 
7996 		/* Turn on a single ISR mode in IGU if driver is going to use
7997 		 * INT#x or MSI
7998 		 */
7999 		if (!(bp->flags & USING_MSIX_FLAG))
8000 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8001 		/*
8002 		 * Timers workaround bug: function init part.
8003 		 * Need to wait 20msec after initializing ILT,
8004 		 * needed to make sure there are no requests in
8005 		 * one of the PXP internal queues with "old" ILT addresses
8006 		 */
8007 		msleep(20);
8008 		/*
8009 		 * Master enable - Due to WB DMAE writes performed before this
8010 		 * register is re-initialized as part of the regular function
8011 		 * init
8012 		 */
8013 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8014 		/* Enable the function in IGU */
8015 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8016 	}
8017 
8018 	bp->dmae_ready = 1;
8019 
8020 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8021 
8022 	bnx2x_clean_pglue_errors(bp);
8023 
8024 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8025 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8026 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8027 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8028 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8029 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8030 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8031 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8032 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8033 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8034 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8035 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8036 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8037 
8038 	if (!CHIP_IS_E1x(bp))
8039 		REG_WR(bp, QM_REG_PF_EN, 1);
8040 
8041 	if (!CHIP_IS_E1x(bp)) {
8042 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8043 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8044 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8045 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8046 	}
8047 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
8048 
8049 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
8050 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8051 	REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8052 
8053 	bnx2x_iov_init_dq(bp);
8054 
8055 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8056 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8057 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8058 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8059 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8060 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8061 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8062 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8063 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8064 	if (!CHIP_IS_E1x(bp))
8065 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8066 
8067 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8068 
8069 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8070 
8071 	if (!CHIP_IS_E1x(bp))
8072 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8073 
8074 	if (IS_MF(bp)) {
8075 		if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8076 			REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8077 			REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8078 			       bp->mf_ov);
8079 		}
8080 	}
8081 
8082 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8083 
8084 	/* HC init per function */
8085 	if (bp->common.int_block == INT_BLOCK_HC) {
8086 		if (CHIP_IS_E1H(bp)) {
8087 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8088 
8089 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8090 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8091 		}
8092 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
8093 
8094 	} else {
8095 		int num_segs, sb_idx, prod_offset;
8096 
8097 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8098 
8099 		if (!CHIP_IS_E1x(bp)) {
8100 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8101 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8102 		}
8103 
8104 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8105 
8106 		if (!CHIP_IS_E1x(bp)) {
8107 			int dsb_idx = 0;
8108 			/**
8109 			 * Producer memory:
8110 			 * E2 mode: address 0-135 match to the mapping memory;
8111 			 * 136 - PF0 default prod; 137 - PF1 default prod;
8112 			 * 138 - PF2 default prod; 139 - PF3 default prod;
8113 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
8114 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
8115 			 * 144-147 reserved.
8116 			 *
8117 			 * E1.5 mode - In backward compatible mode;
8118 			 * for non default SB; each even line in the memory
8119 			 * holds the U producer and each odd line hold
8120 			 * the C producer. The first 128 producers are for
8121 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8122 			 * producers are for the DSB for each PF.
8123 			 * Each PF has five segments: (the order inside each
8124 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8125 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8126 			 * 144-147 attn prods;
8127 			 */
8128 			/* non-default-status-blocks */
8129 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8130 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8131 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8132 				prod_offset = (bp->igu_base_sb + sb_idx) *
8133 					num_segs;
8134 
8135 				for (i = 0; i < num_segs; i++) {
8136 					addr = IGU_REG_PROD_CONS_MEMORY +
8137 							(prod_offset + i) * 4;
8138 					REG_WR(bp, addr, 0);
8139 				}
8140 				/* send consumer update with value 0 */
8141 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8142 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8143 				bnx2x_igu_clear_sb(bp,
8144 						   bp->igu_base_sb + sb_idx);
8145 			}
8146 
8147 			/* default-status-blocks */
8148 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8149 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8150 
8151 			if (CHIP_MODE_IS_4_PORT(bp))
8152 				dsb_idx = BP_FUNC(bp);
8153 			else
8154 				dsb_idx = BP_VN(bp);
8155 
8156 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8157 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
8158 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
8159 
8160 			/*
8161 			 * igu prods come in chunks of E1HVN_MAX (4) -
8162 			 * does not matters what is the current chip mode
8163 			 */
8164 			for (i = 0; i < (num_segs * E1HVN_MAX);
8165 			     i += E1HVN_MAX) {
8166 				addr = IGU_REG_PROD_CONS_MEMORY +
8167 							(prod_offset + i)*4;
8168 				REG_WR(bp, addr, 0);
8169 			}
8170 			/* send consumer update with 0 */
8171 			if (CHIP_INT_MODE_IS_BC(bp)) {
8172 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8173 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8174 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8175 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
8176 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8177 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
8178 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8179 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
8180 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8181 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8182 			} else {
8183 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8184 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8185 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8186 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8187 			}
8188 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8189 
8190 			/* !!! These should become driver const once
8191 			   rf-tool supports split-68 const */
8192 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8193 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8194 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8195 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8196 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8197 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8198 		}
8199 	}
8200 
8201 	/* Reset PCIE errors for debug */
8202 	REG_WR(bp, 0x2114, 0xffffffff);
8203 	REG_WR(bp, 0x2120, 0xffffffff);
8204 
8205 	if (CHIP_IS_E1x(bp)) {
8206 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8207 		main_mem_base = HC_REG_MAIN_MEMORY +
8208 				BP_PORT(bp) * (main_mem_size * 4);
8209 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8210 		main_mem_width = 8;
8211 
8212 		val = REG_RD(bp, main_mem_prty_clr);
8213 		if (val)
8214 			DP(NETIF_MSG_HW,
8215 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8216 			   val);
8217 
8218 		/* Clear "false" parity errors in MSI-X table */
8219 		for (i = main_mem_base;
8220 		     i < main_mem_base + main_mem_size * 4;
8221 		     i += main_mem_width) {
8222 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
8223 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8224 					 i, main_mem_width / 4);
8225 		}
8226 		/* Clear HC parity attention */
8227 		REG_RD(bp, main_mem_prty_clr);
8228 	}
8229 
8230 #ifdef BNX2X_STOP_ON_ERROR
8231 	/* Enable STORMs SP logging */
8232 	REG_WR8(bp, BAR_USTRORM_INTMEM +
8233 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8234 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
8235 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8236 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8237 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8238 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
8239 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8240 #endif
8241 
8242 	bnx2x_phy_probe(&bp->link_params);
8243 
8244 	return 0;
8245 }
8246 
8247 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8248 {
8249 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8250 
8251 	if (!CHIP_IS_E1x(bp))
8252 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8253 			       sizeof(struct host_hc_status_block_e2));
8254 	else
8255 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8256 			       sizeof(struct host_hc_status_block_e1x));
8257 
8258 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8259 }
8260 
8261 void bnx2x_free_mem(struct bnx2x *bp)
8262 {
8263 	int i;
8264 
8265 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8266 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8267 
8268 	if (IS_VF(bp))
8269 		return;
8270 
8271 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8272 		       sizeof(struct host_sp_status_block));
8273 
8274 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8275 		       sizeof(struct bnx2x_slowpath));
8276 
8277 	for (i = 0; i < L2_ILT_LINES(bp); i++)
8278 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8279 			       bp->context[i].size);
8280 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8281 
8282 	BNX2X_FREE(bp->ilt->lines);
8283 
8284 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8285 
8286 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8287 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8288 
8289 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8290 
8291 	bnx2x_iov_free_mem(bp);
8292 }
8293 
8294 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8295 {
8296 	if (!CHIP_IS_E1x(bp)) {
8297 		/* size = the status block + ramrod buffers */
8298 		bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8299 						    sizeof(struct host_hc_status_block_e2));
8300 		if (!bp->cnic_sb.e2_sb)
8301 			goto alloc_mem_err;
8302 	} else {
8303 		bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8304 						     sizeof(struct host_hc_status_block_e1x));
8305 		if (!bp->cnic_sb.e1x_sb)
8306 			goto alloc_mem_err;
8307 	}
8308 
8309 	if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8310 		/* allocate searcher T2 table, as it wasn't allocated before */
8311 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8312 		if (!bp->t2)
8313 			goto alloc_mem_err;
8314 	}
8315 
8316 	/* write address to which L5 should insert its values */
8317 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
8318 		&bp->slowpath->drv_info_to_mcp;
8319 
8320 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8321 		goto alloc_mem_err;
8322 
8323 	return 0;
8324 
8325 alloc_mem_err:
8326 	bnx2x_free_mem_cnic(bp);
8327 	BNX2X_ERR("Can't allocate memory\n");
8328 	return -ENOMEM;
8329 }
8330 
8331 int bnx2x_alloc_mem(struct bnx2x *bp)
8332 {
8333 	int i, allocated, context_size;
8334 
8335 	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8336 		/* allocate searcher T2 table */
8337 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8338 		if (!bp->t2)
8339 			goto alloc_mem_err;
8340 	}
8341 
8342 	bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8343 					     sizeof(struct host_sp_status_block));
8344 	if (!bp->def_status_blk)
8345 		goto alloc_mem_err;
8346 
8347 	bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8348 				       sizeof(struct bnx2x_slowpath));
8349 	if (!bp->slowpath)
8350 		goto alloc_mem_err;
8351 
8352 	/* Allocate memory for CDU context:
8353 	 * This memory is allocated separately and not in the generic ILT
8354 	 * functions because CDU differs in few aspects:
8355 	 * 1. There are multiple entities allocating memory for context -
8356 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8357 	 * its own ILT lines.
8358 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
8359 	 * for the other ILT clients), to be efficient we want to support
8360 	 * allocation of sub-page-size in the last entry.
8361 	 * 3. Context pointers are used by the driver to pass to FW / update
8362 	 * the context (for the other ILT clients the pointers are used just to
8363 	 * free the memory during unload).
8364 	 */
8365 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8366 
8367 	for (i = 0, allocated = 0; allocated < context_size; i++) {
8368 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8369 					  (context_size - allocated));
8370 		bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8371 						      bp->context[i].size);
8372 		if (!bp->context[i].vcxt)
8373 			goto alloc_mem_err;
8374 		allocated += bp->context[i].size;
8375 	}
8376 	bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8377 				 GFP_KERNEL);
8378 	if (!bp->ilt->lines)
8379 		goto alloc_mem_err;
8380 
8381 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8382 		goto alloc_mem_err;
8383 
8384 	if (bnx2x_iov_alloc_mem(bp))
8385 		goto alloc_mem_err;
8386 
8387 	/* Slow path ring */
8388 	bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8389 	if (!bp->spq)
8390 		goto alloc_mem_err;
8391 
8392 	/* EQ */
8393 	bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8394 				      BCM_PAGE_SIZE * NUM_EQ_PAGES);
8395 	if (!bp->eq_ring)
8396 		goto alloc_mem_err;
8397 
8398 	return 0;
8399 
8400 alloc_mem_err:
8401 	bnx2x_free_mem(bp);
8402 	BNX2X_ERR("Can't allocate memory\n");
8403 	return -ENOMEM;
8404 }
8405 
8406 /*
8407  * Init service functions
8408  */
8409 
8410 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8411 		      struct bnx2x_vlan_mac_obj *obj, bool set,
8412 		      int mac_type, unsigned long *ramrod_flags)
8413 {
8414 	int rc;
8415 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8416 
8417 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8418 
8419 	/* Fill general parameters */
8420 	ramrod_param.vlan_mac_obj = obj;
8421 	ramrod_param.ramrod_flags = *ramrod_flags;
8422 
8423 	/* Fill a user request section if needed */
8424 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8425 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8426 
8427 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8428 
8429 		/* Set the command: ADD or DEL */
8430 		if (set)
8431 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8432 		else
8433 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8434 	}
8435 
8436 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8437 
8438 	if (rc == -EEXIST) {
8439 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8440 		/* do not treat adding same MAC as error */
8441 		rc = 0;
8442 	} else if (rc < 0)
8443 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8444 
8445 	return rc;
8446 }
8447 
8448 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8449 		       struct bnx2x_vlan_mac_obj *obj, bool set,
8450 		       unsigned long *ramrod_flags)
8451 {
8452 	int rc;
8453 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8454 
8455 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8456 
8457 	/* Fill general parameters */
8458 	ramrod_param.vlan_mac_obj = obj;
8459 	ramrod_param.ramrod_flags = *ramrod_flags;
8460 
8461 	/* Fill a user request section if needed */
8462 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8463 		ramrod_param.user_req.u.vlan.vlan = vlan;
8464 		__set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags);
8465 		/* Set the command: ADD or DEL */
8466 		if (set)
8467 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8468 		else
8469 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8470 	}
8471 
8472 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8473 
8474 	if (rc == -EEXIST) {
8475 		/* Do not treat adding same vlan as error. */
8476 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8477 		rc = 0;
8478 	} else if (rc < 0) {
8479 		BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8480 	}
8481 
8482 	return rc;
8483 }
8484 
8485 static int bnx2x_del_all_vlans(struct bnx2x *bp)
8486 {
8487 	struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj;
8488 	unsigned long ramrod_flags = 0, vlan_flags = 0;
8489 	struct bnx2x_vlan_entry *vlan;
8490 	int rc;
8491 
8492 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8493 	__set_bit(BNX2X_VLAN, &vlan_flags);
8494 	rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags);
8495 	if (rc)
8496 		return rc;
8497 
8498 	/* Mark that hw forgot all entries */
8499 	list_for_each_entry(vlan, &bp->vlan_reg, link)
8500 		vlan->hw = false;
8501 	bp->vlan_cnt = 0;
8502 
8503 	return 0;
8504 }
8505 
8506 int bnx2x_del_all_macs(struct bnx2x *bp,
8507 		       struct bnx2x_vlan_mac_obj *mac_obj,
8508 		       int mac_type, bool wait_for_comp)
8509 {
8510 	int rc;
8511 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8512 
8513 	/* Wait for completion of requested */
8514 	if (wait_for_comp)
8515 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8516 
8517 	/* Set the mac type of addresses we want to clear */
8518 	__set_bit(mac_type, &vlan_mac_flags);
8519 
8520 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8521 	if (rc < 0)
8522 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8523 
8524 	return rc;
8525 }
8526 
8527 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8528 {
8529 	if (IS_PF(bp)) {
8530 		unsigned long ramrod_flags = 0;
8531 
8532 		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8533 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8534 		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8535 					 &bp->sp_objs->mac_obj, set,
8536 					 BNX2X_ETH_MAC, &ramrod_flags);
8537 	} else { /* vf */
8538 		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8539 					     bp->fp->index, set);
8540 	}
8541 }
8542 
8543 int bnx2x_setup_leading(struct bnx2x *bp)
8544 {
8545 	if (IS_PF(bp))
8546 		return bnx2x_setup_queue(bp, &bp->fp[0], true);
8547 	else /* VF */
8548 		return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8549 }
8550 
8551 /**
8552  * bnx2x_set_int_mode - configure interrupt mode
8553  *
8554  * @bp:		driver handle
8555  *
8556  * In case of MSI-X it will also try to enable MSI-X.
8557  */
8558 int bnx2x_set_int_mode(struct bnx2x *bp)
8559 {
8560 	int rc = 0;
8561 
8562 	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8563 		BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8564 		return -EINVAL;
8565 	}
8566 
8567 	switch (int_mode) {
8568 	case BNX2X_INT_MODE_MSIX:
8569 		/* attempt to enable msix */
8570 		rc = bnx2x_enable_msix(bp);
8571 
8572 		/* msix attained */
8573 		if (!rc)
8574 			return 0;
8575 
8576 		/* vfs use only msix */
8577 		if (rc && IS_VF(bp))
8578 			return rc;
8579 
8580 		/* failed to enable multiple MSI-X */
8581 		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8582 			       bp->num_queues,
8583 			       1 + bp->num_cnic_queues);
8584 
8585 		/* fall through */
8586 	case BNX2X_INT_MODE_MSI:
8587 		bnx2x_enable_msi(bp);
8588 
8589 		/* fall through */
8590 	case BNX2X_INT_MODE_INTX:
8591 		bp->num_ethernet_queues = 1;
8592 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8593 		BNX2X_DEV_INFO("set number of queues to 1\n");
8594 		break;
8595 	default:
8596 		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8597 		return -EINVAL;
8598 	}
8599 	return 0;
8600 }
8601 
8602 /* must be called prior to any HW initializations */
8603 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8604 {
8605 	if (IS_SRIOV(bp))
8606 		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8607 	return L2_ILT_LINES(bp);
8608 }
8609 
8610 void bnx2x_ilt_set_info(struct bnx2x *bp)
8611 {
8612 	struct ilt_client_info *ilt_client;
8613 	struct bnx2x_ilt *ilt = BP_ILT(bp);
8614 	u16 line = 0;
8615 
8616 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8617 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8618 
8619 	/* CDU */
8620 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8621 	ilt_client->client_num = ILT_CLIENT_CDU;
8622 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8623 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8624 	ilt_client->start = line;
8625 	line += bnx2x_cid_ilt_lines(bp);
8626 
8627 	if (CNIC_SUPPORT(bp))
8628 		line += CNIC_ILT_LINES;
8629 	ilt_client->end = line - 1;
8630 
8631 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8632 	   ilt_client->start,
8633 	   ilt_client->end,
8634 	   ilt_client->page_size,
8635 	   ilt_client->flags,
8636 	   ilog2(ilt_client->page_size >> 12));
8637 
8638 	/* QM */
8639 	if (QM_INIT(bp->qm_cid_count)) {
8640 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8641 		ilt_client->client_num = ILT_CLIENT_QM;
8642 		ilt_client->page_size = QM_ILT_PAGE_SZ;
8643 		ilt_client->flags = 0;
8644 		ilt_client->start = line;
8645 
8646 		/* 4 bytes for each cid */
8647 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8648 							 QM_ILT_PAGE_SZ);
8649 
8650 		ilt_client->end = line - 1;
8651 
8652 		DP(NETIF_MSG_IFUP,
8653 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8654 		   ilt_client->start,
8655 		   ilt_client->end,
8656 		   ilt_client->page_size,
8657 		   ilt_client->flags,
8658 		   ilog2(ilt_client->page_size >> 12));
8659 	}
8660 
8661 	if (CNIC_SUPPORT(bp)) {
8662 		/* SRC */
8663 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8664 		ilt_client->client_num = ILT_CLIENT_SRC;
8665 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8666 		ilt_client->flags = 0;
8667 		ilt_client->start = line;
8668 		line += SRC_ILT_LINES;
8669 		ilt_client->end = line - 1;
8670 
8671 		DP(NETIF_MSG_IFUP,
8672 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8673 		   ilt_client->start,
8674 		   ilt_client->end,
8675 		   ilt_client->page_size,
8676 		   ilt_client->flags,
8677 		   ilog2(ilt_client->page_size >> 12));
8678 
8679 		/* TM */
8680 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8681 		ilt_client->client_num = ILT_CLIENT_TM;
8682 		ilt_client->page_size = TM_ILT_PAGE_SZ;
8683 		ilt_client->flags = 0;
8684 		ilt_client->start = line;
8685 		line += TM_ILT_LINES;
8686 		ilt_client->end = line - 1;
8687 
8688 		DP(NETIF_MSG_IFUP,
8689 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8690 		   ilt_client->start,
8691 		   ilt_client->end,
8692 		   ilt_client->page_size,
8693 		   ilt_client->flags,
8694 		   ilog2(ilt_client->page_size >> 12));
8695 	}
8696 
8697 	BUG_ON(line > ILT_MAX_LINES);
8698 }
8699 
8700 /**
8701  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8702  *
8703  * @bp:			driver handle
8704  * @fp:			pointer to fastpath
8705  * @init_params:	pointer to parameters structure
8706  *
8707  * parameters configured:
8708  *      - HC configuration
8709  *      - Queue's CDU context
8710  */
8711 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8712 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8713 {
8714 	u8 cos;
8715 	int cxt_index, cxt_offset;
8716 
8717 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8718 	if (!IS_FCOE_FP(fp)) {
8719 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8720 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8721 
8722 		/* If HC is supported, enable host coalescing in the transition
8723 		 * to INIT state.
8724 		 */
8725 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8726 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8727 
8728 		/* HC rate */
8729 		init_params->rx.hc_rate = bp->rx_ticks ?
8730 			(1000000 / bp->rx_ticks) : 0;
8731 		init_params->tx.hc_rate = bp->tx_ticks ?
8732 			(1000000 / bp->tx_ticks) : 0;
8733 
8734 		/* FW SB ID */
8735 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8736 			fp->fw_sb_id;
8737 
8738 		/*
8739 		 * CQ index among the SB indices: FCoE clients uses the default
8740 		 * SB, therefore it's different.
8741 		 */
8742 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8743 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8744 	}
8745 
8746 	/* set maximum number of COSs supported by this queue */
8747 	init_params->max_cos = fp->max_cos;
8748 
8749 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8750 	    fp->index, init_params->max_cos);
8751 
8752 	/* set the context pointers queue object */
8753 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8754 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8755 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8756 				ILT_PAGE_CIDS);
8757 		init_params->cxts[cos] =
8758 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8759 	}
8760 }
8761 
8762 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8763 			struct bnx2x_queue_state_params *q_params,
8764 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8765 			int tx_index, bool leading)
8766 {
8767 	memset(tx_only_params, 0, sizeof(*tx_only_params));
8768 
8769 	/* Set the command */
8770 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8771 
8772 	/* Set tx-only QUEUE flags: don't zero statistics */
8773 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8774 
8775 	/* choose the index of the cid to send the slow path on */
8776 	tx_only_params->cid_index = tx_index;
8777 
8778 	/* Set general TX_ONLY_SETUP parameters */
8779 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8780 
8781 	/* Set Tx TX_ONLY_SETUP parameters */
8782 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8783 
8784 	DP(NETIF_MSG_IFUP,
8785 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8786 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8787 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8788 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8789 
8790 	/* send the ramrod */
8791 	return bnx2x_queue_state_change(bp, q_params);
8792 }
8793 
8794 /**
8795  * bnx2x_setup_queue - setup queue
8796  *
8797  * @bp:		driver handle
8798  * @fp:		pointer to fastpath
8799  * @leading:	is leading
8800  *
8801  * This function performs 2 steps in a Queue state machine
8802  *      actually: 1) RESET->INIT 2) INIT->SETUP
8803  */
8804 
8805 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8806 		       bool leading)
8807 {
8808 	struct bnx2x_queue_state_params q_params = {NULL};
8809 	struct bnx2x_queue_setup_params *setup_params =
8810 						&q_params.params.setup;
8811 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8812 						&q_params.params.tx_only;
8813 	int rc;
8814 	u8 tx_index;
8815 
8816 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8817 
8818 	/* reset IGU state skip FCoE L2 queue */
8819 	if (!IS_FCOE_FP(fp))
8820 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8821 			     IGU_INT_ENABLE, 0);
8822 
8823 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8824 	/* We want to wait for completion in this context */
8825 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8826 
8827 	/* Prepare the INIT parameters */
8828 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8829 
8830 	/* Set the command */
8831 	q_params.cmd = BNX2X_Q_CMD_INIT;
8832 
8833 	/* Change the state to INIT */
8834 	rc = bnx2x_queue_state_change(bp, &q_params);
8835 	if (rc) {
8836 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8837 		return rc;
8838 	}
8839 
8840 	DP(NETIF_MSG_IFUP, "init complete\n");
8841 
8842 	/* Now move the Queue to the SETUP state... */
8843 	memset(setup_params, 0, sizeof(*setup_params));
8844 
8845 	/* Set QUEUE flags */
8846 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8847 
8848 	/* Set general SETUP parameters */
8849 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8850 				FIRST_TX_COS_INDEX);
8851 
8852 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8853 			    &setup_params->rxq_params);
8854 
8855 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8856 			   FIRST_TX_COS_INDEX);
8857 
8858 	/* Set the command */
8859 	q_params.cmd = BNX2X_Q_CMD_SETUP;
8860 
8861 	if (IS_FCOE_FP(fp))
8862 		bp->fcoe_init = true;
8863 
8864 	/* Change the state to SETUP */
8865 	rc = bnx2x_queue_state_change(bp, &q_params);
8866 	if (rc) {
8867 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8868 		return rc;
8869 	}
8870 
8871 	/* loop through the relevant tx-only indices */
8872 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8873 	      tx_index < fp->max_cos;
8874 	      tx_index++) {
8875 
8876 		/* prepare and send tx-only ramrod*/
8877 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8878 					  tx_only_params, tx_index, leading);
8879 		if (rc) {
8880 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8881 				  fp->index, tx_index);
8882 			return rc;
8883 		}
8884 	}
8885 
8886 	return rc;
8887 }
8888 
8889 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8890 {
8891 	struct bnx2x_fastpath *fp = &bp->fp[index];
8892 	struct bnx2x_fp_txdata *txdata;
8893 	struct bnx2x_queue_state_params q_params = {NULL};
8894 	int rc, tx_index;
8895 
8896 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8897 
8898 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8899 	/* We want to wait for completion in this context */
8900 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8901 
8902 	/* close tx-only connections */
8903 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8904 	     tx_index < fp->max_cos;
8905 	     tx_index++){
8906 
8907 		/* ascertain this is a normal queue*/
8908 		txdata = fp->txdata_ptr[tx_index];
8909 
8910 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8911 							txdata->txq_index);
8912 
8913 		/* send halt terminate on tx-only connection */
8914 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8915 		memset(&q_params.params.terminate, 0,
8916 		       sizeof(q_params.params.terminate));
8917 		q_params.params.terminate.cid_index = tx_index;
8918 
8919 		rc = bnx2x_queue_state_change(bp, &q_params);
8920 		if (rc)
8921 			return rc;
8922 
8923 		/* send halt terminate on tx-only connection */
8924 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8925 		memset(&q_params.params.cfc_del, 0,
8926 		       sizeof(q_params.params.cfc_del));
8927 		q_params.params.cfc_del.cid_index = tx_index;
8928 		rc = bnx2x_queue_state_change(bp, &q_params);
8929 		if (rc)
8930 			return rc;
8931 	}
8932 	/* Stop the primary connection: */
8933 	/* ...halt the connection */
8934 	q_params.cmd = BNX2X_Q_CMD_HALT;
8935 	rc = bnx2x_queue_state_change(bp, &q_params);
8936 	if (rc)
8937 		return rc;
8938 
8939 	/* ...terminate the connection */
8940 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8941 	memset(&q_params.params.terminate, 0,
8942 	       sizeof(q_params.params.terminate));
8943 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8944 	rc = bnx2x_queue_state_change(bp, &q_params);
8945 	if (rc)
8946 		return rc;
8947 	/* ...delete cfc entry */
8948 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8949 	memset(&q_params.params.cfc_del, 0,
8950 	       sizeof(q_params.params.cfc_del));
8951 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8952 	return bnx2x_queue_state_change(bp, &q_params);
8953 }
8954 
8955 static void bnx2x_reset_func(struct bnx2x *bp)
8956 {
8957 	int port = BP_PORT(bp);
8958 	int func = BP_FUNC(bp);
8959 	int i;
8960 
8961 	/* Disable the function in the FW */
8962 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8963 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8964 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8965 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8966 
8967 	/* FP SBs */
8968 	for_each_eth_queue(bp, i) {
8969 		struct bnx2x_fastpath *fp = &bp->fp[i];
8970 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8971 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8972 			   SB_DISABLED);
8973 	}
8974 
8975 	if (CNIC_LOADED(bp))
8976 		/* CNIC SB */
8977 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8978 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8979 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8980 
8981 	/* SP SB */
8982 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8983 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8984 		SB_DISABLED);
8985 
8986 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8987 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8988 		       0);
8989 
8990 	/* Configure IGU */
8991 	if (bp->common.int_block == INT_BLOCK_HC) {
8992 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8993 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8994 	} else {
8995 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8996 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8997 	}
8998 
8999 	if (CNIC_LOADED(bp)) {
9000 		/* Disable Timer scan */
9001 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
9002 		/*
9003 		 * Wait for at least 10ms and up to 2 second for the timers
9004 		 * scan to complete
9005 		 */
9006 		for (i = 0; i < 200; i++) {
9007 			usleep_range(10000, 20000);
9008 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
9009 				break;
9010 		}
9011 	}
9012 	/* Clear ILT */
9013 	bnx2x_clear_func_ilt(bp, func);
9014 
9015 	/* Timers workaround bug for E2: if this is vnic-3,
9016 	 * we need to set the entire ilt range for this timers.
9017 	 */
9018 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
9019 		struct ilt_client_info ilt_cli;
9020 		/* use dummy TM client */
9021 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9022 		ilt_cli.start = 0;
9023 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9024 		ilt_cli.client_num = ILT_CLIENT_TM;
9025 
9026 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9027 	}
9028 
9029 	/* this assumes that reset_port() called before reset_func()*/
9030 	if (!CHIP_IS_E1x(bp))
9031 		bnx2x_pf_disable(bp);
9032 
9033 	bp->dmae_ready = 0;
9034 }
9035 
9036 static void bnx2x_reset_port(struct bnx2x *bp)
9037 {
9038 	int port = BP_PORT(bp);
9039 	u32 val;
9040 
9041 	/* Reset physical Link */
9042 	bnx2x__link_reset(bp);
9043 
9044 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9045 
9046 	/* Do not rcv packets to BRB */
9047 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9048 	/* Do not direct rcv packets that are not for MCP to the BRB */
9049 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9050 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9051 
9052 	/* Configure AEU */
9053 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9054 
9055 	msleep(100);
9056 	/* Check for BRB port occupancy */
9057 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9058 	if (val)
9059 		DP(NETIF_MSG_IFDOWN,
9060 		   "BRB1 is not empty  %d blocks are occupied\n", val);
9061 
9062 	/* TODO: Close Doorbell port? */
9063 }
9064 
9065 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9066 {
9067 	struct bnx2x_func_state_params func_params = {NULL};
9068 
9069 	/* Prepare parameters for function state transitions */
9070 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9071 
9072 	func_params.f_obj = &bp->func_obj;
9073 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
9074 
9075 	func_params.params.hw_init.load_phase = load_code;
9076 
9077 	return bnx2x_func_state_change(bp, &func_params);
9078 }
9079 
9080 static int bnx2x_func_stop(struct bnx2x *bp)
9081 {
9082 	struct bnx2x_func_state_params func_params = {NULL};
9083 	int rc;
9084 
9085 	/* Prepare parameters for function state transitions */
9086 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9087 	func_params.f_obj = &bp->func_obj;
9088 	func_params.cmd = BNX2X_F_CMD_STOP;
9089 
9090 	/*
9091 	 * Try to stop the function the 'good way'. If fails (in case
9092 	 * of a parity error during bnx2x_chip_cleanup()) and we are
9093 	 * not in a debug mode, perform a state transaction in order to
9094 	 * enable further HW_RESET transaction.
9095 	 */
9096 	rc = bnx2x_func_state_change(bp, &func_params);
9097 	if (rc) {
9098 #ifdef BNX2X_STOP_ON_ERROR
9099 		return rc;
9100 #else
9101 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9102 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9103 		return bnx2x_func_state_change(bp, &func_params);
9104 #endif
9105 	}
9106 
9107 	return 0;
9108 }
9109 
9110 /**
9111  * bnx2x_send_unload_req - request unload mode from the MCP.
9112  *
9113  * @bp:			driver handle
9114  * @unload_mode:	requested function's unload mode
9115  *
9116  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9117  */
9118 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9119 {
9120 	u32 reset_code = 0;
9121 	int port = BP_PORT(bp);
9122 
9123 	/* Select the UNLOAD request mode */
9124 	if (unload_mode == UNLOAD_NORMAL)
9125 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9126 
9127 	else if (bp->flags & NO_WOL_FLAG)
9128 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9129 
9130 	else if (bp->wol) {
9131 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9132 		u8 *mac_addr = bp->dev->dev_addr;
9133 		struct pci_dev *pdev = bp->pdev;
9134 		u32 val;
9135 		u16 pmc;
9136 
9137 		/* The mac address is written to entries 1-4 to
9138 		 * preserve entry 0 which is used by the PMF
9139 		 */
9140 		u8 entry = (BP_VN(bp) + 1)*8;
9141 
9142 		val = (mac_addr[0] << 8) | mac_addr[1];
9143 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9144 
9145 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9146 		      (mac_addr[4] << 8) | mac_addr[5];
9147 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9148 
9149 		/* Enable the PME and clear the status */
9150 		pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9151 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9152 		pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9153 
9154 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9155 
9156 	} else
9157 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9158 
9159 	/* Send the request to the MCP */
9160 	if (!BP_NOMCP(bp))
9161 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
9162 	else {
9163 		int path = BP_PATH(bp);
9164 
9165 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9166 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9167 		   bnx2x_load_count[path][2]);
9168 		bnx2x_load_count[path][0]--;
9169 		bnx2x_load_count[path][1 + port]--;
9170 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9171 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9172 		   bnx2x_load_count[path][2]);
9173 		if (bnx2x_load_count[path][0] == 0)
9174 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9175 		else if (bnx2x_load_count[path][1 + port] == 0)
9176 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9177 		else
9178 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9179 	}
9180 
9181 	return reset_code;
9182 }
9183 
9184 /**
9185  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9186  *
9187  * @bp:		driver handle
9188  * @keep_link:		true iff link should be kept up
9189  */
9190 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9191 {
9192 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9193 
9194 	/* Report UNLOAD_DONE to MCP */
9195 	if (!BP_NOMCP(bp))
9196 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9197 }
9198 
9199 static int bnx2x_func_wait_started(struct bnx2x *bp)
9200 {
9201 	int tout = 50;
9202 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9203 
9204 	if (!bp->port.pmf)
9205 		return 0;
9206 
9207 	/*
9208 	 * (assumption: No Attention from MCP at this stage)
9209 	 * PMF probably in the middle of TX disable/enable transaction
9210 	 * 1. Sync IRS for default SB
9211 	 * 2. Sync SP queue - this guarantees us that attention handling started
9212 	 * 3. Wait, that TX disable/enable transaction completes
9213 	 *
9214 	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9215 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9216 	 * received completion for the transaction the state is TX_STOPPED.
9217 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9218 	 * transaction.
9219 	 */
9220 
9221 	/* make sure default SB ISR is done */
9222 	if (msix)
9223 		synchronize_irq(bp->msix_table[0].vector);
9224 	else
9225 		synchronize_irq(bp->pdev->irq);
9226 
9227 	flush_workqueue(bnx2x_wq);
9228 	flush_workqueue(bnx2x_iov_wq);
9229 
9230 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9231 				BNX2X_F_STATE_STARTED && tout--)
9232 		msleep(20);
9233 
9234 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9235 						BNX2X_F_STATE_STARTED) {
9236 #ifdef BNX2X_STOP_ON_ERROR
9237 		BNX2X_ERR("Wrong function state\n");
9238 		return -EBUSY;
9239 #else
9240 		/*
9241 		 * Failed to complete the transaction in a "good way"
9242 		 * Force both transactions with CLR bit
9243 		 */
9244 		struct bnx2x_func_state_params func_params = {NULL};
9245 
9246 		DP(NETIF_MSG_IFDOWN,
9247 		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9248 
9249 		func_params.f_obj = &bp->func_obj;
9250 		__set_bit(RAMROD_DRV_CLR_ONLY,
9251 					&func_params.ramrod_flags);
9252 
9253 		/* STARTED-->TX_ST0PPED */
9254 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
9255 		bnx2x_func_state_change(bp, &func_params);
9256 
9257 		/* TX_ST0PPED-->STARTED */
9258 		func_params.cmd = BNX2X_F_CMD_TX_START;
9259 		return bnx2x_func_state_change(bp, &func_params);
9260 #endif
9261 	}
9262 
9263 	return 0;
9264 }
9265 
9266 static void bnx2x_disable_ptp(struct bnx2x *bp)
9267 {
9268 	int port = BP_PORT(bp);
9269 
9270 	/* Disable sending PTP packets to host */
9271 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9272 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9273 
9274 	/* Reset PTP event detection rules */
9275 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9276 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9277 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9278 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9279 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9280 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9281 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9282 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9283 
9284 	/* Disable the PTP feature */
9285 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9286 	       NIG_REG_P0_PTP_EN, 0x0);
9287 }
9288 
9289 /* Called during unload, to stop PTP-related stuff */
9290 static void bnx2x_stop_ptp(struct bnx2x *bp)
9291 {
9292 	/* Cancel PTP work queue. Should be done after the Tx queues are
9293 	 * drained to prevent additional scheduling.
9294 	 */
9295 	cancel_work_sync(&bp->ptp_task);
9296 
9297 	if (bp->ptp_tx_skb) {
9298 		dev_kfree_skb_any(bp->ptp_tx_skb);
9299 		bp->ptp_tx_skb = NULL;
9300 	}
9301 
9302 	/* Disable PTP in HW */
9303 	bnx2x_disable_ptp(bp);
9304 
9305 	DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9306 }
9307 
9308 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9309 {
9310 	int port = BP_PORT(bp);
9311 	int i, rc = 0;
9312 	u8 cos;
9313 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
9314 	u32 reset_code;
9315 
9316 	/* Wait until tx fastpath tasks complete */
9317 	for_each_tx_queue(bp, i) {
9318 		struct bnx2x_fastpath *fp = &bp->fp[i];
9319 
9320 		for_each_cos_in_tx_queue(fp, cos)
9321 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9322 #ifdef BNX2X_STOP_ON_ERROR
9323 		if (rc)
9324 			return;
9325 #endif
9326 	}
9327 
9328 	/* Give HW time to discard old tx messages */
9329 	usleep_range(1000, 2000);
9330 
9331 	/* Clean all ETH MACs */
9332 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9333 				false);
9334 	if (rc < 0)
9335 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9336 
9337 	/* Clean up UC list  */
9338 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9339 				true);
9340 	if (rc < 0)
9341 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9342 			  rc);
9343 
9344 	/* The whole *vlan_obj structure may be not initialized if VLAN
9345 	 * filtering offload is not supported by hardware. Currently this is
9346 	 * true for all hardware covered by CHIP_IS_E1x().
9347 	 */
9348 	if (!CHIP_IS_E1x(bp)) {
9349 		/* Remove all currently configured VLANs */
9350 		rc = bnx2x_del_all_vlans(bp);
9351 		if (rc < 0)
9352 			BNX2X_ERR("Failed to delete all VLANs\n");
9353 	}
9354 
9355 	/* Disable LLH */
9356 	if (!CHIP_IS_E1(bp))
9357 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9358 
9359 	/* Set "drop all" (stop Rx).
9360 	 * We need to take a netif_addr_lock() here in order to prevent
9361 	 * a race between the completion code and this code.
9362 	 */
9363 	netif_addr_lock_bh(bp->dev);
9364 	/* Schedule the rx_mode command */
9365 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9366 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9367 	else if (bp->slowpath)
9368 		bnx2x_set_storm_rx_mode(bp);
9369 
9370 	/* Cleanup multicast configuration */
9371 	rparam.mcast_obj = &bp->mcast_obj;
9372 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9373 	if (rc < 0)
9374 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9375 
9376 	netif_addr_unlock_bh(bp->dev);
9377 
9378 	bnx2x_iov_chip_cleanup(bp);
9379 
9380 	/*
9381 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
9382 	 * this function should perform FUNC, PORT or COMMON HW
9383 	 * reset.
9384 	 */
9385 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
9386 
9387 	/*
9388 	 * (assumption: No Attention from MCP at this stage)
9389 	 * PMF probably in the middle of TX disable/enable transaction
9390 	 */
9391 	rc = bnx2x_func_wait_started(bp);
9392 	if (rc) {
9393 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
9394 #ifdef BNX2X_STOP_ON_ERROR
9395 		return;
9396 #endif
9397 	}
9398 
9399 	/* Close multi and leading connections
9400 	 * Completions for ramrods are collected in a synchronous way
9401 	 */
9402 	for_each_eth_queue(bp, i)
9403 		if (bnx2x_stop_queue(bp, i))
9404 #ifdef BNX2X_STOP_ON_ERROR
9405 			return;
9406 #else
9407 			goto unload_error;
9408 #endif
9409 
9410 	if (CNIC_LOADED(bp)) {
9411 		for_each_cnic_queue(bp, i)
9412 			if (bnx2x_stop_queue(bp, i))
9413 #ifdef BNX2X_STOP_ON_ERROR
9414 				return;
9415 #else
9416 				goto unload_error;
9417 #endif
9418 	}
9419 
9420 	/* If SP settings didn't get completed so far - something
9421 	 * very wrong has happen.
9422 	 */
9423 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9424 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9425 
9426 #ifndef BNX2X_STOP_ON_ERROR
9427 unload_error:
9428 #endif
9429 	rc = bnx2x_func_stop(bp);
9430 	if (rc) {
9431 		BNX2X_ERR("Function stop failed!\n");
9432 #ifdef BNX2X_STOP_ON_ERROR
9433 		return;
9434 #endif
9435 	}
9436 
9437 	/* stop_ptp should be after the Tx queues are drained to prevent
9438 	 * scheduling to the cancelled PTP work queue. It should also be after
9439 	 * function stop ramrod is sent, since as part of this ramrod FW access
9440 	 * PTP registers.
9441 	 */
9442 	if (bp->flags & PTP_SUPPORTED) {
9443 		bnx2x_stop_ptp(bp);
9444 		if (bp->ptp_clock) {
9445 			ptp_clock_unregister(bp->ptp_clock);
9446 			bp->ptp_clock = NULL;
9447 		}
9448 	}
9449 
9450 	/* Disable HW interrupts, NAPI */
9451 	bnx2x_netif_stop(bp, 1);
9452 	/* Delete all NAPI objects */
9453 	bnx2x_del_all_napi(bp);
9454 	if (CNIC_LOADED(bp))
9455 		bnx2x_del_all_napi_cnic(bp);
9456 
9457 	/* Release IRQs */
9458 	bnx2x_free_irq(bp);
9459 
9460 	/* Reset the chip, unless PCI function is offline. If we reach this
9461 	 * point following a PCI error handling, it means device is really
9462 	 * in a bad state and we're about to remove it, so reset the chip
9463 	 * is not a good idea.
9464 	 */
9465 	if (!pci_channel_offline(bp->pdev)) {
9466 		rc = bnx2x_reset_hw(bp, reset_code);
9467 		if (rc)
9468 			BNX2X_ERR("HW_RESET failed\n");
9469 	}
9470 
9471 	/* Report UNLOAD_DONE to MCP */
9472 	bnx2x_send_unload_done(bp, keep_link);
9473 }
9474 
9475 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9476 {
9477 	u32 val;
9478 
9479 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9480 
9481 	if (CHIP_IS_E1(bp)) {
9482 		int port = BP_PORT(bp);
9483 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9484 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
9485 
9486 		val = REG_RD(bp, addr);
9487 		val &= ~(0x300);
9488 		REG_WR(bp, addr, val);
9489 	} else {
9490 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9491 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9492 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9493 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9494 	}
9495 }
9496 
9497 /* Close gates #2, #3 and #4: */
9498 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9499 {
9500 	u32 val;
9501 
9502 	/* Gates #2 and #4a are closed/opened for "not E1" only */
9503 	if (!CHIP_IS_E1(bp)) {
9504 		/* #4 */
9505 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9506 		/* #2 */
9507 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9508 	}
9509 
9510 	/* #3 */
9511 	if (CHIP_IS_E1x(bp)) {
9512 		/* Prevent interrupts from HC on both ports */
9513 		val = REG_RD(bp, HC_REG_CONFIG_1);
9514 		REG_WR(bp, HC_REG_CONFIG_1,
9515 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9516 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9517 
9518 		val = REG_RD(bp, HC_REG_CONFIG_0);
9519 		REG_WR(bp, HC_REG_CONFIG_0,
9520 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9521 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9522 	} else {
9523 		/* Prevent incoming interrupts in IGU */
9524 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9525 
9526 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9527 		       (!close) ?
9528 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9529 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9530 	}
9531 
9532 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9533 		close ? "closing" : "opening");
9534 }
9535 
9536 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9537 
9538 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9539 {
9540 	/* Do some magic... */
9541 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9542 	*magic_val = val & SHARED_MF_CLP_MAGIC;
9543 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9544 }
9545 
9546 /**
9547  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9548  *
9549  * @bp:		driver handle
9550  * @magic_val:	old value of the `magic' bit.
9551  */
9552 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9553 {
9554 	/* Restore the `magic' bit value... */
9555 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9556 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
9557 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9558 }
9559 
9560 /**
9561  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9562  *
9563  * @bp:		driver handle
9564  * @magic_val:	old value of 'magic' bit.
9565  *
9566  * Takes care of CLP configurations.
9567  */
9568 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9569 {
9570 	u32 shmem;
9571 	u32 validity_offset;
9572 
9573 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9574 
9575 	/* Set `magic' bit in order to save MF config */
9576 	if (!CHIP_IS_E1(bp))
9577 		bnx2x_clp_reset_prep(bp, magic_val);
9578 
9579 	/* Get shmem offset */
9580 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9581 	validity_offset =
9582 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9583 
9584 	/* Clear validity map flags */
9585 	if (shmem > 0)
9586 		REG_WR(bp, shmem + validity_offset, 0);
9587 }
9588 
9589 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9590 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9591 
9592 /**
9593  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9594  *
9595  * @bp:	driver handle
9596  */
9597 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9598 {
9599 	/* special handling for emulation and FPGA,
9600 	   wait 10 times longer */
9601 	if (CHIP_REV_IS_SLOW(bp))
9602 		msleep(MCP_ONE_TIMEOUT*10);
9603 	else
9604 		msleep(MCP_ONE_TIMEOUT);
9605 }
9606 
9607 /*
9608  * initializes bp->common.shmem_base and waits for validity signature to appear
9609  */
9610 static int bnx2x_init_shmem(struct bnx2x *bp)
9611 {
9612 	int cnt = 0;
9613 	u32 val = 0;
9614 
9615 	do {
9616 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9617 
9618 		/* If we read all 0xFFs, means we are in PCI error state and
9619 		 * should bail out to avoid crashes on adapter's FW reads.
9620 		 */
9621 		if (bp->common.shmem_base == 0xFFFFFFFF) {
9622 			bp->flags |= NO_MCP_FLAG;
9623 			return -ENODEV;
9624 		}
9625 
9626 		if (bp->common.shmem_base) {
9627 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9628 			if (val & SHR_MEM_VALIDITY_MB)
9629 				return 0;
9630 		}
9631 
9632 		bnx2x_mcp_wait_one(bp);
9633 
9634 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9635 
9636 	BNX2X_ERR("BAD MCP validity signature\n");
9637 
9638 	return -ENODEV;
9639 }
9640 
9641 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9642 {
9643 	int rc = bnx2x_init_shmem(bp);
9644 
9645 	/* Restore the `magic' bit value */
9646 	if (!CHIP_IS_E1(bp))
9647 		bnx2x_clp_reset_done(bp, magic_val);
9648 
9649 	return rc;
9650 }
9651 
9652 static void bnx2x_pxp_prep(struct bnx2x *bp)
9653 {
9654 	if (!CHIP_IS_E1(bp)) {
9655 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9656 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9657 	}
9658 }
9659 
9660 /*
9661  * Reset the whole chip except for:
9662  *      - PCIE core
9663  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9664  *              one reset bit)
9665  *      - IGU
9666  *      - MISC (including AEU)
9667  *      - GRC
9668  *      - RBCN, RBCP
9669  */
9670 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9671 {
9672 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9673 	u32 global_bits2, stay_reset2;
9674 
9675 	/*
9676 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9677 	 * (per chip) blocks.
9678 	 */
9679 	global_bits2 =
9680 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9681 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9682 
9683 	/* Don't reset the following blocks.
9684 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9685 	 *            reset, as in 4 port device they might still be owned
9686 	 *            by the MCP (there is only one leader per path).
9687 	 */
9688 	not_reset_mask1 =
9689 		MISC_REGISTERS_RESET_REG_1_RST_HC |
9690 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9691 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9692 
9693 	not_reset_mask2 =
9694 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9695 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9696 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9697 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9698 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9699 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9700 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9701 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9702 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9703 		MISC_REGISTERS_RESET_REG_2_PGLC |
9704 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9705 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9706 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9707 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9708 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9709 		MISC_REGISTERS_RESET_REG_2_UMAC1;
9710 
9711 	/*
9712 	 * Keep the following blocks in reset:
9713 	 *  - all xxMACs are handled by the bnx2x_link code.
9714 	 */
9715 	stay_reset2 =
9716 		MISC_REGISTERS_RESET_REG_2_XMAC |
9717 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9718 
9719 	/* Full reset masks according to the chip */
9720 	reset_mask1 = 0xffffffff;
9721 
9722 	if (CHIP_IS_E1(bp))
9723 		reset_mask2 = 0xffff;
9724 	else if (CHIP_IS_E1H(bp))
9725 		reset_mask2 = 0x1ffff;
9726 	else if (CHIP_IS_E2(bp))
9727 		reset_mask2 = 0xfffff;
9728 	else /* CHIP_IS_E3 */
9729 		reset_mask2 = 0x3ffffff;
9730 
9731 	/* Don't reset global blocks unless we need to */
9732 	if (!global)
9733 		reset_mask2 &= ~global_bits2;
9734 
9735 	/*
9736 	 * In case of attention in the QM, we need to reset PXP
9737 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9738 	 * because otherwise QM reset would release 'close the gates' shortly
9739 	 * before resetting the PXP, then the PSWRQ would send a write
9740 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9741 	 * read the payload data from PSWWR, but PSWWR would not
9742 	 * respond. The write queue in PGLUE would stuck, dmae commands
9743 	 * would not return. Therefore it's important to reset the second
9744 	 * reset register (containing the
9745 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9746 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9747 	 * bit).
9748 	 */
9749 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9750 	       reset_mask2 & (~not_reset_mask2));
9751 
9752 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9753 	       reset_mask1 & (~not_reset_mask1));
9754 
9755 	barrier();
9756 
9757 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9758 	       reset_mask2 & (~stay_reset2));
9759 
9760 	barrier();
9761 
9762 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9763 }
9764 
9765 /**
9766  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9767  * It should get cleared in no more than 1s.
9768  *
9769  * @bp:	driver handle
9770  *
9771  * It should get cleared in no more than 1s. Returns 0 if
9772  * pending writes bit gets cleared.
9773  */
9774 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9775 {
9776 	u32 cnt = 1000;
9777 	u32 pend_bits = 0;
9778 
9779 	do {
9780 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9781 
9782 		if (pend_bits == 0)
9783 			break;
9784 
9785 		usleep_range(1000, 2000);
9786 	} while (cnt-- > 0);
9787 
9788 	if (cnt <= 0) {
9789 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9790 			  pend_bits);
9791 		return -EBUSY;
9792 	}
9793 
9794 	return 0;
9795 }
9796 
9797 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9798 {
9799 	int cnt = 1000;
9800 	u32 val = 0;
9801 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9802 	u32 tags_63_32 = 0;
9803 
9804 	/* Empty the Tetris buffer, wait for 1s */
9805 	do {
9806 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9807 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9808 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9809 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9810 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9811 		if (CHIP_IS_E3(bp))
9812 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9813 
9814 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9815 		    ((port_is_idle_0 & 0x1) == 0x1) &&
9816 		    ((port_is_idle_1 & 0x1) == 0x1) &&
9817 		    (pgl_exp_rom2 == 0xffffffff) &&
9818 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9819 			break;
9820 		usleep_range(1000, 2000);
9821 	} while (cnt-- > 0);
9822 
9823 	if (cnt <= 0) {
9824 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9825 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9826 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9827 			  pgl_exp_rom2);
9828 		return -EAGAIN;
9829 	}
9830 
9831 	barrier();
9832 
9833 	/* Close gates #2, #3 and #4 */
9834 	bnx2x_set_234_gates(bp, true);
9835 
9836 	/* Poll for IGU VQs for 57712 and newer chips */
9837 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9838 		return -EAGAIN;
9839 
9840 	/* TBD: Indicate that "process kill" is in progress to MCP */
9841 
9842 	/* Clear "unprepared" bit */
9843 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9844 	barrier();
9845 
9846 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9847 	 * PSWHST, GRC and PSWRD Tetris buffer.
9848 	 */
9849 	usleep_range(1000, 2000);
9850 
9851 	/* Prepare to chip reset: */
9852 	/* MCP */
9853 	if (global)
9854 		bnx2x_reset_mcp_prep(bp, &val);
9855 
9856 	/* PXP */
9857 	bnx2x_pxp_prep(bp);
9858 	barrier();
9859 
9860 	/* reset the chip */
9861 	bnx2x_process_kill_chip_reset(bp, global);
9862 	barrier();
9863 
9864 	/* clear errors in PGB */
9865 	if (!CHIP_IS_E1x(bp))
9866 		REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9867 
9868 	/* Recover after reset: */
9869 	/* MCP */
9870 	if (global && bnx2x_reset_mcp_comp(bp, val))
9871 		return -EAGAIN;
9872 
9873 	/* TBD: Add resetting the NO_MCP mode DB here */
9874 
9875 	/* Open the gates #2, #3 and #4 */
9876 	bnx2x_set_234_gates(bp, false);
9877 
9878 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9879 	 * reset state, re-enable attentions. */
9880 
9881 	return 0;
9882 }
9883 
9884 static int bnx2x_leader_reset(struct bnx2x *bp)
9885 {
9886 	int rc = 0;
9887 	bool global = bnx2x_reset_is_global(bp);
9888 	u32 load_code;
9889 
9890 	/* if not going to reset MCP - load "fake" driver to reset HW while
9891 	 * driver is owner of the HW
9892 	 */
9893 	if (!global && !BP_NOMCP(bp)) {
9894 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9895 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9896 		if (!load_code) {
9897 			BNX2X_ERR("MCP response failure, aborting\n");
9898 			rc = -EAGAIN;
9899 			goto exit_leader_reset;
9900 		}
9901 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9902 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9903 			BNX2X_ERR("MCP unexpected resp, aborting\n");
9904 			rc = -EAGAIN;
9905 			goto exit_leader_reset2;
9906 		}
9907 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9908 		if (!load_code) {
9909 			BNX2X_ERR("MCP response failure, aborting\n");
9910 			rc = -EAGAIN;
9911 			goto exit_leader_reset2;
9912 		}
9913 	}
9914 
9915 	/* Try to recover after the failure */
9916 	if (bnx2x_process_kill(bp, global)) {
9917 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9918 			  BP_PATH(bp));
9919 		rc = -EAGAIN;
9920 		goto exit_leader_reset2;
9921 	}
9922 
9923 	/*
9924 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9925 	 * state.
9926 	 */
9927 	bnx2x_set_reset_done(bp);
9928 	if (global)
9929 		bnx2x_clear_reset_global(bp);
9930 
9931 exit_leader_reset2:
9932 	/* unload "fake driver" if it was loaded */
9933 	if (!global && !BP_NOMCP(bp)) {
9934 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9935 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9936 	}
9937 exit_leader_reset:
9938 	bp->is_leader = 0;
9939 	bnx2x_release_leader_lock(bp);
9940 	smp_mb();
9941 	return rc;
9942 }
9943 
9944 static void bnx2x_recovery_failed(struct bnx2x *bp)
9945 {
9946 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9947 
9948 	/* Disconnect this device */
9949 	netif_device_detach(bp->dev);
9950 
9951 	/*
9952 	 * Block ifup for all function on this engine until "process kill"
9953 	 * or power cycle.
9954 	 */
9955 	bnx2x_set_reset_in_progress(bp);
9956 
9957 	/* Shut down the power */
9958 	bnx2x_set_power_state(bp, PCI_D3hot);
9959 
9960 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9961 
9962 	smp_mb();
9963 }
9964 
9965 /*
9966  * Assumption: runs under rtnl lock. This together with the fact
9967  * that it's called only from bnx2x_sp_rtnl() ensure that it
9968  * will never be called when netif_running(bp->dev) is false.
9969  */
9970 static void bnx2x_parity_recover(struct bnx2x *bp)
9971 {
9972 	bool global = false;
9973 	u32 error_recovered, error_unrecovered;
9974 	bool is_parity;
9975 
9976 	DP(NETIF_MSG_HW, "Handling parity\n");
9977 	while (1) {
9978 		switch (bp->recovery_state) {
9979 		case BNX2X_RECOVERY_INIT:
9980 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9981 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9982 			WARN_ON(!is_parity);
9983 
9984 			/* Try to get a LEADER_LOCK HW lock */
9985 			if (bnx2x_trylock_leader_lock(bp)) {
9986 				bnx2x_set_reset_in_progress(bp);
9987 				/*
9988 				 * Check if there is a global attention and if
9989 				 * there was a global attention, set the global
9990 				 * reset bit.
9991 				 */
9992 
9993 				if (global)
9994 					bnx2x_set_reset_global(bp);
9995 
9996 				bp->is_leader = 1;
9997 			}
9998 
9999 			/* Stop the driver */
10000 			/* If interface has been removed - break */
10001 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
10002 				return;
10003 
10004 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
10005 
10006 			/* Ensure "is_leader", MCP command sequence and
10007 			 * "recovery_state" update values are seen on other
10008 			 * CPUs.
10009 			 */
10010 			smp_mb();
10011 			break;
10012 
10013 		case BNX2X_RECOVERY_WAIT:
10014 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
10015 			if (bp->is_leader) {
10016 				int other_engine = BP_PATH(bp) ? 0 : 1;
10017 				bool other_load_status =
10018 					bnx2x_get_load_status(bp, other_engine);
10019 				bool load_status =
10020 					bnx2x_get_load_status(bp, BP_PATH(bp));
10021 				global = bnx2x_reset_is_global(bp);
10022 
10023 				/*
10024 				 * In case of a parity in a global block, let
10025 				 * the first leader that performs a
10026 				 * leader_reset() reset the global blocks in
10027 				 * order to clear global attentions. Otherwise
10028 				 * the gates will remain closed for that
10029 				 * engine.
10030 				 */
10031 				if (load_status ||
10032 				    (global && other_load_status)) {
10033 					/* Wait until all other functions get
10034 					 * down.
10035 					 */
10036 					schedule_delayed_work(&bp->sp_rtnl_task,
10037 								HZ/10);
10038 					return;
10039 				} else {
10040 					/* If all other functions got down -
10041 					 * try to bring the chip back to
10042 					 * normal. In any case it's an exit
10043 					 * point for a leader.
10044 					 */
10045 					if (bnx2x_leader_reset(bp)) {
10046 						bnx2x_recovery_failed(bp);
10047 						return;
10048 					}
10049 
10050 					/* If we are here, means that the
10051 					 * leader has succeeded and doesn't
10052 					 * want to be a leader any more. Try
10053 					 * to continue as a none-leader.
10054 					 */
10055 					break;
10056 				}
10057 			} else { /* non-leader */
10058 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10059 					/* Try to get a LEADER_LOCK HW lock as
10060 					 * long as a former leader may have
10061 					 * been unloaded by the user or
10062 					 * released a leadership by another
10063 					 * reason.
10064 					 */
10065 					if (bnx2x_trylock_leader_lock(bp)) {
10066 						/* I'm a leader now! Restart a
10067 						 * switch case.
10068 						 */
10069 						bp->is_leader = 1;
10070 						break;
10071 					}
10072 
10073 					schedule_delayed_work(&bp->sp_rtnl_task,
10074 								HZ/10);
10075 					return;
10076 
10077 				} else {
10078 					/*
10079 					 * If there was a global attention, wait
10080 					 * for it to be cleared.
10081 					 */
10082 					if (bnx2x_reset_is_global(bp)) {
10083 						schedule_delayed_work(
10084 							&bp->sp_rtnl_task,
10085 							HZ/10);
10086 						return;
10087 					}
10088 
10089 					error_recovered =
10090 					  bp->eth_stats.recoverable_error;
10091 					error_unrecovered =
10092 					  bp->eth_stats.unrecoverable_error;
10093 					bp->recovery_state =
10094 						BNX2X_RECOVERY_NIC_LOADING;
10095 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10096 						error_unrecovered++;
10097 						netdev_err(bp->dev,
10098 							   "Recovery failed. Power cycle needed\n");
10099 						/* Disconnect this device */
10100 						netif_device_detach(bp->dev);
10101 						/* Shut down the power */
10102 						bnx2x_set_power_state(
10103 							bp, PCI_D3hot);
10104 						smp_mb();
10105 					} else {
10106 						bp->recovery_state =
10107 							BNX2X_RECOVERY_DONE;
10108 						error_recovered++;
10109 						smp_mb();
10110 					}
10111 					bp->eth_stats.recoverable_error =
10112 						error_recovered;
10113 					bp->eth_stats.unrecoverable_error =
10114 						error_unrecovered;
10115 
10116 					return;
10117 				}
10118 			}
10119 		default:
10120 			return;
10121 		}
10122 	}
10123 }
10124 
10125 static int bnx2x_udp_port_update(struct bnx2x *bp)
10126 {
10127 	struct bnx2x_func_switch_update_params *switch_update_params;
10128 	struct bnx2x_func_state_params func_params = {NULL};
10129 	struct bnx2x_udp_tunnel *udp_tunnel;
10130 	u16 vxlan_port = 0, geneve_port = 0;
10131 	int rc;
10132 
10133 	switch_update_params = &func_params.params.switch_update;
10134 
10135 	/* Prepare parameters for function state transitions */
10136 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10137 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10138 
10139 	func_params.f_obj = &bp->func_obj;
10140 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10141 
10142 	/* Function parameters */
10143 	__set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10144 		  &switch_update_params->changes);
10145 
10146 	if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count) {
10147 		udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10148 		geneve_port = udp_tunnel->dst_port;
10149 		switch_update_params->geneve_dst_port = geneve_port;
10150 	}
10151 
10152 	if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count) {
10153 		udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10154 		vxlan_port = udp_tunnel->dst_port;
10155 		switch_update_params->vxlan_dst_port = vxlan_port;
10156 	}
10157 
10158 	/* Re-enable inner-rss for the offloaded UDP tunnels */
10159 	__set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10160 		  &switch_update_params->changes);
10161 
10162 	rc = bnx2x_func_state_change(bp, &func_params);
10163 	if (rc)
10164 		BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10165 			  vxlan_port, geneve_port, rc);
10166 	else
10167 		DP(BNX2X_MSG_SP,
10168 		   "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10169 		   vxlan_port, geneve_port);
10170 
10171 	return rc;
10172 }
10173 
10174 static void __bnx2x_add_udp_port(struct bnx2x *bp, u16 port,
10175 				 enum bnx2x_udp_port_type type)
10176 {
10177 	struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
10178 
10179 	if (!netif_running(bp->dev) || !IS_PF(bp) || CHIP_IS_E1x(bp))
10180 		return;
10181 
10182 	if (udp_port->count && udp_port->dst_port == port) {
10183 		udp_port->count++;
10184 		return;
10185 	}
10186 
10187 	if (udp_port->count) {
10188 		DP(BNX2X_MSG_SP,
10189 		   "UDP tunnel [%d] -  destination port limit reached\n",
10190 		   type);
10191 		return;
10192 	}
10193 
10194 	udp_port->dst_port = port;
10195 	udp_port->count = 1;
10196 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
10197 }
10198 
10199 static void __bnx2x_del_udp_port(struct bnx2x *bp, u16 port,
10200 				 enum bnx2x_udp_port_type type)
10201 {
10202 	struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
10203 
10204 	if (!IS_PF(bp) || CHIP_IS_E1x(bp))
10205 		return;
10206 
10207 	if (!udp_port->count || udp_port->dst_port != port) {
10208 		DP(BNX2X_MSG_SP, "Invalid UDP tunnel [%d] port\n",
10209 		   type);
10210 		return;
10211 	}
10212 
10213 	/* Remove reference, and make certain it's no longer in use */
10214 	udp_port->count--;
10215 	if (udp_port->count)
10216 		return;
10217 	udp_port->dst_port = 0;
10218 
10219 	if (netif_running(bp->dev))
10220 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
10221 	else
10222 		DP(BNX2X_MSG_SP, "Deleted UDP tunnel [%d] port %d\n",
10223 		   type, port);
10224 }
10225 
10226 static void bnx2x_udp_tunnel_add(struct net_device *netdev,
10227 				 struct udp_tunnel_info *ti)
10228 {
10229 	struct bnx2x *bp = netdev_priv(netdev);
10230 	u16 t_port = ntohs(ti->port);
10231 
10232 	switch (ti->type) {
10233 	case UDP_TUNNEL_TYPE_VXLAN:
10234 		__bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
10235 		break;
10236 	case UDP_TUNNEL_TYPE_GENEVE:
10237 		__bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
10238 		break;
10239 	default:
10240 		break;
10241 	}
10242 }
10243 
10244 static void bnx2x_udp_tunnel_del(struct net_device *netdev,
10245 				 struct udp_tunnel_info *ti)
10246 {
10247 	struct bnx2x *bp = netdev_priv(netdev);
10248 	u16 t_port = ntohs(ti->port);
10249 
10250 	switch (ti->type) {
10251 	case UDP_TUNNEL_TYPE_VXLAN:
10252 		__bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
10253 		break;
10254 	case UDP_TUNNEL_TYPE_GENEVE:
10255 		__bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
10256 		break;
10257 	default:
10258 		break;
10259 	}
10260 }
10261 
10262 static int bnx2x_close(struct net_device *dev);
10263 
10264 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10265  * scheduled on a general queue in order to prevent a dead lock.
10266  */
10267 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10268 {
10269 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10270 
10271 	rtnl_lock();
10272 
10273 	if (!netif_running(bp->dev)) {
10274 		rtnl_unlock();
10275 		return;
10276 	}
10277 
10278 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10279 #ifdef BNX2X_STOP_ON_ERROR
10280 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10281 			  "you will need to reboot when done\n");
10282 		goto sp_rtnl_not_reset;
10283 #endif
10284 		/*
10285 		 * Clear all pending SP commands as we are going to reset the
10286 		 * function anyway.
10287 		 */
10288 		bp->sp_rtnl_state = 0;
10289 		smp_mb();
10290 
10291 		bnx2x_parity_recover(bp);
10292 
10293 		rtnl_unlock();
10294 		return;
10295 	}
10296 
10297 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10298 #ifdef BNX2X_STOP_ON_ERROR
10299 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10300 			  "you will need to reboot when done\n");
10301 		goto sp_rtnl_not_reset;
10302 #endif
10303 
10304 		/*
10305 		 * Clear all pending SP commands as we are going to reset the
10306 		 * function anyway.
10307 		 */
10308 		bp->sp_rtnl_state = 0;
10309 		smp_mb();
10310 
10311 		/* Immediately indicate link as down */
10312 		bp->link_vars.link_up = 0;
10313 		bp->force_link_down = true;
10314 		netif_carrier_off(bp->dev);
10315 		BNX2X_ERR("Indicating link is down due to Tx-timeout\n");
10316 
10317 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10318 		/* When ret value shows failure of allocation failure,
10319 		 * the nic is rebooted again. If open still fails, a error
10320 		 * message to notify the user.
10321 		 */
10322 		if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) {
10323 			bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10324 			if (bnx2x_nic_load(bp, LOAD_NORMAL))
10325 				BNX2X_ERR("Open the NIC fails again!\n");
10326 		}
10327 		rtnl_unlock();
10328 		return;
10329 	}
10330 #ifdef BNX2X_STOP_ON_ERROR
10331 sp_rtnl_not_reset:
10332 #endif
10333 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10334 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10335 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10336 		bnx2x_after_function_update(bp);
10337 	/*
10338 	 * in case of fan failure we need to reset id if the "stop on error"
10339 	 * debug flag is set, since we trying to prevent permanent overheating
10340 	 * damage
10341 	 */
10342 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10343 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10344 		netif_device_detach(bp->dev);
10345 		bnx2x_close(bp->dev);
10346 		rtnl_unlock();
10347 		return;
10348 	}
10349 
10350 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10351 		DP(BNX2X_MSG_SP,
10352 		   "sending set mcast vf pf channel message from rtnl sp-task\n");
10353 		bnx2x_vfpf_set_mcast(bp->dev);
10354 	}
10355 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10356 			       &bp->sp_rtnl_state)){
10357 		if (netif_carrier_ok(bp->dev)) {
10358 			bnx2x_tx_disable(bp);
10359 			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10360 		}
10361 	}
10362 
10363 	if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10364 		DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10365 		bnx2x_set_rx_mode_inner(bp);
10366 	}
10367 
10368 	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10369 			       &bp->sp_rtnl_state))
10370 		bnx2x_pf_set_vfs_vlan(bp);
10371 
10372 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10373 		bnx2x_dcbx_stop_hw_tx(bp);
10374 		bnx2x_dcbx_resume_hw_tx(bp);
10375 	}
10376 
10377 	if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10378 			       &bp->sp_rtnl_state))
10379 		bnx2x_update_mng_version(bp);
10380 
10381 	if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state))
10382 		bnx2x_handle_update_svid_cmd(bp);
10383 
10384 	if (test_and_clear_bit(BNX2X_SP_RTNL_CHANGE_UDP_PORT,
10385 			       &bp->sp_rtnl_state)) {
10386 		if (bnx2x_udp_port_update(bp)) {
10387 			/* On error, forget configuration */
10388 			memset(bp->udp_tunnel_ports, 0,
10389 			       sizeof(struct bnx2x_udp_tunnel) *
10390 			       BNX2X_UDP_PORT_MAX);
10391 		} else {
10392 			/* Since we don't store additional port information,
10393 			 * if no ports are configured for any feature ask for
10394 			 * information about currently configured ports.
10395 			 */
10396 			if (!bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count &&
10397 			    !bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count)
10398 				udp_tunnel_get_rx_info(bp->dev);
10399 		}
10400 	}
10401 
10402 	/* work which needs rtnl lock not-taken (as it takes the lock itself and
10403 	 * can be called from other contexts as well)
10404 	 */
10405 	rtnl_unlock();
10406 
10407 	/* enable SR-IOV if applicable */
10408 	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10409 					       &bp->sp_rtnl_state)) {
10410 		bnx2x_disable_sriov(bp);
10411 		bnx2x_enable_sriov(bp);
10412 	}
10413 }
10414 
10415 static void bnx2x_period_task(struct work_struct *work)
10416 {
10417 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10418 
10419 	if (!netif_running(bp->dev))
10420 		goto period_task_exit;
10421 
10422 	if (CHIP_REV_IS_SLOW(bp)) {
10423 		BNX2X_ERR("period task called on emulation, ignoring\n");
10424 		goto period_task_exit;
10425 	}
10426 
10427 	bnx2x_acquire_phy_lock(bp);
10428 	/*
10429 	 * The barrier is needed to ensure the ordering between the writing to
10430 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10431 	 * the reading here.
10432 	 */
10433 	smp_mb();
10434 	if (bp->port.pmf) {
10435 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
10436 
10437 		/* Re-queue task in 1 sec */
10438 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10439 	}
10440 
10441 	bnx2x_release_phy_lock(bp);
10442 period_task_exit:
10443 	return;
10444 }
10445 
10446 /*
10447  * Init service functions
10448  */
10449 
10450 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10451 {
10452 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10453 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10454 	return base + (BP_ABS_FUNC(bp)) * stride;
10455 }
10456 
10457 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10458 					 u8 port, u32 reset_reg,
10459 					 struct bnx2x_mac_vals *vals)
10460 {
10461 	u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10462 	u32 base_addr;
10463 
10464 	if (!(mask & reset_reg))
10465 		return false;
10466 
10467 	BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10468 	base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10469 	vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10470 	vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10471 	REG_WR(bp, vals->umac_addr[port], 0);
10472 
10473 	return true;
10474 }
10475 
10476 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10477 					struct bnx2x_mac_vals *vals)
10478 {
10479 	u32 val, base_addr, offset, mask, reset_reg;
10480 	bool mac_stopped = false;
10481 	u8 port = BP_PORT(bp);
10482 
10483 	/* reset addresses as they also mark which values were changed */
10484 	memset(vals, 0, sizeof(*vals));
10485 
10486 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10487 
10488 	if (!CHIP_IS_E3(bp)) {
10489 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10490 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10491 		if ((mask & reset_reg) && val) {
10492 			u32 wb_data[2];
10493 			BNX2X_DEV_INFO("Disable bmac Rx\n");
10494 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10495 						: NIG_REG_INGRESS_BMAC0_MEM;
10496 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10497 						: BIGMAC_REGISTER_BMAC_CONTROL;
10498 
10499 			/*
10500 			 * use rd/wr since we cannot use dmae. This is safe
10501 			 * since MCP won't access the bus due to the request
10502 			 * to unload, and no function on the path can be
10503 			 * loaded at this time.
10504 			 */
10505 			wb_data[0] = REG_RD(bp, base_addr + offset);
10506 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10507 			vals->bmac_addr = base_addr + offset;
10508 			vals->bmac_val[0] = wb_data[0];
10509 			vals->bmac_val[1] = wb_data[1];
10510 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10511 			REG_WR(bp, vals->bmac_addr, wb_data[0]);
10512 			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10513 		}
10514 		BNX2X_DEV_INFO("Disable emac Rx\n");
10515 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10516 		vals->emac_val = REG_RD(bp, vals->emac_addr);
10517 		REG_WR(bp, vals->emac_addr, 0);
10518 		mac_stopped = true;
10519 	} else {
10520 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10521 			BNX2X_DEV_INFO("Disable xmac Rx\n");
10522 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10523 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10524 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10525 			       val & ~(1 << 1));
10526 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10527 			       val | (1 << 1));
10528 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10529 			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10530 			REG_WR(bp, vals->xmac_addr, 0);
10531 			mac_stopped = true;
10532 		}
10533 
10534 		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10535 							    reset_reg, vals);
10536 		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10537 							    reset_reg, vals);
10538 	}
10539 
10540 	if (mac_stopped)
10541 		msleep(20);
10542 }
10543 
10544 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10545 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10546 					0x1848 + ((f) << 4))
10547 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
10548 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
10549 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
10550 
10551 #define BCM_5710_UNDI_FW_MF_MAJOR	(0x07)
10552 #define BCM_5710_UNDI_FW_MF_MINOR	(0x08)
10553 #define BCM_5710_UNDI_FW_MF_VERS	(0x05)
10554 
10555 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10556 {
10557 	/* UNDI marks its presence in DORQ -
10558 	 * it initializes CID offset for normal bell to 0x7
10559 	 */
10560 	if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10561 	    MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10562 		return false;
10563 
10564 	if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10565 		BNX2X_DEV_INFO("UNDI previously loaded\n");
10566 		return true;
10567 	}
10568 
10569 	return false;
10570 }
10571 
10572 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10573 {
10574 	u16 rcq, bd;
10575 	u32 addr, tmp_reg;
10576 
10577 	if (BP_FUNC(bp) < 2)
10578 		addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10579 	else
10580 		addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10581 
10582 	tmp_reg = REG_RD(bp, addr);
10583 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10584 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10585 
10586 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10587 	REG_WR(bp, addr, tmp_reg);
10588 
10589 	BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10590 		       BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10591 }
10592 
10593 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10594 {
10595 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10596 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10597 	if (!rc) {
10598 		BNX2X_ERR("MCP response failure, aborting\n");
10599 		return -EBUSY;
10600 	}
10601 
10602 	return 0;
10603 }
10604 
10605 static struct bnx2x_prev_path_list *
10606 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
10607 {
10608 	struct bnx2x_prev_path_list *tmp_list;
10609 
10610 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10611 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10612 		    bp->pdev->bus->number == tmp_list->bus &&
10613 		    BP_PATH(bp) == tmp_list->path)
10614 			return tmp_list;
10615 
10616 	return NULL;
10617 }
10618 
10619 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10620 {
10621 	struct bnx2x_prev_path_list *tmp_list;
10622 	int rc;
10623 
10624 	rc = down_interruptible(&bnx2x_prev_sem);
10625 	if (rc) {
10626 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10627 		return rc;
10628 	}
10629 
10630 	tmp_list = bnx2x_prev_path_get_entry(bp);
10631 	if (tmp_list) {
10632 		tmp_list->aer = 1;
10633 		rc = 0;
10634 	} else {
10635 		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10636 			  BP_PATH(bp));
10637 	}
10638 
10639 	up(&bnx2x_prev_sem);
10640 
10641 	return rc;
10642 }
10643 
10644 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10645 {
10646 	struct bnx2x_prev_path_list *tmp_list;
10647 	bool rc = false;
10648 
10649 	if (down_trylock(&bnx2x_prev_sem))
10650 		return false;
10651 
10652 	tmp_list = bnx2x_prev_path_get_entry(bp);
10653 	if (tmp_list) {
10654 		if (tmp_list->aer) {
10655 			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10656 			   BP_PATH(bp));
10657 		} else {
10658 			rc = true;
10659 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10660 				       BP_PATH(bp));
10661 		}
10662 	}
10663 
10664 	up(&bnx2x_prev_sem);
10665 
10666 	return rc;
10667 }
10668 
10669 bool bnx2x_port_after_undi(struct bnx2x *bp)
10670 {
10671 	struct bnx2x_prev_path_list *entry;
10672 	bool val;
10673 
10674 	down(&bnx2x_prev_sem);
10675 
10676 	entry = bnx2x_prev_path_get_entry(bp);
10677 	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10678 
10679 	up(&bnx2x_prev_sem);
10680 
10681 	return val;
10682 }
10683 
10684 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10685 {
10686 	struct bnx2x_prev_path_list *tmp_list;
10687 	int rc;
10688 
10689 	rc = down_interruptible(&bnx2x_prev_sem);
10690 	if (rc) {
10691 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10692 		return rc;
10693 	}
10694 
10695 	/* Check whether the entry for this path already exists */
10696 	tmp_list = bnx2x_prev_path_get_entry(bp);
10697 	if (tmp_list) {
10698 		if (!tmp_list->aer) {
10699 			BNX2X_ERR("Re-Marking the path.\n");
10700 		} else {
10701 			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10702 			   BP_PATH(bp));
10703 			tmp_list->aer = 0;
10704 		}
10705 		up(&bnx2x_prev_sem);
10706 		return 0;
10707 	}
10708 	up(&bnx2x_prev_sem);
10709 
10710 	/* Create an entry for this path and add it */
10711 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10712 	if (!tmp_list) {
10713 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10714 		return -ENOMEM;
10715 	}
10716 
10717 	tmp_list->bus = bp->pdev->bus->number;
10718 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10719 	tmp_list->path = BP_PATH(bp);
10720 	tmp_list->aer = 0;
10721 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10722 
10723 	rc = down_interruptible(&bnx2x_prev_sem);
10724 	if (rc) {
10725 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10726 		kfree(tmp_list);
10727 	} else {
10728 		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10729 		   BP_PATH(bp));
10730 		list_add(&tmp_list->list, &bnx2x_prev_list);
10731 		up(&bnx2x_prev_sem);
10732 	}
10733 
10734 	return rc;
10735 }
10736 
10737 static int bnx2x_do_flr(struct bnx2x *bp)
10738 {
10739 	struct pci_dev *dev = bp->pdev;
10740 
10741 	if (CHIP_IS_E1x(bp)) {
10742 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10743 		return -EINVAL;
10744 	}
10745 
10746 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10747 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10748 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10749 			  bp->common.bc_ver);
10750 		return -EINVAL;
10751 	}
10752 
10753 	if (!pci_wait_for_pending_transaction(dev))
10754 		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10755 
10756 	BNX2X_DEV_INFO("Initiating FLR\n");
10757 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10758 
10759 	return 0;
10760 }
10761 
10762 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10763 {
10764 	int rc;
10765 
10766 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
10767 
10768 	/* Test if previous unload process was already finished for this path */
10769 	if (bnx2x_prev_is_path_marked(bp))
10770 		return bnx2x_prev_mcp_done(bp);
10771 
10772 	BNX2X_DEV_INFO("Path is unmarked\n");
10773 
10774 	/* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10775 	if (bnx2x_prev_is_after_undi(bp))
10776 		goto out;
10777 
10778 	/* If function has FLR capabilities, and existing FW version matches
10779 	 * the one required, then FLR will be sufficient to clean any residue
10780 	 * left by previous driver
10781 	 */
10782 	rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10783 
10784 	if (!rc) {
10785 		/* fw version is good */
10786 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10787 		rc = bnx2x_do_flr(bp);
10788 	}
10789 
10790 	if (!rc) {
10791 		/* FLR was performed */
10792 		BNX2X_DEV_INFO("FLR successful\n");
10793 		return 0;
10794 	}
10795 
10796 	BNX2X_DEV_INFO("Could not FLR\n");
10797 
10798 out:
10799 	/* Close the MCP request, return failure*/
10800 	rc = bnx2x_prev_mcp_done(bp);
10801 	if (!rc)
10802 		rc = BNX2X_PREV_WAIT_NEEDED;
10803 
10804 	return rc;
10805 }
10806 
10807 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10808 {
10809 	u32 reset_reg, tmp_reg = 0, rc;
10810 	bool prev_undi = false;
10811 	struct bnx2x_mac_vals mac_vals;
10812 
10813 	/* It is possible a previous function received 'common' answer,
10814 	 * but hasn't loaded yet, therefore creating a scenario of
10815 	 * multiple functions receiving 'common' on the same path.
10816 	 */
10817 	BNX2X_DEV_INFO("Common unload Flow\n");
10818 
10819 	memset(&mac_vals, 0, sizeof(mac_vals));
10820 
10821 	if (bnx2x_prev_is_path_marked(bp))
10822 		return bnx2x_prev_mcp_done(bp);
10823 
10824 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10825 
10826 	/* Reset should be performed after BRB is emptied */
10827 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10828 		u32 timer_count = 1000;
10829 
10830 		/* Close the MAC Rx to prevent BRB from filling up */
10831 		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10832 
10833 		/* close LLH filters for both ports towards the BRB */
10834 		bnx2x_set_rx_filter(&bp->link_params, 0);
10835 		bp->link_params.port ^= 1;
10836 		bnx2x_set_rx_filter(&bp->link_params, 0);
10837 		bp->link_params.port ^= 1;
10838 
10839 		/* Check if the UNDI driver was previously loaded */
10840 		if (bnx2x_prev_is_after_undi(bp)) {
10841 			prev_undi = true;
10842 			/* clear the UNDI indication */
10843 			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10844 			/* clear possible idle check errors */
10845 			REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10846 		}
10847 		if (!CHIP_IS_E1x(bp))
10848 			/* block FW from writing to host */
10849 			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10850 
10851 		/* wait until BRB is empty */
10852 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10853 		while (timer_count) {
10854 			u32 prev_brb = tmp_reg;
10855 
10856 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10857 			if (!tmp_reg)
10858 				break;
10859 
10860 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10861 
10862 			/* reset timer as long as BRB actually gets emptied */
10863 			if (prev_brb > tmp_reg)
10864 				timer_count = 1000;
10865 			else
10866 				timer_count--;
10867 
10868 			/* If UNDI resides in memory, manually increment it */
10869 			if (prev_undi)
10870 				bnx2x_prev_unload_undi_inc(bp, 1);
10871 
10872 			udelay(10);
10873 		}
10874 
10875 		if (!timer_count)
10876 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10877 	}
10878 
10879 	/* No packets are in the pipeline, path is ready for reset */
10880 	bnx2x_reset_common(bp);
10881 
10882 	if (mac_vals.xmac_addr)
10883 		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10884 	if (mac_vals.umac_addr[0])
10885 		REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10886 	if (mac_vals.umac_addr[1])
10887 		REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10888 	if (mac_vals.emac_addr)
10889 		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10890 	if (mac_vals.bmac_addr) {
10891 		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10892 		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10893 	}
10894 
10895 	rc = bnx2x_prev_mark_path(bp, prev_undi);
10896 	if (rc) {
10897 		bnx2x_prev_mcp_done(bp);
10898 		return rc;
10899 	}
10900 
10901 	return bnx2x_prev_mcp_done(bp);
10902 }
10903 
10904 static int bnx2x_prev_unload(struct bnx2x *bp)
10905 {
10906 	int time_counter = 10;
10907 	u32 rc, fw, hw_lock_reg, hw_lock_val;
10908 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10909 
10910 	/* clear hw from errors which may have resulted from an interrupted
10911 	 * dmae transaction.
10912 	 */
10913 	bnx2x_clean_pglue_errors(bp);
10914 
10915 	/* Release previously held locks */
10916 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10917 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10918 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10919 
10920 	hw_lock_val = REG_RD(bp, hw_lock_reg);
10921 	if (hw_lock_val) {
10922 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10923 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10924 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10925 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10926 		}
10927 
10928 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10929 		REG_WR(bp, hw_lock_reg, 0xffffffff);
10930 	} else
10931 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10932 
10933 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10934 		BNX2X_DEV_INFO("Release previously held alr\n");
10935 		bnx2x_release_alr(bp);
10936 	}
10937 
10938 	do {
10939 		int aer = 0;
10940 		/* Lock MCP using an unload request */
10941 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10942 		if (!fw) {
10943 			BNX2X_ERR("MCP response failure, aborting\n");
10944 			rc = -EBUSY;
10945 			break;
10946 		}
10947 
10948 		rc = down_interruptible(&bnx2x_prev_sem);
10949 		if (rc) {
10950 			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10951 				  rc);
10952 		} else {
10953 			/* If Path is marked by EEH, ignore unload status */
10954 			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10955 				 bnx2x_prev_path_get_entry(bp)->aer);
10956 			up(&bnx2x_prev_sem);
10957 		}
10958 
10959 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10960 			rc = bnx2x_prev_unload_common(bp);
10961 			break;
10962 		}
10963 
10964 		/* non-common reply from MCP might require looping */
10965 		rc = bnx2x_prev_unload_uncommon(bp);
10966 		if (rc != BNX2X_PREV_WAIT_NEEDED)
10967 			break;
10968 
10969 		msleep(20);
10970 	} while (--time_counter);
10971 
10972 	if (!time_counter || rc) {
10973 		BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10974 		rc = -EPROBE_DEFER;
10975 	}
10976 
10977 	/* Mark function if its port was used to boot from SAN */
10978 	if (bnx2x_port_after_undi(bp))
10979 		bp->link_params.feature_config_flags |=
10980 			FEATURE_CONFIG_BOOT_FROM_SAN;
10981 
10982 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10983 
10984 	return rc;
10985 }
10986 
10987 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10988 {
10989 	u32 val, val2, val3, val4, id, boot_mode;
10990 	u16 pmc;
10991 
10992 	/* Get the chip revision id and number. */
10993 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10994 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10995 	id = ((val & 0xffff) << 16);
10996 	val = REG_RD(bp, MISC_REG_CHIP_REV);
10997 	id |= ((val & 0xf) << 12);
10998 
10999 	/* Metal is read from PCI regs, but we can't access >=0x400 from
11000 	 * the configuration space (so we need to reg_rd)
11001 	 */
11002 	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
11003 	id |= (((val >> 24) & 0xf) << 4);
11004 	val = REG_RD(bp, MISC_REG_BOND_ID);
11005 	id |= (val & 0xf);
11006 	bp->common.chip_id = id;
11007 
11008 	/* force 57811 according to MISC register */
11009 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
11010 		if (CHIP_IS_57810(bp))
11011 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
11012 				(bp->common.chip_id & 0x0000FFFF);
11013 		else if (CHIP_IS_57810_MF(bp))
11014 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
11015 				(bp->common.chip_id & 0x0000FFFF);
11016 		bp->common.chip_id |= 0x1;
11017 	}
11018 
11019 	/* Set doorbell size */
11020 	bp->db_size = (1 << BNX2X_DB_SHIFT);
11021 
11022 	if (!CHIP_IS_E1x(bp)) {
11023 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
11024 		if ((val & 1) == 0)
11025 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
11026 		else
11027 			val = (val >> 1) & 1;
11028 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
11029 						       "2_PORT_MODE");
11030 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
11031 						 CHIP_2_PORT_MODE;
11032 
11033 		if (CHIP_MODE_IS_4_PORT(bp))
11034 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
11035 		else
11036 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
11037 	} else {
11038 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
11039 		bp->pfid = bp->pf_num;			/* 0..7 */
11040 	}
11041 
11042 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
11043 
11044 	bp->link_params.chip_id = bp->common.chip_id;
11045 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
11046 
11047 	val = (REG_RD(bp, 0x2874) & 0x55);
11048 	if ((bp->common.chip_id & 0x1) ||
11049 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
11050 		bp->flags |= ONE_PORT_FLAG;
11051 		BNX2X_DEV_INFO("single port device\n");
11052 	}
11053 
11054 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
11055 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
11056 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
11057 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
11058 		       bp->common.flash_size, bp->common.flash_size);
11059 
11060 	bnx2x_init_shmem(bp);
11061 
11062 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11063 					MISC_REG_GENERIC_CR_1 :
11064 					MISC_REG_GENERIC_CR_0));
11065 
11066 	bp->link_params.shmem_base = bp->common.shmem_base;
11067 	bp->link_params.shmem2_base = bp->common.shmem2_base;
11068 	if (SHMEM2_RD(bp, size) >
11069 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11070 		bp->link_params.lfa_base =
11071 		REG_RD(bp, bp->common.shmem2_base +
11072 		       (u32)offsetof(struct shmem2_region,
11073 				     lfa_host_addr[BP_PORT(bp)]));
11074 	else
11075 		bp->link_params.lfa_base = 0;
11076 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
11077 		       bp->common.shmem_base, bp->common.shmem2_base);
11078 
11079 	if (!bp->common.shmem_base) {
11080 		BNX2X_DEV_INFO("MCP not active\n");
11081 		bp->flags |= NO_MCP_FLAG;
11082 		return;
11083 	}
11084 
11085 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11086 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11087 
11088 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
11089 					SHARED_HW_CFG_LED_MODE_MASK) >>
11090 				       SHARED_HW_CFG_LED_MODE_SHIFT);
11091 
11092 	bp->link_params.feature_config_flags = 0;
11093 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11094 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11095 		bp->link_params.feature_config_flags |=
11096 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11097 	else
11098 		bp->link_params.feature_config_flags &=
11099 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11100 
11101 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11102 	bp->common.bc_ver = val;
11103 	BNX2X_DEV_INFO("bc_ver %X\n", val);
11104 	if (val < BNX2X_BC_VER) {
11105 		/* for now only warn
11106 		 * later we might need to enforce this */
11107 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11108 			  BNX2X_BC_VER, val);
11109 	}
11110 	bp->link_params.feature_config_flags |=
11111 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11112 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11113 
11114 	bp->link_params.feature_config_flags |=
11115 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11116 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11117 	bp->link_params.feature_config_flags |=
11118 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11119 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11120 	bp->link_params.feature_config_flags |=
11121 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11122 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11123 
11124 	bp->link_params.feature_config_flags |=
11125 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11126 		FEATURE_CONFIG_MT_SUPPORT : 0;
11127 
11128 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11129 			BC_SUPPORTS_PFC_STATS : 0;
11130 
11131 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11132 			BC_SUPPORTS_FCOE_FEATURES : 0;
11133 
11134 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11135 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11136 
11137 	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11138 			BC_SUPPORTS_RMMOD_CMD : 0;
11139 
11140 	boot_mode = SHMEM_RD(bp,
11141 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11142 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11143 	switch (boot_mode) {
11144 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11145 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11146 		break;
11147 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11148 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11149 		break;
11150 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11151 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11152 		break;
11153 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11154 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11155 		break;
11156 	}
11157 
11158 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11159 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11160 
11161 	BNX2X_DEV_INFO("%sWoL capable\n",
11162 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
11163 
11164 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11165 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11166 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11167 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11168 
11169 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11170 		 val, val2, val3, val4);
11171 }
11172 
11173 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11174 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11175 
11176 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11177 {
11178 	int pfid = BP_FUNC(bp);
11179 	int igu_sb_id;
11180 	u32 val;
11181 	u8 fid, igu_sb_cnt = 0;
11182 
11183 	bp->igu_base_sb = 0xff;
11184 	if (CHIP_INT_MODE_IS_BC(bp)) {
11185 		int vn = BP_VN(bp);
11186 		igu_sb_cnt = bp->igu_sb_cnt;
11187 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11188 			FP_SB_MAX_E1x;
11189 
11190 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
11191 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11192 
11193 		return 0;
11194 	}
11195 
11196 	/* IGU in normal mode - read CAM */
11197 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11198 	     igu_sb_id++) {
11199 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11200 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11201 			continue;
11202 		fid = IGU_FID(val);
11203 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
11204 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11205 				continue;
11206 			if (IGU_VEC(val) == 0)
11207 				/* default status block */
11208 				bp->igu_dsb_id = igu_sb_id;
11209 			else {
11210 				if (bp->igu_base_sb == 0xff)
11211 					bp->igu_base_sb = igu_sb_id;
11212 				igu_sb_cnt++;
11213 			}
11214 		}
11215 	}
11216 
11217 #ifdef CONFIG_PCI_MSI
11218 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
11219 	 * optional that number of CAM entries will not be equal to the value
11220 	 * advertised in PCI.
11221 	 * Driver should use the minimal value of both as the actual status
11222 	 * block count
11223 	 */
11224 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11225 #endif
11226 
11227 	if (igu_sb_cnt == 0) {
11228 		BNX2X_ERR("CAM configuration error\n");
11229 		return -EINVAL;
11230 	}
11231 
11232 	return 0;
11233 }
11234 
11235 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11236 {
11237 	int cfg_size = 0, idx, port = BP_PORT(bp);
11238 
11239 	/* Aggregation of supported attributes of all external phys */
11240 	bp->port.supported[0] = 0;
11241 	bp->port.supported[1] = 0;
11242 	switch (bp->link_params.num_phys) {
11243 	case 1:
11244 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11245 		cfg_size = 1;
11246 		break;
11247 	case 2:
11248 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11249 		cfg_size = 1;
11250 		break;
11251 	case 3:
11252 		if (bp->link_params.multi_phy_config &
11253 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11254 			bp->port.supported[1] =
11255 				bp->link_params.phy[EXT_PHY1].supported;
11256 			bp->port.supported[0] =
11257 				bp->link_params.phy[EXT_PHY2].supported;
11258 		} else {
11259 			bp->port.supported[0] =
11260 				bp->link_params.phy[EXT_PHY1].supported;
11261 			bp->port.supported[1] =
11262 				bp->link_params.phy[EXT_PHY2].supported;
11263 		}
11264 		cfg_size = 2;
11265 		break;
11266 	}
11267 
11268 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
11269 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11270 			   SHMEM_RD(bp,
11271 			   dev_info.port_hw_config[port].external_phy_config),
11272 			   SHMEM_RD(bp,
11273 			   dev_info.port_hw_config[port].external_phy_config2));
11274 		return;
11275 	}
11276 
11277 	if (CHIP_IS_E3(bp))
11278 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11279 	else {
11280 		switch (switch_cfg) {
11281 		case SWITCH_CFG_1G:
11282 			bp->port.phy_addr = REG_RD(
11283 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11284 			break;
11285 		case SWITCH_CFG_10G:
11286 			bp->port.phy_addr = REG_RD(
11287 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11288 			break;
11289 		default:
11290 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11291 				  bp->port.link_config[0]);
11292 			return;
11293 		}
11294 	}
11295 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11296 	/* mask what we support according to speed_cap_mask per configuration */
11297 	for (idx = 0; idx < cfg_size; idx++) {
11298 		if (!(bp->link_params.speed_cap_mask[idx] &
11299 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11300 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11301 
11302 		if (!(bp->link_params.speed_cap_mask[idx] &
11303 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11304 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11305 
11306 		if (!(bp->link_params.speed_cap_mask[idx] &
11307 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11308 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11309 
11310 		if (!(bp->link_params.speed_cap_mask[idx] &
11311 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11312 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11313 
11314 		if (!(bp->link_params.speed_cap_mask[idx] &
11315 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11316 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11317 						     SUPPORTED_1000baseT_Full);
11318 
11319 		if (!(bp->link_params.speed_cap_mask[idx] &
11320 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11321 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11322 
11323 		if (!(bp->link_params.speed_cap_mask[idx] &
11324 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11325 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11326 
11327 		if (!(bp->link_params.speed_cap_mask[idx] &
11328 					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11329 			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11330 	}
11331 
11332 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11333 		       bp->port.supported[1]);
11334 }
11335 
11336 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11337 {
11338 	u32 link_config, idx, cfg_size = 0;
11339 	bp->port.advertising[0] = 0;
11340 	bp->port.advertising[1] = 0;
11341 	switch (bp->link_params.num_phys) {
11342 	case 1:
11343 	case 2:
11344 		cfg_size = 1;
11345 		break;
11346 	case 3:
11347 		cfg_size = 2;
11348 		break;
11349 	}
11350 	for (idx = 0; idx < cfg_size; idx++) {
11351 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11352 		link_config = bp->port.link_config[idx];
11353 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11354 		case PORT_FEATURE_LINK_SPEED_AUTO:
11355 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11356 				bp->link_params.req_line_speed[idx] =
11357 					SPEED_AUTO_NEG;
11358 				bp->port.advertising[idx] |=
11359 					bp->port.supported[idx];
11360 				if (bp->link_params.phy[EXT_PHY1].type ==
11361 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11362 					bp->port.advertising[idx] |=
11363 					(SUPPORTED_100baseT_Half |
11364 					 SUPPORTED_100baseT_Full);
11365 			} else {
11366 				/* force 10G, no AN */
11367 				bp->link_params.req_line_speed[idx] =
11368 					SPEED_10000;
11369 				bp->port.advertising[idx] |=
11370 					(ADVERTISED_10000baseT_Full |
11371 					 ADVERTISED_FIBRE);
11372 				continue;
11373 			}
11374 			break;
11375 
11376 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
11377 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11378 				bp->link_params.req_line_speed[idx] =
11379 					SPEED_10;
11380 				bp->port.advertising[idx] |=
11381 					(ADVERTISED_10baseT_Full |
11382 					 ADVERTISED_TP);
11383 			} else {
11384 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11385 					    link_config,
11386 				    bp->link_params.speed_cap_mask[idx]);
11387 				return;
11388 			}
11389 			break;
11390 
11391 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
11392 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11393 				bp->link_params.req_line_speed[idx] =
11394 					SPEED_10;
11395 				bp->link_params.req_duplex[idx] =
11396 					DUPLEX_HALF;
11397 				bp->port.advertising[idx] |=
11398 					(ADVERTISED_10baseT_Half |
11399 					 ADVERTISED_TP);
11400 			} else {
11401 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11402 					    link_config,
11403 					  bp->link_params.speed_cap_mask[idx]);
11404 				return;
11405 			}
11406 			break;
11407 
11408 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
11409 			if (bp->port.supported[idx] &
11410 			    SUPPORTED_100baseT_Full) {
11411 				bp->link_params.req_line_speed[idx] =
11412 					SPEED_100;
11413 				bp->port.advertising[idx] |=
11414 					(ADVERTISED_100baseT_Full |
11415 					 ADVERTISED_TP);
11416 			} else {
11417 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11418 					    link_config,
11419 					  bp->link_params.speed_cap_mask[idx]);
11420 				return;
11421 			}
11422 			break;
11423 
11424 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
11425 			if (bp->port.supported[idx] &
11426 			    SUPPORTED_100baseT_Half) {
11427 				bp->link_params.req_line_speed[idx] =
11428 								SPEED_100;
11429 				bp->link_params.req_duplex[idx] =
11430 								DUPLEX_HALF;
11431 				bp->port.advertising[idx] |=
11432 					(ADVERTISED_100baseT_Half |
11433 					 ADVERTISED_TP);
11434 			} else {
11435 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11436 				    link_config,
11437 				    bp->link_params.speed_cap_mask[idx]);
11438 				return;
11439 			}
11440 			break;
11441 
11442 		case PORT_FEATURE_LINK_SPEED_1G:
11443 			if (bp->port.supported[idx] &
11444 			    SUPPORTED_1000baseT_Full) {
11445 				bp->link_params.req_line_speed[idx] =
11446 					SPEED_1000;
11447 				bp->port.advertising[idx] |=
11448 					(ADVERTISED_1000baseT_Full |
11449 					 ADVERTISED_TP);
11450 			} else if (bp->port.supported[idx] &
11451 				   SUPPORTED_1000baseKX_Full) {
11452 				bp->link_params.req_line_speed[idx] =
11453 					SPEED_1000;
11454 				bp->port.advertising[idx] |=
11455 					ADVERTISED_1000baseKX_Full;
11456 			} else {
11457 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11458 				    link_config,
11459 				    bp->link_params.speed_cap_mask[idx]);
11460 				return;
11461 			}
11462 			break;
11463 
11464 		case PORT_FEATURE_LINK_SPEED_2_5G:
11465 			if (bp->port.supported[idx] &
11466 			    SUPPORTED_2500baseX_Full) {
11467 				bp->link_params.req_line_speed[idx] =
11468 					SPEED_2500;
11469 				bp->port.advertising[idx] |=
11470 					(ADVERTISED_2500baseX_Full |
11471 						ADVERTISED_TP);
11472 			} else {
11473 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11474 				    link_config,
11475 				    bp->link_params.speed_cap_mask[idx]);
11476 				return;
11477 			}
11478 			break;
11479 
11480 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
11481 			if (bp->port.supported[idx] &
11482 			    SUPPORTED_10000baseT_Full) {
11483 				bp->link_params.req_line_speed[idx] =
11484 					SPEED_10000;
11485 				bp->port.advertising[idx] |=
11486 					(ADVERTISED_10000baseT_Full |
11487 						ADVERTISED_FIBRE);
11488 			} else if (bp->port.supported[idx] &
11489 				   SUPPORTED_10000baseKR_Full) {
11490 				bp->link_params.req_line_speed[idx] =
11491 					SPEED_10000;
11492 				bp->port.advertising[idx] |=
11493 					(ADVERTISED_10000baseKR_Full |
11494 						ADVERTISED_FIBRE);
11495 			} else {
11496 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11497 				    link_config,
11498 				    bp->link_params.speed_cap_mask[idx]);
11499 				return;
11500 			}
11501 			break;
11502 		case PORT_FEATURE_LINK_SPEED_20G:
11503 			bp->link_params.req_line_speed[idx] = SPEED_20000;
11504 
11505 			break;
11506 		default:
11507 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11508 				  link_config);
11509 				bp->link_params.req_line_speed[idx] =
11510 							SPEED_AUTO_NEG;
11511 				bp->port.advertising[idx] =
11512 						bp->port.supported[idx];
11513 			break;
11514 		}
11515 
11516 		bp->link_params.req_flow_ctrl[idx] = (link_config &
11517 					 PORT_FEATURE_FLOW_CONTROL_MASK);
11518 		if (bp->link_params.req_flow_ctrl[idx] ==
11519 		    BNX2X_FLOW_CTRL_AUTO) {
11520 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11521 				bp->link_params.req_flow_ctrl[idx] =
11522 							BNX2X_FLOW_CTRL_NONE;
11523 			else
11524 				bnx2x_set_requested_fc(bp);
11525 		}
11526 
11527 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11528 			       bp->link_params.req_line_speed[idx],
11529 			       bp->link_params.req_duplex[idx],
11530 			       bp->link_params.req_flow_ctrl[idx],
11531 			       bp->port.advertising[idx]);
11532 	}
11533 }
11534 
11535 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11536 {
11537 	__be16 mac_hi_be = cpu_to_be16(mac_hi);
11538 	__be32 mac_lo_be = cpu_to_be32(mac_lo);
11539 	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11540 	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11541 }
11542 
11543 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11544 {
11545 	int port = BP_PORT(bp);
11546 	u32 config;
11547 	u32 ext_phy_type, ext_phy_config, eee_mode;
11548 
11549 	bp->link_params.bp = bp;
11550 	bp->link_params.port = port;
11551 
11552 	bp->link_params.lane_config =
11553 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11554 
11555 	bp->link_params.speed_cap_mask[0] =
11556 		SHMEM_RD(bp,
11557 			 dev_info.port_hw_config[port].speed_capability_mask) &
11558 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11559 	bp->link_params.speed_cap_mask[1] =
11560 		SHMEM_RD(bp,
11561 			 dev_info.port_hw_config[port].speed_capability_mask2) &
11562 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11563 	bp->port.link_config[0] =
11564 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11565 
11566 	bp->port.link_config[1] =
11567 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11568 
11569 	bp->link_params.multi_phy_config =
11570 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11571 	/* If the device is capable of WoL, set the default state according
11572 	 * to the HW
11573 	 */
11574 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11575 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11576 		   (config & PORT_FEATURE_WOL_ENABLED));
11577 
11578 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11579 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11580 		bp->flags |= NO_ISCSI_FLAG;
11581 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11582 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11583 		bp->flags |= NO_FCOE_FLAG;
11584 
11585 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11586 		       bp->link_params.lane_config,
11587 		       bp->link_params.speed_cap_mask[0],
11588 		       bp->port.link_config[0]);
11589 
11590 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
11591 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
11592 	bnx2x_phy_probe(&bp->link_params);
11593 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11594 
11595 	bnx2x_link_settings_requested(bp);
11596 
11597 	/*
11598 	 * If connected directly, work with the internal PHY, otherwise, work
11599 	 * with the external PHY
11600 	 */
11601 	ext_phy_config =
11602 		SHMEM_RD(bp,
11603 			 dev_info.port_hw_config[port].external_phy_config);
11604 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11605 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11606 		bp->mdio.prtad = bp->port.phy_addr;
11607 
11608 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11609 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11610 		bp->mdio.prtad =
11611 			XGXS_EXT_PHY_ADDR(ext_phy_config);
11612 
11613 	/* Configure link feature according to nvram value */
11614 	eee_mode = (((SHMEM_RD(bp, dev_info.
11615 		      port_feature_config[port].eee_power_mode)) &
11616 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11617 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11618 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11619 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11620 					   EEE_MODE_ENABLE_LPI |
11621 					   EEE_MODE_OUTPUT_TIME;
11622 	} else {
11623 		bp->link_params.eee_mode = 0;
11624 	}
11625 }
11626 
11627 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11628 {
11629 	u32 no_flags = NO_ISCSI_FLAG;
11630 	int port = BP_PORT(bp);
11631 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11632 				drv_lic_key[port].max_iscsi_conn);
11633 
11634 	if (!CNIC_SUPPORT(bp)) {
11635 		bp->flags |= no_flags;
11636 		return;
11637 	}
11638 
11639 	/* Get the number of maximum allowed iSCSI connections */
11640 	bp->cnic_eth_dev.max_iscsi_conn =
11641 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11642 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11643 
11644 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11645 		       bp->cnic_eth_dev.max_iscsi_conn);
11646 
11647 	/*
11648 	 * If maximum allowed number of connections is zero -
11649 	 * disable the feature.
11650 	 */
11651 	if (!bp->cnic_eth_dev.max_iscsi_conn)
11652 		bp->flags |= no_flags;
11653 }
11654 
11655 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11656 {
11657 	/* Port info */
11658 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11659 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11660 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11661 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11662 
11663 	/* Node info */
11664 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11665 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11666 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11667 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11668 }
11669 
11670 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11671 {
11672 	u8 count = 0;
11673 
11674 	if (IS_MF(bp)) {
11675 		u8 fid;
11676 
11677 		/* iterate over absolute function ids for this path: */
11678 		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11679 			if (IS_MF_SD(bp)) {
11680 				u32 cfg = MF_CFG_RD(bp,
11681 						    func_mf_config[fid].config);
11682 
11683 				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11684 				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11685 					    FUNC_MF_CFG_PROTOCOL_FCOE))
11686 					count++;
11687 			} else {
11688 				u32 cfg = MF_CFG_RD(bp,
11689 						    func_ext_config[fid].
11690 								      func_cfg);
11691 
11692 				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11693 				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11694 					count++;
11695 			}
11696 		}
11697 	} else { /* SF */
11698 		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11699 
11700 		for (port = 0; port < port_cnt; port++) {
11701 			u32 lic = SHMEM_RD(bp,
11702 					   drv_lic_key[port].max_fcoe_conn) ^
11703 				  FW_ENCODE_32BIT_PATTERN;
11704 			if (lic)
11705 				count++;
11706 		}
11707 	}
11708 
11709 	return count;
11710 }
11711 
11712 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11713 {
11714 	int port = BP_PORT(bp);
11715 	int func = BP_ABS_FUNC(bp);
11716 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11717 				drv_lic_key[port].max_fcoe_conn);
11718 	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11719 
11720 	if (!CNIC_SUPPORT(bp)) {
11721 		bp->flags |= NO_FCOE_FLAG;
11722 		return;
11723 	}
11724 
11725 	/* Get the number of maximum allowed FCoE connections */
11726 	bp->cnic_eth_dev.max_fcoe_conn =
11727 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11728 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11729 
11730 	/* Calculate the number of maximum allowed FCoE tasks */
11731 	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11732 
11733 	/* check if FCoE resources must be shared between different functions */
11734 	if (num_fcoe_func)
11735 		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11736 
11737 	/* Read the WWN: */
11738 	if (!IS_MF(bp)) {
11739 		/* Port info */
11740 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11741 			SHMEM_RD(bp,
11742 				 dev_info.port_hw_config[port].
11743 				 fcoe_wwn_port_name_upper);
11744 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11745 			SHMEM_RD(bp,
11746 				 dev_info.port_hw_config[port].
11747 				 fcoe_wwn_port_name_lower);
11748 
11749 		/* Node info */
11750 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11751 			SHMEM_RD(bp,
11752 				 dev_info.port_hw_config[port].
11753 				 fcoe_wwn_node_name_upper);
11754 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11755 			SHMEM_RD(bp,
11756 				 dev_info.port_hw_config[port].
11757 				 fcoe_wwn_node_name_lower);
11758 	} else if (!IS_MF_SD(bp)) {
11759 		/* Read the WWN info only if the FCoE feature is enabled for
11760 		 * this function.
11761 		 */
11762 		if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11763 			bnx2x_get_ext_wwn_info(bp, func);
11764 	} else {
11765 		if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11766 			bnx2x_get_ext_wwn_info(bp, func);
11767 	}
11768 
11769 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11770 
11771 	/*
11772 	 * If maximum allowed number of connections is zero -
11773 	 * disable the feature.
11774 	 */
11775 	if (!bp->cnic_eth_dev.max_fcoe_conn) {
11776 		bp->flags |= NO_FCOE_FLAG;
11777 		eth_zero_addr(bp->fip_mac);
11778 	}
11779 }
11780 
11781 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11782 {
11783 	/*
11784 	 * iSCSI may be dynamically disabled but reading
11785 	 * info here we will decrease memory usage by driver
11786 	 * if the feature is disabled for good
11787 	 */
11788 	bnx2x_get_iscsi_info(bp);
11789 	bnx2x_get_fcoe_info(bp);
11790 }
11791 
11792 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11793 {
11794 	u32 val, val2;
11795 	int func = BP_ABS_FUNC(bp);
11796 	int port = BP_PORT(bp);
11797 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11798 	u8 *fip_mac = bp->fip_mac;
11799 
11800 	if (IS_MF(bp)) {
11801 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11802 		 * FCoE MAC then the appropriate feature should be disabled.
11803 		 * In non SD mode features configuration comes from struct
11804 		 * func_ext_config.
11805 		 */
11806 		if (!IS_MF_SD(bp)) {
11807 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11808 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11809 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11810 						 iscsi_mac_addr_upper);
11811 				val = MF_CFG_RD(bp, func_ext_config[func].
11812 						iscsi_mac_addr_lower);
11813 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11814 				BNX2X_DEV_INFO
11815 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11816 			} else {
11817 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11818 			}
11819 
11820 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11821 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11822 						 fcoe_mac_addr_upper);
11823 				val = MF_CFG_RD(bp, func_ext_config[func].
11824 						fcoe_mac_addr_lower);
11825 				bnx2x_set_mac_buf(fip_mac, val, val2);
11826 				BNX2X_DEV_INFO
11827 					("Read FCoE L2 MAC: %pM\n", fip_mac);
11828 			} else {
11829 				bp->flags |= NO_FCOE_FLAG;
11830 			}
11831 
11832 			bp->mf_ext_config = cfg;
11833 
11834 		} else { /* SD MODE */
11835 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11836 				/* use primary mac as iscsi mac */
11837 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11838 
11839 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11840 				BNX2X_DEV_INFO
11841 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11842 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11843 				/* use primary mac as fip mac */
11844 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11845 				BNX2X_DEV_INFO("SD FCoE MODE\n");
11846 				BNX2X_DEV_INFO
11847 					("Read FIP MAC: %pM\n", fip_mac);
11848 			}
11849 		}
11850 
11851 		/* If this is a storage-only interface, use SAN mac as
11852 		 * primary MAC. Notice that for SD this is already the case,
11853 		 * as the SAN mac was copied from the primary MAC.
11854 		 */
11855 		if (IS_MF_FCOE_AFEX(bp))
11856 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11857 	} else {
11858 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11859 				iscsi_mac_upper);
11860 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11861 			       iscsi_mac_lower);
11862 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11863 
11864 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11865 				fcoe_fip_mac_upper);
11866 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11867 			       fcoe_fip_mac_lower);
11868 		bnx2x_set_mac_buf(fip_mac, val, val2);
11869 	}
11870 
11871 	/* Disable iSCSI OOO if MAC configuration is invalid. */
11872 	if (!is_valid_ether_addr(iscsi_mac)) {
11873 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11874 		eth_zero_addr(iscsi_mac);
11875 	}
11876 
11877 	/* Disable FCoE if MAC configuration is invalid. */
11878 	if (!is_valid_ether_addr(fip_mac)) {
11879 		bp->flags |= NO_FCOE_FLAG;
11880 		eth_zero_addr(bp->fip_mac);
11881 	}
11882 }
11883 
11884 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11885 {
11886 	u32 val, val2;
11887 	int func = BP_ABS_FUNC(bp);
11888 	int port = BP_PORT(bp);
11889 
11890 	/* Zero primary MAC configuration */
11891 	eth_zero_addr(bp->dev->dev_addr);
11892 
11893 	if (BP_NOMCP(bp)) {
11894 		BNX2X_ERROR("warning: random MAC workaround active\n");
11895 		eth_hw_addr_random(bp->dev);
11896 	} else if (IS_MF(bp)) {
11897 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11898 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11899 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11900 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11901 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11902 
11903 		if (CNIC_SUPPORT(bp))
11904 			bnx2x_get_cnic_mac_hwinfo(bp);
11905 	} else {
11906 		/* in SF read MACs from port configuration */
11907 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11908 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11909 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11910 
11911 		if (CNIC_SUPPORT(bp))
11912 			bnx2x_get_cnic_mac_hwinfo(bp);
11913 	}
11914 
11915 	if (!BP_NOMCP(bp)) {
11916 		/* Read physical port identifier from shmem */
11917 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11918 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11919 		bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11920 		bp->flags |= HAS_PHYS_PORT_ID;
11921 	}
11922 
11923 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11924 
11925 	if (!is_valid_ether_addr(bp->dev->dev_addr))
11926 		dev_err(&bp->pdev->dev,
11927 			"bad Ethernet MAC address configuration: %pM\n"
11928 			"change it manually before bringing up the appropriate network interface\n",
11929 			bp->dev->dev_addr);
11930 }
11931 
11932 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11933 {
11934 	int tmp;
11935 	u32 cfg;
11936 
11937 	if (IS_VF(bp))
11938 		return false;
11939 
11940 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11941 		/* Take function: tmp = func */
11942 		tmp = BP_ABS_FUNC(bp);
11943 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11944 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11945 	} else {
11946 		/* Take port: tmp = port */
11947 		tmp = BP_PORT(bp);
11948 		cfg = SHMEM_RD(bp,
11949 			       dev_info.port_hw_config[tmp].generic_features);
11950 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11951 	}
11952 	return cfg;
11953 }
11954 
11955 static void validate_set_si_mode(struct bnx2x *bp)
11956 {
11957 	u8 func = BP_ABS_FUNC(bp);
11958 	u32 val;
11959 
11960 	val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11961 
11962 	/* check for legal mac (upper bytes) */
11963 	if (val != 0xffff) {
11964 		bp->mf_mode = MULTI_FUNCTION_SI;
11965 		bp->mf_config[BP_VN(bp)] =
11966 			MF_CFG_RD(bp, func_mf_config[func].config);
11967 	} else
11968 		BNX2X_DEV_INFO("illegal MAC address for SI\n");
11969 }
11970 
11971 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11972 {
11973 	int /*abs*/func = BP_ABS_FUNC(bp);
11974 	int vn;
11975 	u32 val = 0, val2 = 0;
11976 	int rc = 0;
11977 
11978 	/* Validate that chip access is feasible */
11979 	if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11980 		dev_err(&bp->pdev->dev,
11981 			"Chip read returns all Fs. Preventing probe from continuing\n");
11982 		return -EINVAL;
11983 	}
11984 
11985 	bnx2x_get_common_hwinfo(bp);
11986 
11987 	/*
11988 	 * initialize IGU parameters
11989 	 */
11990 	if (CHIP_IS_E1x(bp)) {
11991 		bp->common.int_block = INT_BLOCK_HC;
11992 
11993 		bp->igu_dsb_id = DEF_SB_IGU_ID;
11994 		bp->igu_base_sb = 0;
11995 	} else {
11996 		bp->common.int_block = INT_BLOCK_IGU;
11997 
11998 		/* do not allow device reset during IGU info processing */
11999 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
12000 
12001 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
12002 
12003 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
12004 			int tout = 5000;
12005 
12006 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
12007 
12008 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
12009 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
12010 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
12011 
12012 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
12013 				tout--;
12014 				usleep_range(1000, 2000);
12015 			}
12016 
12017 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
12018 				dev_err(&bp->pdev->dev,
12019 					"FORCING Normal Mode failed!!!\n");
12020 				bnx2x_release_hw_lock(bp,
12021 						      HW_LOCK_RESOURCE_RESET);
12022 				return -EPERM;
12023 			}
12024 		}
12025 
12026 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
12027 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
12028 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
12029 		} else
12030 			BNX2X_DEV_INFO("IGU Normal Mode\n");
12031 
12032 		rc = bnx2x_get_igu_cam_info(bp);
12033 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
12034 		if (rc)
12035 			return rc;
12036 	}
12037 
12038 	/*
12039 	 * set base FW non-default (fast path) status block id, this value is
12040 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
12041 	 * determine the id used by the FW.
12042 	 */
12043 	if (CHIP_IS_E1x(bp))
12044 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
12045 	else /*
12046 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
12047 	      * the same queue are indicated on the same IGU SB). So we prefer
12048 	      * FW and IGU SBs to be the same value.
12049 	      */
12050 		bp->base_fw_ndsb = bp->igu_base_sb;
12051 
12052 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
12053 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
12054 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
12055 
12056 	/*
12057 	 * Initialize MF configuration
12058 	 */
12059 	bp->mf_ov = 0;
12060 	bp->mf_mode = 0;
12061 	bp->mf_sub_mode = 0;
12062 	vn = BP_VN(bp);
12063 
12064 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12065 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12066 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
12067 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12068 
12069 		if (SHMEM2_HAS(bp, mf_cfg_addr))
12070 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12071 		else
12072 			bp->common.mf_cfg_base = bp->common.shmem_base +
12073 				offsetof(struct shmem_region, func_mb) +
12074 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12075 		/*
12076 		 * get mf configuration:
12077 		 * 1. Existence of MF configuration
12078 		 * 2. MAC address must be legal (check only upper bytes)
12079 		 *    for  Switch-Independent mode;
12080 		 *    OVLAN must be legal for Switch-Dependent mode
12081 		 * 3. SF_MODE configures specific MF mode
12082 		 */
12083 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12084 			/* get mf configuration */
12085 			val = SHMEM_RD(bp,
12086 				       dev_info.shared_feature_config.config);
12087 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12088 
12089 			switch (val) {
12090 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12091 				validate_set_si_mode(bp);
12092 				break;
12093 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12094 				if ((!CHIP_IS_E1x(bp)) &&
12095 				    (MF_CFG_RD(bp, func_mf_config[func].
12096 					       mac_upper) != 0xffff) &&
12097 				    (SHMEM2_HAS(bp,
12098 						afex_driver_support))) {
12099 					bp->mf_mode = MULTI_FUNCTION_AFEX;
12100 					bp->mf_config[vn] = MF_CFG_RD(bp,
12101 						func_mf_config[func].config);
12102 				} else {
12103 					BNX2X_DEV_INFO("can not configure afex mode\n");
12104 				}
12105 				break;
12106 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12107 				/* get OV configuration */
12108 				val = MF_CFG_RD(bp,
12109 					func_mf_config[FUNC_0].e1hov_tag);
12110 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12111 
12112 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12113 					bp->mf_mode = MULTI_FUNCTION_SD;
12114 					bp->mf_config[vn] = MF_CFG_RD(bp,
12115 						func_mf_config[func].config);
12116 				} else
12117 					BNX2X_DEV_INFO("illegal OV for SD\n");
12118 				break;
12119 			case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12120 				bp->mf_mode = MULTI_FUNCTION_SD;
12121 				bp->mf_sub_mode = SUB_MF_MODE_BD;
12122 				bp->mf_config[vn] =
12123 					MF_CFG_RD(bp,
12124 						  func_mf_config[func].config);
12125 
12126 				if (SHMEM2_HAS(bp, mtu_size)) {
12127 					int mtu_idx = BP_FW_MB_IDX(bp);
12128 					u16 mtu_size;
12129 					u32 mtu;
12130 
12131 					mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12132 					mtu_size = (u16)mtu;
12133 					DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12134 					   mtu_size, mtu);
12135 
12136 					/* if valid: update device mtu */
12137 					if ((mtu_size >= ETH_MIN_PACKET_SIZE) &&
12138 					    (mtu_size <=
12139 					     ETH_MAX_JUMBO_PACKET_SIZE))
12140 						bp->dev->mtu = mtu_size;
12141 				}
12142 				break;
12143 			case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12144 				bp->mf_mode = MULTI_FUNCTION_SD;
12145 				bp->mf_sub_mode = SUB_MF_MODE_UFP;
12146 				bp->mf_config[vn] =
12147 					MF_CFG_RD(bp,
12148 						  func_mf_config[func].config);
12149 				break;
12150 			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12151 				bp->mf_config[vn] = 0;
12152 				break;
12153 			case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12154 				val2 = SHMEM_RD(bp,
12155 					dev_info.shared_hw_config.config_3);
12156 				val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12157 				switch (val2) {
12158 				case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12159 					validate_set_si_mode(bp);
12160 					bp->mf_sub_mode =
12161 							SUB_MF_MODE_NPAR1_DOT_5;
12162 					break;
12163 				default:
12164 					/* Unknown configuration */
12165 					bp->mf_config[vn] = 0;
12166 					BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12167 						       val);
12168 				}
12169 				break;
12170 			default:
12171 				/* Unknown configuration: reset mf_config */
12172 				bp->mf_config[vn] = 0;
12173 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12174 			}
12175 		}
12176 
12177 		BNX2X_DEV_INFO("%s function mode\n",
12178 			       IS_MF(bp) ? "multi" : "single");
12179 
12180 		switch (bp->mf_mode) {
12181 		case MULTI_FUNCTION_SD:
12182 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12183 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
12184 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12185 				bp->mf_ov = val;
12186 				bp->path_has_ovlan = true;
12187 
12188 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12189 					       func, bp->mf_ov, bp->mf_ov);
12190 			} else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12191 				   (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12192 				dev_err(&bp->pdev->dev,
12193 					"Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12194 					func);
12195 				bp->path_has_ovlan = true;
12196 			} else {
12197 				dev_err(&bp->pdev->dev,
12198 					"No valid MF OV for func %d, aborting\n",
12199 					func);
12200 				return -EPERM;
12201 			}
12202 			break;
12203 		case MULTI_FUNCTION_AFEX:
12204 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12205 			break;
12206 		case MULTI_FUNCTION_SI:
12207 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12208 				       func);
12209 			break;
12210 		default:
12211 			if (vn) {
12212 				dev_err(&bp->pdev->dev,
12213 					"VN %d is in a single function mode, aborting\n",
12214 					vn);
12215 				return -EPERM;
12216 			}
12217 			break;
12218 		}
12219 
12220 		/* check if other port on the path needs ovlan:
12221 		 * Since MF configuration is shared between ports
12222 		 * Possible mixed modes are only
12223 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12224 		 */
12225 		if (CHIP_MODE_IS_4_PORT(bp) &&
12226 		    !bp->path_has_ovlan &&
12227 		    !IS_MF(bp) &&
12228 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12229 			u8 other_port = !BP_PORT(bp);
12230 			u8 other_func = BP_PATH(bp) + 2*other_port;
12231 			val = MF_CFG_RD(bp,
12232 					func_mf_config[other_func].e1hov_tag);
12233 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12234 				bp->path_has_ovlan = true;
12235 		}
12236 	}
12237 
12238 	/* adjust igu_sb_cnt to MF for E1H */
12239 	if (CHIP_IS_E1H(bp) && IS_MF(bp))
12240 		bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12241 
12242 	/* port info */
12243 	bnx2x_get_port_hwinfo(bp);
12244 
12245 	/* Get MAC addresses */
12246 	bnx2x_get_mac_hwinfo(bp);
12247 
12248 	bnx2x_get_cnic_info(bp);
12249 
12250 	return rc;
12251 }
12252 
12253 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12254 {
12255 	int cnt, i, block_end, rodi;
12256 	char vpd_start[BNX2X_VPD_LEN+1];
12257 	char str_id_reg[VENDOR_ID_LEN+1];
12258 	char str_id_cap[VENDOR_ID_LEN+1];
12259 	char *vpd_data;
12260 	char *vpd_extended_data = NULL;
12261 	u8 len;
12262 
12263 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
12264 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12265 
12266 	if (cnt < BNX2X_VPD_LEN)
12267 		goto out_not_found;
12268 
12269 	/* VPD RO tag should be first tag after identifier string, hence
12270 	 * we should be able to find it in first BNX2X_VPD_LEN chars
12271 	 */
12272 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
12273 			     PCI_VPD_LRDT_RO_DATA);
12274 	if (i < 0)
12275 		goto out_not_found;
12276 
12277 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
12278 		    pci_vpd_lrdt_size(&vpd_start[i]);
12279 
12280 	i += PCI_VPD_LRDT_TAG_SIZE;
12281 
12282 	if (block_end > BNX2X_VPD_LEN) {
12283 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
12284 		if (vpd_extended_data  == NULL)
12285 			goto out_not_found;
12286 
12287 		/* read rest of vpd image into vpd_extended_data */
12288 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
12289 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
12290 				   block_end - BNX2X_VPD_LEN,
12291 				   vpd_extended_data + BNX2X_VPD_LEN);
12292 		if (cnt < (block_end - BNX2X_VPD_LEN))
12293 			goto out_not_found;
12294 		vpd_data = vpd_extended_data;
12295 	} else
12296 		vpd_data = vpd_start;
12297 
12298 	/* now vpd_data holds full vpd content in both cases */
12299 
12300 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12301 				   PCI_VPD_RO_KEYWORD_MFR_ID);
12302 	if (rodi < 0)
12303 		goto out_not_found;
12304 
12305 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
12306 
12307 	if (len != VENDOR_ID_LEN)
12308 		goto out_not_found;
12309 
12310 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12311 
12312 	/* vendor specific info */
12313 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12314 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
12315 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
12316 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12317 
12318 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12319 						PCI_VPD_RO_KEYWORD_VENDOR0);
12320 		if (rodi >= 0) {
12321 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
12322 
12323 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12324 
12325 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12326 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
12327 				bp->fw_ver[len] = ' ';
12328 			}
12329 		}
12330 		kfree(vpd_extended_data);
12331 		return;
12332 	}
12333 out_not_found:
12334 	kfree(vpd_extended_data);
12335 	return;
12336 }
12337 
12338 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12339 {
12340 	u32 flags = 0;
12341 
12342 	if (CHIP_REV_IS_FPGA(bp))
12343 		SET_FLAGS(flags, MODE_FPGA);
12344 	else if (CHIP_REV_IS_EMUL(bp))
12345 		SET_FLAGS(flags, MODE_EMUL);
12346 	else
12347 		SET_FLAGS(flags, MODE_ASIC);
12348 
12349 	if (CHIP_MODE_IS_4_PORT(bp))
12350 		SET_FLAGS(flags, MODE_PORT4);
12351 	else
12352 		SET_FLAGS(flags, MODE_PORT2);
12353 
12354 	if (CHIP_IS_E2(bp))
12355 		SET_FLAGS(flags, MODE_E2);
12356 	else if (CHIP_IS_E3(bp)) {
12357 		SET_FLAGS(flags, MODE_E3);
12358 		if (CHIP_REV(bp) == CHIP_REV_Ax)
12359 			SET_FLAGS(flags, MODE_E3_A0);
12360 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12361 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12362 	}
12363 
12364 	if (IS_MF(bp)) {
12365 		SET_FLAGS(flags, MODE_MF);
12366 		switch (bp->mf_mode) {
12367 		case MULTI_FUNCTION_SD:
12368 			SET_FLAGS(flags, MODE_MF_SD);
12369 			break;
12370 		case MULTI_FUNCTION_SI:
12371 			SET_FLAGS(flags, MODE_MF_SI);
12372 			break;
12373 		case MULTI_FUNCTION_AFEX:
12374 			SET_FLAGS(flags, MODE_MF_AFEX);
12375 			break;
12376 		}
12377 	} else
12378 		SET_FLAGS(flags, MODE_SF);
12379 
12380 #if defined(__LITTLE_ENDIAN)
12381 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12382 #else /*(__BIG_ENDIAN)*/
12383 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
12384 #endif
12385 	INIT_MODE_FLAGS(bp) = flags;
12386 }
12387 
12388 static int bnx2x_init_bp(struct bnx2x *bp)
12389 {
12390 	int func;
12391 	int rc;
12392 
12393 	mutex_init(&bp->port.phy_mutex);
12394 	mutex_init(&bp->fw_mb_mutex);
12395 	mutex_init(&bp->drv_info_mutex);
12396 	sema_init(&bp->stats_lock, 1);
12397 	bp->drv_info_mng_owner = false;
12398 	INIT_LIST_HEAD(&bp->vlan_reg);
12399 
12400 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12401 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12402 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12403 	INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12404 	if (IS_PF(bp)) {
12405 		rc = bnx2x_get_hwinfo(bp);
12406 		if (rc)
12407 			return rc;
12408 	} else {
12409 		eth_zero_addr(bp->dev->dev_addr);
12410 	}
12411 
12412 	bnx2x_set_modes_bitmap(bp);
12413 
12414 	rc = bnx2x_alloc_mem_bp(bp);
12415 	if (rc)
12416 		return rc;
12417 
12418 	bnx2x_read_fwinfo(bp);
12419 
12420 	func = BP_FUNC(bp);
12421 
12422 	/* need to reset chip if undi was active */
12423 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
12424 		/* init fw_seq */
12425 		bp->fw_seq =
12426 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12427 							DRV_MSG_SEQ_NUMBER_MASK;
12428 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12429 
12430 		rc = bnx2x_prev_unload(bp);
12431 		if (rc) {
12432 			bnx2x_free_mem_bp(bp);
12433 			return rc;
12434 		}
12435 	}
12436 
12437 	if (CHIP_REV_IS_FPGA(bp))
12438 		dev_err(&bp->pdev->dev, "FPGA detected\n");
12439 
12440 	if (BP_NOMCP(bp) && (func == 0))
12441 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12442 
12443 	bp->disable_tpa = disable_tpa;
12444 	bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12445 	/* Reduce memory usage in kdump environment by disabling TPA */
12446 	bp->disable_tpa |= is_kdump_kernel();
12447 
12448 	/* Set TPA flags */
12449 	if (bp->disable_tpa) {
12450 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12451 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12452 	}
12453 
12454 	if (CHIP_IS_E1(bp))
12455 		bp->dropless_fc = 0;
12456 	else
12457 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12458 
12459 	bp->mrrs = mrrs;
12460 
12461 	bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12462 	if (IS_VF(bp))
12463 		bp->rx_ring_size = MAX_RX_AVAIL;
12464 
12465 	/* make sure that the numbers are in the right granularity */
12466 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12467 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12468 
12469 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12470 
12471 	timer_setup(&bp->timer, bnx2x_timer, 0);
12472 	bp->timer.expires = jiffies + bp->current_interval;
12473 
12474 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12475 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12476 	    SHMEM2_HAS(bp, dcbx_en) &&
12477 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12478 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12479 	    SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12480 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12481 		bnx2x_dcbx_init_params(bp);
12482 	} else {
12483 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12484 	}
12485 
12486 	if (CHIP_IS_E1x(bp))
12487 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12488 	else
12489 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
12490 
12491 	/* multiple tx priority */
12492 	if (IS_VF(bp))
12493 		bp->max_cos = 1;
12494 	else if (CHIP_IS_E1x(bp))
12495 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12496 	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12497 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12498 	else if (CHIP_IS_E3B0(bp))
12499 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12500 	else
12501 		BNX2X_ERR("unknown chip %x revision %x\n",
12502 			  CHIP_NUM(bp), CHIP_REV(bp));
12503 	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12504 
12505 	/* We need at least one default status block for slow-path events,
12506 	 * second status block for the L2 queue, and a third status block for
12507 	 * CNIC if supported.
12508 	 */
12509 	if (IS_VF(bp))
12510 		bp->min_msix_vec_cnt = 1;
12511 	else if (CNIC_SUPPORT(bp))
12512 		bp->min_msix_vec_cnt = 3;
12513 	else /* PF w/o cnic */
12514 		bp->min_msix_vec_cnt = 2;
12515 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12516 
12517 	bp->dump_preset_idx = 1;
12518 
12519 	return rc;
12520 }
12521 
12522 /****************************************************************************
12523 * General service functions
12524 ****************************************************************************/
12525 
12526 /*
12527  * net_device service functions
12528  */
12529 
12530 /* called with rtnl_lock */
12531 static int bnx2x_open(struct net_device *dev)
12532 {
12533 	struct bnx2x *bp = netdev_priv(dev);
12534 	int rc;
12535 
12536 	bp->stats_init = true;
12537 
12538 	netif_carrier_off(dev);
12539 
12540 	bnx2x_set_power_state(bp, PCI_D0);
12541 
12542 	/* If parity had happen during the unload, then attentions
12543 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12544 	 * want the first function loaded on the current engine to
12545 	 * complete the recovery.
12546 	 * Parity recovery is only relevant for PF driver.
12547 	 */
12548 	if (IS_PF(bp)) {
12549 		int other_engine = BP_PATH(bp) ? 0 : 1;
12550 		bool other_load_status, load_status;
12551 		bool global = false;
12552 
12553 		other_load_status = bnx2x_get_load_status(bp, other_engine);
12554 		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12555 		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12556 		    bnx2x_chk_parity_attn(bp, &global, true)) {
12557 			do {
12558 				/* If there are attentions and they are in a
12559 				 * global blocks, set the GLOBAL_RESET bit
12560 				 * regardless whether it will be this function
12561 				 * that will complete the recovery or not.
12562 				 */
12563 				if (global)
12564 					bnx2x_set_reset_global(bp);
12565 
12566 				/* Only the first function on the current
12567 				 * engine should try to recover in open. In case
12568 				 * of attentions in global blocks only the first
12569 				 * in the chip should try to recover.
12570 				 */
12571 				if ((!load_status &&
12572 				     (!global || !other_load_status)) &&
12573 				      bnx2x_trylock_leader_lock(bp) &&
12574 				      !bnx2x_leader_reset(bp)) {
12575 					netdev_info(bp->dev,
12576 						    "Recovered in open\n");
12577 					break;
12578 				}
12579 
12580 				/* recovery has failed... */
12581 				bnx2x_set_power_state(bp, PCI_D3hot);
12582 				bp->recovery_state = BNX2X_RECOVERY_FAILED;
12583 
12584 				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12585 					  "If you still see this message after a few retries then power cycle is required.\n");
12586 
12587 				return -EAGAIN;
12588 			} while (0);
12589 		}
12590 	}
12591 
12592 	bp->recovery_state = BNX2X_RECOVERY_DONE;
12593 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
12594 	if (rc)
12595 		return rc;
12596 
12597 	if (IS_PF(bp))
12598 		udp_tunnel_get_rx_info(dev);
12599 
12600 	return 0;
12601 }
12602 
12603 /* called with rtnl_lock */
12604 static int bnx2x_close(struct net_device *dev)
12605 {
12606 	struct bnx2x *bp = netdev_priv(dev);
12607 
12608 	/* Unload the driver, release IRQs */
12609 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12610 
12611 	return 0;
12612 }
12613 
12614 struct bnx2x_mcast_list_elem_group
12615 {
12616 	struct list_head mcast_group_link;
12617 	struct bnx2x_mcast_list_elem mcast_elems[];
12618 };
12619 
12620 #define MCAST_ELEMS_PER_PG \
12621 	((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12622 	sizeof(struct bnx2x_mcast_list_elem))
12623 
12624 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
12625 {
12626 	struct bnx2x_mcast_list_elem_group *current_mcast_group;
12627 
12628 	while (!list_empty(mcast_group_list)) {
12629 		current_mcast_group = list_first_entry(mcast_group_list,
12630 				      struct bnx2x_mcast_list_elem_group,
12631 				      mcast_group_link);
12632 		list_del(&current_mcast_group->mcast_group_link);
12633 		free_page((unsigned long)current_mcast_group);
12634 	}
12635 }
12636 
12637 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12638 				      struct bnx2x_mcast_ramrod_params *p,
12639 				      struct list_head *mcast_group_list)
12640 {
12641 	struct bnx2x_mcast_list_elem *mc_mac;
12642 	struct netdev_hw_addr *ha;
12643 	struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
12644 	int mc_count = netdev_mc_count(bp->dev);
12645 	int offset = 0;
12646 
12647 	INIT_LIST_HEAD(&p->mcast_list);
12648 	netdev_for_each_mc_addr(ha, bp->dev) {
12649 		if (!offset) {
12650 			current_mcast_group =
12651 				(struct bnx2x_mcast_list_elem_group *)
12652 				__get_free_page(GFP_ATOMIC);
12653 			if (!current_mcast_group) {
12654 				bnx2x_free_mcast_macs_list(mcast_group_list);
12655 				BNX2X_ERR("Failed to allocate mc MAC list\n");
12656 				return -ENOMEM;
12657 			}
12658 			list_add(&current_mcast_group->mcast_group_link,
12659 				 mcast_group_list);
12660 		}
12661 		mc_mac = &current_mcast_group->mcast_elems[offset];
12662 		mc_mac->mac = bnx2x_mc_addr(ha);
12663 		list_add_tail(&mc_mac->link, &p->mcast_list);
12664 		offset++;
12665 		if (offset == MCAST_ELEMS_PER_PG)
12666 			offset = 0;
12667 	}
12668 	p->mcast_list_len = mc_count;
12669 	return 0;
12670 }
12671 
12672 /**
12673  * bnx2x_set_uc_list - configure a new unicast MACs list.
12674  *
12675  * @bp: driver handle
12676  *
12677  * We will use zero (0) as a MAC type for these MACs.
12678  */
12679 static int bnx2x_set_uc_list(struct bnx2x *bp)
12680 {
12681 	int rc;
12682 	struct net_device *dev = bp->dev;
12683 	struct netdev_hw_addr *ha;
12684 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12685 	unsigned long ramrod_flags = 0;
12686 
12687 	/* First schedule a cleanup up of old configuration */
12688 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12689 	if (rc < 0) {
12690 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12691 		return rc;
12692 	}
12693 
12694 	netdev_for_each_uc_addr(ha, dev) {
12695 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12696 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
12697 		if (rc == -EEXIST) {
12698 			DP(BNX2X_MSG_SP,
12699 			   "Failed to schedule ADD operations: %d\n", rc);
12700 			/* do not treat adding same MAC as error */
12701 			rc = 0;
12702 
12703 		} else if (rc < 0) {
12704 
12705 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12706 				  rc);
12707 			return rc;
12708 		}
12709 	}
12710 
12711 	/* Execute the pending commands */
12712 	__set_bit(RAMROD_CONT, &ramrod_flags);
12713 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12714 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
12715 }
12716 
12717 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
12718 {
12719 	LIST_HEAD(mcast_group_list);
12720 	struct net_device *dev = bp->dev;
12721 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12722 	int rc = 0;
12723 
12724 	rparam.mcast_obj = &bp->mcast_obj;
12725 
12726 	/* first, clear all configured multicast MACs */
12727 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12728 	if (rc < 0) {
12729 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12730 		return rc;
12731 	}
12732 
12733 	/* then, configure a new MACs list */
12734 	if (netdev_mc_count(dev)) {
12735 		rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12736 		if (rc)
12737 			return rc;
12738 
12739 		/* Now add the new MACs */
12740 		rc = bnx2x_config_mcast(bp, &rparam,
12741 					BNX2X_MCAST_CMD_ADD);
12742 		if (rc < 0)
12743 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12744 				  rc);
12745 
12746 		bnx2x_free_mcast_macs_list(&mcast_group_list);
12747 	}
12748 
12749 	return rc;
12750 }
12751 
12752 static int bnx2x_set_mc_list(struct bnx2x *bp)
12753 {
12754 	LIST_HEAD(mcast_group_list);
12755 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12756 	struct net_device *dev = bp->dev;
12757 	int rc = 0;
12758 
12759 	/* On older adapters, we need to flush and re-add filters */
12760 	if (CHIP_IS_E1x(bp))
12761 		return bnx2x_set_mc_list_e1x(bp);
12762 
12763 	rparam.mcast_obj = &bp->mcast_obj;
12764 
12765 	if (netdev_mc_count(dev)) {
12766 		rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12767 		if (rc)
12768 			return rc;
12769 
12770 		/* Override the curently configured set of mc filters */
12771 		rc = bnx2x_config_mcast(bp, &rparam,
12772 					BNX2X_MCAST_CMD_SET);
12773 		if (rc < 0)
12774 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12775 				  rc);
12776 
12777 		bnx2x_free_mcast_macs_list(&mcast_group_list);
12778 	} else {
12779 		/* If no mc addresses are required, flush the configuration */
12780 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12781 		if (rc < 0)
12782 			BNX2X_ERR("Failed to clear multicast configuration %d\n",
12783 				  rc);
12784 	}
12785 
12786 	return rc;
12787 }
12788 
12789 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12790 static void bnx2x_set_rx_mode(struct net_device *dev)
12791 {
12792 	struct bnx2x *bp = netdev_priv(dev);
12793 
12794 	if (bp->state != BNX2X_STATE_OPEN) {
12795 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12796 		return;
12797 	} else {
12798 		/* Schedule an SP task to handle rest of change */
12799 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12800 				       NETIF_MSG_IFUP);
12801 	}
12802 }
12803 
12804 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12805 {
12806 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12807 
12808 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12809 
12810 	netif_addr_lock_bh(bp->dev);
12811 
12812 	if (bp->dev->flags & IFF_PROMISC) {
12813 		rx_mode = BNX2X_RX_MODE_PROMISC;
12814 	} else if ((bp->dev->flags & IFF_ALLMULTI) ||
12815 		   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12816 		    CHIP_IS_E1(bp))) {
12817 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
12818 	} else {
12819 		if (IS_PF(bp)) {
12820 			/* some multicasts */
12821 			if (bnx2x_set_mc_list(bp) < 0)
12822 				rx_mode = BNX2X_RX_MODE_ALLMULTI;
12823 
12824 			/* release bh lock, as bnx2x_set_uc_list might sleep */
12825 			netif_addr_unlock_bh(bp->dev);
12826 			if (bnx2x_set_uc_list(bp) < 0)
12827 				rx_mode = BNX2X_RX_MODE_PROMISC;
12828 			netif_addr_lock_bh(bp->dev);
12829 		} else {
12830 			/* configuring mcast to a vf involves sleeping (when we
12831 			 * wait for the pf's response).
12832 			 */
12833 			bnx2x_schedule_sp_rtnl(bp,
12834 					       BNX2X_SP_RTNL_VFPF_MCAST, 0);
12835 		}
12836 	}
12837 
12838 	bp->rx_mode = rx_mode;
12839 	/* handle ISCSI SD mode */
12840 	if (IS_MF_ISCSI_ONLY(bp))
12841 		bp->rx_mode = BNX2X_RX_MODE_NONE;
12842 
12843 	/* Schedule the rx_mode command */
12844 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12845 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12846 		netif_addr_unlock_bh(bp->dev);
12847 		return;
12848 	}
12849 
12850 	if (IS_PF(bp)) {
12851 		bnx2x_set_storm_rx_mode(bp);
12852 		netif_addr_unlock_bh(bp->dev);
12853 	} else {
12854 		/* VF will need to request the PF to make this change, and so
12855 		 * the VF needs to release the bottom-half lock prior to the
12856 		 * request (as it will likely require sleep on the VF side)
12857 		 */
12858 		netif_addr_unlock_bh(bp->dev);
12859 		bnx2x_vfpf_storm_rx_mode(bp);
12860 	}
12861 }
12862 
12863 /* called with rtnl_lock */
12864 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12865 			   int devad, u16 addr)
12866 {
12867 	struct bnx2x *bp = netdev_priv(netdev);
12868 	u16 value;
12869 	int rc;
12870 
12871 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12872 	   prtad, devad, addr);
12873 
12874 	/* The HW expects different devad if CL22 is used */
12875 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12876 
12877 	bnx2x_acquire_phy_lock(bp);
12878 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12879 	bnx2x_release_phy_lock(bp);
12880 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12881 
12882 	if (!rc)
12883 		rc = value;
12884 	return rc;
12885 }
12886 
12887 /* called with rtnl_lock */
12888 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12889 			    u16 addr, u16 value)
12890 {
12891 	struct bnx2x *bp = netdev_priv(netdev);
12892 	int rc;
12893 
12894 	DP(NETIF_MSG_LINK,
12895 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12896 	   prtad, devad, addr, value);
12897 
12898 	/* The HW expects different devad if CL22 is used */
12899 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12900 
12901 	bnx2x_acquire_phy_lock(bp);
12902 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12903 	bnx2x_release_phy_lock(bp);
12904 	return rc;
12905 }
12906 
12907 /* called with rtnl_lock */
12908 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12909 {
12910 	struct bnx2x *bp = netdev_priv(dev);
12911 	struct mii_ioctl_data *mdio = if_mii(ifr);
12912 
12913 	if (!netif_running(dev))
12914 		return -EAGAIN;
12915 
12916 	switch (cmd) {
12917 	case SIOCSHWTSTAMP:
12918 		return bnx2x_hwtstamp_ioctl(bp, ifr);
12919 	default:
12920 		DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12921 		   mdio->phy_id, mdio->reg_num, mdio->val_in);
12922 		return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12923 	}
12924 }
12925 
12926 static int bnx2x_validate_addr(struct net_device *dev)
12927 {
12928 	struct bnx2x *bp = netdev_priv(dev);
12929 
12930 	/* query the bulletin board for mac address configured by the PF */
12931 	if (IS_VF(bp))
12932 		bnx2x_sample_bulletin(bp);
12933 
12934 	if (!is_valid_ether_addr(dev->dev_addr)) {
12935 		BNX2X_ERR("Non-valid Ethernet address\n");
12936 		return -EADDRNOTAVAIL;
12937 	}
12938 	return 0;
12939 }
12940 
12941 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12942 				  struct netdev_phys_item_id *ppid)
12943 {
12944 	struct bnx2x *bp = netdev_priv(netdev);
12945 
12946 	if (!(bp->flags & HAS_PHYS_PORT_ID))
12947 		return -EOPNOTSUPP;
12948 
12949 	ppid->id_len = sizeof(bp->phys_port_id);
12950 	memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12951 
12952 	return 0;
12953 }
12954 
12955 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12956 					      struct net_device *dev,
12957 					      netdev_features_t features)
12958 {
12959 	/*
12960 	 * A skb with gso_size + header length > 9700 will cause a
12961 	 * firmware panic. Drop GSO support.
12962 	 *
12963 	 * Eventually the upper layer should not pass these packets down.
12964 	 *
12965 	 * For speed, if the gso_size is <= 9000, assume there will
12966 	 * not be 700 bytes of headers and pass it through. Only do a
12967 	 * full (slow) validation if the gso_size is > 9000.
12968 	 *
12969 	 * (Due to the way SKB_BY_FRAGS works this will also do a full
12970 	 * validation in that case.)
12971 	 */
12972 	if (unlikely(skb_is_gso(skb) &&
12973 		     (skb_shinfo(skb)->gso_size > 9000) &&
12974 		     !skb_gso_validate_mac_len(skb, 9700)))
12975 		features &= ~NETIF_F_GSO_MASK;
12976 
12977 	features = vlan_features_check(skb, features);
12978 	return vxlan_features_check(skb, features);
12979 }
12980 
12981 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12982 {
12983 	int rc;
12984 
12985 	if (IS_PF(bp)) {
12986 		unsigned long ramrod_flags = 0;
12987 
12988 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12989 		rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12990 					add, &ramrod_flags);
12991 	} else {
12992 		rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12993 	}
12994 
12995 	return rc;
12996 }
12997 
12998 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
12999 {
13000 	struct bnx2x_vlan_entry *vlan;
13001 	int rc = 0;
13002 
13003 	/* Configure all non-configured entries */
13004 	list_for_each_entry(vlan, &bp->vlan_reg, link) {
13005 		if (vlan->hw)
13006 			continue;
13007 
13008 		if (bp->vlan_cnt >= bp->vlan_credit)
13009 			return -ENOBUFS;
13010 
13011 		rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
13012 		if (rc) {
13013 			BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
13014 			return rc;
13015 		}
13016 
13017 		DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
13018 		vlan->hw = true;
13019 		bp->vlan_cnt++;
13020 	}
13021 
13022 	return 0;
13023 }
13024 
13025 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
13026 {
13027 	bool need_accept_any_vlan;
13028 
13029 	need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
13030 
13031 	if (bp->accept_any_vlan != need_accept_any_vlan) {
13032 		bp->accept_any_vlan = need_accept_any_vlan;
13033 		DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
13034 		   bp->accept_any_vlan ? "raised" : "cleared");
13035 		if (set_rx_mode) {
13036 			if (IS_PF(bp))
13037 				bnx2x_set_rx_mode_inner(bp);
13038 			else
13039 				bnx2x_vfpf_storm_rx_mode(bp);
13040 		}
13041 	}
13042 }
13043 
13044 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
13045 {
13046 	/* Don't set rx mode here. Our caller will do it. */
13047 	bnx2x_vlan_configure(bp, false);
13048 
13049 	return 0;
13050 }
13051 
13052 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
13053 {
13054 	struct bnx2x *bp = netdev_priv(dev);
13055 	struct bnx2x_vlan_entry *vlan;
13056 
13057 	DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
13058 
13059 	vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
13060 	if (!vlan)
13061 		return -ENOMEM;
13062 
13063 	vlan->vid = vid;
13064 	vlan->hw = false;
13065 	list_add_tail(&vlan->link, &bp->vlan_reg);
13066 
13067 	if (netif_running(dev))
13068 		bnx2x_vlan_configure(bp, true);
13069 
13070 	return 0;
13071 }
13072 
13073 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
13074 {
13075 	struct bnx2x *bp = netdev_priv(dev);
13076 	struct bnx2x_vlan_entry *vlan;
13077 	bool found = false;
13078 	int rc = 0;
13079 
13080 	DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
13081 
13082 	list_for_each_entry(vlan, &bp->vlan_reg, link)
13083 		if (vlan->vid == vid) {
13084 			found = true;
13085 			break;
13086 		}
13087 
13088 	if (!found) {
13089 		BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
13090 		return -EINVAL;
13091 	}
13092 
13093 	if (netif_running(dev) && vlan->hw) {
13094 		rc = __bnx2x_vlan_configure_vid(bp, vid, false);
13095 		DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
13096 		bp->vlan_cnt--;
13097 	}
13098 
13099 	list_del(&vlan->link);
13100 	kfree(vlan);
13101 
13102 	if (netif_running(dev))
13103 		bnx2x_vlan_configure(bp, true);
13104 
13105 	DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13106 
13107 	return rc;
13108 }
13109 
13110 static const struct net_device_ops bnx2x_netdev_ops = {
13111 	.ndo_open		= bnx2x_open,
13112 	.ndo_stop		= bnx2x_close,
13113 	.ndo_start_xmit		= bnx2x_start_xmit,
13114 	.ndo_select_queue	= bnx2x_select_queue,
13115 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
13116 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
13117 	.ndo_validate_addr	= bnx2x_validate_addr,
13118 	.ndo_do_ioctl		= bnx2x_ioctl,
13119 	.ndo_change_mtu		= bnx2x_change_mtu,
13120 	.ndo_fix_features	= bnx2x_fix_features,
13121 	.ndo_set_features	= bnx2x_set_features,
13122 	.ndo_tx_timeout		= bnx2x_tx_timeout,
13123 	.ndo_vlan_rx_add_vid	= bnx2x_vlan_rx_add_vid,
13124 	.ndo_vlan_rx_kill_vid	= bnx2x_vlan_rx_kill_vid,
13125 	.ndo_setup_tc		= __bnx2x_setup_tc,
13126 #ifdef CONFIG_BNX2X_SRIOV
13127 	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
13128 	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
13129 	.ndo_get_vf_config	= bnx2x_get_vf_config,
13130 	.ndo_set_vf_spoofchk	= bnx2x_set_vf_spoofchk,
13131 #endif
13132 #ifdef NETDEV_FCOE_WWNN
13133 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
13134 #endif
13135 
13136 	.ndo_get_phys_port_id	= bnx2x_get_phys_port_id,
13137 	.ndo_set_vf_link_state	= bnx2x_set_vf_link_state,
13138 	.ndo_features_check	= bnx2x_features_check,
13139 	.ndo_udp_tunnel_add	= bnx2x_udp_tunnel_add,
13140 	.ndo_udp_tunnel_del	= bnx2x_udp_tunnel_del,
13141 };
13142 
13143 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
13144 {
13145 	struct device *dev = &bp->pdev->dev;
13146 
13147 	if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
13148 	    dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
13149 		dev_err(dev, "System does not support DMA, aborting\n");
13150 		return -EIO;
13151 	}
13152 
13153 	return 0;
13154 }
13155 
13156 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13157 {
13158 	if (bp->flags & AER_ENABLED) {
13159 		pci_disable_pcie_error_reporting(bp->pdev);
13160 		bp->flags &= ~AER_ENABLED;
13161 	}
13162 }
13163 
13164 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13165 			  struct net_device *dev, unsigned long board_type)
13166 {
13167 	int rc;
13168 	u32 pci_cfg_dword;
13169 	bool chip_is_e1x = (board_type == BCM57710 ||
13170 			    board_type == BCM57711 ||
13171 			    board_type == BCM57711E);
13172 
13173 	SET_NETDEV_DEV(dev, &pdev->dev);
13174 
13175 	bp->dev = dev;
13176 	bp->pdev = pdev;
13177 
13178 	rc = pci_enable_device(pdev);
13179 	if (rc) {
13180 		dev_err(&bp->pdev->dev,
13181 			"Cannot enable PCI device, aborting\n");
13182 		goto err_out;
13183 	}
13184 
13185 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13186 		dev_err(&bp->pdev->dev,
13187 			"Cannot find PCI device base address, aborting\n");
13188 		rc = -ENODEV;
13189 		goto err_out_disable;
13190 	}
13191 
13192 	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13193 		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13194 		rc = -ENODEV;
13195 		goto err_out_disable;
13196 	}
13197 
13198 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13199 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13200 	    PCICFG_REVESION_ID_ERROR_VAL) {
13201 		pr_err("PCI device error, probably due to fan failure, aborting\n");
13202 		rc = -ENODEV;
13203 		goto err_out_disable;
13204 	}
13205 
13206 	if (atomic_read(&pdev->enable_cnt) == 1) {
13207 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13208 		if (rc) {
13209 			dev_err(&bp->pdev->dev,
13210 				"Cannot obtain PCI resources, aborting\n");
13211 			goto err_out_disable;
13212 		}
13213 
13214 		pci_set_master(pdev);
13215 		pci_save_state(pdev);
13216 	}
13217 
13218 	if (IS_PF(bp)) {
13219 		if (!pdev->pm_cap) {
13220 			dev_err(&bp->pdev->dev,
13221 				"Cannot find power management capability, aborting\n");
13222 			rc = -EIO;
13223 			goto err_out_release;
13224 		}
13225 	}
13226 
13227 	if (!pci_is_pcie(pdev)) {
13228 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13229 		rc = -EIO;
13230 		goto err_out_release;
13231 	}
13232 
13233 	rc = bnx2x_set_coherency_mask(bp);
13234 	if (rc)
13235 		goto err_out_release;
13236 
13237 	dev->mem_start = pci_resource_start(pdev, 0);
13238 	dev->base_addr = dev->mem_start;
13239 	dev->mem_end = pci_resource_end(pdev, 0);
13240 
13241 	dev->irq = pdev->irq;
13242 
13243 	bp->regview = pci_ioremap_bar(pdev, 0);
13244 	if (!bp->regview) {
13245 		dev_err(&bp->pdev->dev,
13246 			"Cannot map register space, aborting\n");
13247 		rc = -ENOMEM;
13248 		goto err_out_release;
13249 	}
13250 
13251 	/* In E1/E1H use pci device function given by kernel.
13252 	 * In E2/E3 read physical function from ME register since these chips
13253 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
13254 	 * (depending on hypervisor).
13255 	 */
13256 	if (chip_is_e1x) {
13257 		bp->pf_num = PCI_FUNC(pdev->devfn);
13258 	} else {
13259 		/* chip is E2/3*/
13260 		pci_read_config_dword(bp->pdev,
13261 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
13262 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13263 				  ME_REG_ABS_PF_NUM_SHIFT);
13264 	}
13265 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13266 
13267 	/* clean indirect addresses */
13268 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13269 			       PCICFG_VENDOR_ID_OFFSET);
13270 
13271 	/* Set PCIe reset type to fundamental for EEH recovery */
13272 	pdev->needs_freset = 1;
13273 
13274 	/* AER (Advanced Error reporting) configuration */
13275 	rc = pci_enable_pcie_error_reporting(pdev);
13276 	if (!rc)
13277 		bp->flags |= AER_ENABLED;
13278 	else
13279 		BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13280 
13281 	/*
13282 	 * Clean the following indirect addresses for all functions since it
13283 	 * is not used by the driver.
13284 	 */
13285 	if (IS_PF(bp)) {
13286 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13287 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13288 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13289 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13290 
13291 		if (chip_is_e1x) {
13292 			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13293 			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13294 			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13295 			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13296 		}
13297 
13298 		/* Enable internal target-read (in case we are probed after PF
13299 		 * FLR). Must be done prior to any BAR read access. Only for
13300 		 * 57712 and up
13301 		 */
13302 		if (!chip_is_e1x)
13303 			REG_WR(bp,
13304 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13305 	}
13306 
13307 	dev->watchdog_timeo = TX_TIMEOUT;
13308 
13309 	dev->netdev_ops = &bnx2x_netdev_ops;
13310 	bnx2x_set_ethtool_ops(bp, dev);
13311 
13312 	dev->priv_flags |= IFF_UNICAST_FLT;
13313 
13314 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13315 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13316 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW |
13317 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13318 	if (!chip_is_e1x) {
13319 		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13320 				    NETIF_F_GSO_IPXIP4 |
13321 				    NETIF_F_GSO_UDP_TUNNEL |
13322 				    NETIF_F_GSO_UDP_TUNNEL_CSUM |
13323 				    NETIF_F_GSO_PARTIAL;
13324 
13325 		dev->hw_enc_features =
13326 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13327 			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13328 			NETIF_F_GSO_IPXIP4 |
13329 			NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13330 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
13331 			NETIF_F_GSO_PARTIAL;
13332 
13333 		dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
13334 					    NETIF_F_GSO_UDP_TUNNEL_CSUM;
13335 	}
13336 
13337 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13338 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13339 
13340 	if (IS_PF(bp)) {
13341 		if (chip_is_e1x)
13342 			bp->accept_any_vlan = true;
13343 		else
13344 			dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13345 	}
13346 	/* For VF we'll know whether to enable VLAN filtering after
13347 	 * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13348 	 */
13349 
13350 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13351 	dev->features |= NETIF_F_HIGHDMA;
13352 	if (dev->features & NETIF_F_LRO)
13353 		dev->features &= ~NETIF_F_GRO_HW;
13354 
13355 	/* Add Loopback capability to the device */
13356 	dev->hw_features |= NETIF_F_LOOPBACK;
13357 
13358 #ifdef BCM_DCBNL
13359 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13360 #endif
13361 
13362 	/* MTU range, 46 - 9600 */
13363 	dev->min_mtu = ETH_MIN_PACKET_SIZE;
13364 	dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE;
13365 
13366 	/* get_port_hwinfo() will set prtad and mmds properly */
13367 	bp->mdio.prtad = MDIO_PRTAD_NONE;
13368 	bp->mdio.mmds = 0;
13369 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13370 	bp->mdio.dev = dev;
13371 	bp->mdio.mdio_read = bnx2x_mdio_read;
13372 	bp->mdio.mdio_write = bnx2x_mdio_write;
13373 
13374 	return 0;
13375 
13376 err_out_release:
13377 	if (atomic_read(&pdev->enable_cnt) == 1)
13378 		pci_release_regions(pdev);
13379 
13380 err_out_disable:
13381 	pci_disable_device(pdev);
13382 
13383 err_out:
13384 	return rc;
13385 }
13386 
13387 static int bnx2x_check_firmware(struct bnx2x *bp)
13388 {
13389 	const struct firmware *firmware = bp->firmware;
13390 	struct bnx2x_fw_file_hdr *fw_hdr;
13391 	struct bnx2x_fw_file_section *sections;
13392 	u32 offset, len, num_ops;
13393 	__be16 *ops_offsets;
13394 	int i;
13395 	const u8 *fw_ver;
13396 
13397 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13398 		BNX2X_ERR("Wrong FW size\n");
13399 		return -EINVAL;
13400 	}
13401 
13402 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13403 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
13404 
13405 	/* Make sure none of the offsets and sizes make us read beyond
13406 	 * the end of the firmware data */
13407 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13408 		offset = be32_to_cpu(sections[i].offset);
13409 		len = be32_to_cpu(sections[i].len);
13410 		if (offset + len > firmware->size) {
13411 			BNX2X_ERR("Section %d length is out of bounds\n", i);
13412 			return -EINVAL;
13413 		}
13414 	}
13415 
13416 	/* Likewise for the init_ops offsets */
13417 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13418 	ops_offsets = (__force __be16 *)(firmware->data + offset);
13419 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13420 
13421 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13422 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13423 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
13424 			return -EINVAL;
13425 		}
13426 	}
13427 
13428 	/* Check FW version */
13429 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
13430 	fw_ver = firmware->data + offset;
13431 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
13432 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
13433 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
13434 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
13435 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13436 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13437 		       BCM_5710_FW_MAJOR_VERSION,
13438 		       BCM_5710_FW_MINOR_VERSION,
13439 		       BCM_5710_FW_REVISION_VERSION,
13440 		       BCM_5710_FW_ENGINEERING_VERSION);
13441 		return -EINVAL;
13442 	}
13443 
13444 	return 0;
13445 }
13446 
13447 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13448 {
13449 	const __be32 *source = (const __be32 *)_source;
13450 	u32 *target = (u32 *)_target;
13451 	u32 i;
13452 
13453 	for (i = 0; i < n/4; i++)
13454 		target[i] = be32_to_cpu(source[i]);
13455 }
13456 
13457 /*
13458    Ops array is stored in the following format:
13459    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13460  */
13461 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13462 {
13463 	const __be32 *source = (const __be32 *)_source;
13464 	struct raw_op *target = (struct raw_op *)_target;
13465 	u32 i, j, tmp;
13466 
13467 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
13468 		tmp = be32_to_cpu(source[j]);
13469 		target[i].op = (tmp >> 24) & 0xff;
13470 		target[i].offset = tmp & 0xffffff;
13471 		target[i].raw_data = be32_to_cpu(source[j + 1]);
13472 	}
13473 }
13474 
13475 /* IRO array is stored in the following format:
13476  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13477  */
13478 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13479 {
13480 	const __be32 *source = (const __be32 *)_source;
13481 	struct iro *target = (struct iro *)_target;
13482 	u32 i, j, tmp;
13483 
13484 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13485 		target[i].base = be32_to_cpu(source[j]);
13486 		j++;
13487 		tmp = be32_to_cpu(source[j]);
13488 		target[i].m1 = (tmp >> 16) & 0xffff;
13489 		target[i].m2 = tmp & 0xffff;
13490 		j++;
13491 		tmp = be32_to_cpu(source[j]);
13492 		target[i].m3 = (tmp >> 16) & 0xffff;
13493 		target[i].size = tmp & 0xffff;
13494 		j++;
13495 	}
13496 }
13497 
13498 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13499 {
13500 	const __be16 *source = (const __be16 *)_source;
13501 	u16 *target = (u16 *)_target;
13502 	u32 i;
13503 
13504 	for (i = 0; i < n/2; i++)
13505 		target[i] = be16_to_cpu(source[i]);
13506 }
13507 
13508 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
13509 do {									\
13510 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
13511 	bp->arr = kmalloc(len, GFP_KERNEL);				\
13512 	if (!bp->arr)							\
13513 		goto lbl;						\
13514 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
13515 	     (u8 *)bp->arr, len);					\
13516 } while (0)
13517 
13518 static int bnx2x_init_firmware(struct bnx2x *bp)
13519 {
13520 	const char *fw_file_name;
13521 	struct bnx2x_fw_file_hdr *fw_hdr;
13522 	int rc;
13523 
13524 	if (bp->firmware)
13525 		return 0;
13526 
13527 	if (CHIP_IS_E1(bp))
13528 		fw_file_name = FW_FILE_NAME_E1;
13529 	else if (CHIP_IS_E1H(bp))
13530 		fw_file_name = FW_FILE_NAME_E1H;
13531 	else if (!CHIP_IS_E1x(bp))
13532 		fw_file_name = FW_FILE_NAME_E2;
13533 	else {
13534 		BNX2X_ERR("Unsupported chip revision\n");
13535 		return -EINVAL;
13536 	}
13537 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13538 
13539 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13540 	if (rc) {
13541 		BNX2X_ERR("Can't load firmware file %s\n",
13542 			  fw_file_name);
13543 		goto request_firmware_exit;
13544 	}
13545 
13546 	rc = bnx2x_check_firmware(bp);
13547 	if (rc) {
13548 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13549 		goto request_firmware_exit;
13550 	}
13551 
13552 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13553 
13554 	/* Initialize the pointers to the init arrays */
13555 	/* Blob */
13556 	rc = -ENOMEM;
13557 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13558 
13559 	/* Opcodes */
13560 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13561 
13562 	/* Offsets */
13563 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13564 			    be16_to_cpu_n);
13565 
13566 	/* STORMs firmware */
13567 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13568 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13569 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13570 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13571 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13572 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13573 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13574 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
13575 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13576 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13577 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13578 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13579 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13580 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13581 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13582 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
13583 	/* IRO */
13584 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13585 
13586 	return 0;
13587 
13588 iro_alloc_err:
13589 	kfree(bp->init_ops_offsets);
13590 init_offsets_alloc_err:
13591 	kfree(bp->init_ops);
13592 init_ops_alloc_err:
13593 	kfree(bp->init_data);
13594 request_firmware_exit:
13595 	release_firmware(bp->firmware);
13596 	bp->firmware = NULL;
13597 
13598 	return rc;
13599 }
13600 
13601 static void bnx2x_release_firmware(struct bnx2x *bp)
13602 {
13603 	kfree(bp->init_ops_offsets);
13604 	kfree(bp->init_ops);
13605 	kfree(bp->init_data);
13606 	release_firmware(bp->firmware);
13607 	bp->firmware = NULL;
13608 }
13609 
13610 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13611 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13612 	.init_hw_cmn      = bnx2x_init_hw_common,
13613 	.init_hw_port     = bnx2x_init_hw_port,
13614 	.init_hw_func     = bnx2x_init_hw_func,
13615 
13616 	.reset_hw_cmn     = bnx2x_reset_common,
13617 	.reset_hw_port    = bnx2x_reset_port,
13618 	.reset_hw_func    = bnx2x_reset_func,
13619 
13620 	.gunzip_init      = bnx2x_gunzip_init,
13621 	.gunzip_end       = bnx2x_gunzip_end,
13622 
13623 	.init_fw          = bnx2x_init_firmware,
13624 	.release_fw       = bnx2x_release_firmware,
13625 };
13626 
13627 void bnx2x__init_func_obj(struct bnx2x *bp)
13628 {
13629 	/* Prepare DMAE related driver resources */
13630 	bnx2x_setup_dmae(bp);
13631 
13632 	bnx2x_init_func_obj(bp, &bp->func_obj,
13633 			    bnx2x_sp(bp, func_rdata),
13634 			    bnx2x_sp_mapping(bp, func_rdata),
13635 			    bnx2x_sp(bp, func_afex_rdata),
13636 			    bnx2x_sp_mapping(bp, func_afex_rdata),
13637 			    &bnx2x_func_sp_drv);
13638 }
13639 
13640 /* must be called after sriov-enable */
13641 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13642 {
13643 	int cid_count = BNX2X_L2_MAX_CID(bp);
13644 
13645 	if (IS_SRIOV(bp))
13646 		cid_count += BNX2X_VF_CIDS;
13647 
13648 	if (CNIC_SUPPORT(bp))
13649 		cid_count += CNIC_CID_MAX;
13650 
13651 	return roundup(cid_count, QM_CID_ROUND);
13652 }
13653 
13654 /**
13655  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13656  *
13657  * @dev:	pci device
13658  *
13659  */
13660 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13661 {
13662 	int index;
13663 	u16 control = 0;
13664 
13665 	/*
13666 	 * If MSI-X is not supported - return number of SBs needed to support
13667 	 * one fast path queue: one FP queue + SB for CNIC
13668 	 */
13669 	if (!pdev->msix_cap) {
13670 		dev_info(&pdev->dev, "no msix capability found\n");
13671 		return 1 + cnic_cnt;
13672 	}
13673 	dev_info(&pdev->dev, "msix capability found\n");
13674 
13675 	/*
13676 	 * The value in the PCI configuration space is the index of the last
13677 	 * entry, namely one less than the actual size of the table, which is
13678 	 * exactly what we want to return from this function: number of all SBs
13679 	 * without the default SB.
13680 	 * For VFs there is no default SB, then we return (index+1).
13681 	 */
13682 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13683 
13684 	index = control & PCI_MSIX_FLAGS_QSIZE;
13685 
13686 	return index;
13687 }
13688 
13689 static int set_max_cos_est(int chip_id)
13690 {
13691 	switch (chip_id) {
13692 	case BCM57710:
13693 	case BCM57711:
13694 	case BCM57711E:
13695 		return BNX2X_MULTI_TX_COS_E1X;
13696 	case BCM57712:
13697 	case BCM57712_MF:
13698 		return BNX2X_MULTI_TX_COS_E2_E3A0;
13699 	case BCM57800:
13700 	case BCM57800_MF:
13701 	case BCM57810:
13702 	case BCM57810_MF:
13703 	case BCM57840_4_10:
13704 	case BCM57840_2_20:
13705 	case BCM57840_O:
13706 	case BCM57840_MFO:
13707 	case BCM57840_MF:
13708 	case BCM57811:
13709 	case BCM57811_MF:
13710 		return BNX2X_MULTI_TX_COS_E3B0;
13711 	case BCM57712_VF:
13712 	case BCM57800_VF:
13713 	case BCM57810_VF:
13714 	case BCM57840_VF:
13715 	case BCM57811_VF:
13716 		return 1;
13717 	default:
13718 		pr_err("Unknown board_type (%d), aborting\n", chip_id);
13719 		return -ENODEV;
13720 	}
13721 }
13722 
13723 static int set_is_vf(int chip_id)
13724 {
13725 	switch (chip_id) {
13726 	case BCM57712_VF:
13727 	case BCM57800_VF:
13728 	case BCM57810_VF:
13729 	case BCM57840_VF:
13730 	case BCM57811_VF:
13731 		return true;
13732 	default:
13733 		return false;
13734 	}
13735 }
13736 
13737 /* nig_tsgen registers relative address */
13738 #define tsgen_ctrl 0x0
13739 #define tsgen_freecount 0x10
13740 #define tsgen_synctime_t0 0x20
13741 #define tsgen_offset_t0 0x28
13742 #define tsgen_drift_t0 0x30
13743 #define tsgen_synctime_t1 0x58
13744 #define tsgen_offset_t1 0x60
13745 #define tsgen_drift_t1 0x68
13746 
13747 /* FW workaround for setting drift */
13748 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13749 					  int best_val, int best_period)
13750 {
13751 	struct bnx2x_func_state_params func_params = {NULL};
13752 	struct bnx2x_func_set_timesync_params *set_timesync_params =
13753 		&func_params.params.set_timesync;
13754 
13755 	/* Prepare parameters for function state transitions */
13756 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13757 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13758 
13759 	func_params.f_obj = &bp->func_obj;
13760 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13761 
13762 	/* Function parameters */
13763 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13764 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13765 	set_timesync_params->add_sub_drift_adjust_value =
13766 		drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13767 	set_timesync_params->drift_adjust_value = best_val;
13768 	set_timesync_params->drift_adjust_period = best_period;
13769 
13770 	return bnx2x_func_state_change(bp, &func_params);
13771 }
13772 
13773 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13774 {
13775 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13776 	int rc;
13777 	int drift_dir = 1;
13778 	int val, period, period1, period2, dif, dif1, dif2;
13779 	int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13780 
13781 	DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13782 
13783 	if (!netif_running(bp->dev)) {
13784 		DP(BNX2X_MSG_PTP,
13785 		   "PTP adjfreq called while the interface is down\n");
13786 		return -ENETDOWN;
13787 	}
13788 
13789 	if (ppb < 0) {
13790 		ppb = -ppb;
13791 		drift_dir = 0;
13792 	}
13793 
13794 	if (ppb == 0) {
13795 		best_val = 1;
13796 		best_period = 0x1FFFFFF;
13797 	} else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13798 		best_val = 31;
13799 		best_period = 1;
13800 	} else {
13801 		/* Changed not to allow val = 8, 16, 24 as these values
13802 		 * are not supported in workaround.
13803 		 */
13804 		for (val = 0; val <= 31; val++) {
13805 			if ((val & 0x7) == 0)
13806 				continue;
13807 			period1 = val * 1000000 / ppb;
13808 			period2 = period1 + 1;
13809 			if (period1 != 0)
13810 				dif1 = ppb - (val * 1000000 / period1);
13811 			else
13812 				dif1 = BNX2X_MAX_PHC_DRIFT;
13813 			if (dif1 < 0)
13814 				dif1 = -dif1;
13815 			dif2 = ppb - (val * 1000000 / period2);
13816 			if (dif2 < 0)
13817 				dif2 = -dif2;
13818 			dif = (dif1 < dif2) ? dif1 : dif2;
13819 			period = (dif1 < dif2) ? period1 : period2;
13820 			if (dif < best_dif) {
13821 				best_dif = dif;
13822 				best_val = val;
13823 				best_period = period;
13824 			}
13825 		}
13826 	}
13827 
13828 	rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13829 					    best_period);
13830 	if (rc) {
13831 		BNX2X_ERR("Failed to set drift\n");
13832 		return -EFAULT;
13833 	}
13834 
13835 	DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13836 	   best_period);
13837 
13838 	return 0;
13839 }
13840 
13841 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13842 {
13843 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13844 
13845 	if (!netif_running(bp->dev)) {
13846 		DP(BNX2X_MSG_PTP,
13847 		   "PTP adjtime called while the interface is down\n");
13848 		return -ENETDOWN;
13849 	}
13850 
13851 	DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13852 
13853 	timecounter_adjtime(&bp->timecounter, delta);
13854 
13855 	return 0;
13856 }
13857 
13858 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13859 {
13860 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13861 	u64 ns;
13862 
13863 	if (!netif_running(bp->dev)) {
13864 		DP(BNX2X_MSG_PTP,
13865 		   "PTP gettime called while the interface is down\n");
13866 		return -ENETDOWN;
13867 	}
13868 
13869 	ns = timecounter_read(&bp->timecounter);
13870 
13871 	DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13872 
13873 	*ts = ns_to_timespec64(ns);
13874 
13875 	return 0;
13876 }
13877 
13878 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13879 			     const struct timespec64 *ts)
13880 {
13881 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13882 	u64 ns;
13883 
13884 	if (!netif_running(bp->dev)) {
13885 		DP(BNX2X_MSG_PTP,
13886 		   "PTP settime called while the interface is down\n");
13887 		return -ENETDOWN;
13888 	}
13889 
13890 	ns = timespec64_to_ns(ts);
13891 
13892 	DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13893 
13894 	/* Re-init the timecounter */
13895 	timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13896 
13897 	return 0;
13898 }
13899 
13900 /* Enable (or disable) ancillary features of the phc subsystem */
13901 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13902 			    struct ptp_clock_request *rq, int on)
13903 {
13904 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13905 
13906 	BNX2X_ERR("PHC ancillary features are not supported\n");
13907 	return -ENOTSUPP;
13908 }
13909 
13910 void bnx2x_register_phc(struct bnx2x *bp)
13911 {
13912 	/* Fill the ptp_clock_info struct and register PTP clock*/
13913 	bp->ptp_clock_info.owner = THIS_MODULE;
13914 	snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13915 	bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13916 	bp->ptp_clock_info.n_alarm = 0;
13917 	bp->ptp_clock_info.n_ext_ts = 0;
13918 	bp->ptp_clock_info.n_per_out = 0;
13919 	bp->ptp_clock_info.pps = 0;
13920 	bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13921 	bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13922 	bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13923 	bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13924 	bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13925 
13926 	bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13927 	if (IS_ERR(bp->ptp_clock)) {
13928 		bp->ptp_clock = NULL;
13929 		BNX2X_ERR("PTP clock registration failed\n");
13930 	}
13931 }
13932 
13933 static int bnx2x_init_one(struct pci_dev *pdev,
13934 				    const struct pci_device_id *ent)
13935 {
13936 	struct net_device *dev = NULL;
13937 	struct bnx2x *bp;
13938 	int rc, max_non_def_sbs;
13939 	int rx_count, tx_count, rss_count, doorbell_size;
13940 	int max_cos_est;
13941 	bool is_vf;
13942 	int cnic_cnt;
13943 
13944 	/* Management FW 'remembers' living interfaces. Allow it some time
13945 	 * to forget previously living interfaces, allowing a proper re-load.
13946 	 */
13947 	if (is_kdump_kernel()) {
13948 		ktime_t now = ktime_get_boottime();
13949 		ktime_t fw_ready_time = ktime_set(5, 0);
13950 
13951 		if (ktime_before(now, fw_ready_time))
13952 			msleep(ktime_ms_delta(fw_ready_time, now));
13953 	}
13954 
13955 	/* An estimated maximum supported CoS number according to the chip
13956 	 * version.
13957 	 * We will try to roughly estimate the maximum number of CoSes this chip
13958 	 * may support in order to minimize the memory allocated for Tx
13959 	 * netdev_queue's. This number will be accurately calculated during the
13960 	 * initialization of bp->max_cos based on the chip versions AND chip
13961 	 * revision in the bnx2x_init_bp().
13962 	 */
13963 	max_cos_est = set_max_cos_est(ent->driver_data);
13964 	if (max_cos_est < 0)
13965 		return max_cos_est;
13966 	is_vf = set_is_vf(ent->driver_data);
13967 	cnic_cnt = is_vf ? 0 : 1;
13968 
13969 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13970 
13971 	/* add another SB for VF as it has no default SB */
13972 	max_non_def_sbs += is_vf ? 1 : 0;
13973 
13974 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
13975 	rss_count = max_non_def_sbs - cnic_cnt;
13976 
13977 	if (rss_count < 1)
13978 		return -EINVAL;
13979 
13980 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13981 	rx_count = rss_count + cnic_cnt;
13982 
13983 	/* Maximum number of netdev Tx queues:
13984 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13985 	 */
13986 	tx_count = rss_count * max_cos_est + cnic_cnt;
13987 
13988 	/* dev zeroed in init_etherdev */
13989 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13990 	if (!dev)
13991 		return -ENOMEM;
13992 
13993 	bp = netdev_priv(dev);
13994 
13995 	bp->flags = 0;
13996 	if (is_vf)
13997 		bp->flags |= IS_VF_FLAG;
13998 
13999 	bp->igu_sb_cnt = max_non_def_sbs;
14000 	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
14001 	bp->msg_enable = debug;
14002 	bp->cnic_support = cnic_cnt;
14003 	bp->cnic_probe = bnx2x_cnic_probe;
14004 
14005 	pci_set_drvdata(pdev, dev);
14006 
14007 	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
14008 	if (rc < 0) {
14009 		free_netdev(dev);
14010 		return rc;
14011 	}
14012 
14013 	BNX2X_DEV_INFO("This is a %s function\n",
14014 		       IS_PF(bp) ? "physical" : "virtual");
14015 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
14016 	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
14017 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
14018 		       tx_count, rx_count);
14019 
14020 	rc = bnx2x_init_bp(bp);
14021 	if (rc)
14022 		goto init_one_exit;
14023 
14024 	/* Map doorbells here as we need the real value of bp->max_cos which
14025 	 * is initialized in bnx2x_init_bp() to determine the number of
14026 	 * l2 connections.
14027 	 */
14028 	if (IS_VF(bp)) {
14029 		bp->doorbells = bnx2x_vf_doorbells(bp);
14030 		rc = bnx2x_vf_pci_alloc(bp);
14031 		if (rc)
14032 			goto init_one_freemem;
14033 	} else {
14034 		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
14035 		if (doorbell_size > pci_resource_len(pdev, 2)) {
14036 			dev_err(&bp->pdev->dev,
14037 				"Cannot map doorbells, bar size too small, aborting\n");
14038 			rc = -ENOMEM;
14039 			goto init_one_freemem;
14040 		}
14041 		bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
14042 						doorbell_size);
14043 	}
14044 	if (!bp->doorbells) {
14045 		dev_err(&bp->pdev->dev,
14046 			"Cannot map doorbell space, aborting\n");
14047 		rc = -ENOMEM;
14048 		goto init_one_freemem;
14049 	}
14050 
14051 	if (IS_VF(bp)) {
14052 		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
14053 		if (rc)
14054 			goto init_one_freemem;
14055 
14056 #ifdef CONFIG_BNX2X_SRIOV
14057 		/* VF with OLD Hypervisor or old PF do not support filtering */
14058 		if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
14059 			dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14060 			dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14061 		}
14062 #endif
14063 	}
14064 
14065 	/* Enable SRIOV if capability found in configuration space */
14066 	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
14067 	if (rc)
14068 		goto init_one_freemem;
14069 
14070 	/* calc qm_cid_count */
14071 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
14072 	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
14073 
14074 	/* disable FCOE L2 queue for E1x*/
14075 	if (CHIP_IS_E1x(bp))
14076 		bp->flags |= NO_FCOE_FLAG;
14077 
14078 	/* Set bp->num_queues for MSI-X mode*/
14079 	bnx2x_set_num_queues(bp);
14080 
14081 	/* Configure interrupt mode: try to enable MSI-X/MSI if
14082 	 * needed.
14083 	 */
14084 	rc = bnx2x_set_int_mode(bp);
14085 	if (rc) {
14086 		dev_err(&pdev->dev, "Cannot set interrupts\n");
14087 		goto init_one_freemem;
14088 	}
14089 	BNX2X_DEV_INFO("set interrupts successfully\n");
14090 
14091 	/* register the net device */
14092 	rc = register_netdev(dev);
14093 	if (rc) {
14094 		dev_err(&pdev->dev, "Cannot register net device\n");
14095 		goto init_one_freemem;
14096 	}
14097 	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
14098 
14099 	if (!NO_FCOE(bp)) {
14100 		/* Add storage MAC address */
14101 		rtnl_lock();
14102 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14103 		rtnl_unlock();
14104 	}
14105 	BNX2X_DEV_INFO(
14106 	       "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n",
14107 	       board_info[ent->driver_data].name,
14108 	       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
14109 	       dev->base_addr, bp->pdev->irq, dev->dev_addr);
14110 	pcie_print_link_status(bp->pdev);
14111 
14112 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
14113 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14114 
14115 	return 0;
14116 
14117 init_one_freemem:
14118 	bnx2x_free_mem_bp(bp);
14119 
14120 init_one_exit:
14121 	bnx2x_disable_pcie_error_reporting(bp);
14122 
14123 	if (bp->regview)
14124 		iounmap(bp->regview);
14125 
14126 	if (IS_PF(bp) && bp->doorbells)
14127 		iounmap(bp->doorbells);
14128 
14129 	free_netdev(dev);
14130 
14131 	if (atomic_read(&pdev->enable_cnt) == 1)
14132 		pci_release_regions(pdev);
14133 
14134 	pci_disable_device(pdev);
14135 
14136 	return rc;
14137 }
14138 
14139 static void __bnx2x_remove(struct pci_dev *pdev,
14140 			   struct net_device *dev,
14141 			   struct bnx2x *bp,
14142 			   bool remove_netdev)
14143 {
14144 	/* Delete storage MAC address */
14145 	if (!NO_FCOE(bp)) {
14146 		rtnl_lock();
14147 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14148 		rtnl_unlock();
14149 	}
14150 
14151 #ifdef BCM_DCBNL
14152 	/* Delete app tlvs from dcbnl */
14153 	bnx2x_dcbnl_update_applist(bp, true);
14154 #endif
14155 
14156 	if (IS_PF(bp) &&
14157 	    !BP_NOMCP(bp) &&
14158 	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14159 		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14160 
14161 	/* Close the interface - either directly or implicitly */
14162 	if (remove_netdev) {
14163 		unregister_netdev(dev);
14164 	} else {
14165 		rtnl_lock();
14166 		dev_close(dev);
14167 		rtnl_unlock();
14168 	}
14169 
14170 	bnx2x_iov_remove_one(bp);
14171 
14172 	/* Power on: we can't let PCI layer write to us while we are in D3 */
14173 	if (IS_PF(bp)) {
14174 		bnx2x_set_power_state(bp, PCI_D0);
14175 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14176 
14177 		/* Set endianity registers to reset values in case next driver
14178 		 * boots in different endianty environment.
14179 		 */
14180 		bnx2x_reset_endianity(bp);
14181 	}
14182 
14183 	/* Disable MSI/MSI-X */
14184 	bnx2x_disable_msi(bp);
14185 
14186 	/* Power off */
14187 	if (IS_PF(bp))
14188 		bnx2x_set_power_state(bp, PCI_D3hot);
14189 
14190 	/* Make sure RESET task is not scheduled before continuing */
14191 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
14192 
14193 	/* send message via vfpf channel to release the resources of this vf */
14194 	if (IS_VF(bp))
14195 		bnx2x_vfpf_release(bp);
14196 
14197 	/* Assumes no further PCIe PM changes will occur */
14198 	if (system_state == SYSTEM_POWER_OFF) {
14199 		pci_wake_from_d3(pdev, bp->wol);
14200 		pci_set_power_state(pdev, PCI_D3hot);
14201 	}
14202 
14203 	bnx2x_disable_pcie_error_reporting(bp);
14204 	if (remove_netdev) {
14205 		if (bp->regview)
14206 			iounmap(bp->regview);
14207 
14208 		/* For vfs, doorbells are part of the regview and were unmapped
14209 		 * along with it. FW is only loaded by PF.
14210 		 */
14211 		if (IS_PF(bp)) {
14212 			if (bp->doorbells)
14213 				iounmap(bp->doorbells);
14214 
14215 			bnx2x_release_firmware(bp);
14216 		} else {
14217 			bnx2x_vf_pci_dealloc(bp);
14218 		}
14219 		bnx2x_free_mem_bp(bp);
14220 
14221 		free_netdev(dev);
14222 
14223 		if (atomic_read(&pdev->enable_cnt) == 1)
14224 			pci_release_regions(pdev);
14225 
14226 		pci_disable_device(pdev);
14227 	}
14228 }
14229 
14230 static void bnx2x_remove_one(struct pci_dev *pdev)
14231 {
14232 	struct net_device *dev = pci_get_drvdata(pdev);
14233 	struct bnx2x *bp;
14234 
14235 	if (!dev) {
14236 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14237 		return;
14238 	}
14239 	bp = netdev_priv(dev);
14240 
14241 	__bnx2x_remove(pdev, dev, bp, true);
14242 }
14243 
14244 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14245 {
14246 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14247 
14248 	bp->rx_mode = BNX2X_RX_MODE_NONE;
14249 
14250 	if (CNIC_LOADED(bp))
14251 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14252 
14253 	/* Stop Tx */
14254 	bnx2x_tx_disable(bp);
14255 	/* Delete all NAPI objects */
14256 	bnx2x_del_all_napi(bp);
14257 	if (CNIC_LOADED(bp))
14258 		bnx2x_del_all_napi_cnic(bp);
14259 	netdev_reset_tc(bp->dev);
14260 
14261 	del_timer_sync(&bp->timer);
14262 	cancel_delayed_work_sync(&bp->sp_task);
14263 	cancel_delayed_work_sync(&bp->period_task);
14264 
14265 	if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14266 		bp->stats_state = STATS_STATE_DISABLED;
14267 		up(&bp->stats_lock);
14268 	}
14269 
14270 	bnx2x_save_statistics(bp);
14271 
14272 	netif_carrier_off(bp->dev);
14273 
14274 	return 0;
14275 }
14276 
14277 /**
14278  * bnx2x_io_error_detected - called when PCI error is detected
14279  * @pdev: Pointer to PCI device
14280  * @state: The current pci connection state
14281  *
14282  * This function is called after a PCI bus error affecting
14283  * this device has been detected.
14284  */
14285 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14286 						pci_channel_state_t state)
14287 {
14288 	struct net_device *dev = pci_get_drvdata(pdev);
14289 	struct bnx2x *bp = netdev_priv(dev);
14290 
14291 	rtnl_lock();
14292 
14293 	BNX2X_ERR("IO error detected\n");
14294 
14295 	netif_device_detach(dev);
14296 
14297 	if (state == pci_channel_io_perm_failure) {
14298 		rtnl_unlock();
14299 		return PCI_ERS_RESULT_DISCONNECT;
14300 	}
14301 
14302 	if (netif_running(dev))
14303 		bnx2x_eeh_nic_unload(bp);
14304 
14305 	bnx2x_prev_path_mark_eeh(bp);
14306 
14307 	pci_disable_device(pdev);
14308 
14309 	rtnl_unlock();
14310 
14311 	/* Request a slot reset */
14312 	return PCI_ERS_RESULT_NEED_RESET;
14313 }
14314 
14315 /**
14316  * bnx2x_io_slot_reset - called after the PCI bus has been reset
14317  * @pdev: Pointer to PCI device
14318  *
14319  * Restart the card from scratch, as if from a cold-boot.
14320  */
14321 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14322 {
14323 	struct net_device *dev = pci_get_drvdata(pdev);
14324 	struct bnx2x *bp = netdev_priv(dev);
14325 	int i;
14326 
14327 	rtnl_lock();
14328 	BNX2X_ERR("IO slot reset initializing...\n");
14329 	if (pci_enable_device(pdev)) {
14330 		dev_err(&pdev->dev,
14331 			"Cannot re-enable PCI device after reset\n");
14332 		rtnl_unlock();
14333 		return PCI_ERS_RESULT_DISCONNECT;
14334 	}
14335 
14336 	pci_set_master(pdev);
14337 	pci_restore_state(pdev);
14338 	pci_save_state(pdev);
14339 
14340 	if (netif_running(dev))
14341 		bnx2x_set_power_state(bp, PCI_D0);
14342 
14343 	if (netif_running(dev)) {
14344 		BNX2X_ERR("IO slot reset --> driver unload\n");
14345 
14346 		/* MCP should have been reset; Need to wait for validity */
14347 		if (bnx2x_init_shmem(bp)) {
14348 			rtnl_unlock();
14349 			return PCI_ERS_RESULT_DISCONNECT;
14350 		}
14351 
14352 		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14353 			u32 v;
14354 
14355 			v = SHMEM2_RD(bp,
14356 				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14357 			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14358 				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14359 		}
14360 		bnx2x_drain_tx_queues(bp);
14361 		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14362 		bnx2x_netif_stop(bp, 1);
14363 		bnx2x_free_irq(bp);
14364 
14365 		/* Report UNLOAD_DONE to MCP */
14366 		bnx2x_send_unload_done(bp, true);
14367 
14368 		bp->sp_state = 0;
14369 		bp->port.pmf = 0;
14370 
14371 		bnx2x_prev_unload(bp);
14372 
14373 		/* We should have reseted the engine, so It's fair to
14374 		 * assume the FW will no longer write to the bnx2x driver.
14375 		 */
14376 		bnx2x_squeeze_objects(bp);
14377 		bnx2x_free_skbs(bp);
14378 		for_each_rx_queue(bp, i)
14379 			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14380 		bnx2x_free_fp_mem(bp);
14381 		bnx2x_free_mem(bp);
14382 
14383 		bp->state = BNX2X_STATE_CLOSED;
14384 	}
14385 
14386 	rtnl_unlock();
14387 
14388 	return PCI_ERS_RESULT_RECOVERED;
14389 }
14390 
14391 /**
14392  * bnx2x_io_resume - called when traffic can start flowing again
14393  * @pdev: Pointer to PCI device
14394  *
14395  * This callback is called when the error recovery driver tells us that
14396  * its OK to resume normal operation.
14397  */
14398 static void bnx2x_io_resume(struct pci_dev *pdev)
14399 {
14400 	struct net_device *dev = pci_get_drvdata(pdev);
14401 	struct bnx2x *bp = netdev_priv(dev);
14402 
14403 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14404 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14405 		return;
14406 	}
14407 
14408 	rtnl_lock();
14409 
14410 	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14411 							DRV_MSG_SEQ_NUMBER_MASK;
14412 
14413 	if (netif_running(dev))
14414 		bnx2x_nic_load(bp, LOAD_NORMAL);
14415 
14416 	netif_device_attach(dev);
14417 
14418 	rtnl_unlock();
14419 }
14420 
14421 static const struct pci_error_handlers bnx2x_err_handler = {
14422 	.error_detected = bnx2x_io_error_detected,
14423 	.slot_reset     = bnx2x_io_slot_reset,
14424 	.resume         = bnx2x_io_resume,
14425 };
14426 
14427 static void bnx2x_shutdown(struct pci_dev *pdev)
14428 {
14429 	struct net_device *dev = pci_get_drvdata(pdev);
14430 	struct bnx2x *bp;
14431 
14432 	if (!dev)
14433 		return;
14434 
14435 	bp = netdev_priv(dev);
14436 	if (!bp)
14437 		return;
14438 
14439 	rtnl_lock();
14440 	netif_device_detach(dev);
14441 	rtnl_unlock();
14442 
14443 	/* Don't remove the netdevice, as there are scenarios which will cause
14444 	 * the kernel to hang, e.g., when trying to remove bnx2i while the
14445 	 * rootfs is mounted from SAN.
14446 	 */
14447 	__bnx2x_remove(pdev, dev, bp, false);
14448 }
14449 
14450 static struct pci_driver bnx2x_pci_driver = {
14451 	.name        = DRV_MODULE_NAME,
14452 	.id_table    = bnx2x_pci_tbl,
14453 	.probe       = bnx2x_init_one,
14454 	.remove      = bnx2x_remove_one,
14455 	.suspend     = bnx2x_suspend,
14456 	.resume      = bnx2x_resume,
14457 	.err_handler = &bnx2x_err_handler,
14458 #ifdef CONFIG_BNX2X_SRIOV
14459 	.sriov_configure = bnx2x_sriov_configure,
14460 #endif
14461 	.shutdown    = bnx2x_shutdown,
14462 };
14463 
14464 static int __init bnx2x_init(void)
14465 {
14466 	int ret;
14467 
14468 	pr_info("%s", version);
14469 
14470 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
14471 	if (bnx2x_wq == NULL) {
14472 		pr_err("Cannot create workqueue\n");
14473 		return -ENOMEM;
14474 	}
14475 	bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14476 	if (!bnx2x_iov_wq) {
14477 		pr_err("Cannot create iov workqueue\n");
14478 		destroy_workqueue(bnx2x_wq);
14479 		return -ENOMEM;
14480 	}
14481 
14482 	ret = pci_register_driver(&bnx2x_pci_driver);
14483 	if (ret) {
14484 		pr_err("Cannot register driver\n");
14485 		destroy_workqueue(bnx2x_wq);
14486 		destroy_workqueue(bnx2x_iov_wq);
14487 	}
14488 	return ret;
14489 }
14490 
14491 static void __exit bnx2x_cleanup(void)
14492 {
14493 	struct list_head *pos, *q;
14494 
14495 	pci_unregister_driver(&bnx2x_pci_driver);
14496 
14497 	destroy_workqueue(bnx2x_wq);
14498 	destroy_workqueue(bnx2x_iov_wq);
14499 
14500 	/* Free globally allocated resources */
14501 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
14502 		struct bnx2x_prev_path_list *tmp =
14503 			list_entry(pos, struct bnx2x_prev_path_list, list);
14504 		list_del(pos);
14505 		kfree(tmp);
14506 	}
14507 }
14508 
14509 void bnx2x_notify_link_changed(struct bnx2x *bp)
14510 {
14511 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14512 }
14513 
14514 module_init(bnx2x_init);
14515 module_exit(bnx2x_cleanup);
14516 
14517 /**
14518  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14519  *
14520  * @bp:		driver handle
14521  * @set:	set or clear the CAM entry
14522  *
14523  * This function will wait until the ramrod completion returns.
14524  * Return 0 if success, -ENODEV if ramrod doesn't return.
14525  */
14526 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14527 {
14528 	unsigned long ramrod_flags = 0;
14529 
14530 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14531 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14532 				 &bp->iscsi_l2_mac_obj, true,
14533 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14534 }
14535 
14536 /* count denotes the number of new completions we have seen */
14537 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14538 {
14539 	struct eth_spe *spe;
14540 	int cxt_index, cxt_offset;
14541 
14542 #ifdef BNX2X_STOP_ON_ERROR
14543 	if (unlikely(bp->panic))
14544 		return;
14545 #endif
14546 
14547 	spin_lock_bh(&bp->spq_lock);
14548 	BUG_ON(bp->cnic_spq_pending < count);
14549 	bp->cnic_spq_pending -= count;
14550 
14551 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14552 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14553 				& SPE_HDR_CONN_TYPE) >>
14554 				SPE_HDR_CONN_TYPE_SHIFT;
14555 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14556 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14557 
14558 		/* Set validation for iSCSI L2 client before sending SETUP
14559 		 *  ramrod
14560 		 */
14561 		if (type == ETH_CONNECTION_TYPE) {
14562 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14563 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14564 					ILT_PAGE_CIDS;
14565 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14566 					(cxt_index * ILT_PAGE_CIDS);
14567 				bnx2x_set_ctx_validation(bp,
14568 					&bp->context[cxt_index].
14569 							 vcxt[cxt_offset].eth,
14570 					BNX2X_ISCSI_ETH_CID(bp));
14571 			}
14572 		}
14573 
14574 		/*
14575 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
14576 		 * and in the air. We also check that number of outstanding
14577 		 * COMMON ramrods is not more than the EQ and SPQ can
14578 		 * accommodate.
14579 		 */
14580 		if (type == ETH_CONNECTION_TYPE) {
14581 			if (!atomic_read(&bp->cq_spq_left))
14582 				break;
14583 			else
14584 				atomic_dec(&bp->cq_spq_left);
14585 		} else if (type == NONE_CONNECTION_TYPE) {
14586 			if (!atomic_read(&bp->eq_spq_left))
14587 				break;
14588 			else
14589 				atomic_dec(&bp->eq_spq_left);
14590 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
14591 			   (type == FCOE_CONNECTION_TYPE)) {
14592 			if (bp->cnic_spq_pending >=
14593 			    bp->cnic_eth_dev.max_kwqe_pending)
14594 				break;
14595 			else
14596 				bp->cnic_spq_pending++;
14597 		} else {
14598 			BNX2X_ERR("Unknown SPE type: %d\n", type);
14599 			bnx2x_panic();
14600 			break;
14601 		}
14602 
14603 		spe = bnx2x_sp_get_next(bp);
14604 		*spe = *bp->cnic_kwq_cons;
14605 
14606 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14607 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14608 
14609 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14610 			bp->cnic_kwq_cons = bp->cnic_kwq;
14611 		else
14612 			bp->cnic_kwq_cons++;
14613 	}
14614 	bnx2x_sp_prod_update(bp);
14615 	spin_unlock_bh(&bp->spq_lock);
14616 }
14617 
14618 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14619 			       struct kwqe_16 *kwqes[], u32 count)
14620 {
14621 	struct bnx2x *bp = netdev_priv(dev);
14622 	int i;
14623 
14624 #ifdef BNX2X_STOP_ON_ERROR
14625 	if (unlikely(bp->panic)) {
14626 		BNX2X_ERR("Can't post to SP queue while panic\n");
14627 		return -EIO;
14628 	}
14629 #endif
14630 
14631 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14632 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14633 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
14634 		return -EAGAIN;
14635 	}
14636 
14637 	spin_lock_bh(&bp->spq_lock);
14638 
14639 	for (i = 0; i < count; i++) {
14640 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14641 
14642 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14643 			break;
14644 
14645 		*bp->cnic_kwq_prod = *spe;
14646 
14647 		bp->cnic_kwq_pending++;
14648 
14649 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14650 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
14651 		   spe->data.update_data_addr.hi,
14652 		   spe->data.update_data_addr.lo,
14653 		   bp->cnic_kwq_pending);
14654 
14655 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14656 			bp->cnic_kwq_prod = bp->cnic_kwq;
14657 		else
14658 			bp->cnic_kwq_prod++;
14659 	}
14660 
14661 	spin_unlock_bh(&bp->spq_lock);
14662 
14663 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14664 		bnx2x_cnic_sp_post(bp, 0);
14665 
14666 	return i;
14667 }
14668 
14669 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14670 {
14671 	struct cnic_ops *c_ops;
14672 	int rc = 0;
14673 
14674 	mutex_lock(&bp->cnic_mutex);
14675 	c_ops = rcu_dereference_protected(bp->cnic_ops,
14676 					  lockdep_is_held(&bp->cnic_mutex));
14677 	if (c_ops)
14678 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14679 	mutex_unlock(&bp->cnic_mutex);
14680 
14681 	return rc;
14682 }
14683 
14684 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14685 {
14686 	struct cnic_ops *c_ops;
14687 	int rc = 0;
14688 
14689 	rcu_read_lock();
14690 	c_ops = rcu_dereference(bp->cnic_ops);
14691 	if (c_ops)
14692 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14693 	rcu_read_unlock();
14694 
14695 	return rc;
14696 }
14697 
14698 /*
14699  * for commands that have no data
14700  */
14701 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14702 {
14703 	struct cnic_ctl_info ctl = {0};
14704 
14705 	ctl.cmd = cmd;
14706 
14707 	return bnx2x_cnic_ctl_send(bp, &ctl);
14708 }
14709 
14710 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14711 {
14712 	struct cnic_ctl_info ctl = {0};
14713 
14714 	/* first we tell CNIC and only then we count this as a completion */
14715 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14716 	ctl.data.comp.cid = cid;
14717 	ctl.data.comp.error = err;
14718 
14719 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
14720 	bnx2x_cnic_sp_post(bp, 0);
14721 }
14722 
14723 /* Called with netif_addr_lock_bh() taken.
14724  * Sets an rx_mode config for an iSCSI ETH client.
14725  * Doesn't block.
14726  * Completion should be checked outside.
14727  */
14728 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14729 {
14730 	unsigned long accept_flags = 0, ramrod_flags = 0;
14731 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14732 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14733 
14734 	if (start) {
14735 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
14736 		 * because it's the only way for UIO Queue to accept
14737 		 * multicasts (in non-promiscuous mode only one Queue per
14738 		 * function will receive multicast packets (leading in our
14739 		 * case).
14740 		 */
14741 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14742 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14743 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14744 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14745 
14746 		/* Clear STOP_PENDING bit if START is requested */
14747 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14748 
14749 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14750 	} else
14751 		/* Clear START_PENDING bit if STOP is requested */
14752 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14753 
14754 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14755 		set_bit(sched_state, &bp->sp_state);
14756 	else {
14757 		__set_bit(RAMROD_RX, &ramrod_flags);
14758 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14759 				    ramrod_flags);
14760 	}
14761 }
14762 
14763 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14764 {
14765 	struct bnx2x *bp = netdev_priv(dev);
14766 	int rc = 0;
14767 
14768 	switch (ctl->cmd) {
14769 	case DRV_CTL_CTXTBL_WR_CMD: {
14770 		u32 index = ctl->data.io.offset;
14771 		dma_addr_t addr = ctl->data.io.dma_addr;
14772 
14773 		bnx2x_ilt_wr(bp, index, addr);
14774 		break;
14775 	}
14776 
14777 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14778 		int count = ctl->data.credit.credit_count;
14779 
14780 		bnx2x_cnic_sp_post(bp, count);
14781 		break;
14782 	}
14783 
14784 	/* rtnl_lock is held.  */
14785 	case DRV_CTL_START_L2_CMD: {
14786 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14787 		unsigned long sp_bits = 0;
14788 
14789 		/* Configure the iSCSI classification object */
14790 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14791 				   cp->iscsi_l2_client_id,
14792 				   cp->iscsi_l2_cid, BP_FUNC(bp),
14793 				   bnx2x_sp(bp, mac_rdata),
14794 				   bnx2x_sp_mapping(bp, mac_rdata),
14795 				   BNX2X_FILTER_MAC_PENDING,
14796 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14797 				   &bp->macs_pool);
14798 
14799 		/* Set iSCSI MAC address */
14800 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14801 		if (rc)
14802 			break;
14803 
14804 		barrier();
14805 
14806 		/* Start accepting on iSCSI L2 ring */
14807 
14808 		netif_addr_lock_bh(dev);
14809 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
14810 		netif_addr_unlock_bh(dev);
14811 
14812 		/* bits to wait on */
14813 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14814 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14815 
14816 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14817 			BNX2X_ERR("rx_mode completion timed out!\n");
14818 
14819 		break;
14820 	}
14821 
14822 	/* rtnl_lock is held.  */
14823 	case DRV_CTL_STOP_L2_CMD: {
14824 		unsigned long sp_bits = 0;
14825 
14826 		/* Stop accepting on iSCSI L2 ring */
14827 		netif_addr_lock_bh(dev);
14828 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
14829 		netif_addr_unlock_bh(dev);
14830 
14831 		/* bits to wait on */
14832 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14833 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14834 
14835 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14836 			BNX2X_ERR("rx_mode completion timed out!\n");
14837 
14838 		barrier();
14839 
14840 		/* Unset iSCSI L2 MAC */
14841 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14842 					BNX2X_ISCSI_ETH_MAC, true);
14843 		break;
14844 	}
14845 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14846 		int count = ctl->data.credit.credit_count;
14847 
14848 		smp_mb__before_atomic();
14849 		atomic_add(count, &bp->cq_spq_left);
14850 		smp_mb__after_atomic();
14851 		break;
14852 	}
14853 	case DRV_CTL_ULP_REGISTER_CMD: {
14854 		int ulp_type = ctl->data.register_data.ulp_type;
14855 
14856 		if (CHIP_IS_E3(bp)) {
14857 			int idx = BP_FW_MB_IDX(bp);
14858 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14859 			int path = BP_PATH(bp);
14860 			int port = BP_PORT(bp);
14861 			int i;
14862 			u32 scratch_offset;
14863 			u32 *host_addr;
14864 
14865 			/* first write capability to shmem2 */
14866 			if (ulp_type == CNIC_ULP_ISCSI)
14867 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14868 			else if (ulp_type == CNIC_ULP_FCOE)
14869 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14870 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14871 
14872 			if ((ulp_type != CNIC_ULP_FCOE) ||
14873 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14874 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14875 				break;
14876 
14877 			/* if reached here - should write fcoe capabilities */
14878 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14879 			if (!scratch_offset)
14880 				break;
14881 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
14882 						   fcoe_features[path][port]);
14883 			host_addr = (u32 *) &(ctl->data.register_data.
14884 					      fcoe_features);
14885 			for (i = 0; i < sizeof(struct fcoe_capabilities);
14886 			     i += 4)
14887 				REG_WR(bp, scratch_offset + i,
14888 				       *(host_addr + i/4));
14889 		}
14890 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14891 		break;
14892 	}
14893 
14894 	case DRV_CTL_ULP_UNREGISTER_CMD: {
14895 		int ulp_type = ctl->data.ulp_type;
14896 
14897 		if (CHIP_IS_E3(bp)) {
14898 			int idx = BP_FW_MB_IDX(bp);
14899 			u32 cap;
14900 
14901 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14902 			if (ulp_type == CNIC_ULP_ISCSI)
14903 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14904 			else if (ulp_type == CNIC_ULP_FCOE)
14905 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14906 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14907 		}
14908 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14909 		break;
14910 	}
14911 
14912 	default:
14913 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
14914 		rc = -EINVAL;
14915 	}
14916 
14917 	/* For storage-only interfaces, change driver state */
14918 	if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14919 		switch (ctl->drv_state) {
14920 		case DRV_NOP:
14921 			break;
14922 		case DRV_ACTIVE:
14923 			bnx2x_set_os_driver_state(bp,
14924 						  OS_DRIVER_STATE_ACTIVE);
14925 			break;
14926 		case DRV_INACTIVE:
14927 			bnx2x_set_os_driver_state(bp,
14928 						  OS_DRIVER_STATE_DISABLED);
14929 			break;
14930 		case DRV_UNLOADED:
14931 			bnx2x_set_os_driver_state(bp,
14932 						  OS_DRIVER_STATE_NOT_LOADED);
14933 			break;
14934 		default:
14935 		BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14936 		}
14937 	}
14938 
14939 	return rc;
14940 }
14941 
14942 static int bnx2x_get_fc_npiv(struct net_device *dev,
14943 			     struct cnic_fc_npiv_tbl *cnic_tbl)
14944 {
14945 	struct bnx2x *bp = netdev_priv(dev);
14946 	struct bdn_fc_npiv_tbl *tbl = NULL;
14947 	u32 offset, entries;
14948 	int rc = -EINVAL;
14949 	int i;
14950 
14951 	if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14952 		goto out;
14953 
14954 	DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14955 
14956 	tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14957 	if (!tbl) {
14958 		BNX2X_ERR("Failed to allocate fc_npiv table\n");
14959 		goto out;
14960 	}
14961 
14962 	offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14963 	if (!offset) {
14964 		DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14965 		goto out;
14966 	}
14967 	DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14968 
14969 	/* Read the table contents from nvram */
14970 	if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14971 		BNX2X_ERR("Failed to read FC-NPIV table\n");
14972 		goto out;
14973 	}
14974 
14975 	/* Since bnx2x_nvram_read() returns data in be32, we need to convert
14976 	 * the number of entries back to cpu endianness.
14977 	 */
14978 	entries = tbl->fc_npiv_cfg.num_of_npiv;
14979 	entries = (__force u32)be32_to_cpu((__force __be32)entries);
14980 	tbl->fc_npiv_cfg.num_of_npiv = entries;
14981 
14982 	if (!tbl->fc_npiv_cfg.num_of_npiv) {
14983 		DP(BNX2X_MSG_MCP,
14984 		   "No FC-NPIV table [valid, simply not present]\n");
14985 		goto out;
14986 	} else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14987 		BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14988 			  tbl->fc_npiv_cfg.num_of_npiv);
14989 		goto out;
14990 	} else {
14991 		DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14992 		   tbl->fc_npiv_cfg.num_of_npiv);
14993 	}
14994 
14995 	/* Copy the data into cnic-provided struct */
14996 	cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14997 	for (i = 0; i < cnic_tbl->count; i++) {
14998 		memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14999 		memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
15000 	}
15001 
15002 	rc = 0;
15003 out:
15004 	kfree(tbl);
15005 	return rc;
15006 }
15007 
15008 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
15009 {
15010 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15011 
15012 	if (bp->flags & USING_MSIX_FLAG) {
15013 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
15014 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
15015 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
15016 	} else {
15017 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
15018 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
15019 	}
15020 	if (!CHIP_IS_E1x(bp))
15021 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
15022 	else
15023 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
15024 
15025 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
15026 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
15027 	cp->irq_arr[1].status_blk = bp->def_status_blk;
15028 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
15029 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
15030 
15031 	cp->num_irq = 2;
15032 }
15033 
15034 void bnx2x_setup_cnic_info(struct bnx2x *bp)
15035 {
15036 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15037 
15038 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15039 			     bnx2x_cid_ilt_lines(bp);
15040 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15041 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15042 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15043 
15044 	DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
15045 	   BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
15046 	   cp->iscsi_l2_cid);
15047 
15048 	if (NO_ISCSI_OOO(bp))
15049 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15050 }
15051 
15052 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
15053 			       void *data)
15054 {
15055 	struct bnx2x *bp = netdev_priv(dev);
15056 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15057 	int rc;
15058 
15059 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
15060 
15061 	if (ops == NULL) {
15062 		BNX2X_ERR("NULL ops received\n");
15063 		return -EINVAL;
15064 	}
15065 
15066 	if (!CNIC_SUPPORT(bp)) {
15067 		BNX2X_ERR("Can't register CNIC when not supported\n");
15068 		return -EOPNOTSUPP;
15069 	}
15070 
15071 	if (!CNIC_LOADED(bp)) {
15072 		rc = bnx2x_load_cnic(bp);
15073 		if (rc) {
15074 			BNX2X_ERR("CNIC-related load failed\n");
15075 			return rc;
15076 		}
15077 	}
15078 
15079 	bp->cnic_enabled = true;
15080 
15081 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
15082 	if (!bp->cnic_kwq)
15083 		return -ENOMEM;
15084 
15085 	bp->cnic_kwq_cons = bp->cnic_kwq;
15086 	bp->cnic_kwq_prod = bp->cnic_kwq;
15087 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
15088 
15089 	bp->cnic_spq_pending = 0;
15090 	bp->cnic_kwq_pending = 0;
15091 
15092 	bp->cnic_data = data;
15093 
15094 	cp->num_irq = 0;
15095 	cp->drv_state |= CNIC_DRV_STATE_REGD;
15096 	cp->iro_arr = bp->iro_arr;
15097 
15098 	bnx2x_setup_cnic_irq_info(bp);
15099 
15100 	rcu_assign_pointer(bp->cnic_ops, ops);
15101 
15102 	/* Schedule driver to read CNIC driver versions */
15103 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
15104 
15105 	return 0;
15106 }
15107 
15108 static int bnx2x_unregister_cnic(struct net_device *dev)
15109 {
15110 	struct bnx2x *bp = netdev_priv(dev);
15111 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15112 
15113 	mutex_lock(&bp->cnic_mutex);
15114 	cp->drv_state = 0;
15115 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
15116 	mutex_unlock(&bp->cnic_mutex);
15117 	synchronize_rcu();
15118 	bp->cnic_enabled = false;
15119 	kfree(bp->cnic_kwq);
15120 	bp->cnic_kwq = NULL;
15121 
15122 	return 0;
15123 }
15124 
15125 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15126 {
15127 	struct bnx2x *bp = netdev_priv(dev);
15128 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15129 
15130 	/* If both iSCSI and FCoE are disabled - return NULL in
15131 	 * order to indicate CNIC that it should not try to work
15132 	 * with this device.
15133 	 */
15134 	if (NO_ISCSI(bp) && NO_FCOE(bp))
15135 		return NULL;
15136 
15137 	cp->drv_owner = THIS_MODULE;
15138 	cp->chip_id = CHIP_ID(bp);
15139 	cp->pdev = bp->pdev;
15140 	cp->io_base = bp->regview;
15141 	cp->io_base2 = bp->doorbells;
15142 	cp->max_kwqe_pending = 8;
15143 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15144 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15145 			     bnx2x_cid_ilt_lines(bp);
15146 	cp->ctx_tbl_len = CNIC_ILT_LINES;
15147 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15148 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15149 	cp->drv_ctl = bnx2x_drv_ctl;
15150 	cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15151 	cp->drv_register_cnic = bnx2x_register_cnic;
15152 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15153 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15154 	cp->iscsi_l2_client_id =
15155 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15156 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15157 
15158 	if (NO_ISCSI_OOO(bp))
15159 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15160 
15161 	if (NO_ISCSI(bp))
15162 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15163 
15164 	if (NO_FCOE(bp))
15165 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15166 
15167 	BNX2X_DEV_INFO(
15168 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15169 	   cp->ctx_blk_size,
15170 	   cp->ctx_tbl_offset,
15171 	   cp->ctx_tbl_len,
15172 	   cp->starting_cid);
15173 	return cp;
15174 }
15175 
15176 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15177 {
15178 	struct bnx2x *bp = fp->bp;
15179 	u32 offset = BAR_USTRORM_INTMEM;
15180 
15181 	if (IS_VF(bp))
15182 		return bnx2x_vf_ustorm_prods_offset(bp, fp);
15183 	else if (!CHIP_IS_E1x(bp))
15184 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15185 	else
15186 		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15187 
15188 	return offset;
15189 }
15190 
15191 /* called only on E1H or E2.
15192  * When pretending to be PF, the pretend value is the function number 0...7
15193  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15194  * combination
15195  */
15196 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15197 {
15198 	u32 pretend_reg;
15199 
15200 	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15201 		return -1;
15202 
15203 	/* get my own pretend register */
15204 	pretend_reg = bnx2x_get_pretend_reg(bp);
15205 	REG_WR(bp, pretend_reg, pretend_func_val);
15206 	REG_RD(bp, pretend_reg);
15207 	return 0;
15208 }
15209 
15210 static void bnx2x_ptp_task(struct work_struct *work)
15211 {
15212 	struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15213 	int port = BP_PORT(bp);
15214 	u32 val_seq;
15215 	u64 timestamp, ns;
15216 	struct skb_shared_hwtstamps shhwtstamps;
15217 
15218 	/* Read Tx timestamp registers */
15219 	val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15220 			 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15221 	if (val_seq & 0x10000) {
15222 		/* There is a valid timestamp value */
15223 		timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15224 				   NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15225 		timestamp <<= 32;
15226 		timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15227 				    NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15228 		/* Reset timestamp register to allow new timestamp */
15229 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15230 		       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15231 		ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15232 
15233 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15234 		shhwtstamps.hwtstamp = ns_to_ktime(ns);
15235 		skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15236 		dev_kfree_skb_any(bp->ptp_tx_skb);
15237 		bp->ptp_tx_skb = NULL;
15238 
15239 		DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15240 		   timestamp, ns);
15241 	} else {
15242 		DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n");
15243 		/* Reschedule to keep checking for a valid timestamp value */
15244 		schedule_work(&bp->ptp_task);
15245 	}
15246 }
15247 
15248 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15249 {
15250 	int port = BP_PORT(bp);
15251 	u64 timestamp, ns;
15252 
15253 	timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15254 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15255 	timestamp <<= 32;
15256 	timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15257 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15258 
15259 	/* Reset timestamp register to allow new timestamp */
15260 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15261 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15262 
15263 	ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15264 
15265 	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15266 
15267 	DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15268 	   timestamp, ns);
15269 }
15270 
15271 /* Read the PHC */
15272 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15273 {
15274 	struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15275 	int port = BP_PORT(bp);
15276 	u32 wb_data[2];
15277 	u64 phc_cycles;
15278 
15279 	REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15280 		    NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15281 	phc_cycles = wb_data[1];
15282 	phc_cycles = (phc_cycles << 32) + wb_data[0];
15283 
15284 	DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15285 
15286 	return phc_cycles;
15287 }
15288 
15289 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15290 {
15291 	memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15292 	bp->cyclecounter.read = bnx2x_cyclecounter_read;
15293 	bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15294 	bp->cyclecounter.shift = 0;
15295 	bp->cyclecounter.mult = 1;
15296 }
15297 
15298 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15299 {
15300 	struct bnx2x_func_state_params func_params = {NULL};
15301 	struct bnx2x_func_set_timesync_params *set_timesync_params =
15302 		&func_params.params.set_timesync;
15303 
15304 	/* Prepare parameters for function state transitions */
15305 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15306 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15307 
15308 	func_params.f_obj = &bp->func_obj;
15309 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15310 
15311 	/* Function parameters */
15312 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15313 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15314 
15315 	return bnx2x_func_state_change(bp, &func_params);
15316 }
15317 
15318 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15319 {
15320 	struct bnx2x_queue_state_params q_params;
15321 	int rc, i;
15322 
15323 	/* send queue update ramrod to enable PTP packets */
15324 	memset(&q_params, 0, sizeof(q_params));
15325 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15326 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
15327 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15328 		  &q_params.params.update.update_flags);
15329 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15330 		  &q_params.params.update.update_flags);
15331 
15332 	/* send the ramrod on all the queues of the PF */
15333 	for_each_eth_queue(bp, i) {
15334 		struct bnx2x_fastpath *fp = &bp->fp[i];
15335 
15336 		/* Set the appropriate Queue object */
15337 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15338 
15339 		/* Update the Queue state */
15340 		rc = bnx2x_queue_state_change(bp, &q_params);
15341 		if (rc) {
15342 			BNX2X_ERR("Failed to enable PTP packets\n");
15343 			return rc;
15344 		}
15345 	}
15346 
15347 	return 0;
15348 }
15349 
15350 #define BNX2X_P2P_DETECT_PARAM_MASK 0x5F5
15351 #define BNX2X_P2P_DETECT_RULE_MASK 0x3DBB
15352 #define BNX2X_PTP_TX_ON_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15353 #define BNX2X_PTP_TX_ON_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15354 #define BNX2X_PTP_V1_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EE)
15355 #define BNX2X_PTP_V1_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FFE)
15356 #define BNX2X_PTP_V2_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EA)
15357 #define BNX2X_PTP_V2_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FEE)
15358 #define BNX2X_PTP_V2_L2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6BF)
15359 #define BNX2X_PTP_V2_L2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EFF)
15360 #define BNX2X_PTP_V2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15361 #define BNX2X_PTP_V2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15362 
15363 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15364 {
15365 	int port = BP_PORT(bp);
15366 	u32 param, rule;
15367 	int rc;
15368 
15369 	if (!bp->hwtstamp_ioctl_called)
15370 		return 0;
15371 
15372 	param = port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15373 		NIG_REG_P0_TLLH_PTP_PARAM_MASK;
15374 	rule = port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15375 		NIG_REG_P0_TLLH_PTP_RULE_MASK;
15376 	switch (bp->tx_type) {
15377 	case HWTSTAMP_TX_ON:
15378 		bp->flags |= TX_TIMESTAMPING_EN;
15379 		REG_WR(bp, param, BNX2X_PTP_TX_ON_PARAM_MASK);
15380 		REG_WR(bp, rule, BNX2X_PTP_TX_ON_RULE_MASK);
15381 		break;
15382 	case HWTSTAMP_TX_ONESTEP_SYNC:
15383 		BNX2X_ERR("One-step timestamping is not supported\n");
15384 		return -ERANGE;
15385 	}
15386 
15387 	param = port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15388 		NIG_REG_P0_LLH_PTP_PARAM_MASK;
15389 	rule = port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15390 		NIG_REG_P0_LLH_PTP_RULE_MASK;
15391 	switch (bp->rx_filter) {
15392 	case HWTSTAMP_FILTER_NONE:
15393 		break;
15394 	case HWTSTAMP_FILTER_ALL:
15395 	case HWTSTAMP_FILTER_SOME:
15396 	case HWTSTAMP_FILTER_NTP_ALL:
15397 		bp->rx_filter = HWTSTAMP_FILTER_NONE;
15398 		break;
15399 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15400 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15401 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15402 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15403 		/* Initialize PTP detection for UDP/IPv4 events */
15404 		REG_WR(bp, param, BNX2X_PTP_V1_L4_PARAM_MASK);
15405 		REG_WR(bp, rule, BNX2X_PTP_V1_L4_RULE_MASK);
15406 		break;
15407 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15408 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15409 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15410 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15411 		/* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15412 		REG_WR(bp, param, BNX2X_PTP_V2_L4_PARAM_MASK);
15413 		REG_WR(bp, rule, BNX2X_PTP_V2_L4_RULE_MASK);
15414 		break;
15415 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15416 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15417 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15418 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15419 		/* Initialize PTP detection L2 events */
15420 		REG_WR(bp, param, BNX2X_PTP_V2_L2_PARAM_MASK);
15421 		REG_WR(bp, rule, BNX2X_PTP_V2_L2_RULE_MASK);
15422 
15423 		break;
15424 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
15425 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
15426 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15427 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15428 		/* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15429 		REG_WR(bp, param, BNX2X_PTP_V2_PARAM_MASK);
15430 		REG_WR(bp, rule, BNX2X_PTP_V2_RULE_MASK);
15431 		break;
15432 	}
15433 
15434 	/* Indicate to FW that this PF expects recorded PTP packets */
15435 	rc = bnx2x_enable_ptp_packets(bp);
15436 	if (rc)
15437 		return rc;
15438 
15439 	/* Enable sending PTP packets to host */
15440 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15441 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15442 
15443 	return 0;
15444 }
15445 
15446 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15447 {
15448 	struct hwtstamp_config config;
15449 	int rc;
15450 
15451 	DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15452 
15453 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15454 		return -EFAULT;
15455 
15456 	DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15457 	   config.tx_type, config.rx_filter);
15458 
15459 	if (config.flags) {
15460 		BNX2X_ERR("config.flags is reserved for future use\n");
15461 		return -EINVAL;
15462 	}
15463 
15464 	bp->hwtstamp_ioctl_called = 1;
15465 	bp->tx_type = config.tx_type;
15466 	bp->rx_filter = config.rx_filter;
15467 
15468 	rc = bnx2x_configure_ptp_filters(bp);
15469 	if (rc)
15470 		return rc;
15471 
15472 	config.rx_filter = bp->rx_filter;
15473 
15474 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15475 		-EFAULT : 0;
15476 }
15477 
15478 /* Configures HW for PTP */
15479 static int bnx2x_configure_ptp(struct bnx2x *bp)
15480 {
15481 	int rc, port = BP_PORT(bp);
15482 	u32 wb_data[2];
15483 
15484 	/* Reset PTP event detection rules - will be configured in the IOCTL */
15485 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15486 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15487 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15488 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15489 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15490 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15491 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15492 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15493 
15494 	/* Disable PTP packets to host - will be configured in the IOCTL*/
15495 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15496 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15497 
15498 	/* Enable the PTP feature */
15499 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15500 	       NIG_REG_P0_PTP_EN, 0x3F);
15501 
15502 	/* Enable the free-running counter */
15503 	wb_data[0] = 0;
15504 	wb_data[1] = 0;
15505 	REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15506 
15507 	/* Reset drift register (offset register is not reset) */
15508 	rc = bnx2x_send_reset_timesync_ramrod(bp);
15509 	if (rc) {
15510 		BNX2X_ERR("Failed to reset PHC drift register\n");
15511 		return -EFAULT;
15512 	}
15513 
15514 	/* Reset possibly old timestamps */
15515 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15516 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15517 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15518 	       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15519 
15520 	return 0;
15521 }
15522 
15523 /* Called during load, to initialize PTP-related stuff */
15524 void bnx2x_init_ptp(struct bnx2x *bp)
15525 {
15526 	int rc;
15527 
15528 	/* Configure PTP in HW */
15529 	rc = bnx2x_configure_ptp(bp);
15530 	if (rc) {
15531 		BNX2X_ERR("Stopping PTP initialization\n");
15532 		return;
15533 	}
15534 
15535 	/* Init work queue for Tx timestamping */
15536 	INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15537 
15538 	/* Init cyclecounter and timecounter. This is done only in the first
15539 	 * load. If done in every load, PTP application will fail when doing
15540 	 * unload / load (e.g. MTU change) while it is running.
15541 	 */
15542 	if (!bp->timecounter_init_done) {
15543 		bnx2x_init_cyclecounter(bp);
15544 		timecounter_init(&bp->timecounter, &bp->cyclecounter,
15545 				 ktime_to_ns(ktime_get_real()));
15546 		bp->timecounter_init_done = 1;
15547 	}
15548 
15549 	DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15550 }
15551