1 /* bnx2x_main.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h>  /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/aer.h>
33 #include <linux/init.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/bitops.h>
39 #include <linux/irq.h>
40 #include <linux/delay.h>
41 #include <asm/byteorder.h>
42 #include <linux/time.h>
43 #include <linux/ethtool.h>
44 #include <linux/mii.h>
45 #include <linux/if_vlan.h>
46 #include <linux/crash_dump.h>
47 #include <net/ip.h>
48 #include <net/ipv6.h>
49 #include <net/tcp.h>
50 #include <net/vxlan.h>
51 #include <net/checksum.h>
52 #include <net/ip6_checksum.h>
53 #include <linux/workqueue.h>
54 #include <linux/crc32.h>
55 #include <linux/crc32c.h>
56 #include <linux/prefetch.h>
57 #include <linux/zlib.h>
58 #include <linux/io.h>
59 #include <linux/semaphore.h>
60 #include <linux/stringify.h>
61 #include <linux/vmalloc.h>
62 #include "bnx2x.h"
63 #include "bnx2x_init.h"
64 #include "bnx2x_init_ops.h"
65 #include "bnx2x_cmn.h"
66 #include "bnx2x_vfpf.h"
67 #include "bnx2x_dcb.h"
68 #include "bnx2x_sp.h"
69 #include <linux/firmware.h>
70 #include "bnx2x_fw_file_hdr.h"
71 /* FW files */
72 #define FW_FILE_VERSION					\
73 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
74 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
75 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
76 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
77 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
78 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
79 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
80 
81 /* Time in jiffies before concluding the transmitter is hung */
82 #define TX_TIMEOUT		(5*HZ)
83 
84 static char version[] =
85 	"QLogic 5771x/578xx 10/20-Gigabit Ethernet Driver "
86 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
87 
88 MODULE_AUTHOR("Eliezer Tamir");
89 MODULE_DESCRIPTION("QLogic "
90 		   "BCM57710/57711/57711E/"
91 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
92 		   "57840/57840_MF Driver");
93 MODULE_LICENSE("GPL");
94 MODULE_VERSION(DRV_MODULE_VERSION);
95 MODULE_FIRMWARE(FW_FILE_NAME_E1);
96 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
97 MODULE_FIRMWARE(FW_FILE_NAME_E2);
98 
99 int bnx2x_num_queues;
100 module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
101 MODULE_PARM_DESC(num_queues,
102 		 " Set number of queues (default is as a number of CPUs)");
103 
104 static int disable_tpa;
105 module_param(disable_tpa, int, S_IRUGO);
106 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
107 
108 static int int_mode;
109 module_param(int_mode, int, S_IRUGO);
110 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
111 				"(1 INT#x; 2 MSI)");
112 
113 static int dropless_fc;
114 module_param(dropless_fc, int, S_IRUGO);
115 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
116 
117 static int mrrs = -1;
118 module_param(mrrs, int, S_IRUGO);
119 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
120 
121 static int debug;
122 module_param(debug, int, S_IRUGO);
123 MODULE_PARM_DESC(debug, " Default debug msglevel");
124 
125 static struct workqueue_struct *bnx2x_wq;
126 struct workqueue_struct *bnx2x_iov_wq;
127 
128 struct bnx2x_mac_vals {
129 	u32 xmac_addr;
130 	u32 xmac_val;
131 	u32 emac_addr;
132 	u32 emac_val;
133 	u32 umac_addr[2];
134 	u32 umac_val[2];
135 	u32 bmac_addr;
136 	u32 bmac_val[2];
137 };
138 
139 enum bnx2x_board_type {
140 	BCM57710 = 0,
141 	BCM57711,
142 	BCM57711E,
143 	BCM57712,
144 	BCM57712_MF,
145 	BCM57712_VF,
146 	BCM57800,
147 	BCM57800_MF,
148 	BCM57800_VF,
149 	BCM57810,
150 	BCM57810_MF,
151 	BCM57810_VF,
152 	BCM57840_4_10,
153 	BCM57840_2_20,
154 	BCM57840_MF,
155 	BCM57840_VF,
156 	BCM57811,
157 	BCM57811_MF,
158 	BCM57840_O,
159 	BCM57840_MFO,
160 	BCM57811_VF
161 };
162 
163 /* indexed by board_type, above */
164 static struct {
165 	char *name;
166 } board_info[] = {
167 	[BCM57710]	= { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
168 	[BCM57711]	= { "QLogic BCM57711 10 Gigabit PCIe" },
169 	[BCM57711E]	= { "QLogic BCM57711E 10 Gigabit PCIe" },
170 	[BCM57712]	= { "QLogic BCM57712 10 Gigabit Ethernet" },
171 	[BCM57712_MF]	= { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
172 	[BCM57712_VF]	= { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
173 	[BCM57800]	= { "QLogic BCM57800 10 Gigabit Ethernet" },
174 	[BCM57800_MF]	= { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
175 	[BCM57800_VF]	= { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
176 	[BCM57810]	= { "QLogic BCM57810 10 Gigabit Ethernet" },
177 	[BCM57810_MF]	= { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
178 	[BCM57810_VF]	= { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
179 	[BCM57840_4_10]	= { "QLogic BCM57840 10 Gigabit Ethernet" },
180 	[BCM57840_2_20]	= { "QLogic BCM57840 20 Gigabit Ethernet" },
181 	[BCM57840_MF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
182 	[BCM57840_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
183 	[BCM57811]	= { "QLogic BCM57811 10 Gigabit Ethernet" },
184 	[BCM57811_MF]	= { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
185 	[BCM57840_O]	= { "QLogic BCM57840 10/20 Gigabit Ethernet" },
186 	[BCM57840_MFO]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
187 	[BCM57811_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
188 };
189 
190 #ifndef PCI_DEVICE_ID_NX2_57710
191 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
192 #endif
193 #ifndef PCI_DEVICE_ID_NX2_57711
194 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
195 #endif
196 #ifndef PCI_DEVICE_ID_NX2_57711E
197 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
198 #endif
199 #ifndef PCI_DEVICE_ID_NX2_57712
200 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
201 #endif
202 #ifndef PCI_DEVICE_ID_NX2_57712_MF
203 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
204 #endif
205 #ifndef PCI_DEVICE_ID_NX2_57712_VF
206 #define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
207 #endif
208 #ifndef PCI_DEVICE_ID_NX2_57800
209 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
210 #endif
211 #ifndef PCI_DEVICE_ID_NX2_57800_MF
212 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
213 #endif
214 #ifndef PCI_DEVICE_ID_NX2_57800_VF
215 #define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
216 #endif
217 #ifndef PCI_DEVICE_ID_NX2_57810
218 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
219 #endif
220 #ifndef PCI_DEVICE_ID_NX2_57810_MF
221 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
222 #endif
223 #ifndef PCI_DEVICE_ID_NX2_57840_O
224 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
225 #endif
226 #ifndef PCI_DEVICE_ID_NX2_57810_VF
227 #define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
228 #endif
229 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
230 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
231 #endif
232 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
233 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
234 #endif
235 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
236 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
237 #endif
238 #ifndef PCI_DEVICE_ID_NX2_57840_MF
239 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
240 #endif
241 #ifndef PCI_DEVICE_ID_NX2_57840_VF
242 #define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
243 #endif
244 #ifndef PCI_DEVICE_ID_NX2_57811
245 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
246 #endif
247 #ifndef PCI_DEVICE_ID_NX2_57811_MF
248 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
249 #endif
250 #ifndef PCI_DEVICE_ID_NX2_57811_VF
251 #define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
252 #endif
253 
254 static const struct pci_device_id bnx2x_pci_tbl[] = {
255 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
256 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
257 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
258 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
259 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
260 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
261 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
262 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
263 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
264 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
265 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
266 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
267 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
268 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
269 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
270 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
271 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
272 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
273 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
274 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
275 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
276 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
277 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
278 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
279 	{ 0 }
280 };
281 
282 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
283 
284 /* Global resources for unloading a previously loaded device */
285 #define BNX2X_PREV_WAIT_NEEDED 1
286 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
287 static LIST_HEAD(bnx2x_prev_list);
288 
289 /* Forward declaration */
290 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
291 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
292 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
293 
294 /****************************************************************************
295 * General service functions
296 ****************************************************************************/
297 
298 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
299 
300 static void __storm_memset_dma_mapping(struct bnx2x *bp,
301 				       u32 addr, dma_addr_t mapping)
302 {
303 	REG_WR(bp,  addr, U64_LO(mapping));
304 	REG_WR(bp,  addr + 4, U64_HI(mapping));
305 }
306 
307 static void storm_memset_spq_addr(struct bnx2x *bp,
308 				  dma_addr_t mapping, u16 abs_fid)
309 {
310 	u32 addr = XSEM_REG_FAST_MEMORY +
311 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
312 
313 	__storm_memset_dma_mapping(bp, addr, mapping);
314 }
315 
316 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
317 				  u16 pf_id)
318 {
319 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
320 		pf_id);
321 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
322 		pf_id);
323 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
324 		pf_id);
325 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
326 		pf_id);
327 }
328 
329 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
330 				 u8 enable)
331 {
332 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
333 		enable);
334 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
335 		enable);
336 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
337 		enable);
338 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
339 		enable);
340 }
341 
342 static void storm_memset_eq_data(struct bnx2x *bp,
343 				 struct event_ring_data *eq_data,
344 				u16 pfid)
345 {
346 	size_t size = sizeof(struct event_ring_data);
347 
348 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
349 
350 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
351 }
352 
353 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
354 				 u16 pfid)
355 {
356 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
357 	REG_WR16(bp, addr, eq_prod);
358 }
359 
360 /* used only at init
361  * locking is done by mcp
362  */
363 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
364 {
365 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
366 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
367 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
368 			       PCICFG_VENDOR_ID_OFFSET);
369 }
370 
371 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
372 {
373 	u32 val;
374 
375 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
376 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
377 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
378 			       PCICFG_VENDOR_ID_OFFSET);
379 
380 	return val;
381 }
382 
383 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
384 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
385 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
386 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
387 #define DMAE_DP_DST_NONE	"dst_addr [none]"
388 
389 static void bnx2x_dp_dmae(struct bnx2x *bp,
390 			  struct dmae_command *dmae, int msglvl)
391 {
392 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
393 	int i;
394 
395 	switch (dmae->opcode & DMAE_COMMAND_DST) {
396 	case DMAE_CMD_DST_PCI:
397 		if (src_type == DMAE_CMD_SRC_PCI)
398 			DP(msglvl, "DMAE: opcode 0x%08x\n"
399 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
400 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
401 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
402 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
403 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
404 			   dmae->comp_val);
405 		else
406 			DP(msglvl, "DMAE: opcode 0x%08x\n"
407 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
408 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
409 			   dmae->opcode, dmae->src_addr_lo >> 2,
410 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
411 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
412 			   dmae->comp_val);
413 		break;
414 	case DMAE_CMD_DST_GRC:
415 		if (src_type == DMAE_CMD_SRC_PCI)
416 			DP(msglvl, "DMAE: opcode 0x%08x\n"
417 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
418 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
419 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
420 			   dmae->len, dmae->dst_addr_lo >> 2,
421 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
422 			   dmae->comp_val);
423 		else
424 			DP(msglvl, "DMAE: opcode 0x%08x\n"
425 			   "src [%08x], len [%d*4], dst [%08x]\n"
426 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
427 			   dmae->opcode, dmae->src_addr_lo >> 2,
428 			   dmae->len, dmae->dst_addr_lo >> 2,
429 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
430 			   dmae->comp_val);
431 		break;
432 	default:
433 		if (src_type == DMAE_CMD_SRC_PCI)
434 			DP(msglvl, "DMAE: opcode 0x%08x\n"
435 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
436 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
437 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
438 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
439 			   dmae->comp_val);
440 		else
441 			DP(msglvl, "DMAE: opcode 0x%08x\n"
442 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
443 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
444 			   dmae->opcode, dmae->src_addr_lo >> 2,
445 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
446 			   dmae->comp_val);
447 		break;
448 	}
449 
450 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
451 		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
452 		   i, *(((u32 *)dmae) + i));
453 }
454 
455 /* copy command into DMAE command memory and set DMAE command go */
456 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
457 {
458 	u32 cmd_offset;
459 	int i;
460 
461 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
462 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
463 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
464 	}
465 	REG_WR(bp, dmae_reg_go_c[idx], 1);
466 }
467 
468 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
469 {
470 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
471 			   DMAE_CMD_C_ENABLE);
472 }
473 
474 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
475 {
476 	return opcode & ~DMAE_CMD_SRC_RESET;
477 }
478 
479 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
480 			     bool with_comp, u8 comp_type)
481 {
482 	u32 opcode = 0;
483 
484 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
485 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
486 
487 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
488 
489 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
490 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
491 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
492 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
493 
494 #ifdef __BIG_ENDIAN
495 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
496 #else
497 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
498 #endif
499 	if (with_comp)
500 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
501 	return opcode;
502 }
503 
504 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
505 				      struct dmae_command *dmae,
506 				      u8 src_type, u8 dst_type)
507 {
508 	memset(dmae, 0, sizeof(struct dmae_command));
509 
510 	/* set the opcode */
511 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
512 					 true, DMAE_COMP_PCI);
513 
514 	/* fill in the completion parameters */
515 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
516 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
517 	dmae->comp_val = DMAE_COMP_VAL;
518 }
519 
520 /* issue a dmae command over the init-channel and wait for completion */
521 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
522 			       u32 *comp)
523 {
524 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
525 	int rc = 0;
526 
527 	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
528 
529 	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
530 	 * as long as this code is called both from syscall context and
531 	 * from ndo_set_rx_mode() flow that may be called from BH.
532 	 */
533 
534 	spin_lock_bh(&bp->dmae_lock);
535 
536 	/* reset completion */
537 	*comp = 0;
538 
539 	/* post the command on the channel used for initializations */
540 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
541 
542 	/* wait for completion */
543 	udelay(5);
544 	while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
545 
546 		if (!cnt ||
547 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
548 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
549 			BNX2X_ERR("DMAE timeout!\n");
550 			rc = DMAE_TIMEOUT;
551 			goto unlock;
552 		}
553 		cnt--;
554 		udelay(50);
555 	}
556 	if (*comp & DMAE_PCI_ERR_FLAG) {
557 		BNX2X_ERR("DMAE PCI error!\n");
558 		rc = DMAE_PCI_ERROR;
559 	}
560 
561 unlock:
562 
563 	spin_unlock_bh(&bp->dmae_lock);
564 
565 	return rc;
566 }
567 
568 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
569 		      u32 len32)
570 {
571 	int rc;
572 	struct dmae_command dmae;
573 
574 	if (!bp->dmae_ready) {
575 		u32 *data = bnx2x_sp(bp, wb_data[0]);
576 
577 		if (CHIP_IS_E1(bp))
578 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
579 		else
580 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
581 		return;
582 	}
583 
584 	/* set opcode and fixed command fields */
585 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
586 
587 	/* fill in addresses and len */
588 	dmae.src_addr_lo = U64_LO(dma_addr);
589 	dmae.src_addr_hi = U64_HI(dma_addr);
590 	dmae.dst_addr_lo = dst_addr >> 2;
591 	dmae.dst_addr_hi = 0;
592 	dmae.len = len32;
593 
594 	/* issue the command and wait for completion */
595 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
596 	if (rc) {
597 		BNX2X_ERR("DMAE returned failure %d\n", rc);
598 #ifdef BNX2X_STOP_ON_ERROR
599 		bnx2x_panic();
600 #endif
601 	}
602 }
603 
604 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
605 {
606 	int rc;
607 	struct dmae_command dmae;
608 
609 	if (!bp->dmae_ready) {
610 		u32 *data = bnx2x_sp(bp, wb_data[0]);
611 		int i;
612 
613 		if (CHIP_IS_E1(bp))
614 			for (i = 0; i < len32; i++)
615 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
616 		else
617 			for (i = 0; i < len32; i++)
618 				data[i] = REG_RD(bp, src_addr + i*4);
619 
620 		return;
621 	}
622 
623 	/* set opcode and fixed command fields */
624 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
625 
626 	/* fill in addresses and len */
627 	dmae.src_addr_lo = src_addr >> 2;
628 	dmae.src_addr_hi = 0;
629 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
630 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
631 	dmae.len = len32;
632 
633 	/* issue the command and wait for completion */
634 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
635 	if (rc) {
636 		BNX2X_ERR("DMAE returned failure %d\n", rc);
637 #ifdef BNX2X_STOP_ON_ERROR
638 		bnx2x_panic();
639 #endif
640 	}
641 }
642 
643 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
644 				      u32 addr, u32 len)
645 {
646 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
647 	int offset = 0;
648 
649 	while (len > dmae_wr_max) {
650 		bnx2x_write_dmae(bp, phys_addr + offset,
651 				 addr + offset, dmae_wr_max);
652 		offset += dmae_wr_max * 4;
653 		len -= dmae_wr_max;
654 	}
655 
656 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
657 }
658 
659 enum storms {
660 	   XSTORM,
661 	   TSTORM,
662 	   CSTORM,
663 	   USTORM,
664 	   MAX_STORMS
665 };
666 
667 #define STORMS_NUM 4
668 #define REGS_IN_ENTRY 4
669 
670 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
671 					      enum storms storm,
672 					      int entry)
673 {
674 	switch (storm) {
675 	case XSTORM:
676 		return XSTORM_ASSERT_LIST_OFFSET(entry);
677 	case TSTORM:
678 		return TSTORM_ASSERT_LIST_OFFSET(entry);
679 	case CSTORM:
680 		return CSTORM_ASSERT_LIST_OFFSET(entry);
681 	case USTORM:
682 		return USTORM_ASSERT_LIST_OFFSET(entry);
683 	case MAX_STORMS:
684 	default:
685 		BNX2X_ERR("unknown storm\n");
686 	}
687 	return -EINVAL;
688 }
689 
690 static int bnx2x_mc_assert(struct bnx2x *bp)
691 {
692 	char last_idx;
693 	int i, j, rc = 0;
694 	enum storms storm;
695 	u32 regs[REGS_IN_ENTRY];
696 	u32 bar_storm_intmem[STORMS_NUM] = {
697 		BAR_XSTRORM_INTMEM,
698 		BAR_TSTRORM_INTMEM,
699 		BAR_CSTRORM_INTMEM,
700 		BAR_USTRORM_INTMEM
701 	};
702 	u32 storm_assert_list_index[STORMS_NUM] = {
703 		XSTORM_ASSERT_LIST_INDEX_OFFSET,
704 		TSTORM_ASSERT_LIST_INDEX_OFFSET,
705 		CSTORM_ASSERT_LIST_INDEX_OFFSET,
706 		USTORM_ASSERT_LIST_INDEX_OFFSET
707 	};
708 	char *storms_string[STORMS_NUM] = {
709 		"XSTORM",
710 		"TSTORM",
711 		"CSTORM",
712 		"USTORM"
713 	};
714 
715 	for (storm = XSTORM; storm < MAX_STORMS; storm++) {
716 		last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
717 				   storm_assert_list_index[storm]);
718 		if (last_idx)
719 			BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
720 				  storms_string[storm], last_idx);
721 
722 		/* print the asserts */
723 		for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
724 			/* read a single assert entry */
725 			for (j = 0; j < REGS_IN_ENTRY; j++)
726 				regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
727 					  bnx2x_get_assert_list_entry(bp,
728 								      storm,
729 								      i) +
730 					  sizeof(u32) * j);
731 
732 			/* log entry if it contains a valid assert */
733 			if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
734 				BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
735 					  storms_string[storm], i, regs[3],
736 					  regs[2], regs[1], regs[0]);
737 				rc++;
738 			} else {
739 				break;
740 			}
741 		}
742 	}
743 
744 	BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
745 		  CHIP_IS_E1(bp) ? "everest1" :
746 		  CHIP_IS_E1H(bp) ? "everest1h" :
747 		  CHIP_IS_E2(bp) ? "everest2" : "everest3",
748 		  BCM_5710_FW_MAJOR_VERSION,
749 		  BCM_5710_FW_MINOR_VERSION,
750 		  BCM_5710_FW_REVISION_VERSION);
751 
752 	return rc;
753 }
754 
755 #define MCPR_TRACE_BUFFER_SIZE	(0x800)
756 #define SCRATCH_BUFFER_SIZE(bp)	\
757 	(CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
758 
759 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
760 {
761 	u32 addr, val;
762 	u32 mark, offset;
763 	__be32 data[9];
764 	int word;
765 	u32 trace_shmem_base;
766 	if (BP_NOMCP(bp)) {
767 		BNX2X_ERR("NO MCP - can not dump\n");
768 		return;
769 	}
770 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
771 		(bp->common.bc_ver & 0xff0000) >> 16,
772 		(bp->common.bc_ver & 0xff00) >> 8,
773 		(bp->common.bc_ver & 0xff));
774 
775 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
776 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
777 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
778 
779 	if (BP_PATH(bp) == 0)
780 		trace_shmem_base = bp->common.shmem_base;
781 	else
782 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
783 
784 	/* sanity */
785 	if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
786 	    trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
787 				SCRATCH_BUFFER_SIZE(bp)) {
788 		BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
789 			  trace_shmem_base);
790 		return;
791 	}
792 
793 	addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
794 
795 	/* validate TRCB signature */
796 	mark = REG_RD(bp, addr);
797 	if (mark != MFW_TRACE_SIGNATURE) {
798 		BNX2X_ERR("Trace buffer signature is missing.");
799 		return ;
800 	}
801 
802 	/* read cyclic buffer pointer */
803 	addr += 4;
804 	mark = REG_RD(bp, addr);
805 	mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
806 	if (mark >= trace_shmem_base || mark < addr + 4) {
807 		BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
808 		return;
809 	}
810 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
811 
812 	printk("%s", lvl);
813 
814 	/* dump buffer after the mark */
815 	for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
816 		for (word = 0; word < 8; word++)
817 			data[word] = htonl(REG_RD(bp, offset + 4*word));
818 		data[8] = 0x0;
819 		pr_cont("%s", (char *)data);
820 	}
821 
822 	/* dump buffer before the mark */
823 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
824 		for (word = 0; word < 8; word++)
825 			data[word] = htonl(REG_RD(bp, offset + 4*word));
826 		data[8] = 0x0;
827 		pr_cont("%s", (char *)data);
828 	}
829 	printk("%s" "end of fw dump\n", lvl);
830 }
831 
832 static void bnx2x_fw_dump(struct bnx2x *bp)
833 {
834 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
835 }
836 
837 static void bnx2x_hc_int_disable(struct bnx2x *bp)
838 {
839 	int port = BP_PORT(bp);
840 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
841 	u32 val = REG_RD(bp, addr);
842 
843 	/* in E1 we must use only PCI configuration space to disable
844 	 * MSI/MSIX capability
845 	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
846 	 */
847 	if (CHIP_IS_E1(bp)) {
848 		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
849 		 * Use mask register to prevent from HC sending interrupts
850 		 * after we exit the function
851 		 */
852 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
853 
854 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
855 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
856 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
857 	} else
858 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
859 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
860 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
861 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
862 
863 	DP(NETIF_MSG_IFDOWN,
864 	   "write %x to HC %d (addr 0x%x)\n",
865 	   val, port, addr);
866 
867 	/* flush all outstanding writes */
868 	mmiowb();
869 
870 	REG_WR(bp, addr, val);
871 	if (REG_RD(bp, addr) != val)
872 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
873 }
874 
875 static void bnx2x_igu_int_disable(struct bnx2x *bp)
876 {
877 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
878 
879 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
880 		 IGU_PF_CONF_INT_LINE_EN |
881 		 IGU_PF_CONF_ATTN_BIT_EN);
882 
883 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
884 
885 	/* flush all outstanding writes */
886 	mmiowb();
887 
888 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
889 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
890 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
891 }
892 
893 static void bnx2x_int_disable(struct bnx2x *bp)
894 {
895 	if (bp->common.int_block == INT_BLOCK_HC)
896 		bnx2x_hc_int_disable(bp);
897 	else
898 		bnx2x_igu_int_disable(bp);
899 }
900 
901 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
902 {
903 	int i;
904 	u16 j;
905 	struct hc_sp_status_block_data sp_sb_data;
906 	int func = BP_FUNC(bp);
907 #ifdef BNX2X_STOP_ON_ERROR
908 	u16 start = 0, end = 0;
909 	u8 cos;
910 #endif
911 	if (IS_PF(bp) && disable_int)
912 		bnx2x_int_disable(bp);
913 
914 	bp->stats_state = STATS_STATE_DISABLED;
915 	bp->eth_stats.unrecoverable_error++;
916 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
917 
918 	BNX2X_ERR("begin crash dump -----------------\n");
919 
920 	/* Indices */
921 	/* Common */
922 	if (IS_PF(bp)) {
923 		struct host_sp_status_block *def_sb = bp->def_status_blk;
924 		int data_size, cstorm_offset;
925 
926 		BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
927 			  bp->def_idx, bp->def_att_idx, bp->attn_state,
928 			  bp->spq_prod_idx, bp->stats_counter);
929 		BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
930 			  def_sb->atten_status_block.attn_bits,
931 			  def_sb->atten_status_block.attn_bits_ack,
932 			  def_sb->atten_status_block.status_block_id,
933 			  def_sb->atten_status_block.attn_bits_index);
934 		BNX2X_ERR("     def (");
935 		for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
936 			pr_cont("0x%x%s",
937 				def_sb->sp_sb.index_values[i],
938 				(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
939 
940 		data_size = sizeof(struct hc_sp_status_block_data) /
941 			    sizeof(u32);
942 		cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
943 		for (i = 0; i < data_size; i++)
944 			*((u32 *)&sp_sb_data + i) =
945 				REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
946 					   i * sizeof(u32));
947 
948 		pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
949 			sp_sb_data.igu_sb_id,
950 			sp_sb_data.igu_seg_id,
951 			sp_sb_data.p_func.pf_id,
952 			sp_sb_data.p_func.vnic_id,
953 			sp_sb_data.p_func.vf_id,
954 			sp_sb_data.p_func.vf_valid,
955 			sp_sb_data.state);
956 	}
957 
958 	for_each_eth_queue(bp, i) {
959 		struct bnx2x_fastpath *fp = &bp->fp[i];
960 		int loop;
961 		struct hc_status_block_data_e2 sb_data_e2;
962 		struct hc_status_block_data_e1x sb_data_e1x;
963 		struct hc_status_block_sm  *hc_sm_p =
964 			CHIP_IS_E1x(bp) ?
965 			sb_data_e1x.common.state_machine :
966 			sb_data_e2.common.state_machine;
967 		struct hc_index_data *hc_index_p =
968 			CHIP_IS_E1x(bp) ?
969 			sb_data_e1x.index_data :
970 			sb_data_e2.index_data;
971 		u8 data_size, cos;
972 		u32 *sb_data_p;
973 		struct bnx2x_fp_txdata txdata;
974 
975 		if (!bp->fp)
976 			break;
977 
978 		if (!fp->rx_cons_sb)
979 			continue;
980 
981 		/* Rx */
982 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
983 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
984 			  fp->rx_comp_prod,
985 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
986 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
987 			  fp->rx_sge_prod, fp->last_max_sge,
988 			  le16_to_cpu(fp->fp_hc_idx));
989 
990 		/* Tx */
991 		for_each_cos_in_tx_queue(fp, cos)
992 		{
993 			if (!fp->txdata_ptr[cos])
994 				break;
995 
996 			txdata = *fp->txdata_ptr[cos];
997 
998 			if (!txdata.tx_cons_sb)
999 				continue;
1000 
1001 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1002 				  i, txdata.tx_pkt_prod,
1003 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
1004 				  txdata.tx_bd_cons,
1005 				  le16_to_cpu(*txdata.tx_cons_sb));
1006 		}
1007 
1008 		loop = CHIP_IS_E1x(bp) ?
1009 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1010 
1011 		/* host sb data */
1012 
1013 		if (IS_FCOE_FP(fp))
1014 			continue;
1015 
1016 		BNX2X_ERR("     run indexes (");
1017 		for (j = 0; j < HC_SB_MAX_SM; j++)
1018 			pr_cont("0x%x%s",
1019 			       fp->sb_running_index[j],
1020 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1021 
1022 		BNX2X_ERR("     indexes (");
1023 		for (j = 0; j < loop; j++)
1024 			pr_cont("0x%x%s",
1025 			       fp->sb_index_values[j],
1026 			       (j == loop - 1) ? ")" : " ");
1027 
1028 		/* VF cannot access FW refelection for status block */
1029 		if (IS_VF(bp))
1030 			continue;
1031 
1032 		/* fw sb data */
1033 		data_size = CHIP_IS_E1x(bp) ?
1034 			sizeof(struct hc_status_block_data_e1x) :
1035 			sizeof(struct hc_status_block_data_e2);
1036 		data_size /= sizeof(u32);
1037 		sb_data_p = CHIP_IS_E1x(bp) ?
1038 			(u32 *)&sb_data_e1x :
1039 			(u32 *)&sb_data_e2;
1040 		/* copy sb data in here */
1041 		for (j = 0; j < data_size; j++)
1042 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1043 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1044 				j * sizeof(u32));
1045 
1046 		if (!CHIP_IS_E1x(bp)) {
1047 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1048 				sb_data_e2.common.p_func.pf_id,
1049 				sb_data_e2.common.p_func.vf_id,
1050 				sb_data_e2.common.p_func.vf_valid,
1051 				sb_data_e2.common.p_func.vnic_id,
1052 				sb_data_e2.common.same_igu_sb_1b,
1053 				sb_data_e2.common.state);
1054 		} else {
1055 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1056 				sb_data_e1x.common.p_func.pf_id,
1057 				sb_data_e1x.common.p_func.vf_id,
1058 				sb_data_e1x.common.p_func.vf_valid,
1059 				sb_data_e1x.common.p_func.vnic_id,
1060 				sb_data_e1x.common.same_igu_sb_1b,
1061 				sb_data_e1x.common.state);
1062 		}
1063 
1064 		/* SB_SMs data */
1065 		for (j = 0; j < HC_SB_MAX_SM; j++) {
1066 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1067 				j, hc_sm_p[j].__flags,
1068 				hc_sm_p[j].igu_sb_id,
1069 				hc_sm_p[j].igu_seg_id,
1070 				hc_sm_p[j].time_to_expire,
1071 				hc_sm_p[j].timer_value);
1072 		}
1073 
1074 		/* Indices data */
1075 		for (j = 0; j < loop; j++) {
1076 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1077 			       hc_index_p[j].flags,
1078 			       hc_index_p[j].timeout);
1079 		}
1080 	}
1081 
1082 #ifdef BNX2X_STOP_ON_ERROR
1083 	if (IS_PF(bp)) {
1084 		/* event queue */
1085 		BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1086 		for (i = 0; i < NUM_EQ_DESC; i++) {
1087 			u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1088 
1089 			BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1090 				  i, bp->eq_ring[i].message.opcode,
1091 				  bp->eq_ring[i].message.error);
1092 			BNX2X_ERR("data: %x %x %x\n",
1093 				  data[0], data[1], data[2]);
1094 		}
1095 	}
1096 
1097 	/* Rings */
1098 	/* Rx */
1099 	for_each_valid_rx_queue(bp, i) {
1100 		struct bnx2x_fastpath *fp = &bp->fp[i];
1101 
1102 		if (!bp->fp)
1103 			break;
1104 
1105 		if (!fp->rx_cons_sb)
1106 			continue;
1107 
1108 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1109 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1110 		for (j = start; j != end; j = RX_BD(j + 1)) {
1111 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1112 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1113 
1114 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1115 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1116 		}
1117 
1118 		start = RX_SGE(fp->rx_sge_prod);
1119 		end = RX_SGE(fp->last_max_sge);
1120 		for (j = start; j != end; j = RX_SGE(j + 1)) {
1121 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1122 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1123 
1124 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1125 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1126 		}
1127 
1128 		start = RCQ_BD(fp->rx_comp_cons - 10);
1129 		end = RCQ_BD(fp->rx_comp_cons + 503);
1130 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1131 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1132 
1133 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1134 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1135 		}
1136 	}
1137 
1138 	/* Tx */
1139 	for_each_valid_tx_queue(bp, i) {
1140 		struct bnx2x_fastpath *fp = &bp->fp[i];
1141 
1142 		if (!bp->fp)
1143 			break;
1144 
1145 		for_each_cos_in_tx_queue(fp, cos) {
1146 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1147 
1148 			if (!fp->txdata_ptr[cos])
1149 				break;
1150 
1151 			if (!txdata->tx_cons_sb)
1152 				continue;
1153 
1154 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1155 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1156 			for (j = start; j != end; j = TX_BD(j + 1)) {
1157 				struct sw_tx_bd *sw_bd =
1158 					&txdata->tx_buf_ring[j];
1159 
1160 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1161 					  i, cos, j, sw_bd->skb,
1162 					  sw_bd->first_bd);
1163 			}
1164 
1165 			start = TX_BD(txdata->tx_bd_cons - 10);
1166 			end = TX_BD(txdata->tx_bd_cons + 254);
1167 			for (j = start; j != end; j = TX_BD(j + 1)) {
1168 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1169 
1170 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1171 					  i, cos, j, tx_bd[0], tx_bd[1],
1172 					  tx_bd[2], tx_bd[3]);
1173 			}
1174 		}
1175 	}
1176 #endif
1177 	if (IS_PF(bp)) {
1178 		bnx2x_fw_dump(bp);
1179 		bnx2x_mc_assert(bp);
1180 	}
1181 	BNX2X_ERR("end crash dump -----------------\n");
1182 }
1183 
1184 /*
1185  * FLR Support for E2
1186  *
1187  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1188  * initialization.
1189  */
1190 #define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1191 #define FLR_WAIT_INTERVAL	50	/* usec */
1192 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1193 
1194 struct pbf_pN_buf_regs {
1195 	int pN;
1196 	u32 init_crd;
1197 	u32 crd;
1198 	u32 crd_freed;
1199 };
1200 
1201 struct pbf_pN_cmd_regs {
1202 	int pN;
1203 	u32 lines_occup;
1204 	u32 lines_freed;
1205 };
1206 
1207 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1208 				     struct pbf_pN_buf_regs *regs,
1209 				     u32 poll_count)
1210 {
1211 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1212 	u32 cur_cnt = poll_count;
1213 
1214 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1215 	crd = crd_start = REG_RD(bp, regs->crd);
1216 	init_crd = REG_RD(bp, regs->init_crd);
1217 
1218 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1219 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1220 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1221 
1222 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1223 	       (init_crd - crd_start))) {
1224 		if (cur_cnt--) {
1225 			udelay(FLR_WAIT_INTERVAL);
1226 			crd = REG_RD(bp, regs->crd);
1227 			crd_freed = REG_RD(bp, regs->crd_freed);
1228 		} else {
1229 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1230 			   regs->pN);
1231 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1232 			   regs->pN, crd);
1233 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1234 			   regs->pN, crd_freed);
1235 			break;
1236 		}
1237 	}
1238 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1239 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1240 }
1241 
1242 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1243 				     struct pbf_pN_cmd_regs *regs,
1244 				     u32 poll_count)
1245 {
1246 	u32 occup, to_free, freed, freed_start;
1247 	u32 cur_cnt = poll_count;
1248 
1249 	occup = to_free = REG_RD(bp, regs->lines_occup);
1250 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1251 
1252 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1253 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1254 
1255 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1256 		if (cur_cnt--) {
1257 			udelay(FLR_WAIT_INTERVAL);
1258 			occup = REG_RD(bp, regs->lines_occup);
1259 			freed = REG_RD(bp, regs->lines_freed);
1260 		} else {
1261 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1262 			   regs->pN);
1263 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1264 			   regs->pN, occup);
1265 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1266 			   regs->pN, freed);
1267 			break;
1268 		}
1269 	}
1270 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1271 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1272 }
1273 
1274 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1275 				    u32 expected, u32 poll_count)
1276 {
1277 	u32 cur_cnt = poll_count;
1278 	u32 val;
1279 
1280 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1281 		udelay(FLR_WAIT_INTERVAL);
1282 
1283 	return val;
1284 }
1285 
1286 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1287 				    char *msg, u32 poll_cnt)
1288 {
1289 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1290 	if (val != 0) {
1291 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1292 		return 1;
1293 	}
1294 	return 0;
1295 }
1296 
1297 /* Common routines with VF FLR cleanup */
1298 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1299 {
1300 	/* adjust polling timeout */
1301 	if (CHIP_REV_IS_EMUL(bp))
1302 		return FLR_POLL_CNT * 2000;
1303 
1304 	if (CHIP_REV_IS_FPGA(bp))
1305 		return FLR_POLL_CNT * 120;
1306 
1307 	return FLR_POLL_CNT;
1308 }
1309 
1310 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1311 {
1312 	struct pbf_pN_cmd_regs cmd_regs[] = {
1313 		{0, (CHIP_IS_E3B0(bp)) ?
1314 			PBF_REG_TQ_OCCUPANCY_Q0 :
1315 			PBF_REG_P0_TQ_OCCUPANCY,
1316 		    (CHIP_IS_E3B0(bp)) ?
1317 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1318 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1319 		{1, (CHIP_IS_E3B0(bp)) ?
1320 			PBF_REG_TQ_OCCUPANCY_Q1 :
1321 			PBF_REG_P1_TQ_OCCUPANCY,
1322 		    (CHIP_IS_E3B0(bp)) ?
1323 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1324 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1325 		{4, (CHIP_IS_E3B0(bp)) ?
1326 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1327 			PBF_REG_P4_TQ_OCCUPANCY,
1328 		    (CHIP_IS_E3B0(bp)) ?
1329 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1330 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1331 	};
1332 
1333 	struct pbf_pN_buf_regs buf_regs[] = {
1334 		{0, (CHIP_IS_E3B0(bp)) ?
1335 			PBF_REG_INIT_CRD_Q0 :
1336 			PBF_REG_P0_INIT_CRD ,
1337 		    (CHIP_IS_E3B0(bp)) ?
1338 			PBF_REG_CREDIT_Q0 :
1339 			PBF_REG_P0_CREDIT,
1340 		    (CHIP_IS_E3B0(bp)) ?
1341 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1342 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1343 		{1, (CHIP_IS_E3B0(bp)) ?
1344 			PBF_REG_INIT_CRD_Q1 :
1345 			PBF_REG_P1_INIT_CRD,
1346 		    (CHIP_IS_E3B0(bp)) ?
1347 			PBF_REG_CREDIT_Q1 :
1348 			PBF_REG_P1_CREDIT,
1349 		    (CHIP_IS_E3B0(bp)) ?
1350 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1351 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1352 		{4, (CHIP_IS_E3B0(bp)) ?
1353 			PBF_REG_INIT_CRD_LB_Q :
1354 			PBF_REG_P4_INIT_CRD,
1355 		    (CHIP_IS_E3B0(bp)) ?
1356 			PBF_REG_CREDIT_LB_Q :
1357 			PBF_REG_P4_CREDIT,
1358 		    (CHIP_IS_E3B0(bp)) ?
1359 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1360 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1361 	};
1362 
1363 	int i;
1364 
1365 	/* Verify the command queues are flushed P0, P1, P4 */
1366 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1367 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1368 
1369 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1370 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1371 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1372 }
1373 
1374 #define OP_GEN_PARAM(param) \
1375 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1376 
1377 #define OP_GEN_TYPE(type) \
1378 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1379 
1380 #define OP_GEN_AGG_VECT(index) \
1381 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1382 
1383 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1384 {
1385 	u32 op_gen_command = 0;
1386 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1387 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1388 	int ret = 0;
1389 
1390 	if (REG_RD(bp, comp_addr)) {
1391 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1392 		return 1;
1393 	}
1394 
1395 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1396 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1397 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1398 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1399 
1400 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1401 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1402 
1403 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1404 		BNX2X_ERR("FW final cleanup did not succeed\n");
1405 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1406 		   (REG_RD(bp, comp_addr)));
1407 		bnx2x_panic();
1408 		return 1;
1409 	}
1410 	/* Zero completion for next FLR */
1411 	REG_WR(bp, comp_addr, 0);
1412 
1413 	return ret;
1414 }
1415 
1416 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1417 {
1418 	u16 status;
1419 
1420 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1421 	return status & PCI_EXP_DEVSTA_TRPND;
1422 }
1423 
1424 /* PF FLR specific routines
1425 */
1426 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1427 {
1428 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1429 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1430 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1431 			"CFC PF usage counter timed out",
1432 			poll_cnt))
1433 		return 1;
1434 
1435 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1436 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1437 			DORQ_REG_PF_USAGE_CNT,
1438 			"DQ PF usage counter timed out",
1439 			poll_cnt))
1440 		return 1;
1441 
1442 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1443 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1444 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1445 			"QM PF usage counter timed out",
1446 			poll_cnt))
1447 		return 1;
1448 
1449 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1450 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1451 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1452 			"Timers VNIC usage counter timed out",
1453 			poll_cnt))
1454 		return 1;
1455 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1456 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1457 			"Timers NUM_SCANS usage counter timed out",
1458 			poll_cnt))
1459 		return 1;
1460 
1461 	/* Wait DMAE PF usage counter to zero */
1462 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1463 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1464 			"DMAE command register timed out",
1465 			poll_cnt))
1466 		return 1;
1467 
1468 	return 0;
1469 }
1470 
1471 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1472 {
1473 	u32 val;
1474 
1475 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1476 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1477 
1478 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1479 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1480 
1481 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1482 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1483 
1484 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1485 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1486 
1487 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1488 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1489 
1490 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1491 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1492 
1493 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1494 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1495 
1496 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1497 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1498 	   val);
1499 }
1500 
1501 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1502 {
1503 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1504 
1505 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1506 
1507 	/* Re-enable PF target read access */
1508 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1509 
1510 	/* Poll HW usage counters */
1511 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1512 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1513 		return -EBUSY;
1514 
1515 	/* Zero the igu 'trailing edge' and 'leading edge' */
1516 
1517 	/* Send the FW cleanup command */
1518 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1519 		return -EBUSY;
1520 
1521 	/* ATC cleanup */
1522 
1523 	/* Verify TX hw is flushed */
1524 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1525 
1526 	/* Wait 100ms (not adjusted according to platform) */
1527 	msleep(100);
1528 
1529 	/* Verify no pending pci transactions */
1530 	if (bnx2x_is_pcie_pending(bp->pdev))
1531 		BNX2X_ERR("PCIE Transactions still pending\n");
1532 
1533 	/* Debug */
1534 	bnx2x_hw_enable_status(bp);
1535 
1536 	/*
1537 	 * Master enable - Due to WB DMAE writes performed before this
1538 	 * register is re-initialized as part of the regular function init
1539 	 */
1540 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1541 
1542 	return 0;
1543 }
1544 
1545 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1546 {
1547 	int port = BP_PORT(bp);
1548 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1549 	u32 val = REG_RD(bp, addr);
1550 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1551 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1552 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1553 
1554 	if (msix) {
1555 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1556 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1557 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1558 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1559 		if (single_msix)
1560 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1561 	} else if (msi) {
1562 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1563 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1564 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1565 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1566 	} else {
1567 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1568 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1569 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1570 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1571 
1572 		if (!CHIP_IS_E1(bp)) {
1573 			DP(NETIF_MSG_IFUP,
1574 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1575 
1576 			REG_WR(bp, addr, val);
1577 
1578 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1579 		}
1580 	}
1581 
1582 	if (CHIP_IS_E1(bp))
1583 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1584 
1585 	DP(NETIF_MSG_IFUP,
1586 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1587 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1588 
1589 	REG_WR(bp, addr, val);
1590 	/*
1591 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1592 	 */
1593 	mmiowb();
1594 	barrier();
1595 
1596 	if (!CHIP_IS_E1(bp)) {
1597 		/* init leading/trailing edge */
1598 		if (IS_MF(bp)) {
1599 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1600 			if (bp->port.pmf)
1601 				/* enable nig and gpio3 attention */
1602 				val |= 0x1100;
1603 		} else
1604 			val = 0xffff;
1605 
1606 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1607 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1608 	}
1609 
1610 	/* Make sure that interrupts are indeed enabled from here on */
1611 	mmiowb();
1612 }
1613 
1614 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1615 {
1616 	u32 val;
1617 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1618 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1619 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1620 
1621 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1622 
1623 	if (msix) {
1624 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1625 			 IGU_PF_CONF_SINGLE_ISR_EN);
1626 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1627 			IGU_PF_CONF_ATTN_BIT_EN);
1628 
1629 		if (single_msix)
1630 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1631 	} else if (msi) {
1632 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1633 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1634 			IGU_PF_CONF_ATTN_BIT_EN |
1635 			IGU_PF_CONF_SINGLE_ISR_EN);
1636 	} else {
1637 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1638 		val |= (IGU_PF_CONF_INT_LINE_EN |
1639 			IGU_PF_CONF_ATTN_BIT_EN |
1640 			IGU_PF_CONF_SINGLE_ISR_EN);
1641 	}
1642 
1643 	/* Clean previous status - need to configure igu prior to ack*/
1644 	if ((!msix) || single_msix) {
1645 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1646 		bnx2x_ack_int(bp);
1647 	}
1648 
1649 	val |= IGU_PF_CONF_FUNC_EN;
1650 
1651 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1652 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1653 
1654 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1655 
1656 	if (val & IGU_PF_CONF_INT_LINE_EN)
1657 		pci_intx(bp->pdev, true);
1658 
1659 	barrier();
1660 
1661 	/* init leading/trailing edge */
1662 	if (IS_MF(bp)) {
1663 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1664 		if (bp->port.pmf)
1665 			/* enable nig and gpio3 attention */
1666 			val |= 0x1100;
1667 	} else
1668 		val = 0xffff;
1669 
1670 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1671 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1672 
1673 	/* Make sure that interrupts are indeed enabled from here on */
1674 	mmiowb();
1675 }
1676 
1677 void bnx2x_int_enable(struct bnx2x *bp)
1678 {
1679 	if (bp->common.int_block == INT_BLOCK_HC)
1680 		bnx2x_hc_int_enable(bp);
1681 	else
1682 		bnx2x_igu_int_enable(bp);
1683 }
1684 
1685 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1686 {
1687 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1688 	int i, offset;
1689 
1690 	if (disable_hw)
1691 		/* prevent the HW from sending interrupts */
1692 		bnx2x_int_disable(bp);
1693 
1694 	/* make sure all ISRs are done */
1695 	if (msix) {
1696 		synchronize_irq(bp->msix_table[0].vector);
1697 		offset = 1;
1698 		if (CNIC_SUPPORT(bp))
1699 			offset++;
1700 		for_each_eth_queue(bp, i)
1701 			synchronize_irq(bp->msix_table[offset++].vector);
1702 	} else
1703 		synchronize_irq(bp->pdev->irq);
1704 
1705 	/* make sure sp_task is not running */
1706 	cancel_delayed_work(&bp->sp_task);
1707 	cancel_delayed_work(&bp->period_task);
1708 	flush_workqueue(bnx2x_wq);
1709 }
1710 
1711 /* fast path */
1712 
1713 /*
1714  * General service functions
1715  */
1716 
1717 /* Return true if succeeded to acquire the lock */
1718 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1719 {
1720 	u32 lock_status;
1721 	u32 resource_bit = (1 << resource);
1722 	int func = BP_FUNC(bp);
1723 	u32 hw_lock_control_reg;
1724 
1725 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1726 	   "Trying to take a lock on resource %d\n", resource);
1727 
1728 	/* Validating that the resource is within range */
1729 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1730 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1731 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1732 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1733 		return false;
1734 	}
1735 
1736 	if (func <= 5)
1737 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1738 	else
1739 		hw_lock_control_reg =
1740 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1741 
1742 	/* Try to acquire the lock */
1743 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1744 	lock_status = REG_RD(bp, hw_lock_control_reg);
1745 	if (lock_status & resource_bit)
1746 		return true;
1747 
1748 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1749 	   "Failed to get a lock on resource %d\n", resource);
1750 	return false;
1751 }
1752 
1753 /**
1754  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1755  *
1756  * @bp:	driver handle
1757  *
1758  * Returns the recovery leader resource id according to the engine this function
1759  * belongs to. Currently only only 2 engines is supported.
1760  */
1761 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1762 {
1763 	if (BP_PATH(bp))
1764 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1765 	else
1766 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1767 }
1768 
1769 /**
1770  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1771  *
1772  * @bp: driver handle
1773  *
1774  * Tries to acquire a leader lock for current engine.
1775  */
1776 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1777 {
1778 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1779 }
1780 
1781 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1782 
1783 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1784 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1785 {
1786 	/* Set the interrupt occurred bit for the sp-task to recognize it
1787 	 * must ack the interrupt and transition according to the IGU
1788 	 * state machine.
1789 	 */
1790 	atomic_set(&bp->interrupt_occurred, 1);
1791 
1792 	/* The sp_task must execute only after this bit
1793 	 * is set, otherwise we will get out of sync and miss all
1794 	 * further interrupts. Hence, the barrier.
1795 	 */
1796 	smp_wmb();
1797 
1798 	/* schedule sp_task to workqueue */
1799 	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1800 }
1801 
1802 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1803 {
1804 	struct bnx2x *bp = fp->bp;
1805 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1806 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1807 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1808 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1809 
1810 	DP(BNX2X_MSG_SP,
1811 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1812 	   fp->index, cid, command, bp->state,
1813 	   rr_cqe->ramrod_cqe.ramrod_type);
1814 
1815 	/* If cid is within VF range, replace the slowpath object with the
1816 	 * one corresponding to this VF
1817 	 */
1818 	if (cid >= BNX2X_FIRST_VF_CID  &&
1819 	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1820 		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1821 
1822 	switch (command) {
1823 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1824 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1825 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1826 		break;
1827 
1828 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1829 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1830 		drv_cmd = BNX2X_Q_CMD_SETUP;
1831 		break;
1832 
1833 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1834 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1835 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1836 		break;
1837 
1838 	case (RAMROD_CMD_ID_ETH_HALT):
1839 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1840 		drv_cmd = BNX2X_Q_CMD_HALT;
1841 		break;
1842 
1843 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1844 		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1845 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1846 		break;
1847 
1848 	case (RAMROD_CMD_ID_ETH_EMPTY):
1849 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1850 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1851 		break;
1852 
1853 	case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1854 		DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1855 		drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1856 		break;
1857 
1858 	default:
1859 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1860 			  command, fp->index);
1861 		return;
1862 	}
1863 
1864 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1865 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1866 		/* q_obj->complete_cmd() failure means that this was
1867 		 * an unexpected completion.
1868 		 *
1869 		 * In this case we don't want to increase the bp->spq_left
1870 		 * because apparently we haven't sent this command the first
1871 		 * place.
1872 		 */
1873 #ifdef BNX2X_STOP_ON_ERROR
1874 		bnx2x_panic();
1875 #else
1876 		return;
1877 #endif
1878 
1879 	smp_mb__before_atomic();
1880 	atomic_inc(&bp->cq_spq_left);
1881 	/* push the change in bp->spq_left and towards the memory */
1882 	smp_mb__after_atomic();
1883 
1884 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1885 
1886 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1887 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1888 		/* if Q update ramrod is completed for last Q in AFEX vif set
1889 		 * flow, then ACK MCP at the end
1890 		 *
1891 		 * mark pending ACK to MCP bit.
1892 		 * prevent case that both bits are cleared.
1893 		 * At the end of load/unload driver checks that
1894 		 * sp_state is cleared, and this order prevents
1895 		 * races
1896 		 */
1897 		smp_mb__before_atomic();
1898 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1899 		wmb();
1900 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1901 		smp_mb__after_atomic();
1902 
1903 		/* schedule the sp task as mcp ack is required */
1904 		bnx2x_schedule_sp_task(bp);
1905 	}
1906 
1907 	return;
1908 }
1909 
1910 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1911 {
1912 	struct bnx2x *bp = netdev_priv(dev_instance);
1913 	u16 status = bnx2x_ack_int(bp);
1914 	u16 mask;
1915 	int i;
1916 	u8 cos;
1917 
1918 	/* Return here if interrupt is shared and it's not for us */
1919 	if (unlikely(status == 0)) {
1920 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1921 		return IRQ_NONE;
1922 	}
1923 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1924 
1925 #ifdef BNX2X_STOP_ON_ERROR
1926 	if (unlikely(bp->panic))
1927 		return IRQ_HANDLED;
1928 #endif
1929 
1930 	for_each_eth_queue(bp, i) {
1931 		struct bnx2x_fastpath *fp = &bp->fp[i];
1932 
1933 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1934 		if (status & mask) {
1935 			/* Handle Rx or Tx according to SB id */
1936 			for_each_cos_in_tx_queue(fp, cos)
1937 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1938 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1939 			napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1940 			status &= ~mask;
1941 		}
1942 	}
1943 
1944 	if (CNIC_SUPPORT(bp)) {
1945 		mask = 0x2;
1946 		if (status & (mask | 0x1)) {
1947 			struct cnic_ops *c_ops = NULL;
1948 
1949 			rcu_read_lock();
1950 			c_ops = rcu_dereference(bp->cnic_ops);
1951 			if (c_ops && (bp->cnic_eth_dev.drv_state &
1952 				      CNIC_DRV_STATE_HANDLES_IRQ))
1953 				c_ops->cnic_handler(bp->cnic_data, NULL);
1954 			rcu_read_unlock();
1955 
1956 			status &= ~mask;
1957 		}
1958 	}
1959 
1960 	if (unlikely(status & 0x1)) {
1961 
1962 		/* schedule sp task to perform default status block work, ack
1963 		 * attentions and enable interrupts.
1964 		 */
1965 		bnx2x_schedule_sp_task(bp);
1966 
1967 		status &= ~0x1;
1968 		if (!status)
1969 			return IRQ_HANDLED;
1970 	}
1971 
1972 	if (unlikely(status))
1973 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1974 		   status);
1975 
1976 	return IRQ_HANDLED;
1977 }
1978 
1979 /* Link */
1980 
1981 /*
1982  * General service functions
1983  */
1984 
1985 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1986 {
1987 	u32 lock_status;
1988 	u32 resource_bit = (1 << resource);
1989 	int func = BP_FUNC(bp);
1990 	u32 hw_lock_control_reg;
1991 	int cnt;
1992 
1993 	/* Validating that the resource is within range */
1994 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1995 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1996 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1997 		return -EINVAL;
1998 	}
1999 
2000 	if (func <= 5) {
2001 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2002 	} else {
2003 		hw_lock_control_reg =
2004 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2005 	}
2006 
2007 	/* Validating that the resource is not already taken */
2008 	lock_status = REG_RD(bp, hw_lock_control_reg);
2009 	if (lock_status & resource_bit) {
2010 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2011 		   lock_status, resource_bit);
2012 		return -EEXIST;
2013 	}
2014 
2015 	/* Try for 5 second every 5ms */
2016 	for (cnt = 0; cnt < 1000; cnt++) {
2017 		/* Try to acquire the lock */
2018 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2019 		lock_status = REG_RD(bp, hw_lock_control_reg);
2020 		if (lock_status & resource_bit)
2021 			return 0;
2022 
2023 		usleep_range(5000, 10000);
2024 	}
2025 	BNX2X_ERR("Timeout\n");
2026 	return -EAGAIN;
2027 }
2028 
2029 int bnx2x_release_leader_lock(struct bnx2x *bp)
2030 {
2031 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2032 }
2033 
2034 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2035 {
2036 	u32 lock_status;
2037 	u32 resource_bit = (1 << resource);
2038 	int func = BP_FUNC(bp);
2039 	u32 hw_lock_control_reg;
2040 
2041 	/* Validating that the resource is within range */
2042 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2043 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2044 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2045 		return -EINVAL;
2046 	}
2047 
2048 	if (func <= 5) {
2049 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2050 	} else {
2051 		hw_lock_control_reg =
2052 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2053 	}
2054 
2055 	/* Validating that the resource is currently taken */
2056 	lock_status = REG_RD(bp, hw_lock_control_reg);
2057 	if (!(lock_status & resource_bit)) {
2058 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2059 			  lock_status, resource_bit);
2060 		return -EFAULT;
2061 	}
2062 
2063 	REG_WR(bp, hw_lock_control_reg, resource_bit);
2064 	return 0;
2065 }
2066 
2067 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2068 {
2069 	/* The GPIO should be swapped if swap register is set and active */
2070 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2071 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2072 	int gpio_shift = gpio_num +
2073 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2074 	u32 gpio_mask = (1 << gpio_shift);
2075 	u32 gpio_reg;
2076 	int value;
2077 
2078 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2079 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2080 		return -EINVAL;
2081 	}
2082 
2083 	/* read GPIO value */
2084 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2085 
2086 	/* get the requested pin value */
2087 	if ((gpio_reg & gpio_mask) == gpio_mask)
2088 		value = 1;
2089 	else
2090 		value = 0;
2091 
2092 	return value;
2093 }
2094 
2095 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2096 {
2097 	/* The GPIO should be swapped if swap register is set and active */
2098 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2099 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2100 	int gpio_shift = gpio_num +
2101 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2102 	u32 gpio_mask = (1 << gpio_shift);
2103 	u32 gpio_reg;
2104 
2105 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2106 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2107 		return -EINVAL;
2108 	}
2109 
2110 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2111 	/* read GPIO and mask except the float bits */
2112 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2113 
2114 	switch (mode) {
2115 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2116 		DP(NETIF_MSG_LINK,
2117 		   "Set GPIO %d (shift %d) -> output low\n",
2118 		   gpio_num, gpio_shift);
2119 		/* clear FLOAT and set CLR */
2120 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2121 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2122 		break;
2123 
2124 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2125 		DP(NETIF_MSG_LINK,
2126 		   "Set GPIO %d (shift %d) -> output high\n",
2127 		   gpio_num, gpio_shift);
2128 		/* clear FLOAT and set SET */
2129 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2130 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2131 		break;
2132 
2133 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2134 		DP(NETIF_MSG_LINK,
2135 		   "Set GPIO %d (shift %d) -> input\n",
2136 		   gpio_num, gpio_shift);
2137 		/* set FLOAT */
2138 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2139 		break;
2140 
2141 	default:
2142 		break;
2143 	}
2144 
2145 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2146 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2147 
2148 	return 0;
2149 }
2150 
2151 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2152 {
2153 	u32 gpio_reg = 0;
2154 	int rc = 0;
2155 
2156 	/* Any port swapping should be handled by caller. */
2157 
2158 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2159 	/* read GPIO and mask except the float bits */
2160 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2161 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2162 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2163 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2164 
2165 	switch (mode) {
2166 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2167 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2168 		/* set CLR */
2169 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2170 		break;
2171 
2172 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2173 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2174 		/* set SET */
2175 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2176 		break;
2177 
2178 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2179 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2180 		/* set FLOAT */
2181 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2182 		break;
2183 
2184 	default:
2185 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2186 		rc = -EINVAL;
2187 		break;
2188 	}
2189 
2190 	if (rc == 0)
2191 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2192 
2193 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2194 
2195 	return rc;
2196 }
2197 
2198 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2199 {
2200 	/* The GPIO should be swapped if swap register is set and active */
2201 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2202 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2203 	int gpio_shift = gpio_num +
2204 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2205 	u32 gpio_mask = (1 << gpio_shift);
2206 	u32 gpio_reg;
2207 
2208 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2209 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2210 		return -EINVAL;
2211 	}
2212 
2213 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2214 	/* read GPIO int */
2215 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2216 
2217 	switch (mode) {
2218 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2219 		DP(NETIF_MSG_LINK,
2220 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2221 		   gpio_num, gpio_shift);
2222 		/* clear SET and set CLR */
2223 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2224 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2225 		break;
2226 
2227 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2228 		DP(NETIF_MSG_LINK,
2229 		   "Set GPIO INT %d (shift %d) -> output high\n",
2230 		   gpio_num, gpio_shift);
2231 		/* clear CLR and set SET */
2232 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2233 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2234 		break;
2235 
2236 	default:
2237 		break;
2238 	}
2239 
2240 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2241 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2242 
2243 	return 0;
2244 }
2245 
2246 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2247 {
2248 	u32 spio_reg;
2249 
2250 	/* Only 2 SPIOs are configurable */
2251 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2252 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2253 		return -EINVAL;
2254 	}
2255 
2256 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2257 	/* read SPIO and mask except the float bits */
2258 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2259 
2260 	switch (mode) {
2261 	case MISC_SPIO_OUTPUT_LOW:
2262 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2263 		/* clear FLOAT and set CLR */
2264 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2265 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2266 		break;
2267 
2268 	case MISC_SPIO_OUTPUT_HIGH:
2269 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2270 		/* clear FLOAT and set SET */
2271 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2272 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2273 		break;
2274 
2275 	case MISC_SPIO_INPUT_HI_Z:
2276 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2277 		/* set FLOAT */
2278 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2279 		break;
2280 
2281 	default:
2282 		break;
2283 	}
2284 
2285 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2286 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2287 
2288 	return 0;
2289 }
2290 
2291 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2292 {
2293 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2294 
2295 	bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2296 					   ADVERTISED_Pause);
2297 	switch (bp->link_vars.ieee_fc &
2298 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2299 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2300 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2301 						  ADVERTISED_Pause);
2302 		break;
2303 
2304 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2305 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2306 		break;
2307 
2308 	default:
2309 		break;
2310 	}
2311 }
2312 
2313 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2314 {
2315 	/* Initialize link parameters structure variables
2316 	 * It is recommended to turn off RX FC for jumbo frames
2317 	 *  for better performance
2318 	 */
2319 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2320 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2321 	else
2322 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2323 }
2324 
2325 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2326 {
2327 	u32 pause_enabled = 0;
2328 
2329 	if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2330 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2331 			pause_enabled = 1;
2332 
2333 		REG_WR(bp, BAR_USTRORM_INTMEM +
2334 			   USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2335 		       pause_enabled);
2336 	}
2337 
2338 	DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2339 	   pause_enabled ? "enabled" : "disabled");
2340 }
2341 
2342 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2343 {
2344 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2345 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2346 
2347 	if (!BP_NOMCP(bp)) {
2348 		bnx2x_set_requested_fc(bp);
2349 		bnx2x_acquire_phy_lock(bp);
2350 
2351 		if (load_mode == LOAD_DIAG) {
2352 			struct link_params *lp = &bp->link_params;
2353 			lp->loopback_mode = LOOPBACK_XGXS;
2354 			/* Prefer doing PHY loopback at highest speed */
2355 			if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2356 				if (lp->speed_cap_mask[cfx_idx] &
2357 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2358 					lp->req_line_speed[cfx_idx] =
2359 					SPEED_20000;
2360 				else if (lp->speed_cap_mask[cfx_idx] &
2361 					    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2362 						lp->req_line_speed[cfx_idx] =
2363 						SPEED_10000;
2364 				else
2365 					lp->req_line_speed[cfx_idx] =
2366 					SPEED_1000;
2367 			}
2368 		}
2369 
2370 		if (load_mode == LOAD_LOOPBACK_EXT) {
2371 			struct link_params *lp = &bp->link_params;
2372 			lp->loopback_mode = LOOPBACK_EXT;
2373 		}
2374 
2375 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2376 
2377 		bnx2x_release_phy_lock(bp);
2378 
2379 		bnx2x_init_dropless_fc(bp);
2380 
2381 		bnx2x_calc_fc_adv(bp);
2382 
2383 		if (bp->link_vars.link_up) {
2384 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2385 			bnx2x_link_report(bp);
2386 		}
2387 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2388 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2389 		return rc;
2390 	}
2391 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2392 	return -EINVAL;
2393 }
2394 
2395 void bnx2x_link_set(struct bnx2x *bp)
2396 {
2397 	if (!BP_NOMCP(bp)) {
2398 		bnx2x_acquire_phy_lock(bp);
2399 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2400 		bnx2x_release_phy_lock(bp);
2401 
2402 		bnx2x_init_dropless_fc(bp);
2403 
2404 		bnx2x_calc_fc_adv(bp);
2405 	} else
2406 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2407 }
2408 
2409 static void bnx2x__link_reset(struct bnx2x *bp)
2410 {
2411 	if (!BP_NOMCP(bp)) {
2412 		bnx2x_acquire_phy_lock(bp);
2413 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2414 		bnx2x_release_phy_lock(bp);
2415 	} else
2416 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2417 }
2418 
2419 void bnx2x_force_link_reset(struct bnx2x *bp)
2420 {
2421 	bnx2x_acquire_phy_lock(bp);
2422 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2423 	bnx2x_release_phy_lock(bp);
2424 }
2425 
2426 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2427 {
2428 	u8 rc = 0;
2429 
2430 	if (!BP_NOMCP(bp)) {
2431 		bnx2x_acquire_phy_lock(bp);
2432 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2433 				     is_serdes);
2434 		bnx2x_release_phy_lock(bp);
2435 	} else
2436 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2437 
2438 	return rc;
2439 }
2440 
2441 /* Calculates the sum of vn_min_rates.
2442    It's needed for further normalizing of the min_rates.
2443    Returns:
2444      sum of vn_min_rates.
2445        or
2446      0 - if all the min_rates are 0.
2447      In the later case fairness algorithm should be deactivated.
2448      If not all min_rates are zero then those that are zeroes will be set to 1.
2449  */
2450 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2451 				      struct cmng_init_input *input)
2452 {
2453 	int all_zero = 1;
2454 	int vn;
2455 
2456 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2457 		u32 vn_cfg = bp->mf_config[vn];
2458 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2459 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2460 
2461 		/* Skip hidden vns */
2462 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2463 			vn_min_rate = 0;
2464 		/* If min rate is zero - set it to 1 */
2465 		else if (!vn_min_rate)
2466 			vn_min_rate = DEF_MIN_RATE;
2467 		else
2468 			all_zero = 0;
2469 
2470 		input->vnic_min_rate[vn] = vn_min_rate;
2471 	}
2472 
2473 	/* if ETS or all min rates are zeros - disable fairness */
2474 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2475 		input->flags.cmng_enables &=
2476 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2477 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2478 	} else if (all_zero) {
2479 		input->flags.cmng_enables &=
2480 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2481 		DP(NETIF_MSG_IFUP,
2482 		   "All MIN values are zeroes fairness will be disabled\n");
2483 	} else
2484 		input->flags.cmng_enables |=
2485 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2486 }
2487 
2488 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2489 				    struct cmng_init_input *input)
2490 {
2491 	u16 vn_max_rate;
2492 	u32 vn_cfg = bp->mf_config[vn];
2493 
2494 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2495 		vn_max_rate = 0;
2496 	else {
2497 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2498 
2499 		if (IS_MF_PERCENT_BW(bp)) {
2500 			/* maxCfg in percents of linkspeed */
2501 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2502 		} else /* SD modes */
2503 			/* maxCfg is absolute in 100Mb units */
2504 			vn_max_rate = maxCfg * 100;
2505 	}
2506 
2507 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2508 
2509 	input->vnic_max_rate[vn] = vn_max_rate;
2510 }
2511 
2512 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2513 {
2514 	if (CHIP_REV_IS_SLOW(bp))
2515 		return CMNG_FNS_NONE;
2516 	if (IS_MF(bp))
2517 		return CMNG_FNS_MINMAX;
2518 
2519 	return CMNG_FNS_NONE;
2520 }
2521 
2522 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2523 {
2524 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2525 
2526 	if (BP_NOMCP(bp))
2527 		return; /* what should be the default value in this case */
2528 
2529 	/* For 2 port configuration the absolute function number formula
2530 	 * is:
2531 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2532 	 *
2533 	 *      and there are 4 functions per port
2534 	 *
2535 	 * For 4 port configuration it is
2536 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2537 	 *
2538 	 *      and there are 2 functions per port
2539 	 */
2540 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2541 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2542 
2543 		if (func >= E1H_FUNC_MAX)
2544 			break;
2545 
2546 		bp->mf_config[vn] =
2547 			MF_CFG_RD(bp, func_mf_config[func].config);
2548 	}
2549 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2550 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2551 		bp->flags |= MF_FUNC_DIS;
2552 	} else {
2553 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2554 		bp->flags &= ~MF_FUNC_DIS;
2555 	}
2556 }
2557 
2558 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2559 {
2560 	struct cmng_init_input input;
2561 	memset(&input, 0, sizeof(struct cmng_init_input));
2562 
2563 	input.port_rate = bp->link_vars.line_speed;
2564 
2565 	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2566 		int vn;
2567 
2568 		/* read mf conf from shmem */
2569 		if (read_cfg)
2570 			bnx2x_read_mf_cfg(bp);
2571 
2572 		/* vn_weight_sum and enable fairness if not 0 */
2573 		bnx2x_calc_vn_min(bp, &input);
2574 
2575 		/* calculate and set min-max rate for each vn */
2576 		if (bp->port.pmf)
2577 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2578 				bnx2x_calc_vn_max(bp, vn, &input);
2579 
2580 		/* always enable rate shaping and fairness */
2581 		input.flags.cmng_enables |=
2582 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2583 
2584 		bnx2x_init_cmng(&input, &bp->cmng);
2585 		return;
2586 	}
2587 
2588 	/* rate shaping and fairness are disabled */
2589 	DP(NETIF_MSG_IFUP,
2590 	   "rate shaping and fairness are disabled\n");
2591 }
2592 
2593 static void storm_memset_cmng(struct bnx2x *bp,
2594 			      struct cmng_init *cmng,
2595 			      u8 port)
2596 {
2597 	int vn;
2598 	size_t size = sizeof(struct cmng_struct_per_port);
2599 
2600 	u32 addr = BAR_XSTRORM_INTMEM +
2601 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2602 
2603 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2604 
2605 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2606 		int func = func_by_vn(bp, vn);
2607 
2608 		addr = BAR_XSTRORM_INTMEM +
2609 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2610 		size = sizeof(struct rate_shaping_vars_per_vn);
2611 		__storm_memset_struct(bp, addr, size,
2612 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2613 
2614 		addr = BAR_XSTRORM_INTMEM +
2615 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2616 		size = sizeof(struct fairness_vars_per_vn);
2617 		__storm_memset_struct(bp, addr, size,
2618 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2619 	}
2620 }
2621 
2622 /* init cmng mode in HW according to local configuration */
2623 void bnx2x_set_local_cmng(struct bnx2x *bp)
2624 {
2625 	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2626 
2627 	if (cmng_fns != CMNG_FNS_NONE) {
2628 		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2629 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2630 	} else {
2631 		/* rate shaping and fairness are disabled */
2632 		DP(NETIF_MSG_IFUP,
2633 		   "single function mode without fairness\n");
2634 	}
2635 }
2636 
2637 /* This function is called upon link interrupt */
2638 static void bnx2x_link_attn(struct bnx2x *bp)
2639 {
2640 	/* Make sure that we are synced with the current statistics */
2641 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2642 
2643 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2644 
2645 	bnx2x_init_dropless_fc(bp);
2646 
2647 	if (bp->link_vars.link_up) {
2648 
2649 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2650 			struct host_port_stats *pstats;
2651 
2652 			pstats = bnx2x_sp(bp, port_stats);
2653 			/* reset old mac stats */
2654 			memset(&(pstats->mac_stx[0]), 0,
2655 			       sizeof(struct mac_stx));
2656 		}
2657 		if (bp->state == BNX2X_STATE_OPEN)
2658 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2659 	}
2660 
2661 	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2662 		bnx2x_set_local_cmng(bp);
2663 
2664 	__bnx2x_link_report(bp);
2665 
2666 	if (IS_MF(bp))
2667 		bnx2x_link_sync_notify(bp);
2668 }
2669 
2670 void bnx2x__link_status_update(struct bnx2x *bp)
2671 {
2672 	if (bp->state != BNX2X_STATE_OPEN)
2673 		return;
2674 
2675 	/* read updated dcb configuration */
2676 	if (IS_PF(bp)) {
2677 		bnx2x_dcbx_pmf_update(bp);
2678 		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2679 		if (bp->link_vars.link_up)
2680 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2681 		else
2682 			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2683 			/* indicate link status */
2684 		bnx2x_link_report(bp);
2685 
2686 	} else { /* VF */
2687 		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2688 					  SUPPORTED_10baseT_Full |
2689 					  SUPPORTED_100baseT_Half |
2690 					  SUPPORTED_100baseT_Full |
2691 					  SUPPORTED_1000baseT_Full |
2692 					  SUPPORTED_2500baseX_Full |
2693 					  SUPPORTED_10000baseT_Full |
2694 					  SUPPORTED_TP |
2695 					  SUPPORTED_FIBRE |
2696 					  SUPPORTED_Autoneg |
2697 					  SUPPORTED_Pause |
2698 					  SUPPORTED_Asym_Pause);
2699 		bp->port.advertising[0] = bp->port.supported[0];
2700 
2701 		bp->link_params.bp = bp;
2702 		bp->link_params.port = BP_PORT(bp);
2703 		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2704 		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2705 		bp->link_params.req_line_speed[0] = SPEED_10000;
2706 		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2707 		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2708 		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2709 		bp->link_vars.line_speed = SPEED_10000;
2710 		bp->link_vars.link_status =
2711 			(LINK_STATUS_LINK_UP |
2712 			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2713 		bp->link_vars.link_up = 1;
2714 		bp->link_vars.duplex = DUPLEX_FULL;
2715 		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2716 		__bnx2x_link_report(bp);
2717 
2718 		bnx2x_sample_bulletin(bp);
2719 
2720 		/* if bulletin board did not have an update for link status
2721 		 * __bnx2x_link_report will report current status
2722 		 * but it will NOT duplicate report in case of already reported
2723 		 * during sampling bulletin board.
2724 		 */
2725 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2726 	}
2727 }
2728 
2729 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2730 				  u16 vlan_val, u8 allowed_prio)
2731 {
2732 	struct bnx2x_func_state_params func_params = {NULL};
2733 	struct bnx2x_func_afex_update_params *f_update_params =
2734 		&func_params.params.afex_update;
2735 
2736 	func_params.f_obj = &bp->func_obj;
2737 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2738 
2739 	/* no need to wait for RAMROD completion, so don't
2740 	 * set RAMROD_COMP_WAIT flag
2741 	 */
2742 
2743 	f_update_params->vif_id = vifid;
2744 	f_update_params->afex_default_vlan = vlan_val;
2745 	f_update_params->allowed_priorities = allowed_prio;
2746 
2747 	/* if ramrod can not be sent, response to MCP immediately */
2748 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2749 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2750 
2751 	return 0;
2752 }
2753 
2754 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2755 					  u16 vif_index, u8 func_bit_map)
2756 {
2757 	struct bnx2x_func_state_params func_params = {NULL};
2758 	struct bnx2x_func_afex_viflists_params *update_params =
2759 		&func_params.params.afex_viflists;
2760 	int rc;
2761 	u32 drv_msg_code;
2762 
2763 	/* validate only LIST_SET and LIST_GET are received from switch */
2764 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2765 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2766 			  cmd_type);
2767 
2768 	func_params.f_obj = &bp->func_obj;
2769 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2770 
2771 	/* set parameters according to cmd_type */
2772 	update_params->afex_vif_list_command = cmd_type;
2773 	update_params->vif_list_index = vif_index;
2774 	update_params->func_bit_map =
2775 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2776 	update_params->func_to_clear = 0;
2777 	drv_msg_code =
2778 		(cmd_type == VIF_LIST_RULE_GET) ?
2779 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2780 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2781 
2782 	/* if ramrod can not be sent, respond to MCP immediately for
2783 	 * SET and GET requests (other are not triggered from MCP)
2784 	 */
2785 	rc = bnx2x_func_state_change(bp, &func_params);
2786 	if (rc < 0)
2787 		bnx2x_fw_command(bp, drv_msg_code, 0);
2788 
2789 	return 0;
2790 }
2791 
2792 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2793 {
2794 	struct afex_stats afex_stats;
2795 	u32 func = BP_ABS_FUNC(bp);
2796 	u32 mf_config;
2797 	u16 vlan_val;
2798 	u32 vlan_prio;
2799 	u16 vif_id;
2800 	u8 allowed_prio;
2801 	u8 vlan_mode;
2802 	u32 addr_to_write, vifid, addrs, stats_type, i;
2803 
2804 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2805 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2806 		DP(BNX2X_MSG_MCP,
2807 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2808 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2809 	}
2810 
2811 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2812 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2813 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2814 		DP(BNX2X_MSG_MCP,
2815 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2816 		   vifid, addrs);
2817 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2818 					       addrs);
2819 	}
2820 
2821 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2822 		addr_to_write = SHMEM2_RD(bp,
2823 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2824 		stats_type = SHMEM2_RD(bp,
2825 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2826 
2827 		DP(BNX2X_MSG_MCP,
2828 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2829 		   addr_to_write);
2830 
2831 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2832 
2833 		/* write response to scratchpad, for MCP */
2834 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2835 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2836 			       *(((u32 *)(&afex_stats))+i));
2837 
2838 		/* send ack message to MCP */
2839 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2840 	}
2841 
2842 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2843 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2844 		bp->mf_config[BP_VN(bp)] = mf_config;
2845 		DP(BNX2X_MSG_MCP,
2846 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2847 		   mf_config);
2848 
2849 		/* if VIF_SET is "enabled" */
2850 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2851 			/* set rate limit directly to internal RAM */
2852 			struct cmng_init_input cmng_input;
2853 			struct rate_shaping_vars_per_vn m_rs_vn;
2854 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2855 			u32 addr = BAR_XSTRORM_INTMEM +
2856 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2857 
2858 			bp->mf_config[BP_VN(bp)] = mf_config;
2859 
2860 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2861 			m_rs_vn.vn_counter.rate =
2862 				cmng_input.vnic_max_rate[BP_VN(bp)];
2863 			m_rs_vn.vn_counter.quota =
2864 				(m_rs_vn.vn_counter.rate *
2865 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2866 
2867 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2868 
2869 			/* read relevant values from mf_cfg struct in shmem */
2870 			vif_id =
2871 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2872 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2873 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2874 			vlan_val =
2875 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2876 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2877 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2878 			vlan_prio = (mf_config &
2879 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2880 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2881 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2882 			vlan_mode =
2883 				(MF_CFG_RD(bp,
2884 					   func_mf_config[func].afex_config) &
2885 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2886 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2887 			allowed_prio =
2888 				(MF_CFG_RD(bp,
2889 					   func_mf_config[func].afex_config) &
2890 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2891 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2892 
2893 			/* send ramrod to FW, return in case of failure */
2894 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2895 						   allowed_prio))
2896 				return;
2897 
2898 			bp->afex_def_vlan_tag = vlan_val;
2899 			bp->afex_vlan_mode = vlan_mode;
2900 		} else {
2901 			/* notify link down because BP->flags is disabled */
2902 			bnx2x_link_report(bp);
2903 
2904 			/* send INVALID VIF ramrod to FW */
2905 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2906 
2907 			/* Reset the default afex VLAN */
2908 			bp->afex_def_vlan_tag = -1;
2909 		}
2910 	}
2911 }
2912 
2913 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2914 {
2915 	struct bnx2x_func_switch_update_params *switch_update_params;
2916 	struct bnx2x_func_state_params func_params;
2917 
2918 	memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2919 	switch_update_params = &func_params.params.switch_update;
2920 	func_params.f_obj = &bp->func_obj;
2921 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2922 
2923 	if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2924 		int func = BP_ABS_FUNC(bp);
2925 		u32 val;
2926 
2927 		/* Re-learn the S-tag from shmem */
2928 		val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2929 				FUNC_MF_CFG_E1HOV_TAG_MASK;
2930 		if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2931 			bp->mf_ov = val;
2932 		} else {
2933 			BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2934 			goto fail;
2935 		}
2936 
2937 		/* Configure new S-tag in LLH */
2938 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2939 		       bp->mf_ov);
2940 
2941 		/* Send Ramrod to update FW of change */
2942 		__set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2943 			  &switch_update_params->changes);
2944 		switch_update_params->vlan = bp->mf_ov;
2945 
2946 		if (bnx2x_func_state_change(bp, &func_params) < 0) {
2947 			BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2948 				  bp->mf_ov);
2949 			goto fail;
2950 		} else {
2951 			DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2952 			   bp->mf_ov);
2953 		}
2954 	} else {
2955 		goto fail;
2956 	}
2957 
2958 	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2959 	return;
2960 fail:
2961 	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2962 }
2963 
2964 static void bnx2x_pmf_update(struct bnx2x *bp)
2965 {
2966 	int port = BP_PORT(bp);
2967 	u32 val;
2968 
2969 	bp->port.pmf = 1;
2970 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2971 
2972 	/*
2973 	 * We need the mb() to ensure the ordering between the writing to
2974 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2975 	 */
2976 	smp_mb();
2977 
2978 	/* queue a periodic task */
2979 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2980 
2981 	bnx2x_dcbx_pmf_update(bp);
2982 
2983 	/* enable nig attention */
2984 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2985 	if (bp->common.int_block == INT_BLOCK_HC) {
2986 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2987 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2988 	} else if (!CHIP_IS_E1x(bp)) {
2989 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2990 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2991 	}
2992 
2993 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2994 }
2995 
2996 /* end of Link */
2997 
2998 /* slow path */
2999 
3000 /*
3001  * General service functions
3002  */
3003 
3004 /* send the MCP a request, block until there is a reply */
3005 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3006 {
3007 	int mb_idx = BP_FW_MB_IDX(bp);
3008 	u32 seq;
3009 	u32 rc = 0;
3010 	u32 cnt = 1;
3011 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3012 
3013 	mutex_lock(&bp->fw_mb_mutex);
3014 	seq = ++bp->fw_seq;
3015 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3016 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3017 
3018 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3019 			(command | seq), param);
3020 
3021 	do {
3022 		/* let the FW do it's magic ... */
3023 		msleep(delay);
3024 
3025 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3026 
3027 		/* Give the FW up to 5 second (500*10ms) */
3028 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3029 
3030 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3031 	   cnt*delay, rc, seq);
3032 
3033 	/* is this a reply to our command? */
3034 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3035 		rc &= FW_MSG_CODE_MASK;
3036 	else {
3037 		/* FW BUG! */
3038 		BNX2X_ERR("FW failed to respond!\n");
3039 		bnx2x_fw_dump(bp);
3040 		rc = 0;
3041 	}
3042 	mutex_unlock(&bp->fw_mb_mutex);
3043 
3044 	return rc;
3045 }
3046 
3047 static void storm_memset_func_cfg(struct bnx2x *bp,
3048 				 struct tstorm_eth_function_common_config *tcfg,
3049 				 u16 abs_fid)
3050 {
3051 	size_t size = sizeof(struct tstorm_eth_function_common_config);
3052 
3053 	u32 addr = BAR_TSTRORM_INTMEM +
3054 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3055 
3056 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3057 }
3058 
3059 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3060 {
3061 	if (CHIP_IS_E1x(bp)) {
3062 		struct tstorm_eth_function_common_config tcfg = {0};
3063 
3064 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
3065 	}
3066 
3067 	/* Enable the function in the FW */
3068 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3069 	storm_memset_func_en(bp, p->func_id, 1);
3070 
3071 	/* spq */
3072 	if (p->spq_active) {
3073 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3074 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
3075 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3076 	}
3077 }
3078 
3079 /**
3080  * bnx2x_get_common_flags - Return common flags
3081  *
3082  * @bp		device handle
3083  * @fp		queue handle
3084  * @zero_stats	TRUE if statistics zeroing is needed
3085  *
3086  * Return the flags that are common for the Tx-only and not normal connections.
3087  */
3088 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3089 					    struct bnx2x_fastpath *fp,
3090 					    bool zero_stats)
3091 {
3092 	unsigned long flags = 0;
3093 
3094 	/* PF driver will always initialize the Queue to an ACTIVE state */
3095 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3096 
3097 	/* tx only connections collect statistics (on the same index as the
3098 	 * parent connection). The statistics are zeroed when the parent
3099 	 * connection is initialized.
3100 	 */
3101 
3102 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
3103 	if (zero_stats)
3104 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3105 
3106 	if (bp->flags & TX_SWITCHING)
3107 		__set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3108 
3109 	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3110 	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3111 
3112 #ifdef BNX2X_STOP_ON_ERROR
3113 	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3114 #endif
3115 
3116 	return flags;
3117 }
3118 
3119 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3120 				       struct bnx2x_fastpath *fp,
3121 				       bool leading)
3122 {
3123 	unsigned long flags = 0;
3124 
3125 	/* calculate other queue flags */
3126 	if (IS_MF_SD(bp))
3127 		__set_bit(BNX2X_Q_FLG_OV, &flags);
3128 
3129 	if (IS_FCOE_FP(fp)) {
3130 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
3131 		/* For FCoE - force usage of default priority (for afex) */
3132 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3133 	}
3134 
3135 	if (fp->mode != TPA_MODE_DISABLED) {
3136 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3137 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3138 		if (fp->mode == TPA_MODE_GRO)
3139 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3140 	}
3141 
3142 	if (leading) {
3143 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3144 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3145 	}
3146 
3147 	/* Always set HW VLAN stripping */
3148 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3149 
3150 	/* configure silent vlan removal */
3151 	if (IS_MF_AFEX(bp))
3152 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3153 
3154 	return flags | bnx2x_get_common_flags(bp, fp, true);
3155 }
3156 
3157 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3158 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3159 	u8 cos)
3160 {
3161 	gen_init->stat_id = bnx2x_stats_id(fp);
3162 	gen_init->spcl_id = fp->cl_id;
3163 
3164 	/* Always use mini-jumbo MTU for FCoE L2 ring */
3165 	if (IS_FCOE_FP(fp))
3166 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3167 	else
3168 		gen_init->mtu = bp->dev->mtu;
3169 
3170 	gen_init->cos = cos;
3171 
3172 	gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3173 }
3174 
3175 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3176 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3177 	struct bnx2x_rxq_setup_params *rxq_init)
3178 {
3179 	u8 max_sge = 0;
3180 	u16 sge_sz = 0;
3181 	u16 tpa_agg_size = 0;
3182 
3183 	if (fp->mode != TPA_MODE_DISABLED) {
3184 		pause->sge_th_lo = SGE_TH_LO(bp);
3185 		pause->sge_th_hi = SGE_TH_HI(bp);
3186 
3187 		/* validate SGE ring has enough to cross high threshold */
3188 		WARN_ON(bp->dropless_fc &&
3189 				pause->sge_th_hi + FW_PREFETCH_CNT >
3190 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3191 
3192 		tpa_agg_size = TPA_AGG_SIZE;
3193 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3194 			SGE_PAGE_SHIFT;
3195 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3196 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3197 		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3198 	}
3199 
3200 	/* pause - not for e1 */
3201 	if (!CHIP_IS_E1(bp)) {
3202 		pause->bd_th_lo = BD_TH_LO(bp);
3203 		pause->bd_th_hi = BD_TH_HI(bp);
3204 
3205 		pause->rcq_th_lo = RCQ_TH_LO(bp);
3206 		pause->rcq_th_hi = RCQ_TH_HI(bp);
3207 		/*
3208 		 * validate that rings have enough entries to cross
3209 		 * high thresholds
3210 		 */
3211 		WARN_ON(bp->dropless_fc &&
3212 				pause->bd_th_hi + FW_PREFETCH_CNT >
3213 				bp->rx_ring_size);
3214 		WARN_ON(bp->dropless_fc &&
3215 				pause->rcq_th_hi + FW_PREFETCH_CNT >
3216 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3217 
3218 		pause->pri_map = 1;
3219 	}
3220 
3221 	/* rxq setup */
3222 	rxq_init->dscr_map = fp->rx_desc_mapping;
3223 	rxq_init->sge_map = fp->rx_sge_mapping;
3224 	rxq_init->rcq_map = fp->rx_comp_mapping;
3225 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3226 
3227 	/* This should be a maximum number of data bytes that may be
3228 	 * placed on the BD (not including paddings).
3229 	 */
3230 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3231 			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3232 
3233 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3234 	rxq_init->tpa_agg_sz = tpa_agg_size;
3235 	rxq_init->sge_buf_sz = sge_sz;
3236 	rxq_init->max_sges_pkt = max_sge;
3237 	rxq_init->rss_engine_id = BP_FUNC(bp);
3238 	rxq_init->mcast_engine_id = BP_FUNC(bp);
3239 
3240 	/* Maximum number or simultaneous TPA aggregation for this Queue.
3241 	 *
3242 	 * For PF Clients it should be the maximum available number.
3243 	 * VF driver(s) may want to define it to a smaller value.
3244 	 */
3245 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3246 
3247 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3248 	rxq_init->fw_sb_id = fp->fw_sb_id;
3249 
3250 	if (IS_FCOE_FP(fp))
3251 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3252 	else
3253 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3254 	/* configure silent vlan removal
3255 	 * if multi function mode is afex, then mask default vlan
3256 	 */
3257 	if (IS_MF_AFEX(bp)) {
3258 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3259 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3260 	}
3261 }
3262 
3263 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3264 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3265 	u8 cos)
3266 {
3267 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3268 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3269 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3270 	txq_init->fw_sb_id = fp->fw_sb_id;
3271 
3272 	/*
3273 	 * set the tss leading client id for TX classification ==
3274 	 * leading RSS client id
3275 	 */
3276 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3277 
3278 	if (IS_FCOE_FP(fp)) {
3279 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3280 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3281 	}
3282 }
3283 
3284 static void bnx2x_pf_init(struct bnx2x *bp)
3285 {
3286 	struct bnx2x_func_init_params func_init = {0};
3287 	struct event_ring_data eq_data = { {0} };
3288 
3289 	if (!CHIP_IS_E1x(bp)) {
3290 		/* reset IGU PF statistics: MSIX + ATTN */
3291 		/* PF */
3292 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3293 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3294 			   (CHIP_MODE_IS_4_PORT(bp) ?
3295 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3296 		/* ATTN */
3297 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3298 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3299 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3300 			   (CHIP_MODE_IS_4_PORT(bp) ?
3301 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3302 	}
3303 
3304 	func_init.spq_active = true;
3305 	func_init.pf_id = BP_FUNC(bp);
3306 	func_init.func_id = BP_FUNC(bp);
3307 	func_init.spq_map = bp->spq_mapping;
3308 	func_init.spq_prod = bp->spq_prod_idx;
3309 
3310 	bnx2x_func_init(bp, &func_init);
3311 
3312 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3313 
3314 	/*
3315 	 * Congestion management values depend on the link rate
3316 	 * There is no active link so initial link rate is set to 10 Gbps.
3317 	 * When the link comes up The congestion management values are
3318 	 * re-calculated according to the actual link rate.
3319 	 */
3320 	bp->link_vars.line_speed = SPEED_10000;
3321 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3322 
3323 	/* Only the PMF sets the HW */
3324 	if (bp->port.pmf)
3325 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3326 
3327 	/* init Event Queue - PCI bus guarantees correct endianity*/
3328 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3329 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3330 	eq_data.producer = bp->eq_prod;
3331 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3332 	eq_data.sb_id = DEF_SB_ID;
3333 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3334 }
3335 
3336 static void bnx2x_e1h_disable(struct bnx2x *bp)
3337 {
3338 	int port = BP_PORT(bp);
3339 
3340 	bnx2x_tx_disable(bp);
3341 
3342 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3343 }
3344 
3345 static void bnx2x_e1h_enable(struct bnx2x *bp)
3346 {
3347 	int port = BP_PORT(bp);
3348 
3349 	if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3350 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3351 
3352 	/* Tx queue should be only re-enabled */
3353 	netif_tx_wake_all_queues(bp->dev);
3354 
3355 	/*
3356 	 * Should not call netif_carrier_on since it will be called if the link
3357 	 * is up when checking for link state
3358 	 */
3359 }
3360 
3361 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3362 
3363 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3364 {
3365 	struct eth_stats_info *ether_stat =
3366 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3367 	struct bnx2x_vlan_mac_obj *mac_obj =
3368 		&bp->sp_objs->mac_obj;
3369 	int i;
3370 
3371 	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3372 		ETH_STAT_INFO_VERSION_LEN);
3373 
3374 	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3375 	 * mac_local field in ether_stat struct. The base address is offset by 2
3376 	 * bytes to account for the field being 8 bytes but a mac address is
3377 	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3378 	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3379 	 * allocated by the ether_stat struct, so the macs will land in their
3380 	 * proper positions.
3381 	 */
3382 	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3383 		memset(ether_stat->mac_local + i, 0,
3384 		       sizeof(ether_stat->mac_local[0]));
3385 	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3386 				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3387 				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3388 				ETH_ALEN);
3389 	ether_stat->mtu_size = bp->dev->mtu;
3390 	if (bp->dev->features & NETIF_F_RXCSUM)
3391 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3392 	if (bp->dev->features & NETIF_F_TSO)
3393 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3394 	ether_stat->feature_flags |= bp->common.boot_mode;
3395 
3396 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3397 
3398 	ether_stat->txq_size = bp->tx_ring_size;
3399 	ether_stat->rxq_size = bp->rx_ring_size;
3400 
3401 #ifdef CONFIG_BNX2X_SRIOV
3402 	ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3403 #endif
3404 }
3405 
3406 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3407 {
3408 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3409 	struct fcoe_stats_info *fcoe_stat =
3410 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3411 
3412 	if (!CNIC_LOADED(bp))
3413 		return;
3414 
3415 	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3416 
3417 	fcoe_stat->qos_priority =
3418 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3419 
3420 	/* insert FCoE stats from ramrod response */
3421 	if (!NO_FCOE(bp)) {
3422 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3423 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3424 			tstorm_queue_statistics;
3425 
3426 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3427 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3428 			xstorm_queue_statistics;
3429 
3430 		struct fcoe_statistics_params *fw_fcoe_stat =
3431 			&bp->fw_stats_data->fcoe;
3432 
3433 		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3434 			  fcoe_stat->rx_bytes_lo,
3435 			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3436 
3437 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3438 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3439 			  fcoe_stat->rx_bytes_lo,
3440 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3441 
3442 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3443 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3444 			  fcoe_stat->rx_bytes_lo,
3445 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3446 
3447 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3448 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3449 			  fcoe_stat->rx_bytes_lo,
3450 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3451 
3452 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3453 			  fcoe_stat->rx_frames_lo,
3454 			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3455 
3456 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3457 			  fcoe_stat->rx_frames_lo,
3458 			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3459 
3460 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3461 			  fcoe_stat->rx_frames_lo,
3462 			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3463 
3464 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3465 			  fcoe_stat->rx_frames_lo,
3466 			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3467 
3468 		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3469 			  fcoe_stat->tx_bytes_lo,
3470 			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3471 
3472 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3473 			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3474 			  fcoe_stat->tx_bytes_lo,
3475 			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3476 
3477 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3478 			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3479 			  fcoe_stat->tx_bytes_lo,
3480 			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3481 
3482 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3483 			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3484 			  fcoe_stat->tx_bytes_lo,
3485 			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3486 
3487 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3488 			  fcoe_stat->tx_frames_lo,
3489 			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3490 
3491 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3492 			  fcoe_stat->tx_frames_lo,
3493 			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3494 
3495 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3496 			  fcoe_stat->tx_frames_lo,
3497 			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3498 
3499 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3500 			  fcoe_stat->tx_frames_lo,
3501 			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3502 	}
3503 
3504 	/* ask L5 driver to add data to the struct */
3505 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3506 }
3507 
3508 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3509 {
3510 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3511 	struct iscsi_stats_info *iscsi_stat =
3512 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3513 
3514 	if (!CNIC_LOADED(bp))
3515 		return;
3516 
3517 	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3518 	       ETH_ALEN);
3519 
3520 	iscsi_stat->qos_priority =
3521 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3522 
3523 	/* ask L5 driver to add data to the struct */
3524 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3525 }
3526 
3527 /* called due to MCP event (on pmf):
3528  *	reread new bandwidth configuration
3529  *	configure FW
3530  *	notify others function about the change
3531  */
3532 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3533 {
3534 	if (bp->link_vars.link_up) {
3535 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3536 		bnx2x_link_sync_notify(bp);
3537 	}
3538 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3539 }
3540 
3541 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3542 {
3543 	bnx2x_config_mf_bw(bp);
3544 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3545 }
3546 
3547 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3548 {
3549 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3550 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3551 }
3552 
3553 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH	(20)
3554 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT		(25)
3555 
3556 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3557 {
3558 	enum drv_info_opcode op_code;
3559 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3560 	bool release = false;
3561 	int wait;
3562 
3563 	/* if drv_info version supported by MFW doesn't match - send NACK */
3564 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3565 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3566 		return;
3567 	}
3568 
3569 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3570 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3571 
3572 	/* Must prevent other flows from accessing drv_info_to_mcp */
3573 	mutex_lock(&bp->drv_info_mutex);
3574 
3575 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3576 	       sizeof(union drv_info_to_mcp));
3577 
3578 	switch (op_code) {
3579 	case ETH_STATS_OPCODE:
3580 		bnx2x_drv_info_ether_stat(bp);
3581 		break;
3582 	case FCOE_STATS_OPCODE:
3583 		bnx2x_drv_info_fcoe_stat(bp);
3584 		break;
3585 	case ISCSI_STATS_OPCODE:
3586 		bnx2x_drv_info_iscsi_stat(bp);
3587 		break;
3588 	default:
3589 		/* if op code isn't supported - send NACK */
3590 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3591 		goto out;
3592 	}
3593 
3594 	/* if we got drv_info attn from MFW then these fields are defined in
3595 	 * shmem2 for sure
3596 	 */
3597 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3598 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3599 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3600 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3601 
3602 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3603 
3604 	/* Since possible management wants both this and get_driver_version
3605 	 * need to wait until management notifies us it finished utilizing
3606 	 * the buffer.
3607 	 */
3608 	if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3609 		DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3610 	} else if (!bp->drv_info_mng_owner) {
3611 		u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3612 
3613 		for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3614 			u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3615 
3616 			/* Management is done; need to clear indication */
3617 			if (indication & bit) {
3618 				SHMEM2_WR(bp, mfw_drv_indication,
3619 					  indication & ~bit);
3620 				release = true;
3621 				break;
3622 			}
3623 
3624 			msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3625 		}
3626 	}
3627 	if (!release) {
3628 		DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3629 		bp->drv_info_mng_owner = true;
3630 	}
3631 
3632 out:
3633 	mutex_unlock(&bp->drv_info_mutex);
3634 }
3635 
3636 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3637 {
3638 	u8 vals[4];
3639 	int i = 0;
3640 
3641 	if (bnx2x_format) {
3642 		i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3643 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3644 		if (i > 0)
3645 			vals[0] -= '0';
3646 	} else {
3647 		i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3648 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3649 	}
3650 
3651 	while (i < 4)
3652 		vals[i++] = 0;
3653 
3654 	return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3655 }
3656 
3657 void bnx2x_update_mng_version(struct bnx2x *bp)
3658 {
3659 	u32 iscsiver = DRV_VER_NOT_LOADED;
3660 	u32 fcoever = DRV_VER_NOT_LOADED;
3661 	u32 ethver = DRV_VER_NOT_LOADED;
3662 	int idx = BP_FW_MB_IDX(bp);
3663 	u8 *version;
3664 
3665 	if (!SHMEM2_HAS(bp, func_os_drv_ver))
3666 		return;
3667 
3668 	mutex_lock(&bp->drv_info_mutex);
3669 	/* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3670 	if (bp->drv_info_mng_owner)
3671 		goto out;
3672 
3673 	if (bp->state != BNX2X_STATE_OPEN)
3674 		goto out;
3675 
3676 	/* Parse ethernet driver version */
3677 	ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3678 	if (!CNIC_LOADED(bp))
3679 		goto out;
3680 
3681 	/* Try getting storage driver version via cnic */
3682 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3683 	       sizeof(union drv_info_to_mcp));
3684 	bnx2x_drv_info_iscsi_stat(bp);
3685 	version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3686 	iscsiver = bnx2x_update_mng_version_utility(version, false);
3687 
3688 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3689 	       sizeof(union drv_info_to_mcp));
3690 	bnx2x_drv_info_fcoe_stat(bp);
3691 	version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3692 	fcoever = bnx2x_update_mng_version_utility(version, false);
3693 
3694 out:
3695 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3696 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3697 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3698 
3699 	mutex_unlock(&bp->drv_info_mutex);
3700 
3701 	DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3702 	   ethver, iscsiver, fcoever);
3703 }
3704 
3705 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3706 {
3707 	u32 drv_ver;
3708 	u32 valid_dump;
3709 
3710 	if (!SHMEM2_HAS(bp, drv_info))
3711 		return;
3712 
3713 	/* Update Driver load time, possibly broken in y2038 */
3714 	SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3715 
3716 	drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3717 	SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3718 
3719 	SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3720 
3721 	/* Check & notify On-Chip dump. */
3722 	valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3723 
3724 	if (valid_dump & FIRST_DUMP_VALID)
3725 		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3726 
3727 	if (valid_dump & SECOND_DUMP_VALID)
3728 		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3729 }
3730 
3731 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3732 {
3733 	u32 cmd_ok, cmd_fail;
3734 
3735 	/* sanity */
3736 	if (event & DRV_STATUS_DCC_EVENT_MASK &&
3737 	    event & DRV_STATUS_OEM_EVENT_MASK) {
3738 		BNX2X_ERR("Received simultaneous events %08x\n", event);
3739 		return;
3740 	}
3741 
3742 	if (event & DRV_STATUS_DCC_EVENT_MASK) {
3743 		cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3744 		cmd_ok = DRV_MSG_CODE_DCC_OK;
3745 	} else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3746 		cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3747 		cmd_ok = DRV_MSG_CODE_OEM_OK;
3748 	}
3749 
3750 	DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3751 
3752 	if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3753 		     DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3754 		/* This is the only place besides the function initialization
3755 		 * where the bp->flags can change so it is done without any
3756 		 * locks
3757 		 */
3758 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3759 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3760 			bp->flags |= MF_FUNC_DIS;
3761 
3762 			bnx2x_e1h_disable(bp);
3763 		} else {
3764 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3765 			bp->flags &= ~MF_FUNC_DIS;
3766 
3767 			bnx2x_e1h_enable(bp);
3768 		}
3769 		event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3770 			   DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3771 	}
3772 
3773 	if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3774 		     DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3775 		bnx2x_config_mf_bw(bp);
3776 		event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3777 			   DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3778 	}
3779 
3780 	/* Report results to MCP */
3781 	if (event)
3782 		bnx2x_fw_command(bp, cmd_fail, 0);
3783 	else
3784 		bnx2x_fw_command(bp, cmd_ok, 0);
3785 }
3786 
3787 /* must be called under the spq lock */
3788 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3789 {
3790 	struct eth_spe *next_spe = bp->spq_prod_bd;
3791 
3792 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3793 		bp->spq_prod_bd = bp->spq;
3794 		bp->spq_prod_idx = 0;
3795 		DP(BNX2X_MSG_SP, "end of spq\n");
3796 	} else {
3797 		bp->spq_prod_bd++;
3798 		bp->spq_prod_idx++;
3799 	}
3800 	return next_spe;
3801 }
3802 
3803 /* must be called under the spq lock */
3804 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3805 {
3806 	int func = BP_FUNC(bp);
3807 
3808 	/*
3809 	 * Make sure that BD data is updated before writing the producer:
3810 	 * BD data is written to the memory, the producer is read from the
3811 	 * memory, thus we need a full memory barrier to ensure the ordering.
3812 	 */
3813 	mb();
3814 
3815 	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3816 		 bp->spq_prod_idx);
3817 	mmiowb();
3818 }
3819 
3820 /**
3821  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3822  *
3823  * @cmd:	command to check
3824  * @cmd_type:	command type
3825  */
3826 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3827 {
3828 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3829 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3830 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3831 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3832 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3833 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3834 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3835 		return true;
3836 	else
3837 		return false;
3838 }
3839 
3840 /**
3841  * bnx2x_sp_post - place a single command on an SP ring
3842  *
3843  * @bp:		driver handle
3844  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3845  * @cid:	SW CID the command is related to
3846  * @data_hi:	command private data address (high 32 bits)
3847  * @data_lo:	command private data address (low 32 bits)
3848  * @cmd_type:	command type (e.g. NONE, ETH)
3849  *
3850  * SP data is handled as if it's always an address pair, thus data fields are
3851  * not swapped to little endian in upper functions. Instead this function swaps
3852  * data as if it's two u32 fields.
3853  */
3854 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3855 		  u32 data_hi, u32 data_lo, int cmd_type)
3856 {
3857 	struct eth_spe *spe;
3858 	u16 type;
3859 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3860 
3861 #ifdef BNX2X_STOP_ON_ERROR
3862 	if (unlikely(bp->panic)) {
3863 		BNX2X_ERR("Can't post SP when there is panic\n");
3864 		return -EIO;
3865 	}
3866 #endif
3867 
3868 	spin_lock_bh(&bp->spq_lock);
3869 
3870 	if (common) {
3871 		if (!atomic_read(&bp->eq_spq_left)) {
3872 			BNX2X_ERR("BUG! EQ ring full!\n");
3873 			spin_unlock_bh(&bp->spq_lock);
3874 			bnx2x_panic();
3875 			return -EBUSY;
3876 		}
3877 	} else if (!atomic_read(&bp->cq_spq_left)) {
3878 			BNX2X_ERR("BUG! SPQ ring full!\n");
3879 			spin_unlock_bh(&bp->spq_lock);
3880 			bnx2x_panic();
3881 			return -EBUSY;
3882 	}
3883 
3884 	spe = bnx2x_sp_get_next(bp);
3885 
3886 	/* CID needs port number to be encoded int it */
3887 	spe->hdr.conn_and_cmd_data =
3888 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3889 				    HW_CID(bp, cid));
3890 
3891 	/* In some cases, type may already contain the func-id
3892 	 * mainly in SRIOV related use cases, so we add it here only
3893 	 * if it's not already set.
3894 	 */
3895 	if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3896 		type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3897 			SPE_HDR_CONN_TYPE;
3898 		type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3899 			 SPE_HDR_FUNCTION_ID);
3900 	} else {
3901 		type = cmd_type;
3902 	}
3903 
3904 	spe->hdr.type = cpu_to_le16(type);
3905 
3906 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3907 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3908 
3909 	/*
3910 	 * It's ok if the actual decrement is issued towards the memory
3911 	 * somewhere between the spin_lock and spin_unlock. Thus no
3912 	 * more explicit memory barrier is needed.
3913 	 */
3914 	if (common)
3915 		atomic_dec(&bp->eq_spq_left);
3916 	else
3917 		atomic_dec(&bp->cq_spq_left);
3918 
3919 	DP(BNX2X_MSG_SP,
3920 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3921 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3922 	   (u32)(U64_LO(bp->spq_mapping) +
3923 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3924 	   HW_CID(bp, cid), data_hi, data_lo, type,
3925 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3926 
3927 	bnx2x_sp_prod_update(bp);
3928 	spin_unlock_bh(&bp->spq_lock);
3929 	return 0;
3930 }
3931 
3932 /* acquire split MCP access lock register */
3933 static int bnx2x_acquire_alr(struct bnx2x *bp)
3934 {
3935 	u32 j, val;
3936 	int rc = 0;
3937 
3938 	might_sleep();
3939 	for (j = 0; j < 1000; j++) {
3940 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3941 		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3942 		if (val & MCPR_ACCESS_LOCK_LOCK)
3943 			break;
3944 
3945 		usleep_range(5000, 10000);
3946 	}
3947 	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3948 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3949 		rc = -EBUSY;
3950 	}
3951 
3952 	return rc;
3953 }
3954 
3955 /* release split MCP access lock register */
3956 static void bnx2x_release_alr(struct bnx2x *bp)
3957 {
3958 	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3959 }
3960 
3961 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3962 #define BNX2X_DEF_SB_IDX	0x0002
3963 
3964 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3965 {
3966 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3967 	u16 rc = 0;
3968 
3969 	barrier(); /* status block is written to by the chip */
3970 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3971 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3972 		rc |= BNX2X_DEF_SB_ATT_IDX;
3973 	}
3974 
3975 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3976 		bp->def_idx = def_sb->sp_sb.running_index;
3977 		rc |= BNX2X_DEF_SB_IDX;
3978 	}
3979 
3980 	/* Do not reorder: indices reading should complete before handling */
3981 	barrier();
3982 	return rc;
3983 }
3984 
3985 /*
3986  * slow path service functions
3987  */
3988 
3989 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3990 {
3991 	int port = BP_PORT(bp);
3992 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3993 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3994 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3995 				       NIG_REG_MASK_INTERRUPT_PORT0;
3996 	u32 aeu_mask;
3997 	u32 nig_mask = 0;
3998 	u32 reg_addr;
3999 
4000 	if (bp->attn_state & asserted)
4001 		BNX2X_ERR("IGU ERROR\n");
4002 
4003 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4004 	aeu_mask = REG_RD(bp, aeu_addr);
4005 
4006 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
4007 	   aeu_mask, asserted);
4008 	aeu_mask &= ~(asserted & 0x3ff);
4009 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4010 
4011 	REG_WR(bp, aeu_addr, aeu_mask);
4012 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4013 
4014 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4015 	bp->attn_state |= asserted;
4016 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4017 
4018 	if (asserted & ATTN_HARD_WIRED_MASK) {
4019 		if (asserted & ATTN_NIG_FOR_FUNC) {
4020 
4021 			bnx2x_acquire_phy_lock(bp);
4022 
4023 			/* save nig interrupt mask */
4024 			nig_mask = REG_RD(bp, nig_int_mask_addr);
4025 
4026 			/* If nig_mask is not set, no need to call the update
4027 			 * function.
4028 			 */
4029 			if (nig_mask) {
4030 				REG_WR(bp, nig_int_mask_addr, 0);
4031 
4032 				bnx2x_link_attn(bp);
4033 			}
4034 
4035 			/* handle unicore attn? */
4036 		}
4037 		if (asserted & ATTN_SW_TIMER_4_FUNC)
4038 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4039 
4040 		if (asserted & GPIO_2_FUNC)
4041 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4042 
4043 		if (asserted & GPIO_3_FUNC)
4044 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4045 
4046 		if (asserted & GPIO_4_FUNC)
4047 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4048 
4049 		if (port == 0) {
4050 			if (asserted & ATTN_GENERAL_ATTN_1) {
4051 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4052 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4053 			}
4054 			if (asserted & ATTN_GENERAL_ATTN_2) {
4055 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4056 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4057 			}
4058 			if (asserted & ATTN_GENERAL_ATTN_3) {
4059 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4060 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4061 			}
4062 		} else {
4063 			if (asserted & ATTN_GENERAL_ATTN_4) {
4064 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4065 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4066 			}
4067 			if (asserted & ATTN_GENERAL_ATTN_5) {
4068 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4069 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4070 			}
4071 			if (asserted & ATTN_GENERAL_ATTN_6) {
4072 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4073 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4074 			}
4075 		}
4076 
4077 	} /* if hardwired */
4078 
4079 	if (bp->common.int_block == INT_BLOCK_HC)
4080 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4081 			    COMMAND_REG_ATTN_BITS_SET);
4082 	else
4083 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4084 
4085 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4086 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4087 	REG_WR(bp, reg_addr, asserted);
4088 
4089 	/* now set back the mask */
4090 	if (asserted & ATTN_NIG_FOR_FUNC) {
4091 		/* Verify that IGU ack through BAR was written before restoring
4092 		 * NIG mask. This loop should exit after 2-3 iterations max.
4093 		 */
4094 		if (bp->common.int_block != INT_BLOCK_HC) {
4095 			u32 cnt = 0, igu_acked;
4096 			do {
4097 				igu_acked = REG_RD(bp,
4098 						   IGU_REG_ATTENTION_ACK_BITS);
4099 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4100 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
4101 			if (!igu_acked)
4102 				DP(NETIF_MSG_HW,
4103 				   "Failed to verify IGU ack on time\n");
4104 			barrier();
4105 		}
4106 		REG_WR(bp, nig_int_mask_addr, nig_mask);
4107 		bnx2x_release_phy_lock(bp);
4108 	}
4109 }
4110 
4111 static void bnx2x_fan_failure(struct bnx2x *bp)
4112 {
4113 	int port = BP_PORT(bp);
4114 	u32 ext_phy_config;
4115 	/* mark the failure */
4116 	ext_phy_config =
4117 		SHMEM_RD(bp,
4118 			 dev_info.port_hw_config[port].external_phy_config);
4119 
4120 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4121 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4122 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4123 		 ext_phy_config);
4124 
4125 	/* log the failure */
4126 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4127 			    "Please contact OEM Support for assistance\n");
4128 
4129 	/* Schedule device reset (unload)
4130 	 * This is due to some boards consuming sufficient power when driver is
4131 	 * up to overheat if fan fails.
4132 	 */
4133 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4134 }
4135 
4136 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4137 {
4138 	int port = BP_PORT(bp);
4139 	int reg_offset;
4140 	u32 val;
4141 
4142 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4143 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4144 
4145 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4146 
4147 		val = REG_RD(bp, reg_offset);
4148 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4149 		REG_WR(bp, reg_offset, val);
4150 
4151 		BNX2X_ERR("SPIO5 hw attention\n");
4152 
4153 		/* Fan failure attention */
4154 		bnx2x_hw_reset_phy(&bp->link_params);
4155 		bnx2x_fan_failure(bp);
4156 	}
4157 
4158 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4159 		bnx2x_acquire_phy_lock(bp);
4160 		bnx2x_handle_module_detect_int(&bp->link_params);
4161 		bnx2x_release_phy_lock(bp);
4162 	}
4163 
4164 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
4165 
4166 		val = REG_RD(bp, reg_offset);
4167 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4168 		REG_WR(bp, reg_offset, val);
4169 
4170 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4171 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
4172 		bnx2x_panic();
4173 	}
4174 }
4175 
4176 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4177 {
4178 	u32 val;
4179 
4180 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4181 
4182 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4183 		BNX2X_ERR("DB hw attention 0x%x\n", val);
4184 		/* DORQ discard attention */
4185 		if (val & 0x2)
4186 			BNX2X_ERR("FATAL error from DORQ\n");
4187 	}
4188 
4189 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
4190 
4191 		int port = BP_PORT(bp);
4192 		int reg_offset;
4193 
4194 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4195 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4196 
4197 		val = REG_RD(bp, reg_offset);
4198 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4199 		REG_WR(bp, reg_offset, val);
4200 
4201 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4202 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
4203 		bnx2x_panic();
4204 	}
4205 }
4206 
4207 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4208 {
4209 	u32 val;
4210 
4211 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4212 
4213 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4214 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
4215 		/* CFC error attention */
4216 		if (val & 0x2)
4217 			BNX2X_ERR("FATAL error from CFC\n");
4218 	}
4219 
4220 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4221 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4222 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4223 		/* RQ_USDMDP_FIFO_OVERFLOW */
4224 		if (val & 0x18000)
4225 			BNX2X_ERR("FATAL error from PXP\n");
4226 
4227 		if (!CHIP_IS_E1x(bp)) {
4228 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4229 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4230 		}
4231 	}
4232 
4233 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
4234 
4235 		int port = BP_PORT(bp);
4236 		int reg_offset;
4237 
4238 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4239 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4240 
4241 		val = REG_RD(bp, reg_offset);
4242 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4243 		REG_WR(bp, reg_offset, val);
4244 
4245 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4246 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
4247 		bnx2x_panic();
4248 	}
4249 }
4250 
4251 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4252 {
4253 	u32 val;
4254 
4255 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4256 
4257 		if (attn & BNX2X_PMF_LINK_ASSERT) {
4258 			int func = BP_FUNC(bp);
4259 
4260 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4261 			bnx2x_read_mf_cfg(bp);
4262 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4263 					func_mf_config[BP_ABS_FUNC(bp)].config);
4264 			val = SHMEM_RD(bp,
4265 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4266 
4267 			if (val & (DRV_STATUS_DCC_EVENT_MASK |
4268 				   DRV_STATUS_OEM_EVENT_MASK))
4269 				bnx2x_oem_event(bp,
4270 					(val & (DRV_STATUS_DCC_EVENT_MASK |
4271 						DRV_STATUS_OEM_EVENT_MASK)));
4272 
4273 			if (val & DRV_STATUS_SET_MF_BW)
4274 				bnx2x_set_mf_bw(bp);
4275 
4276 			if (val & DRV_STATUS_DRV_INFO_REQ)
4277 				bnx2x_handle_drv_info_req(bp);
4278 
4279 			if (val & DRV_STATUS_VF_DISABLED)
4280 				bnx2x_schedule_iov_task(bp,
4281 							BNX2X_IOV_HANDLE_FLR);
4282 
4283 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4284 				bnx2x_pmf_update(bp);
4285 
4286 			if (bp->port.pmf &&
4287 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4288 				bp->dcbx_enabled > 0)
4289 				/* start dcbx state machine */
4290 				bnx2x_dcbx_set_params(bp,
4291 					BNX2X_DCBX_STATE_NEG_RECEIVED);
4292 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
4293 				bnx2x_handle_afex_cmd(bp,
4294 					val & DRV_STATUS_AFEX_EVENT_MASK);
4295 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4296 				bnx2x_handle_eee_event(bp);
4297 
4298 			if (val & DRV_STATUS_OEM_UPDATE_SVID)
4299 				bnx2x_handle_update_svid_cmd(bp);
4300 
4301 			if (bp->link_vars.periodic_flags &
4302 			    PERIODIC_FLAGS_LINK_EVENT) {
4303 				/*  sync with link */
4304 				bnx2x_acquire_phy_lock(bp);
4305 				bp->link_vars.periodic_flags &=
4306 					~PERIODIC_FLAGS_LINK_EVENT;
4307 				bnx2x_release_phy_lock(bp);
4308 				if (IS_MF(bp))
4309 					bnx2x_link_sync_notify(bp);
4310 				bnx2x_link_report(bp);
4311 			}
4312 			/* Always call it here: bnx2x_link_report() will
4313 			 * prevent the link indication duplication.
4314 			 */
4315 			bnx2x__link_status_update(bp);
4316 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4317 
4318 			BNX2X_ERR("MC assert!\n");
4319 			bnx2x_mc_assert(bp);
4320 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4321 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4322 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4323 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4324 			bnx2x_panic();
4325 
4326 		} else if (attn & BNX2X_MCP_ASSERT) {
4327 
4328 			BNX2X_ERR("MCP assert!\n");
4329 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4330 			bnx2x_fw_dump(bp);
4331 
4332 		} else
4333 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4334 	}
4335 
4336 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4337 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4338 		if (attn & BNX2X_GRC_TIMEOUT) {
4339 			val = CHIP_IS_E1(bp) ? 0 :
4340 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4341 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4342 		}
4343 		if (attn & BNX2X_GRC_RSV) {
4344 			val = CHIP_IS_E1(bp) ? 0 :
4345 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4346 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4347 		}
4348 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4349 	}
4350 }
4351 
4352 /*
4353  * Bits map:
4354  * 0-7   - Engine0 load counter.
4355  * 8-15  - Engine1 load counter.
4356  * 16    - Engine0 RESET_IN_PROGRESS bit.
4357  * 17    - Engine1 RESET_IN_PROGRESS bit.
4358  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4359  *         on the engine
4360  * 19    - Engine1 ONE_IS_LOADED.
4361  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4362  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4363  *         just the one belonging to its engine).
4364  *
4365  */
4366 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4367 
4368 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4369 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4370 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4371 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4372 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4373 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4374 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
4375 
4376 /*
4377  * Set the GLOBAL_RESET bit.
4378  *
4379  * Should be run under rtnl lock
4380  */
4381 void bnx2x_set_reset_global(struct bnx2x *bp)
4382 {
4383 	u32 val;
4384 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4385 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4386 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4387 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4388 }
4389 
4390 /*
4391  * Clear the GLOBAL_RESET bit.
4392  *
4393  * Should be run under rtnl lock
4394  */
4395 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4396 {
4397 	u32 val;
4398 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4399 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4400 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4401 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4402 }
4403 
4404 /*
4405  * Checks the GLOBAL_RESET bit.
4406  *
4407  * should be run under rtnl lock
4408  */
4409 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4410 {
4411 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4412 
4413 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4414 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4415 }
4416 
4417 /*
4418  * Clear RESET_IN_PROGRESS bit for the current engine.
4419  *
4420  * Should be run under rtnl lock
4421  */
4422 static void bnx2x_set_reset_done(struct bnx2x *bp)
4423 {
4424 	u32 val;
4425 	u32 bit = BP_PATH(bp) ?
4426 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4427 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4428 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4429 
4430 	/* Clear the bit */
4431 	val &= ~bit;
4432 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4433 
4434 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4435 }
4436 
4437 /*
4438  * Set RESET_IN_PROGRESS for the current engine.
4439  *
4440  * should be run under rtnl lock
4441  */
4442 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4443 {
4444 	u32 val;
4445 	u32 bit = BP_PATH(bp) ?
4446 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4447 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4448 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4449 
4450 	/* Set the bit */
4451 	val |= bit;
4452 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4453 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4454 }
4455 
4456 /*
4457  * Checks the RESET_IN_PROGRESS bit for the given engine.
4458  * should be run under rtnl lock
4459  */
4460 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4461 {
4462 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4463 	u32 bit = engine ?
4464 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4465 
4466 	/* return false if bit is set */
4467 	return (val & bit) ? false : true;
4468 }
4469 
4470 /*
4471  * set pf load for the current pf.
4472  *
4473  * should be run under rtnl lock
4474  */
4475 void bnx2x_set_pf_load(struct bnx2x *bp)
4476 {
4477 	u32 val1, val;
4478 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4479 			     BNX2X_PATH0_LOAD_CNT_MASK;
4480 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4481 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4482 
4483 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4484 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4485 
4486 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4487 
4488 	/* get the current counter value */
4489 	val1 = (val & mask) >> shift;
4490 
4491 	/* set bit of that PF */
4492 	val1 |= (1 << bp->pf_num);
4493 
4494 	/* clear the old value */
4495 	val &= ~mask;
4496 
4497 	/* set the new one */
4498 	val |= ((val1 << shift) & mask);
4499 
4500 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4501 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4502 }
4503 
4504 /**
4505  * bnx2x_clear_pf_load - clear pf load mark
4506  *
4507  * @bp:		driver handle
4508  *
4509  * Should be run under rtnl lock.
4510  * Decrements the load counter for the current engine. Returns
4511  * whether other functions are still loaded
4512  */
4513 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4514 {
4515 	u32 val1, val;
4516 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4517 			     BNX2X_PATH0_LOAD_CNT_MASK;
4518 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4519 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4520 
4521 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4522 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4523 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4524 
4525 	/* get the current counter value */
4526 	val1 = (val & mask) >> shift;
4527 
4528 	/* clear bit of that PF */
4529 	val1 &= ~(1 << bp->pf_num);
4530 
4531 	/* clear the old value */
4532 	val &= ~mask;
4533 
4534 	/* set the new one */
4535 	val |= ((val1 << shift) & mask);
4536 
4537 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4538 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4539 	return val1 != 0;
4540 }
4541 
4542 /*
4543  * Read the load status for the current engine.
4544  *
4545  * should be run under rtnl lock
4546  */
4547 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4548 {
4549 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4550 			     BNX2X_PATH0_LOAD_CNT_MASK);
4551 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4552 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4553 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4554 
4555 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4556 
4557 	val = (val & mask) >> shift;
4558 
4559 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4560 	   engine, val);
4561 
4562 	return val != 0;
4563 }
4564 
4565 static void _print_parity(struct bnx2x *bp, u32 reg)
4566 {
4567 	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4568 }
4569 
4570 static void _print_next_block(int idx, const char *blk)
4571 {
4572 	pr_cont("%s%s", idx ? ", " : "", blk);
4573 }
4574 
4575 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4576 					    int *par_num, bool print)
4577 {
4578 	u32 cur_bit;
4579 	bool res;
4580 	int i;
4581 
4582 	res = false;
4583 
4584 	for (i = 0; sig; i++) {
4585 		cur_bit = (0x1UL << i);
4586 		if (sig & cur_bit) {
4587 			res |= true; /* Each bit is real error! */
4588 
4589 			if (print) {
4590 				switch (cur_bit) {
4591 				case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4592 					_print_next_block((*par_num)++, "BRB");
4593 					_print_parity(bp,
4594 						      BRB1_REG_BRB1_PRTY_STS);
4595 					break;
4596 				case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4597 					_print_next_block((*par_num)++,
4598 							  "PARSER");
4599 					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4600 					break;
4601 				case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4602 					_print_next_block((*par_num)++, "TSDM");
4603 					_print_parity(bp,
4604 						      TSDM_REG_TSDM_PRTY_STS);
4605 					break;
4606 				case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4607 					_print_next_block((*par_num)++,
4608 							  "SEARCHER");
4609 					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4610 					break;
4611 				case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4612 					_print_next_block((*par_num)++, "TCM");
4613 					_print_parity(bp, TCM_REG_TCM_PRTY_STS);
4614 					break;
4615 				case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4616 					_print_next_block((*par_num)++,
4617 							  "TSEMI");
4618 					_print_parity(bp,
4619 						      TSEM_REG_TSEM_PRTY_STS_0);
4620 					_print_parity(bp,
4621 						      TSEM_REG_TSEM_PRTY_STS_1);
4622 					break;
4623 				case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4624 					_print_next_block((*par_num)++, "XPB");
4625 					_print_parity(bp, GRCBASE_XPB +
4626 							  PB_REG_PB_PRTY_STS);
4627 					break;
4628 				}
4629 			}
4630 
4631 			/* Clear the bit */
4632 			sig &= ~cur_bit;
4633 		}
4634 	}
4635 
4636 	return res;
4637 }
4638 
4639 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4640 					    int *par_num, bool *global,
4641 					    bool print)
4642 {
4643 	u32 cur_bit;
4644 	bool res;
4645 	int i;
4646 
4647 	res = false;
4648 
4649 	for (i = 0; sig; i++) {
4650 		cur_bit = (0x1UL << i);
4651 		if (sig & cur_bit) {
4652 			res |= true; /* Each bit is real error! */
4653 			switch (cur_bit) {
4654 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4655 				if (print) {
4656 					_print_next_block((*par_num)++, "PBF");
4657 					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4658 				}
4659 				break;
4660 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4661 				if (print) {
4662 					_print_next_block((*par_num)++, "QM");
4663 					_print_parity(bp, QM_REG_QM_PRTY_STS);
4664 				}
4665 				break;
4666 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4667 				if (print) {
4668 					_print_next_block((*par_num)++, "TM");
4669 					_print_parity(bp, TM_REG_TM_PRTY_STS);
4670 				}
4671 				break;
4672 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4673 				if (print) {
4674 					_print_next_block((*par_num)++, "XSDM");
4675 					_print_parity(bp,
4676 						      XSDM_REG_XSDM_PRTY_STS);
4677 				}
4678 				break;
4679 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4680 				if (print) {
4681 					_print_next_block((*par_num)++, "XCM");
4682 					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4683 				}
4684 				break;
4685 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4686 				if (print) {
4687 					_print_next_block((*par_num)++,
4688 							  "XSEMI");
4689 					_print_parity(bp,
4690 						      XSEM_REG_XSEM_PRTY_STS_0);
4691 					_print_parity(bp,
4692 						      XSEM_REG_XSEM_PRTY_STS_1);
4693 				}
4694 				break;
4695 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4696 				if (print) {
4697 					_print_next_block((*par_num)++,
4698 							  "DOORBELLQ");
4699 					_print_parity(bp,
4700 						      DORQ_REG_DORQ_PRTY_STS);
4701 				}
4702 				break;
4703 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4704 				if (print) {
4705 					_print_next_block((*par_num)++, "NIG");
4706 					if (CHIP_IS_E1x(bp)) {
4707 						_print_parity(bp,
4708 							NIG_REG_NIG_PRTY_STS);
4709 					} else {
4710 						_print_parity(bp,
4711 							NIG_REG_NIG_PRTY_STS_0);
4712 						_print_parity(bp,
4713 							NIG_REG_NIG_PRTY_STS_1);
4714 					}
4715 				}
4716 				break;
4717 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4718 				if (print)
4719 					_print_next_block((*par_num)++,
4720 							  "VAUX PCI CORE");
4721 				*global = true;
4722 				break;
4723 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4724 				if (print) {
4725 					_print_next_block((*par_num)++,
4726 							  "DEBUG");
4727 					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4728 				}
4729 				break;
4730 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4731 				if (print) {
4732 					_print_next_block((*par_num)++, "USDM");
4733 					_print_parity(bp,
4734 						      USDM_REG_USDM_PRTY_STS);
4735 				}
4736 				break;
4737 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4738 				if (print) {
4739 					_print_next_block((*par_num)++, "UCM");
4740 					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4741 				}
4742 				break;
4743 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4744 				if (print) {
4745 					_print_next_block((*par_num)++,
4746 							  "USEMI");
4747 					_print_parity(bp,
4748 						      USEM_REG_USEM_PRTY_STS_0);
4749 					_print_parity(bp,
4750 						      USEM_REG_USEM_PRTY_STS_1);
4751 				}
4752 				break;
4753 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4754 				if (print) {
4755 					_print_next_block((*par_num)++, "UPB");
4756 					_print_parity(bp, GRCBASE_UPB +
4757 							  PB_REG_PB_PRTY_STS);
4758 				}
4759 				break;
4760 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4761 				if (print) {
4762 					_print_next_block((*par_num)++, "CSDM");
4763 					_print_parity(bp,
4764 						      CSDM_REG_CSDM_PRTY_STS);
4765 				}
4766 				break;
4767 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4768 				if (print) {
4769 					_print_next_block((*par_num)++, "CCM");
4770 					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4771 				}
4772 				break;
4773 			}
4774 
4775 			/* Clear the bit */
4776 			sig &= ~cur_bit;
4777 		}
4778 	}
4779 
4780 	return res;
4781 }
4782 
4783 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4784 					    int *par_num, bool print)
4785 {
4786 	u32 cur_bit;
4787 	bool res;
4788 	int i;
4789 
4790 	res = false;
4791 
4792 	for (i = 0; sig; i++) {
4793 		cur_bit = (0x1UL << i);
4794 		if (sig & cur_bit) {
4795 			res = true; /* Each bit is real error! */
4796 			if (print) {
4797 				switch (cur_bit) {
4798 				case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4799 					_print_next_block((*par_num)++,
4800 							  "CSEMI");
4801 					_print_parity(bp,
4802 						      CSEM_REG_CSEM_PRTY_STS_0);
4803 					_print_parity(bp,
4804 						      CSEM_REG_CSEM_PRTY_STS_1);
4805 					break;
4806 				case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4807 					_print_next_block((*par_num)++, "PXP");
4808 					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4809 					_print_parity(bp,
4810 						      PXP2_REG_PXP2_PRTY_STS_0);
4811 					_print_parity(bp,
4812 						      PXP2_REG_PXP2_PRTY_STS_1);
4813 					break;
4814 				case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4815 					_print_next_block((*par_num)++,
4816 							  "PXPPCICLOCKCLIENT");
4817 					break;
4818 				case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4819 					_print_next_block((*par_num)++, "CFC");
4820 					_print_parity(bp,
4821 						      CFC_REG_CFC_PRTY_STS);
4822 					break;
4823 				case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4824 					_print_next_block((*par_num)++, "CDU");
4825 					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4826 					break;
4827 				case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4828 					_print_next_block((*par_num)++, "DMAE");
4829 					_print_parity(bp,
4830 						      DMAE_REG_DMAE_PRTY_STS);
4831 					break;
4832 				case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4833 					_print_next_block((*par_num)++, "IGU");
4834 					if (CHIP_IS_E1x(bp))
4835 						_print_parity(bp,
4836 							HC_REG_HC_PRTY_STS);
4837 					else
4838 						_print_parity(bp,
4839 							IGU_REG_IGU_PRTY_STS);
4840 					break;
4841 				case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4842 					_print_next_block((*par_num)++, "MISC");
4843 					_print_parity(bp,
4844 						      MISC_REG_MISC_PRTY_STS);
4845 					break;
4846 				}
4847 			}
4848 
4849 			/* Clear the bit */
4850 			sig &= ~cur_bit;
4851 		}
4852 	}
4853 
4854 	return res;
4855 }
4856 
4857 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4858 					    int *par_num, bool *global,
4859 					    bool print)
4860 {
4861 	bool res = false;
4862 	u32 cur_bit;
4863 	int i;
4864 
4865 	for (i = 0; sig; i++) {
4866 		cur_bit = (0x1UL << i);
4867 		if (sig & cur_bit) {
4868 			switch (cur_bit) {
4869 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4870 				if (print)
4871 					_print_next_block((*par_num)++,
4872 							  "MCP ROM");
4873 				*global = true;
4874 				res = true;
4875 				break;
4876 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4877 				if (print)
4878 					_print_next_block((*par_num)++,
4879 							  "MCP UMP RX");
4880 				*global = true;
4881 				res = true;
4882 				break;
4883 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4884 				if (print)
4885 					_print_next_block((*par_num)++,
4886 							  "MCP UMP TX");
4887 				*global = true;
4888 				res = true;
4889 				break;
4890 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4891 				(*par_num)++;
4892 				/* clear latched SCPAD PATIRY from MCP */
4893 				REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4894 				       1UL << 10);
4895 				break;
4896 			}
4897 
4898 			/* Clear the bit */
4899 			sig &= ~cur_bit;
4900 		}
4901 	}
4902 
4903 	return res;
4904 }
4905 
4906 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4907 					    int *par_num, bool print)
4908 {
4909 	u32 cur_bit;
4910 	bool res;
4911 	int i;
4912 
4913 	res = false;
4914 
4915 	for (i = 0; sig; i++) {
4916 		cur_bit = (0x1UL << i);
4917 		if (sig & cur_bit) {
4918 			res = true; /* Each bit is real error! */
4919 			if (print) {
4920 				switch (cur_bit) {
4921 				case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4922 					_print_next_block((*par_num)++,
4923 							  "PGLUE_B");
4924 					_print_parity(bp,
4925 						      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4926 					break;
4927 				case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4928 					_print_next_block((*par_num)++, "ATC");
4929 					_print_parity(bp,
4930 						      ATC_REG_ATC_PRTY_STS);
4931 					break;
4932 				}
4933 			}
4934 			/* Clear the bit */
4935 			sig &= ~cur_bit;
4936 		}
4937 	}
4938 
4939 	return res;
4940 }
4941 
4942 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4943 			      u32 *sig)
4944 {
4945 	bool res = false;
4946 
4947 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4948 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4949 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4950 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4951 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4952 		int par_num = 0;
4953 
4954 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4955 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4956 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4957 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4958 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4959 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4960 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4961 		if (print) {
4962 			if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4963 			     (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4964 			     (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4965 			     (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4966 			     (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4967 				netdev_err(bp->dev,
4968 					   "Parity errors detected in blocks: ");
4969 			} else {
4970 				print = false;
4971 			}
4972 		}
4973 		res |= bnx2x_check_blocks_with_parity0(bp,
4974 			sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4975 		res |= bnx2x_check_blocks_with_parity1(bp,
4976 			sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4977 		res |= bnx2x_check_blocks_with_parity2(bp,
4978 			sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4979 		res |= bnx2x_check_blocks_with_parity3(bp,
4980 			sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4981 		res |= bnx2x_check_blocks_with_parity4(bp,
4982 			sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4983 
4984 		if (print)
4985 			pr_cont("\n");
4986 	}
4987 
4988 	return res;
4989 }
4990 
4991 /**
4992  * bnx2x_chk_parity_attn - checks for parity attentions.
4993  *
4994  * @bp:		driver handle
4995  * @global:	true if there was a global attention
4996  * @print:	show parity attention in syslog
4997  */
4998 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4999 {
5000 	struct attn_route attn = { {0} };
5001 	int port = BP_PORT(bp);
5002 
5003 	attn.sig[0] = REG_RD(bp,
5004 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5005 			     port*4);
5006 	attn.sig[1] = REG_RD(bp,
5007 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5008 			     port*4);
5009 	attn.sig[2] = REG_RD(bp,
5010 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5011 			     port*4);
5012 	attn.sig[3] = REG_RD(bp,
5013 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5014 			     port*4);
5015 	/* Since MCP attentions can't be disabled inside the block, we need to
5016 	 * read AEU registers to see whether they're currently disabled
5017 	 */
5018 	attn.sig[3] &= ((REG_RD(bp,
5019 				!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5020 				      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5021 			 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5022 			~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5023 
5024 	if (!CHIP_IS_E1x(bp))
5025 		attn.sig[4] = REG_RD(bp,
5026 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5027 				     port*4);
5028 
5029 	return bnx2x_parity_attn(bp, global, print, attn.sig);
5030 }
5031 
5032 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5033 {
5034 	u32 val;
5035 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5036 
5037 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5038 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5039 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5040 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5041 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5042 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5043 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5044 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5045 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5046 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5047 		if (val &
5048 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5049 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5050 		if (val &
5051 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5052 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5053 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5054 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5055 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5056 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5057 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5058 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5059 	}
5060 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5061 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5062 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
5063 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5064 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5065 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5066 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5067 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5068 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5069 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5070 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5071 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5072 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5073 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5074 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5075 	}
5076 
5077 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5078 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5079 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5080 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5081 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5082 	}
5083 }
5084 
5085 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5086 {
5087 	struct attn_route attn, *group_mask;
5088 	int port = BP_PORT(bp);
5089 	int index;
5090 	u32 reg_addr;
5091 	u32 val;
5092 	u32 aeu_mask;
5093 	bool global = false;
5094 
5095 	/* need to take HW lock because MCP or other port might also
5096 	   try to handle this event */
5097 	bnx2x_acquire_alr(bp);
5098 
5099 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
5100 #ifndef BNX2X_STOP_ON_ERROR
5101 		bp->recovery_state = BNX2X_RECOVERY_INIT;
5102 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
5103 		/* Disable HW interrupts */
5104 		bnx2x_int_disable(bp);
5105 		/* In case of parity errors don't handle attentions so that
5106 		 * other function would "see" parity errors.
5107 		 */
5108 #else
5109 		bnx2x_panic();
5110 #endif
5111 		bnx2x_release_alr(bp);
5112 		return;
5113 	}
5114 
5115 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5116 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5117 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5118 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5119 	if (!CHIP_IS_E1x(bp))
5120 		attn.sig[4] =
5121 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5122 	else
5123 		attn.sig[4] = 0;
5124 
5125 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5126 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5127 
5128 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5129 		if (deasserted & (1 << index)) {
5130 			group_mask = &bp->attn_group[index];
5131 
5132 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5133 			   index,
5134 			   group_mask->sig[0], group_mask->sig[1],
5135 			   group_mask->sig[2], group_mask->sig[3],
5136 			   group_mask->sig[4]);
5137 
5138 			bnx2x_attn_int_deasserted4(bp,
5139 					attn.sig[4] & group_mask->sig[4]);
5140 			bnx2x_attn_int_deasserted3(bp,
5141 					attn.sig[3] & group_mask->sig[3]);
5142 			bnx2x_attn_int_deasserted1(bp,
5143 					attn.sig[1] & group_mask->sig[1]);
5144 			bnx2x_attn_int_deasserted2(bp,
5145 					attn.sig[2] & group_mask->sig[2]);
5146 			bnx2x_attn_int_deasserted0(bp,
5147 					attn.sig[0] & group_mask->sig[0]);
5148 		}
5149 	}
5150 
5151 	bnx2x_release_alr(bp);
5152 
5153 	if (bp->common.int_block == INT_BLOCK_HC)
5154 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
5155 			    COMMAND_REG_ATTN_BITS_CLR);
5156 	else
5157 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5158 
5159 	val = ~deasserted;
5160 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5161 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5162 	REG_WR(bp, reg_addr, val);
5163 
5164 	if (~bp->attn_state & deasserted)
5165 		BNX2X_ERR("IGU ERROR\n");
5166 
5167 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5168 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
5169 
5170 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5171 	aeu_mask = REG_RD(bp, reg_addr);
5172 
5173 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5174 	   aeu_mask, deasserted);
5175 	aeu_mask |= (deasserted & 0x3ff);
5176 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5177 
5178 	REG_WR(bp, reg_addr, aeu_mask);
5179 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5180 
5181 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5182 	bp->attn_state &= ~deasserted;
5183 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5184 }
5185 
5186 static void bnx2x_attn_int(struct bnx2x *bp)
5187 {
5188 	/* read local copy of bits */
5189 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5190 								attn_bits);
5191 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5192 								attn_bits_ack);
5193 	u32 attn_state = bp->attn_state;
5194 
5195 	/* look for changed bits */
5196 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5197 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5198 
5199 	DP(NETIF_MSG_HW,
5200 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5201 	   attn_bits, attn_ack, asserted, deasserted);
5202 
5203 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5204 		BNX2X_ERR("BAD attention state\n");
5205 
5206 	/* handle bits that were raised */
5207 	if (asserted)
5208 		bnx2x_attn_int_asserted(bp, asserted);
5209 
5210 	if (deasserted)
5211 		bnx2x_attn_int_deasserted(bp, deasserted);
5212 }
5213 
5214 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5215 		      u16 index, u8 op, u8 update)
5216 {
5217 	u32 igu_addr = bp->igu_base_addr;
5218 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5219 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5220 			     igu_addr);
5221 }
5222 
5223 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5224 {
5225 	/* No memory barriers */
5226 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5227 	mmiowb(); /* keep prod updates ordered */
5228 }
5229 
5230 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5231 				      union event_ring_elem *elem)
5232 {
5233 	u8 err = elem->message.error;
5234 
5235 	if (!bp->cnic_eth_dev.starting_cid  ||
5236 	    (cid < bp->cnic_eth_dev.starting_cid &&
5237 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
5238 		return 1;
5239 
5240 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5241 
5242 	if (unlikely(err)) {
5243 
5244 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5245 			  cid);
5246 		bnx2x_panic_dump(bp, false);
5247 	}
5248 	bnx2x_cnic_cfc_comp(bp, cid, err);
5249 	return 0;
5250 }
5251 
5252 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5253 {
5254 	struct bnx2x_mcast_ramrod_params rparam;
5255 	int rc;
5256 
5257 	memset(&rparam, 0, sizeof(rparam));
5258 
5259 	rparam.mcast_obj = &bp->mcast_obj;
5260 
5261 	netif_addr_lock_bh(bp->dev);
5262 
5263 	/* Clear pending state for the last command */
5264 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5265 
5266 	/* If there are pending mcast commands - send them */
5267 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5268 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5269 		if (rc < 0)
5270 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5271 				  rc);
5272 	}
5273 
5274 	netif_addr_unlock_bh(bp->dev);
5275 }
5276 
5277 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5278 					    union event_ring_elem *elem)
5279 {
5280 	unsigned long ramrod_flags = 0;
5281 	int rc = 0;
5282 	u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5283 	u32 cid = echo & BNX2X_SWCID_MASK;
5284 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5285 
5286 	/* Always push next commands out, don't wait here */
5287 	__set_bit(RAMROD_CONT, &ramrod_flags);
5288 
5289 	switch (echo >> BNX2X_SWCID_SHIFT) {
5290 	case BNX2X_FILTER_MAC_PENDING:
5291 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5292 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5293 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5294 		else
5295 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5296 
5297 		break;
5298 	case BNX2X_FILTER_VLAN_PENDING:
5299 		DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5300 		vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5301 		break;
5302 	case BNX2X_FILTER_MCAST_PENDING:
5303 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5304 		/* This is only relevant for 57710 where multicast MACs are
5305 		 * configured as unicast MACs using the same ramrod.
5306 		 */
5307 		bnx2x_handle_mcast_eqe(bp);
5308 		return;
5309 	default:
5310 		BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5311 		return;
5312 	}
5313 
5314 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5315 
5316 	if (rc < 0)
5317 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5318 	else if (rc > 0)
5319 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5320 }
5321 
5322 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5323 
5324 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5325 {
5326 	netif_addr_lock_bh(bp->dev);
5327 
5328 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5329 
5330 	/* Send rx_mode command again if was requested */
5331 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5332 		bnx2x_set_storm_rx_mode(bp);
5333 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5334 				    &bp->sp_state))
5335 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5336 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5337 				    &bp->sp_state))
5338 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5339 
5340 	netif_addr_unlock_bh(bp->dev);
5341 }
5342 
5343 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5344 					      union event_ring_elem *elem)
5345 {
5346 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5347 		DP(BNX2X_MSG_SP,
5348 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5349 		   elem->message.data.vif_list_event.func_bit_map);
5350 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5351 			elem->message.data.vif_list_event.func_bit_map);
5352 	} else if (elem->message.data.vif_list_event.echo ==
5353 		   VIF_LIST_RULE_SET) {
5354 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5355 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5356 	}
5357 }
5358 
5359 /* called with rtnl_lock */
5360 static void bnx2x_after_function_update(struct bnx2x *bp)
5361 {
5362 	int q, rc;
5363 	struct bnx2x_fastpath *fp;
5364 	struct bnx2x_queue_state_params queue_params = {NULL};
5365 	struct bnx2x_queue_update_params *q_update_params =
5366 		&queue_params.params.update;
5367 
5368 	/* Send Q update command with afex vlan removal values for all Qs */
5369 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5370 
5371 	/* set silent vlan removal values according to vlan mode */
5372 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5373 		  &q_update_params->update_flags);
5374 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5375 		  &q_update_params->update_flags);
5376 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5377 
5378 	/* in access mode mark mask and value are 0 to strip all vlans */
5379 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5380 		q_update_params->silent_removal_value = 0;
5381 		q_update_params->silent_removal_mask = 0;
5382 	} else {
5383 		q_update_params->silent_removal_value =
5384 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5385 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5386 	}
5387 
5388 	for_each_eth_queue(bp, q) {
5389 		/* Set the appropriate Queue object */
5390 		fp = &bp->fp[q];
5391 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5392 
5393 		/* send the ramrod */
5394 		rc = bnx2x_queue_state_change(bp, &queue_params);
5395 		if (rc < 0)
5396 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5397 				  q);
5398 	}
5399 
5400 	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5401 		fp = &bp->fp[FCOE_IDX(bp)];
5402 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5403 
5404 		/* clear pending completion bit */
5405 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5406 
5407 		/* mark latest Q bit */
5408 		smp_mb__before_atomic();
5409 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5410 		smp_mb__after_atomic();
5411 
5412 		/* send Q update ramrod for FCoE Q */
5413 		rc = bnx2x_queue_state_change(bp, &queue_params);
5414 		if (rc < 0)
5415 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5416 				  q);
5417 	} else {
5418 		/* If no FCoE ring - ACK MCP now */
5419 		bnx2x_link_report(bp);
5420 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5421 	}
5422 }
5423 
5424 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5425 	struct bnx2x *bp, u32 cid)
5426 {
5427 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5428 
5429 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5430 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5431 	else
5432 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5433 }
5434 
5435 static void bnx2x_eq_int(struct bnx2x *bp)
5436 {
5437 	u16 hw_cons, sw_cons, sw_prod;
5438 	union event_ring_elem *elem;
5439 	u8 echo;
5440 	u32 cid;
5441 	u8 opcode;
5442 	int rc, spqe_cnt = 0;
5443 	struct bnx2x_queue_sp_obj *q_obj;
5444 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5445 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5446 
5447 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5448 
5449 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5450 	 * when we get the next-page we need to adjust so the loop
5451 	 * condition below will be met. The next element is the size of a
5452 	 * regular element and hence incrementing by 1
5453 	 */
5454 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5455 		hw_cons++;
5456 
5457 	/* This function may never run in parallel with itself for a
5458 	 * specific bp, thus there is no need in "paired" read memory
5459 	 * barrier here.
5460 	 */
5461 	sw_cons = bp->eq_cons;
5462 	sw_prod = bp->eq_prod;
5463 
5464 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5465 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5466 
5467 	for (; sw_cons != hw_cons;
5468 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5469 
5470 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5471 
5472 		rc = bnx2x_iov_eq_sp_event(bp, elem);
5473 		if (!rc) {
5474 			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5475 			   rc);
5476 			goto next_spqe;
5477 		}
5478 
5479 		opcode = elem->message.opcode;
5480 
5481 		/* handle eq element */
5482 		switch (opcode) {
5483 		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5484 			bnx2x_vf_mbx_schedule(bp,
5485 					      &elem->message.data.vf_pf_event);
5486 			continue;
5487 
5488 		case EVENT_RING_OPCODE_STAT_QUERY:
5489 			DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5490 			       "got statistics comp event %d\n",
5491 			       bp->stats_comp++);
5492 			/* nothing to do with stats comp */
5493 			goto next_spqe;
5494 
5495 		case EVENT_RING_OPCODE_CFC_DEL:
5496 			/* handle according to cid range */
5497 			/*
5498 			 * we may want to verify here that the bp state is
5499 			 * HALTING
5500 			 */
5501 
5502 			/* elem CID originates from FW; actually LE */
5503 			cid = SW_CID(elem->message.data.cfc_del_event.cid);
5504 
5505 			DP(BNX2X_MSG_SP,
5506 			   "got delete ramrod for MULTI[%d]\n", cid);
5507 
5508 			if (CNIC_LOADED(bp) &&
5509 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5510 				goto next_spqe;
5511 
5512 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5513 
5514 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5515 				break;
5516 
5517 			goto next_spqe;
5518 
5519 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5520 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5521 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5522 			if (f_obj->complete_cmd(bp, f_obj,
5523 						BNX2X_F_CMD_TX_STOP))
5524 				break;
5525 			goto next_spqe;
5526 
5527 		case EVENT_RING_OPCODE_START_TRAFFIC:
5528 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5529 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5530 			if (f_obj->complete_cmd(bp, f_obj,
5531 						BNX2X_F_CMD_TX_START))
5532 				break;
5533 			goto next_spqe;
5534 
5535 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5536 			echo = elem->message.data.function_update_event.echo;
5537 			if (echo == SWITCH_UPDATE) {
5538 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5539 				   "got FUNC_SWITCH_UPDATE ramrod\n");
5540 				if (f_obj->complete_cmd(
5541 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5542 					break;
5543 
5544 			} else {
5545 				int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5546 
5547 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5548 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5549 				f_obj->complete_cmd(bp, f_obj,
5550 						    BNX2X_F_CMD_AFEX_UPDATE);
5551 
5552 				/* We will perform the Queues update from
5553 				 * sp_rtnl task as all Queue SP operations
5554 				 * should run under rtnl_lock.
5555 				 */
5556 				bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5557 			}
5558 
5559 			goto next_spqe;
5560 
5561 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5562 			f_obj->complete_cmd(bp, f_obj,
5563 					    BNX2X_F_CMD_AFEX_VIFLISTS);
5564 			bnx2x_after_afex_vif_lists(bp, elem);
5565 			goto next_spqe;
5566 		case EVENT_RING_OPCODE_FUNCTION_START:
5567 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5568 			   "got FUNC_START ramrod\n");
5569 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5570 				break;
5571 
5572 			goto next_spqe;
5573 
5574 		case EVENT_RING_OPCODE_FUNCTION_STOP:
5575 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5576 			   "got FUNC_STOP ramrod\n");
5577 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5578 				break;
5579 
5580 			goto next_spqe;
5581 
5582 		case EVENT_RING_OPCODE_SET_TIMESYNC:
5583 			DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5584 			   "got set_timesync ramrod completion\n");
5585 			if (f_obj->complete_cmd(bp, f_obj,
5586 						BNX2X_F_CMD_SET_TIMESYNC))
5587 				break;
5588 			goto next_spqe;
5589 		}
5590 
5591 		switch (opcode | bp->state) {
5592 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5593 		      BNX2X_STATE_OPEN):
5594 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5595 		      BNX2X_STATE_OPENING_WAIT4_PORT):
5596 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5597 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5598 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5599 			   SW_CID(elem->message.data.eth_event.echo));
5600 			rss_raw->clear_pending(rss_raw);
5601 			break;
5602 
5603 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5604 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5605 		case (EVENT_RING_OPCODE_SET_MAC |
5606 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5607 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5608 		      BNX2X_STATE_OPEN):
5609 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5610 		      BNX2X_STATE_DIAG):
5611 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5612 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5613 			DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5614 			bnx2x_handle_classification_eqe(bp, elem);
5615 			break;
5616 
5617 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5618 		      BNX2X_STATE_OPEN):
5619 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5620 		      BNX2X_STATE_DIAG):
5621 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5622 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5623 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5624 			bnx2x_handle_mcast_eqe(bp);
5625 			break;
5626 
5627 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5628 		      BNX2X_STATE_OPEN):
5629 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5630 		      BNX2X_STATE_DIAG):
5631 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5632 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5633 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5634 			bnx2x_handle_rx_mode_eqe(bp);
5635 			break;
5636 		default:
5637 			/* unknown event log error and continue */
5638 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5639 				  elem->message.opcode, bp->state);
5640 		}
5641 next_spqe:
5642 		spqe_cnt++;
5643 	} /* for */
5644 
5645 	smp_mb__before_atomic();
5646 	atomic_add(spqe_cnt, &bp->eq_spq_left);
5647 
5648 	bp->eq_cons = sw_cons;
5649 	bp->eq_prod = sw_prod;
5650 	/* Make sure that above mem writes were issued towards the memory */
5651 	smp_wmb();
5652 
5653 	/* update producer */
5654 	bnx2x_update_eq_prod(bp, bp->eq_prod);
5655 }
5656 
5657 static void bnx2x_sp_task(struct work_struct *work)
5658 {
5659 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5660 
5661 	DP(BNX2X_MSG_SP, "sp task invoked\n");
5662 
5663 	/* make sure the atomic interrupt_occurred has been written */
5664 	smp_rmb();
5665 	if (atomic_read(&bp->interrupt_occurred)) {
5666 
5667 		/* what work needs to be performed? */
5668 		u16 status = bnx2x_update_dsb_idx(bp);
5669 
5670 		DP(BNX2X_MSG_SP, "status %x\n", status);
5671 		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5672 		atomic_set(&bp->interrupt_occurred, 0);
5673 
5674 		/* HW attentions */
5675 		if (status & BNX2X_DEF_SB_ATT_IDX) {
5676 			bnx2x_attn_int(bp);
5677 			status &= ~BNX2X_DEF_SB_ATT_IDX;
5678 		}
5679 
5680 		/* SP events: STAT_QUERY and others */
5681 		if (status & BNX2X_DEF_SB_IDX) {
5682 			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5683 
5684 			if (FCOE_INIT(bp) &&
5685 			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5686 				/* Prevent local bottom-halves from running as
5687 				 * we are going to change the local NAPI list.
5688 				 */
5689 				local_bh_disable();
5690 				napi_schedule(&bnx2x_fcoe(bp, napi));
5691 				local_bh_enable();
5692 			}
5693 
5694 			/* Handle EQ completions */
5695 			bnx2x_eq_int(bp);
5696 			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5697 				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5698 
5699 			status &= ~BNX2X_DEF_SB_IDX;
5700 		}
5701 
5702 		/* if status is non zero then perhaps something went wrong */
5703 		if (unlikely(status))
5704 			DP(BNX2X_MSG_SP,
5705 			   "got an unknown interrupt! (status 0x%x)\n", status);
5706 
5707 		/* ack status block only if something was actually handled */
5708 		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5709 			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5710 	}
5711 
5712 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5713 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5714 			       &bp->sp_state)) {
5715 		bnx2x_link_report(bp);
5716 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5717 	}
5718 }
5719 
5720 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5721 {
5722 	struct net_device *dev = dev_instance;
5723 	struct bnx2x *bp = netdev_priv(dev);
5724 
5725 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5726 		     IGU_INT_DISABLE, 0);
5727 
5728 #ifdef BNX2X_STOP_ON_ERROR
5729 	if (unlikely(bp->panic))
5730 		return IRQ_HANDLED;
5731 #endif
5732 
5733 	if (CNIC_LOADED(bp)) {
5734 		struct cnic_ops *c_ops;
5735 
5736 		rcu_read_lock();
5737 		c_ops = rcu_dereference(bp->cnic_ops);
5738 		if (c_ops)
5739 			c_ops->cnic_handler(bp->cnic_data, NULL);
5740 		rcu_read_unlock();
5741 	}
5742 
5743 	/* schedule sp task to perform default status block work, ack
5744 	 * attentions and enable interrupts.
5745 	 */
5746 	bnx2x_schedule_sp_task(bp);
5747 
5748 	return IRQ_HANDLED;
5749 }
5750 
5751 /* end of slow path */
5752 
5753 void bnx2x_drv_pulse(struct bnx2x *bp)
5754 {
5755 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5756 		 bp->fw_drv_pulse_wr_seq);
5757 }
5758 
5759 static void bnx2x_timer(unsigned long data)
5760 {
5761 	struct bnx2x *bp = (struct bnx2x *) data;
5762 
5763 	if (!netif_running(bp->dev))
5764 		return;
5765 
5766 	if (IS_PF(bp) &&
5767 	    !BP_NOMCP(bp)) {
5768 		int mb_idx = BP_FW_MB_IDX(bp);
5769 		u16 drv_pulse;
5770 		u16 mcp_pulse;
5771 
5772 		++bp->fw_drv_pulse_wr_seq;
5773 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5774 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5775 		bnx2x_drv_pulse(bp);
5776 
5777 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5778 			     MCP_PULSE_SEQ_MASK);
5779 		/* The delta between driver pulse and mcp response
5780 		 * should not get too big. If the MFW is more than 5 pulses
5781 		 * behind, we should worry about it enough to generate an error
5782 		 * log.
5783 		 */
5784 		if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5785 			BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5786 				  drv_pulse, mcp_pulse);
5787 	}
5788 
5789 	if (bp->state == BNX2X_STATE_OPEN)
5790 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5791 
5792 	/* sample pf vf bulletin board for new posts from pf */
5793 	if (IS_VF(bp))
5794 		bnx2x_timer_sriov(bp);
5795 
5796 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5797 }
5798 
5799 /* end of Statistics */
5800 
5801 /* nic init */
5802 
5803 /*
5804  * nic init service functions
5805  */
5806 
5807 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5808 {
5809 	u32 i;
5810 	if (!(len%4) && !(addr%4))
5811 		for (i = 0; i < len; i += 4)
5812 			REG_WR(bp, addr + i, fill);
5813 	else
5814 		for (i = 0; i < len; i++)
5815 			REG_WR8(bp, addr + i, fill);
5816 }
5817 
5818 /* helper: writes FP SP data to FW - data_size in dwords */
5819 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5820 				int fw_sb_id,
5821 				u32 *sb_data_p,
5822 				u32 data_size)
5823 {
5824 	int index;
5825 	for (index = 0; index < data_size; index++)
5826 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5827 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5828 			sizeof(u32)*index,
5829 			*(sb_data_p + index));
5830 }
5831 
5832 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5833 {
5834 	u32 *sb_data_p;
5835 	u32 data_size = 0;
5836 	struct hc_status_block_data_e2 sb_data_e2;
5837 	struct hc_status_block_data_e1x sb_data_e1x;
5838 
5839 	/* disable the function first */
5840 	if (!CHIP_IS_E1x(bp)) {
5841 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5842 		sb_data_e2.common.state = SB_DISABLED;
5843 		sb_data_e2.common.p_func.vf_valid = false;
5844 		sb_data_p = (u32 *)&sb_data_e2;
5845 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5846 	} else {
5847 		memset(&sb_data_e1x, 0,
5848 		       sizeof(struct hc_status_block_data_e1x));
5849 		sb_data_e1x.common.state = SB_DISABLED;
5850 		sb_data_e1x.common.p_func.vf_valid = false;
5851 		sb_data_p = (u32 *)&sb_data_e1x;
5852 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5853 	}
5854 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5855 
5856 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5857 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5858 			CSTORM_STATUS_BLOCK_SIZE);
5859 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5860 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5861 			CSTORM_SYNC_BLOCK_SIZE);
5862 }
5863 
5864 /* helper:  writes SP SB data to FW */
5865 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5866 		struct hc_sp_status_block_data *sp_sb_data)
5867 {
5868 	int func = BP_FUNC(bp);
5869 	int i;
5870 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5871 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5872 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5873 			i*sizeof(u32),
5874 			*((u32 *)sp_sb_data + i));
5875 }
5876 
5877 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5878 {
5879 	int func = BP_FUNC(bp);
5880 	struct hc_sp_status_block_data sp_sb_data;
5881 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5882 
5883 	sp_sb_data.state = SB_DISABLED;
5884 	sp_sb_data.p_func.vf_valid = false;
5885 
5886 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5887 
5888 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5889 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5890 			CSTORM_SP_STATUS_BLOCK_SIZE);
5891 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5892 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5893 			CSTORM_SP_SYNC_BLOCK_SIZE);
5894 }
5895 
5896 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5897 					   int igu_sb_id, int igu_seg_id)
5898 {
5899 	hc_sm->igu_sb_id = igu_sb_id;
5900 	hc_sm->igu_seg_id = igu_seg_id;
5901 	hc_sm->timer_value = 0xFF;
5902 	hc_sm->time_to_expire = 0xFFFFFFFF;
5903 }
5904 
5905 /* allocates state machine ids. */
5906 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5907 {
5908 	/* zero out state machine indices */
5909 	/* rx indices */
5910 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5911 
5912 	/* tx indices */
5913 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5914 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5915 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5916 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5917 
5918 	/* map indices */
5919 	/* rx indices */
5920 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5921 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5922 
5923 	/* tx indices */
5924 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5925 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5926 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5927 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5928 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5929 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5930 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5931 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5932 }
5933 
5934 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5935 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5936 {
5937 	int igu_seg_id;
5938 
5939 	struct hc_status_block_data_e2 sb_data_e2;
5940 	struct hc_status_block_data_e1x sb_data_e1x;
5941 	struct hc_status_block_sm  *hc_sm_p;
5942 	int data_size;
5943 	u32 *sb_data_p;
5944 
5945 	if (CHIP_INT_MODE_IS_BC(bp))
5946 		igu_seg_id = HC_SEG_ACCESS_NORM;
5947 	else
5948 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5949 
5950 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5951 
5952 	if (!CHIP_IS_E1x(bp)) {
5953 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5954 		sb_data_e2.common.state = SB_ENABLED;
5955 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5956 		sb_data_e2.common.p_func.vf_id = vfid;
5957 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5958 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5959 		sb_data_e2.common.same_igu_sb_1b = true;
5960 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5961 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5962 		hc_sm_p = sb_data_e2.common.state_machine;
5963 		sb_data_p = (u32 *)&sb_data_e2;
5964 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5965 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5966 	} else {
5967 		memset(&sb_data_e1x, 0,
5968 		       sizeof(struct hc_status_block_data_e1x));
5969 		sb_data_e1x.common.state = SB_ENABLED;
5970 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5971 		sb_data_e1x.common.p_func.vf_id = 0xff;
5972 		sb_data_e1x.common.p_func.vf_valid = false;
5973 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5974 		sb_data_e1x.common.same_igu_sb_1b = true;
5975 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5976 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5977 		hc_sm_p = sb_data_e1x.common.state_machine;
5978 		sb_data_p = (u32 *)&sb_data_e1x;
5979 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5980 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5981 	}
5982 
5983 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5984 				       igu_sb_id, igu_seg_id);
5985 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5986 				       igu_sb_id, igu_seg_id);
5987 
5988 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5989 
5990 	/* write indices to HW - PCI guarantees endianity of regpairs */
5991 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5992 }
5993 
5994 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5995 				     u16 tx_usec, u16 rx_usec)
5996 {
5997 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5998 				    false, rx_usec);
5999 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6000 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6001 				       tx_usec);
6002 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6003 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6004 				       tx_usec);
6005 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6006 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6007 				       tx_usec);
6008 }
6009 
6010 static void bnx2x_init_def_sb(struct bnx2x *bp)
6011 {
6012 	struct host_sp_status_block *def_sb = bp->def_status_blk;
6013 	dma_addr_t mapping = bp->def_status_blk_mapping;
6014 	int igu_sp_sb_index;
6015 	int igu_seg_id;
6016 	int port = BP_PORT(bp);
6017 	int func = BP_FUNC(bp);
6018 	int reg_offset, reg_offset_en5;
6019 	u64 section;
6020 	int index;
6021 	struct hc_sp_status_block_data sp_sb_data;
6022 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6023 
6024 	if (CHIP_INT_MODE_IS_BC(bp)) {
6025 		igu_sp_sb_index = DEF_SB_IGU_ID;
6026 		igu_seg_id = HC_SEG_ACCESS_DEF;
6027 	} else {
6028 		igu_sp_sb_index = bp->igu_dsb_id;
6029 		igu_seg_id = IGU_SEG_ACCESS_DEF;
6030 	}
6031 
6032 	/* ATTN */
6033 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6034 					    atten_status_block);
6035 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6036 
6037 	bp->attn_state = 0;
6038 
6039 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6040 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6041 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6042 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6043 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6044 		int sindex;
6045 		/* take care of sig[0]..sig[4] */
6046 		for (sindex = 0; sindex < 4; sindex++)
6047 			bp->attn_group[index].sig[sindex] =
6048 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6049 
6050 		if (!CHIP_IS_E1x(bp))
6051 			/*
6052 			 * enable5 is separate from the rest of the registers,
6053 			 * and therefore the address skip is 4
6054 			 * and not 16 between the different groups
6055 			 */
6056 			bp->attn_group[index].sig[4] = REG_RD(bp,
6057 					reg_offset_en5 + 0x4*index);
6058 		else
6059 			bp->attn_group[index].sig[4] = 0;
6060 	}
6061 
6062 	if (bp->common.int_block == INT_BLOCK_HC) {
6063 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6064 				     HC_REG_ATTN_MSG0_ADDR_L);
6065 
6066 		REG_WR(bp, reg_offset, U64_LO(section));
6067 		REG_WR(bp, reg_offset + 4, U64_HI(section));
6068 	} else if (!CHIP_IS_E1x(bp)) {
6069 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6070 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6071 	}
6072 
6073 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6074 					    sp_sb);
6075 
6076 	bnx2x_zero_sp_sb(bp);
6077 
6078 	/* PCI guarantees endianity of regpairs */
6079 	sp_sb_data.state		= SB_ENABLED;
6080 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
6081 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
6082 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
6083 	sp_sb_data.igu_seg_id		= igu_seg_id;
6084 	sp_sb_data.p_func.pf_id		= func;
6085 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
6086 	sp_sb_data.p_func.vf_id		= 0xff;
6087 
6088 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6089 
6090 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6091 }
6092 
6093 void bnx2x_update_coalesce(struct bnx2x *bp)
6094 {
6095 	int i;
6096 
6097 	for_each_eth_queue(bp, i)
6098 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6099 					 bp->tx_ticks, bp->rx_ticks);
6100 }
6101 
6102 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6103 {
6104 	spin_lock_init(&bp->spq_lock);
6105 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6106 
6107 	bp->spq_prod_idx = 0;
6108 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6109 	bp->spq_prod_bd = bp->spq;
6110 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6111 }
6112 
6113 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6114 {
6115 	int i;
6116 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
6117 		union event_ring_elem *elem =
6118 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6119 
6120 		elem->next_page.addr.hi =
6121 			cpu_to_le32(U64_HI(bp->eq_mapping +
6122 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6123 		elem->next_page.addr.lo =
6124 			cpu_to_le32(U64_LO(bp->eq_mapping +
6125 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6126 	}
6127 	bp->eq_cons = 0;
6128 	bp->eq_prod = NUM_EQ_DESC;
6129 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
6130 	/* we want a warning message before it gets wrought... */
6131 	atomic_set(&bp->eq_spq_left,
6132 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6133 }
6134 
6135 /* called with netif_addr_lock_bh() */
6136 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6137 			       unsigned long rx_mode_flags,
6138 			       unsigned long rx_accept_flags,
6139 			       unsigned long tx_accept_flags,
6140 			       unsigned long ramrod_flags)
6141 {
6142 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
6143 	int rc;
6144 
6145 	memset(&ramrod_param, 0, sizeof(ramrod_param));
6146 
6147 	/* Prepare ramrod parameters */
6148 	ramrod_param.cid = 0;
6149 	ramrod_param.cl_id = cl_id;
6150 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6151 	ramrod_param.func_id = BP_FUNC(bp);
6152 
6153 	ramrod_param.pstate = &bp->sp_state;
6154 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6155 
6156 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6157 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6158 
6159 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6160 
6161 	ramrod_param.ramrod_flags = ramrod_flags;
6162 	ramrod_param.rx_mode_flags = rx_mode_flags;
6163 
6164 	ramrod_param.rx_accept_flags = rx_accept_flags;
6165 	ramrod_param.tx_accept_flags = tx_accept_flags;
6166 
6167 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6168 	if (rc < 0) {
6169 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6170 		return rc;
6171 	}
6172 
6173 	return 0;
6174 }
6175 
6176 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6177 				   unsigned long *rx_accept_flags,
6178 				   unsigned long *tx_accept_flags)
6179 {
6180 	/* Clear the flags first */
6181 	*rx_accept_flags = 0;
6182 	*tx_accept_flags = 0;
6183 
6184 	switch (rx_mode) {
6185 	case BNX2X_RX_MODE_NONE:
6186 		/*
6187 		 * 'drop all' supersedes any accept flags that may have been
6188 		 * passed to the function.
6189 		 */
6190 		break;
6191 	case BNX2X_RX_MODE_NORMAL:
6192 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6193 		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6194 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6195 
6196 		/* internal switching mode */
6197 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6198 		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6199 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6200 
6201 		if (bp->accept_any_vlan) {
6202 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6203 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6204 		}
6205 
6206 		break;
6207 	case BNX2X_RX_MODE_ALLMULTI:
6208 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6209 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6210 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6211 
6212 		/* internal switching mode */
6213 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6214 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6215 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6216 
6217 		if (bp->accept_any_vlan) {
6218 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6219 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6220 		}
6221 
6222 		break;
6223 	case BNX2X_RX_MODE_PROMISC:
6224 		/* According to definition of SI mode, iface in promisc mode
6225 		 * should receive matched and unmatched (in resolution of port)
6226 		 * unicast packets.
6227 		 */
6228 		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6229 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6230 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6231 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6232 
6233 		/* internal switching mode */
6234 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6235 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6236 
6237 		if (IS_MF_SI(bp))
6238 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6239 		else
6240 			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6241 
6242 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6243 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6244 
6245 		break;
6246 	default:
6247 		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6248 		return -EINVAL;
6249 	}
6250 
6251 	return 0;
6252 }
6253 
6254 /* called with netif_addr_lock_bh() */
6255 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6256 {
6257 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6258 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6259 	int rc;
6260 
6261 	if (!NO_FCOE(bp))
6262 		/* Configure rx_mode of FCoE Queue */
6263 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6264 
6265 	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6266 				     &tx_accept_flags);
6267 	if (rc)
6268 		return rc;
6269 
6270 	__set_bit(RAMROD_RX, &ramrod_flags);
6271 	__set_bit(RAMROD_TX, &ramrod_flags);
6272 
6273 	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6274 				   rx_accept_flags, tx_accept_flags,
6275 				   ramrod_flags);
6276 }
6277 
6278 static void bnx2x_init_internal_common(struct bnx2x *bp)
6279 {
6280 	int i;
6281 
6282 	/* Zero this manually as its initialization is
6283 	   currently missing in the initTool */
6284 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6285 		REG_WR(bp, BAR_USTRORM_INTMEM +
6286 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6287 	if (!CHIP_IS_E1x(bp)) {
6288 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6289 			CHIP_INT_MODE_IS_BC(bp) ?
6290 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6291 	}
6292 }
6293 
6294 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6295 {
6296 	switch (load_code) {
6297 	case FW_MSG_CODE_DRV_LOAD_COMMON:
6298 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6299 		bnx2x_init_internal_common(bp);
6300 		/* no break */
6301 
6302 	case FW_MSG_CODE_DRV_LOAD_PORT:
6303 		/* nothing to do */
6304 		/* no break */
6305 
6306 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6307 		/* internal memory per function is
6308 		   initialized inside bnx2x_pf_init */
6309 		break;
6310 
6311 	default:
6312 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6313 		break;
6314 	}
6315 }
6316 
6317 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6318 {
6319 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6320 }
6321 
6322 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6323 {
6324 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6325 }
6326 
6327 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6328 {
6329 	if (CHIP_IS_E1x(fp->bp))
6330 		return BP_L_ID(fp->bp) + fp->index;
6331 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6332 		return bnx2x_fp_igu_sb_id(fp);
6333 }
6334 
6335 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6336 {
6337 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6338 	u8 cos;
6339 	unsigned long q_type = 0;
6340 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6341 	fp->rx_queue = fp_idx;
6342 	fp->cid = fp_idx;
6343 	fp->cl_id = bnx2x_fp_cl_id(fp);
6344 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6345 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6346 	/* qZone id equals to FW (per path) client id */
6347 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6348 
6349 	/* init shortcut */
6350 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6351 
6352 	/* Setup SB indices */
6353 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6354 
6355 	/* Configure Queue State object */
6356 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6357 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6358 
6359 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6360 
6361 	/* init tx data */
6362 	for_each_cos_in_tx_queue(fp, cos) {
6363 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6364 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6365 				  FP_COS_TO_TXQ(fp, cos, bp),
6366 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6367 		cids[cos] = fp->txdata_ptr[cos]->cid;
6368 	}
6369 
6370 	/* nothing more for vf to do here */
6371 	if (IS_VF(bp))
6372 		return;
6373 
6374 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6375 		      fp->fw_sb_id, fp->igu_sb_id);
6376 	bnx2x_update_fpsb_idx(fp);
6377 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6378 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6379 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6380 
6381 	/**
6382 	 * Configure classification DBs: Always enable Tx switching
6383 	 */
6384 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6385 
6386 	DP(NETIF_MSG_IFUP,
6387 	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6388 	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6389 	   fp->igu_sb_id);
6390 }
6391 
6392 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6393 {
6394 	int i;
6395 
6396 	for (i = 1; i <= NUM_TX_RINGS; i++) {
6397 		struct eth_tx_next_bd *tx_next_bd =
6398 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6399 
6400 		tx_next_bd->addr_hi =
6401 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6402 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6403 		tx_next_bd->addr_lo =
6404 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6405 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6406 	}
6407 
6408 	*txdata->tx_cons_sb = cpu_to_le16(0);
6409 
6410 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6411 	txdata->tx_db.data.zero_fill1 = 0;
6412 	txdata->tx_db.data.prod = 0;
6413 
6414 	txdata->tx_pkt_prod = 0;
6415 	txdata->tx_pkt_cons = 0;
6416 	txdata->tx_bd_prod = 0;
6417 	txdata->tx_bd_cons = 0;
6418 	txdata->tx_pkt = 0;
6419 }
6420 
6421 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6422 {
6423 	int i;
6424 
6425 	for_each_tx_queue_cnic(bp, i)
6426 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6427 }
6428 
6429 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6430 {
6431 	int i;
6432 	u8 cos;
6433 
6434 	for_each_eth_queue(bp, i)
6435 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6436 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6437 }
6438 
6439 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6440 {
6441 	struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6442 	unsigned long q_type = 0;
6443 
6444 	bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6445 	bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6446 						     BNX2X_FCOE_ETH_CL_ID_IDX);
6447 	bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6448 	bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6449 	bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6450 	bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6451 	bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6452 			  fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6453 			  fp);
6454 
6455 	DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6456 
6457 	/* qZone id equals to FW (per path) client id */
6458 	bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6459 	/* init shortcut */
6460 	bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6461 		bnx2x_rx_ustorm_prods_offset(fp);
6462 
6463 	/* Configure Queue State object */
6464 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6465 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6466 
6467 	/* No multi-CoS for FCoE L2 client */
6468 	BUG_ON(fp->max_cos != 1);
6469 
6470 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6471 			     &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6472 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6473 
6474 	DP(NETIF_MSG_IFUP,
6475 	   "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6476 	   fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6477 	   fp->igu_sb_id);
6478 }
6479 
6480 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6481 {
6482 	if (!NO_FCOE(bp))
6483 		bnx2x_init_fcoe_fp(bp);
6484 
6485 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6486 		      BNX2X_VF_ID_INVALID, false,
6487 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6488 
6489 	/* ensure status block indices were read */
6490 	rmb();
6491 	bnx2x_init_rx_rings_cnic(bp);
6492 	bnx2x_init_tx_rings_cnic(bp);
6493 
6494 	/* flush all */
6495 	mb();
6496 	mmiowb();
6497 }
6498 
6499 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6500 {
6501 	int i;
6502 
6503 	/* Setup NIC internals and enable interrupts */
6504 	for_each_eth_queue(bp, i)
6505 		bnx2x_init_eth_fp(bp, i);
6506 
6507 	/* ensure status block indices were read */
6508 	rmb();
6509 	bnx2x_init_rx_rings(bp);
6510 	bnx2x_init_tx_rings(bp);
6511 
6512 	if (IS_PF(bp)) {
6513 		/* Initialize MOD_ABS interrupts */
6514 		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6515 				       bp->common.shmem_base,
6516 				       bp->common.shmem2_base, BP_PORT(bp));
6517 
6518 		/* initialize the default status block and sp ring */
6519 		bnx2x_init_def_sb(bp);
6520 		bnx2x_update_dsb_idx(bp);
6521 		bnx2x_init_sp_ring(bp);
6522 	} else {
6523 		bnx2x_memset_stats(bp);
6524 	}
6525 }
6526 
6527 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6528 {
6529 	bnx2x_init_eq_ring(bp);
6530 	bnx2x_init_internal(bp, load_code);
6531 	bnx2x_pf_init(bp);
6532 	bnx2x_stats_init(bp);
6533 
6534 	/* flush all before enabling interrupts */
6535 	mb();
6536 	mmiowb();
6537 
6538 	bnx2x_int_enable(bp);
6539 
6540 	/* Check for SPIO5 */
6541 	bnx2x_attn_int_deasserted0(bp,
6542 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6543 				   AEU_INPUTS_ATTN_BITS_SPIO5);
6544 }
6545 
6546 /* gzip service functions */
6547 static int bnx2x_gunzip_init(struct bnx2x *bp)
6548 {
6549 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6550 					    &bp->gunzip_mapping, GFP_KERNEL);
6551 	if (bp->gunzip_buf  == NULL)
6552 		goto gunzip_nomem1;
6553 
6554 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6555 	if (bp->strm  == NULL)
6556 		goto gunzip_nomem2;
6557 
6558 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6559 	if (bp->strm->workspace == NULL)
6560 		goto gunzip_nomem3;
6561 
6562 	return 0;
6563 
6564 gunzip_nomem3:
6565 	kfree(bp->strm);
6566 	bp->strm = NULL;
6567 
6568 gunzip_nomem2:
6569 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6570 			  bp->gunzip_mapping);
6571 	bp->gunzip_buf = NULL;
6572 
6573 gunzip_nomem1:
6574 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6575 	return -ENOMEM;
6576 }
6577 
6578 static void bnx2x_gunzip_end(struct bnx2x *bp)
6579 {
6580 	if (bp->strm) {
6581 		vfree(bp->strm->workspace);
6582 		kfree(bp->strm);
6583 		bp->strm = NULL;
6584 	}
6585 
6586 	if (bp->gunzip_buf) {
6587 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6588 				  bp->gunzip_mapping);
6589 		bp->gunzip_buf = NULL;
6590 	}
6591 }
6592 
6593 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6594 {
6595 	int n, rc;
6596 
6597 	/* check gzip header */
6598 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6599 		BNX2X_ERR("Bad gzip header\n");
6600 		return -EINVAL;
6601 	}
6602 
6603 	n = 10;
6604 
6605 #define FNAME				0x8
6606 
6607 	if (zbuf[3] & FNAME)
6608 		while ((zbuf[n++] != 0) && (n < len));
6609 
6610 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6611 	bp->strm->avail_in = len - n;
6612 	bp->strm->next_out = bp->gunzip_buf;
6613 	bp->strm->avail_out = FW_BUF_SIZE;
6614 
6615 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6616 	if (rc != Z_OK)
6617 		return rc;
6618 
6619 	rc = zlib_inflate(bp->strm, Z_FINISH);
6620 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6621 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6622 			   bp->strm->msg);
6623 
6624 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6625 	if (bp->gunzip_outlen & 0x3)
6626 		netdev_err(bp->dev,
6627 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6628 				bp->gunzip_outlen);
6629 	bp->gunzip_outlen >>= 2;
6630 
6631 	zlib_inflateEnd(bp->strm);
6632 
6633 	if (rc == Z_STREAM_END)
6634 		return 0;
6635 
6636 	return rc;
6637 }
6638 
6639 /* nic load/unload */
6640 
6641 /*
6642  * General service functions
6643  */
6644 
6645 /* send a NIG loopback debug packet */
6646 static void bnx2x_lb_pckt(struct bnx2x *bp)
6647 {
6648 	u32 wb_write[3];
6649 
6650 	/* Ethernet source and destination addresses */
6651 	wb_write[0] = 0x55555555;
6652 	wb_write[1] = 0x55555555;
6653 	wb_write[2] = 0x20;		/* SOP */
6654 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6655 
6656 	/* NON-IP protocol */
6657 	wb_write[0] = 0x09000000;
6658 	wb_write[1] = 0x55555555;
6659 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6660 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6661 }
6662 
6663 /* some of the internal memories
6664  * are not directly readable from the driver
6665  * to test them we send debug packets
6666  */
6667 static int bnx2x_int_mem_test(struct bnx2x *bp)
6668 {
6669 	int factor;
6670 	int count, i;
6671 	u32 val = 0;
6672 
6673 	if (CHIP_REV_IS_FPGA(bp))
6674 		factor = 120;
6675 	else if (CHIP_REV_IS_EMUL(bp))
6676 		factor = 200;
6677 	else
6678 		factor = 1;
6679 
6680 	/* Disable inputs of parser neighbor blocks */
6681 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6682 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6683 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6684 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6685 
6686 	/*  Write 0 to parser credits for CFC search request */
6687 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6688 
6689 	/* send Ethernet packet */
6690 	bnx2x_lb_pckt(bp);
6691 
6692 	/* TODO do i reset NIG statistic? */
6693 	/* Wait until NIG register shows 1 packet of size 0x10 */
6694 	count = 1000 * factor;
6695 	while (count) {
6696 
6697 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6698 		val = *bnx2x_sp(bp, wb_data[0]);
6699 		if (val == 0x10)
6700 			break;
6701 
6702 		usleep_range(10000, 20000);
6703 		count--;
6704 	}
6705 	if (val != 0x10) {
6706 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6707 		return -1;
6708 	}
6709 
6710 	/* Wait until PRS register shows 1 packet */
6711 	count = 1000 * factor;
6712 	while (count) {
6713 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6714 		if (val == 1)
6715 			break;
6716 
6717 		usleep_range(10000, 20000);
6718 		count--;
6719 	}
6720 	if (val != 0x1) {
6721 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6722 		return -2;
6723 	}
6724 
6725 	/* Reset and init BRB, PRS */
6726 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6727 	msleep(50);
6728 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6729 	msleep(50);
6730 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6731 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6732 
6733 	DP(NETIF_MSG_HW, "part2\n");
6734 
6735 	/* Disable inputs of parser neighbor blocks */
6736 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6737 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6738 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6739 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6740 
6741 	/* Write 0 to parser credits for CFC search request */
6742 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6743 
6744 	/* send 10 Ethernet packets */
6745 	for (i = 0; i < 10; i++)
6746 		bnx2x_lb_pckt(bp);
6747 
6748 	/* Wait until NIG register shows 10 + 1
6749 	   packets of size 11*0x10 = 0xb0 */
6750 	count = 1000 * factor;
6751 	while (count) {
6752 
6753 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6754 		val = *bnx2x_sp(bp, wb_data[0]);
6755 		if (val == 0xb0)
6756 			break;
6757 
6758 		usleep_range(10000, 20000);
6759 		count--;
6760 	}
6761 	if (val != 0xb0) {
6762 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6763 		return -3;
6764 	}
6765 
6766 	/* Wait until PRS register shows 2 packets */
6767 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6768 	if (val != 2)
6769 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6770 
6771 	/* Write 1 to parser credits for CFC search request */
6772 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6773 
6774 	/* Wait until PRS register shows 3 packets */
6775 	msleep(10 * factor);
6776 	/* Wait until NIG register shows 1 packet of size 0x10 */
6777 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6778 	if (val != 3)
6779 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6780 
6781 	/* clear NIG EOP FIFO */
6782 	for (i = 0; i < 11; i++)
6783 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6784 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6785 	if (val != 1) {
6786 		BNX2X_ERR("clear of NIG failed\n");
6787 		return -4;
6788 	}
6789 
6790 	/* Reset and init BRB, PRS, NIG */
6791 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6792 	msleep(50);
6793 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6794 	msleep(50);
6795 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6796 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6797 	if (!CNIC_SUPPORT(bp))
6798 		/* set NIC mode */
6799 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6800 
6801 	/* Enable inputs of parser neighbor blocks */
6802 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6803 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6804 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6805 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6806 
6807 	DP(NETIF_MSG_HW, "done\n");
6808 
6809 	return 0; /* OK */
6810 }
6811 
6812 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6813 {
6814 	u32 val;
6815 
6816 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6817 	if (!CHIP_IS_E1x(bp))
6818 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6819 	else
6820 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6821 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6822 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6823 	/*
6824 	 * mask read length error interrupts in brb for parser
6825 	 * (parsing unit and 'checksum and crc' unit)
6826 	 * these errors are legal (PU reads fixed length and CAC can cause
6827 	 * read length error on truncated packets)
6828 	 */
6829 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6830 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6831 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6832 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6833 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6834 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6835 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6836 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6837 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6838 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6839 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6840 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6841 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6842 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6843 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6844 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6845 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6846 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6847 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6848 
6849 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6850 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6851 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6852 	if (!CHIP_IS_E1x(bp))
6853 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6854 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6855 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6856 
6857 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6858 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6859 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6860 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6861 
6862 	if (!CHIP_IS_E1x(bp))
6863 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6864 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6865 
6866 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6867 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6868 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6869 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6870 }
6871 
6872 static void bnx2x_reset_common(struct bnx2x *bp)
6873 {
6874 	u32 val = 0x1400;
6875 
6876 	/* reset_common */
6877 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6878 	       0xd3ffff7f);
6879 
6880 	if (CHIP_IS_E3(bp)) {
6881 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6882 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6883 	}
6884 
6885 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6886 }
6887 
6888 static void bnx2x_setup_dmae(struct bnx2x *bp)
6889 {
6890 	bp->dmae_ready = 0;
6891 	spin_lock_init(&bp->dmae_lock);
6892 }
6893 
6894 static void bnx2x_init_pxp(struct bnx2x *bp)
6895 {
6896 	u16 devctl;
6897 	int r_order, w_order;
6898 
6899 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6900 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6901 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6902 	if (bp->mrrs == -1)
6903 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6904 	else {
6905 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6906 		r_order = bp->mrrs;
6907 	}
6908 
6909 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6910 }
6911 
6912 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6913 {
6914 	int is_required;
6915 	u32 val;
6916 	int port;
6917 
6918 	if (BP_NOMCP(bp))
6919 		return;
6920 
6921 	is_required = 0;
6922 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6923 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6924 
6925 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6926 		is_required = 1;
6927 
6928 	/*
6929 	 * The fan failure mechanism is usually related to the PHY type since
6930 	 * the power consumption of the board is affected by the PHY. Currently,
6931 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6932 	 */
6933 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6934 		for (port = PORT_0; port < PORT_MAX; port++) {
6935 			is_required |=
6936 				bnx2x_fan_failure_det_req(
6937 					bp,
6938 					bp->common.shmem_base,
6939 					bp->common.shmem2_base,
6940 					port);
6941 		}
6942 
6943 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6944 
6945 	if (is_required == 0)
6946 		return;
6947 
6948 	/* Fan failure is indicated by SPIO 5 */
6949 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6950 
6951 	/* set to active low mode */
6952 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6953 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6954 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6955 
6956 	/* enable interrupt to signal the IGU */
6957 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6958 	val |= MISC_SPIO_SPIO5;
6959 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6960 }
6961 
6962 void bnx2x_pf_disable(struct bnx2x *bp)
6963 {
6964 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6965 	val &= ~IGU_PF_CONF_FUNC_EN;
6966 
6967 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6968 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6969 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6970 }
6971 
6972 static void bnx2x__common_init_phy(struct bnx2x *bp)
6973 {
6974 	u32 shmem_base[2], shmem2_base[2];
6975 	/* Avoid common init in case MFW supports LFA */
6976 	if (SHMEM2_RD(bp, size) >
6977 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6978 		return;
6979 	shmem_base[0] =  bp->common.shmem_base;
6980 	shmem2_base[0] = bp->common.shmem2_base;
6981 	if (!CHIP_IS_E1x(bp)) {
6982 		shmem_base[1] =
6983 			SHMEM2_RD(bp, other_shmem_base_addr);
6984 		shmem2_base[1] =
6985 			SHMEM2_RD(bp, other_shmem2_base_addr);
6986 	}
6987 	bnx2x_acquire_phy_lock(bp);
6988 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6989 			      bp->common.chip_id);
6990 	bnx2x_release_phy_lock(bp);
6991 }
6992 
6993 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
6994 {
6995 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
6996 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
6997 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
6998 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
6999 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7000 
7001 	/* make sure this value is 0 */
7002 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7003 
7004 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7005 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7006 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7007 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7008 }
7009 
7010 static void bnx2x_set_endianity(struct bnx2x *bp)
7011 {
7012 #ifdef __BIG_ENDIAN
7013 	bnx2x_config_endianity(bp, 1);
7014 #else
7015 	bnx2x_config_endianity(bp, 0);
7016 #endif
7017 }
7018 
7019 static void bnx2x_reset_endianity(struct bnx2x *bp)
7020 {
7021 	bnx2x_config_endianity(bp, 0);
7022 }
7023 
7024 /**
7025  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7026  *
7027  * @bp:		driver handle
7028  */
7029 static int bnx2x_init_hw_common(struct bnx2x *bp)
7030 {
7031 	u32 val;
7032 
7033 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7034 
7035 	/*
7036 	 * take the RESET lock to protect undi_unload flow from accessing
7037 	 * registers while we're resetting the chip
7038 	 */
7039 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7040 
7041 	bnx2x_reset_common(bp);
7042 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7043 
7044 	val = 0xfffc;
7045 	if (CHIP_IS_E3(bp)) {
7046 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7047 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7048 	}
7049 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7050 
7051 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7052 
7053 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7054 
7055 	if (!CHIP_IS_E1x(bp)) {
7056 		u8 abs_func_id;
7057 
7058 		/**
7059 		 * 4-port mode or 2-port mode we need to turn of master-enable
7060 		 * for everyone, after that, turn it back on for self.
7061 		 * so, we disregard multi-function or not, and always disable
7062 		 * for all functions on the given path, this means 0,2,4,6 for
7063 		 * path 0 and 1,3,5,7 for path 1
7064 		 */
7065 		for (abs_func_id = BP_PATH(bp);
7066 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7067 			if (abs_func_id == BP_ABS_FUNC(bp)) {
7068 				REG_WR(bp,
7069 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7070 				    1);
7071 				continue;
7072 			}
7073 
7074 			bnx2x_pretend_func(bp, abs_func_id);
7075 			/* clear pf enable */
7076 			bnx2x_pf_disable(bp);
7077 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7078 		}
7079 	}
7080 
7081 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7082 	if (CHIP_IS_E1(bp)) {
7083 		/* enable HW interrupt from PXP on USDM overflow
7084 		   bit 16 on INT_MASK_0 */
7085 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7086 	}
7087 
7088 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7089 	bnx2x_init_pxp(bp);
7090 	bnx2x_set_endianity(bp);
7091 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
7092 
7093 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7094 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7095 
7096 	/* let the HW do it's magic ... */
7097 	msleep(100);
7098 	/* finish PXP init */
7099 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7100 	if (val != 1) {
7101 		BNX2X_ERR("PXP2 CFG failed\n");
7102 		return -EBUSY;
7103 	}
7104 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7105 	if (val != 1) {
7106 		BNX2X_ERR("PXP2 RD_INIT failed\n");
7107 		return -EBUSY;
7108 	}
7109 
7110 	/* Timers bug workaround E2 only. We need to set the entire ILT to
7111 	 * have entries with value "0" and valid bit on.
7112 	 * This needs to be done by the first PF that is loaded in a path
7113 	 * (i.e. common phase)
7114 	 */
7115 	if (!CHIP_IS_E1x(bp)) {
7116 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7117  * (i.e. vnic3) to start even if it is marked as "scan-off".
7118  * This occurs when a different function (func2,3) is being marked
7119  * as "scan-off". Real-life scenario for example: if a driver is being
7120  * load-unloaded while func6,7 are down. This will cause the timer to access
7121  * the ilt, translate to a logical address and send a request to read/write.
7122  * Since the ilt for the function that is down is not valid, this will cause
7123  * a translation error which is unrecoverable.
7124  * The Workaround is intended to make sure that when this happens nothing fatal
7125  * will occur. The workaround:
7126  *	1.  First PF driver which loads on a path will:
7127  *		a.  After taking the chip out of reset, by using pretend,
7128  *		    it will write "0" to the following registers of
7129  *		    the other vnics.
7130  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7131  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7132  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7133  *		    And for itself it will write '1' to
7134  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7135  *		    dmae-operations (writing to pram for example.)
7136  *		    note: can be done for only function 6,7 but cleaner this
7137  *			  way.
7138  *		b.  Write zero+valid to the entire ILT.
7139  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7140  *		    VNIC3 (of that port). The range allocated will be the
7141  *		    entire ILT. This is needed to prevent  ILT range error.
7142  *	2.  Any PF driver load flow:
7143  *		a.  ILT update with the physical addresses of the allocated
7144  *		    logical pages.
7145  *		b.  Wait 20msec. - note that this timeout is needed to make
7146  *		    sure there are no requests in one of the PXP internal
7147  *		    queues with "old" ILT addresses.
7148  *		c.  PF enable in the PGLC.
7149  *		d.  Clear the was_error of the PF in the PGLC. (could have
7150  *		    occurred while driver was down)
7151  *		e.  PF enable in the CFC (WEAK + STRONG)
7152  *		f.  Timers scan enable
7153  *	3.  PF driver unload flow:
7154  *		a.  Clear the Timers scan_en.
7155  *		b.  Polling for scan_on=0 for that PF.
7156  *		c.  Clear the PF enable bit in the PXP.
7157  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
7158  *		e.  Write zero+valid to all ILT entries (The valid bit must
7159  *		    stay set)
7160  *		f.  If this is VNIC 3 of a port then also init
7161  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
7162  *		    to the last entry in the ILT.
7163  *
7164  *	Notes:
7165  *	Currently the PF error in the PGLC is non recoverable.
7166  *	In the future the there will be a recovery routine for this error.
7167  *	Currently attention is masked.
7168  *	Having an MCP lock on the load/unload process does not guarantee that
7169  *	there is no Timer disable during Func6/7 enable. This is because the
7170  *	Timers scan is currently being cleared by the MCP on FLR.
7171  *	Step 2.d can be done only for PF6/7 and the driver can also check if
7172  *	there is error before clearing it. But the flow above is simpler and
7173  *	more general.
7174  *	All ILT entries are written by zero+valid and not just PF6/7
7175  *	ILT entries since in the future the ILT entries allocation for
7176  *	PF-s might be dynamic.
7177  */
7178 		struct ilt_client_info ilt_cli;
7179 		struct bnx2x_ilt ilt;
7180 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7181 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7182 
7183 		/* initialize dummy TM client */
7184 		ilt_cli.start = 0;
7185 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7186 		ilt_cli.client_num = ILT_CLIENT_TM;
7187 
7188 		/* Step 1: set zeroes to all ilt page entries with valid bit on
7189 		 * Step 2: set the timers first/last ilt entry to point
7190 		 * to the entire range to prevent ILT range error for 3rd/4th
7191 		 * vnic	(this code assumes existence of the vnic)
7192 		 *
7193 		 * both steps performed by call to bnx2x_ilt_client_init_op()
7194 		 * with dummy TM client
7195 		 *
7196 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7197 		 * and his brother are split registers
7198 		 */
7199 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7200 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7201 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7202 
7203 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7204 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7205 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7206 	}
7207 
7208 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7209 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7210 
7211 	if (!CHIP_IS_E1x(bp)) {
7212 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7213 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7214 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7215 
7216 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7217 
7218 		/* let the HW do it's magic ... */
7219 		do {
7220 			msleep(200);
7221 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7222 		} while (factor-- && (val != 1));
7223 
7224 		if (val != 1) {
7225 			BNX2X_ERR("ATC_INIT failed\n");
7226 			return -EBUSY;
7227 		}
7228 	}
7229 
7230 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7231 
7232 	bnx2x_iov_init_dmae(bp);
7233 
7234 	/* clean the DMAE memory */
7235 	bp->dmae_ready = 1;
7236 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7237 
7238 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7239 
7240 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7241 
7242 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7243 
7244 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7245 
7246 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7247 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7248 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7249 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7250 
7251 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7252 
7253 	/* QM queues pointers table */
7254 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7255 
7256 	/* soft reset pulse */
7257 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
7258 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
7259 
7260 	if (CNIC_SUPPORT(bp))
7261 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7262 
7263 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7264 
7265 	if (!CHIP_REV_IS_SLOW(bp))
7266 		/* enable hw interrupt from doorbell Q */
7267 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7268 
7269 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7270 
7271 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7272 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7273 
7274 	if (!CHIP_IS_E1(bp))
7275 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7276 
7277 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7278 		if (IS_MF_AFEX(bp)) {
7279 			/* configure that VNTag and VLAN headers must be
7280 			 * received in afex mode
7281 			 */
7282 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7283 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7284 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7285 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7286 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7287 		} else {
7288 			/* Bit-map indicating which L2 hdrs may appear
7289 			 * after the basic Ethernet header
7290 			 */
7291 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7292 			       bp->path_has_ovlan ? 7 : 6);
7293 		}
7294 	}
7295 
7296 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7297 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7298 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7299 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7300 
7301 	if (!CHIP_IS_E1x(bp)) {
7302 		/* reset VFC memories */
7303 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7304 			   VFC_MEMORIES_RST_REG_CAM_RST |
7305 			   VFC_MEMORIES_RST_REG_RAM_RST);
7306 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7307 			   VFC_MEMORIES_RST_REG_CAM_RST |
7308 			   VFC_MEMORIES_RST_REG_RAM_RST);
7309 
7310 		msleep(20);
7311 	}
7312 
7313 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7314 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7315 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7316 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7317 
7318 	/* sync semi rtc */
7319 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7320 	       0x80000000);
7321 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7322 	       0x80000000);
7323 
7324 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7325 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7326 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7327 
7328 	if (!CHIP_IS_E1x(bp)) {
7329 		if (IS_MF_AFEX(bp)) {
7330 			/* configure that VNTag and VLAN headers must be
7331 			 * sent in afex mode
7332 			 */
7333 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7334 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7335 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7336 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7337 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7338 		} else {
7339 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7340 			       bp->path_has_ovlan ? 7 : 6);
7341 		}
7342 	}
7343 
7344 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
7345 
7346 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7347 
7348 	if (CNIC_SUPPORT(bp)) {
7349 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7350 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7351 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7352 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7353 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7354 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7355 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7356 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7357 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7358 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7359 	}
7360 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
7361 
7362 	if (sizeof(union cdu_context) != 1024)
7363 		/* we currently assume that a context is 1024 bytes */
7364 		dev_alert(&bp->pdev->dev,
7365 			  "please adjust the size of cdu_context(%ld)\n",
7366 			  (long)sizeof(union cdu_context));
7367 
7368 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7369 	val = (4 << 24) + (0 << 12) + 1024;
7370 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7371 
7372 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7373 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7374 	/* enable context validation interrupt from CFC */
7375 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7376 
7377 	/* set the thresholds to prevent CFC/CDU race */
7378 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7379 
7380 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7381 
7382 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7383 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7384 
7385 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7386 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7387 
7388 	/* Reset PCIE errors for debug */
7389 	REG_WR(bp, 0x2814, 0xffffffff);
7390 	REG_WR(bp, 0x3820, 0xffffffff);
7391 
7392 	if (!CHIP_IS_E1x(bp)) {
7393 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7394 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7395 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7396 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7397 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7398 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7399 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7400 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7401 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7402 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7403 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7404 	}
7405 
7406 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7407 	if (!CHIP_IS_E1(bp)) {
7408 		/* in E3 this done in per-port section */
7409 		if (!CHIP_IS_E3(bp))
7410 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7411 	}
7412 	if (CHIP_IS_E1H(bp))
7413 		/* not applicable for E2 (and above ...) */
7414 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7415 
7416 	if (CHIP_REV_IS_SLOW(bp))
7417 		msleep(200);
7418 
7419 	/* finish CFC init */
7420 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7421 	if (val != 1) {
7422 		BNX2X_ERR("CFC LL_INIT failed\n");
7423 		return -EBUSY;
7424 	}
7425 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7426 	if (val != 1) {
7427 		BNX2X_ERR("CFC AC_INIT failed\n");
7428 		return -EBUSY;
7429 	}
7430 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7431 	if (val != 1) {
7432 		BNX2X_ERR("CFC CAM_INIT failed\n");
7433 		return -EBUSY;
7434 	}
7435 	REG_WR(bp, CFC_REG_DEBUG0, 0);
7436 
7437 	if (CHIP_IS_E1(bp)) {
7438 		/* read NIG statistic
7439 		   to see if this is our first up since powerup */
7440 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7441 		val = *bnx2x_sp(bp, wb_data[0]);
7442 
7443 		/* do internal memory self test */
7444 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7445 			BNX2X_ERR("internal mem self test failed\n");
7446 			return -EBUSY;
7447 		}
7448 	}
7449 
7450 	bnx2x_setup_fan_failure_detection(bp);
7451 
7452 	/* clear PXP2 attentions */
7453 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7454 
7455 	bnx2x_enable_blocks_attention(bp);
7456 	bnx2x_enable_blocks_parity(bp);
7457 
7458 	if (!BP_NOMCP(bp)) {
7459 		if (CHIP_IS_E1x(bp))
7460 			bnx2x__common_init_phy(bp);
7461 	} else
7462 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7463 
7464 	if (SHMEM2_HAS(bp, netproc_fw_ver))
7465 		SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7466 
7467 	return 0;
7468 }
7469 
7470 /**
7471  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7472  *
7473  * @bp:		driver handle
7474  */
7475 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7476 {
7477 	int rc = bnx2x_init_hw_common(bp);
7478 
7479 	if (rc)
7480 		return rc;
7481 
7482 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7483 	if (!BP_NOMCP(bp))
7484 		bnx2x__common_init_phy(bp);
7485 
7486 	return 0;
7487 }
7488 
7489 static int bnx2x_init_hw_port(struct bnx2x *bp)
7490 {
7491 	int port = BP_PORT(bp);
7492 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7493 	u32 low, high;
7494 	u32 val, reg;
7495 
7496 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7497 
7498 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7499 
7500 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7501 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7502 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7503 
7504 	/* Timers bug workaround: disables the pf_master bit in pglue at
7505 	 * common phase, we need to enable it here before any dmae access are
7506 	 * attempted. Therefore we manually added the enable-master to the
7507 	 * port phase (it also happens in the function phase)
7508 	 */
7509 	if (!CHIP_IS_E1x(bp))
7510 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7511 
7512 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7513 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7514 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7515 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7516 
7517 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7518 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7519 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7520 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7521 
7522 	/* QM cid (connection) count */
7523 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7524 
7525 	if (CNIC_SUPPORT(bp)) {
7526 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7527 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7528 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7529 	}
7530 
7531 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7532 
7533 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7534 
7535 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7536 
7537 		if (IS_MF(bp))
7538 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7539 		else if (bp->dev->mtu > 4096) {
7540 			if (bp->flags & ONE_PORT_FLAG)
7541 				low = 160;
7542 			else {
7543 				val = bp->dev->mtu;
7544 				/* (24*1024 + val*4)/256 */
7545 				low = 96 + (val/64) +
7546 						((val % 64) ? 1 : 0);
7547 			}
7548 		} else
7549 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7550 		high = low + 56;	/* 14*1024/256 */
7551 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7552 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7553 	}
7554 
7555 	if (CHIP_MODE_IS_4_PORT(bp))
7556 		REG_WR(bp, (BP_PORT(bp) ?
7557 			    BRB1_REG_MAC_GUARANTIED_1 :
7558 			    BRB1_REG_MAC_GUARANTIED_0), 40);
7559 
7560 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7561 	if (CHIP_IS_E3B0(bp)) {
7562 		if (IS_MF_AFEX(bp)) {
7563 			/* configure headers for AFEX mode */
7564 			REG_WR(bp, BP_PORT(bp) ?
7565 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7566 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7567 			REG_WR(bp, BP_PORT(bp) ?
7568 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7569 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7570 			REG_WR(bp, BP_PORT(bp) ?
7571 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7572 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7573 		} else {
7574 			/* Ovlan exists only if we are in multi-function +
7575 			 * switch-dependent mode, in switch-independent there
7576 			 * is no ovlan headers
7577 			 */
7578 			REG_WR(bp, BP_PORT(bp) ?
7579 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7580 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7581 			       (bp->path_has_ovlan ? 7 : 6));
7582 		}
7583 	}
7584 
7585 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7586 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7587 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7588 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7589 
7590 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7591 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7592 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7593 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7594 
7595 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7596 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7597 
7598 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7599 
7600 	if (CHIP_IS_E1x(bp)) {
7601 		/* configure PBF to work without PAUSE mtu 9000 */
7602 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7603 
7604 		/* update threshold */
7605 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7606 		/* update init credit */
7607 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7608 
7609 		/* probe changes */
7610 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7611 		udelay(50);
7612 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7613 	}
7614 
7615 	if (CNIC_SUPPORT(bp))
7616 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7617 
7618 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7619 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7620 
7621 	if (CHIP_IS_E1(bp)) {
7622 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7623 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7624 	}
7625 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7626 
7627 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7628 
7629 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7630 	/* init aeu_mask_attn_func_0/1:
7631 	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7632 	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7633 	 *             bits 4-7 are used for "per vn group attention" */
7634 	val = IS_MF(bp) ? 0xF7 : 0x7;
7635 	/* Enable DCBX attention for all but E1 */
7636 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7637 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7638 
7639 	/* SCPAD_PARITY should NOT trigger close the gates */
7640 	reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7641 	REG_WR(bp, reg,
7642 	       REG_RD(bp, reg) &
7643 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7644 
7645 	reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7646 	REG_WR(bp, reg,
7647 	       REG_RD(bp, reg) &
7648 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7649 
7650 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7651 
7652 	if (!CHIP_IS_E1x(bp)) {
7653 		/* Bit-map indicating which L2 hdrs may appear after the
7654 		 * basic Ethernet header
7655 		 */
7656 		if (IS_MF_AFEX(bp))
7657 			REG_WR(bp, BP_PORT(bp) ?
7658 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7659 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7660 		else
7661 			REG_WR(bp, BP_PORT(bp) ?
7662 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7663 			       NIG_REG_P0_HDRS_AFTER_BASIC,
7664 			       IS_MF_SD(bp) ? 7 : 6);
7665 
7666 		if (CHIP_IS_E3(bp))
7667 			REG_WR(bp, BP_PORT(bp) ?
7668 				   NIG_REG_LLH1_MF_MODE :
7669 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7670 	}
7671 	if (!CHIP_IS_E3(bp))
7672 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7673 
7674 	if (!CHIP_IS_E1(bp)) {
7675 		/* 0x2 disable mf_ov, 0x1 enable */
7676 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7677 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7678 
7679 		if (!CHIP_IS_E1x(bp)) {
7680 			val = 0;
7681 			switch (bp->mf_mode) {
7682 			case MULTI_FUNCTION_SD:
7683 				val = 1;
7684 				break;
7685 			case MULTI_FUNCTION_SI:
7686 			case MULTI_FUNCTION_AFEX:
7687 				val = 2;
7688 				break;
7689 			}
7690 
7691 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7692 						  NIG_REG_LLH0_CLS_TYPE), val);
7693 		}
7694 		{
7695 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7696 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7697 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7698 		}
7699 	}
7700 
7701 	/* If SPIO5 is set to generate interrupts, enable it for this port */
7702 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7703 	if (val & MISC_SPIO_SPIO5) {
7704 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7705 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7706 		val = REG_RD(bp, reg_addr);
7707 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7708 		REG_WR(bp, reg_addr, val);
7709 	}
7710 
7711 	return 0;
7712 }
7713 
7714 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7715 {
7716 	int reg;
7717 	u32 wb_write[2];
7718 
7719 	if (CHIP_IS_E1(bp))
7720 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7721 	else
7722 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7723 
7724 	wb_write[0] = ONCHIP_ADDR1(addr);
7725 	wb_write[1] = ONCHIP_ADDR2(addr);
7726 	REG_WR_DMAE(bp, reg, wb_write, 2);
7727 }
7728 
7729 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7730 {
7731 	u32 data, ctl, cnt = 100;
7732 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7733 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7734 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7735 	u32 sb_bit =  1 << (idu_sb_id%32);
7736 	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7737 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7738 
7739 	/* Not supported in BC mode */
7740 	if (CHIP_INT_MODE_IS_BC(bp))
7741 		return;
7742 
7743 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7744 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7745 		IGU_REGULAR_CLEANUP_SET				|
7746 		IGU_REGULAR_BCLEANUP;
7747 
7748 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7749 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7750 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7751 
7752 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7753 			 data, igu_addr_data);
7754 	REG_WR(bp, igu_addr_data, data);
7755 	mmiowb();
7756 	barrier();
7757 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7758 			  ctl, igu_addr_ctl);
7759 	REG_WR(bp, igu_addr_ctl, ctl);
7760 	mmiowb();
7761 	barrier();
7762 
7763 	/* wait for clean up to finish */
7764 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7765 		msleep(20);
7766 
7767 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7768 		DP(NETIF_MSG_HW,
7769 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7770 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7771 	}
7772 }
7773 
7774 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7775 {
7776 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7777 }
7778 
7779 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7780 {
7781 	u32 i, base = FUNC_ILT_BASE(func);
7782 	for (i = base; i < base + ILT_PER_FUNC; i++)
7783 		bnx2x_ilt_wr(bp, i, 0);
7784 }
7785 
7786 static void bnx2x_init_searcher(struct bnx2x *bp)
7787 {
7788 	int port = BP_PORT(bp);
7789 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7790 	/* T1 hash bits value determines the T1 number of entries */
7791 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7792 }
7793 
7794 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7795 {
7796 	int rc;
7797 	struct bnx2x_func_state_params func_params = {NULL};
7798 	struct bnx2x_func_switch_update_params *switch_update_params =
7799 		&func_params.params.switch_update;
7800 
7801 	/* Prepare parameters for function state transitions */
7802 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7803 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7804 
7805 	func_params.f_obj = &bp->func_obj;
7806 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7807 
7808 	/* Function parameters */
7809 	__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7810 		  &switch_update_params->changes);
7811 	if (suspend)
7812 		__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7813 			  &switch_update_params->changes);
7814 
7815 	rc = bnx2x_func_state_change(bp, &func_params);
7816 
7817 	return rc;
7818 }
7819 
7820 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7821 {
7822 	int rc, i, port = BP_PORT(bp);
7823 	int vlan_en = 0, mac_en[NUM_MACS];
7824 
7825 	/* Close input from network */
7826 	if (bp->mf_mode == SINGLE_FUNCTION) {
7827 		bnx2x_set_rx_filter(&bp->link_params, 0);
7828 	} else {
7829 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7830 				   NIG_REG_LLH0_FUNC_EN);
7831 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7832 			  NIG_REG_LLH0_FUNC_EN, 0);
7833 		for (i = 0; i < NUM_MACS; i++) {
7834 			mac_en[i] = REG_RD(bp, port ?
7835 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7836 					      4 * i) :
7837 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7838 					      4 * i));
7839 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7840 					      4 * i) :
7841 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7842 		}
7843 	}
7844 
7845 	/* Close BMC to host */
7846 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7847 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7848 
7849 	/* Suspend Tx switching to the PF. Completion of this ramrod
7850 	 * further guarantees that all the packets of that PF / child
7851 	 * VFs in BRB were processed by the Parser, so it is safe to
7852 	 * change the NIC_MODE register.
7853 	 */
7854 	rc = bnx2x_func_switch_update(bp, 1);
7855 	if (rc) {
7856 		BNX2X_ERR("Can't suspend tx-switching!\n");
7857 		return rc;
7858 	}
7859 
7860 	/* Change NIC_MODE register */
7861 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7862 
7863 	/* Open input from network */
7864 	if (bp->mf_mode == SINGLE_FUNCTION) {
7865 		bnx2x_set_rx_filter(&bp->link_params, 1);
7866 	} else {
7867 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7868 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7869 		for (i = 0; i < NUM_MACS; i++) {
7870 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7871 					      4 * i) :
7872 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7873 				  mac_en[i]);
7874 		}
7875 	}
7876 
7877 	/* Enable BMC to host */
7878 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7879 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7880 
7881 	/* Resume Tx switching to the PF */
7882 	rc = bnx2x_func_switch_update(bp, 0);
7883 	if (rc) {
7884 		BNX2X_ERR("Can't resume tx-switching!\n");
7885 		return rc;
7886 	}
7887 
7888 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7889 	return 0;
7890 }
7891 
7892 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7893 {
7894 	int rc;
7895 
7896 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7897 
7898 	if (CONFIGURE_NIC_MODE(bp)) {
7899 		/* Configure searcher as part of function hw init */
7900 		bnx2x_init_searcher(bp);
7901 
7902 		/* Reset NIC mode */
7903 		rc = bnx2x_reset_nic_mode(bp);
7904 		if (rc)
7905 			BNX2X_ERR("Can't change NIC mode!\n");
7906 		return rc;
7907 	}
7908 
7909 	return 0;
7910 }
7911 
7912 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7913  * and boot began, or when kdump kernel was loaded. Either case would invalidate
7914  * the addresses of the transaction, resulting in was-error bit set in the pci
7915  * causing all hw-to-host pcie transactions to timeout. If this happened we want
7916  * to clear the interrupt which detected this from the pglueb and the was done
7917  * bit
7918  */
7919 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7920 {
7921 	if (!CHIP_IS_E1x(bp))
7922 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7923 		       1 << BP_ABS_FUNC(bp));
7924 }
7925 
7926 static int bnx2x_init_hw_func(struct bnx2x *bp)
7927 {
7928 	int port = BP_PORT(bp);
7929 	int func = BP_FUNC(bp);
7930 	int init_phase = PHASE_PF0 + func;
7931 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7932 	u16 cdu_ilt_start;
7933 	u32 addr, val;
7934 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7935 	int i, main_mem_width, rc;
7936 
7937 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7938 
7939 	/* FLR cleanup - hmmm */
7940 	if (!CHIP_IS_E1x(bp)) {
7941 		rc = bnx2x_pf_flr_clnup(bp);
7942 		if (rc) {
7943 			bnx2x_fw_dump(bp);
7944 			return rc;
7945 		}
7946 	}
7947 
7948 	/* set MSI reconfigure capability */
7949 	if (bp->common.int_block == INT_BLOCK_HC) {
7950 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7951 		val = REG_RD(bp, addr);
7952 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7953 		REG_WR(bp, addr, val);
7954 	}
7955 
7956 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7957 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7958 
7959 	ilt = BP_ILT(bp);
7960 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7961 
7962 	if (IS_SRIOV(bp))
7963 		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7964 	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7965 
7966 	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7967 	 * those of the VFs, so start line should be reset
7968 	 */
7969 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7970 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7971 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7972 		ilt->lines[cdu_ilt_start + i].page_mapping =
7973 			bp->context[i].cxt_mapping;
7974 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7975 	}
7976 
7977 	bnx2x_ilt_init_op(bp, INITOP_SET);
7978 
7979 	if (!CONFIGURE_NIC_MODE(bp)) {
7980 		bnx2x_init_searcher(bp);
7981 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
7982 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7983 	} else {
7984 		/* Set NIC mode */
7985 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
7986 		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7987 	}
7988 
7989 	if (!CHIP_IS_E1x(bp)) {
7990 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7991 
7992 		/* Turn on a single ISR mode in IGU if driver is going to use
7993 		 * INT#x or MSI
7994 		 */
7995 		if (!(bp->flags & USING_MSIX_FLAG))
7996 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7997 		/*
7998 		 * Timers workaround bug: function init part.
7999 		 * Need to wait 20msec after initializing ILT,
8000 		 * needed to make sure there are no requests in
8001 		 * one of the PXP internal queues with "old" ILT addresses
8002 		 */
8003 		msleep(20);
8004 		/*
8005 		 * Master enable - Due to WB DMAE writes performed before this
8006 		 * register is re-initialized as part of the regular function
8007 		 * init
8008 		 */
8009 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8010 		/* Enable the function in IGU */
8011 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8012 	}
8013 
8014 	bp->dmae_ready = 1;
8015 
8016 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8017 
8018 	bnx2x_clean_pglue_errors(bp);
8019 
8020 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8021 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8022 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8023 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8024 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8025 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8026 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8027 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8028 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8029 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8030 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8031 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8032 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8033 
8034 	if (!CHIP_IS_E1x(bp))
8035 		REG_WR(bp, QM_REG_PF_EN, 1);
8036 
8037 	if (!CHIP_IS_E1x(bp)) {
8038 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8039 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8040 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8041 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8042 	}
8043 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
8044 
8045 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
8046 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8047 	REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8048 
8049 	bnx2x_iov_init_dq(bp);
8050 
8051 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8052 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8053 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8054 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8055 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8056 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8057 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8058 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8059 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8060 	if (!CHIP_IS_E1x(bp))
8061 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8062 
8063 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8064 
8065 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8066 
8067 	if (!CHIP_IS_E1x(bp))
8068 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8069 
8070 	if (IS_MF(bp)) {
8071 		if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8072 			REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8073 			REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8074 			       bp->mf_ov);
8075 		}
8076 	}
8077 
8078 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8079 
8080 	/* HC init per function */
8081 	if (bp->common.int_block == INT_BLOCK_HC) {
8082 		if (CHIP_IS_E1H(bp)) {
8083 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8084 
8085 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8086 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8087 		}
8088 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
8089 
8090 	} else {
8091 		int num_segs, sb_idx, prod_offset;
8092 
8093 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8094 
8095 		if (!CHIP_IS_E1x(bp)) {
8096 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8097 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8098 		}
8099 
8100 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8101 
8102 		if (!CHIP_IS_E1x(bp)) {
8103 			int dsb_idx = 0;
8104 			/**
8105 			 * Producer memory:
8106 			 * E2 mode: address 0-135 match to the mapping memory;
8107 			 * 136 - PF0 default prod; 137 - PF1 default prod;
8108 			 * 138 - PF2 default prod; 139 - PF3 default prod;
8109 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
8110 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
8111 			 * 144-147 reserved.
8112 			 *
8113 			 * E1.5 mode - In backward compatible mode;
8114 			 * for non default SB; each even line in the memory
8115 			 * holds the U producer and each odd line hold
8116 			 * the C producer. The first 128 producers are for
8117 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8118 			 * producers are for the DSB for each PF.
8119 			 * Each PF has five segments: (the order inside each
8120 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8121 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8122 			 * 144-147 attn prods;
8123 			 */
8124 			/* non-default-status-blocks */
8125 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8126 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8127 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8128 				prod_offset = (bp->igu_base_sb + sb_idx) *
8129 					num_segs;
8130 
8131 				for (i = 0; i < num_segs; i++) {
8132 					addr = IGU_REG_PROD_CONS_MEMORY +
8133 							(prod_offset + i) * 4;
8134 					REG_WR(bp, addr, 0);
8135 				}
8136 				/* send consumer update with value 0 */
8137 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8138 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8139 				bnx2x_igu_clear_sb(bp,
8140 						   bp->igu_base_sb + sb_idx);
8141 			}
8142 
8143 			/* default-status-blocks */
8144 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8145 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8146 
8147 			if (CHIP_MODE_IS_4_PORT(bp))
8148 				dsb_idx = BP_FUNC(bp);
8149 			else
8150 				dsb_idx = BP_VN(bp);
8151 
8152 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8153 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
8154 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
8155 
8156 			/*
8157 			 * igu prods come in chunks of E1HVN_MAX (4) -
8158 			 * does not matters what is the current chip mode
8159 			 */
8160 			for (i = 0; i < (num_segs * E1HVN_MAX);
8161 			     i += E1HVN_MAX) {
8162 				addr = IGU_REG_PROD_CONS_MEMORY +
8163 							(prod_offset + i)*4;
8164 				REG_WR(bp, addr, 0);
8165 			}
8166 			/* send consumer update with 0 */
8167 			if (CHIP_INT_MODE_IS_BC(bp)) {
8168 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8169 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8170 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8171 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
8172 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8173 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
8174 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8175 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
8176 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8177 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8178 			} else {
8179 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8180 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8181 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8182 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8183 			}
8184 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8185 
8186 			/* !!! These should become driver const once
8187 			   rf-tool supports split-68 const */
8188 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8189 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8190 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8191 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8192 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8193 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8194 		}
8195 	}
8196 
8197 	/* Reset PCIE errors for debug */
8198 	REG_WR(bp, 0x2114, 0xffffffff);
8199 	REG_WR(bp, 0x2120, 0xffffffff);
8200 
8201 	if (CHIP_IS_E1x(bp)) {
8202 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8203 		main_mem_base = HC_REG_MAIN_MEMORY +
8204 				BP_PORT(bp) * (main_mem_size * 4);
8205 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8206 		main_mem_width = 8;
8207 
8208 		val = REG_RD(bp, main_mem_prty_clr);
8209 		if (val)
8210 			DP(NETIF_MSG_HW,
8211 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8212 			   val);
8213 
8214 		/* Clear "false" parity errors in MSI-X table */
8215 		for (i = main_mem_base;
8216 		     i < main_mem_base + main_mem_size * 4;
8217 		     i += main_mem_width) {
8218 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
8219 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8220 					 i, main_mem_width / 4);
8221 		}
8222 		/* Clear HC parity attention */
8223 		REG_RD(bp, main_mem_prty_clr);
8224 	}
8225 
8226 #ifdef BNX2X_STOP_ON_ERROR
8227 	/* Enable STORMs SP logging */
8228 	REG_WR8(bp, BAR_USTRORM_INTMEM +
8229 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8230 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
8231 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8232 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8233 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8234 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
8235 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8236 #endif
8237 
8238 	bnx2x_phy_probe(&bp->link_params);
8239 
8240 	return 0;
8241 }
8242 
8243 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8244 {
8245 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8246 
8247 	if (!CHIP_IS_E1x(bp))
8248 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8249 			       sizeof(struct host_hc_status_block_e2));
8250 	else
8251 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8252 			       sizeof(struct host_hc_status_block_e1x));
8253 
8254 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8255 }
8256 
8257 void bnx2x_free_mem(struct bnx2x *bp)
8258 {
8259 	int i;
8260 
8261 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8262 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8263 
8264 	if (IS_VF(bp))
8265 		return;
8266 
8267 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8268 		       sizeof(struct host_sp_status_block));
8269 
8270 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8271 		       sizeof(struct bnx2x_slowpath));
8272 
8273 	for (i = 0; i < L2_ILT_LINES(bp); i++)
8274 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8275 			       bp->context[i].size);
8276 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8277 
8278 	BNX2X_FREE(bp->ilt->lines);
8279 
8280 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8281 
8282 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8283 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8284 
8285 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8286 
8287 	bnx2x_iov_free_mem(bp);
8288 }
8289 
8290 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8291 {
8292 	if (!CHIP_IS_E1x(bp)) {
8293 		/* size = the status block + ramrod buffers */
8294 		bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8295 						    sizeof(struct host_hc_status_block_e2));
8296 		if (!bp->cnic_sb.e2_sb)
8297 			goto alloc_mem_err;
8298 	} else {
8299 		bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8300 						     sizeof(struct host_hc_status_block_e1x));
8301 		if (!bp->cnic_sb.e1x_sb)
8302 			goto alloc_mem_err;
8303 	}
8304 
8305 	if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8306 		/* allocate searcher T2 table, as it wasn't allocated before */
8307 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8308 		if (!bp->t2)
8309 			goto alloc_mem_err;
8310 	}
8311 
8312 	/* write address to which L5 should insert its values */
8313 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
8314 		&bp->slowpath->drv_info_to_mcp;
8315 
8316 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8317 		goto alloc_mem_err;
8318 
8319 	return 0;
8320 
8321 alloc_mem_err:
8322 	bnx2x_free_mem_cnic(bp);
8323 	BNX2X_ERR("Can't allocate memory\n");
8324 	return -ENOMEM;
8325 }
8326 
8327 int bnx2x_alloc_mem(struct bnx2x *bp)
8328 {
8329 	int i, allocated, context_size;
8330 
8331 	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8332 		/* allocate searcher T2 table */
8333 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8334 		if (!bp->t2)
8335 			goto alloc_mem_err;
8336 	}
8337 
8338 	bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8339 					     sizeof(struct host_sp_status_block));
8340 	if (!bp->def_status_blk)
8341 		goto alloc_mem_err;
8342 
8343 	bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8344 				       sizeof(struct bnx2x_slowpath));
8345 	if (!bp->slowpath)
8346 		goto alloc_mem_err;
8347 
8348 	/* Allocate memory for CDU context:
8349 	 * This memory is allocated separately and not in the generic ILT
8350 	 * functions because CDU differs in few aspects:
8351 	 * 1. There are multiple entities allocating memory for context -
8352 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8353 	 * its own ILT lines.
8354 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
8355 	 * for the other ILT clients), to be efficient we want to support
8356 	 * allocation of sub-page-size in the last entry.
8357 	 * 3. Context pointers are used by the driver to pass to FW / update
8358 	 * the context (for the other ILT clients the pointers are used just to
8359 	 * free the memory during unload).
8360 	 */
8361 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8362 
8363 	for (i = 0, allocated = 0; allocated < context_size; i++) {
8364 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8365 					  (context_size - allocated));
8366 		bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8367 						      bp->context[i].size);
8368 		if (!bp->context[i].vcxt)
8369 			goto alloc_mem_err;
8370 		allocated += bp->context[i].size;
8371 	}
8372 	bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8373 				 GFP_KERNEL);
8374 	if (!bp->ilt->lines)
8375 		goto alloc_mem_err;
8376 
8377 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8378 		goto alloc_mem_err;
8379 
8380 	if (bnx2x_iov_alloc_mem(bp))
8381 		goto alloc_mem_err;
8382 
8383 	/* Slow path ring */
8384 	bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8385 	if (!bp->spq)
8386 		goto alloc_mem_err;
8387 
8388 	/* EQ */
8389 	bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8390 				      BCM_PAGE_SIZE * NUM_EQ_PAGES);
8391 	if (!bp->eq_ring)
8392 		goto alloc_mem_err;
8393 
8394 	return 0;
8395 
8396 alloc_mem_err:
8397 	bnx2x_free_mem(bp);
8398 	BNX2X_ERR("Can't allocate memory\n");
8399 	return -ENOMEM;
8400 }
8401 
8402 /*
8403  * Init service functions
8404  */
8405 
8406 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8407 		      struct bnx2x_vlan_mac_obj *obj, bool set,
8408 		      int mac_type, unsigned long *ramrod_flags)
8409 {
8410 	int rc;
8411 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8412 
8413 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8414 
8415 	/* Fill general parameters */
8416 	ramrod_param.vlan_mac_obj = obj;
8417 	ramrod_param.ramrod_flags = *ramrod_flags;
8418 
8419 	/* Fill a user request section if needed */
8420 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8421 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8422 
8423 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8424 
8425 		/* Set the command: ADD or DEL */
8426 		if (set)
8427 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8428 		else
8429 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8430 	}
8431 
8432 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8433 
8434 	if (rc == -EEXIST) {
8435 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8436 		/* do not treat adding same MAC as error */
8437 		rc = 0;
8438 	} else if (rc < 0)
8439 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8440 
8441 	return rc;
8442 }
8443 
8444 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8445 		       struct bnx2x_vlan_mac_obj *obj, bool set,
8446 		       unsigned long *ramrod_flags)
8447 {
8448 	int rc;
8449 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8450 
8451 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8452 
8453 	/* Fill general parameters */
8454 	ramrod_param.vlan_mac_obj = obj;
8455 	ramrod_param.ramrod_flags = *ramrod_flags;
8456 
8457 	/* Fill a user request section if needed */
8458 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8459 		ramrod_param.user_req.u.vlan.vlan = vlan;
8460 		/* Set the command: ADD or DEL */
8461 		if (set)
8462 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8463 		else
8464 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8465 	}
8466 
8467 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8468 
8469 	if (rc == -EEXIST) {
8470 		/* Do not treat adding same vlan as error. */
8471 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8472 		rc = 0;
8473 	} else if (rc < 0) {
8474 		BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8475 	}
8476 
8477 	return rc;
8478 }
8479 
8480 int bnx2x_del_all_macs(struct bnx2x *bp,
8481 		       struct bnx2x_vlan_mac_obj *mac_obj,
8482 		       int mac_type, bool wait_for_comp)
8483 {
8484 	int rc;
8485 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8486 
8487 	/* Wait for completion of requested */
8488 	if (wait_for_comp)
8489 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8490 
8491 	/* Set the mac type of addresses we want to clear */
8492 	__set_bit(mac_type, &vlan_mac_flags);
8493 
8494 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8495 	if (rc < 0)
8496 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8497 
8498 	return rc;
8499 }
8500 
8501 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8502 {
8503 	if (IS_PF(bp)) {
8504 		unsigned long ramrod_flags = 0;
8505 
8506 		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8507 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8508 		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8509 					 &bp->sp_objs->mac_obj, set,
8510 					 BNX2X_ETH_MAC, &ramrod_flags);
8511 	} else { /* vf */
8512 		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8513 					     bp->fp->index, set);
8514 	}
8515 }
8516 
8517 int bnx2x_setup_leading(struct bnx2x *bp)
8518 {
8519 	if (IS_PF(bp))
8520 		return bnx2x_setup_queue(bp, &bp->fp[0], true);
8521 	else /* VF */
8522 		return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8523 }
8524 
8525 /**
8526  * bnx2x_set_int_mode - configure interrupt mode
8527  *
8528  * @bp:		driver handle
8529  *
8530  * In case of MSI-X it will also try to enable MSI-X.
8531  */
8532 int bnx2x_set_int_mode(struct bnx2x *bp)
8533 {
8534 	int rc = 0;
8535 
8536 	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8537 		BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8538 		return -EINVAL;
8539 	}
8540 
8541 	switch (int_mode) {
8542 	case BNX2X_INT_MODE_MSIX:
8543 		/* attempt to enable msix */
8544 		rc = bnx2x_enable_msix(bp);
8545 
8546 		/* msix attained */
8547 		if (!rc)
8548 			return 0;
8549 
8550 		/* vfs use only msix */
8551 		if (rc && IS_VF(bp))
8552 			return rc;
8553 
8554 		/* failed to enable multiple MSI-X */
8555 		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8556 			       bp->num_queues,
8557 			       1 + bp->num_cnic_queues);
8558 
8559 		/* falling through... */
8560 	case BNX2X_INT_MODE_MSI:
8561 		bnx2x_enable_msi(bp);
8562 
8563 		/* falling through... */
8564 	case BNX2X_INT_MODE_INTX:
8565 		bp->num_ethernet_queues = 1;
8566 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8567 		BNX2X_DEV_INFO("set number of queues to 1\n");
8568 		break;
8569 	default:
8570 		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8571 		return -EINVAL;
8572 	}
8573 	return 0;
8574 }
8575 
8576 /* must be called prior to any HW initializations */
8577 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8578 {
8579 	if (IS_SRIOV(bp))
8580 		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8581 	return L2_ILT_LINES(bp);
8582 }
8583 
8584 void bnx2x_ilt_set_info(struct bnx2x *bp)
8585 {
8586 	struct ilt_client_info *ilt_client;
8587 	struct bnx2x_ilt *ilt = BP_ILT(bp);
8588 	u16 line = 0;
8589 
8590 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8591 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8592 
8593 	/* CDU */
8594 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8595 	ilt_client->client_num = ILT_CLIENT_CDU;
8596 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8597 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8598 	ilt_client->start = line;
8599 	line += bnx2x_cid_ilt_lines(bp);
8600 
8601 	if (CNIC_SUPPORT(bp))
8602 		line += CNIC_ILT_LINES;
8603 	ilt_client->end = line - 1;
8604 
8605 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8606 	   ilt_client->start,
8607 	   ilt_client->end,
8608 	   ilt_client->page_size,
8609 	   ilt_client->flags,
8610 	   ilog2(ilt_client->page_size >> 12));
8611 
8612 	/* QM */
8613 	if (QM_INIT(bp->qm_cid_count)) {
8614 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8615 		ilt_client->client_num = ILT_CLIENT_QM;
8616 		ilt_client->page_size = QM_ILT_PAGE_SZ;
8617 		ilt_client->flags = 0;
8618 		ilt_client->start = line;
8619 
8620 		/* 4 bytes for each cid */
8621 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8622 							 QM_ILT_PAGE_SZ);
8623 
8624 		ilt_client->end = line - 1;
8625 
8626 		DP(NETIF_MSG_IFUP,
8627 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8628 		   ilt_client->start,
8629 		   ilt_client->end,
8630 		   ilt_client->page_size,
8631 		   ilt_client->flags,
8632 		   ilog2(ilt_client->page_size >> 12));
8633 	}
8634 
8635 	if (CNIC_SUPPORT(bp)) {
8636 		/* SRC */
8637 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8638 		ilt_client->client_num = ILT_CLIENT_SRC;
8639 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8640 		ilt_client->flags = 0;
8641 		ilt_client->start = line;
8642 		line += SRC_ILT_LINES;
8643 		ilt_client->end = line - 1;
8644 
8645 		DP(NETIF_MSG_IFUP,
8646 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8647 		   ilt_client->start,
8648 		   ilt_client->end,
8649 		   ilt_client->page_size,
8650 		   ilt_client->flags,
8651 		   ilog2(ilt_client->page_size >> 12));
8652 
8653 		/* TM */
8654 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8655 		ilt_client->client_num = ILT_CLIENT_TM;
8656 		ilt_client->page_size = TM_ILT_PAGE_SZ;
8657 		ilt_client->flags = 0;
8658 		ilt_client->start = line;
8659 		line += TM_ILT_LINES;
8660 		ilt_client->end = line - 1;
8661 
8662 		DP(NETIF_MSG_IFUP,
8663 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8664 		   ilt_client->start,
8665 		   ilt_client->end,
8666 		   ilt_client->page_size,
8667 		   ilt_client->flags,
8668 		   ilog2(ilt_client->page_size >> 12));
8669 	}
8670 
8671 	BUG_ON(line > ILT_MAX_LINES);
8672 }
8673 
8674 /**
8675  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8676  *
8677  * @bp:			driver handle
8678  * @fp:			pointer to fastpath
8679  * @init_params:	pointer to parameters structure
8680  *
8681  * parameters configured:
8682  *      - HC configuration
8683  *      - Queue's CDU context
8684  */
8685 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8686 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8687 {
8688 	u8 cos;
8689 	int cxt_index, cxt_offset;
8690 
8691 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8692 	if (!IS_FCOE_FP(fp)) {
8693 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8694 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8695 
8696 		/* If HC is supported, enable host coalescing in the transition
8697 		 * to INIT state.
8698 		 */
8699 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8700 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8701 
8702 		/* HC rate */
8703 		init_params->rx.hc_rate = bp->rx_ticks ?
8704 			(1000000 / bp->rx_ticks) : 0;
8705 		init_params->tx.hc_rate = bp->tx_ticks ?
8706 			(1000000 / bp->tx_ticks) : 0;
8707 
8708 		/* FW SB ID */
8709 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8710 			fp->fw_sb_id;
8711 
8712 		/*
8713 		 * CQ index among the SB indices: FCoE clients uses the default
8714 		 * SB, therefore it's different.
8715 		 */
8716 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8717 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8718 	}
8719 
8720 	/* set maximum number of COSs supported by this queue */
8721 	init_params->max_cos = fp->max_cos;
8722 
8723 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8724 	    fp->index, init_params->max_cos);
8725 
8726 	/* set the context pointers queue object */
8727 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8728 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8729 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8730 				ILT_PAGE_CIDS);
8731 		init_params->cxts[cos] =
8732 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8733 	}
8734 }
8735 
8736 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8737 			struct bnx2x_queue_state_params *q_params,
8738 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8739 			int tx_index, bool leading)
8740 {
8741 	memset(tx_only_params, 0, sizeof(*tx_only_params));
8742 
8743 	/* Set the command */
8744 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8745 
8746 	/* Set tx-only QUEUE flags: don't zero statistics */
8747 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8748 
8749 	/* choose the index of the cid to send the slow path on */
8750 	tx_only_params->cid_index = tx_index;
8751 
8752 	/* Set general TX_ONLY_SETUP parameters */
8753 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8754 
8755 	/* Set Tx TX_ONLY_SETUP parameters */
8756 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8757 
8758 	DP(NETIF_MSG_IFUP,
8759 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8760 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8761 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8762 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8763 
8764 	/* send the ramrod */
8765 	return bnx2x_queue_state_change(bp, q_params);
8766 }
8767 
8768 /**
8769  * bnx2x_setup_queue - setup queue
8770  *
8771  * @bp:		driver handle
8772  * @fp:		pointer to fastpath
8773  * @leading:	is leading
8774  *
8775  * This function performs 2 steps in a Queue state machine
8776  *      actually: 1) RESET->INIT 2) INIT->SETUP
8777  */
8778 
8779 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8780 		       bool leading)
8781 {
8782 	struct bnx2x_queue_state_params q_params = {NULL};
8783 	struct bnx2x_queue_setup_params *setup_params =
8784 						&q_params.params.setup;
8785 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8786 						&q_params.params.tx_only;
8787 	int rc;
8788 	u8 tx_index;
8789 
8790 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8791 
8792 	/* reset IGU state skip FCoE L2 queue */
8793 	if (!IS_FCOE_FP(fp))
8794 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8795 			     IGU_INT_ENABLE, 0);
8796 
8797 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8798 	/* We want to wait for completion in this context */
8799 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8800 
8801 	/* Prepare the INIT parameters */
8802 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8803 
8804 	/* Set the command */
8805 	q_params.cmd = BNX2X_Q_CMD_INIT;
8806 
8807 	/* Change the state to INIT */
8808 	rc = bnx2x_queue_state_change(bp, &q_params);
8809 	if (rc) {
8810 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8811 		return rc;
8812 	}
8813 
8814 	DP(NETIF_MSG_IFUP, "init complete\n");
8815 
8816 	/* Now move the Queue to the SETUP state... */
8817 	memset(setup_params, 0, sizeof(*setup_params));
8818 
8819 	/* Set QUEUE flags */
8820 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8821 
8822 	/* Set general SETUP parameters */
8823 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8824 				FIRST_TX_COS_INDEX);
8825 
8826 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8827 			    &setup_params->rxq_params);
8828 
8829 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8830 			   FIRST_TX_COS_INDEX);
8831 
8832 	/* Set the command */
8833 	q_params.cmd = BNX2X_Q_CMD_SETUP;
8834 
8835 	if (IS_FCOE_FP(fp))
8836 		bp->fcoe_init = true;
8837 
8838 	/* Change the state to SETUP */
8839 	rc = bnx2x_queue_state_change(bp, &q_params);
8840 	if (rc) {
8841 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8842 		return rc;
8843 	}
8844 
8845 	/* loop through the relevant tx-only indices */
8846 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8847 	      tx_index < fp->max_cos;
8848 	      tx_index++) {
8849 
8850 		/* prepare and send tx-only ramrod*/
8851 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8852 					  tx_only_params, tx_index, leading);
8853 		if (rc) {
8854 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8855 				  fp->index, tx_index);
8856 			return rc;
8857 		}
8858 	}
8859 
8860 	return rc;
8861 }
8862 
8863 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8864 {
8865 	struct bnx2x_fastpath *fp = &bp->fp[index];
8866 	struct bnx2x_fp_txdata *txdata;
8867 	struct bnx2x_queue_state_params q_params = {NULL};
8868 	int rc, tx_index;
8869 
8870 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8871 
8872 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8873 	/* We want to wait for completion in this context */
8874 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8875 
8876 	/* close tx-only connections */
8877 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8878 	     tx_index < fp->max_cos;
8879 	     tx_index++){
8880 
8881 		/* ascertain this is a normal queue*/
8882 		txdata = fp->txdata_ptr[tx_index];
8883 
8884 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8885 							txdata->txq_index);
8886 
8887 		/* send halt terminate on tx-only connection */
8888 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8889 		memset(&q_params.params.terminate, 0,
8890 		       sizeof(q_params.params.terminate));
8891 		q_params.params.terminate.cid_index = tx_index;
8892 
8893 		rc = bnx2x_queue_state_change(bp, &q_params);
8894 		if (rc)
8895 			return rc;
8896 
8897 		/* send halt terminate on tx-only connection */
8898 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8899 		memset(&q_params.params.cfc_del, 0,
8900 		       sizeof(q_params.params.cfc_del));
8901 		q_params.params.cfc_del.cid_index = tx_index;
8902 		rc = bnx2x_queue_state_change(bp, &q_params);
8903 		if (rc)
8904 			return rc;
8905 	}
8906 	/* Stop the primary connection: */
8907 	/* ...halt the connection */
8908 	q_params.cmd = BNX2X_Q_CMD_HALT;
8909 	rc = bnx2x_queue_state_change(bp, &q_params);
8910 	if (rc)
8911 		return rc;
8912 
8913 	/* ...terminate the connection */
8914 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8915 	memset(&q_params.params.terminate, 0,
8916 	       sizeof(q_params.params.terminate));
8917 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8918 	rc = bnx2x_queue_state_change(bp, &q_params);
8919 	if (rc)
8920 		return rc;
8921 	/* ...delete cfc entry */
8922 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8923 	memset(&q_params.params.cfc_del, 0,
8924 	       sizeof(q_params.params.cfc_del));
8925 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8926 	return bnx2x_queue_state_change(bp, &q_params);
8927 }
8928 
8929 static void bnx2x_reset_func(struct bnx2x *bp)
8930 {
8931 	int port = BP_PORT(bp);
8932 	int func = BP_FUNC(bp);
8933 	int i;
8934 
8935 	/* Disable the function in the FW */
8936 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8937 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8938 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8939 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8940 
8941 	/* FP SBs */
8942 	for_each_eth_queue(bp, i) {
8943 		struct bnx2x_fastpath *fp = &bp->fp[i];
8944 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8945 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8946 			   SB_DISABLED);
8947 	}
8948 
8949 	if (CNIC_LOADED(bp))
8950 		/* CNIC SB */
8951 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8952 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8953 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8954 
8955 	/* SP SB */
8956 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8957 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8958 		SB_DISABLED);
8959 
8960 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8961 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8962 		       0);
8963 
8964 	/* Configure IGU */
8965 	if (bp->common.int_block == INT_BLOCK_HC) {
8966 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8967 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8968 	} else {
8969 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8970 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8971 	}
8972 
8973 	if (CNIC_LOADED(bp)) {
8974 		/* Disable Timer scan */
8975 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8976 		/*
8977 		 * Wait for at least 10ms and up to 2 second for the timers
8978 		 * scan to complete
8979 		 */
8980 		for (i = 0; i < 200; i++) {
8981 			usleep_range(10000, 20000);
8982 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8983 				break;
8984 		}
8985 	}
8986 	/* Clear ILT */
8987 	bnx2x_clear_func_ilt(bp, func);
8988 
8989 	/* Timers workaround bug for E2: if this is vnic-3,
8990 	 * we need to set the entire ilt range for this timers.
8991 	 */
8992 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8993 		struct ilt_client_info ilt_cli;
8994 		/* use dummy TM client */
8995 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8996 		ilt_cli.start = 0;
8997 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8998 		ilt_cli.client_num = ILT_CLIENT_TM;
8999 
9000 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9001 	}
9002 
9003 	/* this assumes that reset_port() called before reset_func()*/
9004 	if (!CHIP_IS_E1x(bp))
9005 		bnx2x_pf_disable(bp);
9006 
9007 	bp->dmae_ready = 0;
9008 }
9009 
9010 static void bnx2x_reset_port(struct bnx2x *bp)
9011 {
9012 	int port = BP_PORT(bp);
9013 	u32 val;
9014 
9015 	/* Reset physical Link */
9016 	bnx2x__link_reset(bp);
9017 
9018 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9019 
9020 	/* Do not rcv packets to BRB */
9021 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9022 	/* Do not direct rcv packets that are not for MCP to the BRB */
9023 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9024 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9025 
9026 	/* Configure AEU */
9027 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9028 
9029 	msleep(100);
9030 	/* Check for BRB port occupancy */
9031 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9032 	if (val)
9033 		DP(NETIF_MSG_IFDOWN,
9034 		   "BRB1 is not empty  %d blocks are occupied\n", val);
9035 
9036 	/* TODO: Close Doorbell port? */
9037 }
9038 
9039 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9040 {
9041 	struct bnx2x_func_state_params func_params = {NULL};
9042 
9043 	/* Prepare parameters for function state transitions */
9044 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9045 
9046 	func_params.f_obj = &bp->func_obj;
9047 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
9048 
9049 	func_params.params.hw_init.load_phase = load_code;
9050 
9051 	return bnx2x_func_state_change(bp, &func_params);
9052 }
9053 
9054 static int bnx2x_func_stop(struct bnx2x *bp)
9055 {
9056 	struct bnx2x_func_state_params func_params = {NULL};
9057 	int rc;
9058 
9059 	/* Prepare parameters for function state transitions */
9060 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9061 	func_params.f_obj = &bp->func_obj;
9062 	func_params.cmd = BNX2X_F_CMD_STOP;
9063 
9064 	/*
9065 	 * Try to stop the function the 'good way'. If fails (in case
9066 	 * of a parity error during bnx2x_chip_cleanup()) and we are
9067 	 * not in a debug mode, perform a state transaction in order to
9068 	 * enable further HW_RESET transaction.
9069 	 */
9070 	rc = bnx2x_func_state_change(bp, &func_params);
9071 	if (rc) {
9072 #ifdef BNX2X_STOP_ON_ERROR
9073 		return rc;
9074 #else
9075 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9076 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9077 		return bnx2x_func_state_change(bp, &func_params);
9078 #endif
9079 	}
9080 
9081 	return 0;
9082 }
9083 
9084 /**
9085  * bnx2x_send_unload_req - request unload mode from the MCP.
9086  *
9087  * @bp:			driver handle
9088  * @unload_mode:	requested function's unload mode
9089  *
9090  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9091  */
9092 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9093 {
9094 	u32 reset_code = 0;
9095 	int port = BP_PORT(bp);
9096 
9097 	/* Select the UNLOAD request mode */
9098 	if (unload_mode == UNLOAD_NORMAL)
9099 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9100 
9101 	else if (bp->flags & NO_WOL_FLAG)
9102 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9103 
9104 	else if (bp->wol) {
9105 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9106 		u8 *mac_addr = bp->dev->dev_addr;
9107 		struct pci_dev *pdev = bp->pdev;
9108 		u32 val;
9109 		u16 pmc;
9110 
9111 		/* The mac address is written to entries 1-4 to
9112 		 * preserve entry 0 which is used by the PMF
9113 		 */
9114 		u8 entry = (BP_VN(bp) + 1)*8;
9115 
9116 		val = (mac_addr[0] << 8) | mac_addr[1];
9117 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9118 
9119 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9120 		      (mac_addr[4] << 8) | mac_addr[5];
9121 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9122 
9123 		/* Enable the PME and clear the status */
9124 		pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9125 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9126 		pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9127 
9128 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9129 
9130 	} else
9131 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9132 
9133 	/* Send the request to the MCP */
9134 	if (!BP_NOMCP(bp))
9135 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
9136 	else {
9137 		int path = BP_PATH(bp);
9138 
9139 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9140 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9141 		   bnx2x_load_count[path][2]);
9142 		bnx2x_load_count[path][0]--;
9143 		bnx2x_load_count[path][1 + port]--;
9144 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9145 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9146 		   bnx2x_load_count[path][2]);
9147 		if (bnx2x_load_count[path][0] == 0)
9148 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9149 		else if (bnx2x_load_count[path][1 + port] == 0)
9150 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9151 		else
9152 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9153 	}
9154 
9155 	return reset_code;
9156 }
9157 
9158 /**
9159  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9160  *
9161  * @bp:		driver handle
9162  * @keep_link:		true iff link should be kept up
9163  */
9164 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9165 {
9166 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9167 
9168 	/* Report UNLOAD_DONE to MCP */
9169 	if (!BP_NOMCP(bp))
9170 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9171 }
9172 
9173 static int bnx2x_func_wait_started(struct bnx2x *bp)
9174 {
9175 	int tout = 50;
9176 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9177 
9178 	if (!bp->port.pmf)
9179 		return 0;
9180 
9181 	/*
9182 	 * (assumption: No Attention from MCP at this stage)
9183 	 * PMF probably in the middle of TX disable/enable transaction
9184 	 * 1. Sync IRS for default SB
9185 	 * 2. Sync SP queue - this guarantees us that attention handling started
9186 	 * 3. Wait, that TX disable/enable transaction completes
9187 	 *
9188 	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9189 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9190 	 * received completion for the transaction the state is TX_STOPPED.
9191 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9192 	 * transaction.
9193 	 */
9194 
9195 	/* make sure default SB ISR is done */
9196 	if (msix)
9197 		synchronize_irq(bp->msix_table[0].vector);
9198 	else
9199 		synchronize_irq(bp->pdev->irq);
9200 
9201 	flush_workqueue(bnx2x_wq);
9202 	flush_workqueue(bnx2x_iov_wq);
9203 
9204 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9205 				BNX2X_F_STATE_STARTED && tout--)
9206 		msleep(20);
9207 
9208 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9209 						BNX2X_F_STATE_STARTED) {
9210 #ifdef BNX2X_STOP_ON_ERROR
9211 		BNX2X_ERR("Wrong function state\n");
9212 		return -EBUSY;
9213 #else
9214 		/*
9215 		 * Failed to complete the transaction in a "good way"
9216 		 * Force both transactions with CLR bit
9217 		 */
9218 		struct bnx2x_func_state_params func_params = {NULL};
9219 
9220 		DP(NETIF_MSG_IFDOWN,
9221 		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9222 
9223 		func_params.f_obj = &bp->func_obj;
9224 		__set_bit(RAMROD_DRV_CLR_ONLY,
9225 					&func_params.ramrod_flags);
9226 
9227 		/* STARTED-->TX_ST0PPED */
9228 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
9229 		bnx2x_func_state_change(bp, &func_params);
9230 
9231 		/* TX_ST0PPED-->STARTED */
9232 		func_params.cmd = BNX2X_F_CMD_TX_START;
9233 		return bnx2x_func_state_change(bp, &func_params);
9234 #endif
9235 	}
9236 
9237 	return 0;
9238 }
9239 
9240 static void bnx2x_disable_ptp(struct bnx2x *bp)
9241 {
9242 	int port = BP_PORT(bp);
9243 
9244 	/* Disable sending PTP packets to host */
9245 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9246 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9247 
9248 	/* Reset PTP event detection rules */
9249 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9250 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9251 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9252 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9253 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9254 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9255 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9256 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9257 
9258 	/* Disable the PTP feature */
9259 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9260 	       NIG_REG_P0_PTP_EN, 0x0);
9261 }
9262 
9263 /* Called during unload, to stop PTP-related stuff */
9264 static void bnx2x_stop_ptp(struct bnx2x *bp)
9265 {
9266 	/* Cancel PTP work queue. Should be done after the Tx queues are
9267 	 * drained to prevent additional scheduling.
9268 	 */
9269 	cancel_work_sync(&bp->ptp_task);
9270 
9271 	if (bp->ptp_tx_skb) {
9272 		dev_kfree_skb_any(bp->ptp_tx_skb);
9273 		bp->ptp_tx_skb = NULL;
9274 	}
9275 
9276 	/* Disable PTP in HW */
9277 	bnx2x_disable_ptp(bp);
9278 
9279 	DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9280 }
9281 
9282 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9283 {
9284 	int port = BP_PORT(bp);
9285 	int i, rc = 0;
9286 	u8 cos;
9287 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
9288 	u32 reset_code;
9289 
9290 	/* Wait until tx fastpath tasks complete */
9291 	for_each_tx_queue(bp, i) {
9292 		struct bnx2x_fastpath *fp = &bp->fp[i];
9293 
9294 		for_each_cos_in_tx_queue(fp, cos)
9295 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9296 #ifdef BNX2X_STOP_ON_ERROR
9297 		if (rc)
9298 			return;
9299 #endif
9300 	}
9301 
9302 	/* Give HW time to discard old tx messages */
9303 	usleep_range(1000, 2000);
9304 
9305 	/* Clean all ETH MACs */
9306 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9307 				false);
9308 	if (rc < 0)
9309 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9310 
9311 	/* Clean up UC list  */
9312 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9313 				true);
9314 	if (rc < 0)
9315 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9316 			  rc);
9317 
9318 	/* Disable LLH */
9319 	if (!CHIP_IS_E1(bp))
9320 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9321 
9322 	/* Set "drop all" (stop Rx).
9323 	 * We need to take a netif_addr_lock() here in order to prevent
9324 	 * a race between the completion code and this code.
9325 	 */
9326 	netif_addr_lock_bh(bp->dev);
9327 	/* Schedule the rx_mode command */
9328 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9329 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9330 	else
9331 		bnx2x_set_storm_rx_mode(bp);
9332 
9333 	/* Cleanup multicast configuration */
9334 	rparam.mcast_obj = &bp->mcast_obj;
9335 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9336 	if (rc < 0)
9337 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9338 
9339 	netif_addr_unlock_bh(bp->dev);
9340 
9341 	bnx2x_iov_chip_cleanup(bp);
9342 
9343 	/*
9344 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
9345 	 * this function should perform FUNC, PORT or COMMON HW
9346 	 * reset.
9347 	 */
9348 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
9349 
9350 	/*
9351 	 * (assumption: No Attention from MCP at this stage)
9352 	 * PMF probably in the middle of TX disable/enable transaction
9353 	 */
9354 	rc = bnx2x_func_wait_started(bp);
9355 	if (rc) {
9356 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
9357 #ifdef BNX2X_STOP_ON_ERROR
9358 		return;
9359 #endif
9360 	}
9361 
9362 	/* Close multi and leading connections
9363 	 * Completions for ramrods are collected in a synchronous way
9364 	 */
9365 	for_each_eth_queue(bp, i)
9366 		if (bnx2x_stop_queue(bp, i))
9367 #ifdef BNX2X_STOP_ON_ERROR
9368 			return;
9369 #else
9370 			goto unload_error;
9371 #endif
9372 
9373 	if (CNIC_LOADED(bp)) {
9374 		for_each_cnic_queue(bp, i)
9375 			if (bnx2x_stop_queue(bp, i))
9376 #ifdef BNX2X_STOP_ON_ERROR
9377 				return;
9378 #else
9379 				goto unload_error;
9380 #endif
9381 	}
9382 
9383 	/* If SP settings didn't get completed so far - something
9384 	 * very wrong has happen.
9385 	 */
9386 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9387 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9388 
9389 #ifndef BNX2X_STOP_ON_ERROR
9390 unload_error:
9391 #endif
9392 	rc = bnx2x_func_stop(bp);
9393 	if (rc) {
9394 		BNX2X_ERR("Function stop failed!\n");
9395 #ifdef BNX2X_STOP_ON_ERROR
9396 		return;
9397 #endif
9398 	}
9399 
9400 	/* stop_ptp should be after the Tx queues are drained to prevent
9401 	 * scheduling to the cancelled PTP work queue. It should also be after
9402 	 * function stop ramrod is sent, since as part of this ramrod FW access
9403 	 * PTP registers.
9404 	 */
9405 	if (bp->flags & PTP_SUPPORTED)
9406 		bnx2x_stop_ptp(bp);
9407 
9408 	/* Disable HW interrupts, NAPI */
9409 	bnx2x_netif_stop(bp, 1);
9410 	/* Delete all NAPI objects */
9411 	bnx2x_del_all_napi(bp);
9412 	if (CNIC_LOADED(bp))
9413 		bnx2x_del_all_napi_cnic(bp);
9414 
9415 	/* Release IRQs */
9416 	bnx2x_free_irq(bp);
9417 
9418 	/* Reset the chip */
9419 	rc = bnx2x_reset_hw(bp, reset_code);
9420 	if (rc)
9421 		BNX2X_ERR("HW_RESET failed\n");
9422 
9423 	/* Report UNLOAD_DONE to MCP */
9424 	bnx2x_send_unload_done(bp, keep_link);
9425 }
9426 
9427 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9428 {
9429 	u32 val;
9430 
9431 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9432 
9433 	if (CHIP_IS_E1(bp)) {
9434 		int port = BP_PORT(bp);
9435 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9436 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
9437 
9438 		val = REG_RD(bp, addr);
9439 		val &= ~(0x300);
9440 		REG_WR(bp, addr, val);
9441 	} else {
9442 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9443 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9444 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9445 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9446 	}
9447 }
9448 
9449 /* Close gates #2, #3 and #4: */
9450 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9451 {
9452 	u32 val;
9453 
9454 	/* Gates #2 and #4a are closed/opened for "not E1" only */
9455 	if (!CHIP_IS_E1(bp)) {
9456 		/* #4 */
9457 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9458 		/* #2 */
9459 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9460 	}
9461 
9462 	/* #3 */
9463 	if (CHIP_IS_E1x(bp)) {
9464 		/* Prevent interrupts from HC on both ports */
9465 		val = REG_RD(bp, HC_REG_CONFIG_1);
9466 		REG_WR(bp, HC_REG_CONFIG_1,
9467 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9468 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9469 
9470 		val = REG_RD(bp, HC_REG_CONFIG_0);
9471 		REG_WR(bp, HC_REG_CONFIG_0,
9472 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9473 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9474 	} else {
9475 		/* Prevent incoming interrupts in IGU */
9476 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9477 
9478 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9479 		       (!close) ?
9480 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9481 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9482 	}
9483 
9484 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9485 		close ? "closing" : "opening");
9486 	mmiowb();
9487 }
9488 
9489 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9490 
9491 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9492 {
9493 	/* Do some magic... */
9494 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9495 	*magic_val = val & SHARED_MF_CLP_MAGIC;
9496 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9497 }
9498 
9499 /**
9500  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9501  *
9502  * @bp:		driver handle
9503  * @magic_val:	old value of the `magic' bit.
9504  */
9505 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9506 {
9507 	/* Restore the `magic' bit value... */
9508 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9509 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
9510 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9511 }
9512 
9513 /**
9514  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9515  *
9516  * @bp:		driver handle
9517  * @magic_val:	old value of 'magic' bit.
9518  *
9519  * Takes care of CLP configurations.
9520  */
9521 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9522 {
9523 	u32 shmem;
9524 	u32 validity_offset;
9525 
9526 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9527 
9528 	/* Set `magic' bit in order to save MF config */
9529 	if (!CHIP_IS_E1(bp))
9530 		bnx2x_clp_reset_prep(bp, magic_val);
9531 
9532 	/* Get shmem offset */
9533 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9534 	validity_offset =
9535 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9536 
9537 	/* Clear validity map flags */
9538 	if (shmem > 0)
9539 		REG_WR(bp, shmem + validity_offset, 0);
9540 }
9541 
9542 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9543 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9544 
9545 /**
9546  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9547  *
9548  * @bp:	driver handle
9549  */
9550 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9551 {
9552 	/* special handling for emulation and FPGA,
9553 	   wait 10 times longer */
9554 	if (CHIP_REV_IS_SLOW(bp))
9555 		msleep(MCP_ONE_TIMEOUT*10);
9556 	else
9557 		msleep(MCP_ONE_TIMEOUT);
9558 }
9559 
9560 /*
9561  * initializes bp->common.shmem_base and waits for validity signature to appear
9562  */
9563 static int bnx2x_init_shmem(struct bnx2x *bp)
9564 {
9565 	int cnt = 0;
9566 	u32 val = 0;
9567 
9568 	do {
9569 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9570 		if (bp->common.shmem_base) {
9571 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9572 			if (val & SHR_MEM_VALIDITY_MB)
9573 				return 0;
9574 		}
9575 
9576 		bnx2x_mcp_wait_one(bp);
9577 
9578 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9579 
9580 	BNX2X_ERR("BAD MCP validity signature\n");
9581 
9582 	return -ENODEV;
9583 }
9584 
9585 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9586 {
9587 	int rc = bnx2x_init_shmem(bp);
9588 
9589 	/* Restore the `magic' bit value */
9590 	if (!CHIP_IS_E1(bp))
9591 		bnx2x_clp_reset_done(bp, magic_val);
9592 
9593 	return rc;
9594 }
9595 
9596 static void bnx2x_pxp_prep(struct bnx2x *bp)
9597 {
9598 	if (!CHIP_IS_E1(bp)) {
9599 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9600 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9601 		mmiowb();
9602 	}
9603 }
9604 
9605 /*
9606  * Reset the whole chip except for:
9607  *      - PCIE core
9608  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9609  *              one reset bit)
9610  *      - IGU
9611  *      - MISC (including AEU)
9612  *      - GRC
9613  *      - RBCN, RBCP
9614  */
9615 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9616 {
9617 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9618 	u32 global_bits2, stay_reset2;
9619 
9620 	/*
9621 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9622 	 * (per chip) blocks.
9623 	 */
9624 	global_bits2 =
9625 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9626 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9627 
9628 	/* Don't reset the following blocks.
9629 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9630 	 *            reset, as in 4 port device they might still be owned
9631 	 *            by the MCP (there is only one leader per path).
9632 	 */
9633 	not_reset_mask1 =
9634 		MISC_REGISTERS_RESET_REG_1_RST_HC |
9635 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9636 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9637 
9638 	not_reset_mask2 =
9639 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9640 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9641 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9642 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9643 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9644 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9645 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9646 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9647 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9648 		MISC_REGISTERS_RESET_REG_2_PGLC |
9649 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9650 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9651 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9652 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9653 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9654 		MISC_REGISTERS_RESET_REG_2_UMAC1;
9655 
9656 	/*
9657 	 * Keep the following blocks in reset:
9658 	 *  - all xxMACs are handled by the bnx2x_link code.
9659 	 */
9660 	stay_reset2 =
9661 		MISC_REGISTERS_RESET_REG_2_XMAC |
9662 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9663 
9664 	/* Full reset masks according to the chip */
9665 	reset_mask1 = 0xffffffff;
9666 
9667 	if (CHIP_IS_E1(bp))
9668 		reset_mask2 = 0xffff;
9669 	else if (CHIP_IS_E1H(bp))
9670 		reset_mask2 = 0x1ffff;
9671 	else if (CHIP_IS_E2(bp))
9672 		reset_mask2 = 0xfffff;
9673 	else /* CHIP_IS_E3 */
9674 		reset_mask2 = 0x3ffffff;
9675 
9676 	/* Don't reset global blocks unless we need to */
9677 	if (!global)
9678 		reset_mask2 &= ~global_bits2;
9679 
9680 	/*
9681 	 * In case of attention in the QM, we need to reset PXP
9682 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9683 	 * because otherwise QM reset would release 'close the gates' shortly
9684 	 * before resetting the PXP, then the PSWRQ would send a write
9685 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9686 	 * read the payload data from PSWWR, but PSWWR would not
9687 	 * respond. The write queue in PGLUE would stuck, dmae commands
9688 	 * would not return. Therefore it's important to reset the second
9689 	 * reset register (containing the
9690 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9691 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9692 	 * bit).
9693 	 */
9694 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9695 	       reset_mask2 & (~not_reset_mask2));
9696 
9697 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9698 	       reset_mask1 & (~not_reset_mask1));
9699 
9700 	barrier();
9701 	mmiowb();
9702 
9703 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9704 	       reset_mask2 & (~stay_reset2));
9705 
9706 	barrier();
9707 	mmiowb();
9708 
9709 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9710 	mmiowb();
9711 }
9712 
9713 /**
9714  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9715  * It should get cleared in no more than 1s.
9716  *
9717  * @bp:	driver handle
9718  *
9719  * It should get cleared in no more than 1s. Returns 0 if
9720  * pending writes bit gets cleared.
9721  */
9722 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9723 {
9724 	u32 cnt = 1000;
9725 	u32 pend_bits = 0;
9726 
9727 	do {
9728 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9729 
9730 		if (pend_bits == 0)
9731 			break;
9732 
9733 		usleep_range(1000, 2000);
9734 	} while (cnt-- > 0);
9735 
9736 	if (cnt <= 0) {
9737 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9738 			  pend_bits);
9739 		return -EBUSY;
9740 	}
9741 
9742 	return 0;
9743 }
9744 
9745 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9746 {
9747 	int cnt = 1000;
9748 	u32 val = 0;
9749 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9750 	u32 tags_63_32 = 0;
9751 
9752 	/* Empty the Tetris buffer, wait for 1s */
9753 	do {
9754 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9755 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9756 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9757 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9758 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9759 		if (CHIP_IS_E3(bp))
9760 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9761 
9762 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9763 		    ((port_is_idle_0 & 0x1) == 0x1) &&
9764 		    ((port_is_idle_1 & 0x1) == 0x1) &&
9765 		    (pgl_exp_rom2 == 0xffffffff) &&
9766 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9767 			break;
9768 		usleep_range(1000, 2000);
9769 	} while (cnt-- > 0);
9770 
9771 	if (cnt <= 0) {
9772 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9773 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9774 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9775 			  pgl_exp_rom2);
9776 		return -EAGAIN;
9777 	}
9778 
9779 	barrier();
9780 
9781 	/* Close gates #2, #3 and #4 */
9782 	bnx2x_set_234_gates(bp, true);
9783 
9784 	/* Poll for IGU VQs for 57712 and newer chips */
9785 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9786 		return -EAGAIN;
9787 
9788 	/* TBD: Indicate that "process kill" is in progress to MCP */
9789 
9790 	/* Clear "unprepared" bit */
9791 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9792 	barrier();
9793 
9794 	/* Make sure all is written to the chip before the reset */
9795 	mmiowb();
9796 
9797 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9798 	 * PSWHST, GRC and PSWRD Tetris buffer.
9799 	 */
9800 	usleep_range(1000, 2000);
9801 
9802 	/* Prepare to chip reset: */
9803 	/* MCP */
9804 	if (global)
9805 		bnx2x_reset_mcp_prep(bp, &val);
9806 
9807 	/* PXP */
9808 	bnx2x_pxp_prep(bp);
9809 	barrier();
9810 
9811 	/* reset the chip */
9812 	bnx2x_process_kill_chip_reset(bp, global);
9813 	barrier();
9814 
9815 	/* clear errors in PGB */
9816 	if (!CHIP_IS_E1x(bp))
9817 		REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9818 
9819 	/* Recover after reset: */
9820 	/* MCP */
9821 	if (global && bnx2x_reset_mcp_comp(bp, val))
9822 		return -EAGAIN;
9823 
9824 	/* TBD: Add resetting the NO_MCP mode DB here */
9825 
9826 	/* Open the gates #2, #3 and #4 */
9827 	bnx2x_set_234_gates(bp, false);
9828 
9829 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9830 	 * reset state, re-enable attentions. */
9831 
9832 	return 0;
9833 }
9834 
9835 static int bnx2x_leader_reset(struct bnx2x *bp)
9836 {
9837 	int rc = 0;
9838 	bool global = bnx2x_reset_is_global(bp);
9839 	u32 load_code;
9840 
9841 	/* if not going to reset MCP - load "fake" driver to reset HW while
9842 	 * driver is owner of the HW
9843 	 */
9844 	if (!global && !BP_NOMCP(bp)) {
9845 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9846 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9847 		if (!load_code) {
9848 			BNX2X_ERR("MCP response failure, aborting\n");
9849 			rc = -EAGAIN;
9850 			goto exit_leader_reset;
9851 		}
9852 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9853 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9854 			BNX2X_ERR("MCP unexpected resp, aborting\n");
9855 			rc = -EAGAIN;
9856 			goto exit_leader_reset2;
9857 		}
9858 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9859 		if (!load_code) {
9860 			BNX2X_ERR("MCP response failure, aborting\n");
9861 			rc = -EAGAIN;
9862 			goto exit_leader_reset2;
9863 		}
9864 	}
9865 
9866 	/* Try to recover after the failure */
9867 	if (bnx2x_process_kill(bp, global)) {
9868 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9869 			  BP_PATH(bp));
9870 		rc = -EAGAIN;
9871 		goto exit_leader_reset2;
9872 	}
9873 
9874 	/*
9875 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9876 	 * state.
9877 	 */
9878 	bnx2x_set_reset_done(bp);
9879 	if (global)
9880 		bnx2x_clear_reset_global(bp);
9881 
9882 exit_leader_reset2:
9883 	/* unload "fake driver" if it was loaded */
9884 	if (!global && !BP_NOMCP(bp)) {
9885 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9886 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9887 	}
9888 exit_leader_reset:
9889 	bp->is_leader = 0;
9890 	bnx2x_release_leader_lock(bp);
9891 	smp_mb();
9892 	return rc;
9893 }
9894 
9895 static void bnx2x_recovery_failed(struct bnx2x *bp)
9896 {
9897 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9898 
9899 	/* Disconnect this device */
9900 	netif_device_detach(bp->dev);
9901 
9902 	/*
9903 	 * Block ifup for all function on this engine until "process kill"
9904 	 * or power cycle.
9905 	 */
9906 	bnx2x_set_reset_in_progress(bp);
9907 
9908 	/* Shut down the power */
9909 	bnx2x_set_power_state(bp, PCI_D3hot);
9910 
9911 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9912 
9913 	smp_mb();
9914 }
9915 
9916 /*
9917  * Assumption: runs under rtnl lock. This together with the fact
9918  * that it's called only from bnx2x_sp_rtnl() ensure that it
9919  * will never be called when netif_running(bp->dev) is false.
9920  */
9921 static void bnx2x_parity_recover(struct bnx2x *bp)
9922 {
9923 	bool global = false;
9924 	u32 error_recovered, error_unrecovered;
9925 	bool is_parity;
9926 
9927 	DP(NETIF_MSG_HW, "Handling parity\n");
9928 	while (1) {
9929 		switch (bp->recovery_state) {
9930 		case BNX2X_RECOVERY_INIT:
9931 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9932 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9933 			WARN_ON(!is_parity);
9934 
9935 			/* Try to get a LEADER_LOCK HW lock */
9936 			if (bnx2x_trylock_leader_lock(bp)) {
9937 				bnx2x_set_reset_in_progress(bp);
9938 				/*
9939 				 * Check if there is a global attention and if
9940 				 * there was a global attention, set the global
9941 				 * reset bit.
9942 				 */
9943 
9944 				if (global)
9945 					bnx2x_set_reset_global(bp);
9946 
9947 				bp->is_leader = 1;
9948 			}
9949 
9950 			/* Stop the driver */
9951 			/* If interface has been removed - break */
9952 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9953 				return;
9954 
9955 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
9956 
9957 			/* Ensure "is_leader", MCP command sequence and
9958 			 * "recovery_state" update values are seen on other
9959 			 * CPUs.
9960 			 */
9961 			smp_mb();
9962 			break;
9963 
9964 		case BNX2X_RECOVERY_WAIT:
9965 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9966 			if (bp->is_leader) {
9967 				int other_engine = BP_PATH(bp) ? 0 : 1;
9968 				bool other_load_status =
9969 					bnx2x_get_load_status(bp, other_engine);
9970 				bool load_status =
9971 					bnx2x_get_load_status(bp, BP_PATH(bp));
9972 				global = bnx2x_reset_is_global(bp);
9973 
9974 				/*
9975 				 * In case of a parity in a global block, let
9976 				 * the first leader that performs a
9977 				 * leader_reset() reset the global blocks in
9978 				 * order to clear global attentions. Otherwise
9979 				 * the gates will remain closed for that
9980 				 * engine.
9981 				 */
9982 				if (load_status ||
9983 				    (global && other_load_status)) {
9984 					/* Wait until all other functions get
9985 					 * down.
9986 					 */
9987 					schedule_delayed_work(&bp->sp_rtnl_task,
9988 								HZ/10);
9989 					return;
9990 				} else {
9991 					/* If all other functions got down -
9992 					 * try to bring the chip back to
9993 					 * normal. In any case it's an exit
9994 					 * point for a leader.
9995 					 */
9996 					if (bnx2x_leader_reset(bp)) {
9997 						bnx2x_recovery_failed(bp);
9998 						return;
9999 					}
10000 
10001 					/* If we are here, means that the
10002 					 * leader has succeeded and doesn't
10003 					 * want to be a leader any more. Try
10004 					 * to continue as a none-leader.
10005 					 */
10006 					break;
10007 				}
10008 			} else { /* non-leader */
10009 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10010 					/* Try to get a LEADER_LOCK HW lock as
10011 					 * long as a former leader may have
10012 					 * been unloaded by the user or
10013 					 * released a leadership by another
10014 					 * reason.
10015 					 */
10016 					if (bnx2x_trylock_leader_lock(bp)) {
10017 						/* I'm a leader now! Restart a
10018 						 * switch case.
10019 						 */
10020 						bp->is_leader = 1;
10021 						break;
10022 					}
10023 
10024 					schedule_delayed_work(&bp->sp_rtnl_task,
10025 								HZ/10);
10026 					return;
10027 
10028 				} else {
10029 					/*
10030 					 * If there was a global attention, wait
10031 					 * for it to be cleared.
10032 					 */
10033 					if (bnx2x_reset_is_global(bp)) {
10034 						schedule_delayed_work(
10035 							&bp->sp_rtnl_task,
10036 							HZ/10);
10037 						return;
10038 					}
10039 
10040 					error_recovered =
10041 					  bp->eth_stats.recoverable_error;
10042 					error_unrecovered =
10043 					  bp->eth_stats.unrecoverable_error;
10044 					bp->recovery_state =
10045 						BNX2X_RECOVERY_NIC_LOADING;
10046 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10047 						error_unrecovered++;
10048 						netdev_err(bp->dev,
10049 							   "Recovery failed. Power cycle needed\n");
10050 						/* Disconnect this device */
10051 						netif_device_detach(bp->dev);
10052 						/* Shut down the power */
10053 						bnx2x_set_power_state(
10054 							bp, PCI_D3hot);
10055 						smp_mb();
10056 					} else {
10057 						bp->recovery_state =
10058 							BNX2X_RECOVERY_DONE;
10059 						error_recovered++;
10060 						smp_mb();
10061 					}
10062 					bp->eth_stats.recoverable_error =
10063 						error_recovered;
10064 					bp->eth_stats.unrecoverable_error =
10065 						error_unrecovered;
10066 
10067 					return;
10068 				}
10069 			}
10070 		default:
10071 			return;
10072 		}
10073 	}
10074 }
10075 
10076 static int bnx2x_udp_port_update(struct bnx2x *bp)
10077 {
10078 	struct bnx2x_func_switch_update_params *switch_update_params;
10079 	struct bnx2x_func_state_params func_params = {NULL};
10080 	struct bnx2x_udp_tunnel *udp_tunnel;
10081 	u16 vxlan_port = 0, geneve_port = 0;
10082 	int rc;
10083 
10084 	switch_update_params = &func_params.params.switch_update;
10085 
10086 	/* Prepare parameters for function state transitions */
10087 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10088 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10089 
10090 	func_params.f_obj = &bp->func_obj;
10091 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10092 
10093 	/* Function parameters */
10094 	__set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10095 		  &switch_update_params->changes);
10096 
10097 	if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count) {
10098 		udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10099 		geneve_port = udp_tunnel->dst_port;
10100 		switch_update_params->geneve_dst_port = geneve_port;
10101 	}
10102 
10103 	if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count) {
10104 		udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10105 		vxlan_port = udp_tunnel->dst_port;
10106 		switch_update_params->vxlan_dst_port = vxlan_port;
10107 	}
10108 
10109 	/* Re-enable inner-rss for the offloaded UDP tunnels */
10110 	__set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10111 		  &switch_update_params->changes);
10112 
10113 	rc = bnx2x_func_state_change(bp, &func_params);
10114 	if (rc)
10115 		BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10116 			  vxlan_port, geneve_port, rc);
10117 	else
10118 		DP(BNX2X_MSG_SP,
10119 		   "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10120 		   vxlan_port, geneve_port);
10121 
10122 	return rc;
10123 }
10124 
10125 static void __bnx2x_add_udp_port(struct bnx2x *bp, u16 port,
10126 				 enum bnx2x_udp_port_type type)
10127 {
10128 	struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
10129 
10130 	if (!netif_running(bp->dev) || !IS_PF(bp))
10131 		return;
10132 
10133 	if (udp_port->count && udp_port->dst_port == port) {
10134 		udp_port->count++;
10135 		return;
10136 	}
10137 
10138 	if (udp_port->count) {
10139 		DP(BNX2X_MSG_SP,
10140 		   "UDP tunnel [%d] -  destination port limit reached\n",
10141 		   type);
10142 		return;
10143 	}
10144 
10145 	udp_port->dst_port = port;
10146 	udp_port->count = 1;
10147 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
10148 }
10149 
10150 static void __bnx2x_del_udp_port(struct bnx2x *bp, u16 port,
10151 				 enum bnx2x_udp_port_type type)
10152 {
10153 	struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
10154 
10155 	if (!IS_PF(bp))
10156 		return;
10157 
10158 	if (!udp_port->count || udp_port->dst_port != port) {
10159 		DP(BNX2X_MSG_SP, "Invalid UDP tunnel [%d] port\n",
10160 		   type);
10161 		return;
10162 	}
10163 
10164 	/* Remove reference, and make certain it's no longer in use */
10165 	udp_port->count--;
10166 	if (udp_port->count)
10167 		return;
10168 	udp_port->dst_port = 0;
10169 
10170 	if (netif_running(bp->dev))
10171 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
10172 	else
10173 		DP(BNX2X_MSG_SP, "Deleted UDP tunnel [%d] port %d\n",
10174 		   type, port);
10175 }
10176 
10177 static void bnx2x_udp_tunnel_add(struct net_device *netdev,
10178 				 struct udp_tunnel_info *ti)
10179 {
10180 	struct bnx2x *bp = netdev_priv(netdev);
10181 	u16 t_port = ntohs(ti->port);
10182 
10183 	switch (ti->type) {
10184 	case UDP_TUNNEL_TYPE_VXLAN:
10185 		__bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
10186 		break;
10187 	case UDP_TUNNEL_TYPE_GENEVE:
10188 		__bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
10189 		break;
10190 	default:
10191 		break;
10192 	}
10193 }
10194 
10195 static void bnx2x_udp_tunnel_del(struct net_device *netdev,
10196 				 struct udp_tunnel_info *ti)
10197 {
10198 	struct bnx2x *bp = netdev_priv(netdev);
10199 	u16 t_port = ntohs(ti->port);
10200 
10201 	switch (ti->type) {
10202 	case UDP_TUNNEL_TYPE_VXLAN:
10203 		__bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
10204 		break;
10205 	case UDP_TUNNEL_TYPE_GENEVE:
10206 		__bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
10207 		break;
10208 	default:
10209 		break;
10210 	}
10211 }
10212 
10213 static int bnx2x_close(struct net_device *dev);
10214 
10215 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10216  * scheduled on a general queue in order to prevent a dead lock.
10217  */
10218 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10219 {
10220 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10221 
10222 	rtnl_lock();
10223 
10224 	if (!netif_running(bp->dev)) {
10225 		rtnl_unlock();
10226 		return;
10227 	}
10228 
10229 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10230 #ifdef BNX2X_STOP_ON_ERROR
10231 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10232 			  "you will need to reboot when done\n");
10233 		goto sp_rtnl_not_reset;
10234 #endif
10235 		/*
10236 		 * Clear all pending SP commands as we are going to reset the
10237 		 * function anyway.
10238 		 */
10239 		bp->sp_rtnl_state = 0;
10240 		smp_mb();
10241 
10242 		bnx2x_parity_recover(bp);
10243 
10244 		rtnl_unlock();
10245 		return;
10246 	}
10247 
10248 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10249 #ifdef BNX2X_STOP_ON_ERROR
10250 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10251 			  "you will need to reboot when done\n");
10252 		goto sp_rtnl_not_reset;
10253 #endif
10254 
10255 		/*
10256 		 * Clear all pending SP commands as we are going to reset the
10257 		 * function anyway.
10258 		 */
10259 		bp->sp_rtnl_state = 0;
10260 		smp_mb();
10261 
10262 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10263 		bnx2x_nic_load(bp, LOAD_NORMAL);
10264 
10265 		rtnl_unlock();
10266 		return;
10267 	}
10268 #ifdef BNX2X_STOP_ON_ERROR
10269 sp_rtnl_not_reset:
10270 #endif
10271 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10272 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10273 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10274 		bnx2x_after_function_update(bp);
10275 	/*
10276 	 * in case of fan failure we need to reset id if the "stop on error"
10277 	 * debug flag is set, since we trying to prevent permanent overheating
10278 	 * damage
10279 	 */
10280 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10281 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10282 		netif_device_detach(bp->dev);
10283 		bnx2x_close(bp->dev);
10284 		rtnl_unlock();
10285 		return;
10286 	}
10287 
10288 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10289 		DP(BNX2X_MSG_SP,
10290 		   "sending set mcast vf pf channel message from rtnl sp-task\n");
10291 		bnx2x_vfpf_set_mcast(bp->dev);
10292 	}
10293 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10294 			       &bp->sp_rtnl_state)){
10295 		if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
10296 			bnx2x_tx_disable(bp);
10297 			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10298 		}
10299 	}
10300 
10301 	if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10302 		DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10303 		bnx2x_set_rx_mode_inner(bp);
10304 	}
10305 
10306 	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10307 			       &bp->sp_rtnl_state))
10308 		bnx2x_pf_set_vfs_vlan(bp);
10309 
10310 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10311 		bnx2x_dcbx_stop_hw_tx(bp);
10312 		bnx2x_dcbx_resume_hw_tx(bp);
10313 	}
10314 
10315 	if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10316 			       &bp->sp_rtnl_state))
10317 		bnx2x_update_mng_version(bp);
10318 
10319 	if (test_and_clear_bit(BNX2X_SP_RTNL_CHANGE_UDP_PORT,
10320 			       &bp->sp_rtnl_state)) {
10321 		if (bnx2x_udp_port_update(bp)) {
10322 			/* On error, forget configuration */
10323 			memset(bp->udp_tunnel_ports, 0,
10324 			       sizeof(struct bnx2x_udp_tunnel) *
10325 			       BNX2X_UDP_PORT_MAX);
10326 		} else {
10327 			/* Since we don't store additional port information,
10328 			 * if no ports are configured for any feature ask for
10329 			 * information about currently configured ports.
10330 			 */
10331 			if (!bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count &&
10332 			    !bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count)
10333 				udp_tunnel_get_rx_info(bp->dev);
10334 		}
10335 	}
10336 
10337 	/* work which needs rtnl lock not-taken (as it takes the lock itself and
10338 	 * can be called from other contexts as well)
10339 	 */
10340 	rtnl_unlock();
10341 
10342 	/* enable SR-IOV if applicable */
10343 	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10344 					       &bp->sp_rtnl_state)) {
10345 		bnx2x_disable_sriov(bp);
10346 		bnx2x_enable_sriov(bp);
10347 	}
10348 }
10349 
10350 static void bnx2x_period_task(struct work_struct *work)
10351 {
10352 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10353 
10354 	if (!netif_running(bp->dev))
10355 		goto period_task_exit;
10356 
10357 	if (CHIP_REV_IS_SLOW(bp)) {
10358 		BNX2X_ERR("period task called on emulation, ignoring\n");
10359 		goto period_task_exit;
10360 	}
10361 
10362 	bnx2x_acquire_phy_lock(bp);
10363 	/*
10364 	 * The barrier is needed to ensure the ordering between the writing to
10365 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10366 	 * the reading here.
10367 	 */
10368 	smp_mb();
10369 	if (bp->port.pmf) {
10370 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
10371 
10372 		/* Re-queue task in 1 sec */
10373 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10374 	}
10375 
10376 	bnx2x_release_phy_lock(bp);
10377 period_task_exit:
10378 	return;
10379 }
10380 
10381 /*
10382  * Init service functions
10383  */
10384 
10385 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10386 {
10387 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10388 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10389 	return base + (BP_ABS_FUNC(bp)) * stride;
10390 }
10391 
10392 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10393 					 u8 port, u32 reset_reg,
10394 					 struct bnx2x_mac_vals *vals)
10395 {
10396 	u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10397 	u32 base_addr;
10398 
10399 	if (!(mask & reset_reg))
10400 		return false;
10401 
10402 	BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10403 	base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10404 	vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10405 	vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10406 	REG_WR(bp, vals->umac_addr[port], 0);
10407 
10408 	return true;
10409 }
10410 
10411 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10412 					struct bnx2x_mac_vals *vals)
10413 {
10414 	u32 val, base_addr, offset, mask, reset_reg;
10415 	bool mac_stopped = false;
10416 	u8 port = BP_PORT(bp);
10417 
10418 	/* reset addresses as they also mark which values were changed */
10419 	memset(vals, 0, sizeof(*vals));
10420 
10421 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10422 
10423 	if (!CHIP_IS_E3(bp)) {
10424 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10425 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10426 		if ((mask & reset_reg) && val) {
10427 			u32 wb_data[2];
10428 			BNX2X_DEV_INFO("Disable bmac Rx\n");
10429 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10430 						: NIG_REG_INGRESS_BMAC0_MEM;
10431 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10432 						: BIGMAC_REGISTER_BMAC_CONTROL;
10433 
10434 			/*
10435 			 * use rd/wr since we cannot use dmae. This is safe
10436 			 * since MCP won't access the bus due to the request
10437 			 * to unload, and no function on the path can be
10438 			 * loaded at this time.
10439 			 */
10440 			wb_data[0] = REG_RD(bp, base_addr + offset);
10441 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10442 			vals->bmac_addr = base_addr + offset;
10443 			vals->bmac_val[0] = wb_data[0];
10444 			vals->bmac_val[1] = wb_data[1];
10445 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10446 			REG_WR(bp, vals->bmac_addr, wb_data[0]);
10447 			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10448 		}
10449 		BNX2X_DEV_INFO("Disable emac Rx\n");
10450 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10451 		vals->emac_val = REG_RD(bp, vals->emac_addr);
10452 		REG_WR(bp, vals->emac_addr, 0);
10453 		mac_stopped = true;
10454 	} else {
10455 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10456 			BNX2X_DEV_INFO("Disable xmac Rx\n");
10457 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10458 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10459 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10460 			       val & ~(1 << 1));
10461 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10462 			       val | (1 << 1));
10463 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10464 			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10465 			REG_WR(bp, vals->xmac_addr, 0);
10466 			mac_stopped = true;
10467 		}
10468 
10469 		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10470 							    reset_reg, vals);
10471 		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10472 							    reset_reg, vals);
10473 	}
10474 
10475 	if (mac_stopped)
10476 		msleep(20);
10477 }
10478 
10479 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10480 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10481 					0x1848 + ((f) << 4))
10482 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
10483 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
10484 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
10485 
10486 #define BCM_5710_UNDI_FW_MF_MAJOR	(0x07)
10487 #define BCM_5710_UNDI_FW_MF_MINOR	(0x08)
10488 #define BCM_5710_UNDI_FW_MF_VERS	(0x05)
10489 
10490 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10491 {
10492 	/* UNDI marks its presence in DORQ -
10493 	 * it initializes CID offset for normal bell to 0x7
10494 	 */
10495 	if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10496 	    MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10497 		return false;
10498 
10499 	if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10500 		BNX2X_DEV_INFO("UNDI previously loaded\n");
10501 		return true;
10502 	}
10503 
10504 	return false;
10505 }
10506 
10507 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10508 {
10509 	u16 rcq, bd;
10510 	u32 addr, tmp_reg;
10511 
10512 	if (BP_FUNC(bp) < 2)
10513 		addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10514 	else
10515 		addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10516 
10517 	tmp_reg = REG_RD(bp, addr);
10518 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10519 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10520 
10521 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10522 	REG_WR(bp, addr, tmp_reg);
10523 
10524 	BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10525 		       BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10526 }
10527 
10528 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10529 {
10530 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10531 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10532 	if (!rc) {
10533 		BNX2X_ERR("MCP response failure, aborting\n");
10534 		return -EBUSY;
10535 	}
10536 
10537 	return 0;
10538 }
10539 
10540 static struct bnx2x_prev_path_list *
10541 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
10542 {
10543 	struct bnx2x_prev_path_list *tmp_list;
10544 
10545 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10546 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10547 		    bp->pdev->bus->number == tmp_list->bus &&
10548 		    BP_PATH(bp) == tmp_list->path)
10549 			return tmp_list;
10550 
10551 	return NULL;
10552 }
10553 
10554 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10555 {
10556 	struct bnx2x_prev_path_list *tmp_list;
10557 	int rc;
10558 
10559 	rc = down_interruptible(&bnx2x_prev_sem);
10560 	if (rc) {
10561 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10562 		return rc;
10563 	}
10564 
10565 	tmp_list = bnx2x_prev_path_get_entry(bp);
10566 	if (tmp_list) {
10567 		tmp_list->aer = 1;
10568 		rc = 0;
10569 	} else {
10570 		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10571 			  BP_PATH(bp));
10572 	}
10573 
10574 	up(&bnx2x_prev_sem);
10575 
10576 	return rc;
10577 }
10578 
10579 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10580 {
10581 	struct bnx2x_prev_path_list *tmp_list;
10582 	bool rc = false;
10583 
10584 	if (down_trylock(&bnx2x_prev_sem))
10585 		return false;
10586 
10587 	tmp_list = bnx2x_prev_path_get_entry(bp);
10588 	if (tmp_list) {
10589 		if (tmp_list->aer) {
10590 			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10591 			   BP_PATH(bp));
10592 		} else {
10593 			rc = true;
10594 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10595 				       BP_PATH(bp));
10596 		}
10597 	}
10598 
10599 	up(&bnx2x_prev_sem);
10600 
10601 	return rc;
10602 }
10603 
10604 bool bnx2x_port_after_undi(struct bnx2x *bp)
10605 {
10606 	struct bnx2x_prev_path_list *entry;
10607 	bool val;
10608 
10609 	down(&bnx2x_prev_sem);
10610 
10611 	entry = bnx2x_prev_path_get_entry(bp);
10612 	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10613 
10614 	up(&bnx2x_prev_sem);
10615 
10616 	return val;
10617 }
10618 
10619 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10620 {
10621 	struct bnx2x_prev_path_list *tmp_list;
10622 	int rc;
10623 
10624 	rc = down_interruptible(&bnx2x_prev_sem);
10625 	if (rc) {
10626 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10627 		return rc;
10628 	}
10629 
10630 	/* Check whether the entry for this path already exists */
10631 	tmp_list = bnx2x_prev_path_get_entry(bp);
10632 	if (tmp_list) {
10633 		if (!tmp_list->aer) {
10634 			BNX2X_ERR("Re-Marking the path.\n");
10635 		} else {
10636 			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10637 			   BP_PATH(bp));
10638 			tmp_list->aer = 0;
10639 		}
10640 		up(&bnx2x_prev_sem);
10641 		return 0;
10642 	}
10643 	up(&bnx2x_prev_sem);
10644 
10645 	/* Create an entry for this path and add it */
10646 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10647 	if (!tmp_list) {
10648 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10649 		return -ENOMEM;
10650 	}
10651 
10652 	tmp_list->bus = bp->pdev->bus->number;
10653 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10654 	tmp_list->path = BP_PATH(bp);
10655 	tmp_list->aer = 0;
10656 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10657 
10658 	rc = down_interruptible(&bnx2x_prev_sem);
10659 	if (rc) {
10660 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10661 		kfree(tmp_list);
10662 	} else {
10663 		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10664 		   BP_PATH(bp));
10665 		list_add(&tmp_list->list, &bnx2x_prev_list);
10666 		up(&bnx2x_prev_sem);
10667 	}
10668 
10669 	return rc;
10670 }
10671 
10672 static int bnx2x_do_flr(struct bnx2x *bp)
10673 {
10674 	struct pci_dev *dev = bp->pdev;
10675 
10676 	if (CHIP_IS_E1x(bp)) {
10677 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10678 		return -EINVAL;
10679 	}
10680 
10681 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10682 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10683 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10684 			  bp->common.bc_ver);
10685 		return -EINVAL;
10686 	}
10687 
10688 	if (!pci_wait_for_pending_transaction(dev))
10689 		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10690 
10691 	BNX2X_DEV_INFO("Initiating FLR\n");
10692 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10693 
10694 	return 0;
10695 }
10696 
10697 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10698 {
10699 	int rc;
10700 
10701 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
10702 
10703 	/* Test if previous unload process was already finished for this path */
10704 	if (bnx2x_prev_is_path_marked(bp))
10705 		return bnx2x_prev_mcp_done(bp);
10706 
10707 	BNX2X_DEV_INFO("Path is unmarked\n");
10708 
10709 	/* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10710 	if (bnx2x_prev_is_after_undi(bp))
10711 		goto out;
10712 
10713 	/* If function has FLR capabilities, and existing FW version matches
10714 	 * the one required, then FLR will be sufficient to clean any residue
10715 	 * left by previous driver
10716 	 */
10717 	rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10718 
10719 	if (!rc) {
10720 		/* fw version is good */
10721 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10722 		rc = bnx2x_do_flr(bp);
10723 	}
10724 
10725 	if (!rc) {
10726 		/* FLR was performed */
10727 		BNX2X_DEV_INFO("FLR successful\n");
10728 		return 0;
10729 	}
10730 
10731 	BNX2X_DEV_INFO("Could not FLR\n");
10732 
10733 out:
10734 	/* Close the MCP request, return failure*/
10735 	rc = bnx2x_prev_mcp_done(bp);
10736 	if (!rc)
10737 		rc = BNX2X_PREV_WAIT_NEEDED;
10738 
10739 	return rc;
10740 }
10741 
10742 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10743 {
10744 	u32 reset_reg, tmp_reg = 0, rc;
10745 	bool prev_undi = false;
10746 	struct bnx2x_mac_vals mac_vals;
10747 
10748 	/* It is possible a previous function received 'common' answer,
10749 	 * but hasn't loaded yet, therefore creating a scenario of
10750 	 * multiple functions receiving 'common' on the same path.
10751 	 */
10752 	BNX2X_DEV_INFO("Common unload Flow\n");
10753 
10754 	memset(&mac_vals, 0, sizeof(mac_vals));
10755 
10756 	if (bnx2x_prev_is_path_marked(bp))
10757 		return bnx2x_prev_mcp_done(bp);
10758 
10759 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10760 
10761 	/* Reset should be performed after BRB is emptied */
10762 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10763 		u32 timer_count = 1000;
10764 
10765 		/* Close the MAC Rx to prevent BRB from filling up */
10766 		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10767 
10768 		/* close LLH filters for both ports towards the BRB */
10769 		bnx2x_set_rx_filter(&bp->link_params, 0);
10770 		bp->link_params.port ^= 1;
10771 		bnx2x_set_rx_filter(&bp->link_params, 0);
10772 		bp->link_params.port ^= 1;
10773 
10774 		/* Check if the UNDI driver was previously loaded */
10775 		if (bnx2x_prev_is_after_undi(bp)) {
10776 			prev_undi = true;
10777 			/* clear the UNDI indication */
10778 			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10779 			/* clear possible idle check errors */
10780 			REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10781 		}
10782 		if (!CHIP_IS_E1x(bp))
10783 			/* block FW from writing to host */
10784 			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10785 
10786 		/* wait until BRB is empty */
10787 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10788 		while (timer_count) {
10789 			u32 prev_brb = tmp_reg;
10790 
10791 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10792 			if (!tmp_reg)
10793 				break;
10794 
10795 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10796 
10797 			/* reset timer as long as BRB actually gets emptied */
10798 			if (prev_brb > tmp_reg)
10799 				timer_count = 1000;
10800 			else
10801 				timer_count--;
10802 
10803 			/* If UNDI resides in memory, manually increment it */
10804 			if (prev_undi)
10805 				bnx2x_prev_unload_undi_inc(bp, 1);
10806 
10807 			udelay(10);
10808 		}
10809 
10810 		if (!timer_count)
10811 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10812 	}
10813 
10814 	/* No packets are in the pipeline, path is ready for reset */
10815 	bnx2x_reset_common(bp);
10816 
10817 	if (mac_vals.xmac_addr)
10818 		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10819 	if (mac_vals.umac_addr[0])
10820 		REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10821 	if (mac_vals.umac_addr[1])
10822 		REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10823 	if (mac_vals.emac_addr)
10824 		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10825 	if (mac_vals.bmac_addr) {
10826 		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10827 		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10828 	}
10829 
10830 	rc = bnx2x_prev_mark_path(bp, prev_undi);
10831 	if (rc) {
10832 		bnx2x_prev_mcp_done(bp);
10833 		return rc;
10834 	}
10835 
10836 	return bnx2x_prev_mcp_done(bp);
10837 }
10838 
10839 static int bnx2x_prev_unload(struct bnx2x *bp)
10840 {
10841 	int time_counter = 10;
10842 	u32 rc, fw, hw_lock_reg, hw_lock_val;
10843 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10844 
10845 	/* clear hw from errors which may have resulted from an interrupted
10846 	 * dmae transaction.
10847 	 */
10848 	bnx2x_clean_pglue_errors(bp);
10849 
10850 	/* Release previously held locks */
10851 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10852 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10853 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10854 
10855 	hw_lock_val = REG_RD(bp, hw_lock_reg);
10856 	if (hw_lock_val) {
10857 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10858 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10859 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10860 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10861 		}
10862 
10863 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10864 		REG_WR(bp, hw_lock_reg, 0xffffffff);
10865 	} else
10866 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10867 
10868 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10869 		BNX2X_DEV_INFO("Release previously held alr\n");
10870 		bnx2x_release_alr(bp);
10871 	}
10872 
10873 	do {
10874 		int aer = 0;
10875 		/* Lock MCP using an unload request */
10876 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10877 		if (!fw) {
10878 			BNX2X_ERR("MCP response failure, aborting\n");
10879 			rc = -EBUSY;
10880 			break;
10881 		}
10882 
10883 		rc = down_interruptible(&bnx2x_prev_sem);
10884 		if (rc) {
10885 			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10886 				  rc);
10887 		} else {
10888 			/* If Path is marked by EEH, ignore unload status */
10889 			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10890 				 bnx2x_prev_path_get_entry(bp)->aer);
10891 			up(&bnx2x_prev_sem);
10892 		}
10893 
10894 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10895 			rc = bnx2x_prev_unload_common(bp);
10896 			break;
10897 		}
10898 
10899 		/* non-common reply from MCP might require looping */
10900 		rc = bnx2x_prev_unload_uncommon(bp);
10901 		if (rc != BNX2X_PREV_WAIT_NEEDED)
10902 			break;
10903 
10904 		msleep(20);
10905 	} while (--time_counter);
10906 
10907 	if (!time_counter || rc) {
10908 		BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10909 		rc = -EPROBE_DEFER;
10910 	}
10911 
10912 	/* Mark function if its port was used to boot from SAN */
10913 	if (bnx2x_port_after_undi(bp))
10914 		bp->link_params.feature_config_flags |=
10915 			FEATURE_CONFIG_BOOT_FROM_SAN;
10916 
10917 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10918 
10919 	return rc;
10920 }
10921 
10922 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10923 {
10924 	u32 val, val2, val3, val4, id, boot_mode;
10925 	u16 pmc;
10926 
10927 	/* Get the chip revision id and number. */
10928 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10929 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10930 	id = ((val & 0xffff) << 16);
10931 	val = REG_RD(bp, MISC_REG_CHIP_REV);
10932 	id |= ((val & 0xf) << 12);
10933 
10934 	/* Metal is read from PCI regs, but we can't access >=0x400 from
10935 	 * the configuration space (so we need to reg_rd)
10936 	 */
10937 	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10938 	id |= (((val >> 24) & 0xf) << 4);
10939 	val = REG_RD(bp, MISC_REG_BOND_ID);
10940 	id |= (val & 0xf);
10941 	bp->common.chip_id = id;
10942 
10943 	/* force 57811 according to MISC register */
10944 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10945 		if (CHIP_IS_57810(bp))
10946 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10947 				(bp->common.chip_id & 0x0000FFFF);
10948 		else if (CHIP_IS_57810_MF(bp))
10949 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10950 				(bp->common.chip_id & 0x0000FFFF);
10951 		bp->common.chip_id |= 0x1;
10952 	}
10953 
10954 	/* Set doorbell size */
10955 	bp->db_size = (1 << BNX2X_DB_SHIFT);
10956 
10957 	if (!CHIP_IS_E1x(bp)) {
10958 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10959 		if ((val & 1) == 0)
10960 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10961 		else
10962 			val = (val >> 1) & 1;
10963 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10964 						       "2_PORT_MODE");
10965 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10966 						 CHIP_2_PORT_MODE;
10967 
10968 		if (CHIP_MODE_IS_4_PORT(bp))
10969 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10970 		else
10971 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10972 	} else {
10973 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10974 		bp->pfid = bp->pf_num;			/* 0..7 */
10975 	}
10976 
10977 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10978 
10979 	bp->link_params.chip_id = bp->common.chip_id;
10980 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10981 
10982 	val = (REG_RD(bp, 0x2874) & 0x55);
10983 	if ((bp->common.chip_id & 0x1) ||
10984 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10985 		bp->flags |= ONE_PORT_FLAG;
10986 		BNX2X_DEV_INFO("single port device\n");
10987 	}
10988 
10989 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10990 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10991 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10992 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10993 		       bp->common.flash_size, bp->common.flash_size);
10994 
10995 	bnx2x_init_shmem(bp);
10996 
10997 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10998 					MISC_REG_GENERIC_CR_1 :
10999 					MISC_REG_GENERIC_CR_0));
11000 
11001 	bp->link_params.shmem_base = bp->common.shmem_base;
11002 	bp->link_params.shmem2_base = bp->common.shmem2_base;
11003 	if (SHMEM2_RD(bp, size) >
11004 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11005 		bp->link_params.lfa_base =
11006 		REG_RD(bp, bp->common.shmem2_base +
11007 		       (u32)offsetof(struct shmem2_region,
11008 				     lfa_host_addr[BP_PORT(bp)]));
11009 	else
11010 		bp->link_params.lfa_base = 0;
11011 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
11012 		       bp->common.shmem_base, bp->common.shmem2_base);
11013 
11014 	if (!bp->common.shmem_base) {
11015 		BNX2X_DEV_INFO("MCP not active\n");
11016 		bp->flags |= NO_MCP_FLAG;
11017 		return;
11018 	}
11019 
11020 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11021 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11022 
11023 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
11024 					SHARED_HW_CFG_LED_MODE_MASK) >>
11025 				       SHARED_HW_CFG_LED_MODE_SHIFT);
11026 
11027 	bp->link_params.feature_config_flags = 0;
11028 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11029 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11030 		bp->link_params.feature_config_flags |=
11031 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11032 	else
11033 		bp->link_params.feature_config_flags &=
11034 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11035 
11036 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11037 	bp->common.bc_ver = val;
11038 	BNX2X_DEV_INFO("bc_ver %X\n", val);
11039 	if (val < BNX2X_BC_VER) {
11040 		/* for now only warn
11041 		 * later we might need to enforce this */
11042 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11043 			  BNX2X_BC_VER, val);
11044 	}
11045 	bp->link_params.feature_config_flags |=
11046 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11047 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11048 
11049 	bp->link_params.feature_config_flags |=
11050 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11051 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11052 	bp->link_params.feature_config_flags |=
11053 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11054 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11055 	bp->link_params.feature_config_flags |=
11056 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11057 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11058 
11059 	bp->link_params.feature_config_flags |=
11060 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11061 		FEATURE_CONFIG_MT_SUPPORT : 0;
11062 
11063 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11064 			BC_SUPPORTS_PFC_STATS : 0;
11065 
11066 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11067 			BC_SUPPORTS_FCOE_FEATURES : 0;
11068 
11069 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11070 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11071 
11072 	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11073 			BC_SUPPORTS_RMMOD_CMD : 0;
11074 
11075 	boot_mode = SHMEM_RD(bp,
11076 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11077 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11078 	switch (boot_mode) {
11079 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11080 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11081 		break;
11082 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11083 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11084 		break;
11085 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11086 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11087 		break;
11088 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11089 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11090 		break;
11091 	}
11092 
11093 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11094 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11095 
11096 	BNX2X_DEV_INFO("%sWoL capable\n",
11097 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
11098 
11099 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11100 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11101 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11102 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11103 
11104 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11105 		 val, val2, val3, val4);
11106 }
11107 
11108 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11109 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11110 
11111 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11112 {
11113 	int pfid = BP_FUNC(bp);
11114 	int igu_sb_id;
11115 	u32 val;
11116 	u8 fid, igu_sb_cnt = 0;
11117 
11118 	bp->igu_base_sb = 0xff;
11119 	if (CHIP_INT_MODE_IS_BC(bp)) {
11120 		int vn = BP_VN(bp);
11121 		igu_sb_cnt = bp->igu_sb_cnt;
11122 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11123 			FP_SB_MAX_E1x;
11124 
11125 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
11126 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11127 
11128 		return 0;
11129 	}
11130 
11131 	/* IGU in normal mode - read CAM */
11132 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11133 	     igu_sb_id++) {
11134 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11135 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11136 			continue;
11137 		fid = IGU_FID(val);
11138 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
11139 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11140 				continue;
11141 			if (IGU_VEC(val) == 0)
11142 				/* default status block */
11143 				bp->igu_dsb_id = igu_sb_id;
11144 			else {
11145 				if (bp->igu_base_sb == 0xff)
11146 					bp->igu_base_sb = igu_sb_id;
11147 				igu_sb_cnt++;
11148 			}
11149 		}
11150 	}
11151 
11152 #ifdef CONFIG_PCI_MSI
11153 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
11154 	 * optional that number of CAM entries will not be equal to the value
11155 	 * advertised in PCI.
11156 	 * Driver should use the minimal value of both as the actual status
11157 	 * block count
11158 	 */
11159 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11160 #endif
11161 
11162 	if (igu_sb_cnt == 0) {
11163 		BNX2X_ERR("CAM configuration error\n");
11164 		return -EINVAL;
11165 	}
11166 
11167 	return 0;
11168 }
11169 
11170 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11171 {
11172 	int cfg_size = 0, idx, port = BP_PORT(bp);
11173 
11174 	/* Aggregation of supported attributes of all external phys */
11175 	bp->port.supported[0] = 0;
11176 	bp->port.supported[1] = 0;
11177 	switch (bp->link_params.num_phys) {
11178 	case 1:
11179 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11180 		cfg_size = 1;
11181 		break;
11182 	case 2:
11183 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11184 		cfg_size = 1;
11185 		break;
11186 	case 3:
11187 		if (bp->link_params.multi_phy_config &
11188 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11189 			bp->port.supported[1] =
11190 				bp->link_params.phy[EXT_PHY1].supported;
11191 			bp->port.supported[0] =
11192 				bp->link_params.phy[EXT_PHY2].supported;
11193 		} else {
11194 			bp->port.supported[0] =
11195 				bp->link_params.phy[EXT_PHY1].supported;
11196 			bp->port.supported[1] =
11197 				bp->link_params.phy[EXT_PHY2].supported;
11198 		}
11199 		cfg_size = 2;
11200 		break;
11201 	}
11202 
11203 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
11204 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11205 			   SHMEM_RD(bp,
11206 			   dev_info.port_hw_config[port].external_phy_config),
11207 			   SHMEM_RD(bp,
11208 			   dev_info.port_hw_config[port].external_phy_config2));
11209 			return;
11210 	}
11211 
11212 	if (CHIP_IS_E3(bp))
11213 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11214 	else {
11215 		switch (switch_cfg) {
11216 		case SWITCH_CFG_1G:
11217 			bp->port.phy_addr = REG_RD(
11218 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11219 			break;
11220 		case SWITCH_CFG_10G:
11221 			bp->port.phy_addr = REG_RD(
11222 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11223 			break;
11224 		default:
11225 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11226 				  bp->port.link_config[0]);
11227 			return;
11228 		}
11229 	}
11230 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11231 	/* mask what we support according to speed_cap_mask per configuration */
11232 	for (idx = 0; idx < cfg_size; idx++) {
11233 		if (!(bp->link_params.speed_cap_mask[idx] &
11234 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11235 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11236 
11237 		if (!(bp->link_params.speed_cap_mask[idx] &
11238 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11239 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11240 
11241 		if (!(bp->link_params.speed_cap_mask[idx] &
11242 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11243 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11244 
11245 		if (!(bp->link_params.speed_cap_mask[idx] &
11246 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11247 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11248 
11249 		if (!(bp->link_params.speed_cap_mask[idx] &
11250 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11251 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11252 						     SUPPORTED_1000baseT_Full);
11253 
11254 		if (!(bp->link_params.speed_cap_mask[idx] &
11255 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11256 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11257 
11258 		if (!(bp->link_params.speed_cap_mask[idx] &
11259 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11260 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11261 
11262 		if (!(bp->link_params.speed_cap_mask[idx] &
11263 					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11264 			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11265 	}
11266 
11267 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11268 		       bp->port.supported[1]);
11269 }
11270 
11271 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11272 {
11273 	u32 link_config, idx, cfg_size = 0;
11274 	bp->port.advertising[0] = 0;
11275 	bp->port.advertising[1] = 0;
11276 	switch (bp->link_params.num_phys) {
11277 	case 1:
11278 	case 2:
11279 		cfg_size = 1;
11280 		break;
11281 	case 3:
11282 		cfg_size = 2;
11283 		break;
11284 	}
11285 	for (idx = 0; idx < cfg_size; idx++) {
11286 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11287 		link_config = bp->port.link_config[idx];
11288 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11289 		case PORT_FEATURE_LINK_SPEED_AUTO:
11290 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11291 				bp->link_params.req_line_speed[idx] =
11292 					SPEED_AUTO_NEG;
11293 				bp->port.advertising[idx] |=
11294 					bp->port.supported[idx];
11295 				if (bp->link_params.phy[EXT_PHY1].type ==
11296 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11297 					bp->port.advertising[idx] |=
11298 					(SUPPORTED_100baseT_Half |
11299 					 SUPPORTED_100baseT_Full);
11300 			} else {
11301 				/* force 10G, no AN */
11302 				bp->link_params.req_line_speed[idx] =
11303 					SPEED_10000;
11304 				bp->port.advertising[idx] |=
11305 					(ADVERTISED_10000baseT_Full |
11306 					 ADVERTISED_FIBRE);
11307 				continue;
11308 			}
11309 			break;
11310 
11311 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
11312 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11313 				bp->link_params.req_line_speed[idx] =
11314 					SPEED_10;
11315 				bp->port.advertising[idx] |=
11316 					(ADVERTISED_10baseT_Full |
11317 					 ADVERTISED_TP);
11318 			} else {
11319 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11320 					    link_config,
11321 				    bp->link_params.speed_cap_mask[idx]);
11322 				return;
11323 			}
11324 			break;
11325 
11326 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
11327 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11328 				bp->link_params.req_line_speed[idx] =
11329 					SPEED_10;
11330 				bp->link_params.req_duplex[idx] =
11331 					DUPLEX_HALF;
11332 				bp->port.advertising[idx] |=
11333 					(ADVERTISED_10baseT_Half |
11334 					 ADVERTISED_TP);
11335 			} else {
11336 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11337 					    link_config,
11338 					  bp->link_params.speed_cap_mask[idx]);
11339 				return;
11340 			}
11341 			break;
11342 
11343 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
11344 			if (bp->port.supported[idx] &
11345 			    SUPPORTED_100baseT_Full) {
11346 				bp->link_params.req_line_speed[idx] =
11347 					SPEED_100;
11348 				bp->port.advertising[idx] |=
11349 					(ADVERTISED_100baseT_Full |
11350 					 ADVERTISED_TP);
11351 			} else {
11352 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11353 					    link_config,
11354 					  bp->link_params.speed_cap_mask[idx]);
11355 				return;
11356 			}
11357 			break;
11358 
11359 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
11360 			if (bp->port.supported[idx] &
11361 			    SUPPORTED_100baseT_Half) {
11362 				bp->link_params.req_line_speed[idx] =
11363 								SPEED_100;
11364 				bp->link_params.req_duplex[idx] =
11365 								DUPLEX_HALF;
11366 				bp->port.advertising[idx] |=
11367 					(ADVERTISED_100baseT_Half |
11368 					 ADVERTISED_TP);
11369 			} else {
11370 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11371 				    link_config,
11372 				    bp->link_params.speed_cap_mask[idx]);
11373 				return;
11374 			}
11375 			break;
11376 
11377 		case PORT_FEATURE_LINK_SPEED_1G:
11378 			if (bp->port.supported[idx] &
11379 			    SUPPORTED_1000baseT_Full) {
11380 				bp->link_params.req_line_speed[idx] =
11381 					SPEED_1000;
11382 				bp->port.advertising[idx] |=
11383 					(ADVERTISED_1000baseT_Full |
11384 					 ADVERTISED_TP);
11385 			} else if (bp->port.supported[idx] &
11386 				   SUPPORTED_1000baseKX_Full) {
11387 				bp->link_params.req_line_speed[idx] =
11388 					SPEED_1000;
11389 				bp->port.advertising[idx] |=
11390 					ADVERTISED_1000baseKX_Full;
11391 			} else {
11392 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11393 				    link_config,
11394 				    bp->link_params.speed_cap_mask[idx]);
11395 				return;
11396 			}
11397 			break;
11398 
11399 		case PORT_FEATURE_LINK_SPEED_2_5G:
11400 			if (bp->port.supported[idx] &
11401 			    SUPPORTED_2500baseX_Full) {
11402 				bp->link_params.req_line_speed[idx] =
11403 					SPEED_2500;
11404 				bp->port.advertising[idx] |=
11405 					(ADVERTISED_2500baseX_Full |
11406 						ADVERTISED_TP);
11407 			} else {
11408 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11409 				    link_config,
11410 				    bp->link_params.speed_cap_mask[idx]);
11411 				return;
11412 			}
11413 			break;
11414 
11415 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
11416 			if (bp->port.supported[idx] &
11417 			    SUPPORTED_10000baseT_Full) {
11418 				bp->link_params.req_line_speed[idx] =
11419 					SPEED_10000;
11420 				bp->port.advertising[idx] |=
11421 					(ADVERTISED_10000baseT_Full |
11422 						ADVERTISED_FIBRE);
11423 			} else if (bp->port.supported[idx] &
11424 				   SUPPORTED_10000baseKR_Full) {
11425 				bp->link_params.req_line_speed[idx] =
11426 					SPEED_10000;
11427 				bp->port.advertising[idx] |=
11428 					(ADVERTISED_10000baseKR_Full |
11429 						ADVERTISED_FIBRE);
11430 			} else {
11431 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11432 				    link_config,
11433 				    bp->link_params.speed_cap_mask[idx]);
11434 				return;
11435 			}
11436 			break;
11437 		case PORT_FEATURE_LINK_SPEED_20G:
11438 			bp->link_params.req_line_speed[idx] = SPEED_20000;
11439 
11440 			break;
11441 		default:
11442 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11443 				  link_config);
11444 				bp->link_params.req_line_speed[idx] =
11445 							SPEED_AUTO_NEG;
11446 				bp->port.advertising[idx] =
11447 						bp->port.supported[idx];
11448 			break;
11449 		}
11450 
11451 		bp->link_params.req_flow_ctrl[idx] = (link_config &
11452 					 PORT_FEATURE_FLOW_CONTROL_MASK);
11453 		if (bp->link_params.req_flow_ctrl[idx] ==
11454 		    BNX2X_FLOW_CTRL_AUTO) {
11455 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11456 				bp->link_params.req_flow_ctrl[idx] =
11457 							BNX2X_FLOW_CTRL_NONE;
11458 			else
11459 				bnx2x_set_requested_fc(bp);
11460 		}
11461 
11462 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11463 			       bp->link_params.req_line_speed[idx],
11464 			       bp->link_params.req_duplex[idx],
11465 			       bp->link_params.req_flow_ctrl[idx],
11466 			       bp->port.advertising[idx]);
11467 	}
11468 }
11469 
11470 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11471 {
11472 	__be16 mac_hi_be = cpu_to_be16(mac_hi);
11473 	__be32 mac_lo_be = cpu_to_be32(mac_lo);
11474 	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11475 	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11476 }
11477 
11478 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11479 {
11480 	int port = BP_PORT(bp);
11481 	u32 config;
11482 	u32 ext_phy_type, ext_phy_config, eee_mode;
11483 
11484 	bp->link_params.bp = bp;
11485 	bp->link_params.port = port;
11486 
11487 	bp->link_params.lane_config =
11488 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11489 
11490 	bp->link_params.speed_cap_mask[0] =
11491 		SHMEM_RD(bp,
11492 			 dev_info.port_hw_config[port].speed_capability_mask) &
11493 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11494 	bp->link_params.speed_cap_mask[1] =
11495 		SHMEM_RD(bp,
11496 			 dev_info.port_hw_config[port].speed_capability_mask2) &
11497 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11498 	bp->port.link_config[0] =
11499 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11500 
11501 	bp->port.link_config[1] =
11502 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11503 
11504 	bp->link_params.multi_phy_config =
11505 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11506 	/* If the device is capable of WoL, set the default state according
11507 	 * to the HW
11508 	 */
11509 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11510 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11511 		   (config & PORT_FEATURE_WOL_ENABLED));
11512 
11513 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11514 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11515 		bp->flags |= NO_ISCSI_FLAG;
11516 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11517 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11518 		bp->flags |= NO_FCOE_FLAG;
11519 
11520 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11521 		       bp->link_params.lane_config,
11522 		       bp->link_params.speed_cap_mask[0],
11523 		       bp->port.link_config[0]);
11524 
11525 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
11526 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
11527 	bnx2x_phy_probe(&bp->link_params);
11528 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11529 
11530 	bnx2x_link_settings_requested(bp);
11531 
11532 	/*
11533 	 * If connected directly, work with the internal PHY, otherwise, work
11534 	 * with the external PHY
11535 	 */
11536 	ext_phy_config =
11537 		SHMEM_RD(bp,
11538 			 dev_info.port_hw_config[port].external_phy_config);
11539 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11540 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11541 		bp->mdio.prtad = bp->port.phy_addr;
11542 
11543 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11544 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11545 		bp->mdio.prtad =
11546 			XGXS_EXT_PHY_ADDR(ext_phy_config);
11547 
11548 	/* Configure link feature according to nvram value */
11549 	eee_mode = (((SHMEM_RD(bp, dev_info.
11550 		      port_feature_config[port].eee_power_mode)) &
11551 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11552 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11553 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11554 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11555 					   EEE_MODE_ENABLE_LPI |
11556 					   EEE_MODE_OUTPUT_TIME;
11557 	} else {
11558 		bp->link_params.eee_mode = 0;
11559 	}
11560 }
11561 
11562 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11563 {
11564 	u32 no_flags = NO_ISCSI_FLAG;
11565 	int port = BP_PORT(bp);
11566 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11567 				drv_lic_key[port].max_iscsi_conn);
11568 
11569 	if (!CNIC_SUPPORT(bp)) {
11570 		bp->flags |= no_flags;
11571 		return;
11572 	}
11573 
11574 	/* Get the number of maximum allowed iSCSI connections */
11575 	bp->cnic_eth_dev.max_iscsi_conn =
11576 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11577 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11578 
11579 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11580 		       bp->cnic_eth_dev.max_iscsi_conn);
11581 
11582 	/*
11583 	 * If maximum allowed number of connections is zero -
11584 	 * disable the feature.
11585 	 */
11586 	if (!bp->cnic_eth_dev.max_iscsi_conn)
11587 		bp->flags |= no_flags;
11588 }
11589 
11590 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11591 {
11592 	/* Port info */
11593 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11594 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11595 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11596 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11597 
11598 	/* Node info */
11599 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11600 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11601 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11602 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11603 }
11604 
11605 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11606 {
11607 	u8 count = 0;
11608 
11609 	if (IS_MF(bp)) {
11610 		u8 fid;
11611 
11612 		/* iterate over absolute function ids for this path: */
11613 		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11614 			if (IS_MF_SD(bp)) {
11615 				u32 cfg = MF_CFG_RD(bp,
11616 						    func_mf_config[fid].config);
11617 
11618 				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11619 				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11620 					    FUNC_MF_CFG_PROTOCOL_FCOE))
11621 					count++;
11622 			} else {
11623 				u32 cfg = MF_CFG_RD(bp,
11624 						    func_ext_config[fid].
11625 								      func_cfg);
11626 
11627 				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11628 				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11629 					count++;
11630 			}
11631 		}
11632 	} else { /* SF */
11633 		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11634 
11635 		for (port = 0; port < port_cnt; port++) {
11636 			u32 lic = SHMEM_RD(bp,
11637 					   drv_lic_key[port].max_fcoe_conn) ^
11638 				  FW_ENCODE_32BIT_PATTERN;
11639 			if (lic)
11640 				count++;
11641 		}
11642 	}
11643 
11644 	return count;
11645 }
11646 
11647 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11648 {
11649 	int port = BP_PORT(bp);
11650 	int func = BP_ABS_FUNC(bp);
11651 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11652 				drv_lic_key[port].max_fcoe_conn);
11653 	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11654 
11655 	if (!CNIC_SUPPORT(bp)) {
11656 		bp->flags |= NO_FCOE_FLAG;
11657 		return;
11658 	}
11659 
11660 	/* Get the number of maximum allowed FCoE connections */
11661 	bp->cnic_eth_dev.max_fcoe_conn =
11662 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11663 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11664 
11665 	/* Calculate the number of maximum allowed FCoE tasks */
11666 	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11667 
11668 	/* check if FCoE resources must be shared between different functions */
11669 	if (num_fcoe_func)
11670 		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11671 
11672 	/* Read the WWN: */
11673 	if (!IS_MF(bp)) {
11674 		/* Port info */
11675 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11676 			SHMEM_RD(bp,
11677 				 dev_info.port_hw_config[port].
11678 				 fcoe_wwn_port_name_upper);
11679 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11680 			SHMEM_RD(bp,
11681 				 dev_info.port_hw_config[port].
11682 				 fcoe_wwn_port_name_lower);
11683 
11684 		/* Node info */
11685 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11686 			SHMEM_RD(bp,
11687 				 dev_info.port_hw_config[port].
11688 				 fcoe_wwn_node_name_upper);
11689 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11690 			SHMEM_RD(bp,
11691 				 dev_info.port_hw_config[port].
11692 				 fcoe_wwn_node_name_lower);
11693 	} else if (!IS_MF_SD(bp)) {
11694 		/* Read the WWN info only if the FCoE feature is enabled for
11695 		 * this function.
11696 		 */
11697 		if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11698 			bnx2x_get_ext_wwn_info(bp, func);
11699 	} else {
11700 		if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11701 			bnx2x_get_ext_wwn_info(bp, func);
11702 	}
11703 
11704 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11705 
11706 	/*
11707 	 * If maximum allowed number of connections is zero -
11708 	 * disable the feature.
11709 	 */
11710 	if (!bp->cnic_eth_dev.max_fcoe_conn)
11711 		bp->flags |= NO_FCOE_FLAG;
11712 }
11713 
11714 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11715 {
11716 	/*
11717 	 * iSCSI may be dynamically disabled but reading
11718 	 * info here we will decrease memory usage by driver
11719 	 * if the feature is disabled for good
11720 	 */
11721 	bnx2x_get_iscsi_info(bp);
11722 	bnx2x_get_fcoe_info(bp);
11723 }
11724 
11725 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11726 {
11727 	u32 val, val2;
11728 	int func = BP_ABS_FUNC(bp);
11729 	int port = BP_PORT(bp);
11730 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11731 	u8 *fip_mac = bp->fip_mac;
11732 
11733 	if (IS_MF(bp)) {
11734 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11735 		 * FCoE MAC then the appropriate feature should be disabled.
11736 		 * In non SD mode features configuration comes from struct
11737 		 * func_ext_config.
11738 		 */
11739 		if (!IS_MF_SD(bp)) {
11740 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11741 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11742 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11743 						 iscsi_mac_addr_upper);
11744 				val = MF_CFG_RD(bp, func_ext_config[func].
11745 						iscsi_mac_addr_lower);
11746 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11747 				BNX2X_DEV_INFO
11748 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11749 			} else {
11750 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11751 			}
11752 
11753 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11754 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11755 						 fcoe_mac_addr_upper);
11756 				val = MF_CFG_RD(bp, func_ext_config[func].
11757 						fcoe_mac_addr_lower);
11758 				bnx2x_set_mac_buf(fip_mac, val, val2);
11759 				BNX2X_DEV_INFO
11760 					("Read FCoE L2 MAC: %pM\n", fip_mac);
11761 			} else {
11762 				bp->flags |= NO_FCOE_FLAG;
11763 			}
11764 
11765 			bp->mf_ext_config = cfg;
11766 
11767 		} else { /* SD MODE */
11768 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11769 				/* use primary mac as iscsi mac */
11770 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11771 
11772 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11773 				BNX2X_DEV_INFO
11774 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11775 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11776 				/* use primary mac as fip mac */
11777 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11778 				BNX2X_DEV_INFO("SD FCoE MODE\n");
11779 				BNX2X_DEV_INFO
11780 					("Read FIP MAC: %pM\n", fip_mac);
11781 			}
11782 		}
11783 
11784 		/* If this is a storage-only interface, use SAN mac as
11785 		 * primary MAC. Notice that for SD this is already the case,
11786 		 * as the SAN mac was copied from the primary MAC.
11787 		 */
11788 		if (IS_MF_FCOE_AFEX(bp))
11789 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11790 	} else {
11791 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11792 				iscsi_mac_upper);
11793 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11794 			       iscsi_mac_lower);
11795 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11796 
11797 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11798 				fcoe_fip_mac_upper);
11799 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11800 			       fcoe_fip_mac_lower);
11801 		bnx2x_set_mac_buf(fip_mac, val, val2);
11802 	}
11803 
11804 	/* Disable iSCSI OOO if MAC configuration is invalid. */
11805 	if (!is_valid_ether_addr(iscsi_mac)) {
11806 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11807 		eth_zero_addr(iscsi_mac);
11808 	}
11809 
11810 	/* Disable FCoE if MAC configuration is invalid. */
11811 	if (!is_valid_ether_addr(fip_mac)) {
11812 		bp->flags |= NO_FCOE_FLAG;
11813 		eth_zero_addr(bp->fip_mac);
11814 	}
11815 }
11816 
11817 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11818 {
11819 	u32 val, val2;
11820 	int func = BP_ABS_FUNC(bp);
11821 	int port = BP_PORT(bp);
11822 
11823 	/* Zero primary MAC configuration */
11824 	eth_zero_addr(bp->dev->dev_addr);
11825 
11826 	if (BP_NOMCP(bp)) {
11827 		BNX2X_ERROR("warning: random MAC workaround active\n");
11828 		eth_hw_addr_random(bp->dev);
11829 	} else if (IS_MF(bp)) {
11830 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11831 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11832 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11833 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11834 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11835 
11836 		if (CNIC_SUPPORT(bp))
11837 			bnx2x_get_cnic_mac_hwinfo(bp);
11838 	} else {
11839 		/* in SF read MACs from port configuration */
11840 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11841 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11842 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11843 
11844 		if (CNIC_SUPPORT(bp))
11845 			bnx2x_get_cnic_mac_hwinfo(bp);
11846 	}
11847 
11848 	if (!BP_NOMCP(bp)) {
11849 		/* Read physical port identifier from shmem */
11850 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11851 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11852 		bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11853 		bp->flags |= HAS_PHYS_PORT_ID;
11854 	}
11855 
11856 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11857 
11858 	if (!is_valid_ether_addr(bp->dev->dev_addr))
11859 		dev_err(&bp->pdev->dev,
11860 			"bad Ethernet MAC address configuration: %pM\n"
11861 			"change it manually before bringing up the appropriate network interface\n",
11862 			bp->dev->dev_addr);
11863 }
11864 
11865 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11866 {
11867 	int tmp;
11868 	u32 cfg;
11869 
11870 	if (IS_VF(bp))
11871 		return false;
11872 
11873 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11874 		/* Take function: tmp = func */
11875 		tmp = BP_ABS_FUNC(bp);
11876 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11877 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11878 	} else {
11879 		/* Take port: tmp = port */
11880 		tmp = BP_PORT(bp);
11881 		cfg = SHMEM_RD(bp,
11882 			       dev_info.port_hw_config[tmp].generic_features);
11883 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11884 	}
11885 	return cfg;
11886 }
11887 
11888 static void validate_set_si_mode(struct bnx2x *bp)
11889 {
11890 	u8 func = BP_ABS_FUNC(bp);
11891 	u32 val;
11892 
11893 	val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11894 
11895 	/* check for legal mac (upper bytes) */
11896 	if (val != 0xffff) {
11897 		bp->mf_mode = MULTI_FUNCTION_SI;
11898 		bp->mf_config[BP_VN(bp)] =
11899 			MF_CFG_RD(bp, func_mf_config[func].config);
11900 	} else
11901 		BNX2X_DEV_INFO("illegal MAC address for SI\n");
11902 }
11903 
11904 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11905 {
11906 	int /*abs*/func = BP_ABS_FUNC(bp);
11907 	int vn, mfw_vn;
11908 	u32 val = 0, val2 = 0;
11909 	int rc = 0;
11910 
11911 	/* Validate that chip access is feasible */
11912 	if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11913 		dev_err(&bp->pdev->dev,
11914 			"Chip read returns all Fs. Preventing probe from continuing\n");
11915 		return -EINVAL;
11916 	}
11917 
11918 	bnx2x_get_common_hwinfo(bp);
11919 
11920 	/*
11921 	 * initialize IGU parameters
11922 	 */
11923 	if (CHIP_IS_E1x(bp)) {
11924 		bp->common.int_block = INT_BLOCK_HC;
11925 
11926 		bp->igu_dsb_id = DEF_SB_IGU_ID;
11927 		bp->igu_base_sb = 0;
11928 	} else {
11929 		bp->common.int_block = INT_BLOCK_IGU;
11930 
11931 		/* do not allow device reset during IGU info processing */
11932 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11933 
11934 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11935 
11936 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11937 			int tout = 5000;
11938 
11939 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11940 
11941 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11942 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11943 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11944 
11945 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11946 				tout--;
11947 				usleep_range(1000, 2000);
11948 			}
11949 
11950 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11951 				dev_err(&bp->pdev->dev,
11952 					"FORCING Normal Mode failed!!!\n");
11953 				bnx2x_release_hw_lock(bp,
11954 						      HW_LOCK_RESOURCE_RESET);
11955 				return -EPERM;
11956 			}
11957 		}
11958 
11959 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11960 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11961 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11962 		} else
11963 			BNX2X_DEV_INFO("IGU Normal Mode\n");
11964 
11965 		rc = bnx2x_get_igu_cam_info(bp);
11966 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11967 		if (rc)
11968 			return rc;
11969 	}
11970 
11971 	/*
11972 	 * set base FW non-default (fast path) status block id, this value is
11973 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
11974 	 * determine the id used by the FW.
11975 	 */
11976 	if (CHIP_IS_E1x(bp))
11977 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11978 	else /*
11979 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11980 	      * the same queue are indicated on the same IGU SB). So we prefer
11981 	      * FW and IGU SBs to be the same value.
11982 	      */
11983 		bp->base_fw_ndsb = bp->igu_base_sb;
11984 
11985 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11986 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11987 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
11988 
11989 	/*
11990 	 * Initialize MF configuration
11991 	 */
11992 
11993 	bp->mf_ov = 0;
11994 	bp->mf_mode = 0;
11995 	bp->mf_sub_mode = 0;
11996 	vn = BP_VN(bp);
11997 	mfw_vn = BP_FW_MB_IDX(bp);
11998 
11999 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12000 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12001 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
12002 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12003 
12004 		if (SHMEM2_HAS(bp, mf_cfg_addr))
12005 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12006 		else
12007 			bp->common.mf_cfg_base = bp->common.shmem_base +
12008 				offsetof(struct shmem_region, func_mb) +
12009 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12010 		/*
12011 		 * get mf configuration:
12012 		 * 1. Existence of MF configuration
12013 		 * 2. MAC address must be legal (check only upper bytes)
12014 		 *    for  Switch-Independent mode;
12015 		 *    OVLAN must be legal for Switch-Dependent mode
12016 		 * 3. SF_MODE configures specific MF mode
12017 		 */
12018 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12019 			/* get mf configuration */
12020 			val = SHMEM_RD(bp,
12021 				       dev_info.shared_feature_config.config);
12022 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12023 
12024 			switch (val) {
12025 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12026 				validate_set_si_mode(bp);
12027 				break;
12028 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12029 				if ((!CHIP_IS_E1x(bp)) &&
12030 				    (MF_CFG_RD(bp, func_mf_config[func].
12031 					       mac_upper) != 0xffff) &&
12032 				    (SHMEM2_HAS(bp,
12033 						afex_driver_support))) {
12034 					bp->mf_mode = MULTI_FUNCTION_AFEX;
12035 					bp->mf_config[vn] = MF_CFG_RD(bp,
12036 						func_mf_config[func].config);
12037 				} else {
12038 					BNX2X_DEV_INFO("can not configure afex mode\n");
12039 				}
12040 				break;
12041 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12042 				/* get OV configuration */
12043 				val = MF_CFG_RD(bp,
12044 					func_mf_config[FUNC_0].e1hov_tag);
12045 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12046 
12047 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12048 					bp->mf_mode = MULTI_FUNCTION_SD;
12049 					bp->mf_config[vn] = MF_CFG_RD(bp,
12050 						func_mf_config[func].config);
12051 				} else
12052 					BNX2X_DEV_INFO("illegal OV for SD\n");
12053 				break;
12054 			case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12055 				bp->mf_mode = MULTI_FUNCTION_SD;
12056 				bp->mf_sub_mode = SUB_MF_MODE_BD;
12057 				bp->mf_config[vn] =
12058 					MF_CFG_RD(bp,
12059 						  func_mf_config[func].config);
12060 
12061 				if (SHMEM2_HAS(bp, mtu_size)) {
12062 					int mtu_idx = BP_FW_MB_IDX(bp);
12063 					u16 mtu_size;
12064 					u32 mtu;
12065 
12066 					mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12067 					mtu_size = (u16)mtu;
12068 					DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12069 					   mtu_size, mtu);
12070 
12071 					/* if valid: update device mtu */
12072 					if (((mtu_size + ETH_HLEN) >=
12073 					     ETH_MIN_PACKET_SIZE) &&
12074 					    (mtu_size <=
12075 					     ETH_MAX_JUMBO_PACKET_SIZE))
12076 						bp->dev->mtu = mtu_size;
12077 				}
12078 				break;
12079 			case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12080 				bp->mf_mode = MULTI_FUNCTION_SD;
12081 				bp->mf_sub_mode = SUB_MF_MODE_UFP;
12082 				bp->mf_config[vn] =
12083 					MF_CFG_RD(bp,
12084 						  func_mf_config[func].config);
12085 				break;
12086 			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12087 				bp->mf_config[vn] = 0;
12088 				break;
12089 			case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12090 				val2 = SHMEM_RD(bp,
12091 					dev_info.shared_hw_config.config_3);
12092 				val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12093 				switch (val2) {
12094 				case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12095 					validate_set_si_mode(bp);
12096 					bp->mf_sub_mode =
12097 							SUB_MF_MODE_NPAR1_DOT_5;
12098 					break;
12099 				default:
12100 					/* Unknown configuration */
12101 					bp->mf_config[vn] = 0;
12102 					BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12103 						       val);
12104 				}
12105 				break;
12106 			default:
12107 				/* Unknown configuration: reset mf_config */
12108 				bp->mf_config[vn] = 0;
12109 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12110 			}
12111 		}
12112 
12113 		BNX2X_DEV_INFO("%s function mode\n",
12114 			       IS_MF(bp) ? "multi" : "single");
12115 
12116 		switch (bp->mf_mode) {
12117 		case MULTI_FUNCTION_SD:
12118 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12119 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
12120 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12121 				bp->mf_ov = val;
12122 				bp->path_has_ovlan = true;
12123 
12124 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12125 					       func, bp->mf_ov, bp->mf_ov);
12126 			} else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12127 				   (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12128 				dev_err(&bp->pdev->dev,
12129 					"Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12130 					func);
12131 				bp->path_has_ovlan = true;
12132 			} else {
12133 				dev_err(&bp->pdev->dev,
12134 					"No valid MF OV for func %d, aborting\n",
12135 					func);
12136 				return -EPERM;
12137 			}
12138 			break;
12139 		case MULTI_FUNCTION_AFEX:
12140 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12141 			break;
12142 		case MULTI_FUNCTION_SI:
12143 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12144 				       func);
12145 			break;
12146 		default:
12147 			if (vn) {
12148 				dev_err(&bp->pdev->dev,
12149 					"VN %d is in a single function mode, aborting\n",
12150 					vn);
12151 				return -EPERM;
12152 			}
12153 			break;
12154 		}
12155 
12156 		/* check if other port on the path needs ovlan:
12157 		 * Since MF configuration is shared between ports
12158 		 * Possible mixed modes are only
12159 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12160 		 */
12161 		if (CHIP_MODE_IS_4_PORT(bp) &&
12162 		    !bp->path_has_ovlan &&
12163 		    !IS_MF(bp) &&
12164 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12165 			u8 other_port = !BP_PORT(bp);
12166 			u8 other_func = BP_PATH(bp) + 2*other_port;
12167 			val = MF_CFG_RD(bp,
12168 					func_mf_config[other_func].e1hov_tag);
12169 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12170 				bp->path_has_ovlan = true;
12171 		}
12172 	}
12173 
12174 	/* adjust igu_sb_cnt to MF for E1H */
12175 	if (CHIP_IS_E1H(bp) && IS_MF(bp))
12176 		bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12177 
12178 	/* port info */
12179 	bnx2x_get_port_hwinfo(bp);
12180 
12181 	/* Get MAC addresses */
12182 	bnx2x_get_mac_hwinfo(bp);
12183 
12184 	bnx2x_get_cnic_info(bp);
12185 
12186 	return rc;
12187 }
12188 
12189 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12190 {
12191 	int cnt, i, block_end, rodi;
12192 	char vpd_start[BNX2X_VPD_LEN+1];
12193 	char str_id_reg[VENDOR_ID_LEN+1];
12194 	char str_id_cap[VENDOR_ID_LEN+1];
12195 	char *vpd_data;
12196 	char *vpd_extended_data = NULL;
12197 	u8 len;
12198 
12199 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
12200 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12201 
12202 	if (cnt < BNX2X_VPD_LEN)
12203 		goto out_not_found;
12204 
12205 	/* VPD RO tag should be first tag after identifier string, hence
12206 	 * we should be able to find it in first BNX2X_VPD_LEN chars
12207 	 */
12208 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
12209 			     PCI_VPD_LRDT_RO_DATA);
12210 	if (i < 0)
12211 		goto out_not_found;
12212 
12213 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
12214 		    pci_vpd_lrdt_size(&vpd_start[i]);
12215 
12216 	i += PCI_VPD_LRDT_TAG_SIZE;
12217 
12218 	if (block_end > BNX2X_VPD_LEN) {
12219 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
12220 		if (vpd_extended_data  == NULL)
12221 			goto out_not_found;
12222 
12223 		/* read rest of vpd image into vpd_extended_data */
12224 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
12225 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
12226 				   block_end - BNX2X_VPD_LEN,
12227 				   vpd_extended_data + BNX2X_VPD_LEN);
12228 		if (cnt < (block_end - BNX2X_VPD_LEN))
12229 			goto out_not_found;
12230 		vpd_data = vpd_extended_data;
12231 	} else
12232 		vpd_data = vpd_start;
12233 
12234 	/* now vpd_data holds full vpd content in both cases */
12235 
12236 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12237 				   PCI_VPD_RO_KEYWORD_MFR_ID);
12238 	if (rodi < 0)
12239 		goto out_not_found;
12240 
12241 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
12242 
12243 	if (len != VENDOR_ID_LEN)
12244 		goto out_not_found;
12245 
12246 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12247 
12248 	/* vendor specific info */
12249 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12250 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
12251 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
12252 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12253 
12254 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12255 						PCI_VPD_RO_KEYWORD_VENDOR0);
12256 		if (rodi >= 0) {
12257 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
12258 
12259 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12260 
12261 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12262 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
12263 				bp->fw_ver[len] = ' ';
12264 			}
12265 		}
12266 		kfree(vpd_extended_data);
12267 		return;
12268 	}
12269 out_not_found:
12270 	kfree(vpd_extended_data);
12271 	return;
12272 }
12273 
12274 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12275 {
12276 	u32 flags = 0;
12277 
12278 	if (CHIP_REV_IS_FPGA(bp))
12279 		SET_FLAGS(flags, MODE_FPGA);
12280 	else if (CHIP_REV_IS_EMUL(bp))
12281 		SET_FLAGS(flags, MODE_EMUL);
12282 	else
12283 		SET_FLAGS(flags, MODE_ASIC);
12284 
12285 	if (CHIP_MODE_IS_4_PORT(bp))
12286 		SET_FLAGS(flags, MODE_PORT4);
12287 	else
12288 		SET_FLAGS(flags, MODE_PORT2);
12289 
12290 	if (CHIP_IS_E2(bp))
12291 		SET_FLAGS(flags, MODE_E2);
12292 	else if (CHIP_IS_E3(bp)) {
12293 		SET_FLAGS(flags, MODE_E3);
12294 		if (CHIP_REV(bp) == CHIP_REV_Ax)
12295 			SET_FLAGS(flags, MODE_E3_A0);
12296 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12297 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12298 	}
12299 
12300 	if (IS_MF(bp)) {
12301 		SET_FLAGS(flags, MODE_MF);
12302 		switch (bp->mf_mode) {
12303 		case MULTI_FUNCTION_SD:
12304 			SET_FLAGS(flags, MODE_MF_SD);
12305 			break;
12306 		case MULTI_FUNCTION_SI:
12307 			SET_FLAGS(flags, MODE_MF_SI);
12308 			break;
12309 		case MULTI_FUNCTION_AFEX:
12310 			SET_FLAGS(flags, MODE_MF_AFEX);
12311 			break;
12312 		}
12313 	} else
12314 		SET_FLAGS(flags, MODE_SF);
12315 
12316 #if defined(__LITTLE_ENDIAN)
12317 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12318 #else /*(__BIG_ENDIAN)*/
12319 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
12320 #endif
12321 	INIT_MODE_FLAGS(bp) = flags;
12322 }
12323 
12324 static int bnx2x_init_bp(struct bnx2x *bp)
12325 {
12326 	int func;
12327 	int rc;
12328 
12329 	mutex_init(&bp->port.phy_mutex);
12330 	mutex_init(&bp->fw_mb_mutex);
12331 	mutex_init(&bp->drv_info_mutex);
12332 	sema_init(&bp->stats_lock, 1);
12333 	bp->drv_info_mng_owner = false;
12334 	INIT_LIST_HEAD(&bp->vlan_reg);
12335 
12336 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12337 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12338 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12339 	INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12340 	if (IS_PF(bp)) {
12341 		rc = bnx2x_get_hwinfo(bp);
12342 		if (rc)
12343 			return rc;
12344 	} else {
12345 		eth_zero_addr(bp->dev->dev_addr);
12346 	}
12347 
12348 	bnx2x_set_modes_bitmap(bp);
12349 
12350 	rc = bnx2x_alloc_mem_bp(bp);
12351 	if (rc)
12352 		return rc;
12353 
12354 	bnx2x_read_fwinfo(bp);
12355 
12356 	func = BP_FUNC(bp);
12357 
12358 	/* need to reset chip if undi was active */
12359 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
12360 		/* init fw_seq */
12361 		bp->fw_seq =
12362 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12363 							DRV_MSG_SEQ_NUMBER_MASK;
12364 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12365 
12366 		rc = bnx2x_prev_unload(bp);
12367 		if (rc) {
12368 			bnx2x_free_mem_bp(bp);
12369 			return rc;
12370 		}
12371 	}
12372 
12373 	if (CHIP_REV_IS_FPGA(bp))
12374 		dev_err(&bp->pdev->dev, "FPGA detected\n");
12375 
12376 	if (BP_NOMCP(bp) && (func == 0))
12377 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12378 
12379 	bp->disable_tpa = disable_tpa;
12380 	bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12381 	/* Reduce memory usage in kdump environment by disabling TPA */
12382 	bp->disable_tpa |= is_kdump_kernel();
12383 
12384 	/* Set TPA flags */
12385 	if (bp->disable_tpa) {
12386 		bp->dev->hw_features &= ~NETIF_F_LRO;
12387 		bp->dev->features &= ~NETIF_F_LRO;
12388 	}
12389 
12390 	if (CHIP_IS_E1(bp))
12391 		bp->dropless_fc = 0;
12392 	else
12393 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12394 
12395 	bp->mrrs = mrrs;
12396 
12397 	bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12398 	if (IS_VF(bp))
12399 		bp->rx_ring_size = MAX_RX_AVAIL;
12400 
12401 	/* make sure that the numbers are in the right granularity */
12402 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12403 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12404 
12405 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12406 
12407 	init_timer(&bp->timer);
12408 	bp->timer.expires = jiffies + bp->current_interval;
12409 	bp->timer.data = (unsigned long) bp;
12410 	bp->timer.function = bnx2x_timer;
12411 
12412 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12413 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12414 	    SHMEM2_HAS(bp, dcbx_en) &&
12415 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12416 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12417 	    SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12418 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12419 		bnx2x_dcbx_init_params(bp);
12420 	} else {
12421 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12422 	}
12423 
12424 	if (CHIP_IS_E1x(bp))
12425 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12426 	else
12427 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
12428 
12429 	/* multiple tx priority */
12430 	if (IS_VF(bp))
12431 		bp->max_cos = 1;
12432 	else if (CHIP_IS_E1x(bp))
12433 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12434 	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12435 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12436 	else if (CHIP_IS_E3B0(bp))
12437 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12438 	else
12439 		BNX2X_ERR("unknown chip %x revision %x\n",
12440 			  CHIP_NUM(bp), CHIP_REV(bp));
12441 	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12442 
12443 	/* We need at least one default status block for slow-path events,
12444 	 * second status block for the L2 queue, and a third status block for
12445 	 * CNIC if supported.
12446 	 */
12447 	if (IS_VF(bp))
12448 		bp->min_msix_vec_cnt = 1;
12449 	else if (CNIC_SUPPORT(bp))
12450 		bp->min_msix_vec_cnt = 3;
12451 	else /* PF w/o cnic */
12452 		bp->min_msix_vec_cnt = 2;
12453 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12454 
12455 	bp->dump_preset_idx = 1;
12456 
12457 	if (CHIP_IS_E3B0(bp))
12458 		bp->flags |= PTP_SUPPORTED;
12459 
12460 	return rc;
12461 }
12462 
12463 /****************************************************************************
12464 * General service functions
12465 ****************************************************************************/
12466 
12467 /*
12468  * net_device service functions
12469  */
12470 
12471 /* called with rtnl_lock */
12472 static int bnx2x_open(struct net_device *dev)
12473 {
12474 	struct bnx2x *bp = netdev_priv(dev);
12475 	int rc;
12476 
12477 	bp->stats_init = true;
12478 
12479 	netif_carrier_off(dev);
12480 
12481 	bnx2x_set_power_state(bp, PCI_D0);
12482 
12483 	/* If parity had happen during the unload, then attentions
12484 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12485 	 * want the first function loaded on the current engine to
12486 	 * complete the recovery.
12487 	 * Parity recovery is only relevant for PF driver.
12488 	 */
12489 	if (IS_PF(bp)) {
12490 		int other_engine = BP_PATH(bp) ? 0 : 1;
12491 		bool other_load_status, load_status;
12492 		bool global = false;
12493 
12494 		other_load_status = bnx2x_get_load_status(bp, other_engine);
12495 		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12496 		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12497 		    bnx2x_chk_parity_attn(bp, &global, true)) {
12498 			do {
12499 				/* If there are attentions and they are in a
12500 				 * global blocks, set the GLOBAL_RESET bit
12501 				 * regardless whether it will be this function
12502 				 * that will complete the recovery or not.
12503 				 */
12504 				if (global)
12505 					bnx2x_set_reset_global(bp);
12506 
12507 				/* Only the first function on the current
12508 				 * engine should try to recover in open. In case
12509 				 * of attentions in global blocks only the first
12510 				 * in the chip should try to recover.
12511 				 */
12512 				if ((!load_status &&
12513 				     (!global || !other_load_status)) &&
12514 				      bnx2x_trylock_leader_lock(bp) &&
12515 				      !bnx2x_leader_reset(bp)) {
12516 					netdev_info(bp->dev,
12517 						    "Recovered in open\n");
12518 					break;
12519 				}
12520 
12521 				/* recovery has failed... */
12522 				bnx2x_set_power_state(bp, PCI_D3hot);
12523 				bp->recovery_state = BNX2X_RECOVERY_FAILED;
12524 
12525 				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12526 					  "If you still see this message after a few retries then power cycle is required.\n");
12527 
12528 				return -EAGAIN;
12529 			} while (0);
12530 		}
12531 	}
12532 
12533 	bp->recovery_state = BNX2X_RECOVERY_DONE;
12534 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
12535 	if (rc)
12536 		return rc;
12537 
12538 	if (IS_PF(bp))
12539 		udp_tunnel_get_rx_info(dev);
12540 
12541 	return 0;
12542 }
12543 
12544 /* called with rtnl_lock */
12545 static int bnx2x_close(struct net_device *dev)
12546 {
12547 	struct bnx2x *bp = netdev_priv(dev);
12548 
12549 	/* Unload the driver, release IRQs */
12550 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12551 
12552 	return 0;
12553 }
12554 
12555 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12556 				      struct bnx2x_mcast_ramrod_params *p)
12557 {
12558 	int mc_count = netdev_mc_count(bp->dev);
12559 	struct bnx2x_mcast_list_elem *mc_mac =
12560 		kcalloc(mc_count, sizeof(*mc_mac), GFP_ATOMIC);
12561 	struct netdev_hw_addr *ha;
12562 
12563 	if (!mc_mac)
12564 		return -ENOMEM;
12565 
12566 	INIT_LIST_HEAD(&p->mcast_list);
12567 
12568 	netdev_for_each_mc_addr(ha, bp->dev) {
12569 		mc_mac->mac = bnx2x_mc_addr(ha);
12570 		list_add_tail(&mc_mac->link, &p->mcast_list);
12571 		mc_mac++;
12572 	}
12573 
12574 	p->mcast_list_len = mc_count;
12575 
12576 	return 0;
12577 }
12578 
12579 static void bnx2x_free_mcast_macs_list(
12580 	struct bnx2x_mcast_ramrod_params *p)
12581 {
12582 	struct bnx2x_mcast_list_elem *mc_mac =
12583 		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
12584 				 link);
12585 
12586 	WARN_ON(!mc_mac);
12587 	kfree(mc_mac);
12588 }
12589 
12590 /**
12591  * bnx2x_set_uc_list - configure a new unicast MACs list.
12592  *
12593  * @bp: driver handle
12594  *
12595  * We will use zero (0) as a MAC type for these MACs.
12596  */
12597 static int bnx2x_set_uc_list(struct bnx2x *bp)
12598 {
12599 	int rc;
12600 	struct net_device *dev = bp->dev;
12601 	struct netdev_hw_addr *ha;
12602 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12603 	unsigned long ramrod_flags = 0;
12604 
12605 	/* First schedule a cleanup up of old configuration */
12606 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12607 	if (rc < 0) {
12608 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12609 		return rc;
12610 	}
12611 
12612 	netdev_for_each_uc_addr(ha, dev) {
12613 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12614 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
12615 		if (rc == -EEXIST) {
12616 			DP(BNX2X_MSG_SP,
12617 			   "Failed to schedule ADD operations: %d\n", rc);
12618 			/* do not treat adding same MAC as error */
12619 			rc = 0;
12620 
12621 		} else if (rc < 0) {
12622 
12623 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12624 				  rc);
12625 			return rc;
12626 		}
12627 	}
12628 
12629 	/* Execute the pending commands */
12630 	__set_bit(RAMROD_CONT, &ramrod_flags);
12631 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12632 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
12633 }
12634 
12635 static int bnx2x_set_mc_list(struct bnx2x *bp)
12636 {
12637 	struct net_device *dev = bp->dev;
12638 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12639 	int rc = 0;
12640 
12641 	rparam.mcast_obj = &bp->mcast_obj;
12642 
12643 	/* first, clear all configured multicast MACs */
12644 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12645 	if (rc < 0) {
12646 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12647 		return rc;
12648 	}
12649 
12650 	/* then, configure a new MACs list */
12651 	if (netdev_mc_count(dev)) {
12652 		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
12653 		if (rc) {
12654 			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
12655 				  rc);
12656 			return rc;
12657 		}
12658 
12659 		/* Now add the new MACs */
12660 		rc = bnx2x_config_mcast(bp, &rparam,
12661 					BNX2X_MCAST_CMD_ADD);
12662 		if (rc < 0)
12663 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12664 				  rc);
12665 
12666 		bnx2x_free_mcast_macs_list(&rparam);
12667 	}
12668 
12669 	return rc;
12670 }
12671 
12672 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12673 static void bnx2x_set_rx_mode(struct net_device *dev)
12674 {
12675 	struct bnx2x *bp = netdev_priv(dev);
12676 
12677 	if (bp->state != BNX2X_STATE_OPEN) {
12678 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12679 		return;
12680 	} else {
12681 		/* Schedule an SP task to handle rest of change */
12682 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12683 				       NETIF_MSG_IFUP);
12684 	}
12685 }
12686 
12687 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12688 {
12689 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12690 
12691 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12692 
12693 	netif_addr_lock_bh(bp->dev);
12694 
12695 	if (bp->dev->flags & IFF_PROMISC) {
12696 		rx_mode = BNX2X_RX_MODE_PROMISC;
12697 	} else if ((bp->dev->flags & IFF_ALLMULTI) ||
12698 		   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12699 		    CHIP_IS_E1(bp))) {
12700 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
12701 	} else {
12702 		if (IS_PF(bp)) {
12703 			/* some multicasts */
12704 			if (bnx2x_set_mc_list(bp) < 0)
12705 				rx_mode = BNX2X_RX_MODE_ALLMULTI;
12706 
12707 			/* release bh lock, as bnx2x_set_uc_list might sleep */
12708 			netif_addr_unlock_bh(bp->dev);
12709 			if (bnx2x_set_uc_list(bp) < 0)
12710 				rx_mode = BNX2X_RX_MODE_PROMISC;
12711 			netif_addr_lock_bh(bp->dev);
12712 		} else {
12713 			/* configuring mcast to a vf involves sleeping (when we
12714 			 * wait for the pf's response).
12715 			 */
12716 			bnx2x_schedule_sp_rtnl(bp,
12717 					       BNX2X_SP_RTNL_VFPF_MCAST, 0);
12718 		}
12719 	}
12720 
12721 	bp->rx_mode = rx_mode;
12722 	/* handle ISCSI SD mode */
12723 	if (IS_MF_ISCSI_ONLY(bp))
12724 		bp->rx_mode = BNX2X_RX_MODE_NONE;
12725 
12726 	/* Schedule the rx_mode command */
12727 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12728 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12729 		netif_addr_unlock_bh(bp->dev);
12730 		return;
12731 	}
12732 
12733 	if (IS_PF(bp)) {
12734 		bnx2x_set_storm_rx_mode(bp);
12735 		netif_addr_unlock_bh(bp->dev);
12736 	} else {
12737 		/* VF will need to request the PF to make this change, and so
12738 		 * the VF needs to release the bottom-half lock prior to the
12739 		 * request (as it will likely require sleep on the VF side)
12740 		 */
12741 		netif_addr_unlock_bh(bp->dev);
12742 		bnx2x_vfpf_storm_rx_mode(bp);
12743 	}
12744 }
12745 
12746 /* called with rtnl_lock */
12747 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12748 			   int devad, u16 addr)
12749 {
12750 	struct bnx2x *bp = netdev_priv(netdev);
12751 	u16 value;
12752 	int rc;
12753 
12754 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12755 	   prtad, devad, addr);
12756 
12757 	/* The HW expects different devad if CL22 is used */
12758 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12759 
12760 	bnx2x_acquire_phy_lock(bp);
12761 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12762 	bnx2x_release_phy_lock(bp);
12763 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12764 
12765 	if (!rc)
12766 		rc = value;
12767 	return rc;
12768 }
12769 
12770 /* called with rtnl_lock */
12771 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12772 			    u16 addr, u16 value)
12773 {
12774 	struct bnx2x *bp = netdev_priv(netdev);
12775 	int rc;
12776 
12777 	DP(NETIF_MSG_LINK,
12778 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12779 	   prtad, devad, addr, value);
12780 
12781 	/* The HW expects different devad if CL22 is used */
12782 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12783 
12784 	bnx2x_acquire_phy_lock(bp);
12785 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12786 	bnx2x_release_phy_lock(bp);
12787 	return rc;
12788 }
12789 
12790 /* called with rtnl_lock */
12791 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12792 {
12793 	struct bnx2x *bp = netdev_priv(dev);
12794 	struct mii_ioctl_data *mdio = if_mii(ifr);
12795 
12796 	if (!netif_running(dev))
12797 		return -EAGAIN;
12798 
12799 	switch (cmd) {
12800 	case SIOCSHWTSTAMP:
12801 		return bnx2x_hwtstamp_ioctl(bp, ifr);
12802 	default:
12803 		DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12804 		   mdio->phy_id, mdio->reg_num, mdio->val_in);
12805 		return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12806 	}
12807 }
12808 
12809 #ifdef CONFIG_NET_POLL_CONTROLLER
12810 static void poll_bnx2x(struct net_device *dev)
12811 {
12812 	struct bnx2x *bp = netdev_priv(dev);
12813 	int i;
12814 
12815 	for_each_eth_queue(bp, i) {
12816 		struct bnx2x_fastpath *fp = &bp->fp[i];
12817 		napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12818 	}
12819 }
12820 #endif
12821 
12822 static int bnx2x_validate_addr(struct net_device *dev)
12823 {
12824 	struct bnx2x *bp = netdev_priv(dev);
12825 
12826 	/* query the bulletin board for mac address configured by the PF */
12827 	if (IS_VF(bp))
12828 		bnx2x_sample_bulletin(bp);
12829 
12830 	if (!is_valid_ether_addr(dev->dev_addr)) {
12831 		BNX2X_ERR("Non-valid Ethernet address\n");
12832 		return -EADDRNOTAVAIL;
12833 	}
12834 	return 0;
12835 }
12836 
12837 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12838 				  struct netdev_phys_item_id *ppid)
12839 {
12840 	struct bnx2x *bp = netdev_priv(netdev);
12841 
12842 	if (!(bp->flags & HAS_PHYS_PORT_ID))
12843 		return -EOPNOTSUPP;
12844 
12845 	ppid->id_len = sizeof(bp->phys_port_id);
12846 	memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12847 
12848 	return 0;
12849 }
12850 
12851 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12852 					      struct net_device *dev,
12853 					      netdev_features_t features)
12854 {
12855 	features = vlan_features_check(skb, features);
12856 	return vxlan_features_check(skb, features);
12857 }
12858 
12859 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12860 {
12861 	int rc;
12862 
12863 	if (IS_PF(bp)) {
12864 		unsigned long ramrod_flags = 0;
12865 
12866 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12867 		rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12868 					add, &ramrod_flags);
12869 	} else {
12870 		rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12871 	}
12872 
12873 	return rc;
12874 }
12875 
12876 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
12877 {
12878 	struct bnx2x_vlan_entry *vlan;
12879 	int rc = 0;
12880 
12881 	/* Configure all non-configured entries */
12882 	list_for_each_entry(vlan, &bp->vlan_reg, link) {
12883 		if (vlan->hw)
12884 			continue;
12885 
12886 		if (bp->vlan_cnt >= bp->vlan_credit)
12887 			return -ENOBUFS;
12888 
12889 		rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12890 		if (rc) {
12891 			BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
12892 			return rc;
12893 		}
12894 
12895 		DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
12896 		vlan->hw = true;
12897 		bp->vlan_cnt++;
12898 	}
12899 
12900 	return 0;
12901 }
12902 
12903 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
12904 {
12905 	bool need_accept_any_vlan;
12906 
12907 	need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
12908 
12909 	if (bp->accept_any_vlan != need_accept_any_vlan) {
12910 		bp->accept_any_vlan = need_accept_any_vlan;
12911 		DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
12912 		   bp->accept_any_vlan ? "raised" : "cleared");
12913 		if (set_rx_mode) {
12914 			if (IS_PF(bp))
12915 				bnx2x_set_rx_mode_inner(bp);
12916 			else
12917 				bnx2x_vfpf_storm_rx_mode(bp);
12918 		}
12919 	}
12920 }
12921 
12922 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12923 {
12924 	struct bnx2x_vlan_entry *vlan;
12925 
12926 	/* The hw forgot all entries after reload */
12927 	list_for_each_entry(vlan, &bp->vlan_reg, link)
12928 		vlan->hw = false;
12929 	bp->vlan_cnt = 0;
12930 
12931 	/* Don't set rx mode here. Our caller will do it. */
12932 	bnx2x_vlan_configure(bp, false);
12933 
12934 	return 0;
12935 }
12936 
12937 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
12938 {
12939 	struct bnx2x *bp = netdev_priv(dev);
12940 	struct bnx2x_vlan_entry *vlan;
12941 
12942 	DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
12943 
12944 	vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
12945 	if (!vlan)
12946 		return -ENOMEM;
12947 
12948 	vlan->vid = vid;
12949 	vlan->hw = false;
12950 	list_add_tail(&vlan->link, &bp->vlan_reg);
12951 
12952 	if (netif_running(dev))
12953 		bnx2x_vlan_configure(bp, true);
12954 
12955 	return 0;
12956 }
12957 
12958 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
12959 {
12960 	struct bnx2x *bp = netdev_priv(dev);
12961 	struct bnx2x_vlan_entry *vlan;
12962 	bool found = false;
12963 	int rc = 0;
12964 
12965 	DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
12966 
12967 	list_for_each_entry(vlan, &bp->vlan_reg, link)
12968 		if (vlan->vid == vid) {
12969 			found = true;
12970 			break;
12971 		}
12972 
12973 	if (!found) {
12974 		BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
12975 		return -EINVAL;
12976 	}
12977 
12978 	if (netif_running(dev) && vlan->hw) {
12979 		rc = __bnx2x_vlan_configure_vid(bp, vid, false);
12980 		DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
12981 		bp->vlan_cnt--;
12982 	}
12983 
12984 	list_del(&vlan->link);
12985 	kfree(vlan);
12986 
12987 	if (netif_running(dev))
12988 		bnx2x_vlan_configure(bp, true);
12989 
12990 	DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
12991 
12992 	return rc;
12993 }
12994 
12995 static const struct net_device_ops bnx2x_netdev_ops = {
12996 	.ndo_open		= bnx2x_open,
12997 	.ndo_stop		= bnx2x_close,
12998 	.ndo_start_xmit		= bnx2x_start_xmit,
12999 	.ndo_select_queue	= bnx2x_select_queue,
13000 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
13001 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
13002 	.ndo_validate_addr	= bnx2x_validate_addr,
13003 	.ndo_do_ioctl		= bnx2x_ioctl,
13004 	.ndo_change_mtu		= bnx2x_change_mtu,
13005 	.ndo_fix_features	= bnx2x_fix_features,
13006 	.ndo_set_features	= bnx2x_set_features,
13007 	.ndo_tx_timeout		= bnx2x_tx_timeout,
13008 	.ndo_vlan_rx_add_vid	= bnx2x_vlan_rx_add_vid,
13009 	.ndo_vlan_rx_kill_vid	= bnx2x_vlan_rx_kill_vid,
13010 #ifdef CONFIG_NET_POLL_CONTROLLER
13011 	.ndo_poll_controller	= poll_bnx2x,
13012 #endif
13013 	.ndo_setup_tc		= __bnx2x_setup_tc,
13014 #ifdef CONFIG_BNX2X_SRIOV
13015 	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
13016 	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
13017 	.ndo_get_vf_config	= bnx2x_get_vf_config,
13018 #endif
13019 #ifdef NETDEV_FCOE_WWNN
13020 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
13021 #endif
13022 
13023 	.ndo_get_phys_port_id	= bnx2x_get_phys_port_id,
13024 	.ndo_set_vf_link_state	= bnx2x_set_vf_link_state,
13025 	.ndo_features_check	= bnx2x_features_check,
13026 	.ndo_udp_tunnel_add	= bnx2x_udp_tunnel_add,
13027 	.ndo_udp_tunnel_del	= bnx2x_udp_tunnel_del,
13028 };
13029 
13030 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
13031 {
13032 	struct device *dev = &bp->pdev->dev;
13033 
13034 	if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
13035 	    dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
13036 		dev_err(dev, "System does not support DMA, aborting\n");
13037 		return -EIO;
13038 	}
13039 
13040 	return 0;
13041 }
13042 
13043 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13044 {
13045 	if (bp->flags & AER_ENABLED) {
13046 		pci_disable_pcie_error_reporting(bp->pdev);
13047 		bp->flags &= ~AER_ENABLED;
13048 	}
13049 }
13050 
13051 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13052 			  struct net_device *dev, unsigned long board_type)
13053 {
13054 	int rc;
13055 	u32 pci_cfg_dword;
13056 	bool chip_is_e1x = (board_type == BCM57710 ||
13057 			    board_type == BCM57711 ||
13058 			    board_type == BCM57711E);
13059 
13060 	SET_NETDEV_DEV(dev, &pdev->dev);
13061 
13062 	bp->dev = dev;
13063 	bp->pdev = pdev;
13064 
13065 	rc = pci_enable_device(pdev);
13066 	if (rc) {
13067 		dev_err(&bp->pdev->dev,
13068 			"Cannot enable PCI device, aborting\n");
13069 		goto err_out;
13070 	}
13071 
13072 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13073 		dev_err(&bp->pdev->dev,
13074 			"Cannot find PCI device base address, aborting\n");
13075 		rc = -ENODEV;
13076 		goto err_out_disable;
13077 	}
13078 
13079 	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13080 		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13081 		rc = -ENODEV;
13082 		goto err_out_disable;
13083 	}
13084 
13085 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13086 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13087 	    PCICFG_REVESION_ID_ERROR_VAL) {
13088 		pr_err("PCI device error, probably due to fan failure, aborting\n");
13089 		rc = -ENODEV;
13090 		goto err_out_disable;
13091 	}
13092 
13093 	if (atomic_read(&pdev->enable_cnt) == 1) {
13094 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13095 		if (rc) {
13096 			dev_err(&bp->pdev->dev,
13097 				"Cannot obtain PCI resources, aborting\n");
13098 			goto err_out_disable;
13099 		}
13100 
13101 		pci_set_master(pdev);
13102 		pci_save_state(pdev);
13103 	}
13104 
13105 	if (IS_PF(bp)) {
13106 		if (!pdev->pm_cap) {
13107 			dev_err(&bp->pdev->dev,
13108 				"Cannot find power management capability, aborting\n");
13109 			rc = -EIO;
13110 			goto err_out_release;
13111 		}
13112 	}
13113 
13114 	if (!pci_is_pcie(pdev)) {
13115 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13116 		rc = -EIO;
13117 		goto err_out_release;
13118 	}
13119 
13120 	rc = bnx2x_set_coherency_mask(bp);
13121 	if (rc)
13122 		goto err_out_release;
13123 
13124 	dev->mem_start = pci_resource_start(pdev, 0);
13125 	dev->base_addr = dev->mem_start;
13126 	dev->mem_end = pci_resource_end(pdev, 0);
13127 
13128 	dev->irq = pdev->irq;
13129 
13130 	bp->regview = pci_ioremap_bar(pdev, 0);
13131 	if (!bp->regview) {
13132 		dev_err(&bp->pdev->dev,
13133 			"Cannot map register space, aborting\n");
13134 		rc = -ENOMEM;
13135 		goto err_out_release;
13136 	}
13137 
13138 	/* In E1/E1H use pci device function given by kernel.
13139 	 * In E2/E3 read physical function from ME register since these chips
13140 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
13141 	 * (depending on hypervisor).
13142 	 */
13143 	if (chip_is_e1x) {
13144 		bp->pf_num = PCI_FUNC(pdev->devfn);
13145 	} else {
13146 		/* chip is E2/3*/
13147 		pci_read_config_dword(bp->pdev,
13148 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
13149 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13150 				  ME_REG_ABS_PF_NUM_SHIFT);
13151 	}
13152 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13153 
13154 	/* clean indirect addresses */
13155 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13156 			       PCICFG_VENDOR_ID_OFFSET);
13157 
13158 	/* Set PCIe reset type to fundamental for EEH recovery */
13159 	pdev->needs_freset = 1;
13160 
13161 	/* AER (Advanced Error reporting) configuration */
13162 	rc = pci_enable_pcie_error_reporting(pdev);
13163 	if (!rc)
13164 		bp->flags |= AER_ENABLED;
13165 	else
13166 		BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13167 
13168 	/*
13169 	 * Clean the following indirect addresses for all functions since it
13170 	 * is not used by the driver.
13171 	 */
13172 	if (IS_PF(bp)) {
13173 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13174 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13175 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13176 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13177 
13178 		if (chip_is_e1x) {
13179 			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13180 			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13181 			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13182 			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13183 		}
13184 
13185 		/* Enable internal target-read (in case we are probed after PF
13186 		 * FLR). Must be done prior to any BAR read access. Only for
13187 		 * 57712 and up
13188 		 */
13189 		if (!chip_is_e1x)
13190 			REG_WR(bp,
13191 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13192 	}
13193 
13194 	dev->watchdog_timeo = TX_TIMEOUT;
13195 
13196 	dev->netdev_ops = &bnx2x_netdev_ops;
13197 	bnx2x_set_ethtool_ops(bp, dev);
13198 
13199 	dev->priv_flags |= IFF_UNICAST_FLT;
13200 
13201 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13202 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13203 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
13204 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13205 	if (!chip_is_e1x) {
13206 		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
13207 				    NETIF_F_GSO_IPXIP4;
13208 		dev->hw_enc_features =
13209 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13210 			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13211 			NETIF_F_GSO_IPXIP4 |
13212 			NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
13213 	}
13214 
13215 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13216 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13217 
13218 	/* VF with OLD Hypervisor or old PF do not support filtering */
13219 	if (IS_PF(bp)) {
13220 		if (chip_is_e1x)
13221 			bp->accept_any_vlan = true;
13222 		else
13223 			dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13224 #ifdef CONFIG_BNX2X_SRIOV
13225 	} else if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
13226 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13227 #endif
13228 	}
13229 
13230 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13231 	dev->features |= NETIF_F_HIGHDMA;
13232 
13233 	/* Add Loopback capability to the device */
13234 	dev->hw_features |= NETIF_F_LOOPBACK;
13235 
13236 #ifdef BCM_DCBNL
13237 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13238 #endif
13239 
13240 	/* get_port_hwinfo() will set prtad and mmds properly */
13241 	bp->mdio.prtad = MDIO_PRTAD_NONE;
13242 	bp->mdio.mmds = 0;
13243 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13244 	bp->mdio.dev = dev;
13245 	bp->mdio.mdio_read = bnx2x_mdio_read;
13246 	bp->mdio.mdio_write = bnx2x_mdio_write;
13247 
13248 	return 0;
13249 
13250 err_out_release:
13251 	if (atomic_read(&pdev->enable_cnt) == 1)
13252 		pci_release_regions(pdev);
13253 
13254 err_out_disable:
13255 	pci_disable_device(pdev);
13256 
13257 err_out:
13258 	return rc;
13259 }
13260 
13261 static int bnx2x_check_firmware(struct bnx2x *bp)
13262 {
13263 	const struct firmware *firmware = bp->firmware;
13264 	struct bnx2x_fw_file_hdr *fw_hdr;
13265 	struct bnx2x_fw_file_section *sections;
13266 	u32 offset, len, num_ops;
13267 	__be16 *ops_offsets;
13268 	int i;
13269 	const u8 *fw_ver;
13270 
13271 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13272 		BNX2X_ERR("Wrong FW size\n");
13273 		return -EINVAL;
13274 	}
13275 
13276 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13277 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
13278 
13279 	/* Make sure none of the offsets and sizes make us read beyond
13280 	 * the end of the firmware data */
13281 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13282 		offset = be32_to_cpu(sections[i].offset);
13283 		len = be32_to_cpu(sections[i].len);
13284 		if (offset + len > firmware->size) {
13285 			BNX2X_ERR("Section %d length is out of bounds\n", i);
13286 			return -EINVAL;
13287 		}
13288 	}
13289 
13290 	/* Likewise for the init_ops offsets */
13291 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13292 	ops_offsets = (__force __be16 *)(firmware->data + offset);
13293 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13294 
13295 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13296 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13297 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
13298 			return -EINVAL;
13299 		}
13300 	}
13301 
13302 	/* Check FW version */
13303 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
13304 	fw_ver = firmware->data + offset;
13305 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
13306 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
13307 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
13308 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
13309 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13310 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13311 		       BCM_5710_FW_MAJOR_VERSION,
13312 		       BCM_5710_FW_MINOR_VERSION,
13313 		       BCM_5710_FW_REVISION_VERSION,
13314 		       BCM_5710_FW_ENGINEERING_VERSION);
13315 		return -EINVAL;
13316 	}
13317 
13318 	return 0;
13319 }
13320 
13321 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13322 {
13323 	const __be32 *source = (const __be32 *)_source;
13324 	u32 *target = (u32 *)_target;
13325 	u32 i;
13326 
13327 	for (i = 0; i < n/4; i++)
13328 		target[i] = be32_to_cpu(source[i]);
13329 }
13330 
13331 /*
13332    Ops array is stored in the following format:
13333    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13334  */
13335 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13336 {
13337 	const __be32 *source = (const __be32 *)_source;
13338 	struct raw_op *target = (struct raw_op *)_target;
13339 	u32 i, j, tmp;
13340 
13341 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
13342 		tmp = be32_to_cpu(source[j]);
13343 		target[i].op = (tmp >> 24) & 0xff;
13344 		target[i].offset = tmp & 0xffffff;
13345 		target[i].raw_data = be32_to_cpu(source[j + 1]);
13346 	}
13347 }
13348 
13349 /* IRO array is stored in the following format:
13350  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13351  */
13352 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13353 {
13354 	const __be32 *source = (const __be32 *)_source;
13355 	struct iro *target = (struct iro *)_target;
13356 	u32 i, j, tmp;
13357 
13358 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13359 		target[i].base = be32_to_cpu(source[j]);
13360 		j++;
13361 		tmp = be32_to_cpu(source[j]);
13362 		target[i].m1 = (tmp >> 16) & 0xffff;
13363 		target[i].m2 = tmp & 0xffff;
13364 		j++;
13365 		tmp = be32_to_cpu(source[j]);
13366 		target[i].m3 = (tmp >> 16) & 0xffff;
13367 		target[i].size = tmp & 0xffff;
13368 		j++;
13369 	}
13370 }
13371 
13372 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13373 {
13374 	const __be16 *source = (const __be16 *)_source;
13375 	u16 *target = (u16 *)_target;
13376 	u32 i;
13377 
13378 	for (i = 0; i < n/2; i++)
13379 		target[i] = be16_to_cpu(source[i]);
13380 }
13381 
13382 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
13383 do {									\
13384 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
13385 	bp->arr = kmalloc(len, GFP_KERNEL);				\
13386 	if (!bp->arr)							\
13387 		goto lbl;						\
13388 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
13389 	     (u8 *)bp->arr, len);					\
13390 } while (0)
13391 
13392 static int bnx2x_init_firmware(struct bnx2x *bp)
13393 {
13394 	const char *fw_file_name;
13395 	struct bnx2x_fw_file_hdr *fw_hdr;
13396 	int rc;
13397 
13398 	if (bp->firmware)
13399 		return 0;
13400 
13401 	if (CHIP_IS_E1(bp))
13402 		fw_file_name = FW_FILE_NAME_E1;
13403 	else if (CHIP_IS_E1H(bp))
13404 		fw_file_name = FW_FILE_NAME_E1H;
13405 	else if (!CHIP_IS_E1x(bp))
13406 		fw_file_name = FW_FILE_NAME_E2;
13407 	else {
13408 		BNX2X_ERR("Unsupported chip revision\n");
13409 		return -EINVAL;
13410 	}
13411 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13412 
13413 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13414 	if (rc) {
13415 		BNX2X_ERR("Can't load firmware file %s\n",
13416 			  fw_file_name);
13417 		goto request_firmware_exit;
13418 	}
13419 
13420 	rc = bnx2x_check_firmware(bp);
13421 	if (rc) {
13422 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13423 		goto request_firmware_exit;
13424 	}
13425 
13426 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13427 
13428 	/* Initialize the pointers to the init arrays */
13429 	/* Blob */
13430 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13431 
13432 	/* Opcodes */
13433 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13434 
13435 	/* Offsets */
13436 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13437 			    be16_to_cpu_n);
13438 
13439 	/* STORMs firmware */
13440 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13441 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13442 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13443 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13444 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13445 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13446 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13447 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
13448 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13449 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13450 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13451 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13452 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13453 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13454 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13455 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
13456 	/* IRO */
13457 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13458 
13459 	return 0;
13460 
13461 iro_alloc_err:
13462 	kfree(bp->init_ops_offsets);
13463 init_offsets_alloc_err:
13464 	kfree(bp->init_ops);
13465 init_ops_alloc_err:
13466 	kfree(bp->init_data);
13467 request_firmware_exit:
13468 	release_firmware(bp->firmware);
13469 	bp->firmware = NULL;
13470 
13471 	return rc;
13472 }
13473 
13474 static void bnx2x_release_firmware(struct bnx2x *bp)
13475 {
13476 	kfree(bp->init_ops_offsets);
13477 	kfree(bp->init_ops);
13478 	kfree(bp->init_data);
13479 	release_firmware(bp->firmware);
13480 	bp->firmware = NULL;
13481 }
13482 
13483 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13484 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13485 	.init_hw_cmn      = bnx2x_init_hw_common,
13486 	.init_hw_port     = bnx2x_init_hw_port,
13487 	.init_hw_func     = bnx2x_init_hw_func,
13488 
13489 	.reset_hw_cmn     = bnx2x_reset_common,
13490 	.reset_hw_port    = bnx2x_reset_port,
13491 	.reset_hw_func    = bnx2x_reset_func,
13492 
13493 	.gunzip_init      = bnx2x_gunzip_init,
13494 	.gunzip_end       = bnx2x_gunzip_end,
13495 
13496 	.init_fw          = bnx2x_init_firmware,
13497 	.release_fw       = bnx2x_release_firmware,
13498 };
13499 
13500 void bnx2x__init_func_obj(struct bnx2x *bp)
13501 {
13502 	/* Prepare DMAE related driver resources */
13503 	bnx2x_setup_dmae(bp);
13504 
13505 	bnx2x_init_func_obj(bp, &bp->func_obj,
13506 			    bnx2x_sp(bp, func_rdata),
13507 			    bnx2x_sp_mapping(bp, func_rdata),
13508 			    bnx2x_sp(bp, func_afex_rdata),
13509 			    bnx2x_sp_mapping(bp, func_afex_rdata),
13510 			    &bnx2x_func_sp_drv);
13511 }
13512 
13513 /* must be called after sriov-enable */
13514 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13515 {
13516 	int cid_count = BNX2X_L2_MAX_CID(bp);
13517 
13518 	if (IS_SRIOV(bp))
13519 		cid_count += BNX2X_VF_CIDS;
13520 
13521 	if (CNIC_SUPPORT(bp))
13522 		cid_count += CNIC_CID_MAX;
13523 
13524 	return roundup(cid_count, QM_CID_ROUND);
13525 }
13526 
13527 /**
13528  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13529  *
13530  * @dev:	pci device
13531  *
13532  */
13533 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13534 {
13535 	int index;
13536 	u16 control = 0;
13537 
13538 	/*
13539 	 * If MSI-X is not supported - return number of SBs needed to support
13540 	 * one fast path queue: one FP queue + SB for CNIC
13541 	 */
13542 	if (!pdev->msix_cap) {
13543 		dev_info(&pdev->dev, "no msix capability found\n");
13544 		return 1 + cnic_cnt;
13545 	}
13546 	dev_info(&pdev->dev, "msix capability found\n");
13547 
13548 	/*
13549 	 * The value in the PCI configuration space is the index of the last
13550 	 * entry, namely one less than the actual size of the table, which is
13551 	 * exactly what we want to return from this function: number of all SBs
13552 	 * without the default SB.
13553 	 * For VFs there is no default SB, then we return (index+1).
13554 	 */
13555 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13556 
13557 	index = control & PCI_MSIX_FLAGS_QSIZE;
13558 
13559 	return index;
13560 }
13561 
13562 static int set_max_cos_est(int chip_id)
13563 {
13564 	switch (chip_id) {
13565 	case BCM57710:
13566 	case BCM57711:
13567 	case BCM57711E:
13568 		return BNX2X_MULTI_TX_COS_E1X;
13569 	case BCM57712:
13570 	case BCM57712_MF:
13571 		return BNX2X_MULTI_TX_COS_E2_E3A0;
13572 	case BCM57800:
13573 	case BCM57800_MF:
13574 	case BCM57810:
13575 	case BCM57810_MF:
13576 	case BCM57840_4_10:
13577 	case BCM57840_2_20:
13578 	case BCM57840_O:
13579 	case BCM57840_MFO:
13580 	case BCM57840_MF:
13581 	case BCM57811:
13582 	case BCM57811_MF:
13583 		return BNX2X_MULTI_TX_COS_E3B0;
13584 	case BCM57712_VF:
13585 	case BCM57800_VF:
13586 	case BCM57810_VF:
13587 	case BCM57840_VF:
13588 	case BCM57811_VF:
13589 		return 1;
13590 	default:
13591 		pr_err("Unknown board_type (%d), aborting\n", chip_id);
13592 		return -ENODEV;
13593 	}
13594 }
13595 
13596 static int set_is_vf(int chip_id)
13597 {
13598 	switch (chip_id) {
13599 	case BCM57712_VF:
13600 	case BCM57800_VF:
13601 	case BCM57810_VF:
13602 	case BCM57840_VF:
13603 	case BCM57811_VF:
13604 		return true;
13605 	default:
13606 		return false;
13607 	}
13608 }
13609 
13610 /* nig_tsgen registers relative address */
13611 #define tsgen_ctrl 0x0
13612 #define tsgen_freecount 0x10
13613 #define tsgen_synctime_t0 0x20
13614 #define tsgen_offset_t0 0x28
13615 #define tsgen_drift_t0 0x30
13616 #define tsgen_synctime_t1 0x58
13617 #define tsgen_offset_t1 0x60
13618 #define tsgen_drift_t1 0x68
13619 
13620 /* FW workaround for setting drift */
13621 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13622 					  int best_val, int best_period)
13623 {
13624 	struct bnx2x_func_state_params func_params = {NULL};
13625 	struct bnx2x_func_set_timesync_params *set_timesync_params =
13626 		&func_params.params.set_timesync;
13627 
13628 	/* Prepare parameters for function state transitions */
13629 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13630 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13631 
13632 	func_params.f_obj = &bp->func_obj;
13633 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13634 
13635 	/* Function parameters */
13636 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13637 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13638 	set_timesync_params->add_sub_drift_adjust_value =
13639 		drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13640 	set_timesync_params->drift_adjust_value = best_val;
13641 	set_timesync_params->drift_adjust_period = best_period;
13642 
13643 	return bnx2x_func_state_change(bp, &func_params);
13644 }
13645 
13646 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13647 {
13648 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13649 	int rc;
13650 	int drift_dir = 1;
13651 	int val, period, period1, period2, dif, dif1, dif2;
13652 	int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13653 
13654 	DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13655 
13656 	if (!netif_running(bp->dev)) {
13657 		DP(BNX2X_MSG_PTP,
13658 		   "PTP adjfreq called while the interface is down\n");
13659 		return -EFAULT;
13660 	}
13661 
13662 	if (ppb < 0) {
13663 		ppb = -ppb;
13664 		drift_dir = 0;
13665 	}
13666 
13667 	if (ppb == 0) {
13668 		best_val = 1;
13669 		best_period = 0x1FFFFFF;
13670 	} else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13671 		best_val = 31;
13672 		best_period = 1;
13673 	} else {
13674 		/* Changed not to allow val = 8, 16, 24 as these values
13675 		 * are not supported in workaround.
13676 		 */
13677 		for (val = 0; val <= 31; val++) {
13678 			if ((val & 0x7) == 0)
13679 				continue;
13680 			period1 = val * 1000000 / ppb;
13681 			period2 = period1 + 1;
13682 			if (period1 != 0)
13683 				dif1 = ppb - (val * 1000000 / period1);
13684 			else
13685 				dif1 = BNX2X_MAX_PHC_DRIFT;
13686 			if (dif1 < 0)
13687 				dif1 = -dif1;
13688 			dif2 = ppb - (val * 1000000 / period2);
13689 			if (dif2 < 0)
13690 				dif2 = -dif2;
13691 			dif = (dif1 < dif2) ? dif1 : dif2;
13692 			period = (dif1 < dif2) ? period1 : period2;
13693 			if (dif < best_dif) {
13694 				best_dif = dif;
13695 				best_val = val;
13696 				best_period = period;
13697 			}
13698 		}
13699 	}
13700 
13701 	rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13702 					    best_period);
13703 	if (rc) {
13704 		BNX2X_ERR("Failed to set drift\n");
13705 		return -EFAULT;
13706 	}
13707 
13708 	DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13709 	   best_period);
13710 
13711 	return 0;
13712 }
13713 
13714 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13715 {
13716 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13717 
13718 	DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13719 
13720 	timecounter_adjtime(&bp->timecounter, delta);
13721 
13722 	return 0;
13723 }
13724 
13725 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13726 {
13727 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13728 	u64 ns;
13729 
13730 	ns = timecounter_read(&bp->timecounter);
13731 
13732 	DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13733 
13734 	*ts = ns_to_timespec64(ns);
13735 
13736 	return 0;
13737 }
13738 
13739 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13740 			     const struct timespec64 *ts)
13741 {
13742 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13743 	u64 ns;
13744 
13745 	ns = timespec64_to_ns(ts);
13746 
13747 	DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13748 
13749 	/* Re-init the timecounter */
13750 	timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13751 
13752 	return 0;
13753 }
13754 
13755 /* Enable (or disable) ancillary features of the phc subsystem */
13756 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13757 			    struct ptp_clock_request *rq, int on)
13758 {
13759 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13760 
13761 	BNX2X_ERR("PHC ancillary features are not supported\n");
13762 	return -ENOTSUPP;
13763 }
13764 
13765 static void bnx2x_register_phc(struct bnx2x *bp)
13766 {
13767 	/* Fill the ptp_clock_info struct and register PTP clock*/
13768 	bp->ptp_clock_info.owner = THIS_MODULE;
13769 	snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13770 	bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13771 	bp->ptp_clock_info.n_alarm = 0;
13772 	bp->ptp_clock_info.n_ext_ts = 0;
13773 	bp->ptp_clock_info.n_per_out = 0;
13774 	bp->ptp_clock_info.pps = 0;
13775 	bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13776 	bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13777 	bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13778 	bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13779 	bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13780 
13781 	bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13782 	if (IS_ERR(bp->ptp_clock)) {
13783 		bp->ptp_clock = NULL;
13784 		BNX2X_ERR("PTP clock registeration failed\n");
13785 	}
13786 }
13787 
13788 static int bnx2x_init_one(struct pci_dev *pdev,
13789 				    const struct pci_device_id *ent)
13790 {
13791 	struct net_device *dev = NULL;
13792 	struct bnx2x *bp;
13793 	enum pcie_link_width pcie_width;
13794 	enum pci_bus_speed pcie_speed;
13795 	int rc, max_non_def_sbs;
13796 	int rx_count, tx_count, rss_count, doorbell_size;
13797 	int max_cos_est;
13798 	bool is_vf;
13799 	int cnic_cnt;
13800 
13801 	/* Management FW 'remembers' living interfaces. Allow it some time
13802 	 * to forget previously living interfaces, allowing a proper re-load.
13803 	 */
13804 	if (is_kdump_kernel()) {
13805 		ktime_t now = ktime_get_boottime();
13806 		ktime_t fw_ready_time = ktime_set(5, 0);
13807 
13808 		if (ktime_before(now, fw_ready_time))
13809 			msleep(ktime_ms_delta(fw_ready_time, now));
13810 	}
13811 
13812 	/* An estimated maximum supported CoS number according to the chip
13813 	 * version.
13814 	 * We will try to roughly estimate the maximum number of CoSes this chip
13815 	 * may support in order to minimize the memory allocated for Tx
13816 	 * netdev_queue's. This number will be accurately calculated during the
13817 	 * initialization of bp->max_cos based on the chip versions AND chip
13818 	 * revision in the bnx2x_init_bp().
13819 	 */
13820 	max_cos_est = set_max_cos_est(ent->driver_data);
13821 	if (max_cos_est < 0)
13822 		return max_cos_est;
13823 	is_vf = set_is_vf(ent->driver_data);
13824 	cnic_cnt = is_vf ? 0 : 1;
13825 
13826 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13827 
13828 	/* add another SB for VF as it has no default SB */
13829 	max_non_def_sbs += is_vf ? 1 : 0;
13830 
13831 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
13832 	rss_count = max_non_def_sbs - cnic_cnt;
13833 
13834 	if (rss_count < 1)
13835 		return -EINVAL;
13836 
13837 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13838 	rx_count = rss_count + cnic_cnt;
13839 
13840 	/* Maximum number of netdev Tx queues:
13841 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13842 	 */
13843 	tx_count = rss_count * max_cos_est + cnic_cnt;
13844 
13845 	/* dev zeroed in init_etherdev */
13846 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13847 	if (!dev)
13848 		return -ENOMEM;
13849 
13850 	bp = netdev_priv(dev);
13851 
13852 	bp->flags = 0;
13853 	if (is_vf)
13854 		bp->flags |= IS_VF_FLAG;
13855 
13856 	bp->igu_sb_cnt = max_non_def_sbs;
13857 	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13858 	bp->msg_enable = debug;
13859 	bp->cnic_support = cnic_cnt;
13860 	bp->cnic_probe = bnx2x_cnic_probe;
13861 
13862 	pci_set_drvdata(pdev, dev);
13863 
13864 	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13865 	if (rc < 0) {
13866 		free_netdev(dev);
13867 		return rc;
13868 	}
13869 
13870 	BNX2X_DEV_INFO("This is a %s function\n",
13871 		       IS_PF(bp) ? "physical" : "virtual");
13872 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13873 	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13874 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13875 		       tx_count, rx_count);
13876 
13877 	rc = bnx2x_init_bp(bp);
13878 	if (rc)
13879 		goto init_one_exit;
13880 
13881 	/* Map doorbells here as we need the real value of bp->max_cos which
13882 	 * is initialized in bnx2x_init_bp() to determine the number of
13883 	 * l2 connections.
13884 	 */
13885 	if (IS_VF(bp)) {
13886 		bp->doorbells = bnx2x_vf_doorbells(bp);
13887 		rc = bnx2x_vf_pci_alloc(bp);
13888 		if (rc)
13889 			goto init_one_freemem;
13890 	} else {
13891 		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13892 		if (doorbell_size > pci_resource_len(pdev, 2)) {
13893 			dev_err(&bp->pdev->dev,
13894 				"Cannot map doorbells, bar size too small, aborting\n");
13895 			rc = -ENOMEM;
13896 			goto init_one_freemem;
13897 		}
13898 		bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
13899 						doorbell_size);
13900 	}
13901 	if (!bp->doorbells) {
13902 		dev_err(&bp->pdev->dev,
13903 			"Cannot map doorbell space, aborting\n");
13904 		rc = -ENOMEM;
13905 		goto init_one_freemem;
13906 	}
13907 
13908 	if (IS_VF(bp)) {
13909 		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13910 		if (rc)
13911 			goto init_one_freemem;
13912 	}
13913 
13914 	/* Enable SRIOV if capability found in configuration space */
13915 	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13916 	if (rc)
13917 		goto init_one_freemem;
13918 
13919 	/* calc qm_cid_count */
13920 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13921 	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13922 
13923 	/* disable FCOE L2 queue for E1x*/
13924 	if (CHIP_IS_E1x(bp))
13925 		bp->flags |= NO_FCOE_FLAG;
13926 
13927 	/* Set bp->num_queues for MSI-X mode*/
13928 	bnx2x_set_num_queues(bp);
13929 
13930 	/* Configure interrupt mode: try to enable MSI-X/MSI if
13931 	 * needed.
13932 	 */
13933 	rc = bnx2x_set_int_mode(bp);
13934 	if (rc) {
13935 		dev_err(&pdev->dev, "Cannot set interrupts\n");
13936 		goto init_one_freemem;
13937 	}
13938 	BNX2X_DEV_INFO("set interrupts successfully\n");
13939 
13940 	/* register the net device */
13941 	rc = register_netdev(dev);
13942 	if (rc) {
13943 		dev_err(&pdev->dev, "Cannot register net device\n");
13944 		goto init_one_freemem;
13945 	}
13946 	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13947 
13948 	if (!NO_FCOE(bp)) {
13949 		/* Add storage MAC address */
13950 		rtnl_lock();
13951 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13952 		rtnl_unlock();
13953 	}
13954 	if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
13955 	    pcie_speed == PCI_SPEED_UNKNOWN ||
13956 	    pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
13957 		BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
13958 	else
13959 		BNX2X_DEV_INFO(
13960 		       "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
13961 		       board_info[ent->driver_data].name,
13962 		       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13963 		       pcie_width,
13964 		       pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
13965 		       pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
13966 		       pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
13967 		       "Unknown",
13968 		       dev->base_addr, bp->pdev->irq, dev->dev_addr);
13969 
13970 	bnx2x_register_phc(bp);
13971 
13972 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
13973 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
13974 
13975 	return 0;
13976 
13977 init_one_freemem:
13978 	bnx2x_free_mem_bp(bp);
13979 
13980 init_one_exit:
13981 	bnx2x_disable_pcie_error_reporting(bp);
13982 
13983 	if (bp->regview)
13984 		iounmap(bp->regview);
13985 
13986 	if (IS_PF(bp) && bp->doorbells)
13987 		iounmap(bp->doorbells);
13988 
13989 	free_netdev(dev);
13990 
13991 	if (atomic_read(&pdev->enable_cnt) == 1)
13992 		pci_release_regions(pdev);
13993 
13994 	pci_disable_device(pdev);
13995 
13996 	return rc;
13997 }
13998 
13999 static void __bnx2x_remove(struct pci_dev *pdev,
14000 			   struct net_device *dev,
14001 			   struct bnx2x *bp,
14002 			   bool remove_netdev)
14003 {
14004 	if (bp->ptp_clock) {
14005 		ptp_clock_unregister(bp->ptp_clock);
14006 		bp->ptp_clock = NULL;
14007 	}
14008 
14009 	/* Delete storage MAC address */
14010 	if (!NO_FCOE(bp)) {
14011 		rtnl_lock();
14012 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14013 		rtnl_unlock();
14014 	}
14015 
14016 #ifdef BCM_DCBNL
14017 	/* Delete app tlvs from dcbnl */
14018 	bnx2x_dcbnl_update_applist(bp, true);
14019 #endif
14020 
14021 	if (IS_PF(bp) &&
14022 	    !BP_NOMCP(bp) &&
14023 	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14024 		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14025 
14026 	/* Close the interface - either directly or implicitly */
14027 	if (remove_netdev) {
14028 		unregister_netdev(dev);
14029 	} else {
14030 		rtnl_lock();
14031 		dev_close(dev);
14032 		rtnl_unlock();
14033 	}
14034 
14035 	bnx2x_iov_remove_one(bp);
14036 
14037 	/* Power on: we can't let PCI layer write to us while we are in D3 */
14038 	if (IS_PF(bp)) {
14039 		bnx2x_set_power_state(bp, PCI_D0);
14040 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14041 
14042 		/* Set endianity registers to reset values in case next driver
14043 		 * boots in different endianty environment.
14044 		 */
14045 		bnx2x_reset_endianity(bp);
14046 	}
14047 
14048 	/* Disable MSI/MSI-X */
14049 	bnx2x_disable_msi(bp);
14050 
14051 	/* Power off */
14052 	if (IS_PF(bp))
14053 		bnx2x_set_power_state(bp, PCI_D3hot);
14054 
14055 	/* Make sure RESET task is not scheduled before continuing */
14056 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
14057 
14058 	/* send message via vfpf channel to release the resources of this vf */
14059 	if (IS_VF(bp))
14060 		bnx2x_vfpf_release(bp);
14061 
14062 	/* Assumes no further PCIe PM changes will occur */
14063 	if (system_state == SYSTEM_POWER_OFF) {
14064 		pci_wake_from_d3(pdev, bp->wol);
14065 		pci_set_power_state(pdev, PCI_D3hot);
14066 	}
14067 
14068 	bnx2x_disable_pcie_error_reporting(bp);
14069 	if (remove_netdev) {
14070 		if (bp->regview)
14071 			iounmap(bp->regview);
14072 
14073 		/* For vfs, doorbells are part of the regview and were unmapped
14074 		 * along with it. FW is only loaded by PF.
14075 		 */
14076 		if (IS_PF(bp)) {
14077 			if (bp->doorbells)
14078 				iounmap(bp->doorbells);
14079 
14080 			bnx2x_release_firmware(bp);
14081 		} else {
14082 			bnx2x_vf_pci_dealloc(bp);
14083 		}
14084 		bnx2x_free_mem_bp(bp);
14085 
14086 		free_netdev(dev);
14087 
14088 		if (atomic_read(&pdev->enable_cnt) == 1)
14089 			pci_release_regions(pdev);
14090 
14091 		pci_disable_device(pdev);
14092 	}
14093 }
14094 
14095 static void bnx2x_remove_one(struct pci_dev *pdev)
14096 {
14097 	struct net_device *dev = pci_get_drvdata(pdev);
14098 	struct bnx2x *bp;
14099 
14100 	if (!dev) {
14101 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14102 		return;
14103 	}
14104 	bp = netdev_priv(dev);
14105 
14106 	__bnx2x_remove(pdev, dev, bp, true);
14107 }
14108 
14109 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14110 {
14111 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14112 
14113 	bp->rx_mode = BNX2X_RX_MODE_NONE;
14114 
14115 	if (CNIC_LOADED(bp))
14116 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14117 
14118 	/* Stop Tx */
14119 	bnx2x_tx_disable(bp);
14120 	/* Delete all NAPI objects */
14121 	bnx2x_del_all_napi(bp);
14122 	if (CNIC_LOADED(bp))
14123 		bnx2x_del_all_napi_cnic(bp);
14124 	netdev_reset_tc(bp->dev);
14125 
14126 	del_timer_sync(&bp->timer);
14127 	cancel_delayed_work_sync(&bp->sp_task);
14128 	cancel_delayed_work_sync(&bp->period_task);
14129 
14130 	if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14131 		bp->stats_state = STATS_STATE_DISABLED;
14132 		up(&bp->stats_lock);
14133 	}
14134 
14135 	bnx2x_save_statistics(bp);
14136 
14137 	netif_carrier_off(bp->dev);
14138 
14139 	return 0;
14140 }
14141 
14142 /**
14143  * bnx2x_io_error_detected - called when PCI error is detected
14144  * @pdev: Pointer to PCI device
14145  * @state: The current pci connection state
14146  *
14147  * This function is called after a PCI bus error affecting
14148  * this device has been detected.
14149  */
14150 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14151 						pci_channel_state_t state)
14152 {
14153 	struct net_device *dev = pci_get_drvdata(pdev);
14154 	struct bnx2x *bp = netdev_priv(dev);
14155 
14156 	rtnl_lock();
14157 
14158 	BNX2X_ERR("IO error detected\n");
14159 
14160 	netif_device_detach(dev);
14161 
14162 	if (state == pci_channel_io_perm_failure) {
14163 		rtnl_unlock();
14164 		return PCI_ERS_RESULT_DISCONNECT;
14165 	}
14166 
14167 	if (netif_running(dev))
14168 		bnx2x_eeh_nic_unload(bp);
14169 
14170 	bnx2x_prev_path_mark_eeh(bp);
14171 
14172 	pci_disable_device(pdev);
14173 
14174 	rtnl_unlock();
14175 
14176 	/* Request a slot reset */
14177 	return PCI_ERS_RESULT_NEED_RESET;
14178 }
14179 
14180 /**
14181  * bnx2x_io_slot_reset - called after the PCI bus has been reset
14182  * @pdev: Pointer to PCI device
14183  *
14184  * Restart the card from scratch, as if from a cold-boot.
14185  */
14186 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14187 {
14188 	struct net_device *dev = pci_get_drvdata(pdev);
14189 	struct bnx2x *bp = netdev_priv(dev);
14190 	int i;
14191 
14192 	rtnl_lock();
14193 	BNX2X_ERR("IO slot reset initializing...\n");
14194 	if (pci_enable_device(pdev)) {
14195 		dev_err(&pdev->dev,
14196 			"Cannot re-enable PCI device after reset\n");
14197 		rtnl_unlock();
14198 		return PCI_ERS_RESULT_DISCONNECT;
14199 	}
14200 
14201 	pci_set_master(pdev);
14202 	pci_restore_state(pdev);
14203 	pci_save_state(pdev);
14204 
14205 	if (netif_running(dev))
14206 		bnx2x_set_power_state(bp, PCI_D0);
14207 
14208 	if (netif_running(dev)) {
14209 		BNX2X_ERR("IO slot reset --> driver unload\n");
14210 
14211 		/* MCP should have been reset; Need to wait for validity */
14212 		bnx2x_init_shmem(bp);
14213 
14214 		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14215 			u32 v;
14216 
14217 			v = SHMEM2_RD(bp,
14218 				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14219 			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14220 				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14221 		}
14222 		bnx2x_drain_tx_queues(bp);
14223 		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14224 		bnx2x_netif_stop(bp, 1);
14225 		bnx2x_free_irq(bp);
14226 
14227 		/* Report UNLOAD_DONE to MCP */
14228 		bnx2x_send_unload_done(bp, true);
14229 
14230 		bp->sp_state = 0;
14231 		bp->port.pmf = 0;
14232 
14233 		bnx2x_prev_unload(bp);
14234 
14235 		/* We should have reseted the engine, so It's fair to
14236 		 * assume the FW will no longer write to the bnx2x driver.
14237 		 */
14238 		bnx2x_squeeze_objects(bp);
14239 		bnx2x_free_skbs(bp);
14240 		for_each_rx_queue(bp, i)
14241 			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14242 		bnx2x_free_fp_mem(bp);
14243 		bnx2x_free_mem(bp);
14244 
14245 		bp->state = BNX2X_STATE_CLOSED;
14246 	}
14247 
14248 	rtnl_unlock();
14249 
14250 	/* If AER, perform cleanup of the PCIe registers */
14251 	if (bp->flags & AER_ENABLED) {
14252 		if (pci_cleanup_aer_uncorrect_error_status(pdev))
14253 			BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
14254 		else
14255 			DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
14256 	}
14257 
14258 	return PCI_ERS_RESULT_RECOVERED;
14259 }
14260 
14261 /**
14262  * bnx2x_io_resume - called when traffic can start flowing again
14263  * @pdev: Pointer to PCI device
14264  *
14265  * This callback is called when the error recovery driver tells us that
14266  * its OK to resume normal operation.
14267  */
14268 static void bnx2x_io_resume(struct pci_dev *pdev)
14269 {
14270 	struct net_device *dev = pci_get_drvdata(pdev);
14271 	struct bnx2x *bp = netdev_priv(dev);
14272 
14273 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14274 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14275 		return;
14276 	}
14277 
14278 	rtnl_lock();
14279 
14280 	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14281 							DRV_MSG_SEQ_NUMBER_MASK;
14282 
14283 	if (netif_running(dev))
14284 		bnx2x_nic_load(bp, LOAD_NORMAL);
14285 
14286 	netif_device_attach(dev);
14287 
14288 	rtnl_unlock();
14289 }
14290 
14291 static const struct pci_error_handlers bnx2x_err_handler = {
14292 	.error_detected = bnx2x_io_error_detected,
14293 	.slot_reset     = bnx2x_io_slot_reset,
14294 	.resume         = bnx2x_io_resume,
14295 };
14296 
14297 static void bnx2x_shutdown(struct pci_dev *pdev)
14298 {
14299 	struct net_device *dev = pci_get_drvdata(pdev);
14300 	struct bnx2x *bp;
14301 
14302 	if (!dev)
14303 		return;
14304 
14305 	bp = netdev_priv(dev);
14306 	if (!bp)
14307 		return;
14308 
14309 	rtnl_lock();
14310 	netif_device_detach(dev);
14311 	rtnl_unlock();
14312 
14313 	/* Don't remove the netdevice, as there are scenarios which will cause
14314 	 * the kernel to hang, e.g., when trying to remove bnx2i while the
14315 	 * rootfs is mounted from SAN.
14316 	 */
14317 	__bnx2x_remove(pdev, dev, bp, false);
14318 }
14319 
14320 static struct pci_driver bnx2x_pci_driver = {
14321 	.name        = DRV_MODULE_NAME,
14322 	.id_table    = bnx2x_pci_tbl,
14323 	.probe       = bnx2x_init_one,
14324 	.remove      = bnx2x_remove_one,
14325 	.suspend     = bnx2x_suspend,
14326 	.resume      = bnx2x_resume,
14327 	.err_handler = &bnx2x_err_handler,
14328 #ifdef CONFIG_BNX2X_SRIOV
14329 	.sriov_configure = bnx2x_sriov_configure,
14330 #endif
14331 	.shutdown    = bnx2x_shutdown,
14332 };
14333 
14334 static int __init bnx2x_init(void)
14335 {
14336 	int ret;
14337 
14338 	pr_info("%s", version);
14339 
14340 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
14341 	if (bnx2x_wq == NULL) {
14342 		pr_err("Cannot create workqueue\n");
14343 		return -ENOMEM;
14344 	}
14345 	bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14346 	if (!bnx2x_iov_wq) {
14347 		pr_err("Cannot create iov workqueue\n");
14348 		destroy_workqueue(bnx2x_wq);
14349 		return -ENOMEM;
14350 	}
14351 
14352 	ret = pci_register_driver(&bnx2x_pci_driver);
14353 	if (ret) {
14354 		pr_err("Cannot register driver\n");
14355 		destroy_workqueue(bnx2x_wq);
14356 		destroy_workqueue(bnx2x_iov_wq);
14357 	}
14358 	return ret;
14359 }
14360 
14361 static void __exit bnx2x_cleanup(void)
14362 {
14363 	struct list_head *pos, *q;
14364 
14365 	pci_unregister_driver(&bnx2x_pci_driver);
14366 
14367 	destroy_workqueue(bnx2x_wq);
14368 	destroy_workqueue(bnx2x_iov_wq);
14369 
14370 	/* Free globally allocated resources */
14371 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
14372 		struct bnx2x_prev_path_list *tmp =
14373 			list_entry(pos, struct bnx2x_prev_path_list, list);
14374 		list_del(pos);
14375 		kfree(tmp);
14376 	}
14377 }
14378 
14379 void bnx2x_notify_link_changed(struct bnx2x *bp)
14380 {
14381 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14382 }
14383 
14384 module_init(bnx2x_init);
14385 module_exit(bnx2x_cleanup);
14386 
14387 /**
14388  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14389  *
14390  * @bp:		driver handle
14391  * @set:	set or clear the CAM entry
14392  *
14393  * This function will wait until the ramrod completion returns.
14394  * Return 0 if success, -ENODEV if ramrod doesn't return.
14395  */
14396 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14397 {
14398 	unsigned long ramrod_flags = 0;
14399 
14400 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14401 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14402 				 &bp->iscsi_l2_mac_obj, true,
14403 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14404 }
14405 
14406 /* count denotes the number of new completions we have seen */
14407 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14408 {
14409 	struct eth_spe *spe;
14410 	int cxt_index, cxt_offset;
14411 
14412 #ifdef BNX2X_STOP_ON_ERROR
14413 	if (unlikely(bp->panic))
14414 		return;
14415 #endif
14416 
14417 	spin_lock_bh(&bp->spq_lock);
14418 	BUG_ON(bp->cnic_spq_pending < count);
14419 	bp->cnic_spq_pending -= count;
14420 
14421 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14422 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14423 				& SPE_HDR_CONN_TYPE) >>
14424 				SPE_HDR_CONN_TYPE_SHIFT;
14425 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14426 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14427 
14428 		/* Set validation for iSCSI L2 client before sending SETUP
14429 		 *  ramrod
14430 		 */
14431 		if (type == ETH_CONNECTION_TYPE) {
14432 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14433 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14434 					ILT_PAGE_CIDS;
14435 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14436 					(cxt_index * ILT_PAGE_CIDS);
14437 				bnx2x_set_ctx_validation(bp,
14438 					&bp->context[cxt_index].
14439 							 vcxt[cxt_offset].eth,
14440 					BNX2X_ISCSI_ETH_CID(bp));
14441 			}
14442 		}
14443 
14444 		/*
14445 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
14446 		 * and in the air. We also check that number of outstanding
14447 		 * COMMON ramrods is not more than the EQ and SPQ can
14448 		 * accommodate.
14449 		 */
14450 		if (type == ETH_CONNECTION_TYPE) {
14451 			if (!atomic_read(&bp->cq_spq_left))
14452 				break;
14453 			else
14454 				atomic_dec(&bp->cq_spq_left);
14455 		} else if (type == NONE_CONNECTION_TYPE) {
14456 			if (!atomic_read(&bp->eq_spq_left))
14457 				break;
14458 			else
14459 				atomic_dec(&bp->eq_spq_left);
14460 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
14461 			   (type == FCOE_CONNECTION_TYPE)) {
14462 			if (bp->cnic_spq_pending >=
14463 			    bp->cnic_eth_dev.max_kwqe_pending)
14464 				break;
14465 			else
14466 				bp->cnic_spq_pending++;
14467 		} else {
14468 			BNX2X_ERR("Unknown SPE type: %d\n", type);
14469 			bnx2x_panic();
14470 			break;
14471 		}
14472 
14473 		spe = bnx2x_sp_get_next(bp);
14474 		*spe = *bp->cnic_kwq_cons;
14475 
14476 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14477 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14478 
14479 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14480 			bp->cnic_kwq_cons = bp->cnic_kwq;
14481 		else
14482 			bp->cnic_kwq_cons++;
14483 	}
14484 	bnx2x_sp_prod_update(bp);
14485 	spin_unlock_bh(&bp->spq_lock);
14486 }
14487 
14488 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14489 			       struct kwqe_16 *kwqes[], u32 count)
14490 {
14491 	struct bnx2x *bp = netdev_priv(dev);
14492 	int i;
14493 
14494 #ifdef BNX2X_STOP_ON_ERROR
14495 	if (unlikely(bp->panic)) {
14496 		BNX2X_ERR("Can't post to SP queue while panic\n");
14497 		return -EIO;
14498 	}
14499 #endif
14500 
14501 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14502 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14503 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
14504 		return -EAGAIN;
14505 	}
14506 
14507 	spin_lock_bh(&bp->spq_lock);
14508 
14509 	for (i = 0; i < count; i++) {
14510 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14511 
14512 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14513 			break;
14514 
14515 		*bp->cnic_kwq_prod = *spe;
14516 
14517 		bp->cnic_kwq_pending++;
14518 
14519 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14520 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
14521 		   spe->data.update_data_addr.hi,
14522 		   spe->data.update_data_addr.lo,
14523 		   bp->cnic_kwq_pending);
14524 
14525 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14526 			bp->cnic_kwq_prod = bp->cnic_kwq;
14527 		else
14528 			bp->cnic_kwq_prod++;
14529 	}
14530 
14531 	spin_unlock_bh(&bp->spq_lock);
14532 
14533 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14534 		bnx2x_cnic_sp_post(bp, 0);
14535 
14536 	return i;
14537 }
14538 
14539 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14540 {
14541 	struct cnic_ops *c_ops;
14542 	int rc = 0;
14543 
14544 	mutex_lock(&bp->cnic_mutex);
14545 	c_ops = rcu_dereference_protected(bp->cnic_ops,
14546 					  lockdep_is_held(&bp->cnic_mutex));
14547 	if (c_ops)
14548 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14549 	mutex_unlock(&bp->cnic_mutex);
14550 
14551 	return rc;
14552 }
14553 
14554 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14555 {
14556 	struct cnic_ops *c_ops;
14557 	int rc = 0;
14558 
14559 	rcu_read_lock();
14560 	c_ops = rcu_dereference(bp->cnic_ops);
14561 	if (c_ops)
14562 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14563 	rcu_read_unlock();
14564 
14565 	return rc;
14566 }
14567 
14568 /*
14569  * for commands that have no data
14570  */
14571 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14572 {
14573 	struct cnic_ctl_info ctl = {0};
14574 
14575 	ctl.cmd = cmd;
14576 
14577 	return bnx2x_cnic_ctl_send(bp, &ctl);
14578 }
14579 
14580 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14581 {
14582 	struct cnic_ctl_info ctl = {0};
14583 
14584 	/* first we tell CNIC and only then we count this as a completion */
14585 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14586 	ctl.data.comp.cid = cid;
14587 	ctl.data.comp.error = err;
14588 
14589 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
14590 	bnx2x_cnic_sp_post(bp, 0);
14591 }
14592 
14593 /* Called with netif_addr_lock_bh() taken.
14594  * Sets an rx_mode config for an iSCSI ETH client.
14595  * Doesn't block.
14596  * Completion should be checked outside.
14597  */
14598 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14599 {
14600 	unsigned long accept_flags = 0, ramrod_flags = 0;
14601 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14602 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14603 
14604 	if (start) {
14605 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
14606 		 * because it's the only way for UIO Queue to accept
14607 		 * multicasts (in non-promiscuous mode only one Queue per
14608 		 * function will receive multicast packets (leading in our
14609 		 * case).
14610 		 */
14611 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14612 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14613 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14614 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14615 
14616 		/* Clear STOP_PENDING bit if START is requested */
14617 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14618 
14619 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14620 	} else
14621 		/* Clear START_PENDING bit if STOP is requested */
14622 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14623 
14624 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14625 		set_bit(sched_state, &bp->sp_state);
14626 	else {
14627 		__set_bit(RAMROD_RX, &ramrod_flags);
14628 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14629 				    ramrod_flags);
14630 	}
14631 }
14632 
14633 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14634 {
14635 	struct bnx2x *bp = netdev_priv(dev);
14636 	int rc = 0;
14637 
14638 	switch (ctl->cmd) {
14639 	case DRV_CTL_CTXTBL_WR_CMD: {
14640 		u32 index = ctl->data.io.offset;
14641 		dma_addr_t addr = ctl->data.io.dma_addr;
14642 
14643 		bnx2x_ilt_wr(bp, index, addr);
14644 		break;
14645 	}
14646 
14647 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14648 		int count = ctl->data.credit.credit_count;
14649 
14650 		bnx2x_cnic_sp_post(bp, count);
14651 		break;
14652 	}
14653 
14654 	/* rtnl_lock is held.  */
14655 	case DRV_CTL_START_L2_CMD: {
14656 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14657 		unsigned long sp_bits = 0;
14658 
14659 		/* Configure the iSCSI classification object */
14660 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14661 				   cp->iscsi_l2_client_id,
14662 				   cp->iscsi_l2_cid, BP_FUNC(bp),
14663 				   bnx2x_sp(bp, mac_rdata),
14664 				   bnx2x_sp_mapping(bp, mac_rdata),
14665 				   BNX2X_FILTER_MAC_PENDING,
14666 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14667 				   &bp->macs_pool);
14668 
14669 		/* Set iSCSI MAC address */
14670 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14671 		if (rc)
14672 			break;
14673 
14674 		mmiowb();
14675 		barrier();
14676 
14677 		/* Start accepting on iSCSI L2 ring */
14678 
14679 		netif_addr_lock_bh(dev);
14680 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
14681 		netif_addr_unlock_bh(dev);
14682 
14683 		/* bits to wait on */
14684 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14685 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14686 
14687 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14688 			BNX2X_ERR("rx_mode completion timed out!\n");
14689 
14690 		break;
14691 	}
14692 
14693 	/* rtnl_lock is held.  */
14694 	case DRV_CTL_STOP_L2_CMD: {
14695 		unsigned long sp_bits = 0;
14696 
14697 		/* Stop accepting on iSCSI L2 ring */
14698 		netif_addr_lock_bh(dev);
14699 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
14700 		netif_addr_unlock_bh(dev);
14701 
14702 		/* bits to wait on */
14703 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14704 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14705 
14706 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14707 			BNX2X_ERR("rx_mode completion timed out!\n");
14708 
14709 		mmiowb();
14710 		barrier();
14711 
14712 		/* Unset iSCSI L2 MAC */
14713 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14714 					BNX2X_ISCSI_ETH_MAC, true);
14715 		break;
14716 	}
14717 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14718 		int count = ctl->data.credit.credit_count;
14719 
14720 		smp_mb__before_atomic();
14721 		atomic_add(count, &bp->cq_spq_left);
14722 		smp_mb__after_atomic();
14723 		break;
14724 	}
14725 	case DRV_CTL_ULP_REGISTER_CMD: {
14726 		int ulp_type = ctl->data.register_data.ulp_type;
14727 
14728 		if (CHIP_IS_E3(bp)) {
14729 			int idx = BP_FW_MB_IDX(bp);
14730 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14731 			int path = BP_PATH(bp);
14732 			int port = BP_PORT(bp);
14733 			int i;
14734 			u32 scratch_offset;
14735 			u32 *host_addr;
14736 
14737 			/* first write capability to shmem2 */
14738 			if (ulp_type == CNIC_ULP_ISCSI)
14739 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14740 			else if (ulp_type == CNIC_ULP_FCOE)
14741 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14742 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14743 
14744 			if ((ulp_type != CNIC_ULP_FCOE) ||
14745 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14746 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14747 				break;
14748 
14749 			/* if reached here - should write fcoe capabilities */
14750 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14751 			if (!scratch_offset)
14752 				break;
14753 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
14754 						   fcoe_features[path][port]);
14755 			host_addr = (u32 *) &(ctl->data.register_data.
14756 					      fcoe_features);
14757 			for (i = 0; i < sizeof(struct fcoe_capabilities);
14758 			     i += 4)
14759 				REG_WR(bp, scratch_offset + i,
14760 				       *(host_addr + i/4));
14761 		}
14762 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14763 		break;
14764 	}
14765 
14766 	case DRV_CTL_ULP_UNREGISTER_CMD: {
14767 		int ulp_type = ctl->data.ulp_type;
14768 
14769 		if (CHIP_IS_E3(bp)) {
14770 			int idx = BP_FW_MB_IDX(bp);
14771 			u32 cap;
14772 
14773 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14774 			if (ulp_type == CNIC_ULP_ISCSI)
14775 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14776 			else if (ulp_type == CNIC_ULP_FCOE)
14777 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14778 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14779 		}
14780 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14781 		break;
14782 	}
14783 
14784 	default:
14785 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
14786 		rc = -EINVAL;
14787 	}
14788 
14789 	/* For storage-only interfaces, change driver state */
14790 	if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14791 		switch (ctl->drv_state) {
14792 		case DRV_NOP:
14793 			break;
14794 		case DRV_ACTIVE:
14795 			bnx2x_set_os_driver_state(bp,
14796 						  OS_DRIVER_STATE_ACTIVE);
14797 			break;
14798 		case DRV_INACTIVE:
14799 			bnx2x_set_os_driver_state(bp,
14800 						  OS_DRIVER_STATE_DISABLED);
14801 			break;
14802 		case DRV_UNLOADED:
14803 			bnx2x_set_os_driver_state(bp,
14804 						  OS_DRIVER_STATE_NOT_LOADED);
14805 			break;
14806 		default:
14807 		BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14808 		}
14809 	}
14810 
14811 	return rc;
14812 }
14813 
14814 static int bnx2x_get_fc_npiv(struct net_device *dev,
14815 			     struct cnic_fc_npiv_tbl *cnic_tbl)
14816 {
14817 	struct bnx2x *bp = netdev_priv(dev);
14818 	struct bdn_fc_npiv_tbl *tbl = NULL;
14819 	u32 offset, entries;
14820 	int rc = -EINVAL;
14821 	int i;
14822 
14823 	if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14824 		goto out;
14825 
14826 	DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14827 
14828 	tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14829 	if (!tbl) {
14830 		BNX2X_ERR("Failed to allocate fc_npiv table\n");
14831 		goto out;
14832 	}
14833 
14834 	offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14835 	if (!offset) {
14836 		DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14837 		goto out;
14838 	}
14839 	DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14840 
14841 	/* Read the table contents from nvram */
14842 	if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14843 		BNX2X_ERR("Failed to read FC-NPIV table\n");
14844 		goto out;
14845 	}
14846 
14847 	/* Since bnx2x_nvram_read() returns data in be32, we need to convert
14848 	 * the number of entries back to cpu endianness.
14849 	 */
14850 	entries = tbl->fc_npiv_cfg.num_of_npiv;
14851 	entries = (__force u32)be32_to_cpu((__force __be32)entries);
14852 	tbl->fc_npiv_cfg.num_of_npiv = entries;
14853 
14854 	if (!tbl->fc_npiv_cfg.num_of_npiv) {
14855 		DP(BNX2X_MSG_MCP,
14856 		   "No FC-NPIV table [valid, simply not present]\n");
14857 		goto out;
14858 	} else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14859 		BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14860 			  tbl->fc_npiv_cfg.num_of_npiv);
14861 		goto out;
14862 	} else {
14863 		DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14864 		   tbl->fc_npiv_cfg.num_of_npiv);
14865 	}
14866 
14867 	/* Copy the data into cnic-provided struct */
14868 	cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14869 	for (i = 0; i < cnic_tbl->count; i++) {
14870 		memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14871 		memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14872 	}
14873 
14874 	rc = 0;
14875 out:
14876 	kfree(tbl);
14877 	return rc;
14878 }
14879 
14880 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14881 {
14882 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14883 
14884 	if (bp->flags & USING_MSIX_FLAG) {
14885 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14886 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14887 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
14888 	} else {
14889 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14890 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14891 	}
14892 	if (!CHIP_IS_E1x(bp))
14893 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14894 	else
14895 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14896 
14897 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14898 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14899 	cp->irq_arr[1].status_blk = bp->def_status_blk;
14900 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14901 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14902 
14903 	cp->num_irq = 2;
14904 }
14905 
14906 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14907 {
14908 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14909 
14910 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14911 			     bnx2x_cid_ilt_lines(bp);
14912 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14913 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14914 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14915 
14916 	DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14917 	   BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14918 	   cp->iscsi_l2_cid);
14919 
14920 	if (NO_ISCSI_OOO(bp))
14921 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14922 }
14923 
14924 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14925 			       void *data)
14926 {
14927 	struct bnx2x *bp = netdev_priv(dev);
14928 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14929 	int rc;
14930 
14931 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14932 
14933 	if (ops == NULL) {
14934 		BNX2X_ERR("NULL ops received\n");
14935 		return -EINVAL;
14936 	}
14937 
14938 	if (!CNIC_SUPPORT(bp)) {
14939 		BNX2X_ERR("Can't register CNIC when not supported\n");
14940 		return -EOPNOTSUPP;
14941 	}
14942 
14943 	if (!CNIC_LOADED(bp)) {
14944 		rc = bnx2x_load_cnic(bp);
14945 		if (rc) {
14946 			BNX2X_ERR("CNIC-related load failed\n");
14947 			return rc;
14948 		}
14949 	}
14950 
14951 	bp->cnic_enabled = true;
14952 
14953 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14954 	if (!bp->cnic_kwq)
14955 		return -ENOMEM;
14956 
14957 	bp->cnic_kwq_cons = bp->cnic_kwq;
14958 	bp->cnic_kwq_prod = bp->cnic_kwq;
14959 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14960 
14961 	bp->cnic_spq_pending = 0;
14962 	bp->cnic_kwq_pending = 0;
14963 
14964 	bp->cnic_data = data;
14965 
14966 	cp->num_irq = 0;
14967 	cp->drv_state |= CNIC_DRV_STATE_REGD;
14968 	cp->iro_arr = bp->iro_arr;
14969 
14970 	bnx2x_setup_cnic_irq_info(bp);
14971 
14972 	rcu_assign_pointer(bp->cnic_ops, ops);
14973 
14974 	/* Schedule driver to read CNIC driver versions */
14975 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14976 
14977 	return 0;
14978 }
14979 
14980 static int bnx2x_unregister_cnic(struct net_device *dev)
14981 {
14982 	struct bnx2x *bp = netdev_priv(dev);
14983 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14984 
14985 	mutex_lock(&bp->cnic_mutex);
14986 	cp->drv_state = 0;
14987 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
14988 	mutex_unlock(&bp->cnic_mutex);
14989 	synchronize_rcu();
14990 	bp->cnic_enabled = false;
14991 	kfree(bp->cnic_kwq);
14992 	bp->cnic_kwq = NULL;
14993 
14994 	return 0;
14995 }
14996 
14997 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
14998 {
14999 	struct bnx2x *bp = netdev_priv(dev);
15000 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15001 
15002 	/* If both iSCSI and FCoE are disabled - return NULL in
15003 	 * order to indicate CNIC that it should not try to work
15004 	 * with this device.
15005 	 */
15006 	if (NO_ISCSI(bp) && NO_FCOE(bp))
15007 		return NULL;
15008 
15009 	cp->drv_owner = THIS_MODULE;
15010 	cp->chip_id = CHIP_ID(bp);
15011 	cp->pdev = bp->pdev;
15012 	cp->io_base = bp->regview;
15013 	cp->io_base2 = bp->doorbells;
15014 	cp->max_kwqe_pending = 8;
15015 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15016 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15017 			     bnx2x_cid_ilt_lines(bp);
15018 	cp->ctx_tbl_len = CNIC_ILT_LINES;
15019 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15020 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15021 	cp->drv_ctl = bnx2x_drv_ctl;
15022 	cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15023 	cp->drv_register_cnic = bnx2x_register_cnic;
15024 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15025 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15026 	cp->iscsi_l2_client_id =
15027 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15028 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15029 
15030 	if (NO_ISCSI_OOO(bp))
15031 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15032 
15033 	if (NO_ISCSI(bp))
15034 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15035 
15036 	if (NO_FCOE(bp))
15037 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15038 
15039 	BNX2X_DEV_INFO(
15040 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15041 	   cp->ctx_blk_size,
15042 	   cp->ctx_tbl_offset,
15043 	   cp->ctx_tbl_len,
15044 	   cp->starting_cid);
15045 	return cp;
15046 }
15047 
15048 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15049 {
15050 	struct bnx2x *bp = fp->bp;
15051 	u32 offset = BAR_USTRORM_INTMEM;
15052 
15053 	if (IS_VF(bp))
15054 		return bnx2x_vf_ustorm_prods_offset(bp, fp);
15055 	else if (!CHIP_IS_E1x(bp))
15056 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15057 	else
15058 		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15059 
15060 	return offset;
15061 }
15062 
15063 /* called only on E1H or E2.
15064  * When pretending to be PF, the pretend value is the function number 0...7
15065  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15066  * combination
15067  */
15068 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15069 {
15070 	u32 pretend_reg;
15071 
15072 	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15073 		return -1;
15074 
15075 	/* get my own pretend register */
15076 	pretend_reg = bnx2x_get_pretend_reg(bp);
15077 	REG_WR(bp, pretend_reg, pretend_func_val);
15078 	REG_RD(bp, pretend_reg);
15079 	return 0;
15080 }
15081 
15082 static void bnx2x_ptp_task(struct work_struct *work)
15083 {
15084 	struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15085 	int port = BP_PORT(bp);
15086 	u32 val_seq;
15087 	u64 timestamp, ns;
15088 	struct skb_shared_hwtstamps shhwtstamps;
15089 
15090 	/* Read Tx timestamp registers */
15091 	val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15092 			 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15093 	if (val_seq & 0x10000) {
15094 		/* There is a valid timestamp value */
15095 		timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15096 				   NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15097 		timestamp <<= 32;
15098 		timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15099 				    NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15100 		/* Reset timestamp register to allow new timestamp */
15101 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15102 		       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15103 		ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15104 
15105 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15106 		shhwtstamps.hwtstamp = ns_to_ktime(ns);
15107 		skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15108 		dev_kfree_skb_any(bp->ptp_tx_skb);
15109 		bp->ptp_tx_skb = NULL;
15110 
15111 		DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15112 		   timestamp, ns);
15113 	} else {
15114 		DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n");
15115 		/* Reschedule to keep checking for a valid timestamp value */
15116 		schedule_work(&bp->ptp_task);
15117 	}
15118 }
15119 
15120 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15121 {
15122 	int port = BP_PORT(bp);
15123 	u64 timestamp, ns;
15124 
15125 	timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15126 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15127 	timestamp <<= 32;
15128 	timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15129 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15130 
15131 	/* Reset timestamp register to allow new timestamp */
15132 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15133 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15134 
15135 	ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15136 
15137 	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15138 
15139 	DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15140 	   timestamp, ns);
15141 }
15142 
15143 /* Read the PHC */
15144 static cycle_t bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15145 {
15146 	struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15147 	int port = BP_PORT(bp);
15148 	u32 wb_data[2];
15149 	u64 phc_cycles;
15150 
15151 	REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15152 		    NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15153 	phc_cycles = wb_data[1];
15154 	phc_cycles = (phc_cycles << 32) + wb_data[0];
15155 
15156 	DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15157 
15158 	return phc_cycles;
15159 }
15160 
15161 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15162 {
15163 	memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15164 	bp->cyclecounter.read = bnx2x_cyclecounter_read;
15165 	bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15166 	bp->cyclecounter.shift = 1;
15167 	bp->cyclecounter.mult = 1;
15168 }
15169 
15170 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15171 {
15172 	struct bnx2x_func_state_params func_params = {NULL};
15173 	struct bnx2x_func_set_timesync_params *set_timesync_params =
15174 		&func_params.params.set_timesync;
15175 
15176 	/* Prepare parameters for function state transitions */
15177 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15178 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15179 
15180 	func_params.f_obj = &bp->func_obj;
15181 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15182 
15183 	/* Function parameters */
15184 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15185 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15186 
15187 	return bnx2x_func_state_change(bp, &func_params);
15188 }
15189 
15190 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15191 {
15192 	struct bnx2x_queue_state_params q_params;
15193 	int rc, i;
15194 
15195 	/* send queue update ramrod to enable PTP packets */
15196 	memset(&q_params, 0, sizeof(q_params));
15197 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15198 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
15199 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15200 		  &q_params.params.update.update_flags);
15201 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15202 		  &q_params.params.update.update_flags);
15203 
15204 	/* send the ramrod on all the queues of the PF */
15205 	for_each_eth_queue(bp, i) {
15206 		struct bnx2x_fastpath *fp = &bp->fp[i];
15207 
15208 		/* Set the appropriate Queue object */
15209 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15210 
15211 		/* Update the Queue state */
15212 		rc = bnx2x_queue_state_change(bp, &q_params);
15213 		if (rc) {
15214 			BNX2X_ERR("Failed to enable PTP packets\n");
15215 			return rc;
15216 		}
15217 	}
15218 
15219 	return 0;
15220 }
15221 
15222 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15223 {
15224 	int port = BP_PORT(bp);
15225 	int rc;
15226 
15227 	if (!bp->hwtstamp_ioctl_called)
15228 		return 0;
15229 
15230 	switch (bp->tx_type) {
15231 	case HWTSTAMP_TX_ON:
15232 		bp->flags |= TX_TIMESTAMPING_EN;
15233 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15234 		       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA);
15235 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15236 		       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE);
15237 		break;
15238 	case HWTSTAMP_TX_ONESTEP_SYNC:
15239 		BNX2X_ERR("One-step timestamping is not supported\n");
15240 		return -ERANGE;
15241 	}
15242 
15243 	switch (bp->rx_filter) {
15244 	case HWTSTAMP_FILTER_NONE:
15245 		break;
15246 	case HWTSTAMP_FILTER_ALL:
15247 	case HWTSTAMP_FILTER_SOME:
15248 		bp->rx_filter = HWTSTAMP_FILTER_NONE;
15249 		break;
15250 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15251 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15252 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15253 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15254 		/* Initialize PTP detection for UDP/IPv4 events */
15255 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15256 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE);
15257 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15258 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE);
15259 		break;
15260 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15261 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15262 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15263 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15264 		/* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15265 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15266 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA);
15267 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15268 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE);
15269 		break;
15270 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15271 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15272 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15273 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15274 		/* Initialize PTP detection L2 events */
15275 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15276 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF);
15277 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15278 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF);
15279 
15280 		break;
15281 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
15282 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
15283 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15284 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15285 		/* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15286 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15287 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA);
15288 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15289 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE);
15290 		break;
15291 	}
15292 
15293 	/* Indicate to FW that this PF expects recorded PTP packets */
15294 	rc = bnx2x_enable_ptp_packets(bp);
15295 	if (rc)
15296 		return rc;
15297 
15298 	/* Enable sending PTP packets to host */
15299 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15300 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15301 
15302 	return 0;
15303 }
15304 
15305 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15306 {
15307 	struct hwtstamp_config config;
15308 	int rc;
15309 
15310 	DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15311 
15312 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15313 		return -EFAULT;
15314 
15315 	DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15316 	   config.tx_type, config.rx_filter);
15317 
15318 	if (config.flags) {
15319 		BNX2X_ERR("config.flags is reserved for future use\n");
15320 		return -EINVAL;
15321 	}
15322 
15323 	bp->hwtstamp_ioctl_called = 1;
15324 	bp->tx_type = config.tx_type;
15325 	bp->rx_filter = config.rx_filter;
15326 
15327 	rc = bnx2x_configure_ptp_filters(bp);
15328 	if (rc)
15329 		return rc;
15330 
15331 	config.rx_filter = bp->rx_filter;
15332 
15333 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15334 		-EFAULT : 0;
15335 }
15336 
15337 /* Configures HW for PTP */
15338 static int bnx2x_configure_ptp(struct bnx2x *bp)
15339 {
15340 	int rc, port = BP_PORT(bp);
15341 	u32 wb_data[2];
15342 
15343 	/* Reset PTP event detection rules - will be configured in the IOCTL */
15344 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15345 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15346 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15347 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15348 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15349 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15350 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15351 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15352 
15353 	/* Disable PTP packets to host - will be configured in the IOCTL*/
15354 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15355 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15356 
15357 	/* Enable the PTP feature */
15358 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15359 	       NIG_REG_P0_PTP_EN, 0x3F);
15360 
15361 	/* Enable the free-running counter */
15362 	wb_data[0] = 0;
15363 	wb_data[1] = 0;
15364 	REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15365 
15366 	/* Reset drift register (offset register is not reset) */
15367 	rc = bnx2x_send_reset_timesync_ramrod(bp);
15368 	if (rc) {
15369 		BNX2X_ERR("Failed to reset PHC drift register\n");
15370 		return -EFAULT;
15371 	}
15372 
15373 	/* Reset possibly old timestamps */
15374 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15375 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15376 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15377 	       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15378 
15379 	return 0;
15380 }
15381 
15382 /* Called during load, to initialize PTP-related stuff */
15383 void bnx2x_init_ptp(struct bnx2x *bp)
15384 {
15385 	int rc;
15386 
15387 	/* Configure PTP in HW */
15388 	rc = bnx2x_configure_ptp(bp);
15389 	if (rc) {
15390 		BNX2X_ERR("Stopping PTP initialization\n");
15391 		return;
15392 	}
15393 
15394 	/* Init work queue for Tx timestamping */
15395 	INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15396 
15397 	/* Init cyclecounter and timecounter. This is done only in the first
15398 	 * load. If done in every load, PTP application will fail when doing
15399 	 * unload / load (e.g. MTU change) while it is running.
15400 	 */
15401 	if (!bp->timecounter_init_done) {
15402 		bnx2x_init_cyclecounter(bp);
15403 		timecounter_init(&bp->timecounter, &bp->cyclecounter,
15404 				 ktime_to_ns(ktime_get_real()));
15405 		bp->timecounter_init_done = 1;
15406 	}
15407 
15408 	DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15409 }
15410